

Advanced iCE40 I2C and SPI Hardened IP Usage Guide

October 2015

Technical Note TN1276

Introduction

This reference guide provides guidance for the advanced usage of iCE40LM, iCE40 Ultra™, iCE40 UltraLite™ and iCE40 UltraPlus™ I2C and SPI IP. It is used as a supplement to TN1274, iCE40 I2C and SPI Hardened IP Usage Guide. Note that the module generator - GUI flow is the recommended flow for initializing the Hard IP blocks as in TN1274. In this document you will find:

- System Bus Protocol
- I2C/SPI Register Mapping
- I2C/SPI Timing Diagram
- Command Sequences
- Examples

System Bus Interface for iCE40LM and iCE40 Ultra

The System Bus in the iCE40LM and iCE40 Ultra provides connectivity between FPGA user logic and the Hardened IP functional blocks. The user can implement a System Bus Master interface to interact with the Hardened IP System Bus Slave interface.

The block diagram in Figure 4 shows the supported System Bus signals between the FPGA core and the Hardened IP. Table 2 provides a detailed definition of the supported signals.

^{© 2015} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Name	I/O	Width	Description
SBCLKI	Input	1	Positive edge clock used by System Bus Interface registers and hardened functions. Supports clock speeds up to 133 MHz.
SBSTBI	Input	1	Active-high strobe, input signal, indicating the System Bus slave is the target for the current transaction on the bus. The IP asserts an acknowledgment in response to the assertion of the strobe.
SBRWI	Input	1	Level sensitive Write/Read control signal. Low indicates a Read operation, and High indicates a Write operation.
SBADRI ¹	Input	8	8-bit wide address used to select a specific register from the register map of the IP.
SBDATI	Input	8	8-bit input data path used to write a byte of data to a specific register in the register map of the IP.
SBDATO	Output	8	8-bit output data path used to read a byte of data from a specific register in the register map of the IP.
SBACKO	Output	1	Active-high, transfer acknowledge signal asserted by the IP, indicating the requested transfer is acknowledged.

Table 1. System Bus Slave Interface Signals of the Hardened IP Module

1. SBADRI[7:4] must be set to 0001 for upper left I2C and to 0011 for upper right I2C. For values SBADRI[3:0], see Table 3.

To interface with the IP, you must create a System Bus Master controller in the User Logic. In a multiple-Master configuration, the System Bus Master outputs are multiplexed through a user-defined arbiter. If two Masters request the bus in the same cycle, only the outputs of the arbitration winner reach the Slave interface.

System Bus Write Cycle

Figure 5 shows the waveform of a Write cycle from the perspective of the System Bus Slave interface. During a single Write cycle, only one byte of data is written to the IP block from the System Bus Master. A Write operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. During this cycle:

- The Master updates the address on the SBADRI[7:0] address lines
- Updates the data that will be written to the IP block, SBDATI[7:0] data lines
- Asserts the write enable SBRWI signal, indicating a write cycle
- Asserts the SBSTBI, selecting a specific slave module

On clock Edge 1, the System Bus Slave decodes the input signals presented by the master. During this cycle:

- The Slave decodes the address presented on the SBADRI[7:0] address lines
- The Slave prepares to latch the data presented on the SBDATI[7:0] data lines
- The Master waits for an active-high level on the SBACKO line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the SBACKO line
- The IP may insert wait states before asserting SBACKO, thereby allowing it to throttle the cycle speed. Any number of wait states may be added
- The Slave asserts SBACKO signal

The following occurs on clock Edge 2:

- The Slave latches the data presented on the SBDATI[7:0] data lines
- The Master de-asserts the strobe signal, SBSTBI, and the write enable signal, SBRWI
- The Slave de-asserts the acknowledge signal, SBACKO, in response to the Master de-assertion of the strobe signal

Figure 2. System Bus Write Operation

System Bus Read Cycle

Figure 6 shows the waveform of a Read cycle from the perspective of the System Bus Slave interface. During a single Read cycle, only one byte of data is read from the IP block by the System Bus master. A Read operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. The following occurs during this cycle:

- The Master updates the address on the SBADRI[7:0] address lines
- De-asserts the write enable SBRWI signal, indicating a Read cycle
- Asserts the SBSTBI, selecting a specific Slave module

On clock Edge 1, the System Bus slave decodes the input signals presented by the master. The following occurs during this cycle:

- The Slave decodes the address presented on the SBADRI[7:0] address lines
- The Master prepares to latch the data presented on SBDATO[7:0] data lines from the System Bus slave on the following clock edge
- The Master waits for an active-high level on the SBACKO line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the SBACKO line
- The IP may insert wait states before asserting SBACKO, thereby allowing it to throttle the cycle speed. Any number of wait states may be added.
- The Slave presents valid data on the SBDATO[7:0] data lines
- The Slave asserts SBACKO signal in response to the strobe, SBSTBI signal

The following occurs on clock Edge 2:

- The Master latches the data presented on the SBDATO[7:0] data lines
- The Master de-asserts the strobe signal SBSTBI
- The Slave de-asserts the acknowledge signal, SBACKO, in response to the master de-assertion of the strobe signal

Figure 3. System Bus Read Operation

System Bus Interface for iCE40

The System Bus in the iCE40LM, iCE40 Ultra, iCE40 UltraLite and iCE40 UltraPlus provides connectivity between FPGA user logic and the Hardened IP functional blocks. The user can implement a System Bus Master interface to interact with the Hardened IP System Bus Slave interface.

The block diagram in Figure 4 shows the supported System Bus signals between the FPGA core and the Hardened IP. Table 2 provides a detailed definition of the supported signals.

Figure 4. System Bus Interface Between the FPGA Core and the IP

Table 2. System	Bus Slave	Interface Signa	Is of the	Hardened IP	, Module
Tuble 2. Oystelli	Dus olave	internade orgina		nu ucneu n	module

Signal Name	I/O	Width	Description
SBCSI	Input	1	This chip select signal activates the IP to allow system bus to communicate with the IP.
SBCLKI	Input	1	Positive edge clock used by System Bus Interface registers and hardened functions. Supports clock speeds up to 133 MHz.
SBSTBI	Input	1	Active-high strobe, input signal, indicating the System Bus slave is the target for the current transaction on the bus. The IP asserts an acknowledgment in response to the assertion of the strobe.
SBRWI	Input	1	Level sensitive Write/Read control signal. Low indicates a Read operation, and High indicates a Write operation.
SBADRI	Input	4	4-bit wide address used to select a specific register from the register map of the IP.
SBDATI	Input	10	8-bit input data path used to write a byte of data to a specific register in the register map of the IP. 10 bits used for FIFO mode.
SBDATO	Output	10	8-bit output data path used to read a byte of data from a specific register in the register map of the IP. 10 bits used for FIFO mode.
SBACKO	Output	1	Active-high, transfer acknowledge signal asserted by the IP, indicating the requested transfer is acknowledged.

To interface with the IP, you must create a System Bus Master controller in the User Logic. In a multiple-Master configuration, the System Bus Master outputs are multiplexed through a user-defined arbiter. If two Masters request the bus in the same cycle, only the outputs of the arbitration winner reach the Slave interface.

