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1

Matrix Analysis

Exercises 1.3.3

m 1(a) Yes, as the three vectors are linearly independent and span three-

dimensional space.

1(b) No, since they are linearly dependent

1(c) No, do not span three-dimensional space. Note, they are also linearly

dependent.

m 2 Transformation matrix is

1 1
P O I ] B R
[ — — :___0
V2lg 0o va |lo o 1 R

Rotates the (e1,ez2) plane through /4 radians about the es axis.

m 3 By checking axioms (a)-(h) on p. 10 it is readily shown that all cubics
ax® + bx? + cx + d form a vector space. Note that the space is four dimensional.

3(a) All cubics can be written in the form
ar® +bx® +cx+d

and {1, z, 2%, 3} are a linearly independent set spanning four-dimensional space.

Thus, it is an appropriate basis.

(c) Pearson Education Limited 2011



2 Glyn James, Advanced Modern Engineering Mathematics, 4** Edition

3(b) No, does not span the required four-dimensional space. Thus a general

cubic cannot be written as a linear combination of

(1—2), (1+2x), (1—2%), (1—}—:173)

2

as no term in x* is present.

3(c) Yes as linearly independent set spanning the four-dimensional space
a(l —2) +b(1 +2) + c(z? — 2%) + d(2? + 2°)

= (a+0b)+(b—a)x+ (c+a)z?+ (d—c)x®

= o+ Bz + yz? + 62

3(d) Yes as a linear independent set spanning the four-dimensional space
2 2 3 3
a(z —x°) + bz +x°) +c(l —z°) + d(1 + z°)

=(a+b)+(b—a)z+ (c+d)r*+(d—c)2®

= a + B + yx? + 623

3(e) No not linearly independent set as

(42® + 1) = (32% + 423) — (32 4 22) + (1 + 22)

w4 x4+ 223 22 — 32°, x + 23 form a linearly independent set and form a basis
for all polynomials of the form « + 323 + ~v2°. Thus, S is the space of all odd

quadratic polynomials. It has dimension 3.

(c) Pearson Education Limited 2011
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Exercises 1.4.3

» 5(a) Characteristic polynomial is A3 — p1 A2 — po A — p3 with
p1 = trace A =12

-9 2 1
Bi=A-121 = 4 -7 -1
2 3 -8
—-17 -5 -7
A, =AB;=|-18 -30 7
2 -5 =33
1
P2 = 3 trace Ay = —40
23 -5 -7
B, =A;+40I= | —18 10 7
2 -5 7
35 0 0
A;=AB,=|(0 35 0
0 0 35

1
p3 = 3 trace A3 =35
Thus, characteristic polynomial is
A% —120% + 40X — 35

Note that B3 = A3 — 35I = 0 confirming check.

5(b) Characteristic polynomial is A* — p1 A3 — pa A2 — p3\ — py with
p1 = trace A =4

-2 -1 1 2

B,— A4l — 0 -3 1 0

-1 1 -3 1
1 1 1 —4
-3 4 0
A, =A B = _; _3 _g 1] = p2 = = trace Ay, = -2
-3 -3 -1 3

(c) Pearson Education Limited 2011
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-1 4 0 -3
-1 0 -2 1

By = A, +2I = 9 0 0 _5
-3 -3 -1 5
) 2 0 -2
1 0 -2 —4 1
A;=A By, = 1 _7 _3 4 =>p3—§traceA3——5
0 4 -2 -7
0 0 0 -2
1 5 —2 —4
B; =A;3+51= 1 _3 5 4
0 4 -2 =2
-2 0 0 0
0o -2 0 0 1
A;,=A B;s= 0 0 _2 0 = pyg = Ztrace Ay, =-2

0 0 0 -2

Thus, characteristic polynomial is A\* — 4\3 4 2A2 + 5\ + 2
Note that By = A4 + 2I = 0 as required by check.

= 6(a) Eigenvalues given by 11)‘ 1i,\ =X -2 =X\A-2)=0

so eigenvectors are Ay = 2, Ao =0

Eigenvectors given by corresponding solutions of

(I—=X)eir +e2=0
e+ (1—X)ew =0

Taking i = 1,2 gives the eigenvectors as

e; =117, eg=[1 -1

6(b) Eigenvalues given by lgA 23>\| =X -3 -4=A+1)(A=-4)=0

so eigenvectors are A\; = 4, Ao = —1

Eigenvectors given by corresponding solutions of

(l — )\Z-)eil + 261‘2 =0
362'1 + (2 - )\i)eiz =0

(c) Pearson Education Limited 2011
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Taking 7 = 1,2 gives the eigenvectors as

er =123, ea=[1 —1]7

6(c) Eigenvalues given by

1-X 0 —4
0 5-X 4 |=X24+9002+90-81=A-9A-3)(A+3)=0
—4 43—

So the eigenvalues are \;y =9, Ay = 3, \3 = —3.

The eigenvectors are given by the corresponding solutions of
(1 —X;)eir + 0ejo —4e;3 =0
Oei1 + (5 — Ai)eo +4ei3 =0
—4de;1 +4eip+ (3—A)eis =0

Taking ¢ = 1, \; = 9 solution is

€11 €12 €13 T
— === =e =[-122
3 16 16 B €1 [ ]

Taking ¢ = 2, \; = 3 solution is
€21 €22 €23 T
—— === e =22 —1
16 16 3 B2 ey = | ]
Taking ¢ = 3, \; = —3 solution is

€31 €32 €33 T
Ga1 G2 33 —ey=[2 —12
32 6 32 5 es = | ]

6(d) Eigenvalues given by

1-A 1 2
0 2—-A 2 | =0
-1 1 3—A

Adding column 1 to column 2 gives

1—XA 2= 2 1-x 1 2
0 2-x 2 | =@-XN] 0 1 2
-1 0 3-A ~1 0 3—2X
1—Xx 0 0
Ri—Ry(2=X)) | 0 1 2 | =2=-0)1-X3B=)
-1 0 3-2X

(c) Pearson Education Limited 2011
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so the eigenvalues are A\y =3, Ao =2, A3 = 1.
Eigenvectors are the corresponding solutions of (A — \;I)e; =0
When A = Ay = 3 we have

-2 1 2 €11
0 -1 2 €12 =0
—1 1 0 €13
leading to the solution
en_ _en_en_ g
—2 2 -1 "

so the eigenvector corresponding to Ao = 3 is e; = [51[2 2 l]T, (1 constant.
When A = Ay = 2 we have

-1 1 2 €21

0 0 2 €22 =0

-1 1 1 €23
leading to the solution

en_ _em _em g

—2 2 o0 7

so the eigenvector corresponding to Ao = 2 is ey = 35[1 1 0], B2 constant.
When A = A3 =1 we have

0 1 2 €31
0 1 2 €32 =0
-1 1 2 €33
leading to the solution
en_ _em _em _ g
0 2 1 "

so the eigenvector corresponding to A3 = 1 is e3 = 33[0 — 2 1]7, 33 constant.

6(e) Eigenvalues given by

5— A 0 6
0 11—\ 6 =A% 1407 =230 —686 = (A —14) A =T)(A+7) =0
6 6 —2—=A
so eigenvalues are \;y = 14, Ao =7, \3 = =7

(c) Pearson Education Limited 2011
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Eigenvectors are given by the corresponding solutions of

(5 — )\i)eil + 0e;o + 6e;3 =0
Oe;1 + (11 — )\i)eig + 6e;3 =0
662'1 + 661'2 + (—2 — )\i)eig =0

When ¢ = 1, \;y = 14 solution is

€11 —€12 €13 T
- = —_ — = — 2
2= 3 18 - Ter=[263

When ¢ = 2, \y = 7 solution is

€21  —€22 €23 . B T
T2 a6 —ad 2 7=l -32

When ¢ = 3, \3 = —7 solution is

€31 _ —€3 _ €33
o4 -36  —108

=f; =>e3=[32 —6]"

6(f) Eigenvalues given by

1-x -1 0 ~1-XA 0 -1-2A
1 2-X 1 | Ri+R, 1 2-x 1
21 —1-A| —2 1 —1-2A
-1 0 0
=(1+N) |1 2=x 0 | =0, ie (1+A2=N)1-X)=0

-2 1 1—A

so eigenvalues are A\; =2, Ao =1, A3 = —1

Eigenvectors are given by the corresponding solutions of

(1 — )\i)eil — €52 + 061'3 =0
ei1 +(2—N)eia +ei3=0
—2e;1 +ej2 — (1 + Xj)eiz =0

Taking 7 = 1,2,3 gives the eigenvectors as

er=[-111"e=[10 —1]T,e3=[12 -7

(c) Pearson Education Limited 2011
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6(g) Eigenvalues given by

4— A\ 1 1 5—A 5—=X 55—

2 5—X 4 | R+ (Ry+ R3) 2 5-X 4

-1 -1 =X o -1 -1 —A
1 0 0

=6B-N1]2 3-X2 2 | =6-M)B-2M)10-X)=0
-1 0 1—X

so eigenvalues are \{ =5, =3, 3 =1

Eigenvectors are given by the corresponding solutions of

(4—N;)eix +ei2+es3=0
2651 + (5 — )\i)eiz + 461'3 =0

—€i1 — €2 — Aiej3 =0
Taking 7 = 1,2,3 and solving gives the eigenvectors as

er =023 —1]T,ea=[1 —10T,e3=[0 —11]"

6(h) Eigenvalues given by

1—A —4 -2 1—XA 2-2X 0
0 3—A 1 R14+2Rs 0 3—A 1
1 2 4— )\ - 1 2 4 — )\
1 0 0
—(1-N 0 3-x 1 | =(1-NB-NA-X=0
1 0 4 — )\

so eigenvalues are \{ =4, s =3, 3 =1
Eigenvectors are given by the corresponding solutions of
(1 — )\i)eﬂ - 462'2 - 2€i3 =0
261'1 + (3 — )\i)eig + e;3 = 0
ei1 +2eip+ (4—N)eiz=0

(c) Pearson Education Limited 2011
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Taking ¢ = 1,2,3 and solving gives the eigenvectors as

e1=02 -1 -1"e=[2-10",e3=[4 —1 —27

Exercises 1.4.5

= 7(a) FEigenvalues given by

1—XA =1+ 0

2-X\ 2 1
1 3-X 1 |R=Ry| 0 3-\ 1
1 22— 1 2 2—\
10 0
=(1-=N |1 4=-Xx 1 | =1-XN)N=-6A+5=1-NA-1)(A=5)=0
1 3 2-2)

so eigenvalues are \y =5, Ao = A3 =1
The eigenvectors are the corresponding solutions of

(2 — )\i)e“ + 2e;0+ei3=0
ei1 + (3—Ai)eix +e3=0
ei1 +2ei2+ (2—N)eiz =0

When 7 =1, \; =5 and solution is

€11 —€12 €13 T
— = = = =111
1 ) 1 p1 = e = ]
When Ay = A3 =1 solution is given by the single equation

€21 + 292 + €23 = 0

Following the procedure of Example 1.6 we can obtain two linearly independent

solutions. A possible pair are

e =[012",e3=[10 —1]T

(c) Pearson Education Limited 2011
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7(b) Eigenvalues given by

A -2 =2
~1 1-X 2 | ==-X432-d4=-0+1)(1-2)?=0
-1 -1 2-A

so eigenvalues are \; = Ay =2, \3 = —1
The eigenvectors are the corresponding solutions of
—)\ieil — 262‘2 — 261‘3 =0
—ei1 + (1 — Ai)eiz +2e3 =0
—e;1 —eia+(2—X)eis3 =0

When i = 3, \3 = —1 corresponding solution is

€31 —€32 €33 T
s -1 3 7 es=B13

When A\ = A2 = 2 solution is given by

—2621 - 2622 - 2623 =0 (1)
—e1 — €22 + 2e23 =0 (2)
—eg1 — e =0 (3)

From (1) and (2) e23 = 0 and it follows from (3) that ea; = —eg2. We deduce that
there is only one linearly independent eigenvector corresponding to the repeated

eigenvalues A = 2. A possible eigenvector is

82:[1 —10]T

7(c) Eigenvalues given by

4—X\ 6 6 1—X =343\ 0

1 3-—-2)\ 2 R,—3R;3 1 33—\ 2

-1 -5  —2—) o -1 -5 —2— )\
1 -3 0 1 0 0

=(1-X) | 1 3-2X\ 2 =(1-X |1 6-2X 2
-1 -5 —=2-) 1 -8 —2—-2A

=(1-NN+A+4)=(1-N)A-2?%=0

(c) Pearson Education Limited 2011
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so eigenvalues are \y = Ay =2, A3 =1.
The eigenvectors are the corresponding solutions of

(4 — )\i)eil + 66i2 + 6€i3 =0
ei1 + (3 — Ni)eix +2e3 =0
—€;1 — 561‘2 — (2 + )\i)eig =0

When 7 = 3, A3 = 1 corresponding solution is

4 -1 =3

When A\; = Ay = 2 solution is given by
2621 + 6622 + 6623 =0
€91 + e99 + 2e93 =0
—eg1 — degg —4eaz3 =0

so that
€21 €22 €23

6 -2  —4

leading to only one linearly eigenvector corresponding to the eigenvector A = 2. A

possible eigenvector is

e =131 —2]7
7(d) Eigenvalues given by
T\ =2 —4 1—XA =242\ 0
3 -\ -2 | By=2R, | 3 - —2
6 -2 =3-A 6 —2 —-3—-A
1 -2 0 1 0 0
—(1-N 3 =X -2 | =(1-)N[3 6-x -2
6 —2 —-3-—2A 6 10 —-3-A

=1-MNA=2)A=1)=0
so eigenvalues are \{ =2, Ay = A3 =1.
The eigenvectors are the corresponding solutions of
(7T —Xi)ein — 2e;0 —4e;3 =0
3ei1 — Aieja — 2e;3 =0

6eir —2ei2 — (3+ N)eis =0

(c) Pearson Education Limited 2011
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When ¢ = 1, Ay = 2 and solution is

SR ——

When Ay = A3 = 1 the solution is given by the single equation
3ea1 — €22 — 2e23 =0

Following the procedures of Example 1.6 we can obtain two linearly independent

solutions. A possible pair are

e =102 —1]7 e3=[203]"

= 8
—4 -7 -5
(A-1) = 2 3 3
1 2 1

Performing a series of row and column operators this may be reduced to the form
0 0 O
0 0 1| indicating that (A —1I) is of rank 2. Thus, the nullity ¢ =3 —-2=1
1 0 0

confirming that there is only one linearly independent eigenvector associated with

the eigenvalue A = 1. The eigenvector is given by the solution of

—4611 - 7612 - 5613 =0
2611 + 3612 + 3613 =0
e11 +2e12 +e13=0

giving
e11 —€12 €13 T
3T 1 hmesiELy
=9
1 1 -1
(A-I)=|-1 -1 1
-1 -1 1

(c) Pearson Education Limited 2011
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Performing a series of row and column operators this may be reduced to the form
1 00
0 0 O/ indicating that (A —1I) is of rank 1. Then, the nullity of ¢ =3—1 =2

0 0 0
confirming that there are two linearly independent eigenvectors associated with the

eigenvalue A = 1. The eigenvectors are given by the single equation
enn +e2—e3 =0
and two possible linearly independent eigenvectors are

e, =[101]" andey =[011]"

Exercises 1.4.8

m 10 These are standard results.

m 11(a) (i) Trace A =4+5+0=9 = sum eigenvalues;

(i) det A =15=5x 3 x 1 = product eigenvalues;

1 4 -1 -1
(iii) A7l= = —4 1 —14| . Eigenvalues given by
3 3 18
4 — 15\ —1 -1 4 — 15\ -1 0
—4 1— 15\ —14 03;02 —4 1—15\ —15+ 15\
3 3 18 — 15\ 3 3 15 — 15\
4 — 15\ -1 0
—(15—15\) | -4 1—15\ —1| = (15— 15A)(15A — 5)(15A — 3) = 0
3 3 1

confirming eigenvalues as 1, %, %

(c) Pearson Education Limited 2011
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4 2 -1
(iv) AT =11 5 —1| having eigenvalues given by
1 4 0
4— X 2 -1
1 5—-A =1 =(A=5)(A=-3)(A—=1)=0
1 4 —A

that is, eigenvalue as for A.

