

ANDROID™ BOOT CAMP FOR

DEVELOPERS USING JAVA™,

COMPREHENSIVE:

A BEGINNER ’S GUIDE TO

CREATING YOUR FIRST

ANDROID APPS

CORINNE HOISINGTON

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Android Boot Camp for Developers

Using Java, Comprehensive:
A Beginner’s Guide to Creating Your
First Android Apps

Corinne Hoisington

Executive Editor: Marie Lee

Senior Product Manager: Alyssa Pratt

Development Editor: Lisa Ruffolo

Associate Product Manager:
Stephanie Lorenz

Content Project Manager:
Heather Hopkins

Art Director: Faith Brosnan

Marketing Manager: Shanna Shelton

Compositor: Integra

Cover Designer: Wing-ip Ngan, Ink
design, inc. ©

Cover Image Credits:
istockphoto.com/zentilia
istockphoto.com/thesuperph
istockphoto.com/franckreporter
iQoncept/Shutterstock.com

© 2013 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored or used in any form or by any means
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution, information networks,
or information storage and retrieval systems, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, www.cengage.com/support

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2012932024

ISBN-13: 978-1-133-59720-9

Course Technology
20 Channel Center Street
Boston, MA 02210

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education,
Ltd.

For your lifelong learning solutions, visit course.cengage.com

Visit our corporate website at cengage.com.

Some of the product names and company names used in this book have been
used for identification purposes only and may be trademarks or registered
trademarks of their respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used throughout
this book is intended for instructional purposes only. At the time this book was
printed, any such data was fictional and not belonging to any real persons or
companies.

Course Technology, a part of Cengage Learning, reserves the right to revise this
publication and make changes from time to time in its content without notice.

The programs in this book are for instructional purposes only.

They have been tested with care but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not offer
any warranties or representations, nor do they accept any liabilities with respect
to the programs.

Printed in the United States of America

1 2 3 4 5 6 7 18 17 16 15 14 13 12

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengage.com/support
mailto:permissionrequest@cengage.com

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengage.com/highered

Brief Contents

Preface xiii

CHAPTER 1 Voilà! Meet the Android 1

CHAPTER 2 Simplify ! The Android User Interface 31

CHAPTER 3 Engage! Android User Input, Variables,
and Operations 69

CHAPTER 4 Explore! Icons and Decision-Making Controls . . . 109

CHAPTER 5 Investigate! Android Lists, Arrays,
and Web Browsers 145

CHAPTER 6 Jam! Implementing Audio in Android Apps . . 187

CHAPTER 7 Reveal ! Displaying Pictures in a Gal lery . . . 225

CHAPTER 8 Design! Using a DatePicker on a Tablet . . . 259

CHAPTER 9 Customize! Navigating with Tabs on a
Tablet App 301

CHAPTER 10 Move! Creating Animation 343

CHAPTER 11 Discover! Incorporat ing Google Maps 383

CHAPTER 12 Finale! Publ ishing Your Android App 429

Glossary 457

Index 465

iii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents

Preface . xi i i

CHAPTER 1 Voi là ! Meet the Andro id 1
Meet the Android . 2
Android Phone Device . 3
Features of the Android . 5
Writing Android Apps . 6
Android Emulator . 7
Getting Oriented with Market Deployment 8

First Venture into the Android World 9
Opening Eclipse to Create a New Project 9
Creating the Hello World Project 10
Building the User Interface . 13
Taking a Tour of the Package Explorer 14
Designing the User Interface Layout 15
Adding a Form Widget to the User Interface Layout 17
Testing the Application in the Emulator 20
Opening a Saved App in Eclipse 24

Wrap It Up—Chapter Summary . 26
Key Terms . 27
Developer FAQs . 27
Beyond the Book . 28
Case Programming Projects . 28
Case Project

Quote of the Day App . 29
Case Project

Android Terminology App . 30
Case Project

Business Card App . 30

CHAPTER 2 Simpl i fy ! The Android User Inter face 31
Designing an Android App . 32
The Big Picture . 33

Using the Android User Interface 33
Linear Layouts and Relative Layouts 35
Designing the Healthy Recipes Opening User Interface 37
Android Text Properties . 38
Adding a File to the Resources Folder 40
Adding an ImageView Control . 42

iv

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding a Button Control . 43
Planning a Program . 44

Creating Activities . 45
Creating an XML Layout File . 45
Adding a Class File . 47

The Android Manifest File . 50
Adding an Activity to the Android Manifest 50

Coding the Java Activity . 53
Coding an onCreate Method . 53
Displaying the User Interface . 54
Creating a Button Event Handler 56
Coding a Button Event Handler 58
Correcting Errors in Code . 60
Saving and Running the Application 61

Wrap It Up—Chapter Summary . 61
Key Terms . 62
Developer FAQs . 63
Beyond the Book . 64
Case Programming Projects . 64
Case Project

Rental Property App . 65
Case Project

Star Constellation App . 66
Case Project

Your School App . 67
Case Project

Hostel App for Travel . 67
Case Project

Your Contacts App – Address Book 68
Case Project

Latest News App . 68

CHAPTER 3 Engage! Andro id User Input , Var iab les, and Operat ions . . 69
Android Themes . 71
Previewing a Theme . 72
Coding a Theme in the Android Manifest File 74

Simplifying User Input . 76
Android Text Fields . 76
Adding a Text Field . 78
Setting the Hint Property for the Text Field 79
Coding the EditText Class for the Text Field 80
Android Spinner Control . 81
Adding a Spinner Control with String Array Entries 85
Coding the Spinner Control . 86
Adding the Button, TextView, and ImageView Controls 87

Declaring Variables . 92
Primitive Data Types . 93
String Data Type . 94

v

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Declaring the Variables . 94
GetText() Method . 95

Working with Mathematical Operations 96
Arithmetic Operators . 96
Formatting Numbers . 97

Displaying Android Output . 98
GetSelectedItem() Method . 98
SetText() Method . 99

Wrap It Up—Chapter Summary 100
Key Terms . 101
Developer FAQs . 102
Beyond the Book . 104
Case Programming Projects . 104
Case Project

Study Abroad App . 104
Case Project

Tuition App . 105
Case Project

New York City Cab Fare App 106
Case Project

Paint Calculator App . 107
Case Project

Split the Bill App . 107
Case Project

Piggy Bank Children’s App 108

CHAPTER 4 Exp lore ! Icons and Decis ion -Mak ing Contro ls 109
The Launcher Icon . 112
Customizing a Launcher Icon 114

RadioButton and RadioGroup Controls 116
Changing the Text Color of Android Controls 117
Changing the Layout Gravity 117
Changing the Margins . 118
Adding the RadioButton Group 119
Coding a RadioButton Control 121
Completing the User Interface 123

Making Decisions with Conditional Statements 125
Using an If Statement . 125
Using If Else Statements . 126
Relational Operators . 126
Logical Operators . 128
Data Validation . 129
Toast Notification . 129
Using the isChecked() Method of RadioButton Controls 130
Nested If Statements . 130
Coding the Button Event . 131
Coding the Nested If Statements 131

vi

C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Wrap It Up—Chapter Summary 135
Key Terms . 136
Developer FAQs . 136
Beyond the Book . 137
Case Programming Projects . 138
Case Project

Temperature Conversion App 138
Case Project

Movie Time App . 140
Case Project

Floor Tiling App . 141
Case Project

Math Flash Cards App . 142
Case Project

Currency Conversion App 142
Case Project

Average Income Tax by Country App 143

CHAPTER 5 I nvest igate ! Andro id L ists, Arrays, and Web Browsers . . 145
Creating a List . 149
Extending a ListActivity . 150
Creating an Array . 152
Declaring an Array . 153
Using a setListAdapter and Array Adapter 154
Adding the Images to the Resources Folder 156
Creating a Custom XML Layout for ListView 158
Changing the Title Bar Text . 160
Coding a setListAdapter with a Custom XML Layout 161

Using the onListItemClick Method 162
Decision Structure—Switch Statement 163
Android Intents . 165
Launching the Browser from an Android Device 166
Designing XML Layout Files . 168
Adding Multiple Class Files . 170
Opening the Class Files . 173
Running and Testing the Application 174

Wrap It Up—Chapter Summary 175
Key Terms . 176
Developer FAQs . 177
Beyond the Book . 179
Case Programming Projects . 179
Case Project

Italian Restaurant App . 180
Case Project

Box Office App . 183
Case Project

Rent a Car App . 184

vii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project
Coffee Finder App . 184

Case Project
Tech Gadgets App . 185

Case Project
Create Your Own App . 185

CHAPTER 6 Jam! Implement ing Audio in Andro id Apps 187
Creating a Splash Screen . 189
Adding a Background Image to a TextView Widget 190
Creating a Timer . 192
Scheduling a Timer . 195
Life and Death of an Activity 196

Launching the Next Activity . 199
Designing the main.xml File . 201
Class Variables . 203

Playing Music . 206
Creating a Raw Folder for Music Files 207
Using the MediaPlayer Class . 208
The MediaPlayer State . 209
Changing the Text Property Using Code 211
Changing the Visibility Property Using Code 213
Running and Testing the Application 216

Wrap It Up—Chapter Summary 216
Key Terms . 217
Developer FAQs . 218
Beyond the Book . 219
Case Programming Projects . 219
Case Project

Rhythm of the Strings App 220
Case Project

Guitar Solo App . 222
Case Project

Serenity Sounds App . 223
Case Project

Sleep Machine App . 223
Case Project

Ring Tones App . 224
Case Project

Your Personal Playlist App 224

CHAPTER 7 Reveal ! D isp lay ing Pictures in a Gal lery 225
Adding a Gallery Control . 228
Adding the ImageView Control and Image Files 230

Creating an Array for the Images 232
Instantiating the Gallery and ImageView Controls 234

viii

C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using a setAdapter with an ImageAdapter 235
Coding the OnItemClickListener 237
Coding a Custom Toast Notification 240
Displaying the Selected Image 242
Customizing the ImageAdapter Class 243
Defining the Context of the ImageAdapter Class 243

Calculating the Length of an Array 244
Coding the getView Method . 246
Running and Testing the Application 250
Wrap It Up—Chapter Summary 250
Key Terms . 251
Developer FAQs . 252
Beyond the Book . 253
Case Programming Projects . 253
Case Project

Power Tools App . 254
Case Project

S.P.C.A. Rescue Shelter App 255
Case Project

Four Seasons App . 256
Case Project

Car Rental App . 256
Case Project

Anthology Wedding Photography App 257
Case Project

Personal Photo App . 257

CHAPTER 8 Design ! Us ing a DatePicker on a Tablet 259
Designing a Tablet Application 262
Design Tips for Tablets . 263
Adding an Android Virtual Device for the Tablet 264
Creating a Tablet App . 266
Setting the Launcher Icon of a Tablet App 268
Setting a Custom Theme of a Tablet 270
Designing a Tablet Table Layout 272
Date, Time, and Clocks . 277
Determining the Current Time 278

Initializing the Button and TextView Controls 279
ShowDialog Method . 281
Using the Calendar Class . 283
Adding the OnCreateDialog Method 285
Coding the onDateSetListener Method 288
Running and Testing the Application 291

Wrap It Up—Chapter Summary 291
Key Terms . 292
Developer FAQs . 293

ix

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Beyond the Book . 294
Case Programming Projects . 295
Case Project

Oasis Day Spa Tablet App 295
Case Project

Washington D.C. Walking Tour Tablet App 297
Case Project

Country Cabin Rental Tablet App 298
Case Project

Final Touch Auto Detailing Tablet App 299
Case Project

Wild Ginger Dinner Delivery Tablet App 300
Case Project

Create Your Own Tablet App 300

CHAPTER 9 Customize ! Nav igat ing wi th Tabs on a Tablet App . . . 301
Creating a Tab Layout for a Tablet 304
The TabHost Layout . 305
Extending the TabActivity Class 310
Adding the Tab and GridView Images 311
Creating a GridView XML Layout for the First Tab 312
Creating a TextView XML Layout for the Second Tab 314
Creating the XML Layout for the Third Tab 316

Coding the GridView Activity for the First Tab 317
Using a setAdapter with an ImageAdapter 319
Customizing the ImageAdapter Class 320
Coding the getView Method . 323

Coding the Second Tab Java File 325
Coding the Third Tab Java File to Display a Web Site 325
Coding the TabHost . 327
Adding the TabSpec to TabHost 329

Updating the Android Manifest File 330
Running and Testing the Application 332
Wrap It Up—Chapter Summary 333
Key Terms . 334
Developer FAQs . 334
Beyond the Book . 335
Case Programming Projects . 336
Case Project

Sushi 101 Tablet App . 336
Case Project

Golf Course Tablet App . 338
Case Project

Famous Artist Tablet App 339
Case Project

Snap Fitness Tablet App . 340

CON T E N T S

x

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project
Go Web 2.0 Tablet App . 340

Case Project
Pick Your Topic Tablet App 341

CHAPTER 10 Move! Creat ing Animat ion 343

Android Animation . 346
Adding the Layout for the Frame Image and Button Controls 346
Creating Frame-by-frame Animation 349

Coding the AnimationDrawable Object 352
Setting the Background Resource 353
Adding Two Button Controls . 356
Using the Start and Stop Methods 358
Adding the Layout for the Tween Image 360
Creating Tween Animation . 361
Coding a Tween Rotation XML File 362
Coding a Second Activity to Launch the Tween Animation 364
Coding a StartAnimation . 366
Updating the Android Manifest File 368

Changing the Emulator to Landscape Orientation 370
Running and Testing the Application 371
Wrap It Up—Chapter Summary 371
Key Terms . 372
Developer FAQs . 373
Beyond the Book . 374
Case Programming Projects . 374
Case Project

Learn How to Make Biscuits App 375
Case Project

Improve Your Golf Stroke App 378
Case Project

Droid Rotation App . 381
Case Project

Cartoon Animation App . 381
Case Project

Flags of the World App . 382
Case Project

Frame and Tween Animation Game App 382

CHAPTER 11 Discover ! Incorporat ing Google Maps 383
Using Google Maps . 386
Installing the Google API . 386
Adding the AVD to Target the Google API 387

Obtaining a Maps API Key from Google 389
Troubleshooting . 392

xi

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Registering the MD5 Fingerprint with the Google Maps Service 393
Adding the MapView Element in the XML Code 395
Adding Permissions to the Android Manifest File 397

Understanding MapView . 400
Adding Overlay Items . 404
Adding Overlay Objects to an ArrayList 406
Coding the onTap Method . 412
Coding the Drawable Overlay 415

Locating a GeoPoint . 417
Coding the GeoPoint Location 418

Running and Testing the Application 420
Wrap It Up—Chapter Summary 420
Key Terms . 422
Developer FAQs . 423
Beyond the Book . 424
Case Programming Projects . 424
Case Project

Largest U.S. Cities App . 425
Case Project

New Year’s Eve Celebrations App 426
Case Project

Olympic Cities App . 427
Case Project

Personal Map App . 427

CHAPTER 12 Finale ! Publ ish ing Your Android App 429
Understanding Google Play . 430
Targeting Different Device Configurations and Languages 431
Testing Your App on an Android Device 432
Creating an APK Package . 433

Preparing Promotional Materials to Upload 440
Providing Images . 441
Providing a Description . 442
Including App Information . 443

Registering for a Google Play Account 445
Uploading an App to Google Play 449
Wrap It Up—Chapter Summary 454
Key Terms . 455
Developer FAQs . 455
Beyond the Book . 456

Glossary . 457

Index . 465

xii

C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

Welcome to Android Boot Camp for Developers Using Java, Comprehensive: A Beginner’s
Guide to Creating Your First Android Apps! This book is designed for people who have some
programming experience or are new to Java programming and want to move into the exciting
world of developing apps for Android mobile devices on a Windows or Mac computer.
Google Android is quickly becoming the operating system of choice for mobile devices,
including smartphones and tablets, with nearly half of the world’s mobile devices running on
the Android platform. To help you participate in the growing Android market, this book
focuses on developing apps for Android devices.

Approach
The approach used in Android Boot Camp for Developers Using Java, Comprehensive is
straightforward. You review a completed Android app and identify why people use the app,
the tasks it performs, and the problems it solves. You also learn about the programming logic,
Java tools, and code syntax you can use to create the app. Next, you work through a hands-on
tutorial that guides you through the steps of creating the Android app, including designing
the user interface and writing the code. After each step, you can compare your work to an
illustration that shows exactly how the interface should look or what the code should contain.
Using the illustrations, you can avoid mistakes in creating the app and finish the chapter with
an appealing, real-world Android app.

The main tool used in Android Boot Camp for Developers Using Java, Comprehensive is a
standard one developers use to create Android apps: Eclipse Classic, a free, open-source
integrated development environment (IDE). Eclipse includes an emulator for testing your
apps, so you don’t need a smartphone or tablet to run any of the apps covered in this book.
Instructions for downloading and setting up Eclipse are provided later in this preface.

What This Book Is
This book introduces you to writing apps for Android mobile devices. It familiarizes you with
the development software for creating Android apps, programming logic used in the apps,
and Java code that puts the software design and logic into practice. You don’t need an
Android device because you can run the apps you create in this book by using an Android
emulator.

xiii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

What This Book Is Not
Because this book is targeted to those new to developing Android apps, it doesn’t cover
advanced topics, such as application programming interfaces (APIs) for each platform.
Instead, this book provides a launch pad to begin your journey into creating Android apps for
fun and for profit.

In addition, this book isn’t an exhaustive information resource. You can find a wealth of
information, tutorials, examples, and other resources for the Android platform online. You
should learn enough from this book that you can modify and make use of code you find to fit
your needs. The best way to learn how to create Android apps is to write code, make
mistakes, and learn how to fix them.

Organization and Coverage
Chapter 1 introduces the Android platform and describes the current market for Android
apps. You create your first Android project using Eclipse and become familiar with the Eclipse
interface and its tools. As programming tradition mandates, your first project is called Hello
Android World, which you complete and then run in an emulator.

Chapter 2 focuses on the Android user interface. While developing an app for selecting and
displaying healthy recipes, you follow a series of steps that you repeat every time you create an
Android app. You learn how to develop a user interface using certain types of controls, select
a screen layout, and learn how to write code that responds to a button event (such as a click
or tap). While creating the chapter project, you develop an app that includes more than one
screen and can switch from one screen to another. Finally, you learn how to correct errors in
Java code.

Chapter 3 covers user input, variables, and operations. You develop an Android app that
allows users to enter the number of concert tickets they want to purchase, and then click a
button to calculate the total cost of the tickets. To do so, you create a user interface using an
Android theme and add controls to the interface, including text fields, buttons, and spinner
controls. You also declare variables and use arithmetic operations to perform calculations,
and then convert and format numeric data.

Chapter 4 discusses icons and decision-making controls. The sample app provides health
care professionals a mobile way to convert the weight of a patient from pounds to kilograms
and from kilograms to pounds. You create this project using a custom application icon, learn
how to fine-tune the layout of the user interface, and include radio buttons for user selections.
You also learn how to program decisions using If statements, If Else statements, and logical
operators.

Chapter 5 describes how to use lists, arrays, and Web browsers in an Android app. You
design and create an Android app that people can use as a traveler’s guide to popular
attractions in San Francisco, California. To do so, you work with lists, images, and the Switch
decision structure. You also learn how to let users access a Web browser while using an
Android app.

xiv

G L O S S A R YI N D E XP R E F A C E Organization and Coverage

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 explains how to include audio such as music in Android apps. The sample app
opens with a splash screen and then displays a second screen where users can select a song to
play. To develop this app, you create and set up a splash screen, learn about the Activity life
cycle, pause an Activity, and start, play, stop, and resume music playback.

Chapter 7 demonstrates how to use an Android layout tool called a Gallery view, which
shows thumbnail images in a horizontally scrolling list. When the user clicks a thumbnail, the
app displays a larger image below the Gallery view. You also learn how to use an array to
manage the images.

In Chapter 8, you design a calendar program that includes a DatePicker control for selecting
a date to book a reservation. Because this app is designed for a larger tablet interface, you also
learn how to design an app for a tablet device and add an Android Virtual Device specifically
designed for tablets.

Chapter 9 continues to explore Android apps designed for tablet devices. In this chapter, you
create a tabbed interface with each tab displaying a different layout and Activity. To create the
tabbed interface, you work with TabHost and TabWidget controls.

Chapter 10 explains how to create two types of animation. Using a frame-by-frame
animation, you animate a series of images so that they play in sequence. Using a motion tween
animation, you apply an animated effect to a single image.

Chapter 11 shows you how to create an Android app that includes Google Maps to display a
map users can zoom in and out. You also learn how to display pushpins to mark special
locations on the map. Because using Google Maps requires special permissions, you learn
how to add these permissions to the Android Manifest file to access the Internet and the
Google library.

In Chapter 12, you learn how to publish an Android app to the Android Market, which is
currently part of Google Play. Before publishing the app, you test it, prepare it for publication,
create a package and digitally sign the app, and then prepare promotional materials.

Features of the Book
Android Boot Camp for Developers Using Java, Comprehensive includes the following
features:

l Objectives—Each chapter begins with a list of objectives as an overview of the topics
discussed in the chapter and as a useful study aid.

l GTKs and In the Trenches—GTK stands for Good to Know. These notes offer tips about
Android devices, Android apps, and the Android development tools. The In the Trenches
features provide programming advice and practical solutions to typical programming
problems.

l Figures and tables—Chapters contain a wealth of screen shots to guide you as you create
Android apps and learn about the Android marketplace. In addition, many tables are
included to give you an at-a-glance summary of useful information.

Features of the Book

xv

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l Step-by-step tutorials—Starting in Chapter 1, you create complete, working Android apps
by performing the steps in a series of hands-on tutorials that lead you through the
development process.

l Code syntax features—Each new programming concept or technique is introduced with a
code syntax feature that highlights a type of statement or programming structure. The
code is analyzed and explained thoroughly before you use it in the chapter project.

l Summaries—At the end of each chapter is a summary list that recaps the Android terms,
programming concepts, and Java coding techniques covered in the chapter so that you
have a way to check your understanding of the chapter’s main points.

l Key terms—Each chapter includes definitions of new terms, alphabetized for ease of
reference. This feature is another useful way to review the chapter’s major concepts.

l Developer FAQs—Each chapter contains many short-answer questions that help you
review the key concepts in the chapter.

l Beyond the Book—In addition to review questions, each chapter provides research topics
and questions. You can search the Web to find the answers to these questions and further
your Android knowledge.

l Case programming projects—Except for Chapter 12, each chapter outlines six realistic
programming projects, including their purpose, algorithms, and conditions. For each
project, you use the same steps and techniques you learned in the chapter to create a
running Android app on your own.

l Quality—Every chapter project and case programming project was tested using
Windows 7 and Mac OS X computers.

Student Resources
Source code and project files for the chapter projects and case programming projects inAndroid
Boot Camp for Developers Using Java, Comprehensive are available at www.cengagebrain.com.

For complete instructions on downloading, installing, and setting up the tools you need to
perform the steps in this book, see the section titled “Prelude! Installing the Android Eclipse
SDK” later in this preface.

For the Instructor
Android Boot Camp for Developers Using Java, Comprehensive is intended to be taught as a
complete course dedicated to the mobile programming of the Android device or as an exploratory
topic in a programming class or literacy course. Students can develop Android applications on a
Windows or Mac computer using the Eclipse emulator in a traditional or online class. Offering
such an exciting topic that is relative to today’s huge growth in the mobile environment brings
excitement to the programming classroom. The Eclipse/Android platform is fully free and open-
source, which means all students can access these tools on their home computers.

P R E F A C E For the Instructor

xvi

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengagebrain.com

Instructor Resources
The following teaching tools are available on the Instructor Resources CD or through
login.cengage.com to instructors who have adopted this book:

Instructor’s Manual. The electronic Instructor’s Manual follows the book chapter by
chapter to assist in planning and organizing an effective, engaging course. The manual
includes learning objectives, chapter overviews, ideas for classroom activities, and abundant
additional resources. A sample course syllabus is also available.

ExamView®. This book is accompanied by ExamView, a powerful testing software package
that allows instructors to create and administer printed, computer (LAN-based), and Internet
exams. ExamView includes hundreds of questions corresponding to the topics covered in this
book, enabling students to generate detailed study guides that include page references for
further review. These computer-based and Internet testing components allow students to
take exams at their computers and save instructors time by grading each exam automatically.
Test banks are also available in Blackboard, WebCT, and Angel formats.

PowerPoint presentations. This book comes with PowerPoint slides for each chapter.
They’re included as a teaching aid for classroom presentations, to make available to students
on the network for chapter review, or to be printed for classroom distribution. Instructors can
add their own slides for additional topics or customize the slides with access to all the figure
files from the book.

Solution files. Solution files for all chapter projects and the end-of-chapter exercises are
provided.

For the Instructor

xvii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Prelude! Installing the
Android Eclipse SDK

Setting Up the Android Environment
To begin developing Android applications, you must first set up the Android programming
environment on your computer. To establish a development environment, this section walks
you through the installation and setup for a Windows or Mac computer. The Android
Software Development Kit (SDK) allows developers to create applications for the Android
platform. The Android SDK includes sample projects with source code, development tools,
an emulator, and required libraries to build Android applications, which are written using the
Java programming language.

The Android installation is quite different from a typical program installation. You must
perform the following tasks in sequence to correctly prepare for creating an Android
application. Before you write your first application in Chapter 1, complete the following tasks
to successfully install Android SDK on your computer:

1. Prepare your computer for the installation.

2. Download and unzip the Eclipse Integrated Development Environment (IDE).

3. Download and unzip the Android SDK package.

4. Install the Android Development Tools (ADT) Plugin within Eclipse.

5. Set the location of the ADT within Eclipse.

6. Set up the Android emulator.

Preparing Your Computer
The Android Software Development Kit is compatible with Windows XP (32-bit), Windows
Vista (32- or 64-bit), Windows 7 (32- or 64-bit), Windows 8 (32-, 64-, or 128-bit), and Mac
OS X (Intel only). To install the basic files needed to write an Android application, your hard
drive needs a minimum of 400 MB of available space.

xviii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Downloading Eclipse
Before downloading the necessary files, create a folder on the hard drive (C:) of your
computer named Android. Next, you must download and unzip the software in the
C:\Android folder. Windows Vista and Windows 7 automatically unzip files, but if you are
using Windows XP, you will need to first download an unzip program such as WinZip at
download.com.

The preferred Java program development software is called Eclipse. Eclipse is a free and open-
source IDE. To download Eclipse:

1. Open the Web page www.eclipse.org/downloads and look for the most recent version
of Eclipse Classic as shown in Figure 1.

2. Select the most recent version of Eclipse Classic. If you are downloading to a
Macintosh computer, click the Windows list arrow and then click Mac OS X
(Cocoa). If you are downloading to a Windows computer, click Windows 32 Bit or
Windows 64 Bit based on the system on your computer.

3. After downloading the Eclipse package, unzip the downloaded eclipse file into a
subfolder of the Android folder at C:\Android on your local computer. The unzipped
file contains the contents of the Eclipse development environment (Figure 2). You
may want to create a shortcut on the desktop to make it easy to start Eclipse.

Click to select
Windows or
Mac

Select Windows
32 Bit or Windows
64 Bit

Eclipse Classic
(the version number
may be newer on
your Web page)

Figure 1 Eclipse Downloads page (www.eclipse.org/download)

Setting Up the Android Environment

xix

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.eclipse.org/downloads
http://www.eclipse.org/download

Downloading the SDK Starter Package
After unzipping the Eclipse package, the next step is to download the Android Software
Development Kit (SDK), which is a collection of files and utilities that work with Eclipse to
create Android applications. The SDK starter package includes only the core SDK tools,
which you can use to download the rest of the SDK components such as the latest Android
platform. To download the Android SDK:

1. Go to the Android developers Web site at http://developer.android.com/sdk.

2. Download the latest SDK for your computer’s platform (Figure 3).

eclipse folder

eclipse
executable
file

Figure 2 Contents of the Eclipse folder

P R E F A C E Setting Up the Android Environment

xx

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com/sdk

3. After downloading the SDK, unzip its contents into the C:\Android folder.

Setting Up the Android Development Tools in Eclipse
After you install Eclipse and the Android SDK, the next step is to install the ADT (Android
Development Tools) plug-in from Eclipse. The ADT plug-in for Eclipse is an extension to the
Eclipse IDE that creates Android applications, debugs the code, and exports a signed
application file to the Android Market. To download the Android Development Tools:

1. In the Android folder on your computer, open the eclipse folder and double-click the
eclipse.exe file to open Eclipse. (If an Open File - Security Warning dialog box opens,
click the Run button.)

2. In Eclipse, click Help on the menu bar and then click Install New Software to open
the Install dialog box.

3. Click the Add button in the upper-right corner of the dialog box.

4. In the Add Repository dialog box, type ADT Plugin for the Name and the following
URL for the Location: https://dl-ssl.google.com/android/eclipse/ (Figure 4).

Windows and
Mac OS X
Android SDK
installation
packages

Figure 3 Android SDK download site (http://developer.android.com/sdk)

Setting Up the Android Environment

xxi

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com/sdk
https://dl-ssl.google.com/android/eclipse/

5. Click the OK button.

6. In the Available Software dialog box, select the Developer Tools check box and then
click the Next button.

7. In the next window, click the Next button.

8. Read and accept the license agreements, and then click the Finish button. If a security
warning appears indicating that the authenticity or validity of the software can’t be
established, click OK. When the installation is finished, restart Eclipse.

Configuring Eclipse with the Location of the ADT Plugin
After successfully downloading the ADT plug-in, the next task is to modify your ADT
preferences in Eclipse to use the Android SDK directory. Next, you install the repositories for
Android 4.0 SDK, Google API, and the emulator.

1. In Eclipse, click Window on the menu bar and then click Preferences to open the
Preferences dialog box.

On Mac OS X, click Eclipse on the menu bar and then click Preferences.

Install dialog box

Add button

OK button

Location text
box with ADT
Plugin URL

Figure 4 Install dialog box in Eclipse

xxii

P R E F A C E Setting Up the Android Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Select Android in the left pane. To set the SDK Location, type C:\android\android-
sdk-windows to enter the path to the installed files (Figure 5).

On Mac OS X, set the SDK Location to /Library/android.

3. Click the OK button. To install the repositories for the Android 4.0 SDK, click
Window on the Eclipse menu bar and then clickAndroid SDKManager to open the
Android SDK Manager dialog box.

4. Click Android 4.0 (API 14) to select it, and then click the Install packages button.

5. In the next window, click Install to install the Android 4.0 SDK in Eclipse (Figure 6).
The installation may take some time to complete.

SDK Location
text box with
path

OK button

Android is
selected

Figure 5 Setting the SDK Location in Eclipse

xxiii

Setting Up the Android Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Setting up the Android Emulator
The Android SDK includes a phone and tablet emulator that allows you to develop and test
your Android applications. Android mobile devices come in many shapes and sizes and must
be tested on a host of emulator layout sizes to verify the configuration and usability. Each
Android device configuration is stored in an Android Virtual Device (AVD).

The Android SDK and AVD Manager within Eclipse provide multiple emulators for test-
driving your application without using a physical device. When you run an Android app, it
runs in an emulator so you can interact with the emulated mobile device just as you would an
actual mobile device. You can simulate touching the screen of the emulator with the pointing
device on your computer.

To use the emulator, you first must create one or more AVD configurations. In each
configuration, you specify an Android platform to run in the emulator and the set of
hardware options and emulator skin you want to use. When you launch the emulator, you
specify the AVD configuration that you want to load. In this book, the Android 4.0 Ice Cream
Sandwich version emulator is used, although based on your actual Android device, you can
add multiple emulators to test the devices on which you plan to deploy your apps.

You must name the emulator that you set up to use to deploy your Android apps. By selecting
an emulator, you choose the skin, or resolution, that the Android emulator displays. To
specify the Android 4.0 emulator:

1. In Eclipse, clickWindow on the menu bar and then click AVDManager to open the
Android Virtual Device Manager dialog box.

2. Click theNew button to open the Create new Android Virtual Device (AVD) dialog box.

Install
packages
button

Android 4.0
(API 14)
selected

Figure 6 Installing Android 4.0 using the SDK Manager in Eclipse

xxiv

P R E F A C E Setting Up the Android Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. To name your Android emulator, type IceCream in the Name text box.

4. To target your Android app to appear in the Android 4.0 version, select Android 4.0
– API Level 14 in the Target list (Figure 7). You can select newer Android versions,
but most devices are not using the newest platform.

Target is
Android 4.0

Name of AVD

Create
AVD button

Figure 7 Create new Android Virtual Device (AVD) dialog box

xxv

Setting Up the Android Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Click the Create AVD button. The Android Virtual Device Manager dialog box lists
the AVD Name (IceCream) for the Android 4.0 target device (Figure 8).

6. Your AVD is now ready to use. To launch and test the emulator with the AVD, click
the IceCream emulator and then click the Start button. If a Launch Options dialog
box opens, click the Launch button. After a few moments, the Ice Cream Sandwich
Android 4.0 emulator starts (Figure 9).

New emulator

Start button

Figure 8 Android Virtual Device Manager dialog box

xxvi

P R E F A C E Setting Up the Android Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Close Eclipse by clicking File on the menu bar and then clicking Exit. Close all other
open windows. You are now ready to create your first application.

Android Software Development Kit (SDK) Installation
Instructions for Mac
To develop Android apps, you need to install the Android Software Development Kit (SDK).
In addition, you need another application in which to run the SDK. The most popular version,
and the one you use here, is Eclipse. This section provides instructions for installing the
Android SDK and Eclipse.

Android currently provides online installation instructions at http://developer.android.com/
sdk/installing.html. Eclipse currently provides online installation instructions at
http://developer.android.com/sdk/eclipse-adt.html#installing. Use the online instructions as a
backup if you encounter any unique issues with the installation not covered in this chapter.

Figure 9 Android emulator

xxvii

AndroidSoftwareDevelopmentKit (SDK) Installation Instructions forMac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com/
http://developer.android.com/sdk/eclipse-adt.html#installing

System Requirements
Before you install the software, be sure that your Mac meets the following system
requirements by completing the following steps.

1. Your operating system should be Mac OS X 10.5.8 or later (x86 only). Click the Apple
icon on the Mac toolbar, and then click About this Mac to open the About This Mac
dialog box and view your current operating system version. In the About This Mac
dialog box, also verify that your Mac has an Intel processor.

The operating system is later than 10.5.8 and the processor is by Intel (Figure 10).

2. Eclipse 3.6.2 (Helios) or greater is installed on your machine. Eclipse Indigo is installed
for this book and the installation instructions appear later in this section.

Installing the Android Software Development Kit (SDK)
Now that you know your system meets the requirements, you can install the SDK starter
package. The Android SDK zip file contains only the core tools. Complete the following steps
to install the SDK.

1. Use your browser to go to http://developer.android.com/sdk/index.html and
download the latest Mac OS X SDK starter package zip file. At the time of publication,
this file is named is android-sdk_r18-macosx.zip. Click android-sdk_r18-macosx.zip
to download the file.

Mac OS X
version

Processor is
Intel

Figure 10 About This Mac dialog box

xxviii

P R E F A C E Android Software Development Kit (SDK) Installation Instructions for Mac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com/sdk/index.html

Download the android-sdk_r18-macosx.zip installation zip file (Figure 11).

2. Open your browser’s Downloads folder. In Safari, click the Show downloads button in
the upper-right corner of the browser.

The list of recently downloaded files appears in a pop-up window (Figure 12).

Figure 12 android-sdk_r18-macosx.zip file in Downloads list

Installation
zip file

Figure 11 The Android SDK installation zip file

xxix

AndroidSoftwareDevelopmentKit (SDK) Installation Instructions forMac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Click the Show in Finder icon next to android-sdk_r18-macosx.zip, and then move
the folder to your Applications folder.

Installing Eclipse
The tool this book uses to develop Android apps is Eclipse. Use Eclipse 3.6.2 or greater to be
compatible with the Android SDK. Android, Inc., recommends Eclipse Classic, though they
state that a Java or RCP version is also adequate. Install the 32-bit or 64-bit (OS X Lion, some
installations, only) version. If you are running the Lion OS, check the following file in a text
editor to see if your version of Lion is booting in 64-bit or 32-bit:
/Library/Preferences/SystemConfiguration/com.apple.Boot.plist.

1. To download Eclipse, use your browser to go to http://www.eclipse.org/downloads/.

The Eclipse Downloads page is displayed (Figure 13).

2. On the Eclipse Downloads page, next to the version of Eclipse you want to download
such as Eclipse Classic 3.7.2, click the Mac OS X 32 Bit or Mac OS X 64 Bit link to
open the Eclipse downloads – mirror selection page.

Mac OS X 32 Bit
link

Eclipse Classic
3.7.2

Figure 13 Eclipse Downloads page

xxx

P R E F A C E Android Software Development Kit (SDK) Installation Instructions for Mac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.eclipse.org/downloads/

The Eclipse downloads – mirror selection page is displayed (Figure 14).

3. On the Eclipse downloads – mirror selection page, click the Download button.

The Eclipse download begins (Figure 15).

4. After a minute or so, when the download is complete, open the Downloads folder.
In Safari, click the Show downloads button in the upper-right corner of the browser.
Click the Show in Finder icon next to the eclipse file. Double-click the tar file (eclipse-
eclipse-SDK-3.7.2-macosx-cocoa.tar in this case) to expand the files. Move the eclipse
folder from your Downloads folder to the Applications folder. Open the eclipse folder,
and then double-click eclipse.app. Click Open if a warning dialog box appears
regarding this application having been downloaded from the Internet.

Show in
Finder icon

Show downloads
button

Eclipse
tar file

Figure 15 Eclipse tar file in Downloads list

Download
button

Figure 14 Eclipse downloads – mirror selection page

xxxi

AndroidSoftwareDevelopmentKit (SDK) Installation Instructions forMac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Eclipse starts and the Workspace Launcher appears (Figure 16).

5. Enter a Workspace path in the Workspace Launcher dialog box. This path is
where your Android projects will be saved. (For this book, the projects are saved
to a USB drive but this path is entered by project.) For now, enter a path that
makes sense for the projects to such as username/workspace where username is
the username associated with your Mac. Type username/workspace in the
Workspace text box or click the Browse button, navigate to the desired location,
and then open the location. The Workspace Launcher appears each time you
start Eclipse. You can change that default so it will not appear by clicking the
“Use this as the default and do not ask again” check box. You may want to hold
off on changing this default until you are sure that the location is working for
you. Click OK.

The Eclipse application is now fully installed and open.

Installing Android Development Tools (ADT) Plugin for Eclipse
Now that Eclipse is installed, the Android Development Tools (ADT) Plugin needs to be
added to the program.

1. With Eclipse running, click Help on the menu bar and then click Install New
Software.

Workspace path

Check box sets Workspace
Launcher to not appear on
startup

Figure 16 The Workspace Launcher

xxxii

P R E F A C E Android Software Development Kit (SDK) Installation Instructions for Mac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Install wizard starts (Figure 17).

2. Click the Add button to open the Add Repository dialog box. In the Name text box,
type ADT Plugin and then type https://dl-ssl.google.com/android/eclipse/ in the
Location text box. Click OK. If this fails for some reason, then try the prefix http
instead of https, which is a less secure option to use if the secure option fails.

Add button

Figure 17 Install wizard

xxxiii

AndroidSoftwareDevelopmentKit (SDK) Installation Instructions forMac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

https://dl-ssl.google.com/android/eclipse/

The criteria are entered in the Add Repository dialog box (Figure 18).

3. Click the Developer Tools check box, and then click Next.

Developer Tools is selected (Figure 19).

Developer Tools
check box

Figure 19 Install wizard – Available Software page

Figure 18 Add Repository dialog box

xxxiv

P R E F A C E Android Software Development Kit (SDK) Installation Instructions for Mac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Leave the defaults in the Install Details list box and then click Next. Select a license
agreement in the Licenses box, read the license agreement, and then repeat for all
other license agreements. Click the “I accept the terms of the license agreements”
option button.

Read each license agreement and accept them all (Figure 20).

5. Click the Finish button to open the Installing Software dialog box. Click Run in
Background to complete the installation while doing other tasks. If a Security
Warning dialog box appears regarding the authenticity of the software, click OK
to clear it. When the installation completes, click Restart Now to restart Eclipse.
Click OK in the Workspace Launcher dialog box to accept the default location you
entered earlier.

Text of selected
license agreement

Option button
to accept terms

License agreements
with Apache License
selected

Figure 20 Install wizard – Review Licenses page

xxxv

AndroidSoftwareDevelopmentKit (SDK) Installation Instructions forMac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Eclipse begins to launch (Figure 21).

Leave Eclipse open for the next set of instructions. See http://developer.android.com/sdk/
eclipse-adt.html#installing for more installation information, if necessary.

Configuring the ADT Plugin
The ADT Plugin must point to the Android Developers SDK directory for it to work
correctly.

1. Start Eclipse, if necessary. Click Eclipse on the menu bar and then click Preferences to
open the Preferences dialog box. Click the Android category.

Figure 21 Eclipse launches

xxxvi

P R E F A C E Android Software Development Kit (SDK) Installation Instructions for Mac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com/sdk/

The Eclipse Preferences dialog box displays the Android Preferences (Figure 22).

2. Click the Browse button next to SDK Location. Navigate to the Applications folder,
and then select the android-sdk-macosx folder.

Browse button

Android
category

Figure 22 Eclipse Preferences dialog box

xxxvii

AndroidSoftwareDevelopmentKit (SDK) Installation Instructions forMac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The android-sdk-macosx folder is selected (Figure 23).

3. Click the Open button. Click the Apply button and then click OK to set the SDK
location and close the Preferences dialog box. Leave Eclipse open for the next set of
instructions.

The ADT Plugin now points to the correct directory. See http://developer.android.com/sdk/
eclipse-adt.html#installing for more instructions, if necessary.

Adding Android Platforms and Other Packages to SDK
The final step in this installation is to download essential SDK packages using the Android
SDK Manager. To program applications, you need to install at least one Android platform.

1. Start Eclipse, if necessary. Click Window on the menu bar and then click Android
SDK Manager. In the Android SDK Manager dialog box, click the Tools check box, if
necessary, to select the packages.

Open button

Apply button

android-sdk-macosx
folder

Figure 23 android-sdk-macosx folder

xxxviii

P R E F A C E Android Software Development Kit (SDK) Installation Instructions for Mac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com/sdk/

The packages are selected for installation (Figure 24).

2. Click the Install 8 packages button. In the Choose Packages to Install dialog box, select
and read the license agreements, click the Accept all option button, and then click
Install. The Android SDK Manager Log shows the detailed progress of the download,
which might take a few minutes. If the Android Tools Updated dialog box appears,
click OK. When the Done loading packages message appears, click Close to close the
Android SDK Manager Log dialog box. Click the Close button on the title bar to close
the Android SDK Manager dialog box. Click Check for Updates on the Help menu.
Install any updates that may appear.

See http://developer.android.com/sdk/installing.html for more installation information, if
necessary, and details regarding these packages. Your development environment is now ready
for you to use to create Android apps.

Tools check box

Install 8 packages
button

Selected
packages

Figure 24 Android SDK Manager dialog box

xxxix

AndroidSoftwareDevelopmentKit (SDK) Installation Instructions forMac

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com/sdk/installing.html

Acknowledgements

Android Boot Camp for Developers Using Java, Comprehensive: A Beginner’s Guide to
Creating Your First Android Apps is the product of a wonderful team of professionals working
toward a single goal: providing students with pertinent, engaging material to further their
knowledge and careers. Thank you to the folks at Cengage—specifically Acquisitions Editor
Brandi Shailer; Senior Product Manager Alyssa Pratt; Content Project Manager Heather
Hopkins; Karen Annett, the copyeditor; Suzanne Huizenga, the proofreader; and Susan
Whalen and Susan Pedicini, the MQA testers.

Thank you to the reviewers of this book: Sam Abraham, Siena Heights University; Marilyn
Achelpohl, Galesburg High School; Jay Bohnsack, Moline High School; Arshia Khan, College
of Saint Scholastica; Larry Langellier, Moraine Valley Community College; and Roseann
Rovetto, Horry-Georgetown Technical College. It’s because of their insights and experience
that Android Boot Camp for Developers Using Java is a book that can actually be used in the
classroom.

Writing a book is similar to entering a long-term relationship with an obsessive partner.
Throughout the journey, life continues around you: teaching classes full time, presenting
across the country, and attending family events at every turn. As the world continues, those
closest to you allow you to focus on your reclusive writing by assisting with every other task.
My husband, Timothy, is credited with learning to cook dinner, to cheer me on, and most of
all for his love. Special thanks to my six children Tim, Brittany, Ryan, Daniel, Breanne, and
Eric for providing much needed breaks filled with pride and laughter. A heartfelt thanks to my
dear sister Shirley who has encouraged me for a lifetime. And a special thanks to Lisa Ruffolo
as my developmental editor and master wordsmith who provided the perfect polish for every
chapter.

xl

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 1
Voilà! Meet the Android

In this chapter, you learn to:

Understand the market for Android applications

State the role of the Android device in the mobile market

Describe the features of the Android phone

Identify which languages are used in Android development

Describe the role of the Android Market in the mobile
marketplace

Create an Android project using Eclipse

Explain the role of the Package Explorer

Specify the use of layout and widget controls in the user
interface

Execute an Android application on an emulator

Open a saved Android project in Eclipse

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
ns
ho
ts
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Welcome to the beginning of your journey in creating Android phone applications and
developing for the mobile device market. Mobile computing has become the most popular
way to make a personal connection to the Internet. Mobile phones and tablets constitute the
fastest growing category of any technology in the world. Mobile phone usage has quickly
outgrown the simple expectation of voice calls and text messaging. An average data plan for a
mobile device, often called a smartphone, typically includes browsing the Web, playing
popular games such as Angry Birds, using business applications, checking e-mail, listening to
music, recording live video, and mapping locations with a GPS (global positioning system).

When purchasing a phone, you can choose from many mobile operating systems, including
the iOS for the iPhone, Google Android, Microsoft Phone 7, and BlackBerry OS. Recently the
Android phone has become the sales leader, outselling its competitors. The Android market
is exploding with more than 50 million Android phones now being used worldwide. Nearly
one-half of the world’s mobile devices run on the Android platform.

IN THE TRENCHES
More than 25 percent of all U.S. households have
canceled their landlines for the convenience of
receiving only one bill from a mobile carrier.

Creating mobile applications, called apps, for the
Android phone market is an exciting new job
opportunity. Whether you become a developer
for a technology firm that creates professional
apps for corporations or a hobbyist developer
who creates games, niche programs, or savvy
new applications, the Android marketplace
provides a new means to earn income.

Meet the Android
The Android phone platform is built on a free
operating system primarily created by a
company called Android, Inc. In 2005, Google
obtained Android, Inc., to start a venture in the
mobile phone market. Because Google
intended the Android platform to be open
source, the Android code was released under
the Apache license, which permits anyone to
download the full open-source Android code
for free. Two years later, Google unveiled its
first open-standards mobile device called the
Android (Figure 1-1). In less than a decade, the
Android phone market has grown into the
world’s best-selling phone platform. Figure 1-1 Android phone

iS
to
ck
ph
ot
o.
co
m
/A
le
xa
nd
ru

N
ik
a

2

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Android is the first open-source technology platform for mobile devices. Being an
open-source operating system effectively means that no company or individual defines the
features or direction of the development. Organizations and developers can extract, modify,
and use the code for creating any app. The rapid success of the Android phone can be
attributed to the collaboration of the Open Handset Alliance (http://openhandsetalliance.
com), an open-source business alliance of 80 firms that develop standards for mobile devices.
The Open Handset Alliance is led by Google. Other members include companies such as
Sony, Dell, Intel, Motorola, Qualcomm, HTC, Texas Instruments, Samsung, Kyocera, and
LG. Competitors such as Apple, which produces the iPhone, and Research In Motion (RIM),
which produces the BlackBerry, do not have an open-source coding environment, but instead
work with proprietary operating systems. The strength of the open-source community lies in
the developers’ ability to share their source code. Even though the open-source Android
software is free, many developers are paid to build and improve the platform. For example,
proprietary software such as the Apple operating system is limited to company employees
licensed to build a program within the organization. The Android open-source platform
allows more freedom so people can collaborate and improve the source code.

Many phone manufacturers install the Android operating system (OS) on their brand-name
mobile phones due to its open-source environment. The open-source structure means that
manufacturers do not pay license fees or royalties. With a small amount of customization,
each manufacturer can place the Android OS on its latest devices. This minimal overhead
allows manufacturers to sell their phones in the retail market for relatively low prices, often
less than $100. Low prices on Android mobile devices have increased the sales and popularity
of these devices.

One of the key features that make Android phones so attractive for consumers is the
openness of the Android OS. Android has a large community of developers writing apps that
extend the functionality of the devices. Users, for example, can benefit from over 250,000
apps available in the Android marketplace, many of which are free. Because the Android
phone platform has become the leader in sales in the mobile market, the Android application
market is keeping pace.

Android Phone Device
The Android phone is sold by a variety of companies under names you may recognize, such as
EVO, Droid X, Galaxy, Echo, Optimus, Xperia, Cliq, Inspire, Thunderbolt, Atrix, Desire,
Nexus, Infuse, Pyramid, and Revolution (Figure 1-2).

3

Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://openhandsetalliance.com
http://openhandsetalliance.com

IN THE TRENCHES
Android has ventured into the television market as well. Google TV integrates Google’s Android operating
system and the Linux version of the Google Chrome browser to create an interactive Internet television.

Android devices come in many shapes and sizes, as shown in Figure 1-2. The Android OS
powers all types of mobile devices, including smartphones, tablets, netbooks, e-readers, MP4

Figure 1-2 Android on many types of devices

ª
20
11

M
ot
or
ol
a
M
ob
ili
ty
,I
nc
.A

ll
Ri
gh
ts
Re
se
rv
ed
.

ª
20
11

M
ot
or
ol
a
M
ob
ili
ty
,I
nc
.A

ll
Ri
gh
ts
Re
se
rv
ed
.

ª
20
11

M
ot
or
ol
a
M
ob
ili
ty
,I
nc
.A

ll
Ri
gh
ts
Re
se
rv
ed
.

ª
20
11

M
ot
or
ol
a
M
ob
ili
ty
,I
nc
.A

ll
Ri
gh
ts
Re
se
rv
ed
.

ª
20
11

M
ot
or
ol
a
M
ob
ili
ty
,I
nc
.A

ll
Ri
gh
ts
Re
se
rv
ed
.

4

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

players, and Internet TVs. The NOOK, a color e-book reader for Barnes and Noble, is based
on the Android OS as well. Android devices are available with a variety of screen dimensions
and many devices support a landscape mode where the width and height are spontaneously
reversed depending on the orientation of the device. As you design Android apps, the screen
size affects the layout of the user interface. To take full advantage of the capabilities of a
particular device, you need to design user interfaces specifically for that device. For example, a
smartphone and a tablet not only have a different physical screen size, but also different
screen resolutions and pixel densities, which change the development process. As you
develop an Android app, you can test the results on an emulator, which duplicates how the
app looks and feels on a particular device. You can change the Android emulators to simulate
the layout of a smartphone with a 3.5-inch screen or a tablet with a larger screen, both with
high-density graphics. Android automatically scales content to the screen size of the device
you choose, but if you use low-quality
graphics in an app, the result is often a poorly
pixelated display. As a developer, you need to
continue to update your app as the market
shifts to different platforms and screen
resolutions.

The Android phone market has many more
hardware case and size options than the single
3.5-inch screen option of an iPhone. Several
Android phones such as the Atrix, Droid X,
EVO, and Nexus offer screens 4 inches or
larger. This extra space is excellent for phone
users who like to watch movies, play games, or
view full Web pages on their phone. In
addition, tablets, also called slates, are now
available on the Android platform. The Xoom
Android tablet is produced by Google/
Motorola and offers a 10.1-inch screen with a
very high resolution of 1280 × 800 pixels.
Amazon also has a 7-inch Android slate device
called the Kindle Fire (Figure 1-3), currently
available for $199. The Android tablets are in
direct competition with other tablets and slate
computers such as the iPad (various
generations), BlackBerry PlayBook, and
Galaxy Tab.

Features of the Android
As a developer, you must understand a phone’s capabilities. The Android offers a wide variety
of features that apps can use. Some features vary by model. Most Android phones provide the
features listed in Table 1-1.

KE
VI
N
DI
ET
SC
H/
UP
I/N

ew
sc
om

Figure 1-3 Kindle Fire Android tablet

5

Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing Android Apps
Android apps are written using the Java programming language. Java is a language and a
platform originated by Sun Microsystems. Java is an object-oriented programming language
patterned after the C++ language. Object-oriented programming encourages good software
engineering practices such as code reuse. The most popular tool for writing Java programs is
called Eclipse, an integrated development environment (IDE) for building and integrating
application development tools and open-source projects.

Feature Description

Flash support Flash video plays within the Android Web browser. (The iPhone
does not support Flash capabilities.)

Power management Android identifies programs running in the background using
memory and processor resources. You can close those apps to
free up the phone’s processor memory, extending the battery
power.

Optimized gaming Android supports the use of gyroscope, gravity, barometric
sensors, linear acceleration, and rotation vector, which provide
game developers with highly sensitive and responsive controls.

Onscreen keyboard The onscreen keyboard offers suggestions for spelling
corrections as well as options for completing words you start
typing. The onscreen keyboard also supports a voice-input mode.

Wi-Fi Internet tethering Android supports tethering, which allows a phone to be used as a
wireless or wired hot spot that other devices can use to connect
to the Internet.

Multiple language support Android supports multiple human languages.

Front- and rear-facing camera Android phones can use either a front- or rear-facing camera,
allowing developers to create applications involving video calling.

Voice-based recognition Android recognizes voice actions for calling, texting, and
navigating with the phone.

3D graphics The interface can support 3D graphics for a 3D interactive game
experience or 3D image rendering.

Facial recognition Android provides this high-level feature for automatically
identifying or verifying a person’s face from a digital image or a
video frame.

Table 1-1 Android platform features

6

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As shown in the preface of this book, the first step in setting up your Android programming
environment is to install the free Eclipse IDE. After installing Eclipse, the next step is to install the
plug-in called theAndroid SoftwareDevelopmentKit (SDK), which runs in Eclipse. TheAndroid
SDK includes a set of development tools that help you design the interface of the program, write
the code, and test the program using a built-in Android handset emulator. To write Android
programs, you must also add an Eclipse plug-in called the Android Development Tools (ADT),
which extends the capabilities of Eclipse to let you quickly set up newAndroid projects, create an
application user interface, and debug your applications. Another language called XML (Extensible
Markup Language) is used to assist in the layout of the Android emulator.

GTK
Eclipse can be used to develop applications in many programming languages, including Java, C, C++, COBOL,
Ada, and Python.

Android Emulator
The Android emulator lets you design, develop, prototype, and test Android applications
without using a physical device. When you run an Android program in Eclipse, the emulator
starts so you can test the program. You can then use the mouse to simulate touching the
screen of the device. The emulator mimics almost every feature of a real Android handset
except for the ability to place a voice phone call. A running emulator can play video and
audio, render gaming animation, and store information. Multiple emulators are available
within the Android SDK to target various devices and versions from early Android phones
onward. Developers should test their apps on several versions to confirm the stability of a
particular platform. The first Android version, release 1.0, was introduced in September 2008.
Each subsequent version adds new features and fixes any known bugs in the platform.
Android has adopted a naming system for each version based on dessert items, as shown in
Table 1-2. After the first version, dessert names have been assigned in alphabetical order.

