The Allegro 5 Library

Reference Manual

Version 5.2.4

© 2008 — 2015






Contents

1 Getting started guide

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

Introduction . . . . . . . . ... e
Structure of the library and its addons . . ....... ..
The main function . . ... ... ... ...........
Initialisation . . . . . .. . ... ...
Openingawindow . .. ... ... .............
Display animage . . . . . . . . ...
Changing the drawing target . . . . . ... ... .. ....
Event queues and input. . . . . ... ... ... ......
Displaying some text . . . . . . ... . ...
Drawing primitives . . . . . . ... ... o ...
Blending . . . ... ... .. ... . ... e
Sound . ... ... ...
Unstable APT. . . . ... ... ...
Nottheend . ... ... ... ... ... ... .......

2  Configuration files

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

ALLEGRO CONFIG . . ... ... ... . ..
ALLEGRO_CONFIG SECTION . .. ... ..........
ALLEGRO _CONFIG ENTRY . ... ... ... .......
al create config . . . . ... ... oL
al destroy config . . ... ... .. ... .. ...
al load config file . ... .. ... .. ... .......
al load config file f . . ... ... ... ... ... ...
al save config file . ... ... ... ... ... ...
al save config file f . . . ... ... ... L.
al add config section . ... .. ... ...........
al remove config section . . ... .............
al add config comment . ... ...............
al get config value . . . ... ... ... . ...
al set config value . . ... ... ... ...........
al remove config key . . ... ... ... ... . ...
al get first config section . . ... ... ... ... ....
al get next config section . . . .. ... ... ... ....
al get first config entry . . . ... ... ... ... ...
al get next config entry . . . ... ... ... ... ... .
al merge config. . . ... ... ... L.
al merge config into . . . .. ... ... ... ... ...

3 Displays

iii

Contents

e
=
-

A WWWWWNNDNDNNDNRFE P -

CVVOVWVOVVOVVOVOVXXOENINNINNNNTTTT OO OO OO G



CONTENTS

iv

3.1 Display Creation . . . . . v v v v i e e e e e e e e e e e e e e e e e e e 11
3.1.1 ALLEGRO DISPLAY . . . . . . i e e e e e e 11
3.1.2 al create display . . . . . . . e 12
3.1.3 al destroy display . . . . . . ... 12
3.1.4 al get new display flags . . .. ... ... ... L 12
3.1.5 al set new display flags . ... ... ... ... ... 12
3.1.6 al get new display option . . . ... ... ... .. 14
3.1.7 al set new display option . . . . . . . .. ... e 14
3.1.8 al reset new display options . . . . . .. ... .. Lo L e 16
3.1.9 al get new window position . . . . .. ... o 16
3.1.10 al set new_window position . . . ... ... ... oo 17
3.1.11 al get new display refresh rate . ... ... . ... ... ... ... . ... ... 17
3.1.12 al set new display refresh rate . ... ... ... ... ... ... ... ..., 17
3.2 Display Operations . . . . . . v ittt e e e e e e e e e e e e e e e e e e 17
3.2.1 al get display event source. . . . . . . ... ... e 17
3.2.2 al get backbuffer. . . . . . . . ... . e 17
3.2.3 al flip display . . . . . . . e 18
3.2.4 al update display region . . . . . . . .. ... ... 18
3.2.5 al wait for vsync . ... .. 18
3.3 Display size and position . . . . . . . . . i e e e e e 18
3.3.1 al get display width . . . . . . . . .. .. 18
3.3.2 al get display height . . ... ... ... ... ... ... L 19
3.3.3 al resize display . . . . . . . e 19
3.3.4 al acknowledge resize . . . . . . .. ... e e 19
3.35 al get window position . . . . . ... ... e 19
3.3.6 al set window position . . . . . . . . ... e 19
3.3.7 al get window constraints . . . . ... ... Lo Lo e 20
3.3.8 al set window CONStraints . . . . . . v v v v v v v i it 20
3.3.9 al apply window _constraints . . . . . . . . . . . . ol 20
3.4 Display settings . . . . . . . o o o i e e e e e e e 21
3.4.1 al get display flags . . . ... ... . . ... 21
3.4.2 al set display flag . . . . . . . . .. 21
3.4.3 al get display option . . . . . . . ... 21
3.4.4 al set display option . . . . . . . ... e e e e e e e 21
3.4.5 al get display format . . . .. ... ... ... 22
3.4.6 al get display orientation . . . . . . . . ... ... e 22
3.4.7 al get display refresh rate . .. .. ... .. .. ... ... ... 22
3.4.8 al set window title . . . . ... ... 22
3.4.9 al set new window title . . . . . .. ... ... e 23
3.4.10  ALLEGRO NEW WINDOW TITLE MAX SIZE . . . . . . oo ov e 23
3.4.11 al get new window title . . . . ... ... 23
3.4.12 al set display icon . . . . . . . . L e e 23
3.4.13 al set display icons . . . . ... ... ... 23
3.5 Drawing halts . . . . . . . . . L e 24
3.5.1 al acknowledge drawing halt . . ... ... ... ... ... ... . ... 24
3.5.2 al acknowledge drawing resume. . . . . ... ... ... Lo L. 24
3.6 SCreeNnSaAVET . . . . . v v i it e e e e e e e 24
3.6.1 al inhibit screensaver . . . . . . . . ... e 24
3.7 Clipboard . . . . . . . . e 24
3.7.1 al get clipboard text . . ... ... .. ... 25
3.7.2 al set clipboard text. . . . ... .. ... 25
3.7.3 al clipboard has text . . . . . . . . . . . ... 25

Event system and events 27
4.1 ALLEGRO EVENT . . . . . . . e e e e e e e e 27
4.1.1 ALLEGRO_EVENT JOYSTICK AXIS . . . . . . . o ittt it e e 28
4.1.2 ALLEGRO_EVENT JOYSTICK BUTTON DOWN . . . . . oo ui e e 28



Contents

5

4.1.3

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9

4.1.10
4.1.11
4.1.12
4.1.13
4.1.14
4.1.15
4.1.16
4.1.17
4.1.18
4.1.19
4.1.20
4.1.21
4.1.22
4.1.23
4.1.24
4.1.25
4.1.26
4.1.27
4.1.28
4.1.29
4.1.30

File I/0

ALLEGRO_EVENT JOYSTICK BUTTON UP . . ... ......

ALLEGRO_EVENT JOYSTICK CONFIGURATION

ALLEGRO EVENT KEY DOWN . . . ... ...
ALLEGRO EVENT KEY UP . .. .. ... ...
ALLEGRO EVENT KEY CHAR . .. ... ............
ALLEGRO EVENT MOUSE AXES . . . . . ... ... ......
ALLEGRO_EVENT MOUSE _BUTTON DOWN . . ........
ALLEGRO_EVENT MOUSE BUTTON UP . .. .........
ALLEGRO EVENT MOUSE WARPED . . . ... .........
ALLEGRO EVENT MOUSE _ENTER DISPLAY . .........
ALLEGRO_EVENT MOUSE_LEAVE DISPLAY . ... ......
ALLEGRO EVENT TOUCH BEGIN . . .. ............
ALLEGRO EVENT TOUCH END . . ... ............
ALLEGRO EVENT TOUCH MOVE . . .. ............
ALLEGRO EVENT TOUCH CANCEL . . . ... .........
ALLEGRO EVENT TIMER . . . . ... voieeen ..
ALLEGRO_EVENT DISPLAY EXPOSE. . . . . . ... ......
ALLEGRO_EVENT DISPLAY RESIZE . . . ... .........
ALLEGRO_EVENT DISPLAY CLOSE . .. ............
ALLEGRO_EVENT DISPLAY LOST . . .. ... .........
ALLEGRO_EVENT DISPLAY FOUND . . . ... .........
ALLEGRO_EVENT DISPLAY SWITCH OUT . . .........
ALLEGRO_EVENT DISPLAY SWITCH IN . .. .........
ALLEGRO_EVENT DISPLAY ORIENTATION . . .........
ALLEGRO_EVENT DISPLAY HALT DRAWING. . .. ... ...

ALLEGRO_EVENT DISPLAY RESUME DRAWING

ALLEGRO_EVENT DISPLAY CONNECTED . ... ... ... ..
ALLEGRO_EVENT DISPLAY DISCONNECTED . .. .. ... ..
4.2 ALLEGRO_USER_EVENT
4.3 ALLEGRO_EVENT QUEUE

44  ALLEGRO _EVENT SOURCE
45  ALLEGRO_EVENT TYPE
46  ALLEGRO GET EVENT TYPE
4.7  ALLEGRO_EVENT TYPE IS USER
4.8 al create_event queue

4.9 al destroy event queue
4.10  al register event source
4.11 al unregister event_source
4.12  al is event source registered
4.13 al pause_event_queue
4.14  al is event queue paused
4.15 al is_event queue empty

4.16  al get next event
4.17  al peek next event
4.18  al drop_next event
4.19  al flush event queue
4.20  al wait for event
4.21  al wait for event timed
4.22  al wait for event until
4.23  al init user event source
4.24  al destroy user_event source
4.25  al emit user event

4.26  al unref user event
4.27  al get event source data
4.28  al set_event source data



CONTENTS

Vi

5.1 ALLEGRO FILE . . . . . . o e e e e 43
5.2 ALLEGRO FILE INTERFACE . . . . . . . . . e e e e e e e 43
5.3 ALLEGRO SEEK . . . . . . . ot e e e e e e e e 44
5.4 al fopen . . . . . 44
5.5 al fopen interface . . . . . . . . . . 44
5.6 al fopen slice . . . . . . . e 45
5.7 al fclose . . . o e e 45
5.8 al fread . . . . .. e e e e 45
5.9 al fwrite . . . . L 46
5.10 al fflush . . . . . 0 e e e e 46
511 al ftell . . . . . e e e e 46
512 al fseek . . ... e 46
5.13  al feof . . . . . e e e 47
514 al ferror . . . ... e 47
515 al ferrmsg . . . . . ..o e 47
5.16 al fclearerr . . . . . . . e e e e 47
517 al fungetc . . . . . .. e 48
518 al fsize . . . . . o e e e e e e 48
519 al fgetc . .. .. e e 48
520 al fputc . . ... e e e 48
521 al fprintf. . . . . . e e e e e 48
522 al viprintf . . . .. e 49
5.23 al fread16le . . . . . L e e e e 49
524 al freadlbbe . ... .. ... e 49
5.25 al fwritelble . . . . . .. e e e e e 49
5.26  al fwritelbbe . . . . . . . e e e e e e 49
527 al fread32le . . . . .. 50
5.28 al fread32be . . . . .. 50
5.29 al fwrite32le . . ... e e e e 50
5.30 al fwrite32be . . . . .. e e 50
5.31  al fgets . . . . . e e e e e e 50
532 al fget UStr . . . . . .. e e e e e e e e 51
5.33  al fputs . . ... e e e e e e 51
5.34  Standard I/O specificroutines . . . . . . . . . . .t it . 51
5.34.1 al fopen fd . . . . .. e 51
5.34.2 al make temp file . . . . . . . L 52
5.35  Alternative file streams . . . . . . . . . ... e e e e e e 52
5.35.1 al set new file interface . . . . . . . . . . ... .. 52
5.35.2 al set standard file interface . . . . . . . .. ... . o 52
5.35.3 al get new file interface . . ... ... .. ... ... .. 53
5.35.4 al create file handle . . . . . . ... ... L 53
5.35.5 al get file userdata . . . .. .. .. ... e 53

Fixed point math routines 55
6.1 al fixed . . . .. e e e 55
6.2 al itofix . . . . e e e 55
6.3 al fixtol . . . . . e e 56
6.4 al fixfloor . . . . ... 56
6.5 al fixceil . . . . o e 57
6.6 al ftofix . . . o e e e 57
6.7 al fixtof . . .. 57
6.8 al fixmul . . . ... e e 58
6.9 al fixdiv . . .. 58
6.10 al fixadd . . . . . . L. e e e e 59
6.11 al fixsub . . . . . . e e e 59
6.12  Fixed point trig . . . . . o o vt e e e e e e e e e e e e e e 60
6.12.1 al fixtorad 1 . . . ... e e e e e e e 60



Contents

6.12.2 al radtofix 1 . . ... e 60
6.12.3 al fixsin . . .. e 61
6.12.4  al fIXCOS . . . . . e e 61
6.12.5 al fixtan . . ... e 61
6.12.6 al fixasin . . ..o L e 62
6.12.7 al fixacos . . . . ... e e e e e e e 62
6.12.8 al fixatan . . . . ... e e e e e e 63
6.12.9 al fixatan2 . . . ... L e e e e e e 63
6.12.10 al fixsqrt . . . . .. e e e e e e e e e e e e 63
6.12.11 al fixhypot . . . . . . . o e e e e 64
File system routines 65
7.1 ALLEGRO FS ENTRY . . . .\ ettt et e e e e e e e e e 65
7.2 ALLEGRO FILE MODE . . . . . . . . e e e e e e 65
7.3 al create fs entry . . . . . . . ... 65
7.4 al destroy fs entry . . . . . . . .. 66
7.5 al get fs entry name . . . . . .. ... 66
7.6 al update fs entry . . . . .. ... 66
7.7 al get fs entry mode. . . . . . . ... 66
7.8 al get fs entry atime . . . . .. . ... ... 66
7.9 al get fs entry ctime . . . . . . . . ... L 67
7.10 al get fs entry mtime . . . . . . ... ... e 67
711 al get fs entry size. . . . . . . ... 67
7.12  al fs entry exiStS . . . . . . ... e e e e 67
7.13 alremove fs entry . . . . .. ... e e 67
7.14 al filename eXiStS . . . . . . . .. L. 67
7.15 al remove filename. . . . . . . ... e 68
7.16  Directory functions . . . . . . . . . . . i it e e e e e e e e 68
7.16.1 al open_directory . . . . . ... e e 68
7.16.2 al read directory . . . . . ... e e 68
7.16.3 al close directory . . . ... .. 68
7.16.4  al get current directory . . . . . . . ... L e 69
7.16.5 al change directory . . .. . . ... . ... 69
7.16.6 al make directory . . . . . . . . e e e 69
7.16.7 al open fs entry . . . . . . ... e e e e e 69
7.16.8  ALLEGRO FOR FACH FS ENTRY RESULT ... ... .. ... ........... 69
7.16.9 al for each fs entry . . . . . . . . . . e 70
7.17  Alternative filesystem functions . . . . . . .. . . . . ... e 70
7.17.1  ALLEGRO FS INTERFACE . . . . . . . . . i ittt et i e et e e 70
7.17.2 al set fs interface . . .. . . . . . . . . e 71
7.17.3 al set standard fs interface . . . . . . . . . .. ... e 71
7.17.4 al get fs interface . . . . . . . . e 71
Fullscreen modes 73
8.1 ALLEGRO DISPLAY MODE . . . . . . . ittt e et e e 73
8.2 al get display mode . . . . . ... .. 73
8.3 al get num display modes . . . ... .. ... ... e 74
Graphics routines 75
9.1 Colors . . . e e 75
9.1.1 ALLEGRO COLOR . . . . o ottt et e e e e e e e e e s e e e 75
9.1.2 al map rgb . . .. e 75
9.1.3 al map rgb f . . . . . e 75
9.1.4 al map rgha . . . ... 75
9.1.5 al premul rgba . . . . . ... 76
9.1.6 al map rgha f . . . . ... 76
9.1.7 al premul rgba f. . ... ... . ... 76
9.1.8 al unmap rgb . .. L. 77



CONTENTS

viii

9.1.9 al unmap rgb f . . ... L 77
9.1.10 al unmap rgba . . . ... 77
9.1.11 al unmap rgba f. . . . ... e 77
9.2 Locking and pixel formats . . . . . . . ... . .. e 77
9.2.1 ALLEGRO LOCKED REGION . . . . .. . . . ittt e 77
9.2.2 ALLEGRO PIXEL FORMAT . . . . . . . . ittt et et e 78
9.2.3 al get pixel size . . . . . ... 80
9.2.4 al get pixel format bits . . . . .. ... L. 80
9.2.5 al get pixel block size . ... ... ... ... 80
9.2.6 al get pixel block width . . .. ... ... ... ... . . . L 80
9.2.7 al get pixel block height . . . . ... ... ... ... . .. L L. 80
9.2.8 al lock bitmap . . . . . . . . e 81
9.2.9 al lock bitmap region . . . . . .. ... L 81
9.2.10 al unlock bitmap. . . . . .. .. e 82
9.2.11 al lock bitmap blocked . . . .. ... ... ... o 82
9.2.12 al lock bitmap region blocked . . . . . ... ... ... .. L. L. 82
9.3 Bitmap creation . . . . . . . . .. e e e e e e e e e e e e e e e e e e 82
9.3.1 ALLEGRO BITMAP . . . . . . e e e e e e e e e e 82
9.3.2 al create bitmap . . . . . . ... 83
9.3.3 al create_sub _bitmap . . . ... ... L L 83
9.3.4 al clone bitmap . . . . . . . . e e 84
9.3.5 al convert bitmap . . . . ... ... e 84
9.3.6 al convert memory bitmaps . . . . . . . . ... e e e 84
9.3.7 al destroy bitmap . . . . . .. . ... 85
9.3.8 al get new bitmap flags . . ... ... .. ... . 85
9.3.9 al get new bitmap format . .. ... ... ... ... Lo L L 85
9.3.10 al set new bitmap flags. . . . . ... ... ... 85
9.3.11 al add new bitmap flag . ... ... .. ... .. L 86
9.3.12 al set new bitmap format . .. ... ... ... ... ... e 87
9.3.13 al set new bitmap depth . . . . ... .. ... .. L L 87
9.3.14 al get new bitmap depth . . . . . . . . .. ... 87
9.3.15 al set new _bitmap samples. . . . . .. ... L Lo 87
9.3.16 al get new bitmap samples . . . . . . ... ... 88
9.4 Bitmap properties . . . . . . . . i e e e e e e e e e e e e e e e 88
9.4.1 al get bitmap flags . . . . . . . . . .. e 88
9.4.2 al get bitmap format . . . ... ... .. ... 88
9.4.3 al get bitmap height . . ... ... ... ... . . 88
9.4.4 al get bitmap width . . . . . .. .. ... L 89
9.4.5 al get bitmap depth . . . . . . . . . .. 89
9.4.6 al get bitmap samples . . . . ... ... e 89
9.4.7 al get pixel . . . . .. 89
9.4.8 al is bitmap locked . . . .. ... . . . ... 89
9.4.9 al is_compatible bitmap . . . . . . . . . ... 90
9.4.10 al is sub bitmap . . . . .. ... e 90
9.4.11 al get parent bitmap . . . . . . . . ... 90
9.4.12 al get bitmap X . . . . . . o i e e e 90
9.4.13 al get bitmap v . . . . . e 91
9.4.14 al reparent bitmap. . . . . . . ... L 91
9.5 Drawing operations . . . . . . . .« v bt e it e e e e e e e e e e e e e e e e 91
9.5.1 al clear to color . . . . . .. e 91
9.5.2 al clear depth buffer . . ... ... ... .. . . . o 91
9.5.3 al draw bitmap . . . . . . . . . e 92
9.5.4 al draw tinted bitmap . ... . ... ... 92
9.5.5 al draw bitmap region . . . . . . . . . . ... 93
9.5.6 al draw_tinted bitmap region . . . . ... ... .. .. o o 93
9.5.7 al draw pixel . . . . . . L e 93
9.5.8 al draw rotated bitmap . . . . . . . ... e 94



Contents

9.5.9 al draw tinted rotated bitmap . . . . . ... ... ... .. Lo 94
9.5.10 al draw scaled rotated bitmap . . . . . . . .. ... e 94
9.5.11 al draw_tinted scaled rotated bitmap . . . .. ... ... ... ... . 95
9.5.12 al draw tinted scaled rotated bitmap region . ................... 95
9.5.13 al draw scaled bitmap . . . . . . . . . . ... e 96
9.5.14  al draw tinted scaled bitmap . ... ... ... ... ... .. ... 96
9.5.15 al get target bitmap . . . . . . . . L 96
9.5.16 al put pixel . . . . L. e 96
9.5.17 al put blended pixel. . . . . . . ... .. 97
9.6 Targetbitmap . . . . . . . . e e e e 97
9.6.1 al set target bitmap . . . . . . . ... L 97
9.6.2 al set target backbuffer . . . . ... ... ... o L 98
9.6.3 al get current display . . . . . . . ... e 98
9.7 Blendingmodes . . . . . . . ... e e 98
9.7.1 al get blender . . ... . . . . e 98
9.7.2 al get separate blender . . . . . . . ... ... e 98
9.7.3 al get blend color . . . . .. ... ... e 99
9.7.4 al set blender . . ... . . ... 99
9.7.5 al set separate blender . . ... ... .. ... 101
9.7.6 al set blend color . . .. ... .. ... e 101
9.8 CHPPING . . . o o e i e e e e e e e e e e e e 101
9.8.1 al get clipping rectangle . . . . . . . . ... ... e 101
9.8.2 al set clipping rectangle . . . ... .. ... ... 102
9.8.3 al reset clipping rectangle . . . . ... ... ... .. Lo L. 102
9.9 Graphics utility functions . . . . . . . ... L e 102
9.9.1 al convert mask to alpha . . . ... ... .. ... .. 102
9.10  Deferred drawing . . . . . . . . . e e e e e e e 102
9.10.1 al hold bitmap drawing . . . . . . . . . . ... e 102
9.10.2 al is bitmap drawing held . . . ... ... ... ... .. . . oo L. 103
9.11 Imagel/O . . . . e e 103
9.11.1 al register bitmap loader . . . . . ... ... oL 103
9.11.2 al register bitmap saver. . . . . . . . .. ... e 103
9.11.3 al register bitmap loader f . . . ... ... ... ... . L L 103
9.11.4  al register bitmap saver f . . ... .. .. ... ... 104
9.11.5 al load bitmap . . . . . . ... e 104
9.11.6 al load bitmap flags . . . . . . . . .. L 104
9.11.7 alload bitmap f . ... ... ... .. .. . e 106
9.11.8 al load bitmap flags f. . . ... .. .. .. 106
9.11.9 al save bitmap . . . . . . . . e e 106
9.11.10 al save bitmap f . . . . .. . . .. 107
9.11.11 al register bitmap_identifier . .. ... ... ... .. ... 107
9.11.12 al identify bitmap . . . . . . . . . .. e 107
9.11.13 al identify bitmap f . . . . . . . ... L 107
9.12  RenderState . . . . . . . . . e e e e e 108
9.12.1 ALLEGRO RENDER STATE . . . . . . . . . it e e 108
9.12.2 ALLEGRO_RENDER FUNCTION . . .. .. ... ... .. 108
9.12.3  ALLEGRO WRITE MASK FLAGS . . . . . . . . . . ittt e 109
9.12.4  al set render State . . . . . . . . ...t e e e e e 109
9.12.5 al backup dirty bitmap . . ... ... .. 109
9.12.6 al backup dirty bitmaps . ... ... ... ... 110
10 Haptic routines 111
10.1 ALLEGRO _HAPTIC . . . . . . o e e s e e e e e 111
10.2  ALLEGRO HAPTIC CONSTANTS . . . . . . @ o ittt e e e e e 111
10.3  ALLEGRO HAPTIC EFFECT . . . . . . . o ittt ettt e e e e e e 112
10.4 ALLEGRO HAPTIC EFFECT ID . . . . . . . . o ittt e et e e e 114
10.5 alinstall haptic. . . . . . . o o o e e e e e e 115

ix



CONTENTS

10.6  al uninstall haptic . . . . . . . ... e 115
10.7 alis haptic installed . . . . . .. .. ... 115
10.8 al is mouse haptic . . . . . . . . .. e e e 116
10.9  al is keyboard haptic . ... ... ... ... ... 116
10.10 al is display haptic. . . . . . . o v i i e e e e e e e e e e 116
10.11 al is_joystick haptic . . . . . . . . . . . e e e e e 116
10.12 al is_touch input haptic . . . . . . . . . .. e 117
10.13 al get haptic from mouse . . . . . . . . . v e e e e e 117
10.14 al get haptic from keyboard . ... ... ... ... ... . ... . .. 117
10.15 al get haptic from display . . ... ... ... .. ... e 117
10.16 al_get haptic from joystick . . ... . ... ... ... ... L o . 118
10.17 al_get haptic from touch input. .. ... .. ... ... ... ... . ... ... . 118
10.18 al release haptic . . . . . . . .. .. ... 118
10.19 al is haptic active . . . . .. .. ... .. e 118
10.20 al get haptic_capabilities . . ... ... ... . ... e 119
10.21 al is_haptic_capable . . . . . . . . .. 119
10.22 al set haptic gain . . . . . . . . . ... e e e e e 119
10.23 al get haptic_ gain . . . . . . . . . . L e e e e e e 119
10.24 al set haptic autocenter . . . . . . . . . . . i ittt e e e e e e e e e 120
10.25 al get haptic_ autocenter . . . . . . . . . .. L e 120
10.26 al get max haptic effects . . . . .. .. ... . L L 120
10.27 al is haptic effect ok . . . . . . .. L e 121
10.28 al upload_haptic effect . . . .. .. .. ... .. 121
10.29 al play haptic effect . . . . . .. ... ..o 121
10.30 al upload and play haptic effect . . . . ... ... ... o 122
10.31 al stop haptic effect . . . . . . . . . e 122
10.32 al is_haptic_effect playing . . . . . . . . . . e 122
10.33 al get haptic_effect duration . . . . ... ... ... e 123
10.34 al release haptic effect . . . . . . . . . . . i 123
10.35 al rumble haptic . . . . . . . . . . e 123
11 Joystick routines 125
11.1 ALLEGRO JOYSTICK . . . . . . o o e e e e e e e e e e e 125
11.2 ALLEGRO JOYSTICK STATE . . . . . . o o oo e e e e e et e e e 125
11.3  ALLEGRO JOYFLAGS . . . . . o ot e e e e e e e e e e e e e e e s e 126
11.4  al install joystick . . . . . . . .. .. L 126
11.5 al uninstall joystick . . . . . . . . . .. e 126
11.6  al is joystick installed . . . . . . . . . . .. e 126
11.7  al reconfigure joysticks . . . . . . . . . . ... 126
11.8 al get num joysticks . . . . . . . .. L. e e e e 127
11.9 al get joystick. . . . . . . . L 127
11.10 al release joystick . . . . . . . . . . e 127
11.11 al get joystick active . . . . . . . . . . . e e 127
11.12 al get joystick mame . . . . . . . ... ... e 128
11.13 al_get joystick stick name . . . . .. ... ... L L 128
11.14 al_get joystick_axis name . . . . . . . . ... .. ... 128
11.15 al get joystick button name . . . . ... . . ... e 128
11.16 al get joystick stick flags . . . . . . . . . . . e 128
11.17 al get joystick num_sticks . . . . . . . . ... 128
11.18 al get joystick nUM_aXeS . . . . . . v v v i e e e e e e e e e e e 129
11.19 al get joystick num buttons. . . . . ... .. ..o oo oo 129
11.20 al get joystick state . . . . . . . . . .. e 129
11.21 al get joystick event SOUICE . . . . . . v v v v v v ittt e e e e e e e 129
12 Keyboard routines 131
12.1  ALLEGRO KEYBOARD STATE . . . . . . ittt e e e e e e e e e e 131
122 Keycodes . . . . o v i e e e e e e e 131
12.3  Keyboard modifier flags. . . . . . . . . ... L 133



Contents

12.4  al install keyboard . . . . .. .. ... . 133
12.5  al is keyboard installed . . . . ... ... ... ... ... . e 134
12.6  al uninstall keyboard . . ... ... ... . 134
12.7  al get keyboard state . . .. ... ... ... 134
12.8  al clear keyboard state . . . . ... ... ... 134
12.9  al key down . . ... ... e 134
12.10 al keycode to mame . . . . . . ... e e e e e e 135
12.11 al set keyboard leds . . . . . . . . . .. e 135
12.12 al get keyboard event source . . . . . . .. ... Lo 135
13 Memory management routines 137
13.1 al malloc . . . . . . e e e 137
13.2  al free . . . o o o e e e e e 137
13.3  al realloc . . . . . . e 137
13.4  al calloc . . . . . o o e 138
13.5 al malloc with context. . . . . . . . .. . e 138
13.6  al free with_context . . . . . .. . . . .. ... 138
13.7  al realloc_with context . . . . ... ... ... ... 138
13.8 al calloc with context . . . . . ... ... .. ... 138
13.9  ALLEGRO MEMORY INTERFACE . . . . . . . . . . ittt e e 139
13.10 al set memory interface . . . . . . . . . ..o e e e e e e e 139
14 Miscellaneous routines 141
14.1  ALLEGRO PI . . . . e e 141
142 al run main . . . ... e e e e e e e 141
15 Monitors 143
15.1 ALLEGRO MONITOR INFO . . . . . . . . ittt e et 143
15.2  al get new display adapter . . . .. ... ... ... 143
15.3  al set new display adapter . . . . . . . . ... ... e 144
15.4  al _get monitor info . . ... ... ... e 144
15.5 al get num video adapters . . . . . . . . . .. i e e e e e 144
16 Mouse routines 145
16.1  ALLEGRO MOUSE STATE . . . . . . . ettt e e e 145
16.2 al install mouse . . . . . ... e 145
16.3 alis mouse_installed . . . . . . . ... . . L 145
16.4 al uninstall mouse . . . . . . ... 146
16.5 al get MOUSE NUM _AXES . . v v v v v v v v e e e et e et e e e e e e e e e e e 146
16.6  al get mouse num buttons . . . .. ... ... L Lo e 146
16.7 al get mouse State . . . . . . ... i e e e e e e e e e e e 146
16.8  al get mouse State aXiS . . . . v v v ittt e e e e e e e e e e e e e e e e e e 147
16.9 al mouse button down . . . . ... ... 147
16.10  al Set MOUSE XY « « ¢ v v v v v e e e e e e e e e e e e e e e e e e 147
16.11  al set MOUSe Z . . . . . . o vttt e e e e e e e 147
16.12  al set MOUSe W . . . . . . . L e e e e e 147
16.13  al set_ MouUSe aXiS . . . . ... i e e e e 148
16.14 al get MOUSE EVENE SOUICE . . . v v v v v v v e e et et e e et e e e e e e e e 148
16.15 al set mouse wheel precision. . . . . . . . . . .. . e 148
16.16 al get mouse wheel precision . . ... ... .. ... ... o 148
16.17 MOUSE CULSOLS & &« v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e 149
16.17.1 al create_MOUSE CUISOT . . . « v v v v v i v v et et e e e et e e et e e e 149
16.17.2  al_destroy mMOUSe_CUISOT . . . . . v v v v v v it ettt e e et e e et e e 149
16.17.3  al Set_ MOUSE CUISOT . . . . ¢ v v v v v vt e e et e et e e e e e e e e 149
16.17.4 al set SyStem IMOUSE CUISOT . . . . « ¢ v v v v v v vt e e e e e e et e e 149
16.17.5 al get mouse cursor posSition . . . . . . . . . . . i i e e e 150
16.17.6 al hide mouse cursor . . . . . . . . . . . i it i it e e e e e e e 150
16.17.7 al show mouSe CUursor. . . . . . . . . v v v v v i ittt et e e e 150

Xi



CONTENTS

16.17.8 al grab mouse . . . . . . . ... e e e e
16.17.9 al ungrab mouse . . . . . . . . ... e e e
17 Path structures
17.1  al create path . . . . . . . . . e
17.2  al create path for directory . . . . . . . . . . . . e
17.3 al destroy path . . . . . . . . ..
17.4 al clone path . . . . .. . . .
17.5 al join paths . . ... .. ... e
17.6  al rebase path . ... . ... . . ...
17.7 al_get path drive . . . . . . . .. .. e
17.8  al get path nUmM COMPONENts . . . . . . . . v v vt v ittt e e e
17.9 al get path component . . . . . . ... . . .
17.10 al get path tail . . . . . . . . ...
17.11 al get path filename . . . . . . . . . .. e
17.12 al get path basename . . .. .. ... ... ... ... ... .. o
17.13 al get path extension . ... ... ... ... . ... ... e
17.14 al set path drive . . . . . . . . . .. e
17.15 al append path component . . . . ... ... ... ... .
17.16 al insert path component . . . . . . . . . . . . e
17.17 al replace path component . . . . . .. ... .. i
17.18 al remove path component . . . . . ... ... .. ... e
17.19 al drop path tail . . . . ... .. ... .
17.20 al set_path filename . . . . . . . .. .. ... .
17.21 al set path extension . . . . . ... .. .. ...
17.22  al path CStr . . . . . o e e e e e e
17.23 al path ustr . . . . . . . o e e e e e e e
17.24 al make path canonical . . . . ... ... ... . . ...
18 State
18.1  ALLEGRO STATE . . . . . . . e e e e e e e e e e e
18.2  ALLEGRO STATE FLAGS . . . . . . . o i i e e e e e e e e e e
18.3  al restore State . . . . . . ... e e e e e e e e e
18.4 al store state . . . . . . . ... e e e e
185 al et eIrno . . . . . v v vt e e e e e e
18.6 Al SEL EITNO . . . .« ¢ i i i i e e e e e e e e e e e e e e e e e e e e e
19 System routines
19.1  al install System . . . . . . e e e e e e e e e e e e e e e
19.2  alinit . . . oo e e e e e e e e e e e
19.3  al uninstall system . . . . . ... e e e
19.4  al is system installed . ... ... ... ... ... o
19.5  al get allegro version . . . . . ... .. ... ...
19.6  al get standard path . . . .. .. ... ... . e
19.7  al set eXe NMAmMe . . . . . . . ittt e e e e e e e
19.8 al set app NAMEe . . . . . .t it e e e e e e e e e e e e e e e e e e e e e e e
19.9  al set Org MAME . . . . . v v v v e e e e e e e e e e e e e e e e e e e e e e e
19.10 al get app NaAmMe . . . . o v vttt e e e e e e e e e e e e e e
19.11 al get Org NAME . . . . v v vttt i e e e e e e e e e e e e e e e
19.12 al get system config . . . . . .. ...
19.13 al register assert handler . . . ... ... ... ... ... . L. ..
19.14 al register trace_ handler. . . . . ... ... .. ... L L o
19.15 al get CPUu_COUNL . . . o v v v i i e et e e e e e e e e e e e e e e e e e e e
19.16  al get ram Size . . . . . . .o e e e e e e e e e e e e e e
20 Threads
20.1  ALLEGRO THREAD . . . . . . . ittt e e e e e e e e e e
20.2 ALLEGRO MUTEX . . . . . . e e e e e e e e e e e

Xii



Contents

20.3 ALLEGRO COND . . . . . . e e e e e e e 173
20.4 al create thread . ... . ... . . ... e 173
20.5 al start thread . ... .. .. . . .. e e e e 174
20.6 aljoin thread . . . . . . . .. . e 174
20.7 al set thread should stop . . . . . ... ... .. ... 174
20.8 al get thread should stop . . . . . . .. ... .. .. L 174
20.9 al destroy thread . . . . . . . . .. .. 175
20.10 al run detached thread . . ... ... ... ... .. . . ... o 175
20.11 al create MULEX . . . . v v v v v e e e e e e e e e e e e e e e e e e e e 175
20.12 al create muteX reCUTISIVE . . . . . . v v v v v v e e e e e e e e e e e e e e 175
20.13 al lock mutex . . . . . . ... e e e e e e e 175
20.14 al unlock mutex . . . . . . . ... e 176
20.15 al destroy MULeX . . . . . v v v v v e e e e e e e e e e e e e e e e e e e e 176
20.16 al create cond . . . ... ... e e e e e 176
20.17 al destroy cond . . . . . . . . e e e e e 176
20.18 al wait cond . . . ... e e e e e 176
20.19 al wait cond until . . . . ... .. e e e e 177
20.20 al broadcast cond . . .. ... ... e 177
20.21 al signal cond. . . . . .. .. e 177
21 Time routines 179
21.1 ALLEGRO TIMEOUT . . . . . . o et e e e e e e e e 179
21.2  al get time . . . . . . . . e e e e e e 179
21.3  al init timeout . . . . . . . . . . . e e e e e e 179
214 Al rest . .o .. e 180
22 Timer routines 181
22.1  ALLEGRO TIMER . . . . . . oottt et e e e e e e e e e 181
22.2  ALLEGRO USECS TO SECS . . . . . ot ittt et e e e e e e e e e e e e 181
22.3  ALLEGRO MSECS TO SECS . . . . . . . ittt e i e 181
22.4  ALLEGRO BPS TO SECS . . . . . . . . ittt e e e e 181
22.5 ALLEGRO BPM TO SECS . . . . . . . . ittt e e e e e 181
22.6 al create tiMeT . . . . v v v v v v e e e e e e e e e e e e e e e e e e e 182
22.7 al start timer . . . . . . . o e e e e e e e e e e e e e e e 182
22.8 al resume tIMEr . . . . . . v v v i e e e e e e e e e e e e e 182
22.9 al stop timer . . . . . . . e e e e e e 182
22.10 al get timer started . . . . . . . ... e e e e e e e e e e e e 182
22.11 al destroy timer . . . . . . . . . . e e e e e e 183
22.12 al get timer COUNt . . . . . . . ¢ v v ittt e e e e e e e e e e e e e e 183
22.13 al set timer COUNt . . . . . . . o v v i ittt e e e e e e e e e e e e 183
22.14 al add timer count. . . . . . . . . . . L e e 183
22.15 al get timer speed . . . . . . . ... e e e e e 183
22.16 al set timer speed . . . . . . . . ... e 184
22.17 al get timer eVeNt SOUICE . . . . . . . v v v vt vttt ettt e et e e e e e 184
23 Touch input 185
23.1  ALLEGRO TOUCH_INPUT . . . . . . .ttt ittt e e e e e e e e e e e 185
23.2  ALLEGRO TOUCH_INPUT MAX TOUCH COUNT . . . ... . ... .......... 185
23.3  ALLEGRO TOUCH STATE . . . . . . . ittt e e e e e e e e e e e e e 185
23.4  ALLEGRO TOUCH INPUT STATE . . . . . . . ottt ittt ettt e e e e e e 186
23.5 ALLEGRO MOUSE EMULATION MODE . . . . . .. . ...t 186
23.6  alinstall touch input . . . ... ... . e e e 186
23.7 al uninstall touch input . . . . . . . .. L e 187
23.8 al is touch input installed . .. ... ... ... ... ... o 187
23.9 al get touch input state . . . . . . . ... e 187
23.10 al set mouse emulation mode . . ... ... ... ... L e e 187
23.11 al get mouse emulation mode . . . ... ... ... .. ... 187
23.12 al _get touch input event SOUICE . . . . . . . v v v v v v v v v ittt et 188



CONTENTS

23.13 al get touch_input mouse emulation_event source . ... . ............. 188
24 Transformations 189
24.1 ALLEGRO TRANSFORM . . . . . . . e e e e e e 190
24.2 al copy transform . . . . .. ... e e 190
24.3 al use transform . . . . . ... e e e e 191
24.4  al get current transform . . . . . . . .. e e 191
24.5 al use projection transform . . . . . . . ... ... Lo e 191
24.6  al get current projection transform . . ... . ... .. ... L oL 192
24.7  al get current inverse transform . . . . ... ... ... L. Lo oL 192
24.8 al invert transform . . . . . . ... L e 192
249 al check inverse . . . . . .. . . ... e 193
24.10 al identity transform . . . . . . . ... L e 193
24.11 al build transform . . . . ... .. .. e 194
24.12 al build camera transform . . ... ... ... L 194
24.13 al translate transform . . . . . . . .. ... e 195
24.14 al rotate transform . . . . . . .. ... e e e 195
2415 al scale transform . . . . . . . . . ... e e e e e 195
24.16 al transform_coordinates. . . . . . . . . .. i e e e e e e 196
24.17 al transform_coordinates 3d . . . ... ... .. ... e 196
24.18 al transform coordinates 4d . . . .. . ... .. .. e 196
24.19 al transform_coordinates_3d_projective . . . . ... ... ... ... ... 197
24.20 al compose transform . . . . . . . ... e e e 197
24.21 al orthographic transform . . . . . . ... .. ... .. 197
24.22 al perspective transform . . . . . . . ... ..o e e e e e 198
24.23 al translate transform 3d . . . . . ... L e 198
24.24 al scale transform 3d . . . .. . . ... e e 198
24.25 al rotate transform 3d . . . ... . ... L 199
24.26 al horizontal shear transform . . . . ... .. ... ... .. ... 199
24.27 al vertical shear transform . . ... ... .. ... ... ... 199
25 UTF-8 string routines 201
25.1  About UTE-8 string routines . . . . . . . . . oo v v v v v ittt et e e e e 201
252  UTE8String typPes . « . v v o v v e e e i e e e e e e e e e e e e e e e e 202
25.2.1  ALLEGRO USTR . . . . . . ottt it e e e e e e e e e e 202
25.2.2  ALLEGRO USTR INFO. . . . . . . . ittt e e e e e e e e e e 202
25.3  Creating and destroying Strings . . . . . .« .« o v v it e e e e e e e e e 202
25.3.1 al USIr MEW . . . o o o e e e e e e e e e e e e e 202
25.3.2 al ustr new from buffer ... ... .. ... ... L 203
25.3.3 al ustr newf . . .. e e e 203
2534 al ustr free . . . . .. e e 203
25.3.5 al CStr . . e 203
25.3.6 al ustr to buffer . . . ... .. 204
25.3.7 alcstr dup . .. ... e 204
25.3.8 al ustr dup . ... 204
25.3.9 al ustr dup_substr . . . . ... 204
25.4  Predefined strings . . . . . . . ... 204
25.4.1 al ustr empty String . . . . . . . ... e 204
25.5  Creating strings by referencing otherdata . . . ... ... ... .. ... ....... 205
25.5.1 al ref CStr. . . . . e e e e 205
25.5.2 al ref buffer . . . . . . .. e 205
25.5.3 al ref UStr. . . . . e e 205
25.6  Sizesand offsets. . . . . . ... e e e e e e 205
25.6.1 al ustr size . . . ... e e e e 205
25.6.2 al ustr length. . . . . . . . o e 206
25.6.3 al ustr offset . . . . .. e 206
25.6.4 al ustr mext . . . ... e e e e e e 206
25.6.5 al USIE PIev . . . v v v e e e e e e e e e e e e e e e e e 206

Xiv



Contents

25.7  Getting code POINLS . . . .« v v v v v e e e e e e e e e e e e e e e e e 207
25.7.1 al ustr get . .. .. 207
25.7.2 al uStr get MEeXt . . . . o v i i e e e e e e e e e e e e 207
25.7.3 al ustr prev get . . ... e e e e e 207
25.8  Inserting into StriNgS . . . . . . v v v vt it e e e e e e e e e e e e e e 207
25.8.1 al ustr inSert . . . . ... e e e e e 207
25.8.2 al ustr inSert CStr . . . . . . . .. e e e e e e e 208
25.8.3 al ustr insert chr . .. . . . . . e 208
25.9  Appending to Strings . . . . . . . . . i i e e e e e e e e e 208
25.9.1 al ustr append . . . ... 208
25.9.2 al ustr append CStr . . . . . . ... e e e 208
25.9.3 al ustr append chr . . ... ... ... 208
25.9.4 al ustr appendf . ... ... 209
25.9.5 al ustr vappendf . . . . ... e 209
25.10 Removing parts of Strings . . . . . . . . ..o e e e e e e 209
25.10.1 al ustr remove chr . . . . . . . . . e e e e e 209
25.10.2 al uStr remove range . . . . . ...t i e e e e e e e e e e 209
25.10.3 al ustr truncate . . . . ... ... e e e e e e e e e e e e e e e e 209
25.10.4 al ustr ltrim ws . . . . ... e 210
25.10.5 al ustr rtrim WS . . . . . e e e e e e e e e e e e e e e e 210
25.10.6  al ustr trim WS. . . . . . . e e e e e e e e e e 210
25.11 Assigning one string to another . . . . . . . . . ... .. oo 210
25.11.1  al uStr @sSign . . . v v v i e e e e e e e e e e e e e e e e e e e e 210
25.11.2 al ustr assign substr . . . . . . . ... e e e e e e 210
25.11.3  al uStr assign CSIT . . . . v v v v e e e e e e e e e e e e e e e e e e e e e e 211
25.12 Replacing parts of string . . . . . . . . . .. e e e e e e 211
25.12.1 al wustr set chr . . . . . ... e e e 211
25.12.2 al ustr replace range . . . . . ... ..o e e e e e e e 211
25.13 Searching . . . . . . . . . e e e e e e 211
25.13.1 al ustr find chr . ... ... ... 211
25.13.2 al ustr rfind chr . . .. ... e e 212
25.13.3 al ustr find set. . . . . . .. 212
25.13.4 al ustr find Set CSIT . . . . v v v v i e e e e e e e e e e e e 212
25.13.,5 al ustr find cset . . . . . ... e e e e 212
25.13.6 al ustr find cset CStr . . . . . ... e e e e e e e e 212
25.13.7 al ustr find str . . . . . ... e 213
25.13.8 al ustr find CStr . . . . . . ... e e e e e e e 213
25.13.9 al ustr rfind str . . .. ... 213
25.13.10 al ustr rfind €Str. . . . . . . .. e e e e e e e 213
25.13.11 al ustr find replace . . . . . . . . . ... 213
25.13.12 al wustr find replace cstr. . . . . . . ... 214
25.14 Comparing . . . . . o o i e e e e e e e e e e e e 214
25.14.1 al ustr equal . . . . ... e e 214
25.14.2 al UStr COMPAre . . . . ¢ v vt v it e e e e e e e e e e e 214
25.14.3  al UStr NCOMPATE . . . .« « v v vttt et e e e e e e e e e e e e e e e 214
25.14.4 al ustr has prefix . .. ... .. ... 214
25.14.5 al ustr has prefix cstr. . . . . . . ... e 215
25.14.6 al ustr has suffix . .. ... .. ... 215
25.14.7 al ustr has suffix cstr . . . .. ... 215
25.15 UTF-16 CONVEISION .« . v v v v v v e vt v et e e e e e e e e e e e e e e e e e e e 215
25.15.1 al ustr new from utfl6 . . . . . . . .. L e 215
25.15.2 al ustr size utflo . . . . . ... e e e e e e 215
25.15.3 al ustr encode utflo . . . . . ... e 216
25.16 Low-level UTE-8 rOULINeS . . . .« v v v v v o e e e e e e e e e e e e e e e e e 216
25.16.1 al utf8 width . . . . . . . .. e e e 216
25.16.2 al utf8 encode . . . . . . .. e 216
25.17 Low-level UTE-16 routines . . . . . . . . . . o o i i ittt e e e e 216



CONTENTS

25.17.1
25.17.2

al utfle width . . . . . .. o e
al utflé encode . . . . . . . . e

26 Platform-specific functions

26.1

26.1.1
26.1.2
26.1.3
26.2

26.2.1
26.3

26.3.1
26.3.2
26.3.3
26.4

26.4.1
26.4.2
26.4.3
26.4.4
26.4.5
26.5

26.5.1
26.5.2

WIndows . . . . o oo o
al get win window handle . . . . ... ... ... . o
al win_add window callback . . . . . ... .. ... .. ...
al win_remove window callback . . . . ... ... ... ... ... . 0.

Mac OS X . . . o e e e
al osx_get window . . . . . . ... L e

PPhone . . . . . e e e
al iphone_set statusbar orientation . . ... ... ... ... ... .. .. ..
al iphone get View . . . . . . .. e e
al iphone get window . . . . . . . . . ... e

Android . . . . .. e
al android set apk file interface . . . . . .. ... .. Lo L.
al android set apk fs interface . ... ... .. ... ... ... ...
al android get 0S Version. . . . . . . . . ... e e
al android get jni env . . . . .. ... e
al android_get activity . . . . . . . . . . ...

X1T . o e e
al get x window id . . . . . . . L. e
al x set initial icon . . . . ... ...

27 Direct3D integration

27.1
27.2
27.3
27.4
27.5
27.6
27.7
27.8
27.9
27.10

al get d3d device . . . . . . . ... e
al get d3d system texXture. . . . . . . . . v i i ittt e e e e e e e
al get d3d video texture . . . . .. . . ... ...
al have d3d non pow2 texture SUPPOIt. . . . . . . . . v v v v v v v v v oo
al have d3d non _square texture SUPPOTT . . . . .« v v v v v v v v v v et e e
al get d3d texture size . . . . . . . ... e e e e e e
al get d3d texture poSition . . . . . . . . ... e e e e e
al is d3d device lost . . . . . . . . . e e
al set d3d device release callback . . . ... ... ... ... . . ... ... ... ..
al set d3d_device restore callback . . . ... ... ... ... ..o L0 ...

28 OpenGL integration

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
28.10
28.11
28.12
28.13

al get opengl extension list . . . . . .. ... .. ... .. L
al get opengl proc address . . . . . .. ... ..
al get opengl texture . . . . . . . . . ... e e e
al get opengl texture size . . . . . . . . . .. e e e e e
al get opengl texture position . . . . . .. .. .. ...
al get opengl program object. . . . . . . . ... e
al get opengl fbo. . . . . .. e
al remove opengl fbo . . . ... L L
al have opengl extension . . . . . . ... .. ... e
al get opengl version . . . . . . . ... e
al get opengl variant . . . . . . ... L. e e
al set current opengl conteXt . . . . . . . ... e e e e e
OpenGL configuration . . . . . . . . . . . . i i i i e e e e e e e

29 Audio addon

xvi

29.1

29.1.1
29.1.2
29.1.3
29.1.4
29.1.5

AUdiO tYPES .« v v o o e e e e e e e e e e e e e e e e
ALLEGRO _AUDIO EVENT TYPE . . . . ..o viii e
ALLEGRO AUDIO DEPTH . . . . . . . . . o et e e e e e
ALLEGRO AUDIO PAN NONE . . . . oo ti ittt i e
ALLEGRO CHANNEL CONF . . . .\ v ot i e et e e e e e
ALLEGRO MIXER . . . . . . . e e e e e e e



Contents

29.1.6
29.1.7
29.1.8
29.1.9
29.1.10
29.1.11
29.1.12
29.2
29.2.1
29.2.2
29.2.3
29.2.4
29.3
29.3.1
29.3.2
29.3.3
29.3.4
29.4
29.4.1
29.4.2
29.4.3
29.4.4
29.4.5
29.4.6
29.4.7
29.4.8
29.4.9
29.4.10
29.4.11
29.4.12
29.4.13
29.5
29.5.1
29.5.2
29.5.3
29.5.4
29.5.5
29.5.6
29.5.7
29.5.8
29.5.9
29.5.10
29.5.11
29.5.12
29.6
29.6.1
29.6.2
29.6.3
29.6.4
29.6.5
29.6.6
29.6.7
29.6.8
29.6.9
29.6.10
29.6.11
29.6.12

ALLEGRO MIXER QUALITY . . . . . . oot e e e e e e e e e e 239
ALLEGRO PLAYMODE . . . . . . . . e e e e e e 239
ALLEGRO SAMPLE ID . . . . . . o o e e e e e 239
ALLEGRO SAMPLE . . . . . . . ot e e 239
ALLEGRO_SAMPLE INSTANCE . . . . . . . .. o it ittt 239
ALLEGRO AUDIO STREAM . . . . s\t v ti ittt e e e e e 240
ALLEGRO VOICE . . . . . . e e e e e e e e e e 240
Settingupaudio. . . . . . . ... e e 240
al install audio . . . . . . . . . e 240
al uninstall audio . . ... ... ... L 241
al is audio installed . . . . . . . ... L 241
al reserve samples . . . . ... e e 241
Misc audio functions . . . . . . . . . . ... 241
al get allegro audio version . . .. ... .. .. ... .. e 241
al get audio depth size . . . . . . . . . .. ... 241
al get channel count . . ... ... ... ... ... e 242
al fill silence . . . . . . . e 242
Voice functions . . . . . . . . . e e e 242
al create VOICE . . . . . . . e e e e e e 242
al destroy voice . . . . . ... 242
al detach voice . . . . . . . . . . e 242
al attach_audio_stream to voice . . . . ... ... ... ... ... 243
al attach mixer to voice . . . ... ... .. ... 243
al attach_sample_instance to voice . . . ... ... ... ... ... ... 243
al get voice freqQUENCY . . . . . . . v v i i e e e 243
al get voice chanmels . . . ... ... .. ... ... 243
al get voice depth . . . . . . . . .. e 244
al get voice playing . . . . . . . . ... e 244
al set voice playing . . . . . . . . . . . e 244
al get voice position . . . . . ... ... 244
al set voice position . . . . . . . ... e e e e e 244
Sample functions . . . . . . . ... e e e 245
al create sample . . . . . .. e e e e e e e e 245
al destroy sample . . . .. ... 245
al play sample . . . . . . .. e e 245
al stop sample . . . ... 246
al lock sample id . ... ... .. e 246
al unlock sample id . . . . . .. ... L 246
al stop samples . . . . ... e e e e e 247
al get sample channels . . . .. ... .. ... ... L 247
al get sample depth . . . . . . . ... ... 247
al get sample frequency . . ... .. . ... ... e 247
al get sample length . . ... ... ... ... . .. 247
al get sample data . . ... ... .. ... e 247
Sample instance functions . . . . . ... .. Lo e e 248
al create sample instance . . . . . . . . ... e 248
al destroy sample instance . . . . . . . . ... e 248
al play sample instance . . . . . . . . . ... o e e e e 248
al stop sample instance . . . . . . . ... ..o e e 248
al get sample instance channels . . . . . ... ... .. ... ... ... 248
al get sample instance depth . . ... ... ... ... ... ... ... 248
al get sample instance frequency . .. ... .. ... ... .. ... 249
al get sample instance length . . . . . ... ... ... . ... ... ... . ... 249
al set sample instance length . . . ... ... ... ... ... ... ... ..., 249
al _get sample instance position . . . . .. .. .. ... 249
al set sample instance position . . . ... ... ... ... ... 249
al get sample instance speed . . . . . .. .. ... e 249

xvii



CONTENTS

29.6.13
29.6.14
29.6.15
29.6.16
29.6.17
29.6.18
29.6.19
29.6.20
29.6.21
29.6.22
29.6.23
29.6.24
29.6.25
29.6.26
29.6.27
29.7
29.7.1
29.7.2
29.7.3
29.7.4
29.7.5
29.7.6
29.7.7
29.7.8
29.7.9
29.7.10
29.7.11
29.7.12
29.7.13
29.7.14
29.7.15
29.7.16
29.7.17
29.7.18
29.7.19
29.7.20
29.7.21
29.7.22
29.7.23
29.8
29.8.1
29.8.2
29.8.3
29.8.4
29.8.5
29.8.6
29.8.7
29.8.8
29.8.9
29.8.10
29.8.11
29.8.12
29.8.13
29.8.14
29.8.15
29.8.16
29.8.17

xviii

al set sample instance speed . . . . . . ... ... Lo Lo e 250
al get sample instance gain . . . . . . .. .. ... e 250
al set sample instance gain . . . ... ... .. ... L Lo L 250
al get sample instance pan. . . . . . . . . . ..t 250
al set sample instance pan . . . . . . . ... ... Lo e 250
al get sample instance time . . . . . . .. .. ... .. 251
al get sample instance playmode . . . ... . ... ... ... ... ... 251
al set sample instance playmode . . . .. ... .. ... ... ... 251
al get sample instance playing. . . . . . .. .. ... .. oo 251
al set sample instance playing . . . . . . . . . . . e 251
al get sample instance attached . . . . ... ... ... ... . L ... 251
al detach _sample instance . . . . . . . . . . . .. e 252
al get sample. . . . . .. e 252
al set sample . . . . . .. e e e e e 252
al set sample instance channel matrix . .. ... ... ... ... ... . .... 252
Mixer functions . . . . . . . . . . e e e e e e 253
al create MIXET . . . . . . . o i i i e e e e e e e e e e e e e e 253
al destroy mixer . . . . . . . . e e e e e 253
al get default mixer . . . . . ... . ... e 253
al set default mixer . . . . ... .. ... ... 254
al restore default mixer. . . . . . .. ... ... L 254
al get default voice . . . . ... .. ... ... 254
al set default voice . . .. ... .. . ... e 254
al attach mixer to mixer . . . . . .. ... ... ... L e 254
al attach sample instance to miXer . . . . . .. . ... ... .. ... 255
al attach audio stream to miXer. . . . . . . . . ... .. ... 255
al get mixer frequency . . . . . . . . . .. e 255
al set mixer freqUency . . . . . . . . . ... e 255
al get mixer channels . . . . . . . ... ... 255
al get mixer depth . . ... .. .. . . ... 256
al get mMiXer gain . . . . . . . .. e e e e e e e e e 256
al set mixer gain . . . . . . ... e 256
al get mixer quality . . . . . . . . ... e 256
al set mixer quality . . . . . . . . ... 256
al get mixer playing. . . . . . . . . .. e 256
al set mixer playing . . . . . . . . .. e 257
al get mixer attached . . . . . . . . . . ... 257
al detach mixer . . .. ... .. . . .. e 257
al set mixer postprocess callback . . . ... ... ... ... ... ... . . .. 257
Stream functions . . . . . . . . . . e e e e e e e e e 257
al create audio Stream . . . . . .. .. L i e e e e e e 257
al destroy audio_stream. . . . . . . . .. ... 258
al get audio_stream eVENt SOUICE . . . . . v v v v v v v v v v et e o 259
al drain_audio stream . . . . . . . . .. L. e e e 259
al rewind audio stream . . . . . . ... L. e e 259
al get audio stream frequency . . . . . . . . . . ... 259
al get audio stream channels . ... ... ... ... ... ... .. ... . ... 259
al get audio stream depth . . . . ... ... ... ... .. L. 259
al get audio stream length . . . . . . . . ... ... . ... e 260
al get audio stream speed . . . ... ... ... ..o 260
al set audio stream speed . . . . . . .. ... e 260
al get audio stream gain . . . . . . .. ... Lo 260
al set audio stream gain . . . . . . . . . ... 260
al get audio stream pan . . . . . . . ...l e e 260
al set audio Stream Pan . . . . . ..o i i e e e e e e e e e e e 261
al get audio stream playing . . ... ... ... ... .. 261
al set audio stream playing . . . . . . ... . ... 261



Contents

29.8.18 al get audio stream playmode . . . . . ... ... Lo Lo 261
29.8.19 al set audio_stream playmode . . . . . ... ... .. ... L oL 261
29.8.20 al get audio_stream attached . ... ... ... ... ... ... L. 262
29.8.21 al detach audio stream . . . . . ... ... .. ... e 262
29.8.22 al get audio stream played samples . ... ... ... ... ... ... 262
29.8.23 al get audio stream fragment . . ... .. ... ... ... 262
29.8.24 al set audio stream fragment . . . . . . . . ... ... ... 263
29.8.25 al get audio stream fragments . . . . . . . . . . . . .t ittt 263
29.8.26 al get available audio_stream fragments . . . . .. ... ... ... ... .. ... 263
29.8.27 al seek audio_stream SECS . . . . . . ... .o e 263
29.8.28 al get audio_stream poSition SECS . . . . . . . ... ..ot e e 263
29.8.29 al get audio stream length secs . . . . .. ... ... ... .. ... 264
29.8.30 al set audio_stream loop secs . . . . . ... ... Lo 264
29.8.31 al set audio_stream channel matrix . . . . . ... ... ... ... ... . ... 264
299  AudiofileI/O . . . . .. 264
29.9.1 al register sample loader . . . . . . . ... ... 264
29.9.2 al register sample loader f . . . ... .. ... ... oL 264
29.9.3 al register sample saver . . . . . . . . ... .. e e e 265
2994 al register sample saver f . . . . . . .. ... e 265
29.9.5 al register audio stream loader . . ... ... ... ... ... ... ... ... 265
29.9.6 al register audio stream loader f . . . ... .. ... ... . L L. 266
29.9.7 alload sample . . . . . ... e 266
29.9.8 al load sample f . . ... ... .. 266
29.9.9 al load audio stream . . . ... ... ... 267
29.9.10 al load audio stream f . ... ... ... ... ... L 267
29.9.11 al save sample . . . . . . ... e e e e e 267
29.9.12 al save sample f . . . . . .. ... 268
29.10 Audiorecording . . . . . . . ... e e e e e e e e e e e e e e e 268
29.10.1 ALLEGRO AUDIO RECORDER . . . . .. . . ... it 268
29.10.2 ALLEGRO AUDIO RECORDER EVENT. . . . ... ... ... .. ... ..... 268
29.10.3 al create audio recorder . . . .. ... ... 269
29.10.4 al start audio recorder . . . . .. .. ... e 269
29.10.5 al stop audio_recorder . . . . .. ... ... 270
29.10.6 al is_audio recorder recording . . . . . ... ... .. ... . 270
29.10.7 al get audio_recorder event . . . . . . . ... ..ot e 270
29.10.8 al get audio_recorder event SOUICE . . . . . . . . . .. oo v v v v, 270
29.10.9 al destroy audio recorder. . . . . . . . ...l 271
30 Audio codecs addon 273
30.1 alinit acodec addon . . . . . . . ... 273
30.2  al get allegro acodec version . . . . . . ... ... Lo 273
31 Color addon 275
31.1 al color ecmyk . . . . .. e e e e 275
31.2 al color emyk to rgb . . ... L 275
31.3  al color hsl . .. .. .. e 276
314 alcolor hsl to rgb . . . . . . . . . . e 276
31.5 al color hsv . . . . .. o e 276
31.6 al color hsv torgb. . . . . . . . . . e 277
31.7 al color html . . ... ... . e 277
31.8 al color html to rgb . . . . . ... .. ... e 277
319 al color rgb to html . . . . . . ... .. L 278
31.10 al color mame . . . . . . ... e e e e 278
31.11 al color name to rgb . . . . . . .. L e e e 278
31.12 al color rgb to cmyk . . .. ... ... 279
31.13 al color rgb to hsl . . . . .. . .. . e 279
31.14 al color rgb to hsv. . . . . . . . . . e 279
31.15 al color rgb to name . . . . . . . . . . e e e e e 280

Xix



CONTENTS

31.16 al color rgh to Xyz . . . . . . . . e 280
31.17 al color XyzZ . . . o o o e e e e e e e e e 280
31.18 al color xyz to rgb. . . . . ... e e e 280
31.19 al color rgb to Xyy. . . . . . .. 281
31.20 Al COlOT XYY .« v v o o e e e e e e e e e e e e e e e e e e e e e e 281
31.21 al color xyy to rgb. . . . . . . e 281
31.22 alcolorrgb tolab . . . ... ... . . .. 281
31.23 al color lab . . . . . . . e e 282
31.24 al color lab to rgb . . . . . . .. L 282
31.25 al color rgb to Ich . . . . . . . . . . e 282
3126 al color Ich . . . ... .. . e 282
31.27 al color Ich to rgb . . . . . . . . .. 283
31.28 al color distance ciede2000 lab . . . . . .. ... ... ... . 283
31.29 al color rgb to yuv . . . ... 283
31.30 @l color YUV . . . o o e e e e e e e e e e e e e e 283
31.31 al color yuv to rgb . . . . ... 284
31.32  al get allegro color version . . . . . .. ... ...l 284
31.33 alis color valid . ... ... .. . . . . e e e 284
32 Font addons 285
32.1  General fontroutines . . . . . . . . ... e e e e e 285
32.1.1 ALLEGRO _FONT . . . . . o e e e e e e e e e e e e 285
32.1.2  ALLEGRO GLYPH . . . . . . ittt e e e e e e 285
32.1.3 al init font addon . . . . . . ... .. e 286
32.1.4  al shutdown font addon . .. ... ... ... ... . ... .. ... 286
32.1.5 al Toad font. . . . . . . . e e 286
32.1.6 al destroy font . . . . . . ... 286
32.1.7 al register font loader. . . . . .. ... ... ... 287
32.1.8 al get font line height . . ... ... ... . ... . . . . . . . . . . 287
32.1.9 al get font ascent . . . . . . . . ... e 287
32.1.10 al get font descent . . . . . . . .. ... 287
32.1.11 al get text width . . . . . ... ... 288
32.1.12 al get ustr width . . . . . .. L 288
32.1.13  al draw teXt . . . . . i e e e e e e e e e e e e e e e e e e e 288
32.1.14  al draw USEr . . . . oo e e e e e e e e e 288
32.1.15 al draw justified text . . . . . . . . . e e e e e 289
32.1.16 al draw justified ustr . . . . . . . . ... e e e 289
32.1.17 al draw textf . . . . . .. 289
32.1.18 al draw justified textf . . . . . . . . . . L. 289
32.1.19 al get text dimensions . . . . . . . . ..o e e 290
32.1.20 al get ustr dimensions . . . . . . . . ... e e e e 290
32.1.21 al get allegro font version . . . . . . . . . . .ttt 290
32.1.22  al get font ranges . . . . . . ...l e e e e e e e 290
32.1.23 al set fallback font . .. ... .. .. . ... 291
32.1.24 al get fallback font . . . ... ... .. 291
32.2  Perglyphtexthandling . . . . .. ... . . . . . ... . e 291
32.2.1 al draw _glyph . . . . . . e 291
32.2.2 al get glyph width. . . . . . ... .. 292
32.2.3 al get glyph dimensions . . . . .. . . .. .. ... 292
32.2.4 al get glyph advance . . ... . . . . . .. ... 293
32.3  Multiline text drawing . . . . . . . . . e e e e e 294
32.3.1 al draw multiline text. . . . . . . . . . ... 294
32.3.2 al draw multiline ustr. . . . . . .. .. L. 294
32.3.3 al draw multiline textf . . . .. ... .. ... 295
32.3.4 al do multiline text . . . . . . . . ... 295
32.3.5 al do multiline ustr . . . . . . ... .. e 296
324 Bitmapfonts. . . . . . . . e e e e e e e e 296



Contents

32.4.1 al grab font from bitmap. . ... ... ... ... ... . . 296
3242 al load bitmap font . . . ... ... L 297
32.4.3 al load bitmap font flags . . . . . . . . . .. .. . 297
32.4.4 al create builtin font . . ... ... ... e 297
325  TTEFfONIS . . o o vttt e e e e e e e e e e e e e e e e 298
32.5.1 al init ttf addon . . . . . ... e 298
32.5.2 al shutdown ttf addon . . ... ... ... ... ... .. 298
32.5.3 al load ttf font. . . . . . . . . e 298
3254 alload ttf font f. . . . ... L 299
32,55 al load ttf font stretch . . . . ... ... ... ... L 299
32.5.6 al load ttf font stretch f . . . . ... . . .. ... ... . 299
32.5.7 al get allegro ttf version . . . . . . . . ... ... e 300
32.5.8 al get glyph . . . . . e e 300
33 Image I/0 addon 301
33.1 al init image addon . . . . . . . ... e 301
33.2 al shutdown image addon . ... ... ... ... ... ... ... 301
33.3  al get allegro image version . . .. . . ... . ...t 301
34 Main addon 303
35 Memfile interface 305
351 al open memfile . . ... ... 305
35.2 al get allegro memfile version . . . ... ... ... L. L o 305
36 Native dialogs support 307
36.1  ALLEGRO FILECHOOSER . . . . . . . ittt ittt et e e 307
36.2  ALLEGRO TEXTLOG . . . ¢ v vt ittt e et e e e e e e e e e e e e e e e e e 307
36.3  al init native dialog addon . . . . . ... ... L 307
36.4  al shutdown native dialog addon . .. ... ... .. ... . ... . ... . ... . 308
36.5 al create native file dialog . . . ... ... ... ... L. o oL 308
36.6  al show native file dialog . . . . . . . ... ... ... 309
36.7  al get native file dialog count . . ... ... ... ... ... L oL 309
36.8 al get native file dialog path . . . . . . . . . . ... . . ... 309
36.9  al destroy native file dialog . ... ... ... .. ... . . 309
36.10 al show native message box . .. ... ... ... ... ... 309
36.11 al open native text log . . . . . . . . ... e e e 310
36.12 al close native text log . . . . . . . . ... e e e 311
36.13 al append native text log . . . . . . . ... e 311
36.14 al get native text log event SOUICE . . . . . . . . ¢ v v v v v v v v v v v 311
36.15 al get allegro native dialog version . . . ... ... ... .. ... ... ... ..., 311
36.16 MENUS . . . . v v ittt e e e e 312
36.16.1 ALLEGRO MENU . . . . . . . e e e e e e e 312
36.16.2 ALLEGRO MENU INFO . . . . .o vvt ot 313
36.16.3 al create MeNU . . . . . . v v v vt i e e e e e e e e e e e e e e e e e 313
36.16.4 al create POPUP MENU . . .« v v v v v vttt et e e e e e e e e e 314
36.16.5 al build menu . . ... ... 314
36.16.6 al append menu item . . . . . . ... e e e e e e 314
36.16.7 al insert menu item . . . . . . . . . .o e e e e e e e 314
36.16.8 al remove menu item . . . . . . ... i e e e e e e e e e e e 315
36.16.9 al clone menu . . . .. ... ... e e e 315
36.16.10 al clone menu for popup . . . . . . . . ... e 315
36.16.11 al destroy Menu . . . . .« v v v v ittt e e e e e e e e e e e e e e e e e 316
36.16.12 al get menu_item caption . . . . . . ... . ... e 316
36.16.13 al set menu item caption. . . . . . . . . .. .ttt 316
36.16.14 al get menu item flags . . . . . . . . . ... 316
36.16.15 al set menu item flags . . ... ... ... ... ... .. . 316
36.16.16 al toggle menu item flags . . ... ... ... . ... ... 317

xxi



CONTENTS

36.16.17 al get menu item iCON . . . . . . . . . .. e e 317
36.16.18 al set menu_item icon . . . . ... .. ... 317
36.16.19 al find menu . . . . ... 317
36.16.20 al find menu item . . . . . . ... e e e 318
36.16.21 al get default menu event SOUTCE . . . . . . v v v v v v v v vttt et 318
36.16.22 al enable menu _event SOUICE . . . . . . . v v v v v v v v it ettt e 318
36.16.23 al disable menu_event SOUICE . . . . . . . v v v v v v v v vttt et 318
36.16.24 al get display menu . . . . . ... ..o e e 319
36.16.25 al set display menu . . . . . . . ... e e e 319
36.16.26 al pOPUP MENU. . . . v v v v v e e et e e e e e e e e e e e e e e e e e 319
36.16.27 al remove display menu . . . . . . ... e e e e e e 320
37 PhysicsFS integration 321
37.1  al set physfs file interface. . . . . . ... ... . L oo 321
37.2  al get allegro physfs version . ... ... ... ... .. ... ... ... 321
38 Primitives addon 323
381 General ... e 323
38.1.1 al get allegro primitives version . . . . . . . . .. ... ... oo 323
38.1.2 al init primitives addon . . . . . . .. ... o o o 323
38.1.3 al shutdown_primitives addon . . . . .. ... ... .. ... L L. 323
38.2  Highlevel drawing routines . . . . . . . . . . . .. . e 323
38.2.1 Pixel-precise output . . . . . . . . . e e e e 324
38.2.2 al draw line . . . . . . .. 325
38.2.3 al draw triangle . . . . . . . .. e 326
38.2.4 al draw filled triangle . . . . . . . . . ... 326
38.2.5 al draw rectangle . . . . . . . . e 326
38.2.6 al draw filled rectangle . . . . . . . . . . ... 327
38.2.7 al draw_rounded rectangle . . . . . . . .. ... L e 327
38.2.8 al draw filled rounded rectangle . ... ... ... ... .. . ... .. .. ..., 327
38.2.9 al calculate arc. . . . . . ... e e 328
38.2.10 al draw pieslice . . . . . . . .. 329
38.2.11 al draw filled pieslice . . . . . . . . . ... L 329
38.2.12 al draw ellipse . . . . . . . e e e e e e 329
38.2.13 al draw filled ellipse . . . . . . . . . . . e 330
38.2.14 al draw circle . . . . . .. . 330
38.2.15 al draw filled circle . . . . . . . . . . e 330
38.2.16  al draw arc. . . . . ... e e e e e e e e e e e e 331
38.2.17 al draw elliptical arc . . ... . .. . . . e 331
38.2.18 al calculate spline . . . . ... . . . ... 331
38.2.19 al draw spline . . . . . . . . .. e e e e e 332
38.2.20 al calculate ribbon . . . . ... L 332
38.2.21 al draw ribbon . . . . . ... 332
38.3 Lowleveldrawing routines. . . . . . . . . . . ... 333
38.3.1 al draw prim . . . . . . .. e e e 333
38.3.2 al draw indexed prim . . . . . .. ... 334
38.3.3 al draw vertex buffer . . . . ... ... L. 334
38.3.4 al draw indexed buffer . . . . ... ... .. L 335
38.3.5 al draw_soft triangle . . . . . . . . . . ... 335
38.3.6 al draw soft line. . . . . . . . . . . e 336
38.4  Custom vertex declarationroutines . . . . ... .. ... ... .. . 336
38.4.1 al create vertex decl . . . ... ... 336
38.4.2 al destroy vertex decl . . . . . . .. .. e 337
38.5 Vertexbufferroutines . . . . . . . . ... e 337
38.5.1 al create vertex buffer . . ... ... .. .. L L L 337
38.5.2 al destroy vertex buffer . . . . ... .. .. L L 337
38.5.3 al lock vertex buffer . .. ... .. ... ... . e 338
38.5.4 al unlock vertex buffer . . . ... ... . ... L 338

xxii



Contents

38.5.5 al get vertex buffer size . .. ... ... ... ... L 338
38.6 Indexbufferroutines . . . . . . .. . . ... 338
38.6.1 al create_index buffer . . . . . . ... L L 338
38.6.2 al destroy index buffer . . . .. ... .. ... L 339
38.6.3 al lock index buffer . . . . . . . . ... e 339
38.6.4 al unlock index buffer . ... ... ... ... . .. 339
38.6.5 al get index buffer size . . . . . . ... e 340
38.7  Polygon routin€s . . . . . . . v v i it e e e e e e e e e e e e e e e e 340
38.7.1 al draw polyline . . . . . . . . . e 340
38.7.2 al draw polygon . . . . . . . e e e 341
38.7.3 al draw filled polygon . . . . . ... .. ... ... 341
38.7.4  al draw filled polygon with holes . . . .. . ... ... ... ... . ... .... 341
38.7.5 al triangulate polygon . . . . . . . . . ... e 342
38.8  Structures and tyPes . . . . . . ..t e e e e e e e e e e e e e 343
38.8.1  ALLEGRO VERTEX . . . . . . . . et e e e e e e e e e e e e 343
38.8.2 ALLEGRO VERTEX DECL . . . . . . . . . ittt et e e e 343
38.8.3 ALLEGRO _VERTEX ELEMENT . . .. .. ... . . i 343
38.8.4  ALLEGRO PRIM TYPE . . . . . . o ottt et e e e e e e e e e e e e 344
38.8.5 ALLEGRO PRIM ATTR . . . . . ¢ v vt ittt et e e e e e e e e e e e e 344
38.8.6  ALLEGRO PRIM STORAGE . . . . . . . . . ittt e i e 345
38.8.7 ALLEGRO VERTEX CACHE SIZE . . . . . . . . .. it et 346
38.8.8 ALLEGRO_PRIM QUALITY . . . . . . et e e e e e e 346
38.8.9  ALLEGRO LINE JOIN . . . ..t vt vt ittt e 346
38.8.10 ALLEGRO LINE CAP . . . . o\t it ittt e e e 347
38.8.11 ALLEGRO VERTEX BUFFER . . . . .\ vt i it e 347
38.8.12 ALLEGRO INDEX BUFFER . . . . . s ot v ot e et e 348
38.8.13 ALLEGRO PRIM BUFFER FLAGS . . . . .« ot v ot e e e 348
39 Shader routines 349
39.1 ALLEGRO SHADER . . . . . . . ittt ettt e e e e e e e e e 349
39.2 ALLEGRO _SHADER TYPE . . . . . . . .. it 349
39.3 ALLEGRO_SHADER PLATFORM . . . . . . . . o ittt e et e e e 350
39.4 al create shader . . ... ... ... 350
39.5 al attach shader source . . ... ... ... ... ... ... 350
39.6  al attach_shader source file . . . . . ... ... . ... ... L L L. 352
39.7 al build shader . . . . .. ... 352
390.8 al get shader log . . . . . .. . . . . e 352
39.9 al get shader platform . . . . . . . . ... e 352
39.10 al use shader . . . . . . . . . . . e e e e e 353
39.11 al destroy shader . . . . . . . . . . . e 353
39.12 al set shader sampler . . . .. .. . .. ... e e 353
39.13 al set shader matrix . . . . . . . ... 354
39.14 al set shader int . . . . . . . . . . . e e e e e 354
39.15 al set shader float . . .. .. ... ... ... 354
39.16 al set shader bool . ... .. ... ... ... 354
39.17 al set shader int vector . . . . . . . . . . ... ... 355
39.18 al set shader float vector . . . . . . . . . . .. e 355
39.19 al get default shader source . ... ... ... ... .. ... ... .. 355
40 Video streaming addon 357
40.1 ALLEGRO VIDEO EVENT TYPE . . . . . . . . . . . o it e e 357
40.1.1 ALLEGRO_EVENT VIDEO FRAME SHOW . . . . . .. ... ... .. ... .. ... 357
40.1.2 ALLEGRO_EVENT VIDEO FINISHED . . . . . . .. ... .. ... 357
40.2 ALLEGRO VIDEO POSITION TYPE . . . . . . . . . i ittt e e e 358
40.3 al init video addon . . . . . .. ... e e 358
40.4  al shutdown video addon . . . . . . . . . . ... e 358
40.5 al get allegro video version. . . . . . . . . . ... 358
40.6  al open video . . . . .. L e e e 358



CONTENTS

40.7

40.8

40.9

40.10
40.11
40.12
40.13
40.14
40.15
40.16
40.17
40.18
40.19

XXiv

al close video . . . . . . . e 359
al start video . . . . .. L e e e e e e 359
al start video with voice . . . . . ... ... . ... e 359
al get video event SOUTCE . . . . . . v v v v v ittt e e e e e e e e e e 359
al set video playing . . . . . . . . . . . . e e 359
al is video playing . . . . . . . . . e e 359
al get video audio rate . . . . .. .. ... 360
al get video fps . . . . .. e 360
al get video scaled width . . . . . ... ... . .. 360
al get video scaled height . ... ... ... ... . ... ... ... ... 360
al get video frame . . . . . . ... 360
al get video poSItion . . . . . . . . ... e e e e 361
al seek video . . . . ... e 361



Getting started guide

1.1 Introduction

Welcome to Allegro 5!

This short guide should point you at the parts of the API that you’ll want to know about first. It’s not a
tutorial, as there isn’t much discussion, only links into the manual. The rest you’ll have to discover for
yourself. Read the examples, and ask questions at Allegro.cc.

There is an unofficial tutorial at the wiki. Be aware that, being on the wiki, it may be a little out of
date, but the changes should be minor. Hopefully more will sprout when things stabilise, as they did
for earlier versions of Allegro.

1.2 Structure of the library and its addons

Allegro 5.0 is divided into a core library and multiple addons. The addons are bundled together and
built at the same time as the core, but they are distinct and kept in separate libraries. The core doesn’t
depend on anything in the addons, but addons may depend on the core and other addons and
additional third party libraries.

Here are the addons and their dependencies:

allegro_main -> allegro

allegro_image -> allegro
allegro_primitives -> allegro
allegro_color -> allegro

allegro_font -> allegro
allegro_ttf -> allegro_font -> allegro

allegro_audio -> allegro
allegro_acodec -> allegro_audio -> allegro
allegro_video -> allegro_audio -> allegro

allegro_memfile -> allegro
allegro_physfs -> allegro

allegro_native_dialog -> allegro

The header file for the core library is allegro5/allegro.h. The header files for the addons are named
allegro5/allegro_image.h, allegro5/allegro_font.h, etc. The allegro main addon does not have a
header file.


http://www.allegro.cc/forums/
http://wiki.allegro.cc/

1. GETTING STARTED GUIDE

1.3 The main function

For the purposes of cross-platform compatibility Allegro puts some requirements on your main
function. First, you must include the core header (allegro5/allegro.h) in the same file as your main
function. Second, if your main function is inside a C+ + file, then it must have this signature: int
main(int argc, char xxargv). Third, if you’re using C/C++ then you need to link with the
allegro_main addon when building your program.

1.4 Initialisation

Before using Allegro you must call al_init. Some addons have their own initialisation, e.g.
al init image addon, al init font addon, al init ttf addon.

To receive input, you need to initialise some subsystems like al install keyboard, al install mouse,
al install joystick.

1.5 Opening a window

al create_display will open a window and return an ALLEGRO_ DISPLAY.

To clear the display, call al clear to color. Use al map rgba or al map rgba f to obtain an
ALLEGRO_COLOR parameter.

Drawing operations are performed on a backbuffer. To make the operations visible, call al flip_display.

1.6 Display an image

To load an image from disk, you need to have initialised the image /O addon with
al init image addon. Then use al load_bitmap, which returns an ALLEGRO_BITMAP.

Use al draw bitmap, al draw_scaled bitmap or al draw scaled rotated bitmap to draw the image to
the backbuffer. Remember to call al flip_display.

1.7 Changing the drawing target

Notice that al clear to_color and al draw_bitmap didn’t take destination parameters: the destination
is implicit. Allegro remembers the current “target bitmap” for the current thread. To change the target
bitmap, call al set target bitmap.

The backbuffer of the display is also a bitmap. You can get it with al get backbuffer and then restore it
as the target bitmap.

Other bitmaps can be created with al create bitmap, with options which can be adjusted with
al set new bitmap flags and al set new_bitmap format.

1.8 Event queues and input

Input comes from multiple sources: keyboard, mouse, joystick, timers, etc. Event queues aggregate
events from all these sources, then you can query the queue for events.

Create an event queue with al_create_event queue, then tell input sources to place new events into
that queue using al register event source. The usual input event sources can be retrieved with
al get keyboard event source, al get mouse_event source and al _get joystick event source.

Events can be retrieved with al wait for event or al get next event. Check the event type and other
fields of ALLEGRO_EVENT to react to the input.

Displays are also event sources, which emit events when they are resized. You’ll need to set the
ALLEGRO_RESIZABLE flag with al set new_display flags before creating the display, then register the
display with an event queue. When you get a resize event, call al_acknowledge resize.



1.9. Displaying some text

Timers are event sources which “tick” periodically, causing an event to be inserted into the queues that
the timer is registered with. Create some with al create_timer.

al get time and al rest are more direct ways to deal with time.

1.9 Displaying some text

To display some text, initialise the image and font addons with al_init image addon and
al init font addon, then load a bitmap font with al load font. Use al draw_text or al draw_textf.

For TrueType fonts, you'll need to initialise the TTF font addon with al_init ttf addon and load a TTF
font with al load_ttf font.

1.10 Drawing primitives

The primitives addon provides some handy routines to draw lines (al draw_line), rectangles
(al draw_rectangle), circles (al draw circle), etc.

1.11 Blending

To draw translucent or tinted images or primitives, change the blender state with al set blender.

As with al_set_target bitmap, this changes Allegro’s internal state (for the current thread). Often you’ll
want to save some part of the state and restore it later. The functions al_store_state and
al restore state provide a convenient way to do that.

1.12 Sound

Use al_install audio to initialize sound. To load any sample formats, you will need to initialise the
acodec addon with al_init acodec_addon.

After that, you can simply use al_reserve _samples and pass the number of sound effects typically
playing at the same time. Then load your sound effects with al load sample and play them with

al play sample. To stream large pieces of music from disk, you can use al load audio stream so the
whole piece will not have to be pre-loaded into memory.

If the above sounds too simple and you can’t help but think about clipping and latency issues, don’t
worry. Allegro gives you full control over how much or little you want its sound system to do. The
al_reserve samples function mentioned above only sets up a default mixer and a number of sample
instances but you don’t need to use it.

Instead, to get a “direct connection” to the sound system you would use an ALLEGRO_VOICE (but
depending on the platform only one such voice is guaranteed to be available and it might require a
specific format of audio data). Therefore all sound can be first routed through an ALLEGRO_MIXER
which is connected to such a voice (or another mixer) and will mix together all sample data fed to it.

You can then directly stream real-time sample data to a mixer or a voice using an
ALLEGRO_AUDIO STREAM or play complete sounds using an ALLEGRO_SAMPLE_INSTANCE. The
latter simply points to an ALLEGRO_SAMPLE and will stream it for you.

1.13 Unstable API

Some of Allegro’s API is marked as unstable, which means that in future versions of Allegro it may
change or even be removed entirely! If you want to experiment with the unstable API, define
ALLEGRO_UNSTABLE macro before including Allegro’s headers.

Note that when you define that macro, the version check performed by al install system and al init
becomes more scrict. See documentation of those functions for details.



1. GETTING STARTED GUIDE

1.14 Not the end

There’s a heap of stuff we haven’t even mentioned yet.

Enjoy!



Configuration files

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

Allegro supports reading and writing of configuration files with a simple, INI file-like format.

A configuration file consists of key-value pairs separated by newlines. Keys are separated from values
by an equals sign (=). All whitespace before the key, after the value and immediately adjacent to the
equals sign is ignored. Keys and values may have whitespace characters within them. Keys do not need
to be unique, but all but the last one are ignored.

The hash (#) character is used a comment when it is the first non-whitespace character on the line. All
characters following that character are ignored to the end of the line. The hash character anywhere
else on the line has no special significance.

Key-value pairs can be optionally grouped into sections, which are declared by surrounding a section
name with square brackets ([ and ]) on a single line. Whitespace before the opening bracket is
ignored. All characters after the trailing bracket are also ignored.

All key-value pairs that follow a section declaration belong to the last declared section. Key-value pairs
that don’t follow any section declarations belong to the global section. Sections do not nest.

Here is an example configuration file:

## Monster description
monster name = Allegro Developer

[weapon 0]
damage = 443

[weapon 1]
damage = 503

It can then be accessed like this (make sure to check for errors in an actual program):

ALLEGRO_CONFIG* cfg = al_load_config_file("test.cfg");

printf("%s\n", al_get_config_value(cfg, "", "monster name")); /* Prints: Allegro Developer */
printf("%s\n", al_get_config_value(cfg, "weapon 0", "damage")); /* Prints: 443 =%/
printf("%s\n", al_get_config_value(cfg, "weapon 1", "damage")); /* Prints: 503 =%/
al_destroy_config(cfg);



2. CONFIGURATION FILES

2.1 ALLEGRO_CONFIG

typedef struct ALLEGRO_CONFIG ALLEGRO_CONFIG;

Source Code

An abstract configuration structure.

2.2 ALLEGRO_CONFIG_SECTION

typedef struct ALLEGRO_CONFIG_SECTION ALLEGRO_CONFIG_SECTION;

Source Code
An opaque structure used for iterating across sections in a configuration structure.

See also: al_get first config section, al get next config section

2.3 ALLEGRO_CONFIG_ENTRY

typedef struct ALLEGRO_CONFIG_ENTRY ALLEGRO_CONFIG_ENTRY;

Source Code
An opaque structure used for iterating across entries in a configuration section.

See also: al_get first config entry, al get next config entry

2.4 al_create_config

ALLEGRO_CONFIG *al_create_config(void)

Source Code
Create an empty configuration structure.

See also: al load config file, al destroy config

2.5 al destroy config

void al_destroy_config(ALLEGRO_CONFIG *config)

Source Code
Free the resources used by a configuration structure. Does nothing if passed NULL.

See also: al create config, al load config file

2.6 al load config file

ALLEGRO_CONFIG *al_load_config_file(const char xfilename)

Source Code

Read a configuration file from disk. Returns NULL on error. The configuration structure should be
destroyed with al destroy config.

See also: al load config file f, al save config file

6


https://github.com/liballeg/allegro5/blob/master/include/allegro5/config.h#L12
https://github.com/liballeg/allegro5/blob/master/include/allegro5/config.h#L16
https://github.com/liballeg/allegro5/blob/master/include/allegro5/config.h#L20
https://github.com/liballeg/allegro5/blob/master/src/config.c#L37
https://github.com/liballeg/allegro5/blob/master/src/config.c#L559
https://github.com/liballeg/allegro5/blob/master/src/config.c#L311

2.7. al load_config file f

2.7 al_load_config_file f

ALLEGRO_CONFIG *al_load_config_file_f(ALLEGRO_FILE *file)

Source Code
Read a configuration file from an already open file.

Returns NULL on error. The configuration structure should be destroyed with al destroy config. The
file remains open afterwards.

See also: al load_config_file

2.8 al _save config file

bool al_save_config_file(const char *filename, const ALLEGRO_CONFIG *config)

Source Code
Write out a configuration file to disk. Returns true on success, false on error.

See also: al _save config file f, al load config file

2.9 al save config file f

bool al_save_config_file_f(ALLEGRO_FILE *file, const ALLEGRO_CONFIG *config)

Source Code
Write out a configuration file to an already open file.
Returns true on success, false on error. The file remains open afterwards.

See also: al_save config file

2.10 al_add_config_section

void al_add_config_section(ALLEGRO_CONFIG *config, const char *name)

Source Code

Add a section to a configuration structure with the given name. If the section already exists then
nothing happens.

2.11 al_remove_config_section

bool al_remove_config_section(ALLEGRO_CONFIG *config, char const xsection)

Source Code
Remove a section of a configuration.
Returns true if the section was removed, or false if the section did not exist.

Since: 5.1.5


https://github.com/liballeg/allegro5/blob/master/src/config.c#L328
https://github.com/liballeg/allegro5/blob/master/src/config.c#L432
https://github.com/liballeg/allegro5/blob/master/src/config.c#L449
https://github.com/liballeg/allegro5/blob/master/src/config.c#L110
https://github.com/liballeg/allegro5/blob/master/src/config.c#L658

2. CONFIGURATION FILES

2.12 al _add_config_comment

void al_add_config_comment (ALLEGRO_CONFIG *config,
const char *section, const char *comment)

Source Code

Add a comment in a section of a configuration. If the section doesn’t yet exist, it will be created. The
section can be NULL or “” for the global section.