8 2 2
11(b) (i) 2A = 4 10 8 | having eigenvalues given by
-2 =2 0
8—A 2 2 6— A\ 2 2
4 10-X 8 | Ci=Cy |-6+X 10-X 8
—2 —2 —A 0 —2 —A
1 2 2 1 2 2
=(6-)\) |-1 10-X 8| =(6-)|0 12—x 10
0 —2 —A 0 -2 —A

= (6-A)(A—10)(A—2) =0

Thus eigenvalues are 2 times those of A; namely 6, 10 and 2.

6 1 1
(i) A+2I= 2 7 4| having eigenvalues given by
-1 -1 2
6— A\ 1 1
2 T-X 4 | ==XNH1BA-TIA+105=-A=-T)A=5)(A=3)=0
—1 -1 2—-A

confirming the eigenvalues as 5+ 2,3 + 2,1+ 2.
Likewise for A — 21

(c) Pearson Education Limited 2011
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17 8 8
(iii) A%2= | 14 23 22| having eigenvalues given by
-6 -6 =5
17— X 8 8 25— 25—\ 25—
14 23—X 22—X| Ri+(Ry)+Rs) | 14 23—X 22
—6 -6 —5—-A - —6 —6  —5—-A
1 0 0
=(25—-X) |14 9—-A\ 8 =25-N)9-N1-X)=0

—6 0 1-A

that is, eigenvalues A2 are 25, 9, 1 which are those of A squared.

15

m 12 FEigenvalues of A given by

—3-A -3 -3 —3-X -3 -3
3 1-X -1 | Rs+Ry| -3 1-x -1
3 -1 1-A| 0  —2+4X 2-2)
—3-\ -3 -3 —3-A -3 -6
=(A=2)| -3 1-X —1|C3+C(A—2)| -3 (1-A) =i
0 1 -1 0 1 0

=-(A=2)A+6)(A—-3)=0

so eigenvalues are \; = —6, Ao = 3, \3 = 2

Eigenvectors are given by corresponding solutions of

(—3 — )\i)e“ — 36¢2 — 3613 =0
—3ei + (1= Ai)eia —e3 =0
—361‘1 — €0+ (1 — )\i)eig =0

Taking ¢ = 1,2, 3 gives the eigenvectors as
e1=[211" ea=[-111", e3=[01—-1]"

It is readily shown that

eley=eles=ele; =0

so that the eigenvectors are mutually orthogonal.

(c) Pearson Education Limited 2011
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m 13 Let the eigenvector be e = [a b ¢|T then since the three vectors are mutually

orthogonal
a+b—2c=0
a+b—c=0
giving ¢ = 0 and @ = —b so an eigenvector correspondingto A =2is e = [1 —10]7.

Exercises 1.5.3

m 14 Taking z(®©) = [1 1 1]7 iterations may then be tabulated as follows:

Iteration k 0 1 2 3 4
1 09 0874 0.869 0.868
x(k) 1 1 1 1 1
1 05 0494 0493  0.492
9 7.6 7.484 7.461  7.457
A x(F) 10 87 861 8592  8.589
5 4.3  4.242 4231  4.228
A ~ 10 87 861 8592 8.589

Thus, estimate of dominant eigenvalue is A ~ 8.59 and corresponding eigenvector
x ~ [0.869 1 0.493]Tor x ~ [0.61 0.71 0.35]7 in normalised form.

» 15(a) Taking x(®©) =[1 1 1]7 iterations may then be tabulated as follows:

Iteration k 0 1 2 3 4 5 6

1 075 0.667 0.636 0.625 0.620 0.619

x (k) 1 1 1 1 1 1
1 1 1 1 1 1 1
3 25 2334 2272 2250 2.240

A x(F) 4 375 3.667 3.636 3.625 3.620
4 375  3.667 3.636 3.625  3.620

A~ 4 375 3.667 3.636 3.625  3.620

Thus, correct to two decimal places dominant eigenvalue is 3.62 having

corresponding eigenvectors [0.62 1 1]7T.

(c) Pearson Education Limited 2011
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15(b) Taking x(® =[1 1 1]7 iterations may be tabulated as follows:

Iteration k 0 1 2 3 4 5
1 0364 0.277 0.257 0.252  0.251
x (k) 1 0545 0.506 0501  0.493  0.499
1 1 1 1 1 1
4 2092 1831 1.771 1.756
A x(F) 6 3.818 3566 3.561 3.49
11 7.546  7.12 7.03  6.994
A ~ 11 7546  7.12 7.03  6.994

Thus, correct to two decimal places dominant eigenvalue is 7 having corresponding
eigenvector [0.25 0.5 1]7".

15(c) Taking x(® =[1 11 1]7 iterations may then be tabulated as follows:

Iteration k 0 1 2 3 4 5 6
1 1 1 1 1 1 1
x(F) 1 0 -05 —-06 —0.615 —0.618 — 0.618
1 1 -05 —06 —0.615 —0.618 —0.618
1 1 1 1 1 1 1
1 2 2.5 2.6 2.615 2.618
A x(F) o -1 -15 —-16 —1.615 —1.618
0o -1 -15 —-16 —1.615 —1.618
1 2 2.5 2.6 2.615 2.618
A\ ~ 1 2 2.5 2.6 2.615 2.618

Thus, correct to two decimal places dominant eigenvalue is 2.62 having

corresponding eigenvector [1 —0.62 —0.62 1]7.

» 16 The eigenvalue A\; corresponding to the dominant eigenvector e; = [1 1 2]

is such that A e; = A\1e; so

31 1771 1
1 3 1|1 =X 11
1 1 5|2

SO )\1:6

(c) Pearson Education Limited 2011
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Then
11 2.7
A=A 6688 where &, = [—=—=—~
1 181 where & = [ 75 6 V6)
SO
3 1 1 1 1 2 2 0 -1
A= 1|1 3 1| — |1 1 2| =10 2 -1
1 1 5 2 2 4 -1 -1 1
Applying the power method with x(© =11 1]7
1
vy = A;x0) = 11 =xM
[ 3] 1
yP=AxM =] 3| =3 |1
| =3 -1
Clearly, Ap = 3 and & = ——[11 — 1|7
early, =3 and & = — — )
Y, A2 2 \/§
Repeating the process
2 0 -1 1 1 -1 1 -1
A=A — &l = | 0 2 —1|- 1 1 -1 = |-1 1
-1 -1 1 -1 -1 1 0 0

Taking x(® = [1 —1 0]7 the power method applied to A, gives

2 1
y(l)ZAzx(O)Z -2 =2 | -1
0 0
d clearly, A\3 =2 with & 1[1 107
and clearly, =2 with ez = —|1 — .
Y, A3 3 NG

17 The three Gerschgorin circles are

IAN=5]=2 [A]|=2, | A+5|=2

(c) Pearson Education Limited 2011
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which are three non-intersecting circles. Since the given matrix A is symmetric its

three eigenvalues are real and it follows from Theorem 1.2 that

3< M <T, 2< <2, —T<A3<T

(i.e., an eigenvalue lies within each of the three circles).

18 The characteristic equation of the matrix A is

-1 2—-A 2 =0

that is (10 = A)[(2—=A)(3 =) —4]—-(3-X) =0
or fA) =X =150 451\ - 17 =0

Taking Ao = 10 as the starting value the Newton—Raphson iterative process

produces the following table:

, , f()
? i f(/\z) f(/\z) _f,(/\z)
0 10 7 —51.00 0.13725
1 10.13725 —0.28490 —55.1740 —0.00516
2 10.13209 —0.00041 —55.0149 —0.000007

Thus to three decimal places the largest eigenvalue is A = 10.132
Using Properties 1.1 and 1.2 of section 1.4.6 we have

3

3
> Xi= trace A=15and [[Ni=| A |=17
=1

=1

(c) Pearson Education Limited 2011



20 Glyn James, Advanced Modern Engineering Mathematics, 4" Edition

Thus,
A2+ A3 =15 —10.132 = 4.868
Ao A3 = 1.67785
S0 A2(4.868 — \g) = 1.67785
A3 — 4.868\2 + 1.67785 = 0
Ao = 2.434 + 2.0607
that is Ay =4.491 and A3 =0.373
= 19(a) If e, ey,...,e€, are the corresponding eigenvectors to A1, Ag, ..., A, then

(KI—A)e; = (K—\;)e; sothat A and (KI— A) have the same eigenvectors and
eigenvalues differ by K.

Taking x(?) = > a,e; then
i=1

xP = (KI— Ax®P) = (KI- AP’xP72 = =) " a, (K- \,)’e,
r=1
Now K— X\, >K—X\,—1>...>K— X and

x(P) — an (K — X\,)Pe, + Z a (K — \.)Pe,
r=1

1
K—M\.?
e (K— )\n)p[anen —|— E (679 [7}_(_ )\ :| efr]
r=1 n

— (K — \p)Paye, = Ke, as p — o©
Also

xfgp—’_l) (K - )\n)p—H An€n
—
xl(,p) (K — AP aen

= K-\,

Hence, we can find A,

19(b) Since A is a symmetric matrix its eigenvalues are real. By Gerschgorin’s

theorem the eigenvalues lie in the union of the intervals

ie. |[A—2[<20r0< A< 4
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Taking K =4 in (a)

KI—A=4I— A=

S =N
— N =
N = O

Taking x(®) = [1 1 1]7 iterations using the power method are tabulated as follows:

Tteration k 0 1 2 3 4 5
1 075 0714 0.708 0.707 0.707
x(k) 1 1 1 1 1 1
1 075 0714 0.708 0.707  0.707
3 25 2428 2416  2.414
A x(F) 4 3.5 3428 3416 3.414
3 25 2428 2416 2414
A ~ 4 35 3428 3416 3.414

Thus A3 =4 — 3.41 = 0.59 correct to two decimal places.

Exercises 1.6.3

» 20 Eigenvalues given by

—1-X 6 —12
A = 0 13— A 30 =0
0 -9 20 — A\
Now A=(-1-x) | 2N 0 =iz -ma0)

=(—1-XA)A=5)(A—2) so A=0 gives \; =5,y =2,\3 =—1

Corresponding eigenvectors are given by the solutions of

(A — )\ZI)eZ =0
When A = A1 =5 we have
—6 6 —12 €11
0 —-18 30 era| =0
0 -9 15 €13
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leading to the solution
€11 —€i2 €13 -

—-36  —180 108
so the eigenvector corresponding to Ay =5 is e; = 31[1 —5 — 3|7
When A = Ay = 2, we have

-3 6 —12 €21
0 —15 30 €929 =0
0 -9 18 €923
leading to the solution
e _ —em _em _ g
0 —90 45 7

so the eigenvector corresponding to Ao = 2 is ey = 35[0 2 1]T
When A = A3 = —1, we have

0 6 —12 €31
0 —12 30 €32 =0
0 -9 21 €33
leading to the solution
ea _ —ewm _ewm
18 0 o
so the eigenvector corresponding to A3 = —1 is ez = (331 0 0]

A modal matrix M and spectral matrix A are

1 0 1 5 0 0
M= |-5 2 0 A= (0 2 0
-3 1 0 0 0 -1
0 1 -2
M= |0 3 -5 and matrix multiplication confirms M™1A M = A
1 -1 2

» 21  From Example 1.9 the eigenvalues and corresponding normalised eigenvectors

of A are
M =6,=3N=1
1 1
é1=—[120",86=[001]",863=—[-210],
5 5
X L [1oo0 =2
M=— [2 0 1
V5o VB o

(c) Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4" Edition 23

X (12 0220t 0 -2
MTAM:g 00 V5[ |25 0]]2 0o 1
-2 1 0 ][0 0 3/][0 V6 0
I 12 0 1 0 -2
=z |0 0 3Vl |2 0 1
-2 1 0 0 V5 0
30 0 0 6 0 0
=—- 10 15 0| = |0 3 0| =A
0 0 5 0 0 1
m 22 The eigenvalues of A are given by
5-X 10 8
10 22—\ —2 = (A3 —18A% —81A+1458) = —(A—9)(A+9)(A—18) =0
8 -2 11-A
so eigenvalues are \{ = 18, Ao =9, A3 = —9
The eigenvectors are given by the corresponding solutions of
(5 — )\i)eil + 10€e;2 + 8e;3 =0
1062'1 + (2 - /\i)eig — 262'3 =0
862'1 — 261'2 + (11 — )\,-)eig =0
Taking 7 = 1,2,3 and solving gives the eigenvectors as
e1=[212", ex=[12 — 2|7, e3=[-221]"
Corresponding normalised eigenvectors are
. 1 . 1 . 1
e = 5[2 1217, & = g[1 2 — 2|7, &3 = g[—2 2 17
R 1 2 1 -2 R 1 2 1 2
M:§ 1 2 2,MT:g 1 2 -2
2 =2 1 -2 2 1
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A L2 1 2][5 10 8][2 1 -2
MTAM:§ 1 2 =210 2 —2||1 2 2

| —2 2 1 8 =2 11] |2 -2 1
L [36 18 36][2 1 -2]
:§ 9 18 —18 1 2 2
(18 —18 -9 ] |2 -2 1
(4 2 4] [2 1 =2
=11 2 =2 1 2 2
2 2 -1 |2 -2 1
(18 0 0
=10 9 0 =A
0 0 -9
s 23
1 1 -2
A= | -1 2 1
0 1 -1
Eigenvalues given by
1—AX 1 —2

0= 1] -1 2-2X 1 = (N =222 4+2)=-A-1)A=2)A+1)=0
0 1 —1-=A

so eigenvalues are \y =2, Ay =1, A3 = —1.

