

Teamcenter Integration for SolidWorks®

Administration Guide

Version 8.3.0

TranscenData
A Business of International TechneGroup Incorporated

DuPont Circle
Milford OH, 45150

 i

ITI PROVIDES THIS PROGRAM AS IS AND WITH ALL FAULTS. ITI SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A

PARTICULAR USE. ITI DOES NOT WARRANT THAT THE OPERATION OF THE

PROGRAM WILL BE UNINTERRUPTED OR ERROR FREE.

i-Man® is a registered trademark of UGS Corp.

Siemens and the Siemens logo are registered trademarks of Siemens AG. UGS, Teamcenter and

UGS Teamcenter are trademarks or registered trademarks of UGS or its subsidiaries. This

software and related documentation are proprietary to UGS Corp. ©2009 UGS Corp. All rights

reserved.

SolidWorks® is a registered trademark of SolidWorks Corporation.

Copyright© 2011 International TechneGroup Incorporated, 5303 DuPont Circle, Milford, Ohio

45150, U.S.A. All Rights Reserved.

This program contains software licensed from UGS Corp. ©2009 UGS Corp. All Rights

Reserved

 ii

Contents

Introduction ... 1

Technical Support ... 1

Configuration .. 1

Swim.properties .. 2
General preferences .. 3
Open preferences .. 4
Save preferences ... 5

Update preferences.. 7
swim.xml ... 8

Attribute Mapping ... 8

cad_name .. 9
pdm_name ... 9
default ... 11
missing_attribute_action ... 12

direction .. 12
constraint ... 13

truncate .. 13
Loading the Attribute Mappings into Teamcenter .. 14

User Defined Columns .. 14

Column Map ... 14
column tag ... 15

display_name .. 15

cad_name .. 15

pdm_name ... 15
BOM Map ... 16

BOM View Type... 16
BOM Properties .. 16

Auxiliary Files .. 18

General Auxiliary Files ... 18

auxiliary_file ... 19

cadtopdm_control .. 20

create_text_file .. 20

ets_request .. 22

file_name ... 23

os_command... 23

preview_command... 24

generate_command .. 25

pdm_location .. 26

Substitution Keywords .. 26
JT Files .. 27

Template Map ... 28
Using Templates from a Directory ... 29
Using Templates from Teamcenter ... 29

 iii

Dataset Map .. 30

Allowed Item Types .. 30
Submit to Workflow ... 30

Example Map File ... 31

swim.cfg .. 37
Teamcenter Preferences .. 38

Utility Functions .. 39

Exporting SolidWorks Models from Teamcenter with swimexport ... 39
Usage... 39

Description .. 40
Configurations... 44
Toolbox Parts .. 44

Multiple Model Versions .. 44
Instruction Files .. 44
Examples ... 45

Importing SolidWorks Models into Teamcenter with swimimport .. 46
Usage... 46

Description .. 46
Item IDs, Names, Types, and Revisions ... 48
Attributes... 48

BOMs .. 48
Configurations and Design Tables .. 48

Toolbox Parts .. 49
Auxiliary Files .. 49
Instruction Files .. 49

Examples ... 51

Renaming SolidWorks Models in Teamcenter with swimrename ... 51
Usage... 52
Description .. 52

Examples ... 54

Troubleshooting .. 55

General guidelines .. 55
Logging ... 55

Reporting problems ... 56
Integration launch ... 56
Installation errors .. 59

Runtime problems ... 62

Best Practice Recommendations .. 64

Configurations... 64
Integration preferences related to configurations ... 64

SolidWorks Toolbox ... 64
SolidWorks SpeedPak ... 64
Multisite .. 65

Configuring Teamcenter Multi-Site to Export SolidWorks Models..................................... 65

 iv

Configuring Teamcenter Multi-Site for Transferring Ownership of SolidWorks Models ... 65

Configuring the Teamcenter Integration for SolidWorks for Performance 66
Configuring Teamcenter for Single Workflow ... 66
Restricted access to data ... 67

Opening a model with access restrictions ... 67
Saving a model with access restrictions.. 69

 1

Introduction
When first installed, the Teamcenter® Integration for SolidWorks® is configured to satisfy most

customers‟ requirements. As users become more experienced with the product, the Teamcenter

Administrator may want to change certain settings to align with customer-specific requirements

and processes. The Configuration section of this document explains how to change the

configuration, and why you may want to do so.

The integration provides a set of utility programs to perform administrative-level functions on

SolidWorks data. Those functions, and their usage, are described in the Utility Functions section

of this document.

Finally, there is a small set of known issues that customers may encounter when working with

the product. These are covered in the Troubleshooting and Best Practices sections.

Technical Support

For technical support, please contact the Global Technical Access Center (GTAC). You can

reach GTAC via the World Wide Web at http://support.ugs.com/ or by telephone:

 United States and Canada (800) 955-0000

In other countries please see http://support.ugs.com/html/by_phone/ for additional telephone

numbers, or call (714) 952-5444.

Configuration

The integration‟s CAD data management behavior is controlled by settings in four different

locations:

 swim.properties

o This properties file may be controlled at the site level, and also made available to

users or groups of users for overriding of selected preferences. It is a text file

containing a list of keywords and values. Each keyword is documented within the

file, and each has a default value. Together they form a set of preferences which are

read when SolidWorks is launched with the integration loaded. If the value for a

particular keyword is not modified, then the default value remains in effect. Some

preferences in the swim.properties file are best controlled at the site level, while

others may be user-specific. The Teamcenter Administrator at each site must decide

which settings users are allowed to override.

 swim.xml

o A set of maps to control integration behavior at the site level. This file is not designed

for modification by anyone but the Teamcenter Administrator.

 swim.cfg

o This file exists only on the integration client workstations. It is not designed for site-

level administration, although customers may choose to install the integration in a

http://support.ugs.com/
http://support.ugs.com/html/by_phone/

 2

network-accessible location, and allow users to launch using desktop shortcuts. In

that case, it may effectively become a site-level configuration file. It is a text file

with various settings to control the interaction between the integration client, the

operating system, and the SolidWorks session, as well as the configuration of certain

elements of the Graphical User Interface (GUI). Only a small subset of the included

properties is intended for modification by customers.

 Teamcenter preferences

o There are several Teamcenter preferences that can have an effect on integration

behavior. These may be managed as user, group, role or site preferences, although by

default most are site preferences. The most commonly encountered scenarios are

explained in this guide, but the Teamcenter documentation provides the most

complete description of these preferences.

By default, all three of the above files are located in the integration‟s client installation directory

(often called SWIM_DIR in various documentation). Both swim.properties and swim.xml may be

read from other locations as well. Swim.cfg is only read from the client‟s installation directory.

Swim.properties

The swim.properties file, located in the installation directory, contains the preferences that can

be configured for a site or for an individual user. All of these preferences are optional.

Preference files may be named either swim.properties or .swimrc and may be placed in any of

these locations:

 In the working directory where the Teamcenter Integration for SolidWorks is started.

 In the user‟s home directory.

 In the Teamcenter Integration for SolidWorks installation directory.

When the Integration starts, it reads all swim.properties and .swimrc files in these locations.

If several files specify the same preference, the preferences from the working directory take

precedence over those from the user‟s home directory, and preferences from the user‟s home

directory take precedence over those from the installation directory. Preferences that are likely

to have the same definition for all users should be specified in the installation directory, while a

user‟s personal customizations may be specified in the home directory or working directory

preferences file.

It is recommended that the Teamcenter administrator maintain the installed swim.properties file

as a read-only master copy, and make all changes in a separate file, which is included in

swim.properties using the preferences.file setting, as in this example:

preferences.file = .\\swim_site.properties

This technique allows you to override each preference‟s default value, while preserving the

original unchanged value for documentation. It also helps to quickly identify those preferences

whose values have been changed by the site.

Special syntax is available for “locking” settings so that users cannot override them, and for

resolving values through environment variables (especially useful for settings that point to

 3

directory or file locations). This syntax is explained at the top of the swim.properties file, and so

it is not repeated here.

Any of the published configuration settings may be overridden in the swim.properties file, but

some are more frequently changed than others. The following is a summary of the more

commonly modified settings.

General preferences

table.columns.std: With the default value, the integration displays the most

commonly needed attributes of the CAD models. It is

possible to display additional or alternative attributes, either

by selecting from a predefined set (documented in

swim.properties) or by configuring display of custom

columns. The attributes included in table.columns.std

apply to all integration dialogs, unless overridden by

similar dialog-specific preferences, such as

table.columns.checkin and table.columns.update.

log.file The integration automatically writes a log file to the

session‟s startup directory, which may be influenced by

several factors including the configuration of desktop

shortcuts. Assuming that all users have write access to a

consistent location on their client workstations, it is

recommended to set log.file to a consistent value for all

users, such as c:\\temp\\txdlog.txt.

log.suppress The default setting for this option is 3, which includes the

most important information needed for troubleshooting. In

rare cases it may be necessary to increase the level of

logging detail. This may be done by setting log.suppress

to any value greater than 10000.

iman.autorename.itemname True by default, this setting controls whether a CAD

model‟s item name attribute is updated to match its item

ID, when the item ID is changed during save to

Teamcenter. It is recommended to assign item IDs from

Teamcenter during save, and to allow the integration to

rename the CAD files to match the item IDs. This ensures

uniqueness at both the item and the dataset levels, which is

important for performance and reliability. By changing this

setting to false, the original name of the CAD file can be

preserved in the item‟s Name attribute, to retain association

with the design intent of the CAD model in the Teamcenter

database.

summary.table.rows.std This preference controls the attributes which are displayed

in the Summary panel on the Open, Open Dependencies,

 4

and Update dialogs. The swim.properties file

documents a predefined list of keywords that may be used

to add or change the set of displayed attributes. In addition,

any Teamcenter attribute (out of the box or custom) may be

added to the set by first configuring the attribute as a

mapped column (see the section on column mapping, later

in this document) and then adding the column map‟s

display_name value to summary.table.rows.std.

Open preferences

filters.checkout.choices Filters are check boxes that appear on the integration‟s

Open Dependencies dialog. They give the SolidWorks

designer control over how much CAD data is downloaded

from Teamcenter to his client. A subset of the available

filters is displayed by default. Filter options can be added

or subtracted by modifying this preference.

filters.checkout.default Once the available filters are configured, it is advisable to

set them to the appropriate default true or false values, so

that the initial collection of models displayed in the Open

Dependencies dialog represents the most commonly

desired set of dependencies. Users can change and apply

filter options in the Open Dependencies dialog, but each

change requires the integration to recalculate the

dependency tree, and this can take significant time for very

large structures. Filter options that are included in the

filters.checkout.default preference are set to true by

default; filters not mentioned in this preference default to

false.

checkout.exportdirectory If this preference is not set, then the initial value of Work

Folder in the Open Dependencies dialog is determined by

the SolidWorks session‟s current working directory. If the

user changes his SolidWorks directory, the next export

from Teamcenter will be routed to a different location on

his client. The result is little or no consistency in the

location of managed Teamcenter files. For this reason, it is

recommended to set checkout.exportdirectory to a

fixed location. The syntax documented in the

swim.properties file may be used to read an environment

variable as part of the path, for example:

checkout.exportdirectory=${USERPROFILE}\\sw.

iman.bomrevisionruledefault When this preference remains unset, the default revision

rule that is applied to the operation is determined by the

 5

user‟s Default Revision Rule setting, in the Rich Client‟s

Options | Product Structure dialog. Customers may

want to configure a different revision rule as the default for

SolidWorks users, and this can be done by setting

iman.bomrevisionruledefault to the name of any revision

rule defined in Teamcenter. It is important to configure a

default revision rule that is appropriate for most users, most

of the time, because this rule will always be used to

configure the selected top-level model during Open. The

user will have an opportunity to select a different rule after

the “Open Dependencies” dialog is displayed, but applying

the alternative rule requires additional processing on the

client and server, which takes additional time.

Save preferences

checkin.after This setting controls the default value of the Work Folder

After Save control on the save dialog. Some customers

may wish to change this default so that users do not have to

remember to do it themselves, during each save operation.

eai.jtenabled When the SolidWorks translator is installed, the integration

can call the translator to create JT files during save to

Teamcenter, and then automatically upload the resulting JT

files into the Teamcenter Bill of Materials. The translation

is controlled by a check box on the save dialog, labeled

Save JT Files. Because client-side JT translation can

have a significant impact on save performance,

Administrators may wish to disable this function by

default, and this is done by simply changing the preference

value from true to false.

iman.addonlynewtoselected By default, all new items are put into a Teamcenter folder.

If the user selects a folder in the save dialog, then the items

are put into that folder. If he does not explicitly select a

folder (this is done by selecting the top-level Teamcenter

folder in the folder selection dialog, as shown below)

 6

then the location of the newly-created items is controlled

by the WsoInsertNoSelectionsPref preference in

Teamcenter. Setting the iman.addonlynewtoselected

preference to false tells the integration that not only new

items, but also existing items being saved as new versions

or new revisions, should be put into the destination folder.

This creates links in Teamcenter such that a given item may

belong to multiple folders. A typical use case for this is to

collect all the components for a large assembly structure

into a single folder, so that Teamcenter users can easily

find them together.

checkin.ignoremissing Customers often have CAD assemblies which contain

references to other models that are no longer used by the

assembly, or that are not available in session. When an

assembly is saved to Teamcenter, the integration will find

and report these as missing references, and will ask the user

whether to continue with the save. Another scenario in

which the warning dialog appears is when the assembly has

suppressed components that have not already been saved to

Teamcenter. Some customers have so much data with this

condition that they prefer not to see the warning dialog on

each save, and this can be configured by changing the

preference from prompt to always.

sw.configurations.default With the default value of “all”, the integration will attempt

to manage all referenced and explicitly added

configurations as distinct items and datasets in Teamcenter.

Customers who do not have naming conflicts in their CAD

data can accept the default setting, but many customers

 7

who are migrating SolidWorks from other PDM systems,

or from disk, where naming conflicts exist and are

tolerated, may wish to change this setting to “none”. When

set to “none”, the integration will ignore configurations

within documents, and will save only the documents to

item IDs and datasets in Teamcenter. Configurations are

still available within the SolidWorks session, because they

are embedded within the .sldasm and .sldprt CAD files

managed by Teamcenter. The most significant

consequence of choosing to hide configurations in this way

is that they are not visible within Teamcenter and therefore

cannot appear as assembly components within the

Teamcenter Bill of Materials.

sw.configurations.hide Similar to sw.configurations.default, this setting will

prevent Teamcenter from saving configurations as items.

However, it is not a global setting but instead is a list of

specific configuration names (wildcards may be used)

which should be hidden. Customers who use a consistent

naming convention for non-product or prototype

configurations should use this setting to hide those

configurations from Teamcenter.

sw.configurations.masters SolidWorks itself creates a master configuration, named

“Default”, for each document, unless configured otherwise.

This setting should contain the names of all master

configurations used by the site. For example, a site running

in the French locale may have configured SolidWorks to

create master configurations as “Défaut”. Such a site

should set sw.configurations.masters = Défaut.

sw.configurations.master.document.same Instead of using a consistent name, or set of names,

for master configurations, some customers have named

their master configuration the same as the document which

contains it. In such cases, the default setting for this

preference should be retained. If configurations named the

same as the document are not intended to represent the

master configuration, then this setting should be changed to

“false”, and during save to Teamcenter the users will be

required to rename either the document or the same-named

configuration.

Update preferences

update.autoclose This preference applies only to the Update Directory

function. The RMB Update Model function dialog always

closes automatically after the operation is finished.

 8

update.autoclose is set to “false” by default, so that the

Update Directory dialog remains open. Some customers

may want to change this setting to “true”, so that the dialog

is automatically dismissed.

swim.xml

The swim.xml file, located in the installation directory, tells the Integration how to map

SolidWorks properties to Teamcenter attributes, which BOMs to create when a model is saved to

Teamcenter, and which Teamcenter dataset and named reference types to use for SolidWorks

models. It is an XML file that uses the DTD defined in swim.dtd, also located in the installation

directory. You may choose to modify swim.xml, or you can create another map file as long as

the map file conforms to the swim.dtd definition. If you choose to create another map file, set

the map.file user preference to define the path to it, and place a copy of swim.dtd in the same

directory as the new map file. The swim.dtd file should not be modified.

Attribute Mapping

When a model is exported from Teamcenter and opened in SolidWorks, attributes assigned to the

item, item revision, dataset, or forms may be copied to attributes in the SolidWorks model.

When a model is saved from SolidWorks to Teamcenter, its property values may be copied back

to these objects. To configure the attribute mapping a site must add attribute_map tags to the

swim.xml and load those mappings into Teamcenter. Once configured the attribute_map tag

specifies which attributes should be copied for a particular type of SolidWorks model. Within an

attribute_map definition can appear zero or more attribute definitions. Each attribute

definition specifies the name of a property in the SolidWorks model (this is the attribute‟s CAD

name), the name of the corresponding attribute in Teamcenter (its PDM name) and additional

information describing its default value, what to do if the attribute does not exist, and so on. The

attribute‟s CAD name and PDM name must be specified, and they must be the first and second

tags, respectively, in an attribute definition. The other elements of an attribute definition are

optional and may appear in any order.

