
NPS-53ZZ73031A

United States
Naval Postg raduate School

FEDDOCS
o 208.14/2:
NPS-53ZZ73031A

ALL APPLICATION DIGITAL COMPUTER:
COURSE NOTES

by

Gordon H. Syms
1/

March 1973

Second Printing August 1973

Approved for public release; distribution unlimited

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Mason Fieeman, USN M.U. Clauser
Superintendent Provost

ALL APPLICATION DIGITAL COMPUTER: COURSE NOTES

ABSTRACT:

This report is a set of course notes, or text, on the proposed Navy
All Application Digital Computer. The AADC, as it is called, is a pro
grammer-oriented, general purpose, modular digital computer that was
originally designed to meet all the 1975-1985 Naval airborne data pro
cessing requirements, but it has now had its role generalized to include
"All Applications." Since the AADC combines many of the most advanced
computer hardware concepts now under development in the United States,
the study of AADC should be of general interest.

The all application role includes real-time and time-sharing compu
tations, and special applications such as line concentrators, super modems,
data channels and aircraft electric power controllers.

This report includes a chapter on each of the following: a general
introduction and summary of all chapters, AADC architectures, all applica
tion role, hardware technology, Data Processor Element, Haster Executive
Control, Signal Processing Element, evaluating AADC developments, High
Order Language, and AADC applications.

The report will be used for a 33-hour course for graduate students at
the Naval Postgraduate School, but could be used for other audiences or for
shorter courses.

This task was supported by Naval Air Systems Command under Work
Request 2-6297, dated March 23, 1972.

NPS-53ZZ73031A
Harch 1973

Section

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
2.4
2.5

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Table of Contents (Overview)

Preface and Chapter Organization

Chapter 1: INTRODUCTION AND SUMMARY
Introduction to AADC
Objectives of Report and Course
Historical Developments of AADC
Current AADC Developments
Brief Outline of Chapters
Summary Sections from Chapters
Conclusions

Chapter 2: AADC ARCHITECTURES
Introduction and Summary
AADC Architectures
Interfacting AADC Modules
Miscellaneous Subjects
Other Non-AADC Architectures

Chapter 3: ALL APPLICATIONS ROLE
Introduction and Summary
Design Implications of All Applications Role

Chapter 4: AADC HARDWARE TECHNOLOGY
Introduction and Summary
AADC Technology Philosophy
LSI Technology
Memory Technology
Bussing Technology
Electric Power System

Chapter 5: DATA PROCESSOR ELEME~T
Introduction and Summary
Fundamental System Characteristics
Arithmetic Processor
Arithmetic Processor Design
Program Management Unit
The Instruction Set
Detailed Design
Conclusions

Chapter 6: MASTER EXECUTIVE CONTROL
Introduction and Summary of Results
Hardware Master Executive Control
Backup ~mc for Baseline System
Dedicated Software MEC for Dual Processor
Floating Software MEC for Optimized Simplex Processor
Evaluations and Recommendations
Recommended Areas for Further Study

i

Page

iii

1.1
1.8
1.11
1.18
1.23
1.25
1.43

2.1
2.3
2.18
2.20
2.22

3.1
3.2

4.1
4.5
4.6
4.20
4.28
4.30

5.1
5.5
5.43
5.48
5.54
5.57
5.74
5.75

6.1
6.7
6.40
6.52
6.59
6.64
6.73

Section

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3

9.1
9.2
9'.3
9.4
9.5
9.6

10.1
10.2
10.3
10.4
10.5

Table of Contents (Overview) - Con'd.

Chapter 7: SIGNAL PROCESSING ELEMENT
Introduction and Summary
Historical Developments
Current Signal Processing Element
Comparison of DPE and SPE
Current and Future Developments

Chap ter 8: MEANS OF EVALUATING AADC DEVELOPMENTS
Introduction and Summary
Specific Evaluation Studies
AADC Breadb oards

Chapter 9: HIGH ORDER LANGUAGE
Introduction and Summary
Designing a HOL
Extending CHS-2 to AADC's HOL
Current Status of HOL
HOL Projects
A HOL for Signal Processing

Chapter 10: APPLICATIONS FOR AADC
Introduction and Summary
Possible AADC Applications
Automated Design Facility
Current Status
Concl us ions

ii

Page

7.1
7.3
7.8
7.26
7.29

8.1
8.3
8.6

9.1
9.3
9.5
9.7
9.20
9.21

10.1
10.2
10.11
10.13
10.14

Preface and Chapter Organization

* This report is intended as a study guide for the proposed Navy's Advanced

Avionic Digital Computer or All Application Digital Computer. The AADC, as

it is called, is a programmer-oriented, general purpose, modular digital computer

with special features designed to meet all the 1975-1985 Naval airborne data

processing requirements, as well as the normal scientific and business data

processing requirements. The AADC combines many of the most advanced computer

hardware and software concepts now under development in the United States; and,
,

therefore, the study of AADC should be beneficial to anyone interested in the

projected state-of-the-art in computer developments, as well as to Navy personnel.

The general interest in AADC has grown significantly in the last year, since

the Navy decided to generalize the role of this powerful and inexpensive computer

to include All Applications. Now specially designed features are being added to

the original avionic computer to make it suited for normal batch and time

sharing computations, without jeopardizing the original real-time avionic

features. The AADC also appears suitable for such special applications as line

concentrators, super modems, data channels and aircraft electric power controllers.

Although this report could be used as an independent study guide, it will

also be used for an eleven \~eek, 3 hours-per-week course for graduate students

in computer science, computer systems management, avionics and other students at

the Naval Postgraduate School. This study guide could also be used for a one,

or possibly two, weeks concentrated·course on AADC; or parts of it could be

* This report was produced under NAVAIRSYSCOM \vork Request 2-6297 dated
March 23, 1972.

iii

used for a one or two day introduction to AADC for the Navy or Industry

personnel.

This report is organized in a modular fashion - in keeping with the AADC

concept - to allow the reader to concentrate on his area of interest without

missing any essential background, or continually being diverted to other chapters.

Chapter One is the Introduction and Summary. Since it provides the introduction

and overview to the AADC development program, it should be reviewed before

studying any other chapter. Chapter One also offers a fairly concise summary

of all facets of the AADC development, which should be of interest to the more

casual reader.

After reviewing Chapter One, any other chapter can be studied, and in any

order, depending on the reader's interests. The contents of the Chapters

include the AADC architecture, the "all applications" role, hardware technology -

including LSI, memory and bussing technology - , the sequential Processor Element,

the Master Executive Control, the parallel processor, evaluating AADC develop

ments, and last - and probably the most important - the applications for AADC.

The last chapter should be of special interest to non-computer specialists,

especially anyone involved with avionics, because it asks the questions, "How

could you use this powerful computer, and how many would you want at the very

low predicted cost?"

iv

v

Chapter 1

I N T ROD U C T ION

AND

SUMMARY

Section

1.1
1.1.1
1.2
1.2.1
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.5
1.6
1.6.1
1.6.2
1.6.3
1.6.3.1
1.6.4
1.6.4.1
1.6.4.2
1.6.4.3
1.6.4.4
1.6.5
1.6.6

1.6.7

1.6.8

1.6.9

1.6.10

1.7

Table of Contents for Introduction and Summary

List of Figures
Glossary of Terms

INTRODUCTION TO AADC
AADC Design Philosophy
OBJECTIVES OF REPORT AND COURSE
Justifications for an AADC Course
HISTORICAL DEVELOPMENTS OF AADC
The Second AADC Conference
Miscellaneous Historical Developments
AADC Progress Reports
AADC Conferences ,
CURRENT AADC DEVELOPMENTS
All Applications Role
AADC Project Report Nine
AADC Project Report Ten
AADC 1973 Symposium
BRIEF OUTLINE OF CHAPTERS
SUMMARY SECTIONS OF CHAPTERS
Introduction
Introduction and Summary to AADC Architectures
Introduction and Summary to All Applications Role
Implications of All Applications Role
Introduction and Summary to AADC Hardware Technology
Scope of Chapter Four
Summary of LSI Technology
Memory Technology
Summary of Other Technologies
Introduction and Summary to Data Processing Element
Introduction and Summary for Haster Executive

Control
Introduction and Summary to Signal Processing

Element
Introduction and Summary to Evaluating AADC

Developments
Introduction and Summary to High Order

Language
Introduction and Summary to Applications for

AADC
CONCLUSIONS

References to AADC Introduction and Summary

1.i

Page

1.ii
1.iii

1.1
1.1
1.8
1.9
1.11
1.11
1.13
1.14
1.15
1.18
1.18
1.18
1.19
1.20
1.23
1.25
1.25
1.25
1.27
1.27
1.28
1.28
1.28
1.29
1.30
1.31
1.35

1.38

1.39

1.40

1.41
1.43

1.45

Appendix

1.1

Figure

1.1

List of Appendices

The Advanced Avionics Digital Computer System by
R. S. Entner [1.1].*

List of Figures

Relative Life Cycle Costs of AADC

Page

1.$0

1.7

* Reference Number 1.1 located at the end of Chapter One. The first number
refers to the chapter number, the second is the reference number.

1.ii

A&C

Baseline

BORAM

CCD

crn

CMOS

Ferroacoustics

HOL

ITACS

~C

MIPS

MNOS

~S

~p

msec

Glossory for Introduction and Summary

- Arithmetic and Control Unit for sequential computations;
often synomonous with PEe

- The largest, or worse case, AADC architecture: contains
several PEs, large BORAM, large RAMM, SPE, etc.

- Block Oriented Random Access Memory: used to store program
modules and permanent data.

- Charge Coupled Device Semiconductor: competitor for MOS
for BORAM.

Closed flux path thin film memories, a planar thin film
analog of plated wire for RAMM and TM.

Complementary Metal Oxide Semiconductor used in memory arrays
or LSI circuits.

- A process of using coincident mechanical (acoustic strain
wave) and electrical energy to write magnetic domains into
semi-closed path permalloy film - used in BORAM.

- Higher Order Languages: like CMS-2, Fortran but particularily
extensions to these languages.

- Integrated Tactical Air Control System: a general aircraft
control system scheduled for all 1980 Navy aircraft.

Master Executive Control: supervises and controls all AADC
modules.

- Millions of Instructions Per Second: a measure of processor
throughput.

- Multiple Memory ~Iultiprocessor: an intermediate AADC
architecture; see Chapter 2.

- Metal N-channel Oxide Semiconductor (my guess) (used in
Appendix 1.3).

Metal Oxide Semiconductor: used in LSI circuits and semi
conductor memories.

Matrix Parallel Processor: early version of the parallel
processor (Chapter 7).

- Milliseconds = 10-3 seconds.

l.iii

MTBF

NORO

nsec

OSP

PE

SPE

TDM BTM

TM

TPP

~sec

DPE

Glossory for Introduction and Summary (Cont'd)

- Mean time between failures: a measure of reliability.

- Non-distructive read out, i.e., no rewriting required
after reading.

- Nanoseconds = 10-9 seconds.

- Optimize Simplex Processor: simpliest AADC architecture.

- Processing Element for performing sequential computations:
actually A&C plus TM; see Chapter 5.

- Random Access Main Memory: used to store semi-permanent
(mode independent) data and to buffer Input or Output (I/O).

- Signal Processing Element:- latest version of the parallel
processor, like MPP (Chapter 7).

- Time Division Multiplexed Block Transfer Multiprocessor: an
intermediate AADC architecture.

- Task Memory attached to PE and holds the currently executing
program module and temporary variables.

- Three-Plus Processor: the ultra-variable AADC architecture
with more than three PEs for extra reliability.

- Microseconds = 10-6 seconds.

- Data Processing Element: new name for the sequential Pro
cessing Element.

l.iv

Chapter 1

INTRODUCTION AND SUMMARY

1.1 INTRODUCTION TO AADC

The All Application Digital Computer (AADC) is a programmer-oriented,

general-purpose, modular digital computer with special features designed to meet

1975-85 Naval airborne data processing requirements, as well as, the normal

batch and time sharing computational requirements. It combines many of the

most advanced computer hardware and software concepts now under development in

the United States.

1.1.1 AADC Design Philosophy

The AADC is a modular computer, designed to be inexpensively assembled

from off-the-shelf large scale intregated (LSI) silicon wafer and advanced

magnetic thin-film memory building blocks. It can be configured as a simple

minicomputer, a super-multiprocessor, or anything in between. It is truly a

fourth generation computer, employing hardware and software building blocks to

construct the various computer systems. The cost should be one to two orders of

magnitude less than today's state-of-the-art computers. The computers should also

be one-tenth the size and weight, and should exhibit remarkable reliability.

Originally, AADC was the acronym for Advanced Avionic 'Digital Computer.

The development of the AADC was the result of analyses into next-generation Naval

aircraft computing requirements, as well as a serious attempt to find ways to

reduce the enormous cost of computer procurement and support through the application

of standardization and modularity. In the past, the designs of computers that were

developed by private industry were frequently so different from one another that

system evaluation by even the most qualified engineers was often extremely difficult.

1.1

To insure the availability of an adequate digital computer for the years

between 1975 and 1985, the Naval Air Systems Command decided in the fall of 1968

to pursue an active computer development effort, originally named the Advanced

Avionic Digital Computer Program. The ultimate success of this development will

hinge on several basic engineering and management decisions made that year. First,

equal emphasis would be placed on system hardware, software, and technology

development. Second, no one company would be permitted to develop the computer;

rather, jobs would be parceled out on the basis of vendor competance in each

critical area, and only after open competition. Third, dependence upon proprietary

* designs and concepts would be minimized. [1.1] •

In the last year the Navy has recognized the power of the AADC and its

relatively low cost and have decided to generalize its role to "all applications".

This involves s~veral additions to the original design requirements.

To achieve its goal the AADC program requires the cooperation of

Government and Industry personnel in a coordinated effort that will result in new

capabilities in computer design, digital technology and microelectronics in general.

The AADC will provide a single family of hardware and software modules

from which can be assembled computers of varying capacities that will satisfy the

entire spectrum of Navy airborne and general purpose computing requirements.

Exploitation of Large Scale Integration (LSI) digital logic circuitry and mono-

lithic magnetically coupled thin film storage will allow use of powerful machine

organizations and programming techniques within the weight and size constraints

* Denotes Reference 1
by reference number.

at the end of Chapter 1, i.e., chapter number followed

1.2

of future aircraft. Replacing the present multiplicity of airborne comput

ers with machines constructed of common modules will result in large savings

in R&D, procurement, maintenance, training, and programming, and provide

computers capable of adapting to, and growing with, evolving avionic system

requirements.

Rather than present any more of the AADC philosophy here the

reader is referred to Appendix 1.1, which is a September 1970 description

of the AADC program by Ronald S. Entner, the System Architect and Project

Manager of AADC at Naval Air Systems Command [1.1]. There are only two

major changes that have been made since that article: first, the Data

Processing Elements or DPEs are no longer organized as byte-functional modules

because the current design by Raytheon is a word-oriented DPE [Chapter 5]; and

second, the Matrix Parallel Processor has undergone several changes and is

now called the Signal Processing Element or SPE IChapter 7]. Another smaller

change is that the DPE is not a microprogrammed computer, although it does

have some microprogramming capabilities.

In a draft to a follow-on article, Mr. Ronald S. Entner describes

the progress of the AADC program one year later in October 1971. Although

this article was not published, it does give a very good overview of the

complete AADC developmental project in its many facets, including DPE per

formance, cost and performance of various memories, a general purpose array

processor (now called SPE), instruction utilizations in Navy aircraft, soft

ware development, appraisal of hardware technology and general progress of

the AADC project [1.2]. Some of the latest developments, including the all

application role, will be discussed in a later subsection.

1.3

Several articles have appeared in the popular press and excerpts from

these will provide further background on the AADC program. An article in the

August 3, 1970 issue of Electronics [1.3] contains a good overview of the AADC; it

has several figures on costs and timetables in the first half of the paper, and

an outline of the breakthroughs in LSI and memory technology necessary to make

AADC realistic in the second half. The timetable is particularily interesting

since it states that "So far [in August 1970], $12 million is expected to carry

the AADC througq the feasibility stage; $1.5 million is budgeted for fiscal 1971.

The $1.4 million spent so far has been divided among 19 contractoYs. AADC

feasibility must be established by the end of 1973; operating hardware is to be

available for evaluation in 1974" [1.3]~ Apparently the Defense Department has

been paying up to $150 per word for program development (the standard industry

figure is $lO/word), and, by one count, the Pentagon was supporting as many as

287 different airborne computer efforts at one time.

In August 1970, the cost of producing a 2 million operations-per-second

computer with 80,000 words of memory was estimated by Mr. Entner to be $30,000.

"In quantity the cost should drop to about $13,000." The additional associative

fast-Fourier elements and arithmetic units would create a machine comparable to

the most powerful computer on the market today, and for only about $100,000.

One critic in the same article suggests that, "Entner's group talks

primarily about the processing elements, but that's the least significant part

of the unit. Input-output is the monstrous part of the system in engineering

terms, and memory is the most expensive. Here's where they are going to have

the problems." Another comment is, "Ron [Entner, AADC Program Manager] has done

a fantastic job of interesting industry in the program at its own expense" [1.3].

*In January 1973 the A1J)C program is still on schedule with }larch 1974 as
the predicted delivery date for the Advanced DLvelopment model.

1.4

Another article in the June 22, 1970 issue of Aviation Week and Space

Technology gives a good view of several Navy avionic computer systems under

current development, and provides the motivation for one set of computer modules

like AADC. The last half of the article is a fairly general and vague description

of the AADC concepts but the last few paragraphs on the LSI technology are

interesting [1.4].

A June 1971 article in Aviation and Space Technology describes the

application of AADC to the Integrated Tactical Air Control System (ITACS) that

is scheduled for operation in new aircraft starting in the 1980s. It is anticipated

that the AADC could be used as an integral part of the ITACS system controlling

a variety of antenna elements, RF (Radio Frequency) heads and the modem with its

programmable frequency synthesizer and matched filters, as well as, providing

navigation and fire control computations [1.5].

The underlying motivation for the AADC is one of cost. The following

is the estimated computer specifications for a conceptual advanced Naval Aircraft

for 1980. The figures are the result of extensive analysis and therefore should

be considered realistic [1.2]. The specifications are:

6
1) Throughput capacity: 3.6 x lOops/sec,

2)

3)

4)

Random access storage: 5 8 x 10 words,

Bulk storage:
6

10 words,

Computer cycle time: 1.0 microseconds,

5) Weight: 30 lbs, and,

6) Volume: 870 cubic inches.

1.5

The life cycle cost of providing this with a conventional aircraft would be

about $2 million, but with the AADC it is estimated at $100,000 or 1/20 of the

cost. The relative portion of the cost for development, procurement, modification

and maintenance are depicted in Figure 1.1, As can be seen, the largest per

centage decrease with AAnc over the conventional computer is in the maintenance.

While the relative percentage of procurement costs goes up significantly, the

relative cost of development and modification remain approximately constant.

Thus the total cost of AADC is about 1/20 that for a conventional aircraft

with the largest proportion being for procurment instead of maintenance.

1.6

.r'·
I
1

~ I
.~. i
~ ~

~f
:;d
ro
I--'
~
rt j-I." <:
ro

..... ~
• 1-"

'" Hl ro
()

'-<:
n
I--'
ro
()
o
(fl

rt
en.
o
Hl

4 ;, u , ; 0, 4 -

..
•

Cornpufer life -Cycle Cost Factors
I

J\A,cintencnce

Pro,urernent

............... ----~

($2,000,000/ Aircraft)

Procurement

Iv'odification
Development'

AADC
($100,000/ Aircraft)

1.2 OBJECTIVES OF REPORT AND COURSE

The AADC system should be of interest to all. computer specialists,

as well as Navy personnel, who are interested in new devel~pments in computer

systems, because the AADC inco!porates many of the present and future state-of-

the-art hardware and software technologies. This report is intended as the

basis of a comprehensive AADC course.

The primary purpose of this report is to organize the AADC literature

into "bit-sized chunks" so that it may be more readily "digested." Already the ,

AADC literature represents thousands, and probably tens of thousands, of pages

of description of AADC concepts, design philosophies, design alternatives,

equipment specifications, operating characteristics and possible applications.

This report is intended to organize all the AADC descriptive material so that

a reader can easily locate the portions of interest and can obtain an overview

of the pertinent sections. In keeping with the AADC philosophy, the material

is organized in several modules or chapters that are each independent and self-

contained (see Section 1.5). The material in this report is taken from the

AADC literature and is referenced accordingly. In this way, the report represents

a study guide for anyone wanting to learn more about the state-of-the-art in

computer systems development and particularily that of the AADC system.

This report is the basis for a comprehensive course on ·the AADC suitable

for personnel with some computer training and experience, who are interested

in future computer technology. The course includes all aspects of AADC of

interest to the computer specialist from design concepts to system compatibilities,

as well as, the new applications that become practical with this powerful computer

system. The course will be given to NPS graduate students as a three-credit

1.8

three-month course, but it could also be given as a one or two week short

course for other Navy personnel or, in a shortened version, as a one to three

day course to Industry. Two shortened versions of 12 lecture hours has already

been tried at NPS, es special courses.

1.2.1 Justifications for an AADC Course

Some more specific justifications for developing and teaching an AADC

course at this time are:

1. To inform the Navy of AADC. This course, when

given to students and other Navy personnel,

will produce a large group of informed Navy

personnel who understand the AADC concepts and

features and who are interested in AADC developments.

2. To inform the Naval students of future avionic

computer technology.

3. To encourage NPS students in the conceptual design,

development and applications of AADC. The students

have the time (in terms of class and thesis projects),

fi~ld experience and resources to make significant

contributions to AADC, especially in the applications area.

4. To develop managerial guidelines for the use of AADC

in Navy Systems.

5. To present seminars on AADC to industry, short courses

to Navy personnel, as well as the regular quarter courses

to Naval Postgraduate School students. A Comprehensive

set of notes will make this task much easier.

1.9

In conclusion, when the Navy undertook the supervision of the develop-

ment of the AADC system, it made a big step in controlling the design of computers

for the Navy needs. In order to make this project truly effective, the Navy

must have trained personnel ready to incorporate the AADC into existing or new

applications in such a way as to maximize the usefulness of all its capabilities.

Never before has the Navy known this far in advance what the future Navy computers

will be, and now the Navy has a chance to develop applications for this computer

while it is still being developed, instead of after it is in production. If the ,

applications for AADC are ready when the equipment becomes 'available, the Navy

will have made another major step in solving its computer oriented problems.

1.10

1.3 HISTORICAL DEVELOPMENTS OF AADC

The initial development of the AADC concept began in 1968 with two

studies by Hughes Aircraft Company and Honeywell Inc. on future requirements

for Naval avionics computers [1.6 and 1.7]. The first conference on AADC was

held. on February 27, 1969 to inform industry of the AADC concept and to ask for

their cooperation in the AADC development [1.8].

The initial AADC Baseline definition was published by Ron Entner in

three different but similar versions: first, in a Spartan book copyright 1970 ,

but with the article dated March 16, 1969 [1.9]; second, in a NAVAIRSYSCOM report

dated July 1969 [1.10]; and finally, at the second AADC conference in September

15, 1969 [1.12, 1.14]. The AADC organization is basically the same in all three

articles and was essentially the same in 1969 as it is now at the end of 1972.

For example, the AADC Baseline organization is shown in [1.9] and dated March 16,

1969 consists of the same processor element with memory, executive control, main

memory, bulk memory, TIlatrix parallel processor and I/O. The only differenc~ 3~

that time were: first that the PEs were organized as byte-functional modules;

in other words, it took 4 PEs each operating on a byte to perform 32-bit word

operations; second, the routing switch between the PEs and the memory has been

eliminated by changing to word-functional modules; and finally the Matrix Parallel

Processor has undergone several steps of evolution [Chapter 7].

1.3.1 The Second AADC Conference

The second conference, which unofficially marked the first birthday of

the AADC program, was held on September 15, 1969 [1.12]. Four papers constitute

the proceedings of that conference and describe the basic AADC concepts. The

1.11

first paper describes the motivation for AADC, the modular AADC philosophy and

advantages and disadvantages of the AADC concept. The primary advantages are

an expected 5 times reduction in size, 20 times reduction in cost and a 10 times .
reduction in mean time between failures (MTBT) [1.13].

The second paper reiterates the AADC goals, modularity concept and

avionics computer tasks, and the present eight possible computer organizations.

These are: 1) A unit or simplex processor consisting of processor, memory and

I/O units; 2) ~ federated multiple processor consisting of two simplex processors

with the I/O units interconnected; 3) A dedicated multiple processor - which is

essentially the same as the federated multiple processor except that both memories

and processors are connected to a single I/O unit; 4) A shared memory multi-

processor consisting of two processors with only a single memory and I/O unit;

5) A multiple memory multiprocessor with at least two processors, two I/O units

and several memory modules all interconnected; 6) A pipeline multiprocessor

with a commutator and several pipeline functional units (similar to CDC 6600 CPU);

7) A multiprocessor with dedicated task memories, as well as, a common memory;

and finally, 8) The AADC baseline systems [1.14]. Out of these eight possible

organizations, four were selected later for further study. They were: the

Optimized Simplex Processor (aSP), the Multiple Memory Multiprocessor (:~rM), the

Time Division }lultiplexed Block Transfer Multiprocessor (TDM BTM) - which is

essentially a Baseline system without the hardware executive -, and the AADC

Baseline system to handle the worse-case conditions. (More details on the

organizations will be presented in Chapter 2.) Some of the concepts of software

modularity and the Master Executive Control (MEC) are also presented in the

second paper 11.14].

1.12

The third paper of the September 1969 Conference describes the AADC

hardware considerations including LSI technology and possible optical computer

memories (which have not yet materialized). Of special interest is a summary of

digital logic gate characteristics [1.15, page 8] which is presented in Sub

section 4.3.3.

The longest and certainly the most detailed presentations is the final

paper on the Baseline associative processor [1.16]. Unfortunately, the parallel

processor area ~as undergone the most evolution in the last three years and,

therefore, the paper is the least reliable reference for the current status.

See Chapter 7 for more up-to-date information.

1.3.2 Miscellaneous Historical Developments

The first report on the Haster Executive Control was written by

Honeywell in July 1969 [1.17] and the second by Ron Entner in December 1969

[1.18]. There were two other proposals for the AADC system by Grumman Aerospace

Corporation in July 1969 [1.19] and by General Electric Company in August 1969

[1.20] but these proposals have not been accepted. Raytheon Company also

produced two classified reports on the integration of AADC into operational

systems [1.21 and 1.22]. A proposed technical approach report for AADC was

'rritten by Ron Entner in December 1969 but it was for "Official Use Only" [1.23].

The first simulation study was done by Univac Advanced System Group in November

1969 [1.24].

These documents are listed here for historical purposes and to give

credit where due to the initial developers of AADC. The documents are not

considered critical to the development of this report or to a course on the

present AADC system and, therefore, have generally not be obtained or reviewed

at NPS.

1.13

1.3.3 AADC Progress Reports

The AADC Development Program Progress Reports written by Ron Entner of

NAVAIRSYSCOM are also a good means of following the progress of the AADC project.

Project Reports numbered 1 to 4, written in November 1968, February 1969, May 1969

and December 1969, respectively, report the initial development of AADC [1.25 to

1.28]. Of these, Progress Report Four is the most significant since it reports

on the September 1969 conference as unofficially marking the first birthday of

the AADC effort and being an outstanding success. It reports on the introduction ,

of the Block Oriented Random Access Memory (BORAM) as an important building block

in AADC. It also contains as enclosures the preliminary statement of work for

RFP for the MEC analysis design study and the AADC software considerations.

Progress Report Four also discusses the Navy's MINCOMS (flultiple Interior Commu-

nication System) which is a means of simplifying the AADC I/O functions by

standardizing the data formats and by providing AADC with control of the commu-

nication system between the com~~ter and the outside world.

AADC Progress Reports Five through Eight present the AADC process from

March 1970 to July 1971. Progress Report Five presents the effect of future

avionic requirements on the AADC instruction repertoire, as well as the effects

of the requirements of the AADC Baseline system on the AADC instruction repertoire

[1.29]. Progress Report Six contains: 1) An AADC technology summary including

cost information; 2) AADC associative processor interim report; 3) A memorandum

entitled: "AADC workload characteristics requirements"; and, 4) an advanced memory

technology progress note [1.30]. Progress Report Seven contains an AADC biblio-

graphy, a preliminary statement of work for a high level programming language

1.14

development, and a discussion of software modularity [1.31]. Progress Report

Eight contains the following: 1) Preliminary statement of work for an analytical

study to establish the feasibility of a tactical interactive programming facility;

2) Summary sheets of AADC program review; 3) A paper entitled: The programmer

as a computer designer; 4) AADC status report; 5) Storage technology and }v~c

architecture; and 6) The agenda of the advanced digital technology conference,

June 1971 [1.32].

Progress Reports Nine and Ten, dated Novc~ber 1971 and ~1ay 1972 [1.33

and 1.34], present the current status of AADC and will be discussed later in

Section 1.4.

Progress Reports Three through Eight are available through the Defence

Documentation Center as referenced.

1.3.4 AADC Conferences

So far six conferences have been held on the AADC progra~ The first

held on February 27, 1969 V.~as intended to inform industry of the AADC concept

and to ask for their cooperation in the AADC developmental project [1.8]. The

second conference was held on September 15, 1969 to describe the AADC philosopl-'.:.-,

the possible computer organizations, the hard\vare development and the matrix

parallel processor, see Section 1.3.1 above or [1.12].

The third conference was held on June 20-30, 1970 and discussed the

HOL (Higher Level Language] requirements for aerospace computers [1.35]. Quoting

from the introductory remarks:

*Actual1y seven counting the AADC 1973 Symposium.

1.15

The languages discussed at the conference were
Compiler Honitor System - 2, Space Programming
Language, and Comnuter Language for Aeronautics
and Space Programming. The purpose of the con
ference was to address the relative merits of each
language with respect to avionic applications, as
well as discuss high level aerospace programming
language compatibility and computer hardware
requirements (i.e., common instruction repertoires,
standard word formats, etc.) which could lead to
some measure of compiler standardization.

In particular, the conference discussed the characteristics needed for programming

avionic applications and how the AADC instruction set could be matched to a

suitable HaL.

The fourth conference is the Symposium on the Advanced Aircraft Electric

Systems (SOSTEL) held April 20-22,1971. The conference discussed the replacement

of conven~ional electro-mechanical power-distribution devices \vith digital computer

technology, multiplexed data transmission principles and solid state switching

devices to improve the means of managing, controlling and distrubuting aircraft

electrical power in the future [1.36].

The fifth conference on the Advanced Digital Technology was held June

8-10, 1971 and discussed the latest developments in LSI and nlemory technology.

In total 27 papers were presented including papers on material growth and prepar-

ation, microelectronics processing, switching and memory devices and circuitry,

LSI circuit interconnection technology, LSI test generation and array testing,

LSI packaging technology, optical communications, and the implication of new

computer architecture and memory technology on future computer systems [1.37].

The sixth conference was the AADC Software Conference on Command Control

Software Technology for 1975-1985 held February 1972 and cosponsored by NAVAIR-

SYSCOM and NELC. The purpose of the conference was to address the questions of

1.16

requirements that will oe imposed on software systems and the methodologies

that will be available to satisfy those requirements in 1975 to 1985. The

conference also allowed an important segment of the software community to be

introduced to the hardware and architectual corncepts embraced by AADC; and at

the same time, provided an opportunity for open discussion of the fu\DC software

goals and particularily the implication of using CMS-2 language as the basic

AADC HOL [1.34]. Conference proceedings are not yet available.

One other conference, namely the National Aerospace Electronics

Conference held May 17-19, 1971, is mentioned here because of its general

applicability to the AADC problems and applications [1.38].

The last conference is the AADC 1973 Symposium held in Or1a~do,

Florida, on January 23-25, 1973. Some results from this S)~posium will be pre

sented in Subsection 1.4.4.

1.17

1.4 CURRENT AADC DEVELOPMENTS

Since most of this report is based on reports that are about one

year old and since the AADC System is in a continual developmental stage,

this section will describe some of the latest developments.

1.4.1 All Applications Role

Certainly the most significant change in the AADC program in the

last year is the change in emphasis from only avionic applications to all

applications. This has caused significant changes in the AADC design by re-

quiring many of the same features that produced so many problems in the present

third generation computers. For example, rather than having a Processing

Element (PE) executing a single program out of its own Task Memory, the PE

must now have facilities for multiprogramming, virtual memory, demand paging

and storage protection. Some of these features may even require the PE to

have its own nucleus of an operating system, as well as relocation hardware

to support the virtual memory. Also the traffic on the buses will increase

significantly. The AADC design~rs will be required to solve many major

operating system problems, such as thrashing (excessive paging until through-

put is almost zero) and system deadlocks, that remain unsolved in present-

day computers. In any case, the AADC supporters are convinced they can beat

these problems with the very powerful AADC. The design changes for the All

Application role is discussed in AADC Progress Reports Nine and Ten [1.33 and

1.34].

-
1.4.2 AADC Project Report Nine

Progress Report Nine presents the problems of 1) addressing a large

virtual memory with only 12 bits in the PE address field; 2) multiprogramming

1.18

and demand paging on the OSP System where the ~mc shares the PE; 3) adequate

storage protection when several programs are concurrently resident in the TH;

4) binding atrun time instead of compile time (this is usually an advantage

except when time is critical in a real time application); 5) program naintenance

in a more complex system; and finally, 6) the problem of using tag bits to

protect data and programs [1.33, pages 1-10].

Progress Report Nine states that, "As a result of a recent appreciation

for the processing power of the AADC/OSP, an interesting modification ~as made ,

to existing MEC design goals." Because the unit processor provides the necessary

throughput to meet the co~bined sequential processing needs of an integrated 1980

aircraft, the multiprocessing capability should be used for increased reliabilitv

rather than throughput. Thus four new classes of multiprocessors have been

identified. These are a single PE, the dual PE capable of running MEC or

application programs on either PE, the Triplex Processor using three PEs witll

majority voting, and finally the Three-Plus Processor which is capable of runni~:

as a Triplex Processor but has the added capabilities from extra PEs in case on2

fails.

Enclosures (1) and (2) to Progress Report Nine present recent Navy

thinking on the subject of improving C!1S-2 programming language to meet AADC

needs; see Section 9.3 or [1.33, pages 13-58].

1.4.3 AADC Progress Repqrt Ten

AADC Progress Report Ten reports recent thinking on several subject

areas including: 1) the problems of the All Applications role; 2) BORA}1 develop-

ments; 3) Advanced Avionics Fault Isolation System (AAFIS); 4) Improvements

1.19

in CMS-2; 5) External I/O; and finally, 6) the Signal Processing Element

(SPE) [1.34, pages 1-10]. Also listed are seven major tasks on which con

tractors and NAVAIRSYSCOM efforts are being concentrated. These include

LSI packaging, BORAM and RA}1 memories, requirements for F-14 and A-7 air

craft, further development of MEC, internal bussing, further development

on the PE (or A&C) design, and demand paging. Of particular interest is

page 17 of Progress Report Ten because it contains a partial listing of the

Plans for Fiscal Year 1973.

1.4.4 AADC 1973 Symposium

The latest development at the time of writing is the AADC 1973

Symposium held on January 23-25, 1973. The Symposium covered a wide variety

of AADC subjects including a keynote address by RADM Rice, TADSO, the current

status of AADC program by NAVAIR and NADC, AADC tradeoffs for NTDS, the Data

Processing Element and I/O controller by Raytheon and IB}1, AADC simulations

.and the Signal Processing element by NRL, Master Executive Control prelimi

nary design by Hone)~ell, rev~sion to C}IS-2 for use with AADC by Intermetrics,

as well as, eighteen presentations on hardware developments. The most signi

ficant results from the conferences are:

1. RADM Rice's and TADSO's unquestable support of AADC.

Other projects are being cancelled waiting for AADC.

According to RADM Rice he has support of ADM Kidd in

this project too.

2.. The Advanced Development Models for the Data Processing

Element (DPE - new name for the PE) and the Signal Pro

cessing Element (SPE) are scheduled for delivery in

March 1974.

1.20

3. The instruction set for the DPE has been simulated so

that DPE programs can be written and debugged.

4. The DPE now uses a 16-bit address field vice 12 bits.

5. A Microprogramming Language (AMIL) has been developed

for the SPE so that its Microprogrammed Control Unit

(MCV) can be programmed in a Fortran-like language

rather by specifying bit patterns.

6. An AMIL translator has been developed to convert ~fIL

programs to bit patterns for the MCV.

7. A MCV simulator has been developed to run and test pro

grams written in AMIL. This in the start of a complete

SPE simulator.

8. A preliminary design for the Haster Executive Control

(MEC) has been completed.

9. Many new developments have been made in the hardware

technology (LSI, RAH, BORA?·l and bussing) which indicate

the AADC is technically feasible.

10. A new programming language - a revised version of C}1S-2-

called CMS-2K has been proposed as the kernal ~~c

language. Other languages, such as CMS-2, Fortran COBOL,

Jovial, APL, etc., - or variations of these - will be

developed later as extensions to CMS-2K.

11. The last, and probably the most significant, develop

ment from the 1973 Symposium is the need to demonstrate

the applicability and strategy of AADC to a wide variety

of Navy problems. For example, according to Capt Roth,

1.21

FCDSSA, San Diego, it is not sufficient to show technical

feasibility and low cost - because computer hardware (LSI)

costs are only 0.3 to 0.5 percent of the total NTDS cost -

but it is necessary to demonstrate that the AADC program

will result in a reduction in the complexity of the com

puter software and thus a significant improvement in the

computer software maintainability and reliability. This

demonstration must be for specific and realistic applications.

Since the 1973 Symposium covers almost all aspects of the AADC program and

only a few of them have been covered briefly here, it is recommended that

the reader obtain a copy of the Symposium proceeding as soon as they become

available - hopefully by April 1973 [1.41].

1.22

1.5 BRIEF OUTLINE OF CHAPTERS

The chapters are organized in a modular fashion - in keeping with the

basic AADC concept. Thus each chapter is largely independent and self contained

and has its own tables of contents, figures and tables, its own glossory of te~s,

text material and a list of references. Appendices and problem sets are optional.

Thus, each chapter can be studied with a minimum of reference to other chapters.

Furthermore, other than Chapter 1, which is a general introduction, the chapters

can be studied ip any order depending on the reader's interest. It seems very

appropriate for a computer system with modular hardware and software systems to

also have a modular course.

This section will give a very brief outline of each course module.

More detailed versions are given in the next section.

Chapter 2 (or module 2) describes the AADC architectures from the

Optimized Simplex to the Baseline System and to the new Three-Plus Processor.

It also describes each of the basic hardware modules.

Chapter 3 presents the design implication for the all application role,

including multiprogramming, virtual memory, paging and storage protection.

Chapter 4 describes the developments in hardware technology, including:

1) developments in LSI technology that allows up to 5000 gates on a 3-inch diameter

chip at very reasonable prices; 2) the developments in memory technology for the

BORAM, RAM and TM, which provides memory access time from 70 to 150 nanoseconds

for 0.1 to 5 cents per bit; 3) optical bussing technology with very high transfer

rates; and, 4) new solid state electric power for increased realiability and

lower weight.

1.23

Chapter 5 describes the very powerful, very small and very inexpensive

Processor Element capable of executing 3.3 million instructions per second,

occupying one-third of a cubic foot and costing as low as $600. Chapter 6

describes the three versions of the executive; the hardware MEC, the dedicated

software MEC and the floating software MEC and compare the three on different

AADC architectures. Chapter 7 describes the Parallel Processor which is probably

the lease well defined and the most likely module to be redesigned. This module

has been called the Matrix Parallel Processor (MPP), Bulk Parallel Processor ,

(BPP) , the General Purpose Array Processor (GPAP), or the Signal Processing

Element (SPE). Chapter 8 discusses the means for evaluating AADC developments

including simulations, breadboarding, and measuring systems in operation.

Chapter 9 is devoted to the AADC High Order Language developments

and particularly what ieatures should be added to the C~1S-2 language to take

advantage of the powerful AADC system to effectively handle the future

applications. The most important problems are in reducing program developmental

cost, reducing program complexity and improving reliability. All of these can

be boiled down to improving software debugging techniques. The final and

probably the most significant chapter is Chapter 10 which discusses the

applications of AADC. How can this powerful computer system be used to effectively

solve the Navy's operational problems?

Again, it should be emphasized that the chapters can be studied in any

order after the first one. For example, a avionics specialist with a minimal

computer background, who is interested in the operational aspects of AADC, can

study the HOL and AADC applications in Chapters 9 and 10 by skipping over

Chapters 2 to 8 completely. For the reader that is continuing on to other

cnapters, the next section should be skipped because it is basically the first

section from each chapter.

1.24

1.6 sm~Y SECTIONS OF CHAPTERS

1.6.1 Introduction

This section contains the introductory and summary sections of each

chapter and is presented here to make this module self sufficient. This chapter

can be used as a introductory one-day seminar suitable for informing Navy or

Industry personnel on the AADC developments projects. Note the third digit in

the subsection number corresponds to the chapter number.

1.6.2 Introduction and Summary to AADC Architectures
I

Chapter Two describes the AADC architectures from the simpliest

processor - called the Optimized Simplex Processor (OSP) - to the most po\verful

multiprocessor - the AADC Baseline System - and to the new ultra-reliable Three-

Plus Processor (TPP) system. This chapter also discusses the interconnections

between AADC modules such as internal bussing and external I/O interconnections.

Finally this chap ter ac ts as a "ca t ch all" f or sub j ec ts v7hic h do no t fit in any

other chapter and pertain to the overall system organization or operation. This

also includes some directly-executing High Order Language architectures ~hich

are interesting alternates to AADC.

The basic hardware building blocks of any AADC system are: 1) a Block

Oriented Random Access Nemory (BORAH) to hold program modules; 2) a Random Access

Main Memory (RM·M or RAM) to hold semi-permanent data and to buffer I/O; 3) a

small (4k word) Task Memory to hold the currently executing program module and

* temporary data; 4) Processor Elements (PEs) to perform the sequential arithmetic

computations; 5) an optional Matrix Parallel Processor (}~P) or Signal

Processing Element (SPE) to process radar and video signals; 6) one or several

*The new name is DPE for Data Processing Element.

1.25

Input/Output Units; 7) the internal bussing to interconnect all the modules;

and finally 8) a Master Executive Control to control all the modules and

supervise the operation of the entire system.

The simpliest system is the Optimized Simplex Processor (aSP) with

a single FE with its TIM, a RAMM, a BORAM, an I/O unit, internal bussing and

a floating software MEC.* The PE executes the MEC out of RAMM; this is the

only case in which instructions are executed from RAMM. The PE also executes

Program Modules out of the Task Memory. The most powerful system is the AADC

Baseline system which contains several PEs with their TMs, a large R&~, a

large BORAM, several I/O units, a Signal Processing Element, four internal

busses and a hardware MEC.

Between the two extremes, two architectures have been defined. There

is a Time Division Hultiplexed Block Transfer Hultiprocessor (TDM BTIO which

is essentially the same as a Baseline system except with a software MEC. There

is also a Multiple Hemory Mul tiprocessor (HHM) which has several RR-r-13 but

no TMs. In this case the DFEs execute programs directly from the R.A}~ls.

Since the AADC PE is a very powerful processor capable of execut-

ing 3.3 MIPS and relatively inexpensive, it is deemed more important to in-

crease the reliability rather than the throughput. Three extra reliable

configurations have been defined. The Dual Processor has two asp systems each

capable of providing complete backup for the other. The Triplex Processor

contains three asp systems with majority gate decision logic sampling their

output for added checking of random errors. The ultra-reliable configuration

is the Three-Plus Processor which is the same as the Triplex Processor, except

it has extra PEs that can be switched in autom2tica11y in case a PE fails •

. * A floating software ~IEC is an operating system which runs on any available
DPE on an as-required basis.

1.26

1.6.3 Introduction and Summary to All Applications Role

Although the AADC was originally intended for Naval avionic applications

only, the powerful features and the low cost have caused the proponents to consider

much wider applications. Although most of this report addresses the AADC design

for the avionic applications, Chapter Three discusses some of the implications

of the decision about a year ago to convert the AADC to an All Application

Digital Computer. Although "all application" is undoubtedly too general, it was

decided to re~ain the acronym AADC because it has been in existence for 3 years

and because All Application Digital Computer sounds better than Almost All Appli

cation Digital Computer.

1.6.3.1 Implications of All Applications Role

Certainly the most significant change the AADC program in the last year

is the change in emphasis from avionic applications only to all applications.

This has caused signific'ant changes in the AADC design by requiring many of

the features that have caused so many problems in the present third genera

ation computers. For example, rather than having a Processing Ele::1ent

(PE) executing a single program out of its own Task Memory, the PE must now 11ave

facilities for multiprogramming, virtual memory and demand paging. Thus, the PE

must now have relocation hardware to support the virtual memory, and much faster

busses to handle the increased bus traffic. Furthermore, the AADC designers must

now solve many problems, such as thrashing (excessive paging until throughput

drops to almost zero) and system deadlocks, that have remained unsolved in present

day computers. In any case, the AADC supporters are convinced they can beat

these problems with the very powerful AADC.

1.27

1.6.4 Introduction and Summary to AADC Hard\vare Technology

1.6.4.1 Scope of Chapter Four

Chapter Four discusses the new advances in hardware technology that

are being developed for AADC. Although the development and production of modules

using advanced hardware technology (at reasonable cost) is very important to AADC,

the details of the technology and how it is implemented is of minimal interest in

a course such as this one on the concepts and operations of AADC. In other words,

the fact that the technology exists, has been proven, and can be mass produced at ,

reasonable cost is certainly of interest, but the details of the technology and

its implementation is considered beyond the scope of this report. Therefore, this

chapter is an overview of the latest hardware technology emphasizing what has been

implemented and proven, as well as, what will probably be in production by 1975.

Under the heading of hardware technology Chapter Four places all work which

relates to the physical constituents of the AADC - the devices \vhich will ulti-

mately manifest itself in the ph:rsical computer. The hardware technology is

divided into three major areas: Large Scale Integration (LSI) technology, memory

technology and bussing technology.

1.6.4.2 Summary of LSI Technology

The basic AADC hardware building block module is an hermetically sealed

(perfectly airtight) package capable of supporting either multi-chip arrays on a

ceramic substrate, chip/wafer hybrids, or semiconductor monolithic three-inch

diameter wafers - or any combination of these. ("Honolighic" means many circuits

attached together to resemble one uniform pattern, i.e., a 5000 gate LSI wafer.)

This year (1972) one of two AADC packaging modules has passed environmental

testing at Naval Avionics Facility, Indianapolis. A complete

1.28

second level packaging system is presently under development at Singer-Kearfott,

and will be simi1arily tested later this year [1.34, paragraph 23].

There is ample evidence that the technology will mass produce 5000 gates

on a 3-inch diameter wafer by 1975. Texas Instruments are producing a Logic Slice-

Type "p" which has the equivalent of 857 gates on a l~-inch \-lafer. Intel Corp.

has build an 8-bit parallel microcomputer the MCS-8 on a single chip. There are

now examples of 1500 gate LSI chip available off-the-shelf and Honeywell has

produced an 1800 gate LSI chip [1.41, Mr. A. Deerfield, Raytheon]. ,

Many other articles on expected hardware developments can be found in

the Proceeding of the Advanced Digital Technology Conference in June 1971 [1.37].

1.6.4.3 Memory Technology

Two promising magnetic storage technologies [or AADC are the block

oriented ferroacous tic memory for BORAH and the random access closed flux path

thin-film memory (CFN) for RANH and TM. The fcrroacoustic technology employs

the coincidence of mechanical and electrical energy to write magnetic domains into

homogeneous, amorphous (non-crystaline), semi-closed flux path permalloy £iln.

(Permalloy is a highly magnetic alloy of iron and nickle.) These domains are

subsequently interrogated by way of an acoustic strain wave. A plated wire

may be used for the ferroacoustic memory in place of the thin film. The ferro-

acoustic memory is low cost (0.1 to O.s¢/bit), high speed (150 nsec/wd read and

1 - 2 ~sec/block access time), high density (5000 bits/in3), low power (2 ~watts/

bit), low weight (7.5 1bs for 64K 36-bit words, i.e., 2.3 magabits), non-volatile,

and uses NDRO (non-destructive read out) techniques [1.34, page 13]. Blocks may

be 128 to 512 64-bit words. For more details on the technoloBY see [1.37].

Another magnetic technology, tentatively called Cross Tie Memory and

similar to a Bubble memory, is also under investigation for possible use in BO~~

[1.34, paragraph 26].

The CFM, a planar thin film analog of a plated wire, offers new

capabilities for random access magnetic storage. It provides performance here-

to fore believed realizable only with semiconductors, but without the twin

penalties of high power and data volatility. In comparison to previous magnetic

memories, CF}1 is,low cost (1¢ to 3¢/bit), high speed {80 nsec access time, 100

nsec read time with NDRO, and 150 nsec write time per word),high density (5000

to 11,000 bits/in3), low power (100 ~watts/bit), low weight (3 lbs for 4K 36-bit

words or 150K bits) non-volitile, and non destructive read out (NDRO).

In comparison to ferroacoustic memories, CF}1 is 2 to 30 times more

expensive, about twice as fast, up to twice as dense, uses 50 times more power,

and is 6 times heavier. Thus, a 64K word BORAM costs $2300 to $11,500; a 4K

word TM costs $1440 to $4320.

It is believed that semiconductor memories are going to be very com-

petitive by 1975. See [1.41] for more information.

1.6.4.4 Summary of O~her Technologies

Because of AADC's very small geometry, modularity and need for wide

bandwidth internal busses, optical communication is being considered seriously

for AADC internal bussing. The optical bussing*has distinct advantages over all

electronic alternatives in the area of noise immunity and ease of connection.

See [1.2].

*Optical bussing is the transmitting of data via a modulated light wave trans
mitted via optical fibers.

1.30

The other improved technology is in the electric power distribution

system. It is proposed to replace the conventional electro-mechanical relays

with a Solid State Electric Logic (SOSTEL) power distribution system. SOSTEL

will greatly reduce power consumption, wiring complexity and weight, as well as

increasing the control over electrical power distribution. See Reference [1.36]

or Chapter Four for further details.

1.6.5 Introduction and Summary to Data Processing Element

The AADC Processing Element (PE)*is a very fast, very powerful, very

small and very inexpensive central processing unit (CPU) designed for large

scale computing systems. It is one of the basic AADC modules and is designed

to handle all the serial processing requirements of AADC. It is capable of

executing 2.5 to 4 million instructions per second (MIPS), with effective

processing rates of 8 to 10 MIPS. Its power is the result of the hardware

implementation of a general deferral mechanism** and numerous po\verful operations,

especially the polynomial, matrix and vector operations. Most importantlYt this

fast powerful processor is packaged in an eight inch cube (0.5 cubic feet) and

has an estimated production cost as low as $600. (As a comparison the CPU on the

IBM 360 model 67 - a third generation large scale computer - executes about 0.3

to 0.5 MIPS, does not have the same powerful instructions, occupies about 125 cubic

feet and costs $698,000.) This section will present an overview of the PE

features, while later sections of Chapter Five will include a more detailed

presentation.

In order to obtain the desired speed it was necessary to overlap the

fetching of instructions and their executions. The instruction fetching operates

*Npw called DPE for Data Processing Element.
**A general deferred mechanism is one that automatically defers the execution

of an operator until its operands are available.

1.31

at 2.5 MIPS including an indexing operation and 3.3 MIPS without indexing. Since

the PE is a Task Memory oriented element, the need for indexing is greatly reduced

over previous computer designs, and the latter speed is more appropriate. These

speeds are based on a memory cycle time of 150 nanoseconds (nsec). On the other

hand, the instruction execution takes 100 nsec for short instructions (equivalent

to Adds) and 800 nsec for fixed-point multiplications. With an assumed ratio

of 7 short instructions to 3 multiplications, the instruction execution rate of

3.3 MIPS is also, possible. Since the proposed floating point multiplications

are faster than the fixed point, the instruction execution rate with floating

point operations is 4.0 MIPS.

The overlapping of instruction fetching and program execution is

obtained by dividing the PE into a Program Management Instruction Handling Unit

(p~m) and an Arithmetic Processing Execution Unit (AP). The two subsystems

operate independently and asynchronously permitting the P~ru to fetch instructions

well ahead of their execution, an~ while the AP is processing previously fetched

instructions. This is generally referred to as "look-ahead," ,,,here instructions

are prefetched along the most probable branch path. If the results of a branch

instruction are not along the expected path, then the stockpile of instructions

is discarded and instruction fetching is initiated along the other path. To

hold the stockpile of instructions, a sixteen-register queue connects the PMU

with the AP.

The power of the AADC PE is demonstrated by the fact that it has many

very powerful instructions, many of which are not even available in high level

languages and certainly not implemented in hardware on a general purpose computer.

For example, the PE has the following features implemented in hardware:

1.32

1. All 16 possible boolean functions,

2. A recursive subroutine call capability,

3. A general deferral mechanism that executes arithmetic,

boolean and conditional expressions directly without

reordering the operations or using excessive storing

and fetching of intermediate results,

4. A rapid polynomial calculation capability for

trigonometric, logorithmic, hyperbolic and

exponential functions (all coefficients are

loaded by a block transfer.),

5. Vector/matrix block handling mechanism for 256

component vectors and matrices.

The particular significance of these features to the programmer is

that, (1) the general deferral mechanism allows the mixing of arit~netic,

boolean and conditional expressions in a single statement - providing the

accompanying high order language is upgraded -, and (2) the vector/matrix

mechanism allows operations such as the vector dot product and the matrix

product to be specified in t~o machine language statements. In both these

cases the High Order Language will have to be upgraded beyond Fortran or

CMS-2 before that language can use these powerful machine language (or hard

ware) features.

As well as being very fast and powerful, the PE is very small and

inexpensive. A rough estimate of the PE logic is:

1.33

1. The AP (arithmetic processor)

2. Basic PMU (control unit)

3. Queue between PMU and AP

4. Parentheses control and vectorl
matrix mechanism

5. Instruction decoder and controller

Total

6,000 gates,

1,OQO gates,

1,000 gates,

1,000 gates,

10,000 gates.

These 10,000 gates are placed on two 3-inch diameter LSI ch~ps and housed along with

ten other chips in an 8-inch cube occupying 0.5 cubic feet. It is also estimated that

the production cost of the PE will be about $600. Rather unbelievable?

If this design is achievable at this cost, or even at 100 times this

cost, then it is going to be the biggest breakthrough in computer hardware

development since the transistor. In order to achieve the maximum benefit from

this new development, many of the programming aids, such as very powerful

operators and extensive debugging features that were previously too expensive to

implement will now have to be included in the design. Otherwise the AADC PE will

be almost immediately replaced with another computer containing these extra

programming aids.

This section would not be complete without some comment on the feasibility

and current status of the PEe At present LSI l-1/2-inch diameter chips with

1000 to 1500 gates are being produced at a cost of about $1000 each. The set-up

costs, including drawing all the cirGuits, is about $50,000 for each different

type of chip. (Ref. Dr. Ray N. Nilsen, University of California, Los Angeles).

Also the CPU for the SUE computer - a small scale microprogrammed computer - is

built on two LSI chips and costs less than $1000.

1.34

Although this section is written as though the PE actually exists, it

must be realized that it is based on design specifications only and that even

these are still under development. The information in this section is based

almost exclusively on Raytheon's report [1.39].

1.6.6 Introduction and Summary for Haster Executive Control

Chapter Six discusses the design of the executive system, or operating

system, for the AADC. The Master Executive Control, or MEC as it is called,

provides the control and supervision of all the AADCmodules. The chapter includes

design philosophy, design tradeoffs, ~lliC capabilities, operating characteristics)

MEC evaluation criteria and methods of implementing MEC functions - including

sample English language flowcharts. The chapter is based primarily on a design

report by Hone~vell [1.40]. The subsection is, in fact, a shortened version of

the first section of Chapter Six.

HoneY"'Tcll's repor t evaluates three poss ible HECs: a spec ial purpose h:~ :-d-

\vare NEC, a ded ica ted processor sof tware MEC and a f loa t ing so f t\.Ja re NEe;\" - on e,~ c 11 0 [

four AADC architectures - including the AADC Baseline Architecture, the Time Di":ision

Multiplexed Block Transfer Multiprocessor, the Multiple Memory Multiprocessor

and the Optimized Simplex Processor. As a result of flowcharting, timing and

evaluating each MEC implementation on each applicable architecture, Honeywell

recommended the hardware MEC for the Baseline and ~fr~1 architectures, the

floating software MEC for the TDM Block Transfer Multiprocessor and the dedicated

software MEC for the Optimized Simplex Processor. Actually the last recommend3tion

is a violation of the OSP concept, since by definition the OSP contains only one

Processing Element.

*The floating Software MEC is an operating system in soft\.Jare which runs on any
available PE on a as-required basis, rather than on a dedicated PEe

1.35

The method of evaluating each MEC implementation - on each architecture

is particularly interesting, for example from [1.40]:

In order to effectively evaluate the MEC implementations
studied, a list of attributes was formulated. Each
attribute was assigned a weight corresponding to its
assumed relative importance. For each system configur
ation, a table was constructed and the candidate
implementations were scored for each attribute. From
these tables a weighted sum for each implementation
was obtained. This weighted sum is a measure of the
efficiency of the implementation method when used in
the particular system for which the table was constructed.

In the Baseline and Multiple Memory }1ultiprocessor systems the special

purpose Hardware MEC is recommended, largely due to its speed advantage, a factor

about four to one over the dedicated software, and eleven to one over the floating

soft~vare in the baseline system. The speed advantage is obtained primarily from

the use of an associative memory for very fast table look-up. Since the hardware

MEC is specifically designed to accomplish MEC functions, its complexity is

considerably less than a general purpose Processing Element. This infers that a

special purpose executive should have cost, reliability, size, weight and power

advantages over the use of an entire processor to accomplish the MEC functions.

If a large enough quantity of special purpose hardware executives are built,

they have the potential of being less expensive than a system processor dedicated

as the executive. Finally, a special purpose executive can be made more

reliable than the proposed system processors.

The floating software MEC implementation is recommended for the Time

Division Multiplexed Block Transfer system primarily because of graceful degrad-

ation, cost and the other related attributes of size, weight and power. The

1.36

floating soft\vare is an ideal MEC implementation in a system which does not

require a heavy executive load. The overhead time required for a floating soft-

ware }lliC is quite formidable and greatly affects the computation time of some

executive functions. The required storage of a MEC kernel in one processor at

all times also places a restriction on the size of some program modules.

The Dedicated software MEC implementation is recommended for the

Optimized Simplex system due to its characteristics in almost every attribute,

especially reliability, graceful degradation, speed and constraints on the rest ,

of the system. Those appear to warrant the cost of the additional processor.

In general, a floating software executive has high overhead require-

ments and should only be used in a system with low executive function load. A

4096 word task memory should be sufficient for all software executive require-

ments. A software executive requires each Processing Element to contain a real

time clock and a loop counter.

Chapter Six considers four combinations of }fEC implementations and

AADC architectures. The first is the hardware }lEe for the AADC Baseline

architecture. The second is the Floating Software for the Baseline system,

which is the same as the floating software on the Time Division }lultiplexed

Block Transfer Multiprocessor. The third combination is the dedicated software

MEC on a "Optimized Simplex" system, while the fourth is the floating software

MEC on a true Optimized Simplex Processor. Each section contains a description

of the applicable hardware, a list of the MEC functions, operation of the system

under the MEC control. A description of the MEC and a summary flowchart of the

MEC implementation. Also included in Chapter Six is an evaluation of each MEC

1.37

implementation on each architecture - including the author's critique of the

evaluation method -, and some recommendations for further MEC studies and further

development of this course material.

1.6.7 Introduction and Summary to Signal Processing Element

Whereas the PE described in Chapter 5 is designed to fulfill all the

sequential processing requirements, the parallel processor is designed to handle

all the parallel processing requirements for AADC. The avionic parallel

processing requi~ements include signal processing, radar processing, mUltiple

tracking, pattern recognition, table look-up, optimal filtering signal corre

lation, Fourier analysis and synthesis, analog test function generation, voice

command interface, etc. Parallel processing requirements are for 70 to 133 MIPS

and 32K to lOOK words of memory.

Although the parallel processor was one of the first AADC areas of

concern and it has undergone more changes in design concept than any other AADC

module, it still is the module waose design is the least firm and may be subject

to further chnnge. Already the parallel processor has been referred to as

the Bulk Parallel Processor (BPP) , ~latrix Parallel Processor (~WP), Associative

Processor (AP), General Purpose Array Processor (GPAP), and the Signal Processing

Element (SPE).

The feasibility of constructing a parallel processor capable of 150

MIPS throughput is not in doubt, but what will it cost, and how should it be

designed to maximize the throughput, maximize the flexibility and minimize the

cost? ILL lAC IV and PEPE are examples of very powerful parallel processors that

are already in operation but have limited applications.

The major part of Chapter Seven is a description of the Signal Pro

cessing Element under development at NRL.

1.38

1.6.8 Introduction and Summary to Evaluating AADC Developments

Although a means of evaluating the development of AADC and accurately

predicting the performance, cost and reliability is of the utmost importance,

relatively little has been published on this specific subject. There are several

means of evaluating the development, including:

1. Measuring the load on existing avionic computer

and thereby projecting the future requirements,

2. Simulating the operation of individual AADC

modules,

3. Simulating the module interaction or the overall

AADC operation,

4. Simulating an application using the ru\DC systCQ,

5. Modeling the operation of AADC modules,

6. Breadboarding at the PE, memory and bussing level

(equivalent to CPU, memory and channel level in

more common terminology),

7. Devising a test plan for the breadboard of the model

including what to measure, how to measure and how

to interpret the results, and finally,

8. Producing a prototype of individual modules for

testing the complete AADC system.

According to the author's count, there is one completed study on

measuring the load on existing avionic computers (but there must be others).

(The AADC is currently sponsoring advanced analytical studies with Grumman Aero

space and LTV Corporations examining the computer requirements for the F-l4 and

A -·7 class aircrafts.)

1.39

The author also counts three studies simulating AADC modules (case

2 above) and two reports on the simulation of module interaction (case 3

above), and two reports on simulating the AADC application to a particular

problem area (Case 4 above). There are also three reports on other facets

of evaluating the AADC. One of the current projects is to obtain an Optimized

Simplex Processor breadboard or Advanced Development Model.

There are also plans in 1973 fiscal year for completing the PE and

SPE register-level simulations, assembling a SPE breadboard, procuring verifi

cation hardw~re for PE and I/O, and procuring feasibility model for both the

ferroacoustic and the semiconductor BORAM memories [1.34, page 17].

Therefore, the low number of reports in this area is probably not an

indication of the lack of activity; but rather an indication that evaluation

studies are being reported along with the particular subsystems.

1.6.9 Introduction and Summary to High Order Language

Chapter Nine presents the developments in defining and producing a

very powerful High Order Lang~age that can effectively and efficiently use

the AADC System - one that can significantly reduce the development, documenta

tion and maintenance costs of the AADC Software.

For the purpose of this report, a "High Order Language (HOL)" is

defined as a language with many powerful extensions beyond those in the pre

sent high level languages, such as Fortran, Algol and PL/I. The HOL must be

capable of generating efficient executive, I/O, test, display, file, data

1.40

manipulating programs. Also it must have powerful vector, matrix) list,

character and bit manipulating features. (Although the equivalent of these

features can be obtained in present languages they arc not easily programmed

and do not execute efficiently.) For example, CMS-2 (the Navy's Compiler

Monitor System) is an attempt at defining a HaL. CMS-2 is designed especially

for real time command and control applications and has the ability to define

executive functions in Algol-like subroutines and reorganize data structures

at run time.

Two ,conferences have been held on the HOL for AADC; one in June

1970 and the other in February 1972. The second conference was a good intro

duction to AADC for software specialists but did not present any concrete

proposals for the design of a HaL for AADC. (The conference proceedings are

not yet available.) Three papers have been written on the updating of C}1S-2

to the AADC HOL, and one paper was written on ho\·,1 }ITACCS (Harine Tactical

Air Command and Control System) requirements should affect the CHS-3 (extended

CMS-2) requirements. Currently there is a project to define the goals of the

HOL more precisely.

This is one of the first times that the software specialist has had

a chance to influence the design of the hardware. How about some suggestions?

1.6.10 Introduction and Summary to Applications for AADC

Although this is the most important chapter in the report, it is,

unfortunately, one of the shortest. Never before has the Navy known so far in

advance what the future Navy computers will be, and now the Navy has an opportunity

to develop application programs while the computer is being developed, instead

of after it is produced and delivered. Equally important, the Navy now has the

1.41

opportunity of allowing the applications to influence the software design t which

in turn can influence the hardware design. If the Navy can develop an applications

oriented computer and have the application programs ready when the hardware is

delievered t the Navy will have made another major step in solving its computer

oriented problems.

Chapter Ten presents references to an E-2B aircraft simulation study,

the requirements for MINCO}IS (Multiple Interior Communication Systems for aircraft),

and the On-board, checkout and system interface requirements for the F-l4C. Also

presented is the proposed Automated Design Facility (ADF) which is designed to

provide automatic configuration and checkout of AADC for a new application.

This section has presented an overview of the AADC System by presenting

the introductory and summary subsection to each chapter. It has not included

the latest developments as reported at the AADC 1973 Symposium, although the

major results from the symposium are presented in Subsection 1.4.4. For more

details the reader is referred to the section on current status in each chapter,

or to the conference proceeding when they become available [1.41].

1.42

1.7 CONCLUSIONS

While completing this report the following possible research projects

or thesis topics were identified (many others undoubtedly exist):

1. Expand the design of AADC to include multiplatform and
ground based systems. This implies virtual memory,
multiprogramming, security of storage and interfaces to
commercial input/output equipment (disks, CR, LP, etc.).
Some of this has already been done (see Chapter 3) but
there is still a lot more to do.

2. Simulate several parallel processor configurations and
compare their operation on various applications. (Some
of this has already been done at NRL, see Chapter 7.)

3. Prepare a concise list of PE features and their
implications on the HaL and POL (Problem Oriented
Languages) .

4. Simulate PE features in such a way to assist in HOL
development (coordinate with Bruce Wald at NRL).

5. Evaluate the proposals from industry on defining HOL
primitives for AADC. Hhat criticism or improvements
can be suggested?

