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1

Matrix Analysis

Exercises 1.3.3

1(a) Yes, as the three vectors are linearly independent and span three-
dimensional space.

1(b) No, since they are linearly dependent

⎡
⎣ 3

2
5

⎤
⎦ − 2

⎡
⎣ 1

0
1

⎤
⎦ =

⎡
⎣ 1

2
3

⎤
⎦

1(c) No, do not span three-dimensional space. Note, they are also linearly
dependent.

2 Transformation matrix is

A =
1√
2

⎡
⎣ 1 1 0

1 −1 0
0 0

√
2

⎤
⎦

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣

1√
2

1√
2

0
1√
2

− 1√
2

0
0 0 1

⎤
⎦

Rotates the (e1, e2) plane through π/4 radians about the e3 axis.

3 By checking axioms (a)–(h) on p. 10 it is readily shown that all cubics
ax3 + bx2 + cx + d form a vector space. Note that the space is four dimensional.

3(a) All cubics can be written in the form

ax3 + bx2 + cx + d

and {1, x, x2, x3} are a linearly independent set spanning four-dimensional space.
Thus, it is an appropriate basis.

c©Pearson Education Limited 2011



2 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

3(b) No, does not span the required four-dimensional space. Thus a general
cubic cannot be written as a linear combination of

(1 − x), (1 + x), (1 − x3), (1 + x3)

as no term in x2 is present.

3(c) Yes as linearly independent set spanning the four-dimensional space

a(1 − x) + b(1 + x) + c(x2 − x3) + d(x2 + x3)

= (a + b) + (b − a)x + (c + a)x2 + (d − c)x3

≡ α + βx + γx2 + δx3

3(d) Yes as a linear independent set spanning the four-dimensional space

a(x − x2) + b(x + x2) + c(1 − x3) + d(1 + x3)

= (a + b) + (b − a)x + (c + d)x2 + (d − c)x3

≡ α + βx + γx2 + δx3

3(e) No not linearly independent set as

(4x3 + 1) = (3x2 + 4x3) − (3x2 + 2x) + (1 + 2x)

4 x + 2x3, 2x − 3x5, x + x3 form a linearly independent set and form a basis
for all polynomials of the form α + βx3 + γx5 . Thus, S is the space of all odd
quadratic polynomials. It has dimension 3.

c©Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4th Edition 3

Exercises 1.4.3

5(a) Characteristic polynomial is λ3 − p1λ
2 − p2λ − p3 with

p1 = trace A = 12

B1 = A− 12I =

⎡
⎣−9 2 1

4 −7 −1
2 3 −8

⎤
⎦

A2 = A B1 =

⎡
⎣−17 −5 −7
−18 −30 7

2 −5 −33

⎤
⎦

p2 =
1
2

trace A2 = −40

B2 = A2 + 40I =

⎡
⎣ 23 −5 −7
−18 10 7

2 −5 7

⎤
⎦

A3 = A B2 =

⎡
⎣ 35 0 0

0 35 0
0 0 35

⎤
⎦

p3 =
1
3

trace A3 = 35

Thus, characteristic polynomial is

λ3 − 12λ2 + 40λ − 35

Note that B3 = A3 − 35I = 0 confirming check.

5(b) Characteristic polynomial is λ4 − p1λ
3 − p2λ

2 − p3λ − p4 with
p1 = trace A = 4

B1 = A− 4I =

⎡
⎢⎣
−2 −1 1 2

0 −3 1 0
−1 1 −3 1

1 1 1 −4

⎤
⎥⎦

A2 = A B1 =

⎡
⎢⎣
−3 4 0 −3
−1 −2 −2 1

2 0 −2 −5
−3 −3 −1 3

⎤
⎥⎦ ⇒ p2 =

1
2

trace A2 = −2

c©Pearson Education Limited 2011
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B2 = A2 + 2I =

⎡
⎢⎣
−1 4 0 −3
−1 0 −2 1
2 0 0 −5

−3 −3 −1 5

⎤
⎥⎦

A3 = A B2 =

⎡
⎢⎣
−5 2 0 −2

1 0 −2 −4
−1 −7 −3 4

0 4 −2 −7

⎤
⎥⎦ ⇒ p3 =

1
3

trace A3 = −5

B3 = A3 + 5I =

⎡
⎢⎣

0 0 0 −2
1 5 −2 −4

−1 −8 2 4
0 4 −2 −2

⎤
⎥⎦

A4 = A B3 =

⎡
⎢⎣
−2 0 0 0

0 −2 0 0
0 0 −2 0
0 0 0 −2

⎤
⎥⎦ ⇒ p4 =

1
4
trace A4 = −2

Thus, characteristic polynomial is λ4 − 4λ3 + 2λ2 + 5λ + 2

Note that B4 = A4 + 2I = 0 as required by check.

6(a) Eigenvalues given by
∣∣1−λ

1
1

1−λ

∣∣ = λ2 − 2λ = λ(λ − 2) = 0

so eigenvectors are λ1 = 2, λ2 = 0

Eigenvectors given by corresponding solutions of

(1 − λi)ei1 + ei2 = 0

ei1 + (1 − λi)ei2 = 0

Taking i = 1, 2 gives the eigenvectors as

e1 = [1 1]T , e2 = [1 − 1]T (1)

6(b) Eigenvalues given by
∣∣1−λ

3
2

2−λ

∣∣ = λ2 − 3λ − 4 = (λ + 1)(λ − 4) = 0

so eigenvectors are λ1 = 4, λ2 = −1

Eigenvectors given by corresponding solutions of

(l − λi)ei1 + 2ei2 = 0

3ei1 + (2 − λi)ei2 = 0

c©Pearson Education Limited 2011
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Taking i = 1, 2 gives the eigenvectors as

e1 = [2 3]T , e2 = [1 − 1]T

6(c) Eigenvalues given by∣∣∣∣∣∣
1 − λ 0 −4

0 5 − λ 4
−4 4 3 − λ

∣∣∣∣∣∣ = λ3 + 9λ2 + 9λ − 81 = (λ − 9)(λ − 3)(λ + 3) = 0

So the eigenvalues are λ1 = 9, λ2 = 3, λ3 = −3.
The eigenvectors are given by the corresponding solutions of

(1 − λi)ei1 + 0ei2 − 4ei3 = 0

0ei1 + (5 − λi)ei2 + 4ei3 = 0

−4ei1 + 4ei2 + (3 − λi)ei3 = 0

Taking i = 1, λi = 9 solution is

e11

8
= −e12

16
=

e13

−16
= β1 ⇒ e1 = [−1 2 2]T

Taking i = 2, λi = 3 solution is

e21

−16
= −e22

16
=

e23

8
= β2 ⇒ e2 = [2 2 − 1]T

Taking i = 3, λi = −3 solution is

e31

32
= −e32

16
=

e33

32
= β3 ⇒ e3 = [2 − 1 2]T

6(d) Eigenvalues given by∣∣∣∣∣∣
1 − λ 1 2

0 2 − λ 2
−1 1 3 − λ

∣∣∣∣∣∣ = 0

Adding column 1 to column 2 gives∣∣∣∣∣∣
1 − λ 2 − λ 2

0 2 − λ 2
−1 0 3 − λ

∣∣∣∣∣∣ = (2 − λ)

∣∣∣∣∣∣
1 − λ 1 2

0 1 2
−1 0 3 − λ

∣∣∣∣∣∣
R1−R2(2 − λ)

∣∣∣∣∣∣
1 − λ 0 0

0 1 2
−1 0 3 − λ

∣∣∣∣∣∣ = (2 − λ)(1 − λ)(3 − λ)

c©Pearson Education Limited 2011



6 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

so the eigenvalues are λ1 = 3, λ2 = 2, λ3 = 1.

Eigenvectors are the corresponding solutions of (A− λiI)ei = 0

When λ = λ1 = 3 we have

⎡
⎣−2 1 2

0 −1 2
−1 1 0

⎤
⎦

⎡
⎣ e11

e12

e13

⎤
⎦ = 0

leading to the solution
e11

−2
= −e12

2
=

e13

−1
= β1

so the eigenvector corresponding to λ2 = 3 is e1 = β1[2 2 1]T , β1 constant.

When λ = λ2 = 2 we have

⎡
⎣−1 1 2

0 0 2
−1 1 1

⎤
⎦

⎡
⎣ e21

e22

e23

⎤
⎦ = 0

leading to the solution
e21

−2
= −e22

2
=

e23

0
= β3

so the eigenvector corresponding to λ2 = 2 is e2 = β2[1 1 0]T , β2 constant.

When λ = λ3 = 1 we have

⎡
⎣ 0 1 2

0 1 2
−1 1 2

⎤
⎦

⎡
⎣ e31

e32

e33

⎤
⎦ = 0

leading to the solution
e31

0
= −e32

2
=

e33

1
= β1

so the eigenvector corresponding to λ3 = 1 is e3 = β3[0 − 2 1]T , β3 constant.

6(e) Eigenvalues given by

∣∣∣∣∣∣
5 − λ 0 6

0 11 − λ 6
6 6 −2 − λ

∣∣∣∣∣∣ = λ3 − 14λ2 − 23λ − 686 = (λ − 14)(λ − 7)(λ + 7) = 0

so eigenvalues are λ1 = 14, λ2 = 7, λ3 = −7

c©Pearson Education Limited 2011
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Eigenvectors are given by the corresponding solutions of

(5 − λi)ei1 + 0ei2 + 6ei3 = 0

0ei1 + (11 − λi)ei2 + 6ei3 = 0

6ei1 + 6ei2 + (−2 − λi)ei3 = 0

When i = 1, λ1 = 14 solution is

e11

12
=

−e12

−36
=

e13

18
= β1 ⇒ e1 = [2 6 3]T

When i = 2, λ2 = 7 solution is

e21

−72
=

−e22

−36
=

e23

−24
= β2 ⇒ e2 = [6 − 3 2]T

When i = 3, λ3 = −7 solution is

e31

54
=

−e32

−36
=

e33

−108
= β3 ⇒ e3 = [3 2 − 6]T

6(f) Eigenvalues given by

∣∣∣∣∣∣
1 − λ −1 0

1 2 − λ 1
−2 1 −1 − λ

∣∣∣∣∣∣ R1+R2

∣∣∣∣∣∣
−1 − λ 0 −1 − λ

1 2 − λ 1
−2 1 −1 − λ

∣∣∣∣∣∣
= (1 + λ)

∣∣∣∣∣∣
−1 0 0
1 2 − λ 0

−2 1 1 − λ

∣∣∣∣∣∣ = 0, i.e. (1 + λ)(2 − λ)(1 − λ) = 0

so eigenvalues are λ1 = 2, λ2 = 1, λ3 = −1
Eigenvectors are given by the corresponding solutions of

(1 − λi)ei1 − ei2 + 0ei3 = 0

ei1 + (2 − λi)ei2 + ei3 = 0

−2ei1 + ei2 − (1 + λi)ei3 = 0

Taking i = 1, 2, 3 gives the eigenvectors as

e1 = [−1 1 1]T , e2 = [1 0 − 1]T , e3 = [1 2 − 7]T

c©Pearson Education Limited 2011
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6(g) Eigenvalues given by

∣∣∣∣∣∣
4 − λ 1 1

2 5 − λ 4
−1 −1 −λ

∣∣∣∣∣∣ R1 + (R2 + R3)

∣∣∣∣∣∣
5 − λ 5 − λ 5 − λ

2 5 − λ 4
−1 −1 −λ

∣∣∣∣∣∣
= (5 − λ)

∣∣∣∣∣∣
1 0 0
2 3 − λ 2
−1 0 1 − λ

∣∣∣∣∣∣ = (5 − λ)(3 − λ)(1 − λ) = 0

so eigenvalues are λ1 = 5, λ2 = 3, λ3 = 1

Eigenvectors are given by the corresponding solutions of

(4 − λi)ei1 + ei2 + ei3 = 0

2ei1 + (5 − λi)ei2 + 4ei3 = 0

−ei1 − ei2 − λiei3 = 0

Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [2 3 − 1]T , e2 = [1 − 1 0]T , e3 = [0 − 1 1]T

6(h) Eigenvalues given by

∣∣∣∣∣∣
1 − λ −4 −2

0 3 − λ 1
1 2 4 − λ

∣∣∣∣∣∣ R1+2R2

∣∣∣∣∣∣
1 − λ 2 − 2λ 0

0 3 − λ 1
1 2 4 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣∣∣
1 0 0
0 3 − λ 1
1 0 4 − λ

∣∣∣∣∣∣ = (1 − λ)(3 − λ)(4 − λ) = 0

so eigenvalues are λ1 = 4, λ2 = 3, λ3 = 1

Eigenvectors are given by the corresponding solutions of

(1 − λi)ei1 − 4ei2 − 2ei3 = 0

2ei1 + (3 − λi)ei2 + ei3 = 0

ei1 + 2ei2 + (4 − λi)ei3 = 0

c©Pearson Education Limited 2011
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Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [2 − 1 − 1]T , e2 = [2 − 1 0]T , e3 = [4 − 1 − 2]T

Exercises 1.4.5

7(a) Eigenvalues given by

∣∣∣∣∣∣
2 − λ 2 1

1 3 − λ 1
1 2 2 − λ

∣∣∣∣∣∣ R1−R2

∣∣∣∣∣∣
1 − λ −1 + λ 0

0 3 − λ 1
1 2 2 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣∣∣
1 0 0
1 4 − λ 1
1 3 2 − λ

∣∣∣∣∣∣ = (1 − λ)[λ2 − 6λ + 5] = (1 − λ)(λ − 1)(λ − 5) = 0

so eigenvalues are λ1 = 5, λ2 = λ3 = 1

The eigenvectors are the corresponding solutions of

(2 − λi)ei1 + 2ei2 + ei3 = 0

ei1 + (3 − λi)ei2 + ei3 = 0

ei1 + 2ei2 + (2 − λi)ei3 = 0

When i = 1, λ1 = 5 and solution is

e11

4
=

−e12

−4
=

e13

4
= β1 ⇒ e1 = [1 1 1]T

When λ2 = λ3 = 1 solution is given by the single equation

e21 + 2e22 + e23 = 0

Following the procedure of Example 1.6 we can obtain two linearly independent
solutions. A possible pair are

e2 = [0 1 2]T , e3 = [1 0 − 1]T

c©Pearson Education Limited 2011
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7(b) Eigenvalues given by

∣∣∣∣∣∣
−λ −2 −2
−1 1 − λ 2
−1 −1 2 − λ

∣∣∣∣∣∣ = −λ3 + 3λ2 − 4 = −(λ + 1)(λ − 2)2 = 0

so eigenvalues are λ1 = λ2 = 2, λ3 = −1
The eigenvectors are the corresponding solutions of

−λiei1 − 2ei2 − 2ei3 = 0

−ei1 + (1 − λi)ei2 + 2ei3 = 0

−ei1 − ei2 + (2 − λi)ei3 = 0

When i = 3, λ3 = −1 corresponding solution is

e31

8
=

−e32

−1
=

e33

3
= β3 ⇒ e3 = [8 1 3]T

When λ1 = λ2 = 2 solution is given by

−2e21 − 2e22 − 2e23 = 0 (1)

−e21 − e22 + 2e23 = 0 (2)

−e21 − e22 = 0 (3)

From (1) and (2) e23 = 0 and it follows from (3) that e21 = −e22 . We deduce that
there is only one linearly independent eigenvector corresponding to the repeated
eigenvalues λ = 2. A possible eigenvector is

e2 = [1 − 1 0]T

7(c) Eigenvalues given by

∣∣∣∣∣∣
4 − λ 6 6

1 3 − λ 2
−1 −5 −2 − λ

∣∣∣∣∣∣ R1−3R3

∣∣∣∣∣∣
1 − λ −3 + 3λ 0

1 3 − λ 2
−1 −5 −2 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣∣∣
1 −3 0
1 3 − λ 2

−1 −5 −2 − λ

∣∣∣∣∣∣ = (1 − λ)

∣∣∣∣∣∣
1 0 0
1 6 − λ 2
1 −8 −2 − λ

∣∣∣∣∣∣
= (1 − λ)(λ2 + λ + 4) = (1 − λ)(λ − 2)2 = 0

c©Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4th Edition 11

so eigenvalues are λ1 = λ2 = 2, λ3 = 1.
The eigenvectors are the corresponding solutions of

(4 − λi)ei1 + 6ei2 + 6ei3 = 0

ei1 + (3 − λi)ei2 + 2ei3 = 0

−ei1 − 5ei2 − (2 + λi)ei3 = 0

When i = 3, λ3 = 1 corresponding solution is

e31

4
=

−e32

−1
=

e33

−3
= β3 ⇒ e3 = [4 1 − 3]T

When λ1 = λ2 = 2 solution is given by

2e21 + 6e22 + 6e23 = 0

e21 + e22 + 2e23 = 0

−e21 − 5e22 − 4e23 = 0

so that
e21

6
=

−e22

−2
=

e23

−4
= β2

leading to only one linearly eigenvector corresponding to the eigenvector λ = 2. A
possible eigenvector is

e2 = [3 1 − 2]T

7(d) Eigenvalues given by∣∣∣∣∣∣
7 − λ −2 −4

3 −λ −2
6 −2 −3 − λ

∣∣∣∣∣∣ R1−2R2

∣∣∣∣∣∣
1 − λ −2 + 2λ 0

3 −λ −2
6 −2 −3 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣∣∣
1 −2 0
3 −λ −2
6 −2 −3 − λ

∣∣∣∣∣∣ = (1 − λ)

∣∣∣∣∣∣
1 0 0
3 6 − λ −2
6 10 −3 − λ

∣∣∣∣∣∣
= (1 − λ)(λ − 2)(λ − 1) = 0

so eigenvalues are λ1 = 2, λ2 = λ3 = 1.
The eigenvectors are the corresponding solutions of

(7 − λi)ei1 − 2ei2 − 4ei3 = 0

3ei1 − λiei2 − 2ei3 = 0

6ei1 − 2ei2 − (3 + λi)ei3 = 0

c©Pearson Education Limited 2011
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When i = 1, λ2 = 2 and solution is

e11

6
=

−e12

−3
=

e13

6
= β1 ⇒ e1 = [2 1 2]T

When λ2 = λ3 = 1 the solution is given by the single equation

3e21 − e22 − 2e23 = 0

Following the procedures of Example 1.6 we can obtain two linearly independent
solutions. A possible pair are

e2 = [0 2 − 1]T , e3 = [2 0 3]T

8

(A− I) =

⎡
⎣−4 −7 −5

2 3 3
1 2 1

⎤
⎦

Performing a series of row and column operators this may be reduced to the form⎡
⎣ 0 0 0

0 0 1
1 0 0

⎤
⎦ indicating that (A − I) is of rank 2. Thus, the nullity q = 3 − 2 = 1

confirming that there is only one linearly independent eigenvector associated with
the eigenvalue λ = 1. The eigenvector is given by the solution of

−4e11 − 7e12 − 5e13 = 0

2e11 + 3e12 + 3e13 = 0

e11 + 2e12 + e13 = 0

giving
e11

−3
=

−e12

−1
=

e13

1
= β1 ⇒ e1 = [−3 1 1]T

9

(A− I) =

⎡
⎣ 1 1 −1
−1 −1 1
−1 −1 1

⎤
⎦

c©Pearson Education Limited 2011
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Performing a series of row and column operators this may be reduced to the form⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ indicating that (A−I) is of rank 1. Then, the nullity of q = 3−1 = 2

confirming that there are two linearly independent eigenvectors associated with the
eigenvalue λ = 1. The eigenvectors are given by the single equation

e11 + e12 − e13 = 0

and two possible linearly independent eigenvectors are

e1 = [1 0 1]T and e2 = [0 1 1]T

Exercises 1.4.8

10 These are standard results.

11(a) (i) Trace A = 4 + 5 + 0 = 9 = sum eigenvalues;

(ii) detA = 15 = 5 × 3 × 1 = product eigenvalues;

(iii) A−1 =
1
15

⎡
⎣ 4 −1 −1
−4 1 −14

3 3 18

⎤
⎦ . Eigenvalues given by

∣∣∣∣∣∣
4 − 15λ −1 −1

−4 1 − 15λ −14
3 3 18 − 15λ

∣∣∣∣∣∣ C3−C2

∣∣∣∣∣∣
4 − 15λ −1 0

−4 1 − 15λ −15 + 15λ
3 3 15 − 15λ

∣∣∣∣∣∣
= (15 − 15λ)

∣∣∣∣∣∣
4 − 15λ −1 0

−4 1 − 15λ −1
3 3 1

∣∣∣∣∣∣ = (15 − 15λ)(15λ − 5)(15λ − 3) = 0

confirming eigenvalues as 1, 1
3 , 1

5 .

c©Pearson Education Limited 2011
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(iv) AT =

⎡
⎣ 4 2 −1

1 5 −1
1 4 0

⎤
⎦ having eigenvalues given by

∣∣∣∣∣∣
4 − λ 2 −1

1 5 − λ −1
1 4 −λ

∣∣∣∣∣∣ = (λ − 5)(λ − 3)(λ − 1) = 0

that is, eigenvalue as for A .

11(b) (i) 2A =

⎡
⎣ 8 2 2

4 10 8
−2 −2 0

⎤
⎦ having eigenvalues given by

∣∣∣∣∣∣
8 − λ 2 2

4 10 − λ 8
−2 −2 −λ

∣∣∣∣∣∣ C1−C2

∣∣∣∣∣∣
6 − λ 2 2
−6 + λ 10 − λ 8

0 −2 −λ

∣∣∣∣∣∣
= (6 − λ)

∣∣∣∣∣∣
1 2 2
−1 10 − λ 8
0 −2 −λ

∣∣∣∣∣∣ = (6 − λ)

∣∣∣∣∣∣
1 2 2
0 12 − λ 10
0 −2 −λ

∣∣∣∣∣∣
= (6 − λ)(λ − 10)(λ − 2) = 0

Thus eigenvalues are 2 times those of A ; namely 6, 10 and 2.

(ii) A + 2I =

⎡
⎣ 6 1 1

2 7 4
−1 −1 2

⎤
⎦ having eigenvalues given by

∣∣∣∣∣∣
6 − λ 1 1

2 7 − λ 4
−1 −1 2 − λ

∣∣∣∣∣∣ = −λ3 + 15λ2 − 71λ + 105 = −(λ − 7)(λ − 5)(λ − 3) = 0

confirming the eigenvalues as 5 + 2, 3 + 2, 1 + 2.

Likewise for A − 2I

c©Pearson Education Limited 2011
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(iii) A2 =

⎡
⎣ 17 8 8

14 23 22
−6 −6 −5

⎤
⎦ having eigenvalues given by

∣∣∣∣∣∣
17 − λ 8 8

14 23 − λ 22 − λ
−6 −6 −5 − λ

∣∣∣∣∣∣ R1 + (R2) + R3)

∣∣∣∣∣∣
25 − λ 25 − λ 25 − λ

14 23 − λ 22
−6 −6 −5 − λ

∣∣∣∣∣∣
= (25 − λ)

∣∣∣∣∣∣
1 0 0
14 9 − λ 8
−6 0 1 − λ

∣∣∣∣∣∣ = (25 − λ)(9 − λ)(1 − λ) = 0

that is, eigenvalues A2 are 25, 9, 1 which are those of A squared.

12 Eigenvalues of A given by

∣∣∣∣∣∣
−3 − λ −3 −3
−3 1 − λ −1
−3 −1 1 − λ

∣∣∣∣∣∣ R3+R2

∣∣∣∣∣∣
−3 − λ −3 −3
−3 1 − λ −1
0 −2 + λ 2 − λ

∣∣∣∣∣∣
= (λ − 2)

∣∣∣∣∣∣
−3 − λ −3 −3
−3 1 − λ −1

0 1 −1

∣∣∣∣∣∣ C3+C2(λ − 2)

∣∣∣∣∣∣
−3 − λ −3 −6
−3 (1 − λ) −λ
0 1 0

∣∣∣∣∣∣
= −(λ − 2)(λ + 6)(λ − 3) = 0

so eigenvalues are λ1 = −6, λ2 = 3, λ3 = 2

Eigenvectors are given by corresponding solutions of

(−3 − λi)ei1 − 3ei2 − 3ei3 = 0

−3ei1 + (1 − λi)ei2 − ei3 = 0

−3ei1 − ei2 + (1 − λi)ei3 = 0

Taking i = 1, 2, 3 gives the eigenvectors as

e1 = [2 1 1]T , e2 = [−1 1 1]T , e3 = [0 1 − 1]T

It is readily shown that

eT
1 e2 = eT

1 e3 = eT
2 e3 = 0

so that the eigenvectors are mutually orthogonal.
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13 Let the eigenvector be e = [a b c]T then since the three vectors are mutually
orthogonal

a + b − 2c = 0

a + b − c = 0

giving c = 0 and a = −b so an eigenvector corresponding to λ = 2 is e = [1 −1 0]T .

Exercises 1.5.3

14 Taking x(0) = [1 1 1]T iterations may then be tabulated as follows:

Iteration k 0 1 2 3 4
1 0.9 0.874 0.869 0.868

x(k) 1 1 1 1 1
1 0.5 0.494 0.493 0.492
9 7.6 7.484 7.461 7.457

A x(k) 10 8.7 8.61 8.592 8.589
5 4.3 4.242 4.231 4.228

λ � 10 8.7 8.61 8.592 8.589

Thus, estimate of dominant eigenvalue is λ � 8.59 and corresponding eigenvector
x � [0.869 1 0.493]T or x � [0.61 0.71 0.35]T in normalised form.

15(a) Taking x(0) = [1 1 1]T iterations may then be tabulated as follows:

Iteration k 0 1 2 3 4 5 6
1 0.75 0.667 0.636 0.625 0.620 0.619

x(k) 1 1 1 1 1 1 1
1 1 1 1 1 1 1
3 2.5 2.334 2.272 2.250 2.240

A x(k) 4 3.75 3.667 3.636 3.625 3.620
4 3.75 3.667 3.636 3.625 3.620

λ � 4 3.75 3.667 3.636 3.625 3.620

Thus, correct to two decimal places dominant eigenvalue is 3.62 having
corresponding eigenvectors [0.62 1 1]T .
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15(b) Taking x(0) = [1 1 1]T iterations may be tabulated as follows:

Iteration k 0 1 2 3 4 5
1 0.364 0.277 0.257 0.252 0.251

x(k) 1 0.545 0.506 0.501 0.493 0.499
1 1 1 1 1 1
4 2.092 1.831 1.771 1.756

A x(k) 6 3.818 3.566 3.561 3.49
11 7.546 7.12 7.03 6.994

λ � 11 7.546 7.12 7.03 6.994

Thus, correct to two decimal places dominant eigenvalue is 7 having corresponding
eigenvector [0.25 0.5 1]T .

15(c) Taking x(0) = [1 1 1 1]T iterations may then be tabulated as follows:

Iteration k 0 1 2 3 4 5 6
1 1 1 1 1 1 1

x(k) 1 0 −0.5 −0.6 −0.615 −0.618 − 0.618
1 1 −0.5 −0.6 −0.615 −0.618 −0.618
1 1 1 1 1 1 1
1 2 2.5 2.6 2.615 2.618

A x(k) 0 −1 −1.5 −1.6 −1.615 −1.618
0 −1 −1.5 −1.6 −1.615 −1.618
1 2 2.5 2.6 2.615 2.618

λ � 1 2 2.5 2.6 2.615 2.618

Thus, correct to two decimal places dominant eigenvalue is 2.62 having
corresponding eigenvector [1 − 0.62 − 0.62 1]T .

16 The eigenvalue λ1 corresponding to the dominant eigenvector e1 = [1 1 2]T

is such that A e1 = λ1e1 so

⎡
⎣ 3 1 1

1 3 1
1 1 5

⎤
⎦

⎡
⎣ 1

1
2

⎤
⎦ = λ1

⎡
⎣ 1

1
2

⎤
⎦

so λ1 = 6.
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Then

A1 = A− 6ê1êT
1 where ê1 =

[ 1√
6

1√
6

2√
6

]T

so

A1 =

⎡
⎣ 3 1 1

1 3 1
1 1 5

⎤
⎦ −

⎡
⎣ 1 1 2

1 1 2
2 2 4

⎤
⎦ =

⎡
⎣ 2 0 −1

0 2 −1
−1 −1 1

⎤
⎦

Applying the power method with x(0) = [1 1 1]T

y(1) = A1x(0) =

⎡
⎣ 1

1
−1

⎤
⎦ = x(1)

y(2) = A1x(1) =

⎡
⎣ 3

3
−3

⎤
⎦ = 3

⎡
⎣ 1

1
−1

⎤
⎦

Clearly, λ2 = 3 and ê2 =
1√
3
[1 1 − 1]T .

Repeating the process

A2 = A1 − λ2ê2êT
2 =

⎡
⎣ 2 0 −1

0 2 −1
−1 −1 1

⎤
⎦ −

⎡
⎣ 1 1 −1

1 1 −1
−1 −1 1

⎤
⎦ =

⎡
⎣ 1 −1 0
−1 1 0

0 0 0

⎤
⎦

Taking x(0) = [1 − 1 0]T the power method applied to A2 gives

y(1) = A2x(0) =

⎡
⎣ 2
−2

0

⎤
⎦ = 2

⎡
⎣ 1
−1

0

⎤
⎦

and clearly, λ3 = 2 with ê3 =
1√
2
[1 − 1 0]T .

17 The three Gerschgorin circles are

| λ − 5 |= 2, | λ |= 2, | λ + 5 |= 2
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which are three non-intersecting circles. Since the given matrix A is symmetric its
three eigenvalues are real and it follows from Theorem 1.2 that

3 < λ1 < 7 , −2 < λ2 < 2 , −7 < λ3 < 7

(i.e., an eigenvalue lies within each of the three circles).

18 The characteristic equation of the matrix A is

∣∣∣∣∣∣
10 − λ −1 0
−1 2 − λ 2

0 2 3 − λ

∣∣∣∣∣∣ = 0

that is (10 − λ)[(2 − λ)(3 − λ) − 4] − (3 − λ) = 0

or f(λ) = λ3 − 15λ2 + 51λ − 17 = 0

Taking λ0 = 10 as the starting value the Newton–Raphson iterative process
produces the following table:

i λi f(λi) f′(λi) − f(λi)
f′(λi)

0 10 7 −51.00 0.13725
1 10.13725 −0.28490 −55.1740 −0.00516
2 10.13209 −0.00041 −55.0149 −0.000007

Thus to three decimal places the largest eigenvalue is λ = 10.132

Using Properties 1.1 and 1.2 of section 1.4.6 we have

3∑
i=1

λi = trace A = 15 and
3∏

i=1

λi =| A |= 17
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Thus,
λ2 + λ3 = 15 − 10.132 = 4.868

λ2λ3 = 1.67785

so λ2(4.868 − λ2) = 1.67785

λ2
2 − 4.868λ2 + 1.67785 = 0

λ2 = 2.434 ± 2.0607

that is λ2 = 4.491 and λ3 = 0.373

19(a) If e1, e2, . . . , en are the corresponding eigenvectors to λ1, λ2, . . . , λn then
(KI−A)ei = (K−λi)ei so that A and (KI−A) have the same eigenvectors and
eigenvalues differ by K .

Taking x(o) =
n∑

i=1

αrei then

x(p) = (KI− A)x(p−1) = (KI − A)2x(p−2) = . . . =
n∑

r=1

αr(K − λr)per

Now K − λn > K − λn−1 > . . . > K − λ1 and

x(p) = αn(K − λn)pen +
n∑

r=1

αr(K − λr)per

= (K − λn)p[αnen +
n−1∑
r=1

αr

[ K − λr

K − λn

]p

er]

→ (K − λn)pαnen = Ken as p → ∞

Also
x

(p+1)
i

x
(p)
i

→ (K − λn)p+1

(K − λn)p

αnen

αnen
= K − λn

Hence, we can find λn

19(b) Since A is a symmetric matrix its eigenvalues are real. By Gerschgorin’s
theorem the eigenvalues lie in the union of the intervals

| λ − 2 |≤ 1, | λ − 2 |≤ 2, | λ − 2 |≤ 1

i.e. | λ − 2 |≤ 2 or 0 ≤ λ ≤ 4.
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Taking K = 4 in (a)

KI − A = 4I − A =

⎡
⎣ 2 1 0

1 2 1
0 1 2

⎤
⎦

Taking x(0) = [1 1 1]T iterations using the power method are tabulated as follows:

Iteration k 0 1 2 3 4 5
1 0.75 0.714 0.708 0.707 0.707

x(k) 1 1 1 1 1 1
1 0.75 0.714 0.708 0.707 0.707
3 2.5 2.428 2.416 2.414

A x(k) 4 3.5 3.428 3.416 3.414
3 2.5 2.428 2.416 2.414

λ � 4 3.5 3.428 3.416 3.414

Thus λ3 = 4 − 3.41 = 0.59 correct to two decimal places.

Exercises 1.6.3

20 Eigenvalues given by

Δ =

∣∣∣∣∣∣
−1 − λ 6 −12

0 −13 − λ 30
0 −9 20 − λ

∣∣∣∣∣∣ = 0

Now Δ = (−1 − λ)
∣∣∣∣−13 − λ 30

−9 20 − λ

∣∣∣∣ = (−1 − λ)(λ2 − 7λ + 10)

= (−1 − λ)(λ − 5)(λ − 2) so Δ = 0 gives λ1 = 5, λ2 = 2, λ3 = −1

Corresponding eigenvectors are given by the solutions of

(A− λiI)ei = 0

When λ = λ1 = 5 we have

⎡
⎣−6 6 −12

0 −18 30
0 −9 15

⎤
⎦

⎡
⎣ e11

e12

e13

⎤
⎦ = 0

c©Pearson Education Limited 2011



22 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

leading to the solution
e11

−36
=

−e12

−180
=

e13

108
= β1

so the eigenvector corresponding to λ1 = 5 is e1 = β1[1 − 5 − 3]T

When λ = λ2 = 2, we have⎡
⎣−3 6 −12

0 −15 30
0 −9 18

⎤
⎦

⎡
⎣ e21

e22

e23

⎤
⎦ = 0

leading to the solution
e21

0
=

−e22

−90
=

e23

45
= β2

so the eigenvector corresponding to λ2 = 2 is e2 = β2[0 2 1]T

When λ = λ3 = −1, we have⎡
⎣ 0 6 −12

0 −12 30
0 −9 21

⎤
⎦

⎡
⎣ e31

e32

e33

⎤
⎦ = 0

leading to the solution
e31

18
=

−e32

0
=

e33

0
= β3

so the eigenvector corresponding to λ3 = −1 is e3 = β3[1 0 0]T

A modal matrix M and spectral matrix Λ are

M =

⎡
⎣ 1 0 1
−5 2 0
−3 1 0

⎤
⎦ Λ =

⎡
⎣ 5 0 0

0 2 0
0 0 −1

⎤
⎦

M−1 =

⎡
⎣ 0 1 −2

0 3 −5
1 −1 2

⎤
⎦ and matrix multiplication confirms M−1A M = Λ

21 From Example 1.9 the eigenvalues and corresponding normalised eigenvectors
of A are

λ1 = 6, λ2 = 3, λ3 = 1

ê1 =
1√
5
[1 2 0]T , ê2 = [0 0 1]T , ê3 =

1√
5
[−2 1 0]T ,

M̂ =
1√
5

⎡
⎣ 1 0 −2

2 0 1
0

√
5 0

⎤
⎦
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M̂T A M =
1
5

⎡
⎣ 1 2 0

0 0
√

5
−2 1 0

⎤
⎦

⎡
⎣ 2 2 0

2 5 0
0 0 3

⎤
⎦

⎡
⎣ 1 0 −2

2 0 1
0

√
5 0

⎤
⎦

=
1
5

⎡
⎣ 6 12 0

0 0 3
√

5
−2 1 0

⎤
⎦

⎡
⎣ 1 0 −2

2 0 1
0

√
5 0

⎤
⎦

=
1
5

⎡
⎣ 30 0 0

0 15 0
0 0 5

⎤
⎦ =

⎡
⎣ 6 0 0

0 3 0
0 0 1

⎤
⎦ = Λ

22 The eigenvalues of A are given by

∣∣∣∣∣∣
5 − λ 10 8
10 2 − λ −2
8 −2 11 − λ

∣∣∣∣∣∣ = −(λ3−18λ2−81λ+1458) = −(λ−9)(λ+9)(λ−18) = 0

so eigenvalues are λ1 = 18, λ2 = 9, λ3 = −9

The eigenvectors are given by the corresponding solutions of

(5 − λi)ei1 + 10ei2 + 8ei3 = 0

10ei1 + (2 − λi)ei2 − 2ei3 = 0

8ei1 − 2ei2 + (11 − λi)ei3 = 0

Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [2 1 2]T , e2 = [1 2 − 2]T , e3 = [−2 2 1]T

Corresponding normalised eigenvectors are

ê1 =
1
3
[2 1 2]T , ê2 =

1
3
[1 2 − 2]T , ê3 =

1
3
[−2 2 1]T

M̂ =
1
3

⎡
⎣ 2 1 −2

1 2 2
2 −2 1

⎤
⎦ , M̂T =

1
3

⎡
⎣ 2 1 2

1 2 −2
−2 2 1

⎤
⎦
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M̂T A M =
1
9

⎡
⎣ 2 1 2

1 2 −2
−2 2 1

⎤
⎦

⎡
⎣ 5 10 8

10 2 −2
8 −2 11

⎤
⎦

⎡
⎣ 2 1 −2

1 2 2
2 −2 1

⎤
⎦

=
1
9

⎡
⎣ 36 18 36

9 18 −18
18 −18 −9

⎤
⎦

⎡
⎣ 2 1 −2

1 2 2
2 −2 1

⎤
⎦

=

⎡
⎣ 4 2 4

1 2 −2
2 −2 −1

⎤
⎦

⎡
⎣ 2 1 −2

1 2 2
2 −2 1

⎤
⎦

=

⎡
⎣ 18 0 0

0 9 0
0 0 −9

⎤
⎦ = Λ

23

A =

⎡
⎣ 1 1 −2
−1 2 1

0 1 −1

⎤
⎦

Eigenvalues given by

0 =

∣∣∣∣∣∣
1 − λ 1 −2
−1 2 − λ 1
0 1 −1 − λ

∣∣∣∣∣∣ = −(λ3 − 2λ2 −λ+2) = −(λ− 1)(λ− 2)(λ+1) = 0

so eigenvalues are λ1 = 2, λ2 = 1, λ3 = −1.
The eigenvectors are given by the corresponding solutions of

(1 − λi)ei1 + ei2 − 2ei3 = 0

−ei1 + (2 − λi)ei2 + ei3 = 0

0ei1 + ei2 − (1 + λi)ei3 = 0

Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [1 3 1]T , e2 = [3 2 1]T , e3 = [1 0 1]T

M =

⎡
⎣ 1 3 1

3 2 0
1 1 1

⎤
⎦ , Λ =

⎡
⎣ 2 0 0

0 1 0
0 0 −1

⎤
⎦

M−1 = −1
6

⎡
⎣ 2 −2 −2
−3 0 −3

1 2 −7

⎤
⎦
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Matrix multiplication then confirms

M−1 A M = Λ and A = M Λ M−1

24 Eigenvalues given by∣∣∣∣∣∣
3 − λ −2 4
−2 −2 − λ 6
4 6 −1 − λ

∣∣∣∣∣∣ = −λ3 + 63λ − 162 = −(λ + 9)(λ − 6)(λ − 3) = 0

so the eigenvalues are λ1 = −9, λ2 = 6, λ3 = 3. The eigenvectors are the
corresponding solutions of

(3 − λi)ei1 − 2ei2 + 44ei3 = 0

−2ei1 − (2 + λi)ei2 + 6ei3 = 0

4ei1 + 6ei2 − (1 + λi)ei3 = 0

Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [1 2 − 2]T , e2 = [2 1 2]T , e3 = [−2 2 1]T

Since eT
1 e2 = eT

1 e3 = eT
2 e3 = 0 the eigenvectors are orthogonal

L = [ê1 ê2 ê3] =
1
3

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦

L̂ A L =
1
9

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦

⎡
⎣ 3 −2 4
−2 −2 6

4 6 −1

⎤
⎦

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦

=
1
9

⎡
⎣−9 −18 18

12 6 12
−6 6 3

⎤
⎦

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦

=
1
9

⎡
⎣−81 0 0

0 54 0
0 0 27

⎤
⎦ =

⎡
⎣−9 0 0

0 6 0
0 0 3

⎤
⎦ = Λ

25 Since the matrix A is symmetric the eigenvectors

e1 = [1 2 0]T , e2 = [−2 1 0]T , e3 = [e31 e32 e33]T
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are orthogonal. Hence,

eT
1 e3 = e31 + 2e32 = 0 and eT

2 e3 = −2e31 + e32 = 0

Thus, e31 = e32 = 0 and e33 arbitrary so a possible eigenvector is e3 = [0 0 1]T .

Using A = M̂ Λ M̂T where Λ =

⎡
⎣ 6 0 0

0 1 0
0 0 3

⎤
⎦ gives

A =

⎡
⎣

1√
5

− 2√
5

0
2√
5

1√
5

0
0 0 1

⎤
⎦

⎡
⎣ 6 0 0

0 1 0
0 0 3

⎤
⎦

⎡
⎣

1√
5

2√
5

0
− 2√

5
1√
5

0
0 0 1

⎤
⎦

=

⎡
⎣ 2 2 0

2 5 0
0 0 3

⎤
⎦

26 A− I =

⎡
⎣−4 −7 −5

2 3 3
1 2 1

⎤
⎦ ∼

⎡
⎣ 0 0 0

0 −1 0
1 0 0

⎤
⎦ is of rank 2

Nullity (A− I) = 3 − 2 = 1 so there is only one linearly independent vector
corresponding to the eigenvalue 1. The corresponding eigenvector e1 is given by
the solution of (A− I)e1 = 0 or

−4e11 − 7e12 − 5e13 = 0

2e11 + 3e12 + 3e13 = 0

e11 + 2e12 + 212 = 0

that is, e1 = [−3 1 1]T . To obtain the generalised eigenvector e∗1 we solve

(A− I)e∗1 = e1 or⎡
⎣−4 −7 −5

2 3 3
1 2 1

⎤
⎦

⎡
⎣ e∗11

e∗12
e∗13

⎤
⎦ =

⎡
⎣−3

1
1

⎤
⎦

giving e∗1 = [−1 1 0]T . To obtain the second generalised eigenvector e∗∗1 we solve

(A− I)e∗∗1 = e∗1 or⎡
⎣−4 −7 −5

2 3 3
1 2 1

⎤
⎦

⎡
⎣ e∗∗11

e∗∗12
e∗∗13

⎤
⎦ =

⎡
⎣−1

1
0

⎤
⎦
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giving e∗∗1 = [2 − 1 0]T .

M = [e1 e∗1 e∗∗1 ] =

⎡
⎣−3 −1 2

1 1 −1
1 0 0

⎤
⎦

detM = −1 and M−1 = −

⎡
⎣ 0 0 −1
−1 −2 −1
−1 −1 −2

⎤
⎦ =

⎡
⎣ 0 0 1

1 2 1
1 1 2

⎤
⎦

Matrix multiplication then confirms

M−1 A M =

⎡
⎣ 1 1 0

0 1 1
0 0 1

⎤
⎦

27 Eigenvalues are given by

| A − λI |= 0

that is, λ4 − 4λ3 − 12λ2 + 32λ + 64 = (λ + 2)2(λ − 4)2 = 0 so the eigenvalues are
−2, −2, 4 and 4 as required.

Corresponding to the repeated eigenvalue λ1, λ2 = −2

(A + 2I) =

⎡
⎢⎣

3 0 0 −3
0 3 −3 0

−0.5 −3 3 0.5
−3 0 0 3

⎤
⎥⎦ ∼

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ is of rank 2

Thus, nullity (A+2I) is 4−2 = 2 so there are two linearly independent eigenvectors
corresponding to λ = −2.

Corresponding to the repeated eigenvalues λ3, λ4 = 4

(A− 4I) =

⎡
⎢⎣

−3 0 0 −3
0 −3 −3 0

−0.5 −3 −3 0.5
−3 0 0 −3

⎤
⎥⎦ ∼

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦ is of rank 3

Thus, nullity (A − 4I) is 4 − 3 = 1 so there is only one linearly independent
eigenvector corresponding to λ = 4.
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When λ = λ1 = λ2 = −2 the eigenvalues are given by the solution of (A+2I)e = 0
giving e1 = [0 1 1 0]T , e2 = [1 0 0 1]T as two linearly independent solutions. When
λ = λ3 = λ4 = 8 the eigenvectors are given by the solution of

(A− 4I)e = 0

giving the unique solution e3 = [0 1 −1 0]T . The generalised eigenvector e∗3 is
obtained by solving

(A− 4I)e∗3 = e3

giving e∗3 = (6 − 1 0 − 6]T . The Jordan canonical form is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0

0 −2 0 0

0 0 4 1

0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Exercises 1.6.5

28 The quadratic form may be written in the form V = xT Ax where x =
[ x1 x2 x3 ]T and

A =

⎡
⎣ 2 2 1

2 5 2
1 2 2

⎤
⎦

The eigenvalues of A are given by∣∣∣∣∣∣
2 − λ 2 1

2 5 − λ 2
1 2 2 − λ

∣∣∣∣∣∣ = 0

⇒ (2 − λ)(λ2 − 7λ + 6) + 4(λ − 1) + (λ − 1) = 0

⇒ (λ − 1)(λ2 − 8λ + 7) = 0 ⇒ (λ − 1)2(λ − 7) = 0

giving the eigenvalues as λ1 = 7, λ2 = λ3 = 1
Normalized eigenvector corresponding to λ1 = 7 is

ê1 =
[ 1√

6
2√
6

1√
6

]T
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and two orthogonal linearly independent eigenvectors corresponding to λ − 1 are

ê2 =
[ 1√

2
0 − 1√

2

]T

ê3 =
[
− 1√

3
1√
3

− 1√
3

]T

Note that ê2 and ê3 are automatically orthogonal to ê1. The normalized
orthogonal modal matrix M̂ and spectral matrix Λ are

M̂ =

⎡
⎢⎣

1√
6

1√
2

− 1√
3

2√
6

0 1√
3

1√
6

− 1√
2

− 1√
3

⎤
⎥⎦ ,Λ =

⎡
⎣ 7 0 0

0 1 0
0 0 1

⎤
⎦

such that M̂T AM̂ = Λ.

Under the orthogonal transformation x = M̂y the quadratic form V reduces to

V = yT M̂T AM̂y = yT Λy

= [ y1 y2 y3 ]

⎡
⎣ 7 0 0

0 1 0
0 0 1

⎤
⎦

⎡
⎣ y1

y2

y3

⎤
⎦

= 7y2
1 + y2

2 + y2
3

29(a) The matrix of the quadratic form is A =

⎡
⎣ 1 −1 2
−1 2 −1

2 −1 7

⎤
⎦ and its leading

principal minors are

1,
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 1,detA = 2

Thus, by Sylvester’s condition (a) the quadratic form is positive definite.

29(b) Matrix A =

⎡
⎣ 1 −1 2
−1 2 −1

2 −1 5

⎤
⎦ and its leading principal minors are

1,
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 1,detA = 0

Thus, by Sylvester’s condition (c) the quadratic form is positive semidefinite.
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29(c) Matrix A =

⎡
⎣ 1 −1 2
−1 2 −1

2 −1 4

⎤
⎦ and its leading principal minors are

1,
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 1,detA = −1.

Thus, none of Sylvester’s conditions are satisfied and the quadratic form is
indefinite.

30(a) The matrix of the quadratic form is A =
[

a −b
−b c

]
and its leading

principal minors are a and ac − b2 . By Sylvester’s condition (a) in the text the
quadratic form is positive definite if and only if

a > 0 and ac − b2 > 0

that is, a > 0 and ac > b2

30(b) The matrix of the quadratic form is A =

⎡
⎣ 2 −1 0
−1 a b

0 b 3

⎤
⎦ having principal

minors 2, 2a − 1 and detA = 6a − 2b2 − 3. Thus, by Sylvester’s condition (a) in
the text the quadratic form is positive definite if and only if

2a − 1 > 0 and 6a − 2b2 − 3 > 0

or 2a > 1 and 2b2 < 6a − 3

31 The eigenvalues of the matrix A are given by

0 =

∣∣∣∣∣∣
2 − λ 1 −1

1 2 − λ 1
−1 1 2 − λ

∣∣∣∣∣∣ R1+R3

∣∣∣∣∣∣
3 − λ 3 − λ 0

1 2 − λ 1
−1 1 2 − λ

∣∣∣∣∣∣
= (3 − λ)

∣∣∣∣∣∣
1 1 0
1 2 − λ 1
−1 1 2 − λ

∣∣∣∣∣∣
= (3 − λ)

∣∣∣∣∣∣
1 0 0
1 1 − λ 1
−1 2 2 − λ

∣∣∣∣∣∣ = (3 − λ)(λ2 − 3λ)

c©Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4th Edition 31

so the eigenvalues are 3, 3, 0 indicating that the matrix is positive semidefinite.

The principal minors of A are

2,
∣∣∣∣ 2 1
1 2

∣∣∣∣ = 3, detA = 0

confirming, by Sylvester’s condition (a), that the matrix is positive semidefinite.

32 The matrix of the quadratic form is A =

⎡
⎣K 1 1

1 K −1
1 −1 1

⎤
⎦ having principal

minors

K,

∣∣∣∣ K 1
1 K

∣∣∣∣ = K2 − 1 and detA = K2 − K − 3

Thus, by Sylvester’s condition (a) the quadratic form is positive definite if and only
if

K2 − 1 = (K − 1)(K + 1) > 0 and K2 − K − 3 = (K − 2)(K + 1) > 0

i.e. K > 2 or K < −1.

If K = 2 then detA = 0 and the quadratic form is positive semidefinite.

33 Principal minors of the matrix are

3 + a,

∣∣∣∣ 3 + a 1
1 a

∣∣∣∣ = a2 + 3a − 1,detA = a3 + 3a2 − 6a − 8

Thus, by Sylvester’s condition (a) the quadratic form is positive definite if and only
if

3 + a > 0, a2 + 3a − 1 > 0 and a3 + 3a2 − 6a − 8 > 0

or (a + 1)(a + 4)(a − 2) > 0

3 + a > 0 ⇒ a > −3

a2 + 3a − 1 > 0 ⇒ a < −3.3 or a > 0.3

(a + 1)(a + 4)(a − 2) > 0 ⇒ a > 2 or − 4 < a < −1

Thus, minimum value of a for which the quadratic form is positive definite is
a = 2.
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34 A =

⎡
⎣ 1 2 −2

2 λ −3
−2 −3 λ

⎤
⎦

Principal minors are

1,
∣∣∣∣ 1 2
2 λ

∣∣∣∣ = λ − 4, detA = λ2 − 8λ + 15 = 0

Thus, by Sylvester’s condition (a) the quadratic form is positive definite if and only
if

λ − 4 > 0 ⇒ λ > 4

and (λ − 5)(λ − 3) > 0 ⇒ λ < 3 or λ > 5

Thus, it is positive definite if and only if λ > 5.

Exercises 1.7.1

35 The characteristic equation of A is

∣∣∣∣ 5 − λ 6
2 3 − λ

∣∣∣∣ = λ2 − 8λ + 3 = 0

Now A2 =
[

5 6
2 3

] [
5 6
2 3

]
=

[
27 48
16 21

]
so

A2 − 8A + 3I =
[

37 48
16 21

]
−

[
40 48
16 24

]
+

[
3 0
0 3

]
=

[
0 0
0 0

]

so that A satisfies its own characteristic equation.

36 The characteristic equation of A is

∣∣∣∣ 1 − λ 2
1 1 − λ

∣∣∣∣ = λ2 − 2λ − 1 = 0
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By Cayley–Hamilton theorem

A2 − 2A − I = 0

36(a) Follows that A2 = 2A + I =
[

2 4
2 2

]
+

[
1 0
0 1

]
=

[
3 4
2 3

]

36(b) A3 = 2A2 + A =
[

6 8
4 6

]
+

[
1 2
1 1

]
=

[
7 10
5 7

]

36(c) A4 = 2A3 + A2 =
[

14 20
10 14

]
+

[
3 4
2 3

]
=

[
17 24
12 17

]

37(a) The characteristic equation of A is

∣∣∣∣ 2 − λ 1
1 2 − λ

∣∣∣∣ = 0

that is, λ2 − 4λ + 3 = 0

Thus, by the Cayley–Hamilton theorem

A2 − 4A + 3I = 0

I =
1
3
[4A − A2]

so that A−1 =
1
3
[4I − A]

=
1
3

{[
4 0
0 4

]
−

[
2 1
1 2

]}
=

1
3

[
2 −1
−1 2

]

37(b) The characteristic equation of A is

∣∣∣∣∣∣
1 − λ 1 2

3 1 − λ 1
2 3 1 − λ

∣∣∣∣∣∣ = 0

that is, λ3 − 3λ2 − 7λ − 11 = 0
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A2 =

⎡
⎣ 1 1 2

3 1 1
2 3 1

⎤
⎦

⎡
⎣ 1 1 2

3 1 1
2 3 1

⎤
⎦ =

⎡
⎣ 8 8 5

8 7 8
13 8 8

⎤
⎦

Using (1.44)

A−1 =
1
11

(A2 − 3A− 7I)

=
1
11

⎡
⎣−2 5 −1
−1 −3 5
7 −1 −2

⎤
⎦

38 A2 =

⎡
⎣ 2 3 1

3 1 2
1 2 3

⎤
⎦

⎡
⎣ 2 3 1

3 1 2
1 2 3

⎤
⎦ =

⎡
⎣ 14 11 11

11 14 11
11 11 14

⎤
⎦

The characteristic equation of A is

λ2 − 6λ2 − 3λ + 18 = 0

so by the Cayley–Hamilton theorem

A3 = 6A2 + 3A− 18I

giving

A4 = 6(6A2 + 3A − 18I) + 3A2 − 18A = 39A2 − 108I

A5 = 39(6A2 + 3A − 18I) + 108A = 234A2 + 9A − 702I

A6 = 234(6A2 + 3A− 18I) + 9A2 − 702A = 1413A2 − 4212I

A7 = 1413(6A2 + 3A − 18I) + 4212A = 8478A2 + 27A − 25434I

Thus,

A7 − 3A6 + A4 + 3A3 − 2A2 + 3I = 4294A2 + 36A − 12957I

=

⎡
⎣ 47231 47342 47270

47342 47195 47306
47270 47306 47267

⎤
⎦
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39(a) Eigenvalues A are λ = 1 (repeated). Thus,

eAt = α0I + α1A with

et = α0 + α1

tet = α1

}
⇒ α1 = tet, α0 = (1 − t)et

so eAt = (1 − t)etI + tetA =
[

et 0
tet et

]

39(b) Eigenvalues A are λ = 1 and λ = 2. Thus,

eAt = α0I + α1A with

et = α0 + α1

e2t = α0 + 2α1

}
⇒ α0 = 2et − e2t, α1 = e2t − et

so eAt = (2et − e2t)I + (e2t − et)A =
[

et 0
e2t − et e2t

]

40 Eigenvalues of A are λ1 = π, λ2 =
π

2
, λ3 =

π

2
.

Thus,
sinA = α0A + α1A + α2A2 with

sin π = 0 = α0 + α1π + α2π
2

sin
π

2
= 1 = α0 + α1

π

2
+ α2

π2

4
cos

π

2
= 0 = α1 + πα2

Solving gives α0 = 0, α1 =
4
π

, α2 = − 4
π2

so that

sinA =
4
π
A− 4

π2
A2 =

⎡
⎣ 0 0 0

0 1 0
0 0 1

⎤
⎦

41(a)
dA
dt

=
[

d
dt (t

2 + 1) d
dt (2t − 3)

d
dt (5 − t) d

dt (t
2 − t + 3)

]
=

[
2t 2
−1 2t − 1

]

c©Pearson Education Limited 2011



36 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

41(b) ∫ 2

1

Adt =
[ ∫ 2

1
(t2 + 1)dt

∫ 2

1
(2t − 3)dt∫ 2

1
(5 − t)dt

∫ 2

1
(t2 − t + 3)dt

]
=

⎡
⎣ 10

3 0

7
2

23
6

⎤
⎦

42

A2 =
[

t2 + 1 t − 1
5 0

] [
t2 + 1 t − 1

5 0

]

=
[

t4 + 2t2 + 5t − 4 t3 − t2 + t − 1
5t2 + 5 5t − 5

]
d

dt
(A2) =

[
4t3 + 4t + 5 3t2 − 2t + 1

10t 5

]

2A
dA
dt

=
[

4t3 + 4t 2t2 + 1
20t 0

]

Thus,
d

dt
(A2) �= 2A

dA
dt

.

Exercises 1.8.4
43(a) row rank

A =

⎡
⎣ 1 2 3 4

3 4 7 10
2 1 5 7

⎤
⎦ row2 − 3row1

→
row3 − 2row1

⎡
⎣ 1 2 3 4

0 −2 −2 −2
0 −3 −1 −1

⎤
⎦

−1
2 row2
→

⎡
⎣ 1 2 4 4

0 1 1 1
0 −3 −1 −1

⎤
⎦ row3 + 3row2

→

⎡
⎣ 1 2 3 4

0 1 1 1
0 0 2 2

⎤
⎦

echelon form, row rank 3
column rank

A

col2 − 2col1
→

col3 − 3col1
col4 − 4col1

⎡
⎣ 1 0 0 0

3 −2 −2 2
2 −3 2 0

⎤
⎦ col3 − col2

→
col4 − col2

⎡
⎣ 1 0 0 0

0 −2 0 0
2 −3 2 2

⎤
⎦

col4 − col3
→

⎡
⎣ 1 0 0 0

3 −2 0 0
2 −3 2 0

⎤
⎦

echelon form, column rank3

Thus row rank(A) = column rank(A) = 3
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(b) A is of full rank since rank(A)=min(m,n)=min(3,4)= 3

44(a) AAT =
[

4 11 14
8 7 −2

]⎡
⎣ 4 8

11 7
14 −2

⎤
⎦ =

[
333 81
81 117

]
= 9

[
37 9
9 13

]

The eigenvalues λi of AAT are given by the solutions of the equations

∣∣∣AAT − λI
∣∣∣ =

∣∣∣∣ 333 − λ 8
81 117 − λ

∣∣∣∣ = 0 ⇒ λ2 − 450λ + 32400 = 0

⇒ (λ − 360)(λ − 90) = 0

giving the eigenvalues as λ1 = 360, λ2 = 90. Solving the equations.

(AAT − λiI)ui = 0

gives the corresponding eigenvectors as

u1 = [ 3 1 ]T ,u2 = [ 1 −2 ]T

with the corresponding normalized eigenvectors being

û1 =
[ 3√

10
1√
10

]T
, û2 =

[ 1√
10

− 3√
10

]T

leading to the orthogonal matrix

Û =

[
3√
10

1√
10

1√
10

− 3√
10

]

AT A =

⎡
⎣ 4 8

11 7
14 −2

⎤
⎦[

4 11 14
8 7 −2

]
=

⎡
⎣ 80 100 40

100 170 140
40 140 200

⎤
⎦

Solving
∣∣AT A − μI

∣∣ =

∣∣∣∣∣∣
80 − μ 100 40

100 170 − μ 140
40 140 200 − μ

∣∣∣∣∣∣ = 0

gives the eigenvalues μ1 = 360, μ2 = 90, μ3 = 0 with corresponding normalized
eigenvectors

v̂1 = [ 1
3

2
3

2
3 ]T , v̂2 = [− 2

3 − 1
3

2
3 ]T , v̂3 = [ 2

3 − 2
3

1
3 ]T
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leading to the orthogonal matrix

V̂ =

⎡
⎣ 1

3 − 2
3

2
3

2
3 − 1

3 − 2
3

2
3

2
3

1
3

⎤
⎦

The singular values of A are σ1 =
√

360 = 6
√

10 and σ2 =
√

90 = 3
√

10 giving

Σ =
[

6
√

10 0 0
0 3

√
10 0

]

Thus, the SVD form of A is

A = ÛΣV̂T =

[
3√
10

1√
10

1√
10

− 3√
10

] [
6
√

10 0 0
0 3

√
10 0

] ⎡
⎣ 1

3
2
3

2
3

− 2
3 − 1

3
2
3

2
3 − 2

3
1
3

⎤
⎦

(Direct multiplication confirms A =
[

4 11 14
8 7 −2

]
)

(b) Using (1.55) the pseudo inverse of A is

A† = V̂Σ∗Û, Σ∗ =

⎡
⎣

1
6
√

10
0

0 2
3
√

10
0 0

⎤
⎦ ⇒

⎡
⎣

1
3 − 2

3
2
3

2
3 − 1

3 − 2
3

2
3

2
3

1
3

⎤
⎦

⎡
⎣

1
6
√

10
0

0 1
3
√

10
0 0

⎤
⎦

[
3√
10

1√
10

1√
10

− 3√
10

]
⇒ A† = 1

180

⎡
⎣−1 13

4 8
10 −10

⎤
⎦

AA† = 1
180

[
4 11 14
8 7 −2

]⎡
⎣−1 13

4 8
10 −10

⎤
⎦ = 1

180

[
180 0
0 180

]
= I

(c) Rank(A) = 2 so A is of full rank. Since number of rows is less than the number
of columns A† may be determined using (1.58b) as

A† = AT (AAT )−1 =

⎡
⎣ 4 8

11 7
14 −2

⎤
⎦[

333 81
81 117

]−1

= 1
180

⎡
⎣−1 13

4 8
10 −10

⎤
⎦

which confirms with the value determined in (b).
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45 A =

⎡
⎢⎢⎢⎣

1 1
3 0
−2 1
0 2
−1 2

⎤
⎥⎥⎥⎦

row2 − 3row1
row3 + 2row1

→
row5 + row1

⎡
⎢⎢⎢⎣

1 1
0 −3
0 3
0 2
0 3

⎤
⎥⎥⎥⎦

row3 + row2
row4 + 2

3 row2
→

row5 + row2

⎡
⎢⎢⎢⎣

1 1
0 −3
0 0
0 0
0 0

⎤
⎥⎥⎥⎦

echelon form so row rank = 2 = column rank

Thus, rank A = 2 =min(5,2) and so A is of full rank.

Since A is of full rank and number of rows is greater than number of columns we
can determine the pseudo inverse using result (1.58a)

A† = (AT A)−1AT =
[

15 −3
−3 10

]−1 [
1 3 −2 0 −1
1 0 1 2 2

]

= 1
141

[
10 3
3 15

] [
1 3 −2 0 −1
1 0 1 2 2

]

= 1
141

[
13 30 −17 6 −4
18 9 9 30 27

]

A†A = 1
141

[
13 30 −17 6 −4
18 9 9 30 27

]
⎡
⎢⎢⎢⎣

1 1
3 0
−2 1
0 2
−1 2

⎤
⎥⎥⎥⎦ = 1

141

[
141 0
0 141

]
= I

46(a) A =

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦ row2 + 2row1

→
row3 − 2row1

⎡
⎣ 1 −1

0 0
0 0

⎤
⎦

Thus, rank A = 1and is not of full rank

(b) AAT =

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦[

1 2 2
−1 2 −2

]
=

⎡
⎣ 2 −4 4
−4 8 −8
4 −8 8

⎤
⎦

The eigenvalues λi are given by

∣∣∣∣∣∣
2 − λ −4 4
−4 2 − λ −8
4 −8 8 − λ

∣∣∣∣∣∣ = 0 ⇒ λ2(−λ + 18) = 0

giving the eigenvalues as λ1 = 18, λ2 = 0, λ3 = 0. The corresponding eigenvectors
and normalized eigenvectors are
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u1 = [ 1 −2 2 ]T ⇒ û1 = [ 1
3 − 2

3
2
3 ]T

u2 = [ 0 1 1 ]T ⇒ û2 =
[
0 1√

2
1√
2

]T

u3 = [ 2 1 0 ]T ⇒ û3 =
[ 2√

5
1√
5

0
]T

leading to the orthogonal matrix

Û =

⎡
⎢⎣

1
3 0 2√

5

− 2
3

1√
2

1√
5

2
3

1√
2

0

⎤
⎥⎦

AT A =
[

1 −2 2
−1 2 −2

] ⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦ = 9

[
1 −1
−1 1

]

having eigenvalues μ1 = 18 and μ2 = 0 and corresponding eigenvectors

v1 = [ 1 −1 ]T ⇒ v̂1 =
[ 1√

2
− 1√

2

]T

v2 = [ 1 1 ]T ⇒ v̂2 =
[ 1√

2
1√
2

]T

leading to the orthogonal matrix

V̂ =

[
1√
2

1√
2

− 1√
2

1√
2

]

A has the single (equal to its rank) singular value σ1 =
√

18 = 3
√

2 so that

Σ =

⎡
⎣ 3

√
2 0

0 0
0 0

⎤
⎦ and the SVD form of A is

A = ÛΣV̂T =

⎡
⎢⎣

1
3 0 2√

5

− 2
3

1√
2

1√
5

2
3

1√
2

0

⎤
⎥⎦

⎡
⎣ 3

√
2 0

0 0
0 0

⎤
⎦[

1√
2

− 1√
2

1√
2

1√
2

]

Direct multiplication confirms that A =

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦

(c) Pseudo inverse is given by

A† = V̂Σ∗ÛT =

[
1√
2

1√
2

− 1√
2

1√
2

] [
1

3
√

2
0 0

0 0 0

]⎡
⎣

1
3 − 2

3
2
3

0 1√
2

1√
2

2√
5

1√
5

0

⎤
⎦ = 1

18

[
1 −2 2
−1 2 −2

]
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Direct multiplication confirms AA†A = AandA†AA† = A†

(d) Equations may be written as

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦[

x
y

]
=

⎡
⎣ 1

2
3

⎤
⎦ ≡ Ax = b

The least squares solution is x = A†b ⇒
[

x
y

]
= 1

18

[
1 −2 2
−1 2 −2

] ⎡
⎣ 1

2
3

⎤
⎦ =

[
1
6

− 1
6

]
giving x = 1

6 and y = −1
6

(e) Minimize L = (x − y − 1)2 + (−2x + 2y − 2)2 + (2x − 2y − 3)2

∂L

∂x
= 0 ⇒ 2(x − y − 1) − 4(−2x + 2y − 2) + 4(2x − 2y − 3) = 18x − 18y − 6 = 0

⇒ 3x − 3y − 1 = 0
∂L

∂y
= 0 ⇒ −2(x − y − 1) + 4(−2x + 2y − 2) − 4(2x − 2y − 3) = −18x + 18y + 6 = 0

⇒ −3x + 3y + 1 = 0

Solving the two simultaneous equations gives the least squares solution x = 1
6 ,

y = − 1
6 confirming the answer in (d)

47(a) Equations may be written as

⎡
⎣ 3 −1

1 3
1 1

⎤
⎦[

x
y

]
=

⎡
⎣ 1

2
3

⎤
⎦ ≡ Ax = b

Using the pseudo inverse obtained in Example 1.39, the least squares solution is

x = A†b ⇒
[

x
y

]
= 1

60

[
17 4 5
−7 16 5

]⎡
⎣ 1

2
3

⎤
⎦ =

[
2
3
2
3

]

giving x = y = 2
3
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(b) Minimize L = (3x − y − 1)2 + (x + 3y − 2)2 + (x + y − 3)2

∂L

∂x
= 0 ⇒ 6(3x − y − 1) + 2(x + 3y − 2) + 2(x + y − 3) = 0

⇒ 11x + y − 8 = 0
∂L

∂y
= 0 ⇒ −2(3x − y − 1) + 6(x + 3y − 2) + 2(x + y − 3) = 0

⇒ x + 11y − 8 = 0

Solving the two simultaneous equations gives the least squares solution x = y = 2
3

confirming the answer in (a)

48(a)

A =

⎡
⎢⎣

1 0 −2
0 1 −1
−1 1 1
2 −1 2

⎤
⎥⎦ row3 + row1

→
row4 − 2row1

⎡
⎢⎣

1 0 −2
0 1 −1
0 1 −1
0 −1 6

⎤
⎥⎦ row3 − row2

→
row4 + row2

⎡
⎢⎣

1 0 −2
0 1 −1
0 0 0
0 0 5

⎤
⎥⎦

Thus, A is of rank 3 and is of full rank as 3=min(4,3)

(b) Since A is of full rank

A† = (AT A)−1AT =

⎡
⎣ 6 −3 1
−3 3 −2
1 −2 10

⎤
⎦
−1 ⎡

⎣ 1 0 −1 2
0 1 1 −1
−2 −1 1 2

⎤
⎦

⇒ A† = 1
75

⎡
⎣ 26 28 3

28 59 9
3 9 9

⎤
⎦

⎡
⎣ 1 0 −1 2

0 1 1 −1
−2 −1 1 2

⎤
⎦ = 1

15

⎡
⎣ 4 5 1 6

2 10 8 3
−3 0 3 3

⎤
⎦

(c) Direct multiplication confirms that A† satisfies the conditions

AAT and AT A are symmetric, AA†A = A and A†AA† = A†

49(a) A =

⎡
⎣ 2 1

1 2
1 1

⎤
⎦ is of full rank 2 so pseudo inverse is

A† = (AT A)−1AT =
[

0.6364 −0.3636 0.0909
−0.3636 0.6364 0.0909

]
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Equations (i) are consistent with unique solution

[
x
y

]
= A†

⎡
⎣ 3

3
2

⎤
⎦ ⇒ x = y = 1

Equations (ii) are inconsistent with least squares solution

[
x
y

]
= A†

⎡
⎣ 3

3
3

⎤
⎦ ⇒ x = 1.0909, y = 1.0909

(b) A =

⎡
⎣ 2 1

1 2
10 10

⎤
⎦ with pseudo inverse A† =

[
0.5072 −0.4928 0.0478
−0.4928 0.5072 0.0478

]

Equations (i) are consistent with unique solution

[
x
y

]
= A†

⎡
⎣ 3

3
20

⎤
⎦ ⇒ x = y = 1

Equations (ii) are inconsistent and have least squares solution

[
x
y

]
= A†

⎡
⎣ 3

3
30

⎤
⎦ ⇒ x = y = 1.4785

(c) A =

⎡
⎣ 2 1

1 2
100 100

⎤
⎦ with pseudo inverse A† =

[
0.5001 −0.4999 0.0050
−o.4999 0.5001 0.0050

]

Equations (i) are consistent with unique solution

[
x
y

]
= A†

⎡
⎣ 3

3
200

⎤
⎦ ⇒ x = y = 1

Equations (ii) are inconsistent with least squares solution

[
x
y

]
= A

⎡
⎣ 3

3
300

⎤
⎦ ⇒ x = y = 1.4998
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Since the sets of equations (i) are consistent weighting the last equation has no
effect on the least squares solution which is unique. However, since the sets of
equations (ii) are inconsistent the solution given is not unique but is the best in
the least squares sense. Clearly as the weighting of the third equation increases
from (a) to (b) to (c) the better is the matching to the third equation, and the last
case (c) does not bother too much with the first two equations.

50 Data may be represented in the matrix form

⎡
⎢⎢⎢⎣

0 1
1 1
2 1
3 1
4 1

⎤
⎥⎥⎥⎦

[
m
c

]
=

⎡
⎢⎢⎢⎣

1
1
2
2
3

⎤
⎥⎥⎥⎦

Az = Y

MATLAB gives the pseudo inverse

A† =
[
−0.2 −0.1 0 0.1 0.2
0.8 0.4 0.2 0 −0.2

]

and, the least squares solution

[
m
c

]
= A†y =

[
0.5
0.8

]

leads to the linear model

y = 0.5x + 0.8

Exercises 1.9.3

51(a) Taking x1 = y

ẋ1 = x2 =
dy

dt

ẋ2 = x3 =
d2y

dt2

ẋ3 =
d3y

dt3
= u(t) − 4x1 − 5x2 − 4x3
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Thus, state space form is

ẋ =

⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
−4 −5 −4

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ +

⎡
⎣ 0

0
1

⎤
⎦u(t)

y = x1 = [1 0 0] [x1 x2 x3]T

51(b)
x1 = y

x2 = ẋ1 =
dy

dt

x3 = ẋ2 =
d2y

dt2

x4 = ẋ3 =
d3y

dt3

ẋ4 =
d4y

dt4
= −4x2 − 2x3 + 5u(t)

Thus, state space form is

ẋ =

⎡
⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎦ =

⎡
⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 −4 −2 0

⎤
⎥⎦

⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦ +

⎡
⎢⎣

0
0
0
5

⎤
⎥⎦u(t)

y = x1 = [1 0 0 0] [x1 x2 x3 x4]T

52(a) Taking A to be the companion matrix of the LHS

A =

⎡
⎣ 0 1 0

0 0 1
−7 −5 −6

⎤
⎦

and taking b = [ 0 0 1 ]T and then using (1.67) in the text c = [ 5 3 1 ].
Then from (1.84) the state-space form of the dynamic model is

ẋ = Ax + bu, y =cx

(b) Taking A to be the companion matrix of the LHS

A =

⎡
⎣ 0 1 0

0 0 1
0 −3 −4

⎤
⎦
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and taking b = [ 0 0 1 ]T then using (1.67) in the text c = [ 2 3 1 ]. Then
from (1.84) the state-space form of the dynamic model is

ẋ = Ax + bu, y =cx

53 Applying Kirchhoff’s second law to the individual loops gives

e = R1(i1 + i2) + vc + L1
di1
dt

, v̇c =
1
C

(i1 + i2)

e = R1(i1 + i2) + vc + L2
di2
dt

+ R2i2

so that,
di1
dt

= −R1

L1
i1 −

R1

L1
i2 −

vc

L1
+

e

L1

di2
dt

= −R1

L2
i1 −

(R1 + R2)
L2

i2 −
vc

L2
+

e

L2

dvc

dt
=

1
C

(i1 + i2)

Taking x1 = i1, x2 = i2, x3 = vc, u = e(t) gives the state equation as

⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣−R1

L1
−R2

L1
− 1

L1

−R1
L2

− (R1+R2)
L2

− 1
L2

1
C

1
C 0

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ +

⎡
⎣ 1

L1
1

L2
0

⎤
⎦u(t) (1)

The output y = voltage drop across R2 = R2i2 = R2x2 so that

y = [0 R2 0] [x1 x2 x3]T (2)

Equations (1) and (2) are then in the required form

ẋ = A x + bu , y = cT x

54 The equations of motion, using Newton’s second law, may be written down
for the body mass and axle/wheel mass from which a state-space model can be
deduced. Alternatively a block diagram for the system, which is more informative
for modelling purposes, may be drawn up as follows
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where s denotes the Laplace ‘s ’ and upper case variables X,Y, Y1 denote the
corresponding Laplace transforms of the corresponding lower case time domain
variables x(t), y(t), y1(t); y1(t) is the vertical displacement of the axle/wheel mass.
Using basic block diagram rules this block diagram may be reduced to the
input/output transfer function model

X−→
K1(K + Bs)

(M1s2 + K1)(Ms2 + Bs + K) + Ms2(K + Bs) Y−→

or the time domain differential equation model

M1M
d4y

dt4
+ B(M1 + M)

d3y

dt3
+ (K1M + KM1 + KM)

d2y

dt2

+ K1B
dy

dt
+ K1Ky = K1K2x + K1B

dx

dt

A possible state space model is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ż1

ż2

ż3

ż4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−B(M1 + M) 1 0 0

−(K1M+KM1+KM)
MM1

0 1 0

−K1B
M1M 0 0 1

−K1K
M1M 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

K1B
M1M

K1K2
MM1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x(t)

y = [1 0 0 0]z(t), z = [z1 z2 z3 z4]T .

Clearly alternative forms may be written down, such as, for example, the
companion form of equation (1.66) in the text. Disadvantage is that its output
y is not one of the state variables.
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55 Applying Kirchhoff’s second law to the first loop gives

x1 + R3(i − i1) + R1i = u

that is, (R1 + R3)i − R3i1 + x1 = u

Applying it to the outer loop gives

x2 + (R4 + R2)i1 + R1i = u

Taking α = R1R3 + (R1 + R3)(R4 + R2) then gives

αi = (R2 + R3 + R4)u − (R2 + R4)x1 − R3x2

and αi1 = R3u + R1x1 − (R1 + R3)x2

Thus,

α(i − i1) = (R4 + R2)u − (R1 + R2 + R4)x1 + R1x2

Voltage drop across C1 : ẋ1 =
1
C1

(i − i1)

=
1

αC1
[−(R1 + R2 + R4)x1 + R1x2 + (R4 + R2)u](1)

Voltage drop across C2 : ẋ2 =
1
C2

i1

=
1

αC2
[R1x1 − (R1 + R3)x2 + R3u] (2)

y1 = i1 =
R1

α
x − (R1 + R3)

α
x2 +

R3

α
u (3)

y2 = R2(i − i1) = −R3

α
(R1 + R2 + R4)x1 +

R3R1

α
x2 + R3

(R4 + R2)
α

u (4)

Equations (1)–(4) give the required state space model.

Substituting the given values for R1, R2, R3, R4, C1 and C2 gives the state matrix
A as

A =

⎡
⎣ −9

35.10−3
1

35.10−3

1
35.10−3

−4
35.10−3

⎤
⎦ =

103

35

[
−9 1
1 −4

]
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Let β =
103

35
then eigenvalues are solutions of

∣∣∣∣−9β − λ β
β −4β − λ

∣∣∣∣ = λ2 + 13βλ + 35β2 = 0

giving

λ =
−13 ±

√
29

2
β � −2.6 × 102 or − 1.1 × 102

Exercises 1.10.4

56 ΦΦΦ(t) = eAt where A =
[

1 0
1 1

]
Eigenvalues of A are λ = 1, λ = 1 so

eAt = α0(t)I + α1(t)A

where α0, α1 satisfy
eλt = α0 + α1λ, λ = 1

teλt = α1

giving α1 = tet, α0 = et − tet

Thus,

ΦΦΦ(t) = eAt =
[

et − tet 0
0 et − tet

]
+

[
tet 0
tet tet

]
=

[
et 0
tet et

]

56(a) ΦΦΦ(0) =
[

1 0
0 1

]
= I

56(b)

ΦΦΦ(t2 − t1)ΦΦΦ(t1) =
[

et2e−t1 0
(t2 − t1)et2e−t1 et2e−t1

] [
et1 0

t1e
t1 et1

]

=
[

et2 0
(t2 − t1)et2 + t1e

t2 et2

]
=

[
et2 0

t2e
t2 et2

]
= ΦΦΦ(t2)
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56(c) ΦΦΦ−1 =
1

e2t

[
et 0

−tet et

]
=

[
e−t 0

−te−t e−t

]
= ΦΦΦ(−t)

57 Take x1 = y, x2 = ẋ1 =
dy

dt
, ẋ2 =

d2y

dt2
= −x1 − 2x2 so in vector–matrix

form the differential equation is

ẋ =
[

0 1
−1 −2

]
x, y = [1 0]A

Taking A =
[

0 1
−1 −2

]
its eigenvalues are λ = −1, λ = −1

eAt = α0I + α1A where α0, α1 satisfy

eλt = α0 + α1λ, λ = −1

teλt = α1

giving α0 = e−t + te−t, α1 = te−t . Thus,

eAt =
[

e−t + te−t te−t

−te−t e−t − te−t

]

Thus, solution of differential equation is

x(t) = eAtx(0), x(0) = [1 1]T

=
[

e−t + 2te−t

e−t − 2te−t

]

giving y(t) = x1(t) = e−t + 2te−t

The differential equation may be solved directly using the techniques of Chapter 10
of the companion text Modern Engineering Mathematics or using Laplace
transforms. Both approaches confirm the solution

y = (1 + 2t)e−2t

58 Taking A =
[

1 0
1 1

]
then from Exercise 56

eAt =
[

et 0
tet et

]
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and the required solution is

x(t) = eAtx(0) =
[

et 0
tet et

] [
1
1

]
=

[
et

(1 + t)et

]

59 Taking A =
[

0 1
−6 −5

]
its eigenvalues are λ1 = −3, λ2 = −2.

Thus, eAt = α0I + α1A where α0, α1 satisfy

e−3t = α0 − 3α1, e−2t = α0 − 2α1

α0 = 3e−2t − 2e−3t, α1 = e−2t − e−3t

so

eAt =
[

3e−2t − 2e−3t e−2t − e−3t

6e−3t − te−2t 3e−3t − 2e−2t

]

Thus, the first term in (6.73) becomes

eAtx(0) = eAt[1 − 1]T =
[

2e−2t − e−3t

3e−3t − 4e−2t

]

and the second term is

∫ t

0

eA(t−τ)bu(τ)dτ =
∫ t

0

2
[

6e−2(t−τ) − 6e−3(t−τ)

18e−3(t−τ) − 12e−2(t−τ)

]
dτ

= 2
[

3e−2(t−τ) − 2e−3(t−τ)

6e−3(t−τ) − 6e−2(t−τ)

]t

0

= 2
[

1 − 3e−2t + 2e−3t

6e−2t − 6e−3t

]

Thus, required solution is

x(t) =
[

2e−2t − e−3t + 2 − 6e−3t + 4e−3t

3e−3t − 4e−2t + 12e−2t − 12e−3t

]

=
[

2 − 4e−2t + 3e−3t

8e−2t − 9e−3t

]
that is, x1 = 2 − 4e−2t + 3e−3t, x2 = 8e−2t − 9e−3t
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60 In state space form,

ẋ =
[

0 1
−2 −3

]
x +

[
2
0

]
u(t), u(t) = e−t, x(0) = [0 1]T

Taking A =
[

0 1
−2 −3

]
its eigenvalues are λ1 = −2, λ2 = −1 so

eAt = α0I + α1A where α0, α1 satisfy

e−2t = α0 − 2α1, e−t = α0 − α1 ⇒ α0 = 2e−t − e−2t, α1 = e−t − e−2t

Thus,

eAt =
[

2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

]

and eAtx(0) =
[

e−t − e−2t

−e−t + 2e−2t

]
∫ t

0

A(t−τ)bu(τ)dτ =
∫ t

0

[
4e−(t−τ) − 2e−2(t−τ)

−4e−(t−τ) + 4e−2(t−τ)

]
e−τdτ

=
∫ t

0

[
4e−t − 2e−2teτ

−4e−t + 4e−2teτ

]
dτ

=
[

4τe−t − 2e−2teτ

−4τe−t + 4e−2teτ

]t

0

=
[

4te−t − 2e−t + 2e−2t

−4te−t + 4e−t − 4e−2t

]

We therefore have the solution

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)bu(τ)dτ

=
[

4te−t + e−2t − e−t

−4te−t + 3e−t − 2e−2t

]

that is,
x1 = 4te−t + e−2t − e−t, x2 = −4te−t + 3e−t − 2e−2t

61 Taking A =
[

3 4
2 1

]
its eigenvalues are λ1 = 5, λ2 = −1.

eAt = α0I + α1A where α0, α1 satisfy

e5t = α0 + 5α1, e−t = α0 − α1 ⇒ α0 =
1
6
e5t +

5
6
e−t, α1 =

1
6
e5t +

1
6
e−t
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Thus, transition matrix is

eAt =
[ 1

3e−t + 2
3e5t 2

3e5t − 2
3e−t

1
3e5t − 1

3e−t 1
3e5t + 2

3e−t

]

and eAtx(0) = eAt[1 2]T =
[

2e5t − e−t

e5t + e−t

]
∫ t

0

eA(t−τ)Bu(τ)dτ =
∫ t

0

eA(t−τ)

[
0 1
1 1

] [
4
3

]
dτ

=
∫ t

0

At−τ

[
3
7

]
dτ

=
∫ t

0

[
20
3 e5(t−τ) − 11

3 e−(t−τ)

10
3 e5(t−τ) + 11

3 e−(t−τ)

]
dτ

=
[
− 4

3e5(t−τ) − 11
3 e−(t−τ)

− 2
3e5(t−τ) + 11

3 e−(t−τ)

]t

0

=
[
−5 + 11

3 e−t + 4
3e5t

3 − 11
3 e−t + 2

3e5t

]

Thus, solution is

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)Bu(t)dτ

=
[
−5 + 8

3e−t + 10
3 e5t

3 − 8
3e−t + 5

3e5t

]

Exercises 1.10.7

62 Eigenvalues of matrix A =
[
− 3

2
3
4

1 − 5
2

]
are given by

| A − λI |= λ2 + 4λ + 3 = (λ + 3)(λ + 1) = 0

that is, λ1 = −1, λ2 = −3

having corresponding eigenvectors e1 = [3 2]T, e2 = [1 − 2]T.

Denoting the reciprocal basis vectors by

r1 = [r11 r12]T , r2 = [r21 r22]T
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and using the relationships rT
i ej = δij(i, j = 1, 2) we have

3r11 + 2r12 = 1
r11 − 2r12 = 0

}
r1 = [14

1
8 ]T

3r21 + 2r22 = 0
r21 − 2r22 = 1

}
r2 = [14 − 3

8 ]T

Thus,

rT
1 x(0) =

1
2

+
1
2

= 1, rT
2 x(0) =

1
2
− 3

2
= −1

so the spectral form of solution is

x(t) = e−te1 − e−3te2

The trajectory is readily drawn showing that it approaches the origin along the
eigenvector e1 since e−3t → 0 faster than e−t . See Figure 1.9 in the text.

63 Taking A =
[
−2 2

2 −5

]
eigenvalues are λ1 = −6, λ2 = −1 having

corresponding eigenvectors e1 = [1 − 2]T , e2 = [2 1]T .

Denoting the reciprocal basis vectors by

r1 = [r11 r12]T, r2 = [r21 r22]T

and using the relationships rT
i ej = δij(i, j = 1, 2) we have

r11 − 2r12 = 1
2r11 + r12 = 0

}
⇒ r11 = 1

5 , r12 = − 2
5 ⇒ r1 = 1

5 [1 − 2]T

r21 − 2r22 = 0
2r21 + r22 = 1

}
⇒ r21 = 2

5 , r22 = − 1
5 ⇒ r2 = 1

5 [2 1]T

Thus,

rT
1 x(0) =

1
5
[1 − 2]

[
2
3

]
= −4

5

rT
2 x(0) =

1
5
[2 1]

[
2
3

]
=

7
5
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then response is

x(t) =
2∑

i=1

rT
i x(0)eλitei

= −4
5
e−6t

[
1
−2

]
+

7
5
e−t

[
2
1

]
=

1
5

[
−4e−6t + 14e−t

8e−6t + 7e−t

]

Again, following Figure 1.9 in the text, the trajectory is readily drawn and showing
that it approaches the origin along the eigenvector e2 since e−6t → 0 faster than
e−t .

64 Taking A =
[

0 −4
2 −4

]
eigenvalues are λ1 = −2 + j2, λ2 = −2 − j2 having

corresponding eigenvectors e1 = [2 1 − j]T , e2 = [2 1 + j]T .

Let r1 = r′1 + jr′′1 be reciprocal base vector to e1 then

rT
1 e1 = 1 = [r′ + jr′′1 ]T [e′1 + je′′1 ]T where e1 = e′1 + je′′1

rT
1 e2 = 0 = [r′1 + jr′′1 ]T [e′1 − je′′1 ]T since e2 = conjugate e1

Thus,

[(r′1)
T e′1 − (r′′1)T e′′1 ] + j[(r′′1)T e′1 + (r′1)

T e′′1 ] = 1

and

[(r′1)
T e′1 − (r′′1)T e′1] + j[(r′1)

T e1
1 − (r′1)

T e′1] = 0
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giving

(r′1)
T e′1 =

1
2

, (r′1)
T e′1 =

1
2

, (r′1)
T e′1 = (r′1)

T e′′1 = 0

Now e′1 = [2 1]T , e′′1 = [0 − 1]T

Let r′1 = [a b]T and r′′1 = [c d]T then from above

2a + b =
1
2
,−b = 0 and −d = −1

2
, 2c + d = 0

giving a =
1
4
, b = 0, c = −1

4
, d =

1
2

so that

r1 = r′1 + jr′′1 =
1
4
[1 − j 2j]T

Since r2 is the complex conjugate of r1

r2 =
1
4
[1 + j − 2j]T

so the solution is given by

x(t) = rT
1 x(0)eλ1te1 + rT

2 x(0)eλ2te2

and since rT
1 x(0) =

1
2
(1 + j), rT

2 x(0) =
1
2
(1 − j)

x(t) = e−2t

{
1
2
(1 + j)e2jt

[
2

1 − j

]
+

1
2
(1 − j)e−2jt

[
2

1 + j

]}

= e−2t

{
(cos 2t − sin 2t)

[
2
1

]
− (cos 2t + sin 2t)

[
0
−1

]}

= e−2t

{
(cos 2t − sin 2t)e′1 − (cos 2t + sin 2t)e′′1

}
where e1 = e′1 + je′′1

To plot the trajectory, first plot e′1, e
′′
1 in the plane and then using these as a frame

of reference plot the trajectory. A sketch is as follows
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65 Following section 1.10.6 if the equations are representative of

ẋ = A x + bu , y = cT x

then making the substitution x = M ξξξ , where M is the modal matrix of A ,
reduces the system to the canonical form

ξ̇ξξ = Λ ξξξ + (M−1b)u , y = (cT M)ξξξ

where Λ is the spectral matrix of A .

Eigenvalues of A are given by

∣∣∣∣∣∣
1 − λ 1 −2
−1 2 − λ 1
0 1 −1 − λ

∣∣∣∣∣∣ = λ3 − 2λ2 − λ + 2 = (λ − 1)(λ + 2)(λ + 1) = 0

so the eigenvalues are λ1 = 2, λ2 = 1, λ3 = −1. The corresponding eigenvectors
are readily determined as

e1 = [1 3 1]T , e2 = [3 2 1]T , e3 = [1 0 1]T

Thus, M =

⎡
⎣ 1 3 1

3 2 0
1 1 1

⎤
⎦ and Λ =

⎡
⎣ 2 0 0

0 1 0
0 0 −1

⎤
⎦
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M−1 =
1

detM
adj M = −1

6

⎡
⎣ 2 −2 −2
−3 0 3

1 2 −7

⎤
⎦ so required canonical form is

⎡
⎣ ξ̇1

ξ̇2

ξ̇3

⎤
⎦ =

⎡
⎣ 2 0 0

0 1 0
0 0 −1

⎤
⎦

⎡
⎣ ξ1

ξ2

ξ3

⎤
⎦ +

⎡
⎣ 1

3
0
− 4

3

⎤
⎦u

y = [1 − 4 − 2] [ξ1 ξ2 ξ3]T

66 Let r1 = [r11 r12 r13]T , r2 = [r21 r22 r23]T , r3 = [r31 r32 r33]T be the
reciprocal base vectors to e1 = [1 1 0]T , e2 = [0 1 1]T , e3 = [1 2 3]T .

rT
1 e1 = r11 + r12 = 1

rT
1 e2 = r11 + r13 = 0

rT
1 e3 = r11 + 2r12 + 3r13 = 0

⎫⎬
⎭ ⇒ r1 =

1
2
[1 1 − 1]T

rT
2 e1 = r21 + r22 = 0

rT
2 e2 = r22 + r23 = 1

rT
2 e3 = r21 + 2r22 + 3r23 = 0

⎫⎬
⎭ ⇒ r2 =

1
2
[−3 3 1]T

rT
3 e1 = r31 + r32 = 0

rT
3 e2 = r32 + r33 = 0

rT
3 e3 = r31 + 2r32 + 3r33 = 1

⎫⎬
⎭ ⇒ r3 =

1
2
[1 − 1 1]T

Then using the fact that x(0) = [1 1 1]T

α0 = rT
1 x(0) = − 1

2 , α1 = rT
2 x(0) = 1

2 , α3 = rT
3 x(0) = 1

2

67 The eigenvectors of A are given by∣∣∣∣ 5 − λ 4
1 2 − λ

∣∣∣∣ = (λ − 6)(λ − 1) = 0

so the eigenvalues are λ1 = 6, λ2 = 1. The corresponding eigenvectors are readily
determined as e1 = [4 1]T , e2 = [1 − 1]T .

Taking M to be the modal matrix M =
[

4 1
1 −1

]
then substituting x = Mξξξ

into ẋ = Ax(t) reduces it to the canonical form

ξ̇ξξ = ΛΛΛ ξξξ
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where ΛΛΛ =
[

6 0
0 1

]
. Thus, the decoupled canonical form is

[
ξ̇1

ξ̇2

]
=

[
6 0
0 1

] [
ξ1

ξ2

]
or ξ̇1 = 6ξ1 and ξ̇2 = ξ2

which may be individually solved to give

ξ1 = αe6t and ξ1 = βet

Now ξξξ(0) = M−1x(0) = −1
5

[
−1 −1
−1 4

] [
1
4

]
=

[
1

−3

]
so ξ1(0) = 1 = α and ξ2(0) = −3 = β

giving the solution of the uncoupled system as

ξξξ =
[

e6t

−3et

]

The solution for x(t) as

x = M ξξξ =
[

4 1
1 −1

] [
e6t

−3et

]
=

[
4e6t − 3et

e6t + 3et

]

68 Taking A =
[

3 4
2 1

]
its eigenvalues are λ1 = 5, λ2 = −1 having

corresponding eigenvectors e1 = [2 1]T , e2 = [1 − 1]T .

Let M =
[

2 1
1 −1

]
be the modal matrix of A , then ẋ = M ξξξ reduces the

equation to

ξ̇ξξ(t) =
[

5 0
0 −1

]
ξξξ + M−1

[
0 1
1 1

]
u(t)

Since M−1 =
1

detM
adj M =

1
3

[
1 1
1 −2

]
we have,

ξ̇ξξ(t) =
[

5 0
0 −1

]
ξξξ +

1
3

[
1 2

−2 −1

]
u(t)

With u(t) = [4 3]T the decoupled equations are

ξ̇1 = 5ξ1 +
10
3

ξ̇2 = −ξ2 −
11
3
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which can be solved independently to give

ξ1 = αe5t − 2
3

, ξ2 = βe−t − 11
3

We have that ξξξ(0) = MMM−1x(0) =
1
3

[
1 1
1 −2

] [
1
2

]
=

[
1

−1

]
so

1 = α − 2
3

⇒ α =
5
3

−1 = β − 11
3

⇒ β =
8
3

giving

ξξξ =
[

5
3e5t − 2

3
8
3e−t − 11

3

]

and x = MMM ξξξ =
[

2 1
1 −1

] [
5
3e5t − 2

3
8
3e−t − 11

3

]
=

[
−5 + 8

3e−t + 10
3 e5t

3 − 8
3e−t + 5

3e5t

]
which confirms Exercises 57 and 58.

Exercises 1.11.1 (Lyapunov)

69 Take tentative Lyapunov functionV(x) = xT Px giving

V̇(x) = xT (AT P + PA)x = −xT Qx where

AT P + PA = −Q (i)

Take Q = I so that V̇(x) = −(x2
1 + x2

2) which is negative definite. Substituting in
(i) gives

[
−4 3
2 −2

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
−4 2
3 −2

]
=

[
−1 0
0 −1

]

Equating elements gives

−8p11 + 6p12 = −1, 4p12 − 4p22 = −1, 2p11 − 6p12 + 3p22 = 0

Solving gives p11 = 5
8 , p12 = 2

3 , p22 = 11
12 so that, P =

[
5
8

2
3

2
3

11
12

]
Principal minors

of P are: 5
8 > 0 and det P = ( 55

96 −
4
9 ) > 0 so P is positive definite and the system

is asymptotically stable
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Note that, in this case, we have V(x) = 5
8x2

1 + 4
3x1x2 + 11

12x2
2 which is positive

definite and V̇(x) = 5
4x1ẋ1 + 4

3 ẋ1x2 + 4
3x1ẋ2 + 11

6 x2ẋ2 = −x2
1−x2

2 which is negative
definite.

70 Take tentative Lyapunov function V(x) = xT Px giving

V̇(x) = xT (AT P + PA)x = −xT Qx where

AT P + PA = −Q
(i)

Take Q = I so that V̇(x) = −(x2
1 + x2

2) which is negative definite. Substituting in
(i) gives

[
−3 −1
2 −1

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
−3 2
−1 −1

]
=

[
−1 0
0 −1

]

Equating elements gives

−6p11 − 2p12 = −1, 4p12 − 2p22 = −1, 2p11 − 4p12 − p22 = 0

Solving gives p11 = 7
40 , p12 = − 1

40 , p22 = 18
40 so that P =

[
7
40 − 1

40
− 1

40
18
40

]
Principal minors of P are: 7

40 > 0 and det P = 5
64 > 0 so P is positive definite

and the system is asymptotically stable.

71 Take tentative Lyapunov function V(x) = xT Px giving

V̇(x) = xT (AT P + PA)x = −xT Qx where

AT P + PA = −Q (i)

Take Q = I so that V̇(x) = −(x2
1 + x2

2) which is negative definite. Substituting in
(i) gives

[
0 −a
1 −b

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 1
−a −b

]
=

[
−1 0
0 −1

]

Equating elements gives

−8p12 = −1, 2p12 − 2bp22 = −1, p11 − bp12 − ap22 = 0
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Solving gives p12 = 1
2a , p22 = a+1

2ab , p11 = b2+a2+a
2ab so that, P =

[
b2+a2+a

2ab
1
2a

1
2a

a+1
2ab

]
For asymptotic stability the principal minors of P must be positive. Thus,

b2 + a2 + a

2ab
> 0 (ii)

and (b2 + a2 + a)(a + 1) > b2 (iii)

Case 1 ab > 0

(ii) ⇒ a2 + b2 + a > 0 so (iii) ⇒ a + 1 >
b2

b2 + a2 + a

⇒ a[a2 + (a + 1)2] > 0 ⇒ a > 0.

Since ab > 0 ⇒ b > 0 it follows that (ii) and (iii) are satisfied if a, b > 0
Case 2 ab < 0 No solution to (ii) and (iii) in this case.
Thus, system is asymptotically stable when both a > 0 and b > 0.
Note: This example illustrates the difficulty in interpretating results when using
the Lyapunov approach. It is a simple task to confirm this result using the Routh–
Hurwitz criterion developed in Section 5.6.2.

72(a)

ẋ1 = x2 (i)

ẋ2 = −2x2 + x3 (ii)

ẋ3 = −kx1 − x3 (iii)

If V̇(x) is identically zero then x3 is identically zero ⇒ x1 is identically zero from
(iii)

⇒ x2is identically zero from (i)

Hence V̇(x) is identically zero only at the origin.

(b) AT P + PA = −Q ⇒

⎡
⎣ 0 0 −k

1 −2 0
0 1 −1

⎤
⎦

⎡
⎣ p11 p12 p13

p12 p22 p23

p13 p23 p33

⎤
⎦+

⎡
⎣ p11 p12 p13

p12 p22 p23

p13 p23 p33

⎤
⎦

⎡
⎣ 0 1 0

0 −2 1
−k 0 −1

⎤
⎦ =

⎡
⎣ 0 0 0

0 0 0
0 0 −1

⎤
⎦
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Equating elements and solving for the elements of P gives the matrix

P =

⎡
⎣

k2+12k
12−2k

6k
12−2k 0

6k
12−2k

3k
12−2k

k
12−2k

0 k
12−2k

6
12−2k

⎤
⎦

(c) Principal minors of Pare:

Δ1 =
k2 + 12k
12 − 2k

> 0 if k > 0and(12 − 2k) > 0 ⇒ 0 < k < 6

Δ2 =
[
k2 + 12k
12 − 2k

] [
3k

12 − 2k

]
− 36k2

12 − 2k
=

3k3

(12 − 2k)2
> 0 if k > 0

Δ3 =
(k2 + 12k)(8k − k2)

(12 − 2k)3
− 216k2

(12 − 2k)3
> 0if (6k3 − k4) > 0 ⇒ 0 < k < 6

Thus system asymptotically stable for 0 < k < 6.

73 State-space form is

ẋ =
[

ẋ1

ẋ2

]
=

[
0 1
−k −a

] [
x1

x2

]
(i)

Take V(x) = kx2
1 + (x2 + ax1)2 then

V̇(x) = 2kx1ẋ1 + 2(x2 + ax1)(ẋ2 + aẋ1)

= 2kx1(x2) + 2(x2 + ax1)(−kx1 − ax2 + ax1)using (i)

= −2kax2
1

Since k>0 and a>0 then V̇(x) is negative semidefinite but is not identically zero
along any trajectory of (i). Consequently, this choice of Lyapunov function assures
asymptotic stability.

Review Exercises 1.13

1(a) Eigenvalues given by

∣∣∣∣∣∣
−1 − λ 6 12

0 −13 − λ 30
0 −9 20 − λ

∣∣∣∣∣∣ = (1 + λ)[(−13 − λ)(20 − λ) + 270] = 0
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that is, (1 + λ)(λ − 5)(λ − 2) = 0
so eigenvalues are λ1 = 5, λ2 = 2, λ3 = −1
Eigenvectors are given by corresponding solutions of⎡

⎣−1 − λi 6 12
0 −13 − λi 30
0 −9 20 − λi

⎤
⎦

⎡
⎣ ei1

ei2

ei3

⎤
⎦ = 0

When i = 1, λi = 5 and solution given by

e11

198
=

−e12

−90
=

e13

54
= β1

so e1 = [11 5 3]T

When i = 2, λi = 2 and solution given by

e21

216
=

−e22

−54
=

e23

27
= β2

so e2 = [8 2 1]T

When i = 3, λi = −1 and solution given by

e31

1
=

−e32

0
=

e33

0
= β3

so e3 = [1 0 0]T

1(b) Eigenvalues given by∣∣∣∣∣∣
2 − λ 0 1
−1 4 − λ −1
−1 2 0 − λ

∣∣∣∣∣∣ =
∣∣∣∣ 4 − λ −1

2 −λ

∣∣∣∣ +
∣∣∣∣−1 4 − λ
−1 2

∣∣∣∣ = 0

that is, 0 = (2 − λ)[(4 − λ)(−λ) + 2] + [−2 + (4 − λ)]

= (2 − λ)(λ2 − 4λ + 3) = (2 − λ)(λ − 3)(λ − 1) = 0

so eigenvalues are
λ1 = 3, λ2 = 2, λ3 = 1

Eigenvectors are given by the corresponding solutions of

(2 − λi)ei1 + 0ei2 + ei3 = 0

−ei1 + (4 − λi)ei2 − ei3 = 0

−ei1 + 2ei2 − λiei3 = 0
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Taking i = 1, 2, 3 gives the eigenvectors as

e1 = [1 2 1]T , e2 = [2 1 0]T , e3 = [1 0 − 1]T

1(c) Eigenvalues given by

∣∣∣∣∣∣
1 − λ −1 0
−1 2 − λ −1
0 −1 1 − λ

∣∣∣∣∣∣ R1 + (R2 + R3)

∣∣∣∣∣∣
−λ −λ −λ
−1 2 − λ −1
0 −1 1 − λ

∣∣∣∣∣∣ = 0

that is, λ

∣∣∣∣∣∣
−1 −1 −1
−1 2 − λ −1
0 −1 1 − λ

∣∣∣∣∣∣ = λ

∣∣∣∣∣∣
−1 0 0
−1 3 − λ 0
0 −1 1 − λ

∣∣∣∣∣∣ = λ(3 − λ)(1 − λ) = 0

so eigenvalues are λ1 = 3, λ2 = 1, λ3 = 0
Eigenvalues are given by the corresponding solutions of

(1 − λi)ei1 − ei2 − 0ei3 = 0

−ei1 + (2 − λi)ei2 − ei3 = 0

0ei1 − ei2 + (1 − λi)ei3 = 0

Taking i = 1, 2, 3 gives the eigenvectors as

e1 = [1 − 2 1]T , e = [1 0 − 1]T , e3 = [1 1 1]T

2 Principal stress values (eigenvalues) given by

∣∣∣∣∣∣
3 − λ 2 1

2 3 − λ 1
1 1 4 − λ

∣∣∣∣∣∣ R1 + (R2 + R3)

∣∣∣∣∣∣
6 − λ 6 − λ 6 − λ

2 3 − λ 1
1 1 4 − λ

∣∣∣∣∣∣
= (6 − λ)

∣∣∣∣∣∣
1 1 1
2 3 − λ 1
1 1 4 − λ

∣∣∣∣∣∣ = 0

that is, (6 − λ)

∣∣∣∣∣∣
1 0 0
2 1 − λ −1
1 0 3 − λ

∣∣∣∣∣∣ = (6 − λ)(1 − λ)(3 − λ) = 0

so the principal stress values are λ1 = 6, λ2 = 3, λ3 = 1.
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Corresponding principal stress direction e1, e2 and e3 are given by the solutions
of

(3 − λi)ei1 + 2ei2 + ei3 = 0

2ei1 + (3 − λi)ei2 + ei3 = 0

ei1 + ei2 + (4 − λi)ei3 = 0

Taking i = 1, 2, 3 gives the principal stress direction as

e1 = [1 1 1]T, e2 = [1 1 − 2]T, e3 = [1 − 1 0]T

It is readily shown that eT
1 e2 = eT

1 e3 = eT
2 e3 = 0 so that the principal stress

directions are mutually orthogonal.

3 Since [1 0 1]T is an eigenvector of A

⎡
⎣ 2 −1 0
−1 3 b

0 b c

⎤
⎦

⎡
⎣ 1

0
1

⎤
⎦ = λ

⎡
⎣ 1

0
1

⎤
⎦

so 2 = λ,−1 + b = 0, c = λ

giving b = 1 and c = 2.
Taking these values A has eigenvalues given by∣∣∣∣∣∣

2 − λ −1 0
−1 3 − λ 1
0 1 2 − λ

∣∣∣∣∣∣ = (2 − λ)
∣∣∣∣ 3 − λ 1

1 2 − λ

∣∣∣∣ − (2 − λ)

= (2 − λ)(λ − 1)(λ − 4) = 0

that is, eigenvalues are λ1 = 4, λ2 = 2, λ3 = 1
Corresponding eigenvalues are given by the solutions of

(2 − λi)ei1 − ei2 + 0ei3 = 0

−ei1 + (3 − λi)ei2 + ei3 = 0

0ei1 + ei2 + (2 − λi)ei3 = 0

Taking i = 1, 2, 3 gives the eigenvectors as

e1 = [1 − 2 − 1]T , e2 = [1 0 1]T , e3 = [1 1 − 1]T
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4 The three Gerschgorin circles are

| λ − 4 | =| −1 | + | 0 |= 1

| λ − 4 | =| −1 | + | −1 |= 2

| λ − 4 | = 1

Thus, | λ − 4 |≤ 1 and | λ − 4 |≤ 2 so | λ − 4 |≤ 2 or 2 ≤ λ ≤ 6.
Taking x(o) = [−1 1 − 1]T iterations using the power method may be tabulated
as follows

Iteration k 0 1 2 3 4 5 6
−1 −0.833 −0.765 −0.734 −0.720 −0.713 −0.710

x(k) 1 1 1 1 1 1 1
−1 −0.833 −0.765 −0.734 −0.720 −0.713 −0.710
−5 −4.332 −4.060 −3.936 −3.88 −3.852

A x(k) 6 5.666 5.530 5.468 5.44 5.426
−5 −4.332 −4.060 −3.936 3.88 −3.852

λ � 6 5.666 5.530 5.468 5.44 5.426

Thus, correct to one decimal place the dominant eigenvalue is λ = 5.4

5(a) Taking xxx (o) = [1 1 1]7 iterations may be tabulated as follows

Iteration k 0 1 2 3 4 5 6 7
1 0.800 0.745 0.728 0.722 0.720 0.719 0.719

x(k) 1 0.900 0.862 0.847 0.841 0.838 0.837 0.837
1 1 1 1 1 1 1 1
4 3.500 3.352 3.303 3.285 3.278 3.275

A x(k) 4.5 4.050 3.900 3.846 3.825 3.815 3.812
5 4.700 4.607 4.575 4.563 4.558 4.556

λ � 5 4.700 4.607 4.575 4.563 4.558 4.556

Thus, estimate of dominant eigenvalues is λ � 4.56 with associated eigenvector
x = [0.72 0.84 1]T

5(b)
∑3

i=1 λi = trace A ⇒ 7.5 = 4.56 + 1.19 + λ3 ⇒ λ3 = 1.75
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5(c) (i) detA =
3∏

i=1

λi = 9.50 so A−1 exists and has eigenvalues

1
1.19

,
1

1.75
,

1
4.56

so power method will generate the eigenvalue 1.19 corresponding to A .

(ii) A − 3I has eigenvalues

1.19 − 3, 1.75 − 3, 4.56 − 3

that is,−1.91, −1.25, 1.56

so applying the power method on A− 3I generates the eigenvalues corresponding
to 1.75 of A .

6 ẋ = αλeλt, ẏ = βλeλt, ż = γλeλt so the differential equations become

αλeλt = 4αeλt + βeλt + γeλt

βλeλt = 2αeλt + 5βeλt + 4γeλt

γλeλt = −αeλt − βeλt

Provided eλt �= 0 (i.e. non-trivial solution) we have the eigenvalue problem

⎡
⎣ 4 1 1

2 5 4
−1 −1 0

⎤
⎦

⎡
⎣α

β
γ

⎤
⎦ = λ

⎡
⎣α

β
γ

⎤
⎦

Eigenvalues given by∣∣∣∣∣∣
4 − λ 1 1

2 5 − λ 4
−1 −1 0

∣∣∣∣∣∣ C2−C3

∣∣∣∣∣∣
4 − λ 0 1

2 1 − λ 4
−1 λ − 1 −λ

∣∣∣∣∣∣ = (λ − 1)

∣∣∣∣∣∣
4 − λ 0 1

2 −1 4
−1 1 −λ

∣∣∣∣∣∣
= −(λ − 1)(λ − 5)(λ − 3)

so its eigenvalues are 5, 3 and 1.
When λ = 1 the corresponding eigenvector is given by

3e11 + e12 + e13 = 0

2e11 + 4e12 + 4e13 = 0

−e11 − e12 − e13 = 0
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having solution
e11

0
=

−e12

2
=

e13

2
= β1

Thus, corresponding eigenvector is β[0 − 1 1]T

7 Eigenvalues are given by

| A− λI | =

∣∣∣∣∣∣
8 − λ −8 −2

4 −3 − λ −2
3 −4 1 − λ

∣∣∣∣∣∣ = 0

Row 1 − (Row 2 + Row 3) gives

| A− λI | =

∣∣∣∣∣∣
1 − λ −1 + λ −1 + λ

4 −3 − λ −2
3 −4 1 − λ

∣∣∣∣∣∣ = (1 − λ)

∣∣∣∣∣∣
1 −1 −1
4 −3 − λ −2
3 −4 1 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣∣∣
1 0 0
4 1 − λ 2
3 −1 4 − λ

∣∣∣∣∣∣ = (1 − λ)[(1 − λ)(4 − λ) + 2]

= (1 − λ)(λ − 2)(λ − 3)

Thus, eigenvalues are λ1 = 3, λ2 = 2, λ3 = 1.
Corresponding eigenvectors are given by

(8 − λ)ei1 − 8ei2 − 2ei3 = 0

4ei1 − (3 + λ)ei2 − 2ei3 = 0

3ei1 − 4ei2 + (1 − λ)ei3 = 0

When i = 1, λi = λ1 = 3 and solution given by

e11

4
=

−e12

−2
=

e13

2
= β1

so a corresponding eigenvector is e1 = [2 1 1]T .
When i = 2, λi = λ2 = 2 and solution given by

e21

−3
=

−e22

2
=

e23

−1
= β2

so a corresponding eigenvector is e2 = [3 2 1]T .
When i = 3, λi = λ3 = 1 and solution given by

e31

−8
=

−e32

6
=

e33

−4
= β3
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so a corresponding eigenvector is e3 = [4 3 2]T .
Corresponding modal and spectral matrices are

M =

⎡
⎣ 2 3 4

1 2 3
1 1 2

⎤
⎦ and Λ =

⎡
⎣ 3 0 0

0 2 0
1 0 1

⎤
⎦

M−1 =

⎡
⎣ 1 −2 1

1 0 −2
−1 1 1

⎤
⎦ and matrix multiplication confirms M−1 A M = Λ

8 Eigenvectors of A are given by∣∣∣∣∣∣
1 − λ 0 −4

0 5 − λ 4
−4 4 3 − λ

∣∣∣∣∣∣ = 0

that is, λ3 − 9λ2 − 9λ + 81 = (λ − 9)(λ − 3)(λ + 3) = 0
so the eigenvalues are λ1 = 9, λ2 = 3 and λ3 = −3.
The eigenvectors are given by the corresponding solutions of

(1 − λi)ei1 + 0ei2 − 4ei3 = 0

0ei1 + (5 − λi)ei2 + 4ei3 = 0

−4ei1 + 4ei2 + (3 − λi)ei3 = 0

Taking i = 1, 2, 3 the normalized eigenvectors are given by

ê1 = [13
−2
3

−2
3 ]T , ê2 = [23

2
3

−1
3 ]T , ê3 = [23

−1
3

2
3 ]T

The normalised modal matrix

M̂ =
1
3

⎡
⎣ 1 2 2
−2 2 −1
−2 −1 2

⎤
⎦

so

M̂T A M̂ =
1
9

⎡
⎣ 1 −2 −2

2 2 −1
2 −1 2

⎤
⎦

⎡
⎣ 1 0 −4

0 5 4
−4 4 3

⎤
⎦

⎡
⎣ 1 2 2
−2 2 −1
−2 −1 2

⎤
⎦

=

⎡
⎣ 9 0 0

0 3 0
0 0 −3

⎤
⎦ = Λ
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9 Ṅ =

⎡
⎢⎣
−6 0 0 0

6 −4 0 0
0 4 −2 0
0 0 2 0

⎤
⎥⎦ N, N = [N1 N2 N3 N4]T

Since the matrix A is a triangular matrix its eigenvalues are the diagonal elements.
Thus, the eigenvalues are

λ1 = −6, λ2 = −4, λ3 = −2, λ4 = 0

The eigenvectors are the corresponding solutions of

(−6 − λi)ei1 + 0ei2 + 0ei3 + 0ei4 = 0

6ei1 + (−4 − λi)ei2 + 0ei3 + 0ei4 = 0

0ei1 + 4ei2 + (−2 − λi)ei3 + 0ei4 = 0

0ei1 + 0ei2 + 2ei3 − λiei4 = 0

Taking i = 1, 2, 3, 4 and solving gives the eigenvectors as

e1 = [1 − 3 3 − 1]T , e2 = [0 1 − 2 1]T

e3 = [0 0 1 − 1]T , e4 = [0 0 0 1]T

Thus, spectral form of solution to the equation is

N = αe−6te1 + βe−4te2 + γe−2te3 + δe4

Using the given initial conditions at t = 0 we have

⎡
⎢⎣

C
0
0
0

⎤
⎥⎦ = α

⎡
⎢⎣

1
−3

3
−1

⎤
⎥⎦ + β

⎡
⎢⎣

0
1

−2
1

⎤
⎥⎦ + γ

⎡
⎢⎣

0
0
1

−1

⎤
⎥⎦ + δ

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦

so C = α, 0 = −3α + β, 0 = 3α − 2β + γ, 0 = −α + β − γ + δ

which may be solved for α, β, γ and δ to give

α = C, β = 3C, γ = 3C, δ = C

Hence,
N4 = −αe−6t + βe−4t − γe−2t + δ

= −Ce−6t + 3Ce−4t − 3Ce−2t + C
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10(a)

(i) Characteristic equation of A is λ2 − 3λ + 2 = 0 so by the Cayley–Hamilton
theorem

A2 = 3A − 2I =
[

4 0
3 1

]

A3 = 3(3A − 2I) − 2A = 7A − 6I =
[

8 0
7 1

]

A4 = 7(3A − 2I) − 6A = 15A − 14I =
[

16 0
15 1

]

A5 = 15(3A − 2I|) − 14A = 31A − 30I =
[

32 0
31 1

]

A6 = 31(3A − 2I) − 30A = 63A − 62I =
[

64 0
63 1

]

A7 = 63(3A − 2I) − 62A = 127A − 126I =
[

128 0
127 1

]

Thus, A7 − 3A6 + A4 + 3A3 − 2A2 + 3I =
[
−29 0
−32 3

]

(ii) Eigenvalues of A are λ1 = 2, λ2 = 1. Thus,

Ak = α0I + α1A where α0 and α1 satisfy

2k = α0 + 2α1, 1 = α0 + α1

α1 = 2k − 1, α0 = 2 − 2k

Thus, Ak =
[

α0 + 2α1 0
α1 α0 + α1

]
=

[
2k 0

2k − 1 1

]

10(b) Eigenvalues of A are λ1 = −2, λ2 = 0. Thus,

eAt = α0I + α1A where α0 and α1 satisfy

e−2t = α0 − 2α1, 1 = α0 ⇒ α0 = 1, α1 =
1
2
(1 − e−2t)

Thus, eAt =
[

α0 α1

0 α0 − 2α1

]
=

[
1 1

2 (1 − e−2t)
0 e−2t

]
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11 The matrix A =

⎡
⎣ 1 2 3

0 1 4
0 0 1

⎤
⎦ has the single eigenvalue λ = 1 (multiplicity 3)

(A − I) =

⎡
⎣ 0 2 3

0 0 4
0 0 0

⎤
⎦ ∼

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ is of rank 2 so has nullity 3 − 2 = 1

indicating that there is only one eigenvector corresponding to λ = 1.

This is readily determined as

e1 = [1 0 0]T

The corresponding Jordan canonical form comprises a single block so

J =

⎡
⎣ 1 1 0

0 1 1
0 0 1

⎤
⎦

Taking T = A − I the triad of vectors (including generalized eigenvectors) has

the form {T2ω, T ω, ω} with T2ω = e1 . Since T2 =

⎡
⎣ 0 0 8

0 0 0
0 0 0

⎤
⎦ , we may take

ω = [0 0 1
8 ]T . Then, T ω = [28

1
8 0]T . Thus, the triad of vectors is

e1 = [1 0 0]T , e∗1 = [38
1
2 0]T , e∗∗1 = [0 0 1

8 ]T

The corresponding modal matrix is

M =

⎡
⎣ 1 3

8 0
0 1

2 0
0 0 1

8

⎤
⎦

M−1 = 16

⎡
⎣ 1

16 − 3
64 0

0 1
8 0

0 0 1
2

⎤
⎦ and by matrix multiplication

M−1 A M = 16

⎡
⎣ 1

16 − 3
64 0

0 1
8 0

0 0 1
2

⎤
⎦

⎡
⎣ 1 2 3

0 1 4
0 0 1

⎤
⎦

⎡
⎣ 1 3

8 0
0 1

2 0
0 0 1

8

⎤
⎦

=

⎡
⎣ 1 1 0

0 1 1
0 0 1

⎤
⎦ = J
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12 Substituting x = X cos ωt, y = Y cos ωt, z = Z cos ωt gives

−ω2X = −2X + Y

−ω2Y = X − 2Y + Z

−ω2Z = Y − 2Z

or taking λ = ω2

(λ − 2)X + Y = 0

X + (λ − 2)Y + Z = 0

Y + (λ − 2)Z = 0

For non-trivial solution ∣∣∣∣∣∣
λ − 2 1 0

1 λ − 2 1
0 1 λ − 2

∣∣∣∣∣∣ = 0

that is, (λ − 2)[(λ − 2)2 − 1] − (λ − 2) = 0

(λ − 2)(λ2 − 4λ + 2) = 0

so λ = 2 or λ = 2 ±
√

2

When λ = 2 , Y = 0 and X = −Z so X : Y : Z = 1 : 0 : −1
When λ = 2 +

√
2 , X = Z and Y = −

√
2X so X : Y : Z = 1 : −

√
2 : 1

When λ = 2 −
√

2 , X = Z and Y =
√

2X so X : Y : Z = 1 :
√

2 : 1

13 In each section A denotes the matrix of the quadratic form.

13(a) A =

⎡
⎣ 2 −1 0
−1 1 −1

0 −1 2

⎤
⎦ has principal minors of 2,

∣∣∣∣ 2 −1
−1 1

∣∣∣∣ = 1 and

detA = 0
so by Sylvester’s condition (c) the quadratic form is positive-semidefinite.

13(b) A =

⎡
⎣ 3 −2 −2
−2 7 0
−2 0 2

⎤
⎦ has principal minors of 3,

∣∣∣∣ 3 −2
−2 7

∣∣∣∣ = 17 and

detA = 6
so by Sylvester’s condition (a) the quadratic form is positive-definite.
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13(c) A =

⎡
⎣ 16 16 16

16 36 8
16 8 17

⎤
⎦ has principal minors of 16,

∣∣∣∣ 16 16
16 36

∣∣∣∣ = 320 and

detA = −704

so none of Sylvester’s conditions are satisfied and the quadratic form is indefinite.

13(d) A =

⎡
⎣−21 15 −6

15 −11 4
−6 4 −2

⎤
⎦ has principal minors of −21,

∣∣∣∣−21 15
15 −11

∣∣∣∣ = 6

and detA = 0

so by Sylvester’s condition (d) the quadratic form is negative-semidefinite.

13(e) A =

⎡
⎣−1 1 1

1 −3 1
1 1 −5

⎤
⎦ has principal minors of −1,

∣∣∣∣−1 1
1 −3

∣∣∣∣ = 2 and

detA = −4 so by Sylvester’s condition (b) the quadratic form is negative-definite.

14 A e1 =

⎡
⎣ 7

2 − 1
2 − 1

2
4 −1 0
− 3

2
3
2

1
2

⎤
⎦

⎡
⎣ 1

2
3

⎤
⎦ =

⎡
⎣ 1

2
3

⎤
⎦

Hence, e1 = [1 2 3]T is an eigenvector with λ1 = 1 the corresponding eigenvalue.

Eigenvalues are given by

0 =

∣∣∣∣∣∣
− 7

2 − λ − 1
2 − 1

2
4 −1 − λ 0
− 3

2
3
2

1
2 − λ

∣∣∣∣∣∣ = −λ3 + 3λ2 + λ − 3

= (λ − 1)(λ2 + 2λ + 3)

= −(λ − 1)(λ − 3)(λ + 1)

so the other two eigenvalues are λ2 = 3, λ3 = −1.

Corresponding eigenvectors are the solutions of

(− 7
2 − λi)ei1 − 1

2ei2 − 1
2ei3 = 0

4ei1 − (1 + λi)ei2 + 0ei3 = 0

− 3
2ei1 + 3

2ei2 + ( 1
2 − λi)ei3 = 0

c©Pearson Education Limited 2011



76 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

Taking i = 2, 3 gives the eigenvectors as

e2 = [1 1 0]T , e3 = [0 − 1 1]T

The differential equations can be written in the vector–matrix form

ẋ = A x , x = [x y z]T

so, in special form, the general solution is

x = αeλ1te1 + βeλ2te2 + γeλ3te3

= αet

⎡
⎣ 1

2
3

⎤
⎦ + βe3t

⎡
⎣ 1

1
0

⎤
⎦ + γe−t

⎡
⎣ 0
−1
1

⎤
⎦

With x(0) = 2, y(0) = 4, z(0) = 6 we have

α = 2, β = 0, γ = 0

so

x = 2et

⎡
⎣ 1

2
3

⎤
⎦

that is, x = 2et, y = 4et, z = 6et .