Version Name Release Date

1.0 First version September 2008

1.5 Cupcake April 2009

1.6 Donut September 2009

2.0 Éclair October 2009

2.2 Froyo (Frozen Yogurt) May 2010

2.3 Gingerbread December 2010

3.0 Honeycomb February 2011

4.0 Ice Cream Sandwich May 2011

Table 1-2 Android version history

7

Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Getting Oriented with Market Deployment
The Android platform consists of the Android OS, the Android application development
tools, and a marketplace for Android applications. After you write and test a program, you
compile the app into an Android package file with the filename extension .apk.

Programs written for the Android platform are sold and deployed through an online store
called the Android Market (http://market.android.com), which provides registration services
and certifies that the program meets minimum standards of reliability, efficiency, and
performance. The Android Market requires that you sign an agreement and pay a one-time
registration fee (currently $25). After registration, you can publish your app on the Android
Market, provided the app meets the minimum standards. You can also release updates as
needed for your app. If your app is free, the Android Market publishes your app at no cost. If
you want to charge for your app, the standard split is 70 percent of sales for the developer and
30 percent for the wireless carriers. For example, if you created an app for your city that
featured all the top restaurants, hotels, attractions, and festivals and sold the app for $1.99,
you would net $1.39 for each app sold. If you sell 5,000 copies of your app, you would earn
almost $7,000. You can use the Android Market to sell a wide range of content, including
downloadable content, such as media files or photos, and virtual content such as game levels
or potions (Figure 1-4). As an Android developer, you have the opportunity to develop apps
for a fairly new market and easily distribute the app to the millions of Android mobile device
owners.

©
20
11

Go
og
le

Figure 1-4 Android Market

8

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://market.android.com

IN THE TRENCHES
The Apple iTunes App Store charges a $99 yearly registration fee to publish an app through the iPhone Dev
Center. The iTunes App Store has a much more rigorous standards approval process than the Android
Market.

The online company Amazon also has a separate Appstore (http://amazon.com/appstore)
where Android apps can be deployed and sold. The Amazon Appstore is a category listed on
Amazon.com. Customers can shop for apps from their PCs and mobile devices. The Amazon
Appstore has an established marketing environment and search engine that displays a trusted
storefront and creates app recommendations based on customers’ past purchases. The
Amazon Appstore charges a $99 annual developer program fee, which covers the application
processing and account management for the Amazon Appstore Developer Program. Amazon
also pays developers 70 percent of the sale price of the app; in addition, you can post free apps.

First Venture into the Android World
After installing the Eclipse IDE, installing the Android SDK, and creating the Android Virtual
Device (AVD) as instructed in the preface of this book, the next step is to create your first
Android application. As programming tradition mandates, your first program is called Hello
Android World. The following sections introduce you to the elements of the Android SDK
and provide a detailed description of each step to create your first app.

Opening Eclipse to Create a New Project
To create a new Android project, you first open Eclipse and then select an Android project.
As you create your first project, you provide the following information:

l Project name—The Eclipse project name is the name of the directory that will contain the
project files.

l Application name—This is the human-readable title for your application, which will
appear on the Android device.

l Package name—This is the Java package namespace where your source code will reside. You
need to have at least a period (.) in the package name. Typically, the recommended package
name convention is your domain name in reverse order. For example, the domain name of
this book is androidbootcamp.net. The package name would be net.androidbootcamp.
HelloAndroidWorld. The package name must be unique when posted on the Android
Market, so it is vital to use a standard domain-style package name for your applications.

l Create Activity—As the Activity name, use the name for the class that is generated by the
plug-in. This will be a subclass of Android’s Activity class. An Activity is a class that can
run and do work, such as creating a user interface. Creating an Activity is optional, but an
Activity is almost always used as the basis for an application.

9

First Venture into the Android World

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://amazon.com/appstore

l Minimum SDK—This value specifies the minimum application programming interface
(API) level required by your application.

Creating the Hello World Project
A project is equivalent to a single program or app using Java and the Android SDK. Be sure
you have a blank USB (Universal Serial Bus) drive plugged into your computer so you can
store the Android project on this USB drive. To create a new Android project, you can take
the following steps:

1. Open the Eclipse program. Click the first button on the Standard toolbar, which is the
New button.

The New dialog box opens (Figure 1-5).

2. Expand the Android folder and then select the Android Project icon.

Android Project is selected in the New dialog box (Figure 1-6).

New dialog box

New button

Android folder

Figure 1-5 New dialog box

10

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Click the Next button. In the New Android Project dialog box, enter the Project
Name Hello Android World. To save the project on your USB drive, click to remove
the check mark from the Use default location check box. In the Location text box,
enter E:\Workspace (E: identifies the USB drive; your drive letter might differ).
Throughout the rest of this book, the USB drive is called the E: drive, though you
should select the drive on your computer that represents your USB device.

If you are using a Mac, enter \Volumes\USB_DRIVE_NAME instead of
E:\Workspace.

The New Android project has a project name and a location of E:\Workspace, a folder
on a USB drive (Figure 1-7).

Android Project
selected

Next button

Figure 1-6 Selecting an Android project

11

First Venture into the Android World

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Click the Next button. To select a build target that works on most Android phones,
accept Android 4.0 for the Build Target, which is selected by default. (If you are
deploying to an earlier model of an Android phone, you can select an earlier version
for the Build Target.) Click the Next button.

For the Application Info, type the Package Name net.androidbootcamp.
helloandroidworld. Enter Main in the Create Activity text box. Notice the
Minimum SDK uses the API number of 14 from the selected Build Target of the
Android 4.0.

The new Android project has an application name, a package name, and an Activity
(Figure 1-8).

Project name
entered

New Android
Project dialog
box

Check mark
removed from
Use default
location check
box

Next button

Location
entered

Figure 1-7 Project information entered

12

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Click the Finish button.

The Android project files are created on the USB drive. The project Hello Android
World appears in the left pane.

Building the User Interface
This first Android app will display the simple message, “Hello World – My First Android
App.” Beyond the tools and gadgets of the Android environment, what will stand out most is
the user experience—how a user feels while using a particular device. Ensuring an intuitive
user interface that does not detract from functionality is the key to successful usage. Android
supports two ways of building the user interface of an application: through Java code and
through XML layout files. The XML method is preferred as it allows you to design the user
interface of an application without needing to write large amounts of code. Both methods and
more details about building the user interface are covered in later chapters.

Package name
entered

Activity name
entered

Minimum SDK
number corresponds
to selected build target

Finish button

Create Activity
check box is
selected

Figure 1-8 Application information entered

13

First Venture into the Android World

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Taking a Tour of the Package Explorer
The Package Explorer on the left side of the Eclipse program window contains the Hello
Android World application folders. When the project folder Hello Android World is
expanded (Figure 1-9), the Android project includes files in the following folders:

l The src folder includes the Java code source files for the project.

l The gen folder contains Java files that are automatically generated.

l The Android 4.0 Library contains a single file, android.jar. The android.jar file contains all
the class libraries needed to build an Android application for this version.

l The assets folder holds any asset files that are accessed through classic file manipulation.

l The res folder contains all the resources, such as images, music, and video files, that your
application may need. The user interface is in a subfolder of the res folder named layout.

l The AndroidManifest.xml file contains all the information about the application that
Android needs to run.

Package Explorer
tab

Expanded
Hello Android
World project
folder

Figure 1-9 Expanded Hello Android World project folder

14

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Designing the User Interface Layout
To assist in designing the Android user interface, the Android SDK includes layout files. You
can create a layout and then add widgets to the layout. A layout is a container that can hold as
many widgets as needed. A widget is a single element such as a TextView, Button, or
CheckBox control, and is also called an object. Upcoming chapters demonstrate many
layouts, each with unique properties and characteristics. To open the layout files, follow these
steps:

1. Close any tabs that are open on the right side of the Eclipse window and minimize the
Console pane that appears at the bottom of the window, if necessary. Open the
Package Explorer (if necessary) by clicking Window on the menu bar, pointing to
Show View, and then clicking Package Explorer.

Expand the Hello Android World project in the Package Explorer. Expand the res
folder to display its subfolders. Expand the layout subfolder. Double-click the main.
xml file. To select an emulator, click the emulator button directly above the Palette,
and then click 3.7in WVGA (Nexus One), if necessary. You can use many phone
emulators, but throughout this text, select the 3.7in WVGA (Nexus One) emulator.
Click the Zoom In button on the right side of the window to make the emulator
screen as large as possible.

The main.xml tab and the contents of the main.xml file are displayed in the Project
window. The main.xml tab includes an asterisk (*) to indicate that project changes
have not been saved. Note that Android placed a default TextView control in the
emulator window (Figure 1-10).

15

First Venture into the Android World

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. In the emulator window, select the default TextView control, which reads Hello
World, Main!.

The default TextView control is selected and displayed in a blue selection box
(Figure 1-11).

main.xml
Zoom In button

Graphical Layout tab

main.xml tab

Default TextView
control

Emulator is 3.7in WVGA
(Nexus One) Emulator window

Figure 1-10 Layout displayed in the Eclipse window

16

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Press the Delete key.

The default TextView control that Android placed in the user interface is deleted.

GTK
The default Android device shown in the Graphical Layout view when using some of the latest platforms is a 10.1-
inch tablet. You can select a different device at the top of the Graphical Layout tabbed window. It is best not to
target your program for the latest platform because older phones cannot run the application.

Adding a Form Widget to the User Interface Layout
The Android User Interface Layout editor displays form widgets that you place on the user
interface using the drag-and-drop method. Technically, a widget is a View object that
functions as an interface for interaction with the mobile user. In other words, a widget is a

Emulator
window

Selected TextView
control

Figure 1-11 Selected TextView control

17

First Venture into the Android World

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

control such as a message users read or a button users click. The tabs at the bottom of the
emulator identify the Graphical Layout window and the main.xml window, which displays the
code behind each form widget. Each window displays a different view of the project: The
Layout view allows you to preview how the controls will appear on various screens and
orientations, and the XML view shows you the XML definition of the resource.

To display a message on the Android device, you must first place a TextView form widget on
the emulator and then select the main.xml tab to open the code behind the TextView control.
The main.xml coding window is written in XML code, not Java code. To add a form widget to
the user interface layout, follow these steps:

1. In the main.xml tab, select TextView in the Form Widgets list. Drag the TextView
control to the emulator window and drop it below the title Hello Android World.

The TextView control is placed in the emulator window (Figure 1-12).

2. Click the main.xml tab below the emulator window.

The main.xml code window is displayed. The TextView code that is associated with the
TextView control contains the text android:text=“TextView” /> (Figure 1-13).

TextView control

TextView
form widget

Figure 1-12 TextView form widget in the emulator

18

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. To change the text displayed in the TextView control when the program is executed,
select the word TextView in the next-to-last line of code, android:text=“TextView”.
Change “TextView” to “Hello World –My First Android App”. Do not change any
other text on this line of code.

The next-to-last code line now begins with android:text=“Hello World – My First
Android App” (Figure 1-14).

main.xml tab

Text code
to change

XML code for
TextView
control

Figure 1-13 Displaying the XML code for the TextView control

19

First Venture into the Android World

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Click the Graphical Layout tab to display the revised text in the TextView control.
Click File on the menu bar and then click Save All to update your project.

The Hello World – My First Android App TextView control fits on one line in the
emulator (Figure 1-15).

GTK
To deploy your app to an actual Android device instead of the emulator, you first need to install a USB driver for
your device from http://developer.android.com/sdk/win-usb.html. On the Android device, the “USB Debugging
Mode” must be checked on the Application menu. On a Mac, no USB driver installation is needed.

Testing the Application in the Emulator
Time to see the finished result! Keep in mind that the Android emulator runs slowly. It can
take over a minute to display your finished results in the emulator. Even when the emulator is

New text entered

Figure 1-14 Changing the TextView control text

Figure 1-15 Displaying the revised text in the emulator

20

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com/sdk/win-usb.html

idling, it consumes a significant amount of CPU time, so you should close the emulator when
you complete your testing. To run the application, follow these steps:

1. Click Run on the menu bar, and then click Run.

The first time an application is run, the Run As dialog box opens (Figure 1-16).

2. Click Android Application in the Run As dialog box, and then click the OK button.

The program slowly begins to execute by displaying the Android logo and then an
application window with the Android splash screen on the left. This may take up to one
full minute. Next, the Android main screen appears with a lock icon (Figure 1-17).

OK button

Run menu

Android
Application

Run As
dialog box

Figure 1-16 Run As dialog box

21

First Venture into the Android World

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Click the lock icon and slide it across the screen to the right until you see a green dot
to unlock the simulated device.

If you are using a Mac, drag the lock icon until it changes to an unlock icon.

After the Android device is unlocked, the emulator displays the text message
(Figure 1-18).

Android
main screen

Android lock;
slide to the
right

Figure 1-17 Android main screen and lock icon

22

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Close the application by clicking the Close button.

The emulated application window closes. The program is saved each time the program
is run. You can close Eclipse by clicking File on the menu bar and then clicking Exit if
you are working on a Windows computer. Click Quit Eclipse if you are working on a
Mac.

GTK
Ctrl+F11 is the Windows shortcut key combination for running your Android application in Eclipse. On a Mac, the
shortcut keys are Command+Shift+F11.

Close button

Message
displayed

Figure 1-18 Message in the Android emulator

23

First Venture into the Android World

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Opening a Saved App in Eclipse
After you save a project and close Eclipse, you might need to open the project and work on it
again. To open a saved project, you can follow these steps with Eclipse open:

1. If the project is not listed in the Package Explorer, click File on the Eclipse menu bar
and select Import. In the Import dialog box, expand the General folder, if necessary,
and then click Existing Projects into Workspace.

The Import dialog box opens and in the Select an import source area, the Existing
Projects into Workspace folder is selected (Figure 1-19).

Next button

Existing Projects
into Workspace

Figure 1-19 Import dialog box

24

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the Next button. Click the Browse button next to the Select root directory text
box. Click Computer and then click the USB drive on a Windows computer. (If you
are using a Mac, click the USB DEVICE in the left pane of the Finder.) Click the
Workspace folder. Click the OK button (or the Open button on a Mac). Insert a check
mark in the Hello Android World check box, if necessary. Insert a check mark in the
Copy projects into workspace check box.

In the Import dialog box, the root directory is selected. The Hello Android World project
is selected, and the Copy projects into workspace check box is checked (Figure 1-20).

3. Click the Finish button.

The program loads into the Package Explorer. You can now continue working on your
user interface and code.

Finish button

Browse button

Directory selected

Copy projects into workspace
check box is selected

Project
check box
is selected

Figure 1-20 Project and directory selected

25

First Venture into the Android World

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
To delete a project from the project workspace, right-click the project name in the Package Explorer. Select
Delete on the shortcut menu. Click the OK button. The project is still saved on the USB drive, but is no longer in
the Package Explorer.

Wrap It Up—Chapter Summary
This chapter has provided an overview of the Android open-source platform, which is
positioned for fast innovation without the restraints of a proprietary system. With the largest
market share and its rich feature set, the Android environment allows you to develop useful,
inventive Android apps. In the first chapter project, Hello Android World, you completed
steps that start your journey to create more interesting applications in future chapters.

l The Android operating system is released under the Apache license, which permits
anyone to download the full open-source Android code for free. Android is the first open-
source technology platform for mobile devices.

l The Android OS powers all types of mobile devices, including smartphones, tablets,
netbooks, e-readers, MP4 players, and Internet TVs.

l To write Android apps, you can use Eclipse, an integrated development environment for
building applications, including Android apps, using Java, an object-oriented
programming language.

l The Android emulator lets you design, develop, prototype, and test Android applications
without using a physical device. When you run an Android program in Eclipse, the
emulator starts so you can test the program as if it were running on a specified Android
mobile device.

l The Android platform consists of the Android OS, the Android application development
platform, and the Android Market, a marketplace for Android applications.

l Android supports two ways of building the user interface of an application: through Java
code and through XML layout files. The XML method is preferred as it allows you to
design the user interface of an application without needing to write large amounts of code.

l The Package Explorer on the left side of the Eclipse program window contains the folders
for an Android project.

l To design a user interface for an Android app, you can create a layout, which is a
container that displays widgets such as TextView, Button, and CheckBox controls, also
called objects.

l After you create an application, you can run it in the Android emulator to test the
application and make sure it runs correctly.

26

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms
Android 4.0 Library—A project folder that contains the android.jar file, which includes all the
class libraries needed to build an Android application for the specified version.

Android Market—An online store that sells programs written for the Android platform.

AndroidManifest.xml—A file containing all the information Android needs to run an
application.

assets folder—A project folder containing any asset files that are accessed through classic file
manipulation.

gen folder—A project folder that contains automatically generated Java files.

Java—An object-oriented programming language and a platform originated by Sun
Microsystems.

layout—A container that can hold widgets and other graphical elements to help you design an
interface for an application.

object-oriented programming language—A type of programming language that allows good
software engineering practices such as code reuse.

Open Handset Alliance—An open-source business alliance of 80 firms that develop open
standards for mobile devices.

Package Explorer—A pane on the left side of the Eclipse program window that contains the
folders for the current project.

res folder—A project folder that contains all the resources, such as images, music, and video
files, that an application may need.

smartphone—A mobile phone with advanced computing ability and connectivity features.

src folder—A project folder that includes the Java code source files for the project.

widget—A single element such as a TextView, Button, or CheckBox control, and is also called
an object.

XML—An acronym for Extensible Markup Language, a widely used system for defining data
formats. XML assists in the layout of the Android emulator.

Developer FAQs
1. In which year did Google purchase the company Android, Inc.?

2. What is the one-time cost for a developer’s account at the Android Market?

3. When you post an Android app at the Android Market, what percentage of the app
price does the developer keep?

4. How much is Amazon’s annual fee for a developer’s account?

27

Developer FAQs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Which three manufacturers’ operating systems can be used to program anAndroid app?

6. Which two languages are used in creating an Android app in Eclipse?

7. What would be the recommended package name if your domain was
karencodeworld.net and your project name was AndroidMap?

8. Name three widgets mentioned in this chapter.

9. What is the name of the widget that was used in the Hello Android World app?

10. Which two key combinations can you press to execute an Android app in Eclipse?

11. Which Android version is Ice Cream Sandwich?

12. Using the alphabetical theme for Android version names, list three possible future
names for the next versions of Android device operating systems.

13. What does XML stand for?

14. What does SDK stand for?

15. Where are music and image files saved within the Package Explorer?

Beyond the Book
Using the Internet, search the Web for the following answers to further your Android
knowledge.

1. Research a particular model of a popular Android mobile device and write a para-
graph on this device’s features, specifications, price, and manufacturer.

2. Name five Android mobile device features not mentioned in the “Meet the Android”
section of Chapter 1.

3. What is the current annual cost for a developer’s account at the Phone 7 app store
called the Windows Phone 7 Marketplace?

4. Go to the Android Market Web site and take a screen shot of each of the following
app categories: education, gaming, mapping, travel, and personal hobby. Place screen
shots in a word processor document and label each one to identify it.

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps and
techniques taught within the chapter. Submit the program you create to your instructor. The
level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆ ⋆

Challenging: ⋆ ⋆ ⋆

28

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 1–1: Quote of the Day App ⋆

Figure 1-21

Requirements Document

Application title: Quote of the Day App

Purpose: In the Quote of the Day app, a famous quotation of your choice
is displayed.

Algorithms: The opening screen displays the quotation of the day.

Conditions: You may change the quotation to your own (Figure 1-21).

29

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 1–2: Android Terminology App ⋆ ⋆

Case Project 1–3: Business Card App ⋆ ⋆ ⋆

Application title: Business Card App

Purpose: In the Business Card app, your address and information are displayed.

Algorithms: The opening screen displays a simple business card with your personal
information. The first line should include your name. The second line should
include your future dream job title. The third line should include your address.
The fourth line should include your city, state, and postal code.
The last line should include your phone number.

Conditions: Multiple TextView controls are required.

Application title: Android Terminology App

Purpose: In the Android Terminology app, three terms introduced in Chapter 1 and
their definitions are displayed.

Algorithms: The opening screen displays three different terms from this
chapter and their definitions.

Conditions: Multiple TextView controls are required.

30

C H A P T E R 1 Voilà! Meet the Android

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 2
Simplify! The Android
User Interface

In this chapter, you learn to:

Develop a user interface using the TextView, ImageView, and
Button controls

Create an Android project that includes a Button event

Select a Linear or Relative layout for the user interface

Create multiple Android Activities

Add activities to the Android Manifest file

Add a Java class file

Write code using the onCreate method

Display content using the setContentView command

Open a second screen using a Button event handler

Use an OnClickListener to detect user interaction

Launch a second screen using a startActivity method

Correct errors in Java code

Run the completed app in the emulator

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
ns
ho
ts
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Before a mobile app can be coded using Java, it must be designed. Designing a program can be
compared with constructing a building. Before cement slabs are poured, steel beams are put
in place, and walls are erected, architects and engineers must design the building to ensure it
will perform as required and be safe and reliable. The same holds true for a computer app
developer. Once the program is designed within the user interface, it can be implemented
through the use of Extensible Markup Language (XML) and Java code to perform the
functions for which it was designed.

Designing an Android App
To illustrate the process of designing and implementing an Android app, in this chapter you
will design and code the Healthy Recipes application shown in Figure 2-1 and Figure 2-2.

The Android app in Figure 2-1 could be part of a larger app that is used to display Healthy
Recipes. The Healthy Recipes app begins by displaying the recipe name, which is Simple Salsa
for this recipe, and an image illustrating the completed recipe. If the user taps the View Recipe

View Recipe
button

Figure 2-1 Healthy Recipes Android app Figure 2-2 Second window displaying
the recipe

Fr
an
ny
an
ne
/S
hu
tte
rs
to
ck
.c
om

32

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

button, a second window opens displaying the full recipe, including the ingredients and
preparation for the salsa.

IN THE TRENCHES
If you own a data plan phone, tablet, or slate device, download the free app called Epicurious to get an idea
of how this Healthy Recipes app would be used in a much larger application.

The Big Picture
To create the Healthy Recipes application, you follow a set of steps that you repeat every time
you create an Android application.

1. Create the user interface, also called an XML layout, for every screen in the
application.

2. Create a Java class, also called an Activity, for every screen in the application.

3. Update the Android Manifest file for each Java class in the application.

4. Code each Java class with the appropriate objects and actions as needed.

Using the Android User Interface
Before any code can be written for an Android application, the project structure of the user
experience must be designed by means of the user interface. For an Android application, the
user interface is a window on the screen of any mobile device in which the user interacts with
the program. The user interface is stored in the res/layout folder in the Package Explorer. The
layout for the user interface is designed with XML code. Special Android-formatted XML
code is extremely compact, which means the application uses less space and runs faster on the
device. Using XML for layout also saves you time in developing your code; for example, if you
developed this recipe app for use in eight human languages, you could use the same Java code
with eight unique XML layout files, one for each language. To open the layout of the user
interface of the Healthy Recipes app, follow these steps to begin the application:

1. Open the Eclipse program. Click the New button on the Standard toolbar. Expand the
Android folder, if necessary, and select Android Project. Click the Next button. In the
New Android Project dialog box, enter the Project Name Healthy Recipes. To save
the project on your USB drive, click to remove the check mark from the Use default
location check box. Type E:\Workspace (if necessary, enter a different drive letter
that identifies the USB drive). Click Next. For the Build Target, select Android 4.0, if
necessary. Click Next. Type the Package Name net.androidbootcamp.
healthyrecipes. Type Main in the Create Activity text box.

33

Using the Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice the Minimum SDK text box displays the API number from the selected Build
Target (Android 4.0). If you are deploying to an earlier model of an Android phone,
you can select an earlier version.

The new Android Healthy Recipes project has an application name, a package name,
and a Main Activity (Figure 2-3).

2. Click the Finish button. Expand the Healthy Recipes project in the Package Explorer.
Expand the res folder to display its subfolders. Expand the layout subfolder. Double-
click the main.xml file. Click the Hello World, Main! TextView (displayed by default).
Press the Delete key.

The main.xml file is displayed on the Graphical Layout tab and the Hello World
TextView widget is deleted (Figure 2-4).

Package name

API number

Finish button

Main entered in Create
Activity text box

New Android
Project dialog box

Figure 2-3 Application information for the new Android project

34

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Linear Layouts and Relative Layouts
The Android user interface includes a layout resource designer that organizes how controls
appear on the app’s various screens. When you click the Graphical Layout tab as shown in
Figure 2-4, you display the default user interface for main.xml, which uses a resource file
defined as a Linear layout. A Linear layout organizes layout components in a vertical column
or horizontal row. In Figure 2-5, multiple ImageView controls (Android icons) were dragged
onto the emulator window. By default, the Linear layout places each control directly below
the previous control to form a vertical column. You can change the Linear layout’s
orientation from vertical to horizontal by right-clicking the emulator window, pointing to
Orientation on the shortcut menu, and then clicking Horizontal. If you select a horizontal
Linear layout, the controls are arranged horizontally in a single row, as shown in Figure 2-6.

Emulator
windowmain.xml

main.xml tab

App name

Graphical Layout tab

Figure 2-4 Displaying the emulator window for the Healthy Recipes project

35

Using the Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Linear layouts are common for forms that display controls in a single row or column. Android
user interface designers typically use another layout called a Relative layout. A Relative layout
organizes layout components in relation to each other. This provides more flexibility in
positioning controls than Linear layouts. To change the default Linear layout to a Relative
layout, right-click the emulator window and click Change Layout. In the Change Layout

Vertical column

ImageView control
aligns vertically

ImageView control

Graphical Layout tab

Figure 2-5 Linear layout with a vertical orientation (default)

Right-click emulator
window to change
Orientation to
Horizontal

ImageView controls
aligned horizontally

Figure 2-6 Linear layout with a horizontal orientation

36

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dialog box, click the New Layout Type button and then click RelativeLayout. Click the OK
button to change the emulator to a Relative layout. As shown in Figure 2-7, five ImageView
controls are placed anywhere the developer desires. Using a Relative layout, you can place an
ImageView, TextView, RadioButton, or Button control to the left of, to the right of, above, or
below another control. Layout resources are stored as XML code in the res/layout resource
directory for the Android application corresponding to the user interface template.

GTK
Other layouts you can use include a Frame layout, Table layout, and Table Row layout. You also can use a
combination of layouts, which means you can nest controls within one another.

Designing the Healthy Recipes Opening User Interface
When the Healthy Recipes app opens, the initial screen as shown in Figure 2-1 displays a
TextView control with the text Simple Salsa, an ImageView control with a picture of the
finished salsa, and a Button control with the text View Recipe. Notice that the controls are
not in a Linear layout, but use a Relative layout so they are placed freely on the screen. Instead
of using XML code to change the text of each control, in this chapter you modify a control’s
properties using the Properties pane. To change the property of a control, select the control
first, and then change the appropriate property, such as the text or size, in the Properties
pane.

Relative layout
allows controls
to be placed
anywhere

Figure 2-7 Relative layout

37

Using the Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Android Text Properties
The most popular text properties change the displayed text, modify the size of the text, and
change the alignment of the text. The Text property changes the text written within the
control. The Text size property can use various units of measurement, as shown in Table 2-1.
The preferred unit of measurement is often sp, which stands for scaled-independent pixels.
The reason for using this unit of measurement is that if a user has set up an Android phone to
display a large font size for more clarity and easier visibility, the font in the app will be scaled
to meet the user’s size preference.

On the opening screen of the Healthy Recipes app, the TextView control for the title,
ImageView control for the salsa picture, and Button controls can all be centered on the
screen using a guide, a green dashed vertical line that appears when a control is dragged to the
emulator window. The Relative layout allows controls to be placed anywhere, but the green
dashed line centers each control perfectly.

GTK
All Palette controls such as TextView and ImageView can use a property called Layout margin top. For example, if
you type 50dp to the right of the Layout margin top property, the control is placed 50 pixels from the top of the
screen to help you design an exact layout. You can also center using the Layout center horizontal property by
changing the setting to true.

To place all three centered controls on the form using a Relative layout, follow these steps:

1. In the main.xml window, right-click the emulator window, and then click Change
Layout on the shortcut menu. In the Change Layout dialog box, click the New Layout
Type button, and then click RelativeLayout.

The Change Layout dialog box opens and the RelativeLayout is selected (Figure 2-8).

Unit of Measure Abbreviation Example

Inches in “0.5in”

Millimeters mm “20mm”

Pixels px “100px”

Density-independent pixels dp or dip “100dp” or “100dip”

Scaled-independent pixels sp “100sp”

Table 2-1 Measurements used for the Text size property

38

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the OK button. In the Form Widgets Palette, select the Form Widget named
TextView. Drag the TextView control to the emulator window and drop it below the
Healthy Recipes title. To center the TextView control, drag the control to the center
of the window until a green dashed vertical line identifying the window’s center is
displayed. To open the Properties pane, right-click the emulator window, point to
Show In on the shortcut menu, and then click Properties. With the TextView control
selected, scroll down the Properties pane, and then click the Text property.

The TextView object is placed in the emulator window, the Properties pane is opened,
and the Text property is selected (Figure 2-9).

New Layout
Type button

Change Layout
dialog box

OK button

Figure 2-8 Change Layout dialog box

Properties pane; yours
might open at the
bottom of the window

Green dashed
center line

TextView
Form Widget
selected

Text size
property

Text property
and value

Figure 2-9 Text property in the Properties pane

39

Using the Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Change the Text property to Simple Salsa. In the Properties pane, scroll to the Text
size property, type 40sp to represent the scaled-independent pixel size, and then press
Enter.

The TextView object has the Text property of Simple Salsa and the Text size is 40sp
(Figure 2-10).

GTK
The top free Android apps are Google Maps, YouTube, Facebook, Pandora, and Netflix, in that order.

GTK
Throughout the book, note that Windows computers have an Enter key, but Mac computers use the Return key.

Adding a File to the Resources Folder
In the Healthy Recipes application, an image of salsa is displayed in an ImageView control.
Before you can insert the ImageView control in the emulator window, you must place the
appropriate picture file in the resources folder. In the Package Explorer in the left pane of the
Eclipse program window, the res (resource) folder contains three subfolders whose names
start with drawable. The graphics used by the application can be stored in these folders.
Android supports three types of graphic formats: .png (preferred), .jpg (acceptable), and .gif
(discouraged). Android creates a Drawable resource for any of these files when you save them

Text size
property
value

TextView
control
updated

Text property
value changed

Figure 2-10 Updated Text property

40

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

in the res/drawable folder. The three drawable folders are identified with the following dpi
(dots per inch) densities shown in Table 2-2.

Place the salsa image in the res/drawable-hdpi folder to be used by the ImageView control,
which links to the resource image. You should already have the student files for this text
that your instructor gave you or that you downloaded from the Web page for this book
(www.cengage.com). To place a copy of the salsa image from the USB drive into the res/
drawable-hdpi folder, follow these steps:

1. If necessary, copy the student files to your USB drive. Open the USB folder containing
the student files. In the Package Explorer pane, expand the drawable-hdpi folder. A
file named ic_launcher.png (the Android logo) is typically contained within this folder
already. To add the salsa.png file to the drawable-hdpi resource folder, drag the salsa.
png file to the drawable-hdpi folder until a plus sign pointer appears. Release the
mouse button.

The File Operation dialog box opens (Figure 2-11).

Name Description

hdpi Resources for high-density screens

mdpi Resources for medium-density screens

ldpi Resources for low-density screens

Table 2-2 Drawable folders

drawable-hdpi
folder

File Operation
dialog box

Figure 2-11 File Operation dialog box

41

Using the Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengage.com

2. If necessary, click the Copy files option button, and then click the OK button.

A copy of the salsa.png file appears in the drawable-hdpi folder.

GTK
High-density graphics have 240 dots per inch, medium-density graphics have 160 dots per inch, and low-density
graphics have 120 dots per inch.

Adding an ImageView Control
After an image is placed in a drawable resource folder, you can place an ImageView control in
the emulator window. An ImageView control can display an icon or a graphic such as a
picture file or shape on the Android screen. To add an ImageView control from the Images &
Media category of the Palette, follow these steps:

1. Close the Properties pane to create more room to work. Click the Images & Media
category in the Palette on the Graphical Layout tab. Drag an ImageView control (the
first control in this category) to the emulator window. Drag the control to the center
until a green dashed vertical center line appears. Release the mouse button.

The ImageView control is centered and the Resource Chooser dialog box opens
(Figure 2-12).

Images & Media
category

ImageView
control

Resource Chooser
dialog box

salsa.png

salsa image

OK button

Figure 2-12 Resource Chooser dialog box

42

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click salsa in the Resource Chooser dialog box, and then click the OK button.

The salsa image is displayed in the emulator window.

IN THE TRENCHES
If you have an image that you want to use in your Android app, but the file type is not .png, open the image in
Microsoft Paint or a similar type of program. You can convert the file type by saving the image as a .png file.

Adding a Button Control
A Button control is a commonly used object in a graphical user interface. For example, you
probably are familiar with the OK button used in many applications. Generally, when the
program is running, buttons are used to cause an event to occur. The Android SDK includes
three types of button controls: Button, ToggleButton, and ImageButton. The Button control
is provided in the Form Widgets category in the Palette. In the Healthy Recipes app, the user
taps a Button control to display the salsa recipe on a second screen. To name the Button
control, you use the Id property. For example, use btnRecipe as the Id property for the Button
control in the Healthy Recipes app. The prefix btn represents a button in the code. If you
intend to use a control in the Java code, it is best to name that control using the Id property.
To add a Button control from the Form Widgets category of the Palette, follow these steps:

1. Click the Form Widgets category in the Palette. Drag the Button control to the
emulator window below the ImageView control until a green dashed vertical center
line appears. Release the mouse button. To open the Properties pane, right-click the
emulator window, point to Show In on the shortcut menu, and then select Properties.
Click the Button control, and then scroll the Properties pane to the Id property, which
is set to @+id/button1 by default. Change the Id property to @+id/btnRecipe to
provide a unique name for the Button control. Scroll down to the Text property.
Change the text to View Recipe. Change the Text size property to 30sp and press
Enter.

The Button control is named btnRecipe and displays the text View Recipe, which has
the text size of 30sp (Figure 2-13).

43

Using the Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Planning a Program
As you learn the skills necessary to design an Android user interface, you are ready to learn
about the program development life cycle. The program development life cycle is a set of
phases and steps that developers follow to design, create, and maintain an Android program.
Following are the phases of the program development life cycle:

1. Gather and analyze the program requirements—The developer must obtain the
information that identifies the program requirements and then document these
requirements.

2. Design the user interface—After the developer understands the program
requirements, the next step is to design the user interface. The user interface provides
the framework for the processing that occurs within the program.

3. Design the program processing objects—An Android app consists of one or more
processing objects that perform the tasks required in the program. The developer
must determine what processing objects are required, and then determine the
requirements of each object.

4. Code the program—After the processing object has been designed, the object must be
implemented in program code. Program code consists of the instructions written
using XML and Java code that ultimately can be executed.

5. Test the program—As the program is being coded, and after the coding is completed,
the developer should test the program code to ensure it is executing properly.

Text size
property

Form Widgets
category

Button control

Text
property

Figure 2-13 Button control

Fr
an
ny
an
ne
/S
hu
tte
rs
to
ck
.c
om

44

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Activities
The Healthy Recipes application displays two screens, as shown in Figures 2-1 and 2-2. The
system requirement for this app is for the user to select a recipe name and then tap the
button to display the recipe details. Screens in the Android environment are defined in
layout files. Figure 2-13 shows the completed main.xml design. Next, a second screen
named recipe.xml must be created and designed. Each of the two screens is considered an
Activity. An Activity, one of the core components of an Android application, is the point at
which the application makes contact with your users. For example, an Activity might create
a menu of Web sites, request a street address to display a map, or even show an exhibit of
photographs from an art museum. An Activity is an important component of the life cycle
of an Android app. In the chapter project, each screen is an Activity where you capture and
present information to the user. You can construct Activities by using XML layout files and
a Java class.

Creating an XML Layout File
All XML layout files must be placed in the res/layout directory of the Android project so that
the Android packaging tool can find the layout files. To create a second XML layout file to
construct the second Activity, follow these steps:

1. Close the Properties pane. In the Package Explorer, right-click the layout folder. On
the shortcut menu, point to New and then click Other. In the New dialog box, click
Android XML Layout File, and then click Next. In the New Android Layout XML File
dialog box, type recipe.xml in the File text box to name the layout file. In the Root
Element list, select RelativeLayout.

The XML file is named and the layout is set to RelativeLayout (Figure 2-14).

45

Creating Activities

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the Finish button. Using the techniques taught earlier in the chapter, create the
second user interface, recipe.xml, as shown in Figure 2-15.

The second user interface, recipe.xml, is designed (Figure 2-15).

New Android
Layout XML
File dialog box

Layout is
changed to
RelativeLayout

Filename is
recipe.xml

Finish button

Figure 2-14 Naming the XML file

TextView control, Text size 35sp

TextView control, Text size 22sp

4 TextView controls, Text size 18sp

TextView control, Text size 22sp

TextView control, Text size 18sp

recipe.xml

Figure 2-15 User interface for recipe.xml

46

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
You can use comments to document your code. Comments are ignored by the Java compiler. When you want to
make a one-line comment, type “//” and follow the two forward slashes with your comment. For example:
// This is a single-line comment
Another way to comment is to use block comments. For example:
/* This is a
block comment
*/

Adding a Class File
In the src folder in the Package Explorer is the Main.java file. This file contains the Main class
that opens the main.xml screen, which you designed for the app’s user interface. In object-
oriented terminology, a class describes a group of objects that establishes an introduction to
each object’s properties. A class is simply a blueprint or a template for creating objects by
defining its properties. An object is a specific, concrete instance of a class. When you create
an object, you instantiate it. When you instantiate, you create an instance of the object by
defining one particular variation of the object within a class, giving it a name, and locating it
in the memory of the computer. Each class needs its own copy of an object. Later in this
chapter, Java code is added to the Main class to recognize the action of tapping the Button
control to open the recipe screen. Recall that each screen represents an Activity. In addition,
each Activity must have a matching Java class file. The recipe.xml file that was designed as
shown in Figure 2-15 must have a corresponding Java class file. It is a Java standard to begin a
class name with an uppercase letter, include no spaces, and emphasize each new word with an
initial uppercase letter. To add a second Java class to the application, follow these steps:

1. In the Package Explorer, expand the src folder and the net.androidbootcamp.
healthyrecipes package to view the Main.java existing class. To create a second class,
right-click the net.androidbootcamp.healthyrecipes folder, point to New on the
shortcut menu, and then click Class.

The New Java Class dialog box opens (Figure 2-16).

47

Creating Activities

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Type Recipe in the Name text box to create a second class for the recipe Activity.
Click the Superclass Browse button. Type Activity in the Choose a type text box. As
you type, matching items are displayed. Click Activity – android.app and then click
the OK button to extend the Activity class.

A new class named Recipe is created with the Superclass set to android.app.Activity
(Figure 2-17).

Finish button

Enter Java
class name

Superclass
Browse button

Figure 2-16 New Java Class dialog box

48

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Click the Finish button to finish creating the Recipe class. Display line numbers in the
code window by clickingWindow on the menu bar and then clicking Preferences. In the
Preferences dialog box, click General in the left pane, click Editors, and then click Text
Editors. Click the Show line numbers check box to select it, and then click theOK button.

If you are using a Mac, click Eclipse on the menu bar, and then click Preferences to
open the Preferences dialog box. Double-click General, double-click Editors, and then
click Text Editors.

The Recipe.java class is created and line numbers are displayed (Figure 2-18).

GTK
Using an uppercase letter to begin a Java class name and starting each new word with an uppercase letter is
known as Pascal case.

Recipe.java

Figure 2-18 New Recipe class in the Healthy Recipes project

Java class
name

Extends the
Activity

Finish button

Figure 2-17 Creating the Recipe class

49

Creating Activities

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Android Manifest File
An Android project is made up of far more than the XML layout files that create the user
interface. The other important components of any Android project are the Android Manifest
file and the Java code in the Java classes. The Android Manifest file is necessary in every
Android application and must have the filename AndroidManifest.xml. The Android
Manifest file provides all the essential information to the Android device, such as the name of
your Java application, a listing of each Activity, any permissions needed to access other
Android functions such as the use of the Internet, and the minimum level of the Android API.

Adding an Activity to the Android Manifest
Eclipse automatically creates the initial Android Manifest file, but this file must be updated to
include every Activity in the app. When an application has more than one Activity, the
Android Manifest file must have an intent to navigate among multiple activities. To see which
Activities an application contains, double-click the AndroidManifest.xml file in the Package
Explorer, and then click the AndroidManifest.xml tab as shown in Figure 2-19. Notice that
Line 14 calls an Activity named .Main. The intent in Lines 16–19 launches the opening
screen.

Line 14 calls an Activity
named .Main

Intent in Lines 16–19
launches opening
screen AndroidManifest.xml

AndroidManifest.xml tab

Figure 2-19 Displaying the Activities in an application

50

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The AndroidManifest.xml file must contain an entry for each Activity. To add the second
Activity to the Android Manifest file, follow these steps:

1. In the Package Explorer, double-click the AndroidManifest.xml file. To add the
Recipe class to the Android Manifest, click the Application tab at the bottom of the
Healthy Recipes Manifest page. Scroll down to display the Application Nodes section.

The AndroidManifest.xml file is opened to the Application tab (Figure 2-20).

2. In the Application Nodes section, click the Add button. Select Activity in the Create a
new element at the top level, in Application dialog box.

The Create a new element at the top level, in Application dialog box opens and Activity
is selected (Figure 2-21).

Application
tab

Add button
AndroidManifest.xml

Application
Nodes section

Figure 2-20 Application tab displayed

51

The Android Manifest File

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Click the OK button. The Attributes for Activity section opens in the Application tab.
In the Name text box, type the class name preceded by a period (.Recipe) to add the
Recipe Activity to the AndroidManifest.xml file.

The class .Recipe is entered in the Name text box of the Attributes for Activity section
(Figure 2-22).

4. To view the Main and Recipe Activities in the code, click the AndroidManifest.xml
tab at the bottom of the window.

The AndroidManifest.xml code includes the .Recipe Activity in Line 21 (Figure 2-23).

OK button

Activity is selected

Figure 2-21 Creating an element

.Recipe name
entered

Attributes for
Activity section

Second Activity
added

Figure 2-22 Adding the Recipe Activity

52

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding the Java Activity
When the user taps an application icon on his or her Android phone or tablet, the Main.java code
is read by the phone processor. The entry point of the Activity class is the onCreate() event
handler, which is called a method. Amethod is a set of Java statements that can be included inside
a Java class. The onCreate method is where you initialize the Activity. Imagine a large stack of
papers on your desk. The paper on top of the stack is what you are reading right now. The Android
also has a stack of Activities. The onCreate method places this new Activity on top of the stack.

Coding an onCreate Method
In the chapter project, the first Activity displayed in the title screen layout designed in main.xml
is the currently running Activity. When the user presses the View Recipe button, the main.xml
screen closes and a new Activity that displays the actual recipe (recipe.xml) is placed on top of
the stack and becomes the running Activity. The syntax for the onCreate method is:

Code Syntax

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

}

.Recipe Activity
added

AndroidManifest.xml
tab

Line 21

Figure 2-23 AndroidManifest.xml code

53

Coding the Java Activity

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice that the syntax of a method begins and ends with a curly brace.

Inside this onCreate method, the first user interface must be opened. Activities have no clue
which user interface should be displayed on the screen. For a particular user interface to open
on the screen, code must be added inside the onCreate method to place that specific activity
on top of the stack. The Java code necessary to display the content of a specific screen is called
setContentView.

Code Syntax

setContentView(R.layout.main);

In the code syntax, R.layout.main represents the user interface of main.xml layout, which
displays the opening title, salsa image, and View Recipe button. The R represents the term
Resource as the layout folder resides in the res folder.

Displaying the User Interface
The Main.java file was created automatically by Eclipse and already contains the onCreate
method and setContentView(R.layout.main) code, as shown in Lines 10 and 11 in Figure 2-24.
Line 10 starts the Activity and Line 11 displays the main.xml layout when the application begins.

To display the second screen (recipe.xml), the onCreate method is necessary to place the
second Activity on top of the Activity stack. Next, the setContentView command displays the
recipe.xml layout. To add the onCreate and setContentView code to the Recipe.java file,
follow these steps:

1. Close the Healthy Recipes Manifest tab, and then click the Yes button to save your
changes. Click the Recipe.java tab to display its code. Notice that the Recipe file
extends the Activity, as indicated in Line 5 of the code. Click Line 6 to move the
insertion point between the two curly braces that open and close the method. Press
Tab to indent the line, type oncreate, and then press Ctrl+spacebar (simultaneously).
When you press Ctrl+spacebar, Eclipse displays an auto-complete listing with all the

onCreate
method

setContentView(R.layout.main)
code

Figure 2-24 Main.java code

54

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

possibilities that are valid at that point in the code. A yellow Help window may also
appear to the left.

The onCreate method is entered in the Recipe class. A list of possible onCreate methods
is displayed after pressing Ctrl+spacebar (Figure 2-25).

2. Double-click the first onCreate method in the auto-complete listing to generate the
method structure.

The onCreate method is generated in the Recipe class (Figure 2-26).

3. Click at the end of Line 10 and then press the Enter key to insert a blank line. Type
setContentView(R. to display an auto-complete listing. Double-click layout. Type a
period. Another auto-complete listing requests the XML layout file you intend to
display. Double-click recipe : int. Type) (a right closing parenthesis) if one does not

*Recipe.java
tab

Auto-complete
listing

Red X icon indicates syntax error
caused by incomplete statement

onCreate methods
listing displayed after
pressing Ctrl+spacebar

Figure 2-25 onCreate methods

onCreate method
added

Figure 2-26 Inserting the onCreate method

55

Coding the Java Activity

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

appear automatically. Type a semicolon after the parenthesis to complete the
statement.

The setContentView command is entered to display the recipe.xml file (Figure 2-27).

Creating a Button Event Handler
Android phones and tablets have touchscreens that create endless possibilities for user
interaction, allowing the user to tap, swipe, and pinch in or out to change the size of the
screen. As you program with this event-driven language, users typically see an interface
containing controls, buttons, menus, and other graphical elements. After displaying the
interface, the program waits until the user touches the device. When the user reacts, the app
initiates an event, which executes code in an event handler, which is a part of the program
coded to respond to the specific event. In the Healthy Recipes app, users have only one
interaction—they can tap the Button control to start an event that displays the salsa recipe.
When the user taps the Button control, code for an event listener is necessary to begin the
event that displays the recipe.xml file on the Android screen. This tap event is actually known
as a click event in Java code. In the Healthy Recipes application, the Main.java code must first
contain the following sections:

l Class property to hold a reference to the Button object

l OnClickListener() method to await the button click action

l onClick() method to respond to the click event

The Healthy Recipes application opens with a Button control on the screen. To use that
button, a reference is required in the Main.java file. To reference a Button control, use the
following syntax to create a Button property:

Code Syntax

Button b=(Button)findViewById(R.id.btnRecipe);

setContentView
command displays
recipe layout file

Figure 2-27 Code for displaying the recipe layout file

56

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The syntax for the Button property includes the findViewById() method, which is used by
any Android Activity. This method finds a layout view created in the XML files that you
created when designing the user interface. The variable b in the code contains the reference
to the Button control. After the code is entered to reference the Button control, you can press
Ctrl+spacebar to import the Button type as an Android widget. When you import the Button
type as an Android widget, you make the classes from the Android Button package available
throughout the application. An import statement is automatically placed at the top of the Java
code. An import statement is a way of making more Java functions available to your specific
program. Java can perform almost endless actions, and not every program needs to do
everything. So, to limit the size of the code, Java has its classes divided into packages that can
be imported at the top of your code.

After the Button property is referenced in Main.java, an OnClickListener() method is
necessary to detect when the user taps an onscreen button. Event listeners wait for user
interaction, which is when the user taps the button to view the recipe in the case of the
chapter project. When an OnClickListener is placed in the code window, Java creates an
onClick auto-generated stub. A stub is a piece of code that actually serves as a placeholder to
declare itself, and it has just enough code to link to the rest of the program. The syntax
needed for an OnClickListener method that listens for the Button control is shown in the
following Code Syntax:

Code Syntax

b.setOnClickListener(new OnClickListener() {

public void onClick(View v) {
// TODO Auto-generated method stub

}
});

The last step to code is to call the startActivity() method, which opens the second Activity
displaying the recipe.xml user interface. The startActivity() method creates an intent to start
another Activity such as to start the recipe Activity class. The intent needs two parts known
as parameters: a context and the name of the Activity that is being opened. A context in
Android coding means that any time you request that program to launch another Activity, a
context is sent to the Android system to show which initiating Activity class is making the
request. The context of the chapter project is Main.this, which references the Main.java class.
The following syntax line launches the Recipe Java class:

Code Syntax

startActivity(new Intent(Main.this, Recipe.class));

57

Coding the Java Activity

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding a Button Event Handler
When the main.xml layout is initially launched by the Main.java class, it is necessary to code
how the Button control interacts with the user. When this View Recipe button is tapped, the
Main.java class must contain code to launch the Recipe.xml layout (Activity) and to begin the
second Java class called Recipe.java. To initialize the Button control and code the Button
handler to launch the second Activity class, follow these steps:

1. In the Package Explorer, double-click Main.java to open its code window. Click to the
right of the setContentView(R.layout.main); line. Press the Enter key. To initialize and
reference the Button control with the Id name of btnRecipe, type Button b =
(Button) findViewById(R.id.btnRecipe);

After the code is entered to reference the Button control, point to the red curly line
below the first Button command and select Import ‘Button’ (android widget). Click
the Save All button on the Standard toolbar to save your work.

If you are using a Mac, error indicators in the code are red dashed lines.

The Button control named btnRecipe is referenced in Main.java. In this case, the
onCreate method is created for you in Line 11. A curly line appears below the b
variable to indicate that this local variable has not been used in the code yet
(Figure 2-28).

2. Press the Enter key. To code the button listener that awaits user interaction, type
b.seton and then wait for a code listing to open. Double-click the first
setOnClickListener to select it.

In the parentheses, type new on and press Ctrl+spacebar to display an auto-complete
listing. Double-click the first choice, which lists an OnClickListener with an

btnRecipe Button
referenced

Curly line below
the b variable

Main.java
tab

Figure 2-28 Main.java code

58

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Anonymous Inner Type event handler. Point to the red curly line below
OnClickListener. Select Import ‘OnClickListener’ (android.View.view).

Type ; (semicolon) after the closing parenthesis to complete the auto-generated stub.

An OnClickListener auto-generated stub appears in the code (Figure 2-29).

3. To launch the Recipe.java class when the Button control is clicked, click inside the
public void onClick(View v) braces on the line after the “TODO” comment. Type
startactivity and press Ctrl+spacebar. Select the first option, startActivity(Intent
intent): void – Activity.

In the parentheses, change the intent text by typing new int and then pressing
Ctrl+spacebar. In the auto-complete listing, select Intent(Context packageContext,
Class<?> cls).

In the next set of parentheses, change packageContext toMain.this and change cls to
Recipe.class. Place a semicolon at the end of the line after the parenthesis. Click the
Save All button on the toolbar.

The startActivity code launches the intent to open Recipe.class (Figure 2-30).

Semicolon closes stub

Button OnClickListener

Figure 2-29 Inserting the Button OnClickListener stub

59

Coding the Java Activity

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
In Step 3, the packageContext is replaced with Main because it is the name of the Activity. The term this refers to
the present Activity.

IN THE TRENCHES
In years past, a software developer would have to wait many months for his or her software to be published
and placed in stores for sale. In today’s mobile market, app stores have become the de facto app delivery
channel by reducing time-to-shelf and time-to-payment and by providing developers with unprecedented
reach to consumers.

Correcting Errors in Code
Using the built-in auto-complete listing to assist you when entering code considerably
reduces the likelihood of coding errors. Nevertheless, because you could create one or more
errors when entering code, you should understand what to do when a coding error occurs.
One possible error you could commit would be to forget a semicolon at the end of a
statement. In Figure 2-31, when the application is run, a dialog box opens stating your project
contains error(s), please fix them before running your application. A red curly line identifies
the error location. When you point to the red curly line, Java suggests the possible correction
to the syntax error in the code. Also notice that Line 15 has an error icon (a red X) at the
beginning of the line to identify the location of the error. After a semicolon is placed at the
end of the line, the application is run again and the program functions properly.

startActivity
code

Figure 2-30 Complete code

60

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Saving and Running the Application
Each time an Android application is tested in the emulator, the programming design and code
are automatically saved. If you start your project and need to save it before completion, click
the Save All button on the toolbar or click File on the menu bar and then select Save All. As
shown in Chapter 1, click Run on the menu bar, and then select Run to save and test the
application in the emulator. A dialog box opens the first time the application is executed that
requests how you would like to run the application. Select Android Application and click the
OK button. When the emulated Android main screen appears, unlock the emulator. The
application opens in the emulator window, where you can click the View Recipe button to
view the salsa recipe.

Wrap It Up—Chapter Summary
This chapter described the steps to create the graphical user interface for the Healthy Recipes
program. As you can see, many of the steps required are somewhat repetitive in the design;
that is, the same technique is used repeatedly to accomplish similar tasks. When you master
these techniques, together with the principles of user interface design, you will be able to
design user interfaces for a variety of different programs.

l Linear layouts arrange screen components in a vertical column or horizontal row. Relative
layouts arrange screen components freely on the screen.

l Popular text properties for controls include the Text property, which specifies the text
displayed in the control, and the Text size property, which specifies the size of the text.

Help box offers
solution

Red curly line
indicates error
location

Red error icon
identifies line
containing error

Figure 2-31 Syntax error

61

Wrap It Up—Chapter Summary

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l To display graphics such as pictures and icons in an Android app, you use an ImageView
control. Before you can place an ImageView control in the emulator window, you must
place a graphics file in the resources folder.

l An Activity is the point at which the application makes contact with your users and is one
of the core components of the Android application. The chapter project has two
Activities, one for each screen.

l Each screen represents an Activity and each Activity must have a matching Java class file.
To create a Java class file, you can extend the built-in Activity class.

l Every Android application has an Android Manifest file (named AndroidManifest.xml),
which provides essential information to the Android device, such as the name of your Java
application and a listing of each Activity. Eclipse automatically creates the initial Android
Manifest file, but this file must be updated to include every Activity in the app.

l When an application has more than one Activity, the Android Manifest file must have an
intent so the application can navigate among multiple Activities.

l A method is a set of Java statements that can be included inside a Java class. The onCreate
method is where you initialize an Activity. You use the setContentView command to
display the content of a specific screen.

l When the user taps a Button control in an Android app, the code for an event listener, or
click event, begins the event associated with the Button control. Event listeners such as
the OnClickListener method wait for user interaction before executing the remaining
code.

l In an Android app that contains more than one Activity, or screen, you use the
startActivity() method to create an intent to start another Activity. The intent should
contain two parameters: a context and the name of the Activity being opened. A context
shows which initiating Activity class is making the request.

l When you run an Android application, a dialog box opens if your project contains any
errors. Look for red error icons and red curly lines, which identify the location of the
errors. Point to a red curly line to have Java suggest a correction to a syntax error in the
code.