For example, here is an attribute map for SolidWorks assembly and part models:

 <attribute_map cad_type="sldasm:sldprt">

 <attribute>

 <cad_name value="PartNumber"/>

 <pdm_name value="item_id"/>

 <missing_attribute_action value="create"/>

 <direction value="pdmtocad"/>

 </attribute>

 <attribute>

 <cad_name value="Weight"/>

 <pdm_name value="ItemRevision Master.wgt"/>

 <default type="Double">1.0</default>

 <direction value="cadtopdm"/>

 <truncate value=”false”>

 </attribute>

 </attribute_map>

 9

The cad_type defines the type of SolidWorks model to which this map applies. The allowed

cad_type values are the six-letter extensions that SolidWorks uses to identify its model files, in

this case “sldasm” for assemblies and “sldprt” for part models. If more than one type is

specified, use a colon to separate the type names. Additional cad_type values of “slddrw” for

drawings and “sldtbx” for toolbox parts may be used.

The example above specifies only two attributes to be mapped between Teamcenter and

SolidWorks. One is the part number, which the map says is in a property named PartNumber in

SolidWorks assembly and part models, and is the item ID in Teamcenter items. The other is the

weight of the assembly or part, which is in a SolidWorks property named Weight and in an

attribute named wgt in the item revision master form. The part number is copied only from

Teamcenter to SolidWorks (the direction is pdmtocad), while the weight is copied only from

SolidWorks to Teamcenter (the direction is cadtopdm). A property for the part number will be

created if it does not exist in the SolidWorks model (if the missing_attribute_action is

create). If the weight does not exist in the SolidWorks model, a default value of 1.0 will be

stored in the form attribute (this is specified by the default tag).

Each attribute tag is a single mapping of SolidWorks property and Teamcenter attribute. A

property can be mapped to multiple attributes by adding additional attribute tags for each

mapping. Similarly, an attribute can be mapped to multiple properties by adding additional

attribute tags. The integration does not validate multiple mappings; each mapping is performed

without respect to any rules. It is a site administrator‟s responsibility to establish a useful set of

mappings.

The tags that can be used in an attribute definition are described below. Some of these

descriptions refer to source and destination attributes. When opening a model, the source

attributes are those in Teamcenter and the destination attributes are the properties in SolidWorks.

When saving a model, the source attributes are the properties in SolidWorks and the destination

attributes are those in Teamcenter.

cad_name

<cad_name value="name"/>

The cad_name tag specifies the attribute‟s name in the SolidWorks model, which should be the

name of a custom property in the SolidWorks document. The cad_name tag is required and it

must be the first tag in an attribute definition. It has no default.

The following attribute function may be used instead of a property name, but only when

direction is "cadtopdm".

is_configuration() The attribute value is true if the SolidWorks model is a

configuration. The value is false if the model is a document.

pdm_name

<pdm_name value="keyword"|"class[:type].name"/>

The pdm_name tag specifies the attribute‟s name in Teamcenter. This name can be a keyword for

certain special attributes, or it can be a more general expression that gives the attribute‟s name

and the class and type of object where the attribute can be found.

 10

When only a single keyword is given for the value of the pdm_name, it may be one of the

following:

dataset_desc The attribute is the dataset description.

item_desc The attribute is the item description.

item_name The attribute is the item name.

item_id The attribute is the item ID.

item_revision_id The attribute is the revision.

item_revision_desc The attribute is the revision description.

item_type The attribute is the item type. Since an item‟s type cannot change

after the item has been created, this is ignored when copying

attribute values to an existing item.

To specify attributes other than the special ones listed above, use the notation class.name for the

pdm_name value, where class indicates where the attribute will be found, such as on an item, and

name is the name of the attribute. The classes of Teamcenter objects currently supported are:

Dataset The attribute is a dataset property.

Item The attribute is an item property.

Item Master The attribute is one of the form properties in the item master. Note

that there is a single space in this class name.

Item.Form The attribute is a property in a form attached to an item. The form

must be based on a POM class derived from the Form class. If

more than one form is attached to an item, the first one that matches

the class and type (see below) is used. Forms that are stored as files

are not supported.

ItemRevision The attribute is an item revision property.

ItemRevision Master
The attribute is one of the form properties in the item revision

master. Note that there is a single space in this class name.

ItemRevision.Form The attribute is a property in a form attached to an item revision.

The form must be based on a POM class derived from the Form

class. If more than one form is attached to an item revision, the

first one that matches the class and type (see below) is used. Forms

that are stored as files are not supported.

For example, to specify the project_id attribute in the item revision master form, the name

would be

<pdm_name value="ItemRevision Master.project_id"/>

An optional type can be specified using the notation class:type.name. An attribute

object_desc that will be used only for items of type Part would be named

<pdm_name value="Item:Part.object_desc"/>

 11

Types may also be included in the compound notation used to specify a general form attribute.

For example, suppose items of type Part can have a form of type PartData. An attribute data1

in a PartData form would be named

<pdm_name value="Item:Part.Form:PartData.data1"/>

When using the class.name or class:type.name notation, name must be the attribute‟s real

property name, not its display name. You can find the real name of an attribute with the

Teamcenter BMIDE application. Under POM_application_object, look for ItemMaster and

ItemVersionMaster to see the attributes of the Item Master and ItemRevision Master classes;

under POM_application_object | WorkspaceObject are the definitions of the Item,

ItemRevision, and Dataset classes.

When a keyword or class.name specification exists for the attribute

you want to map, and when the attribute mapping applies to all

Teamcenter Item types, then you may use the abbreviated syntax. If

you want the attribute mapping to apply to only one, or a subset, of

the available Teamcenter Item types, then you must use the fully

qualified compound notation.

The pdm_name tag is required and it must be the second tag in an attribute definition,

following the cad_name tag. It has no default.

The Teamcenter attributes must be present in the swim_policy.xml or custom_policy.xml. If not

present in either policy file, then the site administrator should add the attribute to the

custom_policy.xml (modification of the swim_policy.xml file is not supported). In the

custom_policy.xml, the attributes should be added under the proper object type as shown below

for an Item.

<ObjectType name="Item">

 <Property name="object_desc"/>

 <Property name="Property2"/>

 :

 :

 <Property name="Propertyn"/>

 </ObjectType>

Errors or performance degradation can occur if the attributes

referenced as pdm_name are not included in the policy file.

“assert” errors will occur in the txdlog file if an attribute is

missing from the policy file.

default

<default type="Double"|"Integer"|"String"|"Boolean">data</default>

The default tag specifies a default value to assign to the destination attribute when the source

attribute is missing. The value that is assigned to the destination attribute is data. Its type may

be "Double", "Integer", "String", or "Boolean" (note that double quotes are required around

 12

the type as shown, but should not enclose data). When the type is "Boolean", data must be

either true or false.

The default tag is optional. If the source attribute is missing and no default is defined, the

attribute is skipped.

missing_attribute_action
<missing_attribute_action value="create"|"ignore"/>

The missing_attribute_action tag specifies what to do when the destination attribute is

missing. Its value may be one of the following strings (these strings must be enclosed in double

quotes as shown).

"create" The destination attribute is created if it does not exist. This is the

default.

"ignore" The attribute is skipped if the destination attribute does not exist.

The missing_attribute_action tag applies only to SolidWorks properties. It is ignored when

the destination is a Teamcenter attribute. Thus it is only meaningful when the direction value

is “pdmtocad” or “both”.

direction
<direction value="both"|"cadtopdm"|"pdmtocad"/>

The direction tag indicates whether to copy the attribute only from Teamcenter to SolidWorks,

only from SolidWorks to Teamcenter, or in both directions. Its value may be one of the

following strings (these strings must be enclosed in double quotes as shown).

"both" The attribute is copied from Teamcenter to SolidWorks when the

model is opened, and it is copied from SolidWorks to Teamcenter

when the model is saved. This is the default. The integration does

not attempt to modify toolbox parts. If a sldtbx cad_type is

included in a “both” mapping, the attributes will not be mapped

from PDM into the toolbox part.

"cadtopdm" The attribute is copied only from SolidWorks to Teamcenter when

the model is saved.

"pdmtocad" The attribute is copied only from Teamcenter to SolidWorks when

the model is opened. The integration does not attempt to modify

toolbox parts. If a sldtbx cad_type is included in a “pdmtocad”

mapping, the attributes will not be mapped from PDM into the

toolbox part.

Note that two attribute definitions can be provided when different behavior is needed for each

direction in which the attribute is copied. One definition may specify the cadtopdm direction

and the other definition may specify the pdmtocad direction.

 13

constraint
<constraint value="any"|"master"|"non_master"| “use_default_cfg” |

"reserved"/>

The constraint tag restricts attribute copying to models with certain characteristics. Its value

may be one of the following strings (these strings must be enclosed in double quotes as shown).

"any" There is no restriction on copying the attribute. This is the default.

"master" The attribute should be copied only if the model “owns” its file,

which in the case of SolidWorks means the model is a document.

Use this constraint value to prevent the attribute from being copied

when the model is a SolidWorks configuration.

"non_master" The attribute should be copied only if the model does not “own” its

file. Use this constraint value to copy the attribute when the model

is a SolidWorks configuration, and to prevent the attribute from

being copied for SolidWorks documents. This constraint does not

apply to “default” configurations (where “default” is defined by

sw.configurations.masters preference)

"use_default_cfg" The attribute should always be copied to or from the configuration-

specific tab of the model‟s properties. Use this constraint when you

want to ensure that all Teamcenter attributes are accessed from the

configuration-specific tab, whether the model is a document or a

configuration.

"reserved" The attribute should be copied only if the model is reserved by the

user. Use this constraint value to avoid modifying models that

cannot be checked in. This constraint applies only to the pdmtocad

direction. It is ignored when attributes are copied from SolidWorks

to Teamcenter.

The constraint tag may be used more than once. For example, to make sure an attribute is

copied only to models that are checked out for modification, and not copied to a SolidWorks

configuration, use two constraint tags:

 <constraint value="reserved"/>

 <constraint value="master"/>

truncate
<truncate value="true"|"false"/>

The truncate tag specifies whether an attribute should be truncated when mapping from CAD

to PDM. Should a SolidWorks property be of greater length than the corresponding Teamcenter

attribute, the attribute can be truncated to the length of the Teamcenter attribute.

"true" Truncate the attribute prior to writing to Teamcenter.

"false" Default value. The attribute is not truncated before writing to

Teamcenter. If attribute is too long, an error will occur and the save

will be stopped.

 14

If an error occurs, the user should correct the attribute length and

re-save all data again, not just the model that had the attribute

problem, as some of the data may not have been saved.

Loading the Attribute Mappings into Teamcenter

The attribute mappings defined by the attribute_map tag in the swim.xml must be defined in

Teamcenter too. Follow the procedure “Loading the Attribute Mappings” defined in the “Post-

Installation Configuration” section of the InstallationGuide.pdf. When performing those steps,

use the swim.xml file that contains the attribute mappings.

User Defined Columns

User defined columns are used to display attributes in the Integration‟s dialogs which are

associated to the item, item revision, dataset, or forms, and parameters in SolidWorks which

have not been predefined by the Integration. They can be added to the swim.properties file for

any table.columns.* preference. For example, the following preference value in the

swim.properties defines two user defined columns to be displayed for standard columns:

table.columns.std = itemid:itemtype:itemrev:itemname:
UserDefinedCol1:UserDefinedCol1:datasettype:cadname

where UserDefinedCol1 and UserDefinedCol2 are defined in the Column Map

Column Map

Within a column_map definition can appear attribute definitions. Each attribute definition

specifies the name of a property in the SolidWorks model (this is the attribute‟s CAD name), or

the name of an attribute in Teamcenter (its PDM name). The attribute‟s CAD name or PDM

name, but not both, must be specified in a column_map definition.

The column_map tag tells the integration about columns to be displayed in the dialogs. A

column_map tag contains one or more column tags. Each column definition specifies a tag

associated with a preference value defined in the swim.properties file. The display_name tag

tells the integration what to display in the column header. The cad_name tag specifies the name

of a property in the SolidWorks model (this is the attribute‟s CAD name) and the pdm_name tag

specifies the name of the corresponding attribute in Teamcenter (its PDM name).

For example, here is example of a column map:

<column_map>

 <column tag="UserDefinedCol1">

 <display_name value="Item Weight"/>

 <cad_name value="Weight"/>

 </column>

 <column tag="UserDefinedCol2">

 <display_name value="PDM Color"/>

 <pdm_name value="ItemRevision Master.color"/>

 </column>

 15

</column_map>

The example above specifies two column maps. The first, named “UserDefinedCol1” is a

SolidWorks weight parameter named Weight with column heading of "Item Weight”. The other

column, “UserDefinedCol2”, is a Teamcenter attribute named “color” on the item revision

master form with column heading of "PDM Color”. The tags that can be used in a column

definition are described below.

column tag
 <column tag="name">

The column tag specifies the name to be used in the preference value in the swim.properties file.

For example, if the name is “UserDefinedCol1” then the name in swim.properties must match

and must be unique for the column map. Below is an example:

table.columns.std = itemid:itemtype:itemrev:itemname:

UserDefinedCol1:datasettype:cadname

display_name
 <display_name value="Column Description"/>

The display_name tag specifies the column description.

cad_name
 <cad_name value="name"/>

The cad_name tag specifies the property‟s name in the SolidWorks model, or it may be the name

of an attribute function. If the cad_name tag is defined then the pdm_name tag cannot also be

defined. If it is the name of a property, it must obey the usual rules for SolidWorks property

names.

pdm_name

<pdm_name value="keyword"|"class[:type].name"/>

The pdm_name tag specifies the attribute‟s name in Teamcenter. If the pdm_name tag is defined

then the cad_name tag cannot also be defined. This name can be a keyword for certain special

attributes, or it can be a more general expression that gives the attribute‟s name and the class and

type of object where the attribute can be found. Both the keyword and the general expression

syntax are the same as documented for the pdm_name tag in the attribute mapping section of this

document.

 16

BOM Map

The bom_map tag defines the view type for the BOMs that the Integration must update each time

it saves a SolidWorks model in Teamcenter. It has the following format.

<bom_map>

 <bom_line parent_type="parent" child_type="child" view_types="type"/>
 .

 .

 .

</bom_map>

BOM View Type

Each bom_line tag specifies the type of BOM view that must be created or updated whenever a

SolidWorks model is saved. Both parent and child must be SolidWorks model types defined by

entity tags in the type_map. The parent is the type of model for which the BOMs are being

created. The child is the type of model that will appear on the BOM line. The parent is a model

that depends on the child. The type is the type of BOM that should be given a BOM line for the

child when the parent model is saved to Teamcenter.

For example, the following bom_map defines three BOM lines, one for assembly-to-assembly

relationships, one for assembly-to-part relationships, and one for assembly-to-toolbox part

relationships. The first bom_line tag states that, when an assembly model (parent_type)

depends on another assembly model (child_type), the item revision containing the parent

model should be given a BOM of the view type. The second bom_line tag makes a similar

statement about the BOM to add to an assembly item revision that depends on a part model.

<bom_map>

 <bom_line parent_type="sldasm" child_type="sldasm" view_types="view">

 <bom_note type="SWInstanceID" format="{instance_id()}"/>

 <bom_prop cadName="componentReference" pdmName="bl_sequence_no"

direction="cadtopdm"/>

 </bom_line>

 <bom_line parent_type="sldasm" child_type="sldprt" view_types="view">

 <bom_note type="SWInstanceID" format="{instance_id()}"/>

 <bom_prop cadName="componentReference" pdmName="bl_sequence_no"

direction="cadtopdm"/>

 </bom_line>

 <bom_line parent_type="sldasm" child_type="sldtbx" view_types="view">

 <bom_note type="SWInstanceID" format="{instance_id()}"/>

 <bom_prop cadName="componentReference" pdmName="bl_sequence_no"

direction="cadtopdm"/>

 </bom_line>

</bom_map>

BOM Properties

A bom_line tag may optionally enclose several bom_prop tags, each of which specifies a

SolidWorks component property to be mapped with an occurrence attribute on the BOM line.

The bom_prop tag contains a direction for the mapping. The component reference property is the

only supported SolidWorks property. This property can be shown in drawing annotations, such

as tables or balloon notes. Any Teamcenter BOM line property can be supported. The

 17

bom_prop tag can be repeated to establish multiple mappings. One-to-many mapping can be

used in the cadtopdm direction, but not in the pdmtocad direction.

