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This report is a set of course notes, or text, on the proposed Navy 
All Application Digital Computer. The AADC, as it is called, is a pro
grammer-oriented, general purpose, modular digital computer that was 
originally designed to meet all the 1975-1985 Naval airborne data pro
cessing requirements, but it has now had its role generalized to include 
"All Applications." Since the AADC combines many of the most advanced 
computer hardware concepts now under development in the United States, 
the study of AADC should be of general interest. 

The all application role includes real-time and time-sharing compu
tations, and special applications such as line concentrators, super modems, 
data channels and aircraft electric power controllers. 

This report includes a chapter on each of the following: a general 
introduction and summary of all chapters, AADC architectures, all applica
tion role, hardware technology, Data Processor Element, Haster Executive 
Control, Signal Processing Element, evaluating AADC developments, High 
Order Language, and AADC applications. 

The report will be used for a 33-hour course for graduate students at 
the Naval Postgraduate School, but could be used for other audiences or for 
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Preface and Chapter Organization 

* This report is intended as a study guide for the proposed Navy's Advanced 

Avionic Digital Computer or All Application Digital Computer. The AADC, as 

it is called, is a programmer-oriented, general purpose, modular digital computer 

with special features designed to meet all the 1975-1985 Naval airborne data 

processing requirements, as well as the normal scientific and business data 

processing requirements. The AADC combines many of the most advanced computer 

hardware and software concepts now under development in the United States; and, 
, 

therefore, the study of AADC should be beneficial to anyone interested in the 

projected state-of-the-art in computer developments, as well as to Navy personnel. 

The general interest in AADC has grown significantly in the last year, since 

the Navy decided to generalize the role of this powerful and inexpensive computer 

to include All Applications. Now specially designed features are being added to 

the original avionic computer to make it suited for normal batch and time 

sharing computations, without jeopardizing the original real-time avionic 

features. The AADC also appears suitable for such special applications as line 

concentrators, super modems, data channels and aircraft electric power controllers. 

Although this report could be used as an independent study guide, it will 

also be used for an eleven \~eek, 3 hours-per-week course for graduate students 

in computer science, computer systems management, avionics and other students at 

the Naval Postgraduate School. This study guide could also be used for a one, 

or possibly two, weeks concentrated·course on AADC; or parts of it could be 

* This report was produced under NAVAIRSYSCOM \vork Request 2-6297 dated 
March 23, 1972. 
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used for a one or two day introduction to AADC for the Navy or Industry 

personnel. 

This report is organized in a modular fashion - in keeping with the AADC 

concept - to allow the reader to concentrate on his area of interest without 

missing any essential background, or continually being diverted to other chapters. 

Chapter One is the Introduction and Summary. Since it provides the introduction 

and overview to the AADC development program, it should be reviewed before 

studying any other chapter. Chapter One also offers a fairly concise summary 

of all facets of the AADC development, which should be of interest to the more 

casual reader. 

After reviewing Chapter One, any other chapter can be studied, and in any 

order, depending on the reader's interests. The contents of the Chapters 

include the AADC architecture, the "all applications" role, hardware technology -

including LSI, memory and bussing technology - , the sequential Processor Element, 

the Master Executive Control, the parallel processor, evaluating AADC develop

ments, and last - and probably the most important - the applications for AADC. 

The last chapter should be of special interest to non-computer specialists, 

especially anyone involved with avionics, because it asks the questions, "How 

could you use this powerful computer, and how many would you want at the very 

low predicted cost?" 
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Chapter 1 

I N T ROD U C T ION 

AND 

SUMMARY 
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A&C 

Baseline 

BORAM 

CCD 

crn 

CMOS 

Ferroacoustics 

HOL 

ITACS 

~C 

MIPS 

MNOS 

~S 

~p 

msec 

Glossory for Introduction and Summary 

- Arithmetic and Control Unit for sequential computations; 
often synomonous with PEe 

- The largest, or worse case, AADC architecture: contains 
several PEs, large BORAM, large RAMM, SPE, etc. 

- Block Oriented Random Access Memory: used to store program 
modules and permanent data. 

- Charge Coupled Device Semiconductor: competitor for MOS 
for BORAM. 

Closed flux path thin film memories, a planar thin film 
analog of plated wire for RAMM and TM. 

Complementary Metal Oxide Semiconductor used in memory arrays 
or LSI circuits. 

- A process of using coincident mechanical (acoustic strain 
wave) and electrical energy to write magnetic domains into 
semi-closed path permalloy film - used in BORAM. 

- Higher Order Languages: like CMS-2, Fortran but particularily 
extensions to these languages. 

- Integrated Tactical Air Control System: a general aircraft 
control system scheduled for all 1980 Navy aircraft. 

Master Executive Control: supervises and controls all AADC 
modules. 

- Millions of Instructions Per Second: a measure of processor 
throughput. 

- Multiple Memory ~Iultiprocessor: an intermediate AADC 
architecture; see Chapter 2. 

- Metal N-channel Oxide Semiconductor (my guess) (used in 
Appendix 1.3). 

Metal Oxide Semiconductor: used in LSI circuits and semi
conductor memories. 

Matrix Parallel Processor: early version of the parallel 
processor (Chapter 7). 

- Milliseconds = 10-3 seconds. 
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MTBF 

NORO 

nsec 

OSP 

PE 

SPE 

TDM BTM 

TM 

TPP 

~sec 

DPE 

Glossory for Introduction and Summary (Cont'd) 

- Mean time between failures: a measure of reliability. 

- Non-distructive read out, i.e., no rewriting required 
after reading. 

- Nanoseconds = 10-9 seconds. 

- Optimize Simplex Processor: simpliest AADC architecture. 

- Processing Element for performing sequential computations: 
actually A&C plus TM; see Chapter 5. 

- Random Access Main Memory: used to store semi-permanent 
(mode independent) data and to buffer Input or Output (I/O). 

- Signal Processing Element:- latest version of the parallel 
processor, like MPP (Chapter 7). 

- Time Division Multiplexed Block Transfer Multiprocessor: an 
intermediate AADC architecture. 

- Task Memory attached to PE and holds the currently executing 
program module and temporary variables. 

- Three-Plus Processor: the ultra-variable AADC architecture 
with more than three PEs for extra reliability. 

- Microseconds = 10-6 seconds. 

- Data Processing Element: new name for the sequential Pro
cessing Element. 
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Chapter 1 

INTRODUCTION AND SUMMARY 

1.1 INTRODUCTION TO AADC 

The All Application Digital Computer (AADC) is a programmer-oriented, 

general-purpose, modular digital computer with special features designed to meet 

1975-85 Naval airborne data processing requirements, as well as, the normal 

batch and time sharing computational requirements. It combines many of the 

most advanced computer hardware and software concepts now under development in 

the United States. 

1.1.1 AADC Design Philosophy 

The AADC is a modular computer, designed to be inexpensively assembled 

from off-the-shelf large scale intregated (LSI) silicon wafer and advanced 

magnetic thin-film memory building blocks. It can be configured as a simple 

minicomputer, a super-multiprocessor, or anything in between. It is truly a 

fourth generation computer, employing hardware and software building blocks to 

construct the various computer systems. The cost should be one to two orders of 

magnitude less than today's state-of-the-art computers. The computers should also 

be one-tenth the size and weight, and should exhibit remarkable reliability. 

Originally, AADC was the acronym for Advanced Avionic 'Digital Computer. 

The development of the AADC was the result of analyses into next-generation Naval 

aircraft computing requirements, as well as a serious attempt to find ways to 

reduce the enormous cost of computer procurement and support through the application 

of standardization and modularity. In the past, the designs of computers that were 

developed by private industry were frequently so different from one another that 

system evaluation by even the most qualified engineers was often extremely difficult. 
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To insure the availability of an adequate digital computer for the years 

between 1975 and 1985, the Naval Air Systems Command decided in the fall of 1968 

to pursue an active computer development effort, originally named the Advanced 

Avionic Digital Computer Program. The ultimate success of this development will 

hinge on several basic engineering and management decisions made that year. First, 

equal emphasis would be placed on system hardware, software, and technology 

development. Second, no one company would be permitted to develop the computer; 

rather, jobs would be parceled out on the basis of vendor competance in each 

critical area, and only after open competition. Third, dependence upon proprietary 

* designs and concepts would be minimized. [1.1] • 

In the last year the Navy has recognized the power of the AADC and its 

relatively low cost and have decided to generalize its role to "all applications". 

This involves s~veral additions to the original design requirements. 

To achieve its goal the AADC program requires the cooperation of 

Government and Industry personnel in a coordinated effort that will result in new 

capabilities in computer design, digital technology and microelectronics in general. 

The AADC will provide a single family of hardware and software modules 

from which can be assembled computers of varying capacities that will satisfy the 

entire spectrum of Navy airborne and general purpose computing requirements. 

Exploitation of Large Scale Integration (LSI) digital logic circuitry and mono-

lithic magnetically coupled thin film storage will allow use of powerful machine 

organizations and programming techniques within the weight and size constraints 

* Denotes Reference 1 
by reference number. 

at the end of Chapter 1, i.e., chapter number followed 
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of future aircraft. Replacing the present multiplicity of airborne comput

ers with machines constructed of common modules will result in large savings 

in R&D, procurement, maintenance, training, and programming, and provide 

computers capable of adapting to, and growing with, evolving avionic system 

requirements. 

Rather than present any more of the AADC philosophy here the 

reader is referred to Appendix 1.1, which is a September 1970 description 

of the AADC program by Ronald S. Entner, the System Architect and Project 

Manager of AADC at Naval Air Systems Command [1.1]. There are only two 

major changes that have been made since that article: first, the Data 

Processing Elements or DPEs are no longer organized as byte-functional modules 

because the current design by Raytheon is a word-oriented DPE [Chapter 5]; and 

second, the Matrix Parallel Processor has undergone several changes and is 

now called the Signal Processing Element or SPE IChapter 7]. Another smaller 

change is that the DPE is not a microprogrammed computer, although it does 

have some microprogramming capabilities. 

In a draft to a follow-on article, Mr. Ronald S. Entner describes 

the progress of the AADC program one year later in October 1971. Although 

this article was not published, it does give a very good overview of the 

complete AADC developmental project in its many facets, including DPE per

formance, cost and performance of various memories, a general purpose array 

processor (now called SPE), instruction utilizations in Navy aircraft, soft

ware development, appraisal of hardware technology and general progress of 

the AADC project [1.2]. Some of the latest developments, including the all 

application role, will be discussed in a later subsection. 
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Several articles have appeared in the popular press and excerpts from 

these will provide further background on the AADC program. An article in the 

August 3, 1970 issue of Electronics [1.3] contains a good overview of the AADC; it 

has several figures on costs and timetables in the first half of the paper, and 

an outline of the breakthroughs in LSI and memory technology necessary to make 

AADC realistic in the second half. The timetable is particularily interesting 

since it states that "So far [in August 1970], $12 million is expected to carry 

the AADC througq the feasibility stage; $1.5 million is budgeted for fiscal 1971. 

The $1.4 million spent so far has been divided among 19 contractoYs. AADC 

feasibility must be established by the end of 1973; operating hardware is to be 

available for evaluation in 1974" [1.3]~ Apparently the Defense Department has 

been paying up to $150 per word for program development (the standard industry 

figure is $lO/word), and, by one count, the Pentagon was supporting as many as 

287 different airborne computer efforts at one time. 

In August 1970, the cost of producing a 2 million operations-per-second 

computer with 80,000 words of memory was estimated by Mr. Entner to be $30,000. 

"In quantity the cost should drop to about $13,000." The additional associative 

fast-Fourier elements and arithmetic units would create a machine comparable to 

the most powerful computer on the market today, and for only about $100,000. 

One critic in the same article suggests that, "Entner's group talks 

primarily about the processing elements, but that's the least significant part 

of the unit. Input-output is the monstrous part of the system in engineering 

terms, and memory is the most expensive. Here's where they are going to have 

the problems." Another comment is, "Ron [Entner, AADC Program Manager] has done 

a fantastic job of interesting industry in the program at its own expense" [1.3]. 

*In January 1973 the A1J)C program is still on schedule with }larch 1974 as 
the predicted delivery date for the Advanced DLvelopment model. 
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Another article in the June 22, 1970 issue of Aviation Week and Space 

Technology gives a good view of several Navy avionic computer systems under 

current development, and provides the motivation for one set of computer modules 

like AADC. The last half of the article is a fairly general and vague description 

of the AADC concepts but the last few paragraphs on the LSI technology are 

interesting [1.4]. 

A June 1971 article in Aviation and Space Technology describes the 

application of AADC to the Integrated Tactical Air Control System (ITACS) that 

is scheduled for operation in new aircraft starting in the 1980s. It is anticipated 

that the AADC could be used as an integral part of the ITACS system controlling 

a variety of antenna elements, RF (Radio Frequency) heads and the modem with its 

programmable frequency synthesizer and matched filters, as well as, providing 

navigation and fire control computations [1.5]. 

The underlying motivation for the AADC is one of cost. The following 

is the estimated computer specifications for a conceptual advanced Naval Aircraft 

for 1980. The figures are the result of extensive analysis and therefore should 

be considered realistic [1.2]. The specifications are: 

6 
1) Throughput capacity: 3.6 x lOops/sec, 

2) 

3) 

4) 

Random access storage: 5 8 x 10 words, 

Bulk storage: 
6 

10 words, 

Computer cycle time: 1.0 microseconds, 

5) Weight: 30 lbs, and, 

6) Volume: 870 cubic inches. 
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The life cycle cost of providing this with a conventional aircraft would be 

about $2 million, but with the AADC it is estimated at $100,000 or 1/20 of the 

cost. The relative portion of the cost for development, procurement, modification 

and maintenance are depicted in Figure 1.1, As can be seen, the largest per

centage decrease with AAnc over the conventional computer is in the maintenance. 

While the relative percentage of procurement costs goes up significantly, the 

relative cost of development and modification remain approximately constant. 

Thus the total cost of AADC is about 1/20 that for a conventional aircraft 

with the largest proportion being for procurment instead of maintenance. 
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1.2 OBJECTIVES OF REPORT AND COURSE 

The AADC system should be of interest to all. computer specialists, 

as well as Navy personnel, who are interested in new devel~pments in computer 

systems, because the AADC inco!porates many of the present and future state-of-

the-art hardware and software technologies. This report is intended as the 

basis of a comprehensive AADC course. 

The primary purpose of this report is to organize the AADC literature 

into "bit-sized chunks" so that it may be more readily "digested." Already the , 

AADC literature represents thousands, and probably tens of thousands, of pages 

of description of AADC concepts, design philosophies, design alternatives, 

equipment specifications, operating characteristics and possible applications. 

This report is intended to organize all the AADC descriptive material so that 

a reader can easily locate the portions of interest and can obtain an overview 

of the pertinent sections. In keeping with the AADC philosophy, the material 

is organized in several modules or chapters that are each independent and self-

contained (see Section 1.5). The material in this report is taken from the 

AADC literature and is referenced accordingly. In this way, the report represents 

a study guide for anyone wanting to learn more about the state-of-the-art in 

computer systems development and particularily that of the AADC system. 

This report is the basis for a comprehensive course on ·the AADC suitable 

for personnel with some computer training and experience, who are interested 

in future computer technology. The course includes all aspects of AADC of 

interest to the computer specialist from design concepts to system compatibilities, 

as well as, the new applications that become practical with this powerful computer 

system. The course will be given to NPS graduate students as a three-credit 
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three-month course, but it could also be given as a one or two week short 

course for other Navy personnel or, in a shortened version, as a one to three 

day course to Industry. Two shortened versions of 12 lecture hours has already 

been tried at NPS, es special courses. 

1.2.1 Justifications for an AADC Course 

Some more specific justifications for developing and teaching an AADC 

course at this time are: 

1. To inform the Navy of AADC. This course, when 

given to students and other Navy personnel, 

will produce a large group of informed Navy 

personnel who understand the AADC concepts and 

features and who are interested in AADC developments. 

2. To inform the Naval students of future avionic 

computer technology. 

3. To encourage NPS students in the conceptual design, 

development and applications of AADC. The students 

have the time (in terms of class and thesis projects), 

fi~ld experience and resources to make significant 

contributions to AADC, especially in the applications area. 

4. To develop managerial guidelines for the use of AADC 

in Navy Systems. 

5. To present seminars on AADC to industry, short courses 

to Navy personnel, as well as the regular quarter courses 

to Naval Postgraduate School students. A Comprehensive 

set of notes will make this task much easier. 
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In conclusion, when the Navy undertook the supervision of the develop-

ment of the AADC system, it made a big step in controlling the design of computers 

for the Navy needs. In order to make this project truly effective, the Navy 

must have trained personnel ready to incorporate the AADC into existing or new 

applications in such a way as to maximize the usefulness of all its capabilities. 

Never before has the Navy known this far in advance what the future Navy computers 

will be, and now the Navy has a chance to develop applications for this computer 

while it is still being developed, instead of after it is in production. If the , 

applications for AADC are ready when the equipment becomes 'available, the Navy 

will have made another major step in solving its computer oriented problems. 
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1.3 HISTORICAL DEVELOPMENTS OF AADC 

The initial development of the AADC concept began in 1968 with two 

studies by Hughes Aircraft Company and Honeywell Inc. on future requirements 

for Naval avionics computers [1.6 and 1.7]. The first conference on AADC was 

held. on February 27, 1969 to inform industry of the AADC concept and to ask for 

their cooperation in the AADC development [1.8]. 

The initial AADC Baseline definition was published by Ron Entner in 

three different but similar versions: first, in a Spartan book copyright 1970 , 

but with the article dated March 16, 1969 [1.9]; second, in a NAVAIRSYSCOM report 

dated July 1969 [1.10]; and finally, at the second AADC conference in September 

15, 1969 [1.12, 1.14]. The AADC organization is basically the same in all three 

articles and was essentially the same in 1969 as it is now at the end of 1972. 

For example, the AADC Baseline organization is shown in [1.9] and dated March 16, 

1969 consists of the same processor element with memory, executive control, main 

memory, bulk memory, TIlatrix parallel processor and I/O. The only differenc~ 3~ 

that time were: first that the PEs were organized as byte-functional modules; 

in other words, it took 4 PEs each operating on a byte to perform 32-bit word 

operations; second, the routing switch between the PEs and the memory has been 

eliminated by changing to word-functional modules; and finally the Matrix Parallel 

Processor has undergone several steps of evolution [Chapter 7]. 

1.3.1 The Second AADC Conference 

The second conference, which unofficially marked the first birthday of 

the AADC program, was held on September 15, 1969 [1.12]. Four papers constitute 

the proceedings of that conference and describe the basic AADC concepts. The 
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first paper describes the motivation for AADC, the modular AADC philosophy and 

advantages and disadvantages of the AADC concept. The primary advantages are 

an expected 5 times reduction in size, 20 times reduction in cost and a 10 times . 
reduction in mean time between failures (MTBT) [1.13]. 

The second paper reiterates the AADC goals, modularity concept and 

avionics computer tasks, and the present eight possible computer organizations. 

These are: 1) A unit or simplex processor consisting of processor, memory and 

I/O units; 2) ~ federated multiple processor consisting of two simplex processors 

with the I/O units interconnected; 3) A dedicated multiple processor - which is 

essentially the same as the federated multiple processor except that both memories 

and processors are connected to a single I/O unit; 4) A shared memory multi-

processor consisting of two processors with only a single memory and I/O unit; 

5) A multiple memory multiprocessor with at least two processors, two I/O units 

and several memory modules all interconnected; 6) A pipeline multiprocessor 

with a commutator and several pipeline functional units (similar to CDC 6600 CPU); 

7) A multiprocessor with dedicated task memories, as well as, a common memory; 

and finally, 8) The AADC baseline systems [1.14]. Out of these eight possible 

organizations, four were selected later for further study. They were: the 

Optimized Simplex Processor (aSP), the Multiple Memory Multiprocessor (:~rM), the 

Time Division }lultiplexed Block Transfer Multiprocessor (TDM BTM) - which is 

essentially a Baseline system without the hardware executive -, and the AADC 

Baseline system to handle the worse-case conditions. (More details on the 

organizations will be presented in Chapter 2.) Some of the concepts of software 

modularity and the Master Executive Control (MEC) are also presented in the 

second paper 11.14]. 
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The third paper of the September 1969 Conference describes the AADC 

hardware considerations including LSI technology and possible optical computer 

memories (which have not yet materialized). Of special interest is a summary of 

digital logic gate characteristics [1.15, page 8] which is presented in Sub

section 4.3.3. 

The longest and certainly the most detailed presentations is the final 

paper on the Baseline associative processor [1.16]. Unfortunately, the parallel 

processor area ~as undergone the most evolution in the last three years and, 

therefore, the paper is the least reliable reference for the current status. 

See Chapter 7 for more up-to-date information. 

1.3.2 Miscellaneous Historical Developments 

The first report on the Haster Executive Control was written by 

Honeywell in July 1969 [1.17] and the second by Ron Entner in December 1969 

[1.18]. There were two other proposals for the AADC system by Grumman Aerospace 

Corporation in July 1969 [1.19] and by General Electric Company in August 1969 

[1.20] but these proposals have not been accepted. Raytheon Company also 

produced two classified reports on the integration of AADC into operational 

systems [1.21 and 1.22]. A proposed technical approach report for AADC was 

'rritten by Ron Entner in December 1969 but it was for "Official Use Only" [1.23]. 

The first simulation study was done by Univac Advanced System Group in November 

1969 [1.24]. 

These documents are listed here for historical purposes and to give 

credit where due to the initial developers of AADC. The documents are not 

considered critical to the development of this report or to a course on the 

present AADC system and, therefore, have generally not be obtained or reviewed 

at NPS. 
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1.3.3 AADC Progress Reports 

The AADC Development Program Progress Reports written by Ron Entner of 

NAVAIRSYSCOM are also a good means of following the progress of the AADC project. 

Project Reports numbered 1 to 4, written in November 1968, February 1969, May 1969 

and December 1969, respectively, report the initial development of AADC [1.25 to 

1.28]. Of these, Progress Report Four is the most significant since it reports 

on the September 1969 conference as unofficially marking the first birthday of 

the AADC effort and being an outstanding success. It reports on the introduction , 

of the Block Oriented Random Access Memory (BORAM) as an important building block 

in AADC. It also contains as enclosures the preliminary statement of work for 

RFP for the MEC analysis design study and the AADC software considerations. 

Progress Report Four also discusses the Navy's MINCOMS (flultiple Interior Commu-

nication System) which is a means of simplifying the AADC I/O functions by 

standardizing the data formats and by providing AADC with control of the commu-

nication system between the com~~ter and the outside world. 

AADC Progress Reports Five through Eight present the AADC process from 

March 1970 to July 1971. Progress Report Five presents the effect of future 

avionic requirements on the AADC instruction repertoire, as well as the effects 

of the requirements of the AADC Baseline system on the AADC instruction repertoire 

[1.29]. Progress Report Six contains: 1) An AADC technology summary including 

cost information; 2) AADC associative processor interim report; 3) A memorandum 

entitled: "AADC workload characteristics requirements"; and, 4) an advanced memory 

technology progress note [1.30]. Progress Report Seven contains an AADC biblio-

graphy, a preliminary statement of work for a high level programming language 
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development, and a discussion of software modularity [1.31]. Progress Report 

Eight contains the following: 1) Preliminary statement of work for an analytical 

study to establish the feasibility of a tactical interactive programming facility; 

2) Summary sheets of AADC program review; 3) A paper entitled: The programmer 

as a computer designer; 4) AADC status report; 5) Storage technology and }v~c 

architecture; and 6) The agenda of the advanced digital technology conference, 

June 1971 [1.32]. 

Progress Reports Nine and Ten, dated Novc~ber 1971 and ~1ay 1972 [1.33 

and 1.34], present the current status of AADC and will be discussed later in 

Section 1.4. 

Progress Reports Three through Eight are available through the Defence 

Documentation Center as referenced. 

1.3.4 AADC Conferences 

So far six conferences have been held on the AADC progra~ The first 

held on February 27, 1969 V.~as intended to inform industry of the AADC concept 

and to ask for their cooperation in the AADC developmental project [1.8]. The 

second conference was held on September 15, 1969 to describe the AADC philosopl-'.:.-, 

the possible computer organizations, the hard\vare development and the matrix 

parallel processor, see Section 1.3.1 above or [1.12]. 

The third conference was held on June 20-30, 1970 and discussed the 

HOL (Higher Level Language] requirements for aerospace computers [1.35]. Quoting 

from the introductory remarks: 

*Actual1y seven counting the AADC 1973 Symposium. 
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The languages discussed at the conference were 
Compiler Honitor System - 2, Space Programming 
Language, and Comnuter Language for Aeronautics 
and Space Programming. The purpose of the con
ference was to address the relative merits of each 
language with respect to avionic applications, as 
well as discuss high level aerospace programming 
language compatibility and computer hardware 
requirements (i.e., common instruction repertoires, 
standard word formats, etc.) which could lead to 
some measure of compiler standardization. 

In particular, the conference discussed the characteristics needed for programming 

avionic applications and how the AADC instruction set could be matched to a 

suitable HaL. 

The fourth conference is the Symposium on the Advanced Aircraft Electric 

Systems (SOSTEL) held April 20-22,1971. The conference discussed the replacement 

of conven~ional electro-mechanical power-distribution devices \vith digital computer 

technology, multiplexed data transmission principles and solid state switching 

devices to improve the means of managing, controlling and distrubuting aircraft 

electrical power in the future [1.36]. 

The fifth conference on the Advanced Digital Technology was held June 

8-10, 1971 and discussed the latest developments in LSI and nlemory technology. 

In total 27 papers were presented including papers on material growth and prepar-

ation, microelectronics processing, switching and memory devices and circuitry, 

LSI circuit interconnection technology, LSI test generation and array testing, 

LSI packaging technology, optical communications, and the implication of new 

computer architecture and memory technology on future computer systems [1.37]. 

The sixth conference was the AADC Software Conference on Command Control 

Software Technology for 1975-1985 held February 1972 and cosponsored by NAVAIR-

SYSCOM and NELC. The purpose of the conference was to address the questions of 
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requirements that will oe imposed on software systems and the methodologies 

that will be available to satisfy those requirements in 1975 to 1985. The 

conference also allowed an important segment of the software community to be 

introduced to the hardware and architectual corncepts embraced by AADC; and at 

the same time, provided an opportunity for open discussion of the fu\DC software 

goals and particularily the implication of using CMS-2 language as the basic 

AADC HOL [1.34]. Conference proceedings are not yet available. 

One other conference, namely the National Aerospace Electronics 

Conference held May 17-19, 1971, is mentioned here because of its general 

applicability to the AADC problems and applications [1.38]. 

The last conference is the AADC 1973 Symposium held in Or1a~do, 

Florida, on January 23-25, 1973. Some results from this S)~posium will be pre

sented in Subsection 1.4.4. 
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1.4 CURRENT AADC DEVELOPMENTS 

Since most of this report is based on reports that are about one 

year old and since the AADC System is in a continual developmental stage, 

this section will describe some of the latest developments. 

1.4.1 All Applications Role 

Certainly the most significant change in the AADC program in the 

last year is the change in emphasis from only avionic applications to all 

applications. This has caused significant changes in the AADC design by re-

quiring many of the same features that produced so many problems in the present 

third generation computers. For example, rather than having a Processing 

Element (PE) executing a single program out of its own Task Memory, the PE 

must now have facilities for multiprogramming, virtual memory, demand paging 

and storage protection. Some of these features may even require the PE to 

have its own nucleus of an operating system, as well as relocation hardware 

to support the virtual memory. Also the traffic on the buses will increase 

significantly. The AADC design~rs will be required to solve many major 

operating system problems, such as thrashing (excessive paging until through-

put is almost zero) and system deadlocks, that remain unsolved in present-

day computers. In any case, the AADC supporters are convinced they can beat 

these problems with the very powerful AADC. The design changes for the All 

Application role is discussed in AADC Progress Reports Nine and Ten [1.33 and 

1.34]. 

-
1.4.2 AADC Project Report Nine 

Progress Report Nine presents the problems of 1) addressing a large 

virtual memory with only 12 bits in the PE address field; 2) multiprogramming 
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and demand paging on the OSP System where the ~mc shares the PE; 3) adequate 

storage protection when several programs are concurrently resident in the TH; 

4) binding atrun time instead of compile time (this is usually an advantage 

except when time is critical in a real time application); 5) program naintenance 

in a more complex system; and finally, 6) the problem of using tag bits to 

protect data and programs [1.33, pages 1-10]. 

Progress Report Nine states that, "As a result of a recent appreciation 

for the processing power of the AADC/OSP, an interesting modification ~as made , 

to existing MEC design goals." Because the unit processor provides the necessary 

throughput to meet the co~bined sequential processing needs of an integrated 1980 

aircraft, the multiprocessing capability should be used for increased reliabilitv 

rather than throughput. Thus four new classes of multiprocessors have been 

identified. These are a single PE, the dual PE capable of running MEC or 

application programs on either PE, the Triplex Processor using three PEs witll 

majority voting, and finally the Three-Plus Processor which is capable of runni~: 

as a Triplex Processor but has the added capabilities from extra PEs in case on2 

fails. 

Enclosures (1) and (2) to Progress Report Nine present recent Navy 

thinking on the subject of improving C!1S-2 programming language to meet AADC 

needs; see Section 9.3 or [1.33, pages 13-58]. 

1.4.3 AADC Progress Repqrt Ten 

AADC Progress Report Ten reports recent thinking on several subject 

areas including: 1) the problems of the All Applications role; 2) BORA}1 develop-

ments; 3) Advanced Avionics Fault Isolation System (AAFIS); 4) Improvements 
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in CMS-2; 5) External I/O; and finally, 6) the Signal Processing Element 

(SPE) [1.34, pages 1-10]. Also listed are seven major tasks on which con

tractors and NAVAIRSYSCOM efforts are being concentrated. These include 

LSI packaging, BORAM and RA}1 memories, requirements for F-14 and A-7 air

craft, further development of MEC, internal bussing, further development 

on the PE (or A&C) design, and demand paging. Of particular interest is 

page 17 of Progress Report Ten because it contains a partial listing of the 

Plans for Fiscal Year 1973. 

1.4.4 AADC 1973 Symposium 

The latest development at the time of writing is the AADC 1973 

Symposium held on January 23-25, 1973. The Symposium covered a wide variety 

of AADC subjects including a keynote address by RADM Rice, TADSO, the current 

status of AADC program by NAVAIR and NADC, AADC tradeoffs for NTDS, the Data 

Processing Element and I/O controller by Raytheon and IB}1, AADC simulations 

.and the Signal Processing element by NRL, Master Executive Control prelimi

nary design by Hone)~ell, rev~sion to C}IS-2 for use with AADC by Intermetrics, 

as well as, eighteen presentations on hardware developments. The most signi

ficant results from the conferences are: 

1. RADM Rice's and TADSO's unquestable support of AADC. 

Other projects are being cancelled waiting for AADC. 

According to RADM Rice he has support of ADM Kidd in 

this project too. 

2.. The Advanced Development Models for the Data Processing 

Element (DPE - new name for the PE) and the Signal Pro

cessing Element (SPE) are scheduled for delivery in 

March 1974. 
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3. The instruction set for the DPE has been simulated so 

that DPE programs can be written and debugged. 

4. The DPE now uses a 16-bit address field vice 12 bits. 

5. A Microprogramming Language (AMIL) has been developed 

for the SPE so that its Microprogrammed Control Unit 

(MCV) can be programmed in a Fortran-like language 

rather by specifying bit patterns. 

6. An AMIL translator has been developed to convert ~fIL 

programs to bit patterns for the MCV. 

7. A MCV simulator has been developed to run and test pro

grams written in AMIL. This in the start of a complete 

SPE simulator. 

8. A preliminary design for the Haster Executive Control 

(MEC) has been completed. 

9. Many new developments have been made in the hardware 

technology (LSI, RAH, BORA?·l and bussing) which indicate 

the AADC is technically feasible. 

10. A new programming language - a revised version of C}1S-2-

called CMS-2K has been proposed as the kernal ~~c 

language. Other languages, such as CMS-2, Fortran COBOL, 

Jovial, APL, etc., - or variations of these - will be 

developed later as extensions to CMS-2K. 

11. The last, and probably the most significant, develop

ment from the 1973 Symposium is the need to demonstrate 

the applicability and strategy of AADC to a wide variety 

of Navy problems. For example, according to Capt Roth, 
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FCDSSA, San Diego, it is not sufficient to show technical 

feasibility and low cost - because computer hardware (LSI) 

costs are only 0.3 to 0.5 percent of the total NTDS cost -

but it is necessary to demonstrate that the AADC program 

will result in a reduction in the complexity of the com

puter software and thus a significant improvement in the 

computer software maintainability and reliability. This 

demonstration must be for specific and realistic applications. 

Since the 1973 Symposium covers almost all aspects of the AADC program and 

only a few of them have been covered briefly here, it is recommended that 

the reader obtain a copy of the Symposium proceeding as soon as they become 

available - hopefully by April 1973 [1.41]. 
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1.5 BRIEF OUTLINE OF CHAPTERS 

The chapters are organized in a modular fashion - in keeping with the 

basic AADC concept. Thus each chapter is largely independent and self contained 

and has its own tables of contents, figures and tables, its own glossory of te~s, 

text material and a list of references. Appendices and problem sets are optional. 

Thus, each chapter can be studied with a minimum of reference to other chapters. 

Furthermore, other than Chapter 1, which is a general introduction, the chapters 

can be studied ip any order depending on the reader's interest. It seems very 

appropriate for a computer system with modular hardware and software systems to 

also have a modular course. 

This section will give a very brief outline of each course module. 

More detailed versions are given in the next section. 

Chapter 2 (or module 2) describes the AADC architectures from the 

Optimized Simplex to the Baseline System and to the new Three-Plus Processor. 

It also describes each of the basic hardware modules. 

Chapter 3 presents the design implication for the all application role, 

including multiprogramming, virtual memory, paging and storage protection. 

Chapter 4 describes the developments in hardware technology, including: 

1) developments in LSI technology that allows up to 5000 gates on a 3-inch diameter 

chip at very reasonable prices; 2) the developments in memory technology for the 

BORAM, RAM and TM, which provides memory access time from 70 to 150 nanoseconds 

for 0.1 to 5 cents per bit; 3) optical bussing technology with very high transfer 

rates; and, 4) new solid state electric power for increased realiability and 

lower weight. 
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Chapter 5 describes the very powerful, very small and very inexpensive 

Processor Element capable of executing 3.3 million instructions per second, 

occupying one-third of a cubic foot and costing as low as $600. Chapter 6 

describes the three versions of the executive; the hardware MEC, the dedicated 

software MEC and the floating software MEC and compare the three on different 

AADC architectures. Chapter 7 describes the Parallel Processor which is probably 

the lease well defined and the most likely module to be redesigned. This module 

has been called the Matrix Parallel Processor (MPP), Bulk Parallel Processor , 

(BPP) , the General Purpose Array Processor (GPAP), or the Signal Processing 

Element (SPE). Chapter 8 discusses the means for evaluating AADC developments 

including simulations, breadboarding, and measuring systems in operation. 

Chapter 9 is devoted to the AADC High Order Language developments 

and particularly what ieatures should be added to the C~1S-2 language to take 

advantage of the powerful AADC system to effectively handle the future 

applications. The most important problems are in reducing program developmental 

cost, reducing program complexity and improving reliability. All of these can 

be boiled down to improving software debugging techniques. The final and 

probably the most significant chapter is Chapter 10 which discusses the 

applications of AADC. How can this powerful computer system be used to effectively 

solve the Navy's operational problems? 

Again, it should be emphasized that the chapters can be studied in any 

order after the first one. For example, a avionics specialist with a minimal 

computer background, who is interested in the operational aspects of AADC, can 

study the HOL and AADC applications in Chapters 9 and 10 by skipping over 

Chapters 2 to 8 completely. For the reader that is continuing on to other 

cnapters, the next section should be skipped because it is basically the first 

section from each chapter. 
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1.6 sm~Y SECTIONS OF CHAPTERS 

1.6.1 Introduction 

This section contains the introductory and summary sections of each 

chapter and is presented here to make this module self sufficient. This chapter 

can be used as a introductory one-day seminar suitable for informing Navy or 

Industry personnel on the AADC developments projects. Note the third digit in 

the subsection number corresponds to the chapter number. 

1.6.2 Introduction and Summary to AADC Architectures 
I 

Chapter Two describes the AADC architectures from the simpliest 

processor - called the Optimized Simplex Processor (OSP) - to the most po\verful 

multiprocessor - the AADC Baseline System - and to the new ultra-reliable Three-

Plus Processor (TPP) system. This chapter also discusses the interconnections 

between AADC modules such as internal bussing and external I/O interconnections. 

Finally this chap ter ac ts as a "ca t ch all" f or sub j ec ts v7hic h do no t fit in any 

other chapter and pertain to the overall system organization or operation. This 

also includes some directly-executing High Order Language architectures ~hich 

are interesting alternates to AADC. 

The basic hardware building blocks of any AADC system are: 1) a Block 

Oriented Random Access Nemory (BORAH) to hold program modules; 2) a Random Access 

Main Memory (RM·M or RAM) to hold semi-permanent data and to buffer I/O; 3) a 

small (4k word) Task Memory to hold the currently executing program module and 

* temporary data; 4) Processor Elements (PEs) to perform the sequential arithmetic 

computations; 5) an optional Matrix Parallel Processor (}~P) or Signal 

Processing Element (SPE) to process radar and video signals; 6) one or several 

*The new name is DPE for Data Processing Element. 
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Input/Output Units; 7) the internal bussing to interconnect all the modules; 

and finally 8) a Master Executive Control to control all the modules and 

supervise the operation of the entire system. 

The simpliest system is the Optimized Simplex Processor (aSP) with 

a single FE with its TIM, a RAMM, a BORAM, an I/O unit, internal bussing and 

a floating software MEC.* The PE executes the MEC out of RAMM; this is the 

only case in which instructions are executed from RAMM. The PE also executes 

Program Modules out of the Task Memory. The most powerful system is the AADC 

Baseline system which contains several PEs with their TMs, a large R&~, a 

large BORAM, several I/O units, a Signal Processing Element, four internal 

busses and a hardware MEC. 

Between the two extremes, two architectures have been defined. There 

is a Time Division Hultiplexed Block Transfer Hultiprocessor (TDM BTIO which 

is essentially the same as a Baseline system except with a software MEC. There 

is also a Multiple Hemory Mul tiprocessor (HHM) which has several RR-r-13 but 

no TMs. In this case the DFEs execute programs directly from the R.A}~ls. 

Since the AADC PE is a very powerful processor capable of execut-

ing 3.3 MIPS and relatively inexpensive, it is deemed more important to in-

crease the reliability rather than the throughput. Three extra reliable 

configurations have been defined. The Dual Processor has two asp systems each 

capable of providing complete backup for the other. The Triplex Processor 

contains three asp systems with majority gate decision logic sampling their 

output for added checking of random errors. The ultra-reliable configuration 

is the Three-Plus Processor which is the same as the Triplex Processor, except 

it has extra PEs that can be switched in autom2tica11y in case a PE fails • 

. * A floating software ~IEC is an operating system which runs on any available 
DPE on an as-required basis. 
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1.6.3 Introduction and Summary to All Applications Role 

Although the AADC was originally intended for Naval avionic applications 

only, the powerful features and the low cost have caused the proponents to consider 

much wider applications. Although most of this report addresses the AADC design 

for the avionic applications, Chapter Three discusses some of the implications 

of the decision about a year ago to convert the AADC to an All Application 

Digital Computer. Although "all application" is undoubtedly too general, it was 

decided to re~ain the acronym AADC because it has been in existence for 3 years 

and because All Application Digital Computer sounds better than Almost All Appli

cation Digital Computer. 

1.6.3.1 Implications of All Applications Role 

Certainly the most significant change the AADC program in the last year 

is the change in emphasis from avionic applications only to all applications. 

This has caused signific'ant changes in the AADC design by requiring many of 

the features that have caused so many problems in the present third genera

ation computers. For example, rather than having a Processing Ele::1ent 

(PE) executing a single program out of its own Task Memory, the PE must now 11ave 

facilities for multiprogramming, virtual memory and demand paging. Thus, the PE 

must now have relocation hardware to support the virtual memory, and much faster 

busses to handle the increased bus traffic. Furthermore, the AADC designers must 

now solve many problems, such as thrashing (excessive paging until throughput 

drops to almost zero) and system deadlocks, that have remained unsolved in present 

day computers. In any case, the AADC supporters are convinced they can beat 

these problems with the very powerful AADC. 
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1.6.4 Introduction and Summary to AADC Hard\vare Technology 

1.6.4.1 Scope of Chapter Four 

Chapter Four discusses the new advances in hardware technology that 

are being developed for AADC. Although the development and production of modules 

using advanced hardware technology (at reasonable cost) is very important to AADC, 

the details of the technology and how it is implemented is of minimal interest in 

a course such as this one on the concepts and operations of AADC. In other words, 

the fact that the technology exists, has been proven, and can be mass produced at , 

reasonable cost is certainly of interest, but the details of the technology and 

its implementation is considered beyond the scope of this report. Therefore, this 

chapter is an overview of the latest hardware technology emphasizing what has been 

implemented and proven, as well as, what will probably be in production by 1975. 

Under the heading of hardware technology Chapter Four places all work which 

relates to the physical constituents of the AADC - the devices \vhich will ulti-

mately manifest itself in the ph:rsical computer. The hardware technology is 

divided into three major areas: Large Scale Integration (LSI) technology, memory 

technology and bussing technology. 

1.6.4.2 Summary of LSI Technology 

The basic AADC hardware building block module is an hermetically sealed 

(perfectly airtight) package capable of supporting either multi-chip arrays on a 

ceramic substrate, chip/wafer hybrids, or semiconductor monolithic three-inch 

diameter wafers - or any combination of these. ("Honolighic" means many circuits 

attached together to resemble one uniform pattern, i.e., a 5000 gate LSI wafer.) 

This year (1972) one of two AADC packaging modules has passed environmental 

testing at Naval Avionics Facility, Indianapolis. A complete 
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second level packaging system is presently under development at Singer-Kearfott, 

and will be simi1arily tested later this year [1.34, paragraph 23]. 

There is ample evidence that the technology will mass produce 5000 gates 

on a 3-inch diameter wafer by 1975. Texas Instruments are producing a Logic Slice-

Type "p" which has the equivalent of 857 gates on a l~-inch \-lafer. Intel Corp. 

has build an 8-bit parallel microcomputer the MCS-8 on a single chip. There are 

now examples of 1500 gate LSI chip available off-the-shelf and Honeywell has 

produced an 1800 gate LSI chip [1.41, Mr. A. Deerfield, Raytheon]. , 

Many other articles on expected hardware developments can be found in 

the Proceeding of the Advanced Digital Technology Conference in June 1971 [1.37]. 

1.6.4.3 Memory Technology 

Two promising magnetic storage technologies [or AADC are the block 

oriented ferroacous tic memory for BORAH and the random access closed flux path 

thin-film memory (CFN) for RANH and TM. The fcrroacoustic technology employs 

the coincidence of mechanical and electrical energy to write magnetic domains into 

homogeneous, amorphous (non-crystaline), semi-closed flux path permalloy £iln. 

(Permalloy is a highly magnetic alloy of iron and nickle.) These domains are 

subsequently interrogated by way of an acoustic strain wave. A plated wire 

may be used for the ferroacoustic memory in place of the thin film. The ferro-

acoustic memory is low cost (0.1 to O.s¢/bit), high speed (150 nsec/wd read and 

1 - 2 ~sec/block access time), high density (5000 bits/in3), low power (2 ~watts/ 

bit), low weight (7.5 1bs for 64K 36-bit words, i.e., 2.3 magabits), non-volatile, 

and uses NDRO (non-destructive read out) techniques [1.34, page 13]. Blocks may 

be 128 to 512 64-bit words. For more details on the technoloBY see [1.37]. 



Another magnetic technology, tentatively called Cross Tie Memory and 

similar to a Bubble memory, is also under investigation for possible use in BO~~ 

[1.34, paragraph 26]. 

The CFM, a planar thin film analog of a plated wire, offers new 

capabilities for random access magnetic storage. It provides performance here-

to fore believed realizable only with semiconductors, but without the twin 

penalties of high power and data volatility. In comparison to previous magnetic 

memories, CF}1 is,low cost (1¢ to 3¢/bit), high speed {80 nsec access time, 100 

nsec read time with NDRO, and 150 nsec write time per word),high density (5000 

to 11,000 bits/in3), low power (100 ~watts/bit), low weight (3 lbs for 4K 36-bit 

words or 150K bits) non-volitile, and non destructive read out ( NDRO). 

In comparison to ferroacoustic memories, CF}1 is 2 to 30 times more 

expensive, about twice as fast, up to twice as dense, uses 50 times more power, 

and is 6 times heavier. Thus, a 64K word BORAM costs $2300 to $11,500; a 4K 

word TM costs $1440 to $4320. 

It is believed that semiconductor memories are going to be very com-

petitive by 1975. See [1.41] for more information. 

1.6.4.4 Summary of O~her Technologies 

Because of AADC's very small geometry, modularity and need for wide 

bandwidth internal busses, optical communication is being considered seriously 

for AADC internal bussing. The optical bussing*has distinct advantages over all 

electronic alternatives in the area of noise immunity and ease of connection. 

See [1.2]. 

*Optical bussing is the transmitting of data via a modulated light wave trans
mitted via optical fibers. 
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The other improved technology is in the electric power distribution 

system. It is proposed to replace the conventional electro-mechanical relays 

with a Solid State Electric Logic (SOSTEL) power distribution system. SOSTEL 

will greatly reduce power consumption, wiring complexity and weight, as well as 

increasing the control over electrical power distribution. See Reference [1.36] 

or Chapter Four for further details. 

1.6.5 Introduction and Summary to Data Processing Element 

The AADC Processing Element (PE)*is a very fast, very powerful, very 

small and very inexpensive central processing unit (CPU) designed for large 

scale computing systems. It is one of the basic AADC modules and is designed 

to handle all the serial processing requirements of AADC. It is capable of 

executing 2.5 to 4 million instructions per second (MIPS), with effective 

processing rates of 8 to 10 MIPS. Its power is the result of the hardware 

implementation of a general deferral mechanism** and numerous po\verful operations, 

especially the polynomial, matrix and vector operations. Most importantlYt this 

fast powerful processor is packaged in an eight inch cube (0.5 cubic feet) and 

has an estimated production cost as low as $600. (As a comparison the CPU on the 

IBM 360 model 67 - a third generation large scale computer - executes about 0.3 

to 0.5 MIPS, does not have the same powerful instructions, occupies about 125 cubic 

feet and costs $698,000.) This section will present an overview of the PE 

features, while later sections of Chapter Five will include a more detailed 

presentation. 

In order to obtain the desired speed it was necessary to overlap the 

fetching of instructions and their executions. The instruction fetching operates 

*Npw called DPE for Data Processing Element. 
**A general deferred mechanism is one that automatically defers the execution 

of an operator until its operands are available. 
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at 2.5 MIPS including an indexing operation and 3.3 MIPS without indexing. Since 

the PE is a Task Memory oriented element, the need for indexing is greatly reduced 

over previous computer designs, and the latter speed is more appropriate. These 

speeds are based on a memory cycle time of 150 nanoseconds (nsec). On the other 

hand, the instruction execution takes 100 nsec for short instructions (equivalent 

to Adds) and 800 nsec for fixed-point multiplications. With an assumed ratio 

of 7 short instructions to 3 multiplications, the instruction execution rate of 

3.3 MIPS is also, possible. Since the proposed floating point multiplications 

are faster than the fixed point, the instruction execution rate with floating 

point operations is 4.0 MIPS. 

The overlapping of instruction fetching and program execution is 

obtained by dividing the PE into a Program Management Instruction Handling Unit 

(p~m) and an Arithmetic Processing Execution Unit (AP). The two subsystems 

operate independently and asynchronously permitting the P~ru to fetch instructions 

well ahead of their execution, an~ while the AP is processing previously fetched 

instructions. This is generally referred to as "look-ahead," ,,,here instructions 

are prefetched along the most probable branch path. If the results of a branch 

instruction are not along the expected path, then the stockpile of instructions 

is discarded and instruction fetching is initiated along the other path. To 

hold the stockpile of instructions, a sixteen-register queue connects the PMU 

with the AP. 

The power of the AADC PE is demonstrated by the fact that it has many 

very powerful instructions, many of which are not even available in high level 

languages and certainly not implemented in hardware on a general purpose computer. 

For example, the PE has the following features implemented in hardware: 

1.32 



1. All 16 possible boolean functions, 

2. A recursive subroutine call capability, 

3. A general deferral mechanism that executes arithmetic, 

boolean and conditional expressions directly without 

reordering the operations or using excessive storing 

and fetching of intermediate results, 

4. A rapid polynomial calculation capability for 

trigonometric, logorithmic, hyperbolic and 

exponential functions (all coefficients are 

loaded by a block transfer.), 

5. Vector/matrix block handling mechanism for 256 

component vectors and matrices. 

The particular significance of these features to the programmer is 

that, (1) the general deferral mechanism allows the mixing of arit~netic, 

boolean and conditional expressions in a single statement - providing the 

accompanying high order language is upgraded -, and (2) the vector/matrix 

mechanism allows operations such as the vector dot product and the matrix 

product to be specified in t~o machine language statements. In both these 

cases the High Order Language will have to be upgraded beyond Fortran or 

CMS-2 before that language can use these powerful machine language (or hard

ware) features. 

As well as being very fast and powerful, the PE is very small and 

inexpensive. A rough estimate of the PE logic is: 
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1. The AP (arithmetic processor) 

2. Basic PMU (control unit) 

3. Queue between PMU and AP 

4. Parentheses control and vectorl 
matrix mechanism 

5. Instruction decoder and controller 

Total 

6,000 gates, 

1,OQO gates, 

1,000 gates, 

1,000 gates, 

10,000 gates. 

These 10,000 gates are placed on two 3-inch diameter LSI ch~ps and housed along with 

ten other chips in an 8-inch cube occupying 0.5 cubic feet. It is also estimated that 

the production cost of the PE will be about $600. Rather unbelievable? 

If this design is achievable at this cost, or even at 100 times this 

cost, then it is going to be the biggest breakthrough in computer hardware 

development since the transistor. In order to achieve the maximum benefit from 

this new development, many of the programming aids, such as very powerful 

operators and extensive debugging features that were previously too expensive to 

implement will now have to be included in the design. Otherwise the AADC PE will 

be almost immediately replaced with another computer containing these extra 

programming aids. 

This section would not be complete without some comment on the feasibility 

and current status of the PEe At present LSI l-1/2-inch diameter chips with 

1000 to 1500 gates are being produced at a cost of about $1000 each. The set-up 

costs, including drawing all the cirGuits, is about $50,000 for each different 

type of chip. (Ref. Dr. Ray N. Nilsen, University of California, Los Angeles). 

Also the CPU for the SUE computer - a small scale microprogrammed computer - is 

built on two LSI chips and costs less than $1000. 
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Although this section is written as though the PE actually exists, it 

must be realized that it is based on design specifications only and that even 

these are still under development. The information in this section is based 

almost exclusively on Raytheon's report [1.39]. 

1.6.6 Introduction and Summary for Haster Executive Control 

Chapter Six discusses the design of the executive system, or operating 

system, for the AADC. The Master Executive Control, or MEC as it is called, 

provides the control and supervision of all the AADCmodules. The chapter includes 

design philosophy, design tradeoffs, ~lliC capabilities, operating characteristics) 

MEC evaluation criteria and methods of implementing MEC functions - including 

sample English language flowcharts. The chapter is based primarily on a design 

report by Hone~vell [1.40]. The subsection is, in fact, a shortened version of 

the first section of Chapter Six. 

HoneY"'Tcll's repor t evaluates three poss ible HECs: a spec ial purpose h:~ :-d-

\vare NEC, a ded ica ted processor sof tware MEC and a f loa t ing so f t\.Ja re NEe;\" - on e,~ c 11 0 [ 

four AADC architectures - including the AADC Baseline Architecture, the Time Di":ision 

Multiplexed Block Transfer Multiprocessor, the Multiple Memory Multiprocessor 

and the Optimized Simplex Processor. As a result of flowcharting, timing and 

evaluating each MEC implementation on each applicable architecture, Honeywell 

recommended the hardware MEC for the Baseline and ~fr~1 architectures, the 

floating software MEC for the TDM Block Transfer Multiprocessor and the dedicated 

software MEC for the Optimized Simplex Processor. Actually the last recommend3tion 

is a violation of the OSP concept, since by definition the OSP contains only one 

Processing Element. 

*The floating Software MEC is an operating system in soft\.Jare which runs on any 
available PE on a as-required basis, rather than on a dedicated PEe 
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The method of evaluating each MEC implementation - on each architecture 

is particularly interesting, for example from [1.40]: 

In order to effectively evaluate the MEC implementations 
studied, a list of attributes was formulated. Each 
attribute was assigned a weight corresponding to its 
assumed relative importance. For each system configur
ation, a table was constructed and the candidate 
implementations were scored for each attribute. From 
these tables a weighted sum for each implementation 
was obtained. This weighted sum is a measure of the 
efficiency of the implementation method when used in 
the particular system for which the table was constructed. 

In the Baseline and Multiple Memory }1ultiprocessor systems the special 

purpose Hardware MEC is recommended, largely due to its speed advantage, a factor 

about four to one over the dedicated software, and eleven to one over the floating 

soft~vare in the baseline system. The speed advantage is obtained primarily from 

the use of an associative memory for very fast table look-up. Since the hardware 

MEC is specifically designed to accomplish MEC functions, its complexity is 

considerably less than a general purpose Processing Element. This infers that a 

special purpose executive should have cost, reliability, size, weight and power 

advantages over the use of an entire processor to accomplish the MEC functions. 

If a large enough quantity of special purpose hardware executives are built, 

they have the potential of being less expensive than a system processor dedicated 

as the executive. Finally, a special purpose executive can be made more 

reliable than the proposed system processors. 

