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Part 1

Drawing Statistical Conclusions



Chapter 1

Problem 1: Randomized Experiment vs
Random Sample

Question 1

What is the difference between a randomized experiment and a random sample? Under what type of
study/sample can a causal inference be made?

Answer to Question 1

A randomized experiment is when the the application of the experimental variable (“treatment”) is applied
to subjects chosen randomly. So for example, in a study with 400 subjects, and treatments A, B, and a
control group, each subject would randomly be assigned into either the control group, group A, or group
B. This is done to eliminate confounding variables, as well as possible bias. In a random sample, subjects
are randomly chosen from the population. This is done so that the subjects of the study can be assumed
to be representative of the population as a whole. [1]. We can make causal inferences from a randomized
experiment, but not from a random sample.

Score: 20/20. Explanation: This answer gets full marks because it covers all of the points made in the
key, it defines both random sampling and randomization in the same manner as the key. However in the
future it should be less wordy.



Chapter 2

Problem 2: Identifying Confounding
Variables

Question 2

In 1936, the Literary Digest polled 1 out of every 4 Americans and concluded that Alfred Landon would
win the presidential election in a landon-slide. Of course, history turned out dramatically different (see
http://historymatters.gmu.edu/d/5168/ for further details). The magazine combined three sampling sources:
subscribers to its magazine, phone number records, and automobile registration records. Comment on the
desired population of interest of the survey and what population the magazine actually drew from.

Answer To Question 2

The magazine had hoped to get a random sample, or a dichotomy of the voting population, which would
be representative of the entire voting population of the country as a whole. Instead, they only polled
subscribers to the magazine, phone number records, and automobile registration records. 1936 was in
the height of the great depression, which means that the average American was struggling to survive.
Therefore, while in the past this sampling techique had worked, this time around they ended up only
sampling the wealthiest people, those who could afford phones, cars, and magazine subscriptions, and the
results were not representative of the population. Without truly random sampling, “the statistical results
only apply to [those] sampled”, and cannot be representative of the entire population. [2]. Therefore, itis
just chance that in the previous years, the polls worked.

Score: 10/10. Explanation: This answer gets full marks because it states that the poll wanted to cover
all of the voters (5 points), and it identifies the actual group polled with some explanation (affluent people)
(5 points).



Chapter 3

Problem 3: Identifying a Scope of
Inference

Question 3

3. Suppose we have developed a new fertilizer that is supposed to help corn yields. This fertilizer is so
potent that a small vial of it sprayed over an entire field is a sufficient dose. We find that the new fertilizer
results in an average yield of 60 more bushels over the old fertilizer with a p-value of 0.0001. Write up a
scope of inference under the following study designs that generated this data.

1. We offer the new fertilizer at a discount to customers who have purchased the old fertilizer along with
a survey for them to fill out. Some farmers send in the survey after the growing season, reporting their
crop yield. From our records, we know which of these farmers used the new fertilizer and which used
the old one.

2. When a customer makes an order, we randomly send them either the old or new fertilizer. At the end
of the season, some of the farmers send us a report of their yield. Again, from our records, we know
which of these farmers used the new fertilizer and which used the old.

3. When a customer makes an order, we randomly send them either the old or new fertilizer. At the end
of the season, we sub-select from the fertilizer orders and send a team out to count those farmers’
crop yields.

4. We offer the new fertilizer at a discount to customers who have purchased the old fertilizer. At the
end of the season, we sub-select from the fertilizer orders and send a team out to count those farmers’
crop yields. From our records, we know which of these farmers used the new fertilizer and which
used the old one.

Answer

1. We cannot make causal inferences or inferences about the population, as it was not randomized or
a random sample. Available units from distinct groups were selected, however the treatment was
not assigned randomly, which may mean only farmers who needed a change in fertilizer or were
struggling and could not afford the old fertilizer decided to go for the discount, and then the study is
also only representative of those who submitted reports, as no random sampling was done

Score: 8/8. Explanation: This answer gets full credit because it states that causal inferences cannot
be made and that population inferences cannot be made, which agrees with the key

2. We can make causal inferences but not inferences about the population. The treatment was applied
at random to the subjects, but no random sampling was done. Therefore this study only speaks to the
effect of the treatment on farmers who submitted reports, which may mean that they had noteably
different yields.

Score: 8/8. Explanation: This answer receives full credit because it states that causal inferences can
be made, and that population statements cannot be made, with explanations, all agreeing with the
key

3. We can make causal inferences and inferences about the population. The farmers were randomly
assigned different treatments, which allows us to make causal inferences, and then the farmers were
randomly selected for the yield to be counted, which means that the selected farmers should be rep-
resentative of the entire population. With these experimental parameters, we can decide whether the
new fertilizer worked better, worse, or the same.

Score: 7/8. Explanation: This answer loses a point because the problem does not explicitly state
that the sub sample was random. I assumed it was a random sample, and with that assumption, the
answer is entirely correct, however the randomness is not explicitly stated. Therefore a point is taken
away. The rest of the answer agrees entirely with the key, therefore no more points will be lost

4. We can make inferences about the population but not causal inferences. The treatment was not sup-
plied randomly, so maybe only farmers who needed a discount or the old fertilizer wasnt working for

10
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chose the new fertilizer. However, they were randomly sampled, which means we can make infer-
ences about the population to some degree but we definitely cannot make causaul inferences.

Score: 7/8. Explanation: This answer loses a point because the problem does not explicitly state
that the sub sample was random. I assumed it was a random sample, and with that assumption, the
answer is entirely correct, however the randomness is not explicitly stated. Therefore a point is taken
away. The rest of the answer agrees entirely with the key, therefore no more points will be lost.

11



Chapter 4

Problem 4: Visual comparison of
population means and a permutation test

Question 4

4. A Business Stats class here at SMU was polled, and students were asked how much money (cash) they
had in their pockets at that very moment. The idea was to see if there was evidence that those in charge of
the vending machines should include the expensive bill / coin acceptor or if the machines should just have
the credit card reader. Also, a professor from Seattle University polled her class last year with the same
question. Below are the results of the polls. SMU 34, 1200, 23, 50, 60, 50, 0, 0, 30, 89, 0, 300, 400, 20, 10, 0
Seattle U 20, 10, 5, 0, 30, 50, 0, 100, 110, 0, 40, 10, 3,0

1. Use SAS to make a histogram of the amount of money in a student’s pocket from each school. Does
it appear there is any difference in population means? What evidence do you have? Discuss your
thoughts.

2. Use the following R code to reproduce your histograms. Simply cut and paste the histograms into
your HW. SMU = ¢(34, 1200, 23, 50, 60, 50, 0, 0, 30, 89, 0, 300, 400, 20, 10, 0) Seattle = ¢(20, 10, 5, 0,
30,50, 0,100, 110, 0, 40, 10, 3, 0) hist(SMU) hist(Seattle)

3. Run a permutation test to test if the mean amount of pocket cash from students at SMU is different
than that of students from Seattle University. Write up a statistical conclusion and scope of inference
(similar to the one from the PowerPoint). (This should include identifying the Ho and Ha as well as
the p-value.)

Answer

1. Code (see Appendix 1) for the SAS histogram (Figure 1) was inspired by [3]. The code used to
produce this histogram is as follows:

Code 4.1. Creating Paneled histograms in SAS

proc sgpanel data=CashMoney;

panelby School / rows=2 layout=rowlattice;
histogram cash / binwidth = 25;

run;

12
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Figure 4.0.1. Distribution of Cash by School, produced in SAS
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It appears that for the sample means, the SMU sample has a slighly higher mean, however I do not
believe that means that the population of SMU has a higher mean than Seattle U, as this was not a
random sample, it was just of business students. It appears that the SMU cash distribution is wider,
with higher values, but again it is hard to tell if it is indicative of the entire population, I believe,
based off of where the majority of the distributions lie, both populations would have similar means,
with SMU having a slightly higher mean. SMU is a private school and Seattle U is one of the best
value schools in the country, so it is possible that SMU students might have in general, more money
than students at Seattle U, and therefore more cash.

Score: 5/5. Explanation: This receives full marks, the histograms are correct and the conclusions are
similar to the key, and are very logical. The code is included in the appendix.

. The code used to generate the R histograms (Figure 2) was given in the homework and is presented

below

Code 4.2. Producing histograms in R

SMU = ¢ (34, 1200, 23, 50, 60, 50, O, O, 30, 89, 0, 300, 400, 20, 10, 0)
Seattle = c¢(20, 10, 5, 0, 30, 50, O, 100, 110, O, 40, 10, 3, 0)
par(mfrow=c(1,2))

hist(SMU)

hist(Seattle)

Figure 4.0.2. Cash Distributions at SMU and Seattle U, Produced using R

Histogram of Seattle Histogram of SMU

0 200 400 600 800 1000 1200

Seatte sw

he code used to generate the permutation test (Appendix 2), using SAS, is given in [4]. The results of
the permutation test, with 999999 permutations can be seen in Figure 3 Below is SAS and R code for
permutation tests:

13
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Code 4.3. Two Tailed permutation test in SAS, using manually input groups

proc iml;
G1 = {/*SMU student datax/};
G2 = {/+Seattle U student datax/};

obsdiff = mean(G1) - mean(G2); /*difference in the means of the two data sets*/

print obsdiff;

call randseed(12345); /+ set random number seed %/
alldata = G1 // G2; /+ stack data in a single vector =/
N1 = nrow(G1); N = N1 + nrow(G2);

NRepl = 999999; /% number of permutations, I did ~ 1 million just because I thougt

nulldist = j(NRepl,1); /x allocate vector to hold results =/
do k = 1 to NRepl;
x = sample(alldata, N, "WOR"); /% permute the data =/

nulldist[k] = mean(x[1:N1]) - mean(x[(N1+1):N]); /+ difference of means x*/

end;
title "Histogram of Null Distribution";
refline = "refline " + char(obsdiff) + " / axis=x lineattrs=(color=red);";/*build

call Histogram(nulldist) other=refline;

pval = (1 + sum(abs(nulldist) >= abs(obsdiff))) / (NRepl+1); print pval;/*calculaf
/+https://blogs.sas.com/content/im1/2014/11/21/resampling-in-sas.html=/

Figure 4.0.3. Results of Permutation Tests

Histogram of Null Distribution

Percent

nulldist

And some R code: In this test, the null hypothesis is that there is no difference between the mean
amount of cash in a student’s pocket in the two groups, while the alternative hypothesis is that there
is a meaningful difference between the two[4]. The permutations were used to generate the null
distribution of differences, and the red line shows where the experimental difference lies. Further
calculation shows that the p value of the experimental mean was 0.149, meaning about 15% of the
null distribution is greater than our mean[5]. With a 5 or 10 % confidence interval, we cannot reject
the null hypothesis, and therefore we cannot say there is any difference between the two means. The
SMU students and Seattle U students have more or less the same amount of cash in their pockets,
the result of the study does not bear statistical inference. As for scope of inference, this was not
a randomized experiment or random sample, and therefore we cannot make any causal inferences
(there was no treatment applied, and we definitely cannot say going to SMU makes you have more
or less money in your pocket than going to Seattle U), and we cannot make any inferences about the
student bodies as a whole (population inferences). The sample is only representative of the students
sampled, so we have very little scope of inference.

Score: 15/15. Explanation: This receives full marks, 5 points for running the test, 5 points for the p value,
and 5 points for mentioning the null and alternative hypotheses and getting the correct conclusion. The code
is included in the Appendix.

14
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Code 4.4. Two Tailed permutation test in R, using manually input groups

schooll <- rep(’'SMU", 16)

school2 <- rep(’'Seattle’, 14)

school <- as.factor(c(schooll, school2))

all.money <- data.frame(name=school, money=c(SMU, Seattle))

t.test(money ~ name, data=all.money)

number_of_ permutations <- 1000

xbarholder <- numeric(0)

counter <- 0

observed_diff <- mean(subset(all.money, name == "SMU")\$money)-mean(subset(all
.money, name == "Seattle")\$money)

set.seed(123)
for(i in 1:number_of permutations)

{
scramble <- sample(all.money\$money, 30)
smu <- scramble[1:16]
seattle <- scramble[17:30]
diff <- mean(smu)-mean(seattle)
xbarholder[i] <- diff
if(abs(diff) > abs(observed_diff))
counter <- counter + 1
}
hist(xbarholder, xlab='Permuted SMU - Seattle’, main="Histogram of Permuted

Mean Differences’)
box ()
pvalue <- counter / number_of_ permutations
pvalue
observed_diff

15
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DRAWING STATISTICAL CONCLUSIONS
RANDOMIZED EXPERIMENTS V. OBSERVATIONAL STUDIES

RANDOM SAMPLES V. SELF-SELECTION

Symbols!

Standard
Mean Deviation Variance
Sample X s s?
Population g o?

Creativity Scores:
Intrinsic vs. Extrinsic Motivation

Subjects volunteered for the study.
Then, treatments were randomly assigned.

i
S

Starting Salaries:
Female vs. Male

SR Subjects were NOT randomly
chosen by the researcher (all
employees at a bank were
included), and the group
assignments were not random
either.

If a random sample of the
employees had been used...
Random sampling study with two populations

Population I

Data
=g g,
Population 2
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Types of Studies

Creativity Study
™
Sujes I Ay
nmé,,_,{ﬁ—/' ) ol +ﬂﬂ1[[ﬂ:. Randomized
(D b Alnsion = !
(G \A@ Experiment
E— albent
=, - + Creativity >
Seores
Fankon i wh ogoptrs
Salary Study

B gy

-

Observational
Study

Causal Inference:
Randomized vs. Observational Study

 Causal inferences can be drawn from randomized experiments

* Causal inferences cannot be drawn from observational studies due to CONFOUNDING
CONFOUNDING VARIABLE: Related to both group membership and to the outcome
Example: Since 2000, the U.S. median wage...

has overall increased about 1%

<has decreased for high school (or below) dropouts and high school graduates (no college)

*Is this a paradox? .
No, more people are going to college.

Causal Inference:

Randomized vs. Observational Study

* Causal inferences can be drawn from randomized experiments

* Causal inferences cannot be drawn from observational studies due to CONFOUNDING
What are some possible confounding variables in the gender/salary study?

In  the starting

salaries study,

maybe males have

* more education

* more seniority

* more age (older)

* more willingness
to negotiate
starting salary

In a randomized experiment, variables like age are also randomly distributed to each group,
removing the confounding effect.

Why do an observational
study?

* Establishing causation not always the goal
* Predict whether or not an email is spam
*Randomization may not be ethical
* Assign subjects of a clinical trial of a cancer drug to treatment or placebo

*May be arguable scientifically that a confounder is “unlikely”

* 6 month smoking ban in Helena, MT coinciding with 40%
reduction in heart attacks

* Might have an incidentally observed dataset

*  Walmart collects petabytes of data/day. Should this data
be discarded because it is observational?
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Inference to Populations: Inference to Populations:
Random Sample vs. Self-Selection Random Sample vs. Self-Selection

* Inference to populations can be drawn from a RANDOM SAMPLE FROM THAT POPULATION. « Inference to populations can be drawn from a RANDOM SAMPLE

« Inference to populations cannot be drawn if units are self-selected. In this creativity . B . 3
example, inference can only be drawn to the subjects in the sample that was taken. + Inference to populations cannot be drawn if units are self-selected

RANDOM SAMPLE: Experimental units selected via a “chance mechanism” from a well *WHICH OF THE STUDIES USES RANDOM SAMPLING?
defined population

.

Neither study uses random
Example: call randomly selected phone numbers for a survey.

sampling
*  What is the population from which the sample is taken? If drawing from a physical * Creativity study: units
phone book, is it the people who live in the city? are volunteers

. . L . . o * Bank study: unit:
+ Would this sampling method result in inferences to different populations if it were t:n nst:'j . ?f“' s are
used in 1950? 19907 Present day? the entire sta
* No inference about a larger

SIMPLE RANDOM SAMPLE: Every subset of size n is equally likely population is possible

Example: I'll assign everyone in this class a random integer 17, 200, -3, 472, ... and * Does not mean thg results
survey the n people (units) with smallest numbers are not interesting or
compelling!

Statistical Inferences |
Permitted by Study Design Practice with Scope: Q1

Allocation of Units o Groups
By Randomization Not by Randomization A particular study focused on high school freshman and seniors and their GPAs in a
ANIARTIRIRRRRRRW required economics class. The study consisted of enumerating every freshman and
A random sample is Random samples are senior in the school and randomly selecting them from that sampling frame. Their
popuation; s St Ierescesto scores in the economics class were then recorded, and a hypothesis test for the
wr then undoy hw: difference of means was conducted. The seniors were found to have a significantly
El fobindybe. el S greater mean score in the class than the freshman. What sort of conclusions can be
i \ made from this study? In other words, what is the scope of this study? In this class,
H STUAIANY h 4 A R
3 scope typically constitutes both the causal inferences and populations inferences.
772Z72TI 7222
1 Agroup of study Collections of Since the subjects cannot be randomly assigned to be freshman or seniors, this is an observational
it is found; available units from study, and thus the difference in mean scores is only associated with the freshman / senior status.
:(')'::w;}'ﬁgm fﬂ;’:f:ﬁ/mw are We can’t tell if the class (freshman or senior) caused the difference or not.
3 reamem groups: The sample was a random sample from the school; therefore, these findings can be generalized to
all freshman and seniors in the school. In conclusion, it can be inferred that the mean economics

score of the seniors in the school is greater than that of the freshman although the cause of this
difference cannot be determined from this study.




10/12/2018

Practice with Scope: Q2

The Navy is very interested in the effects of sleep deprivation on cognitive ability. In order
to test the effect, the Navy put out a radio advertisement asking for 18 to 35 year ol
nonsmokers to participate in the study. The volunteers were then placed in either the
control group Sno slee#) deprivation) or the treatment g]l_'oup (36 hours of sleep deprivation)
based on the flip of a fair coin (Heads = Control, Tails = Treatment). After the data was
collected, the sleep deprived group was found to have a significantly lower mean math scord
than the group not deprived of sleep. What sort of conclusions can be made from this
study? In other words, what is the scope of this study (causal inferences and population
inferences)?

Since the subjects were randomly assigned to the control and treatment groups, this is a
randomized experiment; thus, the difference in mean scores can be concluded to be
caused by the sleep deprivation. Since the subjects were volunteers who responded to a
radio advertisement, it is easy to see that every member of the population did not have
the same chance of being selected, and thus the sample is NOT a random sample.
Therefore these findings cannot be generalized to all U.S. nonsmokers between the age
of 18 and 35. In conclusion, it can be inferred that sleep deprivation caused the decrease
in cognitive ability (as measured by the timed math test) for these 57 individuals only.

Drawing Statistical
Conclusions

MEASURING UNCERTAINTY IN RANDOMIZED AND
OBSERVATIONAL STUDIES

Creativity Study

b
1=2l — Populationmean*:
oG - Populationmean: ptp

o

«Crarviy >
Seores

«If the questionnaires had no effect, then we would expect:
M=y =iy =0 (NULL HYPOTHESIS)
*We have discussed that the sample means Y and Yy are good estimates of y;,
== ¥, — ¥, is a reasonable estimate of y; - pty
*We can compute this OBSERVED DIFFERENCE in sample means: Y; — Y;=4.14420 (TEST STATISTIC)
*1s 414420 large enough for us to conclude that i, # 1t ?  (ALTERNATE HYPOTHESIS)

*The population mean . for this study is the true score of everyone in the study
under treatment k, whelher they received treatment k or not,

4 out of 6 groupings have test statistics as extreme or more extreme than the
original grouping.
As extreme or more extreme means the absolute value of the test statisticis at

Creativity Study =
So the p-value is 4/6 = 0.667. This answers the question of how unusual our

test statistic would be if the treatments had the same effect.

For the sake of the example, supposed there are only 4 subjects.

To quantify “large,” we can randomly reallocate units to two groups and recompute
the difference in sample means many times.

*Everyone has the same score with each grouping. The group each person is
artificially put in changes with each regrouping. If the treatments had the same
effect, then each participant would have the same score regardless of grouping.

Int(Grp1) | Ext(Grp2)
12 Bob 5 Dan
17 Sue 15 sal

Ag.145 |Ag 10

m (Grp 1) (Grp 2) (Grp1) (Grp 2)
12 Bob 5 Dan 15 sal 5 Dan
All other possible groupings: 15 sal 17 Sue 17 Sue 12 Bob
L K VPP PV Avg. 16 Avg. 8.5
12Bob 175ue DIff13.5-11=2.5 Diff 16—&56@
Sban |15l (Grp1) (Grp2) (Grp 1) 2)
A 85 | Ave 16 5Dan 12 Bob 5 Dan 12 Bob
Diff8.5-16€-7.5 i 17 Sue 15 Sal 15 Sal 17 Sue
Avg. 11 Avg. 13.5 Avg. 10 | Avg. 145

Diff11-13.5=-2.5

Diff 10 - 14.5(= -4.5
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Creativity Study:
Creativity Study: all 47 subjects Testing the Hypothesis

e Number of
. Hy by -pp =0
B = Population mean: e
o i ol p " random Hypy-pp #0100
) - regroupings: different
N | et Ea;;xf; - Populationmean: ptp 1.6 x 1013
we2t

groupings
‘ (relabelings)*
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*To quantify “large,” we can randomly reallocate units to two groups and recompute Half a year with a

the difference in sample means many times computer that can =
. " . perform a million -4.14 414
*We say that a recomputed difference is MORE EXTREME (OR As EXTREME) provided N
Semes calculations  per . |7
abs(recomputed difference) Zabs(Y, — Yg) second! a B

number of more extreme recomputed dif [erences -\
‘ = p - value (P-VALUE
total number of random reallocations

*Suppose that

*If p-value is very small (say 0.01), this provides evidence that the intrinsic/extrinsic
group result would be very unusual if the questionnaire had no effect

*If p-value is very big (say 0.2), this provides little evidence that the intrinsic/extrinsic
group result would be very unusual if the questionnaire had no effect

*Everyone has the same score with each grouping. What group each person is artificially put in changes with each regrouping. If the
treatments had the same effect, then each participant would have the same score regardless of grouping.

Creativity Study Creativity Study

Ho.py-pp =0 —
Hapy-pg #0 414

1000 different ‘
groupings
(relabelings)
P-value = 8/1000 — ’

(go to SAS code)

The TTEST Procedure
Variable: score

Mean  95%CL Mean StdDev)  95% CL Std Dev
19.8833 18.0087 217580, 4.4395 34504 6.2276.
15.7391 134677 18.0105 52526 4.0623 74343 o=
Pooled 1.2914 6.9970° 4.8541 4.0261 6.1138. =0.008 S0 B R e A
Satterthwaite 21242 12776 7.0108. I ] T 1 e
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There s strong evidence to suggest that the mean score of those who receive intrinsic motivation is not equal to those who receive the
extrinsic motivation (p-value = .008). The burden to reject the null hypothesis is lower under a one-sided test, so we can say that the
evidence supports the claim that the intrinsic mean is higher than the extrinsic mean.

Since this was a randomized experiment, we can conclude that the intrinsic motivation caused this increase. In addition, since these were
volunteers, this inference can only be assumed to apply to these 47 subjects, although the findings are very intriguing.
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From Randomized to
Observational Studies

*In the Creativity study, the Intrinsic/Extrinsic groups were randomly
assigned to subjects

*This motivated comparing the observed difference to re-randomized
difference to test a hypothesis about the questionnaire having no effect

*This is known as a RANDOMIZATION TEST A p p E n d iX
*In observational studies, the groups are not randomly assigned

*Though not technically the same test, we can still apply exactly the
same re-randomization idea to observational data

*However, now it is called a PERMUTATION TEST

In the United States, it is illegal to discriminate against people based on various Fired Ho.ptp -tiyr =0 ® Disbuieneitiemn
attributes. One such attribute is age. An active lawsuit, filed August 30, 2011, in the 34373738 414243 44 44 45 45 Hy pie -ty 20 -1.9238 19238
Los Angeles District Office is a case against the American Samoa Government for ;50:‘2;‘::9 535354 5455 56 P-A\.;allfne -2%4/1000 P ¥
systematic age discrimination by preferentially firing older workers. 2733 36 37 38 38 30 42 42 43 43 44 D504 F NF
; iscrimination in thi > 44.44 45 45 45 45 46 46 47 47 48 48
Is there evidence for age discrimination in this study? 19495151 52 54 1000 different
o === groupings i
. E k | § relabelings)
Data sampled at random from all American Samoa government workers: : . ( es) [ b
Fired £ ﬂi R R R
343737384142 43 44 44 45 45 45 46 48 49 53 53 54 54 55 56 : = T O o o ) W —rr e =
Not fired - T N T T —r — I ol
= Fup = ASES71-43.9333= 1.9238 | coumn 0400 pwie tos 2662 40| oas b0 i ek
273336373838394242434344444445454545464647 4748484949 5151 There is not sufficient evidence to suggest that the mean age of those who were fired is different from the mean age of those who were not fired (p-value =
5254 0.204). The p-value is so high that even the null hypothesis of a one-sided test cannot be rejected. (There is insufficient evident to claim that the mean age of
fired employees is greater than that of not fired employees.)
Since this was a random sample of government employees in Samoa, we can generalize this inference to all government-employed people in Samoa.
N ce we FTR (fail to reject) Ho, there is no need to discuss causation or associ:




Part 11

Inferences Using the t-distribution
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Chapter 6

Problem 1: A one sample t test

Question 1

The world’s smallest mammal is the bumblebee bat, also known as the Kitti’s hog nosed bat. Such bats are
roughly the size of a large bumblebee! Listed below are weights (in grams) from a sample of these bats. Test
the claim that these bats come from the same population having a mean weight equal to 1.8 g. (Beware:
This data is NOT the same as in the lecture slides!) Sample: 1.7 1.6 1.52.02.31.61.61.81.51.71.21.41.6
1.61.6

1. Perform a complete analysis using SAS. Use the six step hypothesis test with a conclusion that includes
a statistical conclusion, a confidence interval and a scope of inference (as best as can be done with the
information above ... there are many correct answers given the vagueness of the description of the
sampling mechanism.)

2. Inspect and run this R Code and compare the results (t statistic, p-value and confidence interval) to
those you found in SAS. To run the code, simply copy and paste the below code into R.

Code 6.1. One sample t test in R with manual data input

sample = ¢(1.7, 1.6, 1.5, 2.0, 2.3, 1.6, 1.6, 1.8, 1.5, 1.7, 1.2, 1.4, 1.6,
1.6, 1.6)
t.test(x=sample, mu = 1.8, conf.int = "TRUE", alternative = "two.sided")

Answer

6.1 Complete Analysis

Hypothesis definition

HO U= 1.8
Hy p=1.8

Identification of a critical value and drawing a shaded t distribution

We have that n = 15 - df = n—1 = 14, a = 0.05. We input this into SAS and get our lovely shaded
distribution and critical value with the following code: This gives us a critical t value of +2.14479, as seen
in the following figures:

Figure 6.1.1. Critical t value

Obs P
1|2.14479
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Code 6.2. Critical value and two sided shaded t distribution using SAS

data critval;

p = quantile("T",.975,14); /+two sided testx/;
proc print data=critval;

run;

data pdf;

do x = -4 to 4 by .001;

pdf = pdf("T", x, 14);

if x <= quantile("T",.025,14) then lower = pdf;
else lower = 0;

if x >= quantile("T",.975,14) then upper
else upper = 0;

output;

end;

run;

title 'Shaded t distribution’;

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x lower = lower upper = upper / fillattrs=(color=gray8a);
series x = x y = pdf / lineattrs = (color = black);

series x = x y = lower / lineattrs = (color = black);

run;

pdf;

Shaded t distribution

Value of Test Statistic

The t statistic was calculated using the following SAS code

P value

Code 6.3. One sample t test in SAS

proc ttest data=bats h0=1.8
sides=2 alpha=0.05;
run;

This gives us a p-value of p = 0.0342

Assessment of the Hypothesis test

From here we can see that p =.0342<a = .05, indicating that we REJECT the null hypothesis, which claims

that y=1.8

Conclusion and scope of inference

We cannot say that this sample of bats comes from a population with a mean weight of 1.8 grams (p value
= 0.0242 from a two sided t test). Below is a graph produced with the code from step 4 which shoes a 95%
confidence interval on the distribution of the data (green) vs the null hypothesis(gray bar)
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m} 95% Confidence
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The mean of 1.8 lies outside the reasonable range of the data from the sample, and as our hypothesis
test showed, vice versa is also true. We cannot say that our sample of bats has a mean weight of 1.8, and it
is difficult to say that it came from a population of mean 1.8. However, we cannot make any conclusions
about the population this sample came from, because it is not a random sample (we also clearly cant make
any causal inferences), We only know, with 95% confidence, that our sample does not have a mean of 1.8
grams, and that is about all we can say.

Some R code

Code 6.4. one sample t testin r

sample <- ¢(1.7, 1.6, 1.5, 2.0, 2.3, 1.6, 1.6,
1.8, 1.5, 1.7, 1.2, 1.4, 1.6, 1.6, 1.6)
t.test(x=sample, mu = 1.8,

conf.int = "TRUE", alternative = "two.sided")
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Chapter 7

Problem 2: Two sample one sided t test

Question

2. In the United States, it is illegal to discriminate against people based on various attributes. One ex-
ample is age. An active lawsuit, filed August 30, 2011, in the Los Angeles District Office is a case against
the American Samoa Government for systematic age discrimination by preferentially firing older workers.
Though the data and details are currently sealed, suppose that a random sample of the ages of fired and
not fired people in the American Samoa Government are listed below: Fired 34 37 37 38 41 42 43 44 44 45
4545 46 48 49 53 53 54 54 55 56 Not fired 27 33 36 37 38 38 39 42 42 43 43 44 44 44 45 45 45 45 46 46 47
47 48 48 49 49 51 51 52 54

a. Perform a permutation test to test the claim that there is age discrimination. Provide the Ho and
Ha, the p-value, and full statistical conclusion, including the scope (inference on population and causal
inference). Note: this was an example in Live Session 1. You may start from scratch or use the sample code
and PowerPoints from Live Session 1.

b. Now run a two sample t-test appropriate for this scientific problem. (Use SAS.) (Note: we may not
have talked much about a two-sided versus a one-sided test. If you would like to read the discussion on pg.
44 (Statistical Sleuth), you can run a one-sided test if it seems appropriate. Otherwise, just run a two-sided
test as in class. There are also examples in the Statistics Bridge Course.) Be sure to include all six steps, a
statistical conclusion, and scope of inference.

c. Compare this p-value to the randomized p-value found in the previous sub-question.

d. The jury wants to see a range of plausible values for the difference in means between the fired and
not fired groups. Provide them with a confidence interval for the difference of means and an interpretation.

f. Inspect and run this R Code and compare the results (t statistic, p-value, and confidence interval) to
those you found in SAS. To run the code, simply copy and paste the code below into R.

Answers

7.1 Permutation test

First, a permutation test is ran using n = 9999, using the code I wrote in homework one, inspired by [2].
The code used to run the permutation test is shown below: In this scenario, we have that:

Code 7.1. A one sided permutation test in SAS

obsdiff = mean(G1) - mean(G2); /+G1 and G2 represent the two groupsx*/
print obsdiff;

call randseed(12345); /+ set random number seed %/
alldata = G1 // G2; /% stack data in a single vector x*/
N1 = nrow(G1);

N = N1 + nrow(G2);

NRepl = 9999; /% number of permutations =/
nulldist = j(NRepl,1); /+ allocate vector to hold results */
do k = 1 to NRepl;

x = sample(alldata, N, "WOR"); /+ permute the data x*/

nulldist[k] = mean(x[1:N1]) - mean(x[(N1+1):N]);
/+ difference of means x/

end;
title "Histogram of Null Distribution";
refline = "refline " + char(obsdiff) + " / axis=x lineattrs=(color=red);";

call Histogram(nulldist) other=refline;
pval = (1 + sum(abs(nulldist) >= (obsdiff))) / (NRepl+1);
print pval;

HO ’/lf—]lufso
H; :yf—yuf>0
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where the null hypothesis is that the average age of the unfired individuals is the same as the average age of
the fired individuals, and the alternative is that the average age of the individuals who were fired is higher.
The results of the permutation test are as follows:

Histogram of Null Distribution

Percent

-50 -25 0.0 25 5.0
nulldist

In the above figure, the red line represents the mean of the difference between the two samples, and
the rest of the bars represent our null distribution. SAS tells us that the P-value is 0.2812, meaning 28.12
percent of the null distribution is greater than our sample mean. Therefore, with a 5%, or even a 10%
confidence interval, we cannot reject the null hypothesis. We cannot say whether or not there was age
discrimination in the firing of workers with the given sample. With this procedure, we can make general-
izations about the population, and generalize about all of the government-employed people in Samoa, as
we did a random sample, however, we cannot make causal inferences, as there may be confounding vari-
ables in the system, and we did not run a randomized experiment. There is also no need to discuss causal
problems, because we failed to reject the null hypothesis.

7.2 Two sample T test, full analysis

This time we will conduct a t test on the two data sets to determine whether age discrimination occured or
not. Because we believe the older workers may have been fired, we are going to perform a one sided t-test.

Hypothesis definition

First we construct our hypotheses:

HO ’/lf—]/lufso
H; :yf—yuf>0

critval and distribution

Next we draw and shade our distribution:
In a two sample t-test, we have that:
df an+l/lnf—2
where in our case, df =21+30-2=49, a =0.05

Now we input this information into SAS to draw our distribution[1]:
Giving us this lovely graph:

Shaded t distribution

Next we find a number for the critical value, using the same code as problem 1:
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Code 7.2. One sided shaded t distribution in SAS and Critval

data pdf;
do x = -4 to 4 by .01;
pdf = pdf("T", x, 49);
lower = 0;

if x >= quantile("T",0.95,49) then upper = pdf;/xone sided*/ else upper = 0;

output;

end;

run;

title ’Shaded t distribution’;

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;
band x = x
lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y
series x = x y
run;

data critval;

pdf / lineattrs =
lower / lineattrs = (color = black);

(color = black);

p = quantile("T",.95,49); /+one sided testx/;

proc print data=critval;
run;

Obs P
1 1.67655

This gives us a critical t value of 1.67655.

Calculation of the T statistic

Next we calculate our two sample t statistic using SAS:

Code 7.3. Two sample t test using SAS

proc ttest data=samoa
alpha=.05 test=diff
sides=U;

class fired;

var age;

run;

Which tells us that our t statistic is 1.10

Method Variances DF tValue Pr> |t
Pooled Equal 49 1.10 /0.2771
Satterthwaite Unequal 40.268 1.08  0.2870
P value
With the code from the previous step, we also see the p value:
Method Variances DF | t Value
Pooled Equal 49 1.100,.0.1385
Satterthwaite Unequal 40.268 1.08 0

p=0.1385

hypothesis assement

p = 0.1385 > a = 0.05 for the one tailed hypothesis test, indicating that we CANNOT REJECT the null

hypothesis
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conclusion

The p value for the t test was about half of the p value for the random test, I believe this is because I ran a
one-sided t test. It is interesting to note that if you do a two sided t-test in SAS, you get roughly the same
value for p as in the permutation test:

Method Variances DF tValue Pr> |t
Pooled Equal 49 1.10 /0.2771
Satterthwaite  Unequal 40.268 1.08 0.2870

This means that maybe a permutation test is a good estimator of the two-sided t-test.

We cannot reject the null hypothesis, meaning we cannot say that older workers were fired from the
samoan government. Note that we used a one tailed hypothesis test in this scenario, as we wanted to
deternine if the fired group was OLDER than the nonfired group. As a result of this test, we cannot say
that the fired group was older than the unfired group, and since this sample was random, we can say the
same thing about the entire samoan government. However, we cannot make causal inferences and there is
no need to because we did not reject the null hypothesis

We can provide a lot of confidence intervals for the jury. I think the most telling is the one sided
confidence interval, which would tell us what difference in the means constitutes age discrimination. This
was produced using the following SAS code:

proc ttest data=samoa
alpha=.05 test=diff
sides=U;

class fired;

var age;

run;

which gives us a confidence interval of [-1.0107, co). This confidence interval represents the upper differ-
ence of means at a 95% confidence level. We can interpret this as follows: if the confidence interval contains
the null hypothesis, then we cannot reject it. However if it does not contain the null hypothesis, we must
reject it. As we can see in this beautifully drawn figure, the null hypothesis, pf —p,, r < 0 is contained within
our CI:

59

. This means we cannot reject the null hypothesis, we cannot say there was age discrimination. It is
plausible that the mean differnence of the entire population of samoan government employees is less than
or equal to zero, as it is within the 95% confidence interval, which means we cannot, as objective jurors,
claim there was age discrimination.

Incorrect calculations

The pooled sample standard deviation, Sps is defined as

o Liitn-1s}
P k
Yii(n=1)

which for us is:

. _\/(21—1)(6.5214)2+(30—1)(5.8835)2
,=

=6.152
20+29

The equation for standard error in the difference of means is given as
2 2
51, %52
Ox1—x, = 7”1_1 + n_2

Which gives us that
6.52142 5.88352
P \/ Tty = 181

7.3 Rcode

The following code (supplied in the homework) was put into R: returning this:
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Code 7.4. two sample t test in R

Fired = ¢(34, 37, 37, 38, 41, 42, 43,

44, 44, 45, 45, 45, 46, 48, 49, 53,

53, 54, 54, 55, 56)

Not_fired = c¢(27, 33, 36, 37, 38, 38,

39, 42, 42, 43, 43, 44, 44, 44, 45,

45, 45, 45, 46, 46, 47, 47, 48, 48,

49, 49, 51, 51, 52, 54)

t.test(x = Fired, y = Not_fired, conf.int = .95, var.equal = TRUE, alternative =
"greater")

Two Sample t-test
data: Fired and Not_fired

t = 1.0991,

df = 49,

p-value = 0.1385 alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval: -1.010728 Inf sample estimates: mean of x mean of y  45.85714 43.93333

The results are near identical, I cannot tell which one is better but I imagine R is more accurate as well,
but just a very small difference between the results in all regards . The var.Equal statement is important
because it uses the pooled test.
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Problem 3: two sample two sided t test

Question

3. In the last homework, it was mentioned that a Business Stats professor here at SMU polled his class and
asked students them how much money (cash) they had in their pockets at that very moment. The idea was
that we wanted to see if there was evidence that those in charge of the vending machines should include the
expensive bill / coin acceptor or if it should just have the credit card reader. However, another professor
from Seattle University was asked to poll her class with the same question. Below are the results of our
polls.

SMU 34, 1200, 23, 50, 60, 50, 0, 0, 30, 89, 0, 300, 400, 20, 10, 0 Seattle U 20, 10, 5, 0, 30, 50, 0, 100,
110, 0, 40, 10, 3, 0 a. Run a two sample t-test to test if the mean amount of pocket cash from students at
SMU is different than that of students from Seattle University. Write up a complete analysis: all 6 steps
including a statistical conclusion and scope of inference (similar to the one from the PowerPoint). (This
should include identifying the Ho and Ha as well as the p-value.) Also include the appropriate confidence
interval. FUTURE DATA SCIENTIST’S CHOICE!: YOU MAY USE SAS OR R TO DO THIS PROBLEM!
b. Compare the p-value from this test with the one you found from the permutation test from last week.
Provide a short 2 to 3 sentence discussion on your thoughts as to why they are the same or different.