Key Terms
Activity—An Android component that represents a single screen with a user interface.

Android Manifest—A file with the filename AndroidManifest.xml that is required in every
Android application. This file provides essential information to the Android device, such as
the name of your Java application and a listing of each Activity.

class—A group of objects that establishes an introduction to each object’s properties.

event handler—A part of a program coded to respond to the specific event.

62

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ImageView control—A control that displays an icon or a graphic from a picture file.

import—To make the classes from a particular Android package available throughout the
application.

import statement—A statement that makes more Java functions available to a program.

instantiate—To create an object of a specific class.

intent—Code in the Android Manifest file that allows an Android application with more than
one Activity to navigate among Activities.

Linear layout—A layout that arranges components in a vertical column or horizontal row.

method—A set of Java statements that can be included inside a Java class.

object—A specific, concrete instance of a class.

Relative layout—A layout that arranges components in relation to each other.

setContentView—The Java code necessary to display the content of a specific screen.

sp—A unit of measurement that stands for scaled-independent pixels.

stub—A piece of code that serves as a placeholder to declare itself, containing just enough
code to link to the rest of the program.

Text property—A property that changes the text written within a control.

Text size property—A property that sets the size of text in a control.

Developer FAQs
1. If you were creating an app in many different languages, would you have to write the

entire program from scratch for each language?

2. What part of the program in question 1 would stay the same? What part of the
program would be different?

3. In which subfolder in the Package Explorer are the XML files stored?

4. Which three controls were used in the chapter project?

5. What is the difference between Linear layout and Relative layout?

6. Is the default layout for an Android screen Linear or Relative?

7. Which measurement is most preferred for text size? Why?

8. What does px stand for?

9. What does sp stand for?

10. What does dpi stand for?

63

Developer FAQs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. Which picture file types are accepted for an ImageView control?

12. Which picture file type is preferred?

13. In the Palette in the layout folder, in which category is the ImageView control found?

14. Which three properties were changed in the chapter project for the Button control?

15. What is the property that defines the name of a Button control?

16. Write one line of code that would launch a second class named Rental from the
present Main class.

17. Write one line of code that declares a Button control with the variable bt that
references a button in the XML layout with the Id property of btnReserve.

18. Write one line of code that opens the XML layout named medical.

19. Which two keys are pressed to auto-complete a line of Java code?

20. What symbol is placed at the end of most lines of Java code?

Beyond the Book
Using the Internet, search the Web for the following answers to further your Android
knowledge.

1. Linear and Relative layouts are not the only types of Android layouts. Name three
other types of layouts and write a paragraph describing each type.

2. Why are .png files the preferred type of image resource for the Android device? Write
a paragraph that gives at least three reasons.

3. How much does an average Android app developer profit from his or her apps?
Research this topic and write 150–200 words on your findings.

4. Research the most expensive Android apps currently available. Name three expensive
apps, their price, and the purpose of each.

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps and
techniques taught within the chapter. Submit the program you create to your instructor. The
level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆ ⋆

Challenging: ⋆ ⋆ ⋆

64

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 2–1: Rental Property App ⋆

Requirements Document

Application title: Rental Property App

Purpose: In an apartment finder app, an apartment is selected and an address and
other information are displayed.

Algorithms: 1. The opening screen displays the name of an apartment, an image, and
a Button control (Figure 2-32).

2. When the user selects this apartment, an address and a cost
range are displayed in a second screen (Figure 2-33).

Note: The apartment image is provided with your student files.
iS
to
ck
ph
ot
o.
co
m
/M

ar
je
Ca
nn
on

Figure 2-32 Figure 2-33

65

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 2–2: Star Constellation App ⋆

Requirements Document

Application title: Star Constellation App

Purpose: In a star constellation app, the name of a constellation is selected and the
constellation image is displayed with information.

Algorithms: 1. The opening screen displays the name of a constellation, a translation
name, and a Button control (Figure 2-34).

2. When the user selects this constellation, an image displaying
the sky chart, position, month range, and declination is
shown (Figure 2-35).

Note: The pegasus image is provided with your student files.

Figure 2-34

iS
to
ck
ph
ot
o.
co
m
/C
lif
fo
rd

M
ue
lle
r

Figure 2-35

66

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 2–3: Your School App ⋆ ⋆

Case Project 2–4: Hostel App for Travel ⋆ ⋆

Requirements Document

Application title: Hostel App for Travel

Purpose: This large app contains every hostel (small youth hotel) in Italy. Create two
screens for the hostel app. In the hostel app, the name of a hostel is
selected and the hostel room image is displayed with detailed information.

Algorithms: 1. The opening screen displays the name of the Italian hostel, an exterior
image of the hostel, and a Button control. Create your own layout.

2. The second screen displays the name of the hostel, a picture
of the interior room, the street address, the Web address,
and the rate. Create your own layout.

Requirements Document

Application title: Your School App

Purpose: This large app contains every school in your country. Create two screens
for your school for the app. In a school app, the name of a school is
selected and the school address and logo are displayed.

Algorithms: 1. The opening screen displays the name of your school, a picture of your
school, and a Button control. Create your own layout.

2. The second screen displays the name of your school, a
picture of your logo, the school address, and the phone
number. Create your own layout.

67

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 2–5: Your Contacts App – Address Book ⋆ ⋆ ⋆

Case Project 2–6: Latest News App ⋆ ⋆ ⋆

Requirements Document

Application title: Your Contacts App – Address Book

Purpose: This large app contains every business contact in an address book. Create
two screens for contacts for the app. In the contacts app, you can select a
particular contact and that person’s info is displayed with his or her
picture.

Algorithms: 1. The opening screen displays two names of contacts with the last name
starting with the letter J. Each contact has a separate Button control
below the name. Create your own layout.

2. The second screen displays the name, address, phone number, and
picture of the contact. Create your own layout.

Conditions: Three Java classes and three XML layouts are needed.

Requirements Document

Application title: The Latest Pulse

Purpose: This large app called The Latest Pulse contains the latest news. Create two
screens for two news stories for the app. In the news app, you can select a
particular news story title and an image and a paragraph about the news
story is displayed.

Algorithms: 1. The opening screen displays two news story titles that you can create
based on the news stories during this week. Each news story has a
separate Button control below the name and displays a small image.
Create your own layout.

2. The second screen displays the name of the story and a
paragraph detailing the news. Create your own layout.

Conditions: Three Java classes and three XML layouts are needed.

68

C H A P T E R 2 Simplify! The Android User Interface

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3
Engage! Android User
Input, Variables, and
Operations

In this chapter, you learn to:

Use an Android theme
Add a theme to the Android Manifest file
Develop the user interface using Text Fields
State the role of different Text Fields
Display a hint using the Hint property
Develop the user interface using a Spinner control
Add text to the String table
Add a prompt to a Spinner control
Declare variables to hold data
Code the GetText() method
Understand arithmetic operations
Convert numeric data
Format numeric data
Code the SetText() method
Run the completed app in the emulator

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
ns
ho
ts
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the Healthy Recipes app developed in Chapter 2, when the user clicked the button in the
user interface, events were triggered, but the user did not enter data. In many applications,
users enter data and then the program uses the data in its processing. Engaging the user by
requesting input customizes the user experience each time the application is executed. When
processing data entered by a user, a common requirement is to perform arithmetic operations
on the data in order to generate useful output information. Arithmetic operations include
adding, subtracting, multiplying, and dividing numeric data.

To illustrate the use of user data input and
arithmetic operations, the application in this
chapter allows the user to enter the number
of concert tickets to be purchased from a
concert Android app. The application then
calculates the total cost to purchase the
concert tickets. The user interface for the app
named Concert Tickets is shown in Figure 3-1
with the company name Ticket Vault displayed
at the top of the screen.

In Figure 3-2, the user entered 4 as the number
of tickets purchased. When the user clicked
the Find Ticket Cost button, the program
multiplied 4 times the concert ticket cost
($59.99) and then displayed the result as the
total cost of the concert tickets, as shown in
Figure 3-2. To create this application, the
developer must understand how to perform
the following processes, among others:

1. Apply a theme to the design of the
Android screen.

2. Define a Text Field for data entry. For
this app, a number is expected for the
quantity of tickets. Using a specific Text
Field for positive integers, an incorrect
value cannot be entered.

iS
to
ck
ph
ot
o.
co
m
/o
la
f
he
rs
ch
ba
ch

Figure 3-1 Concert Tickets Android app

70

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Define a Spinner control to allow users
to select the performance group.

4. Convert data so it can be used for
arithmetic operations.

5. Perform arithmetic operations with
the data the user enters.

6. Display formatted results.

Android Themes
To prevent each Android app from looking too
similar, the Android SDK includes multiple
themes that provide individual flair to each
application. A theme is a style applied to an
Activity or an entire application. Some themes
change the background wallpaper of the Activity,
while others hide the title bar or display an
action bar. Some themes display a background
depending on the size of the mobile device.
Themes can be previewed in the emulator
window displayed in main.xml. The default
theme shows the title bar (often gray) with a
black background, as shown in Figure 3-3.
Figure 3-4 displays a glowing holographic border
with a light translucent background and no title bar. The light and transparent themes are
sheer and allow you to see the initial home screen through the background. Figure 3-5
displays the default black background with the default Android icon and an action bar.

iS
to
ck
ph
ot
o.
co
m
/o
la
f
he
rs
ch
ba
ch

Figure 3-2 Four tickets purchased for a
concert

Default theme

Figure 3-3 Default theme

Theme changed to
Theme.Holo.Light.Dialog

Figure 3-4 Holographic theme

71

Android Themes

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Previewing a Theme
By changing the theme in the emulator
window in the main.xml file, you can
preview what the new theme looks like,
but to permanently change it in the
application, you must define the themes
in the Android Manifest for each Activity.
You can code a predefined system theme
or a customized theme of your own design.
The Concert Tickets chapter project uses
the predefined system theme named
Theme.Black.NoTitleBar. To initiate the
Concert Tickets application and preview
the Theme.Black.NoTitleBar theme, follow
these steps:

1. Open the Eclipse program. Click the New button on the Standard toolbar.
Expand the Android folder, if necessary, and select Android Project. Click the
Next button. In the New Android Project dialog box, enter the Project Name
Concert Tickets. To save the project on your USB drive, click to remove the
check mark from the Use default location check box. Type E:\Workspace
(if necessary, enter a different drive letter that identifies the USB drive). Click Next.
For the Build Target, select Android 4.0, if necessary. Click Next. Type the
Package Name net.androidbootcamp.concerttickets. Enter Main in the Create
Activity text box.

The new Android Concert Tickets project has an application name, a package name,
and a Main Activity (Figure 3-6).

Theme changed to
Theme.WithActionBar

Figure 3-5 Action bar theme

72

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the Finish button. Expand the Concert Tickets project in the Package
Explorer. Expand the res folder to display its subfolders. Expand the layout
subfolder. Double-click the main.xml file. Click the Hello World, Main! TextView
widget (displayed by default). Press the Delete key. On the main.xml tab, right-click
the emulator window, and then click Change Layout on the shortcut menu. In
the Change Layout dialog box, click the New Layout Type button, and then click
RelativeLayout. Click the OK button.

The main.xml tab is displayed in the project window on the right and the Hello
World TextView widget is deleted (Figure 3-7).

Package name

Activity name

API number

Finish button

New Android
Project dialog box

Figure 3-6 Setting up the Concert Tickets project

73

Android Themes

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Click the Theme button to display
the list of built-in themes. Select
Theme.Black.NoTitleBar.

The theme is changed to
Theme.Black.NoTitleBar. The title
bar in the emulator is removed
(Figure 3-8).

Coding a Theme in the Android
Manifest File
At this point, the theme is only displayed in the main.xml graphical layout, but to actually
display the theme in the application, code must be inserted in the AndroidManifest.xml
file, as shown in the following example:

Code Syntax

android:theme="@android:style/Theme.Black.NoTitleBar"

Enter the theme code in the Activity section of the Android Manifest file. The code syntax
shown above displays the default theme without a title bar. To code the theme within the
AndroidManifest.xml file, follow these steps:

1. In the Package Explorer, double-click the AndroidManifest.xml file. Click the
AndroidManifest.xml tab at the bottom of the window.

The AndroidManifest.xml code is displayed (Figure 3-9).

Theme.Black.NoTitleBar
is selected

Title bar is removed

Figure 3-8 New theme applied

main.xml tab

main.xml file
App name in title bar

Default theme

Figure 3-7 main.xml for the Concert Tickets project

74

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mailto:theme="@android:style/Theme.Black.NoTitleBar

2. Inside the activity code, click at the end of the code that states android:
name=“.Main” (Line 13). Press the Enter key to insert a new blank line.
Type android:theme=“@android:style/Theme.Black.NoTitleBar”.

The Android theme is coded within the Activity in the Android Manifest file
(Figure 3-10).

3. Close the Concert Tickets Manifest tab and save your work.

Click at the end
of this line

Insert a new line

AndroidManifest.xml

Figure 3-9 Android Manifest file for the Concert Tickets project

Theme added in Line 14

Figure 3-10 Adding the theme to the Android Manifest file

75

Android Themes

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mailto:theme=%E2%80%9C@android:style/Theme.Black.NoTitleBar%E2%80%9D

Simplifying User Input
On the Android phone, users can enter text in multiple ways that include entering input
through an onscreen soft keyboard, an attached flip button hard keyboard, and even
voice-to-text capabilities on most phone models. The onscreen keyboard is called a
soft keyboard, which is positioned at the bottom of the screen over the application window.
Touch input can vary from tapping the screen to using gestures. Gestures are multitouch
interactions such as pressing two fingers to pan, rotate, or zoom. The primary design
challenge for mobile Web applications is how do you simplify user experiences for an
application that appears on screens measuring from a few inches square to much larger
tablets? You need to use legible fonts, simplify input, and optimize each device’s
capabilities to maximize the user experience. Certain Android Form Widgets such as
those in the Text Fields category allow specific data types for user input, which simplifies
data entry. For example, a numeric Text Field only allows numbers to be entered from
the onscreen keyboard, limiting accidental user input, such as by touching the wrong
location on a small touchscreen.

IN THE TRENCHES
A decade ago, nearly every mobile phone offered an alphanumeric keypad as part of the device. Today
a touchscreen full QWERTY keyboard is available to allow users to enter information, engage in social
networking, surf the Internet, and view multimedia.

Android Text Fields
In the Concert Tickets application shown in
Figure 3-1, the user enters the quantity of tickets
that he or she intends to purchase to attend the
concert event. The most common type of mobile
input is text entered from the soft keyboard or the
attached keyboard. User keyboard input can be
requested with the Text Fields in the Eclipse Palette
(Figure 3-11). With Text Fields, the input can be
received on the mobile device with an onscreen
keyboard or the user can elect to use the physical
keyboard if the device provides one to enter input.

A mobile application’s Text Field controls can request
different input types, such as free-form plain text;
numbers; a person’s name, password, e-mail address,
and phone number; a date; and multiline text. You

Text Fields category
in the Palette

Figure 3-11 Text Fields category

76

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

need to select the correct Text Field for the
specific type of data you are requesting.
As shown in Figure 3-12, each Text Field
control allows you to enter a specific data
type from the keyboard. For example,
if you select the Phone Number Text Field,
Android deactivates the letters on the
keyboard because letters are not part of
a phone number.

GTK
The AutoComplete TextView control can suggest
the completion of a word after the user begins
typing the first few letters. For example, if the
input control is requesting the name of a city
where the user wants to book a hotel, you could
suggest the completed name from a coded
listing of city names that match the prefix
entered by the user.

In the chapter project, the Concert Tickets
application requests the number of concert
tickets. This quantity is an integer value
because you cannot purchase part of a ticket. By selecting the Number Text Field, only
positive integers can be entered from the keyboard. Letters and symbols from the keyboard
are not accepted, which saves you time as the developer because you do not have to write
lengthy data validation code. When the app opens in the emulator and you click the Number
Text Field control, the soft keyboard opens, as shown in Figure 3-13.

IN THE TRENCHES
An application with appealing graphical design is preferred over applications that are textual in nature.
Good graphic design communicates simplicity and engages the user.

Plain Text

Person Name

Password

Numeric Password

E-mail Address

Phone Number

Postal Address

Time

Date

Number

Number (Signed)

Number (Decimal)

AutoComplete TextView

MultiAutoComplete TextView

Multiline Text

Figure 3-12 Types of Text Field controls

Onscreen
numeric
keyboard

Figure 3-13 Onscreen keyboard

77

Simplifying User Input

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding a Text Field
In the Concert Tickets application, a single screen opens when the application runs,
requesting the number of concert tickets desired in a Number Text Field. To name a
Text Field, use the Id property in the Properties pane to enter a name that begins with
the prefix txt, which represents a text field in the code. The Id property of any widget is
used in the Java code to refer to the widget. A descriptive variable name such as txtTickets
can turn an unreadable piece of code into one that is well documented and easy to debug.
To begin the design of the emulator screen and to add a Text Field, follow these steps:

1. With main.xml open and displaying the emulator screen, click the Form Widgets
category in the Palette. Select the form widget named TextView. Drag and drop
the TextView control onto the top part of the emulator user interface. To center
the TextView control, drag the control to the center of the screen until a green
dashed vertical line identifying the screen’s center is displayed. To open the
Properties pane, right-click the emulator window, point to Show In on the
shortcut menu, and then select Properties. To view the properties of the TextView
control, click the TextView control that you placed on the emulator. Scroll the
Properties pane, and then click the Text property. Change the Text property to
Ticket Vault. In the Properties pane, scroll to the Text size property, type 40sp,
and then press the Enter key.

A TextView control is added to the emulator to represent the company name with the
text Ticket Vault and size of 40sp (Figure 3-14).

Formatted TextView
control displaying
company name

Text property

Text size property

Figure 3-14 TextView control added and formatted

78

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the Text Fields category in the Palette. Scroll down to the Number (example
shows a 42) Text Field. Drag and drop the Number Text Field control onto the
emulator’s user interface below the Ticket Vault text. Drag the control to the center
of the screen until a green dashed vertical line identifying the screen’s center is
displayed. Change the Id property of the Text Field to @+id/txtTickets. Set the
Text size property to 25sp.

A Number Text Field control named txtTickets with the size of 25sp is added to the
emulator to allow the user to enter the number of tickets (Figure 3-15).

GTK
You might need to click controls in the emulator to select them before assigning properties.

IN THE TRENCHES
Iris, a popular Android app, provides a voice-recognition system for user input. Siri is a similar voice-
recognition system on the iOS platform. “Iris,” which is the reverse of “Siri,” stands for “Intelligent Rival
Imitator of Siri.”

Setting the Hint Property for the Text Field
When the Concert Tickets program is executed,
the user needs guidelines about the input
expected in the Text Field control. These
guidelines can be included in the Hint
property of the Text Field control. A hint is
a short description of a field that is visible as
light-colored text (also called a watermark)
inside a Text Field control. When the user
clicks the control, the hint is removed and
the user is free to type the requested input.
The purpose of the hint in Figure 3-16

Id property
entered

Number Text Field
added to emulator

Number Text
Fields

Figure 3-15 Number Text Field control

Figure 3-16 Hint in a Text Field control

79

Simplifying User Input

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is to request what is expected in this field, without the user having to select and delete
default text.

To set the Hint property for the Text Field control, follow this step:

1. With the txtTickets Text Field control selected on the emulator screen, click the Hint
property in the Properties pane and type Number of Tickets. Press the Enter key.

A watermark hint indicates that the number of tickets is needed as input in the Text
Field control (Figure 3-17).

Coding the EditText Class for the Text Field
To handle the input that the user enters into the numeric Text Field control in the chapter
project, you use the EditText class, which extracts the text and converts it for use in the Java
code. The extracted text must be assigned to a variable. A variable is used in a Java program
to contain data that changes during the execution of the program. In the chapter project,
a variable named tickets holds the text entered in the Text Field for the number of tickets.
The following code syntax declares (or initializes) the variable named tickets, which
contains the extracted EditText class text from the user’s input. Notice the code syntax
begins with the word final, indicating that tickets is a final variable. A final variable can
only be initialized once and any attempt to reassign the value results in a compile error
when the application is executed.

Code Syntax

final EditText tickets=(EditText) findViewById(R.id.txtTickets);

Recall that if you want to refer to a control in the Java code, you need to name the control
when you add it to the interface using the Id property. For example, the Text Field control

Watermark hint

Hint property

Figure 3-17 Hint added to Text Field control

80

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

was assigned the id txtTickets. Now you can access the control in the code using the
findViewById() method. In the parentheses, the R refers to resources available to the app,
such as a layout control, the id indicates that the resource is identified by the Id property,
and txtTickets is the assigned id.

Next, the txtTickets Text Field control should be assigned to the variable named tickets.
To collect the ticket input from the user, code the EditText class for the Text Field by
following these steps:

1. Close the Properties pane. In the Package Explorer, expand src and net.androidbootcamp.
concerttickets, and then double-click Main.java to open the code window. Click to the
right of the line setContentView(R.layout.main);. Press the Enter key to insert a blank
line. To initialize and reference the EditText class with the Id name of txtTickets, type
final EditText tickets=(EditText) findViewById(R.id.txtTickets);. Point to the
red curly line under EditText and select Import ‘EditText’ (android widget) on the
pop-up menu.

The EditText class extracts the value from the user’s input for the number of tickets
and assigns the value to the variable named tickets (Figure 3-18).

2. Close the Main.java tab and save your work.

Android Spinner Control
After the user enters the number of tickets, the next step is to select which concert to
attend. Three musical groups are performing next month: Dragonfly, Nine Volt, and Red
Road. Due to possible user error on a small mobile keyboard, it is much easier for a user to
use a Spinner control instead of actually typing in the group names. A Spinner control is

EditText code assigns input
value in the txtTickets control
to a variable named tickets

Figure 3-18 Coding the EditText class for the Text Field

81

Simplifying User Input

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a widget similar to a drop-down list for selecting a single item from a fixed listing, as shown
in Figure 3-19. The Spinner control displays a prompt with a list of strings called items in
a pop-up window without taking up multiple lines on the initial display. A string is a series
of alphanumeric characters that can include spaces.

Using the String table

The string items that are displayed in the Spinner control cannot be typed directly in the
Properties pane, but instead are created in a values string array in the res/values folder.
A file named strings.xml is a default file that is part of every Android application and
contains commonly used strings for an application. The String Array is part of the String
table, which is best to use for text displayed in the application because it can easily be
changed without changing code. Android loads text resources from the project’s String
table. The String table can also be used for localization. Localization is the use of the String
table to change text based on the user’s preferred language. For example, Android can
select text in Spanish from the String table, based on the current device configuration
and locale. The developer can add multiple translations in the String table.

In the Concert Tickets app, a String Array for the Spinner control is necessary to hold the
three concert group names as individual string resources in the strings.xml resource file. The
strings.xml file already has two default string variables named hello and app_name. The string
resources file provides an easy way to update commonly used strings throughout your
project, instead of searching through code and properties to alter string names within the
application. For example, each month the concert planners can simply change the text in

Items

Prompt

Spinner control

Figure 3-19 Spinner control and items

82

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the strings.xml file to reflect their new concert events. A prompt, which can be used to
display instructions at the top of the Spinner control, can also be stored in strings.xml.
To add a String Array for the three musical groups and to add a prompt to display in
the Spinner control, follow these steps:

1. Expand the values folder in the Package Explorer. Double-click strings.xml. Click
the Add button in the Android Resources strings.xml tab.

A dialog box opens to create a new element at the top level, in Resources (Figure 3-20).

2. In the dialog box, select String Array and then click the OK button. Type Groups
in the Name text box to name the String Array.

The String Array is named Groups (Figure 3-21).

String Array

OK button

strings.xml

Add button

Figure 3-20 Adding a string resource

83

Simplifying User Input

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Click the Add button. Select Item, and then click the OK button. In the Value box,
type Dragonfly as the name of the first item, and then click the Add button. Select
Item, and then click the OK button. In the Value box, type Nine Volt as the name
of the second item. Click the Add button again. Select Item, and then click the OK
button. In the Value box, type Red Road as the name of the last item.

Three items are added to the String Array named Groups (Figure 3-22).

4. To add a prompt represented as a String at the top of the Spinner, click the Add
button. At the top of the dialog box, select the Create a new element at the top level,
in Resources option button to create a new element at the top level, in Resources.
Select String, and then click the OK button. In the Name box, type Title. In the Value
box, type Select Group.

String Array name
String Array

Add button

Figure 3-21 Naming the String Array

Last item in the
Groups String Array

Items

Figure 3-22 Adding items to the Groups String Array

84

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A String named Title is added to strings.xml that contains the text Select Group for the
Spinner prompt (Figure 3-23).

5. Close the strings.xml tab and save your work.

GTK
If your main.xml emulator window fails to update, try saving your project to update it. You can also refresh
your Android project by clicking Project on the menu bar and then clicking Clean.

Adding a Spinner Control with String Array Entries
After entering the items in an array, the Spinner property called Entries connects the String
Array to the Spinner control for display in the application. The Spinner control is located in
the Form Widgets category. The following steps add the Spinner control to the Android
application:

1. With the main.xml tab open, click the FormWidgets category in the Palette. Drag and
drop the Spinner control below the Text Field and center it horizontally. Change the
Id property of the Spinner control to @+id/txtGroup.

The Spinner control is added to the emulator window and named txtGroup
(Figure 3-24).

Prompt text

String name

String is selected

Figure 3-23 Adding a prompt

85

Simplifying User Input

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click File on the menu bar and then click Save All to update all resources. In the
Properties pane, click the Prompt property, and then click the ellipsis (…) button.
In the Reference Chooser dialog box, click the expand arrow for String. Select
Title and click the OK button. To display the String Array, click to the right of
the Entries property. Click the ellipsis
button. In the Reference Chooser
dialog box, click the expand arrow
for Array. Select Groups and click
the OK button.

The Prompt property connects to the
resource named @string/Title. The
Entries property connects to the
resources of the String Array
@array/Groups. The actual groups
are displayed when the app is
executed in the emulator (Figure 3-25).

Coding the Spinner Control
The user’s selection of the concert group must be assigned to a variable and stored in the
computer’s memory. For this application, the selection made from the Spinner control
(txtGroup) is assigned to a variable named group using the following code:

Code Syntax

final Spinner group = (Spinner) findViewById(R.id.txtGroup);

Id property

Spinner control

Spinner form
widget

Figure 3-24 Spinner control

Entries property value
for Spinner control

Figure 3-25 Entries property for the Spinner
control

86

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To collect the input from the user’s group selection, code the Spinner control by following
these steps:

1. Close the Properties pane. In the Package Explorer, double-click Main.java. After the
EditText line, press the Enter key to create a new line. To initialize and reference the
Spinner control with the Id name of txtGroup, type final Spinner group = (Spinner)
findViewById(R.id.txtGroup);. Point to the red curly line under Spinner and select
Import ‘Spinner’ (android widget) on the pop-up menu.

The Spinner control assigns the value from the user’s input to the variable named
group. Notice variables that have not been used in the program have a curly underline.
This underline is removed when a value is assigned later in the program (Figure 3-26).

2. Close the Main.java tab and save your work.

Adding the Button, TextView, and ImageView Controls
After the user inputs the number of tickets and the concert group name, the user taps
the Find Ticket Cost button to calculate the cost in a Button event. After the total cost is
calculated by multiplying the number of tickets by the cost of each ticket ($59.99), the name
of the group and total cost of the tickets are displayed in a TextView control. The TextView
control is assigned to the variable named result using the following code:

Code Syntax

final TextView result = ((TextView) findViewById (R.id.txtResult));

Spinner code assigns input
value in the txtGroup control
to a variable named group

Figure 3-26 Coding the Spinner control

87

Simplifying User Input

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You need an image file named concert.png, provided with your student files, to display in an
ImageView control for the Concert Tickets app. You should already have the student files for
this text that your instructor gave you or that you downloaded from the Web page for this
book (www.cengagebrain.com). To add the Button, TextView, and ImageView controls to the
emulator window, follow these steps:

1. In the main.xml tab, drag the Button control from the Form Widgets category in the
Palette to the emulator and center it below the Spinner control. Release the mouse
button. Open the Properties pane, click the new Button control, and then change its
Id property to@+id/btnCost. Scroll to the Text property, and then change the text to
Find Ticket Cost. Change the Text size property to 25sp. Save your work.

The Button control named btnCost displays the text Find Ticket Cost and the size is
changed to 25sp (Figure 3-27).

2. To code the button, open the Main.java file from the Package Explorer. Click to the
right of the code line that assigned the Spinner control to the variable named group.
Press the Enter key. To initialize the Button control with the Id name of btnCost,
type Button cost = (Button) findViewById(R.id.btnCost);. Point to Button
and import the Button type as an Android widget. Press the Enter key. To code
the button listener that awaits user interaction, type cost.setOn and wait as a
code listing opens. Double-click the first setOnClickListener displayed in the
auto-complete listing. Inside the parentheses, type new on and press Ctrl+spacebar
to display an auto-complete listing. Double-click the first choice, which lists an
OnClickListener with an Anonymous Inner Type event handler. Point to
OnClickListener and import ‘OnClickListener’ (android.view.View). Place a
semicolon at the end of the auto-generated stub closing brace and parenthesis.

The Button control is initialized and an OnClickListener auto-generated stub
appears in the code window (Figure 3-28).

Button control
added

Button control
in Palette

Text size
property

Figure 3-27 Adding a Button control

88

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengagebrain.com

3. To add a TextView control to display the final cost of the tickets, click the main.xml
tab. From the FormWidgets category in the Palette, drag the TextView control to the
emulator and center it below the Button control. Release the mouse button. In the
Properties pane, change the Id property of the TextView control to @+id/txtResult.
Change the Text size property to 20sp. Click to the right of the Text property and
delete the text.

The txtResult TextView control is added to the emulator window (Figure 3-29).

Semicolon added

Button

Button
OnClickListener

Figure 3-28 Coding the button

89

Simplifying User Input

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. To code the TextView control, save your work and then click the Main.java tab.
After the line of code referring to the Button cost, type final TextView result =
((TextView) findViewById (R.id.txtResult));. Import the ‘TextView’ (android.
widget).

The TextView control txtResult is assigned to the variable named result
(Figure 3-30).

TextView control
selected

Figure 3-29 Adding a TextView control to display results

90

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. To add the ImageView control, first copy the student files to your USB drive
(if necessary). Open the USB folder containing the student files. In the Package
Explorer, expand the drawable-hdpi folder. Drag the concert.png file to the
drawable-hdpi folder until a plus sign pointer appears. Release the mouse button.
Click the OK button in the File Operation dialog box. In the main.xml tab, click
the Images & Media category in the Palette. Drag the ImageView control to the
emulator and center it below the TextView control at the bottom of the emulator
window. Click concert in the Resource Chooser dialog box, and then click the OK
button. With the image selected, click to the right of the Layout margin bottom
property in the Properties pane and type 0dp. Click a blank area on the emulator
to deselect the image.

The concert image is displayed at the bottom of the emulator window (Figure 3-31).

TextView code assigns the value
displayed in the txtResult control
to a variable named result

Figure 3-30 Assigning the TextView control to a variable

91

Simplifying User Input

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
Variable names are case sensitive and should be mixed case (camel case) when they include more than one
word, as in costPerItem. Java variables cannot start with a number or special symbol. Subsequent characters
in the variable name may be letters, digits, dollar signs, or underscore characters.

Declaring Variables
As you have seen, the user can enter data in the program through the use of a Text Field
control. In the Concert Tickets app, a mathematical equation multiplying the number of
tickets and the cost of the tickets is calculated to find the total cost. When writing programs,
it is convenient to use variables instead of the actual data such as the cost of a ticket ($59.99).
Two steps are necessary in order to use a variable:

1. Declare the variable.

2. Assign a value to the variable.

ImageView control
displaying
concert.png image

iS
to
ck
ph
ot
o.
co
m
/o
la
f
he
rs
ch
ba
ch

Figure 3-31 Adding an ImageView control

92

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The declared type of a value determines which operations are allowed. At the core of Java
code are eight built-in primitive (simple) types of data.

Primitive Data Types
Java requires all variables to have a data type. Table 3-1 displays the primitive data types that
are supported across all computer platforms, including the Android SDK.

In the Concert Tickets program, the tickets cost $59.99 each. This cost is best declared as
a double data type, which is appropriate for decimal values. The variable costPerTicket
both declares the variable and assigns a value, as shown in the following code syntax.
The requested quantity of tickets is assigned to a variable named numberOfTickets,
which represents an integer. To multiply two values, the values must be stored in one of
the numeric data types. When the total cost of the tickets is computed, the value is assigned
to a variable named totalCost, also a double data type, as shown in the following code:

Code Syntax

double costPerTicket=59.99;
int numberOfTickets;
double totalCost;

Type Meaning Range Default Value

byte Often used with arrays –128 to 127 0

short Often used with arrays -–32,768 to 32,767 0

int Most commonly used number
value

–2,147,483,648 to 2,147,483,647 0

long Used for numbers that
exceed int

–9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

0

float A single precision 32-bit
floating-point number

+/–3.40282347^38 0

double Most common for decimal
values

+/–1.79769313486231570^308 0

char Single character Characters 0

boolean Used for conditional
statement

True or false False

Table 3-1 Primitive data types in Java

93

Declaring Variables

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

String Data Type
In addition to the primitive data types, Java has another data type for working with strings
of text. The String type is a class and not a primitive data type. Most strings that you use in
the Java language are an object of type String. A string can be a character, word, or phrase.
If you assign a phrase to a String variable, place the phrase between double quotation marks.
In the Concert Tickets app, after the user selects a musical group from the Spinner control,
that group is assigned to a String type variable named groupChoice, as shown in the
following code:

Code Syntax

String groupChoice;

GTK
When defining variables, good programming practice dictates that the variable names you use should reflect
the actual values to be placed in the variable. That way, anyone reading the program code can easily understand
the use of the variable.

Declaring the Variables
Variables in an Android application are typically declared at the beginning of an Activity.
A variable must first be declared before the variable can be used in the application. To initialize,
or declare, the variables, follow this step:

1. In Main.java, below the comment /** Called when the activity is first created */, insert
the following four lines of code to initialize the variables in this Activity:

double costPerTicket=59.99;

int numberOfTickets;

double totalCost;

String groupChoice;

The variables are declared at the beginning of the Activity (Figure 3-32).

94

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GetText() Method
At this point in the application development, all the controls have been assigned variables to
hold their values. The next step is to convert the values in the assigned variables to the
correct data type for calculation purposes. After the user enters the number of tickets and
the concert group name, the Find Ticket Cost button is clicked. Inside the OnClickListener
code for the button control, the text stored in the EditText control named tickets can be
read with the GetText() method. By default, the text in the EditText control is read as a
String type. A String type cannot be used in a mathematical function. To convert a
string into a numerical data type, a Parse class is needed to convert strings to a number
data type. Table 3-2 displays the Parse types that convert a string to a common numerical
data type.

To extract the string of text typed into the EditText control and convert the string representing
the number of tickets to an integer data type, the following syntax is necessary:

Variables
declared

Figure 3-32 Declaring variables for the Activity

Numerical Data Type Parse Types

Integer Integer.parseInt()

Float Float.parseFloat()

Double Double.parseDouble()

Long Long.parseLong()

Table 3-2 Parse type conversions

95

Declaring Variables

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Code Syntax

numberOfTickets = Integer.parseInt(tickets.getText().toString());

To code the GetText() method and convert the value in the tickets variable into an integer
data type named numberOfTickets, follow this step:

1. In Main.java, inside the OnClickListener onClick method stub, type
numberOfTickets = Integer.parseInt(tickets.getText().toString());.

The GetText() method extracts the text from tickets, converts the string to an integer,
and assigns the value to numberOfTickets (Figure 3-33).

Working with Mathematical Operations
The ability to perform arithmetic operations on numeric data is fundamental to many
applications. Many programs require arithmetic operations to add, subtract, multiply, and
divide numeric data. For example, in the Concert Tickets app in this chapter, the cost of each
ticket must be multiplied by the number of tickets in order to calculate the total cost of the
concert tickets.

Arithmetic Operators
Table 3-3 shows a listing of the Java arithmetic operators, along with their use and an example
of an arithmetic expression showing their use.

Assigns value to
numberOfTickets

Converts string
to integer

Extracts text from
tickets variable

Figure 3-33 Converting a string to an integer

96

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When multiple operations are included in a single assignment statement, the sequence of
performing the calculations is determined by the rules shown in Table 3-4, which is called the
order of operations.

For example, the result of 2 + 3 * 4 is 14 because the multiplication is of higher precedence
than the addition operation.

Formatting Numbers
After the total ticket cost is computed, the result is displayed in currency format, which
includes a dollar sign and commas if needed in larger values, and rounds off to two places past
the decimal point. Java includes a class called DecimalFormat that provides patterns for
formatting numbers for output on the Android device. For example, the pattern “$###,###.##”
establishes that a number begins with a dollar sign character, displays a comma if the number
has more than three digits, and rounds off to the nearest penny. If the pattern “###.#%” is
used, the number is multiplied by 100 and rounded to the first digit past the decimal. To
establish a currency decimal format for the result of the ticket cost, the following code syntax
is assigned to currency and later applied to the variable totalCost to display a currency value:

Order of Operations
Highest to Lowest Precedence

Description

() Parentheses

++ –– Left to right

* / % Left to right

+ – Left to right

Table 3-4 Order of operations

Arithmetic Operator Use Assignment Statement

+ Addition value = itemPrice + itemTax;

– Subtraction score = previousScore – 2;

* Multiplication totalCost = costPerTicket * numberOfTickets;

/ Division average = totalGrade / 5.0;

% Remainder leftover = widgetAmount % 3;
If widgetAmount = 11 the remainder = 2

++ Increment (adds 1) golfScore ++

- - Decrement (subtracts 1) points - -

Table 3-3 Java arithmetic operators

97

Working with Mathematical Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Code Syntax

DecimalFormat currency = new DecimalFormat("$###,###.##");

To code the calculation computing the cost of the tickets and to create a currency decimal
format, follow this step:

1. In Main.java, after the last line entered, insert a new line, type totalCost = costPerTicket
* numberOfTickets; and then press Enter. To establish a currency format, type
DecimalFormat currency = new DecimalFormat(“$###,###.##”);. Import the
‘DecimalFormat’ (java.text) class.

The equation computes the total cost of the tickets and DecimalFormat creates a
currency format that is used when the total cost is displayed (Figure 3-34).

Displaying Android Output
In Java, computing the results does not mean displaying the results. To display the results that
include the name of the group and the final cost of the tickets, first the name of the group
must be assigned to a String variable.

GetSelectedItem() Method
To obtain the text name of the concert group that was selected by the user in the Spinner
control, you use a method named GetSelectedItem(). The GetSelectedItem() method
returns the text label of the currently selected Spinner item. For example, if the user
selects Nine Volt, the GetSelectedItem() method assigns this group to a String variable
named groupChoice that was declared at the beginning of the Activity, as shown in the
following code:

Pattern formats
result as currency

Equation calculates
ticket cost

Figure 3-34 Calculating and formatting the ticket cost

98

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Code Syntax

groupChoice = group.getSelectedItem().toString();

GTK
A method named GetSelectedIndex() can be used with a Spinner control to determine if the user selected the
first, second, or subsequent choice. For example, if GetSelectedIndex() is equal to the integer 0, the user
selected the first choice.

SetText() Method
Earlier in the Android project, the method GetText() extracted the text from the Text Field
control. In an opposite manner, the method SetText() displays text in a TextView control.
SetText() accepts a string of data for display. To join variable names and text, you can
concatenate the string text with a plus sign (+). In the following example, the variable
completeSentence is assigned Android is the best phone platform. This sentence is
displayed in a TextView object named result.

Example:

String mobile = "Android";
String completeSentence = mobile + " is the best phone platform";
result.setText(completeSentence);

The syntax for the SetText() method is shown in the following code. In this example, the
result is displayed in the result TextView control and includes the string that uses the
concatenating operator, the plus sign connecting variables to the string text.

Code Syntax

result.setText("Total Cost for " + groupChoice + " is " +
currency.format(totalCost));

The currency.format portion of the code displays the variable totalCost with a dollar sign and
rounds off to the nearest penny. The output for result is displayed in Figure 3-2: Total Cost
for Nine Volt is $239.96. To code the GetSelectedItem() method and the SetText() method,
follow these steps to complete the application:

1. In Main.java after the last line of code entered, insert a new line and type
groupChoice = group.getSelectedItem().toString(); to assign the concert group to
the String variable groupChoice. On the next line, type result.setText(“Total Cost
for ” + groupChoice + “ is ” + currency.format(totalCost)); to display the output.

The getSelectedItem() method identifies the selected group and setText() displays the
selected group with the total cost of the tickets (Figure 3-35).

99

Displaying Android Output

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. To view the finished application, click Run on the menu bar, and select Run to save
and test the application in the emulator. A dialog box opens the first time the
application is executed to request how to run the application. Select Android
Application and click the OK button. Save all the files in the next dialog box and
unlock the emulator. When the application opens in the emulator, enter the number
of tickets and select a group from the Spinner control. To view the results, click the
Find Ticket Cost button.

The Concert Tickets Android app is executed (Figures 3-1 and 3-2).

Wrap It Up—Chapter Summary
In this chapter, you have learned to declare variables and write arithmetic operations. New
controls such as the Text Field to enter text and the Spinner control to select from multiple
items were used in the chapter project. GetText() and SetText() methods were used to
extract and display data, respectively. An Android theme was also applied to the application.

Figure 3-35 Completed code

100

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l You can assign a theme to an Activity or entire application to define its appearance and
style and to prevent each Android app you develop from looking too similar.

l Preview a theme by clicking the Theme button in the emulator window and then selecting
a theme. To permanently change the theme in the application, define the theme in the
Android Manifest file for each Activity.

l Use Text Fields to request input from users, who can enter characters using an onscreen
keyboard or a physical keyboard. You need to select the correct type of Text Field control
for the type of data you are requesting.

l To provide guidelines so users enter the correct data in a Text Field control, use the
control’s Hint property to display light-colored text describing what to enter. The user
clicks the control to remove the hint and type the requested input.

l To handle the input that users enter into a Text Field control, you use the EditText class,
which extracts the text and converts it for use in the Java code. The extracted text must be
assigned to a variable, which holds data that changes during the execution of the program.
To extract the string of text entered in an EditText control, use the GetText() method. To
display the extracted text in a TextView control, use the SetText() method.

l The strings.xml file is part of every Android application by default and contains strings
used in the application, such as text displayed in a Spinner control. You can edit a string in
strings.xml to update the text wherever it is used in the application. In strings.xml, you
can also include prompt text that provides instructions in a Spinner control. In the Java
code, use the GetSelectedItem() method to return the text of the selected Spinner item.

l To use a variable, you must first declare the variable and then assign a value to it. The
declared type of a value determines which mathematical operations are allowed. Variables
in an Android application are typically declared at the beginning of an Activity.

l After assigning variables to hold the values entered in controls, you often need to convert
the values in the assigned variables to the correct data type so the values can be used in
calculations. To use string data in a mathematical function, you use the Parse class to
convert the string into a numerical data type.

Key Terms
DecimalFormat—A class that provides patterns for formatting numbers in program output.

Entries—A Spinner property that connects a string array to the Spinner control for display.

final—A type of variable that can only be initialized once; any attempt to reassign the value
results in a compile error when the application is executed.

GetSelectedItem()—A method that returns the text of the selected Spinner item.

GetText()—A method that reads text stored in an EditText control.

hint—A short description of a field that appears as light text in a Text Field control.

101

Key Terms

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

item—In a Spinner control, a string of text that appears in a list for user selection.

localization—The use of the String table to change text based on the user’s preferred
language.

Parse—A class that converts a string into a number data type.

prompt—Text that displays instructions at the top of the Spinner control.

soft keyboard—An onscreen keyboard positioned over the lower part of an application’s
window.

Spinner control—A widget similar to a drop-down list for selecting a single item from a
fixed listing.

string—A series of alphanumeric characters that can include spaces.

strings.xml—A default file that is part of every Android application and holds commonly
used strings in an application.

theme—A style applied to an Activity or an entire application.

variable—A name used in a Java program to contain data that changes during the
execution of the program.

Developer FAQs
1. What is an Android theme?

2. Which theme was used in the chapter project?

3. In an app, suppose you want to use the theme named Theme.Translucent. What
code is needed in the AndroidManifest.xml file to support this theme?

4. What is a soft keyboard? Be sure to include its location in your answer.

5. Which five controls were used in the chapter project?

6. Which Text Field control is best for entering an amount that contains a paycheck
amount?

7. Which property of the Spinner control adds text at the top of the control such as
instructions?

8. What is the name of the file that holds commonly used phrases (arrays) of text in
an application?

9. What is a single string of information called in a string array?

10. Which property do you assign to the string array that you create for a Spinner?

11. Write the following variable in camel case: NUMBEROFCOMPUTERJOBS.

102

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12. Write a declaration statement for each of the following variables using the variable
type and variable name that would be best for each value. Assign values if directed.

a. The population of the state of Alaska

b. Your weekly pay using the most common type for this type number

c. The smallest data type you can use for your age

d. Assign the first initial of your first name

e. Assign the present minimum wage using the most common type for this type
of number

f. Assign the name of the city in which you live

g. The answer to a true/false question

13. Name two numeric data types that can contain a decimal point.

14. What is the solution to each of the following arithmetic expressions?

a. 3 + 4 * 2 + 6

b. 16 / 2 * 4 - 3

c. 40 - (6 + 2) / 2

d. 3 + 68 % 9

15. Write a GetText() statement that converts a variable named deficit to a double data
type and assigns the value to the variable named financeDeficit.

16. Assign the text of the user’s choice of a Spinner control named collegeName to the
variable named topCollege.

17. If a variable named amount is assigned to the value 47199.266, what would these
statements display in the variable called price?

DecimalFormat money = new DecimalFormat("$###,###.##");
price.setText("Salary = " + money.format(amount));

18. Write a line of Java code that assigns the variable jellyBeans to a decimal format
with six digits and a comma if needed, but no dollar sign or decimal places.

19. Write a line of Java code to use concatenation to join the phrase “Welcome to the ”,
versionNumber (an int variable), and the phrase “th version” to the variable
combineStatement.

20. Write a line of Java code that assigns a number to the variable numberChoice,
which indicates the user’s selection. If the user selects the first group, the number 0
is assigned; if the user selects the second group, the number 1 is assigned; and if
the user selects the third group, the number 2 is assigned with the same variables
used in the chapter project.

103

Developer FAQs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Beyond the Book
Using the Internet, search the Web for the answers to the following questions to further your
Android knowledge.

1. Name 10 themes used in your Android SDK not mentioned in this chapter.

2. Search the Internet for three real Android apps that sell any type of tickets. Name five
features of each of the three apps.

3. A good Android developer always keeps up with the present market. Open the page
https://market.android.com. Find this week’s featured tablet apps and write about the
top five. Write a paragraph on the purpose and cost of each for a total of five paragraphs.

4. Open the search engine Bing.com and then click the News tab. Search for an article
about Androids with this week’s date. Insert the URL link at the top of a new
document. Write a 150–200–word summary of the article in your own words.

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps
and techniques taught within the chapter. Submit the program you create to your instructor.
The level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆⋆

Challenging: ⋆⋆⋆

Case Project 3–1: Study Abroad App ⋆

Requirements Document

Application title: Study Abroad App

Purpose: Your school is offering a summer study abroad program. A simple app
determines how many tickets are needed for a group and lets a user select the
location lets a user study abroad. The app displays the location and the total
price for the group’s airfare.

Algorithms: 1. The app displays a title; an image; and a Text Field, Spinner, and Button
control (Figure 3-36). The three cities in the Spinner control include Rome,
Dublin, and Tokyo. Each round trip plane fare is $1,288.00 per person.

2. When the user clicks the Button control, the location and
the cost of the group airfare are displayed for the flight in a
TextView control (Figure 3-37).

Conditions: Use a theme, Spinner prompt, string array, and Hint property.

104

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

https://market.android.com

Case Project 3–2: Tuition App ⋆

di
sc
pi
ct
ur
e/
Sh
ut
te
rs
to
ck
.c
om

Figure 3-36

di
sc
pi
ct
ur
e/
Sh
ut
te
rs
to
ck
.c
om

Figure 3-37

Requirements Document

Application title: Tuition App

Purpose: A college tuition app allows a student to compute the tuition for a semester.

Algorithms: 1. The college tuition app has two Text Fields: One requests the cost of each
credit, and the other requests the number of credits a student intends to
take during the semester. A Spinner control allows the student to select one
of the three possible semesters: Fall, Spring, and Summer. The app also
displays a title, an image, and a Button control (Figure 3-38).

2. After the user clicks the Button control, the selected semester and the total
cost of tuition with an added student technology fee of
$125.00 are displayed in a TextView control (Figure 3-39).

Conditions: Use a theme, a title, an image, a Spinner prompt, a string
array, and a Hint property.

105

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 3–3: New York City Cab Fare App ⋆⋆

iS
to
ck
ph
ot
o.
co
m
/A
nd
re
w
Ri
ch

Figure 3-38

iS
to
ck
ph
ot
o.
co
m
/A
nd
re
w
Ri
ch

Figure 3-39

Requirements Document

Application title: NYC Cab Fare App

Purpose: Create an app that estimates the cost for cab fare in New York City. The app
calculates the cost of the trip and requests a reservation for a smart car,
traditional sedan, or minivan.

Algorithms: 1. The app requests the distance in miles for the cab ride and your
preference for the requested cab: a smart car, traditional sedan, or
minivan. The cab company has an initial rate of $3.00. The mileage rate of
$3.25 per mile is charged.

2. The app displays the name of a cab company, a picture of a
logo, and the results of the requested type of cab with the
cost of the fare. Create your own layout.

Conditions: Use a theme, Spinner prompt, string array, and Hint property.
Decimal mileage is possible.

106

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 3–4: Paint Calculator App ⋆⋆

Case Project 3–5: Split the Bill App ⋆⋆⋆

Requirements Document

Application title: Split the Bill App

Purpose: You are out with friends at a nice restaurant and the bill comes! This app splits
the bill, including the tip, among the members of your party.

Algorithms: 1. A welcome screen displays the title, image, and button that takes the user
to a second screen. The input/output screen requests the restaurant bill
and the number of people in your group. The Spinner control asks about the
quality of service: Excellent, Average, or Poor.

2. Calculate an 18% tip and divide the restaurant bill with the tip
included among the members of your party. Display the service
and the individual share of the bill.

Conditions: Use a theme, Spinner prompt, string array, and Hint property.

Requirements Document

Application title: Paint Calculator App

Purpose: The paint calculator app is needed in the paint section of a large home store to
calculate the number of gallons needed to paint a room. The amount of paint in
gallons is displayed.

Algorithms: 1. The app displays a title; an image; two Text Fields; and a Spinner, Button, and
TextView control. The Spinner control allows five colors of paint to be selected.
The room’s height in feet and the distance in feet around the room are entered.

2. The color and the exact number of gallons in decimal form are displayed.

Conditions: A gallon is needed for every 250 square feet for a single coat
of paint. Display the result rounded to two decimal places.
Select five names for paint for the Spinner control. Use a
theme, Spinner prompt, string array, and Hint property.

107

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 3–6: Piggy Bank Children’s App ⋆⋆⋆

Requirements Document

Application title: Piggy Bank Children’s App

Purpose: A piggy bank app allows children to enter the number of quarters, dimes,
nickels, and pennies that they have. The child can select whether to save the
money or spend it. Calculate the amount of money and display the amount that
the child is saving or spending. Create two screens: a welcome screen and an
input/output screen.

Algorithms: 1. A welcome screen displays the title, image, and button that takes the user to a
secondscreen. The input/output screen requests the number of quarters, dimes,
nickels, and pennies. A Spinner control should indicate whether the children
are saving or spending their coins. Create your own layout.

2. The results display how much the child is saving or spending.

Conditions: Use a theme, Spinner prompt, string array, and Hint property.

108

C H A P T E R 3 Engage! Android User Input, Variables, and Operations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 4
Explore! Icons and
Decision-Making
Controls

In this chapter, you learn to:

Create an Android project with a custom icon

Change the text color in controls using hexadecimal colors

Align controls using the Change Gravity tool

Determine layout with the Change Margins tool

Place a RadioGroup and RadioButtons in Android applications

Write code for a RadioGroup control

Make decisions using an If statement

Make decisions using an If Else statement

Make decisions using logical operators

Display an Android toast notification

Test the isChecked property

Make decisions using nested If statements

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
ns
ho
ts
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Developers can code Android applications to make decisions based on the input of users
or other conditions that occur. Decision making is one of the fundamental activities of a
computer application. In this chapter, you learn to write decision-making statements in
Java, which allows you to test conditions and perform different operations depending on
the results of that test. You can test for a condition being true or false and change the
flow of what happens in a program based on the user’s input.

The sample program in this chapter is designed to run on an Android phone or tablet
device at a hospital. The Medical Calculator application provides nurses a mobile way to
convert the weight of a patient from pounds to kilograms and kilograms to pounds. Most
medication amounts are prescribed based on the weight of the patient. Most hospital scales
display weight in pounds, but the prescribed medication is often based on the weight of a
patient in kilograms. For safety reasons, the exact weight of the patient must be correctly
converted between pounds and kilograms. The nurse enters the weight of the patient and
selects a radio button, as shown in Figure 4-1, to determine whether pounds are being
converted to kilograms or kilograms are being converted to pounds. The mobile application
then computes the converted weight based on the conversion formulas: The conversion
formulas are: kilograms = pounds * 2.2 and pounds = kilograms / 2.2. To validate that
correct weights are entered, if the value is greater than 500 for the conversion from pounds
to kilograms or greater than 225 for the conversion from kilograms to pounds, the user is
asked for a valid entry. If the user enters a number out of the acceptable range, a warning
called a toast message appears on the screen. When the app is running, a nurse enters
225 for the value of the weight of the patient and selects the Convert Pounds to Kilograms
radio button shown in Figure 4-1. After tapping the Convert Weight button, the application
displays 102.3 kilograms (rounded off to the nearest tenth place) in a red font, as shown in
Figure 4-2. By using a mobile device, the nurse can capture patient information such as
weight directly at the point of care anywhere and anytime and reduce errors made by
delaying entry on a traditional computer in another location.

110

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To create this application, the developer must understand how to perform the following
processes:

1. Create a customized launcher icon.

2. Define a TextField for the data entry of the weight of the patient.

3. Define a RadioGroup to select pounds to kilograms or kilograms to pounds.

4. Display a Toast message for data validation.

5. Convert data so it can be used for arithmetic operations.

6. Perform arithmetic operations on data the user enters.

7. Display formatted results.

IN THE TRENCHES
Medical phone apps are changing the entire patient point-of-care system. Apps now used in hospitals include
mobile patient records, drug prescription references, medical journals, surgical checklists, dosage calcu-
lators, radiology imagery, and disease pathology.