Every bom_prop tag has the following structure

<bom_prop cadName="ComponentReference" pdmName="bl_sequence_no"

direction="cadtopdm"/>

cadName The name of the property on the SolidWorks component pointer.

“ComponentReference” is the only supported value and it is only

supported for SolidWorks 2010 and beyond.

pdmName The name (not display name) of the Teamcenter bomline attribute. For

example “bl_sequence_no” is the name of the attribute displayed as

“findno”. All bomline attributes are supported.

direction Value indicating when the properties should be mapped. Allowed values

are “both”, “pdmtocad”, and “cadtopdm” If “both”, then the property will

be set in Teamcenter during save and in SolidWorks during open. If

“pdmtocad”, then the property will be set in SolidWorks during open. If

“cadtopdm”, then the property will be set in Teamcenter during open.

By default, bom_prop tags are set in the swim.xml file. Cadtopdm mappings occur on every

save. Pdmtocad mappings only occur when the assembly is opened from Teamcenter using the

Synchronize BOM Attributes checkbox on the open dialog.

If using BOM packing in the Structure Editor, the packing will be

affected by pdmtocad mapping of bl_sequence_no. In some cases

portions of a bom could become packed or unpacked unexpectedly.

When mapping in the cadtopdm direction, the BOM attributes must

be writeable. If not writeable, the save operation will fail resulting

in corrupted data in Teamcenter. At a minimum, the BVR will be

missing. The integration assumes access to all attributes, as

verification of the attribute on every BVR would be a significant

performance impact.

String attributes being mapped cadtopdm will be truncated if the

value in cad is greater than the maximum length of the attribute.

Drawing annotations which reference the component reference

property will not automatically update if “Load referenced

documents” is set to “None”. “Load referenced documents” is a

SolidWorks system option, which can be found on the Tools |

Options | System Options | External References dialog.

If any BOMLine properties are configured as either source or destination in the bom_prop tag of

swim.xml, those properties should be present in the swim_policy.xml or custom_policy.xml. If

not present in either policy file, then site administrator should add the property to the

 18

custom_policy.xml (sites should not modify the swim_policy.xml). In the custom_policy.xml,

the properties should be added under ObjectType name=”BOMLine” as shown below.

<ObjectType name="BOMLine">

 <Property name="Property1"/>

 <Property name="Property2"/>

 :

 :

 <Property name="Property"/>

</ObjectType>

Errors or performance degradation can occur if the BOMLine

properties referenced as pdmName are not included in the policy

file. “Assert” errors will occur in the txdlog file if an attribute is

missing from the policy file

In each bom_prop tag, the pdm_name must be the actual name of the bomline attribute. In the

example above, the ComponentReference property in SolidWorks is mapped to the

bl_sequence_no attribute in the Teamcenter BOM. The displayable name for bl_sequence_no is

“Find No”. However the actual database name “bl_sequence_no” must be used in the BOMLine

mapping
1
.

Auxiliary Files

When a model is saved to Teamcenter, additional local files may be saved with it. These files

may also be fetched from Teamcenter when the model is fetched. These additional files are

called auxiliary files. Examples of auxiliary files are JT files for the Teamcenter Rich Client

Viewer, GIF image files, and files of NC machining instructions. The auxiliary_file_map tag

tells the Integration about auxiliary files to save or fetch with SolidWorks models.

An auxiliary_file_map tag contains one or more auxiliary_file tags. It may also contain

jt_file tags, which are described in a later section on JT Files. The general purpose

auxiliary_file tag specifies a pattern for the name of a file, the dataset type and named

reference type where the file will be stored in Teamcenter, and optional commands for the

operating system to execute. It may also specify a checkbox to display in the Save dialog for

users to choose whether auxiliary files should be saved.

General Auxiliary Files

The auxiliary_file tag supports most kinds of auxiliary files. Each is associated with a

particular type of SolidWorks model. When a model of that type is saved to Teamcenter, the

Integration will also save any local files that match a specified file name pattern. When the

model is fetched from Teamcenter, these files can also be fetched.

For example, here is an auxiliary file map containing a single auxiliary_file tag for JT files.
2

The cad_type="sldprt" attribute means this auxiliary file definition is associated only with

part models:

1
 See the Teamcenter documentation for more details on displayable names versus database names.

2
 The jt_file tag, described later, is an easier way to handle JT files.

 19

 <auxiliary_file_map>

 <auxiliary_file cad_type="sldprt">

 <pdm_location named_ref="JTPART" pdm_type="DirectModel"

 relation_type="IMAN_Rendering"/>

 <file_name pattern="{cad_name}.jt"/>

 <os_command cmd="doit {cad_file}"/>

 <cadtopdm_control label="Save JT Files"

 user_preference_name="eai.jtenabled"

 user_preference_default="true"/>

 </auxiliary_file>

 </auxiliary_file_map>

The pdm_location tag tells the Integration where to put the auxiliary file in Teamcenter. In the

example above, the file will be stored in a dataset of type "DirectModel" and the file‟s named

reference will be "JTPART". The dataset is assumed to have the same name as the SolidWorks

model‟s dataset. If the dataset does not exist, it will be created and attached to the model‟s item

revision with an "IMAN_Rendering" relation.

The file_name tag tells the Integration how to find the auxiliary file in the local file system. In

the example above, the name of the auxiliary file is composed of the model‟s lower-case name

with a .jt extension. It is not an error if an auxiliary file cannot be found.

An optional operating system command can be specified with the os_command tag. In the

example above, the Integration will tell the operating system to execute a command named doit,

which takes the path to the model‟s file as its sole argument. Commands are executed after

SolidWorks writes models to the local file system, but before the models or auxiliary files are

saved to Teamcenter.

If an error occurs while attempting to execute the command, the

auxiliary file will not be checked-in to Teamcenter.

The cadtopdm_control tag defines an optional checkbox to display in the Save dialog‟s

Auxiliary Files box. In this example, the checkbox label will be Save JT Files. This tag also

defines a user preference named eai.jtenabled that sets the default state of checkbox. In this

case, the checkbox is on by default.

The tags that can be used in a general auxiliary_file definition are described in more detail

below.

auxiliary_file

<auxiliary_file cad_type="type" [direction ="both"|"cadtopdm"|"pdmtocad"]>

 optional elements
</auxiliary_file>

The auxiliary_file tag is the general purpose definition of an auxiliary file. The cad_type

defines the type of SolidWorks model to which the auxiliary_file tag applies. The allowed

values for type are the six-letter extensions that SolidWorks uses to identify its model files. For

example, cad_type="sldprt" means the auxiliary file is associated only with part models.

More than one SolidWorks model type may be given for cad_type. Use a colon to separate each

six-letter value from the next. For example, to indicate that an auxiliary_file tag applies to

parts, assemblies, and drawings, the attribute should be cad_type="sldprt:sldasm:slddrw".

 20

The direction attribute indicates whether to save the file to Teamcenter when the SolidWorks

model is saved, fetch it from Teamcenter when the model is fetched, or both. Its value may be

one of the following strings (these strings must be enclosed in double quotes as shown).

"both" The auxiliary file is saved to Teamcenter when the SolidWorks

model is saved, and it is fetched from Teamcenter when the model

is fetched.

"cadtopdm" The auxiliary file is saved to Teamcenter when the SolidWorks

model is saved, but is not fetched with the model. This is the

default.

"pdmtocad" The auxiliary file is fetched from Teamcenter with the SolidWorks

model, but it is not saved when the model is saved.

The optional elements that can be included in an auxiliary_file definition are described

below.

cadtopdm_control

<cadtopdm_control label="label" [user_preference_name="name"]
[user_preference_default="true"|"false"]/>

The cadtopdm_control tag creates a checkbox in the Save dialog that allows the user to choose

whether to save the auxiliary files specified by the auxiliary_file definition. The text

labeling the checkbox is label. If the same label is used for several auxiliary_file definitions,

a single checkbox can control all of them.

The user_preference_name attribute creates a user preference name that can be used in the

swim.properties file to set the initial state of the checkbox. When the user preference is not

set, the checkbox is initially checked or unchecked according to whether

user_preference_default is true or false.

If an auxiliary_file definition has no cadtopdm_control tag, the auxiliary files are always

saved.

The direction attribute on the auxiliary_file definition must

be "cadtopdm" or "both" for the cadtopdm_control tag to have

any effect.

create_text_file

<create_text_file file_name="path" [separate_files="true"|"false"]

 [header="path"] [body="path"] [footer="path"]
 [phase="in_cad"|"in_directory"|"in_pdm"]/>

The create_text_file tag specifies one or more text files to create. By default, the file(s) will

be created after SolidWorks has saved the models to the local file system, but before the models

or auxiliary files are checked-in to Teamcenter.

If an error occurs while attempting to write a text file, the file will

not be checked-in to Teamcenter.

The file to be created is specified by the file_name attribute, where path is the path to the file.

The path may include keywords described in the section on Substitution Keywords. If

 21

separate_files is true, a separate text file will be created for each model saved to Teamcenter.

If separate_files is false, a single file will be created, which may contain information about

all models saved to Teamcenter.

Each text file is composed from three templates: the header, the body, and the footer. The

header and footer appear once in the output file, at its beginning and end, respectively. The body

appears between these two sections. If a single file is being created for all models, the body is

repeated for each model being saved to Teamcenter. The body appears only once in the output

file if a separate output file is created for each model.

Each template is optional, although at least one must be specified. The header attribute

specifies the path to a text file that will be used as the header template, the body attribute

specifies the path to a text file that will be used as the body template, and the footer attribute

specifies the path to a text file that will be used as the footer template. The paths to these files

may include keywords from the Substitution Keywords section, and the text within these files

may also use these keywords. If separate_files is true, keywords that imply a particular

model, such as {cad_name} and {cad_type}, can be used in any template and in any file path.

If separate_files is false, keywords that imply a particular model can be used only in the body

template and in the path to the body template file. The header and footer, and the file_name

path, can use only keywords that do not refer to a specific model when separate_files is false.

The use of these keywords in the paths to the template files makes it possible to use separate

body templates for parts, assemblies, and drawings, or to use separate templates for SolidWorks

configurations and documents. For example, suppose the C:\text_templates directory

contains a header template file named header.txt with the following contents:

 These models are being checked-in to Teamcenter…

and two body template files named sldprt.txt and sldasm.txt, in which sldprt.txt

contains:

 A part named {cad_name} is being checked-in to Teamcenter.

and sldasm.txt contains:

 An assembly named {cad_name} is being checked-in to Teamcenter.

A create_text_file tag that uses these templates to create a single text file summarizing the

parts and assemblies selected for check-in to Teamcenter might look like this:

 <create_text_file file_name="summary.txt"

 header="C:\text_templates\header.txt"

 body="C:\text_templates\{cad_type}.txt"/>

When an assembly named Coupling and two parts, Pin and Shaft, are saved to Teamcenter, the

contents of summary.txt would be:

 These models are being checked-in to Teamcenter…

 A part named Pin is being checked-in to Teamcenter.

 A part named Shaft is being checked-in to Teamcenter.

 An assembly named Coupling is being checked-in to Teamcenter.

The {cad_type} pattern in the path to the body template would have been replaced with sldprt

or sldasm, depending on the model type, and the {cad_name} pattern in the body templates

would have been replaced by the model name.

 22

You can also specify a phase in which the text file(s) will be created. Refer to the os_command

tag for more information concerning the phase attribute. By default, text files are created during

the in_directory phase.

ets_request

<ets_request translator="service" [provider="name"] [priority="0"|"1"|"2"|"3"]

 [request_per_model="true"|"false"]>

 <translator_option name="translator_option">value</translator_option>

</ets_request>

The ets_request tag submits translation requests to Teamcenter‟s Dispatcher after all models

have been checked in to Teamcenter. The name of the translator that will handle the request,

also known as the service, is given by the required translator attribute. The default provider is

"SIEMENS", but other providers can be specified with the optional provider attribute. The

translation request can be given a priority of 1, 2 or 3, corresponding to high, medium or low

priority, using the priority attribute. If the priority is set to 0, no translation request is

submitted.

By default, the ets_request tag submits a separate translation request for each SolidWorks

model of the specified type that is saved to Teamcenter. However, if the translator can handle

more than one model at a time, you can set the request_per_model attribute to "false", which

will cause one translation request to be submitted containing all models that have been saved to

Teamcenter. For example, if four parts are saved to Teamcenter and an auxiliary_file

definition with a cad_type of "sldprt" specifies an ets_request, four separate translation

requests will be submitted by default or if request_per_model is explicitly "true". If

request_per_model is "false", a single translation request will be submitted containing all

four parts
3
.

If an auxiliary file definition uses ets_request, the Dispatcher will create the auxiliary file and

import it into Teamcenter, so there is no need to specify a file or a PDM location for it. For

example, an auxiliary file definition that submits a request for translating drawings to DXF files

might look like this:

 <auxiliary_file cad_type="slddrw">

 <cadtopdm_control label="Save DXF Files (ETS)"/>

 <ets_request translator="swtodxf"/>

 </auxiliary_file>

In this example, the cadtopdm_control tag adds a checkbox to the Save dialog, giving the user

control over whether the DXF file will be created.

If the translator accepts additional options, these can be specified with one or more

translator_option sub-tags. Refer to the documentation for your translator to determine

whether additional translator options are supported, and to find out the names and allowed values

of these options. The name attribute specifies the name of a translator option, and the string to be

assigned to that option is given by value. When request_per_model is "true", value may

include any of the keywords that are described later in the Substitution Keywords section. When

request_per_model is "false", only substitution keywords that do not refer to a specific model

3
 The OOTB translators SWToJT and SWToDXF do not accept more than a single model per translation request;

therefore the request_per_model attribute only applies to alternative or custom translators.

 23

should be used. Substitution keywords in value are replaced when the request is submitted to the

Dispatcher, not when the translation occurs.

The ets_request tag always submits Dispatcher requests during the in_pdm phase. An

auxiliary_file tag should not have more than one action per phase, so do not use other

in_pdm actions within the same auxiliary_file tag as your ets_request tag. See the section

on the os_command tag for more information on phases.

file_name

<file_name pattern="pattern" [version="all"|"latest"]/>

The file_name tag identifies the auxiliary file by defining a pattern that matches the file‟s name.

The pattern may give an absolute path to the file, or the path may be relative to the directory

where the SolidWorks model file is saved. The * wildcard character is allowed in the simple file

name part of the pattern, but wildcards are not allowed in directory names. For example,

"myfile.*" and "images/*.gif" are acceptable patterns, but "image*/myfile.*" is not

allowed because a wildcard is used in a directory name.

The pattern may also include certain keywords that the Integration will replace with data from

the model. Keywords can be used anywhere in a pattern, both in the file name part and the

directory parts of a path. The recognized keywords are described later in the section on

Substitution Keywords.

The optional version attribute indicates whether all auxiliary files matching the pattern should

be saved to Teamcenter, or only the file with the latest modification time. The default is "all",

which saves all auxiliary files that match the pattern.

The file_name tag is optional. If it is not included in an auxiliary_file tag, the Integration

will not attempt to find and save an auxiliary file when it saves the corresponding SolidWorks

model, nor will it attempt to execute any operating system commands specified by the

os_command tag.

os_command

<os_command [cmd="command"] [pre_cmd="command"] [post_cmd="command"]
 [phase="in_cad"|"in_directory"|"in_pdm"]

 [ignore_status="true"|"false"]/>

The os_command tag specifies one, two, or three optional commands for the operating system to

execute. By default, these commands are executed after SolidWorks has saved the models to the

local file system, but before the models or auxiliary files are checked-in to Teamcenter.

If an error occurs while attempting to execute one of these

commands, the auxiliary files affected by that particular

auxiliary_file tag will not be checked-in to Teamcenter.

The string in cmd="command" is an operating system command that is executed for each

SolidWorks model saved to Teamcenter. The command string may include the same keywords

allowed in the file_name pattern, which are listed in the section on Substitution Keywords.

The strings in pre_cmd="command" and post_cmd="command" are also operating system

commands. The pre_cmd string is executed once, before any cmd strings from any

 24

auxiliary_file tag are executed (“once” means just once during a Save, Save As, Save All

Checkouts, or Save All command, regardless of the number of models being saved). The

post_cmd string is also executed only once, after all cmd strings from all auxiliary_file tags

have been executed. The pre_cmd and post_cmd strings may also include some of the keywords

described in the Substitution Keywords section, but not every keyword is meaningful in these

command strings. Since pre_cmd and post_cmd are not associated with one specific model,

keywords that refer to a model‟s name, directory, item ID, or other model-specific data, are not

applicable in these strings.

If you provide a pre_cmd, cmd, or post_cmd, the Integration requires the command to execute

successfully before it saves the auxiliary file to Teamcenter. If pre_cmd, cmd, or post_cmd fails,

the auxiliary file matched by the file_name pattern will not be saved. Also, if pre_cmd fails,

neither cmd nor post_cmd will be executed.

