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Chapter 1

Problem 1: Randomized Experiment vs
Random Sample

Question 1

What s the difference between a randomized experiment and arandom sample? Under what type of study/sample
can a causal inference be made?

Answer to Question 1

A randomized experiment is when the the application of the experimental variable (“treatment”) is applied to sub-
jects chosen randomly. So for example, in a study with 400 subjects, and treatments A, B, and a control group, each
subject would randomly be assigned into either the control group, group A, or group B. This is done to eliminate
confounding variables, as well as possible bias. In a random sample, subjects are randomly chosen from the pop-
ulation. This is done so that the subjects of the study can be assumed to be representative of the population as a
whole. [1]. We can make causal inferences from a randomized experiment, but not from a random sample.

Score: 20/20. Explanation: This answer gets full marks because it covers all of the points made in the key, it
defines both random sampling and randomization in the same manner as the key. However in the future it should
be less wordy.



Chapter 2

Problem 2: Identifying Confounding
Variables

Question 2

In 1936, the Literary Digest polled 1 out of every 4 Americans and concluded that Alfred Landon would win the
presidential election in a landon-slide. Of course, history turned out dramatically different (see http://historymat-
ters.gmu.edu/d/5168/ for further details). The magazine combined three sampling sources: subscribers to its
magazine, phone number records, and automobile registration records. Comment on the desired population of
interest of the survey and what population the magazine actually drew from.

Answer To Question 2

The magazine had hoped to get a random sample, or a dichotomy of the voting population, which would be
representative of the entire voting population of the country as a whole. Instead, they only polled subscribers to
the magazine, phone number records, and automobile registration records. 1936 was in the height of the great
depression, which means that the average American was struggling to survive. Therefore, while in the past this
sampling techique had worked, this time around they ended up only sampling the wealthiest people, those who
could afford phones, cars, and magazine subscriptions, and the results were not representative of the population.
Without truly random sampling, “the statistical results only apply to [those] sampled”, and cannot be representative
of the entire population. [2]. Therefore, itis just chance that in the previous years, the polls worked.

Score: 10/10. Explanation: This answer gets full marks because it states that the poll wanted to cover all of the
voters (5 points), and it identifies the actual group polled with some explanation (affluent people) (5 points).

10



Chapter 3

Problem 3: Identifying a Scope of Inference

Question 3

3. Suppose we have developed a new fertilizer that is supposed to help corn yields. This fertilizer is so potent that
a small vial of it sprayed over an entire field is a sufficient dose. We find that the new fertilizer results in an average
yield of 60 more bushels over the old fertilizer with a p-value of 0.0001. Write up a scope of inference under the

following study designs that generated this data.

1. We offer the new fertilizer at a discount to customers who have purchased the old fertilizer along with a survey
forthem to fill out. Some farmers send in the survey after the growing season, reporting their crop yield. From

our records, we know which of these farmers used the new fertilizer and which used the old one.

2. When a customer makes an order, we randomly send them either the old or new fertilizer. At the end of the
season, some of the farmers send us a report of their yield. Again, from our records, we know which of these

farmers used the new fertilizer and which used the old.

3. When a customer makes an order, we randomly send them either the old or new fertilizer. At the end of the

season, we sub-select from the fertilizer orders and send a team out to count those farmers’ crop yields.

4. We offer the new fertilizer at a discount to customers who have purchased the old fertilizer. At the end of the
season, we sub-select from the fertilizer orders and send a team out to count those farmers’ crop yields. From

our records, we know which of these farmers used the new fertilizer and which used the old one.

Answer

1. We cannot make causal inferences or inferences about the population, as it was not randomized or a ran-
dom sample. Available units from distinct groups were selected, however the treatment was not assigned
randomly, which may mean only farmers who needed a change in fertilizer or were struggling and could not
afford the old fertilizer decided to go for the discount, and then the study is also only representative of those

who submitted reports, as no random sampling was done

Score: 8/8. Explanation: This answer gets full credit because it states that causal inferences cannot be made

and that population inferences cannot be made, which agrees with the key

2. We can make causal inferences but not inferences about the population. The treatment was applied at ran-
dom to the subjects, but no random sampling was done. Therefore this study only speaks to the effect of the

treatment on farmers who submitted reports, which may mean that they had noteably different yields.

Score: 8/8. Explanation: This answer receives full credit because it states that causal inferences can be made,

and that population statements cannot be made, with explanations, all agreeing with the key

3. We can make causal inferences and inferences about the population. The farmers were randomly assigned
different treatments, which allows us to make causal inferences, and then the farmers were randomly selected
for the yield to be counted, which means that the selected farmers should be representative of the entire
population. With these experimental parameters, we can decide whether the new fertilizer worked better,

worse, or the same.

11
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Score: 7/8. Explanation: This answer loses a point because the problem does not explicitly state that the
sub sample was random. | assumed it was a random sample, and with that assumption, the answer is entirely
correct, however the randomness is not explicitly stated. Therefore a point is taken away. The rest of the
answer agrees entirely with the key, therefore no more points will be lost

4. We can make inferences about the population but not causal inferences. The treatment was not supplied
randomly, so maybe only farmers who needed a discount or the old fertilizer wasnt working for chose the new
fertilizer. However, they were randomly sampled, which means we can make inferences about the population
to some degree but we definitely cannot make causaul inferences.

Score: 7/8. Explanation: This answer loses a point because the problem does not explicitly state that the
sub sample was random. | assumed it was a random sample, and with that assumption, the answer is entirely
correct, however the randomness is not explicitly stated. Therefore a point is taken away. The rest of the
answer agrees entirely with the key, therefore no more points will be lost.

12



Chapter 4

Problem 4: Visual comparison of population
means and a permutation test

Question 4

4. A Business Stats class here at SMU was polled, and students were asked how much money (cash) they had in
their pockets at that very moment. The idea was to see if there was evidence that those in charge of the vending
machines should include the expensive bill / coin acceptor or if the machines should just have the credit card
reader. Also, a professor from Seattle University polled her class last year with the same question. Below are the
results of the polls. SMU 34, 1200, 23, 50, 60, 50, 0, 0, 30, 89, 0, 300, 400, 20, 10, 0 Seattle U 20, 10, 5, 0, 30, 50, O,
100, 110, 0, 40, 10, 3,0

1. Use SAS to make a histogram of the amount of money in a student’s pocket from each school. Does it appear
there is any difference in population means? What evidence do you have? Discuss your thoughts.

2. Use the following R code to reproduce your histograms. Simply cut and paste the histograms into your HW.
SMU = ¢(34, 1200, 23, 50, 60, 50, 0, 0, 30, 89, 0, 300, 400, 20, 10, 0) Seattle = c(20, 10, 5, 0, 30, 50, 0, 100, 110,
0, 40, 10, 3, 0) hist(SMU) hist(Seattle)

3. Run a permutation test to test if the mean amount of pocket cash from students at SMU is different than that
of students from Seattle University. Write up a statistical conclusion and scope of inference (similar to the one
from the PowerPoint). (This should include identifying the Ho and Ha as well as the p-value.)

Answer

1. Code (see Appendix 1) for the SAS histogram (Figure 1) was inspired by [3]. The code used to produce this
histogram is as follows:

Code 4.1. Creating Paneled histograms in SAS

proc sgpanel data=CashMoney;

panelby School / rows=2 layout=rowlattice;
histogram cash / binwidth = 25;

run;

13
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Figure 4.0.1. Distribution of Cash by School, produced in SAS
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It appears that for the sample means, the SMU sample has a slighly higher mean, however | do not believe
that means that the population of SMU has a higher mean than Seattle U, as this was not a random sample, it
was just of business students. It appears that the SMU cash distribution is wider, with higher values, but
again it is hard to tell if it is indicative of the entire population, | believe, based off of where the majority of
the distributions lie, both populations would have similar means, with SMU having a slightly higher mean.
SMU is a private school and Seattle U is one of the best value schools in the country, so it is possible that
SMU students might have in general, more money than students at Seattle U, and therefore more cash.

Score: 5/5. Explanation: This receives full marks, the histograms are correct and the conclusions are similar

to the key, and are very logical. The code is included in the appendix.

2. The code used to generate the R histograms (Figure 2) was given in the homework and is presented below

Code 4.2. Producing histograms in R

SMU = c(34, 1200, 23, 50, 60, 50, O, O, 30, 89, 0, 300, 400, 20,
Seattle = c¢(20, 10, 5, o, 30, 50, O, 100, 110, O, 40, 10, 3, 0)
par (mfrow=c(1,2))

hist (SMU)

hist (Seattle)

Figure 4.0.2. Cash Distributions at SMU and Seattle U, Produced using R

Histogram of Seattle Histogram of SMU

0 200 400 600 800 1000 1200

SMU

he code used to generate the permutation test (Appendix 2), using SAS, is given in [4]. The results of the
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permutation test, with 999999 permutations can be seen in Figure 3 Below is SAS and R code for permutation
tests:

Code 4.3. Two Tailed permutation test in SAS, using manually input groups

proc iml;

G1 = {/*SMU student data*/};

G2 = {/*Seattle U student datax/};

obsdiff = mean(Gl) - mean(G2); /*difference in the means of the two data sets*/
print obsdiff;

call randseed(12345); /* set random number seed */

alldata = G1 // G2; /* stack data in a single vector */

N1 = nrow(G1); N = N1 + nrow(G2);

NRepl = 999999; /* number of permutations, I did ~ 1 million just because I thought the
nulldist = j(NRepl,1); /* allocate vector to hold results */

do k = 1 to NRepl;

x = sample(alldata, N, "WOR"); /* permute the data */

nulldist[k] = mean(x[1:N1]) - mean(x[(N1+1):N]); /* difference of means */

end;
title "Histogram of Null Distribution";
refline = "refline " + char(obsdiff) + " / axis=x lineattrs=(color=red);";/*build a nic

call Histogram(nulldist) other=refline;
pval = (1 + sum(abs(nulldist) >= abs(obsdiff))) / (NRepl+l); print pval;/*calculate the
/*https://blogs.sas.com/content/iml/2014/11/21/resampling-in-sas.html*/

Figure 4.0.3. Results of Permutation Tests

Histogram of Null Distribution

Percent

nulldist

And some R code: In this test, the null hypothesis is that there is no difference between the mean amount
of cash in a student’s pocket in the two groups, while the alternative hypothesis is that there is a meaningful
difference between the two[4]. The permutations were used to generate the null distribution of differences,
and the red line shows where the experimental difference lies. Further calculation shows that the p value of
the experimental mean was 0.149, meaning about 15% of the null distribution is greater than our meanl[5].
With a 5 or 10 % confidence interval, we cannot reject the null hypothesis, and therefore we cannot say there
is any difference between the two means. The SMU students and Seattle U students have more or less the
same amount of cash in their pockets, the result of the study does not bear statistical inference. As for scope
of inference, this was not a randomized experiment or random sample, and therefore we cannot make any
causal inferences (there was no treatment applied, and we definitely cannot say going to SMU makes you
have more or less money in your pocket than going to Seattle U), and we cannot make any inferences about
the student bodies as a whole (population inferences). The sample is only representative of the students
sampled, so we have very little scope of inference.

15
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Code 4.4. Two Tailed permutation test in R, using manually input groups

schooll <- rep('SMU', 16)

school2 <- rep('Seattle', 14)

school <- as.factor(c(schooll, school2))

all.money <- data.frame(name=school, money=c(SMU, Seattle))

t.test (money ~ name, data=all.money)

number _of _permutations <- 1000

xbarholder <- numeric (0)

counter <- 0

observed_diff <- mean(subset(all.money, name == "SMU")\$money)-mean(subset(all.money,
name == "Seattle")\$money)

set.seed (123)

for(i in 1:number_of _permutations)

{
scramble <- sample(all.money\$money, 30)
smu <- scramble[1:16]
seattle <- scramble[17:30]
diff <- mean(smu)-mean(seattle)
xbarholder[i] <- diff
if (abs(diff) > abs(observed _diff))
counter <- counter + 1

}

hist (xbarholder, xlab='Permuted SMU - Seattle', main='Histogram of Permuted Mean

Differences')

box ()

pvalue <- counter / number_of_ permutations

pvalue

observed_diff

Midterm

Score: 15/15. Explanation: This receives full marks, 5 points for running the test, 5 points for the p value, and
5 points for mentioning the null and alternative hypotheses and getting the correct conclusion. The code is
included in the Appendix.
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DRAWING STATISTICAL CONCLUSIONS
RANDOMIZED EXPERIMENTS V. OBSERVATIONAL STUDIES

RANDOM SAMPLES V. SELF-SELECTION

Creativity Scores: Starting Salaries:
Intrinsic vs. Extrinsic Motivation Female vs. Male

Subjects were NOT randomly
chosen by the researcher (all
employees at a bank were
included), and the group
assignments were not random
either.

If a random sample of the
employees had been used...
Random sampling study with two populations

Population |
W~ 5 aﬂﬂk_
Population 2
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Subjects volunteered for the study.
Then, treatments were randomly assigned.
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Types of Studies

Creativity Study
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Salary Study

Observational
Study

Causal Inference:
Randomized vs. Observational Study

 Causal inferences can be drawn from randomized experiments

* Causal inferences cannot be drawn from observational studies due to CONFOUNDING
CONFOUNDING VARIABLE: Related to both group membership and to the outcome
Example: Since 2000, the U.S. median wage...

has overall increased about 1%

<has decreased for high school (or below) dropouts and high school graduates (no college)

*Is this a paradox? .
No, more people are going to college.

Causal Inference:

Randomized vs. Observational Study

* Causal inferences can be drawn from randomized experiments

* Causal inferences cannot be drawn from observational studies due to CONFOUNDING

What are some possible confounding variables in the gender/salary study?

In the starting

salaries study,

maybe males have

* more education

* more seniority

* more age (older)

* more willingness
to negotiate
starting salary

In a randomized experiment, variables like age are also randomly distributed to each group,
removing the confounding effect.

Why do an observational
study?

* Establishing causation not always the goal
* Predict whether or not an email is spam
*Randomization may not be ethical
* Assign subjects of a clinical trial of a cancer drug to treatment or placebo

*May be arguable scientifically that a confounder is “unlikely”

* 6 month smoking ban in Helena, MT coinciding with 40%
reduction in heart attacks

* Might have an incidentally observed dataset

*  Walmart collects petabytes of data/day. Should this data
be discarded because it is observational?
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Inference to Populations: Inference to Populations:
Random Sample vs. Self-Selection Random Sample vs. Self-Selection

« Inference to populations can be drawn from a RANDOM SAMPLE FROM THAT POPULATION. « Inference to populations can be drawn from a RANDOM SAMPLE

« Inference to populations cannot be drawn if units are self-selected. In this creativity . B . 3
example, inference can only be drawn to the subjects in the sample that was taken. * Inference to populations cannot be drawn if units are self-selected

RANDOM SAMPLE: Experimental units selected via a “chance mechanism” from a well *WHICH OF THE STUDIES USES RANDOM SAMPLING?
defined population

« Neither study uses random
Example: call randomly selected phone numbers for a survey.

sampling
*  What is the population from which the sample is taken? If drawing from a physical * Creativity study: units
phone book, is it the people who live in the city? are volunteers
. . L . . o * Bank study: unit
¢ Would this sampling method result in inferences to different populations if it were Wt ;anl s are
used in 1950? 19907 Present day? _the entire sta
* No inference about a larger
SIMPLE RANDOM SAMPLE: Every subset of size n is equally likely population is possible
Example: I'll assign everyone in this class a random integer 17, 200, -3, 472, ... and * Does not mean thg results
survey the n people (units) with smallest numbers are not interesting or
compelling!

Statistical Inferences |
Permitted by Study Design Practice with Scope: Q1

Allocaton of Untsto Groups
By Randomization Not by Randomization A particular study focused on high school freshman and seniors and their GPAs in a
ANIARTIRIRRRRRRW required economics class. The study consisted of enumerating every freshman and
A random sampleis Random samples are senior in the school and randomly selecting them from that sampling frame. Their
popuation; s St Ierescesto scores in the economics class were then recorded, and a hypothesis test for the
are hn radonly the populations difference of means was conducted. The seniors were found to have a significantly
g3 oty greater mean score in the class than the freshman. What sort of conclusions can be
k| \ made from this study? In other words, what is the scope of this study? In this class,
H STUAIANY h 4 A R
3 scope typically constitutes both the causal inferences and populations inferences.
772Z72TI 7222
1 Agroup of study Collections of Since the subjects cannot be randomly assigned to be freshman or seniors, this is an observational
it is found; available units from study, and thus the difference in mean scores is only associated with the freshman / senior status.
:("':"‘;#;;»'::"Hm fﬂ:.’.‘:ﬁ“m are We can’t tell if the class (freshman or senior) caused the difference or not.
: o dreaiment groups The sample was a random sample from the school; therefore, these findings can be generalized to
z all freshman and seniors in the school. In conclusion, it can be inferred that the mean economics

score of the seniors in the school is greater than that of the freshman although the cause of this
difference cannot be determined from this study.

o
77222777
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Practice with Scope: Q2

The Navy is very interested in the effects of sleep deprivation on cognitive ability. In order
to test the effect, the Navy put out a radio advertisement asking for 18 to 35 year ol
nonsmokers to participate in the study. The volunteers were then placed in either the . . e

control group Sno sleep deprivation) or the treatment group (36 hours of sleep deprivation)

based on the flip of a fair coin (Heads = Control, Tails = Treatment). After the data was

collected, the sleep deprived group was found to have a significantly lower mean math scord

than the group not deprived of sleep. What sort of conclusions can be made from this
study? In other words, what is the scope of this study (causal inferences and population

s Conclusions

Since the subjects were randomly assigned to the control and treatment groups, this is a
randomized experiment; thus, the difference in mean scores can be concluded to be MEASURING UNCERTAINTY IN RANDOMIZED AND
caused by the sleep deprivation. Since the subjects were volunteers who responded to a OBSERVATIONAL STUDIES

radio advertisement, it is easy to see that every member of the population did not have
the same chance of being selected, and thus the sample is NOT a random sample.
Therefore these findings cannot be generalized to all U.S. nonsmokers between the age
of 18 and 35. In conclusion, it can be inferred that sleep deprivation caused the decrease
in cognitive ability (as measured by the timed math test) for these 57 individuals only.

4 out of 6 groupings have test statistics as extreme or more extreme than the
original grouping.
As extreme or more extreme means the absolute value of the test statisticis at

Creativity Study =
So the p-value is 4/6 = 0.667. This answers the question of how unusual our

test statistic would be if the treatments had the same effect.

C re at I Vlty St u dy For the sake of the example, supposed there are only 4 subjects.

™
. Int(Grp1) | Ext (Grp2) To quantify “large,” we can randomly reallocate units to two groups and recompute
.
S, ",@'ﬂﬂ{[ﬂ;_ = Populationmean™: y; ——— 1 the difference in sample means many times.
. K e ] 12 Bob 5Dan *Everyone has the same score with each grouping. The group each person is
BT o @ - Population mean: i - BE] artificially put in changes with each regrouping. If the treatments had the same
] Bt e e effect, then each participant would have the same score regardless of grouping.
b - T
s Avg. 145 | Avg. 10

«If the questionnaires had no effect, then we would expect: ——— G 1) (G2 G 1) (G 2)

iff 14.5

=g -y =0 (NULL HYPOTHESIS) 12 Bob 5Dan 15 Sal 5Dan

*We have discussed that the sample means ¥, and ¥ are good estimates of &, All other possible groupings: ; ¢, 17 sue 17 sue 12 Bob

(Grp1) (Grp2)
== ¥; — ¥ is a reasonable estimate of p; - pty: Den  Toee Avg. 135 |Ave 11 Avg. 16 Avg. 8.5

0l ue "
*We can compute this OBSERVED DIFFERENCE in sample means: ¥, — ¥;=4.14420 (TEST STATISTIC) s ban 155 Diff 13.5-11=25 Diff 16'8‘5675
- = (Grp 1) (Grp 2) (Grp 1) 2)
*1s 414420 large enough for us to conclude that i, # 1t ?  (ALTERNATE HYPOTHESIS) Avg.8.5 Avg. 16
5 Dan 12 Bob 5Dan 12 Bob

Diff 85 -16€ 75 5 17 Sue 15 sal 15 sal 17 sue
*The population mean i for this study is the true score of everyone in the study
under treatment k, whelher they received treatment k or not, Ave 11 Ave 13.5 Ave. 10 }W\M'S

Diff 11-13.5=-2.5 Diff 10 - 14.5(= -4.5
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Creativity Study:
Creativity Study: all 47 subjects Testing the Hypothesis

Number of

™
. Hy by -pp =0
B = Population mean: e
e e - Poe “ random Huw-pg #0 1000
) rorl - regroupings: different
STt Ea:j - Population mean: up 1.6 x 1013
we2t

groupings
iy . ) (ciaeings)®
*To quantify “large,” we can randomly reallocate units to two groups and recompute Half a year with a

Distabution o Hoan

the difference in sample means many times computer that can =
. ; . perform a million -4.14 414
*We say that a recomputed difference is MORE EXTREME (OR As EXTREME) provided N
Semes calculations  per
abs(recomputed difference) Zabs(Y, — Yg) second!

number of more extreme recomputed dif [erences -
/ = p - value (P-VALUE)
total number of random reallocations

*Suppose that

*If p-value is very small (say 0.01), this provides evidence that the intrinsic/extrinsic
group result would be very unusual if the questionnaire had no effect

*If p-value is very big (say 0.2), this provides little evidence that the intrinsic/extrinsic
group result would be very unusual if the questionnaire had no effect

*Everyone has the same score with each grouping. What group each person is artificially put in changes with each regrouping. If the
treatments had the same effect, then each participant would have the same score regardless of grouping.

Creativity Study Creativity Study

(go to SAS code) Ho. iy -ptp =0 Slibaton s tinn
Hypy-pp #0 -4.14 414
The TTEST Procedure i ) o
: . 1000 different ‘ Y -
Variable: score K 3
groupings
(relabelings)
om | CoheT crmy | OAEMEHE )
19.8833 18.0087 21.7580 4.4395 3.4504 6.2276 P-value = Bllmo
16.7391 13.4677 18.0105 5.2526 4.0623 7.4343 o = r
Pooled 1.2914 6.9970 4.8541 4.0261 6.1138 =0.008 % R % BB OF BN R0 82 4
Satterthwaite 4.1442 12776 7.0108 ‘ ‘ s ‘ ...‘ sl ...‘ ‘ ‘ o

There s strong evidence to suggest that the mean score of those who receive intrinsic motivation is not equal to those who receive the
extrinsic motivation (p-value = .008). The burden to reject the null hypothesis is lower under a one-sided test, so we can say that the
evidence supports the claim that the intrinsic mean s higher than the extrinsic mean.

Since this was a randomized experiment, we can conclude that the intrinsic motivation caused this increase. In addition, since these were
volunteers, this inference can only be assumed to apply to these 47 subjects, although the findings are very intriguing.
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From Randomized to
Observational Studies

*In the Creativity study, the Intrinsic/Extrinsic groups were randomly
assigned to subjects

*This motivated comparing the observed difference to re-randomized
difference to test a hypothesis about the questionnaire having no effect

*This is known as a RANDOMIZATION TEST

*In observational studies, the groups are not randomly assigned

*Though not technically the same test, we can still apply exactly the
same re-randomization idea to observational data

*However, now it is called a PERMUTATION TEST

Appendix

Age Discrimination

In the United States, it is illegal to discriminate against people based on various
attributes. One such attribute is age. An active lawsuit, filed August 30, 2011, in the
Los Angeles District Office is a case against the American Samoa Government for
systematic age discrimination by preferentially firing older workers.

Is there evidence for age discrimination in this study?

Data sampled at random from all American Samoa government workers:
Fired

343737384142 43 4444 4545 45 46 48 49 53 53 54 54 55 56

Not fired

27 333637383839424243 4344 44 44 45 45 4545 46 46 47 47 48 48 49 49 51 51
5254

Age Discrimination (Two Sided)

Fired Distribution of Mean

34373738 414243 44 44 45 45 Hopir - e =0 Yl e 19238

4546 48 49 53 53 54 54 55 56 Hy. pip - iy # 0 o

Not fired P-value =204/1000 - Ye = Yye

27333637 383839424243 43 44 -0.204

44 44 45 45 45 45 46 46 47 47 48 48

4949 51515254 1000 different
et groupings

(relabelings)

— 70 coum 0012 Proms Eaw |20 owm| o sem s o o o

0 com On0 P Ew s sk s o anam o0 o o2
333= 19238 0 couow n02 Poons Eww 266 Ssw oum S e [ ey s

¥y =¥y, =458571

There is not sufficient evidence to suggest that the mean age of those who were fired is different from the mean age of those who were not fired (p-value =
0.204). The p-value is 5o high that even the null hypothesis of a one-sided test cannot be rejected. (There is insufficient evident to claim that the mean age of
fired employees is greater than that of not fired employees.)

is was a random sample of government employeesi ize this inference to all government-employed people in Samoa.

ce we FTR (fail to reject) Ho, there is no need to
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Chapter 6

Problem 1: A one sample t test

Question 1

The world's smallest mammal is the bumblebee bat, also known as the Kitti's hog nosed bat. Such bats are roughly
the size of a large bumblebee! Listed below are weights (in grams) from a sample of these bats. Test the claim that
these bats come from the same population having a mean weight equal to 1.8 g. (Beware: This data is NOT the
same as in the lecture slides!) Sample: 1.7 1.6 1.52.02.31.61.61.8151.71.21.41.61.61.6

1. Perform a complete analysis using SAS. Use the six step hypothesis test with a conclusion that includes a sta-
tistical conclusion, a confidence interval and a scope of inference (as best as can be done with the information
above ... there are many correct answers given the vagueness of the description of the sampling mechanism.)

2. Inspect and run this R Code and compare the results (t statistic, p-value and confidence interval) to those you
found in SAS. To run the code, simply copy and paste the below code into R.

Code 6.1. One sample t test in R with manual data input

sample = c¢c(1.7, 1.6, 1.5, 2.0, 2.3, 1.6, 1.6, 1.8, 1.5, 1.7, 1.2, 1.4, 1.6, 1.6, 1.6)
t.test(x=sample, mu = 1.8, conf.int = "TRUE", alternative = "two.sided")

Answer
6.1 Complete Analysis
Hypothesis definition

Hy:p=138 (6.1.1)
Hy:p#1.38 (6.1.2)

Identification of a critical value and drawing a shaded t distribution

We have thatn = 15 — df = n—1 =14, a = 0.05. We input this into SAS and get our lovely shaded distribution and
critical value with the following code: This gives us a critical t value of +£2.14479, as seen in the following figures:

Figure 6.1.1. Critical t value

Obs p
1214479

25




Analysis Guide Midterm

Code 6.2. Critical value and two sided shaded t distribution using SAS

data critval;

p = quantile("T",.975,14); /*two sided test*/;
proc print data=critval;

run;

data pdf;
do x = -4 to 4 by .001;
pdf = pdf ("T", x, 14);

if x <= quantile("T",.025,14) then lower = pdf;
else lower = 0;
if x >= quantile("T",.975,14) then upper = pdf;

else upper = 0;

output;

end;

run;

title 'Shaded t distribution';

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x lower = lower upper = upper / fillattrs=(color=gray8a) ;
series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

Shaded t distribution

Value of Test Statistic

The t statistic was calculated using the following SAS code

Code 6.3. One sample t test in SAS

proc ttest data=bats h0=1.8
sides=2 alpha=0.05;
run;
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P value

This gives us a p-value of p = 0.0342

Assessment of the Hypothesis test

From here we can see that p = .0342<a = .05, indicating that we REJECT the null hypothesis, which claims that
w=18

Conclusion and scope of inference

We cannot say that this sample of bats comes from a population with a mean weight of 1.8 grams (p value = 0.0242
from a two sided t test). Below is a graph produced with the code from step 4 which shoes a 95% confidence interval
on the distribution of the data (green) vs the null hypothesis(gray bar)

m} 95% Confidence

[ Tof— i e

The mean of 1.8 lies outside the reasonable range of the data from the sample, and as our hypothesis test
showed, vice versa is also true. We cannot say that our sample of bats has a mean weight of 1.8, and it is difficult to
say that it came from a population of mean 1.8. However, we cannot make any conclusions about the population
this sample came from, because it is not a random sample (we also clearly cant make any causal inferences), We
only know, with 95% confidence, that our sample does not have a mean of 1.8 grams, and that is about all we can
say.

Some R code

Code 6.4. one sample ttestinr

sample <- c(1.7, 1.6, 1.5, 2.0, 2.3, 1.6, 1.6,
1.8, 1.5, 1.7, 1.2, 1.4, 1.6, 1.6, 1.6)
t.test (x=sample, mu = 1.8,

conf.int = "TRUE", alternative = "two.sided")
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Chapter 7

Problem 2: Two sample one sided t test

Question

2. In the United States, it is illegal to discriminate against people based on various attributes. One example is age.
An active lawsuit, filed August 30, 2011, in the Los Angeles District Office is a case against the American Samoa
Government for systematic age discrimination by preferentially firing older workers. Though the data and details
are currently sealed, suppose that a random sample of the ages of fired and not fired people in the American
Samoa Government are listed below: Fired 34 37 37 38 41 42 43 44 44 45 45 45 46 48 49 53 53 54 54 55 56 Not
fired 27 3336 37 3838394242 4343 44 44 44 45 45 45 45 46 46 47 47 48 48 49 49 51 51 52 54

a. Perform a permutation test to test the claim that there is age discrimination. Provide the Ho and Ha, the
p-value, and full statistical conclusion, including the scope (inference on population and causal inference). Note:
this was an example in Live Session 1. You may start from scratch or use the sample code and PowerPoints from
Live Session 1.

b. Now run a two sample t-test appropriate for this scientific problem. (Use SAS.) (Note: we may not have talked
much about a two-sided versus a one-sided test. If you would like to read the discussion on pg. 44 (Statistical
Sleuth), you can run a one-sided test if it seems appropriate. Otherwise, just run a two-sided test as in class. There
are also examples in the Statistics Bridge Course.) Be sure to include all six steps, a statistical conclusion, and scope
of inference.

c. Compare this p-value to the randomized p-value found in the previous sub-question.

d. The jury wants to see a range of plausible values for the difference in means between the fired and not fired
groups. Provide them with a confidence interval for the difference of means and an interpretation.

f. Inspect and run this R Code and compare the results (t statistic, p-value, and confidence interval) to those you
found in SAS. To run the code, simply copy and paste the code below into R.

Answers

/.1 Permutation test

First, a permutation test is ran using n = 9999, using the code | wrote in homework one, inspired by [2]. The code
used to run the permutation test is shown below: In this scenario, we have that:

Hy Hf = Buf <0
Hy:pp — phug >0

where the null hypothesis is that the average age of the unfired individuals is the same as the average age of the
fired individuals, and the alternative is that the average age of the individuals who were fired is higher. The results
of the permutation test are as follows:
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Code 7.1. A one sided permutation test in SAS

obsdiff = mean(Gl) - mean(G2); /*Gl and G2 represent the two groupsx*/
print obsdiff;

call randseed(12345); /* set random number seed */
alldata = G1 // G2; /* stack data in a single vector */
N1 = nrow(G1l);

N = N1 + nrow(G2);

NRepl = 9999; /* number of permutations */
nulldist = j(NRepl,1); /* allocate vector to hold results */
do k = 1 to NRepl;

x = sample(alldata, N, "WOR"); /* permute the data */

nulldist[k] = mean(x[1:N1]) - mean(x[(N1+1):N]);
/* difference of means */

end;
title "Histogram of Null Distribution";
refline = "refline " + char(obsdiff) + " / axis=x lineattrs=(color=red);";

call Histogram(nulldist) other=refline;
pval = (1 + sum(abs(nulldist) >= (obsdiff))) / (NRepl+l);
print pval;

Histogram of Null Distribution

Percent

-50 -25 0.0 25 50
nulldist

In the above figure, the red line represents the mean of the difference between the two samples, and the rest
of the bars represent our null distribution. SAS tells us that the P-value is 0.2812, meaning 28.12 percent of the null
distribution is greater than our sample mean. Therefore, with a 5%, or even a 10% confidence interval, we cannot
reject the null hypothesis. We cannot say whether or not there was age discrimination in the firing of workers with
the given sample. With this procedure, we can make generalizations about the population, and generalize about
all of the government-employed people in Samoa, as we did a random sample, however, we cannot make causal
inferences, as there may be confounding variables in the system, and we did not run a randomized experiment.
There is also no need to discuss causal problems, because we failed to reject the null hypothesis.

7.2 Two sample T test, full analysis

This time we will conduct a t test on the two data sets to determine whether age discrimination occured or not.
Because we believe the older workers may have been fired, we are going to perform a one sided t-test.
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Hypothesis definition

First we construct our hypotheses:

Hy Hf = Buf <0
Hyoipp — pryy >0

critval and distribution

Next we draw and shade our distribution:
In a two sample t-test, we have that:
df = ng + npp—2

where in our case, df =21 +30—-2=49, a = 0.05
Now we input this information into SAS to draw our distribution[1]:

Code 7.2. One sided shaded t distribution in SAS and Critval

data pdf;

do x = -4 to 4 by .01;

pdf = pdf ("T", x, 49);

lower = 0;

if x >= quantile("T",0.95,49) then upper = pdf;/*one sidedx/ else upper = 0;
output;

end;

run;

title 'Shaded t distribution';

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a) ;

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

data critval;
p = quantile("T",.95,49); /*one sided test*/;

proc print data=critval;
run;

Giving us this lovely graph:

Shaded t distribution
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Next we find a number for the critical value, using the same code as problem 1:

Obs P
1 1.67655

This gives us a critical t value of 1.67655.

Calculation of the T statistic

Next we calculate our two sample t statistic using SAS:

Code 7.3. Two sample t test using SAS

proc ttest data=samoa
alpha=.05 test=diff
sides=U;

class fired;

var age;

run;

Which tells us that our t statisticis 1.10

Method Variances DF | tValue Pr> |t
Pooled Equal 49 1.10 f0.2771
Satterthwaite Unequal 40 268 1.08 02870

P value

With the code from the previous step, we also see the p value:

Method Variances DF tValue
Pooled Equal 49 1.100,0.1385
Satterthwaite Unequal 40.268 108 0

p=0.1385

hypothesis assement
p = 0.1385 > a = 0.05 for the one tailed hypothesis test, indicating that we CANNOT REJECT the null hypothesis

conclusion

The p value for the t test was about half of the p value for the random test, | believe this is because | ran a one-sided
ttest. It is interesting to note that if you do a two sided t-test in SAS, you get roughly the same value for p as in the

permutation test:
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Method Variances DF tValue Pr> |t
Pooled Equal 49 1.10 /0.2771
Satterthwaite Unequal 40.268 1.08 0.2870

This means that maybe a permutation test is a good estimator of the two-sided t-test.

We cannot reject the null hypothesis, meaning we cannot say that older workers were fired from the samoan
government. Note that we used a one tailed hypothesis test in this scenario, as we wanted to deternine if the fired
group was OLDER than the nonfired group. As a result of this test, we cannot say that the fired group was older
than the unfired group, and since this sample was random, we can say the same thing about the entire samoan
government. However, we cannot make causal inferences and there is no need to because we did not reject the
null hypothesis

We can provide a lot of confidence intervals for the jury. | think the most telling is the one sided confidence
interval, which would tell us what difference in the means constitutes age discrimination. This was produced using
the following SAS code:

proc ttest data=samoa
alpha=.05 test=diff
sides=U;

class fired;

var age;

run;

which gives us a confidence interval of [-1.0107, co). This confidence interval represents the upper difference
of means at a 95% confidence level. We can interpret this as follows: if the confidence interval contains the null
hypothesis, then we cannot reject it. However if it does not contain the null hypothesis, we must reject it. As we
can see in this beautifully drawn figure, the null hypothesis, us — p, s < 0 is contained within our ClI:

\\/\'O ) /_/)
< o

T

—1549

0

. This means we cannot reject the null hypothesis, we cannot say there was age discrimination. Itis plausible that
the mean differnence of the entire population of samoan government employees is less than or equal to zero, as it is
within the 95% confidence interval, which means we cannot, as objective jurors, claim there was age discrimination.

Incorrect calculations

The pooled sample standard deviation, s,,, is defined as

k
o i (i — 1)512

S =

Y —1)

which for us is:

. \/(21 —1)(6.5214)% + (30 — 1)(5.8835)% _ 6.159

20 + 29
The equation for standard error in the difference of means is given as

st | 53
0-171 —T2 = —_ -
ni n2

Which gives us that

6.52142  5.88352
I — 1811
Oz \/ 21 30 8
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7.3 Rcode
The following code (supplied in the homework) was put into R: returning this:
Code 7.4. two sample ttestin R
Fired = c(34, 37, 37, 38, 41, 42, 43,
44, 44, 45, 45, 45, 46, 48, 49, 53,
53, 54, 54, 55, 56)
Not fired = c(27, 33, 36, 37, 38, 38,
39, 42, 42, 43, 43, 44, 44, 44, 45,
45, 45, 45, 46, 46, 47, 47, 48, 48,
49, 49, 51, 51, 52, 54)
t.test(x = Fired, y = Not_fired, conf.int = .95, var.equal = TRUE, alternative = '"greater
ll)
Two Sample t-test
data: Fired and Not_fired
t = 1.0991,
df = 49,
p-value = 0.1385 alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval: -1.010728 Inf sample estimates: mean of x mean of y 45.85714 43.93333

The results are near identical, | cannot tell which one is better but | imagine R is more accurate as well, but just a
very small difference between the results in all regards . The var.Equal statement is important because it uses the

pooled test.
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Chapter 8

Problem 3: two sample two sided t test

Question

3. In the last homework, it was mentioned that a Business Stats professor here at SMU polled his class and asked
students them how much money (cash) they had in their pockets at that very moment. The idea was that we wanted
to see if there was evidence that those in charge of the vending machines should include the expensive bill / coin
acceptor or if it should just have the credit card reader. However, another professor from Seattle University was
asked to poll her class with the same question. Below are the results of our polls.

SMU 34, 1200, 23, 50, 60, 50, 0, 0, 30, 89, 0, 300, 400, 20, 10, 0 Seattle U 20, 10, 5, 0, 30, 50, 0, 100, 110, 0, 40,
10, 3, 0 a. Run a two sample t-test to test if the mean amount of pocket cash from students at SMU is different than
that of students from Seattle University. Write up a complete analysis: all 6 steps including a statistical conclusion
and scope of inference (similar to the one from the PowerPoint). (This should include identifying the Ho and Ha as
well as the p-value.) Also include the appropriate confidence interval. FUTURE DATA SCIENTIST'S CHOICE!: YOU
MAY USE SAS OR RTO DO THIS PROBLEM! b. Compare the p-value from this test with the one you found from the
permutation test from last week. Provide a short 2 to 3 sentence discussion on your thoughts as to why they are
the same or different.