Figure 4-2 Results screen of the Medical
Calculator

iS
to
ck
ph
ot
o.
co
m
/O
’L
uk

Figure 4-1 Opening screen of the Medical
Calculator

iS
to
ck
ph
ot
o.
co
m
/O
’L
uk

111

Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Launcher Icon
By default, Android places a standard Android icon, as shown in Figure 4-3, as the
graphic to represent your application on the device’s home screen and in the Launcher
window. To view the opening icon called the launcher icon on the home screen, click
the application listing icon at the bottom of the emulator when an application begins to
execute, as shown in Figure 4-3. Instead of a default icon, each app published to the
Android Market should have a custom graphic representing the contents of your
application. Launcher icons form the first impression of your app on prospective
users in the Android Market. With so many apps available, a high-quality launcher
icon can influence users to purchase your Android app.

As you design a launcher icon, consider that an icon can establish brand identity. A unique
image logo and program name can communicate your brand to potential customers. In the
Medical Calculator app, the scale icon shown in Figure 4-4 clearly communicates that this
icon launches a program about weight. A simple image with a clear visual cue like the scale
has a memorable impact. It also helps users find the app in the Android Market. The Android
Market suggests icons should be simple and bold in design. For example, for a paint graphics

Default icon on
home screen for
Chapter 3 project

Click to display
application icons

Figure 4-3 Android home screen and launcher icons

112

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

program, an icon shaped like a thin art paintbrush may be
hard to distinguish from a pencil image, but a large
cartoonlike paintbrush can convey its purpose easily.

The Android Market also specifies the size and format
of all launcher icons for uniformity. Launcher icons
should be saved in the .png file format. Based on your
target device, Table 4-1 specifies the size of a finished
launcher icon. You can use programs such as Microsoft
Paint, Mac Paintbrush, and Adobe Photoshop to resize
the icon to the correct number of pixels. In the chapter
project, the icon dimension is 72 × 72 pixels for the
high-density screen used by the application. If you are
creating an application that can be deployed on any
Android device, you can use the same name for the
icon, but resize it four times and place each image in
the appropriate res/drawable folder.

GTK
When you publish an app to the Android Market, you must provide a 512 × 512 pixel, high-resolution application
icon in the developer console as you upload your program. This icon is displayed in the Android Market to provide
a description of the app and does not replace your launcher icon.

The Android Market recommends a naming convention for launcher icons. Typically, the
prefix ic_launcher is used to name launcher icons for Android apps. In the case of the Medical
Calculator app, the launcher icon is named ic_launcher_weight.png.

GTK
Vector-based graphics are best to use for icon design because the images can be scaled without the loss of
detail and are easily resized.

Figure 4-4 Launcher icon for
the Medical Calculator app

iS
to
ck
ph
ot
o.
co
m
/O
’L
uk

Resolution Dots per Inch (dpi) Size (px)

ldpi (low-density screen) 120 36 × 36

mdpi (medium-density screen) 160 48 × 48

hdpi (high-density screen) 240 72 × 72

xhdpi (extra high-density screen)* 320 96 × 96

* Used by some tablets

Table 4-1 Launcher icon sizes

113

The Launcher Icon

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Customizing a Launcher Icon
To display a custom launcher icon instead of the default icon on the home screen, first the
custom icon image must be placed in the res\drawable folder. In addition, the Android
Manifest file must be updated to include the new filename of the image file. The application
code within the Android Manifest file for the chapter project should be changed to android:
icon = “ic_launcher_weight.png”. To perform the following steps, you need an image file
named ic_launcher_weight.png, provided with your student files, to use as the custom
launcher icon for the Medical Calculator app. You should already have the student files for
this text that your instructor gave you or that you downloaded from the Web page for this
book (www.cengagebrain.com). To begin the chapter project and add a customized launcher
icon, follow these steps:

1. Open the Eclipse program. Click the New button on the Standard toolbar. Expand
the Android folder, if necessary, and select Android Project. Click the Next button.
In the New Android Project dialog box, enter the Project name Medical Calculator.
To save the project on your USB drive, click to remove the check mark from the Use
default location check box. Type E:\Workspace (if necessary, enter a different drive
letter that identifies the USB drive). Click the Next button. For the Build Target, select
Android 4.0, if necessary. Click the Next button. Type the Package name net.
androidbootcamp.medicalcalculator. Enter Main in the Create Activity text box.
Click the Finish button. Expand the Medical Calculator project in the Package Explorer.
Expand the res folder to display its subfolders. Expand the layout subfolder. Right-click
main.xml, point to Open With, and then click Android Layout Editor. Click the Hello
World, Main! TextView widget, and then press the Delete key. Click the Theme button
to display the list of built-in themes, and then select Theme.WithActionBar.

The New Android Medical Calculator project uses the Theme.WithActionBar theme,
and the default icon is displayed in the action bar (Figure 4-5).

main.xml

Theme.WithActionBar
selected

Action barDefault icon

main.xml tab

Figure 4-5 Theme with action bar

114

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengagebrain.com

2. To add the custom launcher icon to the
project, copy the student files to your USB
drive (if necessary). Open the USB folder
containing the student files. In the Package
Explorer, expand the drawable-hdpi folder.
Drag the ic_launcher_weight.png file to the
drawable-hdpi folder until a plus sign pointer
appears. Release the mouse button. Click
the OK button in the File Operation dialog
box. Click the default icon ic_launcher.png
file and press the Delete key, and then click
the OK button to confirm the deletion.

The custom launcher icon image is placed
in the drawable-hdpi folder. The image in
the emulator does not update until the
Android Manifest file is changed (Figure 4-6).

3. To change the code in the Android Manifest file so the application displays the
custom icon, double-click the AndroidManifest.xml file in the Package Explorer.
Click the AndroidManifest.xml tab at the bottom of the window. Inside the
application code, click in the line android:icon=“drawable/ic_launcher”. Change
the filename portion from ic_launcher” to ic_launcher_weight”.

The Android launcher icon is coded in the Android Manifest file (Figure 4-7).

New icon file

Figure 4-6 New launcher icon file

Icon name
changed

Figure 4-7 Android Manifest code with new launcher icon filename

115

The Launcher Icon

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. To add the selected theme to the Android Manifest, inside the activity code, click at
the end of the line android:label=“@string/app_name”. Press the Enter key to insert
a blank line. Type android:theme=“@android:style/Theme.WithActionBar”.

The Android theme is coded in the Android Manifest file (Figure 4-8).

5. Click the Save All button on the Standard toolbar, and then close the Medical
Calculator Manifest tab.

RadioButton and RadioGroup Controls
RadioButton controls are used to select or deselect an option. In the chapter project, the
user can select which mathematical conversion is needed. When a RadioButton is placed on
the emulator, by default each control is arranged vertically. If you prefer the RadioButton
controls to be listed horizontally, you can set the orientation property to horizontal. Each
RadioButton control has a label defined by the Text property and a Checked property set to
either true or false. RadioButton controls are typically used together in a RadioGroup.
Checking one radio button unchecks the other radio buttons within the group. In other
words, within a RadioGroup control, only one RadioButton control can be selected at a
time. When the RadioGroup control on the Palette is placed on the emulator window,
three RadioButton controls are included in the group by default. If you need additional
RadioButton controls, drag them from the Palette into the group. In the case of the
Medical Calculator app, only two radio buttons are needed, so the third radio button is
deleted.

New Android
theme
referenced

Figure 4-8 Android Manifest code with new theme

116

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mailto:theme=%E2%80%9C@android:style/Theme.WithActionBar%E2%80%9D

To make the user’s input as simple as possible, offer a default selection. For example, nurses
more often convert weight from pounds to kilograms, so that RadioButton option should be
checked initially. The Checked property of this RadioButton control is set to true to provide
a default selection.

GTK
Like RadioButton controls, a CheckBox control allows a user to check or uncheck a listing. A user may select any
number of check boxes, including zero, one, or several. In other words, each check box is independent of all
other check boxes in the list, so checking one box does not uncheck the others. The shape of a radio button
is circular and the check box is square.

Changing the Text Color of Android Controls
Thus far, each application in this text used the default color of white for the text color for
each Android control. The Android platform uses a color system called hexadecimal color
codes to display different colors. A hexadecimal color code is a triplet of three colors. Colors
are specified first by a pound sign followed by how much red (00 to FF), how much green
(00 to FF), and how much blue (00 to FF) are in the final color. For example, the hexadecimal
color of #FF0000 is a true red. The TextView and RadioGroup controls displayed in the
chapter project have light gray text, which you designate by typing #CCCCCC as the Text
color property. To look up these color codes, search for hexadecimal color codes in a
search engine or refer to http://html-color-codes.com.

Changing the Layout Gravity
The Medical Calculator app displays controls from the Palette with a Linear layout, which
is the default setting for layouts on the Android emulator. As you place controls on the
emulator, each control snaps to the left edge of the screen by default. You can use a property
named Layout gravity to center a control horizontally as well as position it at other places on
the screen. When you place a control on the emulator, a toolbar appears above the emulator
screen. You can change the gravity using the Properties pane or a button on the toolbar.
The Change Gravity tool shown in Figure 4-9 changes the linear alignment. Layout gravity
is similar to the alignment feature in Microsoft Office that allows a control to snap to the left,
center, right, top, or bottom of another object or the screen.

117

RadioButton and RadioGroup Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://html-color-codes.com

Changing the Margins
After placing a control on the user interface, you can change the alignment by adjusting
the gravity of the control. For more flexibility in controlling your layout, use margins to
change the spacing around each object. Each control in the Medical Calculator app can use
margins to add a certain amount of blank space measured in density independent pixels
(dp) on each of its four sides. Instead of “eyeballing” the controls on the user interface for
alignment, the Change Margins tool creates equal spacing around controls. Using the
Change Margins tool helps make your user interface more organized and ultimately easier
to use. The Change Margins tool is displayed when a control is selected on the user
interface. For example, in Figure 4-10 a margin spacing of 15dp (pixels) specifies 15 extra
pixels on the top side of the selected TextView control. As you design the user interface,
use the same specified margins around each control to provide a symmetrical layout.

Gravity (alignment)
options

Change Gravity
tool

Figure 4-9 Change Gravity tool

iS
to
ck
ph
ot
o.
co
m
/O
’L
uk

118

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding the RadioButton Group
The Medical Calculator app displays a TextView control, Number Text Field, and
RadioGroup control, all centered horizontally. The TextView and RadioGroup controls
use the text color of gray. To name a RadioButton control, use the Id property in the
Properties pane to enter a name that begins with the prefix rad, which represents a radio
button in the code. To begin the design of the Android user interface and to add a
RadioGroup to the Medical Calculator app, follow these steps:

1. With the main.xml tab open, click the Form Widgets category in the Palette, if
necessary. Select the Form Widget named TextView. Drag and drop the TextView
control onto the emulator user interface. Right-click the emulator window, point to
Show In, and then select Properties to open the Properties pane, if necessary.
Click the TextView control that you placed on the emulator. In the Properties pane,
change the Text property to Convert Patient Weight. Change the Text size
property to 25sp. Click the Text color property and type #CCCCCC to change the
text color to a light gray to match the action bar. Click the Change Gravity tool
on the toolbar. Select Center Horizontal to center the control. With the control
selected, click the Change Margins tool on the toolbar. In the Top text box of the
Edit Margins dialog box, type 15dp and then click the OK button to place 15 pixel
spaces above the control.

Edit Margins
dialog box

Change Margins
tool

Figure 4-10 Change Margins tool

iS
to
ck
ph
ot
o.
co
m
/O
’L
uk

119

RadioButton and RadioGroup Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The TextView control is added to the form with the text, size, text color, gravity, and
margins changed (Figure 4-11).

2. To add the Number Text Field, click the Text Fields category in the Palette. Drag
and drop the Number Text Field control (example shows a 42) onto the emulator’s
user interface below the TextView control. Change the Id property of the Number
Text Field to @+id/txtWeight. Change the Text size property to 25sp. Change the
Hint property to Weight of Patient. Click the Text color property and type
#CCCCCC as the hexadecimal color code for light gray. Resize the control to fit
the hint by dragging a selection handle on the control. Select the control, click
the Change Gravity tool, and select Center Horizontal to center the control. Select
the control, click the Change Margins tool, and in the Top text box of the Edit
Margins dialog box, type 15dp and
then click the OK button to place
15 pixel spaces between the
TextView and the Number Text
Field control.

A Number Text Field control is placed
on the emulator with the id, text size,
text color, hint, gravity, and margins
changed (Figure 4-12).

3. In the Palette, select the Form Widget named RadioGroup. Drag and drop the
RadioGroup control onto the user interface below the Number Text Field. Only two
radio buttons are needed for this app, so click the third RadioButton control and
press the Delete key. Select the first RadioButton control. In the Properties pane,
change the Id property of the RadioButton control to @+id/radLbToKilo. Change
the Text property to Convert Pounds to Kilograms. Change the Text size property
to 18sp. Notice the Checked property is preset as true, indicating that the first radio
button is the default selection. Click the Change Margins tool to open the Edit

Toolbar

TextView
control

Figure 4-11 TextView control

Number Text
Field control

Figure 4-12 Number Text Field control

iS
to
ck
ph
ot
o.
co
m
/O
’L
uk

iS
to
ck
ph
ot
o.
co
m
/O
’L
uk

120

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Margins dialog box. In the Left text box, type 12dp and in the Top text box,
type 15dp. Click the OK button. Select the second RadioButton control. In the
Properties pane, change the Id property to @+id/radKiloToLb. Change the Text
property to Convert Kilograms to Pounds. Change the Text size property to 18sp.
Click the Change Margins tool to open the Edit Margins dialog box. In the Left
text box, type 12dp and in the Top text box, type 5dp to keep the RadioButtons
close to one another within the group. Click the OK button.

The RadioGroup object is placed on the emulator with the id, text, color, and margin
properties changed (Figure 4-13).

Coding a RadioButton Control
Each of the RadioButton controls placed on the emulator need to be referenced by using
the findViewById Java command. In the following code syntax, lbsToKilo and kiloToLbs
reference the two RadioButton controls in the Medical Calculator application:

Code Syntax

final RadioButton lbsToKilo = (RadioButton) findViewById(R.id.radLbToKilo);
final RadioButton kiloToLbs = (RadioButton) findViewById(R.id.radKiloToLb);

After the RadioButton controls have been referenced, the next priority is to determine
which of the two radio buttons the user selected. If the user selected the Convert Pounds
to Kilograms radio button, the weight entered is divided by 2.2, but if the user selected the
Convert Kilograms to Pounds radio button, the weight is multiplied by 2.2. A variable
named conversionRate is assigned the decimal value 2.2. The variables weightEntered and
convertedWeight contain the patient weight and converted weight result, respectively.

RadioGroup displays two
RadioButton controls

RadioGroup
control

Figure 4-13 RadioGroup control

iS
to
ck
ph
ot
o.
co
m
/O
’L
uk

121

RadioButton and RadioGroup Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To create the Java code to declare the variables used in the application and to reference the
RadioButton controls, follow these steps:

1. In the Package Explorer, expand src and net.androidbootcamp.medicalcalculator,
and then double-click Main.java to open the code window. Click after the comment
line: /** Called when the activity is first created. */. Press the Enter key to insert
a new blank line. To initialize the conversion rate value of 2.2, type double
conversionRate = 2.2;. Press the Enter key. To initialize the weightEntered
variable, type double weightEntered; and press the Enter key. To initialize the
variable that will hold the converted weight, type double convertedWeight;.
Press the Enter key.

Three variables are declared in the Java code (Figure 4-14).

2. Click at the end of the line setContentView(R.layout.main);. Press the Enter key.
To initialize and reference the EditText class with the Id name of txtWeight, type
final EditText weight = (EditText) findViewById(R.id.txtWeight);. Point to the
red curly line under EditText and select Import ‘EditText’ (android widget) on
the pop-up menu. Press the Enter key. To initialize and reference the RadioButton
class with the Id name of radLbToKilo, type final RadioButton lbToKilo =
(RadioButton) findViewById(R.id.radLbToKilo);. Point to the red curly line
under RadioButton and select Import ‘RadioButton’ (android widget). Press the
Enter key. To initialize and reference the RadioButton class for the second radio
button with the Id name of radKiloToLb, type final RadioButton kiloToLb =
(RadioButton) findViewById(R.id.radKiloToLb);.

Main.java tab

Variables
initialized

Figure 4-14 Variables declared

122

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The EditText class extracts the value from the user’s input for the patient weight and
the RadioButton class extracts the checked value from the radio buttons (Figure 4-15).

3. Save your work.

Completing the User Interface
As you design the Android interface, it is important to have a clean layout and use the
entire screen effectively. To complete the user interface by adding a Button and TextView
control and code the Button and TextView controls, follow these steps:

1. In the main.xml tab, drag the Button control from the Palette to the emulator below
the RadioGroup. In the Properties pane, change the Id property of the Button control
to @+id/btnConvert. Change the Text property to Convert Weight. Change the
Text size property to 25sp. Click the Change Gravity tool on the toolbar, and then
click Center Horizontal to center the control. Select the Button control, click the
Change Margins tool, and in the Top text box of the Edit Margins dialog box, type
15dp and then click the OK button to place 15 pixel spaces above the control.

Drag another TextView control to the emulator below the Button. Change the Id
property of the TextView control to @+id/txtResult. Change the Text size property
to 25sp. For the Text color property, type #FF0000 (red). Click the Change Gravity
tool on the toolbar, and then click Center Horizontal to center the control. Click the
Change Margins tool, and in the Top text box of the Edit Margins dialog box, type
15dp to place 15 pixels of space above the control, and then click the OK button.
Delete the text in the Text property. Click the Save All button on the Standard toolbar.

EditText
referenced

RadioButtons
referenced

Figure 4-15 EditText and RadioButtons referenced

123

RadioButton and RadioGroup Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Button control named btnConvert displays the text Convert Weight and its id, text,
text size, gravity, and margins are changed. The TextView control is placed on the
emulator with an empty Text property (Figure 4-16).

2. To code the TextView control, click the Main.java tab. After the two lines of code
referring to the RadioButton controls, type a new line with the code final TextView
result = (TextView) findViewById(R.id.txtResult);. Import the ‘TextView’
(android.widget). Press the Enter key twice to insert two blank lines. To code the
button, type Button convert = (Button) findViewById(R.id.btnConvert);. Point
to Button and import the Button type as an Android widget. Press the Enter key.
To code the Button listener, type convert.setOn and wait for a code listing to open.
Double-click the first setOnClickListener displayed in the auto-complete listing.
Inside the parentheses, type new on and press Ctrl+spacebar to display the
auto-complete listing. Double-click the first choice, which lists an OnClickListener
with an Anonymous Inner Type event handler. Point to OnClickListener and
select Import ‘OnClickListener’ (android.view.View). Place a semicolon at the end
of the auto-generated stub closing brace and parenthesis.

The TextView control txtResult is assigned to the variable result and the btnConvert
Button control is coded (Figure 4-17).

Button control
added

Blank TextView
control added

Figure 4-16 Button and blank TextView controls

iS
to
ck
ph
ot
o.
co
m
/O
’L
uk

124

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Making Decisions with Conditional Statements
In the Medical Calculator chapter project, which converts the weight entered to either
pounds or kilograms, the user selects one of two radio buttons. Then, based on the choice,
the application either divides by 2.2 or multiplies by 2.2.

Java uses decision structures to deal with the different conditions that occur based on the
values entered into an application. A decision structure is a fundamental control structure
used in computer programming. A statement that tests the radio button is called a
conditional statement and the condition checked is whether the first or second radio
button is selected. If the first radio button is selected, the weight is divided by 2.2. When
a condition is tested in a Java program, it is either true or false. To execute a conditional
statement and the statements that are executed when a condition is true, Java uses the
If statement and its variety of formats.

Using an If Statement
In the chapter program, an If statement is used to determine which RadioButton control is
selected. The simplest form of the If statement is shown in the following code:

Code Syntax

if (condition){
//Statements completed if true

}

Button
OnClickListener

Semicolon added

Button
referenced

Figure 4-17 Button and Button OnClickListener

125

Making Decisions with Conditional Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The statement(s) between the opening and closing braces are executed if the condition is true.
If the condition is not true, no statements between the braces are executed, and program
execution continues with the statement(s) that follows the closing brace.

Using If Else Statements
In many applications, the logic requires one set of instructions to be executed if a condition
is true and another set of instructions to be executed if a condition is false. For example, a
program requirement may specify that if a student’s test score is 60 or greater, a message
stating “You passed the examination” is displayed, but if the test score is less than 60, a
message stating “You failed the examination” is displayed.

To execute one set of instructions if a condition is true, and another set of instructions if
the condition is false, you can use the If Else statement, as shown in the following code:

Code Syntax

if (condition){
//Statements completed if condition is true

} else {
//Statements completed if condition is false

}

GTK
Java automatically indents statements to be executed when a condition is true or not true to indicate that the
lines of code are within the conditional If structure.

Relational Operators
In the syntax of the condition portion of the If statement, a condition is tested to determine
if it is true or false. The conditions that can be tested are:

l Is one value equal to another value?

l Is one value not equal to another value?

l Is one value greater than another value?

l Is one value less than another value?

l Is one value greater than or equal to another value?

l Is one value less than or equal to another value?

To test these conditions, Java provides relational operators that are used within the
conditional statement to express the relationship between the numbers being tested.
Table 4-2 shows these relational operators.

126

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the chapter project, an If Else statement determines if the entered weight is valid. If the
nurse is converting pounds to kilograms, the weight entered must be less than or equal
to 500 to be considered within a valid range of acceptable entries. If the entered weight is
valid, the weight is converted by dividing it by the conversion rate of 2.2, as shown in the
following code:

Code Syntax

if (weightEntered <=500){
convertedWeight = weightEntered / conversionRate;

} else {
//Statements completed if condition is false

}

GTK
The most common mistake made with an If statement is the use of a single equal sign to compare equality.
A single equal sign (=) is used for assigning a value to a variable, not for comparison.

In addition to numbers, strings can also be compared in a conditional statement. A string
value comparison compares each character in two strings, starting with the first character in
each string. All characters found in strings, including letters, numbers, and special characters,
are ranked in a sequence from low to high based on how the characters are coded internally
on the computer. The relational operators from Table 4-2 cannot be used with string
comparisons. If you are comparing equality, string characters cannot be compared with
the “= =” operator. Java strings are compared with the equals method of the String class.

If you are comparing whether a string is alphabetically before another string, use the
compareTo method to determine the order of strings. Do not use the less-than or greater-than
symbols as shown in Table 4-2 to compare string data types. The compareTo method
returns a negative integer if the first string precedes the second string. It returns zero if the
two strings being compared are equal. It returns a positive integer if the first string follows

Relational Operator Meaning Example Resulting Condition

= = Equal to 6 = = 6 True

! = Not equal to 4 ! = 7 False

> Greater than 3 > 2 True

< Less than 8 < 1 False

>= Greater than or equal to 5 >= 5 True

<= Less than or equal to 9 <= 6 False

Table 4-2 Relational operators

127

Making Decisions with Conditional Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the second string. Examples of the equals and compareTo methods are shown in Table 4-3
using the following initialized variables:

String name1 = "Sara";
String name2 = "Shawna";
String name3 = "Ryan";

Logical Operators
An If statement can test more than one condition within a single statement. In many cases,
more than one condition must be true or one of several conditions must be true in order for
the statements within the braces to be executed. When more than one condition is included
in an If statement, the conditions are called a compound condition. For example, consider the
following business traveling rule: “If the flight costs less than $400.00 and the hotel is less than
$120.00 per night, the business trip is approved.” In this case, both conditions (flight less than
$400.00 and hotel less than $120.00 per night) must be true for the trip to be approved.
If either condition is not true, then the business trip is not approved.

To create an If statement that processes the business traveling rule, you must use a logical
operator. The most common set of logical operators is listed in Table 4-4.

If Statement Comparison Resulting Condition

if (name1.equals(name2)) Strings are not equal False

if (name1.compareTo(name1) = = 0) Strings are equal True

if (name1.compareTo(name3) = = 0) Strings are not equal False

if (name1.compareTo(name2) > 0) The first string precedes the
second string; returns a negative
number

False

if (name1.compareTo(name3) < 0) The first string follows the third
string; returns a negative number

True

If (name3.compareTo(name2) > 0) The first string follows the second
string; returns a positive number

True

Table 4-3 Examples of the equals and compareTo methods

Logical Operator Meaning Example

&& And—all conditions must be true if (flight < 400 && hotel < 120)

| | Or—at least one condition must be true if (stamp < 0.49 | | rate = = 2)

! Not—reverses the meaning of a condition if (! (grade > 70))

Table 4-4 Common logical operators

128

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Data Validation
In the chapter project, it is important to confirm that the number entered by the user is not a
typo or other type of mistake. If a value greater than 500 is entered for the conversion from
pounds to kilograms or greater than 225 for the conversion from kilograms to pounds, the
user should be notified and asked for a valid entry. To alert the user that an incorrect value
was entered, a message called a toast notification (or toast message) can appear on the screen
temporarily.

Toast Notification
A toast notification communicates messages to the user. These messages pop up as an overlay
onto the user’s current screen, often displaying a validation warning message. For example, a
weather application may display a toast notification if a town is under a tornado warning. An
instant messaging app might display a toast notification stating that a text message has been
sent. In the chapter project, a toast notification displays a message warning the user that an
invalid number was entered. A toast message only fills the amount of space required for the
message to be displayed while the user’s current activity remains visible and interactive. The
notification automatically fades in and out on the screen.

The toast notification code uses a Toast object and the MakeText() method with three
parameters: the context (displays the activity name), the text message, and the duration of
the interval that the toast is displayed (LENGTH_SHORT or LENGTH_LONG). To display
the toast notification, a show() method displays the Toast object.

Code Syntax

Toast toast = Toast.makeText(context, text, duration).show();

The toast message is best used for short messages. If the user enters an invalid number
into the Medical Calculator, a warning toast notification fades in and then out on the screen.
Notice in the following syntax that the text notification message displays Pounds must be
less than 500.

Code Syntax

Toast.makeText(Main.this,"Pounds must be less than 500", Toast.LENGTH_LONG).show();

GTK
An ex-Microsoft employee of Google is credited with coining the term toast, which is a small notification
window that slides upward into view, like toast popping out of a toaster.

129

Making Decisions with Conditional Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the isChecked() Method of RadioButton Controls
You will recall that the RadioButton controls in the Medical Calculator Android application
allow the user to select one conversion option. When the user selects the second radio
button, a shaded small circle is displayed in that radio button. When a RadioButton is
selected, the Checked property of the second RadioButton control changes from False
(unselected) to True (selected). The Java code must check each RadioButton to determine
if that RadioButton has been selected by the user. This checked property can be tested in
an If statement using the isChecked() method to determine if the RadioButton object
has been selected.

Code Syntax

if (lbToKilo.isChecked){
//Statements completed if condition is true

} else {
//Statements completed if condition is false

}

If the user selects the lbToKilo RadioButton control, the statements within the If portion
between the braces are completed. If the user selects the kiloToLb RadioButton control,
the statements within the Else portion are completed.

Nested If Statements
At times, more than one decision must be made to determine what processing must occur.
For example, if one condition is true, a second condition might need to be tested before the
correct code is executed. To test a second condition only after determining that a first
condition is true (or false), you must place an If statement within another If statement. When
you do this, the inner If statement is said to be nested within the outer If statement. In the
chapter Android app, if the user checks the first radio button to convert pounds to kilograms
and if the entered weight is equal to 500 pounds or less, then the weight can be converted.
If the weight is above 500 pounds, a toast notification appears with a warning. A second
nested If statement evaluates whether the second radio button is checked and if the user
entered 225 kilograms or less as part of the final code.

Code Syntax

if (lbToKilo.isChecked()){
if (weightEntered <=500){

convertedWeight = weightEntered / conversionRate;
} else {

Toast.makeText (Main.this,"Pounds must be less than 500", Toast.LENGTH_LONG).show();
}

}

130

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding the Button Event
After the user enters the weight and selects the desired RadioButton, the Button control is
tapped. The OnClickListener event is triggered and the conversion of the weight entered
occurs. Within the onClick method, the weight entered must be converted to double data.
A DecimalFormat layout is necessary to format the result to one place past the decimal point
(“#.#”). To convert the weight to a double data type and establish the format for the output,
follow these steps:

1. On a new line inside the OnClickListener onClick method stub of the Main.java code,
type weightEntered=Double.parseDouble(weight.getText().toString()); to
convert the weight entered to a double data type.

The weight entered by the user is converted to a double data type (Figure 4-18).

2. Press the Enter key. To create a decimal layout that changes the weight to a
decimal rounded to the nearest tenth for use in the result later in the code, type
DecimalFormat tenth = new DecimalFormat(“#.#”);. Point to the red curly line
below DecimalFormat and select Import ‘DecimalFormat’ (java.text).

The DecimalFormat code rounds off to the nearest tenth (Figure 4-19).

Coding the Nested If Statements
After the weight entered is converted to a double and a format is set, code is necessary to
determine which RadioButton was selected by using the isChecked property. Within each
RadioButton If statement, the weight entered is converted to the appropriate weight unit and

DecimalFormat rounds off to
one place past the decimal point

Figure 4-19 Rounding off a number

Text entered for weight is
converted to a double
data type

Figure 4-18 Weight converted to a double data type

131

Making Decisions with Conditional Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

displayed, only if that weight is within the valid weight ranges (500 pounds or 225 kilograms).
If the weight is not within the valid range, a toast notification appears warning the user to
enter a value within the acceptable range. To code a nested If statement to display the result,
follow these steps:

1. After the DecimalFormat line of code, to determine if the first RadioButton control is
selected, type if(lbToKilo.isChecked()) { and press the Enter key. Java automatically
adds the closing brace.

An If statement determines if the lbToKilo RadioButton control is checked (Figure 4-20).

2. Within the first If statements, braces create a nested If Else statement that
determines if the weight entered for pounds is less than or equal to 500. Type
if (weightEntered <=500) { and press the Enter key. Java automatically adds the
closing brace. After the closing brace, type else { and press the Enter key. Java
automatically adds the closing brace.

A nested If Else statement determines if the number of pounds entered is valid
(Figure 4-21).

3. After the pounds variable is validated, the weight must be converted. To divide
the weight by the conversion rate of 2.2, inside the nested If statement, type
convertedWeight = weightEntered / conversionRate; and press the Enter key.
To display the result of the equation rounded to one place past the decimal point,
type result.setText(tenth.format(convertedWeight) + “ kilograms”);.

The number of pounds is converted to kilograms and displayed in the result TextView
control (Figure 4-22).

Nested If Else statement
determines if weight
is valid

Figure 4-21 Nested If Else statement

If statement determines if the
first RadioButton is checked

Figure 4-20 If statement

132

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. If the weight is not within the valid range, a toast message requesting that the user
enter a valid weight is displayed briefly. Click the line after the Else statement and
type Toast.makeText(Main.this,“Pounds must be less than 500”, Toast.
LENGTH_LONG).show(); and then point to Toast and select Import ‘Toast’
(android.widget).

A toast message displays a reminder to enter a valid weight (Figure 4-23).

5. For when the user selects the Convert the Kilograms to Pounds RadioButton control,
type the following lines of code, as shown in Figure 4-24:

if(kiloToLb.isChecked()) {
if (weightEntered <=225) {

convertedWeight = weightEntered * conversionRate;
result.setText(tenth.format(convertedWeight) + " pounds");

}else {
Toast.makeText(Main.this, "Kilos must be less than 225",

Toast.LENGTH_LONG).show();
}
}

The nested If statement is executed if the second RadioButton control is selected
(Figure 4-24).

Toast message

Figure 4-23 Toast message added to enter a valid weight

Equation to convert
pounds to kilograms

Displays converted
weight

Figure 4-22 Equation for weight conversion and displayed results

133

Making Decisions with Conditional Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. To view the finished application, click Run on the menu bar, and then select Run
to save and test the application in the emulator. The first time the application is
executed, a dialog box opens asking how to run the application. Select Android
Application and click the OK button. Save all the files in the next dialog box and
unlock the emulator. The application opens in the emulator where you enter a
weight and select a radio button. To view the results, click the Convert Weight
button.

The Medical Calculator Android app is executed (see Figures 4-1 and 4-2).

Second nested
If statement

Figure 4-24 Completed code

134

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Wrap It Up—Chapter Summary
Beginning with a customized icon, this chapter has completed the steps to create the
graphical user interface including a RadioGroup control for the Medical Calculator
program. The decision structure including a nested If Else statement determines different
outcomes based on user input. If necessary, a toast message reminds the user of the
expected input. You have learned to customize feedback and make decisions based on
any user’s input.

l To display a custom launcher icon instead of the default icon on the home screen of an
Android device, copy the custom icon image to the res/drawable folder for the project,
and then update the Android Manifest file to include the filename of the image file.

l Include RadioButton controls to allow users to select or deselect an option. Each
RadioButton control has a label defined by the Text property and a Checked property
set to either true or false. In a RadioGroup control, only one RadioButton control can
be selected at a time.

l Android apps use hexadecimal color codes to set the color displayed in controls.

l Use the Layout gravity property to position a control precisely on the screen. You can
change this property using the Properties pane or the Change Gravity tool on the toolbar.
For more flexibility in controlling your layout, use the Change Margins tool to change the
spacing between objects.

l A decision structure includes a conditional statement that checks whether the condition
is true or false. To execute a conditional statement and the statements that are executed
when a condition is true, Java uses the If statement and its variety of formats, including the
If Else statement. An If statement executes one set of instructions if a specified condition
is true and takes no action if the condition is not true. An If Else statement executes one
set of instructions if a specified condition is true and another set of instructions if the
condition is false.

l To test the conditions in a conditional statement such as an If statement, Java provides
relational operators that are used within the conditional statement to express the
relationship between the numbers being tested. For example, you can use a relational
operator to test whether one value is greater than another.

l If more than one condition is tested in a conditional statement, the conditions are called
a compound condition. To create an If statement that processes a compound condition,
you must use a logical operator such as && (And).

l After including code that validates data, you can code a toast notification (also called a
toast message) to display a brief message indicating that an incorrect value was entered.

l To test a second condition only after determining that a first condition is true or false, you
nest one If statement within another If statement.

135

Wrap It Up—Chapter Summary

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms
Change Gravity—A tool that changes the linear alignment of a control, so that it is aligned
to the left, center, right, top, or bottom of an object or the screen.

compound condition—More than one condition included in an If statement.

decision structure—A fundamental control structure used in computer programming that
deals with the different conditions that occur based on the values entered into an application.

equals method—A method of the String class that Java uses to compare strings.

hexadecimal color code—A triplet of three colors using hexadecimal numbers, where colors
are specified first by a pound sign followed by how much red (00 to FF), how much green
(00 to FF), and how much blue (00 to FF) are in the final color.

If Else statement—A statement that executes one set of instructions if a specified condition
is true and another set of instructions if the condition is false.

If statement—A statement that executes one set of instructions if a specified condition is true
and takes no action if the condition is not true.

isChecked() method—A method that tests a checked property to determine if a RadioButton
object has been selected.

launcher icon—An icon that appears on the home screen to represent the application.

margin—Blank space that offsets a control by a certain amount of density independent pixels
(dp) on each of its four sides.

nest—To place one statement, such as an If statement, within another statement.

RadioGroup—A group of RadioButton controls; only one RadioButton control can be
selected at a time.

toast notification—A message that appears as an overlay on a user’s screen, often displaying
a validation warning.

Developer FAQs
1. What is the icon found on the Android home screen that opens an app?

2. What is the preferred prefix for a filename and file extension of the icon described
in question 1?

3. What is the pixel size for the icon described in question 1 for a high-density pixel
image?

4. To display a custom icon, you must perform two steps. First, add the icon image
file to the drawable-hdpi folder. What is the second step?

5. Which TextView property is changed to identify the color of the control?

136

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Which primary color is represented by the hexadecimal code of #00FF00?

7. What is the name of the tool used to center a TextView control horizontally?

8. Using the Change Margins tool, in which text box would you type 22dp to move a
control 22 density pixels down from the upper edge of the emulator?

9. When a RadioGroup control is placed on the emulator, the first RadioButton control
is selected by default. Which property is set as true by default?

10. Write an If statement that tests if the value in the variable age is between 18 and
21 years of age, inclusive, with empty braces.

11. Write an If statement that tests if the radio button named gender is selected with
empty braces.

12. Rewrite the following line of code without a Not logical operator but keeping the
same logical processing: if (! (waist <= 36) {

13. Write an If statement to compare if a string variable named company is equal to
Verizon with empty braces.

14. Fix this statement: if (hours < 1 | | > 8) {

15. How many radio buttons can be selected at one time in a RadioGroup control?

16. Write an If statement that compares if wage is equal to 7.25 with empty braces.

17. If you compare two strings and the result is a positive number, what is the order of the
two strings?

18. Using a relational operator, write an If statement that evaluates if a variable named
tipPercent is not equal to .15 with empty braces.

19. Write a warning message that would display the comment “The maximum credits
allowed is 18” with a long interval.

20. Write a quick reminder message that would display the comment “File saved” with
a short interval.

Beyond the Book
Using the Internet, search the Web for the answers to the following questions to further your
Android knowledge.

1. You have developed an application on music downloads. Search using Google Images
to locate an appropriate icon and resize the icon using a paint-type program for use as
a phone app launcher icon.

2. Search the Android Market site for a popular app that has a Sudoku puzzle. Take a
screen shot of one Sudoku puzzle’s launcher icon and another screen shot of the
larger graphic used for the description of the app.

137

Beyond the Book

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. An Android toast message can also be coded to appear at an exact location on the
screen. Explain how this works and give an example of the code that would do this.

4. Research the average price of an individual paid app. Write 75–100 words on the
average selling prices of Android and iPhone apps.

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps and
techniques taught within the chapter. Submit the program you create to your instructor.
The level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆ ⋆

Challenging: ⋆ ⋆ ⋆

Case Project 4–1: Temperature Conversion App ⋆

Requirements Document

Application title: Temperature Conversion App

Purpose: The app converts temperatures from Fahrenheit to Celsius or Celsius
to Fahrenheit.

Algorithms: 1. The opening screen requests the outside temperature (Figure 4-25).

2. The user selects a radio button labeled Fahrenheit to Celsius or
Celsius to Fahrenheit and then selects the Convert Temperature
button.

3. The converted temperature is displayed (Figure 4-26).

Conditions: 1. The result is rounded off to the nearest tenth.

2. Formulas: C = (F – 32) * 5 / 9 and F = (C * 9 / 5) + 32

3. Do not enter more than 130 degrees Fahrenheit or 55 degrees
Celsius.

4. Use Theme with no title bar.

138

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 4-25 Figure 4-26

139

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 4–2: Movie Time App ⋆

Requirements Document

Application title: Movie Time App

Purpose: A Movie Time app charges a monthly fee based on whether you want
streaming movies, DVD movies, or combined services (three choices).
The app has a customized launcher icon (Figure 4-27).

Algorithms: 1. The opening screen requests the number of months that you would like
to subscribe to the movie service (Figure 4-28).

2. The user selects which service: streaming movies for $7.99 per month,
DVD movies by mail for $8.99 per month, or a combined service for
$15.99 per month.

3. When the Compute Price button is selected, the total price is displayed for
the number of months subscribed (Figure 4-29).

Conditions: 1. The app allows you to subscribe for up to 24 months.

2. Use a customized launcher icon (ic_launcher_movie.png).

3. Use a theme with an action bar.

iS
to
ck
ph
ot
o.
co
m
/V
ik
to
r
Ch
or
no
ba
y

Figure 4-27

140

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 4–3: Floor Tiling App ⋆ ⋆

iS
to
ck
ph
ot
o.
co
m
/V
ik
to
r
Ch
or
no
ba
y

Figure 4-28

iS
to
ck
ph
ot
o.
co
m
/V
ik
to
r
Ch
or
no
ba
y

Figure 4-29

Requirements Document

Application title: Floor Tiling App

Purpose: The tiling app allows you to calculate how many tiles you need to cover
a rectangular area.

Algorithms: 1. The opening screen requests the length and the width of a room in
whole feet.

2. The user selects whether the tiles are 12 inches by 12 inches or
18 inches by 18 inches.

3. The number of tiles needed to cover the area in square feet is
displayed.

141

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 4–4: Math Flash Cards App ⋆ ⋆

Case Project 4–5: Currency Conversion App ⋆ ⋆ ⋆

Requirements Document

Application title: Currency Conversion App

Purpose: The Currency Conversion app converts U.S. dollars into euros, Mexican
pesos, or Canadian dollars.

Algorithms: 1. The opening screen requests the amount of U.S. dollars to be converted.

2. The user selects euros, Mexican pesos, or Canadian dollars.

3. The conversion of U.S. dollars to the selected currency is displayed.

Conditions: 1. Use http://xe.com to locate current conversion rates.

2. The program only converts values below $100,000 U.S. dollars.

3. Use a customized launcher icon.

Requirements Document

Application Title: Math Flash Cards App

Purpose: The Math Flash Cards App is designed for children to practice their basic
math skills.

Algorithms: 1. The opening screen requests two integer values.

2. The user can select addition, subtraction, or multiplication.

3. The entire math problem is displayed with the result.

Conditions: 1. The integer values must be between 1 and 20.

2. Use a customized launcher icon.

142

C H A P T E R 4 Explore! Icons and Decision-Making Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://xe.com

Case Project 4–6: Average Income Tax by Country App ⋆ ⋆ ⋆

Requirements Document

Application title: Average Income Tax by Country App

Purpose: The Average Income Tax by Country app allows the user to enter the
amount of taxable income earned in the past year. The user selects his or her
country of residence and the yearly income tax is displayed.

Algorithms: 1. The opening screen requests two integer values.

2. The user can select addition, subtraction, or multiplication.

3. The entire math problem is displayed with the result.

Conditions: The following table displays the annual income tax percentages.

Country Average Income Tax

China 25%

Germany 32%

Sweden 34%

USA 18%

143

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 5
Investigate! Android
Lists, Arrays, and
Web Browsers

In this chapter, you learn to:

Create an Android project using a list
Develop a user interface that uses ListView
Extend the ListActivity class
Use an array to create a list
Code a setListAdapter to display an array
Design a custom ListView layout with XML code
Display an image with the ListView control
Change the default title bar text
Code a custom setListAdapter for a custom layout
Call the onListItemClick method when a list item is selected
Write code using the Switch decision structure
Call an intent to work with an outside app
Open an Android Web browser
Launch aWeb site through the use of a URI using an Android browser
Test an application with multiple decisions

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
ns
ho
ts
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Displaying a list is one of the most common design patterns used in mobile applications. This
morning you likely read the news designed as a listing of articles on a phone or tablet. You
scrolled down the list of news articles and selected one by tapping the screen to display a full
story with text, images, and hyperlinks. As you walked to class today, you probably scrolled a
list of songs on a mobile device and listened to your favorite tunes.

From a list, you can open an article,
play a song, open a Web site, or even
launch a video. A list created with a
ListView control may be one of the
most important Android design
elements because it is used so
frequently. To select a list item, a
design structure is necessary to route
your request to the intended content.
In Chapter 4, you learned about the
decision structure called an If
statement, one of the major control
structures used in computer
programming. In this chapter, you
learn about another decision structure
called the Switch statement.

To demonstrate the process of using
a list to navigate to different content,
you design a travel city guide for San
Francisco, California, highlighting the
best attractions the city has to offer.
The City Guide application shown in
Figure 5-1 provides a list of city
attractions. A city guide for a large
city can provide easy access to all its
sights, activities, and restaurants in
one handy guide for your phone.

ListView
control

iS
to
ck
ph
ot
o.
co
m
/b
re
tt
la
m
b

Figure 5-1 The San Francisco City Guide
Android app

146

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Android app in Figure 5-1 could be part of a larger app that displays city maps, detailed
site information, and restaurant recommendations. This mobile app provides information
about popular places tourists visit in San Francisco. The City Guide app displays five San
Francisco attractions. When the user taps one of the attractions, a second window opens
displaying either an image or a Web site providing more information about the site or
activity. The first two items on the list link to Web sites, as shown in Figure 5-2. A browser
opens to display a Web site for Alcatraz Island or Ferry Marketplace. If the user selects
Golden Gate Bridge, Cable Car Trolley, or Fisherman’s Wharf, an image appears on a
second screen, as shown in Figure 5-3.

Figure 5-2 Alcatraz and Ferry Marketplace Web sites

Co
ur
te
sy

of
th
e
Fe
rry

Bu
ild
in
g
M
ar
ke
tp
la
ce

©
20
06

Al
ca
tra
z
Cr
ui
se
s,
LL
C.

Al
lr
ig
ht
s
re
se
rv
ed
.

147

Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 5-3 San Francisco attractions

Er
ik
Pa
tto
n/
Sh
ut
te
rs
to
ck
.c
om

iS
to
ck
ph
ot
o.
co
m
/D
N
Y5
9

Er
ik
Pa
tto
n/
Sh
ut
te
rs
to
ck
.c
om

148

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
To see a professional city guide app in action, download a free app created by Trip Advisor, Triposo,
or Gowalla.

To create this application, the developer must understand how to perform the following
processes, among others:

1. Create a list using a ListView control.

2. Define an array to establish the items of the list.

3. Add the images used in the project.

4. Define an XML file to design the custom list with a leading image.

5. Code a Switch decision structure to handle the selection of items.

6. Open an Android Web browser to display a specified Uniform Resource Identifier
(URI).

7. Create multiple classes and XML layout files to display pictures of attractions.

Creating a List
The San Francisco City Guide app begins with a vertical list of attractions on the opening
screen, as shown in Figure 5-1. The Java View class creates the list and makes it scrollable if
it exceeds the length of the screen. Lists can be used to display a to-do list, your personal
contacts, recipe names, shopping items, weekly weather, Twitter messages, and Facebook
postings, for example. You use a ListView control to contain the list attraction items.
Android also has a TableLayout view that looks similar to a ListView, but a ListView allows
you to select each row in the list for further action. Selecting an item opens a Web browser
to a related Web page or displays an image of the attraction. You can directly use the
ListView control in the Composite category of the Palette in the layout of the emulator
(Figure 5-4) as you can with any other user interface component, but coding the list in
Java is the preferred method and is used in the chapter project.

149

Creating a List

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Extending a ListActivity
You begin creating a list by opening Main.java and changing the type of Activity in the code. In
the previous chapters, each opening class statement (public class Main extends Activity)
extended the basic Activity class. If the primary purpose of a class is to display a ListView
control, use a class named ListActivity instead, which makes it simple to display a list of
items within the app. To extend the ListActivity class of Main.java of the City Guide app,
follow these steps to begin the application:

1. Open the Eclipse program. Click the New button on the Standard toolbar. Expand
the Android folder and select Android Project. Click the Next button. In the New
Android Project dialog box, enter the Project Name City Guide. To save the project
on your USB drive, click to remove the check mark from the Use default location
check box. Type E:\Workspace (if necessary, enter a different drive letter that
identifies the USB drive). Click the Next button. For the Build Target, select
Android 4.0, if necessary. Click the Next button. For the Package Name, type
net.androidbootcamp.cityguide. Enter Main in the Create Activity text box.

Composite
category

ListView control

Palette

Figure 5-4 ListView control on the Palette

150

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The new Android City Guide project has a Project Name, a Package Name, and an
Activity named Main (Figure 5-5).

2. Click the Finish button. Expand the City Guide project in the Package Explorer,
expand the src and net.androidbootcamp.cityguide folders, and then double-click
Main.java to open its code window. Click to the left of Activity in the public class
Main extends Activity { line, and change Activity to ListActivity. Point to ListActivity
and click Import ‘ListActivity’ (android.app). Delete the line import android.app.Activity;
and then delete the line setContentView(R.layout.main);.

Package name

Main Activity

Finish button

New Android Project
dialog box

Figure 5-5 Application information for the new Android project

151

Creating a List

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Main extends ListActivity, which contains predefined methods for the use of lists
(Figure 5-6).

IN THE TRENCHES
Another type of a ListView control is the ExpandableListView, which provides a two-level list. For example,
if you were renting a car, a list of all the compact cars would be listed in one category on the top half of your
phone and the economy cars in a separate category at the bottom. ExpandableListView provides two
separate listings.

Creating an Array
Before the list of attractions can be displayed, the string of attraction names must be declared.
By using an array variable, which can store more than one value, you can avoid assigning a
separate variable for each item in the list. Every application developed thus far involved a
limited number of variables. Professional programming applications commonly require much
larger sets of data using multiple variables. You learned that data type variables can store only
one value at a time. If you changed a variable’s value, the previous value was deleted because a
typical variable can store only one value at a time. Each individual item in an array that
contains a value is called an element.

Arrays provide access to data by using a numeric index, or subscript, to identify each
element in the array. Using an array, you can store a collection of values of similar data
types. For example, you can store five string values without having to declare five different
variables. Instead, each value is stored in an individual element of the array, and you refer to
each element by its index within the array. The index used to reference a value in the first
element within an array is zero. Each subsequent element is referenced by an increasing
index value, as shown in Table 5-1.

Main.java

Activity changed
to ListActivity

Figure 5-6 Main extends ListActivity

152

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Table 5-1, an array named Attraction holds five attractions. Each attraction is stored in an
array element, and each element is assigned a unique index. The first string is stored in the
element with the index of 0. The element is identified by the term attraction [0], pronounced
“attraction sub zero.”

Declaring an Array
Like declarations for variables of other types, an array declaration has two components: the
array’s data type and the array’s name. You can declare an array containing numeric values as
in the following coding example:

double[] weather={72.3, 65.0, 25.7, 99.5};

Declare a String array containing the text values used in the chapter project with the
following code:

Code Syntax

String[] attraction={"Alcatraz Island", "Ferry Marketplace",
"Golden Gate Bridge", "Cable Car Trolley", "Fisherman's Wharf"};

The attraction list initialized in the array can easily be expanded to include more items at any
time. To assign the listing of attractions to the String data type in an array named attraction,
follow these steps:

1. After the super.onCreate(savedInstanceState); statement in Main.java, insert a new
line and type String[] attraction={“Alcatraz Island”, “Ferry Marketplace”,
“Golden Gate Bridge”, “Cable Car Trolley”, “Fisherman’s Wharf”};.

The String array named attraction is assigned the five attraction locations (Figure 5-7).

Element Value

Attraction[0] Alcatraz Island

Attraction[1] Ferry Marketplace

Attraction[2] Golden Gate Bridge

Attraction[3] Cable Car Trolley

Attraction[4] Fisherman’s Wharf

Table 5-1 Attraction array with index values

153

Creating a List

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Save your work.

GTK
To declare an array without assigning actual values, allocate the size of the array in the brackets to reserve the
room needed in memory, as in int[] ages = new int[100];. The first number assigned to the ages array is placed
in ages [0]. This array holds 101 elements in the array, one more than the maximum index.

Using a setListAdapter and Array Adapter
In the City Guide application, once the array is assigned, you can display an array listing
using adapters. An adapter provides a data model for the layout of the list and for converting
the data from the array into list items. The ListView and adapter work together to display
a list. For example, if you want to share an iPad screen with a group, you need an adapter
to connect to a projector to display the image on a large screen. Similarly, a setListAdapter
projects your data to the onscreen list on your device by connecting the ListActivity’s
ListView object to the array data. A setListAdapter contains the information to connect
the onscreen list with the attraction array in the chapter project. Calling a setListAdapter
in the Java code binds the elements of the array to a ListView layout. In the next portion of
the statement, a ListAdapter called an ArrayAdapter<String> i supplies the String array data
to the ListView. The three parameters that follow ArrayAdapter refer to the this class, a
generic layout called simple_list_item_1, and the array named attraction. The following
code syntax shows the complete statement:

Code Syntax

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, attraction));

Press the Enter key
after typing the
comma to place
statement on two
lines

String array
initialized

Figure 5-7 String array initialized with attractions

154

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Later in the chapter, instead of using the generic layout called simple_list_item_1, you design
an XML layout to customize the layout to include the City Guide’s logo. You can change the
setListAdapter statement to reference the custom layout when you finish designing it.

Follow these steps to add the setListAdapter that displays the array as a list:

1. After the second line of code initializing the String array, press the Enter key, type
setListAdapter(new ArrayAdapter<String>(this, android.R.layout.
simple_list_item_1, attraction));, and then press the Enter key. Point to
ArrayAdapter and click Import ‘ArrayAdapter’ (android.widget).

If you are using a Mac, press the Return key instead of the Enter key.

The setListAdapter displays the attraction array in a generic ListView layout
(Figure 5-8).

2. To display the attraction list in the generic ListView layout, click Run on the menu
bar, and then select Run. Select Android Application and click the OK button. Save
Main.java in the next dialog box, if necessary, and unlock the emulator when the
app starts.

The application opens in the emulator window (Figure 5-9).

setListAdapter
command

Generic built-in
layout

Your statement
might appear
on one line

Figure 5-8 setListAdapter displays an array

155

Creating a List

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Close the emulated application window.

GTK
Other generic layouts that you might want to try with ListView include simple_list_item_2, simple_list_item_
checked (displays check boxes), and simple_list_item_multiple_choice.

Adding the Images to the Resources Folder
The City Guide application uses several images throughout the app. An icon logo called
ic_launcher_sf.png displays the skyline of San Francisco and is used multiple times on the
opening screen. Images of the Golden Gate Bridge, Cable Car Trolley, and Fisherman’s
Wharf appear when the user selects those items from the opening list. To place a copy of
the images from the USB drive into the res/drawable-hdpi folder, follow these steps:

1. If necessary, copy the student files to your USB drive. Open the USB folder containing
the student files. In the Package Explorer, expand the drawable-hdpi folder in the res
folder. Delete the file named ic_launcher.png (the Android logo). To add the four
image files to the drawable-hdpi resource folder, drag ic_launcher_sf.png, bridge.png,
trolley.png, and wharf.png files to the drawable-hdpi folder until a plus sign pointer
appears. Release the mouse button. If necessary, click the Copy files option button,
and then click the OK button.

Copies of the four files appear in the drawable-hdpi folder (Figure 5-10).

Generic
ListView layout

Figure 5-9 ListView built-in layout

156

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. To set the Android Manifest to use the ic_launcher_sf image as the app icon when the
application is executed, in the Package Explorer, double-click the AndroidManifest.xml
file. Click the AndroidManifest.xml tab at the bottom of the screen. Inside the
application code, click in the line android:icon=@“drawable/ic_launcher”. Change the
filename portion from ic_launcher” to ic_launcher_sf”.

The Android launcher icon is coded in the Android Manifest file (Figure 5-11).

Four image files placed
in drawable-hdpi folder

Figure 5-10 Images copied

157

Creating a List

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Click the Save All button on the Standard toolbar to save your work.

IN THE TRENCHES
When publishing apps, you must follow copyright laws relative to copyrighted images used within your
Android apps. Copyright is the legal protection extended to the authors or owners of original published
and unpublished artistic and intellectual works, and you must seek copyright permissions. However, if the
image is accompanied by the statement “This work is dedicated to the public domain,” the image is
available for fair use in your app.