15(a)

AAT =
[

1.2 0.9 −4
1.6 1.2 3

] ⎡
⎣ 1.2 1.6

0.9 1.2
−4 3

⎤
⎦ =

[
18.25 −9
−9 13

]

Eigenvalues λi given by

(18.25 − λ)(13 − λ) − 81 = 0 ⇒ (λ − 25)(λ − 6.25) = 0

⇒ λ1 = 25, λ2 = 6.25

having corresponding eigenvectors

u1 = [−4 3 ]T ⇒ û1 = [− 4
5

3
5 ]T

u2 = [ 3 4 ]T ⇒ û2 = [ 3
5

4
5 ]
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leading to the orthogonal matrix

Û =
[
− 4

5
3
5

3
5

4
5

]

AT A =

⎡
⎣ 1.2 1.6

0.9 1.2
−4 3

⎤
⎦[

1.2 0.9 −4
1.6 1.2 3

]
=

⎡
⎣ 4 3 0

3 2.25 0
0 0 25

⎤
⎦

Eigenvalues μi given by

(25 − μ) [(4 − μ)(2.25 − μ) − 9] = 0 ⇒ (25 − μ)μ(μ − 6.25) = 0

⇒ μ1 = 25, μ2 = 6.25, μ3 = 0

with corresponding eigenvalues

v1 = v̂1 = [ 0 0 1 ]T

v2 = [ 4 3 0 ]T ⇒ v̂2 = [ 4
5

3
5 0 ]T

v3 = [−3 4 0 ]T ⇒ v̂3 = [− 3
5

4
5 0 ]T

leading to the orthogonal matrix

V̂ =

⎡
⎣ 0 4

5 − 3
5

0 3
5

4
5

1 0 0

⎤
⎦

The singular values of A are σ1 =
√

25 = 5 and σ2 =
√

6.25 = 2.5 so that

Σ =
[

5 0 0
0 2.5 0

]
giving the SVD form of A as

A = ÛΣV̂
T

=
[
−0.8 0.6
0.6 0.8

] [
5 0 0
0 2.5 0

] ⎡
⎣ 0 0 1

0.8 0.6 0
−0.6 0.8 0

⎤
⎦

(Direct multiplication confirms A =
[

1.2 0.9 −4
1.6 1.2 3

]
)

c©Pearson Education Limited 2011



78 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

(b) A† = V̂Σ
∗
ÛT =

⎡
⎣ 0 4

5 − 3
5

0 3
5

4
5

1 0 0

⎤
⎦

⎡
⎣ 1

5 0
0 2

5
0 0

⎤
⎦[

− 4
5

3
5

3
5

4
5

]
= 1

125

⎡
⎣ 24 32

18 24
−20 15

⎤
⎦

=

⎡
⎣ 0.192 0.256

0.144 0.192
−0.16 0.12

⎤
⎦

AA† = I
CHECK

LHS = 1
125

[
1.2 0.9 −4
1.6 1.2 1

]⎡
⎣ 24 32

18 24
−24 15

⎤
⎦ = 1

125

[
125 0
0 125

]
= I = RHS

(c) Since A is of full rank 2 and there are more columns than rows

A† = AT (AAT )−1 =

⎡
⎣ 1.2 1.6

0.9 1.2
−4 3

⎤
⎦[

18.25 −9
−9 13

]−1

= 1
156.25

⎡
⎣ 1.2 1.6

0.9 1.2
−4 3

⎤
⎦[

13 9
9 18.25

]

= 1
156.25

⎡
⎣ 30 40

22.5 30
−25 18.25

⎤
⎦ =

⎡
⎣ 0.192 0.256

0.144 0.192
−0.16 0.12

⎤
⎦

which checks with the answer in (b).

16 (a) Using partitioned matrix multiplication the SVD form of A may be
expressed in the
form

A = ÛΣV̂
T

= [ Ûr Ûm−r ]
[
S 0
0 0

] [
V̂T

r

V̂T
n−r

]
= ÛrSV̂

T

r

(b) Since the diagonal elements in S are non-zero the pseudo inverse may be expressed

in the form

A† = V̂Σ
∗
ÛT = V̂rS−1ÛT

r

(c) From the solution to Q46, exercises 1.8.4, the matrix A =

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦ has a single

singularity σ1 =
√

18 so r = 1 and S is a scalar
√

18; Ûr = Û1 = û1 = [ 1
3 − 2

3
2
3 ]T

and

V̂r = V̂1 = v̂1 =
[ 1√

2
− 1√

2

]T
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The SVD form of A is

A = û1Sv̂T
1 =

⎡
⎣ 1

3
− 2

3
2
3

⎤
⎦√

18
[ 1√

2
− 1√

2

]

with direct multiplication confirming A =

⎡
⎣ 1 −1
−2 2
2 −2

⎤
⎦

Thus, the pseudo inverse is

A† = v̂1S
−1ûT

1 =

[
1√
2

− 1√
2

]
1√
18

[ 1
3 − 2

3
2
3 ] =

[
1
6

− 1
6

]
[ 1

3 − 2
3

2
3 ]

= 1
18

[
1 −2 2
−1 2 −2

]

which agrees with the answer obtained in Q46, Exercises 1.8.4

17 ẋ = A x + bu , y = cT x

Let λi, ei, i = 1, 2, . . . , n, be the eigenvalues and corresponding eigenvectors of A .

Let M = [e1, e2, . . . , en] then since λi ’s are distinct the ei ’s are linearly
independent and M−1 exists. Substituting x = M ξξξ gives

M ξ̇ξξ = A M ξξξ + bu

Premultiplying by M−1 gives

ξ̇ξξ = M−1 A M ξξξ + M−1 bu = Λ ξξξ + b1u

where Λ = M−1 A M = (λiδij), i, j = 1, 2, . . . , n, and b1 = M−1b

Also, y = cT x ⇒ y = cT Mξξξ = cT
1 ξξξ, cT

1 = cT M . Thus, we have the desired
canonical form.

If the vector b1 contains a zero element then the corresponding mode is
uncontrollable and consequently (A1 b1 c) is uncontrollable. If the matrix cT

has a zero element then the system is unobservable.

The eigenvalues of A are λ1 = 2, λ2 = 1, λ3 = −1 having corresponding
eigenvectors e1 = [1 3 1]T , e2 = [3 2 1]T and e3 = [1 0 1]T .
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The modal matrix

M = [e1 e2 e3] =

⎡
⎣ 1 3 1

3 2 0
1 1 1

⎤
⎦ with M−1 = −1

6

⎡
⎣ 2 −2 −2
−3 0 3
1 2 −7

⎤
⎦

so canonical form is⎡
⎣ ξ̇1

ξ̇2

ξ̇3

⎤
⎦ =

⎡
⎣ 2 0 0

0 1 0
0 0 −1

⎤
⎦

⎡
⎣ ξ1

ξ2

ξ3

⎤
⎦ +

⎡
⎣ 1

3
0
− 4

3

⎤
⎦u

y = [1 − 4 − 2][ξ1 ξ2 ξ3]T

We observe that the system is uncontrollable but observable. Since the system
matrix A has positive eigenvalues the system is unstable. Using Kelman matrices

(i) A2 =

⎡
⎣ 0 1 1
−3 4 3
−1 1 2

⎤
⎦ , A b =

⎡
⎣ 2

2
2

⎤
⎦ , A2 b =

⎡
⎣ 0

4
0

⎤
⎦

Thus, [b A b A2 b] =

⎡
⎣−1 2 0

1 2 4
−1 2 0

⎤
⎦ ∼

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ and is of rank 2

so the system is uncontrollable.

(ii) [c AT c (AT )2c] =

⎡
⎣−2 −3 −3

1 0 2
0 5 1

⎤
⎦ ∼

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ and is of full rank 3

so the system is observable.

18 Model is of form ẋ = Ax+Bu and making the transformation x = Mzgives

Mż = AMz + Bu ⇒ ż = M−1AMz + M−1Bu ⇒ ż = Λz + M−1Bu

where M and Λ are respectively the modal and spectral matrices ofA .
The eigenvalues of A are given by

∣∣∣∣∣∣
−2 − λ −2 0

0 −λ 1
0 −3 −4 − λ

∣∣∣∣∣∣ = 0 ⇒ −(2 − λ)(4λ + λ2 + 3) = 0

⇒ (λ + 2)(λ + 1)(λ + 3) = 0

⇒ λ1 − 1, λ2 = −2, λ3 = −3
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with corresponding eigenvectors

e1 = [−2 1 −2 ]T , e2 = [ 1 0 0 ]T and e3 = [−2 −1 3 ]T

Thus, the modal and spectral matrices are

M =

⎡
⎣−2 1 −2

1 0 −4
−1 0 −1

⎤
⎦ andΛ =

⎡
⎣−1 0 0

0 −2 0
0 0 −3

⎤
⎦

and detM = −2 ⇒ M−1 =

⎡
⎣ 0 3

2
1
2

1 4 2
0 1

2
1
2

⎤
⎦ ⇒ M−1B =

⎡
⎣ 0 3

2
1
2

1 4 2
0 1

2
1
2

⎤
⎦

⎡
⎣ 1 0

0 1
1 1

⎤
⎦

=

⎡
⎣ 1

2 2
3 6
1
2 1

⎤
⎦ leading to the canonical form

ż =

⎡
⎣ ż1

ż2

ż3

⎤
⎦ =

⎡
⎣−1 0 0

0 −2 0
0 0 −3

⎤
⎦

⎡
⎣ z1

z2

z3

⎤
⎦ +

⎡
⎣ 1

2 2
3 6
1
2 1

⎤
⎦[

u1

u2

]

From (1.99a) the solution is given by

⎡
⎣ z1

z2

z3

⎤
⎦ =

⎡
⎣ e−t 0 0

0 e−2t 0
0 0 e−3t

⎤
⎦

⎡
⎣ z1(0)

z2(0)
z3(0)

⎤
⎦ +

∫ t

0

⎡
⎣ e−(t−τ) 0 0

0 e−2(t−τ) 0
0 0 e−3(t−τ)

⎤
⎦

⎡
⎣ 1

2 2
3 6
1
2 1

⎤
⎦[

τ
1

]
dτ

with z(0) = M−1x(0) =

⎡
⎣ 0 3

2
1
2

1 4 2
0 1

2
1
2

⎤
⎦

⎡
⎣ 10

5
2

⎤
⎦ = [ 17

2 34 7
2 ]T . Thus,

z =

⎡
⎣ 17

2 et

34e−2t

7
2e−3t

⎤
⎦ +

∫ t

0

⎡
⎣ (2 + 1

2τ)e−(t−τ)

(6 + 3τ)e−2(t−τ)

(1 + 1
2τ)e−3(t−τ)

⎤
⎦ dτ ⇒ z =

⎡
⎣ 17

2 et

34e−2t

7
2e−3t

⎤
⎦

+

⎡
⎣ 1

2 t + 3
2 − 3

2e−t

3
2 t + 9

4 − 9
4e−2t

1
6 t + 5

18 − 5
18e−3t

⎤
⎦ ⇒ z =

⎡
⎣ 1

2 t + 3
2 + 7e−t

3
2 t + 9

4 − 127
4 e−2t

1
6 t + 5

18 + 29
9 e−3t

⎤
⎦
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giving x = Mz =

⎡
⎣−2 1 −2

1 0 −1
−1 0 3

⎤
⎦

⎡
⎣ 1

2 t + 3
2 + 7e−t

3
2 t + 9

4 − 127
4 e−2t

1
6 t + 5

18 + 29
9 e−3t

⎤
⎦

⇒ x(t) =

⎡
⎣−14e−t + 127

4 e−2t − 58
9 e−3t + 1

6 t − 47
36

7e−t − 29
9 e−3t + 1

3 t + 11
9

−7e−t + 29
3 e−3t − 2

3

⎤
⎦

19(a) Eigenvalues of the matrix given by

0 =

∣∣∣∣∣∣
5 − λ 2 −1

3 6 − λ −9
1 1 1 − λ

∣∣∣∣∣∣ C1−C2

∣∣∣∣∣∣
3 − λ 2 −1
−3 + λ 6 − λ −9

0 1 1 − λ

∣∣∣∣∣∣
= (3 − λ)

∣∣∣∣∣∣
1 2 −1
0 8 − λ −10
0 1 1 − λ

∣∣∣∣∣∣
= (3 − λ)(λ2 − 9λ + 18) = (3 − λ)(λ − 3)(λ − 6)

so the eigenvalues are λ1 = 6, λ2 = λ3 = 3

When λ = 3,A − 3I =

⎡
⎣ 2 2 −1

3 3 −9
1 1 −2

⎤
⎦ ∼

⎡
⎣ 0 0 1

1 0 0
0 0 0

⎤
⎦ is of rank 2

so there is only 3 − 2 = 1 corresponding eigenvectors.
The eigenvector corresponding to λ1 = 6 is readily determined as e1 = [3 2 1]T .
Likewise the single eigenvector corresponding to λ2 = 6 is determined as

e2 = [1 −1 0]T

The generalized eigenvector e∗2 determined by

(A− 2I)e∗2 = e2

or 3e∗21 + 2e∗22 − e∗23 = 1

3e∗21 + 3e∗22 − 9e∗23 = −1

e∗21 + e∗22 − 2e∗23 = 0

giving e∗2 = [ 1
3

1
3

1
3 ]T .

For convenience, we can take the two eigenvectors corresponding to λ = 3 as

e2 = [3 − 3 0]T, e∗2 = [1 1 1]T
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The corresponding Jordan canonical form being J =

⎡
⎣ 6 0 0

0 3 1
0 0 3

⎤
⎦

19(b) The generalised modal matrix is then

M =

⎡
⎣ 3 −3 1

2 −3 1
1 0 1

⎤
⎦

A M =

⎡
⎣ 5 2 −1

3 6 −9
1 1 1

⎤
⎦

⎡
⎣ 3 −3 1

2 −3 1
1 0 1

⎤
⎦ =

⎡
⎣ 18 9 6

12 −9 0
6 0 3

⎤
⎦

M J =

⎡
⎣ 3 3 1

2 −3 1
1 0 1

⎤
⎦

⎡
⎣ 6 0 0

0 3 1
0 0 3

⎤
⎦ =

⎡
⎣ 13 9 6

12 −9 0
6 0 3

⎤
⎦

so A M = M J

19(c) M−1 = −1
9

⎡
⎣−3 −3 6
−1 2 −1

3 3 −15

⎤
⎦ , eJt =

⎡
⎣ e6t 0 0

0 e3t te3t

0 0 e3t

⎤
⎦

so

x(t) = −1
9

⎡
⎣ 3 3 1

2 −3 1
1 0 1

⎤
⎦

⎡
⎣ e6t 0 0

0 e3t te3t

0 0 e3t

⎤
⎦

⎡
⎣−3 −3 6
−1 2 −1

3 3 −15

⎤
⎦

⎡
⎣ 0

1
0

⎤
⎦

=
1
9

⎡
⎣ 9e6t − 9(1 + t)e3t

6e6t + (3 + 9t)e3t

3e6t − 3e3t

⎤
⎦

20 Substituting x = eλtu , where u is a constant vector, in x = A x gives

λ2u = A u or (A− λ2I)u = 0 (1)

so that there is a non-trivial solution provided

| A− λ2I |= 0 (2)
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If λ2
1, λ

2
2, . . . , λ

2
n are the solutions of (2) and u1,u2, . . . ,un the corresponding

solutions of (1) define

M = [u1 u2 . . . un] and S = diag (λ2
1 λ2

2 . . . λ2
n)

Applying the transformation x = M q , q = [q1 q2 . . . qn] gives

M q̈ = A M q

giving q̈ = M−1 A M q provided u1, u2, . . . , un are linearly independent

so that q̈ = S q since M−1 A M = S

This represents n differential equations of the form

q̈i = λ2
i qi , i = 1, 2, . . . , n

When λ2
i < 0 this has the solution of the form

qi = Ci sin(ωit + αi)

where Ci and αi are arbitrary constants and λi = jωi

The given differential equations may be written in the vector–matrix form

ẋ =
[

ẍ1

ẍ2

]
=

[
−3 2
1 −2

] [
x1

x2

]

which is of the above form
ẍ = A x

0 =| A − λ2I | gives (λ2)2 + 5(λ2) + 4 = 0 or λ2
1 = −1, λ2

2 = −4.
Solving the corresponding equation

(A− λ2
i I) ui = 0

we have that u1 = [1 1]T and u2 = [2 − 1]T . Thus, we take

M =
[

1 2
1 −1

]
and S =

[
−1 0

0 −4

]

The normal modes of the system are given by[
q̈1

q̈2

]
=

[
−1 0

0 −4

] [
q1

q2

]
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giving
q1(t) = C1 sin(t + α1) ≡ γ1 sin t + β1 cos t

q2(t) = C2 sin(2t + α2) ≡ γ2 sin 2t + β2 cos 2t

Since x = M q we have that q(0) = M−1x(0) = −1
3

[
−1 −2
−1 1

] [
1
2

]
=

[
5
3

− 1
3

]
also q̇(0) = M−1ẋ(0) so that q̇1(0) = 2 and q̇2(0) = 0
Using these initial conditions we can determine γ1, β1, γ2 and β2 to give

q1(t) =
5
3

cos t + 2 sin t

q2(t) = −1
3

cos 2t

The general displacements x1(t) and x2(t) are then given by x = M q so

x1 = q1 + 2q2 =
5
3

cos t + 2 sin t − 2
3

cos 2t

x2 = q1 − q2 =
5
3

cos t + 2 sin t − 1
3

cos 2t
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2

Numerical Solution of Ordinary
Differential Equations

Exercises 2.3.4

1 Euler’s method for the solution of the differential equation
dx

dt
= f(t, x) is

Xn+1 = Xn + hFn = Xn + hf(tn,Xn)

Applying this to the equation
dx

dt
= − 1

2xt with x(0) = 1 and a step size of h = 0.1
yields

x0 = x(0) = 1

X1 = x0 + hf(t0, x0) = x0 + h (− 1
2x0t0)

= 1 − 0.1 × 1
2 × 1 × 0 = 1.0000

X2 = X1 + hf(t1,X1) = X1 + h (− 1
2X1t1)

= 1.0000 − 0.1 × 1
2 × 1.0000 × 0.1 = 0.9950

X3 = X2 + hf(t2,X2) = X2 + h (− 1
2X2t2)

= 0.9950 − 0.1 × 1
2 × 0.9950 × 0.2 × 0.98505

Hence Euler’s method with step size h = 0.1 gives the estimate X(0.3) = 0.98505.

2 Euler’s method for the solution of the differential equation
dx

dt
= f(t, x) is

Xn+1 = Xn + hFn = Xn + hf(tn,Xn)
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Applying this to the equation
dx

dt
= − 1

2xt with x(1) = 0.1 and a step size of
h = 0.025 yields

x0 = x(1) = 0.1

X1 = x0 + hf(t0, x0) = x0 + h (− 1
2x0t0)

= 0.1 − 0.025 × 1
2 × 0.1 × 1 = 0.09875

X2 = X1 + hf(t1,X1) = X1 + h (− 1
2X1t1)

= 0.09875 − 0.025 × 1
2 × 0.09875 × 1.025 = 0.09748

X3 = X2 + hf(t2,X2) = X2 + h (− 1
2X2t2)

= 0.09748 − 0.025 × 1
2
× 0.09748 × 1.050 = 0.09621

X4 = X3 + hf(t3,X3) = X3 + h (− 1
2X3t3)

= 0.09621 − 0.025 × 1
2 × 0.09621 × 1.075 = 0.09491

Hence Euler’s method with step size h = 0.1 gives the estimate X(1.1) = 0.09491.

3 Euler’s method for the solution of the differential equation
dx

dt
= f(t, x) is

Xn+1 = Xn + hFn = Xn + hf(tn,Xn)

Applying this to the equation
dx

dt
=

x

2(t + 1)
with x(0.5) = 1 and a step of h = 0.1

yields

x0 = x(0.5) = 1

X1 = x0 + hf(t0, x0) = x0 + h
x0

2(t0 + 1)
= 1 + 0.1

1
2(0.5 + 1)

= 1.0333

X2 = X1 + hf(t1,X1) = X1 + h
X1

2(t1 + 1)
= 1.0333 + 0.1

1.0333
2(0.6 + 1)

= 1.0656

(Note that tn = t0 +nh = 0.5+0.1n.) X3,X4 and X5 may be computed in similar
fashion. It is usually easier to set out numerical solutions in a systematic tabular
form such as the following:

n tn Xn f(tn,Xn) Xn + hf(tn,Xn)
0 0.5 1.0000 0.3333 1.0333
1 0.6 1.0333 0.3229 1.0656
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2 0.7 1.0656 0.3134 1.0969
3 0.8 1.0969 0.3047 1.1274
4 0.9 1.1274 0.2967 1.1571
5 1.0 1.1571

Hence Euler’s method with step size h = 0.1 gives the estimate X(1) = 1.1571.

4 Euler’s method for the solution of the differential equation
dx

dt
= f(t, x) is

Xn+1 = Xn + hFn = Xn + hf(tn,Xn)

Applying this to the equation
dx

dt
=

4 − t

t + x
with x(0) = 1 and a step size of h = 0.05

yields

x0 = x(0.0) = 1

X1 = x0 + hf(t0, x0) = x0 + h
4 − t0
t0 + x0

= 1 + 0.05
4 − 0
0 + 1

= 1.2000

X2 = X1 + hf(t1,X1) = X1 + h
4 − t1

t1 + X1
= 1.2000 + 0.05

4 − 0.05
0.05 + 1.2000

= 1.3580

(Note that tn = t0 + nh = 0.0 + 0.05n.) X3,X4, . . . ,X10 may be computed in
similar fashion.
It is usually easier to set out numerical solutions in a systematic tabular form such
as the following:

tn Xn f(tn,Xn) Xn + hf(tn,Xn)
0.00 1.0000 4.0000 1.2000
0.05 1.2000 3.1600 1.3580
0.10 1.3580 2.6749 1.4917
0.15 1.4917 2.3451 1.6090
0.20 1.6090 2.1006 1.7140
0.25 1.7140 1.9093 1.8095
0.30 1.8095 1.7540 1.8972
0.35 1.8972 1.6242 1.9784
0.40 1.9784 1.5136 2.0541
0.45 2.0541 1.4177 2.1250
0.50 2.1250

Hence Euler’s method with step size h = 0.05 gives the estimate X(0.5) = 2.1250.

5 Figure 2.1 shows a suitable pseudocode program for computing the estimates
Xa(2) and Xb(2). Figure 2.2 shows a Pascal implementation of the pseudocode
program.
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procedure deriv (t, x → f)
f ← x∗t/(t∗t + 2)

endprocedure

t start ← 1
x start ← 2
t end ← 2
write (vdu, "Enter step size")
read (keyboard, h)
write (printer, t start, x start)
t ← t start
x ← x start
repeat

deriv (t, x → f)
t ← t + h
x ← x + h∗f
write (printer, t,x)

until t >= t end

Figure 2.1: Pseudocode algorithm for Exercise 5

Using this program the results Xa(2) = 2.811489 and Xb(2) = 2.819944 were
obtained. Using the method described in Section 2.3.6, the error in Xb(2) will
be approximately equal to Xb(2) − Xa(2) = −0.008455 and so the best estimate
of X(2) is 2.819944 + 0.008455 = 2.828399. The desired error bound is 0.1% of
this value, 0.0028 approximately. Since Euler’s method is a first-order method, the
error in the estimate of X(2) varies like h ; so, to achieve an error of 0.0028, a step
size of no more than (0.0028/0.008455)×0.05 = 0.0166 is required. We will choose
a sensible step size which is less than this, say h = 0.0125. This yields an estimate
X(2) = 2.826304.
The exact solution of the differential equation may be obtained by separation:

dx

dt
=

xt

t2 + 2
⇒

∫
dx

x
=

∫
t dt

t2 + 2
⇒ ln x = 1

2 ln(t2 + 2) + C ⇒ x = ±D
√

t2 + 2

x(1) = 2 ⇒ 2 = ±
√

3D ⇒ x = 2

√
t2 + 2

3

Hence x(2) = 2
√

2 = 2.828427 and the true errors in Xa(2), Xb(2) and the final
estimate of X(2) are 0.016938, 0.008483 and 0.002123 respectively. The estimate,
X(2), derived using the step size h = 0.0125 is comfortably within the 0.1% error
requirement.
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var t start, x start, t end, h,x,t,f:real;

procedure deriv (t,x:real;var f:real);
begin

f := x∗t/(t∗t + 2)
end;

begin
t start := 1;
x start := 2;
t end := 2;
write ( ′Enter step size ==> ′);
readln (h);
writeln (t start : 5 : 2, x start : 10 : 6);
t := t start;
x := x start;
repeat

deriv(t,x,f);
t := t + h;
x := x + h∗f ;
writeln (t:5:2, x:10:6);

until t >= t end;
end.

Figure 2.2: Pascal program for Exercise 5

6 The programs shown in Figures 2.1 and 2.2 may readily be modified to solve
this problem. Estimates Xa(2) = 1.573065 and Xb(2) = 1.558541 should be
obtained. Using the method described in Section 2.3.6, the error in Xb(2) will
be approximately equal to Xb(2) − Xa(2) = −0.014524 and so the best estimate
of X(2) is 1.558541 − 0.014524 = 1.544017. The desired error bound is 0.2% of
this value, 0.0031 approximately. Since Euler’s method is a first-order method, the
error in the estimate of X(2) varies like h so, to achieve an error of 0.0031, a step
size of no more than (0.0031/0.014524)×0.05 = 0.0107 is required. We will choose
a sensible step size which is less than this, say h = 0.01. This yields an estimate
X(2) = 1.547462.
The exact solution of the differential equation may be obtained by separation:

dx

dt
=

1
xt

⇒
∫

xdx =
∫

dt

t
⇒ 1

2x
2 = ln t + C ⇒ x = ±

√
2(ln t + C)

x(1) = 1 ⇒ 1 = 2C ⇒ x(t) =
√

2 ln t + 1
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Hence x(2) =
√

2 ln 2 + 1 = 1.544764 and the true errors in Xa(2),Xb(2) and
the final estimate of X(2) are −0.028301, −0.013777 and −0.002698 respectively.
The estimate, X(2), derived using the step size h = 0.01 is comfortably within the
0.2% error requirement.

7 The programs shown in Figures 2.1 and 2.2 may readily be modified to solve
this problem. Estimates Xa(1.5) = 2.241257 and Xb(1.5) = 2.206232 should be
obtained. Using the method described in Section 2.3.6, the error in Xb(1.5) will be
approximately equal to Xb(1.5) − Xa(1.5) = −0.035025 and so the best estimate
of X(1.5) is 2.206232 − 0.035025 = 2.171207. The desired error bound is 0.25%
of this value, 0.0054 approximately. Since Euler’s method is a first-order method,
the error in the estimate of X(1.5) varies like h; so, to achieve an error of 0.0054,
a step size of no more than (0.0054/0.035025) × 0.025 = 0.0039 is required. If we
choose h = 0.04, this yields an estimate X(1.5) = 2.183610.

The exact solution of the differential equation may be obtained by separation:

dx

ct
=

1
ln x

⇒
∫

ln xdx =
∫

dt ⇒ x ln x − x = t + C

x(1) = 1.2 ⇒ 1.2 ln 1.2 − 1.2 = 1 + C ⇒

C = −1.981214 ⇒ x ln x − x = t − 1.981214

Hence, by any non-linear equation solving method (e.g. Newton–Raphson), we
may obtain x(1.5) = 2.179817 and the true errors in Xa(1.5),Xb(1.5) and the
final estimate of X(1.5) are 0.061440, 0.026415 and 0.003793 respectively. The
estimate, X(1.5), derived using the step size h = 0.04 is comfortably within the
0.25% error requirement.
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Exercises 2.3.9

8 The starting process, using the second-order predictor–corrector method, is

X̂1 = x0 + hf(t0, x0)

X1 = x0 + 1
2h

(
f(t0, x0) + f(t1, X̂1)

)

and the second-order Adams–Bashforth method is

Xn+1 = Xn + 1
2h (3f(tn,Xn) − f(tn−1,Xn−1))

8(a) Applying this method to the problem
dx

dt
= x2 sin t − x, x(0) = 0.2 with

h = 0.1, we have

X̂1 = x0 + hf(t0, x0) = 0.2 + 0.1 × (0.22 sin 0 − 0.2) = 0.1800

X1 = x0 + 1
2h

(
f(t0, x0) + f(t1, X̂1)

)
= 0.2 + 1

20.1 × (0.22 sin 0 − 0.2 + 0.182 sin 0.1 − 0.18) = 0.1812

X2 = X1 + 1
2h (3f(t1,X1) − f(t0, x0))

= 0.1812 + 1
20.1 ×

(
3(0.18122 sin 0.1 − 0.1812) − (0.22 sin 0 − 0.2)

)
= 0.1645

X3,X4 and X5 are obtained as X2 . The computation is most efficiently set out
as a table.

n tn Xn f(tn,Xn) 1
2h(3f(tn,Xn) − f(tn−1,Xn−1)) Xn+1

0 0.0 0.2000 −0.2000 (use predictor–corrector) 0.1812
1 0.1 0.1812 −0.1779 −0.016685 0.1645
2 0.2 0.1645 −0.1591 −0.014970 0.1495
3 0.3 0.1495 −0.1429 −0.013480 0.1360
4 0.4 0.1360 −0.1288 −0.012175 0.1238
5 0.5 0.1238

Hence X(0.5) = 0.1238.
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8(b) Applying this method to the problem
dx

dt
= x2etx, x(0.5) = 0.5 with h =

0.1, we have

X̂1 = x0 + hf(t0, x0) = 0.5 + 0.1 × 0.52e0.5×0.5 = 0.5321

X1 = x0 + 1
2h

(
f(t0, x0) + f(t1, X̂1)

)
= 0.5 + 1

20.1 × (0.52e0.5×0.5 + 0.53212e0.6×0.5321) = 0.5355

X2 = X1 + 1
2h (3f(t1,X1) − f(t0, x0))

= 0.5355 + 1
20.1 ×

(
3 × 0.53552e0.6×0.5355 − 0.52e0.5×0.5

)
= 0.5788

X3,X4,X5,X6 and X7 are obtained as X2 . The computation is most efficiently
set out as a table.

n tn Xn f(tn,Xn) 1
2h(3f(tn,Xn) − f(tn−1,Xn−1)) Xn+1

0 0.5 0.5000 0.3210 (use predictor–corrector) 0.5355
1 0.6 0.5355 0.3955 0.043275 0.5788
2 0.7 0.5788 0.5024 0.055585 0.6344
3 0.8 0.6344 0.6685 0.075155 0.7095
4 0.9 0.7095 0.9534 0.109585 0.8191
5 1.0 0.8191 1.5221 0.180645 0.9998
6 1.1 0.9998 3.0021 0.374210 1.3740
7 1.2 1.3740

Hence X(1.2) = 1.3740.

9 The starting process, using the second-order predictor–corrector method, is

X̂1 = x0 + hf(t0, x0)

X1 = x0 + 1
2h

(
f(t0, x0) + f(t1, X̂1)

)
X̂2 = X1 + hf(t1,X1)

X2 = X1 + 1
2h

(
f(t1,X1) + f(t2, X̂2)

)

and the third-order Adams–Bashforth method is

Xn+1 = Xn + 1
12h (23f(tn,Xn) − 16f(tn−1,Xn−1) + 5f(tn−2,Xn−2))
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Applying this method to the problem
dx

dt
=

√
x2 + 2t, x(0) = 1 with h = 0.1, we

have

X̂1 = x0 + hf(t0, x0) = 1.0 + 0.1 ×
√

12 + 2 × 0 = 1.100

X1 = x0 + 1
2h

(
f(t0, x0) + f(t1, X̂1)

)
= 1.0 + 1

20.1 ×
(√

12 + 2 × 0 +
√

1.12 + 2 × 0.1
)

= 1.1094

X̂2 = X1 + hf(t1,X1) = 1.1094 + 0.1 ×
√

1.10942 + 2 × 0.1 = 1.2290

X2 = X1 + 1
2h

(
f(t1,X1) + f(t2, X̂2)

)
= 1.1094 + 1

20.1 ×
(√

1.10942 + 2 × 0.1 +
√

1.22902 + 2 × 0.2
)

= 1.2383

X3 = X2 + 1
12h (23f(t2,X2) − 16f(t1,X1) + 5f(t0, x0))

= 1.2383 + 1
120.1 ×

(
23

√
1.23832 + 2 × 0.2 − 16

√
1.10942 + 2 × 0.1

+ 5
√

1.02 + 2 × 0
)

= 1.3870

X4 and X5 are obtained as X3 . The computation is most efficiently set out as a
table.

n tn Xn f(tn,Xn) h(23f(tn,Xn) − 16f(tn−1,Xn−1) Xn+1

+ 5f(tn−2,Xn−2))/12
0 0.0 1.0000 1.0000 (use predictor–corrector) 1.1094
0 0.1 1.1094 1.1961 (use predictor–corrector) 1.2383
2 0.2 1.2383 1.3905 0.1487 1.3870
3 0.3 1.3870 1.5886 0.1689 1.5559
4 0.4 1.5559 1.7947 0.1901 1.7460
5 0.5 1.7460

Hence X(0.5) = 1.7460.
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10 The second-order predictor–corrector method is

X̂n+1 = Xn + hf(tn,Xn)

Xn+1 = Xn + 1
2h(f(tn,Xn) + f(tn+1, X̂n+1))

10(a) Applying this method to the problem
dx

dt
= (2t + x) sin 2t, x(0) = 0.5 with

h = 0.05, we have

X̂1 = x0 + hf(t0, x0) = 0.5 + 0.05 × (2 × 0 + 0.5) sin 0 = 0.5

X1 = x0 + 1
2h(f(t0, x0) + f(t1,X1))

= 0.5 + 1
20.05 × ((2 × 0 + 0.5) sin 0 + (2 × 0.05 + 0.5) sin(2 × 0.05)) = 0.5015

X2 to X10 are obtained as X1 . The computation is most efficiently set out as a
table.
n tn Xn f(tn,Xn) X̂n+1 f(tn+1, X̂n+1) Xn+1

0 0.00 0.5000 0.0000 0.5000 0.0599 0.5015
1 0.05 0.5015 0.0150 0.5045 0.1400 0.5065
2 0.10 0.5065 0.0497 0.5135 0.2404 0.5160
3 0.15 0.5160 0.1034 0.5281 0.3614 0.5311
4 0.20 0.5311 0.1752 0.5492 0.5030 0.5527
5 0.25 0.5527 0.2637 0.5780 0.6651 0.5820
6 0.30 0.5820 0.3670 0.6153 0.8474 0.6198
7 0.35 0.6198 0.4832 0.6623 1.0490 0.6673
8 0.40 0.6673 0.6098 0.7199 1.2689 0.7254
9 0.45 0.7254 0.7442 0.7890 1.5054 0.7948
10 0.50 0.7948

Hence X(0.5) = 0.7948.

10(b) Applying this method to the problem
dx

dt
= − 1 + x

sin(t + 1)
, x(0) = −2 with

h = 0.1, we have

X̂1 = x0 + hf(t0, x0) = −2 + 0.1 ×− 1 − 2
sin(0 + 1)

= −1.8812

X1 = x0 + 1
2h

(
f(t0, x0) + f(t1, X̂1)

)
= −2 + 1

20.1 ×
(
− 1 − 2

sin(0 + 1)
− 1 − 1.8812

sin(0.1 + 1)

)
= −1.8911

X2 to X10 are obtained as X1 . The computation is most efficiently set out as a
table.
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n tn Xn f(tn,Xn) X̂n+1 f(tn+1, X̂n+1) Xn+1

0 0.0 −2.0000 −1.3072 −1.8812 0.9887 −1.8911
1 0.1 −1.8911 −1.2343 −1.7912 0.8488 −1.7987
2 0.2 −1.7987 −1.1802 −1.7130 0.7400 −1.7189
3 0.3 −1.7189 −1.1416 −1.6443 0.6538 −1.6489
4 0.4 −1.6489 −1.1162 −1.5830 0.5845 −1.5867
5 0.5 −1.5867 −1.1028 −1.5279 0.5281 −1.5309
6 0.6 −1.5309 −1.1005 −1.4778 0.4818 −1.4803
7 0.7 −1.4803 −1.1092 −1.4318 0.4434 −1.4339
8 0.8 −1.4339 −1.1295 −1.3893 0.4114 −1.3910
9 0.9 −1.3910 −1.1624 1.3497 0.3846 1.3511
10 1.0 −1.3511

Hence X(1.0) = −1.3511.

11 Taylor’s theorem states that

f(t + h) = f(t) + h
df

dt
(t) +

h2

2!
d2f

dt2
(t) +

h3

3!
d3f

dt3
(t) +

h4

4!
d4f

dt4
(t) + K

Applying this to
dx

dt
(t − h) and

dx

dt
(t − 2h) yields

dx

dt
(t − h) =

dx

dt
(t) − h

d2x

dt2
(t) +

h2

2!
d3x

dt3
(t) + O(h3)

dx

dt
(t − 2h) =

dx

dt
(t) − 2h

d2x

dt2
(t) +

4h2

2!
d3x

dt3
(t) + O(h3)

Multiplying the first equation by 2 and subtracting the second yields

2
dx

dt
(t − h) − dx

dt
(t − 2h) =

dx

dt
(t) − h2 d3x

dt3
(t) + O(h3)

that is, h2 d3x

dt3
(t) = −2

dx

dt
(t − h) +

dx

dt
(t − 2h) +

dx

dt
(t) + O(h3)

Multiplying the first equation by 4 and subtracting the second yields

4
dx

dt
(t − h) − dx

dt
(t − 2h) = 3

dx

dt
(t) − 2h

d2x

dt2
(t) + O(h3)

that is, 2h
d2x

dt2
(t) = −4

dx

dt
(t − h) +

dx

dt
(t − 2h) + 3

dx

dt
(t) + O(h3)

Now Taylor’s theorem yields

x(t + h) = x(t) + h
dx

dt
(t) +

h2

2!
d2x

dt2
+

h3

3!
d3x

dt3
(t) + O(h3)

c©Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4th Edition 97

Hence, substituting for h
d2x

dt2
(t) and h2 d3x

dt3
(t) yields

x(t + h) = x(t) + h
dx

dt
(t) +

h

4

(
−4

dx

dt
(t − h) +

dx

dt
(t − 2h) + 3

dx

dt
(t) + O(h3)

)

+
h

6

(
−2

dx

dt
(t − h) +

dx

dt
(t − 2h) +

dx

dt
(t) + O(h3)

)
+ O(h3)

= x(t) +
h

12

(
23

dx

dt
(t) − 16

dx

dt
(t − h) + 5

dx

dt
(t − 2h)

)
+ O(h3)

12 Taylor’s theorem states that

f(t + h) = f(t) + h
df

dt
(t) +

h2

2!
d2f

dt2
(t) +

h3

3!
d3f

dt3
(t) +

h4

4!
d4f

dt4
(t) + K

Applying this to
dx

dt
(t + h) and

dx

dt
(t − h) yields

dx

dt
(t + h) =

dx

dt
(t) + h

d2x

dt2
(t) +

h2

2!
d3x

dt3
(t) + O(h3)

dx

dt
(t − h) =

dx

dt
(t) − h

d2x

dt2
(t) +

h2

2!
d3x

dt3
(t) + O(h3)

Summing the two equations yields

dx

dt
(t + h) +

dx

dt
(t − h) = 2

dx

dt
(t) + h2 d3x

dt3
(t) + O(h3)

that is, h2 d3x

dt3
(t) =

dx

dt
(t + h) +

dx

dt
(t − h) − 2

dx

dt
(t) + O(h3)

Subtracting the second from the first yields

dx

dt
(t + h) − dx

dt
(t − h) = 2h

d2x

dt2
(t) + O(h3)

that is, 2h
d2x

dt2
(t) =

dx

dt
(t + h) − dx

dt
(t − h) + O(h3)

Now Taylor’s theorem gives

x(t + h) = x(t) + h
dx

dt
(t) +

h2

2!
d2x

dt2
+

h3

3!
d3x

dt3
(t) + O(h4)
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Hence, substituting for h
d2x

dt2
(t) and h2 d3x

dt3
(t), we have

x(t + h) = x(t) + h
dx

dt
(t) +

h

4

(
dx

dt
(t + h) +

dx

dt
(t − h) + O(h3)

)

+
h

6

(
dx

dt
(t + h) +

dx

dt
(t − h) − 2

dx

dt
(t) + O(h3)

)
+ O(h4)

= x(t) +
h

12

(
5
dx

dt
(t + h) + 8

dx

dt
(t) − dx

dt
(t − h)

)
+ O(h4)

that is, xn+1 = xn +
h

12

(
5

dx

dtn+1
+ 8

dx

dtn
− dx

dtn−1

)
+ O(h4)

13 Taylor’s theorem states that

f(t + h) = f(t) + h
df

dt
(t) +

h2

2!
d2f

dt2
(t) +

h3

3!
d3f

dt3
(t) +

h4

4!
d4f

dt4
(t) + K

Applying this to x(t − h) and
dx

dt
(t − h) yields

x(t − h) = x(t) − h
dx

dt
(t) +

h2

2!
d2x

dt2
(t) − h3

3!
d3x

dt3
(t) + O(h4)

dx

dt
(t − h) =

dx

dt
(t) − h

d2x

dt2
(t) +

h2

2!
d3x

dt3
(t) + O(h3)

Multiplying the first equation by 2, the second equation by h and adding yields

2x(t − h) + h
dx

dt
(t − h) = 2x(t) − h

dx

dt
(t) +

h3

6
d3x

dt3
(t) + O(h4)

that is,
h3

6
d3x

dt3
(t) = 2x(t − h) + h

dx

dt
(t − h) − 2x(t) + h

dx

dt
(t) + O(h4)

Multiplying the first equation by 3, the second equation by h and adding yields

3x(t − h) + h
dx

dt
(t − h) = 3x(t) − 2h

dx

dt
(t) +

h2

2
d2x

dt2
(t) + O(h4)

that is,
h2

2
d2x

dt2
(t) = 3x(t − h) + h

dx

dt
(t − h) − 3x(t) + 2h

dx

dt
(t) + O(h4)
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Now Taylor’s theorem gives

x(t + h) = x(t) + h
dx

dt
(t) +

h2

2!
d2x

dt2
+

h3

3!
d3x

dt3
(t) + O(h4)

Hence, substituting for h2 d2x

dt2
(t) and h3 d3x

dt3
(t), we have

x(t + h) = x(t) + h
dx

dt
(t) +

(
3x(t − h) + h

dx

dt
(t − h) − 3x(t) + 2h

dx

dt
(t) + O(h4)

)

+
(

2x(t − h) + h
dx

dt
(t − h) − 2x(t) + h

dx

dt
(t) + O(h4)

)
+ O(h4)

= −4x(t) + 5x(t − h) + 4h
dx

dt
(t) + 2h

dx

dt
(t − h) + O(h4)

that is, xn+1 = −4xn + 5xn−1 + 2h
(

2
dx

dtn
+

dx

dtn−1

)
+ O(h4)

This gives rise to the approximate scheme Xn+1 = −4Xn+5Xn−1+2h(2Fn+Fn−1)
which may equally be written as Xn+1 = 5[Xn−1+2hFn]−4[Xn+ 1

2h(3Fn−Fn−1)] ;
in other words, this scheme gives an approximation for Xn+1 which is 5 times the
central difference approximation minus 4 times the second-order Adams–Bashforth
approximation. Because of the inclusion of the central difference approximation,
this scheme will be unstable whenever the central difference scheme is.

14 The predictor–corrector scheme specified is

X̂n+1 = Xn + 1
2h(3Fn − Fn−1) = Xn + 1

2h(3f(tn,Xn) − f(tn−1,Xn−1))

Xn+1 = Xn + 1
12h(5Fn+1 + 8Fn − Fn−1) = Xn + 1

12h(5f(tn+1, X̂n+1)

+ 8f(tn,Xn) − f(tn−1,Xn−1))

This is obviously not self-starting and requires that one initial step is taken using a

self-starting method. For the problem
dx

dt
= x2 + t2, x(0.3) = 0.1 with a step size
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of h = 0.05, using the fourth-order Runge–Kutta method for the initial step we
obtain

c1 = hf(t0, x0) = h(x2
0 + t20) = 0.05 × (0.12 + 0.32) = 0.0050

c2 = hf(t0 + 1
2h, x0 + 1

2c1) = 0.05 ×
(
(0.1 + 1

20.0050)
2 + (0.3 + 1

20.05)
2
)

= 0.0058

c3 = hf(t0 + 1
2h, x0 + 1

2c2) = 0.05 ×
(
(0.1 + 1

20.0058)
2 + (0.3 + 1

20.05)
2
)

= 0.0058

c4 = hf(t0 + h, x0 + c3) = 0.05 ×
(
(0.1 + 0.0058)2 + (0.3 + 0.05)2

)
= 0.0067

X1 = x0 + 1
6 (c1 + 2c2 + 2c3 + c4) = 0.1 + 1

6 (0.0050 + 2 × 0.0058

+ 2 × 0.0058 + 0.0067) = 0.1058

Now we can say

X̂2 = X1 + 1
2h (3f(t1,X1) − f(t0, x0))

= 0.1058 + 1
20.05 ×

(
3(0.10582 + 0.352) − (0.12 + 0.32)

)
= 0.1133

X2 = X1 + 1
12h

(
5f(t2, X̂2) + 8f(t1,X1) − f(t0, x0)

)
= 0.1058 + 1

120.05 ×
(
5(0.11332 + 0.42) + 8(0.10582 + 0.352) − (0.12 + 0.32)

)
= 0.1134

Computing X3 and X4 in a similar manner and setting the computation out in
tabular fashion we obtain:

n tn Xn f(tn,Xn) X̂n+1 f(tn+1, X̂n+1) Xn+1

0 0.30 0.1000 0.1000 (done by Runge–Kutta method) 0.1058
1 0.35 0.1058 0.1337 0.1133 0.1728 0.1134
2 0.40 0.1134 0.1729 0.1230 0.2176 0.1231
3 0.45 0.1231 0.2177 0.1351 0.2683 0.1352
4 0.50 0.1352

Hence X(0.5) = 0.1352.
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15 The fourth-order Runge–Kutta method for the solution of the differential

equation
dx

dt
= f(t, x) using a stepsize of h is given by

c1 = hf(tn,Xn)

c2 = hf(tn + 1
2h,Xn + 1

2c1)

c3 = hf(tn + 1
2h,Xn + 1

2c2)

c4 = hf(tn + h,Xn + c3)

Xn+1 = Xn + 1
6(c1 + 2c2 + 2c3 + c4)

15(a) To solve the equation
dx

dt
= x + t + xt, x(0) = 1, using a stepsize of

h = 0.15, we write

c1 = hf(t0, x0) = 0.15 × (1 + 0 + 1 × 0) = 0.1500

c2 = hf(t0 + 1
2h, x0 + 1

2c1)

= 0.15 × ((1 + 1
20.1500) + (0 + 1

20.15) + (1 + 1
20.1500) × (0 + 1

20.15))

= 0.1846

c3 = hf(t0 + 1
2h, x0 + 1

2c2)

= 0.15 × ((1 + 1
20.1846) + (0 + 1

20.15) + (1 + 1
20.1846) × (0 + 1

20.15))

= 0.1874

c4 = hf(t0 + h, x0 + c3) = 0.15 × ((1 + 0.1874) + (0 + 0.15) + (1 + 0.1874)

× (0 + 0.15)) = 0.2273

X1 = x0 + 1
6(c1 + 2c2 + 2c3 + c4) = 1 + 1

6 (0.1500 + 2 × 0.1846

+ 2 × 0.1874 + 0.2273) = 1.1869

X2,X3,X4 and X5 may be computed in a similar manner. Setting the
computation out in tabular fashion we obtain:
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n tn Xn c1 c2 c3 c4 Xn+1

0 0.00 1.0000 0.1500 0.1846 0.1874 0.2273 1.1869
1 0.15 1.1869 0.2272 0.2727 0.2769 0.3304 1.4630
2 0.30 1.4630 0.3303 0.3921 0.3984 0.4724 1.8603
3 0.45 1.8603 0.4721 0.5583 0.5681 0.6728 2.4266
4 0.60 2.4266 0.6724 0.7954 0.8109 0.9623 3.2345
5 0.75 3.2345

Hence X(0.75) = 3.2345.

15(b) To solve the equation
dx

dt
=

1
x + t

, x(1) = 2, using a stepsize of
h = 0.1 we write

c1 = hf(t0, x0) = 0.1 × 1
2 + 1

= 0.0333

c2 = hf(t0 + 1
2h, x0 + 1

2c1) = 0.1 × 1
(2 + 1

20.0333) + (1 + 1
20.1)

= 0.0326

c3 = hf(t0 + 1
2h, x0 + 1

2c2) = 0.1 × 1
(2 + 1

20.0326) + (1 + 1
20.1)

= 0.0326

c4 = hf(t0 + h, x0 + c3) = 0.1 × 1
(2 + 0.0326) + (1 + 0.1)

= 0.0319

X1 = x0 + 1
6 (c1 + 2c2 + 2c3 + c4) = 2 + 1

6 (0.0333 + 2 × 0.0326

+ 2 × 0.0326 + 0.0319) = 2.0326

X2,X3, . . . ,X10 may be computed in a similar manner. Setting the computation
out in tabular fashion we obtain:

n tn Xn c1 c2 c3 c4 Xn+1

0 1.0 2.0000 0.0333 0.0326 0.0326 0.0319 2.0326
1 1.1 2.0326 0.0319 0.0313 0.0313 0.0306 2.0639
2 1.2 2.0639 0.0306 0.0300 0.0300 0.0295 2.0939
3 1.3 2.0939 0.0295 0.0289 0.0289 0.0284 2.1228
4 1.4 2.1228 0.0284 0.0279 0.0279 0.0274 2.1507
5 1.5 2.1507 0.0274 0.0269 0.0269 0.0265 2.1777
6 1.6 2.1777 0.0265 0.0260 0.0260 0.0256 2.2037
7 1.7 2.2037 0.0256 0.0252 0.0252 0.0248 2.2289
8 1.8 2.2289 0.0248 0.0244 0.0244 0.0241 2.2534
9 1.9 2.2534 0.0241 0.0237 0.0237 0.0234 2.2771

10 2.0 2.2771

Hence X(2) = 2.2771.
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16 In this exercise the differential equation problem
dx

dt
= x2 + t

3
2 , x(0) = −1,

is solved using a variety of methods.

16(a) Figure 2.3 shows a pseudocode algorithm for solving the equation
using the second-order Adams–Bashforth method with a second-order predictor–
corrector starting step and Figure 2.4 shows a Pascal program derived from it.

procedure deriv (t, x → f)
f ← x∗x+sqrt (t)∗t

endprocedure

t start ← 0
x start ← −1
t end ← 2
write (vdu, "Enter step size")

read (keyboard, h)

write (printer, t start , x start)

deriv (t start, x start → f)
x hat ← x start + h∗f
deriv(t start + h, x hat → f hat)
t ← t start + h
x ← x start + h∗(f + f hat)/2
write (printer, t,x)

f n minus one ← f

repeat

deriv (t, x → f)
t ← t + h
x ← x + h∗(3∗f − f n minus one)/2
f n minus one ← f
write (printer, t,x)

until t >= t end

Figure 2.3: Pseudocode algorithm for Exercise 16(a)
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var x start, x hat, x,t start, t end; t:real;
h,f,f hat, f n minus one:real;

procedure deriv (t,x:real;var f:real);
begin

f := x*x+sqrt(t)*t
end;

begin
t start := 0;

x start := -1;
t end := 2;
write( ′ Enter step size ==>′);
readln(h);
writeln(t start:10:3, x start:10:6);
deriv(t start, x start, f);
x hat := x start + h*f;
deriv(t start + h, x hat, f hat);
t :=t start + h;
x :=x start + h *(f+f hat)/2;
writeln(t:10:3, x:10:6);
f n minus one := f;
repeat

deriv(t,x,f);
t := t + h;
x := x + h*(3*f-f n minus one)/2;
f n minus one := f;
writeln(t:10:3, x:10:6);

until t >= t end;
end.

Figure 2.4: Pascal program for Exercise 16(a)

Using this program with h = 0.2 gives X(2) = 2.242408 and, with h = 0.1,X(2) =
2.613104. The method of Richardson extrapolation given in Section 2.3.6 gives the
estimated error in the second of these as (2.613104 − 2.242408)/3 = 0.123565.
For 3 decimal place accuracy in the final estimate we need error ≤ 0.0005; in
other words, the error must be reduced by a factor of 0.123565/0.0005 = 247.13.
Since Adams–Bashforth is a second-order method, the required step length will
be 0.1/

√
247.13 = 0.0064. Rounding this down to a suitable size suggests that

a step size of h = 0.005 will give a solution accurate to 3 decimal places. In
fact the program of Figure 2.4 yields, with h = 0.005,X(2) = 2.897195. With
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h = 0.0025 it gives X(2) = 2.898175. Richardson extrapolation predicts the error
in the h = 0.0025 solution as 0.000327 and therefore that in the h = 0.005 as
0.001308. The required accuracy was therefore not achieved using h = 0.005 but
was achieved with h = 0.0025.

16(b) Figure 2.5 shows a pseudocode algorithm for solving the equation using the
second-order predictor–corrector method and Figure 2.6 shows a Pascal program
derived from it.

procedure deriv (t, x → f)
f ← x∗x+sqrt (t)∗t

endprocedure

t start ← 0
x start ← −1
t end ← 2
write (vdu, "Enter step size")
read (keyboard, h)
write (printer, t start , x start)
t ← t start
x ← x start
repeat

deriv (t, x → f)
x hat ← x + h∗f
derive (t + h, x hat → f hat)
t ← t + h
x ← x + h∗(f + f hat)/2
write (printer, t,x)

until t >= t end
Figure 2.5: Pseudcode algorithm for Exercise 2.16(b)

Using this program with h = 0.2 gives X(2) = 2.788158 and, with h = 0.1,X(2) =
2.863456. The method of Richardson extrapolation given in Section 2.3.6 gives the
estimated error in the second of these as (2.863456− 2.788158)/3 = 0.025099. For
3 decimal place accuracy in the final estimate we need error ≤ 0.0005; in other
words, the error must be reduced by a factor of 0.025099/0.0005 = 50.20. Since
the second-order predictor–corrector method is being used, the required step size
will be 0.1/

√
50.20 = 0.014. Rounding this down to a suitable size suggests that

a step size of h = 0.0125 will give a solution accurate to 3 decimal places. In
fact the program of Figure 2.6 yields, with h = 0.0125,X(2) = 2.897876. With
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h = 0.00625 it gives X(2) = 2.898349. Richardson extrapolation predicts the error
in the h = 0.00625 solution as 0.000158 and therefore that in the h = 0.0125 as
0.000632. The required accuracy was therefore not quite achieved using h = 0.0125
but was achieved with h = 0.00625.

var x start,x hat,x,t start,t end, t:real;
h,f,f hat:real;

procedure deriv(t,x:real;var f:real);
begin

f := x*x+sqrt(t)*t
end;

begin
t start := 0;
x start := -1;
t end := 2;
write(‘Enter step size ==> ’);
readln(h);
writeln(t start:10:3,x start:10:6);
t := t start;
x := x start;
repeat

deriv(t,x,f);
x hat := x + h*f;
deriv(t + h,x hat,f hat);
t := t + h;
x := x + h*(f + f hat)/2;
writeln (t:10:3,x:10:6);

until t >= t end;
end.

Figure 2.6: Pascal program for Exercise 16(b)

16(c) Figure 2.7 shows a pseudocode algorithm for solving the equation using
the fourth-order Runge–Kutta method and Figure 2.8 shows a Pascal program
derived from it. Using this program with h = 0.4 gives X(2) = 2.884046 and,
with h = 0.2,X(2) = 2.897402. The method of Richardson extrapolation given
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in Section 2.3.6 gives the estimated error in the second of these as (2.897402 −
2.884046)/15 = 0.000890. For 5 decimal place accuracy in the final estimate we
need error ≤ 0.000005; in other words, the error must be reduced by a factor
of 0.000890/0.000005 = 178. Since Runge–Kutta is a fourth-order method the
required step size will be 0.2/(178)1/4 = 0.0547. Rounding this down to a suitable
size suggests that a step size of h = 0.05 will give a solution accurate to 5 decimal
places. In fact the program of Figure 2.8 yields, with h = 0.05,X(2) = 2.89850975.
With h = 0.025 it gives X(2) = 2.89850824. Richardson extrapolation predicts
the error

procedure deriv (t,x → f)
f → x∗x + sqrt(t)∗t

endprocedure

t start ← 0
x start ← −1
t end ← 2
write(vdu, "Enter step size")

read(keyboard, h)

write (printer,t start,x start)

t ← t start
x ← x start
repeat

deriv(t, x,→ f)
c1 ← h∗f
deriv(t + h/2, x + c1/2 → f)
c2 ← h∗f
deriv(t + h/2, x + c2/2 → f)
c3 ← h∗f
deriv(t + h, x + c3 → f)
c4 ← h∗f
t ← t + h
x ← x + (c1 + 2∗c2 + 2∗c3 + c4)/6
write(printer,t,x)

until t >= t end

Figure 2.7: Pseudocode algorithm for Exercise 16(c)
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{Program for exercise 2.16c}
var x start,x,t start,t end,t:real;

h,f,c1,c2,c3,c4:real;

procedure deriv (t,x:real;var f:real);
begin

f := x∗x+sqrt(t)∗ t
end;

begin
t start := 0;
x start := -1;
t end := 2;
write(‘Enter step size ==> ’);
readln(h);
writeln(t start:10:3,x start:10:6);
t := t start;
x := x start;
repeat

deriv(t,x,f);
c1 := h*f;
deriv(t + h/2,x + c1/2, f);
c2 := h*f;
deriv(t + h/2,x + c2/2, f);
c3 := h*f;
deriv(t + h,x + c3, f);
c4 := h*f;
t := t + h;
x := x + (c1 + 2*c2 + 2*c3 + c4)/6;
writeln(t:10:3,x:10:6);

until t >= t end;
end.

Figure 2.8: Pascal program for Exercise 16(c)

in the h = 0.025 solution as 0.000000101 and therefore that in the h = 0.05 as
0.00000161. The required accuracy was therefore achieved using h = 0.05.

17 The pseudocode algorithm shown in Figure 2.7 and the Pascal program in
Figure 2.8 may easily be modified to solve this problem. With a step size of h = 0.5
the estimate X(3) = 1.466489 is obtained, whilst with a step size of h = 0.25, the
estimate is X(3) = 1.466476. Richardson extrapolation suggests that the step
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size of h = 0.25 gives an error of 0.00000087 which is comfortably within the
0.000005 range, which 5 decimal place accuracy requires. Hence, X(3) = 1.46648
to 5 decimal places. In fact, of course, the analytic solution of the problem is

e

e1−t + e − 1
and so x(3) = 1.466474.

Exercises 2.4.3

18 In each part of this question, the technique is to introduce new variables to
represent each derivative of the dependent variable up to one less than the order
of the equation. This can be done by inspection.
18(a)

dx

dt
= v, x(0) = 1

dv

dt
= 4xt − 6(x2 − t)v, v(0) = 2

18(b)
dx

dt
= v, x(1) = 2

dv

dt
= −4(x2 − t2), v(1) = 0.5

18(c)
dx

dt
= v, x(0) = 0

dv

dt
= − sin v − 4x, v(0) = 0

18(d)
dx

dt
= v, x(0) = 1

dv

dt
= w, v(0) = 2

dw

dt
= e2t + x2t − 6etv − tw, w(0) = 0

18(e)
dx

dt
= v, x(1) = 1

dv

dt
= w, v(1) = 0

dw

dt
= sin t − tw − x2, w(1) = −2
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18(f)
dx

dt
= v, x(2) = 0

dv

dt
= w, v(2) = 0

dw

dt
= (tw + t2x2)2, w(2) = 2

18(g)
dx

dt
= v, x(0) = 0

dv

dt
= w, v(0) = 0

dw

dt
= u, w(0) = 4

du

dt
= ln t − x2 − xw, u(0) = −3

18(h)
dx

dt
= v, x(0) = a

dv

dt
= w, v(0) = 0

dw

dt
= u, w(0) = b

du

dt
= t2 + 4t − 5 +

√
xt − v − (v − 1)tu, u(0) = 0

19 First, we recast the equation as a pair of coupled first-order equations in the
form

dx

dt
= f1(t, x, v), x(0) = x0

dv

dt
= f2(t, x, v), v(0) = v0

This yields

dx

dt
= v, x(0) = 0

dv

dt
= sin t − x − x2v, v(0) = 1
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Now, applying Euler’s method to the two equations we have

X1 = x0 + h1f(t0, x0, v0) V1 = v0 + hf2(t0, x0, v0)

that is, X1 = 0 + 0.1 × 1 = 0.10000 V1 = 1.00000 = 1 + 0.1 × (sin 0 − 0 − 02 × 1)

X2 = X1 + hf1(t1,X1, V1) V2 = V1 + hf2(t1,X1, V1)

that is, X2 = 0.10000 + 0.1 × 1.00000 V2 = 1 + 0.1 × (sin 0.10000

= 0.20000 − 0.10000 − 0.100002 × 1.00000)

= 0.99898

X3 = X2 + hf1(t2,X2, V2)

that is, X2 = 0.20000 + 0.1 × 0.99898

= 0.29990

20 The second-order Adams–Bashforth method applied to a pair of coupled
equations is

Xn+1 = Xn + 1
2h (3f1(tn,Xn, Yn) − f1(tn−1,Xn−1, Yn−1))

Yn+1 = Yn + 1
2h (3f2(tn,Xn, Yn) − f2(tn−1,Xn−1, Yn−1))

First, we recast the differential equation as a pair of coupled first-order equations.

dx

dt
= v,

dv

dt
= sin t − x − x2v,

x(0) = 0

v(0) = 1

Now, since the Adams–Bashforth method is a two-step process, we need to start the
computation with another method. We use the second-order predictor–corrector.
This has the form

X̂n+1 = Xn + hf1(tn,Xn, Yn)Ŷn+1 = Yn + hf2(tn,Xn, Yn)

Xn+1 = Xn +
1
2
h

(
f1(tn+1, X̂n+1, Ŷn+1) + f1(tn,Xn, Yn)

)
Yn+1 = Yn +

1
2
h

(
f2(tn+1, X̂n+1, Ŷn+1) + f2(tn,Xn, Yn)

)
Hence we have

X̂1 = 0 + 0.1 × 1 = 0.10000V̂1 = 1 + 0.1 × (0 − 0 − 02 × 1)1 = 1.00000

X1 = 0 + 0.05 × (1 + 1) = 0.10000V1 = 1 + 0.05 × (−0.01017 + 0) = 0.99949
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Now, continuing using the Adams–Bashforth method we have

X2 = X1 + 1
2h (3f1(t1,X1, Y1) − f1(t0, x0, v0))

V2 = V1 + 1
2h (3f2(t1,X1, V1) − f2(t0, x0, v0))

that is, X2 = 0.10000 + 0.05 × (3 × 0.99949 − 1) = 0.19992

V2 = 0.99949 + 0.05 × (3 ×−0.01016 − 0) = 0.99797

X3 = X2 + 1
2h (3f1(t2,X2, V2) − f1(t1,X1, V1))

that is, X3 = 0.19992 + 0.05 × (3 × 0.99797 − 0.99949) = 0.29964

21 First, we formulate the problem as a set of 3 coupled first-order differential
equations

dx

dt
= u, x(0.5) = −1

du

dt
= v, u(0.5) = 1

dv

dt
= x2 − v(x − t) − u2, v(0.5) = 2

We can then solve these by the predictor–corrector method. Notice that we need to
compute the predicted values for all three variables before computing the corrected
values for any of them.

X̂1 = x0 + hf1(t0, x0, u0, v0) = −1 + 0.05(1) = −0.95000

Û1 = u0 + hf2(t0, x0, u0, v0) = 1 + 0.05(2) = 1.10000

V̂1 = v0 + hf3(t0, x0, u0, v0) = 2 + 0.05((−1)2 − 2(−1 − 0.5) − 1) = 2.15000

X1 = x0 + 1
2h

(
f1

(
t1, X̂1, Û1, V̂1

)
+ f1(t0, x0, u0, v0)

)
= −1 + 0.025 × (1.10000 + 1.00000) = −0.94750

U1 = u0 + 1
2h

(
f2

(
t1, X̂1, Û1, V̂1

)
+ f2(t0, x0, u0, v0)

)
= 1 + 0.025 × (2.15000 + 2.00000) = 1.10375

V1 = v0 + 1
2h

(
f3

(
t1, X̂1, Û1, V̂1

)
+ f3(t0, x0, u0, v0)

)
= 2 + 0.025 × (2.91750 + 3.00000) = 2.14794

Continuing the process we obtain
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X̂2 = −0.94750 + 0.05 × 1.10375 = −0.89231

Û2 = 1.10375 + 0.05 × 2.14794 = 1.21115

V̂2 = 2.14794 + 0.05 × 2.89603 = 2.29274

X2 = −0.94750 + 0.025 × (1.21115 + 1.10375) = −0.88963

U2 = 1.10375 + 0.025 × (2.29274 + 2.14794) = 1.21477

V2 = 2.14794 + 0.025 × (2.75083 + 2.89603) = 2.28911

X̂3 = −0.88963 + 0.05 × 1.21477 = −0.82889

Û3 = 1.21477 + 0.05 × 2.28911 = 1.32923

V̂3 = 2.28911 + 0.05 × 2.72570 = 2.42539

X3 = −0.88963 + 0.025 × (1.32923 + 1.21477) = −0.82603

22 The first step in solving this problem is to convert the problem to a pair of
coupled first-order differential equations

dx

dt
= v, x(0) = 0

dv

dt
= sin t − x2v − x, v(0) = 1

A pseudocode algorithm to compute the value of X(1.6) is shown in Figure 2.9.
Using a program derived from this algorithm with a step size h = 0.4 gives
X(1.6) = 1.220254 and, with a step size h = 0.2, gives X(1.6) = 1.220055. The
method of Richardson extrapolation, given in Section 2.3.6, is equally applicable
to problems such as this one involving coupled equations. Since the Runge–
Kutta method has a local error of O(h)5 the global error will be O(h4) . The
method therefore gives the estimated error in the second value of X(1.6) as
(1.220254 − 1.220055)/15 = 0.000013. For 6 decimal place accuracy in the final
estimate we need error ≤ 0.0000005; in other words, the error must be reduced
by a factor of 0.000013/0.0000005 = 26. Since Runge–Kutta is a fourth-order
method the required step length will be 0.2/4

√
26 = 0.088. Rounding this down to

a suitable size suggests that a step size of h = 0.08 will give a solution accurate to
6 decimal places. In fact the program yields, with h = 0.08,X(1.6) = 1.2200394.
With h = 0.04 it gives X(1.6) = 1.2200390. Richardson extrapolation predicts the
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error in the h = 0.04 solution as 0.00000003 and therefore that in the h = 0.08 as
0.0000005. The required accuracy was therefore just achieved using h = 0.08.

{program solves a pair of ordinary differential equations by the 4th
order Runge-Kutta Method}
procedure f1(t, x, v → f1)

f1 ← v
endprocedure

procedure f2(t, x, v → f2)
f2 ← sin(t) − x∗x∗v − x

endprocedure

{procedure computes values of x and v at the next time step}
procedure rk4(t, x, v,h → xn, vn)

c11 ← h∗f1(t, x, v)
c21 ← h∗f2(t, x, v)
c12 ← h∗f1(t + h/2, x + c11/2, v + c21/2)
c22 ← h∗f2(t + h/2, x + c11/2, v + c21/2)
c13 ← h∗f1(t + h/2, x + c12/2, v + c22/2)
c23 ← h∗f2(t + h/2, x + c12/2, v + c22/2)
c14 ← h∗f1(t + h, x + c13, v + c23)
c24 ← h∗f2(t + h, x + c13, v + c23)
xn ← x + (c11 + 2∗(c12 + c13) + c14)/6
vn ← v + (c21 + 2∗(c22 + c23) + c24)/6

endprocedure

t start ← 0
t end ← 1.6
x0 ← 0
v0 ← 1
write(vdu, "Enter step size")
read(keyboard, h)
write(printer,t start,x0)
t ← t start
x ← x0
v ← v0
repeat

rk4(t, x, v,h → xn, vn)
x ← xn
v ← vn
t ← t + h
write(printer,t,x)

until t >= t end

Figure 2.9: Pseudocode algorithm for Exercise 22
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23 The first step in solving this problem is to convert the problem to a set of
coupled first-order differential equations

dx

dt
= v, x(0.5) = −1

dv

dt
= w, v(0.5) = 1

dw

dt
= x2 − v2 − (x − t)w, w(0.5) = 2

A pseudocode algorithm to compute the value of X(2.2) is shown in Figure 2.11.
The procedures used in the algorithm are defined in Figure 2.10.

{procedures for pseudocode algorithm in figure 2.11}
procedure f1(t, x, v,w → f1)

f1 ← v
endprocedure

procedure f2(t, x, v,w → f2)
f2 ← w

endprocedure

procedure f3(t, x, v,w → f3)
f3 ← x∗x − v∗v − (x − t)∗w

endprocedure

{procedure computes values of x, v and w at the next time step using
the 4th order Runge-Kutta procedure}
procedure rk4(t, x, v,w,h → xn, vn,wn)

c11 ← h∗f1(t, x, v,w)
c21 ← h∗f2(t, x, v,w)
c31 ← h∗f3(t, x, v,w)
c12 ← h∗f1(t + h/2, x + c11/2, v + c21/2,w + c31/2)
c22 ← h∗f2(t + h/2, x + c11/2, v + c21/2,w + c31/2)
c32 ← h∗f3(t + h/2, x + c11/2, v + c21/2,w + c31/2)
c13 ← h∗f1(t + h/2, x + c12/2, v + c22/2,w + c32/2)
c23 ← h∗f2(t + h/2, x + c12/2, v + c22/2,w + c32/2)
c33 ← h∗f3(t + h/2, x + c12/2, v + c22/2,w + c32/2)
c14 ← h∗f1(t + h, x + c13, v + c23,w + c33)
c24 ← h∗f2(t + h, x + c13, v + c23,w + c33)
c34 ← h∗f3(t + h, x + c13, v + c23,w + c33)

(Continued)
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xn ← x + (c11 + 2∗(c12 + c13) + c14)/6
vn ← v + (c21 + 2∗(c22 + c23) + c24)/6
wn ← w + (c31 + 2∗(c32 + c33) + c34)/6

endprocedure

{procedure computes values of x, v and w at the next time step using
the 3rd order predictor-corrector procedure}
procedure pc3(t, xo, vo,wo, x, v,w,h → xn, vn,wn)

xp ← x + h∗(3∗f1(t, x, v,w) − f1(t − h, xo, vo,wo))/2
vp ← v + h∗(3∗f2(t, x, v,w) − f2(t − h, xo, vo,wo))/2
wp ← w + h∗(3∗f3(t, x, v,w) − f3(t − h, xo, vo,wo))/2
xn ← x + h∗(5∗f1(t + h, xp, vp,wp) + 8∗f1(t, x, v,w)

-f1(t-h,xo,vo,wo))/12

vn ← v + h∗(5∗f2(t + h, xp, vp,wp) + 8∗f2(t, x, v,w)
-f2(t-h,xo,vo,wo))/12

wn ← w + h∗(5∗f3(t + h, xp, vp,wp) + 8∗f3(t, x, v,w)
-f3(t-h,xo,vo,wo))/12

endprocedure

Figure 2.10: Pseudocode procedures for algorithm for Exercise 23

Using a program derived from this algorithm with a step size h = 0.1 gives
X(2.2) = 2.923350 and, with a step size h = 0.05, gives X(2.2) = 2.925418. The
method of Richardson extrapolation given in Section 2.3.6, is equally applicable
to problems such as this one involving coupled equations. Since the third-order
predictor–corrector method used has a local error of O(h4) , the global error will
be O(h3) . The method therefore gives the estimated error in the second value of
X(2.2) as 2.923350−2.925418)/7 = −0.000295. For 6 decimal place accuracy in the
final estimate we need error ≤ 0.0000005; in other words, the error must be reduced
by a factor of 0.000295/0.0000005 = 590. Since we are using a third-order method,
the required step length will be 0.05/3

√
590 = 0.00596. Rounding this down to a

suitable size suggests that a step size of h = 0.005 will give a solution accurate to
6 decimal places. In fact the program yields, with h = 0.005,X(2.2) = 2.92575057.
With h = 0.0025 it gives X(2.2) = 2.92575089. Richardson extrapolation predicts
the error in the h = 0.0025 solution as 0.000000046 and therefore that in the
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h = 0.005 as 0.00000037. The required accuracy was therefore comfortably
achieved using h = 0.005.

{program solves three ordinary differential equations by the
3rd order predictor-corrector method}
t start ← 0.5
t end ← 2.2
x start ← −1
v start ← 1
w start ← 2
write(vdu, "Enter step size")
read(keyboard, h)
write(printer, t start, x start)
t ← t start
xo ← x start
vo ← v start
wo ← w start
rk4(t, xo, vo,wo,h → x, v,w)
t ← t + h
write(printer,t,x)
repeat

pc3(t, xo, vo,wo, x, v,w,h → xn, vn,wn)
xo ← x
vo ← v
wo ← w
x ← xn
v ← vn
w ← wn
t ← t + h
write (printer, t, x)

until t >= t end

Figure 2.11: Pseudocode algorithm for Exercise 23

Review exercises 2.7

1 Euler’s method for the solution of the differential equation
dx

dt
= f(t, x) is

Xn+1 = Xn + hFn = Xn + hf(tn,Xn)
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Applying this to the equation
dx

dt
=

√
x with x(0) = 1 and a step size of h = 0.1

yields

x0 = x(0) = 1

X1 = x0 + hf(t0, x0) = x0 + h
√

x0 = 1 + 0.1 ×
√

1 = 1.1000

X2 = X1 + hf(t1,X1) = X1 + h
√

X1 = 1.1000 + 0.1
√

1.1000 = 1.2049

X3 = X2 + hf(t2,X2) = X2 + h
√

X2 = 1.2049 + 0.1
√

1.2049 = 1.3146

X4 = X3 + hf(t3,X3) = X3 + h
√

X3 = 1.3146 + 0.1
√

1.3146 = 1.4293

X5 = X4 + hf(t4,X4) = X4 + h
√

X4 = 1.4293 + 0.1
√

1.4293 = 1.5489

Hence Euler’s method with step size h = 0.1 gives the estimate X(0.5) = 1.5489.

2 Euler’s method for the solution of the differential equation
dx

dt
= f(t, x) is

Xn+1 = Xn + hFn = Xn + hf(tn,Xn)

Applying this to the equation
dx

dt
= −ext with x(1) = 1 and a step size of h = 0.05

yields

x0 = x(1) = 1

X1 = x0 + hf(t0, x0) = x0 + h(−ex0t0) = 1 − 0.05 exp(1 × 1) = 0.86409

X2 = X1 + hf(t1,X1) = X1 + h(−eX1t1)

= 0.86409 − 0.05 exp(0.86409 × 1.05) = 0.74021

X3 = X2 + hf(t2,X2) = X2 + h(−eX2t2)

= 0.74021 − 0.05 exp(0.74021 × 1.10) = 0.62733

X4 = X3 + hf(t3,X3) = X3 + h(−eX3t3)

= 0.62733 − 0.05 exp(0.62733 × 1.15) = 0.52447

Hence Euler’s method with step size h = 0.05 gives the estimate X(1.1) = 0.52447.

3 This question could be solved by hand computation or using a computer
program based on a simple modification of the pseudocode algorithm given in
Figure 2.1. With a step size of h = 0.1 it is found that X(0.4) = 1.125584
and, with a step size of h = 0.05,X(0.4) = 1.142763. Using the Richardson
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extrapolation method, because Euler’s method is a first-order method and the
global error is therefore of O(h), the error in the estimate of X(0.4) is approximately
1.142763 − 1.125584 = 0.017179. To obtain X(0.4) accurate to 2 decimal places
we need error ≤ 0.005. To achieve this we would need to reduced step size by a
factor of 0.017179/0.005 = 3.44. This suggests a step size of 0.05/3.44 = 0.0145.
Rounding this down to a sensible figure suggests trying a step size of 0.0125 or 0.01.

4 This question could be solved by hand computation or using a computer
program based on a simple modification of the pseudocode algorithm given in
Figure 2.1. With a step size of h = 0.05 it is found that X(0.25) = 2.003749
and, with a step size of h = 0.025,X(0.25) = 2.004452. Using the Richardson ex-
trapolation method, because Euler’s method is a first-order method and the global
error is therefore of O(h) , the error in the estimate of X(0.25) is approximately
2.004452−2.003749 = 0.000703. To obtain X(0.25) accurate to 3 decimal places we
need error ≤ 0.0005. To achieve this we would need to reduce step size by a factor
of 0.0007/0.0005 = 1.4. This suggests a step size of 0.025/1.4 = 0.0179. Rounding
this down to a sensible figure suggests trying a step size of 0.0166667 or 0.0125.

5 This question could be solved by hand computation or using a computer
program based on a simple modification of the pseudocode algorithm given in
Figure 2.5. By either method it is found that X1(1.2) = 2.374037,X2(1.2) =
2.374148 and X3(1.2) = 2.374176. The local error of the second-order predictor–
corrector is O(h3) so the global error is O(h2) . Hence it is expected

|X − x| ∝ h2 that is, x ≈ X + αh2

therefore, |X1 − X2| ≈
∣∣∣x − αh2 −

(
x − α

(
h

2

)2
) ∣∣∣ =

3
4
αh2

and |X2 − X3| ≈
∣∣∣x − α

(
h

2

)2

−
(

x − α

(
h

4

)2
) ∣∣∣ =

3
16

αh2

Hence
|X1 − X2|
|X2 − X3|

≈
3
4ah2

3
16ah2

≈ 4
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In fact we find that
|X1 − X2|
|X2 − X3|

=
|2.374037 − 2.374148|
|2.374148 − 2.374176| =

| − 0.000111|
| − 0.000028| = 3.97 ≈ 4

6 This question is best solved using a computer program based on a simple
modification of the pseudocode given Figure 2.7. Let X1 denote the solution using
a step size of h = 0.2, X2 that using h = 0.1 and X3 that using h = 0.05.
By either method it is found that X1(2) = 5.19436687,X2(2) = 5.19432575 and
X3(2) = 5.19432313. The local error of the fourth-order Runge–Kutta method is
O(h5) so the global error is O(h4) . Hence, by Richardson extrapolation, we may
expect

x(2) = X2(2) + αh4 = X3(2) + α

(
h

2

)4

therefore αh4 ≈ 16(x(2) − X3(2))

therefore x(2) = X2(2) + 16(x(2) − X3(2))

Hence x(2) =
16X3(2) − X2(2)

15
=

16 × 5.19432313 − 5.19432575
15

= 5.19432296

and the most accurate estimate of x(2) is 5.19432296.

7 The boundary conditions for this problem are p(r0) = p0 and p(r1) = 0.
Hence we have

p + r
dp

dr
= 2a − p ⇒ dp

dr
+

2p
r

=
2a
r

This is a linear differential equation, so we first find the integrating factor.∫
2
rdr = 2 ln r so the integrating factor is e2lnr = r2

therefore, r2 dp

dr
+ 2rp = 2ar

that is, r2p = ar2 + C
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Now p(r0) = p0 ⇒ r2
0p0 = ar2

0 + C ⇒ C = r2
0(p0 − a)

p(r1) = 0 ⇒ 0 = ar2
1 + C = ar2

1 + r2
0(p0 − a) ⇒ a =

r2
0p0

r2
0 − r2

1

Hence p(r) =
r2
0p0

r2
0 − r2

1

+
(

p0 −
r2
0p0

r2
0 − r2

1

)
r2
0

r2
=

r2
0p0

r2
1 − r2

0

(
r2
1

r2
− 1

)

and p(1.5) =
121

22 − 12

(
22

1.52
− 1

)
= 1

3 ( 16
9 − 1) = 7

27

The problem to solve numerically is
dp

dr
= −2(3p + 1)

3r
, p(1) = 1. This may easily

be solved using a modification of the pseudocode algorithm of Figure 2.7 or
of the program of Figure 2.8. We find that, using a step size of h = 0.05,
p(1.5) = 0.25925946.

8 The first step is to recast the problem as a set of three coupled (linked)
first-order ordinary differential equations

dx

dt
= v, x(1) = 0.2

dv

dt
= w, v(1) = 1

dw

dt
= sin(t) + xt − 4v2 − w2, w(1) = 0

Figure 2.12 shows a pseudocode algorithm for the solution of these three equations
by Euler’s Method.

{program solves three ordinary differential equations by the Euler
method}
procedure f1(t, x, v,w → f1)

f1 ← v
endprocedure

procedure f2(t, x, v,w → f2)
f2 ← w

endprocedure

procedure f3(t, x, v,w → f3)
f3 ← sin(t) + x∗t − 4∗v∗v − w∗w

endprocedure

(Continued)
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{procedure computes values of x, v and w at the next time step using
the Euler procedure}
procedure euler(t, x, v,w,h → xn, vn,wn)

xn ← x + h∗f1(t, x, v,w)
vn ← v + h∗f2(t, x, v,w)
wn ← w + h∗f3(t, x, v,w)

endprocedure

t start ← 1.0
t end ← 2.0
x start ← 0.2
v start ← 1
w start ← 0
write(vdu, "Enter step size")
read(keyboard, h)
write(printer, t start, x start)
t ← t start
x ← x start
v ← v start
w ← w start
repeat

euler(t, x, v,w,h → xn, vn,wn)
x ← xn
v ← vn
w ← wn
t ← t + h
write(printer, t,x)

until t >= t end

Figure 2.12: Pseudocode algorithm for Review Exercise 8

Using a program derived from this algorithm with a step size h = 0.025 gives
X(2) = 0.847035 and, with a step size h = 0.0125, gives X(2) = 0.844067. The
method of Richardson extrapolation, given in Section 2.3.6, is equally applicable to
problems such as this one involving coupled equations. Since Euler’s method has a
local error of O(h2) the global error will be O(h) . The method therefore gives the
estimated error in the second value of X(2) as (0.847035−0.844067)/1 = 0.002968.
This is less than 5 in the third decimal place, so we have two significant figures of
accuracy. The best estimate we can make is that x(2) = 0.84 to 2dp.
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9 The first step is to recast the problem as a set of two coupled (linked) first-order
ordinary differential equations

dx

dt
= v, x(0) = 0.02

dv

dt
= (1 − x2)v − 40x, v(0) = 0

Figure 2.13 shows a pseudocode algorithm for the solution of these equations by
the second-order predictor–corrector method. Using a program derived from this
algorithm with a stepsize h = 0.02 gives X(4) = 0.147123 and, with a step size
h = 0.01, gives X(4) = 0.146075. The method of Richardson extrapolation,
given in Section 2.3.6, is applicable to problems such as this one involving coupled
equations. Since the second-order predictor–corrector method has a local error of
O(h3) , the global error will be O(h2) . The method therefore gives the estimated
error in the second value of X(4) as (0.147123 − 146075)/3 = 0.001048. For 4
decimal place accuracy in the final estimate we need error ≤ 0.00005; in other
words, the error must be reduced by a factor of 0.001048/0.00005 = 20.96. Since
this predictor–corrector is a second-order method the required step length will be
0.01/

√
20.96 = 0.0022. Rounding this down to a suitable size suggests that a

step size of h = 0.002 will give a solution accurate to 4 decimal places. In fact
the program yields, with h = 0.002,X(4) = 0.145813. With h = 0.001 it gives
X(4) = 0.145807. Richardson extrapolation predicts the error in the h = 0.001
solution as 0.000002 and therefore that in the h = 0.002 as 0.000008. The required
accuracy was therefore comfortably achieved using h = 0.002. We can be confident
that x(4) = 0.1458 to 4dp.

{program solves two ordinary differential equations by the second
order predictor-corrector method}
procedure f1(t, x, v → f1)

f1 ← v
endprocedure

procedure f2(t, x, v → f2)
f2 ← (1 − x∗x)∗v − 40∗x

endprocedure
(Continued)

c©Pearson Education Limited 2011



124 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

{procedure computes values of x, v and w at the next time step using
the second order predictor-corrector procedure}
procedure pc2(t, x, v,h → xn, vn)

xp ← x + h∗f1(t, x, v)
vp ← v + h∗f2(t, x, v)
xn ← x + h∗(f1(t + h, xp, vp) + f1(t, x, v))/2
vn ← v + h∗(f2(t + h, xp, vp) + f2(t, x, v))/2

endprocedure

t start ← 0.0
t end ← 4.0
x start ← 0.02
v start ← 0
write(vdu, "Enter step size")
read(keyboard, h)
writeprinter, t start, x start
t ← t start
x ← x start
v ← v start
repeat

pc2(t, x, v,h → xn, vn)
x ← xn
v ← vn
t ← t + h
write(printer,t,x)

until t >= t end

Figure 2.13: Pseudcode algorithm for Review Exercise 9

10 The first step is to recast the problem as a set of three coupled (linked)
first-order ordinary differential equations.

dx

dt
= v, x(1) = −1

dv

dt
= w, v(1) = 1

dw

dt
= sin(t) + xt − 4v3 −

√
|w|, w(1) = 2

A minor modification of the pseudocode algorithm shown in Figure 2.9 provides
an algorithm for the solution of this problem. Using a program derived from
this algorithm with a step size h = 0.1 gives X(2.5) = −0.651076 and,
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with a step size h = 0.05, gives X(2.5) = −0.653798. We use the method
of Richardson extrapolation, given in Section 2.3.6. Since the Runge–Kutta
method has a local error of O(h5) the global error will be O(h4) . The method
therefore gives the estimated error in the second value of X(2.5) as (0.651076 −
0.653798)/15 = −0.000181. For 4 decimal place accuracy in the final estimate we
need error ≤ 0.00005; in other words, the error must be reduced by a factor of
0.000181/0.00005 = 3.63. Since the Runge–Kutta is a fourth-order method the
required step length will be 0.054

√
3.63 = 0.036. Rounding this down to a suitable

size suggests that a stepsize of h = 0.025 will give a solution accurate to 4 decimal
places. In fact the program yields, with h = 0.025,X(2.5) = −0.653232. With
h = 0.0125 it gives X(2.5) = −0.653217. Richardson extrapolation predicts the
error in the h = 0.0125 solution as 0.0000009 and therefore that in the h = 0.025
as 0.000015. The required accuracy is therefore easily achieved using h = 0.025.
We can be confident that x(2.5) = −0.6532 to 4dp.
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Vector Calculus

Exercises 3.1.2

1(a) f(x, y) = c ⇒ x2 + y2 = 1 + ec

Contours are a family of concentric circles, centre (0,0) and radius > 1.

1(b) f(x, y) = c ⇒ y = (1 + x) tan c

Contours are a family of straight lines whose y intercept equals their slope and
pass through (-1,0).

2(a) Flow lines are given by dx
dt = y and dy

dt = 6x2 − 4x .

Thus,
dy

dx
=

6x2 − 4x
y∫

y dy =
∫

(6x2 − 4x) dx + c

1
2
y2 = 2x3 − 2x2 + c

y2 = 4x2(x − 1) + C

2(b) Flow lines are given by dx
dt = y and dy

dt = 1
6x3 − x .

Thus,
dy

dx
=

1
6x3 − x

y∫
y dy =

∫
(
1
6
x3 − x) dx + c

1
2
y2 =

1
24

x4 − 1
2
x2 + c

y2 =
1
12

x2(x2 − 12) + C
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3(a) Level surfaces are given by f(r) = c ⇒ z = c + xy .

3(b) Level surfaces are given by f(r) = c ⇒ z = c − e−xy .

4(a) Field lines are given by dx
dt = xy , dy

dt = y2 + 1, dz
dt = z .

dz

dt
= z ⇒ z = Aet

dy

dt
= 1 + y2 ⇒ y = tan(t + α)

dx

dt
= xy ⇒ ln x = C − ln(cos(t + α))

x =
B

cos(t + α)

Since 1 + tan2 θ = sec2 θ ⇒ 1 + y2 =
(

x
B

)2 is a hyperbola, the curve is on a
hyperbolic cylinder.

4(b) Field lines are given by dx
dt = yz , dy

dt = zx , dz
dt = xy .

Hence,
dy

dx
=

x

y
⇒ y2 = x2 − c

dz

dx
=

x

z
⇒ z2 = x2 + k

The curve is the intersection of these hyperbolic cylinders.

5(a)
∂f

∂x
= yz − 2x

∂f

∂y
= xz + 1

∂f

∂z
= xy − 1

∂2f

∂x2
= −2

∂2f

∂y2
= 0

∂2f

∂z2
= 0

∂2f

∂x∂y
= z

∂2f

∂y∂x
= z

∂2f

∂x∂z
= y

∂2f

∂z∂x
= y

∂2f

∂y∂z
= x

∂2f

∂z∂y
= x
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5(b)
∂f

∂x
= 2xyz3 ∂f

∂y
= x2z3 ∂f

∂z
= 3x2yz2

∂2f

∂x2
= 2yz3 ∂2f

∂y2
= 0

∂2f

∂z2
= 6x2yz

∂2f

∂x∂y
= 2xz3 ∂2f

∂y∂x
= 2xz3 ∂2f

∂x∂z
= 6xyz2

∂2f

∂z∂x
= 6xyz2 ∂2f

∂y∂z
= 3x2z2 ∂2f

∂z∂y
= 3x2z2

5(c)

∂f

∂x
=

z

1 + ( y
x )2

(−y

x2

)
=

−yz

x2 + y2

∂f

∂y
=

z

1 + ( y
x )2

(
1
x

)
=

xz

x2 + y2

∂2f

∂x2
=

2xyz

(x2 + y2)2
∂2f

∂y2
=

−2xyz

(x2 + y2)2

∂f

∂z
= tan−1

( y

x

)
∂2f

∂z2
= 0

∂2f

∂x∂y
=

z

x2 + y2
− 2x2z

(x2 + y2)2
=

z(x2 + y2) − 2x2z

(x2 + y2)2
=

(y2 − x2)z
(x2 + y2)2

∂2f

∂y∂x
=

−z

x2 + y2
+

2y2z

(x2 + y2)2
=

2y2z − z(x2 + y2)
(x2 + y2)2

=
(y2 − x2)z
(x2 + y2)2

∂2f

∂x∂z
=

1
1 + ( y

x )2
(−y

x2

)
=

−y

x2 + y2

∂2f

∂z∂x
=

−y

x2 + y2

∂2f

∂y∂z
=

1
1 + ( y

x )2

(
1
x

)
=

x

x2 + y2

∂2f

∂z∂y
=

x

x2 + y2

6(a) ∂f
∂x = 2x , ∂f

∂y = 2y , ∂f
∂z = −1, dx

dt = 3t2 , dy
dt = 2, dz

dt = −1
(t−1)2

df

dt
= 2(t3 − 1)(3t2) + 2(2t)(2) + (−1)

(
−1

(t − 1)2

)
= {2t(3t4 − 3t + 4)(t − 1)2 + 1}/(t − 1)2

= {2t(3t6 − 6t5 + 3t4 − 3t3 + 10t2 − 11t + 4) + 1}/(t − 1)2
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6(b)
∂f

∂x
= yz,

∂f

∂y
= xz,

∂f

∂z
= xy,

dx

dt
= e−t(cos t − sin t),

dy

dt
= −e−t(cos t + sin t),

dz

dt
= 1

df

dt
= te−t cos t.e−t(cos t − sin t) − te−t sin t.e−t(cos t + sin t) + e−2t sin t cos t.(1)

= te−2t(cos2 t − sin2 t − 2 sin t cos t) + e−2t sin t cos t

= te−2t(cos 2t − sin 2t) +
1
2
e−2t sin 2t

7 r2 = x2 + y2 + z2, tan φ = y
x , tan θ = (x2+y2)1/2

z

∂r

∂y
=

y

r
= sin θ sin φ,

∂φ

∂y
=

1
1 + ( y

x )2
1
x

=
x

x2 + y2
=

cos φ

r sin θ

∂θ

∂y
=

∂

∂y
{tan−1

[
(x2 + y2)1/2

z

]
} =

yz

(x2 + y2 + z2)(x2 + y2)1/2
=

sin φ cos θ

r

∂f

∂y
= sin θ sin φ

∂f

∂r
+

cos φ

r sin θ

∂f

∂φ
+

sin φ cos θ

r

∂f

∂θ

∂r

∂z
=

z

r
= cos θ,

∂φ

∂z
= 0

∂θ

∂z
=

1

1 + x2+y2

z2

[
− (x2 + y2)1/2

z2

]
=

−(x2 + y2)1/2

x2 + y2 + z2
=

− sin θ

r

∂f

∂z
= cos θ

∂f

∂r
− sin θ

r

∂f

∂θ

8 ∂u
∂x = df

dr
∂r
∂x , ∂r

∂x = x
r ⇒ ∂u

∂x = x
r

df
dr

∂2u

∂x2
=

∂

∂x

(x

r

) df

dr
+

x

r

∂

∂x

(
df

dr

)

=
r − x(x

r )
r2

df

dr
+

x

r

d2f

dr2

x

r

=
y2 + z2

r.r2

df

dr
+

x2

r2

d2f

dr2
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Similarly (by symmetry), ∂2u
∂y2 = x2+y2

r.r2
df
dr + y2

r2
∂2f
∂r2 , d2u

dz2 = x2+z2

r.r2
df
dr + z2

r2
d2f
dr2

⇒ ∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=

2(x2 + y2 + z2)
r.r2

df

dr
+

x2 + y2 + z2

r2

d2f

dr2

=
2
r

df

dr
+

d2f

dr2

Hence, the result.

9 V(x, y, z) = 1
z exp

{
−x2+y2

4z

}

∂V

∂x
=

1
z

exp
{
−x2 + y2

4z

}[−x

2z

]
∂2V

∂x2
=

1
z

exp
{
−x2 + y2

4z

}[−x

2z

]2

− 1
2z2

exp
{
−x2 + y2

4z

}
∂V

∂y
=

1
z

exp
{
−x2 + y2

4z

}[−y

2z

]
∂2V

∂y2
=

1
z

exp
{
−x2 + y2

4z

}[−y

2z

]2

− 1
2z2

exp
{
−x2 + y2

4z

}
∂V

∂z
= − 1

z2
exp

{
−x2 + y2

4z

}
+

1
z

exp
{
−x2 + y2

4z

}[
x2 + y2

4z2

]

⇒ ∂2V

∂x2
+

∂2V

∂y2
=

∂V

∂z

10 V = sin 3x cos 4y cosh 5z

∂2V

∂x2
= −9 sin 3x cos 4y cosh 5z

∂2V

∂y2
= −16 sin 3x cos 4y cosh 5z

∂2V

∂z2
= 25 sin 3x cos 4y cosh 5x

⇒ ∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0
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Exercises 3.1.4

11 x + y = u, y = uv

∂x

∂u
+

∂y

∂u
= 1,

∂y

∂u
= v ⇒ ∂x

∂u
= 1 − v

∂x

∂v
+

∂y

∂v
= 0,

∂y

∂v
= u ⇒ ∂x

∂v
= −u

∂(x, y)
∂(u, v)

=
∣∣∣∣ 1 − v v
−u u

∣∣∣∣ = u − uv − (−uv) = u

12 x + y + z = u, y + z = uv, z = uvw

∂x

∂u
+

∂y

∂u
+

∂z

∂u
= 1,

∂y

∂u
+

∂z

∂u
= v,

∂z

∂u
= vw

⇒ ∂z

∂u
= vw,

∂y

∂u
= v(1 − w),

∂x

∂u
= 1 − v

∂x

∂v
+

∂y

∂v
+

∂z

∂v
= 0,

∂y

∂v
+

∂z

∂v
= u,

∂z

∂v
= uw

∂z

∂v
= uw,

∂y

∂v
= u − uw,

∂x

∂v
= −u

∂x

∂w
+

∂y

∂w
+

∂z

∂w
= 0,

∂y

∂w
+

∂z

∂w
= 0,

∂z

∂w
= uv

⇒ ∂z

∂w
= uv,

∂y

∂w
= −uv,

∂x

∂w
= 0

⇒ ∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣
1 − v v − vw vw
−u u − uw uw
0 −uv uv

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 − v v vw
−u u uw
0 0 uv

∣∣∣∣∣∣ = uv

∣∣∣∣ 1 − v v
−u u

∣∣∣∣
= u2v

∣∣∣∣ 1 − v v
−1 1

∣∣∣∣ = u2v
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13 x = eu cos v, y = eu sin v

∂x

∂u
= eu cos v,

∂y

∂u
= eu sin v

∂x

∂v
= −eu sin v,

∂y

∂v
= eu cos v

⇒ ∂(x, y)
∂(u, v)

=
∣∣∣∣ eu cos v eu sin v
−eu sin v eu cos v

∣∣∣∣ = e2u(cos2 v + sin2 v) = e2u

x2 + y2 = e2u ⇒ u =
1
2

ln(x2 + y2)

y

x
= tan v ⇒ v = tan−1

( y

x

)

∂u

∂x
=

x

x2 + y2
,

∂u

∂y
=

y

x2 + y2

∂v

∂x
= − y

x2 + y2
,

∂v

∂y
=

x

x2 + y2

∂(u, v)
∂(x, y)

=
∣∣∣∣ x

x2+y2 − y
x2+y2

y
x2+y2

x
x2+y2

∣∣∣∣ =
x2 + y2

(x2 + y2)2
=

1
x2 + y2

=
1

e2u

Hence, the result.

14

∂(u, v)
∂(x, y)

=
∣∣∣∣ (− sinx cos y − λ cos x sin y) (cos x cos y − λ sin x sin y)
(− cos x sin y − λ sin x cos y) (− sinx sin y + λ cos x cos y)

∣∣∣∣
= − (sinx cos y + λ cos x sin y)(− sinx sin y + λ cos x cos y)

+ (cos x sin y + λ sin x cos y)(cos x cos y − λ sin x sin y)

= − [− sin2 x sin y cos y + λ sin x cos x cos2 y − λ sin x cos x sin2 y

+ λ2 cos2 x sin y cos y] + [cos2 x sin y cos y − λ sin x cos x sin2 y

+ λ sin x cos x cos2 y − λ2 sin2 x sin y cos y]

= sin y cos y − λ2 sin y cos y

∂(u, v)
∂(x, y)

= 0 ⇒ λ2 = 1 ⇒ λ = −1 or 1
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15

∂(u, v, w)
∂(x, y, z)

=

∣∣∣∣∣∣
2Kx 3 (3z + 6y)
8y 2 (2z + 6x)
2z 1 (2y + 3x)

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣
Kx − 3z 0 (3z − 9x)
4y − 2z 0 (2z − 4y)

z 1 (2y + 3x)

∣∣∣∣∣∣
= −2

∣∣∣∣Kx − 3z 3z − 9x
4y − 2z 2z − 4y

∣∣∣∣ = 4(z − 2y)(−Kx + 9x)

∂(u, v, w)
∂(x, y, z)

= 0 ⇒ K = 9

u = 9x2 + 4y2 + z2

v2 = 9x2 + 4y2 + z2 + 12xy + 6xz + 4yz

2w = 12xy + 6xz + 4yz

u = v2 − 2w

16

1 =
∂u

∂x

∂x

∂u
+

∂u

∂y

∂y

∂u
(differentiating u = g(x, y) with respect to u)

0 =
∂v

∂x

∂x

∂u
+

∂v

∂y

∂y

∂u
(differentiating v = h(x, y) with respect to u)

⇒ ∂x

∂u
=

∣∣∣∣ 1
∂u
∂y

0 ∂v
∂y

∣∣∣∣∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣
=

∂v

∂y
/J

∂y

∂u
= − ∂v

∂x
/J

Similarly, differentiating u = g(x, y) and v = h(x, y) with respect to v obtains the
other two expressions.

17

u = ex cos y, v = e−x sin y

∂u

∂x
= ex cos y = u,

∂v

∂x
= −e−x sin y = −v

∂u

∂y
= −ex sin y,

∂v

∂y
= e−x cos y
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∂x

∂u
=

e−x cos y

cos2 y − sin2 y

∂x

∂v
=

ex sin y

cos2 y − sin2 y

∂y

∂u
=

e−x sin y

cos2 y − sin2 y

∂y

∂v
=

ex cos y

cos2 y − sin2 y

Since 2uv = 2 sin y cos y = sin 2y , it is possible to express these results in terms of
u and v .

sin y =
1
2
(1 +

√
1 − 4u2v2)

cos y =
1
2
(1 −

√
1 − 4u2v2)

ex =
1
2u

(1 +
√

1 − 4u2v2)

Exercises 3.1.6
18(a)

∂

∂y
(y2 + 2xy + 1) = 2y + 2x

∂

∂x
(2xy + x2) = 2y + 2x

Therefore, it is an exact differential.
Let ∂f

∂x = y2 + 2xy + 1, then f(x, y) = xy2 + x2y + x + c(y)

and
∂f

∂y
= 2xy + x2 +

dc

dy

But, ∂f
∂y = 2xy + x2 from the question. Hence, dc

dy = 0; so c is independent of x

and y ⇒ f(x, y) = x2y + y2x + x + c .

18(b)
∂

∂y
(2xy2 + 3y cos 3x) = 4xy + 3cos 3x

∂

∂x
(2x2y + sin 3x) = 4xy + 3cos 3x

Therefore, it is an exact differential.
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Let ∂f
∂x = 2xy2 + 3y cos 3x , then f(x, y) = x2y2 + y sin 3x + c(y)

and
∂f

∂y
= 2x2y + y sin 3x +

dc

dy

Hence, dc
dy = 0 and c is a constant with respect to both x and y

⇒ f(x, y) = x2y2 + y sin 3x + c

18(c)
∂

∂y
(6xy − y2) = 6x − 2y

∂

∂x
(2xey − x2) = 2ey − 2x

Not equal, so not an exact differential.

18(d)

∂

∂y
(z3 − 3y) = −3

∂

∂z
(z3 − 3y) = 3z2 ∂

∂z
(12y2 − 3x) = 0

∂

∂x
(12y2 − 3x) = −3

∂

∂x
(3xz2) = 3z2 ∂

∂y
(3xz2) = 0

Hence, exact. Let ∂f
∂x = z3 − 3y , then f(x, y, z) = z3x − 3xy + c(y, z) and

∂f
∂y = −3x + ∂c

∂y . This inturn implies that ∂c
∂y = 12y2 and c(y, z) = 4y3 + k(z) .

∂f

∂z
= 3z2x +

∂c

∂z
= 3z2x +

dk

dz
.

This inturn implies that dk
dz = 0 and so f(x, y, z) = z3x − 3xy + 4y3 + K .

19
∂

∂y
(y cos x + λ cos y) = cos x − λ sin y

∂

∂x
(x sin y + sin x + y) = sin y + cos x

Equal, if λ = −1.
Let ∂f

∂x = y cos x − cos y , then f(x, y) = y sin x − x cos y + c(y) and
∂f
∂y = sinx + x sin y + c′(y) so that c′(y) = y and c(y) = 1

2y2 + k .
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Hence, f(x, y) = y sinx − x cos y + 1
2y2 + k .

f(0, 1) = 0 ⇒ 0 = 0 + 0 +
1
2

+ k ⇒ k = −1
2

and f(x, y) = y sin x − x cos y + 1
2 (y2 − 1).

20
∂

∂y
(10x2 + 6xy + 6y2) = 6x + 12y

∂

∂x
(9x2 + 4xy + 15y2) = 18x + 4y

Hence, not exact.

∂

∂y
[(2x + 3y)m(10x2 + 6xy + 6y2)] = 3m(2x + 3y)m−1(10x2 + 6xy + 6y2)

+ (2x + 3y)m(6x + 12y)
∂

∂x
[(2x + 3y)m(9x2 + 4xy + 15y2)] = 2m(2x + 3y)m−1(9x2 + 4xy + 15y2)

+ (2x + 3y)m(18x + 4y)

Hence, exact if

3m(10x2+6xy+6y2)+(2x+3y)(6x+12y) = 2m(9x2+4xy+15y2)+(2x+3y)(18x+4y)

Comparing coefficients of x2 gives m = 2. Let

∂f

∂x
= (2x + 3y)2(10x2 + 6xy + 6y2) = 40x4 + 144x3y + 186x2y2 + 126xy3 + 54y4

⇒ f(x, y) = 8x5 + 36x4y + 62x3y2 + 63x2y3 + 54xy4 + c(y)

∂f

∂y
= 36x4 + 124x3y + 99x2y2 + 216xy3 + c′(y)

⇒ c′(y) = 9y2 × 15y2 ⇒ c(y) = 27y5 + k

Hence, f(x, y) = 8x5 + 36x4y + 62x3y2 + 63x2y3 + 5xy4 + 27y5 + k .
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Exercises 3.2.2

21 grad f = (2xyz2, x2z2, 2x2yz) .
At (1,2,3), grad f = (36, 9, 12) = 3(12, 3, 4).

21(a) Unit vector in direction of (−2, 3,−6) is (−2,3,−6)√
(4+9+36)

= 1
7 (−2, 3,−6).

Directional derivative of f in direction of (−2, 3,−6) at (1,2,3) is

3(12, 3, 4) · (−2, 3,−6)/7 = −117/7

21(b) Maximum rate of change is |grad f| = 3
√

(144 + 9 + 16) = 39 and is in
the direction of grad f , that is, (12,3,4)/13.

22(a) ∇(x2 + y2 − z) = (2x, 2y,−1)

22(b)

∇
(
z tan−1

( y

x

))
=

(
−zy

x2 + y2
,

zx

x2 + y2
, tan−1

( y

x

))

22(c)

∇
(

e−x−y+z√
x3 + y2

)
=

(
−e−x−y+z√

x3 + y2
− 1

2
3x2e−x−y+z

(x3 + y2)3/2
,
−e−x−y+z√

x3 + y2

−1
2

2ye−x−y+z

(x3 + y2)3/2
,

e−x−y+z√
x3 + y2

)

=
e−x−y+z

(x3 + y2)3/2

(
−x3 − y2 − 3

2
x2,−x3 − y2 − y, x3 + y2

)

22(d)

∇(xyz sinπ(x + y + z)) =(yz sinπ(x + y + z) + πxyz cos π(x + y + z),

xz sinπ(x + y + z) + πxyz cos π(x + y + z),

xy sinπ(x + y + z) + πxyz cos π(x + y + z))
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23 grad (x2 + y2 − z) = (2x, 2y,−1).
At (1,1,2), grad f = (2, 2,−1).
Unit vector in the direction of (4, 4,−2) is 1

3 (2, 2,−1).
Directional derivative is (2, 2,−1) · 1

3 (2, 2,−1) = 1
3 (4 + 4 + 1) = 3.

24 ∇(xy2 − 3xz + 5) = (y2 − 3z, 2xy,−3x) .
At (1,−2, 3), grad f = (−5,−4,−3).
Unit vector in the direction of grad f is (−5,−4,−3)/

√
50.

Unit normal to surface xy2 − 3xz + 5 = 0 at (1,−2, 3) is (5, 4, 3)/
√

50.

25(a) r =
√

x2 + y2 + z2

∇r =

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)

=
1
r
(x, y, z)

=
r
r

25(b)

∇
(

1
r

)
=

(
−x

(x2 + y2 + z2)3/2
,

−y

(x2 + y2 + z2)3/2
,

−z

(x2 + y2 + z2)3/2

)

= − r
r3

26
∂φ

∂x
= 2xy + z2 ⇒ φ(x, y, z) = x2y + xz2 + f(y, z)

∂φ

∂y
= x2 + z ⇒ x2 + z = x2 +

∂f

∂y
⇒ f(y, z) = zy + g(z)

∂φ

∂z
= y + 2xz ⇒ y + 2xz = 2xz + y +

dg

dz

Hence, dg
dz = 0 ⇒ g(z) = c , a constant.

Hence, φ(x, y, z) = x2y + xz2 + zy + c .
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27 φ(x, y, z) = x2y − 3xyz + z3

grad φ = (2xy − 3yz, x2 − 3xz,−3xy + 3z2)
At (3,1,2), grad φ = (0,−9, 3).
Unit vector in direction of (3,−2, 6) = (3,−2, 6)/

√
49.

Directional derivative at (3,1,2) in the direction of (3,−2, 6) is

(0,−9, 3) · (3,−2, 6)/7 = 36/7

28 ∇(x2 + y2 + z2 − 9) = (2x, 2y, 2z) .
At (2,−1, 2), grad (x2 + y2 + z2 − 9) = (4,−2, 4).
Unit normal to surface at (2,−1, 2) is (2,−1, 2)/3.
∇(x2 + y2 − z − 3) = (2x, 2y,−1).
At (2,−1, 2), grad (x2 + y2 − z − 3) = (4,−2,−1).
Unit normal to surface at (2,−1, 2) is (4,−2,−1)/

√
21.

Let angle between normals be θ , then

cos θ =
(2,−1, 2)

3
· (4,−2,−1)√

21

⇒ cos θ =
8

3
√

21
, hence, θ = 54.41◦

29(a) ∇(x2 + 2y2 + 3z2 − 6) = (2x, 4y, 6z) .
At (1,1,1), grad f = (2, 4, 6), so tangent plane at (1,1,1) is

(1, 2, 3) · (x − 1, y − 1, z − 1) = 0 i.e. x + 2y + 3z = 6

and normal line is
x − 1

1
=

y − 1
2

=
z − 1

3

29(b) ∇(2x2 + y2 − z2 + 3) = (4x, 2y,−2z)
At (1,2,3), grad f = (4, 4,−6), so the tangent plane at (1,2,3) is

(2, 2,−3) · (x − 1, y − 2, z − 3) = 0 i.e. 2x + 2y − 3z = −3

and the normal line is
x − 1

2
=

y − 2
2

=
3 − z

3
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29(c) ∇(x2 + y2 − z − 1) = (2x, 2y,−1)

At (1,2,4), grad f = (2, 4,−1), so that the tangent plane is

(2, 4,−1) · (x − 1, y − 2, z − 4) = 0 i.e. 2x + 4y − z = 6

and the normal line is
x − 1

2
=

y − 2
4

=
z − 4
−1

30 The change Δr in the vector r can be resolved into the three directions ur ,
uθ , uφ . Thus,

Δr = Δrur + rΔθuθ + r sin θΔφuφ

Hence,

grad f = lim
Δr→0

f(r + Δr) − f(r)
|Δr|

=
∂f

∂r
ur +

1
r

∂f

∂θ
uθ +

1
r sin θ

∂f

∂φ
uφ

Exercises 3.3.2

31(a) div (3x2y, z, x2) = 6xy + 0 + 0 = 6xy

31(b) div (3x + y, 2z + x, z − 2y) = 3 + 0 + 1 = 4

32 div F = 2y2 − 2yz3 + 2yz − 3xz2 .

At (−1, 2, 3), div F = −61.
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33
∇(a · r) = ∇(a1x + a2y + a3z)

= (a1, a2, a3) = a

(a · ∇)r =
(

a1
∂

∂x
, a2

∂

∂y
, a3

∂

∂z

)
(x, y, z)

= (a1, a2, a3) = a

a(∇ · r) = a(1 + 1 + 1) = 3a

34

∇ · v =
(

1
r
− x2

r3

)
+

(
1
r
− y2

r3

)
+

(
1
r
− z2

r3

)

since
∂

∂x

(
x√

x2 + y2 + z2

)
=

1√
x2 + y2 + z2

− 1
2

x.(2x)
(x2 + y2 + z2)3/2

Hence,∇.v =
3
r
− x2 + y2 + z2

r3
=

2
r

∇
(

2
r

)
= 2

( − 1
2 .(2x)

(x2 + y2 + z2)3/2
,

− 1
2 (2y)

(x2 + y2 + z2)3/2
,

− 1
2 (2z)

(x2 + y2 + z2)3/2

)

= − 2
r3

(x, y, z) = −2r
r3

35
div F = 4xy2 + 9xy2 + λxy2 = (4 + 9 + λ)xy2

div F = 0 ⇒ λ = −13

36 In spherical polar coordinates, an element of volume has side Δr in the ur

direction, rΔθ in the uθ direction and r sin θΔφ in the uφ direction.

The total flow out of the elementary volume is

∂

∂r
(v · urr

2 sin θΔθΔφ)Δr +
∂

∂θ
(v · uθr sin θΔφΔr)Δθ +

∂

∂φ
(v · uφrΔθΔr)Δφ

+ terms of order |Δr|2
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Dividing by the volume of the element, r2 sin θΔθΔφΔr , and proceeding to the
limit, we obtain

div v =
1
r2

∂

∂r
(r2vr) +

1
r sin θ

∂

∂θ
(r sin θvθ) +

1
r sin θ

∂

∂φ
(vφ)

37
div

( r
r3

)
= div

[( x

r3
,

y

r3
,

z

r3

)]
=

1
r3

− 3x2

r5
+

1
r3

− 3y2

r5
+

1
r3

− 3z2

r5

=
3
r3

− 3
(x2 + y2 + z2)

r5
= 0

Exercises 3.3.4
38

curl v =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

3xz2 −yz x + 2z

∣∣∣∣∣∣ = (y, 6xz − 1, 0)

39

curl v =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

yz xz xy

∣∣∣∣∣∣ = (x − x, y − y, z − z) = 0

40

curl v =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2x + yz 2y + zx 2z + xy

∣∣∣∣∣∣ = (0, 0, 0) = 0

grad f =
(

∂f

∂x
,
∂f

∂u
,
∂f

∂z

)
⇒ ∂f

∂x
= 2x + yz

∂f

∂x
= 2x + yz ⇒ f(x, y, z) = x2 + xyz + g(y, z)

∂f

∂y
= 2y + zx and

∂f

∂y
= xz +

∂g

∂y
⇒ g(y, z) = y2 + h(z)

∂f

∂z
= 2z + xy and

∂f

∂z
= xy +

dh

dz
⇒ h(z) = z2 + c

Hence, f(x, y, z) = x2 + y2 + z2 + xyz + C .
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41

∇× (fv) =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

zx3 − zy 0 −x4 + xy

∣∣∣∣∣∣∣ = (x, 5x3 − 2y, z)

f(∇× v) = (x3 − y)

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

z 0 −x

∣∣∣∣∣∣∣
= (x3 − y)(0, 2, 0) = (0, 2x3 − 2y, 0)

(∇f) × v = (3x2,−1, 0) × v

=

∣∣∣∣∣∣
i j k

3x2 −1 0
z 0 −x

∣∣∣∣∣∣ = (x, 3x3, z)

42

∇× F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

4xy + az3 bx2 + 3z 6xz2 + cy

∣∣∣∣∣∣∣ = (c − 3, 3az2 − 6z2, 2bx − 4x)

∇× F = 0 ⇒ c = 3, a = 2, b = 2

grad φ =
(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
∂φ

∂x
= 4xy + 2z3 ⇒ φ(x, y, z) = 2x2y + 2xz3 + f(y, z)

∂φ

∂y
= 2x2 + 3z and

∂φ

∂y
= 2x2 +

∂f

∂y
⇒ ∂f

∂y
= 3z

Hence, f(y, z) = 3yz + g(z) .

∂φ

∂z
= 6xz2 + 3y and

∂φ

∂z
= 6xz2 + 3y +

dg

dz
⇒ dg

dz
= 0

Hence, φ(x, y, z) = 2x2y + 2xz3 + 3yz + C .
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43

ωωω =
1
2
curl u =

1
2

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

−y x xyz

∣∣∣∣∣∣∣
=

1
2
(xz,−yz, 2)

At (1,3,2), ωωω = 1
2 (2,−6, 2) = (1,−3, 1)

⇒ |ωωω | =
√

11

44
div v = a + d

curl v =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

ax + by cx + dy 0

∣∣∣∣∣∣∣ = (0, 0, c − b)

div v = 0 ⇒ a = −d

curl v = 0 ⇒ c = b

v = (ax + by)i + (bx − ay)j

= grad φ

⇒ ∂φ

∂x
= ax + by and

∂φ

∂y
= bx − ay

⇒ φ(x, y) =
1
2
ax2 + bxy + f(y)

∂φ

∂y
= bx + f′(y) ⇒ f′(y) = −ay ⇒ f(y) = −1

2
ay2 + K

Hence, φ(x, y) =
1
2
ax2 + bxy − 1

2
ay2 + K .

45 In spherical polar coordinates, an element of volume has side Δr in the ur

direction, rΔθ in the uθ direction and r sin θΔφ in the uφ direction.

Setting v ·ur = vr , v ·uθ = vθ and v ·uφ = vφ , we see that the circulation around
the ur direction is

∂

∂θ
(vφr sin θΔφ)Δθ − ∂

∂φ
(vrΔθ)Δφ + terms of order Δθ2 etc.
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The area around which this circulation takes place is r2 sin θΔθΔφ , so, proceeding
to the limit we have

(curl v) · ur =
{

∂

∂θ
(vφr sin θ) − ∂

∂φ
(vθr)

}
/(r2 sin θ)

Similarly (curl v) · uθ =
{

∂

∂φ
(vr) −

∂

∂r
(r sin θvφ)

}
/(r2 sin θ)

and (curl v) · uφ =
{

∂

∂r
(rvθ) −

∂

∂θ
(vr)

}
/r

Hence, the result.

Exercises 3.3.6

46

grad g =
(

∂g

∂x
,
∂g

∂y
,
∂g

∂z

)

=
(

dg

dr

∂r

∂x
,
dg

dr

∂r

∂y
,
dg

dr

∂r

∂z

)

=
dg

dr

(x

r
,
y

r
,
z

r

)
since r2 = x2 + y2 + z2

=
1
r

dg

dr
r

div [(u × r)g] = (u× r) · grad g + g∇ · (u× r) (3.19d)

∇ · (u × r) = r · (∇× u) − u · (∇× r) (3.19f)

∇× r = 0 ⇒ ∇ · (u× r) = r · curl u

But (u× r) is perpendicular to grad g =
1
r

dg

dr
r , so

(u× r) · grad g = 0

Hence, div ((u× r)g) = r · curl u .

47 φ(x, y, z) = x2y2z3, F (x, y, z) = (x2y, xy2z,−yz2)
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47(a) ∇2φ = 2y2z3 + 2x2z3 + 6x2y2z

47(b)

grad div F = grad (2xy + 2xyz − 2yz)

= (2y + 2yz, 2x + 2xz − 2z, 2xy − 2y)

47(c)

curl F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x2y xy2z −yz2

∣∣∣∣∣∣∣
= i(−z2 − xy2) + j(0) + k(y2z − x2)

curl (curl F) =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

−z2 − xy2 0 y2z − x2

∣∣∣∣∣∣∣
= i(2yz) + j(2x − 2z) + k(2xy)

48

grad [(r · r)(a · r)] = [grad (r · r)](a · r) + (r · r)grad (a · r) (3.19b)

= 2r(a · r) + (r · r)a

div {grad [(r · r)(a · r)]} = 2div [r(a · r)] + div [(r · r)a]

= 2{[div r](a · r) + r · grad (a · r)}

+ [grad (r · r)] · a + (r · r)div a (3.19d)

= 2{3(a · r) + r · a} + 2r · a + 0

= 10(r · a)
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49

v = x3yi + x2y2j + x2yzk

∇2v = 6xyi + 2(x2 + y2)j + 2yzk

grad div v = grad (3x2y + 2x2y + x2y) = grad (6x2y) = 12xyi + 6x2j

curl v =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x3y x2y2 x2yz

∣∣∣∣∣∣∣ = x2zi− 2xyzj + (2xy2 − x3)k

curl(curl v) =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x2z −2xyz 2xy2 − x3

∣∣∣∣∣∣∣
= (4xy + 2xy)i + (x2 − 2y2 + 3x2)j + (−2yz)k

grad div v − curl curl v = 6xyi + 2(x2 + y2)j + 2yzk as required.