The floating software MEC implementation is recommended for the Time 

Division Multiplexed Block Transfer system primarily because of graceful degrad-

ation, cost and the other related attributes of size, weight and power. The 
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floating soft\vare is an ideal MEC implementation in a system which does not 

require a heavy executive load. The overhead time required for a floating soft-

ware }lliC is quite formidable and greatly affects the computation time of some 

executive functions. The required storage of a MEC kernel in one processor at 

all times also places a restriction on the size of some program modules. 

The Dedicated software MEC implementation is recommended for the 

Optimized Simplex system due to its characteristics in almost every attribute, 

especially reliability, graceful degradation, speed and constraints on the rest , 

of the system. Those appear to warrant the cost of the additional processor. 

In general, a floating software executive has high overhead require-

ments and should only be used in a system with low executive function load. A 

4096 word task memory should be sufficient for all software executive require-

ments. A software executive requires each Processing Element to contain a real 

time clock and a loop counter. 

Chapter Six considers four combinations of }fEC implementations and 

AADC architectures. The first is the hardware }lEe for the AADC Baseline 

architecture. The second is the Floating Software for the Baseline system, 

which is the same as the floating software on the Time Division }lultiplexed 

Block Transfer Multiprocessor. The third combination is the dedicated software 

MEC on a "Optimized Simplex" system, while the fourth is the floating software 

MEC on a true Optimized Simplex Processor. Each section contains a description 

of the applicable hardware, a list of the MEC functions, operation of the system 

under the MEC control. A description of the MEC and a summary flowchart of the 

MEC implementation. Also included in Chapter Six is an evaluation of each MEC 
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implementation on each architecture - including the author's critique of the 

evaluation method -, and some recommendations for further MEC studies and further 

development of this course material. 

1.6.7 Introduction and Summary to Signal Processing Element 

Whereas the PE described in Chapter 5 is designed to fulfill all the 

sequential processing requirements, the parallel processor is designed to handle 

all the parallel processing requirements for AADC. The avionic parallel 

processing requi~ements include signal processing, radar processing, mUltiple 

tracking, pattern recognition, table look-up, optimal filtering signal corre

lation, Fourier analysis and synthesis, analog test function generation, voice 

command interface, etc. Parallel processing requirements are for 70 to 133 MIPS 

and 32K to lOOK words of memory. 

Although the parallel processor was one of the first AADC areas of 

concern and it has undergone more changes in design concept than any other AADC 

module, it still is the module waose design is the least firm and may be subject 

to further chnnge. Already the parallel processor has been referred to as 

the Bulk Parallel Processor (BPP) , ~latrix Parallel Processor (~WP), Associative 

Processor (AP), General Purpose Array Processor (GPAP), and the Signal Processing 

Element (SPE). 

The feasibility of constructing a parallel processor capable of 150 

MIPS throughput is not in doubt, but what will it cost, and how should it be 

designed to maximize the throughput, maximize the flexibility and minimize the 

cost? ILL lAC IV and PEPE are examples of very powerful parallel processors that 

are already in operation but have limited applications. 

The major part of Chapter Seven is a description of the Signal Pro

cessing Element under development at NRL. 
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1.6.8 Introduction and Summary to Evaluating AADC Developments 

Although a means of evaluating the development of AADC and accurately 

predicting the performance, cost and reliability is of the utmost importance, 

relatively little has been published on this specific subject. There are several 

means of evaluating the development, including: 

1. Measuring the load on existing avionic computer 

and thereby projecting the future requirements, 

2. Simulating the operation of individual AADC 

modules, 

3. Simulating the module interaction or the overall 

AADC operation, 

4. Simulating an application using the ru\DC systCQ, 

5. Modeling the operation of AADC modules, 

6. Breadboarding at the PE, memory and bussing level 

(equivalent to CPU, memory and channel level in 

more common terminology), 

7. Devising a test plan for the breadboard of the model 

including what to measure, how to measure and how 

to interpret the results, and finally, 

8. Producing a prototype of individual modules for 

testing the complete AADC system. 

According to the author's count, there is one completed study on 

measuring the load on existing avionic computers (but there must be others). 

(The AADC is currently sponsoring advanced analytical studies with Grumman Aero

space and LTV Corporations examining the computer requirements for the F-l4 and 

A -·7 class aircrafts.) 
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The author also counts three studies simulating AADC modules (case 

2 above) and two reports on the simulation of module interaction (case 3 

above), and two reports on simulating the AADC application to a particular 

problem area (Case 4 above). There are also three reports on other facets 

of evaluating the AADC. One of the current projects is to obtain an Optimized 

Simplex Processor breadboard or Advanced Development Model. 

There are also plans in 1973 fiscal year for completing the PE and 

SPE register-level simulations, assembling a SPE breadboard, procuring verifi

cation hardw~re for PE and I/O, and procuring feasibility model for both the 

ferroacoustic and the semiconductor BORAM memories [1.34, page 17]. 

Therefore, the low number of reports in this area is probably not an 

indication of the lack of activity; but rather an indication that evaluation 

studies are being reported along with the particular subsystems. 

1.6.9 Introduction and Summary to High Order Language 

Chapter Nine presents the developments in defining and producing a 

very powerful High Order Lang~age that can effectively and efficiently use 

the AADC System - one that can significantly reduce the development, documenta

tion and maintenance costs of the AADC Software. 

For the purpose of this report, a "High Order Language (HOL)" is 

defined as a language with many powerful extensions beyond those in the pre

sent high level languages, such as Fortran, Algol and PL/I. The HOL must be 

capable of generating efficient executive, I/O, test, display, file, data 
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manipulating programs. Also it must have powerful vector, matrix) list, 

character and bit manipulating features. (Although the equivalent of these 

features can be obtained in present languages they arc not easily programmed 

and do not execute efficiently.) For example, CMS-2 (the Navy's Compiler 

Monitor System) is an attempt at defining a HaL. CMS-2 is designed especially 

for real time command and control applications and has the ability to define 

executive functions in Algol-like subroutines and reorganize data structures 

at run time. 

Two ,conferences have been held on the HOL for AADC; one in June 

1970 and the other in February 1972. The second conference was a good intro

duction to AADC for software specialists but did not present any concrete 

proposals for the design of a HaL for AADC. (The conference proceedings are 

not yet available.) Three papers have been written on the updating of C}1S-2 

to the AADC HOL, and one paper was written on ho\·,1 }ITACCS (Harine Tactical 

Air Command and Control System) requirements should affect the CHS-3 (extended 

CMS-2) requirements. Currently there is a project to define the goals of the 

HOL more precisely. 

This is one of the first times that the software specialist has had 

a chance to influence the design of the hardware. How about some suggestions? 

1.6.10 Introduction and Summary to Applications for AADC 

Although this is the most important chapter in the report, it is, 

unfortunately, one of the shortest. Never before has the Navy known so far in 

advance what the future Navy computers will be, and now the Navy has an opportunity 

to develop application programs while the computer is being developed, instead 

of after it is produced and delivered. Equally important, the Navy now has the 
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opportunity of allowing the applications to influence the software design t which 

in turn can influence the hardware design. If the Navy can develop an applications

oriented computer and have the application programs ready when the hardware is 

delievered t the Navy will have made another major step in solving its computer 

oriented problems. 

Chapter Ten presents references to an E-2B aircraft simulation study, 

the requirements for MINCO}IS (Multiple Interior Communication Systems for aircraft), 

and the On-board, checkout and system interface requirements for the F-l4C. Also 

presented is the proposed Automated Design Facility (ADF) which is designed to 

provide automatic configuration and checkout of AADC for a new application. 

This section has presented an overview of the AADC System by presenting 

the introductory and summary subsection to each chapter. It has not included 

the latest developments as reported at the AADC 1973 Symposium, although the 

major results from the symposium are presented in Subsection 1.4.4. For more 

details the reader is referred to the section on current status in each chapter, 

or to the conference proceeding when they become available [1.41]. 
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1.7 CONCLUSIONS 

While completing this report the following possible research projects 

or thesis topics were identified (many others undoubtedly exist): 

1. Expand the design of AADC to include multiplatform and 
ground based systems. This implies virtual memory, 
multiprogramming, security of storage and interfaces to 
commercial input/output equipment (disks, CR, LP, etc.). 
Some of this has already been done (see Chapter 3) but 
there is still a lot more to do. 

2. Simulate several parallel processor configurations and 
compare their operation on various applications. (Some 
of this has already been done at NRL, see Chapter 7.) 

3. Prepare a concise list of PE features and their 
implications on the HaL and POL (Problem Oriented 
Languages) . 

4. Simulate PE features in such a way to assist in HOL 
development (coordinate with Bruce Wald at NRL). 

5. Evaluate the proposals from industry on defining HOL 
primitives for AADC. Hhat criticism or improvements 
can be suggested? 

6. Define the HOL constructs that would simplify the writing, 
debugging, documenting and updating of real-time, 
scientific and data processing application programs. 
Repeat this for executive, I/O, test, display and data 
organizational programs, and then determine which can 
be implemented effectively on the AADC. 

7. Develop a manual on User Characteristics of ~~\DC. This 
would be a preliminary step to developing applications 
for AADC. (In some \vays this report is a start in this 
direction, but it is too long and too technical.) 

8. Develop new airborne computer applications using AADC 
features. 

9. Develop managerial guidelines for the use of AADC in 
Navy systems. 

- What are its features? 
- What applications take advantage of these features? 
- How to use AADC to maximize its benefits. 
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The following conclusions are taken from [1.2]: 

The Advanced Avionic Digital Computer represents the 
collected effort of an audacious segment of the American 
computer, technology and aerospace community. More than 
twenty companies and universities, as well as many Navy 
laboratories, have held contracts on AADC; many as a 
result of rigorous competition. As such, it is doubtful 
that the expertise required to bring AADC to fruition 
exists under a single roof, except for one that extends 
from coast to coast. 

In a sense, the AADC program will serve to test a new 
management and procurement philosophy. The idea of 
c9mpetetive bidding on a major development effort, and 
the subsequent aware of multiple contracts is, of course, 
not new. What is different, is that these methods have 
proven necessary for a program involving exploration 
development and basic research. ~fuat must also be 
appreciated is the willingness of organizations to coord
inate and exchange ideas even before these ideas are 
fully protected. In this manner, the customary delay 
which precedes the introduction of new inventions is 
eliminated: allowing a two to five year acceleration of 
system integration and application. This is especially 
crucial·~hen these delays may very well approach the life
cycle profitability of such inventions. 

In order to avoid Lhc twin dilemma of suboptimization and 
rapid obsolescence, AADC has been conceived as a system 
which can, when the time arises, be readily translated 
into newer technology \vith minimal impact on its physical, 
electrical and functional characteristics. By building 
the computer in this manner, system design experience 
gained over a longer period of useful years will allow 
highly refined applications of AADC to evolve. These 
considerations, along with everything else this report 
has addressed, make AADC a major and truly revolutionary 
development. 
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Appendix 1.1 

AADC Initial Developments 

The Advanced Avionic 
Digital Computer System 

Ronald s. Entner 

The Advanced :\ \'ionic Di~it~l Computer I AA DC I I~ 
a progl amlller-oriellted. ~eneral·PlJrl'o~e. modular di~it~l 
computer with ~p('cial features dl':,i~~lIcd to met'l 1 <)7.~.~~.) 
1\3\'31 airborne data proce~~ing requiremellt:, It will 
combint" many of the most a(h'all('cd complllt'r h;udware 
and ~oft ware concept~ now under de\'t?lopmt?nt in the 
lillitrd ~tates. 

The A:\ DC is 3 Jllodular computer. d('~if!lll'd to he 
ine\.pensi ,'ely as:'t'mhled from otT ·the·~ hcl f la r~e scale 
int('!:!r~ltcd (LSI) ~ilil'un w~fcr and ad\"arH'ed m.1~nctic 
thin~film huildin!:! blocks. It can he confi~ul'ed as a 

~ , 

simple minicomputer. a super·lllllltipr()ce~sor. or allY, 
thing in hetween. The cost should he olle to two order~ 
of magnitude less than tod.1y"~ stale-or·the-art cOlllputer~. 
The computers should al~o be one-tenth the ~ize and 
weight, and should exhi hit remarkable rel iabi I ity. 

De\'c1opment of the :\;\OC is the re~ult of analy~e~ into 
next-generation \'an11 aircraft computin~ requirelllents.. 
as \H~ll as a serious attempt to flllli ways to reduce the 
enormous cost of computer procurement and support 
throuc;h the application of 5tandardization. In the past. 
the dc~igns of computers that were developed by private 

., -, --_._-----------
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industry were frequ(,lllh' ~o difTerent from one anothcr 
that (",'cn system c\'aludtioJ\ l)y qualified en~ineers was 
often extremely dillicull. Ironically, wllcl} ~Ollle lllea:"ure 
of dl'~i~n commonality '\ ,h found. it was u~ually attribut
able to ~tatf'·of-tltc·arl constrainb rather than to a 
singleness of mind. 

To some exlt'nt. the obj ect i \'e of cOllllllonal it y cou 1<1 
he achicH?d b~' bri n~ i I\~ the \" a\'y i II to each contractor's 
development loop. This would hc aCl'ompli~hed hy pro
\'idin~ Industry" itlt .1C(,l'~S to pertinent \'a\'y plallnin~ 
documents. as well as to ad,'anccd ~lIhsystem ~pecifica
tions. "'hile thi~ policy i~ cllrrl'lltl~' bein~ plIr:o;ut.'(1 to 
the greatcst extent po .. sible, security considerations. as 
well as the proprietary nature of most advanced ~ub
system dt',e!opment \\ olk, place severe restrictions 011 

the procedure. FlIrthermore~ the fact that a \"endor is 
aware of a projected \a\'y need is no guarantee that 
he will attempt to satisfy that need unless a respectable 
profit is in the ofiing. 

To insure the availability of an adequate digital com
puter for the years between 1975 and -U5, the :\aval 
Air Systems Command decided in the fall of 196U to 
pursue an active computer development efTort, namely 
the Advanced Avionic Digital Computer Progranl. Tlte 
ultimate SUl'ce:,s of this de\'eloplllt'nt will hinge on several 
b3sic enp:ineering and management decisions made that 
year. Fir::-t. equal t>Illph~l~is would he pL.lccll on ~y..,lcm 
hardware. ~oft\\are. and tl'l'hnolll~y dl','eluprncllt. ~l't'nlH.L 
no one c()rnpan~ would } H.' permitted lo (lt~\'elop the 
computer: rather. jubs would he parcded uut on the 
ha~is uf \'l'lIdor competallcc in each critical area. ~lJld 
unly after opel} compdition. Third. dl'p,'ndt'lH'c upon 
propri{'t~H)' dc:--iplS and COllct'pb woulll lIe miuilllilt'li. 



Primary Goals 

The A;\ DC pro~ ra III conla i ns seyer al ba:,ic 01, j ccti \'('5. 

• B II i lei ill:.!' B I (H'k Con ~ true t ion: I JtTclo I' a fUIlI ily 
0/ junelioflol modules \\ hiI'll \\ ill take Tl13ximum ad\'an· 
la~c of rapidl~ im}Ho\'ifl,~ LSI semiconductor t~·chnol().~y. 
The a\'ailahility of ofT·the·~helf buildin~ block Inodules 
will f!reatly reduce the time and cost for custom computer 
design, fabrication, and support when compared with cur· 

rent pract ices. 

• 1\lodular Or~anization: Det'clop a f!('neral.pllrpose 
digital computer architecture cmpluyill~ a J111111nlUIll 

number of unique building block nlodulcs, , ... hich nlay 
then be fabricated in large quaIltities. De\'(·loplllent costs 
can, in this Inanner. be amortized o\'er ~c\'eral computer 
procurements. The alterllative to this approach is the de
velopment of unique circuits and LSI modules for each 
new computer requirement. llowe\ cr. since the cost of de
sign and deYelupment of each new module may greatly 
exceed fahrication costs, little or no savings may be real

ized. 

• Bulk Parallel Procc~~ill~: I nclud e the capability 

0/ opera! iTl~ on exlrem ely la rf:c quan I ilics of data in real 
time. This capability re:::ult~ ill a machine with an cfTec
tive proce~sing rate of IJillions of operations per ~econd 
and allows the AADC to function in l)oth the time and 

frequency domains. 
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PSEUDO - A550CIAT,v( 
"'(1oI0RT 

L _________ J 

r 

• :\licr()pJ"(),~raJll Appli('~'lion: Permit dynamic rc· 
e () TI /i r. II ((11/' (! , i (l j (' (f d I ( . ( If.r I ) II/I ' r' 5 {'( If; I r fit sIr /I ct Ii Tf" t I \(' r c . 

by I'IU\ idiw . .' ;l l)('ttlT 1l1"kh 11'l\\l't'll ji'!JLI"rn ;tnd Il1J. 

Cllirl", It j-... fllrlllt'r ;lIlti(il)~!ll'd t1.:11 ~()lJle fllt',l~\jIL' (If in· 
\entory C0IT1I'lltf'1 C'llllJl.JtiIlII \,ill In' fe;l~jLlt' JIt tile Jllicro· 
pro ~ ram rn cd!, r () n' 5::, 0 r. 

• Pro~ralll ~lodtllarit\': Fll{[/)!r: the liSP of lar{!,e 
T1lr/crvrouu'!!('s allt! slal/dard pr()f:(afl/ paci,at:cs \ [loge5', 

thereby rrdlIcin;.:- the ~c\t:'rit\· of prol,lt'llh a .... ..:.oci;\t('d with 
the prt'p.:na1ion and lTldirlten.1IIf'C of object cCJde, llti· 
malcl~', the idea ()f pro;!ram nHldularit~· "illlH'('(JIlH' an in
te~ r a 1 elemcnt 0 f an au tc)rna led de~ign be iii t Y 1:\ J) F .1 
which will haH' tht~ capacit\, to turn an opcrational re
quirement into operatillg hardware I and ~()ft\\'arel in a 
matter of days and weeks .:IS' oppo:,ed to the tr.:Iditional 
months and years. 

• Graceful D~~ra(lation: Provide thc lii~hcst lel'el 
of s ..... stcm rclio/Jill!.-r COflCOlllTlliUlllt leilli cosl.(',OCCliL C op
eration, III br~~e :\:\1)C sy~ll'ms, this \\ill anlount to fail· 
ure·tolerant architecture. 

The AA DC pro~ram j", in p:ut. the ollt~ro\\ 1h of at
ternpt5 to e-...tabli ... h ~uidclil1e:; for the cosl·efTel'ti\·c appli. 
c.:Ilion of 151 tt'chI1olu~~'. To this end, a falllil~· uf func
t iOlla I and by le· f II l1('t i Oil a I 111 0<1 Llle~. 0 r 1 JU i Id i II ~ blocks, is 

beinC! dc\clupcd. The::-;e modules arc ~l"ller~d'i'tlrpo~e in 
nature and flexihle enou~h to meet the challell~c of new 
requirements created by new tcchnology over the AAOC's 

Sil ., 
I I 

o.p. T~ 
I 

.:.kITH 
I 

JlR'TH 

\;'<11 .... NIT c· .... 'T 

I I I I 
c..J,,'f>r.', 
~ 

c.~ .. , ·c;;O ... 
~~ 

C'J~ .. " ~Ol 
v'.l; i,.: ... ~ , T L.. ~I ~ 

I I I I 
TASK 

I I 
T&'(' ... I( 

I I 
n~. 

lo'(v.JRr "'( ... :.1'1 ~ "'llot",RY 

I I I I 

Fig. 1 Baseline organization embodies all hardware elements found in the AADC concept. 
This architecture I ,mbines a sequentIal time-diVISion mu:tlplex.ed (TD~;1) multiprocessor, a 
bulk-parallel pre- sor, combined hJrd~\'.Jre and soft'lw;Jre executl'JC control. a complement 
of memory h,Ci:' les, and multIplexed and ded Ic:pc'd 1/ 0 ch;:wncls. The b3sclJne system 
is designed to m .... ~t worst-case processing requirements 
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'1I'pro\il~l;tlt'ly 1()'~f',1r life ('~d,·, hllll'liollallllflduLlrit\, i-; 
tI ,t' d I" 1'1 (I \ i II I' 'II" \ i III II II) II I ' , i .:.: II II" \. i I, iii t ~ I) ~ I' (. r III i tI i 11 ~ 
i'ICI('IIH'IILai ("'II(I~:IIr;llillll tu ~lJit .1 ~I)f'('irl(' ol"";lliflll.ll 

" " p Ii!"" t' II It' lit ; I II d i ' , till' r (. r p r ,. , Ill) t () I.~ ,I II i I. ; II i I ) 1\ ,I i III it, 't I. 
I I If' ~;J"H' Il\lildir'~ }.IIJ1 t .. (".11) IIf' 1I~I,d 141 ('11/1,11111;( a ~'l'n, 

N.,I. or ~pl'f'j;d'l'lIrl'''''''' c"lIllal fir f('d"I;lt('" pl'o('r ... ,,;of or 
nlllltiI'IO("t''''''Of, 'I hi~ \\ ide r.lll~l' of ClIllll'f1l1('lIt ;ll'l'li";ltion 
j .. (':\I'c<:lrd to llleet /110"1. if 1I0t :tIl. aidHlrlll' dala proc· 
t·:- ... in~ rcqtlirenH'IlI'" fur JIt'\I';":"IJt',ati(11l :\;I\'al aifcraft, in· 
C"! ucl i n ~ Ii ~hh'r ,i rI Ie, ('cpt. a llack. 1""COl)lla is..;allcc, clcc· 
I r 0 u icc 0 U II t C r mea .. 1I (t '". a i f b () r ncr a rI ~' \\" a I n i 11 ~ • ant i:--lJ h . 
marinc \\arbre, eit-drol)ic' inlt'lli;'!('I1('r, trall:"polt, .llld 5ur· 
C.lcc·to·a ir rC~CllC, .. \ mont; tile n \ joll ic r lIIl1"tioJ)s \\"" ieh 
lIlay be mcchanized in une of the \.uiolls forllls of AA DC 
arc' air·to·air awl <.l i r·to·;rouncl WC.lpon dcli\'ery; iner· 
tial, raJar, radio, nne! satellite na\"i;,!ation; ra<lnr nnc1 
.JcolJ~lic signal prol'e:-,-.i n~; ta r~rt ~ i~nal ure recof!1l it ion; 
nircraft Oi(!ht contfol: ~cn~or nwnitorin{! nncl control; 
and electronic counll'rllll'3~ure ll1onilorill~ and ('ontrol. 

The computer or~~llIization shown in Fi~~, 1 and :2 rep. 
T{'~{,1115 the ".:l~cline ;\ .. \ DC or~anizali(ln, rmhod~ ill;,! nil 
hard\\'are clcmcnt~ of Ihe :\,\ DC corwept. this or~il!liza. 
lion i:, },e!ic\'cd to cmhracc tl1O:'c qll;tiitie:-. necded to Illeet 
] 075·[:5 ~n\'nl airhorlle compukr sy:-t('111 reqllireIl 1('IlI:-', 

The efTe('ti\'ene55 of the ha~elinc or~~allizati()n i~ fOLllldpd 
on a functional di~linl'li()n ),etwccn ~L"ll1elltially ori!an· 

ilcd I'rohl~Ill";, ~llch .:lS \\"(';lpon deli \"tTy. nn \'ipa t iOIl, a lid 
sy~tCll1 tt',t, ~1ll{1 parallel oft!anized IHllblem:o.. ~t1ch a" mul· 
lip 1 c till' f: c t I r a d" ill;.! . ~ l' II :' 0 f (' (lI" 1'1 • L It i I) !l . illl d d ;t I :1 (' 0 III . 

prc~,:-ioll. The ~t'qllt'"li~d pJ"()ldL'llb ;trl~ a,~i(!lH'll to thl~ 

procl':;.~inf!: clelllellts II'E::-, :,ho\\"11 in the di~l~ranh, Llf"h 
PI:: ('ontain ... ~lJnl('iL'lIt lIlem o ry llq'pro\illl;lk\\" :21-.: tnll-.: 
word,,) to cfTcl"Iin.'ly "lort' and !,rn(','~" 1.11':':(' rOlilirw..;. fir 

prof!ral1l modulc:; 1 P\I:, I. Thi::- :ll'ldi,';llioll of 1',l~in;: 
metltud0Iu~\ rt'du('c~ 11\' C'l'\'l'ral ordl'r ... IIf 1Il;1~!litlldl' lIl~lill 
melllory a~';:.-e:,~ ('flJlnic:l:-: ll";lI.1I1~' a .... ()ci:lkd \\ itlt 1I1l11ti, 
P[OCl'~ .. ill~, Parall,,1 lllul,(cm .. ~\l'C a..; ... i;~II,'d to till? pro· 
Fl;)1l11l1J.Lle llJatrix'l'arallt-1 prOCl':,:,or t \II'PI, Thi ... <In'ice 
ron~i,t~ of a ('cllldljllatiPll of fa~t F'Hlrier prOCP,,,;of 
, rFP I, ,,''''ociat i n: or a r r.t~' PIOCl''-SU r t:\ PI, a Ild a!l J.:'. 

5-odati\'e or p ... elld().a .. ~()ci;lti\"l~ 1lll'lllory (.\ \1 or P,\\l I, 
The~e three c1l'lll(,llh are illll'r<.'ollllt:dcd by switcl:iIlg 
lo~ic and are conlrollcll Ily a P[ or nil illterrwl mirropro, 

~ramlll('d controller. ,'\moIl;,! lite t~l:-k~ til"t rail lIe a .. :-i::;IILd 
to the :\1 PI' are r~llbr ~i~nal pro('('::,::-i!1~'::, radar "c~lrn 

~tl.'erill~. mlllti~l'n~ur correlation, Illultiple tar~ct tracking, 
{'ptimal Ii Iterinf!:. \'ideo pl"l'proce~:o'ill~. table lookup. pal. 

tern recognition. data corrcl"tioll. radar nud acoll..;lic 
~rt>ctrnl .:l1l;]lysi~. allalog t('~t si~!l~d ~cllt'ratif)n nlld anc.,ly. 
Si5, nnd La~iL \"oice illterbce fl1Jlction~. 

In addition to thp pfOCe5-~l)f5, tltt' l;a~e1iJlc or~allizalion 
illustrntes the npplieatioJ\ (If mulliplexed as well a.:; dedi· 
l'akll inlcrface chaulleI:;, The dctiicatnl channel~ are cou· 
plt"d, in this casc. into Ihe ~t'qul'nlial I'rOCl·..;~or t PEs I via 

~l low. frequency ('ro .. ~bar ~\\ ill'h, Thi::: ~\\itl'h i:.; ~et nl the 

III 0111('11 t a PI-: i~ dedicated 10 a ~pl'cific t.l:-k. or P\I-a 
~ituatiol1 Ih;ll occurs \\ IIt'ncver C\lrcfllely hi;.!h P\I itl'f;]
lion rnk~ ll1i~ht ('rl'ate lJndt':-ir<.lI,ll' (,('lI1ll\lIrli('atic)lI~ traf. 
lit, jam:-- tlnulI;,!1t Ih(, Illllltil'l('\cd illl'lIt (/lltl'lIt \llI";, ri~, :> 
illu,trnlt· ... till' <:1,,:--..; of Illllitipl,·\t,d ""IlIlI11llliLlliO!l .... ~ ... ll·fIl 

"illl hhidl the ;\.\I>C i~ t:\'J!c·t'lcd Ie) illlt'd.lt'C, \\ itiJin 
II Ii:, ~,:-ll'm, tbla .lilt! cOlHmalld 1";\!I:o'ft'r~ Ol"t'lIr within .t!. 
11l('~lt~d lillie illkl \ ~d:, ,)r fl"t'qlll'III"~' ~Iot~, TI\('''e ;dllll'a· 
li(IIIS nrl' ~U;lralltl't' I a~aill,t \\ (II:-I·c:! .. e l'ollHnunicatic11I:' 

1.52 

o 
L-__ ~ ____ ~ ____ L-__ ~ 

I I 
USI( ~("'O"T I 

I I 

] 

~::J- lit .:.:~ 
1M ':,. .. £ -;f _.:. ..... ! 
T(C .. ~.:~~-:.., .;t!I'4!SJ 

Fig, 2 Processing clement (PE) ': t::-:il illustrates the 
buildi ng block modu larity feature ( : ~,~ /l,}\DC, The PE 
arithmetic unit and L,lsk memory '-; oy:e·functicn 3'Iy 
mocular and are configured att(.- In optimal .•.. : rd 
length has been determined. The ~::1c~r of worGS of 
task memory can (llso be expandc': ',,:;:~'cal!y, The CO:1-

trol unit is not p':H~itioned by bYi", s,n.;c the con!rol 
feature requires full \'lord length to operate 

j 

requirCIlll'flb, pCrl1l1tll(J~ prripilcral equipmellt t(l I,e lle· 
sit!llcd ~l;,!ail1~t ~talld.l!d illterfact"' :-1'i'('irlC'alioJl~, l\,rft)rm. 
aller \.111 he optillli/('(1. hO\\l'\cr. b~ ;111,)\1 iJl~ UIlU";,"\ timc 
or flt'qllCIlCY "lob ttl I'I~ p;l:::::-t'd alt'll:.! It) olhl'r r'):I'l:lial 
11:-t' r..;,'\ 11 (}(':1 tin n o !If' LII i OilS il f"e mull i I \I n 'd and c('n I r (', lied 
b\' tile' lll:l,lel" cXt'(,lIli\'t' control t \II':C t. 

Tltt' flilldioll~ of tlte \1 EC art:' 1(1 p: In ide dynarni._' ('Oil· 

trol uf ~~ :-tt'lll re!'Olll("t'~. perform 1.1";" qUt'uin,!! ill Iltller 
10 Ol'tilllill' rl':-:'olll"ct' utilil;ltiull, illiti.lll' alld ~Upl'f\'i~l' I' 
o 0p,·latiClI\:-:'. <llld i'liti~11L' ~U1" "'lIl"'I\j,C ~y'tem h~lId\\are 
JIlll ::-llil\\,llC rel'ullfi~u,atillll ill tht' C\'l'lIt of failure, In Ille 

ha~l'\illt' ol~ani7.:1til)r~, tI\f' \n~C Illi.l\ C(lll..;i~t of an .l!'C:l of 
control 1(J~ic. an arithmetic ullit. a 'pro~lalll lllenlOl"\', and 

nn n~:-:oci;lli\l' slatu=-, IllCIllOfY. III other ,\,\DC :1rl,hitec· 
turc~, the \H:C Illa~' be inq;lemt'lllt'd l'lltilel~' with :-nCt
\,'are. or with some \'aryin~ (,olllllil1~llion of harth,are 
and ~oft\\ arc ~lIl'h as a flOaliJl~ l'\ecuti\t~ \\ ith common 

a~snci:1ti\e status fill'. 
AI~o shown in Fi~, 1 nre the two hi!!he~t memher::: of 

AAlJC on·linc lllClllon° hicrarch\". TIt:":--e are thl' bulk 
store and random al'ce~:; majll.stu~e Clll'lllories .• \s l'~ln be 
seen from the dia;,!ram. all prOL'l':'::-lH:, 1t~1\'e acccss 10 },oth 
memories. For the pr~. Ihi~ pl'rlllil~ tltt' dircct nc,'C:-5 of 
ill\'arianl datn and ruutincs from bulk ~tul~lge in ordl'r to 
redu('e the C]1I.:llllily of expl'll~i\'e random acccss lllCI1lOry 

ref}lIired ill the ~y:"klll. Thc 0,1 (: 'bit f,'rro·acou~lil· bulk 
memory undcr dc\'du}lIllCllt fur ;\:\ I)C l'\.hiIJit:; a 7lLus" 

",nrd cycle limc on a l,Jock, or pa~e or;,!<mi7.l'd kbi5, 
IIH'rel,~ pfo\idill~ <ljlprn\imalt"!~' a ltl:l L'o,t rl'dudi'Hl 

o\'t'r ;111 .tli B,\\I\I ill'ldt·Ill"llt.llillll \\ilh no :o"al'rifi\.'t' to 
:-y:--klll Ihrou:-:lqllJt, i)inTt 1'1-:, til Lnlh :-klc acCt· ..... .11 ... c) 

I'J"lH i de:- f! ran·f til de,~r ;Ida I ion in thl' t'n'ul of H, \ \ Dl 
failure. 'nil" \lPP rl''1"irl':' din'd l,ulk .. Iort' n('('t'~~ duc, 

in p.lrt, to tl)(· lar~l' '1 u ;mtiti,':' of .1.11.1 that IHU .. t be 
~lol"(·d and Clpl'rall'd on \\ itlrin lilt' \II'P. 
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Fig, 4 Optimized simplex processor (OSP) represents 
the least complex of ail A: ,)C architectures, This struc
ture employs three rner: 'y systems, each specially 
suited to provld8 a pa~~'_ program capability with no 
loss of systom ttlrollg~;p~: This approach is expected 
to offer ne3riy an orcJr.r- :-magnitude cost reduction I for avionic computers , l uinng extensive program 
storage 

------- - -,--------------

Fig. 4 illustrates a particularly interesting variation of 
the AADC ba:.'eline arcllitc·,'ture. Termed the optimized 
simplex proce~sor I asp I. the organization takes -advan
tage of relati \'el~' la r~e p l'(Igrarn.to-data storage ratios 
(typically 5:1 to 10:11 found in aerospace pro~ranl list· 

. ings. This desi~n difTers from conventional simplex archi· 
tecture in that three memories are used in lieu of a single 
random access main store memory. I n operation, in\'ari· 
ant program pa~es are stort·d and transferred from the 
block or~alliz('d bulk :--tflft' 0 ta~k memory, followed by 
pertinent data from lilt' I: 1'1 hpforf' proces:-. initiation. 
The ta ... k mClllcll \ tht'li I'" rll1S the fUllCli()f}s of I)oth lo-
cal stora~e and ~('ratl'hi)~\(i ior the job at han(l. Becau~e 
of special ~ituJ.tiulI~, such ,IS lar~e matrix cornpl1tation~, 
the arithmf'tic and ('ontrol 'rudure sh()ul<l have the ca· 
p.1hilily of w() .. kifl~ dircctl lut of the IL\\l\l as well as 
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I Fig, 3 AADC is expected to operat~ 

with a sophisticated multiplexed com
mun iC3tions nehvork, This fC3tu re 
will extend executive co~trol into 
system peripherals and permit tight
er regulation of real-time communi
cation resources 

task memory. This would minimize indll(,lcncic~ created 
h yin sun i c i e n t\\'o r k c;;, p:1 c e wit 11 i n t.1.:-- k me III 0 r y 11 r; d . hen c e , 
excessi\'~ data tran~fers betwcen the IL\\I\l Jlld t35k 
memory . 

. \ lthuu~h not <.1::- sophi:'-t i('d!l'd a::- the kl:"cl ill\..' I) r~3ni
zatioll. the asp pro\'ides a lU;,2ical ilrst :,tep ill 2[1 (>rderly 
pr()~re~~joll toward that comple\: or~aflizatiot1, f\.lr this 
and uther fe,-,.;orl", tlle O~p \\ ill likt_'h lIe the fir~t : .. :JLd for 
AA I)C protot) pc devclopment.· -

The ;\."\ DC: concf'pt ha.;; heen de\clopcd in rc..;~" Irl~e to 

projected \"a\'al ailj)(lrJle di,'..'ild\ C(IJ11puter Sy:-;tcl:l' rcquire. 
llH'rHs for the 1 ()~':;-:;,; till1l'fralllf' and beyond, 1;,.,:' ap
proach utilil(,~ old aIld Ill'\\' k('hnolp~ie.:. 311(1 l~"_'::ll)/lol· 

ogies to crcatc a cosL-efTecti\'l'. intc,:~T3ted di~itJl com
puter system cap3bility kl:-Of'd 011 th~ conceph "f func .. 
tional and ll~te .. fll!lclional lI1odul.1rit\. Thi.;; ~qII1l",11-,h will 
lJ e r In i t I he de,-; i ;.:r Il and fa 1)1' i (' a t i lIlI r I flip t i In :Ill Y C I' r , ; i ...: u red 
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Glossary to AADC Architectures 

- Advanced Avionics Fault Isolation System. 

- The most powerful AADC Architecture- several DPEs and a SPE. 

- Block Oriented Random Access Memory: used to store Program segments. 

- Master Executive Control (Chapter 6). 

- Multiple Interior Communications Systems: standard I/O interface 
to the aircraft that is used by the AADC system. 

- Millions of instructions per second: a measure of computer 
throughput. 
, 

- Multiple Memory Multiprocessor: similar to Baseline architecture 
but no TMs and several RA}llis. 

-9 - Nanoseconds equals 10 seconds. 

- Optimized Simplex Processor: simpliest AADC architecture. 

- Old name for the Data Processing Element (Chapter 5). 

- Program Module: a portion of a program that contains less than 
4K words and execute as a unit. 

- Random Access Main Memory: used to store mode-independent data 
and buffer I/O. 

- Time Divison Multiplexed Block Transfer Multiprocessor: similar 
to AADC Baseline but uses a software MEC. 

- Task Memory: a random access memory dedicated to a PE for 
temporary data and the currently executing PM. 

-6 - Microseconds equals 10 seconds. 

Data Processing Element - new name for the sequential Processing 
Element (PE) • 
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Chapter 2 

AADC ARCHITECTURES 

2.1 INTRODUCTION AND SUHMARY 

2.1.1 Introduction 

Chapter Two describes the AADC architectures from the simpliest 

processor - called the Optimized Simplex Processor (OSP) - to the most powerful 

multiprocessor - the AADC Baseline System - and to the new ultra-reliable Three-

Plus Processor (TPP) system. This chapter also discusses the interconnections 
, 

between AADC modules such as internal bussing and external I/O interconnections. 

Finally this chapter acts as a "catch all" for subjects which do not fit in any 

other chapter and pertain to the overall system organization or operation. This 

also includes some directly-executing Higher Order Language architectures ~hich 

are interesting alternates to AADC. 

2.1.2 Summary of Architectures 

The basic hardware building blocks of any AADC system are: 1) a 

Block Oriented Random Access r1emory (BORAM) to hold program modules; 2) a 

Random Access Main Memory (RAHM or RAN) to hold semi-permanent data and to 

buffer I/O; 3) a small (4K word) Task Memory to hold the currently executing 

* program module and temporary data; 4) Processor Elements (PEs) to perfor~ the 

sequential arithmetic computations; 5) an optional Matrix Parallel Processor 

(MPP) or Signal Processing Element (SPE) to process radar and video signals; 

6) one or several Input/Output Units;- 7) the internal bussing to interconnect 

all the modules; and finally, 8) a }faster Executive Control to control all the 

modules and supervise the operation of the entire system. 

*PE and the new name DPE - for Data Processing Element - are used interchangably. 
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The simpliest system is the Optimized Simplex Processor (aSP) with a 

* single PE with its TM, a RAMM, a BORAM, an I/O unit, internal bussing and a 

floating software MEC. The PE executes the HEC out of RAMM; this is the only case 

in which instructions are executed from RAMM. The PE also executes Program Modules 

out of the Task Memory. The most powerful system is the AADC Baseline system which 

contains several PEs with their TMs, a large RAMM, a large BORAM, several 1/9 units, 

a Signal Processing Element, four internal busses and a hardware MEC. 

Between the two extremes, two architectures have been defined. There 

is a Time Division Multiplexed Block Transfer Multiprocessor (TDM BTM) which is 

essentially the same as a Baseline system except with a software MEC. There is 

also a Multiple Memory Multiprocessor (MNM) \vhich has several RAI1Hs but no THs. 

In this case the PEs execute programs directly from the RAJrus. 

Since the AADC PE is a very powerful computer capable of executing 

3.3 ~IIPS and relatively inexpensive, it is deemed more important to increase the 

reliability rather than the throughput. Three extra reliable configurations 

have been defined. The Dual Processor has two OSP systems each capable of 

providing complete backup for the other. The Triplex Processor contains three 

asp systems with majority gate decision logic sampling their output for added 

checking of random errors. The ultra-reliable configuration is the Three-Plus 

Processor which is the same as the TP above,except it has extra PEs that can 

be switched in automatically in case a PE fails. 
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2.2 AADC ARCHITECTURES 

2.2.1 Optimized Simplex Processor 

This section will present the simpliest AADC architecture called 

the Optimized Simplex Processor (OSP). The Optimized Simples Processor 

has a single PE (including Arithmetic and Control Unit 

and a Task Memory), a RAMM, a BORAM and four internal busses as sho~~ in 

Figure 2.1. The MEC is a floating software MEC that is executed from RA}frL 

The basic building modules of the OSP are described as follows: 

1. BORAM - A Block Oriented Random Access Memory with a 
2 ~sec per block access time and a 70 to 150 nsec per 
word transfer rate. It is non-volatile. It stores 
all Program Hodules (PHs); all HEe software segments, 
special MEC identification words. A Program Nodule may 
be stored in several consecutive BORAM blocks. The 
BORAH will probably llse a [erroacoustic recording 
technique (Chapter 4).* 

2. RAt-1M - A Random Access Nain Hernory \vhich is non
volatile and has a 150 nsec per word access time. 
It is used to hold all mode-indt~pcndent (or permanent) 
data and it provides I/O buffering area. In the OSP, 
the RAHH also holds the HEC program segments \.Jhile 
they are being executed. It probably uses a Closed Flux 
Memory, or CFM, technology (Chapter 4). 

3. TM - Task Memory which is part of the PEe It is 
probably a 4K 36-bit word RAN \-vith 150 nsec per word 
access time and may be vo1itile. It is used to store 
the currently executing P~I. It probably uses the same 
recording technique as the ~~~1. In all applications 
role the TM contains segments or pages of several PMs. 

4 PE - Processing Element (or more accurately a A&C for 
Arithmetic and Co~trol Unit) a general purpose sequential 
processor capable of executing arithmetic and logical 
operations at a rate of 3.3 MIPS and having a very 
powerful instruction set. The PE will run either a PM 
from TM or MEC segments from RAJlli (Chapter 5). 

5. I/O Unit - a general purpose interface unit between RA}fr1 

and the environment. 

*BORA~ is still under development. 

2.3 



- ............. -...-..---------_ .... ...,..., -...-,-... -----------------------... 

FE ._-- .... _----
I I 
I ~ .: Co ~ ""..- ,.: 

.l- .. ~ : ~ ~ ~ t. ~ ~ E~ ~ .1 C I 
I-zj 
~ 

QQ. I {o. ".,;J I '-.,.:. t! ~ '- ~ 

c: • 
1'1 
ro 
N . 
~ .. 

I Co ri ~'el~J I 
I ._- I 
t -.- . I I ~ ( ... ·1 ~- 'I,. 

"W" .... : '\. 

BORAfll ). RANi-I/O 
~yJ 

0 
"'0 
r1' ..... 
S ..... 
N 
ro 
0.-

N . (/) 

~ ~. 
"'0 
"~ 

ro 
M 

~ 
1'1. 
0 
n 
ro 
en 

·en 
0 
1'1 

'"" 0 
C/) 

'"d 
'-' 

I :- (\ I 
I 

t'II ~ C r:~ ~) r 'J' 
I 

~~4~'!--~~~.t- • L - - [1 -I-.~~ -_-_1 __ --': __ )-" -'Jo---.. 

'., I I ' I J ~: ... ...? --) ."" ~ p ~ : '. ~ '':':1 r. ' ... J ,. 
I.:.,~ \.; ~ '"' J II \f \,,# L. '(. .:) 

I f i. ______ ~:__t_--.... 

...-------~---t'I'=~~I-----D-L-.~,-...~:~~ls Ir _____ . __ ._~--... 

- --1-
.-1 ____ ,_-_1 v_~---_-_-_'f - .. l-----. 

I !r" U c· E - c..,; .,) 

I 
,~-------------P~r-o-g-r-a-2-11--f~-~-o-d-.~·-!-e--T-r~c-n-s-f-c-r-B-)-u-s------------, 



6. Four internal busses interconnect the modules. 
The executive bus a1lo\o,1s the HEC to control the 
other modules. The data bus allows the transfer of 
da ta and I/O between the P E, 11,1 and the RPJ1H. The 
interrupt bus allows an external I/O unit to signal 
the MEC or allows a PX to request a MEC function. 
The interrupt bus also provides a means for any 
module to signal the MEC in case of failure. The 
program module transfer bus al10T""s the transfer of 
PMs to TM and MEC segments to RA\[M. This unidirection 
bus allows transfer out of BORAH only. 

7. MEC - Master Executive Control is a software program 
that provides the supervision and control of the 
other modules. It is executed by the PE out of RM~1 
in the OSP case and thus is often referred to as a 
floating software MEC (Chapter 6). 

The Signal Processing Element is not normally included in the OSP. 

A comparison of the OSP with a conventional architecture is shown in 

Table 2.1. This table also provides information concerning the storage costs 

and performance of a similar system using conventional architecture and com-

ponents. The advantage of partitioning procedure and data between RMfH and 

BORAH, as well as the use of BORAN for primary storage is obvious from the 

relative cost and speed. 

The operation of the OSP is fairly standard \<1i th the BORAH provid-

ing backup storage for all PMs, MEC segments, and permanent data or descriptor 

words. A PM is moved from BORAH to TIl for execution. A Program Module can 

issue an instruction to call another P~l or to overlay part of itself. MEC seg-

ments are moved from BORAM to RAtfrI for execution with a MEC kernel always re-

sidend in RAMM. Output of data is performed by placing the data in RA}~1 and 

signaling an external I/O device to remove it. Input of data is recognized by 

an external interrupt on the interrupt bus and it is then removed from the 

RAMM buffer area. 
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2.2.2 AADC Baseline Architecture 

The AADC Baseline Architecture is the most powerful AADC System 

containing several PEs and a Signal Processing Element as sho~m in 

Figure 2.2. Another major difference is that the Baseline Architecture will 

probably have a hardware MEC, as well as a floating software MEC for backup 

in case the hardware MEC fails. 

The hardware modules of the Baseline System can be described as 

follows (Figure 2.2): 

1. The BORAM, TMs and PEs are the same as for the asp 
except there can be several PEs and TMs. 

2. The RA}m is the same except it holds only the mode
independent data and the buffered I/O data, and is 
not used to store MEC segments. 

3. Dedicated I/O units are included which can be 
dedicated to a particular PE having excessive 
I/O requirements. 

4. A Channel Selector Switch has been added which is a 
programmable digital interconnection network capable 
of connecting any PE to any dedicated I/O unit. 

5. High-Speed ~~ltiplexed Digital Interface has been 
added which is a programmable sampling network 
switch (see Figure 2.3) capable of interfacing 
into the aircraft's MINCOMS (Multiple Interior 
Communication System). Input data to (and output 
data from) the AADC system is stored in (read from) 
the RAMM by this unit. This unit with the l~m is 
the I/O for most of the systems communication to 
the external sensors and actuators. 

6. Hardware MEC has been added which is an expanded 
version of the asp MEC but implemented in hard
ware. The MEC has the following functions: 
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- Monitor the various processing elements 
in the system to meet the requirements of 
all (externally-requested) modes of opera
tion of the aircraft. 

- Assign operational programs to the various 
processing units. 

- Supervise data transfers between units within 
the AADC. 

- Supervise the overall System operation, for 
such items as processor failures, interrupt 
requests, etc. 

A floating software MEC will probably also be provided as backup in case of a 

failure in the hareware MEC in the Baseline System. Further description of the 

hardware MEC is available in Chapter 6. 

The operation of the Baseline System is quite similar to the asp 

except a lot more activity can be occuring simultaneously. Several PMs can be 

executing on different PEs, other PMs can be transferring from BORAM to TMs, and 

data can be read and written simultaneously. One difference is that the MEC 

segments are used only for backup and then they are transferred to and executed 

from the TM of a PEe A more detailed description of the operation will be 

given in the following subsection. 

2.2.3 Time Division Multiplexed Block Transfer Multiprocessor. 

The Time Division Multiplexed Block Transfer Multiprocessor (TDM BTM) 

represents an intermediate architecture between the asp and the Baseline and is 

one of the first attempts to solve the classical problem of memory access conflicts. 

A scheme was devised which combined a small random access memory (or TM) with an 

Arithmetic and Control (A&C) unit to form a Processing Element (PE). Several 

PEs are then arrayed on a Time Division Multiplex (TDM) bus and serviced by a 
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conventional Random Access Mainstore Memory CRAMM). The RAMM, in turn, is tied 

to a Block Oriented Random Access Memory (BORAM) , which provided off line 

program storage. This relationship is illustrated in Figure 2~4. Note there is 

no direct connection from BORAM to the TMs in this first version of TDM BTM. 

In theory, because each PE had 512 to 4K words of local storage, programs 

can be block transfered from RAMM to a local Task Memory (TM), thereby reducing 

the number of PE to RAMM accesses made during program execution by two to three 

orders of magnitude. This reduction permits various PEs to access RAMM sequentially 

on a non-interfering, or nearly non-interfering basis, thus eliminating the need 

for an elaborate crossbar switch between PEs and RAMM for access conflict 

resolution. The TM provides local storage for data and programs and thus permitted 

one RAMM to service several PEs. For similar reasons, this organization also 

eliminates the need for careful partitioning of object code in RAlfr1, since access 

conflicts are now resolved in time, not space. This last factor means drastically 

reduced RAMM size, for RAMM can now be readily reloaded from BORAM on a mode-to

mode basis. In this way, the BORA}1 inherited the role of primary program storage. 

The success of this first architecture hinges on: 

- the ability to structure aerospace programs from 

modules (Program Modules or PMs) 

the ability to assign PMs to PEs in a timely a~d 

optimal manner 

- PM run times which are long when compared with 

RAMM to PE transfer times 

- a substatical cost differential between RAMM and 

BORAM technologies. 

2.11 



.- -...... .,---_ .. -, 

;. 

• 
--_ .. _---_.-:-'-- ------"---' .. - .. -

RANDOA\ ACCESS 
h\AINSTORE ~\Efw\ORY 

, 

. . . 

~'>~------~-------.----~--~--------------~------~----'-'-"~~' :..._ . -_, .' TIME DIVISION MULTIPLEX BUS-: -,'.: ',- ~ 

-----_ .. ------. . I 

• 

ARITH),~ErIC 

AtJD 
CONTROL 

TASK 
ME/.\ORY 

---------------
PROCESSING ELEMENT 

; 

ARITH/-,~ETIC 

Ar~D 
, COt~TROL 

j 

~ 

TASK 
MEMORY 

, 

ARITH~\ETIC 
. AND . 

CONTROL 
.. 

.. . '. r ------------- .... --
I . . . TASK , 

• 
ME/~.ORY. 

p 

, 
~ 

Figure 2.4. Preliminary Multiprocessor Design Concept (Version 1 ~f T~ ~T~) 

. . ...• -- - ,. 
. \ 

• 



As a result of early development efforts, various relationships and 

technologies have evolved. Among the most important are: 

- the fact that aerospace programs can, indeed, be 

modularized, and that these modules can be further 

partitioned into pages which exhibit useful replace

ment properties 

- critical path analysis techniques can be successfully 

applied to the PM to PE assignment problem 

- ferroacoustic memory technology would allow the 

fabrication of mass memories which are at least 

an order of magnitude less expensive, and at the 

same time an order of magnitude faster than 

militarized RAM technologies 

- 80% to 90% of typical aerospace programs consist 

of invarient procedure and constants. 

As a consequence of these, as well as other findings, an extremely 

important design change has been made to the original architecture. The BO~~ 

was disconnected from the RAMM and joined directly to each PE through a Program 

Module Transfer Bus (see Figure 2.5). This alteration permitted further 

reduction of RAMM size, reduced PM transfer times, and provided immediate 

processing resources to all PMs without recourse to time consuming roll in 

procedures. 

In the newer architecture and the final version of the TDM Block Trans

fer Multiprocessor, PMs were stored as pages in the BORAM and transfered to the TM 
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upon initiation by the AADC operating system, the Master Executive Control (~lliC). 

In practice, these PM pages could vary an~rhere from a few score to several 

thousand words~ While loading such pages into PEs on an exclusive basis will 

result in satisfactory performance, recent computer simulations have ShO~l that 

a substantial increase in processor and memory utilization can be achieved by 

multiprogramming each TM. For this reason, present AADC system design calls for 

one or more PMs to share a PE, with only a portion of the PM resident in TI1 at 

anyone time. Consequently, each PM, consisting of one or more pages of 128 or 

256 words, is stored in BORAN until called by the MEC or called by a page 

fault within an active PM. The executive bus is added to prevent control 

conflicts with program and data transfer~. 

The TDM BTM gets its name from the fact that the busses are time 

division multiplexed, which means that only onc PE has a given bus at a given 

time, and the fact that programs are transferred as block bet\-Jeen BORAM and TH. 

Note the TDM BTM is somewhat similar to the Baseline architecture when the hard-

ware MEC has failed. (The material in this subsection is taken from Reference [2.1].) 

2.2.4 Multiple Memory Hultiprocessor 

The Multiple Memory Multiprocessor shown in Figure 2.6 is similar to 

the Baseline except that the PEs have no Task Memories and there are several 

RAMMs. Thus, the PEs share the RAMMs and execute programs directly from it via 

a second channel selector switch (which is also programmable similar to channel 

selector switch on the aSP). The MEC may be hardware or software. 

2.15 



DEDICATED DEDICATED . . . DEDICATEC .. 
BORAM 

I/O I/O I/O 
.. 

.~ Ai' .po 

1~ l' 1l' 

l CHANNEL SELECTOR SWITCH NO.1 
l.. 
r .,.. .,. 

'" .,. 
PM BUS 

lr! ~, ~ 1~ ---i ~r .. ~~ 

. . . ~ BULK PARALLEL 
RAMM RAMM RAMM RAMM .. PROCESSOR 

.,. t .~! nt A. 1 

N . I/O AND ~, u " V 
HIGH SPEED 

~ L MULTIPLEXED ... CHANNEL SELECTO~ SWITCH NO.2 DIGITAL ~ 

"'"L r INTERFACE . ~ .,. A 

.~ 

~ , ~, ~, . 

r ~ .. L.. --. ----- """"" -"" 

Q 
.. MEC PROCESSOR ~ .. PROCESSOR r- "'" ... .. PROCESSOR ... 