If an operating system command exits with a non-zero status, the Integration usually assumes the

command has failed. However, if ignore_status="true" is specified, the Integration ignores

exit status and assumes commands always succeed when executed.

You can also specify the phase in which these commands will execute. When the Integration

saves models from SolidWorks to Teamcenter, the models pass through three phases

corresponding to the values that can be assigned to the phase attribute:

in_cad The models are in the SolidWorks session and have not yet been

saved to the local file system.

in_directory The models have been saved from SolidWorks to the local file

system, but neither the models nor any auxiliary files have been

checked in to Teamcenter.

in_pdm All models and auxiliary files have been checked in to Teamcenter.

By default, the commands specified by an os_command tag are executed during the

in_directory phase, which is usually the phase in which you would want to run any translators

that read a SolidWorks file to create an auxiliary file. If you have any batch processes that must

run after models have been checked in to Teamcenter, you might want to use an os_command tag

to launch them during the in_pdm phase. As a point of interest, the ets_request tag submits

translation requests during the in_pdm phase.

You can think of the os_command, create_text_file, and ets_request tags as actions within

an auxiliary_file definition. Each auxiliary_file definition may have one such action per

phase, which means that as many as three os_command tags can appear in an auxiliary_file

definition if each one specifies a different phase. Alternatively, an auxiliary_file definition

could have one create_text_file tag for the in_directory phase, an os_command tag for the

in_pdm phase, and so on.

Every attribute in an os_command tag is optional.

preview_command

 25

<preview_command [cmd="command"] [pre_cmd="command"] [post_cmd="command"]
 [phase="in_cad"|"in_directory"|"in_pdm"]

 [ignore_status="true"|"false"]/>

The preview_command tag specifies one, two, or three optional commands for SolidWorks to

execute. By default, these commands are executed after SolidWorks has saved the models to the

local file system, but before the models or auxiliary files are checked into Teamcenter. The

preview_command tag is similar to the os_command tag except the keyword “built-in

file_name_tag” is added to invoke added functionality by the Integration. You may notice that by

default, the swim.xml file already has these tags:

 <auxiliary_file_map>

 <auxiliary_file cad_type="sldprt" direction="cadtopdm">

 <!-- Uncomment the below if you want to give the user choice of

 saving the preview files -->

 <!-- cadtopdm_control label="Save PNG Files"/-->

 <pdm_location named_ref="PNG" pdm_type="SWPrt"/>

 <file_name pattern="{temp_dir}\{cad_name}p.PNG"/>

 <preview_command cmd="built_in {temp_dir}\{cad_name}p.PNG"

 ignore_status="true" phase="in_directory"/>

 </auxiliary_file>

 <auxiliary_file cad_type="sldasm" direction="cadtopdm">

 <pdm_location named_ref="PNG" pdm_type="SWAsm"/>

 <file_name pattern="{temp_dir}\{cad_name}a.PNG"/>

 <preview_command cmd="built_in {temp_dir}\{cad_name}a.PNG"

 ignore_status="true" phase="in_directory"/>

 </auxiliary_file>

 <auxiliary_file cad_type="slddrw" direction="cadtopdm">

 <pdm_location named_ref="PNG" pdm_type="SWDrw"/>

 <file_name pattern="{temp_dir}\{cad_name}d.PNG"/>

 <preview_command cmd="built_in {temp_dir}\{cad_name}d.PNG"

 ignore_status="true" phase="in_directory"/>

 </auxiliary_file>

 </auxiliary_file_map>

generate_command

<generate_command [cmd="command"] [pre_cmd="command"] [post_cmd="command"]
 [phase="in_cad"|"in_directory"|"in_pdm"]

 cad_type=”SolidWorks Save as type”

 [ignore_status="true"|"false"]/>

The generate_command tag specifies one, two, or three optional commands for SolidWorks to

execute. By default, these commands are executed after SolidWorks has saved the models to the

local file system, but before the models or auxiliary files are checked into to Teamcenter. The

generate_command tag is similar to the os_command tag except for the keyword “built-in

file_name_tag”, which is added to the cmd tag to invoke added functionality by the Integration,

and cad_type which is not optional but can only be set to “PDF”. Below is an example of using

these tags to generate PDF files drawings:

<auxiliary_file_map>

 <auxiliary_file cad_type="slddrw" direction="cadtopdm">

 <pdm_location named_ref="PDF_Reference"

 relation_type="IMAN_specification" pdm_type="PDF"/>

 26

 <file_name pattern="{temp_dir}\{cad_name}d.PDF"/>

 <generate_command cmd="built_in {temp_dir}\{cad_name}d.PDF"

 cad_type="PDF" ignore_status="true" phase="in_directory"/>

 </auxiliary_file>

</auxiliary_file_map>

PDF files cannot be generated for individual part or assembly

configurations. The PDF is generated for the active configuration.

PDF generation is intended for drawings.

pdm_location

<pdm_location named_ref="ref" [pdm_type="dataset"] [relation_type="relation"]/>

The pdm_location tag specifies where an auxiliary file should be saved in Teamcenter.

Auxiliary files associated with a particular model are always saved in the same item revision as

the model, but they can be stored in the model‟s dataset or in a dataset of their own.

The named_ref attribute must always be specified, where ref is the type of named reference to

be used for the auxiliary file. The pdm_type attribute is the type of dataset in which to store the

auxiliary file. The dataset is assumed to have the same name as the dataset holding the

SolidWorks model. If the pdm_type is not specified, the auxiliary file is stored in the model‟s

dataset.

If a dataset must be created for the auxiliary file, it will be attached to the item revision using the

type of relation specified by relation_type. If not specified, the default relation type is

"IMAN_manifestation".

The named_ref attribute is required in a pdm_location definition. The pdm_type and

relation_type attributes are optional.

Substitution Keywords

Patterns of the form {keyword} can be used in the file_name pattern, and in the os_command

and create_text_file tags. The Integration replaces these patterns with appropriate values.

For example, if a model is named widget, the pattern "{cad_name}.gif" will become

"widget.gif" when widget is saved to Teamcenter.

The modifier upper or lower may be appended to any keyword. Use a comma to separate the

modifier from the keyword, without spaces. The {keyword,upper} pattern will be replaced with

a result that is all upper case. The {keyword,lower} pattern converts the result to lower case.

For example, the pattern "{cad_name,upper}.gif" would produce "WIDGET.gif" when the

model‟s name is widget.

The escape modifier can also be appended to any keyword. This modifier causes every

backslash in the result to be replaced with two backslashes. For example, if the

{cad_directory} pattern produces the result "C:\work\latest", the pattern

{cad_directory,escape} will produce "C:\\work\\latest".

 27

The recognized keywords are:

{cad_dataset_uid} The UID for the model‟s Teamcenter dataset, or an empty string if

the dataset does not exist at the time this pattern is replaced. When

this pattern is used in an os_command string, for example, the

dataset might not exist during the in_cad and in_directory

phases.

{cad_directory} The absolute path to the directory containing the model file
4
.

{cad_file} The absolute path to the model file.

{cad_name} The model‟s name.

{cad_type} The SolidWorks six-letter model type, such as sldasm or sldprt.

{document_cad_name} The name of the model‟s SolidWorks document. If the model is a

document, this is the same as {cad_name}.

{group} The user‟s current Teamcenter group.

{item_id} The Teamcenter item ID for the model.

{item_name} The Teamcenter item name for the model.

{item_revision_id} The Teamcenter item revision ID for the model.

{item_revision_uid} The UID for the model‟s Teamcenter item revision, or an empty

string if the item revision does not exist at the time this pattern is

replaced. When this pattern is used in an os_command string, for

example, the item revision might not exist during the in_cad and

in_directory phases.

{item_uid} The UID for the model‟s Teamcenter item, or an empty string if the

item does not exist at the time this pattern is replaced. When this

pattern is used in an os_command string, for example, the item

might not exist during the in_cad and in_directory phases.

{named_ref} The named reference for the auxiliary file.

{pdm_type} The Teamcenter dataset type for the auxiliary file. For example, if

the auxiliary file is saved in the same dataset as a SolidWorks

assembly model, the dataset type is SWAsm. For JT files, the

dataset type is DirectModel.

{swim_dir} The absolute path to the directory where the Teamcenter Integration

for SolidWorks is installed.

{user_id} The user‟s Teamcenter user ID.

JT Files

4
 This keyword can be used only where a single model is implied, such as in the file_name pattern or in the

os_command cmd string. It is not recognized in the os_command pre_cmd or post_cmd strings because

these commands are not executed for each model.

 28

The jt_file tag is simpler than the auxiliary_file tag for configuring the Integration to save

JT files.
5
 The jt_file element shown below in the auxiliary_file_map makes this happen:

 <auxiliary_file_map>

 <jt_file action="translate" cad_type="sldprt:sldtbx"

 eai_dir="D:\apps\translators\swjt"/>

 </auxiliary_file_map>

This tells the Integration to save a JT file with each SolidWorks part or Toolbox model saved to

Teamcenter (cad_type="sldprt:sldtbx"). For non-Toolbox parts, the JT file must have the

same name as the part and must be in the same directory as the model‟s file. To apply this to

both parts and assemblies, use "sldprt:sldasm" for the cad_type value.

The file_name tag, described previously for general auxiliary files, may also be used within a

jt_file element if the JT file‟s name will not have the same name as the part or will be located

in a different directory.

The presence of a jt_file tag in the auxiliary_file_map makes

the Save JT Files checkbox visible in the Save dialog. When this

checkbox is on, the jt_file tag is enabled and the Integration

saves JT files as directed by the action type. When this checkbox

is off, the jt_file tag is disabled as if action is "none" and save

is "false".

The default state of this checkbox can be set with the

eai.jtenabled user preference. This option and others are

described in detail in the swim.properties file, found in the

directory where the Teamcenter Integration for SolidWorks is

installed.

Template Map

The template_map tag specifies template models, also known as seed models or start models,

that can be copied when a new model must be created. A template will usually be needed when

the Open command attempts to fetch a model from Teamcenter and the model‟s dataset is empty.

When that happens, a template model of the required type will be copied and placed in the

destination directory, and the copy is given the name that the missing model should have had.

The template_map has no effect on the File | New command. It is

only used by commands in the Teamcenter task.

A template_map contains zero or more template tags:

 <template_map>

 <template cad_type="type" location/>
 .

 .

 .

 </template_map>

5
 Teamcenter‟s SolidWorksToJT translator must be installed and licensed in order to generate JT files.

 29

Each template tag specifies a location where a template can be found, either on the local file

system or in Teamcenter. Each template tag also has a cad_type attribute that specifies the

type of SolidWorks model to be created from the template. The allowed values for type are

"sldasm", "slddrw", and "sldprt".

If the template tag specifies a location in Teamcenter, more than one SolidWorks model type

may be given for cad_type. Use a colon to separate each three-letter value from the next. For

example, to indicate that an item in Teamcenter contains templates for parts, assemblies, and

drawings, the attribute should be cad_type="sldprt:sldasm:slddrw".

The cad_type attribute should specify only one type when the location is on the local file

system.

The models used as templates should not depend on other models. When a model specified in

the template_map is copied to create a new model, that model alone is copied. No other models

are copied with it.

Note that, when a SolidWorks document is copied to create a new model, the document is copied

in its entirety. The resulting new document will have the same configurations, with the same

names, as in the original.

A SolidWorks configuration cannot be used as a template.

Using Templates from a Directory

A template model that is located in a directory is specified by the path to its file:

 <template cad_type="type" path="path"/>

The file must exist, and path cannot contain any wildcards, but path may include keywords

described in the Substitution Keywords section for general auxiliary files, if the keywords do not

imply a specific model. For example, a SolidWorks part model could be included in the

template_map as follows.

 <template cad_type="sldprt" path="C:\SW\data\templates\Part.sldprt"/>

Using Templates from Teamcenter

A template model located in Teamcenter is specified by its item ID, revision ID and model

name:

 <template cad_type="type"

 item_id="item" [item_revision_id="revision"] [model_name="name"]/>

The revision and model name are optional, and if not specified, all revisions and datasets in the

item are searched for templates of the appropriate type. Wildcards may also be used in item,

revision and name, as if conducting a simple search in the Open dialog. If more than one

revision of a model is found for a given type, the latest one is used. If several models with

different names are found for a given type, one is arbitrarily selected. For example, suppose an

item Seeds is created in Teamcenter to hold the templates for parts and assemblies. This item

can be referenced using a single template tag:

 <template cad_type="sldprt:sldasm" item_id="Seeds"/>

 30

If Seeds has a part named mm_part and an assembly named mm_asm, the document for mm_part

will be used to create parts and the document for mm_asm will be used to create assemblies. If

Seeds has two revisions, the documents from the later revision will be used. However, if Seeds

also has a part model named in_part, either mm_part or in_part will be arbitrarily selected as the

template to use when creating a new part. In a situation such as this, it may be helpful to also

specify the model_name attribute so only one of these models will be selected:

 <template cad_type="sldprt:sldasm" item_id="Seeds" model_name="mm_*"/>

Dataset Map

Each type of SolidWorks CAD model maps to a unique dataset type and named reference in

Teamcenter. The type_map and dataset_map tag define these one-to-one mappings. The

type_map is not intended for customer modification and so it is not covered in this document.

A typical dataset map is shown below. None of these mappings are optional.

<dataset_map>

 <dataset allowed_item_types="Item:Part:Document" allowed_workflows="Quick

 Release:Design Review" named_ref="AsmFile" pdm_type="SWAsm"/>

 <dataset allowed_item_types="Part:Item:Document" allowed_workflows="Quick

 Release:Design Review" named_ref="PrtFile" pdm_type="SWPrt"/>

 <dataset allowed_item_types="Item:Part:Document" allowed_workflows="Quick

 Release:Design Review" named_ref="DrwFile" pdm_type="SWDrw"/>

 <dataset allowed_item_types="Item:Part:Document" allowed_workflows="Quick

 Release:Design Review" named_ref="TbxFile" pdm_type="SW2Tbx"/>

</dataset_map>

The mapping between CAD type and dataset type is established by the type map, which is not

documented here. For each mapping between a SolidWorks CAD type and a Teamcenter dataset

type, the allowable named reference, item types, and workflows are defined by an entity tag.

The pdm_type identifies the dataset type, and named_ref identifies the named reference for the

SolidWorks model. These tags should not be changed by customers.

Allowed Item Types

The mandatory allowed_item_types attribute is a colon separated list that defines the list of

item types to appear in the drop down on the save dialog. The first item type in the list is the

default item type for the specified CAD type
6
.

Customers must configure the same default item type for CAD

types which can be saved together to the same item ID, such as a

drawing and its 3D model. Assigning different default item types

to such CAD types can cause errors during save and import.

Submit to Workflow

The integration can be configured to submit Item Revisions to a workflow process by adding

“workflow” to the table.columns.checkin preference in swim.properties.

6
 Note that the ordering of the allowed_item_types list in the dataset map replaces the single iman.itemtypedefault

swim.properties preference that was used in earlier releases, providing more configuration flexibility.

 31

The optional allowed_workflows attribute is a colon separated list that defines the list of

Teamcenter workflows to appear in the workflow column drop down on the save dialog. The

first workflow in the list is the default for the specified CAD type.

Customers must configure the same default workflow for CAD

types which can be saved together to the same item ID, such as a

drawing and its 3D model. Assigning different default workflows

to such CAD types can result in the same item revision being

submitted to multiple workflows simultaneously, which is not the

desired result.

Submit to workflow is only supported with Teamcenter 8.1 and

later releases. Configuration with prior versions will result in

save operation getting an exception.

The integration determines if an object is checked in, checked out, or released by evaluating the

status of the dataset. Workflows that apply status to the objects should set the status on the Item

Revision and the SolidWorks dataset. Failure to set the status on the dataset will enable the user

to continue to work on the object. Teamcenter does not provide a workflow that will

simultaneously release both the Item Revision and the Dataset. See the Teamcenter

documentation for more information on how to create and configure workflows.