50

u× v =

∣∣∣∣∣∣
i j k
0 xy xz
xy 0 yz

∣∣∣∣∣∣ = xy2zi + x2yzj− x2y2k

div (u× v) = y2z + x2z = (x2 + y2)z

curl u =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

0 xy xz

∣∣∣∣∣∣∣ = 0i − zj + yk

v · curl u = y2z

curl v =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

xy 0 yz

∣∣∣∣∣∣∣ = zi + 0j − xk

u · curl v = −x2z

⇒ v · curl u − u · curl v = (x2 + y2)z
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curl (u× v) =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

xy2z x2yz −x2y2

∣∣∣∣∣∣∣ = −3x2yi + 3xy2j + 0k

udiv v = (xyj + xzk)(y + y) = 2xy2j + 2xyzk

vdiv u = (xyi + yzk)(x + x) = 2x2yi + 2xyzk

(v · ∇)u =
(

xy
∂

∂x
+ yz

∂

∂z

)
(xyj + xzk) = xy2j + 2xyzk

(u · ∇)v =
(

xy
∂

∂y
+ xz

∂

∂z

)
(xyi + yzk) = x2yi + 2xyzk

⇒
[
udiv v − vdiv u + (v · ∇)u− (u · ∇)v = −3x2yi + 3xy2j + 0k

]

51(a)

grad
(

1
r

)
= − r

r3

div
(

grad
(

1
r

))
= −div

r
r3

= − 1
r3

div r− r · grad
(

1
r3

)

= − 3
r3

− r ·
(
−3r
r5

)
= − 3

r3
+

3r2

r5
= 0

51(b)

curl
(
k × grad

(
1
r

))
= curl

(
−k × r

r3

)
= curl

(
(yi− xj)

(
1
r3

))

= [curl (yi− xj)]
1
r3

+ grad
(

1
r3

)
× (yi− xj)

=

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y −x 0

∣∣∣∣∣∣∣
1
r3

− 3r
r5

× (yi− xj)
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= (0i + 0j − 2k)
1
r3

− 3
r5

∣∣∣∣∣∣
i j k
x y z
y −x 0

∣∣∣∣∣∣
= −2k

r3
+

3
r5

(−xzi− yzj + (x2 + y2)k)

grad
(
k · grad

(
1
r

))
= grad

(
−k · r

r3

)
= grad

(−z

r3

)

= −zgrad
(

1
r3

)
− (grad z)

1
r3

= −z

(
−3r

r5

)
− 1

r3
k

curl
(
k × grad

(
1
r

))
+ grad

(
k · grad

(
1
r

))
= −3k

r3
+

3
r5

(−xzi− yzj

+ (x2 + y2)k)

+
3
r5

(xzi + yzj + z2k)

= 0

52(a)

grad
(

A · r
r3

)
= grad

[(
A
r3

)
· r

]

=
A
r3

× curl r + r× curl
(

A
r3

)
+ (r · ∇)

(
A
r3

)
+

(
A
r3

· ∇
)

r (3.19c)

= 0 + r×
[
grad

(
1
r3

)
× A

]
+ A(r · ∇)

(
1
r3

)
+

A
r3

= r×
(
−3r

r5
× A

)
+ A

(
−3r2

r5

)
+

A
r3

Now, a× (b× c) = (a · c)b− (a · b)c

so r×
(
A × 3r

r5

)
=

(
r · 3r

r5

)
A− (A · r)3r

r5

Hence grad
(

A · r
r3

)
=

A
r3

− 3r
(A · r)

r5
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52(b)

curl
(

A× r
r3

)
= (r · ∇)

(
A
r3

)
− r

(
∇ · A

r3

)
−

(
A
r3

· ∇
)

r +
A
r3

(∇ · r)

= −3A
r3

− r
(
−3

A · r
r5

)
− A

r3
+ 3

A
r3

=
3
r5

(A · r)r− A
r3

(A× r) × r = (A · r)r− (r · r)A

(A · r)r = (A× r) × r + Ar2

curl
(

A× r
r3

)
=

3
r5

[(A× r) × r] +
3Ar2

r5
− A

r3

= 2
A
r3

+
3
r5

(A× r) × r

53(a)

Δ × r = curl r =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x y z

∣∣∣∣∣∣∣ = 0

53(b)

(a · ∇)r =
(

a1
∂

∂x
+ a2

∂

∂y
+ a3

∂

∂z

)
(xi + yj + zk)

= a1i + a2j + a3k = a

53(c)

∇× [(a · r)b− (b · r)a] = ∇× [(a× b) × r]

= (a× b)(∇ · r) − [(a× b) · ∇]r

= 3(a× b) − a× b

= 2a × b
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53(d)
∇ · [(a · r)b− (b · r)a] = ∇ · [(a × b) × r]

= (a× b) · (∇× r)

= (a× b) · (0) = 0

54

∇f =
∂f

∂r
ur +

1
r

∂f

∂θ
uθ +

1
r sin θ

∂f

∂φ
uφ (Exercise 30)

∇ · (∇f) =
1
r2

∂

∂r

(
r2 ∂f

∂r

)
+

1
r sin θ

∂

∂θ

(
sin θ

r

∂f

∂θ

)
+

1
r sin θ

∂

∂φ

(
1

r sin θ

∂f

∂φ

)
(using Exercise 36)

=
1
r2

∂

∂r

(
r2 ∂f

∂r

)
+

1
r2 sin2 θ

∂2f

∂φ2
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)

55

div H =
1
c

(
div

(
curl

∂Z
∂t

))
= 0 (3.22)

div E = div (curl curl Z) = 0 (3.22)

curl H =
1
c

∂E
∂t

becomes

curl H =
1
c
curl curl

∂Z
∂t

1
c

∂E
∂t

=
1
c

∂

∂t
(curl curl Z) =

1
c
curl curl

∂Z
∂t

curl E = curl curl curl Z

1
c

∂H
∂t

=
1
c
curl

∂2Z
∂t2

curl E = −1
c

∂H
∂t

⇒ curl curl curl Z = −1
c
curl

∂2Z
∂t2

⇒ curl curl Z = −1
c

∂2Z
∂t2

⇒ grad (div Z) −∇2Z = −1
c

∂2Z
∂t2

Hence, ∇2Z =
1
c

∂2Z
∂t2

when div Z = 0
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Exercises 3.4.2
56 ∫ B

A

y ds =
∫ 24

3

(2
√

x)
√

1 + 1/x dx

=
∫ 24

3

2
√

x + 1 dx =
[
4
3
(x + 1)3/2

]24

3

=
4
3
[125 − 8] = 156

57 ∂S

∫ B

A

[2xy dx + (x2 − y2) dy] = I

x2 + y2 = 1 ⇒ x dx = −y dy

I =
∫ y=1

y=0

[−2y2 + (1 − 2y2)] dy

=
∫ 1

0

(1 − 4y2) dy =
[
y − 4

3
y3

]1

0

= −1
3

58

r = (t3, t2, t)

dr = (3t2, 2t, 1) dt

∫
C

V· dr =
∫ 1

0

[(2yz + 3x2)(3t2) + (y2 + 4xz)2t + (2z2 + 6xy)1] dt

=
∫ 1

0

[6t5 + 9t8 + 2t5 + 8t5 + 2t2 + 6t5] dt

=
∫ 1

0

(22t5 + 9t8 + 2t2) dt =
11
3

+ 1 +
2
3

=
16
3
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59 A = (2y + 3, xz, yz − x) .

59(a)
∫

C

A· dr where r = (2t2, t, t3) and dr = (4t, 1, 3t2) dt

∫
C

A· dr =
∫ 1

0

[(2t + 3)4t + (2t5)1 + (t4 − 2t2)3t2] dt

=
∫ 1

0

(12t + 8t2 − 6t4 + 2t5 + 3t6) dt =
[
6 +

8
3
− 6

5
+

1
3

+
3
7

]

=
288
35

59(b)
∫

C

A· dr =
∫ Q

P

A · dr +
∫ R

Q

A · dr +
∫ S

R

A · dr

where P = (0, 0, 0), Q = (0, 0, 1), R = (0, 1, 1), S = (2, 1, 1)

(using straight lines)

On PQ A = 3i (x = y = 0) r = zk

On QR A = (2y + 3)i + yk (x = 0, z = 1) r = yj + k

On RS A = 5i + xj + (1 − x)k (y = 1, z = 1) r = xi + j + k

∫
C

A· dr =
∫ 1

0

3i · k dz +
∫ 1

0

[(2y + 3)i + yk] · j dy +
∫ 2

0

[5i + xj + (1 − x)k] · i dx

= 10

since i · k = 0 etc.

59(c)
∫

C

A· dr =
∫ S

P

A · dr

where C is a straight line, P = (0, 0, 0) and S = (2, 1, 1).
Parametrically, straight line is r = (2, 1, 1)t , so

∫
C

A· dr =
∫ 1

0

[(2t + 3)i + 2t2j + (t2 − 2t)k] · (2i + j + k) dt

=
∫ 1

0

[4t + 6 + 2t2 + t2 − 2t] dt =
∫ 1

0

(2t + 6 + 3t2) dt

= [1 + 6 + 1] = 8
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60 F is conservative if there exists a φ such that

F = (y2 cos x + z3, 2y sin x − 4, 3xz2 + z) = −
(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

Such a φ is readily determined giving

F = −grad
(

4y − y2 sin x − xz3 − 1
2z2

)

Hence, work done in moving an object is

∫
C

F· dr = −
[
4y − y2 sin x − xz3 − 1

2
z2

](π/2,−1,2)

(0,1,−1)

=
[
4 − 1

2

]
− [−5 − 4π − 2] = 4π + 10.5

61(a) Curve is r =
(

t, 1
4 t2, 3

8 t3
)

, so that dr =
(

1, 1
2 t, 9

8 t2
)

dt and

F =
(

3t2, 3
4 t4 − 1

4 t2, 3
8 t3

)
∫

C

F· dr =
∫ 2

0

[
3t2 +

3
8
t5 − 1

8
t3 +

27
64

t5
]

dt

=
[
t3 +

3
48

t6 − 1
32

t4 +
9

128
t6
]2

0

= 8 + 4 − 1
2

+
9
2

= 16

61(b) Curve is r = (2t, t, 3t), 0 ≤ t ≤ 1, so that

dr = (2, 1, 3) dt and F = (12t2, 12t2 − t, 3t) .

∫
C

F· dr =
∫ 1

0

(24t2 + 12t2 − t + 9t) dt

=
∫ 1

0

(36t2 + 8t) dt = 12 + 4 = 16
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61(c) No. If F is conservative, there is a function U(x, y, z) such that
F = −grad U

Test for existence of U : F · dr has to be an exact differential

∂

∂y
(3x2) �= ∂

∂x
(2xz − y)

Hence, not exact and F is not conservative.

62 F = (3x2 − y, 2yz2 − x, 2y2z)

∂

∂y
(3x2 − y) = −1 =

∂

∂x
(2yz2 − 1)

∂

∂z
(3x2 − y) = 0 =

∂

∂x
(2y2z)

∂

∂y
(2y2z) = 4yz =

∂

∂z
(2yz2 − x)

Hence, conservative and F = −grad U where U = −x3 + xy − y2z2 .

div F = 6x + 2z2 + 2y2 �= 0, hence not solenoidal.

∫
C

F· dr =
[
x3 − xy + y2z2

](1,2,3)

(0,0,0)
= 1 − 2 + 36 = 35

63 F = (2t3,−t3, t4) , r = (t2, 2t, t3) , dr = (2t, 2, 3t2) dt

F × dr =

∣∣∣∣∣∣∣∣
i j k

2t3 −t3 t4

2t 2 3t2

∣∣∣∣∣∣∣∣
dt

= [(−3t5 − 2t4)i + (−4t5)j + (4t3 + 2t4)k] dt

∫
C

F× dr =
∫ 1

0

[(−3t5 − 2t4)i − 4t5j + (4t3 + 2t4)k] dt
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=
[(

− 1
2
− 2

5

)
i − 4

6
j +

(
1 +

2
5

)
k
]

= − 9
10

i − 2
3
j +

7
5
k

64

A× B =

∣∣∣∣∣∣
i j k

3x + y −x y − z
2 −3 1

∣∣∣∣∣∣ = (3y − 3z − x)i + (y − 2z − 3x)j + (−3y − 7x)k

r = (2 cos θ, 2 sin θ, 0)

dr = (−2 sin θ, 2 cos θ, 0) dθ

On circle, z = 0 and

A× B = (6 sin θ − 2 cos θ)i + (2 sin θ − 6 cos θ)j − (6 sin θ + 14 cos θ)k

(A× B) × dr =

∣∣∣∣∣∣
i j k

6 sin θ − 2 cos θ 2 sin θ − 6 cos θ −6 sin θ − 14 cos θ
−2 sin θ 2 cos θ 0

∣∣∣∣∣∣ dθ

∫
C

(A× B) × dr =
∫ 2π

0

{(6 sin θ + 14 cos θ)2 cos θi + (6 sin θ + 14 cos θ)2 sin θj

+ [(6 sin θ − 2 cos θ)(2 cos θ) + (2 sin θ − 6 cos θ)(2 sin θ)]} dθ

∫ 2π

0

sin θ cos θ dθ =
∫ 2π

0

1
2

sin 2θ dθ =
[
1
4

cos 2θ
]2π

0

= 0

∫ 2π

0

sin2 θ dθ =
∫ 2π

0

cos2 θ dθ = π

∫
C

(A× B) × dr = 28πi + 12πj + 0k
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Exercises 3.4.4

65(a) ∫ 3

0

∫ 2

1

xy(x + y) dy dx =
∫ 3

0

[
1
2
x2y2 +

1
3
xy3

]2

1

dx

=
∫ 3

0

[
1
2
x2(4 − 1) +

1
3
x(8 − 1)

]
dx

=
[
1
2
x3 +

7
6
x2

]3

0

=
27
2

+
21
2

= 24

65(b) ∫ 3

2

∫ 5

1

x2y dy dx =
∫ 3

2

x2 dx

∫ 5

1

y dy

=
[
1
3
x3

]3

2

[
1
2
y2

]5

1

=
1
3
(27 − 8)

1
2
(25 − 1)

= 76

65(c)

∫ 1

−1

∫ 2

−2

(2x2 + y2) dy dx =
∫ 1

−1

[
2x2y +

1
3
y3

]2

−2

dx

=
∫ 1

−1

(
8x2 +

16
3

)
dx =

16
3

+
32
3

= 16

66 ∫ 2

1

∫ 2

0

x2

y
dx dy =

∫ 2

1

1
y

dy

∫ 2

0

x2 dx

= (ln 2)
(

8
3

)
=

8
3

ln 2
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67 ∫ 1

0

∫ 1−x

0

(x2 + y2) dy dx =
∫ 1

0

[
x2y +

1
3
y3

]1−x

0

dx

=
∫ 1

0

x2(1 − x) +
1
3
(1 − x)3 dx

=
[
1
3
x3 − 1

4
x4 − 1

12
(1 − x)4

]1

0

=
[
1
3
− 1

4

]
−

[
− 1

12

]
=

1
6

68(a)
∫ 2

1

dx

∫ 2x

x

dy

x2 + y2

=
∫ 2

1

[
1
x

tan−1 y

x

]2x

x

dx

=
∫ 2

1

1
x

(tan−1 2 − tan−1 1) dx

= (tan−1 2 − tan−1 1)[ln x]21

= tan−1

(
1
3

)
ln 2

68(b)
∫ 1

0

dx

∫ 1−x

0

(x + y) dy

=
∫ 1

0

[
xy +

1
2
y2

]1−x

0

dx

=
∫ 1

0

[
x(1 − x) +

1
2
(1 − x)2

]
dx

=
[
−x2

2
− x3

3
− 1

6
(1 − x)3

]1

0

=
[
1
2
− 1

3
+

1
6

]
=

1
3
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y

1

0 1/2 1 x

Part circle

Part circle

x2 + y2 = 1

x2 − x + y2 = 0

68(c)
∫ 1

0

dx

∫ √
1−x2

√
x−x2

1√
1 − x2 − y2

dy

=
∫ 1

0

[
sin−1 y√

1 − x2

]√1−x2

√
x−x2

dx

=
∫ 1

0

[
sin−1 1 − sin−1

√
x − x2

1 − x2

]
dx

=
∫ 1

0

[
sin−1 1 − sin−1

√
x

1 + x

]
dx

=
π

2
−

[
x sin−1

√
x

1 + x

]1

0

+
1
2

∫ 1

0

√
x

(1 + x)
dx

=
π

2
− sin−1 1√

2
+

[√
x − tan−1

√
x
]1
0
,using substitution x = tan2 θ

=
π

4
+

(
1 − π

4

)
= 1

69
y

(1,2)

(2,1)

2

1

0 1 2 x

∫ ∫
sin

1
2
π(x + y) dx dy

=
∫ 1

0

dx

∫ x

x/2

sin
1
2
π(x + y) dy +

∫ 2

1

dx

∫ 3−x

x/2

sin
1
2
π(x + y) dy

=
∫ 1

0

[
− 2

π
cos

1
2
π(x + y)

]x

x/2

dx +
∫ 2

1

[
− 2

π
cos

1
2
π(x + y)

]3−x

x/2

dx

=
∫ 1

0

[
2
π

cos
3
4
πx − 2

π
cos πx

]
dx +

∫ 2

1

[
2
π

cos
3
4
πx − 2

π
cos

3π
2

]
dx
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=
[

8
3π2

sin
3
4
πx − 2

π2
sin πx

]1

0

+
[

8
3π2

sin
3
4
πx

]2

1

=
8

3π2
sin

3
4
π +

8
3π2

sin
3π
2

− 8
3π2

sin
3π
4

= − 8
3π2

70(a)
∫ 1

0

dx

∫ 1

x

xy√
1 + y4

dy

=
∫ 1

0

dy

∫ y

0

xy√
1 + y4

dx

=
∫ 1

0

[
1
2x2y√
1 + y4

]y

0

dy

=
∫ 1

0

1
2y3√
1 + y4

dy =
[
1
8
.
2
1

√
1 + y4

]1

0

=
1
4
(
√

2 − 1)

70(b)
∫ π/2

0

dy

∫ y

0

cos 2y
√

1 − k2 sin2 x dx

=
∫ π/2

0

dx

∫ π/2

x

cos 2y
√

1 − k2 sin2 x dy

=
∫ π/2

0

[
1
2

sin 2y
√

1 − k2 sin2 x

]π/2

x

dx

=
∫ π/2

0

− sin x cos x
√

1 − k2 sin2 x dx

=
∫ −1

0

1
2

√
1 + k2t dt

(Let t = − sin2 x , then
dt = −2 sin x cos x dx)

=
[

1
3k2

(1 + k2t)3/2

]−1

0

=
1

3k2
((1 − k2)3/2 − 1)
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71
∫ 1

0

dy

∫ 1

√
y

dx√
y(1 + x2)

=
∫ 1

0

dx

∫ x2

0

1√
1 + x2

1
√

y
dy

=
∫ 1

0

1√
1 + x2

[2
√

y ]x
2

0 dx

=
∫ 1

0

2x√
1 + x2

dx

= [2
√

1 + x2]10 = 2(
√

2 − 1)

72∫ 1

0

dx

∫ √
x−x2

0

x√
x2 + y2

dy

Equation of circle in polar coordinates is r = cos θ

∫ 1

0

dx

∫ √
x−x2

0

x√
x2 + y2

dy =
∫ π/2

0

∫ cos θ

0

r cos θ√
r2 cos2 θ + r2 sin2 θ

r dr dθ

=
∫ π/2

0

∫ cos θ

0

(cos θ)r dr dθ

=
∫ π/2

0

cos θ

[
1
2
r2

]cos θ

0

dθ

=
∫ π/2

0

1
2

cos3 θ dθ =
1
2
.
2
3

∫ π/2

0

cos θ dθ

=
1
3
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73
∫ 1

0

dx

∫ √
1−x2

0

x + y√
x2 + y2

dy

Change to polar coordinates

∫ 1

0

dx

∫ √
1−x2

0

x + y√
x2 + y2

dy =
∫ π/2

0

∫ 1

0

r cos θ + r sin θ

r
r dr dθ

=
∫ π/2

0

(cos θ + sin θ) dθ

∫ 1

0

r dr

= [sin θ − cos θ]π/2
0

[
1
2
r2

]1

0

= 1

74
∫ ∫

x + y

x2 + y2 + a2
dx dy

over first quadrant of circle

using polar coordinates

∫ ∫
x + y

x2 + y2 + a2
dx dy =

∫ π/2

0

∫ a

0

r cos θ + r sin θ

r2 + a2
r dr dθ

=
∫ π/2

0

(cos θ + sin θ) dθ

∫ a

0

r2

r2 + a2
dr

= 2
∫ a

0

(
1 − a2

r2 + a2

)
dr

= 2
[
r − a tan−1 r

a

]a

0
= 2a

(
1 − π

4

)
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75 Using polar coordinates, parabola becomes

r2 sin2 θ = 4 − 4r cos θ

r2 = 4 − 4r cos θ + r2 cos2 θ

= (2 − r cos θ)2

r = (2 − r cos θ), positive root because r = 2 at θ = π
2

=
2

1 + cos θ

∫ ∫
x2 − y2

x2 + y2
dx dy =

∫ π/2

0

∫ 2
1+cos θ

0

(cos2 θ − sin2 θ)r dr dθ

=
∫ π/2

0

2(cos2 θ − sin2 θ)
1

(1 + cos θ)2
dθ

=
∫ π/2

0

2(2 cos2 θ − 1)
(1 + cos θ)2

dθ

= (6π − 20)/3 = −0.3835

(use the substitution t = tan 1
2θ).

76 Circles are r = a cos θ , r = b sin θ and intersect at θ = tan−1 a
b .

∫ ∫
(x2 + y2)2

(xy)2
dx dy =

∫ tan−1 a
b

0

∫ b sin θ

0

1
sin2 θ cos2 θ

r dr dθ

+
∫ π/2

tan−1 a
b

∫ a cos θ

0

1
sin2 θ cos2 θ

r dr dθ

=
∫ tan−1 a

b

0

1
2

b2 sin2 θ

sin2 θ cos2 θ
dθ +

∫ π/2

tan−1 a
b

1
2

a2 cos2 θ

sin2 θ cos2 θ
dθ

=
∫ tan−1 a

b

0

1
2
b2 sec2 θ dθ +

∫ π/2

tan−1 a
b

1
2
a2cosec2θ dθ

=
[
1
2
b2 tan θ

]tan−1 a
b

0

+
[
−1

2
a2 cot θ

]π/2

tan−1 a
b

=
1
2
ab +

1
2
ab = ab
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Exercises 3.4.6

77
∮

C

[sin y dx + (x − cos y) dy]

=
∫ 1

0

[
sin

1
2
πx + (x − cos

1
2
πx)

1
2
π

]
dx

+
∫ 0

1

[
sin

1
2
π

]
dx

+
∫ 0

π/2

[− cos y] dy

=
[
− 2

π
cos

1
2
πx − 1

4
πx2 − sin

1
2
πx

]1

0

+
[
x sin

1
2
π

]0

1

+ [− sin y]0π/2

= −1 +
2
π

+
1
4
π − 1 + 1

= −1 +
2
π

+
π

4∮
C

[sin y dx + (x − cos y) dy] =
∫
A

∫
[1 − cos y] dx dy

=
∫ 1

0

dx

∫ π/2

1
2πx

(1 − cos y) dy

=
∫ 1

0

(
π

2
− π

2
x − 1 + sin

1
2
πx

)
dx

=
π

2
− π

4
− 1 +

2
π

=
π

4
− 1 +

2
π

78
∮

[(x2y − y) dx + (x + y2) dy]

=
∫
A

∫
(1 − x2 + 1) dx dy

=
∫ 2

0

dx

∫ x

0

(2 − x2) dy

=
∫ 2

0

(2x − x3) dx =
[
x2 − 1

4
x4

]2

0
= 4 − 4 = 0
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79
∮

C

(xy dx + x dy)

=
∫ 1

0

(x3 + 2x2) dx

+
∫ 0

1

(
x3/2 +

1
2
x1/2

)
dx

=
1
4

+
2
3
−

[
2
5

+
1
3

]
=

11
60

∮
C

(xy dx + x dy) =
∫
A

∫
(1 − x) dx dy

=
∫ 1

0

dx

∫ √
x

x2
(1 − x) dy

=
∫ 1

0

(1 − x)(
√

x − x2) dx

=
∫ 1

0

√
x − x3/2 − x2 + x3 dx

=
2
3
− 2

5
− 1

3
+

1
4

=
11
60

80 ∮
c

[
(ex − 3y2) dx + (ey + 4x2) dy

]
=

∫
A

∫
(8x + 6y) dx dy

=
∫ 2π

0

dθ

∫ 2

0

(8r cos θ + 6r sin θ)r dr dθ

=
∫ 2π

0

(8 cos θ + 6 sin θ) dθ

∫ 2

0

r dr

= 0(2) = 0

81
∫ a

0

dx

∫ 2a−x

x

y − x

4a2 + (y + x)2
dy = I

u = x + y

v = x − y

}
⇒ x = (u + v)/2

y = (u − v)/2
and

∂(x, y)
∂(u, v)

=
∣∣∣∣ 1

2
1
2

1
2 − 1

2

∣∣∣∣ = −1
2
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y = x ⇒ u − v = u + v ⇒ v = 0

y = 2a − x ⇒ u − v = 4a − u − v ⇒ u = 2a

x = 0 ⇒ u = −v

(0, 0) ⇒ (0, 0), (a, a) ⇒ (2a, 0), (0, 2a) ⇒ (2a,−2a)

I =
∫ 2a

0

du

∫ 0

−u

−v

4a2 + u2

∣∣∣∣−1
2

∣∣∣∣ dv =
1
4

∫ 2a

0

u2

4a2 + u2
du

=
1
4

∫ 2a

0

1 − 4a2

4a2 + u2
du

=
1
4

[
u − 2a tan−1 u

2a

]2a

0
=

a

2

(
1 − π

4

)

82
∫ 1

0

dy

∫ 2−y

y

x + y

x2
ex+y dx

u = x + y

v = y/x

}
⇒ ∂(u, v)

∂(x, y)
=

∣∣∣∣ 1 − y
x2

1 1
x

∣∣∣∣ =
1
x2

(x + y)
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y = x ⇒ v = 1

y = 0 ⇒ v = 0

y = 2 − x ⇒ u = 2

∫ 1

0

dy

∫ 2−y

y

x + y

x2
ex+y dx =

∫ 2

0

du

∫ 1

0

eu dv

= e2 − 1

Exercises 3.4.8
83 Surface area =

∫
A

∫ √
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy

where A is the domain x2 + y2 ≤ 2, z = 0.

z = 2 − x2 − y2 ⇒ ∂z

∂x
= −2x,

∂z

∂y
= −2y

Surface area =
∫
A

∫ √
1 + 4x2 + 4y2 dx dy

Set x = r cos θ , y = r sin θ , then

Surface area =
∫ 2π

0

dθ

∫ √
2

0

√
1 + 4r2 r dr

= 2π
[

1
12

(1 + 4r2)3/2

]√2

0

= 2π
[

1
12

(27 − 1)
]

= 52π/12 = 13π/3

84(a) Direction cosines of normal to S are ( 2
3 , 1

3 , 2
3 ) , so that

∫
S

∫
(x2 + y2) dS =

∫
A

∫
(x2 + y2)

dx dy

2/3
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where A is the area between y = 6−2x and y = 2−2x lying between y = 0 and
y = 3.

Thus
∫
S

∫
(x2 + y2) dS =

∫ 3

0

dy

∫ 6−y
2

2−y
2

3
2
(x2 + y2) dx

=
∫ 3

0

3
2

[
x3

3
+ y2x

] 6−y
2

2−y
2

dy

=
∫ 3

0

(
13 − 6y +

15
4

y2

)
dy =

183
4

84(b)
∫
S

∫
z dS =

∫ 1

0

dx

∫ +
√

x−x2

−
√

x−x2
z

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dy

∂z

∂x
= −x

z
,

∂z

∂y
= −y

z
and x2 + y2 + z2 = 1

∫
S

∫
z dS =

∫ 1

0

dx

∫ +
√

x−x2

−
√

x−x2
1 dy

=2
∫ 1

0

√
x − x2 dx

=
π

4

(Use the substitution x = 1
2 + 1

2 sin t . Alternatively, recognize area of circle of
radius 1

2 .)
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85(a) v = (xy,−x2, x + z)

dS = n dS =
(

2
3
,
2
3
,
1
3

)
dS

⇒
∫
S

∫
v · dS =

∫
S

∫ (
2
3
xy − 2

3
x2 +

1
3
(x + z)

)
dS

=
∫ 3

0

dx

∫ 3−x

0

[xy − 2x2 + (x + 6 − 2x − 2y)] dy

=
∫ 3

0

[
1
2
xy2 − 2x2y − xy + 6y − y2

]3−x

0

dx

=
∫ 3

0

{x

2
(3 − x)2 − 2x2(3 − x) − x(3 − x) + 6(3 − x)

}
dx

= 27/4

85(b) Use cylindrical polar coordinates, then dS = (i cos φ + j sin φ) dφ dz on
cylinder and v = (3y, 2x2, z3) = (3 sinφ, 2 cos2 φ, z3)

∫
S

∫
v · dS

=
∫ 2π

0

dφ

∫ 1

0

(3 sinφ cos φ + 2cos2 φ sinφ) dz

=
[
3
2

sin2 φ − 2
3

cos3 φ

]2π

0

= 0

86
∫
S

∫
z2 dS =

∫
A

∫
z2/

√
(1 − x2 − y2) dx dy

where x2 + y2 + z2 = 1 and A is the interior of the circle x2 + y2 = 1, z = 0

∫
S

∫
z2 dS =

∫
A

∫ √
1 − x2 − y2 dx dy

=
∫ 2π

0

dθ

∫ 1

0

√
1 − r2 r dr

= 2π
[
−1

3
(1 − r2)3/2

]1

0

=
2π
3
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87(a)
∫
S

∫
1 dS =

∫
A

∫
1
√

1 + 4x2 + 4y2 dx dy

where A is the interior of the circle x2 + y2 = 2

∫
S

∫
dS =

∫ 2π

0

dθ

∫ √
2

0

√
1 + 4r2 r dr

= 2π
[

1
12

(1 + 4r2)3/2

]√2

0

=
2π
12

(27 − 1)

= 13π/3 Surface Area

87(b) ∫
S

∫
(x2 + y2) dS =

∫ 2π

0

dθ

∫ √
2

0

r2
√

1 + 4r2 r dr

=
2π
16

[
1
5
(1 + 4r2)5/2 − 1

3
(1 + 4r)3/2

]√2

0

=
π

8

[
1
5
(243 − 1) − 1

3
(27 − 1)

]
= 149π/30

2nd moment of surface area about z -axis.

87(c)

∫
S

∫
z dS =

∫ 2π

0

dθ

∫ √
2

0

(2 − r2)
√

1 + 4r2 r dr

= 2
∫ 2π

0

dθ

∫ √
2

0

√
1 + 4r2 r dr −

∫ 2π

0

dθ

∫ √
2

0

r2
√

1 + 4r2 dr

=
26π
3

− 149π
30

=
111π
30

=
37π
10

88 Direction cosines of normal to S are ( 2
3 , 1

3 , 2
3 ) so that

∫
S

∫
dS =

∫
A

∫
dx dy

2/3
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where A is the interior of x2 + y2 = 64 lying in the first quadrant.

∫
S

∫
dS =

∫ π/2

0

dθ

∫ 8

0

3
2
r dr =

π

2
× 3

2

[
1
2
r2

]8

0

= 24π

89
∫
S

∫
dS =

∫
A

∫ √
1 +

(x

2

)2

+
(y

2

)2

dx dy

where A is the annulus between x2 + y2 = 4 and x2 + y2 = 12

∫
S

∫
dS =

∫ 2π

0

dθ

∫ √
12

2

√
1 +

1
4
r2 r dr

= 2π

[
4
3

(
1 +

1
4
r2

)3/2
]√

12

2

=
8π
3

[43/2 − 23/2]

=
16π
3

(4 − 21/2)

90 Using cylindrical polar coordinates, dS = (4i cos φ + 4j sin φ) dφ dz

and V = zi + 2cos φj − 12 sin2 φzk

Thus V · dS = (4z cos φ + 8 sin φ cos φ) dφ dz

and
∫
S

∫
V · dS =

∫ π/2

0

dφ

∫ 5

0

(4z cos φ + 8 sin φ cos φ) dz

=
∫ π/2

0

(50 cos φ + 40 sin φ cos φ) dφ

= [50 sin φ + 40 sin2 φ]π/2
0 = 90

91 F = yi + (x − 2xz)j − xyk

curl F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y x − 2xz −xy

∣∣∣∣∣∣∣ = (x, y,−2z)

On sphere, x = a sin θ cos φ , y = a sin θ sin φ , z = a cos θ
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and dS = a2(sin θ cos φ, sin θ sin φ, cos θ) sin θ dθ dφ

curl F · dS = a3(sin2 θ cos2 φ + sin2 θ sin2 φ − 2 cos2 θ) sin θ dθ dφ

= a3(sin2 θ − 2 cos2 θ) sin θ dθ dφ∫
S

∫
curl F · dS =

∫ 2π

0

dφ

∫ π

0

a3[sin3 θ − 2 cos2 θ sin θ] dθ

=
∫ 2π

0

a3 dφ

∫ π

0

[
3
4

sin θ − 1
4

sin 3θ − 2 cos2 θ sin θ

]
dθ

=
[
a3φ

]2π

0

[
−3

4
cos θ +

1
12

cos 3θ +
2
3

cos3 θ

]π

0

= 0

Exercises 3.4.10

92(a) ∫ 1

0

dx

∫ 2

0

dy

∫ 3

1

x2yz dz =
∫ 1

0

x2 dx

∫ 2

0

y dy

∫ 3

1

z dz

=
1
3
.
1
2
(4)

1
2
(32 − 1) =

8
3

92(b) ∫ 2

0

∫ 3

1

∫ 4

2

xyz2 dz dy dx =
∫ 2

0

dx

∫ 3

1

dy

∫ 4

2

xyz2 dz

=
∫ 2

0

x dx

∫ 3

1

y dy

∫ 4

2

z2 dz

=
1
2
(4)

1
2
(32 − 1)

1
3
(43 − 23)

=
448
3

93 ∫ 1

−1

dz

∫ z

0

dx

∫ x+z

x−z

(x + y + z) dy =
∫ 1

−1

dz

∫ z

0

{2z(x + z) + 2xz} dx

=
∫ 1

−1

3z3 dz = 0
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94

∫ ∫
V

∫
sin(x + y + z) dx dy dz =

∫ π

0

dx

∫ π−x

0

dy

∫ π−x−y

0

sin(x + y + z) dz

=
∫ π

0

dx

∫ π−x

0

[− cos(x + y + z)]π−x−y
0 dy

=
∫ π

0

dx

∫ π−x

0

[1 + cos(x + y)] dy

=
∫ π

0

[y + sin(x + y)]π−x
0 dx

=
∫ π

0

(π − x + sin π − sin x) dx

=
[
πx − x2

2
+ cos x

]π

0

=
1
2
π2 − 2

95

∫ ∫
V

∫
xyz dx dy dz =

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

xyz dz

=
∫ 1

0

x dx

∫ 1−x

0

1
2
y(1 − x − y)2 dy

=
∫ 1

0

1
2
x

[
1
2
(1 − x)2y2 − 2

3
(1 − x)y3 +

1
4
y4

]1−x

0

dx

=
∫ 1

0

1
24

x(1 − x)4 dx

=
1
24

∫ 1

0

(x − 4x2 + 6x3 − 4x4 + x5) dx

=
1

720

c©Pearson Education Limited 2011



174 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

96

V =
∫ ∫

V

∫
dV =

∫ ∫
V

∫
dx dy dz

=
∫ 1

0

dx

∫ √
x

x2
dy

∫ 2−x−y

0

dz

=
∫ 1

0

dx

∫ √
x

x2
(2 − x − y) dy

=
∫ 1

0

{
2
√

x − x3/2 − 1
2
x − 2x2 + x3 +

1
2
x4

}
dx

=
[
4
3
− 2

5
− 1

4
− 2

3
+

1
4

+
1
10

]
=

11
30

97

∫ ∫
V

∫
(x2 + y2 + z2)x dx dy dz =

∫ π/2

0

dφ

∫ π/2

0

dθ

∫ 1

0

r2r sin θ cos φ sin θr2 dr

=
∫ π/2

0

cos φ dφ

∫ π/2

0

sin2 θ dθ

∫ 1

0

r5 dr

= 1 × 1
2
× π

2
× 1

6
=

π

24

98
∫ ∫

V

∫
x2y2z2(x + y + z) dx dy dz

=
∫ ∫

V

∫
x3y2z2 dx dy dz +

∫ ∫
V

∫
x2y2z3 dx dy dz +

∫ ∫
V

∫
x2y3z2 dx dy dz

=
∫ 1

0

x3 dx

∫ 1−x

0

y2 dy

∫ 1−x−y

0

z2 dz +
∫ 1

0

y3 dy

∫ 1−y

0

z2 dz

∫ 1−z−y

0

x2 dx

+
∫ 1

0

z3 dz

∫ 1−z

0

x2 dx

∫ 1−z−x

0

y2 dy

= 3
∫ 1

0

x3 dx

∫ 1−x

0

y2 dy

∫ 1−x−y

0

z2 dz from symmetry
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= 3
∫ 1

0

x3 dx

∫ 1−x

0

1
3
y2(1 − x − y)3 dy

=
∫ 1

0

x3 dx

∫ 1−x

0

{y2[(1 − x)3 − 3(1 − x)2y + 3(1 − x)y2 − y3]} dy

=
∫ 1

0

x3

[
1
3
(1 − x)6 − 3

4
(1 − x)6 +

3
5
(1 − x)6 − 1

6
(1 − x)6

]
dx

=
1
60

∫ 1

0

x3(1 − x)6 dx

=
1
60

∫ 1

0

x6(1 − x)3 dx

=
1
60

∫ 1

0

x6(1 − 3x + 3x2 − x3) dx

=
1
60

(
1
7
− 3

8
+

3
9
− 1

10

)

=
1

50400

99
u = x + y + z
uv = y + z
uvw = z

⎫⎬
⎭

x = u − uv
y = uv − uvw
z = uvw

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣
1 − v v − vw vw
−u u − uw uw
0 −uv uv

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 − v v vw
−u u uw
0 0 uv

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 v vw
0 u uw
0 0 uv

∣∣∣∣∣∣ = u2v

I =
∫ ∫

V

∫
exp(−(x + y + z)3) dx dy dz

=
∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

exp(−(x + y + z)3) dz

x + y + z = 1 ⇒ u = 1

x = 0 ⇒ u = y + z
uv = y + z

}
⇒ v = 1
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y = 0 ⇒
u = x + z
uv = z
uvw = z

⎫⎬
⎭ ⇒ w = 1

z = 0 ⇒
u = x + y
uv = y
uvw = 0

⎫⎬
⎭ ⇒ w = 0

I =
∫ 1

0

du

∫ 1

0

dv

∫ 1

0

e−u3
u2v dv

=
∫ 1

0

u2e−u3
du

∫ 1

0

v dv

∫ 1

0

dw

=
[
−1

3
e−u3

]1

0

[
1
2
v2

]1

0

[w]10

=
1
6
[1 − e−1]

100

∫ ∫
V

∫
yz dx dy dz =

∫ 1

0

dx

∫ 1−x

0

dy

∫ 2−x−y

0

yz dz

=
∫ 1

0

dx

∫ 1−x

0

1
2
y(2 − x − y)2 dy

=
∫ 1

0

dx

∫ 1−x

0

1
2
[y(2 − x)2 − 2y2(2 − x) + y3] dy

=
∫ 1

0

1
2

[
1
2
(1 − x)2(2 − x)2 − 2

3
(1 − x)3(2 − x) +

1
4
(1 − x)4

]
dx

=
∫ 1

0

1
2

[
1
2
t2(1 + t)2 − 2

3
t3(1 + t) +

1
4
t4
]

dt

=
∫ 1

0

1
2

[
1
2
t2 + t3 +

1
2
t4 − 2

3
t3 − 2

3
t4 +

1
4
t4
]

dt

=
1
2

[
1
6

+
1
12

+
1
60

]
=

2
15
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Volume of prism =
∫ ∫

V

∫
dx dy dz

=
∫ 1

0

dx

∫ 1−x

0

dy

∫ 2−x−y

0

dz

=
∫ 1

0

dx

∫ 1−x

0

(2 − x − y) dy

=
∫ 1

0

[
(2 − x)(1 − x) − 1

2
(1 − x)2

]
dx

=
∫ 1

0

(
2 − 3x + x2 − 1

2
+ x − 1

2
x2

)
dx

=
3
2
− 1 +

1
6

=
2
3

Let the coordinates of the centroid be (x , y , z), the taking moments about
appropriate axes, we have

2
3
x =

∫ ∫
V

∫
x dx dy dz,

2
3
y =

∫ ∫
V

∫
y dx dy dz,

2
3
z =

∫ ∫
V

∫
z dx dy dz

From symmetry y = x .

x =
3
2

∫ 1

0

dx

∫ 1−x

0

dy

∫ 2−x−y

0

x dz

=
3
2

∫ 1

0

dx

∫ 1−x

0

x(2 − x − y)dy

=
3
2

∫ 1

0

3
2
x − 2x2 +

1
2
x3dx

=
3
2

[
3
4
− 2

3
+

1
8

]
=

5
16
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z =
3
2

∫ 1

0

dx

∫ 1−x

0

dy

∫ 2−x−y

0

z dz

=
3
2

∫ 1

0

dx

∫ 1−x

0

1
2
(2 − x − y)2dy

=
3
2

∫ 1

0

[
−1
6

(2 − x − y)3
]y=1−x

y=0

dx

=
3
2

∫ 1

0

−1
6
[
1 − (2 − x)3

]
dx

=
3
2

[
−1

6
x − 1

24
(2 − x)4

]1

0

=
3
2
× 11

24
=

11
16

101

∫ ∫
V

∫
z dx dy dz =

∫ 2π

0

dφ

∫ π/2

π/4

dθ

∫ 1

0

r3 cos θ sin θ dr

=
∫ 2π

0

dφ

∫ π/2

π/4

1
2

sin 2θ
∫ 1

0

r3 dr

= [2π]
[
−1

4
cos 2θ

]π/2

π/4

[
1
4

]
=

π

8

102

∫ ∫
V

∫
x dx dy dz =

∫ π/2

0

dφ

∫ π/2

0

dθ

∫ a

0

r sin2 θ.r cos φ dr

=
∫ π/2

0

cos φ dφ

∫ π/2

0

sin2 θ dθ

∫ a

0

r3 dr

= [1]
[π

4

] [1
4
a4

]
= πa4/16
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Exercises 3.4.13

103
∫
S

∫
F · dS F = (4xz,−y2, yz)

S has six faces and the integral can be evaluated as the sum of six integrals.

∫
S

∫
F · dS =

∫
on

∫
x=0

F · dS +
∫
on

∫
x=1

F · dS +
∫
on

∫
y=0

F · dS

+
∫
on

∫
y=1

F · dS +
∫
on

∫
z=0

F · dS +
∫
on

∫
z=1

F · dS

=
∫ 1

0

∫ 1

0

(0,−y2, yz) · (−i dy dz)

+
∫ 1

0

∫ 1

0

(4z,−y2, yz) · (i dy dz)

+
∫ 1

0

∫ 1

0

(4xz, 0, 0) · (−j dx dz)

+
∫ 1

0

∫ 1

0

(4xz,−1, yz) · (j dx dz)

+
∫ 1

0

∫ 1

0

(0,−y2, 0) · (−k dx dy)

+
∫ 1

0

∫ 1

0

(4x,−y2, y) · (k dx dy)

=0 +
∫ 1

0

∫ 1

0

4z dy dz + 0 +
∫ 1

0

∫ 1

0

(−1) dx dz + 0 +
∫ 1

0

∫ 1

0

y dx dy

=2 − 1 +
1
2

=
3
2

104
∫
S

∫
F · dS =

∫ ∫
V

∫
div F dV

=
∫ ∫

V

∫
(z + z + 2z) dx dy dz

=
∫ 2π

0

dφ

∫ π/2

0

dθ

∫ 2

0

4r cos θ.r2 sin θ dr

= [2π] [− cos 2θ]π/2
0

[
1
4
r4

]2

0

= 16π
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105 On z = 0, dS = −k dx dy, F = (4x,−2y2, 0), F · dS = 0

On z = 3, dS = k dx dy, F = (4x,−2y2, 9), F · dS = 9 dx dy

On x2 + y2 = 4, dS = (i cos φ + j sin φ)2 dφ dz, F = (8 cos φ,−8 sin φ, z2)

and F · dS = 16(cos2 φ − sin3 φ) dφ dz

∫
S

∫
F · dS =

∫
(z=3)

∫
9 dx dy +

∫ 2π

0

dφ

∫ 3

0

16(cos2 φ − sin3 φ) dz

= 36π + 48
∫ 2π

0

cos2 φ − sin3 φ dφ

= 84π∫ ∫
V

∫
div F dV =

∫ ∫
V

∫
(4 − 4y + 2z) dx dy dz

=
∫ 2π

0

dφ

∫ 2

0

dr

∫ 3

0

(4 − 4r sin φ + 2z)r dz

=
∫ 2π

0

dφ

∫ 2

0

(21 − 12r sin φ)r dr

=
∫ 2π

0

(42 − 32 sin φ) dφ = 84π

106 div (F× grad φ) = grad φ · curl F − F · curl (grad φ) and curl (grad φ) ≡
0 for all φ.

Hence
∫∫
V

∫
grad φ · curl F dV =

∫
S

∫
(F× grad φ) · dS

107∫
S

∫
F · dS =

∫
on

∫
x=0

F · dS +
∫
on

∫
y=0

F · dS +
∫
on

∫
z=0

F · dS +
∫
on

∫
z=1

F · dS

+
∫
on

∫
x2+y2=4

F · dS

On x = 0, F = (y2, 0, 0), dS = −i dy dz,
∫
on

∫
x=0

F · dS =
∫ 2

0
dy

∫ 1

0
−y2 dz = − 8

3

On y = 0, F = (0, 0, 0), so contribution is zero

On z = 0, F = (xy + y2, x2y, 0), dS = −k dx dy , so contribution is zero

On z = 1, F = (xy + y2, x2y, 0), dS = k dx dy , so contribution is zero

c©Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4th Edition 181

On x2 + y2 = 4, F = (4(sinφ cos φ + sin2 φ), 8 cos2 φ sinφ, 0), dS = 2(cos φi +
sin φj) dφ dz

∫
on

∫
x2+y2=4

F · dS =
∫ π/2

0

dφ

∫ 1

0

8 sin φ cos2 φ + 8 sin2 φ cos φ + 16(cos2 φ sin2 φ) dz

=
[
−8

3
cos3 φ +

8
3

sin3 φ + 2φ − 1
2

sin 4φ
]π/2

0

=
16
3

+ π∫ ∫
V

∫
div F dV =

∫ ∫
V

∫
(y + x2) dx dy dz

=
∫ π/2

0

dφ

∫ 2

0

dr

∫ 1

0

(r sin φ + r2 cos2 φ)r dz

=
∫ π/2

0

dφ

∫ 2

0

(r2 sin φ + r3 cos2 φ) dr

=
∫ π/2

0

(
8
3

sinφ + 4cos2 φ

)
dφ

=
8
3

+ π

Hence, result

108

curl F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

36xz + 6y cos x 3 + 6 sin x + z sin y 18x2 − cos y

∣∣∣∣∣∣∣
= i(sin y − sin y) + j(36x − 36x) + k(6 cos x − 6 cos x)

= 0

Hence, there is a function φ(x, y, z) , such that F = grad φ
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109 ∮
C

A · dr =
∫
S

∫
curl A · dS

curl A =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

−y x 0

∣∣∣∣∣∣ = 2k

∮
C

A · dr =
∫
S

∫
2k · dS

Let S be the ellipse x2

a2 + y2

b2 = 1, z = 0
Then, dS = k · dx dy , and

∮
A · dr = 2

∫
S

∫
dx dy = 2πab

110

curl F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2x − y −yz2 −y2z

∣∣∣∣∣∣∣ = i(−2yz + 2yz) + j(0) + k(1)

= k∫
S

∫
curl F · dS = 16

∫ 2π

0

dφ

∫ π/2

0

k · (sin θ cos φi + sin θ sin φj + cos θk) sin θ dθ

= 16
∫ 2π

0

dφ

∫ π/2

0

sin θ cos θ dθ = 16[2π]
[
1
2

sin2 θ

]π/2

0

= 16π

∮
C

F · dr

On circle x2 + y2 = 16, z = 0, x = 4cos φ , y = 4 sin φ , r = 4(cos φ, sin φ, 0)

F = (8 cos φ − 4 sin φ, 0, 0), dr = 4(− sin φ, cos φ, 0) dφ

∮
C

F · dr =
∫ 2π

0

(−32 cos φ sinφ + 16 sin2 φ + 0) dφ

= 16π
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111
curl (af(r)) = −a × grad f(r)∫

S

∫
−(a× grad f(r)) · n dS =

∫
C

af(r)· dr

⇒
∫
S

∫
−(grad f(r) × n) · a dS =

∫
C

af(r)· dr

⇒ a ·
∫
S

∫
(n× grad f(r)) dS = a ·

∫
C

f(r) dr

⇒
∫
S

∫
n× grad f(r) dS =

∫
C

f(r) dr

f(r) = 3xy2 ⇒ grad f(r) = (3y2, 6xy, 0)

n × grad f(r) = k × grad f(r) = (−6xy, 3y2, 0)∫ 1

0

dx

∫ 2

0

(−6xy, 3y2, 0) dy =
∫ 1

0

(−12x, 8, 0) dx

= (−6, 8, 0)∫
C

f(r) dr =
∫ 1

0

0.i dx +
∫ 2

0

3y2j dy +
∫ 0

1

12xi dx +
∫ 0

2

0.j dy

= (−6, 8, 0)

112
∫
S

∫
curl F · dS =

∮
C

F · dr

curl F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2y + z x − z y − x

∣∣∣∣∣∣∣ = (2, 2,−1)

∫
S

∫
curl F · dS =

∫
S

∫
(2, 2,−1) · (sin θ cos φ, sin θ sin φ, cos θ) sin θ dφ dθ

=
∫ π/2

0

dφ

∫ π/2

0

(2 sin θ cos φ + 2 sin θ sin φ − cos θ) sin θ dθ

=
∫ π/2

0

(
π sin φ − 1

2

)
dφ =

3π
4
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Here, C has three portions:

On z = 0, r = (cos φ, sinφ, 0) ⇒ dr = (− sinφ, cos φ, 0) dφ

and F = (2 sin φ, cos φ, sin φ − cos φ)

∫
F · dr =

∫ π/2

0

(−2 sin2 φ + cos2 φ) dφ = −π

4

On y = 0, r = (sin θ, 0, cos θ) ⇒ dr = (cos θ, 0,− sin θ) dθ

and F = (cos θ, sin θ − cos θ,− sin θ)

∫
F · dr =

∫ π/2

0

(cos2 θ + sin2 θ) dθ =
π

2

On x = 0, r = (0, sin θ, cos θ) ⇒ dr = (0, cos θ,− sin θ) dθ

and F = (2 sin θ + cos θ,− cos θ, sin θ)

∫
F · dr =

∫ 0

π/2

(− cos2 θ − sin2 θ) dθ =
π

2

Review Exercises 3.7

1
∂u

∂x
= nxn−1f(t) + xnf′(t)

(−y

x2

)
∂u

∂y
= xnf′(t)

(
1
x

)

x
∂u

∂x
+ y

∂u

∂y
= nxnf(t) = nu (1)

Differentiate (1) w.r.t. x

∂u

∂x
+ x

∂2u

∂x2
+ y

∂2u

∂x∂y
= n

∂u

∂x
(2)

Differentiate (1) w.r.t. y

x
∂2u

∂x∂y
+

∂u

∂y
+ y

∂2u

∂y2
= n

∂u

∂y
(3)
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x × (2) + y × (3) ⇒

x
∂u

∂x
+ y

∂u

∂y
+ x2 ∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2 ∂2u

∂y2
= n

(
x

∂u

∂x
+ y

∂u

∂y

)

⇒ x2 ∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2 ∂2u

∂y2
= n(n − 1)u

u(x, y) = x4 + y4 + 16x2y2

x
∂u

∂x
= x(4x3 + 32xy2)

y
∂u

∂y
= y(4y3 + 32x2y2)

x
∂u

∂x
+ y

∂u

∂y
= 4(x4 + 16x2y2 + y4)

x2 ∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2 ∂2u

∂y2
= x2(12x2 + 32y2) + 2xy(64xy) + y2(12y2 + 32x2)

= 12(x4 + y4 + 16x2y2)

2
∂f

∂x
=

∂f

∂u
+

∂f

∂v
,
∂2f

∂x2
=

∂2f

∂u2
+ 2

∂2f

∂u∂v
+

∂2f

∂v2

∂2f

∂x∂y
= a

∂2f

∂u2
+ b

∂2f

∂u∂v
+

∂2f

∂v2
b +

∂2f

∂v∂u
a

∂f

∂y
=

∂f

∂u
a +

∂f

∂v
b,

∂2f

∂y2
=

∂2f

∂u2
a2 + 2

∂2f

∂u∂v
ab +

∂2f

∂v2
b2

9
∂2f

∂x2
− 9

∂2f

∂x∂y
+ 2

∂2f

∂y2
=(9 − 9a + 2a2)

∂2f

∂u2
+ (9 − 9b + 2b2)

∂2f

∂v2

+ 2
(

9 − 9
2
(a + b) + 2ab

)
∂2f

∂u∂v

⇒

9 − 9a + 2a2 = 0

9 − 9b + 2b2 = 0

9 − 9
2 (a + b) + 2ab �= 0

⎫⎪⎪⎬
⎪⎪⎭ ⇒ a �= b ⇒ a = 3, b =

3
2

∂2f

∂u∂v
= 0 ⇒ f = F(u) + G(v)

i.e. f(x, y) = F(x + 3y) + G(x + 3y/2)
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f(x, 0) = F(x) + G(x) = sin x

∂f

∂y
(x, 0) = 3F′(x) +

3
2
G′(x) = 3 cos x

⇒ F(x) +
1
2
G(x) = sinx + k

⇒ 1
2
G(x) = −k and F(x) = sin x + 2k

⇒ f(x, y) = sin(x + 3y)

3

∇× (P,Q,R) =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣∣
= i

(
∂2f

∂y∂z
− ∂2f

∂z∂y

)
+ j

(
∂2f

∂x∂z
− ∂2f

∂z∂x

)
+ k

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
= 0

⇒ ∇× (∇f) ≡ 0

4(a) xy = c , hyperbolas

grad f = (y, x) =
( c

x
, x

)
on hyperbola

y =
c

x
⇒ dy

dx
= − c

x2

That is, tangent in direction of
(
1,− c

x2

)
= t

t · grad f =
c

x
− c

x
= 0 that is, orthogonal

4(b)
x

x2 + y2
= c circles, centres on x -axis, through (0,0)

grad f =
(

y2 − x2

(x2 + y2)2
,

−2y
(x2 + y2)2

)
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5(a)
grad(ωωω · r) = ωωω × (∇× r) + r× (∇× ωωω) + (ωωω · ∇)r + (r · ∇)ωωω

= ωωω × 0 + 0 + ωωω + 0

= ωωω

5(b)
curl (ωωω × r) = −(ωωω · ∇)r + ωωω(∇ · r)(+r · ∇)ωωω − r(∇ · ωωω)

= −ωωω + 3ωωω + 0 + 0

= 2ωωω

6(a) See problem 3 above.

6(b)
div v = div {grad [zf(r)] + αf(r)k}

= div {kf(r) + z grad f(r)} + αk · ∇f(r)

= k · ∇f(r) + k · grad f(r) + z∇2f(r) + αk · ∇f(r)

= (2 + α)
∂f

∂z

∇2v = ∇(∇ · v) −∇× (∇× v)

= (2 + α)∇
(

∂f

∂z

)
−∇× (∇× (∇(zf) + αfk))

∇×∇(zf) ≡ 0

∇× (αfk) = α∇f × k

∇× (∇× αfk) = α(k · ∇)∇f − αk(∇2f)

= α
∂

∂z
(∇f) = α∇

(
∂f

∂z

)

⇒ ∇2v = 2∇
(

∂f

∂z

)

7 F = (x2 − y2 + x)i− (2xy + y)j

∇× F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x2 − y2 + x −2xy − y 0

∣∣∣∣∣∣∣ = (0, 0,−2y + 2y) = 0
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∇f =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (x2 − y2 + x,−2xy − y, 0)

⇒ f(x, y, z) =
x3

3
− y2x +

x2 − y2

2
+ c

∫ (2,1)

(1,2)

F · dr =
∫ (2,1)

(1,2)

grad f · dr = [f](2,1)
(1,2) =

22
3

dr = i dx + j dy = (i− j) dx

as on y = 3 − x , dy = − dx

∫ 2

1

(x2 − y2 + x + 2xy + y) dx =
∫ 2

1

(x2 − (3 − x)2 + x + 2(3 − x) + 3 − x) dx

=
22
3

8

W =
∫

C

F· dr

r = (1 − cos θ)i + sin θj

dr = (sin θi + cos θj) dθ

8(a) F = 2 sin 1
2θi ∫

C

F· dr =
∫ π

0

4 sin2 θ

2
cos

θ

2
dθ

=
[
8
3

sin3 θ

2

]π

0

=
8
3

8(b) F = 2 sin θ
2 n̂ = 2 sin θ

2 (sin θi + cos θj)

∫
C

F· dr =
∫ π

0

2 sin
θ

2
dθ = 4

[
− cos

θ

2

]π

0

= 4
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9
r = (i + j + k)t 0 ≤ t ≤ 1

dr = (i + j + k) dt

W =
∫ 1

0

F · dr

F = (xy,−y, 1) = (t2,−t, 1)

⇒ W =
∫ 1

0

(t2 − t + 1) dt =
1
3
− 1

2
+ 1 =

5
6

10
F = I

∮
C

dr× B

r = sin θi + cos θj + sin
θ

2
k

dr =
(

cos θi − sin θj +
1
2

cos
θ

2
k
)

dθ

B = sin θi − cos θj + k

F = I

∮ 2π

0

{
i
(

1
2

cos
θ

2
cos θ − sin θ

)
+ j

(
1
2

cos
θ

2
sin θ − cos θ

)

+ k(sin2 θ − cos2 θ)
}

dθ =
4
3
Ij

11

Circulation =
∮

C

v · dr

=
∫ −1

1

−y dx

x2 + y2
+

∫ −1

1

x dy

x2 + y2
+

∫ 1

−1

y dx

x2 + y2
+

∫ 1

−1

x dy

x2 + y2

on y = 1 on x = −1 on y = −1 on x = 1

=
∫ 1

−1

1
1 + x2

dx +
∫ −1

1

dy

1 + y2
−

∫ 1

−1

dx

1 + x2
+

∫ 1

−1

dy

1 + y2

= 0

12
Iz =

∫
A

∫
ρ(x2 + y2) dA, where density ρ = kxy

=
∫ c

0

dx

∫ c

x2/c

(x2 + y2)kxy dy
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=
∫ c

0

[
1
4
kx(x2 + y2)2

]c

x2/c

dx

=
∫ c

0

[
−1

4
kx

(
x2 +

x4

c2

)2

+
1
4
kx(x2 + c2)2

]
dx

=
1
4
k

∫ c

0

−
(

x9

c4
+

2x7

c2
− 2x3c2 − xc4

)
dx

=
13
80

kc6

13 Equation of cone is x2 + y2 = a2

h2 (z − h)2

V = 2
∫ a

c

dx

∫ √
a2−x2

0

z dy

= 2
∫ a

c

dx

∫ √
a2−x2

0

{
h +

h

a

√
x2 + y2

}
dy

= 2
∫ a

c

[
hy +

hx2

2a
sinh−1 y

x
− hy

2a

√
x2 + y2

]√a2−x2

0

dx

= 2
∫ a

c

[
h

2

√
a2 − x2 +

hx2

2a
sinh−1

√
a2 − x2

x

]
dx

=
2ha2

3

(π

2
− sin−1

( c

a

))
− hc

3

√
a2 − c2 − hc3

3a
tanh−1

[√
a2 − c2

a

]

14 Volume is 8
∫
x

∫
y

∫
z≥0

dV

x2 + y2 = a2 is a cylinder with z -axis as axis of symmetry and radius a .

z2 + y2 = a2 is a cylinder with x -axis as axis of symmetry and radius a .

⇒ V = 8
∫ a

0

dy

∫ √
a2−y2

0

dx

∫ √
a2−y2

0

dz

= 8
∫ a

0

[x]
√

a2−y2

0 [z]
√

a2−y2

0 dy

= 8
∫ a

0

(a2 − y2) dy = 8
[
a2y − 1

3
y3

]a

0

=
16a3

3
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15 Elastic energy of ΔV is q2ΔV/(2EI) where q = q0ρ/r and ρ is the distance
from the centre and r is radius of cylinder.

Total energy =
∫ 2π

0

dφ

∫ r

0

dρ

∫ l

0

q2
0ρ

3

2EIr2
dz

= 2πl

∫ r

0

q2
0ρ

3 dρ

2EIr2

=
πq2

0r
2l

4EI

16 On x = 0, dS = −i dy dz and v · dS = −3x2y dy dz ≡ 0
On y = 0, v · dS = 0 On z = 0,v · dS = 0
On z = 1, v · dS = 0 On x + y = 1, dS = 1√

2
(i + j) dS

⇒
∫∫
⊂⊃ v · dS =

∫ 1

0

dx

∫ 1

0

{
3√
2
x2(1 − x) +

1√
2
x(1 − x)2

}√
2 dz

=
∫ 1

0

(2x2 + x)(1 − x) dx

=
1
3

17
∫
S

∫
⊂⊃ v · dS

On S , dS = (i sin θ cos φ + j sin θ sin φ + k cos θ)a2 sin θ dθ dφ

and v = i2a sin2 θ cos φ sin φ − ja2 sin2 θ sin2 φ + k(a sin θ cos φ + a sin θ sin φ)

∫
S

∫
⊂⊃ v · dS =

∫ π

0

dθ

∫ 2π

0

{2a3 sin4 θ cos2 φ sin φ − a4 sin4 θ sin3 φ

+ a3 sin2 θ cos θ cos φ + a3 cos θ sin2 θ sin φ} dφ

= 0

18
∮

C

F · dr

C is the circle x2 + y2 = 16, z = 0, so that, on the circle

F =
(
x2 + y − 4, 3xy, 0

)
, r = 4 (cos θ, sin θ, 0)
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and dr = (−4 sin θ, 4 cos θ, 0) dθ

∮
C

F · dr =
∫ 2π

θ=0

[
−16

(
4 cos2 θ + sin θ − 1

)
sin θ + 192 cos θ sin2 θ

]
dθ

=
∫ 2π

0

−16 sin2 θ dθ (from symmetries)

= −16π

curl F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x2 + y − 4 3xy 2xz + z2

∣∣∣∣∣∣∣ = (0, −2z, 3y − 1)

On the hemisphere

r = 4 (sin θ cos φ, sin θ sin φ, cos θ)

dS = 16 (sin θ cos φ, sin θ sin φ, cos θ) sin θ dφ dθ

∫ ∫
S

curl F . dS =

∫ π/2

0

dθ

∫ 2π

0

16(−8 sin2 θ cos θ sin φ + 12 sin2 θ cos θ cos φ − cos θ sin θ)dφ

=
∫ π/2

0

−16 cos θ sin θ [2π] dθ = −16π

19 ∫ ∫
S

a · dS =
∫ ∫ ∫

V

div a dV −
∫ ∫

S1

a · dS

where V is the hemisphere x2 + y2 + z2 = a2 (different a from the vector a), S1

is the circle x2 + y2 = a2, z = 0. div a = 0 and dS = −k dx dy on S1

∫ ∫
S1

a · dS =
∫ ∫

S

(xi + yj) · (−k dx dy) = 0

Hence ∫ ∫
S

a · dS = 0
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20 ∫ ∫ ∫
V

xyz dV =
∫ 1

0

∫ 1−x

0

∫ 2−x

0

xyz dz dy dx

=
∫ 1

0

∫ 1−x

0

1
2
xy (2 − x)2 dy dx

=
∫ 1

0

1
4
x (1 − x)2 (2 − x)2 dx

=
∫ 1

0

1
4
(
x5 − 6x4 + 13x3 − 12x2 + 4x

)
dx

=
1
24

− 3
10

+
13
16

− 1 +
1
2

=
13
240

21

ux

−u

v

y

−v

y + ∆y

x + ∆x

Net circulation (anti clockwise) is

−u(x, y)Δx − v(x + Δx, y)Δy + u(x, y + Δy)Δx + v(x, y)Δy

If net circulation is zero then, dividing by ΔxΔy ,

u(x, y + Δy) − u(x, y)
Δy

− v(x + Δx, y) − v(x, y)
Δx

= 0

Δx,Δy → 0 gives

∂u

∂y
− ∂v

∂x
= 0.

Since u = −∂ψ
∂y and v = ∂ψ

∂x we obtain

∂2ψ

∂x2
+

∂2ψ

∂y2
= 0 Laplace equation.

c©Pearson Education Limited 2011



4

Functions of a Complex Variable

Exercises 4.2.2

1(a) If | z − 2 + j |=| z − j + 3 | , so that

| x + jy − 2 + j |=| x + jy − j + 3 |

or
(x − 2)2 + (y + 1)2 = (x + 3)2 + (y − 1)2

x2 − 4x + 4 + y2 + 2y + 1 = x2 + 6x + 9 + y2 − 2y + 1

Then cancelling the squared terms and tidying up,

y =
5
2
x +

5
4

1(b) z + z∗ + 4j(z − z∗) = 6

Using, z + z∗ = 2x, z − z∗ = 2jy gives

2x + 4j2jy = 6

y =
1
4
x − 3

4

2 The straight lines are

| z − 1 − j | =| z − 3 + j |

| z − 1 + j | =| z − 3 − j |

which, in Cartesian form, are

(x − 1)2 + (y − 1)2 = (x − 3)2 + (y + 1)2

that is, x2 − 2x + 1 + y2 − 2y + 1 = x2 − 6x + 9 + y2 + 2y + 1

y = x − 2
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and (x − 1)2 + (y + 1)2 = (x − 3)2 + (y − 1)2

i.e. x2 − 2x + 1 + y2 + 2y + 1 = x2 − 6x + 9 + y2 − 2y + 1

y = −x + 2

These two lines intersect at π/2 (the products of their gradients is −1) and
y = 0, x = 2 at their intersection, that is, z = 2 + j0.

3 w = jz + 4 − 3j can be written as

w = ejπ/2z + 4 − 3j (since j = cos
π

2
+ j sin

π

2
= ejπ/2)

which is broken down as follows:

z −→ ejπ/2z −→ ejπ/2z + 4 − 3j = w

rotate translation
anticlockwise (0, 0) → (4,−3)
by 1

2π

Let w = u + jv and z = x + jy

so that, u + jv = j(x + jy) + 4 − 3j

= jx − y + 4 − 3j

that is, u = −y + 4 (1)

v = x − 3 (2)

Taking 6 times equation (2) minus equation (1) gives,

6v − u = 6x + y − 22

so that, if 6x + y = 22, we must have 6v − u = 0 so that, u = 6v is the image of
the line

6x + y = 22
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4 Splitting the mapping w = (1 − j)z into real and imaginary parts gives

u + jv = (1 − j)(x + jy)

= x + y + j(y − x)

that is, u = x + y

v = y − x

so that, u + v = 2y

Therefore y > 1 corresponds to u + v > 2.

5 Since w = jz + j

x = v − 1, y = −u

so that x > 0 corresponds to v > 1.

6 Since w = jz + 1

v = x

u = −y + 1

so that x > 0 ⇒ v > 0

and 0 < y < 2 ⇒ −1 < u < 1 or | u |< 1.

This is illustrated below
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7 Given w = (j +
√

3)z + j
√

3 − 1, we obtain, on equating real and imaginary
parts,

u = x
√

3 − y − 1, v = x + y
√

3 +
√

3

or v
√

3 − u = 4y + 4, and v + u
√

3 = 4x

on rearranging.
Thus 7(a) y = 0 corresponds to v

√
3 − u = 4 or u = v

√
3 − 4

7(b) x = 0 corresponds to v + u
√

3 = 0 or v = −u
√

3

7(c) Since u + 1 = x
√

3 − y and v −
√

3 = x + y
√

3 squaring and adding gives

(u + 1)2 + (v −
√

3)2 = (x
√

3 − y)2 + (x + y
√

3)2

= 4x2 + 4y2

Thus, x2 + y2 = 1 ⇒ (u + 1)2 + (v −
√

3)2 = 4

7(d) Since v
√

3 − u = 4y + 4 and v + u
√

3 = 4x , squaring and adding gives

4v2 + 4u2 = 16(y + 1)2 + 16x2

or u2 + v2 = 4(x2 + y2 + 2y + 1)

Thus, x2 + y2 + 2y = 1 corresponds to u2 + v2 = 8
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8(a) w = αz + β

Inserting z = 1+j, w = j and z = −1, w = 1+j gives the following two equations
for α and β

j = α(1 + j) + β or 1 + j = −α + β

from which, by subtraction,

−1 = (2 + j)α or α =
1
5
(−2 + j)

so that, β = 1 + j + α =
1
5
(3 + 6j) gives 5w = (−2 + j)z + 3 + 6j

8(b) Writing w = u + jv, z = x + jy and equating real and imaginary parts
gives

5u = −2x − y + 3

5v = x − 2y + 6

Eliminating y yields

5v − 10u = 5x or v − 2u = x

Eliminating x yields

5u + 10v = −5y + 15 or u + 2v = −y + 3

so that y > 0 corresponds to u + 2v < 3
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8(c) From part (b),
x = v − 2u

y = 3 − u − 2v

Squaring and adding gives

x2 + y2 = (v − 2u)2 + (3 − u − 2v)2

= 5(u2 + v2) − 6u − 12v + 9

| z |< 2 ⇒ x2 + y2 < 4

so that, 5(u2 + v2) − 6u − 12v + 5 < 0
or (5u − 3)2 + (5v − 6)2 < 20

that is,
(
v − 3

5
)2

+
(
v − 6

5
)2

<
20
25

=
4
5

=
(2
5
√

5
)2

8(d) The fixed point(s) are given by

5z = (−2 + j)z + 3 + 6j

so that, z =
3 + 6j
7 − j

=
(3 + 6j)(7 + j)

50

=
3
10

(1 + 3j)

Exercises 4.2.5

9 Writing w =
1
z
, z =

1
w

⇒ x + jy =
1

u + jv
=

u − jv

u2 + v2

so that y = − v

u2 + v2
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If y > c then, − v

u2 + v2
> c

or rearranging u2 + v2 +
v

c
< 0

u2 +
(

v +
1
2c

)2

<

(
1
2c

)2

If c = 0,− v

u2 + v2
> c ⇒ v < 0

If c < 0, put c = −d and − v

u2 + v2
> −d

or, on rearranging, u2 +
(
v − 1

2d
)2

>
( 1
2d

)2
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10 Putting z =
1
w

in
∣∣z +

3
4

+ j
∣∣ =

7
4

gives
∣∣ 1
w

+
3
4

+ j
∣∣ =

7
4

or∣∣1 +
(3
4

+ j
)
w

∣∣ =
7
4
| w | which, writing w = u + jv and expanding, gives

(
1 +

3
4
u − v

)2

+
(

3
4
v + u

)2

=
49
16

(u2 + v2)

or, on rearranging gives

u2 + v2 − u +
4
3
v − 2

3
= 0(

u − 1
2

)2

+
(

v +
2
3

)2

=
(

7
6

)2

a circle centre
(1
2
,−2

3
)

and radius
7
6

.

11 Putting z =
1
w

in | z − a |= a gives | 1 − aw |= a | w | from which u =
1
2a

can be obtained (on writing w = u2 + v2 ).

Hence | z − a |= a maps to Re{w} =
1
2a

under w =
1
z
· · · =

1
2a

; that is, the half

plane Re{w} >
1
2a

.

Moreover, the interior of | z − a |= a maps to right of the line Re{w} =
1
2a

. The

point z =
1
2
a mapping to w =

2
a

confirms this.

12 The general bilinear mapping is

w =
az + b

cz + d

with z = 0, w = j ⇒ b = jd ,
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z = −j, w = 1 ⇒ d − jc = b − ja

and z = −1, w = 0 ⇒ a = b

Hence b = a, d = −ja and c = ja

and the mapping is

w =
z + 1

j(z − 1)

Making z the subject of this formula, we obtain

z =
jw + 1
jw − 1

Writing z = x + jy, w = u + jv and equating real and imaginary parts

x =
u2 + v2 − 1

u2 + (v + 1)2
, y =

−2u
u2 + (v + 1)2

Lines x = constant = k , say, transform to

k[u2 + (v + 1)2] = u2 + v2 − 1

or u2 + v2 +
2k

k − 1
v = − 1

k − 1

This can be rewritten as

u2 +
(

v +
k

k − 1

)2

=
k

(k − 1)2
− 1

k − 1
=

1
(k − 1)2

which are circles (except k = 1 which is v = −1).

Lines y = constant = l , say, transform to

u2 + (v + 1)2 +
2u
l

= 0

or
(

u +
1
l

)2

+ (v + 1)2 =
1
l2

which are circles (except l = 0 which is u = 0).
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The fixed points are given by

z =
z + 1
jz − j

or jz2 − (j + 1)z − 1 = 0

z =
(j + 1) ±

√
(j + 1)2 + 4j
2j

=
(j + 1) ±

√
6j

2j

=
1
2
(j − 1)(−1 ±

√
3)

(since
√

6j = ±(1 + j)
√

3 ).

13 w =
1 + j

z

13(a)
z = 1 ⇒ w = 1 + j

z = 1 − j ⇒ w =
1 + j

1 − j
= j

z = 0 ⇒ w = ∞
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13(b) | w |= | 1 + j |
| z | =

√
2

| z |

so that | z |=
√

2
| w | < 1 ⇒| w |>

√
2

that is, interior of the unit circle maps to the exterior of the circle, centre as the
origin and radius

√
2.

13(c) z =
1 + j

w

⇒ x + jy =
(1 + j)
u2 + v2

(u − jv) so that

x =
u + v

u2 + v2
, y =

u − v

u2 + v2

Therefore x = y corresponds to v = 0 (the real axis) and x + y = 1 corresponds

to
2u

u2 + v2
= 1 that is (u − 1)2 + v2 = 1 a circle, centre (1.0) and radius 1.

13(d) The fixed point of the mapping is given by z2 = 1 + j . Using the polar
form 1 + j =

√
2eπj/4 , so z = ±21/4eπj/8

14 The bilinear transformation

w =
z + 1
z − 1

Writing z = x + jy, w = u + jv and equating real and imaginary parts gives

u =
x2 + y2 − 1

(1 + x)2 + y2
, v =

2y
(1 + x)2 + y2

Hence, all points on the circle x2 + y2 = 1 correspond to u = 0.
From the point (0,−1) to the point (0, 1) on the circle x2 + y2 = 1 we use
the Parameterization x = cos θ, y = sin θ, π/2 ≤ θ ≤ 3π/2. Using v =

2y
(1 + x)2 + y2

=
2y

1 + x2 + y2 + 2x
we note that v =

y

1 + x
on x2 + y2 = 1, so that

v =
sin θ

1 + cos θ
=

2 sin 1
2θ cos 1

2θ

2 cos2 1
2θ

= tan
1
2
θ and between θ =

π

2
and θ =

3π
2

, tan
1
2
θ

ranges from 1 to ∞ and from −∞ to −1 hence | v |≥ 1.
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15(a) With w = u + jv and z = x + jy

The transformation w =
z + j

z − 3
implies z =

3w + j

w − 1
from which we deduce that

x =
3(u2 + v2) − 3u + v

(u − 1)2 + v2
, y =

u − 3v − 1
(u − 1)2 + v2

and u =
x2 + y2 − 3x + y

(x − 3)2 + y2
, v =

x − 3y − 3
(x − 3)2 + y2

The line y = 0 corresponds to the line u − 3v − 1 = 0 in the w plane. The line
x = y corresponds to the curve

3(u2 + v2) − 3u + v = u − 3v − 1

that is,
(

u − 2
3

)2

+
(

v +
2
3

)2

=
5
9

(1)

a circle centre
(2
3
,−2

3
)

and radius
1
3
√

5 in the w plane.
The origin in the z plane (the intersection of the line y = 0 and x = y) corresponds

to the point w = −j
1
3

in the w plane. The point at infinity in the z plane (the
other ‘intersection’) corresponds to the point w = 1 in the w plane.
The origin (in the w plane) lies outside the circle (1), and is also outside the wedge
shaped region in the z plane (z = −j3 is its image).
So, the following figure can be drawn:

The point w =
2
3

lies inside the shaded region in the w plane, and corresponds to

the point z =
3· 2

3 + j
2
3 − 1

= −3(2 + j) = −6 − 3j inside the shaded region of the z

plane. (This is a useful check.)
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15(b) The fact that w = 1 does not correspond to any finite value of z has
already been established.

Consider the equation w =
z + j

z − 3
.

Taking the modulus of both sides gives

| w |=
∣∣ z + j

z − 3

∣∣
If | w |= 1 ⇒| z + j | =| z − 3 |

or x2 + (y + 1)2 = (x − 3)2 + y2

x2 + y2 + 2y + 1 = x2 − 6x + 9 + y2

so that, 2y = −6x + 8

or y + 3x = 4

Hence the unit circle in the w plane, | w |= 1, corresponds to the line y + 3x = 4.

16 If w =
z − j

z + j

then z =
−wj − j

w − 1
so that | z |=

∣∣w + 1
w − 1

∣∣ .
So if | z |= 2, | w + 1 |= 2 | w − 1 |
or (u + 1)2 + v2 = 4(u − 1)2 + 4v2

which simplifies to

(
u − 5

3

)2

+ v2 =
16
9

, a circle centre
(

5
3
, 0

)
and radius

4
3
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17 If w = ejθ0
z − z0

z − z∗0
then,

taking modulus

| w |=
∣∣z − z0

z − z∗0

∣∣ since | ejθ0 |= 1

If z is real (i.e. z is on the real axis) then

| z − z0 |=| z − z∗0 |=
[
(x − x0)2 + y2

0

]1/2
and z0 = x0 + jy0

Hence | w |= 1. Thus the real axis in the z plane corresponds to the unit circle
| w |= 1 in the w plane. Making z the subject of the transformation gives

z =
wz∗0 − ejθ0z0

w − ejθ0

Hence the origin in the w plane maps to z = z0 .
Thus the inside of the unit circle in the w plane corresponds to the upper half of
the z plane provided

Im{z0} > 0

Since w = 0 maps to z = z0 and z0 = j and z = ∞ maps to w = ejθ0 = −1 it
gives θ0 = π .

18 For the transformation
w =

2jz
z + j

the fixed points are given by

z =
2jz

z + j

z2 + jz = 2jz

or z(z − j) = 0, z = 0 or j

Hence circular arcs or straight lines through z = 0, j are transformed to circular
arcs or straight lines through w = 0, j by the properties of bilinear transformation
(section 4.2.4).
The inverse transformation is

z =
jw

2j − w
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| z − 1
2

|< 1
2

becomes
∣∣ jw

2j − w
− 1

2

∣∣ <
1
2

which simplifies to | w − 1 |< 1 (use

w = u + jv and split into real and imaginary parts).

Similarly, | z − 1
2
|< 1

2
becomes | w − 4

3
|> 2

3

19 The general bilinear mapping is

w =
az + b

cz + d

if w = 0 corresponds to z = z0 then

w =
(z − z0)ejθ0

cz + d

If, additionally, | w |= 1 is mapped to | z |= 1 then
∣∣z − z0

cz + d

∣∣ = 1 and the inverse
of z0 is also mapped to the inverse of w = 0 that is, w = ∞ .
Hence cz + d can be replaced by z∗0z − 1 giving the mapping as

w = ejθ0

(
z − z0

z∗0z − 1

)
where θ0 is any real number.

Exercises 4.2.7

20 Under the mapping w = z2, u = x2 − y2, v = 2xy

It is not possible to achieve formulae of the type x = φ(u, v), y = ψ(u, v) , however
we can use u = x2 − y2, v = 2xy to determine images. Points (0 + j0), (2 + j0)
and (0 + j2) transform to (0 + j0), (4 + j0) and (−4 + j0) respectively.
The positive real axis y = 0, x ≥ 0 transforms to the (positive) real axis
v = 0, u = x2 .
The positive imaginary axis x = 0, y ≥ 0 transforms to the (negative) real axis
v = 0, u = −y2 .
The line joining the point 2 + j0 to the point 0 + j2 has equation x + y = 2.
By using the equations u = x2 − y2 and v = 2xy we obtain

u = 4(1 − y), v = 2y(2 − y)

from which, eliminating y we get

8v = 16 − u2
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Hence we deduce the following picture:

21 Under the transformation w = z2, u = x2 − y2 and v = 2xy .
Hence the line y = x transforms to u = 0, v > 0
and the line y = −x transforms to u = 0, v < 0.

The line y = mx transforms to v =
2m

1 − m2
u .

Putting m = tan θ0,
2m

1 − m2
= tan 2θ0 .

Hence y = x tan θ0 transforms to v = u tan 2θ .
Thus lines through the origin of slope θ0 in the z plane transform to lines through
the origin of slope 2θ0 in the w plane. Hence the angle between the lines through
the origin in the z plane is doubled by the transformation w = z2 .

22 w = zn

Writing z = rejθ, w = rnenjθ

22(a) Circles | z |= r are transformed to circles | w |= rn

22(b) Straight lines passing through the origin intersecting with angle θ0 are
θ = k and θ = k + θ0 . These are transformed to w = rnenjk and w = rnenj(k+θ0)

that is, lines φ = nk and φ = nk + nθ0 as required.

23 If w =
1 + z2

z
= z +

1
z

= z +
z∗

| z |2

then u = x +
x

x2 + y2
and v = y − y

x2 + y2
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If | z |= r , then u = x
(
1 +

1
r2

)
and v = y

(
1 − 1

r2

)

x =
r2u

r2 + 1
, y =

r2v

r2 − 1

Squaring and adding gives
( r2u

r2 + 1
)2

+
( r2v

r2 − 1
)2

= r2 (r 	= 1) (I) .

If r = 1 and v = 0, | x |≤ 1 (because x2 = 1 − y2 ) and u = 2x . Hence the image
of the unit circle | z |= 1, that is, −2 ≤ u ≤ 2, v = 0 and the portion of the real
axis in the w plane is between −2 and +2.

The curves (I) are ellipses, major axis
1 + r2

r2
and minor axis

| r2 − 1 |
r2

if r is
very large, and both of these quantities tend to 1. Hence the image curve I tends
to a circle u2 + v2 = r2 .

Exercises 4.3.3

24(a)
zez = (x + jy)ex+jy

= ex(x + jy)(cos y + j sin y)

= ex(x cos y − y sin y) + jex(y cos y + x sin y)

so u = (x cos y − y sin y)ex , v = (y cos y + x sin y)ex

We need to check the Cauchy–Riemann equations

∂u

∂x
= (x cos y − y sin y + cos y)ex

∂u

∂y
= (−x sin y − y cos y − sin y)ex

∂v

∂x
= (y cos y + x sin y + sin y)ex

∂v

∂y
= (−y sin y + cos y + x cos y)ex

Hence
∂u

∂x
=

∂v

∂y
and

∂u

∂y
= − ∂v

∂x
Thus the Cauchy–Riemann equations are valid and

d

dz
(zez) = (z + 1)ez
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24(b) Following the same procedure as in (a), we deduce that sin 4z is analytic
with derivative 4 cos 4z .

24(c) This time, zz∗ = x2 + y2 which is real.

Obviously, therefore,
∂u

∂x
(= 2x) 	= ∂v

∂y
(= 0).

Thus zz∗ is not analytic.

24(d) Similarly to part (a), cos 2z is analytic with derivative −2 sin 2z .

25 w = x2 + ay2 − 2xy + j(bx2 − y2 + 2xy) = u + jy

∂u

∂x
= 2x − 2y ,

∂u

∂y
= 2ay − 2x

∂v

∂x
= 2bx + 2y ,

∂v

∂y
= −2y + 2x

The Cauchy–Riemann equations are
∂v

∂x
= −∂u

∂y
,
∂v

∂y
=

∂u

∂x
.

The second is satisfied and the first only holds if a = −1, b = 1. Since w(z) =
w(x+jy) we simply put y = 0 which gives w(x) = x2+jx2 and hence w(z) = z2+jz2

and
dw

dz
= 2(1 + j)z

26 With u = 2x(1 − y) = 2x − 2xy

∂u

∂x
= 2 − 2y ,

∂u

∂y
= −2x

The Cauchy–Riemann equations demand

∂v

∂y
= 2 − 2y ,

∂v

∂x
= 2x

Integrating and comparing, these give

v = x2 − y2 + 2y + C (take C = 0)

Form u + jv = 2x − 2xy + j(x2 − y2 + 2y) = w(z) .
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Since z = x + jy , if we put y = 0, we can find w(x) which will give the functional
form of w . Thus

w(x) = 2x + jx2

Hence w(z) = 2z + jz2

27
φ(x, y) = ex(x cos y − y sin y)

∂φ

∂x
= ex(x cos y − y sin y + cos y)

∂φ

∂y
= ex(−x sin y − y cos y − sin y)

∂2φ

∂x2
= ex(x cos y − y sin y + 2cos y)

∂2φ

∂y2
= ex(−x cos y + y sin y − 2 cos y)

hence ∂2φ
∂x2 + ∂2φ

∂y2 = 0 and φ is harmonic.
Writing z = φ(x, y) + jψ(x, y) , the Cauchy–Riemann equations demand

∂ψ

∂x
= −∂φ

∂y
= ex(x sin y + y cos y + sin y)

∂ψ

∂y
=

∂φ

∂x
= ex(x cos y − y sin y + cos y)

Integrating ∂ψ
∂x with respect to x (using integration by parts for the first term)

gives ψ = ex(x sin y + y cos y) + f(y) . Examining φ(x, y) demands that f(y) = 0
because all terms will be multiplied by ex .
Hence w(z) = φ(x, y) + jψ(x, y) = ex(x cos y − y sin y) + jex(x sin y + y cos y) and
w(x + j0) = w(x) = xex . Hence w(z) = zez .

28 Here we have u(x, y) = sinx cosh y

so that
∂u

∂x
= cos x cosh y and

∂u

∂y
= sinx sinh y

hence
∂2u

∂x2
= − sin x cosh y and

∂2u

∂y2
= sinx cosh y

so that ∇2u = ∂2u
∂x2 + ∂2u

∂y2 = 0 and u is harmonic.
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Using the Cauchy–Riemann equations gives v = cos x sinh y so that u + jv =
w(z) = sin x cosh y + j cos x sinh y . Putting y = 0 gives w(x + j0) = sin x so that
w(z) = sin z .

29 The orthogonal trajectories of a family of curves φ(x, y) = α are ψ(x, y) = β

where φ and ψ are conjugate functions: that is, φ(x, y) + jψ(x, y) = w(z) which
is an analytic function.
Proceeding as in the previous examples.

29(a) If φ(x, y) = x3y − xy3 then ψ(x, y) =
1
4
(x4 + y4) − 3

2
x2y2

29(b) If φ(x, y) = e−x cos y + xy then ψ(x, y) = e−x sin y +
1
2
(x2 − y2) .

Hence the orthogonal trajectories are,
29(a) x4 − 6x2y2 + y4 = β , a constant
29(b) 2e−x sin y + x2 − y2 = β , a constant.

30(a) z2e2z

= (x + jy)2e2(x+jy)

= (x2 − y2 + 2jxy)(e2x(cos 2y + j sin 2y))
= e2x((x2 − y2) cos 2y − 2xy sin 2y) + je2x((x2 − y2) sin 2y + 2xy cos 2y)

30(b) sin 2z
= sin(2x + j2y)
= sin 2x cosh 2y + j cos 2x sinh 2y

Straightforward calculus reveals that both functions obey the Cauchy–Riemann
equations and are thus analytic. Their derivatives are (a) (2z2 + 2z)e2z and (b)

2 cos 2z respectively.

31 Writing w = sin−1 z we can say that

z = sinw = sin(u + jv) = sinu cosh v + j cos u sinh v
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so that, equating real and imaginary parts,

x = sinu cosh v

and y = cos u sinh v

Squaring and adding gives

x2 + y2 = sin2 u cosh2 v + cos2 u sinh2 v

= sin2 u cosh2 v + (1 − sin2 u)(cosh2 v − 1)

= sin2 u + cosh2 v − 1

from which

x2 + y2 + 1 = sin2 u +
x2

sin2 u
(I)

Solving for sin2 u gives

sin2 u =
1
2
(1 + x2 + y2) − 1

2

√
(1 + x2 + y2)2 − 4x2

where the minus sign is taken, since with u = π/2 (i.e. x = cosh v, y = 0)
inconsistencies result otherwise. From cosh2 v = x2

sin2 u
we obtain

cosh2 v =
1
2
(1 + x2 + y2) +

1
2

√
(1 + x2 + y2)2 − 4x2

(This is most easily found by solving equation (I) for 1
sin2 u

then using cosh2 v =
x2

sin2 u
.)

Square rooting and inverting give u and v in terms of x and y . It can be shown
that the expression under the square root sign is positive, for 1 + x2 + y2 − 2x =
(x−1)2 +y2 ≥ 0 for all real x and y thus (1+x2 +y2)2 ≥ 4x2 . Hence w = sin−1 z

is an analytic function with derivative 1√
1−z2 .

32
| sin z |2 =| sinx cosh y + j cos x sinh y |2

= sin2 x cosh2 y + cos2 x sinh2 y

= cosh2 y − cos2 x = sinh2 y + sin2 x

The result follows immediately from the last two expressions.
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Exercises 4.3.5

33 Mappings are not conformal at the points where
dw

dz
= 0

33(a)
dw

dz
= 2z = 0 when z = 0. z = 0 is the only point where the mapping

fails to be conformal.

33(b)
dw

dz
= 6z2 − 42z + 72 = 0 when z2 = 7z + 12 = 0 that is, non-conformal

points are z = 4, z = 3 (both real).

33(c)
dw

dz
= 8 − 1

z3
= 0 when z3 =

1
8

giving
1
2
,
1 ± j

√
3

4
as non-conformal

points.

34 Proceeding as in Example 4.13, the mapping

w = z − 1
z

has a fixed point at z = ∞ , is analytic everywhere except at z = 0 and conformal

except where
dw

dz
= 0

that is, 1 +
1
z2

= 0, z = ±j

Since both of these occur on the imaginary axis, consideration of this axis is
adequate to completely analyse this mapping.
The image of z = j is w = 2j , and the image of z = −j is w = −2j . Writing
z = j + jε, ε real, we find that

w = jε − 1
j + jε

= j[1 + ε − (1 + ε)−1]

= j[1 + ε + 1 − ε + ε2 + . . .]

� j[2 + ε2]

So, no matter whether ε > 0 or ε < 0, the image point of z = j + jε is above
w = j2 on the imaginary axis.
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that is, points Q and P in the z plane both map to R in the w plane in a manner to
Example 4.13, the non-conformality of z = ±j is confirmed and as the imaginary
axis (in the z plane) is traversed from −jz to 0, the imaginary axis (in similar the
w plane) is traversed from −jz to −j2 and back to −j∞ (when z = −j, w reaches
−j2). Similarly, as the imaginary axis (in the z plane) is traversed from +j∞ to
0, the imaginary axis (in the w plane) is traversed from +j∞ to +j2 and back to
+j∞ again.

Finally, points on the imaginary axis in the w plane such that w = aj,−2 < a < 2,
do not arise from any points on the imaginary axis in the z plane. This point is
obvious once one solves

aj = z − 1
z

to obtain

z =
1
2
aj ± 1

2

√
4 − a2

35 If w = ez

then u = ex cos y and v = ex sin y

Hence the expressions u2 + v2 = e2x and v = u tan y can be derived.

35(a) 0 ≤ x < ∞ is mapped to the exterior of the unit circle u2 + v2 = 1

35(b) 0 ≤ x ≤ 1 is mapped to the annulus 1 ≤ u2 + v2 ≤ e2

0 ≤ y ≤ 1 is mapped to the region between the radiating lines v = 0 and
v = u tan 1.

c©Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4th Edition 217

35(c) 1
2π ≤ y ≤ π is mapped to the region between u = 0(v > 0) and

v = 0(u < 0)

that is,

Thus if 0 ≤ x < ∞ then the image region in the w plane is in the shaded quadrant,
but outside the unit circle.

36 If w = sin z then dw
dz = cos z .

Since cos z = 0 when z = (2n + 1)π/2 these are the points where the mapping is
not conformal

w = sin z ⇒ u + jv = sinx cosh y + j cos x sinh y
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Hence v = sinx cosh y, v = cos x sinh y

thus lines x = k transform to
(

u
sin k

)2 −
(

v
cos k

)2 = 1 (hyperbolae)
and lines y = k transform to

(
u

cosh l

)2 +
(

v
sinh l

)2 = 1 (ellipses)

37 If z = ζ + a2

ζ andζ = Rejθ

then z = Rejθ + a2

R e−jθ

so that x =
(
R + a2

R

)
cos θ and y =

(
R − a2

R

)
sin θ .

If R = a, x = 2a cos θ and y = 0 then the real line between ±2a is traversed.
Length of line segment = 4a .
For a circle of radius b ,

x =
(
b +

a2

b

)
cos θ, y =

(
b − a2

b

)
sin θ

Hence the image in the z plane is an ellipse of the form

b2x2

(a2 + b2)2
+

b2y2

(b2 − a2)2
= 1

Exercises 4.4.2

38(a)
1

z − j
= (z − j)−1 = j

(
1 − z

j

)−1
= j

(
1 +

z

j
+

(z

j

)2
+ . . .

)
= j + z − jz2 − z3 + jz4 . . .

38(b)
1

z − j
=

1
z

(
1 − j

z

)−1

=
1
z

(
1 +

j

z
+

( j

z

)2

+ . . .
)

=
1
z

+
j

z2
− 1

z3
− j

z4
+ . . .
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38(c) In order that | z − 1 − j |<
√

2 we write

1
z − j

=
1

z − 1 − j + 1
= (1 + z − 1 + j)−1

= 1 − (z − 1 − j) + (z − 1 − j)2 − (z − 1 − j)3 + . . .

Which is valid inside | z − 1 − j |<| 1 − j |=
√

2.

39
1

z2 + 1
= (z2 + 1)−1 = 1 − z2 + z4 − z6 + . . .

where | z |< 1.

Using the fact that we can differentiate power series term-by-term and the radius
of convergence remains unaltered

− 2z
(z2 + 1)2

= −2z + 4z3 − 6z5 + . . .

so

39(a)
1

(z2 + 1)2
= 1 − 2z2 + 3z4 − 4z6 + 5z8 + . . .

| z |< 1

Operating on
1

(z2 + 1)2
in a similar fashion gives

− 4z
(z2 + 1)3

= −4z + 12z3 − 24z5 + 40z7 . . .

so

39(b)
1

(z2 + 1)3
= 1 − 3z2 + 6z4 − 10z6 + 15z8 + . . .

| z |< 1
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Exercises 4.4.4

40 Taylor’s theorem is

f(z) = f(a) + (z − a)f′(a) +
(z − a)2

2!
f′′(a) + . . .

We thus compute f(z) and its first few derivatives then evaluate them at z = a .

40(a)

f(z) =
1

1 + z
, f′(z) = − 1

(1 + z)2
, f′′(z) =

2
(1 + z)3

and f′′′(z) = − 6
(1 + z)4

Hence

f(1) =
1
2
, f′(1) = −1

4
, f′′(1) =

2
8

=
1
4

and f′′′(1) = −3
8

thus
1

1 + z
=

1
2
− 1

4
(z − 1) +

1
8
(z − 1)2 − 1

16
(z − 1)3 + . . .

The radius of convergence is the distance between the nearest singularity of f(z)
to the point about which the expansion is made. The point z = −1 is the only
singularity and the distance between this and z = 1 is 2 (along the real axis).

40(b)

f(z) =
1

z(z − 4j)
=

j

4
(1
z
− 1

z − 4j
)

using partial fractions

f′(z) =
j

4
(
− 1

z2
+

1
(z − 4j)2

)
f(1) =

1
4
; f′(1) = 0

f′′(z) =
j

4
(
− 2

z3
+

2
(z − 4j)3

)
f′′(1) = −1

8
; f′′′(1) = 0

f′′′(z) =
j

4
(
− 6

z4
+

6
(z − 4j)4

)
fiv(1) = +

3
8
; fv(1) = 0

fiv(z) =
j

4
(
−24

z4
+

24
(z − 4j)5

)
fvi(1) = −45

16

fv(z) =
j

4
(
−120

z6
+

120
(z − 4j)6

)
etc.
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Thus

1
z(z − 4j)

=
1
4
− 1

16
(z − 2j)2 +

1
64

(z − 2j)4 − 1
256

(z − 2j)6 + . . .

The radius of convergence is 2 since z = 2j is 2 from the singularities at z = 0 and
z = 4j .

40(c) f(z) = 1
z2

gives f′(z) = − 2
z3 , f′′(z) = 6

z4 and f′′′(z) = − 24
z5 .

Putting z = 1 + j gives

f(1 + j) = − j

2
, f

′
(1 + j) = − 2

(1 + j)3
=

1 + j

2

f
′′
(1 + j) =

6
(1 + j)4

=
3
2

and f
′′′

(1 + j) = − 24
(1 + j)5

= −3(1 − j)

Hence

1
z2

= − j

2
+

1
2
(1 + j)(z − 1 − j) +

3
4
(z − 1 − j)2 − 1

2
(1 − j)(z − 1 − j)3 + . . .

The radius of convergence is the distance between the origin (a double pole) and
1 + j that is,

√
2.

41 With f(z) =
1

1 + z + z2

we could use the binomial expansion

f(z) = (1 + z + z2)−1 gathering terms to O(z3)

This is certainly more efficient than using the derivatives of f(z) . However, the
best way is to use the fact that (z3 − 1) = (z − 1)(z2 + z + 1). That is

1
1 + z + z2

=
z − 1
z3 − 1

=
1 − z

1 − z3

= (1 − z)(1 − z3)−1
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= 1 − z + z3 . . .

to order z3

valid in the region | z |< 1.

42 If f(z) = 1
z4−1 the singularities are at the points where z4 = 1 that is,

z = 1,−1,−j and j . The radii of convergence are the minimum distances of the
points z = 0, 1 + j and 2 + j2 from these singularities.
z = 0 is equidistant (1) from each radius of convergence = 1.
z = 1 + j is distance (1) from z = 1 and z = j with radius of convergence = 1.
z = z + j2 is a distance | 2 + j2 − 1 | from 1 and a distance | 2 + j2 − j | from j .
Both of these distances = [22 + (2 − 1)2]1/2 =

√
5.

43 If f(z) = tan z then f′(z) = sec2(z) and f′′ = 2 sec2 z tan z but subsequent
derivatives get cumbersome to compute (except by using a Computer Algebra

package). Since tan z =
sin z

cos z
, we can use the series for sin z and cos z as follows:

tan z =
z − z3

6 + z5

120

1 − z2

2 + z4

24

= z

(
1 − z2

6
+

z4

120

)(
1 −

(z2

2
− z4

24
))−1

= z

(
1 − z2

6
+

z4

120

)(
1 +

z2

2
− z4

24
+

(z2

2
− z4

24
)2)

+ . . .

= z +
1
3
z3 +

(
1

120
− 1

12
− 1

24
+

1
4

)
z5 + . . .

tan z = z +
1
3
z3 +

2
15

z5 + · · ·

Since z = π/2 is the closest singularity, the radius of convergence is π
2 .

Exercises 4.4.6

44 The function
1

z(z − 1)2
has a simple pole at z = 0 and a double pole at

z = 1. In order to find the Laurent expansions, we simply find the following
binomial expansions
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1
z
(1 − z)−2 =

1
z
(1 + 2z + 3z2 + 4z3 + . . .)

=
1
z

+ 2 + 3z + 4z2 + . . . about z = 0

valid for 0 <| z |< 1

and
1

(z − 1)2
(1−(1 − z))−1

=
1

(z − 1)2
[1 + (1 − z) + (1 − z)2 + (1 − z)3 + . . .]

=
1

(1 − z)2
+

1
1 − z

+ 1 + (1 − z) + (1 − z)2 + . . .

valid for 0 <| 1 − z |< 1

45(a) With f(z) = z2 sin
(

1
z

)
, there is a singularity at z = 0 and another at

z = ∞ . Expanding sin
(

1
z

)
as a power series in 1

z we find

z2 sin
(1
z

)
= z2

(
1
z
− 1

3!z3
+

1
5!z5

− · · ·
)

= z − 1
3!z

+
1

5!z3
− · · ·

= · · · + 1
5!z3

− 1
3!

1
z

+ z.

Since the principal part is infinite, there must be an essential singularity at z = 0.

(b) Writing z = 1
w in order to investigate z = ∞ we obtain

z2 sin
(1
z

)
=

1
w2

sin w =
1
w2

(
w − w3

3!
+

w5

5!
− · · ·

)

=
1
w

− w

3!
+

w3

5!
− · · ·

= z − 1
z3!

+
1

z35!
− · · ·

which implies a simple pole at z = ∞ . (The expansion is the same as that about
z = 0, but re-interpreted.)

(c) At any other point z2 sin 1
z is regular and has a Taylor series of the

form f(z) = a0 + a1z + a2z
2 + . . . . specifically, about z = a, z2 sin

(
1
z

)
=

a2 sin 1
a + a1z + a2z

2 + . . . where a1 = f′(a), a2 = f′′(a) , etc.
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46 With f(z) = z
(z−1)(2−z)

there are simple poles at z = 1 and z = 2.

46(a) Inside the unit circle | z |= 1, therefore there is a Taylor series

z(1 − z)−1(2 − z)−1

=
z

2
(1 − z)−1

(
1 − z

2
)−1

=
z

2
(1 + z + z2 + z3 + . . .)

(
1 +

z

2
+

(z

2
)2

+
(z

2
)3

+ · · ·
)

=
z

2
+

3
4
z2 +

z

2

(
z2 +

1
2
z2 +

1
4
z2 + . . .

)
+

z

2

(
z3 +

1
2
z3 +

1
4
z3 +

1
8
z3 + . . .

)

=
1
2
z +

3
4
z2 +

7
8
z3 +

15
16

z4 + · · · | z |< 1

46(b) In the annulus 1 <| z |< 2 we rearrange f(z) to obtain a Laurent series
as follows

z

(z − 1)(z − 2)
=

2
z − 2

− 1
z − 1

= −
(

1 − z

2

)−1

− 1
z

(
1 − 1

z

)−1

= −
(

1 +
z

2
+

z2

4
+ · · ·

)
− 1

z

(
1 +

1
z

+
1
z2

+ · · ·
)

= . . . − 1
z3

− 1
z2

− 1
z
− 1 − z

2
− z2

4
− · · ·

46(c) For | z |> 2 we rearrange as follows

z

(z − 1)(z − 2)
=

2
z − 2

− 1
z − 1

=
2
z

(
1 − 2

z

)−1

− 1
z

(
1 − 1

z

)−1

=
2
z

(
1 +

2
z

+
4
z2

+
8
z3

+ · · ·
)
− 1

z

(
1 +

1
z

+
1
z2

+
1
z3

+ · · ·
)

=
1
z

+
3
z2

+
7
z3

+
15
z4

+ · · ·

46(d) For | z − 1 |> 1 we write 1
z−1 = w and find a Taylor’s series in w .

If w = 1
z−1 then wz − w = 1 or z = 1+w

w
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so that
z

(z − 1)(z − 2)
= w

(
1 + w

1 − w

)
= w(1 + w)(1 + w + w2 + w3 + . . .)

= w + 2w2 + 2w3 + . . .

=
1

z − 1
+

2
(z − 1)2

+
2

(z − 1)3
+ · · ·

46(e) For 0 <| z − 2 |< 1 we write w = z − 2 hence

z

(z − 1)(z − 2)
=

w + 2
w(w + 1)

=
(
1 +

2
w

)
(1 + w)−1

=
(
1 +

2
w

)
(1 − w + w2 − w3 + . . .)

=
2
w

− 1 + w − w2 + w3 − . . .

=
2

(z − 2)
− 1 + (z − 2) − (z − 2)2 + (z − 2)3 . . .

Exercises 4.5.2

47 The point at infinity is ignored in this question. Most if not all can be found
immediately by inspection.

47(a)
cos z

z2
: double pole at z = 0, zeros whenever cos z = 0 that is,

z = 1
2 (2n + 1)π, n = integer.

47(b)
1

(z + j)2(z − j)
: has a double pole at z = −j , a simple pole at z = j

and no zeros in the finite z plane.

47(c)
z

z4 − 1
: simple poles at z4 = 1 that is, z = 1,−1, j,−j and a zero at

z = 0.

47(d) cosh z : since coth z =
cosh z

sinh z
this has simple poles at those points where

z = jnπ and zero at those points where z = 1
2j(2n + 1)π, n =

integer.
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47(e)
sin z

z2 + π2
: simple poles at z = ±jπ and zeros at z = nπ, n = integer.

47(f) ez/(1−z) : this has an essential singularity at z = 1 and no zeros.

47(g)
z − 1
z2 + 1

: this has simple poles at z = ±j and a zero at z = 1.

47(h)
z + j

(z + 2)3(z − 3)
: this has a triple pole at z = −2, a simple pole at z = 3

and a zero at z = −j .

47(i)
1

z2(z2 − 4z + 5)
: this has simple poles at z2 − 4z + 5 = 0, that is,

z = 5,−1 and a double pole at z = 0.

48(a)
1 − cos z

z2
. In order to investigate this, we expand cos z . Only z = 0 is a

possible (finite) singularity

1 −
(
1 − z2

2! + z4

4! − · · ·
)

z2
=

1
2!

− z2

4!
+ · · ·

The RHS is a power series, thus the singularity at z = 0 is removable.

48(b)
ez2

z3
. Using the power series for ez2

gives the expansion

ez2

z3
=

1
z3

(
1 + z2 +

z4

2!
+ · · ·

)

=
1
z3

+
1
z

+
z

2!
+ · · ·

z = 0 is thus a pole of order 3.

48(c) 1
z cosh

(
1
z

)
. Obviously the point z = 0 is a problem.

1
z

(
1 + 1

z22! + 1
z44! + · · ·

)
is the Laurent series which indicates that z = 0 is an

essential singularity.
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48(d) tan−1(z2 +2z+2). For this problem the easiest way to proceed is to find
the Maclaurin series from first principles. At z = 0, tan−1(z2 + 2z + 2) = tan−1 2
which is finite. This means that z = 0 is a regular point, hence it is not actually
necessary to find the Laurent series (in this case Maclaurin series) for the function.
In fact

tan−1(z2 + 2z + 2) = tan−1 2 +
2
5
z − 6

25
z2 + · · ·

49 If f(z) = p(z)
q(z) where p(z) and q(z) are polynomials, then the only singularities

of f(z) are the algebraic zeros of q(z) . These zeros are either distinct or multiple.
The distinct zeros give rise to simple poles of f(z) whereas the multiple zeros give
rise to poles of higher order. f(z) can only have these kinds of singularity, although
it may have none if q divides p , so that f(z) is polynomial. f(z) therefore cannot
have an essential singularity.

Exercises 4.5.4

50(a)
2z + 1

(z2 − z − 2)
=

2z + 1
(z − 2)(z + 1)

hence the singularities are simple poles at

z = 2, z = −1.

Using the formula residue = lim
z→z0

[(z− z0)f(z)] the residues are 5
3 at z = 2 and 1

3

at z = −1.

50(b)
1

z2(1 − z)
has a simple pole at z = 1 and a double pole at z = 0.

The residue at z = 1 is lim
z→1

(
− 1

z2

)
= −1

1
z2(1 − z)

=
1
z2

(1 + z + z2 + . . .) =
1
z2

+
1
z

+ 1 + · · ·

Hence the residue at z = 0 is 1.
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50(c)
3z2 + 2

(z − 1)(z2 + 9)
=

3z2 + 2
(z − 1)(z + j3)(z − j3)

Hence there are simple poles at z = 1, j3,−j3

At z = 1, residue =
3 + 2

(1 + j3)(1 − j3)
=

5
10

=
1
2

at z = j3, residue =
−3 × 9 + 2
(j3 − 1)j6

=
−25

6(−3 − j)
=

5
12

(3 − j)

at z = −j3, residue =
5
12

(3 + j) by symmetry.

50(d)
z3 − z2 + z − 1

z3 + 4z
=

z3 − z2 + z − 1
z(z + j2)(z − j2)

=
(z − 1)(z2 + 4)

z(z + j2)(z − j2)
which has simple poles at z = 0, j2,−j2.

At z = 0, residue = −1
4

at z = j2, residue = lim
z→j2

(z − 1)(z2 + 4)
(z + j2)

=
3
8
(−1 + 2j)

at z = −j2, residue =
3
8
(−1 − 2j) similarly.

50(e)
z6 + 4z4 + z3 + 1

(z − 1)5
has a pole of order 5 at z = 1.

The formula for calculating residues is convenient for this problem.

Residue =
1
4!

lim
z→1

d4

dz4
(z6 + 4z4 + z3 + 1)

=
1
24

(6.5.4.3 + 4.4.3.2)

=
456
24

= 19

50(f)
(z + 1
z − 1

)2

has a double pole at z = 1.

Residue = lim
z→1

d

dz
(z + 1)2 = 4
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50(g)
z + 1

(z − 1)2(z + 3)
has a simple pole at z = −3 and a double pole at z = 1.

Residue at z = −3 is − 1
8

Residue at z = 1 is
d

dz

(z + 1
z + 3

)∣∣
z=1

=
1
8

50(h)
3 + 4z

z3 + 3z2 + 2z
=

3 + 4z
z(z + 1)(z + 2)

has simple poles at z = −2,−1 and 0.

Residues are, respectively, −5
2
, 1 and

3
2

following the same procedure as part (c).

51(a) The pole of
cos z

z
at z = 0 is simple, thus the residue is cos(0) = 1.

51(b) The poles of
sin z

z4 + z2 + 1
are all simple, and the residue at z = eπj/3 is

lim
z→eπj/3

(z − eπj/3)
sin z

z4 + z2 + 1
= sin eπj/3 lim

z→eπj/3

(
z − eπj/3

z4 + z2 + 1

)

Using L’Hôpital’s rule, the limit is

1
4eπj + 2eπj/3

=
1

−4 + 2
(

1
2 + j

√
3

2

) =
1

−3 + j
√

3
=

1
12

(−3 − j
√

3)

giving the residue − 1
12 (3 + j

√
3) sin

(
1
2 (1 + j

√
3)

)

51(c) The pole of
z4 − 1
z4 + 1

at z = eπj/4 is simple and we proceed as in the last
part. The residue is

− 2 lim
z→eπj/4

(
z − eπj/4

z4 + 1

)

= −2
1

4e3πj/4
= −1

2
1

− 1√
2

+ j 1√
2

=
1
2

(
1√
2

+
j√
2

)
.

Hence the residue is
√

2
4 (1 + j) .
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51(d)
z

sin z
has a simple pole at z = π

Residue = π lim
z→π

(z − π

sin z

)
= −π.

51(e)
1

(z2 + 1)2
has a double pole at z = j

Residue = lim
z→j

d

dz

{
(z − j)2

1
(z − j)2(z + j)2

}
= lim

z→j

{
− 2

(z + j)3
}

= − 2
8j3

= − j

4
.

52(a)
cos z

z3
has a triple pole at z = 0.

cos z

z3
=

1
z3

− 1
2z

+
1
24

z − · · · residue = −1
2

52(b)
z2 − 2z

(z + 1)2(z2 + 4)
has a double pole at z = −1.

Residue =
d

dz

(z + 1)2(z2 − 2z)
(z + 1)2(z2 + 4)

at z = −1

=
(2z − 2)(z2 + 4) − 2z(z2 − 2z)

(z2 + 4)2
∣∣
z=−1

= −14
25

52(c) The function
ez

sin2 z
has a double pole wherever

sin z = 0 that is at z = nπ, n = an integer

In order to find the residue, we need to compute

lim
z→nπ

d

dz

[ (z − nπ)2ez

sin2 z

]
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Now
d

dz

[
(z − nπ)2ez

sin2 z

]
= ez d

dz

[
(z − nπ)2

sin2 z

]
+

(z − nπ)2

sin2 z
ez (I)

and
d

dz

(
(z − nπ)2

sin2 z

)
= 2

z − nπ

sin z
· d

dz

(
z − nπ

sin z

)

=
2(z − nπ)

sin z
· sin z − (z − nπ) cos z

sin2 z

As z → nπ,
z − nπ

sin z
→ 1 and

sin z − (z − nπ) cos z

sin2 z
→ cos z − cos z + (z − nπ) sin z

2 sin z cos z
(using L’Hôpital’s rule)

→ 0 as z → nπ

Hence the RHS of equation (I) → enπ as z → nπ .

Thus the residue is enπ .

Exercises 4.6.3

53
∫
C

(z2 + 3z)dz with z = x + jy and dz = dx + jdy

hence (z2 + 3z)dz = (x2 − y2 + j2xy + 3x + j3y)(dx + jdy)

= (x2 − y2 + 3x)dx − (2xy + 3y)dy

+ j[(x2 − y2 + 3x)dy + (2xy + 3y)dx]

53(a) The straight line joining 2 + j0 to 0 + j2 has equation x + y = 2 in
Cartesian coordinates. This has parametric equation x = t and y = 2 − t from
which dx = dt and dy = −dt , and using the above expression for (z2 + 3z)dz

(z2 + 3z)dz = (t2 − (2 − t)2 + 3t)dt + (2t(2 − t) + 3(2 − t))dt

+ j[−(t2 − (2 − t)2 + 3t)dt + (2t(2 − t) + 3(2 − t))dt]

and the range of integration is from t = 2 to t = 0.
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Hence

∫
C

(z2 + 3z)dz =
∫ 0

2

(8t − 2t2 + 2)dt

+ j

∫ 0

2

(−6t − 2t2 + 10)dt

=
[
4t2 − 2

3
t3 + 2t

]0

2
+ j

[
−3t2 − 2

3
t3 + 10t

]0

2

so
∫

C

(z2 + 3z)dz = −44
3

− j
8
3

53(b) On the straight line from 2 + j0 to 2 + j2, x = 2 and y goes from 0 to
2, so that dx = 0.

Therefore ∫
C1

(z2 + 3z)dz =
∫ 2

0

−(4t + 3t)dt

+ j

∫ 2

0

(4 − t2 + 6)dt

=
[
−7

2
t2

]2
0

+ j
[
10t − 1

3
t3

]2

0

= −14 + j
52
3

On the straight line from 2 + j2 to 0 + j2, y = 2 and x goes from 2 to 0, so that
dy = 0.

Therefore ∫
C2

(z2 + 3z)dz =
∫ 0

2

(t2 − 4 + 3t)dt

+ j

∫ 0

2

(4t + 6)dt

=
[1
3
t3 − 4t +

3
2
t2

]0

2
+ j

[
2t2 + 3t

]0

2

= −2
3
− j14

Thus
∫
C

(z2 + 3z)dz =
∫

C1

(z2 + 3z)dz +
∫

C2

(z2 + 3z)dz = −44
3

− j
8
3

.
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53(c) For this part, we use z = 2ejθ on | z |= 2 and θ varies between 0 and π/2
on the quarter circle joining 2+j0 to 0+j2. Thus (z2+3z)dz = (4e2jθ+6ejθ)2jejθdθ

so that ∫
C

(z2 + 3z)dz =
∫ π/2

0

[
8je3jθ + 12je2jθ

]
dθ

=
[
8
3
e3jθ + 6e2jθ

]π/2

0

=
[
−8

3
− 6

]
−

[
8
3

+ 6
]

= −8j
3

− 44
3

Hence the integrals are all the same.

54(a) On | z |= 1, z = ejθ, 0 ≤ θ ≤ 2π

so that
∮

(5z4 − z3 + 2)dz

=
∫ 2π

0

(5e4jθ − e3jθ + 2)jejθdθ

=
[
5
5
e5jθ − 1

4
e4jθ + 2ejθ

]2π

0

= 0

hence e2πj = e0 = 1

54(b) Integrating around the square in the order 0 + j0, 1 + j0, 1 + j1 and
0 + j1 gives the answers 11

4 , 3 + j
4 ,− 11

4 and − 3− j
4 . Adding these together gives

0.

54(c) On the parabola y = x2, x = t and y = t2 so that z = t + jt2 and
dz = (1 + 2jt)dt .
On the parabola y2 = x, x = t2 and y = t so that z = t2 + jt and dz = (2t+ j)dt .
The computation of

∮
C

(5z4−z3+2)dz is extremely long winded but straightforward

and gives the answer 0.

55 In order to evaluate ∫
C

dz

(z − z0)n
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we surround the point z = z0 with a circle of radius ε on which z = z0 + εejθ ,
0 ≤ θ < 2π .
Using equation (4.45) the integral around C is the same as the integral around the
circle on which z = z0 + εejθdθ . Thus

∫
C

dz

(z − z0)n
=

∫ 2π

0

jεejθ

εnenjθ
dθ

If n 	= 1, then the integral integrates to

[
jε(1−n) e(1−n)jθ

(1 − n)j

]2π

0

= 0

as in Example 4.30.
If n = 1, ∫

C

dz

(z − z0)n
=

∫ 2π

0

jdθ = 2πj

56(a) If z = 4 is outside C , by Cauchy’s theorem,

∫
C

dz

z − 4
= 0

56(b) If z = 4 is inside C , by problem 55

∫
C

dz

z − 4
= 2πj

57 In order to use Cauchy’s integral theorem, we split into partial fractions

2z
(2z − 1)(z + 2)

=
2/5

2z − 1
+

4/5
z + 2

57(a) If C is the circle | z |= 1

∫
C

2zdz

(2z − 1)(z + 2)
=

2
5

∫
C

dz

2z − 1
+

4
5

∫
C

dz

z + 2

=
2
5
· 2πj +

4
5
· 0
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since z = 1
2 is inside | z |= 1 whereas z = −2 is outside. Hence

∫
C

2zdz

(2z − 1)(z + 2)

=
4
5
πj

57(b) If C is the circle | z |= 3, both singularities (poles) are inside C , and
hence ∫

C

2zdz

(2z − 1)(z + 2)
=

2
5
2πj +

4
5
· 2πj

=
12
5

πj

58 This follows a pattern similar to Exercise 57.
Using partial fractions gives

5z
(z + 1)(z − 2)(z + 4j)

=
5
51 (−1 − 4j)

z + 1
+

1
3 (1 − 2j)

z − 2
+

2
17 (−2 + 9j)

z + 4j

58(a) Only the first two poles (z = −1, z = 2) are inside | z |= 3 hence

∫
C

5zdz

(z + 1)(z − 2)(z + 4j)
= 2πj

(
5
51

(−1 − 4j) +
1
3
(1 − 2j)

)

=
4π
17

(9 + 2j)

58(b) All three poles are inside | z |= 5 hence

∫
C

5zdz

(z + 1)(z − 2)(z + 4j)
= 2πj

(
5
51

(−1 − 4j) +
1
3
(1 − 2j)

+
2
17

(−2 + 9j)
)

= 0

59 Equation (4.48) gives the general form of Cauchy’s integral theorem

∮
C

f(z)
(z − z0)n+1

dz =
2πj

n!
f(n)(z0)

where C is a contour enclosing the point z = z0 .
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59(a)

∮
C

z3 + z

(2z + 1)3
dz =

1
8

∮
C

z3 + z

(z + 1
2 )3

dz

=
1
8

2πj

2
d2

dz2

∣∣∣∣
−1

2

(z3 + z)(z = −1
2 is inside | z |= 1)

=
π

8
j
(
6(−1

2
)
)

= −3πj

8

59(b) First of all we need to separate the integrand using partial fractions

4z
(z − 1)(z + 2)2

=
4
9

z − 1
−

4
9

z + 2
+

8
3

(z + 2)2

Hence ∮
C

4zdz

(z − 1)(z + 2)2
= 2πj

4
9
− 2πj

4
9

+ 0 = 0

using Cauchy’s integral theorem (the derivative of 8
3 is of course zero). All poles

of the integrand are inside the circle | z |= 3.

Exercises 4.6.6

60
z

z2 + 1
has poles at z = ±j

60(a) Since
z

z2 + 1
is regular inside | z |= 1

2∮
C

zdz

z2 + 1
= 0 if C is the circle | z |= 1

2

60(b) The residues of
z

z2 + 1
at z = ±j (both inside | z |= 2) are

lim
z→+j

(z − j)z
(z + j)(z − j)

= lim
z→+j

z

z + j
=

1
2

and
lim

z→−j

(z + j)z
(z + j)(z − j)

= lim
z→−j

z

z − j
=

1
2
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Hence, using the residue theorem

∮
C

zdz

z2 + 1
= 2πj

(
1
2

+
1
2

)
= 2πj

61 The singularities of
z2 + 3jz − 2

z3 + 9z
are at z3 + 9z = 0, that is, z = 0, 3j, −3j

(all simple poles). Only z = 0 is inside | z |= 1 but all three are inside | z |= 4.
Hence we shall find all the residues.

At z = 0, residue is lim
z→0

(z2 + 3jz − 2
z2 + 9

)
= −2

9
At z = 3j , the residue is

lim
z→3j

(z − 3j)(z2 + 3jz − 2)
z(z − 3j)(z + 3j)

=
(3j)2 + 3j3j − 2

3j(3j + 3j)
=

−9 − 9 − 2
−18

=
10
9

At z = −3j , the residue is

lim
z→−3j

(z + 3j)(z2 + 3jz − 2)
z(z − 3j)(z + 3j)

=
(−3j)2 + (3j)(−3j) − 2

(−3j)(−3j − 3j)
= −−9 + 9 − 2

−18
=

1
9

61(a) For this part, since only the residue at z = 0 is inside C(| z |= 1)

∴
∮

C

z2 + 3jz − 2
z3 + 9z

dz = 2πj
(
−2

9
)

= −4πj

9

61(b) For this part, all residues need to be taken into account since all the poles
of f(z) are inside C(| z |= 4)

∴
∮

C

z2 + 3jz − 2
z3 + 9z

dz = 2πj
(
−2

9
+

10
9

+
1
9
)

= 2πj

Note that in this case, all the zeros of the denominator were obviously poles. In
general, we would need to check if they were not removable by factorizing the
numerator.
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62 f(z) =
(z2 + 2)(z2 + 4)
(z2 + 1)(z2 + 6)

has poles at z = ±j, z = ±j
√

6.

Residue at z = j is

lim
z→j

(z − j)(z2 + 2)(z2 + 4)
(z − j)(z + j)(z2 + 6)

=
(−1 + 2)(−1 + 4)

2j(−1 + 6)
= − 3j

10

Residue at z = −j is

lim
z→−j

(z + j)(z2 + 2)(z2 + 4)
(z + j)(z − j)(z2 + 6)

=
(−1 + 2)(−1 + 4)
(−2j)(−1 + 6)

=
3j
10

Residue at z = j
√

6 is

lim
z→j

√
6

(z − j
√

6)(z2 + 2)(z2 + 4)
(z − j

√
6)(z + j

√
6)(z2 + 1)

=
(−6 + 2)(−6 + 4)

2j
√

6(−6 + 1)
=

8
2j
√

6(−5)

=
2
15

j
√

6

Residue at z = −j
√

6 is thus = − 2
15

j
√

6

62(a) The circle | z |= 2 contains the poles at z = ±j but not those at

z = ±j
√

6. The sum of the residues inside C = − 3j
10

+
3j
10

= 0.
Hence the integral = 0.

62(b) The circle | z − j |= 1 contains the residue only at z = j .
Hence ∮

C

(z2 + 2)(z2 + 4)
(z2 + 1)(z2 + 6)

dz = 2πj
(
− 3j

10
)

=
3π
5

62(c) The circle | z |= 4 contains all the poles. Since the sum of the residues is
zero, so is the integral.

63 The function
1

z2(1 + z2)2
has double poles at z = 0 and z = ±j .

Residue at z = 0 is

d

dz

[
1

(1 + z2)2

]∣∣∣∣
z=0

= − 4z
(1 + z2)3

∣∣∣∣
z=0

= 0
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Residue at z = j is

d

dz

[
1

z2(z + j)2

]∣∣∣∣
z=j

= − 2(2z + j)
(z2 + jz)3

= −3
4
j

Residue at z = −j is
3
4
j

63(a) If C is the circle | z |= 1
2

, only the residue at z = 0 is in C . Thus

∮
C

dz

z2(1 + z2)2
= 2πj(0) = 0

63(b) All the singularities are inside | z |= 2, but since they sum to 0,
∮

C

dz

z2(1 + z2)2
= 0

64(a) The singularities of
3z2 + 2

(z − 1)(z2 + 4)
are at z = 1, ±2j .