System Bus Write Cycle

Figure 5 shows the waveform of a Write cycle from the perspective of the System Bus Slave interface. During a single Write cycle, only one byte of data is written to the IP block from the System Bus Master. A Write operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. During this cycle:

- The Master updates the address on the SBADRI[3:0] address lines
- Updates the data that will be written to the IP block, SBDATI[9:0] data lines
- · Asserts the write enable SBRWI signal, indicating a write cycle
- · Asserts the SBSTBI, selecting a specific slave module

On clock Edge 1, the System Bus Slave decodes the input signals presented by the master. During this cycle:

- The Slave decodes the address presented on the SBADRI[9:0] address lines
- The Slave prepares to latch the data presented on the SBDATI[9:0] data lines
- The Master waits for an active-high level on the SBACKO line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the SBACKO line
- The IP may insert wait states before asserting SBACKO, thereby allowing it to throttle the cycle speed. Any number of wait states may be added
- The Slave asserts SBACKO signal

The following occurs on clock Edge 2:

- The Slave latches the data presented on the SBDATI[9:0] data lines
- The Master de-asserts the strobe signal, SBSTBI, and the write enable signal, SBRWI
- The Slave de-asserts the acknowledge signal, SBACKO, in response to the Master de-assertion of the strobe signal

Figure 5. System Bus Write Operation

System Bus Read Cycle

Figure 6 shows the waveform of a Read cycle from the perspective of the System Bus Slave interface. During a single Read cycle, only one byte of data is read from the IP block by the System Bus master. A Read operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. The following occurs during this cycle:

- The Master updates the address on the SBADRI[3:0] address lines
- De-asserts the write enable SBRWI signal, indicating a Read cycle
- · Asserts the SBSTBI, selecting a specific Slave module

On clock Edge 1, the System Bus slave decodes the input signals presented by the master. The following occurs during this cycle:

- The Slave decodes the address presented on the SBADRI[3:0] address lines
- The Master prepares to latch the data presented on SBDATO[9:0] data lines from the System Bus slave on the following clock edge
- The Master waits for an active-high level on the SBACKO line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the SBACKO line
- The IP may insert wait states before asserting SBACKO, thereby allowing it to throttle the cycle speed. Any number of wait states may be added.
- The Slave presents valid data on the SBDATO[9:0] data lines
- The Slave asserts SBACKO signal in response to the strobe, SBSTBI signal

The following occurs on clock Edge 2:

- The Master latches the data presented on the SBDATO[9:0] data lines
- The Master de-asserts the strobe signal SBSTBI
- The Slave de-asserts the acknowledge signal, SBACKO, in response to the master de-assertion of the strobe signal

Figure 6. System Bus Read Operation

Hardened I2C IP Cores

I2C is a widely used two-wire serial bus for communication between devices on the same board. Every iCE40LM, iCE40 Ultra, iCE40 UltraLite and iCE40 UltraPlus device contains two hardened I2C IP cores. Either of the two cores can be operated as an I2C Master or as an I2C Slave.

I2C Registers for iCE40LM and iCE40 Ultra

Both I2C cores communicate with the System Bus interface through a set of control, command, status and data registers. Table 3 shows the register names and their functions.

I2C Register Name	Simulation Model Register Name	Address[3:0]	Register Function	Access
I2CCR1	I2CCR1	1000	Control	Read/Write
I2CCMDR	I2CCMDR	1001	Command	Read/Write
I2CBRLSB	I2CBRLSB	1010	Clock Prescale register, LSB	Read/Write
I2CBRMSB	I2CBRMSB	1011	Clock Prescale register, MSB	Read/Write
I2CSR	I2CSR	1100	Status	Read
I2CTXDR	I2CTXDR	1101	Transmit Data	Write
I2CRXDR	I2CRXDR	1110	Receive Data	Read
I2CGCDR	I2CGCDR	1111	General Call Information	Read
I2CSADDR	I2CSADDR	0011	Slave Address MSB	Read/Write
I2CIRQEN	I2CINTCR	0111	Interrupt Enable	Read/Write
I2CIRQ	I2CINTSR	0110	Interrupt Status	Read/Write ¹

Table 3. I2C Registers Summary

1. I2CIRQ is Read Only. Write operation upon this register will not change the content of this register, but will clear corresponding interrupt flag caused by the flags inside I2CIRQ.

Table 4. I2C Control Register 1 (I2CCR1)¹

I2CCR1									
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	I2CEN	GCEN	WKUPEN	(Reserved)) SDA_DEL_SEL		(Reserved)	(Reserved)	
Default	0	0	0	0	0	0	0	0	
0 to Disable	YES	YES	YES	-		-	-	-	
Access	R/W	R/W	R/W	-	R/	W	-	-	
1. A write to this re	gister will cause	the I2C core to	reset						
I2CEN I2C System Enable Bit – This bit enables the I2C core functions. If I2CEN is cleared, the 2C core is disabled and forced into idle state.									
GCEN		Enable bit for mode.	or General (Call Respons	se – Enable	s the genera	al call respo	nse in slave	
		0: Di 1: Er	sable Iable						
		The Genera addressing	I Call addres	ss is defined	as 0000000	and works	with either 7	-bit or 10-bit	
WKUPEN	VKUPEN Wake-up from Standby/Sleep(by Slave Address matching) Enable Bit – When thi is enabled the, I2C core can send a wake-up signal to wake the device up standby/sleep. The wake-up function is activated when the Slave Address is mate during standby/sleep mode.						Vhen this bit rice up from s is matched		
SDA_DEL_SEL	[1:0]	SDA Output	Delay (Tdel) Selection (See Figure 1	4)			
		00: 300	ns (min) 300) ns + 2000/[wb clk i fre	quency in M	Hz] (max)		

01: 150 ns (min) 150 ns + 2000/[wb_clk_i frequency in MHz] (max)

10: 75 ns (min) 75 ns + 2000/[wb_clk_i frequency in MHz] (max) 11: 0 ns (min) 0 ns + 2000/[wb_clk_i frequency in MHz] (max)

Table 5. I2C Command Register (I2CCMDR)

I2CCMDR										
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	STA	STO	RD	WR	ACK	CKSDIS	RBUFDIS	(Reserved)		
Default	0	0	0	0	0	0	0	0		
0 to Disable	YES	YES	YES	-	-	No	No	-		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-		

STA Generate START (or Repeated START) condition (Master operation)

STO Generate STOP condition (Master operation)

RD Indicate Read from slave (Master operation)

WR Indicate Write to slave (Master operation)

ACK Acknowledge Option – when receiving, ACK transmission selection

- 0: Send ACK
- 1: Send NACK

CKSDIS	Clock Stretching Disable – Disables the clock stretching if desired by the user for both master and slave mode. Then overflow error flag must be monitored.0:Send ACK				
	0: Enable Clock Stretching 1: Disable Clock Stretching				
RBUFDIS	Read Command with Buffer Disable – Read from Slave in master mode with the dou- ble buffering disabled for easier control over single byte data communication scenario.				
	0: Read with buffer enabled as default				

1: Read with buffer disabled

Table 6. I2C Clock Pre-scale Register (I2CBRLSB)

I2CBRLSB									
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name		I2C_PRESCALE							
Default				0000	0000				
Access				R/	W				

Table 7. I2C Clock Pre-scale Register (I2CBRMSB)

I2CBRMSB									
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name		- I2C_PRESCALE							
Default				0000	0000				
Access				R/	W				

I2C_PRESCALE[9:0]

I2C Clock Pre-scale value. A write operation to I2CBRMSB[1:0] will cause an I2C core reset. The System Bus clock frequency is divided by (I2C_PRESCALE*4) to produce the Master I2C clock frequency supported by the I2C bus (50KHz, 100KHz, 400KHz).