Answer

8.1 Full Analysis

Hypothesis Definition
Hypothesis set up:
Ho :pp —p2 =0
Hypy —p2 #0
Critical value and shaded distribution
Next we draw and shade our distribution: In a two sample t-test, we have that:
df =ny+ngs—2
where in our case, df = 16 + 14 — 2 = 28, «a = 0.05. In this case we are performing a two tailed test. Now we input

this information into SAS to draw our distribution[1]:

data pdf;
do x = -4 to 4 by .001;
pdf = pdf ("T", x, 14);

if x <= quantile("T",.025,28) then lower = pdf;
else lower = 0;
if x >= quantile("T",.975,28) then upper = pdf;
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else upper = 0;

output; end; run;

title 'Shaded t distribution';

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x lower = lower upper = upper / fillattrs=(color=gray8a);
series x = x y = pdf / lineattrs = (color = black);

lower / lineattrs = (color = black);

series x = x y
run;

With this bit of code, we have produced our shaded two tailed PDF:

Shaded t distribution

This critical value, where the bands start, is calculated using the following SAS code:

data critval;

p = quantile("T",.975,28); g
proc print data=critval;

run;

This gives us a critical t value of £2.04841

Obs P
1 2.04841

T statistic

the t stat is calculated using the following code:

Code 8.1. Two sided two sample t test in SAS

proc ttest data=wallet

alpha=.05 test=diff

sides=2; /*an upper tailed test*/
class school;

var cash;

run;

which tells us that our t statistic is —1.37

35



Analysis Guide Midterm

P value

With the code from the previous step, we also see the p value, p = 0.1812:

Method Variances DF tValue Pr> [t

Pooled Equal 28 -1,37

Satterthwaite Unequal 15.496 -1.47  0.1626

Hypothesis Assessment

p = 0.1812 > a = 0.05 for the one tailed hypothesis test, indicating that we CANNOT REJECT the null hypothesis

Conclusion and Scope of inference

We cannot reject the null hypothesis, meaning we cannot say that the mean amount of cash in an SMU student's
wallet is any different than the mean amount of cash in a Seattle U student’s wallet. The following figure is a good
reference for the results of this test:

school Method Mean 95% CL Mean
SEU 27.0000  5.7989 48.2011

8 302.3
Diff (1-2) Pooled -112.8 | -281.2 556817

SMU

Diff (1-2) Satterthwaite  -1128 -276.2 50.6931

The circled area tells us the difference between the mean amount of cash in a Seattle student’s wallet and an
SMU student’s wallet. We can see that the average student from the seattle sample had about 112 dollars less in
his wallet than the average SMU student. This may sound like a lot, however it is not significant. For this result to be
statistically significant, and the mean amount of cash in a Seattle U student’s wallet to be considered different than
the mean amount of cash in an SMU student’s wallet, the difference of the two means would have to fall outside
of the 95% confidence interval. The confidence interval is highlighted, and is (—281.2, 55.6817), which tells us that
for the means to be considered truly different, the seattle student should have either 281 dollars less than the SMU
student, or 55 dollars more. Our p value of 0.1812 tells us a similar story. It tells us that there is an 18% chance that
a greater difference in the means would occur, which, at a 5 or 10 percent confidence interval, is not statistically
significant at all. As for scope of inference, we cannot make inferences about the greater population of either
university, because these were not random samples. We also cannot make causal inferences (eg going to SMU
makes you have money in your wallet!), as this is not a randomized experiment either. Something about outliers!
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Problem 4: power

Question

4. A. Calculate the estimate of the pooled standard deviation from the Samoan discrimination problem. Use this
estimate to build a power curve. Assume we would like to be able to detect effect sizes between 0.5 and 2 and we
would like to calculate the sample size required to have a test that has a power of .8. Simply cut and paste your
power curve and SAS code. HINT: USE THE CODE FROM DR. McGEE's lecture. Instead of using groupstddevs,
use stddev since we are using the pooled estimate. B. Now suppose we decided that we may be able to live with
slightly less power if it means savings in sample size. Provide the same plot as above but this time calculate curves
of sample size (y-axis) vs. effect size (.5 to 2) (x axis) for power = 0.8, 0.7, and 0.6. There should be three plots on
your final plot. Simply cut and paste your power curve and SAS code. HINT: USE THE CODE FROM DR. McGEE's
lecture. Instead of using groupstddevs, use stddev since we are using the pooled estimate. The effect size here
refers to a difference in means, though there are many effect size metrics, such a Cohen'’s D. C. Using similar code,
estimate the savings in sample size from a test aimed at detecting an effect size of 0.8 with a power of 80% versus
a power of 60%. Note: You will learn how to do this in R in a future HW!

Answers

9.1 Single power curve

he pooled standard deviation, calculated in Problem 2, part e, part 1, is s, = 6.5215. The difference of the means of
the two groups, meandiff in the code, is just set to the difference between the means of our two populations, cal-
culated using the R-generated means in Problem 2, Part f, pf — pu,,y = 1.924. The value of meandiff is not important,
because by plotting the effect size, we are cycling through mean differences between 0.5 and 6, so the meandiff
parameter only really matters if you want to know a sample size for a specific difference of means. When building
a power curve it is not important at all, but you need it to get proc power to work. The SAS code used to build the
power curve is shown below:

Code 9.1. Proc power single with pooled variance

proc power;

twosamplemeans

/*test=diff not diffsatt bc pooled variancex/
test=diff

stddev=6.5215

/*meandiff is a dummy variable in this casex/
meandiff=1.924

power=.8

ntotal = .;

plot x=effect min=.5 max=6;

run;
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And the power curve:

9.2 Multiple power curves

The same notes as above apply here, this time we used the SAS code to generate multiple power curves:

And the curves:

Total Sample Size

Code 9.2. Producing several curves with proc power

6000

5000

4000

3000

2000

1000

proc power;

twosamplemeans

/*test=diff not diffsatt bc pooled variancex/

test=diff
stddev=6.5215

/*meandiff is a dummy variable in this casex/
meandiff=1.924

power=.8 .7 .6
ntotal =

plot x=effect min=

run;

Total Sample Size

6000

5000

4000

3000

2000

1000

.

Two-Sample t Test for Mean Difference

—e—

o

3

Mean Differance

.5 max=6;

Two-Sample t Test for Mean Difference

2

3

Mean Difference

Mominal Power
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9.3 Calculating change in N
It is important to remember that the “effect size” calculated in this SAS code is the exact same thing as the “mean
difference”. Therefore we can write our SAS code as follows:

proc power;
twosamplemeans
test=diff
stddev=6.5215
meandiff= 0.8
power=.8 .6
ntotal = .;
run;

Which gives us our sample size savings:

Computed N Total
Index Nominal Power | Actual Power N Total
1 0.8 0.800 2090
2 0.6 0.601 1306

As we see from the figure above, by raising the power from 0.6 to 0.8, we actually have to nearly double the
sample size to meet the test parameters. By using a power of 0.6, we save 784 N's (or sample size units)
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Inference Using
t-Distributions

MEASURING UNCERTAINTY IN RANDOMIZED AND OBSERVATIONAL
STUDIES

-DISTRIBUTION OF THE SAMPLE AVERAGE
-USING T-DISTRIBUTION FOR ONE SAMPLE INFERENCE
-STARTING TO EXPLORE T-DISTRIBUTION FOR TWO SAMPLE PROBLEMS

Distribution of Sample Average

IfY, Y, ..., Y, is the sample, then

_ (Nl . 41)

n

|

“The idea: ¥ is a point estimate for the population mean p

* The sample mean is an unbiased estimator for the population mean.
» E(Y) = u because E(Y;) = u*
*See proof in appendix.

The more data you pick for each sample, the more normal (and tighter) the distribution of
the sample mean is.

Note that the
MN=1 distribution of the

i i Pticb iy
distribution of a

sample mean of size

s e,

N=T7 H‘Iﬁ —’—H_
=10 ] ™8

]
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Central Limit Theorem

Distribution of Sample Average

+ We can say more about Y than that!
* It turns out that
1. Y isunbiased.
2 V.}r\anca(?) = ‘%’,‘ where o is the variance of the population

3. Y distribution is approximately normal if n is larger than 30

* This last fact is due to the CENTRAL LiMiT THEOREM (CLT)

The more data you pick for each sample, the more normal (and tighter) the distribution of the sample
mean is.

If original data is approx. normal, then the distribution of the sample mean will be approx. normal,
regardless of sample size.

Population distribution x
Normal Skewed Uniform Irregular
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Value (x) Value (x)

3.5

Frequency

L)
Roll of the Die a

Ll M I N SR I )
I - T Ul I MG SN £ UG- S
(L E -G ) R R 2 R [ R P R R

Trial  Value (%) Value (x)

B%

3.1
Dice: Sample Means of Sizen = 5

1800 1 . )
1600 1 X 43 Dice: Sample Means of Size n = 10
1400 | _

2000 7

g 12009 X 1800 1

1000 4 = shil 1600 1

800 o 1400 1
600 | £ 0 |
400 1 2 1000
vk =)
; 5|

200 4

ok

2.9

Average of 5 Dice

Average of 10 Dice

Dice: Individual Rolls (n = 1) THE CENTRAL LIMIT
THEOREM!!!

CENTRAL LIMIT THEOREM Cont.

Rl of the Die 1. The distribution of sample x’s will, as the
Dice: Sample Means of Size n = 2 sample size increases, approach a normal
T —— distribution.
E 1000 + S 7' =
£ 500 1
LR L N
Aoa i e 2. The mean of the sample means is the
population mean p. uz = u,

Average of 2 Dice

Dice: Sample Means of Size n = 10

3. The standard deviation of the distribution of
sample means is "-% 05
N

Average of 10 Di




About that known o ...

So far, we have treated the population standard deviation, o, as known,

While this can happen in practice, often we have to EstmaTe o using the
same data we use to estimate .

P R ) S e )

= - we can think of the standard deviation
W=
as the average distance from each data point to the mean. (It's not exactly this, though.)

EsTIMATE . 5§ =

Example: If we have data 79, 83, 84, 89, 90 mm for digitus tertius (the
human middle finger). What is an estimate of the standard deviation?

Answer: Because ¥ = 85,

_ J(79-85)7+(83-85)" +(84-85)+(89-85)°+(90-85)% _ V6I+22+ 12 +47+5°

o1 i

S
=6.403

Student t Distributions for
n=3andn=12

Student t
distributions have
the same general
shape and
symmetry as the
Student # v v
N standard normal
distribution . .
_ distribution but
withn =3
reflect a greater
variability (heavier
tails), which is
expected with
small samples.

Standard
normal
distribution

Student #
distribution
with n =12
Asn—o,

t —dist.—» z — dist.

William Sealy Goosset (Student)

95% confidence interval for
mean age

Sample Ages: 25,19, 37, 29, 40, 28, 31

We know o (population standard
deviation).

n=7 X - E<u<x+E, where

¥=29.86 E=z,,0 = (196)7.08=5.24
o= 7.08 — — IMPORTANT:

/\/ n /\/ 7 These are the
=0.05 i
Zﬂ = 0.025 20.86-5.24 <u < 29.86 +5.24 "L e
2,,= 1.96 24_62 < y7i < 35_10 given the data!

We are 95% confident that the mean age of Beach Comber patrons at
7pm is contained in any 95% confidence interval, such as
(24.62 years, 35.10 years).

10/13/2018

T-ratio

Facts about ¥:

¥ is unbiased est. for ¢

o AE
Variance(Y) = —
n
Y “approx. distributed” normal if n is larger than 30
¥ 1S normally distributed if ¥ is normally distributed, regardless of sample size
2= ; is distributed according to a standard normal dist. (normal, with a mean of 0 and a
i
standard deviation of 1)
Additionally, we use s as an estimate of &

THEN:
T

T=3
iw

s “approx.” distributed” t with (n-1) degrees of freedom

*This ratio HAS a t— distribution if ¥ is normally distributed.

Example: 1 Sample Confidence Interval

- e ‘

The following are ages of 7 randomly selected patrons at the
Beach Comber in South Mission Beach at 7pm. We assume that
the data come from a normal distribution and would like to
build a 95% confidence interval for the actual mean age of
patrons at the Comber.

25,19, 37, 29, 40, 28, 31

95% confidence interval for
mean age
Sample Ages: 25,19, 37, 29, 40, 28, 31

We do NOT know o (population standard
deviation). We must estimate it using s
(sample standard deviation).

n=7 X— E<u<x+E, where
*=29.86 E=1,,,..5 = (2447)(7.08)=6.55
5T L% Vo ER e
a =0.05

plausible values

al2 =0.025 29.86 —6.55 <y < 29.86 +6.55  ,fihe mean
tdz i = 2.447 23_31 < ” < 36.41 given the data!

We are 95% confident that the mean age of Beach Comber patrons at 7pm

is contained any 95% confidence interval, such as (23.31 yrs., 36.41 yrs.).
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Comparison of zto t
o, E=2,,0 = (196708 =524 1 Sample Hypothesis Testing:
£=z38 A 7 The 6 Steps
o= 7.

~ ~ We are 95% confident that
a =0.05 X-E<py<x+E the mean age of Beach 1. Identify Ho and Ha.
a2 =0.025 Comber patrons at 7pm is
z,,=1.96 29-86-524 <u< 29.86+5.24 contained in the interval 2. Find the Critical Value(s) and Draw and Shade.

24.62 years, 35.10 years).
r2?62 < H <35.10 ( Y NN y ) 3. Calculate the Test — Statistic. (The evidence!)
1 7 4. Calculate the P-value.
2331 24.62 35.10 36.41
E = , s = (2.447)(7.08) = 6.55 5. Make a decision... Reject Ho or FTR Ho.
=7 a/2,n1 . -0g)=¢6.
%_ 20.86 — _ 6. Write a clear conclusion in the context of the problem.... Use mostly
- e ,\/ n /\/ 7 non statistical terms but always report the p-value! Add a
s= 7.08 = WS el We are 95% confident that the confidence interval if appropriate. End this conclusion with a
v =005 L mean age of Beach Comber statement about the scope.
@/2=0.025 2986-6.55<u<29.86+655 patrons at 7pm is contained in
2447 23.31<p<36.41 the interval (23.31 years, 36.41

Let’s Formalize This Test Into 6 Steps!

We waould like to test the claim that the population mean is different than 21.

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis.

: : : Ho: n = 21
The following are ages of 7 randomly chosen patrons seen leaving
the Beach Comber in South Mission Beach at 7pm. We assume that Ha: p + 21
the data come from a normal distribution and would like to test the
claim that the mean age of the distribution of Comber patrons is
different than 21.

25,19, 37, 29, 40, 28, 31

7 . . ) . .
Let’s Formalize This Test Into 6 Steps! Let’s Formalize This Test Into 6 Steps!
We would like to test the claim that the population mean is different from 21. We would like to test the claim that the population mean is not equal to 21. To do this,
To do this, we take a sample of sizen=7. we take a sample of size n = 7 and find that x = 29.86 years and s = 7.08 years.

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Step 1: Identify the null (Ho) and alternative (Ha) hypothesis.

Step 2: Draw and Shade and Find the Critical Value.

a = .05 = significance level.

Step 2: Draw and Shade and Find the Critical Value.

df=7-1=6

a = .05 = significance level. 025

df=7-1=6
t { ———++
21 Bdata critvals Lozs,e = —2447 torss = 2447
¢ | 1 p = quantile("T",.975,6) obe o e
i ety | 1]kt Step 3: Find the test statistic. (The t value for the data.)
run; X=u

t

S
Vn
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Let’s Formalize This Test Into 6 Steps! Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the population mean is not equal to 21. To do this, ‘We would like to test the claim that the population mean is not equal to 21. To do this,
we take a sample of size n = 8 and find that x = 29.86 years and s = 7.09 years. we take a sample of size n = 8 and find that x = 29.86 years and s = 7.09 years.
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ho: t = 21 Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ho: pt = 21
) . Ha:p # 21 ) R i
Step 2: Draw and Shade and Find the Critical Value. Step 2: Draw and Shade and Find the Critical Value. He: % 21
@ = .05 = significance level. @ = .05 = significance level.
025 025 df=7-1=6 s [\ZS e
x | 4
n ¢ ——1+ 2 PR
t ! } | I 331—2447 2447 331
—3.31—2447 2447 331

Step 3: Find the test statistic. (The t value for the data.)
¥-p

= =331

Step 3: Find the test statistic. (The t value for the data.) ¢ - == _ 2986 21
=

7.09 2 7.09
Step 4: Find the p-value: The probability of observing by random _ %7, Step 4: Find the p-value: P-value 0.0162< .05 B v

chance something as extreme or more extreme than what was
observed under the assumption that the null hypothesis is true.
(Usually found with software.) The red shaded region above is 0.0162

i i i assumption that the true mean age is 21. That is, we REJECT Ho.

Step 5: Key! The sample mean we found is very unusual under the
assumption that the true mean age is 21. So we Reject the

Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the population mean is not equal to 21. To do this,

we take a sample of size n = 8 and find that x = 29.86 years and s = 7.09 years. i 1 - — 1
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ho: = 21 F I nd I ng the P va I ue more d eta l I
Step 2: Draw and Shade and Find the Critical Value. Ha:p# 21 Step 4: Find the p-value: p-value < .05

+— = .05 = significance level.
f;/ \225 df=7-1=6 You could use Stat Trek / or the t-table. Confidence interval
. 2 OR he TTEST Procedure
331-2447 2447 331 (oo _ 621 Variable: age
Step 3: Find the test statistic. (The t value for the data.) % Software like SAS: T
Step 4: Find the p-value: P-value 0.0162 < .05 ~3131 e 7 298571 | 70812 26764 19,0000 40.0000

Mean 95% CL Mean  Std Dev 95% CL Std Dev
rint data = comber; 298571233082 364061| 7.0812 45631 155932

DF | tValue Pr>t|

6 331

Step 5: REJECT Ho

Step 6: There is sufficient evidence to conclude that the true mean age of patrons at the
Comber at 7pm is not equal to 21 (p-value =0.0162 from a t-test). We could also say that
there is sufficient evidence to conclude that the true mean is greater than 21. (Consider the
red area in the right most tail.) This was not a random sample of all times, only at 7pm; thus,
the result cannot be applied to the bar at all times. The results are nevertheless intriguing.

One-Sided Test + Two-Sided Cl Demonstration

One-Sided Test + Two-Sided Cl Demonstration
Suppose we would like to test the claim that the mean age of patrons is Suppose we would like to test the claim that the mean age of patrons is
greater than 24. greater than 24.

Skipping to the most important stuff...

Step 1: State the null and alternative hypotheses. Critical value, to 956 = +1.943

o Hy: u < 24(or p=24) vs.Hy: > 24 Test statistic, t = 2.1884

P-value, p = 0.036

Conclusion: reject H,

i.e. conclude that the mean is greater than 24.
1-sided 95% Cl: [24.7, o]

2-sided 95% Cl: [23.3,36.4]
° But... wait! 24 is in the Cl, implyingit is a ‘plausible’ value — i.e. we
would fail to reject the null.

—
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One-Sided Test + Two-Sided Cl Demonstration

One-Sided Test + Two-Sided ClI Demonstration
Suppose we would like to test the claim that the mean age of patrons is Suppose we would like to test the claim that the mean age of patrons is
greater than 24. greater than 24.
N \ /// \\ //\\\
p 3 JaR s i 2 JaR
i \\ j/ b / \\
g3 / Lo g3 f/ Lop g3 / \\\ aes g3 f/ Lop
/ /
- / ‘\ 5 ,/ \ - / \\ B / : Y
5 / Y E \ H / ] \
// s o/ N ous . s o/ i
5] — o]l ~ B |
w1 s vt 5 vt

1 ! 1 1

Two Sided-Test at alpha = 0.1 Two Sided-Test at alpha = 0.05

One Sided-Test at alpha = 0.05 Two Sided-Test at alpha = 0.05

One-Sided Test + Two-Sided Cl Demonstration

z::egeeors&:;ez\:‘ould like to test the claim that the mean age of patrons is TWO SAM P I_E T_TEST FO R TH E
Take-away: you can run into a situation where a 1-sided p-value at DI FF ERE NCE O F M EANS WlTH
INDEPENDENT SAMPLES

a does not ‘agree’ with a 2-sided (1 — «)% CI.
= This is why you should switch to a (1 — 2a)% Cl if you want to ensure

that the conclusions will agree.
Perform a two sample t-test for the difference in the mean score between the

Intrinsic and Extrinsic groups from the chapter problem. Provide a complete
analysis, including a full conclusion, confidence interval, and scope of inference. Use
an alpha = .01 level of significance.

, . . ) . .
Let’s Formalize This Test Into 6 Steps! Let’s Formalize This Test Into 6 Steps!
We would like to test the claim that the mean score of the Intrinsic group is different than that We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. Todo this, we take a sample of size n, = 24 and n¢ = 23 and find that x| of the Extrinsic group. Todo this, we take a sample of size n, = 24 and n; = 23 and find that ¥,

= 19.88 points, X = 15.74, 5, = 4.4, and s;= 5.25 points. =19.88, points X = 15.74, 5, = 4.44, and .= 5.25 points.
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. :"‘ W= Hg=0
a:jy — g #0

Ho: | = Hg
Ha: W, # Mg

Which is equivalent to:
0 Sdata criticalvalues .
| critval = quantile(“z®, .995, 45);  Obs  critval

Ho: W — Mg =0 - —
Ha: ul — uE ¢0 Lops a5 = —2.690 t 95,45 = 2.690 B=oaTp=IRE data = exiuicatvatuas 1268959

Step 2: Draw and Shade and Find the Critical Value.

a =.01 = significance level.

df=24+23-2=45
005




Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. To do this, we take a sample of size n, = 24 and n; = 23 and find that X,
=19.88, points ¥ = 15.74, 5, = 4.44, and s¢= 5.25 points.

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ho: i, — pz=0

Ha: py — Hg #0
Step 2: Draw and Shade and Find the Critical Value.

a = .01 = significance level,

df =24 +23 -2=45

t —1 -
toosas = —2.690 tggsqs = 2.690 293
Step 3: Find the test statistic. (The t value for the data.
G-F) - (W—H) _ 414-0

—
Syl 4
n,

t= 293

Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. To do this, we take a sample of size n, = 24 and n¢ = 23 and find that X,
=19.88, points X = 15.74, s, = 4.44, and s,= 5.25 points.

Step 1: identify the null (Ho) and alternative (Ha) hypothesis. Ho: i — 1z =0

Ha: j; — Hg #0
Step 2: Draw and Shade and Find the Critical Value.

o @ = .01=significance level.
X%
df=24+23-2=45
005 005

[
¢ —_————f

293 293

Step 3: Find the test statistic. (The t value for the data.) '~

Step 4: Find the p-value: P-value 0.0054< 0.01

Step 5: Key! The difference in sample means we found is very
unusual under the assumption that the group means are equal (p; —

10/13/2018

Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. Todo this, we take a sample of size n, = 24 and n; = 23 and find that X,
=19.88, points ¥ = 15.74, 5, = 4.44, and s,= 5.25 points.

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ho: 1} = p =0

Ha: | = g #0
Step 2: Draw and Shade and Find the Critical Value.

= .01 = significance level.

df=24+23-2=45
.005

t —_——————

-293 293

Step 3: Find the test statistic. (The t value for the data.) -

=293
T

Step 4: Find the p-value: The probability of observing by random
chance something as extreme or more extreme than what was
observed under the assumption that the null hypothesis is true.
(Usually found with software.) The red shaded regions above. 0.0054

Hg=0). So, we Reject this assumption. That is, we REJECT Ho.

Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. To do this, we take a sample of size n, = 24 and n¢ = 23 and find that X,
=19.88, points X = 15.74, 5, = 4.44, s;= 5.25 points.

Step 1: Identify the null {Ho) and alternative {Ha) hypothesis.  Ho: i, = p, =0
Step 2: Draw and Shade and Find the Critical Value. Ha: jy = Pg %0

=01 = significance level.

df=24+423-2=45
05

t H—
293

293
Step 3: Find the test statistic. (The t value for the data.)
Step 4: Find the p-value: P-value 0.0054< .01
Step 5: REJECT Ho

Step 6: There is sufficient evidence to suggest that those who receive the Intrinsic treatment have a

different mean score than those who receive the Extrinsic treatment (p-value = .0054 from a t-test). We can

also claim that the mean intrinsic score is greater than the extrinsic one. (The burden of rejecting the null

hypothesis for a one-tailed test is less than a two-tailed test, given the test is in the relevant direction.) A

99% confidence interval for this difference is (.3347, 7.95). Since this was a randomized experiment, we can

conclude that the Intrinsic treatment caused this difference. However, since the study was of volunteers

Finding the P-value
Step 4: Find the p-value: P-value < .01

You could use Stat Trek / or the t-table.

OR
treatment Method Mean 9% CL Mean  Std Dev 99% CL Std Dev
Software like SAS: 0 198833 17.3393 224274 44395 32032 6.995
1 15.7391 126519 IABGA 52526 37660 6.3803
Oif(12) Pooied | a1 osur rssar| asser 300 senet
Diff(12) | Satterthwaite 41442 03135 7.9750
@proc ttest data = creativity alpha = .01; Method Variances|  DF t Valu

class treatment;
var score;
e Satterthwaite Unequal 43108 292 0.0056

Pooled Equal 45

(sampling bias), this inference can only be generalized to the 47 participants.

volunteers, rence can un\i be assumed to aii\i to0 these 47 subjects, allhouih the fmdinis are vei imni.

COMPARE WITH RANDOMIZATION
(PERMUTATION) TEST

Ho.pty - =0 . [r——
Hypy-pe #0 414 414
1000 different
groupings
(relabelings)

it
P-value = 8/1000 , ‘r‘ hj

=0.008

&
i
g
&
3

Thereis strong evidence to suggest that the mean score of those who receive intrinsic motivation is not equal to those who receive the
extrinsic motivation (p-value = .008). The burden to reject the null hypothesis is lower under a one-sided test, so we can say that the
evidence supports the claim that the intrinsic mean s higher than the extrinsic mean.

Since this was a randomized experiment, we can conclude that the intrinsic motivation caused this increase. In addition, since these were
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Let’s Talk Power!!!

B = Typell error
a = Type | error
This is the probability
that while the null - Null Iter
hypothesis is true, the Distribution Distribution
data in the study cause
us to reject the null 4
hypothesis. 4 i

Effect size basically
measures the
difference between -

Relain Hy Reject Hy

This is the probability that
while the null hypothesis is
Alternative  NOT true, the data in the study
cause us to fail to reject the
=100 pq =106 null hypothesis (fail to detect
4 / differences in the means).
Power=1-f
This is the probability
that while the null
hypothesisis NOT
true, the data in the
3 study correctly cause

the population mean - 7 i T ., ustoreject the null
(106) and the null g9 95 100 105 110 115 hypothesis (detect

mean(100). (It’s not

M Test Pedor
exactly this, though.) e ReREEe

differencesin the

means).

a3

Explore power!

Here is an applet that will show you what happens to the power/beta
when you change the sample size, alpha, standard deviation, or effect
size (measure of the difference between null mean and actual
(alternative) mean).

http://shiny.stat.tamu.edu:3838/eykolo/power,

(Go to break out)
Consider the following options.

A. The probability of rejecting Ho when the null is true.
B. The probability of accepting Ho when the null is true.
C. The probability of rejecting Ho when the null is false.
D. The probability of FTR Ho when the null is true.
E. The probability of FTR Ho when the null is false.

WHICH IS POWER? _C_
WHICH IS ALPHA? _A

WHICH IS BETA? £

Pick all that are true.
The power increases when:

A. The sample size decreases.

B. The sample size increases.

C. The standard deviation / standard error decreases.
D. The effect size increases.

E. The effect size decreases.

Pick all that are true.
The power increases when:

A. The sample size decreases.

B. The sample size increases.

C. The standard deviation / standard error decreases.
D. The effect size increases.

E. The effect size decreases.

Appendix
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Distribution of Sample
Average
Proof that E(¥) = u:

E(7) = E (%22=212) by the definition of 7. ANOTHER EXAMPLE
E(Y) = %E(YI+Y2+ ... +¥,) because n is a constant. FOR PRACTICE

E(Y) = 2[E(Y,) + E(Y,) + .. + E(Y,)] because the
expected value of a sum of random variables is equal to the
sum of the expected values of the random variables.

E(Y) = %[p + H + ... + p] because E(Y;) = p.

E) =l|nul =um

® ®
Hy: p=1.8 o )
World’s Smallest Mammal The world’s smallest mammal is the bumblebee bat, also World™s Smallest Mammal The world’s smallest mammal is the bumblebee bat, also
known as the Kitti’s hog-nosed bat (or Craseonycteris thonglongyai), Such bats are Hy:p#1.8 Kamn az the doiin + b S bat (ox € ruseon) 5 ) Suct bty ane
" o it Sk : =0.05 roughly the size of a large bumblebee. Listed below are weights (in grams) from a
roughly the size of a large bumbl_ebee. Listed below are w.elghls (in grams) from a a=0. sample of these bats. Test the claim that these bats come from the same population
sample of these bats. Test the claim that these bats come from the same population x=1.713 having a mean weight equal to 1.8 g.
having a mean weight equal to 1.8 g. s =.2588 17 1.6 15 20 23 16 16 1.8 15 1.7 22 14 16 16 16
1.7 16 1.5 20 23 16 16 18 1.5 1.7 22 14 16 16 16 T The TTEST Procedure
. “data bats; Variablo: weight
Hy: £=1.8  Critical Values t=%2.145 input veight 00;
datalines; N Mean StdDev SidErr Minimum Maximum
Hy:pu#1.8 e deibiancelow BTE1S 2.0 2.3 16 16 1.8 18 17 22 14 L6 16 1.6 w17t oz oo samn| 230
dr=15-1-14
a =0.05 data critval; g Sproc print data = bats; Moan | 95% CL Moan | St Dev | 95% CL Std Dov
¥=1.713 P = quantile("T",.975,14) = = 17133[15700 18566] 02688 01894 04081
=1 : ————— '
proc print data = critvals 1 2m tozsze = 2265 Corsra = 2145 “proc ttest data = bats h0 = 1.5 sides = 2 alpha = .05; wTrvaslrron
= i var weight;
s=.2588 run; — u
On the basis of this test, there is not enough evidence to reject the claim that the mean weight of
bumblebee bats is equal to 1.8g (p-value = .2155 from a t-test). A 95% confidence interval is (1.57 g,
1.8566 g). The problem was ambiguous on the randomness of the sample; thus, we will assume that it
was not a random sample, which makes inference to all bats strictly speculative.
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Chapter 11

Problem 1: Two Sample T test with
assumptions

Question

1. In the United States, it is illegal to discriminate against people based on various attributes. One example is age.
An active lawsuit, filed August 30, 2011, in the Los Angeles District Office is a case against the American Samoa
Government for systematic age discrimination by preferentially firing older workers. Though the data and details
are currently sealed, suppose that a random sample of the ages of fired and not fired people in the American
Samoa Government are listed below: Fired 34 37 37 38 41 42 43 44 44 45 45 45 46 48 49 53 53 54 54 55 56 Not
fired 27 33 36 37 38 38 39 42 42 43 43 44 44 44 A5 45 45 A5 46 46 47 47 48 48 49 49 51 51 52 54 a. Check the
assumptions (with SAS) of the two-sample t-test with respect to this data. Address each assumption individually
as we did in the videos and live session and make sure and copy and paste the histograms, g-q plots or any other
graphic you use (boxplots, etc.) to defend your written explanation. Do you feel that the t-test is appropriate? b.
Check the assumptions with R and compare them with the plots from SAS. c. Now perform a complete analysis of
the data. You may use either the permutation testfrom HW 1 or the t-test from HW 2 (copy and paste) depending on
your answer to part a. In your analysis, be sure and cover all the steps of a complete analysis: 1. State the problem.
2. Address the assumptions of t-test (from part a). 3. Perform the t-test if it is appropriate and a permutation test
if it is not (judging from your analysis of the assumptions). 4. Provide a conclusion including the p-value and a
confidence interval. 5. Provide the scope of inference.

Answer

11.1  Complete Analysis
Assmuption checking in SAS

The assumptions were tested using proc ttest, which outputs histograms, box plots, QQ-plots, and performs an
F-test on the variances. The code used to produce all information in this section is presented below:

Code 11.1. Checking the assumptions of a t test in SAS

proc ttest data=samoa

alpha=.05 test=diff

sides=U; /*an upper tailed test*/
class fired;

var age;

run;
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Normality

The normality of the data is
plot:

checked using a QQ plot, a boxplot, and a histogram

Figure 11.1.1. Q-Q Plot for Normality

Q-Q Plots of age
60 fired_ notfired

55 ) )

50 ooon

age

45 dao 40
40

35

Quantile Quantile

. First we will examine the QQ

In Figure 1.1, the y axis represents the data set, and the x axis the theoretical normal quantile. The line represents
what a normal data set should look like, a 1-1 ratio between the data variable and the theoretical normal quantile.
The data set follows the normal line pretty well, so in this case on a visual inspection, we can say both samples are
normal. We can double check this using Figure 1.2, a histogram and boxplot:

Figure 11.1.2. Histogram and Boxplot for Normality
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It is a bit harder to assess the normality using the histogram and boxplot, but SAS gives us useful kernel lines
which show the distribution of the data in the histogram (the red line is the data and the blue line is normal). As we
can see, the data loosely follows the normal distribution, it is a bit different but it is pretty close. The box plot tells
the same story, as in both cases the mean is very near the medium (in a normal distribution the mean and median
are the same), with slight left and right skewing, but overall we can assume the data is normal.

Equal Variances

In order to assess the equality of the variances visually, we can again use the histogram and boxplot, this time
displayed in Figure 1.3 (for ease of grading):

52



Analysis Guide Midterm

Figure 11.1.3. Histogram and Boxplot for Variance Equality
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As we can see from the bounds of the histogram, the range of each data set is more or less the same size, with
their means more or less in the center. This hints that the two data sets would have near equal variances. This is
confirmed when looking at the box plot, the distance from the mean to the far left whisker and far right whisker
is more or less the same for both data sets, which indicates again the variances are equal. This is confirmed by
examining the F test for equal variances, the results of which are displayed below:

Figure 11.1.4. F Test for Equal Variances

Equality of Variances
Method Num DF Den DF | F Value Pr>F
Folded F 20 29 1.23 A.600

The F test is valid here, because the data is normal and the sample size is large (n ~ 30), and we see that the
probability the variance difference is greater than what it is in our case is 60%, or a p value of 0.6 Ata 5, 10, 15
or 20 percent confidence interval, the f test will tell us the variances are equal. Therefore, we can assume equal
variances.

Independence
In this case, we can assume independence, the two data sets do not relate to each other. Any dependence that
exists we will assume away, for the sake of the problem

Conclusion

In my opinion, we can use a t-test for this data set, based on the fact that all the assumptions are true.

Assumption Checking in R
Normality test

To test for normality, we are going to again use the Q-Q plot and the histogram. To produce the Q-Q plots, the
following code was used: The plots produced are shown below:
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Code 11.2. ttest Assumption checking in R, Q-Q plot

par (mfrow=c(1,2))
qqnorm(Fired ,main="Normal Q-Q Plot for Fired data',

xlab = "Normal Quantiles",

ylab = "Fired Quantiles")

qqnorm(Not_fired,main="Normal Q-Q Plot for Not Fired data",
xlab = "Normal Quantiles",

ylab = "Not Fired Quantiles")

Figure 11.1.5. Q-Q plots for Normality in R
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From the linearity of the data points in this figure, we can see that the data follows a more or less normal ditri-
bution. The Q-Q plot produced in R is almost exactly the same as the Q-Q plot produced using SAS, however it is
differentin that it does not have a lovely line representing perfect normality, and the size of the boxes changes with
window size, as does the aspect ratio, which is a bit of a pain. The following code is used to produce a histogram,
further examining normality: This produces the following figure:

Code 11.3. t test Assumption checking in R, Histogram

2 W N

par (mfrow=c(1,2))
hist(Fired)
hist(Not_fired)
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Figure 11.1.6. Histogram for Normality in R

Histogram of Fired Histogram of Not_fired

10

Frequency
4
1
Frequency

Fired Not_fired

As can be seen in the figure, the distribution of these two data sets is again more or less normal, with what
appears to be the mean and median lying in the center, however there is a bit of a bump in the fired data set,
but again it is loosely normal in appearance. The graphs again look the same as in SAS more or less, other than
formatting differences. We can identify numbers better in R. In this case, we can ASSUME NORMAL

Equality of Variances

Looking at the histogram in Figure 1.6, we can see that the fired data has a mean of about 45 years old, spanning
from 30 to 60, and the not fired data has a mean of about 40 years old, spanning from 25 to 55. The spread of the
two means is more or less the same in this case, therefore we can ASSUME EQUAL VARIANCEs

Independence

We can again assume independence.

Conclusion:

The t-test is appropriate

Complete Analysis:
Problem statement:

We would like to test the claim that the mean age of the individuals who were fired is greater than the mean age
of the individuals who were not fired.

Assumptions:

We can assume normality, independence, and equal variances and therefore we can use the student t test, as
proven in sections 1.a and 1.b.

t-test

Statement of the Hypotheses:

Ho :pp = prug <0
Hyoipp — pryy >0
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Shaded Distribution and Critical Values: In a two sample t-test, we have that:
df = ng + npp—2

where in our case, df = 21+30—2 = 49, a = 0.05 Now we input this information into SAS to draw our distribution[1]:

data pdf;

do x = -4 to 4 by .01;

pdf = pdf ("T", x, 49);

lower = 0;

if x >= quantile("T",0.9,49) then upper = pdf;/*one sided*/
else upper = 0;

output;

end;

run;

title 'Shaded t distribution';

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a) ;

series x = x y = pdf / lineattrs = (color = black);
series X = X y lower / lineattrs = (color = black);
run;

Giving us this lovely graph:

Shaded t distribution

Next we find a number for the critical value, using the same code as problem 1:

data critval;

p = quantile("T",.95,49); /*one sided test*/;
proc print data=critval;

run;

Obs P
1 1.67655

This gives us a critical t value of 1.67655.

Calculation of t statistic: Next we calculate our two sample t statistic using SAS:
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proc ttest data=samoa
alpha=.05 test=diff
sides=U;

class fired;

var age;

run;

Which tells us that our t statisticis 1.10

Method Variances DF tValue  Pr> |t
Pooled Equal 49 1.10 /0.2771
Satterthwaite Unequal 40.268 1.08  0.2870

Calculation of P-value With the code from the previous step, we also see the p value:

Method Variances DF |t Value
Pooled Equal 49 1.100.0.1385
Satterthwaite Unequal 40.268 1.08 0

p=0.1385

Discussion of the Null Hypothesis p = 0.1385 > o = 0.05 for the one tailed hypothesis test, indicating that we
CANNOT REJECT the null hypothesis

Conclusion:

We cannot reject the null hypothesis, meaning we cannot say that older workers were fired from the Samoan gov-
ernment. Note that we used a one tailed hypothesis test in this scenario, as we wanted to deternine if the fired
group was OLDER than the nonfired group. With a one-sided p-value of 0.1385, there is a nearly 14% chance that
there be a greater difference in mean ages given the distribution. At a critical p-value of .05 (5%), we can say that
this data fails to reject the null hypothesis. Using the code that calculated the t statisitic, we produce the following
one sided confidence interval:

fired Method Mean 95% CL Mean

_fired__ 458571 428886  48.8256

notfired 43.9333

Diff (1-2) Pooled 1.9238\ -1.0107 Infty

Diff (1-2) | Satterthwaite 1.9238 -1.0780 Infty

The confidence interval is: [—1.0107, oo). This confidence interval represents the upper difference of means at
a 95% confidence level. We can interpret this as follows: if the confidence interval contains the null hypothesis,
then we cannot reject it. However if it does not contain the null hypothesis, we must reject it. As we can see in this
beautifully drawn figure, the null hypothesis, pf — 5 < 0 is contained within our Cl:
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. This means we cannot reject the null hypothesis, we cannot say there was age discrimination. Itis plausible that
the mean differnence of the entire population of samoan government employees is less than or equal to zero, as it is
within the 95% confidence interval, which means we cannot, as objective jurors, claim there was age discrimination.

Scope of Inference:

Since this sample was random, we can make generalizations about the Samoan Government as a whole, however,
we cannot make causal inferences, as this was not a randomized experiment.
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Outliers and Logarithmic Transformations
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3.4 Practical Strategies for the Two-Sample Problem 67

As an example, consider the hypothetical sample: 10, 20, 30, 50, 70. The sample
average is 36, and the sample median is 30. Now change the 70 to 700, and what
happens? The sample average becomes 162, but the sample median remains 30.
The sample average is not a resistant statistic because it can be severely influenced
by the change in a single observation. The median, however, is resistant.

Resistance is a desirable property. A resistant procedure is insensitive to out-
liers. A nonresistant one, on the other hand, may be greatly influenced by one or
two outlying observations.

3.3.2 Resistance of t-Tools

Since t-tools are based on averages, they are not resistant. A small portion of the
data can potentially have a major influence on the results. In particular, one or two
outliers can affect a confidence interval or change a p-value enough to completely
alter a conclusion.

If the outlier is due to contamination from another population, it can lead to
false impressions about the population of interest. If the outlier does come from
the population of interest, which happens to be long-tailed, the outcome is still
undesirable for the following reason. In statistics, the goal is to describe group
characteristics. An estimate of the center of a distribution should represent the
typical value. The estimate is a good one if it represents the typical values possessed
by the great majority of subjects; it is a bad one if it represents a feature unique
to one or two subjects. Furthermore, a conclusion that hinges on one or two data
points must be viewed as quite fragile.

3.4 PRACTICAL STRATEGIES FOR THE TWO-SAMPLE PROBLEM

Armed with information about the broad set of conditions under which the #-tools
work well and the effect of outliers, the challenge to the data analyst is to size up
the actual conditions using the available data and evaluate the appropriateness of
the t-tools. This involves thinking about possible cluster and serial effects; evaluat-
ing the suitability of the ¢-tools by examining graphical displays; and considering
alternatives.

In considering alternatives it is important to realize that even though the
t-tools may still be valid when the ideal assumptions are not met, an alternative
procedure that is more efficient (i.e., makes better use of the data) may be available.
For example, another procedure may provide a narrower confidence interval.

Consider Serial and Cluster Effects
To detect lack of independence, carefully review the method by which the data were
gathered. Were the subjects selected in distinct groups? Were different groups of
subjects treated differently in a way that was unrelated to the primary treatment?
Were different responses merely repeated measurements on the same subjects?
Were observations taken at different but proximate times or locations? Affirmative
answers to any of these questions suggest that independence may be lacking.

The principal remedy is to use a more sophisticated statistical tool. Identifiable
clusters, which may be planned or unplanned, can be accounted for through analysis
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of variance (Chapters 13 and 14) or possibly through regression analysis (Chapters
9-12). Serial effects require time series analysis, the topic of Chapter 15.