They are all simple poles. Using the formula (4.37) the residues are :-
at z = 1 : 1
at z = 2j :

1
8
(2 − j)

at z = −2j :
1
8
(2 + j)

(i) If C is | z − 2 |= 2 only the residue at z = 1 is included, hence

∮
C

3z2 + 2
(z − 1)(z2 + 4)

dz = 2πj

(ii) If C is | z |= 4, all the residues are included, hence

∮
C

3z2 + 2
(z − 1)(z2 + 4)

dz =
5
2
πj

64(b) The singularities of
z2 − 2z

(z + 1)2(z2 + 4)
are at z = −1,±2j . A double pole

is at z = −1 and simple poles are at z = ±2j .

c©Pearson Education Limited 2011



240 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

Residues are:-
at z = −1 : −14

25
at z = 2j : −1 + j

at z = −2j : −1 − j

(i) If C is | z |= 3, all singularities are inside C .
Hence ∮

C

z2 − 2z
(z + 1)2(z + 4)

dz = 2πj

(
−14

25
− 2

)
= −128

25
πj

(ii) If C is | z + j |= 2 then z = −1 and z = −2j are inside C , but z = 2j is
not.
Hence ∮

C

z2 − 2z
(z + 1)2(z2 + 4)

dz = 2πj

(
−14

25
− 1 − j

)
=

2π
25

(25 − j39)

64(c) The function
1

(z + 1)3(z − 1)(z − 2)

Simple poles at z = 1, 2, triple poles at z = −1.
Residues :-
z = 1 : −1

8
z = 2 :

1
27

z = −1 :
1
27

− 1
8
(
= − 19

216
)

(i) The circle | z |= 1
2 contains none of the singularities and therefore

∮
C

dz

(z + 1)3(z − 1)(z − 2)
= 0

(ii) The circle | z + 1 |= 1 contains the singularity z = −1 and therefore∮
C

dz

(z + 1)3(z − 1)(z − 2)
= 2πj

(
− 19

216
)

= −19πj

108

(iii) The rectangle and vertices ±j, 3± j , contains the singularities at z = 1, z = 2
and therefore ∮

C

dz

(z + 1)3(z − 1)(z − 2)
= −19πj

108
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64(d) The function
z − 1

(z2 − 4)(z + 1)4
has a pole of order 4 at z = −1 and simple

poles at z = ±2.

Residue at z = 2 is
1

324
Residue at z = −2 is −3

4

Residue at z = −1 is given by
1
3!

d3

dz3

( z − 1
z2 − 4

)
This residue is calculated by using partial fractions

z − 1
z2 − 4

=
1
4

z − 2
+

3
4

z + 2

whence
1
3!

d3

dz3

( z − 1
z2 − 4

)
=

1
24

d3

dz3

( 1
z − 2

)
+

1
8

d3

dz3

( 1
z + 2

)
= − 1

4(z − 2)4
− 3

4(z + 2)4

putting z = −1 gives the residue − 1
4.34

− 3
4

= −61
81

(i) The circle | z |= 1
2 contains none of the singularities hence the integral

∮
C

(z − 1)
(z2 − 4)(z + 1)4

dz = 0

(ii) The circle | z + 3
2 |= 2 contains the singularities at z = −1 and z = −2 but

not that at z = 2

Hence ∮
C

(z − 1)
(z2 − 4)(z + 1)4

dz = 2πj
(
−3

4
− 61

81
)

= −487πj

162

(iii) The triangle with vertices −3
2

+ j,−3
2
− j, 3+ j0 contains all the singularities,

hence

∮
C

z − 1
(z2 − 4)(z + 1)4

dz = 2πj

(
1

4.34
− 3

4
− 1

4.34
− 3

4

)
= −3πj
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65(a)
∞∫

−∞

dx

x2 + x + 1
Since the integrand satisfies the condition for Type 1 infinite real integrals, given
in section 4.6.5, we consider

∮
C

dz

z2 + z + 1
where C is a semicircle with radius

R and centre the origin in the upper half z -plane

By the residue theorem

∮
C

dz

z2 + z + 1
= 2πj {sum of residues of poles of integrand inside C}

z2 + z + 1 = 0 ⇒ z =
−1 ±

√
1 − 4

2
= − 1

2 ± j 1
2

√
3

Only one of these simple poles lies inside C (the one with positive imaginary part)

Residue there = lim
z→z0

(z − z0)
1

z2 + z + 1
, z0 = − 1

2 + 1
2 j
√

3

That is, residue = limz→z0

( 1
2z + 1

)
using L’Hôpital’s rule (for simplicity) =

1
j
√

3
Thus ∮

C

dz

z2 + z + 1
= 2πj · 1

j
√

3
=

2π√
3
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Now, ∮
C

=
∫

Γ

+
∫ R

−R

and, as R → ∞,
∫
Γ

→ 0

On
R∫

−R

, z = x = real.

Thus, letting R → ∞ we find that

∫ ∞

−∞

dx

x2 + x + 1
=

2π√
3

65(b) This integral is done in precisely the same way as that of part (a). This
time, the poles are at ±j but they are both double.

−
∮

C

dz

(z2 + 1)2
= 2πj × residue at j = 2πj· 1

4j
=

π

2

Thus ∫ ∞

−∞

dx

(x2 + 1)2
=

π

2

65(c) To evaluate
∞∫
0

dx

(x2 + 1)(x2 + 4)2
we use the same semicircular contour,

except that we note

∫ ∞

0

dx

(x2 + 1)(x2 + 4)2
=

1
2

∫ ∞

−∞

dx

(x2 + 1)(x2 + 4)2

plus the fact that
1

(z2 + 1)(z2 + 4)2
has two poles inside C this time, the simple

pole at z = j and the double pole at z = 2j . Residue at z = j is
1

18j
and residue

at z = 2j is − 11
288j

.

Thus ∫ ∞

0

dx

(x2 + 1)(x2 + 4)2
=

1
2
2πj

( 1
18j

− 11
288j

)
=

5π
288
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65(d) In order to evaluate
2π∫
0

cos 3θ
5 − 4 cos θ

dθ

we follow Example 4.39 and put z = ejθ so that

cos 3θ =
1
2
(z3 + z−3) and cos θ =

1
2
(z + z−1)

With dz = jejθdθ . Hence we consider

∮
C

1
2 (z3 + z−3)

jz(5 − 2(z + z−1))
dz

The function under the integral can be written

1
2j

1 + z6

5z4 − 2z5 − 2z3
=

1 + z6

2j(z − 2)(1 − 2z)z3

The poles inside | z |= 1 are a triple pole at z = 0 and a simple pole at z =
1
2

.

Using the formula for the residue at z =
1
2

gives
65
48j

. Using the Laurent expansion

about z = 0 yields the residue − 21
16j

. The sum is
1

24j
. Hence

∫ 2π

0

cos 3θ
5 − 4 cos θ

dθ =
1
2j

∮
C

1 + z6

(z − 2)(1 − 2z)z3
dz =

1
24j

2πj

=
π

12

65(e)
2π∫
0

4dθ

5 + 4 sin θ

This follows in the same way as part (d).

Putting z = ejθ yields dz = jejθdθ , that is, dθ =
dz

jz
and sin θ =

1
2j

(z − z−1)

c©Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4th Edition 245

Thus ∫ 2π

0

4dθ

5 + 4 sin θ
=

∮
C

4dz

jz(5 + 4
2j (z − z−1))

Thus

∫ 2π

0

4dθ

5 + 4 sin θ
=

∮
C

4dz

(2z + j)(z + 2j)
= 2πj· 4

3j
=

8π
3

(C is the unit circle | z |= 1)

65(f) ∫ ∞

−∞

x2dx

(x2 + 1)(x2 + 2x + 2)

This follows along similar lines to parts (a) and (b). Consider the semicircular
contour and centre the origin radius R on the upper half plane and labelled C

∮
C

z2dz

(z2 + 1)(z2 + 2z + 2)
= 2πj{sum of residues inside C}

Double pole is at z = j , simple pole is at z = −1 + j

Residue at z = j is
3
20

(−4 + j3); residue at −1 + j is
1
5
(3 − j4)

Sum = − 7
20

j giving the integral as
7
10

π

65(g)
2π∫
0

dθ

3 − 2 cos θ + sin θ

Once again let z = ejθ and consider the integral around the unit circle

∫ 2π

0

dθ

3 − 2 cos θ + sin θ
=

∮
C

dz

z2( 1
2 − j) + 3jz − j − 1

2

The poles are at − j

1 − 2j
and − 5

1 − 2j
. Only the first is inside | z |= 1.

The residue is
1
2j

and so the value of the integral is 2πj
1
2j

= π .
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65(h)
∞∫
0

dx

x4 + 1

We have a choice here, let us choose a quarter circle contour as shown below.

Only the root of z4 + 1 = 0 in the positive quadrant, that is z =
1 + j√

2
, needs to

be taken into account.
Residue at this point is

1
4z2

|
z=

1+j√
2

=
−1 − j

4
√

2
Hence ∮

C

dz

1 + z4
= 2πj

(−1 − j)
4
√

2
=

π

2
√

2
− jπ

2
√

2∮
C

dz

z4 + 1
=

∫ 0

jR

+
∫ R

0

+
∫

Γ

=
π

2
√

2
− j

π

2
√

2

on the imaginary axis, z = jy , and on the real axis z = x . Therefore∮
C

dz

z4 + 1
=

∫ 0

R

jdy

y4 + 1
+

∫ R

0

dx

x4 + 1
+

∫
Γ

dz

z4 + 1

where we have used (jy)4 = y4 . Letting R → ∞ , the last integral → 0. Thus∫ 0

∞

jdy

y4 + 1
+

∫ ∞

0

dx

x4 + 1
=

π

2
√

2
− j

π

2
√

2

Equating real (or indeed imaginary) parts gives∫ ∞

0

dx

x4 + 1
=

π

2
√

2
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65(i)
∞∫

−∞

dx

(x2 + 4x + 5)2

The semicircular contour is used and the poles of
1

(z2 + 4z + 5)2
are at

z = −2 + j,−2 − j both double. Only the residue at z = −2 + j , which is
1
4j

,

needs to be taken into account.

Hence ∫ ∞

−∞

dx

(x2 + 4x + 5)2
= 2πj

1
4j

=
π

2

65(j)
2π∫
0

cos θdθ

3 + 2 cos θ

Again we use the unit circle on which z = ejθ . The integrand is
z2 + 1

2j(z3 + 3z2 + z)

with simple poles at z = 0,−3
2

+
1
2
√

5,−3
2
− 1

2
√

5. Only the first two are inside

C and residues are 1 and − 3√
5

. Hence the integral has the value π
(
1 − 3√

5

)
.

Exercises 4.8.3

66 Since w =
1
z
, u + jv =

1
x + jy

=
x − jy

x2 + y2

Thus u =
x

x2 + y2
if u =

1
2a

, x2 + y2 = 2ax .

For the two wires shown in Figure 4.41 potentials are centred at V0 or −V0

and are tangent to the imaginary (y) axis. They are thus circles of the form
x2 + y2 = 2aV0x . The equipotential curves are shown
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67(a)

z = −1 ⇒ w − 0, z = j ⇒ w =
j + 1
1 − j

= j

z =
1
25

(24 + j7) ⇒ w =
49 + j7
1 − j7

= 7
(7 + j)(1 + j7)

1 + 49
= j7

z = −3
4
⇒ w =

3
4 + 1
1 − 3

4

=
7
4
1
4

= 7

giving images as (0,0),(0,1),(0,7),(7,0).

67(b) If w =
z + 1
1 − z

then z =
w − 1
w + 1

so that x + yj =
u − 1 + jv

u + 1 + jv
=

(u − 1 + jv)(u + 1 − jv)
(u + 1)2 + v2

or x + yj =
(u2 − 1) + v2 + j(vu + v − uv + v)

(u + 1)2 + v2

x + yj =
u2 + v2 − 1 + 2vj

(u + 1)2 + v2

Hence y = 0 corresponds to v = 0.

67(c) If x2 + y2 = 1 ⇒| z |= 1

Since z =
w − 1
w + 1

this means that
∣∣w − 1
w + 1

∣∣ = 1

or (u − 1)2 + v2 = (u + 1)2 + v2 from which u = 0
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In order to progress, note that the image of the semicircular conductor in the
w plane is the positive quadrant u ≥ 0, v ≥ 0. Instead of temperature T oC we

consider
πT

200
since this function has the value

π

2
on u = 0 (where T = 100oC). The

mapping w = ez (Example 4.14) provides a means of eliminating the singularity at
w = 0. The complex variable z is already defined, therefore write w = eζ (complex
variable ζ). The imaginary part of ζ is identified with the (scaled) temperature
πT

200
.

Thus
πT

200
= tan−1

( v

u

)
= tan−1

( 2y
1 − x2 − y2

)
as required.

68(a) G(x, y) = 2x − 2xy ; thus
∂H

∂y
=

∂G

∂x
= 2 − 2y

and
∂H

∂x
= −∂G

∂y
= 2x

Integrating this gives H = x2 − y2 + 2y

Hence W = G + jH = 2z − jz2

68(b) If w = lnz , then z = ew

Given H(z) = 2z + jz2 = 2ew + je2w

equating real parts gives

G(x, y) = 2eu cos v − e2u sin 2v as required

68(c) If w = f(z) then the real and imaginary parts of f(z) are harmonic
functions. Hence if ζ = g(w) , then the real and imaginary parts of g are harmonic.
So ζ = g(w) = g(f(z)) implies that harmonic functions (the real and imaginary
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parts of f(z)) transform to harmonic functions (the real and imaginary parts of
g(w)).

69 If w =
z + 3
z − 3

then | w |= k transforms to

∣∣z + 3
z − 3

∣∣ = k

that is, (x + 3)2 + y2 = k2(x − 3)2 + k2y2

or x2 + y2 + 6
1 + k2

1 − k2
x + 9 = 0 as required.

If the centre of the circle is to be (−5, 0), then

6
(1 + k2

1 − k2

)
= −10 or k = 2

We thus (following section 4.8) require the potential V to be a harmonic function
which has a constant value on a circle u2 + v2 = 4. Hence V has the general form

V = A ln(u2 + v2)

on u2 + v2 = 4, V = V0 hence A =
V0

ln 4
so that V =

V0

ln 4
ln(u2 + v2)

Now u2 + v2 =| w |2=
∣∣z + 3
z − 3

∣∣2 =
(x + 3)2 + y2

(x − 3)2 + y2

Thus
V =

V0

ln 4
{ln[(x + 3)2 + y2] − ln[(x − 3)2 + y2]}

70 This problem follows a similar pattern to Exercise 67.

70(a) The points A, x = 1, y = 0; B,x = 0, y = 1; C, x = 0, y = −1 under the

mapping of w =
j(1 − z)
1 + z

transform to

w = 0 that is (0, 0), w =
j(1 − j)
1 + j

= 1 that is (1, 0)

and w =
j(1 + j)
1 − j

= −1 that is (−1, 0) respectively
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70(b) w =
j(1 − z)
1 + z

If z = x = real (i.e. y = 0) then w =
j(1 − x)
1 + x

is purely imaginary. Since
1 − x

1 + x
can take all real values, points on y = 0 correspond to points on u = 0, the
imaginary axis.

70(c) If w =
j(1 − z)
1 + z

then z =
j − w

j + w
So that | z |= 1 ⇒| j − w |=| j + w | or v = 0

For the last part we note the following property of the mapping that is, w =
j(1 − z)
1 + z

(from (a), (b), and (c))

In a way similar to Exercise 67, identify the function
πT

100
which is (in the z plane),

π on the negative real axis, and 0 on the positive real axis. The mapping of w = eζ

(ζ - complex variable which has the values of
πT

100
as imaginary part).

Thus
πT

100
= tan−1

( v

u

)
= tan−1

(1 − x2 − y2

2y
)

(using w =
j(1 − z)
1 + z

to find u and v). This gives the result.

71 This problem is similar to the last part of Exercise 69. The successive
mappings are

z1 =
z + j4
z − j4

w = ln z
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In order for the circle centre 5j to be mapped to a circle centred at the origin in
the z plane we require

| z1 |2=| z + j4
z − j4

|2= k2 for some constant k

that is, x2 + y2 + 8 1+k2

1−k2 y + 16 = 0 needs a centre at 5j

Therefore, 8(1 + k2) = 10(1 − k)2) or h =
1
3

In the w plane, | w |=| ln z1 |=| ln(x2
1 + y2

1) |= 2 ln 3 on the boundary of the circle
on which T = 100.
Thus writing T = A | ln(x2

1 + y2
1) | gives T = 100 when

x2
1 + y2

1 =
1
9

if 100 = A· 2 ln 3 or A =
50
ln 3

Thus
T =

50
ln 3

ln(x2
1 + y2

1)

=
50
ln 3

ln
(

x2 + (4 + y)2

x2 + (4 − y)2

)
as required

Note that T = 0 corresponds to x2
1 + y2

1 = 1 or y = 0 as is also required
(| z + j4 |2=| z − j4 |2 is y = 0).

72 The mapping w = z +
1
z

was studied in Example 4.13. Writing, as usual,
w = u + jv and z = x + jv leads to

u = x +
x

x2 + y2
and v = y − y

x2 + y2

Hence the unit circle x2 + y2 = 1 in the z plane corresponds to v = 0 (the real
axis) in the w plane.
Points ejπ/3 and e2jπ/3 (P and Q of this problem) correspond to u = 2cos π

3 and
2 cos 2π

3 respectively. The arc PQ thus corresponds to −1 ≤ u ≤ 1 in the w plane.

The further mapping ζ =
w + 1
w − 1

takes this portion of the real axis (−1 ≤ u ≤ 1)
to −∞ ≤ Re{ζ} ≤ 0 . This negative real axis corresponds to T = 100. Hence in
a similar fashion to Exercise 70, we identify the variable πT

100 (which = π on this
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line) with the imaginary part of ln ζ which is argζ . We cannot use tan−1 here
because the argument of the logarithm function is quadratic and so

πT

100
= argζ = arg

(
w + 1
w − 1

)
= arg

(
z + 1/z + 1
z + 1/z − 1

)

that is, T =
100
π

[
arg(z2 + z + 1) − arg(z2 − z + 1)

]
as required.

Review Exercises 4.9

1(a) z = 1 + j, w = (1 + j)z + j = (1 + j)2 + j = 1 + 2j − 1 + j = 3j

1(b) z = 1 − j2, w = j3z + j + 1 = j(1 − j2)3 + j + 1 = 3j + 6 + j + 1 = 4j + 7

1(c) z = 1, w = 1
2 (1 − j)z + 1

2 (1 + j) = 1

1(d) z = j2, w = 1
2 (1 − j)z + 1

2 (1 + j) = (1 − j)j + 1
2 (1 + j) = 3

2 (1 + j)

2(a) y = 2x (b) x + y = 1
For the mapping w = (1 + j)z + j

u = x − y, v = x + y + 1

so y = 2x ⇒ v + 3u = 1
and x + y = 1 ⇒ v = 2
For the mapping w = j3z + j + 1

u = −3y + 1, v = 3x + 1

so y = 2x ⇒ u + 2v = 3
and x + y = 1 ⇒ v − u = 3
For the mapping w = 1

2 (1 − j)z + 1
2 (1 + j)

u =
1
2
(x + y + 1), v =

1
2
(x − y + 1)

c©Pearson Education Limited 2011



254 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

so y = 2x ⇒ 3v − u = 1
and x + y = 1 ⇒ u = 1

3 w = αz + β

when z = 2 − j, w = 1, and when z = 0, w = 3 + j

3(a) Solving the simultaneous equations gives α = −1
5 (3 + j4), β = 3 + j .

3(b) Since

w = −1
5
(3 + 4j)z + 3 + j

z =
1
5
(3 + j − w)(3 − j4)

so x = 13 − 3u − 4v

and Re{z} ≤ 0 corresponds to 3u + 4v ≥ 13

3(c)

| z |= 1
5
| 3 + j − w |5 ≤ 1

⇒| w − 3 − j |≤ 1
5

3(d) Fixed point is given by

z = αz + β or z =
β

1 − α
=

1
4
(7 − j)

4 w = j
z ⇒ x = v

u2+v2 , y = u
u2+v2

4(a) x = y + 1 ⇒ v
u2+v2 = u

u2+v2 + 1 or u2 + v2 + u − v = 0

4(b) y = 3x ⇒ u = 3v

4(c) Line joining A(1 + j) to B(z + j3) or (1, 1) to (2, 3) is y = 2x − 1 which

transforms to
u

u2 + v2
=

2v
u2 + v2

− 1 or u2 + v2 + u − 2v = 0
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4(d) y = 4 ⇒ 4(u2 + v2) = u

The following Argand diagram shows all these curves.

5 w =
z + 1
z − 1

⇒ z =
w + 1
w − 1

from which

x =
u2 + v2 − 1

(u − 1)2 + v2
, y =

−2v
(u − 1)2 + v2

lines x = k and y = l map to circles

u2 + v2 − 2k
k − 1

u +
k + 1
k − 1

= 0 and u2 + v2 − 2u +
2v
l

+ 1 = 0

Fixed points are z = z+1
z−1 in z2 − 2z − 1 = 0, that is, z = 1 +

√
2, 1 −

√
2 are the

fixed points.
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6 w =
1 − z2

z

Fixed points occur at z =
1 − z2

2

or z2 = 1 − z2

z2 = 1/2

Hence z = ±
√

2/2

Writing w =
1
z
− z =

z∗

| z |2 − z (z∗ = complex conjugate).

Whence u =
x

x2 + y2
− x , v = − −y

x2 + y2
− y and v = −y

( 1
r2

+ 1
)

so
r2u

r2 − 1
= x,

−r2v

r2 + 1
= y

Squaring and adding gives

(
ur2

r2 − 1

)2

+
(

vr2

r2 + 1

)2

= x2 + y2 = 1

the required ellipses.

Since u = x
x2+y2 − x , if x2 + y2 = 1 then u = 0 (imaginary axis in the w plane).

7 w = z3

= (x + jy)3 = x3 + 3jx2y + 3j2xy + j3y3

so u = x3 − 3xy2

v = 3x2y − y3 are the real and imaginary parts.

∂u

∂x
= 3x2 − 3y2,

∂u

∂y
= −6xy

∂v

∂y
= 3x2 − 3y2,

∂v

∂x
= 6xy

hence verifying the Cauchy–Riemann equations:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= − ∂v

∂x
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8 u(x, y) = x sin x cosh y − y cos x sinh y

hence
∂u

∂x
= sinx cosh y + x cos x cosh y + sin x sinh y

and
∂u

∂y
= x sin x sinh y − y cos x cosh y − cos x sinh y

By the Cauchy–Riemann equations,

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= − ∂v

∂x

hence, integrating
∂u

∂x
with respect to y gives:

v = sinx sinh y + x cos x sinh y + y sin x cosh y − sinx sinh y + f1(y)

Integrating −∂u

∂y
with respect to x gives:

v = (x cos x − sin x) sinh y + y sin x cosh y + sin x sinh y + f2(x)

where f1 and f2 are arbitrary functions.
Comparing these gives v = y sin x cosh y + x cos x sinh y (ignoring the additive
constant).
Thus

w = u + jv =x sin x cosh y − y cos x sinh y

+ j(y sinx cosh y + x cos x sinh y)

Since this is f(z) , we put y = 0 to find f(x) which will give the functional form
of f , namely

f(x) = x sin x. Thus f(z) = z sin z.

9 Writing w =
az + b

cz + d
(the general bilinear mapping) since z = 0 ⇒ w = ∞ we

must have d = 0, hence (relabelling the constants) w =
αz + β

z
.

Writing this as wz = αz + β and inserting the pairs of values z = j, w = −j and
z = 1

2 (1 + j), w = 1 − j gives

1 = αj + β, 1 = 1
2 (1 + j)α + β

from which α = 0, β = 1. Hence w =
1
z

.
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9(a) Since u =
x

x2 + y2
and v = − y

x2 + y2

the real axis (in the z plane) maps to the real axis (in the w plane).
If y > 0 then v = − y

x2+y2 < 0 and vice versa.
Thus the lower half of the z plane maps to the upper half of the w plane.

9(b) The circle | z − 1
2j |= 1

2 is x2 + y2 − y = 0
or v = −1

(
v = − y

x2+y2

)
If | z− 1

2j |< 1
2 then x2 +y2−y < 0 or v < −1, that is, the interior of | z− 1

2j |= 1
2

maps to Im(w) < −1 as required.

10 The mapping z = ζ +
a2

4ζ
maps R = constant (where ζ = Rejθ ) to curves

z = Rejθ +
a2

4R
e−jθ

which describe ellipses in the z plane as can be seen by writing

x =
(
R +

a2

4R
)
cos θ, y =

(
R − a2

4R
)
sin θ

whence
x2

(R + a2

4R )2
+

y2

(R − a2

4R )2
= 1

when R = 1
2a, y = 0 (real axis). This mapping is used together with bilinear

mappings to map an aerofoil shape onto the unit circle. This is useful in
aeronautical engineering.

11
1

1 + z3
= (1 + z3)−1

using the binomial expansion gives

1
1 + z3

= 1 − z3 + z6 − z9 + · · ·

Similarly
1

(1 + z3)2
= 1 − 2z3 + 3z6 − 4z9 + · · ·

and both are valid in the disc | z |< 1.
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12(a)
1 − z

1 + z
=

2 − 1 − z

1 + z
=

2
1 + z

− 1

Using the binomial series again gives

1 − z

1 + z
= 1 − 2z + 2z2 − 2z3 + . . .

since the nearest singularity of the function to z = 0 is at z = −1, the radius of
convergence is 1.

12(b) f(z) =
1

z2 + 1
. This time we need to expand about the point z = 1. We

use Taylor’s series

f(z) =
1

z2 + 1
, f′(z) = − 2z

(z2 + 1)2
, f′′(z) = − 2

(z2 + 1)2
+

8z2

(z2 + 1)3

f′′(z) =
24z

(z2 + 1)3
− 48z3

(z2 + 1)4
, fiv(z) =

24
(z2 + 1)3

− 288z2

(z2 + 1)4
+

384z4

(z2 + 1)5

At z = 1 these have values 1
2 ,− 1

2 , 1
2 , 0,−3

giving the expansion

1
z2 + 1

=
1
2
− 1

2
(z − 1) +

1
4
(z − 1)2 − 1

6
(z − 1)4 + . . .

The singularities of
1

1 + z2
are at z = ±j which are a distance

√
2 from z = 1,

hence the radius of convergence is
√

2.

12(c)
z

1 + z
= 1 − 1

1 + z
= f(z)

f′(z) =
1

(1 + z)2
, f′′ = − 2

(1 + z)3
, f′′′(z) = +

6
(1 + z)4

Thus
z

1 + z
=

1
2
(1 + j) +

1
2
j(z − j) − 1

4
(1 + j)(z − j)2 − 1

8
(z − j)3 + . . .

The radius of convergence is again
√

2.

13 The function
1

z(z2 + 1)
has singularities at z = 0, j,−j . The radius of

convergence is the distance of the centre of the point of expansion from the nearest
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of these singularities. These are found straightforwardly either by inspection or by
using Pythagoras’ theorem

z = 1; 1; z = −1; 1, z = 1 + j; 1, z = 1 + j1
2 ; 1

2

√
5, z = 2 + j3; 2

√
2 .

14 f(z) =
1

(z2 + 1)z

14(a) The Laurent expansion is

1
z
(1 + z2)−1

=
1
z
(1 − z2 + z4 − z6 + . . .)

=
1
z
− z + z3 − z5 + . . .

valid for 0 <| z |< 1

14(b) Since f(z) is regular at z = 1, f(z) has a Taylor expansion :

1
z(1 + z2)

= f(1) + (z − 1)f′(1) +
(z − 1)2

2
f′′(1) + . . .

f(1) =
1
2
, f′(z) = − 1 + 3z2

(z + z3)2
, f′(1) = −1

f′′(z) = − 6z
(z + z3)2

+
2(1 + 3z2)2

(z + z3)3

so f′′(1) = −4
4

+
2 × 16

8
=

5
2

so that
1

z(1 + z2)
=

1
2
−(z − 1) +

5
4
(z − 1)2 + . . .

valid for | z − 1 |< 1

15 f(z) = ez sin
( 1
1 − z

)
15(a) At z = 0, f(z) is regular. Thus the principal part is zero and f(0) =
sin 1, f(z) = sin 1 + q1z + q2z

2 + . . . | z |< 1, Taylor series.
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15(b) At z = 1 , f(z) has an essential singularity.

15(c) At z = ∞, ez has an essential singularity. Hence for parts (b) and (c) the
principal part has infinitely many terms.

16(a)

ez sinh z =
1
2
ez(ez + e−z) =

1
2
(e2z + 1)

=
1
2
(1 + e2x(e2jy))

=
1
2
(1 + e2x cos 2y + je2x sin 2y)

Real part =
1
2
(1 + e2x cos 2y)

Imaginary part =
1
2
e2x sin 2y

16(b)
cos 2z = cos(2x + j2y)

= cos 2x cosh 2y − j sin 2x sinh 2y

16(c)

sin z

z
=

x − jy

x2 + y2
sin(x + jy)

=
(x − jy)(sinx cosh y + j cos x sinh y)

x2 + y2

=
x sin x cosh y + y cos x sinh y + j(x cos x sinh y − y sin x cosh y)

x2 + y2

16(d)

tan z = tan(x + jy) =
tan x + tan jy

1 − tan x tan jy

=
tan x + j tanh y

1 − j tan x tanh y
· 1 + j tan x tanh y

1 + j tan x tanh y

from which tan z =
tan x(1 − tanh2 y) + j tanh y(1 + tan2 x)

1 + tan2 x tanh2 y
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17(a) Since
dw

dz
= − 2

z3
	= 0, this mapping is conformal.

17(b)
dw

dz
= 6z2 + 6z + 6(1 − j)

= 0 when z2 + z + 1 − j = 0

or (z − j)(z + j + 1) = 0

so z = j,−1 − j

are the points where the mapping fails to be conformal.

17(c) w = 64z +
1
z3

dw

dz
= 64 − 3

z4
= 0

where z4 =
3
64

so z = 0.465,−0.465, j0.465,−j0.465

are the points where the mapping fails to be conformal.

18 w = cos z ,
dw

dz
= sin z = 0 when z = nπ, n = an integer.

u + jv = cos(x + jy) = cos x cosh y − j sin x sinh y

u = cos x cosh y

v = − sin x sinh y

Lines x = k will thus transform to

u2

cos2 k
− v2

sin2 k
= 1 − hyperpolae

Lines y = l will thus transform to

u2

cosh2 l
+

v2

sinh2 l
= 1 − ellipses
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19(a)
sin z

z2
=

sin z

z
· 1
z

. Since
sin z

z
→ 1 is z → 0 this function has a simple role

at z = 0.

19(b)
1

(z3 − 8)2
has double poles when z3 = 8, that is, at 2, 2e2πj/3, 2e4πj/3 .

19(c)
z + 1
z4 − 1

=
z + 1

(z2 − 1)(z2 + 1)
=

1
(z − 1)(z2 + 1)

The singularity at z = −1 was removable, those at z = 1,±j are simple poles.

19(d) sech z =
1

cosh z
which has simple poles wherever cosh z = 0 that is,

z = 1
2 jπ(2n + 1), n = 0,±1,±2, . . .

19(e) sinh z is entire (no singularities in the finite plane).

19(f) Essential singularity at z = 0.

19(g) zz = ez ln z

which has an essential singularity at z = 0.

20(a)
e2z

(1 + z)2
double pole at z = −1 residue given by

d

dz
(e2z)

∣∣
z=−1

= 2e−2
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20(b)
cos z

2z − π
simple pole at z = π/2 residue is

lim
z→π/2

(z − π/2)
cos z

(2z − π)
=

1
2

cos
π

2
= 0

20(c)
tan z

2z − π
=

sin z

cos z(2z − π)
which has a double pole at z =

1
2
π

Writing w = z − π/2

tan z

2z − π
= −cos w

2w
= − cos w

2w sin w
= −

1 − 1
2w2 + . . .

2w(w − 1
6w3 + . . .)

= − 1
2w2

+
1
4

+ . . .

Hence residue is 0.

20(d)
z

(z + 8)3
has a triple pole at z = −8

Writing w = z + 8 and z = w − 8 gives
z

(z + 8)3
=

1
w3

(w − 8) =
1
w2

− 8
w3

Hence the residue is 0.

21

f(z) =
(z2 − 1)(z2 + 3z + 5)

z(z4 + 1)

Zeros are at z = ±1 and at the roots of

z2 + 3z + 5 = 0

z = −3 ±
√

9 − 20
2

= −3
2
± j

1
2

√
11

Simple poles are at z = 0 and where z4 = −1

that is, z = (±1 ± j)/
√

2

The residue at z = 0 is given by

lim
z→0

(z2 − 1)(z2 + 3z + 5)
z4 + 1

= −5
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The residue at z = z0 (where z4
0 + 1 = 0) is

lim
z→z0

{
(z − z0)(z2 − 1)(z2 + 3z + 5)

z(z4 + 1)

}

=
(z2

0 − 1)(z2
0 + 3z0 + 5)
z0

lim
z→z0

(
z − z0

z4 + 1

)

=
(z2

0 − 1)(z2
0 + 3z0 + 5)
z0

1
4z3

0

= −1
4
(z2

0 − 1)(z2
0 + 3z0 + 5)

(using z4
0 = −1)

Putting z0 = 1+j√
2

,− 1+j√
2

,− 1−j√
2

, 1−j√
2

in turn gives the residues 3
2 + 3

4

√
2 − j,

3
2 − 3

4

√
2 + j, 3

2 − 3
4

√
2 − j and 3

2 + 3
4

√
2 + j respectively.

22 f(z) =
z7 + 6z5 − 30z4

(z − 1 − j)3
has a triple pole at z = 1 + j

Residue =
1
2!

d2

dz2
(z7 + 6z5 − 30z4) is evaluated at z = 1 + j

= 21z5 + 60z3 − 180z2
∣∣
z=1+j

= 21(−4 − 4j) + 60(−2 + 2j) − 360j

= −204 − j324

23(a) The integrand
z

z2 + 7z + 6
has poles at z = −6 and z = −1. Only the

second is inside C . Residue =
z

z + 6
|z=−1 = −1

5

Integral = −2πj

5

23(b) The integrand
(z2 + 1)(z2 + 3)
(z2 + 9)(z2 + 4)

has four simple poles ±2j,±3j all

inside C .

Residues are − 3
20

j,
3
20

j,
8
5
j and −8

5
j the sum of which is 0.

The integral is thus 0.
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23(c) The integrand
1

z2(1 − z2)2
has double poles at z = 0, 1 and −1.

Residues are, at z = 0,

d

dz

1
(1 − z2)2

∣∣
z=0

= +
2z

(1 − z2)3
∣∣
z=0

= 0

At z = 1,
d

dz

[
− 1

z2(1 + z)2

]
=

2(2z + 1)
(z + z2)3

∣∣∣∣
z=1

=
3
4

At z = −1,
d

dz

[
1

z2(1 − z)2

]
=

−2(1 − 2z)
(z − z2)3

∣∣∣∣
z=−1

=
3
4

(i) If C is | z |= 1
2 then only z = 0 is inside C , so integral = 0

(ii) If C is | z |= 2 then all poles are inside C , so integral = 3πj .

23(d) The integrand
1

(2z − 3j)(z + j)
has simple poles at

3j
2

and −j .

Residues at
3j
2

and −j are, respectively, −1
5
j and

1
5
j .

(i) Both poles are inside | z |= 2, but since their sum is zero so is the integral

(ii) Inside | z − 1 |= 1 the function
1

(2z − 3j)(z + j)
is regular. By Cauchy’s

theorem the integral = 0.

23(e) The integrand
z3

(z2 + 1)(z2 + z + 1)
has simple poles at

z = ±j,−1
2 ± j 1

2

√
3.

C is the circle | z − j |= 1
2 which contains the pole at z = j but not the other

three poles.
Residue at z = j is 1

2j hence the integral = −π .

23(f)
z − 1

z(z − 2)2(z − 3)
has simple poles at z = 0, 3 and a double pole at z = 2.

Residues at z = 0, 2 are respectively 1
12 and − 3

4 .

(i) If C is | z |= 1 only the residue at z = 0 is considered : integral = πj
6

(ii) If C is | z |= 5
2 , residues at 0 at 2 are summed; integral = πj

(
1
12 − 3

4

)
=

−4πj/3.
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24(a) To evaluate
∞∫

−∞

x2dx

(x2 + 1)2(x2 + 2x + 2)
we use the semicircular contour C on the upper half plane (see Exercise 65). The
integral along the curved portion → 0 as the radius of the semicircle → ∞ . The
residues in the upper half plane are at the (double) pole at j and the (simple) pole
at −1 + j .

Residue of
z2

(z2 + 1)2(z2 + 2z + 2)
at z = j is

d

dz

z2

(z + j)2(z2 + 2z + 2)
which is

evaluated at z = j . This is (after some algebra)
9j − 12

100
.

Residue at z = −1 + j is
z2

(z2 + 1)(z + 1 + j)
evaluated at z = −1 + j which is

3 − 4j
25

. Sum of residues is − 7j
100∫ ∞

−∞

x2dx

(x2 + 1)2(x2 + 2x + 2)
=

∫
C

z2dz

(z2 + 1)2(z2 + 2z + 2)
= 2πj

−7j
100

=
7π
50

24(b) To evaluate
∞∫
0

x2dx

x4 + 16
one can either use a quarter circle contour (as in

Exercise 65(h)) or note that, by symmetry,
∞∫
0

x2dx

x4 + 16
= 1

2

∞∫
−∞

x2dx

x4 + 16
and use

the same semicircular contour as above.
The disadvantage of doing this is that there are two poles inside the semicircular
contour, but only one in the quarter circle. However, this is compensated by the
easier manipulation of the integral. We shall thus use the semicircle.
The poles inside C , both simple, are at

z =
√

2(−1 + j) and z =
√

2(1 + j)

The way to avoid unnecessary arithmetic/algebra is to determine the residue at
z = z0 where z0 is one of the above poles. This is given by

lim
z→z0

[
(z − z0)z2

z4 + 16

]

Since z = z0 is a root of z4 + 16, we can use L’Hôpital’s rule to obtain

Residue =
3z2 − 2zz0

4z3

∣∣∣∣
z=z0

=
1

4z0
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Sum of residues is thus

1
4
√

2(−1 + j)
+

1
4
√

2(1 + j)
= − j

4
√

2

Thus ∫ ∞

−∞

x2dx

x4 + 16
=

∫
0

z2dz

z4 + 16
= 2πj

( −j

4
√

2

)
=

π

2
√

2
=

π

4

√
2

Hence ∫ ∞

0

x2dx

x4 + 16
=

π

8

√
2

24(c) To evaluate
2π∫
0

sin2 θdθ

5 + 4 cos θ

we follow Exercise 65(d) and put z = ejθ so that
dz

jz
= dθ and

sin2 θ

5 + 4 cos θ
=

z2 − z4 − 1
(2z3 + 5z2 + 2z)4
Hence ∫ 2π

0

sin2 θdθ

5 + 4 cos θ
=

1
4j

∮
C

z2 − z4 − 1
z2(2z + 1)(z + 2)

dz

where C is the unit circle. Residues at z = 0 and z = −1
2 (not that at z = −2)

are summed.

Residue at z = 0 is
d

dz

( z2 − z4 − 1
2z2 + 5z + 2

)
[evaluated at z = 0] is

5
4

. Residue at

z = −1
2

is (
z2 − z4 − 1
z2(z + 2)

)
∣∣∣∣
z=−1

2

= −13
6

Hence ∫ 2π

0

sin2 θdθ

5 + 4 cos θ
=

1
4j

2πj

(
5
4
− 13

6

)
= −11π

24

24(d) The integral
2π∫
0

cos 2θ
5 − 4 cos θ

dθ
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is evaluated similarly

∫ 2π

0

cos 2θ
5 − 4 cos θ

dθ =
1
2j

∮
C

z4 + 1
5z3 − 2z4 − 2z2

dz =
1
2j

2πj

(
17
6

− 5
4

)
=

19π
12

(In part (c) the negative sign arises from the choice of direction of the line integral.

Since the integrand
sin2 θ

5 + 4 cos θ
is always positive it can be ignored.)
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Laplace Transforms

Exercises 5.2.6

1(a) L{cosh 2t} = L{1
2
(e2t + e−2t) =

1
2
[ 1
s − 2

+
1

s + 2
]

=
s

s2 − 4
, Re(s) > 2

1(b) L{t2} =
2
s3

, Re(s) > 0

1(c) L{3 + t} =
3
s

+
1
s2

=
3s + 1

s2
, Re(s) > 0

1(d) L{te−t} =
1

(s + 1)2
, Re(s) > −1

2(a) 5 (b) -3 (c) 0 (d) 3 (e) 2 (f) 0
(g) 0 (h) 0 (i) 2 (j) 3

3(a) L{5 − 3t} =
5
s
− 3

s2
=

5s − 3
s2

, Re(s) > 0

3(b) L{7t3 − 2 sin 3t} = 7.
6
s4

− 2.
3

s2 + 9
=

42
s4

− 6
s2 + 9

, Re(s) > 0

3(c) L{3 − 2t + 4cos 2t} =
3
s
− 2

s2
+ 4.

s

s2 + 4
=

3s − 2
s2

+
4s

s2 + 4
, Re(s) > 0

3(d) L{cosh 3t} =
s

s2 − 9
, Re(s) > 3

3(e) L{sinh 2t} =
2

s2 − 4
, Re(s) > 2
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3(f) L{5e−2t + 3 − 2 cos 2t} =
5

s + 2
+

3
s
− 2.

s

s2 + 4
, Re(s) > 0

3(g) L{4te−2t} =
4

(s + 2)2
, Re(s) > −2

3(h) L{2e−3t sin 2t} =
4

(s + 3)2 + 4
=

4
s2 + 6s + 13

, Re(s) > −3

3(i) L{t2e−4t} =
2

(s + 4)3
, Re(s) > −4

3(j)

L{6t3 − 3t2 + 4t − 2} =
36
s4

− 6
s3

+
4
s2

− 2
s

=
36 − 6s + 4s2 − 2s3

s4
, Re(s) > 0

3(k) L{2 cos 3t + 5 sin 3t} = 2.
s

s2 + 9
+ 5.

3
s2 + 9

=
2s + 15
s2 + 9

, Re(s) > 0

3(l)

L{cos 2t} =
s

s2 + 4

L{t cos 2t} = − d

ds

[ s

s2 + 4
]

=
s2 − 4

(s2 + 4)2
, Re(s) > 0

3(m)

L{t sin 3t} = − d

ds

[ 3
s2 + 9

]
=

6s
(s2 + 9)2

L{t2 sin 3t} = − d

ds

[ 6s
(s2 + 9)2

]
= −

[ (s2 + 9)26 − 6s(s2 + 9)24s
(s2 + 9)4

]
=

18s2 − 54
(s2 + 9)3

, Re(s) > 0

3(n) L{t2 − 3 cos 4t} =
2
s3

− 3s
s2 + 16

, Re(s) > 0

c©Pearson Education Limited 2011



272 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

3(o)

L{t2e−2t − e−t cos 2t + 3} =
2

(s + 2)3
+

(s + 1)
(s + 1)2 + 4

+
3
s

=
2

(s + 2)3
+

s + 1
s2 + 2s + 5

+
3
s
, Re(s) > 0

Exercises 5.2.10

4(a) L−1
{ 1

(s + 3)(s + 7)
}

= L−1
{ 1

4

s + 3
−

1
4

s + 7
}

=
1
4
[e−3t − e−7t]

4(b) L−1
{ s + 5

(s + 1)(s − 3)
}

= L−1
{ −1

s + 1
+

2
s − 3

}
= −e−t + 2e3t

4(c) L−1
{ s − 1

s2(s + 3)
}

= L−1
{ 4

9

s
−

1
3

s2
−

4
9

s + 3
}

=
4
9
− 1

3
t − 4

9
e−3t

4(d) L−1
{2s + 6

s2 + 4
}

= L−1
{
2.

s

s2 + 22
+ 3.

2
s2 + 22

}
= 2cos 2t + 3 sin 2t

4(e)

L−1
{ 1

s2(s2 + 16)
}

= L−1
{0

s
+

1
16

s2
−

1
16

s2 + 16
}

=
1
16

t − 1
64

sin 4t =
1
64

[4t − sin 4t]

4(f) L−1
{ s + 8

s2 + 4s + 5
}

= L−1
{ (s + 2) + 6

(s + 2)2 + 1
}

= e−2t[cos t + 6 sin t]

4(g)

L−1
{ s + 1

s2(s2 + 4s + 8)
}

= L−1
{ 1

8

s
+

− 1
8s + 1

2

(s + 2)2 + 22

}
= L−1

{1
8
.
1
s
− 1

8
(s + 2) − 3(2)
(s + 2)2 + 22

}
=

1
8
[1 − e−2t cos 2t + 3e−2t sin 2t]
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4(h)

L−1
{ 4s

(s − 1)(s + 1)2
}

= L−1
{ 1

s − 1
− 1

(s + 1)
+

2
(s + 1)2

}
= et − e−t + 2tet

4(i) L−1
{ s + 7

s2 + 2s + 5
}

= L−1
{ (s + 1) + 3(2)

(s + 1)2 + 22

}
= e−t[cos 2t + 3 sin 2t]

4(j)

L−1
{ s2 − 7s + 5

(s − 1)(s − 2)(s − 3)
}

= L−1
{ 1

2

s − 1
− 3

s − 2
+

1
2

s − 3
}

=
1
2
et − 3e2t +

11
2

e3t

4(k)

L−1
{ 5s − 7

(s + 3)(s2 + 2)
}

= L−1
{ −2

s + 3
+

2s − 1
s2 + 2

}
= −2e−3t + 2cos

√
2t − 1√

2
sin

√
2t

4(l)

L−1
{ s

(s − 1)(s2 + 2s + 2)
}

= L−1
{ 1

5

s − 1
− 1

5
s − 2

s2 + 2s + 2
}

= L−1
{ 1

5

s − 1
− 1

5
(s + 1) − 3
(s + 1)2 + 1

}
=

1
5
et − 1

5
e−t(cos t − 3 sin t)

4(m) L−1
{ s − 1

s2 + 2s + 5
}

= L−1
{ (s + 1) − 2

(s + 1)2 + 22

}
= e−t(cos 2t − sin 2t)

4(n)

L−1
{ s − 1

(s − 2)(s − 3)(s − 4)
}

= L−1
{ 1

2

s − 2
− 2

s − 3
+

3
2

s − 4
}

=
1
2
e2t − 2e3t +

3
2
e−4t
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4(o)

L−1
{ 3s

(s − 1)(s2 − 4)
}

= L−1
{ 3s

(s − 1)(s − 2)(s + 2)
}

= L−1
{ −1

s − 1
+

3
2

s − 2
−

1
2

s + 2
}

= −et +
3
2
e2t − 1

2
e−2t

4(p)

L−1
{ 36

s(s2 + 1)(s2 + 9)
}

= L−1
{4

s
−

9
2s

s2 + 1
+

1
2s

s2 + 9
}

= 4 − 9
2

cos t +
1
2

cos 3t

4(q)

L−1
{ 2s2 + 4s + 9

(s + 2)(s2 + 3s + 3)
}

= L−1
{ 9

s + 2
− 7s + 9

(s + 3
2 )2 + 3/4

}

= L−1
{ 9

s + 2
−

7(s + 3
2 ) −

√
3.
√

3/2

(s + 3
2 )2 + (

√
3/2)2

}

= 9e−2t − e−
3
2 t

[
7 cos

√
3

2
t −

√
3 sin

√
3

2
t
]

4(r)

L−1
{ 1

(s + 1)(s + 2)(s2 + 2s + 10)
}

= L−1
{ 1

9

s + 1
−

1
10

s + 2
−

1
90s + 1

9

s2 + 2s + 10
}

= L−1

{ 1
9

s + 1
−

1
10

s + 2
− 1

90
[ s + 10
(s + 1)2 + 32

]}

= L−1

{ 1
9

s + 1
−

1
10

s + 2
− 1

90
[ (s + 1) + 3(3)

(s + 1)2 + 32

]}

=
1
9
e−t − 1

10
e−2t − 1

90
e−t(cos 3t + 3 sin 3t)
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Exercises 5.3.5

5(a)

(s + 3)X(s) = 2 +
1

s + 2
=

2s + 5
s + 2

X(s) =
2s + 5

(s + 2)(s + 3)
=

1
s + 2

+
1

s + 3
x(t) = L−1{X(s)} = e−2t + e−3t

5(b)

(3s − 4)X(s) = 1 +
2

s2 + 4
=

s2 + 6
s2 + 4

X(s) =
s2 + 6

(3s − 4)(s2 + 4)
=

35
26

3s − 4
−

3
26s + 4

26

s2 + 4

x(t) = L−1{X(s)} =
35
78

e
4
3 t − 3

26
(cos 2t +

2
3

sin 2t)

5(c)

(s2 + 2s + 5)X(s) =
1
s

X(s) =
1

s(s2 + 2s + 5)
=

1
5

s
− 1

5
· s + 2
s2 + 2s + 5

=
1
5

s
− 1

5
(s + 1) + 1

2 (2)
(s + 1)2 + 22

x(t) = L−1{X(s)} =
1
5
(1 − e−t cos 2t − 1

2
e−t sin 2t)

5(d)

(s2 + 2s + 1)X(s) = 2 +
4s

s2 + 4
=

2s2 + 4s + 8
s2 + 4

X(s) =
2s2 + 4s + 8

(s + 1)2(s2 + 4)

=
12
25

(s + 1)
+

6
5

(s + 1)2
− 1

25
[12s − 32

s2 + 4
]

x(t) = L−1{X(s)} =
12
25

e−t +
6
5
te−t − 12

25
cos 2t +

16
25

sin 2t
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5(e)

(s2 − 3s + 2)X(s) = 1 +
2

s + 4
=

s + 6
s + 4

X(s) =
s + 6

(s + 4)(s − 1)(s − 2)
=

1
15

s + 4
−

7
5

s − 1
+

4
3

s − 2

x(t) = L−1{X(s)} =
1
15

e−4t − 7
5
et +

4
3
e2t

5(f)

(s2 + 4s + 5)X(s) = (4s − 7) + 16 +
3

s + 2

X(s) =
4s2 + 17s + 21

(s + 2)(s2 + 4s + 5)
=

3
s + 2

+
(s + 2) + 1
(s + 2)2 + 1

x(t) = L−1{X(s)} = 3e−2t + e−2t cos t + e−2t sin t

5(g)

(s2 + s − 2)X(s) = s + 1 +
5(2)

(s + 1)2 + 4

X(s) =
s3 + 3s2 + 7s + 15

(s + 2)(s − 1)(s2 + 2s + 5)

=
− 1

3

s + 2
+

13
12

s − 1
+

1
4s − 5

4

s2 + 2s + 5

=
−1

3

s + 2
+

13
12

s − 1
+

1
4
[ (s + 1) − 3(2)

(s + 1)2 + 22

]

x(t) = L−1{X(s)} = −1
3
e−2t +

13
12

et +
1
4
e−t cos 2t − 3

4
e−t sin 2t
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5(h)

(s2 + 2s + 3)Y(s) = 1 +
3
s2

Y(s) =
s2 + 3

s2(s2 + 2s + 3)
=

− 2
3

s
+

1
s2

+
2
3s + 4

3

s2 + 2s + 3

=
− 2

3

s
+

1
s2

+
2
3
[ (s + 1) − 1√

2
(
√

2)

(s + 1)2 + (
√

2)2
]

y(t) = L−1{Y(s)} = −2
3

+ t +
2
3
e−t(cos

√
2t +

1√
2

sin
√

2t)

5(i)

(s2 + 4s + 4)X(s) =
1
2
s + 2 +

2
s3

+
1

s + 2

X(s) =
s5 + 6s4 + 10s3 + 4s + 8

2s3(s + 2)3

=
3
8

s
−

1
2

s2
+

1
2

s3
+

1
8

s + 2
+

3
4

(s + 2)2
+

1
(s + 2)3

x(t) = L−1{X(s)} =
3
8
− 1

2
t +

1
4
t2 +

1
8
e−2t +

3
4
te−2t +

1
2
t2e−2t

5(j)

(9s2 + 12s + 5)X(s) =
1
s

X(s) =
1

9s(s2 + 4
3s + 5

9 )
=

1
5

s
−

1
5s + 4

15

(s + 2
3 )2 + 1

9

=
1
5

s
− 1

5
[(s + 2

3 ) + 2
3 ]

(s + 2
3 )2 + ( 1

3 )2

x(t) = L−1{X(s)} =
1
5
− 1

5
e−

2
3 t(cos

1
3
t + 2 sin

1
3
t)
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5(k)

(s2 + 8s + 16)X(s) = −1
2
s + 1 − 4 + 16· 4

s2 + 16
=

−s3 − 6s2 − 16s + 32
2(s2 + 16)

X(s) =
−s3 − 6s2 − 16s + 32

2(s + 4)2(s2 + 16)

=
0

s + 4
+

1
(s + 4)2

−
1
2s

s2 + 16

x(t) = L−1{X(s)} = te−4t − 1
2

cos 4t

5(l)

(9s2 + 12s + 4)Y(s) = 9(s + 1) + 12 +
1

s + 1

Y(s) =
9s2 + 30s + 22
(3s + 2)2(s + 1)

=
1

s + 1
+

0
3s + 2

+
18

(3s + 2)2

y(t) = L−1{Y(s)} = e−t + 2te−
2
3 t

5(m)

(s3 − 2s2 − s + 2)X(s) = s − 2 +
2
s

+
1
s2

X(s) =
s3 − 2s2 + 2s + 1

s2(s − 1)(s − 2)(s + 1)

=
5
4

s
+

1
2

s2
− 1

s − 1
+

5
12

s − 2
−

2
3

s + 1

x(t) = L−1{X(s)} =
5
4

+
1
2
t − et +

5
12

e2t − 2
3
e−t

5(n)

(s3 + s2 + s + 1) = (s + 1) + 1 +
s

s2 + 9

X(s) =
s3 + 2s2 + 10s + 18

(s2 + 9)(s + 1)(s2 + 1)
=

9
20

s + 1
− 1

16
7s − 25
s2 + 1

− 1
80

s + 9
s2 + 9

x(t) = L−1{X(s)} =
9
20

e−t − 7
16

cos t +
25
16

sin t − 1
80

cos 3t − 3
80

sin 3t
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6(a)

2sX(s) − (2s + 9)Y(s) = −1
2

+
1

s + 2
(2s + 4)X(s) + (4s − 37)Y(s) = 1

Eliminating X(s)

[−(2s + 9)(2s + 4) − 2s(4s − 37)]Y(s) = (−1
2

+
1

s + 2
)(2s + 4) − 2s = −3s

Y(s) =
3s

12s2 − 48s + 36
=

1
4
· s

(s − 3)(s − 1)

=
1
4
[ 3

2

s − 3
−

1
2

s − 1
]

y(t) = L−1{Y(s)} =
1
4
[3
2
e3t − 1

2
et

]
=

3
8
e3t − 1

8
et

Eliminating
dx

dt
from the two equations

6
dy

dt
+ 4x − 28y = −e−2t

x(t) =
1
4
[
−e−2t + 28y − 6

dy

dt

]
=

1
4
[
−e−2t +

21
4

e3t − 7
2
et − 27

3
e3t +

3
4
et

]
i.e. x(t) =

1
4
(15

4
e3t − 11

4
et − e−2t

)
, y(t) =

1
8
(3e3t − et)

6(b)

(s + 1)X(s) + (2s − 1)Y(s) =
5

s2 + 1

(2s + 1)X(s) + (3s − 1)Y(s) =
1

s − 1
Eliminating X(s)

[(2s − 1)(2s + 1) − (3s − 1)(s + 1)]Y(s) =
5

s2 + 1
(2s + 1) − s + 1

s − 1

Y(s) =
10s + 5

s(s2 + 1)(s − 2)
− s + 1

s(s − 1)(s − 2)

=
[− 5

2

s
+

5
2

s − 2
− 5

s2 + 1
]
−

[ 1
2

s
− 2

s − 1
+

3
2

s − 2
]

y(t) = L−1{Y(s)} = −5
2

+
5
2
e2t − 5 sin t − 1

2
+ 2et − 3

2
e2t

= −3 + e2t + 2et − 5 sin t
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Eliminating dx
dt from the original equations

dy

dt
+ x − y = 10 sin t − et

x(t) = 10 sin t − et − 3 + e2t + 2et − 5 sin t − 2e2t − 2et + 5cos t

= 5 sin t + 5cos t − 3 − et − e2t

6(c)

(s + 2)X(s) + (s + 1)Y(s) = 3 +
1

s + 3
=

3s + 10
s + 3

5X(s) + (s + 3)Y(s) = 4 +
5

s + 2
=

4s + 13
s + 2

Eliminating X(s)

[5(s + 1) − (s + 2)(s + 3)]Y(s) =
15s + 50

s + 3
− (4s + 13) =

−4s2 − 10s + 11
s + 3

Y(s) =
4s2 + 10s − 11
(s + 3)(s2 + 1)

=
− 1

2

s + 3
+

9
2s − 7

2

s2 + 1

y(t) = L−1{Y(s)} = −1
2
e−3t +

9
2

cos t − 7
2

sin t

From the second differential equation

5x = 5e−2t +
3
2
e−3t − 27

2
cos t +

21
2

sin t − 3
2
e−3t

+
9
2

sin t +
7
2

cos t

x(t) = 3 sin t − 2 cos t + e−2t

6(d)

(3s − 2)X(s) + 3sY(s) = 6 +
1

s − 1
=

6s − 5
s − 1

sX(s) + (2s − 1)Y(s) = 3 +
1
s

=
3s + 1

s
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Eliminating X(s)

[3s2 − (3s − 2)(2s − 1)]Y(s) =
s(6s − 5)

s − 1
− (3s − 2)(3s + 1)

s

Y(s) =
9s2 − 3s − 2

s(3s − 1)(s − 2)
− 6s2 − 5s

(s − 1)(3s − 1)(s − 2)

=
[
−1

s
+

18
5

3s − 1
+

14
5

s − 2
]

−
[ − 1

2

s − 1
−

9
10

3s − 1
+

14
5

s − 2
]

= −1
s

+
1
2

s − 1
+

9
2

3s − 1

y(t) = L−1{Y(s)} = −1 +
1
2
et +

3
2
e

t
3

Eliminating
dx

dt
from the original equations

x(t) =
1
2
[
3 − et − 3 +

3
2
et +

9
2
e

t
3 − 3

2
et − 3

2
e

t
3
]

=
3
2
e

t
3 − 1

2
et

6(e)

(3s − 2)X(s) + sY(s) = −1 +
3

s2 + 1
+

5s
s2 + 1

=
−s2 + 5s + 2

s2 + 1

2sX(s) + (s + 1)Y(s) = −1 +
1

s2 + 1
+

s

s2 + 1
=

−s2 + s

s2 + 1

Eliminating Y(s)

[(3s − 2)(s + 1) − 2s2]X(s) =
1

s2 + 1
[(−s2 + 5s + 2)(s + 1) − (−s2 + s)s]

X(s) =
3s2 + 7s + 2

(s + 2)(s − 1)(s2 + 1)
=

3s + 1
(s − 1)(s2 + 1)

=
2

s − 1
− 2s − 1

s2 + 1

x(t) = L−1{X(s)} = 2et − 2 cos t + sin t
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Eliminating
dy

dt
from the original equation

y(t) = −2 sin t − 4 cos t − 2x +
dx

dt

= −2 sin t − 4 cos t − 4et + 4cos t − 2 sin t + 2et + 2 sin t + cos t

that is, y(t) = −2et − 2 sin t + cos t, x(t) = 2et − 2 cos t + sin t

6(f)

sX(s) + (s + 1)Y(s) = 1 +
1
s2

=
s2 + 1

s2

(s + 1)X(s) + 4sY(s) = 1 +
1
s

=
s + 1

s

Eliminating Y(s)

[4s2 − (s + 1)2]X(s) = 4s
(s2 + 1

s2

)
− (s + 1)2

s
=

3s2 − 2s + 3
s

X(s) =
3s2 − 2s + 3

s(s − 1)(3s + 1)
=

−3
s

− 1
s − 1

+
9

3s + 1

x(t) = L−1{X(s)} = −3 + et + 3e−
t
3

Eliminating
dy

dt
from the original equation

y =
1
4
[
4t − 1 + x + 3

dx

dt

]
=

1
4
[
4t − 1 − 3 + et + 3e−

t
3 − 3et + 3e−

t
3
]

that is, y(t) = t − 1 − 1
2
et +

3
2
e−

t
3 , x(t) = −3 + et + 3e−

t
3

6(g)

(2s + 7)X(s) + 3sY(s) =
12
s2

+
7
s

=
14 + 7s

s2

(5s + 4)X(s) − (3s − 6)Y(s) =
14
s2

− 14
s

=
14 − 14s

s2
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Eliminating Y(s)

[(2s + 7)(3s − 6) + (5s + 4)(3s)]X(s) =
1
s2

[(3s − 6)(14 + 7s) + 3s(14 − 14s)]

21(s2 + s − 2)X(s) = 21(s + 2)(s − 1)X(s) =
21
s2

(−s2 + 2s − 4)

X(s) =
−s2 + 2s − 4

s2(s + 2)(s − 1)

=
−1

s − 1
+

1
s + 2

+
0
s

+
2
s2

x(t) = L−1{X(s)} = −et + e−2t + 2t

Eliminating
dy

dt
from the original equations

6y = 28t − 7 − 11x − 7
dx

dt

= 28t − 7 + 7et + 14e−2t − 14 + 11et − 11e−2t − 22t

giving y(t) = t − 7
2

+ 3et +
1
2
e−2t, x(t) = −et + e−2t + 2t.

6(h)
(s2 + 2)X(s) − Y(s) = 4s

−X(s) + (s2 + 2)Y(s) = 2s

Eliminating Y(s)

[(s2 + 2)2 − 1]X(s) = 4s(s2 + 2) + 2s

(s4 + 4s2 + 3)X(s) = 4s3 + 10s

X(s) =
4s3 + 10s

(s2 + 1)(s2 + 3)
=

3s
s2 + 1

+
s

s2 + 3

x(t) = L−1{X(s)} = 3cos t + cos
√

3t

From the first of the given equations

y(t) = 2x +
d2x

dt2
= 6cos t + 2cos

√
3t − 3 cos t − 3 cos

√
3t

that is, y(t) = 3 cos t − cos
√

3t, x(t) = 3 cos t − cos
√

3t
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6(i)

(5s2 + 6)X(s) + 12s2Y = s
[35

4
+ 12

]
=

83
4

s

5s2X(s) + (16s2 + 6)Y(s) = s
[35

4
+ 16

]
=

99
4

s

Eliminating X(s)

[60s4 − (5s2 + 6)(16s2 + 6)]Y(s) =
s

4
[83(5s2) − 99(5s2 + 6)]

[−20s4 − 126s2 − 36]Y(s) =
s

4
[−80s2 − 594]

Y(s) =
s(40s2 + 297)

4(s2 + 6)(10s2 + 3)

=
− 1

4s

s2 + 6
+

25
2 s

10s2 + 3

y(t) = L−1{Y(s)} = −1
4

cos
√

6t +
5
4

cos

√
3
10

t

Eliminating
d2x

dt2
from the original equations

3x = 3y + 3
d2y

dt2
=

(15
4

− 3
4
)
cos

√
3
10

t +
(
−3

4
+ 3

)
cos

√
6t

i.e. x(t) = cos

√
3
10

t +
3
4

cos
√

6t, x(t) =
5
4

cos

√
3
10

t − 1
4

cos
√

6t.

6(j)
(2s2 − s + 9)X(s) − (s2 + s + 3)Y(s) = 2(s + 1) − 1 = 2s + 1

(2s2 + s + 7)X(s) − (s2 − s + 5)Y(s) = 2(s + 1) + 1 = 2s + 3

Subtract

(−2s + 2)X(s) − (2s − 2)Y(s) = −2 ⇒ X(s) + Y(s) =
1

s − 1
⇒ x(t) + y(t) = et (i)

Add

(4s2 + 16)X(s) − (2s + 8)Y(s) = 4(s + 1)

2X(s) − Y(s) =
2(s + 1)
s2 + 4

⇒ 2x(t) − y(t)

= 2 cos 2t + sin 2t (ii)
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Then from (i) and (ii)

x(t) =
1
3
et +

2
3

cos 2t +
1
3

sin 2t, y(t) =
2
3
et − 2

3
cos 2t − 1

3
sin 2t

Exercises 5.4.3

7 1μF = 10−6F so 50μ = 5.105F

Applying Kirchhoff’s second law to the left hand loop

1
5.105

∫
i1dt + 2

(di1
dt

− di2
dt

)
= E. sin 100t

Taking Laplace transforms

2.104

s
I1(s) + 2s[I1(s) − I2(s)] = E.

100
s2 + 104

(104 + s2)I1(s) − s2I2(s) = E.
50s

s2 + 104
(i)

Applying Kirchhoff’s law to the right hand loop

100i2(t) − 2
(di1

dt
− di2

dt

)
= 0

which on taking Laplace transforms gives

sI1(s) = (50 + s)I2(s) (ii)

Substituting in (i)

(104 + s2)(50 + s)I2(s) − s2I2(s) = E.
50s2

s2 + 104

(s2 + 200s + 104)I2(s) =
Es2

s2 + 104

I2(s) = E
[ s2

(s2 + 104)(s + 100)2
]

then from (ii) I1(s) = E
[ s(50 + s)
(s2 + 104)(s + 100)2

]
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Expanding in partial functions

I2(s) = E
[ − 1

200

s + 100
+

1
2

(s + 100)2
+

1
200s

s2 + 104

]

i2(t) = L−1{I2(s)} = E
[
− 1

200
e−100t +

1
2
te−100t +

1
200

cos 100t
]

8 Applying Kirchhoff’s second law to the primary and secondary circuits
respectively gives

2i1 +
di1
dt

+ 1
di2
dt

= 10 sin t

2i2 + 2
di2
dt

+
di1
dt

= 0

Taking Laplace transforms

(s + 2)I1(s) + sI2(s) =
10

s2 + 1

sI1(s) + 2(s + 1)I2(s) = 0

Eliminating I1(s)

[s2 − 2(s + 1)(s + 2)]I2(s) =
10s

s2 + 1

I2(s) = − 10s
(s2 + 1)(s2 + 7s + 6)

= − 10s
(s2 + 1)(s + 6)(s + 1)

= −
[ −1
s + 1

+
12
37

s + 6
+

25
37s + 35

37

s2 + 1
]

i2(t) = L−1{I2(s)} = e−t − 12
37

e−6t − 25
37

cos t − 35
37

sin t

9 Applying Kirchhoff’s law to the left and right hand loops gives

(i1 + i2) +
d

dt
(i1 + i2) + 1

∫
i1dt = E0 = 10

i2 +
di2
dt

− 1
∫

i1dt = 0
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Applying Laplace transforms

(s + 1)I1(s) + (s + 1)I2(s) +
1
s
I1(s) =

10
s

(s + 1)I2(s) −
1
s
I1(s) = 0 ⇒ I1(s) = s(s + 1)I2(s) (i)

Substituting back in the first equation

s(s + 1)2I2(s) + (s + 1)I2(s) + (s + 1)I2(s) =
10
s

(s2 + s + 2)I2(s) =
10

s(s + 1)

I2(s) =
10

s(s + 1)(s2 + s + 2)

Then from (i)

I1(s) =
10

s2 + s + 2
=

10
(s + 1

2 )2 + 7
4

i1(t) = L−1{I1(s)} =
20√

7
e−

1
2 t sin

√
7

2
t

10 Applying Newton’s law to the motion of each mass

ẍ1 = 3(x2 − x1) − x1 = 3x2 − 4x1

ẍ2 = −9x2 − 3(x2 − x1) = −12x2 + 3x1

giving

ẍ1 + 4x1 − 3x2 = 0, x1(0) = −1, x2(0) = 2

ẍ2 + 12x2 − 3x1 = 0

Taking Laplace transforms

(s2 + 4)X1(s) − 3X2(s) = −s

−3X1(s) + (s2 + 12)X2(s) = 2s
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Eliminating X2(s)

[(s2 + 4)(s2 + 12) − 9]X1(s) = −s(s2 + 12) + 6s

(s2 + 13)(s2 + 3)X1(s) = −s3 − 6s

X1(s) =
−s3 − 6s

(s2 + 13)(s2 + 3)
=

− 3
10s

s2 + 3
−

7
10s

s2 + 13

x1(t) = L−1{X1(s)} = − 3
10

cos
√

3t − 7
10

cos
√

13t

From the first differential equation

3x2 = 4x1 + ẍ1

= −6
5

cos
√

3t − 14
5

cos
√

13t +
9
10

cos
√

3t +
91
10

cos
√

13t

x2(t) =
1
10

[21 cos
√

13t − cos
√

3t]

Thus, x1(t) = − 1
10

(3 cos
√

3t + 7cos
√

13t), x2(t) =
1
10

[21 cos
√

13t − cos
√

3t]

Natural frequencies are
√

13 and
√

3.

11 The equation of motion is

Mẍ + bẋ + Kx = Mg ; x(0) = 0 , ẋ(0) =
√

2gh

The problem is then an investigative one where students are required to investigate
for different h values either analytically or by simulation.

12 By Newton’s second law of motion

M2ẍ2 = −K2x2 − B1(ẋ2 − ẋ1) + u2

M1ẍ1 = B1(ẋ2 − ẋ1) − K1x1 + u1

Taking Laplace transforms and assuming quiescent initial state

(M2s
2 + B1s + K2)X2(s) − B1sX1(s) = U2(s)

−B1sX2(s) + (M1s
2 + B1s + K1)X1(s) = U1(s)
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Eliminating X1(s)

[(M1s
2 + B1s + K1)(M2s

2 + B1s + K2) − B2
1s

2]X2(s)

= (M1s
2 + B1s + K1)U2(s) + B1sU1(s)

i.e. X2(s) =
B1s

Δ
U1(s) +

(M1s
2 + B1s + K1)

Δ
U2(s)

and x2(t) = L−1{X2(s)} = L−1
{B1s

Δ
U1(s) +

(M1s
2 + B1s + K1)

Δ
U2(s)

}

Likewise eliminating X2(t) from the original equation gives

x1(t) = L−1{X1(s)} = L−1
{ (M1s + B1s + K2)

Δ
U1(s) +

B1s

Δ
U2(s)

}

Exercises 5.5.7

13
f(t) = tH(t) − tH(t − 1)

= tH(t) − (t − 1)H(t − 1) − 1H(t − 1)

Thus, using theorem 2.4

L{f(t)} =
1
s2

− e−s 1
s2

− e−s =
1
s2

(1 − e−s) − 1
s
e−s

14(a)

f(t) = 3t2H(t) − (3t2 − 2t + 3)H(t − 4) − (2t − 8)H(t − 6)

= 3t2H(t) − [3(t − 4)2 + 22(t − 4) + 43]H(t − 4) − [2(t − 6) + 4]H(t − 6)

Thus,

L{f(t)} =
6
s3

− e−4sL[3t2 + 22t + 43] − e−6sL[2t + 4]

=
6
s3

−
[ 6
s3

+
22
s2

+
43
s

]
e−4s −

[ 2
s2

+
4
s

]
e−6s
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14(b)
f(t) = tH(t) + (2 − 2t)H(t − 1) − (2 − t)H(t − 2)

= tH(t) − 2(t − 1)H(t − 1) − (t − 2)H(t − 2)

Thus,

L{f(t)} =
1
s2

− 2e−sL{t} + e−2sL{t}

=
1
s2

[1 − 2e−s + e−2s]

15(a) L−1
{ e−5s

(s − 2)4
}

= L−1{e−5sF(s)} where F(s) =
1

(s − 2)4
and by the first

shift theorem f(t) = L−1{F(s)} =
1
6
t3e2t .

Thus, by the second shift theorem

L−1
{ e−5s

(s − 2)4
}

= f(t − 5)H(t − 5)

=
1
6
(t − 5)3e2(t−5)H(t − 5)

15(b) L−1
{ 3e−2s

(s + 3)(s + 1)
}

= L−1{e−2sF(s)} where

F(s) =
3

(s + 3)(s + 1)
=

− 3
2

s + 3
+

3
2

s + 1

f(t) = L−1{F(s)} =
3
2
e−t − 3

2
e−3t

so L−1
{ 3e−2s

(s + 3)(s + 1)
}

= f(t − 2)H(t − 2)

=
3
2
[e−(t−2) − e−3(t−2)]H(t − 2)

15(c) L−1
{ s + 1

s2(s2 + 1)
e−s

}
= L−1{e−sF(s)} where

F(s) =
s + 1

s2(s2 + 1)
=

1
s

+
1
s2

− s + 1
s2 + 1

f(t) = L−1{F(s)} = 1 + t − cos t − sin t
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so

L−1
{ s + 1

s2(s2 + 1)
e−s

}
= f(t − 1)H(t − 1)

= [1 + (t − 1) − cos(t − 1) − sin(t − 1)]H(t − 1)

= [t − cos(t − 1) − sin(t − 1)]H(t − 1)

15(d) L−1
{ s + 1

s2 + s + 1
e−πs

}
= L−1{e−πsF(s)} where

F(s) =
s + 1

(s2 + s + 1)
=

(s + 1
2 ) + 1√

3
(
√

3
2 )

(s + 1
2 )2 + (

√
3

2 )2

f(t) = e−
1
2 t

{
cos

√
3

2
t +

1√
3

sin
√

3
2

t
}

so

L−1
{ s + 1

s2 + s + 1
e−πs

}
=

1√
3
e−

1
2 (t−π)

[√
3 cos

√
3

2
(t − π) + sin

√
3

2
(t − π)

]
.H(t − π)

15(e) L−1
{ s

s2 + 25
e−4πs/5

}
= L−1{e−4πs/5F(s)} where

F(s) =
s

s2 + 25
⇒ f(t) = L−1{F(s)} = cos 5t

so
L−1

{ s

s2 + 25
e−4πs/5

}
= f

(
t − 4π

5
)
H

(
t − 4π

5
)

= cos(5t − 4π)H
(
t − 4π

5
)

= cos 5t H
(
t − 4π

5
)

15(f) L−1
{e−s(1 − e−s)

s2(s2 + 1)
}

= L−1{(e−s − e−2s)F(s)} where

F(s) =
1

s2(s2 + 1)
=

1
s2

− 1
s2 + 1

f(t) = L−1{F(s)} = t − sin t
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so
L−1{(e−s − e−2s)F(s)} =f(t − 1)H(t − 1) − f(t − 2)H(t − 2)

=[(t − 1) − sin(t − 1)]H(t − 1)

− [(t − 2) − sin(t − 2)]H(t − 2)

16
dx

dt
+ x = f(t), L{f(t)} =

1
s2

(1 − e−s − se−s)

Taking Laplace transforms with x(0) = 0

(s + 1)X(s) =
1
s2

− e−s (1 + s)
s2

X(s) =
1

s2(s + 1)
− e−s 1

s2

= −1
s

+
1
s2

+
1

s + 1
− e−sL{t}

Taking inverse transforms

x(t) = −1 + e−t + t − (t − 1)H(t − 1)

= e−t + (t − 1)[1 − H(t − 1)]

or x(t) = e−t + (t − 1) for t ≤ 1

x(t) = e−t for t ≥ 1

Sketch of response is
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17
d2x

dt2
+

dx

dt
+ x = g(t), x(0) = 1, ẋ(0) = 0

with L{g(t)} =
1
s2

(1 − 2e−s + e−2s)

Taking Laplace transforms

(s2 + s + 1)X(s) = s + 1 +
1
s2

(1 − 2e−s + e−2s)

X(s) =
s + 1

(s2 + s + 1)
+

1
s2(s2 + s + 1)

(1 − 2e−s + e−2s)

=
(s + 1)

(s2 + s + 1)
+

[
−1

s
+

1
s2

+
s

s2 + s + 1
]
[1 − 2e−s + e−2s]

=
(s + 1

2 ) + 1√
3
(
√

3
2 )

(s + 1
2 )2 + (

√
3

2
)2

+
[
−1

s
+

1
s2

+
(s + 1

2 ) − 1√
3
(
√

3
2 )

(s + 1
2 )2 + (

√
3

2
)2

]
[1 − 2e−s + e−2s]

x(t) = L−1{X(s)} = e−
1
2 t

(
cos

√
3

2
t +

1√
3

sin
√

3
2

t
)

+ t − 1 + e−
1
2 t

(
cos

√
3

2
t − 1√

3
sin

√
3

2
t
)

− 2H(t − 1)
[
t − 2 + e−

1
2 (t−1)

{
cos

√
3

2
(t − 1)

− 1√
3

sin
√

3
2

(t − 1)
}]

+ H(t − 2)
[
t − 3 + e−

1
2 (t−2)

{
cos

√
3

2
(t − 2)

− 1√
3

sin
√

3
2

(t − 2)
}]

that is,

x(t) = 2e−
1
2 t cos

√
3

2 t + t − 1

− 2H(t − 1)
[
t − 2 + e−

1
2 (t−1)

{
cos

√
3

2
(t − 1) − 1√

3
sin

√
3

2
(t − 1)

}]

+ H(t − 2)
[
t − 3 + e−

1
2 (t−2)

{
cos

√
3

2
(t − 2) − 1√

3
sin

√
3

2
(t − 2)

}]
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18
f(t) = sin tH

(
t − π

2
)

= cos
(
t − π

2
)
H

(
t − π

2
)

since cos
(
t − π

2
)

= sin t.

Taking Laplace transforms with x(0) = 1, ẋ(0) = −1

(s2 + 3s + 2)X(s) = s + 2 + L
{
cos

(
t − π

2
)
H

(
t − π

2
)}

= s + 2 + e−
π
2 sL{cos t}

= s + 2 + e−
π
2 s· s

s2 + 1

X(s) =
1

s + 1
+ e−

π
2 s

[ s

(s + 1)(s + 2)(s2 + 1)
]

=
1

s + 1
+ e−

π
2 s

[ − 1
2

s + 1
+

2
5

s + 2
+

1
10

· s + 3
s2 + 1

]
=

1
s + 1

+ e−
π
2 sL

{
−1

2
e−t +

2
5
e−2t +

1
10

(cos t + 3 sin t)
}

so x(t) = L−1{X(s)} = e−t +
[
− 1

2
e−(t−π

2 ) +
2
5
e−2(t−π

2 ) +
1
10

(cos
(
t − π

2
)

+ 3 sin
(
t − π

2
)
)
]
H

(
t − π

2
)

= e−t +
1
10

[
sin t − 3 cos t + 4eπe−2t − 5e

π
2 e−t

]
H

(
t − π

2
)

19
f(t) = 3H(t) − (8 − 2t)H(t − 4)

= 3H(t) + 2(t − 4)H(t − 4)

L{f(t)} =
3
s

+ 2e−4sL{t} =
3
s

+
2
s2

e−4s

Taking Laplace transforms with x(0) = 1, ẋ(0) = 0

(s2 + 1)X(s) = s +
3
s

+
2
s2

e−4s

X(s) =
s

s2 + 1
+

3
s(s2 + 1)

+
2

s2(s2 + 1)
e−4s

=
s

s2 + 1
+

3
5
− 3

s2 + 1
+ 2

[ 1
s2

− 1
s2 + 1

]
e−4s

=
3
5
− 2

s2 + 1
+ 2e−4sL{t − sin t}
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Thus, taking inverse transforms

x(t) = 3 − 2 cos t + 2(t − 4 − sin(t − 4))H(t − 4)

20

θ̈0 + 6θ̇0 + 10θ0 = θi (1)

θi(t) = 3H(t) − 3H(t − a)

so L{θi} =
3
s
− 3

s
e−as =

3
s
(1 − e−as)

Taking Laplace transforms in (1) with θ0 = θ̇0 = 0 at t = 0

(s2 + 6s + 10)Φ0(s) =
3
s
(1 − e−as)

Φ0(s) = 3(1 − e−as)
[ 1
s(s2 + 6s + 10)

]
=

3
10

(1 − e−as)
[1
s
− (s + 3) + 3

(s + 3)2 + 1
]

=
3
10

(1 − e−as)L
[
1 − e−3t cos t − 3e−3t sin t

]
Thus, taking inverse transforms

θ0(t) =
3
10

[1 − e−3t cos t − 3e−3t sin t]H(t)

− 3
10

[1 − e−3(t−a) cos(t − a) − 3e−3(t−a) sin(t − a)]H(t − a)

If T > a then H(T) = 1, H(T − a) = 1 giving

θ0(T) = − 3
10

[e−3T cos T − e−3(T−a) cos(T − a)]

− 3
10

[3e−3T sin T − 3e−3(T−a) sin(T − a)]

= − 3
10

e−3T {cos T + 3 sin T − e3a[cos(T − a) + 3 sin(T − a)]}

21
θi(t) = f(t) = (1 − t)H(t) − (1 − t)H(t − 1)

= (1 − t)H(t) + (t − 1)H(t − 1)
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so
L{θi(t)} =

1
s
− 1

s2
+ e−sL{t}

=
1
s
− 1

s2
+

1
s2

e−s =
s − 1
s2

+
1
s2

e−s

Then taking Laplace transforms, using θ0(0) = θ̇0(0) = 0

(s2 + 8s + 16)Φ0(s) =
s − 1
s2

+
1
s2

e−s

Φ0(s) =
s − 1

s2(s + 4)2
+ e−s

[ 1
s2(s + 4)2

]
=

1
s2

[3
s
− 2

s2
− 3

s + 4
− 10

(s + 4)2
]
+

e−s

32
[3
s

+
2
s2

+
1

s + 4
+

2
(s + 4)2

]
which on taking inverse transforms gives

θ0(t) = L−1{Φ0(s)} =
1
32

[3 − 2t − 3e−4t − 10te−4t]

+
1
32

[−1 + 2(t − 1) + e−4(t−1) + 2(t − 1)e−4(t−1)]H(t − 1)

=
1
32

[3 − 2t − 3e−4t − 10te−4t]

+
1
32

[2t − 3 + (2t − 1)e−4(t−1)]H(t − 1)

22

e(t) = e0H(t − t1) − e0H(t − t2)

L{e(t)} =
e0

s
(e−st1 − e−st2)
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By Kirchhoff’s second law current in the circuit is given by

Ri +
1
C

∫
idt = e

which on taking Laplace transforms

RI(s) +
1

Cs
I(s) =

e0

s
(e−st1 − e−st2)

I(s) =
e0C

RCs + 1
(e−st1 − e−st2)

=
e0/R

s + 1
RC

(e−st1 − e−st2)

=
e0/R

s + 1
RC

e−st1 − e0/R

s + 1
RC

e−st2

then
i(t) = L−1{I(s)}

=
e0

R

[
e−(t−t1)/RCH(t − t1) − e−(t−t2)/RCH(t − t2)

]

23

Sketch over one period as shown and
readily extended to 0 ≤ t < 12.
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f1(t) = 3tH(t) − (3t − 6)H(t − 2) − 6H(t − 4)

= 3tH(t) − 3(t − 2)H(t − 2) − 6H(t − 4)

L{f1(t)} = F1(s) =
3
s2

− 3
s2

e−2s − 6
s
e−4s

Then by theorem 5.5

L{f(t)} = F(s) =
1

1 − e−4s
F1(s)

=
1

s2(1 − e−4s)
(3 − 3e−2s − 6se−4s)

24 Take

f1(t) =
K

T
t, 0 < t < T

= 0, t > T

then f1(t) =
K

T
tH(t) − Kt

T
H(t − T) =

K

T
tH(t) − K

T
(t − T)H(t − T) − KH(t − T)

L{f1(t)} = F1(s) =
K

Ts2
− e−sT K

Ts2
− e−sT K

s
=

K

Ts2
(1 − e−sT ) − K

s
e−sT

Then by theorem 5.5

L{f(t)} = F(s) =
1

1 − e−sT
F1(s) =

K

Ts2
− K

s

e−sT

1 − e−sT

Exercises 5.5.12

25(a)

2s2 + 1
(s + 2)(s + 3)

= 2 − 10s + 11
(s + 2)(s + 3)

= 2 +
9

s + 2
− 19

s + 3

L−1
{ 2s2 + 1

(s + 2)(s + 3)
}

= 2δ(t) + 9e−2t − 19e−3t
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25(b)

s2 − 1
s2 + 4

= 1 − 5
s2 + 4

L−1
{s2 − 1

s2 + 4
}

= δ(t) − 5
2

sin 2t

25(c)

s2 + 2
s2 + 2s + 5

= 1 − 2s + 3
s2 + 2s + 5

= 1 −
[2(s + 1) + 1

2 (2)
(s + 1)2 + s2

]
L−1

{ s2 + 2
s2 + 2s + 5

}
= δ(t) − e−t

(
2 cos 2t +

1
2

sin 2t
)

26(a) (s2 + 7s + 12)X(s) =
2
s

+ e−2s

X(s) =
2

s(s + 4)(s + 3)
+

[ 1
(s + 4)(s + 3)

]
e−2s

=
1
6

s
−

2
3

s + 3
+

1
2

s + 4
+

[ 1
s + 3

− 1
s + 4

]
e−2s

x(t) = L−1{X(s)} =
(1
6
− 2

3
e−3t +

1
2
e−4t

)
+

(
e−3(t−2) − e−4(t−2)

)
H(t − 2)

26(b)

(s2 + 6s + 13)X(s) = e−2πs

X(s) =
1

(s + 3)2 + 22
e−2πs

= e−2πsL
{1

2
e−3t sin 2t

}
so x(t) = L−1{X(s)} =

1
2
e−3(t−2π) sin 2(t − 2π).H(t − 2π)

=
1
2
e6πe−3t sin 2t.H(t − 2π)
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26(c)

(s2 + 7s + 12)X(s) = s + 8 + e−3s

X(s) =
s + 8

(s + 4)(s + 3)
+

[ 1
(s + 4)(s + 3)

]
e−3s

=
[ 5
s + 3

− 4
s + 4

]
+

[ 1
s + 3

− 1
s + 4

]
e−3s

x(t) = L−1{X(s)} = 5e−3t − 4e−4t + [e−3(t−3) − e−4(t−3)]H(t − 3)

27(a)

Generalized derivative is

f′(t) = g′(t) − 43δ(t − 4) − 4δ(t − 6)

where

g′(t) =

⎧⎪⎨
⎪⎩

6t, 0 ≤ t < 4

2, 4 ≤ t < 6

0, t ≥ 6
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27(b)

f′(t) = g′(t) =

⎧⎨
⎩

1, 0 ≤ t < 1
−1, 1 ≤ t < 2
0, t ≥ 2

27(c)

f′(t) = g′(t) + 5δ(t) − 6δ(t − 2) + 15δ(t − 4)

where

g′(t) =

⎧⎨
⎩

2, 0 ≤ t < 2
−3, 2 ≤ t < 4

2t − 1, t ≥ 4
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28
(s2 + 7s + 10)X(s) = 2 + (3s + 2)U(s)

= 2 + (3s + 2)
1

s + 2
=

5s + 6
s + 2

X(s) =
5s + 6

(s + 2)2(s + 5)

=
19
9

s + 2
−

4
3

(s + 2)2
−

19
9

(s + 5)

x(t) = L−1{X(s)} =
19
9

e−2t − 4
3
te−2t − 19

9
e−5t

29 f(t) =
∞∑

n=0
δ(t − nT)

Thus,

F(s) = L{f(t)} =
∞∑

n=0

L{δ(t − nT)} =
∞∑

n=0

e−snT

This is an infinite GP with first term 1 and common ratio e−sT and therefore
having sum (1 − e−sT )−1 . Hence,

F(s) =
1

1 − e−sT

Assuming zero initial conditions and taking Laplace transforms the response of the
harmonic oscillator is given by

(s2 + w2)X(s) = F(s) =
1

1 − e−sT

X(s) =
( ∞∑
n=0

e−snT
)( 1

s2 + w2

)

= [1 + e−sT + e−2sT + . . .]L
{ 1

w
sin wt

}

giving x(t) = L−1{X(s)} =
1
w

[sin wt + H(t − T). sin w(t − T) + H(t − 2T).
sin w(t − 2T) + . . .]

or x(t) =
1
w

∞∑
n=0

H(t − nT) sin w(t − nT) .
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29(a)

T =
π

w
; x(t) =

1
w

∞∑
n=0

H
(
t − nπ

w

)
sin(wt − nπ)

=
1
w

[
sinwt − sin wt.H

(
t − π

w

)
+ sin wt.H

(
t − 2π

w

)
+ . . .

]

and a sketch of the response is as follows

29(b)

T =
2π
w

; x(t) =
1
w

∞∑
n=0

H
(
t − 2πn

w

)
sin(wt − 2πn)

=
1
w

[
sinwt + sin wt.H

(
t − 2π

w

)
+ sin wt.H

(
t − 4π

w

)
+ . . .

]

and the sketch of the response is as follows
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30 The charge q on the LCR circuit is determined by

L
d2q

dt2
+ R

dq

dt
+

1
C

q = e(t)

where e(t) = Eδ(t), q(0) = q̇(0) = 0.
Taking Laplace transforms

(
Ls2 + Rs +

1
C

)
Q(s) = L{Eδ(t)} = E

Q(s) =
E/L

s2 + R
L s + 1

LC

=
E/L

(s + R
2L )2 + ( 1

LC − R2

4L2 )

=
E/L

(s + μ)2 + η2
, μ =

R

2L
, η =

√
1

LC
− R2

4L2

Thus, q(t) =
E

Lη
e−μt sin ηt

and current i(t) = q̇(t) =
E

Lη
e−μt(η cos ηt − μ sin ηt)

Exercises 5.5.14

31

Load W(x) =
M

�
H(x) + Wδ

(
x − �

2
)
− R1δ(x) , where R1 =

1
2
(M + W)

so the force function is

W(x) =
M

�
H(x) + Wδ

(
x − �

2
)
−

(M + W

2
)
δ(x)

having Laplace transform

W(s) =
M

�s
+ We−�s/2 − (M + W)

2
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Since the beam is freely supported at both ends

y(0) = y2(0) = y(�) = y2(�) = 0

and the transformed equation (2.64) of the text becomes

Y(s) =
1

EI

[
M

�s5
+

W

s4
e−�s/2 −

(M + W

2
) 1
s4

]
+

y1(0)
s2

+
y3(0)
s4

Taking inverse transforms gives

y(x) =
1

EI

[
1
24

M

�
x4 +

1
6
W(x − �

2
)3·H

(
x − �

2
)
− 1

12
(M + W)x3

]

+ y1(0)x +
1
6
y3(0)x3

for x > �
2

y(x) =
1

EI

[
1
24

M

�
x4 +

1
6
W

(
x − �

2
)3

− 1
12

(M + W)x3

]
+ y1(0)x +

1
6
y3(0)x3

y2(x) =
1

EI

[
1
2

M

�
x2 + W

(
x − �

2
)
− 1

2
(M + W)x

]
+ y3(0)x

y2(�) = 0 then gives y3(0) = 0 and y(�) = 0 gives

0 =
1

EI

[
M�3

24
+

W�3

24
− 1

12
M�3 − 1

2
W�3

]
+ y1(0)�

y1(0) =
1

EI

[
1
24

M�2 +
1
16

W�2
]

so y(x) =
1

48EI

[
2
�
Mx4 + 8W(x − �

2
)3H

(
x − �

2
)
− 4(M + W)x3 + (2M + 3W)�2x

]
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32

Load W(x) = w(H(x − x1) − H(x − x2)) − R1δ(x), R1 = w(x2 − x1)
so the force function is

W(x) = w(H(x − x1) − H(x − x2)) − w(x2 − x1)δ(x)

having Laplace transform

W(s) = w
(1
s
e−x1s − 1

s
e−x2s

)
− w(x2 − x1)

with corresponding boundary conditions

y(0) = y1(0) = 0, y2(�) = y3(�) = 0

The transformed equation (2.64) of the text becomes

Y(s) =
w

EI

[
1
s5

e−x1s − 1
s5

e−x2s − (x2 − x1)
s4

]
+

y2(0)
s3

+
y3(0)
s4

which on taking inverse transforms gives

y(x) =
w

EI

[ 1
24

(x − x1)4H(x − x1) −
1
24

(x − x2)4H(x − x2)

− 1
6
(x2 − x1)x3

]
+ y2(0)

x2

2
+ y3(0)

x3

6

For x > x2

y(x) =
w

EI

[ 1
24

(x − x1)4 −
1
24

(x − x2)4 −
1
6
(x2 − x1)x3

]
+ y2(0)

x2

2
+ y3(0)

x3

6

y2(x) =
w

EI

[ 1
24

(x − x1)2 −
1
2
(x − x2)2 − (x2 − x1)x

]
+ y2(0) + y3(0)x

y3(x) =
w

EI

[
(x − x1) − (x − x2) − (x2 − x1)

]
+ y3(0) ⇒ y3(0) = 0
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The boundary condition y2(�) = 0 then gives

0 =
w

EI

[1
2
(�2 − 2�x1 + x2

1) −
1
2
(�2 − 2�x2 + x2

2) − x2� + x1�
]
+ y2(0)

⇒ y2(0) =
w

2EI
(x2

2 − x2
1)

y(x) =
w

24EI

[
(x − x1)4H(x − x1) − (x − x2)4H(x − x2) − 4(x2 − x1)x3

+ 6(x2
2 − x2

1)x
2
]

When x1 = 0, x2 = � , max deflection at x = �

ymax =
w

24EI
{�4 − 4�4 + 6�4} =

w�4

8EI

33

Load W(x) = Wδ(x − b) − R1δ(x), R1 = W so the force function is

W(x) = Wδ(x − b) − Wδ(x)

having Laplace transform
W(s) = We−bs − W

with corresponding boundary conditions

y(0) = y1(0) = 0, y2(�) = y3(�) = 0

The transformed equation (2.64) of the text becomes

Y(s) = − 1
EI

[W

s4
e−bs − W

s4

]
+

y2(0)
s3

+
y3(0)
s4

which on taking inverse transforms gives

y(x) = − W

EI

[1
6
(x − b)3H(x − b) − 1

6
x3

]
+ y2(0)

x2

2
+ y3(0)

x3

6
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For x > b

y(x) = − W

EI

[1
6
(x − b)3 − 1

6
x3

]
+ y2(0)

x2

2
+ y3(0)

x3

6

y2(x) = − W

EI

[
(x − b) − x

]
+ y2(0) + y3(0)x

y3(x) = − W

EI

[
1 − 1

]
+ y3(0) ⇒ y3(0) = 0

Using the boundary condition y2(�) = 0

0 = − W

EI
(−h) + y2(0) ⇒ y2(0) = −Wb

EI

giving

y(x) =
W

EI

[x3

6
− (x − b)3

6
H(x − b) − bx2

2
]

=

⎧⎪⎨
⎪⎩

−Wx2

6EI
(3b − x), 0 < x ≤ b

−Wb2

6EI
(3x − b), b < x ≤ �

Exercises 5.6.5

34(a) Assuming all the initial conditions are zero taking Laplace transforms
gives

(s2 + 2s + 5)X(s) = (3s + 2)U(s)

so that the system transfer function is given by

G(s) =
X(s)
U(s)

=
3s + 2

s2 + 2s + 5
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34(b) The characteristic equation of the system is

s2 + 2s + 5 = 0

and the system is of order 2.

34(c) The transfer function poles are the roots of the characteristic equation

s2 + 2s + 5 = 0

which are s = −1± j . That is, the transfer function has single poles at s = −1+ j

and s = −1 − j .

The transfer function zeros are determined by equating the numerator polynomial

to zero; that is, a single zero at s = −2
3

.

35 Following the same procedure as for Exercise 34

35(a) The transfer function characterizing the system is

G(s) =
s3 + 5s + 6

s3 + 5s2 + 17s + 13
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35(b) The characteristic equation of the system is

s3 + 5s2 + 17s + 13 = 0

and the system is of order 3.

35(c) The transfer function poles are given by

s3 + 5s2 + 17s + 13 = 0

that is, (s + 1)(s2 + 4s + 13) = 0

That is, the transfer function has simple poles at

s = −1, s = −2 + j3, s = −2 − j3

The transfer function zeros are given by

s2 + 5s + 6 = 0

(s + 3)(s + 2) = 0

that is, zeros at s = −3 and s = −2.
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36(a) Poles at (s + 2)(s2 + 4) = 0; that is, s = −2, s = +2j, s = −j.

Since we have poles on the imaginary axis in the s-plane, system is marginally
stable.

36(b) Poles at (s + 1)(s − 1)(s + 4) = 0; that is, s = −1, s = 1, s = −4.

Since we have the pole s = 1 in the right hand half of the s-plane, the system is
unstable.

36(c) Poles at (s + 2)(s + 4) = 0; that is, s = −2, s = −4.

Both the poles are in the left hand half of the plane so the system is stable.

36(d) Poles at (s2 + s + 1)(s + 1)2 = 0; that is, s = −1 (repeated),

s = −1
2
± j

√
3

2
.

Since all the poles are in the left hand half of the s-plane the system is stable.

36(e) Poles at (s + 5)(s2 − s + 10) = 0; that is, s = −5, s =
1
2
± j

√
39
2

.

Since both the complex poles are in the right hand half of the s-plane the system
is unstable.

37(a) s2 − 4s + 13 = 0 ⇒ s = 2 ± j3.

Thus, the poles are in the right hand half s-plane and the system is unstable.

37(b)
5s3

a3

+ 13s2

a2

+ 31s
a1

+ 15
a0

= 0

Routh–Hurwitz (R-H) determinants are:

Δ1 = 13 > 0, Δ2 =
∣∣∣∣ 13 5
15 31

∣∣∣∣ > 0, Δ3 = 15Δ2 > 0

so the system is stable.
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37(c) s3 + s2 + s + 1 = 0
R–H determinants are

Δ1 = 1 > 0, Δ2 =
∣∣∣∣ 1 1
1 1

∣∣∣∣ = 0, Δ3 = 1Δ2 = 0

Thus, system is marginally stable. This is readily confirmed since the poles are at
s = −1, s = ±j

37(d) 24s4 + 11s3 + 26s2 + 45s + 36 = 0

R–H determinants are

Δ1 = 11 > 0, Δ2 =
∣∣∣∣ 11 24
45 26

∣∣∣∣ < 0

so the system is unstable.

37(e) s3 + 2s2 + 2s + 1 = 0

R–H determinants are

Δ1 = 2 > 0, Δ2 =
∣∣∣∣ 2 3
1 2

∣∣∣∣ = 1 > 0,Δ3 = 1Δ2 > 0

and the system is stable. The poles are at s = −1, s = −1
2
± j

√
3

2
confirming the

result.

38 m
d3x

dt3
+ c

d2x

dt2
+ K

dx

dt
+ Krx = 0; m,K, r, c > 0

R–H determinants are

Δ1 = c > 0

Δ2 =
∣∣∣∣ c m
Kr K

∣∣∣∣ = cK − mKr > 0 provided r <
c

m

Δ3 = KrΔ2 > 0 provided Δ2 > 0

Thus, system stable provided r <
c

m
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39
s4+ 2s2

a3

+ (K +
a2

2)s2+ 7s
a1

+ K

a0

= 0

R–H determinants are

Δ1 =| a3 |= 9 > 0

Δ2 =
∣∣∣∣ a3 a4

a1 a2

∣∣∣∣ =
∣∣∣∣ 2 1
7 K + 2

∣∣∣∣ = 2K − 3 > 0 provided K >
3
2

Δ3 =

∣∣∣∣∣∣
a3 a4 0
a1 a2 a3

0 a0 a1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 1 0
7 K + 2 2
0 K 7

∣∣∣∣∣∣ = 10K − 21 > 0 provided K > 2

Δ4 = KΔ3 > 0 provided Δ3 > 0

Thus, the system is stable provided K > 2.1.

40 s2 + 15Ks2 + (2K − 1)s + 5K = 0, K > 0
R–H determinants are

Δ1 = 15K > 0

Δ2 =
∣∣∣∣ 15K 1

5K (2K − 1)

∣∣∣∣ = 30K2 − 20K

Δ3 = 5KΔ2 > 0 provided Δ2 > 0

Thus, system stable provided K(3K − 2) > 0 that is K >
2
3

, since K > 0.

41(a) Impulse response h(t) is given by the solution of

d2h

dt2
+ 15

dh

dt
+ 56h = 3δ(t)

with zero initial conditions. Taking Laplace transforms

(s2 + 15s + 56)H(s) = 3

H(s) =
3

(s + 7)(s + 8)
=

3
s + 7

− 3
s + 8

so h(t) = L−1{H(s)} = 3e−7t − 3e−8t

Since h(t) → 0 as t → ∞ the system is stable.
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41(b) Following (a) impulse response is given by

(s2 + 8s + 25)H(s) = 1

H(s) =
1

(s + 4)2 + 32

so h(t) = L−1{H(s)} =
1
3
e−4t sin 3t

Since h(t) → 0 as t → ∞ the system is stable.

41(c) Following (a) impulse response is given by

(s2 − 2s − 8)H(s) = 4

H(s) =
4

(s − 4)(s + 2)
=

2
3

1
s − 4

− 2
3

1
s + 2

so h(t) = L−1{H(s)} =
2
3
(e4t − e−2t)

Since h(t) → ∞ as t → ∞ system is unstable.

41(d) Following (a) impulse response is given by

(s2 − 4s + 13)H(s) = 1

H(s) =
1

s2 − 4s + 13
=

1
(s − 2)2 + 32

so h(t) = L−1{H(s)} =
1
3
e2t sin 3t

Since h(t) → ∞ as t → ∞ system is unstable.

42 Impulse response h(t) =
dx

dt
=

7
3
e−t − 3e−2t +

2
3
e−4t

System transfer function G(s) = L{h(t)} ; that is,

G(s) =
7

3(s + 1)
− 3

s + 2
+

2
3(s + 4)

=
s + 8

(s + 1)(s + 2)(s + 4)

Note: The original unit step response can be reconstructed by evaluating

L−1
{
G(s)

1
s

}
.
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43(a) f(t) = 2 − 3 cos t , F(s) =
2
s
− 3s

s2 + 1

sF(s) = 2 − 3s2

s2 + 1
= 2 − 3

1 + 1
s2

Thus, lim
t→0+

(2 − 3 cos t) = 2 − 3 = −1

and lim
s→∞

sF(s) = 2 − 3
1

= −1 so confirming the i.v. theorem.

43(b)

f(t) = (3t − 1)2 = 9t2 − 6t + 1, lim
t→0+

f(t) = 1

F(s) =
18
s3

− 6
s2

+
1
s

so lim
s→∞

sF(s) = lim
s→∞

[18
s2

− 6
s

+ 1
]

= 1

thus, confirming the i.v. theorem.

43(c)

f(t) = t + 3 sin 2t , lim
t→0+

= 0

F(s) =
1
s2

− 6
s2 + 4

so lim
s→∞

sF(s) = lim
s→∞

[1
s

+
6

s + 4
s

]
= 0

thus, confirming the i.v. theorem.

44(a)

f(t) = 1 + 3e−t sin 2t , lim
t→∞

f(t) = 1

F(s) =
1
s

+
6

(s + 1)2 + 4
and lim

s→0
sF(s) = lim

s→0

[
1 +

6s
(s + 1)2 + 4

]
= 1

thus confirming the f.v. theorem. Note that, sF(s) has its poles in the left half of
the s-plane so the theorem is applicable.
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44(b)
f(t) = t23e−2t , lim

t→∞
f(t) = 0

F(s) =
2

(s + 2)3
and lim

s→0
sF(s) = lim

s→0

[ 2s
(s + 2)3

]
= 0

thus confirming the f.v. theorem. Again note that sF(s) has its poles in the left
half of the s-plane.

44(c)
f(t) = 3 − 2e−3t + e−t cos 2t , lim

t→∞
f(t) = 3

F(s) =
3
s
− 2

s + 3
+

(s + 1)
(s + 1)2 + 4

lim
s→0

sF(s) = lim
s→0

[
3 − 2s

s + 3
+

s(s + 1)
(s + 1)2 + 4

]
= 3

confirming the f.v. theorem. Again sF(s) has its poles in the left half of the
s-plane.

45 For the circuit of Example 5.28

I2(s) =
3.64
s

+
1.22

s + 59.1
− 4.86

s + 14.9

Then by the f.v. theorem

lim
t→∞

i2(t) = lim
s→0

sI2(s) = lim
s→0

[
3.64 +

1.22s
s + 59.1

− 4.86s
s + 14.9

]
= 3.64

which confirms the answer obtained in Example 5.28. Note that, sI2(s) has all its
poles in the left half of the s-plane.

46 For the circuit of Example 5.29

sI2(s) =
28s2

(3s + 10)(s + 1)(s2 + 4)

and since it has poles at s = ±j2 not in the left hand half of the s-plane the
f.v. theorem is not applicable.
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47 Assuming quiescent initial state taking Laplace transforms gives

(7s + 5)Y(s) =
4
s

+
1

s + 3
+ 2

Y(s) =
4

s(7s + 5)
+

1
(s + 3)(7s + 5)

+
2

7s + 5

sY(s) =
4

7s + 5
+

s

(s + 3)(7s + 5)
+

2s
7s + 5

By the f.v. theorem,

lim
t→∞

y(t) = lim
s→0

sF(s) = lim
s→0

[ 4
7s + 5

+
s

(s + 3)(7s + 5)
+

2s
7s + 5

]
=

4
5

By the i.v. theorem,

lim
t→0+

y(t) = y(0+) = lim
s→∞

sF(s) = lim
s→∞

[ 4
7s + 5

+
s

(1 + 3
s )(7s + 5)

+
2

7 + 5
s

]
=

2
7

Thus, jump at t = 0 = y(0+) − y(0−) = 1
2
7

.

Exercises 5.6.8

48(a)

f ∗ g(t) =
∫ t

0

τ cos(3t − 3τ)dτ

=
[
−1

3
τ sin(3t − 3τ) +

1
9

cos(3t − 3τ)
]t

0

=
1
9
(1 − cos 3t)

g ∗ f(t) =
∫ t

0

(t − τ) cos 3τdτ

=
[ t

3
sin 3τ − τ

3
sin 3τ − 1

9
cos 3τ

]t

0
=

1
9
(1 − cos 3t)
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48(b)

f ∗ g(t) =
∫ t

0

(τ + 1)e−2(t−τ)dτ

=
[1
2
(τ + 1)e−2(t−τ) − 1

4
e−2(t−τ)

]t

0

=
1
2
t +

1
4
− 1

4
e−2t

g ∗ f(t) =
∫ t

0

(t − τ + 1)e−2τdτ

=
[
−1

2
(t − τ + 1)e−2τ +

1
4
e−2τ

]t

0

=
1
2
t +

1
4
− 1

4
e−2t

48(c) Integration by parts gives

∫ t

0

τ2 sin 2(t − τ)dτ =
∫ t

0

(t − τ)2 sin 2τdτ

=
1
4

cos 2t +
1
2
t2 − 1

4

48(d) Integration by parts gives

∫ t

0

e−τ sin(t − τ)dτ =
∫ t

0

e−(t−τ) sin τdτ

=
1
2
(sin t − cos t + e−t)

49(a) Since L−1
{1

s

}
= 1 = f(t) and L−1

{ 1
(s + 3)3

}
=

1
2
t2e−3t

L−1
{1

s
· 1
(s + 3)3

}
=

∫ t

0

f(t − τ)g(τ)dτ

=
∫ t

0

1.
1
2
τ2e−3τdτ

=
1
4
[
−τ2e−3τ − 2

3
τe−3τ − 2

9
e−3τ

]t

0

=
1
54

[2 − e−3t(9t2 + 6t + 2)]
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Directly

L−1
{1

s
· 1
(s + 3)3

}
= L−1 1

54
{2

s
− 18

(s + 3)3
− 6

(s + 3)2
− 2

(s + 3)
}

=
1
54

[2 − e−3t(9t2 + 6t + 2)]

49(b) L−1
{ 1

(s − 2)2
}

= te2t = f(t), L−1
{ 1

(s + 3)2
}

= te−3t = g(t)

L−1
{ 1

(s − 2)2
· 1
(s + 3)2

}
=

∫ t

0

(t − τ)e2(t−τ).τe−3τdτ

= e−2t

∫ t

0

(tτ − τ2)e−5τdτ

= e2t
[
−1

5
(tτ − τ2)e−5τ − 1

25
(t − 2τ)e−5τ +

2
125

e−5τ
]t

0

= e2t
[ t

25
e−5t +

2
125

e−5t +
t

25
− 2

125
]

=
1

125
[
e2t(5t − 2) + e−3t(5t + 2)

]
Directly

1
(s − 2)2(s + 3)2

=
−2
125

s − 2
+

1
25

(s − 2)2
+

2
125

(s + 3)
+

1
25

(s + 3)2

∴ L−1
{ 1

(s − 2)2(s + 3)2
}

=
−2
125

e2t +
1
25

te2t +
2

125
e−3t +

1
25

te−3t

=
1

125
[e2t(5t − 2) + e−3t(5t + 2)]

49(c) L−1
{ 1

s2

}
= t = f(t), L−1

{ 1
(s + 4)

}
= e−4t = g(t)

L−1
{ 1

s2
· 1
s + 4

}
=

∫ t

0

(t − τ)e−4tdτ

=
[
−1

4
(t − τ)e−4τ +

1
16

e−4τ
]t

0

=
1
16

e−4t +
1
4
t − 1

16

c©Pearson Education Limited 2011



320 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

Directly

L−1
{ 1

s2(s + 4)
}

= L−1
{ 1

16
· 1
s + 4

− 1
16

· 1
s

+
1
4
· 1
s2

}
=

1
16

e−4t − 1
16

+
1
4
t

50 Let f(λ) = λ and g(λ) = e−λ so

F(s) =
1
s2

and G(s) =
1

s + 1

Considering the integral equation

y(t) =
∫ t

0

λe−(t−λ)dλ

By (5.80) in the text

L−1{F(s)G(s)} =
∫ t

0

f(λ)g(t − λ)dλ

=
∫ t

0

λe−(t−λ)dλ = y(t)

so

y(t) = L−1{F(s)G(s)} = L−1
{ 1

s2(s + 1)
}

= L−1
{
−1

s
+

1
s2

+
1

s + 1
}

= (t − 1) + e−t

51 Impulse response h(t) is given by the solution of

d2h

dt2
+

7dh

dt
+ 12h = δ(t)

subject to zero initial conditions. Taking Laplace transforms

(s2 + 7s + 12)H(s) = 1

H(s) =
1

(s + 3)(s + 4)
=

1
s + 3

− 1
s + 4

giving h(t) = L−1{H(s)} = e−3t − e−4t
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Response to pulse input is

x(t) = A
{∫ t

0

[e−3(t−τ) − e−4(t−τ)]dτ
}
H(t)

− A
{∫ t

T

[e−3(t−τ) − e−4(t−τ)]dτ
}
H(t − T)

= A

{[1
3
− 1

4
− 1

3
e−3t +

1
4
e−4t

]
H(t)

−
[1
3
− 1

4
− 1

3
e−3(t−T ) − 1

4
e−4(t−T )

]
H(t − T)

}

=
1
12

A
[
1 − 4e−3t + 3e−4t − (1 − 4e−3(t−T ) + 3e−4(t−T ))H(t − T)

]

or directly

u(t) = A[H(t) − H(t − T)] so U(s) = L{u(t)} =
A

s
[1 − e−sT ]

Thus, taking Laplace transforms with initial quiescent state

(s2 + 7s + 12)X(s) =
A

s
[1 − e−sT ]

X(s) = A
[ 1
12

· 1
s
− 1

3
· 1
s + 3

+
1
4
· 1
s + 4

]
(1 − e−sT )

x(t) = L−1{X(s)} =
A

12
[1 − 4e−3t + 3e−4t − (1 − 4e−3(t−T ) + 3e−4(t−T ))H(t − T)]

52 Impulse response h(t) is the solution of

d2h

dt2
+ 4

dh

dt
+ 5h = δ(t), h(0) = ḣ(0) = 0

Taking Laplace transforms

(s2 + 4s + 5)H(s) = 1

H(s) =
1

s2 + 4s + 5
=

1
(s + 2)2 + 1

so h(t) = L−1{H(s)} = e−2t sin t.

c©Pearson Education Limited 2011



322 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

By the convolution integral response to unit step is

θ0(t) =
∫ t

0

e−2(t−τ) sin(t − τ).1dτ

= e−2t

∫ t

0

e2τ sin(t − τ)dτ

which using integration by parts gives

θ0(t) =
e−2t

5
[
e2τ [2 sin(t − τ) + cos(t − τ)]

]t

0

=
1
5
− 1

5
e−2t(2 sin t + cos t)

Check
Solving

d2θ0

dt2
+ 4

dθ0

dt
+ 5θ0 = 1 , θ̇0(0) = θ0(0) = 0

gives

(s2 + 4s + 5)Φ0(s) =
1
s

Φ0(s) =
1

s(s2 + 4s + 5)
=

1
5s

− 1
5
· s + 4
(s + 2)2 + 1

so θ0(t) = L−1{Φ0(s)} =
1
5
− 1

5
[cos t + 2 sin t]e−2t.

Exercises 5.7.2

53 State–space form of model is

ẋ = Ax + bu ⇒
[

ẋ1

ẋ2

]
=

[
−5 −1
3 −1

] [
x1

x2

]
+

[
2
5

]
u

y = cT x ⇒ y = [ 1 2 ]
[

x1

x2

]

System transfer function is

G(s) = cT (sI − A)−1b = [ 1 2 ]
[

s + 5 1
−3 s + 1

]−1 [
2
5

]
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det
[

s + 5 1
−3 s + 1

]
= Δ = (s + 5)(s + 1) + 3 = (s + 2)(s + 4),

[
s + 5 1
−3 s + 1

]−1

=
1
Δ

[
s + 1 −1

3 s + 5

]

Thus, G(s) = 1
Δ [ 1 2 ]

[
s + 1 −1

3 s + 5

] [
2
5

]
= 1

Δ (12s + 59)

so the system transfer function is

G(s) =
12s + 59

(s + 2)(s + 4)

54 In this case, the denominator can be factorized

G(s) =
Y(s)
U(s)

=
s + 1

(s + 1)(s + 6)

and care must be taken not to cancel the common factor, to avoid the system being
mistaken for a first order system. To proceed it is best to model the system by the
differential equation

ÿ + 7ẏ + 6y = u̇ + u

from which
ẋ1 = −7x1 + x2 + u

ẋ2 = −6x1 + u

y = x1

so that a state–space model is

ẋ = Ax + bu ⇒
[

ẋ1

ẋ2

]
=

[
−7 1
−6 0

] [
x1

x2

]
+

[
1
1

]
u

y = cT x ⇒ y = [ 1 0 ]
[

x1

x2

]

Check

G(s) = cT (sI− A)−1b

det(sI − A) = Δ =
∣∣∣∣ s + 7 −1

6 s

∣∣∣∣ = s2 + 7s + 6

G(s) =
1
Δ

[ 1 0 ]
[

s 1
−6 s + 7

] [
1
1

]
=

s + 1
Δ

=
s + 1

s2 + 7s + 6
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55(a) Taking A to be the companion matrix

A =

⎡
⎣ 0 1 0

0 0 1
−7 −5 −6

⎤
⎦

then b = [0 0 1]T

c = [5 3 1]T

Then from equation (5.84) in the text the state space form of the dynamic model
is

ẋ = A x + bu

y = cT x

55(b) Taking A to be the companion matrix

A =

⎡
⎣ 0 1 0

0 0 1
0 −3 −4

⎤
⎦

then b = [0 0 1]T

c = [2 3 1]T

And state space model is

ẋ = A x + bu, y = cT x

56 We are required to express the transfer function in the state space form

ẋ = A x + bu

y = cT x

where A is the companion matrix A =

⎡
⎣ 0 1 0

0 0 1
−6 −11 −6

⎤
⎦ and y = [1 0 0]x . To

determine b , we divide the denominator into the numerator as follows

s3 + 6s2 + 11s + 6
5s−1 − 29s−2 + 120s−3

5s2 + s + 1
5s2 + 30s + 55
−29s − 54

|
| neglect these terms

−29s − 174
120

|
|
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giving b = [5 − 29 − 120]T . Thus, state space form is

ẋ(t) =

⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
−6 −11 −6

⎤
⎦ x(t) +

⎡
⎣ 5
−29
120

⎤
⎦ u(t)

y = [1 0 0]x(t)

It is readily checked that this is a true representation of the given transfer function.

57 [sI − A] =
[

s − 3 −4
−2 s − 1

]
, det[sI − A] = (s − 5)(s + 1)

Thus,

[sI − A]−1 =
1

(s − 5)(s + 1)

[
s − 1 4

2 s − 3

]
=

[
2/3
s−5 + 1/3

s+1
2/3
s−5 − 2/3

s+1

− 1/3
s−5 − 1/3

s+1
1/3
s−5 + 2/3

s+1

]

∴ L−1[sI − A]−1 =
[ 2

3e5t + 1
3e−t 2

3e5t − 2
3e−t

1
3e5t − 1

3e−t 1
3e5t + 2

3e−t

]
= Φ1

[sI − A]−1B U(s) =
1

(s − 5)(s + 1)

[
s − 1 4

2 5 − 3

] [
0 1
1 1

] [ 4
s
7
s

]

=
1

s(s − 5)(s + 1)

[
3s + 25
7s − 15

]
=

[
−5

s + 11/3
s+1 + 4/3

s−5
3
s − 11/3

s+1 + 2/3
s−5

]

∴ L−1{[sI − A]−1B U(s)} =
[
−5 + 11

3 e−t + 4
3e5t

3 − 11
3 e−t + 2

3e5t

]
= Φ2

Thus, solution is

x(t) = Φ1x(0) + Φ2 =
[
−5 + 8

3e−t + 10
3 e5t

3 − 8
3e−t + 5

3e5t

]

which confirms the answer obtained in Exercise 61 in Chapter 1.
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58 A =
[

1 −3
2 −4

]
, sI − A =

[
s − 1 3
−2 s + 4

]

| sI − A | = Δ = (s − 1)(s + 4) + 6 = (s + 2)(s + 1)

[sI − A]−1 =
1
Δ

[
s + 4 −3

2 s − 1

]

=
[ 3

s+1 − 2
s+2 − 3

s+1 + 3
s+2

2
s+1 − 2

s+2 − 2
s+1 + 3

s+2

]

giving L−1[sI − A]−1 =
[

3e−t − 2e−2t −3e−t + 3e−2t

2e−t − 2e−2t −2e−t + 3e−2t

]

so L−1[sI − A]−1x(0) =
[

e2t

e−2t

]

[sI − A]−1bU(s) =
1
Δ

[
s + 4 −3

2 s − 1

] [
1
1

]
1

s + 3

=
[ 1

(s+2)(s+3)
1

(s+2)(s+3)

]
=

[ 1
s+2 − 1

s+3
1

s+2 − 1
s+3

]

so L−1{[sI − A]−1bU(s)} =
[

e−2t − e−3t

e−2t − e−3t

]

Thus,

x(t) =
[

e−2t

e−2t

]
+

[
e−2t − e−3t

e−2t − e−3t

]
giving

x1(t) = x2(t) = 2e−2t − e−3t

59 A =
[

0 1
−2 −3

]
, b =

[
2
0

]
, u(t) = e−tH(t), x0 = [1 0]T

with X(s) and the solution x(t) given by equations (5.88) and (5.89) in the text

(sI − A) =
[

s −1
2 s + 3

]
giving (sI − A)−1 =

1
(s + 1)(s + 2)

[
s + 3 1
−2 5

]

so that,

(sI − A)−1x0 =
1

(s + 1)(s + 2)

[
s + 3
−2

]
=

[ 2
s+1 − 1

s+2

− 2
s+1 + 2

s+2

]

and

(sI − A)−1bU(s) =
1

(s + 1)(s + 2)

[
2(s + 3)

−4

]
1

s + 1
=

[ 2
s+2 + 4

(s+1)2 − 2
s+1

4
s+1 − 4

(s+1)2 − 4
s+2

]
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Thus, X(s) =
[ 4

(s+1)2 + 1
(s+2)

2
(s+1) −

2
(s+2) −

4
(s+1)2

]

giving x(t) =
[

4te−t + e−2t

2e−t − 2e−2t − 4te−t

]

60 Taking A as the companion matrix following the procedure of Example 5.61
we have

A =

⎡
⎣ 0 1 0

0 0 1
−6 −11 −6

⎤
⎦, b = [0 0 1]T , c = [1 2 3]T

Eigenvalue of A given by

∣∣∣∣∣∣
−λ 1 0
0 −λ 1
−6 −11 −6 − λ

∣∣∣∣∣∣ = −(λ3 + 6λ2 + 11λ + 6) = −(λ + 1)(λ + 2)(λ + 3) = 0

so the eigenvalues are λ1 = −3, λ2 = −2, λ3 = −1. The eigenvectors are given by
the corresponding solutions of

−λiei1 + ei2 + 0ei3 = 0

0ei1 − λiei2 + ei3 = 0

−6ei1 − 11ei2 − (6 + λi)ei3 = 0

Taking i = 1, 2, 3 and solving gives the eigenvectors as

e1 = [1 − 3 9]T , e2 = [1 − 2 4]T , e3 = [1 − 1 1]T

Taking M to be the modal matrix M =

⎡
⎣ 1 1 1
−3 −2 −1

9 4 1

⎤
⎦ then the transformation

X = M ξξξ will reduce the system to the canonical form

ξ̇ξξ = Λ ξξξ + M−1bu , y = cT M ξξξ

M−1 =
1
2

⎡
⎣ 2 3 1
−6 −8 −2

6 5 1

⎤
⎦ , M−1b =

1
2

⎡
⎣ 1
−2

1

⎤
⎦ , cT M = [22 9 2]
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Thus, canonical form is

⎡
⎣ ξ̇1

ξ̇2

ξ̇3

⎤
⎦ =

⎡
⎣−3 0 0

0 −2 0
0 0 −1

⎤
⎦

⎡
⎣ ξ1

ξ2

ξ3

⎤
⎦ +

⎡
⎣ 1

2
−1
1
2

⎤
⎦u

y = [22 9 2] [ξ1 ξ2 ξ3]T

Since the eigenvalues of A are negative the system is stable. Since vector M−1b

has no zero elements the system is controllable and since cT M has no zero elements
the system is also observable.

b = [0 0 1]T, A b = [0 1 − 6]T, A2b = [1 6 25]T

[b A b A2b] =

⎡
⎣ 0 0 1

0 1 6
1 −6 25

⎤
⎦ ∼

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ which is of full rank 3

so the system is controllable.

c = [1 2 3]T, AT c = [−18 − 32 − 16], (AT )2c = [96 158 63]T

[c AT c (AT )2c] =

⎡
⎣ 1 −18 96

2 −32 158
3 −16 63

⎤
⎦ ∼

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ which is of full rank 3

so the system is observable.