Table 8. I2C Status Register (I2CSR)

I2CSR									
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	TIP	BUSY	RARC	SRW	ARBL	TRRDY	TROE	HGC	
Default	-	-	-	-	-	-	-	-	
Access	R	R	R	R	R	R	R	R	

TIP

Transmitting In Progress - This bit indicates that current data byte is being transferred for both master and slave mode. Note that the TIP flag will suffer half SCL cycle latency right after the start condition because of the signal synchronization. Note also that this bit could be high after configuration wake-up and before the first valid I2C transfer start (when BUSY is low), and it is not indicating byte in transfer, but an invalid indicator.

- 0: Byte transfer completed
- 1: Byte transfer in progress

BUSY	Bus Busy – This bit indicates the bus is involved in transaction. This will be set at start condition and cleared at stop. Therefore, only when this bit is high, should all other status bits be treated as valid indicators for a valid transfer.						
RARC	Received addressed	Acknowledge – This flag represents acknowledge response from the slave during master write or from receiving master during master read.					
	0: I 1: /	No acknowledge received Acknowledge received					
SRW	Slave RW						
	0: I 1: I	Master transmitting / Slave receiving Master receiving / Slave transmitting					
ARBL	Arbitration It will caus	Lost – This bit will go high if master has lost its arbitration in Master mode, se an interrupt to System Bus Host if SCI set up allowed.					
	0: I 1: /	Normal Arbitration Lost					
TRRDY	Transmitte to receive slave) and	er or Receiver Ready Bit – This flag indicate that a Transmit Register ready data or Receiver Register if ready for read depend on the mode (master or SRW bit. It will cause an interrupt to System Bus Host if SCI set up allowed.					
	0: 1:	Transmitter or Receiver is not ready Transmitter or Receiver is ready					
TROE	Transmitte mit or Rec SRW bit, RARC bit to System	er/Receiver Overrun or NACK Received Bit – This flag indicate that a Trans- ceive Overrun Errors happened depend on the mode (master or slave) and or a no-acknowledges response is received after transmitting a byte. If is high, it is a NACK bit, otherwise, it is overrun bit. It will cause an interrupt Bus Host if SCI set up allowed.					
	0: 1:	Transmitter or Receiver Normal or Acknowledge Received for Transmitting Transmitter or Receiver Overrun or No-Acknowledge Received for Transmitting					
HGC	Hardware received fr allowed.	General Call Received – This flag indicate that a hardware general call is rom the slave port. It will cause an interrupt to System Bus Host if SCI set up					
	0: 1	NO Hardware General Call Received in Slave Mode					

1: Hardware General Call Received in Slave Mode

Table 9. I2C Transmitting Data Register (I2CTXDR)

I2CTXDR									
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	I2C_Transmit_Data[7:0]								
Default				0000	0000				
Access				V	V				

I2C_ Transmit_Data[7:0]

I2C Transmit Data – This register holds the byte that will be transmitted on the I2C bus during the Write Data phase. Bit 0 is the LSB and will be transmitted last. When transmitting the slave address, Bit 0 represents the Read/Write bit.

Table 10. I2C Receiving Data Register (I2CRXDR)

I2CTXDR												
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name		I2C_Receive_Data[7:0]										
Default					-							
Access				F	7							

I2C_ Receive _Data[7:0]

I2C Receive Data – This register holds the byte captured from the I2C bus during the Read Data phase. Bit 0 is LSB and was received last.

Table 11. I2C General Call Data Register (I2CGCDR)

	I2CGCDR											
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name		I2C_GC_Data[7:0]										
Default					-							
Access				F	7							

I2C_GC_Data[7:0] I2C General Call Data – This register holds the second (command) byte of the General Call transaction on the I2C bus.

Table 12. I2C Slave Address MSB Register (I2CSADDR)

I2CSADDR									
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
7 Bits Addressing	-	-	-	A6	A5	A4	A3	A2	
10 Bits Addressing	A9	A8	A7	A6	A5	A4	A3	A2	
Default				0000	0000				
Access				R	/W				

Table 13. I2C Interrupt Control Register (I2CIRQEN)

	I2CIRQEN											
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name	IRQINTCLREN	IRQINTFRC	RSVD	RSVD	IRQARBLEN	IRQTRRDYEN	IRQTROEEN	IRQHGCEN				
Default	0	0	-	-	0	0	0	0				
0 to Disable	YES	YES	-	-	YES	Yes	YES	YES				
Access	R/W	R/W	-	-	R/W	R/W	R/W	R/W				

IRQINTCLRENAuto Interrupt Clear Enable – Enable the interrupt flag auto clear when the I2CIRQ
has been read.IRQINTFRCForce Interrupt Request On – Force the Interrupt Flag set to improve testability

- IRQARBLEN Interrupt Enable for Arbitration Lost
- IRQTRRDYEN Interrupt Enable for Transmitter or Receiver Ready
- IRQTROEEN Interrupt Enable for Transmitter/Receiver Overrun or NACK Received
- IRQHGCEN Interrupt Enable for Hardware General Call Received

Table 14. I2C Interrupt Status Register (I2CIRQ)

I2CIRQ												
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name		(Rese	erved)	•	IRQARBL	IRQTRRDY	IRQTROE	IRQHGC				
Default	-	-	-	-	-	-	-	-				
Access	-	-	-	-	R/W	R/W	R/W	R/W				
IRQARBL		Interrupt Status for Arbitration Lost. When enabled, indicates ARBL was asserted. Write a '1' to this bit to clear the inter- rupt. 0: No interrupt 1: Arbitration Lost Interrupt										
IRQTRRDY		Interrupt Status for Transmitter or Receiver Ready. When enabled, indicates TRRDY was asserted. Write a '1' to this bit to clear the inter- rupt. 0: No interrupt 1: Transmitter or Receiver Ready Interrupt										
IRQTROE		Interrupt Status for Transmitter/Receiver Overrun or NACK received. When enabled, indicates TROE was asserted. Write a '1' to this bit to clear the inter- rupt. 0: No interrupt 1: Transmitter or Receiver Overrun or NACK received Interrupt										
IRQHGC		Interrupt Sta When enabl rupt. 0: No 1: Ge	tus for Hard ed, indicates interrupt eneral Call F	ware Genera s HGC was Received in s	al Call Recei asserted. W lave mode Ir	ved. rite a '1' to t nterrupt	his bit to cle	ear the inter-				

I2C Registers for iCE40 UltraLite and iCE40 UltraPlus

Both I2C cores communicate with the System Bus interface through a set of control, command, status and data registers. Table 15 shows the register names and their functions.