Example Map File

The contents of a complete map file are shown below. It illustrates the use of the attribute map,

the template map, and the column map, as well as the default maps which are configured at time

of installation.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE data_def SYSTEM "swim.dtd">

<data_def>

 <type_map>

 <entity cad_type="sldasm" pdm_type="SWAsm"/>

 <entity cad_type="sldprt" pdm_type="SWPrt"/>

 <entity cad_type="slddrw" pdm_type="SWDrw"/>

 <entity cad_type="sldtbx" pdm_type="SW2Tbx"/>

 </type_map>

 <dataset_map>

 <dataset allowed_item_types="Item:Document" allowed_workflows=”TCM

 Release” named_ref="AsmFile" pdm_type="SWAsm"/>

 <dataset allowed_item_types=" Item:Document" allowed_workflows=”TCM

 Release” named_ref="PrtFile" pdm_type="SWPrt"/>

 <dataset allowed_item_types=" Item:Document" allowed_workflows=”TCM

 Release” named_ref="DrwFile" pdm_type="SWDrw"/>

 <dataset allowed_item_types=" Item:Document" allowed_workflows=”TCM

 Release” named_ref="TbxFile" pdm_type="SW2Tbx"/>

 </dataset_map>

 <template_map>

 <template cad_type="sldprt" path="c:\SOLIDW~2\templates\collar.sldprt"/>

 <template cad_type="sldasm" path="c:\SOLIDW~2\templates\Assembly.sldasm"/>

 <template cad_type="slddrw" path="c:\SOLIDW~2\templates\Drawing.slddrw"/>

 </template_map>

 32

 <attribute_map cad_type="sldasm:sldprt">

 <!-- Attribute functions -->

 <attribute>

 <cad_name value="is_configuration()"/>

 <pdm_name value="ItemRevision:Pa4CADItemRevision.Form:

 Pa4CADItemRevisionMaster.pa4is_family_member"/>

 <direction value="cadtopdm"/>

 </attribute>

 </attribute_map>

 <attribute_map cad_type="sldasm:sldprt:slddrw">

 <!-- Keyword attributes -->

 <attribute>

 <cad_name value="DatasetComment"/>

 <pdm_name value="dataset_desc"/>

 <missing_attribute_action value="create"/>

 <default type="String">Test Dataset Description</default>

 <direction value="both"/>

 </attribute>

 <attribute>

 <cad_name value="ItemComment"/>

 <pdm_name value="item_desc"/>

 <missing_attribute_action value="create"/>

 <default type="String">Test Item Description</default>

 <direction value="both"/>

 </attribute>

 <attribute>

 <cad_name value="RevComment"/>

 <pdm_name value="item_revision_desc"/>

 <missing_attribute_action value="create"/>

 <default type="String">Test Revision comment</default>

 <direction value="both"/>

 </attribute>

 <attribute>

 <cad_name value="ItemName"/>

 <pdm_name value="item_name"/>

 <direction value="pdmtocad"/>

 <missing_attribute_action value="create"/>

 <constraint value="use_default_cfg"/>

 </attribute>

 <attribute>

 <cad_name value="PartNumber"/>

 <pdm_name value="item_id"/>

 <missing_attribute_action value="create"/>

 <direction value="pdmtocad"/>

 <constraint value="use_default_cfg"/>

 </attribute>

 <attribute>

 <cad_name value="Revision"/>

 <pdm_name value="item_revision_id"/>

 <missing_attribute_action value="create"/>

 <direction value="pdmtocad"/>

 <constraint value="use_default_cfg"/>

 </attribute>

 <attribute>

 <cad_name value="ItemType"/>

 <pdm_name value="item_type"/>

 33

 <missing_attribute_action value="create"/>

 <direction value="pdmtocad"/>

 <constraint value="use_default_cfg"/>

 </attribute>

 <!-- Attributes for miscellaneous Teamcenter classes -->

 <attribute>

 <cad_name value="UnitOfMeasure"/>

 <pdm_name value="Item.uom_tag"/>

 <missing_attribute_action value="create"/>

 <direction value="pdmtocad"/>

 </attribute>

 <attribute>

 <cad_name value="Status"/>

 <pdm_name value="ItemRevision.release_status_list"/>

 <missing_attribute_action value="create"/>

 <direction value="pdmtocad"/>

 </attribute>

 <!-- Attributes for custom form -->

 <attribute>

 <cad_name value="Size"/>

 <pdm_name value="ItemRevision:Pa4CADItemRevision.Form:

 Pa4CustomForm.pa4S"/>

 <prompt value="none"/>

 <default type="String">Test size</default>

 <missing_attribute_action value="create"/>

 <direction value="both"/>

 </attribute>

 <attribute>

 <cad_name value="DIAMETER"/>

 <pdm_name value="ItemRevision:Pa4CADItemRevision.Form:

 Pa4CustomForm.pa4D"/>

 <prompt value="none"/>

 <default type="Double">6.666</default>

 <missing_attribute_action value="create"/>

 <direction value="both"/>

 </attribute>

 <attribute>

 <cad_name value="LATEST"/>

 <pdm_name value="ItemRevision:Pa4CADItemRevision.Form:

 Pa4CustomForm.pa4L"/>

 <prompt value="none"/>

 <default type="Boolean">true</default>

 <missing_attribute_action value="create"/>

 <direction value="both"/>

 </attribute>

 <attribute>

 <cad_name value="Date"/>

 <pdm_name value="ItemRevision:Pa4CADItemRevision.Form:

 Pa4CustomForm.pa4DT"/>

 <prompt value="none"/>

 <default type="String">03-Sep-2010</default>

 <missing_attribute_action value="create"/>

 <direction value="both"/>

 </attribute>

 <attribute>

 <cad_name value="ID"/>

 <pdm_name value="ItemRevision:Pa4CADItemRevision.Form:

 34

 Pa4CustomForm.pa4I"/>

 <prompt value="none"/>

 <default type="Integer">2010</default>

 <missing_attribute_action value="create"/>

 <truncate value="true"/>

 <direction value="both"/>

 </attribute>

 </attribute_map>

 <!-- Column Mapping -->

 <column_map>

 <column tag="COLUMN1">

 <display_name value="Column1"/>

 <cad_name value="MODELED_BY"/>

 </column>

 <column tag="COLUMN2">

 <display_name value="Column2"/>

 <cad_name value="DESCRIPTION"/>

 </column>

 <column tag="MAXIMUM">

 <display_name value="MAXIMUM!!"/>

 <pdm_name value="ItemRevision:Pa4CADItemRevision.Form:

 Pa4CustomForm.pa4I"/>

 </column>

 <column tag="WHICH_SIZE">

 <display_name value="SIZE?"/>

 <pdm_name value="ItemRevision:Pa4CADItemRevision.Form:

 Pa4CustomForm.pa4S"/>

 </column>

 <column tag="USER_DATA">

 <display_name value="User Data"/>

 <pdm_name value="Item Master.user_data_2"/>

 </column>

 </column_map>

 <auxiliary_file_map>

 <auxiliary_file cad_type="sldprt" direction="cadtopdm">

 <!-- Uncomment the below if you want to give the user choice of saving the

 preview files -->

 <!-- cadtopdm_control label="Save Preview Files"/ -->

 <pdm_location named_ref="PNG" pdm_type="SWPrt"/>

 <file_name pattern="{temp_dir}\{cad_name}p.PNG"/>

 <preview_command cmd="built_in {temp_dir}\{cad_name}p.PNG"

 ignore_status="true" phase="in_directory"/>

 </auxiliary_file>

 <auxiliary_file cad_type="sldtbx" direction="cadtopdm">

 <pdm_location named_ref="PNG" pdm_type="SW2Tbx"/>

 <file_name pattern="{temp_dir}\{cad_name}t.PNG"/>

 <preview_command cmd="built_in {temp_dir}\{cad_name}t.PNG"

 ignore_status="true" phase="in_directory"/>

 </auxiliary_file>

 <auxiliary_file cad_type="sldasm" direction="cadtopdm">

 <pdm_location named_ref="PNG" pdm_type="SWAsm"/>

 <file_name pattern="{temp_dir}\{cad_name}a.PNG"/>

 <preview_command cmd="built_in {temp_dir}\{cad_name}a.PNG"

 ignore_status="true" phase="in_directory"/>

 </auxiliary_file>

 35

 <auxiliary_file cad_type="slddrw" direction="cadtopdm">

 <pdm_location named_ref="PNG" pdm_type="SWDrw"/>

 <file_name pattern="{temp_dir}\{cad_name}d.PNG"/>

 <preview_command cmd="built_in {temp_dir}\{cad_name}d.PNG"

 ignore_status="true" phase="in_directory"/>

 </auxiliary_file>

 <jt_file action="translate" cad_type="sldprt:sldtbx"

 eai_dir="D:\apps\translators\swjt"/>

 <auxiliary_file cad_type="slddrw" direction="cadtopdm">

 <cadtopdm_control label="Save PDF Files"/>

 <pdm_location named_ref="PDF_Reference" relation_type="IMAN_specification"

 pdm_type="PDF"/>

 <file_name pattern="{temp_dir}\{cad_name}d.PDF"/>

 <generate_command cmd="built_in {temp_dir}\{cad_name}d.PDF" cad_type="PDF"

 ignore_status="true" phase="in_directory"/>

 </auxiliary_file>

 </auxiliary_file_map>

 <bom_map>

 <bom_line child_type="sldasm" parent_type="sldasm" view_types="view">

 <bom_note format="{instance_id()}" type="SWInstanceID"/>

 <!-- Uncomment the line below to set the componentReference -->

 <bom_prop cadName="componentReference" pdmName="bl_sequence_no"

 direction="cadtopdm"/>

 </bom_line>

 <bom_line child_type="sldprt" parent_type="sldasm" view_types="view">

 <bom_note format="{instance_id()}" type="SWInstanceID"/>

 <!-- Uncomment the line below to set the componentReference -->

 <bom_prop cadName="componentReference" pdmName="bl_sequence_no"

 direction="cadtopdm"/>

 </bom_line>

 <bom_line child_type="sldtbx" parent_type="sldasm" view_types="view">

 <bom_note format="{instance_id()}" type="SWInstanceID"/>

 <!-- Uncomment the line below to set the componentReference -->

 <bom_prop cadName="componentReference" pdmName="bl_sequence_no"

 direction="cadtopdm"/>

 </bom_line>

 </bom_map>

 <transfer_ownership>

 <set_preference

 session_name="PORTAL_SESSION_IMAN_ownership_export">TRUE</set_preference>

 <set_preference name="IMAN_run_ie_in_background"

 session_name="PORTAL_SESSION_IMAN_run_ie_in_background">FALSE

 </set_preference>

 <set_preference name="IMAN_include_folder_contents"

 session_name="PORTAL_SESSION_IMAN_include_folder_contents">FALSE

 </set_preference>

 <set_preference name="IMAN_item_revs_export"

 session_name="PORTAL_SESSION_IMAN_item_revs_export">TRUE</set_preference>

 <set_preference name="IMAN_item_latest_rev_export"

 session_name="PORTAL_SESSION_IMAN_item_latest_rev_export">FALSE

 </set_preference>

 <set_preference name="IMAN_item_latest_working_rev_expor

 session_name="PORTAL_SESSION_IMAN_item_latest_working_rev_export">

 FALSE</set_preference>

 <set_preference name="IMAN_item_latest_working_or_any_rs_export"

 session_name="PORTAL_SESSION_IMAN_item_latest_working_or_any_rs_export">

 36

 FALSE</set_preference>

 <set_preference name="IMAN_item_latest_released_rev_export"

 session_name="PORTAL_SESSION_IMAN_item_latest_released_rev_export">

 FALSE</set_preference>

 <set_preference name="IMAN_item_selected_revs_export"

 session_name="PORTAL_SESSION_IMAN_item_selected_revs_export">

 FALSE</set_preference>

 <set_preference name="IMAN_dataset_vers_export"

 session_name="PORTAL_SESSION_IMAN_dataset_vers_export">TRUE

 </set_preference>

 <set_preference name="IMAN_dataset_refs_export"

 session_name="PORTAL_SESSION_IMAN_dataset_refs_export">TRUE

 </set_preference>

 <set_preference name="IMAN_modified_only_export"

 session_name="PORTAL_SESSION_IMAN_modified_only_export">FALSE

 </set_preference>

 <set_preference name="IMAN_protected_object_export"

 session_name="PORTAL_SESSION_IMAN_protected_object_export">FALSE

 </set_preference>

 <set_preference name="IMAN_bom_level_export"

 session_name="PORTAL_SESSION_IMAN_bom_level_export">0

 </set_preference>

 <set_preference name="IMAN_assy_xfer_top_only"

 session_name="PORTAL_SESSION_IMAN_assy_xfer_top_only">FALSE

 </set_preference>

 <set_preference name="IMAN_assy_no_xfer_comp"

 session_name="PORTAL_SESSION_IMAN_assy_no_xfer_comp">FALSE

 </set_preference>

 <set_preference name="IMAN_assy_no_export_comp"

 session_name="PORTAL_SESSION_IMAN_assy_no_export_comp">FALSE

 </set_preference>

 <set_preference name="IMAN_assy_retrieve_distrib_comp"

 session_name="PORTAL_SESSION_IMAN_assy_retrieve_distrib_comp">FALSE

 </set_preference>

 <set_preference name="IMAN_item_specific_status_export"

 session_name="PORTAL_SESSION_IMAN_item_specific_status_export">FALSE

 </set_preference>

 <set_preference name="IMAN_ie_continue_on_error"

 session_name="PORTAL_SESSION_IMAN_ie_continue_on_error">FALSE

 </set_preference>

 <set_preference name="IMAN_sync_auto_synchronize"

 session_name="PORTAL_SESSION_IMAN_sync_auto_synchronize">FALSE

 </set_preference>

 <set_preference name="IMAN_sync_batch_synchronize"

 session_name="PORTAL_SESSION_IMAN_sync_batch_synchronize">FALSE

 </set_preference>

 <set_preference name="IMAN_sync_notify"

 session_name="PORTAL_SESSION_IMAN_sync_notify">FALSE

 </set_preference>

 <set_preference name="IMAN_bomchange_export"

 session_name="PORTAL_SESSION_IMAN_bomchange_export">FALSE

 </set_preference>

 <set_preference name="IMAN_supercedure_export"

 session_name="PORTAL_SESSION_IMAN_supercedure_export">FALSE

 </set_preference>

 <add_preference_list name="IMAN_relation_export"

 session_name="PORTAL_SESSION_IMAN_relation_export">

 37

 <preference_list_value>IMAN_master_form</preference_list_value>

 <preference_list_value>IMAN_Rendering</preference_list_value>

 <preference_list_value>IMAN_requirement</preference_list_value>

 <preference_list_value>IMAN_specification</preference_list_value>

 <preference_list_value>IMAN_RES_audit</preference_list_value>

 <preference_list_value>TXD_long_name_relation</preference_list_value>

 </add_preference_list>

 <remove_preference_list name="IMAN_relation_export"

 session_name="PORTAL_SESSION_IMAN_relation_export">

 <preference_list_value>SWIM_dependency</preference_list_value>

 <preference_list_value>SWIM_mandatory_dependency</preference_list_value>

 <preference_list_value>SWIM_master_dependency</preference_list_value>

 <preference_list_value>SWIM_suppressed_dependency</preference_list_value>

 <preference_list_value>SW2_bom_exclusion</preference_list_value>

 </remove_preference_list>

 </transfer_ownership>

</data_def>

swim.cfg

Many customers will not find a reason to deal with this file at all. There are only two settings

that may require modification, under normal circumstances:

sw.toolbox.dirs The integration‟s installation program asks the user

whether SolidWorks Toolbox should be configured, and if

so, updates this preference with the specified path(s) to the

Toolbox directories. If new Toolbox directories are added

after the initial installation, it may be easier to extend the

set of locations by editing this text file, instead of re-

running the installation process. It is a simple list of

directory paths, separated by the „;‟ character.

sw.manager.node.text In the Integration‟s default configuration, CAD models are

displayed in the Teamcenter task pane with a predefined set

of key properties and attributes. The default set of values,

or the order in which they appear, may be changed by

modifying this setting. You may use properties of the CAD

models, or Teamcenter attributes, or both together, to

display the specific model information that is most

meaningful for your CAD users. For example, in Figure 1

the Teamcenter Item ID/Revision appear first, followed by

the SolidWorks Document Name (Configuration Name).

 38

Figure 1 Modified Teamcenter task configuration

Teamcenter Preferences

TC_Allow_Longer_ID_Names: If the Teamcenter preference

TC_Allow_Longer_ID_Names is set to true, Item Ids and

Item Revision names up to 132 characters are allowed and

Dataset names up to 125 characters are allowed. The

Dataset names are limited to 125 characters because of the

limit of named references to 132 characters including

extensions (7 characters are used for the extension, such as

.sldprt).

WsoInsertNoSelectionsPref: This preference controls where newly-created items are

placed in Teamcenter, when the user has not explicitly

selected a destination folder. This occurs when the user

selects the top-level Teamcenter folder in the Save dialog.

The default for this preference is „1‟, which means that new

items will be added to the Newstuff folder. Other integer

values cause the item to be added to either the user‟s Home

folder, or no folder at all.

TC_relation_required_on_export: When SolidWorks data is transferred from one Teamcenter

site to another, the Integration‟s CAD-specific relationship

must be traversed to find and include all dependencies

which are not already part of the assembly BOM. The

Teamcenter preference must be extended to include the

following relations:

 SWIM_dependency

 SWIM_master_dependency

 SWIM_suppressed_dependency

EPM_multiple_processes_targets: The integration can be configured to submit Item Revisions

 to a workflow process by adding “workflow” to the

 table.columns.checkin preference in swim.properties. The

 integration does not prevent users from submitting objects

 to multiple workflows. Sites which want to prevent this

 39

 should set the Teamcenter preference

 EPM_multiple_process_targets to “OFF”. Teamcenter 8.3

 and beyond set EPM_multiple_process_targets = ON, by

 default.