Evaluate the Suitability of the t-Tools

Side-by-side histograms or box plots of the two groups of data should be examined
and departures from the ideal model should be considered in light of the robustness
properties of the t-tools. It is important to realize that the conditions of interest,
which are those of the populations, must be investigated through graphical displays
of the samples.

If the conditions do not appear suitable for use of the #-tools, then some alterna-
tive is necessary. A transformation should be considered if the graphical displays of
the transformed data appear to be closer to the ideal conditions. (See Section 3.5.)
Alternative tools for analyzing two independent samples are the rank-sum proce-
dure, which is resistant and does not depend on normality (Section 4.2); other
permutation tests (Section 4.3.1); and the Welch procedure for comparing normal
populations that have unequal standard deviations (Section 4.3.2).

A Strategy for Dealing with Outliers

If investigation reveals that an outlying observation was recorded improperly or
was the result of contamination from another population, the solution is to correct
it if the right value is known or to leave it out. Often, however, there is no way
to know how the outliers arose. Two statistical approaches for dealing with this
situation exist. One is to employ a resistant statistical tool, in which case there is
no compelling reason to ponder whether the offending observations are natural, the
result of contamination, or simply blunders. (The rank-sum procedure in Section
4.2 is resistant.) The other approach is to adopt the careful examination strategy
shown in Display 3.6. An important aspect of adopting this procedure is that an
outlier does not get swept under the rug simply because it is different from the
other observations. To warrant its removal, an explanation for why it is different
must be established.

Example—Agent Orange

Box plots of dioxin levels in Vietnam and non—Vietnam veterans (Display 3.3)
appear again in Display 3.7. The distributions have about the same shape and
spread. Although the shape is not normal, the skewness is mild and unlikely to
cause any problems with the 7-test or the confidence interval. Two Vietnam veterans
(#645 and #646) had considerably higher dioxin levels than the others.

From the results listed in Display 3.7 it is evident that the comparison of the
two groups is changed very little by the removal of one or both of these outliers.
Consequently, there is no need for further action. Even so, it is useful to see what
else can be learned about these two, as indicated at the bottom of the display.

Notes

1. It is not useful to give a precise definition for an outlier. Subjective examination
is the best policy. If there is any doubt about whether a particular observation
deserves further examination, give it further examination.
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DISPLAY 3.6 | Examination strategy

Statistical analysis Statistical analysis
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for exclusion.

Use resistant analysis (Ch. 4)
or report results of BOTH analyses.

2. It is not surprising that the outliers in the Agent Orange example have little
effect, since the sample sizes are so large.

3. The apparent difference in the box plots may be due to the difference in sample
sizes. If the population distributions are identical, more observations will appear
in the extreme tails from a sample of size 646 than from a sample of size 97.

3.5 TRANSFORMATIONS OF THE DATA

3.5.1 The Logarithmic Transformation

The most useful transformation is the logarithm (log) for positive data. The com-
mon scale for scientific work is the natural logarithm (In), based on the number
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Outlier analysis for Agent Orange data: effect of outliers on the p-value, for equal population

DISPLAY 3.7

means
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But examine outliers carefully
to see what else can be learned.

Veteran # 645: reported 180 days of indirect military exposure to herbicides.
Veteran # 646: reported no exposure (military or civilian) to herbicides.

e = 2.71828. ... The logarithm of e is unity, denoted by log(e) = 1. Also, the log
of 1 is 0: log(1) = 0. The general rule for using logarithms is that log(e®*) = x.
Another choice is the common logarithm based on the number 10, rather than e.
Common logs are defined by log;y(10*) = x. Unless otherwise stated, log in this
book refers to the natural logarithm.

Recognizing the Need for a Log Transformation

The data themselves usually suggest the need for a log transformation. If the ratio
of the largest to the smallest measurement in a group is greater than 10, then
the data are probably more conveniently expressed on the log scale. Also, if the
graphical displays of the two samples show them both to be skewed and if the
group with the larger average also has the larger spread (see Display 3.2), the log
transformation is likely to be a good choice.
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The logarithmic transformation used to arrive at favorable conditions for the two-sample

DISPLAY 38 |Soiicis
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1. Both histograms are skewed.
2. The one with the larger center also has the
larger spread.

| | | | | | I I | I
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Measurement Scale (Y)

Display 3.8 illustrates the behavior of the log transformation. On the scale of
measurement Y the two groups have skewed distributions with longer tails in the
positive direction. The group with the larger center also has the larger spread. The
measurements on the transformed scale have the same ordering, but small numbers
get spread out more, while large numbers are squeezed more closely together. The
overall result is that the two distributions on the transformed scale appear to be
symmetric and have equal spread—just the right conditions for applying the z-tools.

3.5.2 Interpretation After a Log Transformation

For some measurements, the results of an analysis are appropriately presented on
the transformed scale. Most users feel comfortable with the Richter scale for mea-
suring earthquake strength, even though it is a logarithmic scale. Similarly, pH as a
measure of acidity is the negative log of ion concentration. In other cases, however,
it may be desirable to present the results on the original scale of measurement.

Randomized Experiment Model: Multiplicative Treatment Effect

If the randomized experiment model with additive treatment effect is thought to
hold for the log-transformed data, then an experimental unit that would respond
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to treatment 1 with a logged outcome of log(Y) would respond to treatment 2 with
a logged outcome of log(Y) + §. By taking antilogarithms of these two quantities,
one finds that an experimental unit that would respond to treatment 1 with an
outcome of ¥ would respond to treatment 2 with an outcome of Ye®. Thus, e? is the
multiplicative treatment effect on the original scale of measurement. To test whether
there is any treatment effect, one performs the usual z-test for the hypothesis that
6 is zero with the log-transformed data. To describe the multiplicative treatment
effect, one back-transforms the estimate of § and the endpoints of the confidence
interval for §.

Interpretation After Log Transformation
(Randomized Experiment)

Suppose Z = log (Y). It is estimated that the response of an experimental unit to
treatment 2 will be exp(Z> — Z 1) times as large as its response to treatment 1.

Example—Cloud Seeding

Display 3.2 shows that the log-transformed rainfalls have distributions that appear
satisfactory for using the #-tools; so in Display 3.9 a full analysis is carried out on
the log scale. Tests and confidence intervals are constructed in the usual way but on
the transformed data. The estimate of the additive treatment effect on log rainfall
is back-transformed to an estimate of the multiplicative effect of cloud seeding on
rainfall.

Population Model: Estimating the Ratio of Population Medians

The t-tools applied to log-transformed data provide inferences about the difference
in means of the logged measurements, which may be represented as Mean[log(Y2)]—
Mean[log(Y1)], where Mean[log(Y>)] symbolizes the mean of the logged values of
population 2. A problem with interpretation on the original scale arises because
the mean of the logged values is not the log of the mean. Taking the antilogarithm
of the estimate of the mean on the log scale does not give an estimate of the mean
on the original scale.

If, however, the log-transformed data have symmetric distributions, the
following relationships hold:

Mean[log(Y )] = Median[log(Y)]
(and since the log preserves ordering)
Median[log(Y)] = log[Median(Y )],

where Median(Y') represents the population median (the 50th percentile of the pop-
ulation). In other words, the 50th percentile of the logged values is the log of the
50th percentile of the untransformed values. Putting these two equalities together,
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Two-sample ¢-analysis and statement of conclusions after logarithmic transformation—cloud

DISPLAY 3.9 seeding example
@ Transform the data)
Unseeded Seeded
Use the two-sample #-tools
Y (acre-ft)  log (Y) Y (acre-ft) log (Y) on the log rainfall.

1202.6 7.092 2745.6 7.918
830.1 6.722 | 1697.8 7.437 Difference in averages = 1.1436 (SE = 0.4495).
372.4 5.920 1656.0 412
345.5 5.845 978.0 6.886
321.2 5.772 7034 6.556 Test of the hypothesis of no effect of cloud
2443 5498 489 1 6.193 seeding on log rainfall: one-sided p-value from

two-sample #-test = 0.0070 (50 d.f.).
163.0 5.094 430.0 6.064

147.8 4.996 334.1 5.811 ) . -
95% confidence interval for additive effect of
95.0 4.554 3028 5.713 cloud seeding on log rainfall: 0.2406 to 2.0467.
87.0 4.466 274.7 5.616

81.2 4.397 274.7 5.616
68.5 4.227 255.0 5.541
47.3 3.857 242.5 5.491 @gBack-transform estimate)
41.1 3.716 200.7 5.302 and confidence interval.

36.6 3.600 198.6 5.291

29.0 3.367 129.6 4.864
28.6 3.353 119.0 4.779

26.3 3.270 118.3 4.773 Estimate = ¢!143¢ = 3.1382
26.1 3.262 115.3 4.748 Lower confidence limit = ¢*-24%° = 1.2720.
24.4 3.195 92.4 4.526 Upper confidence limit = 0467 _ 7 7475,
21.7 3.077 40.6 3.704
17.3 2.851 32.7 3.487
Lo )
on the original scale.
4.9 1.589 7.7 2.041
1.0 0.000 4.1 1.411

Conclusion: There is convincing evidence that seeding increased rainfall (one-sided p-value =
0.0070). The volume of rainfall produced by a seeded cloud is estimated to be 3.14 times as large as
the volume that would have been produced in the absence of seeding (95% confidence: 1.27 to 7.74
times).

it is evident that the antilogarithm of the mean of the log values is the median on
the original scale of measurements.

If Z and Z, are used to represent the averages of the logged values for samples
1 and 2, then Z>—Z estimates log[Median(Y»)]—log[Median(Y1)], and therefore

—  — ) Median(Y>)
Z, — Z estimates log

Median(Y7)
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and, therefore,
_ Median(Y
exp(Z, — Z 1) estimates |: edian( 2):| .

Median(Y7)

The point of this is that a very useful multiplicative interpretation emerges
in terms of the ratio of population medians. This is doubly important because
the median is a better measure of the center of a skewed distribution than the
mean. The multiplicative nature of this relationship is captured with the following
wording:

Interpretation After Log Transformation
(Observational Study)

It is estimated that the median for population 2 is exp(Z> — Z 1) times as large as
the median for population 1.

In addition, back-transforming the ends of a confidence interval constructed on the
log scale produces a confidence interval for the ratio of medians.

Example (Sex Discrimination)

Although the analysis of the sex discrimination data of Section 1.1.2, was suit-
able on the original scale of the untransformed salaries, graphical displays of the
log-transformed salaries indicate that analysis would also be suitable on the log
scale. The average male log salary minus the average female log salary is 0.147.
Since %147 = 1.16, it is estimated that the median salary for males is 1.16
times as large as the median salary for females. Equivalently, the median salary
for males is estimated to be 16% more than the median salary for females. Since
a 95% confidence interval for the difference in means on the log scale is 0.100
to 0.194, a 95% confidence interval for the ratio of population median salaries
is 1.11 to 1.21 (%199 to ¢0-19%). With 95% confidence, it is estimated that the
median salary for males is between 11% and 21% greater than the median salary
for females.

3.5.3 Other Transformations for Positive Measurements

There are other useful transformations for positive measurements with skewed dis-
tributions where the means and standard deviations differ between groups. The
square root transformation /Y applies to data that are counts—counts of bacteria
clusters in a dish, counts of traffic accidents on a stretch of highway, counts of red
giants in a region of space—and to data that are measurements of area. The recip-
rocal transformation 1/Y applies to data that are waiting times—times to failure of
lightbulbs, times to recurrence for cancer patients treated with radiation, reaction
times to visual stimuli, and so on. The reciprocal of a time measurement can often
be interpreted directly as a rate or a speed. The arcsine square root transformation,
arcsine(v/Y), and the logit transformation, log[Y/(1 — Y)], apply when the mea-
surements are proportions between zero and one—proportions of trees infested by
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a wood-boring insect in experimental plots, proportions of weight lost as a side
effect of leukemia therapy, proportions of winning lottery tickets in clusters of a
certain size, and so forth.

Only the log transformation, however, gives such ease in converting inferences
back to the original scale of measurement. One may estimate the difference in means
of /Y> and /Y7, but the square of this difference does not make much sense on
the original scale.

Choosing a Transformation

Formal statistical methods are available for selecting a transformation. Neverthe-
less, it is recommended here that a trial-and-error approach, with graphical analysis,
be used instead. For positive data in need of a transformation, the logarithm should
almost always be the first tried. If it is not satisfactory, the reciprocal or the square
root transformations might be useful. Keep in mind that the primary goal is to
establish a scale where the two groups have roughly the same spread. If several
transformations are similar in their ability to accomplish this, think carefully about
which one offers the most convenient interpretation.

Caveat About the Log Transformation

Situations arise where presenting results in terms of population medians is not
sufficient. For example, the daily emissions of dioxin in the effluent from a paper
mill have a very skewed distribution. An agency monitoring the emissions will
be interested in estimating the total dioxin load released during, say, a year of
operation. The total dioxin load would be the population mean times the population
size, and therefore is estimated by the sample average times the population size.
It cannot be estimated directly from the median, unless more specific assumptions
are made.

3.6 RELATED ISSUES

3.6.1 Prefer Graphical Methods
Over Formal Tests for Model Adequacy

Formal tests for judging the adequacy of various assumptions exist. Tests for
normality and tests for equal standard deviation are available in most statisti-
cal computer programs, as are tests that determine whether an observation is an
outlier. Despite their widespread availability and ease of use, these diagnostic tests
are not very helpful for model checking. They reveal little about whether the data
meet the broader conditions under which the tools work well. The fact that two
populations are not exactly normal, for example, is irrelevant. Furthermore, the
formal tests themselves are often not very robust against their own model assump-
tions. Graphical displays are more informative, if less formal. They provide a good
indication of whether or not the data are amenable to f-analysis and, if not, they
often suggest a remedy.
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3.6.2 Robustness and Transformation for Paired t-Tools

The one-sample ¢-test, of which the paired ¢-test is a special case, assumes that the
observations are independent of one another and come from a normally distributed
population. P-values and confidence intervals remain valid for moderate and large
sample sizes for nonnormal distributions. For smaller sample sizes skewness can
be a problem. When cluster or serial effects are present (see Section 3.2.4), the
t-tools may give misleading results. When the observations within each pair are
positive, either an apparent multiplicative treatment effect (in an experiment) or a
tendency for larger differences in pairs with larger average values suggests the use
of a log transformation. The transformation is applied before taking the difference,
which is equivalent to forming a ratio within each pair and performing a one-
sample analysis on the logarithms of the ratios. If there are n pairs, let Z; =
log(Y1;) —log(Y2;), which is the same as log(Y;;/Y2;). In an observational study,
exp(?) is an estimate of the median of the ratios, ¥;/Y>. (This is not the same
as the ratio of the medians [see Exercise 20].) In a randomized, paired experiment,
exp(Z) estimates a multiplicative treatment effect on the original scale. In both
cases, the statistical work of testing and constructing a confidence interval is done
on the log scale. The estimate and associated interval are transformed back to the
original scale.

3.6.3 Example—Schizophrenia

In the schizophrenia example of Section 2.1.2, Z; represents the logarithm of the
left hippocampus volume of the unaffected twin divided by the left hippocampus
volume of the affected twin in pair i. The average of the 15 log ratios is 0.1285.
A one-sample analysis gives a p-value of 0.0065 for the test that the mean is zero
and a 95% confidence interval from 0.0423 to 0.2147 for the mean itself. Taking
antilogarithms of the estimate and the endpoints of the confidence interval yields the
following conclusion: It is estimated that the median of the unaffected-to-affected
volume ratios is 1.137. A 95% confidence interval for the median ratio is from 1.043
to 1.239.

3.7 SUMMARY

Cloud Seeding and Rainfall Study

The box plots of the rainfalls for seeded and unseeded days reveal that the two dis-
tributions of rainfall are skewed and that the distribution with the larger mean also
has the larger variance. This is the situation where log-transformed data behave
in accordance with the ideal model. A plot of the data after transformation con-
firms the adequacy of the transformation. The two-sample ¢-test can be used as
an approximation to the randomization test, and the difference in averages (of log
rainfall) can be back-transformed to provide a statement about a multiplicative
treatment effect. In the example, it is estimated that the rainfall is 3.1 times as
much when a cloud is seeded as when it is left unseeded.
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Since randomization is used, the statistical conclusion implies that the seeding
causes the increase in rainfall. Since the decision about whether to seed clouds is
determined (in this case) by a random mechanism, and since the airplane crew is
blind to which treatment they are administering, human bias can have had little
influence on the result.

Agent Orange Study

Graphical analysis focuses attention on the possibly undue influence of two outliers,
but analyses with and without the outliers reveal no such influence, so the 7-tools
are used on the entire data set. The form of the sampling from the populations
of living Vietnam veterans and of other veterans is a major concern in accepting
the reliability of the statistical analysis. Protocols for obtaining the samples have
not been discussed here, except to note that random sampling is not being used.
Conclusions based on the two-sample ¢-test are supplied, along with the caveat that
there may be biases due to the lack of random sampling.

3.8 EXERCISES

Conceptual Exercises

1. Cloud Seeding. What is the experimental unit in the cloud seeding experiment?

2. Cloud Seeding. Randomization in the cloud seeding experiment was crucial in assessing the
effect of cloud seeding on rainfall. Why?

3. Cloud Seeding. Why was it important that the airplane crew was unaware of whether seeding
was conducted or not?

4. Cloud Seeding. Why would it be helpful to have the date of each observed rainfall?

5. Agent Orange. How would you respond to the comment that the box plots in Display 3.3
indicate that the dioxin levels in the Vietnam veterans tend to be larger since their values appear to
be larger?

6. Agent Orange. (a) What course of action would you propose for the statistical analysis if it
was learned that Vietnam veteran #646 (the largest observation in Display 3.6) worked for several
years, after Vietnam, handling herbicides with dioxin? (b) What would you propose if this was
learned instead for Vietnam veteran #6457

7. Agent Orange. If the statistical analysis had shown convincing evidence that the mean dioxin
levels differed in Vietnam veterans and other veterans, could one conclude that serving in Vietnam
was responsible for the difference?

8. Schizophrenia. In the schizophrenia study in Section 2.1.2, the observations in the two groups
(schizophrenic and nonschizophrenic) are not independent since each subject is matched with a twin
in the other group. Did the researchers make a mistake?

9. True or false? A statistical computer package will only print out a p-value or confidence interval
if the conditions for its validity are met.

10. True or false? A sample histogram will have a normal distribution if the sample size is large
enough.
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The permutation test was performed using the following code: We will now perform the same procedure on
the assumptions without an outlier, as well as some other comparisons. Unless otherwise noted, the following code
was used to produce the results and to remove outliers:
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Code 12.1. Automatically input permutation test in SAS

/*Permutation test*/

data Wallet;

INFILE 'file location';

INPUT school $ cash;

run;

proc iml;

use Wallet var {school cash};

/*making two groups in IML*/

read all var {cash} where(school='SMU') into
read all var {cash} where(school='SEU') into
obsdiff = mean(gl) - mean(g2);

print obsdiff;

call randseed(12345); /* set random
alldata = gl // g2; /* stack data
N1 = nrow(gl);

N = N1 + nrow(g2);

gl;
82;

number seed */
in a single vector */

NRepl = 9999; /* number of permutations */
nulldist = j(NRepl,1); /* allocate vector to hold results */

do k = 1 to NRepl;

x = sample(alldata, N, "WOR"); /* permute the data */

nulldist[k] = mean(x[1:N1]) - mean(x[(N1+1):N]);

end;
title "Histogram of Null Distribution";

refline = "refline " + char(obsdiff) + " / axis=x lineattrs=(color=red);";

call Histogram(nulldist) other=refline;

pval = (1 + sum(abs(nulldist) >= abs(obsdiff))) / (NRepl+1l);

/*this means two sided test*/
print pval;
run;
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Code 12.2. Outlier removal in SAS

data Wallet;
INFILE 'file location';
INPUT school \$ cash;

run;
data CleanCash;
set Wallet;

/*we are going to remove all the really high values*/
if cash >150 then delete;

run;

proc ttest data=CleanCash

alpha=.05 test=diff

sides=2; /*a 2 tailed test*/

class school;

var cash;

run;
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Log Transformed data

13.1  Full Analysis

Problem Statement:

We would like to test the claim that the distribution of incomes for those who have 16 years of education is greater
than those who have 12 years of education.

Assumptions

We first produce the plots for our assumption analysis using the following bit of code:

proc import

/*to use proc import first we specify the filex*/
datafile='genericfilepath/genericname.csv'

/*then we specify the name of the output dataset*/
out=edudata /*then we specify the data typex/
dbms=CSV;

run;

proc sort data=edudata;

by descending educ;

run;

proc ttest data=edudata

order=DATA /*This changes theorder of the groups you are using to the one you set*/
sides=U; /*an Upper tailed test*/

class Educ;

var Income2005;

run;

Producing the following figures:
Figure 13.1.1. Q-Q plot of sample
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Figure 13.1.2. Histogram and Boxplot of the sample
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Normality assumption:

Looking at the Q-Q plot(Figure 3.1), it is clear to see that the data is not normal at all. To investigate further, we will
look at the histograms and box plots in Figure 3.2. These paint a more complete picture, we see that the data is
skewed to the right, and that the higher values are much greater than the lower values (hundreds of thousands of

times). To combat this, lets perform a natural log transformation with this bit of code and see whatthe data looks
like:

Code 13.1. log transform in SAS

data edudata2;

set edudata;

lincome=log(Income2005) ;

run;

proc ttest data=edudata2

order=DATA sides=U; /*an Upper tailed testx*/
class Educ;

var lincome;

run;

Producing the following figures:
Figure 13.1.3. Q-Q plot of logs

Q-Q Plots of lincome
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Figure 13.1.4. Histogram and Boxplot of Logs
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With this transformation, we first look at the Q-Q plot (Figure 3.3), and we see that the data is mostly normal!
Looking at the histograms (Figure 3.4) this is confirmed, just in their shape and the shape of the kernel density
plots. The nearness of the median to the mean is also a telltale sign the data is normal. Therefore, we can assume
the log-transformed data is normal.

Equality of Variances

Since we cannot assume normality with the untransformed data, it makes little sense to analyze the equality of
variances of that data set. We will look at the log transformed data for the equality of variances. Looking at figure
3.4, we see that the spread of the two data sets is pretty similar, just in the histograms, they are of similar length,
where the 12 year data set is a bit narrowerthan the 16 year set. The Boxplot confirms this, the distance from the
means to the end of the whiskers is roughly the same for both plots, as well as within the IQRS. The one with the
larger mean also has a larger variance, Therefore, we can assume the log transformed data has equal variances.

Independence

We can assume the data is independent in this scenario.

3.3 Hypothesis testing

We will be using a one tailed pooled t test of the log transformation of the data in this scenario, so that we can do
attest

Statement of Hypotheses:

Note that since we are dealing with a pooled t-test of a log transformation, we are dealing in medians rather than
means, the medians should tell us whether or not the distribution of the people with 16 years of education exceeds
that of those with 12 years of education

Hy :Medianig = Medianis
Hy :Medianig > Medianio
Hy : distribution g =distributions

Hi : distributionig >distributionis

Critical Value

In this scenario, a = 0.1 and df = 1424, and from that we can shade a one sided distribution and find a critical value,
using the code below:
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data pdf;

do x = -4 to 4 by .01;

pdf = pdf ("T", x, 1424);

lower = 0;

if x >= quantile("T",0.9,1424) then upper = pdf;/*one sided*/
else upper = 0;

output;

end; run;

title 'Shaded t distribution';

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

data critval;

p = quantile("T",.9,1424); /*one sided test*/;

proc print data=critval; run;

This produces the shaded distribution:
Figure 13.1.5. Shaded t distribution

Shaded t distribution

and a critical value of t = 1.28215
Obs p

1 128215

Calculation of the t statistic:

Now we calculate our t statististic using the code from Section 3.2.1, which tells us that ¢ = 10.98, which is an
astounding value!

Method Variances DF tValue Pr>t
Pooled Equal 1424 10.98) <.0001
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Calculation of the p-value:

p < 0.0001, see the figure above!

3.3.5 Discussion of the Null hypothesis

We REJECT the null hypothesis, p ~ 0 < 0.1 = «

Conclusion

We Reject the null hypothesis which states that the two distributions are equal. We have convincing evidence
that the income distribution of the people with 16 years of education is greater than those with 12. With a one-
sided p value of ~0, the distributions are very different, the median income of the people with a 16 year education
is evidently greater than the median income of people with a 12 year education. The figure below shows the
difference between the natural logarithm of the two medians:

This tells us that the median income of people with 16 years education is e

Educ Method
16
12
Diff (1-2) Pooled

Diff (1-2) Satterthwaite

Mean
10.7971
10.2272

0.569

0.5699

= 1.77 times greater than those

with 12 years of education. A 90% confidence interval for this multiplicative effectis 1.62 to 1.93 times.

Educ Method Mean
16 10.7971
12 10.2272
Diff (1-2) Pooled 0.5699

Diff (1-2) Satterthwaite 0.5699

90% CL Mean
10.7187 10.8755
10.1832 10.2712

74544 0.6553

0.4800 0.6597

We cannot make causal inferences in this scenario, as there was no random experimentation, and we cannot
make population inferences either, as there was no random sampling
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A Closer Look at Assumptions!

Confidence a=05
Intervals A ! <
and g
Hypothesis ———
Tests — = .

95% CI = —

Vs. =
a = .05 Hyp Test =

For the corresponding
alpha, a (1-alpha)% CI will -
contain mu_0 when the ==
test of Ho: mu = mu_0 =5
fails to reject Ho and will =

not contain mu_0 when ==
the test rejects Ho. =

10/13/2018

—10 o 10

Confidence — =
Intervals —
and ="=
Hypothesis S —
Tests =——=—

Vs. 4 == -_
a=.01 Hyp Test =

The Take Away

Two-Sided 100(1-a)% Confidence Intervals are Equivalent to Two-
Tailed Hypothesis Tests that have an a level of significance.

“Equivalent” here means that if we test any specific value in the
interval, the test will FTR Ho. And if we test any specific value outside
the interval, the test will Reject Ho.

Example:
95% confidence interval for the mean is equivalent to an a = .05
hypothesis test.

Example:
99% confidence interval for the mean is equivalent to an a = .01 level
hypothesis test.

So we can evaluate hypothesis tests through the
evaluation of confidence intervals!

Assumptions of one sample T-Tests

1. Samples are drawn from a normally
distributed population.

2. The observations in the sample are
independent of one another.

Robustness of One Sample T-test / Cl

When the original (population) distribution is not
normal, the one sample t-test is still valid with a
large enough sample size. (Central Limit Theorem)
That is, the one sample t-test is robust to the

normality assumption when the sample size is large
enough.




Assume the population distribution is Exponential.
With A= 1.

Exponential with Lambda = 1
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1000 Cls for the Mean of an
Exponential(1) Distribution: n = 10

Method Mt Recer Samole
Hiears v
Exponenta v
‘ il Note the
nwo Right Skew!
Intervals 1o
Sampe

Conflevel s %

Recalculate

Intervals containing p
895/1000 = 89.5%

Running Total
895/1000 = 89.5%

Note the
Right Skew!

1000 Cls for the Mean of an
Exponential(1) Distribution: n = 100

Method 1000 Most Recent Sampie
IEra—
Exponental v
: z Note the
B Right Skew!
n 100
Intervals 1000
| sample ==
Conflevel s % . - T

Recaloulate Outcomes

Intervals containing i
943 /1000 = 94.3%
Running Total

943/ 1000 = 94.3%

Mean=a 902
50=0.100

Note the greater
symmetry and
smaller standard
deviation.

sort
Reset |
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Given Data, How Do We Check the
Normality Assumption? Visually!

Oisrbutionof Norml_Drsws 0.0 PotforNermal_Orsws

n=100 n =100
#
7
//
» /
Histogram q-q Plot
Random Draws *
ormal_Draws) ; Sproc univariate data = Normal;
call streaminit( var Normal_Draws;
a5 1 =1 €6, 150) histogram Normal Draws;
Normal_Draws = rand("Norm qgplot Normal Draws;
output; run;
end;
run;

Normal g-g Plot
DATA -
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134.5 Q-Q plots are constructed differently depending
148.6 on the software or textbook, but usually include
some combination of the above columns. If the
Qa Plot graph plots green vs. green or orange vs. orange,
s if the data is normal, then points should fall close
: . to the line y=x. If one green and one orange are
to - used, if the data is normal, the points should fall
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R slope=1. Different software will calculate this line
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Given Data, How Do We Check the
Normality Assumption? Visually!

Disrbu 0.0 plttorDrawe

n=100 n=100

Histogram g-q Plot

=proc univariate data = Normal;

run;
Not normal! Data is skewed to the right and does not fall along a straight line in this g-q
plot. B
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Given Data, How Do We Check the
Normality Assumption? Visually!

n=15 n=15

Histogram g-q Plot

=proc univariate data = Normal;
var Draws;

=@vords; histogram Draws;

fi::,: rand ("NORMAL") ; Tt Deavas

andb run;

run;

Data comes from a normal distribution, but it is hard to tell given the small sample size.

streaminit (1

Given Data, How Do We Check the
Normality Assumption? Visually!

Beware of small sample sizes!

Histogram

/* Gen e Normal
“data Normal(keep = Draws);
call streaminit(14);

do i =1 to 15

Draws = rand("

0.2 Plttor s

n=15

q-q Plot

©proc univariate data = Normal;
var Draws;

histogram Draws;

qgplot Draws;

Disbuton fDrave

n=15

Histogram

“data Normal(keep = Draws);
call streaminit (8)

to 1
rand(

n=15

q-q Plot

@proc univariate data = Normal;
var Draws;

histogram Draws;

qgplot Draws;

output; run;
end;

run;
It looks like the data might not be normal (skew, curvature of g-q plot), but it is

hard to tell with this small sample size.

run;

run;

The histogram shows an almost bimodal distribution (definitely not normal), but again it is
hard to tell with small sample sizes. The g-q plot does not look too far away from normality.

A Way to Decide:
| [smallsamplesie [Large Samplesie |

Little to no Evidence
Against Normality

Significant Evidence
Against Normality

No Problem if you feel
Normality is a safe
assumption ... run the T-
Test. (You may want to
be “conservative” here
and run a test with
fewer assumptions.)

Assumptions are not
met and test is not
robust here ... Try a
transformation and, if
appropriate, run a t-test.
If not appropriate, do
NOT run the T-Test and
proceed to a test with
fewer / different
assumotion

No Problem!
Run the T-Test

No Problem .. You have
the Central Limit
Theorem. Run the T-
Test.

A Complete Analysis:

 Statement of the Problem
* Address the Assumptions
* Perform the Appropriate Test (5 Steps)

* Step 6: Provide a conclusion that a non
statistician can understand, include a p-value
and confidence interval.

* Scope of Inference
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Example: Beach Comber Example: Comber

& i - )
. . PROBLEM STATEMENT:
The followmg are ages of 7 randomly chosen patrons seen Ieavmg Test the claim that the mean age of Beach Comber patrons at 7pm is different from
the Beach Comber in South Mission Beach at 7pm! We assume
that the daFa come from a normal dlStrIb!Jth.)n ar,‘d would like to Normal Population Distribution: Judging from the histogram and g-q plots,
test the claim that the mean age of the distribution of Comber there is little to no evidence that the population distribution of patron ages at

patrons is different than 21. the Comber at 7pm is not normal. We will assume that this distribution is

25,19, 37, 29, 40, 28, 31 normal and proceed.

Independence: These subjects were randomly selected from the population;
thus, we will assume that the observations are independent.

ASSUMPTIONS:

Revised Write Up!

We would like to test the claim that the population mean is different from 21. To do this, m .
we take a sample of size n = 7 and find that X = 29.86 years and s = 7.09 yeﬁrs, n 21 Exa ple' Bats
o: L =

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ha:p # 21
Step 2: Draw and Shade and Find the Critical Value.
@ =05 = significance level.
“i/\jzs d=7-1=6
= L -

t
~331-2447 2447 331 t

Step 3: Find the test statistic. (The t value for the data.)
Step 4: Find the p-value: P-value =.0162 < .05

World’s Smallest Mammal The world’s smallest mammal is the bumblebee bat, also
Step 5: REJECT Ho known as the Kitti’s hog-nosed bat (or Craseonycieris thonglongyai). Such bats are
Step 6: There is sufficient evidence to conclude that the true mean age of patrons at the roughly the size of a large bumblebee. Listed helow are weights (in grams) from a
Comber at 7pm is different from 21 (p-value =.0162 from a t-test). A 95% confidence sample of these bats. Test the claim that these bats come from the same population
interval for the mean age is (23.3, 36.4) years. Scope: Since this was a random sample, we having a mean weight equal to 1.8 g.

can generalize these findings to the entire population of Comber patrons at 7pm. Note that 1.7 16 15 20 23 16 1.6 18 15 1.7 22 14 16 1.6 16
we have evidence to support the claim that the mean age is greater than 21 as well.

Example: Bats

00 pletorwaight

World’s Smallest Mammal The world’s smallest mammal is the bumblebee bat, also
known as the Kitti’s hog-nosed bat (or Craseonycteris thonglongyai). Such bats are
roughly the size of a large bumblebee. Listed below are weights (in grams) from a
sample of these bats. Test the claim that these bats come from the same population

= 2o having a mean weight equal to 1.8 g.
’ , ] ) 1.7 16 15 20 23 16 16 18 1.5 1.7 22 14 16 16 16
s N = % : ; : ; . = . _ — = 05~ sgnifcance level,
- = | | : Hy: p=1.8  Critical Values t=12.145 “‘/ \ PP,
data critvals 2
PROBLEM STATEMENT: Hy:p# 1.8 0 e cre, om5,100  [oa] s ! L
Test the claim that the mean weight of the bumble bee bat is different from 1.8 g. 0 =0.05 oo print dara = exizeat; —— P—rT
¥=1.713 7 . .
ASSUMPTIONS: Jogg Teststatistic P-value: .2155 >.05  Fail to Reject H,
y s=.
Normal Population Distribution: Judging from the histogram and g-q plots, there t=-1.297
is some visual evidence of a departure from normality. With a sample size of 15 On the basis of this test, there is not enough evidence to reject the claim that the mean weight of
and no extreme outliers, we will assume the distribution of sample means is bumblebee bats is equal to 1.8 g (p-value = .2155 from a t-test). A 95% confidence interval is (1.57, 1.8566)

grams. The problem was ambiguous on the randomness of the sample; thus, we will assume that it was

decently approximated by a normal distribution via the CLT and proceed with not a random sample, which makes inference to all bats strictly speculative.

caution.
Independence: Not much is known about the sampling scheme used to obtain this ;3 2
ample We will assume the observations are independent.
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Assumptions of one and two
sample T-Tests

1. Samples are drawn from a normally
distributed population.

2. If itis a two sample test, both populations
are assumed to have the same standard
deviation (same shape).

3. The observations in the sample are
independent of one another.

What happens if the normality
assumption is broken?

Many times ....
NO PROBLEM!!!

X X

Cental Limit Theorem

SANIVAN

When data is not normal

Percentaga of 85% confidence intervals that are successful when the two populations are non-
DISPLAY 3.4  nommal (but with same shape and SD, and aqual sample sizas) {each percentage is based on

1,000 computer simulations)
Strongly | Moderately | Mildly Long- Short-
skewed | skewed skewed ailed tailed

Beer1ro1

L |l ﬂm‘,

Sample H l
size | (e

,.
,,,,, . | dlb. |

5 955 954 952 983 94.5

10 955 0954 952 983 94.6

25 953 953 951 98.2 94.9

50 95.1 95.3 95.1 98.1 952

100 94.8 953 95.0 98.0 95.6

2. In a two sample test, both populations are
assumed to have the same standard deviation
(same shape).

Assume: 0y _@/R

Ha K2

We want inference on : u, — piy

Evidence of Inequality of Variance:
VISUAL

Distribution of score

Little visual evidence against equal standard deviations (variances).

Evidence of Inequality of Variance:
F-Test for Equal Variance

..............

N
4 ﬁ Ho: population variances are equal
- // S Ha: population variances are not equal
7%—| )‘\ Equality of Variances
—_— Method | Num DF Den DF F Value Pr>F

Folded F 22 23 140 04289

There is not sufficient evidence to conclude the variances are different (p-value =
.4289 from a F-Test.)




Evidence of Inequality of Variance:
VISUAL

Distribution of score

Percent

percent

Strong visual evidence against equal standard deviations (variances).
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Evidence of Inequality of Variance:
F-Test for Equal Variance

Ho: population variances are equal
Ha: population variances are not equal

Equality of Variances
Method  Num DF | Den DF F Value | Pr=F
Folded F 29 29 185 01043

There is not sufficient evidence to conclude the variances are different (p-value =
.1043 from a F-Test.)

Evidence of Inequality of Variance:
F-Test / VISUAL

- L ] The F-test has a strong assumption that the two
Js populations that it is testing the variances of must

M L be normal. It is not robust to this assumption.

- = Since the second distribution has strong evidence of

right skew, the F-test for Equal Variance is not
appropriate here.
For this example, the visual evidence is so strong
that we would not need to consult a hypothesis
- test to test this assumption of equal variances.

However, later in the semester we will study a test of spread/dispersion that does not
have this assumption and can be used in a wider range of statistical environments.

What happens if the assumption of
equal variances (standard deviations)
is broken?

In some circumstances ....
This could be serious .... In others.....
No Problem!

When variances are not equal

Parcentage of successful 35% confidence intervals when the two populations have different
DISPLAY 35 standard deviations (but are normal] with possibly different sampie sizes {sach percentage is
based on 1,000 computer simulations)

e

v

T

il
A
P

| IJ; )
ation 1 | > |
n o ony Gyp=14 oy =1n| ayo=1 | eyo=2 | 0y pm=1
10 10 942 94.7 95.2 945
10 208 89.3 94.4 98.7 99.1
10 40 82.6 952 90.5 99.9
100 100 96.2 95.4 95.3 95.1

100 200 | intervals 86.5 883 94.8 98.8 994
100 400 1.6 81.5 95.0 99.5 999

The Take Away

What you will find in practice will most likely not fit exactly into the scenarios
identified here. There will be some judgment involved ... this is the “art” of
statistics.

Here are some general rules of thumb that we will assume this semester.

1. If sample sizes are the same and sufficiently large, the t tools (tests and
confidence intervals) are valid ... since they are robust to the violation of
normality.

2. If the two populations have the same standard deviation, then the t tests
are valid ... given sufficient sample sizes.

3. If the standard deviations are different and the sample sizes are different
then the t tools are not valid and another procedure should be used.
(Ch. 4)




A Complete Analysis:

Statement of the Problem

Address the Assumptions
* Perform the Appropriate Test (5 Steps)

* Step 6: Provide a conclusion that a non
statistician can understand. Include a p-value
and confidence interval

* Scope of Inference
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FULL EXAMPLE: CREATIVITY STUDY!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. To do this we take a sample of size n, = 24 and n; = 23 and find that X, =

19.88 points, X = 15.74, 5, = 4.44, and s¢= 5.25 points.

Step 1: Identify the null (Ho) and alternative (Ha) hypothesis.

- How =
o=
- Hap#F
nE o opE
S = E i _=_ 5, Which is equivalent to:
i i
Bommo b m e
P2 EE | Ho: py —pg =0
R

Full Example: Creativity Data

State the Problem: We would like to test the claim
that the mean score of the Intrinsic group is
different than that of the Extrinsic group.

Check Assumptions:
1. Normally Distributed Populations

First Check .... g-g Plot

Q-Q Plots of score
o

2 a [l 1 2 2 a [l 1 2
Quantile Quantile

The g-q plots for both populations look sufficiently
normal. We look at the histograms as well ... but there is
not sufficient evidence here to suggest that they are not
normal.

Histograms

Distribution of score

— o

* Keeping in mind the relative small sample size from each
population, we do not observe any extreme outliers and
observe a pretty strong bell shape which lends evidence to
support normality of the populations.

Normality Assumption

Oistrbuton o score

P Q-0 Plots of score

= / i; :S:m
Z=p RS- .

—
—

Visual inspection of the histograms and g-q plots of each
population are consistent with the normality of each
population. We assume normality and move on to the second
assumption.




Full Example: Creativity Data

State the Problem: We would like to test the claim that
the mean score of those with intrinsic motivation is the
same for those with extrinsic motivation.

Check Assumptions:
1. Normally Distributed Populations
2. Equal Standard Deviations
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Equality of Variances

A visual check was done by looking at the histograms, which reveal similar shapes and
support the equal variances assumption. You can assume equal variances here.
Equality of Variances
Method | Num DF | Den DF F Value | Pr>F
Folded F 29 29 1.85 0.1043

Since we are able to assume normal population distributions, we can use the F-Test to provide
secondary evidence if the visual is inconclusive. Since the p-value is greater than our
significance level of alpha = 0.05, we fail to reject the null hypothesis of equality (p-value =
0.1043) and conclude that there is not enough evidence to suggest the variances are different.

Full Example: Creativity Data

State the Problem: We would like to test the claim
that the mean score of those with intrinsic
motivation is the same for those with extrinsic
motivation.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Independent Observations

The sample consisted of volunteers and thus
subjects may not be independent of one
another. However, we will assume
independence and proceed with caution.