.. ,. . ,. • 

EXECUTIVE BUS 

Figure 2 •. 6. Multiple Memory Multiprocessor 



This configuration has the advantage of allo\ling the PEs to execute 

another program while the next PM is being loaded into I~. The disadvantage 

of this system- is that it takes more memory and, since memory modules are probably 

more expensive than the PEs, the MMM is probably more expensive than the Base-

line architecture for the same throughput and reliability. 

2.2.5 Ultra-Reliable Architectures 

As a result of a recent appreciation for the processing power of the 

AADC/OSP, an interesting modification was made to existing MEC design goals. 

Because the unit processor provides the necessary throughput to meet the combined 

sequential processing requirements of an integrated 1980 aircraft, the need for 

multiprocessing should arise, when and if it does, from a desire for improved 

reliability rather than increased computer throughput. Toward this end, three 

extra classes of multiprocessors have been identified based on the asp. These 

are: 

1. The Duplex Processor (two PEs): used whenever some 
processing backup is desired after a PE failure -
the MEe kernel stored is stored in the PE performing 
the applications programs - improved throughput, while 
provided, is not a fundamental goal; 

2. The Triplex Processor (three PEs with/without a 
hardware MEC): used when solution confidence is 
all important - provisions for majority voting -
executive fallback provided in the event of an ~ffiC 

hardware failure; 

3. The Three-Plus Processor (more than three PEs with/ 
without hardware MEC): provides all the above cap
ability with the addition of power switching for 
improved, long term, maintenance free reliability. 

The present AADC Architectures and MEC design are being updated to accomodate 

this new applications philosophy [2.2, paragraph 2C]. 
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2.3 INTERFACING AADC MODULES 

2.3.1 Internal Bussing 

The 'following excerpt is taken from AADC Progress Report No. 10 

dated May 31, 1972 [2.3, paragraph 30, 31] which discusses the need for a very 

fast and reliable internal bussing scheme for AADC. The busses are described 

in Subsection 2.2.1 above. 

30. Internal Bussing: It is a long held belief that 
communications among AADC components will prove a 
particularly difficult problem to resolve. This is 
because of a) the requirement for modular extensibility, 
b) the high data rates between and among hardware modules, 
c) the extremely small size of AADC components, even at 
the second packaging level, d) the need for EMI/EMP 
immunity, e) the requirement for high reliability, and 
f) the desireability of low cost. As a result of these 
concerns, study efforts were initiated to investigate 
the options afforded by various bus implementation 
schemes. If anything, these studies confirm the original 
sense of concern. Fortunately, the problems which still 
exist do not seem beyond resolution. 

31. In addition to functional analyses, study efforts 
are proceeding to determine a reasonable technology 
with which to implement an internal bus subsystem. 
Feasibility hardware for a low power, multiplexed, 
optical communication system is presently being assembled 
for the Navy by IBM. 

Reference [2.4] presents the results of IBM's investigation on optical data 

links. Some details of a possible implementation are presented in Chapter 3 -

AADC Hardware Technology. 

2.3.2 External I/O 

The following excerpt from AADC Progress Report No. 10 [2.3, paragraph 

13] describes the current status of the external Input/Output interface 

developments: 
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13. External I/O: To be truly useful, the AADC 
has to interface with other equipments or peripherals 
in the larger context of an information processing 
system. A contracted effort to address the design 
requirements for a general purpose AADC interface is 
planned. An RFP for this effort has been released 
by the Naval Air Development Center, Warminster, Pa. 
Enclosures (2) and (3) detail the goals of this effort. 

Enclosure (2): Preliminary AADC RAM-I/O Statement of Hark is attached as 

Appendix 2.1. Enclosure (3) considers the AADC I/O Baseline [2.3, pages 

39-47 and 2.5]. 

At the 1973 AADC Symposium Raytheon reported some research on using a 

PMU (Program Management Unit of the Data Processing Element) as the RA~n1/IO Con-

troller. The PMU would have a Task Memory for instruction and temporary data. 

The advantages of this approach are improved modularity, expandability, graceful 

degradation. and memory protection (via the ~ru), as well as, a cost savings since 

95 percent of the controller is already designed 12.22]. Also see [2.23]. 

IBM also reported on development of a microprogrammed I/O controller. 

The controller consisted of a 4k 64-bit words of ROH (Read Only Hemory), local 

store of 16 x 16 bits and a 16 bit minicomputer. In many ways it was similar to 

the PMU. See [2.24] for the final report on this development. 

2.3.3 Interface to Aircraft 

Reference [2.6] is a Grumman Aerospace Corporation report on the AADC 

interfact requirements for a representative F-14C aircraft weapon system. The 

primary goal of the report was to provide detailed definition of the interface of 

future aircraft systems to AADC. The report concludes that the 13 subsystems re-

quire an interface to AADC of 200,000 bits/second, and the AADC configuration for the 

F-14C should have two DPE, one RAMM for data, one BORAM, and another Rfu~ for buffer-

ing r/o, a hardware MEC and a Data Handling System for interface to the aircraft 

subsystem. The Data Handling system includes a Bus Control Unit, several Subsystem 

Controllers, and standard Interface Units. For further information see Chapter 10 

or [2.6]. 2.19 



2.4 }IISCELLANEOUS SUBJECTS 

2.4.1 Transient Radiation Effects 

Grumman Aerospace Corporation has completed two studies on the transient 

radiation affects on the AADC. The first was completed in July 1969 [2.7]; the 

second in July 1971 [2.8]. These reports are classified proprietary and secret, 

respectively. 

2.4.2 Advanced Avionics Fault Isolation System (AAFIS) 

The following excerpt is taken from AADC Progress Report No. 10 

[2.3, paragraph 7 to 10]: 

7. Advanced Avionics Fault Isolation System (AAFIS): 
"The AAFIS program is planned for the development of 
automatic test equipment for the support of Naval 
avionics in the post 1980 era. It will be phased into 
fleet use subsequent to the presently deployed VAST 
system. The prime objective of the AAFIS program is 
to reduce the cost of ownership of avionics support 
equipment. 

8. "The AAFIS program is presently investigating, 
by an industry contract with RCA, a technique which 
appears promising for automated testing of analog 
devices. The technique has, however, proven unappli
cable to digital systems." [2.9]. 

9. Among the more salient goals of the AAFIS program, 
from the point of view of AADC, are: a) compatibility 
with Large Scale Integrated (LSI) semiconductor tech
nology, to the extent that it may provide inputs to 
the LSI design process itself and b) the utilization 
of test procedures which may be computer controlled 
and monitored, and which result in data which may be 
evaluated by the same computers - namely AADC. 

10. Industry response to the NADC RFI was due on 7 
January 1972. An RFP for AAFIS studies has been 
released. 

Also see 12.22] for the latest developments on AAFIS. 
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2.4.3 AADC Building Block Module 

Reference [2.10] is a report by Westinghouse Defense and Space Center 

entitled the '~Bui1ding Block Module for Advanced Avionics Digital Computer". 

(This report has not been reviewed and it may even pretain to the basic LSI 

package for AADC, in which case it should be in Chapter 3.) 
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2.5 OTHER NON-AADC ARCHITECTURES 

2.5.1 Directly Executing HaL Architectures 

ThiS section is included to reference some of the other Higher Order 

Language architectures that are alternate designs to the AADC. These alternate 

designs should be reviewed to ensure that the features they offer or the 

implementation techniques they use are not superior to AADC. If AADC is going to be, 

the All Application Computer for 1975 to 1985, it must offer a flexible efficient 

High Order Language that can be effectively implemented. 

An original 1968 proposal for an "Integral Hardware/Software Design" 

is given in [2.11]. Two other very early alternates to the AADC design were 

prcs~nted in Subsection 1.3.2 [1.19 and 1.20]. 

Three more recent HaL Architecture designs inc.1ude: An Aerospace 

HOL CIJmputer by Honeywell in February 1971 [2.12], another by Burroughs Corp

oration in April 1971 [2.13], and the third by Hughes Aircraft Company in April 

1971 [2.14]. 

The U. S. Air Force is also investigating the design of an HOL 

architecture. The conception, feasibility and initial design are described in 

[2.15]. A follow-on study was carried out under contract [2.16] and should be 

completed by no\". A study on SPL Architecture Study is given in [2.17]. (SPL. 

or Space Progrannning Languages, is the USAF's competitor for C}fS-2, and is 

described in [2.18].) 

A final study by the Corporation for Informations Systems looks like 

it should be in Chapter 9 on Higher Order Languages rather than here. but it 

does pertain to the Air Force effort [2.19]. 

2.22 



Reference [2.20] discusses another possible architecture using a 

distributed fetch computer, not specifically designed for a HOL. Reference 

[2.21] suggest a universal function unit for avionics and missile systems. 
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Appendix 2.1 

EN ,~LOS URE (2) 

NAVAL AIR DEVELOP~~NT CENTER 
AERO ELECTRON IC TECHNOLOGY DEPAR: '~~~T 

WARMINSTER, PENNSYLVANIA 1897~ 

1. OBJECTIVE/SCOPE 

PRELININARY 
MDC RAM-I/O 

STATEMENT OF WORK 

AEDC 
17 Apr 1972 

The objective of this initial study concerning 'he RMi-I/O (Random 
Access Memory-Input/Output) portion of the AADC (Ad"anced Avionics/All 
Applications Digi tal Cor.1puter) is to establish basi·-· concepts and designs 
which will fully utilize the advanced capabilities .nd modular flexibility 
of the MDC. The I/O should optimize speed and fle.~ibility of COt'uIlWlica
tion between th~ intel~al AADC processing elements (~~d the external sub
system data processors, sensors, and controlled per:;. pherals. This study 
shall result in three types of highly flexible I/O ~tructurcs \'Jhich can 
be configured to meet the data processing requirements foreseen for the 
1978-1990 tit'le frame. TIle study shall provide a detailed functional 
(register level) design of the AA\I-I/O portion of the MDe and provide the 
basis for a subsequent contract to generate a detailed logic design. 

The I/O types are as follows: 

a. A standard AADC interface 
b. A conventional dedicated multichannel interface 
c. Flexible serial interface for multiplexed airborne applications 

I 

2. .SlJBJECT 

The subject of this study shall be the ~f-Input/Output portion of 
the MDC. 

3. DETAILED STUDY PROGRM1 

a. Introduction 

The contractor will perform a three (3) part analysis/study/design 
of an I/O System for the Navy's AADC which is now under development. The 
three technical areas to be covered are: 

ENCLOSURE (2) 
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(1) the design of the RAM-I/O Archi tecture and r;tandard MOe 
I/O Bus (see reference (a)), 

(2) the design of a conventional dedicated multichannel inter
face as described in reference (b), and 

(3) the design of a serial multiplexed I/O interface. 

This contract is'not intended to be a study of Navy I/O requirements. 
Where necessary, requirements information relevant to the designs will be 
provided to the contractor by the Navy. 

In all the designs there will be included a co;(\~lete reliability/ 
maintainability philosophy and a rigorous analysis of the failure modes 
and fail safe capabilities of the design. Trade off studies, parametric 
analysis, hardwarc/soft\'t'are considerations, specificat: .. )ns and justifica
tions will also be included. 

The designs discussed below shall incorporate [1. modular approach 
for easy expandability of I/O channels and/or expandability of the number 
of Random Access ~femorics. 

In addi tion, the desi gns should reflcc t the fac t tha t computer 
to computer conununicat.ions will be handled by any of the I/O interfaces 
described below \-"i thout any modifications to the designs. 

b. Discussion - RN-i-I/O and Standard AADC I/O Bus 

A trade off analysis of potential programmable IOC (Input Output 
Controller) and RAN configurations shall be performed. A register level 
design and timing diagr~ms shall be generated for the architecture(s) 
recommended to satisfy the ~3vy'S needs. The contractor shall give prime 
consideration to the possibility of implementing the IOC function \'t'ith 
the Program ~bnagemcnt Unit portion of the Processing Element (see references 
(a) and (c)) or the MCU (~ficroprogrammed Control Uni t) currently under 
development within the Navy. The ~1CU is being developed to provide control 
of arithmetic or logic units for signal processing, emulation, and I/O 
control. Detailed information about both designs will be supplied to 
the contractor early in the contract period. 

The above design(s) shall provide and reflect all control functions 
necessary for: 

(1) -Operation of the I/O Bus 
(2) Operation of RAM including: 
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(a) ~1ultiporting/multipartioning consi ~~tions 
(b) Buffering considerations, e.g. 

Types of buffers 
Buffering techniques 
Buffer contiguity 
Bufrer Controls 

buffer lengths 
buffer status 
buffer acquisition 
buffer control words 

AElJC 

In addition, the contractor will also be recuired to recommend 
a design for the "standard AADC I/O" bus system tr m~~et the rcquirer:lcnts 
of the "MDC I/O I3aseline." Tnis bus will be esse"ti~llly a parallel 
version of the serial mul tiplexed I/O bus discusser! i;~ a following 
section. It is the goal of the study that the nur. .'er of peripheral 
devices connecting to the bus be limited only by t,.~ word rate capability 
of the bus. 

Effort will be expended in (but not neces~1rily limited to) the 
following technical areas: 

(1) Detailed investigation of I/0-~1 interrelationships with 
specific reconnnendations and justifications. 

(2) Interrupt Notification/Handling and priori ty cor.ununications. 

(3) ~EC (Master Executive Control) impact. 

(4) ~Sodul ari ty / growth considerations. 

c. Discussion - Conventional Dedicated Multichannel Interface 

The Conventional Dedicated Multichannel Interface to be designed 
shall comply with the requirements of reference (b). TIlis work shall be 
in general conformity to that described in the preceeding section. 

d. Discussion - Serial ~lultiplexed I/O Interface 

During the study/design several multiplexed alternative I/O bussing 
systems shall be considered. The bussing system(s) recommended shall be 
detailed to a functional block diagram (register) level and timing diagraQS 
shall be provided from which a logic design can be generated under a future 
contract. 

As part of the designs, an interrupt and bus acquisition scheme or 
schemes shall be developed. It is a desired goal of this study that the 
number of peripheral devices connected to the bus be limited only by the 
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bit rate of the bus. For example, if the bus has a 5 illion data bit 
per second capability, any number of devices can be co ;nccted until their 
combined information transfer rates just equal that c~pability i.e., five 
(5) peripherals operating at 1 megabit per second each or 100 peripherals 
operating 'at 50 kilobits per second. 

REFERENCES 

(a) NAVAIRDEVCEN AEDC AADC I/O Baseline Document of 10 Apr 1972 
(b) NAVAIRDEVCEN AEDC Functional Specification for the Conventional 

Dedicated ~rultichannel Interface of 10 Apr 1972 
(c) Raytheon Co. Uncl-NoForn AADC Arithmetic and ContrJl Functional 

Block Diagram Design Analytical Study of Dec 1970, DOC No. AD880S44 
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Chapter 3 

ALL APPLICATION ROLE 

3.1 INTRODUCTION AND SUMMARY 

Although the AADC was originally intended for Naval avionic 

applications only, the high speed, powerful instruction repertoire and low 

cost of AADC have caused the proponents to consider much wider applications. 

Although most of this report addresses the AADC design for the avionic 

application, this chapter will discuss some of the implications of the de

cision in 1971 to convert the AADC to an All Application Digital Computer. 

Although "all application" is undoubtedly too general, the acronym AADC 

was retained because of the wide variety of intended applications and be

cause it has been in use for 3 years. Also All Application Digital Com

puter sounds better than Almost All Application Digital Computer. 

3.1.1 Implications of All Application Role 

Certainly the most significant change in the AADC program in the 

last year is the change in emphasis from avionic applications only to the 

All Application Digital Computer. This has caused significant changes in 

the AADC design by requiring many of the features that have caused problems 

in the present third-generation computers. For example, rather than having 

a Data Processing Element (DPE) executing a single program out of its own Task 

Memory, the DPE must now have facilities for multiprogramming, virtual memory 

and demand paging. Thus, the DPE must now have special hardware to support 

the virtual memory, and much faster busses to handle the increased bus traffic. 

Furthermore, the AADC will now have to solve problems, such as thrashing 

(excessive paging until throughput drops to almost zero) and system deadlocks, 

that have remained unsolved in present day computers. In any case, the AADC 

supporters are convinced they can overcome these problems with AADC. 
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3.2 DESIGN IMPLICATIONS OF ALL APPLICATION ROLE 

3.2.1 General Problem Areas 

This section is intended to provide background on the general prob

lems of operating a computer in a multiprogramming and paging environment. 

Although the problems and solutions discussed here are not unique to AADC, they 

are'presented to provide background for discussing the implementation of 

multiprogramming and paging on AADC in the next section. 

An All Application Digital Computer will be defined here as a com

puter capable of operating effectively on normal batch processing, time 

sharing, data processing and real time applications. An example of each type 

of application is processing jobs in a batch at a programming center, support

ing several terminals for interactive computation, maintaining inventories at 

a supply center and data analysis on control of an aircraft. In order to 

operate effectively in all these application areas, a computer must have the 

following features: 

- virtual memory (or paging) 

- multiprogramming 

Multiprogramming means more than one job in the "active status" in the main 

memory (i.e. TM) at one time. The virtual memory feature means that a large 

(virtual) memory can be addressed as if it were actually main memory. Thus 

the user assumes he has a large virtual memory for his programs and data, and 

the system ensures that the required segments of the virtual memory are in the 

main memory when required. These two features could be provided separately 

but are generally provided together. 

Incorporating these two features into a (serially processing) com

puter introduces the following problem areas: 
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selection of an optimal page (segment) size, 

- page fetching strategy, 

- page placement strategy, 

- .page replacement strategy, 

- address binding at run time, 

- task switching, and 

- storage protection. 

Many possible solutions has been used in existing general purpose 

computer system to handle these problems. Page sizes range from 64 word to 

4096 words, with the smaller page sizes usually causing the least load on 

the channels (busses) to the backup storage (disk or drums) but also causing 

the largest amount of CPU overhead. The two common page fetching strategies 

are one page on-demand (or as required) fetching and one or more page pre-

fetching. The common page placement strategies are selecting the first avail-

able space or the smallest available space. The first-space strategy is 

common '''ith fixed sized pages while the smallest space is conunon for variable 

sized pages. The page replacement strategies are many and varied. They 

include randolu (the simpliest), first-in first-out (FIFO), last-in first-out 

(LIFO), least recently used (LRU) , optimal, various combination of these, etc. 

The optimal replacement policy is defined, a-posteriori, as the one that 

minimizes the number of pages that must be transferred to the main memory 

and thus can only be determined after the program has executed. Since the 

optimal is determinable after-the-fact, it has no predictive powers and can 

not be implemented. The problem of address binding-at run time results from 

the fact that the pages for any Program Module (PM) are randomly distributed 

throughout the main memory (i.e. T}I) , because of the placement and replace-

ment strategies. Thus all addresses must be converted (bound) to the absolute 

·"Address binding" as used here does not mean binding that occurs onJ.y once. 
"Address translation" or II Address mapping" may be more appropriate terms. t 
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TM addresses at execution time. Common methods of achieving run time blnd~ 

ing include using base registers and using associative memories. One of the 

disadvantages of run time binding is that each branch operation now implies 

an obligatory indexing operation. 

If more than one program is active in the Task Memory at one time 

then some method must be provided for protecting one program's storage from 

being destroyed by another. Some solutions include using protection keys 

on each page and checking for addresses out of bounds. The last problem 

area in implementing virtual memory and multiprogramming is task switching. 

Generally this involves maintaining lists or queues of tasks ready to use 

the DPE (data processing element), waiting for a page to be brought into 

TM and waiting for I/O. Further elaboration on the specific strategies to 

be used by AADC will be presented in the next sections. 

3.2.2 AADC Strategies for Paging Program Modules 

The justification for adding a virtual memory feature to AADC 

was obtained during simulation studies when it was found that only about 

one third of the segments of a program" module were active at anyone time 

[3.1, paragraph 2]. Thus it was concluded that three or more program modules 

could have their "active" pages in TM simultaneously, which would decrease 

the task switching time and improve the performance. 

The general strategy for implementing virtual memory on the AADC 

is described in the following excerpt taken from AADC Progress Report Ten 

[3.2, paragraph 33]: 

33. Demand Paging: In order to reduce processor 
inefficiency produced by the transfer of unnecessary 
procedure from BORAM to Task Memory, a demand paging 
scheme is being developed for AADC. In this manner, 
only a kernel page is loaded into TM at the outset of 
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a Program Module (PH) execution cycle, after Wflich 
only those pages containing procedure actually requested 
by the runni.ng program are transfered into 111. Because 
the total number of pages required to execute a particular 
PM without excessive requests for new pages during some 
interval of time may exceed the number of pages which 
constitute the available TM storage « 4K words, 
allowing for data and scratch pad), some means must 
be provided to intelligently replace unneeded pages 
with new ones. Because a page which is not required 
at one moment may be required the next, care must be 
taken to not arbitrarily toss out "unnecessary" pages. 
Enclosures (5), (6) and (7) address the issues, philosophy, 
alternatives, design tradeoffs and simulated results of 
paging and page replacement algorithms for AADC. [3.3 to 
3.5]. 

For AADC the virtual memory feature will be implemented by assign-

ing fixed-sized segments, called pages, to all procedures and data. Pages 

of Program Modules will be moved from BORA}1 to the Task Memory while data 

pages will be moved between RAMM and TM in both directions. The paging of 

Program Modules is described in this subsection, while the paging of data 

is described in the next subsection. 

The selected page size for Program Nodules is 256 words, which is a 

convenient size for BORAM. This page size allows 16 pages in the 4K word 

Task Mernory*. With 2 microsecond (use c) block access time to BORA}1 and 150 

nsec per word transfer rate, it takes 40.4 usec (10- 6 sec) to load a page 

into TM compared to 646 usec to load the entire TM. Thus task switching 

can be substantially improved with a paged memory. The page fetching strategy 

for AADC is demand paging. The alternate strategy of prefetching pages is 

not reasonable because the TM is being accessed continually during the page 

transfer and therefore programs cannot be executed on the DPE during the 

transfer. The page placement policy for AADC is to select the first empty 

space if one exists. If there are no empty spaces then a page is selected 

for removal from TM by the page replacement strategy. 

*There has been some discussion on making the TN extendable to 16K words. 
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The page replacement strategy for AADC has been left very flexible. 

In fact, according to Raytheon at the January 1973 conference [3.6], 16 

possible replacement strategies are to be implemented including random, first

in first-out, least recently used, Raytheon's load forward reverse grain 

(similar to last-in first-out), and user specified. This appears to be a 

very complex solution when the flexibility is not justified. According to 

A. W. Cerillo and C. F. Mattes, NADC, the performance of all replacements 

strategies is almost the same (within 5 percent) with Raytheon's load for

ward reverse grain (LIFO) algorithm being the most appropriate page replace

ment algorithm. It is more efficient than first-in first-out (FIFO) and 

easier to implement with about the same efficiency as the least recently used 

(LRU). They also conclude that in cases where there is only one process 

whose pages cannot all fit into the main memory, for example in AADC, the 

most appropriate page replacement strategy is LRU not the working set [3.4]. 

This last recommendation is taken from Denning's paper [3.7]. 

Mr. William R. Smith at NRL also found very little variation in 

performance of the various replacement'algorithms for AADC on an avionic 

(E2B) work load. Based on the simulation of possible AADC replacement 

algorithms, the NRL's recommended replacement schemes, in decreasing order 

of preference, are: 

1. FIFO/LRU by pairs 

2. RANDOM/LRU by pairs 

3. FIFO. 

where FIFO/LRU by pairs means a pair is selected on the first-in first-out 

basis and then the least recently used one of the pair is selected for re

placement [3.5]. 
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The problem of add ress binding at run t irne has no l been ve ry ·.,'C~ 11 

specified yet. The DPE address field has been increased from 12 to 16 bits 

with the first 8 bits being the page address and the last 8 bits being the 

address within a page [3.6]. A sixteen bit address field means that the 

largest Program Module or data array is 64k words. Programs may contain 

several PMs. (The l6-bit address field is a change from the original pro

posal of using 32-bit addresses [3.1].) 

The next problem area introduced by the all application role and 

the need for multiprogramming is the problem of task switching. To facilitate 

task switching on the AADC, each program module (PM) is assigned a kernal page 

which must be in the TM whenever that PM is active. The kernal page con-

tains the BORAH address of all other pages. Furthermore each page has a kernal 

word which is used for task switching and for storage protection. A descrip

tion of the use of the kernal word for task switching is not yet available 

at NPS. For storage protection, bits 32 to 36 of the kernal word are used 

for read protection, write protection, command protection and parity, 

respectively. Thus it is possible to specify that a page can not be read 

from or written into, can only be read, or contains program instructions or 

data [3.1, paragraph 14-19]. 

Honeywell has also completed a demand paging analysis in which 

they recommend: 

1. Using a 256-word BORAM page and virtual memory addressing 

technique. Programrrdng cost can be cut by 25 to 45 percent 

by dynamic overlay management rather than user specified over

lay scheme. 

2. Using demand paging scheme and either least recently used 

or working set as the page replacement algorithm. Later they 

say there is very Ii t tIe advan tage of \vorking se t strate gy 
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when using a multiprocessor system rather than a single 

processor multiptogramming system. Thus LRU would be simplier 

and better. 

Volume I summarizes the results of the demand paging analysis 

while Section 2 of Volume II provides details of the analysis, advantages 

and disadvantages of paging, addressing methods, simulations models used and 

the effects of paging on the system, on the MEC and on the Data Processing 

Element [3.8]. 

3.2.3 AADC Strategies for Paging Data 

Mr. William R. Smith at NRL has suggested that AADC's two level 

memory hierarchy between RAMM-BORAM and Task Memory is similar to the IBM 

360/85 cache-memory system. This fact alone can give insight to the operation 

of AADC in a paging environment. Reference [3.3] attempts to summarize those 

portions of the cache memory literature that pretain to the AADC addressing 

and data management. This literature suggests that data pages should be no 

larger than 32 words and preferably 16 words. According to Smith, "A natural 

utilization of both BORA}I and RAMM features would involve having 32 relocat

able sectors [pages] of 128 words each in Task Memory. A sector of a proce

dure would be transferred in its entirety from BORAM to Task Memory but a data 

sectors would be transferred from RAMM one block (16 or 32 words) at a time 

as referenced. (It now appears that the 4k-word TM will be divided into 

sixteen 256-word pages not 128-word pages as recommended by Smith [3.6].) 

This two page size seems necessary in order to keep the bus traffic within 

reasonable limits. Moving data, even with blocks as small as 16 words, can 

be expected to cause one data word transfer per instruction executed - thus 

burdening the RAMM/TM memory interface channel. Program pages smaller than 
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128 words are incompatible with BORAM and would cause an excessive number of 

accesses to BORAM. 

A cache technique that would work quite well in MDC is the "store 

through" in"which data store operations are carried through to secondary 

storage (RAMM) in parallel with local storage (TM). As well as improving the 

processing speed the "store through" technique ensures the residence in RAMM 

of "fresh" data for system output without the necessity of moving data from 

TM to RAMM at crucial points in a program. Smith also presents evidence that 

direct access of data from RAMM would be superior to moving 128 word blocks 

of data to TM in most cases. [3.3, pg. 74]. 

3.2.4 Other Implications 

Thus far, it appears that very little investigation has been under

taken into determining what special features would be useful for manipulat-

ing large files such as required in supply inventory applications and in manage

ment information systems. Some of the preliminary investigations on the 

external Input/Output controller are described in Chapter 2, but apparently 

no one has yet addressed the problems of file maintenance on large disk or 

tape files. This area will undoubtedly be investigated further in the near 

future as AADC continues toward an All Application Role. 

Although this chapter is relatively short at the present time, 

it is expected to expand rapidly as further implications from the All 

Application Role of AADC are investigated. 
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BORAM 

Glossory for AADC Hardware Technology 

- Block Oriented Random Access Memory: organized in 128 to 512 word 
blocks for program modules and used to store Program Modules and 
permanent data. 

CCD - Charge Coupled Device: competitor for MOS for BORAM. 

CCSL - Compatible Current Sinking Logic. 

CFM - Closed Flux Thin Film Memory: used for RAMM and TM. 

CMOS - Complementary Metal Oxide Semiconductor. 

CMTL - Current Mode Threshold Logic - current mode. 

EeL - Emitter Coupled Logic. 

Ie - Integrated Circuits: technology used in third generation computers 
where transistors, resistors and capacitors are built together as 
different layers of conductor, insulator and semiconductor materials. 

LSI - Large Scale Integration 

MNOS 

MOS 

MSI 

NDRO 

- Metal N-channel Oxide Semiconductor: as contrasted to ;10S Hhich 
usually refers to P-channel MOS. 

- Metal Oxide Semiconductor circuits or memory. 

- Medium Scale Integration. 

- Nondestructive read-out: memory· does not have to be written after reading. 

PE - Processor Element: sequential processing unit (see Chapter 5). 

RAM - Random Access Memory: any word is addressable. 

RAMM 

SSI 

- Random Access Main Memory: used to store mode-independent data and 
buffer I/O. 

- Small Scale Integration: same as IC. 

TM - Task Memory: a RAM attached to PE to hold currently executing 
program module. 

TTL - Transistor-Transistor Logic, probably the most common semiconductor 
logic technology. Also called T2L. 
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Chapter 4 

AADC HARDWARE TECHNOLOGY 

4.1 INTRODUCTION AND SUMMARY 

4.1.1 Scope of Chapter 

This chapter will discuss the new advances in hardware technology 

that are being developed for AADC. Although the development and production of 

modules using advanced hardware technology (at reasonable cost) is very important 

to AADC, the details of the technology and how it is implemented is of minimal 

interest in a course such as this one on the concepts and operations of AADC. 

In other words, the fact that the technology exists, has been proven t and can 

be mass produced at reasonable cost is certainly of interest, but the details 

of the technology and its implementation is considered beyond the scope of this 

report. Therefore, this chapter is an overview of the latest hardware tech

nology emphasizing what has been implemented and proven, as well as, what will 

probably be in production by 1975. 

Under the heading of hardware technology is placed all work which 

relates to the physical constituents of the AADC - the devices which will 

ultimately become the PEs, the RAMs, the BORAMs, the buses, etc .. In other words, 

all that which will ultimately manifest itself in the physical computer. The 

hardware technology is divided into three major areas: Large Scale Integration 

(LSI) technology, memory technology and bussing technology. 

4.1;2 Summary of LSI Technology 

The basic AADC hardware building block module is an hermetically sealed 

(perfectly airtight) package capable of supporting either multi-chip arrays on a 
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s. .~:, 5, : -: a : ~ , 
._ ..... _-"._ • .,..l-
•• ,,'J ......... .:>, ~r s~i~c~ductor oonolithic three-inch 

d:.a=e~er -Ja:ers - cr a:::: :.~~:'::a~:'::-. 0: these. ("~onolithic" means many circuits 

a~ta:.:-.~ ::.g~::-.E:r .. ,.. rE:5~:::':':E: ::-.E; ~';:-.:':~L-l ?attern, i.e., a 5000 gate LSI wafer.) 

~~1g year (:j72j ~::e ~f :~~ ;~~C ?a:.~~g:'~g =cdules has passed environmental 

testi:1g a~ ~;a·~"al ;'-,i-:7.:':'5 Fa:.i:i t~·, I:1dianapolis. A complete second level 

pa:'£agi~g s~·s ~e:: :'5 ~rese:1tly u:lcer de-,elopment at Singer-Kearfott, and will be 

s~ilari:y testec later this year [4.1, paragraph 23]. 

There is cople e",ide:lce tha t the technology will mass produce 5000 gates, 

on a 3-inch dia=eter wafer ~y 1975. Texas Instruments is producing a Logic Slice I 

Type "p" "..Thien has the e~ui-,ale:1t of 857 gates on a l!2-inch wafer. Intel Corp. 

has built the CP[ of an 8-bit parallel microco~puter the MCS-8 on a single chip 

I4.2]. There are now examples of 1500 gate LSI chips available off-the-shelf but t. 

the author does not have exact references.* 

More details on the developments in LSI technology for AADC will be pre-t 

sented in Sec tion 4.3. ~1any other articles on expected hardware developments can b 

found in the Proceeding of trle Advanced Digital Technology Conference in June l,97I 

I4.3]. 

4.1.3 Summary of ~emory Technology 

T\-lO promising magnetic storage technologies for AADC are the block 

oriented ferroacoustic memory for B0R)01 and the random access closed flux path 

thin-film memory (CYM) for R&~ and TM. The ferroacoustic technology employs 

the coincidence of mechanical and electrical energy to write magnetic domains 

into homogeneous, amorphous (non-crystaline), semi-closed flux path permalloy 

film. (Permalloy is a highly magnetic alloy of iron and nickle.) These domains 

are subsequently interrogated by way of an acoustic strain wave. A plated wire 

* Current work at Hughes Aircraft is on 2000 gate/chip on a 2 inch diameter 
substrate [4.27]. 
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may he used for the f~rroacoustic memory in place of the thin film. The fcrro

acoustic memory is low cost (0.1 to O.5¢/bit), high speed (150 nsec/wd read 

and 1 - 2 ~sec/block access time), high density (5000 bits/in3), low power 

(2 ~watts/bit), low weight (7.5 lbs for 64K 36-bit words, i.e., 2.3 megabits), 

non-volatile, and uses NDRO (non-destructive read out) techniques [4.1, page 13]. 

Blocks may be 128 to 512 64-bit words. For more details on the technology see 

14.3]. 

Another magnetic technology, tentatively called Cross Tie Memory and 

similar to a bubble memory, is also under investigation for possible use in BOR&~ 

14.1; paragraph 26]. 

The CFM, a planar thin film analog of a plated wire, offers new 

capabilities for random access magnetic storage. It provides performance here

tofore believed realizable only with semiconductors, but without the twin 

penalties of high power and data volatility. In comparison to previous magnetic 

memories, CFM is low cost (1¢ to 3¢/bit), high speed (80 nsec access time, 100 

nsec read time with NORO, and 150 nsec write time per word), high density 

(5000 to 11,000 bits/in3), 10\" power (100 ~lwatts/bit), low weight (3 lbs for 

4K 36-bit words or l50K bits) non-volatile, and uses NDRO technique. 

In comparison to ferroacoustic memories, CFM is 2 to 30 times more 

expensive, about twice as fast, up to twice as dense, uses 50 times more power, 

and is 6 times heavier. Thus a 64K word BORAH costs $2300 to $11,500; a 4K 

word TM costs $1440 to $4320. 

It is believed that semiconductor memories will be very competitive 

by 1975. The 1973 AADC symposium presented several possible semiconductor 

memories as candidates for the AADC memories [4.27]. 

More details and references to the developments in memory technology 

will be presented in Section 4.4. 
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4.1.4 Summary of Other Technologies 

Because of AADe's very small geometry, modularity and need for wide 

bandwidth internal busses, optical communication is being considered seriously 

for AADC internal bussing. The optical bussing has distinct advantages over all 

electronic alternatives in the area of noise immunity and ease of connection. 

See Section 4.5 and [4.5]. 

The other improved technology is in the electric power distribution 

system. It is proposed to replace the conventional electro-mechanical relays 

with a Solid State Electric Logic (SOSTEL) power distribution system. SOSTEL 

will greatly reduce power consumption, wiring complexity and weight, as well as 

increasing the control over electrical power distribution. See Section 4.6 

and [4.24 and 4.25]. 
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4.2 AADC TECHNOLOGY PHILOSOPHY 

The following statement of AADC technology philosophy and current 

status of LSI packaging is taken from AADC Progress Report No. 10 [4.1, 

paragraph 22 - 23]: 

AADC technology philosophy calls for the use of 
1975 state-of-the-art technology in 1975, followed 
by gradual technology improvements through the 
system's life time. These improvements should, 
however t remain transparent to the user and, in 
turn t the procuring agency. AADC building blocks 
will be specified in terms of function, form and 
interface. Legal improvements to these building 
blocks will, therefore, affect cost, reliability, 
and availability only. 

For this philosophy to be meaningful, it is 
important that the packaging system developed for 
AADC be compatible with present and projected 
component technologies. The AADC basic building 
block module - an hermetically sealed package 
capable of supporting hybrid, multi-layered ceramic 
and semiconductor substrates up through monolithic 
3" diameter silicon wafers - is just such a package. 
This year has seen at least one of two AADC package 
designs pass full MIL-E-5400 Class 4X spec testing 
at NAFI. 

From the inception of AADC, its hardware technology aspect has always 

attracted the greatest measure of skepticism. Conversely, AADC Program Hanagement 

has consistently said that AADC does not depend on advanced technology for its 

feasibility. There is agreement on one point, however - that a state-of-the-art 

AADC will not be the same revolutionary machine advanced hardware technology will 

make it. For the present, based on the success of initial development efforts, 

as well as independent Industry performance, no modification of earlier 

projections appears warranted. 
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4.3 LSI TECHNOLOGY 

4.3.1 Packaging 

In February 1969, when the Naval Air Systems Command announced their 

intention of procuring a first level packaging system capable of supporting 

discretes, ICs, MSls and wafer technology out to three inches in diameter, the 

immediate and predicted majority response was that of incredulity. Today, 

hermtically sealed ceramic and metal-ceramic packages meeting the original 

requirement have passed environmental tests (~1IL-E-5400 Class 4X spec.) at the 

Naval Avionic Facility, Indianapolis [4.1, paragraph 23]. A photograph of one 

such package is shown in Figure 4.1. A schematic diagram AADC first level 

package containing multiple IC or MSI chip, chip/wafer hybrid or whole wafer 

(LSI) is shown in Figure 4.2. 

One or two of these LSI modules (packages) will contain the entire 

Processing Element (Chapter 5) of 10,000 to 12,000 gates. This seems quite 

realistic since 1000 to 1500 gates are presently being put on a chip. See 

Figure 4.3. The LSI modules will be housed in a high level LSI package shown 

in Figure 4.4. The results of a study on high level packaging by Singer 

Aerospace and Marine System is reported,in [4.4]. 

The space required to package 10,000 gates has decreased two orders of 

magnitude in the past 20 years and is expected to drop another 10 fold in the 

next 3 years. At the same time, the cost is expected to drop by a factor of 

250 times as shown in Figure 4.5 f 
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4.3.2 Semiconductor Technology* 

Semiconductor technology, itself, has come a long way since 1969. 

Among the areas of semiconductor development that the Naval Air Systems Command 

has supported in the past, or plans to support are [4.5]. 

1. Materials .growth, 

2. Electron image projection, 

3. Anodic multilevel meta1ization, 

4. Pad relocation for LSI wafers, 

5. Eutectic bonding of wafers, 

6. Ion implantation, 

7. Double insulator semiconductor memory technology. 

Four companies, Texas Instruments, Motorala, Monsanto and Tyco 

Laboratories Inc., all claim they can grow the three-inch diameter wafer necessary 

for AADC. The Tyco process is particularly interesting because it permits single 

crystals to be grown in virtually any shape, size or thickness. These single~ 

crystal semiconductors do not require subsequent slicing, which can destroy half 

the stock; nor do they require polishing - another major source of semiconductor 

failures [4.6]. 

*For background information basic LSI technology see [4.28 and 4.29J. 
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The application of electron image projection and multi-level 

metalization is shown in Figure 4.6. The results of a study by Westinghouse on 

electron beam projectio~ are ShO~l in [4.7], and on multi-level flexible film 

interconnections in [4.8]. They use a selective anodization process which 

eliminates pinhole breaks in oxide layers [4.6]. The results of a study by 

Texas Instruments on two-level anodized aluminum interconnections is shown in 

[4.9]. The advantage of the anodized multi-level process is a reduction in cost 

of a factor of 5 to 10, and an increase in reliability. 

One of the most important developments in LSI semiconductor technology 

is the development of pad relocation technique to replace discretionary wiring. 

The difference in the complexity of the mask for the two techniques is shown in 

Figure 4.7. With MSI and LSI technology not all the logic circuits 

operate properly, so some method is required for interconnecting the good circuits 

together and connecting circuits to the outside pins. Instead of testing all the 

logic circuits and wiring them in the proper order as with the discretionary 

technique, the new technique, called pad "relocation, initially assumes that a 

certain percentage of the circuits will be good and in particular locations and 

connects the circuits accordingly. Later when the circuits are tested and found 

to be in different location than expected, pad relocation connections are made 

between the actual circuit locations and the assumed good circuit locations. 

b 

*Electron beam project is a technique of etching circuit on substrates using 
electron beams through a mask. Introductory information can be obtained from 
14.30 or 4.31]. 
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The pad relocation technique is illustrated in Figure 4.8. The slashes 

in the top left-hand picture show the tested good circuit in the LSI wafer. The 

circles in the ~op right-hand picture show the assumed location of the good 

circuits. The two are superimposed in the lower left-hand picture and the pad 

relocation specifications are produced by connecting the good circuits to their 

proper locations in the lower right-hand picture. The insertion of the pad 

relation layer is shown in Figure 4.6 as the second metal mask. A slightly 

different explanation is given in [4.6]. 

With this technique only the pad relocation layer varies with individual 

LSI wafers and since these are much simplier than the equivalent discretionary 

wiring interconnections and cost only $10 to $20, this technique makes the 

production of 5000 gate LSI chips much more realistic. Hughes Aircraft Company 

have produced two reports on pad relocation [4.10 and 4.11]. 

Texas Instruments has developed a method of large area wafer bonding 

using a metal with a very low melting point [4.12]. 
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4.3.3 Digital Gate Technology 

Table 4.1 is a summary of the speed, power dissipated, cost and size 

of five different types of digital logic gates. The five types are Meta1ic Oxide 

Semiconductor (MOS), Complementary Metalic Oxide Semiconductor (010S), Transistor-

Transistor Logic (TTL) - probably the most common today -, Emitter Coupled Logic 

(ECL), and Current Mode Threshold Logic (CMTL). For AADC, the gate transition 

time should be less than 5 nsec and the power dissipation should be as low as 

possible. Table 4.1 is taken from [4.15] and is 3 years out of date. 

LOGIC TYPE Tpd (ns) row Pd ( / gate) COST SIZE 

MOS 100 .5 LOW SMALL 

CMOS 5 .01 HIGH SMALL 

TTL 15 10 LOW MODERATE 

ECL .5 50 HIGH LARGE 

CMTL 20 3 MODERATE LARGE 

Table 4.1 Summary of Digital Logic Gates 
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4.3.4 Innovative Logic Techniques 

Two studies have been reported that use non-standard techniques to 

produce standard logic circuits. The first by Honeywell reports the use of LSI 

memory techniques to produce universal logic modules [4.13]. The second by RCA 

reports the use of MOS (Metal Oxide Semiconductor) LSI circuits to produce 

threshold logic circuit and suggests using these in place of standard logic 

circuits [4.14]. 

It is as a result of these other efforts that the future will see single, 

low cost, semiconductor devices capable of supporting and utilizing more than 

ten thousand bipolar gates. The existing PE (actually A&C) design, to provide 

a reference, employs about ten thousand such gates. 
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4.4 MEMORY TECHNOLOGY 

This section will explain in some more detail and give references 

to the two promising magnetic storage technologies for AADC. Again they are 

the block or~ented ferroacoustic memory for BORAM and the random access 

closed flux path thin film memory (CFM) for RAMM and TM. This section is 

a continuation of Subsection 4.1.3. The basic characteristics of the two 

technologies are repeated here for easy reference. 

Ferroacoustic technology employs the coincidence of mechanical and 

electrical energy to write magnetic domains into a permalloy film. These domail 

are subsequently interrogated by way of an acoustic strain wave. It is low cosl 

high speed, high density, low power, non-volatile and uses the NDRO technique. 

CFM uses a thin magnetic film which is analog with a magnetic plated wire and 

offers performance in random access magnetic storage heretofore believed realize 

only in semiconductor memories, but without the twin penalties of high power 

and data volatility. Table 4.2 list the salient features of both magnetic 

storage technologies 14.1J. By comparison CFM for RAMM and TM is 2 to 3D times: 

more expensive, about twice as fast, occupies as little as half the volume, useE 

5.0 times more power, and is 6 times heavier than the ferroacoustic memory for 

BORAM. The cost, density, power and weight in Table 4.2 includes electronics 

and power supply. 

4.4.1 BORAM 

The most promising approach for BORAM is the ferroacoustic memory, 

in which magnetic domains are written by the coincidence of mechanical and 

electrical energy and the domains are subsequently interrogated by means of an 

acoustic strain wave. Figure 4.9 illustrates one form of ferroacoustic 

memory block, which uses glass for a substrate. There are up to 64 magnetic 

film conductors across the one-inch wide strip. These permit up to 64 bits _f 

• word to be read or written 8imultaneousl~ Plated wire may also be used to 
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Table 4.2. CHARACTERISTICS OF FERROACOUSTIC AN' C?M MEMGRI~S 

Characteristic Ferroacoustic 

Technology Closed Flux Path 

Permalloy 

Density .5.000 bits/in3 

Power 2uwatts/blt 

Weight 7.5 Ibs 

(64Kwds x 36bits) 

Cost .1¢ to .5~/bit 

Access Time 1-2usec to a block 

Read Cycle Time 15Onsec/wd (ND~O) 

Write Cycle Time 150nsec/wd 

Interface TTL 

Volatility Non-volatile 
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Permalloy 

5,000 to 11,000 
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Non-volatile 
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Figure 4.9. A Ferroacoustic Hemory Plane Employing a Glass Substrate 



fabric'ate a ferroacoustic memory. References [4.16 and 4.17] describe 

ferroacoustic memories and refer to them as Sonican. 

In addition to these technologies, a third magnetic technology, tenta-

tive1y called Cross Tie Memory, is under investigation for possible application 

in AADC BORAM. Cross Tie Memory, developed at the Naval Ordnance Laboratory 

and presented at the last INTERMAG Conference held in Tokyo, Japan, is analogous 

to Bubble memory, except that it uses an amorphous permalloy substrate, has pro-

pogation rates on the order of 100 MHz and does not require an external field to 

maintain domain wall integrity. Further information on Cross Tie Memory can be 

obtained from 14.1, paragraph 26]. 

4.4.2 BORAM for AADC ALL Application Role 

The following except from AADC Progress Report No. 10 describes the 

possibility of using semiconductor memories* for BORAM in the ALL Application 

Role 14.1, paragraph 4-6J. 

4. Semiconductor Block Oriented Random Access Hemory 
(BORAM): In order to add to the technologies avail
able for construction of BORAMs for procedure and 
constant storage in versions of AADC for tactical and/ 
or process control applications where non-volatility 
and read mostly operation are deemed desirable, [other 
memory technologies are being investigated]. Dual 
insulator and amorphous semiconductor technologies 
appear reasonable candidates for this function. For 
both technologies, write time is far less significant 
than electrical alterability. Secondly, because these 
memories are employed in a demand paged hierarchy, fast 
read cycles can be achieved through word multiplexing. 
Table 4.3 describes the long term goals for a tactical 
semiconductor BORAM. 

5. Because of the all application nature of the new 
AADC, AADC systems will also be used in non-tactical 
environments such as software preparation centers and 
system simulation laboratores. Here, the AADC BORAM 

iBackground information on semiconductor memories can be obtained from 14.32]. 
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TAnLE 4.3 

DESIRED LONG RANCE SEMICONDUCfOR BULK STORE MEMORY CllARAcrERISTIC'S 

1. Organization - BlocKorgen1zed, read gogtly (electriCAlly alterable) 
design widl rando~ Access to the block lovel. 

2. Storage - Electrically Alterable - The data shall ~}e retained in a 
non-.ol:ltile forn and will not be modified by loas of·V\/cr. The ~eddil1g 
~rocC88 shall be non-1:iestructivc (NDRO). The memory : ~I"ay should be 
eapable of handling at least 106 writes. 

3. Vollltility/Retention Tir~ - One year 1rln:f.mum OT If'~~:,e (no power 
applied) • No lOGS of ~oory data "hall occur whon "o~"!r is turned on 
~r of f; no specici volt:lge sequencing shall bo require ',1 to tu:l1ntllin 
the data 0 tared in the f'lOmory. 

4. Module SIze - 64K yorde per ~ule - 32 bits per data word and 4 
parity bits. 

s. MOdulGr1ty - E~ch eemory ~dulo to be 8elf-su~portin~ so that tho 
ntmber of tnCltlOry '-fords Clln ba increased by the ndditi:)n of more 64K word 
m:xIulcs. It 10 ~~ccted thnt ~8 nl.«iny as 8 modules will be ht:rneGaed to 
~c a SOOK word ec~~ry syatem. 

6. Block Size - 128 or 256 uord block. 

7. Word Size - 32 data bito and 4 parity bits. 

8. Vord Organis=ntion - Word serial bit parallel. 

9. Data Readout - The ~tu)ry aYDte1!l will have tho nbil1ty to rend out a 
eomplcte block at ~um speed (continuous word atrc~). It in desirable 
'that the ree=ory orr,aoization alao permit road out of a block on a 
interrupted incre~ntal basio, 

10. Data Transfor Rate - Write - A8 dictated by volatility requirements. 
Read - 150 Dace or less on oystem baa! •• 

Multiplexing in read and write G¥)des, to achieve the above speeds. 1s 
permissible. 

11. Block Aeces8 Time - Two usee or less to the first vord in any block. 
The access time shall be def1n~d as tho ti=e interval between the inotant 
the bloc:k address i8 received and the inotant the first word In the block 
U available. 
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TABLE 4.3 (cont'd) 

12. Parity - Four parity bitn for ~Ach datn word. Parity lor,ic ohnll be 
implemented such that horizontal (vord) parity can b~ checked. Odd r>llr1ty 
ahal! bo Wled. Parity bita shall be avsilnble on (h~ out~t rcg19ter. 
Parity oha11 be checked durinr. read and vri te oparntions. 

13. Error Rate - 1 bit in 1013 bits on on~ bit banis. 

14. MrBF/Reliahl11ty - 2.) million bit (64K) modul:-: HTBF shall be 10.0nO 
houn. 

15. R&d1ation Hardness - SiRilar to that of plated ~ire me~ry eyntem. 

16. MOdul~ Oper4t1n~ Power - 2.3 million bit, 55 w~tt9 or leGs in read or 
write modes. 

17. MOdule Weight - 2.3 million bit. 6.5 pounds or IceD. 

3 18. MOdulo PnckinR Dennity - 10K bit per in ineludlng nupporting electronics 
(leas power cupplios) • 
• 
19. Cost - O.25¢/b1t in production. 

20. Environment - MIL-E-.5400 Closs 4X. 

21. Electriea1 Interference - MIL-STD-461A (on modulnr level). 

22. Input/Output - ~e~1Btet" shall be provided to rtccert a 32 bit data 
vord plua 4 bito of p:lrity. The interface shall oe 1TL compftt1ble. 
The e>:nct tl1!l1ng end bit allocation will 1>Q supplied by the !lnvy. 

23. Plleknging - System pncktl~iDg shall ba coordinated with NAVAIRSYSCOH 
packnr.ing probTcm (AIR-52022D); it is dcsir~h19 tht1.t the technology be 
cmeable to LSI type packaging in a 3-iuch d1a~eter he~~tically Hp.alod 
encloDure. 

"24. Voltages - Effort should be mAde to Rinioixe t~ftS and lav~ls of 
YOltages used in the systom; it is deB1rnbla that voltage levels be 
compatible with readily 2Vn114lble power 8upp11~8. 
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will require a fast store-back capability. 
'Present non-volitile semiconductor technologies, 
with the possible exception of MNOS on insulator 
substrates, may require a write time which 
exceeds read time by one to two orders of magnitude. 
They may not, therefore, be useful for these appli
cations. On the other hand, the benign conditions 
found in a programming center or simulation laboratory 
may obviate the need for hard non-volitility. If 
this is true, then a volatile, block oriented MOS or 
ceo memory with a backup power supply (e.g., a battery) 
could-very easily be used instead. A study may be 
undertaken next year to examine this new application 
of MOS device technology. The ferroacoustic memory 
presently under development for AADC at Microsonics/ 
Sangamo has a 1:1 read/write ratio. It will serve, 
therefore, equally well as a tactical and non-tactical 
BORAM. 

6. The responses to the Naval Air Development 
Center's RFP for semiconductor BORfu~ were received 
in late March. Contracts have been negotiated 
with Litton Guidance and Control and Univac. 

(In the above quotation, MNOS refers to Hetal N-channel Oxide Semiconductor, 

MOS refers to Metalic Oxide Semiconductor, and CCD refers to Charge Coupled 

Logics. Late March in paragraph 6 refers to March 1972). 

4.4.3 RAMM and TM 

Closed Flux Memory (CF}I) uses magnetic recording on a permalloy thin 

film strip analogous with a plated wire. The CFM is shown diagramatically in 

Figure 4.10. References 14.18, 4.19 and 4.20] describe CFM memory technology 

under the name Post-and·Film Memory. 

Three other references that are not reviewed here are [4.21, 4.22 

and 4.23]. Other references on both BORAM and RAMM can be found in [4.3]. 
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4.5 BUSSING TECHNOLOGY* 

Because of AADC's very small geometry, modularity and need for very 

wide bandwidth TDM (Time Division Multiplexing) internal busses, optical communi-

cation is being considered seriously as the internal bussing technique. The 

optical communications offers- distinct advantages over all electronic alternatives 

in the area of noise immunity and ease of connections. 

The following excerpt is taken from [4.5]: 

When compared to an all electronic bus implementation, 
electro-optics appears to have several attractive 
advantages. These advantages emerge in the areas of 
noise generation and sensitivity, as well as efficiency 
and bandwidth. In the realm of interface, too, optical 
connections may be more easily achieved since they don't 
require coaxial connectors which are cumbersome, expensive 
and notoriously unreliable. Furthmore, by taking advan
tage of the bandwidth afforded by electro-optics, signals 
may be multiplexed to result in fewer physical lines. 
This last advantage may prove key to the economic 
feasibility of an optical communication system, since 
the fiber optics required to build these buses will 
probably be the single most expensive element in such 
data links. This cost can be directly attributed to 
the physical complexity of multiported, duplex fiber 
optics. In the AADC, the multiport requirement stems 
from the need to support a floating executive in the 
event of a primary MEC failure. 