Creating a Custom XML Layout for ListView
You can design a layout by using the emulator window on the Graphical Layout tab and then
drag and drop controls from the Palette, or you can code the main.xml file using XML code.
It is easier to use the Palette for a simple layout. However, the opening screen for the City
Guide chapter project shown in Figure 5-1 requires a custom layout for the list that includes a
San Francisco City Guide logo and unique size and spacing of the attraction names. In the
XML code, you must first add an ImageView control to display the ic_launcher_sf image file.
The ImageView is named with the id property in the code and resized with the layout_width
and layout_height properties, margins are set, and the location source of the file is entered.
Next, the code for the TextView control is named, the layout is identified, and the textSize
property is set. The text property of android:text=“@+id/travel” is used in the setListAdapter
and the actual items in the array display instead of the text object named travel. To create a
custom XML layout for main.xml, follow these steps:

1. Close the City Guide Manifest tab. In the res\layout folder, double-click main.xml.
Delete the Hello World, Main! TextView control, and then click the main.xml tab
at the bottom of the window to display the XML code. By default, LinearLayout is
already set. Delete the android:orientation property statement but not the closing

City Guide
Manifest tab

Launcher icon
name changed

Figure 5-11 Android Manifest code with new Launcher Icon file

158

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

angle bracket (>), and then type <ImageView after the closing angle bracket. Press
the Enter key. Type the following code using auto-completion as much as possible:

android:id="@+id/ic_launcher_sf"
android:layout_width="50px"
android:layout_height="50px"
android:layout_marginLeft="4px"
android:layout_marginRight="10px"
android:layout_marginTop="2px"
android:src="@drawable/ic_launcher_sf" >

</ImageView>

The ImageView control is customized in the main.xml file (Figure 5-12).

2. Insert a blank line after the ImageView code and type <TextView. Press the Enter key.
Type the following code using auto-completion as much as possible:

android:id="@+id/travel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@+id/travel"
android:textSize="25sp" >
</TextView>

The TextView control is customized in the main.xml file (Figure 5-13).

Line 6:
ImageView
is named

Line 12:
ImageView
file source

Lines 7 and 8:
ImageView width
and height set

Lines 9–11:
ImageView
margins set

ImageView
control

main.xml tab

Figure 5-12 ImageView XML code

159

Creating a List

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Changing the Title Bar Text
Developers often want a custom title to appear on the title bar at the top of the window
instead of the actual application name. A string named app_name in the strings.xml file by
default displays the project name. To change the title bar on the opening screen of the City
Guide app to San Francisco City Guide, follow these steps:

1. Save your work and then close the main.xml window. Expand the res\values folder and
double-click the strings.xml file. Click app_name (String) in the Android Resources
window. Change the text in the Value text box to San Francisco City Guide.

The app_name value is changed (Figure 5-14).

2. Save your work.

TextView
control

Line 15: TextView
is named travel

Line 18: Text set to
variable named travel

Line 19: TextView size
set to 25sp

Lines 16–17: Set
layout to wrap to
next line

Figure 5-13 TextView XML code

Android
Resources

Value
changed

strings.xml

Figure 5-14 Title bar text is changed from default

160

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding a setListAdapter with a Custom XML Layout
When the setListAdapter was coded and executed as shown in Figure 5-9, the attractions list
was displayed within a built-in layout called simple_list_item_1 in the following statement:

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, attraction));

Instead of using a standard layout in the setListAdapter, the custom XML layout you designed
in main.xml adds the San Francisco City Guide logo and updates the TextView properties.
The syntax changes from the default in two significant ways:

1. The second parameter in the default statement (android.R.layout.simple_list_item_1)
is changed to R.layout.main. The android reference is removed because the Android
library default layout is not being used. Instead R.layout.main references the main.xml
custom layout design for the ImageView and TextView controls.

2. A third parameter is added before the attraction array name to reference the variable
travel, which identifies the TextView control created in the main.xml file. The variable
is substituted for the actual attraction locations initialized in the attraction array.

The following code syntax shows the code for a custom XML layout:

Code Syntax

setListAdapter(new ArrayAdapter<String>(this,
R.layout.main, R.id.travel, attraction));

To edit the setListAdapter to use the custom XML layout, follow these steps:

1. Close the strings.xml window. In the setListAdapter statement of Main.java, click after
the comma following the this command. Change the android.R.layout.simple_list_item_1,
text to R.layout.main, R.id.travel, to add the custom layout named main.xml.

The default setListAdapter is edited to include the custom layout (Figure 5-15).

Custom layout formatted
by main.xml; yours might
appear on one line

Figure 5-15 setListAdapter with custom layout for list

161

Creating a List

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Run and save the application to view the custom layout of the ListView.

The emulator displays the opening screen with a custom ListView (Figure 5-16).

3. Close the emulated application window.

Using the onListItemClick Method
The City Guide opening screen has a custom list shown in Figure 5-16. Each of the attractions
displayed in the list can be selected by tapping the attraction name on the mobile device.
The method onListItemClick() is called when an item in the list is selected. When an
attraction in the list is selected, the position of the item is passed from the onListItemClick
and evaluated with a decision structure, as shown in the following code syntax. If the user
selects the first attraction, the position parameter is assigned an integer value of 0.
The second item is assigned the position of 1, and so forth.

Code Syntax

protected void onListItemClick(ListView l, View v, int position, long id){
}

To code the onListItemClick method to respond to the event of the user’s selection, follow
these steps:

1. In Main.java, press the Enter key after the closing brace of the onCreate method
to insert a new line. To respond to the user’s selection, type protected void
onListItemClick(ListView l, View v, int position, long id). (Be sure to type a
lowercase l after ListView, not the number 1.) Type an opening brace after the
statement and press the Enter key. A closing brace is automatically placed in the
code. After the code is entered to reference the ListView and View, point to the red
error line below ListView and select ‘Import ListView’ (android.widget), and then
point to the red error line below View and select ‘Import View’ (android.view).

Updated
app_name

Custom layout
with logo images

iS
to
ck
ph
ot
o.
co
m
/b
re
tt
la
m
b

Figure 5-16 ListView custom layout in emulator

162

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The onListItemClick method detects the selection’s position (Figure 5-17).

2. Save your work.

Decision Structure—Switch Statement
Each item in the list produces a different result when selected, such as opening a Web
browser or displaying a picture of the attraction on a second screen. In Chapter 4, If
statements evaluated the user’s selection and the decision structure determined the results.
You can use another decision structure called a Switch statement with a list or menu.
The Switch statement allows you to choose from many statements based on an integer or
char (single character) input. The switch keyword is followed by an integer expression in
parentheses, which is followed by the cases, all enclosed in braces, as shown in the following
code syntax:

Code Syntax

switch(position){
case 0:

//statements that are executed if position == 0
break;
case 1:

//statements that are executed if position == 1
break;
default:

//statements that are executed if position != any of the cases
}

The integer named position is evaluated in the Switch statement and executes the
corresponding case. The case keyword is followed by a value and a colon. Typically the

Lowercase l,
not number 1

onListItemClick
method

Figure 5-17 onListItemClick method

163

Decision Structure—Switch Statement

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

statement within a case ends with a break statement, which exits the Switch decision
structure and continues with the next statement. Be careful not to omit the break statement
or the subsequent case statement is executed as well. If there is no matching case value, the
default option is executed. A default statement is optional. In the chapter project, a default
statement is not necessary because the user must select one of the items in the list for an
action to occur.

In the City Guide app, five attractions make up the list, so the following positions are possible
for the Switch statement: case 0, case 1, case 2, case 3, and case 4. To code the Switch decision
structure, follow these steps:

1. Within the braces of the onListItemClick method, type switch(position){ and press
the Enter key.

The Switch decision structure is coded within the onListItemClick method (Figure 5-18).

2. Within the braces of the Switch statement, add the case integer options. Type the
following code, inserting a blank line after each case statement:

case 0:

break;
case 1:

break;
case 2:

break;
case 3:

break;
case 4:

break;

The case statements for the five selections from the attractions list each are coded
(Figure 5-19).

Beginning of Switch
statement decision
structure

Figure 5-18 Switch statement

164

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Save your work.

GTK
Switch statements do not allow ranges such as 10–50. Use If statements when evaluating a range or strings.

Android Intents
When the user selects one of the first two list items in the project, Alcatraz Island or
Ferry Marketplace, a built-in Android browser launches a Web site about each attraction.
A browser is launched with Android code using an intent. Android intents send and receive
activities and services that include opening a Web page in a browser, calling a phone number,
locating a GPS position on a map, posting your notes to a note-taking program such as
Evernote, opening your contacts list, sending a photo, or even posting to your social network.
Additional Android intents are explored throughout the rest of this book. Android intents are
powerful features that allow apps to talk to each other in a very simple way.

To better understand an intent, imagine a student sitting in a classroom. To ask a question or
make a request, the student raises a hand. The teacher is alerted to the hand and responds to
the student. An intent works the same way. Your app raises its hand and the other apps state
that they are ready to handle your request. When the chapter project sends an intent, the
browser app handles the request and opens the Web site.

IN THE TRENCHES
Android platform devices have many options for supported browsers. Popular Android browsers include
Opera Mini Web, Dolphin, Skyfire, Mozilla Firefox, and Miren.

Case statements
each conclude
with break statement

Figure 5-19 Case statements

165

Android Intents

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Launching the Browser from an Android Device
Android phones have a built-in browser with an intent filter that accepts intent requests
from other apps. The intent sends the browser a URI (Uniform Resource Identifier), a string
that identifies the resources of the Web. You might already be familiar with the term URL
(Uniform Resource Locator), which means a Web site address. A URI is a URL with additional
information necessary for gaining access to the resources required for posting the page.
Depending on the lists of browsers installed on an Android device, Android selects a suitable
browser (usually a user-set preferred browser), which accepts the action called ACTION_VIEW
(must be in caps) and displays the site. ACTION_VIEW is the most common action performed on
data. It is a generic action you can use to send any request to get the most reasonable action to
occur. As shown in the following code syntax, a startActivity statement informs the present
Activity that a new Activity is being started and the browser opens the Web site:

Code Syntax

startActivity(new Intent(Intent.ACTION_VIEW,
Uri.parse("http://alcatrazcruises.com/")));

When the user selects the Alcatraz Island item from the attractions list, the Switch statement
sends a zero integer value to the case statements. The case 0: statement is true, so the program
executes the startActivity statement, which sends the browser a parsed string containing the
URI Web address. The browser application then launches the Alcatraz Web site. When you
click the Back button in some browser windows or the left arrow to the right of the menu
button on the right side of the emulator, the previous Activity opens. In the chapter project, the
attractions list ListView activity is displayed again. To code the startActivity that launches a
Web site in an Android browser, follow these steps:

1. In Main.java, click the blank line after the line containing case 0: inside the Switch
decision structure. Type startActivity(new Intent(Intent.ACTION_VIEW,
Uri.parse(“http://alcatrazcruises.com/”)));. Point to Intent and click Import ‘Intent’
(android content). Point to Uri and Import ‘Uri’ (android.net).

The startActivity code launches the Alcatraz Web site when the user selects the first list
item (Figure 5-20).

2. In Main.java, click the blank line after the line containing case 1:. Type startActivity(new
Intent(Intent.ACTION_VIEW, Uri.parse(“http://ferrybuildingmarketplace.com”)));.

Opens Web browser
to display Alcatraz
site

Figure 5-20 Code for launching the Alcatraz Web site

166

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://alcatrazcruises.com/
http://alcatrazcruises.com/%E2%80%9D
http://ferrybuildingmarketplace.com%E2%80%9D

The startActivity code launches the Ferry Marketplace Web site when the user selects
the second list item (Figure 5-21).

3. To display theAlcatraz IslandWeb site in the browser, clickRunon themenubar, and then
select Run. SelectAndroidApplication and click theOKbutton. Save all the files in the next
dialog box, if necessary, and unlock the emulator. Select the Alcatraz Island list item.

The first item is selected from the list in the emulator and the Android browser displays
the Alcatraz Island Web site. The site loads slowly in the emulator. Some Web sites are
especially designed for mobile devices (Figure 5-22).

4. Close the emulated application window.

Opens Web browser to
display Ferry
Marketplace site

Figure 5-21 Code for launching the Ferry Marketplace Web site

Android browser
displays Alcatraz
Web site in emulator

Figure 5-22 Browser opens in the emulator

©
20
06

Al
ca
tra
z
Cr
ui
se
s,
LL
C.

Al
lr
ig
ht
s
re
se
rv
ed
.

167

Launching the Browser from an Android Device

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
Be sure to test any links within your Android apps often. If you have hundreds of links, verifying Web links can
be simple in concept but very time consuming in practice. A good place to start is with the World Wide Web
Consortium’s free Web Site Validation Service (http://validator.w3.org).

Designing XML Layout Files
The last three case statements open a second screen that displays a picture of the selected
attraction. Three XML layout files must be designed to display an ImageView control with
an image source file. To create an XML layout file, follow these steps:

1. In the Package Explorer, right-click the layout folder. On the shortcut menu, point to
New and then click Other. In the New dialog box, click Android XML Layout File,
and then click the Next button. In the New Android Layout XML File dialog box, type
bridge.xml in the File text box to name the layout file. In the Root Element list, select
LinearLayout. Click the Finish button. The emulator window opens. In the Images &
Media category in the Palette, drag the ImageView control to the emulator. The
Resource Chooser dialog box opens. Select bridge, and then click the OK button.
Resize the image to fill the entire window.

The bridge XML file is designed with an image of the Golden Gate Bridge (Figure 5-23).

Golden Gate
bridge image

ImageView
control

bridge.xml

Fe
re
nc

Ce
gl
ed
i/S

hu
tte
rs
to
ck
.c
om

Figure 5-23 bridge.xml layout file

168

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://validator.w3.org

2. Close the bridge.xml file tab and save your work. Right-click the layout folder, point
to New on the shortcut menu, and then click Other. In the New dialog box, click
Android XML Layout File, and then click the Next button. In the New Android
Layout XML File dialog box, type trolley.xml in the File text box to name the
layout file. In the Root Element list, select LinearLayout. Click the Finish button.
The emulator window opens. In the Images & Media category in the Palette, drag the
ImageView control to the emulator. The Resource Chooser dialog box opens. Select
trolley, and then click the OK button. Resize the image to fill the entire window.

The trolley XML file is designed with an image of the cable car trolley (Figure 5-24).

3. Close the trolley.xml file tab and save your work. Right-click the layout folder, point
to New on the shortcut menu, and then click Other. In the New dialog box, click
Android XML Layout File, and then click the Next button. In the New Android
Layout XML File dialog box, type wharf.xml in the File text box to name the layout
file. In the Root Element list, select LinearLayout. Click the Finish button. The
emulator window opens. In the Images & Media category in the Palette, drag the
ImageView control to the emulator. The Resource Chooser dialog box opens. Select
wharf, and then click the OK button. Resize the image to fill the entire window.

The wharf XML file is designed with an image of the Fisherman’s Wharf (Figure 5-25).

Cable car
trolley image

ImageView
control

trolley.xml

iS
to
ck
ph
ot
o.
co
m
/D
N
Y5
9

Figure 5-24 trolley.xml layout file

169

Designing XML Layout Files

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding Multiple Class Files
The three XML files are displayed in three Java class files. Multiple classes are needed to
launch the XML layout files that each display an image when the user selects Golden Gate
Bridge, Cable Car Trolley, or Fisherman’s Wharf. An onCreate method requests that the user
interface opens to display an image of the attraction. Remember, each time you add a class to
an application, the class must be referenced in the Android Manifest file. To add a class file to
launch the XML layout file and add those files to the Android Manifest file, follow these steps:

1. Close the wharf.xml file tab and save your work. To create a second class, right-click
the src\net.androidbootcamp.cityguide folder, point to New on the shortcut menu,
and then click Class. Type Bridge in the Name text box to create a second class that
will define the bridge Activity. Click the Superclass Browse button. Type Activity
in the Choose a type text box. As you type, matching items are displayed. Click
Activity – android.app and then click the OK button to extend the Activity class.
Click the Finish button. To launch the Activity, in the Bridge.java file, click inside
the braces and type oncreate and then press Ctrl+spacebar to display an auto-
complete listing. Double-click the first onCreate method in the auto-complete
listing. Click at the end of Line 10 and then press the Enter key to insert a blank line.
Type setContentView(R. to display an auto-complete listing. Double-click layout.
Type a period. Another auto-complete listing requests the XML layout file you
intend to display. Double-click bridge : int. Type a right closing parenthesis if one
does not appear automatically. Type a semicolon after the parenthesis to complete
the statement.

Fisherman’s
Wharf imageImageView

control

wharf.xml

Er
ik
Pa
tto
n/
Sh
ut
te
rs
to
ck
.c
om

Figure 5-25 wharf.xml layout file

170

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A new class named Bridge that launches bridge.xml is created (Figure 5-26).

2. Close the Bridge.java file tab and save your work. To create a third class, right-click
the src\net.androidbootcamp.cityguide folder, point to New on the shortcut menu,
and then click Class. Type Trolley in the Name text box to create a third class that
will define the trolley Activity. Click the Superclass Browse button. Type Activity
in the Choose a type text box. As you type, matching items are displayed. Click
Activity – android.app and then click the OK button to extend the Activity class. Click
the Finish button. To launch the Activity, click inside the braces in the Trolley.java
file, type oncreate and then press Ctrl+spacebar. Double-click the first onCreate
method in the auto-complete listing. Click at the end of the line containing
super.onCreate(savedInstanceState); and then press the Enter key to insert a blank
line. Type setContentView(R. to display an auto-complete listing. Double-click
layout. Type a period. Another auto-complete listing requests the XML layout file
you intend to display. Double-click trolley : int. A right closing parenthesis appears.
Type a semicolon after the parenthesis to complete the statement.

A new class named Trolley is created that launches trolley.xml (Figure 5-27).

3. Close the Trolley.java file tab and save your work. To create a fourth class, right-click
the src\net.androidbootcamp.cityguide folder, point to New on the shortcut menu,
and then click Class. Type Wharf in the Name text box to create a fourth class that

Bridge.java
onCreate method
added to open
bridge.xml

Figure 5-26 Complete code for Bridge.java class

Trolley.java onCreate method
added to open
trolley.xml

Figure 5-27 Complete code for Trolley.java class

171

Adding Multiple Class Files

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

will define the wharf Activity. Click the Superclass Browse button. Type Activity
in the Choose a type text box. Click Activity – android.app in the matching items,
and then click the OK button to extend the Activity class. Click the Finish button.
To launch the Activity, in the Wharf.java file click inside the braces, type oncreate
and then press Ctrl+spacebar. Double-click the first onCreate method in the
auto-complete listing. Click at the end of Line 10 and then press the Enter key to
insert a blank line. Type setContentView(R. to display an auto-complete listing.
Double-click layout. Type a period. Another auto-complete listing requests the
XML layout file you intend to display. Double-click wharf : int. A right closing
parenthesis appears. Type a semicolon after the parenthesis to complete the
statement.

A new class named Wharf is created that launches wharf.xml (Figure 5-28).

4. Close the Wharf.java file tab and save your work. To add the reference to these Java
class files in the Android Manifest file, in the Package Explorer, double-click the
AndroidManifest.xml file. Click the Application tab at the bottom of the City Guide
Manifest page. Scroll down to display the Application Nodes section. Click the Add
button. Select Activity in the Create a new element at the top level, in Application
dialog box. Click the OK button. The Attributes for Activity section opens in the
Application tab. In the Name text box, type the class name preceded by a period
(.Bridge) to add the Bridge Activity. Click the Add button again. Click the first radio
button (Create a new element at the top level, in Application) and select Activity.
Click the OK button. In the Name text box, type the class name preceded by a
period (.Trolley) to add the Trolley Activity. Click the Add button again. Click
the first radio button (Create a new element at the top level, in Application) and
select Activity. Click the OK button. In the Name text box, type the class name
preceded by a period (.Wharf) to add the Wharf Activity. Save your work.

The AndroidManifest.xml file includes the three Activities (Figure 5-29).

Wharf.java
onCreate method
added to open
wharf.xml

Figure 5-28 Complete code for Wharf.java class

172

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Opening the Class Files
The last step in the development of the San Francisco City Guide app is to open the
class files when the user selects Golden Gate Bridge (case 2), Cable Car Trolley (case 3),
or Fisherman’s Wharf (case 4). A startActivity method opens the next Activity, which in
turn launches the appropriate XML layout displaying an image of the attraction. To code
the remaining case statement within the Switch decision structure that starts each of the
Activities, follow these steps:

1. Close the City Guide Manifest tab. In Main.java, click the blank line below the one
containing case 2: and type startActivity(new Intent(Main.this, Bridge.class));.
Click the blank line below the one containing case 3: and type startActivity(new
Intent(Main.this, Trolley.class));. Click the blank line below the one containing
case 4: and type startActivity(new Intent(Main.this, Wharf.class));.

The case statements 2 through 4 are coded with a startActivity that executes the
appropriate class (Figure 5-30).

City Guide Manifest tab

Three
Activities
added

Figure 5-29 City Guide Android Manifest

173

Adding Multiple Class Files

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Compare your code to Figure 5-30, make changes as necessary to match the code
in the figure, and then save your work.

Running and Testing the Application
As you save and run the San Francisco City Guide application, be sure you test every option
of this app. Before publishing to the Android Market, it is critical to make sure all the fields
can gracefully handle any click or any value entered in any Android app. Click Run on the
menu bar, and then select Run to save and test the application in the emulator. A dialog box
requesting how you would like to run the application opens the first time the application is
executed. Select Android Application and click the OK button. Save all the files in the next
dialog box, if necessary, and unlock the emulator. The application opens in the emulator
window where you can test each list item in the San Francisco City Guide app, as shown in
Figure 5-1, Figure 5-2, and Figure 5-3.

Figure 5-30 Complete code for Main.java

174

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
Testing an Android app is called usability testing. In addition to the traditional navigation and ease of use,
Section 508 compliance is a third component to be tested. The 1998 Amendment to Section 508 of the
Rehabilitation Act spells out accessibility requirements for individuals with certain disabilities. For more
details, refer to www.section508.gov.

Wrap It Up—Chapter Summary
This chapter described the steps to create a list with items users select to launch Web sites
and XML layouts through the use of a Switch decision structure in the City Guide program.
The introduction of intents to outside services such as a Web browser begins our adventure
of many other intent options used throughout the rest of this book.

l The Java View class creates a list and makes it scrollable if it exceeds the length of the
screen. To contain the list items, use a ListView control, which allows you to select each
row in the list for further action, such as displaying an image or Web page.

l Instead of extending the basic Activity class in Main.java by using the public class Main

extends Activity opening class statement, when you want to display a ListView control,
extend the ListActivity class in Main.java with the statement public class Main
extends ListActivity.

l Before you can specify the items in a list, declare the item names using an array variable,
which can store more than one value of similar data types. For example, you can store five
string values in an array without having to declare five variables.

l Arrays provide access to data by using a numeric index to identify each element in the
array. Each value is stored in an element of the array, which you refer to by its index.
The index for the first element in an array is zero. For example, attraction [0] is the first
element in the Attraction array.

l To declare an array, specify the array’s data type and name followed by the values in
braces, as in String[] attraction={“Alcatraz Island”, “Ferry Marketplace”, “Golden Gate
Bridge”, “Cable Car Trolley”, “Fisherman’s Wharf”};.

l You can display the values in an array using an adapter, which provides a data model for
the layout of the list and for converting the array data into list items. A ListView control is
the container for the list items, and an adapter such as the setListAdapter command
connects the array data to the ListView control so the items are displayed on the device
screen. In other words, calling a setListAdapter in the Java code binds the elements of an
array to a ListView layout.

l To design a simple layout, you drag controls from the Palette to the emulator on the
Graphical Layout tab. To design a custom layout, you add code to the main XML file for
the application, such as main.xml.

175

Wrap It Up—Chapter Summary

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.section508.gov

l By default, the application name is displayed in an app’s title bar. To display text other
than the application name, change the app_name value in the strings.xml file.

l A setListAdapter statement has three parameters: One refers to the this class, the second
refers to the layout used to display the list, and the third refers to the array containing the
list values to display. For the second parameter, setListAdapter can use a standard layout,
as in android.R.layout.simple_list_item_1, which specifies the built-in simple_list_item_1
layout to display the list. To use a custom layout instead, replace the name of the standard
layout with the name of the custom layout, as in R.layout.main, which references a
custom layout named main.xml. You also remove the android reference because you are
no longer using an Android library default layout.

l To have an app take action when a user selects an item in a list, you code the
onListItemClick method to respond to the event of the user’s selection.

l You can use the Switch decision structure with a list or menu. In a Switch statement,
an integer or character variable is evaluated and the corresponding case is executed. Each
case is specified using the case keyword followed by a value and a colon. For example, if
a list contains five items, the Switch statement will have five cases, such as case 0, case 1,
case 2, case 3, and case 4. End each case with a break statement to exit the Switch decision
structure and continue with the next statement.

l Android intents send and receive activities and services, including opening a Web page
in a browser. An intent can use the ACTION_VIEW action to send a URI to a built-in
Android browser and display the specified Web site.

l As you develop an application, youmust test every option and possible user action, including
incorrect values and selections. Thoroughly test an Android app before publishing to the
Android Market.

Key Terms
ACTION_VIEW—A generic action you can use to send any request to get the most reasonable
action to occur.

adapter—Provides a data model for the layout of a list and for converting the data from the
array into list items.

array variable—A variable that can store more than one value.

ArrayAdapter<String> i—A ListAdapter that supplies string array data to a ListView object.

break—A statement that ends a case within a Switch statement and continues with the
statement following the Switch decision structure.

case—A keyword used in a Switch statement to indicate a condition. In a Switch statement,
the case keyword is followed by a value and a colon.

element—A single individual item that contains a value in an array.

176

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ListActivity—A class that displays a list of items within an app.

onListItemClick()—A method called when an item in a list is selected.

position—The placement of an item in a list. When an item in a list is selected, the position of
the item is passed from the onListItemClick method and evaluated with a decision structure.
The first item is assigned the position of 0, the second item is assigned the position of 1, and
so forth.

setListAdapter—A command that projects your data to the onscreen list on your device by
connecting the ListActivity’s ListView object to array data.

Switch—A type of decision statement that allows you to choose from many statements
based on an integer or char input.

URI—An acronym for Uniform Resource Identifier, a URI is a string that identifies the
resources of the Web. Similar to a URL, a URI includes additional information necessary
for gaining access to the resources required for posting the page.

URL—An acronym for Uniform Resource Locator, a URL is a Web site address.

Developer FAQs
1. Which Android control displays a vertical listing of items?

2. When does a scroll bar appear in a list?

3. Typically in an Android .java file, the class extends Activity. When the primary
purpose of the class is to display a list, what is the opening Main class statement?

4. Initialize an array named lotteryNumbers with the integers 22, 6, 38, 30, and 17.

5. Answer the following questions about the following initialized array:

String[] toppings = new String[12];

a. What is the statement to assign pepperoni to the first array location?

b. What is the statement to assign green peppers to the fourth location in the array?

c. How many toppings can this array hold?

d. Rewrite this statement to initially be assigned the following four toppings only:
extra cheese, black olives, mushrooms, and bacon.

6. Write a line of code that assigns the values Samsung, Creative, Sony, Motorola, and
Asus to the elements in the array phoneBrands.

7. Fix this array statement:

doubles { } driveSize = ["32.0", "64.0", "128.0"]

8. Write two lines of code that assign an array named languages with the items Java, C#,
Python, Visual Basic, and Ruby and display this array as a generic list.

177

Developer FAQs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Which type of pictures can be used for free fair use without copyright?

10. What does URI stand for?

11. Write a statement that opens the Android Help Site: http://developer.android.com.

12. Write a single line of XML code that changes the size of the text of a TextView
control to 35 scaled-independent pixels.

13. Write a single line of XML code that changes the height of an image to 100 pixels.

14. Write a Switch decision structure that tests the user’s age in an integer variable
named teenAge and assigns the variable schoolYear as in Table 5-2.

15. Change the following If decision structure to a Switch decision structure:

if (count == 3) {
result = "Password incorrect";

} else {
result = "Request password";

}

16. What is the purpose of a default statement in a decision structure?

17. Name two decision structures.

18. What happens when the Web page opens in the emulator and the Back button is
clicked in the chapter project?

19. What does the “R” in R.id.travel stand for?

20. Write a startActivity statement that launches a class named Car.

Age High School Year

14 Freshman

15 Sophomore

16 Junior

17 Senior

Any other age Not in High School

Table 5-2

178

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com

Beyond the Book
Using the Internet, search the Web for the answers to the following questions to further your
Android knowledge.

1. Create a five-item list array program of your own favorite hobby and test out three
types of built-in Android list formats. Take a screen shot comparing the three layouts
identified by the layout format.

2. Compare four different Android browsers. Write a paragraph about each browser.

3. Research the 508 standards for Android app design. Create a list of 10 standards that
should be met while designing Android applications.

4. Besides the 508 standards, research the topic of Android usability testing. Write one
page on testing guidelines that assist in the design and testing process.

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps
and techniques taught within the chapter. Submit the program you create to your instructor.
The level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆⋆

Challenging: ⋆⋆⋆

179

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 5–1: Italian Restaurant App ⋆

Requirements Document

Application title: Italian Restaurant App

Purpose: An Italian restaurant named La Scala would like an app that displays the specials
of the day on a list. As each special is selected, an image is displayed.

Algorithms: 1. The opening screen displays a list of today’s specials (Figure 5-31):

Appetizer Special – Antipasto

Main Course – Spaghetti and Clams

Dessert Special – Tiramisu

La Scala Full Web Site

2. When the user selects an item from the list, a full-screen image of the
item is displayed (Figure 5-32). The fourth option opens the Web site
http://www.lascaladining.com.

Conditions: 1. The pictures of the three specials are provided with your
student files (antipasto.png, clams.png, and tiramisu.png).

2. Use the built-in layout simple_list_item_1.

3. Use the Switch decision structure.

180

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.lascaladining.com

Figure 5-31

181

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

er
w
in
ov
a/
Sh
ut
te
rs
to
ck
.c
om

Figure 5-32

Ig
or

Du
tin
a/
Sh
ut
te
rs
to
ck
.c
om

Fr
an
ce
sc
o8
3/
Sh
ut
te
rs
to
ck
.c
om

182

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 5–2: Box Office App ⋆

iS
to
ck
ph
ot
o.
co
m
/V
ik
to
r
Ch
or
no
ba
y

Figure 5-33

Requirements Document

Application title: Box Office App

Purpose: The top 10 grossing movies of all time are placed on a list in the Box Office
App. As each movie is clicked, the list link opens the Internet Movie
Database site for that movie.

Algorithms: 1. The opening screen displays the top 10 movie apps on a custom layout
with a movie icon (Figure 5-33).

2. When the user selects one of the top 10 box office hits, the Web site that
corresponds to each movie on www.imdb.com opens.

Conditions: 1. The movie icon is provided with your student files.

2. Design a custom layout similar to Figure 5-33.

183

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.imdb.com

Case Project 5–3: Rent a Car App ⋆⋆

Case Project 5–4: Coffee Finder App ⋆⋆

Requirements Document

Application title: Rent a Car App

Purpose: A rental car app provides a listing of six nationally known car rental
companies. By selecting a car company, a car rental site opens.

Algorithms: 1. An opening screen displays an image of a car and a button.

2. The second screen displays a listing of six car rental companies.
This screen also contains a custom icon and layout.

3. Each car rental agency can be selected to view a Web site of
the corresponding company.

Conditions: 1. Select your own images.

2. Create a custom layout for the list.

Requirements Document

Application title: Coffee Finder App

Purpose: This Coffee Finder App locates four places in your town or city to get a great
cup of joe.

Algorithms: 1. The opening screen displays the name of four coffee shops.

2. When the user selects a coffee shop, a second screen
displays the name and address of the selected coffee shop
with a picture or logo for the coffee shop.

Conditions: 1. Select your own images.

2. Create a custom layout for the list.

184

C H A P T E R 5 Investigate! Android Lists, Arrays, and Web Browsers

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 5–5: Tech Gadgets App ⋆⋆⋆

Case Project 5–6: Create Your Own App ⋆⋆⋆

Requirements Document

Application title: Create Your Own App

Purpose: Get creative! Create an app with five to eight list items with a custom layout
and a custom icon that links to Web pages and other XML layout screens.

Algorithms: 1. Create an app on a topic of your own choice. Create a list.

2. Display XML layout pages as well as Web pages on
different list items.

Conditions: 1. Select your own images.

2. Use a custom layout and icon.

Requirements Document

Application title: Tech Gadgets App

Purpose: The Tech Gadgets app shows the top five technology gifts on your
wish list.

Algorithms: 1. The opening screen displays names of five technology gadgets of your
own choosing.

2. If you select any of the gadgets, a second screen opens that has an image
and a button. If the user clicks the button, a Web page opens that displays
more information about the tech gadget.

Conditions: 1. Select your own images.

2. Create a custom layout for the list.

185

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 6
Jam! Implementing
Audio in Android Apps

In this chapter, you learn to:

Create an Android project using a splash screen

Design a TextView control with a background image

Pause the execution of an Activity with a timer

Understand the Activity life cycle

Open an Activity with onCreate()

End an Activity with finish()

Assign class variables

Create a raw folder for music files

Play music with a MediaPlayer method

Start and resume music playback using the start and pause
methods

Change the Text property of a control

Change the visibility of a control

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
ns
ho
ts
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Playing music on a smartphone is one of the primary uses of a mobile device, especially as
MP3 players are losing popularity. The most common phone activities include texting,
talking, gaming, and playing music. Talking and texting continue to be mainstream
communication channels, but the proportion of users taking advantage of apps, games, and
multimedia on their phones is growing. The principal specification when purchasing a
smartphone is typically the amount of memory it has. Consumers often purchase a phone
with more memory so they can store music.

To demonstrate playing music through an Android built-in media player, the Chapter 6
project is named Eastern Music and opens with an image and the text “Sounds of the
East.” This opening screen (Figure 6-1), also called a splash screen, is displayed for
approximately five seconds, and then the program automatically opens the second
window. The Eastern Music application (Figure 6-2) plays two songs: Bamboo, a Far East
song from the ancient Orient, and Palace, a Turkish folk song. If the user selects the first
button, the Bamboo song plays until the user selects the first button again to pause the
Bamboo song. If the user selects the second button, the Palace song plays until the user
selects the second button again. The emulator plays the music through your computer’s
speakers.

tu
rti
x/
Sh
ut
te
rs
to
ck
.c
om

Figure 6-1 Eastern Music Android app

Lo
uL
ou
Ph
ot
os
/S
hu
tte
rs
to
ck
.c
om

an
d
iS
to
ck
ph
ot
o.
co
m
/C
hr
is
tia
n
Ar
au
jo

Figure 6-2 Music played in the Android app

188

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
Android music apps can play music on the memory card, download music available for purchase or free from
music-sharing sites, tune into Internet-based radio stations, or connect to music saved in a cloud service.

To create this application, the developer must understand how to perform the following
processes, among others:

1. Create a splash screen with a timer.

2. Design a TextView control with a background image.

3. Initialize a TimerTask and a timer.

4. Launch a second Activity.

5. Design a second XML layout.

6. Add music files to the raw folder.

7. Initialize the MediaPlayer class.

8. Play and pause music with a Button control.

Creating a Splash Screen
The Eastern Music app opens with a window that is displayed for approximately five seconds
before automatically launching the next window. Unlike the project in Chapter 2 (Healthy
Recipes), which required a button to be tapped to begin a click event that opened a second
screen, this program does not require user interaction to open the second Activity class. Many
Android applications on the market show splash screens that often include the name of the
program, display a brand logo for the application, or identify the author. A splash screen opens
as you launch your app, providing time for Android to initialize its resources. Extending the
length of time that your splash screen is displayed enables your app to load necessary files.

In the Eastern Music app, instead of using Main as the name of the initial Activity, the
opening Activity shown in Figure 6-3 is named Splash. A second .java file named Main.java
is added later in the chapter. The Main Activity is responsible for playing the two songs.
To start the Eastern Music application with a splash screen, complete the following step:

1. Open the Eclipse program. Click the New button on the Standard toolbar. Expand the
Android folder, if necessary, and select Android Project. Click the Next button. In the
New Android Project dialog box, enter the Project Name Eastern Music. To save
the project on your USB drive, click to remove the check mark from the Use default
location check box. Type E:\Workspace (if necessary, enter a different drive letter
that identifies the USB drive). Click the Next button. For the Build Target, select
Android 4.0, if necessary. Click the Next button. For the Package Name, type
net.androidbootcamp.easternmusic. Enter Splash in the Create Activity text box.

189

Creating a Splash Screen

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The new Android Eastern Music project has an application name, a package name,
and a Splash Activity (Figure 6-3).

Adding a Background Image to a TextView Widget
On the splash screen in Figure 6-1, an image with the text “Sounds of the East” is displayed.
This image is not an ImageView widget, but instead a TextView widget with a background
image. You use a TextView property named background to specify the image. The image is
first placed in the drawable-hdpi folder and then referenced in the TextView background.
The TextView background can display an image or a solid-color fill such as the hexadecimal
color #0000FF for blue. The margins and gravity properties are used to place the text in the
location of your choice. To add the images for this project and a splash.xml file with a
TextView widget that contains a background image, follow these steps:

1. Click the Finish button in the New Android Project dialog box. Expand the Eastern
Music project in the Package Explorer. Open the USB folder containing the student
files. In the Package Explorer pane, expand the res folder. To add the three image files
to the drawable-hdpi resource folder, drag band.png, bell.png, and drums.png to the
drawable-hdpi folder until a plus sign pointer appears. Release the mouse button.
If necessary, click the Copy files option button, and then click the OK button.

Copies of the three image files appear in the drawable-hdpi folder (Figure 6-4).

Package Name

Splash Activity

Figure 6-3 Setting up the Splash Activity in the Eastern Music project

190

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. To add a splash.xml file, right-click the layout folder. On the shortcut menu,
point to New and then click Other. In the New dialog box, click Android XML
Layout File, and then click the Next button. In the New Android Layout XML
File dialog box, type splash.xml in the File text box to name the layout file. In
the Root Element list, select LinearLayout. Click the Finish button. The emulator
window opens. In the Form Widgets category in the Palette, drag the TextView
control to the emulator. To open the Properties pane, right-click the emulator
window, point to Show In on the shortcut menu, and then click Properties. With
the TextView control selected, change the Text property to Sounds of the East
and type #000000 for the Text color property. Set the Text size property to
20sp. Click to the right of the Text style property, click the ellipsis button, and
then select bold. Click the OK button. Click to the right of the Gravity property,
click the ellipsis button, and then select center_horizontal. Click the OK button.
In the Background property, click the ellipsis button. In the Reference Chooser
dialog box, expand the Drawable folder and then click bell. Click the OK button.
Resize the image to fit the emulator window.

A TextView image with an image background is displayed in the splash.xml file
(Figure 6-5).

Three image files added
to the drawable-hdpi
folder

Figure 6-4 Image files in the drawable-hdpi folder

191

Creating a Splash Screen

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Close the splash.xml tab and save your work.

Creating a Timer
When most Android apps open, a splash screen is displayed for a few seconds, often
preloading database files and information behind the scenes in large-scale applications. In the
Eastern Music app, a timer is necessary to display the splash.xml file for approximately five
seconds before the Main Activity intent is called. A timer in Java executes a one-time task,
such as displaying an opening splash screen, or performs a continuous process, such as a
morning wake-up call set to run at regular intervals.

Timers can be used to pause an action temporarily or to time dependent or repeated activities
such as animation in a cartoon application. The timer object uses milliseconds as the unit of
time. On an Android device, 1,000 milliseconds is equivalent to about one second. This fixed
period of time is supported by two Java classes, namely TimerTask and Timer. To create a
timer, the first step is to create a TimerTask object, as shown in the following syntax:

Code Syntax

TimerTask task = new TimerTask() {

}

Value of the Text
property of the
TextView control

Formatted bell.png
image displayed in the
TextView control

TextView
control

tu
rti
x/
Sh
ut
te
rs
to
ck
.c
om

Figure 6-5 splash.xml displays a TextView control

192

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
Each time a timer runs its tasks, it executes within a single thread. A thread is a single sequential flow of control
within a program. Java allows an application to have multiple threads of execution running concurrently. You can
assign multiple threads so they occur simultaneously, completing several tasks at the same time. For example, a
program could display a splash screen, download files needed for the application, and even play an opening
sound at the same time.

A TimerTask invokes a scheduled timer. A timer may remind you of a childhood game called
hide-and-seek. Do you remember covering your eyes and counting to 50 while your friends
found a hiding spot before you began searching for everyone? A timer might only count to
five seconds (5,000 milliseconds), but in a similar fashion, the application pauses while the
timer counts to the established time limit. After the timed interval is completed, the program
resumes and continues with the next task.

After entering the TimerTask code, point to the red error line under the TimerTask() to add
the run() method, an auto-generated method stub, as shown in the following code syntax.
Any statements within the braces of the run() method are executed after the TimerTask class
is invoked.

Code Syntax

TimerTask task = new TimerTask() {
@Override

public void run() {
// TODO Auto-generated method stub

}

The TimerTask must implement a run method that is called by the timer when the task
is scheduled for execution. To add a TimerTask class to the Splash Activity, follow
these steps:

1. In the Package Explorer, expand the src folder, expand net.androidbootcamp.easternmusic,
and then double-click Splash.java to open the code window. To set the splash.xml
layout as the opening window, change setContentView (R.layout.main) to
setContentView(R.layout.splash);. Press the Enter key to insert a new line, and
then type TimerTask task = new TimerTask() { to add the TimerTask. Point to the
red error line below TimerTask().

The setContentView method is updated to display the splash.xml file and the
TimerTask class is initiated (Figure 6-6).

193

Creating a Splash Screen

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. First add the import statement by clicking Import ‘TimerTask’ (java util). Point to
TimerTask() again to view the quick fix. Select Add unimplemented methods to
add the auto-generated method stub for the run method. To complete the stub,
click to right of } at the end of the stub, press the Enter key, and then type }; to close
the class.

The auto-generated stub for the run method is created automatically (Figure 6-7).

Splash.java tab

Statement opens
splash.xml

Point to TimerTask() to
display quick fixes

Import
‘TimerTask’

Figure 6-6 setContentView and TimerTask statements

run() method stub

Semicolon ends stub

Figure 6-7 run() method

194

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
Timers can also be used to display updates of how long an installation is taking by displaying a countdown,
monitor what a user is doing, or execute other routines while an Activity is running.

Scheduling a Timer
After including a reference to the TimerTask class, a timer must be scheduled for the amount
of time that the splash screen is displayed. The Timer class shown in the following code
syntax creates a timed event when the schedule method is called. A delay timer is scheduled
in milliseconds using the Timer class. Delay schedules simply prompt an event to occur once
at a specified time.

Code Syntax

Timer opening = new Timer();
opening.schedule(task,5000);

In the first line of the code syntax, the object named opening initializes a new instance of the
Timer class. When the schedule method of the Timer class is called in the second line, two
arguments are required. The first parameter (task) is the name of the variable that was
initialized for the Timer class. The second parameter represents the number of milliseconds
(5,000 milliseconds = 5 seconds). Follow these steps to add the scheduled timer:

1. In the code on the Splash.java tab, after the closing braces for the TimerTask class and
the semicolon, insert a new line and then type Timer opening = new Timer();. Point
to Timer and click Import ‘Timer’ (java.util).

An instance of the Timer class is created named opening (Figure 6-8).

Instance of Timer

Figure 6-8 Timer class

195

Creating a Splash Screen

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. To schedule a timer using the schedule method from the Timer class to pause for five
seconds, press the Enter key to insert a new line, and then type opening.schedule
(task,5000);.

The timer lasting five seconds is scheduled (Figure 6-9).

IN THE TRENCHES
Be careful not to code excessively long timers that waste the time of the user. A user-friendly program runs
smoothly without long delays.

Life and Death of an Activity
In Line 12 of the Eastern Music app, as shown in Figure 6-9, the Splash Activity begins its
life in the Activity life cycle with the onCreate() method. Each Activity has a life cycle,
which is the series of actions from the beginning of an Activity to its end. Actions that occur
during the life cycle provide ways to manage how users interact with your app. Each
Activity in this book begins with an onCreate() method. The onCreate() method initializes
the user interface with an XML layout; the life of the Activity is started. As in any life cycle,
the opposite of birth is death. In this case, an onDestroy() method is the end of the Activity.
The onCreate() method sets up all the resources required to perform the Activity, and
onDestroy() releases those same resources to free up memory on your mobile device. The
life cycle of the Splash Activity also begins with onCreate() and ends with onDestroy().
Other actions can take place during the life of the Activity. For example, when the
scheduled timer starts (Line 23 in Figure 6-9), the Splash Activity is paused. If you open
multiple apps on a smartphone and receive a phone call, you must either pause or terminate

Timer scheduled for 5 seconds

Figure 6-9 Timer scheduled

196

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the other apps to secure enough available memory to respond to the incoming call. To
handle the life cycle actions between onCreate() and onDestroy(), you use methods such
as onRestart(), onStart(), onResume(), onPause(), and onStop(). Each of these methods
changes the state of the Activity. The four states of an Activity determine whether the
activity is active, paused, stopped, or dead. The life cycle of an application affects how an
app works and how the different parts are being orchestrated. Table 6-1 shows the
development of an Activity throughout its life cycle.

When an Activity is launched using onCreate(), the app performs the actions in the Activity.
In other words, the Activity becomes the top sheet of paper on a stack of papers. When the
methods shown in Table 6-1 are used between the onCreate() and onDestroy() methods,
they shuffle the order of the papers in that stack. When onDestroy() is called, imagine that
the pile of papers is thrown away. The finish() method is part of the onDestroy() method
and is called when the Activity is completed and should be closed. Typically, the finish()
method occurs directly before another Activity is launched. As an Android developer,
you should be well acquainted with the life cycle of Activities because an app that you
publish in the Android market must “play” well with all the other apps on a mobile device.
For example, your Android app must pause when a text message, phone call, or other
event occurs.

The diagram in Figure 6-10 shows the life cycle of an Activity. The rectangles represent
methods you can implement to perform operations when the Activity moves between states.
The colored ovals are the possible major states of the Activity.

Method Description

onCreate() The onCreate() method begins each Activity. This method also provides a Bundle
containing the Activity’s previously frozen state, if it had one.

onRestart() If the Activity is stopped, onRestart() begins the Activity again. If this method is called,
it indicates your Activity is being redisplayed to the user from a stopped state.
The onRestart() method is always followed by onStart().

onStart() If the Activity is hidden, onStart() makes the Activity visible.

onResume() The onResume() method is called when the user begins interacting with the Activity.
The onResume() method is always followed by onPause().

onPause() This method is called when an Activity is about to resume.

onStop() This method hides the Activity.

onDestroy() This method destroys the Activity. Typically, the finish() method (part of onDestroy())
is used to declare that the Activity is finished; when the next Activity is called, it
releases all the resources from the first Activity.

Table 6-1 Methods used in the life cycle of an Activity

197

Creating a Splash Screen

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As an example of the Activity life cycle, the native Android application designed for taking
a picture using the built-in camera transitions through each stage in the life cycle. When the
user launches the camera app, the camera Activity executes the onCreate() method to
display the opening screen and the image captured through the camera lens. The user taps
a Button control to take a picture. The onStop() method is called to hide the live image
displayed after the picture is taken. The onRestart() method is called after the picture is
taken to restart the rest of the app. The onStart() method is called to display the picture

Activity
starts

onCreate()

onRestart()

Activity is
running

Another Activity comes
in front of the Activity

onStop()

Activity is
shut down

onDestroy()

The Activity is no longer visible

onPause()

onResume()
Process is

killed

onStart()

User navigates
back to the

Activity

Other applications
need memory

The Activity
comes to the
foreground

The Activity
comes to the
foreground

Figure 6-10 Activity life cycle

198

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

that was just taken. If the user taps the screen to upload the image to Facebook, the onPause()
method is called to pause operations of the camera app while the image is uploaded.
The onResume() method is launched after the picture is uploaded to reactivate the
camera. The user can choose to take another image, which repeats the process, or to exit
the camera app. If the user selects the exit option, onDestroy() or finish() frees the saved
resources from the temporary memory of the device and closes the camera application.

In the Eastern Music application, after the timer pauses the program temporarily, the Splash
Activity should be destroyed with onDestroy() before launching the second Activity. The app
should call the onDestroy() method from within the run method of the timer task that was
invoked by TimerTask. Doing so guarantees that the ongoing task execution is the last task
this timer performs. To close the Splash Activity, follow these steps:

1. In Splash.java, click inside the run() auto-generated method stub in the blank line
under the comment // TODO Auto-generated method stub and type finish();.

The finish() statement releases the resources that were created for the Splash Activity
and closes the Activity (Figure 6-11).

2. Save your work.

Launching the Next Activity
After the Activity for the splash screen is destroyed, an intent must request that the next
Activity is launched. An XML layout named main.xml already exists as the default layout.
A second class named Main must be created before the code can launch this Java class.
You must update the Android Manifest file to include the Main Activity. The Main Activity

finish() method

Figure 6-11 finish() method called

199

Launching the Next Activity

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is responsible for playing music. To create a second class and launch the Main Activity,
follow these steps:

1. In the Package Explorer, right-click the net.androidbootcamp.easternmusic
folder, point to New on the shortcut menu, and then click Class. Type Main in
the Name text box. Click the Superclass Browse button. Type Activity in the
Choose a type text box. Click Activity – android.app and then click the OK
button to extend the Activity class. Click the Finish button to finish creating the
Main class.

A second class named Main is created (Figure 6-12).

2. In the Package Explorer, double-click the AndroidManifest.xml file. To add the
Main class to the Android Manifest, click the Application tab at the bottom of the
Eastern Music Manifest page. Scroll down to display the Application Nodes
section. Click the Add button. Select Activity in the Create a new element at the
top level, in Application dialog box. Click the OK button. The Attributes for
Activity section opens in the Application tab. In the Name text box in this
section, type .Main.

The .Main class is added to the Android Manifest file (Figure 6-13).

3. Close the Eastern Music Manifest tab and save the changes. To launch the second
Activity, display Splash.java, insert a new line in the run() auto-generated method
stub after the finish(); statement, and then type startActivity(new Intent(Splash.

Main.java tab

Main class

Figure 6-12 Main class created

.Main class added

Application tab

Figure 6-13 Adding the Main Activity

200

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

this, Main.class));. Point to the red error line below Intent and select ‘Import Intent’
(android.content). Save your work.

The second Activity named Main is launched with an Intent statement (Figure 6-14).

Designing the main.xml File
In the Eastern Music app, after the first Activity displaying the splash screen finishes and the
second Activity named Main is launched, a second XML layout file is displayed when the
onCreate() method is called within the Main.java file. The Main.java file uses the default Linear
layout with two ImageView and Button controls. To design the XML layout for main.xml, follow
these steps:

1. Close the Splash.java tab. In the res/layout folder, right-click main.xml, point to
Open With on the shortcut menu, and then click Android Layout Editor. Delete
the default Hello World, Splash! control. Drag an ImageView control from the
Images & Media category of the Palette to the emulator window. In the
Resource Chooser dialog box, click the first option button if necessary, click
band, and then click the OK button. With the band.png image selected, change
the Layout height in the Properties pane to 150dp, the Layout margin top to
20dp, and the Layout width to 320dp. Drag a Button from the Form Widgets
category of the Palette and place it below the image. Set the Button Id property
to @+id/btnBamboo. Change the Text property to Play Bamboo Song. Set the
Text size to 22sp and the Layout margin bottom to 10dp. Set the Layout width
to 320dp. Save your work.

The image and button to select the first song named Bamboo are designed in main.xml
(Figure 6-15).

Opens the
Main Activity

Figure 6-14 Intent statement

201

Designing the main.xml File

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Drag another ImageView control to the emulator window. In the Resource Chooser
dialog box, click drums, and then click the OK button. With the drums.png image
selected, change the Layout height in the Properties pane to 150dp, the Layout margin
top to 20dp, and the Layout width to 320dp. Drag a Button from the Form Widgets
category of the Palette and place it below the image. Set the Button Id property to
@+id/btnPalace. Change the Text property toPlay Palace Song. Set the Text size to 22sp
and the Layout margin bottom to 10dp. Set the Layout width to 320dp. Save your work.

The image and button to select the second song named Palace are designed in
main.xml (Figure 6-16).

main.xml tab

Button control

ImageView control
displays band.png

Lo
uL
ou
Ph
ot
os
/S
hu
tte
rs
to
ck
.c
om

Figure 6-15 ImageView and Button controls in main.xml

ImageView control
displays drums.png

Button control

Lo
uL
ou
Ph
ot
os
/S
hu
tte
rs
to
ck
.c
om

an
d
iS
to
ck
ph
ot
o.
co
m
/C
hr
is
tia
n
Ar
au
jo

Figure 6-16 main.xml layout complete

202

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Class Variables
In the coding examples used thus far in this book, variables have been local variables.
Local variables are declared by variable declaration statements within a method, such as
a primitive integer variable within an onCreate() method. The local variable effectively
ceases to exist when the execution of the method is complete. The scope of a variable
refers to the variable’s visibility within a class. Variables that are accessible only to a
restricted portion of a program such as a single method are said to have local scope.
Variables that are accessible from anywhere in a class, however, are said to have global
scope. If a variable is needed in multiple methods within a class, the global variable is
assigned at the beginning of a class, not within a method. This global scope variable is
called a class variable in Java, and can be accessed by multiple methods throughout the
program. In the chapter project, the Button, MediaPlayer (necessary for playing sound),
and an integer variable named playing are needed in the onCreate() method and within
both onClick() methods for each Button control. To keep the value of these variables
throughout multiple classes, the variables are defined as class variables that cease to exist
when their class or activity is unloaded.

After class variables are defined in Main.java, the onCreate() method opens the main.xml
layout and defines the two Button controls. The Activity waits for the user to select one of the
two buttons, each of which plays a song. If a button is clicked twice, the music pauses. Each
button must have a setOnClickListener that awaits the user’s click. After the user taps a
button, the setOnClickListener method implements the Button.OnClickListener, creating an
instance of the OnClickListener and calling the onClick method. The onClick method
responds to the user’s action. For example, in the chapter project, the response is to play a
song. The onClick method is where you place the code to handle playing the song. To code
the class variables, display the main.xml layout, reference the two Button controls, and set an
onClickListener, follow these steps:

1. Close the main.xml window and save your work. In Main.java, after the public
class Main extends Activity statement, create two blank lines. On the second
line, type Button btBamboo, btPalace; to create a class variable reference.
Point to Button and click ‘Import Button’ (android widget). Insert a new line,
and then type MediaPlayer mpBamboo, mpPalace; to create a class variable
reference for the media player. Point to MediaPlayer and click ‘Import
MediaPlayer’ (android.media). Insert a new line, and then type int playing; to
create a primitive class variable named playing, which keeps track of whether a
song is playing.

Class variables that can be accessed by the rest of the program are initialized
(Figure 6-17).

203

Designing the main.xml File

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Press the Enter key twice, type oncreate, and then press Ctrl+spacebar. Double-
click the first onCreate method in the auto-complete listing to generate the
method structure. Click after the semicolon, press the Enter key, and then type
setContentView(R. to display an auto-complete listing. Double-click layout.
Type a period. Double-click main: int—R layout. Type); to complete the
statement.

The onCreate method displays the main.xml file (Figure 6-18).

3. Both Button references were made as class variables. To create an instance
of each Button control, press the Enter key and type btBamboo =
(Button)findViewById(R.id.btnBamboo);. Press the Enter key and then type
btPalace = (Button)findViewById(R.id.btnPalace);.