The eigenvectors are given by the corresponding solutions of

(1 —Xj)eir +ei2—2e3=0
—ei1+(2—N)eig+e3=0
Oei1 +e2 — (1 + XNj)eiz =0

Taking 7 = 1,2,3 and solving gives the eigenvectors as

er=[131"e=[321T,e3=[101]"

1 3 1 2 0 0
M=1|[3 2 0|, A=|0 1 0
1 1 1 00 -1
] 2 -2 -2
Mt=—21-3 0 -3
61 1 o _7

(c) Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4** Edition 25

Matrix multiplication then confirms

M'AM=A and A=MAM!

m 24 Eigenvalues given by

3—-X =2 4
-2 —2-A 6 |= AN 4+63XA-162=—-A+9A-6)(A-3)=0
4 6 —1-X

so the eigenvalues are \y = —9,\2 = 6,\3 = 3. The eigenvectors are the

corresponding solutions of

(3 — )\i)eil — 2e49 + 44e;3 =0
—2e;1 — (2 + )\i)eig + 6e;3 =0
dei1 + 6ei2 — (1 + Xj)eiz =0

Taking 7 = 1,2,3 and solving gives the eigenvectors as
er=[12 —2/"ex =212, e3=[-221]"

Since el e; = ef'e3 = el'e3 = 0 the eigenvectors are orthogonal

) 1 2 -2
L:[élézég]:§ 2 1 2
-2 2 1
) L2 -2 3 -2 4 12 -2
LAL:§ 2 1 2| |-2 -2 6 2 1 2
-2 2 1 4 6 —-1||-2 2 1
1 [—9 —18 18 1 2 =2
=3 12 6 12 2 1 2
| —6 6 3 -2 2 1
1 [—81 0 0O -9 0 0
=3 0 54 0| = 0 6 0] =A
. 0 0 27 0 0 3

m 25 Since the matrix A is symmetric the eigenvectors

e = [1 2 O]T, €y = [—2 1 O]T, ez = [631 €32 633]T
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are orthogonal. Hence,
Tes = 2e32 = 0 and ej e = —2 =0
e e3 = e31] +2e33 = 0 and e; ez = —2e31 + e32 =

Thus, e3; = esy = 0 and es3 arbitrary so a possible eigenvector is e3 = [0 0 1]T

6 0 O
Using A=M A M? where A= |0 1 0] gives
0 0 3
1 2 1 2
w[E RS B
= |1=%= —= 0 ——== —= 0
0w 1)loo sl "0
2 2 0
2 5 0
0 0 3
0 0
26 A-1I-= 0| is of rank 2
0 0
Nullity (A —1I) = 3 — 2 SO there is only one linearly independent vector

corresponding to the elgenvalue 1. The corresponding eigenvector e; is given by
the solution of (A —TI)e; =0 or

—4611 - 7612 - 5613 =0
2611 + 3612 + 3613 =0
e11 +2e12+212=0

that is, e; = [-3 1 1]7". To obtain the generalised eigenvector e} we solve

(A —1I)e] =e; or

-4 =7 =5 |eq; -3
2 3 3| |ea| = 1
1 2 1 el 1
giving ef = [—1 1 0]7. To obtain the second generalised eigenvector e}* we solve

(A —T)ej" =ej or

—4 -7 5] [ex ~1
2 3 3|lez| =| 1
1 2 1] |ex 0
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giving ei* =[2 — 1 0]7.

-3 -1 2
M = [e; e] €] = 1 1 -1
1 0 0
0 0 -1 0 0 1
detM=—-landM'=— | -1 -2 —-1| = |1 2 1
-1 -1 =2 1 1 2
Matrix multiplication then confirms
1 1 0
MtPAM= [0 1 1
0 0 1
s 27 FEigenvalues are given by
|A—X|=0

that is, A* —4X3 — 1202 + 32X\ + 64 = (A + 2)%(\ — 4)? = 0 so the eigenvalues are
—2, —2, 4 and 4 as required.

Corresponding to the repeated eigenvalue A1, Ao = —2
3 0 0 -3 1 0 0 0
0 3 -3 0 01 0 0] .
(A+2I) = 05 -3 3 05 000 ol® of rank 2
-3 0 0 3 0 0 0 O

Thus, nullity (A+21I) is 4—2 = 2 so there are two linearly independent eigenvectors
corresponding to A = —2.

Corresponding to the repeated eigenvalues A3, Ay = 4

-3 0 0 -3 1 0 0 O
0o -3 =3 0 0O 1 0 0f .
(A —4I) = 05 -3 -3 05 ~ 10 0 0 0 is of rank 3
-3 0 0 -3 0 0 0 1

Thus, nullity (A —4I) is 4 — 3 = 1 so there is only one linearly independent

eigenvector corresponding to A = 4.
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When A = A\; = Ay = —2 the eigenvalues are given by the solution of (A+2I)e =0
giving e; = [0110]7,ex = [1 00 1]7 as two linearly independent solutions. When

A = A3 = Ay = 8 the eigenvectors are given by the solution of
(A—4I)e=0

giving the unique solution ez = [0 1 —1 0]7. The generalised eigenvector e} is
obtained by solving

(A —4I)e; = e
giving 5 = (6 —1 0 — 6]7. The Jordan canonical form is

Exercises 1.6.5

28 The quadratic form may be written in the form V = x’Ax where x =

(21 2 xg]T and

2 2 1
A=12 5 2
1 2 2
The eigenvalues of A are given by
2—-\ 2 1
2 5—-X 2 |=0
1 22—\
= 2-NAN=TA+6)+4A-1)+(A-1)=0
S A=A =8A+7)=0=>A-1* =7 =0

giving the eigenvalues as A\ =7, o = A3 =1

Normalized eigenvector corresponding to A\; = 7 is
A _ (L 2 19T
q=% % A

(c) Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4" Edition 29

and two orthogonal linearly independent eigenvectors corresponding to A — 1 are

&=[3% 0 %I
A _[_1 1 _ 14T
& = | V3 V3 ﬁ]

Note that é; and &3 are automatically orthogonal to €;. The normalized

orthogonal modal matrix M and spectral matrix A are

1 1 1
N Ve 70 0
M=|2 0 Z|.A=[010
N e 0 0 1
Vi Vi V3

such that MTAM = A.

Under the orthogonal transformation x = 1\71y the quadratic form V reduces to

V= yTMTAMy =yl Ay
7 0 0 Y1
=y v w3] |0 1 0] |1
0 0 1 Y3
=Ty} + 95 + 43
1 -1 2
= 29(a) The matrix of the quadratic formis A = | -1 2 —1| and itsleading
2 -1 7
principal minors are
1 -1
1, '_1 2‘ =1,det A =2

Thus, by Sylvester’s condition (a) the quadratic form is positive definite.

1 -1 2
29(b) Matrix A= | -1 2 —1| and its leading principal minors are
2 -1 5}
1 -1
1, 1 2‘ =1,det A =0

Thus, by Sylvester’s condition (c¢) the quadratic form is positive semidefinite.
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1 -1 2
29(c) Matrix A= | -1 2 —1| and its leading principal minors are
2 -1 4
1 -1
1, ‘_1 2' —1,det A = —1.

Thus, none of Sylvester’s conditions are satisfied and the quadratic form is

indefinite.

a
—b
principal minors are a and ac — b?>. By Sylvester’s condition (a) in the text the

» 30(a) The matrix of the quadratic form is A = [ _Cb} and its leading

quadratic form is positive definite if and only if

a>0and ac—b> >0

that is, a > 0 and ac > b?

2 -1 0
30(b) The matrix of the quadratic formis A= | —1 @ b | having principal
0O b 3

minors 2,2a — 1 and det A = 6a — 2b®> — 3. Thus, by Sylvester’s condition (a) in

the text the quadratic form is positive definite if and only if

20 —1>0and 6a — 2> —3 >0

or 2a > 1 and 2b® < 6a — 3

m 31 The eigenvalues of the matrix A are given by

2-x 1 -1 3-X 3-X 0

0=| 1 2=X 1 |Ri+Rs| 1 2-x 1

~1 1 2-A| ~1 1 2-2A
11 0

—B-N |1 2-x 1

=B-AN) |1 1-X 1 | =B-XA=3)
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so the eigenvalues are 3, 3,0 indicating that the matrix is positive semidefinite.

The principal minors of A are

2 1

2712

‘ =3, det A =0

confirming, by Sylvester’s condition (a), that the matrix is positive semidefinite.

K 1 1
32 The matrix of the quadratic formis A= |1 K —1| having principal
1 -1 1
minors
K, ‘ 1 K‘ =K —1land det A=K —-—K—-3

Thus, by Sylvester’s condition (a) the quadratic form is positive definite if and only
if

K—1=(K-1)(K+1)>0and K - K—-3=(K—-2)(K+1)>0

ie. K>2or K< —1.
If K =2 then det A =0 and the quadratic form is positive semidefinite.

33 Principal minors of the matrix are

3+a 1

3+a,‘ 1 a‘ =a’+3a—1,det A =a®+3a® —6a—8

Thus, by Sylvester’s condition (a) the quadratic form is positive definite if and only
! 34+a>0,a°+3a—1>0and a®+3a®> —6a—8>0
or (a+1)(a+4)(a—2)>0
34+a>0 = a> -3
a*+3a—-1>0 = a<-33o0ra>03
(a+1)(a+4)(a—2)>0 = a>2o0r —4<a< -1

Thus, minimum value of a for which the quadratic form is positive definite is

a=2.
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1 2 =2
n34 A= 2 A =3
-2 -3 A

Principal minors are

1 2

Ly a

Y

‘ =A—4, det A=)\ -8\+15=0

Thus, by Sylvester’s condition (a) the quadratic form is positive definite if and only

if
A—4>0 = >4

and (A—5)(A—3)>0 = A<3orA>5

Thus, it is positive definite if and only if A > 5.

Exercises 1.7.1

m 35 The characteristic equation of A is

‘5—)\ 6

— \2 _ —
) 3_)\‘_)\ 8\ +3 =0

>[5 6][5 6] _ [27 48
Now A™= [2 3} [2 3} - [16 211 i

- [37 48]  [40 48 3 0] [0 o0
AT-BA 3= [16 21] [16 24} + [0 3] = [o o]

so that A satisfies its own characteristic equation.

m 36 The characteristic equation of A is

1—A 2
1 1—A

‘ =N _-22-1=0
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By Cayley-Hamilton theorem

A2 —2A —-1=0

2 4 1 0 3 4
2
36(a) Follows that A* =2A +1= {2 2} + [O 1] = [2 3}

T [ 1 2] [7 10
36(b) A_2A+A_{46+11 = |5

14 20 3 4 17 24
4 3 2
36(c) A*=2A"+A°"= {10 14} + [2 3} = [12 17}

m 37(a) The characteristic equation of A is
2-A 1

1 2—-A
that is, A —4A+3=0

Thus, by the Cayley—Hamilton theorem

A% —4A +31=0
1
-1

I=_[4A — A?]
3

1
sothat A~!= 5[41 — A]

(U R S

37(b) The characteristic equation of A is

1—A 1 2
3 1—A 1 =0
2 3 1—A

thatis, A —3X2—-7A—11=0
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1 1 2 1 1 2 8 8 5§
A= |3 1 1 31 1| =18 7 8
2 3 1 2 3 1 13 8 8
Using (1.44)
1
Al = —(A? -3A - TI)
11
-2 5 -1
=— | -1 -3 5
e 1 9
2 3 1 2 3 1 14 11 11
38 A2=1[3 1 2 31 2| = |11 14 11
1 2 3 1 2 3 11 11 14

The characteristic equation of A is

A2 —6X2—3\+18=0

so by the Cayley-Hamilton theorem

giving

Thus,

A3 =6A% +3A — 181

A* = 6(6A% +3A — 18I) +3A% — 18A = 39A? — 1081

A’ =39(6A% + 3A — 181) + 108A = 234A% + 9A — 7021

A® =234(6A% + 3A — 18I) + 9A? — 702A = 1413A% — 42121
AT = 1413(6A% + 3A — 181) + 4212A = 8478A% + 2TA — 254341

AT —3A% + A* + 3A3 — 2A2% 4+ 31 = 4294A% + 36A — 129571

47231 47342 47270
= 47342 47195 47306
47270 47306 47267
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= 39(a) Eigenvalues A are A =1 (repeated). Thus,

e = apl + i A with

e =qao + o t t
tot — o } =ay =te', ag=(1—t)e

so e = (1 —t)e'T +te' A = e 0
tet et

39(b) Eigenvalues A are A =1 and A = 2. Thus,

e = gl 4+ a1 A with

el =apta

o =ag=2e"—e* a;=e* —¢f
e = ag + 201

t
so e = (2et — 2T 4 (€2 — e')A = L%e ‘ gt}

m 40 Eigenvalues of A are \; =7, Ay =
Thus,

s
7)‘325'

o3

sin A = agA + a1 A + a2A2 with

sinT = 0= ag + a7 + aym?
2

inZ =1=ag+a1~+ oy
SH12-— = g a12 a9 1
cosg:0:a1+7ra2
. . 4 4
Solving gives ap =0, a1 = —, az = ——; so that
T ™
0 0 O
4 4
sinA=—-A—-—A*=10 1 0
or 00 1

] 41(a)

dt | EG-t) L2 —t43) 1 2—1

dA d(24+1)  L(2t-3) } _ [Zt 2 }
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41(b)
2 2 10 0
/Adt [fl (t*+1)dt [/ (2t —3)dt } _ |
L6 —t)dt 12—t +3)dt T 23
2 6
m 42 _
A2 241 t—1] [24+1 t—1
15 0 5 0
o[ttt 45t —4 B -2 +t-1
| 5*+5 5t —5
d, o [434+4t+5 3t2-2t+1
@)= 10t 5
dA 43 +4t 22 +1
A T |20t 0
d dA
Thus, —(A2) #2A——.
us, - (A%) #2A—

Exercises 1.8.4

m 43(a) row rank

1 2 3 4 row2 — 3rowl |1 2 3 4
A=13 4 7 10 — 0o -2 -2 =2
2 1 5 7 row3 — 2rowl |0 -3 -1 -1
1 2 4 4 1 2 3 4
—5TOW2 0 1 1 1 row3 + 3row2 001 1 1
— —
0O -3 -1 -1 00 2 2

echelon form, row rank 3

column rank

col2 — 2coll 1 0 0 0| cold3—col2 |1 O 0 O
A s 3 —2 -2 2 - 0 -2 0 0
col3 — 3coll
bl —de L2732 0] cold—col2 |2 -3 2 2
1 0 0 0
0014;C013 3 -2 0 0
2 -3 2 0

echelon form, column rank3
Thus row rank(A) = column rank(A) =3
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(b) A is of full rank since rank(A)=min(m,n)=min(3,4)=3

4 8
r 4 11 14 333 81 [37 9
" 44(a) AA _[8 7 —2} ﬁ _72 _[81 117]_9[9 13}

The eigenvalues \; of AAT are given by the solutions of the equations

333 — A 8

T— =
)AA AI‘ ‘ 81 117\

‘:O¢A2—450>\+32400:0

= (A—360)(A—90)=0
giving the eigenvalues as A\; = 360, A2 = 90. Solving the equations.
(AAT - \Du; =0

gives the corresponding eigenvectors as

w=[3 1], u=[1 -2]"
with the corresponding normalized eigenvectors being
s _ 73 1T o 71 _ 31T
=75 vl =[5 5 |

leading to the orthogonal matrix

4 8 {4 11 14]_ 80 100 40

ATA= 11 7 || o 100 170 140
14 -2 40 140 200
80 — p 100 40
Solving |ATA —puI|=| 100 170—p 140 |=0
40 140 200 — p
gives the eigenvalues p; = 360, us = 90, u3 = 0 with corresponding normalized
eigenvectors
- T « T - T
n=lh 3 313 -} 3Mw=l3 -} 4
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leading to the orthogonal matrix