Figure 4.11 illustrates a Simplex Optical Bus of a 
type which might be used to provide communications 
from the AADC BORA}f. In this system, parallel organized 
data enters from the left and is immediately converted 
into a serial bit stream. These bits are then coded, 
using Manchester or a similar self-clocking code, in 
order to provide bit synchronization for the data 
receiver. The encoded signal is then injected into a 
fiber optic waveguide by means of a Light Emitting 
Diode. On the other end, the optical data is detected 
by a Light Detecting Diode, decoded and then converted 
back into a parallel bit stream. To reduce system 
costs, one such detector might be used to service a 
cluster of two or three Processing Elements. 

*Background information on bussing technology see [4.33]. 

4.28 



... PARALLEL LIGHT · LIGHT SERIAL TO CODER/ H--BUS/ ~ 
...... -. ~ --

Er'*~ITTING' 
.. TO SERIAL DETECilNG ~ DECODER ~ PARALLEL - -

~ ~ • • DRIVER - -• • CONVERTER DIODE DIODE CONVERTER • • - - ... ... 

Figure 4.11. The Simplex Optical Bus for AADC 
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4.6 ELECTRIC POWER SYSTEM 

The proposed electric power distribution system for the AADC is to 

replace the conventional electro-mechanical relay system with an improved power 

generation and semiconductor control system. The new system, known as Solid 

State Electric L~gic (SOSTEL), will greatly improve the control of electrical 

power, reduce power consumption, reduce wiring and reduce weight. The reduction 

in power consumption is the result of leaving some equipment on standby power 

most of the time and using the very fast switching time of semiconductor logic 

to apply full power when required. 

The current status of Solid State Electric Logic power distribution 

system is described in [4.24 or enclosure 3 to AADC Progress Report No.9] 

and in the Proceeding of SOSTEL Symposium in April 1971 [4.25]. 

This concludes the presentation of the hardware technology. Many of 

the diagrams in this chapter are taken from a slide presentation by Ron Entner 

[4.26]. The author would welcome any suggested improvements in the material 

in this chapter. 
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Glossory of Terms for PE 

A&C - Arithmetic and Control Unit: same as PEe 

ALU - Arithmetic Logic Unit: the unit that performs the actual addition, 
subtraction or logic function on the operands. A subcomponent of 
the AU. (Raytheon does not use "ALU" but uses HAU" for both the AU 
and the ALU.) 

AP - Arithmetic Processing Execution Unit: executes arithmetic instructions 
and includes the AU, TVD, deferral unit and programmable control unit. 

Ap - Accumulator Stack Pointer: see Section 5.2.5. 

APL - Iverson's APL language - contain many very powerful operations 
especially for vector, matrix and array manipulations. 

APQ - Arithmetic Processor Queue: 16 32-bit registers for stacking instructions 
between PMU and AP. 

AP - Scratchpad 16 40-bit deferral registers or accomulators in the AP. 

AU - Arithmetic Unit: the heart of the AP and is composed of PAU, SAU, 
APQ, AP Scratchpad, six registers and control and transfer circuitry. 

Aw - Working Accumulator. 

CPU - Central Processing Unit. 

Ep External Device Stack Pointer: see Section 5.2.5. 

FAU - Fetch Arithmetic Unit or PMU arithmetic Unit: a simplified arithmetic 

HOL 

LSI 

MIPS 

PAU 

PC 

PE 

PF 

unit to handle address calculations, etc. 

- Higher Order Language such as extended CHS-2 or extended FORTRAN. 

- Large Scale Integration technology. 

- Millions of instructions per second. 

- Primary Arithmetic Unit: actually should be called the PALU for 
Primary Arithmetic Logic Unit. 

- Parenthesis Control - instr.uction action is delayed until all data is 
available. 

- Processing Element: the main serial processor of AADC, usually 
called the cpu. Now called DPE for Data Processing Element. 

- Parenthesis Field specified beginning of parenthesis control (=1111) 
or the number of parenthesis to be closed. 
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PMU - Program Management Instruction Handling Unit: Instruction fetching 
and control unit of PEe 

PMUSP - The PMUscratch pad: 8 index registers plus 4 stack pointers. 

Pp - Program Counter Pointer: See Section 5.2.5. 

SAU - Secondary Arithmetic Unit: actually should be called SALU; a 
simplified version of the PAU that is used in 4-bit-at-a-time multiply. 

TM - Task Memory: 4K, 32 bit 150 nsec memory. 

TVD - A comparison test valid mechanism for setting the sign bit of the 
accumulator depending on the result of a comparison operation. 

DPE - Data Processing Element: new name for the Processing Element to 
distinguish it from the Signal Processing Element (Chapter 7). 
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CHAPTER 5 

DATA PROCESSING ELEMENT 

5.1 INTRODUCTION AND SUMMARY 

The AADC Processing Element (PE)*is a very fast, very powerful, very 

small and very inexpensive central processing unit (CPU) designed for large 

scale computing systems. It is one of the basic AADC modules and is designed 

to handle all the serial processing requirements of AADC. It is capable of 

executing 2.5 to 4 million instructions per second (MIPS), with effective 

processing rate~ of 8 to 10 MIPS. Its power is the result of the hardware 

implementation of a general deferral mechanism and numerous powerful operations, 

especially the polynomial, matrix and vector operations. Most importantly, this 

fast powerful processor is packaged in an eight inch cube (0.5 cubic feet) and 

has an estimated production cost of $600. (As a comparison the CPU on the IB~l 

360 model 67 - a third generation large scale computer - executes about 0.3 to 

0.5 MIPS, does not have the same powerful instructions, occupies about 125 cubic 

feet and costs $698,000.) This section will present an overview of the PE features, 

while later sections will include a more detailed presentation. 

In order to obtain the desired speed it was necessary to overlap the 

fetching of instructions and their executions. The instruction fetching operates 

at 2.5 MIPS including an indexing operation and 3.3 MIPS without indexing. Since 

the PE is a Task Memory oriented element, the need for indexing is greatly reduced 

over previous computer designs, and the latter speed is more appropriate. These 

speeds are based on a memory cycle time of 150 nanoseconds (nsec). On the other 

hand, the instruction execution takes 100 nsec for short instructions (equivalent 

to Adds) and 800 nsec for fixed-point multiplications. With an assumed ratio 

*Now called DPE for Data Processing Element to distinguish it from the SPE - Signal 
Processing Element - described in Chapter 7. PE and DPE are used interchangeably. 
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of 7 short instructions to 3 multiplications, the instruction execution rate of 

3.3 MIPS is also possible. Since the proposed floating point multiplications 

are faster than the fixed point, the instruction execution rate with floating 

point operations is 4.0 MIPS. 

The overlapping of instruction fetching and program execution is 

obtained by dividing the PE into a Program Management Instruction Handling Unit 

(PMU) and an Arithmetic Processing Execution Unit (AP). The two subsystems 

operate independently and asynchronously permitting the PMU to fetch instructions 

well ahead of their execution, and while the AP is processing previously fetched 

instructions. This is generally referred to as "look-ahead," where instructions 

are prefetched along the most probable branch path. If the results of a branch 

instruction are not along the expected path, then the stockpile of instructions 

is discarded and instruction fetching is initiated along the other path. To 

hold the stockpile of instructions, a sixteen~register queue connects the PMU 

with the AP. 

The power of the AADC PE is demonstrated by the fact that it has many 

very powerful instructions, many of which are not even available in higher order 

languages and certainly not implemented in hardware on a general purpose 

computer. For example, the PE has the following features implemented in hard-

ware: 

1. All 16 possible boolean functions, 

2. A recursive subroutine call capability, 

3. A general deferral mechanism that executes arithmetic, 

boolean and conditional expressions directly without 

reordering the operations or using excessive storing 

and fetching of intermediate results, 
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4. A rapid polynomial calculation capability for 

trigonometric, logorithmic, hyperbolic and 

exp~nential functions (all coefficients are 

loaded by a block transfer.), 

5. Vector/matrix block handling mechanism for 15-

component vectors and small 3 x 4 matrices. 

The particular significant of these features to the programmer is 

that t (1) the general deferral mechanism allows the mixing of arithmetic, 

boolean and conditional expressions in a single statement - providing the 

accompanying higher order language is upgraded -, and (2) the vector/matrix 

mechanism allows operations such as the vector dot product and the matrix 

product to be specified in two machine language statements. In both these 

cases the higher order language will have to be upgraded beyond FORTRAN or 

CMS-2 before that language can use these powerful machine language (or hard-

ware) features. 

As well as being very fast and powerful, the PE is very small and 

inexpensive. A rough estimate of the PE logic is: 

1. The AP (arithmetic processor) 6,000 gates, 

2. Basic PMU (control unit) 1,000 gates, 

3. Queue between PMU and AP 1,000 gates, 

4. Parentheses control and vector/ 
matrix mechanism 

5. Instruction decoder ana controller 

Total 

5.3 

1,000 gates, 

1,000 gates, 

10,000 gates. 



These 10,000 gates are placed on two 3-inch diameter LSI chips and housed in an 

8-inch cube having a total volume of 0.5 cubic feet. It is also estimated that 

the production cost of the PE will be about $600. Rather unbelievable? 

If this design is achievable at this cost, or even at 100 times this 

cost, then it is going to be the biggest breakthrough in computer hardware 

development since the transistor. In order to achieve the maximum benefit from 

this new development, many of the programming aids, such as very powerful 

operators and extensive debugging features that were previously too expensive to 

implement will now have to be included in the design. Otherwise the AADC PE will 

be almost immediately replaced with another computer containing these extra 

programming aids. 

This section would not be complete without some comment on the feasibility 

and current status of the PEe At present LSI 1-1/2-inch diameter chips with 

1000 to 1500 gates are being produced at a cost of about $1000 each. The set-up 

costs, including drawing all the circuits, is about $50,000 for each different 

type of chip. (Ref. Dr. Ray N. Nilsen, University of California, Los Angeles). 

Also the CPU for the SUE computer - a small scale microprogrammed computer - is 

built on two LSI chips and costs less than $1000. 

Although this section is written as though the PE actually exists, it 

must be realized that it is based on design specifications only and that even 

these are still under development. The information in this section is based 

almost exclusively on Raytheon's report [5.1]. A later 1972 report has been 

produced but is not yet available at NPS. Section 5.8 describes. some of the 

latest PE developments as reported at the January 1973 AADC Symposium [5.4J. 
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5.2 FUNDAMENTAL SYSTEM CHARACTERISTICS 

5.2.1 Instruction Speed 

In order to obtain more than 2 MIPS with current technology it is not 

possible to fetch instructions and execute them sequentially, but instead, it 

is necessary to overlap these two operations. Thus the PMU for fetching instruc

tions and the AP for executing them operate autonomously and asynchonously. The 

average time to execute instructions depends on the longer of the average time 

to fetch the instructions and the average time to execute them, assuming the 

execution (or AF) never has to wait for instructions. 

Assuming a 150 nsec memory cycle time for the task memory, the time 

for the PMU to fetch an instruction and its operand is (approximately): 

Instruction fetch 

Indexing operation 

Operand fetch 

Total 

150 nsec 

100 nsec 

150 nsec 

400 nsec 

Thus the PMU operates at 2.5 MIPS with indexing and 3.3 }lIPS without indexing. 

Since the PE is a task memory oriented processor with a relatively small 

4 K-word memory, the latter speed is more realistic. 

To calculate the execution speed a ratio of 7 short instructions 

(equivalent to adds) to 3 long instructions (defined as multiplies) is assumed. 

This is worse than the 8 to 2 ratio observed in present Navy avionics programs. 

In order to operate at 2.5 MIPS reqoires the short instructions take 125 nsec 

while the long ones take 1000 nsec. To operate at 3.3 MIPS requires that the 

short instruction take 100 nsec and the long one take less than 800 nsec. 

Raytheon believes that these speeds are realistic for current technology. 

5.5 



Although the PMU and AP operate autonomously and asynchronously and 

both operate at 3.3 MIPS) this is no guarantee that they will produce a through-

put of 3.3 MIPS on a given problem. Since the AP queue is limited to 16 

instructions) any time there are twelve short instructions in a sequence or 

four long instructions in a sequence) then the AP has to wait because the APQ 

is empty or the PMU has to wait because the queue is full t respectively (assuming 

APQ was initially half full under steady state conditions). In general whenever 

the short-term mix ratio is not 7 to 3, then either the PMU or AP has to wait 

and the throughput decreases. 

As will be discussed in the next section, a feature called the 

Parenthesis Control, will reduce the number of store and fetch operations by 

SO percent. According to Raytheon about 50 percent of all instructions in the 

analyzed Navy programs involved the storing and fetching of intermediate results. 

The reducing of this non-functional overhead means that AADC programs will be 

25 percent shorter and thereby the effective throughput will be 4.4 MIPS 

100 (-ys x 3.3). Furthermore, since many of the PE instructions are equivalent to 

macros on existing computers, the effective throughput will probably be doubled 

again to 8 to 10 MIPS when compared to conventional third generation computers. 

This is 15 to 30 times faster than an IBM 360/65. 

5.2.2 Parenthesis Control 

Parenthesis Control (PC) is a PE feature which enhances the relation-

ship between the problem specificat~on in a Higher Order Language and its 

execution on the PEe Parenthesis Control was originally developed to handle 

the parenthesis portion of algebraic equations, but has now been expanded to 

handle conditional and logical expressions. In essence, it automatically defers 
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program actions until such time as sufficient information (or data) is available 

to complete them. This obviates the need for compiler rearrangement of the 

input stream and eliminates many redundant stores and fetches of intermediate 

results - thus reducing the complexity of the compiler and increasing the 

executing speed of the generated code. 

The basic principle of the Parenthesis Control is that parenthesis are 

given equal weight with op codes (functions) and operands; i.e., all affect the 

order of execution. By deferring action until the data is available, PC reduces 

the number of single address instructions required to perform an algebraic task 

to an absolute minimum (one instruction per operand). 

The order of execution follows the normal algebraic procedure being 

read left to right with two exceptions: 

1. Multiply/divide's are performed before add/subtracts, 

2. Parenthesis take precedence over other operations, 

i.e. they say, "Don't do this now, execute what is 

inside parenthesis and then corne back and do this.1I 

In practice, each of these exceptions is classified as a "deferred action ll 

when it arises and are handled in the same way by the computer. 

Since the computer operates in the left to right sequential preference 

instead of the multiply-add preference, the expression A + BC must be presented 

the computer as A + (BC) to distinguish it from (A + B)C. A standard compiler, 

when presented with the first expres~ion above, would invert the order of 

execution. However, using Parenthesis Control, the computer would handle the 

terms in the correct sequence by the following procedure: 
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1. load the value of A 

2. defer the addition until the product of Band C 

is formed, then perform the deferred addition. 

This is the procedure used in the PE but, before the actual implementation can 

be discussed, it is necessary to describe the PE instruction format. 

5.2.2.1 Instruction Formats 

The word size chosen for this machine is 32 bits. The basic format 

for the majority of computer instructions has been designated as Format 1,* below. 

FORMAT I 

AP ADDRESSABLE 

OP CODE PF AMF ADDRESS 
o 1 23456 7 8 9 101] 1213141.5 16171819202122232425262728293031 

-in this format, bits 0-7 are termed the OP-CODE. They specify the 

type of operation to be performed. The OP-CODE is specified in hexadecimal 

notation. 

-Bits 8-11 are termed the parenthesis field~* All instructions using 

Format 1 are subject to Parenthetical Control. 

-Bits 12-15 represent the address modification field (AMF). Specifically, 

bit 12, when set specifies that indirect addressing is to be performed to obtain 

the effective address of the operand. Bits 13-15 specify a PMU Scratch Pad 

register for the automatic indexing operation. 

*In 15.1] an R field was specified but it has been eliminated because the 
ADDRESS field had to be increased to 16 bits. 

** Now only bits 9-11,with bit 8 being the data precision bit. 



-Bits 16-31 represent the primary address. The 16 bits in this field 

are capable of directly referencing 64K words in tIle virtual Task Memory. The 

contents of this field, as modified by indexing and indirect addressing, become 

the effective address of the operand. 

The Parenthesis Field (PF) in the above format contains four bits. One 

combination of these bits (0000) specifies no parenthetical action, i.e., the 

specified operation is performed immediately on the data. Another combination 

(1111) specifies that this instruction begins a parenthesis, i.e., that the 

operation is to be deferred. In no case is it necessary to begin more than one 
, 

parenthesis, but the user may write more than one. 

The remaining 14 hexadecimal combinations of PF specify the number of 

parentheses to be closed, i.e., how many deferred operations can be completed at 

this time. Thus, a maximum of 14 parentheses can be closed at any time, and a 

total of 15 accumulators can be involved with a single instruction. 

The PE contains a scratchpad memory containing 16 accumulator locations, 

each 40 bits long: 32 bits for data and 8 bits to hold the op code for deferred 

operations.* A four-bit address register is also used to specify which accumulntor 

is the current working accumulator. [The current working accumulator is someti~es 

designated as Aw in examples given.] 

Using this structure, the parenthesis field code can be used to 

sequence instructions as follows: 

1. "No parenthesis code (PF = 0000)" - operation 

specified by the _instruction word is performed 

immediately. 

* Now 41 bits with the extra bit being for data precision bit. 
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2. "Begin Parenthesis (PF = 1111)" - The operand 

is loaded into the next sequentially numbered 

accumulator and the operation specified by the 

op code is not performed, but the full op code 

(8 bits) is also stored in this accumulator. 

In addition, the contents of the old accumulator 

is preserved for later use. 

3. "End N parentheses (PF = N)" - the specified 

instruction is performed with the present accumu

lator, then the most recent deferred operation 

(OP CODE stored in the working accumulator) is 

performed with the first answer as one operand and 

the most recently stored accumulator as the other. 

The process is repeated N times. 

5.2.2.2 Comparing PC With Other Methods 

Consider an elementary expression: X = AB + CD + EF executed on a 

single address machine with a single accumulator and with mUltiple accumulator. 

The best possible compiler could not produce code better than shown in the left 

two columns of Table 5.1. 
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SINGLE ACCUMULATOR MULTIPLE ACCill1ULATOR PARENTHESIS CONTROL 

Load A Load A in Acc I Load A 

Multiply B Multiply B in Acc I Multiply B 

Store AB Load C in Acc 2 Add (C 

Load C Multiply D in Acc 2 Multiply D) 

Multiply D Add 2 to 1 Add (E 

Add AB Load E in Acc 2 Multiply F) 

Store AB + CD Multiply F in Acc 2 Store in X 

Load E Add 2 to 1 

Multiply F Store in X 
, 

Add AB + CD 

Store in X 

Table 5.1 Instructions for X == AB + CD + EF 

The mUltiple accumulator computer saves two store operations and two accesses to 

main memory by performing two register-to-register operations instead of two 

memory-to-register operations. Thus it saves 2 instructions and four memory 

cycles. 

With Parenthesis Control the number of instructions is reduced by two 

more to one per operand - the minimum possible. The program would look like the 

following, where Aw, Al and A2 are the working, the first and the second accumu

lator contents, respectively: 

Load A Aw = A = A 
I 

Multiply B Aw = A = AB 
I 

Add (C Aw = A~= C[Add Held], Al = AB 

Multiply D) Aw = A2 = CD[Add Held], Al = AB, 

then Aw = A = AB + CD 1 
Add (E Aw = A2 = E[Add Held], Al = AB + CD 

Multiply F) Aw = A2 = EF[Add Held], Al = AB + CD, 

then Aw = Al = AB + CD + EF 

Store X 
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In this case the mUltiply D and the multiply F both cause two arithmetic 

operations to be performed. Thus the program to calculate this expression takes 

only 7 instructions with PC compared to 9 with multiple accumulators and 11 

instructions with a single accumulator and no PC - a saving in program size of 

22 and 36 percent t respectively. Although the load on the PMU will be reduced 

by these percentages, the reduction is the total execution time will be minimal 

because of the unfavorable mix ratio. The execution times shown in Figure 5.1 

shows a saving of only 5 percent (assuming the loading of a register and an add 

both take 100 nsec and a multiply takes 800 nsee). 

s· 1 l.ng e p MU L 1M, s • L , M I A • S • L , M • A • S ~ 
Accum- AP t.1.. M I S I L I M IAsSILI M I As S I 3.7 nsec 
ulator • 
Multiple PMU L • M, L "'- H --'- A t L • M • A • S I 

Aceum- AP aJ..-.J M I L, M ,AI L. M I AI s. 3.5 nsec 
latop I 

With PC PHU L • 1-1 , A , M , A I M , S r 

AP t1-. , M • L. M .As L. M !I~ 3.5 nsee 

Figure 5.1 Times for X = AB + CD + EF 

As a further example, a program for the expression 

A(BC + DEF + G(HI + JK) + L) 

is illustrated in Table 5.2. Note that the final result is in the working 

register Al while registers A2 through AS are left with intermediate 

results. 
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S 
T INSTRUCTION 
E 
P 

1 LOAD A 

2 MUL (B 

3 MUL C 

4 ADD (D 

5 MUL E 

6 MUL F) 

7 ADD (G 

8 MUL (H 

9 MUL I 

10 ADD (J 

11 MUL K))) 

12 ADD L) 

PF Aw AS EXT 

000 Al 

111 A2 

000 A2 J 
III i A3 I 

i 

I I I 

000 A3 I, I 
I 

I 001 ! A2 I 
I 

III A3 i 
I 
I 

III A4 i 

I 
000 A4 ! 

I i 

I 

III AS J ADD ! 
I 
I 

! 
all A2 JK ADD 

~------

001 ~ JK ADD 

TABLE 5.2 

PROGRAM AND REGISTER CONTENTS FOR 
A(BC + (DEF) + (G(H I + (JK») + L) 

A4 EXT A3 EXT ~2 

, 

i 
J 

I B 

! Be 
I 
I 

D j ADD BC 

1 DE ADD BC 

I DEF ADD BC + (DEF) 
: ; 

I G ADD BC + (DEF) 
j 

H MUL i G 
I 

ADD BC + (DEF) 
I 

I 

HI MDL I G 
ADD I BC + (DEF) I , 

MUL I (DEF) HI G ADD Be + 
I 

HI + (JK) NUL G(HI+JK) ADD Be + (DEF) + 
G(HI + JK) 

------ ----. -- ~- -----

HI + (JK) }fUL G(HI+(JK» ADD (BC + (DEF) + 
(G(HI + (JK))+L 

NOTE: Although only Add and Hultiply operations are show'Tl, the process 
can be used with any combination of arithmetic operations, such 
as addition, subtraction, multiplication, and division. 
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EXT Al 

A 

MUL A 

MUL A 

}IDL A 

MULl A 

HUL A 

l'-fUL A 

~fUL A 
I 

HUL A I 
HUL A 

}fUL A 

HUL A(BC + (DEF) + 
(G (HI + _(JK1)) + L) i , 



Before continuing,one problem with PC that has been completely ignored 

by Raytheon will be discussed. Although the restriction of a single left 

parenthesis is not a limitation, it does generate some problems in interpreting 

user written expressions. For example the expression 

«(AX + B)C + D)E + F)G 

written by a user would have to be presented to the computer as 

AX + BC + DE + FG 

for straight forward execution from left to right. Here is the problem: The 

computer now has'to execute this expression ignoring the normal precedence of 

multiplication over addition - which is the reason for the user inserting the 

brackets. The dilemma is that if the computer executes the expression left to 

right giving precedence to parentheses only, then the users cannot use the normal 

algebraic precedences and he must insert the necessary brackets. On the other 

hand, if the users are allowed to write expressions with the normal algebraic 

precedence, then a scanner - as part of the compiler - must insert or delete 

parentheses as required. Another example may help clarify this delemma. 

Consider the example A + B x C t D where t represents exponentiation 

(which is very conspicuously ignored in Raytheon's report). If the user presents 

the expression to the computer in the above fashion assuming the computer knows 

about algebraic precedences and if there is no scanner, the expression will be 

executed as «A + B) x C) t D instead of A + (B x (C t D». If there is a 

scanner it can insert the necessary parentheses; otherwise the user must know the 

computer executes left to right and insert the necessary parentheses himself. On 

the other hand, if the user wanted the expression executed as «A + B) x C) t D, 

he would probably insert the parentheses as shown and a scanner would have to 
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remove them for presentation to the computer. Alternately) the user must know 

about the right to left rule and must never insert two left parentheses together. 

This decision is actually one of how sophisticated are the users expected to be; 

for the unsophisticated user the normal algebraic precedence is always better) 

but for the sophisticated user the left to right rule is much more general and 

explicit. Raytheon did not make this decision and it is still undecided. 

The same PC mechanism for evaluating algebraic expressions is also used 

to evaluate Boolean expressions. In order to minimize the number of instructions 

in evaluating a Boolean expression, all sixteen possible functions of two variables 

are implemented (See section 5.6.2.4 for a listing). Boolean operators have short 

execution times (similar to add) and this further reduces the total execution ti8e 

for evaluating Boolean expressions. Examples of evaluating Boolean expressions 

are included in the next section. 
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5.2.3 CombIning Arithmetic, Boolean and Conditional Expressions 

The Parenthesis Control concept described in the previous section can 

also be used to handle Boolean and conditional expressions in an HOL. First the 

comparison process in a conditional expression will be presented before considering 

a combined example. 

The comparison process is broken into two separate parts or instruction 

elements - COMPARE instructions and TRANSFER instructions. 

1. The COMPARE instructions are AP addressable types, 

similar to arithmetic instructions. Each one 

specifies an operand and a condition. The operand 

is compared with the contents of the accumulator 

for the specified condition. If the test is valid, 

a special monitoring u~it, called the Test Valid 

mechanism (TVD) , sets the sign bit of the accumu

lator positive, otherwise it is set negative. (The 

comparison operation can be any of the six possible 

standard comparisons.) 

2. The TRANSFER instruction observes the status of the 

sign bit of the accumulator. If the sign bit agrees 

with the condition specified in the TRANSFER instruction 

Op Code, the P}ru is interrupted and the branch is 

effected. (APQ is also cleared.) Otherwise, normal 

program sequencing continues. 

5.15 



Thus the PMU continues fetching instructions along the most probable branch path 

and filling the APQ while waiting for the results of the test part. If the 

branch is required, the PMU is interrupted, the APQ is cleared and the PMU begins 

fetching instructions along the other path. This look-ahead along the most 

probable path allows the programmer and the compiler to generate very efficient 

loops, since the execution normally transfers within a loop several times before 

executing a single transfer out of the loop. 

Notice that this method of mechanizing comparison operations requires 

two instructions for each comparison. This is the price for the look-ahead 

capability. 

To execute the HOL statement 

IF A > B, GO TO M, ELSE, CONTINUE. 

where the commas are simply separators, the PE program would be: 

Load A 

CGR B 

T~ M 

A i~ placed in the accumulator 

B is compared with A. If A is greater than B, then

the sign bit of the accumulator is set positive, 

otherwise it is set negative. 

Transfer on accumulator positive (i.e. the test 

was valid) to M, otherwise continue processing. 

An example of a more complex expression using PC is: 

IF A > B AND (C # (DE - F)), GO TO M, ELSE, CONTINUE. 

for which the program is shown· in Table 5.3. 
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.STEP .INSTRUCTION PF Aw I 
I 

Al A2 A) 

.1 Load A 0000 Al A 

2 CGR B 0000 Al A > B 

3 AND (C 1111 A2 A > B C AND 

4 CNE (D 1111 A3 A > B C AND D CNE 

5 MUL E 0000 A3 A > B C AND DE CNE 

6. SUB F)) 0010 Al .A > B AND (C :f C :f (DE - F)AND DE - F 

(DE - F) 
, 

7 TRP M 0000 Al 

Table 5.3 Boolean and Conditional Program and Register Contents 

In step 2, Al is set by the condition A > B and thus the sign bit of Al is positive 

or negative. The remainder of the program should be self explanatory. It is 

recommended that the reader try an example such as 

IF A > B AND (C > D) OR (E > F), GO TO M, ELSE, CONTINUE. 

Note the AND has precedence over the OR and thus extra parentheses are not necessary. 

Also notice that all these examples contain sufficient parentheses so that there 

is no ambiguity over whether the arithmetic, logical or conditional operators have 

the highest precedence. (It would make sense to have the arithmetic operators with 

the highest precedence, conditional operators next and logical operators with the 

lowest; but, on the other hand, the straight left to right precedence is the 

simp1iest. Apparently no decision has yet been made.) 

The major advantages of Parenthesis Control are: 

1. It ensures the minimum number of instructions by 

eliminating many needless load and store orders. 
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2. It reduces the complexity of the compiler by 

eliminating the need to rearrange terms in an 

expression. 

3. Program sequence remain in the original algebraic 

order thereby producing a more understandable listing 

and reducing the side-effect errors. NO REARRANGEMENT 

OF TERMS IS EVER NECESSARY, unless all 16 accumulators 

are full. 

4. It allows the mixing of algebraic, Boolean and 

conditional expressions in the same statement. 

5.2.4 Deferred Store Instruction 

To remain consistant with the "as written" or left-to-right program 

execution as defined above, and to allow the standard assignment statements like 

A = B + C instead of the more accurate B + C ~ A, it is necessary to define 

a deferred store operation. The expression A = B + C becomes A(= B + C) and 

is programmed as: 

DST A 

Load B 

Add C) 

A (actually the address of A) is stored in 

a deferral register or accumulator, DST is held. 

Add C and perform deferred operation DST. 

The deferred store operation has the advantage of allowing assignment statements 

within assignment statements, which can often reduce the recompu~ing of sub

expression and make a more readable program. This ability has even been left 

out of most HOL in the past. 
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5.2.5 Stacking Mechanism 

The design of the PE includes a set of Task Memory pointers which can 

be used for a variety of reasons including a hardware stack. There are four 

pointers as part of the 12 scratch pad registers in the PMU (the other eight are 

for index registers). They are defined as, 

1. External Device Pointer (Ep) 

2. Program Counter Pointer (Pp) 

3. Accumulator Pointer (Ap) 

4. Unspecified. 

In addition to instructions to load and store pointers, two instructions 

are implemented for manipulating the stack: 

1. Advance Accumulator Stack (AAST) causes the contents of 

the accumulator to be stored in memory location specified 

by value in Ap. The value of Ap is incremented. The next 

AAST will cause the accumulator to be stored in the next 

sequential memory location. 

2. Return from Accumulator Stack (RAST) causes the contents 

of memory location specified by the decremented value of 

Ap to be loaded in the accumulator. The decremented value 

of Ap is placed in the Ap register. 

The PC mechanism incorporates the ability to generate an AAST instruction whene\Ter 

the number of right parentheses exceed the number of left parentheses. Thus the 

expression A + B) will be implemented by: Load A 

Add B) 

which causes the sum of A and B to be stored automatically in the accumulator stack 

in Task Memory by generating in interrupt ~\ST instruction. This saves an extra 

. store instruction. 
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Similarily the APST and RPST instructions cause . program branching 

by advancing the program stack (i.e., placing contents of the program counter into 

the memory location specified by Pp and incrementing Pp) and returning from the 

program stack (i.e., placing the contents of the memory location specified by the 

decemented value of Pp into the program counter), respectively. The program pointer 

Pp, is used to stack previous values of the program counter when branching by using 

the APST. Thus subroutine returns are easily facilitated and programs may be 

nested, or called recursively, without danger. (Note AAST and APST are implemented 

as a single instruction with a different PMU register specified in a 4 bit field 

in the instruction.) 

The external stack is used to facilitate certain I/O word-at-a-time 

transfers. 

5.2.6 Two-Address Instructions 

Although two and three address instructions were called for in the 

original RFP (Request For Proposal) and two address instructions are described 

by Raytheon, they are not considered seriously for the PEe The advantage of two 

address instructions is that both a load and an arithmetic operation or an arith

metic and a store operation can be specified in a single instruction; but the 

disadvantage is that with a 32 bit word it is not possible to maintain PC and 

still refer to any location in Task Memory with both the primary and secondary 

operand addresses. Being able to refer to only part of memory with the secondary 

address is a terrible programming restriction. Therefore, according to Raytheon, 

single address instructions with PC are superior to two address instructions. 
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5.2.7 List Linkages-Search Techniques 

Since many avionics problems involve a scattered set of linked operands, 

an easily altered linkage mechanism is implemented in the PEe The mechanism 

allows indirect addressing with the primary address as the beginning of a table 

and the secondary address as some location in the table, as well as, addressing 

of tree structured data (such as used by Burrough for structuring arrays on the 

B5500). The list linkage mechanism can be used with the stacking mechanism and 

with comparison instructions for searching lists. For further details on the 

operation of the list linkage mechanism, refer to [5.1, p 2-27 to 2-30]. 

5.2.8 Self-Defining Subroutines 

With the aid of the APQ, it is possible to define self-modifying sub

routines that have some instructions modified while in the APQ while others remain 

fixed. By loading the queue, specifying the number of words to be modified and 

controlling the positioning of the queue address pointer, it is possible to execute 

a routine such as A(B + C(D + E)) ~ F for several sets of operands without 

reloading the instructions. If the operands are sequentially ordered in the Task 

Memory then they can be retrieved by simple indexing; otherwise they may be 

retrieved using the list linkage mechanism described previously. 

5.2.9 Polynomial Computations 

Many mathematical functions are, or can be, expressed in terms of po~~er 

series or polynomials. Some of these functions, including sine, cosine and 

tangent, logarithm and antilogorithm, and their associated power 

series are shown in Table 5.4. 

Upon close observation all functions listed. have the general form: 
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2 
Y = Ao + Al x + A2x + ••• 

n k 
L t\x, 

k=O 

which can be written as: 

Y = A + x(AI + x(A2 + ... x(A 2 + x(A 1 + xA ) ••• )), 
- 0 n- n- n 

which would require n deferral registers to be computed, or as 

Y = A x + A IX + A 2x ••• + A2x + Alx + A • n n- n- 0 

in which it can be executed directly inleft-to-right" order as a series of 

multiply-then-add operations. 
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POWER SERIES: 

TABLE 5.4 

FUNCTION POHER SERIES 

(Sheet 1 of 2) 

379 
x x x 2 SIN x = 0 + Ix + 0 - 3! + 0 + 7! + 0 + 9! + x < 00 

COS x 

TAN x 

SIN-1 x 

-1 
tan x 

SINh x 

COSh x 

TANh x 

SINh-1 x 

3 5 7 62x 9 
O+x+ 0 +~+~+ 0 + 17x + o + + = 3 15 315 2835 

3 3xS 1-3-5 7 
o + x + o + ~ + + 0 + x = o + 2-4-5 - - + 6 2-4·6 7 

= n/2 - -1 . -1 Ii 2 sin x or = Sln - x 

1 3 
5 9 

o + x + 0 + 0 + ~ + 0 
x = - -::-x --+ x 

3 9 

3 5 7 9 
x x x x = x + 3! + 5! + 7! + 9! + 

2 4 6 8 
x x x x 

= 1 + 2! + 4! + 6! + 8! + 

132 5 17 7 62 9 
= x--x +-x - 315 x + 2835 x 3 15 

1 3 5 1-3-5 7 
2 1-3x ~+ < 1 = x - - x + x 

6 2-4-5 2-4-6 7 

= log (2x) + _1_-2 
2-2x 

1-3 + 1-3-5 

2-4-4x 4 Z-4-6-6x6 
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2 x < 00 

2 2 ... x < Tr /4 

1-3-5-7 9 
o + x - - + 2-4-6-8 9 

2 
1 < 

2 2 
x < 1T /4 

x > 1 

2 
x < 1 



POWER SERIES (Cont): 

-1 
Tanh x 

TABLE 5.4 

FUNCTION POWER SERIES 

(Sheet 2 of 2) 

x > 1 

log x e 
= 0 + (x - 1) -! (x - 1)2 + ! (x - 1)3 

2 3 . . . o < x < 2 

x where In = log 
e 

3 5 x -x x x 
e - e = 2 (x + 3! + 5! + ... ) = 2 sinh x 

ix+ -ix x2 x4 x6 
e e = 2 (1 - 2! + 4! - 6! + ... ) where i = 1-1 

sin x = ~ (eix -ix) 
2i - e sinh 

cos x cosh 
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Therefore, a hardwired polynomial instruction can be implemented by 

multiplying by x and adding each coefficient into a partial answer iteratively 

until the final answer is obtained. 

Only one register is required. This instruction can compute any of 

the following functions: 

1. Simple trigonometric functions, 

2. Arc (or inverse) of simple trigonometic functions, 

3. Hyperbolic functions, 

4. Arc of hyperbolic functions, 

5. Logorithms, 

6. Antilogorithms, and 

7. Natural exponential. 

These functions are implemented by a Format 1 instruction called PLY 

for Polynomial of Accumulator, in which the R fielcf'specifies the number of 

terms in the polynomial to obtain the desired accuracy and the address field 

specifies the first location for the sequentially located coefficients fot' the 

particular function. The operands are block loaded into the APQ, thus freeing 

the P}lli for other processing. 

If the amount of TM used to store the coefficients is too large, it 

may be possible to take advantage of the fact that the hyperbolic functions use 

the same coefficients as the other trignometry functions except for a sign 

change on some coefficients. Also it would be possible to calculate all the 

trigonometric and hyperbolic functions in terms of the exponential series but 

at reduced speed. 

*Eliminated in later design [5.4]. 
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If the PMU cannot be used for other processing, then there is little 

advantage in this type of mechanism because the fetching of operands is slower 

than the multiply-add sequence. However, it may be possible to perform I/O or 

to load other tasks into the Task Memory during this liberated fetch time, 

thereby increasing the efficiency and justifying the hardwired polynomial 

computation. 

5.2.10 Vector/Block Modes* 

The original PE specifications required that PE be microprogrammed to 

act as backup to the matrix and array processor should the need arise, but 

Raytheon suggests that, with little hardware cost, it is possible to make the 

PE hardware handle all common vector and matrix processes. This section presents 

a fully integrated scheme for solving all common vector and matrix problems with 

a simple mechanism and maximum efficiency. The operations which are performed 

by the mechanism on limited sized vectors and matrices include: 

1. Vector or matrix add or subtract, 

2. Vector dot product and vector magnetude, 

3. Matrix multiply, 

4. Calculate determinants and cofactors, 

5. Invert a matrix and solve simultaneous equations, and 

6. Transpose a matrix. 

Probably the most significant feature of this mechanism is that any of 

the operations can be specified by only two machine language instructions, thus 

freeing the PMU for other activities. This is better than most HOL since matrix 

operations usually must be specified by element-by-ele~ent manipulations in one 

or two loops. (With these powerful machine language instructions, it is mandatory 

*This entire subsection is based on [5.1] and does not take into' account the 16 bit 
ADDRESS field or the new 256-word array capability [5.3 and 5.4]. 
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that very powe!ful matrix and vector manipulation features be add~d to the HOL, 

such as those in the APL language. This is a subject for discussion in 

Chapter 7.) 

Basically, the performance of all the vector and matrix operations 

requires an available storage area of 16 registers capable of holding data and 

operation codes. Although these registers could be different than those for PC, 

it is assumed that they are the same. In fact, using the same registers for PC 

and Vector/Block mode may reduce execution speed when both types of operations 

are in the same statement, but this is not considered serious. 

The availability of 16 registers generally restricts the Vector/Block 

mode to vectors of length 15 and 3 x 3 matrices, although the exact number 

depends on the operation. The actual restriction is that the number of components 

stored in the AP scratchpad plus the number of temporary answer registers must be 

less than or equal to 16. Thus the follo\ving maximum-sized operations can be 

done: * 
1. The addition or subtraction of two IS components 

vectors or matrices since no answer registers are 

required, 

2. The multiplication of two IS-component vectors since 

only one temporary register is required, 

3. An N x M matrix times an M x P matrix where 

N(M + 1) ~ 16, because N times M locations are 

required to store the matrix and N for temporary 

answer registers, (For example a 3 x 4 times a 4 x P 

matrix takes 15 locations, whereas a 4 x 3 times a 

3 x P matrix takes 16 locations.), 

*According to Raytheon's presentation at 1973 AADC Symposium [5.4], these restrictions 
are no longer valid since the accumulator stock in TM automatically stores and reloads 
accumulator regi~ters. The current restriction is an array must be less than 256 

elements. 
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4. Any operation with 3 x 3 matrices. 

The reasons for these restrictions should be more understandable after the next 

section. 

S.2.l0.l Vector and Matrix Adds and Multiplies 

This subsection describes the instruction format and the PE operation 

for the vector and matrix add and mUltiply instructions. 

Since, in the PC operation, the combination of PF and R both not equal 

to 0000 is meaningless, the open parenthesis code (PF = 1111) with the R field* 

containing a vaiue N is now given the following meaning: 

1. The PE enters the Vector/Block Mode of order Nand 

each subsequent instruction, until the mode is terrni

nated t is assumed to be a function of N operands. 

2. The N operands located in successive memory locations 

specified by the effective address are sequentially 

stored in the AP registers (starting at the current 

working accumulator) and the instruction op code 

is stored with each. 

Once in the block mode there are three parameters that control the 

execution as follows: 

1. The value in the PF field in subsequent instructions 

establishes the number of temporary answer registers 

to be used and t~ereby establishes the number of 

operation pairs (current op code + deferred op code) 

that are perform with a particular s~cond operand 

(the one not in the scratchpad), 

*No longer valid since R field was eliminated in later version (5.4]. 
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2. The value of N, as specified on entry to the block 

mode, establishes the number of operation pairs that 

are performed (or the number of operands stored in 

the AP scratch pad that are used) before a block cycle 

is completed. 

3. The value in the R field establishes the number of 

block cycles that are to be repeated. In other words, 

it is the number of times the operations are repeated 

on the scratch pad set using different sets of second 

operands. If R # 0, the contents of the answer 

registers are stored in the accumulator stack in memory 

via an AAST interrupt after each block cycle of N 

operands. After R repetitions the mode is terminated. 

If R = 0, the answers are not stored and the Vector/ 

Block mode is not terminated. 

The use of these parameters is explained further with the following discussion 

of particular vector and matrix operations. 

The vector (or matrix) add or subtract is specified by the following 

two machine language instructions. 

1. The first vector or matrix, A, of N components 

is loaded into the AP scratch pad (or deferral 

accumulators} by: 

LOA D 1 1 1 1 N Al'1F and ADDRESS of A 
012 345 6 7 8 9 1011 12131415 ~6 to 31 

where the ADDRESS is the memory location of the first 

component of A. 
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2. The second vector or matrix, B, is then 

added to (or subtracted from) the first by: 

ADD 000 0 Kl 0 0 1 AMF and ADDRESS of B 
0 1 2 345 6 7 8 9 1011 112131415 16 to 31 

where the PF = 0000 means there are no answer 

register and no second operand is repeated, and 

R = 0001 means the answers are stored in the 

Accumulator stack via an AAST and the entire process 

is to be performed only once. 

The results of executing these two instructions is that the sum of the 

two vectors or matrices is stored in the accumulator stack, if R # 0. In the 

case where R = 0, the sum remains in the AP scratch pad and another vector or 

matrix could be added to the sum by repeating the second instruction with the 

appropriate new ADDRESS part. 

The assembly language equivalent to these two instructions is: 

1. LOAD { N A 

2. ADD B. 

The vector dot product between A and B, which is mathematically defined as 

c = 

is specified by the two instructions: 

N 
L 

i=1 
a. b. , 

1. 1. 

1. The first vector ··is loaded in the AP scratch pad 

with the deferred operation of Add by: 

ADD 1 1 I 1 N AHF and ADDRESS of a
1 

0 1 2 345 6 7 8 9 1011 ~2131415 ~6 to 31 

or as ADD { N A in assembly language. 
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2. The mUltiply by B is ordered with each operand 

used once and with one answer register ordered 

(PF - 0001), and the cycle is to be performed once 

and the answer register stored (R = 0001) by: 

M U L T a 0 o 1 o 001 AMF and ADDRESS of b
1 

01234 5 6 7 8 9 1011 12131415 ~6 to 31 

or MULT )1 1 B 

Since only one answer register is specified, after each operand is 

multiplied by its respective accumulator value, the product is functionally 

combined into the answer register using the deferred operation, in this case 

ADD. Thus the operations of mUltiply and add repeat on successive operands, 

and, at the end of the sequence, the answer register contains the dot product 

of the two vectors. 

A variation to the above procedure is to use the original vector, A, 

in the second instruction and then after the two instructions are completed, 

take the square root of the resultant sum. This produces the magnitude of the 

vector A. 

The matrix multiplication of two matrices A and B is mathematically 

defined by: 

for i = 1 to I 
and j = 1 to J, 

where A, Band C are I x K, K x J and I x J matrices, respectively. 

The multiplication of a 2 x 3 matrix by a 3 x 4 matrix is specified by the 

two instructions: 
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1. The first matrix A is loaded in the deferred 

accumulators along with the deferred ADD operator by: 

ADD 1 1 1 1 o 1 1 0 AMF and ADDRESS of A 
0 1 2 3 4 5 6 7 8 9 101] 12131415 16 31 

or ADD ( 6 A which causes the following 

results: 

a) The AP enters block mode with N = 6, 

b) The six operands starting in the location 

specified by ADDRESS are fetched from the 

Task Memory, 

c) The six operands are stored in the AP scratch 

pad (the deferral accumulators) starting in 

the working accumulator. 

d) The operation ADD is also stored in each 

scratchpad location as a deferred operation. 

2. The multiply by B is ordered with two answer 

registers (PF = 2) and each operand used twice 

(PF = 2) and the entire process repeated four 

times (R = 4) by: 

M U L T o 0 1 0 K> 1 0 0 AHF and ADDRESS of B 
01234 5 6 7 8 9 1011 ~2131415 ~6 31 

or MULT )2 4 ~ in assembly language. 

The operation of the AP under these two instructions, assuming the matrices are 

stored column-wise (i.e. aOO a10 aOl all ••• )' is as follows. First two 
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answer registers are set up and the products a OO bOO and a
lO 

bOO are stored 

in them. (Note bOO is used in each product.) Next~ the second two products 

a01 b IO and all blO are formed using blO ' but since there are only two 

answer registers the products must be combined functionally, after each is 

formed, with the partial answers in the answer registers using the deferred 

operation ADD. Thus the answers in the two registers are now a OO bOO + a
Ol 

b
lO 

and a10 bOO + all b lO · Third, the operand b 20 is brought in and repeated, and 

functionally combined, forming in the answer registers: 

which is the first column of the answer matrix. This ends the block cycle (N :: 6) 

since all six operands in the APscratch pad set has been used; thus, the answers 

are stored and the answer registers are cleared. 

Since the R field called for the repeat of this block cycle (of 6 

steps) four times, the following answers are also created and stored: 

a OO bOl + a
Ol 

b
1l + a02 b21 ICI cOl 

a lO bOl + all b1l 
+ a12 b2l 

= cll 

and a OO b02 
+ a Ol b

12 
+ a 02 b22 

= cO2 

aID b02 + all b12 
+ a12 

b22 
:: c12 

and a OO b03 + a
Ol 

b13 + a02 b23 
:: c03 

ala b03 + all b13 + a12 b23 
= c13 • 
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Thus generating the four columns of the matrix product. Therefore the matrix 

multiplication is specified completely by ONLY TWO machine language instructions. 

The student may find this procedure a little nove~~, and it is. First. 

when matrix multiplication is done manually only one accumulator is used and all 

the terms for the first answer component (cOO) are combined before other 

components are formed. Here two (or PF) answers are constructed as a group. The 

advantage of this method for the computer is that each component of the second 

matrix is used (and thus retrieved) only once. Second, the number of columns in 

the first matrix, (and the number of rows in the second one) are transparent to the 

computer; thus, instead of using this number as a looping parameter, the total 

number of components in the first matrix is used to indicate the end of a block 

cycle. The third difference is that the standard manual convention· is to determine 

the top row of the answer matrix first, whereas here the left-most column is 

determined first. In fact this procedure will NOT work if the matrices are stored'i 

row-wise (or in row order). However, the answers are the same in both cases 

(neglecting roundoff errors), and using the PE procedure requires only two simple 

machine language instructions instead of requiring a description of how every 

element is manipulated. Thus, this method is much easier to use and operates 

faster. As a further example, consider the multiplication of 3 x 4 matrix by a 

4 x 5 matrix. Here N = 12, PF = 3 and R = 5. Notice that the two parameters 

for the second instruction are actually the size of the resulting matrix. The 

remainder of this example is left as an exercise for the reader. Another example 
A 

is available in [5.1 pages 2-37 to 2-40]. 
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In general the matrix procedure described here can handle any N x 11 

matrix times a M x P matrix where N(M + 1) ~ l6~ since N answer registers are 

required in addition to the locations for the first N x M matrix. 

The time to execute a matrix operation can be calculated by adding 

together the time to load the scratchpad (assuming the instructions are already 

in APQ), the time to execute N multiplied by R instruction pairs and the time 

to store the results in the accumulator stack. The time to load the second matrix 

can be neglected because it is overlapped by the execution. For the example above 

of a 2 x 3 times'a 3 x 4 matrix, the time would be calculated as follows: 

1. 6 x 150 nsec = 900 nsec to load scratch pad, 

2. 6 x 4 x (800 + 100) = 2160 nsec to do 24 multiplications 

and additions (actually only 18 additions are used, 

but 6 clear accumulator are also used), and 

3. 8 x 150 nsec = 1200 nsec to store the results in 

the Task Memory, 

for a total of 4.26 microseconds, neglecting any overhead. (This is approximately 

the time to do one multiplication on the IBM 360/65 computer.) 

5.2.10.3 More Complex Matrix Operations 

Several instructions were invented to accomplish the remaining vector 

and matrix operations. The most essential is the Calculate Cofactor instruction, 

which permits the computation of Vector Cross Product, Determinants, and Inverse 

Matrices. All of the vectors and matrices handled in this area are three dimensional, 

this being the a) only reasonable size for the scratch pad to efficiently handle, 

and b) most likely size for computations. 

~This number is now 256, according to Raytheon at the 1973 AADC S)~posium. 
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To investigate this area, let us first examine a 3 x 3 matrix: 

AOO AlO A20 

AOI All A21 

A02 A12 A22 

An interesting observation can be made that the subscripts are the 

numbers a ~ 8 in the ternary systems, with column taking precedence over row. 

Expressing each of the subscripts in binary notation by digit, this expression 

would be: 

0000 0100 1000 

0001 0101 1001 

0010 0110 1010 

which, expressed as whole numbers in decimal, would be 

048 

159 

2 6 10 

The cofactors of this matrix can be expressed as the cofactors of each 

individual term, thus: 

Cofactor of 0 = 5-10 - 6-9 

Cofactor of 5 = 0-10 - 2·8 

Cofactor of 6 = 0-9 - 1-8 
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Returning now to the binary representation, it is seen that each 

cofactor term has a direct relationship, in pairs of bits, to the four elements 

of its corresponding cofactor. 

Thus, the cofactor of 0000 is 0101·1010 - 0110·1001 and, to obtain the 

elements of the cofactors of 0000, the following device may be applied. 

Positive Elements ~ Add 1 to the left 

right pair 

~ Add 2 to the left 

right pair 

Negative Elements ~ Add 1 to the left 

pair 

~ Add 2 to the left 

pair 

More briefly, 

Positive Elements: Add 1, 1 

Add 2, 2 

Negative Elements: Add 1, 2 

Add 2, 1 

pair and 1 to the 

pair and 2 to the 

pair, 2 to the right 

pair, 1 to the right 

Observe that this scheme holds true for any cofactor term, using mod 

3 addition (1 + 2 = 0), thus, the cofactors of 0101 are found to be: 

Positive Elements: Add 1, 1 -+ 1010 

Add 2, 2 -+ 0000 

Negative Elements: Add 1, 2 -+ 1000 

Add 2, 1 -+ 0010 
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This says that the 

Cofactor of 0101 = 1010·0000 - 1000·0010 

or Cofactor of 5 = 10-0 - 8-2 

which agrees with the previous determination. 

Therefore, by implementing a mod 3 (ternary) loading scheme and finding 

the cofactors of any term by doing the ternary adds of 1, 1 & 2, 2 for positive 

elements and 1, 2 & 2, 1 for the negative elements, all the cofactors of a 3 x 3 

determinant can be regularly ascertained and calculated by an iterative process. , 

This method can now be applied to the vector/block mechanism to obtain~ 

Vector Crossproduct Calculation. Begin by loading the element of vector A into 

registers 0,1,2: 

Now load the elements of vector B into registers 4,5,6 (maintaining the ternary 

loading pattern). 

A6 contains b2 

Then the three terms of the cross-product A x B, which are: 
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are, in fact, the cofactors of 8, 9, and 10 as previously defined. The mechanism 

operates in a regular fashion to produce any or all of these terms. 

Thus, ·assuming a ternary loading scheme, a calculate cofactor 

instruction would have to specify a) the number of cofactors to be calculated 

and b) the first cofactor to be calculated. (Cofactors are specified by 0,1, 

2,3,4,5,6,8,9,10;0,1,2 •.•. ) Thus, the cofactor instruction would have the follo~ing 

format: 

C 0 F 1st NUl1BER OF COFACTORS 
01234 567 8 9 1011 ~213l4l5l6l7l819202l2223242S26272829303l 

This instruction is not addressable (i.e. contains no address field). 

To facilitate the processing of this type of instruction, the loading of vectors 

and matrices are specified as being in ternary mode. 

Given the ability to calculate cofactors, it is possible to define 

another instruction of the same type: 

Calculate Determinant 

Nine operands are loaded into the scratchpad in ternary mode as a 

precondition. Cofactors 0,1 and 2 are calculated and multiplied by their respec-

tive terms (i.e., term 0 x cofactor 0, etc.). The three final products are su~red 

and the final answer placed in deferral register 15. The final anS\ver is also 

stored in the memory stack. 
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Returning to the Calculate Cofactor instruction, one further field can 

now be defined. A 0010 in the R field causes each cofactor calculated to be 

divided by the contents of deferral register 15. 

Combining these instructions with other block mode instructions yields 

a very powerful hardwired vector and matrix processing set: 

1. Vector Cross Product: 

a) 

b) 

Two vectors must be loaded: 

LD ( 3 A 

LD ( 3 B 

Ternary loading is automatically sequenced. 

The appropriate cofactors must be calculated. 

These, as previously described, are the co

factors of 8,9 and 10 (or, three cofactors 

starting with 8). 