61 A =

⎡
⎣ 0 1 0

0 0 1
0 −5 −6

⎤
⎦, b = [0 0 1]T, c = [5 3 1]T

Eigenvalues of A given by

0 =

∣∣∣∣∣∣
−λ 1 0

0 −λ 1
0 −5 −6 − λ

∣∣∣∣∣∣ = −λ(λ + 5)(λ + 1) = 0

so eigenvalues are λ1 = −5, λ2 = −1, λ3 = 0. The corresponding eigenvectors are
determined as

e1 = [1 − 5 25]T , e2 = [1 − 1 1] , e3 = [1 0 0]T
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Take M to be the modal matrix M =

⎡
⎣ 1 1 1
−5 −1 0
25 1 0

⎤
⎦ then the transformation

x = Mξξξ will reduce the system to the canonical form

ξ̇ξξ = Λ ξξξ + M−1bu , y = cT M ξξξ

M−1 =
1
20

⎡
⎣ 0 1 1

0 −25 −5
20 24 4

⎤
⎦, M−1b =

1
20

⎡
⎣ 1
−5

4

⎤
⎦, cT M = [15 3 5]

Thus, canonical form is⎡
⎣ ξ̇1

ξ̇2

ξ̇3

⎤
⎦ =

⎡
⎣−5 0 0

0 −1 0
0 0 0

⎤
⎦

⎡
⎣ ξ1

ξ2

ξ3

⎤
⎦ +

⎡
⎣ 1

20
− 1

4
1
5

⎤
⎦u

y = [15 3 5] [ξ1 ξ2 ξ3]T

Since A has zero eigenvalues the system is marginally stable, since M−1b has no
zero elements the system is controllable and since cT M has no zero elements the
system is observable. Again as in Exercise 60 these results can be confirmed by
using the Kalman matrices.

Exercises 5.7.4

62 A =
[

0 −2
1 −3

]
, B =

[
1 −1
1 1

]
, u =

[
1
t

]
, x0 =

[
0
1

]
The solution x(t) is given by equation (5.97) in the text.

(sI − A) =
[

s 2
−1 s + 3

]
giving (sI − A)−1 =

1
(s + 1)(s + 2)

[
s + 3 −2

1 s

]

so that,

(sI− A)−1x0 =
1

(s + 1)(s + 2)

[
−2
s

]
=

[ 2
s+2 − 2

s+1
2

s+2 − 1
s+1

]

(sI − A)−1B U(s) =
1

(s + 1)(s + 2)

[
s + 3 −2

1 s

] [
1 −1
1 1

] ⎡
⎣ 1

s

1
s2

⎤
⎦

=

[
1

s(s+2) −
(s+5)

s2(s+1)(s+2)
1

s(s+2) + s−1
s2(s+1)(s+2)

]
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Thus,

X1(s) = L{x1(t)} =
2

s + 2
− 2

s + 1
+

1
s(s + 2)

− (s + 5)
s2(s + 1)(s + 2)

=
9/4

s + 2
− 6

s + 1
+

15/4
s

− 5/2
s2

giving x1(t) =
9
4
e−2t − 6e−t +

15
4

− 5
2
t

63 ÿ1 + ẏ1 − ẏ2 + y1 = u1 (i)
ÿ2 + ẏ2 − ẏ1 + y2 = u2 (ii)

Let x = [ x1 x2 x3 x4 ]T = [ y1 ẏ1 y2 ẏ2 ]T then

ẋ1 = ẏ1 = x2

(i) ⇒ ÿ1 = ẋ2 = −ẏ1 + ẏ2 − y1 + u1 ⇒ ẋ2 = −x2 + x4 − x1 + u1

ẋ3 = ẏ2 = x4

(ii) ⇒ ÿ2 = ẋ4 = xx − ẏ2 + ẏ1 − y2 + u2 ⇒ ẋ4 = −x4 + x2 − x3 + u2

giving the state–space representation

ẋ = Ax + Bu ⇒

⎡
⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎦ =

⎡
⎢⎣

0 1 0 0
−1 −1 0 1
0 0 0 1
0 1 −1 −1

⎤
⎥⎦

⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦ +

⎡
⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎦

[
u1

u2

]

y = Cx ⇒
[

y1

y2

]
=

[
1 0 0 0
0 0 1 0

] ⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦

Transfer function = G(s) = Cadj(sI−A)B
det(sI−A)

det(sI − A) = Δ =

∣∣∣∣∣∣∣
s −1 0 0
1 s + 1 0 −1
0 0 s −1
0 −1 1 s + 1

∣∣∣∣∣∣∣ = s4 + 2s3 + 2s2 + 2s + 1

⇒ Δ = (s + 1)2(s2 + 1)

so that

G(s) =
1
Δ

[
s2 + s + 1 s

s s2 + s + 1

]
=

1
(s + 1)2(s2 + 1)

[
s2 + s + 1 s

s s2 + s + 1

]
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Poles given by Δ = (s + 1)2(s2 + 1) = 0

Eigenvalues associated matrix A given by det(λI− A) = (λ + 1)2(λ2 + 1) = 0

Thus, poles and eigenvalues are identical.

64 (a) u2 = R1(u1 + x1 + x2 + x3) + L1ẋ1;R1 = 1, L1 = 1

⇒ ẋ1 = −x1 − x2 − x3 − u1 + u2

u2 = R1(u1 + x1 + x2 + x3) + R2(x2 + x3) + L2ẋ2;R2 = 2, L2 = 1

⇒ ẋ2 = −x1 − 3x2 − 3x3 − u1 + u2

u2 = R1(u1 + x1 + x2 + x3) + R2(x2 + x3) + R3x3 + L3ẋ3;R3 = 3, L3 = 1

⇒ ẋ3 = −x1 − 3x2 − 6x3 − u1 + u2

giving the state–space model

⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣−1 −1 −1
−1 −3 −3
−1 −3 −6

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ +

⎡
⎣−1 1
−1 1
−1 1

⎤
⎦ [

u1

u2

]

[
y1

y2

]
=

[
0 2 2
0 0 1

] [
x1

x2

]

(b) Transfer matrix = G(s) = Y(s)
U(s) = C(sI − A)−1B = Cadj(sI−A)

det(sI−A)B

det(sI − A) = Δ =

∣∣∣∣∣∣
s + 1 1 1

1 s + 3 3
1 3 s + 6

∣∣∣∣∣∣ = s3 + 10s2 + 16s + 6

adj(sI − A) =

⎡
⎣ s2 + 9s + 9 −(s + 3) −s

−(s + 3) s2 + 7s + 5 −(3s + 2)
−s −(3s + 2) s2 + 4s + 2

⎤
⎦

G(s) =
1
Δ

[
0 2 2
0 0 1

]⎡
⎣ s2 + 9s + 9 −(s + 3) −s

−(s + 3) s2 + 7s + 5 −(3s + 2)
−s −(3s + 2) s2 + 4s + 2

⎤
⎦

⎡
⎣−1 1
−1 1
−1 1

⎤
⎦

=
1
Δ

[
−2s(2s + 3) 2s(2s + 3)

−s2 s2

]
with Δ = s3 + 10s2 + 16s + 6
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(c) Y(s) = G(s)U(s) where U(s) =
[ 1

s
1
s2

]

=
1
Δ

[
−2s(2s + 3) 2s(2s + 3)

−s2 s2

] [ 1
s
1
s2

]

=
1
Δ

[
−4s2−2s+6

s
−s + 1

]

To obtain response express in partial fractions and take inverse Laplace transforms
Factorizing Δ gives Δ = (s + 8.12)(s + 0.56)(s + 1.32) so

Y1(s) =
−4s2 − 2s + 6

s(s + 8.12)(s + 0.56)(s + 1.32)
=

1
s

+
0.578

s + 8.12
− 1.824

s + 0.56
+

0.246
s + 1.32

⇒ y1(t) = 1 + 0.578e−8.12t − 1.824e−0.56t + 0.246e−1.32t

Y2(s) =
−s + 1

(s + 8.12)(s + 0.56)(s + 1.32)
=

0.177
s + 8.12

+
0.272

s + 0.56
− 0.449

s + 1.32
⇒ y2(t) = 0.177e−8.12t + 0.272e−0.56t − 0.449e−1.32t

Exercises 5.9.3

65 Choose x1(t) = y(t), x2(t) = ẋ1(t) =
dy

dt
then

ẋ(t) =
[

0 1
1
2

1
2

]
x(t) +

[
0
1

]
u(t), y(t) = [1 0]x(t)

Taking u(t) = K1x1(t) + K2x2(t) + uext(t)

ẋ(t) =
[

0 1
K1 + 1

2 K2 + 1
2

]
x(t) +

[
0
1

]
uext

The eigenvalues of the matrix are given by

∣∣∣∣ 0 − λ 1
K1 + 1

2 K2 + 1
2 − λ

∣∣∣∣ = 0

or λ2 − (K2 + 1
2 )λ − (K1 + 1

2 ) = 0
If the poles are to be at λ = −4 then we require the characteristic equation to be

λ2 + 8λ + 16 = 0
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By comparison, we have −K2 − 1
2 = 8 and −K1 − 1

2 = 18 giving K1 = − 33
2 ,

K2 = − 17
2 so u(t) =

[
−33

2
− 17

2
]
x + uext

66

ẋ(t) =
[

0 1
− 1

4 − 5
4

]
x(t) +

[
0
1

]
u(t) , y(t) = [0 2]x(t)

Setting u = KT x + uext, K = [K1 K2]T gives the system matrix

A =
[

0 1
K1 − 1

4 K2 − 5
4

]

whose eigenvalues are given by λ2 − (K2 − 5
4 )λ − (K1 − 5

4 ) = 0. Comparing with
the desired characteristic equation

(λ + 5)2 = λ2 + 10λ + 25 = 0

gives K1 = − 99
4 , K2 = − 35

4 . Thus,

u(t) =
[
−99

4
− 35

4
]
x(t) + uext

67 With u1 = [K1 K2]x(t) the system matrix A becomes

A =
[

K1 1 + K2

6 + K1 1 + K2

]

having characteristic equation

λ2 − λ(1 + K1 + K2) − 6(1 − K2) = 0

which on comparing with
λ2 + 10λ + 25 = 0

gives K1 = −35
6

, K2 = −31
6

so that u1(t) =
[
−35

6
− 31

6
]
x(t)

Using u2(t) the matrix A becomes
[

0 1
6 + K1 1 + K2

]
where KT = [−31 − 11]

68 See p. 472 in the text.
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69 For the matrix of Exercise 68 the Kalman matrix is

M =
[

2 −2
1 −1

]
∼

[
1 0
0 0

]

which is of rank 1. Thus, the system is uncontrollable.
For the matrix of Exercise 65 the Kalman matrix is

M =
[

0 1
1 1

2

]
∼

[
0 1
1 0

]

which is of full rank 2. Thus, the system is controllable.

70

M = (b A b) =
[

1 0
4 −1

]
, M−1 =

[
1 0
4 −1

]
, vT = [4 − 1]

vT A = [4 − 1]
[

8 −2
35 −9

]
= [−3 1] so T =

[
4 −1
−3 1

]
, T−1 =

[
1 1
3 4

]

Taking z(t) = Tx or x = T−1z(t) then equation reduces to

T−1ż(t) =
[

8 −2
35 −9

]
T−1z(t) +

[
1
4

]
u

or ż(t) = I

[
8 −2
35 −9

]
T−1z(t) + T

[
1
4

]
u

=
[

4 −1
−3 1

] [
8 −2
35 −9

] [
1 1
3 4

]
z(t) +

[
4 −1

−3 1

] [
1
4

]
u

=
[

0 1
2 −1

]
z(t) +

[
0
1

]
u

Clearly both system matrices have the same eigenvalues λ = −2, λ = 1. This will
always be so since we have carried out a singularity transformation.

Review Exercises 5.10

1(a)
d2x

dt2
+ 4

dx

dt
+ 5x = 8cos t, x(0) = ẋ(0) = 0 Taking Laplace transforms

(s2 + 4s + 5)X(s) =
8s

s2 + 1
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X(s) =
8s

(s2 + 1)(s2 + 4s + 5)

=
s + 1
s2 + 1

− s + 5
s2 + 4s + 5

=
s

s2 + 1
+

1
s2 + 1

− (s + 2) + 3
(s + 2)2 + 1

giving x(t) = L−1{X(s)} = cos t + sin t − e−2t[cos t + 3 sin t]

1(b) 5
d2x

dt2
− 3

dx

dt
− 2x = 6, x(0) = ẋ(0) = 1

Taking Laplace transforms

(5s2 − 3s − 2)X(s) = 5(s + 1) − 3(1) +
6
s

=
5s2 + 2s + 6

s

X(s) =
5s2 + 2s + 6

5s(s + 2
5 )(s + 1)

= −3
5

+
13
7

s − 1
+

15
7

s + 2
5

giving x(t) = L−1{X(s)} = −3 +
13
7

et +
15
7

e−
2
5 t

2(a)

1
(s + 1)(s + 2)(s2 + 2s + 2)

=
1

s + 1
− 1

2
· 1
s + 2

− 1
2
· s + 2
s2 + 2s + 2

=
1

s + 1
− 1

2
· 1
s + 2

− 1
2
· (s + 1) + 1
(s + 1)2 + 1

Thus , L−1
{ 1

(s + 1)(s + 2)(s2 + 2s + 2)
}

= e−t − 1
2
e−2t − 1

2
e−t(cos t + sin t)

2(b) From equation (5.26) in the text the equation is readily deduced.
Taking Laplace transforms

(s2 + 3s + 2)I(s) = s + 2 + 3 + V.
1

(s + 1)2 + 1

I(s) =
s + 5

(s + 2)(s + 1)
+ V

[ 1
(s + 2)(s + 1)(s2 + 2s + 2)

]
=

4
s + 1

− 3
s + 2

+ V
[
extended as in (a)

]
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Thus, using the result of (a) above

i(t) = L−1{I(s)} = 4e−t − 3e−2t + V
[
e−t − 1

2
e−2t − 1

2
e−t(cos t + sin t)

]

3 Taking Laplace transforms

(s2 − 1)X(s) + 5sY(s) =
1
s2

−2sX(s) + (s2 − 4)Y(s) = −2
s

Eliminating Y(s)

[(s2 − 1)(s2 − 4) + 2s(5s)]X(s) =
s2 − 4

s2
+ 10 =

11s2 − 4
s2

X(s) =
11s2 − 4

s2(s2 + 1)(s2 + 4)

= − 1
s2

+
5

s2 + 1
− 4

s2 + 4

giving x(t) = L−1{X(s)} = −t + 5 sin t − 2 sin 2t
From the first differential equation

dy

dt
=

1
5
[
t + x − d2x

dt2
]

=
1
5
[t − t + 5 sin t − 2 sin 2t + 5 sin t − 8 sin 2t]

= (2 sin t − 2 sin 2t)

then y = −2 cos t + cos 2t + const.

and since y(0) = 0, constant = 1 giving

y(t) = 1 − 2 cos t + cos 2t

x(t) = −t + 5 sin t − 2 sin 2t

4 Taking Laplace transforms

(s2 + 2s + 2)X(s) = sx0 + x1 + 2x0 +
s

s2 + 1
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X(s) =
sx0 + x1 + 2x0

s2 + 2s + 2
+

s

(s2 + 1)(s2 + 2s + 2)

=
x0(s + 1) + (x1 + x0)

(s + 1)2 + 1
+

1
5
· s + 2
s2 + 1

− 1
5
· s + 4
(s + 1)2 + 1

giving
x(t) = L−1{X(s)}

= e−t(x0 cos t + (x1 + x0) sin t) +
1
5
(cos t + 2 sin t)

− 1
5
e−t(cos t + 3 sin t)

that is,

x(t) =
1
5
(cos t + 2 sin t) + e−t

[
(x0 −

1
5
) cos t + (x1 + x0 −

3
5
) sin t

]
↑ ↑

steady state transient

Steady state solution is xs(t) =
1
5

cos t +
2
5

sin t ≡ A cos(t − α)

having amplitude A =
√

( 1
5 )2 + ( 2

5 )2 =
1√
5

and phase lag α = tan−1 2 = 63.4◦ .

5 Denoting the currents in the primary and secondary circuits by i1(t) and i2(t)
respectively Kirchoff’s second law gives

5i1 + 2
di1
dt

+
di2
dt

= 100

20i2 + 3
di2
dt

+
di1
dt

= 0

Taking Laplace transforms

(5 + 2s)I1(s) + sI2(s) =
100
s

sI1(s) + (3s + 20)I2(s) = 0

Eliminating I1(s)

[s2 − (3s + 20)(2s + 5)]I2(s) = 100
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I2(s) =
−100

5s2 + 55s + 100
= − 20

s2 + 11s + 20

= − 20
(s + 11

2 )2 − 41
4

= − 20√
41

[ 1

(s + 11
2 −

√
41
2 )

− 1

(s + 11
2 +

√
41
2 )

]
giving the current i2(t) in the secondary loop as

i2(t) = L−1{I2(s)} =
20√
41

[
e−(11+

√
41)t/2 − e−(11−

√
41)t/2

]

6(a)

(i)
L{cos(wt + φ)} = L{cos φ cos wt − sin φ sinwt}

= cos φ
s

s2 + w2
− sin φ

w

s2 + w2

= (s cos φ − w sin φ)/(s2 + w2)

(ii)

L{e−wt sin(wt + φ)} = L{e−wt sin wt cos φ + e−wt cos wt sin φ}

= cos φ
w

(s + w)2 + w2
+ sin φ

s + w

(s + w)2 + w2

= [sinφ + w(cos φ + sin φ)]/(s2 + 2sw + 2w2)

6(b) Taking Laplace transforms

(s2 + 4s + 8)X(s) = (2s + 1) + 8 +
s

s2 + 4

=
2s3 + 9s2 + 9s + 36
(s2 + 4)(s2 + 4s + 8)

=
1
20

· s + 4
s2 + 4

+
1
20

· 39s + 172
s2 + 4s + 8

=
1
20

· s + 4
s2 + 4

+
1
20

· 39(s + 2) + 47(2)
(s + 2)2 + (2)2

giving x(t) = L−1{X(s)} =
1
20

(cos 2t + 2 sin 2t) +
1
20

e−2t(39 cos 2t + 47 sin 2t) .

7(a)

L−1
[ s − 4
s2 + 4s + 13

]
= L−1

[ (s + 2) − 2(3)
(s + 2)2 + 32

]
= e−2t[cos 3t − 2 sin 3t]
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7(b) Taking Laplace transforms

(s + 2)Y(s) = −3 +
4
s

+
2s

s2 + 1
+

4
s2 + 1

Y(s) =
−3s3 + 6s2 + s + 4

s(s + 2)(s2 + 1)

=
2
s
− 5

s + 2
+

2
s2 + 1

Therefore, y(t) = L−1{Y(s)} = 2 − 5e−2t + 2 sin t

8 Taking Laplace transforms

(s + 5)X(s) + 3Y(s) = 1 +
5

s2 + 1
− 2s

s2 + 1
=

s2 − 2s + 6
s2 + 1

5X(s) + (s + 3)Y(s) =
6

s2 + 1
− 3s

s2 + 1
=

6 − 3s
s2 + 1

Eliminating Y(s)

[(s + 5)(s + 3) − 15]X(s) =
(s + 3)(s2 − 2s + 6)

s2 + 1
− 3(6 − 3s)

s2 + 1

(s2 + 8s)X(s) =
s3 + s2 + 9s

s2 + 1

X(s) =
s2 + s + 9

(s + 8)(s2 + 1)
=

1
s + 8

+
1

s2 + 1

so x(t) = L−1{X(s)} = e−8t + sin t

From the first differential equation

3y = 5 sin t − 2 cos t − 5x − dx

dt
= 3e−8t − 3 cos t

Thus, x(t) = e−8t + sin t, y(t) = e−8t − cos t .
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9 Taking Laplace transforms

(s2 + 300s + 2 × 104)Q(s) = 200· 100
s2 + 104

(s + 100)(s + 200)Q(s) = 104· 2
s2 + 104

Q(s) =
2.104

(s + 100)(s + 200)(s2 + 104)

=
1

100
· 1
s + 100

− 2
500

· 1
s + 200

− 1
500

· 3s − 100
s2 + 104

giving q(t) = L−1{Q(s)} =
1

100
e−100t − 2

500
e−200t − 1

500
(3 cos 100t − sin 100t)

that is,

q(t) =
1

500
[5e−100t − 2e−200t] − 1

500
[3 cos 100t − sin 100t]

↑ ↑

transient steady state

Steady state current =
3
5

sin 100t +
1
5

cos 100t ≡ A sin(100t + α)

where α = tan−1 1
5 
 181

2

o .
Hence, the current leads the applied emf by about 181

2

o .

10

4
dx

dt
+ 6x + y = 2 sin 2t (i)

d2x

dt2
+ x − dy

dt
= 3e−2t (ii)

Given x = 2 and
dx

dt
= −2 when t = 0 so from (i) y = −4 when t = 0.

Taking Laplace transforms

(4s + 6)X(s) + Y(s) = 8 +
4

s2 + 4
=

8s2 + 36
s2 + 4

(s2 + 1)X(s) − sY(s) = 2s − 2 + 4 +
3

s + 2
=

2s2 + 6s + 7
s + 2

Eliminating Y(s)

[s(4s + 6) + (s2 + 1)]X(s) =
8s2 + 36
s2 + 4

+
2s2 + 6s + 7

s + 2
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X(s) =
8s2 + 36

s(s2 + 4)(s + 1)(s + 1
5 )

+
2s2 + 6s + 7

5(s + 2)(s + 1)(s + 1
5 )

=
11
5

s + 1
−

227
505

s + 1
5

− 1
505

· 76s − 96
s2 + 4

+
1
3

s + 2
−

3
4

s + 1
+

49
60

s + 1
5

=
29
20

s + 1
+

1
3

s + 2
+

445
1212

s + 1
5

− 1
505

[76s − 96
s2 + 4

]
giving

x(t) = L−1{X(s)} =
29
20

e−t +
1
3
e−2t +

445
1212

e−
1
5 t − 1

505
(76 cos 2t − 48 sin 2t)

11(a) Taking Laplace transforms

(s2 + 8s + 16)Φ(s) =
2

s2 + 4

Φ(s) =
2

(s + 4)2(s2 + 4)

=
1
25

· 1
s + 4

+
1
10

· 1
(s + 4)2

− 1
50

· 2s − 3
s2 + 4

so θ(t) = L−1{Φ(s)} =
1
25

e−4t +
1
10

· te−4t − 1
100

(4 cos 2t − 3 sin 2t)

that is, θ(t) =
1

100
(4e−4t + 10te−4t − 4 cos 2t + 3 sin 2t)

11(b) Taking Laplace transforms

(s + 2)I1(s) + 6I2(s) = 1

I1(s) + (s − 3)I2(s) = 0

Eliminating I2(s)

[(s + 2)(s − 3) − 6]I1(s) = s − 3

I1(s) =
s − 3

(s − 4)(s + 3)
=

1
7

s − 4
+

6
7

s + 3

giving i1(t) = L−1{I1(s)} =
1
7
(e4t + 6e−3t)
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Then from the first differential equation

6i2 = −2i1 −
di1
dt

= −6
7
e4t +

6
7
e−3t

giving i2(t) =
1
7
(e−3t − e4t), i1(t) =

1
7
(e4t + 6e−3t).

12 The differential equation

LCR
d2i

dt2
+ L

di

dt
+ Ri = V

follows using Kirchhoff’s second law.

Substituting V = E and L = 2R2C gives

2R3C2 d2i

dt2
+ 2R2C

di

dt
+ Ri = E

which on substituting CR =
1
2n

leads to

1
2n2

d2i

dt2
+

1
n

di

dt
+ i =

E

R

and it follows that
d2i

dt2
+ 2n

di

dt
+ 2n2i = 2n2 E

R

Taking Laplace transforms

(s2 + 2ns + 2n2)I(s) =
2n2E

R
· 1
s

I(s) =
E

R

[ 2n2

s(s2 + 2ns + 2n2)
]

=
E

R

[1
s
− s + 2n

(s + n)2 + n2

]
so that

i(t) =
E

R
[1 − e−nt(cos nt + sin nt)]
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13 The equations are readily deduced by applying Kirchhoff’s second law to the
left- and right-hand circuits.

Note that from the given initial conditions we deduce that i2(0) = 0.

Taking Laplace transforms then gives

(sL + 2R)I1(s) − RI2(s) =
E

s

−RI1(s) + (sL + 2R)I2(s) = 0

Eliminating I2(s)

[(sL + 2R)2 − R2]I1(s) =
E

s
(sL + 2R)

(sL + 3R)(sL + R)I1(s) =
E

s
(sL + 2R)

I1(s) =
E

L

[ s + 2R
L

s(s + R
L )(s + 3R

L )

]

=
E

R

[ 2
3

s
−

1
2

s + R
L

−
1
6

s + 3R
L

]
giving i1(t) = L−1{I1(s)} =

1
6

E

R

[
4 − 3e−

R
L t − e−

3R
L t

]
For large t , the exponential terms are approximately zero and

i1(t) 

2
3

E

R

From the first differential equation

Ri2 = 2Ri1 + L
di1
dt

− E

Ignoring the exponential terms we have that for large t

i2 
 4
3

E

R
− E

R
=

1
3

E

R
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14 Taking Laplace transforms

(s2 + 2)X1(s) − X2(s) =
2

s2 + 4
−X1(s) + (s2 + 2)X2(s) = 0

Eliminating X1(s)

[(s2 + 2)2 − 1]X2(s) =
2

s2 + 4

X2(s) =
2

(s2 + 4)(s2 + 1)(s2 + 3)

=
2
3

s2 + 4
+

1
3

s2 + 1
− 1

s2 + 3

so x2(t) = L−1{X2(s)} =
1
3

sin 2t +
1
3

sin t − 1√
3

sin
√

3t

Then from the second differential equation

x1(t) = 2x2 +
d2x2

dt2
=

2
3

sin 2t +
2
3

sin t − 2√
3

sin
√

3t − 4
3

sin 2t − 1
3

sin t +
√

3 sin
√

3t

or x1(t) = −2
3

sin 2t +
1
3

sin t +
1√
3

sin
√

3t

15(a)

(i)

L−1
{ s + 4

s2 + 2s + 10
}

= L−1
{ (s + 1) + 3

(s + 1)2 + 32

}
= e−t(cos 3t + sin 3t)

(ii)

L−1
{ s − 3

(s − 1)2(s − 2)
}

= L−1
{ 1

(s − 1)
+

2
(s − 1)2

− 1
s − 2

}
= et + 2tet − e2t
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15(b) Taking Laplace transforms

(s2 + 2s + 1)Y(s) = 4s + 2 + 8 + L{3te−t}

(s + 1)2Y(s) = 4s + 10 +
3

(s + 1)2

Y(s) =
4s + 10
(s + 1)2

+
3

(s + 1)4

=
4

s + 1
+

6
(s + 1)2

+
3

(s + 1)4

giving y(t) = L−1{Y(s)} = 4e−t + 6te−t +
1
2
t3e−t

that is, y(t) =
1
2
e−t(8 + 12t + t3)

16(a)

F(s) =
5

s2 − 14s + 53
=

5
2
· 2
(s − 7)2 + 22

Therefore, f(t) = L−1{F(s)} =
5
2
e7t sin 2t

16(b)
d2θ

dt2
+ 2K

dθ

dt
+ n2θ =

n2i

K
, θ(0) = θ̇(0) = 0, i const.

Taking Laplace transforms

(s2 + 2Ks + n2)Φ(s) =
n2

K

i

s

Therefore, Φ(s) =
n2i

Ks(s2 + 2Ks + n2)

For the case of critical damping n = K giving

Φ(s) =
Ki

s(s + K)2
= Ki

[ 1
K2

s
−

1
K2

s + K
−

1
K

(s + K)2
]
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Thus,

θ(t) = L−1{Φ(s)} =
i

K
[1 − e−Kt − Kte−Kt]

17(a)

(i)

L{sin tH(t − α)} = L{sin[(t − α) + α]H(t − α)}

= L{[sin(t − α) cos α + cos(t − α) sin α]H(t − α)}

=
cos α + s sin α

s2 + 1
. e−αs

(ii)

L−1 se−αs

s2 + 2s + 5
= L−1

{
e−αs (s + 1) − 1

(s + 1)2 + 4
}

= L−1
{
eαsL[e−t(cos 2t − 1

2
sin 2t)]

}
= e−(t−α)[cos 2(t − α) − 1

2
sin 2(t − α)]H(t − α)

17(b) Taking Laplace transforms

(s2 + 2s + 5)Y(s) =
1

s2 + 1
−

[−e−sπ

s2 + 1
]

by (i) above in part (a)

=
1 + e−πs

s2 + 1

Y(s) =
1 + e−πs

(s2 + 1)(s2 + 2s + 5)
=

[
− 1

10
s − 2
s2 + 1

+
1
10

s

s2 + 2s + 5
]
(1 + e−πs)
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giving

y(t) = L−1{Y(s)} =
1
10

[2 sin t − cos t + e−(t−π)[2 sin(t − π) − cos(t − π)]H(t − π)]

+ e−t(cos 2t − 1
2

sin 2t) + e−(t−π)[cos 2(t − z)

− 1
2

sin 2(t − π)]H(t − π)]

=
1
10

[
e−t(cos 2t − 1

2
sin 2t) + 2 sin t − cos t

+ [e−(t−π)(cos 2t − 1
2

sin 2t) + cos t − 2 sin t]H(t − π)
]

18 By theorem 5.5

L{v(t)} = V(s) =
1

1 − e−sT

∫ T

0

e−stv(t)dt

=
1

1 − e−sT

[∫ T/2

0

e−stdt −
∫ T

T/2

e−stdt

]

=
1

1 − e−sT

{[
−1

s
e−st

]T/2

0
−

[
−1

s
e−st

]T

T/2

}

=
1
s
· 1
1 − e−sT

(e−sT − e−sT/2 − e−sT/2 + 1)

=
1
s

(1 − e−sT/2)2

(1 − e−sT/2)(1 + e−sT/2)
=

1
s

[1 − e−sT/2

1 + e−sT/2

]

Equation for current flowing is

250i +
1
C

(q0 +
∫ t

0

i(τ)dτ) = v(t), q0 = 0

Taking Laplace transforms

250I(s) +
1

10−4
· 1
s
· I(s) = V(s) =

1
s

[1 − e−sT/2

1 + e−sT/2

]
(s + 40)I(s) =

1
250

[1 − e−sT/2

1 + e−sT/2

]
or I(s) =

1
250(s + 40)

· 1 − e−sT/2

1 + e−sT/2
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I(s) =
1

250(s + 40)
(1 − e−sT/2)(1 − e−sT/2 + e−sT − e−

3
2 sT + e−2sT . . .)

=
1

250(s + 40)
[1 − 2e−sT/2 + 2e−sT − 2e−

3
2 sT + 2e−2sT . . .]

Since L−1
{ 1

250(s + 40)
}

=
1

250
e−40t using the second shift theorem gives

i(t) =
1

250

[
e−40t − 2H

(
t − T

2
)
e−40(t−T/2) + 2H(t − T)e−40(t−T )

−2H
(
t − 3T

2
)
e−40(t−3T/2) + . . .

]

If T = 10−3 s then the first few terms give a good representation of the steady state

since the time constant
1
4

of the circuit is large compared to the period T .

19 The impulse response h(t) is the solution of

d2h

dt2
+

2dh

dt
+ 2h = δ(t)

subject to the initial conditions h(0) = ḣ(0) = 0. Taking Laplace transforms

(s2 + 2s + s)H(s) = L{δ(t)} = 1

H(s) =
1

(s + 1)2 + 1
that is, h(t) = L−1{H(s)} = e−t sin t.

Using the convolution integral the step response xs(t) is given by

xs(t) =
∫ t

0

h(τ)u(t − τ)dτ

with u(t) = 1H(t) ; that is,

xs(t) =
∫ t

0

1.e−τ sin τdτ

= −1
2
[e−τ cos τ + e−τ sin τ]t0

that is, xs(t) =
1
2
[1 − e−t(cos t + sin t)].
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Solving
d2xs

dt2
+

2dxs

dt
+ 2xs = 1 directly we have taking Laplace transforms

(s2 + 2s + 2)Xs(s) =
1
s

Xs(s) =
1

s(s2 + 2s + 2)

=
1
2
· 1
s
− 1

2
[ s + 2
(s + 1)2 + 1

]
giving as before

xs(t) =
1
2
− 1

2
e−t(cos t + sin t)

20

EI
d4y

dx4
= 12 + 12H(x − 4) − Rδ(x − 4)

y(0) = y′(0) = 0, y(4) = 0, y′′(5) = y′′′(5) = 0

With y′′(0) = A, y′′′(0) = B taking Laplace transforms

EIs4Y(s) = EI(sA + B) +
12
s

+
12
s

e−4s − Re−4s

Y(s) =
A

s3
+

B

s4
+

12
EI

· 1
s5

+
12
EI

· 1
s5

e−4s − R

EI
· 1
s4

e−4s

giving

y(x) = L−1{Y(s)} =
A

2
x2 +

B

6
x3 +

1
2EI

x4 +
1

2EI
(x − 4)4H(x − 4)

− R

6EI
(x − 4)3H(x − 4)
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or

EIy(x) =
1
2
A1x

2 +
1
6
B1x

3 +
1
2
x4 +

1
2
(x − 4)4H(x − 4) − R

6
(x − 4)3H(x − 4)

y(4) = 0 ⇒ 0 = 8A1 +
32
3

B1 + 128 ⇒ 3A1 + 4B1 = −48

y′′(5) = 0 ⇒ 0 = A1 + 5B1 + 6(25) + 6 − R ⇒ A1 + 5B1 − R = −156

y′′′(5) = 0 ⇒ 0 = B1 + 12(5) + 12 − R ⇒ B1 − R = −72

which solve to give A1 = 18, B1 = −25.5, R = 46.5

Thus,

y(x) =

⎧⎨
⎩

1
2
x4 − 4.25x3 + 9x2, 0 ≤ x ≤ 4

1
2
x4 − 4.25x3 + 9x2 +

1
2
(x − 4)4 − 7.75(x − 4)3, 4 ≤ x ≤ 5

R0 = −EIy′′′(0) = 25.5kN, M0 = EIy′′(0) = 18kN.m

Check: R0 + R = 72kN, Total load = 12 × 4 + 24 = 72kN
√

Moment about x = 0 is

12 × 4 × 2 + 24 × 4.5 − 4R = 18 = M0
√

21(a)

f(t) = H(t − 1) − H(t − 2)

and L{f(t)} = F(s) =
e−s

s
− e−2s

s
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Taking Laplace transforms throughout the differential equation

(s + 1)X(s) =
1
s
(e−s − e−2s)

X(s) =
1

s(s + 1)
(e−s − e−2s)

=
[1
s
− 1

s + 1
]
e−s −

[1
s
− 1

s + 1
]
e−2s

giving x(t) = L−1{X(s)} = [1 − e−(t−1)]H(t − 1) − [1 − e−(t−2)]H(t − 2)

21(b) I(s) =
E

s[Ls + R/(1 + Cs)]

(i) By the initial value theorem

lim
t→0

i(t) = lim
s→∞

sI(s) = lim
s→∞

E

Ls + R/(1 + Cs)
= 0

(ii) Since sI(s) has all its poles in the left half of the s-plane the conditions of
the final value theorem hold so

lim
t→∞

i(t) = lim
s→0

sI(s) =
E

R

22 We have that for a periodic function f(t) of period T

L{f(t)} =
1

1 − e−sT

∫ T

0

e−sT f(t)dt

Thus, the Laplace transform of the half-rectified sine wave is

L{v(t)} =
1

1 − e−2πs

∫ π

0

e−sT sin tdt

= Im

{ 1
1 − e−2πs

∫ π

0

e(j−s)tdt
}

= Im

{ 1
1 − e−2πs

[e(j−s)t

j − s

]π

0

}
= Im

{ 1
1 − e−2πs

[ (−e−πs − 1)(−j − s)
(j − s)(−j − s)

]}
=

1 + e−πs

(1 − e−2πs)(1 + s2)

that is, L{v(t)} =
1

(1 + s2)(1 − e−πs)
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Applying Kirchoff’s law to the circuit the current is determined by

di

dt
+ i = v(t)

which on taking Laplace transforms gives

(s + 1)I(s) =
1

(1 + s2)(1 − e−πs)

I(s) =
1

1 − e−πs

[ 1
s + 1

− s + 1
s2 + 1

]
· 1
2

=
1
2
[ 1
s + 1

− s + 1
s2 + 1

][
1 + e−πs + e−2πs + . . .

]

Since L−1
{1

2
[ 1
s + 1

− s + 1
s2 + 1

]}
=

1
2
(sin t − cos t + e−t)H(t) = f(t)

we have by the second shift theorem that

i(t) = f(t) + f(t − π) + f(t − 2π) + . . . =
∞∑

n=0

f(t − nπ)

The graph may be plotted by computer and should take the form

23(a) Since L{t} =
1
s2

, L{te−t} =
1

(s + 1)2

taking f(t) = t and g(t) = te−t in the convolution theorem

L−1[F(s)G(s)] = f ∗ g(t)
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gives

L−1
[ 1
s2

· 1
(s + 1)2

]
=

∫ t

0

f(t − τ)g(τ)dτ

=
∫ t

0

(t − τ)τe−τ

=
[
−(t − τ)τe−τ − (t − 2τ)e−τ + 2e−τ

]t

0

i.e. L−1
[ 1
s2

· 1
(s + 2)2

]
= t − 2 + 2e−t + te−t.

23(b) y(t) = t + 2
∫ t

0
y(u) cos(t − u)du

Taking f(t) = y(t), g(t) = cos t ⇒ F(s) = Y(s), G(s) =
s

s2 + 1
giving on taking

transforms

Y(s) =
1
s2

+ 2Y(s)
s

s2 + 1

(s2 + 1 − 2s)Y(s) =
s2 + 1

s2

or Y(s) =
s2 + 1

s2(s − 1)2
=

2
s

+
1
s2

− 2
s − 1

+
2

(s − 1)2

and y(t) = L−1{Y(s)} = 2 + t − 2et + 2tet.

Taking transforms

(s2Y(s) − sy(0) − y′(0))(sY(s) − y(0)) = Y(s)

or (s2Y(s) − y1)(sY(s)) = Y(s)

giving Y(s) = 0 or Y(s) =
y1

s2
+

1
s3

which on inversion gives

y(t) = 0 or y(t) =
1
2
t2 + ty1

In the second of these solutions the condition on y′(0) is arbitrary.

c©Pearson Education Limited 2011



354 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

24

Equation for displacement is

EI
d4y

dx4
= −Wδ(x − �)

with y(0) = 0, y(3�) = 0, y′(0) = y′(3�) = 0

with y′′(0) = A, y′′′(0) = B then taking Laplace transforms gives

EIs4Y(s) = EI(sA + B) − We−�s

Y(s) =
−W

EIs4
e−�s +

A

s3
+

B

s4

giving y(x) =
−W

6EI
(x − �)3.H(x − �) +

A

2
x2 +

B

6
x3

For x > �, y′(x) =
−3W
6EI

(x − �)2 + Ax +
B

2
x2

so y′(3�) = 0 and y(3�) = 0 gives

0 = −2W�2

EI
+ 3A� + 9B

�2

2

0 = −4W�3

3EI
+

9
2
A�2 +

9
2
B�3

giving A = −4W�

9EI
and B =

20
27

W

EI

Thus, deflection y(x) is

y(x) = − W

6EI
(x − �)3H(x − �) − 2

9
W�

EI
x2 +

10
81

W

EI
x3
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With the added uniform load the differential equation governing the deflection is

EI
d4y

dx4
= −Wδ(x − �) − w[H(x) − H(x − �)]

25(a) Taking Laplace transforms

(s2 − 3s + 3)X(s) =
1
s
e−as

X(s) =
1

s(s2 − 3s + 3)
· e−as =

[ 1
6

s
−

1
6s − 1

2

s2 − 3s + 3
]
· e−as

=
1
6
[1
s
−

(s − 3
2 ) −

√
3(

√
3

2 )

(s − 3
2 )2 + (

√
3

2 )2
]
e−as

=
e−as

6
L

{
1 − e−

3
2 t

(
cos

√
3

2
t −

√
3 sin

√
3

2
t
)}

giving

x(t) = L−1{X(s)} =
1
6

[
1 − e−

3
2 (t−a)

(
cos

√
3

2
(t − a) −

√
3 sin

√
3

2
(t − a)

)]
H(t − a)

25(b)

X(s) = G(s)L{sin wt} = G(s)
w

s2 + w2

=
w

(s + jw)(s − jw)
G(s)

Since the system is stable all the poles of G(s) have negative real part. Expanding
in partial fractions and inverting gives

x(t) = 2Re

[F(jw)w
2jw

· ejwt
]
+ terms from G(s) with negative exponentials

Thus, as t → ∞ the added terms tend to zero and x(t) → xs(t) with

xs(t) = Re

[ejwtF(jw)
j

]
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26(a) In the absence of feedback the system has poles at

s = −3 and s = 1

and is therefore unstable.

26(b) G1(s) =
G(s)

1 + KG(s)
=

1
(s − 1)(s + 3) + K

=
1

s2 + 2s + (K − 3)

26(c) Poles G1(s) given by s = −1 ±
√

4 − K .

These may be plotted in the s-plane for different values of K . Plot should be as
in the figure

26(d) Clearly from the plot in (c) all the poles are in the left half plane when
K > 3. Thus system stable for K > 3.

26(e)
a2

1s2 +
a1

2s +
a0

(K − 3) = 0
Routh–Hurwitz determinants are

Δ1 = 2 > 0

Δ2 =
∣∣∣∣ a1 a2

0 a0

∣∣∣∣ =
∣∣∣∣ 2 1
0 K − 3

∣∣∣∣ = 2(K − 3) > 0 if K > 3

thus, confirming the result in (d).
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27(a) Closed loop transfer function is

G1(s) =
G(s)

1 + G(s)
=

2
s2 + αs + 5

Thus L−1
{ 2

s2 + αs + 5
}

= h(t) = 2e−2t sin t

i.e. L−1
{ 2

(s + α
2 )2 + (5 − α2

4 )

}
= 2e−

α
2 t sin

√
(5 − α2

4 )t = 2e−2t sin t

giving α = 4

27(b) Closed loop transfer function is

G(s) =
10

s(s−1)

1 − (1+Ks)10
s(s−1)

=
10

s2 + (10K − 1)s + 10

Poles of the system are given by

s2 + (10K − 1)s + 10 = 0

which are both in the negative half plane of the s-plane provided (10K − 1) > 0;
that is, K > 1

10 . Thus the critical value of K for stability of the closed loop system
is K = 1

10 .

28(a)
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28(b)

L{eAt} = [sI − A]−1 =
1

(s + 2)(s + 3)

[
s + 5 6
−1 8

]

=
[ 3

s+2 − 2
s+3

6
s+2 − 6

s+3
1

s+3 − 1
s+2

−2
s+2 − 1

s+3

]

Taking inverse transforms gives

eAt =
[

3e−2t − 2e−3t 6e−2t − 6e−3t

e−3t − e−2t 3e−3t − 2e−2t

]

28(c) Taking Laplace transforms

[sI − A]X(s) = x(0) + bU(s) ; Y(s) = cT X(s)

With x(0) = 0 and U(s) = 1 the transform Xδ(s) of the impulse response is

Xδ(s) = [sI − A]−1b , Yδ(s) = cT [sI − A]−1b

Inverting then gives the impulse response as

yδ(t) = [1 1]
[

6e−2t − 6e−3t

3e−3t − 2e−2t

]
= 4e−2t − 3e−3t, t ≥ 0

With x(0) = [1 0]T and X(s) =
1
s

Y(s) = [1 1]
[

[sI − A]−1

[
1
0

]
+ [sI − A]−1

[
0
1

]
1
s

]

= [1 1]
[

3
s+2 − 2

s+3 + 6
( 1/6

s − 1/2
s+2 + 1/3

s+3

)
1

s+3 − 1
s+2 +

(
1

s+2 − 1
s+3

) ]

so y(t) = [1 1]
[

3e−2t − 2e−3t + 1 − 3e−2t + 2e−3t

e−3t − e−2t + e−2t − e−3t

]
that is, y(t) = 1, t ≥ 0
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29 L{eAt} = [sI − A]−1 =
[

s + 2 1
−2 s

]−1

=
[ s

(s+1)2+1
−1

(s+1)2+1
2

(s+1)2+1
s+2

(s+1)2+1

]

Thus eAt =
[

e−t(cos t − sin t) −e−t sin t
2e−t sin t e−t(cos t + sin t)

]
and eAtx(0) = 0 since x(0) = 0

With U(s) = L{u(t)} =
1
s

we have

[sI − A]−1bU(s) =
[ s

s2+2s+2
−1

s2+2s+2
2

s2+2s+2
s+2

s2+2s+2

] [
1
0

]
1
s

=
[ 1

s2+2s+2
2

s(s2+2s+2)

]

=
[ 1

(s+1)2+1
1
s − s+2

(s+1)2+1

]

so L−1{(sI − A)−1bU(s)} =
[

e−t sin t
1 − e−t(cos t + sin t)

]

Thus x(t) = eAtx(0) + L−1{(sI − A)−1bU(s)}

=
[

e−t sin t
1 − e−t(cos t + sin t)

]

For the transfer function, we have,

Y(s) = c X(s) and when x(0) = 0

Y(s) = c[s I − A]−1bU(s) = HU(s)

where H = c[s I − A]−1b

For this system, we have H(s) = [1 1]
[ s

s2+2s+1
2

s2+2s+1

]
=

s + 2
(s + 1)2 + 1

When u(t) = δ(t), U(s) = 1 and so the impulse response yδ(t) is given by

L{yδ(t)} = Yδ(s) =
s + 2

(s + 1)2 + 1
=

s + 1
(s + 1)2 + 1

+
1

(s + 1)2 + 1
⇒ yδ(t) = e−t(cos t + sin t)
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30 The controllability question can be answered by either reducing to canonical
form as in section 6.7.8 of the text or by using the Kalman matrix criterion given
in Exercise 61 of the text. Adopting the Kalman matrix approach

A =

⎡
⎣ 1 2 0

0 −1 0
−3 −3 −2

⎤
⎦ and

b =

⎡
⎣ 0

1
0

⎤
⎦, A b =

⎡
⎣ 2
−1
−3

⎤
⎦, A2 b =

⎡
⎣ 0

1
9

⎤
⎦

so the controllability Kalman matrix is

[b A b A2 b] =

⎡
⎣ 0 2 0

1 −1 1
0 −3 9

⎤
⎦ = C

Since detC �= 0, rank C = 3 so the system is controllable.
The eigenvalues of A are given by∣∣∣∣∣∣

1 − λ 2 0
0 −1 − λ 0
−3 −3 −2 − λ

∣∣∣∣∣∣ = (1 − λ)
∣∣∣∣−(1 + λ) 0

−3 −(2 + λ)

∣∣∣∣
= (1 − λ)(1 − λ)(2 + λ) = 0

so that the eigenvalues are λ1 = −2, λ2 = −1, λ3 = 1. The system is therefore
unstable with λ3 = 1 corresponding to the unstable mode. The corresponding
eigenvectors of A are given by

(A− λiI)ei = 0

and are readily determined as

e1 = [0 0 1]T

e2 = [1 − 1 0]T

e3 = [1 0 − 1]T

To determine the control law to relocate λ3 = 1 at −5 we need to determine the
eigenvector v3 of AT corresponding to λ3 = 1. This is readily obtained as

v3 = [1 1 0]T
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Thus, the required control law is

u(t) = KvT
3 x(t) = K[1 1 0]T x(t)

where K =
p3 − λ3

vT
3 b

=
(−5) − 1

[1 1 0]

⎡
⎣ 0

1
0

⎤
⎦

=
6
1

= −6

So u(t) = −6(x1(t) + x2(t))

31(a) Let x [ x1 x2 ]T then state − space model is

ẋ = Ax + bu ⇒
[

ẋ1

ẋ2

]
=

[
−2 4
0 1

] [
x1

x2

]
+

[
1
1

]
u

y = cT x ⇒ y = [ 1 0 ]
[

x1

x2

]

(b) G(s) = Y (s)
U(s) = cT (sI− A)−1b

det(sI− A) = Δ =
∣∣∣∣ s + 2 −4

0 s − 1

∣∣∣∣ = (s + 2)(s − 1)

adj(sI − A) =
[

s − 1 4
0 s + 2

]

G(s) =
1
Δ

[ 1 0 ]
[

s − 1 4
0 s + 2

] [
1
1

]
=

s + 3
(s + 2)(s − 1)

System has positive pole s = 1 and is therefore is unstable.

(c) u(t) = r(t) − ky(t) ⇒ ẋ = Ax + b(r − kcT x) = (A− kbcT )x + br

(A− kbcT ) =
[
−2 4
0 1

]
− k

[
1
1

]
[ 1 0 ] =

[
−2 − k 4
−k 1

]

⇒ Eigenvalues given by
∣∣∣∣ λ + 2 + k 4

−k λ − 1

∣∣∣∣ = 0 ⇒

λ2 + (k + 1)λ + 3k − 2 = 0

so system is stable if and only if 3k − 2 > 0 or k > 2
3
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(d) r(t) = H(t) ⇒ R(s) = 1
s ⇒ Y(s) = cT (sI − A + kbcT )−1b1

s

Since k > 2
3 , system stable, the final value theorem gives

lim
t→∞

y(t) = lim
s→0

sY(s) = lim
s→0

[cT (sI − A + kbcT )−1b] = −cT (A− kbcT )−1b

= − [ 1 0 ]
[
−2 − k 4
−k 1

]−1 [
1
1

]
= − [ 1 0 ]

1
3k − 2

[
1 −4
k −2 − k

]

=
3

3k − 2

Thus, lim
t→∞

y(t) = 1 if and only if 3
3k−2 = 1 ⇒ k = 5

3

32(a) Overall closed loop transfer function is

G(s) =
K

s(s+1)

1 + K
s(s+1) (1 + K1s)

=
K

s2 + s(1 + KK1) + K

32(b) Assuming zero initial conditions step response x(t) is given by

X(s) = G(s)L{1.H(t)} =
K

s[s2 + s(1 + KK1) + K]

=
wn

s[s2 + 2ξwns + w2
n]

=
1
s
− s + 2ξwn

s2 + 2ξwns + w2
n

=
1
s
−

[
(s + ξwn) + ξwn

(s + ξwn)2 + [w2
n(1 − ξ2)]

]

=
1
s
−

[
(s + ξwn) + ξwn

(s + ξwn)2 + w2
d

]

giving x(t) = L−1{X(s)} = 1 − e−ξwnt
[
cos wdt +

ξ√
1 − ξ2

sin wdt
]
, t ≥ 0.

32(c) The peak time tp is given by the solution of
dx

dt

∣∣
t=tp

= 0

dx

dt
= e−ξwnt

[(
ξwn − ξwd√

1 − ξ2

)
cos wdt

( ξ2wn√
1 − ξ2

+ wd

)
sin wdt

]

= e−ξwnt wn√
1 − ξ2

sin wdt
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Thus, tp given by the solution of

e−ξwntp
wn√
1 − ξ2

sin wdtp = 0

i.e. sin wdtp = 0

Since the peak time corresponds to the first peak overshoot

wdtp = π or tp =
π

wd

The maximum overshoot Mp occurs at the peak time tp . Thus

Mp = x(tp) − 1 = e
− ξwnπ

wd

[
cos π +

ξ√
1 − ξ2

sin π
]

= e
− ξwnπ

wd = e−ξπ/
√

1−ξ2
π

We wish Mp to be 0.2 and tp to be 1s, thus

e−ξπ/
√

1−ξ2
= 0.2 giving ξ = 0.456

and

tp =
π

wd
= 1 giving wd = 3.14

Then it follows that wn =
wd√
1 − ξ2

= 3.53 from which we deduce that

K = w2
n = 12.5

and K1 =
2wnξ − 1

K
= 0.178.

32(d) The rise time tr is given by the solution of

x(tr) = 1 = 1 − e−ξwntr
[
cos wdtr +

ξ√
1 − ξ2

sin wdtr
]

Since e−ξwntr �= 0

cos wdtr +
ξ√

1 − ξ2
sin wdtr = 0
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giving tanwdtr = −
√

1 − ξ2

ξ

or tr =
1

wd
tan−1

(
−

√
1 − ξ2

ξ

)
=

π − 1.10
wd

= 0.65s.

The response x(t) in (b) may be written as

x(t) = 1 − e−ξwnt√
1 − ξ2

sin
[
wαt + tan−1

√
1 − ξ2

ξ

]

so the curves 1 ± e−ξwnt√
1 − ξ2

are the envelope curves of the transient response to

a unit step input and have a time constant T =
1

ξwn
. The settling time ts may

be measured in terms of T . Using the 2% criterion ts is approximately 4 times
the time constant and for the 5% criterion it is approximately 3 times the time
constant. Thus,

2% criterion : ts = 4T =
4

ξwn
= 2.48s

5% criterion : ts = 3T =
3

ξwn
= 1.86s

Footnote: This is intended to be an extended exercise with students being
encouraged to carry out simulation studies in order to develop a better
understanding of how the transient response characteristics can be used in system
design.

33 As for Exercise 32 this is intended to be an extended problem supported by
simulation studies. The following is simply an outline of a possible solution.

Figure 5.67(a) is simply a mass-spring damper system represented by the
differential equation

M1
d2x

dt2
+ B

dx

dt
+ K1x = sinwt

Assuming that it is initially in a quiescent state taking Laplace transforms

X(s) =
1

M1s2 + Bs + K1
· w

s2 + w2
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The steady state response will be due to the forcing term and determined by the
αs + β

s2 + w2
term in the partial fractions expansion of X(s) . Thus, the steady state

response will be of the form A sin(wt + δ) ; that is, a sinusoid having the same
frequency as the forcing term but with a phase shift δ and amplitude scaling A .
In the situation of Figure 5.67(b) the equations of motion are

M1
d2x

dt2
= −K1x − B

dx

dt
+ K2(y − x) + sin wt

M2
d2y

dt2
= −K2(y − x)

Assuming an initial quiescent state taking Laplace transforms gives

[M1s
2 + Bs + (K1 + K2)]X(s) − K2Y(s) = w/(s2 + w2)

−K2X(s) + (s2M2 + K2)Y(s) = 0

Eliminating Y(s) gives

X(s) =
w(s2M2 + K2)
(s2 + w2)p(s)

where p(s) = (M1s
2 + Bs + K1 + K2)(s2M2 + K2) .

Because of the term (s2 + w2) in the denominator x(t) will contain terms in
sin wt and cos wt . However, if (s2M2 + K2) exactly cancels (s2 + w2) this will
be avoided. Thus choose K2 = M2w

2 . This does make practical sense for if the
natural frequency of the secondary system is equal to the frequency of the applied
force then it may resonate and therefore damp out the steady state vibration of
M1 .
It is also required to show that the polynomial p(s) does not give rise to any
undamped oscillations. That is, it is necessary to show that p(s) does not possess
purely imaginary roots of the form jθ, θ real, and that it has no roots with a positive
real part. This can be checked using the Routh–Hurwitz criterion.
To examine the motion of the secondary mass M2 solve for Y(s) giving

Y(s) =
K2w

(s2 + w2)p(s)

Clearly due to the term (s2 + w2) in the denominator the mass M2 possesses an
undamped oscillation. Thus, in some sense the secondary system has absorbed the
energy produced by the applied sinusoidal force sin wt .
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34 Again this is intended to be an extended problem requiring wider exploration
by the students. The following is an outline of the solution.

34(a) Students should be encouraged to plot the Bode plots using the steps
used in Example 5.65 of the text and using a software package. Sketches of the
magnitude and phase Bode plots are given in the figures below.

34(b) With unity feedback the amplifier is unstable. Since the −180◦ crossover
gain is greater than 0dB (from the plot it is +92dB).

34(c) Due to the assumption that the amplifier is ideal it follows that for

marginal stability the value of
1
β

must be 92dB (that is, the plot is effectively

lowered by 92dB). Thus

20 log
1
β

= 92

1
β

= antilog
(92
20

)
⇒ β 
 2.5 × 10−5

34(d) From the amplitude plot the effective 0dB axis is now drawn through
the 100dB point. Comparing this to the line drawn through the 92dB point,
corresponding to marginal stability, it follows that

Gain margin = −8dB

and Phase margin = 24◦.

34(e)

G(s) =
K

(1 + sτ1)(1 − sτ2)(1 + sτ3)

Given low frequency gain K = 120dB so

20 log K = 120 ⇒ K = 106

Ti =
1
fi

where fi is the oscillating frequency in cycles per second of the pole.
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Since 1MHz = 10 cycles per second

τ1 =
1
f1

=
1

106
since f1 = 1MHz

τ2 =
1
f2

=
1

10.106
since f2 = 10MHz

τ3 =
1
f3

=
1

25.106
since f3 = 25MHz

Thus,

G(s) =
106

(1 + s
106 )(1 + s

10.106 )(1 + s
25.106 )

=
250.1024

(s + 106)(s + 107)(s + 5
2 .107)

The closed loop transfer function G1(s) is

G(s) =
G(s)

1 + βG(s)

34(f) The characteristic equation for the closed loop system is

(s + 106)(s + 107)(s + 5
2 .107) + β25.1025 = 0

or

s3 + 36(106)s2 + (285)1012s + 1019(25 + 25β106) = 0
↓

A1

↓
A2

↓
A3

By Routh–Hurwitz criterion system stable provided A1 > 0 and A1A2 > A3 . If
β = 1 then A1A2 < A3 and the system is unstable as determined in (b). For
marginal stability A1A2 = A3 giving β = 1.40−5 (compared with β = 2.5.10−5

using the Bode plot).
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6

The Z Transform

Exercises 6.2.3

1(a)

F(z) =
∞∑

k=0

(1/4)k

zk
=

1
1 − 1/4z

=
4z

4z − 1
if | z |> 1/4

1(b)

F(z) =
∞∑

k=0

3k

zk
=

1
1 − 3/z

=
z

z − 3
if | z |> 3

1(c)

F(z) =
∞∑

k=0

(−2)k

zk
=

1
1 − (−2)/z

=
z

z + 2
if | z |> 2

1(d)

F(z) =
∞∑

k=0

−(2)k

zk
= − 1

1 − 2/z
= − z

z − 2
if | z |> 2

1(e)

Z{k} =
z

(z − 1)2
if | z |> 1

from (6.6) whence

Z{3k} = 3
z

(z − 1)2
if | z |> 1

2

uk = e−2ωkT =
(
e−2ωT

)k
whence

U(Z) =
z

z − e−2ωT
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Exercises 6.3.6

3

Z{sin kωT} =
1
2j

z

z − ejωT
− 1

2j
z

z − e−jωT

=
z sin ωT

z2 − 2z cos ωT + 1

4

Z{
(

1
2

)k

} =
2z

2z − 1
so

Z{yk} =
1
z3

× 2z
2z − 1

=
2

z2(2z − 1)

Proceeding directly

Z{yk} =
∞∑

k=3

xk−3

zk
=

∞∑
r=0

xr

zr+3
=

1
z3

×Z{xk} =
2

z2(2z − 1)

5(a)

Z
{
−1

5

}
=

∞∑
r=0

(
−1
5z

)r

=
5z

5z + 1
| z |> 1

5

5(b)

{cos kπ} =
{
(−1)k

}
so

Z{cos kπ} =
z

z + 1
| z |> 1

6

Z
{(

1
2

)k
}

=
2z

2z − 1

By (3.5)

Z
{
(ak)

}
=

z

z − a

so

Z
{
(kak−1)

}
=

z

(z − a)2
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thus

Z
{
(kak)

}
=

az

(z − a)2

whence

Z
{

k

(
1
2

)k
}

=
2z

(2z − 1)2

7(a)

sinh kα =
1
2
(eα)k − 1

2
(e−α)k

so

Z{sinh kα} =
1
2

( z

z − eα
− z

z − e−α

)
=

z sinhα

z2 − 2z cosh α + 1

7(b)

cosh kα =
1
2
(eα)k +

1
2
(e−α)k

then proceed as above.

8(a)

uk =
(
e−4kT

)
=
(
e−4T

)k
; Z{uk} =

z

z − e−4T

8(b)

uk =
1
2j

(
ej kT − e−j kT

)

Z{uk} =
1
2j

( z

z − ej T
− z

z − e−j T

)
=

z sinT

z2 − 2z cos T + 1

8(c)

uk =
1
2
(
ej 2kT + e−j 2kT

)
then proceed as in 8(b) to give

Z{uk} =
z(z − cos 2T)

z2 − 2z cos 2T + 1

9 Initial value theorem: obvious from definition.
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9 Final value theorem

(1 − z−1)X(z) =
∞∑

r=0

xr − xr−1

zr

= x0 +
x1 − x0

z
+

x2 − x1

z2
+ . . . +

xr − xr−1

zr
+ . . .

As z → 1 and if lim
r→∞ xr exists, then

lim
z→1

(1 − z−1)X(z) = lim
r→∞

xr

10 Multiplication property (6.19): Let Z{xk} =
∑∞

k=0

xk

zk
= X(z) then

Z
{
akxk

}
=

∞∑
k=0

akxk

zk
= X(z/a)

10 Multiplication property (6.20)

−z
d

dz
X(z) = −z

d

dz

∞∑
k=0

xk

zk
=

∞∑
k=0

kxk

zk
= Z{kxk}

The general result follows by induction.

Exercises 6.4.2

11(a)
z

z − 1
; from tables uk = 1

11(b)
z

z + 1
=

z

z − (−1)
; from tables uk = (−1)k

11(c)
z

z − 1/2
; from tables uk = (1/2)k
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11(d)
z

3z + 1
=

1
3

z

z + 1/3
←→ 1

3
(−1/3)k

11(e)
z

z − j
; from tables uk = (j )k

11(f)
z

z + j
√

2
=

z

z − (−j
√

2)
←→ (−j

√
2)k

11(g)
1

z − 1
=

1
z

z

z − 1
←→

{
0; k = 0
1; k > 0

using first shift property.

11(h)
z + 2
z + 1

= 1 +
1
z

z

z + 1
←→

{
1; k = 0
(−1)k−1; k > 0

=
{

1; k = 0
(−1)k+1; k > 0

12(a)

Y(z)/z =
1
3

1
z − 1

− 1
3

1
z + 2

so

Y(z) =
1
3

z

z − 1
− 1

3
z

z + 2
←→ 1

3
(
1 − (−2)k

)

12(b)

Y(z) =
1
7

(
z

z − 3
− z

z + 1/2

)
←→ 1

7
(
(3)k − (−1/2)k

)

12(c)

Y(z) =
1
3

z

z − 1
+

1
6

z

z + 1/2
←→ 1

3
+

1
6
(−1/2)k

c©Pearson Education Limited 2011



374 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

12(d)

Y(z) =
2
3

z

z − 1/2
− 2

3
z

z + 1
←→ 2

3
(1/2)k − 2

3
(−1)k

=
2
3
(1/2)k +

2
3
(−1)k+1

12(e)

Y(z) =
1
2j

(
z

z − j
− z

z − (−j )

)

=
1
2j

( z

z − ej π/2
− z

z − e−j π/2

)
←→ 1

2j

(
(ej π/2)k − (e−j π/2)k

)
= sin kπ/2

12(f)

Y(z) =
z(

z − (
√

3 + j )
) (

z − (
√

3 − j )
)

=
1
2j

(
z

z − (
√

3 + j )
− z

z − (
√

3 − j )

)

=
1
2j

( z

z − 2ej π/6
− z

z − 2e−j π/6

)

←→ 1
2j

(
2kej kπ/6 − 2ke−j kπ/6

)
= 2k sin kπ/6

12(g)

Y(z) =
5
2

z

(z − 1)2
+

1
4

z

z − 1
− 1

4
z

z − 3

←→ 5
2
k +

1
4
(
1 − 3k

)

12(h)

Y(z)/z =
z

(z − 1)2(z2 − z + 1)
=

1
(z − 1)2

− 1
z2 − z + 1

so

Y(z) =
z

(z − 1)2
− 1√

3j

⎛
⎜⎜⎝ z

z − 1 +
√

3j

2

− z

z − 1 −
√

3j
2

⎞
⎟⎟⎠
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=
z

(z − 1)2
− 1√

3j

( z

z − ej π/3
− z

z − e−j π/3

)

←→ k − 2√
3

sin kπ/3 = k +
2√
3

cos(kπ/3 − 3π/2)

13(a)

Y(z) =
∞∑

k=0

xk

zk
=

1
z

+
2
z7

whence x0 = 0, x1 = 1, x2 = x3 = . . . = x6 = 0, x7 = 2 and xk = 0, k > 7;
giving Y(z) ↔ {0, 1, 0, 0, 0, 0, 0, 2, · · ·}

13(b) Proceed as in Exercise 13(a) to give

Y(z) ↔ {1, 0, 3, 0, 0, 0, 0, 0, 0,−2, · · ·}

13(c) Observe that
3z + z2 + 5z5

z5
= 5 +

1
z3

+
3
z4

and proceed as in Exercise 13(a) to give Y(z) ↔ {5, 0, 0, 1, 3, · · ·}

13(d)

Y(z) =
1
z2

+
1
z3

+
z

z + 1/3

←→ {0, 0, 1, 1} + {(−1/3)k}

13(e)

Y(z) = 1 +
3
z

+
1
z2

− 1/2
z + 1/2

←→ {1, 3, 1} − 1
2

{
0, k = 0
(−1/2)k, k ≥ 1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, k = 0
5/2, k = 1
5/4, k = 2

−1
2
(−1/2)k−1, k ≥ 3

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, k = 0
5/2, k = 1
5/4, k = 2

−1
8
(−1/2)k−3, k ≥ 3
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13(f)

Y(z) =
1

z − 1
− 2

(z − 1)2
+

1
z − 2

←→
{

0, k = 0
1 − 2(k − 1) + 2k−1, k ≥ 1

=
{

0, k = 0
3 − 2k + 2k−1, k ≥ 1

13(g)

Y(z) =
2

z − 1
− 1

z − 2

←→
{

0, k = 0
2 − 2k−1, k ≥ 1

Exercises 6.5.3

14(a) If the signal going into the left D-block is wk and that going into the right
D-block is vk , we have

yk+1 = vk, vk+1 = wk = xk − 1
2
vk

so

yk+2 = vk+1 = xk − 1
2
vk

= xk − 1
2
vk = xk − 1

2
yk+1

that is,

yk+2 +
1
2
yk+1 = xk

14(b) Using the same notation

yk+1 = vk, vk+1 = wk = xk − 1
4
vk − 1

5
yk
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Then

yk+2 = xk − 1
4
yk+1 −

1
5
yk

or

yk+2 +
1
4
yk+1 +

1
5
yk = xk

15(a)

z2Y(z) − z2y0 − zy1 − 2(zY(z) − zy0) + Y(z) = 0

with y0 = 0, y1 = 1

Y(z) =
z

(z − 1)2

so yk = k, k ≥ 0.

15(b) Transforming and substituting for y0 and y1 ,

Y(z)/z =
2z − 15

(z − 9)(z + 1)

so

Y(z) =
3
10

z

z − 9
− 17

10
z

z + 1

thus

yk =
3
10

9k − 17
10

(−1)k, k ≥ 0

15(c) Transforming and substituting for y0 and y1 ,

Y(z) =
z

(z − 2j )(z + 2j )

=
1
4j

( z

z − 2ej π/2
− z

z − 2e−j π/2

)
thus

yk =
1
4j

2k
(
ej kπ/2 − e−j kπ/2

)
= 2k−1 sin kπ/2, k ≥ 0
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15(d) Transforming, substituting for y0 and y1 , and rearranging

Y(z)/z =
6z − 11

(2z + 1)(z − 3)

so
Y(z) = 2

z

z + 1/2
+

z

z − 3

thus
yk = 2(−1/2)k + 3k, k ≥ 0

16(a)

6yk+2 + yk+1 − yk = 3, y0 = y1 = 0

Transforming with y0 = y1 = 0,

(6z2 + z − 1)Y(z) =
3z

z − 1

so
Y(z)/z =

3
(z − 1)(3z − 1)(2z + 1)

and
Y(z) =

1
2

z

z − 1
− 9

10
z

z − 1/3
+

2
5

z

z + 1/2

Inverting

yk =
1
2
− 9

10
(1/3)k +

2
5
(−1/2)k

16(b) Transforming with y0 = 0, y1 = 1,

(z2 − 5z + 6)Y(z) = z + 5
z

z − 1

whence
Y(z) =

5
2

z

z − 1
+

7
2

z

z − 3
− 6

z

z − 2
so

yk =
5
2

+
7
2
(3)k − 6 (2)k

16(c) Transforming with y0 = y1 = 0,

(z2 − 5z + 6)Y(z) =
z

z − 1/2
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so
Y(z) =

4
15

z

z − 1/2
− 2

3
z

z − 2
+

2
5

z

z − 3

whence
yn =

4
15

(1/2)k − 2
3
(2)k +

2
5
(3)k

16(d) Transforming with y0 = 1, y1 = 0,

(z2 − 3z + 3)Y(z) = z2 − 3z +
z

z − 1

so
Y(z) =

z

z − 1
− z

z2 − 3z + 3

=
z

z − 1
− 1√

3j

⎧⎪⎪⎨
⎪⎪⎩

z

z − 3 +
√

3j
2

− z

z − 3 −
√

3j
2

⎫⎪⎪⎬
⎪⎪⎭

=
z

z − 1
− 1√

3j

{
z

z −
√

3ejπ/6
− z

z −
√

3e−jπ/6

}
so

yn = 1 − 2√
3
(
√

3)k ejnπ/6 − e−jnπ/6

2j
= 1 − 2(

√
3)n−1 sin nπ/6

16(e) Transforming with y0 = 1, y1 = 2,

(2z2 − 3z − 2)Y(z) = 2z2 + z + 6
z

(z − 1)2
+

z

z − 1

so
Y(z) =

z

z − 2
+ z

{
z + 5

(z − 1)2(2z + 1)(z − 2)

}

=
12
5

z

z − 2
− 2

5
z

z + 1/2
− z

z − 1
− 2

z

(z − 1)2

so
yn =

12
5

(2)n − 2
5
(−1/2)n − 1 − 2n

16(f) Transforming with y0 = y1 = 0,

(z2 − 4)Y(z) = 3
z

(z − 1)2
− 5

z

z − 1
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so
Y(z) =

z

z − 1
− z

(z − 1)2
− 1

2
z

z − 2
− 1

2
z

z + 2

and
yn = 1 − n − 1

2
(2)n − 1

2
(−2)n

17(a) Write the transformed equations in the form(
z − 3/2
−0.21

1
z − 1/2

)(
c(z)
e(z)

)
=
(

zC0

zE0

)

Then (
c(z)
e(z)

)
=

1
z2 − 2z + 0.96

(
z − 1/2

0.21
−1

z − 3/2

)(
zC0

zE0

)

Solve for c(z) as
c(z) = 1200

z

z − 1.2
+ 4800

z

z − 0.8
and

Ck = 1200(1.2)k + 4800(0.8)k

This shows the 20% growth in Ck in the long term as required.
(b) Then

Ek = 1.5Ck − Ck+1

= 1800(1.2)k + 7200(0.8)k − 1200(1.2)k+1 − 4800(0.8)k+1

Differentiate wrt k and set to zero giving

0.6 log(1.2) + 5.6x log(0.8) = 0 where x = (0.8/1.2)k

Solving, x = 0.0875 and so

k =
log 0.0875

log(0.8/1.2)
= 6.007

The nearest integer is k = 6, corresponding to the seventh year in view of the
labelling, and C6 = 4841 approximately.

18 Transforming and rearranging

Y(z)/z =
z − 4

(z − 2)(z − 3)
+

1
(z − 1)(z − 2)(z − 3)
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so
Y(z) =

1
2

z

z − 1
+

z

z − 2
− 1

2
z

z − 3
thus

yk =
1
2

+ 2k − 1
2
3k

19 Ik = Ck + Pk + Gk

= aIk−1 + b(Ck − Ck−1) + Gk

= aIk−1 + ba(Ik−1 − Ik−2) + Gk

so
Ik+2 − a(1 + b)Ik+1 + abIk = Gk+2

Thus substituting

Ik+2 − Ik+1 +
1
2
Ik = G

Using lower case for the z transform, we obtain

(z2 − z +
1
2
)i(z) = (2z2 + z)G + G

z

z − 1

whence

i(z)/z = G

⎡
⎢⎣ 1

z2 − z +
1
2

+
2

z − 1

⎤
⎥⎦

= G

⎡
⎢⎣ 2

z − 1
+

1

(z − 1 + j

2
)(z − 1 − j

2
)

⎤
⎥⎦

so

i(z) = G

⎡
⎢⎢⎣2

z

z − 1
+

2
2j

⎧⎪⎪⎨
⎪⎪⎩

z

z − 1√
2
ej π/4

− z

z − 1√
2
e−j π/4

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦

Thus
Ik = G

[
2 +

2
2j

(
1√
2
)k
{

ej kπ/4 − e−j kπ/4
}]

= 2G

[
1 +

(
1√
2

)k

sin kπ/4

]
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20 Elementary rearrangement leads to

in+2 − 2 cosh α in+1 + in = 0

with coshα = 1 + R1/2R2 . Transforming and solving for I(z)/z gives

I(z)/z =
zi0 + (i1 − 2i0 cosh α)

(z − eα)(z − e−α)

=
1

2 sinhα

[
i0e

α + (i1 − 2i0 cosh α)
z − eα

− i0e
−α + (i1 − 2i0 coshα)

z − e−α

]

Thus

ik =
(i0eα + (i1 − 2i0 cosh α))enα − (i0e−α + (i1 − 2i0 cosh α))e−nα

2 sinhα

=
1

sinhα
{i1 sinhnα − i0 sinh(n − 1)α}

Exercises 6.6.5

21 Transforming in the quiescent state and writing as Y(z) = H(z)U(z) , then

21(a)

H(z) =
1

z2 − 3z + 2

21(b)

H(z) =
z − 1

z2 − 3z + 2

21(c)

H(z) =
1 + 1/z

z3 − z2 + 2z + 1

22 For the first system, transforming from a quiescent state, we have

(z2 + 0.5z + 0.25)Y(z) = U(z)

The diagram for this is the standard one for a second-order system and is shown
in Figure 6.1 and where Y(z) = P(z) , that is yk = pk .
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Figure 6.1: The block diagram for the basic system of Exercise 22.

Transforming the second system in the quiescent state, we obtain

(z2 + 0.5z + 0.25)Y(z) = (1 − 0.6)U(z)

Clearly

(z2 + 0.5z + 0.25)(1 − 0.6z)P(z) = (1 − 0.6z)U(z)

indicating that we should now set Y(z) = P(z) − 0.6zP(z) and this is shown in
Figure 6.2.

Figure 6.2: The block diagram for the second system of Exercise 22.

c©Pearson Education Limited 2011



384 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

23(a)
Yδ(z)/z =

1
(4z + 1)(2z + 1)

so
Yδ(z) =

1
2

z

z + 1/4
− 1

2
z

z + 1/2

yk =
1
2
(−1/4)k − 1

2
(1/2)k

23(b)
Yδ(z)/z =

z

z2 − 3z + 3
whence

Yδ(z) =
3 +

√
3j

2
√

3j
z

z − (3 +
√

3j )
2

− 3 −
√

3j
2
√

3j

z

z − (3 −
√

3j )
2

so

yk =
3 +

√
3j

2
√

3j
(
√

3)kej kπ/6 − 3 −
√

3j

2
√

3j
(
√

3)ke−j kπ/6

= 2(
√

3)k

[√
3

2
sin kπ/6 +

1
2

cos kπ/6

]

= 2(
√

3)k sin(k + 1)π/6

23(c)

Yδ(z)/z =
z

(z − 0.4)(z + 0.2)
so

Yδ(z) =
2
3

z

z − 0.4
+

1
3

z

z + 0.2
then

yk =
2
3
(0.4)k +

1
3
(−0.2)k

23(d)

Yδ(z)/z =
5z − 12

(z − 2)(z − 4)
so

Yδ(z) =
z

z − 2
+ 4

z

z − 4
and

yk = (2)k + (4)k+1
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24(a)

Yδ(z) =
1

z2 − 3z + 2

=
1

z − 2
− 1

z − 1

yk =
{

0, k = 0
2k−1 − 1, k ≥ 1

24(b)

Yδ(z) =
1

z − 2

so

yk =
{

0, k = 0
2k−1, k ≥ 1

25 Examining the poles of the systems, we find

25(a) Poles at z = −1/3 and z = −2/3, both inside | z |= 1 so the system is
stable.

25(b) Poles at z = −1/3 and z = 2/3, both inside | z |= 1 so the system is
stable.

25(c) Poles at z = 1/2 ± 1/2j , | z |= 1/
√

2, so both inside | z |= 1 and the
system is stable.

25(d) Poles at z = −3/4 ±
√

17/4, one of which is outside | z |= 1 and so the
system is unstable.

25(e) Poles at z = −1/4 and z = 1 thus one pole is on | z |= 1 and the other is
inside and the system is marginally stable.
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26 To use the convolution result, calculate the impulse response as yδ,k − (1/2)k .
Then the step response is

yk =
k∑

j=0

1 × (1/2)k−j = (1/2)k
k∑

j=0

1 × (2)j = (1/2)k 1 − (2)k+1

1 − 2

= (1/2)k(2k+1 − 1) = 2 − (1/2)k

Directly,

Y(z)/z =
z

(z − 1/2)(z − 1)
=

2
z − 1

− 1
z − 1/2

so

yk = 2 − (1/2)k

27

G(s) =
k

s(sτ + 1)
=

k

s
− k

s + 1
τ

⇒ f(t) = k − ke−
t
τ

⇒ G(z) = k

[
k

z − 1
− z

z − e−
T
τ

]
=

kz(1 − e−
T
τ )

(z − 1)(z − e−
T
τ )

Characteristic equation is 1 + G(z) = 0

⇒ (z − 1)(z − e−
T
τ ) + kz(1 − e−

T
τ ) = 0

⇒ z2 + [k(1 − e−a) − (1 + e−a)]z + e−a = 0, where a =
T

τ

⇒ z2 + Kz + e−a = 0, where K = k(1 − e−a) − (1 + e−a)

Using Jury’s procedure:

F(z) = z2 + Kz + e−a

F(1) = 1 + K + e−a = k(1 − e−a) > 0 since k > 0, (1 − e−a) > 0

(−1)2F(−1) = 1 − Kz + e−a > 0 ⇒ 2(1 + e−a) − k(1 − e−a) > 0

⇒ k <
2(1 + e−α)
(1 − e−a)

= 2coth
(a

2

)
= 2coth

(
T

2τ

)

Δ1 =
∣∣∣∣ 1 e−a

e−a 1

∣∣∣∣ = 1 − e−2a > 0

Thus system is stable if and only if 0 < k < 2coth
(

T
2τ

)
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28 Substituting

yn+1 − yn + Kyn−1 = K/2n

or

yn+2 − yn+1 + Kyn = K/2n+1

Taking z transforms from the quiescent state, the characteristic equation is

z2 − z + K = 0

with roots

z1 =
1
2

+
1
2

√
1 − 4K and z2 =

1
2
− 1

2

√
1 − 4K

For stability, both roots must be inside | z |= 1 so if K < 1/4 then

z1 < 1 ⇒ 1
2

+
1
2

√
1 − 4K < 1 ⇒ K > 0

and

z2 > −1 ⇒ 1
2
− 1

2

√
1 − 4K > −1 ⇒ k > −2

If K > 1/4 then

| 1
2

+ j
1
2

√
4K − 1 |2< 1 ⇒ K < 1

The system is then stable for 0 < K < 1.

When k = 2/9, we have

yn+2 − yn+1 +
2
9
yn =

1
9

Transforming with a quiescent initial state,

(z2 − z +
2
9
)Y(z) =

1
9

z

z − 1/2

so

Y(z) = z
1
9

[
1

(z − 1/2)(z − 1/3)(z − 2/3)

]

= 2
z

z − 1/3
+ 2

z

z − 2/3
− 4

z

z − 1/2

which inverts to

yn = 2(1/3)n + 2(2/3)n − 4(1/2)n
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29

z2 + 2z + 2 = (z − (−1 + j ))(z − (−1 + j ))

establishing the pole locations. Then

Yδ(z) =
1
2j

z

z − (−1 + j )
− 1

2j
z

z − (−1 − j )

So since (−1 ± j ) =
√

2e±3j π/4 etc.,

yk = (
√

2)k sin 3kπ/4

Exercises 6.8.3

30(a)

zI − A =
[

z −1
−4 z

]

(zI− A)−1 =
1

(z − 2)(z + 2)

[
z 1
4 z

]
=

[
1/2
z−2 + 1/2

z+2
1/4
z−2 − 1/4

z+2
1

z−2 − 1
z+2

1/2
z−2 + 1/2

z+2

]

Ak = Z−1{z(zI− A)−1} = Z−1

[
1
2

1/2
z−2 + 1

2
1/2
z+2

1
4

z
z−2 − 1

4
z

z+2
z

z−2 − z
z+2

1
2

z
z−2 + z

z+2

]

=
1
4

{
2k

[
2 1
4 2

]
+ (−2)k

[
2 −1
−4 2

]}

30(b)

zI − A =
[

z + 1 −3
−3 z + 1

]

(zI − A)−1 =
1

(z + 4)(z − 2)

[
z + 1 3

3 z + 1

]

=

[
1/2
z+4 + 1/2

z−2
−1/2
z+4 + 1/2

z−2

− 1/2
z+4 + 1/2

z−2
1/2
z−2 + 1/2

z+2

]

Ak = Z−1{z(zI− A)−1} = Z−1

[ 1
2

z
z+4 + 1

2
z

z−2 − 1
2

z
z+4 + 1

2
z

z−2

− 1
2

z
z+4 + 1

2
z

z−2
1
2

z
z−2 + 1

2
z

z−2

]

=
1
2

{
(−4)k

[
1 −1

−1 1

]
+ (2)k

[
1 1
1 1

]}
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30(c)
zI − A =

[
z + 1 −1

0 z + 1

]

(zI− A)−1 =
1

(z + 1)2

[
z + 1 1

0 z + 1

]
=

[ 1
z+1

1
(z+1)2

0 1
z+1

]

Ak = Z−1{z(zI− A)−1} = Z−1

[
z

z+1
z

(z+1)2

0 z
z+1

]
= (−1)k

[
1 −k
0 1

]

31 Taking x1 = x and x2 = y we can express equations in the form

x(k + 1) =
[
−7 4
−8 1

]
x(k) with x(0) = [1 2]

The solution is given by

x(k + 1) = Akx(0), A =
[
−7 4
−8 1

]

where Ak = α1I + α1A . That is, the solution is

x(k) =
[

α0 − 7α1 4α1

−8α1 α0 + α1

] [
1
2

]
=

[
α0 + α1

2α0 − 6α1

]

The eigenvalues of A are given by

λ2 − 6λ + 25 = 0 so λ = 3 ± j4

or, in polar form, λ1 = 5ejθ, λ2 = 5e−jθ where θ = cos−1(− 3
5 ) .

Thus, α0 and α1 are given by

5kejkθ = α0 + α15ejθ, 5ke−jkθ = α0 + α15e−jθ

which are readily solved to give

α0 = − (5)k sin(k − 1)θ
sin θ

, α1 =
1
5
(5)k sin kθ

sin θ
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Then, α0 + α1 =
(5)k

sin θ

[
1
5

sin kθ − sin(k − 1)θ
]

=
5
4
(5)k

[
1
5

sin kθ +
3
5

sin kθ +
4
5

cos kθ

]
= (5)k[sin kθ + cos kθ]

2α0 − 6α1 =
(5)k

sin θ

[
−2(sin kθ cos θ − cos kθ sin θ) − 6

5
sin kθ

]
= (5)k[2 cos(kθ)]

Thus, solution is
x(k) = (5)k[sin kθ + cos kθ]

y(k) = (5)k[2 cos(kθ)]

We have

x(1) = 1 , y(1) = −6 , x(2) = −31 , y(2) = −14

32 A =
[

0 1
−0.16 −1

]
zI− A =

[
z −1

0.16 z + 1

]

(zI− A)−1 =

[
z+1

(z+0.2)(z+0.8)
1

(z+0.2)(z+0.8)

−0.16
(z+0.2)(z+0.8)

z
(z+0.2)(z+0.8)

]

=
[ 4

3 ·
1

z+0.2 − 1
3 ·

1
z+0.8

5
3 ·

1
z+0.2 − 5

3 ·
1

z+0.8
−0.8

3
1

z+0.2 + 0.8
3

1
z+0.8 − 1

3
1

z+0.2 + 4
3 ·

1
z+0.8

]

Ak = Z−1{z(zI− A)−1} =
[ 4

3 (−0.2)k − 1
3 (−0.8)k 5

3 (−0.2)k − 5
3 (−0.8)k

−0.8
3 (−0.2)k + 0.8

3 (−0.8)k − 1
3 (−0.2)k + 4

3 (−0.8)k

]

Akx(0) = Ak[1 − 1]T =
[
− 1

3 (−0.2)k + 4
3 (−0.8)k

0.2
3 (−0.2)k − 3.2

3 (−0.8)k

]

U(z) = Z{u(k)} = z/(z − 1)

(zI− A)−1bU(z) =
1

(z + 0.2)(z + 0.8)

[
z + 1 1
−0.16 z

] [
1
1

]
z

z − 1
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=
z

(z + 0.2)(z + 0.8)(z − 1)

[
z + 2

z − 0.16

]

=

[
−5

2
z

z+0.2 + 10
9

z
z+0.8 + 25

18
z

z−1

1
2

z
z+0.2 − 8

9
z

z+0.8 + 7
18

z
z−1

]

Z−1{(zI− A)−1bU(z)} =
[
− 5

2 (−0.2)k + 10
9 (−0.8)k + 25

18
1
2 (−0.2)k − 8

9 (−0.8)k + 7
18

]

Thus, solution is

x(k) = Akx(0) + Z−1{(zI− A)−1bU(t)}

=

[
− 17

6 (−0.2)k + 22
9 (−0.8)k + 25

18

3.4
6 (−0.2)k − 17.6

9 (−0.8)k + 7
18

]

33 Let x1(k) = y(k), x2(k) = x1(k + 1) = y(k + 1) then the difference equation
may be written

x(k + 1) =
[

x1(k + 1)
x2(k + 1)

]
=

[
0 1
1 1

] [
x1(k)
x2(k)

]
, x(0) = [0 1]T

Taking A =
[

0 1
1 1

]
its eigenvalues are λ1 =

1 +
√

5
2

, λ2 =
1
√

5
2

Ak = α1I + α1A where α0 and α1 satisfy

(1 +
√

5
2

)k
= α0 +

(1 +
√

5
2

)
α1,

(1 −
√

5
2

)k
= α0 +

(1 −
√

5
2

)
α1

giving

α1 =
1√
5

[(1 +
√

5
2

)k
−
(1 −

√
5

2
)k]

α0 =
1√
5

[(1 +
√

5
2

)k(√5 − 1
2

)
+
(1 −

√
5

2
)k(1 +

√
5

2
)]

Solution to the difference equation is

x(k) =
[

y(k)
y(k + 1)

]
=

[
α0 α1

α1 α0 + α1

] [
0
1

]
=

[
α1

α0 + α1

]

so y(k) = α1 =
1√
5

[(1 +
√

5
2

)k
−
(1 −

√
5

2
)k]
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[Note that, y(k + 1) = α0 + α1 =
1√
5

[(1 +
√

5
2

)k

−
(1 −

√
5

2
)k+1]

using above

values.]

As k → ∞,
(1 −

√
5

2
)k

→ 0 and y(k + 1)/y(k) →
( 1+

√
5

2 )k+1

( 1+
√

5
2 )k

=
1
2
(
√

5 + 1)

Exercises 6.9.3

34 A =
[

0 1
0 −2

]
B =

[
0
1

]

sI − A =
[

s −1
0 s + 2

]
⇒ (sI − A)−1 =

1
s(s + 2)

[
s + 2 1

0 s

]
=

⎡
⎢⎣

1
s

1
2

s
−

1
2

s + 2
0

1
s + 2

⎤
⎥⎦

⇒ G = e−AT = L−1{(sI − A)−1} =
[

1 1
2 (1 − e−2T )

0 e−2T

]

H =
∫ T

0

eAtBdt =
[

t 1
2 t + 1

4e−2t

0 − 1
2e−2t

]T

0

[
0
1

]
=
[

1
2T + 1

4e−2T − 1
4

1
2 − 1

2e−2T

]

Discretized form is:

[
x1[(k + 1)T]
x2[(k + 1)T]

]
=
[

1 !
2 (1 − e−2T )

0 e−2T

] [
x1(kT)
x2(kT)

]
+
[

1
2T + 1

4 (e−2T − 1)
1
2 (1 − e−2T )

]
u(kT)

In the particular case, when sampling period is T = 1, this reduces to

[
x1(k + 1)
x2(k + 1)

]
=
[

1 0.432
0 0.135

] [
x1(k)
x2(k)

]
+
[

0.284
0.432

]
u(k)

In MATLAB the commands:

A = [0, 1; 0,−2];B = [0; 1];

[G,H] = c2d(A,B, 1)

return

G = 1.0000 0.4323
0 0.1353

H = 0.2838
0.4324

which check with the answer.
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35
A =

[
0 1
−1 −1

]
B =

[
0
1

]

(a) Using (6.89),

G1 = (TA + I) =
[

1 T
−T 1 − T

]

H1 = TB =
[

0
T

]

giving the Euler discretized form of state-space model as

x[(k + 1)T] =
[

x1[(k + 1)T]
x2[(k + 1)T]

]
=
[

1 T
−T 1 − T

] [
x1(kT)
x2(kT)

]
+
[

0
T

]
u(kT)

y(kT) = [ 1 0 ]x(kT)

(b)
sI − A =

[
s −1
1 s + 1

]
⇒ (sI − A)−1 =

1
s2 + s + 1

[
s + 1 1
−1 s

]

⇒ (sI − A)−1 =

⎡
⎢⎢⎢⎣

(s + 1
2 ) + 1

2

(s + 1
2 )2 + (

√
3

2 )2
1

(s + 1
2 )2 + (

√
3

2 )2

−1

(s + 1
2 )2 + (

√
3

2 )2
(s + 1

2 ) − 1
2

(s + 1
2 )2 + (

√
3

2 )2

⎤
⎥⎥⎥⎦

⇒ G = L−1{(sI − A)−1}

= e−
T
2

[
cos(

√
3

2 T) + 1√
3

sin(
√

3
2 T) 2√

3
sin(

√
3

2 T)

− 2√
3

sin(
√

3
2 T) cos(

√
3

2 T) − 1√
3

sin(
√

3
2 T)

]

Since det(A) 
= 0 the matrix H is best determined using (6.95),

H = (G− I)A−1B = (G− I)
[
−1
0

]

⇒ H =

[
1 − e−

T
2 cos(

√
3

2 T) − 1√
3
e−

T
2 sin(

√
3

2 T)
2√
3
e−

T
2 sin(

√
3

2 T)

]

giving the step-invariant discretized form of the state-space model as

x[(k + 1)] = Gx(kT) + Hu(kT)

y(kT) = [ 1 0 ]x(kT)
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36(a) The eigenvalues of the matrix A are given by

det(λI− A) = 0 ⇒
∣∣∣∣λ + 1 −1

1 λ + 2

∣∣∣∣ = 0

⇒ λ2 + 3λ + 1 = 0 ⇒ λ1 = −3
2

+ j
√

3, λ2 = −3
2
− j

√
3

Both eigenvalues have negative real parts so the matrix A represents a stable
system.

(b) From (6.89), the corresponding Euler discretized state matrix Ad is given by

Ad = G1 = I + TA =
[

1 − T T
−T 1 − 2T

]

(c) The eigenvalues of the matrix Ad are given by

∣∣∣∣λ − 1 + T −T
T λ − 1 + 2T

∣∣∣∣ = 0

⇒ λ2 + (3T − 2)λ + (3T2 − 3T + 1) = 0

Let F(λ) = λ2 + (3T − 2)λ + (3T2 − 3T + 1) then

F(1) = 1 + (3T − 2) + (1 − 3T + 3T2) = 3T2 > 0 if T > 0 (since T is non-negative
by definition).

(−1)2F(−1) = 1 − ((3T − 2) + 1 − 3T + 3T2 = 3T2 − 6T + 4 > 0 all T .

Taking a1 = (3T − 2) and a0 = (1 − 3T + 3T2) gives

F(λ) = λ2 + a1λ + a0

leading to Jury table:

1 a1 a0

a0 a1 1

Δ1 = 1 − a2
0 a1(1 − a0)

a1(1 − a0) 1 − a2
0

Δ2 = (1 − a2
0)

2 − a2
1(1 − a0)2 = (1 − a0)2[(1 + a0)2 − a2

1]

with Δ1 > 0 if 1 − a2
0 > 0 ⇒ |a0| < 1

and Δ2 > 0 if [(1 + a0)2 − a2
1] > 0 ⇒ 1 + a0 > |a1| or a0 > −1 + a1 and

a0 > −1 − a1 .

In terms of T these conditions become:
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Δ1 > 0 ⇒ 3T2 − 3T + 1 < 1 ⇒ T(T − 1) < 0 ⇒ T < 1

Δ2 > 0 ⇒ 3T2 − 3T + 1 > 3T − 3 ⇒ 3T2 − 6T + 4 > 0 all T (as above);

and 3T2 − 3T + 1 > −3T − 1 ⇒ T2 > 0
Thus discrete system stable provided 0 < T < 1.

37(a)

A =
[
−1 0
1 0

]
B =

[
k1 0
0 −1

]

sI − A =
[

s + 1 0
−1 s

]
⇒ (sI − A)−1 =

1
s(s + 1)

[
s 0
1 s + 1

]
=

⎡
⎢⎣

1
s + 1

0
1
s
− 1

s + 1
1
s

⎤
⎥⎦

⇒ G = eAT = L−1{(sI − A)−1} =
[

e−T 0
(1 − e−T ) 1

]

H =
∫ T

0

eAtB dt =
[

−e−t c
t + e−t t

]T

0

[
k1 0
0 −1

]
=
[

k1(1 − e−T ) 0
k1(e−T + T − 1) −T

]

Thus discrete form of model is

x[(k + 1)T] =
[

e−T 0
(1 − e−T ) 1

]
x(kT) +

[
k1(1 − e−T ) 0

k1(e−T + T − 1) −T

]
u(kT)

In the particular case T = 1, the model becomes

x(k + 1) =
[

0.368 0
0.632 1

]
x(k) +

[
0.632 k1 0
0.368k1 −1

]
u(k)

(b) Taking sampling period T = 1 and feedback control policy,

u1(k) = kc − x2(k)

x(k + 1) =
[

0.368 0
0.632 1

] [
x1(k)
x2(k)

]
+
[

0.632k1 0
0.368k1 −1

] [
kc − x2(k)

u2(k)

]

⇒ x(k + 1) =
[

0.368 −0.632k1

0.632 1

] [
x1(k)
x2(k)

]
+
[

0.632k1 0
0.368k1 −1

] [
kc

u2(k)

]

Given u2 = 1.1x1(0) and k1 = 3
16 , the discrete-time state-equation becomes
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x(k + 1) =
[

0.368 −0.1185
0.632 1

] [
x1(k)
x2(k)

]
+
[

0.1185 0
0.069 −1

] [
kc

1.1x1(0)

]

(c) Adopting the feedback control policy

u1(t) = kc − x2(t)

the given continuous-time state model becomes

ẋ =
[
−1 k1

1 0

]
x +

[
k1 0
0 −1

] [
kc

u2

]

Taking k1 = 3
16 and u2 = 1.1x1(0) this reduces to

ẋ =
[
−1 − 3

16
1 0

]
x +

[
3
16 0
0 −1

] [
kc

1.1x1(0)

]

(sI − Ac) =
[

s + 1 3
16

−1 s

]
⇒ (sI − Ac)−1 =

1
s2 + s + 3

16

[
s − 3

16
1 s + 1

]

⇒ (sI− Ac)−1 =

⎡
⎢⎢⎣

− 1
2

s + 1
4

+
3
2

s + 3
4

− 3
8

s + 1
4

+
3
8

s + 3
4

2
s + 1

4

− 2
s + 3

4

3
2

s + 1
4

−
1
2

s + 3
4

⎤
⎥⎥⎦

giving

eAct = L−1{(sI − Ac)−1} =
[
− 1

2e−
1
4 t + 3

2e−
3
4 t − 3

8e−
1
4 t + 3

8e−
3
4 t

2e−
1
4 t − 2e−

3
4 t 3

2e−
1
4 t − 1

2e−
3
4 t

]

The response of the continuous feedback system is

x(t) = eAct

[
x1(0)

kc

]
+
∫ t

0

eA(t−τ)dτB
[

kc

1.1x1(0)

]

Carrying out the integration and simplifying gives the response

x1(t) = x1(0)[1.1 − 2.15e−
1
4 t + 2.05e−

3
4 t]

x2(t) = kc + x1(0)[−5.867 + 8.6e−
1
4 t − 2.714e−

3
4 t]
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Exercises 6.11.6

38

H(s) =
1

s2 + 3s + 2

Replace s with
2
Δ

z − 1
z + 1

to give

H̃(z) =
Δ2(z + 1)2

4(z − 1)2 + 6Δ(z2 − 1) + 2Δ2(z + 1)2

=
Δ2(z + 1)2

(4 + 6Δ + 2Δ2)z2 + (4Δ2 − 8)z + (4 − 6Δ + 2Δ2)

This corresponds to the difference equation

(Aq2 + Bq + C)yk = Δ2(q2 + 2q + 1)uk

where

A = 4 + 6Δ + 2Δ2 B = 4Δ2 − 8 C = 4 − 6Δ + 2Δ2

Now put q = 1 + Δδ to get

(AΔ2δ2 + (2A + B)Δδ + A + B + C)yk

= Δ2(Δ2δ2 + 4Δδ + 4)uk

With t = 0.01 in the q form the system poles are at z = 0.9048 and z = 0.8182,
inside | z |= 1. When t = 0.01 these move to z = 0.9900 and z = 0.9802,
closer to the stability boundary. Using the δ form with t = 0.1, the poles are at
ν = −1.8182 and ν = −0.9522, inside the circle centre (−10, 0) in the ν-plane with
radius 10. When t = 0.01 these move to ν = −1.9802 and ν = −0.9950, within
the circle centre (−100, 0) with radius 100, and the closest pole to the boundary
has moved slightly further from it.

39 The transfer function is

H(s) =
1

s3 + 2s2 + 2s + 1

c©Pearson Education Limited 2011



398 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

To discretize using the bi-linear form use s → 2
T

z − 1
z + 1

to give

H̃(z) =
T3(z + 1)3

Az3 + Bz2 + Cz + D

and thus the discrete-time form

(Aq3 + Bq2 + Cq + D)yk = T3(q3 + 3q2 + 3q + 1)uk

where

A = T3 + 4T2 + 8T + 8, B = 3T3 + 4T2 − 8T − 3,

C = 3T3 − 4T2 − 8T + 3, D = T3 − 4T2 + 8T − 1

To obtain the δ form use s → 2δ
2 + Δδ

giving the δ transfer function as

(2 + Δδ)3

Aδ3 + Bδ2 + Cδ + D

This corresponds to the discrete-time system

(Aδ3 + Bδ2 + Cδ + D)yk = (Δ3δ3 + 2Δ2δ2 + 4Δδ + 8)uk

where

A = Δ3 + 4Δ2 + 8Δ + 8, B = 6Δ2 + 16Δ + 16,

C = 12Δ + 16, D = 8

40 Making the given substitution and writing the result in vector–matrix form,
we obtain

ẋ(t) =
[

0
−2

1
−3

]
x(t) +

[
0
1

]
u(t)

and

y(t) = [1, 0]x(t)

This is in the general form

ẋ(t) = Ax(t) + bu(t)

y = cT x(t) + d u(t)
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The Euler discretization scheme gives at once

x((k + 1)Δ) = x(k Δ) + Δ [Ax(k Δ) + bu(k Δ)]

Using the notation of Exercise 38 write the simplified δ form equation as

[
δ2 +

12 + 8Δ
A

δ +
8
A

]
yk =

1
A

[
Δ2δ2 + 4Δδ + 4

]
uk

Now, as usual, consider the related system

[
δ2 +

12 + 8Δ
A

δ +
8
A

]
pk = uk

and introduce the state variables x1(k) = pk , x2(k) = δpk together with the
redundant variable x3(k) = δ2pk . This leads to the representation

δx(k) =

⎡
⎣ 0 1

− 8
A

−12 + 8Δ
A

⎤
⎦x(k) +

[
0
1

]
u(k)

yk =
[(

4
A

− 8Δ2

A2

)
,

(
4Δ
A

− (12 + 8Δ)Δ2

A2

)]
x(k) +

Δ2

A
u(k)

or

x(k + 1) = x(k) + Δ [A(Δ)x(k) + bu(k)]

yk = cT (Δ)x(k) + d(Δ)uk

Since A(0) = 4 it follows that using A(0), c(0) and d(0) generates the Euler
Scheme when x(k) = x(kΔ) etc.

41(a) In the z form substitution leads directly to

H(z) =
12(z2 − z)

(12 + 5Δ)z2 + (8Δ − 12)z − Δ

When Δ = 0.1, this gives

H(z) =
12(z2 − z)

12.5z2 + −11.2z − 0.1
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(b) The γ form is given by replacing z by 1 + Δγ . Substitution and
rearrangement gives

H̃(γ) =
12γ(1 + Δγ)

γ2Δ(12 + 5Δ) + γ(8Δ − 12) + 12

when Δ = 0.1, this gives

H̃(γ) =
12γ(1 + 0.1γ)

1.25γ2 − 11.2γ + 12

Review exercises 6.12

1

Z{f(kT)} = Z{kT} = TZ{k} = T
z

(z − 1)2

2

Z
{
ak sin kω

}
= Z

{
ak(ej kω − e−j kω)

2j

}

=
1
2j

Z
{
(aej ω)k − (ae−j ω)k

}
=

1
2j

( z

z − aej ω
− z

z − ae−j ω

)

=
az sin ω

z2 − 2az cos ω + a2

3 Recall that

Z
{
ak
}

=
z

(z − a)2

Differentiate twice wrt a , then put a = 1 to get the pairs

k ←→ z

(z − 1)2
k(k − 1) ←→ 2z

(z − 1)3

then

Z
{
k2
}

=
2z

(z − 1)3
+

z

(z − 1)2
=

z(z + 1)
(z − 1)3
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4

H(z) =
3z

z − 1
+

2z
(z − 1)2

so inverting, the impulse response is

{3 + 2k}

5
YSTEP(z) =

z

(z + 1)(z + 2)(z − 1)

= −1
2

z

z + 1
+

1
3

z

z + 2
+

1
6

z

z − 1
Thus

ySTEP,k = −1
2
(−1)k +

1
3
(−2)k +

1
6

6

F(s) =
1

s + 1
=

1
s
− 1

s + 1
which inverts to

f(t) = (1 − e−t)ζ(t)

where ζ(t) is the Heaviside step function, and so

F̃(z) = Z{f(kT)} =
z

z − 1
− z

z − e−T

Then
e−sT F(s) ←→ f((t − T))

which when sampled becomes f((k − 1)T) and

Z{f((k − 1)T)} =
∞∑

k=0

f((k − 1)T)
zk

=
1
z
F̃(z)

That is
e−sT F(s) → 1

z
F̃(z)

So the overall transfer function is

z − 1
z

( z

z − 1
− z

z − e−T

)
=

1 − e−T

z − e−T
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7
H(s) =

s + 1
(s + 2)(s + 3)

=
2

s + 3
− 1

s + 2

yδ(t) = 2e−3t − e2t −→ {2e−3kT − e2kT }
so

H̃(z) = 2
z

z − e−3T
− z

z − e−2T

8(a) Simple poles at z = a and z = b . The residue at z = a is

lim
z→a

(z − a)zn−1X(z) = lim
z→a

(z − a)
zn

(z − a)(z − b)
=

an

a − b

The residue at z = b is similarly
bn

b − a
and the inverse transform is the sum

of these, that is {
an − bn

a − b

}

8(b)

(i) There is a only double pole at z = 3 and the residue is

lim
z→3

d

dz
(z − 3)2

zn

(z − 3)2
=
{
n3n−1

}

(ii) There are now simple poles at z =
1
2
±

√
3

2
j . The individual residues are

thus given by

lim
z→(1/2±

√
3/2j )

±

(
1
2 ±

√
3

2 j
)n

√
3j

Adding these and simplifying in the usual way gives the inverse transform
as {

2√
3

sinnπ/3
}

9

H(z) =
z

z + 1
− z

z − 2
so

YSTEP(z) =
(

z

z + 1
− z

z − 2

)
z

z − 1
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= − 3z
(z − 1)(z + 1)(z − 2)

. z

=
3
2

z

z − 1
+

1
2

z

z + 1
− 2

z

z − 2
so

ySTEP,k =
3
2

+
1
2
(−1)k − 2k+1

10

Y(z) =
z2

(z + 1)(z − 1)
×
(

1 − 1
z

)
=

z

z + 1
so

yk = (−1)k

11

Y(z) =
z2

(z − α)(z − β)
×
(

1 − α + β

z
+

αβ

z2

)
= 1

so
yk = {δk} = {1, 0, 0, . . .}

The response of the system with H(z) =
z

(z − α)(z − β)
is clearly given by

Y(z) = 1/z , which transforms to

yk = {δk−1} = {0, 1, 0, 0, . . .}

12 From H(s) =
s

(s + 1)(s + 2)
the impulse response is calculated as

yδ(t) = (2e−2t − e−t) t ≥ 0

Sampling gives
{yδ(nT)} =

{
2e−2nT − enTt

}
with z transform

Z{yδ(nT)} = 2
z

z − e−2T
− z

z − e−T
= D(z)

Setting Y(z) = TD(z)X(z) gives

Y(z) = T
[
2

z

z − e−2T
− z

z − e−T

]
X(z)
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Substituting for T and simplifying gives

Y(z) =
1
2
z

[
z − 0.8452

z2 − 0.9744z + 0.2231

]
X(z)

so

(z2 − 0.9744z + 0.2231)Y(z) = (0.5z2 − 0.4226z)X(x)

leading to the difference equation

yn+2 − 0.9744yn+1 + 0.2231yn = 0.5xn+2 − 0.4226xn+1

As usual (see Exercise 22), draw the block diagram for

pn+2 − 0.9744pn+1 + 0.2231pn = xn

then taking yn = 0.5pn+2 − 0.4226pn+1

yn+2 − 0.9744yn+1 + 0.2231yn = 0.5pn+4 − 0.4226pn+3

−0.9774(0.5pn+3 − 0.4226pn+2) + 0.2231(0.5pn+2 − 0.4226pn+1)

= 0.5xn+2 − 0.4226xn+1

13
yn+1 = yn + avn

vn+1 = vn + bun

= vn + b(k1(xn − yn) − k2vn)

= bk1(xn − yn) + (1 − bk2)vn

so

yn+2 = yn+1 + a[bk1(xn − yn) + (1 − bk2)vn]

(a) Substituting the values for k1 and k2 , we get

yn+2 = yn+1 +
1
4
(xn − yn)

or

yn+2 − yn+1 +
1
4
yn =

1
4
xn
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Transforming with relaxed initial conditions gives

Y(z) =
1

(2z − 1)2
X(z)

(b) When X(z) =
A

z − 1
,

Y(z) =
A

4

[
4

z

z − 1
− 4

z

z − 1/2
− 2

z

(z − 1/2)2

]

then
yn =

A

4
[
4 − 4(1/2)n − 2n(1/2)n−1

]

14 Substitution leads directly to

yk − 2yk−1 + yk−2

T2
+ 3

yk − yk−1

T
+ 2yk = 1

Take the z transform under the assumption of a relaxed system to get

[(1 + 3Tz + 2T2)z2 − (2 + 3T)z + 1]Y(z) = T2 z3

z − 1

The characteristic equation is thus

(1 + 3Tz + 2T2)z2 − (2 + 3T)z + 1 = 0

with roots (the poles)

z =
1

1 + T
, z =

1
1 + 2T

The general solution of the difference equation is a linear combination of these
together with a particular solution. That is

yk = α

(
1

1 + T

)k

+ β

(
1

1 + 2T

)k

+ γ

This can be checked by substitution which also shows that γ = 1/2. The
condition y(0) = 0 gives y0 = 0 and since y′(t) → yk − yk−1

T
, y′(0) = 0

implies yk−1 = 0. Using these we have

α + β +
1
2

= 0

α(1 + T) + β(1 + 2T) +
1
2

= 0
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with solution α = −1, β = 1/2 so

yk = −
(

1
1 + T

)k

+
1
2

(
1

1 + 2T

)k

+
1
2

The differential equation is simply solved by inverting the Laplace transform
to give

y(t) =
1
2
(e−2t − 2e−t + 1), t ≥ 0

T = 0.1

Figure 6.3: Response of continuous and discrete systems in Review Exercise 14 over
10 seconds when T = 0.1.
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T = 0.05

Figure 6.4: Response of continuous and discrete systems in Review Exercise 14 over
10 seconds when T = 0.05.

15 Substitution for s and simplifying gives

[(4 + 6T + 2T2)z2 + (4T2 − 8)z + (4 − 6T + 2T2)]Y(z)

= T2(z + 1)2X(x)

The characteristic equation is

(4 + 6T + 2T2)z2 + (4T2 − 8)z + (4 − 6T + 2T2) = 0

with roots

z =
8 − 4T2 ± 4T

2(4 + 6T + 2T2)

That is,

z =
1 − T

1 + T
and z =

2 − T

2 + T

c©Pearson Education Limited 2011



408 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

The general solution of the difference equation is then

yk = α

(
1 − T

1 + T

)k

+ β

(
2 − T

2 + T

)k

+ γ

This can be checked by substitution which also shows that γ = 1/2. The
condition y(0) = 0 gives y0 = 0 and since y′(t) → yk − yk−1

T
, y′(0) = 0

implies yk−1 = 0. Using these we have

α + β +
1
2

= 0

α
1 + T

1 − T
+ β

2 + T

2 − T
+

1
2

= 0

with solution
α =

1 − T

2
β = −2 − T

2
Thus,

yk =
1 − T

2

(
1 − T

1 + T

)k

+ −2 − T

2

(
2 − T

2 + T

)k

+
1
2

T = 0.05

Figure 6.5: Response of continuous and discrete systems in Review Exercise 15 over
10 seconds when T = 0.1.
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T = 0.05

Figure 6.6: Response of continuous and discrete systems in Review Exercise 14
over 10 seconds when T = 0.05.

16
f(t) = t2, {f(kΔ)} =

{
k2Δ2

}
, k ≥ 0

Now
Z{k2} = −z

d
dz

z

(z − 1)2
=

z(z + 1)
(z − 1)3

So
Z{k2Δ2} =

z(z + 1)Δ2

(z − 1)3

To get D -transform, put z = 1 + Δγ to give

F
′

Δ(γ) =
(1 + Δγ)(2 + Δγ)Δ2

Δ3γ3

Then the D -transform is

FΔ(γ) = ΔF
′

Δ(γ) =
(1 + Δγ)(2 + Δγ)

γ3
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17 Eigenvalues are given by

0 =

∣∣∣∣∣∣
1 − λ 1 −2
−1 2 − λ 1
0 1 −1 − λ

∣∣∣∣∣∣ = (1 − λ)(λ2 − λ − 3) + (1 − λ)

= (1 − λ)(λ − 2)(λ + 1)

so eigenvalues are λ1 = 2, λ2 = 1, λ3 = −1

Corresponding eigenvectors are the solutions of

(1 − λi)ei1 + ei2 − 2ei3 = 0

−ei1 + (2 − λi)ei2 + ei3 = 0

0ei1 + ei2 − (1 + λi)ei3 = 0

Taking i = 1, 2, 3 the eigenvectors are

e1 = [1 3 1]T , e2 = [3 2 1]T , e3 = [1 0 1]T

The modal matrix M and spectral matrix Λ are

M =

⎡
⎣ 1 3 1

3 2 0
1 1 1

⎤
⎦, Λ =

⎡
⎣ 2 0 0

0 1 0
0 0 −1

⎤
⎦

M Λ =

⎡
⎣ 2 3 −1

6 2 0
2 1 −1

⎤
⎦, A M =

⎡
⎣ 1 1 −2
−1 2 1

0 1 −1

⎤
⎦
⎡
⎣ 1 3 1

3 2 0
1 1 1

⎤
⎦

=

⎡
⎣ 2 3 −1

6 2 0
2 1 −1

⎤
⎦ = M Λ

Substituting x = M y in x(k + 1) = A x(k) gives

M y(k + 1) = A M y(k)

or y(k + 1) = M−1A M y(k) = Λ y(k)

so y(1) = Λ y(0), y(2) = Λ y(1) = Λ2y(0)

⇒ y(k) = Λky(0)
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Thus,

x(k) =

⎡
⎣ 1 3 1

3 2 0
1 1 1

⎤
⎦
⎡
⎣ 2k 0 0

0 1 0
0 0 (−1)k

⎤
⎦
⎡
⎣α

β
γ

⎤
⎦ say

=

⎡
⎣ 1 3 1

3 2 0
1 1 1

⎤
⎦
⎡
⎣ α2k

β
γ(−1)k

⎤
⎦

=

⎡
⎣α2k + 3β + γ(−1)k

3α2k + 2β
α2k + β + γ(−1)k

⎤
⎦

When k = 0 ⎡
⎣ 1

0
0

⎤
⎦ =

⎡
⎣α + 3β + γ

3α + 2β
α + β + γ

⎤
⎦

which gives α = −1
3
, β =

1
2
, γ =

1
6

so that

x(k) =

⎡
⎣− 1

3 (2)k + 3
2 + 1

6 (−1)k

−(2)k + 1
− 1

3 (2)k + 1
2 + 1

6 (−1)k

⎤
⎦

18
x1(k + 1) = u(k) − 3x1(k) − 4x2(k)

x2(k + 1) = −2x1(k) − x2(k)

y(k) = x1(k) + x2(k)

or in vector-matrix form

x(k + 1) =
[
−3 −4
−2 −1

]
x(k) +

[
1
0

]
u(k), y(k) = [1 − 1]x(k) (1)

D(x) = c[zI − A]−1b =
1

z2 + 4z − 5
[1 − 1]

[
z + 1 −4
−2 z + 3

] [
1
0

]

=
z + 3

z2 + 4z − 5

(i) Mc =
[

1 −3
0 −2

]

(ii) detMc = −2 
= 0 so Mc is of rank 2

c©Pearson Education Limited 2011



412 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

(iii) M−1
c = −1

2

[
−2 3
0 1

]
=

[
1 − 3

2

0 − 1
2

]
so vT = [0 − 1

2 ]

(iv) T =
[

0 −1
2

1 1
2

]

(v) detT 
= 0 and T−1 = 2
[

1
2

1
2

−1 0

]
=

[
1 1
−2 0

]

Substituting z(k) = T x(k) in (1) gives

T−1z(k + 1) = A T−1 z(k) + bu(k)

or z(k + 1) = T A T−1 z(k) + T bu(k)

=
[

0 − 1
2

1 1
2

] [
−3 −4
−2 −1

] [
1 1
−2 0

]
z(k) +

[
0 − 1

2
1 1

2

] [
1
0

]
u(t)

thatis, z(k + 1) =
[

0 1
5 −4

]
z(k) +

[
0
1

]
u(k)

Thus C and bc are of the required form with α = −5, β = 4 which are coefficients
in the characteristic polynomial of D(z) .
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Fourier series

Exercises 7.2.6

1(a)

a0 =
1
π

[∫ 0

−π

−πdt +
∫ π

0

tdt

]

=
1
π

[
(−πt)0−π +

( t2

2
)π

0

]
=

1
π

[
−π2 +

π2

2

]
= −π

2

an =
1
π

[∫ 0

−π

−π cos ntdt +
∫ π

0

t cos ntdt

]

=
1
π

{[
−π

n
sin nt

]0
−π

+
[ t

n
sinnt +

1
n2

cos nt
]π

0

}

=
1

πn2
(cos nπ − 1) =

{
− 2

πn2
, n odd

0, n even

bn =
1
π

[∫ 0

−π

−π sin ntdt +
∫ π

0

t sin ntdt

]

=
1
π

{[π

n
cos nt

]0
−π

+
[
− t

n
cos nt +

1
n2

sin nt
]π

0

}

=
1
n

(1 − 2 cos nπ) =

⎧⎪⎨
⎪⎩

3
n

, n odd

− 1
n

, n even

Thus, the Fourier expansion of f(t) is

f(t) = −π

4
+

∑
n odd

(
− 2

πn2

)
cos nt +

∑
n odd

3
n

sin nt −
∑

n even

1
n

sinnt

i.e. f(t) = −π

4
− 2

π

∞∑
n=1

cos(2n − 1)t
(2π − 1)2

+ 3
∞∑

n=1

sin(2n − 1)t
(2n − 1)

−
∞∑

n=1

sin 2nt

2n
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1(b)

a0 =
1
π

∫ 0

−π

(t + π)dt =
1
π

[
t2

2
+ πt

]0

−π

=
π

2

an =
1
π

∫ 0

−π

(t + π) cos ntdt =
1
π

[
(t + π)

sin nt

n
+

cos nt

n2

]0

−π

=
1

πn2
(1 − cos nπ) =

{
0, n even

2
πn2

, n odd

bn =
1
π

∫ 0

−π

(t + π) sin ntdt =
1
π

[
−(t + π)

cos nt

n
+

sin nt

n2

]0

−π

= − 1
n

Thus, the Fourier expansion of f(t) is

f(t) =
π

4
+

∑
n odd

2
πn2

cos nt −
∞∑

n=1

1
n

sin nt

i.e. f(t) =
π

4
+

2
π

∞∑
n=1

cos(2n − 1)t
(2n − 1)2

−
∞∑

n=1

sinnt

n

1(c) From its graph we see that f(t) is an odd function; so it has Fourier
expansion

f(t) =
∞∑

n=1

bn sin nt

with

bn =
2
π

∫ π

0

f(t) sin nt =
2
π

∫ π

0

(
1 − t

π

)
sin ntdt

=
2
π

[
− 1

n

(
1 − t

π

)
cos nt − 1

πn2
sinnt

]π

0

=
2

nπ

Thus, the Fourier expansion of f(t) is

f(t) =
2
π

∞∑
n=1

sin nt

n
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1(d) From its graph f(t) is seen to be an even function; so its Fourier
expansion is

f(t) =
a0

2
+

∞∑
n=1

an cos nt

with

a0 =
2
π

∫ π

0

f(t)dt =
2
π

∫ π/2

0

2 cos tdt =
2
π

[2 sin t]π/2
0 =

4
π

an =
2
π

∫ π

0

f(t) cos ntdt =
2
π

∫ π/2

0

2 cos t cos ntdt

=
2
π

∫ π/2

0

[cos(n + 1)t + cos(n − 1)t]dt

=
2
π

[
sin(n + 1)t

(n + 1)
+

sin(n − 1)t
(n − 1)

]π/2

0

=
2
π

[
1

(n + 1)
sin(n + 1)

π

2
+

1
(n − 1)

sin(n − 1)
π

2

]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, n odd

− 4
π

1
(n2 − 1)

, n = 4, 8, 12, . . .

4
π

1
(n2 − 1)

, n = 2, 6, 10, . . .

Thus, the Fourier expansion of f(t) is

f(t) =
2
π

+
4
π

∞∑
n=1

(−1)n+1 cos 2nt

4n2 − 1

1(e)

a0 =
1
π

∫ π

−π

cos
t

2
dt =

1
π

[
2 sin

t

2

]π

−π

=
4
π

an =
1
π

∫ π

−π

cos
t

2
cos ntdt =

1
2π

∫ π

−π

[
cos(n +

1
2
)t + cos(n − 1

2
)t

]
dt

=
2
2π

[
2

(2n + 1)
sin(n +

1
2
)π +

2
(2n − 1)

sin(n − 1
2
)π

]

=

⎧⎪⎨
⎪⎩

4
π(4n2 − 1)

, n = 1, 3, 5, . . .