6. Define the HOL constructs that would simplify the writing,
debugging, documenting and updating of real-time,
scientific and data processing application programs.
Repeat this for executive, I/O, test, display and data
organizational programs, and then determine which can
be implemented effectively on the AADC.

7. Develop a manual on User Characteristics of ~~\DC. This
would be a preliminary step to developing applications
for AADC. (In some \vays this report is a start in this
direction, but it is too long and too technical.)

8. Develop new airborne computer applications using AADC
features.

9. Develop managerial guidelines for the use of AADC in
Navy systems.

- What are its features?
- What applications take advantage of these features?
- How to use AADC to maximize its benefits.

1.43

The following conclusions are taken from [1.2]:

The Advanced Avionic Digital Computer represents the
collected effort of an audacious segment of the American
computer, technology and aerospace community. More than
twenty companies and universities, as well as many Navy
laboratories, have held contracts on AADC; many as a
result of rigorous competition. As such, it is doubtful
that the expertise required to bring AADC to fruition
exists under a single roof, except for one that extends
from coast to coast.

In a sense, the AADC program will serve to test a new
management and procurement philosophy. The idea of
c9mpetetive bidding on a major development effort, and
the subsequent aware of multiple contracts is, of course,
not new. What is different, is that these methods have
proven necessary for a program involving exploration
development and basic research. ~fuat must also be
appreciated is the willingness of organizations to coord
inate and exchange ideas even before these ideas are
fully protected. In this manner, the customary delay
which precedes the introduction of new inventions is
eliminated: allowing a two to five year acceleration of
system integration and application. This is especially
crucial·~hen these delays may very well approach the life
cycle profitability of such inventions.

In order to avoid Lhc twin dilemma of suboptimization and
rapid obsolescence, AADC has been conceived as a system
which can, when the time arises, be readily translated
into newer technology \vith minimal impact on its physical,
electrical and functional characteristics. By building
the computer in this manner, system design experience
gained over a longer period of useful years will allow
highly refined applications of AADC to evolve. These
considerations, along with everything else this report
has addressed, make AADC a major and truly revolutionary
development.

1.44

References to AADC Introduction and Summary

1.1 The Advanced Avionic Digital Computer System; R. S. Entncr; Computer

Design; Vol. 9, No.9; September 1970; pp 73-76; (49, NPS)*.

1.2 The Advanced Avionics Digital Computer Revisited; R. S. Entner; Naval

Air Systems Command; October 12, 1971; Unpublished paper; Unclassified;

(NPS) •

1.3 Navy Engineers Break the Rules with Radical Airborne EDP Concept;

Electronics; August 3, 1970; pp 89-90; Unclassified; (35, NPS).

1.4 New Airborne Computer Concepts Evolve; Aviation Week & Space Technology;

June 22, 1970; pp 217-219; Unclassified; (33, NPS).

1.5 Navy to Unveil Integrated Avionics Plan; Phillips J. Klass; Aviation Heek

and Space Technology; June 28, 1971; pp 51-53; (NPS).

1.6 Study of Future Requirements for Naval Airborne Computers (U); Hughes Air-

craft Company Report No. B5939 ASD 85169R; June 1968; NAVAIRSYSCO~1 Contr3~t

AIR-5333B5-67-2; Confidential-Proprietary; (1).

1. 7 Airborne Computer Study - Final Report; Honeyr\vell Inc., No. SRH80; Nover:lber

4, 1968; NAVAIRSYSCOM Contract AIR-S333BS-68-2; Unclassified; (2).

* The number in parantheses at the end of each reference refers to the sequential
reference number assigned in the AADC Bibliography in Enclosure 1 of the tenth
AADC Progress Report [1.34]. NPS indicates the report is available at the Naval
Postgraduate School.

1.45

1.8 Minutes of QU3lified Sources Conference on Advanced Microelectronic

Packaging Concepts and the Advanced Avionic Di~ital Computer Development

Program; Nnval Air SystpmR r.ommand, Code AIR-52022; February 27, 1969;

Unclassified; (5).

1.9 The Advanced Avionic Digital Computer; R. S. Entner; Parallel Processor

Systems, Technologies nnd Applications; Spartan Books; Copyright 1970;

pp 203-214; Unclassified; (46, NPS).

1.10 AADC Baseline Definition; R. S. Entner; NAVAIRSYSCOM Code 5333F4; July 23,

1969; Unclassified; (11, NPS).

·1·.11·-A~D('r··BBseline-Def.i:n-it.:j.ont R. S. E~-NAlJA·~M Code 5333F4, July 21.

1:-96-9 ;-Bne-~-i-f-i -ed-;- -t:l-l, NP S) •

1.12 Procc('ditH~ of ,\i\])C Conference, September 15, 1969; (include the 4 papers

referenced as [1.13 to 1~16J); Unclassified; (NPS).

1.13 Presentation on Advanced Avionics Digitrtl Co~puter Concepts; Francis J.

Leuking, NAVAIRSYSCOH, Code 360F; September 15, 1969; Unclassified; (NPS).

1.14 Presentation of Advanced Avionic Digital Computer Baseline Definition;

Ronald S. Entner; NAVAIRSYSCOM; September 15, 1969; Unclassified; (14, NPS).

1.15 Advanced Avionic Digital Computer Hardware Considerations; A. David Klein;

NAVAIRSYSCO}{j September 1969; Unclassified; (13, NPS).

1.16 Baseline Associative Processor; John E. Shore and Frank A. Polkinghorn, NRL;

March 14, 1969; Unclassified; (6, NPS).

1.46

1.17 Master Executive Control Technigues for AADC System Final Report; Honeywell

Inc., No. l4206-FR; July 1969; NAVAIRSYSCOM Contract AIR-5333F4-69-l;

Unclassified; (10).

1.18 AADC Master Executive Control, Baseline Definition; R. S. Entner, NAVAIR

SYSCOH and J. Stepenosky, NAVAIRDEVCEN; December 22, 1969; Unclassified

NOFORN; (19).

1.19 Advanced Airborne Digital Computer Research and Development Progra~ (U);

Grumman Aerospace Corp.; July 1969; for NAVAIRSYSCOH, Code AIR-5333F4;

Confidential-Proprietary; (9).

1.20 AADC Computer St~ (U); General Electric Company Report No. 224-2709;

August 22, 1969; NAVAIRSYSCO}l Contract AIR-5333F4-69-l; Confidentia1-

Proprietary; (12).

1.21 Advanced Avionics Integrated Digital System Study (U); Raytheon Company

Report No. BR5535-l; October 1969; NAVAIRSYSCO}! Contract N00019-69-C-0444;

Confidential; AD-511-223L; (15).

1.22 Advanced Avionics Integrated Digital System Study (U); Raytheon Company

Report No. S-BR-5535-2; October 1969; NAVAIRSYSCO}1 Contract N00019-69-C-

0444; Secret; AD-Sll-166L; (16).

1.23 Proposed Technical Approach/Advanced Avionic Digital Computer (U); NAVAIR

SYSCOM; January 1970; Unclassified - Four Official Use Only; (20).

1.47

1.24 Advanced Avionics Digital Computer Simulation Model, Preliminary Report (U);

Univac Advanced Systems Group; November 12, 1969; Unclassified-Proprietary;

(17).

1.25 AADC Development Program Progress Report No.1; R. S. Entner; NAVAIRSYSCOM

I

Code AIR-5333B55; November 12, 1968; Unclassified; (3, NPS).

1.26 AADC Development Program Progress Report No.2; R. S. Entner; NAVAIRSYSCOM

Code 5333B55; February 14, 1969; Unclassified; (4, NPS). ,

1.27 AADC Development Program Progress Report No.3; R. S. Entner; NAVAIRSYSCOM

Code 5333F4; ~lay 19, 1969; Unclassified; AD-729-666; (7, NPS).

1.28 AADC Deve10PQent Program Progress Report No.4; R. S. Entner; NAVAIRSYSCO}1

Code 5333F4; December 1, 1969; Unclassified; AD-727-603; (18, NPS).

1.29 AADC Development Program Progress Report No.5; R. S. Entner; NAVAIRSYSCOM

Code 5333F4; March 16, 1970; Unclassified; AD-729-667; (28, NPS).

1.30 AADC Development Program Progress Report No.6; R. S. Entner; NAVAIRSYSCOM

Code 5333F4; August 31, 1970; Unclassified; AD-729-668; (37, NPS).

1.31 AADC Development Program Progress Report No.7; R. S. Entner; NAVAIRSYSCOM;

February 4, 1971; AD-727-605; (57, NPS).

1.32 AADC Development Program Progress Report No.8; R. S. Entner; NAVAIRSYSCOM;

July 1, 1971; AD-727-607; (58, NPS).

1.48

1.33 AADC Development Program Progress Report No.9; R. S. Entner; NAVAIRSYSCG>~;

November 1, 1971; (67, NPS).

1.34 AADC Development Program Progress Report No. 10; R. S. Entner; NAVAIR

SYSCOl-1; May 31, 1972; (78, NPS).

1.35 High Level Aerospace Computer Programming Language Conference Proceeding;

R. S. Entner; NAVAIRSYSCOH; June 29-30, 1970; Unclassified; AD-733-454;

(31, NPS). ,

1.36 Symposium on Advanced Aircraft Electric Systems (SOSTEL) Proceedings;

Leonard \v. Wendling, NAVAIRSYSCOM; April 20-22 t 1971; (NPS).

1.37 Advanced Digital Technology Conference Proceeding; Vol. land 2; NAVORDLAo;

June 8-10, 1971; (NPS).

1.38 National Aerospace Electronics Electronics Conference - NAECON 71; ~~y

17-19, 1971; Available from IEEE Transactions on Aerospace and Electronic

Systems, reference 7l-C-34 AES; (NPS).

1.39 AADC Arith~etic and Control, Functional Block Diagram, Design, Analytical

Study; Raytheon COlllpany, Report No. BR6lS4; December 1970; NAVAIRDEVCEN

Contract N62269-70-C-02l0; Unc1assified-NOFORN, AD-S80-Sl0; (44, NPS).

1.40 AADC Master Executive Control, .System Analysis Design Study, Final Report;

Honeywell Inc., Report No. 12234-FR; December 1970; NAVAIRDEVCEN Contract

N62269-70-C-0314; Unc1assified-NOFORN; AD-800-635; Vol. 1: Basic Document;

(43, NPS).

1.41 All Application Digital Computer 1973 Symposium; Orlando, Florida; January

23-25, 1973; Proceeding not yet available.

1.49

1\ rprrSf>TlI in g (I lOll rllt -grll eral iOIl corTI pliler ill liz c fill/cst SCllse,
AAIJC is a ",ndular rom[)lIler cOllcept. ('mploying hart/'l'flre and
sollu'(Ju> '/'lJildiflg Idoc/.'s to (:(Hls/rllel ')(lrioll,,) computer
orcizilrctllrcs

Appendix 1.1

AADC Initial Developments

The Advanced Avionic
Digital Computer System

Ronald s. Entner

The Advanced :\ \'ionic Di~it~l Computer I AA DC I I~
a progl amlller-oriellted. ~eneral·PlJrl'o~e. modular di~it~l
computer with ~p('cial features dl':,i~~lIcd to met'l 1 <)7.~.~~.)
1\3\'31 airborne data proce~~ing requiremellt:, It will
combint" many of the most a(h'all('cd complllt'r h;udware
and ~oft ware concept~ now under de\'t?lopmt?nt in the
lillitrd ~tates.

The A:\ DC is 3 Jllodular computer. d('~if!lll'd to he
ine\.pensi ,'ely as:'t'mhled from otT ·the·~ hcl f la r~e scale
int('!:!r~ltcd (LSI) ~ilil'un w~fcr and ad\"arH'ed m.1~nctic
thin~film huildin!:! blocks. It can he confi~ul'ed as a

~ ,

simple minicomputer. a super·lllllltipr()ce~sor. or allY,
thing in hetween. The cost should he olle to two order~
of magnitude less than tod.1y"~ stale-or·the-art cOlllputer~.
The computers should al~o be one-tenth the ~ize and
weight, and should exhi hit remarkable rel iabi I ity.

De\'c1opment of the :\;\OC is the re~ult of analy~e~ into
next-generation \'an11 aircraft computin~ requirelllents..
as \H~ll as a serious attempt to flllli ways to reduce the
enormous cost of computer procurement and support
throuc;h the application of 5tandardization. In the past.
the dc~igns of computers that were developed by private

., -, --_._-----------

R.onald S. Entne,. ;s system architect
and project manager tor the Advanced
Avion;c D;g;lal Compute,. Program of
the Naval Air Systems Comm·and. Since
/o;ning N ASC in J 966 he has woded on
rador system deY~lapment. weapon sys
fems analysis, and computer system
analysis and design. He received a
.SEE degree trom the Polytechnic h
stifutc ot Brooklyn.

1.50

industry were frequ(,lllh' ~o difTerent from one anothcr
that (",'cn system c\'aludtioJ\ l)y qualified en~ineers was
often extremely dillicull. Ironically, wllcl} ~Ollle lllea:"ure
of dl'~i~n commonality '\ ,h found. it was u~ually attribut
able to ~tatf'·of-tltc·arl constrainb rather than to a
singleness of mind.

To some exlt'nt. the obj ect i \'e of cOllllllonal it y cou 1<1
he achicH?d b~' bri n~ i I\~ the \" a\'y i II to each contractor's
development loop. This would hc aCl'ompli~hed hy pro
\'idin~ Industry" itlt .1C(,l'~S to pertinent \'a\'y plallnin~
documents. as well as to ad,'anccd ~lIhsystem ~pecifica
tions. "'hile thi~ policy i~ cllrrl'lltl~' bein~ plIr:o;ut.'(1 to
the greatcst extent po .. sible, security considerations. as
well as the proprietary nature of most advanced ~ub
system dt',e!opment \\ olk, place severe restrictions 011

the procedure. FlIrthermore~ the fact that a \"endor is
aware of a projected \a\'y need is no guarantee that
he will attempt to satisfy that need unless a respectable
profit is in the ofiing.

To insure the availability of an adequate digital com
puter for the years between 1975 and -U5, the :\aval
Air Systems Command decided in the fall of 196U to
pursue an active computer development efTort, namely
the Advanced Avionic Digital Computer Progranl. Tlte
ultimate SUl'ce:,s of this de\'eloplllt'nt will hinge on several
b3sic enp:ineering and management decisions made that
year. Fir::-t. equal t>Illph~l~is would he pL.lccll on ~y..,lcm
hardware. ~oft\\are. and tl'l'hnolll~y dl','eluprncllt. ~l't'nlH.L
no one c()rnpan~ would } H.' permitted lo (lt~\'elop the
computer: rather. jubs would he parcded uut on the
ha~is uf \'l'lIdor competallcc in each critical area. ~lJld
unly after opel} compdition. Third. dl'p,'ndt'lH'c upon
propri{'t~H)' dc:--iplS and COllct'pb woulll lIe miuilllilt'li.

Primary Goals

The A;\ DC pro~ ra III conla i ns seyer al ba:,ic 01, j ccti \'('5.

• B II i lei ill:.!' B I (H'k Con ~ true t ion: I JtTclo I' a fUIlI ily
0/ junelioflol modules \\ hiI'll \\ ill take Tl13ximum ad\'an·
la~c of rapidl~ im}Ho\'ifl,~ LSI semiconductor t~·chnol().~y.
The a\'ailahility of ofT·the·~helf buildin~ block Inodules
will f!reatly reduce the time and cost for custom computer
design, fabrication, and support when compared with cur·

rent pract ices.

• 1\lodular Or~anization: Det'clop a f!('neral.pllrpose
digital computer architecture cmpluyill~ a J111111nlUIll

number of unique building block nlodulcs, , ... hich nlay
then be fabricated in large quaIltities. De\'(·loplllent costs
can, in this Inanner. be amortized o\'er ~c\'eral computer
procurements. The alterllative to this approach is the de
velopment of unique circuits and LSI modules for each
new computer requirement. llowe\ cr. since the cost of de
sign and deYelupment of each new module may greatly
exceed fahrication costs, little or no savings may be real

ized.

• Bulk Parallel Procc~~ill~: I nclud e the capability

0/ opera! iTl~ on exlrem ely la rf:c quan I ilics of data in real
time. This capability re:::ult~ ill a machine with an cfTec
tive proce~sing rate of IJillions of operations per ~econd
and allows the AADC to function in l)oth the time and

frequency domains.

H'~H SPH~
hJ:",:..T1P ... E x.

Ol~ .t._
II>4H"<t.:(

PSEUDO - A550CIAT,v(
"'(1oI0RT

L _________ J

r

• :\licr()pJ"(),~raJll Appli('~'lion: Permit dynamic rc·
e () TI /i r. II ((11/' (! , i (l j (' (f d I (. (If.r I) II/I ' r' 5 {'(If; I r fit sIr /I ct Ii Tf" t I \(' r c .

by I'IU\ idiw . .' ;l l)('ttlT 1l1"kh 11'l\\l't'll ji'!JLI"rn ;tnd Il1J.

Cllirl", It j-... fllrlllt'r ;lIlti(il)~!ll'd t1.:11 ~()lJle fllt',l~\jIL' (If in·
\entory C0IT1I'lltf'1 C'llllJl.JtiIlII \,ill In' fe;l~jLlt' JIt tile Jllicro·
pro ~ ram rn cd!, r () n' 5::, 0 r.

• Pro~ralll ~lodtllarit\': Fll{[/)!r: the liSP of lar{!,e
T1lr/crvrouu'!!('s allt! slal/dard pr()f:(afl/ paci,at:cs \ [loge5',

thereby rrdlIcin;.:- the ~c\t:'rit\· of prol,lt'llh a:.oci;\t('d with
the prt'p.:na1ion and lTldirlten.1IIf'C of object cCJde, llti·
malcl~', the idea ()f pro;!ram nHldularit~· "illlH'('(JIlH' an in
te~ r a 1 elemcnt 0 f an au tc)rna led de~ign be iii t Y 1:\ J) F .1
which will haH' tht~ capacit\, to turn an opcrational re
quirement into operatillg hardware I and ~()ft\\'arel in a
matter of days and weeks .:IS' oppo:,ed to the tr.:Iditional
months and years.

• Graceful D~~ra(lation: Provide thc lii~hcst lel'el
of s stcm rclio/Jill!.-r COflCOlllTlliUlllt leilli cosl.(',OCCliL C op
eration, III br~~e :\:\1)C sy~ll'ms, this \\ill anlount to fail·
ure·tolerant architecture.

The AA DC pro~ram j", in p:ut. the ollt~ro\\ 1h of at
ternpt5 to e-...tabli ... h ~uidclil1e:; for the cosl·efTel'ti\·c appli.
c.:Ilion of 151 tt'chI1olu~~'. To this end, a falllil~· uf func
t iOlla I and by le· f II l1('t i Oil a I 111 0<1 Llle~. 0 r 1 JU i Id i II ~ blocks, is

beinC! dc\clupcd. The::-;e modules arc ~l"ller~d'i'tlrpo~e in
nature and flexihle enou~h to meet the challell~c of new
requirements created by new tcchnology over the AAOC's

Sil .,
I I

o.p. T~
I

.:.kITH
I

JlR'TH

\;'<11 NIT c· 'T

I I I I
c..J,,'f>r.',
~

c.~ .. , ·c;;O ...
~~

C'J~ .. " ~Ol
v'.l; i,.: ... ~ , T L.. ~I ~

I I I I
TASK

I I
T&'(' ... I(

I I
n~.

lo'(v.JRr "'(... :.1'1 ~ "'llot",RY

I I I I

Fig. 1 Baseline organization embodies all hardware elements found in the AADC concept.
This architecture I ,mbines a sequentIal time-diVISion mu:tlplex.ed (TD~;1) multiprocessor, a
bulk-parallel pre- sor, combined hJrd~\'.Jre and soft'lw;Jre executl'JC control. a complement
of memory h,Ci:' les, and multIplexed and ded Ic:pc'd 1/ 0 ch;:wncls. The b3sclJne system
is designed to m ~t worst-case processing requirements

74 1.51 CO~IPCTEH DFSl<::".", SF[,TE~t lWI\ 1970

'1I'pro\il~l;tlt'ly 1()'~f',1r life ('~d,·, hllll'liollallllflduLlrit\, i-;
tI ,t' d I" 1'1 (I \ i II I' 'II" \ i III II II) II I ' , i .:.: II II" \. i I, iii t ~ I) ~ I' (. r III i tI i 11 ~
i'ICI('IIH'IILai ("'II(I~:IIr;llillll tu ~lJit .1 ~I)f'('irl(' ol"";lliflll.ll

" " p Ii!"" t' II It' lit ; I II d i ' , till' r (. r p r ,. , Ill) t () I.~ ,I II i I. ; II i I) 1\ ,I i III it, 't I.
I I If' ~;J"H' Il\lildir'~ }.IIJ1 t .. (".11) IIf' 1I~I,d 141 ('11/1,11111;(a ~'l'n,

N.,I. or ~pl'f'j;d'l'lIrl'''''''' c"lIllal fir f('d"I;lt('" pl'o('r ... ,,;of or
nlllltiI'IO("t''''''Of, 'I hi~ \\ ide r.lll~l' of ClIllll'f1l1('lIt ;ll'l'li";ltion
j .. (':\I'c<:lrd to llleet /110"1. if 1I0t :tIl. aidHlrlll' dala proc·
t·:- ... in~ rcqtlirenH'IlI'" fur JIt'\I';":"IJt',ati(11l :\;I\'al aifcraft, in·
C"! ucl i n ~ Ii ~hh'r ,i rI Ie, ('cpt. a llack. 1""COl)lla is..;allcc, clcc·
I r 0 u icc 0 U II t C r mea .. 1I (t '". a i f b () r ncr a rI ~' \\" a I n i 11 ~ • ant i:--lJ h .
marinc \\arbre, eit-drol)ic' inlt'lli;'!('I1('r, trall:"polt, .llld 5ur·
C.lcc·to·a ir rC~CllC, .. \ mont; tile n \ joll ic r lIIl1"tioJ)s \\"" ieh
lIlay be mcchanized in une of the \.uiolls forllls of AA DC
arc' air·to·air awl <.l i r·to·;rouncl WC.lpon dcli\'ery; iner·
tial, raJar, radio, nne! satellite na\"i;,!ation; ra<lnr nnc1
.JcolJ~lic signal prol'e:-,-.i n~; ta r~rt ~ i~nal ure recof!1l it ion;
nircraft Oi(!ht contfol: ~cn~or nwnitorin{! nncl control;
and electronic counll'rllll'3~ure ll1onilorill~ and ('ontrol.

The computer or~~llIization shown in Fi~~, 1 and :2 rep.
T{'~{,1115 the ".:l~cline ;\ .. \ DC or~anizali(ln, rmhod~ ill;,! nil
hard\\'are clcmcnt~ of Ihe :\,\ DC corwept. this or~il!liza.
lion i:, },e!ic\'cd to cmhracc tl1O:'c qll;tiitie:-. necded to Illeet
] 075·[:5 ~n\'nl airhorlle compukr sy:-t('111 reqllireIl 1('IlI:-',

The efTe('ti\'ene55 of the ha~elinc or~~allizati()n i~ fOLllldpd
on a functional di~linl'li()n),etwccn ~L"ll1elltially ori!an·

ilcd I'rohl~Ill";, ~llch .:lS \\"(';lpon deli \"tTy. nn \'ipa t iOIl, a lid
sy~tCll1 tt',t, ~1ll{1 parallel oft!anized IHllblem:o.. ~t1ch a" mul·
lip 1 c till' f: c t I r a d" ill;.! . ~ l' II :' 0 f (' (lI" 1'1 • L It i I) !l . illl d d ;t I :1 (' 0 III .

prc~,:-ioll. The ~t'qllt'"li~d pJ"()ldL'llb ;trl~ a,~i(!lH'll to thl~

procl':;.~inf!: clelllellts II'E::-, :,ho\\"11 in the di~l~ranh, Llf"h
PI:: ('ontain ... ~lJnl('iL'lIt lIlem o ry llq'pro\illl;lk\\" :21-.: tnll-.:
word,,) to cfTcl"Iin.'ly "lort' and !,rn(','~" 1.11':':(' rOlilirw..;. fir

prof!ral1l modulc:; 1 P\I:, I. Thi::- :ll'ldi,';llioll of 1',l~in;:
metltud0Iu~\ rt'du('c~ 11\' C'l'\'l'ral ordl'r ... IIf 1Il;1~!litlldl' lIl~lill
melllory a~';:.-e:,~ ('flJlnic:l:-: ll";lI.1I1~' a ()ci:lkd \\ itlt 1I1l11ti,
P[OCl'~ .. ill~, Parall,,1 lllul,(cm .. ~\l'C a..; ... i;~II,'d to till? pro·
Fl;)1l11l1J.Lle llJatrix'l'arallt-1 prOCl':,:,or t \II'PI, Thi ... <In'ice
ron~i,t~ of a ('cllldljllatiPll of fa~t F'Hlrier prOCP,,,;of
, rFP I, ,,''''ociat i n: or a r r.t~' PIOCl''-SU r t:\ PI, a Ild a!l J.:'.

5-odati\'e or p ... elld().a .. ~()ci;lti\"l~ 1lll'lllory (.\ \1 or P,\\l I,
The~e three c1l'lll(,llh are illll'r<.'ollllt:dcd by switcl:iIlg
lo~ic and are conlrollcll Ily a P[or nil illterrwl mirropro,

~ramlll('d controller. ,'\moIl;,! lite t~l:-k~ til"t rail lIe a .. :-i::;IILd
to the :\1 PI' are r~llbr ~i~nal pro('('::,::-i!1~'::, radar "c~lrn

~tl.'erill~. mlllti~l'n~ur correlation, Illultiple tar~ct tracking,
{'ptimal Ii Iterinf!:. \'ideo pl"l'proce~:o'ill~. table lookup. pal.

tern recognition. data corrcl"tioll. radar nud acoll..;lic
~rt>ctrnl .:l1l;]lysi~. allalog t('~t si~!l~d ~cllt'ratif)n nlld anc.,ly.
Si5, nnd La~iL \"oice illterbce fl1Jlction~.

In addition to thp pfOCe5-~l)f5, tltt' l;a~e1iJlc or~allizalion
illustrntes the npplieatioJ\ (If mulliplexed as well a.:; dedi·
l'akll inlcrface chaulleI:;, The dctiicatnl channel~ are cou·
plt"d, in this casc. into Ihe ~t'qul'nlial I'rOCl·..;~or t PEs I via

~l low. frequency ('ro .. ~bar ~\\ ill'h, Thi::: ~\\itl'h i:.; ~et nl the

III 0111('11 t a PI-: i~ dedicated 10 a ~pl'cific t.l:-k. or P\I-a
~ituatiol1 Ih;ll occurs \\ IIt'ncver C\lrcfllely hi;.!h P\I itl'f;]
lion rnk~ ll1i~ht ('rl'ate lJndt':-ir<.lI,ll' (,('lI1ll\lIrli('atic)lI~ traf.
lit, jam:-- tlnulI;,!1t Ih(, Illllltil'l('\cd illl'lIt (/lltl'lIt \llI";, ri~, :>
illu,trnlt· ... till' <:1,,:--..; of Illllitipl,·\t,d ""IlIlI11llliLlliO!l ~ ... ll·fIl

"illl hhidl the ;\.\I>C i~ t:\'J!c·t'lcd Ie) illlt'd.lt'C, \\ itiJin
II Ii:, ~,:-ll'm, tbla .lilt! cOlHmalld 1";\!I:o'ft'r~ Ol"t'lIr within .t!.
11l('~lt~d lillie illkl \ ~d:, ,)r fl"t'qlll'III"~' ~Iot~, TI\('''e ;dllll'a·
li(IIIS nrl' ~U;lralltl't' I a~aill,t \\ (II:-I·c:! .. e l'ollHnunicatic11I:'

1.52

o
L-__ ~ ____ ~ ____ L-__ ~

I I
USI(~("'O"T I

I I

]

~::J- lit .:.:~
1M ':,. .. £ -;f _.:. !
T(C .. ~.:~~-:.., .;t!I'4!SJ

Fig, 2 Processing clement (PE) ': t::-:il illustrates the
buildi ng block modu larity feature (: ~,~ /l,}\DC, The PE
arithmetic unit and L,lsk memory '-; oy:e·functicn 3'Iy
mocular and are configured att(.- In optimal .•.. : rd
length has been determined. The ~::1c~r of worGS of
task memory can (llso be expandc': ',,:;:~'cal!y, The CO:1-

trol unit is not p':H~itioned by bYi", s,n.;c the con!rol
feature requires full \'lord length to operate

j

requirCIlll'flb, pCrl1l1tll(J~ prripilcral equipmellt t(l I,e lle·
sit!llcd ~l;,!ail1~t ~talld.l!d illterfact"' :-1'i'('irlC'alioJl~, l\,rft)rm.
aller \.111 he optillli/('(1. hO\\l'\cr. b~ ;111,)\1 iJl~ UIlU";,"\ timc
or flt'qllCIlCY "lob ttl I'I~ p;l:::::-t'd alt'll:.! It) olhl'r r'):I'l:lial
11:-t' r..;,'\ 11 (}(':1 tin n o !If' LII i OilS il f"e mull i I \I n 'd and c('n I r (', lied
b\' tile' lll:l,lel" cXt'(,lIli\'t' control t \II':C t.

Tltt' flilldioll~ of tlte \1 EC art:' 1(1 p: In ide dynarni._' ('Oil·

trol uf ~~ :-tt'lll re!'Olll("t'~. perform 1.1";" qUt'uin,!! ill Iltller
10 Ol'tilllill' rl':-:'olll"ct' utilil;ltiull, illiti.lll' alld ~Upl'f\'i~l' I'
o 0p,·latiClI\:-:'. <llld i'liti~11L' ~U1" "'lIl"'I\j,C ~y'tem h~lId\\are
JIlll ::-llil\\,llC rel'ullfi~u,atillll ill tht' C\'l'lIt of failure, In Ille

ha~l'\illt' ol~ani7.:1til)r~, tI\f' \n~C Illi.l\ C(lll..;i~t of an .l!'C:l of
control 1(J~ic. an arithmetic ullit. a 'pro~lalll lllenlOl"\', and

nn n~:-:oci;lli\l' slatu=-, IllCIllOfY. III other ,\,\DC :1rl,hitec·
turc~, the \H:C Illa~' be inq;lemt'lllt'd l'lltilel~' with :-nCt
\,'are. or with some \'aryin~ (,olllllil1~llion of harth,are
and ~oft\\ arc ~lIl'h as a flOaliJl~ l'\ecuti\t~ \\ ith common

a~snci:1ti\e status fill'.
AI~o shown in Fi~, 1 nre the two hi!!he~t memher::: of

AAlJC on·linc lllClllon° hicrarch\". TIt:":--e are thl' bulk
store and random al'ce~:; majll.stu~e Clll'lllories .• \s l'~ln be
seen from the dia;,!ram. all prOL'l':'::-lH:, 1t~1\'e acccss 10 },oth
memories. For the pr~. Ihi~ pl'rlllil~ tltt' dircct nc,'C:-5 of
ill\'arianl datn and ruutincs from bulk ~tul~lge in ordl'r to
redu('e the C]1I.:llllily of expl'll~i\'e random acccss lllCI1lOry

ref}lIired ill the ~y:"klll. Thc 0,1 (: 'bit f,'rro·acou~lil· bulk
memory undcr dc\'du}lIllCllt fur ;\:\ I)C l'\.hiIJit:; a 7lLus"

",nrd cycle limc on a l,Jock, or pa~e or;,!<mi7.l'd kbi5,
IIH'rel,~ pfo\idill~ <ljlprn\imalt"!~' a ltl:l L'o,t rl'dudi'Hl

o\'t'r ;111 .tli B,\\I\I ill'ldt·Ill"llt.llillll \\ilh no :o"al'rifi\.'t' to
:-y:--klll Ihrou:-:lqllJt, i)inTt 1'1-:, til Lnlh :-klc acCt·11 ... c)

I'J"lH i de:- f! ran·f til de,~r ;Ida I ion in thl' t'n'ul of H, \ \ Dl
failure. 'nil" \lPP rl''1"irl':' din'd l,ulk .. Iort' n('('t'~~ duc,

in p.lrt, to tl)(· lar~l' '1 u ;mtiti,':' of .1.11.1 that IHU .. t be
~lol"(·d and Clpl'rall'd on \\ itlrin lilt' \II'P.

75

Fig, 4 Optimized simplex processor (OSP) represents
the least complex of ail A: ,)C architectures, This struc
ture employs three rner: 'y systems, each specially
suited to provld8 a pa~~'_ program capability with no
loss of systom ttlrollg~;p~: This approach is expected
to offer ne3riy an orcJr.r- :-magnitude cost reduction I for avionic computers , l uinng extensive program
storage

------- - -,--------------

Fig. 4 illustrates a particularly interesting variation of
the AADC ba:.'eline arcllitc·,'ture. Termed the optimized
simplex proce~sor I asp I. the organization takes -advan
tage of relati \'el~' la r~e p l'(Igrarn.to-data storage ratios
(typically 5:1 to 10:11 found in aerospace pro~ranl list·

. ings. This desi~n difTers from conventional simplex archi·
tecture in that three memories are used in lieu of a single
random access main store memory. I n operation, in\'ari·
ant program pa~es are stort·d and transferred from the
block or~alliz('d bulk :--tflft' 0 ta~k memory, followed by
pertinent data from lilt' I: 1'1 hpforf' proces:-. initiation.
The ta ... k mClllcll \ tht'li I'" rll1S the fUllCli()f}s of I)oth lo-
cal stora~e and ~('ratl'hi)~\(i ior the job at han(l. Becau~e
of special ~ituJ.tiulI~, such ,IS lar~e matrix cornpl1tation~,
the arithmf'tic and ('ontrol 'rudure sh()ul<l have the ca·
p.1hilily of w() .. kifl~ dircctl lut of the IL\\l\l as well as

76 1.53

--,
I
I
I
I
1
I
I
I
I Fig, 3 AADC is expected to operat~

with a sophisticated multiplexed com
mun iC3tions nehvork, This fC3tu re
will extend executive co~trol into
system peripherals and permit tight
er regulation of real-time communi
cation resources

task memory. This would minimize indll(,lcncic~ created
h yin sun i c i e n t\\'o r k c;;, p:1 c e wit 11 i n t.1.:-- k me III 0 r y 11 r; d . hen c e ,
excessi\'~ data tran~fers betwcen the IL\\I\l Jlld t35k
memory .

. \ lthuu~h not <.1::- sophi:'-t i('d!l'd a::- the kl:"cl ill\..' I) r~3ni
zatioll. the asp pro\'ides a lU;,2ical ilrst :,tep ill 2[1 (>rderly
pr()~re~~joll toward that comple\: or~aflizatiot1, f\.lr this
and uther fe,-,.;orl", tlle O~p \\ ill likt_'h lIe the fir~t : .. :JLd for
AA I)C protot) pc devclopment.· -

The ;\."\ DC: concf'pt ha.;; heen de\clopcd in rc..;~" Irl~e to

projected \"a\'al ailj)(lrJle di,'..'ild\ C(IJ11puter Sy:-;tcl:l' rcquire.
llH'rHs for the 1 ()~':;-:;,; till1l'fralllf' and beyond, 1;,.,:' ap
proach utilil(,~ old aIld Ill'\\' k('hnolp~ie.:. 311(1 l~"_'::ll)/lol·

ogies to crcatc a cosL-efTecti\'l'. intc,:~T3ted di~itJl com
puter system cap3bility kl:-Of'd 011 th~ conceph "f func ..
tional and ll~te .. fll!lclional lI1odul.1rit\. Thi.;; ~qII1l",11-,h will
lJ e r In i t I he de,-; i ;.:r Il and fa 1)1' i (' a t i lIlI r I flip t i In :Ill Y C I' r , ; i ...: u red
computer systf'Jrb fOf each unique operatioru\ lequire
Inent likely to dc\'elop \\ithill the acldre~sed tir;:cframe ..
The time and co~t to d(~vel()p each ne\\' mcml)t'r of the
A.\ DC famil~' \\ ill. on the h<l:,i:-; of this dic;;,cu ... ~illr:. be sig
nificantly le~" thall for alternati\c appro3che.;" The' cost
and effort rel1uired to suppl·rt :\:\DC equipment. tilt), will
prove to be much less tilan for a/l~' 3iternatiH' .::)proach
currently known to the author. \lo-:.t sif!nificJntiy, the
a\'ailaLility of an "off-the-=-hdf" computer capability ",ill
free es:-;enlial :\a\'al and Industry ::;.y~tcms en;.:.il~l'l'rs from
the arduous and nonir1\cTlti\'t.~ t~:-k of tr3ckin~ the devel·
opment of a IILljor a\iollic ~~~tem compollent. i,t'., di~ital
('oml'lIkr. for e;1('h and ('\'er~' 111'\,- aircraft c;;,\~tcm pro
cured. TIIt''-" p"r,-ull~ \\ ill tllt'l1 1\(' ircc to l'LH'C ~r('.iter
('lllltll.1:-is on lIlt' pr()ldl'll1 of (krlllill:'~ (h n~lIlli\.' ',\ ,irtirne
and fl t.' (1 C d i III C t u t, tl ~ ~ ... k III i e q L1 ire II : t' Ill::-, 1 L c . \ , \ U C \\ ill,
in thi:o' m~tllnt'r, permit rapid fC:-pU!I..;e in all eLl \..\[~ol'his.
tiratt-d techrwi();:ical irlflO\3tioTl.

CO~tPCTFH J)ESIC~ ~L1)TL\{IT~\ 1070

Chapter 2

A A D C

ARC HIT E C T U RES

Section

2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.5.1

2.1

Table of Contents for AADC Architectures

List of Figures and List of Tables
Glossory for AADC Architecture

INTRODUCTION AND SUMMARY
Introduction
Summary of Architectures
AADC ARCHITECTURES
Optimized Simplex Processor
AADC Baseline Architecture
Time Division Multiplexed Block Transfer Multiprocessor
Multiply Memory Multiprocessor
Ultra~Reliable Architectures
INTERFACING AADC MODULES
Internal Bussing
External I/O
Interface to Aircraft
MISCELLANEOUS SUBJECTS
Transient Radiation Effects
Advanced Avionics Fault Isolation System (AAFIS)
AADC Building Block Nodule
OTHER NON-AADC ARCHITECTURES
Directly Executing HOL Architectures

Reference to AADC Architectures

Appendix

Preliminary AADC RM1-I/O Statement of Work

2.i

Page

2.ii
2.:iii

2.1
2.1
2.1
2.3
2.3
2.7
2.10
2.15
2.17
2.18
2.18
2.18
2.19
2.20
2.20
2.20
2.21
2.22
2.22

2.24

2.27

Figures

2.1
2.2
2.3
2.4

2.5

2.6

Table

2.1

List of Figures for AADC Architecture

Optimized Simplex Processor (aSP)
Block Diagram of the AADC Baseline System
Block Diagram of RA}M and External Interfaces
Preliminary Multiprocessor Design Concept (version 1 of

TDM BTM)
Time Division Multiplexed Block Transfer Multiprocessor

(TDM BTM)
Multiple Memory Multiprocessor

List of Tables

Comparing the AADc/asp to Conventional Architecture

2.ii

Page

2.1
2.8
2.9
2.12

2.14

2.16

2.6

AAGIS

Baseline

BORAM

MEC

MINCOMS

MIPS

MMM

nsec

OSP

PE

PM

RAHM

TDM BDH

TM

llsec

DPE

Glossary to AADC Architectures

- Advanced Avionics Fault Isolation System.

- The most powerful AADC Architecture- several DPEs and a SPE.

- Block Oriented Random Access Memory: used to store Program segments.

- Master Executive Control (Chapter 6).

- Multiple Interior Communications Systems: standard I/O interface
to the aircraft that is used by the AADC system.

- Millions of instructions per second: a measure of computer
throughput.
,

- Multiple Memory Multiprocessor: similar to Baseline architecture
but no TMs and several RA}llis.

-9 - Nanoseconds equals 10 seconds.

- Optimized Simplex Processor: simpliest AADC architecture.

- Old name for the Data Processing Element (Chapter 5).

- Program Module: a portion of a program that contains less than
4K words and execute as a unit.

- Random Access Main Memory: used to store mode-independent data
and buffer I/O.

- Time Divison Multiplexed Block Transfer Multiprocessor: similar
to AADC Baseline but uses a software MEC.

- Task Memory: a random access memory dedicated to a PE for
temporary data and the currently executing PM.

-6 - Microseconds equals 10 seconds.

Data Processing Element - new name for the sequential Processing
Element (PE) •

2.iii

Chapter 2

AADC ARCHITECTURES

2.1 INTRODUCTION AND SUHMARY

2.1.1 Introduction

Chapter Two describes the AADC architectures from the simpliest

processor - called the Optimized Simplex Processor (OSP) - to the most powerful

multiprocessor - the AADC Baseline System - and to the new ultra-reliable Three-

Plus Processor (TPP) system. This chapter also discusses the interconnections
,

between AADC modules such as internal bussing and external I/O interconnections.

Finally this chapter acts as a "catch all" for subjects which do not fit in any

other chapter and pertain to the overall system organization or operation. This

also includes some directly-executing Higher Order Language architectures ~hich

are interesting alternates to AADC.

2.1.2 Summary of Architectures

The basic hardware building blocks of any AADC system are: 1) a

Block Oriented Random Access r1emory (BORAM) to hold program modules; 2) a

Random Access Main Memory (RAHM or RAN) to hold semi-permanent data and to

buffer I/O; 3) a small (4K word) Task Memory to hold the currently executing

* program module and temporary data; 4) Processor Elements (PEs) to perfor~ the

sequential arithmetic computations; 5) an optional Matrix Parallel Processor

(MPP) or Signal Processing Element (SPE) to process radar and video signals;

6) one or several Input/Output Units;- 7) the internal bussing to interconnect

all the modules; and finally, 8) a }faster Executive Control to control all the

modules and supervise the operation of the entire system.

*PE and the new name DPE - for Data Processing Element - are used interchangably.

2.1

The simpliest system is the Optimized Simplex Processor (aSP) with a

* single PE with its TM, a RAMM, a BORAM, an I/O unit, internal bussing and a

floating software MEC. The PE executes the HEC out of RAMM; this is the only case

in which instructions are executed from RAMM. The PE also executes Program Modules

out of the Task Memory. The most powerful system is the AADC Baseline system which

contains several PEs with their TMs, a large RAMM, a large BORAM, several 1/9 units,

a Signal Processing Element, four internal busses and a hardware MEC.

Between the two extremes, two architectures have been defined. There

is a Time Division Multiplexed Block Transfer Multiprocessor (TDM BTM) which is

essentially the same as a Baseline system except with a software MEC. There is

also a Multiple Memory Multiprocessor (MNM) \vhich has several RAI1Hs but no THs.

In this case the PEs execute programs directly from the RAJrus.

Since the AADC PE is a very powerful computer capable of executing

3.3 ~IIPS and relatively inexpensive, it is deemed more important to increase the

reliability rather than the throughput. Three extra reliable configurations

have been defined. The Dual Processor has two OSP systems each capable of

providing complete backup for the other. The Triplex Processor contains three

asp systems with majority gate decision logic sampling their output for added

checking of random errors. The ultra-reliable configuration is the Three-Plus

Processor which is the same as the TP above,except it has extra PEs that can

be switched in automatically in case a PE fails.

2.2

2.2 AADC ARCHITECTURES

2.2.1 Optimized Simplex Processor

This section will present the simpliest AADC architecture called

the Optimized Simplex Processor (OSP). The Optimized Simples Processor

has a single PE (including Arithmetic and Control Unit

and a Task Memory), a RAMM, a BORAM and four internal busses as sho~~ in

Figure 2.1. The MEC is a floating software MEC that is executed from RA}frL

The basic building modules of the OSP are described as follows:

1. BORAM - A Block Oriented Random Access Memory with a
2 ~sec per block access time and a 70 to 150 nsec per
word transfer rate. It is non-volatile. It stores
all Program Hodules (PHs); all HEe software segments,
special MEC identification words. A Program Nodule may
be stored in several consecutive BORAM blocks. The
BORAH will probably llse a [erroacoustic recording
technique (Chapter 4).*

2. RAt-1M - A Random Access Nain Hernory \vhich is non
volatile and has a 150 nsec per word access time.
It is used to hold all mode-indt~pcndent (or permanent)
data and it provides I/O buffering area. In the OSP,
the RAHH also holds the HEC program segments \.Jhile
they are being executed. It probably uses a Closed Flux
Memory, or CFM, technology (Chapter 4).

3. TM - Task Memory which is part of the PEe It is
probably a 4K 36-bit word RAN \-vith 150 nsec per word
access time and may be vo1itile. It is used to store
the currently executing P~I. It probably uses the same
recording technique as the ~~~1. In all applications
role the TM contains segments or pages of several PMs.

4 PE - Processing Element (or more accurately a A&C for
Arithmetic and Co~trol Unit) a general purpose sequential
processor capable of executing arithmetic and logical
operations at a rate of 3.3 MIPS and having a very
powerful instruction set. The PE will run either a PM
from TM or MEC segments from RAJlli (Chapter 5).

5. I/O Unit - a general purpose interface unit between RA}fr1

and the environment.

*BORA~ is still under development.

2.3

- -...-..---------_,..., -...-,-... -----------------------...

FE ._-- _----
I I
I ~ .: Co ~ ""..- ,.:

.l- .. ~ : ~ ~ ~ t. ~ ~ E~ ~ .1 C I
I-zj
~

QQ. I {o. ".,;J I '-.,.:. t! ~ '- ~

c: •
1'1
ro
N .
~ ..

I Co ri ~'el~J I
I ._- I
t -.- . I I ~ (... ·1 ~- 'I,.

"W" : '\.

BORAfll). RANi-I/O
~yJ

0
"'0
r1'
S
N
ro
0.-

N . (/)

~ ~.
"'0
"~

ro
M

~
1'1.
0
n
ro
en

·en
0
1'1

'"" 0
C/)

'"d
'-'

I :- (\ I
I

t'II ~ C r:~ ~) r 'J'
I

~~4~'!--~~~.t- • L - - [1 -I-.~~ -_-_1 __ --': __)-" -'Jo---..

'., I I ' I J ~:? --) ."" ~ p ~ : '. ~ '':':1 r. ' ... J ,.
I.:.,~ \.; ~ '"' J II \f \,,# L. '(. .:)

I f i. ______ ~:__t_--....

...-------~---t'I'=~~I-----D-L-.~,-...~:~~ls Ir _____ . __ ._~--...

- --1-
.-1 ____ ,_-_1 v_~---_-_-_'f - .. l-----.

I !r" U c· E - c..,; .,)

I
,~-------------P~r-o-g-r-a-2-11--f~-~-o-d-.~·-!-e--T-r~c-n-s-f-c-r-B-)-u-s------------,

6. Four internal busses interconnect the modules.
The executive bus a1lo\o,1s the HEC to control the
other modules. The data bus allows the transfer of
da ta and I/O between the P E, 11,1 and the RPJ1H. The
interrupt bus allows an external I/O unit to signal
the MEC or allows a PX to request a MEC function.
The interrupt bus also provides a means for any
module to signal the MEC in case of failure. The
program module transfer bus al10T""s the transfer of
PMs to TM and MEC segments to RA\[M. This unidirection
bus allows transfer out of BORAH only.

7. MEC - Master Executive Control is a software program
that provides the supervision and control of the
other modules. It is executed by the PE out of RM~1
in the OSP case and thus is often referred to as a
floating software MEC (Chapter 6).

The Signal Processing Element is not normally included in the OSP.

A comparison of the OSP with a conventional architecture is shown in

Table 2.1. This table also provides information concerning the storage costs

and performance of a similar system using conventional architecture and com-

ponents. The advantage of partitioning procedure and data between RMfH and

BORAH, as well as the use of BORAN for primary storage is obvious from the

relative cost and speed.

The operation of the OSP is fairly standard \<1i th the BORAH provid-

ing backup storage for all PMs, MEC segments, and permanent data or descriptor

words. A PM is moved from BORAH to TIl for execution. A Program Module can

issue an instruction to call another P~l or to overlay part of itself. MEC seg-

ments are moved from BORAM to RAtfrI for execution with a MEC kernel always re-

sidend in RAMM. Output of data is performed by placing the data in RA}~1 and

signaling an external I/O device to remove it. Input of data is recognized by

an external interrupt on the interrupt bus and it is then removed from the

RAMM buffer area.

2.5

RAN BOHAM
4~

- A&C ..".

T M
~

asp

6K words, 32 bits,
250 nsec/wd cycle time,
- $9,600

i24K words, 32 bits,
150 risec/wd cycle time,
2 :usec/block access ti~e,
250 - 500 words/block,
- $12,000

RAM -

BORAH/
· BULK

TASK NEH0RY/
SCRATCH ~'AD

4K words, 32 bits,
150 nsec/wd cycle time,
80 nsec/wd access time,
- $6,400

BULK I'.. ~Ar1
"

y

J.~
..

A&C -"'
S P

64K words, 32 bits,
250 nsec/wd cycle time,
160 nsec/wd access time,
- $102,000.

BOK words, 32 bits,
5 usec/,':cl cycle time,
4 msec/block access time,
3K "lords/block,
~ $7,800

128 words, 32 bits,
150 nsec/wd cycle time,
80 nsec/wd access time,
- $200

TOTAL "STORAGE CCST

- $28,000 - $110,000
'.: ..

THROUGHPUT~· •

3.3 fwIIPS 2 MIPS

* UsinG Raytheon A&C for AADC '-Ii ~h 5 nsec .logic

2.6

2.2.2 AADC Baseline Architecture

The AADC Baseline Architecture is the most powerful AADC System

containing several PEs and a Signal Processing Element as sho~m in

Figure 2.2. Another major difference is that the Baseline Architecture will

probably have a hardware MEC, as well as a floating software MEC for backup

in case the hardware MEC fails.

The hardware modules of the Baseline System can be described as

follows (Figure 2.2):

1. The BORAM, TMs and PEs are the same as for the asp
except there can be several PEs and TMs.

2. The RA}m is the same except it holds only the mode
independent data and the buffered I/O data, and is
not used to store MEC segments.

3. Dedicated I/O units are included which can be
dedicated to a particular PE having excessive
I/O requirements.

4. A Channel Selector Switch has been added which is a
programmable digital interconnection network capable
of connecting any PE to any dedicated I/O unit.

5. High-Speed ~~ltiplexed Digital Interface has been
added which is a programmable sampling network
switch (see Figure 2.3) capable of interfacing
into the aircraft's MINCOMS (Multiple Interior
Communication System). Input data to (and output
data from) the AADC system is stored in (read from)
the RAMM by this unit. This unit with the l~m is
the I/O for most of the systems communication to
the external sensors and actuators.

6. Hardware MEC has been added which is an expanded
version of the asp MEC but implemented in hard
ware. The MEC has the following functions:

2.7

HASn .• PM ftNISfER IUS
EXF.c.:UTlVE ~ ---. IOIWt
[tIN l'ROL

r y

1 !
tt

~ I 111«./1
Signal ~ SI'f,I.U

IIlTA BUS ,; DII; 11AI ~I
!': ProcessinJ (" ...

" ~lIl.lll'LUER

M un •. IlfACE Element s .4~ A~ .. ~ .. "

t:J(F.fC I I \'r. BlIS .. ~ , " ~~ , " ~, trH +, , ,,,
f'ROCF.SSOH. 1'\(lll't:SSOR PJIOCF.5S0R PROCESSOR

r--+ ---- t.. .. ---- :-t-o 00-. -----_. ~ ---
" ..- , ~ ,.

TASK ~1f.MlIK'i
lAS.: ~t::f()M\" TASK ?'»10RY TASK MEHORY

N
•

4~ ~" ~~ AI'

PJlOCt;SSOR BUS

~,
" " ~,

l CIIA:fflEL SELECTOR SWITCH
r- I

I/O tlo 0 0 0 I I,. 1/0

~

Figure 2.2.. Block Diagram of the AADC Baseline System.

A,.&""."" y.".

M:IA ISUS

..-.. til'FFER ACCeSS SWITcn

SJ:!-:Sr.
I I ~~E

"1
I

"
.,

...
CYCl.lC t'ORT ..
POR r-1'o· ADDRESS ow

SENSE LINE PORT TRANS- TRA!~S--
n:R SWITCH u\TOR ..

..

....
~

•
'1 I II~ • 1 ! 1 l ... l, • • ,

1~ 1 IN 2 IN ') :~; 4 1'-
" '> I ~~ (I IN 1 IN 8 !N 9 IN 10 IN 11 l~ r.

~IEN t-\F.:<1
I'Rl)CW~1A8LE ME~' M~1 :-U~I ~iF:: ~I~:tl Nt:}1 ME .. "U~1 MD1 ••• N~

MIN SA.'lI'I.I:-tr.
NO£) :-1t>D ~1llD r-!OD MOD ~IOD :-:00 MOD MOD ~10D MOD ~~llO ...-. l 2 ') 4 S b 7 H 9 10 11 N

COMS S\111CII
Ill'·' 1 IIllT 2 (lin) OUT 4 (JUT II) uur b OUT 1 ~)U·i 8 OUT 'I OUT 10 OUT 11 111I1 N

I
J 1

Figure 2.3. Bloc~ Diagram of RAMM and External Interfaces

- Monitor the various processing elements
in the system to meet the requirements of
all (externally-requested) modes of opera
tion of the aircraft.

- Assign operational programs to the various
processing units.

- Supervise data transfers between units within
the AADC.

- Supervise the overall System operation, for
such items as processor failures, interrupt
requests, etc.

A floating software MEC will probably also be provided as backup in case of a

failure in the hareware MEC in the Baseline System. Further description of the

hardware MEC is available in Chapter 6.

The operation of the Baseline System is quite similar to the asp

except a lot more activity can be occuring simultaneously. Several PMs can be

executing on different PEs, other PMs can be transferring from BORAM to TMs, and

data can be read and written simultaneously. One difference is that the MEC

segments are used only for backup and then they are transferred to and executed

from the TM of a PEe A more detailed description of the operation will be

given in the following subsection.

2.2.3 Time Division Multiplexed Block Transfer Multiprocessor.

The Time Division Multiplexed Block Transfer Multiprocessor (TDM BTM)

represents an intermediate architecture between the asp and the Baseline and is

one of the first attempts to solve the classical problem of memory access conflicts.

A scheme was devised which combined a small random access memory (or TM) with an

Arithmetic and Control (A&C) unit to form a Processing Element (PE). Several

PEs are then arrayed on a Time Division Multiplex (TDM) bus and serviced by a

2.10

conventional Random Access Mainstore Memory CRAMM). The RAMM, in turn, is tied

to a Block Oriented Random Access Memory (BORAM) , which provided off line

program storage. This relationship is illustrated in Figure 2~4. Note there is

no direct connection from BORAM to the TMs in this first version of TDM BTM.

In theory, because each PE had 512 to 4K words of local storage, programs

can be block transfered from RAMM to a local Task Memory (TM), thereby reducing

the number of PE to RAMM accesses made during program execution by two to three

orders of magnitude. This reduction permits various PEs to access RAMM sequentially

on a non-interfering, or nearly non-interfering basis, thus eliminating the need

for an elaborate crossbar switch between PEs and RAMM for access conflict

resolution. The TM provides local storage for data and programs and thus permitted

one RAMM to service several PEs. For similar reasons, this organization also

eliminates the need for careful partitioning of object code in RAlfr1, since access

conflicts are now resolved in time, not space. This last factor means drastically

reduced RAMM size, for RAMM can now be readily reloaded from BORAM on a mode-to

mode basis. In this way, the BORA}1 inherited the role of primary program storage.

The success of this first architecture hinges on:

- the ability to structure aerospace programs from

modules (Program Modules or PMs)

the ability to assign PMs to PEs in a timely a~d

optimal manner

- PM run times which are long when compared with

RAMM to PE transfer times

- a substatical cost differential between RAMM and

BORAM technologies.

2.11

.- -...... .,---_ .. -,

;.

•
--_ .. _---_.-:-'-- ------"---' .. - .. -

RANDOA\ ACCESS
h\AINSTORE ~\Efw\ORY

,

. . .

~'>~------~-------.----~--~--------------~------~----'-'-"~~' :..._ . -_, .' TIME DIVISION MULTIPLEX BUS-: -,'.: ',- ~

-----_ .. ------. . I

•

ARITH),~ErIC

AtJD
CONTROL

TASK
ME/.\ORY

PROCESSING ELEMENT

;

ARITH/-,~ETIC

Ar~D
, COt~TROL

j

~

TASK
MEMORY

,

ARITH~\ETIC
. AND .

CONTROL
..

.. . '. r ------------- --
I . . . TASK ,

•
ME/~.ORY.

p

,
~

Figure 2.4. Preliminary Multiprocessor Design Concept (Version 1 ~f T~ ~T~)

.• -- - ,.
. \

•

As a result of early development efforts, various relationships and

technologies have evolved. Among the most important are:

- the fact that aerospace programs can, indeed, be

modularized, and that these modules can be further

partitioned into pages which exhibit useful replace

ment properties

- critical path analysis techniques can be successfully

applied to the PM to PE assignment problem

- ferroacoustic memory technology would allow the

fabrication of mass memories which are at least

an order of magnitude less expensive, and at the

same time an order of magnitude faster than

militarized RAM technologies

- 80% to 90% of typical aerospace programs consist

of invarient procedure and constants.

As a consequence of these, as well as other findings, an extremely

important design change has been made to the original architecture. The BO~~

was disconnected from the RAMM and joined directly to each PE through a Program

Module Transfer Bus (see Figure 2.5). This alteration permitted further

reduction of RAMM size, reduced PM transfer times, and provided immediate

processing resources to all PMs without recourse to time consuming roll in

procedures.

In the newer architecture and the final version of the TDM Block Trans

fer Multiprocessor, PMs were stored as pages in the BORAM and transfered to the TM

2.13

•

N .

N .
U1

0t::d
~
o
(")
?\'o

---------------------------------- ,
•

,

.' ."' "" .
~

"

..------~ RAM SORAM
-_ .. ---. --.. ,~ "

> ,. .~

i,"- ~:",," .• "'. ," --":'.~~~~

t..-----~ .. Executive Bus I
I/O

. ... ~,'...;., .• ~.., ,.. -

" -

.'

1
•

•

upon initiation by the AADC operating system, the Master Executive Control (~lliC).

In practice, these PM pages could vary an~rhere from a few score to several

thousand words~ While loading such pages into PEs on an exclusive basis will

result in satisfactory performance, recent computer simulations have ShO~l that

a substantial increase in processor and memory utilization can be achieved by

multiprogramming each TM. For this reason, present AADC system design calls for

one or more PMs to share a PE, with only a portion of the PM resident in TI1 at

anyone time. Consequently, each PM, consisting of one or more pages of 128 or

256 words, is stored in BORAN until called by the MEC or called by a page

fault within an active PM. The executive bus is added to prevent control

conflicts with program and data transfer~.

The TDM BTM gets its name from the fact that the busses are time

division multiplexed, which means that only onc PE has a given bus at a given

time, and the fact that programs are transferred as block bet\-Jeen BORAM and TH.

Note the TDM BTM is somewhat similar to the Baseline architecture when the hard-

ware MEC has failed. (The material in this subsection is taken from Reference [2.1].)

2.2.4 Multiple Memory Hultiprocessor

The Multiple Memory Multiprocessor shown in Figure 2.6 is similar to

the Baseline except that the PEs have no Task Memories and there are several

RAMMs. Thus, the PEs share the RAMMs and execute programs directly from it via

a second channel selector switch (which is also programmable similar to channel

selector switch on the aSP). The MEC may be hardware or software.

2.15

DEDICATED DEDICATED . . . DEDICATEC ..
BORAM

I/O I/O I/O
..

.~ Ai' .po

1~ l' 1l'

l CHANNEL SELECTOR SWITCH NO.1
l..
r .,.. .,.

'" .,.
PM BUS

lr! ~, ~ 1~ ---i ~r .. ~~

. . . ~ BULK PARALLEL
RAMM RAMM RAMM RAMM .. PROCESSOR

.,. t .~! nt A. 1

N . I/O AND ~, u " V
HIGH SPEED

~ L MULTIPLEXED ... CHANNEL SELECTO~ SWITCH NO.2 DIGITAL ~

"'"L r INTERFACE . ~ .,. A

.~

~ , ~, ~, .

r ~ .. L.. --. ----- """"" -""

Q
.. MEC PROCESSOR ~ .. PROCESSOR r- "'" PROCESSOR ...

.. ,. . ,. •

EXECUTIVE BUS

Figure 2 •. 6. Multiple Memory Multiprocessor

This configuration has the advantage of allo\ling the PEs to execute

another program while the next PM is being loaded into I~. The disadvantage

of this system- is that it takes more memory and, since memory modules are probably

more expensive than the PEs, the MMM is probably more expensive than the Base-

line architecture for the same throughput and reliability.

2.2.5 Ultra-Reliable Architectures

As a result of a recent appreciation for the processing power of the

AADC/OSP, an interesting modification was made to existing MEC design goals.

Because the unit processor provides the necessary throughput to meet the combined

sequential processing requirements of an integrated 1980 aircraft, the need for

multiprocessing should arise, when and if it does, from a desire for improved

reliability rather than increased computer throughput. Toward this end, three

extra classes of multiprocessors have been identified based on the asp. These

are:

1. The Duplex Processor (two PEs): used whenever some
processing backup is desired after a PE failure -
the MEe kernel stored is stored in the PE performing
the applications programs - improved throughput, while
provided, is not a fundamental goal;

2. The Triplex Processor (three PEs with/without a
hardware MEC): used when solution confidence is
all important - provisions for majority voting -
executive fallback provided in the event of an ~ffiC

hardware failure;

3. The Three-Plus Processor (more than three PEs with/
without hardware MEC): provides all the above cap
ability with the addition of power switching for
improved, long term, maintenance free reliability.

The present AADC Architectures and MEC design are being updated to accomodate

this new applications philosophy [2.2, paragraph 2C].

2.17

2.3 INTERFACING AADC MODULES

2.3.1 Internal Bussing

The 'following excerpt is taken from AADC Progress Report No. 10

dated May 31, 1972 [2.3, paragraph 30, 31] which discusses the need for a very

fast and reliable internal bussing scheme for AADC. The busses are described

in Subsection 2.2.1 above.

30. Internal Bussing: It is a long held belief that
communications among AADC components will prove a
particularly difficult problem to resolve. This is
because of a) the requirement for modular extensibility,
b) the high data rates between and among hardware modules,
c) the extremely small size of AADC components, even at
the second packaging level, d) the need for EMI/EMP
immunity, e) the requirement for high reliability, and
f) the desireability of low cost. As a result of these
concerns, study efforts were initiated to investigate
the options afforded by various bus implementation
schemes. If anything, these studies confirm the original
sense of concern. Fortunately, the problems which still
exist do not seem beyond resolution.

31. In addition to functional analyses, study efforts
are proceeding to determine a reasonable technology
with which to implement an internal bus subsystem.
Feasibility hardware for a low power, multiplexed,
optical communication system is presently being assembled
for the Navy by IBM.

Reference [2.4] presents the results of IBM's investigation on optical data

links. Some details of a possible implementation are presented in Chapter 3 -

AADC Hardware Technology.

2.3.2 External I/O

The following excerpt from AADC Progress Report No. 10 [2.3, paragraph

13] describes the current status of the external Input/Output interface

developments:

2.18

13. External I/O: To be truly useful, the AADC
has to interface with other equipments or peripherals
in the larger context of an information processing
system. A contracted effort to address the design
requirements for a general purpose AADC interface is
planned. An RFP for this effort has been released
by the Naval Air Development Center, Warminster, Pa.
Enclosures (2) and (3) detail the goals of this effort.

Enclosure (2): Preliminary AADC RAM-I/O Statement of Hark is attached as

Appendix 2.1. Enclosure (3) considers the AADC I/O Baseline [2.3, pages

39-47 and 2.5].

At the 1973 AADC Symposium Raytheon reported some research on using a

PMU (Program Management Unit of the Data Processing Element) as the RA~n1/IO Con-

troller. The PMU would have a Task Memory for instruction and temporary data.

The advantages of this approach are improved modularity, expandability, graceful

degradation. and memory protection (via the ~ru), as well as, a cost savings since

95 percent of the controller is already designed 12.22]. Also see [2.23].

IBM also reported on development of a microprogrammed I/O controller.

The controller consisted of a 4k 64-bit words of ROH (Read Only Hemory), local

store of 16 x 16 bits and a 16 bit minicomputer. In many ways it was similar to

the PMU. See [2.24] for the final report on this development.

2.3.3 Interface to Aircraft

Reference [2.6] is a Grumman Aerospace Corporation report on the AADC

interfact requirements for a representative F-14C aircraft weapon system. The

primary goal of the report was to provide detailed definition of the interface of

future aircraft systems to AADC. The report concludes that the 13 subsystems re-

quire an interface to AADC of 200,000 bits/second, and the AADC configuration for the

F-14C should have two DPE, one RAMM for data, one BORAM, and another Rfu~ for buffer-

ing r/o, a hardware MEC and a Data Handling System for interface to the aircraft

subsystem. The Data Handling system includes a Bus Control Unit, several Subsystem

Controllers, and standard Interface Units. For further information see Chapter 10

or [2.6]. 2.19

2.4 }IISCELLANEOUS SUBJECTS

2.4.1 Transient Radiation Effects

Grumman Aerospace Corporation has completed two studies on the transient

radiation affects on the AADC. The first was completed in July 1969 [2.7]; the

second in July 1971 [2.8]. These reports are classified proprietary and secret,

respectively.

2.4.2 Advanced Avionics Fault Isolation System (AAFIS)

The following excerpt is taken from AADC Progress Report No. 10

[2.3, paragraph 7 to 10]:

7. Advanced Avionics Fault Isolation System (AAFIS):
"The AAFIS program is planned for the development of
automatic test equipment for the support of Naval
avionics in the post 1980 era. It will be phased into
fleet use subsequent to the presently deployed VAST
system. The prime objective of the AAFIS program is
to reduce the cost of ownership of avionics support
equipment.