COF )3 - 8 

2. Calculate Determinant (3 x 3) 

a) The determinant is loaded: 

LD ( 9 A 

b) The determinant is calculated. The value is 

stored in the stack and in deferral register 15, 

DET )1 

3. Calculate Cofactor [calculate N cofactors. 

starting w~th P] 

a) A determinant (3 x 3) is loaded: 

LD (9 A 

5.40 



b) The cofactors are calculated 

COF )N - P 

4. Calculate Inverse Matrix - (3 x 3) 

a) The matrix is loaded (automatically in 

the ternary mode) 

LD ( 9 A 

b) The Determinant is calculated. The value 

is not stored in the A stack, but is placed 

in deferral register 15. 

DET 0 

c) All cofactors are calculated and divided by 

the value of the determinant, thus yielding 

the terms of the inverse matrix in correct 

column order 

COF )9 2 0 

5. Solve Simultaneous Equations 

a) Do an invert matrix sequence as above. 

b) Reread the inverse matrix into the scratchpad 

with a held add (Ap = A stack pointer): 

AD ( 9 Ap 

c) Multiply with three answer registers repeating 

each operand of B three times (B = constant 

vector): 

MOL )3 1 B 

5.41 



The foregoing instructions give the PE the ability to perform all 

basic vector and matrix operations except the creation of a transpose matrix. 

To make the set complete, and give the PE as much versatility as possible in the 

vector/matrix field, a Transpose Matrix instruction is included in the instruction 

set. 

This instruction takes a matrix stored in memory in column precedence 

form and loads it into the scratchpad in row precedence form. The transpose 

instruction does not require a full matrix to operate. If a partial matrix is 

given, the terms of the matrix which are specified will be loaded into the correct 

row positions in the scratchpad. For example, if one column (4 terms) of a 4 x 4 

matrix are given, they will appear in the scratchpad in registers 0,4,8, and 12. 

5.2.10.3 An Application of Parenthetical Control 

When a load transfer instruction is used, it causes a set of spaced 

accumulators to be loaded, i.e., LDTN ( 4 A loads AO' AI' A2 , A3 into ACO' 

AC
4

, AC
8

, AC
l2

• Parenthetical Block Operation will now be effective. 

AD ( B 

will Load BO to B3 (with deferred AD) in ACl , AC5 , AC
9

, AC13 

ML ) C 

will multiply CO-C3 by BO-B3 and release add into AO - A3 , thus producing 

A + BC values in ACO' AC 4 , ACS and ACl2 • 

Thus, up to four sets of simultaneous subroutines using parenthetical 

control may be implemented. 
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5.3 ARITffrffiTIC PROCESSOR 

5.3.1 Data Types, Mode Control and Number Systems 

Although Raytheon suggests there are many advantages to either tagging 

each data word with a data type or to eliminating data types altogether and using 

only floating point operations, they do not recommend these approaches for AADC 

because they think that most potential AADC users will find it difficult to accept 

24-bit limitation on integers when a 32-bit word size is available. (Tagged data 

words also mean longer words in memory for a given accuracy.) The advantages to 

using a single data type is that the compiler is much simplier, no conversion 

from fixed to floating or from floating to fixed is required, floating point hard

ware can be made as fast or faster than fixed point and there is no need to worry 

about integer overflow. If an integer overflow occurs internally when using 

floating point hardware, nothing at all happens. If it occurs in the output, the 

user gets his answer with the appropriate scale factor, but minus some significance, 

instead of the normal "Terminated due to Integer Overflo\V" message. Also accuracy 

is enhanced because fixed point numbers are often entered without factional 

parts or scale factors to ensure that overflow conditions do not occur. 

As an alternate to eliminating data types, Raytheon suggests a mode 

control to determine the types of operation. This has the disadvantage of not 

allowing mixed mode fixed and floating arithmetic but does have the advantage of 

reducing the number of necessary op codes. Without any form of data insensitivity 

control, all arithmetic, conditional, polynomial, vector and matrix instructions 

and all subroutines must have counterparts for every data type. The other dis

advantages of mode control method is that modes must be established, fixed over

flow can still occur and all instructions are in fact implemented in hardware. 
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The mode switch would probably be implemented with the load or branch instructions 

or with subroutine calls. 

Raytheon has recommended the sign ~nd magnitude number system for AADC 

claiming that multiplication and division algorithm are much simplier for this 

system t especially when compared to 2'8 complement system t and that it is the 

only system that can cause an overflow in fixed point multiplication. 

The author does not agree with Raytheon on many of the statements con-

cerning number systems. For example, they state that one of the reasons for choosir. 

the sign and magnitude system is that mUltiplication and division can be implemente( 

by considering only positive numbers, but they ignore the fact that there are 2's 

complement algorithms that treat positive and negative numbers alike, i.e. Booth 

multiplication algorithm. 

5.3.2 Data Formats 

Four data formats are presently designed for the PEe The floating point 

format is: 

S HANTISSA S I EXPONENT 
0 1 to 2~ 2~25262728293031 

where the decimal point is assumed to be to the left of bit 1. The fixed point 

or integer format is: 

MAGNITUDE 
to 31 

where the decimal point is assumed to be to the left of bit 1 for fixed point 

but to be to the right of bit 31 for integer format. The complex data format is: 

S REAL MAGNITUDE S IMAGINARY MAGNITUDE 
0 1 to 15 16 17 to 31 
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where the real and imaginary parts are considered as 16-bit fixed point numbers, 

with decimal points assumed to be to the left of bits 1 and 17. Although floating 

complex arithmetic (single word format) is not considered as part of the study, 

it could be included using the format~: 

S REAL HANTISSA S IHAGINARY HANTISSA S EXPONENT 
a I to 11 12 13 to 23 24 25 to 31 

where the real and imaginary parts are each represented by only 12 bits (equiv-

alent to 3 decimal digits of accuracy) and both parts have the same 7 bits exponent. 

All floating point exponents are considered binary numbers, not hexi-

decimal, thus the mantissa may be shifted only one bit. 

Raytheon brags about the large 7-bit exponent being capable of representing 

the range of all conceivable numbers for avionics applications. The 7-bits 

represent a range of lo±38 which is the same as on the IBM 360/67 (and often 

restrictive in scientific applications). 

5.3.3 Arithmetic algorithms 

The floating point algorithms for addition, subtraction, multiplication 

and division are fairly standard for sign and magnitude nllmber systems, except 

that they do not normalize until it is necessary. This results in more complex 

circuitry but the faster speed, apparently justifying the extra logic cost. The 

floating point algorithms actually use the fixed point arithmetic hard\~are to do 

the arithmetic. 

The particular implementation of the adder and/or subtractor network is 

left to the final designer providing it produces a sign and magnitude answer in 

about 100 nsec. The multiplier is a 4-bit-at-a-time multiplier that actually 

*This format has been replaced by a double word complex number format. 
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uses two 2-bit-at-a-time adders working sUlu1taneous1y. Sufficient circuitry 

is added to perform the additions and shiftings as required. A very fast logical 

carry function is used so the second adder has this input at almost the same 

time as the first adder. Further details are available in [5.1, pages 3-19 to 

3-21]. 

Multiplication now takes only 8 steps for a 32-bit word. If each step 

takes 100 nsec then the fixed multiplication takes 800 nsec. Since the floating 

point mantissa is only 24 bits long it takes only 6 steps or 600 nsec. With the 

7 to 3 mix of additions to multiplications, the AP runs at 3.3 MIPS for fixed 

point and 4.0 MIPS for floating point operations. 

Since the division instruction'is a low frequency instruction, a very 

simple one-bit-at-a-time subtract and check algorithm is implemented for 

division. The hardwired divide algorithm would take about 3.2 msec • 

Integer arithmetic uses the identical algorithms for fixed point. 

Addition and subtraction are identical. Multiplication is the same except that 

the answer appears in the low order product register. Division is the same 

except that the single dividend word is placed in the low order product registel 

before division. 

Since an analysis of the usages of complex arithmetic in avionics 

missions revealed that 16 bits is sufficient for either the real or imaginary 

parts, fixed point complex arithmetic was implemented in half-word format with 

essentially no loss in efficiency. Even complex multiply (an operation requirin~ 

four multiplications and two additions) is accomplished in almost the same time 

as a normal full word fixed point multiplication. Two conventional full length 

words can be used with complex instructions. For example, a two-word load, 
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followed by a complex store, is equivalent to combining the left half of two 

words into a single word. The multiply operation can produce either two full

word answers or two half-word answers depending on whether the result is used 

as separate real and imaginary values (or double precision) or as a complex 

answer. Thus complex arithmetic has been conveniently and efficiently included 

in the PE structure. 

As a result of implementing the complex mode operations, it is very 

easy to include half-word operations on either the left or right half of the 

word. Half-word and full-word operations can be mixed and can be specified in 

all modes including fixed, floating and complex (and probably integer, although 

this is not mentioned). 

Twenty-four load instructions are implemented in the PMU of the PEe 

These include combinations of 1) load normal or load with negative sign, 

2) fixed point, floating point, complex or integer, and 3) full word, left 

half word or right half word. A complete listing is shown in section 5.6.2.6 

and [5.1, pages 3-19]. 

This section has been an overview of the arithmetic operations 

implemented in the PE, and is intended to present the PE features available to 

the programmer, rather than the details of the algorithms. The arithmetic 

algorithms are described in much more detail in [5.1, pages 3-9 to 3-29]. 
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5.4 ARIT~mTIC PROCESSOR DESIGN 

Figure 5.2 shows the basic Arithmetic Unit (AU) - the heart of the 

Arithmetic Processor (AP). (The other parts of the AP include a comparison 

test valid unit, a deferral unit and a programmable control unit.) The AU 

contains two memory interface registers (MI and M2), two accumulators (AI and 

A
2
), two low-order product registers (L

l 
and L2) and an Arithmetic Logic Unit 

(ALU). The two memory registers provide the interface between the Task Memory 

and the rest of the AP. The low-order product registers are built as logical 

extensions to the accumulators for multiplication and division, but also can be 

used as accumulators. The Arithmetic Logic Unit performs the actual execution 

of the addition, subtraction and logical operations. (ffALU" is my own term 

because Raytheon uses "AU" to refer to both the ALU and the Arithmetic Unit -

which contains 6 registers, the ALU and associated control and transfer logic.) 
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Figure 5.2 Simplified D~agram of Arithmetic Unit 
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In the final design, the use of control signals to determine which 

A or L register is to be used as the current accumulator is generalized to 

include the M registers. Thus the M registers are equivalent to A and L 

registers, and any of the six registers can be used to accept operands from 

memory, and can be used as the input or output to the ALU, as shown in Figure 5.3. 

In other words, the source and destination of any operation can be changed by a 

control signal. In Figure 5.3 the inputs and outputs of the ALU are as follows: 

f is the control function that determines the particular operation to be 

performed; M is the operand from memory (i.e., addressed in the current in~truc

tion) , As is the operand from the Accumulator and ~ is the output from the 

ALU. 

By changing control signals, the output from the M registers can be 

decremented, incremented, complemented, shifted left one or two bits (2 x M or 

4 x M) or ignored before being applied to the ALU. The output from the A and 

L registers can be complemented, shifted right one bit or 4 bits and shifted 

left one or two bits before being applied to the ALU. The input to the A and 

L registers can be from the scratch pad registers as well as the following modified 

outputs from the ALU: The sum directly, sum positioned two bits right and the 

sum positioned one bit left. 
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In actual fact there are two arithmetic logic units called the PAU 

and SAU for Primary Arithmetic Unit - the one described above - and Secondary 

Arithmetic Unit. (Again, Raytheon does not distinguish between the AU and the 

ALU, which makes it a little confusing here. PAU and SAU should be PALU and 

SALU respectively.) The SAU is designed for use during the 4-bit-at-a-time 

mUltiply and thus has only the addition and subtraction logic. Otherwise, it 

is essentially the same as the PAU described above. Some examples of the AU 

functioning is described in [5.1, pages 4-17 to 4-21]. 

5.4.1 Macro-Micro Programming 

Raytheon intends to implement some micro-programming features into the 

PE by making the control signals, that were used to implement the steps of the 

macro instructions, available within the macro instruction set. Thus the macro 

instruction set will include the vast majority of useful micro-commands needed 

for any use by the arithmetic processor. If the macro instruction set contains 

all the elementary micro-functions as a subset, the total number of control lines 

in the AU could be reduced to eight (the number of bits in the OP CODE). Thus, 

Raytheon claims that micro instructions can be included in the macro instruction 

set by providing the AU with an eight line input which would be decoded internally 

to provide the important micro instructions. 

Another explanation of the micro instructiom implementation is given in 

[5.1, pages 4-14 to 4-16], but it is not any more detailed than the above. How 

many micro instructions can be accomodated and which ones should be implemented 

has not yet been decided. Also see questions 5.16 and 5.17. 
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5.4.2 Deferral Unit 

The deferral unit is a portion of the AP which contains the necessary 

equipment to handle the Parenthesis Control and Vector/Block Mode. The deferral 

unit contains a pushdown set of 16 scratchpad 40-bit registers which are connected 

to the arithmetic unit via the accumulators (See Figure 5.3). 

Implementation of the deferral unit will not be described here because 

it is quite elaborate and because it is believed that the explanation of the 

operation in Sections 5.2, 5.9 and 5.10 is adequate for our purposes. For further 

details the reader is referred to Reference [5.1], particularly Figures 4.8 and 

4.9 which are a detailed functional block diagram of the overall deferral unit 

and pages 4-25 to 4-35 which explain the operation of the deferral unit. The 

other two parts of the AP - the test valid unit and the programmable control unit -

are also not described here [5.1, pages 4-23,4-24, 4-35, 4-36]. 
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5.5 PROGRAM MANAGEMENT UNIT 

The Program Management Unit (PMU) handles all the functions of the PE 

which do not require the computation and processing capabilities of the AP. The 

functions - which essentially all deal with the processing) utilization and stor: 

of task memory addresses - fall into three major categories: normal instruction 

and operand fetching, execution of program management-type instructions, and I/O 

control. Of the three, the normal instruction and operand fetching is the most 

important in terms of speed and efficiency enhancement. 

The PMU contains the follow basic components: 

1. A program counter (P) which contains the address 

of the memory location containing the next 

sequential instruction. 

2. A Primary Address Register {I
A

} which typically 

contains the effective address of the memory 

location containing the operand of the current 

instruction. The effective address is the 

ADDRESS part modified by the AMF {address 

modifier field} part. 

3. A Secondary Address Register {IB} which contain 

the secondary address if two address instructions 

are implemented. 

4. A Control Register (C) which holds parameters of 

the instruction being processed (or accessed) in 

the PMU. It presents this information to the 

control unit for decoding and to generate the 

necessary PMU control. 
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5. A PMU Scratch pad (P~rusP) which contains right 

index registers used by the system, and also 

contains four stack pointers. 

6. A Fetch Arithmetic Unit (FAU) which is capable 

of handling the simple arithmetic operations 

which indexing and PMU instructions require. 

The FAU is not nearly as elaborate as the arith

metic unit in the AP. 

7. An Arithmetic Processor Queue (APQ) which queues 

operation codes and operands for presentation to 

the AP. The APQ is actually an interface unit 

but since it is most responsive to the P}ll and its 

functions (half-word manipulations) approximate 

PMU functions, it is included in this section. 

Figure 5.4 shows the component of the PMU. For further detail the 

reader is referred to [5.1, Figure 5.2] which shows a more detailed block 

diagrams of the PMU and its control signals. The actual operation of the p~ru 

is considered beyond the scope of this report. The interrupt handling mechanisD 

and the APQ is also not included in this report [5.1, pages 5-8 to 5-12]. 
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5.6 THE INSTRUCTION SET 

This section lists the instruction set of the PE - an instruction set 

wide in scope but simple in format according to Raytheon. The instruction set 

is based on a report by Systems Consultants [5.5] and, while it is a consider-

able modification to the set in that document, it maintains the spirit of the 

recommendations throughout. This section will list all the instructions \o.rhich 

should, according to Raytheon, be included in the AADC DPE. Subsections .5.6.2 

and 5.6.3 describe the instructions that deal with the Arithmetic Processor, 

including those dealing with vector and matrix operations [5.3]. Subsections 

5.6.3 and 5.6.4 describe PHU instructions which may subject to further modifica-

tion since the material is based on an earlier reference [5.1]. 

5.6.1 Basic Instruction Format 

* The basic instruction format called Format 1, was given in Section 

5.2.2.1 but is repeated here for convenience: 

OP CODE PF I X ADDRESS 
01234 5 6 7 8 9 1011 112 \131415 16 to 31 

Sometimes other names are given for some fields. 

In computer operation, an instruction word is obtained from tl1E Task 

Memory by the PMU. The left 12 bits of the word is used by the APQ; the ~ight half 

is used to obtain the operand required for the instruction execution. PF is the 

parenthesis field. Bit 12 is set equal to 1 for indirect addressing, while bits 

13 to 15 are used to specify any of eight PMU index registers. Bits 12 to 15 are 

also referred to as the Address Modifier Field (MIF). ADDRESS is the virtual Task 

Memory location of the operand. 

*Shown here with the ne\.J 16-bit ADDRESS field. 
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5.6.2 Arithmetic Processor Instructions 

5.6.2.-1 General Considerations 

Each instruction in the AADC instruction set that involves obtaining 

an operand from Memory for use in the Arithmetic Processor, is equivalent to 

several instructions normally delineated separately in other computers. First] 

each instruction is effectively modified by its associated Data Type. The AADC 

Date Types are: 

1. Integer 

2. Logical 

3. Literal 

4. Real 

5. Imaginary 

6. Double Precision Real 

7. Complex 

Secondly, all arithmetic operations are performed as double precision 

operations, with the appropriate bits selected depending on the data type of 

the result. Thus a pair of integers, a pair of real number, a real and an 

integer or a pair of double precision real numbers are all added by a double 

precision addition operator but the result is stored as a 32 bits integer, a 

24-bit mantissa and a 8-bit exponent real number, or a double precision real 

number depending on the data type of the result. Thus there is no speed dis

advantage associated with double precision but there is still a doubling of the 

memory required. 

Thirdly, each operand may be a simple scalar, or a member of a vector 

or other form of array. Full capabilities of Mixed Data Types as well as mixed 

scalar, vector, matrix operations further make for instruction variations which 
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would be exceptionally difficult to individually enumerate. In addition to 

these instructions, a set of Program Management instructions complete the 

Instruction Compliment. If all of this were not enough, the capability of 

Parenthetical Control with the facility of controlling the precision of 

instruction results permits maximum control of the operational sequence. 

The operation of the Arithmetic Processor when dealing with arrays 

needs further elaboration. Scalars are, in general, extended to equal the size 

of the array. Thus, if the scalar is contained in the Accumulator, an instruc

tion which would normally be accumulator destructive will not affect the original 

scalar until completion of the entire array. If the vector is in the accumulator, 

the scal~r will be repeated from the Queue. 

A similar extension will be made for vectors of unequal size. If the 

shorter vector is contained in the Queue, the last term will be repeated until 

completion. If the shorter vector is in the accumulator, it is iterated until 

completion. 

Providing Parenthetical Control for use with Matrices pe~its asse~~ly of 

sparse matrices, and other operations which would othenvise be difficult to 

achieve. The instruction set which follows is virtually complete with respect 

to the Arithmetic Processor. Additional PMU instructions are still required to 

complete the set. 

5.6.2.2 Standard Arithmetic Instructions 

The standard arithmetic instructions are add, subtract, multiply and 

divide. The arithmetic instructions apply to all data types, as well as, scalar, 

vectors and matrices. 

There are three instructions corresponding to addition. They are Add 

accumulator and memory (A + M ~ A), clear and add (+M ~ A) and an no OP (+ A ~A). 
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· 
There are four instructions corresponding to subtraction. They are Subtract 

memory from 'accumulator (A - M~' A), Subtract Reverse (-A + M ~ A), Clear 

and Subtract (-M ~ A), and Change Sign (-A ~ A). Two related monadic instruc-

tions are Absolute Magnetude (IAI ~ A) and Set Sign Negative (-IAI ~ A). 

Five multiply/divide operations have been defined. They are Multipl~ 

accumulator by memory (A x M ~ A), Divide accumulation by memory (A f M ~ A), 

Divide Reverse (M f A ~ A), Residue (A f M with R ~ A) and Residue Reverse 

(M f A with R ~ A). If a literal data type is used with a Divide Reverse in-

struction, the literal 1 can be used to generate the reciprocal. The com-

plex divide is semi-complex, i.e., (~ + ~)/M where AL and ~ are the left 

half and right half of the accumulator, respectively. 

In the earlier report [5.1] it was stated that arithmetic opera-

tions can be performed on the right half or the left half of a word as well 

as on the full word, but this was omitted (intentionally?) from the later re-

port [5.3]. 

5.6.2.3 Logical Instructions 

This section describes the logical operations in detail. All six-

teen possible combinations of 2-value Boolean variables are implemented elimina-

ting many unnecessary inverting operations and thereby improving the operating' 

speed. 

The logical functions are described in Table 5.5, where A and M 

represent the accumulator and memory contents, respectively. Each bit of 

M(each M.) and each bit of A{each A.) can assume a value of zero or one. All 
1 1 

instructions use Format I and are subject to parenthesis control. All opera-

tions apply on a bit-by-bit basis on 32-bit words. Each operand can be any of 

the seven data types and furthermore a logical operation does not make the 

accumulator logical .. 
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FUNCTION OPERATOR NAHE OF SYHBOL EQUIVALE~~T OPERATIO:J 

0 ~ A. 0 CLEAR clear accumulator 
A. A M. -1 

A -+ A. AND 
A1 > M1 -+ A1 > Greater than accumulator AND NOT memory 
A~ i 

-+ A~ + Unary plus NO operation 
A: < M. -+ A: < Less than NOT accumulator AtID memory 1 M1 -+ A: Honadic load Logical load 
Ai :f M~ -+ A~ :f Not equal Exclusive OR 
Ai v M: -+ A~ v OR Inclusive OR 
A. " M: -+ A1 

" NOR NOT (A OR M) 
A~ = M~ -+ A: = Equals Equivalcnce 

1 M~ A1 'V -+ 'V Load complement NOT memory 
Ai ~ M: -+ A1 ~ Greater or equal Accumulator OR NOT memor'.r 

1 
-+ A: 'VA. 'V Unary NOT Complement accumulator 

1 
-+ A~ Ai S Mi ~ Less or equal NOT accumulator OR memory 

Ai ~ Mi -+ A1 ~ NAND NOT (A A~1) H) 
1 -+ Al 1 SET i 

Table 5.5 Logical Functions and Operators 

Since logicals use operators which have other meanings when applied 

to arithmetic or non-binary (Boolean) operations, the High Order Language 

must distinguish between these functions. The operators could be followed 

by a second symbol to specify that these are logicals or the variables could 

be marked. It would seem that an operator subscript or second symbol \vould 

be best. The use of combinational symbols is necessary to avoid a phcnomenal 

number of operational symbols. 

One unusual feature of using logical operations on non-logical data 

types is that the exponent and its sign are not affected by the logical opera-

tions. Thus a logical load instruction can be used to load an arithmetic 

magnitude into the accumulator without affecting the Sign and Exponent of the 

original accumulator. The accumulator data type will not be altered. Also 

the unary NOT, which produces a one's complement of the accumulator magnitude 

and does not alter the Sign or Exponent, is not the same as a unary minus 

instruction which changes only the sign of the accumulator. This "feature" is 

of dubious value since its use could easily lead to errors in program results. 
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For example if the programmer specified complement accumulator and the data 

type was real when he expected it to be integer, then only the magnitude will 

be complemented and errors would probably result. 

5.6.2.4 The Comparison Instructions 

There are six comparison instructions which define all possible per-

mutations of two variables. For consistency, these instructions are assigned 

names coinciding with left to right languages. The comparison instructions 

are greater, less, not equal, equal, greater or equal and less or equal. Com-

parisons are arithmetic and are made with any of the data types. Thus, there 

are actually many comparisons, (i.e., integer, floating, etc.)* 

The result of a comparison is a Boolean value (True = 1 and False = 0). 

To permit logical operations on these comparisons, the results are placed in 

the Accumulator as the Arithmetic numbers +1 and +0, respectively. The creation 

of an arithmetic 0 or 1 permits the results of compares to be used arithmetically 

as well as the normal Boolean operation. 

In general languages, comparison operation is Accumulator destructive. 

Since Array operations are provided wherein scalars can be effectively extended 

to the length of a vector, Compares are capable of being used in a non-destructive 

form. 

Since comparisons against zero are often made with the desire to 

branch, and since zeros do not require an address field, an additional set of 

instructions have been provided which are essentially test and branch instruc-

tions. These instructions are essentially non-destructive of the Accumulator. 

They result in an immediate transfer. Transfers provide the address branch 

code in the instruction address field. They may be virtual or direct. If 

the comparison is true, the contents of the Queue are cleared and the branch 

*Note if comparisons between different data types are allo'ved, then the pro
grammer should have the option of flagging all such comparisons as possible errors. 
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code is sent to the Program Management Unit to perform a Transfer Uncondi-

tional (TRU) as follows. 

FUNCTION SYHBOL N&~E OF OPERATIO~~ 

A > 0 ~ TRU > Transfer Positive 

A < 0 -+ TRU < Transfer Negative 

A it 0 -+ TRU it Transfer Not Zero 

A = 0 -+ TRU = Transfer Zero 

A ~ 0 -+ TRU ~ Transfer Not Negative 

A S 0 TRU ~ Transfer Not Positive 

Since the results of nonnal comparison instructions produce Boolean 

or Arithmetic answers of zero or plus one, these instructions are capable of 

following a comparison or logical and can thus be used as conditional transfers 

following the comparisons. 

Since the conditional transfer set is complete, it would have been 

possible to provide a single comparison instruction which is an effective three

way compare yielding; +1, 0, Or -1, depending upon whether A is greater than, 

equal to or less than M. This instruction could then be followed by one or more 

of the branches. Since there are valid reasons for both solutions, the AADC 

instruction set contains both. 

The instruction Transfer Unconditional (TRU) exists as a Program 

Management Unit instruct-ion only. The instruction is effectively forced as 

the result of any of the conditional transfers above. It is necessary to 

complete the list of instructions in the Area of Branches. 

Two other comparison instructions are provided in the Arithmetic 

Processor system. These are as follows: 

FUNCTION 

A > M then M -+ A 

M S M then A -+ A 

A < M then M -+ A 

A ~ M then A -+ A 5.63 
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These are used to select the smaller or larger value of a pair. 

Other variations of comparison instructions are provided when dealing with a 

vector or list. These essentially involve the displacement addresses when

ever the comparisons are true. These will be considered elsewhere. 

5.6.2.5 Shift Instructions 

Shift instructions apply to both Scalars and Arrays. The shifting 

of a scalar implies moving bits within the accumulator while shifting of an 

array implies moving elements of the array. The direction of shifting is 

controlled by the sign of the operand - right shifting if the operand is 

positive, left shifting if negative. There are three basic shifting instruc

tions - Rotation, Drop and Take. Rotation is cyclic shifting either of bits 

in the case of scalars or of elements in the case of array. Array Rotation 

means the Nth (the instruction operand) element becomes the first element and 

the array is completed around. The Drop instruction causes the first (or 

last) N bits (or array elements) to be dropped. Thus Drop the left most N 

bits shifts the accumulator to the left filling the right most bits with 

zeros. Similarily Drop the right bits cause a right non-cyclic shift. The 

Take Instruction causes the first (or last) N bits (or array elements) to be 

taken from a scalar (or array). Take can be used as a mask since all bits 

remain in the same position. Further explanation of Drop and Take operation 

can be obtained from any APL reference manual such as [5.6]. 

Other simple arithmetic instructions include square root, the Floor 

of A (next lower integer of a real accumulator), and Ceiling of A (next higher 

integer of a real accumulator). 

5.6.2.6 Polynomial, Vector and Matrix Instructions 

According to an earlier reference [5.1], a hardware implementation 

of one polynomial instruction, PLY as defined in Subsection 5.2.9, can be used 

to generate all the trigonometric and logarithm instructions listed in that 
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subsection. In the later reference [5.2 and 5.3], the trigonometric functions 

to be implemented in hardware are listed as sin, cos, tan, sinh, cosh, tanh, 

arcsin, arccos, arctan, arcsinh, arccosh and arctanh. The later reference 

list the natural logarithm and the natural antilogarithm as hardware functions 

also, but suggests that the logarithm to an arbitrary base and exponentation 

to an arbitrary power should be implemented by subroutines. 

The basic vector and matrix operations, such as adding and subtract

ing, are performed by the standard arithmetic instructions presented above, 

because the operands can be, in all cases, scalars or arrays. This also 

applies to loading and storing operations that will be discussed in Subsection 

5.6.3. 

When a comparison scalar is used against a vector, the address of 

the vector term where the comparison is made can be entered into the accumula

tor. This represents the first occurance rather than a simple Boolean True. 

The Scalar can be replaced by an Array. If no bit is found, the usual zero 

can be recorded. 

Compression is the result of creating a vector from A for each 1 

of a Boolean vector M and discarding an A for each corresponding zero of M. 

Expansion is the result of creating a vector from A for each 1 of 

M and adding a zero term for each zero of M. 

More powerful vector and matrix instructions are presented in the 

next subsection. 

5.6.2.7 Composite Array Functions 

One composite function is reduction. The reduction operation s)~bol 

"/" specifies that each term of a vector (or if a matrix, then each term of a 

column) is sequentially combined functionally in accordance with an operator 

contained in the OP Code field. For Matrices, the operation is repeated for 
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each column, producing a vector of answers. Reduction is monadic. To operate 

across ro~s, the matrix should be loaded Transposed. Each possible operator 

in the arithmetic instruction set can be used with reduction. Thus a + operator 

will produce the scalar sum of the vector terms (+/). 

A second composite function is the generalized inner product. The 

inner product operation code specifies that the address field of the instruction 

contains two operation codes. The first operation code is applied term by term 

for each member of a column of H against each member of a row of A. This opera-

tion theoretically produces a matrix of answers, but these answers are reduced 

(see above) by the second operation to produce a vector of reduced answers. 

Thus A'x.+M is the ordinary matrix product of M and A. Again each 

of the dual operators can be any of the possible operation codes. 

A third composite function is the Generalized outer product, wherein 

each term of M is functionally combined with every term of A producing, for 

example, a matrix from two vectors. The Outer-Product Operation Code requires 

a single operator in the address field, and corresponding new dimension words 

are created with the result. 

A fourth composite function is the reduced outer product. Each term 

of M is applied to A through the first operator producing a vector of length A 

and each successive vector produced by subsequent terms of M is reduced with 

the first vector in accordance with a second operation code, also provided in 

the address field. 

M v / = A v/Mo. =A This will produce the function of 

Membership*, i.e., which elements of M are present somewhere is A. 

Other powerful matrix operations that were described in [5.1] such as 

the determinant, cofactor and divide cofactor, have been left out of the later 

report [5.2 and 5.'3]. Apparently these instructions will be implemented by 

*These equations are taken directly from [5.3], but according to the right-to
left rule it appears that they should read M = / v A _ v / M =. 0 A. 
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subroutines rather than DPE hardware. Other array manipulating instructions, 

including loads and stores, are described in Subsection 5.6.3. 

5.6.2.8 Programmables 

According to [5.1] programmable Aritl~etic Processor instructions 

be defined as required. The statement that any instruction deemed useful could 

be specified at any time and placed in the instruction set seems to be too 

general because there seem to be some quite serious restrictions on the variety 

of possible micro instructions. The limitation is that the total number of 

instructions presented above, all the PMU instructions and the micro instructions 

must be less than 256 - the number allowed by the 8 bit OP Code. Even Raytheon's 

example of coordinate conversion as a possible function that could be "micro 

programmed" using the available control signals is a relatively simple function 

and is not representative of the range of functions for which microprogramming 

would be useful. 

In the later version of Raytheon's report they have omitted reference 

to programmable arithmetic Processor instructions so this feature may have been 

withdrawn [5.2]. 

5.6.2.9 Omitted Instructions 

The . latest references 15.2 and 5.3] have omitted several instructions 

that were under consider~tion previously [5.1] and that should be reconsidered. 

They are memory plus one to accumulator, memory minus one to accumulator, add 

magnitude and subtract magnitude. The first t\vO are particularily important 

when one considers the number of counters that are normally incremented or de

cremented in an average program. 

Also two very useful bit manipulating instructions Set Bit Nand 

Reset Bit N has been eliminated apparently. Also the instruction Reverse Bits 

has been deleted but it would appear to have limited application. 
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5.6.3 Special Handling Instructions (AP and p~ru) 

The special handling instructions require the Program Management 

Unit (PMU) as well as the Arithmetic Processor for processing. These instruc

tions include loading, storing and array manipulating instructions. 

As previously described,. the simple clear and add instruction 

may be a scalar which requires very little PMU involvement other than the 

data Fetch. Or, the data type may be double precision or Complex, in which 

event the PMU will obtain two consecutive operands and place them in the 

Queue marking the data type appropriately. If the data is an Array, the PMU 

will assign a Task Memory Address to start the Array and send this address 

to the Accumulator appropriately marked as an array, and proceed to enter the 

entire array into task memory beginning with this location. To accomplish 

the transfer (or load) the PMU needs a Task Memory Pointer, for addressing 

purposes. Also required is a counter to count each word as it enters. The 

Array may already be located in the Task Memory, in which case it usually 

must be picked up and moved, as in a Memory-to-Memory transfer, since the 

Accumulator version of the Array is subject to modification, while the original 

array is not to be changed. 

To avoid unnecessary array transfers, several additional instructions 

which are largely handled· by the PMU or the RAMM PMU have been defined. 

Load Column: The instruction addresses the first word of the 

column. The column dimension is read first from Memory and followed by con

secutive words which comprise the column vector. The remainder of the opera

tion is treated as a conventional vector load instruction. 

Load Row: The instruction addresses the first word of the row. 

The row dimension is read first from Memory. Memory addresses are incremented 

by the column length to produce the desired row vector. The instruction is 

then treated as a conventional load. 
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Load Shape: The instruction addresses the Array as usual for read

ing the entire array. Reading stops with the last dimension word. The opera

tion is subsequently treated as a conventional load instruction. 

Monadic Shape: The dimension vector of the Array which presently 

resides in the accumulator replaces the entire array. 

Reshape: The vector M is read from Memory and these dimensions 

of M replace the dimensions of A. If the total length of M is shorter than 

A, the size of A is appropriately foreshortened. If A is shorter, the A terms 

are repeated from the beginning until length required is satisfied. Cycling 

Array A is the normal process in dealing with A as a Matrix (i.e., see inner 

product). 

Two pages of Task Memory are assigned to Matrix Operations, and 

each time the Array in the accumulator is modified, the Working Page is moved. 

This makes all Matrix Operations dynamic. The above Monadic Shape moves the 

dimension vector, and effectively POPs the other page pointer. Reshape thus 

finds space for the dimension vector even though the original vector was 

shorter. 

Catenate: The dimension of Array M modify the dimension of Array 

A. If both are vectors, then lengths are added. If both are Matrices, then 

row dimensions are added. One combined Array is formed by transferring first 

Array A, then following it by Array M. 

Catenate by Column: The column dimensions of ~1 are added to A. 

A single array is formed by reading a column of A follo\ved by a column of }1 

until both arrays are completed. The number of rows should be identical. 

(If not, the dimensions of M governs as in reshape and A will be truncated 

or repeated as required). 
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Laminate: An additional dimension will be formed by increasing 

the dimension vector. The new dimension will be length 2. The two arrays 

are assembled as in Catenate. 

Laminate Column: A new dimension is formed with the contents of 

the last old dimension (i.e., Vector length becomes Row length) and the column 

length becomes 2. Arrays are merged by alternating words of each. 

Load Transpose: The Rowand Column dimensions are exchanged. The 

Memory reads each row in sequence rather than columns first. 

Transpose: Same, except applied to the Array in the accumulator. 

Reverse: The Array in the accumulator is addressed backwards, to 

produce the new array. 

Store: The accumulator is stored in the Task Memory at the address 

supplied. Store is accomplished according to specified data types, for example 

there is an instruction Store Integer Vector. Overflow and other indicators 

are provided for all store operations. 

5.6.4 PMU Only Instructions 

The instructions listed in this section are taken from an early 

reference [5.1] and may have been changed. The Branch and Task Memory 

Instructions are: 

1. NOP No operation 

2. XEC* Execute instruction located at ADDRESS 

3. TRU Transfer unconditional 

4. TRS* Transfer to subroutine 

5. INC Increment memory contents 

6. DEC Decrement memory contents 

*Explained further in [5.1]. 
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are: 

The PMU Scratch Pad (PMUSP) Instructions and Stack Operations 

1. LDSP Load scratch pad register 

2. STSP Store scratch pad register 

3. TDSP* Transfer on decremented scratch pad: 

PF designates PMU Scratch Pad register and R 

equals decrementing amount. If the decremented 

PMUSP value equals zero, a transfer is made to 

the ADDRESS, otherwise the PMUSP register is 

replaced with the decremented value. 

4. APST* Advance Program Stack Pointer: 

The pointer in PMUSP designated by PF is 

incremented by one and the program counter 

stored in this PtIDSP register, and the ADDRESS 

value is put in the program counter. 

5. RPST* Return program stack pointer: 

The 12 least significant bits of the memory 

location specified by the PF replaces the 

contents of this location are decremented 

by one. 

6. AAST* Advance accumulator stack: 

The contents of the A stack pointer 

located by PF field, are incremented by 

one, and the contents of the accumulator 

are stored in the incremented memory 

location. Incremented A stack pointer 

is restored. 

*Exp1ained further in [5.1]. 
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7. RAST* Return accumulator stack pointer: 

8. AEST 

9. REST 

Contents of memory location specified by PF 

are sent as an operand to APQ. The RAST OP-

CODE is interpreted as a NO MODE load accumulator 

and the value of the A-stack pointer is decremented 

and returned. 

Advance external device stack pointer: 

Similar to AAST. 

Return external device stack pointer: 

Similar to RAST. 

For some unknown reason Raytheon refers to the PMUSP as the FSP for Fetch 

Scratch Pad in this section. 

5.6.4.1 Load and Store Instructions 

Two basic load operations (LD = load and LN = Load Negative) are 

combined with four mode options (A = fixed point, F = floating point, 

C = complex and I = integer) and three word length options (blank = full word, 

LH = left half and RH = right half) to produce 24 load instructions. The 

load instructions actually cause a mode change to the designated mode. All 

the load instructions are listed in {5.1], but they are not included here 

because of the probability that they will be changed. 

The store instruction STA is defined for full word, left half and 

right half word. A Deferred Store instruction, DST, is also defined (see 

subsection 5.2.4). 

5.6.4.2. Input/Output Instructions 

The development of an adequate set of Input/Output instructions was 

impeded by the lack of definition of the relationship of the DPE to the external 

*Explained further in [5.1]. 
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subsystems. However, one major instruction, LDE or Load External, is defined 

in which bits 8 to 11 specify the various subsystems the PE may wish to 

communicate with. Examples (and assigned code) are as follows: Main memory 

or RAMM (0), BORAM (1), Matrix processor (2), bulk processor (3), I/O #1 to 

#4 (4-7), DPE #1 to #4 (8-11), Master Executive or MEC (12), System Clock (13), 

Operator's Console (14), and undefined (15). (Note the present design calls 

for a Signal Processing Element rather than a matrix processor and a bulk 

processor.) 

The processing of the Load External instruction in the p~ru involves 

placing a 40-bit word on the external cable to the I/O subsystem. The 40-bit 

word is composed of bits 8 to 15 of the instruction plus the full 32 bit 

word from the memory address specified by the effective address. 

Besides Load External instruction, other I/O and interface instruc

tions such as STE (store external), LDB (Load BORAH) and STB (Store BORA.'1) 

would also be implemented. Since all I/O instructions have the same format 

to the DPE and merely get interpreted differently by the device, new subsystems 

and instructions can be added ~vithout affecting other elements. 

In summary when the list of AADC array instructions is examined 

(including reduction, inner product, outer product, index generator, ravel, 

dimension, catenation, lamination, rotation, transposition, reshape, take, 

drop, reversal, expansion, compression and many array manipulation instructions), 

it should be obvious that the Data Processing Element has many of the features 

necessary to execute the APL language directly in hard\vare [5.3 and 5.6]. 
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5.7 DETAILED DESIGN 

The detailed design of the PE is considered beyond the scope of this 

report. Section 7 of Reference 5.1 contains 84 pages of logic diagrams, wiring 

diagrams, logic equations and explanation which represents the detailed design 

of the PEe Although parts of some diagrams are unreadable, this section seems 

to be quite satisfactory for further study in the detailed design of the PE, 

including a detailed simulation. Raytheons 1972 reports are not available at 

NPS and therefore it has not been determined if part of Reference 5.1 has be-

come outdated [5.3]. , 
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5.8 CONCLUSIONS 

5.8.1 Current Status of DPE Design 

The current status of the Data Processing Element as reported at 

the 1973 AADC Symposium in January 1973 [5.4] is that: 

1. The Raytheon interim report [5.3] has been superceded by a 

final report dated December 1972 (Not yet available at NPS). 

2. Part III of the Final Report referenced above is a DPE Users 

Reference Manual describing how to use the DPE as it now exists. 

The DPE now exists as two simulations in APL - one simulating 

the PMU and the other simulating the Arithmetic Processor. 

This document formally defines the basic DPE operations by 

describing the operations at the bit level using APL. The DPE 

simulator can be used to verify programs written for the DPE. 

With fairly light load (about 10 other users) it takes about 

15 minutes of elapsed time to complete 1000 additions on the 

DPE simulator. 

3. The DPE Advanced Development Model (ADM) is scheduled for 

delivery in March 1974. The PHU for the AD~1 will be four 

modules (compared to one card on final AADC version) with about 

the same number of modules for the Arithmetic Processor. The 

ADH will operate at 2 HIPS using 11 nanosec/gate off-the-shelf 

logic. It will use a 4K, 36-bit, ISO-nsec Task Memory. 

4. The ADDRESS field has been extended to l6-bits by dropping 

the R field. This means that 64K of virtual memory can be 

addressed and thus any program module or array can be 64K 
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words long. A program may still have many program modules. 

5. All arithmetic operations are completed as double precision 

operations. The results is then stored, as specified by the 
, 

result data type, as a 32-bit integer, a 24-bit mantissa and 

8-bit exponent real number, or a 56-bit mantissa and 8-bit 

exponent double precision number. 

6. The DPE now has a multi-bus system feature that is actually a 

one word input queue that is always available for access from 

~he bus. Thus any unit can communicate with a DPE by simply 

sending a word on the bus. The unit does not have to test 

for DPE busy or wait because the input queue is always avail-

able (every 150 nsec). 

7. The Program Management Unit (PHD) is a modular stand-alone 

minicomputer. It has its own instruction set and operates on 

16-bit words. It can address all 64K words of virtual Task 

Memory. It performs support for the Master Executive Control 

(MEC) using a microprogrammed hardware ROM and special stack 

instructions. 

8. The PMU is also being considered as the external I/O control 

unit - see chapter 2. 

5.8.2 Conclusions and Future Research 

I will have to agree with Raytheon in that, " ••. this has been one of 

the most far reaching and significant studies with respect to the Processing 

Element Analysis, Design and Architecture. The tremendous capabilities 

incorporated into the AADC system will have an effect upon future computer 

architecture of any system attempting to make machine design more compatible 
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with High Order Languages. Conversely, HOL design can be improved by a con-

sideration of the architectural concepts of AADC." 

When the size and cost of PE is considered in addition to its tremendous 

capabilities, this design has to be the biggest breakthrough in computer hard

ware development since the transistor. 

The problem now - assuming the PE can be built according to the design 

specifications - is to develop the rest of the AADC equipment to effectively 

utilize this powerful processor and to develop High Order Languages and Problem 

Oriented Languages so that the user can easily and effectively program the 

powerful AADC system. The AADC with all its power is not going to make any 

significant impact on any of the major computing problems unless the AADC also 

reduces the cost of software development and maintenance. 
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Problems on the PE 

5.1. Design a four bit at a time fixed point multiplier using, 

a) AND, OR and NOT gates, 

b) NAND gates. 

5.2. Design the polynomial execution hardware using, 

a) ax + b modules, 

b) register transfer modules (RTM) , 

c) logic gates. 

5.3. Assume the instructions are not uniformly mixed at the ratio of 7 short 

instructions to 3 long ones, but are bunched so that, ·for any set of 16 

sequential instructions, the ratio is significantly different. Calculate 

the actual throughput for different ratios. Calculate the probability of 

getting 16 instructions with a given ratio when the long term ratio is 7 

to 3. Plot the actual throughput verses the probability of getting that 

throughput (i.e., that short term ratio). 

5.4. Calculate the expected queue length in each case in problem 5.3. What 

would be the significance of doubling APQ? 

5.5. Calculate the actual throughput for various ratios of branching along the 

less probable path, assume a uniform mix ratio. 

5.6. Construct an example where the execution time is significantly reduced, 

as well as the length of the program, by Parenthesis Control. 

5.7. How many coefficients are needed to obtain 32 bit accuracy for each of the 

functions in Table 5.2.2? How many for 20 bit accuracy? What is the 

minimum set of coefficients to calculate all the functions? Discuss the 

tradeoff between speed of execution and the amount of storage for the 

coefficients. 
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1.8. Estimate the time to complete each of the vector and matrix operations. 

How does the operand fetching time compare to the actual execution time? 

1.9. In APL the matrix product has been generalized to apply to any two 

operations as well as the standard multiply and add operations. Assuming 

this can be done on the PE and that the execution time for each instruction 

is equivalent to add (i.e., takes 100 nsec), estimate the time to complete 

this operation for a matrix with N elements. Compare it with the standard 

matrix multiplication time. Also compare the instruction fetching time to 

the execution time for this operation. (An example of the use of this 

operation may involve the equal and add operations to find the sum of the 

number of places that two matrices have the same elements.) 

>.10. (a) Construct a set of HOL constructs to take advantage of the powerful 

vector and matrix machine language instructions in the PEe 

(b) Draw a flowchart of a compiler to convert the HOL constructs into 

PE instructions. 

(c) Check the operation of your compiler by writing a computer program 

and testing it. 

(d) Derive algorithms that do not limit the size of the matrices in the 

HOL. Hint: This probably involves partitioning the matrix and may 

involve recursive calls. 

(e) Repeat (b) and (c) above for the algorithms in (d). 

(f) Estimate the execution speed for the operations in (a) and (d) above. 

5.11. How do the execution times for the algorithms in question 5.10 (d) change 

if there are 32 registers capable of manipulating 5 x 5 matrices? 



5.12. If the AP scratch pad were increased to 32 registers could the cofactor 

mechanism discussed in the report be generalized to handle 4 x 4 and 

5 x 5 matrices. 

5.13. Determine the rationale for the statement, if it is true, that multiply 

and division algorithms are simplier for the sign and magnitude number 

system than for 2's complement number system. 

5.14. What algorithms exist in the literature for fast multiplication and 

division using 2's complement, l's complement or sign and magnitude number 

systems? 

5.15. Hhat are the advantages and disadvantages of using a module N number 

system for AADC? Hint: consult notes by Ray Nilson, UCLA. 

5.16. Simulate the block diagram shown in Figure 4.5 of Reference 5.1 (which is 

a detailed version of Figure 5.3) and get a listing of all the functions 

which could be produced by selecting various control signals. Which ones 

might be useful for micro programming and should be added to the macro 

instruction set. 

5.17. Count the total number of OF codes defined in this report. How many micro 

instructions can be added into the 8-bit macro OP code? What is the 

minimum set of micro instruction that must be added to the PE so it can be 

an effectively micro programmed. 

5.18. How could P and V operators [Dijkstra 5.7] be implemented in the PE? 

{The P and V operators ar~ two primitive operations used to simplify the 

communication and synchronization of processes or tasks, the primitives 

prevent any group of tasks from blocking each other and causing a deadlock. 

The primitives operate on non-negative integer variables called "semaphores" 

and have the property: 



1. V(s): s is increased by one in a single indivisible 

action; the fetch, increment and store operations 

cannot be interrupted. 

2. P(s): If s is not zero decrement s by one in a 

single indivisible action. If s equals zero, the 

P operation must wait until s is not zero. 

The indivisibility of the P and V primitives assures the integrity of 

the value of the semaphore [5. 8 , section 3.3].) 
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A&C 

AM 

Baseline 

BORAK 

Bulk 
Parallel 
Processor 

~C 

MID 

MINCOMS 

MMM 

~p 

os 

OSP 

PE 

PM 

Glossory of Terms for MEC 

- Same as Processor Element or PE for this chapter. Actually a PE 
is an A&C plus a Task Memory, see Chapter 5. 

- Associative Memory: heart of hardware MEC and used for fast 
searches of current PMID words and hardware resource words. 

- The largest AADC architecutre designed to satisfy worst-case 
conditions. It consists of a large BORAM, RAMM, several PEs each 
with its own TM, dedicated I/O units, a high speed I/O multiplexor 
and probably a hardware MEC. 

- Block Oriented Random Access Memory: stores PMs in blocks of 128 
to 512 words. 

- Same as Matrix Parallel Processor. 

- Master Executive Control. 

Mode Independent Data: data that is used to communicate between 
PMs and between modes. 

- Multiple Internal Communication System: a standard interface to 
the rest of the aircraft. 

- Multiple Memory Multiprocessor: an AADC architecture similar to 
Baseline except the PEs have no TMs and Program Modules are executed 
from RAMM. 

- Matrix Parallel Processor: for AADC parallel processing of radar 
signals, video signals and multiple targets. Also called Bulk 
Parallel Processor and Signal Processing Element. 

- Optimized Simplex: same as OSP. 

Optimized Simplex Processor: the m1n1mUm AADC architecture 
consisting of a single PE with its TM, ~, BORAM, I/O interface 
and possibly a MPP. 

Is synonomous with Processor in this section; a powerful serial 
processing central processing unit or CPU capable of executing 
3.3 MIPS (Chapter 5). 

- Program Module: a segment of a program. 

6.iv 



Processor 

T.M 

- Program Module (Task) Identification Words. 

- Short for Processor Element or PEe 

- Random Access Main Memory: used to store mode independent data 
and to buffer I/O. 

- Read Only Memory: used by hardware MEC for permanent data. 

- Time Division Multiplexed Block Transfer Multiprocessor: an 
intermediate AADC architecture similar to the Baseline system 
but with no hardware MEC. 

- Task Memory: 4K word random access memory attached to a PE for 
holding the currently executing PM and temporary variables. 
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CHAPTER 6 

MASTER EXECUTIVE CONTROL 

6.1 INTRODUCTION AND SUMMARY OF RESULTS 

This chapter presents the results of a design study of the executive 

systems, or operating systems, for the All Application Digital Computer. Each 

of the functional building blocks comprising an AADC system must perform its 

functions under the guidance provided by an executive system called the Master 

Executive Control (MEC). 

This chapter is a report on the design study for the MEC and includes 

design philosophy, design tradeoffs, MEC capabilities, operating characteristics, 

NEC evaluation criteria, and methods of implementing MEC functions including 

some English language flowcharts. The chapter is based primarily on a design 

report by Honeywell [6.1] and a paper [6.5]*. 

6.1.1 Introduction 

The development of the MEC is based on advanced technology and meth-

odologies such as: 

1. AADC architectures based on modularly expandable 

functional building blocks, 

2. New memory development and complex memory hierarchy, 

3. LSI packaging, 

4. Micro programming, 

5. A powerful Processor Element, 

6. Multiplexed I/O. 

This chapter is basically a simplified and shortened version of Reference [6.1]. 

*Unfortunate1y a later Honeywell report [6.7] was not available at the time of 
WTiting and is not included in this Chapter. See current status of MEC in Sub-
section 6.7.3. 
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References [6.2 and 6.3] give an initial view of the MEC and may be 

consulted for historical purposes. References [6.4 and 6.5] give a simplified 

version of the" material in [6.1]. Whereas Reference [6.1] considers a total of 

ten combinations of hardware organization and Master Executive Control systems, 

this report will only consider three of the four recommended combinations plus 

one extra. The ten combinations include all possible combinations of the four 

hardware organizations with the three MEC systems, with two exceptions. The four 

hardware organizations include the AADC Baseline system, the Time Division 

MUltiplexed Block Transfer Multiprocessor, the Multiple Memory.Multiprocessor 

and the Optimized Simplex organizations. The three MEC systems include a Special 

Purpose Hardware MEC, a Software MEC using a Dedicated Processor and a Floating 

Software MEC. One of the combinations that is not considered is the TOM Block 

Transfer Multiprocessor organization with hardware MEC since this organization 

is essentially a Baseline organization with a failed hardware executive. (In 

[6.1] the two software executives for th~ TDM Block Transfer Multiprocessor 

organization are included along with the discussion of the Baseline organization.) 

The other combination which is not considered in [6.1] is the Optimized Simplex 

organization with the hardware MEC because of the simplicity of the organization 

and the relative expense of the hardware MEC. 

The four recommended combinations are the Special Purpose Hardware MEC 

with the Baseline and the ~Iultiple Memory Multiprocessor organizations, the 

Floating Software MEC with the TDM Block Transfer Multiprocessor organization and 

the Dedicated Software MEC with the Optimized Simplex organization. Notice that 

Honeywell, in the recommended combination, has changed the definition of the 

Optimized Simplex organization; the Optimized Simplex has a single Processor 
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lement (PE) designed as a minimal system but Honeywell has recommended a second 

rocessor to execute a Dedicated MEC. The justification for the second processor 

,8 that "a single processor with floating software does not exhibit the 

'eliability, graceful degradation or speed deemed necessary for this system." 

:ince the single PE is still a viable configurate for AADC, the Optimized Simplex 

~th Floating Software MEC is also included in this report. By their own 

~dmission the Honeywell's report is "quite formidable and includes a large amount 

1£ detail", containing some 247 single-spaced pages - not counting the six 

lppendices which explain the basic assumptions of the study and calculation of 

:he logic and memory requirements. It is hoped that this chapter will be a more 

~eadable version of that material, but that it will still contain the essential 

lesign and operating information of the MEC. 