Utility Functions

In addition to using the interactive Integration in your SolidWorks session, you can also use

several command line utilities to work with SolidWorks models in Teamcenter. These utilities

are found in the same directory where the Teamcenter Integration for SolidWorks is installed.

These are:

 The swimexport utility for exporting SolidWorks models from Teamcenter.

 The swimimport utility for saving SolidWorks models to Teamcenter.

 The swimrename utility for renaming SolidWorks models in Teamcenter.

If the Integration‟s installation directory is in your path, you can run any of these utilities by

opening a shell or command window for your operating system, and typing the utility‟s name

with appropriate arguments on the command line. Arguments are shown in detail in the

following sections under Usage. Arguments enclosed in square brackets [] are optional, a

vertical bar | separates alternate values that can be used for an argument, and text shown in italics

is to be replaced by an appropriate value when you use the command. For example,

swimexport -u username -p password [-export true|false]

shows the swimexport utility‟s –export argument is optional because it is enclosed in brackets,

and that its value can be one of the literal words true or false, while username and password

should be replaced by your Teamcenter user name and password.

Exporting SolidWorks Models from Teamcenter with swimexport

The swimexport utility exports SolidWorks models from Teamcenter. Datasets may also be

checked out, i.e. reserved, when exporting models. Models that are checked out by swimexport

may be checked back into Teamcenter with the swimimport utility.

Usage

swimexport [-login] [-u username -p password

[-g group]]

[-help]

[-export_dir path]

[-change_id id] [-comment string]

[-export true|false] [-export_related true|false]

[-checkout true|false] [-checkout_related true|false]

[-config rule] [-precise_is_imprecise]

[-precise_relation_is_imprecise true|false]

[-precise_configuration_is_imprecise true|false]

[-no_filters] [-filter name] [-levels limit]

 40

[-item_id id] [-item_revision_id rev] [-model_name datasetname]

[-model_type type] [-dry_run] [-output instructionfile]

[-log logfile]

[-incomplete_operation_fatal | -incomplete_operation_ok]

[-serverhost host] [-servername servername]

[-marker markername]

file1 file2 ...

Description

The swimexport utility will export a SolidWorks model, and the models on which it depends,

from Teamcenter to a local directory. The model to export may be identified with the –item_id,

–item_revision_id, –model_name and –model_type options on the command line, or several

models may be specified in instruction files, given by arguments file1, file2, etc., following any

command line options. Instruction files are text files that list models to export, one model per

line.

Some options affect only explicitly specified models identified on the command line or in

instruction files. Other options affect implicitly specified models that are not identified on the

command line or in instruction files, but which are also exported because explicitly specified

models depend on them.

The default action is to export all explicitly specified models and the models on which they

depend, but this can be changed using the –export option for explicitly specified models and the

–export_related option for implicitly specified models. To reserve models, the –checkout

option reserves explicitly specified models and –checkout_related reserves implicitly

specified models. Models that have been reserved may be checked back into Teamcenter using

the swimimport utility.

The swimexport utility uses the same mapping file and user preferences used by the Teamcenter

Integration for SolidWorks.

One significant difference between the swimexport utility and the Teamcenter Integration for

SolidWorks is that swimexport does not copy attribute values from Teamcenter to properties in

the SolidWorks models.

The swimexport options are described below.

-change_id id

Specifies a change ID to assign to all datasets that are checked out

(optional).

-checkout true | false

True specifies that explicitly specified models should be reserved

(optional). The default is false, which means that these models will not be

reserved. Note that if –export is false, this option can be used to reserve

a dataset without exporting the model file in it. This option does not affect

implicitly specified models. To reserve implicitly specified models, use

the –checkout_related option.

 41

-checkout_related true | false

True specifies that implicitly specified models should be reserved

(optional). The default is false, which means that these models will not be

reserved. Note that if –export_related is false, this option can be used

to reserve datasets without exporting the model files in them.

-comment string

Specifies a comment to assign to all datasets that are checked out

(optional).

-config rule

Specifies the name of a configuration rule (optional). The default is to use

the rule specified by the iman.bomrevisionruledefault user preference

or the default Teamcenter rule.

-dry_run The utility goes through most of the actions it would ordinarily execute,

but it does not export any files or reserve datasets (optional). When used

in conjunction with the –output option, an instruction file can be

generated for use in a subsequent run of this utility.

-export true | false

True specifies that explicitly specified models should be exported, which

is the default (optional). False means that these models will not be

exported. Note that –checkout may be true even if –export is false. This

option does not affect implicitly specified models. To export implicitly

specified models, use the –export_related option.

-export_dir path

Specifies the path to the export directory (optional). The default is to

export models to the default working directory as specified during product

installation. The default working directory can be overridden by

specifying checkout.exportdirectory preference in swim.properties.

-export_related true | false

True specifies that implicitly specified models should be exported, which

is the default (optional). False means that these models will not be

exported. Note that the –checkout_related option may be true even

when –export_related is false.

-filter name

Specifies a filter to use when collecting implicitly specified models

(optional). Each use of this option adds another filter to any filters

previously specified. Later filters can override the actions of previous

filters. The default filters are those specified by the

filters.checkout.default user preference, but note that the

-no_filters option can erase those prior filters. See the

filters.checkout.choices user preference for the names of filters that

can be used with this option. User preferences are described in the

swim.properties file located in the directory where the Teamcenter

Integration for SolidWorks is installed.

 42

-g groupname

Specifies the group name to use when connecting to Teamcenter

(optional). Ignored when -login is specified.

-help Prints usage information and exits.

-incomplete_operation_fatal

Causes the program to exit when an operation on a model cannot be

completed due to an error (optional). The default is

-incomplete_operation_ok.

-incomplete_operation_ok

Causes the program to continue when an operation on a model cannot be

completed due to an error (optional). This is the default.

-item_id id

Specifies the Teamcenter item ID of a model to export (optional). This

option may be used only once on the command line, but wildcards are

allowed.

-item_revision_id rev

Specifies the Teamcenter revision of a model to export (optional). This

option may be used only once on the command line, but wildcards are

allowed.

-levels limit

Specifies the number of levels to include in the hierarchy of dependencies

when collecting implicitly specified models (optional). If not specified, or

if limit is a negative number, the number of implicitly specified models is

unlimited. A positive number sets the maximum number of levels of

implicitly specified models that can be collected. This option has the

same purpose as the limit.levels user preference, described in the

swim.properties file located in the directory where the Teamcenter

Integration for SolidWorks is installed, although swimexport ignores

limit.levels. The limit can only be set using this command line

argument.

-log logfile Defines the name of the log file that will be created (optional). If not

specified, the log file will be swimexport.txt in the current directory.

Logging cannot be disabled and warning messages cannot be suppressed,

but otherwise the logging preferences in swim.properties have their

usual effect.

-login Uses the Teamcenter login dialog. When this option is specified, the -u,

-p, -g, and -marker options are ignored.

-marker markername

The Teamcenter server marker name or URI. If not specified, the default

marker is that of the first server in the client_specific.properties file, found

in the Teamcenter Rich Client installation directory. If URI includes

"services/PLMGatewayService"; remove it. For example,

 43

"http://serverrname:7001/tc/services/PLMGatewayService" should be

"http://servername:7001/tc/”. Ignored when –login is specified

-model_name datasetname

Specifies the name of a SolidWorks model, which may be either the name

of a SolidWorks document or the name of a SolidWorks configuration.

The model name is the same as the dataset name.

-model_type type

Specifies the dataset type or the six-letter SolidWorks model type. For

example, models stored in the files widget.prt and gadget.sldprt both

have type sldprt, and their datasets are of type SWPrt, so type for a

SolidWorks part model may be either sldprt or SWPrt.

-no_filters

Causes any previous list of filters to be erased, such that no filters will be

used when collecting implicitly specified models. However, a new list of

filters will be created if this option is followed by one or more -filter

options.

-output instructionfile

Defines the name of an instruction file to be written (optional). This file

lists each model exported or reserved from Teamcenter.

-p password Specifies the password to use when connecting to Teamcenter. Ignored

when -login is specified.

-precise_is_imprecise

Causes precise relations to be treated as if they are imprecise, which

means the rule given by the –config option will be used to select item

revisions (optional). This option is a shortcut for the two options:
 -precise_relation_is_imprecise true

 -precise_configuration_is_imprecise true

-precise_configuration_is_imprecise true | false

True causes a precise relation between a configuration and its SolidWorks

document to be treated as if it is imprecise, which means the rule given by

the –config option will be used to select the document‟s item revision

(optional).

-precise_relation_is_imprecise true | false

True causes precise general relations to be treated as if they are imprecise,

which means the rule given by the –config option will be used to select

item revisions (optional). This option does not affect the treatment of

relations between configurations and their SolidWorks document.

-u username Specifies the user name to use when connecting to Teamcenter. Ignored

when -login is specified.

http://serverrname:7001/tc/
http://servername:7001/tc/

 44

Configurations

Every SolidWorks model in Teamcenter is represented by a dataset, even models that are

configurations. However, in the case of a configuration, the dataset does not contain the model‟s

file. Instead, configurations depend on their document, and it is in the dataset for the document

that the SolidWorks model file is found.

If you “export” a configuration, swimexport will actually export the model file from the

document‟s dataset. If you reserve a configuration, swimexport will also reserve the document.

Toolbox Parts

The swimexport utility does not export files for toolbox parts stored as sw2Tbx datasets. An

assembly exported by swimexport must be opened with a SolidWorks installation having access

to the toolbox. For more information on managing Toolbox parts, see the Best Practices section

in this document.

Multiple Model Versions

Only one version of any given SolidWorks model will be exported in one execution of the

swimexport utility. For example, if several revisions of a model are specified on the command

line or in instruction files, only the first one encountered will actually be exported.

Instruction Files

An instruction file is a text file that lists SolidWorks models. Each line in the file should identify

one model. Blank lines and comments are also allowed. The comment character is #. Any text

between the comment character and the end of the line will be ignored.

A model is identified by several keyword=value pairs. A value containing spaces must be

enclosed in double quotes, and keyword is one of the following:

checkout This is the same as the –checkout command line option, but it applies

only to the model specified on the line where this keyword appears. The

value may be either true or false. If this keyword is not specified, the

value of the –checkout command line option applies.

export This is the same as the –export command line option, but it applies only

to the model specified on the line where this keyword appears. The value

may be either true or false. If this keyword is not specified, the value of

the –export command line option applies.

item_id The value is the item ID.

item_revision_id
The value is the revision.

model_name The value is the name of the SolidWorks model, which may be either the

name of a SolidWorks document or the name of a SolidWorks

configuration.. The model name is the same as the dataset name.

model_type The value is the dataset type or the three-letter file extension that identifies

the SolidWorks model type. For example, models stored in the files

 45

widget.prt and gadget.sldprt both have type sldprt, and their datasets

are of type SWPrt, so model type for a SolidWorks part model may be

either sldprt or SWPrt

If a value contains spaces, it must be enclosed in double quotes.

A simple instruction file is shown below.

Sample swimexport instruction file

item_id=702283 item_revision_id=B model_name=Bolt_A model_type=sldprt

item_id=702284 item_revision_id=A export=false checkout=false

item_id=702285 item_revision_id=A

The first line is a comment. The second line identifies a particular model, the SolidWorks part

Bolt_A in revision B of item 702283. No checkout or export keyword is given on this line, so

the command line options –checkout and –export will be used to decide whether to export

and/or reserve this model. By default, swimexport will export the model without reserving it.

The third line specifies an item ID and revision, but the model name and type are not given. If

revision A of item 702284 has several SolidWorks datasets, this line affects all of them. For

example, if revision A contains both a part and a drawing, neither will be exported or checked

out because export and checkout are both false on this line.

The fourth line also identifies a model using only its item ID and revision. Since no export or

checkout keyword is included on this line, the model will be exported or reserved according to

the command line options –export and –checkout.

Examples

The following example shows a simple use of this export utility.

swimexport -u infodba -p infodba –item_id 702283 –item_revision_id=B

This command will export the SolidWorks model(s) in revision B of item 702283, plus all

models on which it depends. The model files will be placed in the current working directory.

None of these models will be reserved. If the models in 702283 should be reserved, the

command becomes:

swimexport -u infodba -p infodba –item_id 702283 –item_revision_id=B \

-checkout true –comment "Changes per 4283"

This reserves only the model in revision B of 702283, but the models on which it depends are

still exported. If the SolidWorks model in revision B should be reserved without being exported,

and the models on which it depends also should not be exported, the command would be:

swimexport -u infodba -p infodba –item_id 702283 –item_revision_id=B \

-checkout true –export false –export_related false \

–comment "Changes per 4283"

If 702283 is a configuration, the command above will also reserve the document regardless of

how –export_related is set.

Suppose an instruction file named exports.txt specifies the models to export. In this case, the

command would be:

swimexport -u infodba -p infodba exports.txt

 46

To find out what will really be exported or reserved prior to executing the command above, use

the –dry_run option and ask swimexport to generate an instruction file:

swimexport -u infodba -p infodba –dry_run –output out.txt exports.txt

Importing SolidWorks Models into Teamcenter with swimimport

The swimimport utility imports SolidWorks models into Teamcenter. This non-interactive utility

saves models to Teamcenter after opening them in SolidWorks. During the import process,

items, item revisions, and datasets may be created, parameter values may be copied to attributes

in Teamcenter, and BOMs may be updated.

Usage

swimimport [-login] [-u username -p password [-g group]]

[-help] [-dry_run] [-output instructionfile] [-log logfile]

[-folder folder] [-overwrite | -revise] [-all_configurations]

[-marker markername] file1 file2 ...

Description

The arguments file1, file2, ..., are SolidWorks models to import, directories containing

SolidWorks models, or instruction files. An instruction file is a text file in which each line is

either the path to a SolidWorks model file or a directory containing SolidWorks models. This

utility opens all of the models specified by these arguments in a SolidWorks session, obtains

information concerning parent-child relationships, parameter values, configurations, and so on,

and then imports the models into Teamcenter.

Each argument file1, file2, ..., must be an absolute path.

Models are imported in two steps. In the first step, Teamcenter objects (items, item revisions,

and datasets) are created as needed and the model files are imported into the datasets. In the

second step, parameter values are copied from SolidWorks to attributes of the Teamcenter

objects.

When importing a model into an existing dataset, you must either use the –overwrite option or

check out the dataset prior to running swimimport. Models will not be imported into datasets

that are reserved by another user. Also, if you reserve a dataset using check out with export, the

model can only be imported from the export directory that was specified at the time you reserved

the dataset, and the model will be deleted from that directory after it is imported.

The other arguments for swimimport are described below.

-all_configurations

Saves all configurations within a document as distinct items in Teamcenter

(optional). This option overrides the sw.configurations.default user

preference to save all configurations except those matching the

sw.configurations.masters user preference. If not given, the default is

to create items only for configurations that are explicitly identified in an

instruction file or implicitly allowed by the sw.configurations.default

user preference. User preferences are described in the swim.properties

 47

file found in the Teamcenter Integration for SolidWorks installation

directory.

-dry_run

The utility goes through most of the actions it would ordinarily execute,

but it does not import any files or other data to Teamcenter (optional).

When used in conjunction with the –output option, an instruction file can

be generated for use in a subsequent run of this utility.

-folder folder

Specifies the name of a Teamcenter folder, belonging to the user, into

which new items will be placed (optional).

-help Prints usage information and exits.

-log logfile The absolute path to the log file to be written (optional). If not specified,

the log file will be swimimport.txt in the directory where the

Teamcenter Integration for SolidWorks is installed. Logging cannot be

disabled and warning messages cannot be suppressed, but otherwise the

logging preferences in swim.properties have their usual effect.

-marker markername

The Teamcenter server marker name or URI. If not specified, the default

marker is that of the first server in the client_specific.properties file, found

in the Teamcenter Rich Client installation directory. If URI includes

"services/PLMGatewayService"; remove it. For example,

"http://serverrname:7001/tc/services/PLMGatewayService" should be

"http://servername:7001/tc/”.

-output instructionfile

The absolute path to an instruction file to be written (optional). This file

lists all of the models imported into Teamcenter.

-overwrite

Causes existing model files already in Teamcenter to be replaced if a new

file is imported (optional). The default is to skip models that already exist

in the latest revision.

-p password Specifies the password to use when connecting to Teamcenter. Ignored

when -login is specified.

-revise Causes a new revision to be created for each model imported into

Teamcenter (optional). The default is to import into the latest revision,

skipping any model if the latest revision already contains a version of the

model.