Full Example: Creativity Data

State the Problem: We would like to test the claim that

the mean intrinsic score is the same as the extrinsic score.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Run the Test:

1. First 5 steps.

) . A
Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean score of the Intrinsic group is different than that
of the Extrinsic group. To do this we take a sample of size n, = 24 and n; = 23 and find that X, =
19.88 points, Xy = 15.74, s, = 4.44, and s¢= 5.25 points.

. ) Ho:py — g =0
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ha: p, — p; #0

Step 2: Draw and Shade and Find the Critical Value.

. > @ =.01=significance level.
RS
df=24+23-2=45
.005 005

0
¢t 1

293

_G&E-%

Step 3: Find the test statistic. (The t value for the data.) T

iyt g

=293

Step 4: Find the p-value: P-value 0.0054< .01

Step 5: Key! The sample mean we found is very unusual under the
assumption that the group means are equal (i; — pz). So we Reject
this assumption. That is, we REJECT Ho.




Full Example: Creativity Data

State the Problem: We would like to test the claim that
the mean intrinsic score is the same as the extrinsic score.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Run the Test:

1. First 5 steps.

State the Scope and Conclusion.
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Let’s Fill in the P-value (and add a Cl)!

We would like to test the claim that the mean score of thg Intrinsic group is different an that
of the Extrinsic group. To do this we take a sample of size n, = 24 and n; = 23 and find that ¥, =

19.88 points, X = 15.74, s, = 4.44, and s¢= 5.25 points. Ho: |, — 1z =0
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ha: , — p; %0

Step 2: Draw and Shade and Find the Critical Value.
£-% ol Ba @ = .01 = significance level.
/ \ df=24+23-2=45
005 005
= o
o
¢ —H 4

Step 3: Find the test statistic. (The t value for the data.) t:Sn

Step 4: Find the p-value: P-value = .0054

Step 5: REJECT Ho
Step 6:
Conclusion: There is sufficient evidence to suggest that those who receive the Intrinsic
treatment have a higher mean score than those who receive the Extrinsic treatment (p-value =
.0054 from a two sided t-test). A 99% confidence interval for this difference is (1.29, 7.00).
SCOPE: Since this was a randomized experiment, we can conclude that the Intrinsic treatment
caused this difference. However, since the study was of volunteers, this inference can only be
generalized to the 47 participants.

1.1
(LS
A

LET’S TRY SOME!

For each of these data sets, write up the assumption statement with
respect to checking the assumptions for a one or two sample t-test.
You may assume the data to be independent.

Happiness Data Set

Mice Experiment Data Set

All data sets can be found in one file in this week’s materials.
You will need to add the proc ttest statement for each.
However, you will not need the data for this exercise.

Happiness Study

[r—— Q- Plots of score

5 randomly selected people were asked to rate their happiness on a scale from 1 — 100
on a cloudy day and 8 randomly selected people were asked the same question on a
sunny day.

QOI: Is the mean happiness of individuals different on a cloudy day than a sunny day?
If possible, can we test if cloudy weather causes a change in happiness?

Address each assumption of the two sample t-test and then decide if the two-sample t-
test is appropriate to answer this QOI with this data.

Happiness Study

Otnbtn ot seare Q-0 Plots of score

Normality of Distributions: Judging from the histograms and g-q plots, there is
evidence of outliers in both the Cloudy and Sunny sets. The most pronounced
outlier seems to be in the Sunny data set; thus, there is significant visual evidence
against these data being normally distributed. In addition, we are not satisfied that
the t-test will be robust to this assumption since the sample sized are so small.

Equal Standard Deviations: Judging from the histograms, g-q plots and box plots,
there is significant visual evidence that the standard deviations are different. In
addition, since the sample sizes are different we know that the t-test is not robust to
this assumption.

Independence: We will assume that these data are independent.
The two sample t-test is not appropriate here. We should look for a different test. 3

Mice Study

A large sample of mice were randomly assigned to receive a drug or a placebo (sample
size np = 32 and nj, = 32). The mice’s tcell counts were then taken and histograms and
g-q plots are displayed above.

QOl: Is the mean tcell count of mice that receive the drug greater than that of the
mice that receive the placebo?
Can we draw draw evidence of causality from this study?

Address each assumption of the two sample t-test and then decide if the two-sample t-
test is appropriate to answer this QOI with this data.
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Mice Study

Normality of Distributions: Judging from the histograms and g-q plots, there is
significant visual evidence to suggest the data come from right skewed distributions.
However, since the sample size is large n, = 32 and n,, = 32 the t-test is robust to this
assumption violation.

Equal Standard Deviations: There is strong visual evidence to suggest that the data
come from distributions with different standard deviations. However, since we have
the same sample size in each group, the t-test is robust to this assumption violation,
by a previous “rule of thumb”.

Independence: We will assume that these data are independent.

The two sample t-test is appropriate here.

Transformations

Log Transformation

Display 3.8 p.69

The logarithmic transformation used to arrive at favorable conditions for

the two-sample t-amalysis
Togaritm
Curve

log(Y)

NSFORVATION
s are skewed

2 The one with the langar coner also s the

lrger sprecd

I EEEEEEEER
Measurement Scale (¥)

Appropriate Interpretations After a Log
Transformation —
Example Write Ups....

Observational Study:

“It is estimated that the median for population X is
exp(mean(log(x)) — mean(log(y))) times as large as
the median for population Y.”

Randomized Experiment:

“It is estimated that the median response of an
experimental unit to treatment x will be
exp(mean(log(x)) — mean(log(y))) times as large as
its response to treatment y.”

Cloud Seeding!

How Cloud Seeding Works

3. The silver iodide causes
cloud molsture to freeze
and create ice crystals

. w
\ 4. Ice crystals grow big
enough to fall as snow.

(/\,-/\x
1, inute amount of sitver iodide is
sprayed across a propane flame

2. The silves lodidé’ —
particles rise into

the clouds

Does Cloud Seeding Work?

On days that were deemed suitable for cloud seeding, a
random mechanism was used to decide whether to seed
the target cloud on that day or to leave it unseeded as a
control. Precipitation was measured as the total rain
volume falling from the cloud base following the airplane
seeding run, as measured by radar. We would like to test at
the alpha = .05 level of significance whether cloud seeding
is effective in increasing precipitation.

10



Cloud Seeding: Original Data

=

%

“proc ttest data = cloud sides = u
class

9-QPlots of Rainfal

Treatment;

var rainfall;

run;
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After Log Transformation

Distibution of ogRinfal

T Test and Confidence!!!

Variabl: logesin

Trosment | 1 Woan Std Doy St Err Minimum taximum

Sesded 2 51M2 15MS 03 410

Uncoodod |25 35504 15478 03220 0
oM | s e 04
Treament | Method | tean | 95% CL tean | Sid Dev
Sesda s10t2 4000 5702 15595
Unseeded [
Dif(12) | Pooled 1620
D12 | Satentwaite 1145 03004 oty
Mothod  Varinces DF tVal
Pookea  Eaunl 0 2

Sattrthvaite Unsqusl 49565 2

For the one sided test.

7o
rasz2

955401 S Dew
12504 22000
12a76 22664
13562 20up

Hy: Cloud Seeding does not work.

H,: Cloud Seeding does work. N

Ho: Median, ey = Median e es
Hy: Median, ey > Median s

Soednd
Unsesded 26 15904 16418 02220
ompn | v e ousd

Troairent | Method

Sonded

Unseaded 33004

Nz Pacied

DIOZ | Sammiwaine 11038 2390 18072
Uothod | Vuiamns| OF 1 Vaine
Pooted Eqm 0 2
Samertunbe e 43366 254
For confidence interval.

1cloud sides = 2

10

03904 =15,
18972267
|
|

MW Mean S Dev SedEn Minimuen Masimuen
s 14 0w | e

1o
o rem |

e T o L

s1 T FE 1o e 20k
CTE L

naonm 1] 1w 1 18w

Prom

oour

001

Itis estimated that the median volume of rainfall on days when clouds were seeded was e'1435=3.1 times as large as
when not seeded (p-value = .007). A 90% confidence interval for this multiplicative effect on the median is 1.5 to 6.7
times. Since randomization was used to determine whether any particular suitable day was seeded or not, it is safe to
interpret this as evidence that the seeding caused the larger median rainfall.

E ) = “ e — o : o : als
Sdata lcloud;
lograin = leg(rainfall);
“proc ttest data leloud sides =
z lograin;
Cloud Seeding Book Example
Original
P p— Display 3.9 p7l

Lot

a
= =
= E

T
-
y =
BT
U - N

T sampl
transforma

amalysis and statement of conclusions alter ogarithunic
cloud seeding example

[y (ot et
= Rl )

2 st ot log raatal.

7 Diftraein enges = L1456 GE04195)

R —
kil et

g on ot 2408 30487

A contidece terval )

e =563 5

S ——
CrperconSdee it 25

o)

thatseeding iereased ranfal
that the volume of rainfall produced

Conclusion: There is comvin
5 A

(I-sided p-value = 0070).

a 5,34 times as largo az 7
bean produced n the absence ofseeding, (93% confdance: 1.27 10 7.74 times).

Recap: The Take Away

What you will find in practice will most likely not fit exactly into the scenarios
we identified here. There will be some judgment involved ... this is the “art”

of statistics.

Here are some general rules of thumb that we will assume this semester.

1. If sample sizes are the same and sufficiently large, the t tools (tests and
confidence intervals) are valid ... since they are robust to the violation of

normality.

2. If the two populations have the same standard deviation then the t tests
are valid ... given sufficient sample sizes.

3. If the standard deviations are different and the sample sizes are different
then the t tools are not valid and another procedure should be used.

(Ch. 4)

Appendix

11
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Log Transformations: Theory

Prop 1: x v
L AN L P
og(X')'// N og(Y?/
Mean[log(x)] = Median[log(x)] Because data is
now symmetric
Mean[log(y)] = Median([log(y)] (median =mean)
Prop 2:

The logarithm is a
monotonically increasing “m
function. If X1 >X2 then X1 log(X1)

log(X1) > log(X2). . ) log(Median(X)) = log(X3) = Median(log(X))

Therefore consider X1 through X3 log(X3)
X5 in ascending order so that X4 log(X4)
X1<X2<X3<X4<X5.

Then log(X1) < log(X2) < x5 log(X5)
log(X3) < log(X4) < log(X5).

log(Median(X)) = Median(log(X))

Log Transformations: Theory

Prop 3: Prop 4a: Prop 4b:
X log(x) I
log(X) —log(Y) = log(y) elo8) = x 100910 = ¥
e is a pretty remarkable number!:
e= lim (1+ 1)"
= " &l 1 g ! 1 1 1
—— '?__,z,‘;n!_0!+1!+2!+3!+4!+
nee Yl

1
e=lim (14 x)%
20

€= 271828 18284 59045 23536 02874 71352 66249 77572 47093 69995...

Log (base e) Transformations: Theory

Prop 1: Prop 3: X
Mean[log(x)] = Median[log(x)] log(X) — log(¥) = 'OE(V)
Prop 2: Prop 4a:
log(Median(X)) = Median(log(X)) elog® = x

Derivation:

Mean(log(X)) — Mean(log(Y)) =& Diff of means on log scale
Median(log(X)) — Median(log(Y)) =8 Prop1l

log(Median(X)) — log(Median(Y)) = § Prop2

Median(X) _
Median(Y) - Prop3
Therefore: dianCo
Median(X .
e = ¢ O8Median(r) Median) Prop 4a
Median(Y)

§_Median(X)
_Median(Y)

Log (base 10) Transformations: Theory

Prop 1: Prop 3: X
Mean([log(x)] = Median[log(x)] log(X) —log(¥) = 'OE(V)
Prop 2: Prop 4b:
log(Median(X) = Median(log(X)) 10%0910®) = x

Derivation:

Mean(log(X)) — Mean(log(Y)) =&
Median(log(X)) — Median(log(Y)) =6 Prop1
log(Median(X)) — log(Median(Y)) = § Prop2

Median(X) _
Median(Y) - Prop 3
Therefore: —
Median(X .
108 = 10|0g10[M2dian(Y)]=M Prop 4b

Median(Y)
Og_Median(X)

_Median(Y)

1

Diff of means on log scale

FULL EXAMPLE: SSHA Data

The Survey of Study Habits and Attitudes (SSHA) is a psychological test designed
to measure the motivation, study habits, and attitudes toward learning of college
students. These factors, along with ability, are important to explain success in
school. Scores on the SSHA range from 0 to 200. A selective private college gives
the SSGA to an SRS of both male and female first-year students.

The data for the women are as follows:

156 109 137 115 152 140 154 178 111 123 126 126 137 165 129 200 150
140 116 120 130 131 130 140 142 117 118 145 130 145

The data for men are as follows:

118 140114 180 115 126 92 169 139 121 132 75 88 113 151 70 115 187
114 116 117 145 149 150 120 121 117 129 92 110

Most studies have found that the mean SSHA score for men is lower than the mean
score in a comparable group of women. Test this claim at the alpha = .05 level of
significance. (Show all 6 steps.)

HO: Hw = Hm
Hl: Hw > Hm

Full Example: SSHA Data

State the Problem: We would like to test the claim
that the mean SSHA score of men is less than that
of women.

Check Assumptions:
1. Normally Distributed Populations

12



First Check .... g-g Plot

Q-Q Plots of score

200 { women men

score
score

o
Quantie Quantie

The g-q plots for both populations look sufficiently
normal. We look at the histograms as well ... but there is
not sufficient evidence here to suggest that they are not
normal.

Histograms

Distribution of score

Percant
8

* Keeping in mind the relative small sample size from each
population, we do not observe any extreme outliers and
observe a pretty strong bell shape which lends evidence to
support normality of the populations.

Normality Assumption

Q-0 Plets of score

Visual inspection of the histograms and g-q plots of each
population is consistent with the normality of each
population. We assume normality and move on to the second
assumption.

Full Example: SSHA Data

State the Problem: We would like to test the claim that
the mean SSHA score of men is less than that of women.
Check Assumptions:

1. Normally Distributed Populations

2. Equal Standard Deviations

A visual check was done by looking at the histograms which reveal similar shapes and
support the equal variances assumption. You can assume equal variances here.

Equality of Variances
Method  Num DF | Den DF F Value | Pr=F
Folded F 29 29 185 0.1043

Since we are able to assume normal population distributions, we can use the F-Test to provide
secondary evidence if the visual is inconclusive. Since the p-value is greater than our
significance level of alpha = 0.05, we fail to reject the null hypothesis of equality (p-value =
0.1043) of variances and conclude that there is not enough evidence to suggest the variances
are different.

Full Example: SSHA Data

State the Problem: We would like to test the claim
that the mean SSHA score of men is less than that
of women.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

10/13/2018
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Independent Observations

The sample was indeed a SRS (simple random
sample) from the population of the selective
private college, therefore we assume the
observations are independent of one another.

10/13/2018

Full Example: SSHA Data

State the Problem: We would like to test the claim that
the mean SSHA score of men is less than that of women.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Run the Test:

1. First5 steps.

Run The Two Sample T-Test!!!

* There is no reason to pair these observations and
we have two samples .... Therefore we should use
the two sample t-test with pooled standard
deviation since we are assuming the population
standard deviations are equal. We are testing

here:

Ho: w = iy
Hy: pw> iy

Critical Value

a = .05 = significance level.

Ty - Xy
df=60-2=58
05
- 0
|
tossg = 1.67
data critval;
<.:v = quantile("T",.95,58); Obs %
proc print data = critval; 1/1.67155

run;

Two Sample T-Test ... SAS Output

Gender N Mean StdDev StdErr Minimum Maximum

women |30 1371 201528 3.6794 109.0 200.0
men 30 1242 27.3837 4.999%  70.0000 187.0
Diff (1-2) 12.9000 | 24.0416  6.2075
Gender = Method Mean 95% CL Mean Std Dev 95% CL Std Dev

women

men

1371 1295 1446 201528 16.0498 27.0916
1242 1139 1344 273837 21.8086 36.8123

Diff (1-2) Pooled 12.9000 26238 Infty 240416 20.3521 29.3778
Diff (1-2)  Satterthwaite | 12.9000 25089 Infty

Method Variances Dif'tValue Pr>t
Pooled Equal 53 208 0.0211
Satterthwaite Unequal 53288 U8 0.0213

Equality of Variances
Method | Num DF Den DF FValue Pr>F
Folded F 29 29 185 0.1043

Let’s Formalize This Test Into 6 Steps!

We would like to test the claim that the mean SSHA score of the men is less than the mean
score of women. To do this we take a sample of size n,, = 30 and n,, = 30 and find that X, =
124.2 points, ¥y, = 137.1 and s, = 27.2 5= 20.2 points.
Ho: Hyy — 1y =0
Step 1: Identify the null (Ho) and alternative (Ha) hypothesis. Ha: i, — i, >0

Step 2: Draw and Shade and Find the Critical Value.

oot T = 05 = significance level.
df=60-2258
05
o
t

Eosse = 167

Step 3: Find the test statistic. (The t value for the data.) ¢

Step 4: Find the p-value: P-value = .0211
Step 5: REJECT Ho.

14
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Full Example: SSHA Data Scope

State the Problem: We would like to test the claim that Since the study is between women and men, the
the mean SSHA‘score of men is less than that of women. subjects cannot be randomly assigned to the
Check Assumptions: R
o . two groups, and we have an observational
1. Normally Distributed Populations .
study. For this reason, we cannot make any

2. Equal Standard Deviations . L .
3. Independent Observations causal inference and must limit our conclusions

Run the Test: to differences of group means.
1. First 5 steps. However, the sample was an SRS and thus any
State the Scope and Conclusion. results can be inferred back to the population of

students at this particular private college.

Gender N Mean StdDev Std Er Minimum Maximum
women 30 1371 201628 367%4  109.0 200.0
men 30 1242 273837 4.99% 70.0000 187.0
Diff(12) 129000 24.0416 62075 There is sufficient evidence to support the claim at the a=.05 level of significance (p-
value =.0211) that the mean SSHA score is lower for men than for women at this
Gandcry Mot Mcen oL Meani|isEitay)ox CEEIdIDoY college. A 95% one side confidence interval for this difference is (2.5238 points, o0.)
women 1374 1295 1446 201528 16.0498 27.0916
men 1242 1139 1344 27.3837 218086 368123
Diff (12) | Pooled 12.9008 4.0416 | 203521 29.3778
Diff (1-2) | Satterthwaite | 12.9000 25089 Tty
Scope of Inference: Since the study is between women and men, the subjects
Method Vari; DF tVal P . .
etho ariances LU il cannot be randomly assigned to the two groups, and we have an observational
Pooled Equal 58 208 00211 . . PRI
study. For this reason, we cannot make any causal inference and must limit our
Satterthwaite |Unequal 53288 2.08 0.0213 . A
conclusions to differences of group means.
R However, the sample was an SRS, and thus any results can be inferred back to
Method | Num DE | Den DF | F Value | Pr> F the population of students at this particular private college.
Folded F 29 29 1385 0.1043

ANOTHER FULL EXAMPLE FULL EXAMPLE: Promotion Data

The Revenue Commissioners in Ireland conducted a contest for promotion.
The ages of the unsuccessful and successful applicants are given below.
Some of the applicants who were unsuccessful in getting the promotion
charged that the competition involved discrimination based on age. Treat
the data as samples from larger populations and use a .05 significance level
to test the claim that the unsuccessful applicants are from a population with
a greater mean age than the mean age of successful applicants. Based on
the result, does there appear to be discrimination based on age? (Show all
6 steps.) Assume all data comes from a normally distributed population.

Unsuccessful Applicants:

34 37 37 38 41 42 43 44 44 45
45 60 46 65 49 65 53 54
62 55 56 70 64
Successful Applicants
27 33 36 37 38 38 39 42 42 43
43 44 44 44 45 70 7 72
80 46 47 75 48 72 49 49
51 51 52 54
Ho: py = s
Hy: ps < py

15



Full Example: Promotion Data

State the Problem: We would like to test the
claim that the mean of the successful group is
less than the mean of the unsuccessful group.

Check Assumptions:
1. Normally Distributed Populations

10/13/2018

First Check .... g-q Plot

Successful Q-QPlots ofage  Unsuccessful
w s ] e
n
@
@
) & 850
e
o ~
©
)
5 3
2 4 o 1 2 2 A 0 ' 2
Quantie auantle

The g-q plot for the successful data provides some
evidence of non normality, while the g-q plot for the
unsuccessful data looks consistent with normally
distributed data.

Histograms

Distribution of age

The successful group (top) has a clear right skew to the data, while the unsuccessful group shows a
possible mild right skew. This suggests that both sets of data may be from right skewed
populations. We know that the t-tools are robust to non normality for these types of distributions
so we proceed with the t test.... We will readdress these concerns when we talk about the standard
deviation.

Normality Assumption

Visual Inspection of the histograms and g-q plots indicates the
both data sets may be from a right skewed distribution. We
know that the t-tests are robust to violations of the normality
assumption when the data are from a right skewed
distribution (when the sample size is sufficient), so we proceed
with the t-test.

Full Example: Promotion Data

State the Problem: We would like to test the
claim that the mean of the successful group is
less than the mean of the unsuccessful group.

Check Assumptions:
1. Normally Distributed Populations
2. Equal Standard Deviations

Equality of Variances

A visual check was done by looking at the histograms, which reveal similar shapes and
support the equal variances assumption. We will assume equal variances here.

Equality of Variances
Method | Num DF | Den DF | F Value Pr>F
Folded F 29 22 165 02286

As secondary evidence of the visual is inconclusive, given that the p-value is greater than
our significance level of alpha = 0.05, we fail to reject the null hypothesis of equality of
variances (p-value = 0.2286) and conclude that there is not enough evidence to suggest the
variances are different. i
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Full Example: Promotion Data

State the Problem: We would like to test the
claim that the mean of the successful group is
less than the mean of the unsuccessful group.
Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations
3. Independent Observations

10/13/2018

Independent Observations

The sample was indeed a SRS (simple random
sample) from the population of the selective
private college, therefore we assume the
observations are independent of one another.

Full Example: Promotion Data

State the Problem: We would like to test the claim that
the mean of the successful group is less than the mean of
the unsuccessful group.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Run the Test:

1. First 5 steps.

Run The Two Sample T-Test!!!

* There is no reason to pair these observations,
and we have two samples. Therefore, we should
use the two sample t-test with a pooled standard
deviation, since we are assuming the population
standard deviations are equal. We are testing
here:

HO: /us = tuu
Hy: ps <

Two Sample T-Test ... SAS Output

uors N Mean StdDev Std Err Minimum  Maximum
s 30 49.4000 136535 24745 27.0000  80.0000
u 23 49.9565 105463 21991 340000  70.0000
Diff (1-2) -0.5665 | 12.3464 | 34218

uors | Method Mean 90% CLMean | Std Dev  90% CL Std Dev
s 49.4000 45.1955 53.6045 135535 11.1883 17.3444

u 49,9565 461804 537326 105463 64929 14.0628
Diff (1-2) | Pooled 05566 -6.2690 51760 )2.3464 106401 14.7776
Diff (1-2) | Satterthwaite | -0 5565 61025 40895

Wethod Variances | DF tValue Pr>f

H Pooled Equal 51 0160ena)
. =

= Satierthwaite | Unequal 5098 0.17 0.8672
0 Hs = Hy g

Hl: M < My Equality of Variances

Method | Num DF Den DF FValue Pr>F

) . Folded F 29 2 165 02286
Fail to reject the null e

hypothesis at 0.05 level.

Full Example: Promotion Data

State the Problem: We would like to test the claim that
the mean of the successful group is less than the mean of
the unsuccessful group.

Check Assumptions:

1. Normally Distributed Populations
2. Equal Standard Deviations

3. Independent Observations

Run the Test:

1. First 5 steps.

State the Scope and Conclusion.
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SCOPE

Since the study is between successful and
unsuccessful candidates for a promotion, subjects
cannot be randomly assigned to the two groups,
and we have an observational study. For this
reason we cannot make any causal inference and
must limit our conclusions to differences of group
means.

However, the sample was an SRS and thus any
results can be inferred back to candidates for
promotion from the population that the Revenue
Commissioners of Ireland sampled.

10/13/2018

Conclusion

There is not sufficient evidence to support the
claim at the a=.05 level of significance (p-value
=.4357) that the mean age of those who were
given a promotion is lower than those who
were not given the promotion in this . A 90%
confidence interval for this difference is (-6.3
points, 5.2 points.)
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Part IV

Alternatives to the t tools
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Chapter 15

Problem 2: Logging problem

We are doing rank sum analysis

15.1 Complete Rank-Sum Analysis Using SAS

Problem Statement

We would like to test the claim that logging burned trees increased the percentage of seedlings lost in the Biscuit
Fire region from 2004 to 2005.

Assumptions
Independence

The two-sample Wilcoxon Rank-Sum test assumes that the samples are independent. In this case, the two sets of
tree plots are independent of each other, the amount of tree seedlings in one plot is not directly related to the
amount of tree seedlings in another, if it is, it is not a tangible amount of dependence. Therefore, we can assume
independence. We can also assume ordinality with numericla data

Statement of the Hypothesis

Our null hypothesis, Ho, is that the distribution of percent of saplings lost in the logged plots is less than or equal
to the distribution of percent of saplings lost in the unlogged plots. Our alternative hypothesis, Hy, is that the
distribution of percent of saplings lost in the logged plots is greater than the distribution of percent of saplings
lost in the unlogged plots. Mathematically speaking, we have:

Hy :meanRankioggeqa — meanRankyniogged < 0 (15.1.1)
Hy :meanRankiogged — meanRankyniogged > 0 (15.1.2)

The significance level, a, is:
a=0.05 (15.1.3)

Calculation of the P-value

To find the p value, | performed a Wilcoxon Rank-Sum test. Because the sample size is small, an exact test was used,
as there is no need for a normal approximation. The code used to perform the test is as follows:
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Code 15.1. Exact rank sum test using SAS

/* We want the wilcoxon test and the Hodges-Lehman Confidence Intervalx*/
proc NPARIWAY data=loggingData Wilcoxon HL;

class Action;

Var PercentLost;

/* Because our sample size is small, we want to do an Exact testx/
Exact;

run;

The output of this code is displayed in Figure 2.1:

Figure 15.1.1. Results of the Rank-Sum Test on the Logging Data

Wilcoxon Two-Sample Test

Statistic (S) 36.0000

Normal Approximation

z -2.4346
One-Sided Pr< Z 0.0075
Two-Sided Pr > |Z] 0.0149

t Approximation
One-Sided Pr<Z 0.0139
Two-Sided Pr > |Z] 0.0279

Exact Test

One-Sided Pr<= S 0.0058

Two-Sided Pr>=|S -

Z includes a continuity correction of 0.5.

The calculated p value is

p = 0.0058 (15.1.4)

Results of the Hypothesis Test

We have that:

p =0.0058 < a = .05 (15.1.5)

Therefore, we Reject the Null Hypothesis There is sufficient evidence at the o = 0.5 significance level (p—value =
0.0058 for the exact test) to suggest that the distribution of percentages of saplings lost in the logged plots was
greater than the distribution of percentages of saplings lost.

Statistical Conclusion

MEDIANS FOR NONPAR The data provides convincing evidence that forest recovery is decreased in areas where
burned trees were logged. At a significance level of .05 (or even .01), the distribution/MEDIAN of the percentage
of saplings lost in the logged plots was greater than that of the unlogged areas. This was done with a one sided,
exact p-value of 0.0058. A range of plausible values (95 % confidence interval) for how much greater the median
loss of saplings was for the logged trees is [10.8,65.1], as displayed in Figure 2.2
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Figure 15.1.2. 95% Confidence Interval

Hodges-Lehmann Estimation

Location Shift (U - L) -33.4000

Asymptotic
Type 95% Confidence Limits Interval Midpoint Standard Error
Asymptotic (Moses) -66.8000 -9.0000 -37.9000 14.7452
Exact -65.1000 -10.8000 -37.9500

Note that the negative of these values was taken, because this figure shows Unlogged — Logged.

Scope of Inference

This study was a random sample of trees in the plots, therefore we can make generalizations about all of the trees
in the 16 plots, and say that the areas which were logged had a greater loss of saplings and therefore recovered
more poorly than the unlogged areas. However, this was not a randomized experiment, and therefore we cannot
make causal inferences. That is, we cannot say that the logging of burnt trees caused the greater percent loss of

saplings.

Since the plots were not randomized to receive either the logging or not logging treatment, no causation can
be implied here. Since the transect patterns were randomly selected, this inference can be generalized to the 16

larger plots.

Confirmation Using R

In this section we confirm our findings using R. The R code input is shown below:

Code 15.2. wilcoxon rank sum test using R

loggingData <- read.csv("Data/Logging.csv",header=TRUE, sep=",")
wilcox.test (PercentLost ~ Action,

data = loggingData,

exact = TRUE,

alternative = '"greater")

And the output:

Wilcoxon rank sum test

data: PercentLost by Action
W = 55, p-value = 0.005769
alternative hypothesis: true location shift is greater than O

The results of the two programs are identical!

101




Chapter 16

Problem 3: Welch’s Two Sample T-Test with
Education Data

16.1 Problem Statement and Assumptions

Problem Statement

We would like to examine the claim that the mean income of college educated people (16 years of education) is
greater than the mean income of people with only a high school education (12 years of education)

Assumptions

The code used to produce everything in this section is shown below:

Code 16.1. welch’s t test

proc ttest data=edudata order=DATA
sides=U; /*an Upper tailed testx*/
class Educ;

var Income2005;

run;

Normality

Figure 3.1 shows histograms and Box plots relating to the data:

102



Analysis Guide

Midterm

Figure 16.1.1. Histograms and Box plots
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As we can see from the figure, the data is not normal, itis heavily right skewed in both cases. Both the histograms
and the Box plots show this, as the histograms are way taller on the left side than on the right, while the box plots
show that there is a bunch of data on the left with a ton of outliers, clearly not normal. We examine this further with

the Q-Q plot in Figure 3.2

Figure 16.1.2. Q-Q Plot

Q-Q Plots of Income2005
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The Q-Q plot conifrims our findings that the data is not very normal. However, the sample sizes are 400 and
1000, which means that we can definitely apply the central limit theorem. This means that we can treat the data as

normal, we will assume normality.

Independence

We will assume independence in this case.

16.2 Complete Analysis Using SAS

Statement of Hypotheses

Hy ‘Hi16yeareduc — M12yeareduc <0 (16.2.1)
Hl ‘H16yeareduc — H12yeareduc >0 (1 622)
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Critical t Value

With o« = .05 and a one si
the code shown below.

ded test, the critical t value (with the appropriate degrees of freedom) is calculated using

data critval;

p = quantile("T",.95,473.85); /*one sided test*/;
proc print data=critval;

run;

The critical t value is shown in Figure 3.3:

The critical t value is ¢

This produces Figure 3.4

Figure 16.2.1. Critical t-value

Obs P
1 1.64808

= 1.64. This is illustrated using the following bit of SAS code:

data pdf;

do x = -4 to 4 by .01;

pdf = pdf ("T", x, 473.85);

lower = 0;

if x >= quantile("T",0.95,473.85) then upper = pdf;/*one sidedx*/
else upper = 0;

output;

end;

run;

title 'Shaded t distribution';

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;
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Figure 16.2.2. Shaded t Distribution

Shaded t distribution

Calculation of the t Statistic

To calculate Welch's t Statistic, we use the code seen in Section 3.a.2, giving us a t value of t = 9.98, as seen in
Figure 3.5

Figure 16.2.3. Results of Welch's t-test

Method Variances DF tValue Pr>t
Pooled Equal 1424 13.34 <.0001
Satterthwaite Unequal 47385 98 < 0001

We see that in this case, we have a t-value of 9.98

Calculation of the p Value

We also see from Figure 3.5 thatp = 0

Results of Hypothesis Test

We have that p = 0 < o = .05 and therefore we reject the null hypothesis

Conclusion

We have convincing evidence that the mean income of people with an education of 16 years is greater than the
mean income of people with an education of 12 years. A one sided p-value of zero shows us that the means are
truly different. The figure below shows a one sided 95% confidence interval on our data:
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Figure 16.2.4. Confidence Interval on the Difference of Means

Educ Method Mean 95% CL Mean | Std Dev 95% CL Std Dev
16 69997.0 637279 76266.1 64256.8 60120.1 69009.5
12 36864.9 350604 38669.4 29369.7 28148.2 30702.9
Diff (1-2) Pooled 33132.1 | 29044.0 Infty 42326.9 40828.0 439409

Diff (1-2) Satterthwaite 33132.1

The confidence interval on the difference of means is [27662.2, c0). This estimates what is a plausible difference
between the means of the two samples. As we can see, the distribution of income of the sample with a 16-year
education is at least $27,000 greater than the distribution of income of the sample with a 12-year education.

Scope of Inference

This was an observational study; therefore, we cannot conclude that the extra education caused the change (in-
crease) in mean incomes. Households were selected from a random sample of a previously selected “area of the
United States” and the subjects in this study are the members of those households. Therefore, since every member
of the “area” had the same chance of being selected, it is a random sample of the “areas.” However, no indication
is given on how the “areas” were selected. In conclusion, the association between education and income above
can be generalized to all the members of the “areas” that were selected for this study, but not generalized to the
U.S. as a who

Verification using R

The following R code was used to verify the analysis

eduData <- read.csv("Data/EducationData.csv",header=TRUE, sep=",")
t.test (Income2005 ~ Educ,
data = eduData,

alternative = "less")

This gives the following output:

Welch Two Sample t-test

data: Income2005 by Educ

t = -9.9827, df = 473.85, p-value < 2.2e-16

alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -27662.19

sample estimates:

mean in group 12 mean in group 16

36864 .90 69996.97

Note that R is telling us that the distribution of income of the sample with a 12 year education is at least 27,000
less than those with a 16 year education

Preferences

| prefer the log transformed analysis, they both assume normality, however the log transformed analysis has the
more actually normal data to start with, and the variances are roughly equal. It also speaks more to the medians,
instead of the means, which is much more robust to the huge number of outliers. | think because of the outliers, |
definitely prefer the log method, as the mean is not such a good measurement with these crazy outliers.
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Chapter 17

Problem 4: Trauma and Metabolic
Expenditure rank sum

17.1 Hand-Written Calculations

To summarize, T = 82, u(T) = 56, sd(T) = 8.632 The handwritten work was done before the author understood
continuity correction, the continuity corrected Z and P values were calculated as follows:

(T —0.5) — mean(T)

Z= SD(T)

=295 (17.1.1)
— p =.001568 (17.1.2)

With a continuity correction of 0.5
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17.2 SAS verification

To verify the Z and p values calculated in Section 4.3, the following SAS code was run:

proc NPARIWAY data=TraumaStudy Wilcoxon HL;
class PatientType;

Var MetabolicEx;

run;

The results of this code are shown in Figure 4.1

Figure 17.2.1. Continuity Corrected Wilcoxon Test Using SAS

Wilcoxon Scores (Rank Sums) for Variable MetabolicEx
Classified by Variable PatientType

Sum of Expected Std Dev Mean
PatientType N Scores Under HO Under HO Score

Nontrauma | 8 38.0 64.0 8633269 4.750000
Trauma 7| 82.0 56.0 8.633269 | 11.714286

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 82.0000

Normal Approximation

z 29537
One-Sided Pr > Z 0.0016

Two-Sided Pr > |Z] 0.0031

t Approximation
One-Sided Pr>Z 0.0052
Two-Sided Pr > |Z] 0.0105

Z includes a continuity correction of 0.5.

The Results of the two tests are the same! Note that if you add the phrase “correct=no" to the proc NPARTWAY
statement, you get the same values as the non corrected ones in the handwritten work

17.3 Full Statistical Analysis

Problem Statement

We would like to test the claim that the Trauma patients had higher metabolic expenditures/

Assumptions

The Wilcoxon Rank-Sum test only assumes the data are independent, which in this case we will assume indepen-
dence because the patients were not related to each other in any way, or at least their metabolic expenditures
aren't dependent on the other people’s metabolic expenditures. ALSO obviously normal
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Hypothesis definitions

Hy meanRankr,quma — meanRankyonTrawma < 0 (17.3.1)

Hy :meanRankr,rquma — meanRanknontrauwma > 0 (17.3.2)

In other words, the null hypothesis is that the nontrauma and trauma patients have equal distributions of metabolic
expenditures, while the alternative hypothesis claims that the distribution of the trauma patients’ metabolic expen-
ditures is higher. We are using a one sided hypothesis test because that is what the book calls for. In this scenario,
we will say a = 0.05

Critical Value

The critical value was calculated using the following chink of SAS code:

data critval;

p = quantile("Normal",.95); /*one sided test*/;
proc print data=critval;

run;

Producing a critical t value of ¢t = 1.64485

Figure 17.3.1. Critical Value

Obs p
1 1.64485

The critical value is shown on a normal distribution using the following bit of SAS code

data pdf;

do x = -4 to 4 by .01;

pdf = pdf ("Normal", x);

lower = 0;

if x >= quantile("Normal",0.95) then upper = pdf;/*one sidedx*/
else upper = 0;

output;

end;

run;

title 'Shaded Normal distribution';

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);

run;

The shaded distribution is displayed in Figure 4.3
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Figure 17.3.2. Shaded Normal Distribution

Shaded Normal distribution

Calculation of the z statistic

Our z statistic, calculated in Sections 4.a and 4.b is 2.95.

Calculation of the p value

Our p-value, calculated in Sections 4.a and 4.b is 0.0016

Discussion of the hypothesis
We Reject the null hypothesis, p = .0016 < 0.5 = «

Conclusion

We have convincing evidence that the distribution of metabolic expenditure of trauma patients is than the non-
trauma patients (p=0.0016 on a one sided Wilcoxon rank-sum test). The figure below shows a 95% Hodges-
Lehmann confidence interval on the difference of the two distributions:

Figure 17.3.3. 95% Confidence Interval

Hodges-Lehmann Estimation
Location Shift (Trauma - Nontrauma) 5.3000

Asymptotic
9 «Qjts Interval Midpoint Standard Error
1.9000 16.7000 9.3000 3.7756

This tells us that a plausible difference between the two distributions is between 1.9 and 16.7. As we can see
this does not include the null hypothesis which says their difference is less than or equal to zero. This cannot give
us causal or population inferences because it was neither a randomized experiment nor a random sample ALSO
MEDIANS DUH
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Problem 5: Autism and Yoga signed rank

18.1 Hand-Written Calculations

The results of the calculations are as follows: S = 41, us = 22.5, SDg = 8.4409, The Z value on the paper is incorrect,
as it does not correct for continuity. So, here we will aplply the continuity correction:

S—05-§
- SDhs 18.1.1
‘ SDs ( )
40.5 - 22.5
= —saa09 21 1= .01 p= 18.1.2
8.4409 3 = PoneTail = -0166prsorair = 033 (18.1.2)
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18.2 Verification in SAS and R
Verification in SAS

To verify this, the following bit of SAS code was employed: Producing:

Code 18.1. Signed Rank test in SAS
data Autismdiff;

set Autism;
diff= Before-After;

run;

proc univariate data=Autismdiff;
var diff;

run;

Figure 18.2.1. Signed Rank Test In SAS

Signed Rank S 18.5 Pr>=|S] 0.0313

This two sided p value of 0.0313 is the same as a one sided p value of .01565, and a z value of 2.15. It is slightly

different with my calculations and SAS's because they didnt use a normal approximation, | did.

Verification in R

This R code was employed for the same purposes:

AutismData <- read.csv("Data/Autism.csv",header=TRUE, sep=",

wilcox.test (AutismData\$Before, AutismData\$After,
paired = TRUE,

alternative = '"greater",

conf .int=TRUE)

Yielding:

Wilcoxon signed rank test with continuity correction

data: AutismData\$Before and AutismData\$After
V = 41, p-value = 0.01618

alternative hypothesis: true location shift is greater than O

95 percent confidence interval:
4.999993 Inf

sample estimates:
(pseudo)median

17.49993

The R code applied a continuity correction, instead of doing the exact permutation like SAS. Their P value corre-

sponds with a Z score of 2.139

18.3 6 step Sign Rank test using SAS
Statement of Hypothesis

Hy :Medianpefore — Median ofier <0
Hy :Medianpefore — Medianafier > 0

We will say that e = .05 and we are doing a one sided test
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Critical Values

The critical value was calculated using the following chunk of SAS code:

data critval;

p = quantile("Normal",.95); /*one sided test*/;
proc print data=critval;

run;

Producing a critical t value of ¢ = 1.64485

Figure 18.3.1. Critical Value

Obs p
1| 1.64485

The critical value is shown on a normal distribution using the following bit of SAS code

data pdf;

do x = -4 to 4 by .01;

pdf = pdf ("Normal", x);

lower = 0;

if x >= quantile("Normal",0.95) then upper = pdf;/*one sided*/
else upper = 0;

output;

end;

run;

title 'Shaded Normal distribution';

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a) ;

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

The shaded distribution is displayed in Figure 5.3

Figure 18.3.2. Shaded Normal Distribution

Shaded Normal distribution
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Calculation of a Z statistic

We will use the Z statistic calculated using R/by hand,Z = 2.13, however it will not have a huge effect on the outcome
of the test

Calculation of a p value

For our z value, a one sided p value is p = 0.016.