− 4
π(4n2 − 1)

, n = 2, 4, 6, . . .

bn = 0
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Thus, the Fourier expansion of f(t) is

f(t) =
2
π

+
4
π

∞∑
n=1

(−1)n+1 cos nt

(4n2 − 1)

1(f) Since f(t) is an even function, it has Fourier expansion

f(t) =
a0

2
+

∞∑
n=1

an cos nt

with
a0 =

2
π

∫ π

0

| t | dt =
2
π

∫ π

0

tdt = π

an =
2
π

∫ π

0

t cos ntdt =
2
π

[
t

n
sin nt +

1
n2

cos nt

]π

0

=
2

πn2
(cos nπ − 1) =

{
0, n even

− 4
πn2

, n odd

Thus, the Fourier expansion of f(t) is

f(t) =
π

2
− 4

π

∑
n odd

1
n2

cos nt

that is, f(t) =
π

2
− 4

π

∞∑
n=1

cos(2n − 1)t
(2n − 1)2

1(g)

a0 =
1
π

∫ π

0

(2t − π)dt =
1
π

[
t2 − πt

]π

0
= 0

an =
1
π

∫ π

0

(2t − π) cos ntdt =
1
π

[
(2t − π)

n
sin nt +

2
n2

cos nt

]π

0

=
2

πn2
(cos nπ − 1) =

{
− 4

πn2
, n odd

0, n even

bn =
1
π

∫ π

0

(2t − π) sin ntdt =
1
π

[
− (2t − π)

n
cos nt +

2
n2

sin nt

]π

0

= − 1
n

(cos nπ + 1) =

{
0, n odd

− 2
n

, n even
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Thus, the Fourier expansion of f(t) is

f(t) =
∑

n odd
− 4

πn2
cos nt +

∑
n even

− 2
n

sin nt

that is, f(t) = − 4
π

∞∑
n=1

cos(2n − 1)t
(2n − 1)2

−
∞∑

n=1

sin 2nt

n

1(h)

a0 =
1
π

[∫ 0

−π

(−t + et)dt +
∫ π

0

(t + et)dt

]

=
1
π

{[
− t2

2
+ et

]0
−π

+
[ t2

2
+ et

]π

0

}

=
1
π

[
π2 + (eπ − e−π)

]
= π +

2
π

sinhπ

an =
1
π

[∫ 0

−π

(−t + et) cos ntdt +
∫ π

0

(t + et) cos ntdt

]

=
1
π

{
−

[ t

n
sin nt +

1
n2

cos nt
]0
−π

+
1

(n2 + 1)
[
net sin nt + et cos nt

]0
−π

+
[

t

n
sin nt +

1
n2

cos nt

]π

0

+
1

(n2 + 1)
[
net sin nt + et cos nt

]π

0

}

=
2

πn2
(−1 + cos nπ) +

2 cos nπ

π(n2 + 1)
[eπ − e−π

2
]

=
2
π

[
(cos π − 1)

n2
+

cos nπ

(n2 + 1)
sinhπ

]
, cos nπ = (−1)n

bn =
1
π

[∫ 0

−π

(−t + et) sin ntdt +
∫ π

0

(t + et) sin ntdt

]

=
1
π

{[ t

n
cos nt − 1

n2
sin nt

]0

−π
+

[
− t

n
cos nt +

1
n2

sin nt
]π

0

+
n2

π2 + 1

[
−et cos nt

n
+

et sin nt

n2

]π

−π

}

= − n

π(n2 + 1)
cos nπ(eπ − e−π) = − 2n

π(n2 + 1)
cos nπ sinhπ, cos nπ = (−1)n
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Thus, the Fourier expansion of f(t) is

f(t) =
(π

2
+

1
π

sinhπ
)

+
2
π

∞∑
n=1

[
(−1)n − 1

n2
+

(−1)n sinhπ

n2 + 1

]
cos nt

− 2
π

∞∑
n=1

n(−1)n

n2 + 1
sinhπ sin nt

2 Since the periodic function f(t) is an even function, its Fourier expansion is

f(t) =
a0

2
+

∞∑
n=1

an cos nt

with

a0 =
2
π

∫ π

0

(π − t)2dt =
2
π

[
−1

3
(π − t)3

]π

0

=
2
3
π2

an =
2
π

∫ π

0

(π − t)2 cos ntdt =
2
π

[
(π − t)2

n
sin nt − 2(π − t)

n2
cos nt − 2

n3
sin nt

]π

0

=
4
n2

Thus, the Fourier expansion of f(t) is

f(t) =
π2

3
+ 4

∞∑
n=1

1
n2

cos nt

Taking t = π gives

0 =
π2

3
+ 4

∞∑
n=1

1
n2

(−1)n

so that
1
12

π2 =
∞∑

n=1

(−1)n+1

n2
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3 Since q(t) is an even function, its Fourier expansion is

q(t) =
a0

2
+

∞∑
n=1

an cos nt

with

a0 =
2
π

∫ π

0

Qt

π
dt = Q

an =
2
π

∫ π

0

Qt

π
cos ntdt =

2Q
π2

[
t

n
sin nt +

1
n2

cos nt

]π

0

=
2Q

π2n2
(cos nπ − 1) =

{ 0, n even

− 4Q
π2n2

, n odd

Thus, the Fourier expansion of q(t) is

q(t) = Q

[
1
2
− 4

π2

∞∑
n=1

cos(2n − 1)t
(2n − 1)2

]

4

a0 =
1
π

∫ π

0

5 sin tdt =
1
π

[−5 cos t]π0 =
10
π

an =
5
π

∫ π

0

sin t cos ntdt =
5
2π

∫ π

0

[sin(n + 1)t − sin(n − 1)t]dt

=
5
2π

[
−cos(n + 1)t

(n + 1)
+

cos(n − 1)t
(n − 1)

]π

0

, n �= 1

=
5
2π

{[cos nπ

n + 1
− cos nπ

(n − 1)
]
−

[
− 1

n + 1
+

1
n − 1

]}

= − 5
π(n2 − 1)

(cos nπ + 1) =

{ 0, n odd, n �= 1

− 10
π(n2 − 1)

, n even

Note that in this case we need to evaluate a1 separately as

a1 =
1
π

∫ π

0

5 sin t cos tdt =
5
2π

∫ π

0

sin 2tdt = 0

bn =
5
π

∫ π

0

sin t sin ntdt = − 5
2π

∫ π

0

[cos(n + 1)t − cos(n − 1)t]dt

= − 5
2π

[
sin(n + 1)t

(n + 1)
− sin(n − 1)t

(n − 1)

]π

0

, n �= 1

= 0 , n �= 1

c©Pearson Education Limited 2011



420 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

Evaluating b1 separately,

b1 =
5
π

∫ π

0

sin t sin tdt =
5
2π

∫ π

0

(1 − cos 2t)dt

=
5
2π

[
t − 1

2
sin 2t

]π

0
=

5
2

Thus, the Fourier expansion of f(t) is

f(t) =
5
π

+
5
2

sin t − 10
π

∞∑
n=1

cos 2nt

4n2 − 1

5

a0 =
1
π

[∫ 0

−π

π2dt +
∫ π

0

(t − π)2dt

]

=
1
π

{[
π2t

]0
−π

+
[1
3
(t − π)3

]π

0

}
=

4
3
π2

an =
1
π

[∫ 0

−π

π2 cos ntdt +
∫ π

0

(t − π)2 cos ntdt

]

=
1
π

{[π2

n
sin nt

]0
−π

+
[ (t − π)2

n
sin nt +

2(t − π)
n2

cos nt − 2
n3

sinnt
]π

0

}

=
2
n2

bn =
1
π

[∫ 0

−π

π2 sin ntdt +
∫ π

0

(t − π)2 sin ntdt

]

=
1
π

{[
−π2

n
cos nt

]0
−π

+
[
− (t − π)2

n
cos nt + 2

(t − π)
n2

sin nt +
2
n3

cos nt
]π

0

}

=
1
π

{[
−π2

n
+

π2

n
(−1)n

]}

=
π

n
(−1)n − 2

πn3
[1 − (−1)n]
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Thus, the Fourier expansion of f(t) is

f(t) =
2
3
π2 +

∞∑
n=1

[
2
n2

cos nt +
(−1)n

n
π sin nt

]
− 4

π

∞∑
n=1

sin(2n − 1)t
(2n − 1)3

5(a) Taking t = 0 gives

π2 + π2

2
=

2
3
π2 +

∞∑
n=1

2
n2

and hence the required result
∞∑

n=1

1
n2

=
1
6
π2

5(b) Taking t = π gives

π2 + 0
2

=
2
3
π2 +

∞∑
n=1

2
n2

(−1)n

and hence the required result

∞∑
n=1

(−1)n+1

n2
=

1
12

π2

6(a)
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6(b)

The Fourier expansion of the even function (a) is given by

f(t) =
a0

2
+

∞∑
n=1

an cos nt

with

a0 =
2
π

[∫ π/2

0

tdt +
∫ π

π/2

(π − t)dt

]

=
2
π

{[1
2
t2

]π/2

0
+

[
−1

2
(π − t)2

]π

π/2
=

π

2

an =
2
π

[∫ π/2

0

t cos ntdt +
∫ π

π/2

(π − t) cos ntdt

]

=
2
π

{[ t

n
sin nt +

1
n2

cos nt
]π/2

0
+

[π − t

n
sin nt − 1

n2
cos nt

]π

π/2

}

=
2
π

[
2
n2

cos
nπ

2
− 1

n2
(1 + (−1)n)

]

=

⎧⎪⎨
⎪⎩

0, n odd

− 8
πn2

, n = 2, 6, 10, . . .
0, n = 4, 8, 12, . . .

Thus, the Fourier expansion of f(t) is

f(t) =
π

4
− 2

π

∞∑
n=1

cos(4n − 2)t
(2n − 1)2

Taking t = 0 where f(t) = 0 gives the required result.

c©Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4th Edition 423

7

a0 =
1
π

[∫ π

0

(2 − t

π
)dt +

∫ 2π

π

t/πdt

]

=
1
π

{[
2t − t2

2π
]π

0
+

[ t2

2π
]2π

π

}
= 3

an =
1
π

[∫ π

0

(2 − t

π
) cos ntdt +

∫ 2π

π

t

π
cos ntdt

]

=
1
π

{[ 2
n

sin nt − t

πn
sin nt − 1

πn2
cos nt

]π

0
+

[ t

πn
sin nt +

1
πn2

cos nt
]2π

π

}

=
2

π2n2
[1 − (−1)n]

=

{
0, n even

4
π2n2

, n odd

bn =
1
π

[∫ π

0

(2 − t

π
) sin ntdt +

∫ 2π

π

t

π
sin ntdt

]

=
1
π

{[
− 2

n
cos nt +

t

πn
cos nt − 1

πn2
sin nt

]π

0
+

[
− t

πn
cos nt +

1
πn2

sin nt
]2π

π

}
= 0

Thus, the Fourier expansion of f(t) is

f(t) =
3
2

+
4
π2

∞∑
n=1

cos(2n − 1)t
(2n − 1)2

Replacing t by t − 1
2π gives

f(t − 1
2
π) =

3
2

+
4
π2

∞∑
n=1

cos(2n − 1)(t − π)
(2n − 1)2

c©Pearson Education Limited 2011



424 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

Since

cos(2n − 1)(t − 1
2
π) = cos(2n − 1)t cos(2n − 1)

π

2
+ sin(2n − 1)t sin(2n − 1)

π

2
= (−1)n+1 sin(2n − 1)t

f(t − 1
2
π) − 3

2
=

4
π2

∞∑
n=1

(−1)n+1 sin(2n − 1)t
(2n − 1)2

The corresponding odd function is readily recognized from the graph of f(t) .

Exercises 7.2.8

8 Since f(t) is an odd function, the Fourier expansion is

f(t) =
∞∑

n=1

bn sin
nπt

�

with

bn =
2
�

∫ �

0

t sin
nπt

�
dt =

2
�

[
− t�

nπ
cos

nπt

�
+

( �

nπ

)2

sin
nπt

�

]�

0

= − 2�
nπ

cos nπ

Thus, the Fourier expansion of f(t) is

f(t) =
2�
π

∞∑
n=1

(−1)n+1

n
sin

nπt

�

9 Since f(t) is an odd function (readily seen from a sketch of its graph) its
Fourier expansion is

f(t) =
∞∑

n=1

bn sin
nπt

�

with

bn =
2
�

∫ �

0

K

�
(� − t) sin

nπt

�
tdt

=
2
�

[
−K�

nπ
cos

nπt

�
+

Kt

nπ
cos

nπt

�
− K�

(nπ)2
sin

nπt

�

]�

0

=
2K
nπ
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Thus, the Fourier expansion of f(t) is

f(t) =
2K
π

∞∑
n=1

1
n

sin
nπt

�

10

a0 =
1
5

∫ 5

0

3dt = 3

an =
1
5

∫ 5

0

3 cos
nπt

5
dt =

1
5

[
15
nπ

sin
nπt

5

]5

0

= 0

bn =
1
5

∫ 5

0

3 sin
nπt

5
dt =

1
5

[
− 15

nπ
cos

nπt

5

]5

0

=
3
nπ

[1 − (−1)n] =

{
6

nπ
, n odd

0, n even

Thus, the Fourier expansion of f(t) is

f(t) =
3
2

+
6
π

∞∑
n=1

1
(2n − 1)

sin
(2n − 1)

5
πt

11

a0 =
2ω
2π

∫ π/ω

0

A sin ωtdt =
ω

π

[
−A

ω
cos ωt

]π/ω

0

=
2A
π

an =
Aω

π

∫ π/ω

0

sin ωt cos nωtdt =
Aω

2π

∫ π/ω

0

[sin(n + 1)ωt − sin(n − 1)ωt]dt

=
Aω

2π

[
−cos(n + 1)ωt

(n + 1)ω
+

cos(n − 1)ωt

(n − 1)ω

]π/ω

0

, n �= 1

=
A

2π

[
2(−1)n+1

n2 − 1
− 2

n2 − 1

]
=

A

π(n2 − 1)
[(−1)n+1 − 1]

=

⎧⎨
⎩

0, n odd , n �= 1

− 2A
π(n2 − 1)

, n even

Evaluating a1 separately,

a1 =
Aω

π

∫ π/ω

0

sin ωt cos ωtdt =
A

2π

∫ π/ω

0

sin 2ωtdt = 0
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bn =
Aω

π

∫ π/ω

0

sinωt sin nωtdt = −Aω

2π

∫ π/ω

0

[cos(n + 1)ωt − cos(n − 1)ωt]dt

= −Aω

2π

[
sin(n + 1)ωt

(n + 1)ω
− sin(n − 1)ωt

(n − 1)ω

]π/ω

0

, n �= 1

= 0, n �= 1

b1 =
Aω

π

∫ π/ω

0

sin2 ωtdt =
Aω

2π

∫ π/ω

0

(1 − cos 2ωt)dt =
A

2

Thus, the Fourier expansion of f(t) is

f(t) =
A

π

[
1 +

π

2
sin ωt − 2

∞∑
n=1

cos 2nωt

4n2 − 1

]

12 Since f(t) is an even function, its Fourier expansion is

f(t) =
a0

2
+

∞∑
n=1

an cos
nπt

T

with

a0 =
2
T

∫ T

0

t2dt =
2
T

[
1
3
t3

]T

0

=
2
3
T2

an =
2
T

∫ T

0

t2 cos
nπt

T
dt =

2
T

[
Tt2

nπ
sin

nπt

T
+

2tT2

(nπ)2
cos

nπt

T
− 2T3

(nπ)3
sin

nπt

T

]T

0

=
4T2

(nπ)2
(−1)n

Thus, the Fourier series expansion of f(t) is

f(t) =
T2

3
+

4T2

π2

∞∑
n=1

(−1)n

n2
cos

nπt

T
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13

a0 =
2
T

∫ T

0

E

T
tdt =

2E
T2

[
1
2
t2

]T

0

= E

an =
2
T

∫ T

0

E

T
t cos

2πnt

T
dt

=
2E
T2

[
tT

2πn
sin

2πnt

T
+

( T

2πn

)2

cos
2πnt

T

]T

0

= 0

bn =
2E
T2

∫ T

0

t sin
2πnt

T
dt

=
2E
T2

[
− tT

2πn
cos

2πnt

T
+

( T

2πn

)2

sin
2πnt

T

]T

0

= − E

πn

Thus, the Fourier expansion of e(t) is

e(t) =
E

2
− E

π

∞∑
n=1

1
n

sin
2πnt

T

Exercises 7.3.3

14 Half range Fourier sine series expansion is given by

f(t) =
∞∑

n=1

bn sin nt

with

bn =
2
π

∫ π

0

1 sin ntdt =
2
π

[
− 1

n
cos nt

]π

0

= − 2
nπ

[(−1)n − 1]

=

{
0, n even
4

nπ
, n odd

Thus, the half range Fourier sine series expansion of f(t) is

f(t) =
4
π

∞∑
n=1

sin(2n − 1)t
(2n − 1)

Plotting the graphs should cause no problems.
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15 Half range Fourier cosine series expansion is given by

f(t) =
a0

2
+

∞∑
n=1

an cos nπt

with

a0 =
2
1

∫ 1

0

(2t − 1)dt = 0

an = 2
∫ 1

0

(2t − 1) cos nπtdt

= 2
[
(2t − 1)

nπ
sin nπt +

2
(nπ)2

cos nπt

]1

0

=
4

(nπ)2
[(−1)n − 1]

=

{ 0, n even

− 8
(nπ)2

, n odd

Thus, the half range Fourier cosine series expansion of f(t) is

f(t) = − 8
π2

∞∑
n=1

1
(2n − 1)2

cos(2n − 1)πt

Again plotting the graph should cause no problems.

16(a)

a0 = 2
∫ 1

0

(1 − t2)dt = 2
[
t − 1

3
t3

]1
0

=
4
3

an = 2
∫ 1

0

(1 − t2) cos 2nπtdt

= 2
[
(1 − t2)

2nπ
sin 2nπt − 2t

(2nπ)2
cos 2nπt +

2
(2nπ)3

sin 2nπt

]1

0

= − 1
(nπ)2
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bn = 2
∫ 1

0

(1 − t2) sin 2nπtdt

= 2
[
− (1 − t2)

2nπ
cos 2nπt − 2t

(2nπ)2
sin 2nπt − 2

(2nπ)3
cos 2nπt

]1

0

=
1

nπ

Thus, the full-range Fourier series expansion for f(t) is

f(t) = f1(t) =
2
3
− 1

π2

∞∑
n=1

1
n2

cos 2nπt +
1
π

∞∑
n=1

1
n

sin 2nπt

16(b) Half-range sine series expansion is

f2(t) =
∞∑

n=1

bn sin nπt

with

bn = 2
∫ 1

0

(1 − t2) sin nπtdt

= 2
[
− (1 − t2)

nπ
cos nπt − 2t

(nπ)2
sin nπt − 2

(nπ)3
cos nπt

]1

0

= 2
[
− 2

(nπ)3
(−1)n +

1
nπ

+
2

(nπ)3

]

=

⎧⎪⎨
⎪⎩

2
nπ

, n even

2
[ 1
nπ

+
4

(nπ)3
]
, n odd

Thus, half-range sine series expansion is

f2(t) =
1
π

∞∑
n=1

1
n

sin 2nπt +
2
π

∞∑
n=1

[
1

(2n − 1)
+

4
π2(2n − 1)3

]
sin(2n − 1)πt

16(c) Half-range cosine series expansion is

f3(t) =
a0

2
+

∞∑
n=1

an cos nπt
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with

a0 = 2
∫ 1

0

(1 − t2)dt =
4
3

an = 2
∫ 1

0

(1 − t2) cos nπtdt

= 2
[
(1 − t2)

nπ
sin nπt − 2t

(nπ)2
cos nπt +

2
(nπ)3

sin nπt

]1

0

=
−4(−1)n

(nπ)2

Thus, half-range cosine series expansion is

f3(t) =
2
3

+
4
π2

∞∑
n=1

(−1)n+1

n2
cos nπt

Graphs of the functions f1(t), f2(t), f3(t) for −4 < t < 4 are as follows:

17 Fourier cosine series expansion is

f1(t) =
a0

2
+

∞∑
n=1

an cos nt
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with

a0 =
2
π

∫ π

0

(πt − t2)dt =
1
3
π2

an =
2
π

∫ π

0

(πt − t2) cos ntdt

=
2
π

[
(πt − t2)

n
sin nt +

(π − 2t)
n2

cos nt +
2
n3

sin nt

]π

0

= − 2
n2

[1 + (−1)n]

=

{
0, n odd

− 4
n2

, n even

Thus, the Fourier cosine series expansion is

f1(t) =
1
6
π2 −

∞∑
n=1

1
n2

cos 2nt

Fourier sine series expansion is

f2(t) =
∞∑

n=1

bn sin nt

with

bn =
2
π

∫ π

0

(πt − t2) sinntdt

=
2
π

[
− (πt − t2)

n
cos nt +

(π − 2t)
n2

sin nt − 2
n3

cos nt

]π

0

=
4

πn3
[1 − (−1)n]

=

{
0, n even

8
πn3

, n odd

Thus, the Fourier sine series expansion is

f2(t) =
8
π

∞∑
n=1

1
(2n − 1)3

sin(2n − 1)t
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Graphs of the functions f1(t) and f2(t) for −2π < t < 2π are

18
f(x) =

2a
�

x , 0 < x <
�

2

f(x) =
2a
�

(� − x) ,
�

2
< x < �

Fourier sine series expansion is

f(x) =
∞∑

n=1

bn sin
nπx

�

with

bn =
2a
�
· 2
�

[∫ �/2

0

x sin
nπx

�
dx +

∫ �

�/2

(� − x) sin
nπx

�
dx

]

=
4a
�2

{[
− �x

nπ
cos

nπx

�
+

�2

(nπ)2
sin

nπx

�

]�/2

0

+
[
− �

nπ
(� − x) cos

nπx

�
− �2

(nπ)2
sin

nπx

�

]�

�/2

}

=
4a
�2

[
2�2

(nπ)2
sin

nπ

2

]
=

8a
(nπ)2

sin
nπ

2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, n even
8a

(nπ)2
, n = 1, 5, 9, . . .

− 8a
(nπ)2

, n = 3, 7, . . .
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Thus, the required Fourier sine series expansion is

f(x) =
8a
π2

∞∑
n=1

(−1)n+1

(2n − 1)2
sin

(2n − 1)πx

�

19

f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x, 0 < x <
�

4
�

2
− x,

�

4
< x <

3�
4

x − �,
3�
4

< x < �

Fourier sine series expansion is

f(x) =
∞∑

n=1

bn sin
nπx

�

with

bn =
2
�

[∫ �/4

0

x sin
nπx

�
dx +

∫ 3�/4

�/4

( �

2
− x

)
sin

nπx

�
dx +

∫ �

3�/4

(x − �) sin
nπx

�
dx

]

=
2
�

{[
− �x

nπ
cos

nπx

�
+

�2

(nπ)2
sin

nπx

�

]�/4

0

+
[
− �

nπ

( �

2
− x

)
cos

nπx

�
− �2

(nπ)2
sin

nπx

�

]3�/4

�/4

+
[
− �

nπ
(x − �) cos

nπx

�
+

�2

(nπ)2
sin

nπx

�

]�

3�/4

}

=
[
sin

nπ

4
− sin

3nπ

4

]

= − 8�
(nπ)2

cos
nπ

2
sin

nπ

4

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, n odd
0, n = 4, 8, 12, . . .
8�

(nπ)2
, n = 2, 10, 18, . . .

− 8�
(nπ)2

, n = 6, 14, 22, . . .
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Thus, the required Fourier sine series expansion is

f(x) =
2�
π2

∞∑
n=1

(−1)n+1

(2n − 1)2
sin 2(2n − 1)

πx

�

20 Fourier sine series expansion is

f(t) =
∞∑

n=1

bn sin nt

with

bn =
2
π

∫ π/2

0

sin t sin ntdt

= − 1
π

∫ π/2

0

[cos(n + 1)t − cos(n − 1)t]dt

= − 1
π

[
1

(n + 1)
sin(n + 1)t − 1

(n − 1)
sin(n − 1)t

]π/2

0

, n �= 1

= − 1
π

[
1

(n + 1)
sin(n + 1)

π

2
− 1

(n − 1)
sin(n − 1)

π

2

]

Using the trigonometric expansions for sin(A + B) and sin(A − B) gives

bn = − 2n
π(n2 − 1)

cos
nπ

2
, n �= 1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, n odd
2n

π(n2 − 1)
, n = 2, 6, . . .

− 2n
π(n2 − 1)

, n = 4, 8, 10, . . .

In the case n = 1,

b1 =
2
π

∫ π/2

0

sin2 tdt =
1
π

∫ π/2

0

(1 − cos 2t)dt =
1
2

Thus, the required Fourier sine series expansion is

f(t) =
1
2

sin t +
4
π

∞∑
n=1

(−1)n+1 n sin 2nt

4n2 − 1

The corresponding plot presents no problem.
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21 Since f(x) is an even function, the Fourier series expansion is

f(x) =
a0

2
+

∞∑
n=1

an cos
nπx

�

with

a0 =
2
�

∫ �

0

A

�
(x − �)dx, since | x |= x for x ≥ 0

=
2A
�2

[1
2
x2 − �x

]�

0
= −A

an =
2
�

∫ �

0

A

�
(x − �) cos

nπx

�
dx

=
2A
�2

[
�

nπ
(x − �) sin

nπx

�
+

�2

(nπ)2
cos

nπx

�

]�

0

=
2A

(nπ)2
(cos nπ − 1) =

{ 0, n even

− 4A
(nπ)2

, n odd

Thus, the Fourier series expansion is

f(t) = −A

2
− 4A

π2

∞∑
n=1

1
(2n − 1)2

cos
(2n − 1)πx

�

The graph represented by the series for −3� ≤ x ≤ 3� is as follows:

22 Fourier sine series expansion is

T(x) =
∞∑

n=1

bn sin
nπx

L
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with

bn =
2
L

∫ L

0

Kx(L − x) sin
nπx

L
dx

=
2K
L

[
−Lx(L − x)

nπ
cos

nπx

L
+

L2

(nπ)2
(L − 2x) sin

nπx

L

− 2L3

(nπ)3
cos

nπx

L

]L

0

=
4KL2

(nπ)3
(1 − cos nπ) =

⎧⎨
⎩

0, n even
8KL2

(nπ)3
, n odd

Thus, the Fourier sine series expansion is

T(x) =
8KL2

π3

∞∑
n=1

1
(2n − 1)3

sin
(2n − 1)πx

L

23

a0 =
2
2

[∫ 0

−1

1dt +
∫ 1

0

cos πtdt

]
= [t]0−1 +

[
1
π

sin πt

]1

0

= 1

an =
∫ 0

−1

cos nπtdt +
∫ 1

0

cos πt cos nπtdt

=
[

1
nπ

sin nπt

]0

−1

+
1
2

∫ 1

0

cos(n + 1)πt + cos(n − 1)πtdt

=
1
2

[
1

(n + 1)π
sin(n + 1)πt +

1
(n − 1)π

sin(n − 1)πt

]1

0

, n �= 1

= 0

a1 =
1
2

∫ 1

0

2 cos
2
π

tdt =
1
2

∫ 1

0

(1 + cos 2πt)dt =
1
2

bn =
∫ 0

−1

sin nπtdt +
∫ 1

0

cos πt sin nπtdt

=
[
− 1

nπ
cos nπt

]0

−1

+
1
2

∫ 1

0

sin(n + 1)πt + sin(n − 1)πtdt

=
1
nπ

[(−1)n − 1] +
1
2π

[
− 1

(n + 1)
cos(n + 1)πt − 1

(n − 1)
cos(n − 1)πt

]1

0
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=
1
nπ

[(−1)n − 1] +
1
2π

[
2n

(n2 − 1)

]
[1 + cos nπ]

=

⎧⎪⎨
⎪⎩

− 2
nπ

, n odd
2n

π(n2 − 1)
, n even

Thus, the Fourier series expansion is

f(t) =
1
2

+
1
2

cos πt − 2
π

∞∑
n=1

1
(2n − 1)

sin(2n − 1)πt +
4
π

∞∑
n=1

n

4n2 − 1
sin 2nπt

Exercises 7.4.4

24 Since f(t) is an odd function, its Fourier expansion is of the form

f(t) =
∞∑

n=1

bn sin
nπ

T
t

with

bn =
2
T

∫ T

0

t sin
nπ

T
t

=
2
T

[
− Tt

nπ
cos

nπ

T
t +

T2

n2π2
sin

nπ

T
t

]T

0

=
2
T

[
− T2

nπ
cos nπ

]
= − 2T

nπ
(−1)n

Thus, the Fourier expansion is

f(t) = t =
2T
π

∞∑
n=1

1
n

(−1)n+1 sin
nπ

T
t

Integrating term by term gives

t2

2
= −2T2

π2

∞∑
n=1

1
n2

(−1)n+1 cos
nπ

T
t + const.

Taking mean value over a period,

1
2T

∫ T

−T

t2

2
dt = −2T2

π2

∞∑
n=1

(−1)n+1

n2

∫ T

−T

cos
nπ

T
tdt +

1
2T

∫ T

−T

(const.)dt
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so that
T2

6
= 0 + const.

giving (const.) = T2/6
Thus,

g(t) = t2 =
T2

3
− 4T2

π2

∑ (−1)n+1

n2
cos

nπ

T
t

25 π2 − t2 = h(t) =
2
3
π2 + 4

∑∞
n=1

(−1)n+1

n2
cos nt

Since h(t) is continuous within and at the end points of the interval −π ≤ t ≤ π ,
we may apply Theorem 4.4 to obtain the Fourier series of

f(t) = t, −π < t < π; f(t + 2π) = f(t)

Differentiating gives

−2t = −4
∞∑

n=1

(−1)n+1

n
sin nt

So that the Fourier series of f(t) is

f(t) = t = 2
∞∑

n=1

(−1)n+1

n
sin nt

which confirms the series of Exercise 24 when T = π .

26(b) Derived series is

∞∑
n=1

4
n

(−1)n+1 sin nt −
n∑

n=1

2(−1)n cos nt

This is not a Fourier expansion of g(t) since f(t) is discontinuous at the end points
of −π ≤ t ≤ π .

26(c) Using the results of (a)

A0 =
1
π

[f(π−) − f(−π+)] =
1
π
· 2π = 2

An = (−1)nA0 + nbn = (−1)n2 − n2
n

(−1)n = 2(−1)n − 2(−1)n = 0

Bn = −nan =
4
n

(−1)n+1
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Thus, the Fourier expansion g(t) is

g(t) =
A0

2
+

∞∑
n=1

An cos nt +
∞∑

n=1

Bn sinnt

= 1 + 4
∞∑

n=1

(−1)n+1

n
sin nt

Using Euler’s formulae

A0 =
1
π

∫ π

−π

(2t + 1)dt =
1
π

[t2 + t]π−π = 2

An =
1
π

∫ π

−π

(2t + 1) cos nt dt

=
1
π

[
(2t + 1)

n
sin nt +

2
n2

cos nt

]π

−π

= 0

Bn =
1
π

∫ π

−π

(2t + 1) sin nt dt

=
1
π

[
− (2t + 1)

n
cos nt +

2
n2

sin nt

]π

−π

=
1
πn

[
−(2π + 1)(−1)n + (−2π + 1)(−1)n

]
=

4
n

(−1)n+1

thus confirming the values obtained using (a).

27(a)
p1(t) =−1 p2(t) =1

d1 =2 d2 =−2
p
(1)
1 (t) =0 p

(1)
2 (t) =0

d
(1)
1 =0 d

(1)
2 =0

t1 = 0, t2 = π and since ω = 1 using (4.39) gives

an =
1

nπ

[
−

2∑
s=1

ds sin nts −
1
n

2∑
s=1

d(1)
s cos nts

]

=
1

nπ

[
−2 sin 0 + 2 sin nπ

]
= 0
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bn =
1

nπ

[ 2∑
s=1

ds cos nts −
1
n

2∑
s=1

d(1)
s sin nts

]

=
1
nπ

[
2 cos 0 − 2 cos π

]
=

2
nπ

[
1 − (−1)n

]
=

{
0, n even
4
nπ

, n odd

a0 =
1
π

[∫ 0

−π

(−1)dt +
∫ π

0

1dt

]
= 0

Thus, Fourier series is

f(t) =
4
π

∞∑
n=1

1
(2n − 1)

sin(2n − 1)t

confirming (7.21).

27(b)
p1(t) =t , d1 =−2π

p
(1)
1 (t) =1, d

(1)
1 =0

t1 =0, t2 =π, ω = 1

Thus, from (7.39)

an =
1
nπ

[
−d1 sin nt1

]
=

1
nπ

[
2π sin 0

]
= 0

bn =
1
nπ

[
d1 cos nt1

]
=

1
nπ

[
−2π cos 0

]
= − 2

n

a0 =
1
π

∫ 2π

0

t at = 2π

Thus, Fourier series is

f(t) = π − 2
∞∑

n=1

1
n

sin nt

confirming the result obtained in Example 7.1.

27(c)
p1(t) =t p2(t) = 1

2π p3(t) =π − 1
2 t

d1 =0 d2 =0 d3 =0
p
(1)
1 (t) =1 p

(1)
2 (t) =0 p

(1)
3 (t) =− 1

2

d
(1)
1 =−1 d

(1)
2 =− 1

2 d
(1)
3 = 3

2
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t1 = π
2 , t2 = π, t3 = 2π, ω = 1

Thus, from (7.39)

an =
1
nπ

[
−

3∑
s=1

ds sin nts −
1
n

3∑
s=1

d(1)
s cos nts

]

= − 1
n2π

[
d
(1)
1 cos n

π

2
+ d

(1)
2 cos nπ + d

(1)
3 cos 2πn

]
since ds = 0, s = 1, 2, 3

= − 1
n2π

[
−1 cos

nπ

2
− 1

2
cos nπ +

3
2

cos 2nπ

]

= − 1
n2π

[
− cos

nπ

2
− 1

2
(−1)n +

3
2

]

bn =
1

nπ

[ 3∑
s=1

ds cos nts −
1
n

3∑
s=1

d(1)
s sin nts

]

= − 1
n2π

[
−1 sin

nπ

2
− 1

2
sin nπ +

3
2

sin 2nπ

]

=
1

n2π
sin

nπ

2

a0 =
1
π

[∫ π/2

0

t dt +
∫ π

π/2

π

2
dt +

∫ 2π

π

(π − 1
2
t)dt

]
=

5
8
π

which agree with the Fourier coefficients of Example 7.3.

28(a) Graph of f(t) for −π < t < π as follows and is readily extended to
−4π < t < 4π :
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28(b)

p1(t) =0 p2(t) =π + 2t p3(t) =π − 2t p4(t) =0
d1 =0 d2 =0 d3 =0 d4 =0

p
(1)
1 (t)=0 p

(1)
2 (t) =2 p

(1)
3 (t) =−2 p

(1)
4 (t) =0

d
(1)
1 =2 d

(1)
2 =−4 d

(1)
3 =2 d

(1)
4 =0

p
(2)
1 (t) =0 p

(2)
2 (t) =0 p

(2)
3 (t) =0 p

(2)
4 (t) =0

d
(2)
1 =0 d

(2)
2 =0 d

(2)
3 =0 d

(2)
4 =0

t1 = −π

2
, t2 = 0, t3 =

π

2
, t4 = π, ω = 1

Thus, from (7.39)

an =
1

nπ

[
−

4∑
s=1

ds sin nts −
1
n

4∑
s=1

d(1)
s cos nts +

1
n2

4∑
s=1

d(2)
s sin ts

]

= − 1
n2π

[
2 cos

nπ

2
− 4 cos 0 + 2 cos

nπ

2

]

= − 4
n2π

[
cos

nπ

2
− 1

]

bn =
1

nπ

[ 4∑
s=1

ds cos nts −
1
n

4∑
s=1

d(1)
s sin nts −

1
n2

4∑
s=1

d(2)
s cos nts

]

= − 1
n2π

[
−2 sin

nπ

2
− 4 sin 0 + 2 sin

nπ

2

]
= 0

a0 =
1
π

[∫ −π/2

−π

0dt +
∫ 0

−π/2

(π + 2t)dt +
∫ π/2

0

(π − 2t)dt +
∫ π

π/2

0dt

]

=
π

2

Thus, Fourier series is

f(t) =
π

4
− 4

π

∞∑
n=1

1
n2

(
cos

nπ

2
− 1

)
cos nt

c©Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4th Edition 443

29(a)

p1(t) =1 p2(t) =t2

d1 =0 d2 =−π2

p
(1)
1 (t) =0 p

(1)
2 (t) =2t

d
(1)
1 =0 d

(1)
2 =−2π

p
(2)
1 (t) =0 p

(2)
2 (t) =2

d
(2)
1 =2 d

(2)
2 =−2

p
(3)
1 (t) =0 p

(3)
2 (t) =0

d
(3)
1 =0 d

(3)
2 =0

t1 = 0, t2 = π, ω = 1

Thus, from (7.39)

an =
1

nπ

[
−

2∑
s=1

ds sin nts −
1
n

2∑
s=1

d(1)
s cos nts

+
1
n2

2∑
s=1

d(2)
s sin nts

]

=
1

nπ

[
π2 sin nπ +

2π
n

cos nπ

− 2
n2

sin nπ +
2
n2

sin 0
]

=
2
π2

(−1)n

bn =
1

nπ

[
−π2 cos nπ +

2π
n

sin nπ

− 2
n2

cos 0 +
2
n2

cos nπ

]

=
1
π

[
−π2

n
(−1)n − 2

n3
+

2
n3

(−1)n

]

a0 =
1
π

∫ π

0

t2dt =
π2

3

From which the Fourier series may be readily written down.
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29(b)

p1(t) =2 p2(t) =t3 p3(t) =−2
d1 =−(2 + π3

8 ) d2 =−(2 + π3

8 ) d3 =4
p
(1)
1 (t) =0 p

(1)
2 (t) =3t2 p

(1)
3 (t) =0

d
(1)
1 = 3π2

4 d
(1)
2 =− 3π2

4 d
(1)
3 =0

p
(2)
1 (t) =0 p

(2)
2 (t) =6t p

(2)
3 (t) =0

d
(2)
1 =−3π d

(2)
2 =−3π d

(2)
3 =0

p
(3)
1 (t) =0 p

(3)
2 =6 p

(3)
3 (t) =0

d
(3)
1 =6 d

(3)
2 =−6 d

(3)
3 =0

p
(4)
1 (t) =0 p

(4)
2 (t) =0 p

(4)
3 (t) =0

d
(4)
1 =0 d

(4)
2 =0 d

(4)
3 =0

t1 = −π

2
, t2 =

π

2
, t3 = π, ω = 1

Thus, from (7.39)

an =
1
nπ

[
−(2 +

π3

8
) sin

nπ

2
+ (2 +

π3

8
) sin

nπ

2
− 4 sin nπ − 3π2

4n
cos

nπ

2

+
3π2

4n
cos

nπ

2
+

3π
n2

sin
nπ

2
− 3π

n2
sin

nπ

2
+

6
n3

cos
nπ

2
− 6

n3
cos

nπ

2

]
= 0 (which is readily confirmed since odd function)

bn =
1
nπ

[
− (2 +

π3

8
) cos

nπ

2
− (2 +

π3

8
) cos

nπ

2
+ 4 cos nπ +

3π2

4n
sin

nπ

2

+
3π2

4n
sin

nπ

2
+

3π
n2

cos
nπ

2
+

3π
n2

cos
nπ

2
− 6

n3
sin

nπ

2
− 6

n3
cos

nπ

2

]

=
4
nπ

(cos nπ − cos
nπ

2
) + 2

(
3π
4n2

sin
nπ

2
− π2

8n
cos

nπ

2

+
3
n3

cos
nπ

2
− 6

πn4
sin

nπ

2

)

a0 =
1
π

∫ π

−π

f(t)dt = 0 since f(t) is even function

Thus, Fourier series may be written down.
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29(c)

p1(t) =t p2(t) =1 − t

d1 =−1 d2 =2
p
(1)
1 (t) =1 p

(1)
2 (t) =−1

d
(1)
1 =−2 d

(1)
2 =2

p
(2)
1 (t) =0 p

(2)
2 (t) =0

d
(2)
1 =0 d

(2)
2 =0

t1 = 1, t2 = 2, ω = π

Thus, from (7.39)

an =
1

nπ

[
−

2∑
s=1

ds sin nπts −
1

nπ

2∑
s=1

d(1)
s cos nπts

]

=
1

nπ

[
1 sin nπ − 2 sin 2nπ − 1

nπ
(−2 cos nπ + 2cos 2nπ)

]

=
2

n2π2
[(−1)n − 1] =

{
0, n even
−4

n2π2
, n odd

bn =
1

nπ

[ 2∑
s=1

ds cos nπts −
1

nπ

2∑
s=1

d(1)
s sin nπts

]

=
1

nπ

[
− cos nπ + cos 2nπ − 0

]

=
1

nπ

[
1 − (−1)n

]
=

{
0, n even
2
nπ

, n odd

a0 =
2
2

∫ 2

0

f(t)dt =
[∫ 1

0

tdt +
∫ 2

1

(1 − t)dt
]

= 0

The Fourier series is

f(t) = − 4
π2

∞∑
n=1

cos(2n − 1)πt

(2n − 1)2
+

2
π

∞∑
n=1

sin(2n − 1)t
(2n − 1)
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29(d)

p1(t) =
1
2

+ t p2(t) =
1
2
− t

d1 =0 d2 =0
p
(1)
1 (t) =1 p

(1)
2 (t) =−1

d
(1)
1 =−2 d

(1)
2 =2

p
(2)
1 (t) =0 p

(2)
2 (t) =0

d
(2)
1 =0 d

(0)
2 =0

t1 = 0, t2 = 1
2 , ω = 2π

Thus, from (7.39)

an =
1

nπ

[
−

2∑
s=1

ds sin 2πnts −
1

2nπ

2∑
s=1

d(1)
s cos 2nπts

]

=
1

nπ

[
− 1

2nπ
[−2 cos 0 + 2 cos nπ]

]

= − 1
(nπ)2

(cos nπ − 1) =

{ 0, n even
2

(nπ)2
, n odd

bn =
1

nπ

[ 2∑
s=1

ds cos 2nπts −
1

2nπ

2∑
s=1

d(1)
s sin 2nπts

]
= 0

a0 = 2
[∫ 0

−1
2

(
1
2

+ t)dt +
∫ 1

2

0

(
1
2
− t)dt

]
=

1
2

Thus, Fourier expansion is

f(t) =
1
4

+
2
π2

∞∑
n=1

1
(2n − 1)2

cos 2(2n − 1)πt

Exercises 7.5.2

30 Fourier expansion to the voltage e(t) is

e(t) =
a0

2
+

∞∑
n=1

an cos nωt +
∞∑

n=1

bn sin nωt, ω = 100π
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where

a0 = 100
∫ 1

100

0

dt = 10

an = 100
∫ 1

100

0

10 cos 100nπtdt = 100
[100 sin 100nπt

100nπ

] 1
100

0
= 0

bn = 100
∫ 1

100

0

10 sin 100nπtdt = 100
[
−10

cos 100nπt

100nπ

] 1
100

0

=
10
nπ

[1 − (−1)n] =

{
0, n even
20
nπ

, n odd

Thus, Fourier expansion is

e(t) = 5 +
20
π

∞∑
n=1

1
(2n − 1)

sin(2n − 1)100πt

= 5 +
∞∑

n=1

un(t), where un(t) =
20

π(2n − 1)
sin(2n − 1)100πt

By Kirchhoff’s second law, charge on the capacitor is given by

0.02
d2q

dt2
+ 300

dq

dt
+ 250000q = e(t)

System transfer function is G(s) = 1
0.02s2+300s+250000

giving | G(jω) | =
1√

(250000 − 0.02ω2)2 + (300ω)2

argG(jω) = − tan−1

[
300ω

250000 − 0.02ω2

]

From (7.42), the steady-state response to the nth harmonic un(t) is

qssn(t) =
20

π(2n − 1)
| G(j(2n− 1)100π) | sin[(2n− 1)100πt + argG(j(2n− 1)100π)]

So steady-state current response issn(t) to nth harmonic is

issn(t) = 2000 | G(j(2n − 1)100π) | cos[(2n − 1)100πt + argG(j(2n − 1)100π)]
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Note that the d.c. term in e(t) gives no contribution to current steady-state res-
ponse, which becomes

iss =
∞∑

n=1

issn(t)

Evaluating the first few terms gives

iss � 0.008 cos(100πt − 1.96) + 0.005 cos(300πt − 0.33)

31 Since the applied force represents an odd function, its Fourier expansion is

f(t) =
∞∑

n=1

bn sin nπt

where

bn =
4
2

∫ 1

0

100 sin nπtdt = 200
[
− 1

nπ
cos nπt

]1

0

=
200
nπ

(1 − (−1)n) =

{
0, n even
400
nπ

, n odd

Thus, Fourier expansion is

f(t) =
400
π

∞∑
n=1

1
(2n − 1)

sin(2n − 1)t =
∞∑

n=1

un(t)

where un(t) =
400
π

sin(2n − 1)t
(2n − 1)

From Newton’s law, the displacement x(t) of the mass is given by

10
d2x

dt2
+ 0.5

dx

dt
+ 1000 = f(t)

The transfer function is G(s) =
1

10s2 + 0.5s + 1000

so that G(jω) =
1

−10ω2 + 0.5jω + 1000
=

1000 − 10ω2

D
− j

0.5ω
D

giving | G(jω) |= 1√
D

=
1√

(1000 − 10ω2)2 + 0.25ω2

argG(jω) = − tan−1
[ 0.5ω
1000 − 10ω2

]
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Thus, from (7.42) the steady-state response to the nth harmonic un(t) is

xssn =
400

π(2n − 1)
| G(j(2n − 1)π) | sin[(2n − 1)πt + argG(j(2n − 1)π)]

and steady-state response to f(t) is xss(t) =
∑∞

n=1 xssn(t)

Evaluating the first few terms gives

xss(t) � 0.14 sin(πt − 0.1) + 0.379 sin(3πt − 2.415)

+ 0.017 sin(5πt − 2.83)

32 Since the applied force represents an odd function, its Fourier expansion is

f(t) =
∞∑

n=1

bn sin nωt, ω = 2π

where

bn =
4
1

∫ 1
2

0

100t sin 2nπtdt

= 400
[
− t

2nπ
cos 2nπt +

1
(2nπ)2

sin 2nπt

] 1
2

0

= −100
nπ

cos nπ =
100
nπ

(−1)n+1

Thus, Fourier expansion is

f(t) =
100
π

∞∑
n=1

(−1)n+1

n
sin 2nπt =

∞∑
n=1

un

where un(t) =
100(−1)n

πn
sin 2nπt

From Newton’s law, the displacement x(t) of the mass is given by

20
d2x

dt2
+ 0.02

dx

dt
+ 80x = f(t)

Transfer function is G(s) =
1

20s2 + 0.02s + 80
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giving

| G(jω) |= 1√
(80 − 20ω2)2 + (0.02ω)2

, argG(jω) = − tan−1

[
0.02ω

80 − 20ω2

]

Then from (7.42), the steady-state response to the nth harmonic un(t) is

xssn(t) =
100(−1)n

nπ
| G(j2nπ) | sin[2nπt + argG(jnπ)]

and the steady-state response to f(t) is

xss(t) =
∞∑

n=1

xssn(t)

Evaluating the first few terms gives

xss(t) � 0.044 sin(2πt − 3.13) − 0.0052 sin(4πt − 3.14)

33 Taking A = 100 and ω = 50π in Exercise 11, gives the Fourier expansion of
the applied voltage e(t) as

e(t) =
100
π

+ 50 sin 50πt − 200
π

∞∑
n=1

cos 100nπt

4n2 − 1

= u0 + us −
∞∑

n=1

un(t)

By Kirchhoff’s second law, the charge q(t) on the capacitor is given by

0.4
d2q

dt2
+ 100

dq

dt
+ 105q = e(t)

System transfer function is G(s) =
1

0.4s2 + 100s + 105
giving

| G(jω) |= 1√
[(105 − 0.4ω2)2 + (100ω)2]

, argG(jω) = − tan−1
[ 100ω
105 − 0.4ω2

]

From (7.42), the steady-state response to us = 50 sin 50πt is

qsss(t) = 50 | G(j50π) | sin(50πt + argG(j50π))

= 0.005 sin(50πt − 0.17)
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and the steady-state response to un =
200
π

cos
100nπt

4n2 − 1
is

qssn(t) =
200
π

1
4n2 − 1

| G(j100nπ) | cos[100nπt + argG(j100nπ)]

Since the d.c. term u0 does not contribute to the steady-state current, this is given
by

iss = 0.785 cos(50πt−0.17)−
∞∑

n=1

2 × 104n

4n2 − 1
| G(j100nπ) | sin[100nπt+argG(j100nπ)]

or
iss � 0.785 cos(50πt − 0.17) − 0.1 sin(100πt − 0.48)

Exercises 7.6.5

34 Since T = 2π complex form of the Fourier series is

f(t) =
∞∑

n=−∞
cnejnt

with
cn =

1
2π

∫ π

−π

f(t)e−jntdt =
1
2π

∫ π

−π

t2e−jntdt

=
1
2π

[
− t2

jn
e−jnt − 2t

(jn)2
e−jnt − 2

(jn)3
e−jnt

]π

−π

, n �= 0

=
1
2π

[
(
jπ2

n
e−jnπ +

2π
n2

e−jnπ − 2j
n3

e−jnπ)

− (
jπ2

n
ejnπ − 2π

n2
ejnπ − 2j

n3
ejnπ)

]

Since e−jnπ = ejnπ = cos nπ

cn =
2
n2

cos nπ =
2
n2

(−1)n, n �= 0

When n = 0, c0 = 1
2π

∫ π

−π
t2dt =

π2

3
Thus, complex form of the Fourier series is

f(t) =
π2

3
+

∞∑
n=−∞

n �=0

2
n2

(−1)nejnt
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Using (7.56),

a0 = 2c0 =
2π2

3

an − jbn =
4
n2

(−1)n, an + jbn =
4
n2

(−1)n

giving bn = 0 and an = 4
n2 (−1)n

thus confirming the series obtained in Example 7.5.

35 Since T = 4, the complex form of the Fourier series is

f(t) =
∞∑

n=−∞
cne

jnπ
2 t

with

cn =
1
4

∫ 2

−2

f(t)e−
jnπ
2 tdt =

1
4

∫ 2

0

e−
jnπ
2 tdt

=
1
4

[
− 2

jnπ
e−

jnπ
2 t

]2

0

, n �= 0

=
j

2nπ
[(−1)n − 1], n �= 0

c0 =
1
4

∫ 2

0

1dt =
1
2

Thus, the complex form of the Fourier series is

f(t) =
1
2

+
∞∑

n=−∞
n �=0

j

2nπ
[(−1)n − 1]e

jnπ
2 t

Using (7.56),

a0 =2c0 = 1

an−jbn =
j

nπ
[(−1)n − 1]

anj
+ bn =

j

nπ
[1 − (−1)n]

giving an = 0 , bn = 1
nπ [1 − (−1)n] =

{
0, n even
2

nπ
, n odd

thus agreeing with series obtained in Example 7.7.
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36(a)

cn =
1
2π

[∫ 0

−π

πe−jntdt +
∫ π

0

te−jntdt

]

=
1
2π

[[
− π

jn
e−jnt

]0
−π

+
[
− t

jn
e−jnt − 1

(jn)2
e−jnt

]π

0

]

=
1
2π

[
jπ

n
− 1

n2
(1 + (−1)n)

]
, n �= 0

c0 =
1
2π

[∫ 0

−π

πdt +
∫ π

0

tdt

]
=

3π
4

Thus, complex form of Fourier series is

f(t) =
3π
4

+
∞∑

n=−∞
n �=0

1
2π

[
jπ

n
− 1

n2
[1 + (−1)n]

]
ejnt

36(b)

cn =
1
T

∫ T

0

f(t)e−jnωtdt =
a

T

∫ T/2

0

sin ωte−jnωtdt, T =
2π
ω

=
a

2jT

∫ T/2

0

(ejωt − e−jωt)e−jnωtdt

=
a

2jT

[
−e−j(n−1)ωt

j(n − 1)ω
+

e−j(n+1)ωt

j(n + 1)ω

]T/2

0

=
a

4π

[
e−jnωtejωt

n − 1
− e−jnωte−jωt

n + 1

]T/2

0

=
a

4π

{[e−jnπejπ

n − 1
− e−jnπe−jπ

n + 1
]
−

[ 1
n − 1

− 1
n + 1

]}

Since ejπ = e−jπ = −1, e−jnπ = (−1)n

cn =
a

4π

[
−

[ 1
n − 1

− 1
n + 1

]
(−1)n −

[ 2
n2 − 1

]]

= − a

2π(n2 − 1)
[1 + (−1)n], n �= ±1

c±1 =
a

T

∫ T/2

0

sin ωt(cos ωt ∓ j sin ωt)dt

=
a

T

[
− 1

2ω
cos 2ωt ∓ j

2
(t − sin 2ωt

2ω
)
]T/2

0

= ∓ja/2
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Thus, complex form of Fourier series is

f(t) =
a

2
sin ωt −

∞∑
n=−∞
n �=±1

a

2π(n2 − 1)
[1 + (−1)n]ejnωt

36(c)

cn =
1
2π

[∫ 0

−π

2e−jntdt +
∫ π

0

1e−jntdt

]

=
1
2π

{[
− 2

jn
e−jnt

]0
−π

+
[
− 1

jn
e−jnt

]π

0

}

= − 1
2jnπ

[
2 − 2ejnπ + e−jnπ − 1

]

=
j

2nπ
[1 − (−1)n], n �= 0

c0 =
1
2π

[∫ 0

−π

2dt +
∫ π

0

1dt

]
= 3/2

Thus, complex form of Fourier series is

f(t) =
3
2

+
∞∑

n=−∞
n �=0

j

2nπ
[1 − (−1)n]ejnt

36(d)

cn =
1
2π

[∫ 0

−π

− sin te−jntdt +
∫ π

0

sin te−jntdt

]

=
1

4nj

[∫ 0

−π

−(ejt − e−jt)e−jntdt +
∫ π

0

(ejt − e−jt)e−jntdt

]

=
1

4πj

{∫ 0

−π

[
−e−j(n−1)t + e−j(n+1)t

]
dt +

∫ π

0

[
e−j(n−1)t − e−j(n+1)t

]
dt

}

=
1

4πj

{[
− e−j(n−1)t

−j(n − 1)
+

e−j(n+1)t

−j(n + 1)
]0
−π

+
[ e−j(n−1)t

−j(n − 1)
− e−j(n+1)t

−j(n + 1)
]π

0

}

=
1
4π

[
− 4

n2 − 1
− (−1)n

n − 1
+

(−1)n

n + 1
− (−1)n

n − 1
+

(−1)n

n + 1

]

= − 1
π(n2 − 1)

[1 + (−1)n], n �= ±1
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By direct calculation c±1 = 0. Thus, complex form of Fourier series is

f(t) =
∞∑

n=−∞
n �=±1

1
π(1 − n2)

[1 + (−1)n]ejnt

=
∞∑

n=−∞

2
π(1 − 4n2)

e2jnt

By noting that | sin t | is periodic with period π , we could have obtained the series
from

f(t) =
∞∑

n=−∞
cnej2nt

with

cn =
1
π

∫ π

0

sin te−j2ntdt

=
1

2πj

∫ π

0

e−j(2n−1)t − e−j(2n+1)tdt

=
1
2π

[
e−j2ntejt

2n − 1
− e−j2nte−jt

2n + 1

]π

0

= − 2
π(4n2 − 1)

Giving f(t) =
2
π

∞∑
n=−∞

1
(1 − 4n2)

ej2nt

37

a0 =
1
π

∫ π

0

dt = 1

an =
1
π

∫ π

0

cos ntdt =
1
π

[ 1
π

sin nt
]π

0
= 0

bn =
1
π

∫ π

0

sin ntdt =
1
π

[
− 1

n
cos nt

]π

0

=
1
πn

(1 − cos nπ) =

{
0, n even
2
πn

, n odd
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Thus, by Parseval’s theorem

1
2π

∫ π

0

12dt =
1
4
a2
0 +

1
2

∞∑
n=1

b2
n

or
1
2

=
1
4

+
1
2

∞∑
n=1

4
π2(2n − 1)2

giving
∞∑

n=1

1
(2n − 1)2

=
1
8
π2

38(a) Fourier expansion is

f(t) =
a0

2
+

∞∑
n=1

an cos nωt +
∞∑

n=1

bn sin nωt

with ω =
2π
T

= 100π and

a0 =
2
T

∫ T

0

f(1)dt = 100
∫ 1

50

0

500πtdt = 10π

an =
2
T

∫ T

0

f(t) cos 100nπtdt = 100
∫ 1

50

0

500πt cos 100nπtdt

= 100.500π
[

1
100nπ

t sin 100nπt +
1

(100nπ)2
cos 100nπt

] 1
50

0

= 0

bn = 100
∫ 1

50

0

500πt sin 100nπtdt

= 100.500π
[
− t

100nπ
cos 100nπt +

1
(100nπ)2

sin 100nπt

] 1
50

0

= −10
n

cos 2nπ = −10
n

Thus, Fourier series expansion is

f(t) = 5π − 10
∞∑

n=1

1
n

sin 100nπt
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38(b) From (7.66), RMS value given by

f2
RMS =

1
T

∫ T

0

[f(t)]2dt = 50
∫ 1

50

0

(500πt)2dt

=
100
3

π2 � 328.987

∴ fRMS = 18.14

Using
1
T

∫ T

0

[f(t)]2dt =
1
4
a2
0 +

1
2

∞∑
n=1

(a2
n + b2

n)

estimates using

(i) First four terms :
1
4
a2
0 +

1
2
(b2

1 + b2
2 + b2

3) � 314.79
Thus fRMS � 17.74

(ii) First eight terms :
1
4
a2
0 +

1
2
(b2

1 + b2
2 + b2

3 + b2
4 + b2

5 + b2
6 + b2

7) � 322.32
Thus fRMS � 17.95

38(c) True RMS value given by

f2
RMS =

1
T

∫ T

0

[f(t)]2dt = 50
∫ 1

50

0

(500πt)2dt

=
100
3

π2 � 328.987

∴ fRMS = 18.14

% Error =
Actual - Estimate

Actual
× 100

giving the estimated percentage error in estimates (i) and (ii) as 2.20% and
1.05%, respectively.

39(a)

cn =
1
5

∫ 5/4

0

60e−j
2nπ
5 tdt

= 12
[
− 5

j2nπ
e−j

2nπ
5 t

]5/4

0

=
30
jnπ

[1 − e−
jnπ
2 ], n �= 0

c0 =
1
5
· 60· 5

4
= 15
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First five non-zero terms are

c0 =15 c1 =
30
jπ

(1 + j) =
30
π

(1 − j)

c2 =
30
jπ

= −30
π

j c3 =
10
jπ

(1 − j) =
10
π

(−1 − j)

c4 =0 c5 =
6
jπ

(1 + j) =
6
π

(1 − j)

39(b) Power associated with the five non-zero terms are

P0 =
152

15
= 15W

P1 =
1
15

[2 | c1 |2] =
2
15

(13.50)2 = 24.30W

P2 =
1
15

[2 | c2 |2] =
2
15

(9.55)2 = 12.16W

P3 =
1
15

[2 | c3 |2] =
2
15

(4.50)2 = 2.70W

P4 = 0

P5 =
1
15

[2 | c5 |2] =
2
15

(2.70)2 = 0.97W

Total power delivered by the first five terms is

P = P0 + P1 + P2 + P3 + P5 = 55.13W

39(c) Total power delivered by 15Ω resistor is

P =
1
15

[1
5

∫ 5/4

0

602dt
]

=
1
15

· 1
5
· 602· 5

4
= 60W

39(d) The % of total power delivered by the first five non-zero terms is

55.13
60

× 100 = 91.9%
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Exercises 7.7.4

40

MSE =
1
2π

[∫ π

−π

[f(t)]2dt −
∞∑

n=1

πb2
n

]
Based on one term

(MSE)1 =
1
2π

[
2π − π(

4
π

)2
]

= 0.19

Based on two terms

(MSE)2 =
1
2π

[
2π − π(

4
π

)2 − π(
4
3π

)2
]

= 0.10

Based on three terms

(MSE)3 =
1
2π

[
2π − π(

4
π

)2 − π(
4
3π

)2 − π(
4
5π

)2
]

= 0.0675

41(a) From given formula,

P0(t) = 1

P1(t) =
1
2

d

dt
(t2 − 1) = t

P2(t) =
1
8

d2

dt2
(t2 − 1)2 =

1
2
(3t2 − 1)

or from given recurrence relationship

2P2(t) = 3tP1(t) − P0(t) = 3t2 − 1

Also from the relationship

3P3(t) = 5tP2(t) − 2P1(t) =
5t
2

(3t2 − 1) − 2t

giving P3(t) =
1
2
(5t3 − 3t)

41(b)

∫ 1

−1

Pm(t)Pn(t)dt =
1

2m+nm!n!

∫ 1

−1

Dm(t2 − 1)mDn(t2 − 1)ndt, D ≡ d

dt

=
1

2m+nm!n!
Im,n
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Integrating by parts m times

Im,n = (−1)
∫ 1

−1

Dm−1(t2 − 1)mDn+1(t2 − 1)ndt

...

= (−1)m

∫ 1

−1

D0(t2 − 1)mDn+m(t2 − 1)ndt

If m �= n suppose m > n , then m + n > 2n which implies that

Dn+m(t2 − 1)n = 0

so that Im,n = 0
If m = n then

Im,n = In,n = (−1)n

∫ 1

−1

(t2 − 1)nD2n(t2 − 1)ndt

= (2n)!(−1)n

∫ 1

−1

(t2 − 1)ndt

= 2(2n)!
∫ 1

0

(1 − t2)ndt

Making the substitution t = sin θ then gives

In,n = 2(2n)!
∫ π/2

0

cos2n+1 θdθ = 2(2n)!
2

2n + 1
. . .

2
3

=
22n+1

2n + 1
(n!)2

and the result follows.

41(c) f(t) = c0P0(t) + c1P1(t) + c2P2(t) + . . .

Multiplying by P0(t)

∫ 1

−1

f(t)P0(t)dt = c0

∫ 1

−1

P2
0(t)dt = 2c0

giving ∫ 1

−1

(−1)1dt +
∫ 1

0

(1)1dt = 0 = 2c0 so that c0 = 0
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Multiplying by P1(t) ,

∫ 1

−1

f(t)P1(t)dt = c1

∫ 1

−1

P2
1(t)dt =

2
3
a1

giving ∫ 0

−1

(−1)tdt +
∫ 1

0

(1)tdt = 1 =
2
3
c1, so that c1 =

3
2

Likewise, ∫ 1

−1

f(t)P2(t)dt = c2

∫ 1

−1

P2
2(t)dt =

2
5
c2

giving

1
2

∫ 0

−1

(−1)(3t2 − 1)dt +
1
2

∫ 0

1

(1)(3t2 − 1)dt = 0 =
2
5
c2, so that c2 = 0

and ∫ 1

−1

f(t)P3(t)dt = c3

∫ 1

−1

P2
3(t)dt =

2
7
c3

giving

1
2

∫ 0

−1

(−1)(5t3 − 3t)dt +
1
2

∫ 1

0

(1)(5t3 − 3t)dt = −1
4

=
2
7
c3, so that c3 = −7

8

42 Taking

f(x) = c0P0(x) + c1P1(x) + c2P2(x) + c3P3(x) + . . .

and adopting the same approach as in 41(c) gives

∫ 1

−1

f(x)P0(x)dx = c0

∫ 1

−1

P2
0(x)dx = 2c0

giving ∫ 1

0

xdx =
1
2

= 2c0, so that c0 =
1
4∫ 1

−1

f(x)P1(x)dx = c1

∫ 1

−1

P2
1(x)dx =

2
3
c1
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giving ∫ 1

0

x2dx =
1
3

=
2
3
c1, so that c1 =

1
2∫ 1

−1

f(x)P2(x)dx = c2

∫ 1

−1

P2
2(x)dx =

2
5
c2

giving
1
2

∫ 1

0

x(3x2 − 1)dx =
1
8

=
2
5
c2, so that c2 =

5
16∫ 1

−1

f(x)P3(x)dx = c3

∫ 1

−1

P2
3(x)dx =

2
7
c3

giving
1
2

∫ 1

0

x(5x3 − 3x)dx = 0 =
2
7
c3, so that c3 = 0

43(a)
L0(t) = et(t0e−t) = 1

L1(t) = et(−te−t + e−t) = 1 − t

Using the recurrence relation,

L2(t) = (3 − t)L1(t) − L0(t) = t2 − 4t + 2

L3(t) = (5 − t)L2(t) − 4L1(t)

= (5 − t)(t2 − 4t + 2) − 4(1 − t)

= 6 − 18t + 9t2 − t3

43(b) This involves evaluating the integral
∫ ∞
0

e−tLm(t)Ln(t)dt for the 10
combinations of m and n .

43(c) If f(t) =
∞∑

r=0
crLr(t) to determine cn , multiply throughout by e−tLn(t)

and integrate over (0,∞)

∫ ∞

0

e−tLn(t)f(t)dt =
∫ ∞

0

∞∑
r=0

cre
−tLr(t)Ln(t)dt
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Using the orthogonality property then gives

∫ ∞

0

e−tLn(t)f(t)dt = cn

∫ ∞

0

e−tLn(t)Ln(t)dt

= cn(n!)2

giving cn =
1

(n!)2

∫ ∞

0

e−tLn(t)f(t)dt, n = 0, 1, 2, . . .

44(a) By direct use of formula,

H0(t) = (−1)0et2/2e−t2/2 = 1

H1(t) = (−1)et2/2 d

dt
e−t2/2 = t

Using recurrence relation,

Hn(t) = tHn−1(t) − (n − 1)Hn−2(t)

H2(t) = t.t − 1.1 = t2 − 1

H3(t) = t(t2 − 1) − 2(t) = t3 − 3t

H4(t) = t(t3 − 3t) − 3(t2 − 1) = t4 − 6t2 + 3

44(b) This involves evaluating the integral
∫ ∞
−∞ e−t2/2Hn(t)Hm(t)dt for the 10

combinations of n and m .

44(c) If f(t) =
∞∑

r=0
crHr(t) to determine cn , multiply throughout by

e−t2/2Hn(t) and integrate over (−∞,∞) giving

∫ ∞

−∞
e−t2/2Hn(t)f(t)dt =

∫ ∞

−∞

∞∑
r=0

cre
−t2/2Hn(t)Hr(t)dt

= cn

∫ ∞

−∞
e−t2/2Hn(t)Hn(t)dt

= cn

√
(2π)n!
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so that

cn =
1

n!
√

(2π)

∫ ∞

−∞
e−t2/2f(t)Hn(t)dt

45(a) Directly from the formula,

T0(t) = cos 0 = 1

T1(t) = cos(cos−1 t) = t

then from the recurrence relationship

T2(t) = 2t(t) − 1 = 2t2 − 1

T3(t) = 2t(2t2 − 1) − t = 4t3 − 3t

T4(t) = 2t(4t3 − 3t) − (2t2 − 1) = 8t4 − 8t2 + 1

T5(t) = 2t(8t4 − 8t2 + 1) − (4t3 − 3t) = 16t5 − 20t3 + 5t

45(b) Evaluate the integral
∫ 1

−1

Tn(t)Tm(t)√
(1 − t2)

dt for the 10 combinations of n

and m .

45(c) If f(t) =
∞∑

r=0
crTr(t) to obtain cn , multiply throughout by

cnTn(t)/
√

(1 − t2) and integrate over (−1, 1) giving

∫ 1

−1

Tn(t)f(t)√
(1 − t2)

dt =
∫ 1

−1

∞∑
r=0

crTn(t)Tr(t)√
(1 − t)2

dt

= cn

∫ 1

−1

Tn(t)Tn(t)√
(1 − t2)

dt Tn = 0, 1, 2, 3, . . .

=
{

c0π, n = 0
cn

π
2 , n �= 0

Hence the required results.
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46(a)

To show that they are orthonormal on (0, T) , evaluate the integral
∫ T

0
Wn(t)

Wm(t)dt for the 10 combinations of n and m . For example,

∫ T

0

W0(t)W0(t)dt =
∫ T

0

1
T

at = 1

and it is readily seen that this extends to
∫ T

0
W2

n(t)dt = 1

∫ T

0

W1(t)W2(t)dt =
∫ T/4

0

1
T

dt +
∫ T/2

T/4

(−1)
T

dt +
∫ 3T/4

T/2

1
T

dt +
∫ T

3T/4

(−1)
T

dt = 0
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46(b) f(t) = c0W0(t) + c1W1(t) + c2W2(t) + . . . where f(t) is the square wave
of Exercise 40. In this case T = 2π . Multiplying throughout by the appropriate
Walsh function and integrating over (0, 2π) gives

∫ 2π

0

W0(t)f(t)dt = c0

∫ 2π

0

W2
0(t)dt = c0, W0(t) =

1√
2π

giving

c0 =
1√
2π

∫ 2π

0

1f(t)dt =
1√
2π

[∫ π

0

dt −
∫ 2π

π

dt
]

= 0

∫ 2π

0

W1(t)f(t)dt = c1

∫ 2π

0

W2
1(t)dt = c1, W1(t) =

{
1√
2π

, 0 < t < π

− 1√
2π

, π < t < 2π

giving

c1 =
1√
2π

[∫ π

0

dt +
∫ 2π

π

(−1)(−1)dt
]

=
√

2π

∫ 2π

0

W2(t)f(t)dt = c2, W2(t) =

{
1√
2π

, 0 < t < π
2 , 3

2π < t < 2π
− 1√

2π
, π

2 < t < 3
2π

giving

c2 =
1√
2π

[∫ π/2

0

(1)(1)dt +
∫ π

π
2

(1)(−1)dt +
∫ 3π

2

π

(−1)(−1)dt +
∫ 2π

3π
2

(−1)(1)dt
]

= 0

Mean square error based on three terms is

1
2π

[∫ 2π

0

[f(t)]2dt −
3∑

n=0

c2
n

]
=

1
2π

[∫ 2π

0

dt − (
√

2π)2
]

= 0

This is zero in this case simply because the series based on three terms is exact as
W2(t) exactly ‘matches’ the given square wave f(t) .
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Review Exercises 7.9

1

a0 =
1
π

∫ π

0

t2dt =
1
π

[
1
3
t3

]π

0

=
π2

3

an =
1
π

∫ π

0

t2 cos ntdt =
1
π

[
t2

n
sin nt +

2t
n2

cos nt − 2
n3

sin nt

]π

0

=
2
n2

cos nπ = 2

bn =
1
π

∫ π

0

t2 sin ntdt =
1
π

[
− t2

n
cos nt +

2t
n2

sin nt +
2
n3

cos nt

]π

0

=
1
π

{
2
n3

[(−1)n − 1] − π2

n
(−1)n

}

=

⎧⎪⎨
⎪⎩

−π

n
, n even

1
π

[
− 4

n3
+

π2

n

]
, n odd

Thus, Fourier series expansion is

f(t) =
π2

6
+

∞∑
n=1

2
n2

(−1)n cos nt +
∞∑

n=1

[
π

2n − 1
− 4

π(2n − 1)3

]
sin(2n − 1)t

−
∞∑

n=1

π

2n
sin 2nt

Taking t = π when the series converges to π2/2 gives

π2

2
=

π2

6
+

∞∑
n=1

2
n2

(−1)n(−1)n =
∞∑

n=1

2
n2

that is,
∞∑

n=1

1
n2

=
π2

6
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2

a0 =
2
π

[∫ π/3

0

2
3
tdt +

1
3

∫ π

π/3

(π − t)dt

]

=
2
π

{[
1
3
t2

]π/3

0

+
1
3

[
−1

2
(π − t)2

]π

π/3

}
=

2π
9

an =
2
π

[∫ π/3

0

2
3
t cos ntdt +

1
3

∫ π

π/3

(π − t) cos ntdt

]

=
2
π

{[
2t
3n

sinnt +
2

3n2
cos nt

]π/3

0

+
1
3

[
(π − t)

n
sin nt − 1

n2
cos nt

]π

π/3

}

=
2
π

[
1
n2

cos
nπ

3
− 1

3n2
[2 + cos nπ]

]

Thus, the Fourier expansion of the even function is

f(t) =
π

9
+

2
π

∞∑
n=1

1
n2

[
cos

nπ

3
− 1

3
(2 + (−1)n)

]
cos nt

At t = 1
3π the series converges to 2

9π .

3 Sketches of odd function f1(t) and even function f2(t) , having period T and
equal to f(t), a ≤ t ≤ 1

2T , are plotted for −T ≤ t ≤ T below:
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3(a) Half-range Fourier sine series is

f(t) =
∞∑

n=1

bn sin
2nπt

T

with

bn =
4
T

[∫ π/4

0

t sin
2nπt

T
dt +

∫ π/2

π/4

(1
2
T − t

)
sin

2nπt

T
dt

]

=
4
T

{[
− Tt

2nπ
cos

2nπt

T
+

T2

(2nπ)2
sin

2nπt

T

]t/4

0

+
[
− T

2nπ

(1
2
T − t

)
cos

2nπt

T
− T2

(2nπ)2
sin

2nπt

T

]T/2

T/4

}

=
8T

(2nπ)2
sin

nπ

2
=

⎧⎪⎪⎨
⎪⎪⎩

0 , n even
2T

n2π2
, n = 1, 5, 9, . . .

− 2T
n2π2

, n = 3, 7, 11, . . .

Thus, Fourier sine series expansion is

f(t) =
2T
π2

∞∑
n=1

(−1)n+1

(2n − 1)2
sin

2(2n − 1)πt

T

3(b) From the sketch of f1(t) , the series converges to −T/4 at t = −1
4T .

3(c) Taking t = 1
4T , then sin 2(2n−1)

T πt = (−1)n+1 giving

1
4
T =

2T
π2

∞∑
n=1

1
(2n − 1)3

so that the sum of the series
∞∑

n=1

1
(2n−1)3 is π2

8 .

4
g(−x)[c + f(−x)] = cg(−x) + g(−x)f(−x)

= −cg(x) − cg(x)f(x) from the given information

= −g(x)[c + f(x)]
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Thus, the product is an odd function.

Since y = θ is an odd function and y = θ2 is an even function, it follows from the
above that F(θ) is an odd function. Thus, it has a Fourier series of the form

F(θ) =
∞∑

n=1

bn sin nθ

with

bn =
2
π

∫ π

0

1
12

θ(π2 − θ2) sinnθdθ

=
1
6π

{
π2

[
− θ

n
cos nθ +

1
n2

sin nθ
]π

0

−
[
−θ3

n
cos nθ +

3θ2

n2
sin nθ − 6θ

n3
cos nθ +

6
n4

sin nθ
]π

0

}

=
1
6π

[
−6π

n3
cos nπ

]
=

1
n3

(−1)n+1

Thus, the Fourier expansion is

F(θ) =
∞∑

n=1

(−1)n+1

n3
sin nθ

5
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Clearly, f(t) is an odd function so it has a Fourier expansion of the form

f(t) =
∞∑

n=1

bn sin nt

with

bn =
2
π

[∫ π/2

0

−t sinntdt +
∫ π

π/2

(t − π) sin ntdt

]

=
2
π

{[
t

n
cos nt − 1

n2
sin nt

]π/2

0

+
[
− (t − π)

n
cos nt +

1
n2

sin nt

]π

π/2

}

=
2
π

[
− 2

n2
sin

nπ

2

]

Thus, Fourier expansion is

f(t) =
4
π

∞∑
n=1

(−1)n

(2n − 1)2
sin(2n − 1)t

6

f(x)

1/2ε

– 1 1– ε ε0 x

Since f(x) is an even function, over the interval −1 ≤ x ≤ 1, it may be represented
within this range by the Fourier cosine expansion

f(x) =
a0

2
+

∞∑
n=1

an cos nπx
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with

a0 =
2
1

∫ ε

0

1
2ε

dx = 2
[

1
2ε

x

]ε

0

= 1

an =
2
2ε

∫ ε

0

cos nπxdx =
1
ε

[
1

nπ
sin nπx

]ε

0

=
1

nπε
sinnπε

Thus, Fourier expansion is

f(x) =
1
2

+
∞∑

n=1

sinnπε

nπε
cos nπx

valid in the interval −1 ≤ x ≤ 1.

7 Half-range Fourier sine expansion is

f(t) =
∞∑

n=1

bn sin nt

with

bn =
2
π

∫ π

0

(
1 − t

π

)2

sin ntdt

=
2
π

[
− 1

n

(
1 − t

π

)2

cos nt − 2
n2π

(
1 − t

π

)
sin nt +

2
n3π2

cos nt

]π

0

=
2
nπ

+
4

n3π3
[(−1)n − 1]

Thus, Fourier expansion is

f(t) =
∞∑

n=1

2
nπ

[
1 − 2

n2π2
[1 − (−1)n] sin nt

]

8 Half-range Fourier sine expansion is

f(x) =
∞∑

n=1

bn sin nxdx
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with

bn =
2
π

[∫ π/2

0

x sin nxdx +
∫ π

π/2

(π − x) sinnxdx

]

=
2
π

{[
−x

n
cos nx +

1
n2

sin nx

]π/2

0

+
[
− (π − x)

n
cos nx − 1

n2
sin nx

]π

π/2

}

=
4

n2π
sin

nπ

2

Thus, half-range Fourier sine expansion is

f(x) =
4
π

∞∑
n=1

(−1)n+1

(2n − 1)2
sin(2n − 1)x

Half-range Fourier cosine expansion is

f(x) =
a0

2
+

∞∑
n=1

an cos nx

with

a0 =
2
π

[∫ π/2

0

xdx +
∫ π

π/2

(π − x)dx

]
=

π

2

an =
2
π

[∫ π/2

0

x cos nxdx +
∫ π

π/2

(π − x) cos nxdx

]

=
2
π

{[
x

n
sin nx +

1
n2

cos nx

]π/2

0

+
[
π − x

n
sin nx − 1

n2
cos nx

]π

π/2

}

=
2
π

[
2
n2

cos
nπ

2
− 2

n2
− 2

n2
cos nπ

]

=

{
0, n odd

4
πn2

[
(−1)n/2 − 1

]
, n even

Thus, Fourier cosine expansion is

f(x) =
π

4
− 2

π

∞∑
n=1

cos 2(2n − 1)x
(2n − 1)2
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Sketches of the functions represented by the two Fourier series are

9

a0 =
1
π

∫ π

−π

exdx =
1
π

[eπ − π−π] =
2
π

sinhπ

an =
1
π

∫ π

−π

ex cos nxdx =
n2

n2 + 1
· 1
π

[
1
n

ex sin nx +
1
n2

ex cos nx

]π

−π

=
(−1)n

π(n2 + 1)
[eπ − e−π] =

2(−1)n

π(n2 + 1)
sinhπ

bn =
1
π

∫ π

−π

ex sin nxdx =
n2

π(n2 + 1)

[
−ex

n
cos nx +

ex

n2
sin nx

]π

−π

= − n(−1)n

π(n2 + 1)
sinhπ
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Thus, Fourier expansion is

f(x) =
1
π

sinhπ +
2
π

∞∑
n=1

(−1)n

n2 + 1
sinhπ cos nx − 2

π

∞∑
n=1

(−1)n

n2 + 1
sinhπ cos nx

=
2
π2

sinhπ

[
1
2

+
∞∑

n=1

(−1)n

n2 + 1
(cos nx − n sin x)

]

10(a) Half-range Fourier sine expansion is

f(t) =
∞∑

n=1

bn sin nt

with

bn =
2
π

∫ π

0

(π − t) sin ntdt

=
2
π

[
− (π − t)

n
cos nt − 1

n2
sin nt

]π

0

=
2
n

Thus, Fourier sine expansion is

f(t) =
∞∑

n=1

2
n

sin nt

10(b) Half-range Fourier cosine expansion is

f(t) =
a0

2
+

∞∑
n=1

an cos nt

with

a0 =
2
π

∫ π

0

(π − t)dt = π

an =
2
π

∫ π

0

(π − t) cos ntdt =
2
π

[
(π − t)

n
sin nt − 1

n2
cos nt

]π

0

=
2

πn2
[1 − (−1)n] =

{
0, n even

4
πn2

, n odd
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Thus, Fourier cosine expansion is

f(t) =
1
2
π +

4
π

∞∑
n=1

1
(2n − 1)2

cos(2n − 1)t

Graphs of the functions represented by the two series are

(a)

(b)

11 Since f(t) is an even function, it has a Fourier series expansion

f(t) =
a0

2
+

∞∑
n=1

an cos nt
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where

a0 =
1
π

∫ π

−π

f(t)dt =
1
π

[∫ 0

−π

−tdt +
∫ π

0

tdt

]
= π

an =
1
π

[∫ 0

−π

−t cos ntdt +
∫ π

0

t cos ntdt

]

=
1
π

[[
− t

n
sin nt − cos nt

n2

]0
−π

+
[ t

n
sin nt +

1
n2

cos nt
]π

0

]

=
2

πn2
(cos nπ − 1) =

{
0, n even
− 4

πn2 , n odd

Thus, the Fourier expansion of f(t) is

f(t) =
π

2
− 4

π

∞∑
n=1

1
(2n − 1)2

cos(2n − 1)t

Since
dx

dt
+ x = f(t) is linear, response is sum individual responses.

Steady-state response corresponds to the Particular Integral (PI). For f0(t) =
π

2
steady-state response is x0(t) =

π

2
.

When f(t) = cos ωt , then steady-state response is of the form x = A cos ωt +
B sin ωt . Substituting back and comparing coefficients of sin ωt and cos ωt gives

A =
1

1 + ω2
, B =

ω

1 + ω2

Taking ω = (2n − 1), then required steady-state response is

x =
1
2
π − 4

π

∞∑
n=1

1
(2n − 1)2

[
cos(2n − 1)t + (2n − 1) sin(2n − 1)t

1 + (2n − 1)2

]

12 Since f(t) is an even function, Fourier series expansion is

f(t) =
a0

2
+

∞∑
n=1

an cos nt
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where

a0 =
1
π

∫ 2π

0

f(t)dt =
1
π

[∫ π

0

t

π
dt +

∫ 2π

π

(2π − t)
π

dt

]

=
1
π2

[[1
2
t2

]π

0
+

[
2πt − 1

2
t2

]2π

π

]
= 1

an =
1
π2

[∫ π

0

t cos ntdt +
∫ 2π

π

(2π − t) cos ntdt

]

=
1
π2

[[ t

n
sin nt +

1
n2

cos nt
]π

0
+

[ (2π − t)
n

sin nt − 1
n2

cos nt
]2π

π

]

=
2

π2n2
(cos nπ − 1) =

{
− 4

n2π2
, n odd

0, n even

Thus, Fourier series expansion is

f(t) =
1
2
− 4

π2

∞∑
n=0

cos(2n + 1)t
(2n + 1)2

It can be shown by direct substitution that this satisfies the given differential
equation. Alternatively, we solve the differential equation

d2y

dt2
+ ω2y =

1
2
−

∞∑
n=0

αn cos ωnt, ω not integer

Solving the unforced system gives the complementary function as

y1 = A cos ωt + B sin ωt

The particular integral is the sum of the PI’s for the individual terms in f(t) .

In the case of the 1
2 on the RHS response is

y2 =
1

2ω2

For the term αn cos ωnt the PI is of the form

yαn
= C cos ωnt + D sin ωnt
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Substituting in
d2y

dt2
+ ω2y = αn cos ωnt and comparing coefficients gives

C = αn/(ω2 − ω2
n), D = 0, so that

yαn
=

αn

ω2 − ω2
n

cos ωnt

Thus, the solution of the differential equation is

y = A cos ωt + B sin ωt +
1

2ω2
−

∞∑
n=0

αn

ω2 − ω2
n

cos ωnt

From the given initial condition, y = dy/dt = 0 at t = 0, so that

B = 0 and A = − 1
2ω2

+
∞∑

n=0

αn

ω2 − ω2
n

giving on taking αn = −4/[π2(2n + 1)2], ωn = (2n + 1)

y =
1

2ω2
(1 − cos ωt) − 4

π2

∞∑
n=0

cos(2n + 1)t − cos ωt

(2n + 1)2[ω2 − (2n + 1)2]

13(a) Since f(t) is an even function, Fourier expansion is

f(t) =
a0

2
+

∞∑
n=1

an cos nt

where

a0 =
1
π

∫ π

−π

f(t)dt =
1
π

[∫ 0

−π

−tdt +
∫ π

0

tdt

]
= π

an =
1
π

[∫ 0

−π

−t cos ntdt +
∫ π

0

t cos ntdt

]

=
1
π

[[
− t

n
sin nt − cos nt

n2

]0
−π

+
[ t

n
sin nt +

cos nt

n2

]π

0

]

=
2

πn2
(cos nπ − 1) =

{
0, n even

− 4
πn2

, n odd

Thus, Fourier expansion f(t) is

f(t) =
π

2
− 4

π

∞∑
n=1

1
(2n − 1)2

cos(2n − 1)t
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Since bn = 0, Parseval’s theorem gives

1
2π

∫ π

−π

[f(t)]2dt =
1
4
a2
0 +

1
2

∞∑
n=1

a2
n

i.e.
π2

3
=

π2

4
+

1
2
· 16
π2

∞∑
n=1

1
(2n − 1)4

or, rearranging,
∞∑

n=1

1
(2n − 1)4

=
π4

96

13(b) Differentiating formally term by term, we obtain the Fourier expansion
of the square wave at

g(t) =
4
π

∞∑
n=1

1
(2n − 1)

sin(2n − 1)t

Check. Since g(t) is an odd function it has Fourier expansion

g(t) =
∞∑

n=1

bn sinnt

where

bn =
1
π

[∫ 0

−π

− sin ntdt +
∫ π

0

sin ntdt
]

=
1
π

[[ 1
n

cos nt
]0
−π

+
[
− 1

n
cos nt

]π

0

]

=
2
nπ

[1 − cos nπ] =

{
4

nπ
, n odd

0, n even

confirming the Fourier expansion as

g(t) =
4
π

∞∑
n=1

1
(2n − 1)

sin(2n − 1)t

14 Complex form of the Fourier series is

f(t) =
∞∑

n=−∞
cnejnt
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where

cn =
1
2π

∫ π

−π

sin
t

2
e−jntdt

=
1

4πj

∫ π

−π

[
e

1
2 jt − e−

1
2 jt

]
e−jntdt

=
1

4πj

∫ π

−π

[
e−j(n−1

2 )t − e−j(n+
1
2 )t

]
dt

=
1

4πj

[
e−j(n−1

2 )t

−j(n − 1
2 )

− e−j(n+
1
2 )t

−j(n + 1
2 )

]π

−π

Using the results ejnπ = cos nπ + j sin nπ = (−1)n = e−jnπ

e
1
2 jπ = cos

π

2
+ j sin

π

2
= j, e−j

π
2 = −j

gives

cn =
1
4π

[
j

(n − 1
2 )

+
j

(n + 1
2 )

+
j

(n − 1
2 )

+
j

(n + 1
2 )

]
(−1)n

=
j(−1)n

π

[
4n

4n2 − 1

]

Thus, the complex form of the Fourier series is

f(t) =
∞∑

n=−∞

4nj(−1)n

π(4n2 − 1)
ejnt

15(a) Following the same procedure as in Review Exercise 11 gives

a0 =
20
π

an =

{ 0, n odd, n �= 1
−20

π(n2 − 1)
, n even

a1 = 0

bn = 0, n �= 1

b1 = 5

so that the Fourier representation is

v(t) =
10
π

+ 5 sin ω0t −
20
π

∞∑
n=1

cos 2nω0t

4n2 − 1
, ω0 =

2π
T
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15(b)

Total power =
1
T

∫ T/2

0

100. sin2 ω0tdt

=
50
T

∫ T/2

0

(1 − cos 2ω0t)dt = 25

Thus, total average power delivered to 10Ω resistor is

Pav =
25
10

= 2.5W

Coefficient second harmonic in series expansion v(t) is a2 =
−20
3π

.
When applied to 10Ω resistor power associated with this harmonic is

1
2
( 20
3π

)2 1
10

=
20
9π2

W

Thus, the percentage of the total power carried by the second harmonic is

100
Pav

· 20
9π2

=
800
9π2

� 9.01

16(a) A sketch of g(t) is

16(b) Over the period −π < t < π g(t) is defined by

g(t) = −1, − π < t < 0

g(t) = 1, 0 < t < π

Since g(t) is an odd function, it has a Fourier series expansion of the form

g(t) =
∞∑

n=1

bn sinnt
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with bn =
2
π

∫ π

0

1. sin ntdt

=
2
π

[
− 1

n
cos nt

]π

0
=

2
nπ

[1 − (−1)n] =

{
0, n even
4
nπ

, n odd

Thus, the Fourier expansion of g(t) is

g(t) =
4
π

∞∑
n=1

sin(2n − 1)t
(2n − 1)

giving the Fourier expansion of f(t) = 1 + g(t) as

f(t) = 1 +
4
π

∞∑
n=1

sin(2n − 1)t
(2n − 1)

17 Complex form of Fourier expansion is

f(t) =
∞∑

n=−∞
cnejnt

where cn =
1
2π

∫ 2π

0

f(t)e−jntdt =
1
2π

∫ 2π

0

te−jntdt

=
1
2π

[
− t

jn
e−jnt +

1
n2

e−jnt

]2π

0

Using the results e−j2nπ = cos 2nπ − j sin 2nπ = 1, eo = 1, we have

cn =
1
2π

[
−2π

jn

]
= − 1

jn
=

j

n
, n �= 0

When n = 0, c0 =
1
2π

∫ 2π

0
tdt = π

Hence, complex Fourier series is

f(t) = π +
∞∑

n=−∞
n �=0

j

n
ejnt
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18(a) Since v(t) is an odd function, its Fourier expansion is of the form

v(t) =
∞∑

n=1

bn sin
2nπt

T

with bn =
4
T

∫ T/2

0

1. sin
2nπt

T
dt

=
4
T

[
− T

2nπ
cos

2nπt

T

]T/2

0

=
2

nπ
[1 − cos nπ]

that is, bn =

{
0, n even
4

nπ
, n odd

Thus, Fourier expansion is

v(t) =
4
π

∞∑
n=1

1
(2n − 1)

sin
2(2n − 1)πt

T

18(b) Response iω(t) of the circuit is given by

diω(t)
dt

+ iω(t) = vω(t) = sin ωt

Taking Laplace transforms with iω(0) = 0 gives

Iω(s) =
ω

(s + 1)(s2 + ω2)

=
ω

ω2 + 1
· 1
(s + 1)

− ω

ω2 + 1
· s

s2 + ω2
+

1
ω2 + 1

· 2
s2 + ω2

which, on taking inverse transforms, gives the response as

iω(t) =
ω

ω2 + 1
e−t − ω

ω2 + 1
cos ωt +

1
ω2 + 1

sin ωt

Since the first term decays to zero, the steady-state response is

iωss =
1

ω2 + 1
(sinωt − ω cos ωt)
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As the system is linear steady-state response is(t) to the square wave v(t) is

is(t) =
∞∑

n=1

iωn
(t)

where iωn
(t) is the steady-state response to vωn

(t) with

ωn = 2(2n − 1)π/T

Thus,

is(t) =
4
π

∞∑
n=1

1
(2n − 1)

[ 1
ω2

n + 1
]
(sinωnt − ωn cos ωnt)

19(a)

cosn θ =
[1
2
(ejθ + e−jθ)

]n

=
1
2n

[
enjθ +

(
n

1

)
e(n−2)jθ + . . . + e−njθ

]
=

1
2n

[
(enjθ + e−njθ) +

(
n

1

)
(e(n−2)jθ + e−(n−2)jθ) + . . .

]

Hence,

cos2κ θ =
1

22κ

[
2 cos 2κθ +

(
2κ
1

)
2 cos(2κ − 2)θ + . . . +

(
2κ

κ − 1

)
2 cos 2θ +

(
2κ
κ

)]

Putting cos θ = t ,

t2κ = 1
2κ−1

[
T2κ(t) +

(
2κ
1

)
T2κ−2(t) + . . . +

(
2κ

κ − 1

)
T2(t) +

1
2

(
2κ
κ

)
T0(t)

]
t2κ−1 =

1
2κ

[
T2κ+1(t) +

(
2κ + 1

1

)
T2κ−1(t) + . . . +

(
2κ + 1

κ

)
T1(t)

]

Note that T0(t) may be omitted.
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19(b) cos nθ + cos(n − 2)θ = 2cos(n − 1)θ cos θ Hence, putting θ = cos−1 t

Tn(t) + Tn−2(t) = 2tTn−1(t)

19(c)

T0(t) = cos(0. cos−1 t) = cos 0 = 1

T1(t) = cos(1. cos−1 t) = cos(cos−1 t) = t

T2(t) = 2tT1(t) − T0(t) = 2t2 − 1

T3(t) = 2t(2t2 − 1) − t = 4t3 − 3t

19(d)

t5 − 5t4 + 7t3 + 6t − 8 =
1
24

(T5(t) + 5T3(t) + 10T1(t))

− 5
23

(T4(t) + 4T2(t) + 3) +
7
22

(T3(t) + 3T1(t))

+ 6T1(t) − 8

=
1
16

T5(t) −
5
8
T4(t) +

33
16

T3(t)

− 5
2
T2(t) +

95
8

T1(t) −
79
8

T0(t)

19(e) The required cubic polynomial is obtained by omitting the first two terms.
It is therefore,

33
16

(4t3 − 3t) − 5
2
(2t2 − 1) +

95
8

t − 79
8

or
33
4

t3 − 5t2 +
91
16

t − 59
8

Since | Tn(t) |≤ 1 over (−1, 1), the error can nowhere exceed 1
16 + 5

8 = 11
16 in

absolute value. An error of this magnitude occurs at t = −1, since Tn(−1) =
cos nπ = (−1)n .
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20

If the input is x(t) = Xi sin ωt , then the input and output y(t) waveforms to the
non-linear element are shown in the figure. Clearly, the output waveform is an odd
function of period π/ω and over the interval 0 < t < π/ω ,

y(t) =

⎧⎨
⎩

0, 0 < t < t1
M, t1 < t < π

ω − t1
0, π

ω − t1 < t < π
ω

The amplitude of the fundamental harmonic is

b1 =
2

π/ω

∫ π/ω

0

y(t) sinωtdt

=
2ω
π

∫ π/ω−t1

t1

M sin ωtdt

= −2M
π

[cos(π − ωt1) − cos ωt1]

=
4M
π

cos ωt1

Since sin ωt1 = Δ
2Xi

, we obtain cos ωt1 =
√

1 −
(

Δ
2Xi

)2
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Thus, the required describing function is

N(Xi) =
4M
πXi

[
1 −

( Δ
2Xi

)2] 1
2

Limit cycle will occur if N(Xi) ≥ − 1
KG(jω)

.

N(Xi) will have a maximum value when dN
dXi

= 0; that is, when Xi = Δ/
√

2.
Maximum value is N(Xi)max = 4M

πΔ . Since this is real, we are only interested in
the real values of 1/(KG(jω)) .
In this case,

1
KG(jω)

=
1
K

jω(T1jω + 1)(T2jω + 1)

=
1
K

[−T1T2jω
3 − (T1 + T2)ω2 + jω]

and for this to be real

−T1T2ω
3 + ω = 0 giving ω2 = 1/(T1T2)

At this frequency,

magnitude
1

KG(jω)
= −

(T1 + T2

K

)
ω2 = − (T1 + T2)

KT1T2

and the required result follows, namely that limit cycles will not occur if

Δ >
4MK

π
· T1T2

T1 + T2
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The Fourier Transform

Exercises 8.2.4

1
F(jω) =

∫ 0

−∞
eate−jωt dt +

∫ ∞

0

e−ate−jωt dt

=
2a

a2 + ω2

2

F(jω) =
∫ 0

−T

Ae−jωt dt +
∫ T

0

−Ae−jωt dt

=
∫ T

0

2jA sin ωt dt

=
2jA
ω

(1 − cos ωT)

=
4jA
ω

sin2 ωT

2

= jωAT2 sinc2

(
ωT

2

)

3

F(jω) =
∫ 0

−T

(
At

T
+ A

)
e−jωt dt +

∫ T

0

(
−At

T
+ A

)
e−jωt dt

= 2
∫ T

0

(
−At

T
+ A

)
cos ωt dt

= AT sinc2

(
ωT

2

)

Exercise 2 is T × derivative of Exercise 3, so result 2 follows as (jω × T)
× result 3.

Sketch is readily drawn.
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4

F(jω) =
∫ 2

−2

2Ke−jωt dt = 8K sinc(2ω)

G(jω) =
∫ 1

−1

Ke−jωt dt = 2K sinc(ω)

H(jω) = F(jω) − G(jω) = 2K(4 sinc(2ω) − sinc(ω))

5

F(jω) =
∫ −1

−2

e−jωt dt +
∫ 1

−1

e−jωt dt +
∫ 2

1

−e−jωt dt

=
1
jω

[
2(ejω − e−jω) − (e2jω − e−2jω)

]
= 4 sinc(ω) − 2 sinc(2ω)

6

F(jω) =
1
2j

∫ π
a

−π
a

(ejat − e−jat)e−jωt dt

f̄(a) =
1
2j

∫ π
a

−π
a

ejate−jωt dt =
1
2j

∫ π
a

−π
a

ej(a−ω)t dt

=
sin ωπ

a

j(a − ω)

F(jω) = f̄(a) + f̄(−a) =
2jω

ω2 − a2
sin ω

π

a

7

F(jω) =
∫ ∞

0

e−at. sin ω0t.e
−jωt dt

= f̄(ω0) − f̄(−ω0)

where f̄(ω0) =
1
2j

∫ ∞

0

e(−a+j(ω0−ω)t) dt

=
1
2j

(
1

a − j(ω0 − ω)

)
=

1
2j

(
1

(a + jω) − jω0

)

∴ F(jω) =
ω0

(a + jω)2 + ω2
0
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8

Fc(x) =
1
4

∫ a

0

(ejt + e−jt)(ejxt + e−jxt) dt

define g(x, b) =
∫ a

0

ej(b+x)t dt

=
1

j(b + x)
[ej(b+x)a − 1]

Fc(x) =
1
4
[g(x, 1) + g(x,−1) + g(−x, 1) + g(−x,−1)]

=
1
2

[
sin(1 + x)a

1 + x
+

sin(1 − x)a
1 − x

]

9 Consider F(x) =
∫ a

0
1.ejxt dt

=
−j

x
(cos ax + j sin ax − 1)

Fc(x) = Re F(x) =
sin ax

x

Fs(x) = ImF(x) =
1 − cos ax

x

10 Consider F(x) =
∫∞
0

e−atejxt dt

=
a + jx

a2 + x2

Fc(x) = Re F(x) =
a

a2 + x2

Fs(x) = Im F(x) =
x

a2 + x2

Exercises 8.3.6

11 Obvious

12 (jω)2Y(jω) + 3jωY(jω) + Y(jω) = U(jω)

Y(jω) =
1

(1 − ω2) + 3jω
U(jω)

H(jω) =
1

(1 − ω2) + 3jω
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13

→ sinc
ω

2

→
(
e−iω3/2 + eiω3/2

)
sinc

ω

2

=
2
ω

(sin(2ω) − sin(ω))

= 4 sinc(2ω) − 2 sinc(ω)

14
F(jω) =

∫ T
2

−T
2

cos(ω0t)e−iωt dt

=
1

ω0 − ω
sin(ω0 − ω)

T

2
+

1
ω0 + ω

sin(ω0 + ω)
T

2
ω �= ±ω0

=
T

2

[
sin(ω0 − ω)T

2

(ω0 − ω)T
2

+
sin(ω0 + ω)T

2

(ω0 + ω)T
2

]

Evaluating at ω = ±ω0 ⇒

F(jω) =
T

2

[
sinc(ω0 − ω)

T

2
+ sinc(ω0 + ω)

T

2

]

15

F(jω) =
∫ T

0

cos ω0t.e
−jωt dt

=
1
2
[f̄(ω0) + f̄(−ω0)]

where f̄(ω0) =
∫ T

0

ej(ω0−ω)t dt

=
1

j(ω0 − ω)
[ej(ω0−ω)T − 1] ω �= ω0
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F(jω) =
1
2

[
1

j(ω0 − ω)
(ej(ω0−ω)T − 1) ω �= ω0

− 1
j(ω0 − ω)

(e−j(ω0+ω)T − 1)
]

= e−jωT/2

[
ejω0T/2

ω0 − ω
sin(ω0 − ω)

T

2

+
e−jω0T/2

ω0 + ω
sin(ω0 + ω)

T

2

]
ω �= ±ω0

Checking at ω = ±ω0 gives

F(jω) =
T

2
e−jωT/2

[
ejω0T/2 sinc(ω0 − ω)

T

2
+ e−jω0T/2 sinc(ω0 + ω)

T

2

]

16

F(jω) =
∫ 1

−1

sin 2t.e−jωt dt

=
1
2j

∫ 1

−1

e−j(ω−2)t − e−j(ω+2)t dt

f̄(a) =
∫ 1

−1

e−j(ω−a)t dt = 2 sinc(ω − a)

F(jω) =
1
2j

f̄(a) − 1
2j

f̄(−a), a = 2

= j[sinc(ω + 2) − sinc(ω − 2)]

Exercises 8.4.3

17

I H(s) =
1

s2 + 3s + 2
h(t) = (e−t − e−2t)ξ(t)

H(jω) =
∫ ∞

0

(e−t − e−2t)e−jωt dt =
1

1 + jω
− 1

2 + jω

=
1

2 − ω2 + 3jω
as required.

II H(s) =
s + 2

s2 + s + 1
h(t) = e−1/2t

(
cos

√
3

2
t +

√
3 sin

√
3

2
t

)
ξ(t)
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Consider G(ω0) =
∫ ∞

0

e−(1/2tjω−jω0)t dt

=
1

1
2 + j(ω − ω0)

H(jω) =
1
2
G(ω0) +

1
2
G(−ω0) +

√
3

2j
(G(ω0) − G(−ω0)), ω0 =

√
3

2

So H(jω) =
2 + 4jω

4 + 4jω − 4ω2
+

6
4 + 4jω − 4ω2

=
2 + jω

1 − ω2 + jω

18

P(jω) = 2ATsinc ωT

So F(jω) = (e−jωτ + eiωτ )P(jω)
= 4AT cos ωτ sinc ωT

19 G(s′) =
(s′)2

(s′)2 +
√

2s′ + 1
G(jω) =

−ω2

1 − ω2 +
√

2jω

=
1

1
ω2 − 1 +

√
2 j

ω

Thus, | G(jω) |→ 0 as ω → 0
and | G(jω) |→ 1 as ω → ∞
High-pass filter.

20 g(t) = e−a|t| −→ G(jω) =
2a

a2 + ω2

f(jt) =
1
2
G(jt) −→ πg(−ω) = πe−a|ω|
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21 F{f(t) cos ω0t} =
1
2
F(j(ω − ω0)) +

1
2
F(j(ω + ω0))

F(jω) = 2T sinc ωT

∴ F{PT (t) cos ω0t}

= T
[
sinc(ω − ω0)T + sinc(ω + ω0)T

]

Exercises 8.5.3
22

1
2π

∫ ∞

−∞
πδ(ω − ω0)ejωtdω +

1
2π

∫ ∞

−∞
πδ(ω + ω0)ejωtdω

=
1
2
(ejω0t + e−jω0t)

= cos ω0t

23
F{e±jω0t} = 2πδ(ω ∓ ω0)

∴ F{sin ω0t} =
1
2j

{2πδ(ω − ω0) − 2πδ(ω + ω0)}

= jπ[δ(ω + ω0) − δ(ω − ω0)]

1
2π

∫ ∞

−∞
jπ[δ(ω + ω0) − δ(ω − ω0)]ejωtdω

=
j

2
[e−jω0t − e+jω0t] = sinω0t

24 G(jω) =
∞∫

−∞
g(t)e−jωt dt; G(jt) =

∫∞
−∞ g(ω)e−jωtdω

So
∫ ∞

−∞
f(t)G(jt) dt

=
∫ ∞

−∞
f(t)
(∫ ∞

−∞
g(ω)e−jωtdω

)
dt

=
∫ ∞

−∞
g(ω)

(∫ ∞

−∞
f(t)e−jωt dt

)
dω

=
∫ ∞

−∞
g(ω)F(jω)dω =

∫ ∞

−∞
g(t)F(jt) dt
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25 Write result 24 as∫ ∞

−∞
f(ω)F{g(t)}dω =

∫ ∞

−∞
F{f(t)}g(ω)dω

so
∫ ∞

−∞
f(ω)F{G(jt)}dω =

∫ ∞

−∞
F{f(t)}G(jω)dω

Now
g(t) → G(jω)

G(jt) → 2πg(−ω)
G(−jt) → 2πg(ω)

⎫⎬
⎭ symmetry

Thus,
∫ ∞

−∞
f(ω).2πg(ω)dω =

∫ ∞

−∞
F(jω)G(−jω)dω

or
∫ ∞

−∞
f(t)g(t) dt =

1
2π

∫ ∞

−∞
F(jω)G(−jω)dω

26 F{H(t) sinω0t}

=
1
2π

∫ ∞

−∞
πj
[
δ(ω − u + ω0) − δ(ω − u − ω0)

][
πδ(u) +

1
ju

]
du

=
j

2
[
πδ(ω + ω0) − πδ(ω − ω0)

]
+

1
2

[
1

ω + ω0
− 1

ω − ω0

]

=
πj

2
[
δ(ω + ω0) − δ(ω − ω0)

]
− ω0

ω2 − ω2
0

27

an =
A

T

∫ d/2

−d/2

e−jnω0t dt =
Ad

T
sinc

nω0d

2
, ω0 = 2π/T

f(t) =
Ad

T

∞∑
n=−∞

sinc
nω0d

2
ejnω0t,

F(jω) =
2πAd

T

∞∑
n=−∞

sinc
nω0d

2
δ(ω − nω0)

Exercises 8.6.6

28

T = 1, N = 4, Δω = 2π/(4 × 1) =
π

2
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G0 =
3∑

n=0

gne−j×n×0×π/2 = 2

G1 =
3∑

n=0

gne−j×n×1×π/2 = 0

G2 =
3∑

n=0

gne−j×n×2×π/2 = 2

G3 =
3∑

n=0

gne−j×n×3×π/2 = 0

G = {2, 0, 2, 0}

29

N = 4,Wn = e−j nπ/2

g′n =

⎡
⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎦
⎡
⎢⎣

1
0
1
0

⎤
⎥⎦ =

⎡
⎢⎣

2
0
0
0

⎤
⎥⎦

G′ =

⎡
⎢⎣

G00

G10

G01

G11

⎤
⎥⎦ =

⎡
⎢⎣

1 1 0 0
1 −1 0 0
1 0 1 −j
0 0 1 j

⎤
⎥⎦
⎡
⎢⎣

2
0
0
0

⎤
⎥⎦ =

⎡
⎢⎣

2
2
0
0

⎤
⎥⎦

Bit reversal gives

G =

⎡
⎢⎣

2
0
2
0

⎤
⎥⎦

30 Computer experiment.

31 Follows by direct substitution.
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Exercises 8.9.3

32 We have θc = π
2 so

D(ejθ) =
{

1, |θ| ≤ π
2

0, |θ| > π
2

The filter coefficients are given by

hd(n) =
1
2π

∫ π

−π

D(ejθ)ejnθ dθ

=
1
2π

∫ π
2

−π
2

ejnθ dθ

=
1

nπ
sin
(nπ

2

)
, n �= 0

=
1
2
sinc

(nπ

2

)
Hence,

h±5 = 0.06366, h±4 = 0, h±3 = −0.10610

h±2 = 0, h±1 = 0.31831, h0 = 0.5

Thus, the non-causal transfer function is

D̃(z) = 0.06366z−5 − 0.1066z−3 + 0.31832z−1 + 0.5

+ 0.31831z − 0.10610z3 + 0.06366z5

and the causal version is

D(z) = 0.06366 − 0.10660z−2 + 0.31831z−4 + 0.5z−5

+ 0.31831z−6 − 0.010660z−8 + 0.06366z−10

33 The Hamming window coefficients are given by

wH(k) = 0.54 + 0.46 cos
(

πk

5

)
, |k| ≤ 5

Note that wH(±4)andwH(±2)are not needed.
Now wH(±5) = 0.08000, wH (±3) = 0.39785, wH (±1) = 0.91215, wH (0) = 1 and
the causal transfer function is found by multiplying the filter coefficients by the
appropriate wH giving

D(z) = 0.00509(1 + z−10) − 0.04221(z−2 + z−8) + 0.29035(z−4 + z−6) + 0.5z−5
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Plots of the frequency responses for both Exercises 32 and 33 are given in the
following figure.
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Review exercises 8.10

1

FS(x) =
∫ 1

0

t sin xtdt +
∫ 2

1

sin xtdt =
sin x

x2
− cos 2x

x

2

f(t) = −π

2
H(−t − 2) + (H(t + 2) − H(t − 2))

πt

4
+

π

2
H(t − 2)

F{H(t)} =
1

j ω
+ πδ(ω)

F{H(t − 2)} = e−2jω

[
1
jω

+ πδ(ω)
]
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F{H(−t − 2)} = e2jω

[
−1
jω

+ πδ(−ω)
]

= e2jω

[
−1
jω

+ πδ(ω)
]

F{f(t)} = F{−π

2
H(−t − 2)} +

π

4

∫ 2

−2

te−jωt dt + F
{π

2
H(t − 2)

}

=
−πj
ω

sinc 2ω

3

F{H(t + T/2) − H(t − T/2)} = T sinc
ωT

2
F{cos ω0t} = π [δ(ω + ω0) + δ(ω − ω0)]

Using convolution,

F{f(t)} =
π

2π

∫ ∞

−∞
T sinc

T

2
(ω − u) (δ(u + ω0) + δ(u − ω0))du

=
T

2

[
sinc(ω − ω0)

T

2
+ sinc(ω + ω0)

T

2

]

4

F{cos ω0tH(t)} =
1
2π

[πδ(ω − ω0) + πδ(ω + ω0)] ∗
[
πδ(ω) +

1
jω

]

=
1
2π

∫ ∞

−∞
{πδ(ω − u − ω0) + πδ(ω − u + ω0)}

[
πδ(u) +

1
ju

]
du

=
π

2
[δ(ω − ω0) + δ(ω + ω0)] +

jω
ω2

0 − ω2

5

F{f(t) cos ωct cos ωct}

=
F(jω + jωc) + F(jω − jωc)

2
∗ π [δ(ω − ωc) + δ(ω + ωc)]

=
1
4

∫ ∞

−∞
[F(j(u + ωc)) + F(j(u − ωc))]×

[δ(ω − u − ωc) + δ(ω − u + ωc)] du

=
1
2
F(jω) +

1
4

[F(jω + 2jωc) + F(jω − 2jωc)]
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Or write as

f(t)
1
2
(1 + cos 2ωct)

etc.

6

H(t + 1) − H(t − 1) ↔ 2 sinc ω

By symmetry,

2 sinc t ↔ 2π(H(−ω + 1) − H(−ω − 1)) = 2π(H(ω + 1) − H(ω − 1))

7(a) Simple poles at s = a and s = b . Residue at s = a is eat/(a − b) , at s = b

it is ebt/(b − a) , thus

f(t) =
1

a − b

(
eat − ebt

)
H(t)

7(b) Double pole at s = 2, residue is

lim
s→2

d
ds

(
(s − 2)2

est

(s − 2)2

)
= te2t

So f(t) = te2tH(t)

7(c) Simple pole at s = 1, residue e−t , double pole at s = 0, residue

lim
s→0

d
ds

(
est

s + 1

)
= (t − 1)H(t)

Thus, f(t) = (t − 1 + e−t)H(t)

8(a)

y(t) =
∫ ∞

−∞
h(t − τ)u(τ) dτ

Thus,

− sin ω0t =
∫ ∞

−∞
h(t − τ) cos ω0τdτ = f(t), say
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If u(τ) = cos ω0(τ + π/4)

y(t) =
∫ ∞

−∞
h(t − τ) cos ω0(τ + π/4) dτ

=
∫ ∞

−∞
h(t − (τ − π/4)) cos ω0τ dτ = f(t + π/4)

= − sin ω0(t + π/4)

8(b) Since sin ω0t = cos ω0(t − π/2ω0)

y(t) =
∫ ∞

−∞
h(t − τ) sin ω0t dτ

=
∫ ∞

−∞
h(t − τ) cos ω0(τ − π/2ω0) dτ

=
∫ ∞

−∞
h(t − (τ + π/2ω0)) cos ω0τ dτ

= f(t − π/2ω0) = − sin(ω0t − π/2) = cos ω0t

8(c)

ejω0t = cos ω0t + j sinω0t

This is transformed from above to

− sin ω0t + j cos ω0t = j ejω0t

8(d) Proceed as above using

e−jω0t = cos ω0t − j sinω0t

9

F(sgn(t)) = F(f(t)) = F(jω) =
2
jω

, obvious

Symmetry,

F(jt) =
2
jt

↔ 2/πf(−ω) = 2πsgn(−ω)

That is,
1
jt

↔ −πsgn(ω)
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or
−
(

1
πt

)
↔ jsgn(ω)

10

g(t) = − 1
πt

∗ f(t) = − 1
π

∫ ∞

−∞

f(τ)
t − τ

dτ =
1
π

∫ ∞

−∞

f(τ)
τ − t

dτ = FHi(t)

so
g(x) =

1
π

∫ ∞

−∞

f(t)
t − x

dt = FHi(x)

So from Review Exercise 9

FHi(jω) = jsgn(ω) × F(jω)

so
|FHi(jω)| = |jsgn(ω)| |F(jω)| = |F(jω)|

and
arg(FHi(jω)) = arg(F(jω)) + π/2, ω ≥ 0

Similarly
arg(FHi(jω)) = arg(F(jω)) − π/2, ω < 0

11 First part, elementary algebra.

FHi(x) =
1
π

∫ ∞

−∞

t

(t2 + a2)(t − x)
dt

=
1
π

1
x2 + a2

∫ ∞

−∞

[
a2

t2 + a2
+

t

t − x
− xt

t2 + a2

]
dt

=
a

x2 + a2

12(a)

H{f(t)} =
1
π

∫ ∞

−∞

f(t)
t − x

dt = FHi(x)

H{f(a + t)} =
1
π

∫ ∞

−∞

f(a + t)
t − x

dt

=
1
π

∫ ∞

−∞

f(t)
t − (a + x)

dt = FHi(a + x)

c©Pearson Education Limited 2011



504 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

12(b)

H{f(at)} =
1
π

∫ ∞

−∞

f(at)
t − x

dt

=
1
π

∫ ∞

−∞

f(t)
t − ax

dt = FHi(ax), a > 0

12(c)

H{f(−at)} =
1
π

∫ ∞

−∞

f(−at)
t − x

dt

= − 1
π

∫ ∞

−∞

f(t)
t + ax

dt = −FHi(−ax), a > 0

12(d)

H
{

df

dt

}
=

1
π

∫ ∞

−∞

f′(t)
t − x

dt

=
1
π

[
f(t)
t − x

∣∣∣∣
∞

−∞
+
∫ ∞

−∞

f(t)
(t − x)2

dt

]

Provided lim
|t|→∞

f(t)/t = 0, then

H
{

df

dt

}
=

1
π

∫ ∞

−∞

f(t)
(t − x)2

dt =
1
π

d
dx

∫ ∞

−∞

f(t)
t − x

dt

=
d
dx

FHi(x)

12(e)
x

π

∫ ∞

−∞

f(t)
t − x

dt +
1
π

∫ ∞

−∞
f(t) dt =

1
π

∫ ∞

−∞

tf(t)
t − x

dt

= H{tf(t)}

13 From Review Exercise 10

FHi(t) = − 1
πt

∗ f(t)

So from Review Exercise 9,

F{FHi(t)} = jsgn (ω) ×F(j ω)
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so

F(jω) = −jsgn (ω) ×F{FHi(t)}

Thus,

f(t) =
∫ ∞

−∞

1
π(t − τ)

FHi(τ)dτ = − 1
π

∫ ∞

−∞

1
(x − τ)

FHi(x)dx

14

fa(t) = f(t) − jFHi(t)

F{fa(t)} = F(jω) − j(jsgn (ω))F(jω) = F(jω) + sgn (ω)F(jω)

=
{

2F(jω), ω > 0
0, ω < 0

15

F{H(t)} =
1
jω

+ πδ(ω) = F(jw)

Symmetry,

F(j t) =
1
jt

+ πδ(t) ↔ 2πH(−ω) = 2π[1 − H(ω)]

= 2π[Fδ(t) − H(ω)]

or

H(ω) ↔ j
2πt

+
1
2
δ(t)

Thus,

F−1{H(ω)} =
j

2πt
+

1
2
δ(t)

Then

f̂(t) = 2
[
1
2
δ(t) +

j
2πt

]
∗ f(t) = f(t) − j

(
− 1

πt

)
∗ f(t)

= f(t) − jFHi(t)

When f(t) = cos ω0t, ω0 > 0, then

F(jω) = π[δ(ω − ω0) + δ(ω + ω0)]

so

F{f̂(t)} = 2πδ(ω − ω0)
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whence
f̂(t) = f(t) − jFHi(t) = ejω0t = cos ω0t + j sin ω0t

and so
FHi(t) = − sin ω0t

When g(t) = sin ω0t, ω0 > 0

G(jω) = jπ[δ(ω + ω0) − δ(ω − ω0)]

and thus
ĝ(t) = −jejω0t = −j(cos ω0t + j sin ω0t)

so
H{sin ω0t} = cos ω0t

16 If h̄(t) = 0, t < 0, then when t < 0

h̄e(t) =
1
2
h̄(−t), and h̄o(t) = −1

2
h̄(−t)

that is, h̄o(t) = −h̄e(t)

When t > 0, then

h̄e(t) =
1
2
h̄(t), and h̄o(t) =

1
2
h̄(t)

that is, h̄o(t) = h̄e(t)

That is,
h̄o(t) = sgn (t)h̄e(t) ∀t

Thus,
h̄(t) = h̄e(t) + sgn (t)h̄e(t)

When h(t) = sin tH(t) ,

h̄e(t) =

⎧⎪⎨
⎪⎩

1
2

sin t, t > 0

−1
2

sin t, t < 0

and since
sgn (t) h̄e(t) =

1
2

sin t ∀t

the result is confirmed.
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Then taking the FT of the result,

H̄(jω) = H̄e(jω) + F
{
sgn (t)h̄e(t)

}

= H̄e(jω) +
1
2π

(
2
jω

∗ H̄e(jω)
)

= H̄e(jω) + jH
{
H̄e(jω)

}
When

H̄(jω) =
∫ ∞

−∞
e−ate−jwt dt =

a

a2 + ω2
− j

ω

a2 + ω2

then

H
{

a

a2 + ω2

}
= − ω

a2 + ω2

or

H
{

a

a2 + t2

}
= − x

a2 + x2

Finally,

H
{

at

a2 + t2

}
= −x

x

a2 + x2
+

1
π

∫ ∞

−∞

a

a2 + t2
dt =

a2

a2 + x2

So

H
{

t

a2 + t2

}
=

a

a2 + x2

17(a)

FH(s) =
∫ ∞

0

e−at(cos 2πst + sin 2πst) dt =
a + 2πs

a2 + 4π2s2

17(b)

FH(s) =
∫ T

−T

(cos 2πst + sin 2πst) dt =
1
πs

sin 2πst

18

E(s) =
∫ ∞

−∞
f(t) cos 2πst dt O(s) =

∫ ∞

−∞
f(t) sin 2πst dt

E(s) − jO(s) =
∫ ∞

−∞
f(t)e−j2πst dt = F(js)
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From Review Exercise 17(a)

FH(s) =
1 + πs

2 + 2π2s2

whence

E(s) =
1

2 + 2π2s2
, O(s) =

πs

2 + 2π2s2

so

F(j s) =
1 − jπs

2 + 2π2s2

agreeing with the direct calculation,

F(js) =
∫ ∞

0

e−2te−j2πst dt =
1 − jπs

2 + 2π2s2

19

H{f(t − T)} =
∫ ∞

−∞
f(t − T) cas 2πst dt

=
∫ ∞

−∞
f(τ) [cos 2πsτ(cos 2πsT + sin 2πsT)+

sin 2πsτ(cos 2πsT − sin 2πsT)] dt

= cos 2πsTFH(s) + sin 2πsTFH(−s)

20 The Hartley transform follows at once since

FH(s) = �{F(js)} − �{F(js)} =
1
2
δ(s) +

1
sπ

From time shifting,

FH(s) = sinπs

[
1
2
δ(−s) − 1

sπ

]
+ cos πs

[
1
2
δ(s) +

1
sπ

]

=
1
2
δ(s) +

cos πs − sinπs

πs

21

H{δ(t)} =
∫ ∞

−∞
δ(t) cas 2πst dt = 1
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From Review Exercise 18, it follows that the inversion integral for the Hartley
transform is

f(t) =
∫ ∞

−∞
FH(s) cas 2πstds

and so the symmetry property is simply

f(t) ↔ FH(s) =⇒ FH(t) ↔ f(s)

Thus,

H{1} = δ(s)

At once,

H{δ(t − t0)}
∫ ∞

−∞
δ(t − t0) cas 2πst dt = cas 2πst0

By symmetry,

H{cas 2πs0t} = δ(s − s0)

22
1
2
FH(s − s0) +

1
2
FH(s + s0)

=
1
2

∫ ∞

−∞
f(t) {cos 2π(s − s0)t + sin 2π(s − s0)t

+cos 2π(s + s0)t + sin 2π(s + s0)t} dt

=
∫ ∞

−∞
f(t) cos 2πs0t [cos 2πst + sin 2πst] dt

= H{f(t) cos 2πs0t}

From Review Exercise 21, setting f(t) = 1

H{cos 2πs0t} =
1
2
(δ(s − s0) + δ(s + s0))

also

H{sin 2πs0t} = H{cas 2πs0t} − H{cos 2πs0t}

= δ(s − s0) −
1
2
(δ(s − s0) + δ(s + s0)) =

1
2
(δ(s − s0) − δ(s + s0))
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23 ∫ t

−∞
(1 + τ2)−1 dτ = tan−1 t +

π

2

Thus,

F{tan−1 t} = F
{∫ t

−∞
(1 + τ2)−1 dτ

}
−F

{π

2

}

= F
{∫ ∞

−∞
(1 + τ2)−1H(t − τ)dτ

}
−F

{π

2

}

= F
{

1
1 + t2

∗ H(t)
}
−F

{π

2

}

= F
{

1
1 + t2

}
×
{

1
j ω

+ πδ(ω)
}
− π

2
× 2πδ(ω)

But from Review Exercise 1

F
{

e−|t|
}

=
2

1 + ω2

and so by symmetry,

F
{

1
1 + t2

}
= πe−|ω|

whence

F
{
tan−1 t

}
= πe−|ω| ×

{
1
jω

+ πδ(ω)
}
− π

2
× 2πδ(ω)

and so

F
{
tan−1 t

}
=

πe−|ω|

jω

24
1
2

[1 + cos ω0t] ↔
1
2

[2πδ(ω) + πδ(ω − ω0) + πδ(ω + ω0)]

and

H(t + T/2) − H(t − T/2) ↔ 2T sinc ω

so

F{x(t)} =
∫ ∞

−∞
2T sinc (ω − u)

×
[
πδ(u) +

1
2

(δ(ω − ω0) + δ(u + ω0))
]

du
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= T

[
sincω +

1
2

sinc (ω − ω0) +
1
2

sinc (ω + ω0)
]

25

H(ν) =
1
4

3∑
r=0

f(r) cas
2πνr

4

H(0) =
1
4

[f(0) + f(1) + f(2) + f(3)]

H(1) =
1
4

[f(0) + f(1) − f(2) − f(3)]

H(0) =
1
4

[f(0) − f(1) + f(2) − f(3)]

H(0) =
1
4

[f(0) − f(1) − f(2) + f(3)]

so

T =
1
4

⎡
⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎦

By elementary calculation, T2 = 1/4T and if T−1 exists, T−1 = 4T . Since
T−1T = I , it does. Then

T−1H =

⎡
⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎦
⎡
⎢⎣

H(0)
H(1)
H(2)
H(3)

⎤
⎥⎦ =

⎡
⎢⎣

f(0)
f(1)
f(2)
f(3)

⎤
⎥⎦
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9

Partial Differential Equations

Exercises 9.2.6

1 Differentiating

∂2u

∂t2
= −a2 cos at sin bx and

∂2u

∂x2
= −b2 cos at sin bx

and hence a2 = c2b2

2 Since the function is a function of a single variable only, on differentiating
∂2u

∂t2
= α2f′′ and

∂2u

∂x2
= f′′ and hence α2 = c2.