-u username Specifies the user name to use when connecting to Teamcenter. Ignored

when -login is specified.

http://serverrname:7001/tc/
http://servername:7001/tc/

 48

Item IDs, Names, Types, and Revisions

A model‟s item ID, name, type, and revision can be specified in an instruction file or by mapping

parameters from the SolidWorks model to these attributes in Teamcenter. See the section on

Instruction Files below for more information on how to do this in an instruction file, or refer to

the section on Attribute Mapping for more information on setting up an attribute map. If the

model‟s item ID, name, type, or revision is not specified, the following defaults apply.

 The default item ID is assumed to be the same as the model name. The model name is

also used as the default item name. For example, if a part file widget.sldprt is

imported into Teamcenter, the item ID and item name will both be widget.

 The default item type is specified by the ordering of the allowed_item_types tag in the

dataset_map section of the swim.xml file. Out of the box, the default type is Item.

 The default revision is the latest revision of an item unless the -revise option is

specified.

When several SolidWorks models have the same item ID, they will be imported into the same

item. For example, if widget.slddrw contains a drawing of widget.sldprt and no other item

ID is specified for either model, both will be stored in the item whose ID is widget.

Attributes

This utility will copy parameter values from SolidWorks models to attributes in Teamcenter.

The attribute values that are copied are specified by the Teamcenter Integration for SolidWorks

mapping file. The default mapping file is swim.xml in the Teamcenter Integration for

SolidWorks installation directory.

If a model was skipped during the file import step because its item revision already has a dataset

for the model, it will also be skipped during the step that copies attribute values. Specifying the

–overwrite, or -revise option will ensure no models are skipped.

BOMs

BOMs will be created or updated by this utility. The types of models that are added to the

BOMs, and the BOMs that are affected, are specified by the Teamcenter Integration for

SolidWorks mapping file. The default mapping file is swim.xml in the Teamcenter Integration

for SolidWorks installation directory.

BOMs are precise by default. This can be changed by setting the iman.precisebom preference,

described in the swim.properties file in the Teamcenter Integration for SolidWorks installation

directory.

If a model was skipped during the file import step because its item revision already has a dataset

for the model, it will also be skipped during the step that updates BOMs. Specifying the

-overwrite, or -revise option will ensure no models are skipped.

Configurations and Design Tables

By default, Teamcenter items, item revisions, and datasets are created only for SolidWorks

documents, but this behavior can be changed to save the individual configurations found within a

 49

document, too. The sw.configurations.default option, described in the swim.properties

file in the Teamcenter Integration for SolidWorks installation directory, specifies whether

configurations should or should not be saved as separate entities in Teamcenter. Specific

configurations may also be saved if their names are entered in instruction files (described below).

This behavior can be changed with the –all_configurations option. When specified,

swimimport creates separate items for all configurations, except for those excluded by the

sw.configurations.masters, sw.configurations.master.document.same, and sw.configurations.hide

user preferences.

A dataset that represents a SolidWorks configuration is given the same name as the

configuration. The dataset for a SolidWorks document is given the same name as the document.

Configurations created by a SolidWorks design table are handled in the same way as other

configurations within a document. If the configurations are saved separately, by means of the

sw.configurations.default option in swim.properties or by adding their names to

instruction files, each design table member is treated as a model in its own right. An item, item

revision, and dataset will be created for it, although the SolidWorks file will be stored only in the

dataset for the document.

Toolbox Parts

The swimimport utility must be executed on a system with SolidWorks Toolbox installed and

configured, in order for the sw2Tbx datasets to be created for the Toolbox parts. Toolbox parts

cannot be imported directly, as top-level objects. They are only imported when used as

components within an assembly, and that assembly is imported.

Auxiliary Files

The swimimport utility will create and import auxiliary files when importing models if an

auxiliary file map exists. For more information on auxiliary files and the map file, refer to the

section on The Map File.

If you do not want to import models, but only auxiliary files, consider using the import_file

utility, which is included with Teamcenter. Note that the Teamcenter Integration for SolidWorks

can be configured, via the auxiliary file map, to provide the item ID, revision, dataset name,

dataset type, and named reference for each auxiliary file required when a model is saved to

Teamcenter. This information can be used later to import auxiliary files with import_file.

Instruction Files

An instruction file is a text file that lists SolidWorks files or directories containing SolidWorks

models. Each line in the file should contain the path to one file or directory. Blank lines and

comments are also allowed. The comment character is #. Any text between the comment

character and the end of the line will be ignored.

If the path to a file or directory contains spaces, it must be enclosed in double quotes. For

example, the following path does not have to be quoted:

D:\Models\widget.sldprt

but this path must be quoted:

 50

"D:\Sw Models\widget.sldprt"

The path to a SolidWorks model may be followed by several optional arguments on the same

line. Each argument has the form keyword=value, where keyword is one of the following:

configuration

The value is the name of a SolidWorks configuration. If this option is

specified, this line in the instruction file indicates the configuration is to be

treated as a separate model in Teamcenter, distinct from its document.

Without this option, this line in the instruction file refers to the document.

dataset_desc
The value is the dataset description. This is ignored if the dataset already

exists.

document The value is the name of a SolidWorks document. This is the same as the

base name of the file, without any extension or path. For example, the

document name for the file widget.sldprt is widget. This option is

redundant if the file name is given. It cannot be used to rename the model.

item_desc The value is the item description. This is ignored if the item already

exists.

item_name The value is the item name. This is ignored if the item already exists.

item_id The value is the item ID.

item_revision_id
The value is the revision.

item_type The value is the item type. This is ignored if the item already exists.

model_type The value is the six-letter extension that identifies the SolidWorks model

type. For example, the type of a model stored in the file widget.sldprt

or widget.prt is sldprt. This option is redundant if the file name is

given. It cannot be used to change the type of the model.

If a value contains spaces, it must be enclosed in double quotes.

The SolidWorks file name does not have to be given if the document and model_type options

are included on the line. Although these two options are not sufficient to identify the file to load,

they can be used to refer to a model that is loaded implicitly or explicitly by a file specified

elsewhere in the arguments given to swimimport. For example, suppose three different revisions

of widget.sldprt are stored in directories c:\reva, c:\revb, and c:\revc, and a single

instruction file c:\widget.txt has been created to specify the item ID to use for the model:

 document=widget model_type=sldprt item_id=184786

The swimimport utility can then be executed three times to load the revisions:

swimimport –u infodba –p infodba –revise c:\widget.txt c:\reva\widget.sldprt

swimimport –u infodba –p infodba –revise c:\widget.txt c:\revb\widget.sldprt

swimimport –u infodba –p infodba –revise c:\widget.txt c:\revc\widget.sldprt

In each case, the path to the model‟s file is specified on the command line. The model identified

in the instruction file depends on the file that the utility loads.

 51

Another simple instruction file is shown below.

Sample swimimport instruction file

D:\jjs\models

D:\jjs\bolts\bolt.sldprt item_id=702283 item_desc="Bolt design table"

 document=bolt configuration=BOLT_A model_type=sldprt item_id=702284

 document=bolt configuration=BOLT_B model_type=sldprt item_id=702285

 document=bolt configuration=BOLT_C model_type=sldprt item_id=702286

The first line is a comment. The second line specifies a directory D:\jjs\models. The

swimimport utility will load all SolidWorks models that it finds in that directory. The third line

specifies a SolidWorks part file bolt.sldprt. Two optional arguments appear on this line to

specify the model‟s item ID and, if the item has to be created, a description to include with the

item.

In this example, suppose bolt.sldprt contains a design table. The user wants to specify the

item ID where each configuration is to be stored, which is what the last three lines accomplish.

Since the file name alone cannot identify the individual configurations, the last three lines use the

document, configuration and model_type keywords to identify these models.

Examples

The following example shows a simple use of this import utility.

swimimport -u infodba -p infodba c:\SwMdls

This command will load the latest version of each SolidWorks model from the c:\SwMdls

directory into Teamcenter, but it will skip any model that already has a dataset in Teamcenter.

For the models that are imported, new items, item revisions, and datasets will be created as

needed, attribute values will be copied to Teamcenter and BOMs will be created or updated.

To force all models to be imported, use the –overwrite option:

swimimport -u infodba -p infodba –overwrite c:\SwMdls

For items that already exist, the models will be imported into each item‟s latest revision,

replacing SolidWorks model files that may have been imported previously.

 If a new item revision should be created for those items that already exist, the import utility

could be used this way:

swimimport -u infodba -p infodba -revise c:\SwMdls

This command carries out the same operations as in the previous example, including creation of

new items for models that have not been imported previously, but new revisions are created for

existing items.

Renaming SolidWorks Models in Teamcenter with swimrename

The swimrename utility renames SolidWorks models and their datasets in Teamcenter. This non-

interactive utility will check out a model from Teamcenter, open it in SolidWorks, rename the

model and save it back to Teamcenter. It also checks out, updates and saves all of the

SolidWorks models that use the renamed model, and optionally changes the item ID and the

names of other objects to match the new name.

 52

Usage

swimrename [-login] [-u username -p password [-g group]] [-help]

 -item itemid [-rev revision] -type type

 -old_name oldname -new_name newname -work_dir directory

 [-no_autorename]

 [-autorename_item_id true|false]

 [-autorename_item_name true|false]

 [-autorename_other true|false]

 [-autorename_other_exact_length true|false]

 [-marker markername]

 [-progress_file outputfile] [inputfile]

Description

Before running the swimrename utility, all models that will be renamed and all of the models

that use them must be checked-in to Teamcenter. The swimrename utility will stop with an error

if it finds that a model to be renamed, or a model that uses a renamed model, is already reserved.

A log file named swimrename.txt is always produced containing information about the actions

carried out during the renaming process. This log is located in the Teamcenter Integration for

SolidWorks installation directory.

The arguments for swimrename are described below.

-autorename_item_id true|false

Specifies whether the item ID should be changed to match the model name

(optional). If true, the item ID is changed to the new model name if the

old item ID matches the old model name, ignoring case. If false, the item

ID is not changed. Specifying -no_autorename also sets this option to

false. This option can follow -no_autorename on the command line to

override -no_autorename. If not specified, the default is given by the

iman.autorename.itemid user preference (see the swim.properties file in

the installation directory for a description of user preferences).

-autorename_item_name true|false

Specifies whether the item name should be changed to match the model

name (optional). If true, the item name and item revision name are

changed to the new model name if their old names match the old model

name, ignoring case. If false, the names are not changed. Specifying

-no_autorename also sets this option to false. This option can follow

-no_autorename on the command line to override -no_autorename. If

not specified, the default is given by the iman.autorename.itemname

user preference (see the swim.properties file in the installation directory

for a description of user preferences).

-autorename_other true|false

Specifies whether the names of other objects within the item or item

revisions should be changed to match the model name (optional).

Examples of “other” objects include forms, BOM views, and non-

 53

SolidWorks datasets and their named references, i.e. any Teamcenter

object in an item or item revision that is not a SolidWorks dataset. When

true, these other objects are renamed to the new model name if their old

names match the old model name, ignoring case (the

-autorename_other_exact_length option determines how the names

are matched). When false, the names are not changed. Specifying

-no_autorename also sets this option to false. This option can follow

-no_autorename on the command line to override -no_autorename. If

not specified, the default is given by the iman.autorename.other user

preference (see the swim.properties file in the installation directory for a

description of user preferences).

-autorename_other_exact_length true|false

Specifies how to match names when deciding whether to rename other

objects in the item or item revisions (optional). When true, the name of a

Teamcenter object matches the SolidWorks model name if both names

match character-for-character, ignoring case, and are exactly the same

length (for named references, the file name without extension is tested).

When false, the names match if the object‟s name starts with the model

name, ignoring case. For example, suppose the model‟s name is

WIDGET. If -autorename_other_exact_length is true, an item master

form named WIDGET will match the model name, but not an item

revision master form named WIDGET/A. If

-autorename_other_exact_length is false, both forms match the

model‟s name. This option only affects the “other” objects in the item and

item revisions when -autorename_other is true. Exact length is always

used when matching the model name to the item ID, item name, or item

revision name. If not specified, the default is given by the

iman.autorename.other.exactlength user preference (see the

swim.properties file in the installation directory for a description of user

preferences).

-g group The Teamcenter group (optional). Ignored when -login is specified.

-help Prints usage information and quits (optional).

-item itemid

The item ID of the model to be renamed.

-login Uses the Teamcenter login dialog. When this option is specified, the -u,

-p, -g, and -marker options are ignored.

-marker markername

The Teamcenter server marker name or URI. If not specified, the default

marker is that of the first server in the client_specific.properties file, found

in the Teamcenter Rich Client installation directory. If URI includes

"services/PLMGatewayService"; remove it. For example,

"http://serverrname:7001/tc/services/PLMGatewayService" should be

"http://servername:7001/tc/”. Ignored when –login is specified.

http://serverrname:7001/tc/
http://servername:7001/tc/

 54

-new_name newname

The new name for the SolidWorks model. Do not include the file

extension.

-no_autorename

Turns off automatic renaming of the item, item revisions, and other

objects (optional). This is the same as setting -autorename_item_id,

-autorename_item_name, and -autorename_other to false.

-old_name oldname

The old name for the SolidWorks model. Do not include the file

extension.

-p password The Teamcenter password. Ignored when -login is specified.

-progress_file outputfile

The absolute path to a text file that this program will create to record its

progress (optional). If an error occurs, the program can be restarted using

the file as the inputfile argument.

-rev revision

The item revision ID of the model to be renamed (optional). If not

specified, all revisions of the model will be renamed. Use of this option

should be avoided, except in unusual circumstances. In most cases, all

revisions of a model should be renamed. This is particularly true if the

model occurs in any imprecise BOMs.

-type type The six-letter SolidWorks file extension that identifies the type of the

model, such as sldasm. Alternatively, this may also be the dataset type,

such as SWAsm.

-u username The user‟s Teamcenter login name. Ignored when -login is specified.

-work_dir directory

The absolute path to a temporary working directory. This directory will

be created if it does not exist. If the directory does exist, it must be empty.

You will usually want to use a directory that is not the same as the

directory where you start the swimrename utility.

Examples

Suppose an assembly named “cylinder” is stored in an item whose item ID is 0000753, and it is

decided to rename the model to match the item ID. The command to execute this change might

look something like this:

swimrename –u infodba –p infodba –item 0000753 \

–type sldprt –old_name cylinder –new_name 0000753 \

–work_dir d:\tmp –progress_file c:\restart1.txt

The –rev option is not specified, so all revisions of cylinder in item 0000753 are renamed to

0000753. This is recommended if there is a possibility that item 0000753 occurs in the

imprecise BOMs of other assemblies. A directory d:\tmp is used as a temporary space for

 55

SolidWorks to work on these models, and a file c:\restart1.txt will be created in case the

command aborts before all of the models are renamed.

Suppose an assembly that uses cylinder is currently checked out by someone else. The

swimrename utility will stop with an error because it will not be able to check out that other

assembly, but this may occur after swimrename has already renamed and saved several revisions.

Since the –progress_file option is used in the example above, swimrename can be restarted

once the other assembly becomes available. The command to execute swimrename is the same

as before, but the output file created with the –progress_file option above is now given as an

input to swimrename:

swimrename –u infodba –p infodba –item 0000753 \

–type sldprt –old_name CYLINDER –new_name 0000753 \

–work_dir d:\tmp –progress_file c:\restart2.txt c:\restart1.txt

Note that this command also creates a new text file, c:\restart2.txt, which can be used to

restart swimrename again if another error occurs.

Suppose it is later decided to rename part 0000753 to 5000753 after a drawing named 0000753

has been added to the same item. The part and the drawing should both be renamed, but you

must run swimrename twice to do this. Either could be renamed first, but it may be desirable to

avoid changing the item ID until both models are renamed. The two runs of swimrename might

look like this:

swimrename –u infodba –p infodba –item 0000753 \

–type sldprt –old_name 0000753 –new_name 5000753 –no_autorename \

–work_dir d:\tmp –progress_file c:\restart.txt

swimrename –u infodba –p infodba –item 0000753 \

–type slddrw –old_name 0000753 –new_name 5000753 \

–work_dir d:\tmp –progress_file c:\restart.txt

Notice that -no_autorename is used in the first run, when renaming the part. This prevents the

item ID from changing and allows the second run to use almost the same arguments to rename

the drawing, except for changing the -type argument and dropping -no_autorename. At the

end of the second run, swimrename will change the item ID to 5000753.

Troubleshooting

General guidelines

Logging

 Sometimes problems must be sent to Siemens GTAC for analysis. We will need a

txdlog.txt file to better understand the issue. To generate this file, add the following lines

to the beginning of the swim.properties file, on the client:

log.enable = true

log.file = c:\\temp\\txdlog.txt

log.suppress = 10000

 56

The SolidWorks session must be restarted after making this change, in order for the

logging options to take effect.

 Each integration session will also produce a client_socket.log file. This file is written to

the integration‟s installation directory on each client.