~

V =

SNV

wlN
SNV

W= wino
Wl

The singular values of A are o1 = /360 = 64/10 and oo = /90 = 3/10 giving

2= [6@ 3\9ﬁ 8}

Thus, the SVD form of A is

5 ) 1 2 2
A:ﬁzwzlﬁ Wgﬂﬁm 0 0} P2 8
1 0 3V10 0 2 _% g

4 11 14}>

(Direct multiplication confirms A = { 8 7 _9

(b) Using (1.55) the pseudo inverse of A is

1 0 r 2 2 1 0
i Ya35 & * 6v10 2 % :f 32 6v10 1
Al=VEUE =1 0 51715 3 3| 0 sm
0 0 :F 3 0 0
3 1 -1 13
[ vy ] >AT=514 8
Vio ~ Vio 10 —10
1 13
4 11 14 180 0
AAT = L { 1 A 8 | =L { } 1
180 180
8 7T =201 _10 0 180

(c) Rank(A) =2so A is of full rank. Since number of rows is less than the number

of columns AT may be determined using (1.58b) as

4 8 -1 -1 13
T T\ — 333 81
AT =AT(AAN) ' =11 7 {81 117} =14 8

14 -2 10 —10

which confirms with the value determined in (b).
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Lo row2 — 3rowl 1 row3 + row?2 11
3.0 row3 -+ 2rowl 0 - row4d + 2row?2 0 -3
w45 A=|-2 1| VElo 3 3OV g o
0 2 - 0 2 - 0 0
1 9 rowd + rowl 0 3 rowd + row?2 0 0

echelon form so row rank = 2 = column rank
Thus, rank A = 2 =min(5,2) and so A is of full rank.
Since A is of full rank and number of rows is greater than number of columns we

can determine the pseudo inverse using result (1.58a)

—1
_ 15 -3 13 -2 0 -1
T (AT TAT _
Al=(A74) A_{—i% 10} {10 1 2 2]
3 10 371 3 =2 0 -1
SMEl3 15010 1 2 2
_ 1 [13 30 <17 6 4]
CM18 9 9 30 27|
1 1
13 30 —17 6 —4]] 3 Y 141 0
TA = _L - N — =1 =
AA_141_18 9 9 30 27| 02 ; 141{0 141] I
-1 2
1 -1 row2+2rowl |1 -1
m46(a) A=|-2 2 — 0 O
2 =2 row3—2rowl |0 O
Thus, rank A = land is not of full rank
1 -1 2 -4 4
(b) AAT = |—2 2 {_11 . _22}: 1 8 -8
2 =2 4 -8 8

The eigenvalues \; are given by

—4 2-X -8 |=0=)A(-A+18)=0

giving the eigenvalues as A\ = 18, Ao = 0, A3 = 0. The corresponding eigenvectors

and normalized eigenvectors are
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w=[1 -2 2"=a=[t -2 217
N T
UQI[O 1 1]T:>LI2:[O % %}
w=[2 1 0T=a=[% X% 0]
leading to the orthogonal matrix
1 2
U=|"3 ¥ &
2 1 9
3 2
1 -1
ATA:{_ll _22 _22} -2 2 :9[_11
2 =2

—1

y

A has the single (equal to its rank) singular value o; = /18 = 34/2 so that

3v2 0

Y= 0 0| and the SVD form of A is
0 O
1 2
o s U | [3v2 0]
A=UxV"=|-3 55 =[] 0 0 [VE
2 1 0 0| Lv2
3 V2
1 -1
Direct multiplication confirms that A = | -2 2
2 =2
(¢) Pseudo inverse is given by
1 1 r 2 2
= - 1 3 3
- 55 00 L.
AR CETIEE
V2 V2 VARG 0
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Direct multiplication confirms AATA = AandATAAT = At

(d) Equations may be written as

The least squares solution is x = Afb = [z} — 1 [ 1 -2 2 }

1
{ 61} giving x = % andy:—%
6

(e) Minimize L = (z —y — 1)? + (=2x + 2y — 2)? + (22 — 2y — 3)?

oL
6—:0:>2(x—y—1)—4(—2x+2y—2)+4(2x—2y—3):18x—18y—6:0
2y
=3r—-3y—1=0
OL
@:0:—2(x—y—1)+4(—2:1;+2y—2)—4(2:c—2y—3):—18x+18y+620

= —3r+3y+1=0

Solving the two simultaneous equations gives the least squares solution =z =

y = —% confirming the answer in (d)

1
6

= 47(a) Equations may be written as

Using the pseudo inverse obtained in Example 1.39, the least squares solution is

|

ot el 4 [17 4 5
X_Ab:,{y]_ﬁo{q 4o

W N =

M| eeN]] )
| I

giving r =y = %
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(b) Minimize L = 3z —y — 1)2 4 (2 + 3y — 2)% + (z + y — 3)°

OL
or
= 1llz+y—-8=0

OL
Ay
x4+ 1ly—8=0

=0=6Br—y—1)+2x+3y—2)+2x+y—3)=0

0= —2Br—y—1)+6(z+3y—2)+2x+y—3)=0

Solving the two simultaneous equations gives the least squares solution x =y =

confirming the answer in (a)

N

3

| ] 48(&)
1 0 =2 row3 + rowl 1
0 1 -1 0
A= —
-1 1 1 4_9 1 0
9 _1 9 row row 0

0o - 1 0 -2

. _1 rows3 ; row2 0 1 -1

1 - 0O 0 O
1 6 rowd + row?2 00 5

Thus, A is of rank 3 and is of full rank as 3=min(4,3)

(b) Since A is of full rank

6 -3
AT =(ATA)T'AT = | -3 3

1 -2

26 28 3] [1 0O
=AT=2L128 59 9|0 1
3.9 9|2 -1

1 1 0 -1 2
—2 0o 1 1 -1
10 -2 -1 1 2
-1 2 4 5 16
1 —-1|=%1]2 10 8 3
12 -3 0 3 3

(c) Direct multiplication confirms that AT satisfies the conditions

AAT and AT A are symmetric, AATA = A and ATAAT = AT

2 1
= 49(a) A= |1 2| is of full rank 2 so pseudo inverse is
1 1

AT = (ATA)TAT =

0.6364
—0.3636

—0.3636  0.0909
0.6364  0.0909
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Equations (i) are consistent with unique solution

3
[x} = A" |3] = 2z =1.0909,y = 1.0909
4 3
21 0.5072 0.4928 0.0478
— . . -i- — . — V. .
(b) A 110 120 with pseudo inverse A 04928 05072 0.0478

3
[x}ZAT 3| =r=y=1
y 20

Equations (ii) are inconsistent and have least squares solution

3

{ﬂ — AT | 3| = 2=y=14785
4 30
: . 0.5001 0.4999 0.0050
— . . .i. _ . —0U. .
(c) A 130 130 with pseudo inverse A 009 05001 0.0050

Equations (i) are consistent with unique solution

3
{x]:AT 3 | =rx=y=1
y 200

Equations (ii) are inconsistent with least squares solution

[m} —A| 3 | =2=y=14998
300

(c) Pearson Education Limited 2011
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Since the sets of equations (i) are consistent weighting the last equation has no
effect on the least squares solution which is unique. However, since the sets of
equations (ii) are inconsistent the solution given is not unique but is the best in
the least squares sense. Clearly as the weighting of the third equation increases
from (a) to (b) to (c) the better is the matching to the third equation, and the last

case (c¢) does not bother too much with the first two equations.

= 50 Data may be represented in the matrix form

= w N = O
[ T
| — |
o 3
| I
I
W NN = =

Az=Y
MATLAB gives the pseudo inverse

Al — -02 -01 0 0.1 0.2
] 08 04 02 0 -02

and, the least squares solution

leads to the linear model

y= 0.5+ 0.8
Exercises 1.9.3
m 51(a) Taking z1 =y
dy
T1 =29 = —
1 2=
. d%y
€T _ <
2 37 I
d3
Z"g = EE)’/ = u(t) — 41‘1 — 5[L‘2 — 41‘3
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Thus, state space form is

T 0O 1 0 x 0
X = jZ'Q = 0 0 1 i) + 0 u(t)
i‘g —4 -5 —4 I3 1

y=x1 =[100] [x1 x2 :1;3]T

51(b)
1 =Y
. dy
To =1 = —
2 1 i
2
Tr3 = .fg = @
dt?
3
Trq = ig = @
dt3
d4
Tg = Eg = —4xy — 2x3 + Hu(t)

Thus, state space form is

i 0 1 0 07 [ 0
.|| _ o o0 1 0] |w 0
=il T 1o 0o 0 1| || T |o|®
4 0 —4 -2 0l L 5
T

= 52(a) Taking A to be the companion matrix of the LHS

0 1 0
A=1|0 0 1
-7 =5 —6

and taking b = [0 0 1]” and then using (1.67) in the text ¢ = [5 3 1].
Then from (1.84) the state-space form of the dynamic model is

x = Ax + bu,y =cx

(b) Taking A to be the companion matrix of the LHS

0 1 0
A=10 0 1
0 -3 —4
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and taking b = [0 0 1]7 then using (1.67) in the text ¢ = [2 3 1]. Then

from (1.84) the state-space form of the dynamic model is

%X = Ax + bu,y =cx

53 Applying Kirchhoff’s second law to the individual loops gives

dip . 1

€:R1<i1 +i2)+UC+L1 dt s Uc=6<i1 +’i2)
o diy .
e = Ry(i1 +i2) + vc +L2E + Ry

so that,
d’il Rl . R1 Ve (&
dt Ly Ly o, I,
diy R12. (R1 + R2) . Ve e

dt Loy I, 2 1.,71L,
dv, 1<,+.)

= —(i1+1
a o't

Taking x1 = i1, 29 = i2,x3 = v.,u = e(t) gives the state equation as

. _ Ry _Rs _1 1
T L, , L ) L T Ly
j — | R _(BatRo) 1 1
L2 I 9 s zy |+ | g | ) (1)
T 1 1 T 0
3 e & 0 3

The output y = voltage drop across Rs = Roio = Rsxo so that
Yy = [0 RQ 0] [212'1 i) .CCg]T (2)
Equations (1) and (2) are then in the required form

x=Ax+bu, y=clx

54 The equations of motion, using Newton’s second law, may be written down
for the body mass and axle/wheel mass from which a state-space model can be
deduced. Alternatively a block diagram for the system, which is more informative

for modelling purposes, may be drawn up as follows
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s pn'nb

- Axle

I
™M, s>

where s denotes the Laplace ‘s’ and upper case variables X,Y,Y; denote the
corresponding Laplace transforms of the corresponding lower case time domain
variables z(t),y(t),y1(t); y1(t) is the vertical displacement of the axle/wheel mass.
Using basic block diagram rules this block diagram may be reduced to the

input/output transfer function model

K, (K + Bs)
X, (M52 + K,)(Ms? + Bs + K) + Ms2(K + Bs) Y,

or the time domain differential equation model

d4y d3y d2y
MMEY 4 By + MY (K M+ KM,y + KMy
1M+ B A+ M) g + (B M+ KMy + KM) 2
d d
+Kle—?j K Ky = K1K2x+K1Bd—f

A possible state space model is

21 i —B(M1+M) 1 0 07 I~ T 0 7
2 UM EIERM 0 1 0 |2 0
= + x(t)
z3 S 00 1| |z T
[ 24 I T 0 0 01 Lz | S

y=1[1000]z(t), z=[z1 22 23 ,24]T.

Clearly alternative forms may be written down, such as, for example, the
companion form of equation (1.66) in the text. Disadvantage is that its output

y is not one of the state variables.
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» 55 Applying Kirchhoft’s second law to the first loop gives

xr1 + R3<Z - 21) + Rll =Uu
that iS, (R1 + Rg)?, — R3i1 +x1=u

Applying it to the outer loop gives
o+ (Ra+ R2)in + Rii =

Taking o = R1R3 + (R1 + Rg)(R4 + RQ) then giVGS

ol = (RQ + R3 + R4)u — (R2 + R4)l’1 — R3xo
and ai1 = Rsu+ Riz1 — (R1 + R3)$2

Thus,
Oé(i — il) = (R4 + Rg)u - (Rl + Ry + R4)£L‘1 + Rixo

1
Voltage drop across C1 : &1 = F(z — 1)
1
1
= a—a[—(R1 + Rs + R4)£U1 + Rizo + (R4 -+ RQ)U](l)
. 1.
Voltage drop across Cs : &9 = —11
Cy
1
= Q—@[Rlxl — (R1 + R3)z2 + Rsul (2)
R Ri+R R
R (SR €0 T L) JOE L (3)
o o
o R RsR R, + R
y2:R2(z—21):—Eg(R1+R2+R4)Q:1+ 2 1I2+R3MU (4)

Equations (1)—(4) give the required state space model.
Substituting the given values for Ry, Ro, Rz, R4,y and C5 gives the state matrix

A as
-9 1

35.10-3  35.10 3 102 [—9 1
| 4 | 3 [ 1
35.10-® 35.10-3
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3

Let 0= 3 then eigenvalues are solutions of
—96—A B 2 2 _
3 48— ) =N+ 138\ +356°=0
giving
—13 £ +v29
A= —""Y""8~_26x10%> or — 1.1 x 10?

2

Exercises 1.10.4

1 1
Eigenvalues of A are A=1,A=1 so

" 56 ®(t) = At where A = {1 0}

e = ao()I + a1 (t)A

where «q, a; satisfy

eM=ag+a), =1

teM = oq

giving oy = te', ag = et — te'
Thus,

56(a) ®(0) = {1 0} ~1

56(b)
€t2€—t1 0 etl O
<I>(t2 - tl)q)(tl) = [(tg _ t1)€t2€_t1 elze—t1 ] [tletl et }

e’ 0 ez 0
[(tz —t1)e"2 + tye’ et2] N [t2€t2 et2] = ®(t)

(c) Pearson Education Limited 2011



50 Glyn James, Advanced Modern Engineering Mathematics, 4" Edition

- 1 L0 -t 0
56(c) @ 12@ [—iet t} = [_ete—t —t} = ®(-1)

e €

dy . d?y

—, I9 = — = —x1 — 2x9 SO in vector—matrix
dt’ dt?