The comment may or may not begin with a hash character. Any newlines in the comment string will be
replaced by space characters.

See also: al_add_config section

2.13 al_get config value

const char *al_get_config_value(const ALLEGRO_CONFIG xconfig,
const char xsection, const char *key)

Source Code

Gets a pointer to an internal character buffer that will only remain valid as long as the
ALLEGRO_CONFIG structure is not destroyed. Copy the value if you need a copy. The section can be
NULL or “” for the global section. Returns NULL if the section or key do not exist.

See also: al_set config value

2.14 al_set_config_value

void al_set_config_value(ALLEGRO_CONFIG *config,
const char *section, const char *key, const char *value)

Source Code

Set a value in a section of a configuration. If the section doesn’t yet exist, it will be created. If a value
already existed for the given key, it will be overwritten. The section can be NULL or “” for the global
section.

For consistency with the on-disk format of config files, any leading and trailing whitespace will be
stripped from the value. If you have significant whitespace you wish to preserve, you should add your
own quote characters and remove them when reading the values back in.

See also: al _get config value

2.15 al_remove_config key

bool al_remove_config_key(ALLEGRO_CONFIG *config, char const *section,
char const xkey)

Source Code
Remove a key and its associated value in a section of a configuration.
Returns true if the entry was removed, or false if the entry did not exist.

Since: 5.1.5


https://github.com/liballeg/allegro5/blob/master/src/config.c#L225
https://github.com/liballeg/allegro5/blob/master/src/config.c#L268
https://github.com/liballeg/allegro5/blob/master/src/config.c#L164
https://github.com/liballeg/allegro5/blob/master/src/config.c#L700

2.16. al get first config section

2.16 al_get first_config_section

char const *al_get_first_config_section(ALLEGRO_CONFIG const *config,
ALLEGRO_CONFIG_SECTION xxiterator)

Source Code

Returns the name of the first section in the given config file. Usually this will return an empty string for
the global section, even it contains no values. The iterator parameter will receive an opaque iterator
which is used by al get next config section to iterate over the remaining sections.

The returned string and the iterator are only valid as long as no change is made to the passed
ALLEGRO_CONFIG.

See also: al_get next config section

2.17 al_get next_config_section

char const *al_get_next_config_section(ALLEGRO_CONFIG_SECTION xxiterator)

Source Code

Returns the name of the next section in the given config file or NULL if there are no more sections. The
iterator must have been obtained with al get first config section first.

See also: al_get first config section

2.18 al_get first_config_entry

char const *al_get_first_config_entry(ALLEGRO_CONFIG const *config,
char const xsection, ALLEGRO_CONFIG_ENTRY =**iterator)

Source Code

Returns the name of the first key in the given section in the given config or NULL if the section is
empty. The iterator works like the one for al get first config section.

The returned string and the iterator are only valid as long as no change is made to the passed
ALLEGRO_CONFIG.

See also: al_get next config entry

2.19 al_get next_config_entry

char const *al_get_next_config_entry(ALLEGRO_CONFIG_ENTRY *xiterator)

Source Code

Returns the next key for the iterator obtained by al get first config entry. The iterator works like the
one for al_get next config section.

2.20 al_merge_config

ALLEGRO_CONFIG *al_merge_config(const ALLEGRO_CONFIG *cfgl,
const ALLEGRO_CONFIG *cfg2)

Source Code

Merge two configuration structures, and return the result as a new configuration. Values in
configuration ‘cfg2’ override those in ‘cfgl’. Neither of the input configuration structures are modified.
Comments from ‘cfg2’ are not retained.

See also: al_merge config into


https://github.com/liballeg/allegro5/blob/master/src/config.c#L581
https://github.com/liballeg/allegro5/blob/master/src/config.c#L596
https://github.com/liballeg/allegro5/blob/master/src/config.c#L612
https://github.com/liballeg/allegro5/blob/master/src/config.c#L640
https://github.com/liballeg/allegro5/blob/master/src/config.c#L523

2. CONFIGURATION FILES

2.21 al merge_config_into
void al_merge_config_into(ALLEGRO_CONFIG *master, const ALLEGRO_CONFIG =*add)

Source Code

Merge one configuration structure into another. Values in configuration ‘add’ override those in ‘master’.
‘master’ is modified. Comments from ‘add’ are not retained.

See also: al_merge config

10


https://github.com/liballeg/allegro5/blob/master/src/config.c#L515

Displays

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

All drawing operations end up being visible on a display which is the same as a window in windowed
environments. Thus, before anything is displayed, a display needs to be created.

Before creating a display with al_create_display, flags and options can be set with

al set new display flags and al set new display option. For example, you can enable the use of
shaders or choose between the OpenGL and Direct3D backends (on platforms that support both) with
al set new display flags. Display options are rather optional settings that do not affect Allegro itself,
e.g. they allow you to specify whether you want a depth buffer or enable multisampling.

The actual properties of a display that has been successfully created can be queried via

al get display option, al_get display flags, al get display width etc. Note that you can query some
additional read-only properties such as the maximum allowed bitmap (i.e. texture) size via

al get display option.

Each display has a backbuffer associated to it which is the default target for any drawing operations. In
order to make visible what has been drawn previously, you have to to call al flip display. Note that it
is generally advisable to redraw the whole screen (or clear it in advance) to avoid artefacts of
uninitialised memory becoming visible with some drivers.

You don’t have to use Allegro’s drawing routines, however: since creating a display implies the creation
of an OpenGL context or Direct3D device respectively, you can use these APIs directly if you prefer to
do so. Allegro provides integration for both (see the OpenGL / Direct3D sections), so you can retrieve
the underlying textures of ALLEGRO BITMAPs, for example.

In order to write a well-behaved application, it is necessary to remember that displays will also inform
you about important events via their event sources.

3.1 Display creation

3.1.1 ALLEGRO_DISPLAY

typedef struct ALLEGRO_DISPLAY ALLEGRO_DISPLAY;

Source Code

An opaque type representing an open display or window.

11


https://github.com/liballeg/allegro5/blob/master/include/allegro5/display.h#L108

3. DISPLAYS

3.1.2 al_create_display

ALLEGRO_DISPLAY *al_create_display(int w, int h)

Source Code

Create a display, or window, with the specified dimensions. The parameters of the display are
determined by the last calls to al_set new_display *. Default parameters are used if none are set
explicitly. Creating a new display will automatically make it the active one, with the backbuffer
selected for drawing.

Returns NULL on error.

Each display that uses OpenGL as a backend has a distinct OpenGL rendering context associated with
it. See al_set_target bitmap for the discussion about rendering contexts.

See also: al_set new display flags, al set new_display option, al_set new_display refresh rate,
al set new display adapter, al set new window _title

3.1.3 al_destroy_display

void al_destroy_display(ALLEGRO_DISPLAY xdisplay)

Source Code
Destroy a display.

If the target bitmap of the calling thread is tied to the display, then it implies a call to
“al set target bitmap(NULL);” before the display is destroyed.

That special case notwithstanding, you should make sure no threads are currently targeting a bitmap
which is tied to the display before you destroy it.

See also: al set target bitmap

3.1.4 al_get new_display_flags

int al_get_new_display_flags(void)

Source Code
Get the display flags to be used when creating new displays on the calling thread.

See also: al_set new_display flags, al set display flag

3.1.5 al_set new_display_flags

void al_set_new_display_flags(int flags)

Source Code

Sets various flags to be used when creating new displays on the calling thread. flags is a bitfield
containing any reasonable combination of the following:

ALLEGRO_WINDOWED
Prefer a windowed mode.

Under multi-head X (not XRandR/TwinView), the use of more than one adapter is impossible due
to bugs in X and GLX. al_create_display will fail if more than one adapter is attempted to be used.

12


https://github.com/liballeg/allegro5/blob/master/src/display.c#L38
https://github.com/liballeg/allegro5/blob/master/src/display.c#L141
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L257
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L244

3.1. Display creation

ALLEGRO_FULLSCREEN_WINDOW
Make the window span the entire screen. Unlike ALLEGRO_FULLSCREEN this will never attempt
to modify the screen resolution. Instead the pixel dimensions of the created display will be the
same as the desktop.

The passed width and height are only used if the window is switched out of fullscreen mode later
but will be ignored initially.

Under Windows and X11 a fullscreen display created with this flag will behave differently from
one created with the ALLEGRO_FULLSCREEN flag - even if the ALLEGRO_FULLSCREEN display
is passed the desktop dimensions. The exact difference is platform dependent, but some things
which may be different is how alt-tab works, how fast you can toggle between
fullscreen/windowed mode or how additional monitors behave while your display is in fullscreen
mode.

Additionally under X, the use of more than one adapter in multi-head mode or with true
Xinerama enabled is impossible due to bugs in X/GLX, creation will fail if more than one adapter
is attempted to be used.

ALLEGRO_FULLSCREEN
Prefer a fullscreen mode.

Under X the use of more than one FULLSCREEN display when using multi-head X, or true
Xinerama is not possible due to bugs in X and GLX, display creation will fail if more than one
adapter is attempted to be used.

Note: Prefer using ALLEGRO FULLSCREEN WINDOW as it typically provides a better
user experience as the monitor doesn’t change resolution and switching away from
your game via Alt-Tab works smoothly. ALLEGRO FULLSCREEN is typically less well
supported compared to ALLEGRO_FULLSCREEN WINDOW.

ALLEGRO_RESIZABLE
The display is resizable (only applicable if combined with ALLEGRO WINDOWED).

ALLEGRO_MAXIMIZED
The display window will be maximized (only applicable if combined with
ALLEGRO_RESIZABLE). Since: 5.1.12

ALLEGRO_OPENGL
Require the driver to provide an initialized OpenGL context after returning successfully.

ALLEGRO_OPENGL_3_0
Require the driver to provide an initialized OpenGL context compatible with OpenGL version 3.0.

ALLEGRO_OPENGL_FORWARD_COMPATIBLE
If this flag is set, the OpenGL context created with ALLEGRO_OPENGL_3_0 will be forward
compatible only, meaning that all of the OpenGL API declared deprecated in OpenGL 3.0 will not
be supported. Currently, a display created with this flag will not be compatible with Allegro
drawing routines; the display option ALLEGRO COMPATIBLE_DISPLAY will be set to false.

ALLEGRO_OPENGL_ES_PROFILE
Used together with ALLEGRO_OPENGL, requests that the OpenGL context uses the OpenGL ES
profile. A specific version can be requested with al set new_display option. Note: Currently this
is only supported by the X11/GLX driver. Since: 5.1.13

ALLEGRO_DIRECT3D
Require the driver to do rendering with Direct3D and provide a Direct3D device.

ALLEGRO_PROGRAMMABLE_PIPELINE
Require a programmable graphics pipeline. This flag is required to use ALLEGRO SHADER
objects. Since: 5.1.6

13



3. DISPLAYS

ALLEGRO_FRAMELESS
Try to create a window without a frame (i.e. no border or titlebar). This usually does nothing for
fullscreen modes, and even in windowed modes it depends on the underlying platform whether it
is supported or not. Since: 5.0.7, 5.1.2

ALLEGRO_NOFRAME
Original name for ALLEGRO_FRAMELESS. This works with older versions of Allegro.

ALLEGRO_GENERATE_EXPOSE_EVENTS
Let the display generate expose events.

ALLEGRO_GTK_TOPLEVEL
Create a GTK toplevel window for the display, on X. This flag is conditionally defined by the
native dialog addon. You must call al init native dialog addon for it to succeed.
ALLEGRO_GTK TOPLEVEL is incompatible with ALLEGRO_FULLSCREEN. Since: 5.1.5

0 can be used for default values.

See also: al_set new_display option, al get display option, al set display option

3.1.6 al_get new_display_option

int al_get_new_display_option(int option, int ximportance)

Source Code

Retrieve an extra display setting which was previously set with al set new_display option.

3.1.7 al_set_new_display_option

void al_set_new_display_option(int option, int value, int importance)

Source Code

Set an extra display option, to be used when creating new displays on the calling thread. Display
options differ from display flags, and specify some details of the context to be created within the
window itself. These mainly have no effect on Allegro itself, but you may want to specify them, for
example if you want to use multisampling.

The ‘importance’ parameter can be either:

* ALLEGRO REQUIRE - The display will not be created if the setting can not be met.

* ALLEGRO SUGGEST - If the setting is not available, the display will be created anyway with a
setting as close as possible to the requested one. You can query the actual value used in that case
by calling al get display option after the display has been created.

* ALLEGRO DONTCARE - If you added a display option with one of the above two settings before,
it will be removed again. Else this does nothing.

The supported options are:

ALLEGRO_COLOR_SIZE
This can be used to ask for a specific bit depth. For example to force a 16-bit framebuffer set this
to 16.

ALLEGRO RED SIZE, ALLEGRO GREEN_SIZE, ALLEGRO BLUE_SIZE, ALLEGRO_ALPHA_SIZE
Individual color component size in bits.

ALLEGRO_RED_SHIFT, ALLEGRO_GREEN_SHIFT, ALLEGRO_BLUE_SHIFT,
ALLEGRO_ALPHA_SHIFT
Together with the previous settings these can be used to specify the exact pixel layout the display
should use. Normally there is no reason to use these.

14


https://github.com/liballeg/allegro5/blob/master/src/display_settings.c#L64
https://github.com/liballeg/allegro5/blob/master/src/display_settings.c#L29

3.1. Display creation

ALLEGRO_ACC_RED_SIZE, ALLEGRO_ACC_GREEN_SIZE, ALLEGRO_ACC_BLUE_SIZE,
ALLEGRO_ACC_ALPHA_SIZE
This can be used to define the required accumulation buffer size.

ALLEGRO_STEREO
Whether the display is a stereo display.

ALLEGRO_AUX BUFFERS
Number of auxiliary buffers the display should have.

ALLEGRO_DEPTH_SIZE
How many depth buffer (z-buffer) bits to use.

ALLEGRO_STENCIL_SIZE
How many bits to use for the stencil buffer.

ALLEGRO_SAMPLE_BUFFERS
Whether to use multisampling (1) or not (0).

ALLEGRO_SAMPLES
If the above is 1, the number of samples to use per pixel. Else 0.

ALLEGRO_RENDER_METHOD:
0 if hardware acceleration is not used with this display.

ALLEGRO_FLOAT COLOR
Whether to use floating point color components.

ALLEGRO_FLOAT DEPTH
Whether to use a floating point depth buffer.

ALLEGRO_SINGLE_BUFFER
Whether the display uses a single buffer (1) or another update method (0).

ALLEGRO_SWAP_METHOD
If the above is 0, this is set to 1 to indicate the display is using a copying method to make the
next buffer in the flip chain available, or to 2 to indicate a flipping or other method.

ALLEGRO_COMPATIBLE_DISPLAY
Indicates if Allegro’s graphics functions can use this display. If you request a display not useable
by Allegro, you can still use for example OpenGL to draw graphics.

ALLEGRO_UPDATE_DISPLAY REGION
Set to 1 if the display is capable of updating just a region, and O if calling
al update display region is equivalent to al flip_display.

ALLEGRO_VSYNC
Set to 1 to tell the driver to wait for vsync in al flip_display, or to 2 to force vsync off. The
default of 0 means that Allegro does not try to modify the vsync behavior so it may be on or off.
Note that even in the case of 1 or 2 it is possible to override the vsync behavior in the graphics
driver so you should not rely on it.

ALLEGRO_MAX_BITMAP_SIZE
When queried this returns the maximum size (width as well as height) a bitmap can have for this
display. Calls to al create bitmap or al load bitmap for bitmaps larger than this size will fail. It
does not apply to memory bitmaps which always can have arbitrary size (but are slow for
drawing).

ALLEGRO_SUPPORT_NPOT_BITMAP
Set to 1 if textures used for bitmaps on this display can have a size which is not a power of two.
This is mostly useful if you use Allegro to load textures as otherwise only power-of-two textures
will be used internally as bitmap storage.

15



3. DISPLAYS

ALLEGRO_CAN_DRAW_INTO_BITMAP
Set to 1 if you can use al set target bitmap on bitmaps of this display to draw into them. If this
is not the case software emulation will be used when drawing into display bitmaps (which can be
very slow).

ALLEGRO_SUPPORT_SEPARATE_ALPHA
This is set to 1 if the al set separate blender function is supported. Otherwise the alpha
parameters will be ignored.

ALLEGRO_AUTO_CONVERT_BITMAPS
This is on by default. It causes any existing memory bitmaps with the
ALLEGRO_CONVERT BITMAP flag to be converted to a display bitmap of the newly created
display with the option set.

Since: 5.1.0

ALLEGRO_SUPPORTED_ORIENTATIONS
This is a bit-combination of the orientations supported by the application. The orientations are
the same as for al_get display orientation with the additional possibilities:

« ALLEGRO DISPLAY ORIENTATION PORTRAIT
« ALLEGRO DISPLAY ORIENTATION LANDSCAPE
+ ALLEGRO DISPLAY ORIENTATION ALL

PORTRAIT means only the two portrait orientations are supported, LANDSCAPE means only the
two landscape orientations and ALL allows all four orientations. When the orientation changes
between a portrait and a landscape orientation the display needs to be resized. This is done by
sending an ALLEGRO _EVENT DISPLAY RESIZE message which should be handled by calling

al acknowledge resize.

Since: 5.1.0

ALLEGRO_OPENGL_MAJOR_VERSION
Request a specific OpenGL major version.

Since: 5.1.13

ALLEGRO_OPENGL_MINOR_VERSION
Request a specific OpenGL minor version.

Since: 5.1.13
See also: al_set new display flags, al get display option

3.1.8 al reset new_display options

void al_reset_new_display_options(void)

Source Code

This undoes any previous call to al set new display option on the calling thread.

3.1.9 al _get_ new_window_position

void al_get_new_window_position(int *x, int *y)

Source Code
Get the position where new non-fullscreen displays created by the calling thread will be placed.

See also: al_set new_window_position

16


https://github.com/liballeg/allegro5/blob/master/src/display_settings.c#L104
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L339

3.2. Display operations

3.1.10 al_set_new_window_position

void al_set_new_window_position(int x, int y)

Source Code

Sets where the top left pixel of the client area of newly created windows (non-fullscreen) will be on
screen, for displays created by the calling thread. Negative values are allowed on some multihead
systems.

To reset to the default behaviour, pass (INT_MAX, INT MAX).

See also: al get new window_position

3.1.11 al_get_new_display_refresh_rate

int al_get_new_display_refresh_rate(void)

Source Code
Get the requested refresh rate to be used when creating new displays on the calling thread.

See also: al_set new_display refresh rate

3.1.12 al_set_new_display_refresh_rate

void al_set_new_display_refresh_rate(int refresh_rate)

Source Code

Sets the refresh rate to use when creating new displays on the calling thread. If the refresh rate is not
available, al create display will fail. A list of modes with refresh rates can be found with
al get num display modes and al get display mode.

The default setting is zero (don’t care).

See also: al_get new display refresh rate

3.2 Display operations

3.2.1 al_get display_event_source

ALLEGRO_EVENT_SOURCE *al_get_display_event_source(ALLEGRO_DISPLAY xdisplay)

Source Code

Retrieve the associated event source. See the documentation on events for a list of the events displays
will generate.

3.2.2 al_get_backbuffer
ALLEGRO_BITMAP *al_get_backbuffer (ALLEGRO_DISPLAY =*display)

Source Code
Return a special bitmap representing the back-buffer of the display.

Care should be taken when using the backbuffer bitmap (and its sub-bitmaps) as the source bitmap
(e.g as the bitmap argument to al draw_bitmap). Only untransformed operations are hardware
accelerated. These consist of al draw_bitmap and al draw_bitmap region when the current
transformation is the identity. If the transformation is not the identity, or some other drawing
operation is used, the call will be routed through the memory bitmap routines, which are slow. If you
need those operations to be accelerated, then first copy a region of the backbuffer into a temporary
bitmap (via the al draw_bitmap and al draw_bitmap_region), and then use that temporary bitmap as
the source bitmap.

17


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L326
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L283
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L270
https://github.com/liballeg/allegro5/blob/master/src/display.c#L488
https://github.com/liballeg/allegro5/blob/master/src/display.c#L175

3. DISPLAYS

3.2.3 al flip_display
void al_flip_display(void)

Source Code

Copies or updates the front and back buffers so that what has been drawn previously on the currently
selected display becomes visible on screen. Pointers to the special back buffer bitmap remain valid and
retain their semantics as the back buffer, although the contents may have changed.

Several display options change how this function behaves:

* With ALLEGRO_SINGLE_BUFFER, no flipping is done. You still have to call this function to
display graphics, depending on how the used graphics system works.

* The ALLEGRO_SWAP_METHOD option may have additional information about what kind of
operation is used internally to flip the front and back buffers.

* If ALLEGRO_VSYNC is 1, this function will force waiting for vsync. If ALLEGRO_VSYNC is 2, this
function will not wait for vsync. With many drivers the vsync behavior is controlled by the user
and not the application, and ALLEGRO _VSYNC will not be set; in this case al_flip_display will
wait for vsync depending on the settings set in the system’s graphics preferences.

See also: al_set new display flags, al set new_display option

3.2.4 al_update_display_region

void al_update_display_region(int x, int y, int width, int height)

Source Code

Does the same as al_flip_display, but tries to update only the specified region. With many drivers this is
not possible, but for some it can improve performance. If this is not supported, this function falls back
to the behavior of al flip_display. You can query the support for this function using
al_get_display_option(display, ALLEGRO_UPDATE_DISPLAY_REGION).

See also: al _flip_display, al_get display_option

3.2.5 al _wait_for_vsync

bool al_wait_for_vsync(void)

Source Code

Wait for the beginning of a vertical retrace. Some driver/card/monitor combinations may not be
capable of this.

Note how al flip_display usually already waits for the vertical retrace, so unless you are doing
something special, there is no reason to call this function.

Returns false if not possible, true if successful.

See also: al flip display

3.3 Display size and position

3.3.1 al_get display width
int al_get_display_width(ALLEGRO_DISPLAY =*display)

Source Code
Gets the width of the display. This is like SCREEN W in Allegro 4.x.
See also: al_get display height

18


https://github.com/liballeg/allegro5/blob/master/src/display.c#L188
https://github.com/liballeg/allegro5/blob/master/src/display.c#L202
https://github.com/liballeg/allegro5/blob/master/src/display.c#L330
https://github.com/liballeg/allegro5/blob/master/src/display.c#L267

3.3. Display size and position

3.3.2 al_get display_height

int al_get_display_height (ALLEGRO_DISPLAY xdisplay)

Source Code
Gets the height of the display. This is like SCREEN H in Allegro 4.x.
See also: al_get display width

3.3.3 al_resize_display

bool al_resize_display(ALLEGRO_DISPLAY xdisplay, int width, int height)

Source Code

Resize the display. Returns true on success, or false on error. This works on both fullscreen and
windowed displays, regardless of the ALLEGRO RESIZABLE flag.

Adjusts the clipping rectangle to the full size of the backbuffer.

See also: al _acknowledge resize

3.3.4 al_acknowledge resize

bool al_acknowledge_resize(ALLEGRO_DISPLAY *display)

Source Code

When the user receives a resize event from a resizable display, if they wish the display to be resized
they must call this function to let the graphics driver know that it can now resize the display. Returns
true on success.

Adjusts the clipping rectangle to the full size of the backbuffer. This also resets the backbuffers
projection transform to default orthographic transform (see al_use_projection_transform).

Note that a resize event may be outdated by the time you acknowledge it; there could be further resize
events generated in the meantime.

See also: al _resize_display, ALLEGRO_EVENT

3.3.5 al_get window_position

void al_get_window_position(ALLEGRO_DISPLAY *display, int *x, int =*y)

Source Code
Gets the position of a non-fullscreen display.

See also: al_set window_position

3.3.6 al_set_window_position

void al_set_window_position(ALLEGRO_DISPLAY =*display, int x, int y)

Source Code
Sets the position on screen of a non-fullscreen display.

See also: al _get window_position

19


https://github.com/liballeg/allegro5/blob/master/src/display.c#L278
https://github.com/liballeg/allegro5/blob/master/src/display.c#L233
https://github.com/liballeg/allegro5/blob/master/src/display.c#L216
https://github.com/liballeg/allegro5/blob/master/src/display.c#L391
https://github.com/liballeg/allegro5/blob/master/src/display.c#L375

3. DISPLAYS

3.3.7 al_get_window_constraints

bool al_get_window_constraints(ALLEGRO_DISPLAY *display,
int *min_w, int *min_h, int *max_w, int *max_h)

Source Code
Gets the constraints for a non-fullscreen resizable display.
Since: 5.1.0

See also: al _set window constraints

3.3.8 al_set window_constraints

bool al_set_window_constraints(ALLEGRO_DISPLAY *display,
int min_w, int min_h, int max_w, int max_h)

Source Code

Constrains a non-fullscreen resizable display. The constraints are a hint only, and are not necessarily
respected by the window environment. A value of O for any of the parameters indicates no constraint
for that parameter.

The constraints will be applied to a display only after the al apply window_constraints function call.
Since: 5.1.0

See also: al_apply window_constraints, al_get window_constraints

3.3.9 al_apply_window_constraints

void al_apply_window_constraints(ALLEGRO_DISPLAY *display, bool onoff)

Source Code
Enable or disable previously set constraints by al set window_constraints function.

If enabled, the specified display will be automatically resized to new sizes to conform constraints in
next cases:

* The specified display is resizable, not maximized and is not in fullscreen mode.

* If the appropriate current display size (width or height) is less than the value of constraint.
Applied to minimum constraints.

* If the appropriate current display size (width or height) is greater than the value of constraint.
Applied to maximum constraints.

Constrains are not applied when a display is toggle from windowed to maximized or fullscreen modes.
When a display is toggle from maximized/fullscreen to windowed mode, then the display may be
resized as described above. The later case is also possible when a user drags the maximized display via
mouse.

If disabled, the specified display will stop using constraints.

See also: al_get window_constraints, al_set window_constraints

20


https://github.com/liballeg/allegro5/blob/master/src/display.c#L445
https://github.com/liballeg/allegro5/blob/master/src/display.c#L407
https://github.com/liballeg/allegro5/blob/master/src/display.c#L648

3.4. Display settings

3.4 Display settings

3.4.1 al_get display_flags
int al_get_display_flags(ALLEGRO_DISPLAY =*xdisplay)

Source Code
Gets the flags of the display.

In addition to the flags set for the display at creation time with al set new display flags it can also
have the ALLEGRO MINIMIZED flag set, indicating that the window is currently minimized. This flag
is very platform-dependent as even a minimized application may still render a preview version so
normally you should not care whether it is minimized or not.

See also: al_set new_display flags, al set display flag

3.4.2 al set_display_flag
bool al_set_display_flag(ALLEGRO_DISPLAY xdisplay, int flag, bool onoff)

Source Code

Enable or disable one of the display flags. The flags are the same as for al set new display flags. The
only flags that can be changed after creation are:

* ALLEGRO_FULLSCREEN WINDOW
* ALLEGRO_FRAMELESS
* ALLEGRO_MAXIMIZED

Returns true if the driver supports toggling the specified flag else false. You can use
al_get display flags to query whether the given display property actually changed.

Since: 5.0.7, 5.1.2
See also: al _set new display flags, al get display flags

3.4.3 al_get display_option
int al_get_display_option(ALLEGRO_DISPLAY xdisplay, int option)

Source Code
Return an extra display setting of the display.

See also: al_set new_display_option

3.4.4 al_set_display_option
void al_set_display_option(ALLEGRO_DISPLAY *display, int option, int value)

Source Code

Change an option that was previously set for a display. After displays are created, they take on the
options set with al set new_display option. Calling al set new_display option subsequently only
changes options for newly created displays, and doesn’t touch the options of already created displays.
al set display option allows changing some of these values. Not all display options can be changed or
changing them will have no effect. Changing options other than those listed below is undefined.

* ALLEGRO_SUPPORTED_ORIENTATIONS - This can be changed to allow new or restrict
previously enabled orientations of the screen/device. See al_set new_display option for more
information on this option.

21


https://github.com/liballeg/allegro5/blob/master/src/display.c#L309
https://github.com/liballeg/allegro5/blob/master/src/display.c#L466
https://github.com/liballeg/allegro5/blob/master/src/display_settings.c#L94
https://github.com/liballeg/allegro5/blob/master/src/display_settings.c#L82

3. DISPLAYS

Since: 5.1.5

See also: al _set new_display_option

3.4.5 al_get display_format

int al_get_display_format(ALLEGRO_DISPLAY =*display)

Source Code
Gets the pixel format of the display.

See also: ALLEGRO_PIXEL, FORMAT

3.4.6 al_get display_orientation

int al_get_display_orientation(ALLEGRO_DISPLAY* display)

Source Code

Return the display orientation, which can be one of the following:

* ALLEGRO_DISPLAY ORIENTATION UNKNOWN

* ALLEGRO DISPLAY ORIENTATION 0 DEGREES

* ALLEGRO DISPLAY ORIENTATION 90 DEGREES
« ALLEGRO_DISPLAY ORIENTATION 180 DEGREES
« ALLEGRO DISPLAY ORIENTATION 270 DEGREES
« ALLEGRO DISPLAY ORIENTATION FACE UP

* ALLEGRO DISPLAY ORIENTATION FACE_DOWN

Since: 5.1.0

3.4.7 al_get display_refresh_rate

int al_get_display_refresh_rate(ALLEGRO_DISPLAY *xdisplay)

Source Code
Gets the refresh rate of the display.

See also: al_set new display refresh rate

3.4.8 al_set_window_title

void al_set_window_title(ALLEGRO_DISPLAY xdisplay, const char *title)

Source Code
Set the title on a display.

See also: al_set display icon, al _set display icons

22


https://github.com/liballeg/allegro5/blob/master/src/display.c#L288
https://github.com/liballeg/allegro5/blob/master/src/display.c#L319
https://github.com/liballeg/allegro5/blob/master/src/display.c#L298
https://github.com/liballeg/allegro5/blob/master/src/display.c#L479

3.4. Display settings

3.4.9 al set_new_window_title

void al_set_new_window_title(const char xtitle)

Source Code

Set the title that will be used when a new display is created. Allegro uses a static buffer of
ALLEGRO NEW WINDOW TITLE MAX SIZE to store this, so the length of the titme you set must be
less than this.

See also: al_set window title, al get new window title, al create display,
ALLEGRO NEW WINDOW TITLE MAX_SIZE

Since: 5.1.12

3.4.10 ALLEGRO NEW_WINDOW _TITLE_MAX_SIZE
#define ALLEGRO_NEW_WINDOW_TITLE_MAX_SIZE 255

Source Code
This is the maximum size of the title that can be set with al set new window _title.
See also: al_set new window _title

Since: 5.1.12

3.4.11 al_get_new_window _title

const char *al_get_new_window_title(void)

Source Code

Returns the title that will be used when a new display is created. This returns the value that

al set window title was called with. If that function wasn’t called yet, the value of al get app name is
returned as a default. The current implementation returns a pointer to a static buffer of which you
should make a copy if you want to modify it.

See also: al_set window title, al set new window _title, al create display

Since: 5.1.12

3.4.12 al_set_display_icon

void al_set_display_icon(ALLEGRO_DISPLAY xdisplay, ALLEGRO_BITMAP =xicon)

Source Code
Changes the icon associated with the display (window). Same as al set display icons with one icon.

See also: al_set_display_icons, al set window _title

3.4.13 al_set_display_icons

void al_set_display_icons(ALLEGRO_DISPLAY =*display,
int num_icons, ALLEGRO_BITMAP *icons[])

Source Code

Changes the icons associated with the display (window). Multiple icons can be provided for use in
different contexts, e.g. window frame, taskbar, alt-tab popup. The number of icons must be at least one.

23


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L203
https://github.com/liballeg/allegro5/blob/master/include/allegro5/display.h#L113
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L224
https://github.com/liballeg/allegro5/blob/master/src/display.c#L345
https://github.com/liballeg/allegro5/blob/master/src/display.c#L356

3. DISPLAYS

Note: If the underlying OS requires an icon of a size not provided then one of the bitmaps
will be scaled up or down to the required size. The choice of bitmap is implementation
dependent.

Since: 5.0.9, 5.1.5

See also: al_set display icon, al set window _title

3.5 Drawing halts

3.5.1 al_acknowledge_ drawing halt

void al_acknowledge_drawing_halt(ALLEGRO_DISPLAY xdisplay)

Source Code

Call this in response to the ALLEGRO_EVENT DISPLAY HALT DRAWING event. This is currently
necessary for Android and iOS as you are not allowed to draw to your display while it is not being
shown. If you do not call this function to let the operating system know that you have stopped drawing
or if you call it to late the application likely will be considered misbehaving and get terminated.

Since: 5.1.0
See also: ALLEGRO_EVENT DISPLAY HALT DRAWING

3.5.2 al acknowledge drawing resume

void al_acknowledge_drawing_resume (ALLEGRO_DISPLAY *display)

Source Code
Call this in response to the ALLEGRO_EVENT DISPLAY RESUME DRAWING event.
Since: 5.1.1

See also: ALLEGRO_EVENT DISPLAY RESUME DRAWING

3.6 Screensaver

3.6.1 al _inhibit_screensaver

bool al_inhibit_screensaver(bool inhibit)

Source Code

This function allows the user to stop the system screensaver from starting up if true is passed, or resets
the system back to the default state (the state at program start) if false is passed. It returns true if the
state was set successfully, otherwise false.

3.7 Clipboard

With the clipboard API of Allegro, text can be copied from and to the clipboard. Currentlly, only UTF8
encoded text is supported. It currently works on Linux, Windows, OSX, Android and IOS.

24


https://github.com/liballeg/allegro5/blob/master/src/display.c#L575
https://github.com/liballeg/allegro5/blob/master/src/display.c#L584
https://github.com/liballeg/allegro5/blob/master/src/system.c#L447

3.7. Clipboard

3.7.1 al_get_clipboard_text
char *al_get_clipboard_text (ALLEGRO_DISPLAY xdisplay)

Source Code

This function returns a pointer to a string, allocated with al malloc with the text contents of the
clipboard if available. If no text is available on the clipboard then this function returns NULL. You must
call al free on the returned pointer when you don’t need it anymore.

Beware that text on the clipboard on Windows may be in Windows format, that is, it may have carriage
return newline combinations for the line endings instead of regular newlines for the line endings on
Linux or OSX.

Since: 5.1.12

See also: al_set clipboard text, al clipboard has_text

3.7.2 al_set_clipboard_text
bool al_set_clipboard_text(ALLEGRO_DISPLAY *display, const char *xtext)

Source Code
This function pastes the text given as an argument to the clipboard.
Since: 5.1.12

See also: al_get clipboard_text, al clipboard has_text

3.7.3 al_clipboard_has_text
bool al_clipboard_has_text(ALLEGRO_DISPLAY xdisplay)

Source Code
This function returns true if and only if the clipboard has text available.
Since: 5.1.12

See also: al_set clipboard_text, al_get clipboard_text

25


https://github.com/liballeg/allegro5/blob/master/src/clipboard.c#L29
https://github.com/liballeg/allegro5/blob/master/src/clipboard.c#L46
https://github.com/liballeg/allegro5/blob/master/src/clipboard.c#L64




Event system and events

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

Events are generated by event sources. Most notably, each of the input subsystems provides an event
source, but also timers, displays, and audio streams will generate events.

Event sources are registered to event queues which aggregate events from multiple sources. A single
event source can also be registered to multiple event queues.

Event queues can then be queried for events. In particular, it is possible to wait until events become
available in order to save CPU time. You can combine this with timers to make your main-loop run at a
specific speed without wasting CPU time or missing events.

In addition to the predefined event types, Allegro also allows for user-defined events that can be
generated by user-defined event sources.

The appropriate reaction to an event is determined by examining the fields of the ALLEGRO_EVENT
union according to the event type.

In addition to the events sent by Allegro core, there’s also events send by the addons, see
ALLEGRO_AUDIO_EVENT TYPE and ALLEGRO_VIDEO EVENT TYPE.

4.1 ALLEGRO_EVENT

typedef union ALLEGRO_EVENT ALLEGRO_EVENT;

Source Code

An ALLEGRO_EVENT is a union of all builtin event structures, i.e. it is an object large enough to hold
the data of any event type. All events have the following fields in common:

type (ALLEGRO_EVENT_TYPE)

Indicates the type of event.
any.source (ALLEGRO_EVENT_SOURCE *)

The event source which generated the event.
any.timestamp (double)

When the event was generated.

By examining the type field you can then access type-specific fields. The any. source field tells you
which event source generated that particular event. The any. timestamp field tells you when the event
was generated. The time is referenced to the same starting point as al_get time.

Each event is of one of the following types, with the usable fields given.

27


https://github.com/liballeg/allegro5/blob/master/include/allegro5/events.h#L202

4. EVENT SYSTEM AND EVENTS

4.1.1 ALLEGRO_EVENT JOYSTICK_AXIS

A joystick axis value changed.

joystick.id (ALLEGRO_JOYSTICK *)
The joystick which generated the event. This is not the same as the event source
joystick.source.
joystick.stick (int)
The stick number, counting from zero. Axes on a joystick are grouped into “sticks”.
joystick.axis (int)
The axis number on the stick, counting from zero.
joystick.pos (float)
The axis position, from -1.0 to +1.0.

4.1.2 ALLEGRO_EVENT JOYSTICK BUTTON_DOWN
A joystick button was pressed.
joystick.id (ALLEGRO_JOYSTICK *)

The joystick which generated the event.
joystick.button (int)

The button which was pressed, counting from zero.
4.1.3 ALLEGRO_EVENT JOYSTICK BUTTON_UP
A joystick button was released.
joystick.id (ALLEGRO_JOYSTICK *)

The joystick which generated the event.
joystick.button (int)

The button which was released, counting from zero.
4.1.4 ALLEGRO_EVENT JOYSTICK CONFIGURATION

A joystick was plugged in or unplugged. See al reconfigure joysticks for details.

4.1.5 ALLEGRO_EVENT _KEY DOWN
A keyboard key was pressed.

keyboard.keycode (int)
The code corresponding to the physical key which was pressed. See the Key codes section for the
list of ALLEGRO_KEY_ * constants.

keyboard.display (ALLEGRO_DISPLAY *)
The display which had keyboard focus when the event occurred.

Note: this event is about the physical keys being pressed on the keyboard. Look for
ALLEGRO_EVENT KEY CHAR events for character input.

4.1.6 ALLEGRO_EVENT_KEY UP

A keyboard key was released.

keyboard.keycode (int)
The code corresponding to the physical key which was released. See the Key codes section for the
list of ALLEGRO_KEY_ * constants.

keyboard.display (ALLEGRO_DISPLAY *)
The display which had keyboard focus when the event occurred.

28



4.1. ALLEGRO_EVENT

4.1.7 ALLEGRO_EVENT KEY CHAR

A character was typed on the keyboard, or a character was auto-repeated.

keyboard.keycode (int)
The code corresponding to the physical key which was last pressed. See the Key codes section for
the list of ALLEGRO_KEY * constants.

keyboard.unichar (int)
A Unicode code point (character). This may be zero or negative if the event was generated for a
non-visible “character”, such as an arrow or Function key. In that case you can act upon the
keycode field.

Some special keys will set the unichar field to their standard ASCII values: Tab=9, Return=13,
Escape=27. In addition if you press the Control key together with A to Z the unichar field will
have the values 1 to 26. For example Ctrl-A will set unichar to 1 and Ctrl-H will set it to 8.

As of Allegro 5.0.2 there are some inconsistencies in the treatment of Backspace (8 or 127) and
Delete (127 or 0) keys on different platforms. These can be worked around by checking the
keycode field.

keyboard.modifiers (unsigned)
This is a bitfield of the modifier keys which were pressed when the event occurred. See
“Keyboard modifier flags” for the constants.

keyboard.repeat (bool)
Indicates if this is a repeated character.

keyboard.display (ALLEGRO_DISPLAY *)
The display which had keyboard focus when the event occurred.

Note: in many input methods, characters are not entered one-for-one with physical key
presses. Multiple key presses can combine to generate a single character, e.g. apostrophe +
e may produce ‘¢’. Fewer key presses can also generate more characters, e.g. macro
sequences expanding to common phrases.

4.1.8 ALLEGRO_EVENT MOUSE_AXES

One or more mouse axis values changed.

mouse.x (int)

x-coordinate
mouse.y (int)

y-coordinate
mouse.z (int)

z-coordinate. This usually means the vertical axis of a mouse wheel, where up is positive and

down is negative.
mouse.w (int)

w-coordinate. This usually means the horizontal axis of a mouse wheel.
mouse.dx (int)

Change in the x-coordinate value since the previous ALLEGRO_EVENT MOUSE_AXES event.
mouse.dy (int)

Change in the y-coordinate value since the previous ALLEGRO EVENT MOUSE AXES event.
mouse.dz (int)

Change in the z-coordinate value since the previous ALLEGRO _EVENT MOUSE_AXES event.
mouse.dw (int)

Change in the w-coordinate value since the previous ALLEGRO_EVENT MOUSE_AXES event.
mouse.pressure (float)

Pressure, ranging from 0.0 to 1. 0.

29



4. EVENT SYSTEM AND EVENTS

mouse.display (ALLEGRO_DISPLAY *)
The display which had mouse focus.

Note: Calling al set mouse_xy also will result in a change of axis values, but such a change
is reported with ALLEGRO_EVENT MOUSE_WARPED events instead which are identical
except for their type.

Note: currently mouse.display may be NULL if an event is generated in response to
al set mouse_axis.

4.1.9 ALLEGRO_EVENT MOUSE_BUTTON_DOWN

A mouse button was pressed.

mouse.x (int)
x-coordinate
mouse.y (int)
y-coordinate
mouse.z (int)
z-coordinate
mouse.w (int)
w-coordinate
mouse.button (unsigned)
The mouse button which was pressed, numbering from 1.
mouse.pressure (float)
Pressure, ranging from 0.0 to 1.0.
mouse.display (ALLEGRO_DISPLAY *)
The display which had mouse focus.

4.1.10 ALLEGRO_EVENT_MOUSE_BUTTON_UP

A mouse button was released.

mouse.x (int)
x-coordinate
mouse.y (int)
y-coordinate
mouse.z (int)
z-coordinate
mouse.w (int)
w-coordinate
mouse.button (unsigned)
The mouse button which was released, numbering from 1.
mouse.pressure (float)
Pressure, ranging from 0.0 to 1. 0.
mouse.display (ALLEGRO_DISPLAY *)
The display which had mouse focus.

4.1.11 ALLEGRO_EVENT MOUSE_WARPED

al set mouse xy was called to move the mouse. This event is identical to
ALLEGRO_EVENT MOUSE AXES otherwise.

30



4.1. ALLEGRO_EVENT

4.1.12 ALLEGRO_EVENT_MOUSE_ENTER_DISPLAY

The mouse cursor entered a window opened by the program.

mouse.x (int)
x-coordinate
mouse.y (int)
y-coordinate
mouse.z (int)
z-coordinate
mouse.w (int)
w-coordinate
mouse.display (ALLEGRO_DISPLAY *)
The display which had mouse focus.

4.1.13 ALLEGRO_EVENT _MOUSE_LEAVE_DISPLAY

The mouse cursor left the boundaries of a window opened by the program.

mouse.x (int)
x-coordinate
mouse.y (int)
y-coordinate
mouse.z (int)
z-coordinate
mouse.w (int)
w-coordinate
mouse.display (ALLEGRO_DISPLAY *)
The display which had mouse focus.

4.1.14 ALLEGRO_EVENT_TOUCH_BEGIN
The touch input device registered a new touch.
touch.display (ALLEGRO_DISPLAY)

The display which was touched.
touch.id (int)

An identifier for this touch. If supported by the device it will stay the same for events from the

same finger until the touch ends.
touch.x (float)

The x coordinate of the touch in pixels.
touch.y (float)

The y coordinate of the touch in pixels.
touch.dx (float)

Movement speed in pixels in x direction.
touch.dy (float)

Movement speed in pixels in y direction.
touch.primary (bool)

Whether this is the only/first touch or an additional touch.

Since: 5.1.0

4.1.15 ALLEGRO_EVENT _TOUCH_END

A touch ended.

Has the same fields as ALLEGRO_EVENT TOUCH_BEGIN.
Since: 5.1.0

31



4. EVENT SYSTEM AND EVENTS

4.1.16 ALLEGRO_EVENT_TOUCH_MOVE

The position of a touch changed.

Has the same fields as ALLEGRO _EVENT TOUCH_BEGIN.
Since: 5.1.0

4.1.17 ALLEGRO_EVENT TOUCH_CANCEL

A touch was cancelled. This is device specific but could for example mean that a finger moved off the
border of the device or moved so fast that it could not be tracked any longer.

Has the same fields as ALLEGRO _EVENT TOUCH_BEGIN.
Since: 5.1.0

4.1.18 ALLEGRO_EVENT TIMER

A timer counter incremented.

timer.source (ALLEGRO_TIMER *)

The timer which generated the event.
timer.count (int64 _t)

The timer count value.

4.1.19 ALLEGRO_EVENT DISPLAY EXPOSE

The display (or a portion thereof) has become visible.

display.source (ALLEGRO_DISPLAY *)
The display which was exposed.
display.x (int)
display.y (int)

The top-left corner of the rectangle which was exposed.
display.width (int)

display.height (int)

The width and height of the rectangle which was exposed.

Note: The display needs to be created with ALLEGRO_GENERATE_EXPOSE_EVENTS flag
for these events to be generated.

4.1.20 ALLEGRO_EVENT DISPLAY RESIZE

The window has been resized.

display.source (ALLEGRO_DISPLAY *)
The display which was resized.
display.x (int)
display.y (int)
The position of the top-level corner of the display.
display.width (int)
The new width of the display.
display.height (int)
The new height of the display.

You should normally respond to these events by calling al acknowledge resize. Note that further resize
events may be generated by the time you process the event, so these fields may hold outdated
information.

32



4.1. ALLEGRO_EVENT

4.1.21 ALLEGRO_EVENT_DISPLAY_ CLOSE

The close button of the window has been pressed.

display.source (ALLEGRO_DISPLAY *)
The display which was closed.

4.1.22 ALLEGRO_EVENT DISPLAY LOST

When using Direct3D, displays can enter a “lost” state. In that state, drawing calls are ignored, and
upon entering the state, bitmap’s pixel data can become undefined. Allegro does its best to preserve
the correct contents of bitmaps (see the ALLEGRO_NO_PRESERVE TEXTURE flag) and restore them
when the device is “found” (see ALLEGRO_EVENT DISPLAY FOUND). However, this is not 100% fool
proof (see discussion in al _create_bitmap’s documentation).

Note: This event merely means that the display was lost, that is, DirectX suddenly lost the
contents of all video bitmaps. In particular, you can keep calling drawing functions — they
just most likely won’t do anything. If Allegro’s restoration of the bitmaps works well for you
then no further action is required when you receive this event.

display.source (ALLEGRO_DISPLAY *)
The display which was lost.

4.1.23 ALLEGRO_EVENT_DISPLAY _FOUND
Generated when a lost device is restored to operating state. See ALLEGRO_EVENT DISPLAY LOST.

display.source (ALLEGRO_DISPLAY *)
The display which was found.

4.1.24 ALLEGRO_EVENT DISPLAY SWITCH_OUT

The window is no longer active, that is the user might have clicked into another window or “tabbed”
away. In response to this event you might want to call al_clear_keyboard_state (possibly passing
display.source as its argument) in order to prevent Allegro’s keyboard state from getting out of sync.

display.source (ALLEGRO_DISPLAY *)
The display which was switched out of.

4.1.25 ALLEGRO_EVENT DISPLAY SWITCH_IN

The window is the active one again.

display.source (ALLEGRO_DISPLAY *)
The display which was switched into.

4.1.26 ALLEGRO_EVENT_DISPLAY_ ORIENTATION

Generated when the rotation or orientation of a display changes.

display.source (ALLEGRO_DISPLAY *)
The display which generated the event.

event.display.orientation
Contains one of the following values:

+ ALLEGRO DISPLAY ORIENTATION 0 DEGREES

33



4. EVENT SYSTEM AND EVENTS

ALLEGRO_DISPLAY ORIENTATION 90 DEGREES
ALLEGRO DISPLAY ORIENTATION 180 DEGREES
ALLEGRO DISPLAY ORIENTATION 270 DEGREES
ALLEGRO_DISPLAY ORIENTATION_FACE_UP
ALLEGRO_DISPLAY ORIENTATION FACE_DOWN

4.1.27 ALLEGRO_EVENT _DISPLAY HALT DRAWING

When a display receives this event it should stop doing any drawing and then call
al_acknowledge drawing halt immediately.

This is currently only relevant for Android and iOS. It will be sent when the application is switched to
background mode, in addition to ALLEGRO_EVENT DISPLAY SWITCH_OUT. The latter may also be
sent in situations where the application is not active but still should continue drawing, for example
when a popup is displayed in front of it.

Note: This event means that the next time you call a drawing function, your program will
crash. So you must stop drawing and you must immediately reply with

al acknowledge drawing halt. Allegro sends this event because it cannot handle this
automatically. Your program might be doing the drawing in a different thread from the
event handling, in which case the drawing thread needs to be signaled to stop drawing
before acknowledging this event.

Note: Mobile devices usually never quit an application, so to prevent the battery from
draining while your application is halted it can be a good idea to call al stop_timer on all
your timers, otherwise they will keep generating events. If you are using audio, you can
also stop all audio voices (or pass NULL to al _set default voice if you use the default
mixer), otherwise Allegro will keep streaming silence to the voice even if the stream or
mixer are stopped or detached.

Since: 5.1.0
See also: ALLEGRO_EVENT DISPLAY RESUME DRAWING

4.1.28 ALLEGRO_EVENT DISPLAY RESUME_DRAWING

When a display receives this event, it may resume drawing again, and it must call
al acknowledge drawing resume immediately.

This is currently only relevant for Android and iOS. The event will be sent when an application returns
from background mode and is allowed to draw to the display again, in addition to
ALLEGRO_EVENT DISPLAY SWITCH_IN. The latter event may also be sent in a situation where the
application is already active, for example when a popup in front of it closes.

Note: Unlike ALLEGRO EVENT DISPLAY FOUND it is not necessary to reload any bitmaps
when you receive this event.

Since: 5.1.0
See also: ALLEGRO_EVENT DISPLAY HALT DRAWING

4.1.29 ALLEGRO_EVENT_DISPLAY CONNECTED

This event is sent when a physical display is connected to the device Allegro runs on. Currently, on
most platforms, Allegro supports only a single physical display. However, on iOS, a secondary physical
display is supported.

display.source (ALLEGRO_DISPLAY *)
The display which was connected.

34



4.2. ALLEGRO USER_EVENT

Since: 5.1.1

4.1.30 ALLEGRO_EVENT_DISPLAY DISCONNECTED

This event is sent when a physical display is disconnected from the device Allegro runs on. Currently,
on most platforms, Allegro supports only a single physical display. However, on iOS, a secondary
physical display is supported.

display.source (ALLEGRO_DISPLAY *)
The display which was disconnected.

4.2 ALLEGRO_USER_EVENT

typedef struct ALLEGRO_USER_EVENT ALLEGRO_USER_EVENT;

Source Code

An event structure that can be emitted by user event sources. These are the public fields:

* ALLEGRO_EVENT_SOURCE *source;
* intptr t datal;
* intptr t data2;
* intptr t data3;
* intptr_t data4;

Like all other event types this structure is a part of the ALLEGRO_EVENT union. To access the fields in
an ALLEGRO_EVENT variable ev, you would use:

* ev.user.source
e evuser.datal
e ev.user.data2
* ev.user.data3
* evuser.data4

To create a new user event you would do this:

ALLEGRO_EVENT_SOURCE my_event_source;
ALLEGRO_EVENT my_event;
float some_var;

al_init_user_event_source(&my_event_source);
my_event.user.type = ALLEGRO_GET_EVENT_TYPE('M','I','N','E");
my_event.user.datal = 1;

my_event.user.data2 = &some_var;

al_emit_user_event(&my_event_source, &my_event, NULL);

Event type identifiers for user events are assigned by the user. Please see the documentation for
ALLEGRO_GET EVENT TYPE for the rules you should follow when assigning identifiers.

See also: al emit user event, ALLEGRO GET EVENT TYPE, al init user event source

35


https://github.com/liballeg/allegro5/blob/master/include/allegro5/events.h#L186

4. EVENT SYSTEM AND EVENTS

4.3 ALLEGRO_EVENT_QUEUE

typedef struct ALLEGRO_EVENT_QUEUE ALLEGRO_EVENT_QUEUE;

Source Code

An event queue holds events that have been generated by event sources that are registered with the
queue. Events are stored in the order they are generated. Access is in a strictly FIFO (first-in-first-out)
order.

See also: al _create_event queue, al destroy event queue

4.4 ALLEGRO_EVENT_SOURCE

typedef struct ALLEGRO_EVENT_SOURCE ALLEGRO_EVENT_SOURCE;

Source Code

An event source is any object which can generate events. For example, an ALLEGRO_DISPLAY can
generate events, and you can get the ALLEGRO_EVENT SOURCE pointer from an ALLEGRO_DISPLAY
with al get display event source.

You may create your own “user” event sources that emit custom events.

See also: ALLEGRO_EVENT, al init_user event source, al emit user_event

4.5 ALLEGRO_EVENT TYPE

typedef unsigned int ALLEGRO_EVENT_TYPE;

Source Code
An integer used to distinguish between different types of events.

See also: ALLEGRO_EVENT, ALLEGRO_GET EVENT TYPE, ALLEGRO EVENT TYPE IS USER

4.6 ALLEGRO_GET EVENT TYPE

#define ALLEGRO_GET_EVENT_TYPE(a, b, ¢, d) AL_ID(a, b, c, d)

Source Code

Make an event type identifier, which is a 32-bit integer. Usually, but not necessarily, this will be made
from four 8-bit character codes, for example:

#define MY_EVENT_TYPE  ALLEGRO_GET_EVENT_TYPE('M','I','N','E")

IDs less than 1024 are reserved for Allegro or its addons. Don’t use anything lower than
ALLEGRO_GET_EVENT_TYPE(Q, @, 4, 0).

You should try to make your IDs unique so they don’t clash with any 3rd party code you may be using.
Be creative. Numbering from 1024 is not creative.

If you need multiple identifiers, you could define them like this:

#define BASE_EVENT  ALLEGRO_GET_EVENT_TYPE('M','I','N','E")
#define BARK_EVENT  (BASE_EVENT + 0)
#define MEOW_EVENT  (BASE_EVENT + 1)
#define SQUAWK_EVENT (BASE_EVENT + 2)

36


https://github.com/liballeg/allegro5/blob/master/include/allegro5/events.h#L243
https://github.com/liballeg/allegro5/blob/master/include/allegro5/events.h#L72
https://github.com/liballeg/allegro5/blob/master/include/allegro5/events.h#L13
https://github.com/liballeg/allegro5/blob/master/include/allegro5/events.h#L67

4.7. ALLEGRO_EVENT TYPE IS USER

/* Alternatively */

enum {
BARK_EVENT = ALLEGRO_GET_EVENT_TYPE('M','I','N','E"),
MEOW_EVENT,
SQUAWK_EVENT

1
See also: ALLEGRO EVENT, ALLEGRO_USER_EVENT, ALLEGRO _EVENT _TYPE IS USER

4.7 ALLEGRO_EVENT TYPE_IS_USER

#define ALLEGRO_EVENT_TYPE_IS_USER(t) ((t) >= 512)

Source Code

A macro which evaluates to true if the event type is not a builtin event type, i.e. one of those described
in ALLEGRO EVENT TYPE.

4.8 al _create_event_queue

ALLEGRO_EVENT_QUEUE *al_create_event_queue(void)

Source Code

Create a new, empty event queue, returning a pointer to the newly created object if successful. Returns
NULL on error.

See also: al _register_event source, al_destroy_event queue, ALLEGRO_EVENT QUEUE

4.9 al _destroy_event_queue

void al_destroy_event_queue(ALLEGRO_EVENT_QUEUE *queue)

Source Code

Destroy the event queue specified. All event sources currently registered with the queue will be
automatically unregistered before the queue is destroyed.

See also: al_create_event queue, ALLEGRO EVENT QUEUE

4.10 al register_event source

void al_register_event_source(ALLEGRO_EVENT_QUEUE xqueue,
ALLEGRO_EVENT_SOURCE #*source)

Source Code

Register the event source with the event queue specified. An event source may be registered with any
number of event queues simultaneously, or none. Trying to register an event source with the same
event queue more than once does nothing.

See also: al_unregister event source, ALLEGRO EVENT SOURCE

37


https://github.com/liballeg/allegro5/blob/master/include/allegro5/events.h#L62
https://github.com/liballeg/allegro5/blob/master/src/events.c#L90
https://github.com/liballeg/allegro5/blob/master/src/events.c#L120
https://github.com/liballeg/allegro5/blob/master/src/events.c#L161

4. EVENT SYSTEM AND EVENTS

4.11 al_unregister_event_source

void al_unregister_event_source(ALLEGRO_EVENT_QUEUE =*queue,
ALLEGRO_EVENT_SOURCE *source)

Source Code

Unregister an event source with an event queue. If the event source is not actually registered with the
event queue, nothing happens.

If the queue had any events in it which originated from the event source, they will no longer be in the
queue after this call.

See also: al register event source

4.12 al_is_event_source_registered

bool al_is_event_source_registered(ALLEGRO_EVENT_QUEUE *queue,
ALLEGRO_EVENT_SOURCE *source)

Source Code
Return true if the event source is registered.
See also: al register event source

Since: 5.2.0

4.13 al pause_event queue

void al_pause_event_queue (ALLEGRO_EVENT_QUEUE *queue, bool pause)

Source Code

Pause or resume accepting new events into the event queue (to resume, pass false for pause). Events
already in the queue are unaffected.

While a queue is paused, any events which would be entered into the queue are simply ignored. This is
an alternative to unregistering then re-registering all event sources from the event queue, if you just
need to prevent events piling up in the queue for a while.

See also: al is_event queue paused

Since: 5.1.0

4.14 al _is event_queue_paused

bool al_is_event_queue_paused(const ALLEGRO_EVENT_QUEUE *queue)

Source Code
Return true if the event queue is paused.
See also: al pause event queue

Since: 5.1.0

38


https://github.com/liballeg/allegro5/blob/master/src/events.c#L181
https://github.com/liballeg/allegro5/blob/master/src/events.c#L147
https://github.com/liballeg/allegro5/blob/master/src/events.c#L208
https://github.com/liballeg/allegro5/blob/master/src/events.c#L221

4.15. al is event queue empty

4.15 al_is_event_queue_empty

bool al_is_event_queue_empty(ALLEGRO_EVENT_QUEUE *queue)

Source Code
Return true if the event queue specified is currently empty.

See also: al_get next event, al peek next event

4.16 al_get _next_event

bool al_get_next_event (ALLEGRO_EVENT_QUEUE *queue, ALLEGRO_EVENT *ret_event)

Source Code

Take the next event out of the event queue specified, and copy the contents into ret_event, returning
true. The original event will be removed from the queue. If the event queue is empty, return false and
the contents of ret_event are unspecified.

See also: ALLEGRO_EVENT, al peek next event, al wait for event

4.17 al _peek_next_event

bool al_peek_next_event(ALLEGRO_EVENT_QUEUE *queue, ALLEGRO_EVENT =*ret_event)

Source Code

Copy the contents of the next event in the event queue specified into ret_event and return true. The
original event packet will remain at the head of the queue. If the event queue is actually empty, this
function returns false and the contents of ret_event are unspecified.

See also: ALLEGRO_EVENT, al get next event, al drop_next event

4.18 al_drop_next_event

bool al_drop_next_event (ALLEGRO_EVENT_QUEUE xqueue)

Source Code

Drop (remove) the next event from the queue. If the queue is empty, nothing happens. Returns true if
an event was dropped.

See also: al flush event queue, al is event queue empty

4.19 al flush _event_queue

void al_flush_event_queue(ALLEGRO_EVENT_QUEUE *queue)

Source Code
Drops all events, if any, from the queue.

See also: al drop next event, al is_event queue_empty

39


https://github.com/liballeg/allegro5/blob/master/src/events.c#L248
https://github.com/liballeg/allegro5/blob/master/src/events.c#L296
https://github.com/liballeg/allegro5/blob/master/src/events.c#L321
https://github.com/liballeg/allegro5/blob/master/src/events.c#L346
https://github.com/liballeg/allegro5/blob/master/src/events.c#L369

4. EVENT SYSTEM AND EVENTS

4.20 al_wait_for_event

void al_wait_for_event (ALLEGRO_EVENT_QUEUE *queue, ALLEGRO_EVENT *ret_event)

Source Code

Wait until the event queue specified is non-empty. If ret_event is not NULL, the first event in the
queue will be copied into ret_event and removed from the queue. If ret_event is NULL the first event
is left at the head of the queue.

See also: ALLEGRO_EVENT, al wait for event timed, al wait for event until, al get next event

4.21 al_wait_for_event_timed

bool al_wait_for_event_timed(ALLEGRO_EVENT_QUEUE *queue,
ALLEGRO_EVENT =*ret_event, float secs)

Source Code

Wait until the event queue specified is non-empty. If ret_event is not NULL, the first event in the
queue will be copied into ret_event and removed from the queue. If ret_event is NULL the first event
is left at the head of the queue.

secs determines approximately how many seconds to wait. If the call times out, false is returned.
Otherwise, if an event ocurred, true is returned.

For compatibility with all platforms, secs must be 2,147,483.647 seconds or less.

See also: ALLEGRO_EVENT, al wait for event, al wait for event until

4.22 al wait_for_event_until

bool al_wait_for_event_until (ALLEGRO_EVENT_QUEUE *queue,
ALLEGRO_EVENT =*ret_event, ALLEGRO_TIMEOUT xtimeout)

Source Code

Wait until the event queue specified is non-empty. If ret_event is not NULL, the first event in the
queue will be copied into ret_event and removed from the queue. If ret_event is NULL the first event
is left at the head of the queue.

timeout determines how long to wait. If the call times out, false is returned. Otherwise, if an event
ocurred, true is returned.

For compatibility with all platforms, timeout must be 2,147,483.647 seconds or less.

See also: ALLEGRO_EVENT, ALLEGRO_TIMEOUT, al init _timeout, al wait for event,
al wait for event timed

4.23 al_init_user_event_source

void al_init_user_event_source(ALLEGRO_EVENT_SOURCE =*src)

Source Code

Initialise an event source for emitting user events. The space for the event source must already have
been allocated.

One possible way of creating custom event sources is to derive other structures with
ALLEGRO_EVENT SOURCE at the head, e.g.

40


https://github.com/liballeg/allegro5/blob/master/src/events.c#L395
https://github.com/liballeg/allegro5/blob/master/src/events.c#L422
https://github.com/liballeg/allegro5/blob/master/src/events.c#L444
https://github.com/liballeg/allegro5/blob/master/src/evtsrc.c#L195

4.24. al destroy user event source

typedef struct THING THING;

struct THING {
ALLEGRO_EVENT_SOURCE event_source;

int fieldl;
int field2;
/% etc. */
b
THING *create_thing(void)
{
THING *thing = malloc(sizeof (THING));
if (thing) {
al_init_user_event_source(&thing->event_source);
thing->fieldl = 0;
thing->field2 = 0;
3
return thing;
3

The advantage here is that the THING pointer will be the same as the ALLEGRO _EVENT SOURCE
pointer. Events emitted by the event source will have the event source pointer as the source field, from
which you can get a pointer to a THING by a simple cast (after ensuring checking the event is of the
correct type).

However, it is only one technique and you are not obliged to use it.

The user event source will never be destroyed automatically. You must destroy it manually with
al destroy user event source.

See also: ALLEGRO_EVENT SOURCE, al _destroy user event source, al emit user_event,
ALLEGRO_USER_EVENT

4.24 al _destroy user_event_source

void al_destroy_user_event_source(ALLEGRO_EVENT_SOURCE *src)

Source Code
Destroy an event source initialised with al init user event source.
This does not free the memory, as that was user allocated to begin with.

See also: ALLEGRO_EVENT SOURCE

4.25 al_emit_user_event

bool al_emit_user_event (ALLEGRO_EVENT_SOURCE =*src,
ALLEGRO_EVENT xevent, void (*dtor) (ALLEGRO_USER_EVENT *))

Source Code

Emit an event from a user event source. The event source must have been initialised with
al init user event source. Returns false if the event source isn’t registered with any queues, hence
the event wouldn’t have been delivered into any queues.

Events are copied in and out of event queues, so after this function returns the memory pointed to by
event may be freed or reused. Some fields of the event being passed in may be modified by the
function.

41


https://github.com/liballeg/allegro5/blob/master/src/evtsrc.c#L206
https://github.com/liballeg/allegro5/blob/master/src/evtsrc.c#L217

4. EVENT SYSTEM AND EVENTS

Reference counting will be performed if dtor is not NULL. Whenever a copy of the event is made, the
reference count increases. You need to call al unref user event to decrease the reference count once
you are done with a user event that you have received from al_get next event, al peek next event,
al wait for event, etc.

Once the reference count drops to zero dtor will be called with a copy of the event as an argument. It
should free the resources associated with the event, but not the event itself (since it is just a copy).

If dtor is NULL then reference counting will not be performed. It is safe, but unnecessary, to call
al unref user event on non-reference counted user events.

You can use al_emit_user_event to emit both user and non-user events from your user event source.
Note that emitting input events will not update the corresponding input device states. For example,
you may emit an event of type ALLEGRO _EVENT KEY DOWN, but it will not update the
ALLEGRO_KEYBOARD_ STATE returned by al get keyboard_state.

See also: ALLEGRO_USER_EVENT, al unref user event

4.26 al_unref user_event

void al_unref_user_event (ALLEGRO_USER_EVENT *event)

Source Code

Decrease the reference count of a user-defined event. This must be called on any user event that you
get from al_get next event, al peek next event, al wait for event, etc. which is reference counted.
This function does nothing if the event is not reference counted.

See also: al_emit user_event, ALLEGRO_USER_EVENT

4.27 al_get_event_source_data

intptr_t al_get_event_source_data(const ALLEGRO_EVENT_SOURCE #source)

Source Code

Returns the abstract user data associated with the event source. If no data was previously set, returns
NULL.

See also: al_set event source data

4.28 al_set_event_source_data

void al_set_event_source_data(ALLEGRO_EVENT_SOURCE *source, intptr_t data)

Source Code

Assign the abstract user data to the event source. Allegro does not use the data internally for anything;
it is simply meant as a convenient way to associate your own data or objects with events.

See also: al _get event source data

42


https://github.com/liballeg/allegro5/blob/master/src/events.c#L703
https://github.com/liballeg/allegro5/blob/master/src/evtsrc.c#L274
https://github.com/liballeg/allegro5/blob/master/src/evtsrc.c#L264

File 1/0

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

5.1 ALLEGRO_FILE

typedef struct ALLEGRO_FILE ALLEGRO_FILE;

Source Code

An opaque object representing an open file. This could be a real file on disk or a virtual file.

5.2 ALLEGRO_FILE_INTERFACE
typedef struct ALLEGRO_FILE_INTERFACE

Source Code

A structure containing function pointers to handle a type of “file”, real or virtual. See the full
discussion in al_set new file interface.

The fields are:
void* (xfi_fopen) (const char *path, const char *mode);
bool (*fi_fclose) (ALLEGRO_FILE *f);
size_t (xfi_fread) (ALLEGRO_FILE xf, void *ptr, size_t size);
size_t (xfi_fwrite) (ALLEGRO_FILE *f, const void *ptr, size_t size);
bool (xfi_fflush) (ALLEGRO_FILE xf);
int64_t (xfi_ftell) (ALLEGRO_FILE *f);
bool (xfi_fseek) (ALLEGRO_FILE *f, int64_t offset, int whence);
bool (*fi_feof) (ALLEGRO_FILE *f);
int (xfi_ferror) (ALLEGRO_FILE *f);
const char * (xfi_ferrmsg) (ALLEGRO_FILE =*f);
void (xfi_fclearerr) (ALLEGRO_FILE xf);
int (xfi_fungetc) (ALLEGRO_FILE =f, int c);
of f_t (*fi_fsize) (ALLEGRO_FILE *f);

The fi_open function must allocate memory for whatever userdata structure it needs. The pointer to
that memory must be returned; it will then be associated with the file. The other functions can access
that data by calling al get file userdata on the file handle. If fi_open returns NULL then al fopen will
also return NULL.

43


https://github.com/liballeg/allegro5/blob/master/include/allegro5/file.h#L15
https://github.com/liballeg/allegro5/blob/master/include/allegro5/file.h#L20

5. FILEI/O

The fi_fclose function must clean up and free the userdata, but Allegro will free the ALLEGRO_FILE
handle.

If fi_fungetc is NULL, then Allegro’s default implementation of a 16 char long buffer will be used.

5.3 ALLEGRO_SEEK

typedef enum ALLEGRO_SEEK
Source Code

* ALLEGRO_SEEK SET - seek relative to beginning of file
* ALLEGRO SEEK CUR - seek relative to current file position
* ALLEGRO SEEK _END - seek relative to end of file

See also: al_fseek

5.4 al _fopen

ALLEGRO_FILE xal_fopen(const char *path, const char xmode)

Source Code

Creates and opens a file (real or virtual) given the path and mode. The current file interface is used to
open the file.

Parameters:

* path - path to the file to open
* mode - access mode to open the file in (“r”, “w”, etc.)

Depending on the stream type and the mode string, files may be opened in “text” mode. The handling
of newlines is particularly important. For example, using the default stdio-based streams on DOS and
Windows platforms, where the native end-of-line terminators are CR+LF sequences, a call to al fgetc
may return just one character (\n’) where there were two bytes (CR+LF) in the file. When writing out
“\n’, two bytes would be written instead. (As an aside, “\n’ is not defined to be equal to LF either.)

Newline translations can be useful for text files but is disastrous for binary files. To avoid this
behaviour you need to open file streams in binary mode by using a mode argument containing a “b”,
e.g. “rb”, “wb”.

Returns a file handle on success, or NULL on error.

See also: al_set new file interface, al fclose.

5.5 al fopen_interface
ALLEGRO_FILE xal_fopen_interface(const ALLEGRO_FILE_INTERFACE =xdrv,

const char *path, const char *mode)

Source Code
Opens a file using the specified interface, instead of the interface set with al set new file interface.

See also: al_fopen

44


https://github.com/liballeg/allegro5/blob/master/include/allegro5/file.h#L40
https://github.com/liballeg/allegro5/blob/master/src/file.c#L24
https://github.com/liballeg/allegro5/blob/master/src/file.c#L32

5.6. al fopen_slice

5.6 al_fopen_slice

ALLEGRO_FILE xal_fopen_slice(ALLEGRO_FILE xfp, size_t initial_size, const char *mode)

Source Code

Opens a slice (subset) of an already open random access file as if it were a stand alone file. While the
slice is open, the parent file handle must not be used in any way.

The slice is opened at the current location of the parent file, up through initial_size bytes. The
initial_size may be any non-negative integer that will not exceed the bounds of the parent file.

Seeking with ALLEGRO_SEEK_SET will be relative to this starting location. ALLEGRO_SEEK_END will be
relative to the starting location plus the size of the slice.

The mode can be any combination of:

e r: read access
* W: write access
* e: expandable

For example, a mode of “rw” indicates the file can be read and written. (Note that this is slightly
different from the stdio modes.) Keep in mind that the parent file must support random access and be
open in normal write mode (not append) for the slice to work in a well defined way.

If the slice is marked as expandable, then reads and writes can happen after the initial end point, and
the slice will grow accordingly. Otherwise, all activity is restricted to the initial size of the slice.

A slice must be closed with al fclose. The parent file will then be positioned immediately after the end
of the slice.

Since: 5.0.6, 5.1.0

See also: al_fopen

5.7 al_fclose

bool al_fclose(ALLEGRO_FILE =f)

Source Code
Close the given file, writing any buffered output data (if any).

Returns true on success, false on failure. errno is set to indicate the error.

5.8 al fread

size_t al_fread(ALLEGRO_FILE =f, void #*ptr, size_t size)

Source Code
Read ‘size’ bytes into the buffer pointed to by ‘ptr’, from the given file.

Returns the number of bytes actually read. If an error occurs, or the end-of-file is reached, the return
value is a short byte count (or zero).

al fread() does not distinguish between EOF and other errors. Use al feof and al_ferror to determine
which occurred.

See also: al _fgetc, al fread16be, al _fread16le, al fread32be, al fread32le

45


https://github.com/liballeg/allegro5/blob/master/src/file_slice.c#L205
https://github.com/liballeg/allegro5/blob/master/src/file.c#L86
https://github.com/liballeg/allegro5/blob/master/src/file.c#L101

5. FILEI/O

5.9 al_fwrite

size_t al_fwrite(ALLEGRO_FILE *f, const void *ptr, size_t size)

Source Code
Write ‘size’ bytes from the buffer pointed to by ‘ptr’ into the given file.

Returns the number of bytes actually written. If an error occurs, the return value is a short byte count
(or zero).

See also: al_fputc, al fputs, al fwritel6be, al fwritel6le, al fwrite32be, al fwrite32le

5.10 al_fflush

bool al_fflush(ALLEGRO_FILE f)

Source Code
Flush any pending writes to the given file.
Returns true on success, false otherwise. errno is set to indicate the error.

See also: al_get errno

5.11 al ftell

int64_t al_ftell(ALLEGRO_FILE =*f)

Source Code
Returns the current position in the given file, or -1 on error. errno is set to indicate the error.
On some platforms this function may not support large files.

See also: al fseek, al get errno

5.12 al fseek

bool al_fseek(ALLEGRO_FILE *f, int64_t offset, int whence)

Source Code

Set the current position of the given file to a position relative to that specified by ‘whence’, plus ‘offset’
number of bytes.

‘whence’ can be:

* ALLEGRO_SEEK SET - seek relative to beginning of file
* ALLEGRO_SEEK CUR - seek relative to current file position
* ALLEGRO_SEEK END - seek relative to end of file

Returns true on success, false on failure. errno is set to indicate the error.
After a successful seek, the end-of-file indicator is cleared and all pushback bytes are forgotten.
On some platforms this function may not support large files.

See also: al_ftell, al get errno

46


https://github.com/liballeg/allegro5/blob/master/src/file.c#L126
https://github.com/liballeg/allegro5/blob/master/src/file.c#L138
https://github.com/liballeg/allegro5/blob/master/src/file.c#L148
https://github.com/liballeg/allegro5/blob/master/src/file.c#L158

5.13. al_feof

5.13 al_feof

bool al_feof (ALLEGRO_FILE =*f)

Source Code

Returns true if the end-of-file indicator has been set on the file, i.e. we have attempted to read past the
end of the file.

This does not return true if we simply are at the end of the file. The following code correctly reads two
bytes, even when the file contains exactly two bytes:

int b1 al_fgetc(f);

int b2 = al_fgetc(f);

if (al_feof(f)) {
/* At least one byte was unsuccessfully read. */
report_error();

See also: al ferror, al fclearerr

5.14 al_ferror

int al_ferror (ALLEGRO_FILE =f)

Source Code

Returns non-zero if the error indicator is set on the given file, i.e. there was some sort of previous error.
The error code may be system or file interface specific.

See also: al_feof, al fclearerr, al ferrmsg

5.15 al _ferrmsg

const char *al_ferrmsg(ALLEGRO_FILE =*f)

Source Code

Return a message string with details about the last error that occurred on the given file handle. The
returned string is empty if there was no error, or if the file interface does not provide more information.

See also: al_fclearerr, al ferror

5.16 al fclearerr

void al_fclearerr(ALLEGRO_FILE xf)

Source Code
Clear the error indicator for the given file.

The standard I/0 backend also clears the end-of-file indicator, and other backends should try to do this.
However, they may not if it would require too much effort (e.g. PhysicsFS backend), so your code
should not rely on it if you need your code to be portable to other backends.

See also: al_ferror, al feof

47


https://github.com/liballeg/allegro5/blob/master/src/file.c#L181
https://github.com/liballeg/allegro5/blob/master/src/file.c#L191
https://github.com/liballeg/allegro5/blob/master/src/file.c#L201
https://github.com/liballeg/allegro5/blob/master/src/file.c#L214

5. FILEI/O

5.17 al_fungetc
int al_fungetc(ALLEGRO_FILE *f, int c)

Source Code

Ungets a single byte from a file. Pushed-back bytes are not written to the file, only made available for
subsequent reads, in reverse order.

The number of pushbacks depends on the backend. The standard 1/0 backend only guarantees a single
pushback; this depends on the libc implementation.

For backends that follow the standard behavior, the pushback buffer will be cleared after any seeking
or writing; also calls to al fseek and al_ftell are relative to the number of pushbacks. If a pushback
causes the position to become negative, the behavior of al fseek and al_ftell are undefined.

See also: al fgetc, al get errno

5.18 al_fsize

int64_t al_fsize(ALLEGRO_FILE =*f)

Source Code

Return the size of the file, if it can be determined, or -1 otherwise.

5.19 al fgetc

int al_fgetc(ALLEGRO_FILE *f)

Source Code
Read and return next byte in the given file. Returns EOF on end of file or if an error occurred.

See also: al_fungetc
5.20 al fputc
int al_fputc(ALLEGRO_FILE *f, int c)

Source Code
Write a single byte to the given file. The byte written is the value of ¢ cast to an unsigned char.

Parameters:

* c - byte value to write
* f - file to write to

Returns the written byte (cast back to an int) on success, or EOF on error.
5.21 al_fprintf
int al_fprintf(ALLEGRO_FILE xpfile, const char *format, ...)

Source Code

Writes to a file with stdio “printf”-like formatting. Returns the number of bytes written, or a negative
number on error.

See also: al_vfprintf

48


https://github.com/liballeg/allegro5/blob/master/src/file.c#L497
https://github.com/liballeg/allegro5/blob/master/src/file.c#L523
https://github.com/liballeg/allegro5/blob/master/src/file.c#L224
https://github.com/liballeg/allegro5/blob/master/src/file.c#L239
https://github.com/liballeg/allegro5/blob/master/src/file.c#L576

5.22. al vfprintf

5.22 al_vfprintf

int al_vfprintf (ALLEGRO_FILE *pfile, const char *format, va_list args)

Source Code

Like al_fprintf but takes a va_list. Useful for creating your own variations of formatted printing.
Returns the number of bytes written, or a negative number on error.

See also: al_fprintf

5.23 al fread16le

int16_t al_fread16le(ALLEGRO_FILE =*f)

Source Code
Reads a 16-bit word in little-endian format (LSB first).

On success, returns the 16-bit word. On failure, returns EOF (-1). Since -1 is also a valid return value,
use al_feof to check if the end of the file was reached prematurely, or al_ferror to check if an error
occurred.

See also: al_fread16be

5.24 al_fread16be

int16_t al_freadl6be(ALLEGRO_FILE =*f)

Source Code
Reads a 16-bit word in big-endian format (MSB first).

On success, returns the 16-bit word. On failure, returns EOF (-1). Since -1 is also a valid return value,
use al_feof to check if the end of the file was reached prematurely, or al_ferror to check if an error
occurred.

See also: al_freadl6le

5.25 al fwritel6le

size_t al_fwritel16le(ALLEGRO_FILE *f, int16_t w)

Source Code
Writes a 16-bit word in little-endian format (LSB first).
Returns the number of bytes written: 2 on success, less than 2 on an error.

See also: al_fwritel6be

5.26 al_fwritel6be

size_t al_fwritel6be(ALLEGRO_FILE *f, int16_t w)
Source Code
Writes a 16-bit word in big-endian format (MSB first).

Returns the number of bytes written: 2 on success, less than 2 on an error.

See also: al_fwritel6le

49


https://github.com/liballeg/allegro5/blob/master/src/file.c#L543
https://github.com/liballeg/allegro5/blob/master/src/file.c#L254
https://github.com/liballeg/allegro5/blob/master/src/file.c#L333
https://github.com/liballeg/allegro5/blob/master/src/file.c#L285
https://github.com/liballeg/allegro5/blob/master/src/file.c#L364

5. FILEI/O

5.27 al_fread32le

int32_t al_fread32le(ALLEGRO_FILE =*f)

Source Code
Reads a 32-bit word in little-endian format (LSB first).

On success, returns the 32-bit word. On failure, returns EOF (-1). Since -1 is also a valid return value,
use al_feof to check if the end of the file was reached prematurely, or al ferror to check if an error
occurred.

See also: al_fread32be

5.28 al fread32be

int32_t al_fread32be(ALLEGRO_FILE =*f)

Source Code
Read a 32-bit word in big-endian format (MSB first).

On success, returns the 32-bit word. On failure, returns EOF (-1). Since -1 is also a valid return value,
use al_feof to check if the end of the file was reached prematurely, or al ferror to check if an error
occurred.

See also: al_fread32le

5.29 al fwrite32le

size_t al_fwrite321le(ALLEGRO_FILE *f, int32_t 1)

Source Code
Writes a 32-bit word in little-endian format (LSB first).
Returns the number of bytes written: 4 on success, less than 4 on an error.

See also: al_fwrite32be

5.30 al_fwrite32be

size_t al_fwrite32be(ALLEGRO_FILE *f, int32_t 1)

Source Code
Writes a 32-bit word in big-endian format (MSB first).
Returns the number of bytes written: 4 on success, less than 4 on an error.

See also: al fwrite32le

5.31 al_fgets

char *al_fgets(ALLEGRO_FILE *f, char * const buf, size_t max)

Source Code

Read a string of bytes terminated with a newline or end-of-file into the buffer given. The line
terminator(s), if any, are included in the returned string. A maximum of max-1 bytes are read, with
one byte being reserved for a NUL terminator.

Parameters:

50


https://github.com/liballeg/allegro5/blob/master/src/file.c#L269
https://github.com/liballeg/allegro5/blob/master/src/file.c#L348
https://github.com/liballeg/allegro5/blob/master/src/file.c#L305
https://github.com/liballeg/allegro5/blob/master/src/file.c#L384
https://github.com/liballeg/allegro5/blob/master/src/file.c#L412

5.32. al fget ustr

e f- file to read from
¢ buf - buffer to fill
* max - maximum size of buffer

Returns the pointer to buf on success. Returns NULL if an error occurred or if the end of file was
reached without reading any bytes.

See al_fopen about translations of end-of-line characters.

See also: al fget ustr

5.32 al fget ustr

ALLEGRO_USTR *al_fget_ustr(ALLEGRO_FILE *f)

Source Code

Read a string of bytes terminated with a newline or end-of-file. The line terminator(s), if any, are
included in the returned string.

On success returns a pointer to a new ALLEGRO_USTR structure. This must be freed eventually with
al ustr_free. Returns NULL if an error occurred or if the end of file was reached without reading any

bytes.
See al_fopen about translations of end-of-line characters.

See also: al_fgetc, al fgets

5.33 al fputs

int al_fputs(ALLEGRO_FILE *f, char const *p)

Source Code

Writes a string to file. Apart from the return value, this is equivalent to:
al_fwrite(f, p, strlen(p));
Parameters:

* f- file handle to write to
* p - string to write

Returns a non-negative integer on success, EOF on error.

Note: depending on the stream type and the mode passed to al_fopen, newline characters in the string
may or may not be automatically translated to native end-of-line sequences, e.g. CR/LF instead of LF.

See also: al_fwrite

5.34 Standard I/O specific routines

5.34.1 al_fopen_fd

ALLEGRO_FILE xal_fopen_fd(int fd, const char *mode)

51


https://github.com/liballeg/allegro5/blob/master/src/file.c#L457
https://github.com/liballeg/allegro5/blob/master/src/file.c#L480

5. FILEI/O

Source Code

Create an ALLEGRO_FILE object that operates on an open file descriptor using stdio routines. See the
documentation of fdopen() for a description of the ‘mode’ argument.

Returns an ALLEGRO _FILE object on success or NULL on an error. On an error, the Allegro errno will
be set and the file descriptor will not be closed.

The file descriptor will be closed by al fclose so you should not call close() on it.

See also: al_fopen

5.34.2 al_make temp file

ALLEGRO_FILE xal_make_temp_file(const char *template, ALLEGRO_PATH **ret_path)

Source Code
Make a temporary randomly named file given a filename ‘template’.

‘template’ is a string giving the format of the generated filename and should include one or more
capital Xs. The Xs are replaced with random alphanumeric characters, produced using a simple
pseudo-random number generator only. There should be no path separators.

If ‘ret_path’ is not NULL, the address it points to will be set to point to a new path structure with the
name of the temporary file.

Returns the opened ALLEGRO_FILE on success, NULL on failure.

5.35 Alternative file streams

By default, the Allegro file I/0O routines use the C library I/0O routines, hence work with files on the
local filesystem, but can be overridden so that you can read and write to other streams. For example,
you can work with blocks of memory or sub-files inside .zip files.

There are two ways to get an ALLEGRO_FILE that doesn’t use stdio. An addon library may provide a
function that returns a new ALLEGRO_FILE directly, after which, all al f* calls on that object will use
overridden functions for that type of stream. Alternatively, al set new file interface changes which
function will handle the following al fopen calls for the current thread.

5.35.1 al_set_new_file_interface

void al_set_new_file_interface(const ALLEGRO_FILE_INTERFACE xfile_interface)

Source Code

Set the ALLEGRO_FILE_INTERFACE table for the calling thread. This will change the handler for later
calls to al_fopen.

See also: al_set standard file interface, al store state, al restore_state.

5.35.2 al_set_standard_file_interface

void al_set_standard_file_interface(void)

Source Code

Set the ALLEGRO_FILE_INTERFACE table to the default, for the calling thread. This will change the
handler for later calls to al_fopen.

See also: al_set new file interface

52


https://github.com/liballeg/allegro5/blob/master/src/file_stdio.c#L71
https://github.com/liballeg/allegro5/blob/master/src/file_stdio.c#L463
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L861
https://github.com/liballeg/allegro5/blob/master/src/file_stdio.c#L385

5.35. Alternative file streams

5.35.3 al_get_new _file_interface

const ALLEGRO_FILE_INTERFACE *al_get_new_file_interface(void)

Source Code
Return a pointer to the ALLEGRO_FILE INTERFACE table in effect for the calling thread.

See also: al_store_state, al restore_state.

5.35.4 al_create_file_handle

ALLEGRO_FILE *al_create_file_handle(const ALLEGRO_FILE_INTERFACE *drv,
void *userdata)

Source Code

Creates an empty, opened file handle with some abstract user data. This allows custom interfaces to
extend the ALLEGRO FILE struct with their own data. You should close the handle with the standard
al fclose function when you are finished with it.

See also: al _fopen, al fclose, al_set new file interface

5.35.5 al_get file userdata
void *al_get_file_userdata(ALLEGRO_FILE =*f)

Source Code

Returns a pointer to the custom userdata that is attached to the file handle. This is intended to be used
by functions that extend ALLEGRO_FILE _INTERFACE.

53


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L840
https://github.com/liballeg/allegro5/blob/master/src/file.c#L63
https://github.com/liballeg/allegro5/blob/master/src/file.c#L533




Fixed point math routines

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

6.1 al fixed

typedef int32_t al_fixed;

Source Code
A fixed point number.

Allegro provides some routines for working with fixed point numbers, and defines the type al_fixed to
be a signed 32-bit integer. The high word is used for the integer part and the low word for the fraction,
giving a range of -32768 to 32767 and an accuracy of about four or five decimal places. Fixed point
numbers can be assigned, compared, added, subtracted, negated and shifted (for multiplying or
dividing by powers of two) using the normal integer operators, but you should take care to use the
appropriate conversion routines when mixing fixed point with integer or floating point values. Writing
fixed_point_1 + fixed_point_2 is OK, but fixed_point + integer is not.

The only advantage of fixed point math routines is that you don’t require a floating point coprocessor
to use them. This was great in the time period of i386 and i486 machines, but stopped being so useful
with the coming of the Pentium class of processors. From Pentium onwards, CPUs have increased their
strength in floating point operations, equaling or even surpassing integer math performance. However,
many embedded processors have no FPUs so fixed point maths can still be useful there.

Depending on the type of operations your program may need, using floating point types may be faster
than fixed types if you are targeting a specific machine class.

6.2 al_itofix
al_fixed al_itofix(int x);

Source Code

Converts an integer to fixed point. This is the same thing as x< <16. Remember that overflows (trying
to convert an integer greater than 32767) and underflows (trying to convert an integer lesser than
-32768) are not detected even in debug builds! The values simply “wrap around”.

Example:

al_fixed number;

55


https://github.com/liballeg/allegro5/blob/master/include/allegro5/fixed.h#L30
https://github.com/liballeg/allegro5/blob/master/src/math.c#L332

6. FIXED POINT MATH ROUTINES

/* This conversion is OK. */

number = al_itofix(100);
assert(al_fixtoi(number) == 100);

number = al_itofix(64000);

/* This check will fail in debug builds. x/
assert(al_fixtoi(number) == 64000);

Return value: Returns the value of the integer converted to fixed point ignoring overflows.

See also: al fixtoi, al_ftofix, al fixtof.

6.3 al_fixtoi

int al_fixtoi(al_fixed x);

Source Code
Converts fixed point to integer, rounding as required to the nearest integer.

Example:

int result;

/* This will put 33 into ‘result'. =%/
result = al_fixtoi(al_itofix(100) / 3);

/* But this will round up to 17. */
result = al_fixtoi(al_itofix(100) / 6);

See also: al itofix, al ftofix, al fixtof, al fixfloor, al_fixceil.

6.4 al_fixfloor

int al_fixfloor(al_fixed x);

Source Code
Returns the greatest integer not greater than x. That is, it rounds towards negative infinity.