Answer

8.1 Full Analysis
Hypothesis Definition

Hypothesis set up:
Ho:pp—p2=0
Hy:py—pp#0
Critical value and shaded distribution
Next we draw and shade our distribution: In a two sample t-test, we have that:
df =n;+npy— 2
where in our case, df =16+14—-2 =28, a = 0.05. In this case we are performing a two tailed test. Now we
input this information into SAS to draw our distribution[1]:

data pdf;
do x = -4 to 4 by .001;
pdf = pdf("T", x, 14);

if x <= quantile("T",.025,28) then lower = pdf;
else lower = 0;
if x >= quantile("T",.975,28) then upper = pdf;

else upper = 0;

output; end; run;

title ’Shaded t distribution’;

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x lower = lower upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

With this bit of code, we have produced our shaded two tailed PDF:
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Shaded t distribution

This critical value, where the bands start, is calculated using the following SAS code:

data critval;

p = quantile("T",.975,28); /+two sided testx*/;
proc print data=critval;

run;

This gives us a critical t value of +£2.04841

Obs 1]
1 2.04841

T statistic

the t stat is calculated using the following code:

Code 8.1. Two sided two sample t test in SAS

proc ttest data=wallet

alpha=.05 test=diff

sides=2; /+an upper tailed testx/
class school;

var cash;

run;

which tells us that our t statistic is —1.37

P value

With the code from the previous step, we also see the p value, p = 0.1812:

Method Variances DF tValue Pr> |t

Pooled Equal 28 -1_37

Satterthwaite Unequal 15.496 -1.47  0.1626

Hypothesis Assessment

p = 0.1812 > a = 0.05 for the one tailed hypothesis test, indicating that we CANNOT REJECT the null
hypothesis

Conclusion and Scope of inference

We cannot reject the null hypothesis, meaning we cannot say that the mean amount of cash in an SMU
student’s wallet is any different than the mean amount of cash in a Seattle U student’s wallet. The following
figure is a good reference for the results of this test:
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school  Method Mean  95% CL Mean
SEU 27.0000 5.7989 482011
SMU 302.3
Diff (1-2) Pooled -1128 -281.2 556817
Diff (1-2) Satterthwaite -T12.8  -276.2 50.6931

The circled area tells us the difference between the mean amount of cash in a Seattle student’s wallet and
an SMU student’s wallet. We can see that the average student from the seattle sample had about 112 dollars
less in his wallet than the average SMU student. This may sound like a lot, however it is not significant.
For this result to be statistically significant, and the mean amount of cash in a Seattle U student’s wallet to
be considered different than the mean amount of cash in an SMU student’s wallet, the difference of the two
means would have to fall outside of the 95% confidence interval. The confidence interval is highlighted,
and is (—281.2, 55.6817), which tells us that for the means to be considered truly different, the seattle
student should have either 281 dollars less than the SMU student, or 55 dollars more. Our p value of
0.1812 tells us a similar story. It tells us that there is an 18% chance that a greater difference in the means
would occur, which, at a 5 or 10 percent confidence interval, is not statistically significant at all. As for
scope of inference, we cannot make inferences about the greater population of either university, because
these were not random samples. We also cannot make causal inferences (eg going to SMU makes you have
money in your wallet!), as this is not a randomized experiment either. Something about outliers!
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Problem 4: power

Question

4. A. Calculate the estimate of the pooled standard deviation from the Samoan discrimination problem.
Use this estimate to build a power curve. Assume we would like to be able to detect effect sizes between 0.5
and 2 and we would like to calculate the sample size required to have a test that has a power of .8. Simply
cut and paste your power curve and SAS code. HINT: USE THE CODE FROM DR. McGEE’s lecture. Instead
of using groupstddevs, use stddev since we are using the pooled estimate. B. Now suppose we decided that
we may be able to live with slightly less power if it means savings in sample size. Provide the same plot as
above but this time calculate curves of sample size (y-axis) vs. effect size (.5 to 2) (x axis) for power = 0.8,
0.7, and 0.6. There should be three plots on your final plot. Simply cut and paste your power curve and
SAS code. HINT: USE THE CODE FROM DR. McGEE’s lecture. Instead of using groupstddevs, use stddev
since we are using the pooled estimate. The effect size here refers to a difference in means, though there are
many effect size metrics, such a Cohen’s D. C. Using similar code, estimate the savings in sample size from
a test aimed at detecting an effect size of 0.8 with a power of 80% versus a power of 60%. Note: You will
learn how to do this in R in a future HW!

Answers

9.1 Single power curve

he pooled standard deviation, calculated in Problem 2, part e, part 1, is Sp = 6.5215. The difference of
the means of the two groups, meandiff in the code, is just set to the difference between the means of our
two populations, calculated using the R-generated means in Problem 2, Part f, pr — p,, s = 1.924. The value
of meandiff is not important, because by plotting the effect size, we are cycling through mean differences
between 0.5 and 6, so the meandiff parameter only really matters if you want to know a sample size for a
specific difference of means. When building a power curve it is not important at all, but you need it to get
proc power to work. The SAS code used to build the power curve is shown below:

Code 9.1. Proc power single with pooled variance

proc power;
twosamplemeans

[+test=diff not diffsatt bc pooled variancex/
test=diff

stddev=6.5215

/+*meandiff is a dummy variable in this casex/
meandiff=1.924

power=.8

ntotal = .;

plot x=effect min=.5 max=6;
run;

And the power curve:
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Two-Sample t Test for Mean Difference
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9.2 Multiple power curves

The same notes as above apply here, this time we used the SAS code to generate multiple power curves:
Code 9.2. Producing several curves with proc power

proc power;

twosamplemeans

[+test=diff not diffsatt bc pooled variancex/
test=diff

stddev=6.5215

/+meandiff is a dummy variable in this casex/
meandiff=1.924

power=.8 .7 .6

ntotal = .;
plot x=effect min=.5 max=6;
run;
And the curves:
Two-Sample t Test for Mean Difference
5000
¢

5000 |
@ 4000 ‘
o
E 3000
@
=

2000

1000

Mean Difference

Nominal Power

9.3 Calculating change in N

It is important to remember that the “effect size” calculated in this SAS code is the exact same thing as the
“mean difference”. Therefore we can write our SAS code as follows:

proc power;

twosamplemeans

test=diff

stddev=6.5215

meandiff= 0.8

power=.8 .6

ntotal =

run;

<

Which gives us our sample size savings:
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Computed N Total
Index Nominal Power | Actual Power N Total
1 0.8 0.800 2090
2 0.6 0.601 1306

As we see from the figure above, by raising the power from 0.6 to 0.8, we actually have to nearly double
the sample size to meet the test parameters. By using a power of 0.6, we save 784 N’s (or sample size units)
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Inference Using
t-Distributions

MEASURING UNCERTAINTY IN RANDOMIZED AND OBSERVATIONAL
STUDIES

-DISTRIBUTION OF THE SAMPLE AVERAGE
-USING T-DISTRIBUTION FOR ONE SAMPLE INFERENCE
-STARTING TO EXPLORE T-DISTRIBUTION FOR TWO SAMPLE PROBLEMS

Distribution of Sample Average

IfY, Y, ..., Y, is the sample, then

_ (NYpr L +Y)
- n

|

“The idea: ¥ is a point estimate for the population mean p

* The sample mean is an unbiased estimator for the population mean.
» E(Y) = u because E(Y;) = u*
*See proof in appendix.

The more data you pick for each sample, the more normal (and tighter) the distribution of
the sample mean is.

Note that the
MN=1 distribution of the

i i Pticb iy
distribution of a

sample mean of size

s e,

N=T7 H‘Iﬁ —’—H_
=10 ] ™8

]
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Central Limit Theorem

Distribution of Sample Average

+ We can say more about Y than that!
* It turns out that
1. Y isunbiased.
2 V.}r\anca(?) = %‘v, where o is the variance of the population

3. Y distribution is approximately normal if n is larger than 30

* This last fact is due to the CENTRAL LiMiT THEOREM (CLT)

The more data you pick for each sample, the more normal (and tighter) the distribution of the sample
mean is.

If original data is approx. normal, then the distribution of the sample mean will be approx. normal,
regardless of sample size.

Population distribution x
Normal Skewed Uniform Irregular




Value (x)

Frequency

Roll of the Die

Trial  Value (%)

Dice: Sample Means of Sizen = 5

1800 1
1600 {
1400 {

7 1200 |

§ 1000 {

!
600 1
400 1
200 1

o+

45 5

Average of 5 Dice

THE CENTRAL LIMIT
THEOREM!!!

Dice: Individual Rolls (n = 1)

= 5 x=3'5r Oy
5§
Roll of the Die

Dice: Sample Means of Size n = 2

2000

g 1500 1

Average of 10 Dice

Value (x)

3.5

5 4
Average of 2 Dice

oE
aRE
[ G-I - I
Lol M I N SR T M 1 BN )
I - T Ul I MG SN £ UG- S
(L E -G ) R R 2 R [ R P R R

Value (x)

B%
il

2.9

4.3 Dice: Sample Means of Size n = 10

2000 1
3.1 1800 |
1600 1

3 1400 1

§ 1200 {

% 1000 1

2 001

600 1

400 1

200 4

0%

Average of 10 Dice

CENTRAL LIMIT THEOREM Con

1. The distribution of sample x’s will, as the

sample size increases, approach a normal
distribution.

2. The mean of the sample means is the
population mean p. uz = u,

3. The standard deviation of the distribution of
sample means is % 05
N
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About that known o ...

So far, we have treated the population standard deviation, o, as known,

While this can happen in practice, often we have to EstmaTe o using the
same data we use to estimate .

P R ) S e )

- - we can think of the standard deviation
W=
as the average distance from each data point to the mean. (It's not exactly this, though.)

EsTIMATE . 5§ =

Example: If we have data 79, 83, 84, 89, 90 mm for digitus tertius (the
human middle finger). What is an estimate of the standard deviation?

Answer: Because ¥ = 85,

5= J/(79-85)% +(83-85)% + (84—85)2+(89-85)°+(90-85)7 _ V67427 + P +47+57
- V5-1 - O
=6.403 v

Student t Distributions for
n=3andn=12

Student t
distributions have
the same general
shape and
symmetry as the
standard normal
distribution but
reflect a greater
variability (heavier
tails), which is
expected with
small samples.

Student #
distribution

distribution with n =12

Asmso0; Student #
distribution
withn =3

t —dist.—» z — dist.

10/13/2018

T-ratio
Facts about ¥:
¥ is unbiased est. for K
Variance(V) = ,:—l
~ Y “approx. distributed” normal if n is larger than 30
Y 1S normally distributed if ¥ is normally distributed, regardliess of sample size
2= ; is distributed according to a standard normal dist. (normal, with a mean of 0 and a
stana;;d deviation of 1)
Additionally, we use s as an estimate of &
THEN:
T= # is “approx.” distributed” t with (n-1) degrees of freedom

N

*This ratio HAS a t— distribution if ¥ is normally distributed.

Example: 1 Sample Confidence Interval

The following are ages of 7 randomly selected patrons at the
Beach Comber in South Mission Beach at 7pm. We assume that
the data come from a normal distribution and would like to
build a 95% confidence interval for the actual mean age of
patrons at the Comber.

25,19, 37, 29, 40, 28, 31

95% confidence interval for
mean age

Sample Ages: 25,19, 37, 29, 40, 28, 31

We know o (population standard

deviation).
n=7 X - E<u<x+E, where
T=2986 £ =7 0 = (196)(7.08)=524
= 7.08 — — IMPORTANT:
=0.05 /\/ n '\/ 7 These are the
ij =0.025 20.86-5.24 <u < 29.86 +5.24 "L e
zdz =1.96 24.62 < /1 < 35_10 given the data!

We are 95% confident that the mean age of Beach Comber patrons at
7pm is contained in any 95% confidence interval, such as
(24.62 years, 35.10 years).

95% confidence interval for
mean age
Sample Ages: 25,19, 37, 29, 40, 28, 31

We do NOT know o (population standard
deviation). We must estimate it using s
(sample standard deviation).

n=7 X—E<u<x+E, where

¥=29.86 E=1,,.15 = (2447)(7.08) = 6.55

s= 7.08 v— IMPORTANT:
_ n These are the

a =0.05 plausible values

al2=0.025 29.86 —6.55 <u < 29.86 +6.55  ,fihe mean

tdz’ i = 2447 23_31 < ” < 36.41 given the data!

We are 95% confident that the mean age of Beach Comber patrons at 7pm
is contained any 95% confidence interval, such as (23.31 yrs., 36.41 yrs.).
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Comparison of zto t
o, E=2,,0 = (196708 =524 1 Sample Hypothesis Testing:
£=z38 A 7 The 6 Steps
o= 7.

~ ~ We are 95% confident that
a =0.05 X-E<py<x+E the mean age of Beach 1. Identify Ho and Ha.
a2 =0.025 Comber patrons at 7pm is
z,,=1.96 29-86-524 <u< 29.86+5.24 contained in the interval 2. Find the Critical Value(s) and Draw and Shade.

24.62 years, 35.10 years).
r2?62 < H <35.10 ( Y NN y ) 3. Calculate the Test — Statistic. (The evidence!)
1 7 4. Calculate the P-value.
2331 24.62 35.10 36.41 = )
ey E =  ami S = (2.447)(7.08) = 6.55 5. Make a decision... Reject Ho or FTR Ho.
T=2986 — _ 6. Write a clear conclusion in the context of the problem.... Use mostly
- e ,\/ n /\/ 7 non statistical terms but always report the p-value! Add a

s= 7.08 = WS el We are 95% confident that the confidence interval if appropriate. End this conclusion with a
v =005 L mean age of Be_ach Con]ber . statement about the scope.
@/2=0.025 29-86-6.55 <u< 29.86+6.55 patrons at 7pm is contained in

23.31 < y< 36.41 theinterval (23.31 years, 36.41
tg, e = 2.447 H

Example: 1 Sample t-test , ,
Let’s Formalize This Test Into 6 Steps!

We waould like to test the claim that the population mean is different than 21.

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis.

: —= : Ho: n = 21
The following are ages of 7 randomly chosen patrons seen leaving
the Beach Comber in South Mission Beach at 7pm. We assume that Ha: p + 21
the data come from a normal distribution and would like to test the
claim that the mean age of the distribution of Comber patrons is
different than 21.

25,19, 37, 29, 40, 28, 31

Let’s Formalize This Test Into 6 Steps! Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the population mean is different from 21, We would like to test the claim that the population mean is not equal to 21. To do this,
To do this, we take a sample of sizen=7. we take a sample of size n = 7 and find that x = 29.86 years and s = 7.08 years.

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Step 1: Identify the null (Ho) and alternative (Ha) hypothesis.
Step 2: Draw and Shade and Find the Critical Value.

a = .05 = significance level.

Step 2: Draw and Shade and Find the Critical Value.

a = .05 = significance level. 025 025 df=7-1=6
df=7-1=6 )
21
t
21 =data critval; tozse = —2.447 Lo = 2447
t } | P = quantile("T",.975,6) Obs - . o r
- hros print data = critval; | 1 244691 Step 3: Find the test statistic. (The t value for the data.)
run; _x-pu

t

S
Vn
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Let’s Formalize This Test Into 6 Steps! Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the population mean is not equal to 21. To do this, ‘We would like to test the claim that the population mean is not equal to 21. To do this,
we take a sample of size n = 8 and find that x = 29.86 years and s = 7.09 years. we take a sample of size n = 8 and find that x = 29.86 years and s = 7.09 years.
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ho: t = 21 Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ho:jpt = 21
Ha:p # 21 .
Step 2: Draw and Shade and Find the Critical Value. ’ Step 2: Draw and Shade and Find the Critical Value. He: % 21
@ = .05 = significance level. @ = .05 = significance level.
M\Zs e . ‘{\25 df=7-1=6
= 21 21
t——1 —+ ¢ 331-2447 2447 331
—331—2447 2447 331 . . .
Step 3: Find the test statistic. (The t value for the data.)
Step 3: Find the test statistic. (The t value for the data.) ¢ = £ _ 2986 — 21 caio8_BE6-2_
7; po-sy
Step 4: Find the p-value: The probability of observing by random _ 3, Step 4: Find the p-value: P-value 0.0162< .05

chance something as extreme or more extreme than what was | .
observed under the assumption that the null hypothesis is true. Step 5: Key! The sample mean we fgund Is very unlj|sual under the
(Usually found with software.) The red shaded region above is 0.0162 assumption that the true mean age is 21. So we Reject the

i i i assumption that the true mean age is 21. That is, we REJECT Ho.

Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the population mean is not equal to 21. To do this,

we take a sample of size n = 8 and find that x = 29.86 years and s = 7.09 years. i 1 - — 1
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ho: = 21 F I nd I ng the P va | ue more d eta l |
Step 2: Draw and Shade and Find the Critical Value. Ha:p# 21 Step 4: Find the p-value: p-value < .05

= .05 = significance level.
fi/[\jf df=7-1=6 You could use Stat Trek / or the t-table. Confidence interval
l"—‘;.—f OR 'he TTEST Procedure
331 -2047 2047 a1 (oo _ 621 PR—
Step 3: Find the test statistic. (The t value for the data.) % Software like SAS: e = P PreTm e e
Step 4: Find the p-value: P-value 0.0162 < .05 ~3131 e 7 298571 | 70812 26764 19,0000 40.0000

Mean 95% CL Mean  Std Dev 95% CL Std Dev

Ant data = comber; 298571233082 364061| 7.0812 45631 155932

t data = comber h0 = 21 sides = 2 alpha = .05; DF | tValue Pr>tl

6 331

Step 5: REJECT Ho

Step 6: There is sufficient evidence to conclude that the true mean age of patrons at the
Comber at 7pm is not equal to 21 (p-value =0.0162 from a t-test). We could also say that
there is sufficient evidence to conclude that the true mean is greater than 21. (Consider the
red area in the right most tail.) This was not a random sample of all times, only at 7pm; thus,
the result cannot be applied to the bar at all times. The results are nevertheless intriguing.

One-Sided Test + Two-Sided Cl Demonstration

One-Sided Test + Two-Sided Cl Demonstration
Suppose we would like to test the claim that the mean age of patrons is Suppose we would like to test the claim that the mean age of patrons is
greater than 24. greater than 24.

Skipping to the most important stuff...

Step 1: State the null and alternative hypotheses. Critical value, togs,6 = +1.943
o Hy: u < 24(or p=24) vs.Hy: > 24 Test statistic, t = 2.1884

P-value, p = 0.036

Conclusion: reject H,

i.e. conclude that the mean is greater than 24.
1-sided 95% Cl: [24.7, o]

2-sided 95% Cl: [23.3,36.4]
° But... wait! 24 is in the Cl, implyingit is a ‘plausible’ value — i.e. we
would fail to reject the null.

—
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One-Sided Test + Two-Sided ClI Demonstration One-Sided Test + Two-Sided ClI Demonstration
Suppose we would like to test the claim that the mean age of patrons is Suppose we would like to test the claim that the mean age of patrons is
greater than 24. greater than 24.

- / \ s .
/ A / N 3 /
4 005 o/ o s ocs o
1918 2 o 20

1 ! 1 1

Two Sided-Test at alpha = 0.1 Two Sided-Test at alpha = 0.05

One Sided-Test at alpha = 0.05 Two Sided-Test at alpha = 0.05

00

One-Sided Test + Two-Sided Cl Demonstration
S Id lik hecl hat th f i
g:}egeeors&;ez\:‘ou ike to test the claim that the mean age of patrons is TWO SAM P I_E T_TEST FOR TH E
Take-away: you can run into a situ(ation m)there a 1-sided p-value at D I F F E R E N CE O F M EANS WlTH
a does not ‘agree’ with a 2-sided (1 — a)% Cl.
= This is why you should switch to a (1 — 2a)% Cl if you want to ensure | N D E P E N D E NT SAM P I—ES
that the conclusions will agree.

Perform a two sample t-test for the difference in the mean score between the
Intrinsic and Extrinsic groups from the chapter problem. Provide a complete
analysis, including a full conclusion, confidence interval, and scope of inference. Use
an alpha = .01 level of significance.

za 34

Let’s Formalize This Test Into 6 Steps!

, . .
Let’s Formalize This Test Into 6 Steps!
We would like to test the claim that the mean score of the Intrinsic group is different than that We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. Todo this, we take a sample of size n, = 24 and n¢ = 23 and find that x of the Extrinsic group. Todo this, we take a sample of size n, = 24 and n; = 23 and find that X,
=19.88, points X = 15.74, 5, = 4.44, and s¢= 5.25 points.

=19.88 points, X;; = 15.74, 5, = 4.44, and s;= 5.25 points.
=0

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. :: o

Ho: [y = Mg
Ha: W, # Mg

Step 2: Draw and Shade and Find the Critical Value.

a =.01 = significance level.

df=24+23-2=45
005

Which is equivalent to:

Ho: - =0 0 IPE— ;
o o | E ¢ —t | critval = quantile "z, 995, 45); | Obs| crital
Sproc print data = criticalvalue; 1/268959

toosas = —2.690 toosas = 2690 ooy T Fheatvad

Ha: u’l s I"lE :#0




Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. To do this, we take a sample of size n, = 24 and n; = 23 and find that X,
=19.88, points ¥ = 15.74, 5, = 4.44, and s¢= 5.25 points.

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ho: i, — pz=0

Ha: py — Hg #0
Step 2: Draw and Shade and Find the Critical Value.

a = .01 = significance level,

df =24 +23 -2=45

t —1 —+
toosas = —2.690 toosas = 2.690 293
Step 3: Find the test statistic. (The t value for the data.

t:(fl_fr)_(#r_#z)_ 4.14-0
ERE
L n, ng 485

Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. To do this, we take a sample of size n, = 24 and n¢ = 23 and find that X,
=19.88, points X = 15.74, s, = 4.44, and s,= 5.25 points.

Step 1: identify the null (Ho) and alternative (Ha) hypothesis. Ho: i — 1z =0

Ha: j; — Hg #0
Step 2: Draw and Shade and Find the Critical Value.

o @ = .01=significance level.
XX
df=24+23-2=45
005 005

[
¢ —_————f

293 293

Step 3: Find the test statistic. (The t value for the data.) '~

Step 4: Find the p-value: P-value 0.0054< 0.01

Step 5: Key! The difference in sample means we found is very
unusual under the assumption that the group means are equal (p; —

10/13/2018

Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. Todo this, we take a sample of size n, = 24 and n; = 23 and find that X,
=19.88, points ¥, = 15.74, 5, = 4.44, and s,= 5.25 points,

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ho: 1} = p =0

Ha: | = g #0
Step 2: Draw and Shade and Find the Critical Value.

1 = significance level.

df=24+23-2=45
.005

tH—
-293 293

Step 3: Find the test statistic. (The t value for the data.) R ive

Step 4: Find the p-value: The probability of observing by random
chance something as extreme or more extreme than what was
observed under the assumption that the null hypothesis is true.
(Usually found with software.) The red shaded regions above. 0.0054

Hg=0). So, we Reject this assumption. That is, we REJECT Ho.

Finding the P-value
Step 4: Find the p-value: P-value < .01

You could use Stat Trek / or the t-table.

OR
treatment | Method Mean | 99% CL Mean | Std Dev  99% CL Std Dev
Software like SAS: 0 19.8833 17.3393 | 224274 44395 32032 69965
1 15.7391, 3 188 52526 37660 83803
Diff (1.2)  Pooled 6144 48541 38068 66041
Diff(1:2) | Satterthwaite 41442 03135 79750
=proc ttest data = creativity alpha = .01; |Method Variances|  DF  tValu
class treatment; ol Counl e
var score;
S Sattorthwaite Unequal 43108 292 0.0056

Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. To do this, we take a sample of size n, = 24 and n¢ = 23 and find that X,
=19.88, points X = 15.74, 5, = 4.44, s;= 5.25 points.

Step 1: Identify the null {Ho) and alternative {Ha) hypothesis.  Ho: i, — p, =0

Step 2: Draw and Shade and Find the Critical Value. Ha: jy = Pg %0

=01 = significance level.

df=24+423-2=45

293

Step 3: Find the test statistic. (The t value for the data.) r=

Step 4: Find the p-value: P-value 0.0054< .01

Step 5: REJECT Ho
Step 6: There is sufficient evidence to suggest that those who receive the Intrinsic treatment have a
different mean score than those who receive the Extrinsic treatment (p-value = .0054 from a t-test). We can
also claim that the mean intrinsic score is greater than the extrinsic one. (The burden of rejecting the null
hypothesis for a one-tailed test is less than a two-tailed test, given the test is in the relevant direction.) A
99% confidence interval for this difference is (.3347, 7.95). Since this was a randomized experiment, we can

conclude that the Intrinsic treatment caused this difference. However, since the study was of volunteers
(sampling bias), this inference can only be generalized to the 47 participants.

volunteers, rence can un\i be assumed to aii\i to0 these 47 subjects, allhouih the fmdinis are vei fmriimni.

COMPARE WITH RANDOMIZATION
(PERMUTATION) TEST

Ho.pty - =0 [em——
Hypy-pe #0 414 414
1000 different .
groupings
(relabelings) =

V=¥
P-value = 8/1000 A F‘ ‘ ‘ hﬂ :

=0.008 f R e

i

i

There s strong evidence to suggest that the mean score of those who receive intrinsic motivation is not equal to those who receive the
extrinsic motivation (p-value = .008). The burden to reject the null hypothesis is lower under a one-sided test, so we can say that the
evidence supports the claim that the intrinsic mean s higher than the extrinsic mean.

Since this was a randomized experiment, we can conclude that the intrinsic motivation caused this increase. In addition, since these were
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Let’s Talk Power!!!

B = Typell error
a = Type | error
This is the probability
that while the null - Null Iternati
hypothesis is true, the Distribution Distribution
data in the study cause
us to reject the null 4
hypothesis. il i

Effect size basically
measures the
difference between -

Relain Hy Reject Hy

This is the probability that
while the null hypothesis is
Alternative  NOT true, the data in the study
cause us to fail to reject the
=100 pq =106 null hypothesis (fail to detect
4 / differences in the means).
Power=1-f
This is the probability
that while the null
hypothesisis NOT
true, the data in the
3 study correctly cause

the population mean - 7 i T ., ustoreject the null
(106) and the null  gg 95 100 105 110 115  hypothesis (detect

mean(100). (It’s not

M Test Pedor
exactly this, though.) e ReREEe

differencesin the

Explore power!

Here is an applet that will show you what happens to the power/beta
when you change the sample size, alpha, standard deviation, or effect
size (measure of the difference between null mean and actual
(alternative) mean).

http://shiny.stat.tamu.edu:3838/eykolo/power,

means).

a3

(Go to break out)
Consider the following options.

A. The probability of rejecting Ho when the null is true.
B. The probability of accepting Ho when the null is true.
C. The probability of rejecting Ho when the null is false.
D. The probability of FTR Ho when the null is true.
E. The probability of FTR Ho when the null is false.

WHICH IS POWER? _C_
WHICH IS ALPHA? _A

WHICH IS BETA? £

Pick all that are true.
The power increases when:

A. The sample size decreases.

B. The sample size increases.

C. The standard deviation / standard error decreases.
D. The effect size increases.

E. The effect size decreases.

Pick all that are true.
The power increases when:

A. The sample size decreases.

B. The sample size increases.

C. The standard deviation / standard error decreases.
D. The effect size increases.

E. The effect size decreases.

Appendix
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Distribution of Sample
Average
Proof that E(¥) = u:

E(7) = E (%22=212) by the definition of 7. ANOTHER EXAMPLE
E(Y) = %E(Ylﬂ’y ... +¥,) because n is a constant. FOR PRACTICE

E(Y) = 2[E(Y,) + E(Y,) + .. + E(Y,)] because the
expected value of a sum of random variables is equal to the
sum of the expected values of the random variables.

E(Y) = %[u+ U+ ... + p] because E(Y;) = p.
= 1
EYV)=—[nul=um

Hy: p=1.8
World’s Smallest Mammal The world’s smallest mammal is the bumblebee bat, also HO # 18 World's Smallest Mammal The world’s smallest mammal is the bumblebee bat, also
AL 5 2 H on as itti's he d ba h ; ats a
known as the Kilti’s hog-nosed bat (or Craseonycreris thonglongyai). Such bats are 1 p#EL :‘:;“"’;"I‘y‘:h':i;";'f; Sl bum:r'elb(e‘;’ iimd e oy (i“)vgf:;:)";‘:; “':':
roughly the size of a large bumblebee. Listed below are weights (in grams) from a o =0.05 sample of these bats. Test the claim that these bats come from the same population
sample of these bats. Test the claim that these bats come from the same population x=1.713 having a mean weight equal to 1.8 g.
having a mean weight equal to 1.8 g. s =.2588 17 1.6 15 20 23 16 16 1.8 15 1.7 22 14 16 16 16
1.7 16 1.5 20 23 16 16 18 1.5 1.7 22 14 16 16 16 T The TTEST Procedure
. Sdata bats: Variable: weight
Hy: £=1.8  Critical Values t=%2.145 input veight 00;
datalines; N Mean Std Dev| S Err| Minimum | Maximum
Hp:u#18 . = 05 sgaicance evel. 170618 2.0 2.3 1.6 1.6 1.8 1.8 1.7 2.2 1.4 1.6 1.6 1.6 e e IS ] B B
d=15-1-14
0=0.05  w e, = N B R
T=1.713 P = quansileCT, 90 - a - run; 17133 [T5T00 7] 02588 o163 oot
= & z t +
prooIpEint GNtR = Crltvall 1 2wams e = 2165 Corae = 2145 Sproc ttest data = bats h0 = 1.8 sides = 2 alpha = .05; wTrvaslrron
- i var weights
s=.2588 run; s il .

On the basis of this test, there is not enough evidence to reject the claim that the mean weight of
bumblebee bats is equal to 1.8g (p-value = .2155 from a t-test). A 95% confidence interval is (1.57 g,
1.8566 g). The problem was ambiguous on the randomness of the sample; thus, we will assume that it
was not a random sample, which makes inference to all bats strictly speculative.
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Chapter 11

Problem 1: Two Sample T test with
assumptions

Question

1. In the United States, it is illegal to discriminate against people based on various attributes. One ex-
ample is age. An active lawsuit, filed August 30, 2011, in the Los Angeles District Office is a case against
the American Samoa Government for systematic age discrimination by preferentially firing older workers.
Though the data and details are currently sealed, suppose that a random sample of the ages of fired and
not fired people in the American Samoa Government are listed below: Fired 34 37 37 38 41 42 43 44 44 45
45 45 46 48 49 53 53 54 54 55 56 Not fired 27 33 36 37 38 38 39 42 42 43 43 44 44 44 45 45 45 45 46 46
47 47 48 48 49 49 51 51 52 54 a. Check the assumptions (with SAS) of the two-sample t-test with respect
to this data. Address each assumption individually as we did in the videos and live session and make sure
and copy and paste the histograms, q-q plots or any other graphic you use (boxplots, etc.) to defend your
written explanation. Do you feel that the t-test is appropriate? b. Check the assumptions with R and com-
pare them with the plots from SAS. c. Now perform a complete analysis of the data. You may use either the
permutation test from HW 1 or the t-test from HW 2 (copy and paste) depending on your answer to part
a. In your analysis, be sure and cover all the steps of a complete analysis: 1. State the problem. 2. Address
the assumptions of t-test (from part a). 3. Perform the t-test if it is appropriate and a permutation test if it
is not (judging from your analysis of the assumptions). 4. Provide a conclusion including the p-value and
a confidence interval. 5. Provide the scope of inference.

Answer

11.1 Complete Analysis
Assmuption checking in SAS

The assumptions were tested using proc ttest, which outputs histograms, box plots, QQ-plots, and performs
an F-test on the variances. The code used to produce all information in this section is presented below:

Code 11.1. Checking the assumptions of a t test in SAS

proc ttest data=samoa

alpha=.05 test=diff

sides=U; /+an upper tailed testx/
class fired;

var age;

run;

Normality

The normality of the data is checked using a QQ plot, a boxplot, and a histogram. First we will examine
the QQ plot:
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age

Figure 11.1.1. Q-Q Plot for Normality
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In Figure 1.1, the y axis represents the data set, and the x axis the theoretical normal quantile. The line
represents what a normal data set should look like, a 1-1 ratio between the data variable and the theoretical
normal quantile. The data set follows the normal line pretty well, so in this case on a visual inspection, we
can say both samples are normal. We can double check this using Figure 1.2, a histogram and boxplot:
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Figure 11.1.2. Histogram and Boxplot for Normality

fired__

notfirec

fired__

Distribution of age

L

/——-_

AN

|

A

L

notfired

N

20 30

40
age
Normal

50 60 70

Kemel

It is a bit harder to assess the normality using the histogram and boxplot, but SAS gives us useful kernel
lines which show the distribution of the data in the histogram (the red line is the data and the blue line is
normal). As we can see, the data loosely follows the normal distribution, it is a bit different but it is pretty
close. The box plot tells the same story, as in both cases the mean is very near the medium (in a normal
distribution the mean and median are the same), with slight left and right skewing, but overall we can
assume the data is normal.

Equal Variances

In order to assess the equality of the variances visually, we can again use the histogram and boxplot, this
time displayed in Figure 1.3 (for ease of grading):
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Figure 11.1.3. Histogram and Boxplot for Variance Equality
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As we can see from the bounds of the histogram, the range of each data set is more or less the same
size, with their means more or less in the center. This hints that the two data sets would have near equal
variances. This is confirmed when looking at the box plot, the distance from the mean to the far left whisker
and far right whisker is more or less the same for both data sets, which indicates again the variances are
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equal. This is confirmed by examining the F test for equal variances, the results of which are displayed

below:

Figure 11.1.4. F Test for Equal Variances

Equality of Variances
Method Num DF Den DF | FValue Pr>F

Folded F 20 29 1.23 A.600

The F test is valid here, because the data is normal and the sample size is large (1 ~ 30), and we see that
the probability the variance difference is greater than what it is in our case is 60%, or a p value of 0.6 At a
5,10, 15 or 20 percent confidence interval, the f test will tell us the variances are equal. Therefore, we can

assume equal variances.

Independence

In this case, we can assume independence, the two data sets do not relate to each other. Any dependence

that exists we will assume away, for the sake of the problem

Conclusion

In my opinion, we can use a t-test for this data set, based on the fact that all the assumptions are true.

Assumption Checking in R

Normality test

To test for normality, we are going to again use the Q-Q plot and the histogram. To produce the Q-Q plots,

the following code was used: The plots produced are shown below:

Code 11.2. t test Assumption checking in R, Q-Q plot

par(mfrow=c(1,2))
qggnorm(Fired,main="Normal Q-0 Plot for Fired data",

xlab = "Normal Quantiles",

ylab = "Fired Quantiles")

qggnorm(Not_fired,main="Normal Q-Q Plot for Not Fired data",
xlab = "Normal Quantiles",

ylab = "Not Fired Quantiles")

Figure 11.1.5. Q-Q plots for Normality in R
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From the linearity of the data points in this figure, we can see that the data follows a more or less normal
ditribution. The Q-Q plot produced in R is almost exactly the same as the Q-Q plot produced using SAS,
however it is different in that it does not have a lovely line representing perfect normality, and the size of
the boxes changes with window size, as does the aspect ratio, which is a bit of a pain. The following code is

used to produce a histogram, further examining normality: This produces the following figure:
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Code 11.3. t test Assumption checking in R, Histogram

par(mfrow=c(1,2))
hist(Fired)
hist(Not_fired)

Figure 11.1.6. Histogram for Normality in R
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As can be seen in the figure, the distribution of these two data sets is again more or less normal, with
what appears to be the mean and median lying in the center, however there is a bit of a bump in the fired
data set, but again it is loosely normal in appearance. The graphs again look the same as in SAS more or
less, other than formatting differences. We can identify numbers better in R. In this case, we can ASSUME
NORMAL

Equality of Variances

Looking at the histogram in Figure 1.6, we can see that the fired data has a mean of about 45 years old,
spanning from 30 to 60, and the not fired data has a mean of about 40 years old, spanning from 25 to
55. The spread of the two means is more or less the same in this case, therefore we can ASSUME EQUAL
VARIANCEs

Independence

We can again assume independence.

Conclusion:

The t-test is appropriate

Complete Analysis:
Problem statement:

We would like to test the claim that the mean age of the individuals who were fired is greater than the mean
age of the individuals who were not fired.

Assumptions:

We can assume normality, independence, and equal variances and therefore we can use the student t test,
as proven in sections 1.a and 1.b.

t-test

Statement of the Hypotheses:

Ho:pp—pup <0
H; HE— Huf >0

Shaded Distribution and Critical Values: In a two sample t-test, we have that:
df =nyg + Ny — 2

where in our case, df = 21+30-2 =49, a = 0.05 Now we input this information into SAS to draw our
distribution[1]:

data pdf;

do x = -4 to 4 by .01;

pdf = pdf ("T", x, 49);

lower = 0;

52



Analysis Guide

Midterm

if x >= quantile("T",0.9,49) then upper = pdf;/*one sidedx*/
else upper = 0;

output;

end;

run;

title ’Shaded t distribution’;

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

Giving us this lovely graph:

Shaded t distribution

Next we find a number for the critical value, using the same code as problem 1:

data critval;

p = quantile("T",.95,49); /+one sided testx*/;
proc print data=critval;

run;

Obs 1]
1| 1.67655

This gives us a critical t value of 1.67655.

Calculation of t statistic: Next we calculate our two sample t statistic using SAS:

proc ttest data=samoa
alpha=.05 test=diff
sides=U;

class fired;

var age;

run;

Which tells us that our t statisticis 1.10
Method Variances DF tValue Pr>|t

Pooled Equal 49 1.10 f0.2771
Satterthwaite Unequal 40.268 1.08 0.2870

Calculation of P-value With the code from the previous step, we also see the p value:

Method Variances DF tValue
Pooled Equal 49 1.100.0.1385
Satterthwaite Unequal 40.268 1.08 0.
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p=0.1385

Discussion of the Null Hypothesis p = 0.1385 > a = 0.05 for the one tailed hypothesis test, indicating
that we CANNOT REJECT the null hypothesis

Conclusion:

We cannot reject the null hypothesis, meaning we cannot say that older workers were fired from the Samoan
government. Note that we used a one tailed hypothesis test in this scenario, as we wanted to deternine if
the fired group was OLDER than the nonfired group. With a one-sided p-value of 0.1385, there is a nearly
14% chance that there be a greater difference in mean ages given the distribution. At a critical p-value of
.05 (5%), we can say that this data fails to reject the null hypothesis. Using the code that calculated the t
statisitic, we produce the following one sided confidence interval:

fired Method Mean 95% CL Mean
_fired__ 458571 428886 48.8256
notfired 43.9333 41.7364

Diff (1-2) Pooled 1.9238\ -1.0107
Diff (1-2) | Satterthwaite 1.9238 -1.0780 Infty

The confidence interval is: [-1.0107, o0). This confidence interval represents the upper difference of
means at a 95% confidence level. We can interpret this as follows: if the confidence interval contains the
null hypothesis, then we cannot reject it. However if it does not contain the null hypothesis, we must reject
it. As we can see in this beautifully drawn figure, the null hypothesis, py — p,, ¢ < 0 is contained within our
CIL

. This means we cannot reject the null hypothesis, we cannot say there was age discrimination. It is
plausible that the mean differnence of the entire population of samoan government employees is less than
or equal to zero, as it is within the 95% confidence interval, which means we cannot, as objective jurors,
claim there was age discrimination.

Scope of Inference:

Since this sample was random, we can make generalizations about the Samoan Government as a whole,
however, we cannot make causal inferences, as this was not a randomized experiment.
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As an example, consider the hypothetical sample: 10, 20, 30, 50, 70. The sample
average is 36, and the sample median is 30. Now change the 70 to 700, and what
happens? The sample average becomes 162, but the sample median remains 30.
The sample average is not a resistant statistic because it can be severely influenced
by the change in a single observation. The median, however, is resistant.

Resistance is a desirable property. A resistant procedure is insensitive to out-
liers. A nonresistant one, on the other hand, may be greatly influenced by one or
two outlying observations.

3.3.2 Resistance of t-Tools

Since f-tools are based on averages, they are not resistant. A small portion of the
data can potentially have a major influence on the results. In particular, one or two
outliers can affect a confidence interval or change a p-value enough to completely
alter a conclusion.

If the outlier is due to contamination from another population, it can lead to
false impressions about the population of interest. If the outlier does come from
the population of interest, which happens to be long-tailed, the outcome is still
undesirable for the following reason. In statistics, the goal is to describe group
characteristics. An estimate of the center of a distribution should represent the
typical value. The estimate is a good one if it represents the typical values possessed
by the great majority of subjects; it is a bad one if it represents a feature unique
to one or two subjects. Furthermore, a conclusion that hinges on one or two data
points must be viewed as quite fragile.

3.4 PRACTICAL STRATEGIES FOR THE TWO-SAMPLE PROBLEM

Armed with information about the broad set of conditions under which the #-tools
work well and the effect of outliers, the challenge to the data analyst is to size up
the actual conditions using the available data and evaluate the appropriateness of
the t-tools. This involves thinking about possible cluster and serial effects; evaluat-
ing the suitability of the ¢-tools by examining graphical displays; and considering
alternatives.

In considering alternatives it is important to realize that even though the
t-tools may still be valid when the ideal assumptions are not met, an alternative
procedure that is more efficient (i.e., makes better use of the data) may be available.
For example, another procedure may provide a narrower confidence interval.

Consider Serial and Cluster Effects
To detect lack of independence, carefully review the method by which the data were
gathered. Were the subjects selected in distinct groups? Were different groups of
subjects treated differently in a way that was unrelated to the primary treatment?
Were different responses merely repeated measurements on the same subjects?
Were observations taken at different but proximate times or locations? Affirmative
answers to any of these questions suggest that independence may be lacking.

The principal remedy is to use a more sophisticated statistical tool. Identifiable
clusters, which may be planned or unplanned, can be accounted for through analysis
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of variance (Chapters 13 and 14) or possibly through regression analysis (Chapters
9-12). Serial effects require time series analysis, the topic of Chapter 15.