Assessment of hypothesis

p =.016 < a = .05 —We reject the null hypothesis.

Conclusion

We have conclusive evidence that the median time to complete the puzzle for Autistic children is greater before
20 minutes of Yoga than after 20 minutes of Yoga. We cannot infer causality becuase this was not a randomized
experiment, and we cannot infer anything about the population because this was not a random sample. The me-
dian time for the children was at least 5 seconds longer before Yoga as compared to after Yoga, as seen by the
confidence interval displayed in the R output.

18.4 Paired ttestin SAS

Statement of Hypothesis

HO ‘Hbefore—after < 0 (1841)
H; :pbefore —after >0 (18.4.2)

We will say that « = .05 and we are doing a one sided test.

Critical Values

The critical value was calculated using the following chunk of SAS code:

data critval;

P = quantile("T",.95,8); /*one sided test*/;
proc print data=critval;

run;

With the following output:

Figure 18.4.1. Critical Value

Obs p
1/ 1.85955

With a critical t value of t=1.86. This is demonstrated in a shaded t distribution with the following chunk of code:

data pdf;

do x = -4 to 4 by .01;

pdf = pdf ("T", x,8);

lower = 0;

if x >= quantile("T",0.95,8) then upper = pdf;/*one sided*/
else upper = 0;

output;

end;

run;
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title 'Shaded Normal distribution';

proc sgplot data=pdf noautolegend noborder;

yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a) ;

series x = x y = pdf / lineattrs = (color = black);
series x = x y = lower / lineattrs = (color = black);
run;

The shaded distribution is displayed in Figure 5.5

Figure 18.4.2. Shaded T Distribution

Calculation of a t statistic

The T statistic was calculated using the following SAS code: The t value is shown in Figure 5.6

Code 18.2. Paired T test in SAS

proc ttest data=Autism alpha = .05 sides=U;
paired BeforexAfter;
run;

Figure 18.4.3. Paired t statistic

DF tValue Pr>t
8 254 0.0173

We have at value of 2.54.

Calculation of a P value

The p value can be seen in Figure 5.6: p = .0173

Assessment of Hypothesis

p =.0173 > a = .05 —we reject the null hypothesis.

Conclusion

We have conclusive evidence that the mean of the differences of times before and after the yoga is greater than
zero (p=.0173 on a one sided paired t test). A confidence interval for the mean of the difference of time for the
children to finish the puzzle before and after yoga is shown in Figure 5.7:
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Figure 18.4.4. 95% Confidence interval

95% CL Mean
49132 Infty

This means that the mean of the differences was at least 4.9 seconds. We cannot infer causality because this
was not a randomized experiment, and we cannot make inferences about the population because this was not a

random sample. We also cannot make causal inferences with a paired t test

18.5 Confirmation with R

The R code below was used to verify the results of the previous section:

t.test (AutismData\$Before, AutismData\$After,
paired = TRUE,

alternative = '"greater",

conf.int=TRUE)

The output is presented below:

Paired t-test

data: AutismData\$Before and AutismData\$After

t = 2.5403, df = 8, p-value = 0.01735

alternative hypothesis: true difference in means is greater than O
95 percent confidence interval:

4.913201 Inf

sample estimates:

mean of the differences

18.33333

18.6 Complete Statistical Analysis

In this section, | will be using a paired t-test, because the data is pretty normal, as we will see in the following section.
When both are possible, | believe the paired t test is better because it doesnt mess with the data in any way, we

can see the magnitudes etc.

Assumptions

We can assume the differences are independent because the children did not affect the other children.
To check for normality we examine the following figure:
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Figure 18.6.1. Histogram and Box Plot

Distribution of Difference: Before - After
With 95% Upper Confidence Interval for Mean

Normal

0 Kernel

40

30

Percent

20

O 95% Confidence

—{ o —— °

-50 -25 o 25 50 75
Difference

As we see from Figure 5.8, the data is fairly normally distributed. The histogram is heavier in the center than on
the edges, and the mean is near the median on the Box plot. We will examine this further in Figure 5.9

Figure 18.6.2. Q-Q Plot

Q-Q Plot of Difference: Before - After
60 [}

40 Q

20 o

Difference

-20

-1.5 -1.0 -05 0.0 0.8 1.0 15
Quantile

As we can see, the data follows the line of normality closely, and therefore we can assume normality. This means
that a paired t test is appropriate.

Statement of Hypothesis

HO ‘Hbefore—after < 0 (1861)
Hy :pbefore —after >0 (18.6.2)

We will say that & = .05 and we are doing a one sided test.

Critical Values

The critical value was calculated using the following chunk of SAS code:
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data critval;

p = quantile("T",.95,8); /*one sided test*/;
proc print data=critval;

run;

With the following output:

Figure 18.6.3. Critical Value

Obs p
1 1.85955

With a critical t value of t=1.86. This is demonstrated in a shaded t distr

data pdf;

do x = -4 to 4 by .01;

pdf = pdf ("T", x,8);

lower = 0;

if x >= quantile("T",0.95,8) then upper = pdf;
else upper = 0;

output;

end;

run;

title 'Shaded Normal distribution';

proc sgplot data=pdf noautolegend noborder;
yaxis display=none;

band x = x

lower = lower

upper = upper / fillattrs=(color=gray8a);

series x = x y = pdf / lineattrs = (color = bl
series x = x y = lower / lineattrs = (color =
run;

The shaded distribution is displayed in Figure 5.11

Figure 18.6.4. Shaded T Distribution

Calculation of a t statistic

The T statistic was calculated using the following SAS code:

proc ttest data=Autism alpha = .05 sides=U;
paired BeforexAfter;
run;

The t value is shown in Figure 5.12
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Figure 18.6.5. Paired t statistic

DF tValue Pr>t
8 254 0.0173

We have at value of 2.54.

Calculation of a P value

The p value can be seen in Figure 5.6: p = .0173

Assessment of Hypothesis

p =.0173 > a = .05 —we reject the null hypothesis.

Conclusion

We have conclusive evidence that the mean of the differences of times before and after the yoga is greater than
zero (p=.0173 on a one sided paired t test). A confidence interval for the mean of the difference of time for the
children to finish the puzzle before and after yoga is shown in Figure 5.13:

Figure 18.6.6. 95% Confidence interval

95% CL Mean
49132 Infty

This means that the mean of the differences was at least 4.9 seconds. We cannot infer causality because this
was not a randomized experiment, and we cannot make inferences about the population because this was not a
random sample. We also cannot make causal inferences with a paired t test
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sexy ranked permutation test

Here is the SAS code | designed to conduct a Ranked permutation test | did not have time to add a normal curve

Code 19.1. handcrafted rank sum test

proc import
datafile='c:\Users\david\Desktop\MSDS\MSDS6371\Homework\Week4\Data\Trauma.csv'
out=TraumaStudy

DBMS=CSV;

run;

proc rank data=TraumaStudy out=Ranked ties=mean;
var MetabolicEx;

ranks rank;

run;

proc print data=Ranked;

run;

proc iml;

use Ranked var {PatientType rank};

/*making two groups in IMLx*/

read all var {rank} where(PatientType='Nontrauma') into g2;
read all var {rank} where(PatientType='Trauma') into gil;
obsdiff = sum(gl) - sum(g2);

print obsdiff;

call randseed(12345); /* set random number seed */
alldata = gl // g2; /* stack data in a single vector */
N1 = nrow(gl); N = N1 + nrow(g2);

NRepl = 5000; /* number of permutations */
nulldist = j(NRepl,1); /* allocate vector to hold results */
do k = 1 to NRepl;

x = sample(alldata, N, "WOR"); /* permute the data */
nulldist[k] = sum(x[1:N1]) - sum(x[(N1+1):N]); /* difference of sums */

end;

title "Histogram of Null Distribution";
refline = "refline " + char(obsdiff) + " / axis=x lineattrs=(color=red);";
call Histogram(nulldist) other=refline ;

pval = (1 + sum((nulldist) >= (obsdiff))) / (NRepl+l); /+*this means one sided test, no :

print pval;
quit;

to my figure, however, the p value is more or less the same as the wilcoxon test however it is a more reasonable
number.
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Percent

Figure 19.0.1. Permutation Test

Histogram of Null Distribution

10 -

-75 -50 -25 0 25

nulldist

Histogram of Null Distribution

pval
0.0007998
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Unit 4 lecture slides

Here it is
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Alternatives to (Student
t-Tools

RANK SUM TEST
WELCH’S TEST
SIGN TEST / SIGNED RANK TEST

Let’s Start With an Example

1BM gives each employee in the marketing department technical training

Based on further testing, it appears the traditional training method isn’t effective

Hence, a new training method is developed

Below are the test scores of 4 individuals who just finished the “New Method” and the last 3 test
scores from employees trained via the “Traditional Method” course

Is there evidence to suggest that the “New Method” increases test scores?

New Method  Traditional Method T B hermos
37 23 e

49 31 G
55 46 ’
77

Examining the t-Tools Assumptions

Disibuton o proi

g .0 plas ofprot
. a é =
2 1
£ B
1 .
& < » °
4 x J
I s anie

Since the standard deviations appear (visual check) to be different and the sample sizes are both different and
exceptionally small, the t-test was not deemed appropriate and the nonparametric rank sum test was performed.

Tiikhyihen Fore Parcentage of successful 85% confidence intervals when the two populations have differant
@ DISPLAY 35 standard deviations (but are normal) with possibly different sample sizes (each percentage is
“ 2 based on 1,000 computer simulations)

<+

Which situation does it appear we are in? x

o <aandn, <ny Population L

(less coverage)

n | oyo=a |oyo=1n| oyei=1 | oyoi=2 | ayo=s

_ 952 | o4 947 | 952 | o4
[0 20 S0 w30 | 893 | v4d |- 987 | 991 |

100 100 | for95% 945 | 962 | 954 | 953 | 951
100 200 | intervals 865 | 883 | 948 | 988 | 99.4
100 400 716 | 815 | 950 | 995 | 999

Using a t-test could have low power.

Nonparametric Methods:
The Rank Sum Test

Nonparametric Methods

* A NONPARAMETRIC Or DISTRIBUTION-FREE test doesn’t depend on underlying assumptions

* This makes them ideal for use when the assumptions of non-nonparametric (that is, PARAMETRIC)
testsaren’t met

* The trade-off is that nonparametric methods perform somewhat worse than parametric
methods if the assumptions are approximately correct

* The first nonparametric method we will consider is the “rank sum test”
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Rank Sum Test: Advantages The Hypothesis Test

* No distributional assumptions

e radisor” metne

on af the “new” mathed scores is the same. rer

* Resistant to outliers
. . e w13 A O cne group 5 QU £ the constant Ty, where T, 1S e average fank o Al he data [can be found ater the ampie wzes are detarmined but
+Performs nearly as well as the t-test when the two populations are normal and considerably data i collected)
m o the ks of oo grad s el 0 the contant ¥, whre Vo the exseced sum o ank o any 1240 o at sl 2 canbe found e he

better when there are extreme outliers

*Works well with ORDINAL (as opposed to interval data) o
D e Alternative Hypotheses:
H,: The distribution of the "new” method scores is different from the distribution of the “traditional” method scores WO SIDED)

*Works with censored values
Hy: The average rank of ona group is different from the constant Ty, where T, Is the average rank of all the data (can be found after the sample sizes
afk determined but before data b collected)

N i i ions: Hy: The sum of the ranks of one groyp Is from the constont vy, where ¥ is the expected sum of ranks for roup of that sampie size (can
It still requires some assumptions: oy ed\_'wom;;;malyu:‘:esa{;{\j;wm‘m L from the constont 1, where ¥, 1 the expected sum of ks for any group of that sample size fea

1. All observations are independent 59 patients with arthritis who participated in a clinical
2 The Yvalues are ordinal e trial were assigned to two groups, active and placebo. H,: The distribution of the "new” method scores Is greater than the distribution of the “traditional” method scores {oLE siDED)
" Theresponse status: Hy: The sverage rank of one group is astarthan the constant Ty, where Ty s the average rank of all the data (can be found after the sample sites
‘ aft devermined but befors data s corlected
(excellent=5, good=4, moderate=3, fair=2, poor=1) B ;
> The sum of the ranks of one group (s greater than Lhe constant Vi, where Vo is the expected sum of ranks for any group of that sample size {can
of each patient was recorded. U el R L R A Al i s e B v B

The Rank Sum test The Sampling Distribution of

* We can compute the rank sum test statistic using the following steps:

List all observations from both groups in increasing oriiieirxﬂ Note: n is the total # of observations Th e Ra n k Su m StatIStIC |

1
2. Assign each observation a rank, from 1ton «——
3. Ifthere are any ties, assign each tied observation’s rank to be the average of their ranks.
4. Identify each observation by its group Rank Sum test statistic (sum
i of ranks of one group) is
P "’;""‘“"" approximately normally
« The test statistic, T, is the sum of the ranks in one of the groups. distribution of distributed!
the rank-sum (T)

*We can find a p-value in two ways:
« Normal approximation

* R ization (exact or i

Rank-Sum Test: Normal Approximation Rank Sum Test: randomly assign ranks

Facts about the randomi {or sampling| dmrimhw of the rank-sum statistic—the sum of
DISPLAY 45 Name Order # Group Rank Name Order # Group Rank Name Order # Group Rank
inks in group 1—when thers is no group Bob 1 New 5 Sie 1 New 7 Pam 1 New 3
Sie 2 New 7 Bib 2 New 5 Tm 2 New 4
Fred 3 New 2 Fred 3 New 2 sie 3 New 7
. Jmo 4 New 1 Jmo & New 1 B 4 New 6
Permutation Pm 5 Tad 3 Pm 5 Tad 3 Fred 5 Tad 2
distribution of W 6 [wolo T 6 lwlo Bob 6 Tad 5
the rank-sum (T) B 7 Tad 6 B 1 Tad 6 Jm 7 Tmd 1
T —Mean(T)
Lz= =
Record sum of ranks of one group (e.g. “Trad.”) for all 7! per ions of ranks. (71=7*6*5*4*3*2*1=5040)
S P-value is the number of permutations with a sum equal to or more extreme than the one in the original data
o e My set divided by the total number of permutations.
Mean(T) = n R N . g N .
Could also do an approximate p-value by randomly choosing, say, 1000 orderings of the data.
where R and sy are the average and the sample standard deviation,
respectively, far the combined set of (r; + ny) ranks.
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The NPARTWAY Procedurs

Wilcoxon Scores (Rank Sums) for Variable Score
Classified by Variable Method

Rank-Sum Test:
Normal Approximation e o

Common interpretation: o . e 4 20 160 2eer szmom
Hy: The distribution of New Method Scores = The distribution of the Traditional Method Scores

H,:The distribution of New Method Scores > The distribution of the Traditional Method Scores | ™ ° 70

120 200807 2333353
. Wilcoxon Two-Sam ple Test
Technical mathematical interpretation:

Hy: Average rank of New Method Scores = Average rank of all Scores (constant) Slatstc 7.0000

Rank-Sum Test:
Normal Approximation

Common interpretation:
Hay: The distribution of New Method Scores = The distribution of the Traditional Method Scores
Hy:The distribution of New Method Scores > The distribution of the Traditional Method Scores

The NPARTWAY Procedure.
Wilcoxon Scores (Rank Sums) for Variable Score
Classified by Variable Method

Sum of Expected SwDev  Mean
Method N Scores UnderHO UnderHo  Score
New 4 210 160 2628427 5250000

Taa 3 70 120 2e08e7 233383

Wilcoxon Two-Sample Test

statistic 7.0000

H,: Average rank of New Method Scores > Average rank of all Scores (constant)

Normal Approximation

proc npariuay data = example Uilcoxon; z 15010
class Method;
var score; One-sided Prez

Normal Approximation
There is mild evidence (alpha = 0.1) to suggest that the distribution of scores 2 15010

Two-Sided Pr> 2] 01116

There is mild evidence (alpha = 0.1) to suggest that the distribution of scores
from the “New” method is greater than the distribution of the “Traditional”
method (normal approximation to rank-sum test p-value = 0.0558).

tApproximation
One-sided Pr<z. 00814
Two-Sided Pr> 2| 01627

Zincludes a continuity correction of 0.5.

from the “New” method is greater than the distribution of the “Traditional”
method (normal approximation to rank-sum test p-value = 0.0558).

proc npariuay data = example Wilcoxon;
class Method;
var score

un;

One-sided Prez 00858
Two-Sided Pr> 2] ot1e
tApproximation

One-sided Pr<z. 00814
Two-Sided Pr> 2| 01627

Zincludes a continuity correction of|

Wilcoxon Scorss (Rank Sums) for Variable Score
Classified by Variable Method

of Expected SwDev  Mean

Permutation Test e S B ot
(Exact P-value) e e

Wilcoxon Two-sample Test
statistic (5) 7.0000

data example;
input Score Method $;
datal ines;

37 New

48 New Normat Approximation
8Ny z EET
23 Trad N - _. Onesigearr<z =
lormal approximation p-values -
31 Trag PP P + Twosiaeapr> @ o
ra

i tApproximation

one-sigeapr<z oo
proc npariuay data = example Wilcoxon; rr—"
class Method; (Ewe:dlded Br 2| il
var_Score;
— Exact Test

one-sidedpr<= s o071

- Exact p-values —
Two-Sided Pro=[S-Mean| 01143

Zincludes a consinuity correction of 0.5.

Rank Sum Test (Wilcoxon)

H (9® The distribution of New Method Scores = The distribution of the Traditional Method Scores

“proc nparlway data = example
class Method;

There is sufficient evidence at the alpha = 0.1 level of significance (p-value =.0571
for the exact test) to suggest that the distribution of scores from four IBM
employees that were given the New Method is greater than the distribution of the
3 employees that took the test having had the Traditional Method of instruction.

Wilcoxon Scores (Rank Sums) for Variable Score
Clasified by Variable Method

Sum of Expected SwDev Mean
Method N Scores UnderHO UnderHo  Score
New |4 210 160 2828427 5260000

Tad 3 70 120 28847 233333

Wilcoxon Two-Sample Test
statistc (5) 70000

Normal Approximation

2 Lm10
One-sideaPrez o085
Two-Sided Pr> &1 oms

tapproximation

One-sided Prez 00814
Two-Sided Pr> 2] o627
Exact Test

One-Sided Pr<= §

Two-Sided Pro= | -Mean| 01143
Zincludes a continuity correction of 0.5.

Cognitive Load Experiment

Researchers compared the effectiveness of conventional textbook examples to modified ones

They selected 28 ninth-year students who had no previous exposure to coordinate geometry

The students were randomly assigned to one of two self study instructional groups, using conventional
and modified instructional materials

After instruction, they were given a test and the time to complete one of the problems was recorded.
instruction {for finding the siope of the line that

Cogitie load experinent: modiied method of
DISPLAY 43 gompects C t the midpint betwoon Aand 5)

Is there sufficient evidence to suggest that the
cognitive load theory (modified instruction)
shortened response times?

(A modied worked exampie™
ntegrates e and picire,
Cdgwing s student 0 mare
easlyacquire  schema for
\“eiving suck probiems. )

Cognitive Load Experiment

8|6
0| 7
w| 8
N o .
Modified 10 Conventional
n=14 " =14
(=14 n (n=14)
2f 13|00
slufe
slisfo
1|1
1707
HES
(10
HES
of 2
2
3
2%
2
2
27
2
2
3




10/13/2018

Cognitive Load Experiment

&) @@;
= =

With ties, the ranks are averaged.

Cognitive Load Experiment:
Normal Approximation

Findig the pala ith he noral approination o the pomuttion distiution of herark-
DISPLATAT | ik, g conehy coeonClkaetorefr o cop b mno-lnd
Display 45

T e e e T
lof G
Tl

45

Compute the theoretical “nall ypothess™ )
Qm.wu,mw g At o S 2

Mean(T)= 14x 1452203 SD(T) = 82023 /A4~

O )
sy

2= Q520 _ oiss
217013 [CONTINUITY CORRECTION;
GE ) Onesided |

Statistical Conclusion: The data provide convincing evidence that a student could solve the problém more quickly after
the “modified” rather than the the “conventional” method (one-sided, normal approximation w/ C.C. p-value = 0.0013,
from the rank-sum test).

The NPARIWAY Procedure
4+ H . M‘Mlmse«u{lnllml)w\hﬁlﬂnmn
ognitive Load Experiment: e
sumot | Expectes | sabe|  Msen
. besiment | K| Soorms | UnderH0 | Unders®  Beore
Usi ng SAS | v s ] sean] st
Coment | 14| 200 00 270s mauae
DATA pvalue nocc; oot el
pval = CDF('NORMAL', (137-203)/21.7013); obe Py = ot
e i Tont
1 oommess
rmc PRINT DATA = pvalue_noec; st i i oo
DATA pvalue_yeace; e e Mormal Appeoimation
pval = CDF ('NORMAL', (137.5-203)/21.7013); = | s
RUN; B o OneSdeaPr<z *o001
PROC PRINT DATA = pvalue_yesce: Twa Sitea pr > 7] o0z
+Aowrasmatin
One-Sideg Pr <2 o
Tuo Sideare> 21 oo0ss
PROC NPARIWAY UATA = cognitiveload WILCOKON:
CLASS treatment; bl
VAR time; R _Onefided Prexg f-om
EXACT} TwoSided Prma 5 -Vasl | 0OOIE
RON; Zinciuges s contmuny correction 05

Confidence Interval for the Location Parameter (Median):
Hodges Lehman Confidence Interval

https://en.wikipedia.org/wiki/Hodges%E2%80%93Lehmann_estimator

*We will look at an example later

Cognitive Load Experiment

OXON ALPEA=0.085;

FROC :muulw: .)An\ = cognitiveLoad W,

Modgos-Lehmann Extimation
Locatan S (Masfes - Carvent) 94,0000

Conbdonce

Heporsested. [ Aspmpatie

e orconde) nciusiont Tye 95% Confidence Linvts | Interval Midgoint | Standard Eiror
© Asymptotic (Woses) | -I0.000 570000 ~1085000 ;are0
® A e Exact 1580000 -50.0000 -1085000

o denity hoseshat have tosidod
s 2095,

(R condne et 152
Se (seconds 05

Statistical Conclusion (continued): A range of plausible values for how much smaller the “modified” distribution is than
the “traditional” (treatment effect) is [-158, -59] s. (95% confidence interval based on a rank-sum test) with a point-
estimate of 108.5 s.

Cognitive Load Experiment (All Together)

g o 1l i e e goenon o o etz doionof vaLoad KILCOON
oiseuaver m’: sy s Coneh ot S e LS5 treat

Ho: Distribution of Modified and Conventional Scores are equal
Ha: Distribution of Modified Scores is less than that of

MenT)=14x 145220 SDIT) = 8202 Conventional

R Critical Value (left smed; 1 545 (alpha =.05)
S Test Statistic: z-stat
P-value (left side

Reject Ho

(3 Pt s i) Onesidedpalne = 0013

Statistical Conclusion (continued): The data provide convincing evidence that a student could
solve the problem more quickly after the “modified” rather than the “conventional” method
(one-sided, normal approximation w/ C.C. p-value = 0.0013, from the rank-sum test). A range of e
plausible values for how much smaller the “modified” distribution is than the “traditional”
(treatment effect) is [-158, -59] sec. (95% confidence interval based on a rank-sum test) with a
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Welch’s t-Test

Creativity Study: Reminder

s o K h
;% | @" 1 - Populationsd: gy
(=
s [oGmn T4 G oLy — Popul
e < Cratay > = Populationsd: o

Ko

* W additionally need to know/estimate the standard deviation of ¥; — F

oned in the book

+ There are two was
B

Welch's SO

What if this assumption
isn't true?

To create the pooled SD, we need to assume that o; = 0,

*Then, we can form an estimate of this common standard deviation via

Welch’s t-Test

The only differences between Welch's t-Test and the "pooled” t-test are:

- The standard error: SE(, — ¥;)

T o
SE(Y, - V) = ZT T=s "i‘ + i (Pooled SD)
SE(F, - ¥e) = %+ 4

* The degrees of freedom (Satterthwaite Approximation)

(Cannot be written as above when you cannot assume o{=g7)

_ S -Typ
BE@I*, BET)I*
=) D

fw

Testing Hypothesis:
Welch’s t-Tools

Tha TTEST Procadire
PROC TTEST DATA-creativity ORDE-DATA; il
CLASS intrinsic; e A T T ey —
VAR SCORE; O W e sawe oo wwor wmes
; 0 2 wan | smm e swer e
ompa | ame e e
Hoi ity = g intmmse | Matrod waan | vemcan | sow | L sosons
H: pty # g suen ezm

woem raa
Critical value (Two Sided): £ 055 43108 =12.017 st | s
Test Statistic: t,,,, = 2.92
P-value = .0056

Reject Hy

This experiment provides strong evidence that the intrinsic rather than extrinsic motivation is associated with
a higher scoring poem (p-value = 0.0056 from a two-sample t-test). The estimated treatment effect is 4.14
pts. (95% confidence interval for the treatment effect is [1.28,7.01] pts on a 40 pt. scale.)

Gender Income Discrimination

Distribution of cash

pecont

¥ 88 Bo

[

e =

gonar

200

Gender Income Discrimination

Oistibution of cash
Ho: 5 = iy rense
H: it # iy

Strong evidence against normality, but CTL applies.

Strong evidence against equal standard deviations and -
different sample sizes. (They are close but the standard o
deviations appear to be so different that this may make =
a real difference.) =
We will assume independence.

gonar

Student’s t-test not a good idea here.
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Rank Sum versus Welch’s ... the Take Away

Gender Income Discrimination!

Voriabl: cash

Hotjtp = g If you wish to make inference on the difference of means and you have the sample size to invoke the CLT, Welch’s
1 M jonder | 1| Mean| 5td Dev] 5ud Er | Minimum | Maximum t-test is preferred by most statisticians, and it is robust to different standard deviations even when the sample
Ha: iy # C
B M Fomale 24 A0 21692 41711 4075 722066 size is not equal.
Moo 2 3535 e wm0s sm2s %o
Critical value (Two Sided): £t g5 2013, = £ 2.045 oman  ss07 s2s w2 _ N o X
' Often, especially in skewed distributions, the median is a better measure of center. For this reason, one may
gender Mahod | Moan| 5% CLean | St Dov 95 CL S Dov P : °
Test Statistic: t, = -3.88 Fomae s s esea an2 s prefer the rank sum test even when Welch's t-test is available.

tat

o e =
. . OI(L2) Pooked | 616507 S4TT12 20503 S8iS29 dES283 721003

Reject Hy (1) Sotertwate 616507 (30757 297]

Conclusion: There is strong evidence to suggest that ootod [Vernows] ¢ |tVaie|Pro N

the mean income of the female group s different Peid  [Enw | 40 omos

If you have small sample sizes, you may not be very confident about the normality assumption even if the
histograms and g-q plots look okay. For this reason, one may wish to be “conservative” and run the rank sum
testand obtain inference on the median.

from the mean income of the male group (p-value =
.0006). A 95% confidence interval for this difference

Satertwaite Unecus 29191300 00000

Equaliy of Varances
Method  Num DF Den DF | F Value| Pr>

If there are outliers or censored values, the rank sum test is often the most appropriate as the t-test is not
resistant to outliers and has no way of using censored data.

is (529,124, $94,176) in favor of the males.

FodedF 2 2 197 <o

That is quite a difference!

Performance of Welch’s t-test

Simulation results for unequal variances

‘The simulations show that unequal standard deviations cause the actual error rate to diverge from the target rate for the traditional
one-way ANOVA.

The best case scenario for unequal standard deviations is when group sizes are equal. With a significance level of 0.05, the observed
error rate ranges from 0.0710 008. _

For unequal group sizes, the results varied greatly depending on the standard deviations of the larger and smaller groups. The error
rates for unequal group sizes extend up to 0.221

Paired T-Test

Welch’s ANOVA
What do you do if the test for equal variances indicates that the standard deviations are different? Or that the test has insufficient
power? O, perhaps you just don't want to have to worry about performing and explaining this extra test? Let me introduce you to

Welch's ANOVA!

Welch's ANOVA is an elegant solution because it is a form of one-way ANOVA that does not assume equal variances. And the
simulations show that it works great!

When the group standard deviations are unequal and the significance level is set at 0.05, the simulation error rate for:

[ The raditronal one-way ANGVA tangis from 002 10 022, whike
- Welch's % dinge

Additionally, for d equal, there s only a negligible di in statistical power between

- these two procedures. _

Paired T-Test

Known alternatively as Matched Pairs or Dependent t-Test

A Look at the Variance

= Suppose ¥; and ¥; are variables for two groups

Example of repeated measures

Number | Name | Test 1 Test2

«Fact: Variance(Y, — Y;) = of + 0 — 2 Covariance(Y,,Y;)
. 1 ke |ao% |67
Assumptions

* Data are either:

3 FRTEY Freg e «If the data in each group is independent between groups, then Covariance(¥,Y;) =0

Melissa [00% [86% *For independent groups, Variance(Y; — ¥;) = U,Z + rrzz

3

+ From one sample that has been tested twice (example pre- and post-test or ”
repeated measures)

+ From a group of subjects that are thought to be similar and can thus be
matched or paired (example from same family, or twins) -

wicnet | 7% [o1%

«If ¥; and Y, are before and after variables for the same subject (or otherwise logically paired, dependent
data), the variables are usually positively correlated (Covariance(¥,,¥;) > 0)

Example of matched pairs.

Pair | Name | Age | Test

“For dependent (paired) groups, Variance(Y, — ¥,) = of + o} — 2 Covariance(V,,Y,) < of + af

+ fuomn [as [2s0
« Differences are normally distributed, independent between observations (but = 7 e | (5w
dependent from one group to the next).

2 [ummy [22 [4s0

«If data can be paired, the variance can be reduced.

2 [sessy [21 |200
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Example:
Medical Reasoning Test

* The AMA has a diagnostic test for medical reasoning
Subject # Not Fatigued Fatigued

* On average, people score about 500 points on this test 1 567 530
* We have data from 10 subjects who took the medical ; ;1); :ié
reasoning test. These subjects were randomly selected 4 593 580
from St. Paul Hospital in Dallas 5 588 600

6 491 483

7 520 512
*Not fatigued: is the baseline, taking the test before a shift g 2’23: :;:
*Fatigued: is after the treatment; working for 12 10 508 490

operational hours prior to re-taking the test.
(Lower numbers = worse score)

Example:
Keith’s Medical Reasoning Test

We can try to test whether the DIFFERENCE OF THE MEANS between the fatigued scores and the not
fatigued scores is less than zero.

Hy: Mratigued —Hnot fatigued < 0

If we did this, we would be wrong! Why?

Example: o
. . A fundamental assumption is violated:
Medical Reasoning Test independence
3 =0.01 =1 e TTEST Proceds

sutn | W] wesn | 5150w | SWEr | W | e

i nages %0 02| Mo usee i wes
rofwg 10tk wxw | awm s @0
oma || 103 | seserr | ez

Q-QPlats of seore
0 oy D [ e aun | s GLMenn | EOme | 0% cLsaoe
. utpons 03 ey | a1 e dsma senw
= » Ee notbaig 508 01 4Oy WM am WBM
7 (1 | Posed | q0k0d ey 3% 4o 206 83
= = M1y | Sucertate | 103000y | 357935
H < H
Fa H &
= Matvod [ Varancan | 0F | tvan | pret
Poied | Eou % am omn
= - Saneriai | Greqenl | 17008 087 CaiTe
- - ity o acanens
' T T - - Metod | WamOF | DenOF | FVukon | PraF.
Wl S Fasedr | 3 8 tn omm

Assumption Check Failure

a2y

—
! r‘
HHE R
{'-

We need to account for the dependence between the two groups

Example:
Keith’s Medical Reasoning Test

aul U Lesting Uie pirresenLE ur e mesns

Subject Fatiguad Not Fatigued Difference

1 530 567 -37

2 492 512 -20

We should test the MEAN OF THE DIFFERENCES: ‘3; :f;g :gg -113
5 600 588 12

Ho: tgatiguea—not ratiguea =0 s B i
H,: " : £ <0 8 575 588 -13
A* Hfatigued—not fatigued o 30 520 1
10 490 508 -18

Paired t-test reduces to a one-sample t-test

Hp:d=0
Subj d N d  Diff - Hird <0
ubject  Fatigue ot Fatigued Difference

1 530 567 -37 d= d‘ kol dz + ot dw
2 492 512 -20 10
3 510 509 1 54 is the sample std. dev.
4 580 593 -13
5 600 588 12 _ Sa
6 483 491 8 sE(d) = Jio
7 512 520 -8
8 575 588 -13 i-0 d
9 530 529 1 T= ==
10 490 508 -18 SE(d) E(E)
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A SAS Code Comparison

DATA T‘IEJBJIBG,‘
INFUT fatigued notFatig €@;
DATALINES

RUN;

PROC TTEST DATA=mrt paired ALPHA = 0.01 SI
PAIRED fatigued*notFati
RUN;

Paired T-test

A SAS Cod e CO m pa riso [\ (veah!) AND increase the power (the likelinood

1 osrse

N
10

03000 | -Infly | 17591

Two lindependent) sample T-Test

Using paired data (when appropriate) instead of
unpaired data allows us to tighten the
confidence interval for the difference in means
that our data properly detects a shift in score).

The TTEST Procedura
Diference: fatigued - notFatig

Moan | StSDev | SIAEM  Minimum | Maximum
103000 | 135168 42741 -37.0000 120000

Mean  00% CL Mean | Sid Dev | 00% CL Std Dev
1356158 | 83485 307938

DF  tValue

Paired T-test

Checking the Assumptions

Slrbinan o O gt g

rptbpentii @-Q Plot of Diftarance: ftigued - notFatig

Additional Information

Paired Profiles for dutigusd. notFatig)

o @ &
" " % s e
‘ o * We can look at a PROFILE PLOT
© « The lines connect the scores on the MRT in = ™
b the “fatigued” versus “not fatigued” states
= o > + This plot is standard for SAS proc ttest with - __—______,— s
paired data.
5 = =0
There is little to no evidence that the differences do - i ol o
not come from a normal distribution. 1 o '
We will assume that the differences are independent. Gt o —— -
Is this a reasonable assumption? hosed. -
Tha TTEST Prossdurs
Diferance: latgved - notFati

Conclusion (alpha = 0.01) 5z o seer sven e

10103000 | 135168 | 42741 | 370000 | 120000

Hq* Bratigued-not fatiguea =0 Wean | O9% CL Mean | 54 Dev | 9% CL 5id Dov
Hy:rampisa=ioe pariguss= 0 g0 oty 17Emr | s wses sorese
Critical Value: toq, 9 =-2.821 OF | tvaius | Pret
Test Statistic: t,,=-2.41 9 241 00108

stat

P-value = 0.0196 > 0.01
Fail to Reject Ho

3% CL Mean
z3m1

| staDer | so%ct staDev
17581 | 135358 | 87111 | 200614

Statistical Conclusion: There is ot enough evidence to suggest that, on average, the fatigued sublects score ower than the nonfatigued
subjects (p-value = .0i96). A 99% one sided confidence interval for the mean difference in scores is (-infinity, 1.76). Perhaps, a more
Theanmate] comfidence mienval would bé o twe.Sided 8% confidence imorval of (2536, 1.76)

Scope of Inference: Since this was a random sample from St. Paul Hospital in Dallas, we can infer that this result would be repeated for
any group selected from this hospital.” There is no way to guarantee a causal infererice from a paired t-test.

Note: The elusiveness of the causal nference comes from the fact that the treatment that induces fatigue may [tslf be 3 confounder.

Some may w jours as a surgeon and others may work 12 hours writing reports. There is reason to believe that if a difference is
CRTactod i iforence may not be Sue to otaue rothel may e due 1o the tyge aFwerk.

Appendix
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Alternatives to the t-Test for Paired Data

Example: Nerve Data
/% Sign Test and Signed Rank Test %/ horse sitel
ot ores  sitel  siteR; 6 142
datalines;
6 14 16.4 4 17
9 4 %375 8 37.4
5 1.2 6.6 N
>
1 50.6 38 7 24.2
2 332 8.5 9 352
For each of the 9 horses, a veterinary anatomist measured the density 3 35.2
of nerve cells at specified sites in the intestine. 1 50.6
2 39.2

site2
16.4
19
37.6
6.6
144
24.4
23.2
38
18.6

Using the paired t-Test

N Mean StdDev StdErr Minimum  Maximum

973333 77920 25076 -22000  20.5000

Mean 95%CLMean | StdDev 95%CLStdDev | -~

73333 13431 133235 7.7920 52638 14.0205

DF  tvalue Pre|t|

8 282 00224 - Ce Y

The sample size is rather small, hence the normality assumption is somewhat suspect.

The Hypothesis Test

The hypotheses will be in terms of MEDIANS instead of means

Hy: The mepian difference in nerve cell count between “site 1” and “site 2" is zero

The Alternative Hypotheses:

H,: The mepian difference in nerve cell count between “site 1" and “site 2" is not zero  (Two sipep)

Hj4: The mepian difference in nerve cell count between “site 1" and “site 2" is greater than zero
ONE SIDED]

Sign Test: Horse Data

H,: The menian difference in nerve cell count between “site 1” and “site 2”7 is >0

K—5— H/Z horse  sitel site2 diff Sign
= — 8 374 376 -0.2 =
"/a 4 7 1 2 :

6— .5 — 9/2 b 142 l6.4 -2.2 -
= =.6666 5 11.2 6.6 4.6 +
9/‘4 7 24.2 14.4 9.8 +

9 35.2 24.4 10.8 +

P(Z > .6666) = 0.2527 3 35.2 23.2 12 +
1 50.6 38 12.6 +

(oNE siDeD, CC p-vALUE) 2 39.2 18.6 20.6 +

Test and Conclusion

Hg: The meian difference in nerve cell count between “site 1" and “site 2” is zero
H,: The mepian differencein nerve cell count between “site 1 and “site 2" is positive.

Critical Value (right sided): z,,5=1.645
t statistic: t,,,, = 0.666

P-value (one sided) =.2527

Fail to Reject H,.

Statistical Conclusion: There is not enough evidence that the median nerve density at site 1 is
greater than the median nerve density at site 2 (Wilcoxon sign test one-sided p-value of 0.2527).




10/13/2018

Mean(S) =n(n 4 1)/4  and

S — Mean(s) h‘gse
SD(S) .
39 — 5 —(9=10)/4 6
il ) T
J9+10+19/24 7
P(Z > 1.89) = 0.02938 :
(ONE SIDED, CC P-VALUE) 1
2

Signed Rank Test: Horse Data

SD(S) = [n(n + 1)(2n 4 1)/24]'/2.

sitel
374
17
14.2
11.2
24.2
35.2
35.2
50.6
39.2

site2  abs(diff)  Sign rank

37.6 0.2 - 1

19 2 - 2

16.4 2.2 - 3

6.6 4.6 + 4-

14.4 9.8 + 5

24.4 10.8 + 6

23.2 12 + 7 ~s=39
38 12.6 + 8

18.6 20.6 + 9

Horse Data

/% Sign Test and Signed Rank Test */

data horse;

input_horse sitel site?;
datalines;

6 142 16.4
4 17 19

] 7.4 7.6
5 12 6.6
7 24.2 14.4
9 35.2 ™M.4
3 352 232
1 506 H
2 39,2 18.6

Note: For n < 20 SAS uses the probabilities from the binomial
distribution rather than the normal approximation. These are more
accurate (exact) and we should use these when SAS is available.

Note: These are two sided.... Half of this is close
to our calculated one sided p-values from
earlier. \

data horse2;
set_horse;

diff = sitel - site2;
run;

proc univariate data = horse?;
var diff;
run;

Tests for Location: Mu0=0 \
Test Statistic [ P V"ll\lne
Student'st |t | 2.823066 Pr>[t] \ 0.0
Sign M 15 Pr>=|M| \\‘U.SUTB

T ¥
Signed Rank | § 16.5 | Pr>=|§] | 0.0547

Test, Conclusion and Some Notes

Hy: The meoian difference in nerve cell count between "site 1" and “site 2” is zero
Hy:Them

oian differencein nerve cell count between “site 1” and "site 2" is positive.

Critical Value (right sided): z,,5=1.645 P-value (one sided) =.0294

t statistic: ty,, = 1.89

ot = Reject Ho.

Statistical Conclusion: There is strong evidence that the median nerve density at site 1 is greater
than the median nerve density at site 2 (Wilcoxon signed rank test one-sided p-value of 0.0294).

Note:
* The signed-rank test has more power than the sign test
(Compare the p-values 0.254 vs. 0.0294)

* Both tests make very few assumptions about the distributions

10
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Chapter 21

Problem 1: Plots and Logged Data

We begin our work looking at raw and transformed data.