Example:

int result;

/* This will put 33 into ‘result'. =%/
result = al_fixfloor(al_itofix(100) / 3);

/* And this will round down to 16. %/
result = al_fixfloor(al_itofix(100) / 6);

See also: al fixtoi, al fixceil.

56


https://github.com/liballeg/allegro5/blob/master/src/math.c#L336
https://github.com/liballeg/allegro5/blob/master/src/math.c#L340

6.5. al fixceil

6.5 al_fixceil

int al_fixceil(al_fixed x);

Source Code
Returns the smallest integer not less than x. That is, it rounds towards positive infinity.

Example:

int result;

/* This will put 34 into ‘result'. =%/
result = al_fixceil(al_itofix(100) / 3);

/* This will round up to 17. %/
result = al_fixceil(al_itofix(100) / 6);

See also: al _fixtoi, al_fixfloor.

6.6 al_ftofix

al_fixed al_ftofix(double x);

Source Code

Converts a floating point value to fixed point. Unlike al_itofix, this function clamps values which could

overflow the type conversion, setting Allegro’s errno to ERANGE in the process if this happens.

Example:

al_fixed number;

number = al_itofix(-40000);
assert(al_fixfloor(number) == -32768);

number = al_itofix(64000);
assert(al_fixfloor(number) == 32767);
assert(lal_get_errno()); /* This will fail. =/

Return value: Returns the value of the floating point value converted to fixed point clamping overflows

(and setting Allegro’s errno).

See also: al_fixtof, al itofix, al_fixtoi, al get errno

6.7 al_fixtof

double al_fixtof(al_fixed x);

Source Code
Converts fixed point to floating point.

Example:

57


https://github.com/liballeg/allegro5/blob/master/src/math.c#L344
https://github.com/liballeg/allegro5/blob/master/src/math.c#L348
https://github.com/liballeg/allegro5/blob/master/src/math.c#L352

6. FIXED POINT MATH ROUTINES

float result;

/* This will put 33.33333 into ‘result'. x/
result = al_fixtof(al_itofix(100) / 3);

/* This will put 16.66666 into ‘result'. */
result = al_fixtof(al_itofix(100) / 6);

See also: al_ftofix, al_itofix, al fixtoi.

6.8 al fixmul

al_fixed al_fixmul(al_fixed x, al_fixed y);

Source Code

A fixed point value can be multiplied or divided by an integer with the normal * and / operators. To
multiply two fixed point values, though, you must use this function.

If an overflow occurs, Allegro’s errno will be set and the maximum possible value will be returned, but
errno is not cleared if the operation is successful. This means that if you are going to test for overflow
you should call al_set_errno(@) before calling al_fixmul.

Example:

al_fixed result;

/* This will put 30000 into ‘result'. x/
result = al_fixmul(al_itofix(10), al_itofix(3000));

/* But this overflows, and sets errno. */
result = al_fixmul(al_itofix(100), al_itofix(3000));
assert(lal_get_errno());

Return value: Returns the clamped result of multiplying x by y, setting Allegro’s errno to ERANGE if
there was an overflow.

See also: al_fixadd, al fixsub, al fixdiv, al_get errno.

6.9 al_fixdiv

al_fixed al_fixdiv(al_fixed x, al_fixed y);

Source Code

A fixed point value can be divided by an integer with the normal / operator. To divide two fixed point
values, though, you must use this function. If a division by zero occurs, Allegro’s errno will be set and
the maximum possible value will be returned, but errno is not cleared if the operation is successful.
This means that if you are going to test for division by zero you should call al_set_errno(@) before
calling al_fixdiv.

Example:

al_fixed result;

/* This will put 0.06060 ‘result'. */
result = al_fixdiv(al_itofix(2), al_itofix(33));

58


https://github.com/liballeg/allegro5/blob/master/src/math.c#L364
https://github.com/liballeg/allegro5/blob/master/src/math.c#L368

6.10. al fixadd

/* This will put @ into ‘result'. =*/
result = al_fixdiv(0, al_itofix(-30));

/* Sets errno and puts -32768 into ‘result'. */
result = al_fixdiv(al_itofix(-100), al_itofix(0));
assert(lal_get_errno()); /* This will fail. =*/

Return value: Returns the result of dividing x by y. If y is zero, returns the maximum possible fixed
point value and sets Allegro’s errno to ERANGE.

See also: al fixadd, al fixsub, al fixmul, al get errno.

6.10 al fixadd

al_fixed al_fixadd(al_fixed x, al_fixed y);

Source Code

Although fixed point numbers can be added with the normal + integer operator, that doesn’t provide
any protection against overflow. If overflow is a problem, you should use this function instead. It is
slower than using integer operators, but if an overflow occurs it will set Allegro’s errno and clamp the
result, rather than just letting it wrap.

Example:
al_fixed result;

/* This will put 5035 into ‘result'. =/
result = al_fixadd(al_itofix(5000), al_itofix(35));

/* Sets errno and puts -32768 into ‘result'. */
result = al_fixadd(al_itofix(-31000), al_itofix(-3000));
assert(lal_get_errno()); /* This will fail. =/

Return value: Returns the clamped result of adding x to y, setting Allegro’s errno to ERANGE if there
was an overflow.

See also: al fixsub, al fixmul, al fixdiv.

6.11 al _fixsub

al_fixed al_fixsub(al_fixed x, al_fixed y);

Source Code

Although fixed point numbers can be subtracted with the normal - integer operator, that doesn’t
provide any protection against overflow. If overflow is a problem, you should use this function instead.
It is slower than using integer operators, but if an overflow occurs it will set Allegro’s errno and clamp
the result, rather than just letting it wrap.

Example:

al_fixed result;

/* This will put 4965 into ‘result'. */
result = al_fixsub(al_itofix(5000), al_itofix(35));

/* Sets errno and puts -32768 into ‘result'. */

result = al_fixsub(al_itofix(-31000), al_itofix(3000));
assert(lal_get_errno()); /* This will fail. =/

59


https://github.com/liballeg/allegro5/blob/master/src/math.c#L356
https://github.com/liballeg/allegro5/blob/master/src/math.c#L360

6. FIXED POINT MATH ROUTINES

Return value: Returns the clamped result of subtracting y from x, setting Allegro’s errno to ERANGE if
there was an overflow.

See also: al fixadd, al fixmul, al fixdiv, al get errno.

6.12 Fixed point trig

The fixed point square root, sin, cos, tan, inverse sin, and inverse cos functions are implemented using
lookup tables, which are very fast but not particularly accurate. At the moment the inverse tan uses an
iterative search on the tan table, so it is a lot slower than the others. On machines with good floating
point processors using these functions could be slower Always profile your code.

Angles are represented in a binary format with 256 equal to a full circle, 64 being a right angle and so
on. This has the advantage that a simple bitwise ‘and’ can be used to keep the angle within the range
zero to a full circle.

6.12.1 al_fixtorad_r

const al_fixed al_fixtorad_r = (al_fixed)1608;

Source Code

This constant gives a ratio which can be used to convert a fixed point number in binary angle format to
a fixed point number in radians.

Example:

al_fixed rad_angle, binary_angle;

/* Set the binary angle to 90 degrees. */
binary_angle = 64;

/* Now convert to radians (about 1.57). */
rad_angle = al_fixmul(binary_angle, al_fixtorad_r);

See also: al_fixmul, al radtofix_r.

6.12.2 al radtofix_r

const al_fixed al_radtofix_r = (al_fixed)2670177;

Source Code

This constant gives a ratio which can be used to convert a fixed point number in radians to a fixed
point number in binary angle format.

Example:

al_fixed rad_angle, binary_angle;

binary_angle = al_fixmul(rad_angle, radtofix_r);

See also: al _fixmul, al fixtorad r.

60


https://github.com/liballeg/allegro5/blob/master/src/math.c#L290
https://github.com/liballeg/allegro5/blob/master/src/math.c#L298

6.12. Fixed point trig

6.12.3 al_fixsin

al_fixed al_fixsin(al_fixed x);

Source Code

This function finds the sine of a value using a lookup table. The input value must be a fixed point
binary angle.

Example:

al_fixed angle;
int result;

/* Set the binary angle to 90 degrees. */
angle = al_itofix(64);

/* The sine of 90 degrees is one. */
result = al_fixtoi(al_fixsin(angle));
assert(result == 1);

Return value: Returns the sine of a fixed point binary format angle as a fixed point value.

6.12.4 al_fixcos

al_fixed al_fixcos(al_fixed x);

Source Code

This function finds the cosine of a value using a lookup table. The input value must be a fixed point
binary angle.

Example:

al_fixed angle;
float result;

/* Set the binary angle to 45 degrees. */
angle = al_itofix(32);

/* The cosine of 45 degrees is about 0.7071. x/
result = al_fixtof(al_fixcos(angle));
assert(result > 0.7 && result < 0.71);

Return value: Returns the cosine of a fixed point binary format angle as a fixed point value.

6.12.5 al_fixtan

al_fixed al_fixtan(al_fixed x);

Source Code

This function finds the tangent of a value using a lookup table. The input value must be a fixed point
binary angle.

Example:

61


https://github.com/liballeg/allegro5/blob/master/src/math.c#L376
https://github.com/liballeg/allegro5/blob/master/src/math.c#L372
https://github.com/liballeg/allegro5/blob/master/src/math.c#L380

6. FIXED POINT MATH ROUTINES

al_fixed angle, res_a, res_b;
float dif;

angle = al_itofix(37);

/* Prove that tan(angle) == sin(angle) / cos(angle). =*/
res_a = al_fixdiv(al_fixsin(angle), al_fixcos(angle));
res_b = al_fixtan(angle);

dif = al_fixtof(al_fixsub(res_a, res_b));
printf("Precision error: %f\n", dif);

Return value: Returns the tangent of a fixed point binary format angle as a fixed point value.

6.12.6 al_fixasin

al_fixed al_fixasin(al_fixed x);

Source Code

This function finds the inverse sine of a value using a lookup table. The input value must be a fixed
point value. The inverse sine is defined only in the domain from -1 to 1. Outside of this input range,
the function will set Allegro’s errno to EDOM and return zero.

Example:

float angle;
al_fixed val;

/* Sets ‘val' to a right binary angle (64). */
val = al_fixasin(al_itofix(1));

/* Sets ‘angle' to 0.2405. %/
angle = al_fixtof(al_fixmul(al_fixasin(al_ftofix(0.238)), al_fixtorad_r));

/* This will trigger the assert. */
val = al_fixasin(al_ftofix(-1.09));
assert(lal_get_errno());

Return value: Returns the inverse sine of a fixed point value, measured as fixed point binary format
angle, or zero if the input was out of the range. All return values of this function will be in the range
-64 to 64.

6.12.7 al_fixacos

al_fixed al_fixacos(al_fixed x);

Source Code

This function finds the inverse cosine of a value using a lookup table. The input must be a fixed point
value. The inverse cosine is defined only in the domain from -1 to 1. Outside of this input range, the
function will set Allegro’s errno to EDOM and return zero.

Example:

al_fixed result;

/* Sets result to binary angle 128. */
result = al_fixacos(al_itofix(-1));

62


https://github.com/liballeg/allegro5/blob/master/src/math.c#L388
https://github.com/liballeg/allegro5/blob/master/src/math.c#L384

6.12. Fixed point trig

Return value: Returns the inverse sine of a fixed point value, measured as fixed point binary format
angle, or zero if the input was out of range. All return values of this function will be in the range 0 to
128.

6.12.8 al_fixatan

al_fixed al_fixatan(al_fixed x)

Source Code

This function finds the inverse tangent of a value using a lookup table. The input must be a fixed point
value. The inverse tangent is the value whose tangent is x.

Example:

al_fixed result;

result = al_fixatan(al_ftofix(0.326));

Return value: Returns the inverse tangent of a fixed point value, measured as a fixed point binary
format angle.
6.12.9 al_fixatan2

al_fixed al_fixatan2(al_fixed y, al_fixed x)

Source Code

This is a fixed point version of the libc atan2() routine. It computes the arc tangent of y / x, but the
signs of both arguments are used to determine the quadrant of the result, and x is permitted to be zero.
This function is useful to convert Cartesian coordinates to polar coordinates.

Example:

al_fixed result;

result = al_fixatan2(al_itofix(1), 0);

result = al_fixatan2(al_itofix(-1), al_itofix(-2));

result = al_fixatan2(0, 0);
assert(lal_get_errno());

Return value: Returns the arc tangent of y / x in fixed point binary format angle, from -128 to 128. If
both x and y are zero, returns zero and sets Allegro’s errno to EDOM.

6.12.10 al_fixsqrt
al_fixed al_fixsqrt(al_fixed x)

Source Code

This finds out the non negative square root of x. If x is negative, Allegro’s errno is set to EDOM and the
function returns zero.

63


https://github.com/liballeg/allegro5/blob/master/src/math.c#L215
https://github.com/liballeg/allegro5/blob/master/src/math.c#L252
https://github.com/liballeg/allegro5/blob/master/src/math.c#L305

6. FIXED POINT MATH ROUTINES

6.12.11 al_fixhypot
al_fixed al_fixhypot(al_fixed x, al_fixed y)

Source Code

Fixed point hypotenuse (returns the square root of x*x + yxy). This should be better than calculating
the formula yourself manually, since the error is much smaller.

64


https://github.com/liballeg/allegro5/blob/master/src/math.c#L321

File system routines

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

These functions allow access to the filesystem. This can either be the real filesystem like your
harddrive, or a virtual filesystem like a .zip archive (or whatever else you or an addon makes it do).

7.1 ALLEGRO_FS_ENTRY

typedef struct ALLEGRO_FS_ENTRY ALLEGRO_FS_ENTRY;

Source Code

Opaque filesystem entry object. Represents a file or a directory (check with al_get fs entry mode).
There are no user accessible member variables.

7.2 ALLEGRO _FILE_MODE

typedef enum ALLEGRO_FILE_MODE

Source Code

Filesystem modes/types

* ALLEGRO FILEMODE RFEAD - Readable

* ALLEGRO FILEMODE WRITE - Writable

* ALLEGRO FILEMODE EXECUTE - Executable
* ALLEGRO FILEMODE HIDDEN - Hidden

* ALLEGRO_FILEMODE ISFILE - Regular file

* ALLEGRO FILEMODE ISDIR - Directory

7.3 al_create_fs_entry

ALLEGRO_FS_ENTRY *al_create_fs_entry(const char *path)

Source Code

Creates an ALLEGRO_FS_ENTRY object pointing to path on the filesystem. ‘path’ can be a file or a
directory and must not be NULL.

65


https://github.com/liballeg/allegro5/blob/master/include/allegro5/fshook.h#L37
https://github.com/liballeg/allegro5/blob/master/include/allegro5/fshook.h#L46
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L28

7. FILE SYSTEM ROUTINES

7.4 al_destroy_fs_entry

void al_destroy_fs_entry(ALLEGRO_FS_ENTRY =*fh)

Source Code

Destroys a fs entry handle. The file or directory represented by it is not destroyed. If the entry was
opened, it is closed before being destroyed.

Does nothing if passed NULL.

7.5 al get fs entry name

const char *al_get_fs_entry_name(ALLEGRO_FS_ENTRY xe)

Source Code

Returns the entry’s filename path. Note that the filesystem encoding may not be known and the
conversion to UTF-8 could in very rare cases cause this to return an invalid path. Therefore it’s always
safest to access the file over its ALLEGRO_FS_ENTRY and not the path.

On success returns a read only string which you must not modify or destroy. Returns NULL on failure.

Note: prior to 5.1.5 it was written: “... the path will not be an absolute path if the entry
wasn’t created from an absolute path”. This is no longer true.

7.6 al_update_fs_entry

bool al_update_fs_entry(ALLEGRO_FS_ENTRY xe)

Source Code

Updates file status information for a filesystem entry. File status information is automatically updated
when the entry is created, however you may update it again with this function, e.g. in case it changed.

Returns true on success, false on failure. Fills in errno to indicate the error.

See also: al_get errno, al get fs entry atime, al get fs entry ctime, al get fs entry mode

7.7 al_get_fs_entry_mode

uint32_t al_get_fs_entry_mode (ALLEGRO_FS_ENTRY *e)

Source Code
Returns the entry’s mode flags, i.e. permissions and whether the entry refers to a file or directory.

See also: al_get errno, ALLEGRO_FILE_MODE

7.8 al get fs entry atime

time_t al_get_fs_entry_atime(ALLEGRO_FS_ENTRY x*e)

Source Code
Returns the time in seconds since the epoch since the entry was last accessed.

Warning: some filesystems either don’t support this flag, or people turn it off to increase performance.
It may not be valid in all circumstances.

See also: al_get fs entry ctime, al get fs entry mtime, al update fs entry

66


https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L38
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L48
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L58
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L68
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L78

7.9. al get fs entry ctime

7.9 al get fs entry ctime
time_t al_get_fs_entry_ctime(ALLEGRO_FS_ENTRY x*e)
Source Code

Returns the time in seconds since the epoch this entry was created on the filesystem.

See also: al_get fs entry atime, al get fs entry mtime, al update fs entry

7.10 al_get_fs_entry_mtime
time_t al_get_fs_entry_mtime (ALLEGRO_FS_ENTRY *e)
Source Code

Returns the time in seconds since the epoch since the entry was last modified.

See also: al_get fs entry atime, al get fs entry ctime, al update fs entry

7.11 al get fs entry size
of f_t al_get_fs_entry_size(ALLEGRO_FS_ENTRY xe)
Source Code

Returns the size, in bytes, of the given entry. May not return anything sensible for a directory entry.

See also: al update fs entry

7.12 al _fs_entry_exists
bool al_fs_entry_exists(ALLEGRO_FS_ENTRY xe)

Source Code

Check if the given entry exists on in the filesystem. Returns true if it does exist or false if it doesn’t
exist, or an error occurred. Error is indicated in Allegro’s errno.

See also: al filename exists

7.13 al_remove_fs_entry
bool al_remove_fs_entry(ALLEGRO_FS_ENTRY xe)
Source Code
Delete this filesystem entry from the filesystem. Only files and empty directories may be deleted.

Returns true on success, and false on failure, error is indicated in Allegro’s errno.

See also: al filename exists

7.14 al filename_exists

bool al_filename_exists(const char *path)

Source Code
Check if the path exists on the filesystem, without creating an ALLEGRO_FS_ENTRY object explicitly.

See also: al fs entry exists

67


https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L98
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L88
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L108
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L128
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L118
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L202

7. FILE SYSTEM ROUTINES

7.15 al_remove_filename

bool al_remove_filename(const char *path)

Source Code

Delete the given path from the filesystem, which may be a file or an empty directory. This is the same
as al_ remove_fs_entry, except it expects the path as a string.

Returns true on success, and false on failure. Allegro’s errno is filled in to indicate the error.

See also: al_remove fs_entry

7.16 Directory functions

7.16.1 al_open_directory

bool al_open_directory(ALLEGRO_FS_ENTRY =xe)

Source Code

Opens a directory entry object. You must call this before using al read directory on an entry and you
must call al close_directory when you no longer need it.

Returns true on success.

See also: al read_directory, al close_directory

7.16.2 al_read_directory

ALLEGRO_FS_ENTRY =*al_read_directory(ALLEGRO_FS_ENTRY =*e)

Source Code
Reads the next directory item and returns a filesystem entry for it.

Returns NULL if there are no more entries or if an error occurs. Call al_destroy fs_entry on the
returned entry when you are done with it.

This function will ignore any files or directories named . or .. which may exist on certain platforms
and may signify the current and the parent directory.

See also: al open_directory, al close_directory

7.16.3 al_close_directory

bool al_close_directory(ALLEGRO_FS_ENTRY =*e)

Source Code
Closes a previously opened directory entry object.
Returns true on success, false on failure and fills in Allegro’s errno to indicate the error.

See also: al _open_directory, al read directory

68


https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L214
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L138
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L158
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L148

7.16. Directory functions

7.16.4 al_get_current_directory

char *al_get_current_directory(void)

Source Code

Returns the path to the current working directory, or NULL on failure. The returned path is
dynamically allocated and must be destroyed with al _free.

Allegro’s errno is filled in to indicate the error if there is a failure. This function may not be
implemented on some (virtual) filesystems.

See also: al _get errno, al_free

7.16.5 al_change directory

bool al_change_directory(const char *path)

Source Code
Changes the current working directory to ‘path’.

Returns true on success, false on error.

7.16.6 al_make_directory

bool al_make_directory(const char #*path)

Source Code
Creates a new directory on the filesystem. This function also creates any parent directories as needed.

Returns true on success (including if the directory already exists), otherwise returns false on error. Fills
in Allegro’s errno to indicate the error.

See also: al get errno

7.16.7 al_open_fs_entry
ALLEGRO_FILE *al_open_fs_entry(ALLEGRO_FS_ENTRY *e, const char *mode)

Source Code

Open an ALLEGRO_FILE handle to a filesystem entry, for the given access mode. This is like calling
al fopen with the name of the filesystem entry, but uses the appropriate file interface, not whatever
was set with the latest call to al set new file interface.

Returns the handle on success, NULL on error.

See also: al_fopen

7.16.8 ALLEGRO FOR_FACH_FS_ENTRY RESULT
typedef enum ALLEGRO_FOR_EACH_FS_ENTRY_RESULT {

Source Code

Return values for the callbacks of al for each fs entry and for that function itself.

* ALLEGRO _FOR _EACH_FS _ENTRY ERROR - An error ocurred.
ALLEGRO_FOR_EACH_FS_ENTRY_ OK - Continue normally and recurse into directories.
* ALLEGRO FOR_EACH FS ENTRY SKIP - Continue but do NOT recusively descend.
ALLEGRO FOR_EACH_FS ENTRY STOP - Stop iterating and return.

69


https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L168
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L178
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L190
https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L226
https://github.com/liballeg/allegro5/blob/master/include/allegro5/fshook.h#L124

7. FILE SYSTEM ROUTINES

See also: al _for each fs entry

Since: 5.1.9

7.16.9 al _for_each_fs entry

int al_for_each_fs_entry(ALLEGRO_FS_ENTRY =*dir,
int (*callback) (ALLEGRO_FS_ENTRY xdir, void =*extra),
void *extra)

Source Code

This function takes the ALLEGRO _FS ENTRY dir, which should represent a directory, and looks for
any other file system entries that are in it. This function will then call the callback function callback
once for every filesystem entry in the directory dir.

The callback callback must be of type int callback (ALLEGRO_FS_ENTRY * entry, void * extra).
The callback will be called with a pointer to an ALLEGRO_FS_ENTRY that matches one file or
directory in dir, and the pointer passed in the extra parameter to al for each fs entry.

When callback returns ALLEGRO_FOR_EACH_FS_ENTRY_STOP or ALLEGRO_FOR_EACH_FS_ENTRY_ERROR,
iteration will stop immediately and al for each fs entry will return the value the callback returned.

When callback returns ALLEGRO_FOR_EACH_FS_ENTRY_OK iteration will continue normally, and if the
ALLEGRO_FS_ENTRY parameter of callback is a directory, al_for each fs entry will call itself on that
directory. Therefore the function will recusively descend into that directory.

However, when callback returns ALLEGRO_FOR_EACH_FS_ENTRY_SKIP iteration will continue, but
al for each fs_entry will NOT recurse into the ALLEGRO_FS_ENTRY parameter of callback even if it
is a directory.

This function will skip any files or directories named . or .. which may exist on certain platforms and
may signify the current and the parent directory. The callback will not be called for files or directories
with such a name.

Returns ALLEGRO _FOR EACH_FS ENTRY_ OK if successful, or
ALLEGRO_FOR_EACH_FS ENTRY ERROR if something went wrong in processing the directory. In
that case it will use al_set_errno to indicate the type of error which occurred. This function returns
ALLEGRO_FOR_EACH_FS ENTRY_ STOP in case iteration was stopped by making callback return that
value. In this case, al set _errno will not be used.

See also: ALLEGRO_FOR_EACH_FS ENTRY RESULT
Since: 5.1.9

7.17 Alternative filesystem functions

By default, Allegro uses platform specific filesystem functions for things like directory access. However
if for example the files of your game are not in the local filesystem but inside some file archive, you can
provide your own set of functions (or use an addon which does this for you, for example our physfs
addon allows access to the most common archive formats).

7.17.1 ALLEGRO_FS_INTERFACE
typedef struct ALLEGRO_FS_INTERFACE ALLEGRO_FS_INTERFACE;

Source Code

The available functions you can provide for a filesystem. They are:

ALLEGRO_FS_ENTRY * fs_create_entry (const char #*path);
void fs_destroy_entry (ALLEGRO_FS_ENTRY =*e);

70


https://github.com/liballeg/allegro5/blob/master/src/fshook.c#L242
https://github.com/liballeg/allegro5/blob/master/include/allegro5/fshook.h#L64

7.17. Alternative filesystem functions

const char * fs_entry_name (ALLEGRO_FS_ENTRY =*e);
bool fs_update_entry  (ALLEGRO_FS_ENTRY =*e);
uint32_t fs_entry_mode (ALLEGRO_FS_ENTRY =*e);
time_t fs_entry_atime (ALLEGRO_FS_ENTRY =*e);
time_t fs_entry_mtime (ALLEGRO_FS_ENTRY =*e);
time_t fs_entry_ctime (ALLEGRO_FS_ENTRY =*e);
of f_t fs_entry_size (ALLEGRO_FS_ENTRY =*e);
bool fs_entry_exists  (ALLEGRO_FS_ENTRY =*e);
bool fs_remove_entry  (ALLEGRO_FS_ENTRY =*e);
bool fs_open_directory (ALLEGRO_FS_ENTRY =*e);
ALLEGRO_FS_ENTRY * fs_read_directory (ALLEGRO_FS_ENTRY =xe);
bool fs_close_directory(ALLEGRO_FS_ENTRY =*e);
bool fs_filename_exists(const char xpath);
bool fs_remove_filename(const char *path);
char * fs_get_current_directory(void);

bool fs_change_directory(const char *path);
bool fs_make_directory(const char #*path);
ALLEGRO_FILE =* fs_open_file(ALLEGRO_FS_ENTRY xe);

7.17.2 al_set_fs_interface

void al_set_fs_interface(const ALLEGRO_FS_INTERFACE *fs_interface)

Source Code
Set the ALLEGRO_FS_INTERFACE table for the calling thread.

See also: al_set standard fs interface, al store state, al restore_state.

7.17.3 al_set_standard fs_interface

void al_set_standard_fs_interface(void)

Source Code
Return the ALLEGRO_FS INTERFACE table to the default, for the calling thread.

See also: al_set fs interface.

7.17.4 al_get fs_interface
const ALLEGRO_FS_INTERFACE =*al_get_fs_interface(void)

Source Code
Return a pointer to the ALLEGRO_FS_INTERFACE table in effect for the calling thread.

See also: al _store state, al restore_state.

71


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L891
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L904
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L874




Fullscreen modes

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

8.1 ALLEGRO DISPLAY MODE

typedef struct ALLEGRO_DISPLAY_MODE

Source Code

Used for fullscreen mode queries. Contains information about a supported fullscreen modes.

typedef struct ALLEGRO_DISPLAY_MODE {

int width; // Screen width
int height; // Screen height
int format; // The pixel format of the mode
int refresh_rate; // The refresh rate of the mode

} ALLEGRO_DISPLAY_MODE;

The refresh_rate may be zero if unknown.
For an explanation of what format means, see ALLEGRO PIXEL FORMAT.

See also: al_get display mode

8.2 al get display mode

ALLEGRO_DISPLAY_MODE *al_get_display_mode(int index, ALLEGRO_DISPLAY_MODE =*mode)

Source Code

Retrieves a fullscreen mode. Display parameters should not be changed between a call of

al get num_display modes and al get display mode. index must be between 0 and the number
returned from al get num_display modes-1. mode must be an allocated ALLEGRO DISPLAY MODE
structure. This function will return NULL on failure, and the mode parameter that was passed in on
success.

See also: ALLEGRO_DISPLAY MODE, al get num_display modes

73


https://github.com/liballeg/allegro5/blob/master/include/allegro5/fullscreen_mode.h#L13
https://github.com/liballeg/allegro5/blob/master/src/fullscreen_mode.c#L32

8. FULLSCREEN MODES

8.3 al_get num_display_modes

int al_get_num_display_modes(void)

Source Code

Get the number of available fullscreen display modes for the current set of display parameters. This
will use the values set with al set new_display refresh_rate, and al set new_display_flags to find the
number of modes that match. Settings the new display parameters to zero will give a list of all modes
for the default driver.

See also: al_get display mode

74


https://github.com/liballeg/allegro5/blob/master/src/fullscreen_mode.c#L23

Graphics routines

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

9.1 Colors

9.1.1 ALLEGRO_COLOR
typedef struct ALLEGRO_COLOR ALLEGRO_COLOR;

Source Code

An ALLEGRO_COLOR structure describes a color in a device independent way. Use al map_rgb et al.
and al unmap_rgb et al. to translate from and to various color representations.

9.1.2 al map_rgb
ALLEGRO_COLOR al_map_rgb(

unsigned char r, unsigned char g, unsigned char b)

Source Code
Convert 1, g, b (ranging from 0-255) into an ALLEGRO_COLOR, using 255 for alpha.

See also: al map rgba, al map rgba f, al map rgb f

9.1.3 al map_rgb_f
ALLEGRO_COLOR al_map_rgb_f(float r, float g, float b)

Source Code
Convert 1, g, b, (ranging from 0.0f-1.0f) into an ALLEGRO_COLOR, using 1.0f for alpha.

See also: al map rgba, al map rgb, al map rgba f

9.1.4 al_map_rgba
ALLEGRO_COLOR al_map_rgba(

unsigned char r, unsigned char g, unsigned char b, unsigned char a)

Source Code
Convert 1, g, b, a (ranging from 0-255) into an ALLEGRO_COLOR.

See also: al map rgb, al premul rgba, al map rgb f

75


https://github.com/liballeg/allegro5/blob/master/include/allegro5/color.h#L13
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L599
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L634
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L577

9. GRAPHICS ROUTINES

9.1.5 al premul_rgba

ALLEGRO_COLOR al_premul_rgba(
unsigned char r, unsigned char g, unsigned char b, unsigned char a)

Source Code
This is a shortcut for al map_rgba(r * a / 255, g *a/ 255, b * a / 255, a).

By default Allegro uses pre-multiplied alpha for transparent blending of bitmaps and primitives (see
al load bitmap flags for a discussion of that feature). This means that if you want to tint a bitmap or
primitive to be transparent you need to multiply the color components by the alpha components when
you pass them to this function. For example:

int r = 255;
int g = 0;
int b = 0;
int a = 127;

ALLEGRO_COLOR ¢ = al_premul_rgba(r, g, b, a);
/* Draw the bitmap tinted red and half-transparent. */
al_draw_tinted_bitmap(bmp, c, @, 0, 0);

Since: 5.1.12

See also: al map rgba, al premul rgba f

9.1.6 al_map rgba f
ALLEGRO_COLOR al_map_rgba_f(float r, float g, float b, float a)

Source Code
Convert 1, g, b, a (ranging from 0.0f-1.0f) into an ALLEGRO_COLOR.

See also: al map rgba, al premul rgba f, al map rgb f

9.1.7 al_premul_rgba_f
ALLEGRO_COLOR al_premul_rgba_f(float r, float g, float b, float a)

Source Code
This is a shortcut for al map _rgba f(r *a, g * a, b * a, a).

By default Allegro uses pre-multiplied alpha for transparent blending of bitmaps and primitives (see

al load bitmap flags for a discussion of that feature). This means that if you want to tint a bitmap or
primitive to be transparent you need to multiply the color components by the alpha components when
you pass them to this function. For example:

float r
float g
float b ;

float a = 0.5;

ALLEGRO_COLOR ¢ = al_premul_rgba_f(r, g, b, a);

/* Draw the bitmap tinted red and half-transparent. */
al_draw_tinted_bitmap(bmp, c, 0, 0, 0);

’

’

1
o =

Since: 5.1.12

See also: al map rgba f, al premul rgba

76


https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L588
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L608
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L621

9.2. Locking and pixel formats

9.1.8 al unmap_rgb

void al_unmap_rgb(ALLEGRO_COLOR color,
unsigned char *r, unsigned char *g, unsigned char =*b)

Source Code
Retrieves components of an ALLEGRO COLOR, ignoring alpha. Components will range from 0-255.

See also: al unmap rgba, al unmap rgba f, al unmap rgb f

9.1.9 al unmap rgb_f
void al_unmap_rgb_f (ALLEGRO_COLOR color, float *r, float *g, float *b)

Source Code
Retrieves components of an ALLEGRO COLOR, ignoring alpha. Components will range from 0.0f-1.0f.

See also: al unmap_rgba, al unmap_rgb, al unmap_rgba f

9.1.10 al_unmap_rgba

void al_unmap_rgba(ALLEGRO_COLOR color,
unsigned char *r, unsigned char *g, unsigned char *b, unsigned char xa)

Source Code
Retrieves components of an ALLEGRO COLOR. Components will range from 0-255.

See also: al unmap_rgb, al unmap _rgba f, al unmap rgb f

9.1.11 al_unmap_rgba_f

void al_unmap_rgba_f (ALLEGRO_COLOR color,
float xr, float *g, float *b, float =*a)

Source Code
Retrieves components of an ALLEGRO COLOR. Components will range from 0.0f-1.0f.

See also: al unmap_rgba, al unmap_rgb, al unmap_rgb f

9.2 Locking and pixel formats

9.2.1 ALLEGRO_LOCKED_REGION
typedef struct ALLEGRO_LOCKED_REGION ALLEGRO_LOCKED_REGION;

Source Code

Users who wish to manually edit or read from a bitmap are required to lock it first. The
ALLEGRO_LOCKED REGION structure represents the locked region of the bitmap. This call will work
with any bitmap, including memory bitmaps.

typedef struct ALLEGRO_LOCKED_REGION {
void xdata;
int format;
int pitch;
int pixel_size;
} ALLEGRO_LOCKED_REGION;

77


https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L657
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L680
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L645
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L668
https://github.com/liballeg/allegro5/blob/master/include/allegro5/bitmap_lock.h#L23

9. GRAPHICS ROUTINES

* data points to the leftmost pixel of the first row (row 0) of the locked region. For blocked
formats, this points to the leftmost block of the first row of blocks.

* format indicates the pixel format of the data.

* pitch gives the size in bytes of a single row (also known as the stride). The pitch may be greater
than width * pixel_size due to padding; this is not uncommon. It is also not uncommon for the
pitch to be negative (the bitmap may be upside down). For blocked formats, ‘row’ refers to the
row of blocks, not of pixels.

* pixel_size is the number of bytes used to represent a single block of pixels for the pixel format of
this locked region. For most formats (and historically, this used to be true for all formats), this is
just the size of a single pixel, but for blocked pixel formats this value is different.

See also: al lock bitmap, al lock bitmap region, al unlock bitmap, ALLEGRO_ PIXEL, FORMAT

9.2.2 ALLEGRO_PIXEL_FORMAT
typedef enum ALLEGRO_PIXEL_FORMAT

Source Code

Pixel formats. Each pixel format specifies the exact size and bit layout of a pixel in memory.
Components are specified from high bits to low bits, so for example a fully opaque red pixel in
ARGB_8888 format is OXFFFF0000.

Note:

The pixel format is independent of endianness. That is, in the above example you can
always get the red component with

(pixel & 0x00ff000Q) >> 16
But you can not rely on this code:
*(pixel + 2)

It will return the red component on little endian systems, but the green component on big
endian systems.

Also note that Allegro’s naming is different from OpenGL naming here, where a format of GL_ RGBA8
merely defines the component order and the exact layout including endianness treatment is specified
separately. Usually GL_RGBAS8 will correspond to ALLEGRO_PIXEL ABGR 8888 though on little
endian systems, so care must be taken (note the reversal of RGBA <-> ABGR).

The only exception to this ALLEGRO_PIXEL_FORMAT ABGR_8888 LE which will always have the
components as 4 bytes corresponding to red, green, blue and alpha, in this order, independent of the
endianness.

Some of the pixel formats represent compressed bitmap formats. Compressed bitmaps take up less
space in the GPU memory than bitmaps with regular (uncompressed) pixel formats. This smaller
footprint means that you can load more resources into GPU memory, and they will be drawn somewhat
faster. The compression is lossy, however, so it is not appropriate for all graphical styles: it tends to
work best for images with smooth color gradations. It is possible to compress bitmaps at runtime by
passing the appropriate bitmap format in al_set_new_bitmap_format and then creating, loading,
cloning or converting a non-compressed bitmap. This, however, is not recommended as the
compression quality differs between different GPU drivers. It is recommended to compress these
bitmaps ahead of time using external tools and then load them compressed.

Unlike regular pixel formats, compressed pixel formats are not laid out in memory one pixel row at a
time. Instead, the bitmap is subdivided into rectangular blocks of pixels that are then laid out in block

78


https://github.com/liballeg/allegro5/blob/master/include/allegro5/color.h#L23

9.2. Locking and pixel formats

rows. This means that regular locking functions cannot use compressed pixel formats as the
destination format. Instead, you can use the blocked versions of the bitmap locking functions which do
support these formats.

It is not recommended to use compressed bitmaps as target bitmaps, as that operation cannot be
hardware accelerated. Due to proprietary algorithms used, it is typically impossible to create
compressed memory bitmaps.

* ALLEGRO PIXEL FORMAT ANY - Let the driver choose a format. This is the default format at
program start.

* ALLEGRO PIXEL FORMAT ANY NO ALPHA - Let the driver choose a format without alpha.

* ALLEGRO _PIXEL FORMAT ANY WITH_ALPHA - Let the driver choose a format with alpha.

* ALLEGRO_PIXEL FORMAT ANY 15 NO_ALPHA - Let the driver choose a 15 bit format without
alpha.

* ALLEGRO PIXEL FORMAT ANY 16 NO ALPHA - Let the driver choose a 16 bit format without
alpha.

* ALLEGRO PIXEL FORMAT ANY 16 WITH ALPHA - Let the driver choose a 16 bit format with
alpha.

* ALLEGRO_PIXEL FORMAT ANY 24 NO_ALPHA - Let the driver choose a 24 bit format without
alpha.

* ALLEGRO PIXEL FORMAT ANY 32 NO ALPHA - Let the driver choose a 32 bit format without
alpha.

* ALLEGRO_PIXEL FORMAT ANY 32 WITH ALPHA - Let the driver choose a 32 bit format with
alpha.

 ALLEGRO PIXEL FORMAT ARGB_8888 - 32 bit

« ALLEGRO PIXEL FORMAT RGBA 8888 - 32 bit

 ALLEGRO PIXEL FORMAT ARGB_4444 - 16 bit

* ALLEGRO PIXEL FORMAT RGB_888 - 24 bit

* ALLEGRO_PIXEL FORMAT RGB_565 - 16 bit

+ ALLEGRO PIXEL_FORMAT RGB_555 - 15 bit

« ALLEGRO PIXEL FORMAT RGBA 5551 - 16 bit

 ALLEGRO PIXEL _FORMAT ARGB_1555 - 16 bit

* ALLEGRO PIXEL FORMAT ABGR 8888 - 32 bit

 ALLEGRO PIXEL_FORMAT XBGR_8888 - 32 bit

 ALLEGRO_ PIXEL FORMAT BGR_888 - 24 bit

« ALLEGRO PIXEL_FORMAT BGR_565 - 16 bit

« ALLEGRO PIXEL _FORMAT BGR 555 - 15 bit

* ALLEGRO PIXEL FORMAT RGBX 8888 - 32 bit

* ALLEGRO PIXEL FORMAT XRGB 8888 - 32 bit

* ALLEGRO PIXEL FORMAT ABGR_F32 - 128 bit

* ALLEGRO PIXEL FORMAT ABGR 8888 LE - Like the version without LE, but the component
order is guaranteed to be red, green, blue, alpha. This only makes a difference on big endian
systems, on little endian it is just an alias.

 ALLEGRO PIXEL FORMAT RGBA 4444 - 16bit

* ALLEGRO_PIXEL FORMAT SINGLE CHANNEL 8 - A single 8-bit channel. A pixel value maps
onto the red channel when displayed, but it is undefined how it maps onto green, blue and alpha
channels. When drawing to bitmaps of this format, only the red channel is taken into account.
Allegro may have to use fallback methods to render to bitmaps of this format. This pixel format is
mainly intended for storing the color indices of an indexed (paletted) image, usually in
conjunction with a pixel shader that maps indices to RGBA values. Since 5.1.2.

* ALLEGRO_PIXEL_FORMAT COMPRESSED RGBA DXT1 - Compressed using the DXT1
compression algorithm. Each 4x4 pixel block is encoded in 64 bytes, resulting in 6-8x
compression ratio. Only a single bit of alpha per pixel is supported. Since 5.1.9.

* ALLEGRO PIXEL FORMAT COMPRESSED RGBA DXT3 - Compressed using the DXT3
compression algorithm. Each 4x4 pixel block is encoded in 128 bytes, resulting in 4x
compression ratio. This format supports sharp alpha transitions. Since 5.1.9.

* ALLEGRO PIXEL FORMAT COMPRESSED RGBA DXTS5 - Compressed using the DXT5
compression algorithm. Each 4x4 pixel block is encoded in 128 bytes, resulting in 4x

79



9. GRAPHICS ROUTINES

compression ratio. This format supports smooth alpha transitions. Since 5.1.9.
See also: al_set new_bitmap_format, al get bitmap_ format

9.2.3 al_get pixel size

int al_get_pixel_size(int format)

Source Code

Return the number of bytes that a pixel of the given format occupies. For blocked pixel formats
(e.g. compressed formats), this returns O.

See also: ALLEGRO_PIXEL FORMAT, al get pixel format bits

9.2.4 al _get pixel format bits

int al_get_pixel_format_bits(int format)

Source Code

Return the number of bits that a pixel of the given format occupies. For blocked pixel formats
(e.g. compressed formats), this returns O.

See also: ALLEGRO_PIXEL _FORMAT, al get pixel size

9.2.5 al_get_pixel block_size

int al_get_pixel_block_size(int format)

Source Code

Return the number of bytes that a block of pixels with this format occupies.

Since: 5.1.9.

See also: ALLEGRO_PIXEL FORMAT, al_get pixel block width, al get pixel block height

9.2.6 al_get pixel block width

int al_get_pixel_block_width(int format)

Source Code

Return the width of the the pixel block for this format.

Since: 5.1.9.

See also: ALLEGRO_PIXEL FORMAT, al get pixel block size, al get pixel block height

9.2.7 al_get_pixel_block_height
int al_get_pixel_block_height(int format)

Source Code

Return the height of the the pixel block for this format.

Since: 5.1.9.

See also: ALLEGRO_PIXFEL, FORMAT, al get pixel block size, al get pixel block width

80


https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L422
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L430
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L398
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L406
https://github.com/liballeg/allegro5/blob/master/src/pixels.c#L414

9.2. Locking and pixel formats

9.2.8 al lock_bitmap

ALLEGRO_LOCKED_REGION *al_lock_bitmap(ALLEGRO_BITMAP *xbitmap,
int format, int flags)

Source Code

Lock an entire bitmap for reading or writing. If the bitmap is a display bitmap it will be updated from
system memory after the bitmap is unlocked (unless locked read only). Returns NULL if the bitmap
cannot be locked, e.g. the bitmap was locked previously and not unlocked. This function also returns
NULL if the format is a compressed format.

Flags are:

* ALLEGRO LOCK READONLY - The locked region will not be written to. This can be faster if the
bitmap is a video texture, as it can be discarded after the lock instead of uploaded back to the
card.

* ALLEGRO_LOCK WRITEONLY - The locked region will not be read from. This can be faster if the
bitmap is a video texture, as no data need to be read from the video card. You are required to fill
in all pixels before unlocking the bitmap again, so be careful when using this flag.

* ALLEGRO LOCK READWRITE - The locked region can be written to and read from. Use this flag
if a partial number of pixels need to be written to, even if reading is not needed.

format indicates the pixel format that the returned buffer will be in. To lock in the same format as the
bitmap stores its data internally, call with al_get_bitmap_format(bitmap) as the format or use
ALLEGRO_PIXEL FORMAT ANY. Locking in the native format will usually be faster. If the bitmap
format is compressed, using ALLEGRO PIXELL FORMAT ANY will choose an implementation defined
non-compressed format.

On some platforms, Allegro automatically backs up the contents of video bitmaps because they may be
occasionally lost (see discussion in al create bitmap’s documentation). If you're completely recreating
the bitmap contents often (e.g. every frame) then you will get much better performance by creating the
target bitmap with ALLEGRO NO_PRESERVE_TEXTURE flag.

Note: While a bitmap is locked, you can not use any drawing operations on it (with the sole
exception of al put pixel and al put blended pixel).

See also: ALLEGRO_LOCKED REGION, ALLEGRO PIXEL FORMAT, al unlock bitmap,
al lock bitmap region, al lock bitmap blocked, al lock bitmap region blocked

9.2.9 al lock_bitmap_region

ALLEGRO_LOCKED_REGION *al_lock_bitmap_region(ALLEGRO_BITMAP *bitmap,
int x, int y, int width, int height, int format, int flags)

Source Code

Like al lock bitmap, but only locks a specific area of the bitmap. If the bitmap is a video bitmap, only
that area of the texture will be updated when it is unlocked. Locking only the region you indend to
modify will be faster than locking the whole bitmap.

Note: Using the ALLEGRO _LOCK _WRITEONLY with a blocked pixel format (i.e. formats for
which al_get pixel block width or al get pixel block height do not return 1) requires you
to have the region be aligned to the block width for optimal performance. If it is not, then
the function will have to lock the region with the ALLEGRO_LOCK_READWRITE instead in
order to pad this region with valid data.

See also: ALLEGRO_LOCKED REGION, ALLEGRO PIXEL FORMAT, al unlock bitmap

81


https://github.com/liballeg/allegro5/blob/master/src/bitmap_lock.c#L126
https://github.com/liballeg/allegro5/blob/master/src/bitmap_lock.c#L25

9. GRAPHICS ROUTINES

9.2.10 al_unlock_bitmap

void al_unlock_bitmap(ALLEGRO_BITMAP =*xbitmap)

Source Code

Unlock a previously locked bitmap or bitmap region. If the bitmap is a video bitmap, the texture will be
updated to match the system memory copy (unless it was locked read only).

See also: al lock bitmap, al lock bitmap region, al lock bitmap_blocked,
al lock bitmap_region blocked

9.2.11 al_lock_bitmap_blocked

ALLEGRO_LOCKED_REGION *al_lock_bitmap_blocked(ALLEGRO_BITMAP xbitmap,
int flags)

Source Code

Like al lock bitmap, but allows locking bitmaps with a blocked pixel format (i.e. a format for which
al get pixel block width or al get pixel block height do not return 1) in that format. To that end,
this function also does not allow format conversion. For bitmap formats with a block size of 1, this
function is identical to calling al_lock_bitmap(bmp, al_get_bitmap_format(bmp), flags).

Note: Currently there are no drawing functions that work when the bitmap is locked with a
compressed format. al get pixel will also not work.

Since: 5.1.9

See also: al lock bitmap, al lock bitmap region_ blocked

9.2.12 al_lock_bitmap_region_blocked

ALLEGRO_LOCKED_REGION *al_lock_bitmap_region_blocked(ALLEGRO_BITMAP *bitmap,
int x_block, int y_block, int width_block, int height_block, int flags)

Source Code

Like al lock bitmap blocked, but allows locking a sub-region, for performance. Unlike
al_lock bitmap_region the region specified in terms of blocks and not pixels.

Since: 5.1.9

See also: al lock bitmap region, al lock bitmap blocked

9.3 Bitmap creation

9.3.1 ALLEGRO_BITMAP

typedef struct ALLEGRO_BITMAP ALLEGRO_BITMAP;

Source Code

Abstract type representing a bitmap (2D image).

82


https://github.com/liballeg/allegro5/blob/master/src/bitmap_lock.c#L135
https://github.com/liballeg/allegro5/blob/master/src/bitmap_lock.c#L174
https://github.com/liballeg/allegro5/blob/master/src/bitmap_lock.c#L189
https://github.com/liballeg/allegro5/blob/master/include/allegro5/bitmap.h#L12

9.3. Bitmap creation

9.3.2 al_create_bitmap
ALLEGRO_BITMAP *al_create_bitmap(int w, int h)

Source Code

Creates a new bitmap using the bitmap format and flags for the current thread. Blitting between
bitmaps of differing formats, or blitting between memory bitmaps and display bitmaps may be slow.

Unless you set the ALLEGRO_MEMORY BITMAP flag, the bitmap is created for the current display.
Blitting to another display may be slow.

If a display bitmap is created, there may be limitations on the allowed dimensions. For example a
DirectX or OpenGL backend usually has a maximum allowed texture size - so if bitmap creation fails
for very large dimensions, you may want to re-try with a smaller bitmap. Some platforms also dictate a
minimum texture size, which is relevant if you plan to use this bitmap with the primitives addon. If
you try to create a bitmap smaller than this, this call will not fail but the returned bitmap will be a
section of a larger bitmap with the minimum size. The minimum size that will work on all platforms is
32 by 32.

Some platforms do not directly support display bitmaps whose dimensions are not powers of two.
Allegro handles this by creating a larger bitmap that has dimensions that are powers of two and then
returning a section of that bitmap with the dimensions you requested. This can be relevant if you plan
to use this bitmap with the primitives addon but shouldn’t be an issue otherwise.

If you create a bitmap without ALLEGRO_MEMORY BITMAP set but there is no current display, a
temporary memory bitmap will be created instead. You can later convert all such bitmap to video
bitmap and assign to a display by calling al convert memory bitmaps.

On some platforms the contents of video bitmaps may be lost when your application loses focus.
Allegro has an internal mechanism to restore the contents of these video bitmaps, but it is not foolproof
(sometimes bitmap contents can get lost permanently) and has performance implications. If you are
using a bitmap as an intermediate buffer this mechanism may be wasteful. In this case, if you do not
want Allegro to manage the bitmap contents for you, you can disable this mechanism by creating the
bitmap with the ALLEGRO NO PRESERVE TEXTURE flag. The bitmap contents are lost when you get
the ALLEGRO EVENT DISPLAY LOST and ALLEGRO EVENT DISPLAY HALT DRAWING and a
should be restored when you get the ALLEGRO_EVENT DISPLAY FOUND and when you call

al acknowledge drawing resume (after ALLEGRO_EVENT DISPLAY RESUME DRAWING event). You
can use those events to implement your own bitmap content restoration mechanism if Allegro’s does
not work well enough for you (for example, you can reload them all from disk).

Note: The contents of a newly created bitmap are undefined - you need to clear the bitmap or make
sure all pixels get overwritten before drawing it.

When you are done with using the bitmap you must call al_destroy bitmap on it to free any resources
allocated for it.

See also: al _set new bitmap format, al set new_bitmap flags, al clone bitmap,
al create sub bitmap, al convert memory bitmaps, al destroy bitmap

9.3.3 al_create_sub_bitmap

ALLEGRO_BITMAP *al_create_sub_bitmap(ALLEGRO_BITMAP =*parent,
int x, int y, int w, int h)

Source Code

Creates a sub-bitmap of the parent, at the specified coordinates and of the specified size. A sub-bitmap
is a bitmap that shares drawing memory with a pre-existing (parent) bitmap, but possibly with a
different size and clipping settings.

The sub-bitmap may originate off or extend past the parent bitmap.

See the discussion in al_get backbuffer about using sub-bitmaps of the backbuffer.

83


https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L183
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L439

9. GRAPHICS ROUTINES

The parent bitmap’s clipping rectangles are ignored.
If a sub-bitmap was not or cannot be created then NULL is returned.

When you are done with using the sub-bitmap you must call al_destroy_bitmap on it to free any
resources allocated for it.

Note that destroying parents of sub-bitmaps will not destroy the sub-bitmaps; instead the sub-bitmaps
become invalid and should no longer be used for drawing - they still must be destroyed with

al destroy_bitmap however. It does not matter whether you destroy a sub-bitmap before or after its
parent otherwise.

See also: al_create bitmap

9.3.4 al_clone_bitmap
ALLEGRO_BITMAP *al_clone_bitmap(ALLEGRO_BITMAP xbitmap)

Source Code

Create a new bitmap with al create bitmap, and copy the pixel data from the old bitmap across. The
newly created bitmap will be created with the current new bitmap flags, and not the ones that were
used to create the original bitmap. If the new bitmap is a memory bitmap, its projection bitmap is reset
to be orthographic.

See also: al_create bitmap, al_set new bitmap format, al set new_bitmap flags, al convert bitmap

9.3.5 al_convert_bitmap

void al_convert_bitmap(ALLEGRO_BITMAP *bitmap)

Source Code

Converts the bitmap to the current bitmap flags and format. The bitmap will be as if it was created
anew with al_create bitmap but retain its contents. All of this bitmap’s sub-bitmaps are also converted.
If the new bitmap type is memory, then the bitmap’s projection bitmap is reset to be orthographic.

If this bitmap is a sub-bitmap, then it, its parent and all the sibling sub-bitmaps are also converted.
Since: 5.1.0

See also: al_create bitmap, al set new bitmap_format, al set new_bitmap flags, al clone_bitmap

9.3.6 al _convert_memory_bitmaps

void al_convert_memory_bitmaps(void)

Source Code

If you create a bitmap when there is no current display (for example because you have not called

al create_display in the current thread) and are using the ALLEGRO CONVERT BITMAP bitmap flag
(which is set by default) then the bitmap will be created successfully, but as a memory bitmap. This
function converts all such bitmaps to proper video bitmaps belonging to the current display.

Note that video bitmaps get automatically converted back to memory bitmaps when the last display is
destroyed.

This operation will preserve all bitmap flags except ALLEGRO VIDEO BITMAP and
ALLEGRO_MEMORY BITMAP.

Since: 5.2.0

See also: al_convert bitmap, al create_bitmap

84


https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L667
https://github.com/liballeg/allegro5/blob/master/src/bitmap_type.c#L154
https://github.com/liballeg/allegro5/blob/master/src/bitmap_type.c#L231

9.3. Bitmap creation

9.3.7 al_destroy_bitmap
void al_destroy_bitmap(ALLEGRO_BITMAP =*bitmap)

Source Code

Destroys the given bitmap, freeing all resources used by it. This function does nothing if the bitmap
argument is NULL.

As a convenience, if the calling thread is currently targeting the bitmap then the bitmap will be
untargeted first. The new target bitmap is unspecified. (since: 5.0.10, 5.1.6)

Otherwise, it is an error to destroy a bitmap while it (or a sub-bitmap) is the target bitmap of any
thread.

See also: al create bitmap

9.3.8 al_get new_bitmap flags

int al_get_new_bitmap_flags(void)

Source Code
Returns the flags used for newly created bitmaps.

See also: al_set new bitmap_ flags

9.3.9 al_get new_bitmap_format

int al_get_new_bitmap_format(void)

Source Code
Returns the format used for newly created bitmaps.

See also: ALLEGRO_PIXEL FORMAT, al set new_bitmap format

9.3.10 al_set_new_bitmap_flags

void al_set_new_bitmap_flags(int flags)

Source Code

Sets the flags to use for newly created bitmaps. Valid flags are:

ALLEGRO_MEMORY_BITMAP
Create a bitmap residing in system memory. Operations on, and with, memory bitmaps will not
be hardware accelerated. However, direct pixel access can be relatively quick compared to video
bitmaps, which depend on the display driver in use.

Note: Allegro’s software rendering routines are currently somewhat unoptimised.
Note: Combining ALLEGRO_VIDEO_BITMAP and ALLEGRO_MEMORY BITMAP flags is invalid.

ALLEGRO_VIDEO_BITMAP
Creates a bitmap that resides in the video card memory. These types of bitmaps receive the
greatest benefit from hardware acceleration.

Note: Creating a video bitmap will fail if there is no current display or the current display driver
cannot create the bitmap. The latter will happen if for example the format or dimensions are not
supported.

Note: Bitmaps created with this flag will be converted to memory bitmaps when the last display is
destroyed. In most cases it is therefore easier to use the ALLEGRO _CONVERT BITMAP flag
instead.

Note: Combining ALLEGRO VIDEO BITMAP and ALLEGRO MEMORY BITMAP flags is invalid.

85


https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L201
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L683
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L670
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L643

9. GRAPHICS ROUTINES

ALLEGRO_CONVERT_BITMAP
This is the default. It will try to create a video bitmap and if that fails create a memory bitmap.
Bitmaps created with this flag when there is no active display will be converted to video bitmaps
next time a display is created. They also will remain video bitmaps if the last display is destroyed
and then another is created again. Since 5.1.0.

Note: You can combine this flag with ALLEGRO_MEMORY_ BITMAP or
ALLEGRO_VIDEO BITMAP to force the initial type (and fail in the latter case if no video bitmap
can be created) - but usually neither of those combinations is very useful.

You can use the display option ALLEGRO_AUTO_CONVERT BITMAPS to control which displays
will try to auto-convert bitmaps.

ALLEGRO_FORCE_LOCKING
Does nothing since 5.1.8. Kept for backwards compatibility only.

ALLEGRO_NO_PRESERVE_TEXTURE
Normally, every effort is taken to preserve the contents of bitmaps, since some platforms may
forget them. This can take extra processing time. If you know it doesn’t matter if a bitmap keeps
its pixel data, for example when it’s a temporary buffer, use this flag to tell Allegro not to attempt
to preserve its contents.

ALLEGRO_ALPHA_TEST
This is a driver hint only. It tells the graphics driver to do alpha testing instead of alpha blending
on bitmaps created with this flag. Alpha testing is usually faster and preferred if your bitmaps
have only one level of alpha (0). This flag is currently not widely implemented (i.e., only for
memory bitmaps).

ALLEGRO_MIN_LINEAR
When drawing a scaled down version of the bitmap, use linear filtering. This usually looks better.
You can also combine it with the MIPMAP flag for even better quality.

ALLEGRO_MAG_LINEAR
When drawing a magnified version of a bitmap, use linear filtering. This will cause the picture to
get blurry instead of creating a big rectangle for each pixel. It depends on how you want things
to look like whether you want to use this or not.

ALLEGRO_MIPMAP
This can only be used for bitmaps whose width and height is a power of two. In that case, it will
generate mipmaps and use them when drawing scaled down versions. For example if the bitmap
is 64x64, then extra bitmaps of sizes 32x32, 16x16, 8x8, 4x4, 2x2 and 1x1 will be created always
containing a scaled down version of the original.

See also: al_get new bitmap flags, al get bitmap flags

9.3.11 al_add_new bitmap flag
void al_add_new_bitmap_flag(int flag)

Source Code

A convenience function which does the same as

al_set_new_bitmap_flags(al_get_new_bitmap_flags() | flag);

See also: al_set new_bitmap flags, al _get new bitmap flags, al get bitmap flags

86


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L657

9.3. Bitmap creation

9.3.12 al_set_new_bitmap_format

void al_set_new_bitmap_format(int format)

Source Code

Sets the pixel format (ALLEGRO_PIXEL__FORMAT) for newly created bitmaps. The default format is 0
and means the display driver will choose the best format.

See also: ALLEGRO_PIXEL FORMAT, al get new bitmap format, al get bitmap format

9.3.13 al_set_new_bitmap_depth

void al_set_new_bitmap_depth(int depth)
SETTER(new_bitmap_depth, depth)

Source Code

Sets the depthbuffer depth used by newly created bitmaps (on the current thread) if they are used with
al _set target bitmap. O means no depth-buffer will be created when drawing into the bitmap, which is
the default.

Since: 5.2.1

Unstable API: This is an experimental feature and currently only works for the OpenGL
backend.

9.3.14 al_get new_bitmap_depth

int al_get_new_bitmap_depth(void)
GETTER(new_bitmap_depth, 0)

Source Code

Returns the value currently set with al_set new_bitmap_depth on the current thread or O if none was
set.

Since: 5.2.1

Unstable API: This is an experimental feature and currently only works for the OpenGL
backend.

9.3.15 al_set_new_bitmap_samples

void al_set_new_bitmap_samples(int samples)
SETTER(new_bitmap_samples, samples)

Source Code

Sets the multi-sampling samples used by newly created bitmaps (on the current thread) if they are
used with al set target bitmap. 0 means multi-sampling will not be used when drawing into the
bitmap, which is the default. 1 means multi-sampling will be used but only using a single sample per
pixel (so usually there will be no visual difference to not using multi-sampling at all).

Note: Some platforms have restrictions on when the multi-sampling buffer for a bitmap is
realized, i.e. down-scaled back to the actual bitmap dimensions. This may only happen
after a call to al_set target bitmap. So for example:

87


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L630
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L943
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L938
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L953

9. GRAPHICS ROUTINES

al_set_target_bitmap(multisample);
al_clear_to_color(blue);

al_draw_line(0, 0, 100, 100, red, 1);
al_lock_bitmap(multisample, ...)

// ERROR: the contents of the bitmap will be undefined

al_set_target_bitmap(backbuffer);

al_lock_bitmap(multisample, ...)

// CORRECT: at this point, the bitmap contents are updated and
// there will be an anti-aliased line in it.

Since: 5.2.1

Unstable API: This is an experimental feature and currently only works for the OpenGL
backend.

9.3.16 al_get new_bitmap_samples
int al_get_new_bitmap_samples(void)
GETTER(new_bitmap_samples, 0)

Source Code

Returns the value currently set with al set new bitmap samples on the current thread or O if none
was set.

Since: 5.2.1

Unstable API: This is an experimental feature and currently only works for the OpenGL
backend.

9.4 Bitmap properties

9.4.1 al_get bitmap_flags
int al_get_bitmap_flags(ALLEGRO_BITMAP *bitmap)

Source Code
Return the flags used to create the bitmap.

See also: al_set new_bitmap_flags

9.4.2 al _get bitmap_format
int al_get_bitmap_format(ALLEGRO_BITMAP xbitmap)

Source Code
Returns the pixel format of a bitmap.

See also: ALLEGRO_PIXEL. FORMAT, al set new bitmap flags

9.4.3 al_get bitmap_height
int al_get_bitmap_height (ALLEGRO_BITMAP *bitmap)

Source Code

Returns the height of a bitmap in pixels.

88


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L948
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L325
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L304
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L295

9.4. Bitmap properties

9.4.4 al_get bitmap_width

int al_get_bitmap_width(ALLEGRO_BITMAP *bitmap)

Source Code

Returns the width of a bitmap in pixels.

9.4.5 al_get bitmap_depth

int al_get_bitmap_depth(ALLEGRO_BITMAP *bitmap)

Source Code
Return the depthbuffer depth used by this bitmap if it is used with al_set target bitmap.

Since: 5.2.1

Unstable API: This is an experimental feature and currently only works for the OpenGL
backend.

9.4.6 al_get bitmap_samples

int al_get_bitmap_samples(ALLEGRO_BITMAP xbitmap)

Source Code
Return the multi-sampling samples used by this bitmap if it is used with al set target bitmap.

Since: 5.2.1

Unstable API: This is an experimental feature and currently only works for the OpenGL
backend.

9.4.7 al_get_pixel

ALLEGRO_COLOR al_get_pixel (ALLEGRO_BITMAP xbitmap, int x, int y)

Source Code

Get a pixel’s color value from the specified bitmap. This operation is slow on non-memory bitmaps.
Consider locking the bitmap if you are going to use this function multiple times on the same bitmap.

See also: ALLEGRO_COLOR, al_put_pixel, al lock bitmap

9.4.8 al _is_bitmap_locked

bool al_is_bitmap_locked(ALLEGRO_BITMAP xbitmap)

Source Code
Returns whether or not a bitmap is already locked.

See also: al lock bitmap, al lock bitmap region, al unlock bitmap

89


https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L286
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L345
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L356
https://github.com/liballeg/allegro5/blob/master/src/bitmap_pixel.c#L27
https://github.com/liballeg/allegro5/blob/master/src/bitmap_lock.c#L167

9. GRAPHICS ROUTINES

9.4.9 al_is_compatible_bitmap
bool al_is_compatible_bitmap(ALLEGRO_BITMAP xbitmap)

Source Code

D3D and OpenGL allow sharing a texture in a way so it can be used for multiple windows. Each
ALLEGRO_BITMAP created with al create bitmap however is usually tied to a single
ALLEGRO_DISPLAY. This function can be used to know if the bitmap is compatible with the given
display, even if it is a different display to the one it was created with. It returns true if the bitmap is
compatible (things like a cached texture version can be used) and false otherwise (blitting in the
current display will be slow).

The only time this function is useful is if you are using multiple windows and need accelerated blitting
of the same bitmaps to both.

Returns true if the bitmap is compatible with the current display, false otherwise. If there is no current
display, false is returned.

9.4.10 al_is_sub_bitmap
bool al_is_sub_bitmap(ALLEGRO_BITMAP *bitmap)

Source Code
Returns true if the specified bitmap is a sub-bitmap, false otherwise.

See also: al_create sub_bitmap, al get parent bitmap

9.4.11 al_get parent_bitmap
ALLEGRO_BITMAP =*al_get_parent_bitmap(ALLEGRO_BITMAP xbitmap)

Source Code

Returns the bitmap this bitmap is a sub-bitmap of. Returns NULL if this bitmap is not a sub-bitmap.
This function always returns the real bitmap, and never a sub-bitmap. This might NOT match what
was passed to al create sub_bitmap. Consider this code, for instance:

ALLEGRO_BITMAP* a = al_create_bitmap(512, 512);

ALLEGRO_BITMAP* b = al_create_sub_bitmap(a, 128, 128, 256, 256);
ALLEGRO_BITMAP* ¢ = al_create_sub_bitmap(b, 64, 64, 128, 128);
ASSERT (al_get_parent_bitmap(b) == a && al_get_parent_bitmap(c) == a);

The assertion will pass because only a is a real bitmap, and both b and ¢ are its sub-bitmaps.
Since: 5.0.6, 5.1.2

See also: al create sub bitmap, al is sub_bitmap

9.4.12 al_get_bitmap_x
int al_get_bitmap_x(ALLEGRO_BITMAP *bitmap)

Source Code
For a sub-bitmap, return it’s x position within the parent.
See also: al create sub bitmap, al get parent bitmap, al get bitmap y

Since: 5.1.12

90


https://github.com/liballeg/allegro5/blob/master/src/display.c#L250
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L511
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L519
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L528

9.5. Drawing operations

9.4.13 al_get bitmap_y

int al_get_bitmap_y(ALLEGRO_BITMAP *bitmap)

Source Code
For a sub-bitmap, return it’s y position within the parent.
See also: al_create_sub_bitmap, al get parent bitmap, al get bitmap x

Since: 5.1.12

9.4.14 al_reparent_bitmap

void al_reparent_bitmap(ALLEGRO_BITMAP *bitmap, ALLEGRO_BITMAP #*parent,
int x, int y, int w, int h)

Source Code

For a sub-bitmap, changes the parent, position and size. This is the same as destroying the bitmap and
re-creating it with al _create sub bitmap - except the bitmap pointer stays the same. This has many
uses, for example an animation player could return a single bitmap which can just be re-parented to
different animation frames without having to re-draw the contents. Or a sprite atlas could re-arrange
its sprites without having to invalidate all existing bitmaps.

See also: al_create sub_bitmap, al get parent bitmap

Since: 5.1.12

9.5 Drawing operations

All drawing operations draw to the current “target bitmap” of the current thread. Initially, the target
bitmap will be the backbuffer of the last display created in a thread.

9.5.1 al_clear_to_color

void al_clear_to_color(ALLEGRO_COLOR color)

Source Code
Clear the complete target bitmap, but confined by the clipping rectangle.

See also: ALLEGRO_COLOR, al_set_clipping rectangle, al clear_depth_buffer

9.5.2 al_clear_depth_buffer
void al_clear_depth_buffer(float z)

Source Code

Clear the depth buffer (confined by the clipping rectangle) to the given value. A depth buffer is only
available if it was requested with al set new display option and the requirement could be met by the
al create display call creating the current display. Operations involving the depth buffer are also
affected by al _set render state.

For example, if ALLEGRO_DEPTH_FUNCTION is set to ALLEGRO_RENDER_LESS then depth buffer value of 1
represents infinite distance, and thus is a good value to use when clearing the depth buffer.

Since: 5.1.2

See also: al clear to color, al _set clipping rectangle, al set render state, al set new_display option

91


https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L537
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L486
https://github.com/liballeg/allegro5/blob/master/src/drawing.c#L26
https://github.com/liballeg/allegro5/blob/master/src/drawing.c#L46

9. GRAPHICS ROUTINES

9.5.3 al_draw_bitmap

void al_draw_bitmap(ALLEGRO_BITMAP *bitmap, float dx, float dy, int flags)

Source Code

Draws an unscaled, unrotated bitmap at the given position to the current target bitmap (see
al_set target bitmap).

flags can be a combination of:

* ALLEGRO FLIP HORIZONTAL - flip the bitmap about the y-axis
* ALLEGRO_FLIP_VERTICAL - flip the bitmap about the x-axis

Note: The current target bitmap must be a different bitmap. Drawing a bitmap to itself (or
to a sub-bitmap of itself) or drawing a sub-bitmap to its parent (or another sub-bitmap of
its parent) are not currently supported. To copy part of a bitmap into the same bitmap
simply use a temporary bitmap instead.

Note: The backbuffer (or a sub-bitmap thereof) can not be transformed, blended or tinted.
If you need to draw the backbuffer draw it to a temporary bitmap first with no active
transformation (except translation). Blending and tinting settings/parameters will be
ignored. This does not apply when drawing into a memory bitmap.

See also: al draw bitmap region, al draw scaled bitmap, al draw_rotated bitmap,
al draw_scaled rotated bitmap

9.5.4 al_draw_tinted_bitmap

void al_draw_tinted_bitmap(ALLEGRO_BITMAP *bitmap, ALLEGRO_COLOR tint,
float dx, float dy, int flags)

Source Code

Like al draw_bitmap but multiplies all colors in the bitmap with the given color. For example:

al_draw_tinted_bitmap(bitmap, al_map_rgba_f (0.5, 0.5, 0.5, 0.5), x, y, 0);

The above will draw the bitmap 50% transparently (r/g/b values need to be pre-multiplied with the
alpha component with the default blend mode).

al_draw_tinted_bitmap(bitmap, al_map_rgba_f(1, 0, 2, 1), x, y, 0);

The above will only draw the red component of the bitmap.
See al_draw_bitmap for a note on restrictions on which bitmaps can be drawn where.

See also: al draw_bitmap

92


https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L148
https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L137

9.5. Drawing operations

9.5.5 al draw_bitmap_region

void al_draw_bitmap_region(ALLEGRO_BITMAP x*bitmap,
float sx, float sy, float sw, float sh, float dx, float dy, int flags)

Source Code

Draws a region of the given bitmap to the target bitmap.

* sX - source x

* sy - source y

* sw - source width (width of region to blit)
* sh - source height (height of region to blit)
* dx - destination x

* dy - destination y

* flags - same as for al draw_bitmap

See al _draw_bitmap for a note on restrictions on which bitmaps can be drawn where.

See also: al_draw_bitmap, al draw_scaled bitmap, al draw_rotated bitmap,
al draw_scaled rotated bitmap

9.5.6 al draw_tinted_bitmap_region

void al_draw_tinted_bitmap_region(ALLEGRO_BITMAP *bitmap,
ALLEGRO_COLOR tint,
float sx, float sy, float sw, float sh, float dx, float dy,
int flags)

Source Code
Like al draw_bitmap_region but multiplies all colors in the bitmap with the given color.
See al_draw_bitmap for a note on restrictions on which bitmaps can be drawn where.

See also: al draw_tinted bitmap

9.5.7 al_draw_pixel
void al_draw_pixel(float x, float y, ALLEGRO_COLOR color)

Source Code

Draws a single pixel at x, y. This function, unlike al put pixel, does blending and, unlike

al put blended pixel, respects the transformations (that is, the pixel’s position is transformed, but its
size is unaffected - it remains a pixel). This function can be slow if called often; if you need to draw a
lot of pixels consider using al draw_prim with ALLEGRO_PRIM_POINT LIST from the primitives
addon.

* x - destination x
* y - destination y
* color - color of the pixel

Note: This function may not draw exactly where you expect it to. See the pixel-precise
output section on the primitives addon documentation for details on how to control exactly
where the pixel is drawn.

See also: ALLEGRO_COLOR, al _put pixel

93


https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L156
https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L125
https://github.com/liballeg/allegro5/blob/master/src/drawing.c#L64

9. GRAPHICS ROUTINES

9.5.8 al draw_rotated_bitmap

void al_draw_rotated_bitmap(ALLEGRO_BITMAP *bitmap,
float cx, float cy, float dx, float dy, float angle, int flags)

Source Code

Draws a rotated version of the given bitmap to the target bitmap. The bitmap is rotated by ‘angle’
radians clockwise.

The point at cx/cy relative to the upper left corner of the bitmap will be drawn at dx/dy and the
bitmap is rotated around this point. If cx,cy is 0,0 the bitmap will rotate around its upper left corner.

* cx - center x (relative to the bitmap)

* ¢y - center y (relative to the bitmap)

* dx - destination x

* dy - destination y

* angle - angle by which to rotate (radians)
* flags - same as for al draw_bitmap

Example

float w = al_get_bitmap_width(bitmap);
float h = al_get_bitmap_height(bitmap);
al_draw_rotated_bitmap(bitmap, w / 2, h / 2, x, y, ALLEGRO_PI / 2, 0);

The above code draws the bitmap centered on x/y and rotates it 90° clockwise.
See al draw_bitmap for a note on restrictions on which bitmaps can be drawn where.

See also: al draw_bitmap, al draw bitmap region, al draw_scaled bitmap,
al draw_scaled rotated bitmap

9.5.9 al _draw_tinted_rotated_bitmap

void al_draw_tinted_rotated_bitmap(ALLEGRO_BITMAP xbitmap,
ALLEGRO_COLOR tint,
float cx, float cy, float dx, float dy, float angle, int flags)

Source Code
Like al draw rotated bitmap but multiplies all colors in the bitmap with the given color.
See al draw_bitmap for a note on restrictions on which bitmaps can be drawn where.

See also: al draw_tinted bitmap

9.5.10 al draw_scaled_rotated_bitmap

void al_draw_scaled_rotated_bitmap(ALLEGRO_BITMAP =*bitmap,
float cx, float cy, float dx, float dy, float xscale, float yscale,
float angle, int flags)

Source Code
Like al draw rotated bitmap, but can also scale the bitmap.

The point at cx/cy in the bitmap will be drawn at dx/dy and the bitmap is rotated and scaled around
this point.

* CX - center X

94


https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L205
https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L194
https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L244

9.5. Drawing operations

* cy - centery

* dx - destination x

* dy - destination y

* xscale - how much to scale on the x-axis (e.g. 2 for twice the size)
* yscale - how much to scale on the y-axis

* angle - angle by which to rotate (radians)

* flags - same as for al draw_bitmap

See al draw_bitmap for a note on restrictions on which bitmaps can be drawn where.

See also: al draw_bitmap, al draw bitmap region, al draw_scaled bitmap, al draw_rotated_bitmap

9.5.11 al _draw_tinted_scaled_rotated_bitmap

void al_draw_tinted_scaled_rotated_bitmap(ALLEGRO_BITMAP *xbitmap,
ALLEGRO_COLOR tint,
float cx, float cy, float dx, float dy, float xscale, float yscale,
float angle, int flags)

Source Code
Like al draw scaled rotated bitmap but multiplies all colors in the bitmap with the given color.
See al draw_bitmap for a note on restrictions on which bitmaps can be drawn where.

See also: al draw_tinted_bitmap

9.5.12 al_draw_tinted_scaled_rotated_bitmap_region

void al_draw_tinted_scaled_rotated_bitmap_region(ALLEGRO_BITMAP *bitmap,
float sx, float sy, float sw, float sh,
ALLEGRO_COLOR tint,
float cx, float cy, float dx, float dy, float xscale, float yscale,
float angle, int flags)

Source Code
Like al draw tinted scaled rotated bitmap but you specify an area within the bitmap to be drawn.

You can get the same effect with a sub bitmap:

al_draw_tinted_scaled_rotated_bitmap(bitmap, sx, sy, sw, sh, tint,
cx, cy, dx, dy, xscale, yscale, angle, flags);

/* This draws the same: */

sub_bitmap = al_create_sub_bitmap(bitmap, sx, sy, sw, sh);

al_draw_tinted_scaled_rotated_bitmap(sub_bitmap, tint, cx, cy,
dx, dy, xscale, yscale, angle, flags);

See al_draw_bitmap for a note on restrictions on which bitmaps can be drawn where.
Since: 5.0.6, 5.1.0

See also: al draw_tinted bitmap

95


https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L215
https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L229

9. GRAPHICS ROUTINES

9.5.13 al_draw_scaled_bitmap

void al_draw_scaled_bitmap(ALLEGRO_BITMAP =*bitmap,
float sx, float sy, float sw, float sh,
float dx, float dy, float dw, float dh, int flags)

Source Code

Draws a scaled version of the given bitmap to the target bitmap.

* SX - source X
* sy - source y

* sw - source width

* sh - source height

* dx - destination x

* dy - destination y

* dw - destination width

* dh - destination height

* flags - same as for al draw_bitmap

See al draw_bitmap for a note on restrictions on which bitmaps can be drawn where.

See also: al draw_bitmap, al draw_bitmap region, al draw_rotated bitmap,
al draw_scaled rotated_bitmap,

9.5.14 al_draw_tinted_scaled_bitmap

void al_draw_tinted_scaled_bitmap(ALLEGRO_BITMAP xbitmap,
ALLEGRO_COLOR tint,
float sx, float sy, float sw, float sh,
float dx, float dy, float dw, float dh, int flags)

Source Code
Like al draw_scaled bitmap but multiplies all colors in the bitmap with the given color.
See al draw_bitmap for a note on restrictions on which bitmaps can be drawn where.

See also: al draw_tinted_bitmap

9.5.15 al_get_target_bitmap
ALLEGRO_BITMAP =*al_get_target_bitmap(void)

Source Code
Return the target bitmap of the calling thread.

See also: al_set target bitmap

9.5.16 al_put_pixel
void al_put_pixel(int x, int y, ALLEGRO_COLOR color)

Source Code

Draw a single pixel on the target bitmap. This operation is slow on non-memory bitmaps. Consider
locking the bitmap if you are going to use this function multiple times on the same bitmap. This
function is not affected by the transformations or the color blenders.

See also: ALLEGRO_COLOR, al_get pixel, al put blended pixel, al lock bitmap

96


https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L180
https://github.com/liballeg/allegro5/blob/master/src/bitmap_draw.c#L166
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L509
https://github.com/liballeg/allegro5/blob/master/src/bitmap_pixel.c#L131

9.6. Target bitmap

9.5.17 al_put_blended_pixel
void al_put_blended_pixel(int x, int y, ALLEGRO_COLOR color)

Source Code
Like al put pixel, but the pixel color is blended using the current blenders before being drawn.

See also: ALLEGRO_COLOR, al_put_pixel

9.6 Target bitmap

9.6.1 al set_target_bitmap
void al_set_target_bitmap(ALLEGRO_BITMAP xbitmap)

Source Code

This function selects the bitmap to which all subsequent drawing operations in the calling thread will
draw to. To return to drawing to a display, set the backbuffer of the display as the target bitmap, using
al_get backbuffer. As a convenience, you may also use al_set _target backbuffer.

Each allegro bitmap maintains two transformation matrices associated with it for drawing onto the
bitmap. There is a view matrix and a projection matrix. When you call al_set_target bitmap, these will
be made current for the bitmap, affecting global OpenGL and DirectX states depending on the driver in
use.

Each video bitmap is tied to a display. When a video bitmap is set to as the target bitmap, the display
that the bitmap belongs to is automatically made “current” for the calling thread (if it is not current
already). Then drawing other bitmaps which are tied to the same display can be hardware accelerated.

A single display cannot be current for multiple threads simultaneously. If you need to release a display,
so it is not current for the calling thread, call al_set_target_bitmap(NULL);

Setting a memory bitmap as the target bitmap will not change which display is current for the calling
thread.

On some platforms, Allegro automatically backs up the contents of video bitmaps because they may be
occasionally lost (see discussion in al _create bitmap’s documentation). If you’re completely recreating
the bitmap contents often (e.g. every frame) then you will get much better performance by creating the
target bitmap with ALLEGRO NO_PRESERVE TEXTURE flag.

OpenGL note:

Framebuffer objects (FBOs) allow OpenGL to directly draw to a bitmap, which is very fast. When using
an OpenGL display; if all of the following conditions are met an FBO will be created for use with the
bitmap:

* The GL_EXT framebuffer object OpenGL extension is available.
* The bitmap is not a memory bitmap.
* The bitmap is not currently locked.

In Allegro 5.0.0, you had to be careful as an FBO would be kept around until the bitmap is destroyed
or you explicitly called al remove opengl fbo on the bitmap, wasting resources. In newer versions,
FBOs will be freed automatically when the bitmap is no longer the target bitmap, unless you have
called al_get opengl fbo to retrieve the FBO id.

In the following example, no FBO will be created:

lock = al_lock_bitmap(bitmap);
al_set_target_bitmap(bitmap);
al_put_pixel(x, y, color);
al_unlock_bitmap(bitmap);

97


https://github.com/liballeg/allegro5/blob/master/src/bitmap_pixel.c#L139
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L403

9. GRAPHICS ROUTINES

The above allows using al put pixel on a locked bitmap without creating an FBO.

In this example an FBO is created however:

al_set_target_bitmap(bitmap);
al_draw_line(x1, y1, x2, y2, color, 0);

An OpenGL command will be used to directly draw the line into the bitmap’s associated texture.

See also: al_get target bitmap, al_set target backbuffer

9.6.2 al_set_target backbuffer

void al_set_target_backbuffer (ALLEGRO_DISPLAY *display)

Source Code
Same as al_set_target_bitmap(al_get_backbuffer(display));

See also: al_set target bitmap, al get backbuffer

9.6.3 al_get current_display

ALLEGRO_DISPLAY *al_get_current_display(void)

Source Code
Return the display that is “current” for the calling thread, or NULL if there is none.

See also: al set target bitmap

9.7 Blending modes

9.7.1 al_get blender

void al_get_blender(int *op, int *src, int =*dst)

Source Code

Returns the active blender for the current thread. You can pass NULL for values you are not interested
in.

See also: al_set blender, al get separate blender

9.7.2 al_get separate_blender

void al_get_separate_blender(int *op, int *src, int =*dst,
int *alpha_op, int *alpha_src, int *alpha_dst)

Source Code

Returns the active blender for the current thread. You can pass NULL for values you are not interested
in.

See also: al_set _separate_blender, al_get blender

98


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L500
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L390
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L574
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L596

9.7. Blending modes

9.7.3 al_get_blend_color
ALLEGRO_COLOR al_get_blend_color(void)

Source Code
Returns the color currently used for constant color blending (white by default).
See also: al_set blend color, al set blender

Since: 5.1.12

9.7.4 al set_blender

void al_set_blender(int op, int src, int dst)

Source Code
Sets the function to use for blending for the current thread.
Blending means, the source and destination colors are combined in drawing operations.

Assume the source color (e.g. color of a rectangle to draw, or pixel of a bitmap to draw) is given as its
red/green/blue/alpha components (if the bitmap has no alpha it always is assumed to be fully opaque,
so 255 for 8-bit or 1.0 for floating point): s = s.71; s.g, s.b, s.a. And this color is drawn to a destination,
which already has a color: d = d.;; d.g, d.b, d.a.

The conceptional formula used by Allegro to draw any pixel then depends on the op parameter:

* ALLEGRO_ADD

r=d.r xdf.r + s.r x sf.r
g =d.g xdf.g + s.g * sf.g
b =d.b*df.b + s.b x sf.b
a=d.a*df.a+s.ax sf.a

+ ALLEGRO DEST MINUS SRC

r=d.r xdf.r - s.r x sf.r
g=d.g xdf.g - s.g * sf.g
b =d.b*df.b - s.bx sf.b
a=d.ax*xdf.a - s.a* sf.a

« ALLEGRO_SRC_MINUS_DEST

r=s.r xsf.r -d.r*xdf.r
g =s.g xsf.g - d.g * df.g
b =s.b*sf.b-dbxdf.b
a=s.a*sf.a-d.axdf.a

Valid values for the factors sf and df passed to this function are as follows, where s is the source color,
d the destination color and cc the color set with al set blend color (white by default)

« ALLEGRO ZERO
f=0,0 00

« ALLEGRO ONE

« ALLEGRO ALPHA

99


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L583
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L522

. GRAPHICS ROUTINES

f=s.a, s.a, s.a, s.a

* ALLEGRO_INVERSE ALPHA

f=1-s.a, 1-s.a, 1 -s.a, 1-s.a

* ALLEGRO_SRC COLOR (since: 5.0.10, 5.1.0)

f=s.r, s.g, s.b, s.a

* ALLEGRO_DEST COLOR (since: 5.0.10, 5.1.8)

f=d.r, d.g, d.b, d.a

* ALLEGRO_INVERSE SRC COLOR (since: 5.0.10, 5.1.0)

f=1-s.r,1-s.g,1-s.b,1-s.a

« ALLEGRO INVERSE_DEST COLOR (since: 5.0.10, 5.1.8)

f=1-d.r, 1-d.g, 1 -d.b, 1-4d.a

* ALLEGRO_CONST COLOR (since: 5.1.12, not supported on OpenGLES 1.0)

f =cc.r, cc.g, cc.b, cc.a

* ALLEGRO_INVERSE CONST COLOR (since: 5.1.12, not supported on OpenGLES 1.0)

f=1-c.r, 1 -cc.g, 1 -cc.b, 1 -cc.a

Blending examples:

So for example, to restore the default of using premultiplied alpha blending, you would use:

al_set_blender (ALLEGRO_ADD, ALLEGRO_ONE, ALLEGRO_INVERSE_ALPHA);

As formula:
r=d.r (1 -s.a) +s.r*x1
g=d.gx* (1 -s.a) +s.g x1
b=dbx*x(1-s.a)+s.bx*1
a=dax (1 -s.a) +s.ax*x]l

If you are using non-pre-multiplied alpha, you could use

al_set_blender (ALLEGRO_ADD, ALLEGRO_ALPHA, ALLEGRO_INVERSE_ALPHA);

Additive blending would be achieved with

al_set_blender (ALLEGRO_ADD, ALLEGRO_ONE, ALLEGRO_ONE);

Copying the source to the destination (including alpha) unmodified

al_set_blender (ALLEGRO_ADD, ALLEGRO_ONE, ALLEGRO_ZERO);

Multiplying source and destination components

100



9.8. Clipping

al_set_blender (ALLEGRO_ADD, ALLEGRO_DEST_COLOR, ALLEGRO_ZERO)
Tinting the source (like al draw_tinted bitmap)

al_set_blender (ALLEGRO_ADD, ALLEGRO_CONST_COLOR, ALLEGRO_ONE);
al_set_blend_color(al_map_rgb(0, 96, 255)); /* nice Chrysler blue =%/

Averaging source and destination pixels

al_set_blender (ALLEGRO_ADD, ALLEGRO_CONST_COLOR, ALLEGRO_CONST_COLOR);
al_set_blend_color(al_map_rgba_f(0.5, 0.5, 0.5, 0.5));

As formula:
r=d.r 0+ s.r xd.r
g=d.g*x0+s.g xd.g
b=dbx*x0+s.bx*xd.b
a=da*x0+s.axd.a

See also: al_set _separate_blender, al set blend color, al _get blender

9.7.5 al_set_separate_blender

void al_set_separate_blender(int op, int src, int dst,
int alpha_op, int alpha_src, int alpha_dst)

Source Code

Like al_set blender, but allows specifying a separate blending operation for the alpha channel. This is
useful if your target bitmap also has an alpha channel and the two alpha channels need to be combined
in a different way than the color components.

See also: al_set blender, al get blender, al get separate blender

9.7.6 al set_blend_color
void al_set_blend_color (ALLEGRO_COLOR color)

Source Code

Sets the color to use for blending when using the ALLEGRO _CONST_COLOR or
ALLEGRO_INVERSE_CONST_COLOR blend functions. See al_set_blender for more information.

See also: al_set blender, al get blend color

Since: 5.1.12

9.8 Clipping
9.8.1 al_get clipping_rectangle

void al_get_clipping_rectangle(int *x, int %y, int *w, int *h)

Source Code
Gets the clipping rectangle of the target bitmap.

See also: al_set clipping rectangle

101


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L544
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L531
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L423

9. GRAPHICS ROUTINES

9.8.2 al_set_clipping rectangle

void al_set_clipping_rectangle(int x, int y, int width, int height)

Source Code

Set the region of the target bitmap or display that pixels get clipped to. The default is to clip pixels to
the entire bitmap.

See also: al_get clipping rectangle, al reset clipping rectangle

9.8.3 al_reset_clipping_rectangle

void al_reset_clipping_rectangle(void)

Source Code

Equivalent to calling ‘al set clipping rectangle(0, O, w, h)’ where w and h are the width and height of
the target bitmap respectively.

Does nothing if there is no target bitmap.
See also: al_set clipping rectangle

Since: 5.0.6, 5.1.0

9.9 Graphics utility functions

9.9.1 al _convert_mask to_alpha

void al_convert_mask_to_alpha(ALLEGRO_BITMAP xbitmap, ALLEGRO_COLOR mask_color)

Source Code

Convert the given mask color to an alpha channel in the bitmap. Can be used to convert older 4.2-style
bitmaps with magic pink to alpha-ready bitmaps.

See also: ALLEGRO_COLOR

9.10 Deferred drawing

9.10.1 al_hold_bitmap_drawing
void al_hold_bitmap_drawing(bool hold)

Source Code

Enables or disables deferred bitmap drawing. This allows for efficient drawing of many bitmaps that
share a parent bitmap, such as sub-bitmaps from a tilesheet or simply identical bitmaps. Drawing
bitmaps that do not share a parent is less efficient, so it is advisable to stagger bitmap drawing calls
such that the parent bitmap is the same for large number of those calls. While deferred bitmap
drawing is enabled, the only functions that can be used are the bitmap drawing functions and font
drawing functions. Changing the state such as the blending modes will result in undefined behaviour.
One exception to this rule are the non-projection transformations. It is possible to set a new
transformation while the drawing is held.