Evaluate the Suitability of the t-Tools

Side-by-side histograms or box plots of the two groups of data should be examined
and departures from the ideal model should be considered in light of the robustness
properties of the t-tools. It is important to realize that the conditions of interest,
which are those of the populations, must be investigated through graphical displays
of the samples.

If the conditions do not appear suitable for use of the ¢-tools, then some alterna-
tive is necessary. A transformation should be considered if the graphical displays of
the transformed data appear to be closer to the ideal conditions. (See Section 3.5.)
Alternative tools for analyzing two independent samples are the rank-sum proce-
dure, which is resistant and does not depend on normality (Section 4.2); other
permutation tests (Section 4.3.1); and the Welch procedure for comparing normal
populations that have unequal standard deviations (Section 4.3.2).

A Strategy for Dealing with Outliers

If investigation reveals that an outlying observation was recorded improperly or
was the result of contamination from another population, the solution is to correct
it if the right value is known or to leave it out. Often, however, there is no way
to know how the outliers arose. Two statistical approaches for dealing with this
situation exist. One is to employ a resistant statistical tool, in which case there is
no compelling reason to ponder whether the offending observations are natural, the
result of contamination, or simply blunders. (The rank-sum procedure in Section
4.2 is resistant.) The other approach is to adopt the careful examination strategy
shown in Display 3.6. An important aspect of adopting this procedure is that an
outlier does not get swept under the rug simply because it is different from the
other observations. To warrant its removal, an explanation for why it is different
must be established.

Example—Agent Orange

Box plots of dioxin levels in Vietnam and non—-Vietnam veterans (Display 3.3)
appear again in Display 3.7. The distributions have about the same shape and
spread. Although the shape is not normal, the skewness is mild and unlikely to
cause any problems with the ¢-test or the confidence interval. Two Vietnam veterans
(#645 and #646) had considerably higher dioxin levels than the others.

From the results listed in Display 3.7 it is evident that the comparison of the
two groups is changed very little by the removal of one or both of these outliers.
Consequently, there is no need for further action. Even so, it is useful to see what
else can be learned about these two, as indicated at the bottom of the display.

Notes

1. It is not useful to give a precise definition for an outlier. Subjective examination
is the best policy. If there is any doubt about whether a particular observation
deserves further examination, give it further examination.
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DISPLAY 3.6 | Examination strategy
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2. It is not surprising that the outliers in the Agent Orange example have little
effect, since the sample sizes are so large.

3. The apparent difference in the box plots may be due to the difference in sample
sizes. If the population distributions are identical, more observations will appear
in the extreme tails from a sample of size 646 than from a sample of size 97.

3.5 TRANSFORMATIONS OF THE DATA

3.5.1 The Logarithmic Transformation

The most useful transformation is the logarithm (log) for positive data. The com-
mon scale for scientific work is the natural logarithm (In), based on the number
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Outlier analysis for Agent Orange data: effect of outliers on the p-value, for equal population

DISPLAY 3.7 ——
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45 — Obs. #0646 @
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. 3 [ d
Since conclusion is not affecte
15 3 . . e
= by the outliers, report analysis
- ! with full data set.
10 — .
= . 4
a But examine outliers carefully
5 -] to see what else can be learned.
0

Veteran # 645: reported 180 days of indirect military exposure to herbicides.
Veteran # 646: reported no exposure (military or civilian) to herbicides.

e = 2.71828.... The logarithm of e is unity, denoted by log(e) = 1. Also, the log
of 1 is 0: log(1) = 0. The general rule for using logarithms is that log(e®) = x.
Another choice is the common logarithm based on the number 10, rather than e.
Common logs are defined by log;o(10*) = x. Unless otherwise stated, log in this
book refers to the natural logarithm.

Recognizing the Need for a Log Transformation

The data themselves usually suggest the need for a log transformation. If the ratio
of the largest to the smallest measurement in a group is greater than 10, then
the data are probably more conveniently expressed on the log scale. Also, if the
graphical displays of the two samples show them both to be skewed and if the
group with the larger average also has the larger spread (see Display 3.2), the log
transformation is likely to be a good choice.
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The logarithmic transformation used to arrive at favorable conditions for the two-sample

DISPLAY 38 | lvsis
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1. Both histograms are skewed.
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Measurement Scale (Y)

Display 3.8 illustrates the behavior of the log transformation. On the scale of
measurement Y the two groups have skewed distributions with longer tails in the
positive direction. The group with the larger center also has the larger spread. The
measurements on the transformed scale have the same ordering, but small numbers
get spread out more, while large numbers are squeezed more closely together. The
overall result is that the two distributions on the transformed scale appear to be
symmetric and have equal spread—just the right conditions for applying the z-tools.

3.5.2 Interpretation After a Log Transformation

For some measurements, the results of an analysis are appropriately presented on
the transformed scale. Most users feel comfortable with the Richter scale for mea-
suring earthquake strength, even though it is a logarithmic scale. Similarly, pH as a
measure of acidity is the negative log of ion concentration. In other cases, however,
it may be desirable to present the results on the original scale of measurement.

Randomized Experiment Model: Multiplicative Treatment Effect

If the randomized experiment model with additive treatment effect is thought to
hold for the log-transformed data, then an experimental unit that would respond

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due (o cleetronic rights, some third party content may be suppressed from the eBook and/or ¢Chapter(s). Lditorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time il subscequent rights restrictions require it.



72 Chapter 3 A Closer Look at Assumptions

to treatment 1 with a logged outcome of log(Y) would respond to treatment 2 with
a logged outcome of log(Y) + §. By taking antilogarithms of these two quantities,
one finds that an experimental unit that would respond to treatment 1 with an
outcome of ¥ would respond to treatment 2 with an outcome of Ye®. Thus, € is the
multiplicative treatment effect on the original scale of measurement. To test whether
there is any treatment effect, one performs the usual z-test for the hypothesis that
8 is zero with the log-transformed data. To describe the multiplicative treatment
effect, one back-transforms the estimate of § and the endpoints of the confidence
interval for §.

Interpretation After Log Transformation
(Randomized Experiment)

Suppose Z = log (Y). It is estimated that the response of an experimental unit to
treatment 2 will be exp(Z> — Z 1) times as large as its response to treatment 1.

Example—Cloud Seeding

Display 3.2 shows that the log-transformed rainfalls have distributions that appear
satisfactory for using the ¢-tools; so in Display 3.9 a full analysis is carried out on
the log scale. Tests and confidence intervals are constructed in the usual way but on
the transformed data. The estimate of the additive treatment effect on log rainfall
is back-transformed to an estimate of the multiplicative effect of cloud seeding on
rainfall.

Population Model: Estimating the Ratio of Population Medians

The t-tools applied to log-transformed data provide inferences about the difference
in means of the logged measurements, which may be represented as Mean[log(Y>)]—
Mean[log(Y1)], where Mean[log(Y>)] symbolizes the mean of the logged values of
population 2. A problem with interpretation on the original scale arises because
the mean of the logged values is not the log of the mean. Taking the antilogarithm
of the estimate of the mean on the log scale does not give an estimate of the mean
on the original scale.

If, however, the log-transformed data have symmetric distributions, the
following relationships hold:

Mean([log(Y )] = Median[log(Y)]
(and since the log preserves ordering)
Median[log(Y)] = log[Median(Y )],

where Median(Y') represents the population median (the 50th percentile of the pop-
ulation). In other words, the 50th percentile of the logged values is the log of the
50th percentile of the untransformed values. Putting these two equalities together,
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Two-sample ¢-analysis and statement of conclusions after logarithmic transformation—cloud

DISPLAY 3.9 seeding example
QTransform the data)
Unseeded Seeded
Use the two-sample #-tools
Y (acre-ft)  log (Y) Y (acre-ft) log (Y) on the log rainfall.

1202.6 7092 2745.6 7918 |~
830.1 6.722 | 1697.8 7.437 Difference in averages = 1.1436 (SE = 0.4495).

372.4 5.920 1656.0 412

345.5 5.845 978.0 6.886

321.2 5.772 70374 6.556 Test of the hypothesis of no effect of cloud
2443 5498 489 1 6.193 seeding on log rainfall: one-sided p-value from

two-sample #-test = 0.0070 (50 d.f.).
163.0 5.094 430.0 6.064

147.8 4.996 334.1 5.811 ) . ..
95% confidence interval for additive effect of
95.0 4.554 302.8 5.713 cloud seeding on log rainfall: 0.2406 to 2.0467.
87.0 4.466 274.7 5.616

81.2 4.397 274.7 5.616
68.5 4.227 255.0 5.541
47.3 3.857 242.5 5.491 @gBack-transform estimate)
41.1 3.716 200.7 5.302 and confidence interval.

36.6 3.600 198.6 5.291

29.0 3.367 129.6 4.864
28.6 3.353 119.0 4.779

26.3 3.270 118.3 4.773 Estimate = ¢! 1430 = 3.1382
26.1 3.262 115.3 4748 Lower confidence limit = ¢*-24%0 = 1.2720.
24.4 3.195 924 4.526 Upper confidence limit = 20467 = 7.7425.
21.7 3.077 40.6 3.704
17.3 2.851 32.7 3.487
11.5 2.446 31.4 3.447 -

49 | 1.589 175 | 2.862 ST {0 eIl i

on the original scale.
4.9 1.589 7.7 2.041

1.0 0.000 4.1 1.411

Conclusion: There is convincing evidence that seeding increased rainfall (one-sided p-value =
0.0070). The volume of rainfall produced by a seeded cloud is estimated to be 3.14 times as large as
the volume that would have been produced in the absence of seeding (95% confidence: 1.27 to 7.74
times).

it is evident that the antilogarithm of the mean of the log values is the median on
the original scale of measurements.

If Z| and Z, are used to represent the averages of the logged values for samples
1 and 2, then Z>—Z estimates log[Median(Y»)]—log[Median(Y1)], and therefore

- ) Median(Y>3)
Z, — Z 1 estimates log

Median(Y7)
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and, therefore,
— Median(Y
exp(Z, — Z 1) estimates |: edian( 2):| .

Median(Y7)

The point of this is that a very useful multiplicative interpretation emerges
in terms of the ratio of population medians. This is doubly important because
the median is a better measure of the center of a skewed distribution than the
mean. The multiplicative nature of this relationship is captured with the following
wording:

Interpretation After Log Transformation
(Observational Study)

It is estimated that the median for population 2 is exp(Z> — Z 1) times as large as
the median for population 1.

In addition, back-transforming the ends of a confidence interval constructed on the
log scale produces a confidence interval for the ratio of medians.

Example (Sex Discrimination)

Although the analysis of the sex discrimination data of Section 1.1.2, was suit-
able on the original scale of the untransformed salaries, graphical displays of the
log-transformed salaries indicate that analysis would also be suitable on the log
scale. The average male log salary minus the average female log salary is 0.147.
Since ¢%147 = 1.16, it is estimated that the median salary for males is 1.16
times as large as the median salary for females. Equivalently, the median salary
for males is estimated to be 16% more than the median salary for females. Since
a 95% confidence interval for the difference in means on the log scale is 0.100
to 0.194, a 95% confidence interval for the ratio of population median salaries
is 1.11 to 1.21 (%199 to ¢919%). With 95% confidence, it is estimated that the
median salary for males is between 11% and 21% greater than the median salary
for females.

3.5.3 Other Transformations for Positive Measurements

There are other useful transformations for positive measurements with skewed dis-
tributions where the means and standard deviations differ between groups. The
square root transformation /Y applies to data that are counts—counts of bacteria
clusters in a dish, counts of traffic accidents on a stretch of highway, counts of red
giants in a region of space—and to data that are measurements of area. The recip-
rocal transformation 1/Y applies to data that are waiting times—times to failure of
lightbulbs, times to recurrence for cancer patients treated with radiation, reaction
times to visual stimuli, and so on. The reciprocal of a time measurement can often
be interpreted directly as a rate or a speed. The arcsine square root transformation,
arcsine(v/Y), and the logit transformation, log[Y/(1 — Y)], apply when the mea-
surements are proportions between zero and one—proportions of trees infested by
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a wood-boring insect in experimental plots, proportions of weight lost as a side
effect of leukemia therapy, proportions of winning lottery tickets in clusters of a
certain size, and so forth.

Only the log transformation, however, gives such ease in converting inferences
back to the original scale of measurement. One may estimate the difference in means
of /Y> and /Y7, but the square of this difference does not make much sense on
the original scale.

Choosing a Transformation

Formal statistical methods are available for selecting a transformation. Neverthe-
less, it is recommended here that a trial-and-error approach, with graphical analysis,
be used instead. For positive data in need of a transformation, the logarithm should
almost always be the first tried. If it is not satisfactory, the reciprocal or the square
root transformations might be useful. Keep in mind that the primary goal is to
establish a scale where the two groups have roughly the same spread. If several
transformations are similar in their ability to accomplish this, think carefully about
which one offers the most convenient interpretation.

Caveat About the Log Transformation

Situations arise where presenting results in terms of population medians is not
sufficient. For example, the daily emissions of dioxin in the effluent from a paper
mill have a very skewed distribution. An agency monitoring the emissions will
be interested in estimating the total dioxin load released during, say, a year of
operation. The total dioxin load would be the population mean times the population
size, and therefore is estimated by the sample average times the population size.
It cannot be estimated directly from the median, unless more specific assumptions
are made.

3.6 RELATED ISSUES

3.6.1 Prefer Graphical Methods
Over Formal Tests for Model Adequacy

Formal tests for judging the adequacy of various assumptions exist. Tests for
normality and tests for equal standard deviation are available in most statisti-
cal computer programs, as are tests that determine whether an observation is an
outlier. Despite their widespread availability and ease of use, these diagnostic tests
are not very helpful for model checking. They reveal little about whether the data
meet the broader conditions under which the tools work well. The fact that two
populations are not exactly normal, for example, is irrelevant. Furthermore, the
formal tests themselves are often not very robust against their own model assump-
tions. Graphical displays are more informative, if less formal. They provide a good
indication of whether or not the data are amenable to f-analysis and, if not, they
often suggest a remedy.
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3.6.2 Robustness and Transformation for Paired t-Tools

The one-sample ¢-test, of which the paired ¢-test is a special case, assumes that the
observations are independent of one another and come from a normally distributed
population. P-values and confidence intervals remain valid for moderate and large
sample sizes for nonnormal distributions. For smaller sample sizes skewness can
be a problem. When cluster or serial effects are present (see Section 3.2.4), the
t-tools may give misleading results. When the observations within each pair are
positive, either an apparent multiplicative treatment effect (in an experiment) or a
tendency for larger differences in pairs with larger average values suggests the use
of a log transformation. The transformation is applied before taking the difference,
which is equivalent to forming a ratio within each pair and performing a one-
sample analysis on the logarithms of the ratios. If there are n pairs, let Z; =
log(Y1;) —log(Y2;), which is the same as log(Y;;/Y2;). In an observational study,
exp(?) is an estimate of the median of the ratios, Y;/Y>. (This is not the same
as the ratio of the medians [see Exercise 20].) In a randomized, paired experiment,
exp(Z) estimates a multiplicative treatment effect on the original scale. In both
cases, the statistical work of testing and constructing a confidence interval is done
on the log scale. The estimate and associated interval are transformed back to the
original scale.

3.6.3 Example—Schizophrenia

In the schizophrenia example of Section 2.1.2, Z; represents the logarithm of the
left hippocampus volume of the unaffected twin divided by the left hippocampus
volume of the affected twin in pair i. The average of the 15 log ratios is 0.1285.
A one-sample analysis gives a p-value of 0.0065 for the test that the mean is zero
and a 95% confidence interval from 0.0423 to 0.2147 for the mean itself. Taking
antilogarithms of the estimate and the endpoints of the confidence interval yields the
following conclusion: It is estimated that the median of the unaffected-to-affected
volume ratios is 1.137. A 95% confidence interval for the median ratio is from 1.043
to 1.239.

3.7 SUMMARY

Cloud Seeding and Rainfall Study

The box plots of the rainfalls for seeded and unseeded days reveal that the two dis-
tributions of rainfall are skewed and that the distribution with the larger mean also
has the larger variance. This is the situation where log-transformed data behave
in accordance with the ideal model. A plot of the data after transformation con-
firms the adequacy of the transformation. The two-sample ¢-test can be used as
an approximation to the randomization test, and the difference in averages (of log
rainfall) can be back-transformed to provide a statement about a multiplicative
treatment effect. In the example, it is estimated that the rainfall is 3.1 times as
much when a cloud is seeded as when it is left unseeded.
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Since randomization is used, the statistical conclusion implies that the seeding
causes the increase in rainfall. Since the decision about whether to seed clouds is
determined (in this case) by a random mechanism, and since the airplane crew is
blind to which treatment they are administering, human bias can have had little
influence on the result.

Agent Orange Study

Graphical analysis focuses attention on the possibly undue influence of two outliers,
but analyses with and without the outliers reveal no such influence, so the t-tools
are used on the entire data set. The form of the sampling from the populations
of living Vietnam veterans and of other veterans is a major concern in accepting
the reliability of the statistical analysis. Protocols for obtaining the samples have
not been discussed here, except to note that random sampling is not being used.
Conclusions based on the two-sample ¢-test are supplied, along with the caveat that
there may be biases due to the lack of random sampling.

3.8 EXERCISES

Conceptual Exercises

1. Cloud Seeding. What is the experimental unit in the cloud seeding experiment?

2. Cloud Seeding. Randomization in the cloud seeding experiment was crucial in assessing the
effect of cloud seeding on rainfall. Why?

3. Cloud Seeding. Why was it important that the airplane crew was unaware of whether seeding
was conducted or not?

4. Cloud Seeding. Why would it be helpful to have the date of each observed rainfall?

5. Agent Orange. How would you respond to the comment that the box plots in Display 3.3
indicate that the dioxin levels in the Vietnam veterans tend to be larger since their values appear to
be larger?

6. Agent Orange. (a) What course of action would you propose for the statistical analysis if it
was learned that Vietnam veteran #0646 (the largest observation in Display 3.6) worked for several
years, after Vietnam, handling herbicides with dioxin? (b) What would you propose if this was
learned instead for Vietnam veteran #6457

7. Agent Orange. If the statistical analysis had shown convincing evidence that the mean dioxin
levels differed in Vietnam veterans and other veterans, could one conclude that serving in Vietnam
was responsible for the difference?

8. Schizophrenia. In the schizophrenia study in Section 2.1.2, the observations in the two groups
(schizophrenic and nonschizophrenic) are not independent since each subject is matched with a twin
in the other group. Did the researchers make a mistake?

9. True or false? A statistical computer package will only print out a p-value or confidence interval
if the conditions for its validity are met.

10. True or false? A sample histogram will have a normal distribution if the sample size is large
enough.
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The permutation test was performed using the following code: We will now perform the same procedure
on the assumptions without an outlier, as well as some other comparisons. Unless otherwise noted, the
following code was used to produce the results and to remove outliers:
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Code 12.1. Automatically input permutation test in SAS

/+Permutation testx/

data Wallet;

INFILE "file location’;

INPUT school $ cash;

run;

proc iml;

use Wallet var {school cash};

/+*making two groups in IML=*/

read all var {cash} where(school="SMU’) into g1;

read all var {cash} where(school="SEU’) into g2;

obsdiff = mean(g1) - mean(g2);

print obsdiff;

call randseed(12345); [+ set random number seed x*/
alldata = g1 // g2; /+ stack data in a single vector =/
N1 = nrow(g1);

N = N1 + nrow(g2);

NRepl = 9999; /* number of permutations */

nulldist = j(NRepl,1); /+ allocate vector to hold results */

do k = 1 to NRepl;

x = sample(alldata, N, "WOR"); /% permute the data */

nulldist[k] = mean(x[1:N1]) - mean(x[(N1+1):N]); /* difference of means */
end;

title "Histogram of Null Distribution”;

refline = "refline " + char(obsdiff) + " / axis=x lineattrs=(color=red);";

call Histogram(nulldist) other=refline;

pval = (1 + sum(abs(nulldist) >= abs(obsdiff))) / (NRepl+1);
/+this means two sided testx/

print pval;

run;

Code 12.2. Outlier removal in SAS

data Wallet;

INFILE "file location’;
INPUT school \$ cash;

run;

data CleanCash;

set Wallet;

/+we are going to remove all the really high valuesx/
if cash >150 then delete;
run;

proc ttest data=CleanCash
alpha=.05 test=diff

sides=2; /xa 2 tailed testx/
class school;

var cash;

run;
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Log Transformed data

13.1 Full Analysis

Problem Statement:

We would like to test the claim that the distribution of incomes for those who have 16 years of education is
greater than those who have 12 years of education.

Assumptions

We first produce the plots for our assumption analysis using the following bit of code:

proc import

/+to use proc import first we specify the filex/
datafile="genericfilepath/genericname.csv’

/+then we specify the name of the output datasetx/
out=edudata /x*then we specify the data typex/
dbms=CSV;

run;

proc sort data=edudata;

by descending educ;

run;

proc ttest data=edudata

order=DATA /+This changes theorder of the groups you are using to the one you setx*/
sides=U; /+an Upper tailed test*/

class Educ;

var Income2005;

run;

Producing the following figures:
Figure 13.1.1. Q-Q plot of sample

Q-Q Plots of Income2005
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Figure 13.1.2. Histogram and Boxplot of the sample
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Normality assumption:

Looking at the Q-Q plot(Figure 3.1), it is clear to see that the data is not normal at all. To investigate further,
we will look at the histograms and box plots in Figure 3.2. These paint a more complete picture, we see that
the data is skewed to the right, and that the higher values are much greater than the lower values (hundreds
of thousands of times). To combat this, lets perform a natural log transformation with this bit of code and
see whatthe data looks like:

Code 13.1. log transform in SAS

data edudata?2;

set edudata;

lincome=1og(Income2005);

run;

proc ttest data=edudata2

order=DATA sides=U; /xan Upper tailed test*/
class Educ;

var lincome;

run;

Producing the following figures:
Figure 13.1.3. Q-Q plot of logs
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Figure 13.1.4. Histogram and Boxplot of Logs
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With this transformation, we first look at the Q-Q plot (Figure 3.3), and we see that the data is mostly
normal! Looking at the histograms (Figure 3.4) this is confirmed, just in their shape and the shape of the
kernel density plots. The nearness of the median to the mean is also a telltale sign the data is normal.
Therefore, we can assume the log-transformed data is normal.

Equality of Variances

Since we cannot assume normality with the untransformed data, it makes little sense to analyze the equality
of variances of that data set. We will look at the log transformed data for the equality of variances. Looking
at figure 3.4, we see that the spread of the two data sets is pretty similar, just in the histograms, they are
of similar length, where the 12 year data set is a bit narrowerthan the 16 year set. The Boxplot confirms
this, the distance from the means to the end of the whiskers is roughly the same for both plots, as well as
within the IQRS. The one with the larger mean also has a larger variance, Therefore, we can assume the
log transformed data has equal variances.

Independence

We can assume the data is independent in this scenario.

3.3 Hypothesis testing

We will be using a one tailed pooled t test of the log transformation of the data in this scenario, so that we
candoat test

Statement of Hypotheses:

Note that since we are dealing with a pooled t-test of a log transformation, we are dealing in medians
rather than means, the medians should tell us whether or not the distribution of the people with 16 years
of education exceeds that of those with 12 years of education

Hy:Median g = Median;,
Hy :Medianyg > Mediany,
Hy : distribution g =distributiony,
Hj : distribution,g >distribution;,

Critical Value

In this scenario, @ = 0.1 and df = 1424, and from that we can shade a one sided distribution and find a
critical value, using the code below:

data pdf;

do x = -4 to 4 by .01;

pdf = pdf("T", x, 1424);

lower = 0;

if x >= quantile("T",0.9,1424) then upper = pdf;/*one sided*/
else upper = 0;

output;

end; run;

title ’Shaded t distribution’;

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

data critval;

p = quantile("T",.9,1424); /+one sided test*/;

proc print data=critval; run;

This produces the shaded distribution:
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Figure 13.1.5. Shaded t distribution

Shaded t distribution

and a critical value of t =1.28215

Obs p
1 1.28215

Calculation of the t statistic:

Now we calculate our t statististic using the code from Section 3.2.1, which tells us that t = 10.98, which is
an astounding value!

Method Variances DF tValue Pr>t
Pooled Equal 1424 10.98) =.0001

Calculation of the p-value:

p <0.0001, see the figure above!

3.3.5 Discussion of the Null hypothesis
We REJECT the null hypothesis, p~ 0<0.1 =«

Conclusion

We Reject the null hypothesis which states that the two distributions are equal. We have convincing evi-
dence that the income distribution of the people with 16 years of education is greater than those with 12.
With a one-sided p value of ~0, the distributions are very different, the median income of the people with
a 16 year education is evidently greater than the median income of people with a 12 year education. The
figure below shows the difference between the natural logarithm of the two medians:

Educ Method Mean
16 10.7971
12 10.2272

Diff (1-2) Pooled .5699
Diff (1-2) Satterthwaite 0.560
This tells us that the median income of people with 16 years education is e = 1.77 times greater

than those with 12 years of education. A 90% confidence interval for this multiplicative effect is 1.62 to
1.93 times.

0.5699

Educ Method Mean 90% CL Mean |
16 10.7971 | 10.7187 10.8755
12 10.2272 | 10.1832 10.2712
Diff (1-2) Pooled 0.5699 74844 0.6553

Diff (1-2) Satterthwaite 0.5699 0.4800 0.6597
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We cannot make causal inferences in this scenario, as there was no random experimentation, and we
cannot make population inferences either, as there was no random sampling
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Unit 3 Lecture slides
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A Closer Look at Assumptions!

Confidence a=05
Intervals A ! .
and —=1
Hypothesis ———
Tests =

95% CI = —

Vs. =
a = .05 Hyp Test =

For the corresponding
alpha, a (1-alpha)% CI will -
contain mu_0 when the =
test of Ho: mu = mu_0 ==
fails to reject Ho and will S
not contain mu_0 when ==
the test rejects Ho. =
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Confidence — =
Intervals —
and ="=
Hypothesis S —
Tests =——=—

Vs. = 3
a=.01 Hyp Test =

The Take Away

Two-Sided 100(1-a)% Confidence Intervals are Equivalent to Two-
Tailed Hypothesis Tests that have an a level of significance.

“Equivalent” here means that if we test any specific value in the
interval, the test will FTR Ho. And if we test any specific value outside
the interval, the test will Reject Ho.

Example:

95% confidence interval for the mean is equivalent to an a = .05
hypothesis test.

Example:
99% confidence interval for the mean is equivalent to an a = .01 level
hypothesis test.

So we can evaluate hypothesis tests through the
evaluation of confidence intervals!

Assumptions of one sample T-Tests

1. Samples are drawn from a normally
distributed population.

2. The observations in the sample are
independent of one another.

Robustness of One Sample T-test / Cl

When the original (population) distribution is not
normal, the one sample t-test is still valid with a
large enough sample size. (Central Limit Theorem)
That is, the one sample t-test is robust to the

normality assumption when the sample size is large
enough.




Assume the population distribution is Exponential.
With A= 1.

Exponential with Lambda = 1
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sort
Reset |

Given Data, How Do We Check the

Normality Assump

n =100

Histogram

Normal_Draws = rand("Normal");
output;

end;

run;

tion? Visually!

Q-0 Potfor Normal_Drows

n =100

q-q Plot

“proc univariate data = Normal;

var Normal_Draws;
histogram Normal Draws;
agplot Normal_Drawss
run;

Normal g-g Plot
DATA -

middle =(rank+  hypothetical value hypothetical dataifdata  z-score of data
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134.5 Q-Q plots are constructed differently depending
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Given Data, How Do We Check the
Normality Assumption? Visually!

Oisbuton of D 0.0 plttorDrawe

n=100 n=100

Histogram g-q Plot

=proc univariate data = Normal;
v mal_Draws;

Not normal! Data is skewed to the right and does not fall along a straight line in this g-q
plot. B

10/13/2018

Given Data, How Do We Check the
Normality Assumption? Visually!

n=15 n=15

Histogram g-q Plot

Sproc univariate data = Normal;
var Draws;

histogram Draws;

qgplot Draws;

run;

output;
end;
run;

Data comes from a normal distribution, but it is hard to tell given the small sample size.

Given Data, How Do We Check the
Normality Assumption? Visually!

Oisrbusin ofDrws 0.2 Plttor s

n=15 . n=15

Histogram q-q Plot

Sproc univariate data = Normal;
var Draws;

call streaminit(14);

do i =1 to 15; histogram Draws;
Draws = rand ("CHISQ" qgplot Draws;
output; Yo

end;

run;
It looks like the data might not be normal (skew, curvature of g-q plot), but it is

hard to tell with this small sample size.

Beware of small sample sizes!

n=15
n=15

Histogram q-q Plot

i ity = il =proc univariate data = Normal;
call streaminit B var Draws;

histogram Draws;
ggplot Draws;
run;

The histogram shows an almost bimodal distribution (definitely not normal), but again it is
hard to tell with small sample sizes. The g-q plot does not look too far away from normality.

A Way to Decide:
| [smallsamplesie [Large Samplesie |

Little to no Evidence No Problem if you feel No Problem!
Against Normality Normality is a safe Run the T-Test
assumption ... run the T-
Test. (You may want to
be “conservative” here
and run a test with
fewer assumptions.)

Significant Evidence Assumptions are not

Against Normality met and test is not
robust here ... Try a
transformation and, if
appropriate, run a t-test.
If not appropriate, do
NOT run the T-Test and
proceed to a test with
fewer / different
assumotion

No Problem .. You have
the Central Limit
Theorem. Run the T-
Test.

A Complete Analysis:

» Statement of the Problem
* Address the Assumptions
* Perform the Appropriate Test (5 Steps)

* Step 6: Provide a conclusion that a non
statistician can understand, include a p-value
and confidence interval.

* Scope of Inference




Example: Beach Comber

The following are ages of 7 randomly chosen patrons seen leaving
the Beach Comber in South Mission Beach at 7pm! We assume
that the data come from a normal distribution and would like to
test the claim that the mean age of the distribution of Comber
patrons is different than 21.

25,19, 37, 29, 40, 28, 31
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Example: Comber

PROBLEM STATEMENT:
Test the claim that the mean age of Beach Comber patrons at 7pm is different from

ASSUMPTIONS:

Normal Population Distribution: Judging from the histogram and g-q plots,
there is little to no evidence that the population distribution of patron ages at
the Comber at 7pm is not normal. We will assume that this distribution is
normal and proceed.

Independence: These subjects were randomly selected from the population;
thus, we will assume that the observations are independent.

Revised Write Up!

We would like to test the claim that the population mean is different from 21. To do this,
we take a sample of size n = 7 and find that X = 29.86 years and s = 7.09 years.
Ho:p = 21

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ha:p # 21
Step 2: Draw and Shade and Find the Critical Value.
@ =05 = significance level.
“i/\jzs d=7-1=6
= L -

t
~331-2447 2447 331

Step 3: Find the test statistic. (The t value for the data.)
Step 4: Find the p-value: P-value =.0162 < .05

Step 5: REJECT Ho

Step 6: There is sufficient evidence to conclude that the true mean age of patrons at the
Comber at 7pm is different from 21 (p-value =.0162 from a t-test). A 95% confidence
interval for the mean age is (23.3, 36.4) years. Scope: Since this was a random sample, we
can generalize these findings to the entire population of Comber patrons at 7pm. Note that
we have evidence to support the claim that the mean age is greater than 21 as well.

Example: Bats

World’s Smallest Mammal The world’s smallest mammal is the bumblebee bat, also
known as the Kitti’s hog-nosed bat (or Craseonycieris thonglongyai). Such bats are
roughly the size of a large bumblebee. Listed below are weights (in grams) from a
sample of these bats. Test the claim that these bats come from the same population
having a mean weight equal to 1.8 g.

17 16 1.5 20 23 16 16 18 1.5 1.7 22 14 16 16 16

Example: Bats

00 pletorwaight

PROBLEM STATEMENT:
Test the claim that the mean weight of the bumble bee bat is different from 1.8 g.

ASSUMPTIONS:

Normal Population Distribution: Judging from the histogram and g-q plots, there

is some visual evidence of a departure from normality. With a sample size of 15

and no extreme outliers, we will assume the distribution of sample means is

decently approximated by a normal distribution via the CLT and proceed with

caution.

Independence: Not much is known about the sampling scheme used to obtain this ;5
amole We will assume the observations are independent.

World’s Smallest Mammal The world’s smallest mammal is the bumblebee bat, also
known as the Kitti’s hog-nosed bat (or Craseonycteris thonglongyai). Such bats are
roughly the size of a large bumblebee. Listed below are weights (in grams) from a
sample of these bats. Test the claim that these bats come from the same population
having a mean weight equal to 1.8 g.

1.7 16 15 20 23 16 16 18 1.5 1.7 22 14 16 16 16

Hy: p=1.8  Critical Values t=12.145 /7\'1 e
s azs
Hy:p# 1.8 70 iiln, vsn o L

1 21818

@ =0.05  lroo prine daca = xivvats oy P
X=1.713  _  ctatistic P-value: .2155>.05  Fail to Reject H,
s =.2588 t=-1207

On the basis of this test, there is not enough evidence to reject the claim that the mean weight of
bumblebee bats is equal to 1.8 g (p-value = .2155 from a t-test). A 95% confidence interval is (1.57, 1.8566)
grams. The problem was ambiguous on the randomness of the sample; thus, we will assume that it was
not a random sample, which makes inference to all bats strictly speculative.
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Assumptions of one and two
sample T-Tests

1. Samples are drawn from a normally
distributed population.

2. If itis a two sample test, both populations
are assumed to have the same standard
deviation (same shape).

3. The observations in the sample are
independent of one another.

What happens if the normality
assumption is broken?

Many times ....
NO PROBLEM!!!

X X

Cental Limit Theorem

SANIVAN

When data is not normal

Percentaga of 85% confidence intervals that are successful when the two populations are non-
DISPLAY 3.4  nommal (but with same shape and SD, and aqual sample sizas) {each percentage is based on
1

000 computer simulations)
Strongly | Moderately | Mildly Long- Short-
skewed | skewed skewed ailed tailed

‘7 1
\
| .
b | k| hh Ll | MJJPL

Sample
size
5 95.5 95.4 952 98.3 9.5
10 95.5 95.4 952 98.3
25 953 95.3 95.1 98.2 94.9
50 95.1 93.3 95.1 98.1 95.2
100 94.8 95.3 95.0 98.0 95.6

2. In a two sample test, both populations are
assumed to have the same standard deviation
(same shape).

Assume: 0y _@/R

Ha K2

We want inference on : u, — piy

Evidence of Inequality of Variance:
VISUAL

Distribution of score

/QK
N

Little visual evidence against equal standard deviations (variances).

Evidence of Inequality of Variance:
F-Test for Equal Variance

.............

[ ﬁ Ho: population variances are equal
— t// S~ Ha: population variances are not equal
! b Equality of Variances
cosia Method  Num DF | Den DF F Value Pr>F

Folded F 22 23 140 04289

There is not sufficient evidence to conclude the variances are different (p-value =
.4289 from a F-Test.)
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Evidence of Inequality of Variance: Evidence of Inequality of Variance:
VISUAL F-Test for Equal Variance
Distrbution ofscore Ho: population variances are equal
' Ha: population variances are not equal
;E Equality of Variances
L Method  Num DF | Den DF F Value Pr>F
ia Folded F 29 29 18501043

° ° There is not sufficient evidence to conclude the variances are different (p-value =
a0 w0 .1043 from a F-Test.)

Strong visual evidence against equal standard deviations (variances).

Evidence of Inequality of Variance: What happens if the assumption of
F-Test / VISUAL equal variances (standard deviations)
- Sk tpeen The F-test has a strong assumption that the two is b ro ke N ?
5o Js populations that it is testing the variances of must
o L be normal. It is not robust to this assumption. .
s Since the second distribution has strong evidence of In some circumstances ....
EI T e orepriemere " This could be serious .... In others.....
N = For this example, the visual evidence is so strong
that we would not need to consult a hypothesis No Problem!

test to test this assumption of equal variances.

However, later in the semester we will study a test of spread/dispersion that does not
have this assumption and can be used in a wider range of statistical environments.

When variances are not equal The Take Away

Parcentage of successful 35% confidence intervals when the two populations have different
DISPLAY 35 standard deviations (but are normal) with possibly diferent sample sizes {aach percentage is

based on 1,000 computer simulations)
What you will find in practice will most likely not fit exactly into the scenarios
K identified here. There will be some judgment involved ... this is the “art” of
3 statistics.

Here are some general rules of thumb that we will assume this semester.

‘H 1. If sample sizes are the same and sufficiently large, the t tools (tests and
confidence intervals) are valid ... since they are robust to the violation of

x| 4 normality.

& ~ 2. If the two populations have the same standard deviation, then the t tests
J;y ion 1 >

are valid ... given sufficient sample sizes.

3. If the standard deviations are different and the sample sizes are different

mom| o= |oye=1n| Gy0=1 | oyo=2 | 5y10=4 then the t tools are not valid and another procedure should be used.
1010 952 | 942 | 947 | 952 | %45
10 20 | Success 830 | 893 | 944 | 987 | 99.1 (Ch.4)

10 40| rates 710 82.6 952 90.5 99.9
100 100 | for95% 948 96.2 95.4 95.3 95.1
100 200 | intervals  86.5 883 94.8 98.8 99.4
100 400 7.6 815 95.0 99.5 99.9 35 3




A Complete Analysis:

» Statement of the Problem
* Address the Assumptions
* Perform the Appropriate Test (5 Steps)

* Step 6: Provide a conclusion that a non
statistician can understand. Include a p-value
and confidence interval

* Scope of Inference
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FULL EXAMPLE: CREATIVITY STUDY!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. To do this we take a sample of size n, = 24 and n; = 23 and find that X, =
19.88 points, X = 15.74, s, = 4.44, and s¢= 5.25 points.

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis.

T

“..w"E',;"';i"E HO' fa—
] W=
dgm 1 E
iR
A w 2 .
=l Han
= o oEm 2
= L _
3R w o Which is equivalent to:
ER I -
el W e |
e BE )
RS H . _O
S oY — Ug =
N ek ), TR 1
PEL N ex i

Full Example: Creativity Data

State the Problem: We would like to test the claim
that the mean score of the Intrinsic group is
different than that of the Extrinsic group.

Check Assumptions:
1. Normally Distributed Populations

First Check .... g-g Plot

Q-Q Plots of score
o

2 a [l 1 2 2 a [l 1 2
Quantie Quantile

The g-q plots for both populations look sufficiently
normal. We look at the histograms as well ... but there is
not sufficient evidence here to suggest that they are not
normal.

Histograms

Distribution of score

* Keeping in mind the relative small sample size from each
population, we do not observe any extreme outliers and
observe a pretty strong bell shape which lends evidence to
support normality of the populations.

Normality Assumption

Oistrbuton o score

Q-0 Plots of score

==
—

Visual inspection of the histograms and g-q plots of each
population are consistent with the normality of each
population. We assume normality and move on to the second
assumption.




Full Example: Creativity Data

State the Problem: We would like to test the claim that
the mean score of those with intrinsic motivation is the
same for those with extrinsic motivation.

Check Assumptions:
1. Normally Distributed Populations
2. Equal Standard Deviations
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Equality of Variances

A visual check was done by looking at the histograms, which reveal similar shapes and
support the equal variances assumption. You can assume equal variances here.
Equality of Variances
Method | Num DF | Den DF F Value | Pr>F
Folded F 29 29 1.85 0.1043

Since we are able to assume normal population distributions, we can use the F-Test to provide
secondary evidence if the visual is inconclusive. Since the p-value is greater than our
significance level of alpha = 0.05, we fail to reject the null hypothesis of equality (p-value =
0.1043) and conclude that there is not enough evidence to suggest the variances are different.

Full Example: Creativity Data

State the Problem: We would like to test the claim
that the mean score of those with intrinsic
motivation is the same for those with extrinsic
motivation.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Independent Observations

The sample consisted of volunteers and thus
subjects may not be independent of one
another. However, we will assume
independence and proceed with caution.

Full Example: Creativity Data

State the Problem: We would like to test the claim that

the mean intrinsic score is the same as the extrinsic score.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Run the Test:

1. First 5 steps.

) . A
Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. To do this we take a sample of size n, = 24 and n, = 23 and find that X, =
19.88 points, Xy = 15.74, s, = 4.44, and s¢= 5.25 points.

. ) Ho:ly — g =0
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ha: p, — p; #0

Step 2: Draw and Shade and Find the Critical Value.