57 Take 1 =y, 29 = @1 =
form the differential equation is

% = {_01 _12} x, y=[10/A

0

Taking A = [_1

_;] its eigenvalues are A = -1, A = —1

et = oI + a1 A where ag, oy satisfy

€>\t = a0+a1)\, A=—1

teM = o1
giving o = et +te”t, oy = te~t. Thus,

AL _ et 4tet te™t
o —te~t et —tet

Thus, solution of differential equation is

x(t) = e®'x(0), x(0) =[1 1]

et 4 2te?
T le Tt —2tet

giving y(t) = x1(t) = e~ + 2te™?
The differential equation may be solved directly using the techniques of Chapter 10
of the companion text Modern FEngineering Mathematics or using Laplace

transforms. Both approaches confirm the solution

y=(1+2t)e

58 Taking A = {1 O} then from Exercise 56

1 1
¢
At e 0
€ _{tet et]
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and the required solution is

51

0
—6 -5
Thus, e = agl + a1 A where ag, a1 satisfy

s 59 Taking A = { } its eigenvalues are A\; = —3, Ao = —2.

e 3t =g — 3aq, e 2t = ag — 20
ap = 3e 2 — 26_3t, a;=e 2 — 73t
SO
At 36—2t _ 26_3t e—2t _ 6—315
- 66—315 _ te—2t 36_3t _ 26—215

Thus, the first term in (6.73) becomes

26—2t _ 6—315
6Atx(0) = eAt[l - 1]T = [36—315 . 46—215}

and the second term is

t t —2(t—1) _ 6 —3(t—7)
At—7) _ Ge e
/0 (& bU(T)dT— /0 2 |i186_3(t_7.) . 126_2(t_T):| dr

|:36—2(t—7') _ 26—3(t—‘r) :| ¢

=2 66—3(15—7’) _ 66—2(15—7’)

0

1 —3e 2t 4 2¢ 3¢
2 Ge 2t — e3¢

Thus, required solution is

X(t) B 26_2t o e—St + 92 _ 66—315 + 46_3t
T 3e73t — et 4 1272 — 1273

2 —4e 2t 4 373
- e ™2t — 93t

that is, xr1 =2 — 4ot 4 36_3t, Zo = 872 — 93t
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m 60 In state space form,

% = [_g _;} X + m u(t), u(t) = e~t, 2(0) = [0 1]”

Taking A = {_g _é] its eigenvalues are \; = —2, Ao = —1 so
et = ool + a1 A where ag, oy satisfy
e =ay—20m, e t=ap—ag = ay=2et—e oy =et—e?
Thus,
ar | 2et—e2 ot _ o2t
© T | et 422 et g 2e2
o=t _ o2t
and eAtx(0) = {—e‘t 4 902t
(t—71) -9 —2(t—71)
(t—7) 4e™ e _
/0 A T bu /0 |: 46 (t 7_) + 46_2(t 7_):| e Td’T
et — 2e2teT
= /0 |: 46_t + 46—2t 7':| dT
4re” e~2te '
- 47’6_t + 46_2t T } 0

Ate~t — et 4272
4te_t +de t —4e2

We therefore have the solution

¢
x(t) = eAtx(O) —|—/ eA(t_T)bu(T)dT
0

[ atemt e —et
T | —dte t+ 3¢t —2e72

that is,
xy = 4dte t e — e_t, xo = —4dte P 4+ 37t — 2%

m 61 Taking A = B ﬂ its eigenvalues are \; = 5, Ao = —1.

e = oI + a1 A where ag, aq satisfy

_ 1
el =ag+ba, e t=ag—a; = a0:665t—|——e , =
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Thus, transition matrix is

]
ot
&~
wlN Wi
d ®
Lol
| I

e5t + e—t

t t
A(t-T)B (1)d :/ A(t—7) [0 1} {4} d
e u(T)dT e T
/0 0 1 1 3
t
:/ AT m dr
0 7
t 20 5(t—7‘) 11 —(t T)
:/ [130 5(t—7) 131 e—(t— 7)} dr
0 + =
_4 5(t T) 11 —(t T)
3 3
[_%GS(t—T)+Q —(t— T):|

5t —t
and eAfx(0) = eAl[1 2] = {26 © }

5_|_11 —t+45t
= {3_11—t+3ét:|

Thus, solution is
t
x(t) = e'x(0) +/ AT Bu(t)dr
0

8—t 10 5t
:[ ?)5+§’—t +5?56; ]
—§€ +§€

Exercises 1.10.7

3
1

5
L =3

(NJ[H}

m 62 FEigenvalues of matrix A = [ } are given by

| A= M |= X +40+3=A+3)A+1)=0

that iS, )\1 = —1, )\2 =-3
having corresponding eigenvectors e; = [3 2|1, e; = [1 —2]T.
Denoting the reciprocal basis vectors by

ry = [7“11 7“12]T, ro = [?“21 7“22]T

(c) Pearson Education Limited 2011



54 Glyn James, Advanced Modern Engineering Mathematics, 4" Edition

and using the relationships r’e; = 6;;(¢,j = 1,2) we have

3ri1 +2ri2 =1 ro= [ 47

1 —2ri2 =0 tTlaE

3ro1 +2ree =0 ry— [ — 3T

To1 — 219 =1 ERRTI

Thus,
1 1 1 3
T T
= _ — =1 =— - —=-1

so the spectral form of solution is

x(t) = e e; — e ey

The trajectory is readily drawn showing that it approaches the origin along the

—3t t

eigenvector e; since e °' — 0 faster than e™". See Figure 1.9 in the text.

—2
2
corresponding eigenvectors e; = [1 — 2|7, ey = [2 1]7.

63 Taking A = [ _21 eigenvalues are \y = —6, Ay = —1 having

Denoting the reciprocal basis vectors by

r; = [7"11 7“12]T, re = [7“21 7‘22]T

and using the relationships r e; = d;;(i,j = 1,2) we have

11— 2ri2 =1 1 2 1 T
= I =+,r9=—2 = r; ==[1 —2
2113 —1-7“12:0} 1= 5,712 5 1= 3l )
T91 — 2rog =0 2 1 1 T
= r = .7 =—z = rp=:21
2191 +T22:1} 21— 522 5 2 =5[21]

Thus,

Gl 3 Ot >

fx0) = 521 [3] =
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then response is

x(t) = Z rl'x(0)ette;

S | 7 (2] 1 [—4e76 4 14et
-5 { ]—}——e [ } "5 { 8e =0t + Te~t

Again, following Figure 1.9 in the text, the trajectory is readily drawn and showing

6

that it approaches the origin along the eigenvector es since e~ — 0 faster than

e t.

—4
corresponding eigenvectors e; = [2 1 —j]T,ea =1[2 1+ 4]T.

m 64 Taking A = [g } eigenvalues are \; = —2 4 52, Ay = —2 — 52 having

Let ry =1} + jr{ be reciprocal base vector to e; then

rie; =1=[+jr]]"[e] + je|]* where e; = €} + je!

rle; =0 =[r] + jr17[e] — je/]* since e; = conjugate e,

Thus,
[(r) el — () el +4l(r]) el + () Tef] = 1
and

() ey — () ei] +5[(r) ey — (1)) e] = 0
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giving

(r)fer =5, (r)'er =, (r))'el = (r))"ef =0

Now ) =[21]T,ef/ =[0 — 1]
Let v} = [a b]T and r! = [c d]T then from above

1 1
2a+b:§,—b:O and —d:—§,20+d:0

1 1 1
giving a = Z,bzo,c:—z,d: 5 so that
/ .1 1 . AT
ry =r; +Jry = 1[1_3 2]

Since ry is the complex conjugate of ry

1 : .
ro = Z[1+‘7 — 247

so the solution is given by

1 1
and since r{x(0) = 5(1 +7), rIx(0) = 5(1 —7)

N | =

x(t):e_2t{ (1 + j)e¥t [13]} 51— e L_QHH

= 6—2t{(cos 2t — sin 2t) [ﬂ — (cos 2t + sin 2t) [ _01 } }
= e_Qt{(cos 2t — sin 2t)e] — (cos 2t + sin 2t)e’1’} where e; = €] + jef

To plot the trajectory, first plot €/, e/ in the plane and then using these as a frame

of reference plot the trajectory. A sketch is as follows
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x, 3
! &

L,

-

Q
~
H‘

-3 ~!

v e

m 65 Following section 1.10.6 if the equations are representative of
Xx=Ax+bu, y=clx

then making the substitution x = M &, where M is the modal matrix of A,

reduces the system to the canonical form
E=A L+ (M 'b)u, y=(c"M)E

where A is the spectral matrix of A.

Eigenvalues of A are given by

1—A 1 -2
-1 2= 1 = A 222 A4 2=A-1)A+2)A+1)=0
0 1 —1-A
so the eigenvalues are \;y = 2, Ao = 1,A\3 = —1. The corresponding eigenvectors

are readily determined as
er=[131" ea=[321]", e3=[101]"

0
0
-1

Thus, M - and A_ =

—_ o =
_— N W
—_ O =
S O N
o = O
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1 1 2 -2 =2
e adf M=—— | -3 0 3 | so required canonical form is
det M 6
1 2 =7
& 2 0 0 & 3
&1 =101 0 &+ 0 |u
§3 00 -1 €3 -3
y=[1 —4 -2 [& & &|"
_ T _ T _ T
m 66 Let ry = [r11 712 r13]" ,r2 = [ro1 o2 7T23]’,r3 = [r31 r32 r33]" be the

reciprocal base vectors to e; = [1 1 0|7, e; =[0 1 1]7, e3 =[1 2 3] .

rle;=r1+rp=1

T

riex=ry1+r3=0 = r| =
I'{eg =ry1+2ri2+3ri3=0

11 -7

N =

rie; =r9 + 190 =0 1
rles =1o9 + 193 =1 = r2:§[—33 i
ries =1 + 2790 + 3re3 =0

rg;el =T31 + r3g = 0

1
rle; =73+ 133 =0 = r3=§[1 -1 17
r3Te3 =T31 +2?"32 +3’I“33 =1
Then using the fact that x(0) = [1 1 1]
Qo = I‘{X(O) = _% , 1 = I'gX(O) = % , (3 = I‘E";X(O) == %

m 67 The eigenvectors of A are given by

5—A 4
1 2—-A

' —(A=6)A-1)=0

so the eigenvalues are A\; = 6, Ao = 1. The corresponding eigenvectors are readily
determined as e; = [4 1], ex =[1 —1]7T.

Taking M to be the modal matrix M = [4 1

1 -1
into X = Axz(t) reduces it to the canonical form

} then substituting x = M§

£=A¢
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6 0
0 1

2]

which may be individually solved to give

where A = [ } . Thus, the decoupled canonical form is

{g (1)] [gj or £ = 6¢ and & = &

& = aeb and & = et

Now 5(0):M‘1X(0)=—% [j _ﬂ [ﬂ - {—H
s0 £1(0) =1=a and &(0)=-3=0

giving the solution of the uncoupled system as
6t
e
[

The solution for x(t) as

4 1 ebt 4e5t — 3et
x=M¢= {1 —1} {—3&] - {th—FSet}

68 Taking A = B 1] its eigenvalues are \; = 5,A2 = —1 having
corresponding eigenvectors e; = [2 1]7, e; = [1 —1]T.
Let M = ﬁ _ﬂ be the modal matrix of A, then x = M £ reduces the

equation to

én= |5 e [0 1] wo

1 1
{ _2} we have,

éo= o N erg | 3w

With u(t) = [4 3]7 the decoupled equations are

. 10
51 :551—{—?
. 11
52 :_52— ?
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which can be solved independently to give

2 11
_ 5t _ 4 _ gt A
51—0&6 3752 66 3
o L 1o171] [
We have that £(0) = M X(O)—g {1 _2] [2} [_1] SO
1 2 N 5)
= o — — o= —
3 3
11 8
1=p3- = = =
3 & 3
giving
- )
3¢ -3
2 1 Sebt — 2 —5+4 Set 4 10e5t
= e 3 — 3 3
and x = M§ L _1] {%e_t—gl} [ — Bt 4 Dbt

which confirms Exercises 57 and 58.

Exercises 1.11.1 (Lyapunov)
69 Take tentative Lyapunov function V(x) = x? Px giving
V(x) = xT(ATP + PA)x = —xT Qx where

ATP +PA =-Q (i)

Take Q =T so that V(x) = —(2? + 22) which is negative definite. Substituting in

(i) gives
—4 3 | |pu P12 4| P P2 -4 2] _ (-1 0
2 2] |p2 P22 D12 P22 3 2 0o -1
Equating elements gives

—8p11 + 6p12 = —1,4p12 — 4p2o = —1,2p11 — 6p12 + 3p22 =0

5 2
Solving gives p1; = g,pm = g,pm = % so that, P = {% 131} Principal minors
3 12

of P are: 2 >0 anddet P = (22—1) >0 so P is positive definite and the system
is asymptotically stable
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Note that, in this case, we have V(x) = 2% + fz129 + 1122 which is positive
definite and V(x) = %xldzl + %.jfl.fg + %xljsz + %.ﬁlfgdfg = —x? — 22 which is negative
definite.

m 70 Take tentative Lyapunov function V(x) = xTPx giving

V(x) = xT(ATP + PA)x = —xT Qx where

. (i)
ATP +PA=-Q

Take Q =1I so that V(x) = —(2? + %) which is negative definite. Substituting in
(i) gives

{—3 —1] [pu p12} n [pu p12} [—3 2 } _ {—1 0 }
2 —1||p12 Dp22 P12 P22 -1 -1 0 -1
Equating elements gives

—6p11 — 2p12 = —1,4p12 — 2p2o = —1,2p11 — 4p12 — P22 =0

e _1
Solving gives p1; = %,pu = —%,pw = i—g so that P = [_4& éo}
20 40

Principal minors of P are: % > 0 and det P = % > 0 so P is positive definite

and the system is asymptotically stable.

» 71  Take tentative Lyapunov function V(x) = xT Px giving
V(x) = xT(ATP + PA)x = —xT Qx where

ATP +PA =-Q (i)

Take Q =T so that V(x) = —(2? + 22) which is negative definite. Substituting in

0 —al||p11 pi2 4| P12 o 1]_1|-1 0
1 —b| |p12 P2 P12 D22 | |—a —b 0 -1

Equating elements gives

(i) gives

—8p12 = —1,2p12 — 2bpas = —1,p11 — bp1a —apaz =0
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1 41 b2+a2+ bta’ta 1

: : _ __a _ a“+a _

Solving gives pi1o = 3a:P22 = 5551 P11 = —5,5 SO that, P = 2gb 20
2a 2ab

For asymptotic stability the principal minors of P must be positive. Thus,

b+ a2 +a :

I T ii
> (i)
and (b +a® + a)(a + 1) > b (iii)

Case 1 ab>0

2
(i) = 0+ +a > 050 (i) = at+ 1>

= afa® + (a+1)*)] >0=a> 0.

Since ab > 0 = b > 0 it follows that (ii) and (iii) are satisfied if a,b > 0
Case 2 ab < 0 No solution to (ii) and (iii) in this case.

Thus, system is asymptotically stable when both a > 0 and b > 0.

Note: This example illustrates the difficulty in interpretating results when using
the Lyapunov approach. It is a simple task to confirm this result using the Routh—

Hurwitz criterion developed in Section 5.6.2.

72(a)
:i‘l = X2 (1)
To = —2T9 + x3 (ii)
:i;‘g = —]{?.Tl — I3 (111)

If V(x) is identically zero then 3 is identically zero = ;1 is identically zero from
(i)

= xois identically zero from (i)

Hence V(x) is identically zero only at the origin.

(b) ATP +PA=-Q=

0 0 —k| |pu pi2 P13 P11 D12 D13 0O 1 O 0 0
I =2 0 P12 P22 D23 |+ | P12 P22 po3 0 -2 1 |=1(00
0 1 -1 P13 P23 D33 P13 P23 D33 -k 0 -1 0 0
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Equating elements and solving for the elements of P gives the matrix

E2+12k 6k 0
12—2k 12—2k
P- 6k 3k k
12—2k 12—2k 12—2k
0 k 6

12—-2k 122k

(¢) Principal minors of Pare:

k% + 12k
k? + 12k 3k 36k2 3k3
Ay = - = if
2 [12—%“12—21{:} 29k (12—2kp 0 Hk>0
(k? + 12k)(8k — Kk?) 216k> _ -
Az = — f (6k% — k k
3 (12 = 2k (12—2k)3>01 (6 )>0=0<k<6

Thus system asymptotically stable for 0 < k£ < 6.

m 73 State-space form is

R R v

Take V(x) = ka3 + (z2 + ax1)? then
V(x) = 2kx 101 + 2(x2 + ax1) (&2 + aiq)
= 2kx1(x2) + 2(x2 + ax1)(—kx1 — axe + axp)using (i)

= —2kax?
Since k>0 and >0 then V(x) is negative semidefinite but is not identically zero

along any trajectory of (i). Consequently, this choice of Lyapunov function assures

asymptotic stability.