No drawing is guaranteed to take place until you disable the hold. Thus, the idiom of this function’s
usage is to enable the deferred bitmap drawing, draw as many bitmaps as possible, taking care to
stagger bitmaps that share parent bitmaps, and then disable deferred drawing. As mentioned above,
this function also works with bitmap and truetype fonts, so if multiple lines of text need to be drawn,
this function can speed things up.

See also: al _is_bitmap drawing held

102


https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L367
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L408
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L250
https://github.com/liballeg/allegro5/blob/master/src/display.c#L495

9.11. Image I/0

9.10.2 al_is_bitmap_drawing_held
bool al_is_bitmap_drawing_held(void)

Source Code
Returns whether the deferred bitmap drawing mode is turned on or off.

See also: al _hold bitmap drawing

9.11 Imagel/0

9.11.1 al_register_bitmap_loader

bool al_register_bitmap_loader(const char xextension,
ALLEGRO_BITMAP *(*loader)(const char xfilename, int flags))

Source Code

Register a handler for al load_bitmap. The given function will be used to handle the loading of
bitmaps files with the given extension.

The extension should include the leading dot (‘.”) character. It will be matched case-insensitively.
The loader argument may be NULL to unregister an entry.
Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al _register_bitmap_saver, al register_bitmap loader f

9.11.2 al_register_bitmap_saver

bool al_register_bitmap_saver(const char *extension,
bool (*saver)(const char *filename, ALLEGRO_BITMAP xbmp))

Source Code

Register a handler for al_save bitmap. The given function will be used to handle the saving of bitmaps
files with the given extension.

The extension should include the leading dot (‘.”) character. It will be matched case-insensitively.
The saver argument may be NULL to unregister an entry.
Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al register bitmap loader, al register bitmap saver f

9.11.3 al_register_bitmap_loader_f

bool al_register_bitmap_loader_f(const char *extension,
ALLEGRO_BITMAP *(xfs_loader) (ALLEGRO_FILE *fp, int flags))

Source Code

Register a handler for al load bitmap f. The given function will be used to handle the loading of
bitmaps files with the given extension.

The extension should include the leading dot (‘.”) character. It will be matched case-insensitively.
The fs_loader argument may be NULL to unregister an entry.
Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al_register bitmap loader

103


https://github.com/liballeg/allegro5/blob/master/src/display.c#L531
https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L128
https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L137
https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L146

9. GRAPHICS ROUTINES

9.11.4 al_register_bitmap_saver f

bool al_register_bitmap_saver_f(const char *extension,
bool (xfs_saver)(ALLEGRO_FILE xfp, ALLEGRO_BITMAP xbmp))

Source Code

Register a handler for al save bitmap_f. The given function will be used to handle the saving of
bitmaps files with the given extension.

The extension should include the leading dot (‘") character. It will be matched case-insensitively.
The saver_f argument may be NULL to unregister an entry.
Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al _register bitmap saver

9.11.5 al load_bitmap
ALLEGRO_BITMAP *al_load_bitmap(const char xfilename)

Source Code

Loads an image file into a new ALLEGRO_BITMAP. The file type is determined by the extension, except
if the file has no extension in which case al_identify bitmap is used instead.

Returns NULL on error.

This is the same as calling al load bitmap flags with a flags parameter of 0.

Note: the core Allegro library does not support any image file formats by default. You must
use the allegro_image addon, or register your own format handler.

See also: al_load_bitmap flags, al load bitmap_f, al register bitmap loader,
al set new bitmap_ format, al set new bitmap flags, al init image addon

9.11.6 al load bitmap flags
ALLEGRO_BITMAP *al_load_bitmap_flags(const char *filename, int flags)

Source Code

Loads an image file into a new ALLEGRO BITMAP. The file type is determined by the extension, except
if the file has no extension in which case al_identify bitmap is used instead.

Returns NULL on error.

The flags parameter may be a combination of the following constants:

ALLEGRO_NO_PREMULTIPLIED_ALPHA
By default, Allegro pre-multiplies the alpha channel of an image with the images color data when
it loads it. Typically that would look something like this:

= get_float_byte();
= get_float_byte();
= get_float_byte();
= get_float_byte();

O T Mm@ 3
|

=S
I}

r * a,
=g *a;
=b % a;

T 0
|

set_image_pixel(x, y, r, g, b, a);

104


https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L155
https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L173
https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L190

9.11. Image I/0

The reason for this can be seen in the Allegro example ex premulalpha, ie, using pre-multiplied
alpha gives more accurate color results in some cases. To use alpha blending with images loaded
with pre-multiplied alpha, you would use the default blending mode, which is set with

al set blender(ALLEGRO ADD, ALLEGRO ONE, ALLEGRO_INVERSE ALPHA).

The ALLEGRO_NO PREMULTIPLIED ALPHA flag being set will ensure that images are not
loaded with alpha pre-multiplied, but are loaded with color values direct from the image. That

looks like this:
r = get_float_byte();
g = get_float_byte();
b = get_float_byte();
a = get_float_byte();

set_image_pixel(x, y, r, g, b, a);

To draw such an image using regular alpha blending, you would use

al set blender(ALLEGRO_ADD, ALLEGRO_ALPHA, ALLEGRO INVERSE_ALPHA) to set the
correct blender. This has some caveats. First, as mentioned above, drawing such an image can
result in less accurate color blending (when drawing an image with linear filtering on, the edges
will be darker than they should be). Second, the behaviour is somewhat confusing, which is
explained in the example below.

// Load and create bitmaps with an alpha channel
al_set_new_bitmap_format (ALLEGRO_PIXEL_FORMAT_ANY_32_WITH_ALPHA);
// Load some bitmap with alpha in it

bmp = al_load_bitmap("some_alpha_bitmap.png");

// We will draw to this buffer and then draw this buffer to the screen
tmp_buffer = al_create_bitmap(SCREEN_W, SCREEN_H);

// Set the buffer as the target and clear it
al_set_target_bitmap(tmp_buffer);
al_clear_to_color(al_map_rgba_f (0, 0, 0, 1));

// Draw the bitmap to the temporary buffer

al_draw_bitmap(bmp, 0, 0, 0);

// Finally, draw the buffer to the screen

// The output will look incorrect (may take close inspection

// depending on the bitmap -- it may also be very obvious)
al_set_target_bitmap(al_get_backbuffer(display));
al_draw_bitmap(tmp_buffer, 0, 0, 0);

To explain further, if you have a pixel with 0.5 alpha, and you’re using (ALLEGRO_ADD,
ALLEGRO_ALPHA, ALLEGRO_INVERSE ALPHA) for blending, the formula is:

a = da x dst + sa * src
Expands to:
result_a = dst_a * (1-0.5) + 0.5 x 0.5

So if you draw the image to the temporary buffer, it is blended once resulting in 0.75 alpha, then
drawn again to the screen, blended in the same way, resulting in a pixel has 0.1875 as an alpha
value.

ALLEGRO_KEEP_INDEX
Load the palette indices of 8-bit .bmp and .pcx files instead of the rgb colors. Since 5.1.0.

ALLEGRO_KEEP_BITMAP_FORMAT
Force the resulting ALLEGRO_BITMAP to use the same format as the file.

This is not yet honoured.

105



9. GRAPHICS ROUTINES

Note: the core Allegro library does not support any image file formats by default. You must
use the allegro_image addon, or register your own format handler.

Since: 5.1.0

See also: al load_bitmap

9.11.7 al_load_bitmap_f
ALLEGRO_BITMAP *al_load_bitmap_f (ALLEGRO_FILE *fp, const char *ident)

Source Code

Loads an image from an ALLEGRO_FILE stream into a new ALLEGRO BITMAP. The file type is
determined by the passed ‘ident’ parameter, which is a file name extension including the leading dot. If
(and only if) ‘ident’ is NULL, the file type is determined with al identify bitmap f instead.

This is the same as calling al load bitmap flags f with O for the flags parameter.
Returns NULL on error. The file remains open afterwards.

Note: the core Allegro library does not support any image file formats by default. You must
use the allegro_image addon, or register your own format handler.

See also: al load bitmap flags f, al load bitmap, al register bitmap loader f, al init image addon

9.11.8 al load_bitmap_flags f
ALLEGRO_BITMAP *al_load_bitmap_flags_f (ALLEGRO_FILE xfp,

const char xident, int flags)

Source Code

Loads an image from an ALLEGRO_FILE stream into a new ALLEGRO_BITMAP. The file type is
determined by the passed ‘ident’ parameter, which is a file name extension including the leading dot. If
(and only if) ‘ident’ is NULL, the file type is determined with al_identify bitmap_f instead.

The flags parameter is the same as for al load bitmap_ flags.

Returns NULL on error. The file remains open afterwards.

Note: the core Allegro library does not support any image file formats by default. You must
use the allegro_image addon, or register your own format handler.

Since: 5.1.0

See also: al load bitmap f, al load bitmap_flags

9.11.9 al_save_bitmap
bool al_save_bitmap(const char *filename, ALLEGRO_BITMAP x*bitmap)

Source Code
Saves an ALLEGRO_BITMAP to an image file. The file type is determined by the extension.

Returns true on success, false on error.

Note: the core Allegro library does not support any image file formats by default. You must
use the allegro_image addon, or register your own format handler.

See also: al_save bitmap f, al register bitmap saver, al_init_image addon

106


https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L247
https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L264
https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L226

9.11. Image I/0

9.11.10 al_save_bitmap_f

bool al_save_bitmap_f(ALLEGRO_FILE *fp, const char *ident,
ALLEGRO_BITMAP *bitmap)

Source Code

Saves an ALLEGRO BITMAP to an ALLEGRO_FILE stream. The file type is determined by the passed
‘ident’ parameter, which is a file name extension including the leading dot.

Returns true on success, false on error. The file remains open afterwards.

Note: the core Allegro library does not support any image file formats by default. You must
use the allegro_image addon, or register your own format handler.

See also: al_save_bitmap, al register bitmap saver f, al init image addon

9.11.11 al_register_bitmap_identifier

bool al_register_bitmap_identifier(const char *extension,
bool (*identifier)(ALLEGRO_FILE *f))

Source Code

Register an identify handler for al identify bitmap. The given function will be used to detect files for
the given extension. It will be called with a single argument of type ALLEGRO_FILE which is a file
handle opened for reading and located at the first byte of the file. The handler should try to read as
few bytes as possible to safely determine if the given file contents correspond to the type with the
extension and return true in that case, false otherwise. The file handle must not be closed but there is
no need to reset it to the beginning.

The extension should include the leading dot (‘.”) character. It will be matched case-insensitively.
The identifier argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.
Since: 5.1.12

See also: al_identify bitmap

9.11.12 al _identify_bitmap

char const *al_identify_bitmap(char const *filename)

Source Code

This works exactly as al_identify bitmap_ f but you specify the filename of the file for which to detect
the type and not a file handle. The extension, if any, of the passed filename is not taken into account -
only the file contents.

Since: 5.1.12

See also: al_init image addon, al identify bitmap f, al register bitmap_identifier

9.11.13 al_identify_bitmap_f

char const *al_identify_bitmap_f (ALLEGRO_FILE =*fp)

107


https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L281
https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L164
https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L307

9. GRAPHICS ROUTINES

Source Code

Tries to guess the bitmap file type of the open ALLEGRO_FILE by reading the first few bytes. By default
Allegro cannot recognize any file types, but calling al _init image addon will add detection of (some
of) the types it can read. You can also use al register bitmap_identifier to add identification for custom
file types.

Returns a pointer to a static string with a file extension for the type, including the leading dot. For
example “.png” or “.jpg”. Returns NULL if the bitmap type cannot be determined.

Since: 5.1.12

See also: al_init image addon, al identify bitmap, al register bitmap_identifier

9.12 Render State

9.12.1 ALLEGRO_RENDER_STATE
typedef enum ALLEGRO_RENDER_STATE {

Source Code

Possible render states which can be set with al set render state:

ALLEGRO_ALPHA_TEST
If this is set to 1, the values of ALLEGRO_ALPHA FUNCTION and
ALLEGRO_ALPHA TEST VALUE define a comparison function which is performed for each pixel.
Only if it evaluates to true the pixel is written. Otherwise no subsequent processing (like depth
test or blending) is performed.
ALLEGRO_ALPHA_FUNCTION
One of ALLEGRO_RENDER FUNCTION, only used when ALLEGRO_ALPHA TEST is 1.
ALLEGRO_ALPHA TEST VALUE
Only used when ALLEGRO_ALPHA TEST is 1.
ALLEGRO_WRITE_MASK
This determines how the framebuffer and depthbuffer are updated whenever a pixel is written (in
case alpha and/or depth testing is enabled: after all such enabled tests succeed). Depth values
are only written if ALLEGRO_DEPTH_TEST is 1, in addition to the write mask flag being set.
ALLEGRO_DEPTH_TEST
If this is set to 1, compare the depth value of any newly written pixels with the depth value
already in the buffer, according to ALLEGRO DEPTH_FUNCTION. Allegro primitives with no
explicit z coordinate will write a value of 0 into the depth buffer.
ALLEGRO_DEPTH_FUNCTION
One of ALLEGRO_RENDER FUNCTION, only used when ALLEGRO_DEPTH_TEST is 1.

Since: 5.1.2
See also: al set render state, ALLEGRO RENDER FUNCTION, ALLEGRO WRITE MASK FLAGS

9.12.2 ALLEGRO_RENDER_FUNCTION
typedef enum ALLEGRO_RENDER_FUNCTION {

Source Code

Possible functions are:

« ALLEGRO_RENDER_NEVER
ALLEGRO_RENDER_ALWAYS
« ALLEGRO RENDER_LESS
ALLEGRO_RENDER_EQUAL

108


https://github.com/liballeg/allegro5/blob/master/src/bitmap_io.c#L296
https://github.com/liballeg/allegro5/blob/master/include/allegro5/render_state.h#L12
https://github.com/liballeg/allegro5/blob/master/include/allegro5/render_state.h#L26

9.12. Render State

« ALLEGRO RENDER_LESS_EQUAL

« ALLEGRO_RENDER_GRFATER

« ALLEGRO RENDER_NOT EQUAL
ALLEGRO_RENDER_GREATER_EQUAL

Since: 5.1.2

See also: al_set render state

9.12.3 ALLEGRO_WRITE_MASK_FLAGS
typedef enum ALLEGRO_WRITE_MASK_FLAGS {

Source Code

Each enabled bit means the corresponding value is written, a disabled bit means it is not.

« ALLEGRO_MASK_RED

* ALLEGRO_MASK_GREEN

* ALLEGRO_MASK_BLUE

« ALLEGRO MASK_ALPHA

 ALLEGRO_MASK_DEPTH

« ALLEGRO_MASK_RGB - Same as RED | GREEN | BLUE.
 ALLEGRO_MASK_RGBA - Same as RGB | ALPHA.

Since: 5.1.2

See also: al_set render state

9.12.4 al_set render_state
void al_set_render_state (ALLEGRO_RENDER_STATE state, int value)

Source Code

Set one of several render attributes; see ALLEGRO_RENDER_STATE for details.
This function does nothing if the target bitmap is a memory bitmap.

Since: 5.1.2

See also: ALLEGRO _RENDER_STATE, ALLEGRO RENDER_FUNCTION,
ALLEGRO_WRITE_MASK_FLAGS

9.12.5 al backup_dirty bitmap
void al_backup_dirty_bitmap(ALLEGRO_BITMAP *bitmap)

Source Code

On some platforms, notably Windows Direct3D and Android, textures may be lost at any time for
events such as display resize or switching out of the app. On those platforms, bitmaps created without
the ALLEGRO _NO PRESERVE_TEXTURE flag automatically get backed up to system memory every
time al flip display is called.

This function gives you more control over when your bitmaps get backed up. By calling this function
after modifying a bitmap, you can make sure the bitmap is backed up right away instead of during the
next flip.

Since: 5.2.1
Unstable API: This API is new and subject to refinement.

See also: al _backup_dirty bitmaps, al create bitmap

109


https://github.com/liballeg/allegro5/blob/master/include/allegro5/render_state.h#L39
https://github.com/liballeg/allegro5/blob/master/src/display.c#L593
https://github.com/liballeg/allegro5/blob/master/src/bitmap.c#L684

9. GRAPHICS ROUTINES

9.12.6 al_backup_dirty_bitmaps
void al_backup_dirty_bitmaps(ALLEGRO_DISPLAY *display)

Source Code
Backs up all of a display’s bitmaps to system memory.

Since: 5.2.1
Unstable API: This API is new and subject to refinement.

See also: al backup dirty bitmap

110


https://github.com/liballeg/allegro5/blob/master/src/display.c#L631

10

Haptic routines

Haptic functions support force feedback and vibration on input devices. These functions are declared
in the main Allegro header file:

#include <allegro5/allegro.h>

Currently force feedback is fully supported on Linux and on Windows for DirectInput compatible
devices. There is also minimal support for Android. It is not yet supported on OSX, iOS, or on
Windows for XInput compatible devices.

10.1 ALLEGRO_HAPTIC

typedef struct ALLEGRO_HAPTIC ALLEGRO_HAPTIC;

Source Code
This is an abstract data type representing a haptic device that supports force feedback or vibration.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

See also: al_get haptic from_joystick

10.2 ALLEGRO_HAPTIC_CONSTANTS

enum ALLEGRO_HAPTIC_CONSTANTS

Source Code

This enum contains flags that are used to define haptic effects and capabilities. If the flag is set in the
return value of al_get haptic_capabilities, it means the device supports the given effect. The value of
these flags should be set into a ALLEGRO HAPTIC EFFECT struct to determine what kind of haptic
effect should be played.

* ALLEGRO HAPTIC RUMBLE - simple vibration effects

* ALLEGRO_HAPTIC_PERIODIC - periodic, wave-form effects
ALLEGRO_HAPTIC_CONSTANT - constant effects

* ALLEGRO HAPTIC_ SPRING - spring effects
ALLEGRO_HAPTIC_FRICTION - friction effects

111


https://github.com/liballeg/allegro5/blob/master/include/allegro5/haptic.h#L64
https://github.com/liballeg/allegro5/blob/master/include/allegro5/haptic.h#L37

10. HAPTIC ROUTINES

ALLEGRO_HAPTIC_DAMPER - damper effects
ALLEGRO_HAPTIC_INERTIA - inertia effects

ALLEGRO_HAPTIC RAMP - ramp effects

ALLEGRO_HAPTIC_SQUARE - square wave periodic effect
ALLEGRO_HAPTIC_TRIANGLE - triangle wave periodic effect
ALLEGRO_HAPTIC_SINE - sine wave periodic effect
ALLEGRO_HAPTIC_SAW_UP - upwards saw wave periodic effect
ALLEGRO_HAPTIC_SAW_DOWN - downwards saw wave periodic effect
ALLEGRO_HAPTIC CUSTOM - custom wave periodic effect
ALLEGRO_HAPTIC_GAIN - the haptic device supports gain setting
ALLEGRO_HAPTIC_ANGLE - the haptic device supports angle coordinates
ALLEGRO_HAPTIC_RADIUS - the haptic device supports radius coordinates
ALLEGRO_HAPTIC AZIMUTH - the haptic device supports azimuth coordinates
ALLEGRO_HAPTIC AUTOCENTER

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

See also: al_get haptic_capabilities, ALLEGRO_HAPTIC EFFECT

10.3 ALLEGRO_HAPTIC_EFFECT

struct ALLEGRO_HAPTIC_EFFECT

Source Code

This struct models a particular haptic or vibration effect. It needs to be filled in correctly and uploaded
to a haptic device before the device can play it back.

Fields:

type The type of the haptic effect. May be one of the ALLEGRO_HAPTIC_CONSTANTS constants
between or equal to ALLEGRO_HAPTIC_ RUMBLE and ALLEGRO_HAPTIC_RAMP.

* If type is set to ALLEGRO HAPTIC RUMBLE, then the effect is a simple “rumble” or
vibration effect that shakes the device. In some cases, such as on a mobile platform, the
whole device may shake.

* If type is set to ALLEGRO HAPTIC_ PERIODIC, the effect is a shake or vibration of which the
intensity is a periodic wave form.

* If type is set to ALLEGRO _HAPTIC_CONSTANT, the effect is a constant pressure, motion or
push-back in a certain direction of the axes of the device.

* If type is set to ALLEGRO_HAPTIC_SPRING, the effect is a springy kind of resistance against
motion of the axes of the haptic device.

* If type is set to ALLEGRO HAPTIC_FRICTION, the effect is a friction kind of resistance
against motion of the axes of the haptic device.

* If type is set to ALLEGRO_HAPTIC DAMPER, the effect is a damper kind of resistance
against motion of the axes of the haptic device.

* If type is set to ALLEGRO HAPTIC_INERTIA, the effect causes inertia or slowness of
motions on the axes of the haptic device.

* If type is set to ALLEGRO_HAPTIC RAMP, the effect causes a pressure or push-back that
ramps up or down depending on the position of the axis.

112


https://github.com/liballeg/allegro5/blob/master/include/allegro5/haptic.h#L169

10.3. ALLEGRO_HAPTIC_EFFECT

direction

The direction of location in 3D space where the effect should be played. Allegro haptic devices
model directions in 3D space using spherical coordinates. However, the haptic device may not
support localized effects, or may not support all coordinate components.

In Allegro’s coordinate system, the value in direction.angle determines the planar angle
between the effect and the direction of the user who holds the device, expressed in radians. This
angle increases clockwise away from the user. So, an effect with an angle 0.0 takes place in the
direction of the user of the haptic device, an angle of 7/2 is to the left of the user, an angle of =
means the direction away from the user, and an angle of 37/2 means to the right of the user.

If al_get haptic_capabilities has the flag ALLEGRO_HAPTIC_ANGLE set, then setting
direction.angle is supported. Otherwise, it is unsupported, and you should set it to O.

The value in direction.radius is a relative value between 0.0 and 1.0 that determines the
relative distance from the center of the haptic device at which the effect will play back. A value of
0 means that the effect should play back at the center of the device. A value of 1.0 means that
the effect should play back away from the center as far as is possible.

If al_get haptic_capabilities has the flag ALLEGRO_HAPTIC RADIUS set, then setting
direction.radius is supported. Otherwise, it is unsupported, and you should set it to 0.

The value in direction.azimuth determines the elevation angle between the effect and the plane
in which the user is holding the device, expressed in radians. An effect with an azimuth 0.0 plays
back in the plane in which the user is holding the device, an azimuth +7/2 means the effect
plays back vertically above the user plane, and an azimuth -7/2 means the effect plays back
vertically below the user plane.

If al_get haptic_capabilities has the flag ALLEGRO_HAPTIC_AZIMUTH set, then setting
direction.azimuth is supported. Otherwise, it is unsupported, and you should set it to O.

replay

data

Determines how the effect should be played back. replay.length is the duration in seconds of
the effect, and replay.delay is the time in seconds that the effect playback should be delayed
when playback is started with al_play haptic_effect.

Determines in detail the parameters of the haptic effect to play back.

If type is set to ALLEGRO _HAPTIC RUMBLE, then data.rumble.strong_magnitude must be set
to a relative magnitude between 0.0 and 1.0 to determine how intensely the “large” rumble
motor of the haptic device will vibrate, and data.rumble.weak_magnitude must be set to relative
magnitude between 0.0 and 1.0 to determine how intensely the “weak” ruble motor of the haptic
device will vibrate. Not all devices have a “weak” motor, in which case the value set in
data.rumble.weak_magnitude will be ignored.

If type is set to ALLEGRO _HAPTIC PERIODIC, then data.periodic.waveform must be set to one
of ALLEGRO_HAPTIC_SQUARE, ALLEGRO _HAPTIC_ TRIANGLE, ALLEGRO HAPTIC_SINE,
ALLEGRO_HAPTIC_SAW_UP, ALLEGRO_HAPTIC_SAW_DOWN, ALLEGRO_HAPTIC_CUSTOM.
This will then determine the wave form of the vibration effect that will be played on the haptic
device.

In these cases, data.periodic.period must be set to the period in seconds of the wave form. The
field data.periodic.magnitude must be set to the relative magnitude of intensity between -1.0
and 1.0 at which the wave form of the vibration will be played back. The field
data.periodic.offset must be filled in with the offset from origin in seconds of the wave form
of vibration, and the field data.periodic.phase is the phase of the wave form of vibration in
seconds.

If data.periodic.waveformis set to ALLEGRO HAPTIC CUSTOM, then
data.periodic.custom_data must point to an array of data.periodic.custom_len doubles, each
with values between -1.0 and 1.0. This value array will determine the shape of the wave form of
the haptic effect. ALLEGRO_HAPTIC_CUSTOM is not supported on some platforms, so use

al get haptic_capabilities to check if it’s available. If it isn’t, you may want to play back a
non-custom wave effect as a substitute instead.

113



10. HAPTIC ROUTINES

If type is set to ALLEGRO_HAPTIC_CONSTANT, then data.constant.level must be set to a
relative intensity value between 0.0 and 1.0 to determine the intensity of the effect.

If type is set to any of ALLEGRO HAPTIC_SPRING, ALLEGRO_HAPTIC_FRICTION,
ALLEGRO_HAPTIC DAMPER, ALLEGRO HAPTIC INERTIA, ALLEGRO HAPTIC RAMP, then the
data.condition struct should be filled in. To explain this better, it’s best to keep in mind that
these kinds of effects are most useful for steering-wheel kind of devices, where resistance or
inertia should be applied when turning the device’s wheel a certain distance to the left or right.

The field data.condition.right_saturation must be filled in with a relative magnitude between
-1.0 and 1.0 to determine the intensity of resistance or inertia on the “right” side of the axis.
Likewise, data.condition.left_saturation must be filled in with a relative magnitude between
-1.0 and 1.0 to determine the intensity of resistance or inertia on the “left” side of the axis.

The field data.condition.deadband must be filled in with a relative value between 0.0 and 1.0 to
determine the relative width of the “dead band” of the haptic effect. As long as the axis of the
haptic device remains in the “dead band” area, the effect will not be applied. A value of 0.0
means there is no dead band, and a value of 1.0 means it applied over the whole range of the
axis in question.

The field data.condition.center must be filled in with a relative value between -1.0 and 1.0 to
determine the relative position of the “center” of the effect around which the dead band is
centered. It should be set to 0.0 in case the center should not be shifted.

The field data.condition.right_coef and data.condition.right_left_coef must be filled in
with a relative coefficient, that will determine how quickly the effect ramps up on the right and
left side. If set to 1.0, then the effect will be immediately at full intensity when outside of the
dead band. If set to 0.0 the effect will not be felt at all.

If type is set to ALLEGRO_HAPTIC RAMP, then data.ramp.start_level should be set to a
relative magnitude value between -1.0 and 1.0 to determine the initial intensity of the haptic
effect. The field data.ramp.end_level should be set to a relative magnitude value between -1.0
and 1.0 to determine the final intensity of the haptic effect at the end of playback.

If type is set to any of ALLEGRO_HAPTIC_PERIODIC, ALLEGRO_HAPTIC_CONSTANT,
ALLEGRO_HAPTIC RAMP, then data.envelope determines the “envelope” of the effect. That is,
it determines the duration and intensity for the ramp-up attack or “fade in” and the ramp-down
or “fade out” of the effect.

In these cases the field data.envelope.attack_level must be set to a relative value between 0.0
and 1.0 that determines the intensity the effect should have when it starts playing (after
replay.delay seconds have passed since the playback was started). The field
data.envelope.attack_length must be set to the time in seconds that the effect should ramp up
to the maximum intensity as set by the other parameters. If data.envelope.attack_length is 0,
then the effect will play immediately at full intensity.

The field data.envelope.fade_level must be set to a relative value between 0.0 and 1.0 that
determines the intensity the effect should have when it stops playing after replay.length +
replay.delay seconds have passed since the playback of the effect started. The field
data.envelope. fade_length must be set to the time in seconds that the effect should fade out
before it finishes playing. If data.envelope.fade_length is 0, then the effect will not fade out.

If you don’t want to use an envelope, then set all four fields of data.envelope to 0.0. The effect
will then play back at full intensity throughout its playback.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.4 ALLEGRO_HAPTIC_EFFECT ID

typedef struct ALLEGRO_HAPTIC_EFFECT_ID ALLEGRO_HAPTIC_EFFECT_ID;

114



10.5. al install haptic

Source Code

This struct is used as a handle to control playback of a haptic effect and should be considered opaque.
Its implementation is visible merely to allow allocation by the users of the Allegro library.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.5 al_install_haptic

bool al_install_haptic(void)

Source Code

Installs the haptic (force feedback) device subsystem. This must be called before using any other
haptic-related functions. Returns true if the haptics subsystem could be initialized correctly, false in
case of error.

For portability you should first open a display before calling al install haptic. On some platforms, such
as DirectInput under Windows, al install haptic will only work if at least one active display is
available. This display must stay available until al uninstall haptic is called.

If you need to close and reopen your active display for example, then you should call
al uninstall haptic before closing the display, and al _install haptic after opening it again.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.6 al_uninstall_haptic

void al_uninstall_haptic(void)

Source Code

Uninstalls the haptic device subsystem. This is useful since on some platforms haptic effects are bound
to the active display.

If you need to close and reopen your active display for example, then you should call
al_uninstall_haptic before closing the display, and al_install haptic after opening it again.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.7 al_is_haptic_installed
bool al_is_haptic_installed(void)

Source Code
Returns true if the haptic device subsystem is installed, false if not.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

115


https://github.com/liballeg/allegro5/blob/master/include/allegro5/haptic.h#L183
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L34
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L64
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L76

10. HAPTIC ROUTINES

10.8 al_is_mouse_haptic

bool al_is_mouse_haptic(ALLEGRO_MOUSE *dev)

Source Code
Returns true if the mouse has haptic capabilities, false if not.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.
10.9 al_is_keyboard_haptic

bool al_is_keyboard_haptic(ALLEGRO_KEYBOARD *dev)

Source Code
Returns true if the keyboard has haptic capabilities, false if not.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.
10.10 al_is_display_haptic

bool al_is_display_haptic(ALLEGRO_DISPLAY *dev)

Source Code

Returns true if the display has haptic capabilities, false if not. This mainly concerns force feedback that
shakes a hand held device, such as a phone or a tablet.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.11 al_is_joystick_haptic

bool al_is_joystick_haptic(ALLEGRO_JOYSTICK *dev)

Source Code
Returns true if the joystick has haptic capabilities, false if not.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

116


https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L95
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L106
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L117
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L84

10.12. al is touch_input_haptic

10.12 al_is_touch_input_haptic

bool al_is_touch_input_haptic(ALLEGRO_TOUCH_INPUT =*dev)

Source Code
Returns true if the touch input device has haptic capabilities, false if not.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.
10.13 al_get_haptic_from_mouse

ALLEGRO_HAPTIC =*al_get_haptic_from_mouse (ALLEGRO_MOUSE =*dev)

Source Code

If the mouse has haptic capabilities, returns the associated haptic device handle. Otherwise returns
NULL.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.
10.14 al_get_haptic_from_keyboard

ALLEGRO_HAPTIC *al_get_haptic_from_keyboard(ALLEGRO_KEYBOARD x*dev)

Source Code

If the keyboard has haptic capabilities, returns the associated haptic device handle. Otherwise returns
NULL.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.
10.15 al get haptic_from_display

ALLEGRO_HAPTIC *al_get_haptic_from_display(ALLEGRO_DISPLAY *dev)

Source Code

If the display has haptic capabilities, returns the associated haptic device handle. Otherwise returns
NULL.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

117


https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L127
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L148
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L159
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L170

10. HAPTIC ROUTINES

10.16 al_get_haptic_from_joystick

ALLEGRO_HAPTIC *al_get_haptic_from_joystick(ALLEGRO_JOYSTICK xdev)

Source Code

If the joystick has haptic capabilities, returns the associated haptic device handle. Otherwise returns
NULL. It’s necessary to call this again every time the joystick configuration changes, such as through
hot plugging. In that case, the old haptic device must be released using al release haptic.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.17 al_get_haptic_from_touch_input

ALLEGRO_HAPTIC =*al_get_haptic_from_touch_input(ALLEGRO_TOUCH_INPUT =*dev)

Source Code

If the touch input device has haptic capabilities, returns the associated haptic device handle. Otherwise
returns NULL.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.18 al release_ haptic

bool al_release_haptic(ALLEGRO_HAPTIC =*xhaptic)

Source Code

Releases the haptic device and its resources when it’s not needed anymore. Should also be used in case
the joystick configuration changed, such as when a joystick is hot plugged. This function also
automatically releases all haptic effects that are still uploaded to the device and that have not been
released manually using al release haptic_effect.

Returns true on success or false if the haptic device couldn’t be released for any reason, such as NULL
being passed, the device not being active or failure in the driver.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.19 al_is_haptic_active
bool al_is_haptic_active(ALLEGRO_HAPTIC *hap)

Source Code
Returns true if the haptic device can currently be used, false if not.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

118


https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L137
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L181
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L385
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L192

10.20. al _get haptic_capabilities

10.20 al_get_haptic_capabilities
int al_get_haptic_capabilities(ALLEGRO_HAPTIC xhap)

Source Code

Returns an integer with or’ed values from ALLEGRO_HAPTIC_CONSTANTS, which, if set, indicate that
the haptic device supports the given feature.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.21 al_is_haptic_capable
bool al_is_haptic_capable(ALLEGRO_HAPTIC * hap, int query) {

Source Code

Returns true if the haptic device supports the feature indicated by the query parameter, false if the
feature is not supported. The query parameter must be one of the values of
ALLEGRO_HAPTIC_CONSTANTS.

Since: 5.1.9

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

See also: al_get haptic_capabilities

10.22 al set_haptic_gain
bool al_set_haptic_gain(ALLEGRO_HAPTIC xhap, double gain)

Source Code

Sets the gain of the haptic device if supported. Gain is much like volume for sound, it is as if every
effect’s intensity is multiplied by it. Gain is a value between 0.0 and 1.0. Returns true if set successfully,
false if not. Only works if al_get haptic_capabilities returns a value that has ALLEGRO _HAPTIC_GAIN
set. If not, this function returns false, and all effects will be played without any gain influence.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.23 al get haptic_gain
double al_get_haptic_gain(ALLEGRO_HAPTIC xhap)

Source Code

Returns the current gain of the device. Gain is much like volume for sound, it is as if every effect’s
intensity is multiplied by it. Gain is a value between 0.0 and 1.0. Only works correctly if

al get haptic capabilities returns a value that has ALLEGRO_HAPTIC_GAIN set. If this is not set, this
function will simply return 1.0 and all effects will be played without any gain influence.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

119


https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L203
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L213
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L231
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L220

10. HAPTIC ROUTINES

10.24 al_set_haptic_autocenter

bool al_set_haptic_autocenter (ALLEGRO_HAPTIC *hap, double intensity)

Source Code

Turns on or off the automatic centering feature of the haptic device if supported. Depending on the
device automatic centering may ensure that the axes of the device are centered again automatically
after playing a haptic effect. The intensity parameter should be passed with a value between 0.0 and
1.0. The value 0.0 means automatic centering is disabled, and 1.0 means full strength automatic
centering. Any value in between those two extremes will result in partial automatic centering. Some
platforms do not support partial automatic centering. If that is the case, a value of less than 0.5 will
turn it off, while a value equal to or higher to 0.5 will turn it on. Returns true if set successfully, false if
not. Can only work if al get haptic_capabilities returns a value that has
ALLEGRO_HAPTIC_AUTOCENTER set. If not, this function returns false.

Since: 5.1.9

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.25 al_get_haptic_autocenter

double al_get_haptic_autocenter (ALLEGRO_HAPTIC =*hap)

Source Code

Returns the current automatic centering intensity of the device. Depending on the device automatic
centering may ensure that the axes of the device are centered again automatically after playing a
haptic effect. The return value can be between 0.0 and 1.0. The value 0.0 means automatic centering
is disabled, and 1.0 means automatic centering is enabled at full strength. Any value in between those
two extremes means partial automatic centering is enabled. Some platforms do not support partial
automatic centering. If that is the case, a value of less than 0.5 means it is turned off, while a value
equal to or higher to 0.5 means it is turned on. Can only work if al get haptic_capabilities returns a
value that has ALLEGRO_HAPTIC AUTOCENTER set. If not, this function returns 0.0.

Since: 5.1.9

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.
10.26 al get max haptic_effects

int al_get_max_haptic_effects(ALLEGRO_HAPTIC *hap)

Source Code

Returns the maximum amount of haptic effects that can be uploaded to the device. This depends on
the operating system, driver, platform and the device itself. This may return a value as low as 1.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

120


https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L252
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L241
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L264

10.27. al is haptic_effect ok

10.27 al_is_haptic_effect_ok

bool al_is_haptic_effect_ok (ALLEGRO_HAPTIC *hap, ALLEGRO_HAPTIC_EFFECT *effect)

Source Code

Returns true if the haptic device can play the haptic effect as given, false if not. The haptic effect must
have been filled in completely and correctly.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.28 al upload_haptic_effect

bool al_upload_haptic_effect(ALLEGRO_HAPTIC xhap,
ALLEGRO_HAPTIC_EFFECT xeffect, ALLEGRO_HAPTIC_EFFECT_ID xid)

Source Code

Uploads the haptic effect to the device. The haptic effect must have been filled in completely and
correctly. You must also pass in a pointer to a user allocated ALLEGRO _HAPTIC_EFFECT ID. This id
can be used to control playback of the effect. Returns true if the effect was successfully uploaded, false
if not.

The function al get max_ haptic_effects returns how many effects can be uploaded to the device at the
same time.

The same haptic effect can be uploaded several times, as long as care is taken to pass in a different
ALLEGRO_HAPTIC_EFFECT _ID.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.29 al play haptic_effect

bool al_play_haptic_effect(ALLEGRO_HAPTIC_EFFECT_ID *id, int loop)

Source Code

Plays back a previously uploaded haptic effect. The play_id must be a valid
ALLEGRO_HAPTIC_EFFECT ID obtained from al upload_haptic_effect,
al upload_and_play haptic_effect or al rumble haptic.

The haptic effect will be played back loop times in sequence. If loop is less than or equal to 1, then the
effect will be played once only.

This function returns immediately and doesn’t wait for the playback to finish. It returns true if the
playback was started successfully or false if not.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

121


https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L275
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L286
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L298

10. HAPTIC ROUTINES

10.30 al_upload_and_play_haptic_effect

bool al_upload_and_play_haptic_effect(ALLEGRO_HAPTIC xhap,
ALLEGRO_HAPTIC_EFFECT xeffect, ALLEGRO_HAPTIC_EFFECT_ID xid, int loop)

Source Code

Uploads the haptic effect to the device and starts playback immediately. Returns true if the upload and
playback were successful, false if either failed.

In case false is returned, the haptic effect will be automatically released as if al release haptic_effect
had been called, so there is no need to call it again manually in this case. However, if true is returned,
it is necessary to call al release haptic_effect when the effect isn’t needed anymore, to prevent the
amount of available effects on the haptic devicefrom running out.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

See also: al_upload_haptic_effect, al play haptic_effect

10.31 al stop_haptic_effect

bool al_stop_haptic_effect(ALLEGRO_HAPTIC_EFFECT_ID *id)

Source Code

Stops playing a previously uploaded haptic effect. The play_id must be a valid
ALLEGRO_HAPTIC EFFECT ID obtained from al upload haptic_effect,
al upload_and play haptic_effect or al rumble haptic.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.32 al_is_haptic_effect_playing

bool al_is_haptic_effect_playing(ALLEGRO_HAPTIC_EFFECT_ID xid)

Source Code

Returns true if the haptic effect is currently playing. Returns false if the effect has been stopped or if it
has already finished playing, or if it has not been played yet. The play_id must be a valid
ALLEGRO_HAPTIC_EFFECT ID obtained from al upload_haptic_effect,

al upload and play haptic_effect or al rumble haptic.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

122


https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L309
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L330
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L340

10.33. al _get haptic_effect duration

10.33 al_get_haptic_effect_duration

double al_get_haptic_effect_duration(ALLEGRO_HAPTIC_EFFECT * effect)

Source Code

Returns the estimated duration in seconds of a single loop of the given haptic effect. The effect’s
effect.replay must have been filled in correctly before using this function.

Since: 5.1.9

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.34 al release_haptic effect

bool al_release_haptic_effect(ALLEGRO_HAPTIC_EFFECT_ID *id)

Source Code

Releases a previously uploaded haptic effect from the device it has been uploaded to, allowing for
other effects to be uploaded. The play id must be a valid ALLEGRO_HAPTIC EFFECT ID obtained
from al_upload_haptic_effect, al upload and play haptic_effect or al rumble_haptic.

This function is called automatically when you call al release_haptic on a ALLEGRO_HAPTIC for all
effects that are still uploaded to the device. Therefore this function is most useful if you want to upload
and release haptic effects dynamically, for example as a way to circumvent the limit imposed by

al get max_haptic_effects.

Returns true on success, false if the effect couldn’t be released for any reason such as when NULL is
passed, the effect is not active or failure to release the effect by the driver.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

10.35 al_rumble_haptic

bool al_rumble_haptic(ALLEGRO_HAPTIC =*hap,
double intensity, double duration, ALLEGRO_HAPTIC_EFFECT_ID =*id)

Source Code

Uploads a simple rumble effect to the haptic device and starts playback immediately. The parameter
intensity is a relative magnitude between 0.0 and 1.0 that determines the intensity of the rumble
effect. The duration determines the duration of the effect in seconds.

You must also pass in a pointer to a user allocated ALLEGRO_HAPTIC_EFFECT ID. It it is stored a
reference to be used to control playback of the effect. Returns true if the rumble effect was successfully
uploaded and started, false if not.

In case false is returned, the rumble effect will be automatically released as if al release haptic_effect
had been called, so there is no need to call it again manually in this case. However, if true is returned,
it is necessary to call al release_haptic_effect when the effect isn’t needed anymore, to prevent the
amount of available effects on the haptic device from running out.

Since: 5.1.8

Unstable API: Perhaps could be simplified due to limited support for all the exposed features
across all of the platforms. Awaiting feedback from users.

123


https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L349
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L374
https://github.com/liballeg/allegro5/blob/master/src/haptic.c#L356




11

Joystick routines

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

On Windows there are two joystick drivers, a DirectInput one and an Xinput one. If support for XInput
was compiled in, then it can be enabled by calling al set config value(al_get system_config(),

2«

“joystick”, “driver”, “xinput”) before calling al install joystick, or by setting the same option in the
allegro5.cfg configuration file. The Xinput and DirectInput drivers are mutually exclusive. The haptics
subsystem will use the same driver as the joystick system does.

11.1 ALLEGRO_JOYSTICK

typedef struct ALLEGRO_JOYSTICK ALLEGRO_JOYSTICK;

Source Code
This is an abstract data type representing a physical joystick.

See also: al_get joystick

11.2 ALLEGRO_JOYSTICK_STATE

typedef struct ALLEGRO_JOYSTICK_STATE ALLEGRO_JOYSTICK_STATE;

Source Code

This is a structure that is used to hold a “snapshot” of a joystick’s axes and buttons at a particular
instant. All fields public and read-only.

struct {

float axis[num_axes];
} stick[num_sticks];
int button[num_buttons];

See also: al_get joystick state

125


https://github.com/liballeg/allegro5/blob/master/include/allegro5/joystick.h#L35
https://github.com/liballeg/allegro5/blob/master/include/allegro5/joystick.h#L41

11. JOYSTICK ROUTINES

11.3 ALLEGRO_JOYFLAGS

enum ALLEGRO_JOYFLAGS
Source Code

* ALLEGRO JOYFLAG_DIGITAL - the stick provides digital input
* ALLEGRO JOYFLAG_ANALOGUE - the stick provides analogue input

(this enum is a holdover from the old API and may be removed)

See also: al_get joystick stick flags

11.4 al_install joystick

bool al_install_joystick(void)

Source Code

Install a joystick driver, returning true if successful. If a joystick driver was already installed, returns
true immediately.

See also: al_uninstall joystick

11.5 al_uninstall_joystick

void al_uninstall_joystick(void)

Source Code

Uninstalls the active joystick driver. All outstanding ALLEGRO_JOYSTICK structures are invalidated. If
no joystick driver was active, this function does nothing.

This function is automatically called when Allegro is shut down.

See also: al_install joystick

11.6 al_is_joystick_installed

bool al_is_joystick_installed(void)

Source Code

Returns true if al_install joystick was called successfully.

11.7 al reconfigure joysticks

bool al_reconfigure_joysticks(void)

Source Code

Allegro is able to cope with users connecting and disconnected joystick devices on-the-fly. On existing
platforms, the joystick event source will generate an event of type
ALLEGRO_EVENT_JOYSTICK_CONFIGURATION when a device is plugged in or unplugged. In response, you
should call al reconfigure joysticks.

Afterwards, the number returned by al get num_joysticks may be different, and the handles returned
by al get joystick may be different or be ordered differently.

126


https://github.com/liballeg/allegro5/blob/master/include/allegro5/joystick.h#L54
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L40
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L73
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L87
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L96

11.8. al get num joysticks

All ALLEGRO_JOYSTICK handles remain valid, but handles for disconnected devices become inactive:
their states will no longer update, and al get joystick will not return the handle. Handles for devices
which remain connected will continue to represent the same devices. Previously inactive handles may
become active again, being reused to represent newly connected devices.

Returns true if the joystick configuration changed, otherwise returns false.

It is possible that on some systems, Allegro won’t be able to generate
ALLEGRO_EVENT_JOYSTICK_CONFIGURATION events. If your game has an input configuration screen or
similar, you may wish to call al_reconfigure joysticks when entering that screen.

See also: al_get joystick event source, ALLEGRO EVENT

11.8 al get num joysticks

int al_get_num_joysticks(void)

Source Code

Return the number of joysticks currently on the system (or potentially on the system). This number can
change after al reconfigure joysticks is called, in order to support hotplugging.

Returns O if there is no joystick driver installed.

See also: al_get joystick, al_get joystick active

11.9 al_get_joystick

ALLEGRO_JOYSTICK * al_get_joystick(int num)

Source Code

Get a handle for a joystick on the system. The number may be from O to al get num_joysticks-1. If
successful a pointer to a joystick object is returned, which represents a physical device. Otherwise
NULL is returned.

The handle and the index are only incidentally linked. After al reconfigure joysticks is called,
al get joystick may return handles in a different order, and handles which represent disconnected
devices will not be returned.

See also: al_get num_joysticks, al reconfigure joysticks, al _get joystick active
11.10 al release_joystick

void al_release_joystick (ALLEGRO_JOYSTICK =*joy)
Source Code

This function currently does nothing.

See also: al_get joystick

11.11 al get joystick active

bool al_get_joystick_active(ALLEGRO_JOYSTICK x*joy)

Source Code

Return if the joystick handle is “active”, i.e. in the current configuration, the handle represents some
physical device plugged into the system. al get joystick returns active handles. After reconfiguration,
active handles may become inactive, and vice versa.

See also: al reconfigure joysticks

127


https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L138
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L150
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L162
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L174

11. JOYSTICK ROUTINES

11.12 al_get_joystick_name

const char *al_get_joystick_name(ALLEGRO_JOYSTICK *joy)

Source Code
Return the name of the given joystick.

See also: al_get joystick stick name, al get joystick axis_name, al get joystick button_name

11.13 al get joystick stick name

const char *al_get_joystick_stick_name(ALLEGRO_JOYSTICK *joy, int stick)

Source Code
Return the name of the given “stick”. If the stick doesn’t exist, NULL is returned.

See also: al_get joystick axis name, al get joystick num_sticks

11.14 al get joystick axis name

const char *al_get_joystick_axis_name(ALLEGRO_JOYSTICK *joy, int stick, int axis)

Source Code
Return the name of the given axis. If the axis doesn’t exist, NULL is returned. Indices begin from O.

See also: al_get joystick stick name, al get joystick num_axes

11.15 al _get _joystick_button_name

const char *al_get_joystick_button_name(ALLEGRO_JOYSTICK *joy, int button)

Source Code

Return the name of the given button. If the button doesn’t exist, NULL is returned. Indices begin from
0.

See also: al_get joystick stick name, al get joystick_axis_name, al get joystick num_buttons

11.16 al get joystick stick flags

int al_get_joystick_stick_flags(ALLEGRO_JOYSTICK *joy, int stick)

Source Code
Return the flags of the given “stick”. If the stick doesn’t exist, NULL is returned. Indices begin from 0.
See also: ALLEGRO_JOYFLAGS

11.17 al get joystick num_sticks

int al_get_joystick_num_sticks(ALLEGRO_JOYSTICK =*joy)

Source Code
Return the number of “sticks” on the given joystick. A stick has one or more axes.

See also: al_get joystick num_axes, al_get joystick num_buttons

128


https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L185
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L222
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L251
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L279
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L207
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L196

11.18. al get joystick num_axes

11.18 al_get_joystick_num_axes

int al_get_joystick_num_axes(ALLEGRO_JOYSTICK xjoy, int stick)

Source Code
Return the number of axes on the given “stick”. If the stick doesn’t exist, O is returned.

See also: al_get joystick num_sticks

11.19 al_get_joystick_num_buttons

int al_get_joystick_num_buttons(ALLEGRO_JOYSTICK *joy)

Source Code
Return the number of buttons on the joystick.

See also: al_get joystick num_sticks

11.20 al_get_joystick_state

void al_get_joystick_state(ALLEGRO_JOYSTICK *joy, ALLEGRO_JOYSTICK_STATE *ret_state)

Source Code
Get the current joystick state.

See also: ALLEGRO_JOYSTICK STATE, al get joystick num_buttons, al_get joystick num_axes

11.21 al_get_joystick_event_source

ALLEGRO_EVENT_SOURCE *al_get_joystick_event_source(void)

Source Code

Returns the global joystick event source. All joystick events are generated by this event source.

129


https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L237
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L268
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L294
https://github.com/liballeg/allegro5/blob/master/src/joynu.c#L114




12

Keyboard routines

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

12.1 ALLEGRO KEYBOARD STATE

typedef struct ALLEGRO_KEYBOARD_STATE ALLEGRO_KEYBOARD_STATE;

Source Code

This is a structure that is used to hold a “snapshot” of a keyboard’s state at a particular instant. It
contains the following publically readable fields:

* display - points to the display that had keyboard focus at the time the state was saved. If no
display was focused, this points to NULL.

You cannot read the state of keys directly. Use the function al_key down.

12.2 Key codes

The constant ALLEGRO_KEY MAX is always one higher than the highest key code. So if you want to
use the key code as array index you can do something like this:

bool pressed_keys[ALLEGRO_KEY_MAXT;

pressed_keys[key_code] = true;

These are the list of key codes used by Allegro, which are returned in the event.keyboard.keycode field
of the ALLEGRO_KEY DOWN and ALLEGRO_KEY UP events and which you can pass to al_key down:

ALLEGRO_KEY_A ... ALLEGRO_KEY_Z
ALLEGRO_KEY_@ ... ALLEGRO_KEY_9
ALLEGRO_KEY_PAD_0@ ... ALLEGRO_KEY_PAD_9
ALLEGRO_KEY_F1 ... ALLEGRO_KEY_F12
ALLEGRO_KEY_ESCAPE

ALLEGRO_KEY_TILDE

ALLEGRO_KEY_MINUS

ALLEGRO_KEY_EQUALS
ALLEGRO_KEY_BACKSPACE

131


https://github.com/liballeg/allegro5/blob/master/include/allegro5/keyboard.h#L33

12. KEYBOARD ROUTINES

ALLEGRO_KEY_TAB
ALLEGRO_KEY_OPENBRACE
ALLEGRO_KEY_CLOSEBRACE
ALLEGRO_KEY_ENTER
ALLEGRO_KEY_SEMICOLON
ALLEGRO_KEY_QUOTE
ALLEGRO_KEY_BACKSLASH
ALLEGRO_KEY_BACKSLASH?2
ALLEGRO_KEY_COMMA
ALLEGRO_KEY_FULLSTOP
ALLEGRO_KEY_SLASH
ALLEGRO_KEY_SPACE
ALLEGRO_KEY_INSERT
ALLEGRO_KEY_DELETE
ALLEGRO_KEY_HOME
ALLEGRO_KEY_END
ALLEGRO_KEY_PGUP
ALLEGRO_KEY_PGDN
ALLEGRO_KEY_LEFT
ALLEGRO_KEY_RIGHT
ALLEGRO_KEY_UP
ALLEGRO_KEY_DOWN
ALLEGRO_KEY_PAD_SLASH
ALLEGRO_KEY_PAD_ASTERISK
ALLEGRO_KEY_PAD_MINUS
ALLEGRO_KEY_PAD_PLUS
ALLEGRO_KEY_PAD_DELETE
ALLEGRO_KEY_PAD_ENTER
ALLEGRO_KEY_PRINTSCREEN
ALLEGRO_KEY_PAUSE
ALLEGRO_KEY_ABNT_C1
ALLEGRO_KEY_YEN
ALLEGRO_KEY_KANA
ALLEGRO_KEY_CONVERT
ALLEGRO_KEY_NOCONVERT
ALLEGRO_KEY_AT
ALLEGRO_KEY_CIRCUMFLEX
ALLEGRO_KEY_COLON2
ALLEGRO_KEY_KANJI
ALLEGRO_KEY_LSHIFT
ALLEGRO_KEY_RSHIFT
ALLEGRO_KEY_LCTRL
ALLEGRO_KEY_RCTRL
ALLEGRO_KEY_ALT
ALLEGRO_KEY_ALTGR
ALLEGRO_KEY_LWIN
ALLEGRO_KEY_RWIN
ALLEGRO_KEY_MENU
ALLEGRO_KEY_SCROLLLOCK
ALLEGRO_KEY_NUMLOCK
ALLEGRO_KEY_CAPSLOCK
ALLEGRO_KEY_PAD_EQUALS
ALLEGRO_KEY_BACKQUOTE
ALLEGRO_KEY_SEMICOLON2
ALLEGRO_KEY_COMMAND

/* Since: 5.1.1 %/

132



12.3. Keyboard modifier flags

/* Android only for now */
ALLEGRO_KEY_BACK

/* Since: 5.1.2 %/

/* Android only for now */
ALLEGRO_KEY_VOLUME_UP
ALLEGRO_KEY_VOLUME_DOWN

/* Since: 5.1.6 %/

/* Android only for now x/
ALLEGRO_KEY_SEARCH
ALLEGRO_KEY_DPAD_CENTER
ALLEGRO_KEY_BUTTON_X
ALLEGRO_KEY_BUTTON_Y
ALLEGRO_KEY_DPAD_UP
ALLEGRO_KEY_DPAD_DOWN
ALLEGRO_KEY_DPAD_LEFT
ALLEGRO_KEY_DPAD_RIGHT
ALLEGRO_KEY_SELECT
ALLEGRO_KEY_START
ALLEGRO_KEY_L1
ALLEGRO_KEY_R1

12.3 Keyboard modifier flags

ALLEGRO_KEYMOD_SHIFT
ALLEGRO_KEYMOD_CTRL
ALLEGRO_KEYMOD_ALT
ALLEGRO_KEYMOD_LWIN
ALLEGRO_KEYMOD_RWIN
ALLEGRO_KEYMOD_MENU
ALLEGRO_KEYMOD_ALTGR
ALLEGRO_KEYMOD_COMMAND
ALLEGRO_KEYMOD_SCROLLLOCK
ALLEGRO_KEYMOD_NUMLOCK
ALLEGRO_KEYMOD_CAPSLOCK
ALLEGRO_KEYMOD_INALTSEQ
ALLEGRO_KEYMOD_ACCENT1
ALLEGRO_KEYMOD_ACCENT?2
ALLEGRO_KEYMOD_ACCENT3
ALLEGRO_KEYMOD_ACCENT4

The event field keyboard.modifiers’ is a bitfield composed of these constants. These indicate the
modifier keys which were pressed at the time a character was typed.

12.4 al_install_keyboard

bool al_install_keyboard(void)

Source Code

Install a keyboard driver. Returns true if successful. If a driver was already installed, nothing happens
and true is returned.

See also: al_uninstall keyboard, al is keyboard installed

133


https://github.com/liballeg/allegro5/blob/master/src/keybdnu.c#L121

12. KEYBOARD ROUTINES

12.5 al_is_keyboard_installed

bool al_is_keyboard_installed(void)

Source Code

Returns true if al_install keyboard was called successfully.

12.6 al_uninstall_keyboard

void al_uninstall_keyboard(void)

Source Code

Uninstalls the active keyboard driver, if any. This will automatically unregister the keyboard event
source with any event queues.

This function is automatically called when Allegro is shut down.

See also: al_install keyboard

12.7 al_get_keyboard_state

void al_get_keyboard_state(ALLEGRO_KEYBOARD_STATE x*ret_state)

Source Code

Save the state of the keyboard specified at the time the function is called into the structure pointed to
by ret_state.

See also: al_key down, al clear keyboard state, ALLEGRO KEYBOARD_ STATE

12.8 al clear keyboard_state

void al_clear_keyboard_state(ALLEGRO_DISPLAY =*display)

Source Code

Clear the state of the keyboard, emitting ALLEGRO _EVENT KEY UP for each currently pressed key.
The given display is regarded as the one which had the keyboard focus when the event occurred. In
case display is NULL no event is emitted. For most keyboard drivers Allegro maintains its own state of
the keyboard, which might get out of sync with the real one. This function is intended to remedy such
situation by resetting Allegro’s keyboard state to a known default (no key pressed). This is particularly
useful in response to ALLEGRO_EVENT DISPLAY SWITCH_OUT events.

See also: al_get keyboard state, ALLEGRO KEYBOARD STATE
Since: 5.2.3

Unstable API: This is a new feature and the exact semantics are still being decided upon.

12.9 al key down

bool al_key_down(const ALLEGRO_KEYBOARD_STATE =*state, int keycode)

Source Code
Return true if the key specified was held down in the state specified.

See also: ALLEGRO_KEYBOARD_ STATE

134


https://github.com/liballeg/allegro5/blob/master/src/keybdnu.c#L112
https://github.com/liballeg/allegro5/blob/master/src/keybdnu.c#L172
https://github.com/liballeg/allegro5/blob/master/src/keybdnu.c#L239
https://github.com/liballeg/allegro5/blob/master/src/keybdnu.c#L251
https://github.com/liballeg/allegro5/blob/master/src/keybdnu.c#L284

12.10. al keycode to name

12.10 al_keycode_to_name

const char *al_keycode_to_name(int keycode)

Source Code

Converts the given keycode to a description of the key.

12.11 al set _keyboard_leds
bool al_set_keyboard_leds(int leds)

Source Code

Overrides the state of the keyboard LED indicators. Set leds to a combination of the keyboard modifier
flags to enable the corresponding LED indicators (ALLEGRO_KEYMOD_NUMLOCK, ALLEGRO_KEYMOD_CAPSLOCK
and ALLEGRO_KEYMOD_SCROLLLOCK are supported) or to -1 to return to default behavior. False is returned
if the current keyboard driver cannot set LED indicators.

12.12 al_get_keyboard_event_source

ALLEGRO_EVENT_SOURCE *al_get_keyboard_event_source(void)

Source Code
Retrieve the keyboard event source. All keyboard events are generated by this event source.

Returns NULL if the keyboard subsystem was not installed.

135


https://github.com/liballeg/allegro5/blob/master/src/keybdnu.c#L217
https://github.com/liballeg/allegro5/blob/master/src/keybdnu.c#L203
https://github.com/liballeg/allegro5/blob/master/src/keybdnu.c#L293




13

Memory management routines

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

13.1 al_malloc

#define al_malloc(n) \

(al_malloc_with_context((n) LINE FILE func__))

y —— —_—y - —_ -

Source Code
Like malloc() in the C standard library, but the implementation may be overridden.
This is a macro.

See also: al free, al realloc, al_calloc, al malloc_with context, al_set memory_interface

13.2 al free

#define al_free(p) \

(al_free_with_context((p) LINE FILE func__))

) —— —_ - —_—y -

Source Code
Like free() in the C standard library, but the implementation may be overridden.

Additionally, on Windows, a memory block allocated by one DLL must be freed from the same DLL. In
the few places where an Allegro function returns a pointer that must be freed, you must use al_free for
portability to Windows.

This is a macro.

See also: al malloc, al free with context

13.3 al realloc

#define al_realloc(p, n) \

(al_realloc_with_context((p), (n), __LINE FILE func__))

_ —— _ ——

Source Code
Like realloc() in the C standard library, but the implementation may be overridden.
This is a macro.

See also: al malloc, al realloc_with context

137


https://github.com/liballeg/allegro5/blob/master/include/allegro5/memory.h#L42
https://github.com/liballeg/allegro5/blob/master/include/allegro5/memory.h#L47
https://github.com/liballeg/allegro5/blob/master/include/allegro5/memory.h#L52

13. MEMORY MANAGEMENT ROUTINES

13.4 al_calloc

#define al_calloc(c, n) \

(al_calloc_with_context((c), (n), __LINE FILE func__))

_ —— —_ ——

Source Code
Like calloc() in the C standard library, but the implementation may be overridden.
This is a macro.

See also: al_malloc, al calloc_with_context

13.5 al malloc_with_context

void *al_malloc_with_context(size_t n,
int line, const char *file, const char *func)

Source Code

This calls malloc() from the Allegro library (this matters on Windows), unless overridden with
al set memory interface,

Generally you should use the al_malloc macro.

13.6 al free with context

void al_free_with_context(void *ptr,
int line, const char %file, const char *func)

Source Code

This calls free() from the Allegro library (this matters on Windows), unless overridden with
al set memory interface.

Generally you should use the al_free macro.

13.7 al_realloc_with_context

void *al_realloc_with_context(void *ptr, size_t n,
int line, const char *file, const char *func)

Source Code

This calls realloc() from the Allegro library (this matters on Windows), unless overridden with
al set memory interface,

Generally you should use the al_realloc macro.

13.8 al_calloc_with_context

void *al_calloc_with_context(size_t count, size_t n,
int line, const char *file, const char *func)

Source Code

This calls calloc() from the Allegro library (this matters on Windows), unless overridden with
al_set memory _interface,

Generally you should use the al_calloc macro.

138


https://github.com/liballeg/allegro5/blob/master/include/allegro5/memory.h#L57
https://github.com/liballeg/allegro5/blob/master/src/memory.c#L38
https://github.com/liballeg/allegro5/blob/master/src/memory.c#L51
https://github.com/liballeg/allegro5/blob/master/src/memory.c#L64
https://github.com/liballeg/allegro5/blob/master/src/memory.c#L77

13.9. ALLEGRO_MEMORY INTERFACE

13.9 ALLEGRO_MEMORY_INTERFACE

typedef struct ALLEGRO_MEMORY_INTERFACE ALLEGRO_MEMORY_INTERFACE;

Source Code

This structure has the following fields.

void *(*mi_malloc)(size_t n, int line, const char xfile, const char *func);
void (*mi_free)(void *ptr, int line, const char *file, const char *func);
void *(xmi_realloc)(void *ptr, size_t n, int line, const char *file,
const char xfunc);
void *(*mi_calloc)(size_t count, size_t n, int line, const char x*file,
const char *func);

See also: al_set memory_interface

13.10 al_set_memory_interface

void al_set_memory_interface (ALLEGRO_MEMORY_INTERFACE xmemory_interface)

Source Code

Override the memory management functions with implementations of al malloc_with context,
al free with context, al realloc with context and al calloc_with context. The context arguments may
be used for debugging. The new functions should be thread safe.

If the pointer is NULL, the default behaviour will be restored.
See also: ALLEGRO_MEMORY INTERFACE

139


https://github.com/liballeg/allegro5/blob/master/include/allegro5/memory.h#L28
https://github.com/liballeg/allegro5/blob/master/src/memory.c#L29




14

Miscellaneous routines

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

14.1 ALLEGRO_PI

#define ALLEGRO_PI 3.14159265358979323846

Source Code

C99 compilers have no predefined value like M_PI for the constant «, but you can use this one instead.

14.2 al_run_main

int al_run_main(int argc, char #*xargv, int (*user_main)(int, char xx*))

Source Code

This function is useful in cases where you don’t have a main() function but want to run Allegro (mostly
useful in a wrapper library). Under Windows and Linux this is no problem because you simply can call
al_install system. But some other system (like OSX) don’t allow calling al_install system in the main
thread. al run_main will know what to do in that case.

The passed argc and argv will simply be passed on to user_main and the return value of user_main will
be returned.

141


https://github.com/liballeg/allegro5/blob/master/include/allegro5/base.h#L93
https://github.com/liballeg/allegro5/blob/master/src/allegro.c#L36




15

Monitors

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

15.1 ALLEGRO_MONITOR_INFO

typedef struct ALLEGRO_MONITOR_INFO

Source Code

Describes a monitor’s size and position relative to other monitors. x1, y1 will be 0, O on the primary
display. Other monitors can have negative values if they are to the left or above the primary display.
x2, y2 are the coordinates one beyond the bottom right pixel, so that x2-x1 gives the width and y2-y1
gives the height of the display.

typedef struct ALLEGRO_MONITOR_INFO
{

int x1;
int y1;
int x2;
int y2;
} ALLEGRO_MONITOR_INFO;

See also: al_get monitor info

15.2 al_get new_display_adapter

int al_get_new_display_adapter(void)

Source Code

Gets the video adapter index where new displays will be created by the calling thread, if previously set
with al set new_display adapter. Otherwise returns ALLEGRO_DEFAULT_DISPLAY_ADAPTER.

See also: al_set new_display adapter

143


https://github.com/liballeg/allegro5/blob/master/include/allegro5/monitor.h#L13
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L313

15. MONITORS

15.3 al_set_new_display_adapter

void al_set_new_display_adapter(int adapter)

Source Code

Sets the adapter to use for new displays created by the calling thread. The adapter has a monitor
attached to it. Information about the monitor can be gotten using al get num_video adapters and
al get monitor_info.

To return to the default behaviour, pass ALLEGRO_DEFAULT_DISPLAY_ADAPTER.

See also: al get num_video adapters, al get monitor_info

15.4 al_get_monitor_info

bool al_get_monitor_info(int adapter, ALLEGRO_MONITOR_INFO *info)

Source Code

Get information about a monitor’s position on the desktop. adapter is a number from 0 to
al get num video_adapters()-1.

On Windows, use al set new_display flags to switch between Direct3D and OpenGL backends, which
will often have different adapters available.

Returns true on success, false on failure.

See also: ALLEGRO_MONITOR_INFO, al _get num_video adapters

15.5 al get num video_ adapters

int al_get_num_video_adapters(void)

Source Code

Get the number of video “adapters” attached to the computer. Each video card attached to the
computer counts as one or more adapters. An adapter is thus really a video port that can have a
monitor connected to it.

On Windows, use al_set new_display_flags to switch between Direct3D and OpenGL backends, which
will often have different adapters available.

See also: al_get monitor_info

144


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L296
https://github.com/liballeg/allegro5/blob/master/src/monitor.c#L37
https://github.com/liballeg/allegro5/blob/master/src/monitor.c#L23

16

Mouse routines

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

16.1 ALLEGRO MOUSE_STATE
typedef struct ALLEGRO_MOUSE_STATE ALLEGRO_MOUSE_STATE;

Source Code

Public fields (read only):

* X - mouse X position
* y - mouse y position
* w, z - mouse wheel position (2D ‘ball’)

¢ buttons - mouse buttons bitfield

The zeroth bit is set if the primary mouse button is held down, the first bit is set if the secondary
mouse button is held down, and so on.

* pressure - pressure, ranging from 0.0 to 1.0

See also: al_get mouse_state, al get mouse_state axis, al mouse_button_down

16.2 al_install_mouse

bool al_install_mouse(void)

Source Code
Install a mouse driver.

Returns true if successful. If a driver was already installed, nothing happens and true is returned.

16.3 al is mouse_installed

bool al_is_mouse_installed(void)

Source Code

Returns true if al_install mouse was called successfully.

145


https://github.com/liballeg/allegro5/blob/master/include/allegro5/mouse.h#L35
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L49
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L40

16. MOUSE ROUTINES

16.4 al_uninstall_mouse

void al_uninstall_mouse(void)

Source Code

Uninstalls the active mouse driver, if any. This will automatically unregister the mouse event source
with any event queues.

This function is automatically called when Allegro is shut down.

16.5 al_get_mouse_num_axes

unsigned int al_get_mouse_num_axes(void)

Source Code
Return the number of axes on the mouse. The first axis is O.

See also: al get mouse num_buttons

16.6 al get mouse num_buttons

unsigned int al_get_mouse_num_buttons(void)

Source Code
Return the number of buttons on the mouse. The first button is 1.

See also: al get mouse num_axes

16.7 al get mouse_state

void al_get_mouse_state(ALLEGRO_MOUSE_STATE *ret_state)

Source Code
Save the state of the mouse specified at the time the function is called into the given structure.

Example:

ALLEGRO_MOUSE_STATE state;

al_get_mouse_state(&state);
if (state.buttons & 1) {
/* Primary (e.g. left) mouse button is held. =*/
printf("Mouse position: (%d, %d)\n", state.x, state.y);
3
if (state.buttons & 2) {
/* Secondary (e.g. right) mouse button is held. */
3
if (state.buttons & 4) {
/* Tertiary (e.g. middle) mouse button is held. */

}
See also: ALLEGRO _MOUSE_STATE, al get mouse_state axis, al mouse_button_down

146


https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L104
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L145
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L134
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L209

16.8. al get mouse state axis

16.8 al_get_mouse_state_axis

int al_get_mouse_state_axis(const ALLEGRO_MOUSE_STATE *state, int axis)

Source Code

Extract the mouse axis value from the saved state. The axes are numbered from 0, in this order: x-axis,
y-axis, z-axis, w-axis.

See also: ALLEGRO _MOUSE_STATE, al_get mouse_state, al mouse_button_down

16.9 al mouse_button_down

bool al_mouse_button_down(const ALLEGRO_MOUSE_STATE #*state, int button)

Source Code

Return true if the mouse button specified was held down in the state specified. Unlike most things, the
first mouse button is numbered 1.

See also: ALLEGRO_MOUSE_STATE, al get mouse_state, al get mouse state_axis

16.10 al set_ mouse_xy

bool al_set_mouse_xy(ALLEGRO_DISPLAY =*display, int x, int y)

Source Code

Try to position the mouse at the given coordinates on the given display. The mouse movement
resulting from a successful move will generate an ALLEGRO_EVENT MOUSE_WARPED event.

Returns true on success, false on failure.

See also: al_set mouse z, al set mouse w

16.11 al set_mouse_z

bool al_set_mouse_z(int z)

Source Code
Set the mouse wheel position to the given value.
Returns true on success, false on failure.

See also: al_set mouse w

16.12 al set mouse w

bool al_set_mouse_w(int w)

Source Code
Set the second mouse wheel position to the given value.
Returns true on success, false on failure.

See also: al_set mouse z

147


https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L221
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L245
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L156
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L168
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L180

16. MOUSE ROUTINES

16.13 al_set_mouse_axis

bool al_set_mouse_axis(int which, int value)

Source Code

Set the given mouse axis to the given value.

The axis number must not be 0 or 1, which are the X and Y axes. Use al_set_mouse_xy for that.
Returns true on success, false on failure.

See also: al_set mouse_xy, al_set mouse z, al set mouse w

16.14 al_get_mouse_event_source

ALLEGRO_EVENT_SOURCE #*al_get_mouse_event_source(void)

Source Code
Retrieve the mouse event source. All mouse events are generated by this event source.

Returns NULL if the mouse subsystem was not installed.

16.15 al set mouse wheel precision

void al_set_mouse_wheel_precision(int precision)

Source Code

Sets the precision of the mouse wheel (the z and w coordinates). This precision manifests itself as a
multiplier on the dz and dw fields in mouse events. It also affects the z and w fields of events and
ALLEGRO_MOUSE_STATE, but not in a simple way if you alter the precision often, so it is suggested to
reset those axes to 0 when you change precision. Setting this to a high value allows you to detect small
changes in those two axes for some high precision mice. A flexible way of using this precision is to set
it to a high value (120 is likely sufficient for most, if not all, mice) and use a floating point dz and dw
like so:

al_set_mouse_wheel_precision(120);

ALLEGRO_EVENT event;

al_wait_for_event(event_queue, &event);

if (event.type == ALLEGRO_EVENT_MOUSE_AXES) {
double dz = (double)event.mouse.dz / al_get_mouse_wheel_precision();
/* Use dz in some way... */

}

Precision is set to 1 by default. It is impossible to set it to a lower precision than that.
Since: 5.1.10

See also: al get mouse wheel precision

16.16 al get mouse wheel precision

int al_get_mouse_wheel_precision(void)
Source Code
Gets the precision of the mouse wheel (the z and w coordinates).

Since: 5.1.10

See also: al_set mouse wheel precision

148


https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L192
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L305
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L316
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L329

16.17. Mouse cursors

16.17 Mouse cursors

16.17.1 al_create_mouse_cursor

ALLEGRO_MOUSE_CURSOR *al_create_mouse_cursor (ALLEGRO_BITMAP *bmp,
int x_focus, int y_focus)

Source Code

Create a mouse cursor from the bitmap provided. x_focus and y_focus describe the bit of the cursor
that will represent the actual mouse position.

Returns a pointer to the cursor on success, or NULL on failure.

See also: al_set _mouse_cursor, al_destroy_mouse_cursor

16.17.2 al_destroy_mouse_cursor

void al_destroy_mouse_cursor (ALLEGRO_MOUSE_CURSOR xcursor)

Source Code
Free the memory used by the given cursor.
Has no effect if cursor is NULL.

See also: al_create_mouse_cursor

16.17.3 al_set_mouse_cursor

bool al_set_mouse_cursor (ALLEGRO_DISPLAY =*xdisplay, ALLEGRO_MOUSE_CURSOR *cursor)

Source Code

Set the given mouse cursor to be the current mouse cursor for the given display.

If the cursor is currently ‘shown’ (as opposed to ‘hidden’) the change is immediately visible.
Returns true on success, false on failure.

See also: al_set system_mouse_cursor, al show mouse cursor, al hide mouse_cursor

16.17.4 al_set_system_mouse_cursor

bool al_set_system_mouse_cursor (ALLEGRO_DISPLAY *display,
ALLEGRO_SYSTEM_MOUSE_CURSOR cursor_id)

Source Code

Set the given system mouse cursor to be the current mouse cursor for the given display. If the cursor is
currently ‘shown’ (as opposed to ‘hidden’) the change is immediately visible.

If the cursor doesn’t exist on the current platform another cursor will be silently be substituted.

The cursors are:

* ALLEGRO_SYSTEM_MOUSE_CURSOR_DEFAULT
* ALLEGRO_SYSTEM_MOUSE_CURSOR_ARROW

« ALLEGRO_SYSTEM_MOUSE_CURSOR_BUSY

« ALLEGRO_SYSTEM_MOUSE_CURSOR_QUESTION
« ALLEGRO_SYSTEM_MOUSE_CURSOR_EDIT

* ALLEGRO_SYSTEM_MOUSE_CURSOR_MOVE

* ALLEGRO_SYSTEM_MOUSE_CURSOR_RESIZE N

149


https://github.com/liballeg/allegro5/blob/master/src/mouse_cursor.c#L24
https://github.com/liballeg/allegro5/blob/master/src/mouse_cursor.c#L37
https://github.com/liballeg/allegro5/blob/master/src/mouse_cursor.c#L54
https://github.com/liballeg/allegro5/blob/master/src/mouse_cursor.c#L71

16. MOUSE ROUTINES

« ALLEGRO_SYSTEM_MOUSE_CURSOR_RESIZE W
« ALLEGRO_SYSTEM_MOUSE_CURSOR_RESIZE_S

* ALLEGRO_SYSTEM_MOUSE_CURSOR_RESIZE_E

« ALLEGRO_SYSTEM_MOUSE_CURSOR_RESIZE_NW
« ALLEGRO_SYSTEM_MOUSE_CURSOR_RESIZE_SW
* ALLEGRO_SYSTEM_MOUSE_CURSOR_RESIZE_SE
« ALLEGRO_SYSTEM_MOUSE_CURSOR_RESIZE_NE.
« ALLEGRO_SYSTEM_MOUSE_CURSOR_PROGRESS
« ALLEGRO_SYSTEM_MOUSE_CURSOR_PRECISION
* ALLEGRO_SYSTEM_MOUSE_CURSOR_LINK

« ALLEGRO_SYSTEM_MOUSE_CURSOR_ALT SELECT
ALLEGRO_SYSTEM_MOUSE_CURSOR_UNAVAILABLE

Returns true on success, false on failure.

See also: al_set_mouse_cursor, al_show _mouse_cursor, al_hide mouse_cursor

16.17.5 al_get mouse_cursor_position

bool al_get_mouse_cursor_position(int *ret_x, int *ret_y)

Source Code

On platforms where this information is available, this function returns the global location of the mouse
cursor, relative to the desktop. You should not normally use this function, as the information is not
useful except for special scenarios as moving a window.

Returns true on success, false on failure.

16.17.6 al_hide_mouse_cursor

bool al_hide_mouse_cursor (ALLEGRO_DISPLAY *display)

Source Code

Hide the mouse cursor in the given display. This has no effect on what the current mouse cursor looks
like; it just makes it disappear.

Returns true on success (or if the cursor already was hidden), false otherwise.

See also: al show_mouse_cursor

16.17.7 al_show_mouse_cursor

bool al_show_mouse_cursor (ALLEGRO_DISPLAY =*display)

Source Code
Make a mouse cursor visible in the given display.

Returns true if a mouse cursor is shown as a result of the call (or one already was visible), false
otherwise.

See also: al_hide mouse_cursor

16.17.8 al_grab_mouse
bool al_grab_mouse (ALLEGRO_DISPLAY *display)

150


https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L257
https://github.com/liballeg/allegro5/blob/master/src/mouse_cursor.c#L109
https://github.com/liballeg/allegro5/blob/master/src/mouse_cursor.c#L96

16.17. Mouse cursors

Source Code

Confine the mouse cursor to the given display. The mouse cursor can only be confined to one display at
a time.

Returns true if successful, otherwise returns false. Do not assume that the cursor will remain confined
until you call al ungrab_mouse. It may lose the confined status at any time for other reasons.

Note: not yet implemented on Mac OS X.
See also: al ungrab _mouse

16.17.9 al_ungrab_mouse

bool al_ungrab_mouse(void)

Source Code

Stop confining the mouse cursor to any display belonging to the program.
Note: not yet implemented on Mac OS X.

See also: al_grab mouse

151


https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L277
https://github.com/liballeg/allegro5/blob/master/src/mousenu.c#L291




17

Path structures

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

We define a path as an optional drive, followed by zero or more directory components, followed by an
optional filename. The filename may be broken up into a basename and an extension, where the
basename includes the start of the filename up to, but not including, the last dot (.) character. If no dot
character exists the basename is the whole filename. The extension is everything from the last dot
character to the end of the filename.

17.1 al create path

ALLEGRO_PATH *al_create_path(const char =*str)

Source Code

Create a path structure from a string. The last component, if it is followed by a directory separator and

“w» «w »

is neither “.” nor “..”, is treated as the last directory name in the path. Otherwise the last component is
treated as the filename. The string may be NULL for an empty path.

See also: al create path for directory, al destroy path

17.2 al create path for directory

ALLEGRO_PATH xal_create_path_for_directory(const char #*str)

Source Code

This is the same as al create path, but interprets the passed string as a directory path. The filename
component of the returned path will always be empty.

See also: al_create path, al destroy_path

17.3 al_destroy_path

void al_destroy_path(ALLEGRO_PATH *path)

Source Code
Free a path structure. Does nothing if passed NULL.

See also: al create path, al create path for directory

153


https://github.com/liballeg/allegro5/blob/master/src/path.c#L156
https://github.com/liballeg/allegro5/blob/master/src/path.c#L188
https://github.com/liballeg/allegro5/blob/master/src/path.c#L429

17. PATH STRUCTURES

17.4 al_clone_path

ALLEGRO_PATH *al_clone_path(const ALLEGRO_PATH *path)

Source Code
Clones an ALLEGRO_PATH structure. Returns NULL on failure.

See also: al _destroy path

17.5 al join_ paths

bool al_join_paths(ALLEGRO_PATH *path, const ALLEGRO_PATH =*tail)

Source Code

Concatenate two path structures. The first path structure is modified. If ‘tail’ is an absolute path, this
function does nothing.

If ‘tail’ is a relative path, all of its directory components will be appended to ‘path’. tail’s filename will
also overwrite path’s filename, even if it is just the empty string.

Tail’s drive is ignored.
Returns true if ‘tail’ was a relative path and so concatenated to ‘path’, otherwise returns false.

See also: al rebase path

17.6 al rebase path

bool al_rebase_path(const ALLEGRO_PATH xhead, ALLEGRO_PATH xtail)

Source Code

Concatenate two path structures, modifying the second path structure. If tail is an absolute path, this
function does nothing. Otherwise, the drive and path components in head are inserted at the start of
tail.

For example, if head is “/anchor/” and tail is “data/file.ext”, then after the call tail becomes
“/anchor/data/file.ext”.

See also: al_join paths

17.7 al_get_path_drive

const char *al_get_path_drive(const ALLEGRO_PATH =xpath)

Source Code
Return the drive letter on a path, or the empty string if there is none.

The “drive letter” is only used on Windows, and is usually a string like “c:”, but may be something like
“\\Computer Name” in the case of UNC (Uniform Naming Convention) syntax.

17.8 al_get_path_num_components

int al_get_path_num_components(const ALLEGRO_PATH *path)
Source Code
Return the number of directory components in a path.

The directory components do not include the final part of a path (the filename).

See also: al_get path component

154


https://github.com/liballeg/allegro5/blob/master/src/path.c#L203
https://github.com/liballeg/allegro5/blob/master/src/path.c#L347
https://github.com/liballeg/allegro5/blob/master/src/path.c#L374
https://github.com/liballeg/allegro5/blob/master/src/path.c#L481
https://github.com/liballeg/allegro5/blob/master/src/path.c#L229

17.9. al get path component

17.9 al_get_path_component

const char *al_get_path_component(const ALLEGRO_PATH *path, int i)

Source Code

Return the i’th directory component of a path, counting from zero. If the index is negative then count
from the right, i.e. -1 refers to the last path component. It is an error to pass an index which is out of
bounds.

See also: al _get path num components, al _get path_tail

17.10 al get path_tail

const char *al_get_path_tail(const ALLEGRO_PATH =*path)

Source Code

Returns the last directory component, or NULL if there are no directory components.

17.11 al get path filename

const char *al_get_path_filename(const ALLEGRO_PATH *path)

Source Code
Return the filename part of the path, or the empty string if there is none.

The returned pointer is valid only until the filename part of the path is modified in any way, or until
the path is destroyed.

See also: al_get path basename, al get path_extension, al get path component

17.12 al_get_path_basename

const char *al_get_path_basename(const ALLEGRO_PATH #*path)

Source Code

Return the basename, i.e. filename with the extension removed. If the filename doesn’t have an
extension, the whole filename is the basename. If there is no filename part then the empty string is
returned.

The returned pointer is valid only until the filename part of the path is modified in any way, or until
the path is destroyed.

See also: al _get path filename, al get path extension

17.13 al get path_extension

const char *al_get_path_extension(const ALLEGRO_PATH *path)

Source Code

Return a pointer to the start of the extension of the filename, i.e. everything from the final dot (‘")
character onwards. If no dot exists, returns an empty string.

The returned pointer is valid only until the filename part of the path is modified in any way, or until
the path is destroyed.

See also: al_get path filename, al get path basename

155


https://github.com/liballeg/allegro5/blob/master/src/path.c#L239
https://github.com/liballeg/allegro5/blob/master/src/path.c#L307
https://github.com/liballeg/allegro5/blob/master/src/path.c#L504
https://github.com/liballeg/allegro5/blob/master/src/path.c#L549
https://github.com/liballeg/allegro5/blob/master/src/path.c#L514

17. PATH STRUCTURES

17.14 al_set_path_drive

void al_set_path_drive(ALLEGRO_PATH xpath, const char *drive)

Source Code

Set the drive string on a path. The drive may be NULL, which is equivalent to setting the drive string to
the empty string.

See also: al_get path_drive

17.15 al_append_path_component

void al_append_path_component (ALLEGRO_PATH *path, const char =*s)

Source Code
Append a directory component.

See also: al_insert path component

17.16 al insert path_component

void al_insert_path_component (ALLEGRO_PATH *path, int i, const char *s)

Source Code

Insert a directory component at index i. If the index is negative then count from the right, i.e. -1 refers
to the last path component.

It is an error to pass an index i which is not within these bounds: 0 <=1i <=
al _get path num_components(path).

See also: al append path component, al replace path component, al remove path component

17.17 al replace path _component

void al_replace_path_component (ALLEGRO_PATH *path, int i, const char *s)

Source Code

Replace the i’th directory component by another string. If the index is negative then count from the
right, i.e. -1 refers to the last path component. It is an error to pass an index which is out of bounds.

See also: al_insert path component, al remove path component

17.18 al_remove_path_component

void al_remove_path_component (ALLEGRO_PATH *path, int i)

Source Code

Delete the i’th directory component. If the index is negative then count from the right, i.e. -1 refers to
the last path component. It is an error to pass an index which is out of bounds.

See also: al_insert_path component, al replace path component, al drop path_tail

156


https://github.com/liballeg/allegro5/blob/master/src/path.c#L468
https://github.com/liballeg/allegro5/blob/master/src/path.c#L330
https://github.com/liballeg/allegro5/blob/master/src/path.c#L289
https://github.com/liballeg/allegro5/blob/master/src/path.c#L255
https://github.com/liballeg/allegro5/blob/master/src/path.c#L272

17.19. al drop_path_tail

17.19 al_drop_path_tail

void al_drop_path_tail (ALLEGRO_PATH xpath)

Source Code
Remove the last directory component, if any.

See also: al remove path component

17.20 al_set_path_filename

void al_set_path_filename(ALLEGRO_PATH *path, const char *filename)

Source Code

Set the optional filename part of the path. The filename may be NULL, which is equivalent to setting
the filename to the empty string.

See also: al_set path extension, al get path filename

17.21 al_set_path_extension

bool al_set_path_extension(ALLEGRO_PATH *path, char const *extension)

Source Code

Replaces the extension of the path with the given one, i.e. replaces everything from the final dot (‘")
character onwards, including the dot. If the filename of the path has no extension, the given one is
appended. Usually the new extension you supply should include a leading dot.

Returns false if the path contains no filename part, i.e. the filename part is the empty string.

See also: al _set path filename, al get path extension

17.22 al path_cstr

const char *al_path_cstr(const ALLEGRO_PATH *path, char delim)

Source Code

Convert a path to its string representation, i.e. optional drive, followed by directory components
separated by ‘delim’, followed by an optional filename.

To use the current native path separator, use ALLEGRO_NATIVE_PATH_SEP for ‘delim’.

The returned pointer is valid only until the path is modified in any way, or until the path is destroyed.
This returns a null-terminated string. If you need an ALLEGRO_USTR instead, use al_path_ustr.

See also: al_path_ustr

17.23 al_path_ustr

const ALLEGRO_USTR #*al_path_ustr(const ALLEGRO_PATH #*path, char delim)

Source Code

Convert a path to its string representation, i.e. optional drive, followed by directory components
separated by ‘delim’, followed by an optional filename.

To use the current native path separator, use ALLEGRO NATIVE PATH SEP for ‘delim’.

157


https://github.com/liballeg/allegro5/blob/master/src/path.c#L320
https://github.com/liballeg/allegro5/blob/master/src/path.c#L491
https://github.com/liballeg/allegro5/blob/master/src/path.c#L529
https://github.com/liballeg/allegro5/blob/master/src/path.c#L413
https://github.com/liballeg/allegro5/blob/master/src/path.c#L420

17. PATH STRUCTURES

The returned pointer is valid only until the path is modified in any way, or until the path is destroyed.
This returns an ALLEGRO_USTR. If you need a null-terminated string instead, use al_path_cstr.

Since: 5.2.3

See also: al _path_cstr

17.24 al_make_path_canonical

bool al_make_path_canonical (ALLEGRO_PATH =*path)

Source Code
Removes any leading ‘..” directory components in absolute paths. Removes all *.” directory components.

Note that this does not collapse “x/../y” sections into “y”. This is by design. If “/foo” on your system is
a symlink to “/bar/baz”, then “/foo/../quux” is actually “/bar/quux”, not “/quux” as a naive removal of
“..” components would give you.

158


https://github.com/liballeg/allegro5/blob/master/src/path.c#L566

18

State

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

18.1 ALLEGRO_STATE

typedef struct ALLEGRO_STATE ALLEGRO_STATE;

Source Code
Opaque type which is passed to al_store state/al restore state.

The various state kept internally by Allegro can be displayed like this:

global
active system driver
current config
per thread
new bitmap params
new display params
active file interface
errno
current blending mode
current display
deferred drawing
current target bitmap
current transformation
current projection transformation
current clipping rectangle
bitmap locking
current shader

In general, the only real global state is the active system driver. All other global state is per-thread, so if
your application has multiple separate threads they never will interfere with each other. (Except if
there are objects accessed by multiple threads of course. Usually you want to minimize that though
and for the remaining cases use synchronization primitives described in the threads section or events
described in the events section to control inter-thread communication.)

159


https://github.com/liballeg/allegro5/blob/master/include/allegro5/tls.h#L49

18. STATE

18.2 ALLEGRO_STATE_FLAGS

typedef enum ALLEGRO_STATE_FLAGS

Source Code

Flags which can be passed to al_store state/al restore_state as bit combinations. See al_store_state for
the list of flags.