@ =.01=significance level.

df=24+23-2=45

293

_G&E-%

Step 3: Find the test statistic. (The t value for the data.) T

iyt g

=293

Step 4: Find the p-value: P-value 0.0054< .01

Step 5: Key! The sample mean we found is very unusual under the
assumption that the group means are equal (i; — pz). So we Reject
this assumption. That is, we REJECT Ho.




Full Example: Creativity Data

State the Problem: We would like to test the claim that
the mean intrinsic score is the same as the extrinsic score.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Run the Test:

1. First 5 steps.

State the Scope and Conclusion.

10/13/2018

Let’s Fill in the P-value gand add a Cl)!

We would like to test the claim that the mean score of the Intrinsic group is different an that
of the Extrinsic group. To do this we take a sample of size n, = 24 and n; = 23 and find that X, =

19.88 points, X = 15.74, s, = 4.44, and s¢= 5.25 points. Ho: |, — 1z =0
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ha: , — p; %0

Step 2: Draw and Shade and Find the Critical Value.
R 1 @ = .01 = significance level.
£%

df=24+23-2=45
005 / \1)05
= o
o
¢ b 1

Step 3: Find the test statistic. (The t value for the data.) ‘

Step 4: Find the p-value: P-value = .0054

Step 5: REJECT Ho
Step 6:
Conclusion: There is sufficient evidence to suggest that those who receive the Intrinsic
treatment have a higher mean score than those who receive the Extrinsic treatment (p-value =
.0054 from a two sided t-test). A 99% confidence interval for this difference is (1.29, 7.00).
SCOPE: Since this was a randomized experiment, we can conclude that the Intrinsic treatment
caused this difference. However, since the study was of volunteers, this inference can only be
generalized to the 47 participants.

LET’S TRY SOME!

For each of these data sets, write up the assumption statement with
respect to checking the assumptions for a one or two sample t-test.
You may assume the data to be independent.

Happiness Data Set

Mice Experiment Data Set

All data sets can be found in one file in this week’s materials.
You will need to add the proc ttest statement for each.
However, you will not need the data for this exercise.

Happiness Study

Q-0 Plots of se:

5 randomly selected people were asked to rate their happiness on a scale from 1 — 100
on a cloudy day and 8 randomly selected people were asked the same question on a
sunny day.

QOl: Is the mean happiness of individuals different on a cloudy day than a sunny day?
If possible, can we test if cloudy weather causes a change in happiness?

Address each assumption of the two sample t-test and then decide if the two-sample t-
test is appropriate to answer this QOI with this data.

Happiness Study

Otnbtn ot seare Q-0 Plots of score

Normality of Distributions: Judging from the histograms and g-q plots, there is
evidence of outliers in both the Cloudy and Sunny sets. The most pronounced
outlier seems to be in the Sunny data set; thus, there is significant visual evidence
against these data being normally distributed. In addition, we are not satisfied that
the t-test will be robust to this assumption since the sample sized are so small.
Equal Standard Deviations: Judging from the histograms, g-q plots and box plots,
there is significant visual evidence that the standard deviations are different. In
addition, since the sample sizes are different we know that the t-test is not robust to
this assumption.

Independence: We will assume that these data are independent.
The two sample t-test is not appropriate here. We should look for a different test. 3

Mice Study

A large sample of mice were randomly assigned to receive a drug or a placebo (sample
size np = 32 and nj, = 32). The mice’s tcell counts were then taken and histograms and
g-q plots are displayed above.

QOl: Is the mean tcell count of mice that receive the drug greater than that of the
mice that receive the placebo?
Can we draw draw evidence of causality from this study?

Address each assumption of the two sample t-test and then decide if the two-sample t-
test is appropriate to answer this QOI with this data.
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Mice Study

Normality of Distributions: Judging from the histograms and g-q plots, there is
significant visual evidence to suggest the data come from right skewed distributions.
However, since the sample size is large n, = 32 and n,, = 32 the t-test is robust to this
assumption violation.

Equal Standard Deviations: There is strong visual evidence to suggest that the data
come from distributions with different standard deviations. However, since we have
the same sample size in each group, the t-test is robust to this assumption violation,
by a previous “rule of thumb”.

Independence: We will assume that these data are independent.

The two sample t-test is appropriate here.

Transformations

Log Transformation

Display 3.8 p.69

The logarithmic transformation used to arrive at favorable conditions for
the two-sample t-analysis

log(Y)

e g cntr o s te

21T
g prece

I EEEEEEEER
Measurement Scale (¥)

Appropriate Interpretations After a Log
Transformation —
Example Write Ups....

Observational Study:

“It is estimated that the median for population X is
exp(mean(log(x)) — mean(log(y))) times as large as
the median for population Y.”

Randomized Experiment:

“It is estimated that the median response of an
experimental unit to treatment x will be
exp(mean(log(x)) — mean(log(y))) times as large as
its response to treatment y.”

Cloud Seeding!

How Cloud Seeding Works

3. The silver iodide causes
cloud molsture to freeze
and create ice crystals

s w
\ 4. Ice crystals grow big
enough to fall as snow.

(/\,—/\x
1 inute amount of silver iodide is
sprayed across a propane flame

2. The silves lodidé’
particles rise into
the clouds

Does Cloud Seeding Work?

On days that were deemed suitable for cloud seeding, a
random mechanism was used to decide whether to seed
the target cloud on that day or to leave it unseeded as a
control. Precipitation was measured as the total rain
volume falling from the cloud base following the airplane
seeding run, as measured by radar. We would like to test at
the alpha = .05 level of significance whether cloud seeding
is effective in increasing precipitation.

10



Cloud Seeding: Original Data

o 9-QPlots of Rainfal

= e

Sproc ttest data = cloud sides = 1
class Treatment;
var rainfall;

run;
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After Log Transformation

Distibution of ogRinfal

/ Q- Plots of logRainfall

“proc ttest data = leloud sides = u;
lass Treatment;

* lograin;

run;

T Test and Confidence!!!

Hy: Cloud Seeding does not work. 03204 = 1 5
H,: Cloud Seeding does work. 4 18972 o

y . el#72=67
Ho: Median, .gey = Median, . ees

Hy: Median, gy > Median u,eges |

|
Variabie: logein o W] Mesn 28 Dwe St Wi Ui |

Sromen| ] Moan 56 Oe |t i oo Swind 7 512 14 0w [ e e
seeded |2 512 1595 0307 140 791 oseoded % %904 e omn| 0 Tem |
Unssodon 25 3390 1540 0 o 1o onnn v vees o |
oy | e 1o oass

Troairent | Method
Treament| Method

ean[| 395 CL Weas | 56 v 304 L 50 D
s1 T FE 1o e 20k

tnsaeded 904 (CTIRE Y

B2 Pocled g O TR T ]

Tean | 95% CL thean | Std Dev | 5% CL S Dev,
Sesda S1002 44001 5702 15595 12544 22080
a3 46536 6t 1276 20664
o ety e 132 20w

Dif(12) | Pooled

D12 | Satentwaite 1145 03004 oty D7) | Somecibwate 11430 0350 1872
Mothod  Varinces DF tVal Method  Variances  OF | (Value Pr>n |
Pooked  =al 0 2 Pooled  Equ 0 25 ou

Sattrthvaite Unsqusl 49565 2

Satctwnia Unequai 43365 254 30U1

For the one sided test. For confidence interval.

i piden = lcloud . ‘

Itis estimated that the median volume of rainfall on days when clouds were seeded was e'1435=3.1 times as large as
when not seeded (p-value = .007). A 90% confidence interval for this multiplicative effect on the median is 1.5 to 6.7
times. Since randomization was used to determine whether any particular suitable day was seeded or not, it s safe to
interpret this as evidence that the seeding caused the larger median rainfall.

Lot

Cloud Seeding Book Example

Original
o P vt o Display 39 7l

. ° 1pl lysis and statement of conclusions after logarithmic
& aton — clow seeding exarmple
& UNSEEDED. § Use the two-sample .\

. 2 )

. . 7 Ditre s enges = LIS GE0499)
& — Teso i ypaiss f o oo cload
B — iyl esip e

Togged SRS

contidece terval )

—
Low uce =
pper contiee lmit =204

. Conclusion: There s comncing evidence that seeding increased ainfall
(Isided p-value = 0070). ed that the volume of rainfal produced

a5 as large as

-
y =

= — )

1

Biar produced i th absance of seedin. (93% confdence: 127 0 774 ).

Recap: The Take Away

What you will find in practice will most likely not fit exactly into the scenarios
we identified here. There will be some judgment involved ... this is the “art”
of statistics.

Here are some general rules of thumb that we will assume this semester.

1. If sample sizes are the same and sufficiently large, the t tools (tests and
confidence intervals) are valid ... since they are robust to the violation of
normality.

2. If the two populations have the same standard deviation then the t tests
are valid ... given sufficient sample sizes.

3. If the standard deviations are different and the sample sizes are different
then the t tools are not valid and another procedure should be used.
(Ch. 4)

Appendix
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Log Transformations: Theory

Prop 1: X Y
Log(x) Log(y)
Nl TN
Mean[log(x)] = Median[log(x)] Because data is
now symmetric
Mean([log(y)] = Median[log(y)] (median =mean)
Prop 2:
The logarithm is a
monotonically increasing “m
function. If X1 >X2 then X1 log(X1) ) .
log(X1) > log(X2). log(Median(X)) = log(X3) = Median(log(X))

X2 log(X2)

Therefore consider X1 through X3 log(X3)
X5 in ascending order so that X4 log(X4)
X1<X2<X3<X4<X5.
Then log(X1) < log(X2) <
log(X3) < log(X4) < log(X5).

log(Median(X)) = Median(log(X))

X5 log(X5)
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Log Transformations: Theory

Prop 3: Prop 4a: Prop 4b:
X log(x) I
log(X) —log(Y) = log(y) elos™) = x 100910 = x
e is a pretty remarkable number!:

e= lim (1+ 1)"

= " &l 1 g ! 1 1 1

—— e“gn!_o!+1!+zl+3!+4!+

nee Yl 1
e:li%(l+m)% _/l- Idt:l'

€= 271828 18284 59045 23536 02874 71352 66249 77572 47093 69995...

Log (base e) Transformations: Theory

Prop 1: Prop 3:

Mean[log(x)] = Median[log(x)] log(X) —log(¥) = 'OE(V)
Prop 2: Prop 4a:
log(Median(X)) = Median(log(X)) elog® = x

Derivation:

Mean(log(X)) — Mean(log(Y)) =& Diff of means on log scale
Median(log(X)) — Median(log(Y)) =8 Prop1l

log(Median(X)) — log(Median(Y)) = § Prop2

Median(X) _
Median(Y) - Prop3
Therefore: dianCo
Median(X .
8 = ¢ O8Median(r) Median) Prop 4a
Median(Y)

§_Median(X)
_Median(Y)

Log (base 10) Transformations: Theory

Prop 1: Prop 3:

Mean([log(x)] = Median[log(x)] log(X) —log(¥) = 'OE(V)
Prop 2: Prop 4b:
log(Median(X) = Median(log(X)) 10%0910®) = x

Derivation:

Mean(log(X)) — Mean(log(Y)) =& Diff of means on log scale
Median(log(X)) — Median(log(Y)) =& Prop1

log(Median(X)) — log(Median(Y)) = § Prop2

Median(X) _
Median(Y) - Prop 3
Therefore: —
Median(X .
108 = 10'°8n|irediant| Medianco Prop 4b

Median(Y)
Og_Median(X)

_Median(Y)

1

FULL EXAMPLE: SSHA Data

The Survey of Study Habits and Attitudes (SSHA) is a psychological test designed
to measure the motivation, study habits, and attitudes toward learning of college
students. These factors, along with ability, are important to explain success in
school. Scores on the SSHA range from 0 to 200. A selective private college gives
the SSGA to an SRS of both male and female first-year students.

The data for the women are as follows:

156 109 137 115 152 140 154 178 111 123 126 126 137 165 129 200 150
140 116 120 130 131 130 140 142 117 118 145 130 145

The data for men are as follows:

118 140114 180 115 126 92 169 139 121 132 75 88 113 151 70 115 187
114 116 117 145 149 150 120 121 117 129 92 110

Most studies have found that the mean SSHA score for men is lower than the mean
score in a comparable group of women. Test this claim at the alpha = .05 level of
significance. (Show all 6 steps.)

HO: Hw = Hm
Hl: Hw > Hm

Full Example: SSHA Data

State the Problem: We would like to test the claim
that the mean SSHA score of men is less than that
of women.

Check Assumptions:
1. Normally Distributed Populations

12



First Check .... g-g Plot

Q-Q Plots of score

score
score

o
Quantie Quantie

The g-q plots for both populations look sufficiently
normal. We look at the histograms as well ... but there is
not sufficient evidence here to suggest that they are not
normal.
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Histograms

Distribution of score

Percant
8

* Keeping in mind the relative small sample size from each
population, we do not observe any extreme outliers and

observe a pretty strong bell shape which lends evidence to

support normality of the populations.

Normality Assumption

Visual inspection of the histograms and g-q plots of each
population is consistent with the normality of each
population. We assume normality and move on to the second
assumption.

Full Example: SSHA Data

State the Problem: We would like to test the claim that
the mean SSHA score of men is less than that of women.
Check Assumptions:

1. Normally Distributed Populations

2. Equal Standard Deviations

Equality of Variances

A visual check was done by looking at the histograms which reveal similar shapes and
support the equal variances assumption. You can assume equal variances here.

Equality of Variances
Method  Num DF | Den DF F Value | Pr=F

Folded F 29 29 1.85 0.1043

Since we are able to assume normal population distributions, we can use the F-Test to provide
secondary evidence if the visual is inconclusive. Since the p-value is greater than our
significance level of alpha = 0.05, we fail to reject the null hypothesis of equality (p-value =
0.1043) of variances and conclude that there is not enough evidence to suggest the variances
are different.

Full Example: SSHA Data

State the Problem: We would like to test the claim
that the mean SSHA score of men is less than that
of women.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

13



Independent Observations

The sample was indeed a SRS (simple random
sample) from the population of the selective
private college, therefore we assume the
observations are independent of one another.

10/13/2018

Full Example: SSHA Data

State the Problem: We would like to test the claim that
the mean SSHA score of men is less than that of women.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Run the Test:

1. First5 steps.

Run The Two Sample T-Test!!!

* There is no reason to pair these observations and
we have two samples .... Therefore we should use
the two sample t-test with pooled standard
deviation since we are assuming the population
standard deviations are equal. We are testing
here:

Ho: w = iy
Hy: pw> iy

Critical Value

a = .05 = significance level.

Xw - Xy
df=60-2=58
- 0
|
tossg = 1.67

data critval;
<.:v = quantile("T",.95,58); Obs %
proc print data = critval; 1/1.67155

run;

Two Sample T-Test ... SAS Output

Gender N Mean StdDev StdErr Minimum Maximum

women |30 1371 201528 3.6794 109.0 200.0

men 30 1242 27.3837 4.999%  70.0000 187.0

Diff (1-2) 12.9000 | 24.0416  6.2075
Gender = Method Mean 95% CL Mean Std Dev 95% CL Std Dev
‘women 1371 1295 1446 201528 16.0498 27.0916
men 1242 1139 1344 273837 21.8086 36.8123
Diff (1-2) Pooled 129000 25238 Infty 240416 203521 29.3778

Diff (1-2) Satterthwaite 129000 25089 Infty

Method Variances Dif'tValue Pr>t
Pooled Equal 53 208 0.0211
Satterthwaite Unequal 53288 U8 0.0213

Equality of Variances
Method | Num DF Den DF FValue Pr>F
Folded F 29 29 185 0.1043

) . A
Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean SSHA score of the men is less than the mean

score of women. To do this we take a sample of size n,, = 30 and n,, = 30 and find that X, =

124.2 points, ¥y, = 137.1 and s, = 27.2 5= 20.2 points. Hot 1 Wy =0
. . Hw T =
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ha: i, — p, >0

Step 2: Draw and Shade and Find the Critical Value.

oot T = 05 = significance level.
df=60-2258
05
o
t

Eosse = 167

_Gwm)
¢ 1,1
i L
LSS

Step 3: Find the test statistic. (The t value for the data.) ¢ 208

Step 4: Find the p-value: P-value = .0211
Step 5: REJECT Ho.

14
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Full Example: SSHA Data Scope

State the Problem: We would like to test the claim that Since the study is between women and men, the
the mean SSHA‘score of men is less than that of women. subjects cannot be randomly assigned to the
Check Assumptions: R
o . two groups, and we have an observational
1. Normally Distributed Populations .
study. For this reason, we cannot make any

2. Equal Standard Deviations . L .
3. Independent Observations causal inference and must limit our conclusions

Run the Test: to differences of group means.
1. First 5 steps. However, the sample was an SRS and thus any
State the Scope and Conclusion. results can be inferred back to the population of

students at this particular private college.

Gender N Mean StdDev Std Err Minimum Maximum
women 30 1371 201628 367%4  109.0 200.0
men 30 1242 273837 4.99% 70.0000 187.0
Diff(12) 129000 24.0416 62075 There is sufficient evidence to support the claim at the a=.05 level of significance (p-
value =.0211) that the mean SSHA score is lower for men than for women at this
Gandcry Mot Mcen oL Meani|isEitay)ox CEEIdIDoY college. A 95% one side confidence interval for this difference is (2.5238 points, o0.)
women 1374 1295 1446 201528 16.0498 27.0916
men 1242 1139 1344 27.3837 218086 368123
Diff (12) | Pooled 12.9008 4.0416 | 203521 29.3778
Diff (1-2) | Satterthwaite | 12.9000 25089 Tty
Scope of Inference: Since the study is between women and men, the subjects
Method Vari; DF tVal P . .
etho ariances tValuo| Pr>t cannot be randomly assigned to the two groups, and we have an observational
Pooled Equal 58 208 00211 . . PRI
study. For this reason, we cannot make any causal inference and must limit our
Satterthwaite |Unequal 53288 2.08 0.0213 . A
conclusions to differences of group means.
R However, the sample was an SRS, and thus any results can be inferred back to
Method | Num DE | Den DF | F Value | Pr> F the population of students at this particular private college.
Folded F 29 29 1385 0.1043

ANOTHER FULL EXAMPLE FULL EXAMPLE: Promotion Data

The Revenue Commissioners in Ireland conducted a contest for promotion.
The ages of the unsuccessful and successful applicants are given below.
Some of the applicants who were unsuccessful in getting the promotion
charged that the competition involved discrimination based on age. Treat
the data as samples from larger populations and use a .05 significance level
to test the claim that the unsuccessful applicants are from a population with
a greater mean age than the mean age of successful applicants. Based on
the result, does there appear to be discrimination based on age? (Show all
6 steps.) Assume all data comes from a normally distributed population.

Unsuccessful Applicants:

34 37 37 38 41 42 43 44 44 45
45 60 46 65 49 65 53 54
62 55 56 70 64
Successful Applicants
27 33 36 37 38 38 39 42 42 43
43 44 44 44 45 70 7 72
80 46 47 75 48 72 49 49
51 51 52 54
Ho: py = s
Hy: ps < py

15



Full Example: Promotion Data

State the Problem: We would like to test the
claim that the mean of the successful group is
less than the mean of the unsuccessful group.

Check Assumptions:
1. Normally Distributed Populations

10/13/2018

First Check .... g-g Plot

Successful Q-QPlots ofage  Unsuccessful
0s 70 Y
n
@
@
) & 850
e
o ~
©
)
5 3
2 4 o 1 2 2 A 0 ' 2
Quantie auantle

The g-q plot for the successful data provides some
evidence of non normality, while the g-q plot for the
unsuccessful data looks consistent with normally
distributed data.

Histograms

Distribution of age

The successful group (top) has a clear right skew to the data, while the unsuccessful group shows a
possible mild right skew. This suggests that both sets of data may be from right skewed
populations. We know that the t-tools are robust to non normality for these types of distributions
so we proceed with the t test.... We will readdress these concerns when we talk about the standard
deviation.

Normality Assumption

0 Plots ofsge

Visual Inspection of the histograms and g-q plots indicates the
both data sets may be from a right skewed distribution. We
know that the t-tests are robust to violations of the normality
assumption when the data are from a right skewed
distribution (when the sample size is sufficient), so we proceed
with the t-test.

Full Example: Promotion Data

State the Problem: We would like to test the
claim that the mean of the successful group is
less than the mean of the unsuccessful group.

Check Assumptions:
1. Normally Distributed Populations
2. Equal Standard Deviations

Equality of Variances

A visual check was done by looking at the histograms, which reveal similar shapes and
support the equal variances assumption. We will assume equal variances here.

Equality of Variances
Method | Num DF | Den DF | F Value Pr>F
Folded F 29 22 165 02286

As secondary evidence of the visual is inconclusive, given that the p-value is greater than
our significance level of alpha = 0.05, we fail to reject the null hypothesis of equality of
variances (p-value = 0.2286) and conclude that there is not enough evidence to suggest the
variances are different. i
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Full Example: Promotion Data

State the Problem: We would like to test the
claim that the mean of the successful group is
less than the mean of the unsuccessful group.
Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations
3. Independent Observations

10/13/2018

Independent Observations

The sample was indeed a SRS (simple random
sample) from the population of the selective
private college, therefore we assume the
observations are independent of one another.

Full Example: Promotion Data

State the Problem: We would like to test the claim that
the mean of the successful group is less than the mean of
the unsuccessful group.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Run the Test:

1. First 5 steps.

Run The Two Sample T-Test!!!

* There is no reason to pair these observations,
and we have two samples. Therefore, we should
use the two sample t-test with a pooled standard
deviation, since we are assuming the population
standard deviations are equal. We are testing
here:

HO: /us = tuu
Hy: ps <

Two Sample T-Test ... SAS Output

uors N Mean StdDev Std Err Minimum  Maximum
s 30 49.4000 136535 24745 27.0000  80.0000
u 23 49.9565 105463 21991 340000  70.0000
Diff (1-2) -0.5665 | 12.3464 | 34218

uors | Method Mean 90% CLMean | Std Dev  90% CL Std Dev
s 49.4000 45.1955 53.6045 135535 11.1883 17.3444

u 49,9565 461804 537326 105463 64929 14.0628
Diff (1-2) | Pooled 05566 -6.2690 51760 )2.3464 106401 14.7776
Diff (1-2) | Satterthwaite | -0 5565 61025 40895

Wethod Variances | DF tValue Pr>f

H Pooled Equal 51 0160ena)
. =

= Satierthwaite | Unequal 5098 0.17 0.8672
0 Hs = Hy g

Hl: M < My Equality of Variances

Method | Num DF Den DF FValue Pr>F

) . Folded F 29 2 165 02286
Fail to reject the null e

hypothesis at 0.05 level.

Full Example: Promotion Data

State the Problem: We would like to test the claim that
the mean of the successful group is less than the mean of
the unsuccessful group.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Run the Test:

1. First 5 steps.

State the Scope and Conclusion.
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SCOPE

Since the study is between successful and
unsuccessful candidates for a promotion, subjects
cannot be randomly assigned to the two groups,
and we have an observational study. For this
reason we cannot make any causal inference and
must limit our conclusions to differences of group
means.

However, the sample was an SRS and thus any
results can be inferred back to candidates for
promotion from the population that the Revenue
Commissioners of Ireland sampled.

10/13/2018

Conclusion

There is not sufficient evidence to support the
claim at the a=.05 level of significance (p-value
=.4357) that the mean age of those who were
given a promotion is lower than those who
were not given the promotion in this . A 90%
confidence interval for this difference is (-6.3
points, 5.2 points.)
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Part IV

Alternatives to the t tools
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Chapter 15

Problem 2: Logging problem

We are doing rank sum analysis

15.1 Complete Rank-Sum Analysis Using SAS

Problem Statement

We would like to test the claim that logging burned trees increased the percentage of seedlings lost in the
Biscuit Fire region from 2004 to 2005.

Assumptions
Independence

The two-sample Wilcoxon Rank-Sum test assumes that the samples are independent. In this case, the two
sets of tree plots are independent of each other, the amount of tree seedlings in one plot is not directly
related to the amount of tree seedlings in another, if it is, it is not a tangible amount of dependence.
Therefore, we can assume independence. We can also assume ordinality with numericla data

Statement of the Hypothesis

Our null hypothesis, Hy, is that the distribution of percent of saplings lost in the logged plots is less than
or equal to the distribution of percent of saplings lost in the unlogged plots. Our alternative hypothesis,
H,, is that the distribution of percent of saplings lost in the logged plots is greater than the distribution of
percent of saplings lost in the unlogged plots. Mathematically speaking, we have:

Hy :meanRankjoggeq — meanRank, yjogeed < 0 (15.1.1)
Hy :meanRankyyggeq — meanRank, yiogged > 0 (15.1.2)

The significance level, ¢, is:

a=0.05 (15.1.3)

Calculation of the P-value

To find the p value, I performed a Wilcoxon Rank-Sum test. Because the sample size is small, an exact test
was used, as there is no need for a normal approximation. The code used to perform the test is as follows:

Code 15.1. Exact rank sum test using SAS

/* We want the wilcoxon test and the Hodges-Lehman Confidence Intervalx/
proc NPAR1WAY data=loggingData Wilcoxon HL;

class Action;

Var Percentlost;

/+ Because our sample size is small, we want to do an Exact testx/
Exact;

run;

The output of this code is displayed in Figure 2.1:
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Figure 15.1.1. Results of the Rank-Sum Test on the Logging Data
Wilcoxon Two-Sample Test
Statistic (S) 36.0000
Normal Approximation
Z -2.4346
One-Sided Pr< Z 0.0075
Two-Sided Pr > |Z| 0.0149
t Approximation
One-Sided Pr< Z 0.0139
Two-Sided Pr > |Z| 0.0279
Exact Test
One-Sided Pr<=S§ 0.0058
Two-Sided Pr>=|S -
Z includes a continuity correction of 0.5.
The calculated p value is
p=0.0058 (15.1.4)
Results of the Hypothesis Test
We have that:
p=0.0058 < =.05 (15.1.5)

Therefore, we Reject the Null Hypothesis There is sufficient evidence at the a = 0.5 significance level
(p —value = 0.0058 for the exact test) to suggest that the distribution of percentages of saplings lost in the
logged plots was greater than the distribution of percentages of saplings lost.

Statistical Conclusion

MEDIANS FOR NONPAR The data provides convincing evidence that forest recovery is decreased in areas
where burned trees were logged. At a significance level of .05 (or even .01), the distribution/MEDIAN of
the percentage of saplings lost in the logged plots was greater than that of the unlogged areas. This was
done with a one sided, exact p-value of 0.0058. A range of plausible values (95 % confidence interval) for
how much greater the median loss of saplings was for the logged trees is [10.8,65.1], as displayed in Figure
2.2

Figure 15.1.2. 95% Confidence Interval

Hodges-Lehmann Estimation

Location Shift (U - L) -33.4000

Asymptotic
Type 95% Confidence Limits  Interval Midpoint | Standard Error
Asymptotic (Moses) -66.8000 -9.0000 -37.9000 14.7452

Exact -65.1000 -10.8000 -37.9500

Note that the negative of these values was taken, because this figure shows Unlogged — Logged.

Scope of Inference

This study was a random sample of trees in the plots, therefore we can make generalizations about all of the
trees in the 16 plots, and say that the areas which were logged had a greater loss of saplings and therefore
recovered more poorly than the unlogged areas. However, this was not a randomized experiment, and
therefore we cannot make causal inferences. That is, we cannot say that the logging of burnt trees caused
the greater percent loss of saplings.

Since the plots were not randomized to receive either the logging or not logging treatment, no causation
can be implied here. Since the transect patterns were randomly selected, this inference can be generalized
to the 16 larger plots.
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Confirmation Using R

In this section we confirm our findings using R. The R code input is shown below:

Code 15.2. wilcoxon rank sum test using R

loggingData <- read.csv("Data/Logging.csv",header=TRUE, sep=",")
wilcox.test(PercentLost ~ Action,

data = loggingData,

exact = TRUE,

alternative = "greater")

And the output:

Wilcoxon rank sum test

data: PercentlLost by Action
W = 55, p-value = 0.005769
alternative hypothesis: true location shift is greater than 0

The results of the two programs are identical!
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Chapter 16

Problem 3: Welch’s Two Sample T-Test
with Education Data

16.1 Problem Statement and Assumptions

Problem Statement

We would like to examine the claim that the mean income of college educated people (16 years of education)
is greater than the mean income of people with only a high school education (12 years of education)

Assumptions

The code used to produce everything in this section is shown below:

Code 16.1. welch’s t test

proc ttest data=edudata order=DATA
sides=U; /+an Upper tailed testx/
class Educ;

var Income2005;

run;

Normality

Figure 3.1 shows histograms and Box plots relating to the data:

Figure 16.1.1. Histograms and Box plots

Distribution of Income2005
S0 18

Percent

Percent

16 — I }———mae @0 o woe o o °
12 O —emmone o

Educ

a 200000 400000 600000
Income2005
Normal

Kemel

As we can see from the figure, the data is not normal, it is heavily right skewed in both cases. Both the
histograms and the Box plots show this, as the histograms are way taller on the left side than on the right,
while the box plots show that there is a bunch of data on the left with a ton of outliers, clearly not normal.
We examine this further with the Q-Q plot in Figure 3.2
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Figure 16.1.2. Q-Q Plot

Q-Q Plots of Income2005
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The Q-Q plot conifrims our findings that the data is not very normal. However, the sample sizes are
400 and 1000, which means that we can definitely apply the central limit theorem. This means that we can

treat the data as normal, we will assume normality.

Independence

We will assume independence in this case.

16.2 Complete Analysis Using SAS

Statement of Hypotheses

Hy ‘M16yeareduc — H12yeareduc <0

H, ‘M6yeareduc — H12yeareduc > 0

Critical t Value

(16.2.1)
(16.2.2)

With a = .05 and a one sided test, the critical t value (with the appropriate degrees of freedom) is calculated

using the code shown below.

data critval;

p = quantile("T",.95,473.85); /+one sided testx/;
proc print data=critval;

run;

The critical t value is shown in Figure 3.3:

Figure 16.2.1. Critical t-value

Obs P
1| 1.64808

The critical t value is t = 1.64. This is illustrated using the following bit of SAS code:

data pdf;

do x = -4 to 4 by .01;

pdf = pdf("T", x, 473.85);
lower = 0;

if x >= quantile("T",0.95,473.85) then upper = pdf;/*one sided*/

else upper = 0;

output;

end;

run;

title ’Shaded t distribution’;

proc sgplot data=pdf noautolegend noborder;
yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);
series x = x y = pdf / lineattrs = (color = black);

series x = x y = lower / lineattrs = (color = black);

run;
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This produces Figure 3.4

Figure 16.2.2. Shaded t Distribution

Shaded t distribution

Calculation of the t Statistic

To calculate Welch'’s t Statistic, we use the code seen in Section 3.a.2, giving us a t value of t = 9.98, as seen
in Figure 3.5

Figure 16.2.3. Results of Welch’s t-test

Method Variances DF tValue Pr>t
Pooled Equal 1424 13.34 <0001
Satterthwaite Unequal 473.85 3.98 <.0001

We see that in this case, we have a t-value of 9.98

Calculation of the p Value
We also see from Figure 3.5 that p =0

Results of Hypothesis Test
We have that p = 0 < @ = .05 and therefore we reject the null hypothesis

Conclusion

We have convincing evidence that the mean income of people with an education of 16 years is greater than
the mean income of people with an education of 12 years. A one sided p-value of zero shows us that the
means are truly different. The figure below shows a one sided 95% confidence interval on our data:

Figure 16.2.4. Confidence Interval on the Difference of Means

Educ Method Mean | 95% CL Mean @ Std Dev 95% CL Std Dev
16 69997.0 63727.9 76266.1 64256.8 60120.1 69009.5
12 36864.9 350604 38669.4 29369.7 28148.2 307029
Diff (1-2) Pooled 331321 29044.0 Infty | 42326.9 40828.0 43940.9

Diff (1-2) = Satterthwaite 33132.1

The confidence interval on the difference of means is [27662.2,00). This estimates what is a plausible
difference between the means of the two samples. As we can see, the distribution of income of the sample
with a 16-year education is at least $27,000 greater than the distribution of income of the sample with a
12-year education.
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Scope of Inference

This was an observational study; therefore, we cannot conclude that the extra education caused the change
(increase) in mean incomes. Households were selected from a random sample of a previously selected “area
of the United States” and the subjects in this study are the members of those households. Therefore, since
every member of the “area” had the same chance of being selected, it is a random sample of the “areas.”
However, no indication is given on how the “areas” were selected. In conclusion, the association between
education and income above can be generalized to all the members of the “areas” that were selected for this
study, but not generalized to the U.S. as a who

Verification using R

The following R code was used to verify the analysis

eduData <- read.csv("Data/EducationData.csv",header=TRUE, sep=",")
t.test(Income2005 ~ Educ,
data = eduData,

alternative = "less")

This gives the following output:

Welch Two Sample t-test

data: Income2005 by Educ

t = -9.9827, df = 473.85, p-value < 2.2e-16

alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -27662.19

sample estimates:

mean in group 12 mean in group 16

36864 .90 69996.97

Note that R is telling us that the distribution of income of the sample with a 12 year education is at least
27,000 less than those with a 16 year education

Preferences

I prefer the log transformed analysis, they both assume normality, however the log transformed analysis
has the more actually normal data to start with, and the variances are roughly equal. It also speaks more
to the medians, instead of the means, which is much more robust to the huge number of outliers. I think
because of the outliers, I definitely prefer the log method, as the mean is not such a good measurement
with these crazy outliers.
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Chapter 17

Problem 4: Trauma and Metabolic
Expenditure rank sum

17.1 Hand-Written Calculations

To summarize, T = 82, u(T) = 56, sd(T) = 8.632 The handwritten work was done before the author under-
stood continuity correction, the continuity corrected Z and P values were calculated as follows:

(T —0.5)—mean(T)
SD(T)
— p=.001568 (17.1.2)

Z= =295 (17.1.1)

With a continuity correction of 0.5
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17.2 SAS verification

To verify the Z and p values calculated in Section 4.a, the following SAS code was run:

proc NPAR1WAY data=TraumaStudy Wilcoxon HL;
class PatientType;

Var MetabolicEx;

run;

The results of this code are shown in Figure 4.1

Figure 17.2.1. Continuity Corrected Wilcoxon Test Using SAS

Wilcoxon Scores (Rank Sums) for Variable MetabolicEx
Classified by Variable PatientType

Sum of Expected Std Dev Mean
PatientType N Scores Under HO Under HO Score

Nontrauma | 8 38.0 64.0 8633269 4.750000
Trauma 7| 82.0 56.0 8.633269 | 11.714286

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 82.0000

Normal Approximation

z 29537
One-Sided Pr > Z 0.0016

Two-Sided Pr > |Z] 0.0031

t Approximation
One-Sided Pr>Z 0.0052
Two-Sided Pr > |Z] 0.0105

Z includes a continuity correction of 0.5.

The Results of the two tests are the same! Note that if you add the phrase "correct=no" to the proc
NPAR1WAY statement, you get the same values as the non corrected ones in the handwritten work

17.3 Full Statistical Analysis

Problem Statement

We would like to test the claim that the Trauma patients had higher metabolic expenditures/

Assumptions

The Wilcoxon Rank-Sum test only assumes the data are independent, which in this case we will assume
independence because the patients were not related to each other in any way, or at least their metabolic
expenditures aren’t dependent on the other people’s metabolic expenditures. ALSO obviously normal

Hypothesis definitions
Hy :meanRankr,qyma — meanRanky onTrauma < 0 (17.3.1)

Hi :meanRankt,,,ma — meanRanky onTrauma > 0 (17.3.2)

In other words, the null hypothesis is that the nontrauma and trauma patients have equal distributions of
metabolic expenditures, while the alternative hypothesis claims that the distribution of the trauma patients’
metabolic expenditures is higher. We are using a one sided hypothesis test because that is what the book
calls for. In this scenario, we will say a = 0.05
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Critical Value

The critical value was calculated using the following chink of SAS code:

data critval;

p = quantile("Normal",.95); /xone sided testx/;
proc print data=critval;

run;

Producing a critical t value of t = 1.64485

Figure 17.3.1. Critical Value

Obs p
1| 1.64485

The critical value is shown on a normal distribution using the following bit of SAS code

data pdf;

do x = -4 to 4 by .01;

pdf = pdf("Normal", x);

lower = 0;

if x >= quantile("Normal”,0.95) then upper = pdf;/+one sidedx/
else upper = 0;

output;

end;

run;

title ’Shaded Normal distribution’;

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

The shaded distribution is displayed in Figure 4.3

Figure 17.3.2. Shaded Normal Distribution

Shaded Normal distribution

Calculation of the z statistic

Our z statistic, calculated in Sections 4.a and 4.b is 2.95.

Calculation of the p value

Our p-value, calculated in Sections 4.a and 4.b is 0.0016

Discussion of the hypothesis

We Reject the null hypothesis, p =.0016 <0.5=«a
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Conclusion

We have convincing evidence that the distribution of metabolic expenditure of trauma patients is than the
nontrauma patients (p=0.0016 on a one sided Wilcoxon rank-sum test). The figure below shows a 95%
Hodges-Lehmann confidence interval on the difference of the two distributions:

Figure 17.3.3. 95% Confidence Interval

Hodges-Lehmann Estimation
Location Shift (Trauma - Nontrauma) 5.3000

Asymptotic

9 wqjts Interval Midpoint Standard Error
1.9000 16.7000 9.3000 3.7756

This tells us that a plausible difference between the two distributions is between 1.9 and 16.7. As we
can see this does not include the null hypothesis which says their difference is less than or equal to zero.
This cannot give us causal or population inferences because it was neither a randomized experiment nor a
random sample ALSO MEDIANS DUH
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Chapter 18

Problem 5: Autism and Yoga signed rank

18.1 Hand-Written Calculations

The results of the calculations are as follows: S =41, ug = 22.5, SDg = 8.4409, The Z value on the paper is
incorrect, as it does not correct for continuity. So, here we will aplply the continuity correction:

5$-0.5-S
=T SDe 18.1.1
SDg ( )
40.5-22.5
= —84409 =213 — PoneTail = '0166ptw0Tail =.033 (1812)
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18.2 Verification in SAS and R

Verification in SAS
To verify this, the following bit of SAS code was employed: Producing:

Code 18.1. Signed Rank test in SAS

data Autismdiff;

set Autism;

diff= Before-After;

run;

proc univariate data=Autismdiff;
var diff;

run;

Figure 18.2.1. Signed Rank Test In SAS

Signed Rank S 18.5 Pr>=|§] 0.0313

This two sided p value of 0.0313 is the same as a one sided p value of .01565, and a z value of 2.15. It is
slightly different with my calculations and SAS’s because they didnt use a normal approximation, I did.

Verification in R

This R code was employed for the same purposes:

AutismData <- read.csv("Data/Autism.csv",header=TRUE, sep=",")
wilcox.test(AutismData\$Before, AutismData\$After,

paired = TRUE,

alternative = "greater",
conf.int=TRUE)

Yielding:

Wilcoxon signed rank test with continuity correction

data: AutismData\$Before and AutismData\$After

V = 41, p-value = 0.01618

alternative hypothesis: true location shift is greater than 0
95 percent confidence interval:

4.999993 Inf

sample estimates:

(pseudo)median

17.49993

The R code applied a continuity correction, instead of doing the exact permutation like SAS. Their P value
corresponds with a Z score of 2.139

18.3 6 step Sign Rank test using SAS

Statement of Hypothesis

Hy :Mediangef,re — Mediansgie, < 0 (18.3.1)
Hy :Mediang,for. —Medianpgse, > 0 (18.3.2)

We will say that & =.05 and we are doing a one sided test

Critical Values

The critical value was calculated using the following chunk of SAS code:

data critval;

p = quantile("Normal",.95); /*one sided testx/;
proc print data=critval;

run;

Producing a critical t value of t =1.64485
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Figure 18.3.1. Critical Value

Obs p
1| 1.64485

The critical value is shown on a normal distribution using the following bit of SAS code

data pdf;

do x = -4 to 4 by .01;

pdf = pdf("Normal", x);

lower = 0;

if x >= quantile("Normal",0.95) then upper = pdf;/+one sidedx/
else upper = 0;

output;

end;

run;

title ’Shaded Normal distribution’;

proc sgplot data=pdf noautolegend noborder;
yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

The shaded distribution is displayed in Figure 5.3

Figure 18.3.2. Shaded Normal Distribution

Shaded Normal distribution

Calculation of a Z statistic

We will use the Z statistic calculated using R/by hand,Z = 2.13, however it will not have a huge effect on
the outcome of the test

Calculation of a p value

For our z value, a one sided p value is p = 0.016.