Review Exercises 1.13

= 1(a) Eigenvalues given by
-1-A 6 12
0 -13-Xx 30 =14+ M)[(-13=X)(20—-X)+270] =0
0 -9 20— A
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that is, (14+A\)(A—5)(A—2)=0
so eigenvalues are \;y =5, Ay =2, A3 = —1

Eigenvectors are given by corresponding solutions of

—1— X\ 6 12 €1
0 —13 — )\, 30 €i2 =0
0 -9 20 — \; €3

When 7 =1, \; = 5 and solution given by

en _ e _as _ g
198 —90 54 !

so e = [11 5 3]T
When i = 2, \; = 2 and solution given by

e _ —em_em _ g
216  —54 27 2

so ex =[821)7
When i = 3, \; = —1 and solution given by

€31 _ T€32 _ €33 _
L= 0 ~ o
so e3 = [100]T
1(b) Eigenvalues given by
O S I PR W I R [ RS Y
2 —A —1 2 a

~1 2 0-A
that is, 0= (2 — A)[(4 = A\)(=\) + 2] + [-2+ (4 — )]
=2-NAN-4A+3)=2-N)NA-3)A-1)=0

so eigenvalues are
Al =3 =2 )A=1

Eigenvectors are given by the corresponding solutions of
(2—=XNi)ei1 +0es2 + €3 =0
—ei1 + (4= Ai)eiz —ei3 =0
—ei1 + 2e;2 — Aje;3 =0
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Taking 7 = 1,2,3 gives the eigenvectors as

er=[121"e=[210",e3=[10 —1]"

1(c) Eigenvalues given by

1—-x -1 0 N )
-1 2-X -1 | R +(Ry+Rs)|-1 2—-X —-1]| =0
0 -1 1-2A — 0 -1 1-2X
-1 -1 -1 -1 0 0
thatis, A\ [-1 2—X —1 | =X|-1 3=X 0 | =XB-N)1-X)=0
0 -1 1-2A 0 -1 1-2A

so eigenvalues are \y =3, Ao =1,A3 =0

Eigenvalues are given by the corresponding solutions of

(1 —Xi)eir —en — 0ej3 =0
—ei1 + (2= Ai)eiz —e;3 =0
Oeir —eia+ (1 —Xj)eis =0

Taking 7 = 1,2,3 gives the eigenvectors as

ee=[1 -21"e=[10 —1]", e3=[111]"

= 2 Principal stress values (eigenvalues) given by

3-\ 2 1 6-X 6-—X 6— A
2 3-X 1 |Ri+(Ry+Rs)| 2 3-x 1
1 14— - 1 1 4-2A

11 1
==X |2 3=Xx 1 | =0
11 44—
1 0 0
thatis, (6—XA) |2 1—X —1 | =(6-N1-AB=-A) =0
1 0 3-2A

so the principal stress values are A\ =6, o = 3,3 = 1.
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Corresponding principal stress direction ej,es; and ez are given by the solutions

of
(3 — )\i)e“ + 2e;0+ei3=0

2ei1 + (3 —Xi)eiza+ €3 =0
ei1 +eio+ (4 —X)eiz =0

Taking ¢ = 1,2, 3 gives the principal stress direction as
er=[111" e=[11 -2 es=[1 —10"

It is readily shown that ele; = ele; = el'es = 0 so that the principal stress

directions are mutually orthogonal.

3  Since [1 0 1]7 is an eigenvector of A

2 —1 0 1 1
—1 3 b Of =X |0
0 b ¢ 1 1

so2=\A—-14+b=0,c= A\

giving b =1 and ¢ = 2.

Taking these values A has eigenvalues given by
2—-X -1 0

13- 1 :(2—)\)’
0 12—

31/\ 2i)\‘ —(2=X
—2-NA-1)(A—4)=0

that is, eigenvalues are A\{ =4, s =2, A3 =1

Corresponding eigenvalues are given by the solutions of

(2 —Xi)eir — ez +0ej3 =0
—e;1 + (3 — )\i)eig +e;3 = 0
Oei1 + €2+ (2—X)eis =0

Taking 7 = 1,2,3 gives the eigenvectors as

er=[1 -2 1" ea=[101",e3=[11 -1
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m 4 The three Gerschgorin circles are

Thus, |A—4|<1land [A—4|<2s0|A—4|<2o0r 2<)X<6.

[ A—4|=[-1[+]0]=1
[A—4|=[-1[+][-1]=2

A—4|=1

Taking x(® = [-1 1 — 1]7 iterations using the power method may be tabulated

as follows

Iteration k 0 1 3 4 5 6
-1 —0.833 —0.765 —0.73¢  —0.720 —0.713  —0.710
x (k) 1 1 1 1 1
-1 —0.833 —0.765 —0.734  —0.720 —0.713  —0.710
—5  —4.332  —4.060 —3.936 —3.88 —3.852
A x*) 6 5.666 5.530 5.468 5.44 5.426
-5  —4.332  —4.060 —3.936 3.88 —3.852
A\ ~ 6 5.666 5.530 5.468 5.44 5.426
Thus, correct to one decimal place the dominant eigenvalue is A = 5.4
» 5(a) Taking 2(® =[1 1 1]7 iterations may be tabulated as follows
Iteration & 0 1 2 3 4 5 6 7
1 0.800 0.745 0.728 0.722 0.720 0.719  0.719
x (k) 1 0.900 0.862 0.847 0.841 0.838 0.837  0.837
1 1 1 1 1 1 1 1
4 3500 3.352 3303 3.285 3.278  3.275
A x*) 4.5  4.050 3.900 3.846 3.825 3.815  3.812
5 4.700  4.607  4.575  4.563  4.558  4.556
\ ~ 5 4700  4.607 4.575 4.563  4.558  4.556

Thus, estimate of dominant eigenvalues is A ~ 4.56 with associated eigenvector

x =[0.72 0.84 17

5(b) Y2 A\ =trace A = T.5=456+1.19+ X3 = Ay = 1.75
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3
5(c) (i) detA =[] X\ =9.50 so A~! exists and has eigenvalues
i=1

1 1 1
1.19° 1.757 4.56

so power method will generate the eigenvalue 1.19 corresponding to A.

(i) A — 3I has eigenvalues

1.19—3, 1.75 — 3, 4.56 — 3
that is, —1.91, —1.25, 1.56

so applying the power method on A — 31 generates the eigenvalues corresponding
to 1.75 of A.

6 1 =aleM, §=pPB\eM, 2 =~\eM so the differential equations become

O{>\€>\t — 4046>\t +56)\t —|—"}/6)\t
ﬁ)\eM = 20e™M + 5ﬁe>‘t + 4’}/6)\t

AN = —aeMt — gt

Provided e* # 0 (i.e. non-trivial solution) we have the eigenvalue problem

4 1 1 « «
2 5 4 Bl =X |0
-1 -1 0 vy ¥
Eigenvalues given by
4— ) 1 1 4— )\ 0 1 4—-X 0 1
2 5—A 4|/Ce=C3| 2 I-X 4 |=\=-1)| 2 -1 4
-1 -1 0 -1 Xx—=1 =X -1 1 =X

— —(A = D)(A=5)(A—3)

so its eigenvalues are 5, 3 and 1.

When A =1 the corresponding eigenvector is given by

3e11 +e2+e3 =0
2e11 +4e12 +4e13 =0

—e11 —ej2 —e3 =10
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. . €11 —e12 €13
having solution — = = =2 =
g 0 5 5 B

Thus, corresponding eigenvector is 30 — 1 1]7

m 7 Eigenvalues are given by

|IA—XM|=| 4 -3-X -2 |=0

Row 1 — (Row 2 + Row 3) gives

1—XA —14+X —1+2A 1 -1 -1
A—AM|=| 4 -3-Xx -2 [ =(1-)N[4 -3-X =2
3 —4 1-2A 3 -4 1-2A
1 0 0
—(1=N) 4 1=X 2 | =1=-NA=-NE-)N+2

3 -1 4-A
=1-=-XNA=-2)(A=3)
Thus, eigenvalues are \; = 3, Ao =2, A3 = 1.
Corresponding eigenvectors are given by
(8 — )\)61'1 — 862'2 — 262'3 =0
461‘1 — (3 + )\)61‘2 — 262'3 =0
36i1 — 462'2 + (1 - )\)eig =0
When i =1, \; = A\; = 3 and solution given by

€11 —€12 €13
—2 2

so a corresponding eigenvector is e; = [2 1 1]7.

When 7 = 2, \; = Ay = 2 and solution given by

€21 _—622262:
3= 2 o

so a corresponding eigenvector is e; = [3 2 1]7 .

When i = 3,\; = A3 = 1 and solution given by

€31 _ €32 _ €33 _
8" 6 4 /B
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so a corresponding eigenvector is ez = [4 3 2]T.

Corresponding modal and spectral matrices are

2 3 4 3 0 0
M= |1 2 3| andA= [0 2 O
1 1 2 1 0 1
1 -2 1
M~ = 1 0 —2| and matrix multiplication confirms M~* A M = A
-1 1 1
m 8 Eigenvectors of A are given by
1—A 0 —4

0 5-A 4 | =0
—4 4 3-A

that is, A2 —9A2 —9AN+81=A—-9)(A—=3)(A+3)=0
so the eigenvalues are A\y =9, Ao =3 and A3 = —3.

The eigenvectors are given by the corresponding solutions of
(1 — )\i)eﬂ + 061'2 — 461'3 =0
Oe;1 + (5 — )\i)eig +4e;3 =0
—dejr +4eip + (3 —Ai)ez =0

Taking ¢ = 1,2, 3 the normalized eigenvectors are given by

- P -G e-FF
The normalised modal matrix
) 1 1 2 2
M:§ -2 2 -1
-2 -1 2
SO
) ) 1 1 -2 =2 1 0 -4 1 2 2
MTAM_§ 2 2 -1 0 5 4 -2 2 -1
2 -1 2 -4 4 3 -2 -1 2
9 0 O
=10 3 O =A
0 0 -3

(c) Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4" Edition 71

—6 0 0 O
. 6 —4 0 O

x 9 N = 0 4 —9 0 N, N:[Nl N2 N3 N4]T
0 0 2 0

Since the matrix A is a triangular matrix its eigenvalues are the diagonal elements.

Thus, the eigenvalues are
Al =06, Ao =—4A3=-2 =0

The eigenvectors are the corresponding solutions of

(=6 — A;)eq1 + Oejo + 0e;3 + 0ezy =0
6ei1 + (—4 — \;)esn + 0eiz + 0ezg = 0
Oei1 + deo + (=2 — A;)eiz +0ejy =0

Oe;1 + Oezo + 2€43 — Aiejq = 0

Taking 7 = 1,2,3,4 and solving gives the eigenvectors as

e1=[1 -33 1", ea=[01 —21]"
e3=[001 —1", e, =[000 1)

Thus, spectral form of solution to the equation is
N = ae %e; + Be ey + ye e + dey

Using the given initial conditions at t = 0 we have

c 1 0 0 0
0 3 1 0 0
ol =@ | 3| TP o T 1| *9 o
0 1 1 1 1

soC=a, 0=-3a+p8 0=3a—-28+~ 0=—-a+ -7+
which may be solved for «, 3, and § to give

a=C, B=3C, v=3C, §=C

Hence,
Ny=—ae 5 4+ e —ne 2 4§

= —Ce % +3Ce™ —3Ce % +C
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] 10(a)
(i)  Characteristic equation of A is A\ — 3\ + 2 = 0 so by the Cayley-Hamilton

theorem

9 oy |4 0
A® =3A 21—[3 1}

A® =3(3A —2I) - 2A =T7A — 61 = {? (1)}

A* = 7(3A — 2I) — 6A = 15A — 14I = Eg (1)]

31 1

64 0
63 1

A® = 15(3A — 2I|) — 14A = 31A — 30I = {32 0}

A® =31(3A —2I) — 30A = 63A — 62I = [

. o o T128 0
A7 — 63(3A — 2T) — 62A — 127A — 1261 — {127 1]
Thus, A7 — 3A6 + A%+ 3A% — 2A2 4 3 = [:;g g]

(ii) Eigenvalues of A are A\; =2, A2 = 1. Thus,

AF = oI + a1 A where ag and o satisfy
2F = ap + 20,1 = ap + oy
ap=2"-1, qp=2-2"

k _ oo + 20 0 . 2k 0
Thus, A* = o 0404—041} - [Qk—l 1

10(b) Eigenvalues of A are \; = —2, 2 = 0. Thus,

e = gl + a1 A where o and o satisfy

1
e =ap—201, 1=ap :>040:1,041:§(1—6

1 —ot
At (6 7)) (65} o 1 5(1 — € )
Thus, €™ = [ 0 ag— 2a11 B [0 e 2t

—Qt)
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1 2 3
m 11 Thematrix A= [0 1 4| has the single eigenvalue A = 1 (multiplicity 3)
0 0 1
0 2 3] 010
(A—I)= |0 0 4 ~ |0 0 1] isof rank 2 so has nullity 3—2 =1
0 00 0 00

indicating that there is only one eigenvector corresponding to A = 1.

This is readily determined as
e =[1007

The corresponding Jordan canonical form comprises a single block so

J =

S O =

1
1
0

e )

Taking T = A — I the triad of vectors (including generalized eigenvectors) has

0 0 8
the form {T?w, T w,w} with T?w =e;. Since T>= |0 0 0|, we may take
0 0 O

w=1[00 3]". Then, T w=[2 § 0]7. Thus, the triad of vectors is

The corresponding modal matrix is

1 20
M= |0 L1 o
2
0 0 %
- s -
: 6 g4 U
M—=16 | O % 0 | and by matrix multiplication
[0 0 3]
(L -5 0] [t 23]t § 0
M'TAM=16 |0 § 0] [0 1 4 0o L o0
1
0 0 5] [0 0 1 0 0 3
1 10
=101 1| =7J
00 1
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12  Substituting z = X coswt, y = Ycoswt, z = Zcoswt gives

—w?X =-2X+Y
—WY=X-2Y+Z
—w?Z=Y-2Z
or taking \ = w?
A=2)X+Y=0
X+(A=2Y+Z=0
Y+(A=2)Z=0

For non-trivial solution

that is, (A —2)[(A—=2)2 =1 - (A—=2)=0
A=2)(A\2 =41 +2)=0
soA=2o0or A=2++2
When A\=2, Y=0and X=—-Zs0 X:Y:Z=1:0:-1
When A=24++v2, X=Zand Y=—-v2Xs0o X:Y:Z=1:-V2:1
When A=2—-v2, X=Zand Y=v2Xs0o X:Y:Z=1:v2:1

13 In each section A denotes the matrix of the quadratic form.

2 -1 0 -
13(a) A= | -1 1 —1] has principal minors of 2, ‘ ‘ =1 and
-1 1
0o -1 2
detA =0
so by Sylvester’s condition (c) the quadratic form is positive-semidefinite.
3 -2 -2 5y
13(b) A= |—-2 7 0| has principal minors of 3, =17 and
-2 0 2 2T

det A =6

so by Sylvester’s condition (a) the quadratic form is positive-definite.