18.3 al restore_state

void al_restore_state(ALLEGRO_STATE const *state)

Source Code
Restores part of the state of the current thread from the given ALLEGRO_STATE object.

See also: al _store state, ALLEGRO_STATE FLAGS

18.4 al_store_state

void al_store_state(ALLEGRO_STATE *state, int flags)

Source Code

Stores part of the state of the current thread in the given ALLEGRO_STATE object. The flags parameter
can take any bit-combination of these flags:

* ALLEGRO STATE NEW DISPLAY PARAMETERS - new_display format,
new_display refresh rate, new_display flags

* ALLEGRO STATE NEW BITMAP PARAMETERS - new_bitmap_format, new bitmap_flags

* ALLEGRO_STATE DISPLAY - current display

* ALLEGRO_STATE TARGET BITMAP - target bitmap

* ALLEGRO_STATE BLENDER - blender

* ALLEGRO STATE TRANSFORM - current_transformation

* ALLEGRO_STATE PROJECTION_ TRANSFORM - current projection_transformation

* ALLEGRO_STATE NEW FILE INTERFACE - new file interface

* ALLEGRO_STATE BITMAP - same as ALLEGRO_STATE NEW_BITMAP PARAMETERS and
ALLEGRO_STATE_TARGET_BITMAP

* ALLEGRO_STATE ALL - all of the above

See also: al restore state, ALLEGRO STATE

18.5 al _get errno
int al_get_errno(void)

GETTER(allegro_errno, 0)

Source Code

Some Allegro functions will set an error number as well as returning an error code. Call this function
to retrieve the last error number set for the calling thread.

160


https://github.com/liballeg/allegro5/blob/master/include/allegro5/tls.h#L28
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L764
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L696
https://github.com/liballeg/allegro5/blob/master/src/tls.c#L928

18.6. al set _errno

18.6 al_set_errno

void al_set_errno(int errnum)
SETTER(allegro_errno, errnum)

Source Code

Set the error number for the calling thread.

161


https://github.com/liballeg/allegro5/blob/master/src/tls.c#L933




19

System routines

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

19.1 al_install system

bool al_install_system(int version, int (*atexit_ptr)(void (*)(void)))

Source Code

Initialize the Allegro system. No other Allegro functions can be called before this (with one or two
exceptions).

The version field should always be set to ALLEGRO VERSION INT.

If atexit_ptr is non-NULL, and if hasn’t been done already, al uninstall system will be registered as an
atexit function.

Returns true if Allegro was successfully initialized by this function call (or already was initialized
previously), false if Allegro cannot be used. A common reason for this function to fail is when the
version of Allegro you compiled your game against is not compatible with the version of the shared
libraries that were found on the system.

The version compatibility check works as follows. Let A = xa.ya.za.* be the version of Allegro you
compiled with, and B = xb.yb.zb.* be the version of Allegro found in the system shared library.

If you defined ALLEGRO_UNSTABLE before including Allegro headers, then version A is compatible with B
only if xa.ya.za = xb.yb.zb. Otherwise, A is compatible with B only if xa.ya = xb.yb.

See also: al init
19.2 al init
#define al_init() (al_install_system(ALLEGRO_VERSION_INT, atexit))

Source Code

Like al_install system, but automatically passes in the version and uses the atexit function visible in
the current binary.

Note: It is typically wrong to call al init anywhere except the final game binary. In
particular, do not call it inside a shared library unless you know what you’re doing. In those
cases, it is better to call al install system either with a NULL atexit ptr, or with a pointer to
atexit provided by the user of this shared library.

See also: al_install system

163


https://github.com/liballeg/allegro5/blob/master/src/system.c#L213
https://github.com/liballeg/allegro5/blob/master/include/allegro5/system.h#L15

19. SYSTEM ROUTINES

19.3 al_uninstall_system

void al_uninstall_system(void)

Source Code

Closes down the Allegro system.

Note: al uninstall system() can be called without a corresponding al_install system call,
e.g. from atexit().

19.4 al _is system_installed

bool al_is_system_installed(void)

Source Code

Returns true if Allegro is initialized, otherwise returns false.

19.5 al get allegro version

uint32_t al_get_allegro_version(void)

Source Code

Returns the (compiled) version of the Allegro library, packed into a single integer as groups of 8 bits in
the form (major << 24) | (minor << 16) | (revision << 8) | release.

You can use code like this to extract them:

uint32_t version = al_get_allegro_version();
int major = version >> 24;

int minor = (version >> 16) & 255;

int revision = (version >> 8) & 255;

int release = version & 255;

The release number is 0 for an unofficial version and 1 or greater for an official release. For example
“5.0.2[1]” would be the (first) official 5.0.2 release while “5.0.2[0]” would be a compile of a version
from the “5.0.2” branch before the official release.

19.6 al get standard_path

ALLEGRO_PATH xal_get_standard_path(int id)

Source Code

Gets a system path, depending on the id parameter. Some of these paths may be affected by the
organization and application name, so be sure to set those before calling this function.

The paths are not guaranteed to be unique (e.g., SETTINGS and DATA may be the same on some
platforms), so you should be sure your filenames are unique if you need to avoid naming collisions.
Also, a returned path may not actually exist on the file system.

ALLEGRO_RESOURCES_PATH
If you bundle data in a location relative to your executable, then you should use this path to
locate that data. On most platforms, this is the directory that contains the executable file.

164


https://github.com/liballeg/allegro5/blob/master/src/system.c#L310
https://github.com/liballeg/allegro5/blob/master/src/system.c#L340
https://github.com/liballeg/allegro5/blob/master/src/allegro.c#L27
https://github.com/liballeg/allegro5/blob/master/src/system.c#L368

19.7. al set exe name

If called from an OS X app bundle, then this will point to the internal resource directory
(/Contents/Resources). To maintain consistency, if you put your resources into a directory called
“data” beneath the executable on some other platform (like Windows), then you should also
create a directory called “data” under the OS X app bundle’s resource folder.

You should not try to write to this path, as it is very likely read-only.
If you install your resources in some other system directory (e.g., in /usr/share or

C:\ProgramData), then you are responsible for keeping track of that yourself.

ALLEGRO_TEMP_PATH
Path to the directory for temporary files.

ALLEGRO_USER_HOME_PATH
This is the user’s home directory. You should not normally write files into this directory directly,
or create any sub folders in it, without explicit permission from the user. One practical
application of this path would be to use it as the starting place of a file selector in a GUI.

ALLEGRO_USER_DOCUMENTS_PATH
This location is easily accessible by the user, and is the place to store documents and files that the
user might want to later open with an external program or transfer to another place.

You should not save files here unless the user expects it, usually by explicit permission.

ALLEGRO USER_DATA PATH
If your program saves any data that the user doesn’t need to access externally, then you should
place it here. This is generally the least intrusive place to store data. This path will usually not be
present on the file system, so make sure to create it before writing to it.

ALLEGRO_USER_SETTINGS_PATH
If you are saving configuration files (especially if the user may want to edit them outside of your
program), then you should place them here. This path will usually not be present on the file
system, so make sure to create it before writing to it.

ALLEGRO_EXENAME_PATH
The full path to the executable.

Returns NULL on failure. The returned path should be freed with al destroy path.

See also: al_set_app name, al set_org name, al destroy path, al set exe name

19.7 al set exe name

void al_set_exe_name(char const *path)

Source Code

This override the executable name used by al get standard path for ALLEGRO EXENAME PATH and
ALLEGRO_RESOURCES_PATH.

One possibility where changing this can be useful is if you use the Python wrapper. Allegro would then
by default think that the system’s Python executable is the current executable - but you can set it to the
.py file being executed instead.

Since: 5.0.6, 5.1.0

See also: al_get standard path

165


https://github.com/liballeg/allegro5/blob/master/src/system.c#L392

19. SYSTEM ROUTINES

19.8 al_set_app_name

void al_set_app_name(const char *app_name)

Source Code

Sets the global application name.

The application name is used by al _get standard_path to build the full path to an application’s files.
This function may be called before al_init or al_install system.

See also: al_get app name, al set org name

19.9 al set org name

void al_set_org_name(const char *org_name)

Source Code

Sets the global organization name.

The organization name is used by al _get standard path to build the full path to an application’s files.
This function may be called before al_init or al_install system.

See also: al_get org name, al set app_name

19.10 al _get_app_name
const char *al_get_app_name(void)
Source Code

Returns the global application name string.

See also: al_set app name

19.11 al_get_org name

const char *al_get_org_name(void)

Source Code
Returns the global organization name string.

See also: al_set org name

19.12 al_get_system_config

ALLEGRO_CONFIG *al_get_system_config(void)

Source Code

Returns the system configuration structure. The returned configuration should not be destroyed with
al destroy config. This is mainly used for configuring Allegro and its addons. You may populate this
configuration before Allegro is installed to control things like the logging levels and other features.

Allegro will try to populate this configuration by loading a configuration file from a few different
locations, in this order:

* Unix only: /etc/allegro5rc

166


https://github.com/liballeg/allegro5/blob/master/src/system.c#L415
https://github.com/liballeg/allegro5/blob/master/src/system.c#L404
https://github.com/liballeg/allegro5/blob/master/src/system.c#L439
https://github.com/liballeg/allegro5/blob/master/src/system.c#L431
https://github.com/liballeg/allegro5/blob/master/src/system.c#L358

19.12. al get system_config

* Unix only: $SHOME/allegro5rc
* Unix only: $SHOME/ .allegro5rc

* allegro5.cfg next to the executable

If multiple copies are found, then they are merged using al merge config into.

The contents of this file are documented inside a prototypical allegro5. cfg that you can find in the
root directory of the source distributions of Allegro. They are also reproduced below.

Note that Allegro will not look into that file unless you make a copy of it and place it next to your
executable!

#

# Configuration file for the Allegro 5 library.

#

# This file should be either in the same directory as your program.

#

# On Unix, this file may also be stored as ~/.allegro5rc or /etc/allegro5rc.

# If multiple files exist, they will be merged, with values from more specific
# files overriding the less specific files.

[graphics]

# Graphics driver.
# Can be 'default', 'opengl' or 'direct3d' (Windows only).
driver=default

Display configuration selection mode.

Under Linux, it can be used to force the old GLX 1.2 way of choosing
display settings or the new FBConfig method introduced with GLX 1.3.

Under Windows, when using the OpenGL driver, setting it to old will
use DescribePixelFormat and new will use wglGetPixelFormatAttribivARB
(provided by WGL_ARB_pixel_format extension).

Can be 'old' and 'new'. Default is 'new'.
config_selection=new

HOoH H H HFHFHFHF HH

# What method to use to detect legacy cards for the Direct3D backend of the

# primitives addon. Can be 'default', which means it'll check that the pixel

# shader version supported is below some value. 'force_legacy' will force it to
# detect as a legacy card. 'force_modern' will force it to detect is as a modern
# card.

prim_d3d_legacy_detection=default

[audio]
# Driver can be 'default', 'openal', 'alsa', 'oss', 'pulseaudio' or 'directsound'
# depending on platform.

driver=default

# Mixer quality can be 'linear' (default), 'cubic' (best), or 'point' (bad).
# default_mixer_quality=linear

# The frequency to use for the default voice/mixer. Default: 44100.
# primary_voice_frequency=44100

167



19. SYSTEM ROUTINES

# primary_mixer_frequency=44100

# Can be 'int16', otherwise defaults to float32.
# primary_voice_depth=float32
# primary_mixer_depth=float32

[oss]

# You can skip probing for 0SS4 driver by setting this option to 'yes'.
# Default is 'no'.
force_ver3=no

# When 0SS3 is used, you can choose a sound device here.
# Default is '/dev/dsp'.
device=/dev/dsp

[alsal

# Set the ALSA sound device.
# Default is 'default'.
device=default

# Set the ALSA capture device, e.g. hw:0,0
# Default is 'default'.
capture_device=default

# Set the period size (in samples)

# Note that this is erroneously called 'buffer_size' for backwards
# compatibility.

buffer_size=32

# Set the buffer size (in samples)
buffer_size2=2048

[pulseaudio]

# Set the buffer size (in samples)
buffer_size=1024

[directsound]

# Set the DirectSound buffer size (in samples)
buffer_size = 8192

# Which window to attach the device to. Can be 'desktop', or 'foreground'.

# flipping this if there are issues initializing audio.
window = desktop

[Lopengl]

# If you want to support old OpenGL versions, you can make Allegro
# believe an older version than what you actually have is used with
# this key. This is only for testing/debugging purposes.

# force_opengl_version = 1.2

[opengl_disabled_extensions]

168

Try



19.12. al get system_config

# Any OpenGL extensions can be listed here to make Allegro report them
# as not available. The extensions used by Allegro itself if available
# are shown below - uncommenting them would disable them:

# GL_ARB_texture_non_power_of_two=0
# GL_EXT_framebuffer_object=0

[image]

# Gamma handling of PNG files.

# A value of 0.0 means: Don't do any gamma correction.

# A value of -1.0 means: Use the value from the environment variable

# SCREEN_GAMMA (if available), otherwise fallback to a value of 2.2

# (a good guess for PC monitors, and the value for sRGB colourspace).

# Otherwise, the value is taken as-is.

png_screen_gamma = -1.0

# Compression level for PNG files. Possible values: 0-9, "best”, "fastest”,

# "none"” or "default” (a sane compromise between size and speed).
png_compression_level = default

# Quality level for JPEG files. Possible values: 0-100
jpeg_quality_level = 75

# Quality level for WebP files. Possible values: 0-100 or "lossless”
webp_quality_level = lossless

[joystick]

# Linux: Allegro normally searches for joystick device N at /dev/input/jsN.
# You can override the device file path on a per-device basis, like this.

# device@=/dev/input/by-id/usb-blahblah-joystick

# Windows: You can choose between the XINPUT or DIRECTINPUT driver for

# joysticks and force feedback joysticks. Xinput is the more modern

# system, but DirectInput has more force feedback capabilities for older
# joysticks.

driver=XINPUT

# Windows: Use this to force an XInput DLL version, example "3" forces
# xinputl1_3.dll. By default, the latest version is used.

# force_xinput_version = 3

[keyboard]

# You can trap/untrap the mouse cursor within a window with a key combination
# of your choice, e.g. "Ctrl-G", "Shift-Ctrl-G"”, "Ctrl-LShift"”, "RWin".

# This feature currently only works on X11 and Windows.

# toggle_mouse_grab_key = ScrolllLock

# By default, you can press Ctrl-Alt-Delete or Ctrl-Alt-End to quit Allegro

programs. Set this to false to disable this feature. This only works on
# Linux.

E=3

169



19. SYSTEM ROUTINES

# enable_three_finger_exit = true
# By default, pressing the LED toggling keys (e.g. CapsLock) will also toggle
# the LED on the keyboard. Setting this to false disable that connection.

# This can only be controled on non-X11 Linux.

# enable_key_led_toggle = true

[trace]

# Comma-separated list of channels to log. Default is "all” which

# disables channel filtering. Some possible channels are:

# system,display,keyboard,opengl

# Channel names can be prefixed with - to exclude only those channels.
# Each addon and source-file can define additional channels though so
# there are more.

channels=all

# Log-level. Can be one of debug, info, warn, error, none or empty.

# In debug builds if it is empty or unset, then the level is set to debug.
# In release builds if it is empty or unset, then the level is set to none.
level=

# Set to @ to disable line numbers in log files.
lines=1

# Set to @ to disable timestamps in log files.
timestamps=1

# Set to @ to disable function names in log files.
functions=1

[x11]
# Can be fullscreen_only, always, never
bypass_compositor = fullscreen_only

[xkeymap]

# Override X11 keycode. The below example maps X11 code 52 (Y) to Allegro
# code 26 (Z) and X11 code 29 (Z) to Allegro code 25 (Y).

# 52=26

# 29=25

[shader]

# If you want to support override version of the d3dx9_xx.dll library
# define this value.

# By default, latest installed version is used.

# force_d3dx9_version = 36

[ttf]

# Set these to something other than @ to override the default page sizes for TTF
# glyphs.

min_page_size =
max_page_size

I 1
[SEES]

170



19.13. al register assert handler

# This entry contains characters that will be pre-catched during font loading.
# cache_text = a bcdefghijklmnopgrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ

# Uncomment if you want only the characters in the cache_text entry to ever be drawn
# skip_cache_misses = true

[compatibility]

# Prior to 5.2.4 on Windows you had to manually resize the display when
# showing the menu using the dialog addon. After 5.2.4 this is done

# automatically, but may break old code that handled this eventuality.
# Set this to false for such code.

automatic_menu_display_resize = true

19.13 al register assert_handler

void al_register_assert_handler(void (*handler)(char const *expr,
char const xfile, int line, char const *func))

Source Code

Register a function to be called when an internal Allegro assertion fails. Pass NULL to reset to the
default behaviour, which is to do whatever the standard assert() macro does.

Since: 5.0.6, 5.1.0

19.14 al_register_trace_handler

void al_register_trace_handler(void (*handler)(char const %))

Source Code

Register a callback which is called whenever Allegro writes something to its log files. The default
logging to allegro.log is disabled while this callback is active. Pass NULL to revert to the default

logging.
This function may be called prior to al_install system.

See the example allegro5.cfg for documentation on how to configure the used debug channels, logging
levels and trace format.

Since: 5.1.5

19.15 al_get_cpu_count

int al_get_cpu_count(void)

Source Code

Returns the number of CPU cores that the system Allegro is running on has and which could be
detected, or a negative number if detection failed. Even if a positive number is returned, it might be
that it is not correct. For example, Allegro running on a virtual machine will return the amount of
CPU’s of the VM, and not that of the underlying system.

Furthermore even if the number is correct, this only gives you information about the total CPU cores of
the system Allegro runs on. The amount of cores available to your program may be less due to
circumstances such as programs that are currently running.

Therefore, it’s best to use this for advisory purposes only. It is certainly a bad idea to make your
program exclusive to systems for which this function returns a certain “desirable” number.

171


https://github.com/liballeg/allegro5/blob/master/src/debug.c#L366
https://github.com/liballeg/allegro5/blob/master/src/debug.c#L375
https://github.com/liballeg/allegro5/blob/master/src/cpu.c#L51

19. SYSTEM ROUTINES

This function may be called prior to al_install system or al init.

Since: 5.1.12

19.16 al_get_ram_size

int al_get_ram_size(void)

Source Code

Returns the size in MB of the random access memory that the system Allegro is running on has and
which could be detected, or a negative number if detection failed. Even if a positive number is
returned, it might be that it is not correct. For example, Allegro running on a virtual machine will
return the amount of RAM of the VM, and not that of the underlying system.

Furthermore even if the number is correct, this only gives you information about the total physical
memory of the system Allegro runs on. The memory available to your program may be less or more
than what this function returns due to circumstances such as virtual memory, and other programs that
are currently running.

Therefore, it’s best to use this for advisory purposes only. It is certainly a bad idea to make your
program exclusive to systems for which this function returns a certain “desirable” number.

This function may be called prior to al _install system or al init.

Since: 5.1.12

172


https://github.com/liballeg/allegro5/blob/master/src/cpu.c#L78

20

Threads

Allegro includes a simple cross-platform threading interface. It is a thin layer on top of two threading
APIs: Windows threads and POSIX Threads (pthreads). Enforcing a consistent semantics on all
platforms would be difficult at best, hence the behaviour of the following functions will differ subtly on
different platforms (more so than usual). Your best bet is to be aware of this and code to the
intersection of the semantics and avoid edge cases.

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

20.1 ALLEGRO_THREAD

typedef struct ALLEGRO_THREAD ALLEGRO_THREAD;

Source Code

An opaque structure representing a thread.

20.2 ALLEGRO_MUTEX

typedef struct ALLEGRO_MUTEX ALLEGRO_MUTEX;

Source Code

An opaque structure representing a mutex.

20.3 ALLEGRO_COND

typedef struct ALLEGRO_COND ALLEGRO_COND;

Source Code

An opaque structure representing a condition variable.

20.4 al_create_thread

ALLEGRO_THREAD *al_create_thread(
void *(*proc) (ALLEGRO_THREAD *thread, void *arg), void =*arg)

173


https://github.com/liballeg/allegro5/blob/master/include/allegro5/threads.h#L27
https://github.com/liballeg/allegro5/blob/master/include/allegro5/threads.h#L31
https://github.com/liballeg/allegro5/blob/master/include/allegro5/threads.h#L35

20. THREADS

Source Code

Spawn a new thread which begins executing proc. The new thread is passed its own thread handle and
the value arg.

Returns a pointer to the thread on success. Otherwise, returns NULL if there was an error.

See also: al_start thread, al join thread.

20.5 al start_thread

void al_start_thread(ALLEGRO_THREAD *thread)

Source Code

When a thread is created, it is initially in a suspended state. Calling al start thread will start its actual
execution.

Starting a thread which has already been started does nothing.

See also: al create_thread.

20.6 al_join_thread

void al_join_thread(ALLEGRO_THREAD *thread, void **ret_value)

Source Code
Wait for the thread to finish executing. This implicitly calls al_set_thread should_stop first.

If ret_value is non-NULL, the value returned by the thread function will be stored at the location
pointed to by ret_value.

See also: al_set thread should stop, al get thread should stop, al destroy thread.

20.7 al_set_thread should_stop

void al_set_thread_should_stop(ALLEGRO_THREAD *thread)

Source Code
Set the flag to indicate thread should stop. Returns immediately.

See also: al _join_thread, al_get thread should_stop.

20.8 al_get_thread_should_stop

bool al_get_thread_should_stop(ALLEGRO_THREAD xthread)

Source Code

Check if another thread is waiting for thread to stop. Threads which run in a loop should check this
periodically and act on it when convenient.

Returns true if another thread has called al join thread or al set thread should stop on this thread.

See also: al join_thread, al set thread should_stop.

Note: We don’t support forceful killing of threads.

174


https://github.com/liballeg/allegro5/blob/master/src/threads.c#L115
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L146
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L180
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L230
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L239

20.9. al destroy thread

20.9 al_destroy_thread

void al_destroy_thread(ALLEGRO_THREAD *thread)

Source Code

Free the resources used by a thread. Implicitly performs al_join_thread on the thread if it hasn’t been
done already:.

Does nothing if thread is NULL.

See also: al _join_thread.

20.10 al run_detached_thread

void al_run_detached_thread(void *(*proc)(void *arg), void *arg)

Source Code

Runs the passed function in its own thread, with arg passed to it as only parameter. This is similar to
calling al create thread, al start thread and (after the thread has finished) al _destroy_thread - but
you don’t have the possibility of ever calling al join thread on the thread.

20.11 al_create_mutex

ALLEGRO_MUTEX =*al_create_mutex(void)

Source Code

Create the mutex object (a mutual exclusion device). The mutex may or may not support “recursive”
locking.

Returns the mutex on success or NULL on error.

See also: al_create_mutex_recursive.

20.12 al create mutex_recursive

ALLEGRO_MUTEX *al_create_mutex_recursive(void)

Source Code

Create the mutex object (a mutual exclusion device), with support for “recursive” locking. That is, the
mutex will count the number of times it has been locked by the same thread. If the caller tries to
acquire a lock on the mutex when it already holds the lock then the count is incremented. The mutex is
only unlocked when the thread releases the lock on the mutex an equal number of times, i.e. the count
drops down to zero.

See also: al_create_mutex.

20.13 al lock mutex

void al_lock_mutex(ALLEGRO_MUTEX *mutex)

Source Code

Acquire the lock on mutex. If the mutex is already locked by another thread, the call will block until the
mutex becomes available and locked.

If the mutex is already locked by the calling thread, then the behaviour depends on whether the mutex
was created with al_create_mutex or al_create_mutex_recursive. In the former case, the behaviour is

175


https://github.com/liballeg/allegro5/blob/master/src/threads.c#L248
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L133
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L282
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L295
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L308

20. THREADS

undefined; the most likely behaviour is deadlock. In the latter case, the count in the mutex will be
incremented and the call will return immediately.

See also: al unlock mutex.

We don’t yet have al mutex_trylock.

20.14 al_unlock_mutex
void al_unlock_mutex (ALLEGRO_MUTEX #*mutex)
Source Code
Release the lock on mutex if the calling thread holds the lock on it.

If the calling thread doesn’t hold the lock, or if the mutex is not locked, undefined behaviour results.

See also: al_lock mutex.

20.15 al destroy mutex
void al_destroy_mutex (ALLEGRO_MUTEX *mutex)

Source Code

Free the resources used by the mutex. The mutex should be unlocked. Destroying a locked mutex
results in undefined behaviour.

Does nothing if mutex is NULL.

20.16 al create cond
ALLEGRO_COND *al_create_cond(void)
Source Code

Create a condition variable.

Returns the condition value on success or NULL on error.

20.17 al destroy_cond

void al_destroy_cond(ALLEGRO_COND *cond)

Source Code
Destroy a condition variable.
Destroying a condition variable which has threads block on it results in undefined behaviour.

Does nothing if cond is NULL.

20.18 al wait _cond

void al_wait_cond(ALLEGRO_COND *cond, ALLEGRO_MUTEX *mutex)

Source Code

On entering this function, mutex must be locked by the calling thread. The function will atomically
release mutex and block on cond. The function will return when cond is “signalled”, acquiring the lock
on the mutex in the process.

Example of proper use:

176


https://github.com/liballeg/allegro5/blob/master/src/threads.c#L318
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L327
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L338
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L350
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L361

20.19. al wait cond_until

al_lock_mutex(mutex);
while (something_not_true) {
al_wait_cond(cond, mutex);

3
do_something();
al_unlock_mutex(mutex);

The mutex should be locked before checking the condition, and should be rechecked al wait cond
returns. al_ wait _cond can return for other reasons than the condition becoming true (e.g. the process
was signalled). If multiple threads are blocked on the condition variable, the condition may no longer
be true by the time the second and later threads are unblocked. Remember not to unlock the mutex
prematurely.

See also: al wait cond_until, al broadcast cond, al signal cond.

20.19 al_wait_cond_until

int al_wait_cond_until (ALLEGRO_COND *cond, ALLEGRO_MUTEX *mutex,
const ALLEGRO_TIMEOUT *timeout)

Source Code

Like al wait_cond but the call can return if the absolute time passes timeout before the condition is
signalled.

Returns zero on success, non-zero if the call timed out.

See also: al wait cond

20.20 al_broadcast_cond

void al_broadcast_cond(ALLEGRO_COND *cond)

Source Code

Unblock all threads currently waiting on a condition variable. That is, broadcast that some condition
which those threads were waiting for has become true.

See also: al_signal cond.

Note: The pthreads spec says to lock the mutex associated with cond before signalling for
predictable scheduling behaviour.

20.21 al _signal cond

void al_signal_cond(ALLEGRO_COND *cond)

Source Code
Unblock at least one thread waiting on a condition variable.

Generally you should use al broadcast cond but al_signal cond may be more efficient when it’s
applicable.

See also: al broadcast_cond.

177


https://github.com/liballeg/allegro5/blob/master/src/threads.c#L372
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L385
https://github.com/liballeg/allegro5/blob/master/src/threads.c#L395




21

Time routines

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

21.1 ALLEGRO_TIMEOUT

typedef struct ALLEGRO_TIMEOUT ALLEGRO_TIMEOUT;

Source Code

Represent a timeout value. The size of the structure is known so it can be statically allocated. The
contents are private.

See also: al_init timeout

21.2 al_get_time

double al_get_time(void)

Source Code

Return the number of seconds since the Allegro library was initialised. The return value is undefined if
Allegro is uninitialised. The resolution depends on the used driver, but typically can be in the order of
microseconds.

21.3 al_init_timeout

void al_init_timeout (ALLEGRO_TIMEOUT xtimeout, double seconds)

Source Code
Set timeout value of some number of seconds after the function call.
For compatibility with all platforms, seconds must be 2,147,483.647 seconds or less.

See also: ALLEGRO_TIMEOUT, al wait for event until

179


https://github.com/liballeg/allegro5/blob/master/include/allegro5/altime.h#L12
https://github.com/liballeg/allegro5/blob/master/src/unix/utime.c#L48
https://github.com/liballeg/allegro5/blob/master/src/unix/utime.c#L76

21. TIME ROUTINES

21.4 al_rest

void al_rest(double seconds)

Source Code

Waits for the specified number of seconds. This tells the system to pause the current thread for the
given amount of time. With some operating systems, the accuracy can be in the order of 10ms. That is,
even

al_rest(0.000001)

might pause for something like 10ms. Also see the section on Timer routines for easier ways to time
your program without using up all CPU.

180


https://github.com/liballeg/allegro5/blob/master/src/unix/utime.c#L63

22

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>
22.1 ALLEGRO_TIMER
typedef struct ALLEGRO_TIMER ALLEGRO_TIMER;

Source Code

This is an abstract data type representing a timer object.
22.2 ALLEGRO_USECS_TO_SECS
#define ALLEGRO_USECS_TO_SECS(x) ((x) / 1000000.0)

Source Code

Convert microseconds to seconds.
22.3 ALLEGRO_MSECS_TO_SECS
#define ALLEGRO_MSECS_TO_SECS(x) ((x) / 1000.0)

Source Code

Convert milliseconds to seconds.
22.4 ALLEGRO_BPS_TO_SECS
#define ALLEGRO_BPS_TO_SECS(x) (1.0 /7 (X))

Source Code

Convert beats per second to seconds.

22.5 ALLEGRO BPM_TO_SECS

#define ALLEGRO_BPM_TO_SECS(x) (60.0 / (x))

Source Code

Convert beats per minute to seconds.

181

Timer routines


https://github.com/liballeg/allegro5/blob/master/include/allegro5/timer.h#L46
https://github.com/liballeg/allegro5/blob/master/include/allegro5/timer.h#L29
https://github.com/liballeg/allegro5/blob/master/include/allegro5/timer.h#L33
https://github.com/liballeg/allegro5/blob/master/include/allegro5/timer.h#L37
https://github.com/liballeg/allegro5/blob/master/include/allegro5/timer.h#L41

22. TIMER ROUTINES

22.6 al_create_timer

ALLEGRO_TIMER *al_create_timer(double speed_secs)

Source Code

Allocates and initializes a timer. If successful, a pointer to a new timer object is returned, otherwise
NULL is returned. speed_secs is in seconds per “tick”, and must be positive. The new timer is initially
stopped.

Usage note: typical granularity is on the order of microseconds, but with some drivers might only be
milliseconds.

See also: al start_timer, al destroy_timer

22.7 al_start_timer

void al_start_timer (ALLEGRO_TIMER =*timer)

Source Code

Start the timer specified. From then, the timer’s counter will increment at a constant rate, and it will
begin generating events. Starting a timer that is already started does nothing. Starting a timer that was
stopped will reset the timer’s counter, effectively restarting the timer from the beginning.

See also: al_stop_timer, al_get timer started, al resume_timer

22.8 al_resume_timer

void al_resume_timer (ALLEGRO_TIMER *timer)

Source Code

Resume the timer specified. From then, the timer’s counter will increment at a constant rate, and it will
begin generating events. Resuming a timer that is already started does nothing. Resuming a stopped
timer will not reset the timer’s counter (unlike al start_timer).

See also: al _start_timer, al stop_timer, al get timer started

22.9 al_stop_timer

void al_stop_timer (ALLEGRO_TIMER =*timer)

Source Code

Stop the timer specified. The timer’s counter will stop incrementing and it will stop generating events.
Stopping a timer that is already stopped does nothing.

See also: al_start_timer, al get timer started, al resume_timer

22.10 al_get timer_started

bool al_get_timer_started(const ALLEGRO_TIMER *timer)

Source Code

Return true if the timer specified is currently started.

182


https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L244
https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L287
https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L296
https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L305
https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L325

22.11. al destroy_timer

22.11 al_destroy_timer

void al_destroy_timer (ALLEGRO_TIMER xtimer)

Source Code

Uninstall the timer specified. If the timer is started, it will automatically be stopped before
uninstallation. It will also automatically unregister the timer with any event queues.

Does nothing if passed the NULL pointer.

See also: al create timer

22.12 al get timer count

int64_t al_get_timer_count(const ALLEGRO_TIMER *timer)

Source Code
Return the timer’s counter value. The timer can be started or stopped.

See also: al_set timer count

22.13 al _set timer count

void al_set_timer_count(ALLEGRO_TIMER *timer, int64_t new_count)

Source Code

Set the timer’s counter value. The timer can be started or stopped. The count value may be positive or
negative, but will always be incremented by +1 at each tick.

See also: al_get timer count, al add timer count

22.14 al add _timer count

void al_add_timer_count(ALLEGRO_TIMER *timer, int64_t diff)

Source Code

Add diff to the timer’s counter value. This is similar to writing:
al_set_timer_count(timer, al_get_timer_count(timer) + diff);

except that the addition is performed atomically, so no ticks will be lost.

See also: al_set timer count

22.15 al get timer speed

double al_get_timer_speed(const ALLEGRO_TIMER *timer)

Source Code

Return the timer’s speed, in seconds. (The same value passed to al _create_timer or
al set timer speed.)

See also: al_set_timer speed

183


https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L271
https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L368
https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L379
https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L394
https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L336

22. TIMER ROUTINES

22.16 al_set_timer_speed

void al_set_timer_speed(ALLEGRO_TIMER *timer, double new_speed_secs)

Source Code

Set the timer’s speed, i.e. the rate at which its counter will be incremented when it is started. This can
be done when the timer is started or stopped. If the timer is currently running, it is made to look as
though the speed change occurred precisely at the last tick.

speed_secs has exactly the same meaning as with al create_timer.

See also: al _get timer speed

22.17 al_get timer event source

ALLEGRO_EVENT_SOURCE *al_get_timer_event_source(ALLEGRO_TIMER *timer)

Source Code

Retrieve the associated event source. Timers will generate events of type ALLEGRO EVENT TIMER.

184


https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L347
https://github.com/liballeg/allegro5/blob/master/src/timernu.c#L436

23

Touch input

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

23.1 ALLEGRO_TOUCH_INPUT

typedef struct ALLEGRO_TOUCH_INPUT ALLEGRO_TOUCH_INPUT;

Source Code
An abstract data type representing a physical touch screen or touch pad.
Since: 5.1.0

23.2 ALLEGRO TOUCH_INPUT MAX_TOUCH_COUNT

#define ALLEGRO_TOUCH_INPUT_MAX_TOUCH_COUNT 16

Source Code
The maximum amount of simultaneous touches that can be detected.

Since: 5.1.0

23.3 ALLEGRO_TOUCH_STATE

typedef struct ALLEGRO_TOUCH_STATE ALLEGRO_TOUCH_STATE;

Source Code
This is a structure that is used to hold a “snapshot” of a touch at a particular instant.

Public fields (read only):

* id - identifier of the touch. If the touch is valid, this is positive.

* x - touch x position

* y - touch y position

* dx - touch relative x position

* dy - touch relative y position

* primary - TRUE if this touch is the primary one (usually the first one).
* display - The ALLEGRO DISPLAY that was touched.

Since: 5.1.0

185


https://github.com/liballeg/allegro5/blob/master/include/allegro5/touch_input.h#L34
https://github.com/liballeg/allegro5/blob/master/include/allegro5/touch_input.h#L29
https://github.com/liballeg/allegro5/blob/master/include/allegro5/touch_input.h#L44

23. TOUCH INPUT

23.4 ALLEGRO_TOUCH_INPUT_ STATE

typedef struct ALLEGRO_TOUCH_INPUT_STATE ALLEGRO_TOUCH_INPUT_STATE;

Source Code
This is a structure that holds a snapshot of all simultaneous touches at a particular instant.

Public fields (read only):

* touches - an array of ALLEGRO_TOUCH_STATE

Since: 5.1.0

23.5 ALLEGRO MOUSE_EMULATION MODE

typedef enum ALLEGRO_MOUSE_EMULATION_MODE

Source Code

Type of mouse emulation to apply.

ALLEGRO_MOUSE_EMULATION_NONE

Disables mouse emulation.
ALLEGRO_MOUSE_EMULATION_TRANSPARENT

Enables transparent mouse emulation.
ALLEGRO_MOUSE_EMULATION_INCLUSIVE

Enable inclusive mouse emulation.
ALLEGRO_MOUSE_EMULATION_EXCLUSIVE

Enables exclusive mouse emulation.
ALLEGRO_MOUSE_EMULATION_5 0 x

Enables mouse emulation that is backwards compatible with Allegro 5.0.x.

Since: 5.1.0

Unstable API: Seems of limited value, as touch input tends to have different semantics
compared to mouse input.

23.6 al install touch_input

bool al_install_touch_input(void)

Source Code

Install a touch input driver, returning true if successful. If a touch input driver was already installed,
returns true immediately.

Since: 5.1.0

See also: al_uninstall touch input

186


https://github.com/liballeg/allegro5/blob/master/include/allegro5/touch_input.h#L39
https://github.com/liballeg/allegro5/blob/master/include/allegro5/touch_input.h#L71
https://github.com/liballeg/allegro5/blob/master/src/touch_input.c#L43

23.7. al uninstall touch_input

23.7 al_uninstall_touch_input

void al_uninstall_touch_input(void)

Source Code

Uninstalls the active touch input driver. If no touch input driver was active, this function does nothing.
This function is automatically called when Allegro is shut down.

Since: 5.1.0

See also: al_install touch input

23.8 al_is_touch_input_installed

bool al_is_touch_input_installed(void)

Source Code

Returns true if al_install touch input was called successfully.
Since: 5.1.0

23.9 al_get_touch_input_state

void al_get_touch_input_state (ALLEGRO_TOUCH_INPUT_STATE *ret_state)

Source Code

Gets the current touch input state. The touch information is copied into the
ALLEGRO_TOUCH_INPUT STATE you provide to this function.

Since: 5.1.0
23.10 al_set_mouse_emulation_mode

void al_set_mouse_emulation_mode(int mode)

Source Code
Sets the kind of mouse emulation for the touch input subsystem to perform.
Since: 5.1.0

Unstable API: Seems of limited value, as touch input tends to have different semantics
compared to mouse input.

See also: ALLEGRO_MOUSE,_EMULATION MODE, al get mouse _emulation_mode.

23.11 al_get mouse_emulation_mode

int al_get_mouse_emulation_mode(void)

Source Code
Returns the kind of mouse emulation which the touch input subsystem is set to perform.
Since: 5.1.0

Unstable API: Seems of limited value, as touch input tends to have different semantics
compared to mouse input.

See also: ALLEGRO_MOUSE_EMULATION MODE, al set mouse_emulation_mode.

187


https://github.com/liballeg/allegro5/blob/master/src/touch_input.c#L68
https://github.com/liballeg/allegro5/blob/master/src/touch_input.c#L35
https://github.com/liballeg/allegro5/blob/master/src/touch_input.c#L93
https://github.com/liballeg/allegro5/blob/master/src/touch_input.c#L104
https://github.com/liballeg/allegro5/blob/master/src/touch_input.c#L117

23. TOUCH INPUT

23.12 al_get_touch_input_event_source

ALLEGRO_EVENT_SOURCE *al_get_touch_input_event_source(void)

Source Code

Returns the global touch input event source. This event source generates touch input events.
Since: 5.1.0

See also: ALLEGRO_EVENT _SOURCE, al register event source

23.13 al_get touch_input_mouse_emulation_event_source

ALLEGRO_EVENT_SOURCE *al_get_touch_input_mouse_emulation_event_source(void)

Source Code

Returns the global touch input event source for emulated mouse events. This event source generates
emulated mouse events that are based on touch events.

See also: ALLEGRO_EVENT SOURCE, al_register event source
Since: 5.1.0

Unstable API: Seems of limited value, as touch input tends to have different semantics
compared to mouse input.

188


https://github.com/liballeg/allegro5/blob/master/src/touch_input.c#L130
https://github.com/liballeg/allegro5/blob/master/src/touch_input.c#L140

24

Transformations

These functions are declared in the main Allegro header file:
#include <allegro5/allegro.h>

Transformations allow you to transform the coordinates you use for drawing operations without
additional overhead. Scaling, rotating, translating, and combinations of these are possible as well as
using custom transformations. There are two types of transformations that you can set, ‘regular’
transformations and projection transformations. The projection transform is rarely used in 2D games,
but is common in 3D games to set up the projection from the 3D world to the 2D screen. Typically, you
would use the regular transform for non-projective types of transformations (that is, translations,
rotations, scales, skews. .. i.e. transformations that are linear), while the projection transform will be
used for setting up perspective and possibly more advanced effects. It is possible to do everything with
just using the projection transformation (that is, you’d compose the projection transformation with the
non-projection transformations that, e.g., move the camera in the world), but it is more convenient to
use both for two reasons:

* Regular transformations can be changed while the bitmap drawing is held (see
al hold bitmap drawing).

* Regular transformations work with memory bitmaps.

As a result, if you're making a 2D game, it’s best to leave the projection transformations at their default
values.

Both types of transformations are set per target-bitmap, i.e. a change of the target bitmap will also
change the active transformation.

Allegro provides convenience functions to construct transformations in 2D and 3D variants (the latter
with a _3d suffix), so you don’t have to deal with the underlying matrix algebra yourself.

The transformations are combined in the order of the function invocations. Thus to create a
transformation that first rotates a point and then translates it, you would (starting with an identity
transformation) call al rotate_transform and then al translate transform. This approach is opposite of
what OpenGL uses but similar to what Direct3D uses.

For those who know the matrix algebra going behind the scenes, what the transformation functions in
Allegro do is “pre-multiply” the successive transformations. So, for example, if you have code that does:

al_identity_transform(&T);

al_compose_transform(&T, &T1);
al_compose_transform(&T, &T2);
al_compose_transform(&T, &T3);
al_compose_transform(&T, &T4);

189



24. TRANSFORMATIONS

The resultant matrix multiplication expression will look like this:
T4 = T3 x T2 = T1

Since the point coordinate vector term will go on the right of that sequence of factors, the
transformation that is called first, will also be applied first.

This means if you have code like this:

al_identity_transform(&T1);
al_scale_transform(&T1, 2, 2);
al_identity_transform(&T2);
al_translate_transform(&T2, 100, 0);

al_identity_transform(&T);

al_compose_transform(&T, &T1);
al_compose_transform(&T, &T2);

al_use_transform(&T);
it does exactly the same as:

al_identity_transform(&T);
al_scale_transform(&T, 2, 2);
al_translate_transform(&T, 100, 0);
al_use_transform(&T);

24.1 ALLEGRO_TRANSFORM

typedef struct ALLEGRO_TRANSFORM ALLEGRO_TRANSFORM;

Source Code

Defines the generic transformation type, a 4x4 matrix. 2D transforms use only a small subsection of
this matrix, namely the top left 2x2 matrix, and the right most 2x1 matrix, for a total of 6 values.

Fields:
e m - A 4x4 float matrix

24.2 al_copy_transform

void al_copy_transform(ALLEGRO_TRANSFORM xdest, const ALLEGRO_TRANSFORM *src)

Source Code
Makes a copy of a transformation.

Parameters:

¢ dest - Source transformation
e src - Destination transformation

190


https://github.com/liballeg/allegro5/blob/master/include/allegro5/transformations.h#L12
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L30

24.3. al_use_transform

24.3 al_use_transform

void al_use_transform(const ALLEGRO_TRANSFORM xtrans)

Source Code

Sets the transformation to be used for the the drawing operations on the target bitmap (each bitmap
maintains its own transformation). Every drawing operation after this call will be transformed using
this transformation. Call this function with an identity transformation to return to the default
behaviour.

This function does nothing if there is no target bitmap.

The parameter is passed by reference as an optimization to avoid the overhead of stack copying. The
reference will not be stored in the Allegro library so it is safe to pass references to local variables.

void setup_my_transformation(void)

{
ALLEGRO_TRANSFORM transform;

al_translate_transform(&transform, 5, 10);
al_use_transform(&transform);

Parameters:
e trans - Transformation to use

See also: al_get current_transform, al_transform_coordinates

24.4 al get current transform

const ALLEGRO_TRANSFORM xal_get_current_transform(void)

Source Code

Returns the transformation of the current target bitmap, as set by al_use_transform. If there is no
target bitmap, this function returns NULL.

Returns: A pointer to the current transformation.

See also: al_get current projection_transform

24.5 al_use_projection_transform

void al_use_projection_transform(const ALLEGRO_TRANSFORM =*trans)

Source Code

Sets the projection transformation to be used for the the drawing operations on the target bitmap
(each bitmap maintains its own projection transformation). Every drawing operation after this call will
be transformed using this transformation. To return default behavior, call this function with an
orthographic transform like so:

ALLEGRO_TRANSFORM trans;

al_identity_transform(&trans);

al_orthographic_transform(&trans, 0, 0, -1.0, al_get_bitmap_width(bitmap),
al_get_bitmap_height(bitmap), 1.0);

al_set_target_bitmap(bitmap);
al_use_projection_transform(&trans);

191


https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L40
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L104
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L74

24. TRANSFORMATIONS

The orthographic transformation above is the default projection transform.

This function does nothing if there is no target bitmap. This function also does nothing if the bitmap is
a memory bitmap (i.e. memory bitmaps always use an orthographic transform like the snippet above).
Note that the projection transform will be reset to default if a video bitmap is converted to a memory
bitmap. Additionally, if the bitmap in question is the backbuffer, it’s projection transformation will be
reset to default if it is resized. Lastly, when you draw a memory bitmap to a video bitmap with a
custom projection transform, this transformation will be ignored (i.e. it'll be as if the projection
transform of the target bitmap was temporarily reset to default).

The parameter is passed by reference as an optimization to avoid the overhead of stack copying. The
reference will not be stored in the Allegro library so it is safe to pass references to local variables.

Since: 5.1.9

See also: al_get current projection_transform

24.6 al_get current_projection_transform

const ALLEGRO_TRANSFORM *al_get_current_projection_transform(void)

Source Code

If there is no target bitmap, this function returns NULL.
Returns: A pointer to the current transformation.
Since: 5.1.9

See also: al_use projection_transform

24.7 al_get_current_inverse_transform

const ALLEGRO_TRANSFORM xal_get_current_inverse_transform(void)

Source Code

Returns the inverse of the current transformation of the target bitmap. If there is no target bitmap, this
function returns NULL.

This is similar to calling al_invert_transform(al_get_current_transform()) but the result of this
function is cached.

Note: Allegro’s transformation inversion functions work correctly only with 2D
transformations.

Since: 5.1.0

24.8 al_invert_transform

void al_invert_transform(ALLEGRO_TRANSFORM *trans)

Source Code

Inverts the passed transformation. If the transformation is nearly singular (close to not having an
inverse) then the returned transformation may be invalid. Use al_check_inverse to ascertain if the
transformation has an inverse before inverting it if you are in doubt.

Parameters:
e trans - Transformation to invert

192


https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L116
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L128
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L272

24.9. al check inverse

Note: Allegro’s transformation inversion functions work correctly only with 2D
transformations.

See also: al_check inverse

24.9 al_check_inverse

int al_check_inverse(const ALLEGRO_TRANSFORM *trans, float tol)

Source Code

Checks if the transformation has an inverse using the supplied tolerance. Tolerance should be a small
value between 0 and 1, with 1e-7 being sufficient for most applications.

In this function tolerance specifies how close the determinant can be to O (if the determinant is 0, the
transformation has no inverse). Thus the smaller the tolerance you specify, the “worse”
transformations will pass this test. Using a tolerance of le-7 will catch errors greater than 1/1000’s of
a pixel, but let smaller errors pass. That means that if you transformed a point by a transformation and
then transformed it again by the inverse transformation that passed this check, the resultant point
should less than 1/1000’s of a pixel away from the original point.

Note that this check is superfluous most of the time if you never touched the transformation matrix
values yourself. The only thing that would cause the transformation to not have an inverse is if you
applied a O (or very small) scale to the transformation or you have a really large translation. As long as
the scale is comfortably above 0, the transformation will be invertible.

Parameters:

e trans - Transformation to check
* tol - Tolerance

Returns: 1 if the transformation is invertible, O otherwise

Note: Allegro’s transformation inversion functions work correctly only with 2D
transformations.

See also: al _invert transform

24.10 al_identity_transform

void al_identity_transform(ALLEGRO_TRANSFORM xtrans)

Source Code

Sets the transformation to be the identity transformation. This is the default transformation. Use
al _use_transform on an identity transformation to return to the default.

ALLEGRO_TRANSFORM t;
al_identity_transform(&t);
al_use_transform(&t);

Parameters:
* trans - Transformation to alter
See also: al_translate_transform, al rotate transform, al scale_transform

193


https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L293
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L145

24. TRANSFORMATIONS

24.11 al_build_transform

void al_build_transform(ALLEGRO_TRANSFORM *trans, float x, float vy,
float sx, float sy, float theta)

Source Code

Builds a transformation given some parameters. This call is equivalent to calling the transformations in
this order: make identity, rotate, scale, translate. This method is faster, however, than actually calling
those functions.

Parameters:

* trans - Transformation to alter

* X,y - Translation

* sx, sy - Scale

* theta - Rotation angle in radians

Note: this function was previously documented to be equivalent to a different (and more
useful) order of operations: identity, scale, rotate, translate.

See also: al_translate transform, al rotate transform, al_scale_transform, al compose_transform

24.12 al build camera_transform

void al_build_camera_transform(ALLEGRO_TRANSFORM xtrans,
float position_x, float position_y, float position_z,
float look_x, float look_y, float look_z,
float up_x, float up_y, float up_z)

Source Code

Builds a transformation which can be used to transform 3D coordinates in world space to camera
space. This involves translation and a rotation. The function expects three coordinate triplets: The
camera’s position, the position the camera is looking at and an up vector. The up vector does not need
to be of unit length and also does not need to be perpendicular to the view direction - it can usually
just be the world up direction (most commonly 0/1/0).

For example:

al_build_camera_transform(&t,
1, 1, 1,
5, 5, 5,
0, 1, 9);

This create a transformation for a camera standing at 1/1/1 and looking towards 5/5/5.

Note: If the position and look parameters are identical, or if the up direction is parallel to
the view direction, an identity matrix is created.

Another example which will simply re-create the identity matrix:

al_build_camera_transform(&t,

0, 0, 0,
0, 0, -1,
9, 1, 0);

194


https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L172
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L204

24.13. al translate transform

An example where the up vector will cause the camera to lean (roll) by 45 degrees:

al_build_camera_transform(&t,
1, 1, 1,

5,5, 5,
1, 1, 0);
Since 5.1.9

See also: al_translate transform 3d, al rotate transform 3d, al scale transform_3d,
al compose_transform, al_use_transform

24.13 al_translate_transform

void al_translate_transform(ALLEGRO_TRANSFORM *trans, float x, float y)

Source Code
Apply a translation to a transformation.

Parameters:

e trans - Transformation to alter
* X,y - Translation

See also: al rotate_transform, al scale_ transform, al build_transform

24.14 al_rotate_transform

void al_rotate_transform(ALLEGRO_TRANSFORM *trans, float theta)

Source Code
Apply a rotation to a transformation.

Parameters:

e trans - Transformation to alter
* theta - Rotation angle in radians

See also: al_translate transform, al scale transform, al build transform

24.15 al_scale_transform

void al_scale_transform(ALLEGRO_TRANSFORM *trans, float sx, float sy)

Source Code
Apply a scale to a transformation.

Parameters:

e trans - Transformation to alter
* sx, sy - Scale

See also: al_translate transform, al rotate transform, al build transform

195


https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L312
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L336
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L360

24. TRANSFORMATIONS

24.16 al_transform_coordinates

void al_transform_coordinates(const ALLEGRO_TRANSFORM x*trans, float #*x, float *y)

Source Code
Transform a pair of coordinates.

Parameters:

* trans - Transformation to use
* X,y - Pointers to the coordinates

See also: al_use_transform, al_transform_coordinates 3d

24.17 al_transform_coordinates_3d

void al_transform_coordinates_3d(const ALLEGRO_TRANSFORM xtrans,
float xx, float xy, float *z)

Source Code
Transform x, y, z coordinates.

Parameters:

* trans - Transformation to use
* X, 9, z - Pointers to the coordinates

Note: If you are using a projection transform you most likely will want to use
al transform_coordinates 3d_projective instead.

Since 5.1.9

See also: al_use_transform, al_transform_coordinates

24.18 al_transform_coordinates_4d
void al_transform_coordinates_4d(const ALLEGRO_TRANSFORM =*trans,
float xx, float *y, float *z, float *w)

Source Code
Transform x, y, z, w coordinates.

Parameters:

e trans - Transformation to use
* X, 9, z, W - Pointers to the coordinates

Since 5.2.4

See also: al_use_transform, al_transform coordinates, al_transform coordinates_3d

196


https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L401
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L416
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L440

24.19. al transform coordinates 3d_projective

24.19 al_transform_coordinates_3d_projective

void al_transform_coordinates_3d_projective(const ALLEGRO_TRANSFORM *trans,
float xx, float *xy, float *z)

Source Code

Transform x, y, z as homogeneous coordinates. This is the same as using al_transform_coordinates 4d
with the w coordinate set to 1, then dividing x, y, z by the resulting w. This will provide the same
coordinates Allegro will draw to when a projective transform is in effect as set with

al use projection_transform.

Parameters:

* trans - Transformation to use
* X, 9, z - Pointers to the coordinates

Since 5.2.4

See also: al_use_transform, al transform_coordinates, al_transform coordinates 3d,
al_use projection_transform

24.20 al_compose_transform

void al_compose_transform(ALLEGRO_TRANSFORM *trans, const ALLEGRO_TRANSFORM =*other)

Source Code

Compose (combine) two transformations by a matrix multiplication.
trans := trans other

Note that the order of matrix multiplications is important. The effect of applying the combined
transform will be as if first applying trans and then applying other and not the other way around.

Parameters:

e trans - Transformation to alter
e other - Transformation used to transform trans

See also: al_translate transform, al rotate transform, al scale transform

24.21 al_orthographic_transform

void al_orthographic_transform(ALLEGRO_TRANSFORM =*trans,
float left, float top, float n,
float right, float bottom, float f)

Source Code

Combines the given transformation with an orthographic transformation which maps the screen
rectangle to the given left/top and right/bottom coordinates.

near/far is the z range, coordinates outside of that range will get clipped. Normally -1/1 is fine because
all 2D graphics will have a z coordinate of 0. However if you for example do al_draw_rectangle(0, O,
100, 100) and rotate around the x axis (“towards the screen”) make sure your z range allows values
from -100 to 100 or the rotated rectangle will get clipped.

197


https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L467
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L479
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L525

24. TRANSFORMATIONS

Also, if you are using a depth buffer the z range decides the depth resolution. For example if you have
a 16 bit depth buffer there are only 65536 discrete depth values. So if your near/far is set to
-1000000/1000000 most of the z positions would not result in separate depth values which could lead
to artifacts.

Since: 5.1.3

See also: al _use projection_transform, al_perspective transform

24.22 al_perspective_transform

void al_perspective_transform(ALLEGRO_TRANSFORM =*trans,
float left, float top, float n,
float right, float bottom, float f)

Source Code

Like al orthographic_transform but honors perspective. If everything is at a z-position of -near it will
look the same as with an orthographic transformation.

To use a specific horizontal field of view you can use the relation:

tan(hfov / 2) = (right - left) / 2 / near

Since: 5.1.3

See also: al_use_projection_transform, al_orthographic_transform

24.23 al_translate_transform_3d

void al_translate_transform_3d(ALLEGRO_TRANSFORM xtrans, float x, float y,
float z)

Source Code

Combines the given transformation with a transformation which translates coordinates by the given
vector.

Since: 5.1.3

See also: al_use projection_transform

24.24 al_scale_transform_3d

void al_scale_transform_3d(ALLEGRO_TRANSFORM xtrans, float sx, float sy,
float sz)

Source Code
Combines the given transformation with a transformation which scales coordinates by the given vector.
Since: 5.1.3

See also: al_use projection_transform

198


https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L586
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L323
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L377

24.25. al rotate transform_3d

24.25 al_rotate_transform_3d

void al_rotate_transform_3d(ALLEGRO_TRANSFORM =*trans,
float x, float y, float z, float angle)

Source Code

Combines the given transformation with a transformation which rotates coordinates around the given
vector by the given angle in radians.

Note: The vector is assumed to be of unit length (otherwise it will also incur a scale).

Since: 5.1.3

24.26 al_horizontal_shear_transform

void al_horizontal_shear_transform(ALLEGRO_TRANSFORM* trans, float theta)

Source Code
Apply a horizontal shear to the transform

Parameters:

e trans - Transformation to alter
* theta - Rotation angle in radians

Since: 5.1.7

See also: al vertical shear transform

24.27 al_vertical shear_transform

void al_vertical_shear_transform(ALLEGRO_TRANSFORMx trans, float theta)

Source Code
Apply a vertical shear to the transform

Parameters:

e trans - Transformation to alter
* theta - Rotation angle in radians

Since: 5.1.7

See also: al_horizontal shear transform

199


https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L550
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L611
https://github.com/liballeg/allegro5/blob/master/src/transformations.c#L625




25

UTF-8 string routines

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

25.1 About UTF-8 string routines

Some parts of the Allegro API, such as the font rountines, expect Unicode strings encoded in UTF-8.
The following basic routines are provided to help you work with UTE-8 strings, however it does not
mean you need to use them. You should consider another library (e.g. ICU) if you require more
functionality.

Briefly, Unicode is a standard consisting of a large character set of over 100,000 characters, and rules,
such as how to sort strings. A code point is the integer value of a character, but not all code points are
characters, as some code points have other uses. Unlike legacy character sets, the set of code points is
open ended and more are assigned with time.

Clearly it is impossible to represent each code point with a 8-bit byte (limited to 256 code points) or
even a 16-bit integer (limited to 65536 code points). It is possible to store code points in a 32-bit
integers but it is space inefficient, and not actually that useful (at least, when handling the full
complexity of Unicode; Allegro only does the very basics). There exist different Unicode
Transformation Formats for encoding code points into smaller code units. The most important
transformation formats are UTF-8 and UTF-16.

UTF-8 is a variable-length encoding which encodes each code point to between one and four 8-bit bytes
each. UTF-8 has many nice properties, but the main advantages are that it is backwards compatible
with C strings, and ASCII characters (code points in the range 0-127) are encoded in UTF-8 exactly as
they would be in ASCII.

UTF-16 is another variable-length encoding, but encodes each code point to one or two 16-bit words
each. It is, of course, not compatible with traditional C strings. Allegro does not generally use UTF-16
strings.

Here is a diagram of the representation of the word “41”, with a NUL terminator, in both UTF-8 and
UTE-16.

String a 1 NUL
Code points  Us0OES (229)  Us006C (108)  Us0000 (0)
UTF-8 bytes  0xC3, oxhs osc o0
UTF-16LE bytes  OxE5, @x00  OXEC, Ox00  0x00, 0x00



25. UTF-8 STRING ROUTINES

You can see the aforementioned properties of UTF-8. The first code point U+00E5 (“4”) is outside of
the ASCII range (0-127) so is encoded to multiple code units — it requires two bytes. U+006C (“1”) and
U+0000 (NUL) both exist in the ASCII range so take exactly one byte each, as in a pure ASCII string. A
zero byte never appears except to represent the NUL character, so many functions which expect C-style
strings will work with UTF-8 strings without modification.

On the other hand, UTF-16 represents each code point by either one or two 16-bit code units (two or
four bytes). The representation of each 16-bit code unit depends on the byte order; here we have
demonstrated little endian.

Both UTF-8 and UTF-16 are self-synchronising. Starting from any offset within a string, it is efficient to
find the beginning of the previous or next code point.

Not all sequences of bytes or 16-bit words are valid UTF-8 and UTF-16 strings respectively. UTE-8 also
has an additional problem of overlong forms, where a code point value is encoded using more bytes
than is strictly necessary. This is invalid and needs to be guarded against.

In the following “ustr” functions, be careful whether a function takes code unit (byte) or code point
indices. In general, all position parameters are in code unit offsets. This may be surprising, but if you
think about it, it is required for good performance. (It also means some functions will work even if
they do not contain UTF-8, since they only care about storing bytes, so you may actually store arbitrary
data in the ALLEGRO_USTRs.)

For actual text processing, where you want to specify positions with code point indices, you should use
al ustr offset to find the code unit offset position. However, most of the time you would probably just
work with byte offsets.

25.2 UTF-8 string types

25.2.1 ALLEGRO_USTR

typedef struct _al_tagbstring ALLEGRO_USTR;

Source Code

An opaque type representing a string. ALLEGRO_USTRs normally contain UTF-8 encoded strings, but
they may be used to hold any byte sequences, including NULs.
25.2.2 ALLEGRO_USTR_INFO

typedef struct _al_tagbstring ALLEGRO_USTR_INFO;

Source Code

A type that holds additional information for an ALLEGRO USTR that references an external memory
buffer.

See also: al_ref cstr, al_ref buffer and al ref ustr.

25.3 Creating and destroying strings

25.3.1 al_ustr_new

ALLEGRO_USTR *al_ustr_new(const char *s)

Source Code

Create a new string containing a copy of the C-style string s. The string must eventually be freed with
al_ustr free.

See also: al_ustr new_from buffer, al ustr newf, al ustr dup, al ustr new from utfl6

202


https://github.com/liballeg/allegro5/blob/master/include/allegro5/utf8.h#L12
https://github.com/liballeg/allegro5/blob/master/include/allegro5/utf8.h#L16
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L62

25.3. Creating and destroying strings

25.3.2 al_ustr_new_from_buffer

ALLEGRO_USTR *al_ustr_new_from_buffer(const char *s, size_t size)

Source Code

Create a new string containing a copy of the buffer pointed to by s of the given size in bytes. The
string must eventually be freed with al ustr_free.

See also: al_ustr_new

25.3.3 al_ustr_newf
ALLEGRO_USTR *al_ustr_newf(const char xfmt, ...)

Source Code
Create a new string using a printf-style format string.
Notes:

The “%s” specifier takes C string arguments, not ALLEGRO_USTRs. Therefore to pass an
ALLEGRO_USTR as a parameter you must use al_cstr, and it must be NUL terminated. If the string
contains an embedded NUL byte everything from that byte onwards will be ignored.

The “%c” specifier outputs a single byte, not the UTF-8 encoding of a code point. Therefore it is only
usable for ASCII characters (value <= 127) or if you really mean to output byte values from 128-255.
To insert the UTF-8 encoding of a code point, encode it into a memory buffer using al utf8 encode
then use the “%s” specifier. Remember to NUL terminate the buffer.

See also: al_ustr_new, al _ustr_appendf

25.3.4 al_ustr_free
void al_ustr_free(ALLEGRO_USTR *us)

Source Code
Free a previously allocated string. Does nothing if the argument is NULL.

See also: al_ustr new, al ustr new from_buffer, al ustr newf

25.3.5 al _cstr

const char *al_cstr(const ALLEGRO_USTR *us)

Source Code

Get a char * pointer to the data in a string. This pointer will only be valid while the ALLEGRO_USTR
object is not modified and not destroyed. The pointer may be passed to functions expecting C-style
strings, with the following caveats:

* ALLEGRO_USTRs are allowed to contain embedded NUL ('\@"') bytes. That means
al_ustr_size(u) and strlen(al_cstr(u)) may not agree.

* An ALLEGRO_USTR may be created in such a way that it is not NUL terminated. A string which
is dynamically allocated will always be NUL terminated, but a string which references the middle
of another string or region of memory will not be NUL terminated.

 If the ALLEGRO_USTR references another string, the returned C string will point into the
referenced string. Again, no NUL terminator will be added to the referenced string.

See also: al_ustr_to_buffer, al cstr_dup

203


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L70
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L78
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L93
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L101

25. UTF-8 STRING ROUTINES

25.3.6 al_ustr_to_buffer

void al_ustr_to_buffer(const ALLEGRO_USTR *us, char *buffer, int size)

Source Code

Write the contents of the string into a pre-allocated buffer of the given size in bytes. The result will
always be NUL terminated, so a maximum of size - 1 bytes will be copied.

See also: al _cstr, al cstr_dup

25.3.7 al_cstr_dup

char *al_cstr_dup(const ALLEGRO_USTR *us)

Source Code

Create a NUL ('\0@"') terminated copy of the string. Any embedded NUL bytes will still be presented in
the returned string. The new string must eventually be freed with al_free.

If an error occurs NULL is returned.

See also: al _cstr, al ustr_to_buffer, al free

25.3.8 al_ustr_dup

ALLEGRO_USTR #*al_ustr_dup(const ALLEGRO_USTR #*us)

Source Code
Return a duplicate copy of a string. The new string will need to be freed with al_ustr free.

See also: al_ustr_dup_substr, al_ustr_free

25.3.9 al_ustr_dup_substr

ALLEGRO_USTR *al_ustr_dup_substr(const ALLEGRO_USTR *us, int start_pos,
int end_pos)

Source Code

Return a new copy of a string, containing its contents in the byte interval [start_pos, end_pos). The
new string will be NUL terminated and will need to be freed with al ustr_free.

If necessary, use al_ustr_offset to find the byte offsets for a given code point that you are interested in.

See also: al_ustr _dup, al ustr free

25.4 Predefined strings

25.4.1 al_ustr_empty_string

const ALLEGRO_USTR *al_ustr_empty_string(void)

Source Code

Return a pointer to a static empty string. The string is read only and must not be freed.

204


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L110
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L126
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L134
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L142
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L151

25.5. Creating strings by referencing other data

25.5 Creating strings by referencing other data

25.5.1 al_ref cstr
const ALLEGRO_USTR *al_ref_cstr(ALLEGRO_USTR_INFO *info, const char xs)

Source Code

Create a string that references the storage of a C-style string. The information about the string (e.g. its
size) is stored in the structure pointed to by the info parameter. The string will not have any other
storage allocated of its own, so if you allocate the info structure on the stack then no explicit “free”
operation is required.

The string is valid until the underlying C string disappears.

Example:

ALLEGRO_USTR_INFO info;
ALLEGRO_USTR *us = al_ref_cstr(&info, "my string”);

See also: al_ref buffer, al ref ustr

25.5.2 al_ref buffer
const ALLEGRO_USTR *al_ref_buffer (ALLEGRO_USTR_INFO *info, const char *s, size_t size)

Source Code

Create a string that references the storage of an underlying buffer. The size of the buffer is given in
bytes. You can use it to reference only part of a string or an arbitrary region of memory.

The string is valid while the underlying memory buffer is valid.

See also: al _ref cstr, al_ref ustr

25.5.3 al _ref ustr

const ALLEGRO_USTR *al_ref_ustr(ALLEGRO_USTR_INFO *info, const ALLEGRO_USTR *us,
int start_pos, int end_pos)

Source Code

Create a read-only string that references the storage of another ALLEGRO_USTR string. The
information about the string (e.g. its size) is stored in the structure pointed to by the info parameter.
The new string will not have any other storage allocated of its own, so if you allocate the info
structure on the stack then no explicit “free” operation is required.

The referenced interval is [start_pos, end_pos). Both are byte offsets.
The string is valid until the underlying string is modified or destroyed.
If you need a range of code-points instead of bytes, use al _ustr offset to find the byte offsets.

See also: al ref cstr, al ref buffer

25.6 Sizes and offsets

25.6.1 al ustr_size

size_t al_ustr_size(const ALLEGRO_USTR *us)

205


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L160
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L173
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L185

25. UTF-8 STRING ROUTINES

Source Code

Return the size of the string in bytes. This is equal to the number of code points in the string if the
string is empty or contains only 7-bit ASCII characters.

See also: al_ustr length

25.6.2 al ustr_length
size_t al_ustr_length(const ALLEGRO_USTR *us)

Source Code
Return the number of code points in the string.

See also: al_ustr_size, al ustr_offset

25.6.3 al_ustr_offset

int al_ustr_offset(const ALLEGRO_USTR *us, int index)

Source Code

Return the byte offset (from the start of the string) of the code point at the specified index in the string.
A zero index parameter will return the first character of the string. If index is negative, it counts
backward from the end of the string, so an index of -1 will return an offset to the last code point.

If the index is past the end of the string, returns the offset of the end of the string.

See also: al ustr length

25.6.4 al_ustr_next
bool al_ustr_next(const ALLEGRO_USTR *us, int *pos)

Source Code

Find the byte offset of the next code point in string, beginning at *pos. *pos does not have to be at the
beginning of a code point.

Returns true on success, and the value pointed to by pos will be updated to the found offset. Otherwise
returns false if *pos was already at the end of the string, and *pos is unmodified.

This function just looks for an appropriate byte; it doesn’t check if found offset is the beginning of a
valid code point. If you are working with possibly invalid UTF-8 strings then it could skip over some
invalid bytes.

See also: al_ustr_prev

25.6.5 al_ustr_prev
bool al_ustr_prev(const ALLEGRO_USTR *us, int *pos)

Source Code

Find the byte offset of the previous code point in string, before *pos. *pos does not have to be at the
beginning of a code point. Returns true on success, and the value pointed to by pos will be updated to
the found offset. Otherwise returns false if xpos was already at the end of the string, and *pos is
unmodified.

This function just looks for an appropriate byte; it doesn’t check if found offset is the beginning of a
valid code point. If you are working with possibly invalid UTF-8 strings then it could skip over some
invalid bytes.

See also: al ustr next

206


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L197
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L205
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L219
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L237
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L259

25.7. Getting code points

25.7 Getting code points

25.7.1 al_ustr_get

int32_t al_ustr_get(const ALLEGRO_USTR *ub, int pos)

Source Code
Return the code point in ub beginning at byte offset pos.

On success returns the code point value. If pos was out of bounds (e.g. past the end of the string),
return -1. On an error, such as an invalid byte sequence, return -2.

See also: al _ustr _get next, al ustr prev_get

25.7.2 al_ustr_get next

int32_t al_ustr_get_next(const ALLEGRO_USTR *us, int *pos)

Source Code
Find the code point in us beginning at byte offset *pos, then advance to the next code point.

On success return the code point value. If pos was out of bounds (e.g. past the end of the string),
return -1. On an error, such as an invalid byte sequence, return -2. As with al ustr_next, invalid byte
sequences may be skipped while advancing.

See also: al ustr get, al ustr prev_get

25.7.3 al_ustr_prev_get

int32_t al_ustr_prev_get(const ALLEGRO_USTR *us, int *pos)

Source Code

Find the beginning of a code point before byte offset xpos, then return it. Note this performs a
pre-increment.

On success returns the code point value. If pos was out of bounds (e.g. past the end of the string),
return -1. On an error, such as an invalid byte sequence, return -2. As with al ustr prev, invalid byte
sequences may be skipped while advancing.

See also: al_ustr_get next

25.8 Inserting into strings

25.8.1 al_ustr_insert

bool al_ustr_insert(ALLEGRO_USTR *us1, int pos, const ALLEGRO_USTR *us2)

Source Code

Insert us2 into us1 beginning at byte offset pos. pos cannot be less than 0. If pos is past the end of us1
then the space between the end of the string and pos will be padded with NUL ('\@"') bytes.

If required, use al_ustr_offset to find the byte offset for a given code point index.
Returns true on success, false on error.

See also: al_ustr_insert cstr, al_ustr_insert_chr, al ustr_append, al_ustr_offset

207


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L283
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L368
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L390
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L403

25. UTF-8 STRING ROUTINES

25.8.2 al_ustr_insert_cstr

bool al_ustr_insert_cstr(ALLEGRO_USTR *us, int pos, const char xs)

Source Code
Like al ustr_insert but inserts a C-style string at byte offset pos.

See also: al_ustr_insert, al_ustr_insert_chr

25.8.3 al_ustr_insert_chr

size_t al_ustr_insert_chr(ALLEGRO_USTR *us, int pos, int32_t c)

Source Code

Insert a code point into us beginning at byte offset pos. pos cannot be less than 0. If pos is past the end
of us then the space between the end of the string and pos will be padded with NUL ('\@') bytes.

Returns the number of bytes inserted, or 0 on error.

See also: al ustr_insert, al ustr_insert cstr

25.9 Appending to strings

25.9.1 al_ustr_append
bool al_ustr_append(ALLEGRO_USTR #*us1, const ALLEGRO_USTR *us2)

Source Code
Append us?2 to the end of us1.
Returns true on success, false on error.

This function can be used to append an arbitrary buffer:

ALLEGRO_USTR_INFO info;
al_ustr_append(us, al_ref_buffer(&info, buf, size));

See also: al _ustr_append cstr, al_ustr_append_chr, al_ustr_appendf, al ustr vappendf

25.9.2 al_ustr_append_cstr
bool al_ustr_append_cstr(ALLEGRO_USTR *us, const char *s)

Source Code
Append C-style string s to the end of us.
Returns true on success, false on error.

See also: al _ustr append

25.9.3 al_ustr_append_chr
size_t al_ustr_append_chr (ALLEGRO_USTR *us, int32_t c)

Source Code
Append a code point to the end of us.
Returns the number of bytes added, or O on error.

See also: al_ustr_append

208


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L411
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L421
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L445
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L453
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L461

25.10. Removing parts of strings

25.9.4 al_ustr_appendf
bool al_ustr_appendf (ALLEGRO_USTR *us, const char *fmt, ...)

Source Code

This function appends formatted output to the string us. fmt is a printf-style format string. See
al_ustr_newf about the “%s” and “%c” specifiers.

Returns true on success, false on error.

See also: al_ustr_vappendf, al ustr_append

25.9.5 al_ustr_vappendf
bool al_ustr_vappendf (ALLEGRO_USTR *us, const char *fmt, va_list ap)

Source Code

Like al ustr_appendf but you pass the variable argument list directly, instead of the arguments
themselves. See al_ustr_newf about the “%s” and “%c” specifiers.

Returns true on success, false on error.

See also: al_ustr_appendf, al ustr_append

25.10 Removing parts of strings

25.10.1 al_ustr_remove_chr

bool al_ustr_remove_chr (ALLEGRO_USTR *us, int pos)

Source Code

Remove the code point beginning at byte offset pos. Returns true on success. If pos is out of range or
pos is not the beginning of a valid code point, returns false leaving the string unmodified.

Use al_ustr_offset to find the byte offset for a code-points offset.

See also: al_ustr remove range

25.10.2 al_ustr_remove_range

bool al_ustr_remove_range(ALLEGRO_USTR *us, int start_pos, int end_pos)

Source Code

Remove the interval [start_pos, end_pos) from a string. start_pos and end_pos are byte offsets. Both
may be past the end of the string but cannot be less than 0 (the start of the string).

Returns true on success, false on error.

See also: al_ustr_remove chr, al ustr_truncate

25.10.3 al_ustr_truncate

bool al_ustr_truncate(ALLEGRO_USTR *us, int start_pos)

Source Code

Truncate a portion of a string from byte offset start_pos onwards. start_pos can be past the end of
the string (has no effect) but cannot be less than 0.

Returns true on success, false on error.

See also: al_ustr remove range, al ustr ltrim ws, al ustr_rtrim ws, al ustr trim ws

209


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L475
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L489
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L525
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L541
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L549

25. UTF-8 STRING ROUTINES

25.10.4 al_ustr_ltrim_ws

bool al_ustr_ltrim_ws(ALLEGRO_USTR =*us)

Source Code
Remove leading whitespace characters from a string, as defined by the C function isspace().
Returns true on success, or false on error.

See also: al_ustr_rtrim_ws, al_ustr_trim_ws

25.10.5 al_ustr_rtrim_ws

bool al_ustr_rtrim_ws(ALLEGRO_USTR *us)

Source Code
Remove trailing (“right”) whitespace characters from a string, as defined by the C function isspace().
Returns true on success, or false on error.

See also: al ustr_ltrim_ws, al ustr_trim_ws

25.10.6 al_ustr_trim_ws

bool al_ustr_trim_ws(ALLEGRO_USTR *us)

Source Code
Remove both leading and trailing whitespace characters from a string.
Returns true on success, or false on error.

See also: al_ustr ltrim_ws, al ustr_rtrim_ws

25.11 Assigning one string to another

25.11.1 al_ustr_assign
bool al_ustr_assign(ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2)

Source Code
Overwrite the string us1 with another string us2. Returns true on success, false on error.

See also: al_ustr_assign_substr, al _ustr_assign_cstr

25.11.2 al ustr_assign_substr

bool al_ustr_assign_substr(ALLEGRO_USTR *us1, const ALLEGRO_USTR =*us2,
int start_pos, int end_pos)

Source Code

Overwrite the string us1 with the contents of us2 in the byte interval [start_pos, end_pos). The end
points will be clamped to the bounds of us2.

Usually you will first have to use al_ustr_offset to find the byte offsets.
Returns true on success, false on error.

See also: al_ustr_assign, al ustr_assign_cstr

210


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L557
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L565
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L573
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L581
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L589

25.12. Replacing parts of string

25.11.3 al_ustr_assign_cstr

bool al_ustr_assign_cstr(ALLEGRO_USTR *usl1, const char *s)

Source Code

Overwrite the string us1 with the contents of the C-style string s. Returns true on success, false on
€error.

See also: al_ustr_assign substr, al_ustr_assign_cstr

25.12 Replacing parts of string

25.12.1 al_ustr_set_chr

size_t al_ustr_set_chr(ALLEGRO_USTR *us, int start_pos, int32_t c)

Source Code

Replace the code point beginning at byte offset start_pos with c. start_pos cannot be less than 0. If
start_pos is past the end of us then the space between the end of the string and start_pos will be
padded with NUL ('\@"') bytes. If start_pos is not the start of a valid code point, that is an error and
the string will be unmodified.

On success, returns the number of bytes written, i.e. the offset to the following code point. On error,
returns 0.

See also: al_ustr replace range

25.12.2 al_ustr_replace_range

bool al_ustr_replace_range(ALLEGRO_USTR *us1, int start_posl, int end_posT1,
const ALLEGRO_USTR =*us2)

Source Code

Replace the part of us1 in the byte interval [start_pos1, end_pos1) with the contents of us2.
start_pos1 cannot be less than 0. If start_pos1 is past the end of us1 then the space between the end
of the string and start_pos1 will be padded with NUL ('\@") bytes.

Use al_ustr_offset to find the byte offsets.
Returns true on success, false on error.

See also: al ustr set chr

25.13 Searching

25.13.1 al_ustr_find_chr

int al_ustr_find_chr(const ALLEGRO_USTR *us, int start_pos, int32_t c)

Source Code
Search for the encoding of code point c in us from byte offset start_pos (inclusive).
Returns the position where it is found or -1 if it is not found.

See also: al_ustr_rfind chr

211


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L599
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L607
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L647
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L657

25. UTF-8 STRING ROUTINES

25.13.2 al_ustr_rfind_chr

int al_ustr_rfind_chr(const ALLEGRO_USTR *us, int end_pos, int32_t c)

Source Code

Search for the encoding of code point c in us backwards from byte offset end_pos (exclusive). Returns
the position where it is found or -1 if it is not found.

See also: al_ustr_find_chr

25.13.3 al_ustr_find_set

int al_ustr_find_set(const ALLEGRO_USTR *us, int start_pos,
const ALLEGRO_USTR *accept)

Source Code

This function finds the first code point in us, beginning from byte offset start_pos, that matches any
code point in accept. Returns the position if a code point was found. Otherwise returns -1.

See also: al_ustr find set cstr, al ustr find cset

25.13.4 al_ustr_find_set_cstr

int al_ustr_find_set_cstr(const ALLEGRO_USTR *us, int start_pos,
const char *accept)

Source Code
Like al ustr find_set but takes a C-style string for accept.

See also: al ustr find set, al ustr find cset cstr

25.13.5 al_ustr_find_cset

int al_ustr_find_cset(const ALLEGRO_USTR *us, int start_pos,
const ALLEGRO_USTR *reject)

Source Code

This function finds the first code point in us, beginning from byte offset start_pos, that does not match
any code point in reject. In other words it finds a code point in the complementary set of reject.
Returns the byte position of that code point, if any. Otherwise returns -1.

See also: al_ustr_find_cset cstr, al_ustr_find_set

25.13.6 al ustr_find_cset_cstr

int al_ustr_find_cset_cstr(const ALLEGRO_USTR *us, int start_pos,
const char *reject)

Source Code
Like al ustr_find_ cset but takes a C-style string for reject.

See also: al_ustr_find cset, al ustr_find set cstr

212


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L688
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L719
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L757
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L769
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L811

25.13. Searching

25.13.7 al_ustr_find_str

int al_ustr_find_str(const ALLEGRO_USTR *haystack, int start_pos,
const ALLEGRO_USTR #*needle)

Source Code

Find the first occurrence of string needle in haystack, beginning from byte offset start_pos
(inclusive). Return the byte offset of the occurrence if it is found, otherwise return -1.

See also: al_ustr find cstr, al ustr rfind_str, al _ustr find replace

25.13.8 al_ustr_find_cstr

int al_ustr_find_cstr(const ALLEGRO_USTR xhaystack, int start_pos,
const char xneedle)

Source Code
Like al ustr_find_str but takes a C-style string for needle.

See also: al ustr find str, al ustr_rfind cstr

25.13.9 al_ustr_rfind_str

int al_ustr_rfind_str(const ALLEGRO_USTR *haystack, int end_pos,
const ALLEGRO_USTR #*needle)

Source Code

Find the last occurrence of string needle in haystack before byte offset end_pos (exclusive). Return the
byte offset of the occurrence if it is found, otherwise return -1.

See also: al_ustr rfind cstr, al_ustr_find str

25.13.10 al_ustr_rfind_cstr

int al_ustr_rfind_cstr(const ALLEGRO_USTR *haystack, int end_pos,
const char *needle)

Source Code
Like al ustr_rfind_str but takes a C-style string for needle.

See also: al_ustr_rfind_str, al ustr_find_cstr

25.13.11 al_ustr_find_replace

bool al_ustr_find_replace(ALLEGRO_USTR *us, int start_pos,
const ALLEGRO_USTR *find, const ALLEGRO_USTR xreplace)

Source Code

Replace all occurrences of find in us with replace, beginning at byte offset start_pos. The find string
must be non-empty. Returns true on success, false on error.

See also: al_ustr_find replace cstr

213


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L823
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L833
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L845
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L855
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L867

25. UTF-8 STRING ROUTINES

25.13.12 al_ustr_find_replace_cstr

bool al_ustr_find_replace_cstr(ALLEGRO_USTR *us, int start_pos,
const char xfind, const char *replace)

Source Code

Like al ustr find replace but takes C-style strings for find and replace.

25.14 Comparing

25.14.1 al_ustr_equal

bool al_ustr_equal(const ALLEGRO_USTR #*us1, const ALLEGRO_USTR *us2)

Source Code

Return true iff the two strings are equal. This function is more efficient than al_ustr_compare so is
preferable if ordering is not important.

See also: al_ustr_compare

25.14.2 al_ustr_compare

int al_ustr_compare(const ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2)

Source Code

This function compares us1 and us2 by code point values. Returns zero if the strings are equal, a
positive number if us1 comes after us2, else a negative number.

This does not take into account locale-specific sorting rules. For that you will need to use another
library.

See also: al_ustr ncompare, al_ustr_equal

25.14.3 al_ustr_ncompare

int al_ustr_ncompare(const ALLEGRO_USTR =*us1, const ALLEGRO_USTR *us2, int n)

Source Code
Like al_ustr_compare but only compares up to the first n code points of both strings.
Returns zero if the strings are equal, a positive number if us1 comes after us2, else a negative number.

See also: al_ustr_compare, al_ustr_equal

25.14.4 al_ustr_has_prefix

bool al_ustr_has_prefix(const ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2)

Source Code
Returns true iff us1 begins with us2.

See also: al_ustr_has prefix_cstr, al_ustr_has_suffix

214


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L876
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L890
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L898
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L920
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L945

25.15. UTF-16 conversion

25.14.5 al_ustr_has_prefix_cstr

bool al_ustr_has_prefix_cstr(const ALLEGRO_USTR *us1, const char *s2)

Source Code
Returns true iff us1 begins with s2.

See also: al ustr has prefix, al ustr has suffix_cstr

25.14.6 al_ustr_has_suffix

bool al_ustr_has_suffix(const ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2)

Source Code
Returns true iff us1 ends with us2.

See also: al_ustr_has_suffix_cstr, al_ustr_has_prefix

25.14.7 al_ustr_has_suffix_cstr

bool al_ustr_has_suffix_cstr(const ALLEGRO_USTR =*usl1, const char *s2)

Source Code
Returns true iff us1 ends with s2.

See also: al ustr_has_suffix, al ustr has prefix_cstr

25.15 UTF-16 conversion

25.15.1 al_ustr_new_from_utf16

ALLEGRO_USTR *al_ustr_new_from_utf16(uint16_t const *s)

Source Code

Create a new string containing a copy of the 0-terminated string s which must be encoded as UTF-16.
The string must eventually be freed with al ustr free.

See also: al_ustr new

25.15.2 al_ustr_size utfl6

size_t al_ustr_size_utf16(const ALLEGRO_USTR =*us)

Source Code

Returns the number of bytes required to encode the string in UTF-16 (including the terminating 0).
Usually called before al ustr_encode utfl6 to determine the size of the buffer to allocate.

See also: al_ustr _size

215


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L953
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L964
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L977
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L1105
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L1127

25. UTF-8 STRING ROUTINES

25.15.3 al_ustr_encode_utf16

size_t al_ustr_encode_utf16(const ALLEGRO_USTR *us, uint16_t =*s,
size_t n)

Source Code

Encode the string into the given buffer, in UTF-16. Returns the number of bytes written. There are
never more than n bytes written. The minimum size to encode the complete string can be queried with
al _ustr_size utfl6. If the n parameter is smaller than that, the string will be truncated but still always
0 terminated.

See also: al_ustr size utfl6, al utfl6 encode

25.16 Low-level UTE-8 routines

25.16.1 al_utf8_width

size_t al_utf8_width(int c)

Source Code

Returns the number of bytes that would be occupied by the specified code point when encoded in
UTF-8. This is between 1 and 4 bytes for legal code point values. Otherwise returns O.

See also: al_utf8 encode, al utf16 width

25.16.2 al utf8 encode

size_t al_utf8_encode(char s[], int32_t c¢)

Source Code

Encode the specified code point to UTE-8 into the buffer s. The buffer must have enough space to hold
the encoding, which takes between 1 and 4 bytes. This routine will refuse to encode code points above
Ox10FFFF.

Returns the number of bytes written, which is the same as that returned by al_utf8 width.

See also: al utfl6 encode

25.17 Low-level UTF-16 routines

25.17.1 al_utfl6_width

size_t al_utf16_width(int c¢)

Source Code

Returns the number of bytes that would be occupied by the specified code point when encoded in
UTF-16. This is either 2 or 4 bytes for legal code point values. Otherwise returns O.

See also: al_utfl6_encode, al utf8 width

25.17.2 al_utfl6_encode

size_t al_utfl16_encode(uint16_t s[], int32_t c)

216


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L1147
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L988
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L1010
https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L1047

25.17. Low-level UTF-16 routines

Source Code

Encode the specified code point to UTF-16 into the buffer s. The buffer must have enough space to
hold the encoding, which takes either 2 or 4 bytes. This routine will refuse to encode code points
above Ox10FFFF.

Returns the number of bytes written, which is the same as that returned by al utf16_width.

See also: al_utf8 encode, al ustr encode utfl16

217


https://github.com/liballeg/allegro5/blob/master/src/utf8.c#L1067




26

Platform-specific functions

26.1 Windows

These functions are declared in the following header file:

#include <allegro5/allegro_windows.h>

26.1.1 al _get win_window_handle

HWND al_get_win_window_handle (ALLEGRO_DISPLAY xdisplay)

Source Code

Returns the handle to the window that the passed display is using.

26.1.2 al_win_add_window_callback

bool al_win_add_window_callback (ALLEGRO_DISPLAY =*xdisplay,
bool (*callback) (ALLEGRO_DISPLAY xdisplay, UINT message, WPARAM wparam,
LPARAM lparam, LRESULT *result, void *userdata), void *userdata)

Source Code

The specified callback function will intercept the window’s message before Allegro processes it. If the
callback function consumes the event, then it should return true. In that case, Allegro will not do
anything with the event.

Optionally, you may use result to customize what Allegro will return return in response to this event.
By default, Allegro returns TRUE.

The userdata pointer can be used to supply additional context to the callback function.
The callbacks are executed in the same order they were added.
Returns true if the callback was added.

Since: 5.1.2

26.1.3 al_win_remove_window_callback

bool al_win_remove_window_callback (ALLEGRO_DISPLAY =*display,
bool (xcallback) (ALLEGRO_DISPLAY *display, UINT message, WPARAM wparam,
LPARAM lparam, LRESULT #*result, void *userdata), void *userdata)

219


https://github.com/liballeg/allegro5/blob/master/src/win/wwindow.c#L1376
https://github.com/liballeg/allegro5/blob/master/src/win/wwindow.c#L1404

26. PLATFORM-SPECIFIC FUNCTIONS

Source Code

Removes the callback that was previously registered with al win_add window_callback. The userdata
pointer must be the same as what was used during the registration of the callback.

Returns true if the callback was removed.

Since: 5.1.2

26.2 Mac OS X

These functions are declared in the following header file:

#include <allegro5/allegro_osx.h>

26.2.1 al osx_get window

NSWindow* al_osx_get_window(ALLEGRO_DISPLAY *display)

Source Code
Retrieves the NSWindow handle associated with the Allegro display.
Since: 5.0.8, 5.1.3

26.3 iPhone

These functions are declared in the following header file:

#include <allegro5/allegro_iphone.h>

26.3.1 al _iphone_set_statusbar_orientation

void al_iphone_set_statusbar_orientation(int o)

Source Code

Sets the orientation of the status bar, which can be one of the following:

« ALLEGRO_IPHONE_STATUSBAR_ORIENTATION PORTRAIT
« ALLEGRO_IPHONE_STATUSBAR_ORIENTATION PORTRAIT UPSIDE DOWN
ALLEGRO_IPHONE_STATUSBAR_ORIENTATION LANDSCAPE_RIGHT

* ALLEGRO_IPHONE_STATUSBAR_ORIENTATION LANDSCAPE_LEFT

Since: 5.1.0

26.3.2 al_iphone_get view

UIView *al_iphone_get_view(ALLEGRO_DISPLAY =*display)

Source Code
Retrieves the UlView* (EAGLView*) associated with the Allegro display.
Since: 5.1.0

220


https://github.com/liballeg/allegro5/blob/master/src/win/wwindow.c#L1433
https://github.com/liballeg/allegro5/blob/master/src/macosx/osxgl.m#L2437
https://github.com/liballeg/allegro5/blob/master/src/iphone/allegroAppDelegate.m#L216
https://github.com/liballeg/allegro5/blob/master/src/iphone/allegroAppDelegate.m#L158

26.4. Android

26.3.3 al_iphone_get window
UIWindow *al_iphone_get_window(ALLEGRO_DISPLAY *display)

Source Code
Retrieves the UIWindow™ associated with the Allegro display.