Assessment of hypothesis

p=.016 <a =.05 >We reject the null hypothesis.

Conclusion

We have conclusive evidence that the median time to complete the puzzle for Autistic children is greater
before 20 minutes of Yoga than after 20 minutes of Yoga. We cannot infer causality becuase this was not a
randomized experiment, and we cannot infer anything about the population because this was not a random
sample. The median time for the children was at least 5 seconds longer before Yoga as compared to after
Yoga, as seen by the confidence interval displayed in the R output.
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18.4 Paired t test in SAS

Statement of Hypothesis

Ho :ppefore-after < 0 (18.4.1)
Hy :pubefore—after>0 (18.4.2)

We will say that a =.05 and we are doing a one sided test.

Critical Values

The critical value was calculated using the following chunk of SAS code:

data critval;

p = quantile("T",.95,8); /+one sided testx/;
proc print data=critval;

run;

With the following output:

Figure 18.4.1. Critical Value

Obs p
1 1.85955

With a critical t value of t=1.86. This is demonstrated in a shaded t distribution with the following
chunk of code:

data pdf;

do x = -4 to 4 by .01;

pdf = pdf("T", x,8);

lower = 0;

if x >= quantile("T",0.95,8) then upper = pdf;/+one sidedx/
else upper = 0;

output;

end;

run;

title 'Shaded Normal distribution’;

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

The shaded distribution is displayed in Figure 5.5

Figure 18.4.2. Shaded T Distribution

Calculation of a t statistic

The T statistic was calculated using the following SAS code: The t value is shown in Figure 5.6

Figure 18.4.3. Paired t statistic

DF tValue Pr>t
8 254 0.0173

We have a t value of 2.54.
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Code 18.2. Paired T test in SAS

proc ttest data=Autism alpha = .05 sides=U;
paired BeforexAfter;
run;

Calculation of a P value

The p value can be seen in Figure 5.6: p =.0173

Assessment of Hypothesis

p=.0173 > a =.05 —»we reject the null hypothesis.

Conclusion

We have conclusive evidence that the mean of the differences of times before and after the yoga is greater
than zero (p=.0173 on a one sided paired t test). A confidence interval for the mean of the difference of
time for the children to finish the puzzle before and after yoga is shown in Figure 5.7:

Figure 18.4.4. 95% Confidence interval

95% CL Mean
49132 Infty

This means that the mean of the differences was at least 4.9 seconds. We cannot infer causality because
this was not a randomized experiment, and we cannot make inferences about the population because this
was not a random sample. We also cannot make causal inferences with a paired t test

18.5 Confirmation with R

The R code below was used to verify the results of the previous section:

oW N =

t.test(AutismData\$Before, AutismData\$After,
paired = TRUE,

alternative = "greater",
conf.int=TRUE)

The output is presented below:

e o

© ® N o W

Paired t-test

data: AutismData\$Before and AutismData\$After

t = 2.5403, df = 8, p-value = 0.01735

alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:

4.913201 Inf

sample estimates:

mean of the differences

18.33333

18.6 Complete Statistical Analysis

In this section, I will be using a paired t-test, because the data is pretty normal, as we will see in the
following section. When both are possible, I believe the paired t test is better because it doesnt mess with
the data in any way, we can see the magnitudes etc.

Assumptions

We can assume the differences are independent because the children did not affect the other children.
To check for normality we examine the following figure:
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Figure 18.6.1. Histogram and Box Plot

Distribution of Difference: Before - After
With 95% Upper Confidence Interval for Mean

Normal

Kernel

50

40

30

Percent

20

O 95% Confidence

-50 -25 o 25 50 75
Difference

As we see from Figure 5.8, the data is fairly normally distributed. The histogram is heavier in the center
than on the edges, and the mean is near the median on the Box plot. We will examine this further in Figure
5.9

Figure 18.6.2. Q-Q Plot

Q-Q Plot of Difference: Before - After
60 [}

40 o

20 o

Difference

-20
-15 -1.0 -05 00 05 1.0 15
Quantile

As we can see, the data follows the line of normality closely, and therefore we can assume normality.
This means that a paired t test is appropriate.

Statement of Hypothesis
Hy ‘Hbefore-after < 0 (18.6.1)

Hj :pbefore—after>0 (18.6.2)

We will say that & =.05 and we are doing a one sided test.

Critical Values

The critical value was calculated using the following chunk of SAS code:

data critval;

p = quantile("T",.95,8); /+one sided testx/;
proc print data=critval;

run;

With the following output:

Figure 18.6.3. Critical Value

Obs P
1 1.85955

With a critical t value of t=1.86. This is demonstrated in a shaded t distribution with the following
chunk of code:
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data pdf;

do x = -4 to 4 by .01;
pdf = pdf("T", x,8);
lower = 0;

if x >= quantile("T",0.95,8) then upper = pdf;/+one sidedx/

else upper = 0;

output;

end;

run;

title "Shaded Normal distribution’;

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = black);
series x = x y
run;

The shaded distribution is displayed in Figure 5.11

Figure 18.6.4. Shaded T Distribution

/\

Calculation of a t statistic

The T statistic was calculated using the following SAS code:

proc ttest data=Autism alpha = .05 sides=U;
paired BeforexAfter;
run;

The t value is shown in Figure 5.12

Figure 18.6.5. Paired t statistic

DF tValue Pr>t
8 254 0.0173

We have a t value of 2.54.

Calculation of a P value

The p value can be seen in Figure 5.6: p =.0173

Assessment of Hypothesis

p=.0173 > a =.05 —»we reject the null hypothesis.

Conclusion

We have conclusive evidence that the mean of the differences of times before and after the yoga is greater
than zero (p=.0173 on a one sided paired t test). A confidence interval for the mean of the difference of
time for the children to finish the puzzle before and after yoga is shown in Figure 5.13:

Figure 18.6.6. 95% Confidence interval

95% CL Mean
49132 Infty
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This means that the mean of the differences was at least 4.9 seconds. We cannot infer causality because
this was not a randomized experiment, and we cannot make inferences about the population because this
was not a random sample. We also cannot make causal inferences with a paired t test
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sexy ranked permutation test

Here is the SAS code I designed to conduct a Ranked permutation test I did not have time to add a normal

Code 19.1. handcrafted rank sum test

proc import
datafile="c:\Users\david\Desktop\MSDS\MSDS6371\Homework\Week4\Data\Trauma.csv’
out=TraumaStudy

DBMS=CSV;

run;

proc rank data=TraumaStudy out=Ranked ties=mean;
var MetabolicEx;

ranks rank;

run;

proc print data=Ranked;

run;

proc iml;

use Ranked var {PatientType rank};

/+making two groups in IMLx*/

read all var {rank} where(PatientType='Nontrauma’) into g2;
read all var {rank} where(PatientType='Trauma’) into g1;
obsdiff = sum(gl) - sum(g2);

print obsdiff;

call randseed(12345); /+ set random number seed x*/
alldata = g1 // g2; /+ stack data in a single vector */
N1 = nrow(g1); N = N1 + nrow(g2);

NRepl = 5000; /% number of permutations =/
nulldist = j(NRepl,1); /+ allocate vector to hold results */
do k = 1 to NRepl;

x = sample(alldata, N, "WOR"); /+ permute the data x*/
nulldist[k] = sum(x[1:N1]) - sum(x[(N1+1):N]); /% difference of sums =/

end;

title "Histogram of Null Distribution";
refline = "refline " + char(obsdiff) + " / axis=x lineattrs=(color=red);";
call Histogram(nulldist) other=refline ;

pval = (1 + sum((nulldist) >= (obsdiff))) / (NRepl+1); /+this means one sided test

print pval;
quit;

curve to my figure, however, the p value is more or less the same as the wilcoxon test however it is a more
reasonable number.
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Percent

Figure 19.0.1. Permutation Test

Histogram of Null Distribution
12

nulldist

50

Histogram of Null Distribution

pval

0.0007998
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Unit 4 lecture slides

Here it is
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Alternatives to (Student
t-Tools

RANK SUM TEST
WELCH’S TEST
SIGN TEST / SIGNED RANK TEST

Let’s Start With an Example

1BM gives each employee in the marketing department technical training

Based on further testing, it appears the traditional training method isn’t effective

Hence, a new training method is developed

Below are the test scores of 4 individuals who just finished the “New Method” and the last 3 test
scores from employees trained via the “Traditional Method” course

Is there evidence to suggest that the “New Method” increases test scores?
Traditional Method input Score Method s;

New Method
37 23
49 31 o
55 46 ’
77

data example;

Examining the t-Tools Assumptions

Disibuton o proi

g .0 plas ofprot
. a é =
2 1
£ B
1 .
P B .
4 x J
I s anie

Since the standard deviations appear (visual check) to be different and the sample sizes are both different and
exceptionally small, the t-test was not deemed appropriate and the nonparametric rank sum test was performed.

Percentage of successful 95% confidence intervals when the two populations ave different

@ DISPLAY 35 standard deviations (but are normal) with possibly different sample sizes (each percentage is
o2 basad on 1,000 computer simulations)

» < Population 2

‘1 /

| \ 4

i

Which situation does it appear we are in? x
o <aandn, <ny Population L
Lot o, lozsoi=10| gyp0=1 | 0,22 | @ypo=a

94 947 952 94
893 |0dd—|» 087 99.1 ||

100 100 | for95% 945 | 962 | 954 | 953 | 951
100 200 | intervals 865 | 883 | 948 | 988 | 99.4
100 400 716 | 815 | 950 | 995 | 999

Using a t-test could have low power.

Nonparametric Methods:
The Rank Sum Test

Nonparametric Methods

* A NONPARAMETRIC Or DISTRIBUTION-FREE test doesn’t depend on underlying assumptions

* This makes them ideal for use when the assumptions of non-nonparametric (that is, PARAMETRIC)
testsaren’t met

* The trade-off is that nonparametric methods perform somewhat worse than parametric
methods if the assumptions are approximately correct

* The first nonparametric method we will consider is the “rank sum test”
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Rank Sum Test: Advantages The Hypothesis Test

For the rankesum test. our null nypothesia s I terms of gusTesuTaN Instesd of meant.

* No distributional assumptions

Hy: The cistrivution of the “new” metheod cores (s he Same &5 the distribitian of the TradiEonsr” metod scores

* Resistant to outliers

+Performs nearly as well as the t-test when the two populations are normal and considerably
better when there are extreme outliers o The

. Whare T, 15 e average rank of il the dats (can e found after the 1ampie siies are detarmined but

Ve suerage rank of one group i equal ta the cans

data is collected)

of 504 group i equal to the constant ¥y, whare V, 1 the exaected sum of ranks far any graup of that samale s:ze (can be found after the

um of the

*Works well with ORDINAL (as opposed to interval data) o
D e Alternative Hypotheses:
H,: The distribution of the "new” method scores is different from the distribution of the “traditional” method scores WO SIDED)

*Works with censored values
Hy: The average rank of ona group is different from the constant Ty, where T, Is the average rank of all the data (can be found after the sample sizes
afk determined but before data b collected)

oIt sti i ions: 5 The sum of the ranks of ane groyp s from the constant ¥, where ¥, is the expected sum of rasks for any group of that sample size (can
It still requires some assumptions: oy ed\_'wom;;;malyu:‘:esa{;{\j;wm‘m L from the constont 1, where ¥, 1 the expected sum of ks for any group of that sample size fea

1. All observations are independent 59 patients with arthritis who participated in a clinical
2. The Yvalues are ordinal ~— trial were assigned to two groups, active and placebo. H,: The distribution of the "new” method scores is greater than the distributian of the “traditional” method scores {onE siDED)
"~ The response status: H,: The average rank of one group is m.m than the constant T, where Ty Is the avarage rank of all the data (cari be found after the sample sizes
aft devermined but befors data s corlected

(excellent=5, good=4, moderate=3, fair=2, poor=1) )
- The sum of the ranks of one gro.
of each patient was recorded. flIne gutnof the esa‘fnﬁe',w"gffm

s the expected sum of ranks for any group of that sample size ican

Is greater than the con
termined but before data

Lwhere
m”men}

The Rank Sum test The Sampling Distribution of

* We can compute the rank sum test statistic using the following steps:

List all observations from both groups inincreasing order | L L ations Th e Ra n k Su m StatIStIC |

1
2. Assign each observation a rank, from 1ton «——
3. Ifthere are any ties, assign each tied observation’s rank to be the average of their ranks.
4. Identify each observation by its group Rank Sum test statistic (sum
i of ranks of one group) is
P "’;""‘“"" approximately normally
« The test statistic, T, is the sum of the ranks in one of the groups. distribution of distributed!
the rank-sum (T)

*We can find a p-value in two ways:
« Normal approximation
- R ization (exact or

Rank-Sum Test: Normal Approximation Rank Sum Test: randomly assign ranks

DISPLAYA. Facts about the randomi {or sampling) mrimhw of the rank-sum statistic—the sum of T R SR T
nks in group 1—when there is no group b 1 New 5 e 1 New 7 Pam 1 New 3

Sie 2 New 7 Bb 2 New 5 Tm o2 New 4

Fred 3 New 2 fred 3 New 2 sie 3 New 7

: = Jm o 4 New 1 Jmo 4 New 1 Zmc 4 New 6

Permutation T sape o sl daton Pm 5 Ted 3 Farm150 Trad| 3 fed 5 Tmd 2

distribution o) it be app wormal 1 he sampl i R i i I = b 6 Tad 5

the rank-sum (T) e '“'!’ (o oy hes . Zc 7 Tad 6 Zc 7 Tad 6 Jmo 7 Tad 1

T —Mean(T)

Lz=

sD(r) Record sum of ranks of one group (e.g. “Trad”) for all 7! permutations of ranks. (71=7*6¥5+4*3%2*1=5040)
P-value is the number of permutations with a sum equal to or more extreme than the one in the original data
set divided by the total number of permutations.

*Could also do an approximate p-value by randomly choosing, say, 1000 orderings of the data.

Mean(T) = n R

where R and sy are the average and the sample standard deviation,
respectively, for the combined set of (1, + ny) ranks.
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The NPARTWAY Procedurs

Wilcoxon Scores (Rank Sums) for Variable Score
Classified by Variable Method

Rank-Sum Test:
Normal Approximation e o

Common interpretation: o - New 4 210 160 2626227 525000
Hq: The distribution of New Method Scores = The distribution of the Traditional Method Scores

H,:The distribution of New Method Scores > The distribution of the Traditional Method Scores | ™ ° 70 120| 262647 2333953
Technical mathematical interpretation: Wikcsken TWo-SInpleTex:
Hy: Average rank of New Method Scores = Average rank of all Scores (constant)
H,: Average rank of New Method Scores > Average rank of all Scores (constant)

statistic 7.0000

Normal Approximation

roc npariuay data = example Uilcoxon; z 15010
class Method;
var score; One-sided Prez

Two-Sided Pr> 2] o116

There is mild evidence (alpha = 0.1) to suggest that the distribution of scores
from the “New” method is greater than the distribution of the “Traditional”
method (normal approximation to rank-sum test p-value = 0.0558).

tApproximation
One-sided Pr<z 00814
Two-Sided Pr> 2] 01627
Zinciudes a continuity correction of 0.5.

The NPARTWAY Procedure.

Rank-Sum Test:
Normal Approximation

Common interpretation: New
Hay: The distribution of New Method Scores = The distribution of the Traditional Method Scores ' aa s 70 120 27 23333
Hy:The distribution of New Method Scores > The distribution of the Traditional Method Scores

Wilcoxon Scores (Rank Sums) for Variable Score
Classified by Variable Method

Sum of Expected SwDev  Mean
Method N Scores UnderHO UnderHo  Score

4 210 160 2628427 5250000

Wilcoxon Two-Sample Test

statistic 7.0000

Normal Approximation
There is mild evidence (alpha = 0.1) to suggest that the distribution of scores 2 15010
from the “New” method is greater than the distribution of the “Traditional”

One-sided Prez osee
method (normal approximation to rank-sum test p-value = 0.0558). Two-sided Pr> 2] s
proc npariuay data = example Wilcoxon;
class Hethod; tApproximation
var score
un; One-sided Prez 00814
Two-Sided Pr> 2] 01627

Zincludes a continuity correction of|

Wilcoxon Scorss (Rank Sums) for Variable Score
Classified by Variable Method

of Expected SwDev  Mean

Permutation Test e S Bt o i
(Exact P-value) e e

data example; Wiilcoxen Two-Sample Test
input Score Method $; i) 710000

datalines;
37 New

4g Neu Nomat Approximation
55 New
77 New 2 e

One-sided Prez 00858

23 Trad N i ;.
lormal approximation p-values -
31 Trag PP P + Twosisearr> @ orms
va
i tApproximation
Oneside pr<z o
proc npariusy data = example Wilcoxon; S — o

class Hethod;

var_Score;

Exact Test
One-Sided Pre=5 00571
Two-Sided Pro=|s -Mean| 01143

Zincludes a consinuity correction of 0.5.

Wilcoxon Scores (Rank Sums) for Variable Score
Clasified by Variable Method

Sum of Expected SwDev Mean
Method N Scores UnderHO UnderHo  Score

Rank Sum Test (Wilcoxon) = O T g ey
H Wilcoxon Two-Sample Test
(9® The distribution of New Method Scores = The distribution of the Traditional Method Scores Fas ) ey
H1 he distribution of New Method Scores > The distribution of the Traditional Method Scores Normal Approxim ation

& 10
“proc nparlway data = example One-sideapr<z 00558
ciane vesods Twosiaea Pr> orrre
) tApproximation
One-sideapr<z oo
Twosided Pr> 21 o627
There is sufficient evidence at the alpha = 0.1 level of significance (p-value =.0571
for the exact test) to suggest that the distribution of scores from four IBM Exact Test

employees that were given the New Method is greater than the distribution of the One-sidedpress

3 employees that took the test having had the Traditional Method of instruction. Two-Sided Pr>= |$ - Mean] 01143
Zincludesa continuity correction of 0.5.

Cognitive Load Experiment

Researchers compared the effectiveness of conventional textbook examples to modified ones

They selected 28 ninth-year students who had no previous exposure to coordinate geometry

The students were randomly assigned to one of two self study instructional groups, using conventional
and modified instructional materials

After instruction, they were given a test and the time to complete one of the problems was recorded.

DispLAY 43 | Coonithe oad experinent: modiied method o nstrction foriding th siope of the e that
conncts C 1 the midpaint betwoen Ao )

Is there sufficient evidence to suggest that the
cognitive load theory (modified instruction)
shortened response times?

(A modied worked exampie™
ntegrates e and picire,
Cdgwing s student 0 mare
easlyacquire  schema for
\“Saiving such probiems.

Cognitive Load Experiment

s s
sl ¢
21
Modified \; Conventional
(n=14) n 14y
)
2| 2w
HHL
HE
Hk
o|8
ils —
e (T
3 spien
-22 e allor )
z
-
28 >
2
30 | ++++ [CENSORED DATA)
=
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Cognitive Load Experiment

With ties, the ranks are averaged.

Cognitive Load Experiment:
Normal Approximation

Findig the pala ith he noral approination o the pomuttion distiution of herark-
DISPLAY 47 sumstatsi, usinga cantinltycoecton.Clelatons for th cogitive lcad dataar continued
from Display 45

“Calculote the averase and sample standarsd deviasion
0 L
T 15

45

2023

&

(3 Compute the theoretcal “nall ypotheis” meanand
. —mehmldrmum Emacemaune i)

Mean(T)= 14x 1452203 SD(T) = 82023 /04 ~21.7013

(3 {Cateutate the Z st wing a sontinatrycorecton)
(3 Calelte the -t wing a contoy correcon)

5 QIS-208) o
217013 [CONTINUITY CORRECTION;
G ) Onesided |

Statistical Conclusion: The data provide convincing evidence that a student could solve the problém more quickly after
the “modified” rather than the the “conventional” method (one-sided, normal approximation w/ C.C. p-value = 0.0013,
from the rank-sum test).

The NPARIWAY Procedurs

Wikzanan Seares (Rank Sums) for Variatie time
e iable traatmant

Cogpnitive Load Experiment: SRR
Using SAS 5 DA

Cowvend | 14| 200 200 270125 124
Arscage scares wace waed fo tos.
DATA pvalue nocc; =

pval = CDF('NORMAL', (137-203)/21.7013); obs Wikcoxon Two-Sample Tost

RUN; '
PROC PRINT DATA = pvalue noce; Sestiate 15) 137.0000
DATA pvalue_ysscc; - = Normat Approximation
pval = CDF('NORMAL', (137.5-203)/21.7013); = s
RON; 4] onartice] < T omemieamicz *omm
PROC PRINT DATA = pvalue yesee; T Sited P > 2] o0z
+ Approximation
OneSidad Pr<z o
TuaSides e 2] omss
PROC NPARIWAY DATA = cognitiveload WILCOXON;
Exact Toat

CLASS treatme
VAR time;
ACT; —

T Sided Pr »= 15 - Woan)
Zincludos n comnuity correction af 0.5.

Confidence Interval for the Location Parameter (Median):
Hodges Lehman Confidence Interval

https://en.wikipedia.org/wiki/Hodges%E2%80%93Lehmann_estimator

*We will look at an example later

Cognitive Load Experiment

OXON ALPEA=0.085;

PROC NPARIWAY DATA = cognitiveLoad W.
CLASS treatment:

Modgos-Lehmann Extimation
Locatan S (Masfes - Carvent) 94,0000

Asymptotic
Tye 95% Confidence Linvts | Interval Midgoint | Standard Eiror
Asymptotic (Woses) | IRA000 570000 ~1085000 282780
Exact 1580000 -50.0000 -1085000

A 957 conflence interval s 159
sconds 10 38 seconds.

Statistical Conclusion (continued): A range of plausible values for how much smaller the “modified” distribution is than
the “traditional” (treatment effect) is [-158, -59] s. (95% confidence interval based on a rank-sum test) with a point-
estimate of 108.5 s.

Cognitive Load Experiment (All Together)

g B 1l Wi S AT oo poeen ion o Bk
PPATAT ey e o o

P

G
i )
Rss a2
(G o et b e Ho: Distribution of Modified and Conventional Scores are equal brombiirt e
L e Ha: Distribution of Modified Scores is less than that of bt dIE
MenT)=14x 145220 SDIT) = 8202 Conventional -
i e i i oy ) Critical Value (left sided): -1.645 (alpha =.05) z
9 _ o Test Statistic: z-stat = -3.0183 e PET [==n
5 P-value (left sided)= .0013 Two-ided Pr> A =
i i s ) Oniind v =013 v
J Reject Ho
Approsimation
Statistical Conclusion (continued): The data provide convincing evidence that a student could Deemaraprat L.
Two-Sised Pr> 21 s

solve the problem more quickly after the “modified” rather than the “conventional” method
(one-sided, normal approximation w/ C.C. p-value = 0.0013, from the rank-sum test). A range of e
plausible values for how much smaller the “modified” distribution is than the “traditional”

(treatment effect) is [-158, -59] sec. (95% confidence interval based on a rank-sum test) with a
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Welch’s t-Test

Creativity Study: Reminder

™

S s - Populationmean: g;
;% Tl e ! ”ﬂ-&ﬂ]’— - Populationsd: o
> S

S S @ il s Populan)

nmean:
farmmey = Population sd: g
+ W adisnally raad to o istnats the sesedar detation o, —
ed in the book
What if this assumption
To create the pooled SD, we need to assume the I = O isn’t true?

*Then, we can form an estimate of this common standard deviation via

Welch’s t-Test

The only differences between Welch's t-Test and the "pooled” t-test are:
« The standard error: SE(¥, — ¥;:)

% 5
SE(Y; = Ye) = e

SE(F, - ¥e) = ’il+ 4

nyoong

=5, |[=+= (PooledsD)
2

n ' on
(Cannot be written as above when you cannot assume o{=g7)

* The degrees of freedom (Satterthwaite Approximation)

_ S -Typ
BE@I", BET)I*
=) D

fw

Testing Hypothesis:
Welch’s t-Tools

Tha TTEST Brosadure
PROC TTEST DATA-creativity ORUER-DATA; el
CLASS intrinsic; A T

VA& se0RE; o e ] eema ] o | pame
; T R
S| T s vt
Hu:#’ = K Intie | Mathod Mean  DEWCLMaan 834 Dew  08% CL S De
Hat ity # W ; | et 5| x| 2|
] i wm wo s o e

Critical value (Two Sided): +t5 055 43 100 =12.017

Test Statistic: t,,,, = 2.92

P-value = .0056 watnoa varsnces
Pocies 23

Reject Hy Sottmaie | Uracos 43104

e asor | bum

oF | tean Braig

This experiment provides strong evidence that the intrinsic rather than extrinsic motivation is associated with
a higher scoring poem (p-value = 0.0056 from a two-sample t-test). The estimated treatment effect is 4.14
pts. (95% confidence interval for the treatment effect is [1.28,7.01] pts on a 40 pt. scale.)

Gender Income Discrimination

Distribution of cash

oo

= 5 =

= w

ot 0 S%

e =

gonar

Gender Income Discrimination

Oistibution of cash
Ho: 5 = iy .
H: it # iy

Strong evidence against normality, but CTL applies.

Strong evidence against equal standard deviations and S
different sample sizes. (They are close but the standard o
deviations appear to be so different that this may make >
a real difference.) L
We will assume independence. ':
§ e o
Student’s t-test not a good idea here. Ll ——— | °
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Rank Sum versus Welch’s ... the Take Away

Gender Income Discrimination!

Voriabl: cash

If you wish to make inference on the difference of means and you have the sample size to invoke the CLT, Welch’s

H = . . o . L
H:‘ u'_ " fu geoder | N| Mean| S Dov/ 51 Err| Winimom | Maxienum t-test is preferred by most statisticians, and it is robust to different standard deviations even when the sample
e # Fomole 24 A28 21692 w111 475 72366 size is not equal.
Moo 2 3535 e wm0s sm2s %o
Critical value (Two Sided): £t g5 2013, = £ 2.045 oman  ss07 s2s w2 o . o X
' Often, especially in skewed distributions, the median is a better measure of center. For this reason, one may
gender Mahod | Moan| 5% CLean | St Dov 95 CL S Dov D : °
Test Statistic: t,,, = -3.88 = sooms| zes] stz | zmz | o3| sooeer prefer the rank sum test even when Welch’s t-test is available.
P-value = .0006 oo w535 esm20 assas e 6103 107550
Reject Hy DIN(12) Pooled | 16507 TT12 285303 561529 485283 721003 If you have small sample sizes, you may not be very confident about the normality assumption even if the

O (12 Samortveaie 516507 (3377 o7
Conclusion: There is strong evidence to suggest that ootod [Vernows] ¢ |tVaie|Pro N
the mean income of the female group is different Peid  [Enw | 40 omos

histograms and g-q plots look okay. For this reason, one may wish to be “conservative” and run the rank sum
test and obtain inference on the median.

from the mean income of the male group (p-value =
.0006). A 95% confidence interval for this difference

Satertwaite Unecus 29191300 00000

Equaliy of Varances
Method  Num DF Den DF | F Value| Pr>

If there are outliers or censored values, the rank sum test is often the most appropriate as the t-test is not
resistant to outliers and has no way of using censored data.

is (529,124, $94,176) in favor of the males.

FodedF 2 2 197 <o

That is quite a difference!

Performance of Welch’s t-test

Simulation results for unequal variances

‘The simulations show that unequal standard deviations cause the actual error rate to diverge from the target rate for the traditional
one-way ANOVA.

The best case scenario for unequal standard deviations is when group sizes are equal. With a significance level of 0.05, the observed
error rate ranges from 0.0710 008. _

For unequal group sizes, the results varied greatly depending on the standard deviations of the larger and smaller groups. The error
rates for unequal group sizes extend up to 0.221

Paired T-Test

Welch’s ANOVA
What do you do if the test for equal variances indicates that the standard deviations are different? Or that the test has insufficient
power? O, perhaps you just don't want to have to worry about performing and explaining this extra test? Let me introduce you to

Welch's ANOVA!

Welch's ANOVA is an elegant solution because it is a form of one-way ANOVA that does not assume equal variances. And the
simulations show that it works great!

When the group standard deviations are unequal and the significance level is set at 0.05, the simulation error rate for:

[ The raditronal one-way ANGVA tangis from 002 10 022, whike
- Welch's % dinge

Additionally, for d equal, there s only a negligible di in statistical power between

- these two procedures. _

Paired T-Test

Known alternatively as Matched Pairs or Dependent t-Test

A Look at the Variance

= Suppose ¥; and ¥; are variables for two groups

Example of repeated measures

Numbe|{Name’ | et 1 [Just2 «Fact: Variance(Y, — Y;) = of + 0 — 2 Covariance(Y,,Y;)

. 1 ke |ao% |67
Assumptions

* Data are either: 5

+ From one sample that has been tested twice (example pre- and post-test or ”
repeated measures)

+ From a group of subjects that are thought to be similar and can thus be

matched or paired (example from same family, or twins) -

3 FRTEY Freg e «If the data in each group is independent between groups, then Covariance(¥,Y;) =0

Melissa [00% [86% *For independent groups, Variance(Y; — ¥;) = U,Z + rrzz

wicnet | 7% [o1%

«If ¥; and Y, are before and after variables for the same subject (or otherwise logically paired, dependent
data), the variables are usually positively correlated (Covariance(¥,,¥;) > 0)

Example of matched pairs.

Pair | Name | Age | Test

“For dependent (paired) groups, Variance(Y, — ¥,) = of + o} — 2 Covariance(V,,Y,) < of + af
T Joom |3 |20

« Differences are normally distributed, independent between observations (but = 7 e | (5w
dependent from one group to the next).

2 [ummy [22 [4s0

«If data can be paired, the variance can be reduced.

2 [sessy [21 |200
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Example:
Medical Reasoning Test

* The AMA has a diagnostic test for medical reasoning
Subject # Not Fatigued Fatigued

* On average, people score about 500 points on this test 1 567 530
* We have data from 10 subjects who took the medical ; ;1); :ié
reasoning test. These subjects were randomly selected 4 593 580
from St. Paul Hospital in Dallas 5 588 600

6 491 483

7 520 512
*Not fatigued: is the baseline, taking the test before a shift g 2’23: :;:
*Fatigued: is after the treatment; working for 12 10 508 490

operational hours prior to re-taking the test.
(Lower numbers = worse score)

Example:
Keith’s Medical Reasoning Test

We can try to test whether the DIFFERENCE OF THE MEANS between the fatigued scores and the not
fatigued scores is less than zero.

Hy: Mratigued —Hnot fatigued < 0

If we did this, we would be wrong! Why?

Example: o
. . A fundamental assumption is violated:
Medical Reasoning Test independence
ALPHA = 0.01 SIDE = L; e TTEST Proceds

sutn | W] wesn | 5150w | SWEr | W | e
Wigua 0 0z 4137 | asew | se0  ees

rorwg 0 tox wmm | awe s @0
omna || 10300 | 4wk | wems
QQPlats of seore
bt Lol 2 7 s | oo Mawn | sanciMesn | Suom | oowcLswoe
% tuama so2 s 1w wmm sene
i : e reifay 505 02 o8 Bww 23m W
> (1 Pesws | qa%os ok, Gema s dose etae
o = DMI(10) | Bacerimaie | 103000 by | 35738
H 1 H
- : &
- Manod [ Vatamosn | 0# | vV | Bt
Poced | Eowt # om omu
= § - Satcthmaite | Urecusl | 17048 487 | ca70
L o [ ey
T T T - - Wad | WumOF | DunOF | #vuiue | PraF
W S FeidndF 3 s osme

Assumption Check Failure

¥ s ==
|

We need to account for the dependence between the two groups

Example:
Keith’s Medical Reasoning Test

aul U Lesting Ui pirresenLe ur e mesns

Subject Fatiguad Not Fatigued Difference

1 530 567 -37

2 492 512 -20

We should test the MEAN OF THE DIFFERENCES: ‘3; :f;g :gg -113
5 600 588 12

Ho: tgatiguea—not ratiguea =0 s B i
H,: " : £ <0 8 575 588 -13
A* Hfatigued—not fatigued o 30 520 1
10 490 508 -18

Paired t-test reduces to a one-sample t-test

Hp:d=0
Subj d N d  Diff - Hird <0
ubject  Fatigue ot Fatigued Difference

1 530 567 -37 d= d‘ kol dz + ot dw
2 492 512 -20 10
3 510 509 1 54 is the sample std. dev.
4 580 593 -13
5 600 588 12 _ Sa
6 483 491 8 sE(d) = Jio
7 512 520 -8
8 575 588 -13 i-0 d
9 530 529 1 T= ==
10 490 508 -18 SE(d) E(E)
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A SAS Code Comparison

DATA T‘IEJBJIBG,‘
JT fatigued notFatig €;
DATALINES;

RUN;
PROC TTEST DATA=mrt_paired

PAIRED fatigued*notFati
RUN;

Paired T-test

A SAS Code Comparison

N

02 w7 | a7 |

sns | sz

mos
10900 | hy | 36757

| ey 3sTie

Moan | StSDev | SIAEM  Minimum | Maximum
10  -10.3000 | 136158 42741 -37.0000 12,0000

Mean  00% CL Mean | Sid Dev | 00% CL Std Dev
03000 -nfly

rumar o o wu csw TWo (independent) sample T-Test

Using paired data (when appropriate) instead of
unpaired data allows us to tighten the
confidence interval for the difference in means
(yeah!) AND increase the power (the likelihood
that our data properly detects a shift in score).

The TTEST Procedura
Diference: fatigued - notFatig

1356158 | 83485 307938

Paired T-test

iyttt ot @-Q Plotof Diferance: fatigued - notFatip Palred Profie fer Gatguee, notPetg)
' — o @ &
" " % s e
‘ o * We can look at a PROFILE PLOT
;e « The lines connect the scores on the MRT in = ™
,§ B the “fatigued” versus “not fatigued” states
e o > * This plot is standard for SAS proc ttest with - ___—_________————"‘— !
Y paired data.
5 = =0
There is little to no evidence that the differences do - i ol o
not come from a normal distribution. 1 o '
We will assume that the differences are independent. Gt o —— -
Is this a reasonable assumption? hosed. -
Tha TTEST Prossdurs
Diferance: latgved - notFati

Conclusion (alpha = 0.01) 5z o seen e e

10103000 | 135168 | 42741 | 370000 | 120000

Ho: Hratigued-not fatiguea =0 Wean | $9%4CL Moan | 51aDev | 99%.CL 8 Dov

Hyslignegusasiion pasigusa s 0 a0z oy 1rem | raova ase s

Critical Value: toq, 9 =-2.821 OF  tValus | Pret
Test Statistic: t= -2.41 3 eu omes
P-value =0.0196 >0.01 Mean | 3% CLMean | StaDev | 3% CL SioDev
Fail to Reject Ho o Z25m1 | 178t | 13558 | B | 2moers

Statistical Conclusion: There is ot enough evidence to suggest that, on average, the ftigued sublects score ower than the nonfatigued
subjects (p-value = .0i96). A 99% one sided confidence interval for the mean difference in scores is (-infinity, 1.76). Perhaps, a more
Theanmate] comfidence mienval would bé o two.sided 8% confidence imorval of (2536, 1.76)

Scope of Inference: Since this was a random sample from St. Paul Hospital in Dallas, we can infer that this result would be repeated for
any group selected from this hospital.” There is no way to guarantee a causal infererice from a paired t-test.

Note: The elusiveness of the causal inference comes from the fact that the treatment that induces fatigue may [tslf be 3 confounder.
Some may work for 12 hours as a surgeon and others may work 12 hours writing reports. There is reason to believe that if a difference is
Jetected, this difference may not be due to fatigue rathet may be due to the tyhe of work.

Appendix
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Alternatives to the t-Test for Paired Data

Example: Nerve Data

/% Sign Test and Signed Rank Test */
data horse;

input horse sitel site?;
datalines;

6 14. 16.4

4 17 9

8 ar.4 37.6

5 1.2 6.6

7 24.2 14.4

9 35.2 24.4

3 35.2 23.2

1 50.6 38

2 39.2 18.6

For each of the 9 horses, a veterinary anatomist measured the density
of nerve cells at specified sites in the intestine.

horse sitel

6

N R WU b

14.2
17
37.4
11.2
24.2
35.2
35.2
50.6
39.2

site2
16.4
19
37.6
6.6
144
24.4
23.2
38
18.6

Mean
7.3333

N Mean StdDev StdErr Minimum  Maximum

973333 77920 25076 -22000  20.5000

Using the paired t-Test

95%CLMean  StdDev 95%CLStdDev | *

13431 133235 7.7020 52638 140205

DF  tValue Pr>|t
8 282 00224

The sample size is rather small, hence the normality assumption is somewhat suspect.

The Hypothesis Test

The hypotheses will be in terms of MEDIANS instead of means

The Alternative Hypotheses:

Hy: The mepian difference in nerve cell count between “site 1” and “site 2" is zero

H,: The mepian difference in nerve cell count between “site 1" and “site 2" is not zero  (Two sipep)
Hj4: The mepian difference in nerve cell count between “site 1" and “site 2" is greater than zero
ONE SIDED]

Sign Test: Horse Data

H,: The menian difference in nerve cell count between “site 1” and “site 2”7 is >0

K-5-"1 horse
= /2 .
i 4
6
6—-5-9
= /2_ 6666 5
9 7
/4 .
P(Z > 6666) = 0.2527 i
2

(ONE SIDED, CC P-VALUE)

sitel
374
17
142
11.2
24.2
35.2
35.2
50.6
39.2

site2
37.6
19
16.4
6.6
14.4
24.4
23.2
38
18.6

diff
-0.2

Sign

Test and Conclusion

Hg: The meian difference in nerve cell count between “site 1" and “site 2” is zero
H,: The mepian differencein nerve cell count between “site 1 and “site 2" is positive.

Critical Value (right sided): z,45=1.645 P-value (one sided) =.2527

t statistic: t,,,, = 0.666 Fail to Reject Hy.

Statistical Conclusion: There is not enough evidence that the median nerve density at site 1 is
greater than the median nerve density at site 2 (Wilcoxon sign test one-sided p-value of 0.2527).
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Mean(S) =n(n 4 1)/4  and

S — Mean(s) h‘gse
SD(S) a
39 — 5 —(9=10)/4 6
i ) T R
J9+10+19/24 7
P(Z > 189) = 0.02938 :
(ONE SIDED, CC P-VALUE) 1
2

Signed Rank Test: Horse Data

SD(S) = [n(n + 1)(2n 4 1)/24]'/2.

sitel
374
17
14.2
11.2
24.2
35.2
35.2
50.6
39.2

site2  abs(diff)  Sign rank

37.6 0.2 - 1

19 2 - 2

16.4 2.2 - 3

6.6 4.6 + 4-

14.4 9.8 + 5

24.4 10.8 + 6

23.2 12 + 7 ~s=39
38 12.6 + 8

18.6 20.6 + 9

Horse Data

/% Sign Test and Signed Rank Test */

data horse;

input_horse sitel site?;
datalines;

6 142 16.4
4 17 19

] 7.4 7.6
5 12 6.6
7 24.2 14.4
9 35.2 ™M.4
3 352 232
1 506 H
2 39,2 18.6

Note: For n < 20 SAS uses the probabilities from the binomial
distribution rather than the normal approximation. These are more
accurate (exact) and we should use these when SAS is available.

Note: These are two sided.... Half of this is close
to our calculated one sided p-values from
earlier.

data horse2;
set_horse;

diff = sitel - site2;
run;

proc univariate data = horse?;
var diff;
run;

Tests for Location: Mu0=0
Test Statistic [ P V"ll\lne
Student'st |t | 2.823066 Pr>[t] \ 0.0
Sign M 15 Pr>=|M| \\‘U.SUTB

T ¥
Signed Rank | § 16.5 | Pr>=|§] | 0.0547

Test, Conclusion and Some Notes

Hy: The meoian difference in nerve cell count between "site 1" and “site 2” is zero
H,: The menian differencein nerve cell count between “site 1” and “site 2" is positive.

Critical Value (right sided): z,,5=1.645 P-value (one sided) =.0294

t statistic: t, = 1.89 Reject Ho.

Statistical Conclusion: There is strong evidence that the median nerve density at site 1 is greater
than the median nerve density at site 2 (Wilcoxon signed rank test one-sided p-value of 0.0294).

Note:
* The signed-rank test has more power than the sign test
(Compare the p-values 0.254 vs. 0.0294)

* Both tests make very few assumptions about the distributions

10
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Chapter 21

Problem 1: Plots and Logged Data

We begin our work looking at raw and transformed data.