(c) Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4** Edition 75

16 16 16 16 16
13(c) A = |16 36 8 | has principal minors of 16, = 320 and
16 8 17 1636

det A = —704

so none of Sylvester’s conditions are satisfied and the quadratic form is indefinite.

-21 15 -6

13(d) A= | 15 —11 4| has principal minors of —21, 215 ’ =6
15 —11
—6 4 =2
and det A =0
so by Sylvester’s condition (d) the quadratic form is negative-semidefinite.
-1 1 1 11
13(e) A= 1 =3 1| has principal minors of —1, ‘ ‘ =2 and
1 1 -5 b=

det A = —4 so by Sylvester’s condition (b) the quadratic form is negative-definite.

r 1 _1 1 1
2 2 2

mld Ae =4 -1 0 2| = |2
3 3 1

—3 2 3 3 3

Hence, e; = [1 2 3]7 is an eigenvector with A\; = 1 the corresponding eigenvalue.

Eigenvalues are given by

—T_ _1 _1
2 2 2
0= 4 —1-X 0 | =-N+3\+A1-3
_3 3 1y
2 2 2
=A—=1)(A\*+2)\+3)
=—A=-1)(A=3)(A+1)
so the other two eigenvalues are Ay = 3, \3 = —1.

Corresponding eigenvectors are the solutions of

(—% — Xi)ei — 3€i2 — 5ei3 =0
dein — (14 Nj)ejo +0e3 =0

—Sein+ e+ (3 — Ai)eis =0
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Taking ¢ = 2,3 gives the eigenvectors as
e =1[110", es=[0 —11]"
The differential equations can be written in the vector-matrix form

k= Ax, x=[oy”

so, in special form, the general solution is

x = aeMle; + fe?ey + ey, ies
1 1 0
=aet |2] +08e3 | 1] +~et | -1
3 0 1

With 2(0) = 2, y(0) =

4, z(0) = 6 we have

SO

that is, = = 2¢!, y = 4e!, 2 = 6el.

= 15(a)

1.2 1.6
r [12 09 -4 1825 —9
anT= 15 05 3|00 12| = ]

Eigenvalues \; given by

(18.25 — A)(13 — A) — 81 =0 = (A — 25)(\ — 6.25) = 0
= A\ = 25, Ay = 6.25

having corresponding eigenvectors
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leading to the orthogonal matrix

. _4 3
o-[¢ 1]
5 5

1.2 1.6 4 3 0

ATA =109 1.2 Hz (1)'3 _34}: 3 225 0

-4 3 ' : 0 0 25

Eigenvalues p; given by

(25 —p) [(4 = p)(2.25 — p) = 9] = 0= (25 — p)p(p — 6.25) = 0
= p1 = 29, ig = 6.25,u3 =0

with corresponding eigenvalues

V1=\A/'1=[O 0 1]T
vo=1[4 3 0" =% =[% 2 o]
va=[-3 4 0]"=¥;3=[-2 % o)

O otk
O Ut

The singular values of A are o1 = V25 = 5 and 02 = V6.25 = 2.5 so that

5 0 0 ..
Y= [O 95 O} giving the SVD form of A as

AT_{—OB 0.61 {5 0 o} 0 01

A—UnV 0.8 06 0
0.6 0810 25 0]} s 08 0
. S 12 09 —4
(Direct multiplication confirms A = [1.6 192 3 })
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og—g%o_éé 24 32
(b) Al=v=2U"=|0 § 1 0 2 {55 g}:% 18 24
1 0 0 0 0 5 5 —20 15
[0.192 0.256
=10.144 0.192
| —0.16 0.12
AAT =1
CHECK
24 32
o, [12 09 —4 o f125 0] o
LHS_@L.G 12 1 _134 f;" =15 | g o195 T1TRAS

(c) Since A is of full rank 2 and there are more columns than rows

12 1.6 - 12 1.6
1825 —9 139
T _ AT Ty—1 _ R
At = AT(AAT) 0.9 1.2 {_9 13] o5 | 09 12 [9 18.25]
—4 3 -4 3
30 40 0.192  0.256
1
— L1225 30 | =]0144 0.192
—25 18.25 —0.16  0.12

which checks with the answer in (b).

= 16 (a) Using partitioned matrix multiplication the SVD form of A may be
expressed in the
form o
S ) - o S 0 \ - R
A=UXV =[U, U,_,] {0 0] {VZ_J =U,SV,
(b) Since the diagonal elements in S are non-zero the pseudo inverse may be expressed

in the form

Al =VR07T =V,87107

1 -1

(¢) From the solution to Q46, exercises 1.8.4, the matrix A = | —2 2 | has a single
2 =2

singularity oy = /18 so r = 1 and S is ascalar v18; U, = U, = i1, = [% _% %]T

and

Ve=Vi=w1=[%5 -5
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The SVD form of A is

1
3
A= 597 = | -2 | VI8[ 5 —5]
2
3
1 -1
with direct multiplication confirming A = | —2 2
2 =2

Thus, the pseudo inverse is

1 1
A osaf - | f_] il - AR
V2 6
2
—2
which agrees with the answer obtained in Q46, Exercises 1.8.4
17 %x=Ax+bu, y=c’x
Let X\;,e;,i=1,2,...,n, be the eigenvalues and corresponding eigenvectors of A.
Let M = Jej,eq,...,e,] then since \;’s are distinct the e;’s are linearly

independent and M~! exists. Substituting x = M & gives
ME=AM £ +bu
Premultiplying by M~! gives
E=M'AME+M *bu=A £+bu

where A =M~ A M = (\d;;),4,7=1,2,...,n, and by = M~ 'b

Also, y = cTx = y=cTM¢ = cT¢, cI = ¢c"™M. Thus, we have the desired
canonical form.

If the vector b; contains a zero element then the corresponding mode is
uncontrollable and consequently (A; by c) is uncontrollable. If the matrix ¢’
has a zero element then the system is unobservable.

The eigenvalues of A are Ay = 2,Ao = 1,A\3 = —1 having corresponding

eigenvectors e; = [1 3 1]T, e; =[32 1]T and e3 =[1 0 1]
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The modal matrix

1 3 1 1 2 -2 =2
M=[ejeres]= [3 2 0 withM—lz—6 -3 0 3
1 1 1 1 2 -7
so canonical form is
& 2 0 0] [&4 .
gg = 0 1 0 & + 0 U
&3 00 -1 &3 ~3

y=1[1 -4 —2)[& & &]T

We observe that the system is uncontrollable but observable. Since the system

matrix A has positive eigenvalues the system is unstable. Using Kelman matrices

0 1 1 2 0
i) A?2= |-3 4 3|, Ab= |2]|, A?2b= |4
-1 1 2 2 | 0
-1 2 0 1 0 0
Thus, [b Ab A% b]= 1 2 4] ~ |0 1 0| andis of rank 2
-1 2 0 0 0 O
so the system is uncontrollable. i
-2 -3 -3 0 0 1
(i) [c AT c (AT)%c] = 1 0 2| ~ |1 0 0] andis of full rank 3
0 5 1 0 1 0

so the system is observable.

18 Model is of form x = Ax+ Bu and making the transformation x = Mzgives
Mz =AMz +Bu=2=M 'AMz+M 'Bu= %= Az+ M 'Bu

where M and A are respectively the modal and spectral matrices of A .

The eigenvalues of A are given by

—2-X\ =2 0
0 ) 1 [=0=>—-2-NAN+X+3)=0
0 -3 —4-)

S A+ 2O+ D(A+3) =0
:>)\1—1,)\2:—2,)\3:—3
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with corresponding eigenvectors
er=[—2 1 —2]",es=[1 0 0]"andes=[-2 -1 3]

Thus, the modal and spectral matrices are

-2 1 =2 -1 0 0
M=|1 0 —4|landA=| 0 -2 0
-1 0 -1 0o 0 =3
0 3 3 02 Z]1[1 0
and detM=-2=M1=|1 4 2|=M"1'B=|1 4 2 0 1
0 % 3 0 5 3|1 1
22
= |3 6| leading to the canonical form
1
5 1
2 -1 0 0] [~ 3 2 w
z= |z =10 =2 0 z|+13 6 u
Z3 0 0 -3] |z o1t
From (1.99a) the solution is given by
21 et 0 0 21(0) ¢ [e=(=7) 0 0
=10 e 0 2(0) | + 0 e 2(t=7) 0
23 0 0 e 3| |2(0) 0 0 0 e 3(t=7)
1
3 20,
3 6 dr
1 1
5 1
0 2 17710
— 17 71T
with z(0) =M~!x(0)= |1 4 2 5| =[% 34 5| . Thus,
0 5 3|2
2 2
et . (24 $n)e (-7 et
z = | 34e 2% —|—f0 (6+3T)6_2(t_T) dr =z = | 34e 2t
Te—st (14 27)e=3¢=7) Temst
143 3et L4+ 3 +7e!
201 2
+ %Zt+§ {e‘m =z = %t%—%—%e‘m
1 5 — 9 _
6t+1_8_§€ 3t gt+ﬁ+3e 3t
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-2 1 -2 st+ 35+ 7e
givingx=Mz=| 1 0 -1 %t + %5— %6_%
9 -3t
- 127 —2t _ 58 ,—3t | 1 47
—14€t+T6 t—?e t—}-gt—%
= x(t) = Te ™t — %G_St + %t + %

_mo—t 29 -3F 2
Te + Fe 3

19(a) Eigenvalues of the matrix given by

5—A 2 -1 3—A 2 -1
0=] 3 6-A -9 |Ci=Cy |-3+A 6-A -9
1 1 1—A 0 1 1—A

1 2 -1

=(B-XA) |0 8=X =10
0 1 1-2

=(B=NA\ =9\ +18) = (3—N(A—3)(\—6)

so the eigenvalues are Ay =6, Ao = A3 =3

2 2 -1 0 0 1
When A\=3,A—-3I=|3 3 —-9| ~ |1 0 0] isofrank 2
1 1 =2 0 0 0

so there is only 3 —2 =1 corresponding eigenvectors.
The eigenvector corresponding to A\; = 6 is readily determined as e; = [3 2 1]7.

Likewise the single eigenvector corresponding to Ay = 6 is determined as
e; =[1 —10

The generalized eigenvector e determined by

(A —2I)e; =ey
or 3ey; +2e59 —e53 =1
3e5, + 3e55 — 9e55 = —1
€51 + €39 — 233 =0

giving €5 = [ 3 3 3]”

For convenience, we can take the two eigenvectors corresponding to A = 3 as

e =103 —-30"% es=[111"
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6 0 O
The corresponding Jordan canonical form being J= [0 3 1
0 0 3
19(b) The generalised modal matrix is then
3 -3 1
M= |2 -3 1
1 0 1
[5 2 —1] [3 -3 1 18 9 6
AM= |3 6 -9 2 -3 1| =1(12 -9 O
11 1] [1 0 1 6 0 3
(3 3 1] [6 0 0 13 9 6
MJ= |2 -3 1 0 3 1| =112 -9 0
|1 0 1] [0 O 3 6 0 3
soAM=M1J
1 -3 -3 6 eft 0 0
19(c) M!= -5 |7 2 -1 elt= | 0 3 tedt
3 3 -—-15 0 0 e
SO
3 3 1 eft 0 0 -3 -3 6 0
x(t)=—= |2 -3 1 0 e tedt -1 2 -1 1
1 01 0 0 e 3 3 —15] |0
9e5t — 9(1 + t)e3t
= 6e% + (34 9t)e3
3 6t _ 363t
» 20 Substituting x = e*u, where u is a constant vector, in x = A x gives

Mu=Auor (A-NDu=0

(1)

so that there is a non-trivial solution provided

|A—-)N1|=0
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If A2,)\3,...,)2 are the solutions of (2) and uj,ug,...,u, the corresponding

solutions of (1) define
M =[u; up ... u,] and S = diag (\} A3 ... \2)

Applying the transformation x =M q, q=[q1 ¢2 ... qn] gives

Mgg=AMgq
giving §=M"1 A M q provided u;, us,...,u, are linearly independent
sothat §=Sq since M AM=S

This represents n differential equations of the form
G =MNq ,i=1,2,...,n
When A? < 0 this has the solution of the form
q; = C; sin(w;t + o)

where C; and «; are arbitrary constants and \; = jw;

The given differential equations may be written in the vector—-matrix form

.|| -3 2 T1
= [nl=17 3
which is of the above form

X=Ax

0=| A—XNT| gives (A2)2+5(A\)+4=0o0r M} =—-1,\3 = —4.

Solving the corresponding equation
(A= XT) u; =0
we have that u; = [1 1]7 and uy = [2 — 1]7. Thus, we take

1 2 -1 0
e F I

The normal modes of the system are given by

-1 ) (el
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giving
q1(t) = Cysin(t + ay) = vy sint + [y cost
q2(t) = Cysin(2t + i) = y2 8in 2t + P2 cos 2t

. » 1 [-1 —2] [1 3
Since x = M q we have that q(0) = M X(O)I—g 1 1 91 = °

also ¢(0) = M~1%(0) so that ¢;(0) =2 and ¢2(0) =0

Using these initial conditions we can determine 71, 31,72 and (32 to give

5)
q1(t) = gcost—FZSint

1
q2(t) = —= cos 2t
3
The general displacements x;(t) and x5(t) are then given by x = M q so

5 2
1 =q1 +2q2 = gcost+2sint— gcos2t

5 . 1
To=q1 — Qs = gcost+2smt— 5008275
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Numerical Solution of Ordinary
Differential Equations

Exercises 2.3.4

d
= 1 Euler’s method for the solution of the differential equation d_zs = f(t,x) is

Xnt1=Xn+hE, =X, + hf(t,, X,)

d
Applying this to the equation d—f = — 1zt with z(0) = 1 and a step size of h = 0.1
yields

zo=xz(0)=1
X1 =z + hf(to, z0) = xo + h (—Lxoty)
=1-01x1x1x0=1.0000
Xo=X1+hf(ti, X1) =X1 +h(—1X1t1)
= 1.0000 — 0.1 x 1 x 1.0000 x 0.1 = 0.9950
X3 = Xo + hf(ts, Xo) = Xo + h (—1 Xots)
= 0.9950 — 0.1 x £ x 0.9950 x 0.2 x 0.98505

Hence Euler’s method with step size h = 0.1 gives the estimate X(0.3) = 0.98505.

d
= 2 FEuler’s method for the solution of the differential equation d—f = f(t,z) is

Xn—|—1 =X, + th =X, + hf(tnaXn)
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Applying this to the equation (fl—stc = —1xt with z(1) = 0.1 and a step size of
h =0.025 yields
xo=2z(1) =0.1
X1 =z + hf(to, z0) = z0 + h (—120t0)
=0.1-0.025 x { x 0.1 x1=0.09875
Xo = X1+ hf(t,X1) = X1 + h(—1X1t)
= 0.09875 — 0.025 x 1 x 0.09875 x 1.025 = 0.09748
X3 = Xo + hf(ts, Xo) = Xo + h (—1 Xots)
= 0.09748 — 0.025 x % x 0.09748 x 1.050 = 0.09621
Xy = X3+ hf(ts, X3) = X3+ h(—1X3t3)
= 0.09621 — 0.025 x 1 x 0.09621 x 1.075 = 0.09491

Hence Euler’s method with step size h = 0.1 gives the estimate X(1.1) = 0.09491.