8. "The AAFIS program is presently investigating,
by an industry contract with RCA, a technique which
appears promising for automated testing of analog
devices. The technique has, however, proven unappli
cable to digital systems." [2.9].

9. Among the more salient goals of the AAFIS program,
from the point of view of AADC, are: a) compatibility
with Large Scale Integrated (LSI) semiconductor tech
nology, to the extent that it may provide inputs to
the LSI design process itself and b) the utilization
of test procedures which may be computer controlled
and monitored, and which result in data which may be
evaluated by the same computers - namely AADC.

10. Industry response to the NADC RFI was due on 7
January 1972. An RFP for AAFIS studies has been
released.

Also see 12.22] for the latest developments on AAFIS.

2.20

2.4.3 AADC Building Block Module

Reference [2.10] is a report by Westinghouse Defense and Space Center

entitled the '~Bui1ding Block Module for Advanced Avionics Digital Computer".

(This report has not been reviewed and it may even pretain to the basic LSI

package for AADC, in which case it should be in Chapter 3.)

2.21

2.5 OTHER NON-AADC ARCHITECTURES

2.5.1 Directly Executing HaL Architectures

ThiS section is included to reference some of the other Higher Order

Language architectures that are alternate designs to the AADC. These alternate

designs should be reviewed to ensure that the features they offer or the

implementation techniques they use are not superior to AADC. If AADC is going to be,

the All Application Computer for 1975 to 1985, it must offer a flexible efficient

High Order Language that can be effectively implemented.

An original 1968 proposal for an "Integral Hardware/Software Design"

is given in [2.11]. Two other very early alternates to the AADC design were

prcs~nted in Subsection 1.3.2 [1.19 and 1.20].

Three more recent HaL Architecture designs inc.1ude: An Aerospace

HOL CIJmputer by Honeywell in February 1971 [2.12], another by Burroughs Corp

oration in April 1971 [2.13], and the third by Hughes Aircraft Company in April

1971 [2.14].

The U. S. Air Force is also investigating the design of an HOL

architecture. The conception, feasibility and initial design are described in

[2.15]. A follow-on study was carried out under contract [2.16] and should be

completed by no\". A study on SPL Architecture Study is given in [2.17]. (SPL.

or Space Progrannning Languages, is the USAF's competitor for C}fS-2, and is

described in [2.18].)

A final study by the Corporation for Informations Systems looks like

it should be in Chapter 9 on Higher Order Languages rather than here. but it

does pertain to the Air Force effort [2.19].

2.22

Reference [2.20] discusses another possible architecture using a

distributed fetch computer, not specifically designed for a HOL. Reference

[2.21] suggest a universal function unit for avionics and missile systems.

2.23

References to AADC Architectures

2.1 The Advanced Avionics Digital Computer Revisited; R. S. Entner; NAVAIR-

SYSCOMj October 12, 1971; Unpublished paper; Unclassified; ·(NPS).

2.2 AADC Development Program Progress Report No.9; R. S. Entner; NAVAIRSYSCOM;

* November 1, 1971; (67, NPS) •

2.3 AADC Development Program Progress Report No. 10; R. S. Entner; NAVAIRSYSCOMj

May 31, 1972; (78, NPS).

2.4 High-Speed Optical Data Links; S. R. Parsons, D. J. Stigliani; R. C.

Clapper; D. W. Hanna; IBM, Federal Systems Division; NAVAIRSYSCOM

Contract No. N00019-7l-C-034S; April 1972; (87).

2.5 AADC I/O Baseline; Carl Mattes; NAVAIRDEVCEN; AEDC April 10, 1972; Also

available as Enclosure 3 to AADC Progress Report No. 10 [2.3]; (NPS).

2.6 Future Naval Aircraft Subsystems/AADC Interface Definition for Operational

and OBC Requirements - Final Report; W. I. Butler and G. A. Kohler;

Grumman Aerospace Corp.; NADC Contract No. N62269-72-C-0065; April 17,

1972; (89, NPS~.

2.7 A Generalized Study on Transient Radiation Effects of Advanced Aircraft

Computer Systems (U); Grumman Aerospace Corp.; July 1969; for NAVAIR

AIR-5333F4; Unclassified - Proprietary; (8).

* This number in parentheses refers to the sequential reference' number in the
AADC Bibliography [2.3, Enclosure 1]. NPS indicated the report is available at
the Naval Postgraduate School.

2.24

2.8 Transient Radiation Effect Study Pertaining to Development of Modular

Processor Aircraft Computer System (U) Final Report; Grumman Aerospace

Corp.; July 1, 1971; NADC Contract N62269-70-C-0340; Secret; (59).

2.9 Request for Information for an Advanced Avionics Fault Isolation System;

NADC; October 26, 1971.

2.10 Building Block Module for Advanced Avionics Digital Computer; Westinghouse

Defense and Space Center; October 1971; NAVAIRSYSCOM Contract NOOOl9-70-

C-OSOS; (64).

2.11 Integral Hardware/Software Design; Larry L. Constantine; Part 2, Modern

Data Systems, May 1968, pp 22-30.

2.12 Aerospace Higher Order Languages (HOL) Computer; Honeywell; February 24,

1971.

2.13 Aerospace HOL Computer; Burroughs Corp.; Proposal hB-230l-D Revised;

April 16, 1971.

2.14 Addendum to Technical Proposal for Aerospace Higher Order Language Computer

Study; Hughes Aircraft Co.; Report #TP7l-50; HAC Ref. #C3602-002; April 1971;

(In response to RFP #3361S-71-Q-1775.)

2.15 Development of a Higher Order Language Architecture; James R. Foster, Jr.;

Air Force Avionics Laboratory; in NAECON '71 Record; May 17-19, 1971;

pp 201-205; Available from IEEE Transactions on Aerospace and Electronic

Systems, Reference 71-C-24-AES; (NPS).

2.25

2.16 Aerospace HOL Computer; Air Force Avionics Laboratory (AFAL/NVE), WPAFB,

Ohio; Contract FY3361S-71-C-IZ7S.

2.17 Space Programming Language Machine Architecture Study;' Space and Missile

Systems Organization (SAMSO/SYGN), Norton AFB, California; Volume 1;

Final Report; Contract F04701-71-C-0200; May 15, 1972; (NPS).

2.18 SPL/Mark IV Reference Manual; SAMSO-TR-70-349; (I assume this is available

from Space and Missile Systems Organization (SAMSO/SYGN), Norton AFB,

California).

2.19 Software Technology Study for Advanced Guidance Computer Architectures;

Final Report; Corporation for Information Systems; Contract F0470l-7l-C-

0183; May 1, 1972; (NPS).

2.20 Architectural Study of a Distributed Fetch Computer; Alan J. Deerfield,

Raytheon; NAECON '71; May 17-19, 1971; pp 214-217; (See [2.15]); (NPS).

2.21 A Universal Function Unit for Avionics and Missile Systems; Frank J.

Langley, Raytheon; NAECON '71; May 17-19, 1971; pp 178-187; (See [2.15]);

(NPS) •

2.22 All AFP1ication Digital Computer 1973 Symposium; Orlando, Florida; January

23-25, 1973; Proceedings not yet available.

2.23 Final Report for the AADC Ra~I/O Functional Black Diogram
Design Study; Raytheon Report BR-75l6: April 1973: NAVAIRDEVCEN
Contract N62269-73-C-OOS1; Unclassified; (NPS).

2.24 Study of AADC-I/O; Final Report; IBM Report 73-559~0003; April 1973.
NAVAIRDEVCEN Contract N62269-72-C-083l; Unclassified; (NPS).

2.26

Appendix 2.1

EN ,~LOS URE (2)

NAVAL AIR DEVELOP~~NT CENTER
AERO ELECTRON IC TECHNOLOGY DEPAR: '~~~T

WARMINSTER, PENNSYLVANIA 1897~

1. OBJECTIVE/SCOPE

PRELININARY
MDC RAM-I/O

STATEMENT OF WORK

AEDC
17 Apr 1972

The objective of this initial study concerning 'he RMi-I/O (Random
Access Memory-Input/Output) portion of the AADC (Ad"anced Avionics/All
Applications Digi tal Cor.1puter) is to establish basi·-· concepts and designs
which will fully utilize the advanced capabilities .nd modular flexibility
of the MDC. The I/O should optimize speed and fle.~ibility of COt'uIlWlica
tion between th~ intel~al AADC processing elements (~~d the external sub
system data processors, sensors, and controlled per:;. pherals. This study
shall result in three types of highly flexible I/O ~tructurcs \'Jhich can
be configured to meet the data processing requirements foreseen for the
1978-1990 tit'le frame. TIle study shall provide a detailed functional
(register level) design of the AA\I-I/O portion of the MDe and provide the
basis for a subsequent contract to generate a detailed logic design.

The I/O types are as follows:

a. A standard AADC interface
b. A conventional dedicated multichannel interface
c. Flexible serial interface for multiplexed airborne applications

I

2. .SlJBJECT

The subject of this study shall be the ~f-Input/Output portion of
the MDC.

3. DETAILED STUDY PROGRM1

a. Introduction

The contractor will perform a three (3) part analysis/study/design
of an I/O System for the Navy's AADC which is now under development. The
three technical areas to be covered are:

ENCLOSURE (2)

2.27

AEDC

(1) the design of the RAM-I/O Archi tecture and r;tandard MOe
I/O Bus (see reference (a)),

(2) the design of a conventional dedicated multichannel inter
face as described in reference (b), and

(3) the design of a serial multiplexed I/O interface.

This contract is'not intended to be a study of Navy I/O requirements.
Where necessary, requirements information relevant to the designs will be
provided to the contractor by the Navy.

In all the designs there will be included a co;(\~lete reliability/
maintainability philosophy and a rigorous analysis of the failure modes
and fail safe capabilities of the design. Trade off studies, parametric
analysis, hardwarc/soft\'t'are considerations, specificat: ..)ns and justifica
tions will also be included.

The designs discussed below shall incorporate [1. modular approach
for easy expandability of I/O channels and/or expandability of the number
of Random Access ~femorics.

In addi tion, the desi gns should reflcc t the fac t tha t computer
to computer conununicat.ions will be handled by any of the I/O interfaces
described below \-"i thout any modifications to the designs.

b. Discussion - RN-i-I/O and Standard AADC I/O Bus

A trade off analysis of potential programmable IOC (Input Output
Controller) and RAN configurations shall be performed. A register level
design and timing diagr~ms shall be generated for the architecture(s)
recommended to satisfy the ~3vy'S needs. The contractor shall give prime
consideration to the possibility of implementing the IOC function \'t'ith
the Program ~bnagemcnt Unit portion of the Processing Element (see references
(a) and (c)) or the MCU (~ficroprogrammed Control Uni t) currently under
development within the Navy. The ~1CU is being developed to provide control
of arithmetic or logic units for signal processing, emulation, and I/O
control. Detailed information about both designs will be supplied to
the contractor early in the contract period.

The above design(s) shall provide and reflect all control functions
necessary for:

(1) -Operation of the I/O Bus
(2) Operation of RAM including:

2.28

(a) ~1ultiporting/multipartioning consi ~~tions
(b) Buffering considerations, e.g.

Types of buffers
Buffering techniques
Buffer contiguity
Bufrer Controls

buffer lengths
buffer status
buffer acquisition
buffer control words

AElJC

In addition, the contractor will also be recuired to recommend
a design for the "standard AADC I/O" bus system tr m~~et the rcquirer:lcnts
of the "MDC I/O I3aseline." Tnis bus will be esse"ti~llly a parallel
version of the serial mul tiplexed I/O bus discusser! i;~ a following
section. It is the goal of the study that the nur. .'er of peripheral
devices connecting to the bus be limited only by t,.~ word rate capability
of the bus.

Effort will be expended in (but not neces~1rily limited to) the
following technical areas:

(1) Detailed investigation of I/0-~1 interrelationships with
specific reconnnendations and justifications.

(2) Interrupt Notification/Handling and priori ty cor.ununications.

(3) ~EC (Master Executive Control) impact.

(4) ~Sodul ari ty / growth considerations.

c. Discussion - Conventional Dedicated Multichannel Interface

The Conventional Dedicated Multichannel Interface to be designed
shall comply with the requirements of reference (b). TIlis work shall be
in general conformity to that described in the preceeding section.

d. Discussion - Serial ~lultiplexed I/O Interface

During the study/design several multiplexed alternative I/O bussing
systems shall be considered. The bussing system(s) recommended shall be
detailed to a functional block diagram (register) level and timing diagraQS
shall be provided from which a logic design can be generated under a future
contract.

As part of the designs, an interrupt and bus acquisition scheme or
schemes shall be developed. It is a desired goal of this study that the
number of peripheral devices connected to the bus be limited only by the

2.29

AEDC

bit rate of the bus. For example, if the bus has a 5 illion data bit
per second capability, any number of devices can be co ;nccted until their
combined information transfer rates just equal that c~pability i.e., five
(5) peripherals operating at 1 megabit per second each or 100 peripherals
operating 'at 50 kilobits per second.

REFERENCES

(a) NAVAIRDEVCEN AEDC AADC I/O Baseline Document of 10 Apr 1972
(b) NAVAIRDEVCEN AEDC Functional Specification for the Conventional

Dedicated ~rultichannel Interface of 10 Apr 1972
(c) Raytheon Co. Uncl-NoForn AADC Arithmetic and ContrJl Functional

Block Diagram Design Analytical Study of Dec 1970, DOC No. AD880S44

2.30

Chapter 3

ALL

A P P LIe A T ION

R 0 L E

Section

3.1
3.1.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4

Table of Contents for All Application Role

INTRODUCTION AND SUMMARY
Implications of All Application Role
DESIGN I~~LICATIONS OF ALL APPLICATION ROLE
General Problem Areas
AADC Strategies for Paging Program Modules
AADC Strategies for Paging Data
Other Implications

References to All Application Role

3.1

Page

3.1
3.1
3.2
3.2
3.4
3.8
3.9

3.10

Chapter 3

ALL APPLICATION ROLE

3.1 INTRODUCTION AND SUMMARY

Although the AADC was originally intended for Naval avionic

applications only, the high speed, powerful instruction repertoire and low

cost of AADC have caused the proponents to consider much wider applications.

Although most of this report addresses the AADC design for the avionic

application, this chapter will discuss some of the implications of the de

cision in 1971 to convert the AADC to an All Application Digital Computer.

Although "all application" is undoubtedly too general, the acronym AADC

was retained because of the wide variety of intended applications and be

cause it has been in use for 3 years. Also All Application Digital Com

puter sounds better than Almost All Application Digital Computer.

3.1.1 Implications of All Application Role

Certainly the most significant change in the AADC program in the

last year is the change in emphasis from avionic applications only to the

All Application Digital Computer. This has caused significant changes in

the AADC design by requiring many of the features that have caused problems

in the present third-generation computers. For example, rather than having

a Data Processing Element (DPE) executing a single program out of its own Task

Memory, the DPE must now have facilities for multiprogramming, virtual memory

and demand paging. Thus, the DPE must now have special hardware to support

the virtual memory, and much faster busses to handle the increased bus traffic.

Furthermore, the AADC will now have to solve problems, such as thrashing

(excessive paging until throughput drops to almost zero) and system deadlocks,

that have remained unsolved in present day computers. In any case, the AADC

supporters are convinced they can overcome these problems with AADC.

3.1

3.2 DESIGN IMPLICATIONS OF ALL APPLICATION ROLE

3.2.1 General Problem Areas

This section is intended to provide background on the general prob

lems of operating a computer in a multiprogramming and paging environment.

Although the problems and solutions discussed here are not unique to AADC, they

are'presented to provide background for discussing the implementation of

multiprogramming and paging on AADC in the next section.

An All Application Digital Computer will be defined here as a com

puter capable of operating effectively on normal batch processing, time

sharing, data processing and real time applications. An example of each type

of application is processing jobs in a batch at a programming center, support

ing several terminals for interactive computation, maintaining inventories at

a supply center and data analysis on control of an aircraft. In order to

operate effectively in all these application areas, a computer must have the

following features:

- virtual memory (or paging)

- multiprogramming

Multiprogramming means more than one job in the "active status" in the main

memory (i.e. TM) at one time. The virtual memory feature means that a large

(virtual) memory can be addressed as if it were actually main memory. Thus

the user assumes he has a large virtual memory for his programs and data, and

the system ensures that the required segments of the virtual memory are in the

main memory when required. These two features could be provided separately

but are generally provided together.

Incorporating these two features into a (serially processing) com

puter introduces the following problem areas:

3.2

selection of an optimal page (segment) size,

- page fetching strategy,

- page placement strategy,

- .page replacement strategy,

- address binding at run time,

- task switching, and

- storage protection.

Many possible solutions has been used in existing general purpose

computer system to handle these problems. Page sizes range from 64 word to

4096 words, with the smaller page sizes usually causing the least load on

the channels (busses) to the backup storage (disk or drums) but also causing

the largest amount of CPU overhead. The two common page fetching strategies

are one page on-demand (or as required) fetching and one or more page pre-

fetching. The common page placement strategies are selecting the first avail-

able space or the smallest available space. The first-space strategy is

common '''ith fixed sized pages while the smallest space is conunon for variable

sized pages. The page replacement strategies are many and varied. They

include randolu (the simpliest), first-in first-out (FIFO), last-in first-out

(LIFO), least recently used (LRU) , optimal, various combination of these, etc.

The optimal replacement policy is defined, a-posteriori, as the one that

minimizes the number of pages that must be transferred to the main memory

and thus can only be determined after the program has executed. Since the

optimal is determinable after-the-fact, it has no predictive powers and can

not be implemented. The problem of address binding-at run time results from

the fact that the pages for any Program Module (PM) are randomly distributed

throughout the main memory (i.e. T}I) , because of the placement and replace-

ment strategies. Thus all addresses must be converted (bound) to the absolute

·"Address binding" as used here does not mean binding that occurs onJ.y once.
"Address translation" or II Address mapping" may be more appropriate terms. t

3.3

TM addresses at execution time. Common methods of achieving run time blnd~

ing include using base registers and using associative memories. One of the

disadvantages of run time binding is that each branch operation now implies

an obligatory indexing operation.

If more than one program is active in the Task Memory at one time

then some method must be provided for protecting one program's storage from

being destroyed by another. Some solutions include using protection keys

on each page and checking for addresses out of bounds. The last problem

area in implementing virtual memory and multiprogramming is task switching.

Generally this involves maintaining lists or queues of tasks ready to use

the DPE (data processing element), waiting for a page to be brought into

TM and waiting for I/O. Further elaboration on the specific strategies to

be used by AADC will be presented in the next sections.

3.2.2 AADC Strategies for Paging Program Modules

The justification for adding a virtual memory feature to AADC

was obtained during simulation studies when it was found that only about

one third of the segments of a program" module were active at anyone time

[3.1, paragraph 2]. Thus it was concluded that three or more program modules

could have their "active" pages in TM simultaneously, which would decrease

the task switching time and improve the performance.

The general strategy for implementing virtual memory on the AADC

is described in the following excerpt taken from AADC Progress Report Ten

[3.2, paragraph 33]:

33. Demand Paging: In order to reduce processor
inefficiency produced by the transfer of unnecessary
procedure from BORAM to Task Memory, a demand paging
scheme is being developed for AADC. In this manner,
only a kernel page is loaded into TM at the outset of

3.4

a Program Module (PH) execution cycle, after Wflich
only those pages containing procedure actually requested
by the runni.ng program are transfered into 111. Because
the total number of pages required to execute a particular
PM without excessive requests for new pages during some
interval of time may exceed the number of pages which
constitute the available TM storage « 4K words,
allowing for data and scratch pad), some means must
be provided to intelligently replace unneeded pages
with new ones. Because a page which is not required
at one moment may be required the next, care must be
taken to not arbitrarily toss out "unnecessary" pages.
Enclosures (5), (6) and (7) address the issues, philosophy,
alternatives, design tradeoffs and simulated results of
paging and page replacement algorithms for AADC. [3.3 to
3.5].

For AADC the virtual memory feature will be implemented by assign-

ing fixed-sized segments, called pages, to all procedures and data. Pages

of Program Modules will be moved from BORA}1 to the Task Memory while data

pages will be moved between RAMM and TM in both directions. The paging of

Program Modules is described in this subsection, while the paging of data

is described in the next subsection.

The selected page size for Program Nodules is 256 words, which is a

convenient size for BORAM. This page size allows 16 pages in the 4K word

Task Mernory*. With 2 microsecond (use c) block access time to BORA}1 and 150

nsec per word transfer rate, it takes 40.4 usec (10- 6 sec) to load a page

into TM compared to 646 usec to load the entire TM. Thus task switching

can be substantially improved with a paged memory. The page fetching strategy

for AADC is demand paging. The alternate strategy of prefetching pages is

not reasonable because the TM is being accessed continually during the page

transfer and therefore programs cannot be executed on the DPE during the

transfer. The page placement policy for AADC is to select the first empty

space if one exists. If there are no empty spaces then a page is selected

for removal from TM by the page replacement strategy.

*There has been some discussion on making the TN extendable to 16K words.

3.5

The page replacement strategy for AADC has been left very flexible.

In fact, according to Raytheon at the January 1973 conference [3.6], 16

possible replacement strategies are to be implemented including random, first

in first-out, least recently used, Raytheon's load forward reverse grain

(similar to last-in first-out), and user specified. This appears to be a

very complex solution when the flexibility is not justified. According to

A. W. Cerillo and C. F. Mattes, NADC, the performance of all replacements

strategies is almost the same (within 5 percent) with Raytheon's load for

ward reverse grain (LIFO) algorithm being the most appropriate page replace

ment algorithm. It is more efficient than first-in first-out (FIFO) and

easier to implement with about the same efficiency as the least recently used

(LRU). They also conclude that in cases where there is only one process

whose pages cannot all fit into the main memory, for example in AADC, the

most appropriate page replacement strategy is LRU not the working set [3.4].

This last recommendation is taken from Denning's paper [3.7].

Mr. William R. Smith at NRL also found very little variation in

performance of the various replacement'algorithms for AADC on an avionic

(E2B) work load. Based on the simulation of possible AADC replacement

algorithms, the NRL's recommended replacement schemes, in decreasing order

of preference, are:

1. FIFO/LRU by pairs

2. RANDOM/LRU by pairs

3. FIFO.

where FIFO/LRU by pairs means a pair is selected on the first-in first-out

basis and then the least recently used one of the pair is selected for re

placement [3.5].

3.6

The problem of add ress binding at run t irne has no l been ve ry ·.,'C~ 11

specified yet. The DPE address field has been increased from 12 to 16 bits

with the first 8 bits being the page address and the last 8 bits being the

address within a page [3.6]. A sixteen bit address field means that the

largest Program Module or data array is 64k words. Programs may contain

several PMs. (The l6-bit address field is a change from the original pro

posal of using 32-bit addresses [3.1].)

The next problem area introduced by the all application role and

the need for multiprogramming is the problem of task switching. To facilitate

task switching on the AADC, each program module (PM) is assigned a kernal page

which must be in the TM whenever that PM is active. The kernal page con-

tains the BORAH address of all other pages. Furthermore each page has a kernal

word which is used for task switching and for storage protection. A descrip

tion of the use of the kernal word for task switching is not yet available

at NPS. For storage protection, bits 32 to 36 of the kernal word are used

for read protection, write protection, command protection and parity,

respectively. Thus it is possible to specify that a page can not be read

from or written into, can only be read, or contains program instructions or

data [3.1, paragraph 14-19].

Honeywell has also completed a demand paging analysis in which

they recommend:

1. Using a 256-word BORAM page and virtual memory addressing

technique. Programrrdng cost can be cut by 25 to 45 percent

by dynamic overlay management rather than user specified over

lay scheme.

2. Using demand paging scheme and either least recently used

or working set as the page replacement algorithm. Later they

say there is very Ii t tIe advan tage of \vorking se t strate gy

3.7

when using a multiprocessor system rather than a single

processor multiptogramming system. Thus LRU would be simplier

and better.

Volume I summarizes the results of the demand paging analysis

while Section 2 of Volume II provides details of the analysis, advantages

and disadvantages of paging, addressing methods, simulations models used and

the effects of paging on the system, on the MEC and on the Data Processing

Element [3.8].

3.2.3 AADC Strategies for Paging Data

Mr. William R. Smith at NRL has suggested that AADC's two level

memory hierarchy between RAMM-BORAM and Task Memory is similar to the IBM

360/85 cache-memory system. This fact alone can give insight to the operation

of AADC in a paging environment. Reference [3.3] attempts to summarize those

portions of the cache memory literature that pretain to the AADC addressing

and data management. This literature suggests that data pages should be no

larger than 32 words and preferably 16 words. According to Smith, "A natural

utilization of both BORA}I and RAMM features would involve having 32 relocat

able sectors [pages] of 128 words each in Task Memory. A sector of a proce

dure would be transferred in its entirety from BORAM to Task Memory but a data

sectors would be transferred from RAMM one block (16 or 32 words) at a time

as referenced. (It now appears that the 4k-word TM will be divided into

sixteen 256-word pages not 128-word pages as recommended by Smith [3.6].)

This two page size seems necessary in order to keep the bus traffic within

reasonable limits. Moving data, even with blocks as small as 16 words, can

be expected to cause one data word transfer per instruction executed - thus

burdening the RAMM/TM memory interface channel. Program pages smaller than

3.8

128 words are incompatible with BORAM and would cause an excessive number of

accesses to BORAM.

A cache technique that would work quite well in MDC is the "store

through" in"which data store operations are carried through to secondary

storage (RAMM) in parallel with local storage (TM). As well as improving the

processing speed the "store through" technique ensures the residence in RAMM

of "fresh" data for system output without the necessity of moving data from

TM to RAMM at crucial points in a program. Smith also presents evidence that

direct access of data from RAMM would be superior to moving 128 word blocks

of data to TM in most cases. [3.3, pg. 74].

3.2.4 Other Implications

Thus far, it appears that very little investigation has been under

taken into determining what special features would be useful for manipulat-

ing large files such as required in supply inventory applications and in manage

ment information systems. Some of the preliminary investigations on the

external Input/Output controller are described in Chapter 2, but apparently

no one has yet addressed the problems of file maintenance on large disk or

tape files. This area will undoubtedly be investigated further in the near

future as AADC continues toward an All Application Role.

Although this chapter is relatively short at the present time,

it is expected to expand rapidly as further implications from the All

Application Role of AADC are investigated.

3.9

References for All Application Role

3.1 AADC Development Program Progress Report No.9; R. S. Entner, NAVAIRSYSCOMj

November 1, 1971; (67, NPS).

3.2 AADC Development Program Progress Report No. 10; R. S. Entner, NAVAIRSYSCOM;

May 31, 1972; (78, NPS).

3.3 Implication of Published Program Behavior Statistics on the AADC Address

ing and Data Management Question; William R. Smith, NRL; Ref 5030-8:WS:mibj

Jan 7, 1972; Available as Enclosure 5 to AADC Progress Report No. 10

[3.2]; (NPS).

3.4 Replacement Algorithms for AADC Analyzed; A. W. Cerillo and C. F. Mattes,

NAVAIRDEVCEN; AERD, May 17, 1972; Available as Enclosure 6 to AADC

Progress Report No. 10 [3.2J; (NPS).

3.5 Simulation of AADC Page Replacement Algorithms; William R. Smith; NRL

Memorandum Report 2464; July 1972; (NPS). Preliminary version available

as enclosure 7 to AADC Progress Report No. 10 [3.2].

3.6 All Application. Di~ital Computer 1973 Symposium; Orlando, Florida; Jan.

23-25, 1973; Proceedings not yet available.

3.7 The Working Set }lodel for Program Behavior; P. J. Denning; Communications

of the ACM; May 1968; pp 323-333. (NPS).

3.8 Master Executive Control for the Advanced Avionic Digital Computer;

Interium Report; Honeywell Report Z9508-3018; June 1972; NAVAIRDEVCEN

Contract N62269-72-C-00Sl; Unclassified; Volume I and II; (NPS).

3.10

Chapter 4

A A D C

HARDWARE

TEe H N 0 LOG Y

Section

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.4.1
4.4.2
4.4.3
4.5
4.6

Table of Contents for Hardware Technology

List of Figures and List of Tables
Glossory for AADC Hardware Technology

INTRODUCTION AND SUMMARY
Scope of Chapter
Summary of LSI Technology
Summary of Memory Technology
Summary of Other Technologies
AADC TECHNOLOGY PHILOSOPHY
LSI TECHNOLOGY
Packaging
Semiconductor Technology
Digital Gate Technology
Innovative Logic Techniques
MEMORY TECHNOLOGY
BORAM
BORAM for AADC All Application Role
RAMM and TM
BUSSING TECHNOLOGY
ELECTRIC POHER SYSTEM

References to AADC Hardware Technology

4.i

Page

4.ii
4.iii

4.1
4.1
4.1
4.2
4.4
4.5
4.6
4~6

4.12
4.18
4.19
4.20
4.20
4.23
4.25
4.28
4.30

4.31

Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Tables

4.1
4.2
4.3

List of Figures for Hardware Technology

One Type of AADC Super LSI Package
Flexibility of AADC Packaging
A Sample of Present LSI Packaging in a Single Clip
High Level LSI Packaging
Space and Cost for 10K Logic Gates
Image Projection and Multi-Level Metalization
Pad Relocation vs Descretionary Wiring
Pad Relocation Process
A Ferroacoustic Memory Plane Employing a Glass Substrate
Closed Flux Memory for RAMM and TM
The Simplex Optical Bus for AADC

List of Tables for Hardware Technology

Summary of Digital Logic Gates
Characteristics of Ferroacoustic and CFM Memories
Desired Long Range Semiconductor Bulk Store Memory

Characteristics

4.ii

Page

4.7
4.8
4.9
4.10
4.11
4.14
4.15
4.17
4.22
4.27
4.29

4.18
4.21
4.25

BORAM

Glossory for AADC Hardware Technology

- Block Oriented Random Access Memory: organized in 128 to 512 word
blocks for program modules and used to store Program Modules and
permanent data.

CCD - Charge Coupled Device: competitor for MOS for BORAM.

CCSL - Compatible Current Sinking Logic.

CFM - Closed Flux Thin Film Memory: used for RAMM and TM.

CMOS - Complementary Metal Oxide Semiconductor.

CMTL - Current Mode Threshold Logic - current mode.

EeL - Emitter Coupled Logic.

Ie - Integrated Circuits: technology used in third generation computers
where transistors, resistors and capacitors are built together as
different layers of conductor, insulator and semiconductor materials.

LSI - Large Scale Integration

MNOS

MOS

MSI

NDRO

- Metal N-channel Oxide Semiconductor: as contrasted to ;10S Hhich
usually refers to P-channel MOS.

- Metal Oxide Semiconductor circuits or memory.

- Medium Scale Integration.

- Nondestructive read-out: memory· does not have to be written after reading.

PE - Processor Element: sequential processing unit (see Chapter 5).

RAM - Random Access Memory: any word is addressable.

RAMM

SSI

- Random Access Main Memory: used to store mode-independent data and
buffer I/O.

- Small Scale Integration: same as IC.

TM - Task Memory: a RAM attached to PE to hold currently executing
program module.

TTL - Transistor-Transistor Logic, probably the most common semiconductor
logic technology. Also called T2L.

4.1i1

Chapter 4

AADC HARDWARE TECHNOLOGY

4.1 INTRODUCTION AND SUMMARY

4.1.1 Scope of Chapter

This chapter will discuss the new advances in hardware technology

that are being developed for AADC. Although the development and production of

modules using advanced hardware technology (at reasonable cost) is very important

to AADC, the details of the technology and how it is implemented is of minimal

interest in a course such as this one on the concepts and operations of AADC.

In other words, the fact that the technology exists, has been proven t and can

be mass produced at reasonable cost is certainly of interest, but the details

of the technology and its implementation is considered beyond the scope of this

report. Therefore, this chapter is an overview of the latest hardware tech

nology emphasizing what has been implemented and proven, as well as, what will

probably be in production by 1975.

Under the heading of hardware technology is placed all work which

relates to the physical constituents of the AADC - the devices which will

ultimately become the PEs, the RAMs, the BORAMs, the buses, etc .. In other words,

all that which will ultimately manifest itself in the physical computer. The

hardware technology is divided into three major areas: Large Scale Integration

(LSI) technology, memory technology and bussing technology.

4.1;2 Summary of LSI Technology

The basic AADC hardware building block module is an hermetically sealed

(perfectly airtight) package capable of supporting either multi-chip arrays on a

4.1

s. .~:, 5, : -: a : ~ ,
._ _-"._ • .,..l-
•• ,,'J:>, ~r s~i~c~ductor oonolithic three-inch

d:.a=e~er -Ja:ers - cr a:::: :.~~:'::a~:'::-. 0: these. ("~onolithic" means many circuits

a~ta:.:-.~ ::.g~::-.E:r .. ,.. rE:5~:::':':E: ::-.E; ~';:-.:':~L-l ?attern, i.e., a 5000 gate LSI wafer.)

~~1g year (:j72j ~::e ~f :~~ ;~~C ?a:.~~g:'~g =cdules has passed environmental

testi:1g a~ ~;a·~"al ;'-,i-:7.:':'5 Fa:.i:i t~·, I:1dianapolis. A complete second level

pa:'£agi~g s~·s ~e:: :'5 ~rese:1tly u:lcer de-,elopment at Singer-Kearfott, and will be

s~ilari:y testec later this year [4.1, paragraph 23].

There is cople e",ide:lce tha t the technology will mass produce 5000 gates,

on a 3-inch dia=eter wafer ~y 1975. Texas Instruments is producing a Logic Slice I

Type "p" "..Thien has the e~ui-,ale:1t of 857 gates on a l!2-inch wafer. Intel Corp.

has built the CP[of an 8-bit parallel microco~puter the MCS-8 on a single chip

I4.2]. There are now examples of 1500 gate LSI chips available off-the-shelf but t.

the author does not have exact references.*

More details on the developments in LSI technology for AADC will be pre-t

sented in Sec tion 4.3. ~1any other articles on expected hardware developments can b

found in the Proceeding of trle Advanced Digital Technology Conference in June l,97I

I4.3].

4.1.3 Summary of ~emory Technology

T\-lO promising magnetic storage technologies for AADC are the block

oriented ferroacoustic memory for B0R)01 and the random access closed flux path

thin-film memory (CYM) for R&~ and TM. The ferroacoustic technology employs

the coincidence of mechanical and electrical energy to write magnetic domains

into homogeneous, amorphous (non-crystaline), semi-closed flux path permalloy

film. (Permalloy is a highly magnetic alloy of iron and nickle.) These domains

are subsequently interrogated by way of an acoustic strain wave. A plated wire

* Current work at Hughes Aircraft is on 2000 gate/chip on a 2 inch diameter
substrate [4.27].

4.2

may he used for the f~rroacoustic memory in place of the thin film. The fcrro

acoustic memory is low cost (0.1 to O.5¢/bit), high speed (150 nsec/wd read

and 1 - 2 ~sec/block access time), high density (5000 bits/in3), low power

(2 ~watts/bit), low weight (7.5 lbs for 64K 36-bit words, i.e., 2.3 megabits),

non-volatile, and uses NDRO (non-destructive read out) techniques [4.1, page 13].

Blocks may be 128 to 512 64-bit words. For more details on the technology see

14.3].

Another magnetic technology, tentatively called Cross Tie Memory and

similar to a bubble memory, is also under investigation for possible use in BOR&~

14.1; paragraph 26].

The CFM, a planar thin film analog of a plated wire, offers new

capabilities for random access magnetic storage. It provides performance here

tofore believed realizable only with semiconductors, but without the twin

penalties of high power and data volatility. In comparison to previous magnetic

memories, CFM is low cost (1¢ to 3¢/bit), high speed (80 nsec access time, 100

nsec read time with NORO, and 150 nsec write time per word), high density

(5000 to 11,000 bits/in3), 10\" power (100 ~lwatts/bit), low weight (3 lbs for

4K 36-bit words or l50K bits) non-volatile, and uses NDRO technique.

In comparison to ferroacoustic memories, CFM is 2 to 30 times more

expensive, about twice as fast, up to twice as dense, uses 50 times more power,

and is 6 times heavier. Thus a 64K word BORAH costs $2300 to $11,500; a 4K

word TM costs $1440 to $4320.

It is believed that semiconductor memories will be very competitive

by 1975. The 1973 AADC symposium presented several possible semiconductor

memories as candidates for the AADC memories [4.27].

More details and references to the developments in memory technology

will be presented in Section 4.4.

4.3

4.1.4 Summary of Other Technologies

Because of AADe's very small geometry, modularity and need for wide

bandwidth internal busses, optical communication is being considered seriously

for AADC internal bussing. The optical bussing has distinct advantages over all

electronic alternatives in the area of noise immunity and ease of connection.

See Section 4.5 and [4.5].

The other improved technology is in the electric power distribution

system. It is proposed to replace the conventional electro-mechanical relays

with a Solid State Electric Logic (SOSTEL) power distribution system. SOSTEL

will greatly reduce power consumption, wiring complexity and weight, as well as

increasing the control over electrical power distribution. See Section 4.6

and [4.24 and 4.25].

4.4

4.2 AADC TECHNOLOGY PHILOSOPHY

The following statement of AADC technology philosophy and current

status of LSI packaging is taken from AADC Progress Report No. 10 [4.1,

paragraph 22 - 23]:

AADC technology philosophy calls for the use of
1975 state-of-the-art technology in 1975, followed
by gradual technology improvements through the
system's life time. These improvements should,
however t remain transparent to the user and, in
turn t the procuring agency. AADC building blocks
will be specified in terms of function, form and
interface. Legal improvements to these building
blocks will, therefore, affect cost, reliability,
and availability only.

For this philosophy to be meaningful, it is
important that the packaging system developed for
AADC be compatible with present and projected
component technologies. The AADC basic building
block module - an hermetically sealed package
capable of supporting hybrid, multi-layered ceramic
and semiconductor substrates up through monolithic
3" diameter silicon wafers - is just such a package.
This year has seen at least one of two AADC package
designs pass full MIL-E-5400 Class 4X spec testing
at NAFI.

From the inception of AADC, its hardware technology aspect has always

attracted the greatest measure of skepticism. Conversely, AADC Program Hanagement

has consistently said that AADC does not depend on advanced technology for its

feasibility. There is agreement on one point, however - that a state-of-the-art

AADC will not be the same revolutionary machine advanced hardware technology will

make it. For the present, based on the success of initial development efforts,

as well as independent Industry performance, no modification of earlier

projections appears warranted.

4.5

4.3 LSI TECHNOLOGY

4.3.1 Packaging

In February 1969, when the Naval Air Systems Command announced their

intention of procuring a first level packaging system capable of supporting

discretes, ICs, MSls and wafer technology out to three inches in diameter, the

immediate and predicted majority response was that of incredulity. Today,

hermtically sealed ceramic and metal-ceramic packages meeting the original

requirement have passed environmental tests (~1IL-E-5400 Class 4X spec.) at the

Naval Avionic Facility, Indianapolis [4.1, paragraph 23]. A photograph of one

such package is shown in Figure 4.1. A schematic diagram AADC first level

package containing multiple IC or MSI chip, chip/wafer hybrid or whole wafer

(LSI) is shown in Figure 4.2.

One or two of these LSI modules (packages) will contain the entire

Processing Element (Chapter 5) of 10,000 to 12,000 gates. This seems quite

realistic since 1000 to 1500 gates are presently being put on a chip. See

Figure 4.3. The LSI modules will be housed in a high level LSI package shown

in Figure 4.4. The results of a study on high level packaging by Singer

Aerospace and Marine System is reported,in [4.4].

The space required to package 10,000 gates has decreased two orders of

magnitude in the past 20 years and is expected to drop another 10 fold in the

next 3 years. At the same time, the cost is expected to drop by a factor of

250 times as shown in Figure 4.5 f

4.6

1

I'
I
I

.p .•••.•

-- !.

.. ~ .~' ... ': ... :~-,

..

-. .; -' ..

~.: ,; .#

'.,
..

" ,

.' :' ..
" .

.... - ... -',-.
.. -."

.... ' \ , "

. .. '
. "

.. , ~ ... : #..: ,.

. ~ ". -..
, -

... \ ...

. -

Figure 4.1.

" ' ... -'

One Type of AADC Super LSI Package

4.7

_; ,I - :.

A • t

"

. ")

.- ., .. :.

... ": - ...

'",

. " .,

. ,

. ' ,

. ... ~

. ,-. .
... 9 .' ~ ..

'., .,

..........

.. -

':. ~l
·,.--·:1
'-~

"::"1
"3

, . ..,
·1

~::.t

)~
'#1
'~i

'oj

r
(
f
I

t

• • •

.
iotal Technological Flexibility

Chip/V"afer
Hyl)rid

\Vhole'
Wafer

.-

\

~'IRCUIT TYPE

~ FLIP-FLOP

rULL ADDER

~-INPUT GATE

~-INPUT GATE
I

eTAL

.
TEXAS INSTRU:·1ENTS

LOGIC SL'ICE - TYPE "p"

. TOTAL NlH-1BER

116

182

420

88 .

\

EQUIVALENT Gl\TES

210

495

126

26 .
U51

Figure 4.3. A Sample of Present LSI Packaging in a Single Chip

4.9

•
..

--~--~------~---------------------

IHigh level 'LSI Package
..

f

I

.
..... ..

OQ
::c f~
:r . t ~. INTERCONNECT .i,/

o < _--------4---.e
ro
I--'

t-4
(J)

H

~
Ql
(')

~
Ql

OQ
:;j

OQ

I/O CONNECTCtRS

ILS1 MODULES

.~

;.;...+-........ --FLEX PRINT

INTERNAL
CONNECTOR
·BLOCK

,~--4.---AIR INLETS

BOiTOM COVER AND
AIR INLET PLENUM

,::..

• (J j ~ 0
~ Ul

~ I
~
o
~

r--c
o

(]Q
~.

n
<;)
ell
M'
ro
Ul

\

. "

,
"

• •

•
. "t

Space Required to Package 10l{ Gates .'
,,'

" "

7,200 in3

" Discrete Ie MSI lSI
./

;/(5130,000) ($50,OOOr ($20,000) ($500) Time

/~~I--i~ ~1--~~4--~~-~~~1--~1~--~:--~~~--~1~--~?

'50 '52 '54 '56 '58 '60 '62 '64 '66 '68 '70 '72 '74 '76 '73 '80'

,--~-, .. ~-.--~

t
j

)

4.3.2 Semiconductor Technology*

Semiconductor technology, itself, has come a long way since 1969.

Among the areas of semiconductor development that the Naval Air Systems Command

has supported in the past, or plans to support are [4.5].

1. Materials .growth,

2. Electron image projection,

3. Anodic multilevel meta1ization,

4. Pad relocation for LSI wafers,

5. Eutectic bonding of wafers,

6. Ion implantation,

7. Double insulator semiconductor memory technology.

Four companies, Texas Instruments, Motorala, Monsanto and Tyco

Laboratories Inc., all claim they can grow the three-inch diameter wafer necessary

for AADC. The Tyco process is particularly interesting because it permits single

crystals to be grown in virtually any shape, size or thickness. These single~

crystal semiconductors do not require subsequent slicing, which can destroy half

the stock; nor do they require polishing - another major source of semiconductor

failures [4.6].

*For background information basic LSI technology see [4.28 and 4.29J.

4.12

The application of electron image projection and multi-level

metalization is shown in Figure 4.6. The results of a study by Westinghouse on

electron beam projectio~ are ShO~l in [4.7], and on multi-level flexible film

interconnections in [4.8]. They use a selective anodization process which

eliminates pinhole breaks in oxide layers [4.6]. The results of a study by

Texas Instruments on two-level anodized aluminum interconnections is shown in

[4.9]. The advantage of the anodized multi-level process is a reduction in cost

of a factor of 5 to 10, and an increase in reliability.

One of the most important developments in LSI semiconductor technology

is the development of pad relocation technique to replace discretionary wiring.

The difference in the complexity of the mask for the two techniques is shown in

Figure 4.7. With MSI and LSI technology not all the logic circuits

operate properly, so some method is required for interconnecting the good circuits

together and connecting circuits to the outside pins. Instead of testing all the

logic circuits and wiring them in the proper order as with the discretionary

technique, the new technique, called pad "relocation, initially assumes that a

certain percentage of the circuits will be good and in particular locations and

connects the circuits accordingly. Later when the circuits are tested and found

to be in different location than expected, pad relocation connections are made

between the actual circuit locations and the assumed good circuit locations.

b

*Electron beam project is a technique of etching circuit on substrates using
electron beams through a mask. Introductory information can be obtained from
14.30 or 4.31].

4.13

- --- ---- ------ -~--- ---

',/ ______ u _______ -

(\A/hole V\lafer Interc{onnect Fabrication "
'I

, .

H
S
P>

()Q

en
"'0
t1
o
w.
en
(')
rt ...,.
o

~ ::l .
t- P>
~ ::l

0.

~ f
~(

Third Metal Mask

Second Dielectric Mask
•

Second Metel tJ\ask

...,. f' •

~ f < ,
en '
t-!
~ I
(t) a
rt !
~ .
t- : ...,. .
N .
~ .
rt I ...,. .
o
::l

.
First.. Dielectric IJiask

•

Ie Wafer

~
.. ,. '. ". . . . '. . . ". '.. '. '. '. . . '. ".

.' . ". .
'.

. "'. ":":.' :.f : -'

i~--!<> J-Standard Per Logi~ ~art Type

\,~~.:...!.c.~":"'-.J

<:::-::7:::::'.jThe Only Mask ,That Varies
,., 'T K . '.. . Per Part (~$1 0-$20) .

.....

Standard Per Wafer TYr"

Normal Ie Wafer of TestecJ

Circuits With First

Metalization

~ .
~
V1

,
I
I
I ,

~ ...,.
QQ,
C
1'1:
(0

~ .
-.....J . .
'"'d
Cll
0-

~
(0'
......
0'
n
CU
r-t:
~
0
~

<d
CI.l

'='
1--'-
(J)

n
~
ro
rt
1--'-
0
~
Cll
~
"< -<-.
1--'-
~

b-
OQ.

II

f ,

•

• ..
, '.

SLICE Kl~~06 ..
J I .

J
ill

l ..

filII 11111 11111

II ..
~

trJ~
J

~ .
11111 11111
~. ~
~ ~

11111

~
~

• c::::JIIIIIOOIJ
..

~

11111
~ J'!

.~ ..
II"

~
~

c:::s:::=xt -.
, . \

11111 11111

I .. I . ,
l I D1SCRE1-lONARY VIlRING
PAD RELOCATION

~--~

. f

I
\ ,

The pad relocation technique is illustrated in Figure 4.8. The slashes

in the top left-hand picture show the tested good circuit in the LSI wafer. The

circles in the ~op right-hand picture show the assumed location of the good

circuits. The two are superimposed in the lower left-hand picture and the pad

relocation specifications are produced by connecting the good circuits to their

proper locations in the lower right-hand picture. The insertion of the pad

relation layer is shown in Figure 4.6 as the second metal mask. A slightly

different explanation is given in [4.6].

With this technique only the pad relocation layer varies with individual

LSI wafers and since these are much simplier than the equivalent discretionary

wiring interconnections and cost only $10 to $20, this technique makes the

production of 5000 gate LSI chips much more realistic. Hughes Aircraft Company

have produced two reports on pad relocation [4.10 and 4.11].

Texas Instruments has developed a method of large area wafer bonding

using a metal with a very low melting point [4.12].

4.16

Bmprovea~ i\Ur~CeSs

/.
..... / I / / .. / . .. / . / / / / / ... /'"

LSI Wafer · . · /.1 • / . / I ' .. I .'
• / •.• / / • / . I I . / /. , • . . / /,

__ ~. ,/ .. / .. /./ .. ////. '//1,
tp.-I / /I • / I / I . I . • . . .
· ... I • .. ' . I . / • . • • . . .• ' / ,/ .. /.// .. .
... /// ... ·//1' ././
.... '//11,/' ./ ... ·/1/·' , .//./ ... // ,
.... ·//·//1"/"/' t •• .. /., ././ ... ////./.

.//.//././ .. //// ..
/ ... / . I· ... /

. /'///'1' .//.. - .. / . ,. / ' , ..
. - I .

. / . --
Slas~es Sho~1 Good Circuits

'1~1
/ ·0· . c· . , c .

·6 . ·1/ .
" - . 0 / /:) . " - , .

'0/0/- .Q. /·0·
. / / / . 0 . / . .& . 0 . . . 9 . C. . •.
- .·G-·~·I';,/·?/·· ·/0.

.~ .. I/·/(JII· CJ/·o ... //
,/·I)/·O/./O·//-?/·'J//I

· / //. 0, • a· ~'fJ /V/O/· ·0.
· . 0 . / ' 0 . . . OJ . I . " . , . 0 . ' .

• •.• • • • • • G • , •• \:) •• • • • • • • • e·
• ••••• ~o • .0· · · · ·

• Q • '00 ••••• • • • o· • 0 •
• ••••••• -a. --0········
~ ••• ~-o···c-··o·o··o

• •• 0 • • • - • {). • • 0 - • • • • • •. •
• •• _ •• Ij ••• 0 • • • , ... • • • 0 • • •
• _~,. • • -;;) • 0 • ,z, • Q • .-: • c·· • a- • · .··6······~···()·v·c··
• • • • .~,. '::' • ('I. • • :~. • • _ • • • •

• • t;. • ... ',; ~ • • ~: - • - (jl • • • ~. • •
~... • • • () •• ~.Ai ~ '. .. , • ~ • ~.' • '.:, • • • c •
• • _ • ;; _ • clot. .. <~ • • • 0 • • 0 to • •

.c- ••••.• ~ ... ·0- ·0-···
• • • c • • .!) - ... ~ • • • " • • • • • C>!~. · . 0) • 0 • • • (~ • ~ • •

..0;.. • (: • • - 0 ••• t). • • • •
• to .~) •• o-c •• • -0-

Master Pat~ern of Good Circuits'

J.RCA A

~

. ~:;i~::J' ,
. . . . c-l 1-":> . (j .. • jh . y /-~ /--0 . . 1--0 .' '

: ~~ ~!/~ : 1 : ~ J ~ ~ ~
· 9 . . . / f-- I-e / L . ~ I-~ 1 L1 , /
· . I-'~ / ' b i . / () . / I ~ / I ~'~
(':-/ ~ /---0 . . 0 . ~ . C1 / ~ / c) J L ~ /~
· . c.' ' / .-.<.. . . , ' / -., . . . ~ i

." ·1a,·C·(J/. ·:.,1·1/····
o .. / ;; I .. ' . / :J / . " . 0 ' (1 ..

· ·e·/I()/o,t e,·O·()//lrJ·

"- ".' i,C ' ? . e-l / --l- / . / /- ...
.. m"'::=zp:Z:::RI::.::::Iil:l:ya::::ri m:.:y 0--1 ;.; f--!. ~ 0 1--.. ~ . p ~. .
, . . 0-. 1 / j / -e I () . .p . ~ , ~/ 1 ~. ;

..... 'Oll,j) .. r;/. ·0··'

., ·e:I/·/~/··CJ· ./. I

o . / . e ~. / . I' . 1 y / V . / \) /
. I///·~ p. ·///1·

. ~ '0/'/' .. /~ .. ~.
·/·//;0/·(;;)1/·· .

o· ,·I/··Q·/
i ' .•.

"'-.... . / ..
. ""--. - ._-',

/ . . . , . &-1 I . S; . . . tJ I---e ' . . I

... ~- I .(. / .-:: /1 ' {.9 , , / . . • • .:
(; _ / ,_.j,'l' I ' . /, " ;..; . 1-0

. '11 /I"'~' .//// .

. ~ . .::-1. / /~ .. ~ .
. / ~ I I ~ c-I . c·/ ;. i . .
. . 0 .. I . / / t ' (, '.,/

• • {;; , ~ : . ~. .1

Master Pattern Superinlposed Relocation Specification

Figure 4.8. Pad Process

..
1

•

.'

4.3.3 Digital Gate Technology

Table 4.1 is a summary of the speed, power dissipated, cost and size

of five different types of digital logic gates. The five types are Meta1ic Oxide

Semiconductor (MOS), Complementary Metalic Oxide Semiconductor (010S), Transistor-

Transistor Logic (TTL) - probably the most common today -, Emitter Coupled Logic

(ECL), and Current Mode Threshold Logic (CMTL). For AADC, the gate transition

time should be less than 5 nsec and the power dissipation should be as low as

possible. Table 4.1 is taken from [4.15] and is 3 years out of date.

LOGIC TYPE Tpd (ns) row Pd (/ gate) COST SIZE

MOS 100 .5 LOW SMALL

CMOS 5 .01 HIGH SMALL

TTL 15 10 LOW MODERATE

ECL .5 50 HIGH LARGE

CMTL 20 3 MODERATE LARGE

Table 4.1 Summary of Digital Logic Gates

4.18

4.3.4 Innovative Logic Techniques

Two studies have been reported that use non-standard techniques to

produce standard logic circuits. The first by Honeywell reports the use of LSI

memory techniques to produce universal logic modules [4.13]. The second by RCA

reports the use of MOS (Metal Oxide Semiconductor) LSI circuits to produce

threshold logic circuit and suggests using these in place of standard logic

circuits [4.14].

It is as a result of these other efforts that the future will see single,

low cost, semiconductor devices capable of supporting and utilizing more than

ten thousand bipolar gates. The existing PE (actually A&C) design, to provide

a reference, employs about ten thousand such gates.

4.19

4.4 MEMORY TECHNOLOGY

This section will explain in some more detail and give references

to the two promising magnetic storage technologies for AADC. Again they are

the block or~ented ferroacoustic memory for BORAM and the random access

closed flux path thin film memory (CFM) for RAMM and TM. This section is

a continuation of Subsection 4.1.3. The basic characteristics of the two

technologies are repeated here for easy reference.

Ferroacoustic technology employs the coincidence of mechanical and

electrical energy to write magnetic domains into a permalloy film. These domail

are subsequently interrogated by way of an acoustic strain wave. It is low cosl

high speed, high density, low power, non-volatile and uses the NDRO technique.

CFM uses a thin magnetic film which is analog with a magnetic plated wire and

offers performance in random access magnetic storage heretofore believed realize

only in semiconductor memories, but without the twin penalties of high power

and data volatility. Table 4.2 list the salient features of both magnetic

storage technologies 14.1J. By comparison CFM for RAMM and TM is 2 to 3D times:

more expensive, about twice as fast, occupies as little as half the volume, useE

5.0 times more power, and is 6 times heavier than the ferroacoustic memory for

BORAM. The cost, density, power and weight in Table 4.2 includes electronics

and power supply.

4.4.1 BORAM

The most promising approach for BORAM is the ferroacoustic memory,

in which magnetic domains are written by the coincidence of mechanical and

electrical energy and the domains are subsequently interrogated by means of an

acoustic strain wave. Figure 4.9 illustrates one form of ferroacoustic

memory block, which uses glass for a substrate. There are up to 64 magnetic

film conductors across the one-inch wide strip. These permit up to 64 bits _f

• word to be read or written 8imultaneousl~ Plated wire may also be used to

4.2.0

Table 4.2. CHARACTERISTICS OF FERROACOUSTIC AN' C?M MEMGRI~S

Characteristic Ferroacoustic

Technology Closed Flux Path

Permalloy

Density .5.000 bits/in3

Power 2uwatts/blt

Weight 7.5 Ibs

(64Kwds x 36bits)

Cost .1¢ to .5~/bit

Access Time 1-2usec to a block

Read Cycle Time 15Onsec/wd (ND~O)

Write Cycle Time 150nsec/wd

Interface TTL

Volatility Non-volatile

4.21

Closed Flux Path

Permalloy

5,000 to 11,000

bits/in)

100uwatts/bit

J Ibs

(4Kwds x 36blts)

1st to J¢/blt

80nsec/wd

lOOnsec/wd (ND~O)

150~sec/wd

TTL

Non-volatile

MAGNETIC MATERIAL
(NiFe ALLOY)

(a) TOP VIEW .

INSULATOR

(b) CROSS SECTION THROUGH FILM STRIPS

PROTECT IVE LAYER

GLASS
SUBSTRATE

REAO-'«R ITE
CONDUCTOR
LAYER

Figure 4.9. A Ferroacoustic Hemory Plane Employing a Glass Substrate

fabric'ate a ferroacoustic memory. References [4.16 and 4.17] describe

ferroacoustic memories and refer to them as Sonican.

In addition to these technologies, a third magnetic technology, tenta-

tive1y called Cross Tie Memory, is under investigation for possible application

in AADC BORAM. Cross Tie Memory, developed at the Naval Ordnance Laboratory

and presented at the last INTERMAG Conference held in Tokyo, Japan, is analogous

to Bubble memory, except that it uses an amorphous permalloy substrate, has pro-

pogation rates on the order of 100 MHz and does not require an external field to

maintain domain wall integrity. Further information on Cross Tie Memory can be

obtained from 14.1, paragraph 26].

4.4.2 BORAM for AADC ALL Application Role

The following except from AADC Progress Report No. 10 describes the

possibility of using semiconductor memories* for BORAM in the ALL Application

Role 14.1, paragraph 4-6J.

4. Semiconductor Block Oriented Random Access Hemory
(BORAM): In order to add to the technologies avail
able for construction of BORAMs for procedure and
constant storage in versions of AADC for tactical and/
or process control applications where non-volatility
and read mostly operation are deemed desirable, [other
memory technologies are being investigated]. Dual
insulator and amorphous semiconductor technologies
appear reasonable candidates for this function. For
both technologies, write time is far less significant
than electrical alterability. Secondly, because these
memories are employed in a demand paged hierarchy, fast
read cycles can be achieved through word multiplexing.
Table 4.3 describes the long term goals for a tactical
semiconductor BORAM.

5. Because of the all application nature of the new
AADC, AADC systems will also be used in non-tactical
environments such as software preparation centers and
system simulation laboratores. Here, the AADC BORAM

iBackground information on semiconductor memories can be obtained from 14.32].

4.23

TAnLE 4.3

DESIRED LONG RANCE SEMICONDUCfOR BULK STORE MEMORY CllARAcrERISTIC'S

1. Organization - BlocKorgen1zed, read gogtly (electriCAlly alterable)
design widl rando~ Access to the block lovel.

2. Storage - Electrically Alterable - The data shall ~}e retained in a
non-.ol:ltile forn and will not be modified by loas of·V\/cr. The ~eddil1g
~rocC88 shall be non-1:iestructivc (NDRO). The memory : ~I"ay should be
eapable of handling at least 106 writes.

3. Vollltility/Retention Tir~ - One year 1rln:f.mum OT If'~~:,e (no power
applied) • No lOGS of ~oory data "hall occur whon "o~"!r is turned on
~r of f; no specici volt:lge sequencing shall bo require ',1 to tu:l1ntllin
the data 0 tared in the f'lOmory.

4. Module SIze - 64K yorde per ~ule - 32 bits per data word and 4
parity bits.

s. MOdulGr1ty - E~ch eemory ~dulo to be 8elf-su~portin~ so that tho
ntmber of tnCltlOry '-fords Clln ba increased by the ndditi:)n of more 64K word
m:xIulcs. It 10 ~~ccted thnt ~8 nl.«iny as 8 modules will be ht:rneGaed to
~c a SOOK word ec~~ry syatem.

6. Block Size - 128 or 256 uord block.

7. Word Size - 32 data bito and 4 parity bits.

8. Vord Organis=ntion - Word serial bit parallel.

9. Data Readout - The ~tu)ry aYDte1!l will have tho nbil1ty to rend out a
eomplcte block at ~um speed (continuous word atrc~). It in desirable
'that the ree=ory orr,aoization alao permit road out of a block on a
interrupted incre~ntal basio,

10. Data Transfor Rate - Write - A8 dictated by volatility requirements.
Read - 150 Dace or less on oystem baa! ••

Multiplexing in read and write G¥)des, to achieve the above speeds. 1s
permissible.

11. Block Aeces8 Time - Two usee or less to the first vord in any block.
The access time shall be def1n~d as tho ti=e interval between the inotant
the bloc:k address i8 received and the inotant the first word In the block
U available.

4.24

TABLE 4.3 (cont'd)

12. Parity - Four parity bitn for ~Ach datn word. Parity lor,ic ohnll be
implemented such that horizontal (vord) parity can b~ checked. Odd r>llr1ty
ahal! bo Wled. Parity bita shall be avsilnble on (h~ out~t rcg19ter.
Parity oha11 be checked durinr. read and vri te oparntions.

13. Error Rate - 1 bit in 1013 bits on on~ bit banis.

14. MrBF/Reliahl11ty - 2.) million bit (64K) modul:-: HTBF shall be 10.0nO
houn.

15. R&d1ation Hardness - SiRilar to that of plated ~ire me~ry eyntem.

16. MOdul~ Oper4t1n~ Power - 2.3 million bit, 55 w~tt9 or leGs in read or
write modes.

17. MOdule Weight - 2.3 million bit. 6.5 pounds or IceD.

3 18. MOdulo PnckinR Dennity - 10K bit per in ineludlng nupporting electronics
(leas power cupplios) •
•
19. Cost - O.25¢/b1t in production.

20. Environment - MIL-E-.5400 Closs 4X.

21. Electriea1 Interference - MIL-STD-461A (on modulnr level).

22. Input/Output - ~e~1Btet" shall be provided to rtccert a 32 bit data
vord plua 4 bito of p:lrity. The interface shall oe 1TL compftt1ble.
The e>:nct tl1!l1ng end bit allocation will 1>Q supplied by the !lnvy.

23. Plleknging - System pncktl~iDg shall ba coordinated with NAVAIRSYSCOH
packnr.ing probTcm (AIR-52022D); it is dcsir~h19 tht1.t the technology be
cmeable to LSI type packaging in a 3-iuch d1a~eter he~~tically Hp.alod
encloDure.

"24. Voltages - Effort should be mAde to Rinioixe t~ftS and lav~ls of
YOltages used in the systom; it is deB1rnbla that voltage levels be
compatible with readily 2Vn114lble power 8upp11~8.

4.25

will require a fast store-back capability.
'Present non-volitile semiconductor technologies,
with the possible exception of MNOS on insulator
substrates, may require a write time which
exceeds read time by one to two orders of magnitude.
They may not, therefore, be useful for these appli
cations. On the other hand, the benign conditions
found in a programming center or simulation laboratory
may obviate the need for hard non-volitility. If
this is true, then a volatile, block oriented MOS or
ceo memory with a backup power supply (e.g., a battery)
could-very easily be used instead. A study may be
undertaken next year to examine this new application
of MOS device technology. The ferroacoustic memory
presently under development for AADC at Microsonics/
Sangamo has a 1:1 read/write ratio. It will serve,
therefore, equally well as a tactical and non-tactical
BORAM.

6. The responses to the Naval Air Development
Center's RFP for semiconductor BORfu~ were received
in late March. Contracts have been negotiated
with Litton Guidance and Control and Univac.

(In the above quotation, MNOS refers to Hetal N-channel Oxide Semiconductor,

MOS refers to Metalic Oxide Semiconductor, and CCD refers to Charge Coupled

Logics. Late March in paragraph 6 refers to March 1972).

4.4.3 RAMM and TM

Closed Flux Memory (CF}I) uses magnetic recording on a permalloy thin

film strip analogous with a plated wire. The CFM is shown diagramatically in

Figure 4.10. References 14.18, 4.19 and 4.20] describe CFM memory technology

under the name Post-and·Film Memory.

Three other references that are not reviewed here are [4.21, 4.22

and 4.23]. Other references on both BORAM and RAMM can be found in [4.3].

4.26

1,,------' .

>-
L-

a
E
(1)

~I €"~

(])
).,.;.

o
aI~

V)

r:~
.~ .. ~ ~

)-.... ~ ~
~.; ~

~Jl ~

I ~I .<e
t.ll ~
V) ~
ru~
u
~}

n II r:.c:'f'l ~
f'd
fL·
..,~

o
U
r:
tJ
~I

E
• - Q) -:= CI) Cl c:

.... e-

X
. U A ~

-- .-O-J
.0.-

G) >
C II)

010
OW

~ \l" \ '.\
I ~.

'" f'! . .\
t)·: '\ \.~ \'
.' • . ':" I ;\
\.\\./ f,"~
~. . ~'r .', \

.' '~.' ,/ .' < - ~

\ ~(\ / //-\ .,'~ \\
\ \' ,. . . , . . " ' , .. ~

. , ... '.. , . \
'0''. ! 'I ~), /"\

. 'i' ; , -' ,. \
1 :·~;I /.".

r P' ':' :. , .' \
\' ,.. .: r· ,. : \

• ~. '. \ I I J t \ ," j ~\ .
• '. \ l. ~ I \. .. ('. \. .' \ . I"

,\1 / .. " c' , .' '\

\ \.: ., . . ~
(•• • • 1

\
"I , , I. '" .' .' i '. _', . ,.' . - -.. ~
~ ,/ . ·1/.'.' i

\

,/\ ;' !.' /, . \ L \.
.\.~. /~ .. 'j

.. ' " ~, ! \ .

\\~/ /,':"' / -,:" y-.i/ \
\

' (I' •. \ /

(. :'~ .,

\

• : c' I.' \)
4 I:. -' ; ,

\
' I , .., '. ' ..

I '·' ". I ;' . ' ,.' :. • I

Q)
c: .-....

-0
~

o ::

-

/ \ " ' \",'
1\ t.: f , \ " 7~

J • I . \ • . -, , .- "

.~ , \ ~ - I
.; l: \\ f

\', ~

.c , ~ \ • ~

:' \". ':\ ",':'
./, l' .j

I .,; ,
\ \/
\

. . ,"1
~ "

\: ...

" ..

\

1
(!)

*" o l __

~
V)

..0
:>

Vl

(

.e'
c''>
~

"t::~

~
~

~

-U
C!!-... <1)

_c <.U 0)
b ... ~ e-

O

tJ >
0) ... ~

E
_

~ ~
\.J 0

~~ -0
.... ~

:J GJ
Q) '--""

~~ a!"
U M.

~ (3 >- C
e

wry -=--
tl:

U '-....

CJ
e

V)

tI) E
u .. ,~

(i)

(1)
e-

C
0 ~

V)
..a

. ..,. --... .- 0 0
-I U l~

'C

Q)

0
() CY.

E c 0 0

~
.- U1

c:
-.~ ~~

.... l/) ;2
• CIJ~

(l) lL. F--........., • 0 •
V» f: .-.