Since: 5.1.0

26.4 Android

These functions are declared in the following header file:

#include <allegrob5/allegro_android.h>

26.4.1 al_android_set_apk file interface

void al_android_set_apk_file_interface(void)

Source Code

This function will set up a custom ALLEGRO FILE INTERFACE that makes all future calls of al_fopen
read from the applicatons’s APK file.

Note: Currently, access to the APK file after calling this function is read only.

Since: 5.1.2

26.4.2 al_android_set_apk_fs_interface

void al_android_set_apk_fs_interface(void)

Source Code

This function will set up a custom ALLEGRO FS INTERFACE which allows working within the APK
filesystem. The filesystem root is your assets directory and there is read-only access to all files within.

Note: Some things like querying file size or attributes are not supported by this. You can
always use the PhysFS addon to open the APK file (it is just a regular .zip file) and get more
complete information.

Since: 5.1.13

26.4.3 al_android_get_os_version

const char *al_android_get_os_version(void)

Source Code

Returns a pointer to a static buffer that contains the version string of the Android platform that the
calling Allegro program is running on.

Since: 5.1.2

221


https://github.com/liballeg/allegro5/blob/master/src/iphone/allegroAppDelegate.m#L144
https://github.com/liballeg/allegro5/blob/master/src/android/android_apk_file.c#L306
https://github.com/liballeg/allegro5/blob/master/src/android/android_apk_fs.c#L302
https://github.com/liballeg/allegro5/blob/master/src/android/android_system.c#L595

26. PLATFORM-SPECIFIC FUNCTIONS

26.4.4 al_android_get_jni_env

JNIEnv *al_android_get_jni_env(void)

Source Code

Returns the Android JNI environment used by Allegro to call into Java. As a convenience this function
provides it to the user so there is no need to obtain it yourself.

For example if you have a Java method “void send(String message)” in your activity class, you could
call it like this from C code:

JNIEnv * env = al_android_get_jni_env();

jclass class_id = (* env)->GetObjectClass(env, al_android_get_activity());

jmethodID method_id = (* env)->GetMethodID(env, class_id, "send",
"(Ljava/lang/String;)V");

jstring jdata = (* env)->NewStringUTF(env, "Hello Java!");

(* env)->CallVoidMethod(env, al_android_get_activity(), method_id, jdata);

(* env)->DeletelLocalRef(env, jdata);

Since: 5.2.2

Unstable API: This API is new and subject to refinement.

26.4.5 al_android_get_activity

jobject al_android_get_activity(void)

Source Code

Returns the Java Android activity used by Allegro. This is the same object created by Android from the
class you specify in your manifest and either an instance of AllegroActivity or a derived class.

Since: 5.2.2

Unstable API: This API is new and subject to refinement.

26.5 X11

These functions are declared in the following header file:

#include <allegro5/allegro_x.h>

26.5.1 al_get x window_id

XID al_get_x_window_id(ALLEGRO_DISPLAY =*display)

Source Code
Retrieves the XID associated with the Allegro display.

Since: 5.1.12

222


https://github.com/liballeg/allegro5/blob/master/src/android/android_system.c#L643
https://github.com/liballeg/allegro5/blob/master/src/android/android_system.c#L650
https://github.com/liballeg/allegro5/blob/master/src/x/xwindow.c#L396

26.5. X11

26.5.2 al_x_set_initial_icon

bool al_x_set_initial_icon(ALLEGRO_BITMAP *bitmap)

Source Code

On some window managers (notably Ubuntu’s Unity) al set display icon doesn’t work and you need
to use a .desktop file. But with this function you can set an icon before calling al create display. This
works by setting the icon before XMapWindow.

Since: 5.2.3

Unstable API: New API.

223


https://github.com/liballeg/allegro5/blob/master/src/x/xsystem.c#L144




27

Direct3D integration

These functions are declared in the following header file:

#include <allegro5/allegro_direct3d.h>

27.1 al _get d3d_device

LPDIRECT3DDEVICE9 al_get_d3d_device(ALLEGRO_DISPLAY =*display)

Source Code

Returns the Direct3D device of the display. The return value is undefined if the display was not created
with the Direct3D flag.

Returns: A pointer to the Direct3D device.

27.2 al_get d3d_system_texture

LPDIRECT3DTEXTUREY al_get_d3d_system_texture(ALLEGRO_BITMAP *bitmap)

Source Code

Returns the system texture (stored with the D3DPOOL_SYSTEMMEM flags). This texture is used for
the render-to-texture feature set.

Returns: A pointer to the Direct3D system texture.
27.3 al_get _d3d_video_texture

LPDIRECT3DTEXTURE9 al_get_d3d_video_texture(ALLEGRO_BITMAP *bitmap)

Source Code

Returns the video texture (stored with the D3DPOOL_DEFAULT or D3DPOOL_MANAGED flags
depending on whether render-to-texture is enabled or disabled respectively).

Returns: A pointer to the Direct3D video texture.

27.4 al have d3d_non_pow2_texture support

bool al_have_d3d_non_pow2_texture_support(void)

Source Code
Returns whether the Direct3D device supports textures whose dimensions are not powers of two.

Returns: True if device supports NPOT textures, false otherwise.

225


https://github.com/liballeg/allegro5/blob/master/src/win/d3d_disp.cpp#L2561
https://github.com/liballeg/allegro5/blob/master/src/win/d3d_disp.cpp#L2569
https://github.com/liballeg/allegro5/blob/master/src/win/d3d_disp.cpp#L2577
https://github.com/liballeg/allegro5/blob/master/src/win/d3d_disp.cpp#L228

27. DIRECT3D INTEGRATION

27.5 al_have_d3d_non_square_texture_support

bool al_have_d3d_non_square_texture_support(void)

Source Code
Returns whether the Direct3D device supports textures that are not square.

Returns: True if the Direct3D device supports non-square textures, false otherwise.

27.6 al get d3d_texture_size

bool al_get_d3d_texture_size(ALLEGRO_BITMAP xbitmap, int *width, int xheight)

Source Code
Retrieves the size of the Direct3D texture used for the bitmap.

Returns true on success, false on failure. Zero width and height are returned if the bitmap is not a
Direct3D bitmap.

Since: 5.1.0

See also: al _get d3d_texture position

27.7 al_get d3d_texture_position

void al_get_d3d_texture_position(ALLEGRO_BITMAP *bitmap, int *u, int *v)

Source Code
Returns the u/v coordinates for the top/left corner of the bitmap within the used texture, in pixels.

Parameters:

* bitmap - ALLEGRO_BITMAP to examine
e u - Will hold the returned u coordinate
e v - Will hold the returned v coordinate

See also: al_get d3d_texture size

27.8 al_is_d3d_device_lost

bool al_is_d3d_device_lost(ALLEGRO_DISPLAY x*display)

Source Code

Returns a boolean indicating whether or not the Direct3D device belonging to the given display is in a
lost state.

Parameters:

* display - The display that the device you wish to check is attached to

226


https://github.com/liballeg/allegro5/blob/master/src/win/d3d_disp.cpp#L270
https://github.com/liballeg/allegro5/blob/master/src/win/d3d_bmp.cpp#L105
https://github.com/liballeg/allegro5/blob/master/src/win/d3d_disp.cpp#L2585
https://github.com/liballeg/allegro5/blob/master/src/win/d3d_disp.cpp#L2597

27.9. al set d3d_device release callback

27.9 al_set_d3d_device_release_callback

void al_set_d3d_device_release_callback(
void (xcallback) (ALLEGRO_DISPLAY =*display))

Source Code

The callback will be called whenever a D3D device is reset (minimize, toggle fullscreen window, etc).
In the callback you should release any d3d resources you have created yourself. The callback receives
the affected display as a parameter.

Pass NULL to disable the callback.
Since: 5.1.0

27.10 al set d3d_device restore_callback

void al_set_d3d_device_restore_callback(
void (xcallback) (ALLEGRO_DISPLAY =*display))

Source Code

The callback will be called whenever a D3D device that has been reset is restored. In the callback you
should restore any d3d resources you have created yourself. The callback receives the affected display
as a parameter.

Pass NULL to disable the callback.
Since: 5.1.0

227


https://github.com/liballeg/allegro5/blob/master/src/win/d3d_disp.cpp#L206
https://github.com/liballeg/allegro5/blob/master/src/win/d3d_disp.cpp#L214




28

OpenGL integration

These functions are declared in the following header file:
#include <allegro5/allegro_opengl.h>

28.1 al get opengl extension list

ALLEGRO_OGL_EXT_LIST *al_get_opengl_extension_list(void)

Source Code
Returns the list of OpenGL extensions supported by Allegro, for the given display.

Allegro will keep information about all extensions it knows about in a structure returned by
al_get_opengl_extension_list.

For example:

if (al_get_opengl_extension_list()->ALLEGRO_GL_ARB_multitexture) {

b

The extension will be set to true if available for the given display and false otherwise. This means to
use the definitions and functions from an OpenGL extension, all you need to do is to check for it as
above at run time, after acquiring the OpenGL display from Allegro.

Under Windows, this will also work with WGL extensions, and under Unix with GLX extensions.

In case you want to manually check for extensions and load function pointers yourself (say, in case the
Allegro developers did not include it yet), you can use the al have opengl extension and
al _get opengl proc_address functions instead.

Note: the exact extensions exposed depend on how Allegro was compiled. It is
recommended to use al_have opengl extension and al get opengl proc_address for the
most stable experience.

28.2 al get opengl proc_address

void *al_get_opengl_proc_address(const char *name)

Source Code

Helper to get the address of an OpenGL symbol

229


https://github.com/liballeg/allegro5/blob/master/src/opengl/extensions.c#L924
https://github.com/liballeg/allegro5/blob/master/src/opengl/extensions.c#L586

28. OPENGL INTEGRATION

Example:

How to get the function giMultiTexCoord3fARB that comes with ARB’s Multitexture extension:

// define the type of the function
ALLEGRO_DEFINE_PROC_TYPE(void, MULTI_TEX_FUNC,
(GLenum, GLfloat, GLfloat, GLfloat));
// declare the function pointer
MULTI_TEX_FUNC glMultiTexCoord3fARB;
// get the address of the function
glMultiTexCoord3fARB = (MULTI_TEX_FUNC) al_get_opengl_proc_address(
"glMultiTexCoord3fARB");

If giMultiTexCoord3fARB is not NULL then it can be used as if it has been defined in the OpenGL core
library.

Note: Under Windows, OpenGL functions may need a special calling convention, so it’s best
to always use the ALLEGRO DEFINE PROC_TYPE macro when declaring function pointer
types for OpenGL functions.

Parameters:
name - The name of the symbol you want to link to.
Return value:

A pointer to the symbol if available or NULL otherwise.

28.3 al_get opengl_texture

GLuint al_get_opengl_texture(ALLEGRO_BITMAP *bitmap)

Source Code
Returns the OpenGL texture id internally used by the given bitmap if it uses one, else 0.

Example:

bitmap = al_load_bitmap("my_texture.png”);

texture = al_get_opengl_texture(bitmap);

if (texture != 0)
glBindTexture(GL_TEXTURE_2D, texture);

28.4 al get opengl texture size

bool al_get_opengl_texture_size(ALLEGRO_BITMAP *bitmap, int *w, int xh)

Source Code

Retrieves the size of the texture used for the bitmap. This can be different from the bitmap size if
OpenGL only supports power-of-two sizes or if it is a sub-bitmap.

Returns true on success, false on failure. Zero width and height are returned if the bitmap is not an
OpenGL bitmap.

See also: al_get opengl texture position

230


https://github.com/liballeg/allegro5/blob/master/src/opengl/ogl_bitmap.c#L1133
https://github.com/liballeg/allegro5/blob/master/src/opengl/ogl_bitmap.c#L1199

28.5. al_get opengl texture position

28.5 al_get opengl_texture_position

void al_get_opengl_texture_position(ALLEGRO_BITMAP xbitmap, int *u, int =*v)

Source Code
Returns the u/v coordinates for the top/left corner of the bitmap within the used texture, in pixels.

See also: al_get opengl texture size

28.6 al get opengl program object

GLuint al_get_opengl_program_object (ALLEGRO_SHADER xshader)

Source Code

Returns the OpenGL program object associated with this shader, if the platform is
ALLEGRO_SHADER_GLSL. Otherwise, returns O.

28.7 al_get opengl fbo

GLuint al_get_opengl_fbo(ALLEGRO_BITMAP *bitmap)

Source Code

Returns the OpenGL FBO id internally used by the given bitmap if it uses one, otherwise returns zero.
No attempt will be made to create an FBO if the bitmap is not owned by the current display.

The FBO returned by this function will only be freed when the bitmap is destroyed, or if you call
al remove opengl fbo on the bitmap.

Note: In Allegro 5.0.0 this function only returned an FBO which had previously been
created by calling al set target bitmap. It would not attempt to create an FBO itself. This
has since been changed.

See also: al remove opengl fbo, al set target bitmap

28.8 al remove opengl fbo

void al_remove_opengl_fbo(ALLEGRO_BITMAP *bitmap)

Source Code

Explicitly free an OpenGL FBO created for a bitmap, if it has one. Usually you do not need to worry
about freeing FBOs, unless you use al_get opengl fbo.

See also: al_get opengl fbo, al set target bitmap

28.9 al_have_opengl extension

bool al_have_opengl_extension(const char *extension)

Source Code

This function is a helper to determine whether an OpenGL extension is available on the given display
or not.

Example:

231


https://github.com/liballeg/allegro5/blob/master/src/opengl/ogl_bitmap.c#L1223
https://github.com/liballeg/allegro5/blob/master/src/opengl/ogl_shader.c#L503
https://github.com/liballeg/allegro5/blob/master/src/opengl/ogl_bitmap.c#L1173
https://github.com/liballeg/allegro5/blob/master/src/opengl/ogl_bitmap.c#L1146
https://github.com/liballeg/allegro5/blob/master/src/opengl/extensions.c#L568

28. OPENGL INTEGRATION

bool packedpixels = al_have_opengl_extension("GL_EXT_packed_pixels");

If packedpixels is true then you can safely use the constants related to the packed pixels extension.

Returns true if the extension is available; false otherwise.

28.10 al_get_opengl_version

uint32_t al_get_opengl_version(void)

Source Code

Returns the OpenGL or OpenGL ES version number of the client (the computer the program is running
on), for the current display. “1.0” is returned as 0x01000000, “1.2.1” is returned as 0x01020100, and
“1.2.2” as 0x01020200, etc.

A valid OpenGL context must exist for this function to work, which means you may not call it before
al _create_display.

See also: al_get opengl variant

28.11 al_get opengl variant

int al_get_opengl_variant(void)

Source Code

Returns the variant or type of OpenGL used on the running platform. This function can be called
before creating a display or setting properties for new displays. Possible values are:

ALLEGRO_DESKTOP_OPENGL
Regular OpenGL as seen on desktop/laptop computers.

ALLEGRO_OPENGL_ES
Trimmed down version of OpenGL used on many small consumer electronic devices such as
handheld (and sometimes full size) consoles.

See also: al_get opengl version

28.12 al_set_current_opengl_context

void al_set_current_opengl_context(ALLEGRO_DISPLAY *display)

Source Code

Make the OpenGL context associated with the given display current for the calling thread. If there is a
current target bitmap which belongs to a different OpenGL context, the target bitmap will be changed
to NULL.

Normally you do not need to use this function, as the context will be made current when you call

al set target bitmap or al_set target backbuffer. You might need it if you created an OpenGL
“forward compatible” context. Then al get backbuffer only returns NULL, so it would not work to pass
that to al_set_target bitmap.

232


https://github.com/liballeg/allegro5/blob/master/src/opengl/extensions.c#L224
https://github.com/liballeg/allegro5/blob/master/src/opengl/extensions.c#L242
https://github.com/liballeg/allegro5/blob/master/src/opengl/ogl_display.c#L90

28.13. OpenGL configuration

28.13 OpenGL configuration

You can disable the detection of any OpenGL extension by Allegro with a section like this in
allegro5.cfg:

[opengl_disabled_extensions]
GL_ARB_texture_non_power_of_two=0
GL_EXT_framebuffer_object=0

Any extension which appears in the section is treated as not available (it does not matter if you set it to
0 or any other value).

233






29

Audio addon

These functions are declared in the following header file. Link with allegro_audio.
#include <allegro5/allegro_audio.h>

In order to just play some samples, here’s how to quick start with Allegro’s audio addon: Call

al reserve samples with the number of samples you’d like to be able to play simultaneously (don’t
forget to call al_install audio beforehand). If these succeed, you can now call al play sample, with
data obtained by al load_sample, for example (don’t forget to initialize the acodec addon). You don’t
need to worry about voices, mixers or sample instances when using this approach. In order to stop
samples, you can use the ALLEGRO SAMPLE ID that al play sample returns.

If you want to play large audio files (e.g. background music) without loading the whole file at once or
if you want to output audio generated in real-time, you can use Allegro’s audio streams. The easiest
way to setup an audio stream is to attach it to the default mixer (created for you by

al reserve samples) using al_attach audio stream_to mixer on the return value of

al get default mixer. Allegro will feed streams created from files using al load audio_stream
automatically. However, you can also stream audio data you generate on the fly. In this case, audio
streams will emit an event when it’s time to provide the next fragment (chunk) of audio data. You can
control several playback parameters of audio streams (speed, gain, pan, playmode, played/paused;
additionally position and loop points when streaming a file).

For more fine-grained control over audio output, here’s a short description of the basic concepts:

Voices represent audio devices on the system. Basically, every audio output chain that you want to be
heard needs to end up in a voice. As voices are on the hardware/driver side of things, there is only
limited control over their parameters (frequency, sample format, channel configuration). The number
of available voices is limited as well. Typically, you will only use one voice and attach a mixer to it.
Calling al reserve _samples will do this for you by setting up a default voice and mixer; it can also be
achieved by calling al_restore_default mixer. Although you can attach sample instances and audio
streams directly to a voice without using a mixer, it is, as of now, not recommended. In contrast to
mixers, you can only attach a single object to a voice anyway.

Mixers mix several sample instances and/or audio streams into a single output buffer, converting
sample data with differing formats according to their output parameters (frequency, depth, channels)
in the process. In order to play several samples/streams at once reliably, you will need at least one
mixer. A mixer that is not (indirectly) attached to a voice will remain silent. For most use cases, one
(default) mixer attached to a single voice will be sufficient. You may attach mixers to other mixers in
order to create complex audio chains.

Samples (ALLEGRO_SAMPLE) just represent “passive” buffers for sample data in memory. In order to
play a sample, a sample instance (ALLEGRO_SAMPLE_INSTANCE) needs to be created and attached to
a mixer (or voice). Sample instances control how the underlying samples are played. Several playback
parameters (position, speed, gain, pan, playmode, playing/paused) can be adjusted. Particularly,
multiple instances may be created from the same sample, e.g. with different parameters.

235



29. AUDIO ADDON

Audio streams (see above) are similar to sample instances insofar as they respond to the same playback
parameters and have to be attached to mixers or voices. A single audio stream can only be played once
simultaneously.

For example, consider the following configuration of the audio system.

ALLEGRO_VOICE* voice = al_create_voice(44100, ALLEGRO_AUDIO_DEPTH_INT16,
ALLEGRO_CHANNEL _CONF_2);

ALLEGRO_MIXER* mixer_1 = al_create_mixer (44100, ALLEGRO_AUDIO_DEPTH_FLOAT32,
ALLEGRO_CHANNEL _CONF_2);

ALLEGRO_MIXER* mixer_2 = al_create_mixer (44100, ALLEGRO_AUDIO_DEPTH_FLOAT32,
ALLEGRO_CHANNEL _CONF_2);

/* Load a stream, the stream starts in a playing state and just needs
* to be attached to actually output sound. */
ALLEGRO_AUDIO_STREAM* stream = al_load_audio_stream("music.ogg"”, 4, 2048);

/* The sample needs sample instances to output sound. x/
ALLEGRO_SAMPLE* sample = al_load_sample(”sound.wav")
ALLEGRO_SAMPLE_INSTANCE* instance_1 = al_create_sample_instance(sample);
ALLEGRO_SAMPLE_INSTANCE* instance_2 = al_create_sample_instance(sample);

/* Attach everything up (see diagram). */
al_attach_mixer_to_voice(mixer_1, voice);
al_attach_mixer_to_mixer(mixer_2, mixer_1);
al_attach_audio_stream_to_mixer(stream, mixer_1);
al_attach_sample_instance_to_mixer(instance_1, mixer_2);
al_attach_sample_instance_to_mixer(instance_2, mixer_2);

/* Play two copies of the sound simultaneously. x/
al_set_sample_instance_playing(instance_1, true);
al_set_sample_instance_playing(instance_2, true);

Since we have two mixers, with the sample instances connected to a different mixer than the audio
stream, you can control the volume of all the instances independently from the music by setting the
gain of the mixer / stream. Having two sample instances lets you play two copies of the sample
simultaneously.

With this in mind, another look at al reserve samples and al play sample is due: What the former
does internally is to create a specified number of sample instances that are “empty” at first, i.e. with no
sample data set. When al_play sample is called, it'll use one of these internal sample instances that is
not currently playing to play the requested sample. All of these sample instances will be attached to
the default mixer, which can be changed via al set default mixer.

See Audio recording for Allegro’s audio recording API, which is, as of now, still unstable and subject to
change.

29.1 Audio types

Events sent by al get audio_stream_event source or al _get audio _recorder event source.

29.1.1 ALLEGRO_AUDIO_EVENT TYPE

enum ALLEGRO_AUDIO_EVENT_TYPE

Source Code

236


https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L43

29.1. Audio types

Speakers / headphones
A

ALLEGRO_VOICE )

i

ALLEGRO_MIXER

)
/ ( )

(LEGRO AUDIO STREAD GLEGRO SAMPLE INSTAN(D CLEGRO SAMPLE INSTANCB

| *a -
. 5 #

music.0gg
( ALLEGRO_SAMPLE )

A

sound.wav

Figure 29.1: An example configuration of the audio system to play music and a sound.

ALLEGRO_EVENT AUDIO_STREAM_FRAGMENT

Sent when a stream fragment is ready to be filled in. See al get audio stream_fragment.

ALLEGRO_EVENT AUDIO_STREAM_FINISHED

Sent when a stream is finished.

ALLEGRO_EVENT AUDIO_RECORDER_FRAGMENT

Sent after a user-specified number of samples have been recorded. Convert this to
ALLEGRO_AUDIO_RECORDER_EVENT via al get audio_recorder event.

You must always check the values for the buffer and samples as they are not guaranteed to be exactly
what was originally specified.

Since: 5.1.1

Unstable API: The API may need a slight redesign.

29.1.2 ALLEGRO_AUDIO_DEPTH

enum ALLEGRO_AUDIO_DEPTH

Source Code

237


https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L71

29. AUDIO ADDON

Sample depth and type as well as signedness. Mixers only use 32-bit signed float (-1..4+1), or 16-bit
signed integers. Signedness is determined by an “unsigned” bit-flag applied to the depth value.

« ALLEGRO_AUDIO_DEPTH_INT8

« ALLEGRO_AUDIO DEPTH_INT16

« ALLEGRO_AUDIO DEPTH_INT24

« ALLEGRO_AUDIO_DEPTH_FLOAT32
« ALLEGRO_AUDIO_DEPTH_UNSIGNED

For convenience:

« ALLEGRO_AUDIO_DEPTH_UINT8
« ALLEGRO_AUDIO_DEPTH_UINT16
« ALLEGRO_AUDIO_DEPTH_UINT24

29.1.3 ALLEGRO_AUDIO_PAN_NONE
#define ALLEGRO_AUDIO_PAN_NONE (-1000.0f)

Source Code

A special value for the pan property of sample instances and audio streams. Use this value to disable
panning on sample instances and audio streams, and play them without attentuation implied by
panning support.

ALLEGRO_AUDIO PAN NONE is different from a pan value of 0.0 (centered) because, when panning
is enabled, we try to maintain a constant sound power level as a sample is panned from left to right. A
sound coming out of one speaker should sound as loud as it does when split over two speakers. As a
consequence, a sample with pan value 0.0 will be 3 dB softer than the original level.

(Please correct us if this is wrong.)

29.1.4 ALLEGRO_CHANNEL_CONF
enum ALLEGRO_CHANNEL_CONF

Source Code

Speaker configuration (mono, stereo, 2.1, etc).

« ALLEGRO_CHANNEL CONF 1
* ALLEGRO_CHANNEL_CONF 2
« ALLEGRO_CHANNEL CONF 3
« ALLEGRO_CHANNEL_CONF 4
« ALLEGRO_CHANNEL CONF 5 1
« ALLEGRO_CHANNEL CONF 6 1
 ALLEGRO_CHANNEL CONF 7 1

29.1.5 ALLEGRO_MIXER
typedef struct ALLEGRO_MIXER ALLEGRO_MIXER;

Source Code

A mixer mixes together attached streams into a single buffer. In the process, it converts channel
configurations, sample frequencies and audio depths of the attached sample instances and audio
streams accordingly. You can control the quality of this conversion using ALLEGRO_MIXER QUALITY.

When going from mono to stereo (and above), the mixer reduces the volume of both channels by
sqrt(2). When going from stereo (and above) to mono, the mixer reduces the volume of the left and
right channels by sqrt(2) before adding them to the center channel (if present).

238


https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L140
https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L96
https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L169

29.1. Audio types

29.1.6 ALLEGRO_MIXER QUALITY
enum ALLEGRO_MIXER_QUALITY

Source Code

* ALLEGRO MIXER QUALITY POINT - point sampling
* ALLEGRO_MIXER QUALITY LINEAR - linear interpolation
* ALLEGRO MIXER QUALITY CUBIC - cubic interpolation (since: 5.0.8, 5.1.4)

29.1.7 ALLEGRO_PLAYMODE
enum ALLEGRO_PLAYMODE

Source Code

Sample and stream playback mode.

« ALLEGRO_PLAYMODE_ONCE
« ALLEGRO_PLAYMODE _LOOP
* ALLEGRO_PLAYMODE_BIDIR

29.1.8 ALLEGRO_SAMPLE_ID
typedef struct ALLEGRO_SAMPLE_ID ALLEGRO_SAMPLE_ID;

Source Code

An ALLEGRO_SAMPLE_ID represents a sample being played via al play sample. It can be used to later
stop the sample with al stop sample. The underlying ALLEGRO _SAMPLE INSTANCE can be extracted
using al_lock sample id.

29.1.9 ALLEGRO_SAMPLE
typedef struct ALLEGRO_SAMPLE ALLEGRO_SAMPLE;

Source Code

An ALLEGRO_SAMPLE object stores the data necessary for playing pre-defined digital audio. It holds a
user-specified PCM data buffer and information about its format (data length, depth, frequency,
channel configuration). You can have the same ALLEGRO_SAMPLE playing multiple times
simultaneously.

See also: ALLEGRO_SAMPLE INSTANCE

29.1.10 ALLEGRO_SAMPLE_INSTANCE
typedef struct ALLEGRO_SAMPLE_INSTANCE ALLEGRO_SAMPLE_INSTANCE;

Source Code

An ALLEGRO_SAMPLE_INSTANCE object represents a playable instance of a predefined sound effect.
It holds information about how the effect should be played: These playback parameters consist of the
looping mode, loop start/end points, playing position, speed, gain, pan and the playmode. Whether a
sample instance is currently playing or paused is also one of its properties.

An instance uses the data from an ALLEGRO_SAMPLE object. Multiple instances may be created from
the same ALLEGRO SAMPLE. An ALLEGRO_SAMPLE must not be destroyed while there are instances
which reference it.

239


https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L130
https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L118
https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L149
https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L144
https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L159

29. AUDIO ADDON

To actually produce audio output, an ALLEGRO_SAMPLE_INSTANCE must be attached to an
ALLEGRO_MIXER which eventually reaches an ALLEGRO_VOICE object.

See also: ALLEGRO_SAMPLE

29.1.11 ALLEGRO_AUDIO_STREAM
typedef struct ALLEGRO_AUDIO_STREAM ALLEGRO_AUDIO_STREAM;

Source Code

An ALLEGRO _AUDIO STREAM object is used to stream generated audio to the sound device, in
real-time. This is done by reading from a buffer, which is split into a number of fragments. Whenever a
fragment has finished playing, the user can refill it with new data.

As with ALLEGRO_SAMPLE INSTANCE objects, streams store information necessary for playback, so
you may not play the same stream multiple times simultaneously. Streams also need to be attached to
an ALLEGRO_MIXER, which, eventually, reaches an ALLEGRO_VOICE object.

While playing, you must periodically fill fragments with new audio data. To know when a new
fragment is ready to be filled, you can either directly check with
al_get available audio_stream_fragments, or listen to events from the stream.

You can register an audio stream event source to an event queue; see

al get audio stream event source. An ALLEGRO_EVENT AUDIO STREAM FRAGMENT event is
generated whenever a new fragment is ready. When you receive an event, use

al get audio stream fragment to obtain a pointer to the fragment to be filled. The size and format are
determined by the parameters passed to al create audio stream.

If you're late with supplying new data, the stream will be silent until new data is provided. You must
call al drain_audio_stream when you’re finished with supplying data to the stream.

If the stream is created by al load audio_stream then it will also generate an
ALLEGRO_EVENT AUDIO STREAM FINISHED event if it reaches the end of the file and is not set to
loop.

29.1.12 ALLEGRO_VOICE
typedef struct ALLEGRO_VOICE ALLEGRO_VOICE;

Source Code

A voice represents an audio device on the system, which may be a real device, or an abstract device
provided by the operating system. To play back audio, you would attach a mixer, sample instance or
audio stream to a voice.

See also: ALLEGRO_MIXER, ALLEGRO_SAMPLE, ALLEGRO AUDIO STREAM

29.2 Setting up audio

29.2.1 al_install_audio

bool al_install_audio(void)

Source Code
Install the audio subsystem.

Returns true on success, false on failure.
Note: most users will call al reserve samples and al_init acodec_addon after this.

See also: al reserve samples, al uninstall audio, al is_audio_installed, al_init acodec_addon

240


https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L164
https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L174
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio.c#L378

29.3. Misc audio functions

29.2.2 al_uninstall_audio

void al_uninstall_audio(void)

Source Code
Uninstalls the audio subsystem.

See also: al_install audio

29.2.3 al_is_audio_installed

bool al_is_audio_installed(void)

Source Code

Returns true if al install audio was called previously and returned successfully.

29.2.4 al_reserve_samples

bool al_reserve_samples(int reserve_samples)

Source Code

Reserves a number of sample instances, attaching them to the default mixer. If no default mixer is set
when this function is called, then it will create one and attach it to the default voice. If no default voice
has been set, it, too, will be created.

If you call this function a second time with a smaller number of samples, then the excess internal
sample instances will be destroyed causing some sounds to stop and some instances returned by
al lock sample id to be invalidated.

This diagram illustrates the structures that are set up:

sample instance 1
/ sample instance 2
default voice <-- default mixer <---
\ .
sample instance N

Returns true on success, false on error. al install audio must have been called first.
See also: al_set default mixer, al play sample
29.3 Misc audio functions

29.3.1 al_get_allegro_audio_version

uint32_t al_get_allegro_audio_version(void)

Source Code

Returns the (compiled) version of the addon, in the same format as al_get_allegro_version.

29.3.2 al_get audio_depth_size
size_t al_get_audio_depth_size(ALLEGRO_AUDIO_DEPTH depth)

Source Code

Return the size of a sample, in bytes, for the given format. The format is one of the values listed under
ALLEGRO_AUDIO DEPTH.

241


https://github.com/liballeg/allegro5/blob/master/addons/audio/audio.c#L397
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio.c#L412
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L207
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio.c#L419
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio.c#L65

29. AUDIO ADDON

29.3.3 al_get_channel_count

size_t al_get_channel_count (ALLEGRO_CHANNEL_CONF conf)

Source Code

Return the number of channels for the given channel configuration, which is one of the values listed
under ALLEGRO_CHANNEL CONF.

29.3.4 al fill_silence

void al_fill_silence(void xbuf, unsigned int samples,
ALLEGRO_AUDIO_DEPTH depth, ALLEGRO_CHANNEL_CONF chan_conf)

Source Code

Fill a buffer with silence, for the given format and channel configuration. The buffer must have enough
space for the given number of samples, and be properly aligned.

Since: 5.1.8

29.4 Voice functions

29.4.1 al_create_voice

ALLEGRO_VOICE *al_create_voice(unsigned int freq,
ALLEGRO_AUDIO_DEPTH depth, ALLEGRO_CHANNEL_CONF chan_conf)

Source Code

Creates a voice structure and allocates a voice from the digital sound driver. The passed frequency (in
Hz), sample format and channel configuration are used as a hint to what kind of data will be sent to
the voice. However, the underlying sound driver is free to use non-matching values. For example, it
may be the native format of the sound hardware.

If a mixer is attached to the voice, the mixer will handle the conversion of all its input streams to the
voice format and care does not have to be taken for this. However if you access the voice directly, make
sure to not rely on the parameters passed to this function, but instead query the returned voice for the
actual settings.

See also: al_destroy_voice

29.4.2 al_destroy_voice
void al_destroy_voice(ALLEGRO_VOICE xvoice)

Source Code
Destroys the voice and deallocates it from the digital driver. Does nothing if the voice is NULL.

See also: al create voice

29.4.3 al_detach_voice
void al_detach_voice(ALLEGRO_VOICE *voice)

Source Code
Detaches the mixer, sample instance or audio stream from the voice.

See also: al _attach mixer to voice, al attach _sample_instance to_voice,
al attach_audio_stream to voice

242


https://github.com/liballeg/allegro5/blob/master/addons/audio/audio.c#L57
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio.c#L127
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L65
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L106
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L368

29.4. Voice functions

29.4.4 al_attach_audio_stream_to_voice

bool al_attach_audio_stream_to_voice(ALLEGRO_AUDIO_STREAM xstream,
ALLEGRO_VOICE =*voice)

Source Code

Attaches an audio stream to a voice. The same rules as al attach_sample_instance to voice apply. This
may fail if the driver can’t create a voice with the buffer count and buffer size the stream uses.

An audio stream attached directly to a voice has a number of limitations: The audio stream plays
immediately and cannot be stopped. The stream position, speed, gain and panning cannot be changed.
At this time, we don’t recommend attaching audio streams directly to voices. Use a mixer inbetween.

Returns true on success, false on failure.

See also: al detach voice

29.4.5 al_attach_mixer_to_voice

bool al_attach_mixer_to_voice(ALLEGRO_MIXER *mixer, ALLEGRO_VOICE #*voice)

Source Code

Attaches a mixer to a voice. It must have the same frequency and channel configuration, but the depth
may be different.

Returns true on success, false on failure.

See also: al_detach voice

29.4.6 al_attach_sample_instance_to_voice

bool al_attach_sample_instance_to_voice(ALLEGRO_SAMPLE_INSTANCE =spl,
ALLEGRO_VOICE =*voice)

Source Code

Attaches a sample instance to a voice, and allows it to play. The instance’s gain and loop mode will be
ignored, and it must have the same frequency, channel configuration and depth (including signed-ness)
as the voice. This function may fail if the selected driver doesn’t support preloading sample data.

At this time, we don’t recommend attaching sample instances directly to voices. Use a mixer inbetween.
Returns true on success, false on failure.

See also: al _detach voice

29.4.7 al_get_voice_frequency

unsigned int al_get_voice_frequency(const ALLEGRO_VOICE #*voice)

Source Code

Return the frequency of the voice (in Hz), e.g. 44100.

29.4.8 al_get voice_channels

ALLEGRO_CHANNEL_CONF al_get_voice_channels(const ALLEGRO_VOICE *voice)

Source Code
Return the channel configuration of the voice.

See also: ALLEGRO_CHANNEL_CONF.

243


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L249
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L317
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L126
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L402
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L430

29. AUDIO ADDON

29.4.9 al_get_voice_depth
ALLEGRO_AUDIO_DEPTH al_get_voice_depth(const ALLEGRO_VOICE =*voice)

Source Code
Return the audio depth of the voice.

See also: ALLEGRO_AUDIO DEPTH.

29.4.10 al_get voice_playing

bool al_get_voice_playing(const ALLEGRO_VOICE =*voice)

Source Code
Return true if the voice is currently playing.

See also: al _set voice playing

29.4.11 al_set_voice_playing

bool al_set_voice_playing(ALLEGRO_VOICE *voice, bool val)

Source Code

Change whether a voice is playing or not. This can only work if the voice has a non-streaming object
attached to it, e.g. a sample instance. On success the voice’s current sample position is reset.

Returns true on success, false on failure.

See also: al_get voice playing

29.4.12 al_get _voice_position

unsigned int al_get_voice_position(const ALLEGRO_VOICE *voice)

Source Code

When the voice has a non-streaming object attached to it, e.g. a sample, returns the voice’s current
sample position. Otherwise, returns zero.

See also: al_set voice position.

29.4.13 al_set_voice_position

bool al_set_voice_position(ALLEGRO_VOICE *voice, unsigned int val)

Source Code

Set the voice position. This can only work if the voice has a non-streaming object attached to it, e.g. a
sample instance.

Returns true on success, false on failure.

See also: al_get voice position.

244


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L440
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L450
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L487
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L412
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_voice.c#L468

29.5. Sample functions

29.5 Sample functions

29.5.1 al_create_sample

ALLEGRO_SAMPLE =*al_create_sample(void *buf, unsigned int samples,
unsigned int freq, ALLEGRO_AUDIO_DEPTH depth,
ALLEGRO_CHANNEL _CONF chan_conf, bool free_buf)

Source Code

Create a sample data structure from the supplied buffer. If free_buf is true then the buffer will be freed
with al_free when the sample data structure is destroyed. For portability (especially Windows), the
buffer should have been allocated with al malloc. Otherwise you should free the sample data yourself.

A sample that is referred to by the samples parameter refers to a sequence channel intensities. E.g. if
you’re making a stereo sample with the samples set to 4, then the layout of the data in buf will be:

LRLRLRLR

Where L and R are the intensities for the left and right channels respectively. A single sample, then,
refers to the LR pair in this example.

To allocate a buffer of the correct size, you can use something like this:

int sample_size = al_get_channel_count(chan_conf)
* al_get_audio_depth_size(depth);

int bytes = samples * sample_size;

void *buffer = al_malloc(bytes);

See also: al_destroy sample, ALLEGRO_AUDIO_DEPTH, ALLEGRO_CHANNEL CONF

29.5.2 al _destroy_sample
void al_destroy_sample(ALLEGRO_SAMPLE =*spl)

Source Code

Free the sample data structure. If it was created with the free_buf parameter set to true, then the
buffer will be freed with al_free.

This function will stop any sample instances which may be playing the buffer referenced by the
ALLEGRO_SAMPLE.

See also: al_destroy_sample instance, al_stop_sample, al_stop_samples

29.5.3 al _play_sample

bool al_play_sample(ALLEGRO_SAMPLE *spl, float gain, float pan, float speed,
ALLEGRO_PLAYMODE loop, ALLEGRO_SAMPLE_ID *ret_id)

Source Code

Plays a sample on one of the sample instances created by al_reserve samples. Returns true on success,
false on failure. Playback may fail because all the reserved sample instances are currently used.

Parameters:

* gain - relative volume at which the sample is played; 1.0 is normal.
* pan - 0.0 is centred, -1.0 is left, 1.0 is right, or ALLEGRO_AUDIO PAN NONE.
* speed - relative speed at which the sample is played; 1.0 is normal.

245


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L135
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L188
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L342

29. AUDIO ADDON

* loop - ALLEGRO_PLAYMODE_ONCE, ALLEGRO_PLAYMODE_LOOP, or
ALLEGRO_PLAYMODE BIDIR

* ret_id - if non-NULL the variable which this points to will be assigned an id representing the
sample being played. If al play sample returns false, then the contents of ret_id are invalid and
must not be used as argument to other functions.

See also: ALLEGRO PLAYMODE, ALLEGRO AUDIO PAN NONE, ALLEGRO SAMPLE_ID,
al_stop_sample, al_stop_samples, al lock _sample_id.

29.5.4 al_stop_sample

void al_stop_sample (ALLEGRO_SAMPLE_ID *spl_id)

Source Code
Stop the sample started by al play sample.

See also: al_stop_samples

29.5.5 al_lock_sample_id
ALLEGRO_SAMPLE_INSTANCE* al_lock_sample_id(ALLEGRO_SAMPLE_ID #*spl_id)

Source Code

Locks a ALLEGRO_SAMPLE ID, returning the underlying ALLEGRO_SAMPLE_INSTANCE. This allows
you to adjust the various properties of the instance (such as volume, pan, etc) while the sound is

playing.
This function will return NULL if the sound corresponding to the id is no longer playing.

While locked, ALLEGRO_SAMPLE_ID will be unavailable to additional calls to al play sample, even if the
sound stops while locked. To put the ALLEGRO_SAMPLE_ID back into the pool for reuse, make sure to call
al_unlock_sample_id when you’re done with the instance.

See also: al_play sample, al unlock sample id

Since: 5.2.3

Unstable API: New API.

29.5.6 al_unlock_sample_id
void al_unlock_sample_id(ALLEGRO_SAMPLE_ID *spl_id)

Source Code

Unlocks a ALLEGRO_SAMPLE ID, allowing future calls to al play sample to reuse it if possible. Note
that after the id is unlocked, the ALLEGRO _SAMPLE_INSTANCE that was previously returned by

al lock sample_id will possibly be playing a different sound, so you should only use it after locking the
id again.

See also: al play sample, al lock sample id

Since: 5.2.3

Unstable API: New API.

246


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L401
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L417
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L435

29.5. Sample functions

29.5.7 al_stop_samples

void al_stop_samples(void)

Source Code
Stop all samples started by al_play sample.

See also: al stop_sample

29.5.8 al_get sample_channels
ALLEGRO_CHANNEL_CONF al_get_sample_channels(const ALLEGRO_SAMPLE xspl)

Source Code
Return the channel configuration of the sample.

See also: ALLEGRO_CHANNEL CONF, al_get sample_depth, al get sample frequency,
al get sample length, al get sample data

29.5.9 al _get sample_depth
ALLEGRO_AUDIO_DEPTH al_get_sample_depth(const ALLEGRO_SAMPLE xspl)

Source Code
Return the audio depth of the sample.

See also: ALLEGRO_AUDIO DEPTH, al get sample channels, al_get sample_ frequency,
al get sample length, al get sample data

29.5.10 al _get sample frequency
unsigned int al_get_sample_frequency(const ALLEGRO_SAMPLE #*spl)

Source Code
Return the frequency (in Hz) of the sample.

See also: al get sample channels, al get sample depth, al get sample length, al get sample data

29.5.11 al_get_sample_length
unsigned int al_get_sample_length(const ALLEGRO_SAMPLE =*spl)

Source Code
Return the length of the sample in sample values.

See also: al get sample channels, al get sample depth, al get sample frequency,
al get sample data

29.5.12 al_get_sample_data
void *al_get_sample_data(const ALLEGRO_SAMPLE =xspl)

Source Code
Return a pointer to the raw sample data.

See also: al get sample channels, al get sample depth, al get sample_ frequency,
al get sample length

247


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L451
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L494
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L484
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L464
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L474
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L504

29. AUDIO ADDON

29.6 Sample instance functions

29.6.1 al_create_sample_instance

ALLEGRO_SAMPLE_INSTANCE *al_create_sample_instance (ALLEGRO_SAMPLE xsample_data)

Source Code

Creates a sample instance, using the supplied sample data. The instance must be attached to a mixer
(or voice) in order to actually produce output.

The argument may be NULL. You can then set the sample data later with al set sample.

See also: al_destroy_sample instance

29.6.2 al_destroy_sample_instance

void al_destroy_sample_instance (ALLEGRO_SAMPLE_INSTANCE =*spl)

Source Code

Detaches the sample instance from anything it may be attached to and frees it (the sample data, i.e. its
ALLEGRO_SAMPLE, is not freed!).

See also: al create sample instance

29.6.3 al _play_sample_instance

bool al_play_sample_instance (ALLEGRO_SAMPLE_INSTANCE xspl)

Source Code
Play the sample instance. Returns true on success, false on failure.

See also: al_stop sample instance

29.6.4 al_stop_sample_instance

bool al_stop_sample_instance (ALLEGRO_SAMPLE_INSTANCE xspl)

Source Code
Stop an sample instance playing.

See also: al play sample_instance

29.6.5 al_get_sample_instance_channels
ALLEGRO_CHANNEL_CONF al_get_sample_instance_channels(
const ALLEGRO_SAMPLE_INSTANCE =xspl)
Source Code
Return the channel configuration of the sample instance’s sample data.
See also: ALLEGRO_CHANNEL_CONF.

29.6.6 al_get sample_instance_depth
ALLEGRO_AUDIO_DEPTH al_get_sample_instance_depth(const ALLEGRO_SAMPLE_INSTANCE #*spl)

Source Code
Return the audio depth of the sample instance’s sample data.
See also: ALLEGRO_AUDIO DEPTH.

248


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L148
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L191
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L214
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L224
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L320
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L310

29.6. Sample instance functions

29.6.7 al_get sample_instance_frequency

unsigned int al_get_sample_instance_frequency(const ALLEGRO_SAMPLE_INSTANCE #*spl)

Source Code

Return the frequency (in Hz) of the sample instance’s sample data.

29.6.8 al_get_sample_instance_length
unsigned int al_get_sample_instance_length(const ALLEGRO_SAMPLE_INSTANCE =*spl)

Source Code

Return the length of the sample instance in sample values. This property may differ from the length of
the instance’s sample data.

See also: al_set_sample_instance length, al get sample instance_ time

29.6.9 al_set_sample_instance_length

bool al_set_sample_instance_length(ALLEGRO_SAMPLE_INSTANCE =*spl,
unsigned int val)

Source Code

Set the length of the sample instance in sample values. This can be used to play only parts of the
underlying sample. Be careful not to exceed the actual length of the sample data, though.

Return true on success, false on failure. Will fail if the sample instance is currently playing.

See also: al_get sample instance length

29.6.10 al_get sample_instance_position

unsigned int al_get_sample_instance_position(const ALLEGRO_SAMPLE_INSTANCE =*spl)

Source Code
Get the playback position of a sample instance.

See also: al_set sample_instance position

29.6.11 al_set_sample_instance_position

bool al_set_sample_instance_position(ALLEGRO_SAMPLE_INSTANCE =spl,
unsigned int val)

Source Code
Set the playback position of a sample instance.
Returns true on success, false on failure.

See also: al_get sample instance position

29.6.12 al_get sample_instance_speed

float al_get_sample_instance_speed(const ALLEGRO_SAMPLE_INSTANCE x*spl)

Source Code
Return the relative playback speed of the sample instance.

See also: al_set_sample_instance speed

249


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L234
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L244
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L388
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L254
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L366
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L269

29. AUDIO ADDON

29.6.13 al_set_sample_instance_speed

bool al_set_sample_instance_speed(ALLEGRO_SAMPLE_INSTANCE xspl, float val)

Source Code
Set the relative playback speed of the sample instance. 1.0 means normal speed.
Return true on success, false on failure. Will fail if the sample instance is attached directly to a voice.

See also: al_get sample instance speed

29.6.14 al_get sample_instance_gain

float al_get_sample_instance_gain(const ALLEGRO_SAMPLE_INSTANCE #*spl)

Source Code
Return the playback gain of the sample instance.

See also: al_set sample instance gain

29.6.15 al_set_sample_instance_gain

bool al_set_sample_instance_gain(ALLEGRO_SAMPLE_INSTANCE #*spl, float val)

Source Code
Set the playback gain of the sample instance.
Returns true on success, false on failure. Will fail if the sample instance is attached directly to a voice.

See also: al_get sample instance gain

29.6.16 al_get_sample_instance_pan

float al_get_sample_instance_pan(const ALLEGRO_SAMPLE_INSTANCE =xspl)

Source Code
Get the pan value of the sample instance.

See also: al_set sample_instance pan.

29.6.17 al_set_sample_instance_pan

bool al_set_sample_instance_pan(ALLEGRO_SAMPLE_INSTANCE xspl, float val)

Source Code

Set the pan value on a sample instance. A value of -1.0 means to play the sample only through the left
speaker; +1.0 means only through the right speaker; 0.0 means the sample is centre balanced. A
special value ALLEGRO_AUDIO_PAN NONE disables panning and plays the sample at its original level.
This will be louder than a pan value of 0.0.

Note: panning samples with more than two channels doesn’t work yet.

Returns true on success, false on failure. Will fail if the sample instance is attached directly to a voice.

See also: al_get sample instance pan, ALLEGRO AUDIO PAN NONE

250


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L407
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L279
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L448
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L289
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L479

29.6. Sample instance functions

29.6.18 al_get_sample_instance_time

float al_get_sample_instance_time(const ALLEGRO_SAMPLE_INSTANCE =*spl)

Source Code
Return the length of the sample instance in seconds, assuming a playback speed of 1.0.

See also: al_get sample instance length

29.6.19 al_get sample_instance_playmode
ALLEGRO_PLAYMODE al_get_sample_instance_playmode(const ALLEGRO_SAMPLE_INSTANCE #*spl)

Source Code
Return the playback mode of the sample instance.
See also: ALLEGRO_PLAYMODE, al set _sample_instance playmode

29.6.20 al_set_sample_instance_playmode
bool al_set_sample_instance_playmode (ALLEGRO_SAMPLE_INSTANCE =*spl,
ALLEGRO_PLAYMODE val)
Source Code
Set the playback mode of the sample instance.
Returns true on success, false on failure.
See also: ALLEGRO_PLAYMODE, al _get sample_instance playmode

29.6.21 al_get sample_instance_playing
bool al_get_sample_instance_playing(const ALLEGRO_SAMPLE_INSTANCE =*spl)

Source Code

Return true if the sample instance is in the playing state. This may be true even if the instance is not
attached to anything.

See also: al_set sample instance playing

29.6.22 al_set_sample_instance_playing
bool al_set_sample_instance_playing (ALLEGRO_SAMPLE_INSTANCE *spl, bool val)

Source Code

Change whether the sample instance is playing.

The instance does not need to be attached to anything (since: 5.1.8).
Returns true on success, false on failure.

See also: al_get sample_instance playing

29.6.23 al_get sample_instance_attached
bool al_get_sample_instance_attached(const ALLEGRO_SAMPLE_INSTANCE #*spl)

Source Code
Return whether the sample instance is attached to something.

See also: al _attach _sample instance to mixer, al attach sample instance to_ voice,
al _detach_sample_instance

251


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L299
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L331
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L514
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L341
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L543
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L356

29. AUDIO ADDON

29.6.24 al_detach_sample_instance
bool al_detach_sample_instance (ALLEGRO_SAMPLE_INSTANCE =*spl)

Source Code
Detach the sample instance from whatever it’s attached to, if anything.
Returns true on success.

See also: al _attach _sample instance to mixer, al attach sample instance to_ voice,
al get sample_instance attached

29.6.25 al_get sample
ALLEGRO_SAMPLE *al_get_sample (ALLEGRO_SAMPLE_INSTANCE #*spl)

Source Code
Return the sample data that the sample instance plays.

Note this returns a pointer to an internal structure, not the ALLEGRO_SAMPLE that you may have
passed to al_set_sample. However, the sample buffer of the returned ALLEGRO_SAMPLE will be the
same as the one that was used to create the sample (passed to al create sample). You can use

al _get sample data on the return value to retrieve and compare it.

See also: al_set sample

29.6.26 al_set_sample
bool al_set_sample(ALLEGRO_SAMPLE_INSTANCE *spl, ALLEGRO_SAMPLE =*data)

Source Code

Change the sample data that a sample instance plays. This can be quite an involved process.
First, the sample is stopped if it is not already.

Next, if data is NULL, the sample is detached from its parent (if any).

If data is not NULL, the sample may be detached and reattached to its parent (if any). This is not
necessary if the old sample data and new sample data have the same frequency, depth and channel
configuration. Reattaching may not always succeed.

On success, the sample remains stopped. The playback position and loop end points are reset to their
default values. The loop mode remains unchanged.

Returns true on success, false on failure. On failure, the sample will be stopped and detached from its
parent.

See also: al_get sample

29.6.27 al_set_sample_instance_channel_matrix

bool al_set_sample_instance_channel_matrix (ALLEGRO_SAMPLE_INSTANCE #*spl, const float *matrix)

Source Code

Set the matrix used to mix the channels coming from this instance into the mixer it is attached to.
Normally Allegro derives the values of this matrix from the gain and pan settings, as well as the
channel configurations of this instance and the mixer it is attached to, but this allows you override that
default value. Note that if you do set gain or pan of this instance or the mixer it is attached to, you’ll
need to call this function again.

The matrix has mixer channel rows and sample channel columns, and is row major. For example, if you
have a stereo sample instance and want to mix it to a 5.1 mixer you could use this code:

252


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L571
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L648
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L583
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_instance.c#L658

29.7. Mixer functions

float matrix[] = {

0.

1

[N I I

0.

(SIS RN

5
0
.5
1
1

0

’

’

’

’

’

’

/*
/*
/*
/*
/*
/*

Half left to front left %/

Half right to front right =%/
Half left to rear left %/

Half right to rear right =/

Mix left and right for center */
Mix left and right for center x/

al_set_sample_instance_channel_matrix(instance, matrix);

Returns true on success, false on failure (e.g. if this is not attached to a mixer).

Since: 5.2.3

Unstable API: New API.

29.7 Mixer functions

29.7.1 al_create_mixer

ALLEGRO_MIXER *al_create_mixer(unsigned int freq,
ALLEGRO_AUDIO_DEPTH depth, ALLEGRO_CHANNEL_CONF chan_conf)

Source Code

Creates a mixer to attach sample instances, audio streams, or other mixers to. It will mix into a buffer
at the requested frequency (in Hz) and channel count.

The only supported audio depths are ALLEGRO _AUDIO DEPTH FLOAT32 and

ALLEGRO_AUDIO DEPTH_INT16 (not yet complete).

To actually produce any output, the mixer will have to be attached to a voice.

Returns true on success, false on error.

See also: al_destroy _mixer, ALLEGRO_AUDIO DEPTH, ALLEGRO CHANNEL CONF

29.7.2 al_destroy_mixer

void al_destroy_mixer (ALLEGRO_MIXER *mixer)

Source Code

Destroys the mixer.

See also: al create mixer

29.7.3 al_get_default_mixer

ALLEGRO_MIXER *al_get_default_mixer(void)

Source Code

Return the default mixer, or NULL if one has not been set. Although different configurations of mixers
and voices can be used, in most cases a single mixer attached to a voice is what you want. The default
mixer is used by al_play sample.

See also: al reserve samples, al play sample, al set default mixer, al restore_default mixer

253


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L609
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L678
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L260

29. AUDIO ADDON

29.7.4 al_set_default_mixer
bool al_set_default_mixer (ALLEGRO_MIXER *mixer)

Source Code

Sets the default mixer. All samples started with al play sample will be stopped and all sample
instances returned by al lock sample_id will be invalidated. If you are using your own mixer, this
should be called before al reserve samples.

Returns true on success, false on error.

See also: al_reserve samples, al play sample, al get default mixer, al restore default mixer

29.7.5 al_restore_default_mixer

bool al_restore_default_mixer(void)

Source Code

Restores Allegro’s default mixer and attaches it to the default voice. If the default mixer hasn’t been
created before, it will be created. If the default voice hasn’t been set via al_set_default_voice or created
before, it will also be created. All samples started with al_play sample will be stopped and all sample
instances returned by al lock sample id will be invalidated.

Returns true on success, false on error.

See also: al_get default mixer, al set default mixer, al reserve samples.

29.7.6 al_get_default_voice
ALLEGRO_VOICE *al_get_default_voice(void)

Source Code
Returns the default voice or NULL if there is none.
Since: 5.1.13

See also: al_get default_mixer

29.7.7 al_set_default_voice
void al_set_default_voice(ALLEGRO_VOICE xvoice)

Source Code

You can call this before calling al restore default mixer to provide the voice which should be used.
Any previous voice will be destroyed. You can also pass NULL to destroy the current default voice.

Since: 5.1.13

See also: al_get default mixer

29.7.8 al_attach_mixer_to_mixer

bool al_attach_mixer_to_mixer (ALLEGRO_MIXER *stream, ALLEGRO_MIXER #*mixer)

Source Code

Attaches the mixer passed as the first argument onto the mixer passed as the second argument. The
first mixer (that is going to be attached) must not already be attached to anything. Both mixers must
use the same frequency, audio depth and channel configuration.

254


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L268
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L309
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L323
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_sample.c#L331
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L800

29.7. Mixer functions

Returns true on success, false on error.
It is invalid to attach a mixer to itself.

See also: al detach mixer.

29.7.9 al_attach_sample_instance_to_mixer

bool al_attach_sample_instance_to_mixer (ALLEGRO_SAMPLE_INSTANCE =*spl,
ALLEGRO_MIXER *mixer)

Source Code
Attach a sample instance to a mixer. The instance must not already be attached to anything.
Returns true on success, false on failure.

See also: al_detach sample_instance.

29.7.10 al_attach_audio_stream_to_mixer

bool al_attach_audio_stream_to_mixer (ALLEGRO_AUDIO_STREAM xstream, ALLEGRO_MIXER *mixer)

Source Code
Attach an audio stream to a mixer. The stream must not already be attached to anything.
Returns true on success, false on failure.

See also: al_detach audio stream.

29.7.11 al_get_mixer_frequency

unsigned int al_get_mixer_frequency(const ALLEGRO_MIXER xmixer)

Source Code
Return the mixer frequency (in Hz).

See also: al_set mixer frequency

29.7.12 al_set_mixer_frequency

bool al_set_mixer_frequency(ALLEGRO_MIXER *mixer, unsigned int val)

Source Code
Set the mixer frequency (in Hz). This will only work if the mixer is not attached to anything.
Returns true on success, false on failure.

See also: al_get mixer frequency

29.7.13 al_get_mixer_channels

ALLEGRO_CHANNEL_CONF al_get_mixer_channels(const ALLEGRO_MIXER *mixer)

Source Code
Return the mixer channel configuration.

See also: ALLEGRO_CHANNEL_CONF.

255


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L690
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L789
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L849
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L919
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L859

29. AUDIO ADDON

29.7.14 al_get_mixer_depth
ALLEGRO_AUDIO_DEPTH al_get_mixer_depth(const ALLEGRO_MIXER *mixer)

Source Code
Return the mixer audio depth.

See also: ALLEGRO_AUDIO_DEPTH.

29.7.15 al_get_mixer_gain
float al_get_mixer_gain(const ALLEGRO_MIXER *mixer)

Source Code
Return the mixer gain (amplification factor). The default is 1.0.
Since: 5.0.6, 5.1.0

See also: al_set _mixer gain.

29.7.16 al_set_mixer_gain

bool al_set_mixer_gain(ALLEGRO_MIXER *mixer, float new_gain)

Source Code

Set the mixer gain (amplification factor).
Returns true on success, false on failure.
Since: 5.0.6, 5.1.0

See also: al_get mixer gain

29.7.17 al_get mixer_quality
ALLEGRO_MIXER_QUALITY al_get_mixer_quality(const ALLEGRO_MIXER *mixer)

Source Code
Return the mixer quality.

See also: ALLEGRO_MIXER QUALITY, al set mixer quality

29.7.18 al_set_mixer_quality
bool al_set_mixer_quality(ALLEGRO_MIXER *mixer, ALLEGRO_MIXER_QUALITY new_quality)

Source Code
Set the mixer quality. This can only succeed if the mixer does not have anything attached to it.
Returns true on success, false on failure.

See also: ALLEGRO_MIXER QUALITY, al get mixer quality

29.7.19 al_get mixer_ playing
bool al_get_mixer_playing(const ALLEGRO_MIXER *mixer)

Source Code
Return true if the mixer is playing.

See also: al_set mixer playing.

256


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L869
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L889
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L967
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L879
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L939
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L899

29.8. Stream functions

29.7.20 al_set_mixer_ playing
bool al_set_mixer_playing (ALLEGRO_MIXER *mixer, bool val)

Source Code
Change whether the mixer is playing.
Returns true on success, false on failure.

See also: al_get mixer playing.

29.7.21 al_get mixer_attached
bool al_get_mixer_attached(const ALLEGRO_MIXER *mixer)

Source Code
Return true if the mixer is attached to something.

See also: al_attach sample instance to mixer, al attach _audio stream to mixer,
al attach mixer to mixer, al detach mixer

29.7.22 al_detach_mixer
bool al_detach_mixer (ALLEGRO_MIXER *mixer)

Source Code
Detach the mixer from whatever it is attached to, if anything.

See also: al_attach_mixer to mixer.

29.7.23 al_set_mixer_postprocess_callback

bool al_set_mixer_postprocess_callback (ALLEGRO_MIXER *mixer,
void (xpp_callback)(void xbuf, unsigned int samples, void *data),
void #*pp_callback_userdata)

Source Code

Sets a post-processing filter function that’s called after the attached streams have been mixed. The
buffer’s format will be whatever the mixer was created with. The sample count and user-data pointer is
also passed.

Note: The callback is called from a dedicated audio thread.

29.8 Stream functions

29.8.1 al create_audio_stream

ALLEGRO_AUDIO_STREAM *al_create_audio_stream(size_t fragment_count,
unsigned int frag_samples, unsigned int freq, ALLEGRO_AUDIO_DEPTH depth,
ALLEGRO_CHANNEL_CONF chan_conf)

Source Code

Creates an ALLEGRO_AUDIO_STREAM. The stream will be set to play by default. It will feed audio
data from a buffer, which is split into a number of fragments.

Parameters:

257


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L991
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L909
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L1002
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_mixer.c#L830
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L50

29. AUDIO ADDON

* fragment count - How many fragments to use for the audio stream. Usually only two fragments
are required - splitting the audio buffer in two halves. But it means that the only time when new
data can be supplied is whenever one half has finished playing. When using many fragments, you
usually will use fewer samples for one, so there always will be (small) fragments available to be
filled with new data.

» frag samples - The size of a fragment in samples. See note and explanation below.
* freq - The frequency, in Hertz.
* depth - Must be one of the values listed for ALLEGRO AUDIO DEPTH.

* chan_conf - Must be one of the values listed for ALLEGRO_CHANNEL_CONF.

A sample that is referred to by the frag samples parameter refers to a sequence channel intensities. E.g.
if you’re making a stereo stream with the frag samples set to 4, then the layout of the data in the
fragment will be:

LRLRLRLR

Where L and R are the intensities for the left and right channels respectively. A single sample, then,
refers to the LR pair in this example.

The choice of fragment_count, frag _samples and freq directly influences the audio delay. The delay in
seconds can be expressed as:

delay = fragment_count * frag_samples / freq

This is only the delay due to Allegro’s streaming, there may be additional delay caused by sound
drivers and/or hardware.

Note: If you know the fragment size in bytes, you can get the size in samples like this:

sample_size = al_get_channel_count(chan_conf) * al_get_audio_depth_size(depth);
samples = bytes_per_fragment / sample_size;

The size of the complete buffer is:

buffer_size = bytes_per_fragment * fragment_count

Note: Unlike many Allegro objects, audio streams are not implicitly destroyed when Allegro
is shut down. You must destroy them manually with al _destroy audio_stream before the
audio system is shut down.

29.8.2 al_destroy_audio_stream

void al_destroy_audio_stream(ALLEGRO_AUDIO_STREAM xstream)

Source Code

Destroy an audio stream which was created with al create_audio_stream or al_load audio_stream.

Note: If the stream is still attached to a mixer or voice, al detach audio stream is
automatically called on it first.

See also: al_drain_audio_stream.

258


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L146

29.8. Stream functions

29.8.3 al_get_audio_stream_event_source

ALLEGRO_EVENT_SOURCE *al_get_audio_stream_event_source(
ALLEGRO_AUDIO_STREAM #*stream)

Source Code
Retrieve the associated event source.

See al _get audio_stream_fragment for a description of the
ALLEGRO_EVENT AUDIO STREAM FRAGMENT event that audio streams emit.

29.8.4 al_drain_audio_stream

void al_drain_audio_stream(ALLEGRO_AUDIO_STREAM *stream)

Source Code

You should call this to finalise an audio stream that you will no longer be feeding, to wait for all
pending buffers to finish playing. The stream’s playing state will change to false.

See also: al_destroy audio_stream

29.8.5 al_rewind_audio_stream

bool al_rewind_audio_stream(ALLEGRO_AUDIO_STREAM *stream)

Source Code

Set the streaming file playing position to the beginning. Returns true on success. Currently this can
only be called on streams created with al load audio stream, al load audio stream f and the
format-specific functions underlying those functions.

29.8.6 al_get audio_stream_frequency

unsigned int al_get_audio_stream_frequency(const ALLEGRO_AUDIO_STREAM *stream)

Source Code

Return the stream frequency (in Hz).

29.8.7 al_get_audio_stream_channels

ALLEGRO_CHANNEL_CONF al_get_audio_stream_channels(
const ALLEGRO_AUDIO_STREAM *stream)

Source Code
Return the stream channel configuration.

See also: ALLEGRO_CHANNEL_CONF.

29.8.8 al_get_audio_stream_depth

ALLEGRO_AUDIO_DEPTH al_get_audio_stream_depth(
const ALLEGRO_AUDIO_STREAM *stream)

Source Code
Return the stream audio depth.

See also: ALLEGRO_AUDIO DEPTH.

259


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L893
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L166
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L804
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L186
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L260
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L271

29. AUDIO ADDON

29.8.9 al _get_audio_stream_length
unsigned int al_get_audio_stream_length(const ALLEGRO_AUDIO_STREAM *stream)

Source Code

Return the stream length in samples.

29.8.10 al_get audio_stream_speed
float al_get_audio_stream_speed(const ALLEGRO_AUDIO_STREAM xstream)

Source Code
Return the relative playback speed of the stream.

See also: al_set audio_stream_speed.

29.8.11 al_set_audio_stream_speed

bool al_set_audio_stream_speed(ALLEGRO_AUDIO_STREAM #*stream, float val)

Source Code
Set the relative playback speed of the stream. 1.0 means normal speed.
Return true on success, false on failure. Will fail if the audio stream is attached directly to a voice.

See also: al_get audio_stream_speed.

29.8.12 al_get audio_stream_gain

float al_get_audio_stream_gain(const ALLEGRO_AUDIO_STREAM xstream)

Source Code
Return the playback gain of the stream.

See also: al_set audio_stream_gain.

29.8.13 al_set_audio_stream_gain

bool al_set_audio_stream_gain(ALLEGRO_AUDIO_STREAM *stream, float val)

Source Code
Set the playback gain of the stream.
Returns true on success, false on failure. Will fail if the audio stream is attached directly to a voice.

See also: al_get audio_stream_gain.

29.8.14 al_get_audio_stream_pan
float al_get_audio_stream_pan(const ALLEGRO_AUDIO_STREAM *stream)

Source Code
Get the pan value of the stream.

See also: al_set audio stream_ pan.

260


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L196
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L230
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L362
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L240
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L399
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L250

29.8. Stream functions

29.8.15 al_set_audio_stream_pan

bool al_set_audio_stream_pan(ALLEGRO_AUDIO_STREAM *stream, float val)

Source Code

Set the pan value on an audio stream. A value of -1.0 means to play the stream only through the left
speaker; +1.0 means only through the right speaker; 0.0 means the sample is centre balanced. A
special value ALLEGRO_AUDIO PAN NONE disables panning and plays the stream at its original level.
This will be louder than a pan value of 0.0.

Returns true on success, false on failure. Will fail if the audio stream is attached directly to a voice.

See also: al_get audio_stream_pan, ALLEGRO _AUDIO _PAN NONE

29.8.16 al_get audio_stream_playing

bool al_get_audio_stream_playing(const ALLEGRO_AUDIO_STREAM *stream)

Source Code
Return true if the stream is playing.

See also: al_set audio_stream playing.

29.8.17 al_set_audio_stream_playing

bool al_set_audio_stream_playing(ALLEGRO_AUDIO_STREAM xstream, bool val)

Source Code
Change whether the stream is playing.
Returns true on success, false on failure.

See also: al _get audio_stream_playing

29.8.18 al_get audio_stream_playmode

ALLEGRO_PLAYMODE al_get_audio_stream_playmode(
const ALLEGRO_AUDIO_STREAM *stream)

Source Code
Return the playback mode of the stream.

See also: ALLEGRO_PLAYMODE, al set audio_stream_playmode.

29.8.19 al_set_audio_stream_playmode

bool al_set_audio_stream_playmode (ALLEGRO_AUDIO_STREAM *xstream,
ALLEGRO_PLAYMODE val)

Source Code
Set the playback mode of the stream.
Returns true on success, false on failure.

See also: ALLEGRO_PLAYMODE, al _get audio_stream_playmode.

261


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L429
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L293
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L534
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L282
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L463

29. AUDIO ADDON

29.8.20 al_get_audio_stream_attached

bool al_get_audio_stream_attached(const ALLEGRO_AUDIO_STREAM *stream)

Source Code
Return whether the stream is attached to something.

See also: al_attach audio stream to mixer, al_attach _audio_stream to voice,
al detach audio_stream.

29.8.21 al _detach_audio_stream

bool al_detach_audio_stream(ALLEGRO_AUDIO_STREAM *stream)

Source Code
Detach the stream from whatever it’s attached to, if anything.

See also: al_attach audio_stream to_mixer, al_attach _audio_stream to voice,
al get audio stream_attached.

29.8.22 al _get audio_stream_played_samples

uint64_t al_get_audio_stream_played_samples(const ALLEGRO_AUDIO_STREAM *stream)

Source Code
Get the number of samples consumed by the parent since the audio stream was started.

Since: 5.1.8

29.8.23 al_get_audio_stream_fragment

void *al_get_audio_stream_fragment(const ALLEGRO_AUDIO_STREAM *stream)

Source Code

When using Allegro’s audio streaming, you will use this function to continuously provide new sample

data to a stream.

If the stream is ready for new data, the function will return the address of an internal buffer to be filled
with audio data. The length and format of the buffer are specified with al_create_audio_stream or can
be queried with the various functions described here. Once the buffer is filled, you must signal this to

Allegro by passing the buffer to al_set audio stream_fragment.

If the stream is not ready for new data, the function will return NULL.

Note: If you listen to events from the stream, an

ALLEGRO_EVENT AUDIO STREAM FRAGMENT event will be generated whenever a new

fragment is ready. However, getting an event is not a guarantee that
al _get audio stream fragment will not return NULL, so you still must check for it.

See also: al_set audio stream_fragment, al get audio_stream_event_source,
al _get audio stream frequency, al get audio stream_channels, al get audio stream depth,
al _get audio_stream length

262


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L303
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L570
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L312
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L333

29.8. Stream functions

29.8.24 al_set_audio_stream_fragment

bool al_set_audio_stream_fragment (ALLEGRO_AUDIO_STREAM *stream, void *val)

Source Code

This function needs to be called for every successful call of al_get audio_stream_fragment to indicate
that the buffer (pointed to by val) is filled with new data.

See also: al get audio stream_fragment

29.8.25 al_get_audio_stream_fragments

unsigned int al_get_audio_stream_fragments(const ALLEGRO_AUDIO_STREAM *stream)

Source Code

Returns the number of fragments this stream uses. This is the same value as passed to
al create audio stream when a new stream is created.

See also: al_get available audio stream fragments

29.8.26 al_get_available_audio_stream_fragments

unsigned int al_get_available_audio_stream_fragments(
const ALLEGRO_AUDIO_STREAM *stream)

Source Code

Returns the number of available fragments in the stream, that is, fragments which are not currently
filled with data for playback.

See also: al_get audio_stream_fragment, al get audio_stream_fragments

29.8.27 al_seek_audio_stream_secs

bool al_seek_audio_stream_secs(ALLEGRO_AUDIO_STREAM *stream, double time)

Source Code

Set the streaming file playing position to time. Returns true on success. Currently this can only be
called on streams created with al_load_audio_stream, al load_audio_stream_f and the format-specific
functions underlying those functions.

See also: al_get audio_stream_position_secs, al _get audio_stream_length secs

29.8.28 al_get_audio_stream_position_secs

double al_get_audio_stream_position_secs(ALLEGRO_AUDIO_STREAM *stream)

Source Code

Return the position of the stream in seconds. Currently this can only be called on streams created with
al load audio_stream.

See also: al _get audio_stream_length secs

263


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L582
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L206
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L216
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L821
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L838

29. AUDIO ADDON

29.8.29 al_get_audio_stream_length_secs

double al_get_audio_stream_length_secs(ALLEGRO_AUDIO_STREAM xstream)

Source Code
Return the length of the stream in seconds, if known. Otherwise returns zero.

Currently this can only be called on streams created with al load audio_stream,
al load audio_stream _f and the format-specific functions underlying those functions.

See also: al_get audio_stream_position_secs

29.8.30 al_set_audio_stream_loop_secs

bool al_set_audio_stream_loop_secs(ALLEGRO_AUDIO_STREAM *stream,
double start, double end)

Source Code

Sets the loop points for the stream in seconds. Currently this can only be called on streams created
with al load audio_stream, al load audio stream f and the format-specific functions underlying those
functions.

29.8.31 al_set_audio_stream_channel matrix
Source Code
Like al set sample instance channel matrix but for streams.

Since: 5.2.3

Unstable API: New API.

29.9 Audio file I/0

29.9.1 al _register_sample_loader

bool al_register_sample_loader(const char *ext,
ALLEGRO_SAMPLE *(xloader)(const char *filename))

Source Code

Register a handler for al load sample. The given function will be used to handle the loading of sample
files with the given extension.

The extension should include the leading dot (‘.”) character. It will be matched case-insensitively.
The loader argument may be NULL to unregister an entry.
Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al register sample loader f, al register sample saver

29.9.2 al register_sample loader_f

bool al_register_sample_loader_f(const char xext,
ALLEGRO_SAMPLE *(*loader) (ALLEGRO_FILEx fp))

264


https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L855
https://github.com/liballeg/allegro5/blob/master/addons/audio/kcm_stream.c#L872
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L88

29.9. Audio file I/0

Source Code

Register a handler for al load _sample f. The given function will be used to handle the loading of
sample files with the given extension.

The extension should include the leading dot (‘") character. It will be matched case-insensitively.
The loader argument may be NULL to unregister an entry.
Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al_register sample loader

29.9.3 al_register_sample_saver

bool al_register_sample_saver(const char *ext,
bool (*saver)(const char *filename, ALLEGRO_SAMPLE =*spl))

Source Code

Register a handler for al _save sample. The given function will be used to handle the saving of sample
files with the given extension.

The extension should include the leading dot (‘") character. It will be matched case-insensitively.
The saver argument may be NULL to unregister an entry.
Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al register sample saver f, al register sample loader

29.9.4 al_register_sample_saver_f

bool al_register_sample_saver_f(const char *ext,
bool (*saver)(ALLEGRO_FILE* fp, ALLEGRO_SAMPLE *spl))

Source Code

Register a handler for al save _sample f. The given function will be used to handle the saving of
sample files with the given extension.

The extension should include the leading dot (‘") character. It will be matched case-insensitively.
The saver argument may be NULL to unregister an entry.
Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al register_sample saver

29.9.5 al_register_audio_stream_loader

bool al_register_audio_stream_loader(const char xext,
ALLEGRO_AUDIO_STREAM *(xstream_loader)(const char *filename,
size_t buffer_count, unsigned int samples))

Source Code

Register a handler for al load audio_stream. The given function will be used to open streams from
files with the given extension.

The extension should include the leading dot (‘") character. It will be matched case-insensitively.
The stream_loader argument may be NULL to unregister an entry.
Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al _register audio_stream_loader f

265


https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L115
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L142
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L169
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L196

29. AUDIO ADDON

29.9.6 al_register_audio_stream_loader_f

bool al_register_audio_stream_loader_f(const char xext,
ALLEGRO_AUDIO_STREAM *(*stream_loader) (ALLEGRO_FILE* fp,
size_t buffer_count, unsigned int samples))

Source Code

Register a handler for al load audio stream f. The given function will be used to open streams from
files with the given extension.

The extension should include the leading dot (‘) character. It will be matched case-insensitively.
The stream_loader argument may be NULL to unregister an entry.
Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al_register audio_stream_loader

29.9.7 al_load_sample

ALLEGRO_SAMPLE =*al_load_sample(const char xfilename)

Source Code
Loads a few different audio file formats based on their extension.

Note that this stores the entire file in memory at once, which may be time consuming. To read the file
as it is needed, use al load_audio_stream.

Returns the sample on success, NULL on failure.

Note: the allegro_audio library does not support any audio file formats by default. You must
use the allegro_acodec addon, or register your own format handler.

See also: al register sample loader, al init acodec_addon

29.9.8 al load_sample f

ALLEGRO_SAMPLE *al_load_sample_f (ALLEGRO_FILE* fp, const char xident)

Source Code

Loads an audio file from an ALLEGRO_FILE stream into an ALLEGRO SAMPLE. The file type is
determined by the passed ‘ident’ parameter, which is a file name extension including the leading dot.

Note that this stores the entire file in memory at once, which may be time consuming. To read the file
as it is needed, use al load audio stream f.

Returns the sample on success, NULL on failure. The file remains open afterwards.

Note: the allegro_audio library does not support any audio file formats by default. You must
use the allegro_acodec addon, or register your own format handler.

See also: al_register sample loader f, al init acodec_addon

266


https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L224
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L252
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L273

29.9. Audio file I/0

29.9.9 al load_audio_stream

ALLEGRO_AUDIO_STREAM *al_load_audio_stream(const char xfilename,
size_t buffer_count, unsigned int samples)

Source Code
Loads an audio file from disk as it is needed.

Unlike regular streams, the one returned by this function need not be fed by the user; the library will
automatically read more of the file as it is needed. The stream will contain buffer_count buffers with
samples samples.

The audio stream will start in the playing state. It should be attached to a voice or mixer to generate
any output. See ALLEGRO AUDIO_STREAM for more details.

Returns the stream on success, NULL on failure.

Note: the allegro_audio library does not support any audio file formats by default. You must
use the allegro_acodec addon, or register your own format handler.

See also: al load audio stream f, al register audio stream loader, al init acodec_addon

29.9.10 al load_audio_stream f

ALLEGRO_AUDIO_STREAM *al_load_audio_stream_f (ALLEGRO_FILEx fp, const char *ident,
size_t buffer_count, unsigned int samples)

Source Code
Loads an audio file from ALLEGRO_FILE stream as it is needed.

Unlike regular streams, the one returned by this function need not be fed by the user; the library will
automatically read more of the file as it is needed. The stream will contain buffer count buffers with
samples samples.

The file type is determined by the passed ‘ident’ parameter, which is a file name extension including the
leading dot.

The audio stream will start in the playing state. It should be attached to a voice or mixer to generate
any output. See ALLEGRO_AUDIO_STREAM for more details.

Returns the stream on success, NULL on failure. On success the file should be considered owned by the
audio stream, and will be closed when the audio stream is destroyed. On failure the file will be closed.

Note: the allegro_audio library does not support any audio file formats by default. You must
use the allegro_acodec addon, or register your own format handler.

See also: al load audio stream, al register audio stream loader f, al init acodec_addon

29.9.11 al_save_sample

bool al_save_sample(const char *filename, ALLEGRO_SAMPLE *spl)

Source Code
Writes a sample into a file. Currently, wav is the only supported format, and the extension must be
13 79

wav

Returns true on success, false on error.

Note: the allegro_audio library does not support any audio file formats by default. You must
use the allegro_acodec addon, or register your own format handler.

See also: al_save sample f, al register sample saver, al init acodec_addon

267


https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L291
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L315
https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L334

29. AUDIO ADDON

29.9.12 al_save_sample_f
bool al_save_sample_f (ALLEGRO_FILE *fp, const char *ident, ALLEGRO_SAMPLE =*spl)

Source Code

Writes a sample into a ALLEGRO _FILE filestream. Currently, wav is the only supported format, and the
extension must be “.wav”.

Returns true on success, false on error. The file remains open afterwards.

Note: the allegro_audio library does not support any audio file formats by default. You must
use the allegro_acodec addon, or register your own format handler.

See also: al_save_sample, al_register sample saver f, al init acodec_addon

29.10 Audio recording

Allegro’s audio recording routines give you real-time access to raw, uncompressed audio input streams.
Since Allegro hides all of the platform specific implementation details with its own buffering, it will
add a small amount of latency. However, for most applications that small overhead will not adversely
affect performance.

Recording is supported by the ALSA, AudioQueue, DirectSound8, and PulseAudio drivers. Enumerating
or choosing other recording devices is not yet supported.

29.10.1 ALLEGRO_AUDIO_RECORDER
typedef struct ALLEGRO_AUDIO_RECORDER ALLEGRO_AUDIO_RECORDER;

Source Code
An opaque datatype that represents a recording device.

Since: 5.1.1
Unstable API: The API may need a slight redesign.

29.10.2 ALLEGRO AUDIO RECORDER_EVENT
typedef struct ALLEGRO_AUDIO_RECORDER_EVENT ALLEGRO_AUDIO_RECORDER_EVENT;

Source Code

Structure that holds the audio recorder event data. Every event type will contain:
* .source: pointer to the audio recorder
The following will be available depending on the event type:

 .buffer: pointer to buffer containing the audio samples
* .samples: number of samples (not bytes) that are available

Since 5.1.1

See also: al _get audio recorder event
Unstable API: The API may need a slight redesign.

268


https://github.com/liballeg/allegro5/blob/master/addons/audio/audio_io.c#L355
https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L180
https://github.com/liballeg/allegro5/blob/master/addons/audio/allegro5/allegro_audio.h#L58

29.10. Audio recording

29.10.3 al_create_audio_recorder

ALLEGRO_AUDIO_RECORDER *al_create_audio_recorder(size_t fragment_count,
unsigned int samples, unsigned int frequency,
ALLEGRO_AUDIO_DEPTH depth, ALLEGRO_CHANNEL_CONF chan_conf)

Source Code

Creates an audio recorder using the system’s default recording device. (So if the returned device does
not work, try updating the system’s default recording device.)

Allegro will internally buffer several seconds of captured audio with minimal latency. (XXX: These
settings need to be exposed via config or API calls.) Audio will be copied out of that private buffer into
a fragment buffer of the size specified by the samples parameter. Whenever a new fragment is ready an
event will be generated.

The total size of the fragment buffer is fragment_count * samples * bytes per sample. It is treated as a
circular, never ending buffer. If you do not process the information fast enough, it will be overrun.
Because of that, even if you only ever need to process one small fragment at a time, you should still use
a large enough value for fragment_count to hold a few seconds of audio.

frequency is the number of samples per second to record. Common values are:

* 8000 - telephone quality speech

* 11025

* 22050

44100 - CD quality music (if 16-bit, stereo)

For maximum compatibility, use a depth of ALLEGRO_AUDIO_DEPTH_UINTS or
ALLEGRO_AUDIO DEPTH INT16, and a single (mono) channel.

The recorder will not record until you start it with al start audio_recorder.
On failure, returns NULL.

Since: 5.1.1

Unstable API: The API may need a slight redesign.

29.10.4 al_start_audio_recorder

bool al_start_audio_recorder (ALLEGRO_AUDIO_RECORDER *r)

Source Code

Begin recording into the fragment buffer. Once a complete fragment has been captured (as specified in
al create audio recorder), an ALLEGRO_EVENT AUDIO RECORDER _FRAGMENT event will be
triggered.

Returns true if it was able to begin recording.

Since: 5.1.1

Unstable API: The API may need a slight redesign.

269


https://github.com/liballeg/allegro5/blob/master/addons/audio/recorder.c#L18
https://github.com/liballeg/allegro5/blob/master/addons/audio/recorder.c#L89

29. AUDIO ADDON

29.10.5 al_stop_audio_recorder

void al_stop_audio_recorder (ALLEGRO_AUDIO_RECORDER =*r)

Source Code

Stop capturing audio data. Note that the audio recorder is still active and consuming resources, so if
you are finished recording you should destroy it with al _destroy audio recorder.

You may still receive a few events after you call this function as the device flushes the buffer.
If you restart the recorder, it will begin recording at the beginning of the next fragment buffer.

Since: 5.1.1

Unstable API: The API may need a slight redesign.

29.10.6 al_is_audio_recorder_recording

bool al_is_audio_recorder_recording(ALLEGRO_AUDIO_RECORDER *r)

Source Code
Returns true if the audio recorder is currently capturing data and generating events.

Since: 5.1.1

Unstable API: The API may need a slight redesign.

29.10.7 al_get audio_recorder_event

ALLEGRO_AUDIO_RECORDER_EVENT =*al_get_audio_recorder_event(ALLEGRO_EVENT *event)

Source Code
Returns the event as an ALLEGRO AUDIO RECORDER_EVENT.

Since: 5.1.1

Unstable API: The API may need a slight redesign.

29.10.8 al_get_audio_recorder_event_source

ALLEGRO_EVENT_SOURCE *al_get_audio_recorder_event_source(ALLEGRO_AUDIO_RECORDER =*r)

Source Code
Returns the event source for the recorder that generates the various recording events.
Since: 5.1.1

Unstable API: The API may need a slight redesign.

270


https://github.com/liballeg/allegro5/blob/master/addons/audio/recorder.c#L103
https://github.com/liballeg/allegro5/blob/master/addons/audio/recorder.c#L115
https://github.com/liballeg/allegro5/blob/master/addons/audio/recorder.c#L128
https://github.com/liballeg/allegro5/blob/master/addons/audio/recorder.c#L136

29.10. Audio recording

29.10.9 al_destroy_audio_recorder

void al_destroy_audio_recorder (ALLEGRO_AUDIO_RECORDER *r)

Source Code

Destroys the audio recorder and frees all resources associated with it. It is safe to destroy a recorder
that is recording.

You may receive events after the recorder has been destroyed. They must be ignored, as the fragment
buffer will no longer be valid.
Since: 5.1.1

Unstable API: The API may need a slight redesign.

271


https://github.com/liballeg/allegro5/blob/master/addons/audio/recorder.c#L143




30

Audio codecs addon

These functions are declared in the following header file. Link with allegro acodec.
#include <allegro5/allegro_acodec.h>

30.1 al_init acodec_addon

bool al_init_acodec_addon(void)

Source Code

This function registers all the known audio file type handlers for al load sample, al save sample,
al load audio_stream, etc.

Depending on what libraries are available, the full set of recognised extensions is: .wav, .flac, .ogg,
.opus, .it, .mod, .s3m, .xm, .voc.

Limitations:

* Saving is only supported for wav files.

* The wav file loader currently only supports 8/16 bit little endian PCM files. 16 bits are used
when saving wav files. Use flac files if more precision is required.

* Module files (.it, .mod, .s3m, .xm) are often composed with streaming in mind, and sometimes
cannot be easily rendered into a finite length sample. Therefore they cannot be loaded with
al load_sample/al load sample f and must be streamed with al load_audio_stream or
al load audio_stream f.

* voc file streaming is unimplemented.
Return true on success.

30.2 al get allegro acodec version

uint32_t al_get_allegro_acodec_version(void)

Source Code

Returns the (compiled) version of the addon, in the same format as al_get _allegro_version.

273


https://github.com/liballeg/allegro5/blob/master/addons/acodec/acodec.c#L16
https://github.com/liballeg/allegro5/blob/master/addons/acodec/acodec.c#L8




31

Color addon

These functions are declared in the following header file. Link with allegro_color.
#include <allegro5/allegro_color.h>

When converting between certain color spaces, RGB colors are implicitly assumed to mean sRGB.

sRGB is a standard which maps RGB colors to absolute colors. sSRGB is very close to RGB values on a
monitor which has a gamma value of 2.2. For example when the red component of a color is 0.5, the
monitor will use a brightness of pow(0.5, 2.2) or about 22% - and not 50%. The reason is that human
eyes can distinguish better between dark colors than between bright colors, and so if a pixel of the
monitor is lit up to 22% of its maximum power it already will appear at half brightness to a human eye.

sRGB improves upon simple gamma correction by taking differences between the three color channels
into account as well. In general, most monitors nowadays try to be close to the sRGB specification. And
so if in an Allegro game you display something with color

al map rgb f(0.5, 0.5, 0,5)

then it will appear at about half brightness (even though the actual brightness output of the monitor
will be less than half).
31.1 al_color cmyk

ALLEGRO_COLOR al_color_cmyk(float c, float m, float y, float k)

Source Code
Return an ALLEGRO_COLOR structure from CMYK values (cyan, magenta, yellow, black).

See also: al _color cmyk to rgb, al color rgb to cmyk

31.2 al_color_cmyk_to_rgb

void al_color_cmyk_to_rgb(float cyan, float magenta, float yellow,
float key, float *red, float xgreen, float *blue)

Source Code
Convert CMYK values to RGB values.

See also: al_color cmyk, al color rgb to cmyk

275


https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L480
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L446

31. COLOR ADDON

31.3 al_color_hsl

ALLEGRO_COLOR al_color_hsl(float h, float s, float 1)

Source Code
Return an ALLEGRO_COLOR structure from HSL (hue, saturation, lightness) values.