3 Verified by differentiation.

4 Differentiating

Zr = − 1
r2

cos(r − ct) − 1
r

sin(r − ct)

Zrr =
2
r3

cos(r − ct) +
2
r2

sin(r − ct) − 1
r

cos(r − ct)

Ztt = −c2

r
cos(r − ct)

and it can be checked that the equation is satisfied.

5 Applying the given expression into the equation gives

α

κ
eαtV = eαtV ′′or V ′′ =

α

κ
V

and the solution clearly depends on the sign of α .

α = 0 ⇒ V ′′ = 0 and hence V = A + Bx

α > 0 ⇒ V ′′ = a2V and hence V = A sinh ax + B cosh ax

where a2 =
α

κ
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α < 0 ⇒ V′′ = −b2V and hence V = A cos bx + B sin bx

where b2 = −α

κ

6 Substituting the expression into the LHS of the equation,

∂V

∂r
= nrn−1(3 cos2 θ − 1) and

∂

∂r

(
r2 ∂V

∂r

)
= n(n + 1)rn(3 cos2 θ − 1)

and in the RHS,

∂V

∂θ
= −rn6 cos θ sin θ and

∂

∂θ

(
sin θ

∂V

∂θ

)
= −rn6(− sin3 θ + 2cos2 θ sin θ)

Applying these expressions into the equation,

n(n + 1)rn(3 cos2 θ − 1) − rn6(− sin2 θ + 2cos2 θ) = 0

or n(n + 1)rn(3 cos2 θ − 1) − rn6(−1 + 3 cos2 θ) = 0

and hence n(n + 1) − 6 = 0 with roots −3 and 2.

7 Now,

c2 ∂2u

∂x2
= −c2m2e−kt cos mx cos nt

∂u

∂t
= −ke−kt cos mx cos nt − ne−kt cos mx sinnt

and

∂2u

∂t2
= k2e−kt cos mx cos nt + 2kne−kt cos mx sin nt − n2e−kt cos mx cos nt

Thus,

∂2u

∂t2
+ 2k

∂u

∂t
=[k2−n2+2k(−k)]e−ktcos mx cos nt + [2kn + 2k(−n)]e−ktcos mx sin nt

and comparing with the LHS gives k2 + n2 = c2m2

8 Differentiating
Vx = 3x2 + ay2 and Vy = 2axy
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and evaluating

x
∂V

∂x
+ y

∂V

∂y
= 3x3 + axy2 + 2axy2 = 3(x3 + axy2) = 3V

gives the required result.

Now Vxx + Vyy = 6x + 2ax ⇒ rhs = 0 if a = −3

Putting r2 = x2 + y2 , first note that

2r
∂r

∂x
= 2x and 2r

∂r

∂y
= 2y

so

u = r3V ⇒ ux = r3Vx + 3r2 x

r
V = r3Vx + 3rxV

and differentiating again

uxx = r3Vxx + 3r2 x

r
Vx + 3rxVx + 3rV + 3

x2

r
V

Similarly for uyy and adding the two expressions and using the two previous results

uxx + uyy = r3(Vxx + Vyy) + 6r(xVx + yVy) + 6rV + 3
(x2 + y2)

r
V

the quoted answer is proved.

9 Differentiating φxx = Φxxe−kt/2 and

φt = Φte
−kt/2 − k

2
Φe−kt/2 φtt =

(
Φtt − kΦt +

k2

4
Φ
)

e−kt/2

and substituting gives

0 = φxx − 1
c2

(φtt + kφt) =
1
c2

e−kt/2

(
c2Φxx − Φtt + kΦt −

k2

4
Φ − kΦt +

k2

2
Φ
)

Neglecting terms in k2 , the RHS is just the wave equation for Φ.
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10(a) With r = g = 0, the equations become

− Ix = cvt

− vx = LIt

⇒ −Ixx = cvxt = c(−LIt)t = −cLItt

and hence satisfy the wave equation.

10(b) When L = 0,

− Ix = gv + cvt

− vx = rI
⇒ vxx = r(gv + cvt) = rgv + rcvt

and the result is a heat conduction equation with an additional forcing term rgv.
Applying W = vegt/c it may be noted that

Wxx = vxxegt/c and Wt =
(
vt +

g

c
v
)

egt/c

and hence comparing with the previous equation,

Wxx = (rc)Wt

which satisfies the usual heat conduction equation. The exponential damps the
solution to zero over a long time.

10(c) First eliminate I

−vxx = rIx + LIxt = r(−gv − cvt) + L(−gv − cvt)t

vxx = Lcvtt + (rc + Lg)vt + rgv

Apply in the expression for a

1
Lc

vxx = vtt + 2avt +
rg

Lc
v

and substitute v = we−at

1
Lc

wxxe−at = (wtt − 2awt + a2w)e−at + 2a(wt − aw)e−at +
rg

Lc
we−at

1
Lc

wxx = wtt +
(
−a2 +

rg

Lc

)
w
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But

(
−a2 +

rg

Lc

)
=

rg

Lc
− 1

4

(
r2

L2
+ 2

rg

Lc
+

g2

c2

)
= −1

4

(
r2

L2
− 2

rg

Lc
+

g2

c2

)
= 0

from the condition rc = gL and hence the variable w satisfies the wave equation.
Such a transmission line is called a balanced line and transmits the signal exactly
in shape, though damped by the exponential.

11 Applying the expression into the equation

−a2f sin(ay + b) = (f′′ − 2af′) sin(ay + b)

so f must satisfy

f′′ − 2af′ + a2f = 0

which is a second-order constant coefficient equation with equal roots a. Thus,
f = (A + Bx)eax and agrees with the given result.

12 The given formula can be checked by differentiation.

The method of Section 9.2.5 solves the equations

dx

x
=

dy

y
=

df

4x2y2

dx

x
=

dy

y

yields−→ x = Ay

dy

y
=

df

4x2y2

yields−→ df = 4A2y3dy
yields−→ f = A2y4 + B

The arbitrary constants A and B can be isolated as

A =
x

y
and B = f − x2y2

When x = x(t), y = y(t) are given on a curve with f = f(t) then A(t) =
x

y

and hence t = F

(
x

y

)
for some function F . Putting this into B(t) gives
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B

(
F

(
x

y

))
= g

(
x

y

)
for some function g and thus f is of the required form

f(x, y) = x2y2 + g

(
x

y

)

The MAPLE code produces this solution also.
Given that x = 1 − t, y = t, f = t2

x

y
=

1 − t

t
and t2 = (1 − t)2t2 + g

(
x

y

)

Eliminating t gives g

(
x

y

)
=

y3(y + 2x)
(x + y)4

.

Use MAPLE to solve, as follows:
with (PDEtools):

Q12:=x∗ diff(u(x,y),x)+y∗ diff(u(x,y),y)-4∗ x̂ 2∗ ŷ 2;

sol:=pdsolve(Q12,u(x,y));

# this instruction gives the solution

sol:= u(x,y) = x2 y2+ F1(y/x)

eval (sol,{x=1-t,y=t,u(x,y)=t^2});

simplify (eval(%,t=1/(1+z)));

solve(%,_F1(1/z));

# gives the solution (1 + 2z)/(1 + z)4

13 Write as
∂

∂x

(
∂u

∂y
+ u

)
= 0 ⇒ ∂u

∂y
+ u = f(y)

where f is an arbitrary function. Using an integrating factor ey, this partial
differential equation can now be written as

∂

∂y
(uey) = eyf(y)

which can be integrated to give

u = e−y[H(x) + G(y)]

where H(x) and G(y) are arbitrary functions.
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14 The method of Section 9.2.5 solves the equations

dx

x2
=

dy

y2
=

du

(x + y)u

These equations yield
dx

x2
=

dy

y2

yields−→ 1
x

=
1
y
− A

du

u
=
(

2
y

+
A

1 − Ay

)
dy

yields−→ u =
By2

1 − Ay
= Bxy

Hence from any starting curve, with parameter s ,

A(s) =
x − y

xy
and B(s) =

u

xy

Eliminating s gives u = xyF

(
x − y

xy

)
, where F is an arbitrary function

determined by the conditions on the starting curve.
MAPLE gives this general solution.
Putting in the data x = s, y = 1, f = s2 , the arbitrary function becomes

F(z) =
1

1 − z
and the given result for u follows.

Exercises 9.3.4

15 From the separated solutions (9.25) choose

u = sin(λx) cos(λct)

Clearly, both initial conditions (a) and (b) are satisfied for λ = 1.
The d’Alembert solution is obtained from equation (9.19) as

u =
1
2
[sin(x + ct) + sin(x − ct)]

which gives the same result when the sines are expanded.

16 First note that sin x(1 + cos x) = sinx + 1
2 sin 2x

The two initial conditions imply that the solution is of the form

u = A sin x sin ct + B sin 2x sin 2ct

and matching the conditions gives A = 1/c and B = 1/4c .
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17 The MAPLE implementation is as follows:

f:=(x-c∗ t)/(1+(x-c∗ t)̂ 2)+(x+c∗ t)/(1-(x+c∗ t)̂ 2);

simplify (f); # gives the simplification - nearly

simplify(diff(f,x,x)-diff(f,t,t)/c^2); # gives zero as required

18 Let ′ denote differentiation with respect to (ct− r) and ‘dot’ with respect to
(ct + r) ; then the terms of the spherically symmetric wave equation are

1
c2

utt =
1
r
[f′′(ct − r) + g̈(ct + r)]

and

ur = − 1
r2

[f(ct − r) + g(ct + r)] +
1
r
[−f′(ct − r) + ġ(ct + r)]

urr =
2
r3

[f(ct − r) + g(ct + r)] − 2
r2

[−f′(ct − r) + ġ(ct + r)]

+
1
r
[f′′(ct − r) + g̈(ct + r)]

Collecting terms together

1
c2

utt − urr −
2
r
ur =

1
r3

[
r2(f′′ + g̈) − 2(f + g) − 2r(f′ − ġ )

−r2(f′′ + g̈) + 2(f + g) + 2r(f′ − ġ)
]

= 0

so the equation is satisfied for any functions f and g. The two terms represent an
outward spherical wave emanating from the origin and an inward wave converging
into the origin. Note the singular behaviour at r = 0.

19 The equation (9.28) is split by the trigonometric formula into two parts

2π2u

(4l)
= sin

π

l
(x − ct) + sin

π

l
(x + ct) − 1

9
sin

3π
l

(x − ct) − 1
9

sin
3π
l

(x + ct) . . .

= [sin
π

l
(x − ct) − 1

9
sin

3π
l

(x − ct) +
1
25

sin
5π
l

(x − ct) + . . .]

+ [sin
π

l
(x + ct) − 1

9
sin

3π
l

(x + ct) +
1
25

sin
5π
l

(x + ct) + . . .]
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The two terms depend on (x−ct) and (x+ct) respectively and represent travelling
waves in the +x and −x directions.

20 The d’Alembert solution is obtained from equation (9.19) as

u =
1
2c

x+ct∫
x−ct

x exp(−x2)dx

which on integration gives the quoted result.

21 Again the d’Alembert solution is obtained from equation (9.19) as

u = [F(x − ct) + F(x + ct)]/2

where F is the function given in the exercise.

22 Try a solution of the form u = f(x + ky) , so the equation gives

3f′′ + 6kf′′ + k2f′′ = 0 ⇒ 3 + 6k + k2 = 0

which has solutions k = −3 ±
√

6 and hence the characteristics are

x + (−3 +
√

6)y = const

x + (−3 −
√

6)y = const

23 Substituting

6f′′ − λf′′ − λ2f′′ = 0 ⇒ λ = 2,−3

and hence a solution of the form

u = f(x + 2t) + g(x − 3t)
The initial conditions give

x2 − 1 = f(x) + g(x) and 2x = 2f′(x) − 3g′(x)

Integrating and solving for f and g produces the solution

u =
1
5
[4(x + 2t)2 + (x − 3t)2 − 5]
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24 Differentiating

∂u

∂r
= − g

r2
cos ωt +

g′

r
cos ωt

and

∂2u

∂r2
=
(

2g
r3

− 2g′

r2
+

g′′

r

)
cos ωt

Applying these expressions into the equation gives

(
2g
r3

− 2g′

r2
+

g′′

r
+

2
r

[
− g

r2
+

g′

r

])
cos ωt = −ω2

c2

g

r
cos ωt

and cancelling produces the equation for g as

g′′ +
ω2

c2
g = 0

This simple harmonic equation has sine and cosine solutions which are written in
the form

g = A cos
ω

c
(b − r) + B sin

ω

c
(b − r)

The second boundary condition is now satisfied by applying A = 0 and the first
condition gives

u(a, t) = β cos ωt =
B

a
sin

ω

c
(b − a) cos ωt

and hence B is known and the required solution is

u(r, t) =
aβ cos ωt

r

sin ω
c (b − r)

sin ω
c (b − a)

25 This question is similar to Example 9.11 but initially the velocity is given and
the displacement is zero.
On the initial line t = 0 the solution

u = f(x + t) + g(x − t)

satisfies condition (a) only if f = −g and therefore the condition (b) gives

ut(x, 0) = 2f′(x) = exp(−|x|)

Integrate to obtain f
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f =
{

1
2ex for x < 0
1 − 1

2e−x for x > 0
where it has been arranged that the function goes to zero at infinity and matches
at x = 0.
The numerical solution can now be computed from the values on the initial line
given by f. The values at subsequent times t = 0.5, 1.0, 1.5, 2.0, . . . can be computed
easily from

u(x, 0.5) = f(x + 0.5) − f(x − 0.5)

u(x, 1) = f(x + 1) − f(x − 1)

u(x, 1.5) = f(x + 1.5) − f(x − 1.5)

etc.
to give the quoted solution. On a spreadsheet, applying f (x) into column B
corresponding to values of x = −3,−2.5, . . . , 2.5, 3, then a typical entry, which
can be copied onto the other entries in the column,

in column D, D7 reads +B8 − B6
in column E, E7 reads +B9 − B5
in column F, F7 reads +B10 − B4
etc.

It is instructive to derive the exact solution and then compare with the numerical
solution.

u(x, t) =

{
ex sinh t for x < −t

1 − e−t cosh x for − t < x < t
e−x sinh t for x > t

26 From the possible separated solutions, the conditions (a) and (b) imply that

u = cos λct sin λx

is the only one that satisfies these conditions. The condition (c) gives sin λπ =
0 ⇒ λ = N which is an integer. Thus, a superposition of these solutions gives

u(x, t) =
∞∑

N=1

aN cos Nct sin Nx
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and the condition (d) gives the standard Fourier problem of evaluating the
coefficients in

πx − x2 =
∞∑

N=1

aN sin Nx

The coefficients are obtained from the usual integral and the result follows by two
integrations by parts

aN =
4

πN3
(1 − cos Nπ)

27 Taking the Laplace transform with respect to t, in equation (9.33) both u(x,0)
and ut(x, 0) are zero from conditions (a) and (b); so the equation is

c2 d2U

dx2
= s2U with solution U = Aesxlc + Be−sxlc

From condition (d), the constant A = 0 since the solution must be bounded for all
x > 0. The condition (c) is transformed to

U(0, s) =
aω

s2 + ω2

and hence the solution for U takes the form

U(x, s) =
aω

s2 + ω2
e−sxlc

and the exponential just shifts the solution as

u(x, t) = a sin
[
ω
(
t − x

c

)]
H
[
ω
(
t − x

c

)]
It is easily checked that all the conditions are satisfied by the function. For x > ct

the wave has not reached this value of x, so u = 0 beyond this point.

Exercises 9.3.6

28 The problem is best solved by using MATLAB.
Explicit

n=5;L=0.25;x=[0:1/(n-1):1];z=zeros(1,5);

zz=.25∗ [0 .25 .5 .25 0]
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zzz=[0,2∗ zz([2:n-1])-z([2:n-1])+L∗ (zz([1:n-2])

-2∗zz([2:n-1])+zz([3:n])),0]

% gives 0 0.1250 0.2188 0.1250 0

z=zz;zz=zzz;

zzz=[0,2∗ zz([2:n-1])-z([2:n-1])+L∗ (zz([1:n-2])

-2∗zz([2:n-1])+zz([3:n])),0]

% gives 0 0.1797 0.2656 0.1797 0

Implicit

n=5;L=0.25;

a=[-L 2∗(1+L)-L];A=eye(n);for i=2:n-1,A(i,i-1:i+1)=a;end

b=[L/2 1-L L/2];C=eye(n);for i=2:n-1,C(i,i-1:i+1)=b;end

u=[0 0 0 0 0]’;v=C∗ u+.25∗ [0 .25 .5 .25 0]’;

B=inv(A);

w=4∗B∗v-u;w’

% gives 0 0.1224 0.2245 0.1224 0

u=v;v=w;w=4∗ B∗v-u;w’

% gives 0 0.1741 0.2815 0.1741 0

29 Again MATLAB is a convenient method for the explicit calculation.

n=6;L=0.01;delt=0.02;

format long

z=eye(1,6);zz=[sin(delt/2∗ pi),0 0 0 0 0]

% gives 0.0314107 0 0 0 0 0

zzz=[sin(2∗ delt/2∗ pi),2∗ zz([2:n-1])-z([2:n-1])

+L∗(zz([1:n-2])-2∗ zz([2:n-1])+zz([3:n])),0]

% gives 0.062790 0.000314 0 0 0 0

z=zz;zz=zzz;
zzz=[sin(3∗ delt/2∗ pi),2∗ zz([2:n-1])-z([2:n-1])

+L∗(zz([1:n-2])-2∗ zz([2:n-1])+zz([3:n])),0]

% gives 0.094108 0.001249 0.000003 0 0 0

30 Care must be taken to include the ‘+2’ term but the MATLAB
implementation is quite straightforward.
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Explicit
n=6;L=0.25;delt=0.2;x=[0:0.2:1];z=x.∗ (1-x)

zz=[0,(1-L)∗ z([2:n-1])+L∗ (z([1:n-2])

+z([3:n]))/2,0]+[0,delt̂ 2∗ones(1,4),0]

% gives 0 0.1900 0.2700 0.2700 0.1900 0

zzz=[0,2∗ zz([2:n-1])-z([2:n-1])+L∗ (zz([1:n-2])-2∗ zz([2:n-1])

+zz([3:n])),0] +[0,2∗ delt̂ 2∗ones(1,4),0]

% gives 0 0.2725 0.3600 0.3600 0.2725 0

z=zz;zz=zzz;

zzz=[0,2∗ zz([2:n-1])-z([2:n-1])+L∗ (zz([l:n-2])-2∗ zz([2:n-1])

+zz([3:n])),0]+[0,2∗ delt̂ 2∗ones(1,4),0]

% gives 0 0.3888 0.5081 0.5081 0.3888 0

Implicit

n=6;L=0.25;delt=0.2;x=[0:0.2:1];
a=[-L2∗ (1+L)-L];A=eye(n);for i=2:n-1,A(i,i-1:i+1)=a;end

b=[L/2 1-L L/2];C=eye(n);for i=2:n-1,C(i,i-1:i+1)=b;end
u=(x.∗ (1-x))’;v=C∗ u+[0;delt̂ 2∗ones(4,1);0]

% gives 0 0.1900 0.2700 0.2700 0.1900 0

B=inv(A);

w=B∗ (4∗v+[0;2∗ delt̂ 2∗ones(4,1);0])-u

%gives 0 0.2319 0.3191 0.3191 0.2319 0
u=v;v=w;w=B∗ (4∗ v+[0;2∗ delt̂ 2∗ones(4,1);0])-u

%gives 0 0.2785 0.3849 0.3849 0.2785 0

31 The problem is now more difficult since there is an infinite region. The
simplest way to cope with this difficulty for small times is to impose boundaries
some distance from the region of interest. Hopefully, the effect of any sensible
boundary condition would only affect the solution marginally. For longer times, an
alternative strategy must be sought. In the current problem, the region x = −1
to 2 is chosen with the solution quoted in the region x = 0 to 1.
Explicit

n=16;L=0.25;delt=0.2;
x=[-1:0.2:2];z=x.∗ (1-x);
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zz=[-2,(1-L)∗ z([2:n-1])+L∗ (z([l:n-2])

+z([3:n]))/2,-2]+delt̂ 2∗ones(1,16)

% gives 0.0300 0.1900 0.2700 0.2700 0.1900 0.0300

zzz=[-2,2∗ zz([2:n-1])-z([2:n-1])+L∗ (zz([1:n-2])-2∗ zz([2:n-1])

+zz([3:n])),-2]+2∗ delt̂ 2∗ones(1,16)
% gives 0.1200 0.2800 0.3600 0.3600 0.2800 0.1200 -0.1200

z=zz;zz=zzz;

zzz=[-2,2∗ zz([2:n-1])-z([2:n-1])+L∗ (zz([1:n-2])-2∗ zz([2:n-1])

+zz([3:n])),-2]+2∗ delt̂ 2∗ones(1,16)

% gives 0.2700 0.4300 0.5100 0.5100 0.4300 0.2700

Implicit
n=16;L=0.25;delt=0.2;

x=[-1:0.2:2];

a=[-L 2∗(1+L)-L];A=eye(n);for i=2:n-1,A(i,i-1:i+1)=a;end

b=[L/2 1-L L/2];C=eye(n);for i=2:n-1,C(i,i-1:i+1)=b;end

u=(x.∗ (1-x))’;v=C∗ u+delt̂ 2∗ones(16,1)
% gives 0.0300 0.1900 0.2700 0.2700 0.1900 0.0300

B=inv(A);

w=B∗ (4∗v+2∗ delt̂ 2∗ones(16,1))-u

% gives 0.0800 0.2400 0.3200 0.3200 0.2400 0.0800
u=v;v=w;w=B∗ (4∗v+2∗ delt̂ 2∗ones(16,1))-u
% gives 0.1495 0.3099 0.3900 0.3900 0.3099 0.1495

Exercises 9.4.3

32 From the set of separated solutions in equation (9.40), the only ones that
satisfy condition (a) are u = e−αt cos λx and the second condition (b) implies
cos λ = 0 ⇒ λ =

(
n + 1

2

)
π where n is an integer.

The third condition (c) can be rewritten as

u =
a

2

[
cos
(

3πx

2

)
+ cos

πx

2

]
for 0 ≤ x ≤ 1 when t = 0

Thus, the complete solution is

u =
a

2
[exp(−κπ2t/4) cos(πx/2) + exp(−9κπ2t/4) cos(3πx/2)]
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33 If v = ru , then differentiating produces

vr = u + rur

vrr = 2ur + rurr

and hence urr + 2ur

r = 1
r vrr .

Applying these expressions into the spherically symmetric heat conduction equation
gives

1
r
vrr =

1
κr

vt

Cancelling out the r, it is seen that v satisfies the standard heat conduction
equation. If v remains bounded it may be noted that u → 0 as r → ∞ .
Since u = v/r , the boundary conditions for v are

u(a, t) = T0
yields−→ v(a, t) = aT0 for t > 0

u(b, t) = 0
yields−→ v(b, t) = 0 for t > 0

u(r, 0) = 0
yields−→ v(r, 0) = 0 for a < r < b

The first two of these conditions are satisfied by the given expression

v(r, t) = aT0

[
b − r

b − a
−

∞∑
N=1

ANe−κλ2t sin
(r − a

b − a

)
Nπ

]

and the third gives the Fourier problem

b − r

b − a
=

∞∑
N=1

AN sin
(r − a

b − a

)
Nπ

The coefficients can be obtained from integration or from standard tables of Fourier
series as AN = 2/πN .

34 Substituting into the partial differential equation gives the ODE

4ηF′′ + (2 + η)F′ − αF = 0

and applying F = exp(κη) gives the equation
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4ηκ2 + (2 + η)κ − α = 0

which is clearly satisfied by κ = −1
4 and α = − 1

2 and produces the classic similarity
solution.

35 Differentiating

∂u

∂t
= −βf(x) cos(x − βt) and

∂u

∂x
= f′(x) sin(x − βt) + f(x) cos(x − βt)

and
∂2u

∂x2
= f′′(x) sin(x − βt) + 2f′(x) cos(x − βt) − f(x) sin(x − βt)

Putting these expressions into the heat conduction equation and equating the sine
and the cosine terms gives

−βf = 2f′ and f′′ − f = 0

Both equations can be satisfied only if β = 2 and f = Ae−x ; the solution is then

u = Ae−x sin(x − 2t)

Physically, the slab of material is given an initial temperature of Ae−x sin x , the
temperature is zero at infinity and at the end x = 0 the temperature is periodic
taking the form u(0, t) = −A sin 2t and hence A = −u0 .

36 The suggested substitution gives, on differentiation,

θ − θ0 = ue−ht

θt = (ut − hu)e−ht

θxx = uxxe−ht

Putting the expressions into the given equation and cancelling the exponential gives

ut − hu = κuxx − hu ⇒ ut = κuxx
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and produces the standard equation for u. The term h(θ − θ0) is a heat loss term
proportional to the excess temperature over an ambient temperature θ0 ; this is
the usual Newton cooling through a surface.

37 First it is clear that the final steady solution is U = 0. The general separated
solution in equation (9.40) is

u = e−αt(A sin λx + B cos λx) where λ2 = α/κ

Condition (a) can only be satisfied at x = 0 if A = 0. Condition (b) then implies
that

cos λl = 0 so that λl =
(

n +
1
2

)
π

and hence the solution takes the form

u(x, t) =
∞∑

n=0

an exp

[
−κ

(
n +

1
2

)2
π2t

l2

]
cos
[(

n +
1
2

)
πx

l

]

The initial condition given in (c) leads to the Fourier problem of evaluating the
coefficients in the expression

u0

(
1
2
− x

l

)
=

∞∑
n=0

an cos
[(

n +
1
2

)
πx

l

]

These can be evaluated by standard integration or using the standard series

∞∑
n=0

(−1)n

2n + 1
cos
[(

n +
1
2

)
πx

l

]
=

π

4
for − l < x < l

and
∞∑

n=0

1
(2n + 1)2

cos
[(

n +
1
2

)
πx

l

]
=

π2

8

(
1 − x

l

)
for 0 < x < 2l

Thus, the coefficients can be calculated as a combination of the last two expressions
as

an = u0

[
8

π2(2n + 1)2
− 2

π

(−1)n

2n + 1

]
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38 At any time t , the sine term ensures that the sum is zero at x = 0 and L so
only the first term survives at the end points, and therefore v = v0 at x = 0 and
v = 0 at x = L . From the basic solutions obtained in the text, or by inspection, it
is clear that the heat equation is also satisfied. The additional condition at t = 0
leads to the Fourier series problem

0 = v0

(
1 − x

L

)
+

∞∑
n=1

cn sin
(nπx

L

)

with the coefficients evaluated from

0 = v0

∫ L

0

(
1 − x

L

)
sin
(nπx

L

)
dx +

L

2
cn

An integration by parts gives cn = − 2v0
nπ as required.

39 At the ends of the bar the conditions are
(a) u = 0 at x = 0 for t > 0, (b) u = 0 at x = l for t > 0 and the initial
condition is (c) u = 10 for 0 < x < l at t = 0. From the set of separated solutions
in equation (9.40), the only ones that satisfy condition (a) are u = e−αt sin λx .
The condition (b) then gives sin λl = 0 ⇒ λ = nx

l where n is an integer. The
solution is therefore of the form

u(x, t) =
∞∑

n=1

an exp
(
−κn2π2t

l2

)
sin
(nπx

l

)

The third condition (c) reduces the problem to a Fourier series, namely

10 =
∞∑

n=1

an sin
(nπx

l

)

Integrating in the usual way over the interval

l∫
0

10 sin
(nπx

l

)
dx =

l

2
an

gives an = 20
nπ (1 − cos nπ) and the required result.
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40 Taking Laplace transforms of the equation with respect to t leads to

sφ̄ − φ(x, 0) = aφ̄′′ +
b

s

so using condition (b) the required equation is

φ̄′′ =
s

a
φ̄ − b

as

This equation has the obvious particular integral φ̄ = b/s2 and it is convenient
to write the complementary function in terms of sinh and cosh functions. The
solution is thus

φ̄ =
b

s2
+ A sinh

(√
s

a
x

)
+ B cosh

(√
s

a
x

)

The boundary conditions in (a) transform to φ̄(±h, s) = 0 and hence

0 =
b

s2
+ A sinh

(√
s

a
h

)
+ B cosh

(√
s

a
h

)

0 =
b

s2
− A sinh

(√
s

a
h

)
+ B cosh

(√
s

a
h

)

Clearly, A = 0 and B is easily calculated to give

φ̄ =
b

s2

[
1 −

cosh
(√

s
ax
)

cosh
(√

s
ah
)
]

To transform back to the real plane needs either some tricky integrations or the
use of advanced tables of Laplace transform pairs. Tables give the solution,

φ

b
=

1
2a

(h2 − x2) +
16h2

aπ3

∞∑
n=1

(−1)n

(2n − 1)3
exp
[
− (2n − 1)2π2at

4h2

]
cos
[
(2n − 1)πx

2h

]

Exercises 9.4.5

41 In the explicit formulation equation (9.48), the MATLAB implementation can
be written using the ‘colon’ notation to great effect.

n=6;L=0.5;x=0:0.2:1,u=x.^2
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v=[0,L∗ (u([1:n-2])+u([3:n]))+(1-2∗ L)∗u([2:n-1]),1]

% gives 0 0.0800 0.2000 0.4000 0.6800 1.0000

u=v;v=[0,L∗ (u([l:n-2])+u([3:n]))+(1-2∗ L)∗u([2:n-1]),1]

% gives 0 0.1000 0.2400 0.4400 0.7000 1.0000

Repeating the last line gives successive time steps.

42 Again a MATLAB formulation solves the problem very quickly; lamda (L in
the program) is chosen to be 0.4 and time step 0.05.

Explicit

n=6;L=0.4;u=[0 0 0 0 0 1];

v=[0,L∗ (u([1:n-2])+u([3:n]))+(1-2∗ L)∗u([2:n-1]),exp(-0.05)]

% gives 0 0 0 0 0.4000 0.9512
for p=2:20,u=v;v=[0,L∗ (u([1:n-2])+u([3:n]))+(1-2∗ L)

∗u([2:n-1]),exp(-p∗ 0.05)];end
v
% gives the values at t = 1
as 0 0.1094 0.2104 0.2939 0.3497 0.3679

Repeating the last two lines produces the solution at successive times.

Implicit

There are some slight differences in the solution depending on how the right hand
boundary is treated. Equation (9.49) is constructed in MATLAB again using the
‘colon’ notation

L=0.4;M=2∗ (1+L);N=2∗ (1-L);

n=6;u=zeros(n,1);u(n)=1;

p=[-L M -L];A=eye(n);for i=2:n-1,A(i,i-1:i+1)=p;end

q=[L N L];B=eye(n);for i=2:n-1,B(i,i-1:i+1)=q;end

DD=inv(A)∗ B;

v=DD∗ u;v(n)=exp(-0.05); % for first step

for p=2:20,u=v;v=DD∗ u;v(n)=exp(-p∗ 0.05);end

% gives for t=1 0 0.1082 0.2096 0.2955 0.3551 0.3679

Repeat the last line of code for further time steps.
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43 The equations are easily produced in MATLAB. Because of the derivative
boundary condition, the region is extended to x = −0.2 and u(−0.2, t) is obtained
from

u(0.2, t) − u(−0.2, t) = 0.4

L=0.5;M=2∗ (1+L);N=2∗ (1-L);n=7;

p=[-L M -L];A=eye(n);for i=2:n-1,A(i,i-1:i+1)=p;end

A(1,3)=1;A(1,1)=-1 % gives LHS matrix

q=[L N L];B=eye(n);for i=2:n-1,B(i,i-1:i+1)=q;end

B(1,1)=0 % gives RHS matrix

rhs=[0.4 0 0 0 0 0 0]’;

% gives vector from derivative condition at x=0

AA=inv(A);
x=0:0.2:1,u=[-0.24,x.∗ (1-x)]’ % starting data

v=AA∗ (B∗u+rhs)

% produces next time step

-0.2800 -0.0400 0.1200 0.2002 0.2012 0.1269 0
u=v;v=AA∗ (B∗u+rhs)

% produces next time step

-0.3197 -0.0799 0.0803 0.1613 0.1657 0.1034 0

Repeating the last line produces further time steps.

Exercises 9.5.2

44 From equation (9.52), the only separated solution to satisfy u → 0 as y → ∞
is

u = (A sinμx + B cos μx)(Ceμy + De−μy) with C = 0
Thus

u = (a sin μx + b cos μx)e−μy

To satisfy the boundary conditions,

u = 0 at x = 0 ⇒ b = 0

u = 0 at x = 1 ⇒ sin μ = 0 ⇒ μ = nπ where n is an integer.

The condition at y = 0 can be satisfied by a sum of terms over n.
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On y = 0, u =
∞∑

n=1
an sin nπx = 1

16 (10 sin πx − 5 sin 3πx + sin 5πx)

and the an can be obtained by inspection to give the required solution.

45 The four boundary conditions are satisfied by inspection and the Laplace
equation is satisfied by straightforward differentiation.

46 It can easily be checked that the function x2y satisfies the given Poisson
equation. The boundary conditions on u(x, y) become

u(x, 0) = 0 for 0 ≤ x ≤ 1

u(x, 1) = sin πx for 0 ≤ x ≤ 1

u(0, y) = 0 for 0 ≤ y ≤ 1

u(1, y) = 0 for 0 ≤ y ≤ 1

The only solution in equation (9.52d) that satisfies these conditions is

u = sinπx
sinhπy

sinhπ

and hence the final result

φ = x2y + sin πx
sinhπy

sinhπ

47 Differentiating

ur = Bnrn−1 sin nθ

urr = Bn(n − 1)rn−2 sin nθ

uee = −Bn2rn sin nθ

and substitution gives

LHS = B sin nθrn−2[n(n − 1) + n − n2] = 0 = RHS

and hence the Laplace equation in plane polars is satisfied. To be periodic in θ

the constant n must be an integer. A solution of the equation is a sum of the
expressions given, so that
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u(r, θ) =
∞∑

n=1

Bnrn sin nθ

Putting the condition on the rim, r = a , gives the Fourier problem to calculate
Bn as B1 = 3/4a and B3 = −1/4a2 and otherwise zero. Thus,

u(r, θ) =
3
4

( r

a

)
sin θ − 1

4

( r

a

)3

sin 3θ

48 Let D = x2 + y2 + 2x + 1; then the derivatives can be computed as

ux =
2y(2x + 2)

D2
and uxx =

4y
D2

− 4y(2x + 2)2

D3

uy =
−2
D

+
2y2y
D2

and uyy =
4y
D2

+
8y
D2

− 4y24y
D3

Adding the two second derivatives gives

∇2u =
1

D3

[
16y(x2 + y2 + 2x + 1) − 16y(x + 1)2 − 16y3

]
The RHS can easily be checked to be zero and hence the Laplace equation is
satisfied. A similar process shows that v also satisfies the Laplace equation.
The u and v come from the complex variable expression

u + jv =
j(x − 1 + jy)
x + 1 + jy

=
j(x − 1 + jy)(x + 1 − jy)
(x + 1 + jy)(x + 1 − jy)

Multiplying out

u + jv =
−2y + j(x2 + y2 − 1)

x2 + y2 + 2x + 1

gives the expressions quoted in the question.
A check can be made by using MAPLE.

u:=2∗ y/(x̂ 2+ŷ 2+2∗x+1);

simplify(diff(u,x,x)+diff(u,y,y));

# gives zero as required -v follows similarly

h:=I∗ (x+I∗ y-1)/(x+I∗ y+1);

simplify(evalc(h));

# gives the u and v of the question
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For fixed u and v the two expressions can be rearranged as

(
x +

v

v − 1

)2

+ y2 =
1

(v − 1)2
and (x + 1)2 +

(
y +

1
u

)2

=
1
u2

which are circles with radii 1
v−1 and 1

u , centres ( −v
v−1 , 0) and (−1, −1

u ) respectively.
Note that all the circles pass through the point (−1,0).

49 This is an important example that illustrates that sensible solutions can only
be obtained if correct boundary conditions are set. First, it is a matter of simple
differentiation to verify that the given function satisfies the Laplace equation.
Again, since the sinh function is zero at x = 0 the first condition is satisfied.
Differentiating with respect to x,

∂u

∂x
=

1
n

cosh nx sin ny, so at x = 0,
∂u

∂x
=

1
n

sin ny

The solution therefore satisfies all the conditions of the problem. It is known that
the solution is unique.
For any given n, however large, sinh nx can be made as large as required and even
when divided by n2 it is still large; for instance, n = 10, x = 5 and y = π/200
gives u = 4.1 × 1018 .
The ‘neighbouring’ problem has a boundary condition ux = 0 and solution u
identically zero. For the values chosen for illustration, the maximum change at
the boundary is 0.1; yet the solution changes by 1018 . Such behaviour is very
unstable; these boundary conditions give a unique solution; yet small changes in
the boundary produce huge changes in the solution. Figure 9.59 should be referred
for a summary of the ‘correctness’ of boundary conditions.

50 It is useful in solution by separation to try to modify the problem so that the
function is zero on two opposite boundaries. Apply u = x+ f(x, y) ; then f satisfies
the Laplace equation and the four boundary conditions become

f(0, y) = 0 f(1, y) = 0 for 0 < y < 1

f(x, 0) = −x f(x, 1) = 1 − x for 0 < x < 1

The solution given in equation (9.52d) is the appropriate one and the cosine can
be omitted since it cannot satisfy the first of the four conditions. Thus,
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f = sinμx(a coshμy + sinh μy)

The second condition now gives sinμ = 0 ⇒ μ = Nπ where N is an integer. The
solution therefore takes the form

f =
∞∑

N=1

sinNπx(aN coshNπy + bN sinhNπy)

and the coefficients are derived as Fourier series from the other two sides of the
boundary as

−x =
∞∑

N=1

aN sin Nπx

1 − x =
∞∑

N=1

sin Nπx(aN cosh Nπ + bN sinhNπ)

Straightforward integration gives

aN =
2 cos Nπ

Nπ
and (aN coshNπ + bN sinhNπ) =

2
Nπ

The final solution is obtained by substituting back

u = x +
2
π

∞∑
N=1

1
N

sin Nπx

[
cos Nπ cosh Nπy + (1 − cos Nπ cosh Nπ)

sinhNπy

sinhNπ

]
which can be tidied up to the given solution.

51 The boundary conditions on the four sides are
u(0, y) = 0 u(a, y) = 0 for 0 < y < a

and u(x, 0) = 0 u(x, a) = u0 for 0 < x < a

Clearly, the only relevant separated solutions involve sin λx sinh λy since these are
the ones that satisfy the conditions on x = 0 and y = 0. The condition u(a, y) = 0
implies that sin λa = 0 ⇒ λa = mx where m is an integer. Thus, the solution
takes the form

u =
∞∑

m=1

bm sin
(mπx

a

)
sinh

(mπy

a

)

and the final condition gives the Fourier problem of calculating the coefficients
from

c©Pearson Education Limited 2011



538 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

u0 =
∞∑

m=1

bm sin
(mπx

a

)
sinh(mπ)

The usual integration gives

a sinh(mπ)bm

2
=

a∫
0

u0 sin
(mπx

a

)
dx = u0

a

mπ
(1 − cos mπ)

The only coefficients that survive are the odd ones and putting m = 2n+1 produces
the result quoted.

52 The configuration is illustrated in the figure

x

– a

a

u = +T

u = – T

�u /�x = 0

�u /�x = 0

u = 0

y

From the available separated solutions, the appropriate ones are u = e−λy sin λx

and to satisfy ux = 0 at x = ±a requires λa =
(
n + 1

2

)
π . Thus, the solution

takes the form

u =
∞∑

n=0

bn exp

[
−
(
n + 1

2

)
πy

a

]
sin

[(
n + 1

2

)
πx

a

]

so that at y = 0 the coefficients are required from the Fourier problem

∞∑
n=0

bn sin

[(
n + 1

2

)
πx

a

]
=
{+T for 0 < x < a
−T for − a < x < 0

The integration gives bn =
4T

(2n + 1)π
as required.
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53 The separated solutions are put into the equation to give

r2

R
(R′′ +

1
r
R′) = − Θ̈

Θ
= λ2

where the separation constant has been chosen to be positive to ensure that periodic
solution in Θ is possible. The equation

Θ̈ + λ2Θ = 0 has solution Θ = A sin λθ + B cos λθ

and is periodic only if λ = N , which is an integer. Since T = 0 on θ = 0 and
θ = π , the constant B is given by B = 0.
The R equation is r2R′′ + rR′ −N2R = 0 and trying solutions of the form R = rP

shows that p = N or −N. The solution must be finite at the origin; so the negative
powers are omitted and the original equation has a solution

T =
∞∑

N=1

bNrN sin Nθ

The condition on the boundary is

T0 =
∞∑

N=1

bNaN sin Nθ

and the coefficients are obtained by Fourier analysis. The integrations are given by

π

2
bNaN =

π∫
0

T0 sin Nθdθ =
T0

N
(1 − cos Nπ)

and the result follows applying N = 2n + 1 and starting the summation from
n = 0.

54 The suggested separated form produces the equations

1
R

d

dr

(
r2 dR

dr

)
= − 1

y sin θ

d

dθ

(
sin θ

dy

dθ

)
= k(k + 1)

where the RHS conforms with the given expression. The equation for y is obtained
by making the substitution x = cos θ . Now

dy

dx
=

dy

dθ

dθ

dx
=

1
sin θ

dy

dθ
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so putting this into the θ equation gives

d

dx

(
sin2 θ

dy

dx

)
+ k(k + 1)y = 0 or

d

dx

(
(1 − x2)

dy

dx

)
+ k(k + 1)y = 0

To solve these equations, first put R = rn then substitution leads to

n(n + 1) = k(k + 1) with solution n = k or − k − 1

Secondly, the only solutions for y that remain finite at x = +1 and −1 are the
solutions given in the question (see an advanced book on Legendre polynomials).
Thus, the solution that involves k = 1, 2, 3 is

V = A +
B

r
+ cos θ

(
A′r +

B′

r2

)
+

1
2
(3 cos2 θ − 1)

(
A′′r2 +

B′′

r3

)

The given boundary conditions involve only even functions of θ , so A′ = B′ = 0.
The first of the two conditions gives

0 = A +
B

a
+

1
2
(3 cos2 θ − 1)

(
A′′a2 − B′′

a3

)
for all θ

Hence B = −aA and B′′ = −a5A′′ and the solution can be rewritten

V = A
(
1 − a

r

)
+

A′′

2
(3 cos2 θ − 1)

(
r2 − a5

r3

)

The final condition implies

α sin2 θ = A
(
1 − a

b

)
+

A′′

2
(2 − 3 sin2 θ)

(
b2 − a5

b3

)

so that identifying the two parts gives

A′′ = − 2α
3
(
b2 − a5

b3

) and A =
2α

3
(
1 − a

b

)
and the solution follows.

Exercises 9.5.4

55 For rectangular regions MATLAB has an easy setup procedure
G=numgrid( ′S′,5) % gives the node numbering as
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G= 0 0 0 0 0

0 1 4 7 0

0 2 5 8 0

0 3 6 9 0

0 0 0 0 0

rhs(1)=0.25;rhs(4)=0.5;rhs(7)=0.75+0.9375;rhs(8)=0.75;

rhs(9)=0.4375;

rhs % sets up the right hand side, one entry for each of the 9 equations

(default = 0), as the transpose of

rhs= 0.2500 0 0 0.5000 0 0 1.6875 0.7500 0.4375

A=delsq(G); % MATLAB sets up the matrix stored in sparse form

full(A) % gives the full matrix

4 -1 0 -1 0 0 0 0 0

-1 4 -1 0 -1 0 0 0 0

0 -1 4 0 0 -1 0 0 0

-1 0 0 4 -1 0 -1 0 0

0 -1 0 -1 4 -1 0 -1 0

0 0 -1 0 -1 4 0 0 -1

0 0 0 -1 0 0 4 -1 0

0 0 0 0 -1 0 -1 4 -1

0 0 0 0 0 -1 0 -1 4

A\rhs’ % gives the required solution

0.2026 0.1462 0.0776 0.4141 0.3047 0.1641 0.6490 0.4944 0.2740

56 For the small grid
The equations are

4u1 = 1 + 1 + 0 + u2

4u2 = 1 + u1 + 0 + u1

which can be solved as
u1 = 9

14 and u2 = 4
7

y

u = 1

u = 0

u = 1

u(3) = u(1)

1 2 3

x

For the larger grid the MATLAB implementation needs more care since the
derivative boundary condition modifies the matrix set up by the package.
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G=numgrid( ′S′,5);

A=delsq(G); % A is modified in the next four lines

B=zeros(9,3);B(7,1)=-1;B(8,2)=-1;B(9,3)=-1;C=[A B];

D=zeros(3,12);D(1,10)=4;D(2,11)=4;D(3,12)=4;

D(1,7)=-2;D(1,11)=-1;

D(2,8)=-2;D(2,10)=-1;D(2,12)=-1;D(3,9)=-2;D(3,11)=-1;

E=[C;D];

full(E) % prints out the modified A

rhs=zeros(12,1);rhs(1)=2;rhs(2)=1;

rhs(3)=1;rhs(4)=1;rhs(7)=1;rhs(10)=1;

E\rhs % gives the solution

0.9008 0.7684 0.5348 0.8348 0.6379 0.3709 0.8007 0.5774 0.3110

0.7904 0.5602 0.2955

57 The mesh for this problem is shown in the figure

y

x

4 5

1 2 3

w = 0 on the boundary

Using the notation of the problem, at a typical node 0 with neighbours 1, 2, 3 and
4, the adaptation of equation (9.55) gives

w1 + w2 + w3 + w4 − 4w0

h2
+ 20 = 0

which is easily rearranged into the given form. Applying this formula to the
problem in hand produces the five equations
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4w1 = w2 + w4 + 20

4w2 = w1 + w3 + w5 + 20

4w3 = w2 + 20

4w4 = w1 + w5 + 20

4w5 = w4 + w2 + 20

which can be solved by a spreadsheet or MATLAB to give
0 0 0
0 10.337 10.674 0
0 10.674 12.360 8.090 0
0 0 0 0 0 0

58 The problem has more complicated boundary data and so requires a little
more effort to set up. The top boundary condition is derived from

φ+ − φ−
2h

= −φ0

For case (a) when h = 1/2 the problem only has two unknowns.

(φ1–2h φ2)

y

2

2.75

3
3 2.5 2 x

1

11

2 1

The equations are

2.75 + 2.5 + 1 + φ2 − 4φ1 = 0.125

2 + φ1 + 1 + (φ1 − φ2) − 4φ2 = 0.125

which are easily solved to give the quoted answer.
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(b) For the larger mesh, the MATLAB version is as follows; note the powerful
matrix building techniques:

G=numgrid( ′S′,5);A=delsq(G);

b=eye(3);c=zeros(3);d=[4.5-1 0;-1 4.5-1; 0-1 4.5];

A=[[A;c c-2∗ b][c;c;-b;d]];full(A) % A is printed out

rhs=[2.75+2.9375;2.5;3.25;2.75;0;1;2.4375;0;1;2;0;1];

z=[1/64;1/32;3/64];z=[z;z;z;z];

rhs=rhs-z % rhs is printed out

A\rhs % gives the final answer

1.6016 1.2868 1.0565

1.9680 1.5818 1.2572

2.2666 1.8465 1.4375

2.5175 2.1314 1.6930

59 In this problem, there are essentially five unknowns because of the symmetry
as

x

y

5

4

123 2 3

4

5

seen in the figure
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The five equations are set up in matrix form as

⎡
⎢⎢⎢⎣
−4 2 0 2 0

1 −4 1 0 0
0 1 −4 0 0
1 0 0 −4 1
0 0 0 1 −4

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

φ1

φ2

φ3

φ4

φ5

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
−2
−17
−2
−2

⎤
⎥⎥⎥⎦

These equations can be solved on any suitable package to give

1.5909

2.0909

4.7727

1.0909

0.7727

Exercises 9.6.1

The exercises can only be solved sensibly on a computer package and need
considerable computer experience, in the present case MATLAB. Some M-files
are required by all the problems.

coeff.m

function [a0,a1,a2]=coeff(a,b,c)

A=[a 1];B=[b 1];C=[c 1];1x=[1 0 0];1y=[0 1 0];

den=0.5/det([A;B;C]);

L0=[det([1x;B;C]) det([1y;B;C])];

L1=[det([1x;C;A]) det([1y;C;A])];

L2=[det([1x;A;B]) det([1y;A;B])];
a0=L0∗ L0 ′ ∗den;a1=L1∗ L0 ′ ∗den;a2=L2∗ L0 ′ ∗den;

stiff.m

function a=stiff(mm,k,ll)

%mm=no of neighbours,k=current point,

ll=row of k’s neighbours
global CO

a=zeros(1,mm+1);
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for p=1:mm-1

[l,m,n]=coeff(CO(k,:),CO(ll(p),:),CO(ll(p+1),:));

a(1)=a(1)+1;a(p+1)=a(p+1)+m;a(p+2)=a(p+2)+n;

end

[l,m,n]=coeff(CO(k,:),CO(ll(mm),:),CO(ll(1),:));

a(1)=a(1)+1;a(mm+1)=a(mm+1)+m;a(2)=a(2)+n;

calcArhs.m % the following code needs to be copied to the main

program

for k=1:nin

r=link(k,:);m=nnz(r);

z=stiff(m,k,r);

A(k,k)=A(k,k)+z(1);

for i=1:m

if r(i)<=nin

A(k,r(i))=A(k,r(i))+z(i+1);

else
rhs(k)=rhs(k)-z(i+1)∗ bdry(r(i)-nin);
end

end

end

60 Each of the FE problems has its own input, for this problem

60(a)

inform60.m % the node labelling is shown in the Figure

nin=2;nbdry=8;%number of internal and boundary nodes

global CO

r3=sqrt(3);

CO=[2,r3;4,r3;0,r3;1,0;3,0;5,0;6,

r3;5,2∗ r3;3,2∗ r3;1,2∗ r3];

%coords of points internal first then bdry

link=[3 4 5 2 9 10;1 5 6 7 8 9];

%links from interior points to neighbours,in CO order

bdry=[0 0 0 0 1 0 0 0];%boundary values,in CO order

A=zeros(nin);rhs=zeros(nin,1);
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3.5

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6

13

4 5 6

8910

2
7

x

y

The
calculation then proceeds using inform.60 and the code from calcArhs.m

global CO

inform60

for k=1:nin

r=link(k,:);m=nnz(r);

z=stiff(m,k,r);

A(k,k)=A(k,k)+z(1);

for i=1:m

if r(i)<=nin

A(k,r(i))=A(k,r(i))+z(i+1);

else

rhs(k)=rhs(k)-z(i+1)∗ bdry(r(i)-nin);

end

end

end
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A,rhs % gives A=3.4641 -0.57774 rhs= 0

0.5774 3.4641 0.5774

A \rhs % gives the final result 0.0286

0.1714

60(b) The larger mesh is treated similarly. The mesh information is in
inform60b.m, where an obvious node numbering has been used – print out CO

and link for details.

inform60b.m

nin=5;nbdry=12;%number of internal and boundary nodes

global CO

r3=sqrt(3);

a0=[3,r3;1.5,2∗ r3/3;4.5,2∗ r3/3;4.5,4∗ r3/3;1.5,4∗ r3/3];

a1=zeros(5,1);a2=[0;1;2;3;4]∗ 1.5;a3=ones(5,1)∗ r3∗2;

CO=[a0;a2,a1;6,r3;flipud(a2),a3;0,r3];

%coords of points internal first then bdry

link=[2 8 3 4 14 5; 6 7 8 1 5 17; 8 9 10 11 4 1;

1 3 11 12 13 14; 17 2 1 14 15 16];

%links from interior points to neighbours, in CO order

bdry=[0 0 0 0 1 1 1 0 0 0 0 0];%boundary values, in

CO order

A=zeros(nin);rhs=zeros(nin,1);

The calculation is the same as part (a)

global CO

inform60

for k=1:nin

r=link(k,:);m=nnz(r);

z=stiff(m,k,r);

A(k,k)=A(k,k)+z(1);
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for i=1:m

if r(i)<=nin

A(k,r(i))=A(k,r(i))+z(i+1);

else
rhs(k)=rhs(k)-z(i+1)∗ bdry(r(i)-nin);

end

end

end

A,rhs %prints out A and rhs

A\rhs %gives the required answer

0.1024 0.0208 0.2920 0.2920 0.0208

61 Because the problem now involves a Poisson equation, some modifications
are required. The M-file coeff.m is modified to

coeffr.m

function [a0,a1,a2,a3]=coeffr(a,b,c)

A=[a 1];B=[b 1];C[c 1];1x=[1 0 0];1y=[0 1 0];

den=0.5/det([A;B;C]);

L0=[det([1x;B;C]) det([1y;B;C)];

L1=[det([1x;C;A]) det([1y;C;A)];

L2=[det([1x;A;B]) det([1y;A;B)];

a0=L0∗ L0 ′ ∗den;a1=L1∗ L0 ′ ∗den;a2=L2∗ L0 ′ ∗den;
a3=-20/(12*den);

and stiff.m to

stiffr.m

function a=stiffr(mm,k,ll)

%mm=no of neighbours,k=current point,ll=row

of k’s neighbours

global CO

a=zeros(1,mm+2);

for p=1:mm-1

[l,m,n,q]=coeffr(CO(k,:),CO(ll(p),:),

CO(ll(p+1),:));
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a(1)=a(1)+l;a(p+1)=a(p+1)+m;a(p+2)=a(p+2)+n;

a(mm+2)=a(mm+2)+q;

end

[l,m,n,q]=coeffr(CO(k,:),CO(ll(mm),:),CO(ll(1),:));

a(1)=a(1)+l;a(mm+1)=a(mm+1)+m;a(2)+n;

a(mm+2)=a(mm+2)+q;

The mesh information for the problem is contained in

inform61

nin=5;nbdry=12;%number of internal and

boundary nodes

global CO

CO=[1 2;1 1;2 2;2 1;3 1;0 0;1 0;2 0;3 0;

4 0;4 1;3 2;2 3;1 3;0 3;0 2;0 1];

%coords of points internal first then bdry

link=[2 4 3 14 15 16;1 16 17 7 4 3;1 4 5 12 13 14;

1 2 8 9 5 3;4 9 10 11 12 3];

%links from interior points to neighbours, in CO order

bdry=[0 0 0 0 0 0 0 0 0 0 0 0];%boundary values,

in CO order

A=zeros(nin);rhs=zeros(nin,1);

The calculation now proceeds as

inform61

for k=1:nin

r=link(k,:);m=nnz(r);

z=stiffr(m,k,r);

A(k,k)=A(k,k)+z(1);

for i=1:m

if r(i)<=nin

A(k,r(i))=A(k,r(i))+z(i+l);

else

rhs(k)=rhs(k)-z(i+l)∗ bdry(r(i)-nin);

end

end
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rhs(k)=rhs(k)-z(m+2);

and

A,rhs % prints out A and rhs

A\rhs % gives the final result

10.3371 10.6742 10.6742 12.3596 8.0899

62 Although the problem has a great deal of symmetry, all the 9 internal nodes
and 16 boundary nodes are used in this implementation. An interesting exercise is
to modify the program using the full symmetry. The mesh data is

inform62

nin=9;nbdry=16;%number of internal and boundary nodes

global CO

r=1/3;s=2/3;

CO=[0 0;0 -r;r 0; 0 r;-r 0; 0 -s;s 0;0 s;-s 0;

-r -r;-r -1;0 -1;r -1;r -r;1 -r;1 0; 1 r;r r;r 1;

0 1;-r 1; -r r;-1 r;-1 0;-1 -r];

%coords of points internal first then bdry

link=[2 14 3 18 4 22 5 10; 1 10 6 14 0 0 0 0;

1 14 7 18 0 0 0 0;1 18 8 22 0 0 0 0;

1 22 9 10 0 0 0 0;2 10 11 12 13 14 0 0;

3 14 15 16 17 18 0 0;4 18 19 20 21 22 0 0;

5 22 23 24 25 10 0 0];

%links from interior points to neighbours, in CO order

bdry=[1 1 0 1 1 9 9 9 1 1 0 1 1 9 9 9];

%boundary values, in CO order

A=zeros(nin);rhs=zeros(nin,1);

The equation is Laplace and so no modifications are required to the other M-files.

global CO

inform53

for k=1:nin

r=link(k,:);m=nnz(r);

z=stiff(m,k,r);

A(k,k)=A(k,k)+z(1);
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for i=1:m

if r(i)<=nin

A(k,r(i))=A(k,r(i))+z(i+1);

else
rhs(k)=rhs(k)-z(i+1)*bdry(r(i)-nin);
end

end

end

A,rhs % prints out A and rhs

A\rhs % gives the final answer for the internal

nodes - note all the symmetries

1.6818 1.1152 2.2485 1.1152 2.2485 0.7788 5.3121 0.7788 5.3121

Exercises 9.7.4

63 The Poisson formula gives

T(r, θ) =
T0

2π

π∫
0

a2 − r2

a2 + r2 − 2ar cos(θ − s)
ds

The integral can be evaluated by a package such as MAPLE or by using the
substitution z = tan 1/2(θ − s) to give

T(r, θ) =
T0

π

[
tan−1

(
a + r

a − r
tan

θ

2

)
+ tan−1

(
a + r

a − r
cot

θ

2

)]

It is instructive to show that T = T0/2 when r = 0 and to check that T = T0

when r = a and 0 ≤ θ ≤ π .

64 Substitution readily shows that the Laplace equation is satisfied. Also by
inspection, it is easily seen that G = 0 on x = 0 and y = 0. No additional
singularities have been added in the quarter plane, so the function is the Green’s
function for the problem. Equation (9.74) thus becomes

T(x0, y0) =

∞∫
0

f(x)
∂G

∂y
(x, 0;x0, y0)dx +

∫ ∞

0

g(y)
∂G

∂x
(0, y;x0, y0)dy
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Differentiating G with respect to y and putting y = 0 gives after careful algebra

y0

π

[
1

(x − x0)2 + y2
0

− 1
(x + x0)2 + y2

0

]

and similarly differentiating G with respect to x and putting x = 0 gives the
expression given in the question.
If f(x) = 1 and g(x) = 0 then the solution is

T(x0, y0) =
y0

π

∫ ∞

0

[
1

(x − x0)2 + y2
0

− 1
(x + x0)2 + y2

0

]
dx

=
1
π

[
tan−1

(
(x − x0)

y0

)
− tan−1

(
(x + x0)

y0

)]∞
0

=
2
π

tan−1

(
x0

y0

)

65 We first note that if x = r cos θ, y = r sin θ, x0 = r0 cos θ0, y0 = r0 sin θ0 we
have

(x − x0)2 + (y − y0)2 = r2 + r2
0 − 2rr0 cos(θ − θ0)

Hence the given expression has the correct singularity. A similar calculation shows
that the other term does not have a singularity inside the circle r ≤ a . Applying
r = a into the given Green’s function it follows almost immediately that G = 0 as
required. The equation (9.74) now produces the solution as

u(r0, θ0) = −
∫ 2π

0

f(θ)
∂G(a, θ; r0, θ0)

∂r
adθ

Evaluating the derivative of the Green’s function gives

∂G(a, θ; r0, θ0)
∂r

=
1

2πa

a2 − r2
0

a2 + r2
0 − 2ar0 cos(θ − θ0)

and hence the Poisson formula

u(r0, θ0) =
1
2π

∫ 2π

0

f(θ)
a2 − r2

0

a2 + r2
0 − 2ar0 cos(θ − θ0)

dθ

66 The figure illustrates the configuration. At the point (x, y, z) , the temperature
from the line source x = a, y = 0,−L ≤ z ≤ L is given in Example 9.44 as

qL

4ρcκπ

[
sinh−1

(
z + L

(x − a)2 + y2

)
− sinh−1

(
z − L

(x − a)2 + y2

)]

c©Pearson Education Limited 2011



554 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

Note that the basic expression in
Example 9.44 has been shifted to
make the origin x = a , y = 0, z = 0.
Clearly, this result does not satisfy
the condition that the temperature
is zero on x = 0. A second constant
sink of length L must be added
symmetrically at x = −a, y = 0,
−L ≤ z ≤ L . When the source and
the sink are added together we
obtain

a
L

x

y

z

T(x, y, z) =
qL

4ρcκπ

[
sinh−1

(
z + L

(x − a)2 + y2

)
− sinh−1

(
z − L

(x − a)2 + y2

)]

− qL

4ρcκπ

[
sinh−1

(
z + L

(x + a)2 + y2

)
− sinh−1

(
z − L

(x + a)2 + y2

)]

It can be seen that when x = 0 then T = 0, and hence we have the solution to the
problem posed.

67 From equation (9.76), the temperature generated from the instantaneous
source adθ is

T(R, z, θ, t) =
qa

8ρc(πκt)3/2
exp
(
− r2

4κt

)
dθ

where r = AP . From the diagram, A is the point a = (a cos θ, a sin θ, 0) and P is
the point p = (R cos φ,R sin φ, z) . Thus, we can calculate AP = |a− p| as

r2 = R2 + a2 + z2 − 2aR cos(θ − φ)

The temperature can now be calculated by substituting and integrating the above
expression.

T(R, z) =
qa

8ρc(πκt)3/2
exp
(
−R2 + a2 + z2

4κt

) 2π∫
0

exp
(

aR cos(θ − φ)
2κt

)
dθ
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a

z

y

x

A

r

The integral is then identified with the definition given for the modified Bessel
function.

Exercises 9.8.3
68(a) Now ‘AC − B2’ = 0 in this case so the equation is parabolic. Applying
r = x − y and s = x + y the derivatives are

ux = ur + us

uy = −ur + us

and

uxx = urr + 2urs + uss

uyy = urr − 2urs + uss

uxy = −urr + uss

Substituting into the given equation gives the parabolic equation uss = 0.

68(b) Now ‘AC − B2’ = 4 in this case so the equation is elliptic. From the
theory in Section 9.8.1 substitute r = −3x + y and s = x + y ; the derivatives are

ux = −3ur + us

uy = ur + us

and

uxx = 9urr − 6urs + uss

uyy = urr + 2urs + uss

uxy = −3urr − 2urs + uss

Substituting into the given equation gives the elliptic equation

urr + uss −
9
8
ur +

3
8
us +

1
8
u = 0
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68(c) Now ‘AC − B2’ = − 25
4 − 3 × 2 < 0 in this case and so the equation is

hyperbolic. From the theory in Section 9.8.1 substitute r = 9x + y and s = x + y ;
the derivatives are

ux = 9ur + us

uy = ur + us

and
uxx = 81urr + 18urs + uss

uyy = urr + 2urs + uss

uxy = 9urr + 10urs + uss

Substituting into the given equation gives the hyperbolic equation

49urr = uss

69 The characteristic directions from Exercise 68 are r + 7s = 16x + 8y and
r − 7s = 2x − 6y . This suggests that the solution is of the form

u = f(2x + y) + g(x − 3y)

where f and g are arbitrary functions. Substituting, the given equation

LHS = 3(4f′′ + g̈) − 5(2f′′ − 3g̈) − 2(f′′ + 9g̈) = 0 = RHS

is satisfied, as expected.

70 The chain rule gives

fx = fuux + fvux and

= fu + fv

fy =fuuy + fvuy

= fu − fv

and the second derivatives are

fxx = fuu + 2fuv + fw, fyy = fuu − 2fuv + fw

fxy = fuu − fw

Substituting into the equation (9.84) reduces to fw = 0.
Integrating with respect to v

fv = F(u) where F is an arbitrary function of u.
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Integrating again with respect to v

f = vF(u) + G(u) where G is another arbitrary function of u.

Hence,

f = (x − y)F(x + y) + G(x + y)

71 Now ‘AC − B2’ = y and there are three cases (a) y > 0 where the equation
is elliptic. (b) y = 0 where the equation is parabolic and (c) y < 0 where the
equation is hyperbolic.
From equation (9.83), the characteristics are obtained from the solution of the
equation

dy

dx
= ±

√−y

y

The equation only makes sense in the hyperbolic region where y < 0. Substitute
z = −y and the differential equation becomes

dz

dx
= ±

√
z

z
= ± 1√

z

which is easily integrated to

z
3
2 = ±3

2
x + K ⇒ (−y)

3
2 ± 3

2
x = K

as the characteristics.

72 Differentiating

fx =
(

3Ax2 − 2B
x3

)
y(1 − y2) and fy =

(
Ax3 +

B

x2

)
(1 − 3y2)

fxx = 6
(

Ax +
B

x4

)
y(1 − y2) and fyy =

(
Ax3 +

B

x2

)
(−6y)

The given equation can be checked by substitution.
Now ‘AC − B2’ = x2(1 − y2) so

⎧⎨
⎩

elliptic if |y| < 1
parabolic if x = 0 or y = ±1
hyperbolic if |y| > 1
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73 Calculating ‘AC − B2’ = −4p2+4q2 , it can be deduced that the equations are
(a) p > q or p < −q then the equations are hyperbolic
(b) p = q then the equations are parabolic
(c) −q < p < q then the equations are elliptic

Using the substitution −p2+q2 = − 1
4 (x4−2x2y2+y4−x4−2x2y2−y4) = x2y2 > 0,

hence leads to the elliptic region when it is expected that the equation will look
like the Laplace equation.

vx = xvp + xvq

vy = −yvp + yvq

and

vxx = vp + vq + x2(vpp + 2vpq + vqq)

vyy = −vp + vq + y2(vpp − 2vpq + vqq)

vxy = xy(−vpp + vqq)

It may be noted that

vxx + vyy = 2vq + (x2 + y2)vpp + 2(x2 − y2)vpq + (x2 + y2)vqq

from which the required transformation to the Laplace follows immediately.

74 In this case, ‘AC − B2’ = −(xy)2 so the equation is hyperbolic away from
the axes. The characteristics are computed from equation (9.83) as

dy

dx
= ±

√
x2y2

x2
= ± y

x

and the solution is obtained by integration as

ln y = ± ln x + K ⇒ y = ax and yx = b

so one set of characteristics are straight lines through the origin and the other are
rectangular hyperbolas. The domain of dependence and the range of influence can
now be sketched.

Review exercises 9.11
1 The boundary and initial conditions on y(x, t) are

y = 0 at x = 0 and a

String initially at rest ⇒ ∂y
∂t = 0 at t = 0

Initial displacement y = f(x) =
{ εx

b for 0 ≤ x ≤ b
ε(a−x)

a−b for b ≤ x ≤ a
at t = 0
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Out of the possible separated solutions (9.25) that satisfy the wave equation, the
only one that satisfies the conditions at x = 0 and y = 0 is y = sin λx cos λct .
The condition at x = a gives λa = nπ where n is an integer. Thus, the solution is
a sum of such terms

y =
∞∑

n=1

An sin
(nπx

a

)
cos
(

nπct

a

)

and the final condition produces the Fourier series

f(x) =
∞∑

n=1

An sin
(nπx

a

)

The coefficients are evaluated from the integral

1
2
aAn =

b∫
0

εx

b
sin
(nπx

a

)
dx +

a∫
b

ε(a − x)
a − b

sin
(nπx

a

)
dx

which, after some careful integration by parts, gives the required coefficient

An =
2εa2

n2π2b(a − b)
sin
(

nπb

a

)

It is interesting to look at the solution for various values of b since the solution gives
strengths of the harmonics for different musical instruments. It is these values that
give the characteristic sound of the instrument. For example, a violin has b = a/7;
it is seen that A7 = 0 and sevenths do not occur for this instrument.

2 Taking the Laplace transform of the equation and the boundary conditions
gives

φ̄′′ = s2φ̄ − sx2

and φ̄(0, s) = 0, φ̄′(l, s) =
2l
s

The most convenient form for the complementary function is

φ̄ = A cosh s(x − l) + B sinh s(x − l)

The particular integral is a quadratic in x which when substituted into the equation
gives
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particular integral =
x2

s
+

2
s3

The complete solution is therefore

φ̄ = A cosh s(x − l) + B sinh s(x − l) +
x2

s
+

2
s3

Putting the two conditions on φ̄ into the solution

φ̄′(0, s) = 0 ⇒ 0 = A cosh(−sl) + B sinh(−sl) +
2
s3

φ̄′(l, s) =
2l
s

⇒ 2l
s

= sB +
2l
s

⇒ B = 0

The Laplace transform of the solution is

φ̄ =
x2

s
+

2
s3

− 2
s3

cosh s(x − l)
cosh sl

The solution in real space can be obtained from advanced tables of transform pairs.

3 Take the separated solutions that are quoted and first note that the conditions
y(0) = y(l) = 0 are satisfied. Secondly, substitute into equation (9.92)

1
c2

(
T′′

n +
1
τ
T′

n

)
= −Tn

(nπ

l

)2

This equation can then be solved in the standard way by looking for solutions of
the form Tn = eαt which produces the quadratic equation

α2 +
1
τ
α +

(cnπ

l

)2

= 0

The equation has roots

α =
1
2

⎛
⎝−1

τ
±

√(
1
τ

)2

− 4
(cnπ

l

)2

⎞
⎠ = − 1

2τ
± j

cnπ

l

√
1 −
(

l

2τcnπ

)2

and hence the solution is

Tn(t) = exp
(
− t

2τ

)
(an cos ωnt + bn sin ωnt)
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and general solution

y =
∞∑

n=1

Tn(t) sin
(nπx

l

)

The condition ∂y
∂t (x, 0) = 0 implies, on differentiation and substituting t = 0,

0 = − 1
2τ

an + bnωn

From the other condition it is seen that the only term to survive is when n = 3.
Thus,

4 sin
(

3πx

l

)
= anexp

(
− 0

2τ

)(
cos ω30 +

1
2τω3

sin ω30
)

sin
(

3πx

l

)

and hence the solution satisfying all the conditions is

y(x, t) = 4exp
(
− t

2τ

)(
cos ω3t +

1
2τω3

sin ω3t

)
sin
(

3πx

l

)

and ω3 given in the question.

4 This problem is the extension of the wave equation to beams. Simply
substituting the given form into the beam equation gives the equation (9.93) for V

and the end conditions follow immediately. Again simply substituting sin, sinh, cos
and cosh into the equation shows they are solutions of (9.93). A linear combination
of the functions is also a solution and since it contains four arbitrary constants, it
is the general solution.
To satisfy the end conditions

V(0) = 0 ⇒ A + B = 0

V′(0) = 0 ⇒ C + D = 0

V(l) = 0 ⇒ A cosh αl + B cos αl + C sinhαl + D sin αl = 0

V′(l) = 0 ⇒ A sinhαl − B sin αl + C cosh αl + D cos αl = 0

Thus,

A(cosh αl − cos αl) = D(sinhαl − sin αl)

A(sinhαl + sin αl) = D(− cos αl + cosh αl)
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Dividing these two equations, and using the trigonometric and hyperbolic identities,
produces the equation

cos αl cosh αl = 1

from which the natural frequencies of vibration of the beam can be calculated.

5 The separated solutions in equation (9.40) that satisfy the condition at x = 0
are θ = e−αt cos λx . To satisfy the condition at x = l requires that

λl =
(

n +
1
2

)
π where n is an integer

Thus, the solution takes the form

θ(x, t) =
∞∑

n=0

A2n+1 cos
[
(2n + 1)πx

2l

]
exp

[
−
(

(2n + 1)π
2al

)2

t

]

and the initial condition now produces the usual Fourier series problem with

1
2
A2n+1 =

l∫
0

f(x) cos
[
(2n + 1)πx

2l

]
dx

Integration by parts is required to obtain the coefficient for the given function
f(x) = θ0(l − x) as

A2n+1 =
8θ0l

π2(2n + 1)2

and the temperature can be obtained from the series solution.

6 Evaluating the partial derivatives

∂φ

∂x
=

1√
t
f′,

∂φ

∂t
= −1

2
x

t3/2
f′ and

∂2φ

∂x2
=

1
t
f′′

Substituting the derivatives back into the equation

κ
1
t
f′′ = −1

2
x

t3/2
f′ ⇒ f′′ = − 1

2κ
zf′

c©Pearson Education Limited 2011



Glyn James, Advanced Modern Engineering Mathematics, 4th Edition 563

the problem has been reduced to an ordinary differential equation. Rearranging
the equation

df′

f′
= − 1

2κ
zdz which integrates to ln f′ = − z2

4κ
+ C

or f′ = A exp
(
− z2

4κ

)
which on further integration gives

f = A

z∫
0

exp
(
− v2

4κ

)
dv + B

Substitute u = v
2
√

κ
then the equation reduces to

f = a

z
2
√

κ∫
0

e−u2du + b where a and b are new arbitrary constants.

The solution is as required

f = a erf
(

z

2
√

κ

)
+ b

For the particular problem,

at t = 0 φ(x, 0) = 0 for all x > 0

at x = 0 φ(0, t) = φ0 for t > 0

In the expression containing the error function, these conditions give respectively

0 = a erf(∞) + b and φ0 = a erf(0) + b

Since erf(0)= 0 and erf(∞) = 1, the solution can be constructed as

T(x, t) = T0 + φ0

[
1 − erf

(
x

2
√

κt

)]

7 The problem is standard except for the treatment of the derivative boundary
conditions. Note the way that they are handled in the MATLAB implementation.
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Explicit

u=[1 1 1 1 1 1];

u=0.1∗ [u([2:6]),u(5)-0.4∗ u(6)]+0.8∗ u([1:6])

+.1∗[u(2)-0.4∗ u(1),u([1:5])]

% gives 0.9600 1.0000 1.0000 1.0000 1.0000 0.9600

u=0.1∗ [u([2:6]),u(5)-0.4∗ u(6)]

+0.8∗ u([1:6])+.1∗ [u(2)-0.4∗ u(1),u([1:5])]

% gives 0.9296 0.9960 1.0000 1.0000 0.9960 0.9296

u=0.1∗ [u([2:6]),u(5)-0.4∗ u(6)]+

0.8∗u([1:6])+.1∗ [u(2)-0.4∗ u(1),u([1:5])]

% gives 0.9057 0.9898 0.9996 0.9996 0.9898 0.9057

Repeating the last line of code produces subsequent time steps.
Implicit

A=[-2.4 2 0 0 0 0;1 -2 1 0 0 0;0 1 -2 1 0 0;0 0 1 -2 1 0;

0 0 0 1 -2 1;0 0 0 0 2 -2.4]

u=[1;1;1;1;1;1];

B=2∗ eye(6)-0.1∗ A

C=2∗ eye(6)+0.1∗ A

E=inv(B)∗ C

u=E∗ u

% gives 0.9641 0.9984 0.9999 0.9999 0.9984 0.9641

u=E∗ u

% gives 0.9354 0.9941 0.9996 0.9996 0.9941 0.9354

u=E∗ u

% gives 0.9120 0.9881 0.9988 0.9988 0.9881 0.9120

Repeating the last line of code produces subsequent time steps.

8 From the possible solutions in equation (9.52), one that can be chosen to satisfy
the conditions on x = 0 and y = a is

u = sinμx sinhμ(a − y)
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On x = a, u = 0 ⇒ sin μa = 0 ⇒ μa = nπ where n is an integer. The final
condition on y = 0 can be satisfied by taking a sum of such solutions

x(a − x) =
∞∑

n=1

bn sin
(nπx

a

)
sinhnπ

The problem is the usual evaluation of the Fourier coefficients

a

2
bn sinhnπ =

a∫
0

(a − x) sin
(nπx

a

)
dx

and after two integrations by parts gives

a

2
bn = 2

( a

nπ

)3

(1 − cos nπ)

All the even terms go to zero and putting n = 2r + 1, the expression quoted is
recovered.

9 This exercise is a harder one since the regular mesh points do not lie on the
boundary.

x

y

y 
2 = x

c
7

654

b

a

1 2 3

At a point such as node 4 the lengths of the mesh are not uniform, so the second
derivative needs to be approximated as
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f′′ =
[(

f3 − f0

Δx

)
−
(

f0 − f1

Δx′

)]
2

Δx + Δx′

for a typical configuration

1 0 3

 x x ′

The curve does not pass through the mesh points and the lengths are calculated
as a = 0.25, b =

√
0.5− 0.5 and c =

√
1.5− 1. Working through the equations one

at a time, using this formula where appropriate

1 + u2 + 2u4 − 4u1 = 0

u1 + u3 + 2u5 − 4u2 = 0

u2 + 1 + 2u6 − 4u3 = 0

2
0.5 + a

(
u5 − u4

0.5
+

1 − u4

a

)
+

2
0.5 + b

(
1 − u4

b
+

u1 − u4

0.5

)
= 0.5(0.5)2

u4 + u2 + 1 + u6 − 4u5 = 0.0625

u5 + u3 + u7 + 1 − 4u6 = 0.09375

1 + 1 − 2u7

0.52
+

2
c + 0.5

(
1 − u7

c
+

u6 − u7

0.5

)
= 1.5

The equations can be transformed to matrix form as

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 0 2 0 0 0
1 −4 1 0 2 0 0
0 1 −4 0 0 2 0

5.6569 0 0 −35.3137 5.3333 0 0
0 1 0 1 −4 1 0
0 0 1 0 1 −4 1
0 0 0 0 0 5.5192 −25.7980

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

bT = [−1 0 −1 −24.1985 −0.9375 −0.9063 −18.7788 ]

and the solution of Ax = b can be obtained from any package, for example
MATLAB, as

xT = [ 0.9850 0.9648 0.9602 0.9876 0.9570 0.9380 0.9286 ]
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10 Clearly, at z = 0 the velocity u = U cos ωt so the given solution has the correct
velocity on the wall. It also satisfies the equation of motion since substituting the
derivatives

ut = −Uωe−αz sin(ωt − αz)

uz = −αUe−αz cos(ωt − αz) − αUe−αz sin(ωt − αz)

uzz = α2Ue−αz cos(ωt − αz) − 2α2Ue−αz sin(ωt − αz)

−α2Ue−αz cos(ωt − αz)

into the equation gives −Uω = −ν2α2U which agrees precisely with the definition
of α .

11 Differentiating

Ut = ktk−1 exp
(
−r2

4t

)
+ tk

(
−r2

4

)(
−1
t2

)
exp
(
−r2

4t

)

Ur = tk
(
−2r
4t

)
exp
(

r2

4t

)

∂

∂r
(r2Ur) =

−tk−1

2

(
3r2 + r3

(
−2r
4t

))
exp
(

r2

4t

)

and applying into the spherically symmetric heat equation

− tk−1

2

(
3 − r2

2t

)
exp
(
−r2

4t

)
= tk−1

(
k +

r2

4t

)
exp
(
−r2

4t

)

gives the relation k = −3/2.

12 The equation is the same as Example 9.7 and can be dealt with in the same way,
see also equation (9.14). However, the MAPLE solution is very straightforward.

with (PDEtools):

rev 12:=diff(z(x,y),x) + diff(z(x,y),y);

sol:=pdesolve (rev12,z(x,y));

# gives the solution sol:=z(x,y)=_F1(y-x)
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The boundary conditions x = s, y = −s, z = 2s for s > 0 give the solution

z(x, y) = x − y for x > y

and not defined otherwise.

13 The separated solutions in equation (9.52) that tend to zero for large y must
be of the form

φ = (A sin μx + B cos μx)e−μy

The condition φ(0, y) = 0 ⇒ B = 0 and φ(π, y) = 0 ⇒ sin μπ = 0; thus, the
required solution is

φ =
∞∑

n=1

cne−ny sin nx

Yet again, the final condition requires the evaluation of the coefficients by Fourier
analysis. Integration by parts gives

π

2
cn =

π∫
0

x(π − x) sinnxdx =
2
n3

(1 − cos nπ)

When n is even, the coefficient is zero and the odd values give the result in the
exercise.

14 First observe that the function χ = a2 − x2 satisfies ∇2χ = −2 and second
that a separated solution of the Laplace equation derived in equation (9.52) is
cosh μy cos μx and the overall solution is a combination of terms of these types.
The conditions that χ = 0 on x = ±a ⇒ cos μa = 0 ⇒ μa =

(
n + 1

2

)
π where n is

an integer. Thus, an appropriate solution is

χ(x, y) = a2 − x2 +
∞∑

n=0

A2n+1 cosh
[(

n +
1
2

)
π

y

a

]
cos
[(

n +
1
2

)
π

x

a

]

The function is even, so only the condition at y = b needs to be considered since
the other boundary is satisfied by symmetry. Therefore,

0 = a2 − x2 +
∞∑

n=0

A2n+1 cosh
[(

n +
1
2

)
π

b

a

]
cos
[(

n +
1
2

)
π

x

a

]
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and the coefficients are derived by Fourier analysis. From tables of Fourier series
it may be noted that

∞∑
n=0

(−1)n

(2n + 1)3
cos
[
(2n + 1)

πx

2a

]
=

π3

32a2
(a2 − x2) for − a < x < a

and thus the coefficient can be identified as

A2n+1 =
32a2

π3

(−1)n+1

(2n + 1)3 cosh
[

(2n+1)πb
2a

]

15 The possible separated solutions of the wave equation are given in equation
(9.25) and to satisfy conditions (a) and (b), the solution sinλx cos λct must be
chosen. The condition at x = 1 implies that sinλ = 0 ⇒ λ = nπ where n is an
integer. Thus, the solution takes the form

u(x, t) =
∞∑

n=1

an sin nπx cos nπt

and condition (c) is substituted to give the Fourier series

1 − x =
∞∑

n=1

an sin nπx

The coefficients are obtained from

1
2
an =

1∫
0

(1 − x) sinnπxdx

which can be integrated by parts to give an = 2
nx and agrees with the quoted

answer.

16 Complete drainage at top and bottom implies u = 0 at z = 0 and z = h .
Since there are no sources the pressure tends to zero as time becomes infinite.
Thus the solution that is relevant to this problem is u = e−cα2t sin αz . It is readily
checked that this function is a solution of the consolidation equation. The only
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boundary condition not satisfied is at z = h ; to do this choose αh = mπ where m

is an integer. Therefore,

u(z, t) =
∞∑

m=1

an sin
(mπz

h

)
exp
(
−cm2π2t

h2

)

and the initial uniform pressure leads to the Fourier series problem of evaluating
the coefficients in

A =
∞∑

m=1

am sin
(mπz

h

)
so

h

2
am =

h∫
0

A sin
(mπz

h

)
dz =

Ah

mπ
(1 − cos mπ)

For m, even the coefficient is zero and substituting m = 2n+1 provides the solution
quoted in the exercise.

17 Substituting φ = X(x)T(t) into the equation

X′′

X
=

1
c2

T̈ + KṪ

T
= −λ2

where the separation constant has been chosen to be negative, to ensure periodic
solutions for X . The variable X satisfies

X′′ + λ2X = 0 with solution X = P cos λx + Q sin λx

From condition (a) the sine term must be zero so Q = 0. For the T equation,

T̈ + KṪ + c2λ2T = 0

so trying a solution of the form T = exp(at) gives the quadratic

a2 + Ka + (cλ)2 = 0 with solution a =
1
2

[
−K ±

√
K2 − 4(cλ)2

]

The constant λ can be identified as p, so the condition that (cp)2 > 1
4K2 gives an

overall solution of the type

φ = cos px exp
(
−Kt

2

)
(M sin bt + N cos bt)
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where b2 = (cp)2 − 1
4K2 .

Condition (a) requires that N = A

Condition (b) requires the derivative

∂φ

∂t
= − K

2
cos px exp

(
−Kt

2

)
(M sin bt + N cos bt)

+ b cos px exp
(
−Kt

2

)
(M cos bt − N sin bt)

At x = t = 0
−1

2
AK = −1

2
NK + bM

and since N = A then M = 0. The required solution is therefore

φ(x, t) = A cos px exp
(
−Kt

2

)
cos bt where b2 = (cp)2 − 1

4
K2

Results can be checked easily in MAPLE.

f:=cos(p∗ x)∗exp(-k∗ t/2)∗ cos(b∗ t);

simplify(diff(f,x,x)-(diff(f,t,t)+k∗ diff(f,t))/ĉ 2);

gives
−4p2c2 + k2 + 4b2

4c2
cos(px) exp

(
−1

2
kt

)
cos(bt)

18 Substituting the expressions for vr and vθ into the continuity equation, it is
satisfied for any stream function

LHS =
∂

∂r

(
∂ψ

∂θ

)
+

∂

∂θ

(
−∂ψ

∂r

)
= 0 = RHS

since the cross partial derivatives are equal for all differentiable functions. For the
given stream function,

vr =
1
r
U cos θ

(
r − a2

r

)
= U cos θ

(
1 − a2

r2

)

vθ = −U sin θ

(
1 +

a2

r2

)
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On the circle r = a , the radial velocity vr = 0 and there is no flow into the circle.
As r gets very large vr → U cos θ and vθ → −U sin θ

The velocities parallel and perpendicular to the axes are

V = vr cos θ − vθ sin θ

→ U

and

W = vr sin θ + vθ cos θ

→ 0

y

W vr

V
r

vθ

x
θ

and hence the flow far downstream is a
steady flow in the x direction with
velocity U. Overall the flow represents
inviscid, irrotational flow past a circular
obstacle in uniform flow.

19, 20, and 21 are intended to be open exercises extending the work of the chapter
to more investigative work. Consequently, no advice is offered for these problems.
For Exercises 19 and 20 the text quotes sources for the work and for Exercise 21
many books on heat transfer will have a version of this problem.
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Optimization

Exercises 10.2.4

1 The required region is shaded on the graph and the lines of constant cost are all
parallel to the lines labelled f = 9 and f = 12. The point where f is a maximum
in the region is at the point x = 1 and y = 1 giving a maximum cost of f = 9.

0.5 1.0 1.5

2x + y = 3

3x + 7y = 10

f = 12

f = 9

3.0
y

2.0

1.0

x

2 A graphical or a tabular solution is possible but the MAPLE solution is given
here.

with(simplex):

con2:={2∗ x-y<=6,x+2∗ y<=8,3∗ x+2∗ y<=18,y<=3};
obj2:=x+y;

maximize(obj2,con2,NONNEGATIVE);

# gives the solution {y=2, x=4}

3 Let x be number of type 1 and y the number of type 2. The profit from these
numbers is

f = 24x + 12y
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T2

5x + 2y = 200

f  = 1320

4x + 5y = 400

5x + 3y = 250

f = 1080

40T13020

f = 840

10

20

40

60

80

T2

f = 1320

4x + 5y = 400

5x + 3y = 250

f = 1020

40T1302010

20

40

60

80

min at (5,75)

 

5x  +  2y  = 175
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and the constraints are, in the appropriate units,

chipboard

veneer

labour

4x + 5y ≤ 400

5x + 2y ≤ 200

5x + 3y ≤ 250

and the obvious constraints x ≥ 0 and y ≥ 0. The first figure shows the feasible
region bounded by the axes and the three lines 4x + 5y = 400, 5x + 2y = 200 and
5x+3y = 250. These lines intersect at x = 20, y = 50 and give the optimum profit
of £1080.
Reducing the available amount of oak veneer to 175m, the diagram changes as in
the second figure. It can be seen that the same two constraints are active. They
give the solution x = 5, y = 75 and a reduced optimum profit of £1020.

4 Let n and s be the number of kg of nails and screws respectively. The profit
made is therefore z = 2n + 3s
The constraints are

labour

material

3n + 6s ≤ 24

2n + s ≤ 10

The figure shows the feasible region. The point of intersection of the two constraints
gives the maximum profit of 14p making 4 kg of nails and 2 kg of screws.

screws(Kg)

profit  = 14

profit = 6

2n + s = 10

3n + 6s = 24

nails(Kg)

5

3

1

2 4 6
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5 Let C1 and C2 be the number of cylinders CYL1 and CYL2 produced. The
profit is 4C1+3C2 and the constraints given by the availability of the materials are:

M1

M2

M3

C1 + 5C2 ≤ 45

C1 + 2C2 ≤ 21

2C1 + C2 ≤ 24

It is clear from the figure that the optimum is z = 54 with C1 = 9 and C2 = 6.
The constraints M2 and M3 are active so all these materials are used up. The
constraint M1 has some slack, it may be checked that 6 units remain unused.

C2

C1

12

10

8

6

4

2

2 4 6 8 10 12

profit = 36

profit = 54

2C1 + C2 = 24

C1 + 5C2 = 45

C1 + 2C2 = 21

6 Let y be the number of Yorks and w the number of Wetherbys, then the profit
made is

z = 25y + 30w

The constraints are

cloth

labour

3y + 4w ≤ 400

3y + 2w ≤ 300

and the problem is a straightforward LP problem that can be solved graphically.
It can be seen from the figure that the optimum is at y = 66.67 and w = 50
with a profit of £3166.67. Note that the solution must be integral to make sense,
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two-thirds of a jacket is not much good to anyone. However, the solution is an
approximate one and, to proceed correctly, it is necessary to undertake the problem
as an Integer Programming problem. This is much harder and can be found in any
advanced book on Mathematical Programming.
If the amount of cloth is increased then the line 3y + 4w = C is moved from its
present C = 400 parallel and upwards. The intersection point moves upwards and
the profit is increased. This situation continues until the solution is y = 0 and
w = 150 and all the labour is used on the Wetherbys. The amount of cloth required
would be 600 m and the profit in this case is £4500. This is the maximum possible
profit even if unlimited cloth is available because of the labour constraint.

160

3y + 2w = 300

3y + 4w = 400f = 3000

f = 1500

f = 4500

−40

−20

0

20

40

60w

80

100

120

140

0 10 20 30 40 50
y

60 70 80 90 100

7 The initial tableau is
x1 x2 x3 x4 Soln

z −k −20 0 0 0
x3 1 2 1 0 20
x4 3 1 0 1 25

Eliminating the x2 column first

x1 x2 x3 x4 Soln
z 10−k 0 10 0 200
x2 0.5 1 0.5 0 10
x4 2.5 0 −0.5 1 15
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If k < 10 then the tableau is optimal and the solution is x1 = 0, x2 = 10 and
the value of z is 200. If, however, k > 10 then the method continues with the x1

column cleared.

x1 x2 x3 x4 Soln
z 0 0 (60 − k)/5 2(k − 10)/5 140 + 6k
x2 0 1 0.6 0.2 7
x1 1 0 −0.2 0.4 6

If 10 < k < 60 then the solution is optimal and the solution is x1 = 6, x2 = 7 and
z takes the value 140 + 6k . If, however, k > 60 then the solution is not optimal
and a further tableau needs to be formed using the x3 column.

x1 x2 x3 x4 Soln
z 0 −(60 − k)/5 0 (7k − 120)/15 25k/3
x3 0 5/3 1 1/3 35/3
x1 1 1/3 0 7/15 25/3

For k > 60, the z row is positive and therefore optimal with x1 = 25/3, x2 = 0
and z = 25k/3.

x2

A

B

C

3x1 + x2 = 25

x1 + 2x2 = 20

optimum for k = 90

optimum for k = 5

optimum for k = 30

x1

10

8

6

4

2

2 4 6 8 10 12

The situation for this problem is illustrated in the figure. The feasible region
is shown together with three different cost functions corresponding to the three
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different cases. Note that for small k the optimum is at the corner A; as the cost
steepens, the corner B is optimum; and finally as the cost steepens further with
the highest values of k, the point C is the optimum.

8 This problem has four variables and so it has to be solved using the simplex
algorithm. There are no difficulties with this problem and the tableaux are
presented, to two decimal places, without comment.

x1 x2 x3 x4 x5 x6 x7 Soln
z −2 −1 −4 −1 0 0 0 0
x5 2 0 1 0 1 0 0 3
x6 1 0 3 1 0 1 0 4
x7 0 4 1 1 0 0 1 3

x1 x2 x3 x4 x5 x6 x7 Soln
z −0.67 −1 0 0.33 0 1.33 0 5.33
x5 1.67 0 0 −0.33 1 −0.33 0 1.67
x3 0.33 0 1 0.33 0 0.33 0 1.33
x7 −0.33 4 0 0.67 0 −0.33 1 1.67

x1 x2 x3 x4 x5 x6 x7 Soln
z −0.75 0 0 0.5 0 1.25 0.25 5.75
x5 1.67 0 0 −0.33 1 −0.33 0 1.67
x3 0.33 0 1 0.33 0 0.33 0 1.33
x2 −0.08 1 0 0.17 0 −0.08 0.25 0.42

x1 x2 x3 x4 x5 x6 x7 Soln
z 0 0 0 0.35 0.45 1.1 0.25 6.5
x1 1 0 0 −0.2 0.6 −0.2 0 1
x3 0 0 1 0.4 −0.2 0.4 0 1
x2 0 1 0 0.15 0.05 −0.1 0.25 0.5

The solution is read off as x1 = 1, x2 = 0.5, x3 = 1 and x4 = 0; the maximum is
at z = 6.5.

The MAPLE instructions

con8:= {2∗x1+x3<=3,x1+3∗ x3+x4<=4,4∗ x2+x3+x4<=3};
obj8:=2∗ x1+x2+4∗ x3+x4;

maximize(obj8,con8,NONNEGATIVE);

and the MATLAB instructions
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f=[-2;-1;-4;-1];A=[2,0,1,0;1,0,3,1;0,4,1,1];b=[3;4;3];

options=optimset(‘LargeScale’,‘off’,‘Simplex’,‘on’);

[x,fval]=linprog(f,A,b,[],[],zeros(4,1),[],[],options)

also produce the solution {x4=0, x1=1, x3=1, x2=1/2} .

9 If b1,b2,b3 are the respective number(×1000) of books printed then the profit
will be

z = 900b1 + 800b2 + 300b3

and the constraints are

sales restriction

paper

b1 + b2 ≤ 15

3b1 + 2b2 + b3 ≤ 60

The first tableau is easily set up and the other tableaux follow by the usual rules.

b1 b2 b3 b4 b5 Soln
z −900 −800 −300 0 0 0
b4 1 1 0 1 0 15
b5 3 2 1 0 1 60

b1 b2 b3 b4 b5 Soln
z 0 100 −300 900 0 13,500
b1 1 1 0 1 0 15
b3 0 −1 1 −3 1 15

b1 b2 b3 b4 b5 Soln
z 0 −200 0 0 300 18,000
b1 1 1 0 1 0 15
b3 0 −1 1 −3 1 15

b1 b2 b3 b4 b5 Soln
z 200 0 0 200 300 21,000

b2 1 1 0 1 0 15
b3 1 0 1 −2 1 30

Thus the optimal profit is made if none of book 1, 15,000 of book 2 and 30,000 of
book 3 are printed giving a profit of £21,000.
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10 Let L, M, S be the respective number of long, medium and short range aircraft
purchased. The profit is

z = 0.4L + 0.3M + 0.15S

and the constraints are

money available

pilots

maintenance

4L + 2M + S ≤ 60

L + M + S ≤ 25

2L + 1.5M + S ≤ 30

The initial tableau is

L M S P Q R Soln
z −0.4 −0.3 −0.15 0 0 0 0
P 4 2 1 1 0 0 60
Q 1 1 1 0 1 0 25
R 2 1.5 1 0 0 1 30

The first column is chosen, since it has the most negative entry, and when the
ratios are calculated, the P and R rows produce the same value of 15. From the
two, the P row is chosen arbitrarily.

L M S P Q R Soln
z 0 −0.1 −0.05 0.1 0 0 6
L 1 0.5 0.25 0.25 0 0 15
Q 0 0.5 0.75 −0.25 1 0 10
R 0 0.5 0.5 −0.5 0 1 0

In this tableau the M, R element is the pivot and performing the elimination gives

L M S P Q R Soln
z 0 0 0.05 0 0 0.2 6
L 1 0 −0.25 0.75 0 −1 15
Q 0 0 0.25 0.25 1 −1 10
M 0 1 1 −1 0 2 0

Note that the final column has not changed between the last two tableaux because
of the zero in the very last entry. The optimal solution is to purchase 15 long range
aircraft and no medium or short range aircraft; the estimated profit is £6 m.
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In the problem, it would seem that some operational constraints have been omitted.
In many optimisation problems it takes several steps to achieve a sensible cost and
set of constraints.

11 The first tableau is set up from the data. Choosing the pivot in the usual way,
x1 and x5 are interchanged and the elimination follows the basic rules. Again, the
pivot is found and x3 and x6 are interchanged; the elimination produces a top row
that is all positive so the solution is optimal. The solution is read from the tableau
as x1 = 1.5, x2 = 0, x3 = 2.5, x4 = 0 and f = 14.

x1 x2 x3 x4 x5 x6 x7 Soln Ratio
z −6 −1 −2 −4 0 0 0 0
x5 2 1 0 1 1 0 0 3 1.5
x6 1 0 1 1 0 1 0 4 4
x7 1 1 3 2 0 0 1 10 10

x1 x2 x3 x4 x5 x6 x7 Soln Ratio
z 0 2 −2 −1 3 0 0 9
x1 1 0.5 0 0.5 0.5 0 0 1.5
x6 0 −0.5 1 0.5 −0.5 1 0 2.5 2.5
x7 0 0.5 3 1.5 −0.5 0 1 8.5 2.83

x1 x2 x3 x4 x5 x6 x7 Soln Ratio
z 0 1 0 0 2 2 0 14

x1 1 0.5 0 0.5 0.5 0 0 1.5
x3 0 −0.5 1 0.5 −0.5 1 0 2.5
x7 0 2 0 0 1 −3 1 1

The MAPLE implementation just gives the ‘answer’. Some of the detail can be
extracted from MAPLE and the various tableau can be identified.

con11:={2∗ x1+x2+x4<=3,x1+x3+x4<=4,x1+x2+3∗ x3+2∗ x4<=10};
obj11:=6∗ x1+x2+2∗ x3+4∗ x4;
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maximize(obj11,con11,NONNEGATIVE);

# gives the same solution {x4=0, x2=0, x1=3/2, x3=5/2}

# for the detail

z:=setup(con11);

z:={_SL1=3-2 x1-x2-x4,_SL2=4-x1-x3-x4,

_SL3=10-x1-x2-3 x3-2 x4}

piv:=pivoteqn(z,x1);

piv:=[_SL1=3-2 x1-x2-x4]

z:=pivot(z,x1,piv);

z:={x1=3/2-1/2_SL1-1/2 x2-1/2 x4,

_SL2=5/2+1/2_SL1+1/2 x2-1/2 x4-x3,

_SL3=17/2+1/2 _SL1-1/2 x2-3/2 x4-3 x3}

obj11:=eval(obj11,z);

obj11:= 9-3_SL1 - 2x2 + x4 + 2 x3

# compare with second tableau

piv:= pivoteqn(z,x3);

piv:=[_SL2=5/2 + 1/2_SL1 + 1/2x2 - 1/2x4-x3]

z:=pivot(z,x3,piv);

z:= {_SL3=-_SL1 + 1 + 3_SL2 - 2 x2,

x1 = 3/2 - 1/2_SL1 - 1/2 x2 - 1/2 x4,

x3=1/2_SL1 + 5/2 -_SL2 + 1/2 x2

- 1/2 x4}

obj11:=eval(obj11,z);

obj11:=-2_SL2 + 14 - 2_SL1-x2

# compare with the final tableau

Note that the entry in position (z, x4) is zero so we expect many solutions – this
is easily identified from the tableau but not from the MAPLE results. Continuing
with MAPLE code

piv:=pivoteqn(z,x4);

piv:=[x1=3/2 - 1/2_SL1 - 1/2 x2 - 1/2 x4]

z:=pivot(z,x4,piv);
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z:={_SL3 = -_SL1 + 1 + 3_SL2 - 2 x2,

x4 = -2 x1+3 -_SL1 - x2,

x3 =_SL1 + 1 -_SL2 + x2 + x1}

obj11:=eval(obj11,z);

obj11:=-2_SL2+14-2_SL1-x2

The new solutions are x1 = x2 = 0, x3 = 1, x4 = 3 and f = 14, giving, as expected,
the same function value.

The MATLAB instructions give the same result but no detail

f=[-6;-1;-2;-4];A=[2,1,0,1;1,0,1,1;1,1,3,2];b=[3;4;10];

options=optimset(‘LargeScale’,‘off’,‘Simplex’,‘on’);

[x,fval]=linprog(f,A,b,[],[],zeros(4,1),[],[],options)

Exercises 10.2.6

12 The problem can be easily plotted and it is clear that x = 1, y = 4 gives the
solution f = x + 2y = 9.

6

5

4

3

2

1

1 2

y

x
3 4 5 6

0
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The MAPLE check is as follows:

with (simplex):

con12:={y>=1,y<=4,x+y<=5};

obj12:=x+2∗ y;

maximize(obj12,con12,NONNEGATIVE);

# gives {y=4,x=1}

The graph can be plotted using the instructions

with(plots):

F:=inequal(con12,x=0..6,y=0..6):

G:=plot([(-x+7)/2,(-x+9)/2,(-x+11)/2],x=0..6,

thickness=3,labels=[‘x’,‘y’],color=yellow):

display(F,G);

13 The problem has ‘greater than’ constraints, so the two-phase method is
required. Note that a surplus variable x4 and an artificial variable x7 need to
be introduced. At the end of phase 1 the artificial variable x7 will be eliminated
from the tableau. The cost function in phase 1 is −x7 , but recall that this cost
has to be modified to ensure that the tableau is in standard form.

Phase 1

x1 x2 x3 x4 x5 x6 x7 Soln
z −2 −1 0 1 0 0 0 −12
x3 4 1 1 0 0 0 0 32
x7 2 1 0 −1 0 0 1 12
x5 2 −1 0 0 1 0 0 4
x6 −2 1 0 0 0 1 0 8

x1 x2 x3 x4 x5 x6 x7 Soln
z 0 −2 0 1 1 0 0 −8
x3 0 3 1 0 −2 0 0 24
x7 0 2 0 −1 −1 0 1 8
x1 1 −0.5 0 0 0.5 0 0 2
x6 0 0 0 0 1 1 0 12
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x1 x2 x3 x4 x5 x6 x7 Soln
z 0 0 0 0 0 0 1 0
x3 0 0 1 1.5 −0.5 0 −1.5 12
x2 0 1 0 −0.5 −0.5 0 0.5 4
x1 1 0 0 −0.25 0.25 0 0.25 4
x6 0 0 0 0 1 1 0 12

The artificial cost has been driven to zero so the artificial variable x7 can be
eiiminated and the original cost function reinstated.
Phase 2
Note that the new cost is negative because the problem is a minimisation problem.

x1 x2 x3 x4 x5 x6 Soln
z 0 0 0 3 −2 0 −44
x3 0 0 1 1.5 −0.5 0 12
x2 0 1 0 −0.5 −0.5 0 4
x1 1 0 0 −0.25 0.25 0 4
x6 0 0 0 0 1 1 12

x 2

30

f = 40

f = 30

f = 20

20

10

2 4 6 8 x 1

2x1 + x2  = 12
4x1 +  x2  =  32

2x1 – x2 = 4

– 2x1 –  x2 = 8
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x1 x2 x3 x4 x5 x6 Soln
z 0 0 0 3 0 2 −20
x3 0 0 1 1.5 0 0.5 18
x2 0 1 0 −0.5 0 0.5 10
x1 1 0 0 −0.25 0 −0.25 1
x5 0 0 0 0 1 1 12

The solution is read off as x1 = 1, x2 = 10 with a minimal cost of 20.

14 Let S be the number of shoes produced and B the number of boots, then the
problem is to maximize the profit

z = 8B + 5S

production 2B + S ≤ 250

sales B + S ≤ 200

customer B ≥ 25

The tableaux are constructed in the usual way.
Phase 1

B S P Q R T Soln
z −1 0 0 0 1 0 −25
P 2 1 1 0 0 0 250
Q 1 1 0 1 0 0 200
T 1 0 0 0 −1 1 25

B S P Q R T Soln
z 0 0 0 0 0 1 0
P 0 1 1 0 2 −2 200
Q 0 1 0 1 1 −1 175
B 1 0 0 0 −1 1 25

Phase 2

B S P Q R Soln
z 0 −5 0 0 −8 200
P 0 1 1 0 2 200
Q 0 1 0 1 1 175
B 1 0 0 0 −1 25
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B S P Q R Soln
z 0 −1 4 0 0 1000
R 0 0.5 0.5 0 1 100
Q 0 0.5 −0.5 1 0 75
B 1 0.5 0.5 0 0 125

B S P Q R Soln
z 0 0 3 2 0 1150
R 0 0 1 −1 1 25
S 0 1 −1 2 0 150
B 1 0 1 −1 0 50

Thus, the manufacturer should make 50 pairs of boots and 150 pairs of shoes and
the maximum profit is £1150.
A graphical solution is possible since the problem has only two variables. It is of
interest to follow the progress of the simplex solution on the graph.

boots

150

100

50

30 60

B = 25

90 120 150 180 shoes

profit = 1150

2B + S = 250

B + S = 200

profit = 600

15 There are techniques for adding a constraint to an existing solution and thence
determining the solution. However, here the whole problem will be recomputed.
From Exercise 9 the initial tableau can be constructed, but the additional constraint
is a ‘greater than’ constraint so the procedure for entering phase 1 must be followed.
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b1 b2 b3 b4 b5 b6 b7 Soln
z −1 −1 −1 0 0 1 0 −50
b4 1 1 0 1 0 0 0 15
b5 3 2 1 0 1 0 0 60
b7 1 1 1 0 0 −1 1 50

Note that the last row gives the new constraint and that the z row involves the
artificial variable b7, which has been eliminated to bring the tableau to standard
form.

Phase I

b1 b2 b3 b4 b5 b6 b7 Soln
z 0 0 −1 1 0 1 0 −35
b1 1 1 0 1 0 0 0 15
b5 0 −1 1 −3 1 0 0 15
b7 0 0 1 −1 0 −1 1 35

b1 b2 b3 b4 b5 b6 b7 Soln
z 0 −1 0 −2 1 1 0 −20
b1 1 1 0 1 0 0 0 15
b3 0 −1 1 −3 1 0 0 15
b7 0 1 0 2 −1 −1 1 20

b1 b2 b3 b4 b5 b6 b7 Soln
z 0 0 0 0 0 0 1 0
b1 1 0.5 0 0 0.5 0.5 −0.5 5
b3 0 0.5 1 0 −0.5 −1.5 1.5 45
b4 0 0.5 0 1 −0.5 −0.5 0.5 10

Phase 2

b1 b2 b3 b4 b5 b6 Soln
z 0 −200 0 0 300 0 18,000
b1 1 0.5 0 0 0.5 0.5 5
b3 0 0.5 1 0 −0.5 −1.5 45
b4 0 0.5 0 1 −0.5 −0.5 10
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b1 b2 b3 b4 b5 b6 Soln
z 400 0 0 0 500 200 20,000
b1 2 1 0 0 1 1 10
b3 −1 0 1 0 −1 −2 40
b4 1 0 0 1 −1 −1 5

The solution is optimal with the production schedule as none for book 1, 10,000
of book 2 and 40,000 of book 3. The profit is down to £20,000 because of the
additional constraint.

16 The MAPLE solution is presented.

with (simplex):

con16:={x>=1,x+2*y<=3,y+3*z<=4};

obj16:=x+y+z;

maximize(obj16,con16,NONNEGATIVE);

# gives the solution {y=0,z=4/3,x=3}, f=x+y+z=13/3

Note that there is no detail of the two-phase method and just the ‘answer’ is given.
It is not easy to rewrite phase 1 into MAPLE so that the detail can be extracted.
The same is true of MATLAB, the following instructions produce the correct result

f=[-1;-1;-1];A=[1,2,0;0,1,3;-1,0,0];b=[3;4;-1];

options=optimset(‘LargeScale’,‘off,’Simplex’,‘on’);

[x,fval]=linprog(f,A,b,[],[],zeros(3,1),[],[],options)

17 This is a standard two-phase problem with surplus variables x5, x6 and
artificial variables x7, x8 . With the cost constructed from the artificial variables
x7, x8 , and the tableau reduced to standard form, the sequence of tableaux is
presented.
Phase 1

x1 x2 x3 x4 x5 x6 x7 x8 Soln
z −1 −1 0 1 1 1 0 0 −2
x7 1 0 −1 −1 −1 0 1 0 0
x9 0 1 1 0 0 −1 0 1 2
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There is an arbitrary choice of the columns since two columns have the value −1;
the second one is chosen.

x1 x2 x3 x4 x5 x6 x7 x8 Soln
z −1 0 1 1 1 0 0 1 0
x7 1 0 −1 −1 −1 0 1 0 0
x2 0 1 1 0 0 −1 0 1 2

x1 x2 x3 x4 x5 x6 x7 x8 Soln
z 0 0 0 0 0 0 1 1 0
x1 1 0 −1 −1 −1 0 1 0 0
x2 0 1 1 0 0 −1 0 1 2

The solution is optimal so phase 1 ends and the tableau is reconstituted for phase 2.
Phase 2

x1 x2 x3 x4 x5 x6 Soln
z 0 0 −1 7 2 7 −14
x1 1 0 −1 −1 −1 0 0
x2 0 1 1 0 0 −1 2

x1 x2 x3 x4 x5 x6 Soln
z 0 1 0 7 2 6 −12

x1 1 1 0 −1 −1 −1 2
x3 0 1 1 0 0 −1 2

The solution is now optimal with x1 = 2, x2 = 0, x3 = 2, x4 = 0 and the cost
function being 12.

18 Let the company buy a,b,c litres of the products A,B,C, then the cost of the
materials will be

Cost

For a total of 100 litres

Glycol

Additive

1.8a + 0.9b + 1.5c

a + b + c = 100

0.65a + 0.25b + 0.8c ≥ 50

0.1a + 0.03b ≥ 5

There are two ‘greater than’ constraints and an equality constraint. Recall that an
equality constraint is dealt with via an artificial variable. Thus, phase 1 is entered
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with two surplus variables and three artificial variables; the cost row is manipulated
until the tableau has the standard form.

Phase 1

a b c p q r s t Soln
z −1.75 −1.28 −1.8 1 1 0 0 0 −155
r 1 1 1 0 0 1 0 0 100
s 0.65 0.25 0.8 −1 0 0 1 0 50
t 0.1 0.03 0 0 −1 0 0 1 5

a b c p q r s t Soln
z −0.29 −0.72 0 −1.25 1 0 2.25 0 −42.5
r 0.19 0.69 0 1.25 0 1 −1.25 0 37.5
c 0.81 0.31 1 −1.25 0 0 1.25 0 62.5
t 0.1 0.03 0 0 −1 0 0 1 5

a b c p q r s t Soln
z −0.1 −0.03 0 0 1 1 1 0 −5
p 0.15 0.55 0 1 0 0.8 −1 0 30
c 1 1 1 0 0 1 0 0 100
t 0.1 0.03 0 0 −1 0 0 1 5

a b c p q r s t Soln
z 0 0 0 0 0 1 1 1 0
p 0 0.51 0 1 1.5 0.8 −1 −1.5 22.5
c 0 0.7 1 0 10 1 0 −10 50
a 1 0.3 0 0 −10 0 0 10 50

The artificial cost has been driven to zero so phase 1 is complete and the three
artificial columns are deleted and the actual cost introduced. Recall that this is
a minimisation problem so the phase 2 tableau can now be extracted from the
tableau above.

Phase 2

a b c p q Soln
z 0 −0.69 0 0 3 −165
p 0 0.51 0 1 1.5 22.5
c 0 0.7 1 0 10 50
a 1 0.3 0 0 −10 50

c©Pearson Education Limited 2011



Glyn James: Advanced Modern Engineering Mathematics, 4th edition 593

a b c p q Soln
z 0 0 0 1.37 5.05 −134.26
b 0 1 0 1.98 2.97 44.55
c 0 0 1 −1.39 7.92 18.81
a 1 0 0 −0.59 −10.89 36.63

The tableau is optimal so the solution can be read off as a = 36.63%,

b = 44.55%, c = 18.81% and a minimum cost of £134.26.
MATLAB solves the problem as follows

f=[1.8;0.9;1.5];A=[-0.65,-0.25,-0.8;-0.1,-0.03,0];b=[-50;-5];

options=optimset(‘LargeScale’,‘off,‘Simplex’,‘on’);

[x,fval]=linprog(f,A,b,[1,1,1],[100],zeros(3,1),[],[],options)

% Note how MATLAB deals with the equality constraint

19 Let s1, s2, s3 be the number of houses of the three styles the builder decides
to construct. His profit (×£100) is

10s1 + 15s2 + 25s3

and the constraints are

plots

facing stone

weather boarding

local authority

s1 + 2s2 + 2s3 ≤ 40

s1 + 2s2 + 5s3 ≤ 58

3s1 + 2s2 + s3 ≤ 72

− s1 + s2 ≥ 5

The solution requires the two-phase method. The tableaux are listed, to two
decimal places, without comment.
Phase 1

s1 s2 s3 s4 s5 s6 s7 s8 Soln
z 1 −1 0 0 0 0 1 0 −5
s4 1 2 2 1 0 0 0 0 40
s5 1 2 5 0 1 0 0 0 58
s6 3 2 1 0 0 1 0 0 72
s8 −1 1 0 0 0 0 −1 1 5
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s1 s2 s3 s4 s5 s6 s7 s8 Soln
z 0 0 0 0 0 0 0 1 0
s4 3 0 2 1 0 0 2 −2 30
s5 3 0 5 0 1 0 2 −2 48
s6 5 0 1 0 0 1 2 −2 62
s2 −1 1 0 0 0 0 −1 1 5

Phase 2

s1 s2 s3 s4 s5 s6 s7 Soln
z −25 0 −25 0 0 0 −15 75
s4 3 0 2 1 0 0 2 30
s5 3 0 5 0 1 0 2 48
s6 5 0 1 0 0 1 2 62
s2 −1 1 0 0 0 0 −1 5

s1 s2 s3 s4 s5 s6 s7 Soln
z 0 0 −8.33 8.33 0 0 1.67 325
s1 1 0 0.67 0.33 0 0 0.67 10
s5 0 0 3 −1 1 0 0 18
s6 0 0 −2.33 −1.67 0 1 −1.33 12
s2 0 1 0.67 0.33 0 0 −0.33 15

s1 s2 s3 s4 s5 s6 s7 Soln
z 0 0 0 5.56 2.78 0 1.67 375
s1 1 0 0 0.56 −0.22 0 0.67 6
s3 0 0 1 −0.33 0.33 0 0 6
s6 0 0 0 −2.44 0.78 1 −1.33 26
s2 0 1 0 0.56 −0.72 0 −0.33 11

The tableau is optimal, so the solution should build 6,11 and 6 houses of styles 1,2
and 3 respectively and make a profit of £37,500.

20 Let x1x2, x3 be the amounts (×1000 m2) of carpet of type C1,C2,C3 produced,
then the maximum of

2x1 + 3x2

is required subject to the constraints
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M1 x1 + x2 + x3 ≤ 5

M2 x1 + x2 ≤ 4

policy1 x1 ≥ 1

policy2 x1 − x2 + x3 ≥ 2
Phase 1

x1 x2 x3 x4 x5 x6 x7 x8 x9 Soln
z 2 1 −1 0 0 1 1 0 0 −3
x4 1 1 1 1 0 0 0 0 0 5
x5 1 1 0 0 1 0 0 0 0 4
x6 1 0 0 0 0 −1 0 1 0 1
x9 1 −1 1 0 0 0 −1 0 1 2

x1 x2 x3 x4 x5 x6 x7 x8 x9 Soln
z 0 1 1 0 0 −1 1 2 0 −1
x4 0 1 1 1 0 1 0 −1 0 4
x5 0 1 0 0 1 1 0 −1 0 3
x1 1 0 0 0 0 −1 0 1 0 1
x9 0 −1 1 0 0 1 −1 −1 1 1

x1 x2 x3 x4 x5 x6 x7 x8 x9 Soln
z 0 0 0 0 0 0 0 1 1 0
x4 0 2 0 1 0 0 1 0 −1 3
x5 0 1 0 0 1 1 0 −1 0 3
x1 1 0 0 0 0 −1 0 1 0 1
x3 0 −1 1 0 0 1 −1 −1 1 1

Phase 2

x1 x2 x3 x4 x5 x6 x7 Soln
z 0 3 0 0 0 −2 0 2
x4 0 8 0 1 0 0 1 9
x5 0 1 0 0 1 1 0 3
x1 1 0 0 0 0 −1 0 1
x3 0 1 1 0 0 1 −1 1

x1 x2 x3 x4 x5 x6 x7 Soln
z 0 0 0 1.5 0 −2 1.5 6.5
x2 0 1 0 0.5 0 0 0.5 1.5
x4 0 0 0 0.5 1 1 0.5 1.5
x1 1 0 0 0 0 0 0 1.5
x3 0 0 1 0.5 0 0 −0.5 2.5
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x1 x2 x3 x4 x5 x6 x7 Soln
z 0 0 0 0.5 2 0 0.5 9.5
x2 0 1 0 0.5 0 0 0.5 1.5
x6 0 0 0 −0.5 1 1 −0.5 1.5
x1 1 0 0 −0.5 1 0 −0.5 2.5
x3 0 0 1 1 −1 0 0 1

Hence, the optimum is 2500m2 of C1, 1500m2 of C2 and 1000m2 of C3 giving a
profit of £9500.

Exercises 10.3.3
21 Introducing a Lagrange multiplier, the minimum is obtained from

2x + y + λ = 0

x + 2y + λ = 0

x+y = 1

with solution x = y = 1/2. To prove that it is a minimum, put

x = 1
2 + ε and y = 1

2 − ε

and substitute into f to give

f = 3
4 + ε2

and hence a minimum.

22 The answer to this exercise is geometrically obvious since it is just the length
of the minor axis which in this case, is a. It is required to find the minimum of

D2 = x2 + y2 subject to
x2

a2
+

y2

b2
= 1

The Lagrange equations are

0 = 2x +
2λx

a2
and 0 = 2y +

2λy

b2

Since λ cannot equal −a2 and −b2 at the same time then either x = 0 or y = 0.
If a < b the it is clear that y = 0 and x = ± a gives the minimum
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23 The area of the rectangle is
A = 4xy

y

(x,y)

x

and since the point must lie
on the ellipse

x2

a2
+

y2

b2
= 1

and hence a Lagrange multiplier problem is produced. The two equations are

0 = 4y +
2λx

a2
and 0 = 4x +

2λy

b2

It is soon checked that the required solution is x = a/
√

2, y = b/
√

2, A = 2ab .

24 The necessary conditions for an optimum are

∂f

∂x
+ λ

∂g

∂x
= 0 = y2z + λ (1)

∂f

∂y
+ λ

∂g

∂y
= 0 = 2xyz + 2λ (2)

∂f

∂z
+ λ

∂g

∂z
= 0 = xy2 + 3λ (3)

together with the given constraint

x + 2y + 3z = 6 (4)

Dividing equation (2) by two and then subtracting the first two equations gives

yz(x − y) = 0

Thus, there are three cases
y = 0 Note that all the equations except the constraint are satisfied since λ = 0.
Thus, a possible solution is (6 − 3α, 0, α) for any α .
z = 0 Again, this implies that λ = 0 so from equation (3)x = 0 and hence from
(4)y = 3. The case when y = 0 in equation (3) has been covered in the first case.
x = y Equations (2) and (3) give 1

3x3 = x2z so there are two cases

either x = 0 and hence y = 0 and z = 2
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or x = 3z and hence from (4) z = 1/2 and x = 3/2, y = 3/2

Equations (1) and (2) have been used to eliminate λ ; so a similar exercise must be
undertaken with (2) and (3) to check whether any new solutions arise. They give
the equation

xy(y − 3z) = 0

and again three cases must be studied.
x = 0 In this case λ = 0 so it reduces to one of the above.
y = 0 Again, it reduces to the first case above.
y = 3z From equations (1) and (2) it can be seen that the same cases arise and
correspond to the solutions already obtained.
Note that in the solutions quoted, (6,0,0) is included in the solution (6− 3α, 0, α)
with α = 0.

25 Using λ and μ as the Lagrange multipliers, the equations that give the
optimum are as quoted

0 = 2x + λ + (2z − 2y)μ

0 = 2y + λ + (z − 2x)μ

0 = 2z − λ + (y + 2x)μ

together with the two given constraints.
Adding the last two equations

2(y + z) + (y + z)μ = 0 ⇒ either y = −z or μ = −2

Adding the first and last equations

2(x + z) + (2z + 2x − y)μ = 0

So, λ has been eliminated.
y + z = 0 In the first constraint x = −y + z = 2z . Thus, (2t,−t, t) gives, in
the second constraint, 7t2 = 1 so t = ±1/

√
7 and two of the quoted solutions are

obtained.
μ = −2 From above 2(x + z) + (2z + 2x − y)(−2) = 0 and so this expression
and the second constraint give a pair of equations

0 = −x + y − z

0 = x + y − z

c©Pearson Education Limited 2011



Glyn James: Advanced Modern Engineering Mathematics, 4th edition 599

and hence, x = 0 and y = z . Putting these values into the second constraint gives
y = ±1 and possible optimum points at (0, 1, 1) and (0,−1,−1).

26 The volume of the figure is

V = abc

and the surface area is

A = 2ab + 2ac + bc

c

a

b

The problem is a Lagrange multiplier
problem and the three equations are

0 = bc + λ(2b + 2c)

0 = ac + λ(2a + c)

0 = ab + λ(2a + b)

The last two equations give

a(c − b) + λ(c − b) = 0 ⇒ either c = b or λ = −a

c = b Putting back into the first equation gives

b2 + 4bλ = 0 so either b = 0 or λ = −b/4

The case b = 0 can be dismissed as geometrically uninteresting. In the third
equation this value of λ gives 0 = ab − 1

4b(2a + b) ⇒ b = 2a since again the case
b = 0 is uninteresting.
Calculating a gives the possible maximum as

c = b = 2a with a =

√
A

12
and V = 4a3

λ = −a Putting this value back into the third of the Lagrange equations gives
a = 0 so gives zero volume and is geometrically uninteresting again.

27 This is a very tough problem but more typical of realistic problems in
engineering rather than most of the illustrative exercises in the book.
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The exercise will be solved using MAPLE. Note the efficient way it performs the
algebra and integrations for the simplest approximation

z:=A∗ cos(Pi∗ x/2)̂ 2∗cos(Pi∗ y/2)̂ 2;
I1:int(int(z^2,x=-1..1),y=-1..1);

# gives

I1:=9/16 A 2

f:=diff(z,x,x)+diff(z,y,y);

I2:=int(int(f^2,x=-1..1),y=-1..1);

# gives

I2:=1/2 A 2 Pi 4

freq:=I2/I1;

# gives

freq:=8/9 Pi 4 = 86.58 as required.