21.1 Plots and Transformations

Raw Data Analysis

First, we will look at the raw data. To check if the raw data fits the assumptions, we will first look at a scatter plot.
The scatter plot of the raw data was produced by the following bit of SAS code:

Code 21.1. Scatterplot of Raw Data Using SAS

proc sgplot data=EduData;
scatter x=educ y=Income2005;
run;

This results in the following plot21.1:
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Figure 21.1.1. Scatter Plot of the Raw Data
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Looking at Figure 21.1.1, we see that the raw data is very heavy in between 0 and 20,000 for all categories, but
some groups spread further and wider than others, which suggests the variances may not be equal. The heaviness
of the lower end of each group may also suggest a lack of normality. We will examine this further with some Box
plots. These were produced using the following chunk of SAS code: This results in the following plot:

Code 21.2. Boxplot of Raw Data Using SAS

proc sgplot data=EduData;

vbox Income2005 / category=educ
dataskin=matte

xaxis display=(noline noticks);
yaxis display=(noline noticks) grid;
run;
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Figure 21.1.2. Box Plot of the Raw Data
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Figure 21.1.2 tells us a lot about our data. We see from the size and shape of the boxes that the variances of our
data are by no means homogeneous. Note that there are a lot of outliers while the distribution is heavily weighted
towards the bottom, this suggests our data may have departed from normality. We will examine this phenomenaa
further using histograms.

To produce histograms of the raw data, the following SAS code was used: This results in the following plot:

Code 21.3. Histogram of Raw Data Using SAS

proc sgpanel data=EduData;

panelby educ / rows=5 layout=rowlattice;
histogram Income2005;

run;
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Figure 21.1.3. Histogram of the Raw Data
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Figure 21.1.3 confirms our suspicions, the variances of the data are likely unequal, but more importantly, the
data is clearly skewed to the right. We will confirm this using Q-Q plots.

To produce Q-Q plots of the raw data, the following SAS code was used:

/* Normal = blom produces normal quantiles from the data */
/* To find out more, look at the SAS documentation!*/
proc rank data=EduData normal=blom out=EduQuant;

Code 21.4. Q-Q of Raw Data Using SAS

var Income2005;

/* Here we produce the normal quantiles!*/

ranks Edu_Quant;
run;
proc sgpanel data=EduQuant;
panelby educ;

scatter x=Edu_Quant y=Income2005 ;
colaxis label="Normal Quantiles";
run;

This results in the following plot:
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Figure 21.1.4. Q-Q Plot of the Raw Data
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The Q-Q plots in Figure 21.1.4 tell us what we already know: The raw data is not normal, and does not have

equal variances. The ANOVA test is not super robust to highly skewed, long tailed data, and it relies entirely on
equal variances, so we absolutely cannot use the raw data
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Transformed Data Analysis

Now we will perform a log transformation on the data and see if that helps it meet our assumptions better. To do
a log transformation, we will employ the following SAS code: We will begin our analysis of the transformed data

Code 21.5. Logging of Raw Data Using SAS

data LogEduData;

set EduData;
LogIncome=log(Income2005) ;
run;

with a scatter plot, produced with the following SAS code: This results in the following plot:

Code 21.6. Scatterplot of Logged Data Using SAS

proc sgplot data=LogEduData;
scatter x=educ y=LoglIncome;
run;

Figure 21.1.5. Scatter Plot of the Log-Transformed Data
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As we can see in Figure 21.1.5, the groups have a much more similar size, suggesting similar variances, and the
heavy part of the scatter plot is closer to the center, in between the outliers, which tells us the log transformation
may have done a good deal towards normalizing our data. We can examine this further using Box plots.

To produce Box plots of the transformed data, the following SAS code was used: This gives us the following
plot:
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Code 21.7. Boxplot of Logged Data Using SAS

proc sgplot data=LogEduData;

vbox LogIncome / category=educ
dataskin=matte

xaxis display=(noline noticks);
yaxis display=(noline noticks ) grid;
run;

Figure 21.1.6. Box Plot of the Log-Transformed Data
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Figure 21.1.6 gives us some useful information about our data. We see the boxes and whiskers are of similar
size, which tells us the variances are likely homogeneous. Furthermore, the medians and means are near each
other, and the boxes are near the center of the distribution, which suggests that the data may be normal. We will
examine these two phenomena further with histograms. To produce histograms of the log-transformed data, the
following SAS code was used: This results in the following plot:

Code 21.8. Histogram of Logged Data Using SAS

proc sgpanel data=LogEduData;

panelby educ / rows=5 layout=rowlattice;
histogram LogIncome;

run;
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Figure 21.1.7. Histogram of the Log-Transformed Data
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From the spread of the histograms in Figure 21.1.7, we see two things. First, the similar width of the histograms
confirms that variances are roughly equal. Second, the shape of the histograms, and their location near the center
suggests that the data is very nearly normal. We will further examine the normality of the data using Q-Q plots.

To produce the Q-Q plots of the transformed data, the following SAS code was used: This results in the following

Code 21.9. Q-Q of Logged Data Using SAS

proc rank data=LogEduData normal=blom out= LogEduQuant;
var LogIncome;

ranks LogEduQuant;

run;

proc sgpanel data=LogEduQuant;

panelby educ;

scatter x=LogEduQuant y=LogIncome ;

colaxis label="Normal Quantiles";

run;

plot:
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Figure 21.1.8. Q-Q Plot of the Log-Transformed Data
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Examining Figure 21.1.8, we see a confirmation of our beliefs: The log-transformed data, when plotted against
normal quantiles, is fairly normal. This means, with the log transformed data, we can reasonably assume normality
and homogeneity of variances.

21.2 Complete Analysis

We will now perform a complete analysis of our data, using Pure ANOVA.

Problem Statement

We would like to determine whether or not at least one of the five population distributions (corresponding to
different years of education) is different from the rest.

Assumptions

As seen in Section 21.1, the raw data does not meet the assumption of normality nor of homogeneity of variance.
However, in Section 21.1, we proved that after a log transformation, the data does meet both of these assumptions.
The ANOVA test is fairly robust to the slight departure from normality presented by the log transformed data, and
the variances are equal. The data is clearly independent, so that assumption is met. Therefore, all assumptions of
ANOVA are met by the log transformed data.

Hypothesis Definition

In this problem, our Null (Reduced Model) Hypothesis, Hy, is that all the groups have the same distribution and our
Alternative (Full Model) Hypothesis, H; is that the distributions are different. Mathematically, that is written as:

Hy :mediangrand mediangrang mediangrand mMediangrana mediangrand (21.2.1)

Hy :median-12 medianis medianiz_15 medianig mediansig (21.2.2)

We will consider our confidence level, a to be 0.05
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F Statistic
To conduct this hypothesis test, the following SAS code was used: This results in the following ANOVA Output:

Code 21.10. ANOVA Test Using SAS

proc glm data = LogEduData;
class educ;
model LogIncome = educ;

run;
Figure 21.2.1. ANOVA Table
Dependent Variable: Loglncome
Source DF | Sum of Squares Mean Square F Value Pr>F
Model 4 217.653784 54413446 62.87 <.0001
Error 2579 2232.120383 0.865498

Corrected Total 2583 2449774168

Figure 21.2.1 tells us what our F statistic is. We see that

F =62.87 (21.2.3)

P-value

Figure 21.2.1 also tells us our p-value. In this case,

p < .0001 (21.2.4)

Hypothesis Assessment

In this scenario, we have that p < .0001 < « = .05 and therefore we reject the null hypothesis.

Conclusion

There is substantial evidence (p < 0.0001) that at least one of the distributions is different from the others. To further
examine this, we will see if the distribution varies within similar levels of schooling. We will compare <12 and 12
years of school, 12 and 13-15 years of school, 13-15 and 16 years of school, and 16 and >16 years of school. To
do this, we will compare medians, using the following SAS code: This results in the following Table:

Code 21.11. Comparison of distributions using SAS

proc sort data=LogEduData;

by educ;

run;

proc means data = LogEduData median order=data;
by educ;

var LogIncome;

run;
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Table 21.1. Comparison of Logged Means

Education pu
<12 9.9
12 10.22
13-15 10.39
16 10.79
>16 10.89

From Table 21.1, we can calculate the differences of the means for our log transformed groups, and see how
much the distributions differ, shown in the following table:

Table 21.2. Comparison of Distributions

Pair Difference  Multiplicative Effect (e#*=#2) % Increase
<12and 12 0.32 1.38 38
12 and 13-15 0.17 1.19 19
13-15and 16 4 1.49 49
16 and >16 .1 1.11 11

Table 21.2 shows us how many times greater the distribution of the income of the larger education in each pair
is than the lower education level.

Scope of Inference

As this was a random sample, we can make inferences about the population, however, we cannot make causal
inferences, as this was not a randomized experiment. That means, we can say that in general, people with X years
of education make Y many times as people with Z years of education, but we cannot say it is due to the education
itself.

21.3 Extra Values

The extra values were produced with the same code as in Section 28.1. They can be found in Figure 21.2.1, and in
the figure below:

Figure 21.3.1. Extra Values

R-Square Coeff Var Root MSE Loglncome Mean
0.088846 8.913094 0930322 1043770

Value of R?
Figure 21.3.1 tells us R? is 0.0888

Mean Square Error and Degrees of Freedom
The Mean Square Error, shown in Figure 21.2.1, is 2232.12, with 2579 degrees of freedom

ANOVA in R!

Here is the R code and output to do ANOVA in R on the log transformed data:
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Code 21.12. ANOVA in R

edudata <- read.csv(file='data/ex0525.csv', header=TRUE,
edudata$logincome <- log(edudata$Income2005)

// / / /
anovatest <- aov(logincome~Educ,data =edudata)
summary (anovatest)

Df Sum Sq Mean Sq F value Pr(>F)
Educ 4 217.7 54.41 62.87 <2e-16 *xx*x*
Residuals 2679 2232.1 0.87

sep

u’n)
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Problem 2: Build Your Own Anoval

In this section we will be building an ANOVA table to determine whether or not the distribution of income of people
with > 16 years is different than the distribution of income of people with exactly 16 years of education. To build this
ANOVA table, we need two preliminary ANOVA analyses. First, is the ANOVA analysis seen in Section 21.2. This
has the null hypothesis that all the distributions are the same, and the alternative hypothesis that the distributions
differ. Next, we build a second ANOVA table, which will have a null hypothesis that all the distributions are the
same, and an alternative hypothesis that all the distributions are different, except the group with 16 years and the
group with >16 years are still the same. This is done by grouping the two into one group, with the following SAS
code: Next, to compute important parameters, an ANOVA test is conducted on the grouped, logged, data, with

Code 22.1. Regrouping data using SAS

data EduGroupData;

set LogEduData;

Others = educ;

if educ eq "16" educ = ">16" then Others="a";run;

the following bit of code: This results in the following intermediate ANOVA table:

Code 22.2. Secondary ANOVA using SAS

proc glm data = EduGroupData;
class Others;

model LogIncome = Others;
run;

Figure 22.0.1. Grouped ANOVA Table

Source DF  Sum of Squares Mean Square F Value Pr>F
Model 3 215675158 71.891719 83.02 <0001
Error 2580 2234.099010 0.865930

Corrected Total | 2583 2449774168

22.1 Building the Extra Sum of Squares Anova Table

Using the data from 22.0.1 and the data from 21.2.1, we can make our own ANOVA table, which has a null hypoth-
esis that all the distributions different and (except 16 and >16, which are the same), and an alternative hypothesis
that all the distributions are different. Since both hypotheses have the same prediction about the data for <12, 12,
and 13-15, the null hypothesis of our custom-made ANOVA table is that 16 and >16 have the same distribution,
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and the alternative is that they have different distributions. We will now construct our new, extra sum of squares
ANOVA table.

First, for our full model (the “Error” row in the ANOVA table), we will use the full model (alternative hypothesis,
or the "Error” row), from Figure 21.2.1. This represents our alternative hypothesis, where the distribution of 16
and >16 are different. Next, we will construct our reduced model (The “Total” row in the ANOVA table) using the
full model (alternative hypothesis, or the “Error”) from 22.0.1. This represents our null hypothesis, where 16 and
>16 have the same distribution. To generate our Model, or Extra Sum of Squares, which will allow us to find our F
statistic and p value, we need to take a couple of steps. To determine the number of degrees of freedom of our
model, we subtract the number of degrees of freedom from the Error row from the number of degrees of freedom
of the Total row. To calculate the extra sum of squares, we subtract the residual sum of squares of the full model
(error) from the residual sum of squares of the reduced model (total). Then, to find the mean square, we divide
the extra sum of squares by the number of degrees of freedom in our model. Our F statistic is then produced by
normalizing the Extra Sum of Squares, dividing it by the Mean Square Error (in the Error row). To get a p value from
the F statistic, we examine an F distribution with degrees of freedom = %. The results of these computations
are displayed in the following table:

Table 22.1. Homemade ANOVA Table

Source DF Sum of Squares Mean Square FValue Pr>F
Model (Extra SS) 1 1.98 1.98 2.3 0.129
Error (Full) 2579 2232.12 .86

Total (Reduced) 2580 2234.1

22.2 Complete Analysis

Problem Statement

We would like to determine whether or not people with a college degree or a graduate degree have different
distributions of incomes.

Assumptions

There are three assumptions of ANOVA: normality, homogeneity of variance, and independence. We have shown,
in Section 21.1 that while the raw data does not meet the first two assumptions, the log transformed data does.
Both the transformed and raw data meet the assumption of independence. We will proceed with our ANOVA test.

Hypothesis Definition

Our null hypothesis states that the distribution of the >16 and 16 groups is the same, and our alternative hypothesis
states that the distribution of the >16 and 16 groups is different. We proved this in Section 22.1, and this is written
mathematically as:

Hy :median<i2 medianis medianiz—15 medianis, 16 medianie, >16 (22.2.1)
Hy :median<12 medianis medianiz_15 medianig mediansig (22.2.2)
OR:
Hy :medianig = mediansig (22.2.3)
H, :median,g # mediansig (22.2.4)

We will consider our confidence level, a to be 0.05
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F Statistic
The F statistic is calculated with the following equation:
( SSenira ) ( SSextra )
DFeztra DFeztra
F = - =

=~ ISE (22.2.5)

Uj%uu
The results of this calculation can be seen in Table 22.1, we have that F = 2.3 This is a small F statistic, which is likely
indicative of weak evidence.
P-value
The P value is calculated using F, the Extra degrees of freedom, and the Full (Error) degrees of freedom. Using the
values calculated in Table 22.1, we have that p = 0.129
Hypothesis Assessment

At a confidence level a = 0.05, we have that p = .0129 > a = .05. Therefore, we cannot reject the null hypothesis.

Conclusion

There is not enough evidence to suggest that the distribution of income of people with a college only (16 years) is
different from the distribution of income of people with a postgraduate education (>16 years).

Scope of Inference

It is not necessary to write a scope of inference as we did not reject the null hypothesis, however this is a random
sample, so we can make inferences about the population as whole, but we cannot infer causality, as this was not a
random experiment.

22.3 Degrees of Freedom and Comparison to T-Test
This test had 2579 degrees of freedom (as seen in Table 22.1). This is a lot more than than the t test, which is a lot

more than the number of degrees of freedom in the t test. Therefore, this ANOVA test has more power than the t
testl.
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Problem 3: Nonhomogeneous Standard
Deviations

23.1 Complete Analysis

Problem Statement

We would like to determine whether or not at least one of the five population distributions (corresponding to
different years of education) is different from the rest.

Assumptions

As seen in Section 21.1, the raw data does not meet the assumption of normality nor of homogeneity of variance.
However, in Section 21.1, we proved that after a log transformation, the data is at least normal. The ANOVA test is
fairly robust to the slight departure from normality presented by the log transformed data, so we can safely assume
normality. However, we cannot assume homogeneity variances. Therefore, pure ANOVA is not appropriate. Since
the data is to some extent normal, we should try and use a parametric test, as they have more power in general
than their nonparametric analogs. Therefore, the Kruskal-Wallis test is not the most appropriate test. We will instad
use Welch’'s ANOVA Test, which assumes normality but does not assume homogeneity of variance, on the log
transformed data. We can assume the data is independent.

Hypothesis Definition

In this problem, our Null (Reduced Model) Hypothesis, Hy, is that all the groups have the same distribution and our
Alternative (Full Model) Hypothesis, H; is that the distributions are different. Mathematically, that is written as:

Hy :mediangrand mediangrang mediangrand mMediangrana mMediangrand (23.1.1)

H, :median.12 medianis medianiz_15 medianig mediansig (23.1.2)

We will consider our confidence level, a to be 0.05

F Statistic

To conduct this hypothesis test, the following SAS code was used: This results in the following table:

Code 23.1. Welch’'s ANOVA in SAS

proc glm data = LogEduData;
class educ;

model LogIncome = educ;
means educ / welch;

run;
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Figure 23.1.1. Welch’'s ANOVA Table

Welch's ANOVA for Logincome
Source DF FValue Pr=F
Educ | 4.0000 56.59 <.0001
Error 673.9

From Figure 23.1.1, we have that F = 56.59. This is a pretty large F statistic, which means that we probably have
some good evidence in favor of the alternative hypothesis.

P-value

Figure 23.1.1 Also tells us that the p-value associated with the F statistic, which is given as p < 0.0001.

Hypothesis Assessment

We have that p < 0.0001 < o = .05 and therefore we Reject the null hypothesis

Conclusion

There is convincing evidence (p < 0.0001) that at least one of the distributions is different from the others.

Scope of Inference

As this was a random sample, we can make inferences about the population, however, we cannot make causal
inferences, as this was not a randomized experiment. That means, we can say that in general, people with X years
of education make Y many times as people with Z years of education, but we cannot say it is due to the education
itself.
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UNIT 5: Chapter 5

ANOVA

ANOVA

1. Make a Scatterplot of the data in the table below. “Level” is
the Explanatory Variable (X=1, 2, or 3).

I B T AT

Y, [X=i
Y, |X=i 5 12 22
Y;|X=i 7 14 24
Ayix=i

2. Find the Grand Mean ... this is the mean of A

all the Ys together ... regardless of Level.

3. Find the Conditional (Level) Means ... this is
the mean of the Ys per Level. Example: The
Conditional mean a(¥|X =1) = 5.

ANOVA

1. Make a Scatterplot of the data in the table below. “Level” is
the Explanatory Variable (X=1, 2, or 3).

IR B T T

Y| X=i
Y, |X=i 5 12 22
Y| X=i 7 14 24
yix=i 5 12 22
2. Find the Grand Mean ... this is the mean of B
the sample means. If the sample size is the E= XS 13

same in each group, then this is the mean of
all the Ys together ... regardless of Level.

3. Find the Conditional (Level) Means ... this is
the mean of the Ys per Level. Example: The
Conditional mean fi(Y|X =1) =5.

Pure ANOVA EmEmGEES

[

i 2 2

4. Now we need to find the Sum of the Squared e ——
Residuals for the Equal Means Model. P
() - ) = %=
BT T T
(¥ )X = i) - a)*
(YalX = i) = @)?

(ralx =) - @)
Total Sum of Squared Residuals for Equal Means Model:

5. Now we need to find the Sum of the Squared Residuals for the Separate Means Model,
where i, = i(Y|X = i). (VX = D) - a2
I ™= T N M TN
(X =0 = f)*
((Y2lX = i) = 1))?
(31X =) = f)*
Total Sum of Squared Residuals for Separate Means Model:

6. Compare the Total Sum of Squares for each model. Which do you think “fits” better?

Pure ANOVA INEEESES

e
i

4. Now we need to find the Sum of the Squared

Residuals for the Equal Means Model. L]
(v Ix) - )z =7=13
—m
((Y,)X =)= @)* (3-13)* = 100 (10-13)2 = 49
YalX = i) — @)? (5-13)2 = 64 1 81
(yalx = i) - @) 36 1 121

Total Sum of Squared Residuals for Equal Means Model: 462

5. Now we need to find the Sum of the Squared Residuals for the Separate Means Model,

where fi; = a(Y|X = i). (VX = D) = f)?
|| eveliml [ leveliz | leveliz3 |
((VilX =)= a)*
((Yo)X = i) — f))?
(V31X = D) = )*
Total Sum of Squared Residuals for Separate Means Model:
6. Compare the Total Sum of Squares for each model. Which do you think “fits” better?

Pure ANOVA MEESEEED

Y

4. Now we need to find the Sum of the Squared e :: j:
Residuals for the Equal Means Model. Faed
(v 1x) - @)z =%=13

—m
((Yy|X = i) = p)* (3-13) = 100
YalX = i) — p)? 64 1 81
{(¥alX = i) — @)? 36 1 121
Total Sum of Squared Residuals for Equal Means Model: 462

5. Now we need to find the Sum of the Squared Residuals for the Separate Means Model,

where fi; = A(Y|X = i). (VX = D) = f)?
|| tevelimi | leveliz | leveli3 |
(X = i) = )2 (3-5)2=4 (10-12p2 =4 (20-222=4
((ValX =) —p)? 0 0 0
((YalX = D= p)? 4 4 4

Total Sum of Squared Residuals for Separate Means Model: 24

6. Compare the Total Sum of Squares for each model. Which do you think “fits” better?
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Sum of Squares in ANOVA

Between group variation (top row) Total variation (bottom row)

Variation explained by Full Mode!
(different means) .o Variation from Reduced Model {equal means)

Within group variation (middle row)
Variation despite Full Model (different means) *To compute the sum of squares column
for the ANOVA table, square each
distance (lines in black) and then add.

LI The sum of squared* distances (black
lines) for left two graphs = the sum of

10 T squared distances (black lines) for the
i _rl-;_ right graph.

*Each distance squared for the top left graph is multiplied by
the number in each group.

Pure ANOVA

7. Now we would like to make an ANOVA table to test the alternative hypothesis!

Formally write the H, and H, and fill in the table.

[ | s [ wms | F | ProF

Model / Extra SS
Error / Residual/Full Model
Total (Reduced)

Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full

Pure ANOVA

7. Now we would like to make an ANOVA table to test the alternative hypothesis!
Formally write the Ho and Ha and fill in the table.

Hoi = 1, = (Equal Means Model p p )
H,: At least 1 pair are different (Separate Means Model p; W, ;)

[ | s | wms | F | PoF ]

Model / Extra SS
Error / Residual/Full Model 6 24 4
Total (Reduced) 8 462

Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full

Pure ANOVA

7. Now we would like to make an ANOVA table to test the alternative hypothesis!
Formally write the Ho and Ha and fill in the table.

Hoi = 1, = (Equal Means Model p p )
H,: At least 1 pair are different (Separate Means Model p; W, ;)

[ [ s [ wms | F | ProF ]

Model / Extra SS 8-6=2 462-24=438
Error / Residual/Full Model 6 24 4
Total (Reduced) 8 462

Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full

Pure ANOVA

7. Now we would like to make an ANOVA table to test the alternative hypothesis!
Formally write the Ho and Ha and fill in the table.

Ho y= 1, = W (Equal Means Model p p )
H,: At least 1 pair are different (Separate Means Model p; u, ;)

—“ﬂ“—

Model / Extra SS 438  438/2=219
Error / Residual/Full Model 6 24 4
Total (Reduced) 8 462

Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full

Pure ANOVA

7. Now we would like to make an ANOVA table to test the alternative hypothesis!
Formally write the Ho and Ha and fill in the table.

Hoi y= 1y = W (Equal Means Model p p )
H,: At least 1 pair are different (Separate Means Model p; u, H;)

—“ﬂ“—

Model / Extra SS 438 219 219/4=54.75
Error / Residual/Full Model 6 24 4
Total (Reduced) 8 462

Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full




Pure ANOVA

7. Now we would like to make an ANOVA table to test the alternative hypothesis!

Formally write the H, and H, and fill in the table.

Hoi 1= Wy = 1 (Equal Means Model p pp)
H_: At least 1 pair are different (Separate Means Model p, |, 1)
data pval;
pvalue = 1-probf(54.75, 2, 6);
run; Obs pvalue
proc print data = pval; 1 | 000140187
run;
[ | df | ss | wms | F__|p>F]
Model / Extra SS 2 438 219 54.75 .0001
Error / Residual/Full Model 6 24 a4
Total (Reduced) 8 462

Extra Sum of Squares = Residual Sum of Squares Reduced — Residual Sum of Squares Full
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|
. ‘ proc gln dat

F -Test of Different Means ...

Hol = My = M3 (Equal Means Model)
H,: At least 1 pair are different (Separate Means Model)
data AnovaData
ut score Tevel

Distibution of score.

- it

The GLM Procedure

H : 3 Source DF | Sum of Squares | Mean Square | FValue | Pr>F
ol Hodel 2 4380000000 219.0000000 5475 0.0001
Error 6 240000000 40000000

Corrected Total| 8 4520000000

R-Square | Coeff Var | Root MSE  score Hean
0948052 1533462 2000000 1300000

6 Steps for ANOVA F Test (diff means)!

1. Hyp=u, =4 (Equal Means Model)
H,: At least 1 pair are different (Separate Means Model)

2. (ritical value: You can skip this step for ANOVA.

3. F statistic = 54.75 proc gln data = AnovaData;
class level;
- model score = level;

4.  P-value =.0001 « T ] run;

The 6L Procedure

5. Reject Ho. _
—
sourca 0¢ | sum f Sauares | Moan Sqvary - vauo |
ose 2 sssovncen 2100000
. . ror 6 240000000 0000000
6. The evidence suggests that at least 1 pair e R
of the group means are different. (P-value
ReSauare | CofrVor | RootSE  score tean
<.0001 from an ANOVA.) osianse tsanisz| 200 120000

F-Distribution

Fisher—$nedecor
Probability density function

111

d1=
d1=100, d2=100

o
)
~
w
IS
o

F — Statistic =
Extra Sum of Squares

_ ExtraDegress of Freedom _ MS Between _ Variation Explained by Full Model

2 run MS Within Variation Left to be Explained

R-Squared!

R =correlation coefficient
R? = coefficient of determination
Variation Explained by Full Model/é. Extra Sum of Squares
Total Variation Total Sum of Squares
.

R — Squared =

/

/ /
Source DF | Sum of Squares M/eé/n Sql;#re F Value Pr>F
Model 2 438.0000000, i 219 Qﬂﬂﬂﬂﬂ 54.75 0.0001
Error 3 24.0000000 /z{ 0000000

/

Corrected Total | & 462.0000000

R-Square ||Coeff Var | Root MSE | score Mean

0.948052 | 1538462 2000000 13.00000

438 *Rho (p) is the parameter for which r is an estimate

R — Squared = 62 0.948052  (just like pand ¥ or o and s). A hypothesis test of
whether p =0 is equivalent to the basic ANOVA test
of whether all the means are the same (try it!).

Coefficient of Variation

square root of the unexplained variation
Coefficient of Variation = x 100%
grand mean

Source DF  Sum of Squares Mean Square | F Value | Pr>F
Model 2 438.0000000  219.0000000 6475 | 0.0001
Error 6 240000000 4.0000000

Corrected Total | & 462 0000000

R-Square| Coeff Var Root MSE  score Mean
0.948052| 15.38462 | 2.000000 13.00000

VMSE 2
Coefficient of Variation = ——x 100 = 3 100 = 15.38462

Coefficient of Variation is also called the relative standard deviation.




ANOVA: Assumptions and Robustness

1. Normality: Similar to t-tools hypothesis testing,
ANOVA is robust to this assumption. Extremely long-
tailed distributions (outliers) or skewed distributions,
coupled with different sample sizes (especially when
the sample sizes are small) present the only serious
distributional problems.

2. Equal Standard Deviations: This assumption is crucial,
paramount, and VERY important.

3. The assumptions of independence within and across
groups are critical. If lacking, different analysis should
be attempted.
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Samples drawn from
Normal Distributions

* Same visual checks as with t-tools, just for

more groups.
— Histograms
—Q-Q plots

More on Constant SD

95% confidence interval accuracy with different sample
sizes and standard deviations for three groups.

Levene’s Test (Median)

45.3 Levene's (Median) Test for Equality of Two Variances

Sometimes a question of interest calls for a test of equality of two population
. The F-test for equal variances and its associated confidence inferval are
available in standard statistical computer packages, hut thev are not robust against
For example, p-values can easily be off by a factor of
horter or longer tails than the normal

variance

departures from normali
10'if the distributions ha

H,:0,=0,
H,:0,# 0,

= =20
moomoom oy=ds o= 03=2
010010 99.9 919 96.8

20 10 10 998 848 9.7

02 10 99.9 97.0 98.8

010 20 99.9 90.4 97.5 99.9

A robust alternative is Levene’s test (based on deviations from the median).
Suppose there are nj observations ¥i; from population 1, and ny observations
¥2; from population 2. Let Zi; be the absolute value of the deviation of the ith
observation in group 1 from its group median: |¥ iang|, and let. Z5; be the
absolute value of the deviation of the ith observation in group 2 from its median:
[¥5; —median|. The typical size of the Z's indicates the degree of variability in each
group. The Levene test idea is to perform a two-sample r-test on the Z's to judee
equal variability in the two groups. This procedure seems to have good power in

Tetorting nonequal variability yot works well even for nonnormally distributed ¥’s,

x abs(x - median] y ‘abs(y-median)

" o 1020 2 Method Variances DF tValue | Pr>ti
10 2 1025 3

12 0 1028 o Pooled Equal 8 044 06703
2 10 1030

20 8 1002 14 Satterthwaite Unequal  7.5856  0.44 | 0.6710

Median =12 Median =1028

But ... proc ttest does not have Levene’s Test!!!

Proc GLM Has Levene’s Test

roc glm data = Spock_ttest;
lass judge;
odel percentage =

eans judge /CHOVTEST = Levene;

un;

« Yj;is the value of the measured variable for the jth case from the 5th group.
Z. = |Y;j—Y.|, Yiis amean of i-th group
* i =Y — V.l Y. is a medi 3 »
|Yi; = Yi|, Yiis a median of i-th group

(Both definitions are in use though the second one is, strictly speaking, the Brown—Forsythe test — see below for comparison)

proc glm data = Spock_ttest;
class judge;

model percentage = judae;
o S /CROTERY T

run;

Check of Assumptions: Constant SD

* Generates Scatterplot */
roc sgplot data=Spockl;
catter x=xs y=percentage;
un;

There is some visual evidence against
equal standard deviations. The Brown-
Forsythe test was used as secondary
evidence and does not provide
significant evidence against equal
standard deviations. (p-value = .2558)

Brown and Forsythe’s Test for Homogeneity of Percent Variance
ANOVA of Absolute Deviations from Group Medians.

Source | DF | Sum of Squares Mean Square F Value | Pr>F
Judge | 5 1284 256723 137 02588
Eor | 38 7101 18.6880

proc gln data = spock;
class judge;

model percent = judge:
means judge / hovtest = bf;
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Archeology in New Mexico

An archeological dig in New Mexico yielded four
sites with lots of artifacts. The depth (cm) that each
artifact was found was recorded along with which
site it was found in.

The researcher has reason to believe that sites 1
and 4 and sites 2 and 3 may be similarin age. In
theory, the deeper the find, the older the village.

Is there any evidence that sites 1 and 4 have a
mean depth that is different than the mean depth
of artifacts from sites 2 and 3?

Archaeology Example

saassanaaf
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Archeology Example
Assumptions: Normality

Histograms will be helpful as well!

Archeology Example
Assumptions: Homogeneity (Equal SD)

nnnnnnnnnnnnnnnn

Brown and Forsythe’s Test for Homogeneity of Depth Variance
ANOVA of Absolute Deviations from Group Medians

Source | DF | Sum of Squares | Mean Square | F Value | Pr>F
site 3 2436 811986 080 0.5021
Emor | 42 42748 1018

Archeology Example
Assumption: Independence

The discovered artifacts associated with the
depths were randomly selected from the log
(book of recordings ... not logarithms!) of
discoveries.

Since the artifacts and, thus, the depths are
associated with completely different sites, it is
assumed that the data are independent
between sites.

Question of Interest:

1. Are any of the means different?

2. Are the means of sites 1 and 4 different?

3. Are the means of sites 2 and 3 different?

4. Satisfactory results of questions 1 and 2 will allow us to ask
the third question: are sites 1 and 4 different than 2 and 3?




Are sites 1 and 4 different from 2 and 3? ssunesmovaasumptonsaremet

Perform regular ANOVAto BYO ANOVA to test if the
test if any of the means are means of 2 and 3 are different,
different from the rest. given at least one pairis
Reduced Model Hy: 4 i it different.
Full Model H,: 1y 1, s by Reduced Model Hy: 1, 1o by
Full Model Hy: s 1y by by
stop:
Groups2

and3are
different
and should

Reject H, in
favor of H,:
Ha My M3 Hg?

Reject H, in
favor of H,:
Mg My M3 H?

Insufficient
evidence
that any
different

treated as
having the

suggests.

BYO ANOVA to test if the Perform ANOVA to test if the means of 1 and 4,
means of 1 and 4 are different, when taken together are different than means
given at least one pair is 2and 3, when also taken together.
different. Reduced Model Hy: i i
Stop Reduced Model Ho: ko 1y s o Full Model H,: 1, 1y b by
Groups 1 Full Model H,: 1y 1, s by

Stop
Evidence
doesNOT
support the
claim in Qol

andaare
different
and should
notbe
treated as
havingthe.

Reject H, in
favor of H,:
Ha K M3 He?

Reject H, in
favor of H,:
g Ko Ky Ho?

Stop
Evidence
does
supportthe
claim in Qol

suggests.
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First Ask: Is there reason to believe any

The reduced and .

umosesae  Of them are different?
associated with
H,and H,,
respectively,
although they
are not exactly

cqualtothe  (Ha) Full Model: py 1, g 1y

(H,) Reduced Model: pppp

hypotheses.
Source DF  Sum of Squares | Mean Square FValue  Pr>F
Model 3 12397.34082 | 4132.44694 1514
Error 42 11464.57222 27296601

Corrected Total | 45 23861.91304

There is evidence to suggest that at the alpha = .05 level of significance (p-
value < .0001) that at least 2 of the sites have different mean depths.

Question of Interest:
2. Are the means of sites 1 and 4 different?

Compare this model
against equal means
odel
) Reduced Mode {hnup)
Compare this model
against equal means
model (1 1u 1)
"

*Recode the
variables into

three groups: 2, ( HO
3,and 1/4 y
combined and (Ha) FU” M aeq
perform ANOVA

to get the first (H,) Reduced: ppu}

(H,) Reduced:

table. *
(H,) Full*:
Source DF | Sum of Squares | Mean Square | F Value | Pr>F Source OF | Sum of Squares | Mean Square | FValue | Pr>F
Model 2 1161706304 580853152 2040 <0001 Model 3| 1230734082 413244604 15.14| <0001

Error

43 1224485000

Corrected Total 45 2334191304

28476395 Error

42 1146457222 27296601

86191304

Corrected Total | 45

780.3 780.3

There is not enough
evidence to suggest
(alpha = .05, p-value =
.098) that site 1 and
site 4 have different
mean depths.

Model (Full)
Error (From Full)
Total (From Reduced*)

Question of Interest: (try it!)
3. Are the means of sites 2 and 3 different?

*Recode the

variables into

three groups: 1, (Ho) Reduced Model: K4 Ko Mo Mg
4, and 2/3

combined and (Ha) Full Model: Ky My K3 Mg
perform ANOVA

togetthe first  (H,) Reduced: pupp  |(H,) Reduced: KWK K

table. (H,) Full*: by oo My | (Ho) Full: BaHaHs By
source 0F | sumot Squares | oan squaro | Fvatue | proF| | [souwrce OF | sum of Squares | Mean Sauare | FValue | Pr>F
ode 2 sz swariers 2320 <000t | wose s seraue amzases 151 <000t
i Ao ror
Cormocted Toal 45 2366197304 Corrected Total 45| 2386191301
[souce _______[oF[ss __[ws__|F _|eoF
Model (Full)

Error (From Full)
Total (From Reduced*)

Question of Interest: (try it!)
3. Are the means of sites 2 and 3 different?

*Recode the

variables into

threegroups:  (H,) Reduced Model: Py W, Ky Hy
1,4,and 2/3

combined and (H,)Full Model:  u; py ps My
perform

ANOVAtoget  (H,) Reduced: mppp | (Ho) Reduced: pppp
the first table. (H,) Full*: Hq Ko Ko Ky (Hy) Full: py Wy b5 1y

Source DF | Sum of Squares | Mean Square | FValue | Pr>F Source DF | Sum of Squares | Mean Square | FValue | Pr>F
Wodel 2 1238423628 619211814 2320 <0001 Model 3 1230734082 413244804 1514 <0001
Error 4 urrerery| 2seezn Error i) tasasr2ze] 27298001

Corrected Total | 45 2386191304 Corrected Total | 45| 2385191304

[source _____Jor]ss __[ws__r__eoF

Model (Full)

Error (From Full) 42 114646 273

Total (From Reduced) 43 11477.7

Question of Interest: (try it!)
3. Are the means of sites 2 and 3 different?

*Recode the

variables into

three groups: (H,) Reduced Model: 1 Ko Ko Mg
1,4,and 2/3

combined{md (Ha) FU” Model: H1 Hz “-3 P-4
perform

ANOVAtoget  (H,) Reduced: WHH M | (Hy) Reduced: LpHp 1
the firsttable. () Full*: My Mooy | (Ha) Full: My o ls by

Source DF | Sum of Squares | Mean Square | Value | Pr>F Source DF | Sum of Squares | Mean Square | FValue | Pr>F

Wodel 2 123842328 619211814 2320 <0001 Model 3 1230734082 413244804 1514 <0001

Error 4 urrerery| 2seezn Error [l tasasr2ze] 27208001

Corrected Total | 45 2386191304 Corrected Total | 45| 2385191304

iowe ot ss s |+ _orr Bl
evidence to suggest

Model (Full) | s SN .048 .828

(alpha = .05, p-value =
.828) that site 2 and site
3 have different mean
depths.

Error (From Full) 42 11464.6 273
Total (From Reduced) 43 11477.7




Question of Interest:
4. Are sites 1 and 4 different than 2 and 3?

*Recode the

variables into two H Reduced:

groups 1/4 and 2/3 ( 0) HHHK
and perform ANOVA

to get the table. (Ha) Full: u'b p‘a p‘a I‘lb

Source DF | Sum of Squares Mean Square FValue Pr>F
Model 1 1160395850 1160395850 4165 <0001
Error 44 12257 95455 278.58988

Corrected Total | 45 2386191304

There is sufficient evidence to suggest (alpha = .05,
p-value < .0001) that sites 1 and 4 have different
mean depths than sites 2 and 3.

10/13/2018

A Small Example

Score
Level of
data Example;

input Group © Score xs; Group | N Mean Std Dev.
datal ines;

E i)

A 1
B

1
1
1
j 1
472428856 1 c 1
1
1
1
2

093356795 1.01157431

176474683 274781436

1.89676163 220726331
1533020935
038837703
1308524833

434402812 Distrbuion of Score

(715018431
{875406227

3
496604304 B
750848548 oo
1340235175

‘srrzor1al

Normality Assumption

roc univariate data - Example;  There is strong evidence against these data
rovooran score; coming from a normal distribution and the

aplot score;

un;

sample size is small. ANOVA? WELCH’S ANOVA?

Homogeneity of Variance Assumption

B Brown and Forsythe’s Test for Homogeneity of Score Variance
o ANOVA of Absolute Deviations from Group Medians

Source | DF | Sumof Squares  Mean Square | FValue | Pr>F
Grouwp | 2 113518 56750 22601207
Eor |33 83.0246 25159

There is some (weak) evidence in
support of these data coming from

] distributions with different standard
"y " "y e ., deviations. If the standard deviation
assumption and normality
assumption are both violated, what

roc glm data = Example; should we do?
lass group;

odel score = group;

eans group / hovtest = bf;

un;

So .... NONPARAMETRIC!!!

5.6.2 Kruskal-Wallis Nonparametric Analysis of Variance

One method for coping with seriously outlying observations is to replace all obser-
vation values by their ranks in o single combined sample and then apply & one-way
analysis of variance F-test on the rank-transformed data. The Kruskal Wallis test,
which is available in many statistical computer packages, is similar in its approach
but takes advantage of the known variance of the ranks.

The Kruskal Wallis test statistic is

KW = 1/[0%] x Between Gronp Sum of Squares (of ranks),

where a3 is the variance of all  ranks (using an 1 — 1 divisor) and where 7 is the
total mumber of ehservations in all groups. A p-value is found as the proportion of
& chi-squared distribution on (7 — 1) degrees of freedom that is larger than this test
statistic.

s, Ho: Mediang,q,py = Mediang,,, = Mediang,
Kruskal-Wallis Test i iiminetmeiam

roc nparluay data = Example Wilcoxon!