Parameters:

* hue - Color hue angle in the range 0..360
* saturation - Color saturation in the range 0..1
* lightness - Color lightness in the range 0..1

See also: al color hsl to rgb, al color hsv

31.4 al_color_hsl _to_rgb

void al_color_hsl_to_rgb(float hue, float saturation, float lightness,
float xred, float *green, float *blue)

Source Code
Convert values in HSL color model to RGB color model.

Parameters:

* hue - Color hue angle in the range 0..360

* saturation - Color saturation in the range 0..1

* lightness - Color lightness in the range 0..1

* red, green, blue - returned RGB values in the range 0..1

See also: al _color_rgb to hsl, al color hsl, al color hsv to rgb

31.5 al_color_hsv

ALLEGRO_COLOR al_color_hsv(float h, float s, float v)

Source Code
Return an ALLEGRO_COLOR structure from HSV (hue, saturation, value) values.

Parameters:

* hue - Color hue angle in the range 0..360
* saturation - Color saturation in the range 0..1
* value - Color value in the range 0..1

See also: al_color hsv to rgb, al color hsl

276


https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L436
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L367
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L339

31.6. al color hsv to rgb

31.6 al_color_hsv_to_rgb

void al_color_hsv_to_rgb(float hue, float saturation, float value,
float *red, float xgreen, float *blue)

Source Code
Convert values in HSV color model to RGB color model.

Parameters:

* hue - Color hue angle in the range 0..360

* saturation - Color saturation in the range 0..1

* value - Color value in the range 0..1

* red, green, blue - returned RGB values in the range 0..1

See also: al_color _rgb to_hsv, al color_hsv, al color_hsl to rgb

31.7 al_color_html

ALLEGRO_COLOR al_color_html(char const *string)

Source Code

Interprets an HTML-style hex number (e.g. #00faff) as a color. The accepted format is the same as
al color_html to rgb.

Returns the interpreted color, or al_map_rgba(@, 0, @, 0) if the string could not be parsed.

Note: the behaviour on invalid strings is different from Allegro 5.0.x.

See also: al_color_html to rgb, al color rgb to html

31.8 al_color_html_to_rgb
bool al_color_html_to_rgb(char const *string,

float *red, float *green, float *blue)

Source Code

Interprets an HTML-style hex number (e.g. #00faff) as a color. The only accepted formats are
“#RRGGBB” and “RRGGBB” where R, G, B are hexadecimal digits [0-9A-Fa-f].

Returns true on success, false on failure. On failure all components are set to zero.

Note: the behaviour on invalid strings is different from Allegro 5.0.x.

See also: al_color html, al color rgb to _html

277


https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L266
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L568
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L538

31. COLOR ADDON

31.9 al _color_rgb_to_html

void al_color_rgb_to_html(float red, float green, float blue,
char *string)

Source Code
Create an HTML-style string representation of an ALLEGRO COLOR, e.g. #00faff.

Parameters:

* red, green, blue - The color components in the range 0..1.
* string - A pointer to a buffer of at least 8 bytes, into which the result will be written (including
the NUL terminator).

Example:

char html[8];
al_color_rgb_to_html(1, @, 0, html);

Now html will contain “#ff0000”.

See also: al_color html, al color html to rgb

31.10 al_color_name

ALLEGRO_COLOR al_color_name(char const *name)

Source Code
Return an ALLEGRO_COLOR with the given name. If the color is not found then black is returned.

See al color name to_rgb for the list of names.

31.11 al_color_name_to_rgb

bool al_color_name_to_rgb(char const *name, float *r, float *g, float *b)

Source Code

Parameters:

¢ name - The (lowercase) name of the color.
* 1, g, b - If one of the recognized color names below is passed, the corresponding RGB values in
the range 0..1 are written.

The 148 recognized names are:

aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond,
blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgreen,
darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon,
darkseagreen, darkslateblue, darkslategray, darkturquoise, darkviolet, deeppink,
deepskyblue, dimgray, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro,
ghostwhite, goldenrod, gold, gray, green, greenyellow, honeydew, hotpink, indianred,
indigo, ivory, khaki, lavenderblush, lavender, lawngreen, lemonchiffon, lightblue,
lightcoral, lightcyan, lightgoldenrodyellow, lightgreen, lightgrey, lightpink, lightsalmon,

278


https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L528
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L254
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L210

31.12. al color rgb to cmyk

lightseagreen, lightskyblue, lightslategray, lightsteelblue, lightyellow, lime, limegreen,
linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise,
mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, avajowhite, navy,
oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen,
paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue,
purple, rebeccapurple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown,
seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, snow, springgreen, steelblue,
tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen

They are taken from CSS: https://www.w3.org/TR/css-color-4/

Note that these 9 colors have two names and so there are only 139 distinct colors: aqua = cyan,
darkgray = darkgrey, darkslategray = darkslategrey, dimgray = dimgrey, fuchsia = purple, gray =
grey, lightgray = lightgrey, lightslategray = lightslategrey, slategray = slategrey

Returns: true if a name from the list above was passed, else false.

See also: al_color name

31.12 al_color_rgb_to_cmyk

void al_color_rgb_to_cmyk(float red, float green, float blue,
float xcyan, float *magenta, float xyellow, float *key)

Source Code

Each RGB color can be represented in CMYK with a K component of 0 with the following formula:

AKX O
1

S = = -4
[
o o

This function will instead find the representation with the maximal value for K and minimal color
components.

See also: al_color_cmyk, al color_cmyk to rgb

31.13 al_color_rgb _to_hsl

void al_color_rgb_to_hsl(float red, float green, float blue,
float xhue, float *saturation, float *lightness)

Source Code

Given an RGB triplet with components in the range 0..1, return the hue in degrees from 0..360 and
saturation and lightness in the range 0..1.

See also: al _color_hsl to rgb, al color hsl

31.14 al_color_rgb_to_hsv

void al_color_rgb_to_hsv(float red, float green, float blue,
float xhue, float *saturation, float *value)

Source Code

Given an RGB triplet with components in the range 0..1, return the hue in degrees from 0..360 and
saturation and value in the range 0..1.

See also: al_color hsv to rgb, al color hsv


https://www.w3.org/TR/css-color-4/
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L458
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L389
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L294

31. COLOR ADDON

31.15 al_color_rgb_to_name

char const *al_color_rgb_to_name(float r, float g, float b)

Source Code
Given an RGB triplet with components in the range 0..1, find a color name describing it approximately.

See also: al_color name _to rgb, al color name

31.16 al color rgb to xyz

void al_color_rgb_to_xyz(float red, float green, float blue,
float xx, float xy, float *z)

Source Code
Convert RGB values to XYZ color space.
Since: 5.2.3

See also: al color xyz, al color xyz to rgb

31.17 al_color_xyz

ALLEGRO_COLOR al_color_xyz(float x, float y, float z)

Source Code

Return an ALLEGRO_COLOR structure from XYZ values. The CIE 1931 XYZ color space consists of
three components in the range 0..1. The Y component corresponds to luminance and the X and Z
components define the color.

RGB components are always assumed to be in SRGB space.

Note:

The XYZ color space can represent more colors than are visible in SRGB and therefore
conversion may result in RGB values outside of the 0..1 range. You can check for that case
with al_is color valid.

Since: 5.2.3

See also: al _color xyz to rgb, al color rgb to xyz

31.18 al_color_xyz_to_rgb
void al_color_xyz_to_rgb(float x, float y, float z,
float *red, float *green, float *blue)

Source Code
Convert XYZ color values to RGB color space.
Since: 5.2.3

See also: al_color xyz, al color rgb to xyz

280


https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L229
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L621
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L635
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L607

31.19. al color rgb to xyy

31.19 al_color_rgb_to_xyy

void al_color_rgb_to_xyy(float red, float green, float blue,
float *x, float *y, float *y2)

Source Code
Convert RGB values to xyY color space.
Since: 5.2.3

See also: al color xyy, al color xyy to rgb

31.20 al_color_xyy

ALLEGRO_COLOR al_color_xyy(float x, float y, float y2)

Source Code

Return an ALLEGRO_COLOR structure from xyY values. The Y component in the xyY color space is the
same as the Y in XYZ.

However the x and y values are computed from XYZ like this:

X+ Y+ 2)
X+ Y+ 2)

X7/ (
Y / (

Since: 5.2.3

See also: al_color _xyy to_rgb, al color rgb to xyy

31.21 al_color_xyy to_rgb

void al_color_xyy_to_rgb(float x, float y, float y2,
float *red, float *green, float *blue)

Source Code
Convert xyY color values to RGB color space.
Since: 5.2.3

See also: al color xyy, al color rgb to xyy

31.22 al _color_rgb to_lab

void al_color_rgb_to_lab(float red, float green, float blue,
float %1, float *a, float *b)

Source Code
Convert RGB values to L*a*b* color space.
Since: 5.2.3

See also: al_color lab, al color lab to rgb

281


https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L739
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L751
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L728
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L669

31. COLOR ADDON

31.23 al_color_lab

ALLEGRO_COLOR al_color_lab(float 1, float a, float b)

Source Code

Return an ALLEGRO_COLOR structure from CIE L*a*b* values. The L* component corresponds to
luminance from 0..1. The a* and b* components are in the range -1..4+1.

Note:

The L*a*b* color space can represent more colors than are visible in SRGB and therefore
conversion may result in RGB values outside of the 0..1 range. You can check for that case
with al_is_color valid.

Note:

In some literature the range of L* is 0 to 100 and a* and b* are from -100 to +100. In that
case divide all components by 100 before passing them to this function.

Since: 5.2.3

See also: al color lab to rgb, al color rgb to lab

31.24 al color lab to rgb

void al_color_lab_to_rgb(float 1, float a, float b,
float *red, float xgreen, float *blue)

Source Code
Convert CIE L*a*b* color values to RGB color space.
Since: 5.2.3

See also: al_color lab, al color rgb to lab

31.25 al color rgb to Ich

void al_color_rgb_to_lch(float red, float green, float blue,
float *1, float *c, float *h)

Source Code

Convert RGB values to CIE LCH color space.
Since: 5.2.3

See also: al color Ich, al color Ich to rgb

31.26 al_color_Ich

ALLEGRO_COLOR al_color_lch(float 1, float c, float h)

Source Code

Return an ALLEGRO_COLOR structure from CIE LCH values. LCH colors are very similar to HSL, with

the same meaning of L. and H and C corresponding to S. However LCH is more visually uniform.
Furthermore, this function expects the angle for H in radians and not in degree.

The CIE LCH color space is a cylindrical representation of the L*a*b* color space. The L component is

the same and C and H are computed like this:

282


https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L685
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L657
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L706
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L718

31.27. al _color Ich to rgb

C=sgrt(a*xa+b *b)
H = atan2(b, a)
Since: 5.2.3

See also: al_color _Ich to rgb, al color rgb to Ich

31.27 al_color_Ich_to_rgb

void al_color_lch_to_rgb(float 1, float c, float h,
float *red, float *green, float *blue)

Source Code
Convert CIE LCH color values to RGB color space.
Since: 5.2.3

See also: al_color _Ich, al_color rgb to_Ich

31.28 al_color_distance_ciede2000_lab

Source Code

This function computes the CIEDE2000 color difference between two RGB colors. This is a visually
uniform color difference, unlike for example the RGB distance.

When using the RGB distance (Euklidean distance between two RGB triplets) there can be color pairs
with the same distance, where the colors of one pair appear to be almost the same color, while the
colors of the other pair look quite different. This is improved by using the L*a*b* color space which
was designed with perceptual uniformity in mind. However it still is not completely uniform. The
CIEDE2000 formula contains some additional transformations to fix that.

The returned color distance is roughly in the range O (identical color) to 1 (completely different color)
- but values greater than one are possible.

Note: This function uses al _color lab internally which defines the L component to be in the
range 0..1 (and not 0..100 as is sometimes seen).

Since: 5.2.3

31.29 al color_rgb to yuv

void al_color_rgb_to_yuv(float red, float green, float blue,
float *y, float *u, float *v)

Source Code
Convert RGB values to YUV color space.

See also: al_color_yuv, al color yuv_to_rgb

31.30 al_color_yuv

ALLEGRO_COLOR al_color_yuv(float y, float u, float v)

Source Code
Return an ALLEGRO_COLOR structure from YUV values.

See also: al_color_yuv to rgb, al color rgb to yuv

283


https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L695
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L504
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L518

31. COLOR ADDON

31.31 al_color_yuv_to_rgb

void al_color_yuv_to_rgb(float y, float u, float v,
float *red, float *green, float *blue)

Source Code
Convert YUV color values to RGB color space.

See also: al_color_yuv, al color rgb _to yuv

31.32 al_get _allegro_color_version

uint32_t al_get_allegro_color_version(void)

Source Code

Returns the (compiled) version of the addon, in the same format as al_get allegro version.

31.33 al_is_color_valid

Source Code

Checks if all components of the color are between 0 and 1. Some of the color conversions in this addon
support color spaces with more colors than can be represented in sSRGB and when converted to RGB
will result in invalid color components outside the 0..1 range.

Since: 5.2.3

284


https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L490
https://github.com/liballeg/allegro5/blob/master/addons/color/color.c#L581

32

Font addons

These functions are declared in the following header file. Link with allegro font.
#include <allegro5/allegro_font.h>

32.1 General font routines

32.1.1 ALLEGRO_FONT
typedef struct ALLEGRO_FONT ALLEGRO_FONT;

Source Code

A handle identifying any kind of font. Usually you will create it with al load font which supports
loading all kinds of TrueType fonts supported by the FreeType library. If you instead pass the filename
of a bitmap file, it will be loaded with al load_bitmap and a font in Allegro’s bitmap font format will be
created from it with al _grab font from_bitmap.

32.1.2 ALLEGRO_GLYPH
typedef struct ALLEGRO_GLYPH ALLEGRO_GLYPH;

Source Code

A structure containing the properties of a character in a font.

typedef struct ALLEGRO_GLYPH {
ALLEGRO_BITMAP =*bitmap; // the bitmap the character is on

int x; // the x position of the glyph on bitmap

int y; // the y position of the glyph on bitmap

int w; // the width of the glyph in pixels

int h; // the height of the glyph in pixels

int kerning; // pixels of kerning (see below)

int offset_x; // x offset to draw the glyph at

int offset_y; // y offset to draw the glyph at

int advance; // number of pixels to advance after this character

} ALLEGRO_GLYPH;

bitmap may be a sub-bitmap in the case of color fonts. Bitmap can also be NULL in which case nothing
should be drawn (sometimes true for whitespace characters in TTF fonts).

kerning should be added to the x position you draw to if you want your text kerned and depends on
which codepoints al_get glyph was called with.

285


https://github.com/liballeg/allegro5/blob/master/addons/font/allegro5/allegro_font.h#L48
https://github.com/liballeg/allegro5/blob/master/addons/font/allegro5/allegro_font.h#L53

32. FONT ADDONS

Glyphs are tightly packed onto the bitmap, so you need to add offset_x and offset_y to your draw
position for the text to look right.

advance is the number of pixels to add to your x position to advance to the next character in a string
and includes kerning.

Since: 5.2.1
Unstable API: This API is new and subject to refinement.

See also: al_get glyph

32.1.3 al_init_font_addon

bool al_init_font_addon(void)

Source Code
Initialise the font addon.

Note that if you intend to load bitmap fonts, you will need to initialise allegro_image separately
(unless you are using another library to load images).

Similarly, if you wish to load truetype-fonts, do not forget to also call al_init_ttf addon.

Returns true on success, false on failure. On the 5.0 branch, this function has no return value. You may
wish to avoid checking the return value if your code needs to be compatible with Allegro 5.0.
Currently, the function will never return false.

See also: al_init image addon, al init_ttf addon, al shutdown_font addon

32.1.4 al_shutdown_font_addon

void al_shutdown_font_addon(void)

Source Code

Shut down the font addon. This is done automatically at program exit, but can be called any time the
user wishes as well.

See also: al_init font addon

32.1.5 al load_font
ALLEGRO_FONT *al_load_font(char const xfilename, int size, int flags)

Source Code

Loads a font from disk. This will use al load_bitmap font flags if you pass the name of a known
bitmap format, or else al load_ttf font.

The flags parameter is passed through to either of those functions. Bitmap and TTF fonts are also
affected by the current bitmap flags at the time the font is loaded.

See also: al_destroy font, al_init font addon, al register font loader, al load bitmap_font flags,
al load_ttf font

32.1.6 al_destroy_font
void al_destroy_font(ALLEGRO_FONT =*f)

Source Code
Frees the memory being used by a font structure. Does nothing if passed NULL.

See also: al load font

286


https://github.com/liballeg/allegro5/blob/master/addons/font/font.c#L365
https://github.com/liballeg/allegro5/blob/master/addons/font/font.c#L392
https://github.com/liballeg/allegro5/blob/master/addons/font/font.c#L440
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L358

32.1. General font routines

32.1.7 al_register_font_loader

bool al_register_font_loader(char const *extension,

ALLEGRO_FONT *(*load_font)(char const xfilename, int size, int flags))

Source Code

Informs Allegro of a new font file type, telling it how to load files of this format.

The extension should include the leading dot (‘") character. It will be matched case-insensitively.

The load_font argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al_init font addon

32.1.8 al_get_font_line_height

int al_get_font_line_height(const ALLEGRO_FONT =xf)

Source Code

Returns the usual height of a line of text in the specified font. For bitmap fonts this is simply the height
of all glyph bitmaps. For truetype fonts it is whatever the font file specifies. In particular, some special

glyphs may be higher than the height returned here.

If the X is the position you specify to draw text, the meaning of ascent and descent and the line height

is like in the figure below.

See also: al_get text width, al get text dimensions

32.1.9 al_get font_ascent
int al_get_font_ascent(const ALLEGRO_FONT *f)

Source Code
Returns the ascent of the specified font.

See also: al_get font descent, al _get font line height

32.1.10 al_get font_descent
int al_get_font_descent(const ALLEGRO_FONT x*f)

Source Code
Returns the descent of the specified font.

See also: al_get font ascent, al get font line height

287


https://github.com/liballeg/allegro5/blob/master/addons/font/font.c#L416
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L298
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L308
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L318

32. FONT ADDONS

32.1.11 al_get_text_width

int al_get_text_width(const ALLEGRO_FONT xf, const char =*str)

Source Code
Calculates the length of a string in a particular font, in pixels.

See also: al_get ustr width, al get font line height, al get text dimensions

32.1.12 al_get_ustr_width

int al_get_ustr_width(const ALLEGRO_FONT =f, ALLEGRO_USTR const *ustr)

Source Code
Like al get text width but expects an ALLEGRO USTR.

See also: al get text width, al get ustr dimensions

32.1.13 al_draw_text

void al_draw_text(const ALLEGRO_FONT xfont,
ALLEGRO_COLOR color, float x, float y, int flags,
char const *text)

Source Code
Writes the NUL-terminated string text onto the target bitmap at position x, y, using the specified font.

The flags parameter can be O or one of the following flags:

* ALLEGRO ALIGN_LEFT - Draw the text left-aligned (same as 0).
* ALLEGRO_ALIGN_CENTRE - Draw the text centered around the given position.
* ALLEGRO ALIGN_RIGHT - Draw the text right-aligned to the given position.

It can also be combined with this flag:

* ALLEGRO ALIGN INTEGER - Always draw text aligned to an integer pixel position. This was
formerly the default behaviour. Since: 5.0.8, 5.1.4

This function does not support newline characters (\n), but you can use al_draw_multiline_text for
multi line text output.

See also: al draw_ustr, al draw_textf, al draw justified text, al draw multiline_text.

32.1.14 al_draw_ustr

void al_draw_ustr(const ALLEGRO_FONT =*font,
ALLEGRO_COLOR color, float x, float y, int flags,
const ALLEGRO_USTR =xustr)

Source Code

Like al draw_text, except the text is passed as an ALLEGRO_USTR instead of a NUL-terminated char
array.

See also: al draw_text, al draw_justified ustr, al draw_multiline_ustr

288


https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L282
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L270
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L102
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L75

32.1. General font routines

32.1.15 al_draw_justified_text

void al_draw_justified_text(const ALLEGRO_FONT =*font,
ALLEGRO_COLOR color, float x1, float x2,
float y, float diff, int flags, const char *text)

Source Code
Like al draw_text, but justifies the string to the region x1-x2.

The diff parameter is the maximum amount of horizontal space to allow between words. If justisfying
the text would exceed diff pixels, or the string contains less than two words, then the string will be
drawn left aligned.

The flags parameter can be 0 or one of the following flags:
* ALLEGRO ALIGN INTEGER - Draw text aligned to integer pixel positions. Since: 5.0.8, 5.1.5

See also: al_draw_justified_textf, al draw_justified ustr

32.1.16 al_draw_justified_ustr

void al_draw_justified_ustr(const ALLEGRO_FONT =*font,
ALLEGRO_COLOR color, float x1, float x2,
float y, float diff, int flags, const ALLEGRO_USTR *ustr)

Source Code

Like al draw _justified_text, except the text is passed as an ALLEGRO_USTR instead of a
NUL-terminated char array.

See also: al_draw justified text, al draw justified textf.

32.1.17 al_draw_textf

void al_draw_textf(const ALLEGRO_FONT *xfont, ALLEGRO_COLOR color,
float x, float y, int flags,
const char xformat, ...)

Source Code

Formatted text output, using a printf() style format string. All parameters have the same meaning as
with al draw_text otherwise.

See also: al draw text, al draw_ustr

32.1.18 al draw justified_ textf

void al_draw_justified_textf(const ALLEGRO_FONT x*f,
ALLEGRO_COLOR color, float x1, float x2, float vy,
float diff, int flags, const char xformat, ...)

Source Code

Formatted text output, using a printf() style format string. All parameters have the same meaning as
with al draw justified text otherwise.

See also: al draw justified text, al draw justified ustr.

289


https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L200
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L115
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L213
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L246

32. FONT ADDONS

32.1.19 al_get_text_dimensions

void al_get_text_dimensions(const ALLEGRO_FONT x*f,
char const *text,
int *bbx, int *bby, int *bbw, int xbbh)

Source Code

Sometimes, the al_get text width and al get font line height functions are not enough for exact text
placement, so this function returns some additional information.

Returned variables (all in pixels):

* X,y - Offset to upper left corner of bounding box.
* w, h - Dimensions of bounding box.

Note that glyphs may go to the left and upwards of the X, in which case x and y will have negative
values.

See also: al_get text width, al get font line height, al get ustr dimensions

32.1.20 al_get_ustr_dimensions

void al_get_ustr_dimensions(const ALLEGRO_FONT x*f,
ALLEGRO_USTR const *ustr,
int *bbx, int *bby, int *bbw, int xbbh)

Source Code

Like al get text dimensions, except the text is passed as an ALLEGRO_USTR instead of a
NUL-terminated char array.

See also: al_get text dimensions

32.1.21 al_get allegro_font_version

uint32_t al_get_allegro_font_version(void)

Source Code

Returns the (compiled) version of the addon, in the same format as al_get _allegro_version.

32.1.22 al_get_font_ranges

int al_get_font_ranges(ALLEGRO_FONT =f, int ranges_count, int *ranges)

Source Code

Gets information about all glyphs contained in a font, as a list of ranges. Ranges have the same format
as with al _grab font from bitmap.

ranges_count is the maximum number of ranges that will be returned.

ranges should be an array with room for ranges_count * 2 elements. The even integers are the first
unicode point in a range, the odd integers the last unicode point in a range.

Returns the number of ranges contained in the font (even if it is bigger than ranges_count).
Since: 5.1.4

See also: al _grab font from bitmap

290


https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L342
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L328
https://github.com/liballeg/allegro5/blob/master/addons/font/font.c#L485
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L371

32.2. Per glyph text handling

32.1.23 al_set_fallback_font
void al_set_fallback_font(ALLEGRO_FONT *font, ALLEGRO_FONT =*fallback)

Source Code

Sets a font which is used instead if a character is not present. Can be chained, but make sure there is
no loop as that would crash the application! Pass NULL to remove a fallback font again.

Since: 5.1.12

See also: al_get fallback font, al draw glyph, al draw_text

32.1.24 al_get_fallback_font

ALLEGRO_FONT xal_get_fallback_font (ALLEGRO_FONT *font)

Source Code
Retrieves the fallback font for this font or NULL.
Since: 5.1.12

See also: al_set fallback font

32.2 Per glyph text handling

For some applications Allegro’s text drawing functions may not be sufficient. For example, you would
like to give a different color to every letter in a word, or use different a font for a drop cap.

That is why Allegro supports drawing and getting the dimensions of the individual glyphs of a font. A
glyph is a particular visual representation of a letter, character or symbol in a specific font.

And it’s also possible to get the kerning to use between two glyphs. These per glyph functions have less
overhead than Allegro’s per string text drawing and dimensioning functions. So, with these functions
you can write your own efficient and precise custom text drawing functions.

32.2.1 al draw_glyph

void al_draw_glyph(const ALLEGRO_FONT *f, ALLEGRO_COLOR color, float x, float vy,
int codepoint)

Source Code

Draws the glyph that corresponds with codepoint in the given color using the given font. If font does
not have such a glyph, nothing will be drawn.

To draw a string as left to right horizontal text you will need to use al get glyph advance to determine
the position of each glyph. For drawing strings in other directions, such as top to down, use
al get glyph dimensions to determine the size and position of each glyph.

If you have to draw many glyphs at the same time, use al_hold bitmap_ drawing with true as the
parameter, before drawing the glyphs, and then call al hold bitmap drawing again with false as a
parameter when done drawing the glyphs to further enhance performance.

Since: 5.1.12

See also: al_get glyph width, al get glyph dimensions, al get glyph advance.

291


https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L696
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L703
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L378

32. FONT ADDONS

32.2.2 al_get_glyph_width
int al_get_glyph_width(const ALLEGRO_FONT xf, int codepoint)

Source Code

This function returns the width in pixels of the glyph that corresponds with codepoint in the font font.
Returns zero if the font does not have such a glyph.

Since: 5.1.12
See also: al draw_glyph, al get glyph dimensions, al get glyph advance.

32.2.3 al_get_glyph_dimensions

bool al_get_glyph_dimensions(const ALLEGRO_FONT =xf,
int codepoint, int *bbx, int *bby, int *bbw, int *bbh)

Source Code

Sometimes, the al get glyph width or al get glyph advance functions are not enough for exact glyph
placement, so this function returns some additional information, particularly if you want to draw the
font vertically.

The function itself returns true if the character was present in font and false if the character was not
present in font.

Returned variables (all in pixel):

* bbx, bby - Offset to upper left corner of bounding box.
* bbw, bbh - Dimensions of bounding box.

These values are the same as al_get text dimensions would return for a string of a single character
equal to the glyph passed to this function. Note that glyphs may go to the left and upwards of the X, in
which case x and y will have negative values.

If you want to draw a string verticallly, for Japanese or as a game effect, then you should leave bby +
bbh space between the glyphs in the y direction for a regular placement.

If you want to draw a string horizontally in an extra compact way,
then you should leave bbx + bbw space between the glyphs in the x direction for a compact placement.

In the figure below is an example of what bbx and bby may be like for a 2 glyph, and a g glyph of the
same font compared to the result of al _get glyph width().

al_get_glyph_width() al_get_glyph_width()
e -
/ \ / \
bbx bbw bbx  bbw
<==>+<——=--= >+ <==>+<——=-= >+ X baseline
o I o I
bby | | | bby | | |
v I [ I
Fmm + | | |
A | *xxxx | | | |
| I* *x | v I
bbh | | *% | bbh +---+------- +
| | *% | A | *xxxx |
Vv | Xxxxxxk%k | | | * * |
o + | | *xxxx |
I

292


https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L386
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L393

32.2. Per glyph text handling

Since: 5.1.12
See also: al draw_glyph, al get glyph width, al get glyph advance.

32.2.4 al _get_glyph_advance
int al_get_glyph_advance(const ALLEGRO_FONT *f, int codepointl, int codepoint2)

Source Code

This function returns by how much the x position should be advanced for left to right text drawing
when the glyph that corresponds to codepointl has been drawn, and the glyph that corresponds to
codepoint2 will be the next to be drawn. This takes into consideration the horizontal advance width of
the glyph that corresponds with codepointl as well as the kerning between the glyphs of codepointl
and codepoint2.

Kerning is the process of adjusting the spacing between glyphs in a font, to obtain a more visually
pleasing result. Kerning adjusts the space between two individual glyphs with an offset determined by
the author of the font.

If you pass ALLEGRO_NO KERNING as codepoint] then al_get glyph advance will return 0. this can
be useful when drawing the first character of a string in a loop.

Pass ALLEGRO_NO_KERNING as codepoint2 to get the horizontal advance width of the glyph that
corresponds to codepoint1 without taking any kerning into consideration. This can be used, for
example, when drawing the last character of a string in a loop.

This function will return zero if the glyph of codepointl is not present in the font. If the glyph of
codepoint2 is not present in the font, the horizontal advance width of the glyph that corresponds to
codepointl without taking any kerning into consideration is returned.

When drawing a string one glyph at the time from the left to the right with kerning, the x position of
the glyph should be incremented by the result of al_get glyph advance applied to the previous glyph
drawn and the next glyph to draw.

Note that the return value of this function is a recommended advance for optimal readability for left to
right text determined by the author of the font. However, if you like, you may want to draw the glyphs
of the font narrower or wider to each other than what al_get glyph advance returns for style or effect.

In the figure below is an example of what the result of al get glyph advance may be like for two
glypphs A and 1 of the same font that has kerning for the “Al” pair, without and with the
ALLEGRO_NO_KERNING flag.

al_get_glyph_advance(font, 'A', 'l")

al_get_glyph_advance(font, 'A', ALLEGRO_NO_KERNING)
S PR

293


https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L401

32. FONT ADDONS

Since: 5.1.12
See also: al draw_glyph, al get glyph width, al get glyph dimensions.

32.3 Multiline text drawing

32.3.1 al draw_multiline text

void al_draw_multiline_text(const ALLEGRO_FONT =*font,
ALLEGRO_COLOR color, float x, float y, float max_width, float line_height,
int flags, const char =*text)

Source Code

Like al draw_text, but this function supports drawing multiple lines of text. It will break text in lines
based on its contents and the max_width parameter. The lines are then layed out vertically depending
on the line_height parameter and drawn each as if al draw_text was called on them.

A newline \n in the text will cause a “hard” line break after its occurrence in the string. The text after
a hard break is placed on a new line. Carriage return \r is not supported, will not cause a line break,
and will likely be drawn as a square or a space depending on the font.

The max_width parameter controls the maximum desired width of the lines. This function will try to
introduce a “soft” line break after the longest possible series of words that will fit in max_length when
drawn with the given font. A “soft” line break can occur either on a space or tab (\t) character.

However, it is possible that max_width is too small, or the words in text are too long to fit max_width
when drawn with font. In that case, the word that is too wide will simply be drawn completely on a
line by itself. If you don’t want the text that overflows max_width to be visible, then use
al_set_clipping_rectangle to clip it off and hide it.

The lines text was split into will each be drawn using the font, x, color and flags parameters,
vertically starting at y and with a distance of line_height between them. If 1ine_height is zero (0),
the value returned by calling al_get font line height on font will be used as a default instead.

The flags ALLEGRO_ALIGN LEFT, ALLEGRO ALIGN CENTRE, ALLEGRO_ALIGN RIGHT and
ALLEGRO_ALIGN_ INTEGER will be honoured by this function.

If you want to calculate the size of what this function will draw without actually drawing it, or if you
need a complex and/or custom layout, you can use al_do multiline text.

Since: 5.1.9

See also: al_do_multiline_text, al draw_multiline_text, al draw_multiline_textf

32.3.2 al draw_multiline_ustr

void al_draw_multiline_ustr(const ALLEGRO_FONT =*font,
ALLEGRO_COLOR color, float x, float y, float max_width, float line_height,
int flags, const ALLEGRO_USTR =*ustr)

Source Code

294


https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L657
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L630

32.3. Multiline text drawing

Like al draw_multiline_text, except the text is passed as an ALLEGRO_USTR instead of a
NUL-terminated char array.

Since: 5.1.9

See also: al draw_multiline text, al draw_multiline_ textf, al do_multiline text

32.3.3 al draw_multiline_textf

void al_draw_multiline_textf(const ALLEGRO_FONT =*font,
ALLEGRO_COLOR color, float x, float y, float max_width, float line_height,
int flags, const char *format, ...)

Source Code

Formatted text output, using a printf() style format string. All parameters have the same meaning as
with al draw multiline text otherwise.

Since: 5.1.9

See also: al draw_multiline text, al draw_multiline_ustr, al do_multiline text

32.3.4 al_do_multiline_text

void al_do_multiline_text(const ALLEGRO_FONT xfont,
float max_width, const char *text,
bool (xcb)(int line_num, const char *line, int size, void *extra),
void *xextra)

Source Code

This function processes the text and splits it into lines as al _draw_multiline_text would, and then calls
the callback cb once for every line. This is useful for custom drawing of multiline text, or for
calculating the size of multiline text ahead of time. See the documentation on al draw_multiline text
for an explanation of the splitting algorithm.

For every line that this function splits text into the callback cb will be called once with the following
parameters:

* line_num - the number of the line starting from zero and counting up
* line - a pointer to the beginning character of the line (see below)

* size - the size of the line (0 for empty lines)

* extra - the same pointer that was passed to al do_multiline_text

Note that line is not guaranteed to be a NUL-terminated string, but will merely point to a character
within text or to an empty string in case of an empty line. If you need a NUL-terminated string, you
will have to copy line to a buffer and NUL-terminate it yourself. You will also have to make your own
copy if you need the contents of 1ine after cb has returned, as line is not guaranteed to be valid after
that.

If the callback cb returns false, al do_multiline_text will stop immediately, otherwise it will continue
on to the next line.

Since: 5.1.9

See also: al_draw_multiline_text

295


https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L673
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L583

32. FONT ADDONS

32.3.5 al_do_multiline_ustr

void al_do_multiline_ustr(const ALLEGRO_FONT xfont, float max_width,
const ALLEGRO_USTR =*ustr,
bool (xcb)(int line_num, const ALLEGRO_USTR * line, void #*extra),
void xextra)

Source Code
Like al do_multiline_text, but using ALLEGRO_USTR instead of a NUL-terminated char array for text.
Since: 5.1.9

See also: al draw_multiline ustr

32.4 Bitmap fonts

32.4.1 al _grab_font_from_bitmap

ALLEGRO_FONT xal_grab_font_from_bitmap(ALLEGRO_BITMAP *bmp,
int ranges_n, const int ranges[])

Source Code

Creates a new font from an Allegro bitmap. You can delete the bitmap after the function returns as the
font will contain a copy for itself.

Parameters:

* bmp: The bitmap with the glyphs drawn onto it
* n: Number of unicode ranges in the bitmap.
* ranges: ‘n’ pairs of first and last unicode point to map glyphs to for each range.

The bitmap format is as in the following example, which contains three glyphs for 1, 2 and 3.

1 .222.333.
1020 3.
.1 .222.333.

1.2 . 3.

1 .222.333.

In the above illustration, the dot is for pixels having the background color. It is determined by the color
of the top left pixel in the bitmap. There should be a border of at least 1 pixel with this color to the
bitmap edge and between all glyphs.

Each glyph is inside a rectangle of pixels not containing the background color. The height of all glyph
rectangles should be the same, but the width can vary.

The placement of the rectangles does not matter, except that glyphs are scanned from left to right and
top to bottom to match them to the specified unicode codepoints.

The glyphs will simply be drawn using al draw_bitmap, so usually you will want the rectangles filled
with full transparency and the glyphs drawn in opaque white.

Examples:

296


https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L517
https://github.com/liballeg/allegro5/blob/master/addons/font/fontbmp.c#L202

32.4. Bitmap fonts

int ranges[] = {32, 126};
al_grab_font_from_bitmap(bitmap, 1, ranges)

int ranges[] = {
0x0020, Ox007F, /* ASCII =/
0xQ0A1, OxQQFF, /% Latin 1 %/
0x0100, Ox017F, /* Extended-A x/
Ox20AC, Ox20AC}; /* Euro x/
al_grab_font_from_bitmap(bitmap, 4, ranges)

The first example will grab glyphs for the 95 standard printable ASCII characters, beginning with the
space character (32) and ending with the tilde character (126). The second example will map the first
96 glyphs found in the bitmap to ASCII range, the next 95 glyphs to Latin 1, the next 128 glyphs to
Extended-A, and the last glyph to the Euro character. (This is just the characters found in the Allegro 4
font.)

See also: al load_bitmap, al grab font from bitmap

32.4.2 al_load_bitmap_font
ALLEGRO_FONT *al_load_bitmap_font(const char *fname)

Source Code

Load a bitmap font from a file. This is done by first calling al load bitmap flags and then
al grab font from bitmap.

If you wanted to load an old A4 font, for example, it would be better to load the bitmap yourself in
order to call al convert mask to alpha on it before passing it to al grab font from bitmap.

See also: al load_bitmap font flags, al load font, al load bitmap flags

32.4.3 al_load_bitmap_font_flags

ALLEGRO_FONT *al_load_bitmap_font_flags(const char *fname, int flags)

Source Code

Like al load bitmap font but additionally takes a flags parameter which is a bitfield containing a
combination of the following:

ALLEGRO NO PREMULTIPLIED ALPHA
The same meaning as for al load bitmap flags.

See also: al load_bitmap font, al load_bitmap_flags

32.4.4 al_create_builtin_font
ALLEGRO_FONT *al_create_builtin_font(void)

Source Code
Creates a monochrome bitmap font (8x8 pixels per character).

This font is primarily intended to be used for displaying information in environments or during early
runtime states where no external font data is available or loaded (e.g. for debugging).

The builtin font contains the following unicode character ranges:

297


https://github.com/liballeg/allegro5/blob/master/addons/font/fontbmp.c#L177
https://github.com/liballeg/allegro5/blob/master/addons/font/fontbmp.c#L193
https://github.com/liballeg/allegro5/blob/master/addons/font/stdfont.c#L442

32. FONT ADDONS

0x0020 to OxQ07F (ASCII)

OXxQ0A1 to OxQOFF (Latin 1)

0x0100 to 0x017F (Extended A)

Ox20AC to Ox20AC (euro currency symbol)

Returns NULL on an error.
The font memory must be freed the same way as for any other font, using al destroy font.
Since: 5.0.8, 5.1.3

See also: al load_bitmap font, al destroy font

32.5 TTF fonts

These functions are declared in the following header file. Link with allegro_ttf.
#include <allegro5/allegro_ttf.h>

32.5.1 al_init_ttf addon

bool al_init_ttf_addon(void)

Source Code

Call this after al_init font addon to make al load_font recognize “.ttf” and other formats supported by
al load_ttf font.

Returns true on success, false on failure.

32.5.2 al_shutdown_ttf addon

void al_shutdown_ttf_addon(void)

Source Code

Unloads the ttf addon again. You normally don’t need to call this.

32.5.3 al _load_ttf font
ALLEGRO_FONT *al_load_ttf_font(char const xfilename, int size, int flags)

Source Code

Loads a TrueType font from a file using the FreeType library. Quoting from the FreeType FAQ this
means support for many different font formats:

TrueType, OpenType, Typel, CID, CFF, Windows FON/FNT, X11 PCF, and others

The size parameter determines the size the font will be rendered at, specified in pixels. The standard
font size is measured in units per EM, if you instead want to specify the size as the total height of
glyphs in pixels, pass it as a negative value.

Note: If you want to display text at multiple sizes, load the font multiple times with
different size parameters.

The following flags are supported:
* ALLEGRO TTF _NO_KERNING - Do not use any kerning even if the font file supports it.

298


https://github.com/liballeg/allegro5/blob/master/addons/ttf/ttf.c#L1097
https://github.com/liballeg/allegro5/blob/master/addons/ttf/ttf.c#L1132
https://github.com/liballeg/allegro5/blob/master/addons/ttf/ttf.c#L972

32.5. TTF fonts

* ALLEGRO_TTF_MONOCHROME - Load as a monochrome font (which means no anti-aliasing of
the font is done).

* ALLEGRO_TTF_NO_AUTOHINT - Disable the Auto Hinter which is enabled by default in newer
versions of FreeType. Since: 5.0.6, 5.1.2

See also: al_init_ttf addon, al load_ttf font f

32.5.4 al_load_ttf font f

ALLEGRO_FONT xal_load_ttf_font_f(ALLEGRO_FILE xfile,
char const *filename, int size, int flags)

Source Code

Like al load ttf font, but the font is read from the file handle. The filename is only used to find
possible additional files next to a font file.

Note: The file handle is owned by the returned ALLEGRO_FONT object and must not be
freed by the caller, as FreeType expects to be able to read from it at a later time.

32.5.5 al load_ttf font_stretch

ALLEGRO_FONT *al_load_ttf_font_stretch(char const *filename, int w, int h,
int flags)

Source Code

Like al load_ttf font, except it takes separate width and height parameters instead of a single size
parameter.

If the height is a positive value, and the width zero or positive, then font will be stretched according to
those parameters. The width must not be negative if the height is positive.

As with al load ttf font, the height may be a negative value to specify the total height in pixels. Then
the width must also be a negative value, or zero.

Returns NULL if the height is positive while width is negative, or if the height is negative while the
width is positive.

Since: 5.0.6, 5.1.0

See also: al load ttf font, al load ttf font stretch f

32.5.6 al load_ttf font stretch_f

ALLEGRO_FONT *al_load_ttf_font_stretch_f(ALLEGRO_FILE *file,
char const *filename, int w, int h, int flags)

Source Code

Like al load_ttf font stretch, but the font is read from the file handle. The filename is only used to find
possible additional files next to a font file.

Note: The file handle is owned by the returned ALLEGRO_FONT object and must not be
freed by the caller, as FreeType expects to be able to read from it at a later time.

Since: 5.0.6, 5.1.0

See also: al load_ttf font stretch

299


https://github.com/liballeg/allegro5/blob/master/addons/ttf/ttf.c#L823
https://github.com/liballeg/allegro5/blob/master/addons/ttf/ttf.c#L980
https://github.com/liballeg/allegro5/blob/master/addons/ttf/ttf.c#L832

32. FONT ADDONS

32.5.7 al_get_allegro_ttf version

uint32_t al_get_allegro_ttf_version(void)

Source Code

Returns the (compiled) version of the addon, in the same format as al_get allegro version.

32.5.8 al_get glyph
bool al_get_glyph(const ALLEGRO_FONT *f, int prev_codepoint, int codepoint, ALLEGRO_GLYPH *glyph)

Source Code

Gets all the information about a glyph, including the bitmap, needed to draw it yourself.
prev_codepoint is the codepoint in the string before the one you want to draw and is used for kerning.
codepoint is the character you want to get info about. You should clear the ‘glyph’ structure to 0 with
memset before passing it to this function for future compatibility.

Since: 5.2.1

Unstable API: This API is new and subject to refinement.

See also: ALLEGRO_GLYPH

300


https://github.com/liballeg/allegro5/blob/master/addons/ttf/ttf.c#L1149
https://github.com/liballeg/allegro5/blob/master/addons/font/text.c#L408

33

Image 1/O addon

These functions are declared in the following header file. Link with allegro image.
#include <allegro5/allegro_image.h>

Some of the format handlers define configuration options for specifying things like compression level
or gamma handling. Refer to al_get system_config for their documentation.

33.1 al_init_ image addon

bool al_init_image_addon(void)

Source Code

Initializes the image addon. This registers bitmap format handlers for al load bitmap,
al load bitmap f, al save bitmap, al save bitmap f.

The following types are built into the Allegro image addon and guaranteed to be available: BMP, DDS,
PCX, TGA. Every platform also supports JPEG and PNG via external dependencies.

Other formats may be available depending on the operating system and installed libraries, but are not
guaranteed and should not be assumed to be universally available.

The DDS format is only supported to load from, and only if the DDS file contains textures compressed
in the DXT1, DXT3 and DXT5 formats. Note that when loading a DDS file, the created bitmap will
always be a video bitmap and will have the pixel format matching the format in the file.

33.2 al shutdown_image addon

void al_shutdown_image_addon(void)

Source Code

Shut down the image addon. This is done automatically at program exit, but can be called any time the
user wishes as well.

33.3 al _get allegro image version

uint32_t al_get_allegro_image_version(void)

Source Code

Returns the (compiled) version of the addon, in the same format as al_get allegro version.

301


https://github.com/liballeg/allegro5/blob/master/addons/image/iio.c#L14
https://github.com/liballeg/allegro5/blob/master/addons/image/iio.c#L150
https://github.com/liballeg/allegro5/blob/master/addons/image/iio.c#L158




34

Main addon

The main addon has no public API, but contains functionality to enable programs using Allegro to build
and run without platform-specific changes.

On platforms that require this functionality (e.g. OSX) this addon contains a C main function that
invokes al run_main with the user’s own main function, where the user’s main function has had its
name mangled to something else. The file that defines the user main function must include the header
file allegro5/allegro.h; that header performs the name mangling using some macros.

If the user main function is defined in C+ +, then it must have the following signature for this addon to
work:

int main(int argc, char *x*argv)

This addon does nothing on platforms that don’t require its functionality, but you should keep it in
mind in case you need to port to platforms that do require it.

Link with allegro_main.

303






35

Memfile interface

The memfile interface allows you to treat a fixed block of contiguous memory as a file that can be used
with Allegro’s I/0 functions.

These functions are declared in the following header file. Link with allegro_memfile.
#include <allegro5/allegro_memfile.h>

35.1 al_open_memfile

ALLEGRO_FILE xal_open_memfile(void *mem, int64_t size, const char *mode)

Source Code

Returns a file handle to the block of memory. All read and write operations act upon the memory
directly, so it must not be freed while the file remains open.

The mode can be any combination of “r” (readable) and “w” (writable). Regardless of the mode, the
file always opens at position 0. The file size is fixed and cannot be expanded. The file is always read
from/written to in binary mode, which means that no newline translation is performed.

It should be closed with al fclose. After the file is closed, you are responsible for freeing the memory
(if needed).

35.2 al_get allegro_memfile version

uint32_t al_get_allegro_memfile_version(void)

Source Code

Returns the (compiled) version of the addon, in the same format as al_get allegro version.

305


https://github.com/liballeg/allegro5/blob/master/addons/memfile/memfile.c#L169
https://github.com/liballeg/allegro5/blob/master/addons/memfile/memfile.c#L201




36

Native dialogs support

These functions are declared in the following header file. Link with allegro_dialog.

#include <allegro5/allegro_native_dialog.h>

36.1 ALLEGRO_FILECHOOSER

typedef struct ALLEGRO_FILECHOOSER ALLEGRO_FILECHOOSER;

Source Code

Opaque handle to a native file dialog.

36.2 ALLEGRO_TEXTLOG

typedef struct ALLEGRO_TEXTLOG ALLEGRO_TEXTLOG;

Source Code

Opaque handle to a text log window.

36.3 al_init_native_dialog_addon

bool al_init_native_dialog_addon(void)

Source Code
Initialise the native dialog addon.
Returns true on success, false on error.

Since: 5.0.9, 5.1.0

Note: Prior to Allegro 5.1.0 native dialog functions could be called without explicit
initialisation, but that is now deprecated. Future functionality may require explicit
initialisation. An exception is al show_native _message box, which may be useful to show
an error message if Allegro fails to initialise.

See also: al_shutdown_native dialog addon

307


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/allegro5/allegro_native_dialog.h#L38
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/allegro5/allegro_native_dialog.h#L42
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/dialog.c#L15

36. NATIVE DIALOGS SUPPORT

36.4 al_shutdown_native_dialog_addon

void al_shutdown_native_dialog_addon(void)

Source Code
Shut down the native dialog addon.
Since: 5.0.9, 5.1.5

See also: al_init native dialog addon

36.5 al create native file dialog

ALLEGRO_FILECHOOSER *al_create_native_file_dialog(
char const *initial_path,
char const xtitle,
char const xpatterns,
int mode)

Source Code
Creates a new native file dialog. You should only have one such dialog opened at a time.

Parameters:

* initial_path: The initial search path and filename. Can be NULL. To start with a blank file name
the string should end with a directory separator (this should be the common case).

* title: Title of the dialog.

* patterns: A list of semi-colon separated patterns to match. This should not contain any
whitespace characters. If a pattern contains the ‘/’ character, then it is treated as a MIME type
(e.g. ‘image/png’). Not all platforms support file patterns. If the native dialog does not provide
support, this parameter is ignored.

* mode: 0, or a combination of the following flags:

ALLEGRO_FILECHOOSER_FILE _MUST_EXIST

If supported by the native dialog, it will not allow entering new names, but just allow existing

files to be selected. Else it is ignored.
ALLEGRO_FILECHOOSER_SAVE

If the native dialog system has a different dialog for saving (for example one which allows

creating new directories), it is used. Else it is ignored.
ALLEGRO_FILECHOOSER_FOLDER

If there is support for a separate dialog to select a folder instead of a file, it will be used.
ALLEGRO_FILECHOOSER_PICTURES

If a different dialog is available for selecting pictures, it is used. Else it is ignored.
ALLEGRO_FILECHOOSER_SHOW_HIDDEN

If the platform supports it, also hidden files will be shown.
ALLEGRO_FILECHOOSER_MULTIPLE

If supported, allow selecting multiple files.

Returns:

A handle to the dialog which you can pass to al show native file dialog to display it, and from which
you then can query the results using al_get native_file dialog count and
al get native file dialog path. When you are done, call al destroy native file dialog on it.

If a dialog window could not be created then this function returns NULL.

308


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/dialog.c#L32
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/dialog.c#L43

36.6. al show native file dialog

36.6 al_show_native_file_dialog

bool al_show_native_file_dialog(ALLEGRO_DISPLAY xdisplay,
ALLEGRO_FILECHOOSER *dialog)

Source Code

Show the dialog window. The display may be NULL, otherwise the given display is treated as the
parent if possible.

This function blocks the calling thread until it returns, so you may want to spawn a thread with
al create_thread and call it from inside that thread.

Returns true on success, false on failure.

36.7 al_get native_file_dialog_count

int al_get_native_file_dialog_count(const ALLEGRO_FILECHOOSER *dialog)

Source Code

Returns the number of files selected, or O if the dialog was cancelled.

36.8 al get native file dialog path

const char *al_get_native_file_dialog_path(
const ALLEGRO_FILECHOOSER *dialog, size_t i)

Source Code

Returns one of the selected paths with index i. The index should range from 0 to the return value of
al get native file dialog count -1.

36.9 al_destroy_native_file_dialog

void al_destroy_native_file_dialog(ALLEGRO_FILECHOOSER *dialog)

Source Code

Frees up all resources used by the file dialog.

36.10 al show native _message box

int al_show_native_message_box (ALLEGRO_DISPLAY =*display,
char const xtitle, char const xheading, char const *text,
char const *buttons, int flags)

Source Code

Show a native GUI message box. This can be used for example to display an error message if creation
of an initial display fails. The display may be NULL, otherwise the given display is treated as the parent
if possible.

The message box will have a single “OK” button and use the style informative dialog boxes usually
have on the native system. If the buttons parameter is not NULL, you can instead specify the button
text in a string, with buttons separated by a vertical bar (|).

Note: buttons parameter is currently unimplemented on Windows.

309


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/dialog.c#L67
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/dialog.c#L76
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/dialog.c#L84
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/dialog.c#L95
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/dialog.c#L117

36. NATIVE DIALOGS SUPPORT

The flags available are:

ALLEGRO_MESSAGEBOX_WARN

The message is a warning. This may cause a different icon (or other effects).
ALLEGRO_MESSAGEBOX_ERROR

The message is an error.
ALLEGRO_MESSAGEBOX_QUESTION

The message is a question.
ALLEGRO_MESSAGEBOX_OK_CANCEL

Display a cancel button alongside the “OK” button. Ignored if buttons is not NULL.
ALLEGRO_MESSAGEBOX_YES_NO

Display Yes/No buttons instead of the “OK” button. Ignored if buttons is not NULL.

al show native message box may be called without Allegro being installed. This is useful to report an
error during initialisation of Allegro itself.

Returns:

* 0 if the dialog window was closed without activating a button.
* 1 if the OK or Yes button was pressed.
* 2 if the Cancel or No button was pressed.

If buttons is not NULL, the number of the pressed button is returned, starting with 1.
All of the remaining parameters must not be NULL.

If a message box could not be created then this returns 0, as if the window was dismissed without
activating a button.

Example:

int button = al_show_native_message_box(
display,
"Warning",
"Are you sure?”,
"If you click yes then you are confirming that \"Yes\" "
"is your response to the query which you have "
"generated by the action you took to open this
"message box.",
NULL,
ALLEGRO_MESSAGEBOX_YES_NO

);

n

36.11 al_open_native_text_log

ALLEGRO_TEXTLOG *al_open_native_text_log(char const *title, int flags)

Source Code

Opens a window to which you can append log messages with al append native text log. This can be
useful for debugging if you don’t want to depend on a console being available.

Use al _close native text log to close the window again.

The flags available are:

ALLEGRO_TEXTLOG_NO_CLOSE
Prevent the window from having a close button. Otherwise, if the close button is pressed, an
event is generated; see al_get native text log event source.

310


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/textlog.c#L39

36.12. al close native_ text log

ALLEGRO_TEXTLOG_MONOSPACE
Use a monospace font to display the text.

Returns NULL if there was an error opening the window, or if text log windows are not implemented
on the platform.

See also: al _append native text log, al close native text log

36.12 al_close_native_text_log

void al_close_native_text_log(ALLEGRO_TEXTLOG *textlog)

Source Code
Closes a message log window opened with al open_native text log earlier.
Does nothing if passed NULL.

See also: al open_native text log

36.13 al_append_native_text_log

void al_append_native_text_log(ALLEGRO_TEXTLOG *textlog,
char const xformat, ...)

Source Code

Appends a line of text to the message log window and scrolls to the bottom (if the line would not be
visible otherwise). This works like printf. A line is continued until you add a newline character.

If the window is NULL then this function will fall back to calling printf. This makes it convenient to
support logging to a window or a terminal.
36.14 al _get native text log event source

ALLEGRO_EVENT_SOURCE *al_get_native_text_log_event_source(

ALLEGRO_TEXTLOG *textlog)

Source Code

Get an event source for a text log window. The possible events are:

ALLEGRO_EVENT_NATIVE_DIALOG_CLOSE
The window was requested to be closed, either by pressing the close button or pressing Escape on
the keyboard. The user.datal field will hold a pointer to the ALLEGRO TEXTLOG which
generated the event. The user.data2 field will be 1 if the event was generated as a result of a key
press; otherwise it will be zero.

36.15 al get allegro native dialog version

uint32_t al_get_allegro_native_dialog_version(void)

Source Code

Returns the (compiled) version of the addon, in the same format as al_get allegro version.

311


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/textlog.c#L92
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/textlog.c#L135
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/textlog.c#L164
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/dialog.c#L155

36. NATIVE DIALOGS SUPPORT

36.16 Menus

Menus are implemented on Windows, X and OS X. Menus on X are implemented with GTK, and have a
special requirement: you must set the ALLEGRO_GTK_TOPLEVEL display flag prior to creating the
display which will have menus attached.

A menu can be attached to a single display window or popped up as a context menu. If you wish to use
the same menu on multiple displays or use a sub-menu as a context menu, you must make a copy via
al clone menu or al clone menu_ for popup.

Top level items in a non-popup menu must have at least one sub-item, or the behavior is undefined.

Each menu item can be given an ID of any 16-bit integer greater than zero. When a user clicks on a
menu item, an event will be generated only if it has an ID. This ID should be unique per menu; if you
duplicate IDs, then there will be no way for you to determine exactly which item generated the event.

There are many functions that take pos as a parameter used for locating a particular menu item. In
those cases, it represents one of two things: an ID or a zero-based index. Any value greater than zero
will always be treated as an ID. Anything else (including zero) will be considered an index based on
the absolute value. In other words, 0 is the first menu item, -1 is the second menu item, -2 is the third
menu item, and so on.

The event type is ALLEGRO_EVENT_MENU_CLICK. It contains three fields:

event.user.datal
event.user.data2
event.user.data3

id;
(intptr_t) display;
(intptr_t) menu;

The display and menu may be NULL if it was not possible to tell exactly which item generated the
event.

A basic example:

#define FILE_EXIT_ID 1

ALLEGRO_MENU *menu = al_create_menu();

ALLEGRO_MENU xfile_menu = al_create_menu();
al_append_menu_item(file_menu, "Exit”, FILE_EXIT_ID, ©, NULL, NULL);
al_append_menu_item(menu, "File"”, @, 0, NULL, file_menu);
al_set_display_menu(display, menu);

al_register_event_source(queue, al_get_default_menu_event_source());
al_wait_for_event(queue, &event);

if (event.type == ALLEGRO_EVENT_MENU_CLICK) {
if (event.user.datal == FILE_EXIT_ID) {
exit_program();

b

Because there is no “DISPLAY DESTROYED” event, you must call al set display_menu(display, NULL)
before destroying any display with a menu attached, to avoid leaking resources.

36.16.1 ALLEGRO_MENU
typedef struct ALLEGRO_MENU ALLEGRO_MENU;

Source Code

An opaque data type that represents a menu that contains menu items. Each of the menu items may
optionally include a sub-menu.

312


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/allegro5/allegro_native_dialog.h#L46

36.16. Menus

36.16.2 ALLEGRO_MENU_INFO

typedef struct ALLEGRO_MENU_INFO {

Source Code

A structure that defines how to create a complete menu system. For standard menu items, the
following format is used:

{ caption, id, flags, icon }
For special items, these macros are helpful:

ALLEGRO_START_OF_MENU(caption, id)
ALLEGRO_MENU_SEPARATOR
ALLEGRO_END_OF _MENU

A well-defined menu will begin with ALLEGRO_START_OF _MENU, contain one or more menu items, and
end with ALLEGRO_END_OF_MENU. A menu may contain sub-menus. An example:

ALLEGRO_MENU_INFO menu_info[] = {
ALLEGRO_START_OF_MENU("&File", 1),
{ "&0pen”, 2, 0, NULL 3},
ALLEGRO_START_OF_MENU("Open &Recent...”, 3),
{ "Recent 1", 4, 0, NULL },
{ "Recent 2", 5, 0, NULL },
ALLEGRO_END_OF _MENU,
ALLEGRO_MENU_SEPARATOR,
{ "E&xit", 6, 0, NULL },
ALLEGRO_END_OF _MENU,
ALLEGRO_START_OF_MENU("&Help"”, 7),
{"&About”, 8, @, NULL },
ALLEGRO_END_OF_MENU,
ALLEGRO_END_OF _MENU
}

ALLEGRO_MENU *menu = al_build_menu(menu_info);

If you prefer, you can build the menu without the structure by using al create_menu and
al insert menu_item.

See also: al_build menu

36.16.3 al_create_menu

ALLEGRO_MENU *al_create_menu(void)

Source Code

Creates a menu container that can hold menu items.
Returns NULL on failure.

Since: 5.1.0

See also: al_create_popup_menu, al_build menu

313


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/allegro5/allegro_native_dialog.h#L50
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L299

36. NATIVE DIALOGS SUPPORT

36.16.4 al_create_popup_menu
ALLEGRO_MENU *al_create_popup_menu(void)

Source Code

Creates a menu container for popup menus. Only the root (outermost) menu should be created with
this function. Sub menus of popups should be created with al_create menu.

Returns NULL on failure.
Since: 5.1.0

See also: al create_menu, al build menu

36.16.5 al_build_menu
ALLEGRO_MENU #*al_build_menu(ALLEGRO_MENU_INFO *info)

Source Code
Builds a menu based on the specifications of a sequence of ALLEGRO_MENU_INFO elements.

Returns a pointer to the root ALLEGRO_MENU, or NULL on failure. To gain access to the other menus and
items, you will need to search for them using al find menu_item.

Since: 5.1.0
See also: ALLEGRO_MENU _INFO, al create_menu, al create_popup _menu

36.16.6 al_append_menu_item

int al_append_menu_item(ALLEGRO_MENU xparent, char const *title, uintl16_t id,
int flags, ALLEGRO_BITMAP xicon, ALLEGRO_MENU xsubmenu)

Source Code
Appends a menu item to the end of the menu. See al_insert menu_item for more information.
Since: 5.1.0

See also: al_insert menu_item, al remove menu_item

36.16.7 al_insert_menu_item

int al_insert_menu_item(ALLEGRO_MENU *parent, int pos, char const *title,
uint16_t id, int flags, ALLEGRO_BITMAP *icon, ALLEGRO_MENU xsubmenu)

Source Code

Inserts a menu item at the spot specified. See the introductory text for a detailed explanation of how
the pos parameter is interpreted.

The parent menu can be a popup menu or a regular menu. To underline one character in the title,
prefix it with an ampersand.

The flags can be any combination of:

ALLEGRO_MENU_ITEM_DISABLED
The item is “grayed out” and cannot be selected.

ALLEGRO_MENU_ITEM_CHECKBOX
The item is a check box. This flag can only be set at the time the menu is created. If a check box
is clicked, it will automatically be toggled.

314


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L318
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L356
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L368
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L380

36.16. Menus

ALLEGRO_MENU_ITEM_CHECKED
The item is checked. If set, ALLEGRO_MENU ITEM_ CHECKBOX will automatically be set as well.

The icon is not yet supported.

The submenu parameter indicates that this item contains a child menu. The child menu must have
previously been created with al_create_menu, and not be associated with any other menu.

Returns true on success.
Since: 5.1.0

See also: al_append _menu_item, al remove menu_item

36.16.8 al remove _menu_item

bool al_remove_menu_item(ALLEGRO_MENU *menu, int pos)

Source Code

Removes the specified item from the menu and destroys it. If the item contains a sub-menu, it too is
destroyed. Any references to it are invalidated. If you want to preserve that sub-menu, you should first
make a copy with al_clone_menu.

This is safe to call on a menu that is currently being displayed.
Returns true if an item was removed.
Since: 5.1.0

See also: al append menu item, al_insert menu_item, al_destroy menu

36.16.9 al_clone_menu

ALLEGRO_MENU *al_clone_menu(ALLEGRO_MENU *menu)

Source Code

Makes a copy of a menu so that it can be reused on another display. The menu being cloned can be
anything: a regular menu, a popup menu, or a sub-menu.

Returns the cloned menu.
Since: 5.1.0

See also: al _clone _menu_for popup

36.16.10 al _clone_menu_for_popup

ALLEGRO_MENU *al_clone_menu_for_popup(ALLEGRO_MENU *menu)

Source Code
Exactly like al clone_menu, except that the copy is for a popup menu.
Since: 5.1.0

See also: al _clone menu

315


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L447
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L342
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L349

36. NATIVE DIALOGS SUPPORT

36.16.11 al_destroy_menu
void al_destroy_menu(ALLEGRO_MENU *menu)

Source Code

Destroys an entire menu, including its sub-menus. Any references to it or a sub-menu are no longer
valid. It is safe to call this on a menu that is currently being displayed.

Since: 5.1.0

See also: al remove menu_item

36.16.12 al_get menu_item_caption

const char *al_get_menu_item_caption(ALLEGRO_MENU *menu, int pos)

Source Code

Returns the caption associated with the menu item. It is valid as long as the caption is not modified.
Returns NULL if the item was not found.

Since: 5.1.0

See also: al_set menu_item_caption

36.16.13 al_set_menu_item_caption

void al_set_menu_item_caption(ALLEGRO_MENU *menu, int pos, const char xcaption)

Source Code

Updates the menu item caption with the new caption. This will invalidate any previous calls to
al get menu_item caption.

Since: 5.1.0

See also: al_get menu_item_caption

36.16.14 al _get menu_item_flags
int al_get_menu_item_flags(ALLEGRO_MENU *menu, int pos)

Source Code

Returns the currently set flags. See al _insert menu_item for a description of the available flags.
Returns -1 if the item was not found.

Since: 5.1.0

See also: al _set menu_item flags, al toggle menu_item flags

36.16.15 al _set menu_item_ flags

void al_set_menu_item_flags(ALLEGRO_MENU *menu, int pos, int flags)

Source Code
Updates the menu item’s flags. See al insert menu_item for a description of the available flags.
Since: 5.1.0

See also: al_get menu_item_flags, al toggle menu item flags

316


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L628
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L501
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L514
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L531
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L543

36.16. Menus

36.16.16 al_toggle menu_item_flags
int al_toggle_menu_item_flags(ALLEGRO_MENU *menu, int pos, int flags)

Source Code

Toggles the specified menu item’s flags. See al_insert menu_item for a description of the available
flags.

Returns a bitfield of only the specified flags that are set after the toggle. A flag that was not toggled
will not be returned, even if it is set. Returns -1 if the id is invalid.

Since: 5.1.0
Unstable API: Redundant with al_get/set_menu_item_flags.
See also: al get menu_item flags, al set menu item_flags

36.16.17 al_get _menu_item_icon

ALLEGRO_BITMAP *al_get_menu_item_icon(ALLEGRO_MENU #*menu, int pos)

Source Code

Returns the icon associated with the menu. It is safe to draw to the returned bitmap, but you must call
al set menu_item icon in order for the changes to be applied.

Returns NULL if the item was not found or if it has no icon.
Since: 5.1.0

See also: al_set menu_item icon

36.16.18 al_set_menu_item_icon

void al_set_menu_item_icon(ALLEGRO_MENU *menu, int pos, ALLEGRO_BITMAP *icon)

Source Code

Sets the icon for the specified menu item. The menu assumes ownership of the ALLEGRO_BITMAP and
may invalidate the pointer, so you must clone it if you wish to continue using it.

If a video bitmap is passed, it will automatically be converted to a memory bitmap, so it is preferable to
pass a memory bitmap.

Since: 5.1.0

See also: al_get menu_item icon, al_clone bitmap

36.16.19 al_find_menu
ALLEGRO_MENU *al_find_menu(ALLEGRO_MENU *haystack, uint16_t id)

Source Code

Searches in the haystack menu for any submenu with the given id. (Note that this only represents a
literal ID, and cannot be used as an index.)

Returns the menu, if found. Otherwise returns NULL.
Since: 5.1.0

See also: al_find menu_item

317


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L569
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L596
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L609
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L464

36. NATIVE DIALOGS SUPPORT

36.16.20 al_find_menu_item

bool al_find_menu_item(ALLEGRO_MENU *haystack, uint16_t id, ALLEGRO_MENU x*menu,
int *index)

Source Code

Searches in the haystack menu for an item with the given id. (Note that this only represents a literal
ID, and cannot be used as an index.)

If menu and index are not NULL, they will be set as the parent menu containing the item and the
zero-based (positive) index of the item. (If the menu item was not found, then their values are
undefined.)

Returns true if the menu item was found.
Since: 5.1.0

See also: al_find menu

36.16.21 al _get _default menu_event_source

ALLEGRO_EVENT_SOURCE *al_get_default_menu_event_source(void)

Source Code

Returns the default event source used for menu clicks. If a menu was not given its own event source
via al_enable menu_event source, then it will use this default source.

Since: 5.1.0

See also: al register event source, al enable menu event source, al_disable menu event source

36.16.22 al enable_menu_event_source

ALLEGRO_EVENT_SOURCE *al_enable_menu_event_source(ALLEGRO_MENU *menu)

Source Code

Enables a unique event source for this menu. It and all of its sub-menus will use this event source. (It
is safe to call this multiple times on the same menu.)

Returns the event source.
Since: 5.1.0

See also: al_register event source, al _get default menu_event source, al_disable_menu_event_source

36.16.23 al_disable_menu_event_source

void al_disable_menu_event_source(ALLEGRO_MENU *menu)

Source Code
Disables a unique event source for the menu, causing it to use the default event source.
Since: 5.1.0

See also: al_get default menu_event source, al enable menu_event source

318


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L474
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L671
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L678
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L692

36.16. Menus

36.16.24 al_get_display_menu

ALLEGRO_MENU *al_get_display_menu(ALLEGRO_DISPLAY =*display)

Source Code
Returns the menu associated with the display, or NULL if it does not have a menu.
Since: 5.1.0

See also: al_set display_menu

36.16.25 al_set_display_menu
bool al_set_display_menu(ALLEGRO_DISPLAY *display, ALLEGRO_MENU *menu)

Source Code

Associates the menu with the display and shows it. If there was a previous menu associated with the
display, it will be destroyed. If you don’t want that to happen, you should first remove the menu with
al remove_ display menu.

If the menu is already attached to a display, it will not be attached to the new display. If menu is NULL,
the current menu will still be destroyed.

Note: Attaching a menu may cause the window as available to your application to be
resized! You should listen for a resize event, check how much space was lost, and resize the
window accordingly if you want to maintain your window’s prior size.

Returns true if successful.
Since: 5.1.0

See also: al_create_menu, al remove_display menu

36.16.26 al _popup_menu
bool al_popup_menu(ALLEGRO_MENU *popup, ALLEGRO_DISPLAY =*display)

Source Code

Displays a context menu next to the mouse cursor. The menu must have been created with
al_create_popup _menu. It generates events just like a regular display menu does. It is possible that the
menu will be canceled without any selection being made.

The display parameter indicates which window the menu is associated with (when you process the
menu click event), but does not actually affect where the menu is located on the screen.

Returns true if the context menu was displayed.

Note: On Linux this function will fail if any of the mouse keys are held down. Le. it will
only reliably work if you handle it in ALLEGRO_MOUSE_BUTTON_UP events and even then only
if that event corresponds to the final mouse button that was pressed.

Since: 5.1.0

See also: al_create_popup_menu

319


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L704
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L722
https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L805

36. NATIVE DIALOGS SUPPORT

36.16.27 al_remove_display_menu

ALLEGRO_MENU *al_remove_display_menu(ALLEGRO_DISPLAY =*display)

Source Code

Detaches the menu associated with the display and returns it. The menu can then be used on a
different display.

If you simply want to destroy the active menu, you can call al_set display menu with a NULL menu.
Since: 5.1.0

See also: al set display menu

320


https://github.com/liballeg/allegro5/blob/master/addons/native_dialog/menu.c#L829

37

PhysicsFS integration

PhysicsFS is a library to provide abstract access to various archives. See http://icculus.org/physfs/
for more information.

This addon makes it possible to read and write files (on disk or inside archives) using PhysicsFS,
through Allegro’s file I/O API. For example, that means you can use the Image I/0 addon to load
images from .zip files.

You must set up PhysicsFS through its own API. When you want to open an ALLEGRO_FILE using
PhysicsFS, first call al_set physfs_file interface, then al fopen or another function that calls al_fopen.

These functions are declared in the following header file. Link with allegro physfs.

#include <allegro5/allegro_physfs.h>

37.1 al_set_physfs_file_interface
void al_set_physfs_file_interface(void)

Source Code

This function sets both the ALLEGRO FILE INTERFACE and ALLEGRO_FS INTERFACE for the calling
thread.

Subsequent calls to al fopen on the calling thread will be handled by PHYSFS open(). Operations on
the files returned by al_fopen will then be performed through PhysicsFS. Calls to the Allegro filesystem
functions, such as al read directory or al create fs entry, on the calling thread will be diverted to
PhysicsFS.

To remember and restore another file I/0 backend, you can use al_store_state/al restore_state.

Note: due to an oversight, this function differs from al set new file interface and
al set standard file interface which only alter the current ALLEGRO FILE INTERFACE.

Note: PhysFS does not support the text-mode reading and writing, which means that
Windows-style newlines will not be preserved.

See also: al_set new file interface.
37.2 al_get_allegro_physfs_version
uint32_t al_get_allegro_physfs_version(void)

Source Code

Returns the (compiled) version of the addon, in the same format as al_get allegro version.

321


http://icculus.org/physfs/
https://github.com/liballeg/allegro5/blob/master/addons/physfs/a5_physfs.c#L295
https://github.com/liballeg/allegro5/blob/master/addons/physfs/a5_physfs.c#L304




38

Primitives addon

These functions are declared in the following header file. Link with allegro_primitives.
#include <allegro5/allegro_primitives.h>

38.1 General

38.1.1 al_get_allegro_primitives_version

uint32_t al_get_allegro_primitives_version(void)

Source Code

Returns the (compiled) version of the addon, in the same format as al_get allegro version.

38.1.2 al_init_primitives_addon

bool al_init_primitives_addon(void)

Source Code
Initializes the primitives addon.
Returns: True on success, false on failure.

See also: al_shutdown_primitives_addon

38.1.3 al shutdown_primitives_addon

void al_shutdown_primitives_addon(void)

Source Code

Shut down the primitives addon. This is done automatically at program exit, but can be called any
time the user wishes as well.

See also: al _init primitives_addon

38.2 High level drawing routines

High level drawing routines encompass the most common usage of this addon: to draw geometric
primitives, both smooth (variations on the circle theme) and piecewise linear. Outlined primitives
support the concept of thickness with two distinct modes of output: hairline lines and thick lines.
Hairline lines are specifically designed to be exactly a pixel wide, and are commonly used for drawing
outlined figures that need to be a pixel wide. Hairline thickness is designated as thickness less than or

323


https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L151
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L46
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L60

38. PRIMITIVES ADDON

equal to 0. Unfortunately, the exact rasterization rules for drawing these hairline lines vary from one
video card to another, and sometimes leave gaps where the lines meet. If that matters to you, then you
should use thick lines. In many cases, having a thickness of 1 will produce 1 pixel wide lines that look
better than hairline lines. Obviously, hairline lines cannot replicate thicknesses greater than 1. Thick
lines grow symmetrically around the generating shape as thickness is increased.

38.2.1 Pixel-precise output

While normally you should not be too concerned with which pixels are displayed when the high level
primitives are drawn, it is nevertheless possible to control that precisely by carefully picking the
coordinates at which you draw those primitives.

To be able to do that, however, it is critical to understand how GPU cards convert shapes to pixels.
Pixels are not the smallest unit that can be addressed by the GPU. Because the GPU deals with floating
point coordinates, it can in fact assign different coordinates to different parts of a single pixel. To a
GPU, thus, a screen is composed of a grid of squares that have width and length of 1. The top left
corner of the top left pixel is located at (0, 0). Therefore, the center of that pixel is at (0.5, 0.5). The
basic rule that determines which pixels are associated with which shape is then as follows: a pixel is
treated to belong to a shape if the pixel’s center is located in that shape. The figure below illustrates
the above concepts:

0 1 2 3 0 1 2 3

(0.5, 0.5)

Lol 1]+

Figure 38.1: Diagram showing a how pixel output is calculated by the GPU given the mathematical descrip-
tion of several shapes.

This figure depicts three shapes drawn at the top left of the screen: an orange and green rectangles
and a purple circle. On the left are the mathematical descriptions of pixels on the screen and the
shapes to be drawn. On the right is the screen output. Only a single pixel has its center inside the
circle, and therefore only a single pixel is drawn on the screen. Similarly, two pixels are drawn for the
orange rectangle. Since there are no pixels that have their centers inside the green rectangle, the
output image has no green pixels.

Here is a more practical example. The image below shows the output of this code:

/* blue vertical line */

al_draw_line(0.5, 9, 0.5, 6, color_blue, 1);
/* red horizontal line */

al_draw_line(2, 1, 6, 1, color_red, 2);

324



38.2. High level drawing routines

/* green filled rectangle */
al_draw_filled_rectangle(3, 4, 5, 5, color_green);

/* purple outlined rectangle *x/

al_draw_rectangle(2.5, 3.5, 5.5, 5.5, color_purple, 1);

0 2 4 6
01 X X
+ 1+ ]+ |+ + ]|+
: @ @—
+ |+ |+ |+ |+ ]+
21
+
]
| | &A-+-1-+-1-+
41— —@ L
+ |+ |+ ]+ |4
: i &1
+ | + | +-t-+-|-+-+-&
6_
y y

Figure 38.2: Diagram showing a practical example of pixel output resulting from the invocation of several
primitives addon functions.

It can be seen that lines are generated by making a rectangle based on the dashed line between the two
endpoints. The thickness causes the rectangle to grow symmetrically about that generating line, as can
be seen by comparing the red and blue lines. Note that to get proper pixel coverage, the coordinates
passed to the al_draw_line had to be offset by 0.5 in the appropriate dimensions.

Filled rectangles are generated by making a rectangle between the endpoints passed to the
al_draw_filled_rectangle.

Outlined rectangles are generated by symmetrically expanding an outline of a rectangle. With a
thickness of 1, as depicted in the diagram, this means that an offset of 0.5 is needed for both sets of
endpoint coordinates to exactly line up with the pixels of the display raster.

The above rules only apply when multisampling is turned off. When multisampling is turned on, the
area of a pixel that is covered by a shape is taken into account when choosing what color to draw there.
This also means that shapes no longer have to contain the pixel’s center to affect its color. For example,
the green rectangle in the first diagram may in fact be drawn as two (or one) semi-transparent pixels.
The advantages of multisampling is that slanted shapes will look smoother because they will not have
jagged edges. A disadvantage of multisampling is that it may make vertical and horizontal edges
blurry. While the exact rules for multisampling are unspecified, and may vary from GPU to GPU, it is
usually safe to assume that as long as a pixel is either completely covered by a shape or completely not
covered, then the shape edges will be sharp. The offsets used in the second diagram were chosen so
that this is the case: if you use those offsets, your shapes (if they are oriented the same way as they are
on the diagram) should look the same whether multisampling is turned on or off.

38.2.2 al draw line

void al_draw_line(float x1, float y1, float x2, float y2,
ALLEGRO_COLOR color, float thickness)

325



38. PRIMITIVES ADDON

Source Code
Draws a line segment between two points.

Parameters:

* x1,y1, x2, y2 - Start and end points of the line
* color - Color of the line
* thickness - Thickness of the line, pass <= @ to draw hairline lines

See also: al_draw_soft_line

38.2.3 al_draw_triangle
void al_draw_triangle(float x1, float y1, float x2, float y2,
float x3, float y3, ALLEGRO_COLOR color, float thickness)
Source Code
Draws an outlined triangle.
Parameters:
* x1,y1, x2, y2, X3, y3 - Three points of the triangle

* color - Color of the triangle
* thickness - Thickness of the lines, pass <= @ to draw hairline lines

See also: al_draw filled triangle, al draw_soft_triangle

38.2.4 al_draw_filled_triangle
void al_draw_filled_triangle(float x1, float y1, float x2, float y2,
float x3, float y3, ALLEGRO_COLOR color)
Source Code
Draws a filled triangle.

Parameters:

* x1,y1, x2, y2, X3, y3 - Three points of the triangle
* color - Color of the triangle

See also: al draw_triangle

38.2.5 al_draw_rectangle
void al_draw_rectangle(float x1, float yl1, float x2, float y2,
ALLEGRO_COLOR color, float thickness)
Source Code
Draws an outlined rectangle.

Parameters:

* x1, y1, x2, y2 - Upper left and lower right points of the rectangle
* color - Color of the rectangle
* thickness - Thickness of the lines, pass <= @ to draw hairline lines

See also: al _draw filled rectangle, al draw_rounded_rectangle

326


https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L77
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L122
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L335
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L357

38.2. High level drawing routines

38.2.6 al_draw_filled_rectangle

void al_draw_filled_rectangle(float x1, float y1, float x2, float y2,
ALLEGRO_COLOR color)

Source Code
Draws a filled rectangle.

Parameters:

* x1,y1, x2, y2 - Upper left and lower right points of the rectangle
* color - Color of the rectangle

See also: al draw_rectangle, al draw _filled rounded rectangle

38.2.7 al_draw_rounded_rectangle

void al_draw_rounded_rectangle(float x1, float y1, float x2, float y2,
float rx, float ry, ALLEGRO_COLOR color, float thickness)

Source Code
Draws an outlined rounded rectangle.

Parameters:

* x1,y1, x2, y2 - Upper left and lower right points of the rectangle
* color - Color of the rectangle
* rx, ry - The radii of the round
* thickness - Thickness of the lines, pass <= @ to draw hairline lines

See also: al _draw filled rounded rectangle, al draw_rectangle

38.2.8 al draw filled_rounded_rectangle

void al_draw_filled_rounded_rectangle(float x1, float y1, float x2, float y2,
float rx, float ry, ALLEGRO_COLOR color)

Source Code
Draws an filled rounded rectangle.

Parameters:

* x1, yl1, x2, y2 - Upper left and lower right points of the rectangle
* color - Color of the rectangle
* rx, ry - The radii of the round

See also: al draw_rounded rectangle, al draw filled rectangle

327


https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L402
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L851
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L949

38. PRIMITIVES ADDON

38.2.9 al_calculate_arc

void al_calculate_arc(float* dest, int stride, float cx, float cy,
float rx, float ry, float start_theta, float delta_theta, float thickness,
int num_points)

Source Code

When thickness <= 0 this function computes positions of num_points regularly spaced points on an
elliptical arc. When thickness > 0 this function computes two sets of points, obtained as follows: the
first set is obtained by taking the points computed in the thickness <= @ case and shifting them by
thickness / 2 outward, in a direction perpendicular to the arc curve. The second set is the same, but
shifted thickness / 2 inward relative to the arc. The two sets of points are interleaved in the
destination buffer (i.e. the first pair of points will be collinear with the arc center, the first point of the
pair will be farther from the center than the second point; the next pair will also be collinear, but at a
different angle and so on).

The destination buffer dest is interpreted as a set of regularly spaced pairs of floats, each pair holding
the coordinates of the corresponding point on the arc. The two floats in the pair are adjacent, and the
distance (in bytes) between the addresses of the first float in two successive pairs is stride. For
example, if you have a tightly packed array of floats with no spaces between pairs, then stride will be
exactly 2 * sizeof(float).

Example with thickness <= 0:

const int num_points = 4;
float points[num_points][2];

al_calculate_arc(&points[0][0], 2 * sizeof(float), 0, 0, 10, 10, 0, ALLEGRO_PI / 2, 0, num_points);

assert((int)points[0][0] == 10);
assert((int)points[0][1] == 0);

assert((int)points[num_points - 1][0] == 0);
assert((int)points[num_points - 1][1] == 10);

Example with thickness > 0:

const int num_points = 4;
float points[num_points * 2][2];

al_calculate_arc(&points[0][0], 2 * sizeof(float), 0, 0, 10, 10, 0, ALLEGRO_PI / 2, 2, num_points);

assert((int)points[0][0] == 11);
assert((int)points[0][1] == 0);
assert((int)points[1][0] == 9);
assert((int)points[11[1] == 0);

assert((int)points[(num_points - 1) * 2][0] == 0);
assert((int)points[(num_points - 1) x 2J[1] == 11);
assert((int)points[ (num_points - 1) x 2 + 1][0] == 0);
assert((int)points[(num_points - 1) x 2 + 1]J[1] == 9);

Parameters:

* dest - The destination buffer

* stride - Distance (in bytes) between starts of successive pairs of points
* cx, cy - Center of the arc

* rx, ry - Radii of the arc

328


https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L423

38.2. High level drawing routines

* start_theta - The initial angle from which the arc is calculated in radians

* delta_theta - Angular span of the arc in radians (pass a negative number to switch direction)
* thickness - Thickness of the arc

* num_points - The number of points to calculate

See also: al_draw_arc, al_calculate_spline, al calculate_ribbon

38.2.10 al_draw_pieslice

void al_draw_pieslice(float cx, float cy, float r, float start_theta,
float delta_theta, ALLEGRO_COLOR color, float thickness)

Source Code
Draws a pieslice (outlined circular sector).

Parameters:

* cx, cy - Center of the pieslice

* r - Radius of the pieslice

* color - Color of the pieslice

* start_theta - The initial angle from which the pieslice is drawn in radians

* delta_theta - Angular span of the pieslice in radians (pass a negative number to switch direction)
* thickness - Thickness of the circle, pass <= @ to draw hairline pieslice

Since: 5.0.6, 5.1.0

See also: al draw filled pieslice

38.2.11 al draw filled pieslice

void al_draw_filled_pieslice(float cx, float cy, float r, float start_theta,
float delta_theta, ALLEGRO_COLOR color)

Source Code
Draws a filled pieslice (filled circular sector).

Parameters:

* cx, cy - Center of the pieslice

* r - Radius of the pieslice

* color - Color of the pieslice

* start_theta - The initial angle from which the pieslice is drawn in radians

* delta_theta - Angular span of the pieslice in radians (pass a negative number to switch direction)

Since: 5.0.6, 5.1.0

See also: al draw_pieslice

38.2.12 al _draw_ellipse
void al_draw_ellipse(float cx, float cy, float rx, float ry,
ALLEGRO_COLOR color, float thickness)

Source Code
Draws an outlined ellipse.

Parameters:

329


https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L504
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L660
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L691

38. PRIMITIVES ADDON

* cx, cy - Center of the ellipse

* rx, ry - Radii of the ellipse

* color - Color of the ellipse

* thickness - Thickness of the ellipse, pass <= 0 to draw a hairline ellipse

See also: al _draw filled ellipse, al draw_circle

38.2.13 al_draw filled_ellipse

void al_draw_filled_ellipse(float cx, float cy, float rx, float ry,
ALLEGRO_COLOR color)

Source Code
Draws a filled ellipse.

Parameters:

* ¢x, cy - Center of the ellipse
* X, ry - Radii of the ellipse
* color - Color of the ellipse

See also: al draw ellipse, al draw filled circle

38.2.14 al_draw_circle

void al_draw_circle(float cx, float cy, float r, ALLEGRO_COLOR color,
float thickness)

Source Code
Draws an outlined circle.

Parameters:

* ¢x, cy - Center of the circle

* r - Radius of the circle

* color - Color of the circle

* thickness - Thickness of the circle, pass <= @ to draw a hairline circle

See also: al draw filled circle, al draw_ellipse

38.2.15 al_draw_filled_circle
void al_draw_filled_circle(float cx, float cy, float r, ALLEGRO_COLOR color)

Source Code
Draws a filled circle.

Parameters:

* cx, cy - Center of the circle
e r - Radius of the circle
¢ color - Color of the circle

See also: al_draw circle, al draw_filled_ellipse

330


https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L743
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L778
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L786

38.2. High level drawing routines

38.2.16 al_draw_arc

void al_draw_arc(float cx, float cy, float r, float start_theta,
float delta_theta, ALLEGRO_COLOR color, float thickness)

Source Code
Draws an arc.

Parameters:

* cx, cy - Center of the arc

* r - Radius of the arc

* color - Color of the arc

* start _theta - The initial angle from which the arc is calculated in radians

* delta_theta - Angular span of the arc in radians (pass a negative number to switch direction)
* thickness - Thickness of the arc, pass <= @ to draw hairline arc

See also: al_calculate arc, al draw _elliptical arc

38.2.17 al_draw_elliptical_arc

void al_draw_elliptical_arc(float cx, float cy, float rx, float ry, float start_theta,
float delta_theta, ALLEGRO_COLOR color, float thickness)

Source Code
Draws an elliptical arc.

Parameters:

* cx, cy - Center of the arc

* rx, ry - Radii of the arc

* color - Color of the arc

* start_theta - The initial angle from which the arc is calculated in radians

* delta_theta - Angular span of the arc in radians (pass a negative number to switch direction)
* thickness - Thickness of the arc, pass <= @ to draw hairline arc

Since: 5.0.6, 5.1.0

See also: al _calculate arc, al draw arc

38.2.18 al_calculate_spline

void al_calculate_spline(float* dest, int stride, float points[8],
float thickness, int num_segments)

Source Code

Calculates a Bézier spline given 4 control points. If thickness <= 0, then num_segments of points are
required in the destination, otherwise twice as many are needed. The destination buffer should consist
of regularly spaced (by distance of stride bytes) doublets of floats, corresponding to x and y
coordinates of the vertices.

Parameters:

* dest - The destination buffer
* stride - Distance (in bytes) between starts of successive pairs of coordinates
* points - An array of 4 pairs of coordinates of the 4 control points

331


https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L843
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L793
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L1000

38. PRIMITIVES ADDON

* thickness - Thickness of the spline ribbon
* num_segments - The number of points to calculate

See also: al_draw_spline, al calculate_arc, al calculate_ribbon

38.2.19 al_draw_spline
void al_draw_spline(float points[8], ALLEGRO_COLOR color, float thickness)

Source Code
Draws a Bézier spline given 4 control points.

Parameters:

* points - An array of 4 pairs of coordinates of the 4 control points
* color - Color of the spline
* thickness - Thickness of the spline, pass <= 0 to draw a hairline spline

See also: al_calculate spline

38.2.20 al_calculate_ribbon

void al_calculate_ribbon(float* dest, int dest_stride, const float *points,
int points_stride, float thickness, int num_segments)

Source Code

Calculates a ribbon given an array of points. The ribbon will go through all of the passed points. If
thickness <= 0, then num_segments of points are required in the destination buffer, otherwise twice as
many are needed. The destination and the points buffer should consist of regularly spaced doublets of
floats, corresponding to x and y coordinates of the vertices.

Parameters:

* dest - Pointer to the destination buffer

* dest_stride - Distance (in bytes) between starts of successive pairs of coordinates in the
destination buffer

* points - An array of pairs of coordinates for each point

* points_stride - Distance (in bytes) between starts of successive pairs of coordinates in the points
buffer

¢ thickness - Thickness of the spline ribbon

* num_segments - The number of points to calculate

See also: al draw ribbon, al calculate_arc, al calculate spline

38.2.21 al_draw_ribbon

void al_draw_ribbon(const float *points, int points_stride, ALLEGRO_COLOR color,
float thickness, int num_segments)

Source Code

Draws a ribbon given an array of points. The ribbon will go through all of the passed points. The
points buffer should consist of regularly spaced doublets of floats, corresponding to x and y coordinates
of the vertices.