Table 15. I2C Registers Summary

Name	Simulation Model Register Name	SB Address [3:0]	Register Function	Register Width	Support Modes	Access
I2CCR1	I2CCR1	0001	I2C Control Register 1	8	Both	RW
I2CBRLSB	I2CBRLSB	0010	I2C Clock Presale register, LSB	8	Both	RW
I2CBRMSB	I2CBRMSB	0011	I2C Clock Presale register, MSB	8	Both	RW
I2CSADDR/I2CFIFOSADDR	I2CSADDR	0100	I2C Slave address / FIFO Slave Address	8/10	Both	RW
I2CIRQEN/I2CFIFOIRQEN		0101	I2C Interrupt Control Register / FIFO interrupt Control regis- ter	8/10	Both	RW
I2CFIFOTHRESHOLD		0110	I2C FIFO Threshold Register	10	FIFO mode	RW
I2CCMDR	I2CCMDR	0111	I2C Command Register	8	Reg mode	RW
I2CTXDR/I2CTXFIFO	I2CTXDR	1000	I2C Transmitting Data Regis- ter / FIFO	8/10	Both	W
I2CRXDR/I2CRXFIFO	I2CRXDR	1001	I2C Receiving Data Register / FIFO	8/10	Both	R
I2CGCDR	I2CGCDR	1010	I2C General Call Information Register	8	Both	R
I2CSR/I2CFIFOSR	I2CSR	1011	I2C Status Register / FIFO Status Register	8/10	Both	R
I2CIRQ/I2CFIFOIRQ	I2CINTCR	1100	I2C Interrupt Status Register / FIFO Interrupt Status register	8/10	Both	R

Table 16. I2C Control Register 1 (I2CCR1)¹

	I2CCR1												
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
Name	I2CEN	GCEN	WKUPEN	FIFO_MODE	SDA_DEL_SEL		CLKSDIS	(Reserved)					
Default	0	0	0	0	00		0	0					
0 to Disable	Yes	Yes	Yes	Yes	-		Yes	-					
Access	R/W	R/W	R/W	R/W	R/	W	R/W	-					

1. A write to this register will cause the I2C core to reset

I2C System Enable Bit – This bit enables the I2C core functions. If I2CEN is cleared, the 2C core is disabled and forced into idle state.

GCEN

I2CEN

Enable bit for General Call Response – Enables the general call response in slave mode.

- 0: Disable
- 1: Enable

The General Call address is defined as 0000000 and works with either 7-bit or 10-bit addressing

WKUPEN	Wake-up from Standby/Sleep(by Slave Address matching) Enable Bit – When this bit is enabled the, I2C core can send a wake-up signal to wake the device up from standby/sleep. The wake-up function is activated when the Slave Address is matched during standby/sleep mode.
FIFO_MODE	0: Register mode (default) 1: FIFO mode
SDA_DEL_SEL[1:0]	SDA Output Delay (Tdel) Selection (See Figure 14)
	00: 300 ns
CKSDIS	Clock Stretching Disable Option (used in FIFO mode only)
	Disable the clock stretching if desired by user for both master and slave mode. Then overflow error flag must be monitored.
	0: Clock Stretching is Enabled

1: Clock Stretching is Disabled

Table 17.	I2C Command	Register	(I2CCMDR)
-----------	-------------	----------	-----------

I2CCMDR											
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name	STA	STO	RD	WR	ACK	CKSDIS	RBUFDIS	(Reserved)			
Default	0	0	0	0	0	0	0	0			
0 to Disable	YES	YES	YES	-	-	No	No	-			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-			
STA Generate START (or Repeated START) condition (Master operation)											
STO	Generate STOP condition (Master operation)										
RD		ndicate Read from slave (Master operation)									
WR		ndicate Write to slave (Master operation)									
ACK		Acknowledge Option – when receiving, ACK transmission selection									
		0: Send ACK 1: Send NACK									
CKSDIS		Clock Streto master and	hing Disable slave mode.	e – Disables Then overflo	the clock stro ow error flag	etching if dea must be mo	sired by the nitored.0:Se	user for both nd ACK			
		0: Er 1: Di	nable Clock S sable Clock	Stretching Stretching							
RBUFDIS		Read Command with Buffer Disable – Read from Slave in master mode with the double buffering disabled for easier control over single byte data communication scenario.									
		0: R(1: R(ead with buff ead with buff	er enabled a er disabled	s default						

Table 18. I2C Clock Pre-scale Register (I2CBRLSB)

I2CBRLSB											
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name		I2C_PRESCALE									
Default				0000	0000						
Access				R/	W						

Table 19. I2C Clock Pre-scale Register (I2CBRMSB)

I2CBRMSB										
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name		-						ESCALE		
Default				0000	0000					
Access				R/	W					

I2C_PRESCALE[9:0]

I2C Clock Pre-scale value. A write operation to I2CBRMSB[1:0] will cause an I2C core reset. The System Bus clock frequency is divided by (I2C_PRESCALE*4) to produce the Master I2C clock frequency supported by the I2C bus (50 kHz, 100 kHz, 400 kHz).

I2C Status Register (I2CSR/I2CFIFOSR)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 20. I2C Status Register (I2CSR)

I2CSR (Register Mode)												
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name	TIP	BUSY	RARC	SRW	ARBL	TRRDY	TROE	HGC				
Default	-	-	-	-	-	-	-	-				
Access	R R R R R R R							R				
TIP		Transmitting In Progress - This bit indicates that current data byte is being transferred for both master and slave mode. Note that the TIP flag will suffer half SCL cycle latency right after the start condition because of the signal synchronization. Note also that this bit could be high after configuration wake-up and before the first valid I2C transfer start (when BUSY is low), and it is not indicating byte in transfer, but an invalid indicator.										
		0: By 1: By	te transfer c te transfer ir	ompleted n progress								
BUSY		Bus Busy – condition an status bits b	This bit indic d cleared a e treated as	ates the bus t stop. There valid indicat	is involved i ofore, only w ors for a vali	in transaction /hen this bit d transfer.	n. This will b is high, sho	e set at start uld all other				
RARC		Received Acknowledge – This flag represents acknowledge response from the addressed slave during master write or from receiving master during master read. 0: No acknowledge received										
SRW		Slave RW										

	 Master transmitting / Slave receiving Master receiving / Slave transmitting
ARBL	Arbitration Lost – This bit will go high if master has lost its arbitration in Master mode, It will cause an interrupt to System Bus Host if SCI set up allowed.
	0: Normal 1: Arbitration Lost
TRRDY	Transmitter or Receiver Ready Bit – This flag indicate that a Transmit Register ready to receive data or Receiver Register if ready for read depend on the mode (master or slave) and SRW bit. It will cause an interrupt to System Bus Host if SCI set up allowed.
	0: Transmitter or Receiver is not ready1: Transmitter or Receiver is ready
TROE	Transmitter/Receiver Overrun or NACK Received Bit – This flag indicate that a Trans- mit or Receive Overrun Errors happened depend on the mode (master or slave) and SRW bit, or a no-acknowledges response is received after transmitting a byte. If RARC bit is high, it is a NACK bit, otherwise, it is overrun bit. It will cause an interrupt to System Bus Host if SCI set up allowed.
	 0: Transmitter or Receiver Normal or Acknowledge Received for Transmitting 1: Transmitter or Receiver Overrun or No-Acknowledge Received for Transmitting
HGC	Hardware General Call Received – This flag indicate that a hardware general call is received from the slave port. It will cause an interrupt to System Bus Host if SCI set up allowed.
	0. NO Hardware Concrete Call Descrived in Clave Mode