-C
~

A

1

'-- ..,' ~ '.>w ~
~~ .. ~ , ... -.... ~~~u-r.",......,.L~·~ ., ,_:-....a..~~~~~.:-t'~~L4....w~ ••• ..J...J-.....loto,lol ... • • -----.,-....... ----

Figure 4.10. Closed Flux Memory.fo~ RAMM and TM

4.27

4.5 BUSSING TECHNOLOGY*

Because of AADC's very small geometry, modularity and need for very

wide bandwidth TDM (Time Division Multiplexing) internal busses, optical communi-

cation is being considered seriously as the internal bussing technique. The

optical communications offers- distinct advantages over all electronic alternatives

in the area of noise immunity and ease of connections.

The following excerpt is taken from [4.5]:

When compared to an all electronic bus implementation,
electro-optics appears to have several attractive
advantages. These advantages emerge in the areas of
noise generation and sensitivity, as well as efficiency
and bandwidth. In the realm of interface, too, optical
connections may be more easily achieved since they don't
require coaxial connectors which are cumbersome, expensive
and notoriously unreliable. Furthmore, by taking advan
tage of the bandwidth afforded by electro-optics, signals
may be multiplexed to result in fewer physical lines.
This last advantage may prove key to the economic
feasibility of an optical communication system, since
the fiber optics required to build these buses will
probably be the single most expensive element in such
data links. This cost can be directly attributed to
the physical complexity of multiported, duplex fiber
optics. In the AADC, the multiport requirement stems
from the need to support a floating executive in the
event of a primary MEC failure.

Figure 4.11 illustrates a Simplex Optical Bus of a
type which might be used to provide communications
from the AADC BORA}f. In this system, parallel organized
data enters from the left and is immediately converted
into a serial bit stream. These bits are then coded,
using Manchester or a similar self-clocking code, in
order to provide bit synchronization for the data
receiver. The encoded signal is then injected into a
fiber optic waveguide by means of a Light Emitting
Diode. On the other end, the optical data is detected
by a Light Detecting Diode, decoded and then converted
back into a parallel bit stream. To reduce system
costs, one such detector might be used to service a
cluster of two or three Processing Elements.

*Background information on bussing technology see [4.33].

4.28

... PARALLEL LIGHT · LIGHT SERIAL TO CODER/ H--BUS/ ~
...... -. ~ --

Er'*~ITTING'
.. TO SERIAL DETECilNG ~ DECODER ~ PARALLEL - -

~ ~ • • DRIVER - -• • CONVERTER DIODE DIODE CONVERTER • • - -

Figure 4.11. The Simplex Optical Bus for AADC

4.29

4.6 ELECTRIC POWER SYSTEM

The proposed electric power distribution system for the AADC is to

replace the conventional electro-mechanical relay system with an improved power

generation and semiconductor control system. The new system, known as Solid

State Electric L~gic (SOSTEL), will greatly improve the control of electrical

power, reduce power consumption, reduce wiring and reduce weight. The reduction

in power consumption is the result of leaving some equipment on standby power

most of the time and using the very fast switching time of semiconductor logic

to apply full power when required.

The current status of Solid State Electric Logic power distribution

system is described in [4.24 or enclosure 3 to AADC Progress Report No.9]

and in the Proceeding of SOSTEL Symposium in April 1971 [4.25].

This concludes the presentation of the hardware technology. Many of

the diagrams in this chapter are taken from a slide presentation by Ron Entner

[4.26]. The author would welcome any suggested improvements in the material

in this chapter.

4.30

References to AADC Hardware Technoloqy

4.1 AADC Development Program Progress Report No. 10; R. S. Entner, NAVAIRSYSCO?1;

May 31, 1972; (78, NPS)~

4.2 The New LSI Components; Marcian E. Hoff; Intel Corp.; Digest of Papers for

COMPCON 72; IEEE Catalog No. 72CH0659-3C; September 12-14, 1972; (NPS).

4.3 Proceedings of the Advanced Digital Technology Conference - Volumes 1 and 2;

Naval Air Systems Command; June 8-10, 1971; (55, NPS).

4.4 Large Scale Integrated Circuit (LSI) Nodule and Higher Level Packaging

Study for the AADC Program - Final Report; Singer Aerospace and Narine

Systems; December 3, 1971; NAVAIRSYSCO}1 Contract No. N00019-70-C-OSO; (73).

4.5 The Advanced Avionics Digital Computer Revisited; R. S. Entner; NAVAIR

SYSCOM; October 12, 1971; Unpublished paper; Unclassified; (NPS).

4.6 Navy Engineers Break the Rules with Radial Airborne FDP Concept; Electronics;

August 3, 1970; pp 89-90; Unclassified; (35, NPS).

LSI Technology

4.7 Electron Beam Image Projection to Fabricate Large Arrays of Integrated

Circuit Patterns (U); Westinghouse Research Laboratories; NAVAIRSYSCOH

Contract No. N00019-7l-C-0066; March 1972; (84).

4.8 Hybrid Multilevel Flexible Film Interconnection (U); Westinghouse Defense

and Electronic Systems Center; NAVAIRSYSCOM Contract No. N00019-71-C-0383;

March 1972; (85).

*AADC Bihliograph number, and availability at the Naval Postgraduate School.

4.31

4.9 Engineering Study of Development of Two-Level Anodized Aluminum Inter

connects for MSI and LSI; W. R. McMahon and B. G. Carbajal; Texas Instruments

Inc.; NAVAIRSYSCOM Contract No. N00019-70-C-0487; September 1971; (83, NPS).

4.10 Development of Automated Pad Relocation LSI, Final Report; Hughes Aircraft

Company No. P70-392; September 1970; NAVAIRSYSCOM Contract N00019-70-C-0013;

Unclassified-NOFORN; (38, NPS).

4.11 Development of Automated Pad Relocation LSI, Phase 11 - Final Report;

J. R. Hall, R. K. Cleghorn and B. B. Bennett; Hughes Aircraft Company;

September 1971; NAVAIRSYSCOM Contract No. N00019-70-C-0608; (82).

4.12 Engineering Study of Development of a Large Area Eutectic Wafer Bonding

Process (U); Texas Instruments Inc.; NAVAIRSYSCOM Contract No. N00019-7l

C-0363; April 1972; (86).

4.13 Universal Logic Modules Implemented Using LSI Memory Techniques; Ken J.

Thurber and Robert O. Berg, Honeywell; Proceeding of FJCC 1971; pp 177-194;

November 1971; (NPS).

4.14 MOS Threshold Logic; D. Hampel and J. B. Lerch; RCA Government Communications

Systems; NAVAIRSYSCOM Contract No. N00019-70-C-0604; January 1972; (88).

4.15 Advance Avionics Digital Computer Hardware Considerations; A. David Klein;

NAVAIRSYSCOMj S~ptember 1969; Unclassified; (13, NPS).

4.32

Memory Technology

4.16 SOt~ISCAN - A Sonically Accessed Magnetic-Film Memory; H. Rubinstein,

R. Hornreich and J. Teixeira; Proceedings of the 1970 IEEE International

Computer Group Conference; June 16-18, 1970; pp. 64-72; Unclassified; (32).

4.17 Soniscan Bulk Store Memory for the Advanced Avionic Digital Computer; GTE

Sylvania Inc.; June 11, 1971; NADC Contract No. N62267-70-C-02l7;

Unclassified; AD-885-807; (56).

4.18 Post-and-Film Memory Deliveries NDRO Capability, Low Noise, High Speed, but

Avoids Problem of Creep; R. Vieth and C. \vomack; Electronics; January 1970;

Unclassified; (21).

4.19 Post-and-Film Memory Development Program Summary Report; Litton Systems Inc.;

February 27, 1970; NAVAIRDEVCEN Contract N62269-69-C-0239; Unc1assified

NOFORN; AD-868-335; (22, NPS).

4.20 Post-and-Film NDRO Memory Element Development - Final Report; Data Systems

Division, Litton Systems, Inc.; February 1971; NADC Contract N62269-71-C-

0024; AD-88l-74l; (51).

4.21 Advanced Technigues in Airborne Computer Memories, Final Report; Sylvania

(GTE); February 28, 1970; NAVAIRDEVCEN Contract N62269-69-C-0430; Unclassified

NOFORN; AD-867-468; (25, NPS).

4.22 Advanced Computer Memory Program at NAVAIRDEVCEN; Roman Fedorak; NADC;

March 16, 1970; Unclassified. (Enclosure to Progress Report No.5); (29, NPS).

4.33

4.23 High Density Main Store Memory Unit, Final Report; Ampex Corporation;

August 26, 1970; NAVAIRDEVCKN Contract N62269-70-C-02l6; Unc1assified

NOFORNj AD-875-363; (36, NPS).

Electrical Systems

4.24 NAVAIR R&D Program in Aircraft Power Systems for the 1970's; Leonard W.

Wendling; NAVAIRSYSCOM; Undated; Unclassified; Available as Enclosure 3

to Progress Report No.9; pp 59-89 11.33]; (NPS).

4.25 Symposium on Advanced Aircraft Electric Systems (SOSTEL) Proceeding;

Leonard W. Wendling; NAVAIRSYSCOM; April 20-22, 1971; Available for

cost of mailing from L. W. Wendling, Project Manager; (NPS).

General

4.26 Slide Presentation on AADC for FY72; R. S. Entner, NAVAIRSYSCOM; Undated'i

probably spring 1972; Unpublished; Unclassified; (NPS).

4.27 All Application Digital Computer 1973 Symposium; Orlando, Florida;

January 23-25, 1973; Proceedings not yet available.

4.28 Technical Advances in Large Scale Integration; H. T, Hochman and D. L. HOi

Honeywell Inc; IEEE Spectrum; May 1970; pp 50-58 •.

4.29 Integrated - circuit Digital Logic Families - ECL and MOS Devices;

L. S. Garrett; IEEE Spectrum; December 1970; pp 30-42.

4.30 The Application of Electron/ion Beam Technology to Microelectronics;

G. R. Brewer; IEEE Spectrum; January 1971; pp 23-37.

4.31 Microcircuits by Electron Beam; A~ N. Broers and M. Hatzakis;

Scientific American; November 1972; pp 34-44.

4.32 Semiconductor Ramdom-Access Memories; L. L. Vadasz, H. T. Chua,

A. S. Grove, Intel Corporation; IEEE Spectrum; May 1971; pp 40-48.

4.33 Communication Channels; Henry Busignies; Scientif!c American; September

1972; pp 98-106.

4.34

Chapter 5

D A T A

PRO C E S SIN G

E L E MEN T

Section

5.1
5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.3

5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.10.1
5.2.10.2
5.2.10.3
5.3
5.3.1
5.3.2
5.3.3
5.4
5.4.1
5.4.2
5.5
5.6
5.6.1
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.6.2.4
5.6.2.5
5.6.2.6
5.6.2.7
5.6.2.8
5.6.2.9
5.6.3
5.6.4
5.6.4.1
5.6.4.2
5.7
5.8
5.8.1
5.8.2

Table of Contents

List of Figures and List of Tables
Glossary of Terms for DPE

INTRODUCTION AND SUMHARY
FUNDAMENTAL SYSTEM CHARACTERISTICS
Instruction Speed
Parenthesis Control
Instruction Formats
Comparing PC with Other Methods
Combining Arithmetic, Boolean and Conditional

Expression
Deferred Store Instruction
Stacking Mechanism
Two-Address Instructions
List Linkage - Search Techniques
Self-Defining Subroutines
Polynomial Computations
Vector Block Modes
Vector and Matrix Adds and Multiplies
More Complex Matrix Operations
An Application of Parenthesis Control
ARITID1ETIC PROCESSOR
Data Types, Mode Control and Number Systems
Data Formats
Arithmetic Algorithms
ARITHMETIC PROCESSOR DESIGN
Macro-Micro Programming
Deferral Unit
PROGRJU1 }~AGEMENT UNIT
THE INSTRUCTION SET
Basic Instruction Format
Arithmetic Processor Instructions
General Considerations
Standard Arithmetic Instructions
Logical Instructions
The Comparison Instructions
Shift Instructions
Polynomial, Vector and Matrix Instructions
Composite Array Functions
Progranunables
Omitted Instructions
Special Handling Instructions (AP and P~ru)
PMU Only Instructions
Load and Store Instructions
Input/Output Instructions
DETAILED DESIGN
CONCLUSIONS
Current Status of PE Design
Conclusions and Future Research

Problems on PE
References for the Processor Element (PE)

5.i

Page

5.ii
5.iii

5.1
5.5
5.5
5.6
5.8
5.10

5.15
5.18
5.19
5.20
5.21
5.21
5.21
5.26
5.28
5.35
5.42
5.43
5.43
5.44
5.45
5.48
5.52
5.53
5.54
5.57
5.57
5.58
5.58
5.59
5.60
5.62
5.64
5.64
5.65
5.67
5.68
5.68
5.70
5.72
5.72
5.74
5.75
5.75
5.76

5.78
5.82

Figures

5.1
5.2
5.3
5.4

Tables

5.1
5.2

5.3
5.4
5.5

List of Figures

Times for X = AB + CD + EF
Simplified Diagram of the Arithmetic Unit
Arithmetic Unit Final Design
Program Management Unit

List of Tables

Instructions for X = AB + CD + EF
Program and Register Contents for A(BC + (DEF)

+ (G(HI + (JK))) + L)
Boolean and Conditional Program and Register Contents
Function Power Series
Logical Functions and Operators

5.ii

Page

5.12
5.49
5.51
5.56

5.11

5.13
5.17
5.23
5.61

Glossory of Terms for PE

A&C - Arithmetic and Control Unit: same as PEe

ALU - Arithmetic Logic Unit: the unit that performs the actual addition,
subtraction or logic function on the operands. A subcomponent of
the AU. (Raytheon does not use "ALU" but uses HAU" for both the AU
and the ALU.)

AP - Arithmetic Processing Execution Unit: executes arithmetic instructions
and includes the AU, TVD, deferral unit and programmable control unit.

Ap - Accumulator Stack Pointer: see Section 5.2.5.

APL - Iverson's APL language - contain many very powerful operations
especially for vector, matrix and array manipulations.

APQ - Arithmetic Processor Queue: 16 32-bit registers for stacking instructions
between PMU and AP.

AP - Scratchpad 16 40-bit deferral registers or accomulators in the AP.

AU - Arithmetic Unit: the heart of the AP and is composed of PAU, SAU,
APQ, AP Scratchpad, six registers and control and transfer circuitry.

Aw - Working Accumulator.

CPU - Central Processing Unit.

Ep External Device Stack Pointer: see Section 5.2.5.

FAU - Fetch Arithmetic Unit or PMU arithmetic Unit: a simplified arithmetic

HOL

LSI

MIPS

PAU

PC

PE

PF

unit to handle address calculations, etc.

- Higher Order Language such as extended CHS-2 or extended FORTRAN.

- Large Scale Integration technology.

- Millions of instructions per second.

- Primary Arithmetic Unit: actually should be called the PALU for
Primary Arithmetic Logic Unit.

- Parenthesis Control - instr.uction action is delayed until all data is
available.

- Processing Element: the main serial processor of AADC, usually
called the cpu. Now called DPE for Data Processing Element.

- Parenthesis Field specified beginning of parenthesis control (=1111)
or the number of parenthesis to be closed.

S.iii

PMU - Program Management Instruction Handling Unit: Instruction fetching
and control unit of PEe

PMUSP - The PMUscratch pad: 8 index registers plus 4 stack pointers.

Pp - Program Counter Pointer: See Section 5.2.5.

SAU - Secondary Arithmetic Unit: actually should be called SALU; a
simplified version of the PAU that is used in 4-bit-at-a-time multiply.

TM - Task Memory: 4K, 32 bit 150 nsec memory.

TVD - A comparison test valid mechanism for setting the sign bit of the
accumulator depending on the result of a comparison operation.

DPE - Data Processing Element: new name for the Processing Element to
distinguish it from the Signal Processing Element (Chapter 7).

S.iv

CHAPTER 5

DATA PROCESSING ELEMENT

5.1 INTRODUCTION AND SUMMARY

The AADC Processing Element (PE)*is a very fast, very powerful, very

small and very inexpensive central processing unit (CPU) designed for large

scale computing systems. It is one of the basic AADC modules and is designed

to handle all the serial processing requirements of AADC. It is capable of

executing 2.5 to 4 million instructions per second (MIPS), with effective

processing rate~ of 8 to 10 MIPS. Its power is the result of the hardware

implementation of a general deferral mechanism and numerous powerful operations,

especially the polynomial, matrix and vector operations. Most importantly, this

fast powerful processor is packaged in an eight inch cube (0.5 cubic feet) and

has an estimated production cost of $600. (As a comparison the CPU on the IB~l

360 model 67 - a third generation large scale computer - executes about 0.3 to

0.5 MIPS, does not have the same powerful instructions, occupies about 125 cubic

feet and costs $698,000.) This section will present an overview of the PE features,

while later sections will include a more detailed presentation.

In order to obtain the desired speed it was necessary to overlap the

fetching of instructions and their executions. The instruction fetching operates

at 2.5 MIPS including an indexing operation and 3.3 MIPS without indexing. Since

the PE is a Task Memory oriented element, the need for indexing is greatly reduced

over previous computer designs, and the latter speed is more appropriate. These

speeds are based on a memory cycle time of 150 nanoseconds (nsec). On the other

hand, the instruction execution takes 100 nsec for short instructions (equivalent

to Adds) and 800 nsec for fixed-point multiplications. With an assumed ratio

*Now called DPE for Data Processing Element to distinguish it from the SPE - Signal
Processing Element - described in Chapter 7. PE and DPE are used interchangeably.

5.1

of 7 short instructions to 3 multiplications, the instruction execution rate of

3.3 MIPS is also possible. Since the proposed floating point multiplications

are faster than the fixed point, the instruction execution rate with floating

point operations is 4.0 MIPS.

The overlapping of instruction fetching and program execution is

obtained by dividing the PE into a Program Management Instruction Handling Unit

(PMU) and an Arithmetic Processing Execution Unit (AP). The two subsystems

operate independently and asynchronously permitting the PMU to fetch instructions

well ahead of their execution, and while the AP is processing previously fetched

instructions. This is generally referred to as "look-ahead," where instructions

are prefetched along the most probable branch path. If the results of a branch

instruction are not along the expected path, then the stockpile of instructions

is discarded and instruction fetching is initiated along the other path. To

hold the stockpile of instructions, a sixteen~register queue connects the PMU

with the AP.

The power of the AADC PE is demonstrated by the fact that it has many

very powerful instructions, many of which are not even available in higher order

languages and certainly not implemented in hardware on a general purpose

computer. For example, the PE has the following features implemented in hard-

ware:

1. All 16 possible boolean functions,

2. A recursive subroutine call capability,

3. A general deferral mechanism that executes arithmetic,

boolean and conditional expressions directly without

reordering the operations or using excessive storing

and fetching of intermediate results,

5.2

4. A rapid polynomial calculation capability for

trigonometric, logorithmic, hyperbolic and

exp~nential functions (all coefficients are

loaded by a block transfer.),

5. Vector/matrix block handling mechanism for 15-

component vectors and small 3 x 4 matrices.

The particular significant of these features to the programmer is

that t (1) the general deferral mechanism allows the mixing of arithmetic,

boolean and conditional expressions in a single statement - providing the

accompanying higher order language is upgraded -, and (2) the vector/matrix

mechanism allows operations such as the vector dot product and the matrix

product to be specified in two machine language statements. In both these

cases the higher order language will have to be upgraded beyond FORTRAN or

CMS-2 before that language can use these powerful machine language (or hard-

ware) features.

As well as being very fast and powerful, the PE is very small and

inexpensive. A rough estimate of the PE logic is:

1. The AP (arithmetic processor) 6,000 gates,

2. Basic PMU (control unit) 1,000 gates,

3. Queue between PMU and AP 1,000 gates,

4. Parentheses control and vector/
matrix mechanism

5. Instruction decoder ana controller

Total

5.3

1,000 gates,

1,000 gates,

10,000 gates.

These 10,000 gates are placed on two 3-inch diameter LSI chips and housed in an

8-inch cube having a total volume of 0.5 cubic feet. It is also estimated that

the production cost of the PE will be about $600. Rather unbelievable?

If this design is achievable at this cost, or even at 100 times this

cost, then it is going to be the biggest breakthrough in computer hardware

development since the transistor. In order to achieve the maximum benefit from

this new development, many of the programming aids, such as very powerful

operators and extensive debugging features that were previously too expensive to

implement will now have to be included in the design. Otherwise the AADC PE will

be almost immediately replaced with another computer containing these extra

programming aids.

This section would not be complete without some comment on the feasibility

and current status of the PEe At present LSI 1-1/2-inch diameter chips with

1000 to 1500 gates are being produced at a cost of about $1000 each. The set-up

costs, including drawing all the circuits, is about $50,000 for each different

type of chip. (Ref. Dr. Ray N. Nilsen, University of California, Los Angeles).

Also the CPU for the SUE computer - a small scale microprogrammed computer - is

built on two LSI chips and costs less than $1000.

Although this section is written as though the PE actually exists, it

must be realized that it is based on design specifications only and that even

these are still under development. The information in this section is based

almost exclusively on Raytheon's report [5.1]. A later 1972 report has been

produced but is not yet available at NPS. Section 5.8 describes. some of the

latest PE developments as reported at the January 1973 AADC Symposium [5.4J.

5.4

5.2 FUNDAMENTAL SYSTEM CHARACTERISTICS

5.2.1 Instruction Speed

In order to obtain more than 2 MIPS with current technology it is not

possible to fetch instructions and execute them sequentially, but instead, it

is necessary to overlap these two operations. Thus the PMU for fetching instruc

tions and the AP for executing them operate autonomously and asynchonously. The

average time to execute instructions depends on the longer of the average time

to fetch the instructions and the average time to execute them, assuming the

execution (or AF) never has to wait for instructions.

Assuming a 150 nsec memory cycle time for the task memory, the time

for the PMU to fetch an instruction and its operand is (approximately):

Instruction fetch

Indexing operation

Operand fetch

Total

150 nsec

100 nsec

150 nsec

400 nsec

Thus the PMU operates at 2.5 MIPS with indexing and 3.3 }lIPS without indexing.

Since the PE is a task memory oriented processor with a relatively small

4 K-word memory, the latter speed is more realistic.

To calculate the execution speed a ratio of 7 short instructions

(equivalent to adds) to 3 long instructions (defined as multiplies) is assumed.

This is worse than the 8 to 2 ratio observed in present Navy avionics programs.

In order to operate at 2.5 MIPS reqoires the short instructions take 125 nsec

while the long ones take 1000 nsec. To operate at 3.3 MIPS requires that the

short instruction take 100 nsec and the long one take less than 800 nsec.

Raytheon believes that these speeds are realistic for current technology.

5.5

Although the PMU and AP operate autonomously and asynchronously and

both operate at 3.3 MIPS) this is no guarantee that they will produce a through-

put of 3.3 MIPS on a given problem. Since the AP queue is limited to 16

instructions) any time there are twelve short instructions in a sequence or

four long instructions in a sequence) then the AP has to wait because the APQ

is empty or the PMU has to wait because the queue is full t respectively (assuming

APQ was initially half full under steady state conditions). In general whenever

the short-term mix ratio is not 7 to 3, then either the PMU or AP has to wait

and the throughput decreases.

As will be discussed in the next section, a feature called the

Parenthesis Control, will reduce the number of store and fetch operations by

SO percent. According to Raytheon about 50 percent of all instructions in the

analyzed Navy programs involved the storing and fetching of intermediate results.

The reducing of this non-functional overhead means that AADC programs will be

25 percent shorter and thereby the effective throughput will be 4.4 MIPS

100 (-ys x 3.3). Furthermore, since many of the PE instructions are equivalent to

macros on existing computers, the effective throughput will probably be doubled

again to 8 to 10 MIPS when compared to conventional third generation computers.

This is 15 to 30 times faster than an IBM 360/65.

5.2.2 Parenthesis Control

Parenthesis Control (PC) is a PE feature which enhances the relation-

ship between the problem specificat~on in a Higher Order Language and its

execution on the PEe Parenthesis Control was originally developed to handle

the parenthesis portion of algebraic equations, but has now been expanded to

handle conditional and logical expressions. In essence, it automatically defers

5.6

program actions until such time as sufficient information (or data) is available

to complete them. This obviates the need for compiler rearrangement of the

input stream and eliminates many redundant stores and fetches of intermediate

results - thus reducing the complexity of the compiler and increasing the

executing speed of the generated code.

The basic principle of the Parenthesis Control is that parenthesis are

given equal weight with op codes (functions) and operands; i.e., all affect the

order of execution. By deferring action until the data is available, PC reduces

the number of single address instructions required to perform an algebraic task

to an absolute minimum (one instruction per operand).

The order of execution follows the normal algebraic procedure being

read left to right with two exceptions:

1. Multiply/divide's are performed before add/subtracts,

2. Parenthesis take precedence over other operations,

i.e. they say, "Don't do this now, execute what is

inside parenthesis and then corne back and do this.1I

In practice, each of these exceptions is classified as a "deferred action ll

when it arises and are handled in the same way by the computer.

Since the computer operates in the left to right sequential preference

instead of the multiply-add preference, the expression A + BC must be presented

the computer as A + (BC) to distinguish it from (A + B)C. A standard compiler,

when presented with the first expres~ion above, would invert the order of

execution. However, using Parenthesis Control, the computer would handle the

terms in the correct sequence by the following procedure:

5.7

1. load the value of A

2. defer the addition until the product of Band C

is formed, then perform the deferred addition.

This is the procedure used in the PE but, before the actual implementation can

be discussed, it is necessary to describe the PE instruction format.

5.2.2.1 Instruction Formats

The word size chosen for this machine is 32 bits. The basic format

for the majority of computer instructions has been designated as Format 1,* below.

FORMAT I

AP ADDRESSABLE

OP CODE PF AMF ADDRESS
o 1 23456 7 8 9 101] 1213141.5 16171819202122232425262728293031

-in this format, bits 0-7 are termed the OP-CODE. They specify the

type of operation to be performed. The OP-CODE is specified in hexadecimal

notation.

-Bits 8-11 are termed the parenthesis field~* All instructions using

Format 1 are subject to Parenthetical Control.

-Bits 12-15 represent the address modification field (AMF). Specifically,

bit 12, when set specifies that indirect addressing is to be performed to obtain

the effective address of the operand. Bits 13-15 specify a PMU Scratch Pad

register for the automatic indexing operation.

*In 15.1] an R field was specified but it has been eliminated because the
ADDRESS field had to be increased to 16 bits.

** Now only bits 9-11,with bit 8 being the data precision bit.

-Bits 16-31 represent the primary address. The 16 bits in this field

are capable of directly referencing 64K words in tIle virtual Task Memory. The

contents of this field, as modified by indexing and indirect addressing, become

the effective address of the operand.

The Parenthesis Field (PF) in the above format contains four bits. One

combination of these bits (0000) specifies no parenthetical action, i.e., the

specified operation is performed immediately on the data. Another combination

(1111) specifies that this instruction begins a parenthesis, i.e., that the

operation is to be deferred. In no case is it necessary to begin more than one
,

parenthesis, but the user may write more than one.

The remaining 14 hexadecimal combinations of PF specify the number of

parentheses to be closed, i.e., how many deferred operations can be completed at

this time. Thus, a maximum of 14 parentheses can be closed at any time, and a

total of 15 accumulators can be involved with a single instruction.

The PE contains a scratchpad memory containing 16 accumulator locations,

each 40 bits long: 32 bits for data and 8 bits to hold the op code for deferred

operations.* A four-bit address register is also used to specify which accumulntor

is the current working accumulator. [The current working accumulator is someti~es

designated as Aw in examples given.]

Using this structure, the parenthesis field code can be used to

sequence instructions as follows:

1. "No parenthesis code (PF = 0000)" - operation

specified by the _instruction word is performed

immediately.

* Now 41 bits with the extra bit being for data precision bit.

5.9

2. "Begin Parenthesis (PF = 1111)" - The operand

is loaded into the next sequentially numbered

accumulator and the operation specified by the

op code is not performed, but the full op code

(8 bits) is also stored in this accumulator.

In addition, the contents of the old accumulator

is preserved for later use.

3. "End N parentheses (PF = N)" - the specified

instruction is performed with the present accumu

lator, then the most recent deferred operation

(OP CODE stored in the working accumulator) is

performed with the first answer as one operand and

the most recently stored accumulator as the other.

The process is repeated N times.

5.2.2.2 Comparing PC With Other Methods

Consider an elementary expression: X = AB + CD + EF executed on a

single address machine with a single accumulator and with mUltiple accumulator.

The best possible compiler could not produce code better than shown in the left

two columns of Table 5.1.

5.10

SINGLE ACCUMULATOR MULTIPLE ACCill1ULATOR PARENTHESIS CONTROL

Load A Load A in Acc I Load A

Multiply B Multiply B in Acc I Multiply B

Store AB Load C in Acc 2 Add (C

Load C Multiply D in Acc 2 Multiply D)

Multiply D Add 2 to 1 Add (E

Add AB Load E in Acc 2 Multiply F)

Store AB + CD Multiply F in Acc 2 Store in X

Load E Add 2 to 1

Multiply F Store in X
,

Add AB + CD

Store in X

Table 5.1 Instructions for X == AB + CD + EF

The mUltiple accumulator computer saves two store operations and two accesses to

main memory by performing two register-to-register operations instead of two

memory-to-register operations. Thus it saves 2 instructions and four memory

cycles.

With Parenthesis Control the number of instructions is reduced by two

more to one per operand - the minimum possible. The program would look like the

following, where Aw, Al and A2 are the working, the first and the second accumu

lator contents, respectively:

Load A Aw = A = A
I

Multiply B Aw = A = AB
I

Add (C Aw = A~= C[Add Held], Al = AB

Multiply D) Aw = A2 = CD[Add Held], Al = AB,

then Aw = A = AB + CD 1
Add (E Aw = A2 = E[Add Held], Al = AB + CD

Multiply F) Aw = A2 = EF[Add Held], Al = AB + CD,

then Aw = Al = AB + CD + EF

Store X

5.11

In this case the mUltiply D and the multiply F both cause two arithmetic

operations to be performed. Thus the program to calculate this expression takes

only 7 instructions with PC compared to 9 with multiple accumulators and 11

instructions with a single accumulator and no PC - a saving in program size of

22 and 36 percent t respectively. Although the load on the PMU will be reduced

by these percentages, the reduction is the total execution time will be minimal

because of the unfavorable mix ratio. The execution times shown in Figure 5.1

shows a saving of only 5 percent (assuming the loading of a register and an add

both take 100 nsec and a multiply takes 800 nsee).

s· 1 l.ng e p MU L 1M, s • L , M I A • S • L , M • A • S ~
Accum- AP t.1.. M I S I L I M IAsSILI M I As S I 3.7 nsec
ulator •
Multiple PMU L • M, L "'- H --'- A t L • M • A • S I

Aceum- AP aJ..-.J M I L, M ,AI L. M I AI s. 3.5 nsec
latop I

With PC PHU L • 1-1 , A , M , A I M , S r

AP t1-. , M • L. M .As L. M !I~ 3.5 nsee

Figure 5.1 Times for X = AB + CD + EF

As a further example, a program for the expression

A(BC + DEF + G(HI + JK) + L)

is illustrated in Table 5.2. Note that the final result is in the working

register Al while registers A2 through AS are left with intermediate

results.

5.12

S
T INSTRUCTION
E
P

1 LOAD A

2 MUL (B

3 MUL C

4 ADD (D

5 MUL E

6 MUL F)

7 ADD (G

8 MUL (H

9 MUL I

10 ADD (J

11 MUL K)))

12 ADD L)

PF Aw AS EXT

000 Al

111 A2

000 A2 J
III i A3 I

i

I I I

000 A3 I, I
I

I 001 ! A2 I
I

III A3 i
I
I

III A4 i

I
000 A4 !

I i

I

III AS J ADD !
I
I

!
all A2 JK ADD

~------

001 ~ JK ADD

TABLE 5.2

PROGRAM AND REGISTER CONTENTS FOR
A(BC + (DEF) + (G(H I + (JK») + L)

A4 EXT A3 EXT ~2

,

i
J

I B

! Be
I
I

D j ADD BC

1 DE ADD BC

I DEF ADD BC + (DEF)
: ;

I G ADD BC + (DEF)
j

H MUL i G
I

ADD BC + (DEF)
I

I

HI MDL I G
ADD I BC + (DEF) I ,

MUL I (DEF) HI G ADD Be +
I

HI + (JK) NUL G(HI+JK) ADD Be + (DEF) +
G(HI + JK)

------ ----. -- ~- -----

HI + (JK) }fUL G(HI+(JK» ADD (BC + (DEF) +
(G(HI + (JK))+L

NOTE: Although only Add and Hultiply operations are show'Tl, the process
can be used with any combination of arithmetic operations, such
as addition, subtraction, multiplication, and division.

5.13

EXT Al

A

MUL A

MUL A

}IDL A

MULl A

HUL A

l'-fUL A

~fUL A
I

HUL A I
HUL A

}fUL A

HUL A(BC + (DEF) +
(G (HI + _(JK1)) + L) i ,

Before continuing,one problem with PC that has been completely ignored

by Raytheon will be discussed. Although the restriction of a single left

parenthesis is not a limitation, it does generate some problems in interpreting

user written expressions. For example the expression

«(AX + B)C + D)E + F)G

written by a user would have to be presented to the computer as

AX + BC + DE + FG

for straight forward execution from left to right. Here is the problem: The

computer now has'to execute this expression ignoring the normal precedence of

multiplication over addition - which is the reason for the user inserting the

brackets. The dilemma is that if the computer executes the expression left to

right giving precedence to parentheses only, then the users cannot use the normal

algebraic precedences and he must insert the necessary brackets. On the other

hand, if the users are allowed to write expressions with the normal algebraic

precedence, then a scanner - as part of the compiler - must insert or delete

parentheses as required. Another example may help clarify this delemma.

Consider the example A + B x C t D where t represents exponentiation

(which is very conspicuously ignored in Raytheon's report). If the user presents

the expression to the computer in the above fashion assuming the computer knows

about algebraic precedences and if there is no scanner, the expression will be

executed as «A + B) x C) t D instead of A + (B x (C t D». If there is a

scanner it can insert the necessary parentheses; otherwise the user must know the

computer executes left to right and insert the necessary parentheses himself. On

the other hand, if the user wanted the expression executed as «A + B) x C) t D,

he would probably insert the parentheses as shown and a scanner would have to

5.14

remove them for presentation to the computer. Alternately) the user must know

about the right to left rule and must never insert two left parentheses together.

This decision is actually one of how sophisticated are the users expected to be;

for the unsophisticated user the normal algebraic precedence is always better)

but for the sophisticated user the left to right rule is much more general and

explicit. Raytheon did not make this decision and it is still undecided.

The same PC mechanism for evaluating algebraic expressions is also used

to evaluate Boolean expressions. In order to minimize the number of instructions

in evaluating a Boolean expression, all sixteen possible functions of two variables

are implemented (See section 5.6.2.4 for a listing). Boolean operators have short

execution times (similar to add) and this further reduces the total execution ti8e

for evaluating Boolean expressions. Examples of evaluating Boolean expressions

are included in the next section.

5.14a

5.2.3 CombIning Arithmetic, Boolean and Conditional Expressions

The Parenthesis Control concept described in the previous section can

also be used to handle Boolean and conditional expressions in an HOL. First the

comparison process in a conditional expression will be presented before considering

a combined example.

The comparison process is broken into two separate parts or instruction

elements - COMPARE instructions and TRANSFER instructions.

1. The COMPARE instructions are AP addressable types,

similar to arithmetic instructions. Each one

specifies an operand and a condition. The operand

is compared with the contents of the accumulator

for the specified condition. If the test is valid,

a special monitoring u~it, called the Test Valid

mechanism (TVD) , sets the sign bit of the accumu

lator positive, otherwise it is set negative. (The

comparison operation can be any of the six possible

standard comparisons.)

2. The TRANSFER instruction observes the status of the

sign bit of the accumulator. If the sign bit agrees

with the condition specified in the TRANSFER instruction

Op Code, the P}ru is interrupted and the branch is

effected. (APQ is also cleared.) Otherwise, normal

program sequencing continues.

5.15

Thus the PMU continues fetching instructions along the most probable branch path

and filling the APQ while waiting for the results of the test part. If the

branch is required, the PMU is interrupted, the APQ is cleared and the PMU begins

fetching instructions along the other path. This look-ahead along the most

probable path allows the programmer and the compiler to generate very efficient

loops, since the execution normally transfers within a loop several times before

executing a single transfer out of the loop.

Notice that this method of mechanizing comparison operations requires

two instructions for each comparison. This is the price for the look-ahead

capability.

To execute the HOL statement

IF A > B, GO TO M, ELSE, CONTINUE.

where the commas are simply separators, the PE program would be:

Load A

CGR B

T~ M

A i~ placed in the accumulator

B is compared with A. If A is greater than B, then

the sign bit of the accumulator is set positive,

otherwise it is set negative.

Transfer on accumulator positive (i.e. the test

was valid) to M, otherwise continue processing.

An example of a more complex expression using PC is:

IF A > B AND (C # (DE - F)), GO TO M, ELSE, CONTINUE.

for which the program is shown· in Table 5.3.

5.16

.STEP .INSTRUCTION PF Aw I
I

Al A2 A)

.1 Load A 0000 Al A

2 CGR B 0000 Al A > B

3 AND (C 1111 A2 A > B C AND

4 CNE (D 1111 A3 A > B C AND D CNE

5 MUL E 0000 A3 A > B C AND DE CNE

6. SUB F)) 0010 Al .A > B AND (C :f C :f (DE - F)AND DE - F

(DE - F)
,

7 TRP M 0000 Al

Table 5.3 Boolean and Conditional Program and Register Contents

In step 2, Al is set by the condition A > B and thus the sign bit of Al is positive

or negative. The remainder of the program should be self explanatory. It is

recommended that the reader try an example such as

IF A > B AND (C > D) OR (E > F), GO TO M, ELSE, CONTINUE.

Note the AND has precedence over the OR and thus extra parentheses are not necessary.

Also notice that all these examples contain sufficient parentheses so that there

is no ambiguity over whether the arithmetic, logical or conditional operators have

the highest precedence. (It would make sense to have the arithmetic operators with

the highest precedence, conditional operators next and logical operators with the

lowest; but, on the other hand, the straight left to right precedence is the

simp1iest. Apparently no decision has yet been made.)

The major advantages of Parenthesis Control are:

1. It ensures the minimum number of instructions by

eliminating many needless load and store orders.

5.17

2. It reduces the complexity of the compiler by

eliminating the need to rearrange terms in an

expression.

3. Program sequence remain in the original algebraic

order thereby producing a more understandable listing

and reducing the side-effect errors. NO REARRANGEMENT

OF TERMS IS EVER NECESSARY, unless all 16 accumulators

are full.

4. It allows the mixing of algebraic, Boolean and

conditional expressions in the same statement.

5.2.4 Deferred Store Instruction

To remain consistant with the "as written" or left-to-right program

execution as defined above, and to allow the standard assignment statements like

A = B + C instead of the more accurate B + C ~ A, it is necessary to define

a deferred store operation. The expression A = B + C becomes A(= B + C) and

is programmed as:

DST A

Load B

Add C)

A (actually the address of A) is stored in

a deferral register or accumulator, DST is held.

Add C and perform deferred operation DST.

The deferred store operation has the advantage of allowing assignment statements

within assignment statements, which can often reduce the recompu~ing of sub

expression and make a more readable program. This ability has even been left

out of most HOL in the past.

5.18

5.2.5 Stacking Mechanism

The design of the PE includes a set of Task Memory pointers which can

be used for a variety of reasons including a hardware stack. There are four

pointers as part of the 12 scratch pad registers in the PMU (the other eight are

for index registers). They are defined as,

1. External Device Pointer (Ep)

2. Program Counter Pointer (Pp)

3. Accumulator Pointer (Ap)

4. Unspecified.

In addition to instructions to load and store pointers, two instructions

are implemented for manipulating the stack:

1. Advance Accumulator Stack (AAST) causes the contents of

the accumulator to be stored in memory location specified

by value in Ap. The value of Ap is incremented. The next

AAST will cause the accumulator to be stored in the next

sequential memory location.

2. Return from Accumulator Stack (RAST) causes the contents

of memory location specified by the decremented value of

Ap to be loaded in the accumulator. The decremented value

of Ap is placed in the Ap register.

The PC mechanism incorporates the ability to generate an AAST instruction whene\Ter

the number of right parentheses exceed the number of left parentheses. Thus the

expression A + B) will be implemented by: Load A

Add B)

which causes the sum of A and B to be stored automatically in the accumulator stack

in Task Memory by generating in interrupt ~\ST instruction. This saves an extra

. store instruction.

5.19

Similarily the APST and RPST instructions cause . program branching

by advancing the program stack (i.e., placing contents of the program counter into

the memory location specified by Pp and incrementing Pp) and returning from the

program stack (i.e., placing the contents of the memory location specified by the

decemented value of Pp into the program counter), respectively. The program pointer

Pp, is used to stack previous values of the program counter when branching by using

the APST. Thus subroutine returns are easily facilitated and programs may be

nested, or called recursively, without danger. (Note AAST and APST are implemented

as a single instruction with a different PMU register specified in a 4 bit field

in the instruction.)

The external stack is used to facilitate certain I/O word-at-a-time

transfers.

5.2.6 Two-Address Instructions

Although two and three address instructions were called for in the

original RFP (Request For Proposal) and two address instructions are described

by Raytheon, they are not considered seriously for the PEe The advantage of two

address instructions is that both a load and an arithmetic operation or an arith

metic and a store operation can be specified in a single instruction; but the

disadvantage is that with a 32 bit word it is not possible to maintain PC and

still refer to any location in Task Memory with both the primary and secondary

operand addresses. Being able to refer to only part of memory with the secondary

address is a terrible programming restriction. Therefore, according to Raytheon,

single address instructions with PC are superior to two address instructions.

5.20

5.2.7 List Linkages-Search Techniques

Since many avionics problems involve a scattered set of linked operands,

an easily altered linkage mechanism is implemented in the PEe The mechanism

allows indirect addressing with the primary address as the beginning of a table

and the secondary address as some location in the table, as well as, addressing

of tree structured data (such as used by Burrough for structuring arrays on the

B5500). The list linkage mechanism can be used with the stacking mechanism and

with comparison instructions for searching lists. For further details on the

operation of the list linkage mechanism, refer to [5.1, p 2-27 to 2-30].

5.2.8 Self-Defining Subroutines

With the aid of the APQ, it is possible to define self-modifying sub

routines that have some instructions modified while in the APQ while others remain

fixed. By loading the queue, specifying the number of words to be modified and

controlling the positioning of the queue address pointer, it is possible to execute

a routine such as A(B + C(D + E)) ~ F for several sets of operands without

reloading the instructions. If the operands are sequentially ordered in the Task

Memory then they can be retrieved by simple indexing; otherwise they may be

retrieved using the list linkage mechanism described previously.

5.2.9 Polynomial Computations

Many mathematical functions are, or can be, expressed in terms of po~~er

series or polynomials. Some of these functions, including sine, cosine and

tangent, logarithm and antilogorithm, and their associated power

series are shown in Table 5.4.

Upon close observation all functions listed. have the general form:

5.21

2
Y = Ao + Al x + A2x + •••

n k
L t\x,

k=O

which can be written as:

Y = A + x(AI + x(A2 + ... x(A 2 + x(A 1 + xA) •••)),
- 0 n- n- n

which would require n deferral registers to be computed, or as

Y = A x + A IX + A 2x ••• + A2x + Alx + A • n n- n- 0

in which it can be executed directly inleft-to-right" order as a series of

multiply-then-add operations.

5.22

POWER SERIES:

TABLE 5.4

FUNCTION POHER SERIES

(Sheet 1 of 2)

379
x x x 2 SIN x = 0 + Ix + 0 - 3! + 0 + 7! + 0 + 9! + x < 00

COS x

TAN x

SIN-1 x

-1
tan x

SINh x

COSh x

TANh x

SINh-1 x

3 5 7 62x 9
O+x+ 0 +~+~+ 0 + 17x + o + + = 3 15 315 2835

3 3xS 1-3-5 7
o + x + o + ~ + + 0 + x = o + 2-4-5 - - + 6 2-4·6 7

= n/2 - -1 . -1 Ii 2 sin x or = Sln - x

1 3
5 9

o + x + 0 + 0 + ~ + 0
x = - -::-x --+ x

3 9

3 5 7 9
x x x x = x + 3! + 5! + 7! + 9! +

2 4 6 8
x x x x

= 1 + 2! + 4! + 6! + 8! +

132 5 17 7 62 9
= x--x +-x - 315 x + 2835 x 3 15

1 3 5 1-3-5 7
2 1-3x ~+ < 1 = x - - x + x

6 2-4-5 2-4-6 7

= log (2x) + _1_-2
2-2x

1-3 + 1-3-5

2-4-4x 4 Z-4-6-6x6

5_23

2 x < 00

2 2 ... x < Tr /4

1-3-5-7 9
o + x - - + 2-4-6-8 9

2
1 <

2 2
x < 1T /4

x > 1

2
x < 1

POWER SERIES (Cont):

-1
Tanh x

TABLE 5.4

FUNCTION POWER SERIES

(Sheet 2 of 2)

x > 1

log x e
= 0 + (x - 1) -! (x - 1)2 + ! (x - 1)3

2 3 . . . o < x < 2

x where In = log
e

3 5 x -x x x
e - e = 2 (x + 3! + 5! + ...) = 2 sinh x

ix+ -ix x2 x4 x6
e e = 2 (1 - 2! + 4! - 6! + ...) where i = 1-1

sin x = ~ (eix -ix)
2i - e sinh

cos x cosh

5.24

Therefore, a hardwired polynomial instruction can be implemented by

multiplying by x and adding each coefficient into a partial answer iteratively

until the final answer is obtained.

Only one register is required. This instruction can compute any of

the following functions:

1. Simple trigonometric functions,

2. Arc (or inverse) of simple trigonometic functions,

3. Hyperbolic functions,

4. Arc of hyperbolic functions,

5. Logorithms,

6. Antilogorithms, and

7. Natural exponential.

These functions are implemented by a Format 1 instruction called PLY

for Polynomial of Accumulator, in which the R fielcf'specifies the number of

terms in the polynomial to obtain the desired accuracy and the address field

specifies the first location for the sequentially located coefficients fot' the

particular function. The operands are block loaded into the APQ, thus freeing

the P}lli for other processing.

If the amount of TM used to store the coefficients is too large, it

may be possible to take advantage of the fact that the hyperbolic functions use

the same coefficients as the other trignometry functions except for a sign

change on some coefficients. Also it would be possible to calculate all the

trigonometric and hyperbolic functions in terms of the exponential series but

at reduced speed.

*Eliminated in later design [5.4].

5.25

If the PMU cannot be used for other processing, then there is little

advantage in this type of mechanism because the fetching of operands is slower

than the multiply-add sequence. However, it may be possible to perform I/O or

to load other tasks into the Task Memory during this liberated fetch time,

thereby increasing the efficiency and justifying the hardwired polynomial

computation.

5.2.10 Vector/Block Modes*

The original PE specifications required that PE be microprogrammed to

act as backup to the matrix and array processor should the need arise, but

Raytheon suggests that, with little hardware cost, it is possible to make the

PE hardware handle all common vector and matrix processes. This section presents

a fully integrated scheme for solving all common vector and matrix problems with

a simple mechanism and maximum efficiency. The operations which are performed

by the mechanism on limited sized vectors and matrices include:

1. Vector or matrix add or subtract,

2. Vector dot product and vector magnetude,

3. Matrix multiply,

4. Calculate determinants and cofactors,

5. Invert a matrix and solve simultaneous equations, and

6. Transpose a matrix.

Probably the most significant feature of this mechanism is that any of

the operations can be specified by only two machine language instructions, thus

freeing the PMU for other activities. This is better than most HOL since matrix

operations usually must be specified by element-by-ele~ent manipulations in one

or two loops. (With these powerful machine language instructions, it is mandatory

*This entire subsection is based on [5.1] and does not take into' account the 16 bit
ADDRESS field or the new 256-word array capability [5.3 and 5.4].

5.26

that very powe!ful matrix and vector manipulation features be add~d to the HOL,

such as those in the APL language. This is a subject for discussion in

Chapter 7.)

Basically, the performance of all the vector and matrix operations

requires an available storage area of 16 registers capable of holding data and

operation codes. Although these registers could be different than those for PC,

it is assumed that they are the same. In fact, using the same registers for PC

and Vector/Block mode may reduce execution speed when both types of operations

are in the same statement, but this is not considered serious.

The availability of 16 registers generally restricts the Vector/Block

mode to vectors of length 15 and 3 x 3 matrices, although the exact number

depends on the operation. The actual restriction is that the number of components

stored in the AP scratchpad plus the number of temporary answer registers must be

less than or equal to 16. Thus the follo\ving maximum-sized operations can be

done: *
1. The addition or subtraction of two IS components

vectors or matrices since no answer registers are

required,

2. The multiplication of two IS-component vectors since

only one temporary register is required,

3. An N x M matrix times an M x P matrix where

N(M + 1) ~ 16, because N times M locations are

required to store the matrix and N for temporary

answer registers, (For example a 3 x 4 times a 4 x P

matrix takes 15 locations, whereas a 4 x 3 times a

3 x P matrix takes 16 locations.),

*According to Raytheon's presentation at 1973 AADC Symposium [5.4], these restrictions
are no longer valid since the accumulator stock in TM automatically stores and reloads
accumulator regi~ters. The current restriction is an array must be less than 256

elements.
5.27

4. Any operation with 3 x 3 matrices.

The reasons for these restrictions should be more understandable after the next

section.

S.2.l0.l Vector and Matrix Adds and Multiplies

This subsection describes the instruction format and the PE operation

for the vector and matrix add and mUltiply instructions.

Since, in the PC operation, the combination of PF and R both not equal

to 0000 is meaningless, the open parenthesis code (PF = 1111) with the R field*

containing a vaiue N is now given the following meaning:

1. The PE enters the Vector/Block Mode of order Nand

each subsequent instruction, until the mode is terrni

nated t is assumed to be a function of N operands.

2. The N operands located in successive memory locations

specified by the effective address are sequentially

stored in the AP registers (starting at the current

working accumulator) and the instruction op code

is stored with each.

Once in the block mode there are three parameters that control the

execution as follows:

1. The value in the PF field in subsequent instructions

establishes the number of temporary answer registers

to be used and t~ereby establishes the number of

operation pairs (current op code + deferred op code)

that are perform with a particular s~cond operand

(the one not in the scratchpad),

*No longer valid since R field was eliminated in later version (5.4].

5.28

2. The value of N, as specified on entry to the block

mode, establishes the number of operation pairs that

are performed (or the number of operands stored in

the AP scratch pad that are used) before a block cycle

is completed.

3. The value in the R field establishes the number of

block cycles that are to be repeated. In other words,

it is the number of times the operations are repeated

on the scratch pad set using different sets of second

operands. If R # 0, the contents of the answer

registers are stored in the accumulator stack in memory

via an AAST interrupt after each block cycle of N

operands. After R repetitions the mode is terminated.

If R = 0, the answers are not stored and the Vector/

Block mode is not terminated.

The use of these parameters is explained further with the following discussion

of particular vector and matrix operations.

The vector (or matrix) add or subtract is specified by the following

two machine language instructions.

1. The first vector or matrix, A, of N components

is loaded into the AP scratch pad (or deferral

accumulators} by:

LOA D 1 1 1 1 N Al'1F and ADDRESS of A
012 345 6 7 8 9 1011 12131415 ~6 to 31

where the ADDRESS is the memory location of the first

component of A.

5.29

2. The second vector or matrix, B, is then

added to (or subtracted from) the first by:

ADD 000 0 Kl 0 0 1 AMF and ADDRESS of B
0 1 2 345 6 7 8 9 1011 112131415 16 to 31

where the PF = 0000 means there are no answer

register and no second operand is repeated, and

R = 0001 means the answers are stored in the

Accumulator stack via an AAST and the entire process

is to be performed only once.

The results of executing these two instructions is that the sum of the

two vectors or matrices is stored in the accumulator stack, if R # 0. In the

case where R = 0, the sum remains in the AP scratch pad and another vector or

matrix could be added to the sum by repeating the second instruction with the

appropriate new ADDRESS part.

The assembly language equivalent to these two instructions is:

1. LOAD { N A

2. ADD B.

The vector dot product between A and B, which is mathematically defined as

c =

is specified by the two instructions:

N
L

i=1
a. b. ,

1. 1.

1. The first vector ··is loaded in the AP scratch pad

with the deferred operation of Add by:

ADD 1 1 I 1 N AHF and ADDRESS of a
1

0 1 2 345 6 7 8 9 1011 ~2131415 ~6 to 31

or as ADD { N A in assembly language.

5.30

2. The mUltiply by B is ordered with each operand

used once and with one answer register ordered

(PF - 0001), and the cycle is to be performed once

and the answer register stored (R = 0001) by:

M U L T a 0 o 1 o 001 AMF and ADDRESS of b
1

01234 5 6 7 8 9 1011 12131415 ~6 to 31

or MULT)1 1 B

Since only one answer register is specified, after each operand is

multiplied by its respective accumulator value, the product is functionally

combined into the answer register using the deferred operation, in this case

ADD. Thus the operations of mUltiply and add repeat on successive operands,

and, at the end of the sequence, the answer register contains the dot product

of the two vectors.

A variation to the above procedure is to use the original vector, A,

in the second instruction and then after the two instructions are completed,

take the square root of the resultant sum. This produces the magnitude of the

vector A.

The matrix multiplication of two matrices A and B is mathematically

defined by:

for i = 1 to I
and j = 1 to J,

where A, Band C are I x K, K x J and I x J matrices, respectively.

The multiplication of a 2 x 3 matrix by a 3 x 4 matrix is specified by the

two instructions:

5.31

1. The first matrix A is loaded in the deferred

accumulators along with the deferred ADD operator by:

ADD 1 1 1 1 o 1 1 0 AMF and ADDRESS of A
0 1 2 3 4 5 6 7 8 9 101] 12131415 16 31

or ADD (6 A which causes the following

results:

a) The AP enters block mode with N = 6,

b) The six operands starting in the location

specified by ADDRESS are fetched from the

Task Memory,

c) The six operands are stored in the AP scratch

pad (the deferral accumulators) starting in

the working accumulator.

d) The operation ADD is also stored in each

scratchpad location as a deferred operation.

2. The multiply by B is ordered with two answer

registers (PF = 2) and each operand used twice

(PF = 2) and the entire process repeated four

times (R = 4) by:

M U L T o 0 1 0 K> 1 0 0 AHF and ADDRESS of B
01234 5 6 7 8 9 1011 ~2131415 ~6 31

or MULT)2 4 ~ in assembly language.

The operation of the AP under these two instructions, assuming the matrices are

stored column-wise (i.e. aOO a10 aOl all •••)' is as follows. First two

5.32

answer registers are set up and the products a OO bOO and a
lO

bOO are stored

in them. (Note bOO is used in each product.) Next~ the second two products

a01 b IO and all blO are formed using blO ' but since there are only two

answer registers the products must be combined functionally, after each is

formed, with the partial answers in the answer registers using the deferred

operation ADD. Thus the answers in the two registers are now a OO bOO + a
Ol

b
lO

and a10 bOO + all b lO · Third, the operand b 20 is brought in and repeated, and

functionally combined, forming in the answer registers:

which is the first column of the answer matrix. This ends the block cycle (N :: 6)

since all six operands in the APscratch pad set has been used; thus, the answers

are stored and the answer registers are cleared.

Since the R field called for the repeat of this block cycle (of 6

steps) four times, the following answers are also created and stored:

a OO bOl + a
Ol

b
1l + a02 b21 ICI cOl

a lO bOl + all b1l
+ a12 b2l

= cll

and a OO b02
+ a Ol b

12
+ a 02 b22

= cO2

aID b02 + all b12
+ a12

b22
:: c12

and a OO b03 + a
Ol

b13 + a02 b23
:: c03

ala b03 + all b13 + a12 b23
= c13 •

5.33

Thus generating the four columns of the matrix product. Therefore the matrix

multiplication is specified completely by ONLY TWO machine language instructions.

The student may find this procedure a little nove~~, and it is. First.

when matrix multiplication is done manually only one accumulator is used and all

the terms for the first answer component (cOO) are combined before other

components are formed. Here two (or PF) answers are constructed as a group. The

advantage of this method for the computer is that each component of the second

matrix is used (and thus retrieved) only once. Second, the number of columns in

the first matrix, (and the number of rows in the second one) are transparent to the

computer; thus, instead of using this number as a looping parameter, the total

number of components in the first matrix is used to indicate the end of a block

cycle. The third difference is that the standard manual convention· is to determine

the top row of the answer matrix first, whereas here the left-most column is

determined first. In fact this procedure will NOT work if the matrices are stored'i

row-wise (or in row order). However, the answers are the same in both cases

(neglecting roundoff errors), and using the PE procedure requires only two simple

machine language instructions instead of requiring a description of how every

element is manipulated. Thus, this method is much easier to use and operates

faster. As a further example, consider the multiplication of 3 x 4 matrix by a

4 x 5 matrix. Here N = 12, PF = 3 and R = 5. Notice that the two parameters

for the second instruction are actually the size of the resulting matrix. The

remainder of this example is left as an exercise for the reader. Another example
A

is available in [5.1 pages 2-37 to 2-40].

5.34

In general the matrix procedure described here can handle any N x 11

matrix times a M x P matrix where N(M + 1) ~ l6~ since N answer registers are

required in addition to the locations for the first N x M matrix.

The time to execute a matrix operation can be calculated by adding

together the time to load the scratchpad (assuming the instructions are already

in APQ), the time to execute N multiplied by R instruction pairs and the time

to store the results in the accumulator stack. The time to load the second matrix

can be neglected because it is overlapped by the execution. For the example above

of a 2 x 3 times'a 3 x 4 matrix, the time would be calculated as follows:

1. 6 x 150 nsec = 900 nsec to load scratch pad,

2. 6 x 4 x (800 + 100) = 2160 nsec to do 24 multiplications

and additions (actually only 18 additions are used,

but 6 clear accumulator are also used), and

3. 8 x 150 nsec = 1200 nsec to store the results in

the Task Memory,

for a total of 4.26 microseconds, neglecting any overhead. (This is approximately

the time to do one multiplication on the IBM 360/65 computer.)

5.2.10.3 More Complex Matrix Operations

Several instructions were invented to accomplish the remaining vector

and matrix operations. The most essential is the Calculate Cofactor instruction,

which permits the computation of Vector Cross Product, Determinants, and Inverse

Matrices. All of the vectors and matrices handled in this area are three dimensional,

this being the a) only reasonable size for the scratch pad to efficiently handle,

and b) most likely size for computations.

~This number is now 256, according to Raytheon at the 1973 AADC S)~posium.

5.35

To investigate this area, let us first examine a 3 x 3 matrix:

AOO AlO A20

AOI All A21

A02 A12 A22

An interesting observation can be made that the subscripts are the

numbers a ~ 8 in the ternary systems, with column taking precedence over row.

Expressing each of the subscripts in binary notation by digit, this expression

would be:

0000 0100 1000

0001 0101 1001

0010 0110 1010

which, expressed as whole numbers in decimal, would be

048

159

2 6 10

The cofactors of this matrix can be expressed as the cofactors of each

individual term, thus:

Cofactor of 0 = 5-10 - 6-9

Cofactor of 5 = 0-10 - 2·8

Cofactor of 6 = 0-9 - 1-8

5.36

Returning now to the binary representation, it is seen that each

cofactor term has a direct relationship, in pairs of bits, to the four elements

of its corresponding cofactor.

Thus, the cofactor of 0000 is 0101·1010 - 0110·1001 and, to obtain the

elements of the cofactors of 0000, the following device may be applied.

Positive Elements ~ Add 1 to the left

right pair

~ Add 2 to the left

right pair

Negative Elements ~ Add 1 to the left

pair

~ Add 2 to the left

pair

More briefly,

Positive Elements: Add 1, 1

Add 2, 2

Negative Elements: Add 1, 2

Add 2, 1

pair and 1 to the

pair and 2 to the

pair, 2 to the right

pair, 1 to the right

Observe that this scheme holds true for any cofactor term, using mod

3 addition (1 + 2 = 0), thus, the cofactors of 0101 are found to be:

Positive Elements: Add 1, 1 -+ 1010

Add 2, 2 -+ 0000

Negative Elements: Add 1, 2 -+ 1000

Add 2, 1 -+ 0010

5.37

This says that the

Cofactor of 0101 = 1010·0000 - 1000·0010

or Cofactor of 5 = 10-0 - 8-2

which agrees with the previous determination.

Therefore, by implementing a mod 3 (ternary) loading scheme and finding

the cofactors of any term by doing the ternary adds of 1, 1 & 2, 2 for positive

elements and 1, 2 & 2, 1 for the negative elements, all the cofactors of a 3 x 3

determinant can be regularly ascertained and calculated by an iterative process. ,

This method can now be applied to the vector/block mechanism to obtain~

Vector Crossproduct Calculation. Begin by loading the element of vector A into

registers 0,1,2:

Now load the elements of vector B into registers 4,5,6 (maintaining the ternary

loading pattern).

A6 contains b2

Then the three terms of the cross-product A x B, which are:

5.38

are, in fact, the cofactors of 8, 9, and 10 as previously defined. The mechanism

operates in a regular fashion to produce any or all of these terms.

Thus, ·assuming a ternary loading scheme, a calculate cofactor

instruction would have to specify a) the number of cofactors to be calculated

and b) the first cofactor to be calculated. (Cofactors are specified by 0,1,

2,3,4,5,6,8,9,10;0,1,2 •.•.) Thus, the cofactor instruction would have the follo~ing

format:

C 0 F 1st NUl1BER OF COFACTORS
01234 567 8 9 1011 ~213l4l5l6l7l819202l2223242S26272829303l

This instruction is not addressable (i.e. contains no address field).

To facilitate the processing of this type of instruction, the loading of vectors

and matrices are specified as being in ternary mode.

Given the ability to calculate cofactors, it is possible to define

another instruction of the same type:

Calculate Determinant

Nine operands are loaded into the scratchpad in ternary mode as a

precondition. Cofactors 0,1 and 2 are calculated and multiplied by their respec-

tive terms (i.e., term 0 x cofactor 0, etc.). The three final products are su~red

and the final answer placed in deferral register 15. The final anS\ver is also

stored in the memory stack.

5.39

Returning to the Calculate Cofactor instruction, one further field can

now be defined. A 0010 in the R field causes each cofactor calculated to be

divided by the contents of deferral register 15.

Combining these instructions with other block mode instructions yields

a very powerful hardwired vector and matrix processing set:

1. Vector Cross Product:

a)

b)

Two vectors must be loaded:

LD (3 A

LD (3 B

Ternary loading is automatically sequenced.

The appropriate cofactors must be calculated.

These, as previously described, are the co

factors of 8,9 and 10 (or, three cofactors

starting with 8).

COF)3 - 8

2. Calculate Determinant (3 x 3)

a) The determinant is loaded:

LD (9 A

b) The determinant is calculated. The value is

stored in the stack and in deferral register 15,

DET)1

3. Calculate Cofactor [calculate N cofactors.

starting w~th P]

a) A determinant (3 x 3) is loaded:

LD (9 A

5.40

b) The cofactors are calculated

COF)N - P

4. Calculate Inverse Matrix - (3 x 3)

a) The matrix is loaded (automatically in

the ternary mode)

LD (9 A

b) The Determinant is calculated. The value

is not stored in the A stack, but is placed

in deferral register 15.

DET 0

c) All cofactors are calculated and divided by

the value of the determinant, thus yielding

the terms of the inverse matrix in correct

column order

COF)9 2 0

5. Solve Simultaneous Equations

a) Do an invert matrix sequence as above.

b) Reread the inverse matrix into the scratchpad

with a held add (Ap = A stack pointer):

AD (9 Ap

c) Multiply with three answer registers repeating

each operand of B three times (B = constant

vector):

MOL)3 1 B

5.41

The foregoing instructions give the PE the ability to perform all

basic vector and matrix operations except the creation of a transpose matrix.

To make the set complete, and give the PE as much versatility as possible in the

vector/matrix field, a Transpose Matrix instruction is included in the instruction

set.

This instruction takes a matrix stored in memory in column precedence

form and loads it into the scratchpad in row precedence form. The transpose

instruction does not require a full matrix to operate. If a partial matrix is

given, the terms of the matrix which are specified will be loaded into the correct

row positions in the scratchpad. For example, if one column (4 terms) of a 4 x 4

matrix are given, they will appear in the scratchpad in registers 0,4,8, and 12.

5.2.10.3 An Application of Parenthetical Control

When a load transfer instruction is used, it causes a set of spaced

accumulators to be loaded, i.e., LDTN (4 A loads AO' AI' A2 , A3 into ACO'

AC
4

, AC
8

, AC
l2

• Parenthetical Block Operation will now be effective.

AD (B

will Load BO to B3 (with deferred AD) in ACl , AC5 , AC
9

, AC13

ML) C

will multiply CO-C3 by BO-B3 and release add into AO - A3 , thus producing

A + BC values in ACO' AC 4 , ACS and ACl2 •

Thus, up to four sets of simultaneous subroutines using parenthetical

control may be implemented.

5.42

5.3 ARITffrffiTIC PROCESSOR

5.3.1 Data Types, Mode Control and Number Systems

Although Raytheon suggests there are many advantages to either tagging

each data word with a data type or to eliminating data types altogether and using

only floating point operations, they do not recommend these approaches for AADC

because they think that most potential AADC users will find it difficult to accept

24-bit limitation on integers when a 32-bit word size is available. (Tagged data

words also mean longer words in memory for a given accuracy.) The advantages to

using a single data type is that the compiler is much simplier, no conversion

from fixed to floating or from floating to fixed is required, floating point hard

ware can be made as fast or faster than fixed point and there is no need to worry

about integer overflow. If an integer overflow occurs internally when using

floating point hardware, nothing at all happens. If it occurs in the output, the

user gets his answer with the appropriate scale factor, but minus some significance,

instead of the normal "Terminated due to Integer Overflo\V" message. Also accuracy

is enhanced because fixed point numbers are often entered without factional

parts or scale factors to ensure that overflow conditions do not occur.