Parameters:

332


https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L1079
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L1123
https://github.com/liballeg/allegro5/blob/master/addons/primitives/high_primitives.c#L1245

38.3. Low level drawing routines

* points - An array of coordinate pairs (x and y) for each point

* points_stride - Distance (in bytes) between starts of successive pairs of coordinates in the points
buffer

* color - Color of the spline

* thickness - Thickness of the spline, pass <= @ to draw hairline spline

* num_segments - The number of segments

See also: al_calculate_ribbon

38.3 Low level drawing routines

Low level drawing routines allow for more advanced usage of the addon, allowing you to pass
arbitrary sequences of vertices to draw to the screen. These routines also support using textures on the
primitives with the following restrictions:

For maximum portability, you should only use textures that have dimensions that are a power of two,
as not every videocard supports textures of different sizes completely. This warning is relaxed,
however, if the texture coordinates never exit the boundaries of a single bitmap (i.e. you are not having
the texture repeat/tile). As long as that is the case, any texture can be used safely. Sub-bitmaps work
as textures, but cannot be tiled.

Some platforms also dictate a minimum texture size, which means that textures smaller than that size
will not tile properly. The minimum size that will work on all platforms is 32 by 32.

A note about pixel coordinates. In OpenGL the texture coordinate (0, 0) refers to the top left corner of
the pixel. This confuses some drivers, because due to rounding errors the actual pixel sampled might
be the pixel to the top and/or left of the (0, 0) pixel. To make this error less likely it is advisable to
offset the texture coordinates you pass to the al draw_prim by (0.5, 0.5) if you need precise pixel
control. E.g. to refer to pixel (5, 10) you’d set the u and v to 5.5 and 10.5 respectively.

See also: Pixel-precise output

38.3.1 al draw_prim

int al_draw_prim(const voidx vtxs, const ALLEGRO_VERTEX_DECL* decl,
ALLEGRO_BITMAP* texture, int start, int end, int type)

Source Code
Draws a subset of the passed vertex array.

Parameters:

* texture - Texture to use, pass NULL to use only color shaded primitves

* vtxs - Pointer to an array of vertices

* decl - Pointer to a vertex declaration. If set to NULL, the vertices are assumed to be of the
ALLEGRO_VERTEX type

* start - Start index of the subset of the vertex array to draw

* end - One past the last index of the subset of the vertex array to draw

* type - A member of the ALLEGRO PRIM_TYPE enumeration, specifying what kind of primitive to
draw

Returns: Number of primitives drawn

For example to draw a textured triangle you could use:

ALLEGRO_COLOR white = al_map_rgb_f(1, 1, 1);
ALLEGRO_VERTEX v[] = {
{.x =128, .y =0, .z =0, .color = white, .u = 128, .v = 0},

333


https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L68

38. PRIMITIVES ADDON

{.x =0, .y =256, .z =0, .color = white, .u =0, .v = 2563},
{.x = 256, .y = 256, .z = 0, .color = white, .u = 256, .v = 256}};
al_draw_prim(v, NULL, texture, @, 3, ALLEGRO_PRIM_TRIANGLE_LIST);

See also: ALLEGRO_VERTEX, ALLEGRO_PRIM_TYPE, ALLEGRO_VERTEX DECL,
al draw_indexed prim

38.3.2 al draw_indexed_prim

int al_draw_indexed_prim(const void* vtxs, const ALLEGRO_VERTEX_DECL* decl,
ALLEGRO_BITMAP* texture, const int* indices, int num_vtx, int type)

Source Code

Draws a subset of the passed vertex array. This function uses an index array to specify which vertices to
use.

Parameters:

* texture - Texture to use, pass NULL to use only color shaded primitves

* vtxs - Pointer to an array of vertices

* decl - Pointer to a vertex declaration. If set to NULL, the vtxs are assumed to be of the
ALLEGRO VERTEX type

* indices - An array of indices into the vertex array

* num_vtx - Number of indices from the indices array you want to draw

* type - A member of the ALLEGRO PRIM_ TYPE enumeration, specifying what kind of primitive to
draw

Returns: Number of primitives drawn

See also: ALLEGRO_VERTEX, ALLEGRO PRIM_TYPE, ALLEGRO_VERTEX_DECL, al_draw_prim

38.3.3 al _draw_vertex_buffer

int al_draw_vertex_buffer (ALLEGRO_VERTEX_BUFFER* vertex_buffer,
ALLEGRO_BITMAPx texture, int start, int end, int type)

Source Code

Draws a subset of the passed vertex buffer. The vertex buffer must not be locked. Additionally, to draw
onto memory bitmaps or with memory bitmap textures the vertex buffer must support reading (i.e. it
must be created with the ALLEGRO_PRIM_BUFFER_READWRITE).

Parameters:

» vertex_buffer - Vertex buffer to draw

* texture - Texture to use, pass NULL to use only color shaded primitves

e start - Start index of the subset of the vertex buffer to draw

* end - One past the last index of the subset of the vertex buffer to draw

* type - A member of the ALLEGRO PRIM_TYPE enumeration, specifying what kind of primitive to
draw

Returns: Number of primitives drawn
Since: 5.1.3
See also: ALLEGRO_VERTEX BUFFER, ALLEGRO PRIM TYPE

334


https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L104
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L501

38.3. Low level drawing routines

38.3.4 al_draw_indexed_buffer

int al_draw_indexed_buffer (ALLEGRO_VERTEX_BUFFER* vertex_buffer,
ALLEGRO_BITMAP* texture, ALLEGRO_INDEX_BUFFER* index_buffer,
int start, int end, int type)

Source Code

Draws a subset of the passed vertex buffer. This function uses an index buffer to specify which vertices
to use. Both buffers must not be locked. Additionally, to draw onto memory bitmaps or with memory
bitmap textures both buffers must support reading (i.e. they must be created with the
ALLEGRO_PRIM_BUFFER_READWRITE).

Parameters:

» vertex_buffer - Vertex buffer to draw

* texture - Texture to use, pass NULL to use only color shaded primitves

* index buffer - Index buffer to use

* start - Start index of the subset of the vertex buffer to draw

* end - One past the last index of the subset of the vertex buffer to draw

* type - A member of the ALLEGRO PRIM TYPE enumeration, specifying what kind of primitive to
draw. Note that ALLEGRO_PRIM_LINE_LOOP and ALLEGRO_PRIM_POINT LIST are not
supported.

Returns: Number of primitives drawn
Since: 5.1.8
See also: ALLEGRO_VERTEX BUFFER, ALLEGRO INDEX BUFFER, ALLEGRO PRIM TYPE

38.3.5 al_draw_soft_triangle

void al_draw_soft_triangle(
ALLEGRO_VERTEX* v1, ALLEGRO_VERTEX* v2, ALLEGRO_VERTEX* v3, uintptr_t state,
void (*init)(uintptr_t, ALLEGRO_VERTEX#*, ALLEGRO_VERTEX#*, ALLEGRO_VERTEX%*),
void (xfirst)(uintptr_t, int, int, int, int),
void (*step)(uintptr_t, int),
void (xdraw)(uintptr_t, int, int, int))

Source Code

Draws a triangle using the software rasterizer and user supplied pixel functions. For help in
understanding what these functions do, see the implementation of the various shading routines in
addons/primitives/tri_soft.c. The triangle is drawn in two segments, from top to bottom. The segments
are deliniated by the vertically middle vertex of the triangle. One of the two segments may be absent if
two vertices are horizontally collinear.

Parameters:

* v1, v2, v3 - The three vertices of the triangle

* state - A pointer to a user supplied struct, this struct will be passed to all the pixel functions

* init - Called once per call before any drawing is done. The three points passed to it may be
altered by clipping.

* first - Called twice per call, once per triangle segment. It is passed 4 parameters, the first two are
the coordinates of the initial pixel drawn in the segment. The second two are the left minor and
the left major steps, respectively. They represent the sizes of two steps taken by the rasterizer as
it walks on the left side of the triangle. From then on, each step will either be classified as a
minor or a major step, corresponding to the above values.

* step - Called once per scanline. The last parameter is set to 1 if the step is a minor step, and 0 if it
is a major step.

335


https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L536
https://github.com/liballeg/allegro5/blob/master/addons/primitives/prim_soft.c#L522

38. PRIMITIVES ADDON

* draw - Called once per scanline. The function is expected to draw the scanline starting with a
point specified by the first two parameters (corresponding to x and y values) going to the right
until it reaches the value of the third parameter (the x value of the end point). All coordinates
are inclusive.

See also: al draw_triangle

38.3.6 al_draw_soft_line

void al_draw_soft_line(ALLEGRO_VERTEX* v1, ALLEGRO_VERTEX* v2, uintptr_t state,
void (*first)(uintptr_t, int, int, ALLEGRO_VERTEX*, ALLEGRO_VERTEXx),
void (*step)(uintptr_t, int),
void (*draw)(uintptr_t, int, int))

Source Code

Draws a line using the software rasterizer and user supplied pixel functions. For help in understanding
what these functions do, see the implementation of the various shading routines in
addons/primitives/line_soft.c. The line is drawn top to bottom.

Parameters:

e v1, v2 - The two vertices of the line

* state - A pointer to a user supplied struct, this struct will be passed to all the pixel functions

* first - Called before drawing the first pixel of the line. It is passed the coordinates of this pixel, as
well as the two vertices above. The passed vertices may have been altered by clipping.

* step - Called once per pixel. The second parameter is set to 1 if the step is a minor step, and 0 if
this step is a major step. Minor steps are taken only either in x or y directions. Major steps are
taken in both directions diagonally. In all cases, the absolute value of the change in coordinate is
at most 1 in either direction.

* draw - Called once per pixel. The function is expected to draw the pixel at the coordinates passed
to it.

See also: al _draw_line

38.4 Custom vertex declaration routines

38.4.1 al_create_vertex_decl

ALLEGRO_VERTEX_DECL* al_create_vertex_decl(const ALLEGRO_VERTEX_ELEMENT* elements, int stride)

Source Code
Creates a vertex declaration, which describes a custom vertex format.

Parameters:

* elements - An array of ALLEGRO_VERTEX ELEMENT structures.
e stride - Size of the custom vertex structure

Returns: Newly created vertex declaration.

See also: ALLEGRO_VERTEX ELEMENT, ALLEGRO VERTEX DECL, al destroy vertex decl

336


https://github.com/liballeg/allegro5/blob/master/addons/primitives/line_soft.c#L572
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L158

38.5. Vertex buffer routines

38.4.2 al_destroy_vertex_decl

void al_destroy_vertex_decl (ALLEGRO_VERTEX_DECL* decl)

Source Code
Destroys a vertex declaration.

Parameters:
* decl - Vertex declaration to destroy
See also: ALLEGRO_VERTEX ELEMENT, ALLEGRO VERTEX DECL, al create vertex decl

38.5 Vertex buffer routines

38.5.1 al_create_vertex_buffer

ALLEGRO_VERTEX_BUFFER* al_create_vertex_buffer (ALLEGRO_VERTEX_DECL* decl,
const void* initial_data, int num_vertices, int flags)

Source Code

Creates a vertex buffer. Can return NULL if the buffer could not be created (e.g. the system only
supports write-only buffers).

Note:

This is an advanced feature, often unsupported on lower-end video cards. Be extra mindful
of this function failing and make arrangements for fallback drawing functionality or a nice
error message for users with such lower-end cards.

Parameters:

* decl - Vertex type that this buffer will hold. NULL implies that this buffer will hold
ALLEGRO_VERTEX vertices

* initial data - Memory buffer to copy from to initialize the vertex buffer. Can be NULL, in which
case the buffer is uninitialized.

* num_vertices - Number of vertices the buffer will hold

* flags - A combination of the ALLEGRO PRIM BUFFER_FLAGS flags specifying how this buffer
will be created. Passing O is the same as passing ALLEGRO_PRIM_BUFFER_STATIC.

Since: 5.1.3
See also: ALLEGRO_VERTEX BUFFER, al destroy vertex buffer

38.5.2 al destroy_vertex_buffer

void al_destroy_vertex_buffer (ALLEGRO_VERTEX_BUFFER* buffer)

Source Code

Destroys a vertex buffer. Does nothing if passed NULL.

Since: 5.1.3

See also: ALLEGRO_VERTEX BUFFER, al create vertex buffer

337


https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L218
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L229
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L303

38. PRIMITIVES ADDON

38.5.3 al_lock_vertex_buffer

void* al_lock_vertex_buffer (ALLEGRO_VERTEX_BUFFER* buffer, int offset,
int length, int flags)

Source Code

Locks a vertex buffer so you can access its data. Will return NULL if the parameters are invalid, if
reading is requested from a write only buffer, or if the buffer is already locked.

Parameters:

* buffer - Vertex buffer to lock

* offset - Vertex index of the start of the locked range

* length - How many vertices to lock

* flags - ALLEGRO_LOCK READONLY, ALLEGRO_LOCK WRITEONLY or
ALLEGRO_LOCK_READWRITE

Since: 5.1.3
See also: ALLEGRO_VERTEX BUFFER, al unlock vertex buffer

38.5.4 al_unlock_vertex_buffer

void al_unlock_vertex_buffer (ALLEGRO_VERTEX_BUFFER* buffer)

Source Code

Unlocks a previously locked vertex buffer.

Since: 5.1.3

See also: ALLEGRO VERTEX BUFFER, al lock vertex buffer

38.5.5 al_get vertex_buffer_size

int al_get_vertex_buffer_size(ALLEGRO_VERTEX_BUFFER* buffer)

Source Code

Returns the size of the vertex buffer
Since: 5.1.8

See also: ALLEGRO_VERTEX BUFFER

38.6 Index buffer routines

38.6.1 al create_index_buffer

ALLEGRO_INDEX_BUFFER* al_create_index_buffer(int index_size,
const voidx initial_data, int num_indices, int flags)

Source Code

Creates a index buffer. Can return NULL if the buffer could not be created (e.g. the system only
supports write-only buffers).

Note:

This is an advanced feature, often unsupported on lower-end video cards. Be extra mindful
of this function failing and make arrangements for fallback drawing functionality or a nice
error message for users with such lower-end cards.

338


https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L360
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L415
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L574
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L263

38.6. Index buffer routines

Parameters:

* index_size - Size of the index in bytes. Supported sizes are 2 for short integers and 4 for integers

* initial data - Memory buffer to copy from to initialize the index buffer. Can be NULL, in which
case the buffer is uninitialized.

* num_indices - Number of indices the buffer will hold

* flags - A combination of the ALLEGRO_PRIM_BUFFER_FLAGS flags specifying how this buffer
will be created. Passing O is the same as passing ALLEGRO_PRIM_BUFFER_STATIC.

Since: 5.1.8
See also: ALLEGRO_INDEX BUFFER, al destroy index_buffer

38.6.2 al destroy index_buffer
void al_destroy_index_buffer (ALLEGRO_INDEX_BUFFER* buffer)

Source Code

Destroys a index buffer. Does nothing if passed NULL.

Since: 5.1.8

See also: ALLEGRO INDEX BUFFER, al create_index buffer

38.6.3 al lock _index_buffer

void* al_lock_index_buffer (ALLEGRO_INDEX_BUFFER* buffer, int offset,
int length, int flags)

Source Code

Locks a index buffer so you can access its data. Will return NULL if the parameters are invalid, if
reading is requested from a write only buffer and if the buffer is already locked.

Parameters:

buffer - Index buffer to lock

* offset - Element index of the start of the locked range

* length - How many indices to lock

« flags - ALLEGRO _LOCK_READONLY, ALLEGRO_LOCK_WRITEONLY or
ALLEGRO_LOCK READWRITE

Since: 5.1.8
See also: ALLEGRO_INDEX BUFFER, al unlock index buffer

38.6.4 al_unlock_index_buffer

void al_unlock_index_buffer (ALLEGRO_INDEX_BUFFER* buffer)

Source Code

Unlocks a previously locked index buffer.

Since: 5.1.8

See also: ALLEGRO_INDEX BUFFER, al lock index buffer

339


https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L325
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L389
https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L436

38. PRIMITIVES ADDON

38.6.5 al_get_index_buffer_size

int al_get_index_buffer_size(ALLEGRO_INDEX_BUFFER* buffer)

Source Code

Returns the size of the index buffer
Since: 5.1.8

See also: ALLEGRO_INDEX BUFFER

38.7 Polygon routines

38.7.1 al draw_polyline

void al_draw_polyline(const float* vertices, int vertex_stride,
int vertex_count, int join_style, int cap_style,
ALLEGRO_COLOR color, float thickness, float miter_limit)

Source Code

Draw a series of line segments.

* vertices - Interleaved array of (x, y) vertex coordinates

* vertex_stride - the number of bytes between pairs of vertices (the stride)

* vertex_count - Number of vertices in the array

* join_style - Member of ALLEGRO_LINE_JOIN specifying how to render the joins between line
segments

* cap_style - Member of ALLEGRO LINE_CAP specifying how to render the end caps

* color - Color of the line

* thickness - Thickness of the line, pass <= @ to draw hairline lines

* miter_limit - Parameter for miter join style

The stride is normally 2 * sizeof(float) but may be more if the vertex coordinates are in an array of
some structure type, e.g.

struct VertexInfo {
float x;
float y;
int id;

1

void my_draw(struct VertexInfo verts[], int vertex_count, ALLEGRO_COLOR c)
{

al_draw_polyline((float *)verts, sizeof(VertexInfo), vertex_count,
ALLEGRO_LINE_JOIN_NONE, ALLEGRO_LINE_CAP_NONE, c, 1.0, 1.0);

The stride may also be negative if the vertices are stored in reverse order.
Since: 5.1.0

See also: al_draw_polygon, ALLEGRO_LINE JOIN, ALLEGRO_LINE CAP

340


https://github.com/liballeg/allegro5/blob/master/addons/primitives/primitives.c#L582
https://github.com/liballeg/allegro5/blob/master/addons/primitives/polyline.c#L534

38.7. Polygon routines

38.7.2 al_draw_polygon

void al_draw_polygon(const float *vertices, int vertex_count,
int join_style, ALLEGRO_COLOR color, float thickness, float miter_limit)

Source Code

Draw an unfilled polygon. This is the same as passing ALLEGRO_LINE_CAP_CLOSED to al _draw_polyline.

* vertex - Interleaved array of (x, y) vertex coordinates

* vertex_count - Number of vertices in the array

* join_style - Member of ALLEGRO_LINE_JOIN specifying how to render the joins between line
segments

* color - Color of the line

* thickness - Thickness of the line, pass <= @ to draw hairline lines

* miter_limit - Parameter for miter join style

Since: 5.1.0
See also: al _draw filled polygon, al draw_polyline, ALLEGRO LINE JOIN

38.7.3 al_draw_filled_polygon

void al_draw_filled_polygon(const float *vertices, int vertex_count,
ALLEGRO_COLOR color)

Source Code

Draw a filled, simple polygon. Simple means it does not have to be convex but must not be
self-overlapping.

* vertices - Interleaved array of (%, y) vertex coordinates
* vertex_count - Number of vertices in the array
* color - Color of the filled polygon

When the y-axis is facing downwards (the usual), the coordinates must be ordered anti-clockwise.
Since: 5.1.0

See also: al draw_polygon, al draw filled polygon with holes

38.7.4 al_draw_filled_polygon_with_holes

void al_draw_filled_polygon_with_holes(const float *vertices,
const int *vertex_counts, ALLEGRO_COLOR color)

Source Code

Draws a filled simple polygon with zero or more other simple polygons subtracted from it - the holes.
The holes cannot touch or intersect with the outline of the filled polygon.

* vertices - Interleaved array of (%, y) vertex coordinates for each of the polygons, including holes.
* vertex_counts - Number of vertices for each polygon. The number of vertices in the filled polygon
is given by vertex_counts[0] and must be at least three. Subsequent elements indicate the
number of vertices in each hole. The array must be terminated with an element with value zero.
* color - Color of the filled polygon

341


https://github.com/liballeg/allegro5/blob/master/addons/primitives/polygon.c#L44
https://github.com/liballeg/allegro5/blob/master/addons/primitives/polygon.c#L53
https://github.com/liballeg/allegro5/blob/master/addons/primitives/polygon.c#L71

38. PRIMITIVES ADDON

All hole vertices must use the opposite order (clockwise with y down) of the polygon vertices. All hole
vertices must be inside the main polygon and no hole may overlap the main polygon.

For example:

float vertices[] = {
Q, 0, // filled polygon, upper left corner
0, 100, // filled polygon, lower left corner
100, 100, // filled polygon, lower right corner
100, 0, // filled polygon, upper right corner
10, 10, // hole, upper left
90, 10, // hole, upper right
90, 90 // hole, lower right
};
int vertex_counts[] = {
4, // number of vertices for filled polygon
3, // number of vertices for hole
@ // terminator

1

There are 7 vertices: four for an outer square from (0, 0) to (100, 100) in anti-clockwise order, and
three more for an inner triangle in clockwise order. The outer main polygon uses vertices O to 3
(inclusive) and the hole uses vertices 4 to 6 (inclusive).

Since: 5.1.0

See also: al draw filled polygon, al draw filled polygon with holes, al_triangulate polygon

38.7.5 al_triangulate_polygon

bool al_triangulate_polygon(
const float* vertices, size_t vertex_stride, const int* vertex_counts,
void (xemit_triangle)(int, int, int, void*), void* userdata)

Source Code

Divides a simple polygon into triangles, with zero or more other simple polygons subtracted from it -
the holes. The holes cannot touch or intersect with the outline of the main polygon. Simple means the
polygon does not have to be convex but must not be self-overlapping.

Parameters:

* vertices - Interleaved array of (%, y) vertex coordinates for each of the polygons, including holes.

» vertex_stride - distance (in bytes) between successive pairs of vertices in the array.

* vertex_counts - Number of vertices for each polygon. The number of vertices in the main polygon
is given by vertex counts[0] and must be at least three. Subsequent elements indicate the
number of vertices in each hole. The array must be terminated with an element with value zero.

* emit_triangle - a function to be called for every set of three points that form a triangle. The
function is passed the indices of the points in vertices and userdata.

* userdata - arbitrary data to be passed to emit_triangle.

Since: 5.1.0

See also: al draw filled polygon with holes

342


https://github.com/liballeg/allegro5/blob/master/addons/primitives/triangulator.c#L814

38.8. Structures and types

38.8 Structures and types

38.8.1 ALLEGRO_VERTEX
typedef struct ALLEGRO_VERTEX ALLEGRO_VERTEX;

Source Code

Defines the generic vertex type, with a 3D position, color and texture coordinates for a single texture.
Note that at this time, the software driver for this addon cannot render 3D primitives. If you want a 2D
only primitive, set z to 0. Note that you must initialize all members of this struct when you’re using it.
One exception to this rule are the u and v variables which can be left uninitialized when you are not
using textures.

Fields:

* X, 9, Z - Position of the vertex (float)
* u, v - Texture coordinates measured in pixels (float)
* color - ALLEGRO_COLOR structure, storing the color of the vertex

See also: ALLEGRO_PRIM_ATTR

38.8.2 ALLEGRO_VERTEX_DECL
typedef struct ALLEGRO_VERTEX_DECL ALLEGRO_VERTEX_DECL;

Source Code

A vertex declaration. This opaque structure is responsible for describing the format and layout of a
user defined custom vertex. It is created and destroyed by specialized functions.

See also: al create vertex decl, al destroy vertex decl, ALLEGRO VERTEX ELEMENT

38.8.3 ALLEGRO_VERTEX ELEMENT
typedef struct ALLEGRO_VERTEX_ELEMENT ALLEGRO_VERTEX_ELEMENT;

Source Code

A small structure describing a certain element of a vertex. E.g. the position of the vertex, or its color.
These structures are used by the al create vertex decl function to create the vertex declaration. For
that they generally occur in an array. The last element of such an array should have the attribute field
equal to O, to signify that it is the end of the array. Here is an example code that would create a
declaration describing the ALLEGRO_VERTEX structure (passing this as vertex declaration to

al draw_prim would be identical to passing NULL):

/* On compilers without the offsetof keyword you need to obtain the
* offset with sizeof and make sure to account for packing.
*/
ALLEGRO_VERTEX_ELEMENT elems[] = {
{ALLEGRO_PRIM_POSITION, ALLEGRO_PRIM_FLOAT_3, offsetof (ALLEGRO_VERTEX, x)},
{ALLEGRO_PRIM_TEX_COORD_PIXEL, ALLEGRO_PRIM_FLOAT_2, offsetof (ALLEGRO_VERTEX, u)},
{ALLEGRO_PRIM_COLOR_ATTR, 0, offsetof (ALLEGRO_VERTEX, color)},
{0, 0, 0}
b
ALLEGRO_VERTEX_DECL* decl = al_create_vertex_decl(elems, sizeof (ALLEGRO_VERTEX));

Fields:

343


https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L145
https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L137
https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L127

38. PRIMITIVES ADDON

* attribute - A member of the ALLEGRO_PRIM_ATTR enumeration, specifying what this attribute
signifies

* storage - A member of the ALLEGRO PRIM_STORAGE enumeration, specifying how this
attribute is stored

* offset - Offset in bytes from the beginning of the custom vertex structure. The C function offsetof
is very useful here.

See also: al create vertex decl, ALLEGRO VERTEX DECL, ALLEGRO PRIM ATTR,
ALLEGRO_PRIM_ STORAGE

38.8.4 ALLEGRO_PRIM_TYPE

typedef enum ALLEGRO_PRIM_TYPE

Source Code

Enumerates the types of primitives this addon can draw.

* ALLEGRO PRIM POINT LIST - A list of points, each vertex defines a point
* ALLEGRO PRIM LINE LIST - A list of lines, sequential pairs of vertices define disjointed lines
* ALLEGRO_PRIM LINE STRIP - A strip of lines, sequential vertices define a strip of lines

* ALLEGRO PRIM LINE LOOP - Like a line strip, except at the end the first and the last vertices
are also connected by a line

* ALLEGRO_PRIM_TRIANGLE_LIST - A list of triangles, sequential triplets of vertices define
disjointed triangles

* ALLEGRO PRIM TRIANGLE_STRIP - A strip of triangles, sequential vertices define a strip of
triangles

* ALLEGRO PRIM TRIANGLE FAN - A fan of triangles, all triangles share the first vertex

38.8.5 ALLEGRO_PRIM_ATTR

typedef enum ALLEGRO_PRIM_ATTR

Source Code

Enumerates the types of vertex attributes that a custom vertex may have.

* ALLEGRO_PRIM_POSITION - Position information, can be stored only in
ALLEGRO_PRIM_SHORT 2, ALLEGRO_PRIM_FLOAT 2 and ALLEGRO PRIM_FLOAT 3.

* ALLEGRO PRIM COLOR_ATTR - Color information, stored in an ALLEGRO_COLOR. The storage
field of ALLEGRO_VERTEX ELEMENT is ignored

* ALLEGRO_PRIM_TEX_ COORD - Texture coordinate information, can be stored only in
ALLEGRO_PRIM FLOAT 2 and ALLEGRO PRIM SHORT 2. These coordinates are normalized
by the width and height of the texture, meaning that the bottom-right corner has texture
coordinates of (1, 1).

* ALLEGRO_PRIM_TEX_COORD_PIXEL - Texture coordinate information, can be stored only in
ALLEGRO_PRIM FLOAT 2 and ALLEGRO PRIM SHORT 2. These coordinates are measured in
pixels.

344


https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L36
https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L55

38.8. Structures and types

* ALLEGRO_PRIM USER_ATTR - A user specified attribute. You can use any storage for this
attribute. You may have at most ALLEGRO_PRIM_MAX USER _ATTR (currently 10) of these that
you can specify by adding an index to the value of ALLEGRO_PRIM_USER_ATTR, e.g. the first
user attribute is ALLEGRO_PRIM_USER_ATTR + 0, the second is ALLEGRO_PRIM_USER_ATTR + 1 and
SO om.

To access these custom attributes from GLSL shaders you need to declare attributes that follow
this nomenclature: user_attr_# where # is the index of the attribute.

To access these custom attributes from HLSL you need to declare a parameter with the following
semantics: TEXCOORD{# + 2} where # is the index of the attribute. E.g. the first attribute can be
accessed via TEXCOORD2, second via TEXCOORD3 and so on.

Since: 5.1.6

See also: ALLEGRO_VERTEX DECL, ALLEGRO PRIM_STORAGE

38.8.6 ALLEGRO_PRIM_STORAGE

typedef enum ALLEGRO_PRIM_STORAGE

Source Code

Enumerates the types of storage an attribute of a custom vertex may be stored in. Many of these can
only be used for ALLEGRO_PRIM_USER_ATTR attributes and can only be accessed via shaders. Usually
no matter what the storage is specified the attribute gets converted to single precision floating point
when the shader is run. Despite that, it may be advantageous to use more dense storage formats

(e.g. ALLEGRO_PRIM NORMALIZED UBYTE 4 instead of ALLEGRO PRIM FLOAT 4) when
bandwidth (amount of memory sent to the GPU) is an issue but precision is not.

* ALLEGRO PRIM FLOAT 1 - A single float
Since: 5.1.6

* ALLEGRO PRIM FLOAT 2 - A doublet of floats
* ALLEGRO PRIM FLOAT 3 - A triplet of floats

* ALLEGRO_PRIM_FLOAT 4 - A quad of floats
Since: 5.1.6

* ALLEGRO_PRIM_SHORT 2 - A doublet of shorts

* ALLEGRO PRIM SHORT 4 - A quad of shorts
Since: 5.1.6

* ALLEGRO PRIM UBYTE 4 - A quad of unsigned bytes
Since: 5.1.6
* ALLEGRO PRIM_NORMALIZED SHORT 2 - A doublet of shorts. Before being sent to the shader,

each component is divided by 32767. Each component of the resultant float doublet ranges
between -1.0 and 1.0

Since: 5.1.6
* ALLEGRO _PRIM_NORMALIZED_SHORT 4 - A quad of shorts. Before being sent to the shader,

each component is divided by 32767. Each component of the resultant float quad ranges
between -1.0 and 1.0

Since: 5.1.6

345


https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L67

38. PRIMITIVES ADDON

* ALLEGRO_PRIM_NORMALIZED UBYTE _4 - A quad of unsigned bytes. Before being sent to the
shader, each component is divided by 255. Each component of the resultant float quad ranges
between 0.0 and 1.0

Since: 5.1.6
* ALLEGRO PRIM_NORMALIZED USHORT 2 - A doublet of unsigned shorts. Before being sent to

the shader, each component is divided by 65535. Each component of the resultant float doublet
ranges between 0.0 and 1.0

Since: 5.1.6

* ALLEGRO_PRIM_NORMALIZED USHORT 4 - A quad of unsigned shorts. Before being sent to
the shader, each component is divided by 65535. Each component of the resultant float quad
ranges between 0.0 and 1.0

Since: 5.1.6

* ALLEGRO PRIM HALF FLOAT 2 - A doublet of half-precision floats. Note that this storage
format is not supported on all platforms. al create vertex decl will return NULL if you use it on
those platforms

Since: 5.1.6

* ALLEGRO_PRIM_HALF FLOAT 4 - A quad of half-precision floats. Note that this storage format
is not supported on all platforms. al _create vertex decl will return NULL if you use it on those
platforms.

Since: 5.1.6
See also: ALLEGRO_PRIM_ATTR

38.8.7 ALLEGRO_VERTEX_CACHE_SIZE
#define ALLEGRO_VERTEX_CACHE_SIZE 256

Source Code

Defines the size of the transformation vertex cache for the software renderer. If you pass less than this
many vertices to the primitive rendering functions you will get a speed boost. This also defines the size
of the cache vertex buffer, used for the high-level primitives. This corresponds to the maximum
number of line segments that will be used to form them.

38.8.8 ALLEGRO_PRIM_QUALITY
#define ALLEGRO_PRIM_QUALITY 10

Source Code

Controls the quality of the approximation of curved primitives (e.g. circles). Curved primitives are
drawn by approximating them with a sequence of line segments. By default, this roughly corresponds
to error of less than half of a pixel.

38.8.9 ALLEGRO_LINE JOIN
typedef enum ALLEGRO_LINE_JOIN

Source Code

« ALLEGRO_LINE_JOIN NONE
« ALLEGRO_LINE_JOIN BEVEL
* ALLEGRO_LINE_JOIN ROUND

346


https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L119
https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L123
https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L87

38.8. Structures and types

NONE BEVEL ROUND MITER 4

DD DD

Figure 38.3: ALLEGRO LINE JOIN styles

e ALLEGRO_LINE JOIN_ MITER

See the picture for the difference.

The maximum miter length (relative to the line width) can be specified as parameter to the polygon
functions.

Since: 5.1.0

See also: al_draw_polygon

38.8.10 ALLEGRO_LINE_CAP
typedef enum ALLEGRO_LINE_CAP

Source Code

« ALLEGRO LINE_CAP NONE

* ALLEGRO LINE_CAP SQUARE
« ALLEGRO_LINE_CAP_ROUND

* ALLEGRO_LINE_CAP_TRIANGLE
ALLEGRO_LINE_CAP_CLOSED

NONE SQUARE ROUND TRIANGLE

SNNN

Figure 38.4: ALLEGRO_LINE_CAP styles

See the picture for the difference.

ALLEGRO_LINE CAP CLOSED is different from the others - it causes the polygon to have no caps.
(And the ALLEGRO_LINE_JOIN style will determine how the vertex looks.)

Since: 5.1.0

See also: al_draw_polygon

38.8.11 ALLEGRO_VERTEX_BUFFER
typedef struct ALLEGRO_VERTEX_BUFFER ALLEGRO_VERTEX_BUFFER;

Source Code

A GPU vertex buffer that you can use to store vertices on the GPU instead of uploading them afresh
during every drawing operation.

Since: 5.1.3

See also: al create vertex_ buffer, al destroy vertex buffer

347


https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L98
https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L156

38. PRIMITIVES ADDON

38.8.12 ALLEGRO_INDEX BUFFER
typedef struct ALLEGRO_INDEX_BUFFER ALLEGRO_INDEX_BUFFER;

Source Code

A GPU index buffer that you can use to store indices of vertices in a vertex buffer on the GPU instead of
uploading them afresh during every drawing operation.

Since: 5.1.8

See also: al create_index_buffer, al destroy_index_buffer

38.8.13 ALLEGRO_PRIM_BUFFER_FLAGS
typedef enum ALLEGRO_PRIM_BUFFER_FLAGS

Source Code

Flags to specify how to create a vertex or an index buffer.

* ALLEGRO_PRIM BUFFER_STREAM - Hints to the driver that the buffer is written to often, but
used only a few times per frame

* ALLEGRO_PRIM_BUFFER_STATIC - Hints to the driver that the buffer is written to once and is
used often

* ALLEGRO_PRIM_BUFFER_DYNAMIC - Hints to the driver that the buffer is written to often and
is used often

* ALLEGRO PRIM BUFFER READWRITE - Specifies that you want to be able read from this buffer.
By default this is disabled for performance. Some platforms (like OpenGL ES) do not support
reading from vertex buffers, so if you pass this flag to al_create_vertex_buffer or
al_create_index_buffer the call will fail.

Since: 5.1.3

See also: al create vertex buffer, al create index buffer

348


https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L160
https://github.com/liballeg/allegro5/blob/master/addons/primitives/allegro5/allegro_primitives.h#L109

39

Shader routines

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

39.1 ALLEGRO_SHADER

typedef struct ALLEGRO_SHADER ALLEGRO_SHADER;

Source Code

An ALLEGRO_SHADER is a program that runs on the GPU. It combines both a vertex and a pixel
shader. (In OpenGL terms, an ALLEGRO SHADER is actually a program which has one or more shaders
attached. This can be confusing.)

The source code for the underlying vertex or pixel shader can be provided either as GLSL or HLSL,
depending on the value of ALLEGRO SHADER PLATFORM used when creating it.

Since: 5.1.0

39.2 ALLEGRO_SHADER TYPE

typedef enum ALLEGRO_SHADER_TYPE ALLEGRO_SHADER_TYPE;

Source Code

Used with al_attach_shader source and al attach shader source file to specify how to interpret the
attached source.

ALLEGRO_VERTEX_SHADER
A vertex shader is executed for each vertex it is used with. The program will output exactly one
vertex at a time.

When Allegro’s graphics are being used then in addition to all vertices of primitives from the
primitives addon, each drawn bitmap also consists of four vertices.

ALLEGRO_PIXEL_SHADER
A pixel shader is executed for each pixel it is used with. The program will output exactly one
pixel at a time - either in the backbuffer or in the current target bitmap.

With Allegro’s builtin graphics this means the shader is for example called for each destination
pixel of the output of an al draw_bitmap call.

A more accurate term for pixel shader would be fragment shader since one final pixel in the
target bitmap is not necessarily composed of only a single output but of multiple fragments (for
example when multi-sampling is being used).

Since: 5.1.0

349


https://github.com/liballeg/allegro5/blob/master/include/allegro5/shader.h#L14
https://github.com/liballeg/allegro5/blob/master/include/allegro5/shader.h#L23

39. SHADER ROUTINES

39.3 ALLEGRO_SHADER_PLATFORM

typedef enum ALLEGRO_SHADER_PLATFORM ALLEGRO_SHADER_PLATFORM;

Source Code

The underlying platform which the ALLEGRO_SHADER is built on top of, which dictates the language
used to program the shader.

* ALLEGRO_SHADER_AUTO
* ALLEGRO SHADER GLSL - OpenGL Shading Language
* ALLEGRO SHADER HLSL - High Level Shader Language (for Direct3D)

Since: 5.1.0

39.4 al_create_shader

ALLEGRO_SHADER =*al_create_shader (ALLEGRO_SHADER_PLATFORM platform)

Source Code
Create a shader object.

The platform argument is one of the ALLEGRO SHADER PLATFORM values, and specifies the type of
shader object to create, and which language is used to program the shader.

The shader platform must be compatible with the type of display that you will use the shader with. For
example, you cannot create and use a HLSL shader on an OpenGL display, nor a GLSL shader on a
Direct3D display.

The ALLEGRO_SHADER AUTO value automatically chooses the appropriate platform for the display
currently targeted by the calling thread; there must be such a display. It will create a GLSL shader for
an OpenGL display, and a HLSL shader for a Direct3D display.

Returns the shader object on success. Otherwise, returns NULL.
Since: 5.1.0

See also: al_attach _shader source, al _attach shader source file, al build shader, al use_shader,
al destroy shader, al_get shader platform

39.5 al_attach_shader_source

bool al_attach_shader_source(ALLEGRO_SHADER xshader, ALLEGRO_SHADER_TYPE type,
const char *source)

Source Code

Attaches the shader’s source code to the shader object and compiles it. Passing NULL deletes the
underlying (OpenGL or DirectX) shader. See also al attach shader source file if you prefer to obtain
your shader source from an external file.

If you do not use ALLEGRO PROGRAMMABLE _PIPELINE Allegro’s graphics functions will not use any
shader specific functions themselves. In case of a system with no fixed function pipeline (like OpenGL
ES 2 or OpenGL 3 or 4) this means Allegro’s drawing functions cannot be used.

TODO: Is ALLEGRO_PROGRAMMABLE PIPELINE set automatically in this case?

When ALLEGRO_PROGRAMMABLE PIPELINE is used the following shader uniforms are provided by
Allegro and can be accessed in your shaders:

350


https://github.com/liballeg/allegro5/blob/master/include/allegro5/shader.h#L33
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L50
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L83

39.5. al attach shader source

al_projview_matrix
matrix for Allegro’s orthographic projection multiplied by the al _use_transform matrix. The type
is mat4 in GLSL, and float4x4 in HLSL.
al _use_tex
whether or not to use the bound texture. The type is bool in both GLSL and HLSL.
al_tex
the texture if one is bound. The type is sampler2D in GLSL and texture in HLSL.
al_use_tex_matrix
whether or not to use a texture matrix (used by the primitives addon). The type is bool in both
GLSL and HLSL.
al_tex_matrix
the texture matrix (used by the primitives addon). Your shader should multiply the texture
coordinates by this matrix. The type is mat4 in GLSL, and float4x4 in HLSL.

For GLSL shaders the vertex attributes are passed using the following variables:

al_pos

vertex position attribute. Type is vec4.
al_texcoord

vertex texture coordinate attribute. Type is vec2.
al_color

vertex color attribute. Type is vec4.

For HLSL shaders the vertex attributes are passed using the following semantics:

POSITIONO

vertex position attribute. Type is float4.
TEXCOORDO

vertex texture coordinate attribute. Type is float2.
TEXCOORD1

vertex color attribute. Type is float4.

Also, each shader variable has a corresponding macro name that can be used when defining the
shaders using string literals. Don’t use these macros with the other shader functions as that will lead to
undefined behavior.

* ALLEGRO SHADER VAR PROJVIEW MATRIX for “al_projview matrix”
* ALLEGRO _SHADER VAR _POS for “al_pos”

* ALLEGRO_SHADER VAR_COLOR for “al_color”

* ALLEGRO SHADER VAR TEXCOORD for “al texcoord”

* ALLEGRO SHADER VAR _USE TEX for “al use_ tex”

* ALLEGRO SHADER VAR TEX for “al tex”

* ALLEGRO SHADER VAR USE TEX MATRIX for “al_use tex matrix”

* ALLEGRO_SHADER VAR _TEX MATRIX for “al_tex_matrix”

Examine the output of al get default shader source for an example of how to use the above uniforms
and attributes.

Returns true on success and false on error, in which case the error log is updated. The error log can be
retrieved with al_get shader log.

Since: 5.1.0
See also: al_attach _shader source file, al build shader, al get default shader source,

al _get shader log

351



39. SHADER ROUTINES

39.6 al_attach_shader_source_file

bool al_attach_shader_source_file(ALLEGRO_SHADER =xshader,
ALLEGRO_SHADER_TYPE type, const char xfilename)

Source Code
Like al_attach shader source but reads the source code for the shader from the named file.

Returns true on success and false on error, in which case the error log is updated. The error log can be
retrieved with al get shader log.

Since: 5.1.0

See also: al_attach shader source, al build shader, al_get shader log

39.7 al build _shader

bool al_build_shader (ALLEGRO_SHADER *shader)

Source Code

This is required before the shader can be used with al use shader. It should be called after successfully
attaching the pixel and/or vertex shaders with al_attach shader source or
al attach_shader source file.

Returns true on success and false on error, in which case the error log is updated. The error log can be
retrieved with al_get shader log.

Note: If you are using the ALLEGRO_PROGRAMMABLE PIPELINE flag, then you must
specify both a pixel and a vertex shader sources for anything to be rendered.

Since: 5.1.6

See also: al _use_shader, al get shader log

39.8 al_get shader_log

const char *al_get_shader_log(ALLEGRO_SHADER =*shader)

Source Code

Return a read-only string containing the information log for a shader program. The log is updated by
certain functions, such as al_attach_shader source or al build shader when there is an error.

This function never returns NULL.
Since: 5.1.0

See also: al_attach _shader source, al attach _shader source file, al build shader

39.9 al get shader platform

ALLEGRO_SHADER_PLATFORM al_get_shader_platform(ALLEGRO_SHADER *shader)

Source Code

Returns the platform the shader was created with (either ALLEGRO_SHADER_HLSL or
ALLEGRO_SHADER GLSL).

Since: 5.1.6

See also: al create shader

352


https://github.com/liballeg/allegro5/blob/master/src/shader.c#L92
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L125
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L133
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L142

39.10. al use_shader

39.10 al_use_shader

bool al_use_shader (ALLEGRO_SHADER xshader)

Source Code

Uses the shader for subsequent drawing operations on the current target bitmap. Pass NULL to stop
using any shader on the current target bitmap.

Returns true on success. Otherwise returns false, e.g. because the shader is incompatible with the
target bitmap.

Since: 5.1.6

See also: al_destroy shader, al_set shader sampler, al set shader matrix, al set shader int,
al set shader float, al set shader bool, al set shader int vector, al set shader float vector

39.11 al destroy shader

void al_destroy_shader (ALLEGRO_SHADER =xshader)

Source Code

Destroy a shader. Any bitmaps which currently use the shader will implicitly stop using the shader. In
multi-threaded programs, be careful that no such bitmaps are being accessed by other threads at the
time.

As a convenience, if the target bitmap of the calling thread is using the shader then the shader is
implicitly unused before being destroyed.

This function does nothing if the shader argument is NULL.
Since: 5.1.0

See also: al create shader

39.12 al _set shader sampler

bool al_set_shader_sampler(const char *name,
ALLEGRO_BITMAP *bitmap, int unit)

Source Code

Sets a texture sampler uniform and texture unit of the current target bitmap’s shader. The given
bitmap must be a video bitmap.

Different samplers should use different units. The bitmap passed to Allegro’s drawing functions uses
the Oth unit, so if you’re planning on using the al_tex variable in your pixel shader as well as another
sampler, set the other sampler to use a unit different from 0. With the primitives addon, it is possible to
free up the Oth unit by passing NULL as the texture argument to the relevant drawing functions. In this
case, you may set a sampler to use the Oth unit and thus not use al_tex (the al_use_tex variable will
be set to false).

Returns true on success. Otherwise returns false, e.g. if the uniform by that name does not exist in the
shader.

Since: 5.1.0

See also: al_use_shader

353


https://github.com/liballeg/allegro5/blob/master/src/shader.c#L150
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L197
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L237

39. SHADER ROUTINES

39.13 al_set_shader_matrix

bool al_set_shader_matrix(const char *name,
const ALLEGRO_TRANSFORM *matrix)

Source Code
Sets a matrix uniform of the current target bitmap’s shader.

Returns true on success. Otherwise returns false, e.g. if the uniform by that name does not exist in the
shader.

Since: 5.1.0

See also: al use_shader

39.14 al_set_shader_int

bool al_set_shader_int(const char *name, int i)

Source Code
Sets an integer uniform of the current target bitmap’s shader.

Returns true on success. Otherwise returns false, e.g. if the uniform by that name does not exist in the
shader.

Since: 5.1.0

See also: al _use shader

39.15 al_set_shader_float

bool al_set_shader_float(const char *name, float f)

Source Code
Sets a float uniform of the target bitmap’s shader.

Returns true on success. Otherwise returns false, e.g. if the uniform by that name does not exist in the
shader.

Since: 5.1.0

See also: al_use_shader

39.16 al_set_shader_bool

bool al_set_shader_bool(const char *name, bool b)

Source Code
Sets a boolean uniform of the target bitmap’s shader.

Returns true on success. Otherwise returns false, e.g. if the uniform by that name does not exist in the
shader.

Since: 5.1.6

See also: al_use_shader

354


https://github.com/liballeg/allegro5/blob/master/src/shader.c#L258
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L279
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L299
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L361

39.17. al set shader int vector

39.17 al_set_shader_int_vector

bool al_set_shader_int_vector(const char *name,
int num_components, const int *i, int num_elems)

Source Code

Sets an integer vector array uniform of the current target bitmap’s shader. The ‘num_components’
parameter can take one of the values 1, 2, 3 or 4. If it is 1 then an array of ‘num_elems’ integer
elements is added. Otherwise each added array element is assumed to be a vector with 2, 3 or 4
components in it.

For example, if you have a GLSL uniform declared as uniform ivec3 flowers[4] or an HLSL uniform
declared as uniform int3 flowers[4], then you’d use this function from your code like so:

int flowers[4][3] =

{
{1, 2, 33,
{4, 5, 63},
{7, 8, 93,
{2, 5, 7}
3

al_set_shader_int_vector(”"flowers”, 3, (intx)flowers, 4);

Returns true on success. Otherwise returns false, e.g. if the uniform by that name does not exist in the
shader.

Since: 5.1.0

See also: al_set shader float vector, al use shader

39.18 al set shader float vector

bool al_set_shader_float_vector(const char *name,
int num_components, const float *f, int num_elems)

Source Code
Same as al_set shader int vector except all values are float instead of int.
Since: 5.1.0

See also: al_set shader_int vector, al_use_shader

39.19 al_get_default_shader_source

char const *al_get_default_shader_source(ALLEGRO_SHADER_PLATFORM platform,
ALLEGRO_SHADER_TYPE type)

Source Code

Returns a string containing the source code to Allegro’s default vertex or pixel shader appropriate for
the passed platform. The ALLEGRO SHADER AUTO value means GLSL is used if OpenGL is being
used otherwise HLSL. ALLEGRO_SHADER AUTO requires that there is a current display set on the
calling thread. This function can return NULL if Allegro was built without support for shaders of the
selected platform.

Since: 5.1.6

See also: al_attach_shader source

355


https://github.com/liballeg/allegro5/blob/master/src/shader.c#L319
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L340
https://github.com/liballeg/allegro5/blob/master/src/shader.c#L381




40

Video streaming addon

These functions are declared in the following header file. Link with allegro video.
#include <allegro5/allegro_video.h>

Currently we have an Ogg backend (Theora + Vorbis). See http://xiph.org/ for installation
instructions, licensing information and supported video formats.

40.1 ALLEGRO_VIDEO_EVENT TYPE

enum ALLEGRO_VIDEO_EVENT_TYPE

Source Code

Events sent by al_get video_event source.

40.1.1 ALLEGRO_EVENT VIDEO FRAME_SHOW

This event is sent when it is time to show a new frame. Once you receive this event, you can draw the
current frame (as returned by al_get video frame). al _get video_ frame will continue returning the
same frame until the next ALLEGRO_EVENT VIDEO FRAME SHOW is sent.

user.datal (ALLEGRO_VIDEO *)
The video which generated the event.

Since: 5.1.0

40.1.2 ALLEGRO_EVENT VIDEO FINISHED

This event is sent when the video is finished. Depending on the backend, it may be possible to seek to
an earlier part of the video and set the video to play to resume playback.

user.datal (ALLEGRO_VIDEO *)
The video which generated the event.

Since: 5.1.0

357


http://xiph.org/
https://github.com/liballeg/allegro5/blob/master/addons/video/allegro5/allegro_video.h#L35

40. VIDEO STREAMING ADDON

40.2 ALLEGRO_VIDEO_POSITION_TYPE

typedef enum ALLEGRO_VIDEO_POSITION_TYPE ALLEGRO_VIDEO_POSITION_TYPE;

Source Code

Used with al_get video_position to specify which position to retrieve. If these get out of sync, audio
and video may be out of sync in the display of the video.

* ALLEGRO VIDEO POSITION ACTUAL - The amount of time the video has been playing. If the
video has audio then this value can be ahead of ALLEGRO_VIDEO POSITION VIDEO DECODE
when video decoding lags.

* ALLEGRO_VIDEO_POSITION_VIDEO_DECODE - The amount of video that has been decoded.
This may lag behind the “actual” and audio positions if decoding is slower than realtime.

* ALLEGRO VIDEO POSITION_AUDIO DECODE - The amount of audio that has been decoded.
This may be the same as ALLEGRO_VIDEO_POSITION_ACTUAL if audio decode is driving the
position, which is common to keep audio and video in sync.

Since: 5.1.11

40.3 al_init_video_addon

bool al_init_video_addon(void)

Source Code
Initializes the video addon.
Since: 5.1.12

40.4 al_shutdown_video_addon

void al_shutdown_video_addon(void)

Source Code

Shut down the video addon. This is done automatically at program exit, but can be called any time the
user wishes as well.

Since: 5.1.12

40.5 al_get_allegro_video_version

uint32_t al_get_allegro_video_version(void)

Source Code
Returns the (compiled) version of the addon, in the same format as al_get allegro version.
Since: 5.1.12

40.6 al_open_video

ALLEGRO_VIDEO *al_open_video(char const *filename)

Source Code

Reads a video file. This does not start streaming yet but reads the meta info so you can query e.g. the
size or audio rate.

Since: 5.1.0

358


https://github.com/liballeg/allegro5/blob/master/addons/video/allegro5/allegro_video.h#L51
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L256
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L278
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L296
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L94

40.7. al close video

40.7 al_close_video

void al_close_video(ALLEGRO_VIDEQO *video)

Source Code

Closes the video and frees all allocated resources. The video pointer is invalid after the function
returns.

Since: 5.1.0

40.8 al_start_video

void al_start_video(ALLEGRO_VIDEO *video, ALLEGRO_MIXER *mixer)

Source Code
Starts streaming the video from the beginning.

Since: 5.1.0

40.9 al start video with voice
void al_start_video_with_voice(ALLEGRO_VIDEO *video, ALLEGRO_VOICE =*voice)
Source Code

Like al_start video but audio is routed to the provided voice.

Since: 5.1.0

40.10 al _get video event source

ALLEGRO_EVENT_SOURCE *al_get_video_event_source(ALLEGRO_VIDEO *video)

Source Code

Get an event source for the video. The possible events are described under
ALLEGRO_VIDEO EVENT TYPE.

Since: 5.1.0

40.11 al set video playing
void al_set_video_playing(ALLEGRO_VIDEO *video, bool play)
Source Code

Paused or resumes playback.

Since: 5.1.12

40.12 al_is_video_playing

bool al_is_video_playing(ALLEGRO_VIDEO *video)

Source Code
Returns true if the video is currently playing.

Since: 5.1.12

359


https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L127
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L149
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L160
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L141
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L171
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L183

40. VIDEO STREAMING ADDON

40.13 al_get video_audio_rate

double al_get_video_audio_rate(ALLEGRO_VIDEO *video)

Source Code
Returns the audio rate of the video, in Hz.

Since: 5.1.0

40.14 al_get_video_fps

double al_get_video_fps(ALLEGRO_VIDEO *video)

Source Code
Returns the speed of the video in frames per second. Often this will not be an integer value.

Since: 5.1.0

40.15 al _get video scaled width

float al_get_video_scaled_width(ALLEGRO_VIDEO *video)

Source Code

Returns the width with which the video frame should be drawn. Videos often do not use square pixels,
so this will may return a value larger than the width of the frame bitmap.

Since: 5.1.12

See also: al_get video frame

40.16 al get video scaled height

float al_get_video_scaled_height (ALLEGRO_VIDEO *video)

Source Code

Returns the height with which the video frame should be drawn. Videos often do not use square pixels,
so this will may return a value larger than the height of the frame bitmap.

See also: al_get video frame

Since: 5.1.12

40.17 al_get video frame

ALLEGRO_BITMAP *al_get_video_frame(ALLEGRO_VIDEO *video)

Source Code

Returns the current video frame. The bitmap is owned by the video so do not attempt to free it. The
bitmap will stay valid until the next call to al_get video_frame.

Videos often do not use square pixels so the recommended way to draw a video frame would be using
code like this:

360


https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L224
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L232
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L240
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L248
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L192

40.18. al_get video_position

float scale = 1.9; /* Adjust this to fit your target bitmap dimensions. */
ALLEGRO_BITMAP* frame = al_get_video_frame(video);

float sw = al_get_bitmap_width(frame);

float sh = al_get_bitmap_height(frame);

float dw = scale * al_get_video_scaled_width(video);

float dh = scale * al_get_video_scaled_height(video);
al_draw_scaled_bitmap(frame, 0, 0, sw, sh, 0, 0, dw, dh, 0);

Since: 5.1.0

See also: al_get video scaled width, al get video scaled height

40.18 al _get video position

double al_get_video_position(ALLEGRO_VIDEO *video, ALLEGRO_VIDEO_POSITION_TYPE which)

Source Code

Returns the current position of the video stream in seconds since the beginning. The parameter is one
of the ALLEGRO _VIDEO POSITION_ TYPE constants.

Since: 5.1.0

40.19 al_seek_video
bool al_seek_video(ALLEGRO_VIDEO *video, double pos_in_seconds)

Source Code

Seek to a different position in the video. Currently only seeking to the beginning of the video is
supported.

Since: 5.1.0

361


https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L202
https://github.com/liballeg/allegro5/blob/master/addons/video/video.c#L215

	Contents
	Getting started guide
	Introduction
	Structure of the library and its addons
	The main function
	Initialisation
	Opening a window
	Display an image
	Changing the drawing target
	Event queues and input
	Displaying some text
	Drawing primitives
	Blending
	Sound
	Unstable API
	Not the end

	Configuration files
	ALLEGRO_CONFIG
	ALLEGRO_CONFIG_SECTION
	ALLEGRO_CONFIG_ENTRY
	al_create_config
	al_destroy_config
	al_load_config_file
	al_load_config_file_f
	al_save_config_file
	al_save_config_file_f
	al_add_config_section
	al_remove_config_section
	al_add_config_comment
	al_get_config_value
	al_set_config_value
	al_remove_config_key
	al_get_first_config_section
	al_get_next_config_section
	al_get_first_config_entry
	al_get_next_config_entry
	al_merge_config
	al_merge_config_into

	Displays
	Display creation
	ALLEGRO_DISPLAY
	al_create_display
	al_destroy_display
	al_get_new_display_flags
	al_set_new_display_flags
	al_get_new_display_option
	al_set_new_display_option
	al_reset_new_display_options
	al_get_new_window_position
	al_set_new_window_position
	al_get_new_display_refresh_rate
	al_set_new_display_refresh_rate

	Display operations
	al_get_display_event_source
	al_get_backbuffer
	al_flip_display
	al_update_display_region
	al_wait_for_vsync

	Display size and position
	al_get_display_width
	al_get_display_height
	al_resize_display
	al_acknowledge_resize
	al_get_window_position
	al_set_window_position
	al_get_window_constraints
	al_set_window_constraints
	al_apply_window_constraints

	Display settings
	al_get_display_flags
	al_set_display_flag
	al_get_display_option
	al_set_display_option
	al_get_display_format
	al_get_display_orientation
	al_get_display_refresh_rate
	al_set_window_title
	al_set_new_window_title
	ALLEGRO_NEW_WINDOW_TITLE_MAX_SIZE
	al_get_new_window_title
	al_set_display_icon
	al_set_display_icons

	Drawing halts
	al_acknowledge_drawing_halt
	al_acknowledge_drawing_resume

	Screensaver
	al_inhibit_screensaver

	Clipboard
	al_get_clipboard_text
	al_set_clipboard_text
	al_clipboard_has_text


	Event system and events
	ALLEGRO_EVENT
	ALLEGRO_EVENT_JOYSTICK_AXIS
	ALLEGRO_EVENT_JOYSTICK_BUTTON_DOWN
	ALLEGRO_EVENT_JOYSTICK_BUTTON_UP
	ALLEGRO_EVENT_JOYSTICK_CONFIGURATION
	ALLEGRO_EVENT_KEY_DOWN
	ALLEGRO_EVENT_KEY_UP
	ALLEGRO_EVENT_KEY_CHAR
	ALLEGRO_EVENT_MOUSE_AXES
	ALLEGRO_EVENT_MOUSE_BUTTON_DOWN
	ALLEGRO_EVENT_MOUSE_BUTTON_UP
	ALLEGRO_EVENT_MOUSE_WARPED
	ALLEGRO_EVENT_MOUSE_ENTER_DISPLAY
	ALLEGRO_EVENT_MOUSE_LEAVE_DISPLAY
	ALLEGRO_EVENT_TOUCH_BEGIN
	ALLEGRO_EVENT_TOUCH_END
	ALLEGRO_EVENT_TOUCH_MOVE
	ALLEGRO_EVENT_TOUCH_CANCEL
	ALLEGRO_EVENT_TIMER
	ALLEGRO_EVENT_DISPLAY_EXPOSE
	ALLEGRO_EVENT_DISPLAY_RESIZE
	ALLEGRO_EVENT_DISPLAY_CLOSE
	ALLEGRO_EVENT_DISPLAY_LOST
	ALLEGRO_EVENT_DISPLAY_FOUND
	ALLEGRO_EVENT_DISPLAY_SWITCH_OUT
	ALLEGRO_EVENT_DISPLAY_SWITCH_IN
	ALLEGRO_EVENT_DISPLAY_ORIENTATION
	ALLEGRO_EVENT_DISPLAY_HALT_DRAWING
	ALLEGRO_EVENT_DISPLAY_RESUME_DRAWING
	ALLEGRO_EVENT_DISPLAY_CONNECTED
	ALLEGRO_EVENT_DISPLAY_DISCONNECTED

	ALLEGRO_USER_EVENT
	ALLEGRO_EVENT_QUEUE
	ALLEGRO_EVENT_SOURCE
	ALLEGRO_EVENT_TYPE
	ALLEGRO_GET_EVENT_TYPE
	ALLEGRO_EVENT_TYPE_IS_USER
	al_create_event_queue
	al_destroy_event_queue
	al_register_event_source
	al_unregister_event_source
	al_is_event_source_registered
	al_pause_event_queue
	al_is_event_queue_paused
	al_is_event_queue_empty
	al_get_next_event
	al_peek_next_event
	al_drop_next_event
	al_flush_event_queue
	al_wait_for_event
	al_wait_for_event_timed
	al_wait_for_event_until
	al_init_user_event_source
	al_destroy_user_event_source
	al_emit_user_event
	al_unref_user_event
	al_get_event_source_data
	al_set_event_source_data

	File I/O
	ALLEGRO_FILE
	ALLEGRO_FILE_INTERFACE
	ALLEGRO_SEEK
	al_fopen
	al_fopen_interface
	al_fopen_slice
	al_fclose
	al_fread
	al_fwrite
	al_fflush
	al_ftell
	al_fseek
	al_feof
	al_ferror
	al_ferrmsg
	al_fclearerr
	al_fungetc
	al_fsize
	al_fgetc
	al_fputc
	al_fprintf
	al_vfprintf
	al_fread16le
	al_fread16be
	al_fwrite16le
	al_fwrite16be
	al_fread32le
	al_fread32be
	al_fwrite32le
	al_fwrite32be
	al_fgets
	al_fget_ustr
	al_fputs
	Standard I/O specific routines
	al_fopen_fd
	al_make_temp_file

	Alternative file streams
	al_set_new_file_interface
	al_set_standard_file_interface
	al_get_new_file_interface
	al_create_file_handle
	al_get_file_userdata


	Fixed point math routines
	al_fixed
	al_itofix
	al_fixtoi
	al_fixfloor
	al_fixceil
	al_ftofix
	al_fixtof
	al_fixmul
	al_fixdiv
	al_fixadd
	al_fixsub
	Fixed point trig
	al_fixtorad_r
	al_radtofix_r
	al_fixsin
	al_fixcos
	al_fixtan
	al_fixasin
	al_fixacos
	al_fixatan
	al_fixatan2
	al_fixsqrt
	al_fixhypot


	File system routines
	ALLEGRO_FS_ENTRY
	ALLEGRO_FILE_MODE
	al_create_fs_entry
	al_destroy_fs_entry
	al_get_fs_entry_name
	al_update_fs_entry
	al_get_fs_entry_mode
	al_get_fs_entry_atime
	al_get_fs_entry_ctime
	al_get_fs_entry_mtime
	al_get_fs_entry_size
	al_fs_entry_exists
	al_remove_fs_entry
	al_filename_exists
	al_remove_filename
	Directory functions
	al_open_directory
	al_read_directory
	al_close_directory
	al_get_current_directory
	al_change_directory
	al_make_directory
	al_open_fs_entry
	ALLEGRO_FOR_EACH_FS_ENTRY_RESULT
	al_for_each_fs_entry

	Alternative filesystem functions
	ALLEGRO_FS_INTERFACE
	al_set_fs_interface
	al_set_standard_fs_interface
	al_get_fs_interface


	Fullscreen modes
	ALLEGRO_DISPLAY_MODE
	al_get_display_mode
	al_get_num_display_modes

	Graphics routines
	Colors
	ALLEGRO_COLOR
	al_map_rgb
	al_map_rgb_f
	al_map_rgba
	al_premul_rgba
	al_map_rgba_f
	al_premul_rgba_f
	al_unmap_rgb
	al_unmap_rgb_f
	al_unmap_rgba
	al_unmap_rgba_f

	Locking and pixel formats
	ALLEGRO_LOCKED_REGION
	ALLEGRO_PIXEL_FORMAT
	al_get_pixel_size
	al_get_pixel_format_bits
	al_get_pixel_block_size
	al_get_pixel_block_width
	al_get_pixel_block_height
	al_lock_bitmap
	al_lock_bitmap_region
	al_unlock_bitmap
	al_lock_bitmap_blocked
	al_lock_bitmap_region_blocked

	Bitmap creation
	ALLEGRO_BITMAP
	al_create_bitmap
	al_create_sub_bitmap
	al_clone_bitmap
	al_convert_bitmap
	al_convert_memory_bitmaps
	al_destroy_bitmap
	al_get_new_bitmap_flags
	al_get_new_bitmap_format
	al_set_new_bitmap_flags
	al_add_new_bitmap_flag
	al_set_new_bitmap_format
	al_set_new_bitmap_depth
	al_get_new_bitmap_depth
	al_set_new_bitmap_samples
	al_get_new_bitmap_samples

	Bitmap properties
	al_get_bitmap_flags
	al_get_bitmap_format
	al_get_bitmap_height
	al_get_bitmap_width
	al_get_bitmap_depth
	al_get_bitmap_samples
	al_get_pixel
	al_is_bitmap_locked
	al_is_compatible_bitmap
	al_is_sub_bitmap
	al_get_parent_bitmap
	al_get_bitmap_x
	al_get_bitmap_y
	al_reparent_bitmap

	Drawing operations
	al_clear_to_color
	al_clear_depth_buffer
	al_draw_bitmap
	al_draw_tinted_bitmap
	al_draw_bitmap_region
	al_draw_tinted_bitmap_region
	al_draw_pixel
	al_draw_rotated_bitmap
	al_draw_tinted_rotated_bitmap
	al_draw_scaled_rotated_bitmap
	al_draw_tinted_scaled_rotated_bitmap
	al_draw_tinted_scaled_rotated_bitmap_region
	al_draw_scaled_bitmap
	al_draw_tinted_scaled_bitmap
	al_get_target_bitmap
	al_put_pixel
	al_put_blended_pixel

	Target bitmap
	al_set_target_bitmap
	al_set_target_backbuffer
	al_get_current_display

	Blending modes
	al_get_blender
	al_get_separate_blender
	al_get_blend_color
	al_set_blender
	al_set_separate_blender
	al_set_blend_color

	Clipping
	al_get_clipping_rectangle
	al_set_clipping_rectangle
	al_reset_clipping_rectangle

	Graphics utility functions
	al_convert_mask_to_alpha

	Deferred drawing
	al_hold_bitmap_drawing
	al_is_bitmap_drawing_held

	Image I/O
	al_register_bitmap_loader
	al_register_bitmap_saver
	al_register_bitmap_loader_f
	al_register_bitmap_saver_f
	al_load_bitmap
	al_load_bitmap_flags
	al_load_bitmap_f
	al_load_bitmap_flags_f
	al_save_bitmap
	al_save_bitmap_f
	al_register_bitmap_identifier
	al_identify_bitmap
	al_identify_bitmap_f

	Render State
	ALLEGRO_RENDER_STATE
	ALLEGRO_RENDER_FUNCTION
	ALLEGRO_WRITE_MASK_FLAGS
	al_set_render_state
	al_backup_dirty_bitmap
	al_backup_dirty_bitmaps


	Haptic routines
	ALLEGRO_HAPTIC
	ALLEGRO_HAPTIC_CONSTANTS
	ALLEGRO_HAPTIC_EFFECT
	ALLEGRO_HAPTIC_EFFECT_ID
	al_install_haptic
	al_uninstall_haptic
	al_is_haptic_installed
	al_is_mouse_haptic
	al_is_keyboard_haptic
	al_is_display_haptic
	al_is_joystick_haptic
	al_is_touch_input_haptic
	al_get_haptic_from_mouse
	al_get_haptic_from_keyboard
	al_get_haptic_from_display
	al_get_haptic_from_joystick
	al_get_haptic_from_touch_input
	al_release_haptic
	al_is_haptic_active
	al_get_haptic_capabilities
	al_is_haptic_capable
	al_set_haptic_gain
	al_get_haptic_gain
	al_set_haptic_autocenter
	al_get_haptic_autocenter
	al_get_max_haptic_effects
	al_is_haptic_effect_ok
	al_upload_haptic_effect
	al_play_haptic_effect
	al_upload_and_play_haptic_effect
	al_stop_haptic_effect
	al_is_haptic_effect_playing
	al_get_haptic_effect_duration
	al_release_haptic_effect
	al_rumble_haptic

	Joystick routines
	ALLEGRO_JOYSTICK
	ALLEGRO_JOYSTICK_STATE
	ALLEGRO_JOYFLAGS
	al_install_joystick
	al_uninstall_joystick
	al_is_joystick_installed
	al_reconfigure_joysticks
	al_get_num_joysticks
	al_get_joystick
	al_release_joystick
	al_get_joystick_active
	al_get_joystick_name
	al_get_joystick_stick_name
	al_get_joystick_axis_name
	al_get_joystick_button_name
	al_get_joystick_stick_flags
	al_get_joystick_num_sticks
	al_get_joystick_num_axes
	al_get_joystick_num_buttons
	al_get_joystick_state
	al_get_joystick_event_source

	Keyboard routines
	ALLEGRO_KEYBOARD_STATE
	Key codes
	Keyboard modifier flags
	al_install_keyboard
	al_is_keyboard_installed
	al_uninstall_keyboard
	al_get_keyboard_state
	al_clear_keyboard_state
	al_key_down
	al_keycode_to_name
	al_set_keyboard_leds
	al_get_keyboard_event_source

	Memory management routines
	al_malloc
	al_free
	al_realloc
	al_calloc
	al_malloc_with_context
	al_free_with_context
	al_realloc_with_context
	al_calloc_with_context
	ALLEGRO_MEMORY_INTERFACE
	al_set_memory_interface

	Miscellaneous routines
	ALLEGRO_PI
	al_run_main

	Monitors
	ALLEGRO_MONITOR_INFO
	al_get_new_display_adapter
	al_set_new_display_adapter
	al_get_monitor_info
	al_get_num_video_adapters

	Mouse routines
	ALLEGRO_MOUSE_STATE
	al_install_mouse
	al_is_mouse_installed
	al_uninstall_mouse
	al_get_mouse_num_axes
	al_get_mouse_num_buttons
	al_get_mouse_state
	al_get_mouse_state_axis
	al_mouse_button_down
	al_set_mouse_xy
	al_set_mouse_z
	al_set_mouse_w
	al_set_mouse_axis
	al_get_mouse_event_source
	al_set_mouse_wheel_precision
	al_get_mouse_wheel_precision
	Mouse cursors
	al_create_mouse_cursor
	al_destroy_mouse_cursor
	al_set_mouse_cursor
	al_set_system_mouse_cursor
	al_get_mouse_cursor_position
	al_hide_mouse_cursor
	al_show_mouse_cursor
	al_grab_mouse
	al_ungrab_mouse


	Path structures
	al_create_path
	al_create_path_for_directory
	al_destroy_path
	al_clone_path
	al_join_paths
	al_rebase_path
	al_get_path_drive
	al_get_path_num_components
	al_get_path_component
	al_get_path_tail
	al_get_path_filename
	al_get_path_basename
	al_get_path_extension
	al_set_path_drive
	al_append_path_component
	al_insert_path_component
	al_replace_path_component
	al_remove_path_component
	al_drop_path_tail
	al_set_path_filename
	al_set_path_extension
	al_path_cstr
	al_path_ustr
	al_make_path_canonical

	State
	ALLEGRO_STATE
	ALLEGRO_STATE_FLAGS
	al_restore_state
	al_store_state
	al_get_errno
	al_set_errno

	System routines
	al_install_system
	al_init
	al_uninstall_system
	al_is_system_installed
	al_get_allegro_version
	al_get_standard_path
	al_set_exe_name
	al_set_app_name
	al_set_org_name
	al_get_app_name
	al_get_org_name
	al_get_system_config
	al_register_assert_handler
	al_register_trace_handler
	al_get_cpu_count
	al_get_ram_size

	Threads
	ALLEGRO_THREAD
	ALLEGRO_MUTEX
	ALLEGRO_COND
	al_create_thread
	al_start_thread
	al_join_thread
	al_set_thread_should_stop
	al_get_thread_should_stop
	al_destroy_thread
	al_run_detached_thread
	al_create_mutex
	al_create_mutex_recursive
	al_lock_mutex
	al_unlock_mutex
	al_destroy_mutex
	al_create_cond
	al_destroy_cond
	al_wait_cond
	al_wait_cond_until
	al_broadcast_cond
	al_signal_cond

	Time routines
	ALLEGRO_TIMEOUT
	al_get_time
	al_init_timeout
	al_rest

	Timer routines
	ALLEGRO_TIMER
	ALLEGRO_USECS_TO_SECS
	ALLEGRO_MSECS_TO_SECS
	ALLEGRO_BPS_TO_SECS
	ALLEGRO_BPM_TO_SECS
	al_create_timer
	al_start_timer
	al_resume_timer
	al_stop_timer
	al_get_timer_started
	al_destroy_timer
	al_get_timer_count
	al_set_timer_count
	al_add_timer_count
	al_get_timer_speed
	al_set_timer_speed
	al_get_timer_event_source

	Touch input
	ALLEGRO_TOUCH_INPUT
	ALLEGRO_TOUCH_INPUT_MAX_TOUCH_COUNT
	ALLEGRO_TOUCH_STATE
	ALLEGRO_TOUCH_INPUT_STATE
	ALLEGRO_MOUSE_EMULATION_MODE
	al_install_touch_input
	al_uninstall_touch_input
	al_is_touch_input_installed
	al_get_touch_input_state
	al_set_mouse_emulation_mode
	al_get_mouse_emulation_mode
	al_get_touch_input_event_source
	al_get_touch_input_mouse_emulation_event_source

	Transformations
	ALLEGRO_TRANSFORM
	al_copy_transform
	al_use_transform
	al_get_current_transform
	al_use_projection_transform
	al_get_current_projection_transform
	al_get_current_inverse_transform
	al_invert_transform
	al_check_inverse
	al_identity_transform
	al_build_transform
	al_build_camera_transform
	al_translate_transform
	al_rotate_transform
	al_scale_transform
	al_transform_coordinates
	al_transform_coordinates_3d
	al_transform_coordinates_4d
	al_transform_coordinates_3d_projective
	al_compose_transform
	al_orthographic_transform
	al_perspective_transform
	al_translate_transform_3d
	al_scale_transform_3d
	al_rotate_transform_3d
	al_horizontal_shear_transform
	al_vertical_shear_transform

	UTF-8 string routines
	About UTF-8 string routines
	UTF-8 string types
	ALLEGRO_USTR
	ALLEGRO_USTR_INFO

	Creating and destroying strings
	al_ustr_new
	al_ustr_new_from_buffer
	al_ustr_newf
	al_ustr_free
	al_cstr
	al_ustr_to_buffer
	al_cstr_dup
	al_ustr_dup
	al_ustr_dup_substr

	Predefined strings
	al_ustr_empty_string

	Creating strings by referencing other data
	al_ref_cstr
	al_ref_buffer
	al_ref_ustr

	Sizes and offsets
	al_ustr_size
	al_ustr_length
	al_ustr_offset
	al_ustr_next
	al_ustr_prev

	Getting code points
	al_ustr_get
	al_ustr_get_next
	al_ustr_prev_get

	Inserting into strings
	al_ustr_insert
	al_ustr_insert_cstr
	al_ustr_insert_chr

	Appending to strings
	al_ustr_append
	al_ustr_append_cstr
	al_ustr_append_chr
	al_ustr_appendf
	al_ustr_vappendf

	Removing parts of strings
	al_ustr_remove_chr
	al_ustr_remove_range
	al_ustr_truncate
	al_ustr_ltrim_ws
	al_ustr_rtrim_ws
	al_ustr_trim_ws

	Assigning one string to another
	al_ustr_assign
	al_ustr_assign_substr
	al_ustr_assign_cstr

	Replacing parts of string
	al_ustr_set_chr
	al_ustr_replace_range

	Searching
	al_ustr_find_chr
	al_ustr_rfind_chr
	al_ustr_find_set
	al_ustr_find_set_cstr
	al_ustr_find_cset
	al_ustr_find_cset_cstr
	al_ustr_find_str
	al_ustr_find_cstr
	al_ustr_rfind_str
	al_ustr_rfind_cstr
	al_ustr_find_replace
	al_ustr_find_replace_cstr

	Comparing
	al_ustr_equal
	al_ustr_compare
	al_ustr_ncompare
	al_ustr_has_prefix
	al_ustr_has_prefix_cstr
	al_ustr_has_suffix
	al_ustr_has_suffix_cstr

	UTF-16 conversion
	al_ustr_new_from_utf16
	al_ustr_size_utf16
	al_ustr_encode_utf16

	Low-level UTF-8 routines
	al_utf8_width
	al_utf8_encode

	Low-level UTF-16 routines
	al_utf16_width
	al_utf16_encode


	Platform-specific functions
	Windows
	al_get_win_window_handle
	al_win_add_window_callback
	al_win_remove_window_callback

	Mac OS X
	al_osx_get_window

	iPhone
	al_iphone_set_statusbar_orientation
	al_iphone_get_view
	al_iphone_get_window

	Android
	al_android_set_apk_file_interface
	al_android_set_apk_fs_interface
	al_android_get_os_version
	al_android_get_jni_env
	al_android_get_activity

	X11
	al_get_x_window_id
	al_x_set_initial_icon


	Direct3D integration
	al_get_d3d_device
	al_get_d3d_system_texture
	al_get_d3d_video_texture
	al_have_d3d_non_pow2_texture_support
	al_have_d3d_non_square_texture_support
	al_get_d3d_texture_size
	al_get_d3d_texture_position
	al_is_d3d_device_lost
	al_set_d3d_device_release_callback
	al_set_d3d_device_restore_callback

	OpenGL integration
	al_get_opengl_extension_list
	al_get_opengl_proc_address
	al_get_opengl_texture
	al_get_opengl_texture_size
	al_get_opengl_texture_position
	al_get_opengl_program_object
	al_get_opengl_fbo
	al_remove_opengl_fbo
	al_have_opengl_extension
	al_get_opengl_version
	al_get_opengl_variant
	al_set_current_opengl_context
	OpenGL configuration

	Audio addon
	Audio types
	ALLEGRO_AUDIO_EVENT_TYPE
	ALLEGRO_AUDIO_DEPTH
	ALLEGRO_AUDIO_PAN_NONE
	ALLEGRO_CHANNEL_CONF
	ALLEGRO_MIXER
	ALLEGRO_MIXER_QUALITY
	ALLEGRO_PLAYMODE
	ALLEGRO_SAMPLE_ID
	ALLEGRO_SAMPLE
	ALLEGRO_SAMPLE_INSTANCE
	ALLEGRO_AUDIO_STREAM
	ALLEGRO_VOICE

	Setting up audio
	al_install_audio
	al_uninstall_audio
	al_is_audio_installed
	al_reserve_samples

	Misc audio functions
	al_get_allegro_audio_version
	al_get_audio_depth_size
	al_get_channel_count
	al_fill_silence

	Voice functions
	al_create_voice
	al_destroy_voice
	al_detach_voice
	al_attach_audio_stream_to_voice
	al_attach_mixer_to_voice
	al_attach_sample_instance_to_voice
	al_get_voice_frequency
	al_get_voice_channels
	al_get_voice_depth
	al_get_voice_playing
	al_set_voice_playing
	al_get_voice_position
	al_set_voice_position

	Sample functions
	al_create_sample
	al_destroy_sample
	al_play_sample
	al_stop_sample
	al_lock_sample_id
	al_unlock_sample_id
	al_stop_samples
	al_get_sample_channels
	al_get_sample_depth
	al_get_sample_frequency
	al_get_sample_length
	al_get_sample_data

	Sample instance functions
	al_create_sample_instance
	al_destroy_sample_instance
	al_play_sample_instance
	al_stop_sample_instance
	al_get_sample_instance_channels
	al_get_sample_instance_depth
	al_get_sample_instance_frequency
	al_get_sample_instance_length
	al_set_sample_instance_length
	al_get_sample_instance_position
	al_set_sample_instance_position
	al_get_sample_instance_speed
	al_set_sample_instance_speed
	al_get_sample_instance_gain
	al_set_sample_instance_gain
	al_get_sample_instance_pan
	al_set_sample_instance_pan
	al_get_sample_instance_time
	al_get_sample_instance_playmode
	al_set_sample_instance_playmode
	al_get_sample_instance_playing
	al_set_sample_instance_playing
	al_get_sample_instance_attached
	al_detach_sample_instance
	al_get_sample
	al_set_sample
	al_set_sample_instance_channel_matrix

	Mixer functions
	al_create_mixer
	al_destroy_mixer
	al_get_default_mixer
	al_set_default_mixer
	al_restore_default_mixer
	al_get_default_voice
	al_set_default_voice
	al_attach_mixer_to_mixer
	al_attach_sample_instance_to_mixer
	al_attach_audio_stream_to_mixer
	al_get_mixer_frequency
	al_set_mixer_frequency
	al_get_mixer_channels
	al_get_mixer_depth
	al_get_mixer_gain
	al_set_mixer_gain
	al_get_mixer_quality
	al_set_mixer_quality
	al_get_mixer_playing
	al_set_mixer_playing
	al_get_mixer_attached
	al_detach_mixer
	al_set_mixer_postprocess_callback

	Stream functions
	al_create_audio_stream
	al_destroy_audio_stream
	al_get_audio_stream_event_source
	al_drain_audio_stream
	al_rewind_audio_stream
	al_get_audio_stream_frequency
	al_get_audio_stream_channels
	al_get_audio_stream_depth
	al_get_audio_stream_length
	al_get_audio_stream_speed
	al_set_audio_stream_speed
	al_get_audio_stream_gain
	al_set_audio_stream_gain
	al_get_audio_stream_pan
	al_set_audio_stream_pan
	al_get_audio_stream_playing
	al_set_audio_stream_playing
	al_get_audio_stream_playmode
	al_set_audio_stream_playmode
	al_get_audio_stream_attached
	al_detach_audio_stream
	al_get_audio_stream_played_samples
	al_get_audio_stream_fragment
	al_set_audio_stream_fragment
	al_get_audio_stream_fragments
	al_get_available_audio_stream_fragments
	al_seek_audio_stream_secs
	al_get_audio_stream_position_secs
	al_get_audio_stream_length_secs
	al_set_audio_stream_loop_secs
	al_set_audio_stream_channel_matrix

	Audio file I/O
	al_register_sample_loader
	al_register_sample_loader_f
	al_register_sample_saver
	al_register_sample_saver_f
	al_register_audio_stream_loader
	al_register_audio_stream_loader_f
	al_load_sample
	al_load_sample_f
	al_load_audio_stream
	al_load_audio_stream_f
	al_save_sample
	al_save_sample_f

	Audio recording
	ALLEGRO_AUDIO_RECORDER
	ALLEGRO_AUDIO_RECORDER_EVENT
	al_create_audio_recorder
	al_start_audio_recorder
	al_stop_audio_recorder
	al_is_audio_recorder_recording
	al_get_audio_recorder_event
	al_get_audio_recorder_event_source
	al_destroy_audio_recorder


	Audio codecs addon
	al_init_acodec_addon
	al_get_allegro_acodec_version

	Color addon
	al_color_cmyk
	al_color_cmyk_to_rgb
	al_color_hsl
	al_color_hsl_to_rgb
	al_color_hsv
	al_color_hsv_to_rgb
	al_color_html
	al_color_html_to_rgb
	al_color_rgb_to_html
	al_color_name
	al_color_name_to_rgb
	al_color_rgb_to_cmyk
	al_color_rgb_to_hsl
	al_color_rgb_to_hsv
	al_color_rgb_to_name
	al_color_rgb_to_xyz
	al_color_xyz
	al_color_xyz_to_rgb
	al_color_rgb_to_xyy
	al_color_xyy
	al_color_xyy_to_rgb
	al_color_rgb_to_lab
	al_color_lab
	al_color_lab_to_rgb
	al_color_rgb_to_lch
	al_color_lch
	al_color_lch_to_rgb
	al_color_distance_ciede2000_lab
	al_color_rgb_to_yuv
	al_color_yuv
	al_color_yuv_to_rgb
	al_get_allegro_color_version
	al_is_color_valid

	Font addons
	General font routines
	ALLEGRO_FONT
	ALLEGRO_GLYPH
	al_init_font_addon
	al_shutdown_font_addon
	al_load_font
	al_destroy_font
	al_register_font_loader
	al_get_font_line_height
	al_get_font_ascent
	al_get_font_descent
	al_get_text_width
	al_get_ustr_width
	al_draw_text
	al_draw_ustr
	al_draw_justified_text
	al_draw_justified_ustr
	al_draw_textf
	al_draw_justified_textf
	al_get_text_dimensions
	al_get_ustr_dimensions
	al_get_allegro_font_version
	al_get_font_ranges
	al_set_fallback_font
	al_get_fallback_font

	Per glyph text handling
	al_draw_glyph
	al_get_glyph_width
	al_get_glyph_dimensions
	al_get_glyph_advance

	Multiline text drawing
	al_draw_multiline_text
	al_draw_multiline_ustr
	al_draw_multiline_textf
	al_do_multiline_text
	al_do_multiline_ustr

	Bitmap fonts
	al_grab_font_from_bitmap
	al_load_bitmap_font
	al_load_bitmap_font_flags
	al_create_builtin_font

	TTF fonts
	al_init_ttf_addon
	al_shutdown_ttf_addon
	al_load_ttf_font
	al_load_ttf_font_f
	al_load_ttf_font_stretch
	al_load_ttf_font_stretch_f
	al_get_allegro_ttf_version
	al_get_glyph


	Image I/O addon
	al_init_image_addon
	al_shutdown_image_addon
	al_get_allegro_image_version

	Main addon
	Memfile interface
	al_open_memfile
	al_get_allegro_memfile_version

	Native dialogs support
	ALLEGRO_FILECHOOSER
	ALLEGRO_TEXTLOG
	al_init_native_dialog_addon
	al_shutdown_native_dialog_addon
	al_create_native_file_dialog
	al_show_native_file_dialog
	al_get_native_file_dialog_count
	al_get_native_file_dialog_path
	al_destroy_native_file_dialog
	al_show_native_message_box
	al_open_native_text_log
	al_close_native_text_log
	al_append_native_text_log
	al_get_native_text_log_event_source
	al_get_allegro_native_dialog_version
	Menus
	ALLEGRO_MENU
	ALLEGRO_MENU_INFO
	al_create_menu
	al_create_popup_menu
	al_build_menu
	al_append_menu_item
	al_insert_menu_item
	al_remove_menu_item
	al_clone_menu
	al_clone_menu_for_popup
	al_destroy_menu
	al_get_menu_item_caption
	al_set_menu_item_caption
	al_get_menu_item_flags
	al_set_menu_item_flags
	al_toggle_menu_item_flags
	al_get_menu_item_icon
	al_set_menu_item_icon
	al_find_menu
	al_find_menu_item
	al_get_default_menu_event_source
	al_enable_menu_event_source
	al_disable_menu_event_source
	al_get_display_menu
	al_set_display_menu
	al_popup_menu
	al_remove_display_menu


	PhysicsFS integration
	al_set_physfs_file_interface
	al_get_allegro_physfs_version

	Primitives addon
	General
	al_get_allegro_primitives_version
	al_init_primitives_addon
	al_shutdown_primitives_addon

	High level drawing routines
	Pixel-precise output
	al_draw_line
	al_draw_triangle
	al_draw_filled_triangle
	al_draw_rectangle
	al_draw_filled_rectangle
	al_draw_rounded_rectangle
	al_draw_filled_rounded_rectangle
	al_calculate_arc
	al_draw_pieslice
	al_draw_filled_pieslice
	al_draw_ellipse
	al_draw_filled_ellipse
	al_draw_circle
	al_draw_filled_circle
	al_draw_arc
	al_draw_elliptical_arc
	al_calculate_spline
	al_draw_spline
	al_calculate_ribbon
	al_draw_ribbon

	Low level drawing routines
	al_draw_prim
	al_draw_indexed_prim
	al_draw_vertex_buffer
	al_draw_indexed_buffer
	al_draw_soft_triangle
	al_draw_soft_line

	Custom vertex declaration routines
	al_create_vertex_decl
	al_destroy_vertex_decl

	Vertex buffer routines
	al_create_vertex_buffer
	al_destroy_vertex_buffer
	al_lock_vertex_buffer
	al_unlock_vertex_buffer
	al_get_vertex_buffer_size

	Index buffer routines
	al_create_index_buffer
	al_destroy_index_buffer
	al_lock_index_buffer
	al_unlock_index_buffer
	al_get_index_buffer_size

	Polygon routines
	al_draw_polyline
	al_draw_polygon
	al_draw_filled_polygon
	al_draw_filled_polygon_with_holes
	al_triangulate_polygon

	Structures and types
	ALLEGRO_VERTEX
	ALLEGRO_VERTEX_DECL
	ALLEGRO_VERTEX_ELEMENT
	ALLEGRO_PRIM_TYPE
	ALLEGRO_PRIM_ATTR
	ALLEGRO_PRIM_STORAGE
	ALLEGRO_VERTEX_CACHE_SIZE
	ALLEGRO_PRIM_QUALITY
	ALLEGRO_LINE_JOIN
	ALLEGRO_LINE_CAP
	ALLEGRO_VERTEX_BUFFER
	ALLEGRO_INDEX_BUFFER
	ALLEGRO_PRIM_BUFFER_FLAGS


	Shader routines
	ALLEGRO_SHADER
	ALLEGRO_SHADER_TYPE
	ALLEGRO_SHADER_PLATFORM
	al_create_shader
	al_attach_shader_source
	al_attach_shader_source_file
	al_build_shader
	al_get_shader_log
	al_get_shader_platform
	al_use_shader
	al_destroy_shader
	al_set_shader_sampler
	al_set_shader_matrix
	al_set_shader_int
	al_set_shader_float
	al_set_shader_bool
	al_set_shader_int_vector
	al_set_shader_float_vector
	al_get_default_shader_source

	Video streaming addon
	ALLEGRO_VIDEO_EVENT_TYPE
	ALLEGRO_EVENT_VIDEO_FRAME_SHOW
	ALLEGRO_EVENT_VIDEO_FINISHED

	ALLEGRO_VIDEO_POSITION_TYPE
	al_init_video_addon
	al_shutdown_video_addon
	al_get_allegro_video_version
	al_open_video
	al_close_video
	al_start_video
	al_start_video_with_voice
	al_get_video_event_source
	al_set_video_playing
	al_is_video_playing
	al_get_video_audio_rate
	al_get_video_fps
	al_get_video_scaled_width
	al_get_video_scaled_height
	al_get_video_frame
	al_get_video_position
	al_seek_video