This chapter is divided into seven sections including this one. The 

;econd section describes the hardware MEC on the Baseline system. This system, 

Ln a slightly modified version, could also apply to the Multiple Memory Multi

~rocessor organization. The third and fourth sections describe the other two 

recommended combinations of AADC hardware and MEC systems as described above. 

rhe fifth section contains the true Optimized Simplex Configuration with a 

floating MEC. The four sections above all contain subsections on system 

operation, MEC functions and operations and the basic criteria for comparing MEC 

Systems. The sixth section is a summary and critique of the Honeywell evaluation 

techniques and recommendations. The last section contains recommendations for 

further developmental study of the MEC, as well as recommendations for improving 

the course material in this chapter. 
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6.1.2 Summary of Results 

This subsection is a quotation from [6.1] • 

. A study of MEC implementations has been completed for all 
system configurations mentioned in section 1.1, [actually 
section 6.1.1]. Where applicable, three methods of imple
mentation were flow charted, timed, and evaluated. The 
resultant English language flow charts, and detailed memory 
and timing estimates are included in this report. Summary 
flow charts are included to serve as a key to the operation 
of the overall Master Executive Control. 

All implementations were studied with the functional and 
operational characteristics of the basic AADC concepts i~ 
mind. Wherever the MEC implementations required a 
characteristic of an AADC functional unit or a program 
module which is not specifically covered in the. baseline 
definition, an explanation of this characteristic was 
presented. 

In order to effectively evaluate the MEC implementations 
studied, a list of attributes was formulated. Each 
attribute was assigned a weight corresponding to its 
assumed relative importance. For each system configuration, 
a table was constructed and the candidate implementations 
were scored for each attribute. From these tables a 
weighted sum for each implementation was obtained. This 
weighted sum is a measure of the efficiency of the imple
mentation method when used in the particular system for 
which the table was constructed. 

The evaluation of implementations was complicated by the 
need for certain information which is not, as yet available. 
Examples of this sort of information are: 

• 
• 

Total tasks in a system 
Number of tasks in a mode 
.Average run time of a PM 
Average number of MEC functions required per PM 

The recommended implementations for the four system 
architectures considered in Lhis study were made with this 
in mind. 

In the Baseline and Multiple Memory Multiprocessor systems 
the special purpose Hardware MEC is recommended. This is 
due largely to its speed advantage, a factor of about four 
to one over the dedicated software, and eleven to one over 
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the floating software in the baseline system. Other 
factors which pointed to this recommendation are those 
relating to the fact that this unit is specifically 
designed for MEC functions. This report shows that a 
.special purpose hardware implementation of a Master 
Executive Control unit can be very effective when 
utilized in a very complex multicomputer or multi
processor system. The use of an associative memory in such 
a hardware executive can result in very high speed execution 
of executive functions. It has also been shown that the 
hardware complexity of such a unit will be considerably less 
than that required in a single general purpose processor. 
This infers that a special purpose executive should have 
cost, reliability, size, weight and power advantages 
over the use of an entire processor to accomplish the MEC 
functions. 

The floating software MEC implementation was recommended 
for the Time Division MUltiplexed Block Transfer system 
primarily because of graceful degradation, cost and the 
other related attributes of size, weight and power. The 
floating software is an ideal MEC implementation in a 
system which does not require a heavy executive load. 
The overhead time required for this implementation is 
quite formidable and greatly affects the computation 
time of some executive functions. The required storage 
of a MEC kernel in one processor at all times also places 
a restriction on the size of program modules. 

The Dedicated software MEC implementation was recommended 
for the Optimized Simplex system due to its characteristics 
in every attribute except cost, size, weight and power. 
The use of a single processor (floating software) did not 
exhibit the reliability, graceful degradation or speed 
deemed necessary for this system. This appears to warrant 
the cost of the additional processor. 

As a result of this study, the following conclusions can 
be drawn: 

• 

The use of a special purpose hardware executive 
utilizing an associative memory can execute 
executive functions considerably faster than 
either software implementation. 

If a large enough quantity of special purpose 
hardware executives are built, they have the 
potential of being less expensive than a system 
processor dedicated as the executive. 
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• 

• 

• 

• 

A special purpose executive can be made more 
reliable than the proposed system processors. 

A floating software executive has high over
head requirements and should only be used in 
a system with low executive function load. 

A 4096 word task memory should be sufficient 
for all software executive requirements. 

A software executive requires each system 
processor to contain a real time clock and a 
loop counter. 

A section of this report has been devoted to the definition of MEC 
related studies which are felt to be necessary to insure the 
smooth evolution of the AADC concept. These recommendations 
were made to show the steps which would result in'the implemen
tation of a MEC to be used in a prototype AADC system. 
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6.2 HARDWARE MASTER EXECUTIVE CONTROL 

The hardware Master Executive Control (MEC) is by far the fastest and 

the most powerful MEC for the AADC system, being four times faster than the 

dedicated software MEC and eleven times faster than the floating software version. 

The hardware MEC is the recommended version for the Baseline and the Multiple 

Memory Multiprocessor Systems. 

The hardware MEC is responsible for the following basic functions: 

1. Monitor the various processing elements in the system 

to meet the requirements of all (externally-requested) 

modes of operation of the aircraft. 

2. Assign operational programs to the various processing 

units. 

3. Supervise data transfer between units within the AADC. 

4. Supervise the overall system operation, for such items 

as processor failures, interrupt requests, etc. 

The design and operation of the hardware MEC as it pertains to the 

Baseline System is discussed in this section. The means of communicating 

between MEC and other AADC components is presented, along with a summary flow 

chart of the MEC operation. All the routines in the MEC are listed and two 

sample functions are presented in detail. Some of the material in this sub

section is taken from [6.5]. 

6.2.1 Applicable AADC Configurations 

The Baseline configuration contains the BORAM for Program Modules, 

RAMM for mode independent data and I/O buffers, several PE's (probably at least 

three) each with its own Task Memory for serial processing, Matrix Parallel 
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Processor for fast parallel processing, a high speed multiplexed digital inter-

face as an interface to MINCOMS, dedicated I/O units for any PE with heavy I/O 

requirements, .a programmable channel selector switch capable of connecting any 

PE with any dedicated I/O Unit, and a special purpose hardware MEC for controlling I 

the operation of the AADC system. The Baseline system is shown in Figure 6.1. 

For further description refer to Chapter 2. 

6.2.2 System Bussing for Hardware Executive 

Four distinct busses are used to transmit tasks and data throughout 

the Baseline system. This bussing concept allows the MEC to maintain an orderly 

flow of data throughout the entire AADC system. These are shown in Figure 6.1 

and defined below. 

1. Program Module (PM) Transfer Bus. This unilateral 
bus is used to transfer PMs for the BORAM to the 
processor (or PEs). 

2. Data Bus. This dual width bus is used to transfer 
data simultaneously between PEs and I/O or mode 
independent data (MID) storage areas of RAMM. 

3. Processor Bus. This bus allow each PE to communicate 
with its nearest neighbor. It is not capable of by
passing a failed processor. An alternate path around 
a failed processor is though the data bus. The 
primary use of this bus is in executing "special 
processing ll PM's on adjacent PE's. 

4. Executive Bus. This bus provides the communication 
and control between MEC and all other system 
resources. It is used to transmit all interrupt 
requests within the AADC system. It must be an 
ultra-reliable bus because the consequence of its 
failure could be catastrophic. 
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The purpose of the buses is to allow the remainder of the system to 

continue its operation while PMs or data are being transferred without tying 

up other system resources, (except for a small amount of interference on the 

executive bus). The first two buses make it possible to have PMs being loaded, 

mode independent data from RAMM being transferred, and I/O data being trans

ferred to different Processors simultaneously with the only chance of conflict, 

the Occurence of a simultaneous request for MEC on the executive bus. 

6.2.3 AADC Baseline System Operation 

The job stream of the aircraft computer system is separated into a 

number of modes of operation. Each mode is segmented into a number of computational 

tasks called Program Modules (PM's). The proper operation of the system requires 

the computation of PM's at a given rate and in the proper sequence to effect 

completion of all required tasks in a given mode. 

Initially, all PM instructions and data are stored as a block, or series 

of adjacent blocks, in the BORAM. Requests for input data required by each PM 

are stored in the PM as instructions. 'PMs initiate interrupts to the MEC when 

mode independent data is required from the RAMM. PMs make requests directly to 

the I/O memory of the RAMM through the buffer access switch for external input 

data. 

The following types of PM's are assumed to be resident in the system: 

• 

• 

• 

Iterative tasks which have real time requirements. 

Real time tasks which are activated after the 

completion of other system tasks. 

Real time tasks activated by external interrupts. 
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A program module can call in a block or blocks of storage from the 

BORAH via an instruction. This instruction is sent to the MEC as a data trans-

fer request. ~y this means, a PM can call up its own successor, pull in another 

page of its own program, or cause an overlay of itself (or part of itself) while 

maintaining control of the processor. In the case where the PM continues to call 

itself, the PE is considered "dedicated" to the computation of that PM. 

Two types of PMs which require "special processing" are considered in 

this study. These are the following: 1) PMs that require two task memories 

and 2) pipeline processing PMs. In the first case, the second task memory is 

accessed through the control unit interface. In the second case, a group of 

adjacent processors is configured, each of which will compute the proper PM. 

Special processing PMs are given assignment precedence over other PMs with equal 

time constraints. 

PMs that require two task memories can be handled by allowing PMs to 

call up another PM or its own "second page". Therefore the special processing 

case in which a PM requires two task memories is not needed; however, the 

references to this case of special processing have been discussed here to 

emphasize this special capability. 

In order to assist in the operation of the MEC, a set of resource 

words are available. There is a word for each resource in ;he system and these 

words describe each resource and its present and past states. These words are 

stored in memory and can be read out when desired. For each mode* the PM , 

resource words may differ. Therefore, a new set of PM source words must be set 

active at the start of each mode. 

*The term "mode" is borrowed from avionic applications where it refers to the 
type of mission or particular part of the mission, i.e., cruise, alert, search, 
attack, bombing, etc. 
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Idle processors will notify the MEC by means of an interrupt. Upon 

detection of processor availability, the MEC will determine which PM has the 

lowest assignment deadline and assign it to the available processor. At this 

time, the PM is transferred from BORAM to the processor's task memory. Thus, 

in the task memory of a processor, the program module exists as an ordered set 

of instructions and data ready for execution. 

A PM may be assigned and processed a number of times while the system 

is in a given mode. Just prior to each execution, the PM is transferred from 

BORAM to task memory of the selected processor. Complete PHs are never returned 

from task memory to BORAM. Only selected data resulting from the execution of 

a PM may be written into the RAMM from the task memory. 

6.2.4 Description of MEC Functions 

The Executive Control functions in this section apply to all AADC 

systems, with only minor variations. The Executive Control recognizes when a 

mode change is encountered, evaluates on the basis of priority and importance 

criteria which (if any) program modules of the old mode are to be assigned to 

a processor. It also ascertains which tasks (Program Modules) are to be 

processed in the new mode and update the Input/Output data sensing for the 

requirements of the new mode. 

The MEC is cognizant of the status of the "channel selector switch" 

for dedicated I/O, and handles all access conflicts. Executive Control also 

presents the I/O switch, interfacing with the MINCOMS system, with mode infor

mation such that the switch will properly mUltiplex I/O data. When a processor 

becomes available for a new task assignment, the MEC determines the proper task, 
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based on the priority and importance criteria of the tasks and the capability of 

the available resources. Upon receipt of a transfer request, the MEC initiates 

a transfer of data by properly signalling the resources which are to send and 

receive data. It then monitors the transfer of data and keeps other units from 

interferring with the transfer. Any contignous block of data (including tables) 

may be transferred by a single request by specifying the first address and the 

numbers of words to be transferred. 

The MEC overhead from data transfer is small because the MEC does not 

continuously monitor the data transfer. Instead, the MEC initiates the data 

transfer and then releases control of the data transfer, and the MEC performs 

other processing while the transfer is occuring. Eventually either the data 

transfer will time out or a transfer complete interrupt will occur. At this time 

the MEC again enters into the previously initiated data transfer and takes control 

of the now completed (or possibly erroneous) data transfer. There is very little 

overhead involved in this process. 

The MEC accepts all system interrupts, determines their priority, and 

processes the interrupts at the proper time. Internal interrupts are sent from 

system elements to MEC. External interrupt data are stored in the I/O memory 

while the interrupt (with its priority) are sent to the MEC. 

The MEC also monitors the operation of all system resources. If faulty 

operation is detected, the control will initiate a test of the unit in question 

to determine and categorize a resource as operable, degraded, or inoperable. 

6.2.4.1 Special Safety-of-Flight MEC Function 

An additional function, that of the capability for safety-of-flight 

function, is performed independently of all AADC functions to assure "safety 

of flight". This function is not under control of MEC and acts independently 
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of the AADC system. The AADC acts as a backup to this system, and it will provide 

the computational capability in case the safety-of-flight computer fails. (The 

safety-of-flight computer may also be a AADC computer.) 

Several assumptions and three possible methods of implementing the 

safety-of-flight function are presented in [6.1, pages 14, 15], but the actual 

implementation has not yet been designed. 

6.2.5 Why a Special Purpose Hardware Executive Control Unit? 

In a multicomputer system such as the AADC baseline system there are 

three basic approaches to the implementation of MEC: 

1. Use of a system processing element dedicated to the 
performance of MEC functions (dedicated software ~mC). 

2. A software MEC program which is resident in BORAM 
and floats between available processing elements 
in the system for execution of executive tasks 
(floating software MEC). 

3. Utilization of a special purpose ultra-reliable 
hardware unit designed specifically to handle the 
executive control (hardware MEC). 

The floating software MEC and dedicated software MEC in such a system 

are executed on standard system processing elements which were designed to 

perform general purpose arithmetic, data handling, and logical operations. These 

processing elements were designed and sized to handle the programs of a typical 

aircraft mission. 

A special purpose hardware unit could be optimally designed by 

restricting the complexity and computational capabilities to those necessary to 

perform the MEC functions. This unit could also take advantage of hardware 

concepts which are not conventionally included in system processing elements. 
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Two examples of such concepts would be the use of ROM to store the executive 

program which enhances the MEC reliability, and the use of associative memory 

to speed up th~ many search operations required in MEC processing. Thus it 

appears that the optimum implementation wculd be a special purpose hardware 

unit. 

6.2.6 Philosophy and Operation of Hardware MEC 

The MEC operation is complicated by the asynchronous nature of inter-

rupts in a real time system. Depending upon the frequency of occurrence, the 

interrupts could become nested and thus cause excessive amounts of overhead 

computation and delaying the completion of the processing of some interrupts for 

a long time. Nesting of interrupts can be avoided by processing interrupts in a 

list structure, that is, during the processing of an interrupt no other interrupt 

can be processed. If an interrupt occurs it is placed on the list to be completed 

at another time. In order for such a system to be effective, the processing time 

required by each interrupt must be small. (At present, the longest interrupt 

takes 11 ~sec to be handled). This is', of course, the simplest method of 

handling interrupts and is adequate providing no interrupts must be handled 

immediately. 

The proposed MEC is based upon the following philosophy: 

1. Keep each executive function simple to 
minimize execution time. 

2. Utilize the search capabilities of an associate 
memory to minimize execution time of executive 
functions. 

3. Do not nest interrupts. 
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4. Place interrupts on a list in order of priority. 

5. Process interrupts to completion based on 
priority. 

6.2.6.1 Allocation of Hardware Resources 

In order to properly allocate the hardware resources of the system 

the MEC must be cognizant of the status of all hardware resources. This is 

accomplished through the use of resource identification words stored in the 

associative memory (AM) of the MEC. Thus each processor, bus, I/O unit, etc. 

has a unique associative memory word, called an identification word, which 

contains such information about the particular resource as: 

• Failure status 

Assignment status 

• Diagnostic information 

Resource identification. 

Each of these word types are of different numbers of fields, ranging from 4 to 

7, and different lengths from 8 to 22 bits. The MEC also has a MEC ID word. 

These hardware resource words are initially stored in the MEC read-only memory 

because of the assumed vo1iti1ity of the AM. These resource words are 

explained further in [6.1 pages 22-28]. 

6.2.6.2 Program Module (Task) Identification Words 

To assist in the assignment of PMs to processors, each PM has an 

identification word associated with it for each mode in which it is active. In 

each mode of operation, the proper PM identification words will be stored in the 

associative memory of MEC. These words are used to describe the past and present 

status of the program modules. Each word consists of twenty-five fields of 
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fixed or variable lengths. The fields contain the following types of information 

about the associated PM: 

Identity of PM 

• Address of PM in BORAM 

• Area of RAMM reserved for data storage 

• Diagnostic information 

• Priority in mode 

Scheduling information 

• Precedence relationship to other PMs in mode 

Resources assigned to process PM 

• Resources reserved to process PM 

Execution status. 

The names of each of the fields in the PMID words, along with their 

size and whether fixed or variable length, is given in Figure 6.2. Most of the 

field names suggest their purpose except for: 

1. The resource field which contains a designation for 
PMID word, Processor ID word, Bus ID word, Dedicated 
I/O word, Memory ID word, Matrix Parallel Processor 
ID word, transition PM, AM Word Available, MEC ID 
word or List Entry. 

2. The PM class which contains a code to represent 
normal sequential processing, parallel processing, 
task memory not sufficient or pipeline processing. 

The size of the PMID word is 148 bits which is significantly larger 

than the hardware resource words and, therefore, each PMID word would be 

segmented into several associative memory words. For further description of 

resource words see [6.1, pages 16-29]. 
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6.2.6.3 Ordering of Tasks in a Mode 

Due to the limited size of the task memory (assumed 4096 words) many 

programs will not fit into a processor. Therefore, all programs have to be 

segmented into a set of program modules that are to be executed in predetermined 

order: however, in order to save BORAM storage, some PMs can appear as parts of 

several overall programs. In the example to follow three different types of 

programs are to be processed. These are iterative programs, programs initiated 

by an external interrupt, and programs which are to be run once and only once in 

a mode. 

To ensure that all tasks in a mode are completed on schedule, an 

ordered assignment of tasks must be made, using a procedure somewhat similar to 

that used in critical path (or PERT) problems. The important information for 

each task is: the iteration period/completion deadline, task dependence, 

assignment deadline, execution time and whether it is a terminal task. The 

critical path solution will determine the ordering or tasks, the first assignment 

time and the assignment deadline. This information is then stored in the PMID 

words. 

Figure 6.3 shows a "typical job stream consisting of four programs which 

have been segmented into ten PMs. Program one is an iterative program consisting 

of PMS 1, 5, 2, 3, 4; program two is an iterative program consisting of PMs 1, 

5, 2, 6, 7; program three is an externally enabled program consisting of PMs 8 

and 9; and program four is a one time run program consisting of PM 10. PMs 1, 

S, and 2 are common to programs 1 and 2. 
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For each mode of operation, a job stream such as shown in Figure 6.3 

is drawn so that values can be calculated and stored in the appropriate fields 

of each PMID word. All terminal tasks (PMs which have no successor PMs) are 

placed in the rightmost column of the job stream chart. The iteration rate of 

iterative programs, the real time requirements of non-iterative tasks, is entered 

on the chart. From these values assignment deadlines are determined for all 

predecessor PMs with the assignment deadlines being the minimum difference 

between the assignment deadline of any successor PM and the execution time of 

the PM in question. Thus PM two has its assignment deadline determined by PM 

six instead of PM three and, therefore, its terminal task is PM seven rather 

than PM four. 
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Because it is assumed that there are enough system resources to 

successfully complete a job stream within the real time requirements of the 

system, no dynamic recomputation of critical path or complex scheduling algorithm 

is necessary. We have computed prior to the mission the assignment schedule of 

the PMs. Whenever a processor becomes available, a search will be made over all 

PMID words in the mode for the minimum value of assignment deadline and a zero 

in the operational status fields. (A zero in the operational status field 

represents PMs which have not been executed yet this cycle.) This PM is then 

assigned to aPE. 

All PMs have the digital value representing iteration rate (real time 

required) decremented at periodic time intervals. If this value goes to zero and 

the operational status is still zero, it is an indication of insufficient resources. 

If the operational status of the PM is one and the PM is a terminal task the 

entire program is reinitialized. This ensures that the P~ls are run once and only 

once per cycle. Note from Figure 6.3 that the operational status of all PMs in 

iterative programs (PMs 1-7) is set to zero. This in effect enables them for 

assignment. Program three (PMs 8 and 9) is not to be run until an external 

interrupt is received, thus the operational status of the PMs in this program is 

initially set to one. This in effect disables these PMs until the external 

interrupt is received and sets these fields to zero. Since PM nine has no 

terminal task (terminal task field equal to zero) program three is not reinitialized 

after completion. Program four (PM ten) is to be run once and only once. This 

is accomplished by initially setting the operational status to zero and setting 

the terminal task to zero. Thus the program once run will not be reinitialized 

again. 
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In the event of processor failure the number of computations that can 

be accomplished in a given time is diminished. This is noted by MEC when PMs 

time out (iteration field counts down to zero while operational status is zero). 

When this occurs the task load is decreased. The necessary information to 

accomplish this MEC function has been restored in MEC. It allows the MEC to 

selectively eliminate and/or halve the execution rate (double the iteration 

period) of programs on a priority basis. 

6.2.7 Description of Hardware Executive 

A special purpose hardware Master Executive Control - the recommended 

Executive for the Baseline and MMM systems - consists of three basic components: 

1. A read-only program memory (ROM) to store the 
entire MEC program, resource identification 
words, and program module identification words 
for each mode of operation. This memory is 
estimated at 5122 32-bit words. 

2. An associative memory (AM) - the heart of the 
MEC - which contains the PMID words for all 
active tasks (those in the present mode) as 
well as all hardware resource ID words for the 
system and the list' of all uncompleted MEC 
tasks (LIST). The AM is estimated at 11,600 
bits or 362 words. 

3. A logic and control unit (CU) to recognize 
interrupts, save register data, control the 
associative memory, transmit executive inter
rupts and execute the Executive program. 
This unit is estimated at equivalent to 4000 
logic gates. 

Upon mode change the PMID words for the new mode are loaded from the read-only 

memory into the associative memory, while the old mode PMID words are still 

present. (i.e., there is room for two sets of PMID words). The AM with its 

ability to search simultaneously over all words in parallel provides the 

necessary high speed operation for the MEC. 

6.22 



6.7.1 Summary of Hardware MEC Operation 

A summary of the operation of the hardware MEC is shown in a simplified 

form in Figure"6.4 and a slightly more detailed form in Figure 6.5. Whenever 

the system is initialized, an interrupt is received, or an executive task has 

been completed, a jump is made in the executive program to "start". The MEC then 

determines if there is presently an interrupt on the executive line. If no inter

rupt is present the highest priority class of interrupts is searched for the 

oldest entry, and this entry is then selected and processed. This allows first

in first-out operation within a given priority. The list of uncompleted tasks 

will never be empty since it contains household tasks which are not removed upon 

assignment, as well as interrupts which are removed. 

If an interrupt is present on the executive bus, it is simply placed on 

the list of uncompleted tasks in with the proper time and priority designation. 

The MEC then returns to the task it was processing at the time the interrupt 

occurred. Thus, an interrupt is not processed immediately but it is placed on 

the list of uncompleted tasks. 
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Figure 6.4. Simplified Flow Chart of MEC Operation 

6.2.7.2 List of Interrupts and ,Routines 

In order to accomplish the MEC functions of Subsection 6.2.4, a series 

of executive programs have been defined in flow chart form. These can be seen 

in detail in [6.1]. In order to keep execution time do\~, the basic programs 

(interrupts) have been segmented into a series of routines. A routine is placed 

on· the LIST as a result of a decision made during processing of an interrupt. 

Those interrupts and routines defined are shown in Table 6.1. A detailed flow 

chart of two sample interrupts are shown in the next section. One entry in 

Table 6.1 is designated as both an interrupt and a routine. This is because this 

program can be initiated by both an interrupt and by means of a decision made 

while processing another interrupt. 
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Table 6.1. Types of LIST Entries for MEC Interrupt/Routines 

PRIORITY' I T IILE INTERRUPTI 
ROUTINE 

31 Power Fail ure Interrupt 
30 Real Time Clock Failure Interrupt 
29 Master Executive Control Fa iI ure I nterrupt/Routin: 
28 Error Interrupt 
27 Loop Counter Interrupt 
26 Program Module Complete Interrupt 
25 External Program Module Enable Interrupt 
24 Mode Change Interrupt 
23 Real Time Clock Interrupt 
22 Channel Selector Switch Assignment Routine 
21 BORAM Test Routine 
20 RAMM Test Routine 
19 Bus Test Routine 
18 Processor Test Routine 
17 Data Transfer Interrupt 
16 Data Transfer Error Routine 
15 . Memory Address Error Routine 
14 Program Module Address Error Routine 
13 Data Transfer Request Routine 
12 Program Module Reinitialization Routine 
11 Program Module Assignment Routine 
10 
through Miscellaneous Housekeeping Routines 
1 

6.26 



Except in the case of the data transfer interrupt, all interrupts are 

of higher priority than any routine. This is because routines are placed on the 

LIST as the result of processing an interrupt. The exception is made in the case 

of the data transfer interrupt because the transfer of data requires that the 

sender and receiver be operable. If requests to test hardware units are on the 

list, they should be processed before an attempt is made to transfer data. The 

channel selector switch assignment is of higher priority to preclude the 

possibility of transferring a PM to a processor and/or processing to begin before 

a dedicated I/O unit can be assigned. 

In a hardware executive, the LIST is stored in the associative memory. 

A discussion of this LIST and the entries which are made are presented here for 

clarity. 

When an interrupt or routine request is made, a request 36-bit word is 

stored in the associative memory. This word must store all the information that 

is required for MEC to process the request. The general form of the request word 

is shown as follows. Many of the fields shown are not used for most of the 

request words, but the form shown allows processing of all requests. 

r 

PRIORITY CLASS NUMBER PROCESSING 
CLASS LEVEL IDENTITY SOURCE MEMORY ADDRESS WORDS BUS STATUS BITS 

PO' PI' P2' P3 

5 3 3 3 1 10 6 I 4 bits 
Table 6.2 shows the contents of the fields for the requested words for 

each interrupt and routine. As can be seen many fields are blank. 
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Table 6.2 Request Words for MEC Interrupts/Routines 

NAME 

Power Failure Int. 
Real Time Clock 

Failure 
MEC Failure Int. 
Error Interrupt 
Loop Counter Int. 
PM Complete Int. 
External PM Enable 

Int. 
Mode Change Int. 

Real Time Clock 
Int. 

Channel Selector 
Switch Assign
ment Routine 

BORAM Test 
RAMM Test 
Bus Test Routine 
Processor Test 
Data Transfer 

Interrupt 

Data Transfer 
Error Routine 

Memory Address 
Error 

PM Address Error 
Data Transfer 

PRIORITY 
CLASS 

31 

30 
29 
28 
27 
26 

25 
24 

23 

22 

21 
20 
19 
18 
17 

16 

15 
14 

Request 13 
PM Reinitia1ization 12 
PM Assignment 11 

CLASS 
LEVEL 

0-7 
0-7 
0-7 

0-7 
0-7 

0-7 

0-7 

0-7 
0-7 

0-7 

0-7 
0-7 

0-7 

0-7 

OTHER NON-BLANK FIELDS IN REQUEST WORD 

No Request Word Generated 

SOURCE: 
SOURCE: 
SOURCE: 

ADDRESS: 
ADDRESS: 

IDENTITY: 

RAMM, BORAH or PEO. 
LOOP COUNTER in MEC or PEe 
pEIl. 

Absolute PMD of a terminal task. 
Address in ROM of the new mode's 
first PMID word; UWORDS: D of 
PMID words in new mode. 

Records number of RTC interrupts 
received before one is processed. 

IDENTITY: Dedicated I/O Unit D. 
SOURCE: PED. 

BUS: PM Bus or Data Bus 
SOURCE: II of PE to be tested. 
IDENTITY: In or out, error or successful; 
SOURCE: PE /I; MEMORY: RAMM or 
BORAM; ADDRESS: First Memory Address; 
o WORDS: II words or blocks; BUS: 
Data bus or PM bus; PO: Set to 1 if data 
transfer must be retried. 

SOURCE: II of PE to be tested; 
MEMORY: RAMM or BORAM; BUS: Data bus or 
PM bus; PO = 1 means bus tested; PI = 1 
means memory tested; P2 = 1 means processor 
has been tested; P3 = 1 means request active 

SOURCE: 
SOURCE: 

II of PE causing error. 
II of PE containing PM 

Same as Data Transfer Interrupt. 

SOURCE: 0 of PE which made request. 
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Thus, the proposed request word organization would result in a very poorly 

utilized associative memory, unless most interrupts and routines have circuitry 

for only a few appropriate fields in the request word. In fact, five interrupts/ 

routines have only the priority field, another ten have three fields or less and 

only three interrupt/routine come close to using the full 36 bits. These are 

the data transfer interrupt and the data transfer request routine with 33 bits 

each, and the data transfer error routine with 23 bits. 

Thus, there are a total of 10 interrupts and 11 routines excluding 

housekeeping tasks. These 21 program segments along with the summary flow 

chart and housekeeping tasks comprise the entire executive program. 

6.2.7.3 Reference to Flow Charts of MEC Implementation 

The implementation of the hardware MEC is considered beyond the scope 

of this report at this time, but an outline of the appropriate sections of 

Reference 6.1 will be given. (It is planned to include this is a later version; 

see Subsection 6.7.2.) 

The Section 2.1.5.5.1 [6.1, pages 40-45] describes the 

use of the executive bus which transmits all interrupts from other AADC resources 

to the MEC and which initiates data transfers between units of the system other 

than I/O data. The section describes the use of the active line, the acknowledge 

line and the reject line, and shows the sequence of words on the executive bus 

for three types of data transfers. 

Sections 2.1.5.5.2 and 2.1.5.5.3 [6.1, pages 45-85] describe the 

implementation and English language flow charts of all the MEC interrupt handlers 

and MEC routines presented in the Tables 6.1 and 6.2 of the previous Subsection 

6.2.7.2. Thus, there are 41 pages of flow charts and description of the MEC 
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implementation. Two sample interrupt flow charts are shown in Figures 6.6 and 

6.7 as fairly typical examples. The PM Complete Interrupt flow chart is chosen 

because of its-significance in changing PMs and modes. The Data Transfer 

Interrupt flow chart is chosen to show the complexity of data transfer handling. 

Some other flow charts are simpler; others are more complex. Another sample 

interrupt flow chart is shown in [6.5]. For a complete set see [6.1, pages 

45 - 85]. 
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6.2.8 Summary and Preliminary Evaluation of the Hardware MEC 

The hardware executive has several apparent advantages over the two 

other types of· executives which will be studies for the baseline system. These 

are the following: high throughput, no constraints are imposed on PMS, does 

not require an AADC processor, and can be designed to be highly reliable. This 

executive has very simple software and is not very complex compared to the other 

executives. 

Because the hardware executive has an associative memory and, therefore, 

can address data based upon some property of the data, the time consumed to do 

the searching required in executive functions has been significantly reduced. 

This has singificantly enhanced the throughput of the executive system. Also, 

since the executive does a particular function and not general calculations, the 

arithmetic capabilities required and the use of read-only memory to store the 

executive program allow the executive to be more reliable than any of the system's 

processors, thereby enhancing reliability. Since the executive function is performing 

in a special purpose computing element, executive design has no effect on the PMs 

and all of the AADC system's processors are available for processing of PMs. It 

is also expected that the overhead of the hardware executive will be minimal 

because the executive is always active (there is no dormant state). Also, the 

individual processors can be simplified because they do not need to process the 

"special" executive functions. 

There are several disadvantages of the hardware executive such as 

complex "graceful degradation" and the requirement for special purpose hardware. 

In order to have "graceful degradation" of the executive, it must be able to 

switch to an executive operated on a system processor if it fails. This requires 
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development and storage of a back-up executive that could be significantly 

different than the original hardware executive; for example t the floating soft-

ware }mc. Another disadvantage is the cost of design and development of the 

special purpose hardware executive. Also, the use of the special purpose 

hardware executive will be a viable system with the best processing capabilities 

for executive functions since it will be optimized to perform the executive 

function. 

As discussed previously, the hardware MEC consists of three main 

elements. These elements and estimates of their complexity are presented below: 

1. An associative memory which contains the following 

information. In each case the maximum storage 

requirement is shown. 

Current-mode PMID words which are to be run 
once more (32 x 148 bits) 

Old-mode PMID words which are to be run once 
more (32 x 148 bits) 

List of uncompleted interrupts and routines 
(20 entries) (720 bits) 

Other resource words 
Four processor (100 bits) 
Four busses (64 bits) 
Four dedicated I/O units (56 bits) 
64 words BORAM ID (896 bits) 
16 words RAMM ID (224 bits) 
MEC 1D (11 bits) 

Total associative memory required = 11,543 bits 
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2. A read-only MEMORY which has th€ following 

information (In each case the maximum storage 

requirement is shown.): 

• 

• 

• 

• 

• 

• 

• 

The entire hardware executive program 
implementing the flow charts of inter
rupts and routines. (3109 words) 

ALL PMID words for all modes of operation. 
Assume 32 PMs/MODE, 10 Modes; 5 ROM words 
per PMID word. (1600 words) 

Memory address error test (20 words) 

All resource words (93 words) 

All mask patterns required for AM 
searches (30 words) 

Priority and two Importance Criteria 
threshold for each mode (30 words) 

Bu~ test (20 words) 

Constants (20 words) 

Associative memory micro instructions (200 words) 

Total ROM required = 5122 words x 32 bits. 

3. A logic and control unit to consist of the following 

elements: 

• Five loop counters 

A comparison counter 

• 20 thirty-two bit registers (RAM) 

• Macro program store counter 

• Micro program store counter 

• A shiftable argument register 

• A non-shiftable argument register 
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• 

• 

• 

Adder - Subtractor 

Real time clock 

A search results register 

A shiftable mask register 

A word select register 

Various control circuitry 

Total estimated complexity in equivalent logic 

gates = 4000 logic gates. 

Using the higher of the two costs given on page 12 of NASC progress 

report number 6, task memory is estimated to cost 5 cents per bit. If \~e assume 

twice that cost per bit for the associative memory and half that cost for the 

read-only memory, the cost of memory for the hardware MEC is $1154.30 + $4097.00 

or a total of $5251.30. 

Through discussions ,~ith the contract monitor it can be estimated that 

a processor arithmetic and control unit will consist of about 14,000 logic gates 

and 750 words of micro-program control memory. In logic gates the PE is 3.5 

times as complex as the logic and control for the hardware ~ffiC. If we assume 

$3000 is the cost of the PE, the logic and control of the }ffiC should cost 

approximately $860 ignoring the memory in the PEe 

Thus, a hardware implementation of the }ffiC should come to a total of 

$6,111. This compares to a cost of $9,400 for a processor with a 4K task memory. 

Thus, a hardware }ffiC should cost about 65 percent of the cost of a processor. 

The time required to compute all the interrupts and routines are ShO\~1 

in detail in Appendix F of [6.1]. As a measure of speed, the total nominal time 

required to run all interrupts and routines with the assumed MEC is 392 usee. 

This data is all taken from [6.1]. 
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For all~implementations in this report. the following requirements 

are placed on each processor (or PEl in the system • 

. 1. Each processor must have a register which will 
recognize its own code when it appears on the 
MEC bus. 

2. If a data transfer error is received by a processor, 
it must either save the data it was sending for 
transmission later or not attempt to use the received 
data if it was the receiver. 

3. Each processor must generate a PM done interrupt 
at the completion of each PM. 

In the report [6.1], it was shown that a special purpose hardware MEC 

could be built with the following advantages being obtained over software 

approaches for the AADC Baseline system: 

1. Low cost (65 percent of a system Processor) 

2. More reliability 

3. Higher speed (4 to 11 times as fast) 

4. Can take advantage of pew hardware technology 
such as LSI and associative memories 

5. Low overhead 

The basic element of the MEC is a semiconductor associative memory. 

The use of a semiconductor approach to the associative memory*allows logic to be 

placed at every bit position (which allows full parallel output and equality 

searches) and construction of the memory LSI techniques. Because there is logic 

at every bit position of the associative memory, extremely fast equality searches 

can be made, thus, resulting in fast methods of determining the status of system 

resources and then allocating these resources. The use of the associative memory 

in the executive system enhances the MEC's speed significantly. 

*i.e., the memory elements in the associative memory are also semiconductor LSI 
circuits. 

6.38 



In the future as executive systems become more and more complex, 

software approaches will approach or exceed their capabilities. A special 

purpose executive system utilizing an associative memory provides a high speed 

alternative" to a software executive system. Since the hardware MEC has a 

high throughput capability, it will be able to accept a large increase in 

executive load and still provide the computational capabilities necessary 

to insure proper system operation without degrading system performance and 

reliability. In fact, the special purpose hardware MEC for the AADC system 

will do all of the above, and at the same time reduce costs.* 

*Of .course the hardware MEC has the largest design cost and therefore this 
actually assumes that there are sufficient number of hardware MECs produced 
so that the total cost per MEC is less than the cost for a Data Processing 
Element. 
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6.3 BACKUP MEC FOR BASELINE SYSTEMS 

Since the Time Division Multiplexed Block Transfer Multiprocessor 

system is essentially a AADC Baseline system with a failed hardware MEC, this 

section can be considered either the backup Executive Control for the AADC 

Baseline System or the Floating Software MEC for the TDM Block Transfer Multi-

processor System. This report has chosen the backup MEC interpretation although 

the reference from which the material is taken [6.1] chooses the other interpre-

tation. In fact, Honeywell's recommended Executive Control for the TDM Block 

Transfer System is the Floating Software MEC which is described in this section. 

6.3.1 Applicable AADC Configurations 

Figure 6.1 of Section 6.2 is the block diagram for the AADC Baseline 

System, and is essentially the block diagram for the TDM Block Transfer Multi-

processor System except that the separate hardware MEC is not available and a 

software MEC must operate from one of the PEs. However, the following changes 

must be made to the system (and to the corresponding section, 6.2.1): 

1. BORAM. As well as all the operational PM, the 
BORAM contains all the Program Module Identification 
(PMID) words for each mode and all segments of the 
MEC software progra~s. 

2. RAMM. As well as mode independent data and I/O buffers, 
the RAMM contains all resource words, current mode 
PMID words and MEC scratch pad areas. Since it is 
assumed that an Associative Memory is not available 
to the floating software executive syste;, the PMID 
words must be shuttled between the ~1 and the MEC 
task memory in lieu of AM search operations. 

3. PEe All the PE must be capable of executing all 
the MEC functions. At any given time, one of these 
processors contains the entire MEC resident program 
or its transient active kernel. 
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4. Task Memory. The TM must be non-volatile; 
otherwise, the MEC task LIST would have to 
be stored in RAMM occasionally to privide a 
rerun point for restart after a power failure. 

5. MEC. The floating software Master Executive 
Control routine will be able to operate from 
the task.memory of any processor in either its 
fully active or partially active phase. The 
main duties of the MEC are the same as those 
listed in the second paragraph of Section 6.2; 
however, a categorization of these into the 
following four areas is useful: (a) input/ 
output, (b) address translation or binding, 
(c) interrupt servicing, and (d) job initiation. 

These categories will be referred to throughout 
Section 6.3 on the floating software MEC. 

The remainder of the system is the same as before. This includes the Matrix 

Parallel Processor, the high speed multiplexed digital filter, dedicated I/O 

units and channel selector switch. 

The switch bussing, the system operation and the description of the 

MEC functions are the same as described previously in Subsections 6.2.2 to 

6.2.4. 

6.3.2 Implementation of Floating Software Executive 

6.3.2.1 PMID and Hardware Resource Identification Words 

Other than a change in the resource field for the Program Module 

Identification words, the PMID and Hardware Resource Identification words are 

the same as those for the hardware MEC. One other change is that the resource 

words are stored in the RAMM in three 256-word areas. One area is for active 

PMlD which were previously stored in the AM. Another area is for the active 

initial PMID words that were previously stored in ROM. The third area is for 

the inactive PMID words which are used to assist in mode switching. Note the 
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back up storage for the PMID words is the BORAM 16.1", pages 91, 92, 119J. 

6.3.2.2 Summary Flow Chart of the Backup Floating Software MEC 

Again this section applies to either the Baseline system with a failed 

hardware MEC or the TDM Block Transfer Multiprocessor System. 

The floating software MEC will pursue essentially the same logic flow 

as is given in Subsection 6.2.7.1. However, its logic must be partitioned into 

two phases. Some MEC operations, such as handling internal data transfers, 

loop counting, and real time clock interrupts must be performed by the always 

active kernel. Other operations must be performed by the entire MEC and when 

called for by an interrupt or PM, they must be listed if the MEC is not active, 

or they may either permit or force a MEC load. The PM complete interrupt permits 

the MEC to be loaded in the recently freed processor, but a power failure 

interrupt would force a MEC load. The mode change and external PM enable 

interrupts may also force a MEC load. The ensuing discussion will refer to the 

always active portion of the MEC as the "kernel" and to the entire routine as 

the "MEC". The MEC flow chart is given in Figure 6.8. 

The same interrupt handling philosophy assumed in Section 6.2.7.1 is 

assumed here; any interrupt will be recognized and listed for later processing 

depending on its priority, but control will be returned immediately to the 

point of interruption. In the case the MEC is in its active phase, this situation 

is the same as the dedicated software in MEC case to be discussed later in Sub

section 6.4.4; however, if only the kernel is active, then the point in interrup

tion may be either in the PM or the kernel. Since the kernel is able to handle 
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only the loop counter, real time clock and data transfer interrupts, it lists 

all others for later handling by the entire MEC in its next active phase but 

puts those it ·can handle in a special sub1ist (Table 6.3) for its own more 

immediate attention. The MEC task LIST and kernel sublist are stored in task 

memory. 

Table 6.3 also indicates MEC functional routines and interrupt handlers 

as being either resident or non-resident. Although a 4096 word task memory may 

be able to contain the full floating software MEC it is not desirable to read in 

seldom used code every time the MEC is loaded. Those routines and interrupt 

handlers flagged as unon-resident" in the table are suggestions of coding that 

could be left in BORAM until actually needed. 

If the kernel decides an interrupt, such as a power failure interrupt, 

must be handled immediately, it forces a MEC load into one of the PEe If 

interrupt is less urgent, the kernel may wait for a PE to finiah executing a PM 

before reassigning it. The details of h~ndling interrupt is quite complex and 

not included here [6.1, pages 125-128]. 

For further discussion of the operation when the MEC is already 

loaded, refer to the dedicated software MEC presented later in Subsection 6.4.4. 
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Ta ble 6.3. Types of MEC List and KERNEL Sublist Entrie 5 

PRIORITY TITLE K M 
~, N TYPE 

31 Power Failure X interrupt 

30 Real Time Clock Failure X " 

29 . MEC failure (Special Case of 28) X " 
28 Error X " 

27 Loop Counter X " 
26 PM Complete X " 
25 External PM Enable X " 

24 Mode Change X " 
23 Real Ti:me Clock X " 
22 Channel Selector Switch Assignment X routine 

21 BORAM Test X " 
20 RAMM Test X " 

19 Bus Test X " 
18 Processor Test X " 
17 Data Transfer X interrupt 

16 Data Transfer Error X routine 

15 Memory Address Error X " 
14 PM ~·.ddress Error X " 
13 Data Transfer Request X " 
12 PM H.einitialization X " 
11 Pl\1 As sigrunent X " 

10 thru 1 Miscellaneous Houskeeping X " 

K - Kernel 

M - MEC Resident 

N - MEC Non-Res lent 
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6.3.2.3 Reference to Flow Charts for Floating Software MEC Implementation 

The interrupt and routine flow charts for the floating software MEC 

implementation-are sufficiently different from those for the hardware MEC so 

that five of the flow charts are redrawn. One of them - the real time clock 

interrupt flow chaxt - now takes 6 pages. [6.1, pages 128-134, and 96-115]. 

6.3.3 Summary and Preliminary Evaluation of Floating Software MEC 

The floating software approach has advantages over the hardware and 

dedicated software cases primarily in reliability, graceful degradation, and, 

of course, the fact that it does not require a processor on a full-time basis. 

The disadvantages of the floating software approach are greater MEC 

complexity and slower running times for some functions, each processor must have 

any special capabilities required by MEe, and constraints on PM size and 

operation for those PMs designed to run in multi-program fashion together with 

the kernel. In some cases this constraint may be severe since the kernel is 

estimated to be about 800 instructions. 

It is not necessary that all PMs allow space for the kernel, nor is 

this ever desirable. If six such PMs were running simultaneously on a large 

AADC configuration, then the five which were not sharing a processor with the 

kernel would collectively waste memory equivalent to an entire task memory. 

The designer responsible for developing a program module set for a given mode 

would thus be constrained to layout his design in such a way that, on the avera~. 

at least one PM capable of sharing a processor with the kernel is running at any 

given time if he wants the MEC to be in its dormant phase at that time. A 

number of strategies could be employed to minimize unnecessary kernel relocation 

or other thrashing in the floating software MEC. Perhaps the best one would be 
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to choose as kernel co-resident PMs, those which have high importance criteria 

and fairly long running times. 

The advantage of availability of more processors on the average, due 

to occasional dormant status of the MEC, is partly offset by the greater 

inefficiency of the MEC and of those PMs which are designed to run together 

with the kernel. If the density of interrupts becomes very high, this advantage 

would disappear altogether. The chief advantage of the floating software MEC 

is its ability to run on any processor and to switch freely between processors. 

If interrupt densities are high, then a dynamically relocatable "dedicated" 

software MEC would be preferable to the floating case as it is described in this 

section. 

Table 6.4 gives an estimate of overhead (time spent in the floating 

software MEC master control operations). Most of the MEC functions would 

require the same time for either of the software approaches but the overhead 

times are higher in the floating case and significantly higher for the case 

that the MEC is required but not loaded. The overhead times in Table 6.4 

could be used to determine processor time lost in overhead if a typical job stream 

was analyzed to determine its loading on the MEC in terms of types of requests 

and their frequency. The overhead times given in the figure assume that all 

elements of the floating software MEC are resident and, thus, are all loaded 

whenever the MEC is loaded. 
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Table 6 ~4. Floating Software Overhead Estimates in Microseconds 
(From Figure 2-41, pages 1, 2, 3) 

Average Overhead 
"IEC Function Time (lJsec) MEC 

Power Failure 200 20 

Real Time Clock Failure 6- 4 
-

"tEC Failure 590 .. .. 

Error 18 4 

Loop Counter· 8 .. 4 I -

Program ~!odule Complete 15 4 

External ~f Enable 61 ,4 

Mode Change 450 4 

Real Time Clock· 130 4-9 

Channel Selector Switch Asst.* 9 4 

BORAM Test 1S 4 

fWylM Test 17 4 
Bus Test· 11 4 

Processor Test 200 4 

Data Transfer· 16 4 

Data Transfer Error· 8 4 
Memory Address Error 36 4 

·PM Address Error 120 4 
-. 

Data Transfer Request· 16 4 

PM Reinitialization --- 4 
Program ~lodule Assigr.ment 120 4-113 
Housekeeping --- . 13 
Interrupt List Empty (Idle Loop) --- 13 

* Kernel Operations 

** Dash in lieu of value indicates the value not applicable. 
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As shown in Appendix F [6.1], the amount of memory required to store 

the kernel is 899 words. All of the interrupts and routines require 2509 words 

plus an estimated 1100 words for ID and other data storage, for a total MEC 

program of 3609 words. This is within the requirements of a 4K word task memory. 

The time required to execute all of the interrupts and routines in 

the nominal case is 4.43 msec. This includes a total of 2.51 msec in overhead 

time. Overhead times were taken from Table 6.4 assuming that the following 

interrupts occur when only the kernel is loaded. 

• 

• 

Power Failure 

PM Complete 

External PM Enable 

Mode Change 

This total is 2.75 times as large as that required by the Dedicated 

Software MEC. This is due primarily to the overhead involved in writing in the 

MEC when only the kernel is active. It is also 11 times longer than that for 

the hardware MEC. 

6.51 



6.4 DEDICATED SOFTHARE MEC FOR DUAL PROCESSOR 

Unlike the case of the dedicated software executi'Je for the Baseline 

and MMM AADC systems, the dedicated software executive for the dual processor 

system could be considered a'hardware implementation. This is because a secondo 

processor, identical to the simplex processor, must be added to the system. 

Thus, one processor of this system will be dedicated to processing the executive 

program while the other processor executes program modules. Actually, Honeywell 

calls this system an Optimized Simplex system w'ith a dedic2~ed software MEe, 

but a dual processor system is more accurate. 

6.4.1 Dual Processor System 

Figure 6.9 is a block diagram of the dual processor for the dedicated 

-
software executive. With only one processor processing program modules, the 

added expense of an associative memory does not seem justifiable in lieu of the 

expected nominal savings in time. The dedicated MEC processor can run in 

parallel with the PM handling processor for the majority of executive functions. 

HIGH 
SPEED 
I/O 

4~ 

RAMM DATA BUS I 
"" 

~.,. 4,. j ~ 4 ~ 

PM BUS 

~ , + ~~ -~ ~, + 
PROCESSOR BULK 

PROCESSOR PARALLEL (MEC) - PROCESSOR .... .. -
TASK TASK 
MEMORY MEMORY 

EXECUTIVE BUS 

Figure 6.9. Dedicated Software Dual Processor 
AADC System 
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The BORAH, RAMM and Task Memories are all the same as for the Floating 

Software MEC in Subsection 6.3.1. The two PEs are identical except one is 

reserved for the sole use by the MEC. It must contain suitable microprogramming 

to handle the same associative memory functions (although no associative memory 

is available) as appear in the hardware MECs of the Baseline system. Thus, the 

PE must be enhanced to include some hardware MEC features. In actual fact, the 

other PE must also be able to handle all the MEC functions in case the MEG PE 

fails~ 

The Matrix Parallel Processor and the high-speed mUltiplexed digital 

interface will be the same in the previous systems, but the dedicated I/O units 

and channel selector switch are not necessary in this simplified configuration. 

6.4.2 System Bussing for Dual Processor System 

Three distinct busses are used to transmit Program Modules, data and 

control signals throughout the system. They are the PM Transfer Bus, the Data 

Bus and the Executive Bus. The PM Transfer Bus is used to transfer PMs from 

BORAM to the simplex processor and MEC segments to the MEG processor. The Data 

Bus is used for data transfer between RAMM and the PEs. It is not required to 

be dual width as in the previous systems because there is only one PE executing 

PHS. The Executive Bus provides communication and controls between the MEG 

and all system resources as described previously. For further details see 

Section 6.2.2. 

6.4.3 Operation of the Dual Processor System with Dedicated Software MEG 

The operation of the dual processor system with a dedicated software 

MEC is the same as the Baseline system with a hardware MEG except for the 

following three simplifications: 

*This is a very important point that has not been emphasized sufficiently in the 
design [6.1]. 
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1. There is no need to consider the two types of 
PM requiring "special processing" because with 
only one PE it is inappropriate to consider a 
PM that overflows into another task memory or 
two PEs working on the same PM. 

2. It is not possible to dedicate a PE to a given 
PM. In fact, a single PE must process several 
PMs at a given rate and in proper sequence in 
order to operate properly. 

3. All PMID words are stored in BORAM and the 
active PMID words plus all other resource 
words are stored in the Task Memory of the 
MEC processor. 

The MEC functions to be performed are the same as described previously 

in Section 6.2.4. One exception in the operation is that PMs will normally be 

allowed to continue executing until completion unless the postponing of handling 

of an interrupt endangers the mission. 

6.4.4 Summary Flow Chart of MEC for Dual Processor 

Logically, the summary flow chart shown in Figure 6.5 of Subsection 

6.2.7.1 is satisfactory for use in this section. All of the processing require-

ments of the MEC are implied in the summary flow chart and will be shown to be 

satisfied as the result of processing the interrupts and routines from the list. 

Normal MEC processing consists of interrogating the LIST for information 

that will direct the MEC to execute particular routines such as shown in Table 

6.1. The channel selector switch assignment routine is not needed. 

One method of implementing software-wise the list processing logic 

shown in the summary flow chart is to employ a system of processor flip-flops. 

Thirty-two hardware flip-flops are needed that can be set, cleared, and tested. 

These flip-flops will be associated with the MEC routines listed in Table 6.1 
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in such a manner that a set flip-flop is equivalent to having its associated 

routine "on the MEC LIST" and a cleared flip-flop equivalent to the routine's 

"absence from the MEC LIST". 

The MEC can detect the necessity of executing a routine by testing 

its flip-flop. The testing can be done by 32 consecutive conditional jump-type 

instructions which will branch to the appropriate routine if its flip-flop is 

set. The first test instruction has the label START and tests for the presence 

of the highest p~iority rated routine. If the test fails, the next test 

instruction checks for the next lower priority rated routine, etc. When the 

housekeeping routines are reached, the MEC condition is that of an idle state, 

executing housekeeping routines until an interrupt occurs which places a routine 

of higher priority on the LIST. 

Each housekeeping routine, when run, removes itself from the LIST, 

thus assuring that all such routines get run in sequence. The lowest priority 

routine must replace all other housekeeping routines on the LIST so the cycle 

can be repeated. When a test is successful and a routine is given control, the 

routine should clear its flip-flop before giving control back to START. 

This implementation suggests the desirability of bit processing 

capability for the software. If this capability were present, flip-flops would 

not be necessary as a memory word or words could be used. In this case, the 

ability to set, clear, and test any bit in a word would be required. This has 

been included in the PE design and offers an alternate design to the 32 hardware 

flip-flops. 

That part of the summary flow chart which discusses class levels would 

be implemented with actual linked lists in the form of queues. Each entry is a 

6.55 



queue would contain the necessary parameters for the routine associated with 

that queue. Each routine that required parameters would have a dedicated queue. 

Thus, each time a routine is placed on the LIST, its necessary parameters would 

be placed as an entry on the proper queue in a first-in first-out manner. When 

the routine is executed, it takes the top entry from its queue and processes it. 

(The bottom entry is the most recent entry.) 

6.4.4.1 Internal and External Interrupts 

Every interrupt occuring on the executive bus and interrupting a 

resource is denoted as an external interrupt if the originating resource is not 

the same as the destination resource. All other interrupts of a resource are 
/ 

denoted as internal. 