- 0: NO Hardware General Call Received in Slave Mode
- 1: Hardware General Call Received in Slave Mode

I2CFIFOSR (FIFO Mode)													
Bit	Bit 9	Bit 8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name	RSVD	RSVD	RSVD	HGC	RNACK	MRDCMPL	ARBL	TXSERR	TXUNDERF	RXOVERF			
Default	-	-	-	-	-	-	-	-	-	-			
Access	R	R	R	R	R	R	R	R	R	R			

Table 21. I2C Status Register (I2CFIFOSR)

HGC

Hardware General Call Received – This flag indicate that a hardware general call is received from the slave port. It will cause an interrupt to System Bus Host if SCI set up allowed.

- 0: NO Hardware General Call Received in Slave Mode
- 1: Hardware General Call Received in Slave Mode

RNACK Received NACK – This flag represents acknowledge response from the addressed slave during master write.

- 0: Acknowledge received
- 1: No acknowledge (NACK) is received, FIFO state machine issues a STOP and go to idle state.

MRDCMPL	Master R	ead Complete – This is only valid for Master Read mode.
	0: 1:	Transaction is not completed. Transaction is completed. In Master read mode, it means 1) the number of bytes read equals to the expected number, 2) Master terminates the read earlier but there is data in the RX FIFO.
ARBL	Arbitratio mode.	n Lost – This bit will go high if the master has lost its arbitration in Master
	0: 1:	Normal Arbitration Lost, FIFO state machine goes to idle state.
TXSERR	TX FIFO in the FIF	synchronization error. This happens when there are back-to-back commands
	0: 1:	No synchronization error Synchronization error, the previous command is overwritten, then continues with the next data entry in the FIFO.
TXUNDERF	TX FIFO stretching	underflow – This indicates an error condition, mutually exclusive with clock g function.
	0: 1:	No underflow FIFO underflow, data is not valid
RXOVERF	RX FIFO stretching	overflow – This indicates an error condition, mutually exclusive with clock g function.
	0: 1:	No overflow FIFO overflow, data is not valid

I2C Transmitting Data Register (I2CTXDR/I2CTXFIFO)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 22. I2C Transmitting Data Register (I2CTXDR)

I2CTXDR (Register Mode)												
Bit	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0										
Name		I2C_Transmit_Data[7:0]										
Default				0000	0000							
Access				V	V							

I2C_ Transmit_Data[7:0]

I2C Transmit Data – This register holds the byte that will be transmitted on the I2C bus during the Write Data phase. Bit 0 is the LSB and will be transmitted last. When transmitting the slave address, Bit 0 represents the Read/Write bit.

Table 23. I2C Transmitting Data Register (I2CTXFIFO)

I2CTXFIFO (FIFO Mode)												
Bit	Bit 9	Bit 8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	CMD	RSTAEN/ LTXBYTE		RXBYTE								
Default	0	0	0	0 0 0 0 0 0 0								
Access	W	W	W	W	W	W	W	W	W	W		

CMD, RSTAEN	10:	Bits [4:0] of this byte is the number of bytes to be received (in Master mode). Following data transaction should be sent using a STOP then a START.
	11:	Bits [4:0] of this byte is the number of bytes to be received (in Master mode). Following data transaction should be sent using a START/ReSTART. The 1st data byte should always has RSTAEN bit set to 1.
CMD, LTXBYTE	00: 01:	Bits [7:0] of this byte are data bits. If this is the last data byte in the TXFIFO, then depending on the CKSDIS bit, Master Write will either go into clock stretching (CKSDIS=0), or TXFIFO will underflow (CKSDIS=1). Bit [7:0] of this byte are data bytes. If this is the last data byte in TXFIFO, this indicates the last byte to be transferred and a STOP will be issued. If this is not the last byte in TXFIFO, then this bit is ignored.
RXBYTE[7:5]	Not used	when CMD =1; data byte when CMD =0
RXBYTE[4:0]	Data byte	9

I2C Receiving Data Register (I2CRXDR/I2CRXFIFO)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 24. I2C Receiving Data Register (I2CRXDR)

I2CRXDR (Register Mode)												
Bit	Bit7	3it7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0										
Name		I2C_Receive_Data[7:0]										
Default					-							
Access				F	1							

I2C_Receive _Data[7:0] I2C Receive Data – This register holds the byte captured from the I2C bus during the Read Data phase. Bit 0 is LSB and was received last.

Table 25. I2C Receiving Data Register (I2CRXFIFO)

I2CRXFIFO (FIFO Mode)												
Bit	Bit 9	Bit 8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	RSVD	DFIRST	DATA									
Default	-	-	-	-	-	-	-	-	-	-		
Access	R	R	R	R	R	R	R	R	R	R		

DFIRST

Last byte of data

- 0: Normal data
- 1: First byte received after a Start or a ReStart is detected

DATA

Data received

I2C General Call Data Register

Table 26. I2C General Call Data Register (I2CGCDR)

	I2CGCDR											
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name		I2C_GC_Data[7:0]										
Default					-							
Access				F	1							

I2C_GC_Data[7:0] I2C General Call Data – This register holds the second (command) byte of the General Call transaction on the I2C bus.

I2C Slave Address MSB Register (I2CSADDR/I2CFIFOSADDR)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 27. I2C Slave Address MSB Register (I2CSADDR)

I2CSADDR (Register Mode)											
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
7 Bits Addressing	-	-	-	A6	A5	A4	A3	A2			
10 Bits Addressing	A9	A8	A7	A6	A5	A4	A3	A2			
Default		0000000									
Access		R/W									

Table 28. I2C Slave Address MSB Register (I2CFIFOSADDR)

I2CFIFOSADDR (FIFO mode)										
Bit	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
7 Bits Addressing	-	-	-	A6	A5	A4	A3	A2	A1	A0
10 Bits Address	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
Default		00000000								
Access		R/W								

I2C Interrupt Control Register (I2CIRQEN/I2CFIFOIRQEN)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 29. I2C Interrupt Control Register (I2CIRQEN)

I2CIRQEN (Register Mode)											
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name	IRQINTCLREN	IRQINTFRC	RSVD	RSVD	IRQARBLEN	IRQTRRDYEN	IRQTROEEN	IRQHGCEN			
Default	0	0	-	-	0	0	0	0			
0 to Disable	YES	YES	-	-	YES	Yes	YES	YES			
Access	R/W	R/W	-	-	R/W	R/W	R/W	R/W			

IRQINTCLREN Auto Interrupt Clear Enable – Enable the interrupt flag auto clear when the I2CIRQ has been read.