The Button controls named btnBamboo and btnPalace are referenced in Main.java
(Figure 6-19).

Button, MediaPlayer, and
primitive class variables

Figure 6-17 Class variables

onCreate method
opens main.xml

Figure 6-18 onCreate method

204

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. To create a setOnClickListener method so the btBamboo Button waits for the user’s click,
press the Enter key and type btBamboo.setOnClickListener(bBamboo);. To create an
instance of the Button OnClickListener, click between the two ending braces and type
Button.OnClickListener bBamboo = new Button.OnClickListener() { and then press
the Enter key. Place a semicolon after the closing brace. This onClickListener is designed
for a class variable for a Button. Point to the red error line below Button.OnClickListener
and select Add unimplemented methods to add the quick fix.

AnOnClickListener auto-generated stub appears in the code for the first button (Figure 6-20).

Button controls referenced

Figure 6-19 Button controls referenced

First Button
setOnClickListener

Auto-generated stub

Semicolon inserted

First Button
OnClickListener

Figure 6-20 Inserting the first Button OnClickListener stub

205

Designing the main.xml File

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. To create a setOnClickListener method so the btPalace Button waits for the user’s
click, click after the btBamboo.setOnClickListener(bBamboo); statement, press the
Enter key, and then type btPalace.setOnClickListener(bPalace);. To create an
instance of the btnPalace button OnClickListener, click after the brace with the
semicolon at the end of the code, press the Enter key, type Button.OnClickListener
bPalace = new Button.OnClickListener() { and then press the Enter key to create
the closing brace. Place a semicolon after this closing brace. Point to the red error line
below Button.OnClickListener and select Add unimplemented methods to add the
quick fix. Save your work.

An OnClickListener auto-generated stub appears in the code for the second button
(Figure 6-21).

Playing Music
Every Android phone and tablet includes a built-in music player where you can store your
favorite music. You can also write your own applications that offer music playback
capabilities. To enable the Eastern Music chapter project to play two songs, Android includes
a MediaPlayer class that can play both audio and music files. Android lets you play audio and
video from several types of data sources. You can play audio or video from media files stored
in the application’s resources (a folder named raw), from stand-alone files in the Android file
system of the device, from an SD (Secure Digital) memory card in the phone itself, or from a
data stream provided through an Internet connection. The most common file type of media
supported for audio playback with the MediaPlayer class is .mp3, but other audio file types
such as .wav, .ogg, and .midi are typically supported by most Android hardware. The Android

Second button
setOnClickListener

Second auto-
generated stub

Second Button
OnClickListener

Semicolon
inserted

Figure 6-21 Inserting the second Button OnClickListener stub

206

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

device platform supports a wide variety of media types based on the codecs included in the
device by the manufacturer. A codec is a computer technology used to compress and
decompress audio and video files.

IN THE TRENCHES
The Android platform provides a class to record audio and video, where supported by the mobile device
hardware. To record audio or video, use the MediaRecorder class. The emulator does not provide the
capability to capture audio or video, but an actual mobile device can record media input, accessible through
the MediaRecorder class.

Creating a Raw Folder for Music Files
In an Android project, music files are typically stored in a subfolder of the res folder called raw.
In newer versions of Android, the raw folder must be created before music files can be placed in
that folder. The two .mp3 files played in the Eastern Music app are named bamboo.mp3 and
palace.mp3, and should be placed in the raw folder. To create a raw folder that contains music
files, follow these steps:

1. In the Package Explorer, right-click the res folder. Point to New on the shortcut menu, and
then click Folder. The New Folder dialog box opens. In the Folder name text box, type raw.

A folder named raw is created using the New Folder dialog box (Figure 6-22).

New Folder
dialog box

Folder name

Finish button

Figure 6-22 New Folder dialog box

207

Creating a Raw Folder for Music Files

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the Finish button. To add the project music files to the raw folder, open the USB
folder containing your student files. To add the two music files to the raw resource
folder, select bamboo.mp3 and palace.mp3, and then drag the files to the raw folder
until a plus sign pointer appears. Release the mouse button. If necessary, click the
Copy files option button, and then click the OK button. Expand the raw folder.

Copies of the music files appear in the raw folder (Figure 6-23).

Using the MediaPlayer Class
The MediaPlayer class provides the methods to control audio playback on an Android
device. At the beginning of the Main.java code, two MediaPlayer class variables are declared.
After the variables are declared, an instance of the MediaPlayer class is assigned to each
variable. In the following code syntax, mpBamboo is assigned to an instance of the
MediaPlayer class that accesses the bamboo music file in the raw folder.

Code Syntax

MediaPlayer mpBamboo = MediaPlayer.create(this, R.raw.bamboo);

The class variables mpBamboo and mpPalace are assigned the music files from the raw folder.
To declare an instance of the MediaPlayer class, follow this step:

1. In Main.java, press the Enter key after the btPalace.setOnClickListener(bPalace);
statement to create a new line. Type mpBamboo = new MediaPlayer(); to
create a new instance of MediaPlayer. Insert a new line and type mpBamboo =
MediaPlayer.create(this, R.raw.bamboo); to assign the first song to mpBamboo.
Press the Enter key. TypempPalace = newMediaPlayer(); to add an instance for the
second MediaPlayer variable. Insert a new line and type mpPalace = MediaPlayer.
create(this, R.raw.palace); to assign the second song to mpPalace.

The two class variables are assigned an instance of the MediaPlayer class (Figure 6-24).

raw folder added

.mp3 files added

Figure 6-23 Music files in the raw folder

208

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
Music can be used in many ways throughout Android apps. Music can provide sound effects to inform the user of
a recent e-mail or to praise you when you reach the winning level on your favorite game. Background music is
often used as a soundtrack to create a theme in an adventure game.

The MediaPlayer State
Android uses the MediaPlayer class to control the playing of the audio file. Whether the
music file is playing is called the state of the MediaPlayer. The three common states of the
audio file include when the music starts, when the music pauses, and when the music stops.
The state of the music is established by the MediaPlayer’s temporary behavior. Table 6-2
provides an example of the most common MediaPlayer states.

In the Eastern Music project, the user first taps a button to start the music playing. The start()
method is used to begin the playback of the selected music file. When the user taps the same

MediaPlayer
statements

Figure 6-24 MediaPlayer instance statements

Method Purpose

start() Starts media playback

pause() Pauses media playback

stop() Stops media playback

Table 6-2 Common MediaPlayer states

209

Using the MediaPlayer Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

button again, the music temporarily pauses the music file by calling the pause() method. To
restart the song, the start() method must be called again. To determine the state of MediaPlayer,
the code must assess if this is the first time the user is tapping the button to start the song or if the
user is tapping the same button twice to pause the song. The user can tap the button a third time
to start the song again. This cycle continues until the user exits the project. In the chapter project,
an integer variable named playing is initially set to zero. Each time the user taps the button, the
playing variable changes value. The first time the user taps the button, the variable is changed to
the value of 1 to assist the program in determining the state of theMediaPlayer. If the user taps the
same button again to pause the song, the variable changes to the value of 0. Android does not have
a method for determining the present state of the MediaPlayer, but by using this simple primitive
variable, you can keep track of the state of the music. A Switch decision structure uses the variable
named playing to change the state of the music. The onClick() method is called every time the
user selects a button. To initiate the variable used to determine the state of MediaPlayer and to
code a Switch decision structure to determine the state, follow these steps:

1. In Main.java, press the Enter key after the mpPalace = MediaPlayer.create(this,
R.raw.palace); statement to create a new line. Type playing = 0; to initialize the
variable named playing as the value 0. When the user clicks a button, the Switch
statement follows the path of case 0, which begins the audio playback of one of the songs.

The variable named playing is initialized as the value 0 (Figure 6-25).

2. Inside the braces of the first onClick method (after the // TODO comment), type the
following Switch decision structure that is used to determine the state of the music:

Variable that changes
as the state of the
music changes

Figure 6-25 The playing variable is set to 0

210

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

switch(playing) {
case 0:

mpBamboo.start();
playing = 1;
break;

case 1:
mpBamboo.pause();
playing = 0;
break;

}

The Switch decision structure that determines the state of the music is coded for the first
onClick method (Figure 6-26).

IN THE TRENCHES
Music playback control operation may fail due to various reasons, such as unsupported audio/video format,
poorly interleaved audio/video, file size overwhelming memory capabilities, or a streaming timeout on the
Internet.

Changing the Text Property Using Code
When the user selects a song to play, the Button control with the text “Play Bamboo Song” is
tapped. To pause the song, the user must tap the same button, but the text should be changed

start method begins the Bamboo song

pause method pauses the Bamboo song

playing assigned to 0 determines that if the user
clicks again, case 0 starts the music again

playing assigned to 1 determines that if the
user clicks again, case 1 pauses the music

Switch decision
structure

case 0 starts the
music playback

case 1 pauses the
music playback

Figure 6-26 Switch statements for both onClick methods

211

Using the MediaPlayer Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to a more fitting action, such as “Pause Bamboo Song.” A property can initially be entered in
the XML layout or coded in Java. In Chapter 4, the setText() method displays text in the
TextView control. To change the Text property for a Button control using Java code, the
control name and the SetText() method are separated by a period that precedes a string of
text within parentheses, as shown in the following code syntax:

Code Syntax

btBamboo.setText("Pause Bamboo Song");

The btBamboo Button control displays the text “Pause Bamboo Song.” If the user wants to
restart the song, a second setText() method changes the text back to “Play Bamboo Song.” To
change the text on the Button control for the first button, follow these steps:

1. In Main.java in the first onClick() method, press the Enter key after the statement
playing = 1; in case 0. Type btBamboo.setText(“Pause Bamboo Song”); to change
the text displayed on the Button control. To change the text back to the original text if
the user restarts the music, in case 1 of the Switch decision structure, press the Enter
key after the statement playing = 0;. Type btBamboo.setText(“Play Bamboo
Song”); to change the text displayed on the Button control.

The first button changes text while the music is paused or restarted (Figure 6-27).

Each setText()
statement changes the
Button text

Figure 6-27 The setText() method changes the button control in both case statements

212

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. To test the music and text on the first Button control, save and run the program. The
second Button control has not been coded yet.

When you tap the first Button control, the Bamboo song plays and the Button text is
changed. You can restart or pause the music by pressing the button again (Figure 6-28).

Changing the Visibility Property Using Code
When the program is complete, the user can select the button that plays the Bamboo
song or the Palace song. One issue that must be resolved is that it is possible to tap the
Bamboo song button and then tap the Palace button, playing both songs at once. To
resolve this problem, when the user selects one of the songs, the button to the other
song can be coded to disappear until the user has paused the current song from playing.
The Java property that controls whether a control is displayed on the emulator is the
Visibility property. By default, the Visibility property is set to display any control you
place on the emulator when the program runs. To cause the control not to appear, you
must code the setVisibility property to change the view to invisible. To change the
visibility of the button to reappear, the setVisibility property is changed to visible, as
shown in the following code syntax:

Code Syntax

To hide the control: btBamboo.setVisibility(View.INVISIBLE);
To display the control: btBamboo.setVisibility(View.VISIBLE);

Text changes to Pause Bamboo
Song after the user taps the Play
Bamboo Song button

Lo
uL
ou
Ph
ot
os
/S
hu
tte
rs
to
ck
.c
om

Figure 6-28 Music plays and the button text is changed

213

Using the MediaPlayer Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To set the setVisibility property for the Bamboo button control to change the view to invisible
and to copy and paste the code for the first onClick code to create a Switch decision structure
for the second button, you can complete the following steps:

1. In Main.java in the first onClick() method in the case 0 option, press the
Enter key after the statement btBamboo.setText(“Pause Bamboo Song”);. Type
btPalace.setVisibility(View.INVISIBLE); to hide the Palace button when the
Bamboo song is playing. When the music is paused, the Palace button should be
visible again. In the case 1 option, press the Enter key after the statement
btBamboo.setText(“Play Bamboo Song”);. Type btPalace.setVisibility(View.VISIBLE);
to change the visibility of the Palace button.

The Palace button hides when the music plays and displays when the music stops
(Figure 6-29).

2. To code the second onClick() method for Palace button, select and copy Lines 36–48
in Figure 6-29 by clicking Edit on the menu bar and then clicking Copy. Click Line 57
inside the second onClick() method, click Edit on the menu bar, and then click Paste.
Change every reference of mpBamboo to mpPalace. Change every reference of
btBamboo to btPalace or vice versa. Change the setText messages to read Pause
Palace Song and Play Palace Song. You might need to add }; as the second-to-last
line of code. Compare your code with the complete code, making changes as necessary.

The second onClick() method is coded using a Switch decision structure (Figure 6-30).

setVisibility() method
hides Palace button

setVisibility() method
displays Palace button

Figure 6-29 The setVisibility() method changes the visibility of the Button control

214

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bamboo button is
coded

Palace button is
coded

Semicolon ends
the second
onClickListener

Figure 6-30 Complete code for Main.java

215

Using the MediaPlayer Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Running and Testing the Application
Your first experience with media in an Android application is complete. Click Run on the
menu bar, and then select Run to save and test the application in the emulator. Select
Android Application and click the OK button. Save all the files in the next dialog box, if
necessary, and unlock the emulator. The application opens in the emulator window, as shown
in Figure 6-1 and Figure 6-2. The splash screen opens for five seconds. The main screen opens
next, requesting your button selection to play each of the songs. Test both buttons and make
sure your speakers are on so you can hear the Eastern music play.

Wrap It Up—Chapter Summary
In this chapter, the Android platform created a memorable multimedia experience with the
sounds of Eastern music. A splash screen provided time to load extra files if needed and
displayed an initial logo for brand recognition. Methods such as setText() and setVisibility()
helped to create an easy-to-use Android application that was clear to the user. The state of
music using the start and pause methods of MediaPlayer filled your classroom or home with
the enjoyment of music.

l An Android application can show a splash screen that displays the name of the program, a
brand logo for the application, or the name of the author. The splash screen opens as you
launch your app, providing time for Android to initialize its resources.

l A TextView widget can display a background color or image stored in one of the project’s
drawable folders.

l A timer in Java executes a one-time task such as displaying an opening splash screen, or it
performs a continuous process such as a wake-up call that rings each morning at the same
time. Timers can be used to pause an action temporarily or to time dependent or repeated
activities. The timer object uses milliseconds as the unit of time.

l After including a reference to the TimerTask class in your code, schedule a timer for the
amount of time that an event occurs, such as a splash screen being displayed.

l Each Activity has a life cycle, which is the series of actions from the beginning of an
Activity to its end. An Activity usually starts with the onCreate() method, which sets up
all the resources required to perform the Activity. An Activity usually ends with the
onDestroy() method, which releases those same resources to free up memory on the
mobile device. Other actions can take place during the life of the Activity, including
onRestart(), onStart(), onResume(), onPause(), and onStop().

l Local variables are declared by variable declaration statements within a method. The
local variable effectively ceases to exist when the execution of the method is
complete.

216

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l The scope of a variable refers to the variable’s visibility within a class. Variables that
are accessible only to a restricted portion of a program such as a single method have
local scope. Variables that are accessible from anywhere in a class, however, have
global scope. If a variable is needed in multiple methods within a class, the global
variable is assigned at the beginning of a class, not within a method. This global
scope variable is called a class variable in Java and can be accessed by multiple
methods throughout the program.

l Every Android phone and tablet includes a built-in music player where you can store
music. You can also write applications that offer music playback capabilities. The media
types an Android device platform supports are determined by the codecs the
manufacturer included in the device. A codec is a computer technology used to compress
and decompress audio and video files.

l In an Android project, music files are typically stored in the res\raw subfolder. In newer
versions of Android, you must create the raw subfolder before storing music files.

l The MediaPlayer class provides the methods to control audio playback on an Android
device. First declare the MediaPlayer class variables, and then assign an instance of the
MediaPlayer class to each variable. Whether the music file is playing is called the state of
the MediaPlayer. The three common states of the audio file include when the music starts,
when the music pauses, and when the music stops.

l The Java property that controls whether a control is displayed on the emulator is the
Visibility property. By default, the Visibility property is set to display any control you
place on the emulator when the program runs. To cause the control not to appear,
you must code the setVisibility property in Java to change the view to invisible. To
change the visibility of the button to reappear, change the setVisibility property to
visible.

Key Terms
class variable—A variable with global scope; it can be accessed by multiple methods
throughout the program.

codec—A computer technology used to compress and decompress audio and video files.

life cycle—The series of actions from the beginning, or birth, of an Activity to its end, or
destruction.

local variable—A variable declared by a variable declaration statement within a method.

MediaPlayer class—The Java class that provides the methods to control audio playback on an
Android device.

onDestroy() method—A method used to end an Activity. Whereas the onCreate() method
sets up required resources, the onDestroy() method releases those same resources to free up
memory.

217

Key Terms

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

scope—The scope of a variable refers to the variable’s visibility within a class.

state—A stage in an Activity’s life cycle that determines whether the Activity is active,
paused, stopped, or dead.

thread—A single sequential flow of control within a program.

Timer—A Java class that creates a timed event when the schedule method is called.

timer—A tool that performs a one-time task such as displaying an opening splash screen,
or performs a continuous process such as a morning wake-up call set to run at regular
intervals.

TimerTask—A Java class that invokes a scheduled timer.

Visibility property—The Java property that controls whether a control is displayed on the
emulator.

Developer FAQs
1. What is the name of the initial window that typically displays a company logo for a

few seconds?

2. Which property of TextView displays a solid color behind the text?

3. Which property of TextView displays an image as a backdrop behind the text?

4. Write a line of code that creates an instance of the TimerTask class with the object
named welcome.

5. Write a line of code that creates an instance of the Timer class with the object named
stopwatch.

6. Write a line of code that would hold the initial opening screen for four seconds.
The Timer object is named stopwatch and the TimerTask object is named
welcome.

7. How long (identify units) does this statement schedule a pause in the execution?

logo.schedule(trial, 3);

8. Write a line of code that closes the resources of the existing Activity.

9. Typically, which method begins an Activity?

10. Typically, which method releases the resources used within an Activity and ends the
Activity?

11. What are the four states of an Activity?

12. Which method follows an onPause() method?

218

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13. Write two statements that initialize the media player necessary to create an
instance of a file named blues residing in your raw folder. Name the variable
mpJazz.

14. Write a statement that is needed to begin the song playing from question 13.

15. Write a statement that is needed to pause the song playing from question 14.

16. Write a statement that is needed to change the text on a button named btJazz to the
text Pause Unforgettable.

17. Write a statement that hides the button in question 16.

18. What is the name of the folder that typically holds media files in the Android
project?

19. Why are class variables sometimes used instead of local variables?

20. What is the most common extension for a song played on an Android device?

Beyond the Book
Using the Internet, search the Web for the answers to the following questions to further your
Android knowledge.

1. Research the four most common music file types played on an Android device. Write
a paragraph about each music file type. Compare the file size, music quality, and usage
of each file type.

2. Using a typical weather app as an example, describe the Android life cycle using each
of the methods and a process that happens within the weather app. (Hint: See the
example using the camera app in the chapter.)

3. At the Android Market, research five music apps. Write a paragraph on the name,
features, and purpose of each app.

4. The MediaPlayer class has a method named seekTo(). Research the purpose of this
method.

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps and
techniques taught within the chapter. Submit the program you create to your instructor. The
level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆⋆

Challenging: ⋆⋆⋆

219

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 6–1: Rhythm of the Strings App ⋆

Requirements Document

Application title: Rhythm of the Strings App

Purpose: A music app compares the music types of different string instruments.

Algorithms: 1. A splash screen opens displaying the strings.png image with the title “Rhythm
of the Strings” for four seconds (Figure 6-31).

2. Two types of string music are available in this app. A country song named
country.mp3 can be played while displaying an image of a banjo. A second
selection of a violin plays sonata.mp3 while displaying an image of a violin
(Figure 6-32).

Conditions: 1. The pictures of the two string instruments (banjo and violin) and the
two music files are provided with your student files.

2. The music should be played and paused by a button control.
When a song is playing, the other button should not be
displayed.

220

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

iS
to
ck
ph
ot
o.
co
m
/B
ria
n
Sw

ee
ne
y

Figure 6-31 Figure 6-32

iS
to
ck
ph
ot
o.
co
m
/R
ic
ha
rd

Ru
di
si
ll
an
d
iS
to
ck
ph
ot
o.
co
m
/F
lo
ria
no

Re
sc
ig
no

221

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 6–2: Guitar Solo App ⋆

Requirements Document

Application title: Guitar Solo App

Purpose: A new guitar performance artist needs an Android app to demo her talent.

Algorithms: 1. The opening screen displays the text “Solo Guitar Demo” and an image of a
guitar (Figure 6-33).

2. A second screen displays the guitar image and a button. When the
user selects the Play Guitar Solo button, a guitar solo plays.

Conditions: 1. The opening screen is displayed for three seconds.

2. Design a layout similar to Figure 6-34.

3. The song can be paused by the user and restarted.

iS
to
ck
ph
ot
o.
co
m
/M

ar
ek

M
ni
ch

Figure 6-33

iS
to
ck
ph
ot
o.
co
m
/M

ar
ek

M
ni
ch

Figure 6-34

222

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 6–3: Serenity Sounds App ⋆⋆

Case Project 6–4: Sleep Machine App ⋆⋆

Requirements Document

Application title: Serenity Sounds App

Purpose: A relaxation app provides songs to allow you to breathe deeply and meditate.

Algorithms: 1. An opening screen displays an image of a relaxing location.

2. The second screen displays two song names with a description about each
song. A button is available that plays each song or pauses each song.

Conditions: 1. An opening image is provided named relax.png in the student files.

2. Listen to each song and create your own description of each song.

3. When a song is playing, the other button should not be
displayed. Each song can play and pause on the
user’s selection.

Requirements Document

Application title: Sleep Machine App

Purpose: The Sleep Machine app plays sounds of the ocean and a babbling brook to help
you sleep.

Algorithms: 1. The opening screen displays an image and the title Sleep Machine for four
seconds.

2. The second screen displays two buttons with two images that allow the
user to select ocean sounds or babbling brook sounds for restful sleeping.

Conditions: 1. Select your own images and sound effects located on free
audio Web sites.

2. When a sound effect is playing, the other button should not
be displayed. Each sound effect can play and pause on
the user’s selection.

223

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 6–5: Ring Tones App ⋆⋆⋆

Case Project 6–6: Your Personal Playlist App ⋆⋆⋆

Requirements Document

Application title: Ring Tones App

Purpose: The Ring Tones app allows you to listen to three different ring tones available
using RadioButton controls for selection.

Algorithms: 1. Create an app that opens with a mobile phone picture and a title for three
seconds.

2. The second screen shows three RadioButton controls displaying
different ring tone titles and a description of each ring tone.

Conditions: 1. Select your own images and free ring tones available by
searching the Web.

2. When a ring tone is playing, the other buttons should
not be displayed. Each ring tone can play and pause
on the user’s selection.

Requirements Document

Application title: Your Personal Playlist App

Purpose: Get creative! Play your favorite three songs on your own personal playlist app.

Algorithms: 1. Create an app that opens with your own picture and a title for six seconds.

2. The second screen shows three buttons displaying different song titles
and an image of the artist or group.

Conditions: 1. Select your own images and music files.

2. When a song is playing, the other buttons should not be
displayed. Each song can play and pause on the user’s
selection.

224

C H A P T E R 6 Jam! Implementing Audio in Android Apps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 7
Reveal! Displaying
Pictures in a Gallery

In this chapter, you learn to:

Create an Android project using a Gallery control

Add a Gallery to display a horizontal list of images

Reference images through an array

Create an ImageAdapter class

Code an OnItemClickListener

Display a custom toast message

Define a Context resource

Understand the use of constructors

Return a value from a method

Determine the length of an array

Assign an ImageView control using setImageResource

Change the scale and layout size of the Gallery

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
n
sh
ot
s
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using multimedia within an Android program brings personality and imagery to your app. Images
are a powerful marketing tool and add visual appeal to any Android application, but it is essential
to create a clean, professional effect with those images. To meet this goal, Android provides a
layout tool called a Gallery view that shows items in a center-locked, horizontally scrolling list.

To demonstrate the visual appeal of a Gallery, you will design a Gallery control displaying animals
on the endangered species list. The Endangered Species application shown in Figure 7-1 allows
users to select the animal they want to symbolically adopt and contribute funds for support groups
that work to protect these iconic animals. Users can then scroll the image Gallery by flicking their
fingers across a horizontal listing of thumbnail-sized pictures of the endangered animals. To view a
larger image, users can tap a thumbnail to display a full-size image below the horizontal list.

Gallery control
displaying thumbnails
of animal images

Figure 7-1 Endangered Species Android app

iS
to
ck
ph
ot
o.
co
m
/K
je
rs
ti
Jo
er
ge
ns
en
,i
St
oc
kp
ho
to
.c
om

/Y
ua
n
Ti
an
,i
St
oc
kp
ho
to
.c
om

/fo
to
tra
v

226

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Android app in Figure 7-1 is more visually appealing than one that simply displays
images of the six endangered species in a tiled layout or grid view. The Endangered
Species app also provides an easy way for a donor to select an animal to symbolically
adopt. The app displays six different animals on the endangered species list, or animals
at risk of becoming extinct. The images include an Asian elephant, mountain gorilla,
snow leopard, proboscis monkey, giant panda, and red panda. When a user scrolls
through the Gallery and selects the snow leopard, for example, a larger image is
displayed with a toast message stating “You have selected picture 3 of the endangered
species,” as shown in Figure 7-2. A different image is displayed each time the user
selects another thumbnail in the Gallery.

Selected image is
centered in the
Gallery control

ImageView control
displays selected picture
of a snow leopard

Custom toast message

Figure 7-2 Snow Leopard image selected in the Gallery

iS
to
ck
ph
ot
o.
co
m
/R
ob
er
to

A.
Sa
nc
he
z,
iS
to
ck
ph
ot
o.
co
m
/S
tu
ar
tB

er
m
an
,i
St
oc
kp
ho
to
.c
om

/K
je
rs
ti
Jo
er
ge
ns
en

227

Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
A Gallery of images is typically used to select a wallpaper image for the background of an Android device.

To create this application, the developer must understand how to perform the following
processes, among others:

1. Add a Gallery control to the emulator.

2. Add XML code for an ImageView control not linked to a particular image.

3. Place six images in a drawable folder.

4. Define an array to hold the image files.

5. Instantiate the Gallery and ImageView controls.

6. Create an ImageAdapter class.

7. Display a custom toast message.

8. Display the selected image.

9. Customize the ImageAdapter class.

10. Define the layout using the getView() method.

Adding a Gallery Control
The Endangered Species app opens with a horizontal scrolling list of animal pictures in a
View container called a Gallery, as shown in Figure 7-1. A View container is a rectangular area
of the screen that displays an image or text object. A View container can include layouts such
as Gallery, GridView, ScrollView, ImageSwitcher, TabHost, and ListView. In Chapter 5, you
used the ListView layout to create a vertical list of San Francisco attractions. In the
Endangered Species project, the Gallery View container displays a horizontal list of objects
with the center item displaying the current image. The user can move through the horizontal
list by scrolling either to the left or the right. The Gallery of photos can be sized as small as
thumbnail images or as large as full-screen images. The photos can be stored in the drawable
folders, in your phone’s storage, or even on a Web site such as Picasa.

The Gallery control is a widget in the Images & Media category of the Palette. The default id
for the Gallery widget is gallery1. To add a Gallery control to main.xml, follow these steps to
begin the application:

1. Open the Eclipse program. Click the New button on the Standard toolbar. Expand
the Android folder and select Android Project. Click the Next button. In the New
Android Project dialog box, enter the Project Name Endangered Species. To save
the project on your USB drive, click to remove the check mark from the Use default
location check box. Type E:\Workspace (if necessary, enter a different drive letter

228

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

that identifies the USB drive). Click the Next button. For the Build Target, select
Android 4.0, if necessary. Click the Next button. For the Package Name, type
net.androidbootcamp.endangeredspecies. Enter Main in the Create Activity
text box.

The new Android Endangered Species project has an Application Name, a Package
Name, and an Activity named Main (Figure 7-3).

2. Click the Finish button. Expand the Endangered Species project in the Package
Explorer. In the res\layout folder, double-click main.xml. Delete the Hello World,
Main! TextView control from the emulator. In the Images & Media category of the
Palette, drag the Gallery control to the emulator.

The Gallery control appears at the top of the emulator (Figure 7-4).

New Android
Project dialog box

Application Name

Package Name

Main Activity

Figure 7-3 Application information for the Endangered Species project

229

Adding a Gallery Control

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding the ImageView Control and Image Files
In the Endangered Species chapter project, the Gallery control displays a horizontal list
of six thumbnail-sized animal photos stored in the drawable-hdpi folder. When the user
taps one of these images, a full-size image appears in an ImageView control below the
Gallery control, as shown in Figure 7-2. Typically, you add an ImageView control by
dragging the control onto the emulator. A dialog box automatically opens requesting
which image file in the drawable folders should be displayed. In the case of the chapter
project, an image appears in the ImageView only if the user taps the thumbnail image
in the Gallery. Otherwise, no image should appear in the ImageView control. To
prevent an image from being assigned to (and displayed in) the ImageView control, you
must enter the XML code for the ImageView control in the main.xml file. To add the
XML code for the ImageView control named imgAnimal and add the six image files to
the drawable folder, follow these steps:

1. Click the main.xml tab at the bottom of the window to display the XML code. By
default, LinearLayout is set, followed by the code for the Gallery control. On the line
below the last line of the Gallery XML code, press the Enter key to insert a blank line
and type the following custom XML code on Line 12 using auto-completion as much
as possible:

main.xml tab

Palette

Images
& Media
category

Gallery
control

Figure 7-4 Gallery control

230

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

<ImageView

android:id="@+id/imgAnimal"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

The ImageView control is coded in the main.xml file (Figure 7-5).

2. To add the six image files to the drawable folder, if necessary, copy the student files to
your USB drive. Open the USB folder containing the student files. In the Package
Explorer, expand the drawable-hdpi folder in the res folder. Delete the file named
ic_launcher.png (the Android logo). To add the six image files to the drawable-hdpi
resource folder, drag the elephant.png, gorilla.png, leopard.png, monkey.png,
panda.png, and redpanda.png files to the drawable-hdpi folder until a plus sign pointer
appears. Release the mouse button. If necessary, click the Copy files option button,
and then click the OK button.

Copies of the six files appear in the drawable-hdpi folder (Figure 7-6).

ImageView
XML code

Figure 7-5 ImageView XML code

231

Adding a Gallery Control

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
If you are creating an Android application that can be installed on a variety of Android platforms, it is best to
create high-, medium-, and low-density photos. Typically, you should provide alternative layouts for some of
the different screen sizes and alternative bitmap images for different screen densities. At runtime, the
system uses the appropriate resources for your application based on the generalized size or density of
the current device screen.

Creating an Array for the Images
Before the images can be displayed in the Gallery control, the images in the drawable
folder must be referenced in the code and assigned to an array. By using an array
variable, which can store more than one value, you can avoid assigning a separate
variable for each image in the folder. Arrays provide access to data by using a numeric
index, or subscript, to identify each element in the array. In the chapter project, the
images are assigned to an integer array named Animals and each image is associated
with an integer value. For example, the first image of the elephant is assigned to the
subscript of 0, as shown in Table 7-1. Typically an array is used to assign values to a
Gallery control that has multiple items.

Six image files placed in
drawable-hdpi folder

Figure 7-6 Images copied

232

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Main.java, the Animals array and ImageView control are declared as class-level variables
because they are referenced in multiple methods throughout the application. Recall that
class-level variables are accessed from anywhere within a Java class. The array is available
throughout the entire Activity. To declare the Animals array and ImageView control in
Main.java, follow these steps:

1. Save your work and then close the main.xml tab. Expand the src and
net.androidbootcamp.endangeredspecies folders, and then double-click Main.java to
open its code window. Click at the end of the public classMain extends Activity { line, press
the Enter key, and type the following code to create the Animals array using auto-
completion as much as possible:

Integer[] Animals = { R.drawable.elephant, R.drawable.gorilla, R.drawable.leopard,
R.drawable.monkey, R.drawable.panda, R.drawable.redpanda };

The Animals array references the images stored in the drawable folder
(Figure 7-7).

2. Press the Enter key. To declare ImageView as a class variable, type ImageView
imageView;, point to ImageView, and then click Import ‘ImageView’ (android.widget).
Press the Enter key.

Element of Array Image File

Animals[0] elephant.png

Animals[1] gorilla.png

Animals[2] leopard.png

Animals[3] monkey.png

Animals[4] panda.png

Animals[5] redpanda.png

Table 7-1 Animals array

Animals
array

Figure 7-7 Animals array declared

233

Creating an Array for the Images

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ImageView is referenced as a class variable (Figure 7-8).

Instantiating the Gallery and ImageView Controls
The Gallery and ImageView controls in main.xml must be instantiated in the onCreate()
method of Main.java. The first Gallery control in a project is named gallery1 by default. The
code to instantiate the Gallery assigns the control created in main.xml the name gallery1, as
shown in the following code syntax:

Code Syntax

Gallery ga = (Gallery)findViewById(R.id.gallery1);

To instantiate the Gallery and ImageView controls, follow these steps:

1. To instantiate the Gallery, in the onCreate() method of Main.java, click at the end of
the setContentView(R.layout.main); line, press the Enter key, type Gallery ga =
(Gallery)findViewById(R.id.gallery1);, point to Gallery, and then click Import
‘Gallery’ (android.widget).

The Gallery control is instantiated (Figure 7-9).

ImageView
initialized

Figure 7-8 ImageView referenced

Instantiates
Gallery

Figure 7-9 Gallery control is instantiated

234

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Press the Enter key. To instantiate the ImageView that is assigned as a class variable,
type imageView = (ImageView)findViewById(R.id.imgAnimal);.

The ImageView control is instantiated (Figure 7-10).

IN THE TRENCHES
Another type of View control called GridView displays items in a two-dimensional, scrollable grid. For
example, an app can display three rows of four images each in a grid to represent the top 12 selling Android
phones on the market, and then users can scroll over the grid to select an image of their favorite phone.
If more phone images are added to the grid, the GridView control automatically becomes scrollable, allowing
users to view every image in the grid.

Using a setAdapter with an ImageAdapter
In Chapter 5, an adapter was used to display a ListView control. Similarly, a setAdapter
provides a data model for the Gallery layout. The Gallery data model functions as a
photo gallery in touch mode. The following code syntax shows how to instantiate a
custom BaseAdapter class called ImageAdapter and apply it to the Gallery using
setAdapter():

Code Syntax

ga.setAdapter(new ImageAdapter(this));

After the ImageAdapter is instantiated, the ImageAdapter class must be added to
extend the custom BaseAdapter class. Using controls such as the Gallery, ListView,
and Spinner, the adapter binds specific types of data and displays that data in a
particular layout. To instantiate the ImageAdapter class for the Gallery control, follow
these steps:

Instantiates
ImageView

Figure 7-10 ImageView control is instantiated

235

Using a setAdapter with an ImageAdapter

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Press the Enter key and type ga.setAdapter(new ImageAdapter(this));. A red error
line appears under ImageAdapter. Instead of automatically creating the class, a
custom ImageAdapter class is added in the next step.

The ImageAdapter is coded for the Gallery control. A red error line appears below
ImageAdapter (Figure 7-11).

2. To add an ImageAdapter class that extends the BaseAdapter custom class, click after
the first closing brace at the end of the code. Press the Enter key and type public class
ImageAdapter extends BaseAdapter { . Press the Enter key, and a closing brace
appears. Point to BaseAdapter and click Import ‘BaseAdapter’ (android.widget). Point
to ImageAdapter in the same line and click Add unimplemented methods. Point to
ImageAdapter in the ga.setAdapter(new ImageAdapter (this)); line and select Create
constructor ‘ImageAdapter(Main)’.

The ImageAdapter class is coded (Figure 7-12). The methods within the ImageAdapter
are auto-generated.

ImageAdapter
class referenced

Figure 7-11 Instance of the ImageAdapter class

236

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding the OnItemClickListener
Like the OnClickListener used for a Button control in previous chapter projects, the
OnItemClickListener awaits user interaction within the Gallery control. When the
user touches the Gallery display layout, the OnItemClickListener processes an event
called onItemClick. The onItemClick method defined by OnItemClickListener provides
a number of arguments, which are listed in the parentheses included in the line of
code. All three controls—ListView, GridView, and Gallery—enable the Android device
to monitor for click events using the OnItemClickListener and onItemClick
commands. The following code syntax shows how to use onItemClick in the chapter
project.

Auto-generated
methods

ImageAdapter class added

Figure 7-12 ImageAdapter class

237

Coding the OnItemClickListener

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Code Syntax

ga.setOnItemClickListener(new OnItemClickListener() {
@Override
public void onItemClick(AdapterView<?> arg0,

View arg1, int arg2, long arg3) {

}
}

In this code syntax example, ga is the instance of the Gallery control. The OnItemClickListener
executes the onItemClick method as soon as the user touches the Gallery control. The
onItemClick method has four arguments. Table 7-2 describes the role of the four arguments
in the onItemClick method.

Users can change their minds more than once when selecting picture images in the Gallery.
The onItemClick method responds an unlimited number of times throughout the life of the
class based on the user’s interaction with the Gallery control. To code the OnItemClickListener
and onItemClick method, follow these steps:

Argument Purpose

AdapterView<?> arg0 The AdapterView records “where” the user actually touched the
screen in the argument variable arg0. In other words, if the app
has more than one View control, the AdapterView determines if the
user touched this Gallery control or another control in the
application.

View arg1 The View parameter is the specific View within the item that the
user touched. This is the View provided by the adapter.

int arg2 This is one of the most important portions of this statement in the
chapter project. The arg2 argument is an integer value that holds
the position of the View in the adapter. For example, if the user
taps the gorilla picture, the integer value of 2 is stored in arg2
because the gorilla picture is the second image in the Animals
array.

long arg3 The Gallery control is displayed across one row of the Android
device. The argument arg3 determines the row id of the item that
was selected by the user. This is especially useful for a GridView
control that has multiple rows in the layout.

Table 7-2 Arguments in the onItemClick method

238

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. In Main.java, press the Enter key after the ga.setAdapter command line. To set up the
OnItemClickListener, type ga.setOnItemClickListener(new OnItemClickListener() {.
Press the Enter key, and a closing brace appears. A red error line appears under
OnItemClickListener. Point to OnItemClickListener and import the ‘OnItemClickListener’
(android.widget.AdapterView). After the closing brace, type a closing parenthesis and a
semicolon to complete the statement.

The Gallery OnItemClickListener awaits user interaction. A red error line appears
below OnItemClickListener (Figure 7-13).

2. To add the onItemClick method within the OnItemClickListener, point to the
red error line under the OnItemClickListener and select Add unimplemented
methods.

The onItemClick method stub appears automatically (Figure 7-14).

Closing brace, parenthesis,
and semicolon

OnItemClickListener()

Figure 7-13 Gallery OnItemClickListener

239

Coding the OnItemClickListener

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding a Custom Toast Notification
A toast notification in the Endangered Species program provides feedback as to which animal
image is selected. When the toast message is shown to the user, it floats over the application
so it will never receive focus. In earlier chapters, you entered a toast notification displaying a
temporary message in this form:

Toast.makeText(Main.this, "A typical Toast message", Toast.LENGTH_SHORT).show();

In the Endangered Species project, the toast notification message is different in two
ways. First, the toast message in the Gallery control appears in the onItemClick
method that is executed only when the user makes a selection. Because the toast
notification is not used directly in the Main Activity, the reference to Main.this in the
toast statement creates an error. To use a toast message within an onItemClick
method, considered an AlertDialog class, you must replace Main.this with a Context
class called getBaseContext(). In Android programs, you can place the getBaseContext()
method in another method (such as onItemClick) that is triggered only when the user
touches the Gallery control. If you do, the getBaseContext() method obtains a Context
instance.

A second difference is that the toast message includes a variable. The variable indicates which
image number is selected in the Animals array. Figure 7-15 shows the message when the user
selects the gorilla.

onItemClick
auto-generated
method stub

Figure 7-14 The onItemClick method

240

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice that even though the gorilla is in position Animals[1], the custom toast message states
“You have selected picture 2 of the endangered species”. Array position 1 is really the
second image because the array values begin with 0. The value of 1 is added in the toast
message shown in the following code syntax to the integer position value of arg2. The arg2
argument is an integer value that holds the position number of the View in the adapter
that was an argument of the onItemClick() method. The position identifies the image
placement in the array.

Code Syntax

Toast.makeText(getBaseContext(), "You have selected picture " + (arg2 + 1)
+ " of the endangered species", Toast.LENGTH_SHORT).show();

Gorilla image
selected in the
Gallery

Full-size gorilla
image

Custom toast
message

Figure 7-15 Toast message displayed when user selects the gorilla image

iS
to
ck
ph
ot
o.
co
m
/R
ob
er
tI
ce
,i
St
oc
kp
ho
to
.c
om

/R
ob
er
to

A.
Sa
nc
he
z,
iS
to
ck
ph
ot
o.
co
m
/S
tu
ar
tB

er
m
an

241

Coding a Custom Toast Notification

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To code the custom toast message that includes a getBaseContext() method and variables,
follow this step:

1. Save your work. In Main.java, click the blank line after the first TODO comment
in the code to add the custom toast message. Use auto-completion to type Toast.
makeText(getBaseContext(), “You have selected picture ” + (arg2 + 1) and
press the Enter key. Continue typing on the next line: + “ of the endangered
species”, Toast.LENGTH_SHORT).show();. If necessary, import the ‘Toast’
(android.widget).

The custom toast message provides feedback to the user of his or her picture selection
from the Gallery (Figure 7-16).

Displaying the Selected Image
When the user touches an animal picture in the Gallery, a toast message appears with an
ImageView control displaying the selected image. The ImageView control was previously
coded in main.xml, though a specific image was not selected in the code. Instead, the full-
sized picture in the ImageView control should be displayed dynamically to the user. An
ImageView control is defined either by the android:src attribute in the XML element or by
the setImageResource(int) method. The setImageResource method indicates which image is
selected, as shown in the following code syntax:

Code Syntax

imageView.setImageResource(Animals[arg2]);

Animals is the name of the array and arg2 represents the index of the array. The argument
arg2 is defined as the position of the selected image in the Gallery. To assign a picture to the
ImageView control, follow this step:

1. In Main.java, click at the end of the line you just entered, if necessary (the second line
of the toast statement), and press the Enter key. To display the selected image, type
imageView.setImageResource(Animals[arg2]);.

The selected image is displayed in the ImageView with the use of setImageResource
(Figure 7-17).

Custom toast
message within
onItemClick()

Figure 7-16 Custom toast message

242

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
An image can also be placed on the surface of a Button control by the android:src attribute in the XML code
or by the setImageResource(int) method of a button.

Customizing the ImageAdapter Class
At this point in the chapter project code, the Gallery and ImageView are initialized, the
onClickListener awaits interaction, the toast message and ImageView are prepared for
display, but the ImageAdapter class is simply a set of auto-generated method stubs. The
ImageAdapter class was called with this line of code: ga.setAdapter(new ImageAdapter
(this));. Recall that the ImageAdapter class determines the layout of the Gallery. The context
and images of the Gallery need to be referenced within the ImageAdapter class. The task to
complete inside the ImageAdapter class is to manage the layout of the Gallery and connect
the data sources from the array for display within the Gallery control.

Defining the Context of the ImageAdapter Class
The ImageAdapter class must provide the information to set up the Gallery with data and
specifications necessary for the display. A Context variable is used to load and access resources
for the application. In the following code syntax, the class variable named context is initialized
so it can hold each image in the Gallery temporarily before it is displayed. The ImageAdapter
constructor is changed from Main to handle the Context resources necessary for the Gallery.
Constructors are used to initialize the instance variables of an object. This command is called a
constructor because it constructs the values of data members of the class.

Code Syntax

private Context context;
public ImageAdapter(Context c){

// TODO Auto-generated constructor stub
context=c;

}

setImageResource
displays the selected
image

Figure 7-17 ImageView control displays selected Gallery picture

243

Customizing the ImageAdapter Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This ImageAdapter class constructor is where the Context for an ImageAdapter instance is
defined. To define the Context for the ImageAdapter, follow these steps:

1. Save your work. Click the blank line after the public class ImageAdapter extends
BaseAdapter { line. Initialize the Context variable by typing private Context context;,
point to Context, and select Import ‘Context’ (android.content).

The Context variable named context is initialized (Figure 7-18).

2. To change the ImageAdapter constructor to define the Context in the next statement,
change public ImageAdapter(Main main){ on the next line to public ImageAdapter
(Context c) {. At the end of the TODO comment on the next line, press the Enter key
to insert a blank line. Type context=c;.

The ImageAdapter constructor for the ImageAdapter class holds the Context
(Figure 7-19).

Calculating the Length of an Array
The next method in the ImageAdapter class is the getCount() method. When the
ImageAdapter class is called, the getCount() method determines how many pictures should
be displayed in the Gallery control. It does so by finding the length of the Animals array,

context is initialized in
the ImageAdapter class

Figure 7-18 Context variable

ImageAdapter is
customized to hold
Context resources

Figure 7-19 ImageAdapter constructor

244

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

which references the pictures of the endangered species. To determine the length of
an array, Java provides a method named length() that returns an integer value of any
given string or array. For example, if a variable named phone is assigned the text Android,
the integer phoneLength is assigned the integer value of 7, representing the length of
the word Android.

String phone = "Android";
int phoneLength = phone.length();

The length of an array is determined by the number of elements in the array. The length
of the Animals array is an integer value of 6. The getCount() method must return the
number of elements in the Gallery in order to create the correct layout for the
Gallery control. To do so, include in the getCount() method a return statement as
shown in the following code syntax:

Code Syntax

return Animals.length;

A Java method is a series of statements that perform some repeated task. In the case of
the chapter project, the method is called within the ImageAdapter class. The purpose of
the getCount() method is to return the number of elements in the array. You declare a
method’s return type in its method declaration. In the following syntax, the declaration statement
public int getCount() includes int. The data type int indicates that the return data type is an
integer. Within the body of the method, you use the return statement to return the value.
Any method declared void does not return a value because it returns to the method normally.
Therefore, no return statement is necessary. Any method that is not declared void must contain
a return statement with a corresponding return value such as the length of an array.

Code Syntax

public int getCount() {
// TODO Auto-generated constructor stub

return Animals.length;
}

To return the length of an array from the getCount() method, follow this step:

1. In the return statement for public int getCount(), change the return type from return
0; to return Animals.length;.

The getCount() method returns the length of the Animals array (Figure 7-20).

245

Calculating the Length of an Array

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
The length of an array is one more than the maximum subscript number.

Coding the getView Method
The most powerful method in the ImageAdapter class is the getView() method. The getView()
method uses Context to create a new ImageView instance that temporarily holds each image
displayed in the Gallery. In addition, the ImageView is scaled to fit the Gallery control and
sized according to a custom height and width. The following code syntax shows how the
chapter project uses the getView() method:

Code Syntax

public View getView(int arg0, View arg1, ViewGroup arg2){
// TODO Auto-generated method stub
ImageView pic = new ImageView(context);
pic.setImageResource(Animals[arg0]);
pic.setScaleType(ImageView.ScaleType.FIT_XY);
pic.setLayoutParams(new Gallery.LayoutParams(200,175));
return pic;

}

In the getView() method, notice that a return type of View is expected (in the View
convertView argument). Recall that a View occupies a rectangular area on the screen and is
responsible for drawing the Gallery component. When pic is returned at the end of the
method, it includes a scaled, resized image, ready to display in the Gallery control.

In the getView() method, an instance of an ImageView control named pic is established in the
ImageView pic = new ImageView(context); Java code. On the next line, pic is given an image to
display in the Gallery as defined by a position in the Animals array. As each position is passed to
the getView() method, the ImageView control changes to hold each of the images referenced in
the Animals array. The setImageResource method assigns an image from the drawable folder to

Returns the length
of the Animals array

Figure 7-20 Length of the Animals array

246

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the ImageView control. After an animal picture is assigned to pic, the layout of the ImageView
control needs to be established. In the next statement, setScaleType scales the image to the bounds
of the ImageView. Scaling keeps or changes the aspect ratio of the image within the ImageView
control. When an image is scaled, the aspect ratio is changed; for example, the picture may be
stretched horizontally, but not vertically. Notice that the ScaleType is set to the option FIT_XY.
Several ScaleType options are available, but the most popular options are listed in Table 7-3.

After the image is scaled, the Gallery images are resized to fit the custom layout. The design of
the Endangered Species app calls for small thumbnail-sized images, so the setLayoutParams
are set to the Gallery.LayoutParams(200,175). The first value, 200, represents the number of
pixels across the width of the image. The second value, 175, determines a height of 175 pixels.
If you want to display a large Gallery, the setLayoutParams can be changed to larger
dimensions. The last statement in the getView() method (return pic;) must return the
instance of the ImageView control named pic to display in the Gallery control. To code the
getView() method, follow these steps:

1. Scroll down to the statement beginning with public View getView. Click at the end of
the TODO comment and press the Enter key to insert a blank line. To create an
ImageView control that holds the images displayed in the Gallery, type ImageView
pic = new ImageView(context);.

An instance of ImageView named pic is created (Figure 7-21).

ScaleType option Meaning

ImageView.ScaleType.CENTER This option centers the image within the View type, but does
not change the aspect ratio (no scaling).

ImageView.ScaleType.CENTER_CROP This option centers the image within the View type and scales
the image uniformly, maintaining the same aspect ratio.

ImageView.ScaleType.FIT_XY This option scales the image to fit the View type. The aspect
ratio is changed to fit within the control.

Table 7-3 Popular ScaleType options

pic in this statement
is an instance of
ImageView

Figure 7-21 Code for the ImageView control

247

Coding the getView Method

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Press the Enter key. To assign each of the images referenced in the Animals array, type
pic.setImageResource(Animals[arg0]);.

The instance of pic holds each of the images within the array (Figure 7-22).

3. Press the Enter key. To set the scale type of the ImageView control, type
pic.setScaleType(ImageView.ScaleType.FIT_XY);.

The scale type for the ImageView pic is set to FIT_XY (Figure 7-23).

4. Press the Enter key. To resize the images displayed in the Gallery control, type
pic.setLayoutParams(new Gallery.LayoutParams(200,175));.

The size of the images displayed in the Gallery is set to 200 pixels wide by 175 pixels tall
(Figure 7-24).

5. To return pic to the Main Activity, change the return null; statement to
return pic;.

The pic instance is returned to the Main Activity (Figure 7-25).

Each image referenced
in the Animals array is
displayed in pic

Figure 7-22 Assigning images in the Animals array to the pic ImageView control

ImageView control
is scaled to fit

Figure 7-23 Setting the scale type for the ImageView control

Gallery images
are resized

Figure 7-24 Resizing the Gallery images

248

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
Aspect ratio is the fractional relation of the width of an image compared with its height. The two most common
aspect ratios are 4:3 and 16:9 in HDTV. Keeping the aspect ratio means that an image is not distorted from its
original ratio of width to height.

Return variable pic

Figure 7-25 Complete code of Main.java

249

Coding the getView Method

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Running and Testing the Application
It is time to see your finished product. Click Run on the menu bar, and then select Run to save
and test the application in the emulator. A dialog box requesting how you would like to run
the application opens the first time the application is executed. Select Android Application
and click the OK button. Save all the files in the next dialog box, if necessary, and unlock the
emulator. The application opens in the emulator window where you can touch the Gallery to
view the images and select an image, as shown in Figure 7-1 and Figure 7-2.

Wrap It Up—Chapter Summary
Many Android applications display a Gallery to easily accommodate viewing a large amount
of pictures. Creating a Gallery in this chapter to dynamically display images from an array
provided experience with using a second class, a custom toast message, methods with return
variables, and the length of an array. Creating a second class called the ImageAdapter class
provided the customization for the Gallery layout.

l A View container is a rectangular area of the screen that displays an image or text object.
It can include various layouts, including a Gallery layout, which displays a horizontal list
of objects. Users can scroll the Gallery list to select an object such as a photo and display it
in another control such as an ImageView control.

l To display an image in an ImageView control only if the user selects the image in the
Gallery, you must enter XML code for the ImageView control in main.xml.

l An array variable can store more than one value. Arrays provide access to data by using a
numeric index, or subscript, to identify each element in the array. For example, the first
element in the array is assigned to the subscript of 0. An array can assign more than one
image to a Gallery control to eventually display only one image.

l A setAdapter provides a data model for the Gallery layout. With the Gallery control, the
adapter binds certain types of data and displays that data in a specified layout.

l Like the OnClickListener used for a Button control, the OnItemClickListener waits for
user interaction in a Gallery control. When the user selects an item in the Gallery, the
OnItemClickListener processes an onItemClick event, which includes four arguments.
The arg2 argument is an integer value that contains the position of the View in the
adapter. For example, if the user taps the second image in the Gallery, the integer value of
2 is stored in arg2.

l By including a toast notification in the onItemClick method, you can display a message
indicating which image is selected in a Gallery control. The message can include a variable
to display the number of the image selected in the Gallery. The toast message can float
over the other controls so it never receives focus.

250

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l Because the toast notification is not used directly in the Main Activity, you must replace
Main.this in the onItemClick method with a Context class called getBaseContext(). In
Android programs, you use the getBaseContext() method to obtain a Context instance.
This Context instance is triggered only when the user touches the Gallery control.

l To display in an ImageView control the image selected in the Gallery, you use the
setImageResource() method with an int argument. The setImageResource
command inserts an ImageView control and the int argument specifies which image
is selected for display. If you are using an array to identify the images, you can
use arg2 as the int argument because it represents the position of the selected image
in the Gallery.

l The ImageAdapter class must provide information to set up the Gallery so it can
display the appropriate images. You use the Context class to load and access
resources for the application. A class variable can hold each image in the Gallery
temporarily before it is displayed. To handle the Context resources necessary for the
Gallery, you use the ImageAdapter constructor. A constructor can initialize the
instance variables of an object. In other words, it constructs the values of data
members of the class. You define the Context for an ImageAdapter instance in the
ImageAdapter class constructor.

l The chapter project uses the getCount() method to determine how many pictures to
display in the Gallery control. It does so by referencing the array specifying the images for
the Gallery. To determine the length of an array, Java provides a method named length()
that returns an integer type value of any given string or array. The length of an array is
determined by the number of its elements. The getCount() method uses length() to
return the number of elements in the Gallery.

l The declaration statement public int getCount() indicates that the return data type (int) is
an integer. Because the getCount() method is not declared void, it must contain a return
statement with a corresponding return value such as the length of an array.

l In the chapter project, the getView() method uses Context to create a new ImageView
instance to temporarily hold each image displayed in the Gallery. The getView() method
also contains statements that scale the ImageView to fit the Gallery control and a specified
height and width.

Key Terms
constructor—A part of the Java code used to initialize the instance variables of an object.

Gallery—A View container that displays a horizontal list of objects with the center item
displaying the current image.

getBaseContext()—A Context class method used in Android programs to obtain a Context
instance. Use getBaseContext() in a method that is triggered only when the user touches the
Gallery control.

251

Key Terms

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

method—In Java, a series of statements that perform some repeated task.

onItemClick—An event the OnItemClickListener processes when the user touches the
Gallery display layout. The onItemClick method is defined by OnItemClickListener
and sends a number of arguments in the parentheses included within the line
of code.

setAdapter—A command that provides a data model for the Gallery layout, similar to an
adapter, which displays a ListView control.