The first approximation could be done by hand but the next approximation needs
a package like MAPLE.

zz:=cos(Pi∗ x/2)̂ 2∗cos(Pi∗ y/2)̂ 2
∗(A+B∗ cos(Pi∗ x/2)∗ cos(Pi∗ y/2));

I3:=evalf(int(int(zz^2,x=-1..1),y=-1..1));

# gives

I3:=.5624999999 A 2 + .9222479291 A B + .3906249999 B 2

ff:=diff(zz,x,x)+diff(zz,y,y);

I4:=evalf(int(int(ff^2,x=-1..1),y=-1..1));

# gives

I4:=58.21715209 B 2 + 48.70454554 A 2 + 92.64268668 A B

dLbydA:=diff(I4+lam∗ I3,A);

dLbydB:=diff(I4+lam∗ I3,B);

fsolve({dLbydA,dLbydB,I3=1}, {A,B,lam});

# gives the solution

{lam=-81.38454660, A=-1.829151961, B=.6086242001}

The frequency is given by −lam which should be compared with the first
approximation.
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28 The problem asks for a minimum, which is equivalent to the maximum of

−2x2
1 − x2

2 − 2x1x2

The Kuhn–Tucker conditions for this problem are

−4x1 − 2x2 − μ = 0
−2x1 − 2x2 + μ = 0

x1 − x2 − α ≤ 0
μ(x1 − x2 − α) = 0

μ ≥ 0

There are two cases
μ = 0 The first two equations give x1 = x2 = 0 and these can only give the
optimum if the inequality is satisfied, namely α ≥ 0.
x1 − x2 = α Adding the first two equations gives the solution in terms of the
simultaneous linear equations

3x1 + 2x2 = 0
x1 − x2 = α

which clearly have the solution x1 = 2α/5 and x2 = −3α/5. Calculation from the
first or second equation gives μ = −2α/5 which is only optimal if α ≤ 0.

Exercises 10.4.2

29(a) The MATLAB version of this problem (note it deals with the maximum)
is as follows:

a=0.1;h=0.2;nmax=10;n=0;

zold=q29(a);a=a+h;z=q29(a);c=[z];

while(z(2)>zold(2))&(n<nmax)

n=n+1;zoldold=zold;zold=z;h=2∗ h;a=a+h;z=q29(a);c=[c,z];

end

% gives x 0.3000 0.7000 1.5000 3.1000

f -11.4111 -2.7408 -1.9444 -3.2041

f ′ 73.0741 4.8309 -0.4074 -0.9329

where the function q29 is in the M-file
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function a=q29(x)

a=[x;-x-1/x^2;-1+2/x^3];

The maximum is in the region 0.7 to 3.1 only if the function values are known but
in the region 0.7 to 1.5 if the derivative is used.

29(b) Using the bracket and the mid point to start the maximization

p=[q29(0.7),q29(1.9),q29(3.1)]; u=p(1,:),v=p(2,:)

% gives u= 0.7000 1.9000 3.1000

v=-2.7408 -2.1770 -3.2041

[u,v]=qapp(u,v)

% gives u= 0.7000 1.7253 1.9000

v=-2.7408 -2.0612 -2.1770

[u,v]=qapp(u,v)

% gives u= 0.7000 1.5127 1.7253

v=-2.7408 -1.9497 -2.0612

where the M-file qapp.m contains the quadratic algorithm

function [x,f]=qapp(a,b) %note written for max problem

% a=[a1,a2,a3] is the input vector of three points from

bracketing

% b=[f(a1),f(a2),f(a3)] is the vector of function values

x=a;f=b;p=polyfit(a,b,2);

xstar=-0.5∗ p(2)/p(1);z=q29(xstar);fstar=z(2);% for other

problems change q29

if fstar>b(2)

if xstar<a(2), x(3)=a(2);f(3)=b(2);

else x(1)=a(2);f(1)=b(2); end

x(2)=xstar;f(2)=fstar;
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else

if xstar<a(2), x(1)=xstar;f(1)=fstar;

else x(3)=xstar;f(3)=fstar; end

end

% x contains the three points of the new bracket and f

the function values

29(c) For comparison the same bracket is used

p=q29(0.7);q=q29(3.1);p ′ ,q ′

% gives x=0.7000 f=-2.7408 f ′=4.8309

% and x=3.1000 f=-3.2041 f ′=-0.9329

[p,q]=cufit(p,q);p ′ ,q ′

% gives x=0.7000 f=-2.7408 f ′=4.8309

% and x=1.5129 f=-1.9498 f ′=-0.4224

[p,q]=cufit(p,q);p ′ ,q ′

% gives x=1.1684 f=-1.9009 f ′=0.2538

% and x=1.5129 f=-1.9498 f ′=-0.4224

where the cubic algorithm is contained in the M-file cufit.m

function [an,bn]=cufit(a,b)

% a=[x1 f(x1) fdash(x1)] and b=[x2 f(x2) fdash(x2)] are

the input vectors

f=[a(2);b(2);a(3);b(3)];

A=[a(1)^3 a(1)^2 a(1) 1;b(1)^3 b(1)^2 b(1) 1;

3∗a(1)̂ 2 2∗a(1) 1 0;3∗ b(1)̂ 2 2∗b(1) 1 0];

p=A\f;xstar=(-p(2)-sqrt(p(2)̂ 2-3∗ p(1)∗ p(3)))/(3∗ p(1));

c=q29(xstar);

% for other problems change the function q29

if c(3)>0 an=c;bn=b; else bn=c;an=a;end

% an and bn contain the new bracket values
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30 If the derivatives are not used, then the bracket is 0 < x < 3, whilst using
the derivatives gives the much narrower range of 0 < x < 1 but at the expense of
twice the number of function evaluations.

30(a) The calculation is identical to Exercise 29 with q29 replaced by q30 in qapp

p=[q30(0),q30(1),q30(3)]; u=p(1,:),v=p(2,:)

% gives u= 0 1 3

v= 0 0.4207 0.0141

[u,v]=qapp(u,v)

% gives u= 0 1.0000 1.5113

v= 0 0.4207 0.3040

[u,v]=qapp(u,v)

% gives u= 0 0.9898 1.0000

v= 0 0.4222 0.4207

where the function q30 is in the M-file

function a=q30(x)

a=[x;sin(x)/(1+x̂ 2);cos(x)/(1+x̂ 2)-2̂ ∗ x̂ ∗sin(x)/(1+x̂ 2)̂ 2];

30(b) Again, as in Exercise 29, with q29 replaced by q30 in cufit

p=q30(0);q=q30(1);p ′ ,q ′

% gives x=0 f=0 f ′= 1

% and x=1.0000 f=0.4207 f ′=-0.1506

[p,q]=cufit(p,q);p ′ ,q ′

% gives x=0 f=0 f ′= 1

% and x=0.8667 f=0.4352 f ′=-0.0612

[p,q]=cufit(p,q);p ′ ,q ′

% gives x=0 f=0 f ′= 1

% and x=0.8242 f=0.4371 f ′=-0.0247

The built in MATLAB procedure fminbnd gives x = 0.7980, f = 0.4374 in 9
iterations
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f=@(x)-sin(x)/(1+x^2);

options=optimset(‘display’,‘iter’);

x=fminbnd(f,0,1,options)

31 The problem is a standard exercise to illustrate the use of the two basic
algorithms for a single variable search.

31(a) An adaptation of Exercise 29 with the appropriate function used gives

p=[q31(1),q31(5/3),q31(3)];u=p(1,:),v=p(2,:)

% gives u=1.0000 1.6667 3.0000

v=0.2325 0.2553 0.1419

[u,v]=qapp(u,v)

% gives u=1.000 1.6200 1.6667

v=0.2325 0.2571 0.2553

[u,v]=qapp(u,v)

% gives u=1.0000 1.4784 1.6200

v=0.2325 0.2602 0.2571

where q31 is the M-file

function a=q31(x)
a=[x;x∗ (exp(-x)-exp(-2∗ x));(exp(-x)-exp(-2∗ x))

-x∗ (exp(-x)-2∗ exp(-2∗ x))];

31(b) Use the same bracket and adapt the algorithm in Exercise 29.

p=q31(1);q=q31(3);p ′ ,q ′

% gives x=1.0000 f=0.2325 f ′= 0.1353

% and x=3.0000 f=0.1419 f ′= -0.0872

[p,q]=cufit(p,q);p ′ ,q ′

% gives x=1.0000 f=0.2325 f ′= 0.1353

% and x=1.5077 f=0.2599 f ′= -0.0136

[p,q]=cufit(p,q);p ′ ,q ′
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% gives x=1.0000 f=0.2325 f ′= 0.1353

% and x=1.4462 f=0.2603 f ′= -0.0001

The next iteration gives the three-figure accuracy required in (c).
x = 1.4456 f = 0.2603 f ′ = 0.0000

32 The difficulty in this problem is that the eigenvalues must be computed at
each function evaluation. With a package such as MATLAB this is less of a problem
since the instruction eig(A) will give them almost instantly.
The M-file q32 performs this computation. Note the -max(eig(A)) since qapp

looks for a maximum

function a=q32(x)

A=[x -1 0;-1 0 -1;0 -1 x^2];

a=[x;-max(eig(A))];

The calculations are performed as in Exercise 29

p=[q32(-1),q32(0),q32(1)];u=p(1,:),v=p(2,:)

% gives u=-1 0 1

v=-1.7321 -1.4142 -2.0000

[u,v]=qapp(u,v)

% gives u=-1.0000 -0.1483 0

v=-1.7321 -1.3854 -1.4142

[u,v]=qapp(u,v)

% gives u=-1.0000 -0.2356 -0.1483

v=-1.7321 -1.3769 -1.3854

See the text for the MATLAB fminbnd code for this problem.

33 To establish the formula is a matter of simple substitution into (10.10).
To find when f′(x) = 0, from the Newton method, requires the iteration of the
formula

xnew = x − f′(x)
f′′(x)

If the function is known at x − h, x, x + h with values f1, f2, f3 respectively, then
the derivatives can be replaced by their approximations
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f′(x) ≈ f3 − f1

2h
and f′′(x) ≈ f1 − 2f2 + f3

h2

and the formula follows immediately.

34(a) To obtain the Golden Section ratio, the figure gives

A C B Dl l

L

AC

AD
=

AD

AB

yields−→ l

L − l
=

L − l

L

Solve for a = l/L to obtain a = 1
2 (3 −

√
5).

The Golden Section algorithm can be written in MATLAB as

alpha = (3-sqrt(5))/2;a=[0;1;1;2.5];

f=@(x)x∗ sin(x);

a=[0;(1-alpha)∗ a(1)+alpha∗ a(4);alpha∗ a(1)+(1-alpha)∗ a(4);2.5];

F=[f(a(1));f(a(2));f(a(3));f(a(4))];aa=[a];FF=[F];

for i=1:5

if F(2)>F(3)a(4)=a(3);a(3)=a(2);F(4)=F(3);F(3)=F(2);

a(2)=(1-alpha)∗ a(1)+alpha∗ a(4);F(2)=f(a(2));

else a(1)=a(2);a(2)=a(3);F(1)=F(2);F(2)=F(3);

a(3)=alpha∗ a(1)+(1-alpha)∗ a(4);F(3)=f(a(3));

end, aa=[aa,a];FF=[FF,F];

end

The instructions aa, FF prints out x and f at five successive iterations

aa = 0 0.9549 1.5451 1.9098 1.9098 1.9098

0.9549 1.5451 1.9098 2.1353 2.0492 1.9959

1.5451 1.9098 2.1353 2.2746 2.1353 2.0492

2.5000 2.5000 2.5000 2.5000 2.2746 2.1353
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FF = 0 0.7795 1.5446 1.8011 1.8011 1.8011

0.7795 1.5446 1.8011 1.8040 1.8191 1.8183

1.5446 1.8011 1.8040 1.7341 1.8040 1.8191

1.4962 1.4962 1.4962 1.4962 1.7341 1.8040

with the best value at x = 2.0492 and f = 1.8191.

34(b) The algorithm is the same as part (a) except the function is now

f=@(x)(log(x)+2∗(1-x)/(1+x))/(1-x)∧ 2;

The five iterations give

aa =

1.5000 1.8820 1.8820 2.0279 2.1180 2.1180

1.8820 2.1180 2.0279 2.1180 2.1738 2.1525

2.1180 2.2639 2.1180 2.1738 2.2082 2.1738

2.5000 2.5000 2.2639 2.2639 2.2639 2.2082

FF =

0.0218604 0.0260436 0.0260436 0.0265463 0.0266783 0.0266783

0.0260436 0.0266783 0.0265463 0.0266783 0.0267059 0.0266998

0.0266783 0.0266780 0.0266783 0.0267059 0.0267051 0.0267059

0.0262879 0.0262879 0.0266780 0.0266780 0.0266780 0.0267051

Note that the function is so flat that it has been quoted to six figures; the best
result is x = 2.1738, f = 0.0267059.

Exercises 10.4.4

35 The gradient is given by

G =
[

1
0

]
+

[
1 −1
−1 2

] [
x1

x2

]

so, at the first step

a =
[

1
1

]
, f = 1.5, G =

[
1
1

]

c©Pearson Education Limited 2011



Glyn James: Advanced Modern Engineering Mathematics, 4th edition 609

The first search is for min
μ

[f(1 − μ, 1 − μ)] and a simple calculation gives μ = 2.

The second iteration can be started as

a =
[
−1
−1

]
, f = −0.5, G =

[
1
−1

]

Note that the two gradients are perpendicular. The search min
μ

[f(−1−μ,−1+μ)]

is easily performed (exactly in this problem) to give μ = 0.4 and the problem is
ready for the next iteration.

a =
[
−7/5
−3/5

]
, f = −0.9, G =

[
1/5
1/5

]

36 For this function the gradient is

G =
[

6x + 2y + 3
2x + 6y + 2

]

and it easily checked that x = −7/16, y = −3/16 gives zero gradient and hence
the minimum at f = −0.84375.

The steepest descent method is easily written in MATLAB. For more complicated
functions two M-files are needed, one to set up the function and its gradient and
the second to set up the line search routine. Anonymous functions can be used for
more .straightforward functions. The following lines of code solve the problem.

f=@(x)2∗ (x(1)+x(2))̂ 2+(x(1)-x(2))̂ 2+3∗ x(1)+2∗ x(2);

g=@(x)[4∗(x(1)+x(2))+2∗(x(1)-x(2))+3;4∗(x(1)+x(2))-2∗(x(1)-x(2))+2];

fm=@(t,xx,G)f(xx-t∗ G);

% The function, its derivative and the line search are now set

xx=[0,0];ff=f(xx);G=g(xx);XX=[xx];FF=[ff];GG=[G];% Start values

[t,fval]=fminbnd@(t)fm(t,xx,G),0,2);% Note how the minimisation is done

xx=xx-t∗ G;G=g(xx);ff=f(xx);XX=[XX,xx];GG=[GG,G];FF=[FF,ff];

%Next point

%Repeat the last two lines to iterate
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The first five values are produced in XX,FF and GG as

XX= 0 -0.3824 -0.4296 -0.4365 -0.4374

0 -0.2549 -0.1841 -0.1887 -0.1874

FF= 0 -0.8284 -0.8435 -0.8437 -0.8437

GG= 3.0000 0.1961 0.0545 0.0036 0.0010

2.0000 -0.2941 0.0363 -0.0053 0.0007

Because the function is a quadratic, the Newton method, which is based on the
assumption that the function is approximated by a quadratic, must converge in
one iteration.

37 The MATLAB implementation is similar to Exercise 36.
The program is identical except for the instructions that generate the functions,
which are now

f=@(x)(x(1)-x(2)+x(3))∧ 2+(2∗ x(1)+x(3)-2)∧ 2+(x(3)∧ 2-1)∧ 2;

g=@(x)[2∗ (x(1)-x(2)+x(3))+4∗ (2∗x(1)+x(3)-2);2∗ (x(1)-x(2)+x(3));...

2∗(x(1)-x(2)+x(3))+2∗ (2∗x(1)+x(3)-2)+4∗ x(3)∗ (x(3)∧ 2-1)];

The first few iterations are

XX = 2.0000 1.1518 0.4985 0.6175 0.4941 0.5178

2.0000 2.1696 1.8171 1.7505 1.6616 1.6358

2.0000 0.4733 0.7984 0.9653 1.0178 1.0300

FF = 29.0000 1.5023 0.4440 0.0729 0.0237 0.0158

GG = 20.0000 2.0184 -1.8592 0.4657 -0.2758 0.0859

-4.0000 1.0891 1.0405 0.3354 0.2995 0.1762

36.0000 -1.0044 -2.6078 -0.1980 -0.1414 0.2054

To use the built in routine fminunc, it is easier to use an M file.

function [f,g] = q37(x) %Question 37

f=(x(1)-x(2)+x(3))∧ 2+(2∗ x(1)+x(3)-2)∧ 2+(x(3)∧ 2-1)∧ 2;

g=[2∗ (x(1)-x(2)+x(3))+4∗ (2∗x(1)+x(3)-2);2∗ (x(1)-x(2)+x(3));...

2∗(x(1)-x(2)+x(3))+2∗ (2∗x(1)+x(3)-2)+4∗ x(3)∗ (x(3)∧ 2-1)];

end
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The main progam is

x=[2;2;2];

options=optimset(‘GradObj’,‘on’,‘display’,‘iter’,‘HessUpdate’,

‘steepdesc’,‘LargeScale’,‘off’);

[x,fval]=fminunc(@q37,x,options)

The first three and last three iterations are

Iteration Func-count f(x)

0 1 29 with starting point x=(2,2,2)

1 2 3.67901

2 4 2.35628

. . . . . . . . . . . . .

59 119 8.6485e-010

60 121 6.17926e-010

61 123 4.41502e-010 with final point x=(0.5,1.5,1.0)

38 The function, gradient and Hessian matrix are computed in the M-file
newton38

function [a,agrad,ajac]=newton38(z)

t1=z(1)-z(2)+z(3);t2=2∗ z(1)+z(3)-2;

a=t1̂ 2+t2̂ 2+(z(3)̂ 2-1)̂ 2;

agrad(1)=2∗ t1+4∗ t2;

agrad(2)=-2∗ t1;

agrad(3)=2∗ t1+2∗ t2+4∗ z(3)̂ 3-4∗ z(3);

ajac(1,1)=10;ajac(1,2)=-2;ajac(1,3)=6;

ajac(2,1)=-2;ajac(2,2)=2;ajac(2,3)=-2;

ajac(3,1)=6;ajac(3,2)=-2;ajac(3,3)=12∗ z(3)̂ 2;

and the Newton iteration proceeds as

a=[2;2;2];E=[0;0;0;0];

for i=1:5

[f,G,J]=newton38(a);E=[E,[f;a]];
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a=a-J\G ′ ;

end

% gives

f 29.0000 1.2448 0.1056 0.0026 0.0000

x 2.0000 0.2727 0.4245 0.4873 0.4995

y 2.0000 1.7273 1.5755 1.5127 1.5005

z 2.0000 1.4545 1.1510 1.0253 1.0009

39 The figure illustrates the cost of the road from (0,0) to (1,a) to (b ,11-2b) is

C = 2(1 + a2)1/2 +
[
(b − 1)2 + (11 − 2b − a)2

]1/2

and any of the minimization methods give a = 0.2294, b = 4.5083 and c = 5.9743,
giving equations of lines as y = 0.2294x, y = 0.5x − 0.2706 and cost = 5.974.

y

(1,a)

(b,11– 2b)

y = 11 –  2x

x(0,0)

Exercises 10.4.7

40(a) The gradient can be calculated as G =
[

10x − 2y − 8
−2x + 2y

]
and the initial

choice of H is the unit matrix.
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Iteration 1

The computation commences

a1 =
[

2
2

]
f1 = 4 G1 =

[
8
0

]
H1 =

[
1 0
0 1

]

and the minimization takes place in the direction a =
[

2 − 8λ
2

]
. The minimum

in this direction may be obtained as λ = 0.1. The new values are

a2 =
[

1.2
2

]
f2 = 0.8 G2 =

[
0

1.6

]

and the values of h1 and y1 are calculated as

h1 = a2 − a1 =
[
−0.8

0

]
and y1 = G2 − G1 =

[
−8
1.6

]

Finally, the H is updated as

H2 =
[

1 0
0 1

]
− 1

66.56

[
−8
1.6

]
[−8 1.6] +

1
6.4

[
−0.8

0

]
[−0.8 0]

=
[

1 0
0 1

]
−

[
0.9615 −0.1923
−0.1923 0.0385

]
+

[
0.1 0
0 0

]

=
[

0.1385 0.1923
0.1923 0.9615

]

Iteration 2

The iteration starts with the variables computed from iteration 1

a2 =
[

1.2
2

]
f2 = 0.8 G2 =

[
0

1.6

]
H2 =

[
0.1385 0.1923
0.1923 0.9615

]

The method follows the same pattern as iteration 1 and so the computations are
not written down in the same detail.

a3 =
[

1
1

]
f3 = 0 G3 =

[
0
0

]
H3 =

[
0.1250 0.1250
0.1250 0.6250

]

The minimum has been achieved; this is expected since the function is quadratic
and it is known that the method converges in n steps for an n -dimensional
quadratic, provided the minimizations are performed exactly.
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40(b) The problem has three variables and is not quadratic. The one-dimensional
minimizations need a numerical procedure; so it is better to use a package such as
MATLAB. The M-file required for the function is

function [f,G]=q40b(z)

t1=z(1)-z(2)+z(3);t2=2∗ z(1)+z(3)-2;

f=t1̂ 2+t2̂ 2+z(3)̂ 4;

G(1)=2∗ t1+4∗ t2;

G(2)=-2∗ t1;

G(3)=2∗ t1+2∗ t2+4∗ z(3)̂ 3;

The main DFP segment is

1. a=[0;0;0];H=eye(3);[f,G]=q40b(a);

2. fm=@(t,xx,GG)q40b(xx-t∗ GG);

3. aa=[a];ff=[f];gg=[G];HH=[H];

4. for n=1:4

5. D=H∗ G;[t,fval]=fminbnd(@(t)fm(t,a,D),0,2);

6. aold=a;Gold=G;a=aold-t∗ D;[f,G]=q40b(a);

7. h=a-aold;y=G-Gold;

8. H=H-H∗ y∗y’∗ H/(y’∗ H∗y)+h∗ h’/(h’∗ y);

9. aa=[aa,a];ff=[ff,f];gg=[gg,G];HH=[HH,H];

10. end

The instructions give the results

aa= 0 0.5853 1.0190 1.0186 1.0184

0 0 0.9813 0.9814 0.9815

0 0.2926 -0.0372 -0.0372 -0.0369

ff= 4.0000 1.0662 0.0000 0.0000 0.0000

gg= -8.0000 -0.3916 0.0047 -0.0000 -0.0000

0 -1.7558 -0.0012 -0.0001 -0.0000

-4.0000 0.7823 0.0027 -0.0002 -0.0002

The convergence looks good but slows because H tends to a singular matrix.
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41 Evaluating H i+1y i it is readily shown that equation (10.18) is satisfied.
The update is one that is quite effective but suffers from the problem that the
denominator can become zero when line searches are not exact. A great deal of
remedial action must be taken to ensure that the problem is overcome.

41(a) The function is quadratic so the solution is obtained in two steps. The
program in Exercise 39, suitably adapted, was used to compute the solution.
Iteration 1

a =
[

1
2

]
f = 9 G =

[
2
8

]
H =

[
1 0
0 1

]

Iteration 2

a =
[

0.4848
−0.0606

]
f = 0.2424 G =

[
0.9697
−0.2424

]
H =

[
0.9948 −0.0619
−0.0619 0.2577

]

41(b) The exercise is similar to Exercise 40(b) but with a different function and
updating methods.

function [f,G]=q41b(z)

t1=z(1);t2=z(1)-z(2)+1;

f=t1̂ 2+t2̂ 2+z(2)̂ 2∗z(3)̂ 2;

G(1)=2∗ t1+2∗ t2;

G(2)=-2∗ t2+2∗ z(2)∗ z(3)̂ 2;

G(3)=2∗ z(3)∗ z(2)̂ 2;

In the lines 1,2 and 6 of Exercise 40(b) the M file q41b replaces q40b. In line 8, the
Rank 1 and the BFGS updates replace the one in the program. Also, a different
start point is used. The results for Rank 1 update (i) are

aa= 0.5000 -0.0732 -0.1628 -0.00592 -0.0593

0.5000 0.8344 0.7747 0.9235 0.9234

0.5000 0.4522 0.0525 -0.0640 -0.0640

ff= 1.3125 0.1563 0.0321 0.0073 0.0073

gg= 3.0000 0.0386 -0.2006 -0.0839 -0.0839

-1.7500 0.1564 -0.1207 -0.0270 -0.0270

0.2500 0.6296 0.0630 -0.1091 -0.1092
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The results for BFGS update (ii) are

aa= 0.5000 -0.0732 0.0969 -0.0726 -0.0348

0.5000 0.8344 0.7384 0.9408 0.9344

0.5000 0.4522 0.0659 0.0141 0.0071

ff= 1.3125 0.1563 0.0389 0.0056 0.0022

gg= 3.0000 0.0386 0.1355 -0.1718 -0.0080

-1.7500 0.1564 -0.3229 0.0271 -0.0614

0.2500 0.6296 0.0718 0.0250 0.0124

Note that BFGS does better than Rank 1 and is the choice of method for the
built-in function fminunc.

42 It is easy to check that equation (10.18) is satisfied but note that the notation
has changed and y,h have been replaced by u,v respectively.

H′u = Hu + vpT u − HuqT u

= Hu + v − Hu = v since pT u = qT u = 1

To match with the Davidon formula (10.19) first choose β = α′ = 0 and hence

pT u = αvT u = 1 and qT u = β′uT Hu = 1

Substituting gives

H′ = H − HuuT H
uT Hu

+
vvT

vT u
as required.
The formula in Exercise 41(i) is obtained by putting β = β′ = −α = −α′ . Thus

p = q = α(V− Hu) and hence pT u = α(v − Hu)T u = 1

Substituting gives the formula

H′ = H +
(v − Hu)(v − Hu)T

(v − Hu)T u

This whole class of solutions was devised by Huang. Many general results can be
proved for this class and many of the commonly used formulae are included in it.
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43 (a) The Fletcher-Reeves method is easily written as a MATLAB segment

global a b p

a=1;b=1;g=[3∗ a;b];p=-g;

lam=fminbnd(@ffr,0,2)

% gives lam = 0.3571

a=a+lam∗ p(1),b=b+lam∗ p(2),gold=g;g=[3∗ a;b]

% gives a= -0.0714 b= 0.6429 g= -0.2143 0.6429

p=-g+p∗ (g ′ ∗g)/(gold ′ ∗gold)

% gives p= 0.0765 -0.6888

lam=fminbnd(@ffr,0,2)

% gives lam = 0.9333

a=a+lam∗ p(1),b=b+lam∗ p(2),gold=g;g=[3∗ a;b]

% gives a=-4.0246e-016 b=-1.1102e-016

which is the minimum point. The M-file used is

function v=ffr(x)

global a b p

v=3∗(a+x∗ p(1))̂ 2+(b+x∗ p(2))̂ 2;

43(b) The three-variable problem is handled in a similar manner.

global a b c p

a=0.5;b=0.5;c=0.5;

f=(a-b+1)̂ 2+â 2∗ b̂ 2+(c-1)̂ 2;

g=[2∗ (a-b+1)+4∗ a∗ b̂ 2;-2∗ (a-b+1)+2∗ â 2∗b;2∗ (c-1)];

p=-g;W=[f;a;b;c];

for i=1:5

gold =g;lam=fminbnd(@ffr2,-2,2);

a=a+lam∗ p(1);b=b+lam∗ p(2);c=c+lam∗ p(3);

f=(a-b+1)̂ 2+â 2∗ b̂ 2+(c-1)̂ 2;W=[W[f;a;b;c]];

g=[2∗ (a-b+1)+4∗ a∗ b̂ 2;-2∗ (a-b+1)+2∗ â 2∗b;2∗ (c-1)];

p=-g+p∗ (g ′ ∗g)/(gold ′∗ gold);

end

c©Pearson Education Limited 2011



618 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

W

% gives the sequence of iterations

f 1.3125 0.0764 0.0072 0.0007 0.0004 0.0000

a 0.5000 -0.0950 0.0057 -0.0251 -0.0079 -0.0032

b 0.5000 0.9165 0.9276 0.9633 0.9742 0.9978

c 0.5000 0.7380 0.9674 1.0009 1.0044 1.0014

Review Exercises 10.7
1 The successive tableaux are as follows:

x1 x2 x3 x4 x5 Soln
z −12 −8 0 0 0 0
x3 1 1 1 0 0 350
x4 2 1 0 1 0 600
x5 1 3 0 0 1 900

x1 x2 x3 x4 x5 Soln
z 0 −2 0 6 0 3600
x3 0 0.5 1 −0.5 0 50
x1 1 0.5 0 0.5 0 300
x5 0 2.5 0 −0.5 1 600

x1 x2 x3 x4 x5 Soln
z 0 0 4 4 0 3800
x2 0 1 2 −1 0 100
x1 1 0 −1 1 0 250
x5 0 0 −5 2 1 350

Hence the solution is read from the table as x1 = 250, x2 = 100 and F = 3800.

2 Let x1, x2, x3 be the numbers of sailboard constructed of types 1,2,3. The
profit is

10x1 + 15x2 + 25x3

and the constraints are

5x1 + 10x2 + 25x3 ≤ 290

3x1 + 2x2 + x3 ≤ 72

10x1 + 20x2 + 30x3 ≤ 400
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The system only has ‘less than’ inequalities so the initial and subsequent tableaux
can be written down immediately.

x1 x2 x3 x4 x5 x6 Soln
z −10 −15 −25 0 0 0 0
x4 5 10 25 1 0 0 290
x5 3 2 1 0 1 0 72
x6 10 20 30 0 0 1 400

x1 x2 x3 x4 x5 x6 Soln
z −5 −5 0 1 0 0 290
x3 0.2 0.4 1 0.04 0 0 11.6
x5 2.8 1.6 0 −0.04 1 0 60.4
x6 4 8 0 −1.2 0 1 52

x1 x2 x3 x4 x5 x6 Soln
z 0 5 0 −0.5 0 1.25 355
x3 0 0 1 0.1 0 −0.05 9
x5 0 −4 0 0.8 1 −0.7 24
x1 1 2 0 −0.3 0 0.25 13

x1 x2 x3 x4 x5 x6 Soln
z 0 2.5 0 0 0.62 0.81 370
x3 0 0.5 1 0 −0.12 0.04 6
x4 0 −5 0 1 1.25 −0.88 30
x1 1 0.5 0 0 0.37 −0.01 22

The solution is x1 = 22, x2 = 0, x3 = 6 and maximum profit is £ 370.

3 Let x1, x2, x3 be the number of standard, super and deluxe cars respectively,
then the profit function is

100x1 + 300x2 + 400x3

and the constraints are

10x1 + 20x2 + 30x3 ≤ 1600
10x1 + 15x2 + 20x3 ≤ 1500

x2 + x3 ≤ 50
x1 + x2 + x3 ≥ 70
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The problem includes a ‘greater than’ inequality, so the two-phase approach is
needed. An artificial variable is introduced and the artificial cost is introduced in
phase 1. The z row of the tableau is manipulated to bring it to standard form.

x1 x2 x3 x4 x5 x6 x7 x8 Soln
z −1 −1 −1 0 0 0 1 0 −70
x4 10 20 30 1 0 0 0 0 1600
x5 10 15 20 0 1 0 0 0 1500
x6 0 1 1 0 0 1 0 0 50
x8 1 1 1 0 0 0 −1 1 70

x1 x2 x3 x4 x5 x6 x7 x8 Soln
z 0 0 0 0 0 0 0 1 0
x4 0 10 20 1 0 0 10 −10 900
x5 0 5 10 0 1 0 10 −10 800
x6 0 1 1 0 0 1 0 0 50
x1 1 1 1 0 0 0 −1 1 70

A feasible solution has been obtained so the method moves to phase 2. The z row
is first re-calculated

x1 x2 x3 x4 x5 x6 x7 Soln
z 0 −200 −300 0 0 0 −100 7000
x4 0 10 20 1 0 0 10 900
x5 0 5 10 0 1 0 10 800
x6 0 1 1 0 0 1 0 50
x1 1 1 1 0 0 0 −1 70

x1 x2 x3 x4 x5 x6 x7 Soln
z 0 −50 0 15 0 0 50 20500
x3 0 0.5 1 0.05 0 0 0.5 45
x5 0 0 0 −0.5 1 0 5 350
x6 0 0.5 0 −0.05 0 1 −0.5 5
x1 1 0.5 0 −0.05 0 0 −1.5 25

x1 x2 x3 x4 x5 x6 x7 Soln
z 0 0 0 10 0 100 0 21,000
x3 0 0 1 0.1 0 −1 1 40
x5 0 0 0 −0.5 1 0 5 350
x2 0 1 0 −0.01 0 2 −1 10
x1 1 0 0 0 0 −1 −1 20
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The solution is read off the table as x1 = 20, x2 = 10, x3 = 40 and the maximum
profit is £21,000.

Note that the (z, x7) entry is zero; so a non-unique solution is expected. Inter-
changing the x3 and x7 entries and completing one further tableau gives the
alternative solution x1 = 60, x2 = 50, x3 = 0 and profit is still £21,000.

The MAPLE solution

with(simplex):

cor3:={10∗ x+20∗ y+30∗ z<=1600,10∗ x+15∗ y+20∗ z<=1500,

y+z<=50,x+y+z>=70};
obr3:=100∗ x+300∗ y+400∗ z;

maximize(obr3,cor3,NONNEGATIVE);

# gives the solution {x=20, z=40,y=10}

MAPLE provides the same solution but does not identify the alternative solution.

Similarly, for the corresponding MATLAB code, which is

f=[-100,-300,-400];A=[10,20,30;10,15,20;0,1,1;-1,-1,-1];b=[1600;1500;50;-70];

options=optimset(‘LargeScale’,‘off’,‘Simplex’,‘on’);

[x,fval]=linprog(f,A,b,[],[],zeros(3,1),[],[],options)

4 Let the student buy x1 kg of bread and x2 kg of cheese, then the cost to be
minimized is

60x1 + 180x2

and the two constraints are

1000x1 + 2000x2 ≥ 3000

25x1 + 100x2 ≥ 100

There are two surplus and two artificial variables in the tableau and the artificial
cost function which has been processed to standard form.

Phase 1

x1 x2 x3 x4 x5 x6 Soln
z −1025 −2100 1 1 0 0 −3100
x5 1000 2000 −1 0 1 0 3000
x6 25 100 0 −1 0 1 100
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x1 x2 x3 x4 x5 x6 Soln
z −500 0 1 −20 0 21 −1000
x5 500 0 −1 20 1 −20 1000
x2 0.25 1 0 −0.01 0 0.01 1

x1 x2 x3 x4 x5 x6 Soln
z 0 0 0 0 1 1 0
x1 1 0 −0.002 0.04 0.002 −0.04 2
x2 0 1 0.0002 −0.02 −0.0002 0.02 0.5

Phase 1 is completed so the tableau is reconstituted as

x1 x2 x3 x4 Soln
z 0 0 0.03 1.2 −210
x1 1 0 −0.002 −0.04 2
x2 0 1 0.0002 0.02 0.5

It may be noted that the z row entries are positive; so the tableau is optimal and
there is no need to enter phase 2. Thus the minimum cost of the diet is 210p and
is made up of 2 kg of bread and 0.5 kg of cheese.

5 The square of the distance from the origin to the point (x, y) is

f = x2 + y2

so the problem is to optimize this function subject to the condition that it lies on
the curve

g = x2 − xy + y2 − 1 = 0

so

0 =
∂f

∂x
+ λ

∂g

∂x
= 2x + λ(2x − y)

0 =
∂f

∂y
+ λ

∂g

∂y
= 2y + λ(−x + 2y)

Subtracting these two equations gives

0 = 2(x − y) + λ(3x − 3y) ⇒ x = y or λ = −2
3
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Adding the two equations gives

0 = 2(x + y) + λ(x + y) ⇒ x = −y or λ = −2

The first possibility, x = y, gives the points, (1,1) and (−1,−1) with f = 2 in
each case and the second possibility, x = −y , gives

(
1√
3
,
−1√

3

)
and

(
−1√

3
,

1√
3

)
with f =

2
3

In this problem the cases λ = −2
3

and λ = −2 reproduce the identical solutions.
Although it is not proved, the first solution is the maximum and the second the
minimum.

6 The volume of the solid is

V = x3 + y3

where the sides of the two cubes are x and y . The surface area has essentially the
area of two faces of the smaller cube removed so

S = 7 = 6x2 + 4y2

The Lagrange multiplier equations are

3x2 + 12xλ = 0
3y2 + 8yλ = 0

The solutions when x = y = 0 can be dismissed since the volume is zero. There
are three other cases

Case 1 x = 0, y =
−8
3

λ =

√(
7
4

)
, V =

(
7
4

) 3
2

Case 2 y = 0, x = −4λ =

√(
7
6

)
, V =

(
7
6

) 3
2

Case 3 x = −4λ, y =
−8
3

λ, ⇒ 7 = 96λ2 +
256
9

λ2
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and hence λ =
±3

(4
√

10)
so the sides have lengths

3√
10

and
2√
10

and volume
35

(10)
3
2

The cases when either x = 0 or y = 0 imply that the problem has collapsed to a
single cube so these solutions are omitted as geometrically uninteresting.

7 The problem is to maximize the distance

(x − 1)2 + y2 + z2

subject to

2x + y2 + z = 8

The Lagrange equations are

2(x − 1) + 2λ = 0 ⇒ x = 1 − λ

2y + 2yλ = 0 ⇒ y = 0 or λ = −1

2z + λ = 0 ⇒ z =
−1
2

λ

There are two cases

y = 0

gives λ =
−12
5

so x =
17
5

, y = 0, z =
6
5

λ = −1

gives x = 2, z =
1
2

and y = ±
√

7
2

The first of these possibilities gives the maximum distance.

8 The Lagrange equations for this problem are

1 + 2λx = 0

2 + 2λy = 0

3 + 2λz = 0

and putting back into the constraint gives 2λ = ±1. The local extrema are therefore
at (1,2,3) and (−1,−2,−3) with corresponding F = 14 and F = −14.
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To obtain the global extremum all the points on each of the boundaries must be
examined. However, in this case, the geometry is sufficiently simple to establish
the result. The region is the inside of the sphere of radius

√
14 in the region

where all the variables are positive. The cost function comprises a series of parallel
planes, so the global maximum in the region is the local maximum at (1,2,3) and
the global minimum in the region is when all the variables are zero, namely (0,0,0)
and F = 0.

9 (i) We are given that 2s = a + b + c , so maximizing A2 with respect to b and
c, together with this constraint, gives

∂(A2)
∂b

= s(s − a)(s − c) + λ = 0,
∂(A2)

∂c
= s(s − a)(s − b) + λ = 0

Clearly b = c and the triangle is isosceles.
(ii) Now, as a so to the above equations we add

∂(A2)
∂a

= s(s − b)(s − c) + λ = 0

and we see that we must have a = b = c and the triangle is equilateral.

10 We need to consider the problem of maximizing

V = πr2h subject to the constraint
(a

r

)2

+
(π

h

)2

= b

Using the Lagrange multiplier approach we have the two equations

∂V

∂r
= 2πrh − 2a2

r3
λ = 0

∂V

∂h
= πr2 − 2π2

h3
λ = 0

together with the constraint itself. Eliminating λ and solving gives

h2 =
3π2

b
and r2 =

3a2

2b
Note that it has not been proved that these values give the maximum but this can
be inferred from physical or geometric reasoning.

c©Pearson Education Limited 2011



626 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

11 First notice that as k → ∞ then F → 0 and a careful Taylor expansion
shows that lim

k→1
F = 0. Take any k > 1, then F takes a positive value so we know

there must be a maximum for k > 1. We start the bracket procedure with k = 1.1
and initial increment of 0.1.

k 1.1 1.2 1.4 1.8 2.6 4.2
F/A 0.00721 0.01258 0.01962 0.02556 0.02602 0.01995

The maximum has been bracketed by 1.8 ≤ k ≤ 4.2 and the quadratic algorithm
is given in terms of anonymous functions as

qr11=@(x)[x;(log(x)-2∗(x-1)/(x+1))/(x-1)∧2]; %x and the function value

zz=[qr11(1.8),qr11(2.6),qr11(4.2)] % start values

zz = 1.8000 2.6000 4.2000

0.0256 0.0260 0.0200

% repeat from here

p=polyfit(zz(1,:),zz(2,:),2);
xstar=-0.5∗ p(2)/p(1);zstar=qr11(xstar);
if zstar(2)>zz(2,2)

if zstar(1)<zz(1,2),zz(:,3)=zz(:,2);else zz(:,1)=zz(:,2);end

zz(:,2)=zstar;

else

if zstar(1)<zz(1,2),zz(:,1)=zstar;else zz(:,3)=zstar;end

end % to here

Successive iterations of the segment produces the results

% iteration 1 gives u = 1.8000 2.3594 2.6000

v = 0.0256 0.0266 0.0260

% iteration 2 gives u = 1.8000 2.2573 2.3594

v = 0.0256 0.0267 0.0266

% iteration 3 gives u = 1.8000 2.2203 2.2573

v = 0.0256 0.0267 0.0267

% iteration 4 gives u = 1.8000 2.2024 2.2203

v = 0.0256 0.0267 0.0267

Clearly we are near the solution and a value of k = 2.2 would be adequate for
practical use in the bearing. Note Exercise 34(b).
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12 The function is now sufficiently complicated that hand computations become
extremely tedious. At least one set of calculations should be done by hand
but a computer implementation should then be encouraged. For a bracket, the
calculations give

R 2 2.5 3.5 5.5 9.5
Cost 83089 14899 1124 704 1418

and hence 3.5 < R < 9.5. Successive computations using the quadratic algorithm
described in Review Exercise 11 produce the output

R = 3.5000 5.5000 9.5000

cost = -1123.5 -704.4 -1417.5

R = 3.5000 5.5000 6.1210

cost = -1123.5 -704.4 -801.9

R = 3.5000 5.2493 5.5000

cost = -1123.5 -666.3 -704.4

R = 3.5000 5.0068 5.2493

cost = -1123.5 -631.6 -666.3

R = 3.5000 4.8615 5.0068

cost = -1123.5 -612.8 -631.6

The function can be put in an M-file or in the program as the anonymous function

qr12=@(x)[x;-2∗ (1000/x+pi∗ x∧2)∗(1+(1-1000/(4∗ pi∗x∧3))∧2)];

13 The problem is now beyond hand computation, except for the first step. The
bracket given is not useful since whatever internal point is chosen, the minimum is
always estimated at the mid point. It shows that these techniques are not foolproof
and a lot of checks must be inserted into any program. The following output was
produced from MATLAB.

best f -0.7729 -0.7584 -0.7524 -0.7508 -0.7503 -0.7501 -0.7500

x1 0.3147 0.5000 0.5629 0.6051 0.6243 0.6364 0.6427

x2 0.5000 0.5629 0.6051 0.6243 0.6364 0.6427 0.6464

x3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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where the code in Review Exercise 11 and the function is given in the M-file

function z=frev13(x)

t=(-x+sqrt(x̂ 2+4∗ (1-x̂ 2)))/2;

z=[x;-(1-t+t̂ 2)];

14 Note that x = a cos θ +
√

L2 − a2 sin2 θ and, by differentiating, the formula
for the velocity follows.
For the minimum, the bracketing

a=0;h=0.2;nmax=10;n=0;

zold=qr14(a);a=a+h;z=qr14(a);c=[z];

while((z(2)>zold(2))&(n<nmax))

n=n+1;zoldold=zold;zold=z;a=a+h;z=qr14(a);h=2∗ h;c=[c,z];

end

yields

a 0.2000 0.4000 0.8000 1.6000 3.2000

V 0.2637 0.5100 0.8889 0.9893 -0.0389

so the bracket is 0.8 to 3.2.
The quadratic algorithm follows the code of Review Exercise 11

% repeated application gives

V2 0.9893 1.0452 1.0545 1.0546 1.0546 1.0546 1.0546

a1 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000

a2 1.6000 1.3959 1.2935 1.2815 1.2777 1.2773 1.2772

a3 3.2000 1.6000 1.3959 1.2935 1.2815 1.2777 1.2773

where the function qr14 is obtained from the M-file

function a=qr14(x)

a=[x;sin(x)∗ (1+cos(x)/sqrt(9-sin(x)̂ 2))]; % note the sign
A similar calculation for the maximum gives a=5.006.

15 The time taken is t = D
ν so the total cost is

C

D
=

5
ν

+ 0.04ν
1
4 + 0.002ν
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The bracket procedure gives

ν 5 10 20 40 80
C/D 1.06981 0.59113 0.37459 0.30559 0.34213

The quadratic approximation method follows:

ν1 ν2 ν3 ν∗

ν 20 40 80 53.72005
C/D 0.37459 0.30559 0.34213 0.30881

ν 20 40 53.72005 45.78858
C/D 0.37459 0.30559 0.30881 0.30483

ν 40 45.78858 53.72005 44.3291
C/D 0.30559 0.30483 0.30881 0.30466

ν 40 44.3291 45.78858 44.06968
C/D 0.30559 0.30466 0.30483 0.30466

The optimum speed is about 44 mph.

16 The gradient and Hessian matrices are calculated as

G =

⎡
⎣ 2x + 2(x − y) + 1

4 (x + y + 1)3

−2(x − y) + 1
4 (x + y + 1)3

⎤
⎦

and

J =

⎡
⎣ 4 + 3

4 (x + y + 1)2 −2 + 3
4 (x + y + 1)2

−2 + 3
4 (x + y + 1)2 2 + 3

4 (x + y + 1)2

⎤
⎦

(a) Steepest descent

At a =
[

0
0

]
then f = 0.0625 and G =

[
0.25
0.25

]
so the first search takes place in

the direction

a =
[

0
0

]
− λ

[
0.25
0.25

]
=

[
−0.25λ
−0.25λ

]

Note the minus sign since a minimum is required. Putting these values into
the function and minimizing gives λ = 0.4582 and hence the new point at
x = −0.1145, y = −0.1145 and f = 0.0352.

c©Pearson Education Limited 2011



630 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

Further steps follow in a similar manner.

(b) Newton method
The use of a package like MATLAB is essential to make progress. The function,
gradient and Jacobian are computed in the M-file

function [f,G,J]=fnrev16(z)

f=z(1)̂ 2+(z(1)-z(2))̂ 2+(z(1)+z(2)+1)̂ 4/16;

G(1)=2∗ (z(1)-z(2))+2∗ z(1)+(z(1)+z(2)+1)̂ 3/4;

G(2)=-2∗ (z(1)-z(2))+(z(1)+z(2)+1)̂ 3/4;

J(1,1)=4+(z(1)+z(2)+1)̂ 2∗3/4;

J(1,2)=-2+(z(1)+z(2)+1)̂ 2∗3/4;

J(2,1)=J(1,2); J(2,2)=2+(z(1)+z(2)+1)̂ 2∗3/4;

and the calculation follows

a=[0;0];[f,G,J]=fnrev16(a)

% gives f = 0.0625 G = 0.2500 0.2500

J = 4.7500 -1.2500

-1.2500 2.7500
a=a-J\G ′

% gives a=-0.0870 -0.1304

[f,G,J]=fnrev16(a)

% gives f = 0.0329 G = 0.0329 0.0329

J = 4.4594 -1.5406

-1.5406 2.4594

a=a-J\G ′

% gives a=-0.1023 -0.1534 and G very small

(c) DFP

Two M-files for the function make the computations straightforward

function [f,G]=frev16(z)

f=z(1)̂ 2+(z(1)-z(2))̂ 2+(z(1)+z(2)+1)̂ 4/16;

G(1)=2∗ (z(1)-z(2))+2∗ z(1)+(z(1)+z(2)+1)̂ 3/4;

G(2)=-2∗ (z(1)-z(2))+(z(1)+z(2)+1)̂ 3/4;
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and

function f=fcrev16(x)

global a D

c=a-x∗ D;

f=(c(1)-c(2))̂ 2+c(1)̂ 2 + (c(1)+c(2)+1)̂ 4/16;

The DFP algorithm then iterates to the minimum

global a D

a=[0;0];H=eye(2);[f,G]=frev16(a)

% gives f = 0.0625 G = 0.2500 0.2500

for n=1:1

D=H∗ G ′;lamda=fminbnd(@fcrev16,0,2);

aold=a;Gold=G;

a=aold-lamda∗ D;h=a-aold;

[f,G]=frev16(a);y=G ′ -Gold ′ ;

H=H-H∗ y∗y ′∗H/(y ′∗ H∗y)+h∗ h ′/(h ′∗y);

end

a,gg=G ′ ,H,f

% gives a = -0.1145 -0.1145 f = 0.0352

gg = -0.1145 0.1145

H = 0.3504 -0.0974

-0.0974 1.1078

Repeating the lines of code, a further two iterations give,

a = -0.1027 -0.1540 f = 0.0323 gg = 0 0

H = 0.2959 0.1940

0.1940 0.5404

The built in function fminunc gives the solution in 5 iterations

options=optimset(‘GradObj’,‘on’,‘display’,‘iter’,‘HessUpdate’,‘DFP’,

‘LargeScale’,‘off’);

x=[0;0];

[x,fval]=fminunc(@frev16,x,options)
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17 The problem is not so straightforward since the variables X and Y are
constrained and the search is not over the whole plane. It is reasonably simple
to evaluate the function on a spreadsheet for X increasing from −0.25 by steps of
0.05 and 0.25 and Y increasing from 0 by steps of 0.1 to 2. It may be observed
that

Maximum value of 1.055 at X = 0, Y = 0.45

Minimum value of 0.528 at X = ±0.25, Y = 2

in the interior of the region

on the boundary of the region

A more accurate value of 1.0557 at X = 0, Y = 0.4736 for the maximum can be
found by any of the methods in the text. Typically one of the extreme points, in
this case the minimum, is on the boundary.
The MATLAB routine fmincon is set up to deal with exactly this type of problem
and can be accessed most easily through the Optimization Toolbox. From the
MATLAB window the single instruction gives the minimum immediately (similarly
for the maximum, with the sign fmincon(@(x)sqrt((.5+x(2))̂ 2+x(1)̂ 2)/

(x(1)̂ 2+x(2)̂ 2+.6979),[.1;1.5],[1,0;-1,0;0,1;0,-1],[.25;.25;2;0]) of

the function changed)

fmincon(@(x)sqrt((.5+x(2))∧ 2+x(1)∧ 2)/(x(1)∧ 2+x(2)∧ 2+.6979),[.1;1.5],

[1,0;-1,0;0,1;0,-1],[.25;.25;2;0])

18 The sketch of the progress over the first steps of Partan is shown in Figure
10.1.
The calculations of the first few steps are straightforward and give
Steepest descent

x1 =
[

0
0

]
, f1 = 1; x2 =

[ 1
2
0

]
, f2 =

1
2
; x3 =

⎡
⎢⎣

1
2
1
2

⎤
⎥⎦ , f3 =

1
4
; x4 =

⎡
⎢⎣

3
4
1
2

⎤
⎥⎦ , f4 =

1
8

Partan

x1 =
[

0
0

]
, f1 = 1; x2 =

[ 1
2
0

]
, f2 =

1
2
; z2 =

⎡
⎢⎣

1
2
1
2

⎤
⎥⎦ , f =

1
4
; x3 =

[
1
1

]
, f3 = 0
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Note that Partan obtains the minimum after one complete cycle. This method
was an improvement on steepest descent but has been superseded by DFP and
conjugate gradient methods which have been found to be superior in performance.

z 3

x 3
x 4

z 2

x 2

x 1

Figure 10.1: Illustration of the first steps of Partan in Exercise 18

19 The problem is to minimize the approximating quadratic

f(a + h) = f(a) + hT G +
1
2
hT Jh

subject to hT h = L2 . A Lagrange multiplier is required, so extending the argument
in section 10.4.3 gives the modified gradient as

0 = G + Jh + λh = G + (J + λI)h

and hence

h = −(J + λI)−1G

The implementation suggested can be computed straightforwardly for this exercise.
The derivatives are obtained and hence

λ = 0 x =
[

1
1

]
f = 1 G =

[
0
1

]
J =

[
0 −2
−2 2

]
so

x =
[

1
1

]
− 1

−4

[
2 2
2 0

] [
0
1

]
=

[
3/2
1

]
and f = 1
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Since there is no improvement, the next step is to take

λ = 1 x =
[

1
1

]
f = 1 G =

[
0
1

]
J =

[
0 −2
−2 2

]
so

x =
[

1
1

]
− 1

−1

[
3 2
2 1

] [
0
1

]
=

[
3
2

]
and f = −5

and the method is ready to proceed to the next iteration.

20(a) Here

f =
[

x − y
1
4 (x + y + 1)2

]
and J =

[
1 −1

1
2 (x + y + 1) 1

2 (x + y + 1)

]

so the sequence of calculations is

x =
[

0
0

]
F = 0.0625 f =

[
0

0.25

]
J =

[
1 −1

0.5 0.5

]

x =
[
−0.25
−0.25

]
F = 0.0039 f =

[
0

0.0625

]
J =

[
1 −1

0.25 0.25

]

x =
[
−0.375
−0.375

]
F = 0.00024 f =

[
0

0.0156

]
J =

[
1 −1

0.125 0.125

]

20(b) The functions in this exercise are more complicated, although the method
is identical.

f =

⎡
⎢⎣

1
x + y

x

1 + 2x + y

⎤
⎥⎦ and J =

⎡
⎢⎢⎣

−1
(x + y)2

−1
(x + y)2

1 + y

(1 + 2x + y)2
−x

(1 + 2x + y)2

⎤
⎥⎥⎦

The computations follow in MATLAB
x=[1;1];

a=1/(x(1)+x(2)); b=2∗ x(1)+x(2)+1;f=[a;x(1)/b]
% gives f= 0.5000 0.2500

J=[-a^2,-a^2;(1+x(2))/b^2,-x(1)/b^2]

% gives J= -0.2500 -0.2500

0.1250 -0.0625
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x=x-inv(J ′∗ J)∗J ′∗f,F=f ′∗ f

% gives x= 0.3333 3.6667 F= 0.3125

Repeating these three lines of code gives successive iterations. From the
calculations, the iterations gives x(1) approaches zero and x(2) approaches infinity!

21 Fitting data to any curve, except for a straight line, is quite a tricky job.
Optimization gives a method of finding a least squares fit of given data to a known
curve. The problem needs the method of Exercise 20 so the vector of functions and
the matrix of derivatives are required.

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
a

0.6 − 1
a + b

0.3 − 1
a + 2b

0.2 − 1
a + 3b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
a2

0

1
(a + b)2

1
(a + b)2

1
(a + 2b)2

2
(a + 2b)2

1
(a + 3b)2

3
(a + 3b)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x =
[

1
0

]
F = 1.29 f =

⎡
⎢⎣

0
−0.4
−0.7
−0.8

⎤
⎥⎦ J =

⎡
⎢⎣

1 0
1 1
1 2
1 3

⎤
⎥⎦

x =
[

1.07
0.27

]
F = 0.239 f =

⎡
⎢⎣

0.0654
−0.1463
−0.3211
−0.3319

⎤
⎥⎦ J =

⎡
⎢⎣

0.8734 0
0.5569 0.5569
0.3858 0.7716
0.2829 0.8488

⎤
⎥⎦

x =
[

0.9810
0.6922

]
F = 0.0316 f =

⎡
⎢⎣
−0.0194
0.0023
−0.1228
−0.1271

⎤
⎥⎦ J =

⎡
⎢⎣

1.0391 0
0.3572 0.3572
0.1787 0.3575
0.1070 0.3209

⎤
⎥⎦

The computations continue until the values of a and b do not change significantly.
MATLAB has built in programs for various versions of this problem, lscurvefit,
lsqlin, lsqnonlin, lsqnonneg.

22 It is assumed, without loss of generality, that A is a symmetric matrix.
Putting the search direction in the quadratic gives, using the symmetry of A,
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f + c + bT a + λbT d +
1
2
(aT Aa + 2λaT Ad + λ2dT Ad)

and differentiating

0 =
∂f
∂λ

= bT d + aT Ad + λdT Ad

Collecting up the terms

λmin =
−(b + Aa)T d

dT Ad

gives the required result.

23 To use the results of Exercise 22 it is necessary to write the function in the
form

f = 1 + [−2 0]
[

x
y

]
+

1
2
[x y]

[
4 −2
−2 2

] [
x
y

]

and the gradient is evaluated as

G =
[
−2 + 4x − 2y
−2x + 2y

]

The calculations proceed as

a =
[

0
0

]
f = 1 G =

[
−2
0

]
so d =

[
2
0

]

and

λmin = −
[−2 0]

[
2
0

]

[2 0]
[

4 −2
−2 2

] [
2
0

] =
1
4

The second iteration follows

a =
[

0.5
0

]
f = 0.5 G =

[
0
−1

]
so d =

[
0
−1

]

and
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λmin = −
[0 − 1]

[
0
1

]

[0 1]
[

4 −2
−2 2

] [
0
1

] =
1
2

The third iteration commences within the data

a =
[

0.5
0.5

]
f = 0.25 G =

[
−1
0

]

Because the function is a quadratic, the Newton method must converge in a single
iteration.

24 It is necessary to check that the solution given is appropriate.

y′ =
(1 + b)

b
e

x
b and y′′ =

(1 + b)
b2

e
x
b

yy′′ − y′2 + y′ =
(

1 + b

b2

)
e

x
b

[
(1 + b)e

x
b − b

]
−

(
1 + b

b

)2

e
2x
b +

(
1 + b

b

)
ex

and all the terms in the right hand side cancel to zero, so the differential equation
is satisfied. Also the point x = 0, y = 1 satisfies the equation. To evaluate the
derivative at x = 0

y′(0) = α =
1 + b

b
⇒ b =

1
α − 1

Thus, given α the value b can be computed and

y(1) = (1 + b)e
1
b − b

so that

f(α) = [ (1 + b)e
1
b − b − 3 ]2
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Using the bracket 1.4 < α < 1.6 the values are calculated to be

α b f
1.4 2.5 0.0776
1.5 2 0.0029
1.6 1.6667 0.0369

and the quadratic algorithm gives α∗ = 1.5218, b = 1.9278 and f = 8.9 × 10−5 ;
the final iterated value is α = 1.523, b = 1.9133.

25 and 26 Exercises 25 and 26 are extended problems that are open ended, so
no advice is given on the solution of these two questions.
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Applied Probability and Statistics

Exercises 11.3.7

1 Let X = lifetime, so X ∼ N(μ, 2500)

1(a) X̄ = 780, n = 30
Using z.025 = 1.96 from the normal table, the 95% confidence interval for μ is

780 ± 1.96 × 50/
√

30 = (762, 798)

1(b) We require n large enough so that

1.96 × 50√
n

≤ 10

hence, n ≥
(1.96 × 50

10
)2

= 96.04 i.e. n = 97.

2 From the data,
X̄ = 76.06, SX = 31.85, n = 36

Using z0.025 = 1.96 we have the confidence interval

X̄ ± 1.96SX/
√

n = (65.7, 86.5)

3 From the data

X̄ = 8.725, SX,n−1 = 1.064, n = 12

Using t.025,11 = 2.201 from the t -distribution table, the 95% confidence interval
for the mean is

8.725 ± 2.201 × 1.064/
√

12 = (8.05, 9.40)
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4 Given sample average X̄ = 73.2, standard deviation 5.4 and size 30, and using
t.025,29 = 2.045, the 95% confidence interval for the mean is

73.2 ± 2.045 × 5.4/
√

30 = (71.2, 75.2)

The value (75) in the hypothesis lies within the interval and the hypothesis is
accepted.

5 Given sample average X̄ = 3.42, standard deviation 0.68 and size 16, and
using t.005,15 = 2.947, the 99% confidence interval for the mean is

3.42 ± 2.947 × 0.68/
√

16 = (2.92, 3.92)

6 Given sample average X̄ = 26.4, standard deviation 4.28 and size 32, and
using t.025,31 � t.025,29 = 2.045 (alternatively the normal distribution figure of
1.96 could be used with a slight loss of accuracy), the 95% confidence interval for
the mean is

26.4 ± 2.045 × 4.28/
√

32 = (24.9, 27.9)

7 Given sample average X̄ = 56, standard deviation 3 and size 10, and using
t.025,9 = 2.262, the 95% confidence interval for the mean is

56 ± 2.262 × 3/
√

10 = (53.9, 58.1)

The value (58%) in the hypothesis lies within the interval and the hypothesis is
accepted at the 5% level.

8 Given respective sample averages X̄A = 36300 and X̄B = 39100, standard
deviations SA,n−1 = 5000 and SB,n−1 = 6100, and sizes nA = nB = 12, the
pooled estimate of standard deviation is

Sp =

√
11 × (50002 + 61002)

22
= 5577
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Using t.025,22 = 2.074 the 95% confidence interval for μB − μA is

39100 − 36300 ± 2.074 × 5577 ×
√

2
12

= (−1900, 7500)

Because zero lies within this interval, the hypothesis that μB > μA is rejected.

9 From the data, respective sample averages X̄A = 7281 and X̄B = 6885,
standard deviations SA,n−1 = 419.1 and SB,n−1 = 402.6, and sizes nA = nB = 8,
the pooled estimate of standard deviation is

Sp =

√
7 × (419.12 + 402.62)

14
= 410.9

Using t.05,14 = 1.761 and t.025,14 = 2.145, confidence intervals for μA − μB are

90% : 7281 − 6885 ± 1.761 × 410.9 ×
√

2
8

= (34, 758)

95% : 7281 − 6885 ± 2.145 × 410.9 ×
√

2
8

= (−45, 837)

The hypothesis that μA = μB is rejected at the 10% level but accepted at the 5%
level.

10 The sample proportion p̂ = 38
540 = 0.0704 and n = 540.

Using z.05 = 1.645 and z.025 = 1.96, confidence intervals for the true proportion
p are

90% : 0.0704 ± 1.645 ×
√

0.0704 × (1 − 0.0704)
540

= (0.052, 0.089)

95% : 0.0704 ± 1.96 ×
√

0.0704 × (1 − 0.0704)
540

= (0.049, 0.092)

The hypothesis that p < 0.05 is rejected at the 10% level but accepted at the 5%
level. Alternatively, the test statistic

Z =
0.0704 − 0.05√

0.05 × (1 − 0.05)/540
= 21.8
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leads to rejection at both 5% and 10% levels. The test statistic is more accurate
(the confidence interval is approximate).

11 Using z.05 = 1.645, the 90% confidence interval for proportion is

p̂ ± 1.645

√
p̂(1 − p̂)

n

Thus,

P

[
| p − p̂ |≤ 1.645

√
p̂(1 − p̂)

n

]
= 0.9

so with probability 0.9 the maximum error is 1.645
√

p̂(1 − p̂)/n . Although p̂ is
unknown before the experiment, a figure in the region of 0.25 is expected, hence
we require

1.645

√
0.25 × 0.75

n
≤ 0.05

from which

n ≥ 0.25 × 0.75
(0.05/1.645)2

= 203

If in fact n = 200, the sample proportion is p̂ = 55
200 = 0.275, and the 90%

confidence interval for p is

0.275 ± 1.645

√
0.275 × 0.725

200
= (0.223, 0.327)

12 Using sample proportions p̂1 = 0.31 and p̂2 = 74
150 = 0.493, and z.05 = 1.645

and z.025 = 1.96, confidence intervals for p1 − p2 are

90% : p̂1 − p̂2 ± 1.645
[
p̂1(1 − p̂1)

100
+

p̂2(1 − p̂2)
150

]1/2

= (−0.28,−0.08)
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95% : p̂2 − p̂1 ± 1.96
[
p̂1(1 − p̂1)

100
+

p̂2(1 − p̂2)
150

]1/2

= (−0.30,−0.06)

The hypothesis that p1 ≤ p2 − 0.08 is therefore accepted at the 10% level but
rejected at the 5% level.

13 Using sample proportions p̂1 = 30
180 = 0.1667 and p̂2 = 32

500−180 = 0.1, and
z.025 = 1.96, the 95% confidence interval for p1 − p2 is

p̂1 − p̂2 ± 1.96
[
p̂1(1 − p̂1)

180
+

p̂2(1 − p̂2)
320

]1/2

= (0.003, 0.130)

The hypothesis that p1 > p2 is therefore accepted at the 5% level. Alternatively,
the test statistic

Z =
p̂1 − p̂2[

p̂(1 − p̂)
(

1
180 + 1

320

)]1/2
= 2.17 > z.025

(where p̂ = 30+32
500 = 0.124) again leads to the hypothesis that p1 > p2 is accepted.

Exercises 11.4.7

14

XXX

YYY 1 2 3 total
1 0 0.17 0.08 0.25
2 0.20 0.11 0 0.31
3 0.14 0.25 0.05 0.44

total 0.34 0.53 0.13 1

14(a) Marginal distributions of X and Y (summing rows and columns) are

P(X = 1) = 0.34, P(X = 2) = 0.53, P(X = 3) = 0.13

P(Y = 1) = 0.25, P(Y = 2) = 0.31, P(Y = 3) = 0.44
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14(b)

P(Y = 3 | X = 2) =
P(X = 2 ∩ Y = 3)

P(X = 2)
=

0.25
0.53

= 0.472

14(c) The mean and variance of X are given by

E(X) = 1 × 0.34 + 2 × 0.53 + 3 × 0.13 = 1.79

E(X2) = 1 × 0.34 + 4 × 0.53 + 9 × 0.13 = 3.63

so σ2
X = 3.63 − 1.792 = 0.426

Similarly the mean and variance of Y are given by

E(Y) = 1 × 0.25 + 2 × 0.31 + 3 × 0.44 = 2.19

E(Y2) = 1 × 0.25 + 4 × 0.31 + 9 × 0.44 = 5.45

so σ2
X = 5.45 − 2.192 = 0.654

The expected value of the product XY is given by

E(XY) =1 × 0 + 2 × 0.17 + 3 × 0.08 + 2 × 0.2 + 4 × 0.11 + 9 × 0

+ 3 × 0.14 + 6 × 0.25 + 9 × 0.05 = 3.79

Hence the correlation coefficient is

ρX,Y =
3.79 − 1.79 × 2.19√

0.426 × 0.654
= −0.246

15

E(X) =
∫ 1/2

−1/2

xdx = 0

E(X3) =
∫ 1/2

−1/2

x3dx = 0

Cov (X,X2) = E(X3) − E(X)E(X2) = 0
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16 From cx ≤ y ≤ cx + 1 we infer y−1
c ≤ x ≤ y

c , so

fY (y) =
∫

fX,Y (x, y)dx

=

⎧⎪⎪⎨
⎪⎪⎩

∫ y/c

0
1dx =

y

c
if 0 ≤ y ≤ c∫ 1

0
1dx = 1 if c ≤ y ≤ 1∫ 1

(y−1)/c
1dx = 1 − 1

c
(y − 1) if 1 ≤ y ≤ 1 + c

17(a)

P(X > 100, Y > 100) =
1
8

∫ ∞

1

∫ ∞

1

xe−(x+y)/2dydx

=
1
8

∫ ∞

1

xe−x/2[−2e−y/2]∞1 dx

=
1
4
e−1/2

∫ ∞

1

xe−x/2dx

= −1
2
e−1/2[xe−x/2]∞1 +

1
2
e−1/2

∫ ∞

1

e−x/2dx

=
1
2
e−1 +

1
2
e−1/2[−2e−x/2]∞1

=
3
2e

= 0.552

17(b)

fY (y) =
1
8

∫ ∞

0

xe−(x+y)/2dx =
1
8
e−y/2

∫ ∞

0

xe−x/2dx

=
e−y/2

4
[
−xe−x/2|∞0 +

∫ ∞

0

e−x/2dx
]

=
1
2
e−y/2

Hence

P(Y > 2) =
∫ ∞

2

1
2
e−y/2dy = e−y/2|∞2 =

1
e

= 0.368
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18 From the data, if X denotes height and Y denotes weight, X̄ = 174.26,
SX = 7.184, Ȳ = 75.7, SY = 11.703, XY = 13270; so the sample correlation
coefficient is

r =
13270 − 174.26 × 75.7

7.184 × 11.703
= 0.934

19 From the data,

X̄ = 14.23, SX = 2.457, Ȳ = 16.68, SY = 3.4, XY = 243.47

so the sample correlation coefficient is

r =
243.47 − 14.23 × 16.68

2.457 × 3.4
= 0.732

20 Given a sample correlation coefficient r = 0.7 with n = 30, and using
z.025 = 1.96,

c = exp
(

2 × 1.96√
27

)
= 2.126

and the 95% confidence interval for correlation is
(

1 + r − c(1 − r)
1 + r + c(1 − r)

,
1 + r − (1 − r)/c
1 + r + (1 − r)/c

)
= (0.45, 0.85)

21 From Exercise 18, r = 0.934 with n = 8. Using z.025 = 1.96,

c = exp
(

2 × 1.96√
5

)
= 5.772

and the 95% confidence interval for correlation is
(

1 + r − c(1 − r)
1 + r + c(1 − r)

,
1 + r − (1 − r)/c
1 + r + (1 − r)/c

)
= (0.67, 0.99)
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22 From the data, if X and Y denote mathematics and computer studies marks
respectively,

X̄ = 56.80, SX = 8.880, Ȳ = 54.40, SY = 12.05, XY = 3137.4

so the sample correlation coefficient is

r =
3137.4 − 56.8 × 54.4

8.88 × 12.05
= 0.444

Using z.05 = 1.645,

c = exp
(

2 × 1.645√
17

)
= 2.221

and the 90% confidence interval is

(
1 + r − c(1 − r)
1 + r + c(1 − r)

,
1 + r − (1 − r)/c
1 + r + (1 − r)/c

)
= (0.08, 0.70)

Similarly using z.025 = 1.96,

c = exp
(

2 × 1.96√
17

)
= 2.588

and the 95% confidence interval is (0.00, 0.74). This suggests that the correlation
coefficient is significant at the 10% level but is marginal at the 5% level. The test
statistic

Z =
√

17
2

ln
1 + 0.444
1 − 0.444

= 1.968

leads to a similar conclusion. The ranks of the data are as follows:

Math. 3.5 20 2 16.5 13 16.5 13 7 19 3.5
10.5 5 18 10.5 7 7 15 13 9 1

Comp. 14 16.5 8 20 4 15 11.5 4 18.5 6.5
6.5 16.5 9 18.5 10 11.5 2 13 4 1
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The rank correlation is rs = 0.401, and the test statistic

Z = rs

√
n − 1 = 1.748

This is significant at the 10% level. (The approximate formula for rank correlation
gives a value 0.405, from which Z = 1.767 with the same result.)

23(a) ∫ 1

0

∫ 1

x

fX,Y (x, y)dydx =
∫ 1

0

∫ 1

x

c(1 − y)dydx

=
∫ 1

0

c[y − y2

2 ]1xdx

=
∫ 1

0

c

(
1
2
− x +

1
2
x2

)
dx

= c

[
1
2
x − 1

2
x2 +

1
6
x3

]1

0

=
c

6
Since the joint density must integrate to unity, we must have c = 6.

23(b)

P(X <
3
4
, Y >

1
2
) =

∫ 1

1/2

∫ 3/4

0

fX,Y (x, y)dxdy

=
∫ 1

1/2

∫ min{3/4,y}

0

c(1 − y)dxdy

=
∫ 3/4

1/2

∫ y

0

c(1 − y)dxdy +
∫ 1

3/4

∫ 3/4

0

c(1 − y)dxdy

=
∫ 3/4

1/2

c(1 − y)ydy +
∫ 1

3/4

3
4
c(1 − y)dy

= c

[
y2

2
− y3

3

]3/4

1/2

+
3
4
c

[
y − y2

2

]1

3/4

= 6
[

9
32

− 27
192

− 1
8

+
1
24

]
+

9
2

[
1 − 1

2
− 3

4
+

9
32

]
= 0.484
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23(c)

fX(x) =
∫ 1

x

c(1 − y)dy = 6
[
y − y2

2

]1

x

= 6
(

1
2
− x +

x2

2

)
for 0 ≤ x ≤ 1

fY (y) =
∫ y

0

c(1 − y)dx = 6(1 − y)y for 0 ≤ y ≤ 1

24 Individual density functions for X and Y are

fX(x) =
{ 2 for 29.8 < x < 30.3

0 otherwise

fY (y) =
{ 2 for 30.1 < y < 30.6

0 otherwise

By independence, the joint density function is therefore

fX,Y (x, y) =
{ 4 for 29.8 < x < 30.3 and 30.1 < y < 30.6

0 otherwise

The required probability is therefore

P(0 ≤ Y − X ≤ 0.6) =
∫ 30.3

29.8

∫ min{30.6,x+0.6}

max{30.1,x}
4dydx

=
∫ 30.0

29.8

∫ x+0.6

30.1

4dydx

+
∫ 30.1

30.0

∫ 30.6

30.1

4dydx +
∫ 30.3

30.1

∫ 30.6

x

4dydx

= 4
[∫ 30.0

29.8

(x − 29.5)dx +
∫ 30.1

30.0

0.5dx

+
∫ 30.3

30.1

(30.6 − x)dx

]

= 4
[[x2

2
− 29.5x

]30.0

29.8
+ 0.5 × 0.1 +

[
30.6x − x2

2
]30.3

30.1

]
= 0.84
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Alternatively, the shaded area
must be excluded from the
square. The two parts of
shaded area together form
a square of side 0.2, so
P(0 ≤ Y − X ≤ 0.6) =
0.5 × 0.5 − 0.2 × 0.2

0.5 × 0.5
= 0.84.

Exercises 11.5.5

25 From the data,

X̄ = 16.370, Sx = 6.789, Ȳ = 36.110, Sy = 14.576,XY = 689.343

Hence
b̂ =

689.343 − 16.37 × 36.11
6.7892 = 2.13

â = 36.11 − 2.13 × 16.37 = 1.22

26 From the data,

X̄ = 6.5, SX = 3.452, Ȳ = 101.5, SY = 50.74, XY = 834.25

Hence, the regression coefficients are

b̂ =
834.25 − 6.5 × 101.5

3.4522
= 14.64

â = 101.5 − 14.64 × 6.5 = 6.315

When load (X) is 15 kg, a deflection of 226mm is predicted.
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27 From the results in Example 11.17 we find â = −2.294 and b̂ = 0.811, and
when 15V is measured a tension of 9.88 kN is predicted.
Using t.025,12 = 2.179 and

SE =
√

S2
Y − b̂2S2

X =
√

16.25 − 0.8112 × 34.51 = 0.360

(remember that X and Y are essentially reversed compared with Example 11.17),
the 95% confidence interval for tension when 15V are measured is

9.88 ± 2.179 × 0.36 ×
√

1 + (15 − 12.07)2/24.51
12

= (9.62, 10.14)

28(a) From the data,

X̄ = 34.17, SX = 11.70, Ȳ = 453.8, SY = 59.34, XY = 15944

and the regression coefficients are

b̂ =
15944 − 34.17 × 453.8

11.72
= 3.221 (using unrounded figures)

â = 453.8 − 3.221 × 34.17 − 343.7

For advertising x = 6 (£ 6000), sales of £ 537,000 are predicted.

28(b) SE =
√

59.342 − 3.2212 × 11.72 = 45.8 and using t.025,10 = 2.228 the
95% confidence interval for regression slope is

b̂ ± t.025,10
SE

SX

√
10

= (0.46, 5.98)

The hypothesis that b = 0 is rejected at the 5% level.

28(c) The 95% confidence interval for mean sales when x = 60 is

537 ± 2.228 × 45.8 ×
√

1 + (60 − 34.17)2/136.8
10

= (459, 615)
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29 From the data,

X̄ = 11.5, SX = 2.291, Ȳ = 13.25, SY = 2.99, XY = 158.38

so the regression coefficients are

b̂ =
158.38 − 11.5 × 13.25

2.2912
= 1.143

â = 13.25 − 1.143 × 11.5 = 0.107

and Y = 16.1 is predicted when x = 14. Also using

SE =
√

S2
Y − b̂2S2

X = 1.442

and t.05,6 = 1.943, the 90% confidence interval for mean number of defectives per
hour when x = 14 is

16.1 ± 1.943 × 1.442 ×
√

1 + (14 − 11.5)2/5.25
6

= (14.4, 17.8)

30 Given a model (with no constant) of form

Yi = bXi + Ei

and minimizing

Q =
n∑

i=1

[Yi − bXi]2

we have
dQ

db
= −2

n∑
i=1

Xi[Yi − b̂Xi] = 0

hence

b̂ =
∑n

i=1 XiYi∑n
i=1 X2

i
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31 If X denotes voltage and Y = X/R denotes current then from the data,

ΣiXiYi = 5397, ΣiX
2
i = 650

so that (using the result of the previous exercise)

b̂ = 8.30

The estimated resistance is R =
1000
8.3

= 120Ω.

32 Taking logs we have

ln Pi + λ ln Vi = ln C

This is of the form Yi = a + bXi with

Yi = ln Pi, a = ln C, b = −λ, Xi = ln Vi

From the data,

X̄ = 4.272, SX = 0.254, Ȳ = 3.423, XY = 14.452

so that
b̂ = −2.664 and â = 14.80

Hence
Ĉ = eâ = 2.69 × 106 and λ̂ = −b̂ = 2.66

When V = 80cm3 , a pressure P = 22.9kg/cm3 is predicted.

33 Taking logs we have

ln Yi = ln a + b ln Xi

or Yi
′ = a′ + bX′

i

From the data,

X̄′ = 6.183, SX′ = 1.515, Ȳ ′ = 2.377, X′Y ′ = 12.266

c©Pearson Education Limited 2011



654 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

so
b̂ = −1.059, â′ = 8.927 and â = 7533

For a lot size X = 300, a unit cost of 17.9 is predicted.

Exercises 11.6.3

34 Under the hypothesis, P(A) = 4
7 , P(B) = 2

7 , P(C) = 1
7 .

observed probability expected χ2χ2χ2 contribution
A 63 4/7 57.14 0.601
B 22 2/7 28.57 1.511
C 15 1/7 14.29 0.035

Total 2.147
No parameters were estimated (t = 0), so we compare χ2 = 2.147 with χ2

0.05,2 =
5.991. The hypothesis is accepted.

35 The total number of books is 640, so a uniform number would be 128 per
day. Hence

Obs. (fk)(fk)(fk) : 153 108 120 114 145
Exp. (ek)(ek)(ek) : 128 128 128 128 128
χ2χ2χ2 contribution: 4.9 3.1 0.5 1.5 2.3

The total chi-square value is
χ2 = 12.3

and this is greater than χ2
.05,4 = 9.49 (significant at 5%, but not significant at

1%).

36 The observed mean number of flaws per sample is (12 + 6 × 2)/50 or 0.48.
Setting λ = 0.48, the Poisson probabilities are given by λke−λ/k! and hence
expected values are as follows:

number
of flaws Obs. (fk)(fk)(fk) probability exp. (ek)(ek)(ek) χ2χ2χ2 contribution

0 32 0.619 30.9 0.036
1 12 0.297 14.9 0.547

≥ 2 6 0.084 4.2 0.761
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The total chi-square value is

χ2 = 1.35

which is very small, so the Poisson hypothesis is accepted.

37 The observed average number of α-particles per time interval (taking class
> 10 as 11 for this calculation) is

(203 + 2 × 383 + . . . + 11 × 6)/(57 + 203 + . . . + 6) = 3.87

Using this value for λ in the Poisson probabilities and proceeding as in the previous
exercise a total chi-square value

χ2 = 12.97

is obtained. One parameter has been estimated and used for predicting the exp-
ected values, so the comparison is with χ2

.05,10 = 18.3, and the Poisson hypothesis
is accepted.

38 Using the measured average and standard deviation, probabilities can be
obtained from the normal table as follows:

P(X < 6.5) = P
(X − 10

2
<

6.5 − 10
2

)
= Φ(−1.75) = 1 − Φ(1.75) = 0.0401

P(X < 7.5) = 1 − Φ(1.25) = 0.1056

P(X < 8.5) = 1 − Φ(0.75) = 0.2266

P(X < 9.5) = 1 − Φ(0.25) = 0.4013

P(X < 10.5) = Φ(0.25) = 0.5987

P(X < 11.5) = Φ(0.75) = 0.7734

P(X < 12.5) = Φ(1.25) = 0.8944

P(X < 13.5) = Φ(1.75) = 0.9599

P(X < 13.5) = 0.0401
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The class probabilities can now be inferred by

P(6.5 < X < 7.5) = P(X < 7.5) − P(X < 6.5) = 0.0655

and so on; hence, the following table:

Class Probability Expected Sample 1 Sample 2
< 6.5 0.0401 4.01 4 3

6.5–7.5 0.0655 6.55 6 6
7.5–8.5 0.1210 12.10 16 16
8.5–9.5 0.1747 17.47 16 13

9.5–10.5 0.1974 19.74 17 26
10.5–11.5 0.1747 17.47 20 7
11.5–12.5 0.1210 12.10 12 19
12.5–13.5 0.0655 6.55 6 5

> 13.5 0.0401 4.01 3 5

For sample 1, χ2 = 2.48 which is not significant.

For sample 2, χ2 = 15.51 which exceeds χ2
.025,6 = 14.45 (significant at 2.5% level)

but does not exceed χ2
.01,6 = 16.81 (not significant at 1% level). The second

subscript is m − t − 1 with m = 9 (classes) and t = 2 (parameters estimated).

39 The contingency table is as follows:

Perfect Intermediate Unacceptable Total
A 89 (89.04) 23 (21.44) 12 (13.52) 124
B 62 (58.88) 12 (14.18) 8 (8.94) 82
C 119 (122.07) 30 (29.39) 21 (18.54) 170

Total 270 65 41 376

The expected values are shown in brackets,

270 × 124
376

= 89.04
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and so on. Hence

χ2 =
(89 − 89.04)2

89.04
+ · · · + (21 − 18.54)2

18.54
= 1.30

This is less than χ2
.05,(3−1)(3−1) = 9.49, so there is no significant difference in

quality.

40 The contingency table (with the expected values in brackets) is as follows:

o.k. defective total
442 (441.6) 8 (8.38) 450
536 (539.8) 14 (10.25) 550
544 (539.8) 6 (10.25) 550
397 (392.5) 3 (7.45) 400
593 (588.8) 7 (11.18) 600
442 (441.6) 8 (8.38) 450
434 (441.6) 16 (8.38) 450
195 (196.3) 5 (3.73) 200
438 (441.6) 12 (8.38) 450
594 (588.8) 6 (11.18) 600
585 (588.8) 15 (11.18) 600
541 (539.8) 9 (10.25) 550

5741 109 5850

Hence, χ2 =
(442 − 441.6)2

441.6
+ · · · + (9 − 10.25)2

10.25
= 20.56 which exceeds χ2

.05,11 =
19.68 but is less than χ2

.025,11 = 21.92. The variation is significant at the 5%
level. For a 2 × c table of this form, effectively, a comparison of c proportions, it
is quicker (and equivalent) to compute

χ2 =
c∑

j=1

(fj − nj p̂)2

nj p̂(1 − p̂)

where fj is the number of defectives in column j (total nj ) and p̂ =
c∑

j=1

fj/
c∑

j=1

nj

is the overall sample proportion of defectives.
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41 The contigency table (with expected values in brackets and adjusted residuals
underneath) is as follows:

Spending Jacket Shirt Trousers Shoes Total
level
Low 21(36) 94(92) 57(47) 113(110) 285

−3.0 0.4 1.8 0.4
Medium 66(66) 157(169) 94(87) 209(204) 526

0.0 −1.5 1.0 0.7
High 58(43) 120(110) 41(57) 125(133) 344

2.9 1.3 −2.8 −1.1
Total 145 371 192 447 1155

Chi-square = 20.7, d.f. = (4 − 1)(3 − 1) = 6, so compare with χ2
0.005,6 = 18.5 :

significant at 0.5% level. High-spending customers are tending to buy more of the
jacket and less of the trousers. For low-spending customers, it is the other way
round.

42 If p is the proportion requiring adjustments, the number of such sets in
a sample of size n is binomial with parameters n, p . With n = 4, to test the
hypothesis that p = 0.1 we have

P(0) = 0.94 = 0.6561

P(1) =
(

4
1

)
0.930.1 = 0.2916

P(2) =
(

4
2

)
0.920.12 = 0.0486

P(3) =
(

4
3

)
0.9 × 0.13 = 0.0036

Hence the following table:

kkk fkfkfk pkpkpk ek = 200pkek = 200pkek = 200pk χ2χ2χ2 contribution
0 110 0.6561 131.22 3.43
1 73 0.2916 58.32 3.70
2 16 0.0486 9.72 4.06
3 1 0.0036 0.72 0.11
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The total chi-square value is χ2 = 11.30, which is significant at 5% (χ2
.05,3 = 7.82)

but not quite significant at 1% (χ2
.01,3 = 11.35).

Using proportions, the total number of sets requiring adjustments is 73 + 2× 16 +
3 × 1 = 108, so

p̂ =
108
800

= 0.135

Using z.025 = 1.96 and z.005 = 2.576, confidence intervals for the proportion p of
sets requiring adjustments are

95% : p̂ ± 1.96

√
p̂(1 − p̂)

800
= (0.111, 0.159)

99% : p̂ ± 2.576

√
p̂(1 − p̂)

800
= (0.104, 0.166)

This indicates that p > 0.1, significant (just) at the 1% level.

Exercises 11.7.4

43 We must have

1 =
∫ ∞

0

fX(x)dx = c

∫ ∞

0

xe−2xdx

= −1
2
c[xe−2x]∞0 +

1
2
c

∫ ∞

0

e−2xdx

=
1
2
c
[
−1

2
e−2x

]∞
0

=
c

4

so c = 4. The m.g.f. is then

MX(t) =
∫ ∞

0

etxfX(x)dx = 4
∫ ∞

0

xe(t−2)xdx

=
4

t − 2
[xe(t−2)x]∞0 − 4

t − 2

∫ ∞

0

e(t−2)xdx

=
4

(t − 2)2
provided t < 2
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Hence

E(X) = M′
X(0) = − 8

(t − 2)3

∣∣∣∣
t=0

= 1

E(X2) = M′′
X(0) =

24
(t − 2)4

∣∣∣∣
t=0

=
3
2

Var(X) = E(X2) − [E(X)]2 =
1
2

44 If X1, . . . ,Xn are independent Poisson random variables with parameters
λ1, . . . , λn and if Y = X1 + . . . + Xn then

MY (t) = MX1(t) . . .MXn
(t)

= exp[λ1(et − 1)] . . . exp[λn(et − 1)]

= exp[(λ1 + . . . + λn)(et − 1)]

Hence, Y is another Poisson random variable with parameter λ = λ1 + . . . + λn .

45 Numbers of breakdowns in one hour are separately binomial with parameters
n1 = 30, p1 = 0.01 and n2 = 40, p2 = 0.005 respectively, and hence approximately
Poisson with parameters λ1 = 0.3 and λ2 = 0.2 respectively. The total number of
breakdowns per hour is therefore also approximately Poisson with λ = λ1 + λ2 =
0.5, and

P (three or more) � 1 − e−λ
(
1 + λ +

λ2

2!
)

= 0.014

46 Let the proportion defective be p . By the Poisson approximation,

P (k defective in 100) � λke−λ

k!

where λ = 100p . The requirement is

P (k ≤ 1) � e−λ(1 + λ) > 0.9

from which λ < 0.531 (solving this as a nonlinear equation) and hence p < 0.531
100 =

0.0053. Therefore, at least 99.47% of servomechanisms must be satisfactory.
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47 With

fZ(z) =
1√
2π

e−z2/2, −∞ < z < ∞

the m.g.f. is

MZ(t) =
1√
2π

∫ ∞

−∞
etze−z2/2dz

=
1√
2π

∫ ∞

−∞
e−

1
2 (z2−2tz+t2)et2/2dz

= et2/2

∫ ∞

−∞

1√
2π

e−
1
2 (z−t)2dz

The integrand is the p.d.f. of a normal random variable with mean t and standard
deviation equalling one, hence

MZ(t) = et2/2

Exercises 11.9.7

48 From the table (Figure 11.29), with n = 50, p = 0.1 so that np = 5, we read
off the Shewhart warning limit as 9.5 and the action limit as 13.5. For the given
data, the warning limit is exceeded at samples 3, 9 and 11, and the action limit is
exceeded at sample 12. The upper control limit is given by

UCL = np + 3
√

np(1 − p) = 11.4

and this is first exceeded at sample 9.

49 From Figure 11.29, with n = 100, p = 0.02 so that np = 2, we have Shewhart
warning and action limits 5.5 and 7.5 respectively. The warning limit is exceeded
three times (samples 20, 22 and 25) before the action limit is exceeded at sample
28. The upper control limit is given by

UCL = np + 3
√

np(1 − p) = 6.2

and this is first exceeded at sample 25.
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50 Using σ = 3 and n = 10, the Shewhart warning and action limits are

cW = 1.96σ/
√

n = 1.86

cA = 3.09σ/
√

n = 2.93

(above and below the mean). Relative to the mean, the warning limit is exceeded
at samples 3 and 9, and the action limit at sample 12.

51 Using σ = 3 and n = 10, the Shewhart warning and action limits above the
design mean μ = 12 are

μ + 1.96σ/
√

n = 13.86

μ + 3.09σ/
√

n = 14.93

The warning limit is exceeded several times (at samples 6, 12, 15, 17 and 18) before
the action limit is crossed at sample 19.

52(a) Using σ = 3 and n = 10, the cusum parameters are

r =
σ

2
√

n
= 0.474 (relative to the mean)

h = 5
σ√
n

= 4.74

The chart is built up in the following table:

value -0.2 1.3 2.1 0.3 -0.8 1.7 1.3 0.6 2.5 1.4 1.6 3.0
cusum 0 0.83 2.45 2.28 1.00 2.23 3.05 3.18 5.21 6.13 7.26 9.78

The decision interval (h) is exceeded at sample 9.

52(b) Using r = 0.3 and σ, n as above, the GMA action limits are

±3.09
√

r

2 − r

σ√
n

= ±1.23
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(relative to the mean). The chart is built up in the following table:

value -0.2 1.3 2.1 0.3 -0.8 1.7 1.3 0.6 2.5 1.4 1.6 3.0
GMA -0.06 0.35 0.87 0.70 0.25 0.69 0.87 0.79 1.30 1.33 1.41 1.89

The action limit is exceeded at sample 9.

53 For the cusum chart we have μ = 12, σ = 3 and n = 10, so

r = μ +
σ

2
√

n
= 12.47

h = 5
σ√
n

= 4.74

For the GMA chart with r = 0.3 we have action limits at

μ ± 3.09
√

r

2 − r

σ√
n

= 10.77 and 13.23

The control charts are built up in the following table:

X̄mX̄mX̄m 12.8 11.2 13.4 12.1 13.6 13.9 12.3 12.9 13.8 13.1
cusum 0.33 0 0.93 0.55 1.68 3.10 2.93 3.35 4.68 5.31
GMA 12.24 11.93 12.37 12.29 12.68 13.05 12.82 12.85 13.13 13.12
X̄mX̄mX̄m 12.9 14.0 13.7 13.4 14.2 13.1 14.0 14.0 15.1 14.3
cusum 5.73 7.26 8.48 9.41 11.13 11.76 13.28 14.81 17.44 19.26
GMA 13.06 13.34 13.45 13.43 13.66 13.49 13.65 13.75 14.16 14.20

The cusum chart indicates action at sample 10, the GMA chart at sample 12.

54 Using n = 50, p = 0.1 so that np = 5, the cusum parameters from Figure
11.31 are r = 7, h = 8.5 (nearest values).

count 5 8 11 5 6 4 9 7 12 9 10 14
cusum 0 1 5 3 2 0 2 2 7 9 12 19

The chart indicates action at sample 10.
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55 Using n = 100, p = 0.02 so that np = 2, the cusum parameters from Figure
11.31 are r = 3, h = 5.5 (nearest values).

count 3 3 5 3 5 0 3 1 3 5 4 2 4 3 5 4
cusum 0 0 2 2 4 1 1 0 0 2 3 2 3 3 5 6
count 3 4 5 6 5 6 4 4 7 5 4 8 5 6 6 7
cusum 6 7 9 12 14 17 18 19 23 25 26 31 33 36 39 43

The chart indicates action at sample 16.

56 For the Shewhart chart we have n = 12, σ = 1, and hence warning and action
limits given by

cW = 1.96σ/
√

n = 0.57

cA = 3.09σ/
√

n = 0.89

For the cusum chart we have

r =
σ

2
√

n
= 0.144 (relative to the mean)

h = 5
σ√
n

= 1.443

For the GMA chart with r = 0.2, the action limit is

3.09
√

r

2 − r

σ√
n

= 0.297

X̄mX̄mX̄m 0.1 0.3 -0.2 0.4 0.1 0 0.2 -0.1 0.2 0.4 0.5
cusum 0 .156 0 .256 .211 .067 .123 0 .056 .311 .667
GMA .020 .076 .021 .097 .097 .078 .102 .062 .089 .152 .221
X̄mX̄mX̄m 0.1 0.4 0.6 0.3 0.4 0.3 0.6 0.5 0.4 0.2 0.3
cusum .623 .878 1.334 1.490 1.745 1.901 2.357 2.712 2.968 3.024 3.179
GMA .197 .238 .310 .308 .326 .321 .377 .402 .401 .361 .349
X̄mX̄mX̄m 0.5 0.7 0.3 0.1 0.6 0.5 0.6 0.7 0.4 0.5
cusum 3.535 4.091 4.246 4.202 4.658 5.013 5.469 6.025 6.280 6.636
GMA .379 .443 .415 .352 .401 .421 .457 .505 .484 .488

For the Shewhart chart there are several warnings but no action indicated. For the
cusum and GMA charts, action is indicated at samples 15 and 14 respectively.
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57 The GMA Sm is defined recursively by

S0 = μX

Sm = rX̄m + (1 − r)Sm−1 for m ≥ 1

Substituting for Sm−1 , then Sm−2 and so on gives

Sm = rX̄m + (1 − r)[rX̄m−1 + (1 − r)Sm−2]

= r[X̄m + (1 − r)X̄m−1] + (1 − r)2[rXm−2 + (1 − r)Sm−3]

and eventually

Sm = r
m−1∑
i=0

(1 − r)iX̄m−i + (1 − r)mμX

But E(X̄m−i) = μX and Var(X̄m−i) =
σ2

X

n
for all i,m .

Using the result
m−1∑
i=0

xi =
1 − xm

1 − x
for | x |< 1

we have

E(Sm) = rμX

m−1∑
i=0

(1 − r)i + (1 − r)mμX

= rμX
1 − (1 − r)m

r
+ (1 − r)mμX

= μX

Var(Sm) =
σ2

X

n
r2

m−1∑
i=0

[(1 − r)2]i =
σ2

Xr2

n

1 − (1 − r)2m

1 − (1 − r)2

=
σ2

X

n
[1 − (1 − r)2m]

r

2 − r

−→
( r

2 − r

)σ2
X

n
as m → ∞

58 Let Xm = count of defectives for sample m , n = sample size, p = probability
of defective. Define

S0 = np

Sm = rXm + (1 − r)Sm−1 for m ≥ 1
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Substituting for Sm−1, Sm−2 and so on (as in the previous exercise) leads to

Sm = r
m−1∑
i=0

(1 − r)iXm−i + (1 − r)mnp

From the mean and variance of the binomial distribution,

E(Xm−i) = np

Var(Xm−i) = np(1 − p)

hence

E(Sm) = rnp
m−1∑
i=0

(1 − r)i + (1 − r)mnp

= np[1 − (1 − r)m + (1 − r)m] = np

Var(Sm) = np(1 − p)r2
m−1∑
i=0

[(1 − r)2]i

=
( r

2 − r

)
[1 − (1 − r)2m]np(1 − p)

−→
( r

2 − r

)
np(1 − p) as m → ∞

The upper control limit for n = 50, p = 0.05, r = 0.2 is

UCL = np + 3
√( r

2 − r

)
np(1 − p) = 4.04

XmXmXm 3 5 2 2 1 6 4 4 2 6
SmSmSm 2.6 3.08 2.86 2.69 2.35 3.08 3.27 3.41 3.13 3.70
XmXmXm 7 4 5 5 8 6 5 9 7 8
SmSmSm 4.36 4.29 4.43 4.55 5.24 5.39 5.31 6.05 6.24 6.59

The chart indicates action after 11 samples.

59 For the Shewhart chart we have n = 10, μ = 6, σ = 0.2 and hence warning
and action limits given by

cW = μ ± 1.96σ/
√

n = 5.88 and 6.12

cA = μ ± 3.09σ/
√

n = 5.80 and 6.20
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For the cusum chart we have

r = μ +
σ

2
√

n
= 6.032

h = 5
σ√
n

= 0.316

For the GMA chart with r = 0.2, the action limits are

μ ± 3.09
√

r

2 − r

σ√
n

= 5.935 and 6.065

X̄mX̄mX̄m 6.04 6.12 5.99 6.02 6.04 6.11 5.97 6.06 6.05 6.06
cusum 0.01 0.10 0.06 0.04 0.05 0.13 0.07 0.10 0.12 0.14
GMA 6.01 6.03 6.02 6.02 6.03 6.04 6.03 6.03 6.04 6.04
X̄mX̄mX̄m 6.17 6.03 6.13 6.05 6.17 5.97 6.07 6.14 6.03 5.99
cusum 0.28 0.28 0.38 0.40 0.54 0.47 0.51 0.62 0.62 0.58
GMA 6.07 6.06 6.07 6.07 6.09 6.07 6.07 6.08 6.07 6.05
X̄mX̄mX̄m 6.10 6.01 5.96 6.12 6.02 6.20 6.11 5.98 6.02 6.12
cusum 0.65 0.62 0.55 0.64 0.63 0.80 0.88 0.82 0.81 0.90
GMA 6.06 6.05 6.03 6.05 6.05 6.08 6.08 6.06 6.05 6.07

The Shewhart chart indicates action after 26 samples, the cusum chart after 13
samples and the GMA chart after 11 samples.

Exercises 11.10.6

60 If gales occur at rate 15
12 = 1.25 per month, and occur independently, then

the number of gales in any one month has a Poisson distribution, so

P (more than two in one month) = 1 − P(0) − P(1) − P(2)

= 1 − e−λT

(
1 + λT +

λ2T2

2!

)
= 0.132

(with λ = 1.25, T = 1).
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61 If λ = 30 calls per hour (on average) arrive at the switchboard, and do so
independently, then the number of calls has a Poisson distribution. Hence

P (no calls in T = 3 min) = e−λT/60 = 0.223

P (more than five calls in T = 5 min)

= 1 − e−λT/60

(
1 +

λT

60
+ . . . +

(λT)5

6055!

)
= 0.042

62 The steady-state distribution for the number (N) in the system is

P(n in system) = pn = (1 − ρ)ρn, n ≥ 0

Now
d

dρ

∞∑
n=0

ρn =
∞∑

n=0

nρn−1 =
d

dρ
(1 − ρ)−1 = (1 − ρ)−2

Hence, the mean number in the system is

NS =
∞∑

n=0

n(1 − ρ)ρn = ρ(1 − ρ)
∞∑

n=0

nρn−1

=
ρ(1 − ρ)
(1 − ρ)2

=
ρ

1 − ρ

If there are n > 0 customers in the queue then there are n + 1 in the system, so

P(n > 0 in queue) = (1 − ρ)ρn+1, n ≥ 1

(we do not need the probability for n = 0). Mean number in queue is

NQ = (1 − ρ)
∞∑

n=1

nρn+1 = ρ2(1 − ρ)
∞∑

n=0

nρn−1

=
ρ2(1 − ρ)
(1 − ρ)2

=
ρ2

1 − ρ
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63 For a single-channel queue with λ = 3 arrivals per hour and μ = 4 patients
treated per hour,

63(a) P(0 in system) = 1 − λ

μ
=

1
4

63(b) NQ =
(λ/μ)2

1 − λ/μ
=

9
4

63(c)

P(> 3 in queue) = P(> 4 in system)

= 1 − P(0) − P(1) − P(2) − P(3) − P(4)

= 1 −
(
1 − λ

μ

)(
1 +

λ

μ
+

(λ

μ

)2

+
(λ

μ

)3

+
(λ

μ

)4)
= 0.237

63(d) WQ =
λ/μ

μ − λ
=

3
4

hour.

63(e) P (wait more than one hour) =
λ

μ
e−(μ−λ) = 0.276

64 Mean number of aircraft on ground is

NS =
λ

μ − λ

so, total mean cost per hour (waiting time plus servicing) is

E [total cost per hour] =
c1λ

μ − λ
+ c2μ
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Minimizing this with respect to μ :

d

dμ
E [total cost per hour] = − c1λ

(μ − λ)2
+ c2 = 0

from which

(μ − λ)2 =
c1λ

c2

so μ = λ +
√

c1λ/c2

65 Breakdown rate is λ = 3 per hour, and machine idle time is costed at £ 60
per hour per machine. For option A, service rate is μ = 4 per hour at £ 20 per
hour, so mean hourly cost is

60NS + 20 =
60λ

μ − λ
+ 20 = 200

For option B , service rate is μ = 5 at £ 40 per hour, so mean hourly cost is

60NS + 40 =
60λ

μ − λ
+ 40 = 130

Option B is preferred.

66 Ship arrival rate is λ = 1
3 per hour, and service rate per berth is μ = 1

12 , so
ρ = λ/μ = 4. Mean waiting time in the queue is

WQ =
1
λ

[
ρc+1

(c − 1)!(c − ρ)2

][c−1∑
n=0

ρn

n!
+

ρc

(c − 1)!(c − ρ)

]−1

where c is the number of berths. For c = 5 berths we find WQ = 6.65 hours,
which exceeds the required minimum, so c = 6 berths are needed (WQ = 1.71).

67 Arrival rate is λ = 2 per minute, and basic service rate per cashier is μ = 5
4

per minute. If this service rate is doubled (by providing a packer) then mean
queueing time is

WQ =
ρ

μ − λ
=

4/5
5/2 − 2

= 1.6 min
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Alternatively, if an additional cash desk is provided then (using WQ as in the
previous exercise, and ρ = 8/5)

WQ =
1
λ

[
ρ3

(2 − ρ)2

][
1 + ρ +

ρ2

2 − ρ

]−1

= 0.076 min

Clearly, a second cash desk is preferable.

Exercises 11.11.3

68 We have

P(agent) = P(agent|option 1)P(option 1) + P(agent|option 2)P(option 2)

+ P(agent|option 3)P(option 3)

= 0.28 × 0.45 + 0.41 × 0.32 + 0.16 × 0.23

= 0.294

69 Total probability of explosion is

P(E) = P(E | (a))P((a)) + P(E | (b))P((b))

+ P(E | (c))P((c)) + P(E | (d))P((d))

= 0.25 × 0.2 + 0.2 × 0.4 + 0.4 × 0.25 + 0.75 × 0.15

= 0.3425

Hence, by Bayes’ Theorem,

P((a) | E) = P(E | (a))P((a))/P(E) = 0.146

P((b) | E) = 0.234

P((c) | E) = 0.292

P((d) | E) = 0.328

and sabotage is therefore the most likely cause of the explosion.
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70 If two bullets hit the target then they could be fired by each possible pair of
marksmen, so

P (two hits) = P(A ∩ B ∩ C̄) + P(A ∩ B̄ ∩ C) + P(Ā ∩ B ∩ C)

(where A denotes ‘bullet from A hits target’, etc)

= 0.6 × 0.5 × 0.6 + 0.6 × 0.5 × 0.4 + 0.4 × 0.5 × 0.4

= 0.38

Hence

P(C | two hits) =
P(C ∩ two hits)

P (two hits)

=
P(A ∩ B̄ ∩ C) + P(Ā ∩ B ∩ C)

P ( two hits)

=
0.6 × 0.5 × 0.4 + 0.4 × 0.5 × 0.4

0.38
= 0.526

Thus, it is more probable than not that C hit the target.

71 Prior probabilities are P(A) = 1
3 , P(B) = 2

3 . Also P(Smith | A) = 0.1 and
P(Smith | B) = 0.05. Hence

P(A | Smith) =
P (Smith | A)P(A)

P (Smith | A)P(A) + P (Smith | B)P(B)

=
0.1 × 1

3

0.1 × 1
3 + 0.05 × 2

3

=
1
2

72 Let D denote ‘has disease’ and + denote ‘positive diagnosis’, so that P(D) =
0.08, P(+ | D) = 0.95 and P(+ | D̄) = 0.02

72(a) P(+) = P(+ | D)P(D) + P(+ | D̄)P(D̄)

= 0.95 × 0.08 + 0.02 × 0.92 = 0.0944
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72(b) P(D | +) =
P(+ | D)P(D)

P(+)
=

0.95 × 0.08
0.0944

= 0.81

73 Let G denote ‘good stock’, B = Ḡ denote ‘bad stock’,

g denote ‘stockbroker says good’,

b denote ‘stockbroker says bad’,

so that P(G) = 0.5, P(g | G) = 0.6, P(b | B) = 0.8.

73(a)

P(G | g) =
P(g | G)P(G)

P(g | G)P(G) + P(g | B)P(B)

=
0.6 × 0.5

0.6 × 0.5 + 0.2 × 0.5
=

3
4

73(b) Let E denote ‘k out of n stockbrokers say good’. Since the stockbrokers
are independent, by the binomial distribution

P(E | G) =
(

n

k

)
[P(g | G)]k[P(b | G)]n−k

P(E | B) =
(

n

k

)
[P(g | B)]k[P(b | B)]n−k

Hence

P(G | E) =
P(E | G)P(G)

P(E | G)P(G) + P(E | B)P(B)

=

(
n
k

)
[P(g | G)]k[P(b | G)]n−kP(G)(

n
k

)
[P(g | G)]k[P(b | G)]n−kP(G) +

(
n
k

)
[P(g | B)]k[P(b | B)]n−kP(B)

=
0.6k × 0.4n−k × 0.5

0.6k × 0.4n−k × 0.5 + 0.2k × 0.8n−k × 0.5

=
[
1 +

(1
3
)k

2n−k

]−1
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74 Given that the probability of correct reception of a letter is 0.6, and the error
probabilities are 0.2 for the two alternatives, we have

P(ABCA received | AAAA transmitted) = 0.6 × 0.2 × 0.2 × 0.6 = 0.0144

P(ABCA received | BBBB transmitted) = 0.2 × 0.6 × 0.2 × 0.2 = 0.0048

P(ABCA received | CCCC transmitted) = 0.2 × 0.2 × 0.6 × 0.2 = 0.0048

Also P(AAAA transmitted) = 0.3 etc. Hence

P(ABCA received) = 0.0144 × 0.3 + 0.0048 × (0.4 + 0.3)

= 0.00768

and

P(AAAA transmitted | ABCA received) =
0.0144 × 0.3

0.00768
= 0.5625

P(BBBB transmitted | ABCA received) = 0.25

P(CCCC transmitted | ABCA received) = 0.1875

75 Average number of accidents per day = 1×12+2×4
100 = 1

5

First hypothesis (H1) is for a Poisson distribution, so set λ = 1
5 and probabilities

pi = P(i accidents in one day) =
λie−λ

i!

Hence, p0 = 0.8187, p1 = 0.1637, p2 = 0.0164. Second hypothesis (H2) is for a
binomial distribution with n = 3, so set

np =
1
5

(hence p =
1
15

) and probabilities

qi = P(i accidents in one day) =
(

3
i

)
pi(1 − p)3−i

Hence, q0 = 0.8130, q1 = 0.1742, q2 = 0.0124. If E denotes the evidence then the
odds are updated by

ln
P(H1 | E)
P(H2 | E)

= ln
P(E | H1)
P(E | H2)

+ ln
P(H1)
P(H2)
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where
P(E | H1) = p84

0 p12
1 p4

2

P(E | H2) = q84
0 q12

1 q4
2

P(H1)/P(H2) =
1
2

(initial odds)

Hence

ln
P(H1 | E)
P(H2 | E)

= 84 ln
p0

q0
+ 12 ln

p1

q1
+ 4 ln

p2

q2
+ ln

1
2

= 0.247

and the updated odds are therefore 1.28 to 1 in favour of the Poisson distribution.

76 If the probabilities of the evidence (E) under H1 and H2 are

P(E | H1) =
n!

n1! . . . nk!
pn1
1 . . . pnk

k

P(E | H2) =
n!

n1! . . . nk!
qn1
1 . . . qnk

k

then the log-likelihood ratio becomes

ln
P(E | H1)
P(E | H2)

= ln
[(p1

q1

)n1

· · ·
(pk

qk

)nk

]
=

k∑
i=1

ni ln
pi

qi

77 Under hypothesis H1 we have

p1 = 0.92, p2 = 0.05, p3 = 0.02, p4 = 0.01

and under H2

q1 = 1 − 0.05 − q3 − q4, q2 = 0.05, q3, q4 unknown

(where q3 = pB and q4 = PAB ). The likelihood of the evidence E under H2 is

P(E | H2) =
n!

n1! . . . n4!
(0.95 − q3 − q4)n10.05n2qn3

3 qn4
4
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where n1 = 912, n2 = 45, n3 = 27, n4 = 16. Thus

ln P(E | H2) = n1 ln(0.95 − q3 − q4) + n3 ln q3 + n4 ln q4 + constant
∂ ln P(E | H2)

∂q3
= − n1

0.95 − q3 − q4
+

n3

q3
=

n3(0.95 − q3 − q4) − n1q3

(0.95 − q3 − q4)q3

= 0 if (n1 + n3)q3 + n3q4 = 0.95n3

∂ ln P(E | H2)
∂q4

= − n1

0.95 − q3 − q4
+

n4

q4
=

n4(0.95 − q3 − q4) − n1q4

(0.95 − q3 − q4)q4

= 0 if n4q3 + (n1 + n4)q4 = 0.95n4

From the simultaneous equations

939q3 + 27q4 = 25.65

16q3 + 928q4 = 15.2

we find q3 = 0.0269, q4 = 0.0159 and therefore q1 = 0.9072.
It follows that (using the result of the previous exercise)

ln
P(E | H1)
P(E | H2)

=
4∑

i=1

ni ln
pi

qi

= 912 ln
0.92

0.9072
+ 45 ln

0.05
0.05

+ 27 ln
0.02

0.0269
+ 16 ln

0.01
0.0159

= −2.645

If initial odds are P(H1)/P(H2) = 5 then updated odds are

P(H1 | E)
P(H2 | E)

= e−2.645 × 5 = 0.355

that is, 2.8 to 1 in favour of H2 .

78 Under hypothesis H1 we have separate estimates as follows:

λA = mean number of defects for A =
24
6

= 4.0

λB = mean number of defects for B =
36
5

= 7.2

Under hypothesis H2 we have a single estimate as follows:

λ = overall mean number of defects =
60
11

= 5.455
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The evidence E can be expressed as follows:

E = {A : 2 with 3 defects, 2 with 4 defects, 2 with 5 defects;

B : 1 with 5 defects, 1 with 6 defects, 2 with 8 defects, 1 with 9 defects}

The log-likelihood ratio is

ln
P(E | H1)
P(E | H2)

= 2 ln
λ3

Ae−λA

λ3e−λ
+ 2 ln

λ4
Ae−λA

λ4e−λ
+ 2 ln

λ5
Ae−λA

λ5e−λ

+ ln
λ5

Be−λB

λ5e−λ
+ ln

λ6
Be−λB

λ6e−λ
+ 2 ln

λ8
Be−λB

λ8e−λ
+ ln

λ9
Be−λB

λ9e−λ

= (6 + 8 + 10)ln
λA

λ
+ (5 + 6 + 16 + 9)ln

λB

λ

+ (2 + 2 + 2)(λ − λA) + (1 + 1 + 2 + 1)(λ − λB)

= 2.551

and the updated odds (with no initial preference) are

P(H1 | E)
P(H2 | E)

= e2.551

or 12.8 to 1 in favour of H1 .

Review Exercises 11.12

1 For the standard corks, sample proportion oxidized is p̂1 = 6
60 = 0.1, whereas

for the plastic bungs, sample proportion oxidized is p̂2 = 3
36 = 0.0833. Overall

proportion oxidized is p̂ = 9
96 = 0.0938. Test statistic

z =
p̂1 − p̂2√

p̂(1 − p̂)( 1
60 ) + ( 1

36 )
= 0.271

The hypothesis is accepted.

2 The model is
d = d0e

−λt

or equivalently
ln d = ln d0 − λt
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which is of the form

Y = a + bX

From the data,

X̄ = 5.746, SX = 3.036, Ȳ = −0.2811, SY = 0.721, XY = −3.775

so

b̂ =
XY − X̄Ȳ

S2
X

= −0.234

â = Ȳ − b̂X̄ = 1.065

From these we infer
λ̂ = −b̂ = 0.234

d̂0 = eâ = 2.90

Also the error variance is (using unrounded results)

S2
E = S2

Y − b̂2S2
X = 0.01418

and the 95% confidence interval for λ is

λ̂ ± t.025,8
SE

SX

√
8

= (0.202, 0.266)

3 If position P and load X are related by

P = a + bX

then by linear regression on the data we find

â = 6.129

b̂ = 0.0624

But extension Y and load X are related by

b̂ =
Y

X
=

L

ÊA
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where L = 101.4 and A = 1.62 × 10−5 . The estimate of Young’s modulus is
therefore

Ê =
L

b̂A
= 1.003 × 108

Also from the linear regression the error standard deviation is SE = 0.00624, so
the 95% confidence interval for b is

b̂ ± t.025,6
SE

SX

√
6

= (0.0597, 0.0651)

We infer the 95% confidence interval for E = L/bA as

(96.1 × 106, 104.9 × 106)

4 From the data, the mean time between arrivals is estimated as 9.422 hours,
and this is 1/λ for the exponential distribution. If we form a histogram of the
data, the expected probability of a class (a, b) under the exponential distribution
with parameter λ is

P(a < X < b) = FX(b) − FX(a) = 1 − e−λb − (1 − e−λa) = e−λa − e−λb

Using class intervals of five hours we obtain the table as follows:

Class (k)(k)(k) Observations (fk)(fk)(fk) Probability Expected (ek)(ek)(ek)
0-5 48 0.4118 43.24
5-10 22 0.2422 25.43
10-15 13 0.1425 14.96
15-20 12 0.0838 8.80
20-25 3 0.0493 5.18
25-30 3 0.0290 3.04
>30 4 0.0414 4.35

The value of χ2 = 3.35 is less than χ2
.05,5 = 11.07 (seven classes with one parameter

estimated) so the fit to the exponential distribution is good.

5 The maximum value is Xmax = 72 and the total is
∑

i Xi = 989.3, so

y =
Xmax

ΣiXi
= 0.0728
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and [1/y] = 13. Hence

P(Y ≤ 0.0728) =
13∑

k=0

(−1)k

(
105
k

)
(1 − 0.0728k)104

= 0.9599

The probability of there occurring such a large value is therefore around 4%, so
the value 72 can be regarded as an outlier at the 5% significance level.

With the outlier included we have X̄ = 9.422, SX = 10.77 so the 95% confidence
interval for mean inter-arrival time is

X̄ ± 1.96
SX√
105

= (7.36, 11.48)

With the outlier excluded we have X̄ = 8.820, SX = 8.90 so the confidence interval
is (7.11, 10.53).

6 The contingency table (with expected values in brackets and adjusted residuals
underneath) is as follows:

Grade French German Spanish Total
Very satisfied 16 (15) 6 (7) 22 (22) 44

0.5 −0.5 −0.1
Fairly satisfied 63 (50) 13 (24) 76 (77) 152

2.8 −3.2 −0.2
Neutral 40 (42) 27 (20) 60 (64) 127

−0.5 1.9 −1.0
Fairly dissatisfied 10 (18) 13 (9) 32 (28) 55

−2.5 1.6 1.2
Very dissatisfied 3 (7) 5 (3) 12 (10) 20

−1.8 0.8
Total 132 64 202 398

Chi-square = 20.0, d.f.= (5− 1)(3− 1) = 8, and so compare with χ2
0.025,8 = 17.54:

significant at 2.5% level. The French course scores highest, followed by Spanish
and then German.
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7 Let D denote ‘has disease’ and O denote ‘operation performed’, then

P(survive | D ∩ O) =
1
2

P(survive | D ∩ Ō) =
1
20

P(survive | D̄ ∩ O) =
4
5

and we can assume that P(survive | D̄ ∩ Ō) = 1. If the operation is performed,
then using the hint we have

P(survive | O) = P(survive | D ∩ O)P(D) + P(survive | D̄ ∩ O)P(D̄)

=
1
2
p +

4
5
(1 − p) =

4
5
− 3

10
p

(where p = P(D)). If the operation is not performed,

P(survive | Ō) = P(survive | D ∩ Ō)P(D) + P(survive | D̄ ∩ Ō)P(D̄)

=
1
20

p + (1 − p) = 1 − 19
20

p

These probabilities are equal when

4
5
− 3

10
p = 1 − 19

20
p

from which p = 4
13 . The surgeon will operate if the assessment of P(D) exceeds

this value.

8 With 200 machines each becoming misaligned every 200 hours on average, the
rate at which machines become misaligned is λ0 = 200

200 = one per hour on average.
The total cost per hour for each option is the sum of three components: the fixed
cost per hour, the cost of correcting the output and the cost of lost production.

For option A, the fixed cost is £1 per hour per machine, hence £200 per hour.
The average run length ARL0 for a misaligned machine is 20 hours, and this
amount of output must be corrected, so the cost per hour of correcting the output
is λ0×ARL0×10 = £200. Lost production occurs while a machine is in the queue
and being serviced, and this occurs whether the machine is actually misaligned or
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not (false alarm). Actual misalignments occur at the rate λ0 and are detected by
the control chart. False alarms occur at the rate

λ1 =
200

ARL1
= 0.2 per hour

where ARL1 = 1000 is the mean time between false alarms for a well-adjusted
machine. These two kinds of action are independent, so the total rate of actions is
λ = λ0 + λ1 = 1.2. Also, the service rate μ = 2 per hour so ρ = λ/μ = 0.6. With
σs = 1

4 , the mean number of machines out of production is

NS = ρ +
(λσs)2 + ρ2

2(1 − ρ)
= 1.163

and the cost per hour of lost production is 200NS = £ 232.5. The total cost for
option A is therefore £ 200 + £ 200 + £ 232.5 = £ 632.5 per hour.

For option B, the fixed cost is £ 1.50 per hour per machine, hence £ 300 per hour.
With ARL0 = 4, the cost per hour of correcting the output is λ0×ARL0×10 = £
40. With ARL1 = 750, false alarms occur at the rate λ1 = 200/750 = 0.267 per
hour, so machines are taken out of production at the total rate λ = λ0+λ1 = 1.267,
hence ρ = λ/μ = 0.633. The mean number of machines out of production is
therefore NS = 1.317 at a cost per hour 200NS =£ 263.4. The total cost for
option B is therefore £ 300 + £ 40 + £ 263.4 = £ 603.4 per hour. This is less
than for option A.

9 For the source, P(in = 0) = α and P(in = 1) = 1 − α . For the channel,
P(out = 0 | in = 1) = P(out = 1 | in = 0) = p .

9(a)

P(out = 0) = P(out = 0 | in = 0)P(in = 0) + P(out = 0 | in = 1)P(in = 1)

= (1 − p)α + p(1 − α) = p̄α + pᾱ
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(where p̄ = 1 − p, ᾱ = 1 − α). Hence

P(in = 0 | out = 0) =
P(out = 0 | in = 0)P(in = 0)

P(out = 0)
=

p̄α

p̄α + pᾱ

P(in = 1 | out = 0) =
pᾱ

p̄α + pᾱ

P(in = 0 | out = 1) =
pα

pα + p̄ᾱ

P(in = 1 | out = 1) =
p̄ᾱ

pα + p̄ᾱ

9(b) P( in = 0 | out = 0) > P( in = 1 | out = 0) if

p̄α > pᾱ

from which
p̄α > p(1 − α)

hence
(p̄ + p)α = α > p

Similarly, P( in = 1 | out = 1) > P( in = 0 | out = 1) if

p̄ᾱ > pα

from which
p̄(1 − α) > pα

hence
(p + p̄)α = α < p̄

The source symbol is assumed to be the same as the received symbol if p < α < p̄ .

10 For the binary symmetric channel, X = {0, 1} with P(X = 0) = α , and
Y = {0, 1} with P(Y = 0) = p̄α + pᾱ, P(Y = 1) = pα + p̄ᾱ(p̄ = 1 − p, ᾱ = 1 − α ,
using the results of the previous exercise). Also

P(X = 0 ∩ Y = 0) = P(Y = 0 | X = 0)P(X = 0) = p̄α

P(X = 0 ∩ Y = 1) = P(Y = 1 | X = 0)P(X = 0) = pα

c©Pearson Education Limited 2011



684 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

P(X = 1 ∩ Y = 0) = P(Y = 0 | X = 1)P(X = 1) = pᾱ

P(X = 1 ∩ Y = 1) = P(Y = 1 | X = 1)P(X = 1) = p̄ᾱ

The mutual information between X and Y is as follows:

I(X;Y) =
1∑

x=0

1∑
y=0

P(x, y) log2

P(x, y)
P(X = x)P(Y = y)

= p̄α log2

p̄α

α(p̄α + pᾱ)
+ pα log2

pα

α(pα + p̄ᾱ)

+ pᾱ log2

pᾱ

ᾱ(p̄α + pᾱ)
+ p̄ᾱ log2

p̄ᾱ

ᾱ(pα + p̄ᾱ)
= p̄(α + ᾱ) log2 p̄ + p(α + ᾱ) log2 p

− (p̄α + pᾱ) log(p̄α + pᾱ) − (pα + p̄ᾱ) log(pα + p̄ᾱ)

= H(p) − H(p̄α + pᾱ)

where H(t) = t log2 t + (1 − t) log2(1 − t) is called the ‘entropy function’. In
particular, when α = 1

2 we have

p̄α + pᾱ =
1
2
(p̄ + p) =

1
2

and H( 1
2 ) = 1

2 log2
1
2 + 1

2 log2
1
2 = −1

so that
I(X;Y) = 1 + H(p) = 1 + p log2 p + (1 − p) log2(1 − p)

When p = 1
2 , I(X;Y) = 1 + 1

2 log2
1
2 + 1

2 log2
1
2 = 0.

When p → 0, p log2 p → 0 and p̄ log2 p̄ → 0 so that

I(X;Y) → 1

and similarly when p → 1. Full information is transmitted through the channel
when either every bit is correct (p = 0) or every bit is inverted (p = 1). No
information is transmitted when the bits are uniformly randomized (p = 1

2 ) .
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