IRQINTFRC Force Interrupt Request On – Force the Interrupt Flag set to improve testability

IRQARBLENInterrupt Enable for Arbitration LostIRQTRRDYENInterrupt Enable for Transmitter or Receiver ReadyIRQTROEENInterrupt Enable for Transmitter/Receiver Overrun or NACK ReceivedIRQHGCENInterrupt Enable for Hardware General Call Received

Table 30. I2C Interrupt Control Register (I2CFIFOIRQEN)

I2CFIFOIRQEN (FIFO Mode)											
Bit	Bit 9	Bit 8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	IRQCLREN	IRQFRC	RSVD	HGCEN	RNACKEN	MRDCMPLEN	ARBLEN	TXSERREN	TXUNDERFEN	RXOVERFEN	
Default	0	0	0	0	0	0	0	0	0	0	
0 to Disable	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
IRQCLREN Auto Interrupt Clear Enable – Enable the interrupt flag auto clear when the I2CINTS been read								I2CINTSF			
IRQFRC	RQFRC Force Interrupt Request On – Force the Interrupt Flag set to improve testability								ility		
O: Normal operation 1: Force the Interrupt Request HGCEN Force Interrupt Request On — Force the Interrupt Flag set to improve testability O: Normal operation 1: Force the Interrupt Request								oility			
RNACKEN		Rece	ive NACK	Interrupt	Enable						
MRDCMPLEI	N	Mast	er Read C	omplete E	nable						
ARBLEN		Arbiti	ation Lost	Interrupt	Enable —	Enable ar	bitration L	ost Interru	ıpt		
TXSERREN TX FIFO Synchronization error Interrupt Enable											
TXUNDERFE	XUNDERFEN TXFIFO Underflow interrupt enable										
RXOVERFEN	OVERFEN RXFIFO overflow interrupt enable										

I2C Interrupt Status Register (I2CIRQ//I2CFIFOIRQ)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 31. I2C Interrupt Status Register (I2CIRQ)

I2CIRQ (Register Mode)											
Bit	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bi									
Name		(Rese	erved)		IRQARBL	IRQTRRDY	IRQTROE	IRQHGC			
Default	-	-	-	-	-	-	-	-			
Access	-	-	-	-	R/W	R/W	R/W	R/W			

IRQARBL	Interrupt Status for Arbitration Lost. When enabled, indicates ARBL was asserted. Write a '1' to this bit to clear the inter- rupt. 0: No interrupt 1: Arbitration Lost Interrupt
IRQTRRDY	Interrupt Status for Transmitter or Receiver Ready. When enabled, indicates TRRDY was asserted. Write a '1' to this bit to clear the inter- rupt.
	0: No interrupt 1: Transmitter or Receiver Ready Interrupt
IRQTROE	Interrupt Status for Transmitter/Receiver Overrun or NACK received. When enabled, indicates TROE was asserted. Write a '1' to this bit to clear the inter- rupt.
	0: No interrupt 1: Transmitter or Receiver Overrun or NACK received Interrupt
IRQHGC	Interrupt Status for Hardware General Call Received. When enabled, indicates HGC was asserted. Write a '1' to this bit to clear the inter- rupt.
	0: No interrupt

1: General Call Received in slave mode Interrupt

I2CFIFOIRQ (FIFO Mode)											
Bit	Bit 9	Bit 8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	RSVD	RSVD	RSVD	IRQHGC	IRQRNACK	IRQMRDCMPL	IRQARBL	IRQTXSERR	IRQTXUNDERF	IRQRXOVERF	
Default	-	-	-	-	-	-	-	-	-	-	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

IRQHGC	General Call Interrupt Request Flag. Write a "1" to this bit clear the interrupt						
	0: No interrupt request 1: Interrupt request pending						
IRQRNACK	NACK Interrupt Request Flag. Write a "1" to this bit clear the interrupt						
	0: No interrupt request 1: Interrupt request pending						
IRQMRDCMPL	Master Read Completion Interrupt Request Flag. Write a "1" to this bit clear the inter- rupt						
	0: No interrupt request						
	1: Interrupt request pending						
IRQARBL	Arbitration Lost Interrupt Request Flag. Write a "1" to this bit clear the interrupt						
	0: No interrupt request						
	1: Interrupt request pending						

IRQTXSERR	TXFIFO Synchronization Error Interrupt Request Flag. Write a "1" to this bit clear the interrupt						
	0: No interrupt request 1: Interrupt request pending						
IRQTXUNDERF	TXFIFO Underflow Interrupt Request Flag. Write a "1" to this bit clear the interrupt						
	0: No interrupt request 1: Interrupt request pending						
IRQRXOVERF	RXFIFO Overflow Interrupt Request Flag. Write a "1" to this bit clear the interrupt						
	0: No interrupt request 1: Interrupt request pending						

Table 32. I2C FIFO Threshold Register (I2CFIFOTHRESHOLD)

I2CFIFOTHRESHOLD (FIFO mode)										
Bit	Bit 9	9 Bit 8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0								
Name	RXFIFO_AF_VAL					TXFIFO_AE_VAL				
Default	-					-				
Access		R/W					R/W			

RXFIFO_AF_VAL 5-bit Almost Full value for the RX FIFO

TXFIFO_AE_VAL 5-bit Almost Empty value for the TX FIFO

I2C Read/Write Flow Chart

Figure 7 shows a flow diagram for controlling Master I2C reads and writes initiated via the System Bus interface.

Figure 7. I2C Master Read/Write Example (via System Bus)

Figure 8 shows a flow diagram for reading and writing from an I2C Slave device via the System Bus interface.

Figure 8. I2C Slave Read/Write Example (via System Bus)

I2C Framing

Each command string sent to the I2C port must be correctly "framed" using the protocol defined for each interface. In the case of I2C, the protocol is well known and defined by the industry as shown below.

Table 33. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)
I2C	Start	(Command/Operands/Data)	Stop

Figure 9. I2C Read Device ID Example

I2C Functional Waveforms

Figure 10. Master – I2C Write

Figure 11. Master – I2C Read

Figure 12. Slave – I2C Write

Figure 13. Slave – I2C Read

I2C Timing Diagram

Figure 14. I2C Bit Transfer Timing

Hardened SPI IP Core

The iCE40LM and iCE40 Ultra devices contain two hard SPI IP cores that can be configured as a SPI Master or Slave. When the SPI core is configured as a Master it is able to control other devices with Slave SPI interfaces that are connected to the SPI bus. When the SPI core is configured as a Slave, it is able to interface to an external SPI Master device.

The SPI core communicates with the System Bus interface through a set of control, command, status and data registers. Table 3 shows the register names and their functions.