21.1 Plots and Transformations

Raw Data Analysis

First, we will look at the raw data. To check if the raw data fits the assumptions, we will first look at a
scatter plot. The scatter plot of the raw data was produced by the following bit of SAS code:

Code 21.1. Scatterplot of Raw Data Using SAS

proc sgplot data=EduData;
scatter x=educ y=Income2005;
run;

This results in the following plot21.1:

Figure 21.1.1. Scatter Plot of the Raw Data
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Looking at Figure 21.1.1, we see that the raw data is very heavy in between 0 and 20,000 for all cat-
egories, but some groups spread further and wider than others, which suggests the variances may not be
equal. The heaviness of the lower end of each group may also suggest a lack of normality. We will examine
this further with some Box plots. These were produced using the following chunk of SAS code: This results
in the following plot:
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Code 21.2. Boxplot of Raw Data Using SAS

proc sgplot data=EduData;

vbox Income2005 / category=educ
dataskin=matte

)

xaxis display=(noline noticks);
yaxis display=(noline noticks) grid;
run;

Figure 21.1.2. Box Plot of the Raw Data
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Figure 21.1.2 tells us a lot about our data. We see from the size and shape of the boxes that the variances
of our data are by no means homogeneous. Note that there are a lot of outliers while the distribution is
heavily weighted towards the bottom, this suggests our data may have departed from normality. We will
examine this phenomenaa further using histograms.

To produce histograms of the raw data, the following SAS code was used: This results in the following

Code 21.3. Histogram of Raw Data Using SAS

proc sgpanel data=EduData;

panelby educ / rows=5 layout=rowlattice;
histogram Income2005;

run;

plot:
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Figure 21.1.3. Histogram of the Raw Data
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Figure 21.1.3 confirms our suspicions, the variances of the data are likely unequal, but more impor-
tantly, the data is clearly skewed to the right. We will confirm this using Q-Q plots.
To produce Q-Q plots of the raw data, the following SAS code was used:

Code 21.4. Q-Q of Raw Data Using SAS

/+ Normal = blom produces normal quantiles from the data x/
/+ To find out more, look at the SAS documentation!x/
proc rank data=EduData normal=blom out=EduQuant;

var Income2005;

/+ Here we produce the normal quantiles!x/

ranks Edu_Quant;

run;

proc sgpanel data=EduQuant;

panelby educ;

scatter x=Edu_Quant y=Income2005 ;

colaxis label="Normal Quantiles";

run;

This results in the following plot:
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Figure 21.1.4. Q-Q Plot of the Raw Data
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The Q-Q plots in Figure 21.1.4 tell us what we already know: The raw data is not normal, and does
not have equal variances. The ANOVA test is not super robust to highly skewed, long tailed data, and it
relies entirely on equal variances, so we absolutely cannot use the raw data
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Transformed Data Analysis

Now we will perform a log transformation on the data and see if that helps it meet our assumptions better.
To do a log transformation, we will employ the following SAS code: We will begin our analysis of the

Code 21.5. Logging of Raw Data Using SAS

data LogEduData;

set EduData;
LogIncome=1og(Income2005) ;
run;

transformed data with a scatter plot, produced with the following SAS code: This results in the following

Code 21.6. Scatterplot of Logged Data Using SAS

proc sgplot data=LogEduData;
scatter x=educ y=LogIncome;
run;

plot:

Figure 21.1.5. Scatter Plot of the Log-Transformed Data
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As we can see in Figure 21.1.5, the groups have a much more similar size, suggesting similar variances,
and the heavy part of the scatter plot is closer to the center, in between the outliers, which tells us the log
transformation may have done a good deal towards normalizing our data. We can examine this further
using Box plots.

To produce Box plots of the transformed data, the following SAS code was used: This gives us the

Code 21.7. Boxplot of Logged Data Using SAS

proc sgplot data=LogEduData;

vbox LogIncome / category=educ
dataskin=matte

i

xaxis display=(noline noticks);

yaxis display=(noline noticks ) grid;
run;

following plot:
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Figure 21.1.6. Box Plot of the Log-Transformed Data
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Figure 21.1.6 gives us some useful information about our data. We see the boxes and whiskers are of
similar size, which tells us the variances are likely homogeneous. Furthermore, the medians and means
are near each other, and the boxes are near the center of the distribution, which suggests that the data may
be normal. We will examine these two phenomena further with histograms. To produce histograms of the
log-transformed data, the following SAS code was used: This results in the following plot:

Code 21.8. Histogram of Logged Data Using SAS

proc sgpanel data=LogEduData;

panelby educ / rows=5 layout=rowlattice;
histogram LogIncome;

run;

Figure 21.1.7. Histogram of the Log-Transformed Data
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From the spread of the histograms in Figure 21.1.7, we see two things. First, the similar width of
the histograms confirms that variances are roughly equal. Second, the shape of the histograms, and their
location near the center suggests that the data is very nearly normal. We will further examine the normality
of the data using Q-Q plots.

To produce the Q-Q plots of the transformed data, the following SAS code was used: This results in the

Code 21.9. Q-Q of Logged Data Using SAS

proc rank data=LogEduData normal=blom out= LogEduQuant;
var LogIncome;

ranks LogEduQuant;

run;

proc sgpanel data=LogEduQuant;

panelby educ;

scatter x=LogEduQuant y=LogIncome ;

colaxis label="Normal Quantiles";

run;

following plot:

Figure 21.1.8. Q-Q Plot of the Log-Transformed Data
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Examining Figure 21.1.8, we see a confirmation of our beliefs: The log-transformed data, when plotted
against normal quantiles, is fairly normal. This means, with the log transformed data, we can reasonably
assume normality and homogeneity of variances.

21.2 Complete Analysis

We will now perform a complete analysis of our data, using Pure ANOVA.

Problem Statement

We would like to determine whether or not at least one of the five population distributions (corresponding
to different years of education) is different from the rest.

Assumptions

As seen in Section 21.1, the raw data does not meet the assumption of normality nor of homogeneity of
variance. However, in Section 21.1, we proved that after a log transformation, the data does meet both of
these assumptions. The ANOVA test is fairly robust to the slight departure from normality presented by
the log transformed data, and the variances are equal. The data is clearly independent, so that assumption
is met. Therefore, all assumptions of ANOVA are met by the log transformed data.

Hypothesis Definition

In this problem, our Null (Reduced Model) Hypothesis, Hy, is that all the groups have the same distribu-
tion and our Alternative (Full Model) Hypothesis, H; is that the distributions are different. Mathemati-
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cally, that is written as:

Hy:mediang,,ng mediang,,ng mediang,qng mediang,ang mediang,ng (21.2.1)

Hy :median_ 1, median,, median 3_15 median;g mediansg (21.2.2)
We will consider our confidence level, a to be 0.05
F Statistic
To conduct this hypothesis test, the following SAS code was used: This results in the following ANOVA

Code 21.10. ANOVA Test Using SAS

proc glm data = LogEduData;
class educ;

model LogIncome = educ;
run;

Output:

Figure 21.2.1. ANOVA Table

Dependent Variable: Loglncome

Source DF ' Sum of Squares Mean Square F Value Pr>F
Model 4 217.653784 54 413446 62.87 <.0001
Error 2579 2232120383 0.865498

Corrected Total 2583 2449774168

Figure 21.2.1 tells us what our F statistic is. We see that

F=62.87 (21.2.3)

P-value

Figure 21.2.1 also tells us our p-value. In this case,

p <.0001 (21.2.4)

Hypothesis Assessment

In this scenario, we have that p <.0001 < @ =.05 and therefore we reject the null hypothesis.

Conclusion

There is substantial evidence (p < 0.0001) that at least one of the distributions is different from the others.
To further examine this, we will see if the distribution varies within similar levels of schooling. We will
compare <12 and 12 years of school, 12 and 13-15 years of school, 13-15 and 16 years of school, and 16
and >16 years of school. To do this, we will compare medians, using the following SAS code: This results

Code 21.11. Comparison of distributions using SAS

proc sort data=LogEduData;

by educ;

run;

proc means data = LogEduData median order=data;
by educ;

var LogIncome;

run;

in the following Table:
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Table 21.1. Comparison of Logged Means

Education p

<12 9.9

12 10.22
13-15 10.39
16 10.79
>16 10.89

From Table 21.1, we can calculate the differences of the means for our log transformed groups, and see
how much the distributions differ, shown in the following table:

Table 21.2. Comparison of Distributions

Pair Difference ~ Multiplicative Effect (e#17#2) % Increase
<12and 12 0.32 1.38 38
12 and 13-15 0.17 1.19 19
13-15and 16 .4 1.49 49
16 and >16 .1 1.11 11

Table 21.2 shows us how many times greater the distribution of the income of the larger education in
each pair is than the lower education level.

Scope of Inference

As this was a random sample, we can make inferences about the population, however, we cannot make
causal inferences, as this was not a randomized experiment. That means, we can say that in general, people
with X years of education make Y many times as people with Z years of education, but we cannot say it is
due to the education itself.

21.3 Extra Values

The extra values were produced with the same code as in Section 28.1. They can be found in Figure 21.2.1,
and in the figure below:

Figure 21.3.1. Extra Values

R-Square | Coeff Var | Root MSE  Loglncome Mean
0.088846 6913094 0.930322 10.43770

Value of R?
Figure 21.3.1 tells us R? is 0.0888

Mean Square Error and Degrees of Freedom

The Mean Square Error, shown in Figure 21.2.1, is 2232.12, with 2579 degrees of freedom

ANOVA in R!

Here is the R code and output to do ANOVA in R on the log transformed data:
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Code 21.12. ANOVA in R

edudata <- read.csv(file="data/ex0525.csv’, header=TRUE,
edudata$logincome <- log(edudata$Income2005)

Il / / /
anovatest <- aov(logincome~Educ,data =edudata)
summary (anovatest)

Df Sum Sq Mean Sq F value Pr(>F)
Educ 4 217.7 54 .41 62.87 <2e-16 x*x*x
Residuals 2579 2232.1 0.87

sep

"o
’
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Problem 2: Build Your Own Anova!

In this section we will be building an ANOVA table to determine whether or not the distribution of income
of people with > 16 years is different than the distribution of income of people with exactly 16 years of
education. To build this ANOVA table, we need two preliminary ANOVA analyses. First, is the ANOVA
analysis seen in Section 21.2. This has the null hypothesis that all the distributions are the same, and
the alternative hypothesis that the distributions differ. Next, we build a second ANOVA table, which will
have a null hypothesis that all the distributions are the same, and an alternative hypothesis that all the
distributions are different, except the group with 16 years and the group with >16 years are still the same.
This is done by grouping the two into one group, with the following SAS code: Next, to compute important

Code 22.1. Regrouping data using SAS

data EduGroupData;

set LogEduData;

Others = educ;

if educ eq "16" educ = ">16" then Others="a";run;

parameters, an ANOVA test is conducted on the grouped, logged, data, with the following bit of code: This

Code 22.2. Secondary ANOVA using SAS

proc glm data = EduGroupData;
class Others;

model LogIncome = Others;
run;

results in the following intermediate ANOVA table:

Figure 22.0.1. Grouped ANOVA Table

Source DF | Sum of Squares Mean Square F Value Pr>F
Model 3 215.675158 71.891719 83.02 <0001
Error 2580 2234099010 0.865930

Corrected Total | 2583 2449.774168

22.1 Building the Extra Sum of Squares Anova Table

Using the data from 22.0.1 and the data from 21.2.1, we can make our own ANOVA table, which has
a null hypothesis that all the distributions different and (except 16 and >16, which are the same), and
an alternative hypothesis that all the distributions are different. Since both hypotheses have the same
prediction about the data for <12, 12, and 13-15, the null hypothesis of our custom-made ANOVA table
is that 16 and >16 have the same distribution, and the alternative is that they have different distributions.
We will now construct our new, extra sum of squares ANOVA table.

First, for our full model (the "Error" row in the ANOVA table), we will use the full model (alternative
hypothesis, or the "Error" row), from Figure 21.2.1. This represents our alternative hypothesis, where the
distribution of 16 and >16 are different. Next, we will construct our reduced model (The "Total" row in
the ANOVA table) using the full model (alternative hypothesis, or the "Error") from 22.0.1. This represents
our null hypothesis, where 16 and >16 have the same distribution. To generate our Model, or Extra Sum
of Squares, which will allow us to find our F statistic and p value, we need to take a couple of steps. To
determine the number of degrees of freedom of our model, we subtract the number of degrees of freedom
from the Error row from the number of degrees of freedom of the Total row. To calculate the extra sum of
squares, we subtract the residual sum of squares of the full model (error) from the residual sum of squares
of the reduced model (total). Then, to find the mean square, we divide the extra sum of squares by the
number of degrees of freedom in our model. Our F statistic is then produced by normalizing the Extra Sum
of Squares, dividing it by the Mean Square Error (in the Error row). To get a p value from the F statistic,

140



Analysis Guide

Midterm

we examine an F distribution with degrees of freedom = %. The results of these computations are

displayed in the following table:

Table 22.1. Homemade ANOVA Table

Source DF Sum of Squares Mean Square F Value Pr>F
Model (Extra SS) 1 1.98 1.98 2.3 0.129
Error (Full) 2579  2232.12 .86

Total (Reduced) 2580 2234.1

22.2 Complete Analysis

Problem Statement

We would like to determine whether or not people with a college degree or a graduate degree have different
distributions of incomes.

Assumptions

There are three assumptions of ANOVA: normality, homogeneity of variance, and independence. We have
shown, in Section 21.1 that while the raw data does not meet the first two assumptions, the log transformed
data does. Both the transformed and raw data meet the assumption of independence. We will proceed with
our ANOVA test.

Hypothesis Definition

Our null hypothesis states that the distribution of the >16 and 16 groups is the same, and our alternative
hypothesis states that the distribution of the >16 and 16 groups is different. We proved this in Section
22.1, and this is written mathematically as:

HO :median<12 median12 median13_15 median16,>16 median167>16 (2221)
Hy :median., median,, mediani3_15 median;s mediansg (22.2.2)
OR:
Hy :median g = mediansg (22.2.3)
Hy :median,g = medians g (22.2.4)

We will consider our confidence level, a to be 0.05

F Statistic

The F statistic is calculated with the following equation:

( SS(’X[N? ) ( SS?X[rﬂ )

_ DFextra _ DFextra
R (22.2.5)
Ofun

The results of this calculation can be seen in Table 22.1, we have that F = 2.3 This is a small F statistic,
which is likely indicative of weak evidence.

P-value

The P value is calculated using F, the Extra degrees of freedom, and the Full (Error) degrees of freedom.
Using the values calculated in Table 22.1, we have that p = 0.129

Hypothesis Assessment

At a confidence level a = 0.05, we have that p=.0129 > a =.05. Therefore, we cannot reject the null
hypothesis.

Conclusion

There is not enough evidence to suggest that the distribution of income of people with a college only (16
years) is different from the distribution of income of people with a postgraduate education (>16 years).

Scope of Inference

It is not necessary to write a scope of inference as we did not reject the null hypothesis, however this is a
random sample, so we can make inferences about the population as whole, but we cannot infer causality,
as this was not a random experiment.
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22.3 Degrees of Freedom and Comparison to T-Test

This test had 2579 degrees of freedom (as seen in Table 22.1). This is a lot more than than the t test, which
is a lot more than the number of degrees of freedom in the t test. Therefore, this ANOVA test has more
power than the t test!.
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Problem 3: Nonhomogeneous Standard
Deviations

23.1 Complete Analysis

Problem Statement

We would like to determine whether or not at least one of the five population distributions (corresponding
to different years of education) is different from the rest.

Assumptions

As seen in Section 21.1, the raw data does not meet the assumption of normality nor of homogeneity of vari-
ance. However, in Section 21.1, we proved that after a log transformation, the data is at least normal. The
ANOVA test is fairly robust to the slight departure from normality presented by the log transformed data,
so we can safely assume normality. However, we cannot assume homogeneity variances. Therefore, pure
ANOVA is not appropriate. Since the data is to some extent normal, we should try and use a parametric
test, as they have more power in general than their nonparametric analogs. Therefore, the Kruskal-Wallis
test is not the most appropriate test. We will instad use Welch’'s ANOVA Test, which assumes normality
but does not assume homogeneity of variance, on the log transformed data. We can assume the data is
independent.

Hypothesis Definition

In this problem, our Null (Reduced Model) Hypothesis, Hy, is that all the groups have the same distribu-
tion and our Alternative (Full Model) Hypothesis, H; is that the distributions are different. Mathemati-
cally, that is written as:

Hy:mediang,,ng mediang,qng mediang,,,g mediang,,,g mediang, g (23.1.1)

Hy :median., mediany, median;3_15 median;g medians g (23.1.2)

We will consider our confidence level, a to be 0.05

F Statistic

To conduct this hypothesis test, the following SAS code was used: This results in the following table:

Code 23.1. Welch’s ANOVA in SAS

proc glm data = LogEduData;
class educ;

model LogIncome = educ;
means educ / welch;

run;

Figure 23.1.1. Welch’s ANOVA Table

Welch's ANOVA for Logincome
Source DF FValue Pr=F
Educ | 4.0000 56.59 <.0001
Error 673.9

From Figure 23.1.1, we have that F=56.59. This is a pretty large F statistic, which means that we
probably have some good evidence in favor of the alternative hypothesis.
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P-value

Figure 23.1.1 Also tells us that the p-value associated with the F statistic, which is given as p < 0.0001.

Hypothesis Assessment

We have that p < 0.0001 < a =.05 and therefore we Reject the null hypothesis

Conclusion

There is convincing evidence (p < 0.0001) that at least one of the distributions is different from the others.

Scope of Inference

As this was a random sample, we can make inferences about the population, however, we cannot make
causal inferences, as this was not a randomized experiment. That means, we can say that in general, people
with X years of education make Y many times as people with Z years of education, but we cannot say it is
due to the education itself.
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UNIT 5: Chapter 5

ANOVA

10/13/2018

ANOVA

1. Make a Scatterplot of the data in the table below. “Level” is
the Explanatory Variable (X=1, 2, or 3).

I B T AT

Y, [X=i
Y, |X=i 5 12 22
Y;|X=i 7 14 24
Ayjx=i
2. Find the Grand Mean ... this is the mean of ~ =
all the Ys together ... regardless of Level. H=x=

3. Find the Conditional (Level) Means ... thisis
the mean of the Ys per Level. Example: The
Conditional mean a(¥|X =1) = 5.

ANOVA

1. Make a Scatterplot of the data in the table below. “Level” is
the Explanatory Variable (X=1, 2, or 3).

IR B T T

Yy | X=i

Y, |X=i 5 12 2
Y, | X=i 7 14 24
fvjx=t 5 12 22

2. Find the Grand Mean ... this is the mean of B

the sample means. If the sample size is the i=x=13
same in each group, then this is the mean of

all the Ys together ... regardless of Level.

3. Find the Conditional (Level) Means ... this is
the mean of the Ys per Level. Example: The
Conditional mean fi(Y|X =1) =5.

Pure ANOVA EmEGEES

il

Vi 2 2

4. Now we need to find the Sum of the Squared e " -
Residuals for the Equal Means Model. Fast
() — i =2=13
I B T
(V)X =0 -m?

(¥alX =) - i)?
(ralx =) - @)
Total Sum of Squared Residuals for Equal Means Model:

5. Now we need to find the Sum of the Squared Residuals for the Separate Means Model,

where ji, = i(Y|X = i). (VX = D) - a2

I TS TN TN
((ilX =)= p)
((Y2lX = i) = 1))?
((¥slX =) =)
Total Sum of Squared Residuals for Separate Means Model:

6. Compare the Total Sum of Squares for each model. Which do you think “fits” better?

Pure ANOVA MEESESED

il
[

4. Now we need to find the Sum of the Squared e j: j:
Residuals for the Equal Means Model. Faed
(Y1) - )2 =x=13
—m-
(Y, )X = i) - @)? (3-13)2 = 100 (10-13) = 49
YalX = i) — @)? (5-13)2 =64 1 81
{(YslX =i) - fa)? 36 1 121

Total Sum of Squared Residuals for Equal Means Model: 462

5. Now we need to find the Sum of the Squared Residuals for the Separate Means Model,

where fi; = 4(Y|X = i). (VX = D) = f)?

[ | tevelimt | levelizz | leveli-3 |
((ViIX =)= @)*
((Yo)X = i) — f))?
(V31X = D) = )*
Total Sum of Squared Residuals for Separate Means Model:

6. Compare the Total Sum of Squares for each model. Which do you think “fits” better?

Pure ANOVA MEESEEED

il
i

4. Now we need to find the Sum of the Squared e :: j:
Residuals for the Equal Means Model. Faed
(Y1) - )2 =%=13

—m

((Y1X = i) = @)* (3-13)2 = 100

YalX = i) — p)? 64 1 81

{(YslX =i) - @)? 36 1 121
Total Sum of Squared Residuals for Equal Means Model: 462

5. Now we need to find the Sum of the Squared Residuals for the Separate Means Model,
where fi; = a(Y|X = i). (X = D) — a2

|| leveli | leveli2 ] leveli3 |

(X =) —a)? (3-5)2=4 (10-122=4 (20-22)2=4
(V21X = D) - )? 0 0 0
((YalX = D) = )? 4 4 4

Total Sum of Squared Residuals for Separate Means Model: 24

6. Compare the Total Sum of Squares for each model. Which do you think “fits” better?
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, WEHEE
Sum of Squares in ANOVA Pure ANOVA s
Between group variation (top row) Total variation (bottom row) :r‘: LA R

Variation explained by Full Mode!
(different means)

L
.:[. -

Within group variation (middle row)

Variation despite Full Model (different means)

Vafiation from Reduced Model (equal means)

7. Now we would like to make an ANOVA table to test the alternative hypothesis!

Formally write the H, and H, and fill in the table.

[ | s [ wms | F | ProF

Model / Extra SS

*To compute the sum of squares column Error / Residual/Full Model
for the ANOVA table, square each Total (Reduced)
distance (lines in black) and then add.

LI The sum of squared* distances (black
lines) for left two graphs = the sum of
squared distances (black lines) for the
right graph.

*Each distance squared for the top left graph is multiplied by
the number in each group.

Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full

Pure ANOVA Pure ANOVA

7. Now we would like to make an ANOVA table to test the alternative hypothesis! 7. Now we would like to make an ANOVA table to test the alternative hypothesis!

Formally write the Ho and Ha and fill in the table. Formally write the Ho and Ha and fill in the table.

Hoi = 1, = (Equal Means Model p p )

Hyi =1, = (Equal Means Model p p )
H,: At least 1 pair are different (Separate Means Model p; W, ;)

o 3
H,: At least 1 pair are different (Separate Means Model p; W, ;)

[ | s | wms | F | PoF ] [ [ s [ wms | F | ProF ]

Model / Extra SS Model / Extra SS 8-6=2 462-24=438
Error / Residual/Full Model 6 24 4 Error / Residual/Full Model 6 24 4
Total (Reduced) 8 462 Total (Reduced) 8 462

Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full

Pure ANOVA Pure ANOVA

7. Now we would like to make an ANOVA table to test the alternative hypothesis! 7. Now we would like to make an ANOVA table to test the alternative hypothesis!

Formally write the Ho and Ha and fill in the table. Formally write the Ho and Ha and fill in the table.

Hoi y= 1y = W (Equal Means Model p p )

Hyi b= 1y = g (Equal Means Model p p )
H,: At least 1 pair are different (Separate Means Model p; u, H;)

H,: At least 1 pair are different (Separate Means Model p; u, ;)

[ ¢ s | wms | F | ProF ] [ e s | wms | eroF]

Model / Extra SS 2 438  438/2=219 Model / Extra SS 2 438 219 219/4=54.75
Error / Residual/Full Model 6 24 4 Error / Residual/Full Model 6 24 4
Total (Reduced) 8 462 Total (Reduced) 8 462

Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full
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Pure ANOVA

7. Now we would like to make an ANOVA table to test the alternative hypothesis!

Formally write the H, and H, and fill in the table.

Hoi 1= Wy = 1 (Equal Means Model p p )
H,: At least 1 pair are different (Separate Means Model p, |, 1)
data pval;
pvalue = 1-probf(54.75, 2, 6);
run; Obs pvalue
proc print data = pval; 1 | 000140187
run;
[ | | ss | wms | F__|p>F]
Model / Extra SS 2 438 219 54.75 .0001
Error / Residual/Full Model 6 24 a4
Total (Reduced) 8 462

Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full

F -Test of Different Means ...

Hot My= My = Mg (Equal Means Model)
H,: At least 1 pair are different (Separate Means Model)

data AnovaData:

Distibution of score.

I =

" proc gln dat

The GLM Procedure

H : 3 Source DF | Sum of Squares | Mean Square | FValue | Pr>F
ol Hodel 2 4380000000 219.0000000 5475 0.0001
Error 6 240000000 40000000

Corrected Total| 8 4520000000

R-Square | Coeff Var | Root MSE  score Hean
0948052 1533462 2000000 1300000

6 Steps for ANOVA F Test (diff means)!

1. Hyp=u, =4 (Equal Means Model)
H,: At least 1 pair are different (Separate Means Model)

2. (ritical value: You can skip this step for ANOVA.

proc gln data = AnovaData;
class level;
model score = level;

4.  P-value =.0001 «— T — run;

3. Fstatistic =54.75

The 6L Procedure

5. Reject Ho. =
—__
sourca 0¢ | sum o Sauares | Moan Sqvary -vao | pr>
ose 2 sssovncen 2100000
ror s 24000000 40000000

6. The evidence suggests that at least 1 pair
of the group means are different. (P-value

ReSauare | CofrVor | RootSE  score tean

<.0001 from an ANOVA.) osianse tsanisz| 200 120000

Comscted Total & 4520000000

F-Distribution

Eisher—suedecor
Probability density function

25 :
d2=1 ——
d2=1 ——
2 ,02=2 ——
d1=10, d2=1 ——
15 d1=100, d2=100
1
05
0
0 1 2 3 4 5
F — Statistic =
__ExtraSum of Squares _
_ ExtraDegress of Freedom _ MS Between _ Variation Explained by Full Model
- 2 pat " MSWithin ~  Variation Left to be Explained

R-Squared!

R =correlation coefficient
R? = coefficient of determination

Variation Explained by Full Model ,Extra Sumof Squares
R — Squared = /ﬁ'

Total Variation Total Sum of Squares

/ /

/ /

Source DF | Sum of Squares M/Bé/n Sql;{re F Value Pr>F

Model 2 438.0000000, i 219 Qﬂﬂﬂﬂﬂ 54.75 0.0001
/

Error 3 24.0000000 /zf 0000000

/

Corrected Total | & 462.0000000

R-Square ||Coeff Var | Root MSE | score Mean

0.948052 | 1538462 2000000 13.00000

438 *Rho (p) is the parameter for which r is an estimate
R — Squared = 62 0.948052  (just like pand ¥ or o and s). A hypothesis test of
whether p =0 is equivalent to the basic ANOVA test
of whether all the means are the same (try it!).

Coefficient of Variation

square root of the unexplained variation

Coefficient of Variation = x100%

grand mean

Source DF  Sum of Squares Mean Square | F Value | Pr>F
Model 2 438.0000000  219.0000000 6475 | 0.0001
Error 6 240000000 4.0000000

Corrected Total | & 462 0000000

R-Square| Coeff Var Root MSE  score Mean
0.948052| 15.38462 | 2.000000 13.00000

VMSE 2
Coefficient of Variation = ——x 100 = 3 100 = 15.38462

Coefficient of Variation is also called the relative standard deviation.




ANOVA: Assumptions and Robustness

1. Normality: Similar to t-tools hypothesis testing,
ANOVA is robust to this assumption. Extremely long-
tailed distributions (outliers) or skewed distributions,
coupled with different sample sizes (especially when
the sample sizes are small) present the only serious
distributional problems.

2. Equal Standard Deviations: This assumption is crucial,
paramount, and VERY important.

3. The assumptions of independence within and across
groups are critical. If lacking, different analysis should
be attempted.

10/13/2018

Samples drawn from
Normal Distributions
* Same visual checks as with t-tools, just for
more groups.

— Histograms
—Q-Q plots

More on Constant SD

95% confidence interval accuracy with different sample
sizes and standard deviations for three groups.

= =20

mo om om ;=0 o3=20, o;3=do,  o3=0y  o03=25  oz=doy
010010 98.9 999 918 96.8 99.6
20 10 10 98.7 998 848 9.7 989
02 10 9.7 99.9 97.0 98.8 998
01002 9.6 99.9 90.4 97.5 99.9

H,:0,=0,
H,:0,# 0,

Levene’s Test (Median)

45.3 Levene's (Median) Test for Equality of Two Variances

Sometimes a question of interest calls for a test of equality of two population
variances. The F-test for equal variances and its associated confidence interval are
available in standard statistical computer packages, hut thev are not robust against
departures from normality. For example, p-values can easily be off by a factor of
10'if the distributions have shorter or longer tails than the normal

A robust alternative is Levene’s test (based on deviations from the median).
Suppose there are nj observations ¥i; from population 1, and ny observations
¥2; from population 2. Let Zi; be the absolute value of the deviation of the ith
abservation in group 1 from its gronp median: |¥y; — mediang|, and let. Z5; be the
absolute value of the deviation of the ith observation in group 2 from its median:
Y54 —median,|. The typical size of the Z’s indicates the degree of variability in each
group. The Levene test idea is to perform a two-sample r-test on the Z's to judee
equal variability in the two groups. This procedure seems to have good power in

Tetorting nonequal variability yot works well even for nonnormally distributed ¥’s,

x abs(x - median] y abs dian)

" o 1020 2 Method Variances DF tValue | Pr>ti

10 2 1025 3

12 0 1028 o Pooled Equal 8 044 06703

2 10 1030

20 8 1002 14 Satterthwaite Unequal  7.5856  0.44 | 0.6710
Median =12 Median =1028

But ... proc ttest does not have Levene’s Test!!!

Proc GLM Has Levene’s Test

roc gln data = Spock_ttest;

lass judge;

IOVTES' Levene;

« Y}; is the value of the measured variable for the jth case from the jth group,
7 iz " kg b
Z. = |Y;j—Y.|, Yiis amean of i-th group
* i =Y — V.l Y. is a medi 3 »
|Yi; = Yi|, Yiis a median of i-th group

(Both definitions are in use though the second one is, strictly speaking, the Brown—Forsythe test — see below for comparison)

proc glm data = Spock_ttest;
class judge;

model percenta i
o S /CROTERY T

run;

Check of Assumptions: Constant SD

* Generates Scatterplot */
roc sgplot data=Spockl; Brown and Forsythe's Test for Homogeneity of Percent Variance
catter x=xs y=percentage; ANOVA of Absolute Deviations from Group Medians

o Source | DF | Sum of Squares | Mean Square F Value | Pr>F
Judge | & 1284 266723 137 02658
There is some visual evidence against Eror | 38 7101 18.6830
equal standard deviations. The Brown-
Forsythe test was used as secondary proc gln data = spock;
. " class judge;
evidence and does not provide model percent = judge:
" s " . means judge / hovtest = bf;
significant evidence against equal run;

standard deviations. (p-value = .2558)
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Archeology in New Mexico

An archeological dig in New Mexico yielded four
sites with lots of artifacts. The depth (cm) that each
artifact was found was recorded along with which
site it was found in.

The researcher has reason to believe that sites 1
and 4 and sites 2 and 3 may be similarin age. In
theory, the deeper the find, the older the village.

Is there any evidence that sites 1 and 4 have a
mean depth that is different than the mean depth
of artifacts from sites 2 and 3?

Archaeology Example

saassanaaf
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Archeology Example
Assumptions: Normality

Histograms will be helpful as well!

Archeology Example
Assumptions: Homogeneity (Equal SD)

nnnnnnnnnnnnnnnn

Brown and Forsythe’s Test for Homogeneity of Depth Variance
ANOVA of Absolute Deviations from Group Medians

Source | DF | Sum of Squares | Mean Square | F Value | Pr>F
site 3 2436 811986 080 0.5021
Emor | 42 42748 1018

Archeology Example
Assumption: Independence

The discovered artifacts associated with the
depths were randomly selected from the log
(book of recordings ... not logarithms!) of
discoveries.

Since the artifacts and, thus, the depths are
associated with completely different sites, it is
assumed that the data are independent
between sites.

Question of Interest:

1. Are any of the means different?

2. Are the means of sites 1 and 4 different?

3. Are the means of sites 2 and 3 different?

4. Satisfactory results of questions 1 and 2 will allow us to ask
the third question: are sites 1 and 4 different than 2 and 3?




Are sites 1 and 4 different from 2 and 3? -ssunesmovaasumptonsaremet

Perform regular ANOVAto BYO ANOVA to test if the
test if any of the means are means of 2 and 3 are different,
different from the rest. given at least one pairis
Reduced Model Hy: 4 i it different.
Full Model H,: 1y b, s by Reduced Model Hy: 1, 1o by
Full Model Hy: s 1y by by
stop:
Groups2

and3are

different
and should

Reject H, in
favor of H,:
Ha My B3 Hg?

Reject H, in
favor of H,:
Mg My M3 H?

Insuffcient
evidence
that any
different

treated as
having the
means, as
the Qol

suggests.

BYO ANOVA to test if the Perform ANOVA to test if the means of 1 and 4,
means of 1.and 4 are different, when taken together are different than means
given at least one pairis 2.and 3, when also taken together.
different. Reduced Model Hy: 4 pp
Stop: Reduced Model Hy: Ho 1z M3 Mo Full Model H,: 1, by by 1y
iﬁnf:';v:; Full Model H,: py 1, s 1y Stop:

Evidence
doesNOT
support the
claim in Qol

different
and should
notbe
treated as
havingthe.

Reject H, in
favor of H,:
Ha K M3 He?

Reject H, in
favor of H,:
g Ko Ky Hy?

Stop
Evidence
does
supportthe
claim in Qol

suggests.

Question of Interest:
2. Are the means of sites 1 and 4 different?

Compare this model
against equal means
odel
) Reduced Mode {hnup)
Compare this model
against equal means
model (1 1u 1)
"

*Recode the
variables into

three groups: 2, ( HO
3,and 1/4 y
combined and (Ha) FU” M aeq
perform ANOVA

to get the first (H,) Reduced: pupu}

(H,) Reduced:

table. *
(H,) Full*:
Source DF | Sum of Squares | Mean Square | F Value | Pr>F Source OF | Sum of Squares | Mean Square | FValue | Pr>F
Model 2 1161706304 580853152 2040 <0001 Wodel 3| 1230734082 413244604 15.14| <0001

Error

43 1224485000

Corrected Total 45 2334191304

28476395 Error

42 1146457222 27296601

86191304

Corrected Total | 45

780.3 780.3

There is not enough
evidence to suggest
(alpha = .05, p-value =
.098) that site 1 and
site 4 have different
mean depths.

Model (Full)
Error (From Full)
Total (From Reduced*)
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First Ask: Is there reason to believe any

The reduced and .

umosesae  Of them are different?
associated with
H,and H,,
respectively,
although they
are not exactly

cqualtothe  (Ha) Full Model: py |, 1y 1y

(H,) Reduced Model: pppp

hypotheses.
Source DF  Sum of Squares | Mean Square FValue  Pr>F
Model 3 12397.34082 | 4132.44694 1514
Error 42 11464.57222 27296601

Corrected Total | 45 23861.91304

There is evidence to suggest that at the alpha = .05 level of significance (p-
value < .0001) that at least 2 of the sites have different mean depths.

Question of Interest: (try it!)
3. Are the means of sites 2 and 3 different?

*Recode the

variables into

three groups: 1, (Ho) Reduced Model: K4 Ko Mo Mg
4, and 2/3

combined and (Ha) Full Model: Ky My K3 Mg
perform ANOVA

togetthe first  (H,) Reduced: pupp  |(H,) Reduced: KUK K

table. (H,) Full*: py HoMo My | (Hy) Fulls By M3 My
source oF | sumot sqares | soan seuare [ vaoe | pro¢| | [Sourcn oF | Sum of Squaros | Wean Sre | Faie | ProF
Wodel 2 seazses ois2tiste 2320 <0001 | wose s seraue amzases 151 <000t
Error 265.92272 Error
Comected Total 452395151304 Comected Total 45 z385191308
e JoF[ss  [ms [F[eoF
Model (Full)

Error (From Full)
Total (From Reduced*)

Question of Interest: (try it!)
3. Are the means of sites 2 and 3 different?

*Recode the

variables into

threegroups:  (H,) Reduced Model: Py W, Ky Hy
1,4,and 2/3

combined and (H)Full Model:  p; py ps My
perform

ANOVAtoget  (H,) Reduced: Mup K | (Ho) Reduced: pppp
the first table. (H,) Full*: Hq Ko Ko Ky (Hy) Full: py Wy b5 1y

Source DF | Sum of Squares | Mean Sauare | FVaue | Pr>F Source OF | Sum of Squares | Mean Square | FValue | Pr>F
Wodel 2 1238423628 619211814 2320 <0001 Model 3 1230734082 413244694 1514 <0001
Error 4 urrerery| 2seezn Error i) tasasr2ze] 27298001

Corrected Total | 45 2386191304 Corrected Total | 45 2386191304

[source ______[or|ss __Ims __[F __|poF

Model (Full)

Error (From Full) 42 11464.6 273

Total (From Reduced) 43 11477.7

Question of Interest: (try it!)
3. Are the means of sites 2 and 3 different?

*Recode the

variables into

three groups: (H,) Reduced Model: M Ko Ko Mg
1,4,and 2/3

combined{md (Ha) FU” Model: H1 Hz “-3 P-4
perform

ANOVAtoget  (H,) Reduced: MHH M [ (H,) Reduced: LpHp 1
the firsttable.  (H_) Full*: My Mooty | (Ha) Full: by ol by

e ——Torlss s 1+ - Bt

evidence to suggest
(alpha = .05, p-value =
.828) that site 2 and site
3 have different mean
depths.

Model (Full) | s SN .048 .828
Error (From Full) 42 11464.6 273
Total (From Reduced) 43 11477.7
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Question of Interest:
4. Are sites 1 and 4 different than 2 and 3?

Score
*Recode the BT, Eemole: Level of

variables into two (Ho) Reduced: LUK nput Group” Score xe Group | N Mean  StdDev

bZEL1SZ1Y A 0.93356796 1.01157431
groups 1/4 and 2/3

'
B i
o i

and perform ANOVA (H ) FU” IJ- lJ- IJ. I»l ZH??;;E?? ; B 8 176474683 274781436
to get the table. a +Mb MaMa Mp 472428856 |
'
1
2

A Small Example

c 189676163 220726331
339020390

s

Source DF | Sum of Squares Mean Square FValue Pr>F ©434402812 Distrbution of Score.

23355055500

Model 1 1160395850 1160395850 4165 <0001 R

525187020

Error 44 12257 95455 278.58988 o

Siodase o
Corrected Total | 45 2386191304 3

There is sufficient evidence to suggest (alpha = .05, e
p-value <.0001) that sites 1 and 4 have different e

3
496604304

mean depths than sites 2 and 3. et

‘srrzor1al
302

~ Normality Assumption Homogeneity of Variance Assumption

B Brown and Forsythe’s Test for Homogeneity of Score Variance
o ANOVA of Absolute Deviations from Group Medians

Source | DF | Sumof Squares  Mean Square | FValue | Pr>F
Group | 2 113518 56750 22601207
& Eor |33 83.0246 25159

There is some (weak) evidence in

support of these data coming from

] distributions with different standard
W ™ A A ,,  deviations. If the standard deviation

= assumption and normality

assumption are both violated, what

roc glm data = Example; should we do?
3 : : . lass group;
rm:l’\;:nl/arlate data - Exanple;  There is strong evidence against these data i e s
’;Sfugrﬁ.i. score; coming from a normal distribution and the eans group / hovtest = bf;
ﬁﬁ!‘” SEones sample size is small. ANOVA? WELCH’S ANOVA? R

So .... NONPARAMETRIC!!!! Kruskal-Wallis Test .

Ha: Atleast 1 pair of medians are different.
5.6.2 Kruskal-Wallis Nonparametric Analysis of Variance

One method for coping with seriously ontlying abservations is to replace all obser-

roc nparlway data = Example Wilcoxon
Y = # 2 - Brown and Forsythe's Test for Homogeneity of Score Variance lass group;
vation values by their ranks in a single combined sample and then apply a one-way AHOVATST Abkote Diavisioas o G Weatios, el i
analysis of variance F-test on the rank-transformed data. The Kruskal Wallis test, un;
which is available in many statistieal computer packages, is similar in its approach el B | ST ey O e e [ | G
but takes advantage of the known variance of the ranks. Growp | 2 113518 56750 226 041207
The Kruskal Wallis test statistic is
Error 33 83.0246 25159 Kruskal-Wallis Test
2 B o 3 e i
KW = 1/[o%] % Between Gronp Sum of Sequates (of ranks), g Chi-Square 1.9534
Source DF | FValue | Pr>F DF 2

where a3 is the variance of all  ranks (using an 1 — 1 divisor) and where 7 is the

Group 2.0000 1.35 0.2885
total mumber of ohservations in all groups. A p-value is found as the proportion of Pr> Chi-Square | 0.3766
& chi-squared distribution on (7 — 1) degrees of freedom that is larger than this test LR 159313
AR There is not sufficient evidence at the alpha = .05 level of significance (p-value =
.3766 from Kruskal-Wallis Test) to suggest that at least two of the medians are
different.