View—A rectangular container that displays a drawing or text object.

Developer FAQs
1. Which Android control displays a horizontal listing of images?

2. In which category on the Palette is the Gallery control located?

3. Name three locations where photos that are used in the Android environment can be
stored.

4. Why was the ImageView control coded in XML code in the chapter project instead of
dragging the ImageView control onto the emulator?

5. Name six View containers.

6. Write a line of code that uses an instance of a Gallery control named gaLayout in a
new ImageAdapter class using setAdapter().

7. Write a line of code that creates a reference array named Games for the images
named worldofwarcraft, nflmadden, halo, and fable.

8. What are the array name and index of halo in question 7?

9. What is the array length of the Games array in question 7?

10. Write a line of code that determines the length of the Games array from question 7
and assigns the value to an int variable named numberOfGames.

11. Write a line of code that assigns dentalLength to the length of a string named dental.

12. What is the purpose of the argument arg2 in the chapter project?

13. In the chapter project, if the user selects red panda, what is the value of arg2?

14. Write a custom toast message that resides within an onItemClick() method and
states You have selected picture 4 of the political photos when arg2 is 4.

15. What do the numbers in this statement represent?

pic.setLayoutParams(new Gallery.LayoutParams(300,325));

16. What does the aspect ratio 3:2 mean?

252

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17. In the following method, what does int (integer) represent?
public int getCount() {

return Soccer.length;
}

18. What would be returned in the method in question 17 if the Soccer array has the
maximum index of 22?

19. What term does the following define? Constructs the values of data members of
the class

20. Write a statement that sets the scale type to CENTER for an ImageView instance
named tower.

Beyond the Book
Using the Internet, search the Web for the answers to the following questions to further your
Android knowledge.

1. Research the GridView Android image layout. Find an image from a Web site that
displays a GridView with images and provide a URL of that Web site.

2. Name five types of apps not discussed in this chapter and how they would each use a
Gallery control.

3. An excellent Web site that provides up-to-date information about the Android world
can be found at http://android.alltop.com. Read an article that interests you and write
a summary of that article of at least 100 words.

4. One of the major issues in the Android world is the multiple operating systems
currently running on Android devices. Write a one-page report about the issue of
upgrading Android devices to the newest OS available.

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps and
techniques taught within the chapter. Submit the program you create to your instructor. The
level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆ ⋆

Challenging: ⋆ ⋆ ⋆

253

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://android.alltop.com

Case Project 7–1: Power Tools App ⋆

Requirements Document

Application title: Power Tools App

Purpose: A power tools company would like to display its newest line of power tools in a
Gallery layout.

Algorithms: 1. The opening screen displays four new power tools in a Gallery control (Figure 7-26).

2. When the user selects a tool image in the Gallery control, a full-size image
appears below the Gallery. A toast message states which tool image the user
selected (Figure 7-27).

Conditions: 1. The pictures of the four power tools are provided with your student files with the
names powerdrill, powersaw, powerscrewdriver, and powerwasher.

2. Display each image in the Gallery with the size 250, 190.

Figure 7-26 Figure 7-27

iS
to
ck
ph
ot
o.
co
m
/P
hi
lip
p
Ho
fs
tä
tte
r,
iS
to
ck
ph
ot
o.
co
m
/J
ill
Fr
om

er
,i
St
oc
kp
ho
to
.c
om

/A
rth
ur

Ca
rlo

Fr
an
co

iS
to
ck
ph
ot
o.
co
m
/M

us
ta
fa

Ar
ic
an
,i
St
oc
kp
ho
to
.c
om

/P
hi
lip
p
Ho
fs
tä
tte
r,
iS
to
ck
ph
ot
o.
co
m
/J
ill
Fr
om

er

254

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 7–2: S.P.C.A. Rescue Shelter App ⋆

Requirements Document

Application title: S.P.C.A. Rescue Shelter App

Purpose: Your local S.P.C.A. needs an app to display the dogs in need of a home.

Algorithms: 1. The screen displays six dogs from the shelter in a large Gallery control
(Figure 7-28).

2. When the user selects a thumbnail image of a dog, a full-size image
appears below the Gallery (Figure 7-29).

Conditions: 1. The pictures of the six dogs eligible for adoption are provided with your
student files with the names dog1, dog2, dog3, dog4, dog5, and dog6.

2. Display each image in the Gallery with the size 300, 250.

Figure 7-28 Figure 7-29

iS
to
ck
ph
ot
o.
co
m
/J
oe

Po
ta
to
Ph
ot
o,
iS
to
ck
ph
ot
o.
co
m
/G
re
g
Sa
ch
s,
iS
to
ck
ph
ot
o.
co
m
/s
te
ve
da
ng
er
s

iS
to
ck
ph
ot
o.
co
m
/G
re
g
Sa
ch
s,
iS
to
ck
ph
ot
o.
co
m
/s
te
ve
da
ng
er
s,
iS
to
ck
ph
ot
o.
co
m
/N
ic
k
M
.D

o

255

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 7–3: Four Seasons App ⋆ ⋆

Case Project 7–4: Car Rental App ⋆ ⋆

Requirements Document

Application title: Four Seasons App

Purpose: The Four Seasons app displays a beautiful image of each of the four seasons
and allows you to select your favorite season of the year.

Algorithms: 1. The opening screen displays the four season images in a Gallery control.

2. When the user selects a season image, a full-size image appears below the
Gallery. Using If statements, a toast message states that your favorite
season is [season], such as Your favorite season is spring.

Conditions: 1. The pictures of the four seasons are provided with your student files with
the names spring, summer, fall, and winter.

2. Display each image in the Gallery with the size 188, 220.

Requirements Document

Application title: Car Rental App

Purpose: A car rental company would like to display its car rental choices in a Gallery.

Algorithms: 1. The opening screen displays images of six rental car models in a Gallery
control.

2. When the user selects a car thumbnail image, a full-size image appears
below the Gallery. Using an If statement, a toast message states the
types of car and cost of each rental car.

Conditions: 1. Locate six rental car images on the Internet.

2. Create a custom layout using the CENTER scale type.

256

C H A P T E R 7 Reveal! Displaying Pictures in a Gallery

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 7–5: Anthology Wedding Photography App ⋆ ⋆ ⋆

Case Project 7–6: Personal Photo App ⋆ ⋆ ⋆

Requirements Document

Application title: Anthology Wedding Photography App

Purpose: Anthology Wedding Photography would like to display a sample of its work
with 10 wedding images in a Gallery.

Algorithms: 1. Create a Gallery that displays 10 wedding photos.

2. When the user selects a specific wedding image in the Gallery, a large
image appears with a custom toast message that displays Anthology

Wedding Photo and the image number.

3. A text line appears at the bottom of the screen: Contact us at

anthology@wed.com.

Conditions: 1. Select wedding images from the Internet.

2. Use a layout of your choice.

Requirements Document

Application title: Personal Photo App

Purpose: Create your own photo app with eight images of your family and friends in a
Gallery control.

Algorithms: 1. Create a Gallery that displays eight images of your friends and family.

2. When the user selects a specific thumbnail image in the Gallery, a large
image appears with a custom toast message that states the first name
of the pictured person.

Conditions: 1. Select your own images.

2. Use a layout of your choice.

257

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mailto:anthology@wed.com

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 8
Design! Using a
DatePicker on a Tablet

In this chapter, you learn to:

Create an Android project on a tablet

Understand tablet specifications

Follow design principles for the Android tablet

Add a second Android Virtual Device

Add a custom launcher and tablet theme

Understand the Calendar class

Use date, time, and clock controls

Determine the system date

Display a DatePicker control

Launch a dialog box containing a DatePicker control

Code an onDateSetListener method to await user interaction

Determine the date entered on a calendar control

Test an application on a tablet emulator

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
n
sh
ot
s
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The explosion of the Android market is not limited to the phone platform. Android
tablet sales are successfully competing with the Apple iPad as well, proving that
consumers are ready for a tablet environment. Now more than ever, mobile designers
are being asked to create experiences for a variety of tablet devices. In today’s post-PC
world, the tablet market provides the mobility and simplicity users demand for
connecting to the Internet, playing games, using Facebook, checking e-mail, and more.
Lower price points and a large app marketplace are driving growth in the Android
tablet market. To understand the process of designing an application on the Android
tablet, you design a calendar program that books a reservation on a deep sea fishing
boat in Hawaii called Marlin Adventures. The Marlin Adventures application shown in
Figure 8-1 provides information about one of its fishing adventures located in Kona,
Hawaii. This single-screen experience could be part of a larger app featuring fishing
trips throughout the world.

The Android tablet app in Figure 8-1 appears on a 10.1-inch display. When the user
makes a reservation by touching the button control, a floating dialog box opens with a
DatePicker calendar control, as shown in Figure 8-2. When the date is set by the user, a
TextView control confirms the reservation for the deep sea fishing day trip, as shown in
Figure 8-3.

Figure 8-1 Marlin Adventures Android Tablet app

iS
to
ck
ph
ot
o.
co
m
/M

or
eP
ix
el
s

260

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
The Android platform has been ported to many kinds of devices beyond phones and tablets, such as
toasters, televisions, microwaves, and laptops.

DatePicker control in
a pop-up window on
a tablet

Set button

Figure 8-2 DatePicker calendar control in a dialog box

iS
to
ck
ph
ot
o.
co
m
/M

or
eP
ix
el
s

Reservation
date is set

Figure 8-3 TextView control displays reservation

iS
to
ck
ph
ot
o.
co
m
/M

or
eP
ix
el
s

261

Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To create this application, the developer must understand how to perform the following
processes, among others:

1. Add an Android Virtual Device specifically designed for tablets.

2. Add the images used in this project.

3. Change the theme and icon for the tablet display.

4. Create a custom XML file with a Table layout.

5. Add and initialize the TextView controls and the Button control.

6. Initialize a DatePickerDialog with the present date and listen for the user to select
a date.

7. Return the selected date.

8. Display the selected reservation date in the TextView control.

Designing a Tablet Application
The Android market initially only included mobile phone devices, but the recent
popularity of the tablet device provides a new platform for Android app programming.
The growth of the Android tablet market goes hand in hand with dedicated applications
designed especially for the tablet, not just enlarged versions of a phone app. Native
applications are programs locally installed on a specific platform such as a phone or tablet.
A native application is typically designed for a specific platform such as a phone on a
3-inch screen or a tablet on a 10.1-inch screen. In contrast, an emulated application is
converted in real time to run on a variety of platforms such as a Web page, which can be
displayed on various screen sizes through a browser. A native Android tablet app creates
an optimal user experience based on the most common tablet screen size between
approximately 7 and 10.1 inches, a 1280 × 800 pixel resolution, and a 16:9 screen ratio, as
shown in Figure 8-4. In comparison, an Apple iPad has a 9.7-inch screen, a 1024 × 768
pixel resolution, and a screen ratio of 4:3. If you plan to create apps on multiple platforms,
the different screen specifications will affect your design.

262

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As you consider creating an Android tablet application, remember that tablets are not
simply huge smartphones. Even the primary use of each device is different. A smartphone
is most likely used on the go in a truly mobile fashion to quickly check e-mail, update your
Facebook status, or send a text message between classes or as you run errands. Tablets are
typically used for longer periods of time. This prolonged interaction on tablets is more
involved, with users sitting down at a table in Starbucks, riding a train, or relaxing with the
tablet positioned in their laps while watching a movie. Whereas phone app design relies on
simplicity, a tablet can handle the complexity of more graphics, more text, and more
interaction during longer sessions.

Design Tips for Tablets
As you begin designing an Android app, first consider how the user most likely will interact
with your app. Will the tablet be in his or her lap, held with two hands (games often require
this), or in a tablet stand? Will the user spend seconds, minutes, or hours using your app?

Figure 8-4 Android tablet displays Gallery controls
©
20
11

M
ot
or
ol
a
M
ob
ili
ty
,I
nc
.A

ll
Ri
gh
ts
Re
se
rv
ed
.

263

Designing a Tablet Application

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

What is the optimal way to deliver the content? As you consider the answers to each of these
questions, also keep these design guidelines in mind:

l Keep screens uncluttered and ensure touch controls such as buttons and radio buttons are of
sufficient size. Larger controls are easier to find and enable simpler interaction for the user.

l Focus apps on the task at hand. Keep the design simple. Do not force the user to spend
undue time figuring out how to use the application.

l Resist filling the large screen with “cool” interactions that distract the user without adding
to the quality of the program.

l Use flexible dimension values such as dp and sp instead of px or pt.

l Provide higher resolution resources for screen densities (DPI) to ensure that your app
looks great on any screen size.

l Create a unique experience for both the phone and tablet designs.

l Use larger fonts than with a phone app. Consider printing out your user interface design
to see how it looks.

IN THE TRENCHES
Consumers of all ages are spending more time playing games on tablets. This trend affects the retail market
sales of console-based video games and traditional children’s toys. This shift leaves retailers out of the sales
streams because most digital content is distributed within the different phone platform markets.

Adding an Android Virtual Device for the Tablet
To make sure your Android tablet app deploys to any device in the Android platform, use the
Android Honeycomb 3.0 operating system, which is dedicated to tablet applications. You can
add multiple Android Virtual Devices (AVDs) in Eclipse for your intended device and
platform. Honeycomb was initially designed for the Android Xoom, the first tablet
introduced, but now supports the full range of new Android tablet devices on the market.
Each Android device configuration is stored in AVD.

To use the Honeycomb emulator, you first add the appropriate AVD configuration. To
download the Android Development Tools for Honeycomb 3.0, follow these steps:

1. Open the Eclipse program, click Window on the menu bar, and then click AVD
Manager to open the Android Virtual Device Manager dialog box. Click the New
button to open the Create new Android Virtual Device (AVD) dialog box. To name the
Honeycomb Android emulator, type Honeycomb in the Name text box. To target
your Android app to appear in the Android 3.0 version, select Android 3.0 – API Level
11 in the Target list. (If you do not see Android 3.0 – API Level 11 listed as a target,
install the SDK platform for Android 3.0 by clicking Window and then clicking
Android SDK Manager. Select Android 3.0 and then click Install packages.)

A new AVD named Honeycomb to support tablets using Android 3.0 – API Level 11 is
added to Eclipse (Figure 8-5).

264

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the Create AVD button. The Android Virtual Device Manager dialog box lists
the new AVD Name (Honeycomb) for the Android 3.0 target device along with the
existing IceCream Android 4.0 target device.

The Android Virtual Device Manager dialog box displays both Honeycomb and
IceCream targets (Figure 8-6).

Target is Android 3.0 – API
Level 11

Honeycomb is specially
designed for tablets

Create new Android Virtual
Device (AVD) dialog box

Create AVD button

Figure 8-5 Create new Android Virtual Device (AVD) dialog box

265

Designing a Tablet Application

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating a Tablet App
To create a Honeycomb 3.0 tablet application for the Marlin Adventures app, follow these
steps to begin the application:

1. Close the Android Virtual Device Manager dialog box. Click the New button on the
Standard toolbar. Expand the Android folder and select Android Project. Click
the Next button. In the New Android Project dialog box, enter the Project Name
Marlin Adventures. To save the project on your USB drive, click to remove
the check mark from the Use default location check box. Type E:\Workspace
(if necessary, enter a different drive letter that identifies the USB drive). Click the
Next button. For the Build Target, select Android 3.0. Click the Next button. For
the Package Name, type net.androidbootcamp.marlinadventures. Enter Main
in the Create Activity text box.

The new Android Marlin Adventures tablet project has a Project Name, a Package
Name, and an Activity named Main (Figure 8-7).

Android 3.0 target added

New button
Android Virtual Device
Manager dialog box

Figure 8-6 Android 3.0 AVD is added to create a tablet app

266

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the Finish button. Expand the Marlin Adventures tablet project in the
Package Explorer. Expand the res and layout subfolders and double-click
main.xml to view the Android tablet emulator. Delete the TextView control
Hello World, Main!.

The Android 10.1in WXGA tablet emulator is displayed in main.xml (Figure 8-8).

Minimum SDK is 11 for the
Android 3.0 application

Application Name
is Marlin Adventures

Finish button

Figure 8-7 Application information for the new Android tablet project

267

Designing a Tablet Application

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
The three navigation buttons on the lower-left side of the Android tablet are Back, Home, and Multitasking.
The Back button returns to the previous action. The Home button returns to the default home screen. The
Multitasking button opens a list of the apps that have been used recently.

Setting the Launcher Icon of a Tablet App
The Marlin Adventures deep-sea fishing charter company has an established logo. The Marlin
Adventures logo is displayed as a custom launcher icon in the tablet app. On an Android phone
app, the size of the launcher icon is typically 72 × 72 pixels, but due to the larger real estate
available on the tablet, the preferred launcher icon size should measure 96 × 96 pixels. Microsoft
Paint provides a simple Resize button to change the pixel size of an image.

If you are using a Mac, use the Preview application to resize image files. Click Tools on the
Preview menu bar and then click Adjust Size.

To add the icon and left column image to the folder and to add a customized launcher icon to
the tablet app, follow these steps:

1. To add the custom launcher icon to the tablet project, copy the student files to your
USB drive (if necessary). Open the USB folder containing the student files. In the
Package Explorer, expand the drawable-hdpi folder. Drag the ic_launcher_marlin.png

Multitasking
button

Back
button

Home
button

10.1in WXGA (Tablet)

Android 3.0

Android 3.0

Figure 8-8 Tablet emulator

268

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and marlin.png file to the drawable-hdpi folder until a plus sign pointer appears.
Release the mouse button. Click the OK button in the File Operation dialog box. Click
the default icon ic_launcher.png and press the Delete key, and then click the OK
button to confirm the deletion.

The custom launcher icon image is placed in the drawable-hdpi folder. The image in
the emulator is not updated until the Android Manifest file is changed (Figure 8-9).

2. To change the code in the Android Manifest file so the application displays the
custom icon, double-click the AndroidManifest.xml file in the Package Explorer. Click
the AndroidManifest.xml tab at the bottom of the window. Inside the application
code, click in the line android:icon=“drawable/ic_launcher”. Change the filename
portion from ic_launcher” to ic_launcher_marlin”.

The Android launcher icon is coded in the Android Manifest file (Figure 8-10).

Marlin Adventures logo
and marlin images

Figure 8-9 New launcher icon file

269

Designing a Tablet Application

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Save your work.

Setting a Custom Theme of a Tablet
In the chapter project shown in Figure 8-1, the tablet app opens with a polished entrance
using a Holo.Light theme, which includes a light background with a black status bar at the
bottom of the tablet screen. Android themes are a mechanism for applying a consistent style
to an app or activity. To change the tablet theme, follow these steps:

1. Click the main.xml tab, click the Theme button to display the list of built-in themes,
and then select Theme.Holo.Light.

The Marlin Adventures project uses the Theme.Holo.Light theme (Figure 8-11).

Marlin Adventures Manifest

Opening icon launcher

Figure 8-10 Android Manifest code with new launcher icon file

270

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. To add the selected theme to the Android Manifest file, click the Marlin Adventures
Manifest tab. Inside the Activity code, click at the end of the line android:
label=“@string/app_name” (if a closing bracket > appears at the end of the line, click
to the left of the bracket). Press the Enter key to insert a blank line. Type
android:theme=“@android:style/Theme.Holo.Light”.

The Android theme is coded in the Android Manifest file (Figure 8-12).

main.xml tab

Launcher icon
is displayed

Theme.Holo.Light
selected

Figure 8-11 Custom theme displayed on tablet emulator

271

Designing a Tablet Application

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mailto:theme=%E2%80%9C@android:style/Theme.Holo.Light%E2%80%9D

GTK
Google created an Android Design Web site (http://developer.android.com/design) to assist in best practices
and to set a uniform look and feel across the various Android platforms.

Designing a Tablet Table Layout
In the Marlin Adventures application, two layouts are combined in main.xml to
organize the tablet user interface controls. The Linear layout and the Table layout
create a simple, clean interface on the tablet containing both rows and columns. The
left column described in Table 8-1 uses the Linear layout to display the marlin.png
image. On the right side of Table 8-1, four rows are inserted in a Table layout to
display the title, description, button, and reservation result. (Figure 8-3 shows this
layout with all the design elements.)

Marlin Adventures
Manifest tab

Opening icon
launcher

Theme.Holo.Light
is specified

Figure 8-12 Android Manifest code with new theme

marlin.png image

Title

Day trip description

Reservation button

Display reservation date after selection

Table 8-1 Table layout

272

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com/design

A user interface design layout named TableLayout is composed of TableRow controls—one
for each row in your table in main.xml. In Table 8-1, the layout consists of four rows and one
column. The contents of each TableRow are the view controls that will go in each cell of the
table grid. The TableLayout shown in the following code has four TableRow controls with
either a TextView or Button control within each row:

Code Syntax

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

<ImageView />
<TableLayout

<TableRow>
<TextView />

</TableRow>
<TableRow>

<TextView />
</TableRow>
<TableRow>

<Button />
</TableRow>
<TableRow>

<TextView />
</TableRow>

</TableLayout>
</LinearLayout>

To create additional columns, you add a view to a row. Adding a view in a row forms a cell,
and the width of the largest view determines the width of the column.

Within the XML layout file, an Android property named padding is used to spread out the
content displayed on the tablet. The padding property can be used to offset the content of the
control by a specific number of pixels. For example, if you set a padding of 20 pixels, the
content of a control is distanced from other controls by 20 pixels. Another Android property
named typeface sets the style of the text to font families that include monospace, sans_serif,
and serif. Follow these steps to code the layout of main.xml for the tablet:

1. Save and close the Android Manifest file. Click the main.xml tab at the bottom of the
window to display the XML code. By default, LinearLayout is already set. In Line 5,
change the android orientation property from vertical to horizontal. To the right of
the > bracket, press the Enter key to insert a blank line and then type <ImageView in
the new line. Press the Enter key. Type the following code to add the ImageView
control using auto-completion as much as possible:

android:id="@+id/imgMarlin"
android:layout_width="220dp"
android:layout_height="685dp"
android:src="@drawable/marlin" />

273

Designing a Tablet Application

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://schemas.android.com/apk/res/android

The ImageView control is coded in main.xml (Figure 8-13).

2. To code the TableLayout for the first two table rows to display the title and
description TextView controls, press the Enter key. Type the following code using
auto-completion as much as possible:

<TableLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<TableRow>

<View android:layout_height="80dp"/>
<TextView

android:id="@+id/txtTitle"
android:layout_width="wrap_content"
android:layout_gravity="left"
android:padding="50dp"
android:background="#666FFF"
android:text="Marlin Adventures Deep Sea Fishing - Kona, Hawaii"
android:typeface="serif"
android:textSize="39sp" />

</TableRow>
<TableRow>

<View android:layout_height="80dp"/>
<TextView

android:id="@+id/txtDescription"
android:layout_width="wrap_content"
android:layout_gravity="left"
android:padding="25dp"
android:text="Marlin Adventures Deep Sea Fishing Charter Trips,

located at Kona Harbor on the Big Island in Hawaii, has a simple fishing
philosophy - We Catch Fish! Our experience, expertise and knowledge of
Hawaiian fishing grounds provide our anglers with the best chance of having
an enjoyable and productive fishing charter. Select a date for your fishing
day trip."

android:textSize="30sp" />
</TableRow>

Horizontal
orientation

ImageView
displays
marlin.png

Figure 8-13 ImageView control coded in the LinearLayout

274

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first two rows of the table display the title and description of Marlin Adventures
(Figure 8-14).

3. Next, write the XML code for the third and fourth table rows, which display a Button
and TextView control. Press the Enter key after the closing </TableRow> tag, and
then type the following code using auto-completion as much as possible:

<TableRow>
<View android:layout_height="80dp"/>

<Button
android:id="@+id/btnDate"
android:layout_width="100dp"
android:padding="30dp"
android:textSize="40sp"
android:text="Book a Full-Day Deep Sea Fishing Trip" />

</TableRow>
<TableRow>

<View android:layout_height="80dp"/>
<TextView

android:id="@+id/txtReservation"
android:padding="20dp"
android:layout_gravity="center"
android:textSize="36sp" />

</TableRow>
</TableLayout>

The last two rows of the table display the button and reservation date of Marlin
Adventures (Figure 8-15). To view the finished design, click the Graphical Layout tab at
the bottom of the window (Figure 8-16).

Second
TableRow

First
TableRow

Scroll to display the
rest of the line

Figure 8-14 TableLayout XML code for first two TableRows

275

Designing a Tablet Application

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Fourth
TableRow

Graphical
Layout tab

Third
TableRow

Eclipse inserted the closing
</LinearLayout> tag

Figure 8-15 TableLayout XML code for last two TableRows

Figure 8-16 main.xml Table layout

iS
to
ck
ph
ot
o.
co
m
/M

or
eP
ix
el
s

276

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
After an app is published, it is the developer’s responsibility to monitor comments and reviews for the app
at the Android Market. Consider conducting user surveys and doing further usability testing to create a
popular application.

Date, Time, and Clocks
A common Android application topic is managing calendars and time. Whether you are a
student or a businessperson, a solid scheduling app can assist in personal organization to
remind you about that upcoming test or to pay that bill, and an alarm clock app can help
you wake up each morning. In the chapter project, a calendar tool called a DatePicker
control is displayed in a dialog box to determine the user’s preferred date for a full-day
fishing trip. In the Time & Date category in the Palette, many calendar controls are
available: TimePicker, DatePicker, CalendarView, Chronometer, AnalogClock, and
DigitalClock, as shown in Figure 8-17.

TimePicker widget

CalendarView widget

DatePicker widget

Chronometer widget

AnalogClock widget

DigitalClock widget

Figure 8-17 TimePicker, DatePicker, CalendarView, Chronometer, AnalogClock, and DigitalClock
widgets

277

Designing a Tablet Application

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

All Android devices keep a numeric representation of the system’s current date and
time. These numbers can be displayed in multiple formats based on the cultural
preferences of the user’s location. For example, in the United States, the format of
dates looks like this: March 17th, 2015, or 03/17/2015. In Canada and Europe, the
day value normally precedes the month, like this: 17 March 2015 or 17/03/2015.
Similarly, some countries use the concept of AM and PM with a 12-hour clock,
whereas others commonly use a 24-hour clock. Developers often program these
cultural differences based on user preference and location.

Creating a control to enter the date is crucial because requiring users to type the date in
a text box can lead to multiple errors, including incorrect format or typos. Web sites
primarily rely on some type of calendar control for input in the same way that the
Marlin Adventures app requests the reservation in a DatePicker control to streamline
the process. Initially, the Marlin Adventures app does not display a DatePicker widget.
The user clicks the button to launch a dialog box that includes a coded DatePicker
widget displaying today’s date. Date and time controls are often launched in dialog boxes
to keep the user interface uncluttered.

Determining the Current Time
When the user opens the DatePicker control and touches the Button control, the
Android system date is initially displayed, making it easier for the user to select a future
date without having to move forward in a calendar from a date decades ago. To access
the system date, the following variables are initialized and are assigned the appropriate
date value later in the code.

The following code syntax shows the code for a custom XML layout:

Code Syntax

private int currentYear;
private int currentMonth;
private int currentDay;
static final int DATE_DIALOG_ID = 0;

The class variables currentYear, currentMonth, and currentDay hold the integer value of
the system year, month, and day, respectively. Recall that class variables are used in
multiple methods. To create a DatePickerDialog instance, you must define a unique
identifier to represent the dialog box. DATE_DIALOG_ID is a static integer that
identifies the dialog box displaying the calendar. A static variable is a program variable
that does not vary and has the same value throughout execution of the application.

To code the class variables for the date, follow this step:

1. Save your work and then close the main.xml window. In the Package Explorer,
expand the src folder, expand net.androidbootcamp.marlinadventures, and then
double-click Main.java to open it. In Main.java, click after the public class Main

278

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

extends Activity { statement and press the Enter key to insert a blank line. To
initialize the class variables, type:

private int currentYear;
private int currentMonth;
private int currentDay;
static final int DATE_DIALOG_ID = 0;

Press the Enter key to insert a blank line.

The class variables necessary for holding the system date are initialized
(Figure 8-18).

Initializing the Button and TextView Controls
The first two TextView controls were assigned text in main.xml, but the Button
(btnDate) and reservation TextView (txtReservation) control must be initialized in the
Java code and referenced with the controls in the XML layout. To initialize the controls,
follow these steps:

1. In Main.java, on the new blank line, create a class variable reference for the
Button by typing private Button btDate; and then press the Enter key. Point to
Button and then click Import ‘Button’ (android.widget). On the next line, create a
class variable reference for the TextView by typing private TextView
reservation; and then press the Enter key. Point to TextView and then click
Import ‘TextView’ (android.widget).

Class variables
are initialized

Figure 8-18 Date class variables

279

Initializing the Button and TextView Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Class variables that can be accessed by the rest of the program are initialized
(Figure 8-19).

2. In the onCreate() method, click at the end of the setContentView(R.layout.main);
line and press the Enter key to insert a blank line. To create an instance of the Button
and TextView controls from the XML layout, type btDate = (Button) findViewById
(R.id.btnDate); and then press the Enter key. Type reservation = (TextView)
findViewById(R.id.txtReservation);.

The Button and TextView controls named btnDate and txtReservation are referenced
in Main.java (Figure 8-20).

TextView
class variable

Button class
variable

Figure 8-19 Class variables for Button and TextView controls

280

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Save your work.

ShowDialog Method
If the user decides to make a reservation using the Marlin Adventures app and taps the
Button control, the setOnClickListener method implements the Button.OnClickListener,
creating an instance of the OnClickListener and calling the onClick method. The onClick
method responds to the user’s action. For example, in the chapter project, the response is
to launch a dialog box. The onClick method is where you place the code to launch the
DatePicker dialog box using the showDialog method. The Android method showDialog()
triggers a call to the onCreateDialog method of the Activity class. The following code syntax
shows the code for a showDialog method:

Code Syntax

showDialog(DATE_DIALOG_ID);

When the button is tapped, it calls showDialog(), which passes the unique integer id for the
constant DATE_DIALOG_ID to the DatePicker dialog box. To code the onClickListener and
the showDialog method, follow these steps:

reservation is the instance of
the TextView txtReservation

btDate is the
instance of the
Button btnDate

Figure 8-20 Instance of the Button and TextView controls

281

ShowDialog Method

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. To create the btDate button setOnClickListener method necessary to wait for the
user’s click, insert a blank line in Main.java after the reservation statement, type
btDate.setOnClickListener(new View.OnClickListener() { and then press the
Enter key to insert the closing brace. Place a parenthesis and semicolon after this
closing brace. This onClickListener is designed for a Button control’s class variable. If
a red error line appears below View, point to View and then click Import ‘View’
(android.view). Point to the red error line below View.OnClickListener and select Add
unimplemented methods to add the quick fix.

An onClick auto-generated stub appears in the code for the button (Figure 8-21).

2. In the blank line after the // TODO comment, to launch the dialog box, type
showDialog(DATE_DIALOG_ID);.

A showDialog method is called in the onClick event (Figure 8-22).

onClick auto-generated
stub

setOnClickListener
awaits user
interaction

Figure 8-21 Inserting the Button onClick stub

282

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Save your work.

GTK
In addition to displaying a DatePicker control, a dialog box in the Android environment can be used to alert
the user, to display a progress bar, to select choices from radio buttons and check boxes, and to display a
TimePicker control.

Using the Calendar Class
In the onClick method, when the int DATE_DIALOG_ID is passed, a new DatePickerDialog
is passed along with the values for year, month, and day. The values for the present date must
be set for the DatePicker to display today’s date. The Android system date can be accessed by
using the Calendar class, which is responsible for converting between a Date object and a set
of integer fields such as YEAR, MONTH, and DAY_OF_MONTH. Typically, an Android
mobile device connects to a cellphone tower or wireless network, which automatically
updates the time zone and date. When using the Calendar class, a method of this class called
getInstance returns a calendar date or time based on the system settings. The date constants
in this class YEAR, MONTH, and DAY_OF_MONTH retrieve an integer value of the system’s
current year, month, and day, respectively. Another Calendar constant includes
DAY_OF_YEAR, which displays the day number of the current year, as shown in the following
code. For example, February 1 would be identified as the value 32 for the 32nd day of the year.

Code Syntax

final Calendar c = Calendar.getInstance();
currentYear = c.get(Calendar.YEAR);
currentMonth = c.get(Calendar.MONTH);
currentDay = c.get(Calendar.DAY_OF_MONTH);

showDialog
launches
a dialog box

Figure 8-22 The onClick method launches a dialog box

283

Using the Calendar Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the code syntax, notice that c is an instance of the calendar class. The variable
currentYear represents the system’s year, currentMonth represents the system’s month,
and currentDay represents which day of the month is set on the system calendar. The field
manipulation method called get accesses the system date or time, and set changes the
current date or time. To get the current date from the system calendar within the onCreate
method, follow these steps:

1. In Main.java, click to the right of the closing brace, parenthesis, and semicolon of the
onClick method and press the Enter key. To create an instance of the Calendar class,
type final Calendar c = Calendar.getInstance();. Point to Calendar and click Import
‘Calendar’ (java.util), if necessary.

An instance of the Calendar class named c is created (Figure 8-23).

2. Press the Enter key to insert a blank line. To get the device’s system year, month, and
day of the month, type:

currentYear = c.get(Calendar.YEAR);
currentMonth = c.get(Calendar.MONTH);
currentDay = c.get(Calendar.DAY_OF_MONTH);

The calendar instance named c is assigned the current system date (Figure 8-24).

c is an instance of
the Calendar class

Figure 8-23 The getInstance method creates an instance of the Calendar class

284

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding the OnCreateDialog Method
The Marlin Adventures application calls a showDialog(DATE_DIALOG_ID) method in
reaction to the user tapping the reservation button. The showDialog method calls the
OnCreateDialog callback method. The OnCreateDialogmethod creates a dialog box based on
the argument passed by the showDialog method call. The OnCreateDialog method, called by
showDialog(), is passed the identifier DATE_DIALOG_ID, which initializes the DatePicker to
the date retrieved from the Calendar instance for today’s system date, as shown in Figure 8-25.

Assigns the system month

Assigns the system day

Assigns the system year

Figure 8-24 Current system date assigned to be displayed in the DatePicker dialog box

User taps Set button after
selecting a reservation date

DatePicker control
displayed by
onCreateDialog
method

Current
system date

Figure 8-25 Current system date in DatePicker if today were March 17, 2014

285

Adding the OnCreateDialog Method

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the following syntax, a Switch statement is passed the DATE_DIALOG_ID identifier. When
the ID matches the switch case defined, the case statement returns a new DatePicker control
that is displayed within a dialog box with the current year, month, and day. The return type is
designated as Dialog, which returns the contents of the dialog box. The keyword protected
signifies that the method or variable can only be accessed by elements residing in its class.

Code Syntax

protected Dialog onCreateDialog(int id) {
switch (id) {
case DATE_DIALOG_ID:

return new DatePickerDialog(this, reservationDate, currentYear,
currentMonth, currentDay);

}
return null;

}

Notice the argument named reservationDate in the DatePickerDialog method. In addition
to the current system date being displayed in the DatePicker calendar, the argument
reservationDate is necessary to hold the date that is selected by the user for the reservation
of the fishing day trip. The argument reservationDate later in code is assigned the new date
selected by the user, so a red error line is displayed. The next set of steps code the
onCreateDialog method that displays the dialog box with the current date:

1. In Main.java, insert a blank line before the last closing brace in the code so you can
add the onCreateDialog method within the Main Activity. Type protected Dialog
onCreateDialog(int id) {. Press the Enter key to automatically add the closing brace
to this method. Point to Dialog and click Import ‘Dialog’ (android.app). Point to
onCreateDialog and click Add return statement.

A return null statement automatically appears within onCreateDialog (Figure 8-26).

onCreateDialog
creates the dialog
box

Figure 8-26 onCreateDialog is called by the showDialog method

286

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Insert a blank line after the protected statement so you can enter a Switch statement.
Recall that a Switch statement is a decision structure that determines how to
handle the id passed into the onCreateDialog method. Type switch (id) { and press
the Enter key to automatically insert the closing brace. Inside the Switch statement,
type case DATE_DIALOG_ID: to specify the identifier for the dialog box.

A Switch statement handles the id passed into onCreate using a case statement
(Figure 8-27).

3. To return a DatePicker control within a dialog box with the current date initially
displayed, press the Enter key and type return new DatePickerDialog(this,
reservationDate, currentYear, currentMonth, currentDay);. Point to
DatePickerDialog and click Import ‘DatePickerDialog’ (android.app). The variable
named reservationDate is assigned the date the user enters as the desired date for the
fishing day trip.

A DatePickerDialog method creates a dialog box displaying a DatePicker control with
today’s date. A red error line appears below reservationDate (Figure 8-28).

4. Save your work.

Switch decision
structure

Figure 8-27 Switch and case statements

DatePickerDialog
method displays the
current year, month,
and day

Figure 8-28 DatePickerDialog method is returned

287

Adding the OnCreateDialog Method

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding the onDateSetListener Method
Just like the button listener that awaits user interaction, a second listener is necessary to
“listen” for the user to select a date after the dialog box displays a DatePicker control. When
the dialog box appears, the user selects the date and taps the Set button, as shown in Figure 8-25,
and onDateSetListener is invoked in DatePickerDialog. When the user changes the date and
taps the Set button, the reservation date for the fishing trip is passed to reservationDate, as
shown in the following code syntax:

Code Syntax

private DatePickerDialog.OnDateSetListener reservationDate =
new DatePickerDialog.OnDateSetListener() {

public void onDateSet(DatePicker view, int year, int month, int day) {
reservation.setText("Your reservation is set for " +

month + 1)+("-") + day + ("-") + year);
}

};

When a reservation date is selected, three integers from the DatePicker are passed into
onDateSet representing the year, the month, and the day. The onDateSet event is fired
after the user sets a date selection. The year, month, and day arguments are then
displayed in the reservation TextView control using setText, as shown in Figure 8-2.
For example, if the user selects March 17, 2014, the TextView control displays Your
reservation is set for 3-17-2014. Notice that the setText statement in the code syntax
adds 1 to the month. Android uses a zero-based month numbering system; for example,
January is considered month 0. By adding 1 to the month, the correct month is
displayed. If you live in Canada or Europe, you set reservation.setText to display the day
first, then the month plus 1 and the year. The Marlin Adventures application at this
point is one of many bookings that might be part of a larger application. Typically, the
application would either e-mail the reserved date to the owners or verify the date in a
connected database. Follow the steps to create an OnDateSetListener method to display
the reserved date:

1. In Main.java, insert a blank line before the last closing brace in the code
to add the onDateSet method within the Main Activity. Type private
DatePickerDialog.OnDateSetListener reservationDate = new
DatePickerDialog.OnDateSetListener() {. Press the Enter key to automatically
add the closing brace to this method. Type ; (semicolon) to the right of this
closing brace. Point to DatePickerDialog and click Add unimplemented methods.
If necessary in the method stub, change monthOfYear to month and change
dayOfMonth to day.

The onDateSet method stub appears automatically after the OnDateSetListener is
typed (Figure 8-29).

288

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the blank line after the // TODO comment to enter code that will display the
reservation date in the last row of the table layout, and then type reservation.setText
(“Your reservation is set for ” + (month + 1)+(“-”) + day + (“-”) + year);.

The reservation details are displayed in the reservation TextView control
(Figure 8-30).

onDateSet
method stub

OnDateSetListener()
method

Semicolon entered

Figure 8-29 The onDateSet method reacts to the date selected by the user

289

Adding the OnCreateDialog Method

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
This same program would function with a TimePicker control, showDialog(TIME_DIALOG_ID),
Calendar.HOUR_OF_DAY, Calendar.MINUTE, and TimePickerDialog method.

Figure 8-30 Complete code for Main.java

290

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Running and Testing the Application
It’s time to make your day trip reservation using the Marlin Adventures apps. Click Run
on the menu bar, and then select Run to save and test the application in the tablet
emulator. A dialog box requesting how you would like to run the application opens the
first time the application is executed. Select Android Application and click the OK
button. Save all the files in the next dialog box, if necessary, and unlock the tablet
emulator. If necessary, click Apps and then double-click Marlin Adventures. The
application opens in the tablet 10.1-inch emulator window where you can test the
Button and DatePicker controls in the Marlin Adventures app, as shown in Figure 8-1
and Figure 8-2.

IN THE TRENCHES
On the Windows and Mac computer platforms, the newest operating systems are quickly replacing installed
programs launched by icons with an app platform that allows full use of download markets such as the
Windows Marketplace and the App Store. Desktop and laptop computer sales are dropping while tablet
computer sales are rising.

Wrap It Up—Chapter Summary
This chapter described the steps to create a tablet application on a much larger screen.
Creating a calendar control is a common specification on many Android applications.
This same DatePicker application would work with a smaller Android phone window
with a different design, but the code would work the same. Just like a well-made tool,
your Android app, whether it is displayed on a phone or tablet, should strive to
combine beauty, simplicity, and purpose to create a magical experience that is effortless
to the end user.

l When designing apps for an Android tablet, keep your users’ objectives and the size of the
device in mind.

l To use an Android emulator designed for tablets, you first add AVD configurations
appropriate for tablets.

l You can combine the Linear layout and the Table layout to create a simple, clean layout
that takes advantage of a tablet’s width. The TableLayout contains TableRow controls—
one for each row in your table in main.xml. In each TableRow, you can insert a view
control such as a Button or TextView.

l You can display a calendar tool called a DatePicker control in a dialog box so users can
select a date from the control. The Time & Date category in the Palette contains many
calendar controls, including TimePicker, DatePicker, CalendarView, Chronometer,
AnalogClock, and DigitalClock.

291

Wrap It Up—Chapter Summary

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l To display the current system date when the DatePicker control opens, you use the
currentYear, currentMonth, and currentDay class variables to access the system date.
These class variables hold the integer value of the system year, month, and day.

l To create a DatePickerDialog instance, you must define a unique identifier to represent
the dialog box that displays the DatePicker control. The DATE_DIALOG_ID is a static
integer that identifies the dialog box that will display the calendar.

l If you include a control, such as a Button, that users tap to display a calendar, use the
setOnClickListener method to implement the Button.OnClickListener, which creates an
instance of the OnClickListener and calls the onClick method. The onClick method
responds to the user’s action, so you place the code to launch the DatePicker dialog box in
the onClick method. The showDialog() method triggers a call to the onCreateDialog
method of the Activity class and passes the unique integer id for the constant
DATE_DIALOG_ID to the DatePicker dialog box.

l When the integer id for the DATE_DIALOG_ID constant is passed to the DatePicker
dialog box in the onClick method, a new DatePicker Dialog is passed along with the values
for year, month, and day. You must set the values for the current date by using the
Calendar class. Use the get field manipulation method to access the system date or time,
and use set to change the current date or time.

l After an app calls a showDialog(DATE_DIALOG_ID) method in reaction to the user
tapping a Button control, the showDialog method calls the OnCreateDialog callback
method. The OnCreateDialog method creates a dialog box based on the argument passed
by the showDialog method call, which is the value associated with DATE_DIALOG_ID.
That value initializes the DatePicker to the date retrieved from the Calendar instance for
today’s system date.

l When a dialog box containing a DatePicker appears, users can select a date and tap a
Button control. Tapping the Button invokes an onDateSetListener in DatePickerDialog,
which passes integers representing the year, month, and day from the DatePicker into
onDateSet. The selected date can then be displayed in a TextView control using setText.

Key Terms
Calendar class—A class you can use to access the Android system date. The Calendar class
also is responsible for converting between a Date object and a set of integer fields such as
YEAR, MONTH, and DAY_OF_MONTH.

DAY_OF_MONTH—A date constant of the Calendar class that retrieves an integer value of the
system’s current day.

DAY_OF_YEAR—A date constant of the Calendar class that retrieves the day of the current
year as an integer. For example, February 1 is day 32 of the year.

emulated application—An application that is converted in real time to run on a variety of
platforms such as a Web page, which can be displayed on various screen sizes through a browser.

292

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

get—The field manipulation method that accesses the system date or time.

getInstance—A method of the Calendar class that returns a calendar date or time based on
the system settings.

MONTH—A date constant of the Calendar class that retrieves an integer value of the system’s
current month.

native application—A program locally installed on a specific platform such as a phone or tablet.

OnCreateDialog—A method that creates a dialog box based on the argument passed by the
showDialog method call.

onDateSet—An event that is triggered when the DatePicker passes a value representing the
year, the month, and the day. In other words, the onDateSet event is fired after the user sets a
date selection.

padding property—A property that you can use to offset the content of a control by a specific
number of pixels.

protected—A keyword signifying that the method or variable can only be accessed by
elements residing in its class.

set—The field manipulation method that changes the system date or time.

static variable—A program variable that does not vary and has the same value throughout
execution of the application.

TableLayout—A user interface design layout that includes TableRow controls to form a grid.

typeface—A property that you can use to set the style of control text to font families,
including monospace, sans_serif, and serif.

YEAR—A date constant of the Calendar class that retrieves an integer value of the system’s
current year.

Developer FAQs
1. Explain the difference between a native app and a Web page.

2. What is the range of the diagonal measurement of tablet screens?

3. What is the diagonal size of the iPad screen?

4. Describe the three most common activities mentioned in the chapter used with an
Android phone.

5. How do the activities in question 4 differ from how you would typically use a tablet?

6. Which Android AVD was designed specifically for tablets? Identify the name and
version.

293

Developer FAQs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Which theme was used in the chapter project?

8. Inside of an XML Table layout, what is the XML code name of each row?

9. True or False? A LinearLayout and TableLayout cannot be used in the same XML
layout file.

10. Write the single line of XML code to set the padding to 22 density independent pixels.

11. Write the single line of XML code to set the text to the font family of sans serif.

12. Name six calendar widgets.

13. If a date is displayed as 9/30/1995 in the United States, how would that same date be
displayed in Europe?

14. Why is it best to use a pop-up dialog box for a DatePicker control?

15. Write a statement that triggers a call to onCreateDialog for a dialog box that displays
a DatePicker control.

16. Name five purposes of a dialog box.

17. Write a line of code that, for the calendar instance named cal, assigns dueDay to the
day of the month.

18. Why was the value of 1 added to the month in the chapter project?

19. Write a line of code that, for the calendar instance named c, assigns currentHour to
the hour of the day.

20. Write a line of code that, for the calendar instance named c, assigns currentMinute to
the minute within an hour.

Beyond the Book
Using the Internet, search the Web for the answers to the following questions to further your
Android knowledge.

1. Research Android tablet design. Find five design tips not mentioned in the chapter
and describe them using complete sentences.

2. Research five popular Android calendar apps available in the Android Market. Write a
paragraph about the purpose of each one.

3. In the Information Technology (IT) field, Gartner, Inc., is considered one of the
world’s leading IT research and advisory companies. Research Gartner’s opinion on
the growth of the tablet. Locate a recent article by Gartner and write a summary of at
least 150 words of the tablet trend.

4. The Android style guide online at http://developer.android.com/design provides a foun-
dation in Android best practices. Create a bulleted list of 15 best practices from this site.

294

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developer.android.com/design

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps and
techniques taught within the chapter. Submit the program you create to your instructor. The
level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆⋆

Challenging: ⋆⋆⋆

Case Project 8–1: Oasis Day Spa Tablet App ⋆

Requirements Document

Application title: Oasis Day Spa Tablet App

Purpose: The Oasis Day Spa in Dublin, Ireland, would like an Android tablet app that
first displays a full-day spa treatment title and description, and then displays
a calendar for reserving a day at the spa.

Algorithms: 1. The opening tablet screen displays an image, a spa icon, a title, a description,
and a button to create a reservation for a day at the spa (Figure 8-31).

2. When the user taps a button, a DatePicker is displayed in a dialog box
(Figure 8-32). The dialog box displays the date of the reservation.

Conditions: 1. The pictures named spa.png and ic_launcher_spa.png are provided with
your student files.

2. Write your own description of the spa treatment.

3. Use a European style date.

4. Use the default theme.

5. Use a Table layout with five rows.

295

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 8-31

iS
to
ck
ph
ot
o.
co
m
/C
ag
ri
Öz
gü
r,
iS
to
ck
ph
ot
o.
co
m
/S
am

ar
sk
ay
a

Figure 8-32

iS
to
ck
ph
ot
o.
co
m
/C
ag
ri
Öz
gü
r,
iS
to
ck
ph
ot
o.
co
m
/S
am

ar
sk
ay
a

296

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 8–2: Washington D.C. Walking Tour Tablet App ⋆

Requirements Document

Application title: Washington D.C. Walking Tour Tablet App

Purpose: The Washington D.C. Walking Tour tablet app provides a reservation button
to select a date to see all the Washington DC sights on this guided walking tour
of the nation’s capital.

Algorithms: 1. The opening screen displays an image, a tour description, and a button that
launches a DatePicker dialog box (Figure 8-33).

2. When the user taps the button, a DatePicker control is displayed in a
dialog box. The dialog box confirms the date of the reservation.

Conditions: 1. A picture of Washington named dc.png is provided with your student files.

2. Write your own description of the walking tour.

3. Use a theme without an action bar.

4. Use a Table layout.

Figure 8-33

So
ng
qu
an

De
ng
/S
hu
tte
rs
to
ck
.c
om

297

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 8–3: Country Cabin Rental Tablet App ⋆⋆

Requirements Document

Application title: Country Cabin Rental Tablet App

Purpose: The Country Cabin Rental realty agency provides cabins for rental. Two cabins
are available for a minimum three-night stay.

Algorithms: 1. The opening screen displays an image, cabin descriptions, two radio
button controls with different cabin names, and a button that launches a
DatePicker dialog box.

2. When the user taps the button, a DatePicker control is displayed in a dialog
box. The user selects the first night of a three-night reservation. The dialog
box displays the date range of the three-night reservation with the name of
the selected cabin.

Conditions: 1. A picture named cabin.png is provided with your student files.

2. Write your own descriptions of the cabins.

3. Do not use the default theme.

4. Only one radio button can be selected at a time.

5. Use a Table layout.

298

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 8–4: Final Touch Auto Detailing Tablet App ⋆⋆

Requirements Document

Application title: Final Touch Auto Detailing Tablet App

Purpose: The Final Touch Auto Detailing business provides a variety of detailing services.
The company wants an app to list each service and its price and display a
calendar for making a service reservation.

Algorithms: 1. The opening screen displays an image, service descriptions, four check
boxes offering different detailing services each with different prices, and a
button that launches a DatePicker dialog box to make a reservation for the
all-day auto-detailing services.

2. When the user taps the button, a DatePicker control is displayed in a
dialog box. The user selects the date for the reservation. The dialog box
displays the date and final cost of the detailing services.

Conditions: 1. A picture named car.png is provided with your student files.

2. Write your own descriptions about the car detailing services.

3. Do not use the default theme.

4. More than one check box can be checked at once.

5. Use a Table layout.

299

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 8–5: Wild Ginger Dinner Delivery Tablet App ⋆⋆⋆

Case Project 8–6: Create Your Own Tablet App ⋆⋆⋆

Requirements Document

Application title: Create Your Own Tablet App

Purpose: Create an app with a DatePicker and a TimePicker to create a reservation.

Algorithms: 1. Create an app on a topic of your own choice.

2. Use two buttons. The first button allows the user to select the date and the
second button allows the user to select the time.

Conditions: 1. Select your own image(s).

2. Use a custom layout and icon.

Requirements Document

Application title: Wild Ginger Dinner Delivery Tablet App with TimePicker

Purpose: Wild Ginger Dinner Delivery service delivers dinners in the evening. The business
wants an app that customers can use to select a dinner and reserve a delivery time.

Algorithms: 1. The opening screen displays an image, a Wild Ginger food description, and a
button that launches a TimePicker dialog box to make a reservation for
delivery tonight.

2. When the user taps the button, a TimePicker control is displayed in a
dialog box. The user selects the time for delivery, and the app confirms the
delivery time, which is available only from 5 pm to 11 pm.

Conditions: 1. Select your own image(s).

2. Write your own description of the great food offered at Wild Ginger.

3. Do not use the default theme.

4. Use a Table layout.

300

C H A P T E R 8 Design! Using a DatePicker on a Tablet

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 9
Customize! Navigating
with Tabs on a Tablet App

In this chapter, you learn to:

Create an Android tablet project using a tab layout

Code an XML layout with a TabHost control

Display a TabWidget and FrameLayout within a TabHost

Customize a GridView XML layout

Develop a user interface that displays images in a GridView
control

Extend a TabActivity class

Display multiple classes as content within a tab layout

Customize the ImageAdapter class for a GridView layout

Open an Android Web browser in a tablet

Customize a tab specification with TabSpec

Add a TabSpec to a TabHost

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
n
sh
ot
s
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating an attractive user interface that provides simple navigation can be challenging when
programming a tablet app on an Android device. Fortunately, the Android platform provides
a flexible way to simplify layout and navigation using a tab interface. Tab interfaces have
replaced traditional drop-down menus across many platforms from Web page browsers to
newer versions of Microsoft Office. Like multiple windows, tabs can be used to show different
topics within a single window in an intuitive interface.

In this chapter, you create a tab interface in an Android application designed to customize a
European bike and barge cruise vacation. Bike and barge cruises combine two popular ways of
exploring Europe—cycling and river cruising. On a bike and barge experience, you spend your
days cycling through historic European sites and your nights cruising down scenic rivers
through cities such as Amsterdam and Budapest. The Bike and Barge application shown in
Figure 9-1 features three tabs for Photos, Tour, and Web Site. The first tab displays a photo
grid of the bike and cruise boat tour images using a GridView control in a two-dimensional
grid layout.

This Android tablet Bike and Barge app provides images, text, and a link that opens a
Web page within the Android browser. When the user taps the second tab, a second
window opens displaying tour information, as shown in Figure 9-2. The third tab links to
a browser that displays the full Bike and Barge Web site, including tour company contact
information, as shown in Figure 9-3. The intuitive tabs eliminate the need for additional
instructions.

First tab is
displayed

GridView
control

Figure 9-1 Bike and Barge Android tablet app

iS
to
ck
ph
ot
o/
Le
ad
in
gl
ig
ht
s,
iS
to
ck
ph
ot
o/
N
ik
ad
a,
iS
to
ck
ph
ot
o/
St
ev
e
Al
la
n,
iS
to
ck
ph
ot
o/
An
to
n-
M
ar
lo
t,

Ig
or

Pl
ot
ni
ko
v/
Sh
ut
te
rs
to
ck
,p
io
trw

zk
/S
hu
tte
rs
to
ck
,E
ce
lo
p/
Sh
ut
te
rs
to
ck

302

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 9-2 Second tab displays tour information

Figure 9-3 Third tab opens a Web site

ht
tp
://
bi
ke
ba
rg
e.
co
m

Ec
el
op
/S
hu
tte
rs
to
ck

303

Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://bikebarge.com
http://bikebarge.com
http://bikebarge.com

IN THE TRENCHES
Cycling apps already in the Android marketplace include GPS-based biking routes, personal cycling logs,
mountain biking trails, bike repair, distance tracking, and cycling fitness to use on your trip.