SPI Registers

SPI Register Name	Simulation Model Register Name	Address[3:0]	Register Function	Access
SPICR0	SPICR0	1000	SPI Control Register 0	Read/Write
SPICR1	SPICR1	1001	SPI Control Register 1	Read/Write
SPICR2	SPICR2	1010	SPI Control Register 2	Read/Write
SPIBR	SPIBR	1011	SPI Baud Rate Register	Read/Write
SPITXDR	SPITXDR	1101	SPI Transmit Data Register	Read/Write
SPIRXDR	SPIRXDR	1110	SPI Receive Data Register	Read
SPICSR	SPICSR	1111	SPI Chip Select Mask For Master Mode	Read/Write
SPISR	SPISR	1100	SPI Status Register	Read
SPIIRQ	SPIINTSR	0110	SPI Interrupt Status Register	Read/Write ¹
SPIIRQEN	SPIINTCR	0111	SPI Interrupt Control Register	Read/Write

Table 34. SPI Registers Summary

1. SPIIRQ is Read Only. Write operation upon this register will not change the content of this register, but will clear corresponding interrupt flag caused by the flags inside SPIIRQ.

Table 35. SPI Control Register 0 (SPICR0)¹

SPICR0										
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	TIdle_XCNT[1:0]		TTrail_XCNT[2:0]			TLead_XCNT[2:0]				
Default	0	0	0	0	0	0	0	0		
Access	R/W	R/W	R/W	-	R/W	-	-			

1. A write to this register will cause the SPI core to reset

TIdle_XCNT[1:0]Idle Delay Count – Specifies the minimum interval prior to the Master Chip Select low assertion (Master Mode only), in SCK periods.

00:½ 01:1 10:1.5

11:2

TTrail_XCNT[2:0]Trail Delay Count – Specifies the minimum interval between the last edge of SCK and the high deassertion of Master Chip Select (Master Mode only), in SCK periods.

000:½ 001:1

010:1.5

111:4

TLead_XCNT[2:0]Lead Delay Count – Specifies the minimum interval between the Master Chip Select low assertion and the first edge of SCK (Master Mode only), in SCK periods.

000:1⁄2

001:1

010:1.5

... 111:4

Table 36. SPI Control Register 1 (SPICR1)¹

SPICR1								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	SPE	WKUPEN_USER	(Reserved)	TXEDGE	(Reserved)			
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	-	R/W	-	-	-	-

1. A write to this register will cause the SPI core to reset

SPEThis bit enables the SPI core functions. If SPE is cleared, SPI is disabled and forced into idle state. 0:SPI disabled

1:SPI enabled, port pins are dedicated to SPI functions.

WKUPEN_USERWake-up Enable via User – Enables the SPI core to send a wake-up signal to the on-chip Power Controller to wake the part from Standby mode when the User slave SPI chip select (spi_scsn) is driven low. 0:Wakeup disabled 1:Wakeup enabled.

WKUPEN_CFGWake-up Enable Configuration – Enables the SPI core to send a wake-up signal to the on-chip power controller to wake the part from standby mode when the Configuration slave SPI chip select (ufm_sn) is driven low. 0:Wakeup disabled 1:Wakeup enabled.

TXEDGEData Transmitting selection bit – This bit gives user capability to select which clock edge to transmit data for fast SPI applications. Note that this bit should not be set when CPHA or MCSH of SPICR2 is set.

0: Transmit data on the different clock edge of data receiving (receiving on rising / transmit on falling) 1: Transmit data on the same clock edge of data receiving (receiving on rising /transmit on rising)

Table 37. SPI Control Register 2 (SPICR2)¹

SPICR2								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	MSTR	MCSH	SDBRE	(Rese	erved)	CPOL	CPHA	LSBF
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	-	-	R/W	R/W	R/W

1. A write to this register will cause the SPI core to reset

MSTRSPI Master/Slave Mode – Selects the Master/Slave operation mode of the SPI core. Changing this bit forces the SPI system into idle state. 0:SPI is in Slave mode

1:SPI is in Master mode

MCSHSPI Master CSSPIN Hold – Holds the Master chip select active when the host is busy, to halt the data transmission without de-asserting chip select.

Note: This mode must be used only when the System Bus clock has been divided by a value greater than three (3). 0:Master running as normal

1:Master holds chip select low even if there is no data to be transmitted

SDBRESlave Dummy Byte Response Enable – Enables Lattice proprietary extension to the SPI protocol. For use when the internal support circuit (e.g. System host) cannot respond with initial data within the time required, and to make the slave read out data predictably available at high SPI clock rates.

When enabled, dummy 0xFF bytes will be transmitted in response to a SPI slave read (while SPISR[TRDY]=1) until an initial write to SPITXDR. Once a byte is written into SPITXDR by the System host, a single byte of 0x00 will be transmitted then followed immediately by the data in SPITXDR. In this mode, the external SPI master should scan for the initial 0x00 byte when reading the SPI slave to indicate the begin-ning of actual data. Refer to Figure 18

0:Normal Slave SPI operation

1:Lattice proprietary Slave Dummy Byte Response Enabled

Note: This mechanism only applies for the initial data delay period. Once the initial data is available, subsequent data must be supplied to SPITXDR at the required SPI bus data rate.

CPOLSPI Clock Polarity – Selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical SPICR2[CPOL] values. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Figure 19 through Figure 21. 0:Active-high clocks selected. In idle state SCK is low.

1:Active-low clocks selected. In idle state SOK is high.

TACTIVE-IOW CIOCKS SElected. In Idle State SCK IS high.

CPHASPI Clock Phase – Selects the SPI clock format. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Refer to Figure 19 through Figure 21.

0:Data is captured on a leading (first) clock edge, and propagated on the opposite clock edge.

1:Data is captured on a trailing (second) clock edge, and propagated on the opposite clock edge*.

Note: When CPHA=1, the user must explicitly place a pull-up or pull-down on SCK pad corresponding to the value of CPOL (e.g. when CPHA=1 and CPOL=0 place a pull-down on SCK). When CPHA=0, the pull direction may be set arbitrarily.

Slave SPI Configuration mode supports default setting only for CPOL, CPHA.

LSBFLSB-First – LSB appears first on the SPI interface. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Figure 19 through Figure 21.

Note: This bit does not affect the position of the MSB and LSB in the data register. Reads and writes of the data register always have the MSB in bit 7.

0:Data is transferred most significant bit (MSB) first 1:Data is transferred least significant bit (LSB) first

Table 38. SPI Clock Prescale (SPIBR)

SPIBR								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	(Rese	erved)			DIVIDE	ER[5:0]		
Default	0	0	0	0	0	0	0	0
Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W

DIVIDER[5:0]SPI Clock Prescale value – The System clock frequency is divided by (DIVIDER[5:0] + 1) to produce the desired SPI clock frequency. A write operation to this register will cause a SPI core reset. DIVIDER must be >= 1.

Note: The digital value is calculated by Module Generator when the SPI core is configured in the SPI tab of the Module Generator GUI. The calculation is based on the System Bus Clock Frequency and the SPI Frequency, both entered by the user. The digital value of the divider is loaded in the iCE40LM and iCE40 Ultra devices using Soft IP into the SPIBR register.

Register SPIBR has Read/Write access from the System Bus interface. Designers can update the clock pre-scale register dynamically during device operation.