As an alternate to eliminating data types, Raytheon suggests a mode

control to determine the types of operation. This has the disadvantage of not

allowing mixed mode fixed and floating arithmetic but does have the advantage of

reducing the number of necessary op codes. Without any form of data insensitivity

control, all arithmetic, conditional, polynomial, vector and matrix instructions

and all subroutines must have counterparts for every data type. The other dis

advantages of mode control method is that modes must be established, fixed over

flow can still occur and all instructions are in fact implemented in hardware.

5.43

The mode switch would probably be implemented with the load or branch instructions

or with subroutine calls.

Raytheon has recommended the sign ~nd magnitude number system for AADC

claiming that multiplication and division algorithm are much simplier for this

system t especially when compared to 2'8 complement system t and that it is the

only system that can cause an overflow in fixed point multiplication.

The author does not agree with Raytheon on many of the statements con-

cerning number systems. For example, they state that one of the reasons for choosir.

the sign and magnitude system is that mUltiplication and division can be implemente(

by considering only positive numbers, but they ignore the fact that there are 2's

complement algorithms that treat positive and negative numbers alike, i.e. Booth

multiplication algorithm.

5.3.2 Data Formats

Four data formats are presently designed for the PEe The floating point

format is:

S HANTISSA S I EXPONENT
0 1 to 2~ 2~25262728293031

where the decimal point is assumed to be to the left of bit 1. The fixed point

or integer format is:

MAGNITUDE
to 31

where the decimal point is assumed to be to the left of bit 1 for fixed point

but to be to the right of bit 31 for integer format. The complex data format is:

S REAL MAGNITUDE S IMAGINARY MAGNITUDE
0 1 to 15 16 17 to 31

5.44

where the real and imaginary parts are considered as 16-bit fixed point numbers,

with decimal points assumed to be to the left of bits 1 and 17. Although floating

complex arithmetic (single word format) is not considered as part of the study,

it could be included using the format~:

S REAL HANTISSA S IHAGINARY HANTISSA S EXPONENT
a I to 11 12 13 to 23 24 25 to 31

where the real and imaginary parts are each represented by only 12 bits (equiv-

alent to 3 decimal digits of accuracy) and both parts have the same 7 bits exponent.

All floating point exponents are considered binary numbers, not hexi-

decimal, thus the mantissa may be shifted only one bit.

Raytheon brags about the large 7-bit exponent being capable of representing

the range of all conceivable numbers for avionics applications. The 7-bits

represent a range of lo±38 which is the same as on the IBM 360/67 (and often

restrictive in scientific applications).

5.3.3 Arithmetic algorithms

The floating point algorithms for addition, subtraction, multiplication

and division are fairly standard for sign and magnitude nllmber systems, except

that they do not normalize until it is necessary. This results in more complex

circuitry but the faster speed, apparently justifying the extra logic cost. The

floating point algorithms actually use the fixed point arithmetic hard\~are to do

the arithmetic.

The particular implementation of the adder and/or subtractor network is

left to the final designer providing it produces a sign and magnitude answer in

about 100 nsec. The multiplier is a 4-bit-at-a-time multiplier that actually

*This format has been replaced by a double word complex number format.

5.45

uses two 2-bit-at-a-time adders working sUlu1taneous1y. Sufficient circuitry

is added to perform the additions and shiftings as required. A very fast logical

carry function is used so the second adder has this input at almost the same

time as the first adder. Further details are available in [5.1, pages 3-19 to

3-21].

Multiplication now takes only 8 steps for a 32-bit word. If each step

takes 100 nsec then the fixed multiplication takes 800 nsec. Since the floating

point mantissa is only 24 bits long it takes only 6 steps or 600 nsec. With the

7 to 3 mix of additions to multiplications, the AP runs at 3.3 MIPS for fixed

point and 4.0 MIPS for floating point operations.

Since the division instruction'is a low frequency instruction, a very

simple one-bit-at-a-time subtract and check algorithm is implemented for

division. The hardwired divide algorithm would take about 3.2 msec •

Integer arithmetic uses the identical algorithms for fixed point.

Addition and subtraction are identical. Multiplication is the same except that

the answer appears in the low order product register. Division is the same

except that the single dividend word is placed in the low order product registel

before division.

Since an analysis of the usages of complex arithmetic in avionics

missions revealed that 16 bits is sufficient for either the real or imaginary

parts, fixed point complex arithmetic was implemented in half-word format with

essentially no loss in efficiency. Even complex multiply (an operation requirin~

four multiplications and two additions) is accomplished in almost the same time

as a normal full word fixed point multiplication. Two conventional full length

words can be used with complex instructions. For example, a two-word load,

5.46

followed by a complex store, is equivalent to combining the left half of two

words into a single word. The multiply operation can produce either two full

word answers or two half-word answers depending on whether the result is used

as separate real and imaginary values (or double precision) or as a complex

answer. Thus complex arithmetic has been conveniently and efficiently included

in the PE structure.

As a result of implementing the complex mode operations, it is very

easy to include half-word operations on either the left or right half of the

word. Half-word and full-word operations can be mixed and can be specified in

all modes including fixed, floating and complex (and probably integer, although

this is not mentioned).

Twenty-four load instructions are implemented in the PMU of the PEe

These include combinations of 1) load normal or load with negative sign,

2) fixed point, floating point, complex or integer, and 3) full word, left

half word or right half word. A complete listing is shown in section 5.6.2.6

and [5.1, pages 3-19].

This section has been an overview of the arithmetic operations

implemented in the PE, and is intended to present the PE features available to

the programmer, rather than the details of the algorithms. The arithmetic

algorithms are described in much more detail in [5.1, pages 3-9 to 3-29].

5.47

5.4 ARIT~mTIC PROCESSOR DESIGN

Figure 5.2 shows the basic Arithmetic Unit (AU) - the heart of the

Arithmetic Processor (AP). (The other parts of the AP include a comparison

test valid unit, a deferral unit and a programmable control unit.) The AU

contains two memory interface registers (MI and M2), two accumulators (AI and

A
2
), two low-order product registers (L

l
and L2) and an Arithmetic Logic Unit

(ALU). The two memory registers provide the interface between the Task Memory

and the rest of the AP. The low-order product registers are built as logical

extensions to the accumulators for multiplication and division, but also can be

used as accumulators. The Arithmetic Logic Unit performs the actual execution

of the addition, subtraction and logical operations. (ffALU" is my own term

because Raytheon uses "AU" to refer to both the ALU and the Arithmetic Unit -

which contains 6 registers, the ALU and associated control and transfer logic.)

5.48

From

Tlsk Memory
....... Al l..-. r-- -

~ Hl - L...... A2 --.... ~ ~ r:...

.

- M2 - l-'II Ll ~ '" ~ --- .~

.-.. L2 .4

r-. ~ ~

"
l'

control Arithmetic
functions f

Logic Unit

Figure 5.2 Simplified D~agram of Arithmetic Unit

5.49

In the final design, the use of control signals to determine which

A or L register is to be used as the current accumulator is generalized to

include the M registers. Thus the M registers are equivalent to A and L

registers, and any of the six registers can be used to accept operands from

memory, and can be used as the input or output to the ALU, as shown in Figure 5.3.

In other words, the source and destination of any operation can be changed by a

control signal. In Figure 5.3 the inputs and outputs of the ALU are as follows:

f is the control function that determines the particular operation to be

performed; M is the operand from memory (i.e., addressed in the current in~truc

tion) , As is the operand from the Accumulator and ~ is the output from the

ALU.

By changing control signals, the output from the M registers can be

decremented, incremented, complemented, shifted left one or two bits (2 x M or

4 x M) or ignored before being applied to the ALU. The output from the A and

L registers can be complemented, shifted right one bit or 4 bits and shifted

left one or two bits before being applied to the ALU. The input to the A and

L registers can be from the scratch pad registers as well as the following modified

outputs from the ALU: The sum directly, sum positioned two bits right and the

sum positioned one bit left.

5.50

Frpm Task Memory

f f
0 T Task ~·1L~.ory

-
AP Scratch Pad QUEUE

I .
-

"
]'

.-...' ~ ;; -..
'II ~ Ml - -~ -..

'-,:: .. -- -... ,,';iIII ~12 ...
I

.... ~
~

I ~

-D'- Al
- I - -~ r-a

l...1 . ,

~
- " ~, l ~ A2 ~ .-It --.

~ ~ 1
~ ~

..e i L 1 - I ~
, ...

-r> ~

.~ -- '\

L2 --
.

M Arithmetic A" - ..",.5 - -
f Logic Unit .-

AD

Figure 5.3 .. Arithmetic Unit Final Design

5.51

In actual fact there are two arithmetic logic units called the PAU

and SAU for Primary Arithmetic Unit - the one described above - and Secondary

Arithmetic Unit. (Again, Raytheon does not distinguish between the AU and the

ALU, which makes it a little confusing here. PAU and SAU should be PALU and

SALU respectively.) The SAU is designed for use during the 4-bit-at-a-time

mUltiply and thus has only the addition and subtraction logic. Otherwise, it

is essentially the same as the PAU described above. Some examples of the AU

functioning is described in [5.1, pages 4-17 to 4-21].

5.4.1 Macro-Micro Programming

Raytheon intends to implement some micro-programming features into the

PE by making the control signals, that were used to implement the steps of the

macro instructions, available within the macro instruction set. Thus the macro

instruction set will include the vast majority of useful micro-commands needed

for any use by the arithmetic processor. If the macro instruction set contains

all the elementary micro-functions as a subset, the total number of control lines

in the AU could be reduced to eight (the number of bits in the OP CODE). Thus,

Raytheon claims that micro instructions can be included in the macro instruction

set by providing the AU with an eight line input which would be decoded internally

to provide the important micro instructions.

Another explanation of the micro instructiom implementation is given in

[5.1, pages 4-14 to 4-16], but it is not any more detailed than the above. How

many micro instructions can be accomodated and which ones should be implemented

has not yet been decided. Also see questions 5.16 and 5.17.

5.52

5.4.2 Deferral Unit

The deferral unit is a portion of the AP which contains the necessary

equipment to handle the Parenthesis Control and Vector/Block Mode. The deferral

unit contains a pushdown set of 16 scratchpad 40-bit registers which are connected

to the arithmetic unit via the accumulators (See Figure 5.3).

Implementation of the deferral unit will not be described here because

it is quite elaborate and because it is believed that the explanation of the

operation in Sections 5.2, 5.9 and 5.10 is adequate for our purposes. For further

details the reader is referred to Reference [5.1], particularly Figures 4.8 and

4.9 which are a detailed functional block diagram of the overall deferral unit

and pages 4-25 to 4-35 which explain the operation of the deferral unit. The

other two parts of the AP - the test valid unit and the programmable control unit -

are also not described here [5.1, pages 4-23,4-24, 4-35, 4-36].

5.53

5.5 PROGRAM MANAGEMENT UNIT

The Program Management Unit (PMU) handles all the functions of the PE

which do not require the computation and processing capabilities of the AP. The

functions - which essentially all deal with the processing) utilization and stor:

of task memory addresses - fall into three major categories: normal instruction

and operand fetching, execution of program management-type instructions, and I/O

control. Of the three, the normal instruction and operand fetching is the most

important in terms of speed and efficiency enhancement.

The PMU contains the follow basic components:

1. A program counter (P) which contains the address

of the memory location containing the next

sequential instruction.

2. A Primary Address Register {I
A

} which typically

contains the effective address of the memory

location containing the operand of the current

instruction. The effective address is the

ADDRESS part modified by the AMF {address

modifier field} part.

3. A Secondary Address Register {IB} which contain

the secondary address if two address instructions

are implemented.

4. A Control Register (C) which holds parameters of

the instruction being processed (or accessed) in

the PMU. It presents this information to the

control unit for decoding and to generate the

necessary PMU control.

5.54

5. A PMU Scratch pad (P~rusP) which contains right

index registers used by the system, and also

contains four stack pointers.

6. A Fetch Arithmetic Unit (FAU) which is capable

of handling the simple arithmetic operations

which indexing and PMU instructions require.

The FAU is not nearly as elaborate as the arith

metic unit in the AP.

7. An Arithmetic Processor Queue (APQ) which queues

operation codes and operands for presentation to

the AP. The APQ is actually an interface unit

but since it is most responsive to the P}ll and its

functions (half-word manipulations) approximate

PMU functions, it is included in this section.

Figure 5.4 shows the component of the PMU. For further detail the

reader is referred to [5.1, Figure 5.2] which shows a more detailed block

diagrams of the PMU and its control signals. The actual operation of the p~ru

is considered beyond the scope of this report. The interrupt handling mechanisD

and the APQ is also not included in this report [5.1, pages 5-8 to 5-12].

5.55

EXT. INSTR. IN .. - ~
20-31

S

0·31 FETCH

0 ~RITH.

~ UNIT -

A(D· C) ; T LTC T 0
FUNCTIONS 0

RDT~

WRT R--+

WRT L- .. TASK
MEMORY

, l --

, C t 20- 31

EXT. DATA (£s)

A.P. DATA (AP S)

--. + 1 L + 1 C + 1 0 A{ C ~ L)

-lL- 1C- 10

~
ZE RO
TEST l C

i

20-31

r ~r
+IA

+P
~ ~

P I A

L --4-

"
1,

r "

Figure 5.4.

20-23.8-15 17·19 0·15

r u r ,I L
R~

W~ PMU C ~

SCRATCH DEX a
I B PAD ... P

XO-X7 .. 8-11

Ap;Pp ---
~(n ~

.. ----
R --.
.1t

"

Program Management Unit

16
'f 1 I

FETCH
CONTROL

UNIT

'F
TO ALL
CONTROL
POINTS

0-31

~,

A. P. Q.

l
TO A.P.

4-AAV
~EAY

-- EXT
our

APQO
APQI
APQF

~EXT INTERRUPTS

5.6 THE INSTRUCTION SET

This section lists the instruction set of the PE - an instruction set

wide in scope but simple in format according to Raytheon. The instruction set

is based on a report by Systems Consultants [5.5] and, while it is a consider-

able modification to the set in that document, it maintains the spirit of the

recommendations throughout. This section will list all the instructions \o.rhich

should, according to Raytheon, be included in the AADC DPE. Subsections .5.6.2

and 5.6.3 describe the instructions that deal with the Arithmetic Processor,

including those dealing with vector and matrix operations [5.3]. Subsections

5.6.3 and 5.6.4 describe PHU instructions which may subject to further modifica-

tion since the material is based on an earlier reference [5.1].

5.6.1 Basic Instruction Format

* The basic instruction format called Format 1, was given in Section

5.2.2.1 but is repeated here for convenience:

OP CODE PF I X ADDRESS
01234 5 6 7 8 9 1011 112 \131415 16 to 31

Sometimes other names are given for some fields.

In computer operation, an instruction word is obtained from tl1E Task

Memory by the PMU. The left 12 bits of the word is used by the APQ; the ~ight half

is used to obtain the operand required for the instruction execution. PF is the

parenthesis field. Bit 12 is set equal to 1 for indirect addressing, while bits

13 to 15 are used to specify any of eight PMU index registers. Bits 12 to 15 are

also referred to as the Address Modifier Field (MIF). ADDRESS is the virtual Task

Memory location of the operand.

*Shown here with the ne\.J 16-bit ADDRESS field.

5.57

5.6.2 Arithmetic Processor Instructions

5.6.2.-1 General Considerations

Each instruction in the AADC instruction set that involves obtaining

an operand from Memory for use in the Arithmetic Processor, is equivalent to

several instructions normally delineated separately in other computers. First]

each instruction is effectively modified by its associated Data Type. The AADC

Date Types are:

1. Integer

2. Logical

3. Literal

4. Real

5. Imaginary

6. Double Precision Real

7. Complex

Secondly, all arithmetic operations are performed as double precision

operations, with the appropriate bits selected depending on the data type of

the result. Thus a pair of integers, a pair of real number, a real and an

integer or a pair of double precision real numbers are all added by a double

precision addition operator but the result is stored as a 32 bits integer, a

24-bit mantissa and a 8-bit exponent real number, or a double precision real

number depending on the data type of the result. Thus there is no speed dis

advantage associated with double precision but there is still a doubling of the

memory required.

Thirdly, each operand may be a simple scalar, or a member of a vector

or other form of array. Full capabilities of Mixed Data Types as well as mixed

scalar, vector, matrix operations further make for instruction variations which

5.58

would be exceptionally difficult to individually enumerate. In addition to

these instructions, a set of Program Management instructions complete the

Instruction Compliment. If all of this were not enough, the capability of

Parenthetical Control with the facility of controlling the precision of

instruction results permits maximum control of the operational sequence.

The operation of the Arithmetic Processor when dealing with arrays

needs further elaboration. Scalars are, in general, extended to equal the size

of the array. Thus, if the scalar is contained in the Accumulator, an instruc

tion which would normally be accumulator destructive will not affect the original

scalar until completion of the entire array. If the vector is in the accumulator,

the scal~r will be repeated from the Queue.

A similar extension will be made for vectors of unequal size. If the

shorter vector is contained in the Queue, the last term will be repeated until

completion. If the shorter vector is in the accumulator, it is iterated until

completion.

Providing Parenthetical Control for use with Matrices pe~its asse~~ly of

sparse matrices, and other operations which would othenvise be difficult to

achieve. The instruction set which follows is virtually complete with respect

to the Arithmetic Processor. Additional PMU instructions are still required to

complete the set.

5.6.2.2 Standard Arithmetic Instructions

The standard arithmetic instructions are add, subtract, multiply and

divide. The arithmetic instructions apply to all data types, as well as, scalar,

vectors and matrices.

There are three instructions corresponding to addition. They are Add

accumulator and memory (A + M ~ A), clear and add (+M ~ A) and an no OP (+ A ~A).

5.59

·
There are four instructions corresponding to subtraction. They are Subtract

memory from 'accumulator (A - M~' A), Subtract Reverse (-A + M ~ A), Clear

and Subtract (-M ~ A), and Change Sign (-A ~ A). Two related monadic instruc-

tions are Absolute Magnetude (IAI ~ A) and Set Sign Negative (-IAI ~ A).

Five multiply/divide operations have been defined. They are Multipl~

accumulator by memory (A x M ~ A), Divide accumulation by memory (A f M ~ A),

Divide Reverse (M f A ~ A), Residue (A f M with R ~ A) and Residue Reverse

(M f A with R ~ A). If a literal data type is used with a Divide Reverse in-

struction, the literal 1 can be used to generate the reciprocal. The com-

plex divide is semi-complex, i.e., (~ + ~)/M where AL and ~ are the left

half and right half of the accumulator, respectively.

In the earlier report [5.1] it was stated that arithmetic opera-

tions can be performed on the right half or the left half of a word as well

as on the full word, but this was omitted (intentionally?) from the later re-

port [5.3].

5.6.2.3 Logical Instructions

This section describes the logical operations in detail. All six-

teen possible combinations of 2-value Boolean variables are implemented elimina-

ting many unnecessary inverting operations and thereby improving the operating'

speed.

The logical functions are described in Table 5.5, where A and M

represent the accumulator and memory contents, respectively. Each bit of

M(each M.) and each bit of A{each A.) can assume a value of zero or one. All
1 1

instructions use Format I and are subject to parenthesis control. All opera-

tions apply on a bit-by-bit basis on 32-bit words. Each operand can be any of

the seven data types and furthermore a logical operation does not make the

accumulator logical ..

5.GO

FUNCTION OPERATOR NAHE OF SYHBOL EQUIVALE~~T OPERATIO:J

0 ~ A. 0 CLEAR clear accumulator
A. A M. -1

A -+ A. AND
A1 > M1 -+ A1 > Greater than accumulator AND NOT memory
A~ i

-+ A~ + Unary plus NO operation
A: < M. -+ A: < Less than NOT accumulator AtID memory 1 M1 -+ A: Honadic load Logical load
Ai :f M~ -+ A~ :f Not equal Exclusive OR
Ai v M: -+ A~ v OR Inclusive OR
A. " M: -+ A1

" NOR NOT (A OR M)
A~ = M~ -+ A: = Equals Equivalcnce

1 M~ A1 'V -+ 'V Load complement NOT memory
Ai ~ M: -+ A1 ~ Greater or equal Accumulator OR NOT memor'.r

1
-+ A: 'VA. 'V Unary NOT Complement accumulator

1
-+ A~ Ai S Mi ~ Less or equal NOT accumulator OR memory

Ai ~ Mi -+ A1 ~ NAND NOT (A A~1) H)
1 -+ Al 1 SET i

Table 5.5 Logical Functions and Operators

Since logicals use operators which have other meanings when applied

to arithmetic or non-binary (Boolean) operations, the High Order Language

must distinguish between these functions. The operators could be followed

by a second symbol to specify that these are logicals or the variables could

be marked. It would seem that an operator subscript or second symbol \vould

be best. The use of combinational symbols is necessary to avoid a phcnomenal

number of operational symbols.

One unusual feature of using logical operations on non-logical data

types is that the exponent and its sign are not affected by the logical opera-

tions. Thus a logical load instruction can be used to load an arithmetic

magnitude into the accumulator without affecting the Sign and Exponent of the

original accumulator. The accumulator data type will not be altered. Also

the unary NOT, which produces a one's complement of the accumulator magnitude

and does not alter the Sign or Exponent, is not the same as a unary minus

instruction which changes only the sign of the accumulator. This "feature" is

of dubious value since its use could easily lead to errors in program results.

5.61

For example if the programmer specified complement accumulator and the data

type was real when he expected it to be integer, then only the magnitude will

be complemented and errors would probably result.

5.6.2.4 The Comparison Instructions

There are six comparison instructions which define all possible per-

mutations of two variables. For consistency, these instructions are assigned

names coinciding with left to right languages. The comparison instructions

are greater, less, not equal, equal, greater or equal and less or equal. Com-

parisons are arithmetic and are made with any of the data types. Thus, there

are actually many comparisons, (i.e., integer, floating, etc.)*

The result of a comparison is a Boolean value (True = 1 and False = 0).

To permit logical operations on these comparisons, the results are placed in

the Accumulator as the Arithmetic numbers +1 and +0, respectively. The creation

of an arithmetic 0 or 1 permits the results of compares to be used arithmetically

as well as the normal Boolean operation.

In general languages, comparison operation is Accumulator destructive.

Since Array operations are provided wherein scalars can be effectively extended

to the length of a vector, Compares are capable of being used in a non-destructive

form.

Since comparisons against zero are often made with the desire to

branch, and since zeros do not require an address field, an additional set of

instructions have been provided which are essentially test and branch instruc-

tions. These instructions are essentially non-destructive of the Accumulator.

They result in an immediate transfer. Transfers provide the address branch

code in the instruction address field. They may be virtual or direct. If

the comparison is true, the contents of the Queue are cleared and the branch

*Note if comparisons between different data types are allo'ved, then the pro
grammer should have the option of flagging all such comparisons as possible errors.

5.62

code is sent to the Program Management Unit to perform a Transfer Uncondi-

tional (TRU) as follows.

FUNCTION SYHBOL N&~E OF OPERATIO~~

A > 0 ~ TRU > Transfer Positive

A < 0 -+ TRU < Transfer Negative

A it 0 -+ TRU it Transfer Not Zero

A = 0 -+ TRU = Transfer Zero

A ~ 0 -+ TRU ~ Transfer Not Negative

A S 0 TRU ~ Transfer Not Positive

Since the results of nonnal comparison instructions produce Boolean

or Arithmetic answers of zero or plus one, these instructions are capable of

following a comparison or logical and can thus be used as conditional transfers

following the comparisons.

Since the conditional transfer set is complete, it would have been

possible to provide a single comparison instruction which is an effective three

way compare yielding; +1, 0, Or -1, depending upon whether A is greater than,

equal to or less than M. This instruction could then be followed by one or more

of the branches. Since there are valid reasons for both solutions, the AADC

instruction set contains both.

The instruction Transfer Unconditional (TRU) exists as a Program

Management Unit instruct-ion only. The instruction is effectively forced as

the result of any of the conditional transfers above. It is necessary to

complete the list of instructions in the Area of Branches.

Two other comparison instructions are provided in the Arithmetic

Processor system. These are as follows:

FUNCTION

A > M then M -+ A

M S M then A -+ A

A < M then M -+ A

A ~ M then A -+ A 5.63

SYMBOL

L

r

NAME

MINIHU~

MAX I HUM

These are used to select the smaller or larger value of a pair.

Other variations of comparison instructions are provided when dealing with a

vector or list. These essentially involve the displacement addresses when

ever the comparisons are true. These will be considered elsewhere.

5.6.2.5 Shift Instructions

Shift instructions apply to both Scalars and Arrays. The shifting

of a scalar implies moving bits within the accumulator while shifting of an

array implies moving elements of the array. The direction of shifting is

controlled by the sign of the operand - right shifting if the operand is

positive, left shifting if negative. There are three basic shifting instruc

tions - Rotation, Drop and Take. Rotation is cyclic shifting either of bits

in the case of scalars or of elements in the case of array. Array Rotation

means the Nth (the instruction operand) element becomes the first element and

the array is completed around. The Drop instruction causes the first (or

last) N bits (or array elements) to be dropped. Thus Drop the left most N

bits shifts the accumulator to the left filling the right most bits with

zeros. Similarily Drop the right bits cause a right non-cyclic shift. The

Take Instruction causes the first (or last) N bits (or array elements) to be

taken from a scalar (or array). Take can be used as a mask since all bits

remain in the same position. Further explanation of Drop and Take operation

can be obtained from any APL reference manual such as [5.6].

Other simple arithmetic instructions include square root, the Floor

of A (next lower integer of a real accumulator), and Ceiling of A (next higher

integer of a real accumulator).

5.6.2.6 Polynomial, Vector and Matrix Instructions

According to an earlier reference [5.1], a hardware implementation

of one polynomial instruction, PLY as defined in Subsection 5.2.9, can be used

to generate all the trigonometric and logarithm instructions listed in that

5.64

subsection. In the later reference [5.2 and 5.3], the trigonometric functions

to be implemented in hardware are listed as sin, cos, tan, sinh, cosh, tanh,

arcsin, arccos, arctan, arcsinh, arccosh and arctanh. The later reference

list the natural logarithm and the natural antilogarithm as hardware functions

also, but suggests that the logarithm to an arbitrary base and exponentation

to an arbitrary power should be implemented by subroutines.

The basic vector and matrix operations, such as adding and subtract

ing, are performed by the standard arithmetic instructions presented above,

because the operands can be, in all cases, scalars or arrays. This also

applies to loading and storing operations that will be discussed in Subsection

5.6.3.

When a comparison scalar is used against a vector, the address of

the vector term where the comparison is made can be entered into the accumula

tor. This represents the first occurance rather than a simple Boolean True.

The Scalar can be replaced by an Array. If no bit is found, the usual zero

can be recorded.

Compression is the result of creating a vector from A for each 1

of a Boolean vector M and discarding an A for each corresponding zero of M.

Expansion is the result of creating a vector from A for each 1 of

M and adding a zero term for each zero of M.

More powerful vector and matrix instructions are presented in the

next subsection.

5.6.2.7 Composite Array Functions

One composite function is reduction. The reduction operation s)~bol

"/" specifies that each term of a vector (or if a matrix, then each term of a

column) is sequentially combined functionally in accordance with an operator

contained in the OP Code field. For Matrices, the operation is repeated for

5.65

each column, producing a vector of answers. Reduction is monadic. To operate

across ro~s, the matrix should be loaded Transposed. Each possible operator

in the arithmetic instruction set can be used with reduction. Thus a + operator

will produce the scalar sum of the vector terms (+/).

A second composite function is the generalized inner product. The

inner product operation code specifies that the address field of the instruction

contains two operation codes. The first operation code is applied term by term

for each member of a column of H against each member of a row of A. This opera-

tion theoretically produces a matrix of answers, but these answers are reduced

(see above) by the second operation to produce a vector of reduced answers.

Thus A'x.+M is the ordinary matrix product of M and A. Again each

of the dual operators can be any of the possible operation codes.

A third composite function is the Generalized outer product, wherein

each term of M is functionally combined with every term of A producing, for

example, a matrix from two vectors. The Outer-Product Operation Code requires

a single operator in the address field, and corresponding new dimension words

are created with the result.

A fourth composite function is the reduced outer product. Each term

of M is applied to A through the first operator producing a vector of length A

and each successive vector produced by subsequent terms of M is reduced with

the first vector in accordance with a second operation code, also provided in

the address field.

M v / = A v/Mo. =A This will produce the function of

Membership*, i.e., which elements of M are present somewhere is A.

Other powerful matrix operations that were described in [5.1] such as

the determinant, cofactor and divide cofactor, have been left out of the later

report [5.2 and 5.'3]. Apparently these instructions will be implemented by

*These equations are taken directly from [5.3], but according to the right-to
left rule it appears that they should read M = / v A _ v / M =. 0 A.

5.66

subroutines rather than DPE hardware. Other array manipulating instructions,

including loads and stores, are described in Subsection 5.6.3.

5.6.2.8 Programmables

According to [5.1] programmable Aritl~etic Processor instructions

be defined as required. The statement that any instruction deemed useful could

be specified at any time and placed in the instruction set seems to be too

general because there seem to be some quite serious restrictions on the variety

of possible micro instructions. The limitation is that the total number of

instructions presented above, all the PMU instructions and the micro instructions

must be less than 256 - the number allowed by the 8 bit OP Code. Even Raytheon's

example of coordinate conversion as a possible function that could be "micro

programmed" using the available control signals is a relatively simple function

and is not representative of the range of functions for which microprogramming

would be useful.

In the later version of Raytheon's report they have omitted reference

to programmable arithmetic Processor instructions so this feature may have been

withdrawn [5.2].

5.6.2.9 Omitted Instructions

The . latest references 15.2 and 5.3] have omitted several instructions

that were under consider~tion previously [5.1] and that should be reconsidered.

They are memory plus one to accumulator, memory minus one to accumulator, add

magnitude and subtract magnitude. The first t\vO are particularily important

when one considers the number of counters that are normally incremented or de

cremented in an average program.

Also two very useful bit manipulating instructions Set Bit Nand

Reset Bit N has been eliminated apparently. Also the instruction Reverse Bits

has been deleted but it would appear to have limited application.

5.67

5.6.3 Special Handling Instructions (AP and p~ru)

The special handling instructions require the Program Management

Unit (PMU) as well as the Arithmetic Processor for processing. These instruc

tions include loading, storing and array manipulating instructions.

As previously described,. the simple clear and add instruction

may be a scalar which requires very little PMU involvement other than the

data Fetch. Or, the data type may be double precision or Complex, in which

event the PMU will obtain two consecutive operands and place them in the

Queue marking the data type appropriately. If the data is an Array, the PMU

will assign a Task Memory Address to start the Array and send this address

to the Accumulator appropriately marked as an array, and proceed to enter the

entire array into task memory beginning with this location. To accomplish

the transfer (or load) the PMU needs a Task Memory Pointer, for addressing

purposes. Also required is a counter to count each word as it enters. The

Array may already be located in the Task Memory, in which case it usually

must be picked up and moved, as in a Memory-to-Memory transfer, since the

Accumulator version of the Array is subject to modification, while the original

array is not to be changed.

To avoid unnecessary array transfers, several additional instructions

which are largely handled· by the PMU or the RAMM PMU have been defined.

Load Column: The instruction addresses the first word of the

column. The column dimension is read first from Memory and followed by con

secutive words which comprise the column vector. The remainder of the opera

tion is treated as a conventional vector load instruction.

Load Row: The instruction addresses the first word of the row.

The row dimension is read first from Memory. Memory addresses are incremented

by the column length to produce the desired row vector. The instruction is

then treated as a conventional load.

5.68

Load Shape: The instruction addresses the Array as usual for read

ing the entire array. Reading stops with the last dimension word. The opera

tion is subsequently treated as a conventional load instruction.

Monadic Shape: The dimension vector of the Array which presently

resides in the accumulator replaces the entire array.

Reshape: The vector M is read from Memory and these dimensions

of M replace the dimensions of A. If the total length of M is shorter than

A, the size of A is appropriately foreshortened. If A is shorter, the A terms

are repeated from the beginning until length required is satisfied. Cycling

Array A is the normal process in dealing with A as a Matrix (i.e., see inner

product).

Two pages of Task Memory are assigned to Matrix Operations, and

each time the Array in the accumulator is modified, the Working Page is moved.

This makes all Matrix Operations dynamic. The above Monadic Shape moves the

dimension vector, and effectively POPs the other page pointer. Reshape thus

finds space for the dimension vector even though the original vector was

shorter.

Catenate: The dimension of Array M modify the dimension of Array

A. If both are vectors, then lengths are added. If both are Matrices, then

row dimensions are added. One combined Array is formed by transferring first

Array A, then following it by Array M.

Catenate by Column: The column dimensions of ~1 are added to A.

A single array is formed by reading a column of A follo\ved by a column of }1

until both arrays are completed. The number of rows should be identical.

(If not, the dimensions of M governs as in reshape and A will be truncated

or repeated as required).

5.69

Laminate: An additional dimension will be formed by increasing

the dimension vector. The new dimension will be length 2. The two arrays

are assembled as in Catenate.

Laminate Column: A new dimension is formed with the contents of

the last old dimension (i.e., Vector length becomes Row length) and the column

length becomes 2. Arrays are merged by alternating words of each.

Load Transpose: The Rowand Column dimensions are exchanged. The

Memory reads each row in sequence rather than columns first.

Transpose: Same, except applied to the Array in the accumulator.

Reverse: The Array in the accumulator is addressed backwards, to

produce the new array.

Store: The accumulator is stored in the Task Memory at the address

supplied. Store is accomplished according to specified data types, for example

there is an instruction Store Integer Vector. Overflow and other indicators

are provided for all store operations.

5.6.4 PMU Only Instructions

The instructions listed in this section are taken from an early

reference [5.1] and may have been changed. The Branch and Task Memory

Instructions are:

1. NOP No operation

2. XEC* Execute instruction located at ADDRESS

3. TRU Transfer unconditional

4. TRS* Transfer to subroutine

5. INC Increment memory contents

6. DEC Decrement memory contents

*Explained further in [5.1].

5.70

are:

The PMU Scratch Pad (PMUSP) Instructions and Stack Operations

1. LDSP Load scratch pad register

2. STSP Store scratch pad register

3. TDSP* Transfer on decremented scratch pad:

PF designates PMU Scratch Pad register and R

equals decrementing amount. If the decremented

PMUSP value equals zero, a transfer is made to

the ADDRESS, otherwise the PMUSP register is

replaced with the decremented value.

4. APST* Advance Program Stack Pointer:

The pointer in PMUSP designated by PF is

incremented by one and the program counter

stored in this PtIDSP register, and the ADDRESS

value is put in the program counter.

5. RPST* Return program stack pointer:

The 12 least significant bits of the memory

location specified by the PF replaces the

contents of this location are decremented

by one.

6. AAST* Advance accumulator stack:

The contents of the A stack pointer

located by PF field, are incremented by

one, and the contents of the accumulator

are stored in the incremented memory

location. Incremented A stack pointer

is restored.

*Exp1ained further in [5.1].

5.71

7. RAST* Return accumulator stack pointer:

8. AEST

9. REST

Contents of memory location specified by PF

are sent as an operand to APQ. The RAST OP-

CODE is interpreted as a NO MODE load accumulator

and the value of the A-stack pointer is decremented

and returned.

Advance external device stack pointer:

Similar to AAST.

Return external device stack pointer:

Similar to RAST.

For some unknown reason Raytheon refers to the PMUSP as the FSP for Fetch

Scratch Pad in this section.

5.6.4.1 Load and Store Instructions

Two basic load operations (LD = load and LN = Load Negative) are

combined with four mode options (A = fixed point, F = floating point,

C = complex and I = integer) and three word length options (blank = full word,

LH = left half and RH = right half) to produce 24 load instructions. The

load instructions actually cause a mode change to the designated mode. All

the load instructions are listed in {5.1], but they are not included here

because of the probability that they will be changed.

The store instruction STA is defined for full word, left half and

right half word. A Deferred Store instruction, DST, is also defined (see

subsection 5.2.4).

5.6.4.2. Input/Output Instructions

The development of an adequate set of Input/Output instructions was

impeded by the lack of definition of the relationship of the DPE to the external

*Explained further in [5.1].

5.72

subsystems. However, one major instruction, LDE or Load External, is defined

in which bits 8 to 11 specify the various subsystems the PE may wish to

communicate with. Examples (and assigned code) are as follows: Main memory

or RAMM (0), BORAM (1), Matrix processor (2), bulk processor (3), I/O #1 to

#4 (4-7), DPE #1 to #4 (8-11), Master Executive or MEC (12), System Clock (13),

Operator's Console (14), and undefined (15). (Note the present design calls

for a Signal Processing Element rather than a matrix processor and a bulk

processor.)

The processing of the Load External instruction in the p~ru involves

placing a 40-bit word on the external cable to the I/O subsystem. The 40-bit

word is composed of bits 8 to 15 of the instruction plus the full 32 bit

word from the memory address specified by the effective address.

Besides Load External instruction, other I/O and interface instruc

tions such as STE (store external), LDB (Load BORAH) and STB (Store BORA.'1)

would also be implemented. Since all I/O instructions have the same format

to the DPE and merely get interpreted differently by the device, new subsystems

and instructions can be added ~vithout affecting other elements.

In summary when the list of AADC array instructions is examined

(including reduction, inner product, outer product, index generator, ravel,

dimension, catenation, lamination, rotation, transposition, reshape, take,

drop, reversal, expansion, compression and many array manipulation instructions),

it should be obvious that the Data Processing Element has many of the features

necessary to execute the APL language directly in hard\vare [5.3 and 5.6].

5.73

5.7 DETAILED DESIGN

The detailed design of the PE is considered beyond the scope of this

report. Section 7 of Reference 5.1 contains 84 pages of logic diagrams, wiring

diagrams, logic equations and explanation which represents the detailed design

of the PEe Although parts of some diagrams are unreadable, this section seems

to be quite satisfactory for further study in the detailed design of the PE,

including a detailed simulation. Raytheons 1972 reports are not available at

NPS and therefore it has not been determined if part of Reference 5.1 has be-

come outdated [5.3]. ,

5.74

5.8 CONCLUSIONS

5.8.1 Current Status of DPE Design

The current status of the Data Processing Element as reported at

the 1973 AADC Symposium in January 1973 [5.4] is that:

1. The Raytheon interim report [5.3] has been superceded by a

final report dated December 1972 (Not yet available at NPS).

2. Part III of the Final Report referenced above is a DPE Users

Reference Manual describing how to use the DPE as it now exists.

The DPE now exists as two simulations in APL - one simulating

the PMU and the other simulating the Arithmetic Processor.

This document formally defines the basic DPE operations by

describing the operations at the bit level using APL. The DPE

simulator can be used to verify programs written for the DPE.

With fairly light load (about 10 other users) it takes about

15 minutes of elapsed time to complete 1000 additions on the

DPE simulator.

3. The DPE Advanced Development Model (ADM) is scheduled for

delivery in March 1974. The PHU for the AD~1 will be four

modules (compared to one card on final AADC version) with about

the same number of modules for the Arithmetic Processor. The

ADH will operate at 2 HIPS using 11 nanosec/gate off-the-shelf

logic. It will use a 4K, 36-bit, ISO-nsec Task Memory.

4. The ADDRESS field has been extended to l6-bits by dropping

the R field. This means that 64K of virtual memory can be

addressed and thus any program module or array can be 64K

5.75

words long. A program may still have many program modules.

5. All arithmetic operations are completed as double precision

operations. The results is then stored, as specified by the
,

result data type, as a 32-bit integer, a 24-bit mantissa and

8-bit exponent real number, or a 56-bit mantissa and 8-bit

exponent double precision number.

6. The DPE now has a multi-bus system feature that is actually a

one word input queue that is always available for access from

~he bus. Thus any unit can communicate with a DPE by simply

sending a word on the bus. The unit does not have to test

for DPE busy or wait because the input queue is always avail-

able (every 150 nsec).

7. The Program Management Unit (PHD) is a modular stand-alone

minicomputer. It has its own instruction set and operates on

16-bit words. It can address all 64K words of virtual Task

Memory. It performs support for the Master Executive Control

(MEC) using a microprogrammed hardware ROM and special stack

instructions.

8. The PMU is also being considered as the external I/O control

unit - see chapter 2.

5.8.2 Conclusions and Future Research

I will have to agree with Raytheon in that, " ••. this has been one of

the most far reaching and significant studies with respect to the Processing

Element Analysis, Design and Architecture. The tremendous capabilities

incorporated into the AADC system will have an effect upon future computer

architecture of any system attempting to make machine design more compatible

5.76

with High Order Languages. Conversely, HOL design can be improved by a con-

sideration of the architectural concepts of AADC."

When the size and cost of PE is considered in addition to its tremendous

capabilities, this design has to be the biggest breakthrough in computer hard

ware development since the transistor.

The problem now - assuming the PE can be built according to the design

specifications - is to develop the rest of the AADC equipment to effectively

utilize this powerful processor and to develop High Order Languages and Problem

Oriented Languages so that the user can easily and effectively program the

powerful AADC system. The AADC with all its power is not going to make any

significant impact on any of the major computing problems unless the AADC also

reduces the cost of software development and maintenance.

5.77

Problems on the PE

5.1. Design a four bit at a time fixed point multiplier using,

a) AND, OR and NOT gates,

b) NAND gates.

5.2. Design the polynomial execution hardware using,

a) ax + b modules,

b) register transfer modules (RTM) ,

c) logic gates.

5.3. Assume the instructions are not uniformly mixed at the ratio of 7 short

instructions to 3 long ones, but are bunched so that, ·for any set of 16

sequential instructions, the ratio is significantly different. Calculate

the actual throughput for different ratios. Calculate the probability of

getting 16 instructions with a given ratio when the long term ratio is 7

to 3. Plot the actual throughput verses the probability of getting that

throughput (i.e., that short term ratio).

5.4. Calculate the expected queue length in each case in problem 5.3. What

would be the significance of doubling APQ?

5.5. Calculate the actual throughput for various ratios of branching along the

less probable path, assume a uniform mix ratio.

5.6. Construct an example where the execution time is significantly reduced,

as well as the length of the program, by Parenthesis Control.

5.7. How many coefficients are needed to obtain 32 bit accuracy for each of the

functions in Table 5.2.2? How many for 20 bit accuracy? What is the

minimum set of coefficients to calculate all the functions? Discuss the

tradeoff between speed of execution and the amount of storage for the

coefficients.

5.78

1.8. Estimate the time to complete each of the vector and matrix operations.

How does the operand fetching time compare to the actual execution time?

1.9. In APL the matrix product has been generalized to apply to any two

operations as well as the standard multiply and add operations. Assuming

this can be done on the PE and that the execution time for each instruction

is equivalent to add (i.e., takes 100 nsec), estimate the time to complete

this operation for a matrix with N elements. Compare it with the standard

matrix multiplication time. Also compare the instruction fetching time to

the execution time for this operation. (An example of the use of this

operation may involve the equal and add operations to find the sum of the

number of places that two matrices have the same elements.)

>.10. (a) Construct a set of HOL constructs to take advantage of the powerful

vector and matrix machine language instructions in the PEe

(b) Draw a flowchart of a compiler to convert the HOL constructs into

PE instructions.

(c) Check the operation of your compiler by writing a computer program

and testing it.

(d) Derive algorithms that do not limit the size of the matrices in the

HOL. Hint: This probably involves partitioning the matrix and may

involve recursive calls.

(e) Repeat (b) and (c) above for the algorithms in (d).

(f) Estimate the execution speed for the operations in (a) and (d) above.

5.11. How do the execution times for the algorithms in question 5.10 (d) change

if there are 32 registers capable of manipulating 5 x 5 matrices?

5.12. If the AP scratch pad were increased to 32 registers could the cofactor

mechanism discussed in the report be generalized to handle 4 x 4 and

5 x 5 matrices.

5.13. Determine the rationale for the statement, if it is true, that multiply

and division algorithms are simplier for the sign and magnitude number

system than for 2's complement number system.

5.14. What algorithms exist in the literature for fast multiplication and

division using 2's complement, l's complement or sign and magnitude number

systems?

5.15. Hhat are the advantages and disadvantages of using a module N number

system for AADC? Hint: consult notes by Ray Nilson, UCLA.

5.16. Simulate the block diagram shown in Figure 4.5 of Reference 5.1 (which is

a detailed version of Figure 5.3) and get a listing of all the functions

which could be produced by selecting various control signals. Which ones

might be useful for micro programming and should be added to the macro

instruction set.

5.17. Count the total number of OF codes defined in this report. How many micro

instructions can be added into the 8-bit macro OP code? What is the

minimum set of micro instruction that must be added to the PE so it can be

an effectively micro programmed.

5.18. How could P and V operators [Dijkstra 5.7] be implemented in the PE?

{The P and V operators ar~ two primitive operations used to simplify the

communication and synchronization of processes or tasks, the primitives

prevent any group of tasks from blocking each other and causing a deadlock.

The primitives operate on non-negative integer variables called "semaphores"

and have the property:

1. V(s): s is increased by one in a single indivisible

action; the fetch, increment and store operations

cannot be interrupted.

2. P(s): If s is not zero decrement s by one in a

single indivisible action. If s equals zero, the

P operation must wait until s is not zero.

The indivisibility of the P and V primitives assures the integrity of

the value of the semaphore [5. 8 , section 3.3].)

5.81

References for the Processor Element (PE)

5.1 AADC Arithmetic and Control, Functional Block Diagram, Design, Analytical

Study; Raytheon Company; Report No. BR6l54; December 1970; NAVAIRDEVCEN

Contract N~2269-70-C-0210; Unclassified-NOFORN; AD-BBO-51D; (44 NPS)*.

5.2 AADC Development Program Progress Report Number 10; R. S. Entner, NAVAIR-

SYSCOM Code 5333F4; May 31, 1972; Unclassified; (78, NPS).

5.3 Interim Report for the Arithmetic and Control Logic Design Study for AADC;

Raytheon Corp.; NADC Contract No. 62269-72-C-0023; May 1972; (76).

(Section 4 is also available as Enclosure 4 to [5.2].

5.4 All Applications Digital Computer "1973 Symposium; Orlando, Florida;

January 23-25, 1973; Proceeding not yet available.

5.5 Report on the Determination and Specification of the Preliminary InstructioD

Repertoire for the AADC (ll); System Consultants Inc.; February 1970; NAVAIR-

DEVCEN Contract N62269-69-C-0574; Unclassified; AD-867-055; (24, NPS).

5.6 APL/360 Reference Manual; Sandra Pakin; Second Edition; Science Research

Associates; 1972; (NPS).

5.7 Solution of a Problem in Concurrent Programming Control; E. W. Dijkstra

Comm ACH 8, 9 (Sept) 1965; p 569j (N.,.;PS)

5.8 Logical Design of Operation Systems; Alan C. Shaw; Draft copy of a book;

Dec 1972; Section 3.3; (N PS) • ...,

5.9 ~inal Report for AAPC Arithmetic and Control LOiic Desiin Study; Part I,
II & III; Raytheon Company; Report #BR-7l62- Aug 1972- Unclassified· AD-909-00
(NPS) • ' , ,

*AADC Bibliography number and available at Naval Postgraduate~Schoo1

5.82

Chapter 6

MASTER

E X E CUT I V E

CONTROL

Section

6
6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.4.1
6.2.5

6.2.6
6.2.6.1
6.2.5.2
6.2.6.3
6.2.7
6.2.7.1
6.2.7.2
6.2.7.3
6.2.8
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3

6.3.3

6.4
6.4.1
6.4.2
6.4.3

6.4.4
6.4.4.1
6.4.5

TABLE OF CONTENTS FOR MEC

List of Figures
List of Tables
G1ossory of Terms for MEC

MASTER EXECUTIVE CONTROL
INTRODUCTION AND SUMMARY OF RESULTS
Introduction
Summary of Results
HARDWARE MASTER EXECUTIVE CONTROL
Applicable AADC Configurations
System Bussing for Hardware Executive
Operation of the AADC Baseline System
Description of MEC Functions
Special Safety-of-Flight MEC Function
Why a Special Purpose Hardware Master Executive

Control Unit
Philosophy and Operation of Hardware MEC
Allocation of Hardware Resources
Program Module (Task) Identification Words
Ordering of Tasks in a Mode
Description of the Hardware Executive
Summary of Hardware MEC Operation
List of Interrupts and Routines
Reference to Flow Charts on Hardware MEC Implementation
Summary and Preliminary Evaluation of the Hardware MEC
BACKUP MEC FOR BASELINE SYSTEM
Applicable AADC Configuration
Implementation of the Floating Software Executive
PMID and Hardware Resource Identification Words
Summary Flow Chart for Backup Floating Software MEC
Reference to Flow Charts for Floating Software MEC

Implementation
Summary and Preliminary Evaluation of Floating

Software MEC .
DEDICATED SOFTWARE MEC FOR DUAL PROCESSOR
Dual Processor System
System Bussing for Dual Processor System
Operation of Dual Processor System with Dedicated

Software MEC
Summary Flow Chart of MEC for Dual Processor
Internal and External Interrupts
Summary and Preliminary Evaluation of the Dedicated

Software MEC on Dual Processor System

6.1

Page

6.1ii
6.iii
6.iv

6.1
6.1
6.1
6.4
6.7
6.7
6.8
6.10
6.12
6.13
6.14

6.15
6.16
6.16
6.19
6.22
6.23
6.24
6.29
6.34
6.40
6.40
6.41
6.41
6.42
6.48

6.48

6.52
6.52
6.53
6.53

6.54
6.56
6.57

Section

6.5
6.5.1

6.5.2

6.5.3

6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.7.1

6.1.2
6.7.3

TABLE OF CONTENTS FOR MEC (Cont)

FLOATING SOFTWARE MEC FOR OPTIMIZED SIMPLEX PROCESSOR
Operation of the Optimized Simplex with a Floating

Software MEC
Summary Flow Chart of Floating Software MEC for the

OS System
Summary and Preliminary Evaluation of the Floating

Software MEC on the Simplex System
EVALUATION AND RECOMMENDATIONS
Method of Evaluation
Evaluating the MEC Implementations
Recommended MEC Implementation Methods
Autho~s Comments on the Evaluations
RECOMMENDED AREAS FOR FURTHER STUDY
Continued Development, Simulation and Implementation
of MEC

Continued Development of MEC Course Material
Cu~~ent Status of MEC Developments

Questions on the MEC
References for the Master Executive Control (MEC)

6.ii

Page

6.59
6.59

6.60

6.62

6.64
6.64
6.64
6.67
6.71
6.73
6.73

6.75
6.76

6.78
6.79

Figures

6.1
6.2
6.3
6.4
6.5
6.6
6.1
6.8

6.9
6.10

6.11

Tables

6.1
6.2
6.3
6.4
6.5
6.6
6.1
6.8

List of Figures

Title

Block Diagram of the AADC Baseline System
Program Module Identification Word
A Typical Job Stream Chart
Simplified Flow Chart for MEC Operation
Summary Flow Chart for MEC Operation
Program Module Complete Interrupt Flow Chart
Data Transfer Interrupt Flow Chart
Summary Flow Chart of Floating Software MEC Baseline

AADC System
Dedicated Software Dual Processor AADC System
Summary Flow Chart of Floating Software MEC for Optimized

Simplex System
Recommended Areas for Further Study

List of Tables

Types of List Entries for MEC Interrupts/Routines
Request Words for MEC Interrupts/Routines
Types of MEC List and KERNEL Sublist Entries
Floating Software Overhead Estimates in Microseconds
Summary of Qualitative ~ffiC Performance Attributes
Baseline AADC System Evaluation
Multiple Memory Multiprocessor Evaluation System
Optimized Simplex. Processor Evaluation

6.111

Page

6.9
6.18
6.20
6.24
6.25
6.31
6.32
6.43

6.52
6.61

6.74

Page

6.26
6.28
6.47
6.50
6.66
6.68
6.69
6.70

A&C

AM

Baseline

BORAK

Bulk
Parallel
Processor

~C

MID

MINCOMS

MMM

~p

os

OSP

PE

PM

Glossory of Terms for MEC

- Same as Processor Element or PE for this chapter. Actually a PE
is an A&C plus a Task Memory, see Chapter 5.

- Associative Memory: heart of hardware MEC and used for fast
searches of current PMID words and hardware resource words.

- The largest AADC architecutre designed to satisfy worst-case
conditions. It consists of a large BORAM, RAMM, several PEs each
with its own TM, dedicated I/O units, a high speed I/O multiplexor
and probably a hardware MEC.

- Block Oriented Random Access Memory: stores PMs in blocks of 128
to 512 words.

- Same as Matrix Parallel Processor.

- Master Executive Control.

Mode Independent Data: data that is used to communicate between
PMs and between modes.

- Multiple Internal Communication System: a standard interface to
the rest of the aircraft.

- Multiple Memory Multiprocessor: an AADC architecture similar to
Baseline except the PEs have no TMs and Program Modules are executed
from RAMM.

- Matrix Parallel Processor: for AADC parallel processing of radar
signals, video signals and multiple targets. Also called Bulk
Parallel Processor and Signal Processing Element.

- Optimized Simplex: same as OSP.

Optimized Simplex Processor: the m1n1mUm AADC architecture
consisting of a single PE with its TM, ~, BORAM, I/O interface
and possibly a MPP.

Is synonomous with Processor in this section; a powerful serial
processing central processing unit or CPU capable of executing
3.3 MIPS (Chapter 5).

- Program Module: a segment of a program.

6.iv

Processor

T.M

- Program Module (Task) Identification Words.

- Short for Processor Element or PEe

- Random Access Main Memory: used to store mode independent data
and to buffer I/O.

- Read Only Memory: used by hardware MEC for permanent data.

- Time Division Multiplexed Block Transfer Multiprocessor: an
intermediate AADC architecture similar to the Baseline system
but with no hardware MEC.

- Task Memory: 4K word random access memory attached to a PE for
holding the currently executing PM and temporary variables.

6.v

CHAPTER 6

MASTER EXECUTIVE CONTROL

6.1 INTRODUCTION AND SUMMARY OF RESULTS

This chapter presents the results of a design study of the executive

systems, or operating systems, for the All Application Digital Computer. Each

of the functional building blocks comprising an AADC system must perform its

functions under the guidance provided by an executive system called the Master

Executive Control (MEC).

This chapter is a report on the design study for the MEC and includes

design philosophy, design tradeoffs, MEC capabilities, operating characteristics,

NEC evaluation criteria, and methods of implementing MEC functions including

some English language flowcharts. The chapter is based primarily on a design

report by Honeywell [6.1] and a paper [6.5]*.

6.1.1 Introduction

The development of the MEC is based on advanced technology and meth-

odologies such as:

1. AADC architectures based on modularly expandable

functional building blocks,

2. New memory development and complex memory hierarchy,

3. LSI packaging,

4. Micro programming,

5. A powerful Processor Element,

6. Multiplexed I/O.

This chapter is basically a simplified and shortened version of Reference [6.1].

*Unfortunate1y a later Honeywell report [6.7] was not available at the time of
WTiting and is not included in this Chapter. See current status of MEC in Sub-
section 6.7.3.

6.1

References [6.2 and 6.3] give an initial view of the MEC and may be

consulted for historical purposes. References [6.4 and 6.5] give a simplified

version of the" material in [6.1]. Whereas Reference [6.1] considers a total of

ten combinations of hardware organization and Master Executive Control systems,

this report will only consider three of the four recommended combinations plus

one extra. The ten combinations include all possible combinations of the four

hardware organizations with the three MEC systems, with two exceptions. The four

hardware organizations include the AADC Baseline system, the Time Division

MUltiplexed Block Transfer Multiprocessor, the Multiple Memory.Multiprocessor

and the Optimized Simplex organizations. The three MEC systems include a Special

Purpose Hardware MEC, a Software MEC using a Dedicated Processor and a Floating

Software MEC. One of the combinations that is not considered is the TOM Block

Transfer Multiprocessor organization with hardware MEC since this organization

is essentially a Baseline organization with a failed hardware executive. (In

[6.1] the two software executives for th~ TDM Block Transfer Multiprocessor

organization are included along with the discussion of the Baseline organization.)

The other combination which is not considered in [6.1] is the Optimized Simplex

organization with the hardware MEC because of the simplicity of the organization

and the relative expense of the hardware MEC.

The four recommended combinations are the Special Purpose Hardware MEC

with the Baseline and the ~Iultiple Memory Multiprocessor organizations, the

Floating Software MEC with the TDM Block Transfer Multiprocessor organization and

the Dedicated Software MEC with the Optimized Simplex organization. Notice that

Honeywell, in the recommended combination, has changed the definition of the

Optimized Simplex organization; the Optimized Simplex has a single Processor

6.2

lement (PE) designed as a minimal system but Honeywell has recommended a second

rocessor to execute a Dedicated MEC. The justification for the second processor

,8 that "a single processor with floating software does not exhibit the

'eliability, graceful degradation or speed deemed necessary for this system."

:ince the single PE is still a viable configurate for AADC, the Optimized Simplex

~th Floating Software MEC is also included in this report. By their own

~dmission the Honeywell's report is "quite formidable and includes a large amount

1£ detail", containing some 247 single-spaced pages - not counting the six

lppendices which explain the basic assumptions of the study and calculation of

:he logic and memory requirements. It is hoped that this chapter will be a more

~eadable version of that material, but that it will still contain the essential

lesign and operating information of the MEC.

This chapter is divided into seven sections including this one. The

;econd section describes the hardware MEC on the Baseline system. This system,

Ln a slightly modified version, could also apply to the Multiple Memory Multi

~rocessor organization. The third and fourth sections describe the other two

recommended combinations of AADC hardware and MEC systems as described above.

rhe fifth section contains the true Optimized Simplex Configuration with a

floating MEC. The four sections above all contain subsections on system

operation, MEC functions and operations and the basic criteria for comparing MEC

Systems. The sixth section is a summary and critique of the Honeywell evaluation

techniques and recommendations. The last section contains recommendations for

further developmental study of the MEC, as well as recommendations for improving

the course material in this chapter.

6.3

6.1.2 Summary of Results

This subsection is a quotation from [6.1] •

. A study of MEC implementations has been completed for all
system configurations mentioned in section 1.1, [actually
section 6.1.1]. Where applicable, three methods of imple
mentation were flow charted, timed, and evaluated. The
resultant English language flow charts, and detailed memory
and timing estimates are included in this report. Summary
flow charts are included to serve as a key to the operation
of the overall Master Executive Control.

All implementations were studied with the functional and
operational characteristics of the basic AADC concepts i~
mind. Wherever the MEC implementations required a
characteristic of an AADC functional unit or a program
module which is not specifically covered in the. baseline
definition, an explanation of this characteristic was
presented.

In order to effectively evaluate the MEC implementations
studied, a list of attributes was formulated. Each
attribute was assigned a weight corresponding to its
assumed relative importance. For each system configuration,
a table was constructed and the candidate implementations
were scored for each attribute. From these tables a
weighted sum for each implementation was obtained. This
weighted sum is a measure of the efficiency of the imple
mentation method when used in the particular system for
which the table was constructed.

The evaluation of implementations was complicated by the
need for certain information which is not, as yet available.
Examples of this sort of information are:

•
•

Total tasks in a system
Number of tasks in a mode
.Average run time of a PM
Average number of MEC functions required per PM

The recommended implementations for the four system
architectures considered in Lhis study were made with this
in mind.

In the Baseline and Multiple Memory Multiprocessor systems
the special purpose Hardware MEC is recommended. This is
due largely to its speed advantage, a factor of about four
to one over the dedicated software, and eleven to one over

6.4

the floating software in the baseline system. Other
factors which pointed to this recommendation are those
relating to the fact that this unit is specifically
designed for MEC functions. This report shows that a
.special purpose hardware implementation of a Master
Executive Control unit can be very effective when
utilized in a very complex multicomputer or multi
processor system. The use of an associative memory in such
a hardware executive can result in very high speed execution
of executive functions. It has also been shown that the
hardware complexity of such a unit will be considerably less
than that required in a single general purpose processor.
This infers that a special purpose executive should have
cost, reliability, size, weight and power advantages
over the use of an entire processor to accomplish the MEC
functions.

The floating software MEC implementation was recommended
for the Time Division MUltiplexed Block Transfer system
primarily because of graceful degradation, cost and the
other related attributes of size, weight and power. The
floating software is an ideal MEC implementation in a
system which does not require a heavy executive load.
The overhead time required for this implementation is
quite formidable and greatly affects the computation
time of some executive functions. The required storage
of a MEC kernel in one processor at all times also places
a restriction on the size of program modules.

The Dedicated software MEC implementation was recommended
for the Optimized Simplex system due to its characteristics
in every attribute except cost, size, weight and power.
The use of a single processor (floating software) did not
exhibit the reliability, graceful degradation or speed
deemed necessary for this system. This appears to warrant
the cost of the additional processor.

As a result of this study, the following conclusions can
be drawn:

•

The use of a special purpose hardware executive
utilizing an associative memory can execute
executive functions considerably faster than
either software implementation.

If a large enough quantity of special purpose
hardware executives are built, they have the
potential of being less expensive than a system
processor dedicated as the executive.

6.5

•

•

•

•

A special purpose executive can be made more
reliable than the proposed system processors.

A floating software executive has high over
head requirements and should only be used in
a system with low executive function load.

A 4096 word task memory should be sufficient
for all software executive requirements.

A software executive requires each system
processor to contain a real time clock and a
loop counter.

A section of this report has been devoted to the definition of MEC
related studies which are felt to be necessary to insure the
smooth evolution of the AADC concept. These recommendations
were made to show the steps which would result in'the implemen
tation of a MEC to be used in a prototype AADC system.

6.6

6.2 HARDWARE MASTER EXECUTIVE CONTROL

The hardware Master Executive Control (MEC) is by far the fastest and

the most powerful MEC for the AADC system, being four times faster than the

dedicated software MEC and eleven times faster than the floating software version.

The hardware MEC is the recommended version for the Baseline and the Multiple

Memory Multiprocessor Systems.

The hardware MEC is responsible for the following basic functions:

1. Monitor the various processing elements in the system

to meet the requirements of all (externally-requested)

modes of operation of the aircraft.

2. Assign operational programs to the various processing

units.

3. Supervise data transfer between units within the AADC.

4. Supervise the overall system operation, for such items

as processor failures, interrupt requests, etc.

The design and operation of the hardware MEC as it pertains to the

Baseline System is discussed in this section. The means of communicating

between MEC and other AADC components is presented, along with a summary flow

chart of the MEC operation. All the routines in the MEC are listed and two

sample functions are presented in detail. Some of the material in this sub

section is taken from [6.5].

6.2.1 Applicable AADC Configurations

The Baseline configuration contains the BORAM for Program Modules,

RAMM for mode independent data and I/O buffers, several PE's (probably at least

three) each with its own Task Memory for serial processing, Matrix Parallel

6.7

Processor for fast parallel processing, a high speed multiplexed digital inter-

face as an interface to MINCOMS, dedicated I/O units for any PE with heavy I/O

requirements, .a programmable channel selector switch capable of connecting any

PE with any dedicated I/O Unit, and a special purpose hardware MEC for controlling I

the operation of the AADC system. The Baseline system is shown in Figure 6.1.

For further description refer to Chapter 2.

6.2.2 System Bussing for Hardware Executive

Four distinct busses are used to transmit tasks and data throughout

the Baseline system. This bussing concept allows the MEC to maintain an orderly

flow of data throughout the entire AADC system. These are shown in Figure 6.1

and defined below.

1. Program Module (PM) Transfer Bus. This unilateral
bus is used to transfer PMs for the BORAM to the
processor (or PEs).

2. Data Bus. This dual width bus is used to transfer
data simultaneously between PEs and I/O or mode
independent data (MID) storage areas of RAMM.

3. Processor Bus. This bus allow each PE to communicate
with its nearest neighbor. It is not capable of by
passing a failed processor. An alternate path around
a failed processor is though the data bus. The
primary use of this bus is in executing "special
processing ll PM's on adjacent PE's.

4. Executive Bus. This bus provides the communication
and control between MEC and all other system
resources. It is used to transmit all interrupt
requests within the AADC system. It must be an
ultra-reliable bus because the consequence of its
failure could be catastrophic.

6.8

--

HASrf.1 1M 1IWtSRI IUS
UEC,;UTIVI - --. IOlWt
CON1ROL I"'" -

..-

_1 1
,..

~ I II Ie ,II
If SI'UIl

Dt\TA BUS IULIC
r PH;11Al IW1:'IAo - PAIlALLF.L
0 ~1ll1.11 .. u:a" "'OCE5S"1I

" lNIf.UACE
4,. 4,. j~ S j"

t:XF.n: 11\'r. BUS .. ~, , .. ~.~ •• l' ., ~·t ,
Mlt)(:F.SS()R

C7\
• 1'H,tll'F,SSOR _ PROCr.sSOR PJOCESSOR

r--+ ---- ~ .. ---- 14-000 -+ -------- ... --- ~ -
TASk ~!t-:HIlItY

iAS": ~1~::-ltlM\' TASK l'Gl1oRY TASIC HtHORY

.. ,. 4~ .. ~ 4~

pIt\lCt:SSOR IUS

~. ~~ ,~ ,~

.... (:IIA.-.JN£L SELEC1'OR SWITCH
p-

1/1) I III 0 0 0 I '" I III

Figure 6.1- ~lock Diagram of the- AApC Baseline Sy~tem

The purpose of the buses is to allow the remainder of the system to

continue its operation while PMs or data are being transferred without tying

up other system resources, (except for a small amount of interference on the

executive bus). The first two buses make it possible to have PMs being loaded,

mode independent data from RAMM being transferred, and I/O data being trans

ferred to different Processors simultaneously with the only chance of conflict,

the Occurence of a simultaneous request for MEC on the executive bus.

6.2.3 AADC Baseline System Operation

The job stream of the aircraft computer system is separated into a

number of modes of operation. Each mode is segmented into a number of computational

tasks called Program Modules (PM's). The proper operation of the system requires

the computation of PM's at a given rate and in the proper sequence to effect

completion of all required tasks in a given mode.

Initially, all PM instructions and data are stored as a block, or series

of adjacent blocks, in the BORAM. Requests for input data required by each PM

are stored in the PM as instructions. 'PMs initiate interrupts to the MEC when

mode independent data is required from the RAMM. PMs make requests directly to

the I/O memory of the RAMM through the buffer access switch for external input

data.