Brown and Forsythe's Test for Homogeneity of Score Variance lass group;
ANOVA of Absolute Deviations from Group Medians ar score;

Source | DF | Sum of Squares Mean Square | Value Pr>F b

Group 2 113518 5.6759 226 01207

Error 33 830245 25159 Kruskal-Wallis Test

Welch's ANOVA for Score Chi-Square 1.9534

Source DF  FValue | Pr>F DF 2
Group 2.0000 1.35 0.2885
- s Pr>Chi-Square 0.3766

There is not sufficient evidence at the alpha = .05 level of significance (p-value =
.3766 from Kruskal-Wallis Test) to suggest that at least two of the medians are
different.

Notice that each test failed to reject their respective H,. The point isn’t so much
that one test will reject when the other will fail to reject. We must remember
that as statisticians, we don’t personally favor one outcome over the other. We
just want the appropriate test: the one with the most power. Kruskal-Wallis Test is
the appropriate test here.




Another Analysis!!!!

Distribution of Score.

Score o !
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Normality Assumption

@ tiatorseore apisterseoe

N There is strong evidence in
= = favor of these data coming
\..:M" from a normal distribution.
-
L We will proceed under this
,fv”"y assumption.

Level of —
Group | N Mean Std Dev i s ¢
Gow

A 29 | 416250339 | 100739863

B 31 2.07208667 4.79621322

c 63 490059005 583354412

» 3 Brown and Forsythe's Test for Homogeneity of Score Variance

N ANOVA of Absolute Deviations from Group Medians
Source | DF Sumof Squares Mean Square FValue Pr>F
Group | 2 5843 2022 2436 =0001
i Ermor (120 14305 119957

There is strong evidence in support of these data
coming from distributions with different standard
deviations. We will proceed under this
assumption and run the Welch’s ANOVA.

' Regular ANOVA:
Source or Sum ot S e Fvalve | Pr>F
€«

‘Weilch's ANOVA for Score
Source DF FValue Pr>F
Group 2.0000 4.18 | 0.0201

Error | 50.1430 There is sufficient evidence at the alpha = .05 level of
[ —— significance (p-value = .0201 from Welch’s ANOVA) to

sl suggest that at least two of the means are different.
However, remember caveat to any different SD’s
approach.

model score = group;
neans group / hovtest = bf Welch;

Fixed Effects vs. Random Effects

Quick answer:

* Do your groupings exhaust the data (e.g., data on
four different machines and there are only four
machines)? Fixed Effects! Use Proc GLM in SAS.

* Are your groupings a random sample of a larger
population that could have been chosen to be a
group (e.g., data on four different machines that
were chosen from a random sample of 100
machines)? Random Effects! Use Proc Mixed in
SAS.

Fixed or random effects

Measured the amount of liquid in twenty randomly selected cans of
Coke and twenty randomly selected cans of Diet Coke at a regional
bottling company. Coke and Diet Coke are bottled using different types
of machines.

Scenario 1: There is only one machine of each type.

Fixed Effects

Scenario 2: There are several of each type of machine.
The Coke samples all came from the same Coke
bottling machine, and the Diet Coke samples all came
from the same Diet Coke machine.

Random effects

APPENDIX




What does 2 mean?

« 12 js called the coefficient of determination,
or square of the correlation coefficient
2 _ SSmodel
N SStotal
We can think of r? as the proportion of
variability that is explained by the independent
variables (grouping data).
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What does 2 mean?

While 1-2is gleaned from the data, the true parameter is referred to as p (rho).
The following two hypothesis tests are equivalent:
e 1
Hpt py = pp = = iy
Hy:at least 1 y; is dif ferent
Test statistic:
MS(model)

F= —, where F is F —distributed with k — 1, n — k degrees of freedom
Ms(error)
- 2
Hy:p=10
Hyp#0

Test statistic:

2(p—|

= % where F is F —distributed with k — 1, n — k degrees of freedom

What does 2 mean?

iy ri(n-k » MS(model

LetFy = 200 oy p _ MSodeD)
T (1-r?)(k-1) MS(error)

and n is the total number of data points.

Recall that

2 _ SSmodet _ SStota1=SSerror _
SStatat 5 SStotal SStotal

So,1—7? = ==L,

SStatal

Also remember that MS(model) =

where k is the number of groups

_ SSerror

r

SS(model)
k=1

SS(error)
n-k

and MS(error) =

SSmodet
2=k S3urar "0 SSpmoderm k) SSmoder/(k — 1)

a-mk-10 SServor (1) SSerror k= 1)~ SSerror /1= B)

total
_ MS(model)

B MS(error)

Therefore, Fy = F,.

MSE vs. Variance in each group

MSE is a weighted average of the sample
variances of each group. Let s? be the sample
variance in group i.
(n1—1)si+(np—1)s3+--+(ne—1)sp

e
MSE = sp = = G D+ (=D +—+(nx—D)
(ny — 1)512 + (n; — 1)-”'% + oty — 1)-”'%

Examples

MSE =
n—k
Another example!
et _ o 5 different sports were analyzed to see if the average height of basketball
oo players was greater than the average of all the other sports. We could, of
71 Soccer course, compare each pairwise grouping of sports, but that would result in
i 4 tests. This would take a lot of time, and those tests would each have less

power since they don’t use all the data. Let’s use ANOVA similarly to how
71 Soccer we did in prior problems.

sesaskeal 1. Make a side by side box plot of the data.

sisesewe’ 2. Run abasic ANOVA to test for any pairwise difference of means.

78 Basketball Check the assumptions here, but no need to address them after this.
71 Football 3. Test the model that keeps basketball by itself but groups the other
alrcil sports as “others.”

721 coatbill 4. Use the previous two models to conduct an extra sum of squares F-

73 Football
70 Swimming Test:

Tjomniy H,: Reduced Model: pg Wy Mo Ho Mo
Tl Hy: Full Model: g 1y Hsoe Mswim Hr
nsummine 5. Depending on the results of this test, test to see if there is evidence
Shnie that basketball has a different mean than each of the sports.
2 sanning (Equivalent to testing basketball versus the others.)
it H,: Reduced Model: py by Mo Mo  Ho
H,: Full Model: Wg Mo Ho Ho Ho

6. Make sure and provide written conclusions for questions 2,3,4 and 5.




First ... Plot the Datal!

Distribution of height

F 1692
Prob > F <0001

height

°

Basketha Football Soccer Swimming Tennis
sport
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proc univariate data = basketball;
ort

Plot the Data cont. s

Normality: We have very small sample sizes here. There is not a lot of evidence against
normality for each group, although there is not a lot of evidence to begin with. We will
proceed with caution under the assumption of normal distributions for each sport.

Homogeneity of Variance: Judging from the box plots, there is some visual evidence
against equal standard deviations, although the sample size is still small. A secondary
test would be nice to lean on here.

We will assume the observations are independent both between and within groups.

Brown and Forsythe Test for Equality
of Variance.

Brown and Forsythe's Test for Homogeneity of Height Variance
ANOVA of Absolute Deviations from Group Medians

Source DF | Sum of Squares  Mean Square | F Value | Pr>F
Sport 4 13910 0.3477 0.14 09672
Error 7 BB.5778 25399

There is some visual evidence against equal standard deviations between
sports. The Brown and Forsythe test was used as secondary evidence and
does not provide significant evidence against equal standard deviations. (p-
value = .9672)

1 Way ANOVA

Ho: Maasketball = Mrootball™ Msoccer = Mswim = Mennis
H,: At least one pair of means is different.

Disribution of Heighe
The GLM Procedure

22 Source DF | Sum of Squares | Mean Square | F Value | Pr>F

Wodel 4 wsemwrzz seeTzrert 5594 <0001

Error 27| sazmrrie

e E‘I E Comected Total 21 4013887500
‘
Ho

ReSquare | Coeff Var | Root MSE | Height Mean
1z 0892335 1747028 1200049 7248875

There is strong evidence to suggest that the at least one of the sports has a mean height
that is different than the others (p-value <.0001 from an ANOVA).

Ho! Haasketball = Mrootball™ Msoccer = Mswim = Hrennis F-TEST

H,: The Others are equal. (Including Basketball
H,: At least one pair of means are different. © aual.( € )

‘The GLM Procedure H,: The Others are different (Including Basketball)
__Extra Sum of Squares _
traDegress of Freedom

ode o s st 1592 <0001 &

Error 27 [ 1a1555s856] 52427984

Corrected Total 31 4755000000

source DF | Sumof Squares  Mean Square FValue Pr>F

Fe (153.19 —141.56)/(30 - 27)

Spreconvr o o 141.56/27
0702302 3152793 | 2260716 7262500 Fe 74
Ho! Masketball = Mrootball™ Msoccer = Mswim = Hennis P-value = 0.5375

H,: Hgasketvan iS different than the Others.

The GLM Procedure

Fail to Reject Ho

There is not sufficient evidence at
Source DF | Sum of Squares | Mean Sauare | FValue | Pr>F the alpha = .05 level of significance
Wodel 1 3223148148 3223148148 6312 <0001
-value = 0.5375) to suggest that
= B e 0 5375) to sugg
the mean heights of non-basketball
CorrectedTotal | 31 4755000000
sports are not equal. Therefore we
R-Square | Coeff Var | Root MSE  helght Hean will proceed as if they are equal.
0677844 3111441 2259684 7262500

Same Test as last slide ....
H,: Reduced Model: ppppp Different Notation F-TEST
H,: Full Model: kg He Msoe Hswim Hr H,: Reduced Model: pg 1o Ho Ho Mo

The GLM Procedure H,: Full Model: kg M¢ Hsoe Hsyim M1

Extra Sum of Squares
XtraDegress of Freedom
Wodel o mssasss s3mei 1592 <0001 6%

Error 27 [ 1a1595s656] 52427984

Corrected Total 31 4755000000

source OF | sumof Squares | tean Square | £ Vaive | pr>F F=

Fe (153.19 —141.56)/(30 - 27)

R-Square Coeff Var RootMSE  height Mean 14156/27
0702302 3152793 | 2289716 7262500 F=74
H,: Reduced Model: ppppp Pvalue = 0.5375

H,: Full Model: pg kg Mo Ho Ho
Fail to Reject Ho

The GLM Procedure

There is not sufficient evidence at
the alpha = .05 level of significance
(p-value = 0.5375) to suggest that
the mean heights of non-basketball
sports are not equal. Therefore we
will proceed as if they are equal.

Source DF | Sum of Squares  Mean Square FValue Pr>F
Model 1 3223148143 3223148148 6312 <0001
Error 30 [_1s31es185] 51061728

Corrected Total 31 4755000000

R-Square | Coeff Var | Root MSE | height Mean
0677844 | 311441 2250884 7262500
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Mg He Hsoc Hswim Hr Hg Mo Mo Ho Mo
he GLH Procedure The 6LM Procedure
Source OF | Sum of Squares | Mean Square | FVaie | praF| | Source OF | Sum of Squares | Mean Square | FValue | Pr>F
Model 4 3330444444 834861111 1592 <0001 Model 1 3223148148 3223148148 6312 <0001
Error 27| [raromsmsss] 526708 Error % [Fiesmesz] sie1zs
Comected Total 31 4755000000 Corrected Total | 31 4755000000

R-Square | Coeff Var | Root MSE | helght Mean R-Square | CoeffVar | Root MSE  helght Hean

0702202 3152703 2289716 7262500 0677844 | 3111441 2250884 7262500

F-TEST: Another Look
H,: Reduced Model: pg Ho Mo Ho Ho
Hy: Full Model: g Me Mo Mswim Hr
[Source ____[OF_Iss_____[ms _[F__[Pr>F |
Model 3] 11.63 387 .74 0.5375

Error 27 141.56 5.24
Corrected Total 30  153.19

Since we are proceeding under the assumption
that the mean heights of the other sports
(besides basketball) are equal, we can test
whether basketball has a mean height different
than the other sports by testing:

Ho: Hpasketball = Hothers
Ha: MBasketball * Hothers

The GLM Procedure
There is strong evidence at the
alpha = .05 level of significance (p-

Source OF | Sum of Squares | Hean Square | F Value | Pr>F
= < value < .0001) that supports the

Hodel 1| a223148148 | 3223148148 | 6312 <0001 (aim that th height of

error 0 saesiesz| sa0e1rze claim that the mean height of

basketball players is different than
that of the other 4 sports.

Corrected Total 31| 4755000000

R-Square | Coeff Var | Root MSE height Mean
0677844 3111441 2250684 7262500

Resources

www.itl.nist.gov/div898/handbook/prc/sectiond/prc433.htm

Spock Example

Spock Trial

« 1968: Dr. Ben Spock was accused of conspiracy to violate the
Selective Service Act by encouraging young men to resist being
drafted into military service for Vietnam.

« Jury Selection: A “venire” of 30 potential jurors is selected at
random from a list of 300 names that were previously selected at
random from citizens of Boston.

* Ajuryis then selected NOT at random by the attorneys trying the
case.

* For this case, the venire consisted of only one woman, who was let
go by the prosecution, thus resulting in an all male jury.

¢ There was reason to believe that women were more sympathetic to
Dr. Spock’s actions due to his popular child rearing books.

* The defense argued that the judge in this case had a history of

venires that underrepresented women, which is contrary to the law.

* Let’s see if there is any evidence for this claim!

The Raw Data

Large esiats ndicatethat

he el s pooty

Equal | Separate Equal Separate

means means means means

Judge Judge %W Bl Res

Spock «
Spock c
Spock «
Spock c
Spock c
Spock I§
Spock c
Spock c
Spock 23 IS
A D
A D
A E
A 4
A i
B E
B I
B E
B ¥
B 9 i
B 190 336 120 ¥
¥
T e [Tk "
cxnatd means ar equl | | model exmatedmeans |
e ovrese. ) \ arethe g meniges) |
F
F

11



Comparing Two Means 4 : =,

From Many Groups. Hu: Mg # He
Jud,
| jugee | N[ xbar | sa | With 2 groups estimating the
Spock 9 14.6 5.04
pooled SD.

A 5 341 11.94

B 6 336 6.58

C 9 29.1 4.59

D 2 27.0 3.81

E 6 27.0 9.01

F 9 26.8 5.97

With all 7 groups estimating the pooled SD, bigger ‘n’ greater df! More POWER!!! \

Pvalue —= O.5 3 75

5,=6.91 146268 122
t= =——"==375

1 1 325
691 5+g /

R
- (i =1)+ (2

CV = toasfi]= £2.02

P-value =.0006 Reject Ho

Two Judge Analysis w/
t-Tools

E ORDER=DATA;

s [ Statistical Conclusion: We find

tome | g 239000 that there is substantial
ke a0

e | M| Mesn S0 | SE

evidence that the difference in
omiin | e sew | 2w
the mean percentage of
Jotge | Matnaa Mesn | 95%CLuean | SldDay | 85%CLSU Dav females on judge S and judge
s sz anm e som aums | smm s
: a0 zows s s anar v F venires is not equal to zero.
O (13 Pooies Vv e essen

P AR

DA (1:3) | Satarimunte| 421778 TTIE | EEAGE

e P ey Estimated Diff =-12.1778
| m—— 5, 5.5234
S ey | e ] A% 200 Pooled Std. Error = 2.6038
Equetny of Vartamces t-Statistic = -4.68
Webed | Namor | Owor | Fvmue | ProF Deg. of freedom = 16
Fagar | 8 8 e ber

Two Judge Analysis:
Conclusion

Question: Suppose we wish to test Answer: There is evidence that
if the “S” judge’s venires are the mean of the two groups is
different from the “F” judge’s. different.

* We can use regular t-Tools or several-group
analysis.

* The several-group analysis allows us to use all
of the available information — larger degrees
of freedom — more power!

10/13/2018

Spock Data Steps

cFemale judge §;

Question: Suppose we wish to test
if the “S” judge’s venires are
different from the “F” judge’s.

DATA spockVsF;

SET spock;

if (judge NE 'S') & (judge NE 'F')
RUN;

Two Judge Analysis w/
Several-Groups

From PROC TTEST:

Tha GLM Procedurs

Estimated Diff = -12.1778 ST

_ R T T T T D D
SP = 55234 Model 8 m!:&-.!sz 321180144 872 <0001
Pooled Std. Error = 2.6038 Error 182 | AT.B0EES
t-Statistic = -4.68 Corrected Total 45 3791.526087

Deg. of freedom = 16

Deg. of freedom = 46-7=39

Paramatar Estimate Error | tvatue | Pra
Estmate Spockjudge to Fludge 121777778 32603804t | 371 0.0008

udge 1 00 0 0 0 -1;

Spock Trial QOI 2

The defense argued that the judge in this case had a history of venires that
underrepresented women, which is contrary to the law.

QOI2: Is the percent of women on recent venires of Spock’s judge
(which we will call S) significantly lower than those of 6 other judges
(which we notate A to F)?
There are two key questions:
1.

Is there evidence that women are underrepresented on S’s venires relative to
Ato F's?

Is there evidence of a difference in women’s representation on A to F's
venires?

*The question of interest is addressed by 1

2.

*The strength of the result in 1 would be substantially diminished if 2 is true

12



Spock: The Strategy

Since we found that there was evidence that at least one of
the means was different than the others, we will first (Step
1) test to see if there is evidence that the other 6 judges
have similar mean female representation in their venires. If
there is no evidence their means are different then (Step 2)
we have them share a mean (i) and compare Spock’s
judge’s (ug) mean with u,.

10/13/2018

Step 1: Compare Judges A - F

H,: All “other” means are equal (A, B, C, D, E, F)

H,: At least 2 “other” means are different (A, B, C, D, E, F)

But ... Let’s use all the data to estimate the pooled standard deviation!

Reduced Model: b g Ko Ho Ho Mo Mo
Full Model: pig 1y Mg Ke Hp e He

Obs percFemale judge  OthersModel

1 645 s
2 875 s
Different Models in SAS i :
4 nes s
5 wo's s
6 w25 s
7 n1s s
At Least 2 are different (S, A, B, ... F) s ws's s
9 n1s s
Hs Ha Mg Hc Hp He He - ik
1 08 A Others
- © 36 A Others
Spock is different than the Others
1 05 A Otmers
Hs Ko Ko Ho Mo Ho Ho | melnJomn
15 2708 Ohers
1 898 Ohers
data spock2; 1w 320 B Others
set spock; 18 2718 Others
if judge ne "S" then OthersModel = "Others";
19 58 Ohers
else OthersModel = "s";
» 4568 Otmers
run;
% 20 C Ohers
2 zB4C Ohes
5 275 C Ohers
u 275 C Omes

Different Models in SAS

Comparing Two Models:
Both are not Equal Means Model

SAS (proc glm) compares models to the equal means model. When you run proc glm,
it always makes the “Corrected Total Row” the equal means model. However, we can
build our own ANOVA table (BYOA) to compare two models, both of which are not
the equal means model.

To do this we will need to identify the “full” model and the “reduced” model. The
“full” model will be the model with the most parameters (means) in it while the
“reduced model” will have fewer parameters. (Note that the equal means model
(with one parameter) is the most reduced model you can have.)

Extra Sum of Squares

Test / BYOA
[source ___[oF [ss ____Ims_[r _leroF |
Model
Separate (Full ModeJ)
Means Model Elc]
Equal Means » Corrected Total
Model

(Reduced Model)

At Least 2 are different (S, A, B, ... F) Obs percFemale judge OthersModel
1 64s s
Hs Ma Mg M Hp He Me 2 arls s
3 n3s s
4 nes s
5 Bo0s s
proc glm data = spock2; 6 2SS
class judge; 3 7 s s
model percFemale = judge; s wsls s
run; 9 21 S s
proc glm data= spo, / L 168[A |t
class OtherModel; ers it NB|A. o
model percFemale = OthersModel; ? 336 /A Others
run; ) 405 A Others
" 89 A Others
15 2208 Others
Spock is different than the Others tl i LN L)
” 208 Ohes
Hs Ko Mo Ko Ho Ho Ko w  wis oms
19 %58  Others
) 4568 Others
2 210 C Others
2 24.C  Others
) 275C Others
u 275C Others
At least 2 are different (Spock, A, B, C ... F) Spock is different than others
K Ha Mg He Hp He K Hs Ho Ho Ko Ho Ko Ho
The GLA Procadurs
The GLM Procedure
Source. OF | Sum of Squares | Mean Square ¥ Value | Pr>F S L | S Y PeeE
Model 6 1927.080865 321180144 672 <0001 o X M| mecee| Sanioew
o o[ e o Eror u[oma] s
Corrected Total 45 3791526087 Cormecten Totat | 45 3791526087
R-Square | Coeff Var | Root MSE | Percent Mean R-s$quare | Cosffvar RootMSE | percentage Mean
0506200 | 2001027 | ora209| 2058201 cmis| msmn 7oees EE)

F-TEST: Another Look

Ho: Ka, Mg, M - g are Equal
H,: At least 2 are different (A,B,C ...F)

Reduced : ks Ko b Ko Ko o Ko
Full: b 1 Mg B Mo Mg B
[source ____[oF [ss ____Ims _[F__lpr>F |
Model 5 326.5 65.29 137 0.26
Full Error 39 1864.4 47.81
Reduced Corrected Total 44  2190.9

13
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EXTRA SUMS OF SQUARES F TEST

F-TEST H,: All means are equal (Spock,A,B,C...,F)
H,: Wy — g are Equal H,: At least 2 are different (Spock,A,B,....F)
H,: At least 2 are different (A,B, .. F) The GLM Procedure
Extra Sum of Squares
F= ExtraDegress of Freedom sourco 0F | Sum o Sauares | Moan Sauara £ Valuo | Pr>F
2t otal o] wozromss| arisores| 672 <oomn
e [ ] v
" (21909 — 1864.4)/(44 — 39) Comsctea Tota 45 3701526087
- 1864.4/39 esavare | Costvar | RootSE  percentean
0506260 2001027 sorez0s| 2050201
F=137 H.:S ki
: Spock is equal to Others
P-value = 0.26 P
= H,: Spock is diff from Others
Fail to Reject Ho Ths GLI Prossaurs.

There is not sufficient evidence

soures o | sum ot squarss | wsan squars | Fvae | pr-F
at the alpha = .05 level of e T A T
significance (p-value = 0.26) to Eror [T s

suggest that the means are not comstsaTotsl | &5 l

equal. Therefore, we will esquars| Gostva | oot it | parcentage wean
proceed as if they are equal. Qa1 WAEN| TEEH 2551

Step 1 Complete!

There is not sufficient evidence to suggest that the mean percent of women on judge’s A-F
venires are different from one another (p-value = .26 from an ANOVA). Therefore, we will
now move on to Step 2 and compare Spock’s judge’s mean to the single mean that will
represent the other judges.

F-TEST: Another Look

Ho: Ko, Mg, M - Mg are Equal
H,: At least 2 are different (A,B,C ...F)

[source ___JoF [ss _____[ws_[F_JeroF |

Model 5 326.5 65.29 137 0.26
Error 39 1864.4 47.81
Corrected Total 44  2190.9

Step 2!

Since we are proceeding under the assumption that the mean percentage of women
in venires of the non-Spock judges are equal, we can test whether the Spock judge has
a mean percentage different than the other judges by testing:

H,: Mean of Spock is equal to the mean of the others.
H,: Mean of Spock is different than the mean others.

There is strong evidence at the alpha = .05 level
of significance (p-value < .0001 from an ANOVA)
to support the claim that the mean percentage of

The GLI Proseaurs

e DF | sumof squsrss | Isensquars | Fvews | Pr=F | yyomen in the Spock judge’s venires is less than
oot 1 lmsER mmEm S ¥ that of the other 6 judges and that there is no
eror | mmsmmy|  srws

evidence that the other 6 judges have different
mean percentages of women on their venires (p-
et om | Cosfi¥ar ) Ros{MIE | percentags Memm value = .26 from an Extra Sum of Squares F Test).
ez mssn| 7o msasn 3 . e

Spock’s lawyer has evidence for a mistrial.

ComsteaTotal | 45| 712607
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Part VI

Multiple comparisons and post hoc tests
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Chapter 25

Problem 1: Bonferroni and the Handicap
Study

The Bonferroni method was used to construct some simultaneous confidence intervals for p; — pa, u2 — ps and
us — ps , to see whether there are differences in attitude toward the mobility type of handicaps. The Bonferroni Cls
were calculated using the following SAS code: Note that Ismeans and means have the same results, because we

Code 25.1. Bonferroni in SAS

proc glm data = handicap;

class handicap;

model score = handicap;

means handicap / hovtest = bf bon cldiff;
lsmeans handicap / pdiff adjust = bon cl;
run;

are dealing with balanced data The result of this code is shown below:
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Figure 25.0.1. Bonferroni Confidence Intervals

Comparisons significant at the 0.05 level are indicated by ***.

Difference
Handicap Between  Simultaneous 95% Confidence
Comparison Means Limits
Crutche - Wheelch 0.5786 -1.2150 2311
Crutche - None 1.0214 -0.7721 28150
Crutche - Amputee 1.4929 -0.3007 3.2864
Crutche - Hearing 1.8714 0.0779 3.6650 **
Wheelch - Crutche -0.5786 -2.3721 1.2150
Wheelch - None 0.4429 -1.3507 22364
Wheelch - Amputee 0.9143 -0.8793 2.7079
Wheelch - Hearing 1.2929 -0.5007 3.0864
None - Crutche -1.0214 -2.8150 0.7721
None - Wheelch -0.4429 -2.2364 1.3507
None - Amputee 04714 -1.3221 2.2650
None - Hearing 0.8500 -0.9436 2.6436
Amputee - Crutche -1.4929 -3.2864 0.3007
Amputee - Wheelch -0.9143 -2.7079 0.8793
Amputee - None -0.4714 -2.2650 1.3221
Amputee - Hearing 0.3786 -1.4150 21721
Hearing - Crutche -1.8714 -3.6650 -0.0779 =
Hearing - Wheelch -1.2929 -3.0864 0.5007
Hearing - None -0.8500 -2.6436 0.9436
Hearing - Amputee -0.3786 21721 1.4150

Another nice way to visualize these confidence intervals is like this:
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Figure 25.0.2. Diffogram of the Bonferroni Confidence Intervals

Score Comparisons for Handicap

7

6 Crutche
Wheelch

] None
Amputee

Hearing
4
Hearing None Wheelch Crutche
3 Amputee
3 4 5 6 7

Differences for alpha=0.05 (Bonferroni Adjustment)
Not significant Significant

As we see from these two figures, the only statistically significant mean difference was the crutches vs the hear-
ing, which means that the attitude towards the different mobility handicaps is the same (i1 — 2, p2 — s and ps — s
are not different)
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Multiple Comparison and the Handicap
Study

To generate all the multiple comparisons, and the half widths, the follwoing SAS code was used: Here we see the

Code 26.1. all the multiple comparisons in SAS

proc glm data = handicap;

class handicap;

model score = handicap;

means handicap / tukey bon scheffe LSD Dunnett('None');

run;

results of this
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Alpha 0.05
Error Degrees of Freedom 65
Error Mean Square 2.666484
Critical Value of t 2.90602
Minimum Significant Difference 1.7936
(a) Bonferroni
Alpha 0.05 Alpha 0.05
Error Degrees of Freedom 65 Error Degrees of Freedom 65
Error Mean Square 2 666484 Error Mean Square 2.666484
Critical Value of Studentized Range = 3.96804  Critical Value of Dunnett's t 250316
Minimum Significant Difference 17317 Minimum Significant Difference  1.5449
(b) Tukey (c) Dunnet
Alpha 0.05 Alpha 0.05
Error Degrees of Freedom 65 Error Degrees of Freedom 65
Error Mean Square 2 666484 Error Mean Square 26664384
Critical Value of F 251304 || [CEMEESNaue it 1.99714
Minimum Significant Difference |  1.9568 Least Significant Difference | 1.2326

(d) Scheffe

(e) LSD

Figure 26.0.1. Half widths of different post hoc analyses in SAS
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We did the same thing in R, with code and output shown below:
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Analysis Guide Midterm
Code 26.2. Multiple comparisons with R
prob2 <- case0601
prob2$Handicap<-factor (prob2$Handicap,levels=c('None', 'Amputee', 'Crutches', 'Hearing'
, 'Wheelchair'))
aovmodel <- aov(Score ~ Handicap, data=Handi)

tukey <- glht(aovmodel,linfct=mcp(Handicap="Tukey"))
confint (tukey)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = Score ~ Handicap, data = Handi)

Quantile = 2.8066

95% family-wise confidence level

Linear Hypotheses:

Estimate 1lwr upr

Amputee - None == 0 -0.4714 -2.2037 1.2608
Crutches - None == 0 1.0214 -0.7108 2.7537
Hearing - None == 0 -0.8500 -2.5822 0.8822
Wheelchair - None == 0 0.4429 -1.2894 2.1751
Crutches - Amputee == 0 1.4929 -0.2394 3.2251
Hearing - Amputee == 0 -0.3786 -2.1108 1.3537
Wheelchair - Amputee == 0 0.9143 -0.8179 2.6465
Hearing - Crutches == 0 -1.8714 -3.6037 -0.1392
Wheelchair - Crutches == 0 -0.5786 -2.3108 1.1537
Wheelchair - Hearing == 1.2929 -0.4394 3.0251

half width = 1.73225

confint (tukey,test=adjusted(type="bonferroni"))

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = Score ~ Handicap, data = Handi)

Quantile = 2.8057
95% family-wise confidence level

Linear Hypotheses:

Estimate 1lwr upr
Amputee - None == 0 -0.4714 -2.2031
Crutches - None == 0 1.0214 -0.7102
Hearing - Nomne == 0 -0.8500 -2.5817
Wheelchair - None == 0 0.4429 -1.2888
Crutches - Amputee == 0 1.4929 -0.2388
Hearing - Amputee == 0 -0.3786 -2.1102
Wheelchair - Amputee == 0 0.9143 -018674
Hearing - Crutches == 0 -1.8714 -3.6031

TITh Al ~ s o (Vomaat+ mrh A —— N N 701 N 9949 NN

.2602
.7531
.8817
.1745
.2245
.3531
.6459
.1398
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Chapter 27

Comparing groups: Education study

27.1  Assumptions

Raw Data Analysis

First, we will look at the raw data. To check if the raw data fits the assumptions, we will first look at a scatter plot.
The scatter plot of the raw data was produced by the following bit of SAS code:

proc sgplot data=EduData;
scatter x=educ y=Income2005;
run;

This results in the following plot:

Figure 27.1.1. Scatter Plot of the Raw Data

L]
00000
]
]
L]
5 400000 o o
ta 8
[ak])
E 8 8
(=)
2
= . .
o 8 °
8 =]
200000 - o °
]
i o
0 i
12 16 13-15 >16 <12

Educ

Looking at Figure 27.1.1, we see that the raw data is very heavy in between 0 and 20,000 for all categories, but
some groups spread further and wider than others, which suggests the variances may not be equal. The heaviness
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of the lower end of each group may also suggest a lack of normality. We will examine this further with some Box
plots. These were produced using the following chunk of SAS code:

proc sgplot data=EduData;

vbox Income2005 / category=educ
dataskin=matte

xaxis display=(noline noticks);
yaxis display=(noline noticks) grid;
run;

This results in the following plot:

Figure 27.1.2. Box Plot of the Raw Data
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Figure 27.1.2 tells us a lot about our data. We see from the size and shape of the boxes that the variances of our
data are by no means homogeneous. Note that there are a lot of outliers while the distribution is heavily weighted
towards the bottom, this suggests our data may have departed from normality. We will examine this phenomenaa
further using histograms. To produce histograms of the raw data, the following SAS code was used:

proc sgpanel data=EduData;

panelby educ / rows=5 layout=rowlattice;
histogram Income2005;

run;

This results in the following plot:
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Figure 27.1.3. Histogram of the Raw Data
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Figure 27.1.3 confirms our suspicions, the variances of the data are likely unequal, but more importantly, the
data is clearly skewed to the right. We will confirm this using Q-Q plots. To produce Q-Q plots of the raw data, the

following SAS code was used:

/* Normal = blom produces normal quantiles from the data */
/* To find out more, look at the SAS documentation!*/
proc rank data=EduData normal=blom out=EduQuant;

var Income2005;

/* Here we produce the normal quantiles!x/

ranks Edu_Quant;

run;

proc sgpanel data=EduQuant;

panelby educ;

scatter x=Edu_Quant y=Income2005 ;
colaxis label="Normal Quantiles";

run;

This results in the following plot:
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The Q-Q plots in Figure 27.1.4 tell us what we already know: The raw data is not normal, and does not have
equal variances. The ANOVA test is not super robust to highly skewed, long tailed data, and it relies entirely on
equal variances, so we absolutely cannot use the raw data

Transformed Data Analysis

Now we will perform a log transformation on the data and see if that helps it meet our assumptions better. To do
a log transformation, we will employ the following SAS code:

data LogEduData;

set EduData;
LogIncome=log(Income2005) ;
run;

We will begin our analysis of the transformed data with a scatter plot, produced with the following SAS code:

proc sgplot data=LogEduData;

scatter x=educ y=LoglIncome;

run;

This results in the following plot:
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Figure 27.1.5. Scatter Plot of the Log-Transformed Data
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As we can see in Figure 27.1.5, the groups have a much more similar size, suggesting similar variances, and the
heavy part of the scatter plot is closer to the center, in between the outliers, which tells us the log transformation
may have done a good deal towards normalizing our data. We can examine this further using Box plots. To produce

Box plots of the transformed data, the following SAS code was used:

proc sgplot data=LogEduData;

vbox LogIncome / category=educ

dataskin=matte

)

xaxis display=(noline noticks);

yaxis display=(noline noticks ) grid;

run;

This gives us the following plot:
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Figure 27.1.6. Box Plot of the Log-Transformed Data
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Figure 27.1.6 gives us some useful information about our data. We see the boxes and whiskers are of similar
size, which tells us the variances are likely homogeneous. Furthermore, the medians and means are near each
other, and the boxes are near the center of the distribution, which suggests that the data may be normal. We will
examine these two phenomena further with histograms. To produce histograms of the log-transformed data, the
following SAS code was used:

proc sgpanel data=LogEduData;

panelby educ / rows=5 layout=rowlattice;
histogram LogIncome;

run;

This results in the following plot:
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Figure 27.1.7. Histogram of the Log-Transformed Data
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From the spread of the histograms in Figure 27.1.7, we see two things. First, the similar width of the histograms
confirms that variances are roughly equal. Second, the shape of the histograms, and their location near the center
suggests that the data is very nearly normal. We will further examine the normality of the data using Q-Q plots. To
produce the Q-Q plots of the transformed data, the following SAS code was used:

proc rank data=LogEduData normal=blom out= LogEduQuant;
var LoglIncome;

ranks LogEduQuant;

run;

proc sgpanel data=LogEduQuant;

panelby educ;

scatter x=LogEduQuant y=LogIncome ;

colaxis label="Normal Quantiles";

run;

This results in the following plot:

183



Analysis Guide Midterm

Figure 27.1.8. Q-Q Plot of the Log-Transformed Data
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Examining the previous figure, we see a confirmation of our beliefs: The log-transformed data, when plotted
against normal quantiles, is fairly normal. This means, with the log transformed data, we can reasonably assume
normality and homogeneity of variances. We have fulfilled the assumptions of the ANOVA test and now we are
ready to go!
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selection and execution

First, we run an f test to see if any of the means are different!

28.1 ANOVA

We will now perform a complete analysis of our data, using Pure ANOVA.

Problem Statement

We would like to determine whether or not at least one of the five population distributions (corresponding to
different years of education) is different from the rest.

Assumptions

As seen in Section ??, the raw data does not meet the assumption of normality nor of homogeneity of variance.
However, in Section 27.1, we proved that after a log transformation, the data does meet both of these assumptions.
The ANOVA test is fairly robust to the slight departure from normality presented by the log transformed data, and
the variances are equal. The data is clearly independent, so that assumption is met. Therefore, all assumptions of
ANOVA are met by the log transformed data.

Hypothesis Definition

In this problem, our Null (Reduced Model) Hypothesis, Hy, is that all the groups have the same distribution and our
Alternative (Full Model) Hypothesis, Hj is that the distributions are different. Mathematically, that is written as:

Ho :mediangrang mediangrandg mediangrana mediangrand mediangrand (28.1.1)

H, :median.12 medianis medianiz_15 medianig mediansig (28.1.2)

We will consider our confidence level, a to be 0.05

F Statistic

To conduct this hypothesis test, the following SAS code was used:

proc glm data = LogEduData;
class educ;

model LogIncome = educ;
run;

This results in the following ANOVA Output:
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Figure 28.1.1. ANOVA Table

Dependent Variable: Loglncome

Source DF | Sum of Squares Mean Square F Value Pr>F
Model 4 217.653784 54413446 62.87 <.0001
Error 2579 2232.120383 0.865498

Corrected Total 2583 2449774168

Figure 28.1.1 tells us what our F statistic is. We see that

F =62.87 (28.1.3)

P-value

Figure 28.1.1 also tells us our p-value. In this case,

p < .0001 (28.1.4)

Hypothesis Assessment

In this scenario, we have that p < .0001 < o = .05 and therefore we reject the null hypothesis.

Conclusion

There is substantial evidence (p < 0.0001) that at least one of the distributions is different from the others.

28.2 Tukey's test

We want to compare all of the group means to see if they are different, so we do tukey's test! we do this with the
following SAS code: With this we see that aside from the college and graduate school educations, they are all
different. A confidence interval for these differences, the % change of the medians, is calculated by raising e to
the confidence interval, and subtracting one from that and multiplying by 100. These are shown in the following
figure:
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Code 28.1. Tukeys test in SAS and R

proc glm data = LogEduData;

class educ;

model LogIncome = educ;

lsmeans LogIncome / pdiff = ALL adjust=tukey cl;
run;

and the following R code (and output)

edudata <- read.csv(file='c:/Users/david/Desktop/MSDS/MSDS6371/Homework/Week6/Data/
ex0525.csv', header=TRUE, sep = ",")

edudata$logincome <- log(edudata$Income2005)

prob3 <- edudata

aovmodel2 <- aov(logincome~Educ,data =prob3)

tukkey <- glht(aovmodel2,linfct=mcp(Educ="Tukey"))

summary (tukkey)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = logincome ~ Educ, data = prob3)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t])

<12 - <<K12 == -0.32787 0.08493 -3.861 0.00101 =*x*
>16 - <<12 == 0 0.67069 0.05624 11.926 < 0.001 *x*3x*
13-156 - <<12 == 0 0.16400 0.04674 3.509 0.00389 =*x*
16 - <<12 == 0 0.56987 0.05459 10.439 < 0.001 s*x3x
>16 - <12 == 0 0.99856 0.09316 10.719 < 0.001 *x*3x*
13-15 - <12 == 0 0.49187 0.08775 5.606 < 0.001 s*x3x*
16 - <12 == 0 0.89775 0.09217 9.740 < 0.001 s*x3x*
13-15 - >16 == 0 -0.50669 0.06041 -8.387 < 0.001 *x3x*
16 - >16 == 0 -0.10082 0.06668 -1.512 0.54057

16 - 13-15 == 0 0.40588 0.05888 6.893 < 0.001 s*x3x*

Figure 28.2.1. Tukey Cls on percent increase in the median

TUKEY
Comparisons significant at the 0.05 level are
indicated by ***.
Educ Differenc Simultan

e eous
95%
Confiden
ce
Compari Between Limits %
son change
Means
>16-16 0.10082 -0.08119 0.28283 -7.798151 32.68796
>16 -13- 0.50669 0.34178 0.6716 ***
15 40.74506 95.73666

>16 -<12 099856 0.74427 1.25285 ***
110.4904 250.0305

16->16 -0.10082 -0.28283 0.08119 -24.63521 8.457695
16-13- 0.40588 0.24514 0.56661 *™**

15 27.78002 76.22828
16-<12 0.89775 0.64614 1.14935** 90.81611 215.6141
13-15- -0.50669 -0.6716 -0.34178 ***

>16 -48.91095 -28.94955
13-15- -0.40588 -0.56661 -0.24514 ***

16 -43.25542  -21.7405

13-15- 049187 0.25235 0.73139 ***
<12 28.70464 107.7967

<12->16 -0.99856 -1.25285 -0.74427 ***
-71.43106 -52.4919

<12-16 -0.89775 -1.14935 -0.64614 *** -68.31573 -47.59352
<12-13- -0.49187 -0.73139 -0.25235 ***
15 -51.87604 -22.30272
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Dunnett's Test

To compare to a control, dunnets test is the best! We do this with the following SAS code: lets look at the SAS

Code 28.2. DUnnett's test

proc glm data = LogEduData;

class educ;

model LogIncome = educ;

lsmeans LogIncome / pdiff = ALL adjust=dunnett cl;
run;

and the following R code (and output!).

summary (dunnbett)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = logincome ~ Educ, data = prob3)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t])

<12 - <12 == -0.32787 0.08493 -3.861 0.000461 *x*x*

>16 - <<12 == 0 0.67069 0.05624 11.926 < 1e-04 *x*x

13-156 - <<12 == 0 0.16400 0.04674 3.509 0.001818 x*x*

16 - <<12 == 0 0.56987 0.05459 10.439 < 1le-04 *xx*
output too!