Table 39. SPI Master Chip Select Register (SPICSR)

SPICSR								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	(Reserved)				CSN_3	CSN_2	CSN_1	CSN_0
Default	0	0	0	0	0	0	0	0
Access	-	-	-	-	R/W	R/W	R/W	R/W

CSN_[7:0]SPI Master Chip Selects – Used in master mode for asserting a specific Master Chip Select (MCSN) line. The register has four bits, enabling the SPI core to control up to four external SPI slave devices. Each bit represents one master chip select line (Active-Low). Bits [3:1] may be connected to any I/O pin via the FPGA fabric. Bit 0 has a pre-assigned pin location. The register has Read/Write access from the System Bus interface. A write operation on this register will cause the SPI core to reset.

Table 40. SPI Status Register(SPISR)

	SPISR							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	TIP	BUSY	(Reserved)	TRDY	RRDY	TOE	ROE	MDF
Default	-	-	-	-	-	-	-	0
Access	R	R	-	R	R	R	R	R

TIPSPI Transmitting In Progress – Indicates the SPI port is actively transmitting/receiving data. 0:SPI Transmitting complete 1:SPI Transmitting in progress*

BUSYSPI Busy Flag – This bit indicate that the SPI port in the middle of data transmitting / receiving (CSN is low) 0:SPI Transmitting complete 1:SPI Transmitting in progress*

TRDYSPI Transmit Ready – Indicates the SPI transmit data register (SPITXDR) is empty. This bit is cleared by a write to SPITXDR. This bit is capable of generating an interrupt. 0:SPITXDR is not empty 1:SPITXDR is empty

RRDYSPI Receive Ready – Indicates the receive data register (SPIRXDR) contains valid receive data. This bit is cleared by a read access to SPIRXDR. This bit is capable of generating an interrupt. 0:SPIRXDR does not contain data 1:SPIRXDR contains valid receive data

TOEReceive Overrun Error – This bit indicates that the SPIRXDR received new data before the previous data was read. The previous data will be lost if occurs. It will cause an interrupt to System Host if SCI set up allowed. 0:Normal

1:Transmit Overrun detected

ROEReceive Overrun Error – Indicates SPIRXDR received new data before the previous data was read. The previous data is lost. This bit is capable of generating an interrupt. 0:Normal

1:Receiver Overrun detected

MDFMode Fault – Indicates the Slave SPI chip select (spi_scsn) was driven low while SPICR2[MSTR]=1. This bit is cleared by any write to SPICR0, SPICR1 or SPICR2. This bit is capable of generating an interrupt. 0:Normal

1:Mode Fault detected

Table 41. SPI Transmit Data Register (SPITXDR)

SPITXDR								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name		SPI_Transmit_Data[7:0]						
Default	-	· · · · · · · ·					-	
Access	W	W	W	W	W	W	W	W

SPI_Receive_Data[7:0]SPI Transmit Data – This register holds the byte that will be transmitted on the SPI bus. Bit 0 in this register is LSB, and will be transmitted last when SPICR2[LSBF]=0 or first when SPICR2[LSBF]=1.

Note: When operating as a Slave, SPITXDR must be written when SPISR[TRDY] is '1' and at least 0.5 CCLKs before the first bit is to appear on SO. For example, when CPOL = CPHA = TXEDGE = LSBF = 0, SPITXDR must be written prior to the CCLK rising edge used to sample the LSB (bit 0) of the previous byte. See Figure 17-25. This timing requires at least one protocol dummy byte be included for all slave SPI read operations.

Table 42. SPI Receive Data Register (SPIRXDR)

SPIRXDR								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name		SPI_Receive_Data[7:0]						
Default	-	-	-	-	-	-	-	-
Access	R	R	R	R	R	R	R	R

SPI_Receive_Data[7:0]SPI Receive Data This register holds the byte captured from the SPI bus. Bit 0 in this register is LSB and was received last when LSBF=0 or first when LSBF=1.

Table 43. SPI Interrupt Status Register (SPIIRQ)

				SPIIRQ				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	(Reserved)			IRQTRDY	IRQRRDY	IRQTOE	IRQROE	IRQMDF
Default	-	-	-	-	-	-	-	-
0 means No Interrupt	-	-	-	YES	YES	YES	YES	YEs
Access	-	-	-	R/W	R/W	R/W	R/W	R/W

IRQTRDYInterrupt Status for SPI Transmit Ready. When enabled, indicates SPISR[TRDY] was asserted. Write a '1' to this bit to clear the interrupt.

IRQRRDYInterrupt Status for SPI Receive Ready. When enabled, indicates SPISR[RRDY] was asserted. Write a '1' to this bit to clear the interrupt.

IRQROEInterrupt Status for Receive Overrun Error. When enabled, indicates ROE was asserted. Write a '1' to this bit to clear the interrupt.

IRQMDFInterrupt Status for Mode Fault. When enabled, indicates MDF was asserted. Write a '1' to this bit to clear the interrupt.

Table 44. SPI Interrupt Enable Register (SPIIRQEN)

				SPIIRQ				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	(Reserved)			IRQTRDYEN	IRQRRDYEN	IRQTOEEN	IRQROEEN	IRQMDFEN
Default	-	-	-	-	-	-	-	-
0 means Disable	-	-	-	YES	YES	YES	YES	YEs
Access	-	-	-	R/W	R/W	R/W	R/W	R/W

IRQTRDYENInterrupt Enable for SPI Transmit Ready.

IRQRRDYENInterrupt Enable for SPI Receive Ready

IRQTOEEN Interrupt Enable for SPI Transmit Overrun Ready.

IRQROEEN Interrupt Enable for SPI Receive Overrun Ready.

IRQMDFEN Interrupt Enable for SPI Mode Default Ready.

SPI Read/Write Flow Chart

Figure 15 shows a flow diagram for controlling Master SPI reads and writes initiated via the System Bus interface.

Figure 15. SPI Master Read/Write Example (via System Bus)

Note: Assumes CR2 register, MSCH = '1'. The algorithm when MSCH = '0' is application dependent and not provided. See Figure 17 for guidance.

SPI Framing

Each command string sent to the SPI port must be correctly 'framed' using the protocol defined for each interface. In the case of SSPI the protocol is well known and defined by the industry as shown below:

Table 45. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)
SPI	Assert CS	(Command/Operands/Data)	De-assert CS

Figure 16. SSPI Read Device ID Example

SPI Functional Waveforms

Figure 18. Minimally Specified SPI Transaction Example (iCE40LM and iCE40 Ultra as SPI Slave)

SPI Timing Diagrams

Figure 19. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)

tL = Tidle_XCNT

tL = Tidle_XCNT

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Date	Version	Change Summary
October 2015	1.4	Added support for iCE40 UltraPlus.
		Updated I2C Registers for iCE40LM and iCE40 Ultra section. Revised SDA_DEL_SEL[1:0] description.
		Updated Technical Support Assistance section.
		Fixed link to TN1274 on page 1.
January 2015	1.3	Added support for iCE40 UltraLite.
June 2014	1.2	Changed document title to Advanced iCE40 I2C and SPI Hardened IP Usage Guide.
		Added support for iCE40 Ultra.
November 2013	01.1	Changed the interface signal names of hardened IP module.
		Updated I2C Registers Summary table.
October 2013	01.0	Initial release.