Notice that each test failed to reject their respective H,. The point isn’t so much
that one test will reject when the other will fail to reject. We must remember
that as statisticians, we don’t personally favor one outcome over the other. We
just want the appropriate test: the one with the most power. Kruskal-Wallis Test is
the appropriate test here.
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Another Analysis!!!!

Distribution of Score.

; - : -
P h o
Score 0 J
Level of
Group | N Mean Std Dev i s ¢
Gow
A 29 | 416250339 | 100739863
B 31 2.07208667 4.79621322
c 63 490059005 583354412

Normality Assumption

@ tiatorseore apisterseoe

N There is strong evidence in
= o favor of these data coming
\,.‘,»/" from a normal distribution.
‘Mf‘ We will proceed under this

,fv”"y assumption.

Assumptions and Analysis:

n P Brown and Forsythe's Test for Homogeneity of Score Variance
ANOVA of Absolute Deviations from Group Medians

Source | DF Sumof Squares Mean Square FValue Pr>F
Group | 2 5843 2022 2436 =0001
Ermor (120 14305 119957
There is strong evidence in support of these data
coming from distributions with different standard

deviations. We will proceed under this
assumption and run the Welch’s ANOVA.

' Regular ANOVA:
Source or Sum ot S e Fvalve | Pr>F
€«

Welch's ANOVA for Score
Source DF FValue | Pr>F
Group | 20000  4.18  0.0201
Error | 50.1430 There is sufficient evidence at the alpha = .05 level of
significance (p-value = .0201 from Welch’s ANOVA) to
suggest that at least two of the means are different.
However, remember caveat to any different SD’s
approach.

nodel score = group;
means group / hovtest = bf Welch;

Fixed Effects vs. Random Effects

Quick answer:

* Do your groupings exhaust the data (e.g., data on
four different machines and there are only four
machines)? Fixed Effects! Use Proc GLM in SAS.

* Are your groupings a random sample of a larger
population that could have been chosen to be a
group (e.g., data on four different machines that
were chosen from a random sample of 100
machines)? Random Effects! Use Proc Mixed in
SAS.

Fixed or random effects

Measured the amount of liquid in twenty randomly selected cans of
Coke and twenty randomly selected cans of Diet Coke at a regional
bottling company. Coke and Diet Coke are bottled using different types
of machines.

Scenario 1: There is only one machine of each type.

Fixed Effects

Scenario 2: There are several of each type of machine.
The Coke samples all came from the same Coke
bottling machine, and the Diet Coke samples all came
from the same Diet Coke machine.

Random effects

APPENDIX




What does 2 mean?

« 12 js called the coefficient of determination,
or square of the correlation coefficient
2 _ SSmodel
N SStotal
We can think of r? as the proportion of
variability that is explained by the independent
variables (grouping data).
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What does 2 mean?

While 1-2is gleaned from the data, the true parameter is referred to as p (rho).
The following two hypothesis tests are equivalent:
.

1

Hpt py = pp = = iy
Hy:at least 1 y; is dif ferent
Test statistic:

F= M, where F is F —distributed with k — 1, n — k degrees of freedom
Ms(error)
- 2
Hy:p=10
Hi:p#0

Test statistic:

2(p—|
F= % where F is F —distributed with k — 1, n — k degrees of freedom

What does 2 mean?

LetF, = lig;;:_’ﬂ y = “:‘:[(’:::(:';, where k is the number of groups
and n is the total number of data points.
Recall that
r2= >Smodel _ SStotal=SSerror _ 4 SS.-(!'.:YA
SSer m:‘ﬁ'xumr SStotal
So,1-r"= SStatal” . .
Also remember that MS(model) = w+“i““ and MS(error) = %

SSmodet
2=k S3urar "0 SSpmoderm k) SSmoder/(k — 1)

A=rD0-D~ Bermor 1) Serrork =1 SSeryor /(= k)

Stotal
_ MS(model)
B MS(error)
Therefore, Fy = F,.

MSE vs. Variance in each group

MSE is a weighted average of the sample
variances of each group. Let s? be the sample
variance in group i.
(n1—1)si+(np—1)s3+--+(ne—1)sp

N
MSE =55 = G D+ 0rp—1)
(ny — 1)s + (np — 1)sZ + -+ + (ny — 1)s

Examples

MSE =
n—k
Another example!

et _ o 5 different sports were analyzed to see if the average height of basketball
oo players was greater than the average of all the other sports. We could, of
71 Soccer course, compare each pairwise grouping of sports, but that would result in
i 4 tests. This would take a lot of time, and those tests would each have less
20 e power since they don’t use all the data. Let’s use ANOVA similarly to how
21 secess we did in prior problems.

sesaskewal 1. Make a side by side box plot of the data.

Zosel 2. Runabasic ANOVA to test for any pairwise difference of means.
;s ::::::T" Check the assumptions here, but no need to address them after this.
71 Football 3. Test the model that keeps basketball by itself but groups the other
L sports as “others.”
it 4. Use the previous two models to conduct an extra sum of squares F-
70 Swimming Test:
Tjowmiy H,: Reduced Model: pg Wy Mo Ho Mo
Tl Hy: Full Model: kg 1 Hsoe Mswim Hr
nsummine 5. Depending on the results of this test, test to see if there is evidence
Shnie that basketball has a different mean than each of the sports.
2 sanning (Equivalent to testing basketball versus the others.)
it H,: Reduced Model: py by Mo Mo  Ho

H,: Full Model: Wg Mo Ho Hp Mo

6. Make sure and provide written conclusions for questions 2,3,4 and 5.




First ... Plot the Datal!

Distribution of height

F 1692
Prob > F <0001

height

°

Basketha Football Soccer Swimming Tennis
sport
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proc univariate data = basketball;
ort;

Plot the Data cont. s

Normality: We have very small sample sizes here. There is not a lot of evidence against
normality for each group, although there is not a lot of evidence to begin with. We will
proceed with caution under the assumption of normal distributions for each sport.

Homogeneity of Variance: Judging from the box plots, there is some visual evidence
against equal standard deviations, although the sample size is still small. A secondary
test would be nice to lean on here.

We will assume the observations are independent both between and within groups.

Brown and Forsythe Test for Equality
of Variance.

Brown and Forsythe's Test for Homogeneity of Height Variance
ANOVA of Absolute Deviations from Group Medians

Source DF | Sum of Squares  Mean Square | F Value | Pr>F
Sport 4 13910 0.3477 0.14 09672
Error 7 BB.5778 25399

There is some visual evidence against equal standard deviations between
sports. The Brown and Forsythe test was used as secondary evidence and
does not provide significant evidence against equal standard deviations. (p-
value = .9672)

1 Way ANOVA

Ho: Mpasketball = Mrootball™ Msoccer = Mswim = Mennis
H,: At least one pair of means is different.

Disribution of Heighe
The GLM Procedure

HiH

Source DF | Sum of Squares | Mean Square | F Value | Pr>F
Wodel 4 wsemwrzz seeTzrert 5594 <0001
Error 27| sazrr7ive | 1028807

Comected Total 21 4013887500

e m ReSquare | CoeffVar | Root MISE | Height Mean
1z 0892335 1747028 1200049 7248875

There is strong evidence to suggest that the at least one of the sports has a mean height
that is different than the others (p-value <.0001 from an ANOVA).

F-TEST

Ho? Mgagietball = Wrootball™ Hsoccer = Hswim = Hrennis

H,: The Others are equal. (Including Basketball
H,: At least one pair of means are different. © aual.( € )

‘The GLM Procedure H,: The Others are different (Including Basketball)
Extra Sum of Squares
F = ExtraDegress of Freedom

ode o s st 1592 <0001 &

Error 27 [ 1a1555s856] 52427984

Corrected Total 31 4755000000

source DF | Sumof Squares  Mean Square FValue Pr>F

Fe (153.19 —141.56)/(30 - 27)

e soare | Costrv | o  tten 144.56/27
0702302 3152793 2289716 7252500 F=74
Ho* Maasketball = Mrootbal™ Hsoccer = Hswim = Hrennis P-value = 0.5375

H,: Hgasietvan iS different than the Others.

The GLM Procedure

Fail to Reject Ho

There is not sufficient evidence at
the alpha = .05 level of significance
(p-value = 0.5375) to suggest that
the mean heights of non-basketball
sports are not equal. Therefore we
will proceed as if they are equal.

Source DF | Sum of Squares Mean Square FValue Pr>F
Model 1 3223148143 3223148148 6312 <0001
Error 30 [_1s31es185] 51061728

Corrected Total 31 4755000000

R-Square | Coeff Var | Root MSE | height Mean
0677844 | 3111441 2250884 7262500

Same Test as last slide ....
H,: Reduced Model: ppppp Different Notation F-TEST
H,: Full Model: kg He Msoe Hswim Hr

T

o: Reduced Model: Py o Ho Mo Ho

The GLM Procedure

T

: Full Model: pg e Hsoe Mswim Hr

Extra Sum of Squares

Source DF  Sum of Squares  Mean Square FValue Pr>F F = ExtraDe, s of Freedom

Wode o s st 1592 <0001 &

error 27 [ranoseeee]  szsrees
Fe (153.19 —141.56)/(30 — 27)

Corrected Total 31 4755000000

R-Square Coeff Var RootMSE  height Mean 14156/27
0702302 3152793 | 2289716 7262500 F=74
H,: Reduced Model: ppppp Pvalue = 0.5375

H,: Full Model: pg kg Mo Ho Ho
Fail to Reject Ho

The GLM Procedure

There is not sufficient evidence at
the alpha = .05 level of significance
(p-value = 0.5375) to suggest that
the mean heights of non-basketball
sports are not equal. Therefore we
will proceed as if they are equal.

Source DF | Sum of Squares  Mean Square FValue Pr>F
Model 1 3223148143 3223148148 6312 <0001
Error 30 [_1s31es185] 51061728

Corrected Total 31 4755000000

R-Square | Coeff Var | Root MSE | height Mean
0677844 | 311441 2250884 7262500

10
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Mg He Hsoc Hswim Hr Hg Mo Mo Ho Mo
he GLH Procedure The 6LM Procedure
Source OF | Sum of Squares | Mean Square | FVaie | praF| | Source OF | Sum of Squares | Mean Square | FValue | Pr>F
Model s omossssss st 1592 <001 Model 1 a23teiee | 3223148148 6312 <0001
Error 27| [raromsmsms] 526708 Error % [Fiesmmsz] ste1zs

Corrected Total 31 4755000000 Corrected Total 31 4755000000

R-Square | Coeff Var | Root MSE | helght Mean R-Square | CoeffVar | Root MSE  helght Hean

0702302 | 3152793 | 2260716 | 7262500 0677844 3111441 2259684 7262500
F-TEST: Another Look
H,: Reduced Model: pg By Mo Ho Ho
H,: Full Model: g Me Mo Mswim Hr
[Source ____[OF_Iss_____[ms _[F__[Pr>F |
Model 3] 11.63 387 .74 0.5375
Error 27 141.56 5.24
Corrected Total 30  153.19

Since we are proceeding under the assumption
that the mean heights of the other sports
(besides basketball) are equal, we can test
whether basketball has a mean height different
than the other sports by testing:

Source oF
Model 1
Error 30

Corrected Total | 31

Sum of Squares | Mean Square | FValue | Pr>F

Ho: Hpasketball = Hothers
Ha: MBasketball * Hothers

The GLM Procedure
There is strong evidence at the
alpha = .05 level of significance (p-
value < .0001) that supports the
claim that the mean height of
basketball players is different than
that of the other 4 sports.

3223148148 | 3223148148 6312 <0001
1531851852 51061728
4755000000

R-Square | Coeff Var | Root MSE height Mean

0677844 3111441 2250684 7262500

Resources

www.itl.nist.gov/div898/handbook/prc/sectiond/prc433.htm

Spock Example

Spock Trial

* 1968: Dr. Ben Spock was accused of conspiracy to violate the
Selective Service Act by encouraging young men to resist being
drafted into military service for Vietnam.

« Jury Selection: A “venire” of 30 potential jurors is selected at

random from a list of 300 names that were previously selected at

random from citizens of Boston.

* Ajuryis then selected NOT at random by the attorneys trying the

case.

* For this case, the venire consisted of only one woman, who was let

go by the prosecution, thus resulting in an all male jury.

¢ There was reason to believe that women were more sympathetic to

Dr. Spock’s actions due to his popular child rearing books.
* The defense argued that the judge in this case had a history of

venires that underrepresented women, which is contrary to the law.

* Let’s see if there is any evidence for this claim!

The Raw Data

Large esiats ndicatethat
the mode fus poorty.
Separate Equal Separate
means means means

Judge cs. | Bt Res.
Spock 146 82
Spock 87 79 146 59
Spock 146 -13
Spock 146 ~10
Spock 146 04
Spock 146 06
Spock 146 3.1
Spock 146 40
Spock 146 85
A 41173
A 133
A 41 05
A 41 64
A M1 148
B 336 66
B 36 47
B 6 16
B 336 09
B 3619
B %66 190 336 120
e g model (T ik seporaemaans
extimated meonsare equai | | model, estimated means
1o the grond verage arethe growp verages.
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From Many Groups.

Comparing Two Means 4 : =,

Ho: Mg # Mg

Chee | v | s
Spock 9 14.6 5.04
A 5 341 11.94
B 6 336 6.58
C 9 29.1 4.59
D 2 27.0 3.81
E 6 27.0 9.01
F 9 26.8 5.97

With 2 groups estimating the
pooled SD.

With all 7 groups estimating the pooled SD, bigger ‘n’ greater df! More POWER!!! \

2 DS+t s =) |
P B B e B
Pvalue —= O.5 3 75

5,=6.91 O = o= £202  ,_146-268 —3122!.32 =

Loz 1 g

P-value =.0006 Reject Ho 6915+ /
Two Judge Analysis w/
t-Tools

PROC TTEST DATA = spockVsE ORDER=DATA;

S judge;
R percFemale;

oe | M| Mess 50w | SMEr | Misimor | Maximum

s o wem sows | mme G 20
v BT SWE | WM G a0
DLy aums semse | 260

Jotge | Matnaa Masn | 95%GLuean | SidDav | 95% GL S Dav

s s T iemst e
23000 220 31aear
(1.9 Pooed 121778 res:

:

DA (1:3) | Satarimunte| 421778 TTIE | EEAGE

atres arnces | oF | ivaus o
Pocied [ 16184 oooaa]
Satledbmaita | Unedusl | 15562 468 000

Equetny of Vartamces
Momod | MamOF OwnOF | Fvmue | PraF
Foigear ] & e oen

Statistical Conclusion: We find
that there is substantial
evidence that the difference in
the mean percentage of
females on judge S and judge
F venires is not equal to zero.

Estimated Diff =-12.1778

S, = 55234
Pooled Std. Error = 2.6038
t-Statistic = -4.68

Deg. of freedom = 16

Two Judge Analysis:

Conclusion

Question: Suppose we wish to test
if the “S” judge’s venires are
different from the “F” judge’s. different.

* We can use regular t-Tools or several-group

analysis.

* The several-group analysis allows us to use all
of the available information — larger degrees

of freedom — more power!

Answer: There is evidence that
the mean of the two groups is

10/13/2018

Spock Data Steps

DATA spock;
1 percFemale judge §;

Question: Suppose we wish to test
if the “S” judge’s venires are
different from the “F” judge’s.

DATA spockVsF;
SET spock;
if (judge NE 'S') & (judge NE 'F'')

DELETE;
RUN;

Two Judge Analysis w/
Several-Groups

From PROC TTEST:

The GLM Procadure

Estimated Diff = -12.1778 ST

s A [ e [ e [T W
P . Model [ 1927 080885 321180144 872 | <0001
Pooled Std. Error = 2.6038 = e |
t-Statistic - 468 e

Deg. of freedom = 16

Parameter Estimate Error | tvatus | Pr> i
Estmate Spockjudge to Fludge 121777778 32603804t | 371 0.0008

Deg. of freedom = 46-7=39

PROC GLM = spock ORDER=DATA;

2 udge to F judge' judge 1 0 0 0 0 0 -1;
RUN;

Spock Trial QOI 2

The defense argued that the judge in this case had a history of venires that
underrepresented women, which is contrary to the law.

QOI2: Is the percent of women on recent venires of Spock’s judge
(which we will call S) significantly lower than those of 6 other judges
(which we notate A to F)?

« There are two key questions:

1.

Is there evidence that women are underrepresented on S’s venires relative to
Ato F's?

Is there evidence of a difference in women’s representation on A to F's
venires?

*The question of interest is addressed by 1

2.

*The strength of the result in 1 would be substantially diminished if 2 is true

12



Spock: The Strategy

Since we found that there was evidence that at least one of
the means was different than the others, we will first (Step
1) test to see if there is evidence that the other 6 judges
have similar mean female representation in their venires. If
there is no evidence their means are different then (Step 2)
we have them share a mean (i) and compare Spock’s
judge’s (ug) mean with u,.

10/13/2018

Step 1: Compare Judges A - F

H,: All “other” means are equal (A, B, C, D, E, F)

H,: At least 2 “other” means are different (A, B, C, D, E, F)

But ... Let’s use all the data to estimate the pooled standard deviation!

Reduced Model: b g Ko Ho Ho Mo Ho
Full Model: pig 1y Mg Ke Hp e e

Obs percFemale judge  OthersModel

% 210
2 24
5 25
u 25

Others
Others
Others

1 645 s
2 875 s
Different Models in SAS | i :
4 nes s
5 wo's s
6 w25 s
7 n1s s
At Least 2 are different (S, A, B, ... F) s #ss s
9 n1s s
Hs Ha Mg Hc Hp He He - ik
1 08 A Others
- © 36 A Others
Spock is different than the Others
1 05 A Otmers
Hs Ko Ko Ho Mo Ho Ho | melnJomn
15 2708 Oes
1 898 Ohers
data spock2; 1w 320 B Others
set spock; 18 2718 Others
if judge ne "S" then OthersModel = "Others";
19 58 Ohers
else OthersModel = "s";
» 4568 Otmers
run;
c
c
c
c

Others

Different Models in SAS

At Least 2 are different (S, A, B, ... F)

1 s s
Hs Ma Mg M Hp He Me 5 als s
s wis s
4 136 S s
s ®os s
proc glm data = spock2; 6 528 S
class judge; 7 177 s s
model percFemale = judge; s wsls s
run; 9 21 S s
0 15 A  Otes

proc glm data= spock2; /*O

1" 308 A Others

Obs | percFemale judge Othershodel

Comparing Two Models:
Both are not Equal Means Model

SAS (proc glm) compares models to the equal means model. When you run proc glm,
it always makes the “Corrected Total Row” the equal means model. However, we can
build our own ANOVA table (BYOA) to compare two models, both of which are not
the equal means model.

To do this we will need to identify the “full” model and the “reduced” model. The
“full” model will be the model with the most parameters (means) in it while the
“reduced model” will have fewer parameters. (Note that the equal means model
(with one parameter) is the most reduced model you can have.)

Extra Sum of Squares

Test / BYOA
[source ___[oF [ss ____Ims_[r _leroF |
Model
Separate (Full Modej)
Means Model Elc]
Equal Means _» Corrected Total
Model

(Reduced Model)

class OtherModel; /*Others
model percFemale = OthersModel; 2 336 A Others
run; 1 405 A Others
" 89 A Others
15 2208 Others
Spock is different than the Others i, i LN L)
” 208 Ohes
Hs Ko Mo Ko Ho Ho Ko w  wis oms
19 %58  Others
) 4568 Others
2 210 C Others
2 24.C  Others
) 275C Others
u 275C Others
At least 2 are different (Spock, A, B, C ... F) Spock is different than others

H Ha Mg He Mo He He H Ho Mo Mo Ho o Ho

Ths GLM Procedure
The GLM Procedure

sowce [ sumt st nn s o] | | 2008 [OF ot s e e[ v -
Model 6| 1927.080865 321180144 672 <0001 ot sl Mrsnie: Fcessd
T e ) e s

Corrected Total 45 3791526087 Corecten Total | 45

R-square | Coefr Var | Root MSE | Percent Mean R-squars | CostT var | oot 11sE | percntage wean

0506200 | 2001027 | ora209| 2058201 cmis| msmn 7oees =)
F-TEST: Another Look

Ho: Ka, Mg, M - g are Equal
H,: At least 2 are different (A,B,C ...F)

Reduced : ks Ko b Ko Ko Ho Ko
Full: b 1 Mg B Mo Mg B
[source ____[oF [ss ____Ims _[F__lpr>F |
Model 5 326.5 65.29 137 0.26
Full Error 39 1864.4 47.81
Reduced Corrected Total 44  2190.9

13
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EXTRA SUMS OF SQUARES F TEST

F-TEST H,: All means are equal (Spock,A,B,C...,F)
H,: Wy — W are Equal H,: At least 2 are different (Spock,A,B,....F)
H,: At least 2 are different (A,B, .. F) The GLM Procedure
Extra Sum of Squares
F= ExtraDegress of Freedom sourco 0| Sum o Sauares | Moan Sauara £ Valuo | Pr>F
2t otal o] wozromss| arisores| 672 <oomn
e [ ] v
. (21909 — 1864.4) /(44 — 39) Comsctea Tota 45 3701526087
- 1864.4/39 esavare | Costvar | RootSE  percentean
osoezeo 2001027 ootz znsezot
F=137 . f
H,: Spock is equal to Others
P-value = 0.26 P
b H,: Spock is diff from Others
Fail to Reject Ho Ths GLI Prossaurs.

There is not sufficient evidence

soures o | sum ot squarss | wsan squars | Fvae | pr-F
at the alpha = .05 level of e T A T
significance (p-value = 0.26) to Eror [T s

suggest that the means are not comstsaTotsl | &5 l

equal. Therefore, we will esquars| Gostva | oot it | parcentage wean
proceed as if they are equal. Qa1 WAEN| TEEH 2551

Step 1 Complete!

There is not sufficient evidence to suggest that the mean percent of women on judge’s A-F
venires are different from one another (p-value = .26 from an ANOVA). Therefore, we will
now move on to Step 2 and compare Spock’s judge’s mean to the single mean that will
represent the other judges.

F-TEST: Another Look

Ho: Ha Mg, B - Mg are Equal
H,: At least 2 are different (A,B,C ...F)

[source ___JoF [ss _____[ws_[F_JeroF |

Model 5 326.5 65.29 137 0.26
Error 39 1864.4 47.81
Corrected Total 44  2190.9

Step 2!

Since we are proceeding under the assumption that the mean percentage of women
in venires of the non-Spock judges are equal, we can test whether the Spock judge has
a mean percentage different than the other judges by testing:

H,: Mean of Spock is equal to the mean of the others.
H,: Mean of Spock is different than the mean others.

There is strong evidence at the alpha = .05 level
of significance (p-value < .0001 from an ANOVA)
to support the claim that the mean percentage of
e DF | sumof squsrss | Msen squars | Fvews | Pr=F | yyomen in the Spock judge’s venires is less than
oot 1 lmsER mmEms S ¥ that of the other 6 judges and that there is no
evidence that the other 6 judges have different
mean percentages of women on their venires (p-
et om | Cosfi¥ar ) Ros{MIE | percentags Memm value = .26 from an Extra Sum of Squares F Test).
o s e sl Spock’s lawyer has evidence for a mistrial.

The GLI Proseaurs

Eror u|  eemmy|  senmms

ComsteaTotal | 45| 712607
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Part VI

Multiple comparisons and post hoc tests
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Chapter 25

Problem 1: Bonferroni and the Handicap
Study

The Bonferroni method was used to construct some simultaneous confidence intervals for y; — py, pp — s
and p3 — pis , to see whether there are differences in attitude toward the mobility type of handicaps. The
Bonferroni Cls were calculated using the following SAS code: Note that Ismeans and means have the same

Code 25.1. Bonferroni in SAS

proc glm data = handicap;

class handicap;

model score = handicap;

means handicap / hovtest = bf bon cldiff;
1smeans handicap / pdiff adjust = bon cl;
run;

results, because we are dealing with balanced data The result of this code is shown below:

Figure 25.0.1. Bonferroni Confidence Intervals

Comparisons significant at the 0.05 level are indicated by ***.

Difference
Handicap Between  Simultaneous 95% Confidence
Comparison Means Limits
Crutche - Wheelch 0.5786 -1.2150 23121
Crutche - None 1.0214 -0.7721 2.8150
Crutche - Amputee 1.4929 -0.3007 3.2864
Crutche - Hearing 1.8714 0.0779 3.6650 ***
Wheelch - Crutche -0.5786 -2.3721 1.2150
Wheelch - None 0.4429 -1.3507 2.2364
Wheelch - Amputee 0.9143 -0.8793 27079
Wheelch - Hearing 1.2929 -0.5007 3.0864
None - Crutche -1.0214 -2.8150 07721
None - Wheelch -0.4429 -2.2364 1.3507
None - Amputee 04714 -1.3221 2.2650
None - Hearing 0.8500 -0.9436 2.6436
Amputee - Crutche -1.4929 -3.2864 0.3007
Amputee - Wheelch -0.9143 -2.7079 08793
Amputee - None -0.4714 -2.2650 1.3221
Amputee - Hearing 0.3786 -1.4150 21721
Hearing - Crutche -1.8714 -3.6650 -0.0779 *
Hearing - Wheelch -1.2929 -3.0864 0.5007
Hearing - None -0.8500 -2.6436 0.9436
Hearing - Amputee -0.3786 21721 1.4150

Another nice way to visualize these confidence intervals is like this:
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Figure 25.0.2. Diffogram of the Bonferroni Confidence Intervals

Score Comparisons for Handicap

74
6 - Crutche
Wheelch
5 None
Amputee
Hearing
4
Hearing None Wheelch Crutche
3 Amputee
=T T T
3 4 5 6 7

Differences for alpha=0.05 (Bonferroni Adjustment)
Not significant Significant

As we see from these two figures, the only statistically significant mean difference was the crutches vs
the hearing, which means that the attitude towards the different mobility handicaps is the same (y; — yp,
M2 — ps and pz — ps are not different)
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Multiple Comparison and the Handicap
Study

To generate all the multiple comparisons, and the half widths, the follwoing SAS code was used: Here we

Code 26.1. all the multiple comparisons in SAS

proc glm data = handicap;

class handicap;

model score = handicap;

means handicap / tukey bon scheffe LSD Dunnett(’None”);

run;

see the results of this
Alpha 0.05
Error Degrees of Freedom 65
Error Mean Square 2.666484
Critical Value of t 2.90602

Minimum Significant Difference  1.7936

(a) Bonferroni

Alpha 0.05 Alpha 0.05
Error Degrees of Freedom 65 Error Degrees of Freedom 65
Error Mean Square 2666484 Error Mean Square 2.666484
Critical Value of Studentized Range = 3.96804  Critical Value of Dunnett's t 250316
Minimum Significant Difference 17317 Minimum Significant Difference ~ 1.5449
(b) Tukey (c) Dunnet

Alpha 0.05 Alpha 0.05

Error Degrees of Freedom 65 Error Degrees of Freedom 65

Error Mean Square 2 666484 Error Mean Square 2666484

Critical Value of F 2 51304 Critical Value of t 1.99714

Minimum Significant Difference 1.9568 Least Significant Difference 1.2326

(d) Scheffe (e) LSD

Figure 26.0.1. Half widths of different post hoc analyses in SAS
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We did the same thing in R, with code and output shown below:
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Code 26.2. Multiple comparisons with R

prob2 <- case(0601
prob2$Handicap<-factor(prob2$Handicap,levels=c( None’, "Amputee’, 'Crutches’,

"Hearing’, 'Wheelchair’))
aovmodel <- aov(Score ~ Handicap, data=Handi)

tukey <- glht(aovmodel,linfct=mcp(Handicap="Tukey"))
confint (tukey)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = Score ~ Handicap, data = Handi)

Quantile = 2.8066

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

Amputee - None == 0 -0.4714 -2.2037 1.2608
Crutches - None == 1.0214 -0.7108 2.7537
Hearing - None == -0.8500 -2.5822 0.8822
Wheelchair - None == 0.4429 -1.2894 2.1751
Crutches - Amputee == 1.4929 -0.2394 3.2251
Hearing - Amputee == 0 -0.3786 -2.1108 1.3537
Wheelchair - Amputee == 0.9143 -0.8179 2.6465
Hearing - Crutches == 0 -1.8714 -3.6037 -0.1392
Wheelchair - Crutches == 0 -0.5786 -2.3108 1.1537
Wheelchair - Hearing == 1.2929 -0.4394 3.0251

half width = 1.73225

confint(tukey,test=adjusted(type="bonferroni"))

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = Score ~ Handicap, data = Handi)

Quantile = 2.8057

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

Amputee - None == 0 -0.4714 -2.2031 1.2602
Crutches - None == 1.0214 -0.7102 2.7531
Hearing - None == 0 -0.8500 -2.5817 0.8817
Wheelchair - None == 0.4429 -1.2888 2.1745
Crutches - Amputee == 0 1.4929 -0.2388 3.2245
Hearing - Amputee == -0.3786 -2.1102 1.3531
Wheelchair - Amputee == 0.9143 -0.8174 2.6459
Hearing - Crutches == -1.8714 -3.6031 -0.1398
Wheelchair - Crutches == -0.5786 -2.3102 1.1531
Wheelchair - Hearing == 0 1.2929 -0.4388 3.0245

half width = 1.73165

LSD <- LSD.test(aov(Im(Score ~ Handicap, data=ppp)), "Handicap")
LSD$statistics$LSD

[1] 1.232618

dunnett <- glht(aovmodel,linfct:mcp(Ha*éécap:”Dunnell”))
confint(dunnett)




Chapter 27

Comparing groups: Education study

27.1 Assumptions

Raw Data Analysis

First, we will look at the raw data. To check if the raw data fits the assumptions, we will first look at a
scatter plot. The scatter plot of the raw data was produced by the following bit of SAS code:

proc sgplot data=EduData;
scatter x=educ y=Income2005;
run;

This results in the following plot:

Figure 27.1.1. Scatter Plot of the Raw Data
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Looking at Figure 27.1.1, we see that the raw data is very heavy in between 0 and 20,000 for all cat-
egories, but some groups spread further and wider than others, which suggests the variances may not be
equal. The heaviness of the lower end of each group may also suggest a lack of normality. We will examine
this further with some Box plots. These were produced using the following chunk of SAS code:

proc sgplot data=EduData;

vbox Income2005 / category=educ
dataskin=matte

;

xaxis display=(noline noticks);
yaxis display=(noline noticks) grid;
run;

This results in the following plot:
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Figure 27.1.2. Box Plot of the Raw Data
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Figure 27.1.2 tells us a lot about our data. We see from the size and shape of the boxes that the variances
of our data are by no means homogeneous. Note that there are a lot of outliers while the distribution is
heavily weighted towards the bottom, this suggests our data may have departed from normality. We will
examine this phenomenaa further using histograms. To produce histograms of the raw data, the following
SAS code was used:

proc sgpanel data=EduData;

panelby educ / rows=5 layout=rowlattice;
histogram Income2005;

run;

This results in the following plot:

Figure 27.1.3. Histogram of the Raw Data
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Figure 27.1.3 confirms our suspicions, the variances of the data are likely unequal, but more impor-
tantly, the data is clearly skewed to the right. We will confirm this using Q-Q plots. To produce Q-Q plots
of the raw data, the following SAS code was used:

/% Normal = blom produces normal quantiles from the data =/
/+ To find out more, look at the SAS documentation!x/
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proc rank data=EduData normal=blom out=EduQuant;
var Income2005;

/* Here we produce the normal quantiles!s/

ranks Edu_Quant;

run;

proc sgpanel data=EduQuant;

panelby educ;

scatter x=Edu_Quant y=Income2005 ;

colaxis label="Normal Quantiles";

run;

This results in the following plot:

Figure 27.1.4. Q-Q Plot of the Raw Data
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The Q-Q plots in Figure 27.1.4 tell us what we already know: The raw data is not normal, and does
not have equal variances. The ANOVA test is not super robust to highly skewed, long tailed data, and it
relies entirely on equal variances, so we absolutely cannot use the raw data

Transformed Data Analysis

Now we will perform a log transformation on the data and see if that helps it meet our assumptions better.
To do a log transformation, we will employ the following SAS code:

data LogEduData;

set EduData;
LogIncome=1og(Income2005);
run;

We will begin our analysis of the transformed data with a scatter plot, produced with the following SAS
code:

proc sgplot data=LogEduData;
scatter x=educ y=LogIncome;
run;

This results in the following plot:
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Figure 27.1.5. Scatter Plot of the Log-Transformed Data
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As we can see in Figure 27.1.5, the groups have a much more similar size, suggesting similar variances,
and the heavy part of the scatter plot is closer to the center, in between the outliers, which tells us the log
transformation may have done a good deal towards normalizing our data. We can examine this further
using Box plots. To produce Box plots of the transformed data, the following SAS code was used:

proc sgplot data=LogEduData;

vbox LogIncome / category=educ
dataskin=matte

;

xaxis display=(noline noticks);

yaxis display=(noline noticks ) grid;
run;

This gives us the following plot:

Figure 27.1.6. Box Plot of the Log-Transformed Data
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Figure 27.1.6 gives us some useful information about our data. We see the boxes and whiskers are of
similar size, which tells us the variances are likely homogeneous. Furthermore, the medians and means
are near each other, and the boxes are near the center of the distribution, which suggests that the data may
be normal. We will examine these two phenomena further with histograms. To produce histograms of the
log-transformed data, the following SAS code was used:

proc sgpanel data=LogEduData;
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panelby educ / rows=5 layout=rowlattice;
histogram LogIncome;
run;

This results in the following plot:

Figure 27.1.7. Histogram of the Log-Transformed Data
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From the spread of the histograms in Figure 27.1.7, we see two things. First, the similar width of
the histograms confirms that variances are roughly equal. Second, the shape of the histograms, and their
location near the center suggests that the data is very nearly normal. We will further examine the normality
of the data using Q-Q plots. To produce the Q-Q plots of the transformed data, the following SAS code was
used:

proc rank data=LogEduData normal=blom out= LogEduQuant;
var LogIncome;

ranks LogEduQuant;

run;

proc sgpanel data=LogEduQuant;

panelby educ;

scatter x=LogEduQuant y=LogIncome ;

colaxis label="Normal Quantiles";

run;

This results in the following plot:
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Figure 27.1.8. Q-Q Plot of the Log-Transformed Data
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Examining the previous figure, we see a confirmation of our beliefs: The log-transformed data, when
plotted against normal quantiles, is fairly normal. This means, with the log transformed data, we can
reasonably assume normality and homogeneity of variances. We have fulfilled the assumptions of the
ANOVA test and now we are ready to go!
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selection and execution

First, we run an f test to see if any of the means are different!

28.1 ANOVA

We will now perform a complete analysis of our data, using Pure ANOVA.

Problem Statement

We would like to determine whether or not at least one of the five population distributions (corresponding
to different years of education) is different from the rest.

Assumptions

As seen in Section ??, the raw data does not meet the assumption of normality nor of homogeneity of
variance. However, in Section 27.1, we proved that after a log transformation, the data does meet both of
these assumptions. The ANOVA test is fairly robust to the slight departure from normality presented by
the log transformed data, and the variances are equal. The data is clearly independent, so that assumption
is met. Therefore, all assumptions of ANOVA are met by the log transformed data.

Hypothesis Definition

In this problem, our Null (Reduced Model) Hypothesis, Hy, is that all the groups have the same distribu-
tion and our Alternative (Full Model) Hypothesis, H; is that the distributions are different. Mathemati-
cally, that is written as:

Hy:mediang,,ng mediang,qng mediang,,,g mediang,,,g mediang, g (28.1.1)

Hy :median., mediany, medianj3_15 median;g medians g (28.1.2)
We will consider our confidence level, a to be 0.05

F Statistic

To conduct this hypothesis test, the following SAS code was used:

proc glm data = LogEduData;
class educ;

model LogIncome = educ;
run;

This results in the following ANOVA Output:

Figure 28.1.1. ANOVA Table

Dependent Variable: Loglncome

Source DF ' Sum of Squares Mean Square F Value Pr>F
Model 4 217.653784 54 413446 62.87 <.0001
Error 2579 2232120383 0.865498

Corrected Total 2583 2449774168

Figure 28.1.1 tells us what our F statistic is. We see that

F=62.87 (28.1.3)
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P-value

Figure 28.1.1 also tells us our p-value. In this case,

p <.0001 (28.1.4)

Hypothesis Assessment

In this scenario, we have that p <.0001 < @ =.05 and therefore we reject the null hypothesis.

Conclusion

There is substantial evidence (p < 0.0001) that at least one of the distributions is different from the others.

28.2 Tukey’s test

We want to compare all of the group means to see if they are different, so we do tukey’s test! we do this
with the following SAS code: With this we see that aside from the college and graduate school educations,

Code 28.1. Tukeys test in SAS and R

proc glm data = LogEduData;

class educ;

model LogIncome = educ;

1smeans LogIncome / pdiff = ALL adjust=tukey cl;
run;

and the following R code (and output)

edudata <- read.csv(file="c:/Users/david/Desktop/MSDS/MSDS6371/Homework /Week6/
Data/ex0525.csv’, header=TRUE, sep = ",")

edudata$logincome <- log(edudata$Income2005)

prob3 <- edudata

aovmodel?2 <- aov(logincome~Educ,data =prob3)

tukkey <- glht(aovmodel2,linfct=mcp(Educ="Tukey"))

summary (tukkey)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = logincome ~ Educ, data = prob3)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t])
<12 - <<12 == -0.32787 0.08493 -3.861 0.00101 x=x
>16 - <<12 == 0.67069 0.05624 11.926 < 0.001 x*xx
13-15 - <<12 == 0 0.16400 0.04674 3.509 0.00389 =
16 - <<12 == 0.56987 0.05459 10.439 < 0.001 x*x=x
>16 - <12 == 0 0.99856 0.09316 10.719 < 0.001 x*xx
13-15 - <12 == 0 0.49187 0.08775 5.606 < 0.001 xxx
16 - <12 == 0 0.89775 0.09217 9.740 < 0.001 x*xx
13-15 - >16 == 0 -0.50669 0.06041 -8.387 < 0.001 x*xx
16 - >16 == 0 -0.10082 0.06668 -1.512 0.54057
0.40588 0.05888 6.893 < 0.001 *xx

16 - 13-15 ==

they are all different. A confidence interval for these differences, the % change of the medians, is calculated
by raising e to the confidence interval, and subtracting one from that and multiplying by 100. These are
shown in the following figure:
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Figure 28.2.1. Tukey CIs on percent increase in the median

TUKEY
Comparisons significant at the 0.05 level are
indicated by ***.