Figure 28.2.2. SAS p values

HO:LSMean=Control

Educ Loglncome LSMEAN Pr> |t
1315 10.3912107

16 10.7970859 <.0001
<12 9.6993404 <.0001
<<12 10.2272149 0.0018
>16 10.8979022 <.0001

We see that all of the groups are different from the control. We can calculate confidence intervals on how much
percent different by raising e to the power of the Cl, and then subtracting one and multiplying by 100, as seen in
the next figure
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Figure 28.2.3. Dunnett Cls on percent increase in the median

DUNNETT

Least Squares Means for Effect Educ

i j Difference
Between
Means
2 1 0.405875
3 1 -0.49187
4 1 0.506691

—

189

Simultaneous 95%
Confidence Limits

for LSMean(i)-
LSMean(j)
0.26066 0.55109

-0.70827 -0.27547

0.3577 0.65568

% change
29.77837 73.51485
-50.7503 -24.07871

43.00408 92.64521
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UNIT 6 Live Session

Contrasts

Multiple Comparison

Overview

* ANOVA provides an F-test for equality of
several means

* The main weaknesses are
* It doesn’t tell us which means are different
« It doesn’t account for any structure in the groups

(Example: Is the average treatment effect across 3
levels of treatments different from the placebo?)

* The downside to this more refined analysis is
that we need to control for the number of
comparisons we end up making

Example:
Handicap & Capability Study

_Seventy undergraduate students from a U.S. university were :a;ldom_ly assigned
to view the tapes, fourteen to each tape. After viewing the tape, each subject rated
the qualifications of the applicant on a 0- to 10-point applicant qualification seale.

* Goal: How do physical handicaps affect perception of
employment qualification?

Serrmanes) '
* The researchers prepared 5 video taped job interviews

with same actors

* The tapes differed only in the handicap of the applicant:
* No handicap (This is the control group)
* One leg amputated
* Crutches
* Hearing Impaired
* Wheelchair
* 14 students were randomly assigned to each tape to rate
applicants: 0-10 pts (70 students total.)

and Dalessio “ to type and rater empathy” (1990) Human

Example:
Handicap & Capability Study

* Do subjects systematically evaluate qualifications
differently according to handicap?

¢ If so, which handicaps are evaluated differently?

Nome  Amputee  Crufches  Hearing  Wheelchair s
gl 9 4 7 - T
H 56 149 8§ . =
06 268 7 479 5 .
129 06 033 237 78
149 3580 18 580 03 J
17 1 0234 5 124
48 2 “5 246 1
2 .
Legend: 7|4 represents a.score of 7.4 on the Applicant Qualification Scale oo pars ore s
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Handicap & Capability Study:

i ?
Is There Any Difference at All- Normality Assumption

* We should begin any analysis involving several
groups by using the ANOVA framework

* If there isn’t any (statistically) significant
difference in the population means, then there is
no reason to address more refined questions

* The tapes differed only in the handicap of the

applicant: = e —
* No handicap (This is the control group.) (Hwone)
«  One leg amputated (Hamp)
* Crutches (Heruten)
 Hearing Impaired (Myjear)
*  Wheelchair (Hwneer)

There is NO visual evidence to suggest that the data are
not normally distributed. We will proceed with the
ANOVA: Hy: pty=p,p=pi3=jt,=l15 assumption of normally distributed groups.

Hatpj # py for some j, k

Handicap & Capability Study: Handicap & Capability Study:

Equal Variances Assumption ANOVA results
i Hy: py==p3=pa=s (1)
. 8 Haipty # py for some j, k
N 8 g s Source DF ' Sum of Squares Mean Square FValue Pr>F
S ¢ § I Model 4 305214286 7.6303571 2 EE
: 2 % : Error 65 173.3214286 2.6664835

° g Corrected Total | 69 203.8428571

There is evidence to support the claim that at least two population means
are different from each other (p-value of 0.0301 from a 1-way ANOVA).

T T T T T Notlce that since there is Woich'a RNOVA or e
xs virtually no evidence of a =
difference in standard Subrce ol bl B
. " . iati ¥ i Handicap = 4.0000 3.08)| 0.0296
There is NO evidence to suggest variances are unequal. Gt W D
almost identical to the pure F Error 324580
ANOVA.
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Handicap & Capability Study:

More Specific Questions Linear Combinations & Contrasts

Hamp + Brear _ Heruten T Hwheet Score :
T T T e s s y=Cipti + Capa + -+ Crjir  (Constraint: €y + Gy + -+ = 0)
Ha: Hamp + Hear | Merutch + Hwhee Amputee | 14 442857143 158571924
a4t E - _ _ _
2 : 2 Crutche | 14 592142857 148177574 g=C1Y1 +C Y4+ C/¥;.
Hearing | 14 405000000 153259458

Nome | 14  4.90000000 179357829

Hamp + Huear  Heruteh + Bwheel
Hy: — = Wheelch | 14 534285714 | 174828016

o . " .
2 2z SE(g) =5 (this requires independence)
Hamp * Huear  Herutch + Bwheel () £
Hy: — *0
2 2
1 Example: ¥ = Lpamp — Lerurch +1lpear +0Unone — Lwheet
Hoi pamp + Hiear = Heruteh = Hwheet = 0 The test statistict:
Ha: Bamp + BHear — Herutch — Hwheet * 0 _ &Y
£ =5l
I (CONTRAST) Hyiy =0 * Theteststatistic has an approximate t-distributionw/ df =n — I
0¥ = .

¥ = Wamp — Werueen Hlbuear +O0lnone — wheet < Hyy#0 In this case, n — [ =#data points - #groups =70-5= 65
!

Handicap & Capability Study: HandlcapA&CCap;ablllty Study:
ontras

A Contrast Confidence Intervals for y

Calculate mean difference and standard error. Score Hy: Hamp + Brear = Herutch T Hwheet T
Level of His + + Level of
Handicap N Mean Std Dev AHamp t Brear ¥ Herutch THwheel Handicap N Mean Std Dev

4] 4.42857143)
i

Amputes 158571924 ¥ = Wamp = Werueeh +10ear +0fvone = 1Hwheet Amputee | 14| 442857143 | 1.58571924

Hy: tamp + Byear = Heruten + Bwneet

Ha: Hamp + Brear # Horutch THwheet 148177574 8= 1Wamp = Weruech +1¥hear +0¥vone — 1Ywneet Crutche | 14| 592142857 | 1.48177574

¥ = Vi = L + 1tz 4 153250458 g=(1)44—-(1)59+(1)4.1+(0)4.9-(1)5.3= Hearing 14| 405000000 153259458
g= ”7Amp 17 g | 4.90000000 | 179357829 1 1 1 Nome 14 490000000 179357829
g=(1)44-(1)5 174828016 SE(g) = v2.666 ﬁ+ 17 +— Wheelch | 14 | 534285714 | 174828016
source 0F [ sum of Squares | Moan Square [ vaue | pr>F o i B ey P vy u
a e There is evidencetha th sumof pois
SE(g) =s» e Ero o5 traseuase—[zomeas Amp & Hear handicaps is smaller than‘the sum of | e | rasiazms| 2esess3s
. ———iele] s points assigned to Crutch & Wheel Kandicaps at level  comcestom &5 z023szs57
Jepe—1=17 (132 (0)2 (-1)2 R-Square | Coeff Var | Root MSE | Score Mean alpha equal to 0.05 because the Cl does not contain 0. R-Square | CoeffVar | Root MSE | Score Mean
SE(g) = V2.666 Qj —),+,(—)7+,(—)7+7( ) . loueno 3aqa0e(Tosear] a9zesmt / ovaran | mursons | szt | aseoo
] 14 14 14 14 14 Cl: Point estimat?/ﬁ'.ultiplier* standard “Error
95% t-tools Cl for y: —2.78577 + (1.9971)(0.87286) _
T, L. 93 @ 4 e 155(0.975
SE(g) = 1.6329 ﬁ+ﬁ+ﬁ+ﬁ+ﬁ='873 95% t-tools Cl for y: —2.78577 + 1.74319 771.1(,77)

95% t-tools CI for y: (-4.529, -1.043)
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Chapter 6: Compare with book! Handicap & Capability Study:

Hoi Hamp+Hiear - Heruech+Mwneel
In SAS

2 2
Hamp+Miear _ Herutch+Hwheel
a 2 £ 2

H

DATA handicap;

e handicap § @&;

@ Construct the 95% confidence interval. )

165(0.975)=1.9971 4 i Srom the t-distribution with 65 a‘jﬁ)

1.3929 =+ (1.9971) % (0.4364) —p from 0.521 to 2.264 3 r : % Order = data keeps

5 the data in the order
it came in, so that

~ “none” group is first
and can be assigned

- _— a coefficient of 0.

Note the sign switch ¥ = —0.5usmp + 0.50cruecn - 0.-5pcar +OMnone + 0.5Hwheet : ar 4.
and division by 2 of L, e 2.
the coefficients.

Contrast DF = Contrast SS Mean Square | FValue | Pr>F
Compare Ave Amp and Hearing to Avg Crutch and Wheel | 1| 27.16071429 2716071429 1019 0.0022

Comes in handy when doing division by hand would result in the need to input a
rounded number (example 0.33) —

Handicap & Capability Study: Handicap & Capability Study:
In SAS In SAS

Confidence Intervals

Standard
Parameter Estimate Error | tValue | Pr>[g]
Avg. Amp & Hear vs Avg Crutch & Wheel 3,18 | 00022

1' handicap 0 1 -1 1 -1; Sum Amp & Hear vs Sum Crutch & Wheo)/| -2.78571420 087284168 | -3.19  0.0022
handicap 01 -1 1 -1 / DIV i Ve
C » mp handicap 01 -1 1 -1; /
\ /
There is evidence that/the average pdints assigned to Amp & Hear
= Lamp'— Lleruten +1lpear 10, e — Llwhe i X . -
Y ¥ Amp‘\. #cmrrn__\ : Huear TYHNone Hwheel handicaps is smallem/han the average points assigned to Crutch & Wheel
y= ()_5”’1"”‘, = 0.58crurch *+0.5Unear +0lNone = 0.5Hwneet handicaps (t»tools/lnear contrgst p-value of 0.0022). We estimate that this
\ N difference is -1./39 pts with Wassociated 99% confidence interval of....
\ ~ . .
\\\\lennl - DF | ContrastSS | Mean Square | FValue | Pr>F 99% Cl for the dlff;é{'ence in aV}"/rageS of
\\v Amp B Hearvs Avg Crutch & Wheel | 1 27.16074420 27.46071420 1040 0.0022 Amp and Hear y{ Crutch and Wheel: 't',0.995,70-5);
\ Point estimatg/i multiplier* standard error
\ e -1.3912.6‘57104436 PROC PRINT DATA = quantile;
Parameter \  Estimate Error tValue Pr>f —

-1.39+1.155

Avg Amw&HurvlAvﬂCnﬂchHW!ml\\-l.B?'zaWM 043842079 -39 0.0022

—— [ obs| quant
Sum Amp & Hear vs Sum Crutch & Wheel 278571420 0.87284150 310 o.0022 n—=

N . X . (-2.55, -0.23), which of course does not include 0
Three different ways (contrast, estimate, estimate with divisor =2) to test for the same

idea. (There are many more than three!)
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Chapter 6

He: Hamp+lnear _ Herutch+Pwheel
o =

2 2
. Hamp+Hear + Herutch+ Hwheet

H,
A 2 2

o= lumnrn = Yeruech +1lear +FO0MNone = LHwheet

proc glm data = Handicap;

class Handicap;

model Score = Handicap;

means Handicap 7 HOVTEST = BF Welch;
contrast 'Compare Ave Anp and Hear ing to Avg Crutch and Hheel® Handica
run;

With no Order = data in the code, the contrasts are assigned in alphabetical
order, so that “none” group is fourth.

Contrast DF | Contrast S5  Mean Square FValue Pr>F

Compare Ave Amp and Hearing to Avg Crutch and Wheel | 1| 27 16071429 | 2716071429 1019 0.0022

Let’s Try Some from Spock Example!!

Groups: A, B,C,D,E, FS

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

_HFatuptuctuptuetur_

H,: b 3 0
+ g+ He + Hp + Mg +
H: ug - Hat s+ e = Hp + Mg T+ WF “0

Contrast vector (assume alphabetical order):

Answer on Next Slide ->

Let’s Try Some from Spock Example!!

Groups: A, B,C, D, E,F, S

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

_Hatugtpctpp tpetpp

3 0

Hyt s

Hatpp+ R+ pp +pp + Hp
*
6
y=—1py —1pg —1pc—1pp —1pg —1pg+ 6pug

0

Hy g —

Contrast vector (assume alphabetical order): -1-1-1-1-1-1 6

Let’s Try ANOTHER (from Spock)!!

Groups: A, B,C,D,E, FS

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

Matugtie MptHst e

Ho 3 3

0

+uptp + 1+
Hﬂ:l»lA !‘;H He  Hp P;‘ PF?!U

y=

Contrast vector (assume alphabetical order):
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Let’s Try ANOTHER (from Spock)!!

Groups: A, B,C,D,E, FS

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

Matuptuc pptpstpr

Ho 3 3

0

MatiptHe Hp+Hetlr
z 3 5
Y=1ps + 1pg + 1pe —1pp —1pg —1pp+ Opg

H, 0

Contrast vector (assume alphabetical order): 111-1-1-1 0

ADDITIONAL QUESTION:
Why is it better to include the Spock data in the calculation of the pooled SD
(and thus the MSE) even though the hypothesis does not include it?

Let’s Try ONE MORE (from Spock)!!

Groups: A, B,C,D,E, FS

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

Hatuc pptuetur_

H,: 3 3

0

vUA+MC_UD+uE+UFi

2 3 0

H,
y=

Contrast vector (assume alphabetical order):

Answer on Next Slide ->

Let’s Try ONE MORE (from Spock)!!

Groups: A, B,C, D, E,F, S

Write the statement (y ) for the population contrast below.
Then provide the contrast vector as you would input it in SAS. (Use
alphabetical order of the subscripts.)

H Hatle Bp+uptir _

G 3 0

Batle Wp+tHg+ip
B

H 2 3

0
Y=3u, +0pug +3pc —2pp —2pp —2pp + Optg

Contrast vector (assume alphabetical order): 303-2-2-20

Multiple Comparison: Motivation

M One Test:
P(RejectingH, | H, is true) = @ gividuat

= |

K Tests:
@ramity =P(Rejecting at least 1 H, | All H, are true) # @pgividuat

" Ktests

When all tests are independent and have the same alpha (@ naivigual),

- k
pamity = 1 — (1 — @maiviauat)
@pamily
=
correction, where @ qmy is typically controlled for, perhaps set at 0.05.

Regardless of independence, @ maividual = the Bonferroni
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Multiple Comparison: Example k = 100

Familywise confidence level is the success rate of a procedure for constructing
a family of confidence intervals, where a “successful” usage is one in which all
intervals in the family capture their parameters.

AFamity :PvrMc;babi\ity (Reject at Ieavsﬂl\ 1H,| g =0(AllnH,saretrue))=1—(1-a;)"

a, = .05
Qpamily = 1-(1-0.05)1%= 1-(0.95)1%= 0.994......99% chance of a Type | error

a; =.05/100
@pamity = 1-[1-(0.05/100)] '°°= 1 - (.9995) 1*°= 0.0488......5% chance of a Type | error

Confidence Intervals

Familywise confidence level is the success rate of a procedure for constructing
a family of confidence intervals, where a “successful” usage is one in which all
intervals in the family capture their parameters.

Interval half-width = (Multiplier) x (Standard error).

L)

When we make a correction for multiple comparisons, it is the critical value in the
hypothesis test and thus the multiplier in the confidence interval that is adjusted.

*The multiplier is usually the same as the critical value for a hypothesis test.

Planned & Post-hoc Tests

A planned test is one in which you know the comparisons (tests) you
want to make before you look at the data.

If you have k planned comparisons then you need to correct for just
those k comparisons.

When planned comparisons are not cbvious, post hoc tests are
conducted. In this case, we need to correct for all possible k
comparisons between the m groups.

m(m—1)

k= 2

Post-Hoc / Unplanned Tests

Post Hoc tests are appropriate when:

1. The researcher wants to examine all
possible comparisons among pairs of group
means (or a large number of comparisons).

2. Predictions about which groups will differ

are not made prior to setting up the
analysis.
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Multiple Comparison: Bonferroni

If the confidence level for each of k individual comparisons is adjusted
upward to 100(1 e ;—() %, the chance that all intervals succeed
simultaneouslyis at least 100(1 — a)%

multiplier = t_multiplier =t/ «
1-5).df
2k
This approach is very conservative,
meaning that the intervals are much
wider than the nominal level,
particularly if the tests are not really
independent.

For a set of Bonferroni adjusted t-tests, (a/k) we
must have normal distributions, equal spreads, and
independence (same as typical t-tests).

However, the Bonferroni correction can be extended
to tests that have no assumptions about distributions
(e.g. rank sum test). For any set of independent
parametric or non-parametric tests, the Bonferroni
correction works the same.

Assumes normal distributions, equal spreads, independence (same as typical t-tests), and

Multiple Comparison: Tukey-Kramer

Tukey’ s HSD Procedure

More consistent than Bonferroni with respect to Type | Error but not robust to its
assumptions.... Bonferroni is a good alternative when the assumptions are violated.

Makes use of the Studentized Range Statistic:

tiplier 24 Flargest ~ Yomallest Studentized Range Statistic Table
Multiplier = MS,, (1/ n)
Obtains simultaneous confidence intervals for each pair of
population means (u; - 1)
The Tukey-Kramer adjustment is a

MS,, modification to this test to

n account for different sample sizes

in the groups.

q,.(k,N-k) is the upper-tail critical value of the Studentized range
for comparing k populations.

(fz ’ij)i ok N1

equal group sample sizes.

Multiple Comparison: Dunnett
Many Groups to one Control

Assumes normal
distributions, equal

ty = ﬁg‘ —Ha spreads, and
Ac—iz independence (same as
typical t-tests).
et
£
SEpc-,

Replaces t-distribution with a multivariate t-
distribution (n=# of groups versus control),
where the tests are not independent.

Handicap / Capability Study: Data

Seventy undergraduate students from a U.S. university were randomly assigned
to view the tapes, fourteen to each tape. After viewing the tape, each subject rated
the qualifications of the applicant on a (- to li-point applicant gualification scale.
Display 6.1 shows the results. The guestion is, do subjects systematically evalu-
ate qualifications differently according to the candidate’s handicap? If so, which
handicaps produce the different evalnations?

None

Disibuion of Score

Amputee  Crutches  Hearing  Wheelchair =
9 4 7 e T

56 149 8§ . >

268 7 479 5 .

06 033 237 78

3580 18 580 03 .

1 0234 5 124

2 “5 246 L

5

Legend: 7|4 represents a score of 7.4 on the Applicant Qualification Scale.




10/13/2018

Handicap Data Analysis

Questions of Interest:

1. Is there any evidence that at least one pair of mean
qualification scores are different from each other?

2. Let’s say we are only interested in Amputee versus None.
Test the claim the Amputee has a different mean score than
the None group.

3. Now let’s assume that we are interested in identifying
specific differences between any two of the group means.
Find evidence of any differences in the means between the
groups.

4. Next, assume that we were interested in testing the means
of the handicapped groups to the non-handicap group. Test
this claim and identify any significant differences.

First Test!!!

H,: All Means are Equal
H,: At least 2 means are dif ferent from eacl
(or at least 1 mean is different from the rest)

Normality: Handicap Data

There is no visual evidence to suggest that the data are not
normally distributed. We will proceed with the assumption of
normally distributed groups.

Homogeneity of SD Assumption

§ o p Brown and Forsythe’s Test for Homogeneity of Score Variance
"8 H : o 8 ANOVA of Absolute Deviations from Group Medians

Source | DF | Sum of Squares | Mean Square | FValue = Pr>F
Handicap | 4 0.6666 01866 020 0.0389

Error 65 54.8693 0.8441

There is no evidence to suggest variances are unequal.

Independence may be violated here. We are going to proceed anyway for
the sake of the example.
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Second QOI!!!
Fi rst QOI | | | 2. Let’s say we are only interested in Amputee versus None. Test the claim the

Amputee has a different mean score than the None group.
1. Is there any evidence that at least one pair of mean qualification scores are

different from each other?

H,: All Means are Equal

The TTEST Procedure

Ho:”Amputee = Hyone

Variable: Score i
Ha' ”’Amputze s HNone
: Handicap | | Mean | 5d Dov | s Er | Minimum | Maximum
H,: At least 2 means are dif ferent from eac} R T e e
The GLM Procedure
b by None |14 43000 1793 04784 19000 78000
(or at least 1 mean is different from the rest) SR R
Handicap | Method Mean | 95% CL Mean | Std Dev 95% CL Std Dev S (L7 S GIEETED) 2 S| (UL (3526
. Wodel 1 isssnas 1sssrus 05 04678
e wass 3510 st 1ssr 1 25547
Source DF  Sum of Squares Mean Square FValue Pr>F
None 49000 38644 59356 17936 13003 28895 Error % 74.50857143 280571429
Model 4 305214286 76303571 286 o TR Comocted Total| 27| 76.06428571
Error 65 173.3214286 26664835 Diff (1-2) | Satterthwaite -0.4714 -17876 08447
proc glm data = handicap;
= = where handicap eq ‘None’ | handicap eq ‘Amputee’;
Corrected Total | 69 203.8428571 Method | Variances DF |tValue Pr>Id olass handican; P oq e
Pooled Equal 26 074 04678 model score = handicap;
means handicap / howtest = bf bon cldiff;
Satertwalte Unequal | 26615 073 0.4679 Foms
There is sufficient evidence to suggest at the alpha = .05 level of S ———
significance (p-value =.0301) that at least 2 of the means are different [there hond Icep Bq SNaneHi] thandicep cqjShmputeed;
from each other in this standard ANOVA. ran;—

run;
The results ot these tests are equivalent! There is not sufficient evidence to suggest
that the mean qualification rating of the amputee group is different than the group

without handicap. (P-value = .4678 from a t-test and an ANOVA using only these two
groups.)

Second QOI: Better approach!!! .
Handicap | Score LSMEAN | LSMEAN Number Th I rd Qol ! ! !
2. Let’s say we are only interested in Amputee versus None. Test the claim the Amputee has a T E——— 3 ) )
different mean score than the None group. H,: Brpuzee = Mivone i T 2 Now let’s assume that we are interested
The TTEST procedure H 3 e Hearing | 405000000 3 in identifying specific differences
Voriable: Seore a* f"‘Ampu.‘:ee HNone None 4.90000000 4 between any two group means. Find
Wheelcha 5.34285714 5
andids 0 Woan source OF [ Sum of Squares | Moan Square | F Value | Pr= F evidence of any differences in the means
Lo Model 4 30.6214286 7.6303571 286 0.0301 h
Gz o &l inoum| peai: Least Squares Means for effect Handicap between the groups.
oifF(12) Pr > ft| for HO: LSMean(i}=LSMean(j)
Corrected Total 69 203.8428571 Dependem Variable: Score
Handicap Method % CL Sad Dev
Ampuse) Gl Contrast DF Contrast SS  Mean Square F Value Pr>F 0 i Z = o 2
Mot i = 8% Usea Contrasto Increase DFt | 1 155571420 155571423 058 [0.477] 1 0.0184 | 05418 04477 01433 _ .
Diff(12)  Fo | 3 23199 There are 10 different two sided tests conducted
oM (12) | sat pro oln dato = handican: 2 00184 1028 | 0.3520 ) .
Srasanandican; " here; thus, we need to adjust alpha per test to be
Wothod | Variances|  DF tValue | Pr> 10 noans Rendicoo /hovtens © b ben ettt & © 5‘”8 Sles2 |00l .05/10 =.005. With this adjustment, only one of the
Focied Equal 2 e 4 04477 0.1028 | 0.1732 0.4756 tests has a statistically significant result. Therefore,
foroc SL::W.,;L:“}_;,",ZE:: o 5 01433 0.3520 0.0401 0.4756 there is evidence (p-value = .0035 from a t-test) that
where handicap eq ‘None' | handicap eq ‘Anputes’; the crutches and hearing groups have different mean
class handicap; o X X X
Jrar seore proc gin data = handicap; qualification rating scores. We will provide a
There is not sufficient evidence to suggest that the mean qualification rating of the amputee group is ;;sz? :z;‘f:i"?‘andmau_ confidence interval in a few slides.
different than the group with no handicap (p-value = .4477 from a contrast using all available data). Even q-aans ha: d?D / ?nvtest = bf;
though the p-values for the two tests are only slightly different, it is better to use all available data (the ,ﬁﬂ?ans sneiese c
procedure on the right).
Comparing a pair of means can be just a simple contrast.
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Handicap | Score LSMEAN  LSMEAN Number Th I rd Qol ! ! !

Bonferroni Adjusted P-Values i % Now let’s assume that we are interested

P-values not adjusted- compare to P-values adjusted- compare to family- (Hearing > 405000000 in identifying specific differences
individual alpha wise alpha T between any two group means. Find
Least Squares Means for effect Handicap Least Squares Means for effect Handicap evidence of any differences in the means
Pr = [t] for HO: LSMean(i}=L SMean(j) Pr = [t] for HO: LSMean(i}=L SMean(j) s
Dependent Variable: Score Dependent Variable: Score Loes: Sqares Means fos Erect Handico between the groups.

Difference Between ' Simultaneous 95% Confidence Limits

01433 | 0.3620 | 0.0401 | 0.4756 000 10000105010 320000 0850000 266870 s Crutches and hearing groups is
-1.292857 -3.086427 0500713
Compare to alpha = 0.005 Compare to alpha = 0.05 -0.442857 2.236427 1350713 (0779/ 366499)
proc glm data = handicap; < gln data = handicap;

class handicap; class hand icap

I]] 1 2 3 4 5 |[] 1 2 3 4 5 iJ for LSMean(i)-L SMean(j)

12 as2n7 sz 0300713
il 0.0184 05418 04477 0.1433 1 0.1838 1.0000 1.0000 1.0000 13 0.378571 1414999 2172141

14 -0.471429 -2.264999 1322141
b bl G mm 1000 1 szt 270785 v A 95% confidence interval for the
3 u.sawa 01732 0.0401 3 1.0000 0.4010 23 e o0rress . .

24 1021429 0772141 200 difference in means of the
404477 01028 01732 0.4756 4 1.0000 1.0000 1.0000 1.0000 E e By i
5 5 34

35

45

o e node] score - handicap: proc gln data = handicap;
mode ] i:u;e h?"ﬁ'“"' S 10, up to 1 means handicap / hovtes class handicap;
neans handicap / hovtest = bf: Ismeans handicap / Ddlff e node] score = handicap;
Jencans handicap / pdiff; run; means handicap / hovtest = bf;
; 1smeans handicap # pdiff adjust = hun@
run;

e e . " 4th QOI: Next, assume that we are interested in testing the means of
o "o simutanous 4 Cotecs Thlrd QOI LR the handicapped groups with the non-handicapped group. Test this
coenes wmeocns 052w 2o NOW let’s assume that we are interested claim and identify any significant differences. (Using Cls)
e e in identifying specific differences Oumett  Toss for Scre
e %2 "between any two group means. Find e T ——
meesnrene | oumamm 22w avidence of any differences in the means are ane diftorencer hetwoen the | s e
Wheelcha - Amputee. 09143 08793 27079 b t the rouDs are any If erences et\?een the e =
Wheelcha - Hearing 12929 05007 30864 etween .
e | EEE T group f“’e'a,ge of the mea"sh" each . Errr ean Saquore 2st0ins
None -Wheelcha s 2z 13507 andicap group and the mean o Crtical Value of Dunnettst | 250316
None - Amputeo 04714 13221 22660 the group without handicap. Minimum Significant Difleence | 15449
IO o509 LA £94% Comparisons significant at the 0.05 level are indicated by ***.
CEGTOUD U A95%confidence intervalfor the The 95 famiy-wise cofidence
mputee - None F 5 i f intervals are constructed using Comparison Weans i
Joptee o fjfis ;jﬁ: difference in means of crutches and Dunnett’s procedure, All G s mm e
Hoaring - Crutches ama e ooms D hearmg groups is ( 0779 3. 66499) tai th t di Wheelcha -None 04429 11021 1.9878
Wearng Wheelcha | 12329 a0set so07 contain zero, thus not providing Amputoo one ourta 20188 10738
Hoaring -Nono o850 2603 o5t sufficient evidence to conclude Hoaring - None 08500 23049 05049
iearipoAvovtee Bkl 21721 14150 that the difference is not zero. P I e e
proc glm data = handicap; class handicap; X
o . (The study results do not naont nomdicap o heviest = nf
means handicap " havieat = bt bon 5
e constitute sufficient evidence to ren
*Slightly different code from the last slide, producing slightly support the claim that any means Specify the
. . tested are individually different control group
different output. Note the cl versus cldiff. than the control)
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4th QOI: Next, assume that we were interested in testing the means of
the handicapped groups with the non-handicap group. Test this claim
and identify any significant differences. (Using HTs)
The GLM Procedure

Least Squares Means
Adjustment for Multiple Comparisons: Dunnett

HO:L SMean=Control

Handicap | Score LSMEAN Prap
Amputee 442857143 0.8597
Crutches 5.92142057 0.2918
Hearing 4.05000000 04516
None 4.90000000

Wheelcha 534285714 0.8836

proc glm data = handicap;
class handicap;

mode! score = hand T
Ismeans handicap ff=control(’None’);
run;

Hypothesis tests also conclude that there is not sufficient evidence to suggest that there
are any differences between the means of each handicapped group and the mean of the
of the group without handicap. The above Dunnett adjusted p-values are all greater
than alpha = .05, as is visible from the table above.

R Code for Handicap Example Question 1

Question 1: Reading in Data and ANOVA

> Handicap = read.csv("Unit & Handicap Data.csv")
> fit = gov(Score~Handicap,data = Handicap)
> summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
Handicap 4 30.52 7.630 Z.862 0.0301 *
Residuals 65 173.32 2.666

Signif. codes: @ ‘***’ 9.801 ‘**’ @.01 ‘*’ 0.05 ‘.’ 0.1 * ' 1

R Code for Handicap Example Question 2

> potrwiseCICScore-Handicop, dato = Hondicop)
95 %-confidence intervals

Method: Difference of means assuming Normal distribution, allowing unequal voriances

estinate lower upper
Crutches-Aputee 14929 0.3003 2.6854
ttee

g - ke -9.3786 5902 08330
Hearing.Crutcpes . -1.B7M o Note: Must Load
ettt Grutches 9,578 P
Yone eartng a0 pairwiseCl package

Pheelchair-Hearing  1,2929
Wheel chair-None X

» gfit = glne

Vinfes - mepCHondicsn - “Tukey D)
» sy Gafit, & “pone')

= adjustes(Eype = “vane’
Simltoneous Tasts for General. Lineor fypotheses

MiLtiole Comparisons of Means: Tukey Contrasts

Fit: anviformula - Scors - Kendicon, dota - Kondican)
Linear iypotheses

Note: Must Crnons temns — 9

Estinate Std. Error & value Prxlt)
3,000 2 2 s

Load = e
£
multcomp 13 sy

(805 0,640
0718 0.47561

package

Slertt, codes: L R R SRR
Cdfosios p rane ethad)

R Code for Handicap Example Question 3

Note: Must Load multcomp package

> confint(gfit)

> gfit = glhe(fit, linfct = mep(Handicop = “Tukey™))

> summary(gfit) Simultaneous Confidence Intervals

Simultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts
Multiple Conparisons of Means: Tukey Contrasts

Fit: aov(formula = Score ~ Handicap, data = Handicap)
Fit: aov(formula = Score - Handicop, data = Handicop) -

Quantile = 2.806
Lineor Hypotheses: 95% fomily-wise confidence level

Estinate Std. Error ¢ value Pr(>1t1)

Crutches - Aeputee = @ 1.6929  ©.6172 2.419 8.1233

Hearing - Aeputee — 8 -9.3786 06172 -9.613 8.9725 .

ot~ ko = & Wi o o7 Linear Hypotheses: ;

Wheelchair - Amputee == 8  0.9143  B.6172 1.481 @.5781 Estimote lar upr
Hearing - Crutches == @ -1.8714 .6172 -3.832 @.0277 * Crutches - Amputee == @ 1.4929 -9.2390 3.2247
Hane - Crutches = @ L0214 0.6L72 -1.655  0.4686 Hearing - Amputee == 0  -0.3786 -2.1104 1.3533
Wheelchair - Crutches == @ -0.5786  ©.6172 -0.937 8.8612 None - Amputee == 8 0.4714 -1.2604 2.2033
Mane - Hearing == © X 0672 1377 86443 i

Wheelchair - Hearing == @  1.2929  Q.617Z 2.895 2.2348 :"“!‘h“f"( :"’:‘"“ kS L 7?:;;2 ggé;g g?;gg
Wheelchair - None == 8 0.4429 @672 ©.718 @.9517 earing - CRULCNES = 7 g i
None - Crutches == & -1.0214 -2.7533 0.7104
Signif. codes: @ '**** 9801 **’ 0.01 **’ 0.05 *.' 9.1 * ' 1 Wheelchair - Crutches == @ -0.5786 -2.3184 1.1533
(Adjusted p volues reported -- single-step method) None - Hearing == @ @ 8819 2.5819

Wheelchair - Hearing == & 4390 3.0247
Wheelchair - None == @ 0.4429 -1.2890 Z.1747
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R Code for Handicap Example Question 4

Note: Must Load multcomp package

> Handicapstandicop = relevelCHandicopSHandicap, ref « “None™y ~ * Confint(afity

> fit = oov(Score-Handicap,data = Handicop)
> gfit = glnkCFit, linfct - mepCHandicap = "Dunnett"))
> summory(gFit)

Simultaneous Confidence Intervals
Multiple Comparisons of Means: Dunnett Contrasts
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Dunnett Controsts

Quantile = 2.5023

Fit: aov(fornula = Score ~ Hondicap, dato = Handicap) 95% family-wise confidence level

Linear Hypotheses:

Estimate Std. Error t value Pr(>Itl) Linear Hypotheses:
Amputee - None == @ -0.4714 .6172 -0.764 0.860 Estimate lwr wpr
Crutches - None == @  1.8214  0.6172 1.655  ©.202 Amputee - None — @ -0.4714 -2.0159 1.0730
Hearing - None == @ -0.8500  0.6172 -L.377 @452 Crutches - Nome — @ 1.0214 -8.5238 2.5659
Wheelchair - None == @ 8.4429 @.6172 0.718 9.884 Hearing - None == @ -0.8500 -2.3944 0.6944

Outiuried pivalis Raoorted. — sl e-Rise meEind) Wheelchair - None == @ 0.4429 -1.1016 1.0873

Fit: aov(formila = Score ~ Hondicap, data = Handicap)

Appendix

Bonferroni’s Correction

*  Let@pgmiy be the experiment-wise Type | error rate.

« Let k be the number of pairwise comparisons, where each pairwise comparison
has an index i associated with it.

* Let H,; be the event that the null hypothesis associated with pairwise
comparison i istrue,for1 <i < k.

+ Let p; be the p-value for hypothesis test i, for 1 < i < k.

¢ Let @ naividual = A be the same for all k hypothesis tests.

« Bythe def. of Type | error rate, a, = P(p,— < aleD,,—) foralll1<i<k.
* LetT be the set of indices associated with all TRUE null hypotheses, and
suppose|T| = kg. That is, k, is the number of TRUE null hypotheses.

* Then, Aramily = P{Uie?'(pi < QCIHD.J)}'
+ ByBoole’s inequality (i.e., P(A U B) < P(A)+P(B)),

plU(p. < aclﬁw)l < Z P(pi < aclHo,)

ieT (G

Bonferroni’s Correction

D (e < aclHos) = koP(p < clHo)
ter
koP(pi < a|H,;) = koa, < ka,
Hence, Aramiry <ke..

Now, if we have in mind a family-wise Type | error rate of «,
we can set the Type | error of the individual hypothesis tests

to % In doing so, we are assured that azgmuy = k§ = a.
Therefore, choosing an individual Type | error rate of Zwill
ensure that the family-wise Type | error rate is less than a.

13
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Bonferroni’s Correction

We know that we can force @iy to be less than a specified a, but with a lower @y, comes a higher
(Type Il error rate). So, we want to ensure that @z, is not too low. How can we be sure that aga, g, is
really close to alpha, not just less than alpha?

When the k hypothesis tests are independent, @amiy = 1— (1 — a.)*.

Remember from calculus that any differentiable function can be approximated by the elements in its Taylor
Series expansion, with the approximation getting better and better the more terms you add to the series
(because the terms of the series converge to zero).

For the function [ («.) = 1 — (1 — &.)*, here are the first two terms of the Taylor series approximation about
the point O (which is reasonable as we expect to choose a, near 0)
flas) = f0) + f'(0)(a. — 0) = [1 = (1 = 0)¥] + k (1 = 0)*"(a, —0) = [1— (1)*] + k(1)*(a,)
=[1-1) + ka, = ka,

By setting &, = %, (&) = k< = & So, not only is & an upper bound on @yamiy, but when the tests are

independent, they are approximately equal. Even when the tests are not independent, simulations have shown
that @paumiy IS pretty close to .

Multivariate distribution

* A multivariate
distribution is
distribution of a
vector of conditional
random variables.

* Bivariate normal
distribution can
easily be shown
graphically.

Marginal density ofy

Gontours indicate joint
density of xand y

7

5%

JA
)
7 j////';/'cena..wna. —

% oty given that x=x,

Marginal density ofx  X=*o
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Workflow for testing hypotheses

205



CHOOSING A HYPOTHESIS TEST

MULTIPLE HYPOTHESIS TEST

parametric
ONE-SAMPLE T-TEST
Inference on means

(medians if log-transform)

noonparametric
SIGN TEST or
WILCOXON SINGED RANK TEST
Inference on medians

parametric
POOLED TWO-SAMPLE T
Inference on means

parametric
WELCH'S T
Inference on means

nonparametric
WILCOXON RANK SUM
(aka Mann-Whitney U Test)
Inference on medians

parametric
WELCH’S ANOVA
Inference on means

parametric
ONE-WAY ANOVA
Inference on means
(medians if log-transform)

RESEARCH STRUCTURE NORMAL DISTRIBUTION SAMPLE SIZE VARIANCE DATA TRANSFORMATION
ONE SAMPLE NO ~
Difference between mean of independent 1
samples and a hypothesized mean > YES (CLT)
Single measure or observation ” >
NO (w/LOG TRANSFORMATION)*
EVIDENCE AGAINST
NORMALITY? SUFFICIENT SAMPLE
MATCHED PAIRS SIZE?
Difference between same group before and
after treatment (within-groups) > YES > NO >
Repeated measures or observations
UNPAIRED TESTING (TWO SAMPLES)
Difference between independent groups s
(between-groups) o~ o L >
Single measure or observation i
SAME SAMPLE NO N
SIZES? >
| EVIDENCE AGAINST SAME
NO | STANDARD DEVIATION?
>
EVIDENCE AGAINST A =
NORMALITY?
YES (CLT)
| YES SUFFICIENT SAMPLE | NO N
SIZE? I >
UNPAIRED TESTING (MORE THAN TWO
SAMPLES)
Difference between il groups >
(between-groups)
Single measure or observation YES >
NO | EVIDENCE AGAINST SAME
| STANDARD DEVIATION? YES (w/LOG-TRANSFORMATION)* o
>
EVIDENCE AGAINST > No o~
NORMALITY? 1 >
5 YES (w/LOG TRANSFORMATION)* _
>
YES (CLT)
| ves SUFFICIENT SAMPLE | NO 3>
g

SIZE?

* TESTS USING LOG-TRANSFORMED
DATA (INFERENCE ON MEDIANS)

nonparametric
KRUSKAL-WALLIS
Inference on medians

HYPOTHESIS TESTING STEP-BY-STEP

[

Read the problem carefully. Isita
randomized experiment or an
observational study?

N

Plot the data using histograms, box
plots, or QQ plots.

w

Determine which test to use. Do the
data satisfy the test’s assumptions?

IS

State the null and alternative
hypotheses. Is this a one-sided or
two-sided test?

e}

Select a test statistic and confidence
level (1-a). Find the critical value.

o

Sketch the distribution, including
the critical value and the
acceptance and/or rejection
region(s).

~

Compute the test statistic and the
probability (p-value) of obtaining
the observed results if the null
hypothesis is true.

o

Reject or fail to reject the null
hypothesis. (Never accept the null
hypothesis.)

©

Perform post hoc testing, if
applicable, to determine which
groups are different.

10 State the statistical conclusion in
the context of the original problem.

TUKEY-KRAMER
(aka TUKEY'S HSD)

DUNNETT
for comparison to a control group

BONFERRONI CORRECTION
distribution-free, more conservative,
wider interval

REGWQ
Lower Type Il error rate than either
Bonferroni or Tukey-Kramer




Analysis Guide Midterm

note that the nonparamteric ones do medians, kruskal is nonparametric for ANOVA
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