Each processor contains a real time clock that can be reset by the 

program in the processor. When the clock interrupts the processor (not over 

the executive bus), control is routed to a fixed location in the task memory and 

the real time clock interrupt processing routine located there is executed. Of 

course, if the clock is not set, no interrupt will occur and no interrupt routine 

is necessary. The executive always sets its real time clock. 

Other internal interrupts will occur on the executive bus for the MEC 

processor only. This means that non-MEC processor contain only one internal 

interrupt - its real time clock interrupt. However, the kinds of internal 

interrups that the MEC processor has, also exist in the other processor - i.e., 

parity, power failure, clock failure, etc. - but they will interrupt the MEC 

processor and not the processor in which they occured. Take, for example, a 

parity error. If a parity error occurs in the MEC processor, the hardware 
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generates an interrupt over the executive bus taking as the originating resource 

the MEC processor and, as the destination resource, also the MEC processor. 

(The first code is the processor ID code and the second is the MEC processor ID 

code - in this case, they are the same code.) If the parity error occurs in a 

non-MEC processor, the two codes will be different. Hence, a parity error 

interrupt will always interrupt the MEC processor, but will be considered an 

internal or external interrupt if the originating resource was the MEC processor 

or not. 

Actually, it is immaterial whether interrupts are internal or external 

(except for the real time clock) because all executive bus interrupts to a 

particular processor are handled in the same way. When a processor (MEC or not) 

is in an interruptable state, the active line is set, and the processor's ID 

code matches the destination code on the executive bus, the processor is inter-

rupted with control going to a predetermined location. 

Therefore, each processor must have two locations reserved in the task 

memory for interrupt handling. These locations will be the same for all task 

memories [6.1, pages 199, 200, 93-96]. 

6.4.5 Summary and Preliminary Evaluation of the Dedicated Software MEC 

on Dual Processor System 

This implementation offers total use of a single processor for running 

PMs, through the use of a second processor dedicated to MEC functions. A small 

degree of parallelism is also gained.- Compatibility with the previous systems is 

easily maintained with practically no additional software cost. A floating 

software MEC must also be provided in case one PE fails. The total amount of 

memory required is 3373 words. This includes 1091 words of ID and miscellaneous 
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data and 2282 words for interrupt and routines as shown in Appendix F of [6.1]. 

The time required to process all the interrupts and routines in 1.253 msec. 

In this implementation, one processor is always working on system 

tasks and its throughput should be maximum since it has an entire MEC dedication 

to assist it. 
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6.5 FLOATING SOFTWARE MEC FOR OPTIMIZED SIMPLEX PROCESSOR 

The Optimized Simplex system is the same as the dual processor 

shown in Figure 6.9, except there is only one processor and the processor 

is allowed to execute programs from the RAMM as well as the Task Memory. In 

this way the Floating Software MEC is able to perform its functions without 

overwriting the currently executing PM. Although the Matrix Parallel Processor 

is included in this diagram, it is actually optional and may be deleted 

without affecting the MEC operation. 

The bussing system in this case is the same as for the dual processor 

system (Section 6.4.2). 

6.5.1 Operation of the Optimized Simplex Processor with a 

Floating Software MEe 

The operation of the Optimized Simplex Processor with a Floating 

Executive Control is similar to the operation of the Dual Processor with a 

Dedicated Software MEC. The major difference is the RAMM must always contain 

the MEC kernel which is ready to handle interrupts. The MEC is normally 

in its dormant state and is reached via a kernel for urgent services and 

normally reactivated by a PM complete interrupt. When this interrupt occurs, 

the MEC will employ the now available processor to process its task LIST 

and then initiate that the waiting PM with the lowest assignment deadline. 

Since the kernel can execute instructions directly out of RAMM (where the MEC 

is stored) there is no need for the-PM in the processor to be aborted. Time 

must be kept track of while the processor is executing the MEC to avoid a 

PM time out. In this configuration, the kernel consists of same interrupts 

and routines as in the Baseline case except that the channel selector switch 

assignment is not required. 780 words make up the kernel. 
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Since the PE can now execute MEC segments from RAMM and PMs from 

the Task Memory, an interrupt can either be handle when it occures or be 

listed for later execution, depending on the urgency. There are also other 

small difference in the operation of the dedicated software and floating 

software executives, but these do not seem significant [6.1, Section 4.2.3]. 

6.5.2 Summary Flow Chart of Floating Software MEC for the Optimized 

Simplex Processor 

The summary flow chart for the floating software MEC for the optimized 

simplex system is shown in Figure 6.10. Although the logic is essentially 

that of the previous floating software cases, it is much simpler because the 

resource allocation problem is less complex. The three basic alternatives 

of MEC operation are: (a) handling an (external) interrupt either by executing 

the appropriate routine (power failure) or listing it for later processing; 

(b) handling a MEC call, internal interrupt or "pseudo-interrupt" (in this 

case, from the current PM either by executing a small kernel routine in task 

memory, a short }ffiC routine in RA}lli, or by loading a MEC routine in task 

memory and processing the call); and (c) the case ~mc activity is due neither 

to interrupt nor call, i.e., the MEC is fully active and is processing its task 

LIST. The latter alternative ends when a PM assignment operation is encountered, 

an external PM enable occurs, or a mode change is called for. If none of these 

occur, then the MEC begins processing miscellaneous houskeeping routines until 

external circumstances call for it to begin a new mode or initiate a PM. 

The priority scheme, given in Table 6.3, applies to this case except 

that only the kernel is resident; all other routines and handlers are either 

segmented or executed out of RAMM. 
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6.5.3 Summary and Preliminary Evaluation of the Floating Software MEC 

on the Simplex System 

The floating software approach on a simplex system may be considered 

as a minimal cost, low performance configuration or as a fall-back configuration 

reached when all processors but one of a more complex system fail. In the 

simplex configuration, the floating software approach for a MEC does not offer 

the enhanced reliability indicated in Section 6.3.3. 

As compared to the software dedicated processor case in Section 6.4. 

the floating software requires one less processor since the MEC shares the 

unit processor with the PM currently in execution. It has the advantage of 

requiring one less processor and, naturally, the disadvantage of taking time 

away from the currently operational PM on the only processor available. This 

approach is, thus, advantageous only if the sum total of MEC functions plus 

overhead required considerably less than half the processing time of one 

processor. In this case, the cost/effectiveness of the system may be competi

tive even though the throughput is almost halved. If the total time needed 

for ~mc functions required less than ten percent of a processor's attention, 

then the floating software approach would be advantageous for the optimized 

simplex processor system. Also, the simplex floating }mC must utilize part 

of the task memory to house the MEC kernel. Thus, all PMS must be 780 words 

shorter than in the dedicated software case. 

Appendix F [6.1] shows the estimated memory requirements and execution 

times required by this MEC implementation. The interrupts and routines require 

1877 words of memory. An additional 1100 words are used for ID words and other 

data. This yields a total memory requirement of 2977 words. 
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The time to process the entire set of interrupts and routines in 

the nominal case is 1.037 msec. The following functions will require a 

complete load of the MEC. 

• 

• 

• 

• 

Power Failure 

Error Interrupt 

External PM Enable 

Mode Change 

PM Complete 

The estimated time it takes to load the MEC is assumed to be 580 

~sec, thus t 2.9 msec must be added. This makes the total time 3.937 msec. 

This exceeds the dedicated implementation by a factor of 3.1. 
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6.6 EVALUATION AND RECOMMENDATIONS 

6.6.1 Method of Evaluation 

Three steps will be taken to evaluate the MEC implementations for 

each of the system configurations considered in this study. First, a set 

of evaluation parameters (system attributes) will be established. Then 

weights will be assigned to each attribute as a function of its importance. 

Then a table will be constructed for each of the four systems and each 

implementation will be a measure of its effectiveness for the system under 

consideration. 

Each attribute will be assigned a weight of 10 or less. For each 

system, each MEG implementation will be evaluated against the attributes. 

Scoring will be on a ten (10) point must system with the MEC implementation 

that best exhibits the attribute receiving 10 points and others a proportionate 

amount. The points will be multiplied by the attribute's weight and the products 

summed for all attribute-point products. The implementation with the best 

score (highest) will be recommended. This will be done for each AADC 

configuration and will result in a "best" choice for each system. Based upon 

the results for each AADC configuration, an "optimal" implementation for all 

configurations will be recommended. 

6.6.2 Evaluating the MEG Implementations 

The attributes that were selected are: reliability, graceful degrada

tion, speed of the MEG, constraints ~n the rest of the system, functional 

expandability of MEC (can it be enhanced without redesigning?), maintainability, 

hardware production cost, software production cost, volume, weight, power 

requirements, hardware and software developmental costs, flexibility (ability 

to perform other functions), simplicity, overhead, and computational suitability 
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(how well the MEC is optimized to perform its functions). Although the names 

of the attributes are fairly suggestive of their functions, further description 

of each can be obtained from [6.1, pp 226-229]. 

Table 6.5 summarizes some of the quantitive MEC performance attributes 

that are used in the comparative evaluation. Something seems suspicious in the 

time to process interrupts and routines for the floating software MECs; for 

Baseline system overhead in 2.51 msec, for MMM system overhead is 0.17 msec 

and for OS system the overhead is 2.9 msec.{The interrupt/routine processing 

times are 1.93, 1.94 and 1.04 respectively, which is reasonable.) 

The ranking of the attributes is reflected in the ordering above with 

the most important attributes listed first. The exact weights assigned to 

each attribute is shown in parentheses after the attribute name in the tables 

following Table 6.5. 
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Table 6.5 Summary of Quantitative MEC Performance Attributes 

Baseline System 

MEC 

tHardware 

Dedicated 
Software 

Floating 
Software 

COST 

$6100 
(=.65 x PE) 

$9400 

$2000 
(assuming 
20% for 
MEC 

TIME TO PROCESS 
ALL INTERRUPTS/ 
ROUTINES 
(MILLISEC) 

0.39 

1.6 

4.44 (including 
2.51 msec over

head) 

Multiple Memory Multiprocessor 

Hardware $6100 0.55 

Dedicated $9400 1.85 
Software I 
Floating $7400 2.11 (including 
Software (.75 x PE) 0.17 for 

capturing PE) 

Optimized Simplex 

Dedicated $9400 1.25 
Software 

-
Floating $2000 3.9 (including 
Software (assuming 2.9 for loading 

20% for MEC 
MEC) 
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COMPLEXITY 

4000 logic gates 
360 word AM, 
5200 Word ROM 

A special 
assigned PE, 
3900 word TM 

899 word Kernel·, 
PE part time 
(20%) with 3600 
word TM, Some PMs 
restricted by 
899 words 

Same as Hardware 
MEC above 

A special 
assigned PE, 
4025 word TM 

PE part time 
(20%) with 3450 
word TM, PM not 
restricted 

Dedicated PE 
With 3370 word 
TM 

PE part time with 
2980 word TM 
all PM restricted 
by 780 words. 

BACKUP 

Software MEC 

Another PE 

Built-in 

Sof tware MEC . 

Another PE 

Built-in 

Floating 
Software 

. None 



The scoring of the attributes for the AADC Baseline system and the 

total score is shown in Table 6.6. As shown the hardware MEC scores highest. 

The best backup for the hardware MEC is the Floating Software MEC. 

The scoring for the Time Division Multiplexed Block Transfer 

Multiprocessor System is the same as for the Baseline System without the 

hardware MEC. Thus the Floating Software MEC is best for the TDM Block Transfer 

Multiprocessor. 

The scoring of attributes for the MMM System is shown in Table 6.7. 

The hardware MEC again scores the best and even higher than for the Baseline 

System. The two software MECs score about the same for the MMM System. 

The scoring of attributes for the Optimized Simplex System is shown 

in Figure 6.8. The Dedicated Software MEC scores the best for the OS System 

(Again this actually a violation of the simple processor Optimized Simplex 

concept.) Also see Subsection 6.6.4 for comment on these evaluations. 

6.6.3 Recommend }ffiC Implementation }1ethods 

As indicated in the evaluation, the best MEC implementation for each 

system is a function of the PM load of the system, the number of executive 

functions required per PM, the average run time of a PM, and the number of 

resources available in the system. These are all parameters which are not as 

yet well defined, and will probably not be before extensive simulation is 

complete. 

Bearing this in mind, the'· following MEC implementations are recommended. 
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Table 6.6. Baseline AADC System Evaluation 

11VIPLE MENT ATION 
Software 

.. ~ttribute ~ard\vare Dedicated Processor Software FloatinlZ 

~eliability (10) 0 6 8 

~I-l raceful I 
.. 

Degradation{ 10) 6 - 6 10 

Speed (10) 10 3 ·1 : 
I 

Cons traints on i 

~ 

res t(fO )system ~O B 4: I 

I 
- "1 

F'unctional I -
Expandability(1 0) 6 10 8 

tMaintainabili tv(9) 6 10 8 

Hard\vare Cost(n) 6 2 10 

Software Cost(S) 10 8 6 

rvolume (5) 6 2 10 

KVeight (5) 6 2 10 

Power (5) 6 2 10 
, .. 

Development 

Cost (4) 7 10 8 -
Flexibili ty (3) 10 7 7 

Simplicity (2) 10 - 7 5 

Overhead (2) 10 8 '1 

Computational 

Suitability (2) 10 4. 4 

Weighted Total ~ 10 629 733 
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Table 6.7. Multiple Memory Multiprocessor Evaluation System 

IMPLEMENTATION 

I 
Software 

Attribute Hard\vare Dedicated Processor Software Floatin2" 

Reliability (10) 10 7 8 
.. 

Graceful I . 

Degradation (10) 6 7 10 

S~p_eed (10) 10 3 2.5 

Constraints on 

rest of System (10) 10 8 2 

Functional -

Expandability (10) 6 10 9 

}\1aintainabili tv (9) 6 10 9 

Ilard\vare Cost (8) 10 6 9 

Soft\vare Cost (8) 10 8 8 

Volume (5) 10 6 9 

\Veight (5) 10 6 9 

Po\ver (5) 10 6 9 

Development Cost ( 1) 7 10 9 

Flexibilitv (3) 10 7 7 

. Simplicity (2) 10 7 6 

Overhead (2) 10 
-

8 6 

Computational 

Suitability (2) 10 4 4 

Weighted Total 902 741 756 
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Table 6.8. Optim ized Simplex Processor Evaluation 

"l 
\ 

IMPLEMENTATION t -
~TTRIBUTE SOFTWARE 

Dedicated Processor Software Floating 
.. 

Reliability (10) 10 . 5 

Graceful Degradation (10) 10 5 , 

Speed (10') 10 3 

Constraints on 
rest of System (10) 10 " 

Functional 
Expandability (10) 10 7 

Maintainability (9) 10 8 

rH'ardware Cost (8) 2 10 

Software Cost (8) 10 7 

1V0lume (5) 2 10 

Weight (5) 2 10 

Po\ver (5) 2 10 

Development Cost (-.f) 10 8 

Flexi bili ty (3) 10 9 

Simplicity (2) 10 7 , 

Dverhead (2) 10 6 

Computational o. 

Sui ta b iIi ty (2) 10 10 

~Veighted Total 852 603 
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SYSTEM 

Baseline AADC System 

TDM Block Transfer System 

Multiple Memory Multiprocessor 

Optimized Simplex Processor 

Recommended MEe Implementations 

Special Purpose Hardware 

Floating Software 

Special Purpose Hardware 

Dedicated Software 

These recommendations may change if the weighting factors assigned 

to the attributes are deemed to be inappropriate for the ultimate utilization 

of the AADC system. 

In the baseline system, the hardware MEC wins primarily because of 

basic reliability, speed, lack of system constraints, and the fact it is 

designed specifically to handle the executive tasks. 

In the TDM system the floating software MEC wins primarily due to 

graceful degradation, cost and the associated attributes of size, weight and 

power. 

The MMM system operates best with a special prupose hardware }mc 

because of speed, lack of constraints on PMs, cost, size, weight, power, and 

because it is designed to perform executive tasks. 

In the optimized simplex syste, the dedicated software gets the 

nod due to every attribute except cost, size, weight, and power. 

6.6.4 Author's Comments on the EvaluGtions 

There is one very obvious and very serious omission from the list 

of attributes which would probably change the results significantly; that is, 

the cost of providing adequate backup. For the hardware MEC the extra backup 

could be built into an ultra-reliable MEC but more likely would be a software 
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MEC. Thus the development and production cost of providing this software back~ 

should be included in the cost for the hardware MEC. The cost of providing 

triple redundancy in the hardware MEC would probably eliminate it from 

contention. 

Another obvious case where the results would probably be different 

is for the Optimized Simplex System. Since the only backup for a Dedicated 

Software MEC is a Floating Software MEC (if one PE fails), the cost of 

producing two sets of software is certainly larger than for producing only 

one. Thus the best system for the dual processor is probally the floating 

software. 

From examining Honeywell's report and without doing any analysis, 

it would seem that the Dedicated Software MEC could be eliminated for con

sidering if the need for adequate backup was included. It seems unbelievable 

that a report as comprehensive and as detailed as this could have skipped 

such an important avionic requirement as adequate backup. On the other han4, 

the inclusion of an adequate backup may have reduced the number of viable MEe 

alternates to only one - the floating software MEC, thereby reducing the 

complexity of the project significantly. 

The statements in this subsection are the opinions of the author's 

and not that of the Navy or the NPS, and are not substainated by fact. 
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6.7 RECOMMENDED AREAS FOR FURTHER STUDY 

6.7.1 Continued Development, Simulation and Implementation of MEC 

Figure 6.11 shows eight studies recommended by Honeywell for design 

and implementation of the MEC and the appropriate time periods. The studies 

include: 

1. 

2. , 

3. 

4. 

The initial MEG implementation study as defined 
in this report and [6.1]. 

An expanded MEC implementation study to include 
two other executives system called the Dynamic 
Dedicated Software and the Dynamic Dedicated 
Software with Associative Memory. This would be 
equivalent effort to doing two of the three 
studies in [6.1]. 

A final MEC implementation study including an 
overview simulation of all the components in 
the AADC and their interactions (this would be 
a suitable thesis topic), and suitable expansion 
correction and detailing of English language 
flow charts. 

Simulation of the recommended MEC implementations. 
This would be a detailed real-time simulation of all 
the MEC functions and the interaction with other 
AADC components. 

5. Based on the results of Study 4, either a software 
or hardware (or both) ~ffiC will be selected for 
implementation. If a software MEC is chosen, Study 
5 would result in a coded and hopefully debugged 
software executive program capable of running on 
the Navy's AADC prototype system. 

6. The sixth study would be the definition of system 
interaction under MEC control - to be run in 
parallel with the studies above. The areas for 
study are bussing techniques, digital interface 
designs, channel selector switch designs, and 
alternate routing in the case of component failures. 
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7. An ultra-reliable hardware MEC design study is 
needed if only a hardware MEC is provided. The 
study would include locating critical portions 
of MEC, defining failure detection methods, 
choosing redundancy and error correction techniques 
and selecting a fail-safe and fail-soft design. This 
work is already in progress [6. 6 ]. ~his would make 
a good thesis topic). 

8. Detailed design of a hardware MEC including the 
design of the AM, ROM, algorithms, logic and 
control and MEC language. 

There is an ongoing effort to improve the reliability and applicability 
, 

of the AADC Master Executive Control (MEC). This work will permit the executive 

to reside in various versions of AADC configured to improve overall computer 

system reliability and problem solution confidence, as well as improve MEC 

response in the event of hardware failures. The improved MEC will also incorporate 

provisions for demand paging of both procedure and data, event posting and process 

scheduling, as well as more efficient distribution of function [6.7]. 

In addition to the above, there is also an effort to develop a rudimen-

tary OS/AADC which can be used to interface AADC with non-avionic peripherals. 

This is in keeping with the expanded role of AADC. 

6.7.2 Continued Development of MEC Course Material. 

Although this chapter has been shortened considerable over that in 

Reference 6.1, it is considered only a first draft and could still be shortened 

considerably. This section describes some of the ways in which this chapter on 

the MEC can be improved in the next yersion. 

For teaching purposes, I think Sections 6.3 and 6.4 (the backup floating 

software MEC for the Baseline System and the dedicated software MEC for the dual 

processor system) should be eliminated. Also the floating software MEC for the 
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simplex system should he described first as the simplier system, before the more 

elaborate Hardware MEC. Also the descriptive verhage should be reduced and made 

more concise. 

These reductions in the design philosophy portions would allow the 

inclusion of more detail on the actual design implementation. In particular, more 

of the interrupt and MEC routines could he included, with English language_ flow 

charts. These could he organized as follows: 

1.' MEC interrupt/routines common to both the floating 
software and hardware MEC, 

2. MEC interrupt/routines unique to the floating soft
ware MEC on a OS system, 

3. MEC interrupt/routines unique to the hardware MEC 
on an AADC baseline system. 

In summary, this chapter presents the design philosophy, various hard. 

ware and software configurations, design tradeoffs, capabilities and operating 

characteristics of the major control component of the AADC system - the Master 

Executive Control. 

6.7.3 Current Status of MEC Developments. 

Since this chapter was written, Honeywell has produced another volumi-

nous report containing four volumes.- Volume I contains a summary of the technical 

results of the report. Volume II is the technical volume and contains the results 

and tradeoffs of the demand paging and virtual memory performance for AADC, the 

functional analysis of MEC, the internal communication and bussing system and the 

functional description of the hardware, software and hybird executives for AADC. 

Volume III contains all support data and information while Volume IV contains the 

detailed timing and evaluations of the three different implementations of MEC. 
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Of this report, Sections 3 and 5 of Volume II, on the descriptions of the functional 

analysis and functional descriptions of the hardware, software and hybird MECs, 

respectively, are of the most interest here. (Section 2 of Volume lIon demand 

paging and virtual memory pertains to Chapter 3 while Section 4 of Volume II on 

internal bussing is discussed in Chapter 2). 

The three versions of MEC considered in this report are the dedicated 

hardware MEC (similar to the one in Section 6.2 above), the floating software }1EC 

(similar to the one in Section'- 6.3) and a hybird executive which consi~ts of a 

software executive with an associate memory assist. The flow charts of these 

executives are shown in Volume II, Section 5 [6.7]. 

Apparently in Volume V of Honeywell's report, an Optimized Simplex MEC 

is defined which uses fixed priority scheduling rather than time-driven scheduling, 

has a despatcher and an interrupt handler, allows pre-emptive scheduling by higher 

priority tasks and contains only seven modules and three system tables instead 

of the 17 modules for the other MECs 17.8 and 7.9]. 
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Question on the MEC 

For problems concerning the MEC development see Section 6.7. 

Specific questions will be included in the next report. 

6.1 In Section 6.3.3, what are some of the problems of trying to defind a set 

of kernel co-residents Program Modules? Can you guarantee one of these 

PMs is always present? 

6.2 Use Table 6.4 to estimate the overhead for a particular set of PMs in a 

particular mode. Try to obtain realistic usage data for a particular 

aircraft. 

6.3 See Section 6.7, particularily items 3 and 7, for a group term project 

or thesis topic. 
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AP 

APE 

A&C 

BPP 

DPE 

GPAP 

ILLIAC IV 

MCU 

MPP 

PEPE 

PMU 

SCU 

SPAU 

SPE 

Glossary of Terms for Parallel Processor 

- Associative Processor: first version of the AADC Parallel 
Processor 

- Array Processor Elements: a general purpose sequential pro
cessor with limited control and data management capabilities. 
One of many processors in the GPAP. 

- Arithmetic and Control Unit of DPE. A&C plus Task Memory ~kes 
a sequential Data Processor Element. 

- Bulk Parallel Processor: another name for a general parallel 
processor. 

- Data Processing Element for sequential Processing (Chapter 5) 

- General Purpose Array Processor: the third version of the AADC 
Parallel Processor. 

- ~ very large matrix parallel processor with 64 processor ele
ments in parallel under one instruction interpretor (controller) 
installed at NASA Ames in San Jose, California. 

- Microprogrammed Control Unit: the main control unit for SPE. 

- Matrix Parallel Processor: second version of the parallel pro
cessor. 

- Parallel Element Processing Ensemble: a special parallel pro
cessor with several identical PEs each one for tracking its own 
~radar target under a single pair of control units [7.4]. 

- Program Management Unit for Data Processing Element - function 
similar to MCU, (Chapter 5). 

- Storage Control Unit: control for the SPE Buffer Memories. 

- Signal Processor Arithmetic Unit: the arithmetic, logic and 
shift unit for SPE. 

Signal Processing Element: the latest version of the AADC 
Parallel Processor. 
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Chapter 7 

PARALLEL PROCESSOR 

7.1 INTRODUCTION AND SUMMARY 

Whereas the PE described in Chapter 5 is designed to fulfill all the 

sequential processing requirements t the parallel processor is designed to handle 

all the parallel processing requirements for AADC. The avionic parallel 

processing requirements include signal processing, radar processing, multiple 

tracking, pattern recognitioo t table look-upt optimal filtering signal corre

lation t Fourier analysis and synthesist analog test function generation, voice 

command interface t etc. Parallel processing requirements are for 70 to 133 r1IPS 

and 32K to lOOK words of memory [7.1]. 

Although the parallel processor was one of the first AADC areas of 

concern, it has undergone more changes in design concept than any other AADC 

module, it still is the module whose design is the least firm and the most 

likely to be changed. Already the parallel processor has been referred to as 

the Bulk Parallel .Processor (BPP), Matrix Parallel Processor (}~P), Associative 

Processor (AP), General Purpose Array Processor (GPAP), and the Signal Processing 

Element (SPE). 

The feasibility of constructing a parallel processor capable of 150 

MIPS throughput is not in doubt t but what will it cost, and how should it be 

designed to maximize the throughput, maximize the flexibility and minimize the 

cost? ILLLAC IV and PEPE are examples of very powerful parallel processors 

that are already in operation at NASA, Ames, San Jose) 
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California and the Ballistic Missile Defence Agency, Huntsville, Alabama, 

respectively. The ILLIAC IV interprets instructions sequentially, controls 

64 arithmetic processors in parallel, has inter processor communications and 

is specifically designed for array processing. The PEPE is similar to ILLIAC 

IV except it interprets 2 instruction steams simultaneously, contains any 

number of arithmetic processors, has no interprocessor communications and is 

specifically designed for radar-like signal processing. Both these systems 

are very complex and costly [7.2-7.4]. The SPE is intended to perform both 

these functions but with a cost reduction of at least two orders of magnetude. 
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7.2 HISTORICAL DEVELOPMENTS 

7.2.1 Associative Processor 

One of the first concepts promulgated by AADC has been the inc or-

poration of an optional, integrated, array processing capability within the 

computer mainframe. This hardware function would permit general purpose pro-

cessing of radar, acoustic and/or video signals by means of some combination 

of domain transformation (frequency to time domain or vice versa), convolu-

tion (a method of correlating two signals) and high speed, associative list 

processing. (searching on an attribute in a file rather than on an index*). 

It was initially believed that a "simple" Associative Processor (AP) 

would suffice to handle all bodies of data which are amenable to bulk pro-

cessing. It was believed that the Ap could be used to maintain a multiple 

target track file, perform various filter operations or provide a means to 

correlate target signature information [7.5, 7.6 and 7.7]. Shortly thereafter 

it was realized that certain tasks, primarily those which require domain trans-

formations, could not be adequately processed in a simple associative pro-

cessor. It was also recognized that the cost of the AP could be prohibitive 

if storage requirements grew beyond moderation. 

Some more recent"" work at NRL on a new associative processor, includ..:. 

ing a simulation, is presented in [7.8 and 7.9]. 

7.2.2 Matrix Parallel Processor 

To contend with these problems, two further elements were added to 

this subsystem within a subsystem (the Associative Processor within the Parallel 

Processor). The new elements, the Fast Fourier Processor and the Pseudo-

Associative Memory were conceived as individual, extensible building blocks 

which could be fitted together with the Associative Processor and then put 

under the supervision of either a private operating system or the AADC MEC**. 

*like finding the name of the person from the address in the phone book. 
*Master Executive Control. 
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The AP, however, underwent certain conceptual changes based on its modified 

role, as well as a better appreciation of its operating environment. Among 

these changes were: 

the inclusion of a full adder in each memory cell; 

independent, simultaneous, multifield operations; 

vertical, as well as horizontal neighbor communi-

cations and control; and, 

a variable clock, which would keep system operation 

in step with variable settling times. 

Two fundamental problems still existed in the new Matrix-Parallel" 

Processor (MPP), as the combination of elements was called. First, there are 

domain transformations other than the Fast Fourier Transform (FFT) which are 

useful, and in some cases superior, for airborne data processing applications. 

These transformations (Walsh-Hadamard, Haar, etc.) require special processing, 

not necessarily compatible with a hardwired FFT. 

Second, while the Associative Processor design changes improved the 

matrix and vector operations, they still did not address the issue of data move~ 

ment within the processor, as would be encountered in a matrix inversion. It 

also did not address the problem of hardware inefficiency resulting from the . 

fact that the size of most matrices may not, and usually won't, correspond to 

the physical dimensions of the hardware. Further information on the Matrix Parallel 

Processor can be found in '[7.10]. 

7.2.3 General Purpose Array Processor 

Figure 7.1 illustrates a General Purpose Array Processor (GPAP) , the 

third version of the parallel processor. This design is indicative of a class 
I 

of ensemble processors such as the ILLIAC IV and PEPE [7.2 to 7.4]~ which utiliz 
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reasonably competent Array Processing Elements (APEs) in place of the pro

cessor/memory cells found in the Associative Processor. In addition to 

the improved arithmetic and logic capability provided by this organization, 

each APE is'provided with sufficient quantities of procedure and data 

storage to manage computational problems of moderate complexity. Where the 

ensemble processor differs from the sequential multiprocessor are in the 

areas of control and data management. In the GPAP, each APE may be slaved 

to a global controller (a supervisory DPE) thereby allowing common manage

ment of extensive, distributed computation. In essence, the ensemble pro

cessor accepts a large body of data, partitions the data into digestible 

sets, then operates on these data sets in parallel. As such, the Bulk 

Memory, which appears at the bottom of the GPAP diagram, might reasonably 

be considered a signal converter, since it converts very high frequency 

(100 M bits per sec) sequential signal into several lower frequency parallel 

signals (i.e., into twenty 5 M bits per sec signals) for processing. 

If the distributed operations are identical and synchronous, then 

the overall process may be controlled by the global controller. If the pro

cesses are asynchronous or nonidentical, then control is passed to the pro

gram stored in local Task Memory. In such instances, the global controller 

is only used to supervise system program and data transfers, and manage 

system interrupts. 

Among the advantages of this type of structure over the Associative 

and Fast Fourier Processor are its ability to perform matrix and vector opera

tions efficiently, its ability to handle the signal processing requirement 

for synthetic aperature radar mapping and other "holographic"-like* functions, 

* i.e. transformations on video signals. 
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and its ability to perform domain transformations (i.e., frequency to time 

domain). All these functions can be programmed into the array, and optimized 

using conventional software and programming tools, such as high level language 

compilers. Further description of the General Purpose Array Processor can 

be found in [7.11 to 7.14]. The current parallel processor design will be 

described in the next section. 
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7.3 CURRENT SIGNAL PROCESSING ELEMENT 

7.3.1. Introduction 

The current Signal Processing Element (SPE)* is a high-performance 

signal processing facility for radar, sonar, and communcation systems. The 

design of the SPE provides for efficient, flexible solutions to problems suited 

to digital signal processing machines. The SPE is intended to be compatible 

with the Navy All Application Digital Computer (AADC) system now under develop

ment, but is also intended as' a stand-alone signal processor. 

The SPE consists of the following elements: 

Microprogrammed Control Unit (MCU) 

Signal Processing Arithmetic Unit (SPAU) 

Buffer memories or Buffer Store 

Storage Control Unit (SCU) 

Input/output system. 

The SPE elements for the Advanced Development Model are to be imple

mented with "off-the-shelf" components. Bipolar monolithic storage devices and 

TTL Schottky family logic are to be used. Performance specifications include: 

MCU basic microinstruction 

Buffer memory cycle 

SPAU-equivalent complex operation 

(four multiplications and six adds) 

150 nsec 

150 nsec 

300 nsee 

Performance is compatible with projected AADC technology, and effi-

cient operation can be expected under stand-alone or system-integrated conditions. 

The material in this section is a summary of [7.17-7.20]. 

*the current SPE was developed at NRL (Navy Resea~ch Lab, Washington, D.C.). 
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7.3.1.1. Functional Description 

The SPE is designed as a tool for processing digital data streams. 

The heart of the SPE is the Microprogrammed Control Unit which serves as system 

superviser and data organizer for the Signal Processing Arithmetic Unit and 

other I/O devices in the system. Microprogrammed operations in the }1CU process 

l6-bit-wide data accessed from 32-bit-wide buffer memories and control buffered 

and unbuffered I/O operations to and from SPE devices. 

The Signal Processing Arithmetic Unit performs special data process

ing op.erations such as Fast Fourier Transforms, recursive filtering, and corre

lation under direction of the MCU. Parallel organization of fast multiply and 

add logic units allow for high-speed execution of these functions. Interfacing 

between the SPAU and MCU is via buffer memories and the I/O system. 

It is the responsibility of the Storage Control Unit to manage accesses 

to buffer memories by the elements of the SPE. The MCU, SPAU, and other buffered 

devices in the system access buffer memories independently under their own con

trol, and the SCU resolves conflicts for buffer cycles on a priority basis. 

The I/O system is designed to allow expansion of the SPE so that mul

tiple MCU's and SPAU's can communicate and coordinate processing of increased 

data bandwidths. 

Figure 7.2 is a block diagram of the SPE. 

7.3.2. SPE's Microprogrammed Control Unit (MCU) 

The Microprogrammed Control Unit is a high-speed, executive, input

output processor and interrupt handler for the NRL SPE. Since the }1CU is the 

microprogrammable executive for the SPE, users will write microprograms (or 

have them written) which will direct and control all elements of the SPE. It 
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is the responsibility of the MCU to initiate and keep records of all I/O 

operations. Concurrently, the MCU may be doing preprocessing on a block of 

data before requesting action from the SPAU. Similarly, it may have to do 

postprocessing of SPAU output before outputting the results or sending them 

back to the SPAU for yet another operation. In addition to these functions, 

the MCU must service the interrupts from the SPAU, Buffered Channel Controllers, 

Unbuffered Device Controllers, and other MCU's, if any. To handle all of these 

responsibilities, it is necessary for the MeU to do many things at a very fast 

rate. As a result, the MCU operates at a ISO-nsec clock cycle time, with the 

ability to do all operations, including buffer memory accesses, within one cycle. 

To achieve this high rate of control, the MeU operates from a single-format, 

64-bit-wide, microprogram control word. From this wide control word, it is 

possible to achieve benefits such as increased speed due to the highly decoded 

fields and high hardware utilization (and, therefore, performance improvement) 

from the ability to control all of the registers and gates during each cycle. 

Thus the Meu serves as system supervisor and data organizer for the 

SPAU and other I/O devices. The MeU includes a 64-bit Control Store, two local 

stores, an arithmetic element, two busses to buffer memory, an unbuffered byte 

channel, and a priority interrupt system. The next subsection will examine 

the MCU architecture and operation. 

7.3.2.1. MCU Architecture and Operation 

To obtain the basic clock rates, the MCU must be simple, but to do the 

required work it must have considerable parallel-operating hardware. These 

requirements dictate the design shown in Figure 7.3 and the overlapping opera

tions and timing shown in Figure 7.4. 
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All data entering or leaving the ~CU must travel over one of two 

channels, Bus A or Bus B, via the Storage Control Unit to the buffer memory. 

Each channel can be used for one memory operation during every ~CU cycle due 

to the matched speed of the ~CU and the buffer memories. See Figure 7.3. 

Associated "ith each 32 bit bus is an address register. Bus A 

Address Register (a~~~) goes with Bus A and, similarly, Bus B Address Regis

ter (~~RB) goes \~ith Bus B. Each register has 16 bits, composed of 12 bits 

of word address, 3 bits of buffer address, and 1 bit for half-word address

ing since each buffer ~e~ory word read out and transferred is 32 bits wide. 

To aid in buffer ne~ory addressing, each address register has an incrementer 

and decrementer associated with it. 

To store data fro~ these busses or intercediate results generated 

by the }1CU, there are t\,"o small very fast (30 nsec access) nemories, Local 

Store A and local Store B. Each is 16 words by 16 bits ~ith the capability 

of being both read out and stored into during the s~e c~c1e. Double 

addressing capabilities are asso~iated ~ith each local store whereby dif

ferent addresses can ~e s?ecified for read and "rite operations in the same 

instruction cycle. 

For indirect (co~?utable) addressing, a default schene is incor

porated ~hic~ allo~s the least significant four bits of the adjacent bus 

address register (B.~~~ \~ith Local Store A and B.~B with Local Store B) to 

supply the local store address. This occurs ~henever the control store 

field address is zero. 

To perforn basic arith~etic and logical operations, the ~cu has 

both an added and a shifter (so=eti=es called an Arithmetic and Logic Unit). 
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The adder can perform 16 basic operations including add, subtract, and full 

Boolean operations. Binary operations are performed on two 16-bit words, 

one on the left input (L) and one on the right input (R). The output is 

delivered td the l6-bit Z register for gating to other MCU registers. The 

shifter is a barrel switch which allows shifting of the adder output by 

any number of bits within 20 nsec. The number of bits to shift is specified 

by the Shift Amount Register (SAR). Output from the adder/shifter goes via 

the l6-bit Z register into local stores, buffer address registers, and other 

registers in the same cycle. 

One support register, the Shift Amount Register, has already been 

mentioned. Another is the Counter (eTR) which can be loaded with a literal 

value and counted up to overflow which can be checked and thus cause appro

priate action. Other conditions that can be checked are based on results 

of the last adder operation and include adder overflow, result equal to 

zero, Z register most significant bit set (sign), and X register least 

significant bit set (odd or even, flag, etc.). 

Two registers are provided for control store address selection. 

The Control Store Address Register (eSAR) is the only one which addresses 

the writable Control Store. It can be set from the other address selection 

register, the Alternate Control Store Address Register (ACSAR), the literal 

field of the control word, or from its incrementer. In addition to these, 

the Interrupt Control Unit (leU) can set the eSAR to allow for interrupt 

handling. At the beginning of each cycle, the eSAR contains the address 

of the currently executing control word. Under direction of the new con

trol word, the CSAR and ACSAR are selectively altered from one of eight 

choices. For example, in normal sequential program stepping, the eSAR is 
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incremented during each clock cycle and the ACSAR is unchanged. For sub

routine calls the ACSAR retains the return address (the old CSAR +1) and 

the CSAR holds the address of the subroutine. 

The Interrupt Control Unit (leU) mentioned earlier contains no 

programmable elements. Upon receipt of an interrupt of higher priority 

than the current level executing in the MCU, the MCU operations are sus

pended, all necessary registers are saved, and the appropriate interrupt 

handling routine address is passed to the CSAR. This routine executes 

then restores the MCU to its preinterrupt status. The user will be unaware 

of this action except for deviations in expected execution times. 

I/O action is initiated by the MCU by sending out an I/O command 

over the Z bus. The programmer must select the proper command operation 

code, count, device address, buffer address, etc., to be sent out on the 

Z bus. This process will be discussed further in Subsection 7.3.5. 

The last element of the MCU is the Field Select Unit (FSU). 

This device allows the programmer to address fields within a word. As 

data are brought in over bus A, the programmer may specify that during any 

transfer the 32 bits of data also be put into the Field Select Data Register 

(FSDR). In subsequent cycles after this operation, the user may select 

one of seven predefined fields [7.17, page 6] from the FSDR as an operand. 

for the adder. The output will be a l6-bit value with the selected field 

right justified with leading zeroes. 

The two most important attributes of the MCU is its speed and 

flexibility. The speed is obtained largely from the overlapping of opera

tions. Figure 7.4 shows the MCU's 150 nsec cycle time broken down into 

four subcycles with an average of four events being performed in each sub-
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cycle. This gives some idea of the amount of concurrency allowed by this 

architecture. 

Much of this subsection is taken from [7.17]. A more detailed 

explaination. of the MCU architecture and operation is available in [7.18, 

pp 2-9] or [7.19, pp 2-17]. A description of the 64-bit control field is 

available in one of [7.17, pp 7, 8; 7.18, pp 22-31; or 7.19, pp 27-34]. For 

a discussion of the MCU programming language, see Subsection 7.3.6. 

7.3.3 Signal Processing Arithmetic Unit (SPAU) 

The Signal Processing Arithmetic Unit operates under direction 

of the Microprogrammed Control Unit. It is a special-purpose hardware 

device designed to provide very high-speed processing of Fast Fourier Trans

forms, recursive filter, and other signal processing algorithms. Its per

formance is indicated by a time of 300 nsec (two ~1CU cycles) to complete 

an SPAU-equivalent complex operation (four mUltiplications and six additions). 

Two major sections provide the processing functions of the SPAU. 

These are the Arithmetic and Control Section (ACS) and the Address Generator 

and Control Section (AGCS). Both sections operate under microprogram control 

from read-only or read-mostly memories. These two major sections are later 

subdivided in 5 smaller sections. 

The Arithmetic and Control Section contains four high-speed multipliers 

(185 nsec) and six high-speed adders (25 nsec) which can operate in various 

parallel or serial configur~tions as governed by the microprogram control. 

Direct access to SPE buffer memories is provided via two buffered data 

channels allowing high data throughput in the SPAU. 

The Address Generator and Control Section contains adders, counters, 

and other logic elements and provides the function of computing addresses 
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needed by the Arithmetic and Control Section to access buffers and internal 

stores containing data used by the signal processing operations. 

7.3.3.1 Design Objectives of SPAU 

The SPAU has been designed to attain two primary objectives, 

high speed and efficiency, in the execution of signal processing algorithms. 

The former has been accomplished by using four parallel hardware multipliers 

and four adders in the section which performs arithmetic operations on the 

input data, and by concurrently generating memory addresses in a separate 

section which uses three parallel adders and three counters. High efficiency, 

that is the ability to keep most of the hardware bu~y most ,of the time, is 

accomplished by providing many data transfer options to the multipliers and 

adders. 

During the design process, major emphasis has been placed on two 

signal processing algorithms: the Fast Fourier Transform (FFT), and the 

second-order recursive filter. Another objective has been to provide flexi

bility for the efficient execution of other algorithms, such as data and 

spectrum weighting (Hanning) and vector and matrix operations. This overall 

flexibility has led to a wide control word (154 bits). 

7.3.3.2 SPAU Architecture 

As shown previously, Figure 7.2 illustrates the relationship of 

the SPAU to the other elements in the SPE. The SPAU communicates with the 

Microprogrammed Control Units (MeU) by means of the Z bus and buffer memories. 

Input and output data areas residing in one or two buffer memories are 

assigned'by an MCU each time the MCU issues a "macro" command to the SPAU. 

After receiving a macro, the SPAU operates in a stand-alone mode until it 

has finished the assigned task, then it sends an interrupt signal to the MCU 

which called it indicating that the macro has been completed. 

7.18 



In order to operate in this manner there are five functionally 

different sections combined within a SPAU, as illustrated in Figure 7.5. 

There are: the Arithmetic Section (AS), the Address Generator (AG), the 

Sequence Unit (SU), the Control Store (CS), and the Input/Output Control 

Unit (IOCU). The,Arithmetic Section contains four high-speed (185 nsec) 

16-bit multipliers; four high-speed (25 nsec) l6-bit adders (arithmetic 

logic units); four each of input, product, and result registers; and four 

16-word 16-bit local stores which are "ganged" in pairs (the two stores in 

a pair have common Read and Write addresses). The Address Generator con

tains three adders, three counters, three output and three result registers, 

and a single 16-word 16-bit local store. Communication is provided between 

the AS and AG local stores in order to facilitate data dependent addreSSing. 

A read-only memory (ROM) contains 1025 sine and cosine coefficients, each 

12 bits wide, for use in the FFT, plus often-used filter coefficients and 

other constants. 

7.3.3.3 SPAU Operation 

A SPAU operation may be initiated by an MCU sending an inquiry 

signal on the Z bus, and receiving a "not busy" reply from the SPAU. The 

MCU then sends a linkage message which includes the identity of the macro 

being requested, and its associated parameters. The message is transmitted 

via the 10 Control Unit to the W store in the Address Generator and thence, 

as required, to the X and Y stores in the Arithmetic Section. The start

ing address of the particular macro in question is set up on the Sequence 

Unit, and operation of both the Arithmetic Section and the Address Generator 

begins. 

The normal sequence of control is an unconditional step from one 

instruction to the next; however, this sequence can be altered by testing 
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anyone of fifteen other conditions in the AS and AG hardware, and transferring 

control to one of seven other successors. A new instruction is fetched 

every 150 nanoseconds (nsec) unless a buffer memory access is denied to 

the SPAU, in which case the unit idles, re-requesting the memory access. 

Data are transferred to and from buffer memories over two channels, denoted 

by A and B, of 32 bits width. The X and Y stores are each partitioned into 

l6-bit halves, Xl' X2 , and Y
l

, Y2 , respectively, to operate with the 16-bit 

hardware of the Arithmetic Section. 

Adder outputs may be loaded directly into result registers, Rl 

through R7, and mUltiplier outputs are always loaded into product registers, 

PI through P4. There are also four input registers, denoted by 21 through 

Z4, which may be loaded from the ROM or from the source that is otherwise 

indicated (in the control word) for X and Y. The inputs to the Arithmetic 

Section multipliers and adders are obtained from X, Y, the 2 registers, 

the P registers, and Rl through R4. 

In the Address Generator, the memory addresses are held in registers 

denoted by BARA, BARB, and RAR for channels A and B, and the ROM, respectively. 

Their contents are normally incremented by amounts contained in registers 

INCA, INCB, and INeR, respectively. The inputs to the Address Generator 

adders are obtained from the address registers, the INC registers, the W 

store, or the literal field of the control word. The literal field and W 

are 16 bits wide; only the 11 least significant bits and the sign bit (the 

most significant bit) are used in the 12-bit Address Generator hardware. 

As stated in [7.20] the design of the SPAU is still in the pre

liminary stage and thus the material in this subsection may be subject to 

change. The final design is expected in March 1973. 
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7.3.4 Buffer Memories and Storage Control Unit 

7.3.4.1 Buffer Memories 

An SPE can have a maximum of eight buffer memories. Each buffer 

memory consists of up to 4096 words of 32 bits and has a separate 32-bit data 

port. The buffer memories use static, bipolar, monolithic storage"devices 

which are compatible with TTL logic. The read/write cycle time is 150 nsec. 

The memories are contained on printed circuit boards which are placed in 19-in. 

wide panel racks. 

Each buffer memory is independently accessible through its own 

port. MeU's, SPAU's, and peripheral devices must contend for buffer memory 

access on a cycle-by-cycle basis. It is the responsibility of the Storage 

Control Unit (SCU) to resolve memory access conflicts. 

7.3.4.2 Storage Control Unit (SCU) 

All SPE devices (}1CU's, SPAU's, peripherals) which require buffer 

memory access are interfaced to the memories through the Storage Control 

Unit. The SCU can interface up to eight data channels with up to eight buffer 

memories. Any channel may access any buffer memory at any time. Whether or 

not the buffer cycle which is requested is granted depends on the priority 

of the requesting channel and the state of the other channels. Channel pri

ority is hard wired and determined by the physical location of the channel 

at the SCU. 

Requests for a buffer cycle are made by a device raising a buffer 

request line along with the buffer address lines. The SCU records all buffer 

requests every clock cycle (150 nsec) and returns a Request Granted line to 

each device receiving its requested buffer cycle. If two or more devices 

request the same buffer on the same cycle, only the highest priority channel 

will receive the Request Granted line. 
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It is the responsibility of any device to remain idle pending a 

positive response by the SCU to its buffer cycle request. This is done 

automatically by the MCU and SPADe A little more detail on the seu can be 

obtained from [7.19, pg 17-18]. 

7.3.5 Input/Output System 

The SPE Input/Output and internal communications are provided by 

Direct Memory Access buffered data channels, a single unbuffered byte channel, 

and a priority interrupt system. The unbuffered byte channel called the Z 

Bus communicates both data and control information to all I/O devices. 

Eight/sixteen buffered channels enable high-speed data transfer between 

buffer memories and system devices or MCU's. The Z bus allows direct 

communication under MCU control and on a word-by-word basis between the Z 

register of an MCU and all devices connected to the Z bus. The Z bus also 

enables direct MCU-to-MCU communication. 

Figure 7.2 in Subsection 7.3.1 showed an SPE configuration with 

I/O system elements and interconnections. 

Devices which access buffer memory over buffered channels are 

interfaced to the buffered channels by Selector Channel Controllers (SeC) 

(Not shown in Figure 7.2). SCC's also interface with the Z bus and are 

responsible for interpreting device requests coming over the Z bus from 

MCU's. These requests originate in the form of MeU I/O instructions and 

can call upon an sce to initiate various device I/O operations over its 

buffered channel interface. 

The see's are intended to he standard I/O elements interfacing 

between buffered channels and Device Controllers (DC). DC's interface be~ 

tween sec's and I/O devices and must be tailored to meet the interface 
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requirements of a particular device type. DC's interface to sec's over 

Z-bus-compatible connections. This allows a DC to connect directly to the 

Z bus for direct unbuffered communication with an MCU or to connect to an 

SCC for buffered channel communication. 

SCC's and DC's can request MCU action via interrupt lines pro

vided in the MCU's for such purposes. Separate sec's or DC's sharing a 

single interrupt line must have hardware to resolve competition among the 

units for interrupt service~ 

An MCU generating an I/O request addressed to another MCU for the 

purpose of MCU-to-MCU communication causes the addressed MCU to raise an 

internal interrupt line. An I/O acknowledge instruction by the interrupted 

MCU completes the data transfer over the Z bus. 

The Z bus consists of 30 lines, 16 of them are bidirectional 

data lines, 8 are bidirectional device address lines and 6 of them are other 

control lines. The maximum burst transfer rate over the Z bus, based upon 

an MCU cycle time of 150 nsec, is 2 'MHz. The Z bus is used by the MCU to 

exchange commands and unbuffered data with I/O devices. The MCU is interface 

to the Z bus through the Z register and the Local Store A (See Subsection 7.3.2 

and Figure 7.3). 

Since three references [7.17, pp 19-25; 7.18, pp 9-15; and 7.19, 

pp 21-27] all contain (almost) identical detailed descriptions of the SPE 

Input/Output System and it~ operation, no further description will be pre

sented here. 

7.3.6 A Microprogramming Language (AMIL) 

One of the most significant outcomes of the NRL SPE development 

program is the creation of a Fortran-like language for programming the SPE. 
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Since the control unit of the SPE is the Microprogrammed Control Unit, all 

programming would normally be done by specifying binary bit pattern which 

is a difficult and tedious task. For this reason, a new language called 

AMIL ( A MIcroprogramming Language) has been created to allow users to 

write microprograms in a Fortran-like register transfer language as opposed 

to ones and zeroes. As a result, users will now be able to write AMIL 

programs and allow the A}lIL translator to convert his program into MCU bit 

patterns. This translator has been developed and is currently operational 

on a t,ime-sharing service available to NRL. 

AMIL is syntactically described using Backus-Naur Form (BNF) 

with semantic descriptions in [7.17, pp 9-18]. A complete AMIL Syntax is 

given in [7.17, Appendix B] with key words listed in [7.17, appendix C]. 

Two sample programs and their output from the AMIL translator are shown in 

[7.17, appendix D] and a complete listing of error messages generated by 

the translator is shown in [7.17, appendix E]. In all, AHIL looks like a 

well defined and very useful language for controlling the microprogrammed 

SPE. 
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7.4 COMPARISON OF DPE AND SPE 

Since the Data Processing Element (DPE) described in Chapter 5 

and the Signal Processing Element (SPE) are substantially different processors, 

a brief comparison will be presented. The DPE is intended for all sequential 

processing, although it does have some matrix handling capabilities. The DPE 

is expected to have throughput of less than 10 MIPS even in advanced designs 

and about 2 MIPS for the Advanced Development Model. On the other hand, 

the SPE is designed for radar, acoustic and video signal processing where 

throughput of 10 to 200 MIPS may be required. 

Figure 7.6 compares the major component building plocks of the SPE 

with the building blocks of the sequential DPE. In principle, the SPE 

achieves its high throughput based on the fact that signal processing en

tails reiterative processing of relatively continuous data streams. This 

allows pipeline computation where, once the processor pipeline is filled, 

the total throughput of the machine is basically limited by the time it 

takes to complete the longest operation in the sequence. Obviously, in 

order to keep a processor pipeline busy, it is necessary to stream instruc

tions to all elements in the pipeline simultaneously. Because the number 

of operations which must he controlled in this manner is greater than can 

be managed using a relatively short OP CODE, microprogramming methods are 

used. 

While extensive microprogramming was found non-essential and hardly 

cost-effective for the DPE, it is an absolute necessity in the SPE. Further

more, the software management problem raised by microprogramming for the 

DPE does not seem as grave in the case of the SPE. Whereas, for the 

sequential DPE, microprogramming could result in uncontrollable modification 

7.26 



~----~----------------+-----------------------------~-------------------------------~--

Signal Processing Element I Property 

Required Through
put 

Arithmetic 

Precision 

Array Sizes 

Branching 

Procedure and 
data sizes 

Arithmetic Unit 

Control Unit 

Queue 

Local Instruction 
Memory 

Local Data 
Memory 

Data Processing Element 

<1 HIPS 

Real and Non-numerical 
data 

h~gh (32 bits or higher) 

small arrays 

considerable branching 

Procedure large, data 
small (1/10 of precedure) 

AU: Floating Point 
32 bit arithmetic 
750 nsec multiply 

PMU: Instruction fetch 
Unit 
32-bit instruction 
Long sequence on 

major cycles 

APQ from PHU to AU 
16 words x 41 bits 

Task Memory: ELt\}l 
4K words x 36 bits 

16 words x 42 bits 

>10 MIPS 

Complex variables 

low (16 bits) 

large arrays 

little branching 

Procedures small, data 
large (100 times procedure) 

SPAU: Fixed Point 
16 bit complex halves 
300 nsee for 4 multiplies 

and 6 additions 

MCU: Instruction fetch unit 

64-bit microinstructions 
Tight loop for major 

major cycle 

Buffer MCU to SPAU 
4 x 4K words x 32 bits 

Microprogram memory 
1024 word modules x 64 bits 

Expandahle to 4K word. 