The following types of PM's are assumed to be resident in the system:

•

•

•

Iterative tasks which have real time requirements.

Real time tasks which are activated after the

completion of other system tasks.

Real time tasks activated by external interrupts.

6.10

A program module can call in a block or blocks of storage from the

BORAH via an instruction. This instruction is sent to the MEC as a data trans-

fer request. ~y this means, a PM can call up its own successor, pull in another

page of its own program, or cause an overlay of itself (or part of itself) while

maintaining control of the processor. In the case where the PM continues to call

itself, the PE is considered "dedicated" to the computation of that PM.

Two types of PMs which require "special processing" are considered in

this study. These are the following: 1) PMs that require two task memories

and 2) pipeline processing PMs. In the first case, the second task memory is

accessed through the control unit interface. In the second case, a group of

adjacent processors is configured, each of which will compute the proper PM.

Special processing PMs are given assignment precedence over other PMs with equal

time constraints.

PMs that require two task memories can be handled by allowing PMs to

call up another PM or its own "second page". Therefore the special processing

case in which a PM requires two task memories is not needed; however, the

references to this case of special processing have been discussed here to

emphasize this special capability.

In order to assist in the operation of the MEC, a set of resource

words are available. There is a word for each resource in ;he system and these

words describe each resource and its present and past states. These words are

stored in memory and can be read out when desired. For each mode* the PM ,

resource words may differ. Therefore, a new set of PM source words must be set

active at the start of each mode.

*The term "mode" is borrowed from avionic applications where it refers to the
type of mission or particular part of the mission, i.e., cruise, alert, search,
attack, bombing, etc.

6.11

Idle processors will notify the MEC by means of an interrupt. Upon

detection of processor availability, the MEC will determine which PM has the

lowest assignment deadline and assign it to the available processor. At this

time, the PM is transferred from BORAM to the processor's task memory. Thus,

in the task memory of a processor, the program module exists as an ordered set

of instructions and data ready for execution.

A PM may be assigned and processed a number of times while the system

is in a given mode. Just prior to each execution, the PM is transferred from

BORAM to task memory of the selected processor. Complete PHs are never returned

from task memory to BORAM. Only selected data resulting from the execution of

a PM may be written into the RAMM from the task memory.

6.2.4 Description of MEC Functions

The Executive Control functions in this section apply to all AADC

systems, with only minor variations. The Executive Control recognizes when a

mode change is encountered, evaluates on the basis of priority and importance

criteria which (if any) program modules of the old mode are to be assigned to

a processor. It also ascertains which tasks (Program Modules) are to be

processed in the new mode and update the Input/Output data sensing for the

requirements of the new mode.

The MEC is cognizant of the status of the "channel selector switch"

for dedicated I/O, and handles all access conflicts. Executive Control also

presents the I/O switch, interfacing with the MINCOMS system, with mode infor

mation such that the switch will properly mUltiplex I/O data. When a processor

becomes available for a new task assignment, the MEC determines the proper task,

6.12

based on the priority and importance criteria of the tasks and the capability of

the available resources. Upon receipt of a transfer request, the MEC initiates

a transfer of data by properly signalling the resources which are to send and

receive data. It then monitors the transfer of data and keeps other units from

interferring with the transfer. Any contignous block of data (including tables)

may be transferred by a single request by specifying the first address and the

numbers of words to be transferred.

The MEC overhead from data transfer is small because the MEC does not

continuously monitor the data transfer. Instead, the MEC initiates the data

transfer and then releases control of the data transfer, and the MEC performs

other processing while the transfer is occuring. Eventually either the data

transfer will time out or a transfer complete interrupt will occur. At this time

the MEC again enters into the previously initiated data transfer and takes control

of the now completed (or possibly erroneous) data transfer. There is very little

overhead involved in this process.

The MEC accepts all system interrupts, determines their priority, and

processes the interrupts at the proper time. Internal interrupts are sent from

system elements to MEC. External interrupt data are stored in the I/O memory

while the interrupt (with its priority) are sent to the MEC.

The MEC also monitors the operation of all system resources. If faulty

operation is detected, the control will initiate a test of the unit in question

to determine and categorize a resource as operable, degraded, or inoperable.

6.2.4.1 Special Safety-of-Flight MEC Function

An additional function, that of the capability for safety-of-flight

function, is performed independently of all AADC functions to assure "safety

of flight". This function is not under control of MEC and acts independently

6.13

of the AADC system. The AADC acts as a backup to this system, and it will provide

the computational capability in case the safety-of-flight computer fails. (The

safety-of-flight computer may also be a AADC computer.)

Several assumptions and three possible methods of implementing the

safety-of-flight function are presented in [6.1, pages 14, 15], but the actual

implementation has not yet been designed.

6.2.5 Why a Special Purpose Hardware Executive Control Unit?

In a multicomputer system such as the AADC baseline system there are

three basic approaches to the implementation of MEC:

1. Use of a system processing element dedicated to the
performance of MEC functions (dedicated software ~mC).

2. A software MEC program which is resident in BORAM
and floats between available processing elements
in the system for execution of executive tasks
(floating software MEC).

3. Utilization of a special purpose ultra-reliable
hardware unit designed specifically to handle the
executive control (hardware MEC).

The floating software MEC and dedicated software MEC in such a system

are executed on standard system processing elements which were designed to

perform general purpose arithmetic, data handling, and logical operations. These

processing elements were designed and sized to handle the programs of a typical

aircraft mission.

A special purpose hardware unit could be optimally designed by

restricting the complexity and computational capabilities to those necessary to

perform the MEC functions. This unit could also take advantage of hardware

concepts which are not conventionally included in system processing elements.

6.14

Two examples of such concepts would be the use of ROM to store the executive

program which enhances the MEC reliability, and the use of associative memory

to speed up th~ many search operations required in MEC processing. Thus it

appears that the optimum implementation wculd be a special purpose hardware

unit.

6.2.6 Philosophy and Operation of Hardware MEC

The MEC operation is complicated by the asynchronous nature of inter-

rupts in a real time system. Depending upon the frequency of occurrence, the

interrupts could become nested and thus cause excessive amounts of overhead

computation and delaying the completion of the processing of some interrupts for

a long time. Nesting of interrupts can be avoided by processing interrupts in a

list structure, that is, during the processing of an interrupt no other interrupt

can be processed. If an interrupt occurs it is placed on the list to be completed

at another time. In order for such a system to be effective, the processing time

required by each interrupt must be small. (At present, the longest interrupt

takes 11 ~sec to be handled). This is', of course, the simplest method of

handling interrupts and is adequate providing no interrupts must be handled

immediately.

The proposed MEC is based upon the following philosophy:

1. Keep each executive function simple to
minimize execution time.

2. Utilize the search capabilities of an associate
memory to minimize execution time of executive
functions.

3. Do not nest interrupts.

6.15

4. Place interrupts on a list in order of priority.

5. Process interrupts to completion based on
priority.

6.2.6.1 Allocation of Hardware Resources

In order to properly allocate the hardware resources of the system

the MEC must be cognizant of the status of all hardware resources. This is

accomplished through the use of resource identification words stored in the

associative memory (AM) of the MEC. Thus each processor, bus, I/O unit, etc.

has a unique associative memory word, called an identification word, which

contains such information about the particular resource as:

• Failure status

Assignment status

• Diagnostic information

Resource identification.

Each of these word types are of different numbers of fields, ranging from 4 to

7, and different lengths from 8 to 22 bits. The MEC also has a MEC ID word.

These hardware resource words are initially stored in the MEC read-only memory

because of the assumed vo1iti1ity of the AM. These resource words are

explained further in [6.1 pages 22-28].

6.2.6.2 Program Module (Task) Identification Words

To assist in the assignment of PMs to processors, each PM has an

identification word associated with it for each mode in which it is active. In

each mode of operation, the proper PM identification words will be stored in the

associative memory of MEC. These words are used to describe the past and present

status of the program modules. Each word consists of twenty-five fields of

6.16

fixed or variable lengths. The fields contain the following types of information

about the associated PM:

Identity of PM

• Address of PM in BORAM

• Area of RAMM reserved for data storage

• Diagnostic information

• Priority in mode

Scheduling information

• Precedence relationship to other PMs in mode

Resources assigned to process PM

• Resources reserved to process PM

Execution status.

The names of each of the fields in the PMID words, along with their

size and whether fixed or variable length, is given in Figure 6.2. Most of the

field names suggest their purpose except for:

1. The resource field which contains a designation for
PMID word, Processor ID word, Bus ID word, Dedicated
I/O word, Memory ID word, Matrix Parallel Processor
ID word, transition PM, AM Word Available, MEC ID
word or List Entry.

2. The PM class which contains a code to represent
normal sequential processing, parallel processing,
task memory not sufficient or pipeline processing.

The size of the PMID word is 148 bits which is significantly larger

than the hardware resource words and, therefore, each PMID word would be

segmented into several associative memory words. For further description of

resource words see [6.1, pages 16-29].

6.17

0\ .

FIELD LENCTH

FIXED/VARIABLE

1

RESOURCE
TYPE

4

V

10

IMPORTANCE
CRITERIA

5

F

2

RESOURCE
NUMBER

8
F

11

ITERATION
PERIOU/
COMPLETION
DEADLINE

10

V

19

EXECUTION

1
V

BORAM
AUDRESS

10
F

12

TASK
DEPENDENCE

32
'V

20

ACTIVE
MODES

10

F

4

NUMBER
OF
BLOCKS

b

F

13

DEDICATED
I/O

2
F

21

OLD
MODE

1
V

5

RAMM
ADDRESS

8
F

14

ASSIGNME.NT
DEAUUNE

10

F

22

RESOURCE
NUMBER
IN MODE

5

F

6

NUMBER
OF
WORDS

5
F

15

IDENTITY
OF
PROCESSOR

3

V

23

STATUS

2
V

7

PM·
CLASS

J

F

1&

FREE
RUNNING I

TIME

5
V

24

PRIORITY

5

F

Figure 6.2. Program Module Identification Word

8

PM
TIME OUT

1
V

17

TERMINAL
TASK

5

F

25

DEDICATED
PROCESSOR

1
F

9

PlfJELINE
PROCESSOR
NUMBER'

2
F

18

TASK
SYSTEM
COLUMN

4

F

6.2.6.3 Ordering of Tasks in a Mode

Due to the limited size of the task memory (assumed 4096 words) many

programs will not fit into a processor. Therefore, all programs have to be

segmented into a set of program modules that are to be executed in predetermined

order: however, in order to save BORAM storage, some PMs can appear as parts of

several overall programs. In the example to follow three different types of

programs are to be processed. These are iterative programs, programs initiated

by an external interrupt, and programs which are to be run once and only once in

a mode.

To ensure that all tasks in a mode are completed on schedule, an

ordered assignment of tasks must be made, using a procedure somewhat similar to

that used in critical path (or PERT) problems. The important information for

each task is: the iteration period/completion deadline, task dependence,

assignment deadline, execution time and whether it is a terminal task. The

critical path solution will determine the ordering or tasks, the first assignment

time and the assignment deadline. This information is then stored in the PMID

words.

Figure 6.3 shows a "typical job stream consisting of four programs which

have been segmented into ten PMs. Program one is an iterative program consisting

of PMS 1, 5, 2, 3, 4; program two is an iterative program consisting of PMs 1,

5, 2, 6, 7; program three is an externally enabled program consisting of PMs 8

and 9; and program four is a one time run program consisting of PM 10. PMs 1,

S, and 2 are common to programs 1 and 2.

6.19

2 3 4

13 I 16 2 28 3 32 4
7 -'!I.. 7

..... 4
_ 4

I~
,. ~

,

0 8 0 13 0 23 0 28
5 3 5 4

r-

ITERATION PM 13 5 22 6 25 . 7
7 ~ 7 16

...
7 Rate

RealTime
Required

Terminal
Task

Operational
status

, In
Wode

Deadline
For
Assignment

EXECUT I ON T I ME

~

0 3

10

. Figure 6.3.

,.

0 16 0 22
6 3

[3f8l--~>rf9l
~~

5 10

A Typical Job Stream Chart

f5fIol
~

12

For each mode of operation, a job stream such as shown in Figure 6.3

is drawn so that values can be calculated and stored in the appropriate fields

of each PMID word. All terminal tasks (PMs which have no successor PMs) are

placed in the rightmost column of the job stream chart. The iteration rate of

iterative programs, the real time requirements of non-iterative tasks, is entered

on the chart. From these values assignment deadlines are determined for all

predecessor PMs with the assignment deadlines being the minimum difference

between the assignment deadline of any successor PM and the execution time of

the PM in question. Thus PM two has its assignment deadline determined by PM

six instead of PM three and, therefore, its terminal task is PM seven rather

than PM four.

6.20

Because it is assumed that there are enough system resources to

successfully complete a job stream within the real time requirements of the

system, no dynamic recomputation of critical path or complex scheduling algorithm

is necessary. We have computed prior to the mission the assignment schedule of

the PMs. Whenever a processor becomes available, a search will be made over all

PMID words in the mode for the minimum value of assignment deadline and a zero

in the operational status fields. (A zero in the operational status field

represents PMs which have not been executed yet this cycle.) This PM is then

assigned to aPE.

All PMs have the digital value representing iteration rate (real time

required) decremented at periodic time intervals. If this value goes to zero and

the operational status is still zero, it is an indication of insufficient resources.

If the operational status of the PM is one and the PM is a terminal task the

entire program is reinitialized. This ensures that the P~ls are run once and only

once per cycle. Note from Figure 6.3 that the operational status of all PMs in

iterative programs (PMs 1-7) is set to zero. This in effect enables them for

assignment. Program three (PMs 8 and 9) is not to be run until an external

interrupt is received, thus the operational status of the PMs in this program is

initially set to one. This in effect disables these PMs until the external

interrupt is received and sets these fields to zero. Since PM nine has no

terminal task (terminal task field equal to zero) program three is not reinitialized

after completion. Program four (PM ten) is to be run once and only once. This

is accomplished by initially setting the operational status to zero and setting

the terminal task to zero. Thus the program once run will not be reinitialized

again.

6.21

In the event of processor failure the number of computations that can

be accomplished in a given time is diminished. This is noted by MEC when PMs

time out (iteration field counts down to zero while operational status is zero).

When this occurs the task load is decreased. The necessary information to

accomplish this MEC function has been restored in MEC. It allows the MEC to

selectively eliminate and/or halve the execution rate (double the iteration

period) of programs on a priority basis.

6.2.7 Description of Hardware Executive

A special purpose hardware Master Executive Control - the recommended

Executive for the Baseline and MMM systems - consists of three basic components:

1. A read-only program memory (ROM) to store the
entire MEC program, resource identification
words, and program module identification words
for each mode of operation. This memory is
estimated at 5122 32-bit words.

2. An associative memory (AM) - the heart of the
MEC - which contains the PMID words for all
active tasks (those in the present mode) as
well as all hardware resource ID words for the
system and the list' of all uncompleted MEC
tasks (LIST). The AM is estimated at 11,600
bits or 362 words.

3. A logic and control unit (CU) to recognize
interrupts, save register data, control the
associative memory, transmit executive inter
rupts and execute the Executive program.
This unit is estimated at equivalent to 4000
logic gates.

Upon mode change the PMID words for the new mode are loaded from the read-only

memory into the associative memory, while the old mode PMID words are still

present. (i.e., there is room for two sets of PMID words). The AM with its

ability to search simultaneously over all words in parallel provides the

necessary high speed operation for the MEC.

6.22

6.7.1 Summary of Hardware MEC Operation

A summary of the operation of the hardware MEC is shown in a simplified

form in Figure"6.4 and a slightly more detailed form in Figure 6.5. Whenever

the system is initialized, an interrupt is received, or an executive task has

been completed, a jump is made in the executive program to "start". The MEC then

determines if there is presently an interrupt on the executive line. If no inter

rupt is present the highest priority class of interrupts is searched for the

oldest entry, and this entry is then selected and processed. This allows first

in first-out operation within a given priority. The list of uncompleted tasks

will never be empty since it contains household tasks which are not removed upon

assignment, as well as interrupts which are removed.

If an interrupt is present on the executive bus, it is simply placed on

the list of uncompleted tasks in with the proper time and priority designation.

The MEC then returns to the task it was processing at the time the interrupt

occurred. Thus, an interrupt is not processed immediately but it is placed on

the list of uncompleted tasks.

6.23

START

Inhibit all
interrupts and
store return
point information

Determine priority
Ind place on list
in proper time

'sequence of receipt

Re~ (fturn
point information
,nd enable
interrupts

Select Highest Priority
class of interrupt from
list

Sel ecl the oldest
. entry in this

priority class
and set loop
timers

Process
entry

Yes Reset
").-----"'4 loop'

Timers

Figure 6.4. Simplified Flow Chart of MEC Operation

6.2.7.2 List of Interrupts and ,Routines

In order to accomplish the MEC functions of Subsection 6.2.4, a series

of executive programs have been defined in flow chart form. These can be seen

in detail in [6.1]. In order to keep execution time do\~, the basic programs

(interrupts) have been segmented into a series of routines. A routine is placed

on· the LIST as a result of a decision made during processing of an interrupt.

Those interrupts and routines defined are shown in Table 6.1. A detailed flow

chart of two sample interrupts are shown in the next section. One entry in

Table 6.1 is designated as both an interrupt and a routine. This is because this

program can be initiated by both an interrupt and by means of a decision made

while processing another interrupt.

6.24

•

PlDCUI
'AILl'U
lJItI,Uun.

II

111111111 ALL
INtERRUI'TS •

STORE IF.IURN
POI'" lNFO~lATION til
IQl.

SAVE UT\:1Ut POIlIT
1I1f0WtAnON III Iql.

6

NO

•

SIWtCH 1111-: LIST
FOR IIIGIlF:ST
l'RIORITY ElmtY.

lisET l., C. 1 NClt>I~T
SYSTl-:M EursED
tiMt.

lIiClDtENT COUNT ON
LUT BY ONE.

NO

10
hECRr.·IENT (:l.ASS
Lt\'f.I. or AU. 1'lAl
MAle!l B't {1st IF MOlE
1'lIA!1 Ot.:L ~"'lCII.

4
DEn:R!-!IIIE PllOlnn
A:;n PLACE ON LIST
Wlnl l'iWt'f.R cu.ss
LEVI:L.

lEAD IF.TUItH POl11T
Il'iFOa.'tATlON E.~LI
UfTEllum.

11
slLtcr nul ENTaY
Vlnt ZEao CLASS
LEVEL fiELD.

Utuall 10 POlICT
or UlTUlumOll.

14 INeWIEItT ALL I:UOll
TlES LESS THAN 10 BY
O:;F.. !\F 1'lIlOUiC OF
SELEcn:D Rut:T1r.'t 1'0
ONE ,.. ... D I'llT IT IlACK ON
LIST.

Figure 6.5. Summary Flow Chart for MEC Operation

15

'6

SET MEe LOOP
(X)L'Nn:IS. PlDCESS
INIIY.

U.5ET .-EC LOO.
Q)UNIEIS.

Table 6.1. Types of LIST Entries for MEC Interrupt/Routines

PRIORITY' I T IILE INTERRUPTI
ROUTINE

31 Power Fail ure Interrupt
30 Real Time Clock Failure Interrupt
29 Master Executive Control Fa iI ure I nterrupt/Routin:
28 Error Interrupt
27 Loop Counter Interrupt
26 Program Module Complete Interrupt
25 External Program Module Enable Interrupt
24 Mode Change Interrupt
23 Real Time Clock Interrupt
22 Channel Selector Switch Assignment Routine
21 BORAM Test Routine
20 RAMM Test Routine
19 Bus Test Routine
18 Processor Test Routine
17 Data Transfer Interrupt
16 Data Transfer Error Routine
15 . Memory Address Error Routine
14 Program Module Address Error Routine
13 Data Transfer Request Routine
12 Program Module Reinitialization Routine
11 Program Module Assignment Routine
10
through Miscellaneous Housekeeping Routines
1

6.26

Except in the case of the data transfer interrupt, all interrupts are

of higher priority than any routine. This is because routines are placed on the

LIST as the result of processing an interrupt. The exception is made in the case

of the data transfer interrupt because the transfer of data requires that the

sender and receiver be operable. If requests to test hardware units are on the

list, they should be processed before an attempt is made to transfer data. The

channel selector switch assignment is of higher priority to preclude the

possibility of transferring a PM to a processor and/or processing to begin before

a dedicated I/O unit can be assigned.

In a hardware executive, the LIST is stored in the associative memory.

A discussion of this LIST and the entries which are made are presented here for

clarity.

When an interrupt or routine request is made, a request 36-bit word is

stored in the associative memory. This word must store all the information that

is required for MEC to process the request. The general form of the request word

is shown as follows. Many of the fields shown are not used for most of the

request words, but the form shown allows processing of all requests.

r

PRIORITY CLASS NUMBER PROCESSING
CLASS LEVEL IDENTITY SOURCE MEMORY ADDRESS WORDS BUS STATUS BITS

PO' PI' P2' P3

5 3 3 3 1 10 6 I 4 bits
Table 6.2 shows the contents of the fields for the requested words for

each interrupt and routine. As can be seen many fields are blank.

6.27

Table 6.2 Request Words for MEC Interrupts/Routines

NAME

Power Failure Int.
Real Time Clock

Failure
MEC Failure Int.
Error Interrupt
Loop Counter Int.
PM Complete Int.
External PM Enable

Int.
Mode Change Int.

Real Time Clock
Int.

Channel Selector
Switch Assign
ment Routine

BORAM Test
RAMM Test
Bus Test Routine
Processor Test
Data Transfer

Interrupt

Data Transfer
Error Routine

Memory Address
Error

PM Address Error
Data Transfer

PRIORITY
CLASS

31

30
29
28
27
26

25
24

23

22

21
20
19
18
17

16

15
14

Request 13
PM Reinitia1ization 12
PM Assignment 11

CLASS
LEVEL

0-7
0-7
0-7

0-7
0-7

0-7

0-7

0-7
0-7

0-7

0-7
0-7

0-7

0-7

OTHER NON-BLANK FIELDS IN REQUEST WORD

No Request Word Generated

SOURCE:
SOURCE:
SOURCE:

ADDRESS:
ADDRESS:

IDENTITY:

RAMM, BORAH or PEO.
LOOP COUNTER in MEC or PEe
pEIl.

Absolute PMD of a terminal task.
Address in ROM of the new mode's
first PMID word; UWORDS: D of
PMID words in new mode.

Records number of RTC interrupts
received before one is processed.

IDENTITY: Dedicated I/O Unit D.
SOURCE: PED.

BUS: PM Bus or Data Bus
SOURCE: II of PE to be tested.
IDENTITY: In or out, error or successful;
SOURCE: PE /I; MEMORY: RAMM or
BORAM; ADDRESS: First Memory Address;
o WORDS: II words or blocks; BUS:
Data bus or PM bus; PO: Set to 1 if data
transfer must be retried.

SOURCE: II of PE to be tested;
MEMORY: RAMM or BORAM; BUS: Data bus or
PM bus; PO = 1 means bus tested; PI = 1
means memory tested; P2 = 1 means processor
has been tested; P3 = 1 means request active

SOURCE:
SOURCE:

II of PE causing error.
II of PE containing PM

Same as Data Transfer Interrupt.

SOURCE: 0 of PE which made request.

6.28

Thus, the proposed request word organization would result in a very poorly

utilized associative memory, unless most interrupts and routines have circuitry

for only a few appropriate fields in the request word. In fact, five interrupts/

routines have only the priority field, another ten have three fields or less and

only three interrupt/routine come close to using the full 36 bits. These are

the data transfer interrupt and the data transfer request routine with 33 bits

each, and the data transfer error routine with 23 bits.

Thus, there are a total of 10 interrupts and 11 routines excluding

housekeeping tasks. These 21 program segments along with the summary flow

chart and housekeeping tasks comprise the entire executive program.

6.2.7.3 Reference to Flow Charts of MEC Implementation

The implementation of the hardware MEC is considered beyond the scope

of this report at this time, but an outline of the appropriate sections of

Reference 6.1 will be given. (It is planned to include this is a later version;

see Subsection 6.7.2.)

The Section 2.1.5.5.1 [6.1, pages 40-45] describes the

use of the executive bus which transmits all interrupts from other AADC resources

to the MEC and which initiates data transfers between units of the system other

than I/O data. The section describes the use of the active line, the acknowledge

line and the reject line, and shows the sequence of words on the executive bus

for three types of data transfers.

Sections 2.1.5.5.2 and 2.1.5.5.3 [6.1, pages 45-85] describe the

implementation and English language flow charts of all the MEC interrupt handlers

and MEC routines presented in the Tables 6.1 and 6.2 of the previous Subsection

6.2.7.2. Thus, there are 41 pages of flow charts and description of the MEC

6.29

implementation. Two sample interrupt flow charts are shown in Figures 6.6 and

6.7 as fairly typical examples. The PM Complete Interrupt flow chart is chosen

because of its-significance in changing PMs and modes. The Data Transfer

Interrupt flow chart is chosen to show the complexity of data transfer handling.

Some other flow charts are simpler; others are more complex. Another sample

interrupt flow chart is shown in [6.5]. For a complete set see [6.1, pages

45 - 85].

6.30

SET tOOl' COllNnR TIME Olir TO 0,
SH I't; FAILL1U! STATUS TO orlRABU:
Rl.st.T I~I T1~!F OUT Til 0, ANl)

st:r l'1tOClSSOR STAlllS TO UN
ASS I (.."'IF.D.

HAReM "lDDHITY OF I'ROCESSOR"
Fl [1.0 uF I'll 0 IJOR ns fOR PRO
ClSSUl .,.

SET tX£CUTl~ FIHD or ~TCHINC
I'M I 0 \iuRO TO O:l[AI\O TIm: OOT
FlEI.D TO ZERIl.

UPtlf. IE rR.lDF.CES-;ukS OF ALL PHI D
WORllS 11\ 01.0 ~1\l/)E BY A BIT SLICE
WRIlf. OF ZUI.0 IN nlE "TASI(
D[I'~l)ENCE" F IfLO 81T COlJU:S
i'U'OING TO ClJoIrLETEO !'H.

Figure

YES

13~------~------~

SEARCH RFSlIl'RCE fiELD
OF ALl. HX:S ITION
~Il 0 \oJ1J}: 'JS fOR SA.'1E
ABSOLUTE PH Nlr.1BF:R.

ltl IJRITl ta. ~:I)DF: 10
WOIn> (un I'T FXl(';U
ll\~ rlFI.O) ()VlR
[':"101ol1lt;[). SET uRI

Clt-:AL LOCAl lOS TO Al'I
IWI\O AVA ll.J.IlLE.

15

NO llPLIA TE TASK DF-PEl/OENCr.
>--.;;.-.... FIE1.D OF ALL HEW MODE

Pl'11 0 WORDS 8'1 81 T
S1.ICF. WRITF..

CHA.'n;E ~ SI A It;S TO
l'lIASS)~EO A;W I'RO
CESSOR ASS lC:;[D TO
ZFRO.

SEARCH TER"II;!\t TASK
FIELD OF lll.ll-'LEfED
PH FOR SA-'IE ~ NUMI:IER.

SET RESOI;I\CE TYPE

TO Al'I WOKD AVAILA8LE.

II
PI.J.CE PROCRA.'1 MODULE
ASS Ir.~lln ROUTUlE
ON LIST.

If

10

NO

RESf.T I rIco t.:;O FRT
fIELDS. SET EXF.CU
Tl~ -0.

NOT In:RATIVE 1£R.'11-
!'At TA.s~. SET

CCC1 PLf.T (l)N U~:ADLINE

TO HA)(; MlJ: I.

6.6. Program Module Complete Interrupt Flow Chart

•

See
next
page.

SE T [X[CU T Ive r.US
TO AC T/\I£ 1,-.0 ASK
PE TO "[TRANSMIT.

PLACE MEMORY
ADDRESS ERROR
ROUTINE ON LIS T

MODIFY BUS FiElD
OF DATA TRANSF£R
REQUE S T WORD

35

SET EX[CU TlVE
BUS TO ACTIVE
AND S[~D WORD 5

37

SET EXECUTIVE
au S TO AC nVE
AND SEND WORD 6

Figure 6. 7 (a) •

PLACE DA TA
TRANSF[R REQUEST
WORD OACK ON LIS T

MODIFY BUS FiElD
OF OA TA TRANSFER
REQUES T WORD

SET EX[CU TlVE
BUS TO ACTIVE
AND SEND WORD J

17

SET EXECUTIVE
BUS TO ACTIVE
AND SEND WOIlO 1

CLEAR PROCESSINC
BIT Po AND DATA
TRANSFER RrQUEST
AND PLACE WORD
BACK ON LIST

PLACE DATA
TRANSFER ERROR
ROUW.E ON LIST

Data Transfer Interrupt Flow Chart

S£T [Xr.CUTlVE
BUS TO ACTIVE
A NO Sf NO WORD 4

11

SET EXECUTIVE
SU S TO ole fiVE
04"'0 SEND WORD 2

SET COUNTER
ole TillE AND ENTER
COUtoT

PLACE OA TA
TRANSFER REQUEST
BACK ON LIST.

NO

110

SEND "TRANSFER
SUCCESSFUL" TO
PROCESSOR.

RESET RAMM STATUS

~------+t ~~I~~~CET~\EA j~~ TO
OPERABLE.

49

RESET SORAM
STATUS TO INACTiVE L---------------+f AND FAILURE S T A TU S
TO OPEAABLE.

YES

55

SET RAMM STATUS
TO INACTIVE

SET BORAM STATUS
TO INAC TlvE.

47

SET STATUS OF
LOOP CO~J"/TER TO
1~.t·CTIV£.

SET TIME OUT
FiElD TO ZERO.

'.'ODlry PE OF
TPANSHR ERROR.

SET STATuS OF
Loor CC\.J~ TER TO
INAC TlvE.

SE T TI'AE O'J T
FiElD TO ONE.

,CT ,)7ATUS OF ~
L.-,->_C;_,)_T_t:_'_"_AC_T_I_V_E._~ V

SETSTATUSOF
RiJS TO I\AC liVE

Figure 6. 7 (b). Data Transfer Interrupt Flo\v Chart (Concluded)

6.33

6.2.8 Summary and Preliminary Evaluation of the Hardware MEC

The hardware executive has several apparent advantages over the two

other types of· executives which will be studies for the baseline system. These

are the following: high throughput, no constraints are imposed on PMS, does

not require an AADC processor, and can be designed to be highly reliable. This

executive has very simple software and is not very complex compared to the other

executives.

Because the hardware executive has an associative memory and, therefore,

can address data based upon some property of the data, the time consumed to do

the searching required in executive functions has been significantly reduced.

This has singificantly enhanced the throughput of the executive system. Also,

since the executive does a particular function and not general calculations, the

arithmetic capabilities required and the use of read-only memory to store the

executive program allow the executive to be more reliable than any of the system's

processors, thereby enhancing reliability. Since the executive function is performing

in a special purpose computing element, executive design has no effect on the PMs

and all of the AADC system's processors are available for processing of PMs. It

is also expected that the overhead of the hardware executive will be minimal

because the executive is always active (there is no dormant state). Also, the

individual processors can be simplified because they do not need to process the

"special" executive functions.

There are several disadvantages of the hardware executive such as

complex "graceful degradation" and the requirement for special purpose hardware.

In order to have "graceful degradation" of the executive, it must be able to

switch to an executive operated on a system processor if it fails. This requires

6.34

development and storage of a back-up executive that could be significantly

different than the original hardware executive; for example t the floating soft-

ware }mc. Another disadvantage is the cost of design and development of the

special purpose hardware executive. Also, the use of the special purpose

hardware executive will be a viable system with the best processing capabilities

for executive functions since it will be optimized to perform the executive

function.

As discussed previously, the hardware MEC consists of three main

elements. These elements and estimates of their complexity are presented below:

1. An associative memory which contains the following

information. In each case the maximum storage

requirement is shown.

Current-mode PMID words which are to be run
once more (32 x 148 bits)

Old-mode PMID words which are to be run once
more (32 x 148 bits)

List of uncompleted interrupts and routines
(20 entries) (720 bits)

Other resource words
Four processor (100 bits)
Four busses (64 bits)
Four dedicated I/O units (56 bits)
64 words BORAM ID (896 bits)
16 words RAMM ID (224 bits)
MEC 1D (11 bits)

Total associative memory required = 11,543 bits

6.35

2. A read-only MEMORY which has th€ following

information (In each case the maximum storage

requirement is shown.):

•

•

•

•

•

•

•

The entire hardware executive program
implementing the flow charts of inter
rupts and routines. (3109 words)

ALL PMID words for all modes of operation.
Assume 32 PMs/MODE, 10 Modes; 5 ROM words
per PMID word. (1600 words)

Memory address error test (20 words)

All resource words (93 words)

All mask patterns required for AM
searches (30 words)

Priority and two Importance Criteria
threshold for each mode (30 words)

Bu~ test (20 words)

Constants (20 words)

Associative memory micro instructions (200 words)

Total ROM required = 5122 words x 32 bits.

3. A logic and control unit to consist of the following

elements:

• Five loop counters

A comparison counter

• 20 thirty-two bit registers (RAM)

• Macro program store counter

• Micro program store counter

• A shiftable argument register

• A non-shiftable argument register

6.36

•

•

•

Adder - Subtractor

Real time clock

A search results register

A shiftable mask register

A word select register

Various control circuitry

Total estimated complexity in equivalent logic

gates = 4000 logic gates.

Using the higher of the two costs given on page 12 of NASC progress

report number 6, task memory is estimated to cost 5 cents per bit. If \~e assume

twice that cost per bit for the associative memory and half that cost for the

read-only memory, the cost of memory for the hardware MEC is $1154.30 + $4097.00

or a total of $5251.30.

Through discussions ,~ith the contract monitor it can be estimated that

a processor arithmetic and control unit will consist of about 14,000 logic gates

and 750 words of micro-program control memory. In logic gates the PE is 3.5

times as complex as the logic and control for the hardware ~ffiC. If we assume

$3000 is the cost of the PE, the logic and control of the }ffiC should cost

approximately $860 ignoring the memory in the PEe

Thus, a hardware implementation of the }ffiC should come to a total of

$6,111. This compares to a cost of $9,400 for a processor with a 4K task memory.

Thus, a hardware }ffiC should cost about 65 percent of the cost of a processor.

The time required to compute all the interrupts and routines are ShO\~1

in detail in Appendix F of [6.1]. As a measure of speed, the total nominal time

required to run all interrupts and routines with the assumed MEC is 392 usee.

This data is all taken from [6.1].

6.37

For all~implementations in this report. the following requirements

are placed on each processor (or PEl in the system •

. 1. Each processor must have a register which will
recognize its own code when it appears on the
MEC bus.

2. If a data transfer error is received by a processor,
it must either save the data it was sending for
transmission later or not attempt to use the received
data if it was the receiver.

3. Each processor must generate a PM done interrupt
at the completion of each PM.

In the report [6.1], it was shown that a special purpose hardware MEC

could be built with the following advantages being obtained over software

approaches for the AADC Baseline system:

1. Low cost (65 percent of a system Processor)

2. More reliability

3. Higher speed (4 to 11 times as fast)

4. Can take advantage of pew hardware technology
such as LSI and associative memories

5. Low overhead

The basic element of the MEC is a semiconductor associative memory.

The use of a semiconductor approach to the associative memory*allows logic to be

placed at every bit position (which allows full parallel output and equality

searches) and construction of the memory LSI techniques. Because there is logic

at every bit position of the associative memory, extremely fast equality searches

can be made, thus, resulting in fast methods of determining the status of system

resources and then allocating these resources. The use of the associative memory

in the executive system enhances the MEC's speed significantly.

*i.e., the memory elements in the associative memory are also semiconductor LSI
circuits.

6.38

In the future as executive systems become more and more complex,

software approaches will approach or exceed their capabilities. A special

purpose executive system utilizing an associative memory provides a high speed

alternative" to a software executive system. Since the hardware MEC has a

high throughput capability, it will be able to accept a large increase in

executive load and still provide the computational capabilities necessary

to insure proper system operation without degrading system performance and

reliability. In fact, the special purpose hardware MEC for the AADC system

will do all of the above, and at the same time reduce costs.*

*Of .course the hardware MEC has the largest design cost and therefore this
actually assumes that there are sufficient number of hardware MECs produced
so that the total cost per MEC is less than the cost for a Data Processing
Element.

6.39

6.3 BACKUP MEC FOR BASELINE SYSTEMS

Since the Time Division Multiplexed Block Transfer Multiprocessor

system is essentially a AADC Baseline system with a failed hardware MEC, this

section can be considered either the backup Executive Control for the AADC

Baseline System or the Floating Software MEC for the TDM Block Transfer Multi-

processor System. This report has chosen the backup MEC interpretation although

the reference from which the material is taken [6.1] chooses the other interpre-

tation. In fact, Honeywell's recommended Executive Control for the TDM Block

Transfer System is the Floating Software MEC which is described in this section.

6.3.1 Applicable AADC Configurations

Figure 6.1 of Section 6.2 is the block diagram for the AADC Baseline

System, and is essentially the block diagram for the TDM Block Transfer Multi-

processor System except that the separate hardware MEC is not available and a

software MEC must operate from one of the PEs. However, the following changes

must be made to the system (and to the corresponding section, 6.2.1):

1. BORAM. As well as all the operational PM, the
BORAM contains all the Program Module Identification
(PMID) words for each mode and all segments of the
MEC software progra~s.

2. RAMM. As well as mode independent data and I/O buffers,
the RAMM contains all resource words, current mode
PMID words and MEC scratch pad areas. Since it is
assumed that an Associative Memory is not available
to the floating software executive syste;, the PMID
words must be shuttled between the ~1 and the MEC
task memory in lieu of AM search operations.

3. PEe All the PE must be capable of executing all
the MEC functions. At any given time, one of these
processors contains the entire MEC resident program
or its transient active kernel.

6.40

4. Task Memory. The TM must be non-volatile;
otherwise, the MEC task LIST would have to
be stored in RAMM occasionally to privide a
rerun point for restart after a power failure.

5. MEC. The floating software Master Executive
Control routine will be able to operate from
the task.memory of any processor in either its
fully active or partially active phase. The
main duties of the MEC are the same as those
listed in the second paragraph of Section 6.2;
however, a categorization of these into the
following four areas is useful: (a) input/
output, (b) address translation or binding,
(c) interrupt servicing, and (d) job initiation.

These categories will be referred to throughout
Section 6.3 on the floating software MEC.

The remainder of the system is the same as before. This includes the Matrix

Parallel Processor, the high speed multiplexed digital filter, dedicated I/O

units and channel selector switch.

The switch bussing, the system operation and the description of the

MEC functions are the same as described previously in Subsections 6.2.2 to

6.2.4.

6.3.2 Implementation of Floating Software Executive

6.3.2.1 PMID and Hardware Resource Identification Words

Other than a change in the resource field for the Program Module

Identification words, the PMID and Hardware Resource Identification words are

the same as those for the hardware MEC. One other change is that the resource

words are stored in the RAMM in three 256-word areas. One area is for active

PMlD which were previously stored in the AM. Another area is for the active

initial PMID words that were previously stored in ROM. The third area is for

the inactive PMID words which are used to assist in mode switching. Note the

6.41

back up storage for the PMID words is the BORAM 16.1", pages 91, 92, 119J.

6.3.2.2 Summary Flow Chart of the Backup Floating Software MEC

Again this section applies to either the Baseline system with a failed

hardware MEC or the TDM Block Transfer Multiprocessor System.

The floating software MEC will pursue essentially the same logic flow

as is given in Subsection 6.2.7.1. However, its logic must be partitioned into

two phases. Some MEC operations, such as handling internal data transfers,

loop counting, and real time clock interrupts must be performed by the always

active kernel. Other operations must be performed by the entire MEC and when

called for by an interrupt or PM, they must be listed if the MEC is not active,

or they may either permit or force a MEC load. The PM complete interrupt permits

the MEC to be loaded in the recently freed processor, but a power failure

interrupt would force a MEC load. The mode change and external PM enable

interrupts may also force a MEC load. The ensuing discussion will refer to the

always active portion of the MEC as the "kernel" and to the entire routine as

the "MEC". The MEC flow chart is given in Figure 6.8.

The same interrupt handling philosophy assumed in Section 6.2.7.1 is

assumed here; any interrupt will be recognized and listed for later processing

depending on its priority, but control will be returned immediately to the

point of interruption. In the case the MEC is in its active phase, this situation

is the same as the dedicated software in MEC case to be discussed later in Sub

section 6.4.4; however, if only the kernel is active, then the point in interrup

tion may be either in the PM or the kernel. Since the kernel is able to handle

6.42

4

5

1

INHIBIT
INTERRUPTS

STORE RETURN
POINT INFO

LIST THIS
INTERRUPT

NO

1

RESET RTC
INCREMENT SYSTEM
ELAPSED TIME

INCREMENT LIST
COUNT BY ONE

YES

SEARCH KERNEL
SUBLIST FOR
HIGHEST PRIORITY

RETURN TO
MULTI-PROGRAMMED
PM ON THIS
PROCESSOR

3

See Next Page.

16

SEARCH MEC LIST
FOR HIGHEST
PRIORITY ErnRY

REMOVE ENTRY
FROM liST

RETURN TO START

Figure 6.8 (a). Summary Flo\v Chart of Floating Soft\vare l\1EC
Baseline AADC System

6.43

6

DETERMINE PRIORITY,
1----" PLACE ON MEC LIST ..--~

7

9

PUT IT ON THE
KERNEL SUBLIST

NO

SAVE RETURN POINT
INFO FOR PM 3

10

READ RETURN POINT
INFO ENABLE
INTERRUPTS

11

RETURN TO THE POINT
OF INTERRUPTION

RELOCATE KERNEL
UPDATE SYSTEM

16

INITIATE WAITING PM
ON THIS PROCESSOR

Figure 6.8 (b). Summary Flow Chart of Floating Software MEC
Baseline AADC System

6.44

4

SELECT PROCESSOR
TO RUN MEC

SAVE RETURN
POINT I NF ORMA TI ON

RQ2

PROCESS PO\VER
FAILURE INTERRUPT

YES

RESERVE AND
ELIDE

6
SELECT PROCESSOR
OF THE PM JU 5T
FINISHED TO RUN
MEC

9

SELECT PROCESSOR
TO RUN MEC AND
AWAIT OR ELIDE

RESERVE AND
AWAIT

IGNORE
INTERRU PT

Figure 6.8 (c). Summary Flow Chart of Floating Soft\vare 1\lEC
Baseline AADC System (Concluded)

6.45

NO

only the loop counter, real time clock and data transfer interrupts, it lists

all others for later handling by the entire MEC in its next active phase but

puts those it ·can handle in a special sub1ist (Table 6.3) for its own more

immediate attention. The MEC task LIST and kernel sublist are stored in task

memory.

Table 6.3 also indicates MEC functional routines and interrupt handlers

as being either resident or non-resident. Although a 4096 word task memory may

be able to contain the full floating software MEC it is not desirable to read in

seldom used code every time the MEC is loaded. Those routines and interrupt

handlers flagged as unon-resident" in the table are suggestions of coding that

could be left in BORAM until actually needed.

If the kernel decides an interrupt, such as a power failure interrupt,

must be handled immediately, it forces a MEC load into one of the PEe If

interrupt is less urgent, the kernel may wait for a PE to finiah executing a PM

before reassigning it. The details of h~ndling interrupt is quite complex and

not included here [6.1, pages 125-128].

For further discussion of the operation when the MEC is already

loaded, refer to the dedicated software MEC presented later in Subsection 6.4.4.

6.46

Ta ble 6.3. Types of MEC List and KERNEL Sublist Entrie 5

PRIORITY TITLE K M
~, N TYPE

31 Power Failure X interrupt

30 Real Time Clock Failure X "

29 . MEC failure (Special Case of 28) X "
28 Error X "

27 Loop Counter X "
26 PM Complete X "
25 External PM Enable X "

24 Mode Change X "
23 Real Ti:me Clock X "
22 Channel Selector Switch Assignment X routine

21 BORAM Test X "
20 RAMM Test X "

19 Bus Test X "
18 Processor Test X "
17 Data Transfer X interrupt

16 Data Transfer Error X routine

15 Memory Address Error X "
14 PM ~·.ddress Error X "
13 Data Transfer Request X "
12 PM H.einitialization X "
11 Pl\1 As sigrunent X "

10 thru 1 Miscellaneous Houskeeping X "

K - Kernel

M - MEC Resident

N - MEC Non-Res lent

6.47

6.3.2.3 Reference to Flow Charts for Floating Software MEC Implementation

The interrupt and routine flow charts for the floating software MEC

implementation-are sufficiently different from those for the hardware MEC so

that five of the flow charts are redrawn. One of them - the real time clock

interrupt flow chaxt - now takes 6 pages. [6.1, pages 128-134, and 96-115].

6.3.3 Summary and Preliminary Evaluation of Floating Software MEC

The floating software approach has advantages over the hardware and

dedicated software cases primarily in reliability, graceful degradation, and,

of course, the fact that it does not require a processor on a full-time basis.

The disadvantages of the floating software approach are greater MEC

complexity and slower running times for some functions, each processor must have

any special capabilities required by MEe, and constraints on PM size and

operation for those PMs designed to run in multi-program fashion together with

the kernel. In some cases this constraint may be severe since the kernel is

estimated to be about 800 instructions.

It is not necessary that all PMs allow space for the kernel, nor is

this ever desirable. If six such PMs were running simultaneously on a large

AADC configuration, then the five which were not sharing a processor with the

kernel would collectively waste memory equivalent to an entire task memory.

The designer responsible for developing a program module set for a given mode

would thus be constrained to layout his design in such a way that, on the avera~.

at least one PM capable of sharing a processor with the kernel is running at any

given time if he wants the MEC to be in its dormant phase at that time. A

number of strategies could be employed to minimize unnecessary kernel relocation

or other thrashing in the floating software MEC. Perhaps the best one would be

6.48

to choose as kernel co-resident PMs, those which have high importance criteria

and fairly long running times.

The advantage of availability of more processors on the average, due

to occasional dormant status of the MEC, is partly offset by the greater

inefficiency of the MEC and of those PMs which are designed to run together

with the kernel. If the density of interrupts becomes very high, this advantage

would disappear altogether. The chief advantage of the floating software MEC

is its ability to run on any processor and to switch freely between processors.

If interrupt densities are high, then a dynamically relocatable "dedicated"

software MEC would be preferable to the floating case as it is described in this

section.

Table 6.4 gives an estimate of overhead (time spent in the floating

software MEC master control operations). Most of the MEC functions would

require the same time for either of the software approaches but the overhead

times are higher in the floating case and significantly higher for the case

that the MEC is required but not loaded. The overhead times in Table 6.4

could be used to determine processor time lost in overhead if a typical job stream

was analyzed to determine its loading on the MEC in terms of types of requests

and their frequency. The overhead times given in the figure assume that all

elements of the floating software MEC are resident and, thus, are all loaded

whenever the MEC is loaded.

6.49

Table 6 ~4. Floating Software Overhead Estimates in Microseconds
(From Figure 2-41, pages 1, 2, 3)

Average Overhead
"IEC Function Time (lJsec) MEC

Power Failure 200 20

Real Time Clock Failure 6- 4
-

"tEC Failure 590

Error 18 4

Loop Counter· 8 .. 4 I -

Program ~!odule Complete 15 4

External ~f Enable 61 ,4

Mode Change 450 4

Real Time Clock· 130 4-9

Channel Selector Switch Asst.* 9 4

BORAM Test 1S 4

fWylM Test 17 4
Bus Test· 11 4

Processor Test 200 4

Data Transfer· 16 4

Data Transfer Error· 8 4
Memory Address Error 36 4

·PM Address Error 120 4
-.

Data Transfer Request· 16 4

PM Reinitialization --- 4
Program ~lodule Assigr.ment 120 4-113
Housekeeping --- . 13
Interrupt List Empty (Idle Loop) --- 13

* Kernel Operations

** Dash in lieu of value indicates the value not applicable.

6.50

Kernel

580

---**
9

9

590

603

585

4-11

9

9

9

" . ---

4

As shown in Appendix F [6.1], the amount of memory required to store

the kernel is 899 words. All of the interrupts and routines require 2509 words

plus an estimated 1100 words for ID and other data storage, for a total MEC

program of 3609 words. This is within the requirements of a 4K word task memory.

The time required to execute all of the interrupts and routines in

the nominal case is 4.43 msec. This includes a total of 2.51 msec in overhead

time. Overhead times were taken from Table 6.4 assuming that the following

interrupts occur when only the kernel is loaded.

•

•

Power Failure

PM Complete

External PM Enable

Mode Change

This total is 2.75 times as large as that required by the Dedicated

Software MEC. This is due primarily to the overhead involved in writing in the

MEC when only the kernel is active. It is also 11 times longer than that for

the hardware MEC.

6.51

6.4 DEDICATED SOFTHARE MEC FOR DUAL PROCESSOR

Unlike the case of the dedicated software executi'Je for the Baseline

and MMM AADC systems, the dedicated software executive for the dual processor

system could be considered a'hardware implementation. This is because a secondo

processor, identical to the simplex processor, must be added to the system.

Thus, one processor of this system will be dedicated to processing the executive

program while the other processor executes program modules. Actually, Honeywell

calls this system an Optimized Simplex system w'ith a dedic2~ed software MEe,

but a dual processor system is more accurate.

6.4.1 Dual Processor System

Figure 6.9 is a block diagram of the dual processor for the dedicated

-
software executive. With only one processor processing program modules, the

added expense of an associative memory does not seem justifiable in lieu of the

expected nominal savings in time. The dedicated MEC processor can run in

parallel with the PM handling processor for the majority of executive functions.

HIGH
SPEED
I/O

4~

RAMM DATA BUS I
""

~.,. 4,. j ~ 4 ~

PM BUS

~ , + ~~ -~ ~, +
PROCESSOR BULK

PROCESSOR PARALLEL (MEC) - PROCESSOR -
TASK TASK
MEMORY MEMORY

EXECUTIVE BUS

Figure 6.9. Dedicated Software Dual Processor
AADC System

6.52

BORAM

j~

The BORAH, RAMM and Task Memories are all the same as for the Floating

Software MEC in Subsection 6.3.1. The two PEs are identical except one is

reserved for the sole use by the MEC. It must contain suitable microprogramming

to handle the same associative memory functions (although no associative memory

is available) as appear in the hardware MECs of the Baseline system. Thus, the

PE must be enhanced to include some hardware MEC features. In actual fact, the

other PE must also be able to handle all the MEC functions in case the MEG PE

fails~

The Matrix Parallel Processor and the high-speed mUltiplexed digital

interface will be the same in the previous systems, but the dedicated I/O units

and channel selector switch are not necessary in this simplified configuration.

6.4.2 System Bussing for Dual Processor System

Three distinct busses are used to transmit Program Modules, data and

control signals throughout the system. They are the PM Transfer Bus, the Data

Bus and the Executive Bus. The PM Transfer Bus is used to transfer PMs from

BORAM to the simplex processor and MEC segments to the MEG processor. The Data

Bus is used for data transfer between RAMM and the PEs. It is not required to

be dual width as in the previous systems because there is only one PE executing

PHS. The Executive Bus provides communication and controls between the MEG

and all system resources as described previously. For further details see

Section 6.2.2.

6.4.3 Operation of the Dual Processor System with Dedicated Software MEG

The operation of the dual processor system with a dedicated software

MEC is the same as the Baseline system with a hardware MEG except for the

following three simplifications:

*This is a very important point that has not been emphasized sufficiently in the
design [6.1].

6.53

1. There is no need to consider the two types of
PM requiring "special processing" because with
only one PE it is inappropriate to consider a
PM that overflows into another task memory or
two PEs working on the same PM.

2. It is not possible to dedicate a PE to a given
PM. In fact, a single PE must process several
PMs at a given rate and in proper sequence in
order to operate properly.

3. All PMID words are stored in BORAM and the
active PMID words plus all other resource
words are stored in the Task Memory of the
MEC processor.

The MEC functions to be performed are the same as described previously

in Section 6.2.4. One exception in the operation is that PMs will normally be

allowed to continue executing until completion unless the postponing of handling

of an interrupt endangers the mission.

6.4.4 Summary Flow Chart of MEC for Dual Processor

Logically, the summary flow chart shown in Figure 6.5 of Subsection

6.2.7.1 is satisfactory for use in this section. All of the processing require-

ments of the MEC are implied in the summary flow chart and will be shown to be

satisfied as the result of processing the interrupts and routines from the list.

Normal MEC processing consists of interrogating the LIST for information

that will direct the MEC to execute particular routines such as shown in Table

6.1. The channel selector switch assignment routine is not needed.

One method of implementing software-wise the list processing logic

shown in the summary flow chart is to employ a system of processor flip-flops.

Thirty-two hardware flip-flops are needed that can be set, cleared, and tested.

These flip-flops will be associated with the MEC routines listed in Table 6.1

6.54

in such a manner that a set flip-flop is equivalent to having its associated

routine "on the MEC LIST" and a cleared flip-flop equivalent to the routine's

"absence from the MEC LIST".

The MEC can detect the necessity of executing a routine by testing

its flip-flop. The testing can be done by 32 consecutive conditional jump-type

instructions which will branch to the appropriate routine if its flip-flop is

set. The first test instruction has the label START and tests for the presence

of the highest p~iority rated routine. If the test fails, the next test

instruction checks for the next lower priority rated routine, etc. When the

housekeeping routines are reached, the MEC condition is that of an idle state,

executing housekeeping routines until an interrupt occurs which places a routine

of higher priority on the LIST.

Each housekeeping routine, when run, removes itself from the LIST,

thus assuring that all such routines get run in sequence. The lowest priority

routine must replace all other housekeeping routines on the LIST so the cycle

can be repeated. When a test is successful and a routine is given control, the

routine should clear its flip-flop before giving control back to START.

This implementation suggests the desirability of bit processing

capability for the software. If this capability were present, flip-flops would

not be necessary as a memory word or words could be used. In this case, the

ability to set, clear, and test any bit in a word would be required. This has

been included in the PE design and offers an alternate design to the 32 hardware

flip-flops.

That part of the summary flow chart which discusses class levels would

be implemented with actual linked lists in the form of queues. Each entry is a

6.55

queue would contain the necessary parameters for the routine associated with

that queue. Each routine that required parameters would have a dedicated queue.

Thus, each time a routine is placed on the LIST, its necessary parameters would

be placed as an entry on the proper queue in a first-in first-out manner. When

the routine is executed, it takes the top entry from its queue and processes it.

(The bottom entry is the most recent entry.)

6.4.4.1 Internal and External Interrupts

Every interrupt occuring on the executive bus and interrupting a

resource is denoted as an external interrupt if the originating resource is not

the same as the destination resource. All other interrupts of a resource are
/

denoted as internal.

Each processor contains a real time clock that can be reset by the

program in the processor. When the clock interrupts the processor (not over

the executive bus), control is routed to a fixed location in the task memory and

the real time clock interrupt processing routine located there is executed. Of

course, if the clock is not set, no interrupt will occur and no interrupt routine

is necessary. The executive always sets its real time clock.

Other internal interrupts will occur on the executive bus for the MEC

processor only. This means that non-MEC processor contain only one internal

interrupt - its real time clock interrupt. However, the kinds of internal

interrups that the MEC processor has, also exist in the other processor - i.e.,

parity, power failure, clock failure, etc. - but they will interrupt the MEC

processor and not the processor in which they occured. Take, for example, a

parity error. If a parity error occurs in the MEC processor, the hardware

6.56

generates an interrupt over the executive bus taking as the originating resource

the MEC processor and, as the destination resource, also the MEC processor.

(The first code is the processor ID code and the second is the MEC processor ID

code - in this case, they are the same code.) If the parity error occurs in a

non-MEC processor, the two codes will be different. Hence, a parity error

interrupt will always interrupt the MEC processor, but will be considered an

internal or external interrupt if the originating resource was the MEC processor

or not.

Actually, it is immaterial whether interrupts are internal or external

(except for the real time clock) because all executive bus interrupts to a

particular processor are handled in the same way. When a processor (MEC or not)

is in an interruptable state, the active line is set, and the processor's ID

code matches the destination code on the executive bus, the processor is inter-

rupted with control going to a predetermined location.

Therefore, each processor must have two locations reserved in the task

memory for interrupt handling. These locations will be the same for all task

memories [6.1, pages 199, 200, 93-96].

6.4.5 Summary and Preliminary Evaluation of the Dedicated Software MEC

on Dual Processor System

This implementation offers total use of a single processor for running

PMs, through the use of a second processor dedicated to MEC functions. A small

degree of parallelism is also gained.- Compatibility with the previous systems is

easily maintained with practically no additional software cost. A floating

software MEC must also be provided in case one PE fails. The total amount of

memory required is 3373 words. This includes 1091 words of ID and miscellaneous

6.57

data and 2282 words for interrupt and routines as shown in Appendix F of [6.1].

The time required to process all the interrupts and routines in 1.253 msec.

In this implementation, one processor is always working on system

tasks and its throughput should be maximum since it has an entire MEC dedication

to assist it.

6.58

6.5 FLOATING SOFTWARE MEC FOR OPTIMIZED SIMPLEX PROCESSOR

The Optimized Simplex system is the same as the dual processor

shown in Figure 6.9, except there is only one processor and the processor

is allowed to execute programs from the RAMM as well as the Task Memory. In

this way the Floating Software MEC is able to perform its functions without

overwriting the currently executing PM. Although the Matrix Parallel Processor

is included in this diagram, it is actually optional and may be deleted

without affecting the MEC operation.

The bussing system in this case is the same as for the dual processor

system (Section 6.4.2).

6.5.1 Operation of the Optimized Simplex Processor with a

Floating Software MEe

The operation of the Optimized Simplex Processor with a Floating

Executive Control is similar to the operation of the Dual Processor with a

Dedicated Software MEC. The major difference is the RAMM must always contain

the MEC kernel which is ready to handle interrupts. The MEC is normally

in its dormant state and is reached via a kernel for urgent services and

normally reactivated by a PM complete interrupt. When this interrupt occurs,

the MEC will employ the now available processor to process its task LIST

and then initiate that the waiting PM with the lowest assignment deadline.

Since the kernel can execute instructions directly out of RAMM (where the MEC

is stored) there is no need for the-PM in the processor to be aborted. Time

must be kept track of while the processor is executing the MEC to avoid a

PM time out. In this configuration, the kernel consists of same interrupts

and routines as in the Baseline case except that the channel selector switch

assignment is not required. 780 words make up the kernel.

6.59

Since the PE can now execute MEC segments from RAMM and PMs from

the Task Memory, an interrupt can either be handle when it occures or be

listed for later execution, depending on the urgency. There are also other

small difference in the operation of the dedicated software and floating

software executives, but these do not seem significant [6.1, Section 4.2.3].

6.5.2 Summary Flow Chart of Floating Software MEC for the Optimized

Simplex Processor

The summary flow chart for the floating software MEC for the optimized

simplex system is shown in Figure 6.10. Although the logic is essentially

that of the previous floating software cases, it is much simpler because the

resource allocation problem is less complex. The three basic alternatives

of MEC operation are: (a) handling an (external) interrupt either by executing

the appropriate routine (power failure) or listing it for later processing;

(b) handling a MEC call, internal interrupt or "pseudo-interrupt" (in this

case, from the current PM either by executing a small kernel routine in task

memory, a short }ffiC routine in RA}lli, or by loading a MEC routine in task

memory and processing the call); and (c) the case ~mc activity is due neither

to interrupt nor call, i.e., the MEC is fully active and is processing its task

LIST. The latter alternative ends when a PM assignment operation is encountered,

an external PM enable occurs, or a mode change is called for. If none of these

occur, then the MEC begins processing miscellaneous houskeeping routines until

external circumstances call for it to begin a new mode or initiate a PM.

The priority scheme, given in Table 6.3, applies to this case except

that only the kernel is resident; all other routines and handlers are either

segmented or executed out of RAMM.

6.60

NO

2

INHIBIT INTERRUPT S

3

STORE RETURN POINT
INFORMA T ION

4

LIST THIS INTERRUPT
ON TASK LIST

READ RETURN POINT
INFORMATION

7

ENABLE INTERRUPTS

8

RETURN TO POINT
OF INTERRUPTION

t,

11

STORE RET URN
POINT

LIST THIS CA LL
ON TASK LIST

SELECT KERfJEl
SUBLIST HIGHEST
ENTRY

RETURN TO POINT
OF CALL

YES

NO

16

SELECT HIGHEST
PRIORITY ENTRY
ON ~/1EC TASK
LIST

19

------------------------~ NO

17

20

Rf~JOVE ENTRY
FROM LIST

21

SAVE CRITICAL
VOLATILE IN FOR
MA TION. SAVE
RESTART POINT"

PROCESS ENTRY
IN Af PROPRIATE
SUBROUTINE AFTER
LOADING IN T M

22

RETURN TO ENTER

23

ENTER ~4ISCELLA
NEOUS HOuSE-
K £ E P Ir~ G R CUT I N E S
ON TASK liST :'
~O~E AR F T IfERr

A LRUOY

- 18

PROCESS POWER
FAILURE
INTERRUPT

24

REG 1:. Pr:CCfSS J \l:
HOlSEKEEPI\G T';S~S.

IF 1 ~ IE R R L" P'I OR C ... U
OCCl'RS GCl TO F\iF ~ "

Figure 6.10. Summary Flow Chart of Floating Soft\vare
MEC for Optimized Simplex System

6.61

6.5.3 Summary and Preliminary Evaluation of the Floating Software MEC

on the Simplex System

The floating software approach on a simplex system may be considered

as a minimal cost, low performance configuration or as a fall-back configuration

reached when all processors but one of a more complex system fail. In the

simplex configuration, the floating software approach for a MEC does not offer

the enhanced reliability indicated in Section 6.3.3.

As compared to the software dedicated processor case in Section 6.4.

the floating software requires one less processor since the MEC shares the

unit processor with the PM currently in execution. It has the advantage of

requiring one less processor and, naturally, the disadvantage of taking time

away from the currently operational PM on the only processor available. This

approach is, thus, advantageous only if the sum total of MEC functions plus

overhead required considerably less than half the processing time of one

processor. In this case, the cost/effectiveness of the system may be competi

tive even though the throughput is almost halved. If the total time needed

for ~mc functions required less than ten percent of a processor's attention,

then the floating software approach would be advantageous for the optimized

simplex processor system. Also, the simplex floating }mC must utilize part

of the task memory to house the MEC kernel. Thus, all PMS must be 780 words

shorter than in the dedicated software case.

Appendix F [6.1] shows the estimated memory requirements and execution

times required by this MEC implementation. The interrupts and routines require

1877 words of memory. An additional 1100 words are used for ID words and other

data. This yields a total memory requirement of 2977 words.

6.62

The time to process the entire set of interrupts and routines in

the nominal case is 1.037 msec. The following functions will require a

complete load of the MEC.

•

•

•

•

Power Failure

Error Interrupt

External PM Enable

Mode Change

PM Complete

The estimated time it takes to load the MEC is assumed to be 580

~sec, thus t 2.9 msec must be added. This makes the total time 3.937 msec.

This exceeds the dedicated implementation by a factor of 3.1.

6.63

6.6 EVALUATION AND RECOMMENDATIONS

6.6.1 Method of Evaluation

Three steps will be taken to evaluate the MEC implementations for

each of the system configurations considered in this study. First, a set

of evaluation parameters (system attributes) will be established. Then

weights will be assigned to each attribute as a function of its importance.

Then a table will be constructed for each of the four systems and each

implementation will be a measure of its effectiveness for the system under

consideration.

Each attribute will be assigned a weight of 10 or less. For each

system, each MEG implementation will be evaluated against the attributes.

Scoring will be on a ten (10) point must system with the MEC implementation

that best exhibits the attribute receiving 10 points and others a proportionate

amount. The points will be multiplied by the attribute's weight and the products

summed for all attribute-point products. The implementation with the best

score (highest) will be recommended. This will be done for each AADC

configuration and will result in a "best" choice for each system. Based upon

the results for each AADC configuration, an "optimal" implementation for all

configurations will be recommended.

6.6.2 Evaluating the MEG Implementations

The attributes that were selected are: reliability, graceful degrada

tion, speed of the MEG, constraints ~n the rest of the system, functional

expandability of MEC (can it be enhanced without redesigning?), maintainability,

hardware production cost, software production cost, volume, weight, power

requirements, hardware and software developmental costs, flexibility (ability

to perform other functions), simplicity, overhead, and computational suitability

6.64

(how well the MEC is optimized to perform its functions). Although the names

of the attributes are fairly suggestive of their functions, further description

of each can be obtained from [6.1, pp 226-229].

Table 6.5 summarizes some of the quantitive MEC performance attributes

that are used in the comparative evaluation. Something seems suspicious in the

time to process interrupts and routines for the floating software MECs; for

Baseline system overhead in 2.51 msec, for MMM system overhead is 0.17 msec

and for OS system the overhead is 2.9 msec.{The interrupt/routine processing

times are 1.93, 1.94 and 1.04 respectively, which is reasonable.)

The ranking of the attributes is reflected in the ordering above with

the most important attributes listed first. The exact weights assigned to

each attribute is shown in parentheses after the attribute name in the tables

following Table 6.5.

6.65

Table 6.5 Summary of Quantitative MEC Performance Attributes

Baseline System

MEC

tHardware

Dedicated
Software

Floating
Software

COST

$6100
(=.65 x PE)

$9400

$2000
(assuming
20% for
MEC

TIME TO PROCESS
ALL INTERRUPTS/
ROUTINES
(MILLISEC)

0.39

1.6

4.44 (including
2.51 msec over

head)

Multiple Memory Multiprocessor

Hardware $6100 0.55

Dedicated $9400 1.85
Software I
Floating $7400 2.11 (including
Software (.75 x PE) 0.17 for

capturing PE)

Optimized Simplex

Dedicated $9400 1.25
Software

-
Floating $2000 3.9 (including
Software (assuming 2.9 for loading

20% for MEC
MEC)

6.66

COMPLEXITY

4000 logic gates
360 word AM,
5200 Word ROM

A special
assigned PE,
3900 word TM

899 word Kernel·,
PE part time
(20%) with 3600
word TM, Some PMs
restricted by
899 words

Same as Hardware
MEC above

A special
assigned PE,
4025 word TM

PE part time
(20%) with 3450
word TM, PM not
restricted

Dedicated PE
With 3370 word
TM

PE part time with
2980 word TM
all PM restricted
by 780 words.