Educ Differenc Simultan
e eous
95%
Confiden
ce
Compari Between Limits %
son change
Means
>16-16 0.10082 -0.08119 0.28283 -7.798151 32.68796
>16-13- 0.50669 0.34178 0.6716 ***
15 40.74506 95.73666
>16-<12 0.99856 0.74427 1.25285 ***
110.4904 250.0305
16->16 -0.10082 -0.28283 0.08119 -24.63521 8.457695
16 - 13- 0.40588 0.24514 0.56661 ***

15 27.78002 76.22828
16-<12 0.89775 0.64614 1.14935 *** 90.81611 215.6141
13-15- -0.50669 -0.6716 -0.34178 ***

>16 -48.91095 -28.94955
13-15- -0.40588 -0.56661 -0.24514 ***

16 -43.25542 -21.7405
13-15- 0.49187 0.25235 0.73139 ***

<12 28.70464 107.7967

<12->16 -0.99856 -1.25285 -0.74427 ***

-71.43106 -52.4919
<12-16 -0.89775 -1.14935 -0.64614 *** -68.31573 -47.59352
<12-13- -0.49187 -0.73139 -0.25235 ***

15 -51.87604 -22.30272

Dunnett’s Test

To compare to a control, dunnets test is the best! We do this with the following SAS code: lets look at the

Code 28.2. DUnnett’s test

proc glm data = LogEduData;
class educ;
model LogIncome = educ;

1smeans LogIncome / pdiff = ALL adjust=dunnett cl;
run;

and the following R code (and output!).

summary (dunnbett)
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = logincome ~ Educ, data = prob3)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t])

<12 - <<12 == 0 -0.32787 0.08493 -3.861 0.000461 x*x=x
>16 - <<12 == 0 0.67069 0.05624 11.926 < 1e-04 xx=x
13-15 - <<12 == 0 0.16400 0.04674 3.509 0.001818 ==
16 - <<12 == 0 0.56987 0.05459 10.439 < 1e-04 xx=x
SAS output too!
Figure 28.2.2. SAS p values
HO:L SMean=Control
Educ Loglncome LSMEAN Pr>|t|
1315 10.3912107
16 10.7970859 <0001
<12 9.8993404 <.0001
<<12 10.2272149 0.0018
>16 10.8979022 <.0001

We see that all of the groups are different from the control. We can calculate confidence intervals on
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how much percent different by raising e to the power of the CI, and then subtracting one and multiplying
by 100, as seen in the next figure

Figure 28.2.3. Dunnett CIs on percent increase in the median

DUNNETT
Least Squares Means for Effect Educ
i j Difference Simultaneous 95%
Between Confidence Limits
Means for LSMean(i)-
LSMean(j) % change
2 1 0.405875 0.26066 0.55109 29.77837 73.51485
3 1 -0.49187 -0.70827 -0.27547 -50.7503 -24.07871
4 1

0506691 0.3577 0.65568
43.00408 92.64521
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UNIT 6 Live Session

Contrasts

Multiple Comparison

Overview

* ANOVA provides an F-test for equality of
several means

* The main weaknesses are
* It doesn’t tell us which means are different
« It doesn’t account for any structure in the groups

(Example: Is the average treatment effect across 3
levels of treatments different from the placebo?)

* The downside to this more refined analysis is
that we need to control for the number of
comparisons we end up making

Example:
Handicap & Capability Study

_Seventy undergraduate students from a U.S. university were :a;:tdom.ly assigned
to view the tapes, fourteen to each tape. After viewing the tape, each subject rated
the qualifications of the applicant on a 0- to 10-point applicant qualification seale.

* Goal: How do physical handicaps affect perception of
employment qualification?

Serrmanes) '
* The researchers prepared 5 video taped job interviews

with same actors

* The tapes differed only in the handicap of the applicant:
* No handicap (This is the control group)
* One leg amputated
* Crutches
* Hearing Impaired
* Wheelchair
* 14 students were randomly assigned to each tape to rate
applicants: 0-10 pts (70 students total.)

and Dalessio “ to type and rater empathy” (1990) Human

Example:
Handicap & Capability Study

* Do subjects systematically evaluate qualifications
differently according to handicap?

* If so, which handicaps are evaluated differently?

None Amputee  Crutches  Mearing  Wheelchair s
9 9 4 7 _ T
s 56 149 8§ . S
06 268 7 479 3 .
129 06 033 237 78
149 3589 18 589 03 J
17 1 0234 5 1124
48 3 H5 246 A
2 "
Legend: 7|4 represents a score of 7.4 on the Applicant Qualification Scale. e s z s
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Handicap & Capability Study:

i ?
Is There Any Difference at All- Normality Assumption

* We should begin any analysis involving several
groups by using the ANOVA framework

 If there isn’t any (statistically) significant
difference in the population means, then there is
no reason to address more refined questions

* The tapes differed only in the handicap of the

applicant: | | = = e —
* No handicap (This is the control group.) (Hwone)
« One leg amputated (Hamp)
* Crutches (Heruten)
 Hearing Impaired (Myjear)
*  Wheelchair (Hwneer)

There is NO visual evidence to suggest that the data are
not normally distributed. We will proceed with the
ANOVA: Hy: pty=p,p=pi3=jt,=l15 assumption of normally distributed groups.

Hatpj # py for some j, k

Handicap & Capability Study: Handicap & Capability Study:

Equal Variances Assumption ANOVA results
) Hy: py==p3=pa=s (1)
. 8 Hy: g # py for some j, k
. 8 5 Source DF  Sum of Squares Mean Square | FValue | Pr>F
) S . § 4 Model 4 305214286 7.6303571 ZEE
: ¢ ® ; Error 65 173.3214286 2.6664835

2 g Corrected Total | 69 203.8428571

There is evidence to support the claim that at least two population means

9 i o are different from each other (p-value of 0.0301 from a 1-way ANOVA).
T T T T T Notice that sin‘ce there is Wolch's BNOVA o S0
xs virtually no evidence of a
difference in standard Subrce ol bl B
. . . iati ’ i Handi 40000 | 3.08| 00296
There is NO evidence to suggest variances are unequal. G, WO o

almost identical to the pure F Error 324580
ANOVA.
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Handicap & Capability Study:

More Specific Questions Linear Combinations & Contrasts

Hamp + Brear  Heruten T Hwheet Score .
Ho: 2 = Handiess| W[ Wean]  Sbev y=Cipr + Copa +---+Crpur (Constraint: € + €+ -+ C; = 0)
Ha: Hamp + Riear % Heruteh + Hwheel Amputee | 14 442857143 158571924
A ; ; _ _ _
2 : 2 Crutche | 14 592142857 148177574 g=CT1+CY2+--+C¥s.
Hearing 14 4.05000000 153259458
u’ﬂ + -uH Herutch + Uwheel None 14 4.90000000 179357829
Hg: i 2 R =0 Wheelen | 14 534285714 174828016 for S o/} ¢ : e
2 2z SE(g) =spy/ L 4+ -2 4+---4 —L, (this requires independence)
i, Pamp + Buear _ Heruteh + Hwheel &0 m 2 nr
Lt o
2 2
1 Example: ¥ = Lpamp — Lerurch +1lpear +0Unone — Lwheet
Hoi pamp + Hiear = Heruteh = Hwheet = 0 The test statistict:
Ha: Bamp + BHear — Herutch — Hwheet * 0 _ &Y
£ =5l
I (conTRAST) " 0 * Theteststatistic has an approximate t-distributionw/ df =n — I
0¥V = .

¥ = Wamp — Werueen Hlbuear +O0lnone — wheet < Hyy#0 In this case, n — [ =#data points - #groups =70-5= 65
!

Handicap & Capability Study: HandlcapA&CCap;ablllty Study:
ontras

A Contrast Confidence Intervals for y

Calculate mean difference and standard error. Score Hy: Hamp + Brear = Herutch T Hwheet T
Level of His + + Level of
Handicap N Mean Std Dev AHamp t Brear ¥ Herutch THwheel Handicap N Mean Std Dev

4] 4.42857143)
i

4] 4.05000000
4| 4.90000000

rE— ¥ = Wamp = Werueeh +10ear +0fvone = 1Hwheet Amputee | 14 442857143 | 158571924

Hy: tamp + Byear = Heruten + Bwneet Amputee
Ha:amp + BHear # Herutch THwheel

Y= Ujmnp lfcmmh +1pye,

148177574 g= lyfnnp = Werutch +1¥hear +0¥none — 1Ywneet Crutche | 14 | 5.92142857 | 1.48177574
153250458 g = (1)4.4 — (1)59+(1)4.1+(0)4.9-(1)5.3=

Hearing | 14  4.05000000 153259458

HNone. 14 | 4.90000000 | 1.79357829

g= Iy 1 y 179357829
‘Amp . 1 1
g=(1)44-(1)5 174828016 SE(g) = v2.666 1—‘{+ 17 +— Wheelch | 14 | 534285714 | 174828016
Source 0F | Sumof Squares | tean Square | FValue | Pr> o . — e e |
o o — | Sumress]| “(swmri| 26500801 There is evidence that the sum of points ke %[ sumo S R S [Fme | 0
SE(g) = s5p e e ; Eror 7//7&757/113321@67 Amp & Hear handicaps is smaller than'the sum of / Error 05 733214260 20064835
o ——jsele] e points assigned to Crutch & Wheel Kandicaps at level  comscstonr o 2035126571
Ner—=1 192 (0 (=1)2 R-Square | Coeff Var | Root MSE | Score Mean alpha equal to 0.05 because the Cl does not contain 0. R-Square | CoeffVar | Root MSE | Score Mean
et o e VN O o -
gy 14 14 Cl: Point estimate +/fmultiplier* standard error

95% t-tools Cl for y: —2.78577 + (]‘9971){0,87"‘286) =
TEPETE 71(087286) g
— +9;=873 95% t-tools Cl for y: —2.78577 + 1.74319 180979 €199)

SE(g) = 1.6329 4 ﬁ"’ﬁ"‘ﬁ 1
95% t-tools CI for y: (-4.529, -1.043)
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Chapter 6: Compare with book!

Hoi Hamp+Hiear _ Horuech+Hwneel

2 2
o Hamp+Hiiear - Herutch+Hwheel

i 2 2

@ Construct the 95% confidence interval. )

165 (0.975) =1.9971 « i Srom the t-distribution with 65 a‘jﬁ)

1.3929 + (1.9971) x (0.4364) — from 0.521 to 2.264

Note the sign switch ¥ = —0.50smp + 0.58cruecn - 0.-5pcar +OMnone + 0.5Hwheet
and division by 2 of
the coefficients.

Contrast DF Contrast SS Mean Square FValue | Pr>F

Compare Ave Amp and Hearing to Avg Crutch and Wheel 1 27.16071429 2716071429 | 1019 0.0022

Handicap & Capability Study:
In SAS

Order = data keeps
the data in the order
ar 5. it came in, so that
S 28 Mmes 2.8 Wnee 4.7 Hace £ “none” group is first
' _— and can be assigned
a coefficient of 0.

Comes in handy when doing division by hand would res
rounded number (example 0.33) ——

n the need to input a

Handicap & Capability Study:
In SAS

' handicap 01 -1 1 -1;

o t
T P & b vs Avg handicap 0'1 -1 1 -1 / DIV 2;
C- mp & andicap 01 -1 1 -1:
R
¥ = Ltamp'~ Ltgruien +10uear +O0lnone = Thwneel

y O-SF‘Am;l." 0.5 crutch +Q-sf‘ilmr +0fnone = 0.-5pwneet

.

\ ~
\ .
\ Contrast DF  ContrastSS | Mean Square | FValue  Pr>F
\\\\vgmplunnmngmunswm-\ 1| 27.16071420 | 2748071420 | 1010 0.0022
\\
\

N

Standard
Parameter Estimate Error | tValue  Prfi

Avg. Amp&Hurle\anﬂchHWDMI\\-I.BTZBS?M 043642079 -3.18 00022

Sum Amp & Hear vs Sum Crutch & Wheel 278571420 0.87284150 310 o.0022
Three different ways (contrast, estimate, estimate with divisor =2) to test for the same
idea. (There are many more than three!)

Handicap & Capability Study:
In SAS
Confidence Intervals

Avg. Amp & Hear vs Avg Crutch & Wheel 3,18 | 00022
Sum Amp & Hear vs Sum Crutch & Whee -3.19  0.0022

278571420 0.872BA150

There is evidence that/the average points assigned to Amp & Hear
handicaps is smaller/than the average points assigned to Crutch & Wheel
handicaps (t»tools/mear contrast p-value of 0.0022). We estimate that this
difference is -1.39 pts with an associated 99% confidence interval of....
99% Cl for the difference in averages of
Amp and Hear y{ Crutch and Wheel:
Point estimatg/i multiplier* standard error
-1.3912.6‘5*04436

-1.39£1.155

(-2.55, -0.23), which of course does not include 0
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Chapter 6

Hamp+Huear _ Porutch+Fwheel

Ho 2 2
. Hamp+Hear + Herutch+ Hwheet

H,
A 2 2

¥ = Wamp = Weruech + 1 acar +O0lNone = 1lwneet

proc glm data = Handicap;

class Handicap;

model Score = Handicap;

means Handicap 7 HOVTEST = BF Welch;

contrast 'Compare five Ainp and Hear ing to fivg Crutch and Wheel® Handicap 1 -1 1,0 -1;

run;

With no Order = data in the code, the contrasts are assigned in alphabetical
order, so that “none” group is fourth.

Contrast DF | Contrast S5  Mean Square FValue Pr>F

Compare Ave Amp and Hearing to Avg Crutch and Wheel | 1| 27 16071429 | 2716071429 1019 0.0022

Let’s Try Some from Spock Example!!

Groups: A, B,C,D,E, FS

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

_HFatuptuctuptuetur_

H,: b 3 0
+ g+ He + Hp + Mg +
H: ug - Hat s+ e = Hp + Mg T+ WF “0

Contrast vector (assume alphabetical order):

Answer on Next Slide ->

Let’s Try Some from Spock Example!!

Groups: A, B,C,D,E,F, S

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

_Hatugtpctpp tpetpp
6

Hy ug 0

Hatpp+ R+ pp +pp + Hp
*
6
y=—1py —1pg —1pc—1pp —1pg —1pg+ 6pug

Hy: ug — 0

Contrast vector (assume alphabetical order): -1-1-1-1-1-1 6

Let’s Try ANOTHER (from Spock)!!

Groups: A, B,C,D,E, FS

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

Matugtie MptHst e

Ho 3 3

0

+uptp + 1+
:I»lA Mgt Uc Hp+Hp PF?!U

Hs 3 3

y=

Contrast vector (assume alphabetical order):
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Let’s Try ANOTHER (from Spock)!!

Groups: A, B,C,D,E, FS

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

Matuptuc pptpstpr

Ho 3 3

0

MatiptHe Hp+Hetlr
z 3 5
Y=1ps + 1pug + 1pc —1pp —1pg —1pp+ Opig

H, 0

Contrast vector (assume alphabetical order): 111-1-1-1 0
ADDITIONAL QUESTION:

Why is it better to include the Spock data in the calculation of the pooled SD
(and thus the MSE) even though the hypothesis does not include it?

Let’s Try ONE MORE (from Spock)!!

Groups: A, B,C,D,E, FS

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

Watie Hp+pgt+up

Hyp———

2 3 0

l-l.q+MC_UD+uE+UFi

2 3 0

Hy:
Y=

Contrast vector (assume alphabetical order):

Answer on Next Slide ->

Let’s Try ONE MORE (from Spock)!!

Groups: A, B,C,D,E,F, S

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

H Hatle Bp+uptir _

G 3 0

Batle Wp+tHg+ip
B

H 2 3

0
Y=3u, +0pug +3pc —2pp —2pp —2pp + Optg

Contrast vector (assume alphabetical order): 303-2-2-20

Multiple Comparison: Motivation

M One Test:
P(RejectingH, | H, is true) = @ gividuat

= |

K Tests:
@ramity =P(Rejecting at jeast 1 H, | All H, are true) # @ pgividuat

" Ktests

When all tests are independent and have the same alpha (@ naivigual),

- k
pamity = 1 — (1 — @maiviauat)
@pamily
=
correction, where @ qmy is typically controlled for, perhaps set at 0.05.

Regardless of independence, @ maividual = the Bonferroni
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Multiple Comparison: Example k = 100

Familywise confidence level is the success rate of a procedure for constructing
a family of confidence intervals, where a “successful” usage is one in which all
intervals in the family capture their parameters.

AFamity :PvrMc;babi\ity (Reject at Ieavs.{ 1H,| g =0(AllnH,saretrue))=1—(1-a;)"

a, = .05
‘ Qpamily = 1-(1-0.05)1%= 1-(0.95)1%= 0.994......99% chance of a Type | error

a; =.05/100
@pamity = 1-[1-(0.05/100)] '°°= 1 - (.9995) 1*°= 0.0488......5% chance of a Type | error

Confidence Intervals

Familywise confidence level is the success rate of a procedure for constructing
a family of confidence intervals, where a “successful” usage is one in which all
intervals in the family capture their parameters.

Interval half-width = (Multiplier) x (Standard error).

L)

When we make a correction for multiple comparisons, it is the critical value in the
hypothesis test and thus the multiplier in the confidence interval that is adjusted.

*The multiplier is usually the same as the critical value for a hypothesis test.

Planned & Post-hoc Tests

A planned test is one in which you know the comparisons (tests) you
want to make before you look at the data.

If you have k planned comparisons then you need to correct for just
those k comparisons.

When planned comparisons are not cbvious, post hoc tests are
conducted. In this case, we need to correct for all possible k
comparisons between the m groups.

m(m—1)

k= 2

Post-Hoc / Unplanned Tests

Post Hoc tests are appropriate when:

1. The researcher wants to examine all
possible comparisons among pairs of group
means (or a large number of comparisons).

2. Predictions about which groups will differ

are not made prior to setting up the
analysis.
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Multiple Comparison: Bonferroni

If the confidence level for each of k individual comparisons is adjusted
upward to 100(1 e ;—() %, the chance that all intervals succeed
simultaneouslyis at least 100(1 — a)%

multiplier = t_multiplier =t/ «
1-5).df
2k
This approach is very conservative,
meaning that the intervals are much
wider than the nominal level,
particularly if the tests are not really
independent.

For a set of Bonferroni adjusted t-tests, (a/k) we
must have normal distributions, equal spreads, and
independence (same as typical t-tests).

However, the Bonferroni correction can be extended
to tests that have no assumptions about distributions
(e.g. rank sum test). For any set of independent
parametric or non-parametric tests, the Bonferroni
correction works the same.

Assumes normal distributions, equal spreads, independence (same as typical t-tests), and

Multiple Comparison: Tukey-Kramer

Tukey’ s HSD Procedure

More consistent than Bonferroni with respect to Type | Error but not robust to its
assumptions.... Bonferroni is a good alternative when the assumptions are violated.

Makes use of the Studentized Range Statistic:

tiplier 24 Flargest ~ Yomallest Studentized Range Statistic Table
Multiplier = MS,, (1/ n)
Obtains simultaneous confidence intervals for each pair of
population means (u; - 1)
The Tukey-Kramer adjustment is a

MS,, modification to this test to

n account for different sample sizes

in the groups.

q,.(k,N-k) is the upper-tail critical value of the Studentized range
for comparing k populations.

(fz ’ij)i ok N1

equal group sample sizes.

Multiple Comparison: Dunnett
Many Groups to one Control

Assumes normal
distributions, equal
He —Ha q
ty = SE spreads, and
Re=iz independence (same as
typical t-tests).

t":#r‘#n

SEpc-py,

Replaces t-distribution with a multivariate t-
distribution (n=# of groups versus control),
where the tests are not independent.

Handicap / Capability Study: Data

Seventy undergraduate students from a U.S. university were randomly assigned
to view the tapes, fourteen to each tape. After viewing the tape, each subject rated
the qualifications of the applicant on a (- to li-point applicant gualification scale.
Display 6.1 shows the results. The guestion is, do subjects systematically evalu-
ate qualifications differently according to the candidate’s handicap? If so, which
handicaps produce the different evalnations?

Disibuion of Score

Nome  Amputee  Crufches  Hearing  Wheelchair s
gl 9 4 7 T T
H 56 149 8§ . >
06 268 7 479 5 .
129 06 033 237 78
149 3580 18 580 03 .
17 1 0234 5 124
48 2 “5 246 1
5
Legend: 7|4 represents a.score of 7.4 on the Applicant Qualification Scale oo pars e o
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Handicap Data Analysis

Questions of Interest:

1. Is there any evidence that at least one pair of mean
qualification scores are different from each other?

2. Let’s say we are only interested in Amputee versus None.
Test the claim the Amputee has a different mean score than
the None group.

3. Now let’s assume that we are interested in identifying
specific differences between any two of the group means.
Find evidence of any differences in the means between the
groups.

4. Next, assume that we were interested in testing the means
of the handicapped groups to the non-handicap group. Test
this claim and identify any significant differences.

First Test!!!

H,: All Means are Equal
H,: At least 2 means are dif ferent from eacl
(or at least 1 mean is different from the rest)

Normality: Handicap Data

There is no visual evidence to suggest that the data are not
normally distributed. We will proceed with the assumption of
normally distributed groups.

Homogeneity of SD Assumption

§ o p Brown and Forsythe’s Test for Homogeneity of Score Variance
"8 H : o 8 ANOVA of Absolute Deviations from Group Medians

Source | DF | Sum of Squares | Mean Square | FValue = Pr>F
Handicap | 4 0.6666 01866 020 0.0389

Error 65 54.8693 0.8441

There is no evidence to suggest variances are unequal.

Independence may be violated here. We are going to proceed anyway for
the sake of the example.
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Second QOI!!!
Fi rst QOI | | | 2. Let’s say we are only interested in Amputee versus None. Test the claim the

Amputee has a different mean score than the None group.
1. Is there any evidence that at least one pair of mean qualification scores are

different from each other? The TTEST Procedure Ho' -”Ampuree = Hyone
H,: All Means are Equal :
o 4 Ha' ”’Amputze s HNone
H,: At least 2 means are dif ferent from eac} R T e e
(or at least 1 mean is different from the rest) SR R
Handicap Method Mean | 95% CL Mean  Std Dev 95% CL Std Dev S (L7 S GIEHTED) 2 S| (UL (3526
ol A vssas] vswruas]  ose|oaem
Source DF  Sum of Squares Mean Square FValue Pr>F
None 49000 38644 59356 17936 13003 28895 Error % 74.50857143 280571429
Model 4 305214286 7.6303571 286 Diff(12) | Pooled 04714 17866 08438 16928 13331 23199 Corrected Total 27 76.06428571
Error 65 173.3214286 2 6664835 Diff (1-2) | Satterthwaite -0.4714 -17876 08447

proc gln data = handicap;
where handicap eq 'None'
Corrected Total | 69 203.8428571 class handicap;

Pooled Equal 26 074 04678 model score = handicap;
means handicap / hovtest = bf bon c1diff;
Satterthwaite Unequal | 25615 074 0.4679

Method Variances DF tValue Pr>|f | handicendeaAmedtenti

There is sufficient evidence to suggest at the alpha = .05 level of T E—
significance (p-value =.0301) that at least 2 of the means are different > vhere handicap cq “None” | heandicap e ‘fmputee’;
from each other in this standard ANOVA. var score;

run;

The results ot these tests are equivalent! There is not sufficient evidence to suggest
that the mean qualification rating of the amputee group is different than the group
without handicap. (P-value = .4678 from a t-test and an ANOVA using only these two
groups.)

Second QOI: Better approach!!!

Handicap | Score LSMEAN | LSMEAN Number Th I rd Qol ! ! !
2. Let’s say we are only interested in Amputee versus None. Test the claim the Amputee has a

Amputee 442857143 1 7 .
different mean score than the None group. H,: Bz = My i T 2 Now let’s assume that we are interested
The TTEST Procedure Ho_ mputee one Hearing | 405000000 3 in identifying specific differences
Vorlable: Seore a* #Ampu.‘:ee * Knone None 4.90000000 4

between any two group means. Find

Wheelcha 5.34285714 5

Handiodp | W Mean Source DF | Sum of Squares | Mean Square | F Value | Pr> F evidence of any differences in the means

O, Model 4 30.5214286 7.6303571 286 0.0301

o N s 17mn base 1o s fror o o e e e e el between the groups.

Diff (12} TEE 08 Pr > [t] for HO: LSMean(i)=LSMean(j)

Corrected Total = 69 203.8428571 Dependem Variable: Score

Handicap Method i % CL S1d Dev
LpEER 25547 Contrast DF Contrast SS Mean Square F Value Pr IlJ 1 2 3 4 5

sk Use a Contrast to Increase DF! | 1 1.56571429 165571429 058

17868

00184 05418 04477 01433
Pour1s 17878

Diff(12) | Fod

There are 10 different two sided tests conducted
D) ‘27%27 handicen; ":""'“f"‘ g 0013 1028 | 93520 here; thus, we need to adjust alpha per test to be
Wethod | Variances|  DF|tValue [Pr>id aoems Roriooo S hovlolt < bt bon claer; s 3|0 5‘”’3 0.1732 | 0.0401 .05/10 = .005. With this adjustment, only one of the
Focied Equal 2 e 4 04477 0.1028 | 0.1732 0.4756 tests has a statistically significant result. Therefore,
L if;":w,,;:"h;m,fjf oo 5 0.1433 0.3520 | 0.0401 0.4756 there is evidence (p-value = .0035 from a t-test) that
fnere bhandican eq “Hone™ | hendicen a ‘Asputes’; the crutches and hearing groups have different mean
Jrar seore proc gl data = handicap; qualification rating scores. We will provide a
There is not sufficient evidence to suggest that the mean qualification rating of the amputee group is ;;sz? ::2 g Epr?landmau: confidence interval in a few slides.
different than the group with no handicap (p-value = .4477 from a contrast using all available data). Even means handicap / hovtest
though the p-values for the two tests are only slightly different, it is better to use all available data (the ,],ﬁﬂ?ans handicap £
procedure on the right).

Comparing a pair of means can be just a simple contrast.

10
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Bonferroni Adjusted P-Values

P-values not adjusted- compare to P-values adjusted- compare to family-
individual alpha wise alpha
Least Squares Means for effect Handicap
Pr = [t] for HO: LSMean(i}=L SMean(j)
Dependent Variable: Score
il 1 2 3 4 5 ifj 1 2 3 4 5
1 0.0184 0.5418 04477 0.1433 1 0.1838 1.0000 1.0000 1.0000

0.0184 0.1023 0.3620 mnnn 1.0000
u.sawa 0.1732 | 0.0401 1.0000 0.4010

2
3
4 04477 01028 0.1732 0.4756
5 01433 0.3520 0.04071 0.4756 1.0000 1.0000 04010 1.0000

Compare to alpha = 0.005 Compare to alpha = 0.05
proc glm data = handicap; c gln data = handicap;
class handicap;

P
handicap;

model score = handicap; s .

> . x10,uptol s handicap / hovtest
means handicap / hovtest = bf; P Isneans handicap / pdiff(adjust = borycl;
Ismeans handicap / pdiff; run;

run;

Least Squares Means for effect Handicap
Pr = [t] for HO: LSMean(i}=L SMean(j)
Dependent Variable: Score

1.0000 | 1.0000 1.0000 1.0000

(L SN

Third QOI!!!

Handicap | Score LSMEAN  LSMEAN Number

Amputee 442857143 1 ’ .
oo seauz % Now let’s assume that we are interested
Hoaring > 405000000 in identifying specific differences
T between any two group means. Find

evidence of any differences in the means
between the groups.

Least Squares Means for Effect Handicap

Difference Between ' Simultaneous 95% Confidence Limits

1N} for LSMean(i).L SMean(j)
1(3 0.378571 -1.414999 2172141

14 -0.471429 -2.264999 1322141

22 oo s vz A 959% confidence interval for the
24 1021429 0772141 20 difference in means of the

2(5 0578571 -1.214999 23712141 . .

s wmon  2ewn  ossn CFUtches and hearing groups is

35 -1.292857 -3.086427 0500713

ds vumsr zomm 1w ({0779, 3.66499).

proc gln data = handicap;
class handicap;
model score = handicap;

means handicap / hovtest = bf;
1smeans handicap # pdiff adjust = hun@
run;

cumpanmsswgumc;::;“m: 0.05 level aro indicated by Thir d QOI ! ! !

Handicap Between  Simultaneous 95% Confidence
Comparison Means mit

ccnes wnescna | 05 a2 2o NOW let’s assume that we are interested
Craches-Nos e ama osm i P PR,
in identifying specific differences

Crutches - Amputee. 14529 03007 32864

G e 1% T SE “>hetween any two group means. Find

Wheelcha - Crutches 05785 23721 1216

ot ool ous| ] row evidence of any differences in the means

Whoolcha.Amputes | 0543 00753
Wholcha - Hoaring 12929 05007 30064 between the groups.

one -Whesla | 0aizs 2zes 1w

omo osw  oem

Amputoe -Cruches | 429 azmes| 0o . .
smnes v s oaw A 95% confidence interval for the
ampues tove 0w 2z difference in means of crutches and
Amputee Howng | 03 s o2 ' -

Howing cuschos | 14 < oo => hearing groups is (.0779, 3.66499).
Wearng -Wheeicha 225 awes o

proc glm data = handicap;
class handicap;

R Tt 7 Paotshe = b bon Qa1rD)
*Slightly different code from the last slide, producing slightly
different output. Note the cl versus cldiff.

4th QOI: Next, assume that we are interested in testing the means of
the handicapped groups with the non-handicapped group. Test this
claim and identify any significant differences. (Using Cls)

There is NOT sufficient evidence
in this study to suggest that there

Note: This test contros the Type | experimentuise aror for comparisons of alltraatments against a control.

are any differences between the Alpha 05

fth £ each Error Degroos of Froedom 3
average of the means or eac Error Mean Square 2666454
handicap group and the mean of Critical Value of Dunnetrst | 250316

Minimum Significant Difference | 15449

the group without handicap.

Comparisons significant at the 0.05 level are indicated by ***.

The 95% family-wise confidence Difference

X N Handicap etween  Simultaneous 95% Confidence

intervals are constructed using Comparison Means imi

Dunnett’s procedure. All Cls Crutchos - None 10214 05235 25664
tai th ¢ di Wheelcha -None 04129 1020 1978

contain zero, thus not providing e TR

sufficient evidence to conclude T 08500 23919 06349

that the difference is not zero. P I e e
c

lass handicap;
model score = handicap;
means handicap / hovtest = bf (dunnett

(The study results do not

Fun;
constitute sufficient evidence to

support the claim that any means Specify the
tested are individually different control group

than the control.)

11
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4th QOI: Next, assume that we were interested in testing the means of
the handicapped groups with the non-handicap group. Test this claim
and identify any significant differences. (Using HTs)
The GLM Procedure

Least Squares Means
Adjustment for Multiple Comparisons: Dunnett

HO:L SMean=Control

Handicap | Score LSMEAN Prap
Amputee 442857143 0.8597
Crutches 5.92142057 0.2918
Hearing 4.05000000 04516
None 4.90000000

Wheelcha 534285714 0.8836

proc gim data = handicap;
class handicap;

model score = hand T

Ismeans handicap

run;
Hypothesis tests also conclude that there is not sufficient evidence to suggest that there
are any differences between the means of each handicapped group and the mean of the

of the group without handicap. The above Dunnett adjusted p-values are all greater
than alpha = .05, as is visible from the table above.

R Code for Handicap Example Question 1

Question 1: Reading in Data and ANOVA

> Handicap = read.csv("Unit 6 Handicap Dota.csv")
> fit = gov(Score~Handicap,data = Handicap)
> summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
Handicap 4 30.52 7.630 Z.862 0.0301 *
Residuals 65 173.32 2.666

Signif. codes: @ ‘***’ 9.801 ‘**’ @.01 ‘*’ 0.05 ‘.’ 0.1 * ' 1

R Code for Handicap Example Question 2

> pai rwiseCICScore-Handicap, data = Handicop)

95 %-confidence intervals
Method: Difference of means assuming Normal distribution, allowing unequal voriances

estinate lower upper

Crutches-toputes 16929 0.308 26058
g-Amputee 0. 5902 08330
fearing-Crutches Note: Must Load
ona-Crusenas 1001s
Wheelchair-Crutches -9.5786 H H
Nane.fearing 2850 pairwiseCl package
‘heelchair-Hearing 1.2929 2.571
Wheelchair-None 9.4429 -9.9332 1.8189
» gt = gastr, i oo - Ty

» SamaryCafit, test = adsustedCeype = “pane™))

Similtanous Tests for Generol. Lineor Hypotheses

MiLtiole Comparisons of Means: Tukey Contrasts

Fit: anviformula - Scors - Kendicon, dota - Kondican)
Linear dypothesest

Note: Must R

Estinate Std. Error & value Prxlt)
1 2 249 948 -

Load o o
et
multcomp o
st S dam s e
o

package

R Code for Handicap Example Question 3

Note: Must Load multcomp package

> confint(gfit)

R L e Similtansous Confiderice Tnteivels

Simultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts

Multiple Conparisons of Means: Tukey Contrasts
Fit: aov(formula = Score ~ Handicap, data = Handicap)
Fit: aov(formula = Score - Handicop, data = Handicop) -
Quantile = 2.806
Lineor Hypotheses: 95% fomily-wise confidence level
Estinate Std. Error ¢ value Pr(>1t1)
Crutches - Aeputee = @ 1.6929  ©.6172 2.419 8.1233

Hearing - Amputee = @ 06172 -0.613 ©.9725

Linear Hypotheses:

Hone - Arputee == © 06172 g
Wheelchair - Amputes w= B 8.6172 Estimote lwr upr

Hearing - Crutches — & a6z +  Crutches - Amputee — 8  1.4329 -.2390 3.2247
Hone - Crutches = 0 06172 Hearing - Amputee == 0  -0.3786 -2.1104 1.3533
Meelcholr - Crutthis =9 gere None - Amputee == @ 0.4714 -1.2604 2.2033
iy i S oz Wheelchair - Amputee == @ ©.9143 -0.8176 2.6462
ol - o612 Hearing - Crutches == @  -1.8714 -3.6033 -0.139%

None - Crutches == & -1.0214 -2.7533 0.7104
Signif. codes: @ '**** 9801 **’ 0.01 **’ 0.05 *.' 9.1 * ' 1 Wheelchair - Crutches == @ -0.5786 -2.3184 1.1533
(Adjusted p values reported —- single-step method) None - Hearing == @ 0.

Wheelchair - Hearing == &
Wheelchair - None == @

12
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R Code for Handicap Example Question 4

Note: Must Load multcomp package

> Handicapstandicop = relevelCHandicopSHandicap, ref « “None™y ~ * Confint(afity

> fit = oov(Score-Handicap,data = Handicop)
> gfit = glnkCFit, linfct - mepCHandicap = "Dunnett"))
> summory(gFit)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Dunnett Contrasts
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Controsts Fit: oov(formula = Score ~ Handicap, data = Handicap)

Quantile = 2.5023

Fit: aov(fornula = Score ~ Hondicap, dato = Handicap) 95% family-wise confidence level

Linear Hypotheses:

Estinate Std, Error £ value Pr(>Itl) Linear Hypotheses:
Amputee - None == & -D.4714  0.6172 -0.764  0.860 Estimote Twr  wpr
Crutches - None == @ 1.8214  Q.6172 1.655  0.292 Amputee - None — @ -0.4714 -2.0159 1.0730
Hearing - None == & -8.8500 0.6172 -1.377 .45 Crutches - Nome == B 1.0214 -8.5238 2.5659

Wneelchair - None == @ @.4429  0.6172 0.718  ©.884

(Adjusted p values reported -- single-step method) Hearing - None == 0 = -2.8500 -2.3944 0.6944

Wheelchair - None == @ @.4429 -1.1016 1.9873

Appendix

Bonferroni’s Correction

*  Let@pgmiy be the experiment-wise Type | error rate.

« Let k be the number of pairwise comparisons, where each pairwise comparison
has an index i associated with it.

* Let H,; be the event that the null hypothesis associated with pairwise
comparison i istrue,for1 <i < k.

+ Let p; be the p-value for hypothesis test i, for 1 < i < k.
¢ Let @ naividual = A be the same for all k hypothesis tests.

+ Bythe def. of Type | error rate, &, = P(p; < aleﬂ,,—) foralll1<i<k.
* LetT be the set of indices associated with all TRUE null hypotheses, and
suppose|T| = kg. That is, k, is the number of TRUE null hypotheses.

* Then, Aramily = P{Uie?'(pi < QCIHD.J)}'
* ByBoole’s inequality (i.e., P(A U B) < P(A)+P(B)),

plU(p. < aclHD.i)l < Z P(pi < aclHo,)

ieT (G

Bonferroni’s Correction

D (e < aclHos) = koP(p < clHo)
ier
kUP(pi < a:E|Ho,i) =ksa. < ka,
Hence, Aramiry <ke..

Now, if we have in mind a family-wise Type | error rate of «,
we can set the Type | error of the individual hypothesis tests

to % In doing so, we are assured that aqm, < k% =a.
Therefore, choosing an individual Type | error rate of = will
ensure that the family-wise Type | error rate is less than a.

13
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Bonferroni’s Correction

We know that we can force @iy to be less than a specified a, but with a lower @y, comes a higher
(Type Il error rate). So, we want to ensure that @z, is not too low. How can we be sure that aga, g, is
really close to alpha, not just less than alpha?

When the k hypathesis tests are independent, @ramiy = 1= (1 = a.)*.

Remember from calculus that any differentiable function can be approximated by the elements in its Taylor
Series expansion, with the approximation getting better and better the more terms you add to the series
(because the terms of the series converge to zero).

For the function [ («.) = 1 — (1 — &.)*, here are the first two terms of the Taylor series approximation about
the point 0 (which is reasonable as we expect to choose @, near 0)
flar) = f(0) + f(0)(a, - 0) = [1 = (1 —0)] +k (1 — 0)*"(a, —0) = [1 — (1)*] + kK(1)*"*(a,)
=[1-1) + ka, = ka,

Bysetting «. = T, /() = k7 = & So, not only is @ an upper bound on Gpamity, but when the tests are

independent, they are approximately equal. Even when the tests are not independent, simulations have shown
that @y g,y is pretty close to a.

Multivariate distribution

¢ A multivariate
distribution is
distribution of a
vector of conditional
random variables.

* Bivariate normal
distribution can
easily be shown
graphically.

Marginal density ofy

Gontours indicate joint
density of xand y

=

2 oty aven atn=x,
72

Marginal density ofx  X=*o
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CHOOSING A HYPOTHESIS TEST

MULTIPLE HYPOTHESIS TEST

parametric
ONE-SAMPLE T-TEST
Inference on means
(medians if log-transform)

noonparametric
SIGN TEST or
WILCOXON SINGED RANK TEST
Inference on medians

parametric
POOLED TWO-SAMPLE T
Inference on means

parametric
WELCH'S T
Inference on means

nonparametric
WILCOXON RANK SUM
(aka Mann-Whitney U Test)
Inference on medians

parametric
WELCH’S ANOVA
Inference on means

parametric
ONE-WAY ANOVA
Inference on means
(medians if log-transform)

RESEARCH STRUCTURE NORMAL DISTRIBUTION SAMPLE SIZE VARIANCE DATA TRANSFORMATION
ONE SAMPLE NO o
Difference between mean of independent 1
samples and a hypothesized mean ~ YES (CLT)
Single measure or observation ” >
NO (w/LOG TRANSFORMATION)*
EVIDENCE AGAINST
NORMALITY? SUFFICIENT SAMPLE
MATCHED PAIRS SIZE?
Difference between same group before and
after treatment (within-groups) > YES > NO >
Repeated measures or observations
UNPAIRED TESTING (TWO SAMPLES)
Difference between independent groups
NO YES
(between-groups) > > >
Single measure or observation SAME SAMPLE o
SIZES? >
| EVIDENCE AGAINST SAME
NO | STANDARD DEVIATION?
>
EVIDENCE AGAINST A e
NORMALITY?
YES (CLT)
| YES | SUFFICIENT SAMPLE | NO N
SIZE? ‘ i
UNPAIRED TESTING (MORE THAN TWO
SAMPLES)
Difference between il groups >
(between-groups)
Single measure or observation ES >
NO | EVIDENCE AGAINST SAME
7’| STANDARD DEVIATION? YES (w/LOG-TRANSFORMATION)* N
P
EVIDENCE AGAINST 5 No >
NORMALITY? 1 i
N YES (w/LOG TRANSFORMATION)* .
>
YES (CLT)
|_YES | SUFFICIENT SAMPLE | NO N
SIZE? ‘ >

>

* TESTS USING LOG-TRANSFORMED
DATA (INFERENCE ON MEDIANS)

nonparametric
KRUSKAL-WALLIS
Inference on medians

HYPOTHESIS TESTING STEP-BY-STEP

[

N

w

IS

e

o

~

o

©

Read the problem carefully. Isita
randomized experiment or an
observational study?

Plot the data using histograms, box
plots, or QQ plots.

Determine which test to use. Do the
data satisfy the test’s assumptions?

State the null and alternative
hypotheses. Is this a one-sided or
two-sided test?

Select a test statistic and confidence
level (1-a). Find the critical value.

Sketch the distribution, including
the critical value and the
acceptance and/or rejection
region(s).

Compute the test statistic and the
probability (p-value) of obtaining
the observed results if the null
hypothesis is true.

Reject or fail to reject the null
hypothesis. (Never accept the null
hypothesis.)

Perform post hoc testing, if
applicable, to determine which
groups are different.

10 State the statistical conclusion in

the context of the original problem.

TUKEY-KRAMER
(aka TUKEY'S HSD)

DUNNETT
for comparison to a control group

BONFERRONI CORRECTION
distribution-free, more conservative,
wider interval

REGWQ
Lower Type Il error rate than either
Bonferroni or Tukey-Kramer

Rev. 5 (6/25/2015)



Analysis Guide Midterm

note that the nonparamteric ones do medians, kruskal is nonparametric for ANOVA
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