Two 16 words x 16 bits 

Figure 7.6 A Comparison of the DPE and the SPE 
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of system architecture to the ~xtent that (a) HOL compilers could not be 

easily written (if at all), (b) programs could not be easily run in multi

progra~ned environments and (c) software maintenance might only be attempted 

by the progranuncrs responsible for their "individualized" instruction sets. 

The operational conditions for the microprogrammed SPE circumvent most of 

these probl~ns. First, the applications for the SPE constitute a much 

smaller set than the potential uses for the DPE by the very nature of the 

cost/performance ratio of microprogrammed hardware. Secondly, the funa

mental operat~ons which constitute the kernels for signal processing can 

be developed once and then maintained in the sense of "firm\.,rare", allo\oling, 

in turn, reasonable measures of software design automation through macro

synthesis [7.15]. 
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7.5 CURRENT AND FUTURE DEVELOPMENTS 

The current developments for the Signal Processing Element are 

concentrating on a test-bed model to be built by March 1974(the same time as 

the scheduled delivery of the Advanced Development Model for the sequential DPE). 

The SPE test-bed model is to be built with off-the-shelf equipment and to be 

compatible with other AADC components. The Microprogrammed Control Unit is to 

have 150 nsec cycle time and be capable of emulating the Q20 and ~~/UYK-7 

computers. The microprogram memory is to be 150 nsec bi-polar 2K words x 32 

bits and to be RM1M (Random Access Hain Memory) and Task Memory Compatible. 

The SPAU and other SPE components for the test-bed model ~ill be built as 

described in the previous section. 

The objectives of the SPE test-bed are to produce a facility to be 

used as a: 

1. System simulation laboratory 

2. System configuration laboratory 

3. Benchmark facility. 

The d~velopmcnt of programming languages to be used with the SPE 

is a very important area for future development. The programming languages 

can be divided into three categories: 

1. Support software for program development include a micro

programming language translator 

2. Executive software for MCV 

3. High level languages for signal processing applications. 

Some work has already been completed on developing support soft

ware for program development. The AMIL (A MIcroprogramming Language) and its 

translator have been developed and are now running. (See Subsection 7.3.6). 
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A MCV simulator has also been developed to check the translator output and to 

act as the first step in developing an SPE simulator. The basic support soft

ware is scheduled for release in April 1973. It will be available to anyone 

who wants it. 

Tbe program development that is currently in progress includes 

developing an SPAV simulator which will then be combined with the MCV simulator 

and the AMIL translator. The result will be an SPE simulator that can be 

programmed directly in a Fortr.an-like language. This should prove to be a 

very -valuable tool for SPE system configuration and check-out, as well as 

for program development. 

The development of executive software for SPE is just beginning. 

The development of high level languages for signal processing is still an 

area that needs a lot of research. 
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Chapter 8 

MEANS OF EVALUATING AADC DEVELOPMENTS 

8.1 INTRODUCTION AND SUMMARY 

Although a means of evaluating the development of AADC and accurately 

predicting the performance, cost and reliability is of the utmost importance) 

relatively little has been published on this specific subject. There are several 

means of evaluating the development, including: 

1. Measuring the load on existing avionic computer 

and thereby projecting the future requirements, 

2. Simulating the operation of individual AADC 

modules, 

3. Simulating the module interaction or the overall 

AADC operation, 

4. Simulating an application using the AADC system, 

5. Modeling the operation of AADC modules, 

6. 'Breadboarding at the DPE, memory and bussing level 

(equivalent to CPU, memory and channel level in 

more common terminology), 

7. Devising'a test plan for the breadboard of the model 

including what to measure, how to measure and how 

to interpret the results, and finally, 

8. Producing a prototype of individual modules for 

testing the complete AADC system. 
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According to the author's count, there is one completed study on 

measuring the load on existing avionics computers (but there must be others) 

[B.l]. (The AADC is currently sponsoring advan~ed analytical studies with 

Grumman Aerospace and LTV Corporations examining the computer requirements 

for the F-14 and A-7 class aircrafts.) 

The author also counts three studies simulating AADC modules (case 

2 above) and two reports on the simulation of module interactions as a 

system. (case 3 above), and two reports on simulating the AADC application to 

a particular problem area (case 4 above). There are also three reports on 

"other facets of evaluating the AADC. Apparently, one of the current projects 

is to obtain Optimized Simplex Processor breadboard or Advanced Development 

Model. (The references for these reports are cited in Section B.2 below.) 

There are also plans in 1973 fiscal year for completing the DPE 

and SPE register-level simulations, assembling a SPE breadboard, procuring 

verification hardware for DPE and I/O, and procuring feasibility models 

for both the ferroacoustic and the semiconductor BORAN memories [8.2, page 

17]. 

Therefore, the low number of reports in this area is probably not 

an indication of the lack" of activity; but rather an indication that evalua

tion studies are being described along with the particular subsystem. 
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8.2 SPECIFIC EVALUATION STUDIES 

8.2.1 Measuring the Avionic Computer Workload 

As mentioned above a study on measuring the computer load on the 

E2B aircraft is reported in [8.1]. It was found that the E-2B workload con

stitutes a processor workload of less than 100,000 instructions per second, 

and that all jobs can be partitioned into tasks of less than 4K words. Com

pared to AADC performance the E-2B workload is very small, requiring only 5 

percent of the processing capability of the 2 MIPS Data Processing Element. 

The Ta$k Memory size has been selected as 4K words to hold any E-2B task. 

(TM may be expanded in later versions.) 

Current projects call for the measuring of computer load on the F-l4 

and A-7 class aircraft [8.2, paragraph 27]. 

8.2.2 Simulation of Individual AADC Hodules 

Three studies have been reported specifically on simulating the 

operation of AADC modules. The first was the simulation of the Associative 

Processor by J. E. Shore at NRL [8.3]. (See Subsection 7.2.1 for a brief 

description of an associative processor as a signal processor.) The second 

was the simulation of the instructions of the Data Processing Element. The 

instructions were simulated in the exact way that they would be executed on 

the DPE. Thus the simulation acts as a definition of the DPE instructions, 

as well as, a tool for debugging programs written for the DPE. Both the Pro

gram Management Unit (PMU) and the Arithmetic Processor (AP) instructions 

were simulated. For further details see Subsection 5.8.1 or [8.4]. 

The third study on the simulation of AADC modules is the simulation 

of Microprogrammed Control Unit of the Signal Processing Element. The re

port on this work is scheduled for release in April 1973. Another project is 

now underway at NRL"expanding the MeU simulator into a Signal Processing 

Element simulator. For further details see Section 7.5. 
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8.2.3 Simulation of AADC System 

. Two studies have been reported on simulating the interaction of 

AADC modules. The first in 1969 was a UNIVAC report of a AADC simulation 

module [8.5]. Apparently the Navy decided not to pursue their approach. 

The other study is an early (1970) simulation of AADC at NRL. The project 

included the simulation of BORAM, Task Memory, Random Access Main Memory, 

Data Processing Element and the internal busses as resources. The load 

was represented as demands for these resources in the event-oriented simula

tion in SIMSCRIPT. Reference [8.6] describes the model and the assumptions 

in an easy to read manner. There are no results in this reference; results 

are published in reports referenced in the next subsection. 

8.2.4 Simulation of AADC Applications 

One report, that is available on simulating AADC operation on a 

specific application, is the simulation of the E-2B work load on the AADC 

system. This simulation is a continuation of the NRL project discussed in 

the previous subsection. Actually this study is limited to the simulation 

of program modules movement, or paging, between BORAM and TM to determine 

the best size of the BORAM blocks (or pages) and the size of the Task Memory. 

[8.7 and 8.8]. 

A continuation °to the above project, which is a simulation of the 

AADC with three different avionic workloads, is reported in [8.9]. The 

avionic workloads are the E~2B, F-lll and future AADC requirements as defined 

by a GE study. Simplex and multiprocessor configurations are modeled along 

with certain features of the proposed AADC executive operations •. The operat

ing configurations include non-paged, paged and multiprogramming configurations. 

The study concluded that the simplex processor configuration was sufficient 
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for any of the three avionic workloads. The report is very comprehensive 

and well ~ritten, and is well worth reading [8.9]. 

AI-recent simulation study is the one on the simulation of AADC 

page replacement algorithms and their affect on the AADC performance. It 

was concluded that the replacement algorithm has very little affect on per

formance. See Chapter 3 or [8.10]. 

8.2.5 Other Evaluation Studies 

Reference [8.11] provides a Cost-by-Function model for evaluating 

avionic computer systems by NAVAIRDEVCEN dated }1arch 1971. Reference [8.12] 

is a similar, but classified, document by NAVAIRDEVCEN dated April 1971. 

Reference [8.13] is a review of AADC documentation by Hughes Aircraft Company 

dated October 1971. (These reports may, in fact, be misplaced because they 

were placed here based on the titles only.) 
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8.3 AADC BREADBOARDS 

This heading is included in this report in the anticipation that 

AADC breadboard modules will be a very important technique in evaluating 

the AADC development in the near future. The Advanced Development Model 

of the Data Processing Element, described in Section 5.8 and [8.14], is 

just such a breadboard model. It is scheduled for delivery in March 1974. 

Hopefully, other means of evaluating AADC development will also 

be reported here in the near future. For example, the results of the follow

ing project would be interesting and useful: a simulation of the P3C or 

S3A aircraft workload on the hypothetical AADC High Order Language, to 

evaluate the features and power of the HOL and test the degree to which the 

hardware actually supports the "ideal" software. 
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Chapter 9 

HIGH ORDER LANGUAGE 

9.1 'I1JTRODUCTION AND Sm·1MARY 

This chapter presents the developments in defining and producing a 

very powerful High Order Language that can effectively and efficiently use 

the AADC system - one that can significantly reduce the development, documen

tation and maintenance costs .of the AADC Software. 

For the purpose of this report, a "High Order Language (HaL)" is 

.defined as a language with many powerful extensions beyond those in the present 

"higb level" languages, such as Fortran, Algol and PL/I. The HOL must be cap

able of generating efficient executive, '1/0, test, display, data, file manipu

lating programs •. Also it,must have powerful vector, matrix, list, character 

and bit manipulating features. (Although the equivalent of these features can 

be obtained in present languages, they are not easily programmed and do not 

execute efficiently.) For example, CMS-2 (the Navy's Compiler Monitor System) 

is an attempt at defining a HOL. CMS-·2 has the ability to define operating 

system procedures in Algol-like subroutines, and it has the ability to reorganize 

data structures at run time. Also, CMS-2 is designed especially for real-time 

command and control applications, which involve large data files. 

Two conferences have been held on the HaL for AADC; one in June 1970 

and the other in February 1972. The second conference was a good introduction 

to AADC for software specialists but did not present any concrete proposals for 

the design of the HOL for AADC. (The proceedings of this conference are not 

yet available.) Three papers have been written on the updating of CMS-2 to the 

AADC HOL, and one paper was written on how MTACCS (Marine Tactical Air Command 

and Control System) requirements should affect the CMS-3 (extended CMS-2) 
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requirements. There is also a project currently underway to specify the goals 

of the AADC HOL much more precisely. 

This is one of the first times that the software specialist has had 

a chance to influence the design of the hardware. How about some suggestions? 
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9.2 DESIGNING A HOL 

9.2.1 Problems With Existing Computer Languages 

The main problem with existing computer languages (i.e., Fortran, 

A1go1,PL/I) is that they are designed for application programming only and 

for sequential processing computers only. They are not designed to produce, 

and are quite unsuitable for producing, the many other types of programs in 

a modern computer system. 

In the avionic and command-and~control* fields, the problems are 

even worse. Spme of the current software problems in these fields are long 

lead times, non-transferability, poor documentation, difficulty in debugging, 

long validation times, very high cost, and specialized highly-trained personnel 

are required. For example, the high cost of computer hardware, coupled with 

large space and weight requirements have dictated that the avionic computers 

to be as small as possible. This meant that programs had to be very compact 

and very efficient - thus favoring assembly and machine language programming. 

With assembly languages the programming problems are even worse than with 

present "high level" languages. Programs are even more difficult to write, 

to debug, and to document. In existing avionic systems, octal patch are allowed 

and frequently used for connections, there are no language standards, no 

algorithm banks, no modularity specifications and no cooperating hardware. Thus 

there is a real need for an effective High Order Language. (Most of this material 

is taken from the slide pres~ntation I9.3]). 

9.2.2 Advantages of HOL 

HOL programming can reduce software problems because HOL programs 

are more easily understood, (largely) self documenting, more easily debugged 

*These include NTDS and MTDS (Navy and Marine Tactical Data systems, respectively). 
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and more easily maintained. Figure 9.1 gives a very simple example of the 

advantagesof HOL over an assembly language program. 

However, before a HOL can be effective, it must be able to produce 

efficiently executing programs for all software areas including executive, 

I/O test, display and data manipulation, as well as the standard application 

areas. Figure 9.2 shows this diagrammatically. Many other advantages will 

be obtained from a HaL that is effective in these areas. Useful and enforce-

able language standards will be feasible as soon as a HaL exists that can 

describe the total computer programs. 

Furthermore, effective modularity will be possible with an HaL. In 

the past, high memory costs have resulted in highly integrated programs 

which have excessive subroutine sharing, excessive branching, use of programming 

"tricks", unpredictable (or difficult to follow) program paths, reentrant 

programming (instead of using another copy), and suboptimal algorithms. These 

programming techniques are often considered advantageous since they improve 

the computer performance, but in actual fact they often produce unreliable 

and more expensive software. The wrong way to package software is to jam 

procedures into a small memory like "sardines"; the right way is to package 

software in separate individual modules. Software modularity can be effective 

if organized in the following ways: 

1. By Function - each function has its own module. 

2. At Electrical Interface - allow number conversions 
at interfaces, 4.e., a fixed-point arithmetic routine 
is used at one side of the electrical interface for 
aircraft velocity and a floating-point routine on the 
other side for aircraft altitude. 
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3. With Standard Mechanical Interfaces - standard 
module packages will optimize the "pin-to-word" 
counts, minimize branching and reduce fragmentation. 

The advantages of good software modularity are: 

1. "Where to go?" - reduces the problem of unpredictable 
program paths and excessive branching. 

2. Software Environment - it reduces the problems of 
trying to fit a program into a fixed size space. 
One program can be divided into several modules. 
Also one program segment can be used by and there
fore located in several modules. 

3. Software Reliability - is improved by reducing the 
complexity of the program because there are relatively 
few functional modules. 

HOL Algorithm banks will save excessive duplicate programming by 

storing test case solutions to recurring problems, such as, weapon delivery, 

frequency analysis, data compression and analysis, multiple source tracking 

data, correlation and optimization, file searches, display image generation 

and control, and many others. (See chapter 10.) 

HOL will also overcome the problems of non-cooperating hardware 

which usually has fixed point arithmetic, conventional registers, conventional 

repertoires, software assembly-language executives and slow speed implementations. 

All the application programs will be written in the HaL and only the HOL com-

piler needs be written in some other language. (In many cases even the com-

piler can be written in the HaL.) 

Probably the most important advantage of a High Order Language for 

AADC, and its raison d'etre, is that the Navy will regain some control over 

the ever mounting software development costs. The Navy will be able to 

specify HOL requirements in its contracts, and possibly by MIL spec. Thus 

the Navy will have much more control over the design and development of its 

. computers, and will be much more capable of supporting and maintaining the 

complex computer system in the operational environments. 
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9.2.3 AADC Software Oriented Features 

The following are some of ·the significant AADC software features 

of the Data Processing Element (Chapter 5) that help in the HOL implementation: 

1. Fix and floating point arithmetic - eliminates 
the need to scale variables and constants. 

2. General purpose push-down registers - allows 
instruction execution to be deferred until all 
data (or operands) are available. 

3. HOL stat.ements - arithmetic logical and conditional 
statements are executed directly from left to right, 
reducing program complexity and reducing the number 
of set/saves by 50 percent, which reduces the 
program size. 

4. Macro-instruction repertoire - permits specification 
of complete trigonometric, logorithmic, complex, 
vector, matrix and list operations in one or two 
macro-commands. This will result in improved compat
ibility with HOL and minimize program storage, as 
well as, allowing improved computer operating 
efficiency. 

5. Many special vector and matrix operators. 

6. Very powerful data manip~lating instructions. 

7. Real-time executive - structures Program Modules in 
real-time and on-line, minimizes need for extensive 
software integration and permits dynamic software 
reconfiguration. 

8. Instruction look-ahead - improves processor 
throughput by a factor of 2 by decoding and 
executing instructions concurrently. 

9. High speed - the AADC PE provides the following 
sequential throughput capability: 

- 4 MIPS with ·30:70 instruction mix, all 
floating point arithmetic and 10 nsec 
off-the-shelf technology. 

- 8 MIPS as above, except with 2-3 nsec 
AADC semiconductor technology. 
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- 10+ MIPS as above, when instruction 
handling capability is considered. 

For more information on the DPE instruction repertoire see Chapter 5. 

9.2.4 HaL Metacompiling 

The metacompiling technique allows a single compiler to be used 

for many object computers as shown in Figure 9.3. 

Source 
Code 

Libraries 

Metacompiler 
on a 

Host Computer 

Hardware Description 

Object Code for 
the Target Computer 

Figure 9.3 Use of a Metacompiler 

Source code, such as an application program and a description of the target 

computer hardware are fed into the Metacompiler on the host computer. The 

source code calls any procedures or routines it needs from the library. From 

these input, the metacompiler generates object code for direct execution on 

the target computer. 

Figure 9.4 shows a simple block diagram for using a metacompiler. 

First the Statement of Requirements (SOR) is fed into the task-load estirna-

tion block, which can refer to the algorithm bank to simplify its estimations. 

The output from task-load estimation block is fed into the hardware defini-

tion block and into the operational program block. The hardware definition 

block then selects hardware modules and options from the set of available 

modules and feeds its output to the metacompiler. On the other path, the 
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operational program block uses the task-load estimation to select algorithms 

which are then processed and fed to the metacompiler. From these inputs the 

metacompiler generates the program modules and executive programs for the 

target computerin such a way that they will staisfy the Statement of Require-

ments. Significant saving can be obtained by using metacompilers for a HaL. 

For further information on the metacompiler technique see [9.4 and 9.5]. 

9.2.5 Software Cost Reduction with HaL 

The following cost saving will be obtained with the AADC HaL: 

1. Single High Order Language - with hardware and 
software compatibility. 

2. Ability to document programs - in the single HaL. 

3. Available Program Modules - in algorithm bank. 

4. Simplified training - for Navy and Contractors. 

5. Available supporting software. 

9.2.6 Comparison of CMS-2 to Other Programming Languages 

This subsection compares CMS-2 (Compiler Monitor System) with 

other "high level" languages. First Appendix 9.1* gives an overview of 

the CMS-2 language. CMS-2 is a "high level" statement-oriented computer 

language similar to JOVIAL, Fortran and PL/I. References [9.7 to 9.11] 

provide more information on the CMS-2 language. Reference [9.10] concentrates 

on the utility of CMS-2 statements - which ones are essential, which are 

redundant and which ones are difficult to implement. Reference [9.11] is the 

CMS-2 programming manual, of which Volume 2 is of the most interest since 

it describes the language. 

*Not included at this time. 
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Table 9.1 is a comparison of CMS-2 with JOVIAL, Fortran, APL 

and PL/I programming languages [9.6, pages 54, 55 - Enclosure 3]. As can 

be seen, CMS-2 has several features that are missing in the other languages. 

The features of particular interest are the syste~ the data structure and 

the input/output features. One CMS-2 feature that is of dubious value is 

the ability to intermix machine code with CMS-2 statements. Although this 

is very desirable when the speed or powerfulness of machine code is required, 

it has perpetuated the use of machine code when it was not really necessary, 

thus eliminating any hopes of producing transferable programs in the high , 

level language. One obvious shortcoming is that CMS-2 do~s not have the 

powerful vector and matrix operations that are contained in APL. 

9.2.7 Goals of the AADC HOL 

At this time the goals of the AADC High Order Language have not 

been specified, but a project is currently underway to make such a specifica-

tion of goals. See Section 9.4 for further details. 
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Table 9.1. Comparlson of CMS-2 .to Other Pr:o~ramming LaI18uagp 

FEATURE 

Input/Output 
Can describe input/output devices? 
Allows Extensive for~atting of data? 
Allows tape control functions? 
Range of automatic output conversions? 
Stream and record processing? 

~-iis cellane ou s 
Arithmetic expressions in subscript? 
Addition of subroutines, procedures? 
Linkage transmission of name or 
value data? 

Mixed arith~etic expressions? 
Manipulation of bits of data? 
~mnipulatio~ of characters of data? 
Initialization of data? 
Packing of part-word data values? 
Scaling specified or automatic 
'scaling ? 

Capability to do arrdY manipulations 
. with single reference? 
Built in collection of subroutines 

for common mathcmatlcal functions? 
Provide internixing of m3chinc code? 
Control over use of ~achine code? 
Provision for ju~p tables? 
Allo\,'s user-index regis ter ass ignmen t? 
Full character sett 

Data Types 
Integer, floating point, literals, 
Boolean? 

Typed Pointers? 
Status variables? 
Complex numbers? 
Double precision floating point? 
Complete part-word data elements? 
Hulti\.Jord data elenents?, 
Character strings? 

-

Internal Process Operators 
Basic logical operators? 
Relational operators? 
Standard mathet'latical interpretation? 
Automatic table searching? 
Boolean algebra? 

. 
. . 
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Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Y'2S 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 

Limited 

Limited 
Yes 
No 
Yes 
Yes 
Yes 

Yes 
No 
Yes 
No 
No 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

.Yes 
Yes 

Yes 
No 
Yes 
Yes 
Yes 

Yes 
Yes 

I Yes 
Yes 
~es 

Yes 
Yes 
Yes 

No 

No 

Yes 
Lioitcd 

N:> 
Yes 
No 
Yes 

Yes 
No 
Yes 
No 
No 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes . 
No 
Yes 

. 

l~o 

Yes 

Yes 
No 

Yes 
Yes 

No 
Yes 
No 
No 
Yes 

- No 

No 

No 

Yes 
No 
~o 

Yes 
No 
Yes 

Yes 
No 
No 
Yes 
Yes 
Yes 
No 
No 

Yes 
Yes 
Yes 
No 
Yes 

,..--

No 

No 
No 
No 

Yes 
Yes 

Yes 
Yes 

Gimited 
Yes 
Yes 
No 

Yes 

Yes 

Yes 
No 
No 
Yes 
No 
Yes 

Yes 
No 
No 
Yes 
Yes 
No 
Yes 
Not 

Effic-
ir-nt1v 

Yes 
Yes 
Yes 
Yes 
Yes 

?L-l 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 

No 

Ye~ 
No 
~o 

Yes 
,. 4 
hO 

Yes 

Yes 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
~:o 

Yes 
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Table 9.1. (Cont'd). 

FEATURE 

Looping Operations 
AlloW's loopintj within preset range? 
AlIO\-1S nes ted loops? 
Allows incrcncntine by preset values? 
Allows alternate trans~cr points? 

Decision Making 
IF Statements? 
Compound IF statements? 
Alternative statements? 

Data Structure 
Control source of implied data 
description? 

Arrays with, simple elements? 
Arrays with compound clements? 
Variable-length tables? 
Variabl:e-size arrays at run time? 
Horizontal or vertical tables? 
Provides for local and global struc-

tures? 

Allocation 
Dynamic storage allocation on pro-

cedure entrance? 
Data-ele~ent equivalencing? 
Express relative origin of data values? 
Can define structures over structures 

dynamically? 
Define absolute allocation? 
Allows declaratives defined where 

inserted? , 

System Features 
. Source language debug capability? 
. Selective listings? 
Object library provision? 
Flexible libr3ry handling in language? 

NOTES: 
, . . 

Provided by operating system 

CMS-2 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes· 
No 

Yes 
Yes 
Yes 
Yes 
No 
Yes 

Yes 

No 
Yes 
Yes 

Yes 
Yes 

Yes 

Yes 
Yes· 
Yes 
Yes 

Yes 
Yes 
Yes 

fes 
Yes 
No 

Limited 
No 
Yes 

Yes 

No 
Yes 
Yes 

No 
Yes 

Yes 

Limited No 
Yes No 
Yes Yes 

Limited No 

Yes 
Yes 
Yes 
Yes 

Yes 
No 
No 

No 
Yes 
No 

. No 
Yes 
No 

No 

No 
Yes 
Yes 

No 
No 

Yes 

Limited 
No 
Yes 
No 

1. 
2. 
3. 

Allowed by the PL/l l~nguage, but not yet implemented. 
Easily constructible in the langunge. 

4. 
.. 5. 
6. 
7. 

Not pertinent to a high-level language. 
Feature undefined. 
"Include" facility h.Js some of this feature. 
Available in SOI:lC implementations. 

• 

API, 

Yes* 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Fair 
Yes 
No 
Yes 
Yes 

Limited 

Yes 

Yes 
Yes 
Yes 

No 
No 

Yes 

Fair 
No 
Yes 

Limited 

I; Due to its parallelism. loops arc oftt.!n not used tn APL algor.ithrn~. 

-l ~ Can list lines of a subroutine but not parts,' ,0.: all, of several routines. 
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PL-I 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

No5 

Yes 
Yes 
Yes 
Yes

3 Yes 

'Xes 

Yes' 
Yes 
Yes 

Ye~ 
No 

Yes 

Limited 
Yes 
Yes 
Yes 



9.3 EXTENDING CHS-2 TO AADC's HaL 

This section contains references to projects for determining the 

practicability of extending CMS-2 to becomes the AADC HaL (sometimes called 

CMS-3 or CMS-TOO). 

Reference [9.7J is the proceeding of the first High Level Aerospace 

Computer Programming Language Conference held in June 1970 and discusses so=e 

of the general problems of the AADC HaL definition. (The second such confer-

ence is presented in the next section.) Two relatively old (1970) references 

on using CMS-2 for existing avionic applications and on implementing CMS-2 

on the AADC are shown in [9.12 and 9.13] respectively. 

Reference 19.14] describes the Marine Tactical Air Command and 

Control System (MTACCS) requirements on the CMS-3 (extended CMS-2) language 

specifications. The recommendation are that CMS-2 must be stronger in two 

areas: 

1. Data base definition and handling 

Multiple COMPOOL Core Definition (COMPOOL are 
compiled procedures that can be combined with 
other procedures without being recompiled.) 

COMPOOL defined mass storage file definitions 

Conversion of core/mass storage formats 
(i.e., with simply a Move operator) 

Data conversion operators. 

2. Character String Capability. 

Encode/decode extensions 

Insert/delete/concatenate operators 

Decimal arithmetic 
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A more recent report studying the problems of CMS-2 transferability 

from AN/UYK-7 to AADC suggests that system designers and programmers can 

strongly influence the transferability of software. The report makes several 
/ 

specific suggestions that should be of general interest to system designers 

and programmers [9.15]. 

The idea, of allowing the applications to influence the programming' 

language which in turn influences the computer software and hardware, is 

indeed a good one and should be given full support. It is time for computer 

specialists to start looking at the application areas first, then designing , 

the languages to solve these applications and finally designing the software 

and hardware to implement the "user-oriented" languages. The traditional 

reverse ordering was based on economics and levels of knowledge which are no 

longer valid. 
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9.4 CURRENT STATUS OF HOL 

The following excerpt is taken from AADC Progress Report No. 9 dated 

November 1971 [9.6): 

21. AADC Progress Report No. 7 [9.16] contained a 
preliminary statement of Work for a Request for Proposal 
to develop improvements to the Navy's existing Q1S-2 
program language. The purpose of these improvements 
was to allow efficient expression and, hence, economical 
compilation in the areas of: 

• applications 
• executive/operating system 
• input/output 
• test 
• display 
• array processing. 

22. The improved language also provided means to 
express data in ways that allow universal inter
pretation. Such data description techniques would 
permit the future integration of large data bases 
by allowing ready communications among systems 
programmed in different languages. 

23. Enclosures (1) and (2) present the latest Navy 
thinking on the subject. Present plans call for the 
release of a final form of the Statement of Work as 
an RFP within the next few months, preceded by a 
conference to be held at the Naval Electronic Lab
oratory Center, San Diego early in January (actually 
February) '72. Questions concerning the conference 
should be directed to Mr. Warren Loper, Code 5200, 
NELC, San Diego, Calif. 

Thus, AADC progress report No.9, pages 13-58 include "A Statement of 

Work of a Plan to Define HOL Primitives for AADC Computer - Preliminary" (pages 

13-31), "Goals of the Language" (pages 32-46), and "Document Support Request 

for Approval for RFP for HOL Study" (pages 47-58). The objective of the Work 

Plan and the Goals of Language are attached as Appendices 9.3 and 9.4 [9.6]. 
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The following excerpt is taken from the AADC Progress Report No. 10 

dated Hay 31, 1972 [9.1.7], and reflects the May 1972 thinking on the OOL: 

11. Improvements to CMS-2: An AADC Software 
Conference-on Command Control Software Technology 
for 1975-1985, cosponsored by NAVAIRSYSCOM and the 
Naval Electronic Laboratory Center, was held at 
the LeBaron Hotel in San Diego on 15 - 17 February 
1972. The stated purpose of the conference was to 
"address the questions of requirements that will be 
imposed (on software systems) and the methodologies 
that will be available (to satisfy these requirements 
in the 1975-1985 time frame)"*. An unstated purpose 
of the conference was to expose an important segment 
o'f the software connnunity to the hardware and archi
tectural concepts embraced by AADC. In addition, the 
conference provided an opportunity to openly discuss 
the goals of the AADC software effort and, in 
particular, the programming language development 
utilizing the existing QIS-2 language as a basis. 

12. A preliminary statement of work for the language 
RFP was enclosed with the ninth AADC Progress Report. 
The Proceedings of the Second AADC Software Conference 
is now in preparation. Proceedings of the first such 
conference held at the Naval Research Laboratory on 
29 - 30 June 1970 is available from NTIS, Springfield, 
Va. 22151. 

Based on the philosophy that a "Universal computer language" will still 

fail because a specialized language is always better for specialized applications, 

the AADC program is now in the process of developing a single kernal language 

with potential for extensions. The advantages of this approach are: 

specialized application-oriented languages 
can be obtained as extensions to the kernel 

a single language ~tructure 

improved adaptibility to "unpredictable" requirements 

* From the Official Program for the AADC Software Conference On Command Control 
Software Technology for 1975-1985; NEtt; 15-17 February 1972. 
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Thus a kernal language called CHS-2K i L now IHd Iq~ d(~v(: loped fur 

AADC • It ha s de fin it i 0 na I f a c i lit i e s, ope rat 0 r r; for a r ray ~» b 1 0 C k s t r IJ C t U r (. ) 

fixed lexical structure, built-in data element primitjves, a v(!ry f]pxible 

expression format, etc. 

The firs t language to be developed f rum the CMS- 2V- (the k(.!rn(~ 1) i~; 

called CMS-2R. It 1s intended as a replacement for CHS-2, hut may rHJl be 

upward compatible with it. The language will contain slring, matrix) veclor 

and complex operators, as well as, many operating sy~tem support fun~ljons. 

The current contracts are to develop the CBS-LV- and CM;;-2R l:t[l/~u:t/~es , 

but do not include implementing these languages [9.18]. A student t}lcsis 

project is now underway at NPS to implement a cnS-2 cornpi lcr on the 1 BH '3()O/C7 

computer. 
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9.5 HOL PROJECTS 

There is a need for a study to define the desirable HOL constructs 

and to determine the feasibility of implementing them in the AADC (or for 

modifying AADC to accomodate them). Some steps are: 

1. Define the HOL constructs that would simplify 
the writing, debugging, documenting and up-
dating of real-time, scientific and data processing 
application programs. 

2. Repeat Step 1 above for each of executive, I/O, 
test, display and data reorganization types of 
programs. 

3. Determine the feasibility of implementing the 
HOL constructs identified above on AADC, i.e., 
estimate the cost of implementing each feature. 

4. Select a minimal set of constructs that satisfy 
all the requirements in 1 and 2 above and can 
be effe.ctive1y implemented in AADC. 

5. Expand Step 4 to include other desirable 
constructs and features and determine the 
incremental cost of implementing these. 

6. Determine how effectively CMS-2 meets the 
requirements identified in Step 1 and 2 above. 
Some of this work has already been done - See 
Section 9.3 and [9.8 to 9.12]. 

7. Determine the cost of making the AADC HOL 
upward compatible with CMS-2. 

8. Implement the CMS-2K compiler on a computer. 

·9. Determine the suitability of CMS-2K as a kernal 
for implementing CMS-2, APL, Fortran, COBOL, 
JOV IAL , et c . 

10. Using CMS-2K, define and implement languages that are as 
close as possible to CMS-2, APL, Fortran, COBOL, 
JOVIAL, etc. 

11. In each case in item 10 above, develop a translator 
from the parent language to the new language. 
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9.6 A HOL FOR SIGNAL PROCESSING 

Although the previous sections hcweaddressed the problem of 

developing a HOL for sequential processing (for the Data Processing Element), 

there is also a need for a High Order Languages designed specifically for 

signal processing and for the executive system. These HOL languages would 

be used to program the Signal Processing Element (Chapter 7) and the Master 

Executive Control (Chapter 6). 

The programming languages that are needed for signal processing 

can be divided into three areas; 

1. Support software for program development 
including a microprogramming language. 

2. Executive software for the Hicroprogrammed Control 
Unit (MCU). 

3. High level languages for signal processing 
applications. 

Some work has already been completed on developing support soft-

ware for program development. The AMIL (A Microprogramming Language) and 

its translator have been developed and are now operational. AMIL is a Fortran-

like language for specifying microprograms for the Microprogrammed Control [nit 

of the SPE. Since AMIL eliminates the need for specifying bit patterns, 

it can be considered a high order microprogramming language. The basic 

support software that has been prepared is scheduled for release in April 

1973 to anyone who wants it. 

The development of executive software for the Signal Processing 

Element is now beginning without the aid of a HOL with executive defining 

capabilities. The Master Executive Control (MEC) for AADC has also been 



developed without such a defined HOL. Also no work has yet been done on 

developing a HOL for signal processing applications. Thus the development 

of High Order Languages for executive systems and signal processing applica

tions is still an active area for further research and development. 
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Appendix 9.1* 

An Overview 

of the 

CMS-2 LANGUAGE 

(Compiler Monitor System) 

*This appendix is not yet available. In the meantime References [9.7 to 
9.11] will have to suffice. 
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Appendix 9. 2 

to 

AADC Course Notes 

* Objectives of the Work Plan to 'Define HOL Primitives for AADC 

1. OBJECTIVE: 

The objective of this task is to identify, define and prepare a plan for 
the implementation of the revisions to the Compiler Monitor System II (CiS-2) 
language needed to support the effective use of the AADC (Advanced Avionics 
Digital Computer) (1,2) in a broad spectrum of military ~pplications including 

the ITACS (Integrated Tactical Air Control System) [3] and the 
MTACCS (Uarine Corps Tactical Command and Control System) [4]. 

, ' 

The emphasis given the various goals of the language in Exhibit A is 
impacted oy the requirements (and opportunities) of a reQl-time environment 
and, predominately, by military requirements. Thus, not only present but also 
expected .avionics, co~~and and control, intellig~nce and other military 
requirements of the language cust be identified and correlated. Inconsisten
cies among the goals of the language must be recognized and documented, per~ 

mitt:ing a selection of an :!optimuLn:: set \of compromises} consistent wien 
military requirements. Then these requirements and their related language 
8pals must be compared with the Navy's standard progra~~ing language. ~~-2 

.[5,6] to identify and fully documeat: 

(1) Inconsistencies bet~een the requirements and their above related 
goals on the one hand and CHS-2 on the other (mutual exclusion problems). 
and, 

'(2) Revisions to CMS-2 necessary to meet these requirements and 
goals. 

*'Taken trom "A Statement of Worl:< of a Plan to Define High,Order Languag~ 
Primitives for the AADe Computer - Preliminary",', Enclosure (1) to· AADC 
.Progress Report No. 9 [9.6, page 15] ;" " 

, 
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Append ix 9.3 

Requirement for Specifying the Goals of AADC's HOL* 
. ' 

COALS OF THE LAl\GUAGE 

A language specification c:fort ~ust be oriented to a set of specific 
goal:! :\\ld a tlethod of oeasuring quality in terms of thc~;e t;oals. T\.Jo 
IDclh~hl!J for accor:plishing th:'s are available and both ~hould be used. The, 
f i r~ t :ncthod is a s ta ted lis t of cr iter ia \-lhich the lan~;u~l; c is czpec t cd 
to ment. Nany of the criteria arc obvious but should be listed to insure 
their consideration during the design. The second Det~od is sa~?le pro-
t r a 0.':\ 1 n g • S u c h s a In p 1 e s sub j c c t a 13:1 g u age con c cpt to L ~ 1 C u 1 t i L:1 ate ~ c 3 sur (; 
of uti 1 it Y and II i 11 0 f t cn 0 v err ide in t u i t i v C con c 1 u s i 0 : . s . T 11 e sa::. pIe s nee d 
Dot all be largc;·often short fr2goents serve the dcsi~ ~d purpose. A few 
rc~son~~ly lengthy attempts arc necessary, however, to lctQr~ine that no 
problems of clarity will exist in practice. Then too, ~a~ples can be used 
in tutorial docu~entation as exa~?les of stylc. 

The goals for a tactical systems language must exp~2SS the nature of 
the programs t'o be written in the l3nguage. Tr.3dition:.ll'j, a tactical 
data systCr:l has been distinguished by a heavy reliance .):1 fi:<cd-point con
putations involving quantities of relatively low precision, .3 need to pack 
data as tightly as possibly into the s~all available stor~get specialized 
but relatively siwple input/output operations, and an executive systeo 
integrated with the program alcost to the point of being indisting~ishable 
from it. It is expected that the spectr~~ of applications of J~~)C pro
grammable hard\.:are y.,1ill contain applications of this ClLJ.rac tcr. Avionics 
applications will continue to i~pose on the conputer limitations of weight 
size t heat generation, etc., i~plying programnins const~3ints unnecessary 
in a large cowputer center. However, a broadening of the types of conput~
tion to be perfor~ed can be observed in such areas as digit01 fire control 
and the Harine Corps Tactical COI:'.;71and and Control System C'ITACCS) [1] 
where greater emphasis has been placed on co~putation dccuracy and speed; 
alphanumeric and graphic inf0rc~tion input, processing, stor3gc and dis
play; message routing; and data base ~anagc8ent. Further, experience 
over the last few years has sho·,.J'n that there is a sr:1Jll yet si b nific2.nt 
number of anCillary com?ut~tional chores to be done in a Co~?uter Progr2.~~~ng 
Center that are not limited to the scope of a tactical data syste~. Ship
board Naval Intelligenc~-processing systems provide one cX2.=ple introduci~6 
requirements for ~ultilevel security. There is also the ~ttr3ctivc possi
bility of sharing shipboard equipnent for other pu~poses during no~cocbat 
conditions (provided that its pri~3ry oission is not co~pro~iscd). All 
this suggests that a "tactical systems language" should be c~pab1e of 
handling more than pure tactical data systems. 

It would be a serious error to reach for some sort of universal langu2.ge. 
Such attempts in the past have not met with any particu13r success and ~e 
can have little confidence of doing noticeably better now. After all, the 
primary purpose of the language is to express algorithms having the char
acteristics previously discussed. Extensions and gen~alizations arc Wel
Comed provided they do not dilute ability to Deet the ccntr31 requireccnts. 
Within the language, dynamic extensibility ~ill solve many problems. Out
~ldc the lan~u~get an inter3ctive f3cility for defining the syntax and 
8cm~ntics of new problem-oriented lar.guagcs and gcncratin~ their processors 
will solve others. 

*Taken from Exhibit A to "A Statement of Work of a Plan to Define'High Order 
LaneuA.pP Primitivpc: fnr thp AAnr. r.nmnl1tpr - Prplimin~rv", Fnc]0c::urp (1) to 

AADC Progress Report No.9 19.6, pa?2S 32,33]. 
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A key f 11C tor in prop, r,lIX:1Cr c f f ic icncy is the number of b3s ic tools 
II v."1 i 1 ;1 b 1 c f <.1 r h i ~ t1 ~~ (' • Doc s the J c1 n g u ~l ~ C ( 0 r dot he 1" n r. ll.:l ~ (' S ) con t a in 
the fC:1turc~; th~lt .11JO\J ~ln l'll~y c~rrcssion of the probl ~::1? If the progra!:l 
under llev('lu!,n:l'nt inll~rf.lce~; \.Jith other systems or cquir);~cnt not currently 
available, the pro~',r':!I;:::~cr should h.1vC a r.1C3nS of easil) sj::-.ulating the 
missing pieces. If the prof,r:!:~.::cr is working on proLlems that have large 
dOCUfficntatiorl rcquircccnts, he should h3vc an autOQ3tcJ Deans of generating 
nnd updating all the documentation (not merely flowcha~ts). 

Another considcr.Jtion is the tot.:11 systens environr.lcnt. This should 
provide the pr(~gr~li:::lcr or ~roup of protjr.1r.~':1crs rC.1dy access to the equip
ment and prov ide a l:1~~lnS of co::,_~un i C.1. t ion be t\olCCn no t on ly the programmer 
and the rn3chinc, but also bct\,:ccn prof,rar.:r.lcr and prof,r.:r:'J:cr. The prograr=ler
machine in tcr f ace is ~~~1 in dcpLnd en t on the .:1hove f.:lc t:'r S 'olhe ther on-line 
consoles or r('r,~utc halch processin~~ systems ~re provid. J. One of the NTDS 
problems is the pr0~ r 0.::1::10 r to prosr .1.m:ncr in tcr face, \vh : re C.:lS tern seaboard 
programmers rcqui rc \~'Cs tern sC.JDoard inf ortn.:l t ion, and ·1 cc ver sa. Wi th 
today's tcchrl()lo(~Yt it is iC.1sible to provide .:1 corr.reon d~lt.:l-D3Se for NTDS 
modules which is accessible fran remote locations. 

It is dcsir.1.blc for the 1:lngu:1Cc to al10\~· the prog:-~·lT~: .. ner to insert addi
tional inform3tion "for the possible benefit of the tr.il1!.')lator lt r2:p.38] 
and to provide the mc.:tns to st'ccify optimi::ation tcchniques to a compiler 
or specify tl,C d0~rce of v.:trious types oi optimization to be performed by 
the compiler. Also, certain facilities of the langua~c 03Y be paracetrically 
inhibited to prohibit usc of these f.:tcilitics in the source 13ngun~e of 
certain modules. For cxal'Jple, one 1:1:1y lock out dY03r.1ic stor~gc allocation 
and free space tn:lnagclU~nt v.Then Pl"ugioawming for ,1 small !13rcw.Jre configuration. 

Rclcvnnt tools of softw:1rc engineering [3) technology should not be ig
nored in dcvelop~0n~ of tIle l:1ngu~gc. For eX:1mple, in support of the design 
of specific:ltions for problLr,\-·.)riLlltcd lan&uagcs as w('ll as the procedurc
oriented sys t('fJ pro~~r':l:::Ll.illf. 1,lngu~lge, autom,l ted syntax complete,ness J con
sistency and aobiguity analysis is now possible. 
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Chapter 10 

APPLICATIONS FOR AADC 

10.1 INTRODUCTION AND SUMMARY 

Although this is the most important chapter in the report, it is, 

unfortunately, one of the shortest. Never before has the Navy known so far in 

advance what the future Navy computers will be, and no\v the Navy has an opportunity 

to develop application programs while the computer is being developed, instead of 

after it is produced and delivered. Equally important, the Navy now has the , 

opportunity of allowing the applications to influence the software design, which 

in turn can influence the hardware design. If the Navy can develop an applications-

oriented computer and have the application programs ready when the hardware is 

delivered, the Navy will have made another major step in solving its computer 

oriented problems, 

This section presents references to an E-2B aircraft simulation study, 

the requirements for MINCOMS (Multiple Interior Communication Systems for aircraft), 

and the On-board checkout and system interface requirements for the F-l4C. Also 

presented is the proposed Automated Design Facility (ADF) which is designed to 

provide automatic configuration and checkout of AADC for a new application. 
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10.2 POSSIBLE AADC APPLICATIONS 

10.2.1 Avionic Applications 

Certainly the most important application for the AADC, and the reason 

for initiating the AADC project as the Advanced Avionics Digital Computer, is the 

future avionics computer applications. 

Some of the proposed 1975-1985 avionics computer tasks are: 

- Navigation 

- Weapon Delivery 

- Sensor Monitor and Control 

- Radar Signal Processing 

- Acoustic Signal Processing 

- Target Signature Recognition 

- Target Tracking 

- Sensor Correlation 

- Data Compression 

- Countermeasure Monitor and Control 

- Communication Format and Control 

- On-board Checkout 

- Automatic Flight Control 

- Display Signal Format and Control 

- Environmental Control 

Figure 10.1 gives some other examples of avionic tasks for AADC showing 

a typical air-to-ground avionics system (taken from [10.1]). Figure 10.2 shows 

how the AADC may be interfaced to the aircraft via MINCOMS (multiple Interior 

Communication Systems) and to several other systems including ITACS (Integrated 
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Tactical Air Control System), ECM (Electronic Counter Measures) and the ~'f!'1R 

(Multip~e Mode Phased-Array Radar). The dotted rectangles in the figure 

represent the functions handled by AADC. For background information on 

MINCOMS see [10.2 and 10.3]. 

Two reports are available concerning the simulation of the E-2B 

aircraft. The first defines the E-2B digital characteristics for the pur

pose of the simulation and is classified secret [10.4]. The second report 

describes the simulation which is concerned mainly with the optimum block 

(page) size for BORAM and the Optimum Task ~emory size. The study does 

not address the many other problems of using the AADC on the E-2B aircraft 

[10.5]. 

A much more general simulation, which is a continuation of the above, 

is reported in [10.6]. This report describes the simulation of the AADC 

simplex and multiprocessor operation on three avionic workloads - the E-2B, 

the F-ll1 and future avionic requirements as defined by a GE report. The 

major conclusion from the simulation is that the AADC Simplex configuration 

can handle all of these avionic workloads. For further information see sub-

section 8.2.4 or [10.6]. 

Four volumes of a report by Grumman Aerospace Corporation on the 

On-board check-out and system interface requirements for the F14-C aircraft 

are available in [10.7 - 10.10]. According to AADC Progress Report 10 dated 

May 31, 1972, the AADC program is sponsoring two studies with Grumman Aero

space and LTV Corporations to determine the computer requirements for future 

F-14 and A-7 class aircraft. From these studies it is hoped to predict other 

future Naval ADP requirements. 
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Reference [10.11] is a Grumman Aerospace Corporation report on the 

AADC interface requirements for a representative F-14C avionic weapon system. 

The primary goal of the study was to provide detailed.definition of the inter

face of future aircraft systems to AADC for operational and checkout functions. 

The report is divided into 3 distinct tasks: 

1. Task 1 defined thirteen subsystems for the F-14A aircraft 

and determined that the total interface requirements 

between the subsystems and AADC would be less than 200,000 

bits/sec. 

2. Task 2 defined the input/output requirements of the AADC 

configured to meet the requirements of the F-14C baseline 

system. 

3. Task 3 defined the functional requirements of a Data 

Handling System which would transfer information between 

the AADC I/O and the subsystems. 

Some of the important conclusions and recommendations in the report are as 

follows: 

1. Thirteen explicit subsystems on the F-14C aircraft were 

identified as airframe, control and display, environ

mental control, flight control, hydraulics, fuel, light

ing, control of communication, mission and traffic, 

navigation, propulsio~ electrical power, and finally, 

weapon control. 

2. The total input to AADC was 79 kilobits per second and 

total output is 88 kilobits per second - with over half 

this being weapon control. Thus a 200 kilobits per 

'second interface capability would be adequate for the F-14C. 
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3. The AADC configuration recommended for the F-14C is the 

multimemory, multiprocessor configuration with a single 

(4K word) Random Access Main Memory providing the inter

face with the inputJoutput unit (see Figure 10.3). In 

this configuration all data required for operation of the 

subsystem is stored in the RAMM while in transit to or 

from the Data Processing Element of AADC. In addition 

to the RAMM, the recommended, AADC I/O unit includes a 

Bus Control Unit and a Memory Module - which stores 

instructions for the BCU. 

4. The command/response method was recommended as the best 

method for the Bus Control Unit to control the Data 

Handling System. 

5. Asynchronous I/O scheduling and double buffering is re

commended. 

6. The hardware MEC is recommended for the F-14C because of 

the implied ultra-reliability and speed advantage. 

Furthermore, the required reliability of the I/O suggests 

that the MEC and the I/O should be part of the same unit 

namely the AADC I/O Unit(i.e., included with the BCU, 

RAMM and Memory Module). 

7. It was concluded that the present definition of interrupts 

and their relative priorities is inadequate for the F-14C 

mission. Accordingly, the number of interrupts should be 

increased from 31 to 128. 
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8. The Data Handling System, which interfaces to the Bus 

Control Unit of the AADC I/O, should be composed of Sub

System Controllers and the Standard Interface Units. 

The Standard Interface Units provide compatible interfaces 

between the SubSystem Controllers and the Subsystem Weapon 

Replacement Assemblies. 

9. Several recommendations on the type of data transmission 

lines, coupling and bussing units are also included in 

the report. 

This report is the first comprehensive report on an application for AADC 

and is recommended reading for all interested in AADC avionic applications 

[10.11]. 

Two other special purpose avionic applications are also being 

considered for AADC. These are the safety-of-flight computer and the air

craft electric power controller. For more information on the second applica

tion see Section 4.6. 

10.2.2 Avionic Related Applications 

This subsection is intended to describe avionic related applica

tions, such as the modeling of aircraft systems and simulating aircraft systems 

in real-time. In a large simulation, an AADC may be used to interface to 

the real aircraft data gathering equipment, another may be used to simulate 

(or fake) other non-available aircraft equipment, a third may act as the air

craft safety-of-flight computer and a fourth may be the main aircraft computer. 

Finally, a fifth AADC may be required to coordinate the simulation and 

schedule events. At the predicted AADC cost, this would be quite a reasonable 

type of a simulation project. 
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Another possible "use for AADC is in mUltiple platform systems. 

Bruce Wald at NRL is expected to publish a report on this in the near 

future [10.12]. 

10.2.3 NTDS and MTDS Applications 

The standard computer for the Navy Tactical Data System (NTDS) 

and the Marine Tactical Data System (MTDS) is the AN/UYK-7 computer. Two 

studies have been completed to determine the transferability of AN/UYK-7 

applications to the AADC. The first is the study of the compatibility of 

the hardware [10.13] while the second is a study recommending means of pro

ducing software transportable from AN/UYK-7 to the AADC [10.14]. 

10.2.4 Other Applications 

Many applications have been suggested for AADC in the last year 

since the AADC redefinition to All Applications. These range from normal 

batch ADP processing to general time sharing processing and to special 

applications such as line concentrators, super modems, data channels and 

electric power controllers. They include land-based and shipboard multipro

gramming and multiprocessing applications. Because of the very powerful PE, 

an AADC single processor system can often be used to replace a third genera

tion multiprocessor system. No specific studies on these applications have 

been reported at this time. 
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10.3 AUTOMATED DESIGN FACILITY 

Probably the most important concept in applying AADC to many different 

problem areas is the development of an Automated Design Facility (ADF). The ADF 

is intended to reduce the problems of configurating the AADC architecture, 

developing application programs, debugging the programs and proving the 

operational competence in the new application. A block diagram of the ADF is 

shown in Figure 10.3. Many of the blocks require considerable development. For 

example, the algorithm bank requires the development of the best case solution 

for several types of functions. Some examples of the problem oriented algorithms 

include ballistic trajectory prediction, maneuverable target tracking, multi

source data correlation and optimization, data compression and enhancement, 

display image generation and control, etc. 

It is hoped that the ADF will be able to reduce t~e Statement Of 

Requirement (SOR) into useful hardware and software in a fraction of the time 

required by conventional procedures. In addition to compiling applications 

programs, the synthesizer will generate the necessary executive parameters to 

enable the }lliC of a particular version of the AADC to schedule the execution of 

the problem oriented tasks. Scheduling will occur on-line and in real time 

[10.15, pages 21 and 29]. 
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10.4 CURRENT STATUS 

Mr. Hollingsworth of NADC gave an excellent presentation with some 

very informative slides on the probable applications of AADC. He first 

commented that the "AA" in AADC should stand for "Applications Assurance". 

In other words, the AADC proponents need to demonstrate AADC performance and 

strategy on specific applications; it is not sufficient to show that AADC is 

technically possible. Mr. Hollingsworth listed 20 aircraft and 5 ships that 

are in some stage of development and could be candidates for AADC. This 

part of the proceeding of the AADC 1973 Symposium should be very interesting 

reading when it becomes available Il0.l6J. 
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10.5 CONCLUSIONS 

This chapter has been a very brief outline of the current activities 

in defining applications for AADC. In fact, very little has been done in this 

area yet. Some studies are undenvay but there are many others that need to be 

done. Here is your opportunity to contribute to the AADC development program. 

Never before has the Navy had an opportunity to develop applications 

while the hardware and software systems are being designed. Equally important 

here is an opportunity for users to define applications for AADC and thereby 

influence the design of the HOL, the software and the hardware for AADC. How 

about your input? 

This report has attempted to present a study guide for AADC. It is 

organized in modular fashion to allow the reader to concentrate on his area of 

interest wihtout missing any essential background. It has covered a wide range 

of subjects and has undoubtedly skipped over some essential material and dwelt 

too long on others. (For example, some improvements for Chapter 6 are already 

suggested.) Also it is rather difficult to stay current when the AADC hardware 

and software are still undergoing further developments; and yet it is essential 

that the Navy begin planning and preparing for the AADC impact. One of the most 

important means of preparing for AADC is to inform and educate the Navy and 

Industry personnel on the AADC developments and capabilities. 

Finally, this is actually a draft report and any suggestions concerning 

connection, omissions or recommended deletions will be kindly received and 

appreciated. Updates and corrections to the report will undoubtedly be required 

as the design and development of the All Application Digital Computer continues 

at an ever increasing pace. 
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