BACKUP

Software MEC

Another PE

Built-in

Sof tware MEC .

Another PE

Built-in

Floating
Software

. None

The scoring of the attributes for the AADC Baseline system and the

total score is shown in Table 6.6. As shown the hardware MEC scores highest.

The best backup for the hardware MEC is the Floating Software MEC.

The scoring for the Time Division Multiplexed Block Transfer

Multiprocessor System is the same as for the Baseline System without the

hardware MEC. Thus the Floating Software MEC is best for the TDM Block Transfer

Multiprocessor.

The scoring of attributes for the MMM System is shown in Table 6.7.

The hardware MEC again scores the best and even higher than for the Baseline

System. The two software MECs score about the same for the MMM System.

The scoring of attributes for the Optimized Simplex System is shown

in Figure 6.8. The Dedicated Software MEC scores the best for the OS System

(Again this actually a violation of the simple processor Optimized Simplex

concept.) Also see Subsection 6.6.4 for comment on these evaluations.

6.6.3 Recommend }ffiC Implementation }1ethods

As indicated in the evaluation, the best MEC implementation for each

system is a function of the PM load of the system, the number of executive

functions required per PM, the average run time of a PM, and the number of

resources available in the system. These are all parameters which are not as

yet well defined, and will probably not be before extensive simulation is

complete.

Bearing this in mind, the'· following MEC implementations are recommended.

6.67

Table 6.6. Baseline AADC System Evaluation

11VIPLE MENT ATION
Software

.. ~ttribute ~ard\vare Dedicated Processor Software FloatinlZ

~eliability (10) 0 6 8

~I-l raceful I
..

Degradation{ 10) 6 - 6 10

Speed (10) 10 3 ·1 :
I

Cons traints on i

~

res t(fO)system ~O B 4: I

I
- "1

F'unctional I -
Expandability(1 0) 6 10 8

tMaintainabili tv(9) 6 10 8

Hard\vare Cost(n) 6 2 10

Software Cost(S) 10 8 6

rvolume (5) 6 2 10

KVeight (5) 6 2 10

Power (5) 6 2 10
, ..

Development

Cost (4) 7 10 8 -
Flexibili ty (3) 10 7 7

Simplicity (2) 10 - 7 5

Overhead (2) 10 8 '1

Computational

Suitability (2) 10 4. 4

Weighted Total ~ 10 629 733

6.68

Table 6.7. Multiple Memory Multiprocessor Evaluation System

IMPLEMENTATION

I
Software

Attribute Hard\vare Dedicated Processor Software Floatin2"

Reliability (10) 10 7 8
..

Graceful I .

Degradation (10) 6 7 10

S~p_eed (10) 10 3 2.5

Constraints on

rest of System (10) 10 8 2

Functional -

Expandability (10) 6 10 9

}\1aintainabili tv (9) 6 10 9

Ilard\vare Cost (8) 10 6 9

Soft\vare Cost (8) 10 8 8

Volume (5) 10 6 9

\Veight (5) 10 6 9

Po\ver (5) 10 6 9

Development Cost (1) 7 10 9

Flexibilitv (3) 10 7 7

. Simplicity (2) 10 7 6

Overhead (2) 10
-

8 6

Computational

Suitability (2) 10 4 4

Weighted Total 902 741 756

6.69

Table 6.8. Optim ized Simplex Processor Evaluation

"l
\

IMPLEMENTATION t -
~TTRIBUTE SOFTWARE

Dedicated Processor Software Floating
..

Reliability (10) 10 . 5

Graceful Degradation (10) 10 5 ,

Speed (10') 10 3

Constraints on
rest of System (10) 10 "

Functional
Expandability (10) 10 7

Maintainability (9) 10 8

rH'ardware Cost (8) 2 10

Software Cost (8) 10 7

1V0lume (5) 2 10

Weight (5) 2 10

Po\ver (5) 2 10

Development Cost (-.f) 10 8

Flexi bili ty (3) 10 9

Simplicity (2) 10 7 ,

Dverhead (2) 10 6

Computational o.

Sui ta b iIi ty (2) 10 10

~Veighted Total 852 603

6.70

SYSTEM

Baseline AADC System

TDM Block Transfer System

Multiple Memory Multiprocessor

Optimized Simplex Processor

Recommended MEe Implementations

Special Purpose Hardware

Floating Software

Special Purpose Hardware

Dedicated Software

These recommendations may change if the weighting factors assigned

to the attributes are deemed to be inappropriate for the ultimate utilization

of the AADC system.

In the baseline system, the hardware MEC wins primarily because of

basic reliability, speed, lack of system constraints, and the fact it is

designed specifically to handle the executive tasks.

In the TDM system the floating software MEC wins primarily due to

graceful degradation, cost and the associated attributes of size, weight and

power.

The MMM system operates best with a special prupose hardware }mc

because of speed, lack of constraints on PMs, cost, size, weight, power, and

because it is designed to perform executive tasks.

In the optimized simplex syste, the dedicated software gets the

nod due to every attribute except cost, size, weight, and power.

6.6.4 Author's Comments on the EvaluGtions

There is one very obvious and very serious omission from the list

of attributes which would probably change the results significantly; that is,

the cost of providing adequate backup. For the hardware MEC the extra backup

could be built into an ultra-reliable MEC but more likely would be a software

6.71

MEC. Thus the development and production cost of providing this software back~

should be included in the cost for the hardware MEC. The cost of providing

triple redundancy in the hardware MEC would probably eliminate it from

contention.

Another obvious case where the results would probably be different

is for the Optimized Simplex System. Since the only backup for a Dedicated

Software MEC is a Floating Software MEC (if one PE fails), the cost of

producing two sets of software is certainly larger than for producing only

one. Thus the best system for the dual processor is probally the floating

software.

From examining Honeywell's report and without doing any analysis,

it would seem that the Dedicated Software MEC could be eliminated for con

sidering if the need for adequate backup was included. It seems unbelievable

that a report as comprehensive and as detailed as this could have skipped

such an important avionic requirement as adequate backup. On the other han4,

the inclusion of an adequate backup may have reduced the number of viable MEe

alternates to only one - the floating software MEC, thereby reducing the

complexity of the project significantly.

The statements in this subsection are the opinions of the author's

and not that of the Navy or the NPS, and are not substainated by fact.

6.72

~

6.7 RECOMMENDED AREAS FOR FURTHER STUDY

6.7.1 Continued Development, Simulation and Implementation of MEC

Figure 6.11 shows eight studies recommended by Honeywell for design

and implementation of the MEC and the appropriate time periods. The studies

include:

1.

2. ,

3.

4.

The initial MEG implementation study as defined
in this report and [6.1].

An expanded MEC implementation study to include
two other executives system called the Dynamic
Dedicated Software and the Dynamic Dedicated
Software with Associative Memory. This would be
equivalent effort to doing two of the three
studies in [6.1].

A final MEC implementation study including an
overview simulation of all the components in
the AADC and their interactions (this would be
a suitable thesis topic), and suitable expansion
correction and detailing of English language
flow charts.

Simulation of the recommended MEC implementations.
This would be a detailed real-time simulation of all
the MEC functions and the interaction with other
AADC components.

5. Based on the results of Study 4, either a software
or hardware (or both) ~ffiC will be selected for
implementation. If a software MEC is chosen, Study
5 would result in a coded and hopefully debugged
software executive program capable of running on
the Navy's AADC prototype system.

6. The sixth study would be the definition of system
interaction under MEC control - to be run in
parallel with the studies above. The areas for
study are bussing techniques, digital interface
designs, channel selector switch designs, and
alternate routing in the case of component failures.

6.73

o· .
'-oJ
.s::---

~
)-A.
00
c
to(
et>
(J'\

I
......

~
et>
n
0

~
et>
::s
0..
et>
0.

> ...
et>
~
fJ)

t-t\
0 ...
~ c::
to;
rt
::r-
et>
to;

til
rt
C
0.
'<

STUDY 1
MEC

IMPLEMENTATION
STUDY

STUOY 2

EXPANDED MEC
IMPlEM[NTA TlON

STUDY

STUDY 6

STUDIES AND
OEFlr·:ITlON
OF SYSTEM

I rJTE r.AC TION
UNDER CO~nROL

OF M[C

1970 1971

STUDV.,

FINAL MEC
IMPLEMENTATION

STUDY

6-1 (a).

IIill [ill

1972 lQZ3 c,

STUDY.,

SIMU LA nON OF
RECOMMENOED

IMPLEMENTATION

STUDY 7
Ul TRA-RElIABLE

MEC DESIGN
STUDY

IMPLEMENTA
TION AND TEST
ING OF AADC
PROTOTYPE

STUOV S

DEVELOP
SOFl\VARE

. EXECUTIVE

STUDY 8
DETAILED

DESIGN AND
IMPLEMENTATION

OF HARDWARE
EXECUTIVE

7. An ultra-reliable hardware MEC design study is
needed if only a hardware MEC is provided. The
study would include locating critical portions
of MEC, defining failure detection methods,
choosing redundancy and error correction techniques
and selecting a fail-safe and fail-soft design. This
work is already in progress [6. 6]. ~his would make
a good thesis topic).

8. Detailed design of a hardware MEC including the
design of the AM, ROM, algorithms, logic and
control and MEC language.

There is an ongoing effort to improve the reliability and applicability
,

of the AADC Master Executive Control (MEC). This work will permit the executive

to reside in various versions of AADC configured to improve overall computer

system reliability and problem solution confidence, as well as improve MEC

response in the event of hardware failures. The improved MEC will also incorporate

provisions for demand paging of both procedure and data, event posting and process

scheduling, as well as more efficient distribution of function [6.7].

In addition to the above, there is also an effort to develop a rudimen-

tary OS/AADC which can be used to interface AADC with non-avionic peripherals.

This is in keeping with the expanded role of AADC.

6.7.2 Continued Development of MEC Course Material.

Although this chapter has been shortened considerable over that in

Reference 6.1, it is considered only a first draft and could still be shortened

considerably. This section describes some of the ways in which this chapter on

the MEC can be improved in the next yersion.

For teaching purposes, I think Sections 6.3 and 6.4 (the backup floating

software MEC for the Baseline System and the dedicated software MEC for the dual

processor system) should be eliminated. Also the floating software MEC for the

6.75

simplex system should he described first as the simplier system, before the more

elaborate Hardware MEC. Also the descriptive verhage should be reduced and made

more concise.

These reductions in the design philosophy portions would allow the

inclusion of more detail on the actual design implementation. In particular, more

of the interrupt and MEC routines could he included, with English language_ flow

charts. These could he organized as follows:

1.' MEC interrupt/routines common to both the floating
software and hardware MEC,

2. MEC interrupt/routines unique to the floating soft
ware MEC on a OS system,

3. MEC interrupt/routines unique to the hardware MEC
on an AADC baseline system.

In summary, this chapter presents the design philosophy, various hard.

ware and software configurations, design tradeoffs, capabilities and operating

characteristics of the major control component of the AADC system - the Master

Executive Control.

6.7.3 Current Status of MEC Developments.

Since this chapter was written, Honeywell has produced another volumi-

nous report containing four volumes.- Volume I contains a summary of the technical

results of the report. Volume II is the technical volume and contains the results

and tradeoffs of the demand paging and virtual memory performance for AADC, the

functional analysis of MEC, the internal communication and bussing system and the

functional description of the hardware, software and hybird executives for AADC.

Volume III contains all support data and information while Volume IV contains the

detailed timing and evaluations of the three different implementations of MEC.

6.76

Of this report, Sections 3 and 5 of Volume II, on the descriptions of the functional

analysis and functional descriptions of the hardware, software and hybird MECs,

respectively, are of the most interest here. (Section 2 of Volume lIon demand

paging and virtual memory pertains to Chapter 3 while Section 4 of Volume II on

internal bussing is discussed in Chapter 2).

The three versions of MEC considered in this report are the dedicated

hardware MEC (similar to the one in Section 6.2 above), the floating software }1EC

(similar to the one in Section'- 6.3) and a hybird executive which consi~ts of a

software executive with an associate memory assist. The flow charts of these

executives are shown in Volume II, Section 5 [6.7].

Apparently in Volume V of Honeywell's report, an Optimized Simplex MEC

is defined which uses fixed priority scheduling rather than time-driven scheduling,

has a despatcher and an interrupt handler, allows pre-emptive scheduling by higher

priority tasks and contains only seven modules and three system tables instead

of the 17 modules for the other MECs 17.8 and 7.9].

6.77

Question on the MEC

For problems concerning the MEC development see Section 6.7.

Specific questions will be included in the next report.

6.1 In Section 6.3.3, what are some of the problems of trying to defind a set

of kernel co-residents Program Modules? Can you guarantee one of these

PMs is always present?

6.2 Use Table 6.4 to estimate the overhead for a particular set of PMs in a

particular mode. Try to obtain realistic usage data for a particular

aircraft.

6.3 See Section 6.7, particularily items 3 and 7, for a group term project

or thesis topic.

6.78

References for Master Executive Control (MEC)

6.1 AADC Master Executive Control, System Analysis Design Study; Final Report;

Honeywell Inc. t Report No. l2234-FR; December 1970; NAVAIRDEVCEN Contract

N62269-70-C-03l4; Unclassified-NOFORN; AD-800-635 (Vol.l, Basic Document);

AD-800-637 (Vol. 2t Appendices); (43, Vol. 1 only at NPS)~

6.2 Master Executive Control Techniques for AADC System Final Report; Honeywell

Inc •• No. l4206-FR; July 1969; NAVAIRSYSCOM Contract AIR-5333-69-l; Unclass-
,

ified; (10).

6.3 AADC Master Executive Control, Baseline Definition; R. S. Entner, NAVAIR-

SYSCOM and J. Stepenosky NAVAIRDEVCEN; 22 December 1969; Unclassified-

NOFORN; (19).

6.4 An Associative Memory for Executive Control Functions in an Advanced Avionics

Computer System; R. Berg and M. Johnson; Proceedings of the 1970 IEEE Inter-

nation Computer Group Conference; June l6-18 t 1970; pp. 336-342; Unclassified;

(31).

6.5 A Hardware Executive Control for the Advanced Avionic Digital Computer System;

R. O. Berg and K. L. Thurber: NAECON '71 Record; May 1971; pp 206-213;

Published by the IEEE Transactions on Aerospace and Electronic Systems; Avail-

able on special order only from the IEEE Order Department, 345 East 47th Street,

New York t N. Y. 10017; Reference publication 71-C-24 AES; (54, NPS).

6.6 Operating System Reliability for the Navy AADC: R. S. Entner and E. H. Bersoff;

IEEE Transactions on Aerospace and Electronic Systems; January 1971; pp 67-

72; (47, NPS).

* AADC Bibliography number and available at the Naval Postgraduate School.

6.79

6.7 Master Executive Control for AADC - Interim Report; Honeywell, Inc.,

Report Z9506-30l8; NAVAIRDEVCEN Contract No. 62269-72-C-005l; June 1972;

Volume I to IV; (77, NPS).

6.8 Master Executive Control for AADC - Final Report; Honeywell Inc·., Report

Z9506-3018: NAVAIRDEVCEN Contract No. 62269-72-C-005l; oct. 1972; (NPS).

6.9 All Applications Digital Computer 1973 Symposium; Orlando, Florida; Jan.

23-25, 1973; Proceedings are not yet available.

6.80

Chapter 7

S I G N A L

PRO C E'S SIN G

ELEMENT

Section

7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.1.1
7.3.2
7.3.2.1
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4
7.3.4.1
7.3.4.2
7.3.5
7.3.6
7.4
7.5

7.1
7.2
7.3
7.4
7.5
7.6

Table of Contents for the Signal Processing Element

G1ossory of Terms

INTRODUCTION AND SUMMARY
HISTORICAL DEVELOPMENTS
Associative Processor
Matrix Parallel Processor
General Purpose Array Processor
CURRENT SIGNAL PROCESSING ELEMENT
Introduction
Functional Description
SPEws Microprogrammed Control Unit (MCU)
MCU Architecture and Operation
Signal Processing Arithmetic Unit (SPAC)
Design Objectives of SPAU
SPAU Architecture
SPAU Operation
Buffer Memories and Storage Control Units
Buffer Memories
Storage Control Units (SCU)
Input/Output System
A Microprogramming Language (AMIL)
COMPARISON OF DPE AND SPE
CURRENT AND FUTURE DEVELOPMENTS

References for Signal Processing Element

List of Figures

General Purpose Array Processor
SPE System
Microprogrammed Control Unit for SPE
MCU Timing Diagram
SPAU Functional Unit Block Diagram
A Comparison of the DPE and the SPE

7.1

Page

7.ii

7.1
7.3
7.3
7 .. 3
7.4
7.8
7.8
7.9
7.9
7.11
7.17
7.18
7.18
7.19
7.22
7.22
7.22
7.23
7.24
7.26
7.29

7.31

7.5
7.10
7.12
7.13
7.20
7.27

AP

APE

A&C

BPP

DPE

GPAP

ILLIAC IV

MCU

MPP

PEPE

PMU

SCU

SPAU

SPE

Glossary of Terms for Parallel Processor

- Associative Processor: first version of the AADC Parallel
Processor

- Array Processor Elements: a general purpose sequential pro
cessor with limited control and data management capabilities.
One of many processors in the GPAP.

- Arithmetic and Control Unit of DPE. A&C plus Task Memory ~kes
a sequential Data Processor Element.

- Bulk Parallel Processor: another name for a general parallel
processor.

- Data Processing Element for sequential Processing (Chapter 5)

- General Purpose Array Processor: the third version of the AADC
Parallel Processor.

- ~ very large matrix parallel processor with 64 processor ele
ments in parallel under one instruction interpretor (controller)
installed at NASA Ames in San Jose, California.

- Microprogrammed Control Unit: the main control unit for SPE.

- Matrix Parallel Processor: second version of the parallel pro
cessor.

- Parallel Element Processing Ensemble: a special parallel pro
cessor with several identical PEs each one for tracking its own
~radar target under a single pair of control units [7.4].

- Program Management Unit for Data Processing Element - function
similar to MCU, (Chapter 5).

- Storage Control Unit: control for the SPE Buffer Memories.

- Signal Processor Arithmetic Unit: the arithmetic, logic and
shift unit for SPE.

Signal Processing Element: the latest version of the AADC
Parallel Processor.

7.1i

Chapter 7

PARALLEL PROCESSOR

7.1 INTRODUCTION AND SUMMARY

Whereas the PE described in Chapter 5 is designed to fulfill all the

sequential processing requirements t the parallel processor is designed to handle

all the parallel processing requirements for AADC. The avionic parallel

processing requirements include signal processing, radar processing, multiple

tracking, pattern recognitioo t table look-upt optimal filtering signal corre

lation t Fourier analysis and synthesist analog test function generation, voice

command interface t etc. Parallel processing requirements are for 70 to 133 r1IPS

and 32K to lOOK words of memory [7.1].

Although the parallel processor was one of the first AADC areas of

concern, it has undergone more changes in design concept than any other AADC

module, it still is the module whose design is the least firm and the most

likely to be changed. Already the parallel processor has been referred to as

the Bulk Parallel .Processor (BPP), Matrix Parallel Processor (}~P), Associative

Processor (AP), General Purpose Array Processor (GPAP), and the Signal Processing

Element (SPE).

The feasibility of constructing a parallel processor capable of 150

MIPS throughput is not in doubt t but what will it cost, and how should it be

designed to maximize the throughput, maximize the flexibility and minimize the

cost? ILLLAC IV and PEPE are examples of very powerful parallel processors

that are already in operation at NASA, Ames, San Jose)

7.1

California and the Ballistic Missile Defence Agency, Huntsville, Alabama,

respectively. The ILLIAC IV interprets instructions sequentially, controls

64 arithmetic processors in parallel, has inter processor communications and

is specifically designed for array processing. The PEPE is similar to ILLIAC

IV except it interprets 2 instruction steams simultaneously, contains any

number of arithmetic processors, has no interprocessor communications and is

specifically designed for radar-like signal processing. Both these systems

are very complex and costly [7.2-7.4]. The SPE is intended to perform both

these functions but with a cost reduction of at least two orders of magnetude.

7.2

7.2 HISTORICAL DEVELOPMENTS

7.2.1 Associative Processor

One of the first concepts promulgated by AADC has been the inc or-

poration of an optional, integrated, array processing capability within the

computer mainframe. This hardware function would permit general purpose pro-

cessing of radar, acoustic and/or video signals by means of some combination

of domain transformation (frequency to time domain or vice versa), convolu-

tion (a method of correlating two signals) and high speed, associative list

processing. (searching on an attribute in a file rather than on an index*).

It was initially believed that a "simple" Associative Processor (AP)

would suffice to handle all bodies of data which are amenable to bulk pro-

cessing. It was believed that the Ap could be used to maintain a multiple

target track file, perform various filter operations or provide a means to

correlate target signature information [7.5, 7.6 and 7.7]. Shortly thereafter

it was realized that certain tasks, primarily those which require domain trans-

formations, could not be adequately processed in a simple associative pro-

cessor. It was also recognized that the cost of the AP could be prohibitive

if storage requirements grew beyond moderation.

Some more recent"" work at NRL on a new associative processor, includ..:.

ing a simulation, is presented in [7.8 and 7.9].

7.2.2 Matrix Parallel Processor

To contend with these problems, two further elements were added to

this subsystem within a subsystem (the Associative Processor within the Parallel

Processor). The new elements, the Fast Fourier Processor and the Pseudo-

Associative Memory were conceived as individual, extensible building blocks

which could be fitted together with the Associative Processor and then put

under the supervision of either a private operating system or the AADC MEC**.

*like finding the name of the person from the address in the phone book.
*Master Executive Control.

7.3

The AP, however, underwent certain conceptual changes based on its modified

role, as well as a better appreciation of its operating environment. Among

these changes were:

the inclusion of a full adder in each memory cell;

independent, simultaneous, multifield operations;

vertical, as well as horizontal neighbor communi-

cations and control; and,

a variable clock, which would keep system operation

in step with variable settling times.

Two fundamental problems still existed in the new Matrix-Parallel"

Processor (MPP), as the combination of elements was called. First, there are

domain transformations other than the Fast Fourier Transform (FFT) which are

useful, and in some cases superior, for airborne data processing applications.

These transformations (Walsh-Hadamard, Haar, etc.) require special processing,

not necessarily compatible with a hardwired FFT.

Second, while the Associative Processor design changes improved the

matrix and vector operations, they still did not address the issue of data move~

ment within the processor, as would be encountered in a matrix inversion. It

also did not address the problem of hardware inefficiency resulting from the .

fact that the size of most matrices may not, and usually won't, correspond to

the physical dimensions of the hardware. Further information on the Matrix Parallel

Processor can be found in '[7.10].

7.2.3 General Purpose Array Processor

Figure 7.1 illustrates a General Purpose Array Processor (GPAP) , the

third version of the parallel processor. This design is indicative of a class
I

of ensemble processors such as the ILLIAC IV and PEPE [7.2 to 7.4]~ which utiliz

7.4

-. .
• •

• PE

E.xcc.

. ' Prog • _----

- Lr:"" • • • •

~

• • • • • •

Figure 7.1. General Purpose Arwoy Proc~ssor

Program

~emory

(BORA,l,\)

..

reasonably competent Array Processing Elements (APEs) in place of the pro

cessor/memory cells found in the Associative Processor. In addition to

the improved arithmetic and logic capability provided by this organization,

each APE is'provided with sufficient quantities of procedure and data

storage to manage computational problems of moderate complexity. Where the

ensemble processor differs from the sequential multiprocessor are in the

areas of control and data management. In the GPAP, each APE may be slaved

to a global controller (a supervisory DPE) thereby allowing common manage

ment of extensive, distributed computation. In essence, the ensemble pro

cessor accepts a large body of data, partitions the data into digestible

sets, then operates on these data sets in parallel. As such, the Bulk

Memory, which appears at the bottom of the GPAP diagram, might reasonably

be considered a signal converter, since it converts very high frequency

(100 M bits per sec) sequential signal into several lower frequency parallel

signals (i.e., into twenty 5 M bits per sec signals) for processing.

If the distributed operations are identical and synchronous, then

the overall process may be controlled by the global controller. If the pro

cesses are asynchronous or nonidentical, then control is passed to the pro

gram stored in local Task Memory. In such instances, the global controller

is only used to supervise system program and data transfers, and manage

system interrupts.

Among the advantages of this type of structure over the Associative

and Fast Fourier Processor are its ability to perform matrix and vector opera

tions efficiently, its ability to handle the signal processing requirement

for synthetic aperature radar mapping and other "holographic"-like* functions,

* i.e. transformations on video signals.

7.6

and its ability to perform domain transformations (i.e., frequency to time

domain). All these functions can be programmed into the array, and optimized

using conventional software and programming tools, such as high level language

compilers. Further description of the General Purpose Array Processor can

be found in [7.11 to 7.14]. The current parallel processor design will be

described in the next section.

7.7

7.3 CURRENT SIGNAL PROCESSING ELEMENT

7.3.1. Introduction

The current Signal Processing Element (SPE)* is a high-performance

signal processing facility for radar, sonar, and communcation systems. The

design of the SPE provides for efficient, flexible solutions to problems suited

to digital signal processing machines. The SPE is intended to be compatible

with the Navy All Application Digital Computer (AADC) system now under develop

ment, but is also intended as' a stand-alone signal processor.

The SPE consists of the following elements:

Microprogrammed Control Unit (MCU)

Signal Processing Arithmetic Unit (SPAU)

Buffer memories or Buffer Store

Storage Control Unit (SCU)

Input/output system.

The SPE elements for the Advanced Development Model are to be imple

mented with "off-the-shelf" components. Bipolar monolithic storage devices and

TTL Schottky family logic are to be used. Performance specifications include:

MCU basic microinstruction

Buffer memory cycle

SPAU-equivalent complex operation

(four multiplications and six adds)

150 nsec

150 nsec

300 nsee

Performance is compatible with projected AADC technology, and effi-

cient operation can be expected under stand-alone or system-integrated conditions.

The material in this section is a summary of [7.17-7.20].

*the current SPE was developed at NRL (Navy Resea~ch Lab, Washington, D.C.).

7.8

7.3.1.1. Functional Description

The SPE is designed as a tool for processing digital data streams.

The heart of the SPE is the Microprogrammed Control Unit which serves as system

superviser and data organizer for the Signal Processing Arithmetic Unit and

other I/O devices in the system. Microprogrammed operations in the }1CU process

l6-bit-wide data accessed from 32-bit-wide buffer memories and control buffered

and unbuffered I/O operations to and from SPE devices.

The Signal Processing Arithmetic Unit performs special data process

ing op.erations such as Fast Fourier Transforms, recursive filtering, and corre

lation under direction of the MCU. Parallel organization of fast multiply and

add logic units allow for high-speed execution of these functions. Interfacing

between the SPAU and MCU is via buffer memories and the I/O system.

It is the responsibility of the Storage Control Unit to manage accesses

to buffer memories by the elements of the SPE. The MCU, SPAU, and other buffered

devices in the system access buffer memories independently under their own con

trol, and the SCU resolves conflicts for buffer cycles on a priority basis.

The I/O system is designed to allow expansion of the SPE so that mul

tiple MCU's and SPAU's can communicate and coordinate processing of increased

data bandwidths.

Figure 7.2 is a block diagram of the SPE.

7.3.2. SPE's Microprogrammed Control Unit (MCU)

The Microprogrammed Control Unit is a high-speed, executive, input

output processor and interrupt handler for the NRL SPE. Since the }1CU is the

microprogrammable executive for the SPE, users will write microprograms (or

have them written) which will direct and control all elements of the SPE. It

7.9

'" .
t-'
o

r

r----'
I SPAU !
I I L ____ J

BUFFER
MEMORY

t

• •
• •
• •

STORAGE
CONTROL

UNIT

, t.....-----

SPAU

MCU

t

BUFFER
MEMORY

~ INTERRUPTS
i'\ FROM

SPAU'S
I/O CONTROLLERS
Meu's

r------~-,

I I
.... CONTROLLER r
-1 r-L _______ J

• •
•

BUFFERED
CHANNEL

CONTROLLER

t

BUFFERED
CHANNEL

CONTROLLER

'0

...... ~: I/O I
• •

.... ~~ I/O J

..... ~: I/O I
•
•

-.-~: I/O I

UNBUFFERED
l
I I/O J

DEVICE I...~ J~""'~
CONTROLLER •

•

--~.~--~------~----------ZBUS
Figure 7.2 - SPE system

is the responsibility of the MCU to initiate and keep records of all I/O

operations. Concurrently, the MCU may be doing preprocessing on a block of

data before requesting action from the SPAU. Similarly, it may have to do

postprocessing of SPAU output before outputting the results or sending them

back to the SPAU for yet another operation. In addition to these functions,

the MCU must service the interrupts from the SPAU, Buffered Channel Controllers,

Unbuffered Device Controllers, and other MCU's, if any. To handle all of these

responsibilities, it is necessary for the MeU to do many things at a very fast

rate. As a result, the MCU operates at a ISO-nsec clock cycle time, with the

ability to do all operations, including buffer memory accesses, within one cycle.

To achieve this high rate of control, the MeU operates from a single-format,

64-bit-wide, microprogram control word. From this wide control word, it is

possible to achieve benefits such as increased speed due to the highly decoded

fields and high hardware utilization (and, therefore, performance improvement)

from the ability to control all of the registers and gates during each cycle.

Thus the Meu serves as system supervisor and data organizer for the

SPAU and other I/O devices. The MeU includes a 64-bit Control Store, two local

stores, an arithmetic element, two busses to buffer memory, an unbuffered byte

channel, and a priority interrupt system. The next subsection will examine

the MCU architecture and operation.

7.3.2.1. MCU Architecture and Operation

To obtain the basic clock rates, the MCU must be simple, but to do the

required work it must have considerable parallel-operating hardware. These

requirements dictate the design shown in Figure 7.3 and the overlapping opera

tions and timing shown in Figure 7.4.

7.11

-.....J .

STORE

MP

INTERRUPT
CONTROL

UNIT
(lCU)

TIME COUNTER

CONTROL
STORE

.... --AOVFF

.... --. BARA

...---. BARB

..---z
14---CSAR

LSA

TO ADDER

TO ALL
BLOCKS

ZBUS

eUFFER DIRECT
STOP.AGE ..,.-.. ... co MEMORY
MODULE I

I
I
I

BUFFER I
STORAGE -
MODULE

I

wZ I
t.:)=>_ M
<{....J=>
c::Ou N
OC:::V)
~I--
V)Z -0

u

~

I ACCESS
I CHAiJr~El

I

J
DIRECT - MU.~ORY

~
ACCESS

CHANNEL

I 1l~:J~JT~0~ C-BUS B CONTROL J
or -.--

l~ ~E[[SELE:r SELECTJ

~l 1.-1-.. ~I 1 ~ MP MP .r- r.J I r ... !

I LOCAL -ill ~~ lITS t; a: LOCt-L! rmtT] I SELECT J
~~ ~ ~ '- STORE i STORE ~ j .. ~ LITO

~ tJ A J l BhHA] cdRB J l B ..J wI-

~Q ...
t

J~ ~ TO TO FSDR I

ICU ICU
FSU

s[1 a:
< l-V)
U ..J

>rl COUNTER I
~

c.:(~
[ADDER L/R SELECT J 0 1 TO ICU u

1 1
AOV t t I

/ H SAR J FF P.ESUL T = 0 BARREL

sf TEST MOST 1 ADDER SHIFTER
LOGIC ~ LEAST 1 J

ICU t t -.t

1 Z SELECT

I +
DRIVERS J l DRIVERS J [Z

J
~ TO leu I) \.

Figure 7.3 Microprogrammed Control Unit" for SPE

ACTION 1. SELECT DATA 1. START BUFFER 1. ALU OR 1. START SETTING 1. BUFFER MEM.
FOR BUFFER WRITE SHIFTER OUT· COMMAND REO· ORY REOUESTS
WRITE 2. DO INC/DEC OPt PUT READY ISTER WITH GRANTED

2. DUF F ER AD· EnATIC:--';S ON 2. Z Fl ECE IVES NEXT CS WORD 2. COM~~'AND REO·
DnES~EES CTR, BARA, ETC. ALU/SHIFT 2. STORE Z INTO ISTER DECODED
READY 3. CSAR AND 3. INTEnRUPT DESTINATIONS AND TEST CON·

3. LOCAL STORE ACSAR READY- CONTI10L UNIT 3. CHECK FOR OITIONS AVAIL·
SOURCE AD· READ IN NEXT RECEIVES DATA BUFFER MEM· ABLE
DRESSES SET CONTROL 4. SELECT DESTI· ORY REOUESTS

4. SET CSAR A~~O STORE WORD NATlcr;s FOR Z IN NEXT CYCLE
AC!;AR FOR 4. ALU Ij~?UTS 6. BUFFEr~ INPUT
NEXT INSTRUC· READY READY

-....J TION BASED ON

I-' OLD CYCLE NEXT
w 1 CONDITIONS CONTROL

STORE WORD
AVAILABLE

t
I I

TIME

r
NSEC

1 1 1
11&0 NSEC

CLOCK PHASE P/1 P/2 P/3 P/4 P/1

.. Meu BASIC CLOCK CYCLE .,

Figure 7.4 Meu Timing Diagram

All data entering or leaving the ~CU must travel over one of two

channels, Bus A or Bus B, via the Storage Control Unit to the buffer memory.

Each channel can be used for one memory operation during every ~CU cycle due

to the matched speed of the ~CU and the buffer memories. See Figure 7.3.

Associated "ith each 32 bit bus is an address register. Bus A

Address Register (a~~~) goes with Bus A and, similarly, Bus B Address Regis

ter (~~RB) goes \~ith Bus B. Each register has 16 bits, composed of 12 bits

of word address, 3 bits of buffer address, and 1 bit for half-word address

ing since each buffer ~e~ory word read out and transferred is 32 bits wide.

To aid in buffer ne~ory addressing, each address register has an incrementer

and decrementer associated with it.

To store data fro~ these busses or intercediate results generated

by the }1CU, there are t\,"o small very fast (30 nsec access) nemories, Local

Store A and local Store B. Each is 16 words by 16 bits ~ith the capability

of being both read out and stored into during the s~e c~c1e. Double

addressing capabilities are asso~iated ~ith each local store whereby dif

ferent addresses can ~e s?ecified for read and "rite operations in the same

instruction cycle.

For indirect (co~?utable) addressing, a default schene is incor

porated ~hic~ allo~s the least significant four bits of the adjacent bus

address register (B.~~~ \~ith Local Store A and B.~B with Local Store B) to

supply the local store address. This occurs ~henever the control store

field address is zero.

To perforn basic arith~etic and logical operations, the ~cu has

both an added and a shifter (so=eti=es called an Arithmetic and Logic Unit).

7.14

The adder can perform 16 basic operations including add, subtract, and full

Boolean operations. Binary operations are performed on two 16-bit words,

one on the left input (L) and one on the right input (R). The output is

delivered td the l6-bit Z register for gating to other MCU registers. The

shifter is a barrel switch which allows shifting of the adder output by

any number of bits within 20 nsec. The number of bits to shift is specified

by the Shift Amount Register (SAR). Output from the adder/shifter goes via

the l6-bit Z register into local stores, buffer address registers, and other

registers in the same cycle.

One support register, the Shift Amount Register, has already been

mentioned. Another is the Counter (eTR) which can be loaded with a literal

value and counted up to overflow which can be checked and thus cause appro

priate action. Other conditions that can be checked are based on results

of the last adder operation and include adder overflow, result equal to

zero, Z register most significant bit set (sign), and X register least

significant bit set (odd or even, flag, etc.).

Two registers are provided for control store address selection.

The Control Store Address Register (eSAR) is the only one which addresses

the writable Control Store. It can be set from the other address selection

register, the Alternate Control Store Address Register (ACSAR), the literal

field of the control word, or from its incrementer. In addition to these,

the Interrupt Control Unit (leU) can set the eSAR to allow for interrupt

handling. At the beginning of each cycle, the eSAR contains the address

of the currently executing control word. Under direction of the new con

trol word, the CSAR and ACSAR are selectively altered from one of eight

choices. For example, in normal sequential program stepping, the eSAR is

7.15

incremented during each clock cycle and the ACSAR is unchanged. For sub

routine calls the ACSAR retains the return address (the old CSAR +1) and

the CSAR holds the address of the subroutine.

The Interrupt Control Unit (leU) mentioned earlier contains no

programmable elements. Upon receipt of an interrupt of higher priority

than the current level executing in the MCU, the MCU operations are sus

pended, all necessary registers are saved, and the appropriate interrupt

handling routine address is passed to the CSAR. This routine executes

then restores the MCU to its preinterrupt status. The user will be unaware

of this action except for deviations in expected execution times.

I/O action is initiated by the MCU by sending out an I/O command

over the Z bus. The programmer must select the proper command operation

code, count, device address, buffer address, etc., to be sent out on the

Z bus. This process will be discussed further in Subsection 7.3.5.

The last element of the MCU is the Field Select Unit (FSU).

This device allows the programmer to address fields within a word. As

data are brought in over bus A, the programmer may specify that during any

transfer the 32 bits of data also be put into the Field Select Data Register

(FSDR). In subsequent cycles after this operation, the user may select

one of seven predefined fields [7.17, page 6] from the FSDR as an operand.

for the adder. The output will be a l6-bit value with the selected field

right justified with leading zeroes.

The two most important attributes of the MCU is its speed and

flexibility. The speed is obtained largely from the overlapping of opera

tions. Figure 7.4 shows the MCU's 150 nsec cycle time broken down into

four subcycles with an average of four events being performed in each sub-

7.16

cycle. This gives some idea of the amount of concurrency allowed by this

architecture.

Much of this subsection is taken from [7.17]. A more detailed

explaination. of the MCU architecture and operation is available in [7.18,

pp 2-9] or [7.19, pp 2-17]. A description of the 64-bit control field is

available in one of [7.17, pp 7, 8; 7.18, pp 22-31; or 7.19, pp 27-34]. For

a discussion of the MCU programming language, see Subsection 7.3.6.

7.3.3 Signal Processing Arithmetic Unit (SPAU)

The Signal Processing Arithmetic Unit operates under direction

of the Microprogrammed Control Unit. It is a special-purpose hardware

device designed to provide very high-speed processing of Fast Fourier Trans

forms, recursive filter, and other signal processing algorithms. Its per

formance is indicated by a time of 300 nsec (two ~1CU cycles) to complete

an SPAU-equivalent complex operation (four mUltiplications and six additions).

Two major sections provide the processing functions of the SPAU.

These are the Arithmetic and Control Section (ACS) and the Address Generator

and Control Section (AGCS). Both sections operate under microprogram control

from read-only or read-mostly memories. These two major sections are later

subdivided in 5 smaller sections.

The Arithmetic and Control Section contains four high-speed multipliers

(185 nsec) and six high-speed adders (25 nsec) which can operate in various

parallel or serial configur~tions as governed by the microprogram control.

Direct access to SPE buffer memories is provided via two buffered data

channels allowing high data throughput in the SPAU.

The Address Generator and Control Section contains adders, counters,

and other logic elements and provides the function of computing addresses

7.17

needed by the Arithmetic and Control Section to access buffers and internal

stores containing data used by the signal processing operations.

7.3.3.1 Design Objectives of SPAU

The SPAU has been designed to attain two primary objectives,

high speed and efficiency, in the execution of signal processing algorithms.

The former has been accomplished by using four parallel hardware multipliers

and four adders in the section which performs arithmetic operations on the

input data, and by concurrently generating memory addresses in a separate

section which uses three parallel adders and three counters. High efficiency,

that is the ability to keep most of the hardware bu~y most ,of the time, is

accomplished by providing many data transfer options to the multipliers and

adders.

During the design process, major emphasis has been placed on two

signal processing algorithms: the Fast Fourier Transform (FFT), and the

second-order recursive filter. Another objective has been to provide flexi

bility for the efficient execution of other algorithms, such as data and

spectrum weighting (Hanning) and vector and matrix operations. This overall

flexibility has led to a wide control word (154 bits).

7.3.3.2 SPAU Architecture

As shown previously, Figure 7.2 illustrates the relationship of

the SPAU to the other elements in the SPE. The SPAU communicates with the

Microprogrammed Control Units (MeU) by means of the Z bus and buffer memories.

Input and output data areas residing in one or two buffer memories are

assigned'by an MCU each time the MCU issues a "macro" command to the SPAU.

After receiving a macro, the SPAU operates in a stand-alone mode until it

has finished the assigned task, then it sends an interrupt signal to the MCU

which called it indicating that the macro has been completed.

7.18

In order to operate in this manner there are five functionally

different sections combined within a SPAU, as illustrated in Figure 7.5.

There are: the Arithmetic Section (AS), the Address Generator (AG), the

Sequence Unit (SU), the Control Store (CS), and the Input/Output Control

Unit (IOCU). The,Arithmetic Section contains four high-speed (185 nsec)

16-bit multipliers; four high-speed (25 nsec) l6-bit adders (arithmetic

logic units); four each of input, product, and result registers; and four

16-word 16-bit local stores which are "ganged" in pairs (the two stores in

a pair have common Read and Write addresses). The Address Generator con

tains three adders, three counters, three output and three result registers,

and a single 16-word 16-bit local store. Communication is provided between

the AS and AG local stores in order to facilitate data dependent addreSSing.

A read-only memory (ROM) contains 1025 sine and cosine coefficients, each

12 bits wide, for use in the FFT, plus often-used filter coefficients and

other constants.

7.3.3.3 SPAU Operation

A SPAU operation may be initiated by an MCU sending an inquiry

signal on the Z bus, and receiving a "not busy" reply from the SPAU. The

MCU then sends a linkage message which includes the identity of the macro

being requested, and its associated parameters. The message is transmitted

via the 10 Control Unit to the W store in the Address Generator and thence,

as required, to the X and Y stores in the Arithmetic Section. The start

ing address of the particular macro in question is set up on the Sequence

Unit, and operation of both the Arithmetic Section and the Address Generator

begins.

The normal sequence of control is an unconditional step from one

instruction to the next; however, this sequence can be altered by testing

7.19

....... .
N
o

CS ADDRESS SE~UENCE I/O Z BUS

CONTROL
STORE

- CONTROL I~-~------~ CONTROL <,-",~ -------'>

ARITHMETIC
SECTION

~ -' w w z z z Z

-

h ..

-.

ROM ADDRESS
<l <{
:r: :r: ROM I~_~----------------------~
u u

"If '- If
'I 'I "'-_..-.J

TO
SCU

ADDRESS
GENERATOR

(/) (/)
(/) (/)
w w
a: a:
0 0
0 0
<:{ <t
<:{ m
:r: ::r:
u u

~
,

TO
SCU

SPAU-FUNCTIONAL UNIT BLOCK DIAGRAM

Figure 7.5

anyone of fifteen other conditions in the AS and AG hardware, and transferring

control to one of seven other successors. A new instruction is fetched

every 150 nanoseconds (nsec) unless a buffer memory access is denied to

the SPAU, in which case the unit idles, re-requesting the memory access.

Data are transferred to and from buffer memories over two channels, denoted

by A and B, of 32 bits width. The X and Y stores are each partitioned into

l6-bit halves, Xl' X2 , and Y
l

, Y2 , respectively, to operate with the 16-bit

hardware of the Arithmetic Section.

Adder outputs may be loaded directly into result registers, Rl

through R7, and mUltiplier outputs are always loaded into product registers,

PI through P4. There are also four input registers, denoted by 21 through

Z4, which may be loaded from the ROM or from the source that is otherwise

indicated (in the control word) for X and Y. The inputs to the Arithmetic

Section multipliers and adders are obtained from X, Y, the 2 registers,

the P registers, and Rl through R4.

In the Address Generator, the memory addresses are held in registers

denoted by BARA, BARB, and RAR for channels A and B, and the ROM, respectively.

Their contents are normally incremented by amounts contained in registers

INCA, INCB, and INeR, respectively. The inputs to the Address Generator

adders are obtained from the address registers, the INC registers, the W

store, or the literal field of the control word. The literal field and W

are 16 bits wide; only the 11 least significant bits and the sign bit (the

most significant bit) are used in the 12-bit Address Generator hardware.

As stated in [7.20] the design of the SPAU is still in the pre

liminary stage and thus the material in this subsection may be subject to

change. The final design is expected in March 1973.

7.21

7.3.4 Buffer Memories and Storage Control Unit

7.3.4.1 Buffer Memories

An SPE can have a maximum of eight buffer memories. Each buffer

memory consists of up to 4096 words of 32 bits and has a separate 32-bit data

port. The buffer memories use static, bipolar, monolithic storage"devices

which are compatible with TTL logic. The read/write cycle time is 150 nsec.

The memories are contained on printed circuit boards which are placed in 19-in.

wide panel racks.

Each buffer memory is independently accessible through its own

port. MeU's, SPAU's, and peripheral devices must contend for buffer memory

access on a cycle-by-cycle basis. It is the responsibility of the Storage

Control Unit (SCU) to resolve memory access conflicts.

7.3.4.2 Storage Control Unit (SCU)

All SPE devices (}1CU's, SPAU's, peripherals) which require buffer

memory access are interfaced to the memories through the Storage Control

Unit. The SCU can interface up to eight data channels with up to eight buffer

memories. Any channel may access any buffer memory at any time. Whether or

not the buffer cycle which is requested is granted depends on the priority

of the requesting channel and the state of the other channels. Channel pri

ority is hard wired and determined by the physical location of the channel

at the SCU.

Requests for a buffer cycle are made by a device raising a buffer

request line along with the buffer address lines. The SCU records all buffer

requests every clock cycle (150 nsec) and returns a Request Granted line to

each device receiving its requested buffer cycle. If two or more devices

request the same buffer on the same cycle, only the highest priority channel

will receive the Request Granted line.

7.22

It is the responsibility of any device to remain idle pending a

positive response by the SCU to its buffer cycle request. This is done

automatically by the MCU and SPADe A little more detail on the seu can be

obtained from [7.19, pg 17-18].

7.3.5 Input/Output System

The SPE Input/Output and internal communications are provided by

Direct Memory Access buffered data channels, a single unbuffered byte channel,

and a priority interrupt system. The unbuffered byte channel called the Z

Bus communicates both data and control information to all I/O devices.

Eight/sixteen buffered channels enable high-speed data transfer between

buffer memories and system devices or MCU's. The Z bus allows direct

communication under MCU control and on a word-by-word basis between the Z

register of an MCU and all devices connected to the Z bus. The Z bus also

enables direct MCU-to-MCU communication.

Figure 7.2 in Subsection 7.3.1 showed an SPE configuration with

I/O system elements and interconnections.

Devices which access buffer memory over buffered channels are

interfaced to the buffered channels by Selector Channel Controllers (SeC)

(Not shown in Figure 7.2). SCC's also interface with the Z bus and are

responsible for interpreting device requests coming over the Z bus from

MCU's. These requests originate in the form of MeU I/O instructions and

can call upon an sce to initiate various device I/O operations over its

buffered channel interface.

The see's are intended to he standard I/O elements interfacing

between buffered channels and Device Controllers (DC). DC's interface be~

tween sec's and I/O devices and must be tailored to meet the interface

7.23

requirements of a particular device type. DC's interface to sec's over

Z-bus-compatible connections. This allows a DC to connect directly to the

Z bus for direct unbuffered communication with an MCU or to connect to an

SCC for buffered channel communication.

SCC's and DC's can request MCU action via interrupt lines pro

vided in the MCU's for such purposes. Separate sec's or DC's sharing a

single interrupt line must have hardware to resolve competition among the

units for interrupt service~

An MCU generating an I/O request addressed to another MCU for the

purpose of MCU-to-MCU communication causes the addressed MCU to raise an

internal interrupt line. An I/O acknowledge instruction by the interrupted

MCU completes the data transfer over the Z bus.

The Z bus consists of 30 lines, 16 of them are bidirectional

data lines, 8 are bidirectional device address lines and 6 of them are other

control lines. The maximum burst transfer rate over the Z bus, based upon

an MCU cycle time of 150 nsec, is 2 'MHz. The Z bus is used by the MCU to

exchange commands and unbuffered data with I/O devices. The MCU is interface

to the Z bus through the Z register and the Local Store A (See Subsection 7.3.2

and Figure 7.3).

Since three references [7.17, pp 19-25; 7.18, pp 9-15; and 7.19,

pp 21-27] all contain (almost) identical detailed descriptions of the SPE

Input/Output System and it~ operation, no further description will be pre

sented here.

7.3.6 A Microprogramming Language (AMIL)

One of the most significant outcomes of the NRL SPE development

program is the creation of a Fortran-like language for programming the SPE.

7.24

Since the control unit of the SPE is the Microprogrammed Control Unit, all

programming would normally be done by specifying binary bit pattern which

is a difficult and tedious task. For this reason, a new language called

AMIL (A MIcroprogramming Language) has been created to allow users to

write microprograms in a Fortran-like register transfer language as opposed

to ones and zeroes. As a result, users will now be able to write AMIL

programs and allow the A}lIL translator to convert his program into MCU bit

patterns. This translator has been developed and is currently operational

on a t,ime-sharing service available to NRL.

AMIL is syntactically described using Backus-Naur Form (BNF)

with semantic descriptions in [7.17, pp 9-18]. A complete AMIL Syntax is

given in [7.17, Appendix B] with key words listed in [7.17, appendix C].

Two sample programs and their output from the AMIL translator are shown in

[7.17, appendix D] and a complete listing of error messages generated by

the translator is shown in [7.17, appendix E]. In all, AHIL looks like a

well defined and very useful language for controlling the microprogrammed

SPE.

7.25

7.4 COMPARISON OF DPE AND SPE

Since the Data Processing Element (DPE) described in Chapter 5

and the Signal Processing Element (SPE) are substantially different processors,

a brief comparison will be presented. The DPE is intended for all sequential

processing, although it does have some matrix handling capabilities. The DPE

is expected to have throughput of less than 10 MIPS even in advanced designs

and about 2 MIPS for the Advanced Development Model. On the other hand,

the SPE is designed for radar, acoustic and video signal processing where

throughput of 10 to 200 MIPS may be required.

Figure 7.6 compares the major component building plocks of the SPE

with the building blocks of the sequential DPE. In principle, the SPE

achieves its high throughput based on the fact that signal processing en

tails reiterative processing of relatively continuous data streams. This

allows pipeline computation where, once the processor pipeline is filled,

the total throughput of the machine is basically limited by the time it

takes to complete the longest operation in the sequence. Obviously, in

order to keep a processor pipeline busy, it is necessary to stream instruc

tions to all elements in the pipeline simultaneously. Because the number

of operations which must he controlled in this manner is greater than can

be managed using a relatively short OP CODE, microprogramming methods are

used.

While extensive microprogramming was found non-essential and hardly

cost-effective for the DPE, it is an absolute necessity in the SPE. Further

more, the software management problem raised by microprogramming for the

DPE does not seem as grave in the case of the SPE. Whereas, for the

sequential DPE, microprogramming could result in uncontrollable modification

7.26

~----~----------------+-----------------------------~-------------------------------~--

Signal Processing Element I Property

Required Through
put

Arithmetic

Precision

Array Sizes

Branching

Procedure and
data sizes

Arithmetic Unit

Control Unit

Queue

Local Instruction
Memory

Local Data
Memory

Data Processing Element

<1 HIPS

Real and Non-numerical
data

h~gh (32 bits or higher)

small arrays

considerable branching

Procedure large, data
small (1/10 of precedure)

AU: Floating Point
32 bit arithmetic
750 nsec multiply

PMU: Instruction fetch
Unit
32-bit instruction
Long sequence on

major cycles

APQ from PHU to AU
16 words x 41 bits

Task Memory: ELt\}l
4K words x 36 bits

16 words x 42 bits

>10 MIPS

Complex variables

low (16 bits)

large arrays

little branching

Procedures small, data
large (100 times procedure)

SPAU: Fixed Point
16 bit complex halves
300 nsee for 4 multiplies

and 6 additions

MCU: Instruction fetch unit

64-bit microinstructions
Tight loop for major

major cycle

Buffer MCU to SPAU
4 x 4K words x 32 bits

Microprogram memory
1024 word modules x 64 bits

Expandahle to 4K word.

Two 16 words x 16 bits

Figure 7.6 A Comparison of the DPE and the SPE

7.27

of system architecture to the ~xtent that (a) HOL compilers could not be

easily written (if at all), (b) programs could not be easily run in multi

progra~ned environments and (c) software maintenance might only be attempted

by the progranuncrs responsible for their "individualized" instruction sets.

The operational conditions for the microprogrammed SPE circumvent most of

these probl~ns. First, the applications for the SPE constitute a much

smaller set than the potential uses for the DPE by the very nature of the

cost/performance ratio of microprogrammed hardware. Secondly, the funa

mental operat~ons which constitute the kernels for signal processing can

be developed once and then maintained in the sense of "firm\.,rare", allo\oling,

in turn, reasonable measures of software design automation through macro

synthesis [7.15].

7.28

7.5 CURRENT AND FUTURE DEVELOPMENTS

The current developments for the Signal Processing Element are

concentrating on a test-bed model to be built by March 1974(the same time as

the scheduled delivery of the Advanced Development Model for the sequential DPE).

The SPE test-bed model is to be built with off-the-shelf equipment and to be

compatible with other AADC components. The Microprogrammed Control Unit is to

have 150 nsec cycle time and be capable of emulating the Q20 and ~~/UYK-7

computers. The microprogram memory is to be 150 nsec bi-polar 2K words x 32

bits and to be RM1M (Random Access Hain Memory) and Task Memory Compatible.

The SPAU and other SPE components for the test-bed model ~ill be built as

described in the previous section.

The objectives of the SPE test-bed are to produce a facility to be

used as a:

1. System simulation laboratory

2. System configuration laboratory

3. Benchmark facility.

The d~velopmcnt of programming languages to be used with the SPE

is a very important area for future development. The programming languages

can be divided into three categories:

1. Support software for program development include a micro

programming language translator

2. Executive software for MCV

3. High level languages for signal processing applications.

Some work has already been completed on developing support soft

ware for program development. The AMIL (A MIcroprogramming Language) and its

translator have been developed and are now running. (See Subsection 7.3.6).

7.29

A MCV simulator has also been developed to check the translator output and to

act as the first step in developing an SPE simulator. The basic support soft

ware is scheduled for release in April 1973. It will be available to anyone

who wants it.

Tbe program development that is currently in progress includes

developing an SPAV simulator which will then be combined with the MCV simulator

and the AMIL translator. The result will be an SPE simulator that can be

programmed directly in a Fortr.an-like language. This should prove to be a

very -valuable tool for SPE system configuration and check-out, as well as

for program development.

The development of executive software for SPE is just beginning.

The development of high level languages for signal processing is still an

area that needs a lot of research.

7.30

References for Signal Processing Element

7.1 Slide Presentation on AADC for FY72; R. S. Entner, NAVAIRSYSCOX; Undated,

probably spring 1972; Unpublished; Unclassified; (NPS).

7.2 An Introduction to the ILLIAC IV Computer; D. E. McIntyre; Datamation;

Vol. 16, No.4; April, 1970; (NPS).

7.3 The ILL lAC IV Computer; G. H. Barnes, R. M. Brown, D. L. Slotnick and

R. A. Stokes; IEEE Transactions on Computers; Vol. C-17, No.8; October

1968; (NPS).

7.4 PEPE: A Parallel Processor; Digest of Papers for CaMP CON 72; September

12-14, 1972; IEEE Catalog No. 72CH0659-3C; pp 57-72; Contains 4 papers

on PEPE Computer Architecture, Support Software System, Application to

Radar Data Processing and Application to the Ballistic Missile Defence

Radar Data Processing; (NPS).

7.5 Baseline Associative Processor; John E. Shore and Frank A. Polkingham;

NRL; March 1969; Unclassified; (6).

7.6 AADC Associative Processor, Interim Report; John E. Shore; NRL; May 24,

1970; Unclassified; (30).

7.7 Associative Processor for Air Traffic Control; Kenneth J. Thurber,

Honeywell Systems and Research Center; SJCC 1971; pp 49-59; (NPS).

7.8 Another Associative Processor; J. E. Shore and T. L. Collins; NRL Report
,NPS

73-48; December 1971; (69).
1\

7.31

7.9 Software Simulation of an Associative Processor; J. E. Shore; NRL Report

7351; December 1971; (70 NPS).

7.10 Matrix-Parallel Processor Study - Final Report; Westinghouse Electric

Corporation; 15 September 1970; NAVAIRSYSCOM Contract N00019-70-0264;

Unc1assified-NOFORN; (39, NPS).

7.11 Development of a General Purpose Signal Processor - Signal Processing Tasks

of the AN/TPS59; NRL Memorandum Report 23-53; November 1971; Confidential;

(68).

7.12 Second Thoughts on Parallel Processing; J. E. Shore; NRL Reports 73 64;

December 1971; (71, NPS).

7.13 The Advanced Avionics Digital Computer Revisited; R. S. Entner; NAVAIR

SYSCOM; October 12, 1971; Unpublished paper; Unclassified; (NPS).

7.14 AADC Development Program Progress Report No.8; R. S. Entner; NAVAIRSYSCOM;

July 1, 1971; Unclassified; AD-727-607; (58, NPS).

7.15 AADC Development Program Progress Report No. 10; R. S. Entner; NAVAIRSYSCOM:

May 31, 1972; Unclassified; (78, NPS).

7.16 Cellular Logic-In-Memory Arrays - Final Report - Part II; W. H. Kautz

and M. C. Pease III; Stanford Research Institute; ONR Contract N00014-70-

C-0404; November 1971; (81).

7.17 Microprogrammed Control Unit (~fCU) Programming Reference ~1anual; John D.

Roberts, Jr.; NRL Report 7476; August 15, 1972; (NPS).

7.32

7.18 Signal Processing Element, Users' Reference Manual; William R. Smith

and John P. Ihnat;NRL Report 7488; Sept. 5, 1972; (NPS).

7.19 Signal Processing Element Functional Description: Part 1 - }licro

programmed Control Unit, Buffer Store and Storage Control Unit;

John P. Ihnat, William R. Smith, John D. Roberts, Jr., Y. S. Wu

and Bruce Wa1d; NRL Report 7490; Sept. 12, 1972; (80, NPS).

7.20 Signal Processing Element Functional Description: Part 2 (Preliminarv)

Signal Processing Arithmetic Unit; William R. Smith and Harold H. Smith;

NRL Memorandum Report 2522; October 1972;

7.33

Chapter 8

MEANS OF

E V A L U A TIN G

A A D C

D EVE LOP MEN T S

Section

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.3

Table of Contents for Evaluating AADC Developments

INTRODUCTION AND SUMMARY
SPECIFIC EVALUATION STUDIES
Measuring the Avionic Computer Workload
Simulation of Individual AADC Modules
Simulation of AADC System
Simulation of AADC Applications
Other Evaluation Studies
AADC BREADBOARDS

8.i

Page

8.1
8.3
8.3
8.3
8.4
8.4
8.5
8.6

Chapter 8

MEANS OF EVALUATING AADC DEVELOPMENTS

8.1 INTRODUCTION AND SUMMARY

Although a means of evaluating the development of AADC and accurately

predicting the performance, cost and reliability is of the utmost importance)

relatively little has been published on this specific subject. There are several

means of evaluating the development, including:

1. Measuring the load on existing avionic computer

and thereby projecting the future requirements,

2. Simulating the operation of individual AADC

modules,

3. Simulating the module interaction or the overall

AADC operation,

4. Simulating an application using the AADC system,

5. Modeling the operation of AADC modules,

6. 'Breadboarding at the DPE, memory and bussing level

(equivalent to CPU, memory and channel level in

more common terminology),

7. Devising'a test plan for the breadboard of the model

including what to measure, how to measure and how

to interpret the results, and finally,

8. Producing a prototype of individual modules for

testing the complete AADC system.

8.1

According to the author's count, there is one completed study on

measuring the load on existing avionics computers (but there must be others)

[B.l]. (The AADC is currently sponsoring advan~ed analytical studies with

Grumman Aerospace and LTV Corporations examining the computer requirements

for the F-14 and A-7 class aircrafts.)

The author also counts three studies simulating AADC modules (case

2 above) and two reports on the simulation of module interactions as a

system. (case 3 above), and two reports on simulating the AADC application to

a particular problem area (case 4 above). There are also three reports on

"other facets of evaluating the AADC. Apparently, one of the current projects

is to obtain Optimized Simplex Processor breadboard or Advanced Development

Model. (The references for these reports are cited in Section B.2 below.)

There are also plans in 1973 fiscal year for completing the DPE

and SPE register-level simulations, assembling a SPE breadboard, procuring

verification hardware for DPE and I/O, and procuring feasibility models

for both the ferroacoustic and the semiconductor BORAN memories [8.2, page

17].

Therefore, the low number of reports in this area is probably not

an indication of the lack" of activity; but rather an indication that evalua

tion studies are being described along with the particular subsystem.

B.2

8.2 SPECIFIC EVALUATION STUDIES

8.2.1 Measuring the Avionic Computer Workload

As mentioned above a study on measuring the computer load on the

E2B aircraft is reported in [8.1]. It was found that the E-2B workload con

stitutes a processor workload of less than 100,000 instructions per second,

and that all jobs can be partitioned into tasks of less than 4K words. Com

pared to AADC performance the E-2B workload is very small, requiring only 5

percent of the processing capability of the 2 MIPS Data Processing Element.

The Ta$k Memory size has been selected as 4K words to hold any E-2B task.

(TM may be expanded in later versions.)

Current projects call for the measuring of computer load on the F-l4

and A-7 class aircraft [8.2, paragraph 27].

8.2.2 Simulation of Individual AADC Hodules

Three studies have been reported specifically on simulating the

operation of AADC modules. The first was the simulation of the Associative

Processor by J. E. Shore at NRL [8.3]. (See Subsection 7.2.1 for a brief

description of an associative processor as a signal processor.) The second

was the simulation of the instructions of the Data Processing Element. The

instructions were simulated in the exact way that they would be executed on

the DPE. Thus the simulation acts as a definition of the DPE instructions,

as well as, a tool for debugging programs written for the DPE. Both the Pro

gram Management Unit (PMU) and the Arithmetic Processor (AP) instructions

were simulated. For further details see Subsection 5.8.1 or [8.4].

The third study on the simulation of AADC modules is the simulation

of Microprogrammed Control Unit of the Signal Processing Element. The re

port on this work is scheduled for release in April 1973. Another project is

now underway at NRL"expanding the MeU simulator into a Signal Processing

Element simulator. For further details see Section 7.5.

8.3

8.2.3 Simulation of AADC System

. Two studies have been reported on simulating the interaction of

AADC modules. The first in 1969 was a UNIVAC report of a AADC simulation

module [8.5]. Apparently the Navy decided not to pursue their approach.

The other study is an early (1970) simulation of AADC at NRL. The project

included the simulation of BORAM, Task Memory, Random Access Main Memory,

Data Processing Element and the internal busses as resources. The load

was represented as demands for these resources in the event-oriented simula

tion in SIMSCRIPT. Reference [8.6] describes the model and the assumptions

in an easy to read manner. There are no results in this reference; results

are published in reports referenced in the next subsection.

8.2.4 Simulation of AADC Applications

One report, that is available on simulating AADC operation on a

specific application, is the simulation of the E-2B work load on the AADC

system. This simulation is a continuation of the NRL project discussed in

the previous subsection. Actually this study is limited to the simulation

of program modules movement, or paging, between BORAM and TM to determine

the best size of the BORAM blocks (or pages) and the size of the Task Memory.

[8.7 and 8.8].

A continuation °to the above project, which is a simulation of the

AADC with three different avionic workloads, is reported in [8.9]. The

avionic workloads are the E~2B, F-lll and future AADC requirements as defined

by a GE study. Simplex and multiprocessor configurations are modeled along

with certain features of the proposed AADC executive operations •. The operat

ing configurations include non-paged, paged and multiprogramming configurations.

The study concluded that the simplex processor configuration was sufficient

8.4

for any of the three avionic workloads. The report is very comprehensive

and well ~ritten, and is well worth reading [8.9].

AI-recent simulation study is the one on the simulation of AADC

page replacement algorithms and their affect on the AADC performance. It

was concluded that the replacement algorithm has very little affect on per

formance. See Chapter 3 or [8.10].

8.2.5 Other Evaluation Studies

Reference [8.11] provides a Cost-by-Function model for evaluating

avionic computer systems by NAVAIRDEVCEN dated }1arch 1971. Reference [8.12]

is a similar, but classified, document by NAVAIRDEVCEN dated April 1971.

Reference [8.13] is a review of AADC documentation by Hughes Aircraft Company

dated October 1971. (These reports may, in fact, be misplaced because they

were placed here based on the titles only.)

8.5

8.3 AADC BREADBOARDS

This heading is included in this report in the anticipation that

AADC breadboard modules will be a very important technique in evaluating

the AADC development in the near future. The Advanced Development Model

of the Data Processing Element, described in Section 5.8 and [8.14], is

just such a breadboard model. It is scheduled for delivery in March 1974.

Hopefully, other means of evaluating AADC development will also

be reported here in the near future. For example, the results of the follow

ing project would be interesting and useful: a simulation of the P3C or

S3A aircraft workload on the hypothetical AADC High Order Language, to

evaluate the features and power of the HOL and test the degree to which the

hardware actually supports the "ideal" software.

8.6

References for Evaluating fu\DC Developments

B.1 Defining the E-2B Digital Avionics Characteristics for the Simulation

of Alternate AADC Hardware Configurations (U); System Consultants

Inc.; November 17, 1971; NAVAIRDEVCEN Contract N62269-70-C-0274;

SECRET-NOFORN; (42).

8.2 AADC Development Program Progress Report No. 10; R. S. Entner; NAVAIRSYSCO~;

May 31, 1972; Unclassified (78, NPS)*.

8.3 Software Simulation of an Associative Processor; J. E. Shore; ~~L

Report 7351; December 1971; (70).

B.4 Arithmetic and Control Logic Design Study for AADC - Final Report;

Part III; Raytheon Corp; NADC Contract No. 62269-72-C-0023; December 1972.