d
= 3  FEuler’s method for the solution of the differential equation d—f = f(t,x) is

Xny1=Xn+hE, = X, + hf(tn, Xn)

d

Applying this to the equation d—f = ﬁ with 2(0.5) = 1 and a step of h = 0.1
yields

zo =x(0.5) =1

Lo 1
X = hf(t = h———=14+01———— =1.0333
1 = zo + hf(to, z0) = xo + 20 + 1) + 2005+ 1)
X1 1.0333
Xo=X hf(t1,X1) =X h—— =1.0333 + 0.1 —— = 1.0656

(Note that t,, = tg+nh = 0.5+0.1n.) X3, X, and X5 may be computed in similar
fashion. It is usually easier to set out numerical solutions in a systematic tabular

form such as the following:

n 129 X, fltn, Xn) Xn + hf(tn, Xpn)
0 0.5 1.0000 0.3333 1.0333
1 0.6 1.0333 0.3229 1.0656
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2 0.7 1.0656 0.3134 1.0969
3 0.8 1.0969 0.3047 1.1274
4 0.9 1.1274 0.2967 1.1571
5) 1.0 1.1571

Hence Euler’s method with step size h = 0.1 gives the estimate X(1) = 1.1571.

d
4 Euler’s method for the solution of the differential equation d—f = f(t,x) is

Xn—|—1 =X, + th =X, + hf(tnaXn)

d
Applying this to the equation @ _ with 2(0) = 1 and a step size of h = 0.05

vields di e
xzo=2(0.0) =1
X1 = 0+ hf(to, xo) = o + ht40 :LZ)O =1+ 0.053—;(1) = 1.2000
Xy = X1 4 hf(ty, X1) = X1 + htf;; = 1.2000 + 0.050'01;% — 1.3580

(Note that t, = to +nh = 0.0 + 0.05n.) X3, X4,..., X590 may be computed in
similar fashion.
It is usually easier to set out numerical solutions in a systematic tabular form such

as the following:

t X, F(tn, Xn) X+ hf(tn, X)
0.00 1.0000 4.0000 1.2000
0.05 1.2000 3.1600 1.3580
0.10 1.3580 2.6749 1.4917
0.15 1.4917 2.3451 1.6090
0.20 16090 2.1006 1.7140
0.25 1.7140 1.9093 1.8095
0.30 1.8095 1.7540 1.8972
0.35 1.8972 1.6242 1.9784
0.40 1.9784 1.5136 2.0541
0.45 2.0541 1.4177 2.1250
0.50 2.1250

Hence Euler’s method with step size h = 0.05 gives the estimate X(0.5) = 2.1250.

5  Figure 2.1 shows a suitable pseudocode program for computing the estimates
Xa(2) and X3(2). Figure 2.2 shows a Pascal implementation of the pseudocode

program.
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procedure deriv (t,x — f)
f—x*t/(t*t + 2)
endprocedure

t_start « 1
x_start « 2
t.end «— 2
write (vdu, "Enter step size")
read (keyboard, h)
write (printer, t_start,x_start)
t «— t_start
X «— x_start
repeat
deriv (t,x — f)
t<—t+h
X < x + h*f
write (printer, t,x)
until t >=t_end

Figure 2.1: Pseudocode algorithm for Exercise 5

Using this program the results X,(2) = 2.811489 and X,(2) = 2.819944 were
obtained. Using the method described in Section 2.3.6, the error in X;(2) will
be approximately equal to X3(2) — X,(2) = —0.008455 and so the best estimate
of X(2) is 2.819944 + 0.008455 = 2.828399. The desired error bound is 0.1% of
this value, 0.0028 approximately. Since Euler’s method is a first-order method, the
error in the estimate of X(2) varies like h; so, to achieve an error of 0.0028, a step
size of no more than (0.0028/0.008455) x 0.05 = 0.0166 is required. We will choose
a sensible step size which is less than this, say h = 0.0125. This yields an estimate
X(2) = 2.826304.

The exact solution of the differential equation may be obtained by separation:

dx xt dx t dt
&2 = [ == = Inz=1In(t*+2)+C=x=2+D\Vt2+2
it~ 42 /:1: /t2+2 ne =3+ +C=w +

t2 4+ 2
3

z(1)=2=2=+V3D=z=2

Hence x(2) = 2/2 = 2.828427 and the true errors in X,(2), X;(2) and the final
estimate of X(2) are 0.016938, 0.008483 and 0.002123 respectively. The estimate,
X(2), derived using the step size h = 0.0125 is comfortably within the 0.1% error

requirement.
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var t_start, x_start, t_end, h,x,t,f:real;

procedure deriv (t,x:real;var f:real);
begin

f = x*t/(t*t +2)
end;

begin
tstart = 1;
x_start = 2;
t.end = 2;
write ('Enter step size ==> ');
readln (h);
writeln (t_start :5:2,xstart:10:6);
t = t_start;
X := x_start;
repeat
deriv(t,x,f);
t :=1t 4+ h;
X := x + h*f;
writeln (£:5:2, x:10:6);
until t >=t_end;
end.

Figure 2.2: Pascal program for Exercise 5

6  The programs shown in Figures 2.1 and 2.2 may readily be modified to solve
this problem. Estimates X,(2) = 1.573065 and X;(2) = 1.558541 should be
obtained. Using the method described in Section 2.3.6, the error in X;(2) will
be approximately equal to X;(2) — X,(2) = —0.014524 and so the best estimate
of X(2) is 1.558541 — 0.014524 = 1.544017. The desired error bound is 0.2% of
this value, 0.0031 approximately. Since Euler’s method is a first-order method, the
error in the estimate of X(2) varies like & so, to achieve an error of 0.0031, a step
size of no more than (0.0031/0.014524) x 0.05 = 0.0107 is required. We will choose
a sensible step size which is less than this, say h = 0.01. This yields an estimate
X(2) = 1.547462.

The exact solution of the differential equation may be obtained by separation:
dx 1 dt 9
P xrdxr = ?:>%x =Int+C=z=+2(Int+C)
(1) =1=1=2C= z(t)=v2Int+ 1
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Hence z(2) = v/2In2+1 = 1.544764 and the true errors in X,(2), X(2) and
the final estimate of X(2) are —0.028301, —0.013777 and —0.002698 respectively.
The estimate, X(2), derived using the step size h = 0.01 is comfortably within the

0.2% error requirement.

7  The programs shown in Figures 2.1 and 2.2 may readily be modified to solve
this problem. Estimates X,(1.5) = 2.241257 and X;(1.5) = 2.206232 should be
obtained. Using the method described in Section 2.3.6, the error in X;(1.5) will be
approximately equal to X;(1.5) — X,(1.5) = —0.035025 and so the best estimate
of X(1.5) is 2.206232 — 0.035025 = 2.171207. The desired error bound is 0.25%
of this value, 0.0054 approximately. Since Euler’s method is a first-order method,
the error in the estimate of X(1.5) varies like h; so, to achieve an error of 0.0054,
a step size of no more than (0.0054/0.035025) x 0.025 = 0.0039 is required. If we
choose h = 0.04, this yields an estimate X(1.5) = 2.183610.

The exact solution of the differential equation may be obtained by separation:

dr_ 1

#/lnxdm:/dtﬁxlnm—x:thC

ct  Inz
z(1)=12=12n12-12=1+C=
C=-1981214 = zlnz —xz =t — 1.981214

Hence, by any non-linear equation solving method (e.g. Newton—Raphson), we
may obtain z(1.5) = 2.179817 and the true errors in X,(1.5), X;(1.5) and the
final estimate of X(1.5) are 0.061440, 0.026415 and 0.003793 respectively. The
estimate, X(1.5), derived using the step size h = 0.04 is comfortably within the

0.25% error requirement.
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Exercises 2.3.9
s 8 The starting process, using the second-order predictor—corrector method, is

X1 = 2o + hf(to, o)
X1 =z9+ ih (f(thxO) + f(tl,Xl))

and the second-order Adams—Bashforth method is

Xn+1 =X, + %h (3f(thn> - f(tn—laXn—l»

d
8(a) Applying this method to the problem d—f = 2%sint — z,2(0) = 0.2 with

h = 0.1, we have

X1 =z + hf(to, zo) = 0.2+ 0.1 x (0.225in 0 — 0.2) = 0.1800
X1 =m0+ 1h <f(t07I0) + f(t1,X1)>
= 0.2+ 10.1 x (0.2%sin0 — 0.2 + 0.18%sin 0.1 — 0.18) = 0.1812
Xo = X1+ $h (3f(t1, X1) — f(to,z0))
= 0.1812 + 10.1 x (3(0.1812%sin 0.1 — 0.1812) — (0.2*sin0 — 0.2)) = 0.1645

X3, X4 and X5 are obtained as X5. The computation is most efficiently set out

as a table.

n tn Xn f(thn) %h(gf(thn) - f(tn—laXn—l)) Xn—H
0 0.0 0.2000 —0.2000 (use predictor—corrector) 0.1812
1 0.1 0.1812 —0.1779 —0.016685 0.1645
2 0.2 0.1645 —0.1591 —0.014970 0.1495
3 03 0.1495 —0.1429 —0.013480 0.1360
4 0.4 0.1360 —0.1288 —0.012175 0.1238
) 0.5 0.1238

Hence X(0.5) = 0.1238.
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8(b) Applying this method to the problem dz = 2% 2(0.5) = 0.5 with h =

0.1, we have

dt

X1 =20 4 hf(to, mo) = 0.5+ 0.1 x 0.52e2-°%95 = 0.5321
X1=z0+ 3h (f(to,ﬂfo) + f(t17X1)>

= 0.5+ 20.1 x (0.5%€”2%9> 4 0.5321%¢0-0%02321) = 0.5355

Xo = X1 + 1h (3f(t1, X1) — f(to,70))

= 0.5355 + 10.1 x (3 x 0.5355%¢%0%0-53% _ ( 52¢0-5%0-5) = 0.5788

X3, Xy, X5, Xs and X7 are obtained as X5. The computation is most efficiently

set out as a table.

tn

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

IO UCTA W RO S

Xn
0.5000
0.5355
0.5788
0.6344
0.7095
0.8191
0.9998
1.3740

f(tnaXn) %h’(gf(t’rL;Xn) - f(tn—laXn—l)) Xn+1

0.3210 (use predictor—corrector) 0.5355
0.3955 0.043275 0.5788
0.5024 0.055585 0.6344
0.6685 0.075155 0.7095
0.9534 0.109585 0.8191
1.5221 0.180645 0.9998
3.0021 0.374210 1.3740

Hence X(1.2) = 1.3740.

m 9  The starting process, using the second-order predictor—corrector method, is

X1 = xo + hf(to, o)

X1 =m0+ 1h (f(fo,a?o) + f(tbj(l))
Xy = Xy + hf(t, X1)

Xo=X1+4h (f(t1,X1) + f(t2=X2)>

and the third-order Adams—Bashforth method is

Xn+1 — Xn + %h (23f<tn7Xn) - 16f(tn—17 Xn—l) + 5f(tn—27 Xn—Q))
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d
Applying this method to the problem d—f = Va2 +2t,2(0) =1 with h = 0.1, we

have

X1 = @0 + hf(ty,20) = 1.0+ 0.1 x /1242 x 0 = 1.100
X1 =20+ 1h (f(to,xo) + f(t17X1)>
= 1.0+ 0.1 x (\/12 +2x 0+ V112 +2 x 0.1) = 1.1094
Xy = X1 + hf(ty, X1) = 1.1094 + 0.1 x /1.10942 + 2 x 0.1 = 1.2290
Xo = X1+ 4 (fl0, X0) + f(1, 55))
= 1.1094 + 0.1 x (\/1.10942 T2 0.1+ /1.22902 1 2 x 0.2) — 1.2383
X5 = X5+ 2h(23f(ts, X2) — 16f(t1, X1) + 5f(to, z0))
=1.2383 + 10.1 x (23\/1.23832 +2x0.2—161/1.10942 + 2 x 0.1

+5V1.02 +2 x 0) — 1.3870

X, and X5 are obtained as X3. The computation is most efficiently set out as a
table.
n ty X, fltn, Xn) h(23f(tn, Xn) — 16 f(tn—1, Xpn—1) Xt

+ 5f(tn—2, Xn—2))/12

0 0.0 1.0000 1.0000 (use predictor—corrector) 1.1094
0 01 1.1094 1.1961 (use predictor—corrector) 1.2383
2 0.2 1.2383 1.3905 0.1487 1.3870
3 03 1.3870 1.5886 0.1689 1.5559
4 04 1.5559 1.7947 0.1901 1.7460
5 0.5 1.7460

Hence X(0.5) = 1.7460.

(c) Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4** Edition 95

m 10  The second-order predictor—corrector method is
)A(n—f—l = Xn + hf(t'rw Xn)
Xn—l—l =Xn+ %h(f(thn) + f(tn+1aj(n+1))
d
10(a) Applying this method to the problem d—f = (2t 4+ ) sin 2¢, £(0) = 0.5 with
h = 0.05, we have

X1 =204 hf(to,zo) = 0.5+ 0.05 x (2 x 04 0.5)sin0 = 0.5
X1 = zo + $h(f(to, zo) + f(t1, X1))
= 0.5+ 10.05 x ((2 x 0+ 0.5)sin 0 + (2 x 0.05 + 0.5) sin(2 x 0.05)) = 0.5015

X5 to Xjo are obtained as X;. The computation is most efficiently set out as a
table.

~ ~

n tn Xn f(tnan) Xn—l—l f(tn—l-bXn—l—l) Xn—l—l
0 0.00 0.5000 0.0000 0.5000 0.0599 0.5015
1 0.05 0.5015 0.0150 0.5045 0.1400 0.5065
2 0.10 0.5065 0.0497 0.5135 0.2404 0.5160
3 0.15 0.5160 0.1034 0.5281 0.3614 0.5311
4 0.20 0.5311 0.1752 0.5492 0.5030 0.5527
) 0.25 0.5527 0.2637 0.5780 0.6651 0.5820
6 0.30 0.5820 0.3670 0.6153 0.8474 0.6198
7 0.35 0.6198 0.4832 0.6623 1.0490 0.6673
8 0.40 0.6673 0.6098 0.7199 1.2689 0.7254
9 0.45 0.7254 0.7442 0.7890 1.5054 0.7948
10 0.50 0.7948

Hence X(0.5) = 0.7948.

d 1
10(b) Applying this method to the problem o T

— ., x(0) = —2 with
7~ gt A
h = 0.1, we have

X, = hi(t = 2401x —— = — 18812
1 =0 + hf(to, 7o) LR (Y
X1 =x9+ 3h (f(to,wo) + f(tth))
1—-2 1—1.8812
=21 10.1 — — = —1.8911
T X< sin(0+ 1) $m01+m)

X5 to Xqo are obtained as X;. The computation is most efficiently set out as a
table.
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tn
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
10 1.0

© 00 ~TO U WN R OS

A A

Xn f(tnaXn) Xn+1 f(tn-l—laXvH-l)
—2.0000 —1.3072 —1.8812 0.9887
—1.8911 —1.2343 —1.7912 0.8488
—1.7987 —1.1802 —1.7130 0.7400
—1.7189 —1.1416 —1.6443 0.6538
—1.6489 —1.1162 —1.5830 0.5845
—1.5867 —1.1028 —1.5279 0.5281
—1.5309 —1.1005 —1.47