Reporting problems

 When submitting a case to GTAC, include enough detail to enable the assigned analyst to

reproduce the problem. This always requires a full description of the test case and data

involved, and all available log files. The minimum set required are the txdlog.txt file and

client_socket.log file mentioned above, but when Teamcenter server errors are involved,

GTAC will also need the tcserver syslog file.

It is very important to provide all necessary information with the initial submission to

GTAC. Incomplete or ambiguous information will lead to unnecessary delay in resolving

your problem.

Integration launch

If you have trouble starting SolidWorks, or if SolidWorks starts, but no Teamcenter Integration

for SolidWorks sidebar tab appears:

 Make sure the minimum required build of SolidWorks is installed. See the Installation

Guide section on “Prerequisites for the Teamcenter Integration for SolidWorks” for more

information.

 If the Teamcenter Integration for SolidWorks sidebar tab does not appear in SolidWorks,

make sure the SwSwimAddin is enabled. In SolidWorks, select Tools | Add-Ins to open

the Add-Ins dialog. Make sure the dialog shows the SwSwimAddin in this list, and put a

check next to its name. If the dialog does not show the SwSwimAddin, it may be

necessary to repeat the client installation or you can double click on %SWIM_DIR%/bin/

RegisterSwimAddin.bat, to re-register the integration with SolidWorks.

 Customers who had previously installed an older version of the integration (prior to

version 8.1.0), may need to remove the older version‟s add-in. This older add-in will be

labeled as “Teamcenter” in the SolidWorks dialog, as in figure 2:

 57

Figure 2 Teamcenter add-in from older integration version

It should be removed by double clicking on %SWIM_DIR%/bin/Remove_cadscript.reg,

after which the add-in dialog should look like this:

 58

Figure 3 Add-in dialog, after removal of older integration version

 Make sure any Windows paths specified for the JRE_DIR, IPR_DIR, or SWIM_DIR

variables in scripts, or in the user‟s environment, do not have spaces. If necessary, use a

command window and the MS-DOS command dir /x to determine the short MS-DOS

name for a file or director, and update all scripts and environment variables to eliminate

the spaces.

 Make sure the JRE_DIR variable in the %SWIM_DIR%/swimenv.bat script specifies the

correct installation directory for the Java runtime environment. This script is located in

the installation directory for the Teamcenter Integration for SolidWorks. It is

recommended to use the JRE that is installed with the Teamcenter Rich Client.

 If the JRE_DIR variable is already defined in the user‟s environment, it will take

precedence over the variable‟s definition in the %SWIM_DIR%/swimenv.bat script. If

the user prefers setting this variable in his environment, make sure it is defined correctly,

otherwise remove it from the user‟s environment so that the swimenv.bat definition takes

effect.

 59

Installation errors

 If you receive the message, “Installation of the Teamcenter Integration for SolidWorks is

not complete” when attempting to log into Teamcenter, the server installation was not

done correctly. The server installation procedure can follow either of two paths,

depending upon whether the client is two-tier or four-tier. For two-tier clients, the

“Typical Client/Server Installation” procedure must be run on each client, as shown in

figure 4.

Figure 4 Installation option for two-tier clients

In a four-tier configuration, the installer must be run once on the

Teamcenter server host (where the pool manager is configured to run),

using the “Typical Server Installation” option:

Figure 5 Installation option for four-tier server host

And the “Typical Client Installation” must be run on each four-tier client:

Figure 6 Installation option for four-tier clients

A common reason for an incomplete server installation is that users were logged into

Teamcenter during the server installation, or locks were retained in the database for other

reason. This will prevent the integration installer from loading and adjusting required

Teamcenter preferences.

 In certain Teamcenter versions, such as 8.3, the file at

%TC_ROOT%\install\install\async_templates.xml does not contain the correct GUID

value for the integration template. This prevents Teamcenter‟s TEM installer tool from

displaying the SWIM template during updates or upgrades, or may cause it to display a

warning or error message. An example from Teamcenter 8.3, where the template is not

displayed, is shown in figure 7:

 60

Figure 7 Updating the database with GUID mismatch

If you encounter this situation, you must edit the Teamcenter async_templates.xml file, at the

location shown above, and modify the integration‟s GUID value to match what is in the

integration‟s feature_swim.xml file. The correct value should be

F25FD8C1B9DB7DF40C588AD06A702659, but it is best to check the feature_swim.xml file that is

installed at your site, to verify it. Once you update the async_template.xml file, by changing

this:

<feature>

 <name value="Teamcenter Integration for SolidWorks"/>

 <property name="template_name" value="swim"/>

 <guid value="D4B6706414C15AE247908FBB2FA7E204"/>

 <property name="template_match_1" value="POM_class,name,swim_MetaData"/>

 <property name="template_match_2" value="ImanType,type_name,SWPrt"/>

</feature>

To this:

<feature>

 <name value="Teamcenter Integration for SolidWorks"/>

 <property name="template_name" value="swim"/>

 <guid value="F25FD8C1B9DB7DF40C588AD06A702659"/>

 61

 <property name="template_match_1" value="POM_class,name,swim_MetaData"/>

 <property name="template_match_2" value="ImanType,type_name,SWPrt"/>

</feature>

Then the TEM program should show the SolidWorks integration without any errors or warning

icons, as in figure 8:

Figure 8 Update Database function with corrected GUID value

 When updating the integration to a newer version on client workstations, it may be

necessary to unregister and re-register the Add-in. You can do this by running the

%OLD_SWIM_DIR%\bin\RegisterSwimAddin.bat, followed by

%NEW_SWIM_DIR%\bin\UnregisterSwimAddin.bat. On Windows Vista and Windows

7 you must run the batch script as an administrator (right click it and select “Run as

Administrator”)

 First unregister the currently active SWIM version by running (double-clicking)

UnregisterSwimAddin.bat in the %OLD_SWIM_DIR%\bin directory, where

%OLD_SWIM_DIR% is the location of the previous integration version.

 Next, go to the bin subdirectory of the newer SWIM version, and run

RegisterSwimAddin.bat.

 62

 Start the new version of the integration using the

%NEW_SWIM_DIR%\bin\startsw.bat, or the shortcut in the Windows Start

menu.

 You can verify the correct add-in is registered by selecting Tools | Addins in the

SolidWorks session, and hovering your mouse over the SwSwimAddin option.

The tooltip that appears should display the SWIM directory of the version you are

upgrading to.

Figure 9 Verifying the location of the integration's Add-in

Runtime problems

 If SolidWorks models cannot be opened successfully at remote sites after export via

Teamcenter Multi-Site, make sure you are including the TXD_long_name_relation in the

relation types that are exported.

 You may switching between SWIM 8.1 and later versions by running the registration

batch scripts (RegisterSwimAddin.bat and UnregisterSwimAddin.bat) in the SWIM bin

directory. If you are using Windows Vista or Windows 7 you must run the batch script as

administrator (right click it and select “Run as Administrator”)

1. First unregister the currently active SWIM version by running

UnregisterSwimAddin.bat in the SWIM bin dir.

 63

2. Next, go to the bin dir of the SWIM version you want to switch to and run

RegisterSwimAddin.bat.

3. Start SWIM using the version‟s corresponding startsw.bat.

4. You can verify the change by selecting Tools > Addins in the SolidWorks menu and

hover you mouse over the SwSwimAddin option. The tooltip that appears should

display the SWIM directory of the version you switched to.

 When logging into Teamcenter from SolidWorks, for the first time, users may see these

dialogs:

The problem is explained in the dialog text itself, but sometimes causes confusion. This

simply means that the attribute map in the swim.xml file contains definitions that have

not been loaded into Teamcenter, or have been loaded incorrectly. Users will continue to

see this dialog at each login until (a) the Administrator loads the attribute mappings

correctly or (b) the Adminstrator removes (or comments out) the attribute mappings from

the swim.xml file.

 64

Best Practice Recommendations

Configurations

Integration preferences related to configurations

Every SolidWorks part or assembly has one or more configurations. Not all configurations are

used the same way. The integration provides several configuration settings intended to help

customers manage and resolve various types of conflicts and inconsistencies in their SolidWorks

data:

 Set sw.configuration.default = all. The idea being that all active or referenced

configurations are intended to be managed.

 Populate sw.configurations.hide with configuration names that should never be managed.

Establish site practices for designers to use unmanaged configuration names when they

create representations, this will prevent unwanted configurations from being saved into

Teamcenter. Note, it is hard to remove data from Teamcenter, so it is best to establish

practices that avoid creating the data.

 Set sw.configurations.master.document.same = true, to handle configurations with the

same name with the document. Data such as this often comes from Toolbox (see

Toolbox documentation elsewhere in this document) or suppliers. In such cases the

document usually contains only the single configuration and no other “Master

Configurations”, thus managing the configuration with the document is desired.

SolidWorks Toolbox

SolidWorks toolbox is a library of fasteners, nuts, bolts, screws, bearings, and more. The

toolbox is highly integrated into SolidWorks. SolidWorks enables the sizing of the components

at the time of instantiation into SolidWorks assemblies. The toolbox is a powerful tool, and its

files are best not managed by Teamcenter, but left to SolidWorks to manage. On the other hand,

Teamcenter requires Items to exist for the toolbox parts, for life cycle management within

Teamcenter.

To enable Teamcenter knowledge of the toolbox parts, the SolidWorks integration to Teamcenter

creates items, item revisions, and datasets for toolbox configurations, but does not store the files.

A sw2Tbx dataset type is used to represent the toolbox parts. The associated items appear in the

BVR of parent assemblies. Toolbox parts are represented by the icon in the integration

dialogs.

SolidWorks SpeedPak

Speedpak creates a simplified configuration of an assembly to improve assembly performance.

Another benefit of SpeedPak is assembly sharing. The integration does not fully support

SpeedPak configurations. With this release, it is best if SpeedPak configurations are not

managed with Teamcenter. One means to avoid saving SpeedPak configurations is to set

sw.configuration.hide = *speedpak. When using this configuration is a SpeedPak configuration

is active at the time of save all references to child components will be lost.

 65

Multisite

Configuring Teamcenter Multi-Site to Export SolidWorks Models

If you are using Teamcenter Multi-Site to export items containing SolidWorks datasets, you must

include the following relation types in the references to be exported:

 IMAN_master_form

 IMAN_Rendering

 IMAN_specification

 TXD_long_name_relation

You should add these types to your TC_relation_required_on_export site preference. These

additional types should be included when exporting models with the other SolidWorks models

on which they depend:

 SWIM_dependency

 SWIM_mandatory_dependency

 SWIM_master_dependency

 SWIM_suppressed_dependency

When exporting items using the Tools | Export | Objects command in the Teamcenter Portal‟s

Navigator application, or when importing items with the Tools | Import | Remote command,

remember to include the relation types above in the references shown in the Advanced tab of the

Export Preferences dialog or Import Remote Options dialog, respectively.

Configuring Teamcenter Multi-Site for Transferring Ownership of
SolidWorks Models

If users are allowed to transfer ownership of SolidWorks models from remote sites to your site,

first configure Multi-Site to replicate items containing SolidWorks models, remembering when

exporting and importing items to include the relation types described in the previous section.

At the site that owns the items you want to transfer, make sure your site is included in the list of

sites defined by the IDSM_permitted_transfer_sites Teamcenter preference.

The site that owns the items must also grant the TRANSFER_OUT privilege for objects of the

POM_application_object class. For example, in the Teamcenter Rich Client‟s Access Manager,

this privilege might be granted by modifying the default Import/Export ACL as shown in Figure

10.

 66

Figure 10 ACL Granting TRANSFER_OUT Privilege

Before starting SolidWorks, you may want to add a column to the Teamcenter Integration for

SolidWorks dialogs so users can see the name of the site that owns each SolidWorks model. Do

this by adding the site keyword to the list of columns defined by the table.columns.std user

preference in the swim.properties file. This user preference and others are described in the

swim.properties file, which can be found in the installation directory.

If you chose to add the Transfer Ownership command during installation, the command will

appear in the shortcut menu when the user right-clicks on a model in the Teamcenter Integration

for SolidWorks dialogs. If this command does not appear in the shortcut menu, run the installer

again, choosing a Custom installation with only the Configure Client for Multi-Site option

selected. Refer to the User Guide‟s section on Using the Shortcut Menu for more information on

the Transfer Ownership command.

Configuring the Teamcenter Integration for SolidWorks for
Performance

You may want to consider the following configuration changes to improve the Integration‟s

performance.

 Set the iman.allrelations user preference to false in the swim.properties file, located in the

installation directory. If inaccessible dependencies can be ignored, Open operations may

be faster. However, you should also set checkin.ignoremissing to prompt or never to

prevent models from being saved when some of their dependencies in Teamcenter are

inaccessible. For example, you may want to add these lines to your swim.properties file:

iman.allrelations = false

checkin.ignoremissing = prompt

In addition to the changes described above, best performance is usually obtained when using a

two-tier installation of the Teamcenter Rich Client or Portal. Performance with four-tier

installations will be slower than with a two-tier installation, when the clients and the server are

on the same LAN. If the clients and the server are separated by a WAN with significant network

latency, then four-tier is likely to be faster and more scalable than two-tier.

Configuring Teamcenter for Single Workflow

The integration can be configured to submit Item Revisions to a workflow process by adding

“workflow” to the table.columns.checkin preference in swim.properties. The integration does not

prevent users from submitting objects to multiple workflows. Sites which want to prevent this

 67

should set the Teamcenter preference EPM_multiple_process_targets to “OFF”. Teamcenter

8.3 and beyond set EPM_multiple_process_targets = ON, by default.

Restricted access to data

While opening CAD data from Teamcenter, and while saving CAD data to Teamcenter, the

integration identifies all models which are related to the top-level structured model (drawing,

assembly, and configuration). During Open and Save, Teamcenter relationships are expanded

and traversed. During Save, the CAD session is also interrogated to read its network of

dependency relations.

While expanding and traversing these relations, Teamcenter may encounter one or more

components which are inaccessible in one way or another. Common scenarios are:

 The item, item revision, dataset, or some combination of these, has been assigned to a

project to which the CAD user does not have read access.

 The item, item revision, dataset, or some combination thereof, has an ACL attached, or is

owned by a security-enabled group, that explicitly or implicitly denies read access to the

CAD user.

 Any of the above objects was imported into the local database via MultiSite import, and

has since been deleted, leaving a stubbed reference in the local Teamcenter database.

Teamcenter allows deletion of replica data even though it is referenced by higher-level

objects in the local database. When that replica data is deleted, the reference remains.

 The user is saving an assembly which has suppressed components, and those suppressed

components have never existed in Teamcenter. This can occur when the components

remain suppressed the first time the assembly is saved to Teamcenter. Because they are

not available in session, the integration cannot save them to Teamcenter as items
7
.

Because inaccessible models may result from deliberate customer security practices, such as

assignment to secure projects, the integration does not consider them an error condition. Instead,

it informs the user about the situation during both Open and Save operations.

Opening a model with access restrictions

When a model with restricted components is opened from Teamcenter, the integration displays

an informational dialog, stating how many inaccessible dependencies were encountered:

7
 This situation can be prevented by setting checkin.ignoremissing = never in swim.properties. This is not the

default setting, because it is very common for customer data to contain “ghost references”, which are pointers to

non-existent, non-required dependencies. With the default setting of “prompt”, the integration warns the user about

these missing references, but does not prevent him from completing the save.

 68

The content of the secondary Details dialog will vary, based upon whether or not the user has

DBA privileges. For a non-DBA user, details about the restricted objects are omitted, and the

following is displayed:

A DBA user will see additional information about the identity of these missing models. For

example
8
:

8
 In this example, the item ID cannot be displayed because the access restriction is at the item level. If the item were

accessible, but the item revision and dataset were not, then the item ID would be reported.

 69

Saving a model with access restrictions

The integration does not display any special warnings when the assembly or drawing is checked

out and saved as a new dataset version. There is no risk of lost references in this case; the

integration simply ignores relationships to the inaccessible objects and does not alter them. The

following dialog will appear, but this is a general informational dialog that appears in several

other contexts. It is not specific to restricted object scenarios:

When the model is being saved as a new revision, however, the integration displays a warning

dialog:

The Details button will display a secondary dialog that identifies the model(s) which have

dependencies on the inaccessible objects, and should therefore not be revised unless the user, or

the Teamcenter Administrator, has judged it safe to do so:

 70

Proceeding with the Revise operation will usually result in an inconsistency between the

Teamcenter Bill of Materials and the integration‟s CAD-specific dependency relationships, as

shown in this example, where the component “000396” was inaccessible to the CAD user who

performed the Revise:

Teamcenter Bill of Materials before Revise:

Integration CAD relationships before Revise:

Teamcenter Bill of Materials after Revise:

Integration CAD relationships after Revise:

The integration cannot create or maintain a CAD relationship between the new assembly revision

and the inaccessible component, because it cannot access it in the CAD session or in

Teamcenter. Teamcenter itself propagates the relationship to the new revision‟s Bill of

Materials, however.