8.5 Advanced Avionic Digital Computer Simulation }lode1, Preliminary Report

(U); Univac Advanced Systems Group; November 12, 1969; Unclassified

Proprietary; (17).

8.6 Simulation Model for the AADC; William R. Smith; NRL Report 2172;

September 1970; (NPS) ,

8.7 Simulation of AADC System Operation with an E-2B Program Workload;

William R. Smith; NRL Report 7030-19; January 1971; (48, NPS).

8.8 Simulation of AADC System Operation with an E-2B Program Workload;

William R. Smith; NRL Report 7259; April 1971; (NPS).

8.9 Simulation of AADC Simplex and Multiprocessor Operation; William R.

Smith; NRL Re~ort 7356; February 29, 1972; (75 NPS).

*AADC Bibliography number, and availability at the Naval Postgraduate School.

8.7

8.10 Simulation of AADC Page Replacement Algorithms; William R. Smith; NRL

Memorandum Report 2464; July 1972; (NPS).

8.11 A Cost-By-Function Model for Avionic Computer Systems; NADC Report No.

NADC-SO-7088; March 30, 1971; Volumes I and II; (52).

8.12 Integrated Analysis Document for AADC; (U) - Interim Report; NADC

R,eport No. NADC-SD-7132; April 15, 1971; Confidential; (53).

8.13 AADC Documentation Revie~vs; Hughes Aircraft Company; October 15, 1971;

NELC Contract No. N00039-70-C-3552; (66).

8.14 All Applications Digital Computer, 1973 Symposium; Orlando, Florida;

January 23-25, 1973; Proceedings are not yet available.

8.8

Chapter 9

H I G H

o R D E R

LANGUAGE

Section

9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.3
9.4
9.5
9.6

9.1
9.2

9.3

Table of Contents for HOL

List of Figures and List of Tables

INTRODUCTION AND SUMMARY
DESIGNING A HOL
Problems With Existing Computer Languages
Advantages of HOL
AADC Software Oriented Features
HOL Metacompiling
Software Cost Reduction with HOL
Comparison of CMS-2 to Other Programming Languages
Goals of the AADC HOL
EXTE~~ING CMS-2 TO AADC's HOL
CURRENT STATUS OF HOL
HOL PROJECTS
A HOL FOR SIGNAL PROCESSING

References to HOL

Appendices

An Overview of the CMS-2 Language
Objectives of the Work Plan to Define HOL

Primitives for AADC
Goals for AADC's HOL

9·i

Page

9.ii

9.1
9.3
9.3
9.3
9. 8
9.9
9.11
9.11
9.12
9.15
9.17
9.20
9.21

9.23

9.25

9.26
9. 27

Figure

9.1
9.2
9.3
9.4

Table

9.1

List of Figures for HOL

HOL vs Assembly Language
Avionics Software Components
Use of a Metacompiler
Block Diagram of a Metacompiler

List of Tables

Comparison of CMS-2 to Other Programming Languages

9.ii

Page

9.5
9.6
9.9
9.10

9.13

Chapter 9

HIGH ORDER LANGUAGE

9.1 'I1JTRODUCTION AND Sm·1MARY

This chapter presents the developments in defining and producing a

very powerful High Order Language that can effectively and efficiently use

the AADC system - one that can significantly reduce the development, documen

tation and maintenance costs .of the AADC Software.

For the purpose of this report, a "High Order Language (HaL)" is

.defined as a language with many powerful extensions beyond those in the present

"higb level" languages, such as Fortran, Algol and PL/I. The HOL must be cap

able of generating efficient executive, '1/0, test, display, data, file manipu

lating programs •. Also it,must have powerful vector, matrix, list, character

and bit manipulating features. (Although the equivalent of these features can

be obtained in present languages, they are not easily programmed and do not

execute efficiently.) For example, CMS-2 (the Navy's Compiler Monitor System)

is an attempt at defining a HOL. CMS-·2 has the ability to define operating

system procedures in Algol-like subroutines, and it has the ability to reorganize

data structures at run time. Also, CMS-2 is designed especially for real-time

command and control applications, which involve large data files.

Two conferences have been held on the HaL for AADC; one in June 1970

and the other in February 1972. The second conference was a good introduction

to AADC for software specialists but did not present any concrete proposals for

the design of the HOL for AADC. (The proceedings of this conference are not

yet available.) Three papers have been written on the updating of CMS-2 to the

AADC HOL, and one paper was written on how MTACCS (Marine Tactical Air Command

and Control System) requirements should affect the CMS-3 (extended CMS-2)

9.1

requirements. There is also a project currently underway to specify the goals

of the AADC HOL much more precisely.

This is one of the first times that the software specialist has had

a chance to influence the design of the hardware. How about some suggestions?

9.2

9.2 DESIGNING A HOL

9.2.1 Problems With Existing Computer Languages

The main problem with existing computer languages (i.e., Fortran,

A1go1,PL/I) is that they are designed for application programming only and

for sequential processing computers only. They are not designed to produce,

and are quite unsuitable for producing, the many other types of programs in

a modern computer system.

In the avionic and command-and~control* fields, the problems are

even worse. Spme of the current software problems in these fields are long

lead times, non-transferability, poor documentation, difficulty in debugging,

long validation times, very high cost, and specialized highly-trained personnel

are required. For example, the high cost of computer hardware, coupled with

large space and weight requirements have dictated that the avionic computers

to be as small as possible. This meant that programs had to be very compact

and very efficient - thus favoring assembly and machine language programming.

With assembly languages the programming problems are even worse than with

present "high level" languages. Programs are even more difficult to write,

to debug, and to document. In existing avionic systems, octal patch are allowed

and frequently used for connections, there are no language standards, no

algorithm banks, no modularity specifications and no cooperating hardware. Thus

there is a real need for an effective High Order Language. (Most of this material

is taken from the slide pres~ntation I9.3]).

9.2.2 Advantages of HOL

HOL programming can reduce software problems because HOL programs

are more easily understood, (largely) self documenting, more easily debugged

*These include NTDS and MTDS (Navy and Marine Tactical Data systems, respectively).

9.3

and more easily maintained. Figure 9.1 gives a very simple example of the

advantagesof HOL over an assembly language program.

However, before a HOL can be effective, it must be able to produce

efficiently executing programs for all software areas including executive,

I/O test, display and data manipulation, as well as the standard application

areas. Figure 9.2 shows this diagrammatically. Many other advantages will

be obtained from a HaL that is effective in these areas. Useful and enforce-

able language standards will be feasible as soon as a HaL exists that can

describe the total computer programs.

Furthermore, effective modularity will be possible with an HaL. In

the past, high memory costs have resulted in highly integrated programs

which have excessive subroutine sharing, excessive branching, use of programming

"tricks", unpredictable (or difficult to follow) program paths, reentrant

programming (instead of using another copy), and suboptimal algorithms. These

programming techniques are often considered advantageous since they improve

the computer performance, but in actual fact they often produce unreliable

and more expensive software. The wrong way to package software is to jam

procedures into a small memory like "sardines"; the right way is to package

software in separate individual modules. Software modularity can be effective

if organized in the following ways:

1. By Function - each function has its own module.

2. At Electrical Interface - allow number conversions
at interfaces, 4.e., a fixed-point arithmetic routine
is used at one side of the electrical interface for
aircraft velocity and a floating-point routine on the
other side for aircraft altitude.

9.4

.0

Sample of High Qrder banguage (HOL)

~ Arithmetic Expression

• H=A+ (B-C) (D/E+F-)
.~

~
OQ

.
c: Assenlbly.level Program 1"1 ~ ('t)

\0 .
/--I

Enter B . • -4

. ::r:
Sub-tract C 0

~ •
\0 < . CIl Store B-C VI • :>

CIl
CIl

Enter D ro • t:j

&-
..-.. Divide E '-< •
~
ell

Add F :::l • OQ
C
ell

f.v~1ultiply (B-C). ()'Q
ro •

./ • Add A

• Store In H

.....
.~ Cl\J\S-2 State~ment

... , - .- ----- - ----- ---
• SET H EO' A + (B.:.C)*(D/E +F)

" j

)

.,.
/'

..... --~----------... _ ----------------------
.0

Aerospace ProgrE~nl Com'ponents

Present I-Ij'gh Order languages Cannot Be Used to Generate

Efficient E)~e(!Jtive, I/O, Test, Di:;pJay Procedure or Common
Data Desc"riptions.

.'

Figure 9 ... 2. Avionic Software ~o~ponents

o _t:..

, ,

3. With Standard Mechanical Interfaces - standard
module packages will optimize the "pin-to-word"
counts, minimize branching and reduce fragmentation.

The advantages of good software modularity are:

1. "Where to go?" - reduces the problem of unpredictable
program paths and excessive branching.

2. Software Environment - it reduces the problems of
trying to fit a program into a fixed size space.
One program can be divided into several modules.
Also one program segment can be used by and there
fore located in several modules.

3. Software Reliability - is improved by reducing the
complexity of the program because there are relatively
few functional modules.

HOL Algorithm banks will save excessive duplicate programming by

storing test case solutions to recurring problems, such as, weapon delivery,

frequency analysis, data compression and analysis, multiple source tracking

data, correlation and optimization, file searches, display image generation

and control, and many others. (See chapter 10.)

HOL will also overcome the problems of non-cooperating hardware

which usually has fixed point arithmetic, conventional registers, conventional

repertoires, software assembly-language executives and slow speed implementations.

All the application programs will be written in the HaL and only the HOL com-

piler needs be written in some other language. (In many cases even the com-

piler can be written in the HaL.)

Probably the most important advantage of a High Order Language for

AADC, and its raison d'etre, is that the Navy will regain some control over

the ever mounting software development costs. The Navy will be able to

specify HOL requirements in its contracts, and possibly by MIL spec. Thus

the Navy will have much more control over the design and development of its

. computers, and will be much more capable of supporting and maintaining the

complex computer system in the operational environments.

9.7

9.2.3 AADC Software Oriented Features

The following are some of ·the significant AADC software features

of the Data Processing Element (Chapter 5) that help in the HOL implementation:

1. Fix and floating point arithmetic - eliminates
the need to scale variables and constants.

2. General purpose push-down registers - allows
instruction execution to be deferred until all
data (or operands) are available.

3. HOL stat.ements - arithmetic logical and conditional
statements are executed directly from left to right,
reducing program complexity and reducing the number
of set/saves by 50 percent, which reduces the
program size.

4. Macro-instruction repertoire - permits specification
of complete trigonometric, logorithmic, complex,
vector, matrix and list operations in one or two
macro-commands. This will result in improved compat
ibility with HOL and minimize program storage, as
well as, allowing improved computer operating
efficiency.

5. Many special vector and matrix operators.

6. Very powerful data manip~lating instructions.

7. Real-time executive - structures Program Modules in
real-time and on-line, minimizes need for extensive
software integration and permits dynamic software
reconfiguration.

8. Instruction look-ahead - improves processor
throughput by a factor of 2 by decoding and
executing instructions concurrently.

9. High speed - the AADC PE provides the following
sequential throughput capability:

- 4 MIPS with ·30:70 instruction mix, all
floating point arithmetic and 10 nsec
off-the-shelf technology.

- 8 MIPS as above, except with 2-3 nsec
AADC semiconductor technology.

9.8

- 10+ MIPS as above, when instruction
handling capability is considered.

For more information on the DPE instruction repertoire see Chapter 5.

9.2.4 HaL Metacompiling

The metacompiling technique allows a single compiler to be used

for many object computers as shown in Figure 9.3.

Source
Code

Libraries

Metacompiler
on a

Host Computer

Hardware Description

Object Code for
the Target Computer

Figure 9.3 Use of a Metacompiler

Source code, such as an application program and a description of the target

computer hardware are fed into the Metacompiler on the host computer. The

source code calls any procedures or routines it needs from the library. From

these input, the metacompiler generates object code for direct execution on

the target computer.

Figure 9.4 shows a simple block diagram for using a metacompiler.

First the Statement of Requirements (SOR) is fed into the task-load estirna-

tion block, which can refer to the algorithm bank to simplify its estimations.

The output from task-load estimation block is fed into the hardware defini-

tion block and into the operational program block. The hardware definition

block then selects hardware modules and options from the set of available

modules and feeds its output to the metacompiler. On the other path, the

9.9

METACOMPILER

SOR TASK·LOAD HARD\JARE - --.
t-q

()q
ESTli,lATION DEFINITION

c::
t1
(t)

1,- l ••
\0 .
~ .

t:d
~
0
n
~

t::; ...,.
ALGORITHf,'S

. ~'ODULAR IIARDWARE

, + OPTIOtlS
\0 0> . ()Q

.... t1
0> 0 a
0
Hl

, ~"
0>

~
(0 OPERATIOrlAL
n- .-
O> -n
0 a pnOGflAf,1
~
I-l-
~
(t)
t1

.... '.1ETACO~tiPllER ~

PROGRAr,l f_l0DULES
+ EXECUTIVE pnnGnAr.,

operational program block uses the task-load estimation to select algorithms

which are then processed and fed to the metacompiler. From these inputs the

metacompiler generates the program modules and executive programs for the

target computerin such a way that they will staisfy the Statement of Require-

ments. Significant saving can be obtained by using metacompilers for a HaL.

For further information on the metacompiler technique see [9.4 and 9.5].

9.2.5 Software Cost Reduction with HaL

The following cost saving will be obtained with the AADC HaL:

1. Single High Order Language - with hardware and
software compatibility.

2. Ability to document programs - in the single HaL.

3. Available Program Modules - in algorithm bank.

4. Simplified training - for Navy and Contractors.

5. Available supporting software.

9.2.6 Comparison of CMS-2 to Other Programming Languages

This subsection compares CMS-2 (Compiler Monitor System) with

other "high level" languages. First Appendix 9.1* gives an overview of

the CMS-2 language. CMS-2 is a "high level" statement-oriented computer

language similar to JOVIAL, Fortran and PL/I. References [9.7 to 9.11]

provide more information on the CMS-2 language. Reference [9.10] concentrates

on the utility of CMS-2 statements - which ones are essential, which are

redundant and which ones are difficult to implement. Reference [9.11] is the

CMS-2 programming manual, of which Volume 2 is of the most interest since

it describes the language.

*Not included at this time.

9.11

Table 9.1 is a comparison of CMS-2 with JOVIAL, Fortran, APL

and PL/I programming languages [9.6, pages 54, 55 - Enclosure 3]. As can

be seen, CMS-2 has several features that are missing in the other languages.

The features of particular interest are the syste~ the data structure and

the input/output features. One CMS-2 feature that is of dubious value is

the ability to intermix machine code with CMS-2 statements. Although this

is very desirable when the speed or powerfulness of machine code is required,

it has perpetuated the use of machine code when it was not really necessary,

thus eliminating any hopes of producing transferable programs in the high ,

level language. One obvious shortcoming is that CMS-2 do~s not have the

powerful vector and matrix operations that are contained in APL.

9.2.7 Goals of the AADC HOL

At this time the goals of the AADC High Order Language have not

been specified, but a project is currently underway to make such a specifica-

tion of goals. See Section 9.4 for further details.

9.12

Table 9.1. Comparlson of CMS-2 .to Other Pr:o~ramming LaI18uagp

FEATURE

Input/Output
Can describe input/output devices?
Allows Extensive for~atting of data?
Allows tape control functions?
Range of automatic output conversions?
Stream and record processing?

~-iis cellane ou s
Arithmetic expressions in subscript?
Addition of subroutines, procedures?
Linkage transmission of name or
value data?

Mixed arith~etic expressions?
Manipulation of bits of data?
~mnipulatio~ of characters of data?
Initialization of data?
Packing of part-word data values?
Scaling specified or automatic
'scaling ?

Capability to do arrdY manipulations
. with single reference?
Built in collection of subroutines

for common mathcmatlcal functions?
Provide internixing of m3chinc code?
Control over use of ~achine code?
Provision for ju~p tables?
Allo\,'s user-index regis ter ass ignmen t?
Full character sett

Data Types
Integer, floating point, literals,
Boolean?

Typed Pointers?
Status variables?
Complex numbers?
Double precision floating point?
Complete part-word data elements?
Hulti\.Jord data elenents?,
Character strings?

-

Internal Process Operators
Basic logical operators?
Relational operators?
Standard mathet'latical interpretation?
Automatic table searching?
Boolean algebra?

.
. .

9.13

Yes
Yes
Yes
Yes
Yes

Yes
Y'2S

Yes
Yes
Yes
Yes
Yes
Yes

Yes

Limited

Limited
Yes
No
Yes
Yes
Yes

Yes
No
Yes
No
No
Yes
Yes
Yes

Yes
Yes
Yes

.Yes
Yes

Yes
No
Yes
Yes
Yes

Yes
Yes

I Yes
Yes
~es

Yes
Yes
Yes

No

No

Yes
Lioitcd

N:>
Yes
No
Yes

Yes
No
Yes
No
No
Yes
Yes
Yes

Yes
Yes
Yes .
No
Yes

.

l~o

Yes

Yes
No

Yes
Yes

No
Yes
No
No
Yes

- No

No

No

Yes
No
~o

Yes
No
Yes

Yes
No
No
Yes
Yes
Yes
No
No

Yes
Yes
Yes
No
Yes

,..--

No

No
No
No

Yes
Yes

Yes
Yes

Gimited
Yes
Yes
No

Yes

Yes

Yes
No
No
Yes
No
Yes

Yes
No
No
Yes
Yes
No
Yes
Not

Effic-
ir-nt1v

Yes
Yes
Yes
Yes
Yes

?L-l

Yes
Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes

No

Ye~
No
~o

Yes
,. 4
hO

Yes

Yes
No
No
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
~:o

Yes

3

Table 9.1. (Cont'd).

FEATURE

Looping Operations
AlloW's loopintj within preset range?
AlIO\-1S nes ted loops?
Allows incrcncntine by preset values?
Allows alternate trans~cr points?

Decision Making
IF Statements?
Compound IF statements?
Alternative statements?

Data Structure
Control source of implied data
description?

Arrays with, simple elements?
Arrays with compound clements?
Variable-length tables?
Variabl:e-size arrays at run time?
Horizontal or vertical tables?
Provides for local and global struc-

tures?

Allocation
Dynamic storage allocation on pro-

cedure entrance?
Data-ele~ent equivalencing?
Express relative origin of data values?
Can define structures over structures

dynamically?
Define absolute allocation?
Allows declaratives defined where

inserted? ,

System Features
. Source language debug capability?
. Selective listings?
Object library provision?
Flexible libr3ry handling in language?

NOTES:
, . .

Provided by operating system

CMS-2

Yes
Yes
Yes
Yes

Yes
Yes·
No

Yes
Yes
Yes
Yes
No
Yes

Yes

No
Yes
Yes

Yes
Yes

Yes

Yes
Yes·
Yes
Yes

Yes
Yes
Yes

fes
Yes
No

Limited
No
Yes

Yes

No
Yes
Yes

No
Yes

Yes

Limited No
Yes No
Yes Yes

Limited No

Yes
Yes
Yes
Yes

Yes
No
No

No
Yes
No

. No
Yes
No

No

No
Yes
Yes

No
No

Yes

Limited
No
Yes
No

1.
2.
3.

Allowed by the PL/l l~nguage, but not yet implemented.
Easily constructible in the langunge.

4.
.. 5.
6.
7.

Not pertinent to a high-level language.
Feature undefined.
"Include" facility h.Js some of this feature.
Available in SOI:lC implementations.

•

API,

Yes*
Yes
Yes
Yes

Yes
Yes
Yes

Fair
Yes
No
Yes
Yes

Limited

Yes

Yes
Yes
Yes

No
No

Yes

Fair
No
Yes

Limited

I; Due to its parallelism. loops arc oftt.!n not used tn APL algor.ithrn~.

-l ~ Can list lines of a subroutine but not parts,' ,0.: all, of several routines.

9.14

PL-I

Yes
Yes
Yes
Yes

Yes
Yes
Yes

No5

Yes
Yes
Yes
Yes

3 Yes

'Xes

Yes'
Yes
Yes

Ye~
No

Yes

Limited
Yes
Yes
Yes

9.3 EXTENDING CHS-2 TO AADC's HaL

This section contains references to projects for determining the

practicability of extending CMS-2 to becomes the AADC HaL (sometimes called

CMS-3 or CMS-TOO).

Reference [9.7J is the proceeding of the first High Level Aerospace

Computer Programming Language Conference held in June 1970 and discusses so=e

of the general problems of the AADC HaL definition. (The second such confer-

ence is presented in the next section.) Two relatively old (1970) references

on using CMS-2 for existing avionic applications and on implementing CMS-2

on the AADC are shown in [9.12 and 9.13] respectively.

Reference 19.14] describes the Marine Tactical Air Command and

Control System (MTACCS) requirements on the CMS-3 (extended CMS-2) language

specifications. The recommendation are that CMS-2 must be stronger in two

areas:

1. Data base definition and handling

Multiple COMPOOL Core Definition (COMPOOL are
compiled procedures that can be combined with
other procedures without being recompiled.)

COMPOOL defined mass storage file definitions

Conversion of core/mass storage formats
(i.e., with simply a Move operator)

Data conversion operators.

2. Character String Capability.

Encode/decode extensions

Insert/delete/concatenate operators

Decimal arithmetic

9.15

A more recent report studying the problems of CMS-2 transferability

from AN/UYK-7 to AADC suggests that system designers and programmers can

strongly influence the transferability of software. The report makes several
/

specific suggestions that should be of general interest to system designers

and programmers [9.15].

The idea, of allowing the applications to influence the programming'

language which in turn influences the computer software and hardware, is

indeed a good one and should be given full support. It is time for computer

specialists to start looking at the application areas first, then designing ,

the languages to solve these applications and finally designing the software

and hardware to implement the "user-oriented" languages. The traditional

reverse ordering was based on economics and levels of knowledge which are no

longer valid.

9.16

9.4 CURRENT STATUS OF HOL

The following excerpt is taken from AADC Progress Report No. 9 dated

November 1971 [9.6):

21. AADC Progress Report No. 7 [9.16] contained a
preliminary statement of Work for a Request for Proposal
to develop improvements to the Navy's existing Q1S-2
program language. The purpose of these improvements
was to allow efficient expression and, hence, economical
compilation in the areas of:

• applications
• executive/operating system
• input/output
• test
• display
• array processing.

22. The improved language also provided means to
express data in ways that allow universal inter
pretation. Such data description techniques would
permit the future integration of large data bases
by allowing ready communications among systems
programmed in different languages.

23. Enclosures (1) and (2) present the latest Navy
thinking on the subject. Present plans call for the
release of a final form of the Statement of Work as
an RFP within the next few months, preceded by a
conference to be held at the Naval Electronic Lab
oratory Center, San Diego early in January (actually
February) '72. Questions concerning the conference
should be directed to Mr. Warren Loper, Code 5200,
NELC, San Diego, Calif.

Thus, AADC progress report No.9, pages 13-58 include "A Statement of

Work of a Plan to Define HOL Primitives for AADC Computer - Preliminary" (pages

13-31), "Goals of the Language" (pages 32-46), and "Document Support Request

for Approval for RFP for HOL Study" (pages 47-58). The objective of the Work

Plan and the Goals of Language are attached as Appendices 9.3 and 9.4 [9.6].

9.17

The following excerpt is taken from the AADC Progress Report No. 10

dated Hay 31, 1972 [9.1.7], and reflects the May 1972 thinking on the OOL:

11. Improvements to CMS-2: An AADC Software
Conference-on Command Control Software Technology
for 1975-1985, cosponsored by NAVAIRSYSCOM and the
Naval Electronic Laboratory Center, was held at
the LeBaron Hotel in San Diego on 15 - 17 February
1972. The stated purpose of the conference was to
"address the questions of requirements that will be
imposed (on software systems) and the methodologies
that will be available (to satisfy these requirements
in the 1975-1985 time frame)"*. An unstated purpose
of the conference was to expose an important segment
o'f the software connnunity to the hardware and archi
tectural concepts embraced by AADC. In addition, the
conference provided an opportunity to openly discuss
the goals of the AADC software effort and, in
particular, the programming language development
utilizing the existing QIS-2 language as a basis.

12. A preliminary statement of work for the language
RFP was enclosed with the ninth AADC Progress Report.
The Proceedings of the Second AADC Software Conference
is now in preparation. Proceedings of the first such
conference held at the Naval Research Laboratory on
29 - 30 June 1970 is available from NTIS, Springfield,
Va. 22151.

Based on the philosophy that a "Universal computer language" will still

fail because a specialized language is always better for specialized applications,

the AADC program is now in the process of developing a single kernal language

with potential for extensions. The advantages of this approach are:

specialized application-oriented languages
can be obtained as extensions to the kernel

a single language ~tructure

improved adaptibility to "unpredictable" requirements

* From the Official Program for the AADC Software Conference On Command Control
Software Technology for 1975-1985; NEtt; 15-17 February 1972.

9.18

Thus a kernal language called CHS-2K i L now IHd Iq~ d(~v(: loped fur

AADC • It ha s de fin it i 0 na I f a c i lit i e s, ope rat 0 r r; for a r ray ~» b 1 0 C k s t r IJ C t U r (.)

fixed lexical structure, built-in data element primitjves, a v(!ry f]pxible

expression format, etc.

The firs t language to be developed f rum the CMS- 2V- (the k(.!rn(~ 1) i~;

called CMS-2R. It 1s intended as a replacement for CHS-2, hut may rHJl be

upward compatible with it. The language will contain slring, matrix) veclor

and complex operators, as well as, many operating sy~tem support fun~ljons.

The current contracts are to develop the CBS-LV- and CM;;-2R l:t[l/~u:t/~es ,

but do not include implementing these languages [9.18]. A student t}lcsis

project is now underway at NPS to implement a cnS-2 cornpi lcr on the 1 BH '3()O/C7

computer.

9.19

9.5 HOL PROJECTS

There is a need for a study to define the desirable HOL constructs

and to determine the feasibility of implementing them in the AADC (or for

modifying AADC to accomodate them). Some steps are:

1. Define the HOL constructs that would simplify
the writing, debugging, documenting and up-
dating of real-time, scientific and data processing
application programs.

2. Repeat Step 1 above for each of executive, I/O,
test, display and data reorganization types of
programs.

3. Determine the feasibility of implementing the
HOL constructs identified above on AADC, i.e.,
estimate the cost of implementing each feature.

4. Select a minimal set of constructs that satisfy
all the requirements in 1 and 2 above and can
be effe.ctive1y implemented in AADC.

5. Expand Step 4 to include other desirable
constructs and features and determine the
incremental cost of implementing these.

6. Determine how effectively CMS-2 meets the
requirements identified in Step 1 and 2 above.
Some of this work has already been done - See
Section 9.3 and [9.8 to 9.12].

7. Determine the cost of making the AADC HOL
upward compatible with CMS-2.

8. Implement the CMS-2K compiler on a computer.

·9. Determine the suitability of CMS-2K as a kernal
for implementing CMS-2, APL, Fortran, COBOL,
JOV IAL , et c .

10. Using CMS-2K, define and implement languages that are as
close as possible to CMS-2, APL, Fortran, COBOL,
JOVIAL, etc.

11. In each case in item 10 above, develop a translator
from the parent language to the new language.

9.20

9.6 A HOL FOR SIGNAL PROCESSING

Although the previous sections hcweaddressed the problem of

developing a HOL for sequential processing (for the Data Processing Element),

there is also a need for a High Order Languages designed specifically for

signal processing and for the executive system. These HOL languages would

be used to program the Signal Processing Element (Chapter 7) and the Master

Executive Control (Chapter 6).

The programming languages that are needed for signal processing

can be divided into three areas;

1. Support software for program development
including a microprogramming language.

2. Executive software for the Hicroprogrammed Control
Unit (MCU).

3. High level languages for signal processing
applications.

Some work has already been completed on developing support soft-

ware for program development. The AMIL (A Microprogramming Language) and

its translator have been developed and are now operational. AMIL is a Fortran-

like language for specifying microprograms for the Microprogrammed Control [nit

of the SPE. Since AMIL eliminates the need for specifying bit patterns,

it can be considered a high order microprogramming language. The basic

support software that has been prepared is scheduled for release in April

1973 to anyone who wants it.

The development of executive software for the Signal Processing

Element is now beginning without the aid of a HOL with executive defining

capabilities. The Master Executive Control (MEC) for AADC has also been

developed without such a defined HOL. Also no work has yet been done on

developing a HOL for signal processing applications. Thus the development

of High Order Languages for executive systems and signal processing applica

tions is still an active area for further research and development.

9.22

References to HOL

~.1 Supplementary Information Regarding the Determination and Specification of

the Preliminary Instruction Repertoire for the AADC (U); System Consultants

Inc.; February 27, 1970; .NAVAIRDEVCEN Contract N62269-69-C-OS74; Confidential

NOFORN-Proprietary; (23).

~.2 Report on the Determination and Specification of the Preliminary Instruction

Repertoire for the AADC; System Copsultants Inc.; February 27, 1970; NAVAIR

DEVCEN Contract N62269-69-C-OS74; Unclassified; AD-867-055; (24, NPS)*.

9.3 Slide Presentation on AADC for FY72; R. S. Entner, NAVAIRSYSCOM; Undated,

probably spring 1972; Unpublished; Unclassified (NPS).

9.4 Compiler Construction for Digital Computers; David Gries; John Wiley & Sons,

Inc.; New York; 1971.

9.5 A Compiler Generator; W. M. McKeeman, J. J. Horning, D. B. Wortman;

Prentice Hall; 1970; (NPS).

9.6 AADC Development Project Progress Report No.9; R. S. Entner; NAVAIRSYSCO:r:

November 1, 1971; (67, NPS).

9.7 High Level Aerospace Computer Programming Language Conference Proceedings

of 29 - 30 June 1970; R. S. Entner; NAVAIRSYSCOM; Unclassified; AD-733-4S4;

(34, NPS).

9.8 A Technical Overview of Compiler ~1onitor System 2; John P. O'Brien; Computer

Science Corporation Document CSC-STD70-009; Proceedings of the High Level

Aerospace Computer Programming Language Conference; June 1970; pages 111-150;

Available in [9.7]; (34, NPS).

*AADC Bibliography number, and availability at the Naval Postgraduate School.

9.23

9.9 CMS-2 Compiler Design; Systems Consultants Inc.; Op Cite; pages 202-240;

(34, NPS).

9.10 Analysis of the CMS-2 Programming Language; Raytheon Corp.;. Report No.

BR-6704; December 1, 1971; Unclassified; (72, NPS).

9.11 Compiler Monitor System-2; Volumes I to IV; M-5012, Fleet Computer

Programming Center, San Diego, California; June 1969.

9.12 Final Report on the CMS-2 Computer System, Part I, Evaluation of the

CMS-2 Compiler Language for Existing Avionic System Application (U);

Systems Consultants Inc.; October 13,1970; NAVAIRDEVCEN Contract

N62269-70-C-274; Confidential-NOFORNj AD-513-557; (40).

9.13 Final Report on the CMS-2 Compiler System Part II, Implementing the

CMS-2 Compiler on the Advanced Avionics Digital Computer; System

Consultants In~.; October 13, 1970; NAVAIRDEVCEN Contract N-62260-70-C-

0274; Unclassified-NOFORN; (41).

9.14 Influence of MTACCS Requirements on CMS-3 Language Specification;

Hughes Aircraft Co.; NAVELECSYSCOM Contract No. N00039-70-C-3552;

January 21, 1972; (74, NPS~.

9.15 CMS-2 Software Transferability Study, AN/UYK-7 to AADC - Guidelines

for system designers and programmers developing functional programs;

N. S. Mathis; NELC Technical Document 207; November 1972.

9.16 AADC Development - Program Progress Report No.7; R. S. Entner, NAVAIR

SYSCOM; February 4, 1971; AD-727-605; (57, NPS).

9.17 AADC Development - Program Progress Report No. 10; R. S. Eritner, NAVAIR

SYSCOM; May 31, 1972; (78, NPS).

9.18 All Applications Digital Computer 1973 Symposium; Orlando, Florida;

January 23-25, 1973; Proceeding are not yet available.

9.24

Appendix 9.1*

An Overview

of the

CMS-2 LANGUAGE

(Compiler Monitor System)

*This appendix is not yet available. In the meantime References [9.7 to
9.11] will have to suffice.

9.25

Appendix 9. 2

to

AADC Course Notes

* Objectives of the Work Plan to 'Define HOL Primitives for AADC

1. OBJECTIVE:

The objective of this task is to identify, define and prepare a plan for
the implementation of the revisions to the Compiler Monitor System II (CiS-2)
language needed to support the effective use of the AADC (Advanced Avionics
Digital Computer) (1,2) in a broad spectrum of military ~pplications including

the ITACS (Integrated Tactical Air Control System) [3] and the
MTACCS (Uarine Corps Tactical Command and Control System) [4].

, '

The emphasis given the various goals of the language in Exhibit A is
impacted oy the requirements (and opportunities) of a reQl-time environment
and, predominately, by military requirements. Thus, not only present but also
expected .avionics, co~~and and control, intellig~nce and other military
requirements of the language cust be identified and correlated. Inconsisten
cies among the goals of the language must be recognized and documented, per~

mitt:ing a selection of an :!optimuLn:: set \of compromises} consistent wien
military requirements. Then these requirements and their related language
8pals must be compared with the Navy's standard progra~~ing language. ~~-2

.[5,6] to identify and fully documeat:

(1) Inconsistencies bet~een the requirements and their above related
goals on the one hand and CHS-2 on the other (mutual exclusion problems).
and,

'(2) Revisions to CMS-2 necessary to meet these requirements and
goals.

*'Taken trom "A Statement of Worl:< of a Plan to Define High,Order Languag~
Primitives for the AADe Computer - Preliminary",', Enclosure (1) to· AADC
.Progress Report No. 9 [9.6, page 15] ;" "

,

9 •. 26

Append ix 9.3

Requirement for Specifying the Goals of AADC's HOL*
. '

COALS OF THE LAl\GUAGE

A language specification c:fort ~ust be oriented to a set of specific
goal:! :\\ld a tlethod of oeasuring quality in terms of thc~;e t;oals. T\.Jo
IDclh~hl!J for accor:plishing th:'s are available and both ~hould be used. The,
f i r~ t :ncthod is a s ta ted lis t of cr iter ia \-lhich the lan~;u~l; c is czpec t cd
to ment. Nany of the criteria arc obvious but should be listed to insure
their consideration during the design. The second Det~od is sa~?le pro-
t r a 0.':\ 1 n g • S u c h s a In p 1 e s sub j c c t a 13:1 g u age con c cpt to L ~ 1 C u 1 t i L:1 ate ~ c 3 sur (;
of uti 1 it Y and II i 11 0 f t cn 0 v err ide in t u i t i v C con c 1 u s i 0 : . s . T 11 e sa::. pIe s nee d
Dot all be largc;·often short fr2goents serve the dcsi~ ~d purpose. A few
rc~son~~ly lengthy attempts arc necessary, however, to lctQr~ine that no
problems of clarity will exist in practice. Then too, ~a~ples can be used
in tutorial docu~entation as exa~?les of stylc.

The goals for a tactical systems language must exp~2SS the nature of
the programs t'o be written in the l3nguage. Tr.3dition:.ll'j, a tactical
data systCr:l has been distinguished by a heavy reliance .):1 fi:<cd-point con
putations involving quantities of relatively low precision, .3 need to pack
data as tightly as possibly into the s~all available stor~get specialized
but relatively siwple input/output operations, and an executive systeo
integrated with the program alcost to the point of being indisting~ishable
from it. It is expected that the spectr~~ of applications of J~~)C pro
grammable hard\.:are y.,1ill contain applications of this ClLJ.rac tcr. Avionics
applications will continue to i~pose on the conputer limitations of weight
size t heat generation, etc., i~plying programnins const~3ints unnecessary
in a large cowputer center. However, a broadening of the types of conput~
tion to be perfor~ed can be observed in such areas as digit01 fire control
and the Harine Corps Tactical COI:'.;71and and Control System C'ITACCS) [1]
where greater emphasis has been placed on co~putation dccuracy and speed;
alphanumeric and graphic inf0rc~tion input, processing, stor3gc and dis
play; message routing; and data base ~anagc8ent. Further, experience
over the last few years has sho·,.J'n that there is a sr:1Jll yet si b nific2.nt
number of anCillary com?ut~tional chores to be done in a Co~?uter Progr2.~~~ng
Center that are not limited to the scope of a tactical data syste~. Ship
board Naval Intelligenc~-processing systems provide one cX2.=ple introduci~6
requirements for ~ultilevel security. There is also the ~ttr3ctivc possi
bility of sharing shipboard equipnent for other pu~poses during no~cocbat
conditions (provided that its pri~3ry oission is not co~pro~iscd). All
this suggests that a "tactical systems language" should be c~pab1e of
handling more than pure tactical data systems.

It would be a serious error to reach for some sort of universal langu2.ge.
Such attempts in the past have not met with any particu13r success and ~e
can have little confidence of doing noticeably better now. After all, the
primary purpose of the language is to express algorithms having the char
acteristics previously discussed. Extensions and gen~alizations arc Wel
Comed provided they do not dilute ability to Deet the ccntr31 requireccnts.
Within the language, dynamic extensibility ~ill solve many problems. Out
~ldc the lan~u~get an inter3ctive f3cility for defining the syntax and
8cm~ntics of new problem-oriented lar.guagcs and gcncratin~ their processors
will solve others.

*Taken from Exhibit A to "A Statement of Work of a Plan to Define'High Order
LaneuA.pP Primitivpc: fnr thp AAnr. r.nmnl1tpr - Prplimin~rv", Fnc]0c::urp (1) to

AADC Progress Report No.9 19.6, pa?2S 32,33].
a ')7

A key f 11C tor in prop, r,lIX:1Cr c f f ic icncy is the number of b3s ic tools
II v."1 i 1 ;1 b 1 c f <.1 r h i ~ t1 ~~ (' • Doc s the J c1 n g u ~l ~ C (0 r dot he 1" n r. ll.:l ~ (' S) con t a in
the fC:1turc~; th~lt .11JO\J ~ln l'll~y c~rrcssion of the probl ~::1? If the progra!:l
under llev('lu!,n:l'nt inll~rf.lce~; \.Jith other systems or cquir);~cnt not currently
available, the pro~',r':!I;:::~cr should h.1vC a r.1C3nS of easil) sj::-.ulating the
missing pieces. If the prof,r:!:~.::cr is working on proLlems that have large
dOCUfficntatiorl rcquircccnts, he should h3vc an autOQ3tcJ Deans of generating
nnd updating all the documentation (not merely flowcha~ts).

Another considcr.Jtion is the tot.:11 systens environr.lcnt. This should
provide the pr(~gr~li:::lcr or ~roup of protjr.1r.~':1crs rC.1dy access to the equip
ment and prov ide a l:1~~lnS of co::,_~un i C.1. t ion be t\olCCn no t on ly the programmer
and the rn3chinc, but also bct\,:ccn prof,rar.:r.lcr and prof,r.:r:'J:cr. The prograr=ler
machine in tcr f ace is ~~~1 in dcpLnd en t on the .:1hove f.:lc t:'r S 'olhe ther on-line
consoles or r('r,~utc halch processin~~ systems ~re provid. J. One of the NTDS
problems is the pr0~ r 0.::1::10 r to prosr .1.m:ncr in tcr face, \vh : re C.:lS tern seaboard
programmers rcqui rc \~'Cs tern sC.JDoard inf ortn.:l t ion, and ·1 cc ver sa. Wi th
today's tcchrl()lo(~Yt it is iC.1sible to provide .:1 corr.reon d~lt.:l-D3Se for NTDS
modules which is accessible fran remote locations.

It is dcsir.1.blc for the 1:lngu:1Cc to al10\~· the prog:-~·lT~: .. ner to insert addi
tional inform3tion "for the possible benefit of the tr.il1!.')lator lt r2:p.38]
and to provide the mc.:tns to st'ccify optimi::ation tcchniques to a compiler
or specify tl,C d0~rce of v.:trious types oi optimization to be performed by
the compiler. Also, certain facilities of the langua~c 03Y be paracetrically
inhibited to prohibit usc of these f.:tcilitics in the source 13ngun~e of
certain modules. For cxal'Jple, one 1:1:1y lock out dY03r.1ic stor~gc allocation
and free space tn:lnagclU~nt v.Then Pl"ugioawming for ,1 small !13rcw.Jre configuration.

Rclcvnnt tools of softw:1rc engineering [3) technology should not be ig
nored in dcvelop~0n~ of tIle l:1ngu~gc. For eX:1mple, in support of the design
of specific:ltions for problLr,\-·.)riLlltcd lan&uagcs as w('ll as the procedurc
oriented sys t('fJ pro~~r':l:::Ll.illf. 1,lngu~lge, autom,l ted syntax complete,ness J con
sistency and aobiguity analysis is now possible.

9.28

9.29

Chapter 10

A P P LIe A T ION S

FOR

A A D C

Section

10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.3
10.4
10.5

Figures

10.1
10.2
10.3

10.4

Table of Contents for AADC Applications

INTRODUCTION AND SUHHARY
POSSIBLE AADC APPLICATIONS
Avionic Applications
Avionic Related Applications
NTDS and MTDS Applications
Other Applications
AUTOHATED DESIGN FACILITY
CURRENT STATUS
CONCLUSIONS

References for AADC Applications

List of Figures

Avionics Tasks for AADC
Typical AADC Avionics Application
AADC Block Diagram for the F-14C

Aircraft
Preliminary AADC Automated Design Facility

Functional Block Diagram

10.i

Page

10.1
10.2
10.2
10.9
10.10
10.10
10.11
10.13
10.14

10.15

10.3
10.4

10.8

10.12

Chapter 10

APPLICATIONS FOR AADC

10.1 INTRODUCTION AND SUMMARY

Although this is the most important chapter in the report, it is,

unfortunately, one of the shortest. Never before has the Navy known so far in

advance what the future Navy computers will be, and no\v the Navy has an opportunity

to develop application programs while the computer is being developed, instead of

after it is produced and delivered. Equally important, the Navy now has the ,

opportunity of allowing the applications to influence the software design, which

in turn can influence the hardware design. If the Navy can develop an applications-

oriented computer and have the application programs ready when the hardware is

delivered, the Navy will have made another major step in solving its computer

oriented problems,

This section presents references to an E-2B aircraft simulation study,

the requirements for MINCOMS (Multiple Interior Communication Systems for aircraft),

and the On-board checkout and system interface requirements for the F-l4C. Also

presented is the proposed Automated Design Facility (ADF) which is designed to

provide automatic configuration and checkout of AADC for a new application.

10.1

10.2 POSSIBLE AADC APPLICATIONS

10.2.1 Avionic Applications

Certainly the most important application for the AADC, and the reason

for initiating the AADC project as the Advanced Avionics Digital Computer, is the

future avionics computer applications.

Some of the proposed 1975-1985 avionics computer tasks are:

- Navigation

- Weapon Delivery

- Sensor Monitor and Control

- Radar Signal Processing

- Acoustic Signal Processing

- Target Signature Recognition

- Target Tracking

- Sensor Correlation

- Data Compression

- Countermeasure Monitor and Control

- Communication Format and Control

- On-board Checkout

- Automatic Flight Control

- Display Signal Format and Control

- Environmental Control

Figure 10.1 gives some other examples of avionic tasks for AADC showing

a typical air-to-ground avionics system (taken from [10.1]). Figure 10.2 shows

how the AADC may be interfaced to the aircraft via MINCOMS (multiple Interior

Communication Systems) and to several other systems including ITACS (Integrated

10.2

DIGITAL PlOC£SSING
& INTE'-FACE EQUIPMENT

(DISTlIIUTlD OR CfNTIIALIZED)

,
I.

IN-R.IGHT _a __ a ..
CONTROL

'. r--' ,---, U I WARHEAD ~H ~ RADIO t- - J
~ I t.!.N~~E!I PItE-LAUNCH I I INITIALIZING

, DIGITAL UMBILICAL & CHECKOUT
PROCESSING INTERFACE MISSILE

I
EQUIPMENT I CONTROl

I SURFACES I r-1I~rRTiAL , I .
~ MEASURING t-" I L-~Nl!....J L __ ..J
'L.. ____ -r·-:\ER'O '- __ __ --I ... ~---

Figure 2 - Missile Guidance and Control System

Figure 10.1. Avionic

10.3

• •

TARGET
DETECTORS

I SEEKER-HEAD
COMMANDS

-1 &
POSITlCNS (i8)

•
Figure 3 - Missile Control Set - System Configuration

Tasks for AADC

NAECON '71 R ECORO-1P.3

.....
0 .
~

•

~
OQ
~
I"'C
(t)

""""' 0 .
N

~
~
"0
(')
Pol

""""'

~
()

> <: ...,.
0
::3 ...,.
(')

>
'"0
'"0

""""'I'

&1
0
::s

\

,

eo crnlng
~~~ ______________________________________________ ~ __ T-______________ ~ ______________________________ BuS 

ITACS 
I~-------~-' 

.. 
I 

r~ 
I . r 
L 

I 
l _ 

IFF 

Management 

and Control 

SYStC:'1 1 
Clock a ---------

Flight . 
Contrel 

,. 

AAOC 

Subsystem 
To Non. 
Avionic 
Functions 

,. 

.~ 
L ___ ,..; ___ ....... -. ____ ..... -J J 

, 



Tactical Air Control System), ECM (Electronic Counter Measures) and the ~'f!'1R 

(Multip~e Mode Phased-Array Radar). The dotted rectangles in the figure 

represent the functions handled by AADC. For background information on 

MINCOMS see [10.2 and 10.3]. 

Two reports are available concerning the simulation of the E-2B 

aircraft. The first defines the E-2B digital characteristics for the pur

pose of the simulation and is classified secret [10.4]. The second report 

describes the simulation which is concerned mainly with the optimum block 

(page) size for BORAM and the Optimum Task ~emory size. The study does 

not address the many other problems of using the AADC on the E-2B aircraft 

[10.5]. 

A much more general simulation, which is a continuation of the above, 

is reported in [10.6]. This report describes the simulation of the AADC 

simplex and multiprocessor operation on three avionic workloads - the E-2B, 

the F-ll1 and future avionic requirements as defined by a GE report. The 

major conclusion from the simulation is that the AADC Simplex configuration 

can handle all of these avionic workloads. For further information see sub-

section 8.2.4 or [10.6]. 

Four volumes of a report by Grumman Aerospace Corporation on the 

On-board check-out and system interface requirements for the F14-C aircraft 

are available in [10.7 - 10.10]. According to AADC Progress Report 10 dated 

May 31, 1972, the AADC program is sponsoring two studies with Grumman Aero

space and LTV Corporations to determine the computer requirements for future 

F-14 and A-7 class aircraft. From these studies it is hoped to predict other 

future Naval ADP requirements. 

10.5 



Reference [10.11] is a Grumman Aerospace Corporation report on the 

AADC interface requirements for a representative F-14C avionic weapon system. 

The primary goal of the study was to provide detailed.definition of the inter

face of future aircraft systems to AADC for operational and checkout functions. 

The report is divided into 3 distinct tasks: 

1. Task 1 defined thirteen subsystems for the F-14A aircraft 

and determined that the total interface requirements 

between the subsystems and AADC would be less than 200,000 

bits/sec. 

2. Task 2 defined the input/output requirements of the AADC 

configured to meet the requirements of the F-14C baseline 

system. 

3. Task 3 defined the functional requirements of a Data 

Handling System which would transfer information between 

the AADC I/O and the subsystems. 

Some of the important conclusions and recommendations in the report are as 

follows: 

1. Thirteen explicit subsystems on the F-14C aircraft were 

identified as airframe, control and display, environ

mental control, flight control, hydraulics, fuel, light

ing, control of communication, mission and traffic, 

navigation, propulsio~ electrical power, and finally, 

weapon control. 

2. The total input to AADC was 79 kilobits per second and 

total output is 88 kilobits per second - with over half 

this being weapon control. Thus a 200 kilobits per 

'second interface capability would be adequate for the F-14C. 

10.6 



3. The AADC configuration recommended for the F-14C is the 

multimemory, multiprocessor configuration with a single 

(4K word) Random Access Main Memory providing the inter

face with the inputJoutput unit (see Figure 10.3). In 

this configuration all data required for operation of the 

subsystem is stored in the RAMM while in transit to or 

from the Data Processing Element of AADC. In addition 

to the RAMM, the recommended, AADC I/O unit includes a 

Bus Control Unit and a Memory Module - which stores 

instructions for the BCU. 

4. The command/response method was recommended as the best 

method for the Bus Control Unit to control the Data 

Handling System. 

5. Asynchronous I/O scheduling and double buffering is re

commended. 

6. The hardware MEC is recommended for the F-14C because of 

the implied ultra-reliability and speed advantage. 

Furthermore, the required reliability of the I/O suggests 

that the MEC and the I/O should be part of the same unit 

namely the AADC I/O Unit(i.e., included with the BCU, 

RAMM and Memory Module). 

7. It was concluded that the present definition of interrupts 

and their relative priorities is inadequate for the F-14C 

mission. Accordingly, the number of interrupts should be 

increased from 31 to 128. 

10.7 



Task 
Memory 

Processing 
Element 

Task 
Memory 

Processing 
Elements 

Random 
Access 
Memory 
Module 

Block 
Oriented 
Random 
Access 
Memory 

••• I----~I~----------·j-----~~.-----M·a-in-f-r-am--e-D-a-t-a-B-!~s----G • 0 

" 

.. 
Random 
Access 
Memory 
Module 

Memory 
Module 

Bus Control 
Unit 

I' I/O Data Bus •• O-----------~~---------I~~---•• G 

'41~ 

SIU 

\ 

I 
Standard 
Interface 
Unit (SIU) 

~ 
V 

TOWRAs 

Subsystem 
Controller (SSC) 

~:r 

~~ 

SIU 

, 

SSC 

•••• , 
y 

TO SIUs& 
WRAs 

I 

Figure 10.3 AADC Block Diagram for F-14C Aircraft 

10.8 

,-

AADe 
Mainframe 

AADC 
Input! 
Output 

Data 
Handling 
System 



8. The Data Handling System, which interfaces to the Bus 

Control Unit of the AADC I/O, should be composed of Sub

System Controllers and the Standard Interface Units. 

The Standard Interface Units provide compatible interfaces 

between the SubSystem Controllers and the Subsystem Weapon 

Replacement Assemblies. 

9. Several recommendations on the type of data transmission 

lines, coupling and bussing units are also included in 

the report. 

This report is the first comprehensive report on an application for AADC 

and is recommended reading for all interested in AADC avionic applications 

[10.11]. 

Two other special purpose avionic applications are also being 

considered for AADC. These are the safety-of-flight computer and the air

craft electric power controller. For more information on the second applica

tion see Section 4.6. 

10.2.2 Avionic Related Applications 

This subsection is intended to describe avionic related applica

tions, such as the modeling of aircraft systems and simulating aircraft systems 

in real-time. In a large simulation, an AADC may be used to interface to 

the real aircraft data gathering equipment, another may be used to simulate 

(or fake) other non-available aircraft equipment, a third may act as the air

craft safety-of-flight computer and a fourth may be the main aircraft computer. 

Finally, a fifth AADC may be required to coordinate the simulation and 

schedule events. At the predicted AADC cost, this would be quite a reasonable 

type of a simulation project. 

10.9 



Another possible "use for AADC is in mUltiple platform systems. 

Bruce Wald at NRL is expected to publish a report on this in the near 

future [10.12]. 

10.2.3 NTDS and MTDS Applications 

The standard computer for the Navy Tactical Data System (NTDS) 

and the Marine Tactical Data System (MTDS) is the AN/UYK-7 computer. Two 

studies have been completed to determine the transferability of AN/UYK-7 

applications to the AADC. The first is the study of the compatibility of 

the hardware [10.13] while the second is a study recommending means of pro

ducing software transportable from AN/UYK-7 to the AADC [10.14]. 

10.2.4 Other Applications 

Many applications have been suggested for AADC in the last year 

since the AADC redefinition to All Applications. These range from normal 

batch ADP processing to general time sharing processing and to special 

applications such as line concentrators, super modems, data channels and 

electric power controllers. They include land-based and shipboard multipro

gramming and multiprocessing applications. Because of the very powerful PE, 

an AADC single processor system can often be used to replace a third genera

tion multiprocessor system. No specific studies on these applications have 

been reported at this time. 

10.10 



10.3 AUTOMATED DESIGN FACILITY 

Probably the most important concept in applying AADC to many different 

problem areas is the development of an Automated Design Facility (ADF). The ADF 

is intended to reduce the problems of configurating the AADC architecture, 

developing application programs, debugging the programs and proving the 

operational competence in the new application. A block diagram of the ADF is 

shown in Figure 10.3. Many of the blocks require considerable development. For 

example, the algorithm bank requires the development of the best case solution 

for several types of functions. Some examples of the problem oriented algorithms 

include ballistic trajectory prediction, maneuverable target tracking, multi

source data correlation and optimization, data compression and enhancement, 

display image generation and control, etc. 

It is hoped that the ADF will be able to reduce t~e Statement Of 

Requirement (SOR) into useful hardware and software in a fraction of the time 

required by conventional procedures. In addition to compiling applications 

programs, the synthesizer will generate the necessary executive parameters to 

enable the }lliC of a particular version of the AADC to schedule the execution of 

the problem oriented tasks. Scheduling will occur on-line and in real time 

[10.15, pages 21 and 29]. 

10.11 



_ ... One.w:.y 
bus 

..... Twu-w., 
bus 

SOR »--

So(tW:lrC 
Optimizer 

I 
I 
I 

I I 

Prubh:nt
(')ri~ntc:d 

J\1~orilhnls 

OpCr:llio,,~ 

Excc.:utivc 

Inrcr(acc 

Alguritllln Ibnk 

Exc:cutivc 
ur I/O 

Algorithms 

Di:,&"ostic 
Algorithms 

r ____ J 

H.udwue 
Syn~hcsizcr 

-

, r I ~ 
L~ i---l I 

--0. i I I 
,. ~ IlIclcmcnul 

~ t I Mou·Compilcr l 
_J ~~ I 

On.line 
Di2gnosdc 
Cenerator 

AAOC 
Component 

Srccifac3tions 
Rules and 
Options 

Jntcrconnccc 
Cc:ncutor 

L_~ __ I I '-1 Hudware 
Optimizer 

----1 I I 

rt r-t-0 \. . I 

Figure 10. 4. 

HarJw2rc:/ 
So(CW;lfC 

Accc:ssor 

J I --1 I 

L 
I I 

Acccptlnce ~ .J 
Criteria r 

_________ --1 

, 

Outputs 

(3) Hudwarc 
S~cir.calions 

® PrOSfJm MoJules 
Circuiu 

© Performance 
r,3C3mct~ra 

@ Jnrcrconncctionl 

Preliminary AADC Automated Design Facility Functional 

Bleck Dillgra.'il 



10.4 CURRENT STATUS 

Mr. Hollingsworth of NADC gave an excellent presentation with some 

very informative slides on the probable applications of AADC. He first 

commented that the "AA" in AADC should stand for "Applications Assurance". 

In other words, the AADC proponents need to demonstrate AADC performance and 

strategy on specific applications; it is not sufficient to show that AADC is 

technically possible. Mr. Hollingsworth listed 20 aircraft and 5 ships that 

are in some stage of development and could be candidates for AADC. This 

part of the proceeding of the AADC 1973 Symposium should be very interesting 

reading when it becomes available Il0.l6J. 

10.13 



10.5 CONCLUSIONS 

This chapter has been a very brief outline of the current activities 

in defining applications for AADC. In fact, very little has been done in this 

area yet. Some studies are undenvay but there are many others that need to be 

done. Here is your opportunity to contribute to the AADC development program. 

Never before has the Navy had an opportunity to develop applications 

while the hardware and software systems are being designed. Equally important 

here is an opportunity for users to define applications for AADC and thereby 

influence the design of the HOL, the software and the hardware for AADC. How 

about your input? 

This report has attempted to present a study guide for AADC. It is 

organized in modular fashion to allow the reader to concentrate on his area of 

interest wihtout missing any essential background. It has covered a wide range 

of subjects and has undoubtedly skipped over some essential material and dwelt 

too long on others. (For example, some improvements for Chapter 6 are already 

suggested.) Also it is rather difficult to stay current when the AADC hardware 

and software are still undergoing further developments; and yet it is essential 

that the Navy begin planning and preparing for the AADC impact. One of the most 

important means of preparing for AADC is to inform and educate the Navy and 

Industry personnel on the AADC developments and capabilities. 

Finally, this is actually a draft report and any suggestions concerning 

connection, omissions or recommended deletions will be kindly received and 

appreciated. Updates and corrections to the report will undoubtedly be required 

as the design and development of the All Application Digital Computer continues 

at an ever increasing pace. 

10.14 



References to AADC Applications 

10.1 A Universal Function Unit for Avionics and Missile Syst~s; Frank J. 

Langley, Raytheon Co.; NAECON '71 Record; May 17-19, 1971; pp 178-185; 

Available from IEEE Transaction on Aerospace and Electronic Systems, 

Reference publication 71-C-24 AES; (54, NPS).* 

10.2 Naval Air Systems Requirements, MINCOMS (Multiple Interior Communications 

Systems), General Requirements for; NAVAIRSYSCOM Document No. AR-63; 

March 2, 1970; Unclassified; (26). 

10.3 Naval Air Systems Requirements, MINCO}1S (Multiple Interior Communications 

Systems), Terms and Definitions for; NAVAIRSYSCOM Document No. AR-64; 

March 2, 1970; Unclassified; (27). 

10.4 Defining the E-2B Digital Avionics Characteristics for the Simulation of 

Alternative AADC Hardware Consideration (U); System Consultants, Inc.; 

November 17, 1970; NAVAIRDEVCEN Contract N62269-70-C-0274; Secret-NOFORN; (42). 

10.5 Simulation of AADC System Operation with E-2B Program Workload; William R. 

Smith; NRL Report 7030-19; January 27, 1971; Unclassified; (48, NPS). 

(Also see NRL Report 7259; April 22, 1971 with same title and author.) 

10.6 Simulation of AADC Simplex and Multiprocessor Operation; William R. Smith; 

NRL Report 7356; February 29, 1972; Unclassified; (75, NPS). 

10.7 On-Board Checkout and System Interface Requirements for F-14C Aircraft 

(U) Volume I - Final Report; Grumman Report D-S12; September 7, 1971; 

NAVAIRSYSCOM Contract N-00019-70-C-0087; Confidential; (60). 

10.8 On-Board Checkout and System Interface Requirements for F-14C Aircraft 

(U) Volume II Task A - Mission Statement; Grumman Report No. D-S12; July 

7, 1971; NAVAIRSYSCOM Contract N-OOOl9-70-C-0087; Confidential with 

Secret Appendix; (61). 

*54 means reference number 54 in the AADC Bibliography, Enclosure 1 to AADC 
Progress Report No. 10, and NPS means available at the Naval Postgraduate School. 

10.15 



, 

10.9 On-Board Checkout and System Interfact Requirements for F-l4C Aircraft 

(U) Volume III Task B - Baseline System Performance Definition; Grumman 

Report No. D-S12; July 8 t 1971; Confidential with Secret Appendix; (62). 

10.10 On-Board Checkout and System Interface Requirements for F-14C Aircraft 

(U) Volume IV Task E - Mission Analysis Presented Outputs; Grumman 

Report D-S12; September 7 t 1971; Unclassified; (63). 

10.11 Future Naval Aircraft Subsystem/AADC Interface Definition for Operational 

and aBC Requirements (U) - Final Report; Volume 1; Grumman Report D-545; April 

17 t 1972; NAVAIRDEVCEN Contract N62269-70-C-006S; Unclassified (89 tNPS). 

10.12 Advanced Multiplatform Computer System; Bruce Wald; NRL r'eport to be 

published in the Summer of 1972; (79). 

10.13 AN/UYK-7 - AADC Transferability Study -- Hardware Portion; Final Report; 
J. J. Symanski; NELC Code 3200; October It 1971; (65). 

10.14 CMS-2 Software Transferability StudYt AN/UYK-7 to AADC: N. S. Mathis; 

NELC Technical Document 207; November 13, 1972; (NPS). 

10.15 Proceedings of High Level Aerospace Computer Programming Language 

Conference; NRL, June 29-30 t 1970; R. S. Entner - Conference Coordinator t 

NAVAIRSYSCOM; Unclassified; AD-733-454;~(34, NPS). 

10.16 All Application Digital Computer 1973 Symposium; Orlando, Florida; 

January 23-25 t 1973; Proceeding not yet available. 

10.16 



INITIAL DISTRIBUTION LIST 

Defense Documentation Center 
Cameron Station 
Alexandria, Virginia 22314 

Library, Code 0212 
Naval Postgraduate School 
Monterey, California 93940 

Naval Electronics Laboratory Center 
Code 5200 
271 Catalina Boulevard 
San Diego, California 92152 

Naval Electronic Laboratory Center 
Code 3000 
271 Catalina Boulevard 
San Diego, California 92152 
ATTN: Mr. Bruno Whitney 

Naval Air System Command 
Code AIR-5333F4 
Jefferson Plaza #2 
Arlington, Virginia 20360 

Office of Naval Research 
Code 430C 
Arlington, Virginia 22217 
ATTN: Mr. Joel Trimble 

Naval Research Laboratory 
MIS Building 43, Room 146 
Washington, D.C. 20390 
ATTN~ Dr. Bruce Wald 

Chairman, Computer Science Group 
Code 72Bv 
Naval Postgraduate School 
Monterey, California 93940 

Assistant Professor G. H. Syms, Code 53Zz 
Computer Science Group 
Department of Mathematics 
Naval Postgraduate School 
Monterey, California 93940 

10.17 

No. Copies 

12 

2 

20 

5 

15 

2 

2 

1 

5 



General Dynamics 
Electro Dynamic Division 
P. O. Box 2507 
Pomona, California 91766 
ATTN: Library, MZ 6-20 

CS4900 Course 
Department of Mathematics 
Naval Postgraduate School 
Monterey, California 93940 

Dean of Research 
Naval Postgraduate School 
Monterey, California 93940 

Naval Air Development Center 
Warminster, Pennsylvania 18974 
ATTN: Code 8131, Mrs. Olive Redell 

10.17a 

No. Copies 

1 

30 

1 

10 



UNCLASSIFIED 
Sf' C l\ n t \' C I a s ~ 1 fl cat I () n 

r _ ,S«u'ily cI."il,r.,ion 01 1111c. body O~'~~'~~:~d~";'~'~': :?o7.~,~ ~,~,: b~ .~,~ -d when tloe um., II "p.'" " rib", I"d, -" O"'cIGINATING ACTIVI·TY (Corporate author) 2 •• REPORT SEC'.)HIT'( ("LA~.SIf:"ICATi0~,j 

Naval Postgraduate School 
Monterey, California 93940 

3. REPORT TITLE 

UNCLASS I FlED 
2b. GROUP 

All Application Digital Computer: Course Notes 

4. DESCRIPTIVE NOTES (Type of report and. inclusive dates) 

Technical Report, 1972-1973 
5. AU THOR(S) (First name, middle initial, last name) 

Gordon H. Syms 

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS 

March 1973 417 191 
••• CON T R ACT 0 R G RAN T NO. 9a. ORIGINATOR'S REPORT NUMBER(S) 

b. PROJEC T NO. WR-2-6297 NP5-53ZZ73031A 

c, 9b. OTHER REPORT NOIS) (Any other numbers thar may be .ssiRn~d 
,hi. report) 

d. 

10. DISTRIBUTION STATEMENT 

Approved for public release; distribution unlimited. 

It. SUPPLEMENTARY NOTES 1 2. 5 P 0 N SO R I N G MIL I TAR Y ACT I V I T '( 

Naval Air Systems Command 

13. ABSTRACT 

This report is a set of course notes, or text, on the proposed Navy All Appli
cation Digital Computer. The ~~C, as it is called, is a programmer-oriented, ze~cral 
purpose, modular digital computer that was originally designed to meet all the 1975-
1985 Naval airborne data processing requirements, but it has now had its role general
ized to include "All Applications." Since the AADC cornbines many of the mos t advanced 
~omputer hardware concepts now under development in the United States, the study of 
AADC should' be of general interest. 

The all application role includes real-time and time-sharing computations, and 
special applications such as line concentrators, super modems, data channels and air
craft electric power controllers. 

This report includes a chapter on each of the following: a general introduction 
and summary of all chapters, AADC architectures, all application role, hardware tech
nology, Data Processor Element, Master Executive Control, Signal Processing Element, 
evaluating AADC developments, High Order Language, and AADC applications. 

The report will be used for a 33-hour course for graduate students at the Naval 
I t\.lstgraduate School, but could be used for other audiences or for shorter courses. 

DD ,fN°oR:651473 
SIN 0101-807-681' 

(PAGE 1) 
UNCLASSIFIED 

10.18 Security Classificalion 
A-l1-40e 



UNClASSIFIED 
St.','unt\' ClitssiCic.dion 

" 
\ , .. LINK A L.INK B L.INMo C l 

KEV WOROS 

ROLE WT ROL.E WT ROL.E WT 
~-

I 

All Application Digital Computer 

Advanced Avionic Digital Computer \ 

AADC I~ 

Fourth Generation I 

New Technology :' 

LSI 
I 

I 

i 

Computer-on-a-Chip 

Signal Processing . 

Operating Systems ' I 

Multiprocessor 

Multiprogrammdng ~ 

Virtual Memory 

I 

I 

UNCLASSIFIED 
SIN 0101 ~807-682' 10.19 Security Classifica t ion A-31409 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	01-000
	01-001
	01-002
	01-003
	01-004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	01-43
	01-44
	01-45
	01-46
	01-47
	01-48
	01-49
	01-50
	01-51
	01-52
	01-53
	01-54
	02-000
	02-001
	02-002
	02-003
	02-004
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	03-000
	03-001
	03-002
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-000
	04-001
	04-002
	04-003
	04-004
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	05-000
	05-001
	05-002
	05-003
	05-004
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-14a
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	05-69
	05-70
	05-71
	05-72
	05-73
	05-74
	05-75
	05-76
	05-77
	05-78
	05-79
	05-80
	05-81
	05-82
	06-000
	06-001
	06-002
	06-003
	06-004
	06-005
	06-006
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	06-76
	06-77
	06-78
	06-79
	06-80
	07-000
	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-000
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-000
	09-001
	09-002
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	10-000
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-17a
	10-18
	10-19