To create this application, the developer must understand how to perform the following
processes, among others:

1. Create a TabHost within the XML code that includes the TabWidget and
FrameLayout.

2. Extend the TabActivity class.

3. Add the tab and GridView images needed for the project.

4. Create three different XML layouts for each of the tabs.

a. Create the XML layout for the first tab to display a GridView control.

b. Create the XML layout for the second tab to display TextView information.

c. Create the XML layout for the third tab to display a Web site in a browser.

5. Create three different Activities, one for each tab.

a. Code the first tab to display a GridView control.

b. Code the second tab to display TextView information.

c. Code the third tab to display a Web site in a browser.

6. Code the Main Activity to specify the TabSpec and launch the tabs.

7. Update the Android Manifest file.

Creating a Tab Layout for a Tablet
The Bike and Barge tablet app features an opening screen with three tabs, as shown in
Figure 9-1. Digital tab controls represent the tabbed manila folders used to organize
information in filing cabinets. Tabs function as they do in a browser tabbed window.
Each tab in a browser window displays Web page content using intuitive navigation.
You can switch between tabs without opening more browser windows. An Android SDK
provides a TabHost control so you can wrap multiple views in a single window. A tabbed
window view can have two or more tabs within an Android phone or tablet interface.
The TabHost contains two distinct parts: a TabWidget for displaying the tabs and a
FrameLayout for displaying the tab content, as shown in Figure 9-4.

304

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The TabHost, the root for the layout, can be placed at the top or bottom of the Android
window. In the chapter project, the TabHost is at the top of the window with individual
tabs for the photos, tours, and Web site located on a tab bar called the TabWidget. Below the
tab bar, the TabHost wraps the contents of each tab in the FrameLayout. The tab content
can be coded in two ways:

l Each tab launches a separate Activity class.

l All tabs are launched within a single Activity class.

The Bike and Barge tablet application provides three different Activities: a GridView
control to display images in the first tab, TextView controls to describe the tour in the
second tab, and a Web browser to open a Web page in the third tab. Having separate
Activity classes with code in each Activity is easier to manage than one extremely large
class with a massive XML layout file.

The TabHost Layout
In main.xml of the chapter project, the TabHost control creates the tab layout.
TabHost requires a TabWidget and a FrameLayout within the XML layout code.
Use the default LinearLayout to position the TabWidget and FrameLayout vertically;
that is, with the TabWidget at the top of the TabHost and the FrameLayout below
the TabWidget. When coding the XML for the tabbed user interface, the
TabHost, TabWidget, and FrameLayout must have ids assigned in the code, as
shown in Table 9-1.

main.xml

TabHost

TabWidget

FrameLayout

Displays the
page content

Displays
the tabs

Figure 9-4 Anatomy of a TabHost control

305

The TabHost Layout

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

These names must be used so that the TabHost can retrieve the exact references to each
control. It is best to avoid using a title bar theme to display the entire TabHost because a
large title bar can change the dimensions of the TabHost, which appears at the top of
the tablet window. In the chapter project, the theme is set to Theme.Black.NoTitleBar
to avoid this problem. The following XML code provides the framework needed for the
tab layout:

Code Syntax

<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/tabhost"
<LinearLayout

<TabWidget
android:id="@android:id/tabs" />

<FrameLayout
android:id="@android:id/tabcontent" />

</LinearLayout>
</TabHost>

Notice how the TabHost is the root control of the TabWidget and FrameLayout. Each control
has the standard id shown in Table 9-1. The Eclipse XML layout does not display TabHost
controls properly in design mode, so you must use XML layout code to specify the tabs instead
of using the widgets from the Palette. After the XML and Java code are complete later in the
chapter, you can view the tab layout using the Android emulator. To begin the application, code
main.xml on the tablet to create the XML code for the tabbed layout using TabHost, and to
change the theme, follow these steps:

1. Open the Eclipse program. Click the New button on the Standard toolbar. Expand the
Android folder and select Android Project. Click the Next button. In the New
Android Project dialog box, enter the Project Name Bike and Barge. To save the
project on your USB drive, click to remove the check mark from the Use default
location check box. Type E:\Workspace (if necessary, enter a different drive letter
that identifies the USB drive). Click the Next button. For the Build Target, select
Android 3.0, if necessary. Click the Next button. For the Package Name, type
net.androidbootcamp.bikeandbarge. Enter Main in the Create Activity text box.
The Minimum SDK should be 11.

Control Android id

TabHost android:id="@+id/tabhost"

TabWidget android:id="@android:id/tabs"

FrameLayout android:id="@android:id/tabcontent"

Table 9-1 Tab control Android id

306

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://schemas.android.com/apk/res/android

The new Android Bike and Barge tablet project has an Application Name, a Package
Name, and an Activity named Main (Figure 9-5).

2. Click the Finish button. In the res\layout folder, double-click main.xml. Delete the
Hello World, Main! TextView control, and then click the main.xml tab at the bottom
of the window to display the XML code. Delete all the code except for the first line.
On the second line, type the following code using auto-completion as much as
possible:

<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/tabhost"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

</TabHost>

Package Name

Finish button

Main Activity

Minimum SDK is
11 for a tablet

New Android
Project dialog box

Figure 9-5 Application information for the new Android project

307

The TabHost Layout

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://schemas.android.com/apk/res/android

The TabHost XML code creates the root for the tabbed interface (Figure 9-6).

3. Click Line 6 (the blank line) to add the LinearLayout necessary to orient the
TabWidget and FrameLayout vertically so that the FrameLayout appears below the
TabWidget. Type the following code using auto-completion as much as possible:

<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

</LinearLayout>

The LinearLayout XML code creates the vertical layout for the two parts of the
TabHost (Figure 9-7).

main.xml tab

TabHostBlank
line

Figure 9-6 TabHost XML code

LinearLayout
Blank
line

Figure 9-7 LinearLayout to place the TabWidget and FrameLayout vertically

308

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Click Line 10 (the blank line) to place the TabWidget and FrameLayout within the
LinearLayout XML code. Type the following code using auto-completion as much as
possible:

<TabWidget
android:id="@android:id/tabs"
android:layout_width="fill_parent"
android:layout_height="wrap_content" />

<FrameLayout
android:id="@android:id/tabcontent"
android:layout_width="fill_parent"
android:layout_height="fill_parent"/>

The TabWidget creates tabs within the TabHost. The FrameLayout creates the content
area of the TabHost (Figure 9-8).

5. To view the graphical layout created by the main.xml code, click the
Graphical Layout tab at the bottom of main.xml. Click the Theme button and
change the Theme to Theme.Black.NoTitleBar. Click the orange placeholder
and then click the FrameLayout area to identify the two separate portions of
the screen layout.

TabWidget

FrameLayout

Figure 9-8 TabWidget and FrameLayout within the TabHost

309

The TabHost Layout

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The TabHost XML code creates a placeholder in the Graphical Layout tab. Notice that
the tabs are not displayed. An orange placeholder bar marks the location of the future
tabs (Figure 9-9).

GTK
The tabs can be placed at the bottom of the Android window by inserting the FrameLayout XML code before the
TabWidget code in main.xml and adding android:layout_marginBottom="-5px" to the TabWidget
code. The TabHost is now displayed at the bottom of the screen 5 pixels from the edge.

Extending the TabActivity Class
Begin designing a tabbed control in Java by opening Main.java and changing the type of
Activity in the code. In previous chapters, the opening class statement (public class Main
extends Activity) extended the basic Activity class. If the primary purpose of a class is to
display a TabHost control, use a class named TabActivity instead of Activity, which makes it
simple to display tabs within the app. To extend the TabActivity class of Main.java of the Bike
and Barge tablet app, follow this step:

FrameLayout

Theme.Black.NoTitleBar

TabWidget
placeholder

10.1in WXGA
(Tablet)

Figure 9-9 Graphical layout of TabHost

310

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Close and save main.xml. In src/net.androidbootcamp.bikeandbarge, double-click
Main.java to open its code window. Click to the right of extends in the public class
Main extends Activity { line, and change Activity to TabActivity. Point to
TabActivity and click Import ‘TabActivity’ (android app). If necessary, point to Bundle
in Line 8, and then click Import ‘Bundle’ (android.os).

Main extends TabActivity, which contains predefined methods for the use of tabs
(Figure 9-10).

Adding the Tab and GridView Images
Each of the three tabs in the Bike and Barge app contains an image and text. As shown in
Figure 9-1, the GridView control on the first tab displays six images illustrating the bike and
barge tour. To add the three tab and six GridView image files to the drawable folder, follow
this step:

1. To add the nine image files to the drawable folder, if necessary, copy the student
files to your USB drive. Open the USB folder containing the student files. In the
Package Explorer, expand the drawable-hdpi folder in the res folder. To add the nine
image files to the drawable-hdpi resource folder, drag the bike1.png, bike2.png,
bike3.png, bike4.png, bike5.png, bike6.png, tab1.png, tab2.png, and tab3.png files to
the drawable-hdpi folder until a plus sign pointer appears. Release the mouse button.
If necessary, click the Copy files option button, and then click the OK button.

Main extends
TabActivity

Figure 9-10 Main extends TabActivity

311

The TabHost Layout

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copies of the nine files appear in the drawable-hdpi folder (Figure 9-11).

GTK
Tab icons should be designed as simple, flat shapes rather than 3D images. Typically, tab icons are also
sized as 72 x 72 pixels.

Creating a GridView XML Layout for the First Tab
The first tab in the Bike and Barge project displays a grid of images in two rows to provide a
visual marketing tool for the tour company. Inviting images displayed in a photo GridView
help travelers visualize their trip. The first tab uses an XML layout file named tab1.xml to
display the GridView control. Similar to the Gallery control used in Chapter 7, a GridView
control is part of the View group and displays objects in a two-dimensional, scrollable grid.
To customize a GridView layout, you can specify the number of columns, the width of each
column, and the space between columns. The following code shows the XML code for a
GridView layout:

Nine images added to
drawable-hdpi folder

Figure 9-11 Images copied

312

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Code Syntax

<GridView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/photos"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="40dp"
android:verticalSpacing="30dp"
android:horizontalSpacing="10dp"
android:numColumns="auto_fit"
android:columnWidth="60dp"
android:stretchMode="columnWidth"
android:gravity="center"

</GridView>

Most of the properties in the GridView control resemble earlier examples in the book, but
notice a new property called numColumns. The GridView property numColumns can be set
to an integer value or to a setting called auto_fit, which automatically defines how many
columns to show based on the size of the Android screen and the image width. The
columnWidth property specifies a fixed width for each column. Follow these steps to create an
XML layout file that displays a GridView control:

1. In the Package Explorer, right-click the layout folder. On the shortcut menu,
point to New and then click Other. In the New dialog box, click Android XML
Layout File, and then click the Next button. In the New Android Layout XML
File dialog box, type tab1.xml in the File text box to name the layout file. In the
Root Element list, select GridView. Click the Finish button. The emulator
window opens. Click the tab1.xml tab at the bottom of the window to open the
XML code.

The tab1.xml file opens with a basic GridView control automatically displayed in the
code (Figure 9-12).

XML code for
the GridView
control

tab1.xml

Figure 9-12 tab1.xml layout file

313

The TabHost Layout

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://schemas.android.com/apk/res/android

2. To customize the GridView layout, click at the end of Line 4 and delete the closing >
symbol. Delete the closing </GridView> tag. On the first blank line, type the following
XML code using auto-completion as much as possible:

android:id="@+id/photos"
android:padding="60dp"
android:verticalSpacing="20dp"
android:horizontalSpacing="20dp"
android:numColumns="auto_fit"
android:columnWidth="230dp"
android:stretchMode="columnWidth"
android:gravity="center" />

The GridView control is coded for a custom layout (Figure 9-13).

Creating a TextView XML Layout for the Second Tab
For the content of the second tab, three TextView controls display the tour details for the
Bike and Barge application within the LinearLayout. To create an XML layout file that
displays three TextView controls, follow these steps:

1. Close the tab1.xml file tab and save your work. Right-click the layout folder, point to
New on the shortcut menu, and then click Other. In the New dialog box, click
Android XML Layout File, and then click the Next button. In the New Android
Layout XML File dialog box, type tab2.xml in the File text box to name the layout file.
In the Root Element list, select LinearLayout. Click the Finish button. The emulator
window opens. Click the tab2.xml tab at the bottom of the window to open the XML
code. In Line 7, type the following XML code for the first TextView control using
auto-completion as much as possible:

<TextView
android:id="@+id/textView1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:text="Summer - Bike and Barge Europe Tour"
android:textSize="60sp"
android:paddingBottom="60sp" />

GridView control is
customized in tab1.xml

Figure 9-13 Custom GridView layout

314

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first TextView control is coded in tab2.xml (Figure 9-14).

2. Press the Enter key twice, and then type the following XML code for the second
TextView control using auto-completion as much as possible:

<TextView
android:id="@+id/textView2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="The 21-speed hybrid bikes are our mode of

transportation to view the country's landscape, history, customs, and
traditions. The barge leaves beautiful Amsterdam and finishes 13 days
later in Bruges, Belgium."

android:textSize="45sp"
android:paddingLeft="70sp"
android:paddingBottom="60sp" />

The second TextView control is coded in tab2.xml (Figure 9-15).

3. Press the Enter key twice, and then type the following XML code for the third
TextView control using auto-completion as much as possible:

<TextView
android:id="@+id/textView3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:text="June 2 - June 15 Holland Belgium Tour"
android:gravity="center_horizontal"
android:textSize="50sp" />

Second TextView
control

Figure 9-15 Second TextView control

First TextView
control

Figure 9-14 First TextView control

315

The TabHost Layout

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The third TextView control for tab2.xml is coded (Figure 9-16).

Creating the XML Layout for the Third Tab
The third tab has the simplest XML layout and is named tab3.xml. This layout file does
not contain any controls for the Java code that opens tab3.xml and launches the Web
browser displaying the Bike and Barge site. To create the simple XML layout, follow
this step:

1. Close the tab2.xml file tab and save your work. Right-click the layout folder, point to
New on the shortcut menu, and then click Other. In the New dialog box, click
Android XML Layout File, and then click the Next button. In the New Android
Layout XML File dialog box, type tab3.xml in the File text box to name the layout file.
In the Root Element list, select LinearLayout. Click the Finish button. The emulator
window opens.

The tab3.xml window opens. No controls or code are necessary (Figure 9-17).

Third TextView
control

Figure 9-16 Complete code for tab2.xml

316

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding the GridView Activity for the First Tab
When the Bike and Barge application starts, it opens to the first tab, which is a GridView
control displaying six images. The other two tabs for Tour and Web Site are available in the
TabHost control. To work as designed, the chapter project requires four Java code Activity
files. Main.java sets up the tabs and assigns an Activity to each one. Three Activities named
Tab1.java, Tab2.java, and Tab3.java are launched by Main.java according to the user’s tab
selection. The Java code for Tab1 creates an instance of the GridView control, which is
almost identical to the Gallery control in Chapter 7. Previously, the user selected an image
from the Gallery and a toast message identified that image. A GridView control can work in
the same fashion, but in this chapter project, the GridView control lays out the images in a
grid. The instance of the GridView control references the GridView control named with the
photos id, as shown in the following code:

Code Syntax

GridView g = (GridView) findViewById(R.id.photos);

To create a Java file named Tab1.java and instantiate the GridView control, follow
these steps:

1. Close the tab3.xml file tab. To create a second class, right-click the
net.androidbootcamp.bikeandbarge folder, point to New on the shortcut menu, and
then click Class. Type Tab1 in the Name text box to create a second class that will define
the Tab1 Activity. Click the Superclass Browse button. Type Activity in the Choose a
type text box. As you type, matching items are displayed. Click Activity – android.app
and then click the OK button to extend the Activity class. Click the Finish button. To
launch the Activity, in the Tab1.java file, click Line 6, type oncreate, and then press
Ctrl+spacebar to display an auto-complete listing. Double-click the first onCreate
method in the auto-complete listing. Click at the end of Line 10 and then press the

No controls
necessary

Figure 9-17 tab3.xml

317

Coding the GridView Activity for the First Tab

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Enter key to insert a blank line. Type setContentView(R. to display an auto-complete
listing. Double-click layout. Type a period. Another auto-complete listing displays the
requested XML layout file. Double-click tab1 : int. A right closing parenthesis appears.
Type a semicolon after the parenthesis to complete the statement.

A new class named Tab1 that launches tab1.xml is created (Figure 9-18).

2. To instantiate the GridView, in Main.java in the onCreate() method, press the
Enter key, type GridView g = (GridView) findViewById(R.id.photos);, point to
GridView, and then click Import ‘GridView’ (android.widget).

The GridView control is instantiated (Figure 9-19).

IN THE TRENCHES
The GridView control is commonly used on tablets to display all the images, songs, or videos stored on the
device or in the cloud. Many service providers offer cloud-based storage and file-sharing options to expand
your repository of media used on your Android device.

Tab1 class
is created

tab1.xml layout
is displayed

Figure 9-18 Tab1.java class opens the tab1.xml layout

Instance of
GridView

Figure 9-19 GridView control is instantiated

318

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using a setAdapter with an ImageAdapter
Previously, you used adapters to display ListView and Gallery controls. Similarly, a
setAdapter provides a data model for the layout of the GridView control. You use
setAdapter() to instantiate a custom BaseAdapter class called ImageAdapter and apply
it to the GridView, as shown in the following code:

Code Syntax

g.setAdapter(new ImageAdapter(this));

After the ImageAdapter is instantiated, the ImageAdapter class extends the custom BaseAdapter
class. The adapter used within this class binds the images to a particular layout such as a GridView
control. To instantiate the ImageAdapter class for the GridView control, follow these steps:

1. Press the Enter key and type g.setAdapter(new ImageAdapter(this));. A red error
line appears under ImageAdapter. Instead of automatically creating the class, a
custom ImageAdapter class is added in the next step.

The ImageAdapter is coded for the GridView control. A red error line appears below
ImageAdapter (Figure 9-20).

2. To add an ImageAdapter class that extends the BaseAdapter custom class, click after the
first closing brace at the end of Line 15. Press the Enter key and type public class
ImageAdapter extends BaseAdapter { . Press the Enter key and a closing brace appears.
Point to BaseAdapter and then click Import ‘BaseAdapter’ (android.widget). Point to
ImageAdapter in the same line and click Add unimplemented methods. Point to
ImageAdapter in Line 17 and select Create constructor ‘ImageAdapter(Tab1)’.

The ImageAdapter class is coded. The methods within the ImageAdapter are
auto-completed (Figure 9-21).

ImageAdapter

Figure 9-20 Instance of the ImageAdapter class

319

Coding the GridView Activity for the First Tab

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Customizing the ImageAdapter Class
When the ImageAdapter class is called with the g.setAdapter(new ImageAdapter(this));
line of code, the ImageAdapter class controls the layout of the GridView and connects
the data sources from an array for display. The ImageAdapter class must provide
the information to set up the GridView with data and specifications necessary for the
display. Context is used to load and access resources for the application. The
ImageAdapter constructor is changed from Tab1 to handle the Context resources
necessary for the GridView. This ImageAdapter class constructor is where the Context
for an ImageAdapter instance is defined.

An array is required to hold multiple images displayed in the GridView. An array can
be adjusted to hold as many images as necessary. To define the Context for the
ImageAdapter and to establish an array to reference the images in the drawable folder,
follow these steps:

1. Save your work. On the blank line following public class ImageAdapter extends
BaseAdapter {, initialize the Context variable by typing private Context context;,
point to Context, and then select Import ‘Context’ (android.content).

The Context variable named context is initialized (Figure 9-22).

Auto-generated
ImageAdapter class

Figure 9-21 ImageAdapter class

320

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Press the Enter key to initialize an Integer array named Bikes that references the tour
images. Type private Integer[] Bikes = { R.drawable.bike1, R.drawable.bike2,
R.drawable.bike3, R.drawable.bike4, R.drawable.bike5, R.drawable.bike6}; to
initialize the Bikes array.

The Integer array named Bikes is assigned to six image files in the drawable folder
(Figure 9-23).

3. To change the ImageAdapter constructor to define the Context, change public
ImageAdapter(Tab1 tab1) { in the next line to public ImageAdapter(Context c)
{. At the end of the comment in the next line, press the Enter key. Type context = c;.

Context variable
is initialized

Figure 9-22 Context variable

Images are
referenced
in Bikes array

Figure 9-23 Bikes array

321

Coding the GridView Activity for the First Tab

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The ImageAdapter constructor for the ImageAdapter class holds the Context
(Figure 9-24).

4. To assign the return type of the getCount method to the number of images in
the array, change the first return 0; (for the getCount method) to return Bikes.
length;.

The length of the Bikes array is returned by the getCount method (Figure 9-25).

context is
referenced

Figure 9-24 ImageAdapter constructor

Length of the Bikes
array is returned

Figure 9-25 getCount() returns length of the Bikes array

322

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding the getView Method
The getView() method uses Context to create a new ImageView instance that is responsible
for temporarily holding each image displayed in the GridView control. In addition, the
ImageView is scaled to fit the GridView control and sized according to a custom height and
width, as shown in the following code:

Code Syntax

public View getView(int position, View convertView, ViewGroup parent) {
// TODO Auto-generated method stub
ImageView pic = new ImageView(context);
pic.setLayoutParams(new GridView.LayoutParams(275, 250));
pic.setScaleType(ImageView.ScaleType.CENTER_CROP);
pic.setPadding(8, 8, 8, 8);
pic.setImageResource(Bikes[position]);
return pic;

};

In the getView() method, notice that a return type of View is expected. A View occupies a
rectangular area on the screen and is responsible for drawing the GridView component.
When pic is returned for the View display, it includes an image that is scaled and resized,
ready for display in the GridView control. Depending on your settings, Eclipse might change
int position, View convertView, ViewGroup parent to int arg0, View arg1, ViewGroup arg2,
or vice versa. This change does not affect the execution of the program.

An instance of an ImageView control named pic is created inside the getView() method using
Java code. A new ImageView for each item in the Bikes array is referenced by the adapter. The
display size of each GridView image is set in the LayoutParams arguments, which are the
numbers representing the width in pixels and the height in pixels. This ensures that, no
matter the size of the drawable file, each image is resized and cropped to fit within these
dimensions. In the next statement, setScaleType scales the image to the bounds of the view.
Scaling keeps or changes the aspect ratio of the image within the ImageView control. Next,
setPadding defines the padding for all sides of each image. The setImageResource method
assigns each image from the drawable folder to the ImageView control. The last statement
within the getView() method must return the instance of the ImageView control named pic
to be displayed in the GridView control. To code the getView() method, follow these steps:

1. In Tab1.java, click at the end of the // TODO comment in the getView method and
press the Enter key. To create an ImageView control that holds the images displayed
in the GridView control, type ImageView pic = new ImageView(context);. Press
the Enter key. If red error lines appear, point to ImageView and then click Import
‘ImageView’ (android.widget). To resize the layout of the images displayed in the
GridView control, type pic.setLayoutParams(new GridView.LayoutParams
(275, 250));. Press the Enter key. To set the scale type of the ImageView control, type
pic.setScaleType(ImageView.ScaleType.CENTER_CROP);.

An instance of ImageViewnamedpic is created.The layout size and scale are set (Figure 9-26).

323

Coding the GridView Activity for the First Tab

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Press the Enter key. To set the padding around each image in GridView, type
pic.setPadding(8, 8, 8, 8);. To assign each of the images referenced in the Bikes
array, press the Enter key and type pic.setImageResource(Bikes[arg0]);. To return
pic to the Main activity, change return null; in the next line to return pic;.

The instance of pic sets the padding of each image in the Bikes array. The instance of pic
is returned (Figure 9-27).

The pic instance of
ImageView is
resized and scaled

Figure 9-26 The getView method creates an instance of ImageView

pic is added and assigned
the Bikes image

Figure 9-27 Complete code for Tab1.java

324

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding the Second Tab Java File
When theuser taps the second tab in theBike andBarge app, the tab2.xml layout displays the current
tour information. To create a Java file named Tab2.java and display tab2.xml, follow this step:

1. Close the Tab1.java file tab and save your work. To create a third class, right-click the
net.androidbootcamp.bikeandbarge folder, point to New on the shortcut menu, and
then click Class. TypeTab2 in the Name text box to create a second class that will define
the Tab2 Activity. Click the Superclass Browse button. Type Activity in the Choose a
type text box. Click Activity – android.app and then click the OK button to extend the
Activity class. Click the Finish button. To launch the Activity, in the Tab2.java file, click
Line 6, type oncreate, and then press Ctrl+spacebar to display an auto-complete listing.
Double-click the first onCreate method in the auto-complete listing. Click at the end of
Line 10 and then press the Enter key to insert a blank line. Type setContentView(R. to
display an auto-complete listing. Double-click layout. Type a period. Another auto-
complete listing requests the XML layout file you intend to display. Double-click tab2 :
int. A right closing parenthesis appears. (If it does not, type) to insert a right closing
parenthesis.) Type a semicolon after the parenthesis to complete the statement.

A new class named Tab2.java that launches tab2.xml is created (Figure 9-28).

Coding the Third Tab Java File to Display a Web Site
The Bike and Barge Web site is launched in a browser when the third tab is tapped. To
launch the built-in browser, Android uses a startActivity method to open a URI (Uniform
Resource Identifier) object to identify the unique location of a Web site, as shown in
Chapter 5. The user taps the third tab labeled Web site to open the browser. To return to
the tabbed interface, users press the Back button on the lower-left corner of the tablet. To
create a Java file named Tab3.java, display tab3.xml, and launch an Android browser
window, follow these steps:

1. Close the Tab2.java file tab and save your work. To create a fourth class, right-click the
net.androidbootcamp.bikeandbarge folder, point to New on the shortcut menu, and then
click Class. Type Tab3 in the Name text box to create a second class that will define the

Tab2.java

onCreate method
added to open
tab2.xml

Figure 9-28 Complete code for Tab2.java

325

Coding the Third Tab Java File to Display a Web Site

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tab3 Activity. Click the Superclass Browse button. Type Activity in the Choose a type
text box. Click Activity – android.app and then click the OK button to extend the Activity
class. Click the Finish button. To launch the Activity, in the Tab3.java file, click Line 6,
type oncreate, and then press Ctrl+spacebar to display an auto-complete listing. Double-
click the first onCreate method in the auto-complete listing. Click at the end of Line 10
and then press the Enter key to insert a blank line. Type setContentView(R. to display an
auto-complete listing. Double-click layout. Type a period. Another auto-complete listing
requests the XML layout file you intend to display. Double-click tab3 : int. A right closing
parenthesis appears. (If it does not, type) to insert a right closing parenthesis.) Type a
semicolon after the parenthesis to complete the statement.

A new class named Tab3.java that launches tab3.xml is created (Figure 9-29).

2. Press the Enter key to add a statement to launch an intent to open the Bike and Barge
Web site. Type startActivity(new Intent(Intent.ACTION_VIEW, Uri.parse
(“http://bikebarge.com/”)));. If red error lines appear in the statement, point to
Intent and click Import ‘Intent’ (android.content), and then point to Uri and click
Import ‘Uri’ (android.net).

The startActivity code launches the Bike and Barge Web site when the user selects the
third tab (Figure 9-30).

Tab3.java

onCreate method
added to open
tab3.xml

Figure 9-29 Tab3.java opens the tab3.xml layout

startActivity launches
a Web site

Figure 9-30 Complete code for Tab3.java

326

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://bikebarge.com/%E2%80%9D

Coding the TabHost
Next, you must fully code the Main.java class that extends TabActivity to display the tabbed
user interface at the top of the tablet. Each XML layout file must be loaded into the
appropriate FrameLayout of each tab. In the following code syntax, the first line codes the
getTabHost method, which starts the Activity named TabHost and hosts the tabs in the
application. The next four lines provide the specifications for the first tab.

Code Syntax

TabHost tabHost = getTabHost();
//First Tab
TabSpec photospec = tabHost.newTabSpec("Photos");
photospec.setIndicator("Photos", getResources().getDrawable(R.drawable.tab1));
Intent photosIntent = new Intent(this, Tab1.class);
photospec.setContent(photosIntent);

Each tab must have a TabSpec, which specifies how the tabs should actually appear. The
TabSpec statement in the code syntax creates an instance named photospec, which details tab
content. On the next line, the photospec instance calls the setIndicator method that sets the
tab button caption to “Photos” and supplies an icon image named tab1.png from the drawable
folder. After the tab displays the caption and image, an intent is created to launch an Activity
named Tab1.class. This statement opens Tab1.java, which displays the GridView layout of the
photos. Lastly, the setContent method indicates what is displayed in the tab content area.
This method calls the instance of the intent and places the content of the Tab1 Activity
within the FrameLayout (the content area of TabHost). The code is repeated for the next two
tabs. Follow these steps to write the code creating the tab content:

1. Close the Tab3.java tab and save your changes. In Main.java, click at the end of the
line containing setContentView and press the Enter key. Type TabHost tabHost =
getTabHost();. Point to TabHost and select Import ‘TabHost’ (android.widget).
If a red error line appears under getTabHost, point to the error line, and then click
Create method ‘getTabHost()’. To display the content for the first tab, press the
Enter key, type the comment //First tab, and then press the Enter key. Type TabSpec
photospec = tabHost.newTabSpec(“Photos”);. Point to TabSpec and select Import
‘TabSpec’ (android.widget.TabHost). To display the text and icon image, press the
Enter key and type photospec.setIndicator(“Photos”, getResources().getDrawable
(R.drawable.tab1));. To launch Tab1.java, press the Enter key, type Intent
photosIntent = new Intent(this, Tab1.class);, point to Intent, and then select
Import ‘Intent’ (android.content). To display the content, press the Enter key and type
photospec.setContent(photosIntent);.

327

Coding the TabHost

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The TabHost is provided with specifications to open the contents of the first tab
(Figure 9-31).

2. Press the Enter key and then type the following code in Main.java to display the
content for the second tab:

//Second tab
TabSpec tourspec = tabHost.newTabSpec("Tour");
tourspec.setIndicator("Tour",
getResources().getDrawable(R.drawable.tab2));
Intent tourIntent = new Intent(this, Tab2.class);
tourspec.setContent(tourIntent);

The Tour tab contents are specified for the second tab (Figure 9-32).

Main.java

Code displays
the content for
the first tab

Figure 9-31 First tab is displayed with the Photos contents

Main.java

Code displays
the content for
the second tab

Figure 9-32 Second tab displays the Tour contents

328

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Press the Enter key and then type the following code in Main.java to display the
content for the third tab:

// Third tab
TabSpec webspec = tabHost.newTabSpec("Web Site");
webspec.setIndicator("Web Site",
getResources().getDrawable(R.drawable.tab3));
Intent webIntent = new Intent(this, Tab3.class);
webspec.setContent(webIntent);

The Web site tab specifies the content for the third tab (Figure 9-33).

Adding the TabSpec to TabHost
The last step in Main.java is to add the tab specifications called TabSpec to the instance
of the TabHost control. Every tab change closes the previously opened tab and opens
the selected tab. To display the tab specifications (TabSpec) within the TabHost
control, follow this step:

1. To display the tab specifications, press the Enter key, type the comment // Add
TabSpec to TabHost, and then press the Enter key. Type tabHost.addTab
(photospec);. Press the Enter key and type tabHost.addTab(tourspec);. Press the
Enter key and type tabHost.addTab(webspec);.

The tabs are displayed with the appropriate specifications (Figure 9-34).

Code displays
the content for
the third tab

Figure 9-33 Third tab displays the Web site contents

329

Coding the TabHost

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Updating the Android Manifest File
Every Android application includes the AndroidManifest.xml file, which contains the
information the Android system uses during runtime to display the theme, find the
startup class, and stack the subsequent class Activity files. When the user selects a tab to
launch a new Activity, it is pushed on the stack and becomes the running Activity. The
previous Activity remains in the stack. When the user selects another tab in the
TabHost, the current Activity is pushed out of the stack and the previous one resumes
as the running Activity. To add the class files to the Android Manifest file and to add
the custom theme, follow these steps:

1. To add the reference of Tab1, Tab2, and Tab3 Java class files to the Android Manifest,
in the Package Explorer, double-click the AndroidManifest.xml file. Click the
Application tab at the bottom of the Bike and Barge Manifest page. Scroll down to
display the Application Nodes section. Click the Add button. Select Activity in the
Create a new element at the top level, in Application dialog box. Click the OK button.
The Attributes for Activity section opens in the Application tab. In the Name text
box, type the class name preceded by a period (.Tab1) to add the Tab1 Activity. Click
the Add button again. Click the first radio button (Create a new element at the top
level, in Application) and select Activity. Click the OK button. In the Name text box,
type the class name preceded by a period (.Tab2) to add the Tab2 Activity. Click the
Add button again. Click the first radio button (Create a new element at the top level,
in Application) and select Activity. Click the OK button. In the Name text box, type
the class name preceded by a period (.Tab3) to add the Tab3 Activity. Save your work.

TabSpecs are
displayed within
the TabHost

Figure 9-34 Complete code for Main.java

330

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The AndroidManifest.xml file includes the three Activities (Figure 9-35).

2. To add the selected theme to the Android Manifest, click the AndroidManifest.xml
tab at the bottom of the window, and then click at the end of the line
android:name=“.Main” inside the Activity code. Press the Enter key to insert
a blank line. Type android:theme=“@android:style/Theme.NoTitleBar”.

The Android theme is coded in the Android Manifest file (Figure 9-36).

Add button

Browse button

Application tab AndroidManifest.xml tab

Three
Activities
added

Figure 9-35 Activities added to the Android Manifest

331

Updating the Android Manifest File

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mailto:theme=%E2%80%9C@android:style/Theme.NoTitleBar%E2%80%9D

3. Click the Save All button on the Standard toolbar, and then close the Bike and Barge
Manifest tab.

Running and Testing the Application
The TabHost provides an easy-to-use navigation to display multiple windows within the
tablet interface. To test the Bike and Barge Android app, click Run on the menu bar, and then
select Run to save and test the application in the emulator. A dialog box requesting how you
would like to run the application opens the first time the application is executed. Select
Android Application and click the OK button. Save all the files in the next dialog box, if
necessary, and unlock the emulator. The application opens in the tablet emulator window
where you can test each tab in the Bike and Barge app, as shown in Figure 9-1, Figure 9-2, and
Figure 9-3.

GTK
Another technique to display content in different portions of the tablet window is by using Fragments. A Fragment
is essentially a sub-Activity hosted inside another Activity. By dividing different components of the user interface
and displaying them in Fragments, it is easier for developers to reuse these components across various
Activities.

Custom theme added

Figure 9-36 Android Manifest code with new theme

332

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Wrap It Up—Chapter Summary
A tablet provides a larger screen that allows for easier navigation using tabs. The chapter
provided steps to create a TabHost that created a simple structure to display three screens of
content. The GridView control was introduced for layout for images, videos, or other types of
files in a grid configuration.

l To create a tabbed interface in an Android tablet app similar to one used in a browser, you
use the TabHost control, which contains two parts. The TabWidget displays the tabs,
including labels and icons, and the FrameLayout displays the tab content.

l You specify the layout of a tabbed interface in the XML code. The default LinearLayout
positions the controls vertically, with the FrameLayout below the TabWidget. In the XML
code, the TabHost, TabWidget, and FrameLayout must have the ids shown in Table 9-1.

l You begin designing a tabbed control in the main Java file, such as Main.java, by extending
the TabActivity class instead of the Activity class using the statement public class

Main extends TabActivity.

l Similar to the Gallery control, a GridView control displays objects in a two-dimensional,
scrollable grid. To customize a GridView layout, you can specify the number of columns,
the width of each column, and the column spacing.

l A setAdapter provides a data model for the layout of the GridView control. You use the
setAdapter() method to instantiate the custom ImageAdapter class and apply it to the
GridView, similar to the way you used adapters to display ListView and Gallery controls in
previous chapters.

l When the ImageAdapter class is called, it controls the layout of the GridView and
connects the data sources from an array for display. The ImageAdapter class must provide
the information to set up the GridView with data and specifications necessary for the
display. Context is used to load and access resources for the application.

l To display the tabbed interface, you must fully code the Main.java class that extends
TabActivity. Each XML layout file must be loaded into the appropriate FrameLayout
of each tab. Use the getTabHost method to start the TabHost Activity, which hosts the
tabs in the application.

l Each tab in a tabbed interface must have a TabSpec statement, which specifies how the
tabs should appear. The TabSpec statement creates an instance, which details tab content.
The instance calls the setIndicator method that sets the tab button caption and supplies an
icon image, if necessary. Next, an intent is created to launch an Activity for the first tab.
Finally, the setContent method indicates what is displayed in the tab content area. This
method calls the instance of the intent and places the content of the first tab’s Activity
within the FrameLayout (the content area of TabHost).

l The last step in Main.java is to add TabSpec to the instance of the TabHost control. Every
tab change closes the previously opened tab and opens the selected tab.

333

Wrap It Up—Chapter Summary

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms
columnWidth—A GridView property that specifies a fixed width for each column.

FrameLayout—The part of a TabHost control that displays the tab content.

GridView—A control that displays objects in a scrollable grid, similar to the Gallery control.
A GridView control is part of the View group and lets you specify the number of columns,
column width, and column spacing.

numColumns—A GridView property that can be set to an integer value representing the
number of columns to include, or to auto fit, which determines the number of columns to
show based on the size of the Android screen and the image width.

setAdapter—A method that provides a data model for the layout of the GridView
control. You use the setAdapter method to instantiate a custom BaseAdapter class called
ImageAdapter and then apply it to the GridView.

setContent—A method that indicates what to display in the tab content area of a TabHost
control.

setIndicator—A method that sets the tab button caption and icon image in a TabHost
control.

TabActivity—A class that allows you to display tabs in a TabHost control, with each tab
containing an Activity or view.

TabHost—A control you use to wrap multiple views in a single window.

TabSpec—A statement that specifies how the tabs in a TabHost control should appear.

TabWidget—The part of a TabHost control that displays the tabs.

Developer FAQs
1. Which control wraps multiple views in a single window?

2. What is the minimum number of tabs typically placed on an Android device?

3. Tabs represent what physical item that was often used in an office for
organization?

4. What are the two parts of a TabHost control?

5. True or False? Each tab launches a separate Activity.

6. To position the TabWidget and FrameLayout vertically in the XML layout file, the
two parts should be placed in which type of layout?

7. How would you change main.xml in the chapter project if you wanted the tabs to
appear at the bottom of the Android window?

334

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. What is the id for a TabWidget in the XML code?

9. Which control has the id of “@android:id/tabcontent”?

10. Why should you avoid using a title bar with tabs?

11. True or False? The graphical layout emulator for XML files does not display tabs
properly.

12. If you tap the Web Site tab in the chapter project, how do you return to the tabbed
interface without starting the application again?

13. Write a single line of XML code that sets the width of a column of a GridView control
to 185 density-independent pixels.

14. To display as many pictures that can fit comfortably on the display of a GridView
control, write a single line of XML code to set the number of columns.

15. What provides a data model for the layout of the GridView control?

16. Write the line of code that launches a browser and opens the wikipedia.org site.

17. Which methods set the text of a tab control?

18. Which layout control is similar to the GridView control?

19. Name another technique besides using tabs to display content in different portions of
the tablet window.

20. Which file must be updated within your project if you add more than the
Main.java file?

Beyond the Book
Using the Internet, search the Web for the answers to the following questions to further your
Android knowledge.

1. Research three Android tablet devices. Write a paragraph about the cost, usage,
dimensions, and posted reviews of each of these three tablets.

2. Using cnet.com (a popular review site), compare the newest Android, iPad,
and Windows tablets and summarize their recommendations in a one-page
paper.

3. Using developer.android.com, research the topic of GridView. After writing many
Android projects, the Android help files should be easier to understand now. Explain
the stretchmode property in your own words (at least 100 words).

4. A common user complaint is that it is difficult to use an onscreen keyboard to type
long documents. Discuss three alternatives beyond using the traditional onscreen
keyboard layout for input. Write a paragraph about each.

335

Beyond the Book

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps and
techniques taught within the chapter. Submit the program you create to your instructor. The
level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆⋆

Challenging: ⋆⋆⋆

Case Project 9–1: Sushi 101 Tablet App ⋆

Requirements Document

Application title: Sushi 101 Tablet App

Purpose: This sushi tablet app explains the basics of eating sushi for those new to
the Japanese fish and vegetable delicacy.

Algorithms: 1. The opening screen displays three tabs with custom icons named
chopsticks.png, sushipics.png, and faq.png. The tab titles are Lesson,
Images, and Web site (Figure 9-37). The first tab displays a title and an
image named lesson.png that demonstrates the correct way to hold
chopsticks.

2. The second tab displays a GridView control with seven sushi images
named sushi1.png–sushi7.png (Figure 9-38).

3. The third tab opens www.sushifaq.com in a browser (Figure 9-39).

Conditions: 1. The pictures are provided with your student files.

2. Use the same theme as the chapter project.

3. The LayoutParams of the GridView control should be set to
300 pixels wide by 280 pixels tall.

336

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.sushifaq.com

Figure 9-37

Figure 9-38

iS
to
ck
ph
ot
o/
bu
ba
on
e,
iS
to
ck
ph
ot
o/
jk
ita
n

iS
to
ck
ph
ot
o/
bu
ba
on
e,

iS
to
ck
ph
ot
o/
Sh
yM

an
,
iS
to
ck
ph
ot
o/
w
hi
te
w
is
h,

iS
to
ck
ph
ot
o/
M
at
te
o

De
St
ef
an
o,
iS
to
ck
ph
ot
o/
ju
lic
hk
a,
iS
to
ck
ph
ot
o/
Ja
m
es

M
cQ
24
,i
St
oc
kp
ho
to
/m
is
sa
ig
on
g

337

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 9–2: Golf Course Tablet App ⋆

Figure 9-39

w
w
w
.s
us
hi
fa
q.
co
m

Requirements Document

Application title: Golf Course Tablet App

Purpose: The Myrtle Beach tourism board would like you to create a tablet app showcasing
the golf course of Myrtle Beach.

Algorithms: 1. The opening screen displays two tabs with custom icons named images.png
and site.png. Notice there are no titles on the tabs, just images (Figure 9-40).

2. The first tab displays a GridView control with five golf course images named
golf1.png–golf5.png.

3. The second tab opens a link to a Myrtle Beach golf site such as mbn.com.

Conditions: 1. The pictures are provided with your student files.

2. Use the same theme as the chapter project.

338

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.sushifaq.com
http://www.sushifaq.com
http://www.sushifaq.com

Case Project 9–3: Famous Artist Tablet App ⋆⋆

Requirements Document

Application title: Famous Artist Tablet App

Purpose: Create one tablet screen of a large app that features information about the
famous artists of the world. The artist featured in this case project is Vincent
van Gogh.

Algorithms: 1. An opening screen uses a GridView to display a title (Vincent van Gogh)
and two images of Van Gogh’s art on the first row and two images on the
second row using a GridView. The images are named art1, art2, art3,
and art4. The tabs display only the following text: Art, Artist, and Site.

2. The second tab displays Van Gogh’s birth date, his hometown, and names
of two of his most famous paintings. Research the information needed.

3. The third tab opens this link: http://en.wikipedia.org/wiki/Vincent_van_Gogh.

Conditions: 1. The pictures are provided with your student files.

2. Use the same theme as the chapter project.

Figure 9-40

iS
to
ck
ph
ot
o/
sc
ul
pi
es
,
iS
to
ck
ph
ot
o/
An
dy

Ka
zie
,
iS
to
ck
ph
ot
o/
Cy
nt
hi
a
An
n
F,

iS
to
ck
ph
ot
o/

Ph
ot
ot
al
k,
Ig
or

Sh
ik
ov
/S
hu
tte
rs
to
ck

339

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://en.wikipedia.org/wiki/Vincent_van_Gogh

Case Project 9–4: Snap Fitness Tablet App ⋆⋆

Case Project 9–5: Go Web 2.0 Tablet App ⋆⋆⋆

Requirements Document

Application title: Snap Fitness Tablet App

Purpose: The local fitness gym in your area wants an app that provides information
about the activities and memberships at the gym.

Algorithms: 1. An opening screen displays three tabs at the bottom of the app. The tabs
display the titles Site, Info, and Photos. The tab images are named gym_icon1,
gym_icon2, and gym_icon3. The first tab links to the Web site of a local gym.

2. The second tab displays the costs for the gym:

Youth (ages 14–17) $25

Adult (18 and over) $50

Family/Household $75

Active Senior: $50

3. The third tab displays four photos. The images are named gym1, gym2,
gym3, and gym4.

Conditions: 1. The pictures are provided with your student files.

2. Use the same theme as the chapter project

.

Requirements Document

Application title: Go Web 2.0 Tablet App

Purpose: The Go Web 2.0 Tablet app displays eight screen shots (saved as .png
files) of your favorite Web 2.0 technology sites.

Algorithms: 1. An opening screen displays three tabs at the bottom of the app. The
tabs display the titles Screen Shots, URLs, and Link. Locate your own
tab images. The first tab displays eight screen shots of Web 2.0 sites.

2. The second tab lists the Web addresses of the eight sites.

3. The third tab opens a link to your favorite Web 2.0 site.

Conditions: 1. Locate images from the Internet.

2. Use the same theme as the chapter project.

340

C H A P T E R 9 Customize! Navigating with Tabs on a Tablet App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 9–6: Pick Your Topic Tablet App ⋆⋆⋆

Requirements Document

Application title: Pick Your Topic Tablet App

Purpose: Get creative! Create an app with four tabs on a topic of your choice.

Algorithms: 1. Create four tabs, including a GridView and a Gallery object on
different tabs.

2. The tabs should have icons and text.

Conditions: 1. Select your own images.

341

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 10
Move! Creating
Animation

In this chapter, you learn to:

Create an Android application with Frame and Tween animation

Understand Frame animation

Understand Tween animation

Add an animation-list XML file

Code the AnimationDrawable object

Set the background Drawable resource

Launch the start() and stop() methods

Add Tween animation to the application

Create a Tween XML file that rotates an image

Determine the rotation pivot, duration, and repeat count of a
Tween animation

Load the startActivity Tween animation in a second Activity

Change the orientation of the emulator

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
n
sh
ot
s
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Computer animation is widely used by television, the video game industry (as on Xbox, Vita,
and Wii), and gaming applications on handheld devices. Animation displays many images in
rapid succession or displays many changes to one image to create an illusion of movement.
Animation is an integral part of many of the most popular Android apps at the Android
Market, including Words with Friends, Angry Birds, Cut the Rope, and Roller Ball. Android
developers see the value in using 3D graphics to create more graphical apps and in-demand
games. Using Android animation, the chapter project named Wave Animation displays
multiple photos of surfing the perfect wave controlled by a Start Frame Animation button
that reveals the animated images frame by frame. The app contains four different surfing
pictures in Hawaii. When the user taps the Stop Frame Animation button, the frame-by-
frame animation stops and the last image of the surfer rotates around several times using
Tween animation. A motion tween specifies a start state of an object, and then animates the
object using a uniform transition type such as rotating a predetermined number of times or
an infinite number of times. The Wave Animation Android smartphone application shown in
Figure 10-1 allows the user to start and stop the animated images of a surfer riding a wave at
different moments in a frame-by-frame sequence and then launches a second Activity that
plays a rotation of the surfer image six times.

Four images are
displayed during the
Frame animation

Figure 10-1 Wave Animation Android app using frame-by-frame animation

Ep
ic
St
oc
kM

ed
ia
/S
hu
tte
rs
to
ck

344

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The animation in the Android app in Figure 10-1 displays frame-by-frame animation where
the time between each photo is measured in 100-millisecond intervals. The Start Frame
Animation button begins displaying the surfing images, and the Stop Animation button stops
the continuous Frame animation and begins the Tween animation of rotating the surfing
image, as shown in Figure 10-2. The Tween animation rotates the fourth surfing image six
times in a perfect circle. The orientation of the emulator is changed to landscape in Figure 10-2.

GTK
Professional Android animation can be created by using complex programs such as Maya or Cinema 4D. A
freeware program named Blender develops 3D animated content in the gaming environment.

To create this application, the developermust understand how to perform the following processes:

1. Add the four images to the drawable folder.

2. Add a Frame animation XML file to the project.

3. Add the layout for the image and button objects in main.xml.

4. Set the duration between frames in the frame-by-frame animation.

5. Declare and instantiate the ImageView, Button, and AnimationDrawable controls.

6. Code the OnClickListeners for the Button controls.

7. Run the frame-by-frame Animation application.

8. Add a layout for an ImageView control for the Tween animation.

9. Add a Tween animation XML file to rotate the last surfing image.

Image rotates six
times in a full circle

Emulator is in
landscape orientation

Figure 10-2 Wave Animation Android app using Tween animation

Ep
ic
St
oc
kM

ed
ia
/S
hu
tte
rs
to
ck

345

Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Create a second Activity named Tween.java to launch the rotation Tween animation.

11. When the application executes, change the orientation of the emulator.

Android Animation
Android provides two types of animation: Frame and Tween animation. Frame animation,
also called frame-by-frame animation, assigns a sequence of photos to play as in a slide show
with a predefined interval between images. Frame-by-frame animation is typically created to
show steps in a process such as fly-fishing or play a fast-paced sequence such as in a cartoon.
To create the illusion of movement, a cartoon image can be displayed on the screen and
repeatedly replaced by a new image that is similar, but slightly advanced in the time sequence.

Instead of using a sequence of images, Tween animation creates an animation by performing a
series of transformations on a single image such as position, size, rotation, and transparency
on the contents of a View object. Text can fly across the screen, an image of an engine can be
rotated to display different angles, or the transparency of an image can change from
transparent to solid. A sequence of animation instructions defines the Tween animation using
either XML or Android code. In this chapter project, the application first displays a frame-by-
frame animation. Code is added to the same application to display a second type of animation
called a Tween rotation effect.

Adding the Layout for the Frame Image
and Button Controls
The layout specifications for the chapter project reside within the main.xml file in a
LinearLayout. The single ImageView control named imgSurf displays the surfing images in a
frame-by-frame animation. The two Button controls named btnStart and btnStop start and
stop the Frame animation, respectively. The layout is designed with a nested Relative layout
within a Linear layout to place the two buttons side by side. In the Linear layout, an ImageView
control displays the animation images. Insert this control and its properties in the main.xml file
to specify precise settings for the control. Within the structured Linear layout, insert a Relative
layout to arrange the buttons side by side, which the Linear layout does not allow. Later in the
chapter, a Tween animation is added to the application and launched when the Frame
animation ends. To begin the application and code the main.xml layout, follow these steps:

1. Open the Eclipse program. Click the New button on the Standard toolbar. Expand
the Android folder and select Android Project. Click the Next button. In the New
Android Project dialog box, enter the Project Name Wave Animation. To save
the project on your USB drive, click to remove the check mark from the Use default
location check box. Type E:\Workspace (if necessary, enter a different drive
letter that identifies the USB drive). Click the Next button. For the Build Target,
select Android 4.0, if necessary. Click the Next button. For the Package Name, type
net.androidbootcamp.waveanimation. Enter Main in the Create Activity text box.

346

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The new Android Wave Animation project has an Application Name, a Package
Name, and an Activity named Main (Figure 10-3).

2. Click the Finish button. Expand the Wave Animation project in the Package Explorer.
In the res/layout folder, double-click main.xml to display the XML code. If necessary,
click the main.xml tab at the bottom of the window. By default, LinearLayout is set.
Within the LinearLayout, delete the default four TextView XML codes (Lines 7–10).
Add the ImageView control by typing the following custom XML code using auto-
completion as much as possible:

<ImageView
android:id="@+id/imgSurf"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:minHeight="150px"
android:minWidth="300px" />

New Android
Project dialog box

Application Name

Package Name

Main Activity

Figure 10-3 Application information for the Wave Animation project

347

Adding the Layout for the Frame Image and Button Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The ImageView control is coded in main.xml (Figure 10-4).

3. Press the Enter key, and then add the two Button controls within a Relative layout to
place the buttons on the same line by typing the following custom XML code, using
auto-completion as much as possible:

<RelativeLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<Button
android:id="@+id/btnStart"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_marginLeft="15dp"
android:textSize="12dp"
android:text="Start Frame Animation" />

<Button
android:id="@+id/btnStop"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentRight="true"
android:layout_marginRight="15dp"
android:textSize="12dp"
android:text="Start Tween Animation" />

</RelativeLayout>

ImageView
control

main.xml tab

main.xml

Figure 10-4 ImageView XML code

348

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The two Button controls are coded in main.xml (Figure 10-5).

Creating Frame-by-frame Animation
In the Wave Animation app, the frame-by-frame animation loads and displays a sequence of
surfing images from the drawable folder. A single XML file named frame.xml lists the
frames that constitute the surfing animation. You create frame.xml in a new res folder
named drawable. In the XML code, an animation-list root element references four surfing
images stored in the drawable folders. Each item in the animation-list specifies how many
milliseconds to display each image. In the chapter project, each image is displayed for 1/10
of a second. The animation-list code includes a oneshot property, which is set to true by
default. By setting the android:oneshot attribute of the animation-list to false, as shown in
the following code, the animation plays repeatedly until the Stop Animation button is
tapped. If the oneshot attribute is set to true, the animation plays once and then stops and
displays the last frame. Note that you add the oneshot attribute to the code in the opening
animation-list tag.

Two Button controls
in a Relative layout

Figure 10-5 Two Button controls in XML code

349

Adding the Layout for the Frame Image and Button Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Code Syntax

<?xml version="1.0" encoding="utf-8"?>
<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false" >

<item android:drawable="@drawable/surf1" android:duration="100"/>
<item android:drawable="@drawable/surf2" android:duration="100"/>
<item android:drawable="@drawable/surf3" android:duration="100"/>
<item android:drawable="@drawable/surf4" android:duration="100"/>

</animation-list>

When the XML file is added to the Android project, the Resource type Drawable is selected
and animation-list is selected as the root element of the XML code. A folder named drawable
is automatically added to the res folder. To copy the images into the drawable folder and code
the animation-list XML code, follow these steps:

1. Save and close the main.xml file. To add the four image files to the drawable-hdpi
folder, if necessary, copy the student files to your USB drive. Open the USB folder
containing the student files. In the Package Explorer, expand the drawable-hdpi folder
in the res folder. To add the four image files to the drawable-hdpi resource folder,
drag the surf1.png, surf2.png, surf3.png, and surf4.png files to the drawable-hdpi
folder until a plus sign pointer appears. Release the mouse button. If necessary, click
the Copy files option button, and then click the OK button.

Copies of the four files appear in the drawable-hdpi folder (Figure 10-6).

Four image files placed in
the drawable-hdpi folder

Figure 10-6 Copied images in the drawable-hdpi folder

350

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://schemas.android.com/apk/res/android

2. Right-click the layout folder. Point to New on the shortcut menu, and then click
Other. In the New dialog box, click Android XML File and click the Next button.
The New Android XML File dialog box opens. In the Resource Type drop-down
box, select Drawable. In the File text box, type the XML filename animation. In
Root Element, select animation-list as the type of element that is added to the
XML file.

An XML file named animation is created in a folder named drawable with the root
element animation-list (Figure 10-7).

3. Click the Finish button. The animation.xml file opens with the animation-list element
already coded. Click the Source tag and then click before the closing tag > in Line 2.
To add the oneshot attribute to create a continuous loop of animation, type
android:oneshot=“false”.

Resource Type

Filename

Root Element

Finish button

Figure 10-7 animation.xml file

351

Adding the Layout for the Frame Image and Button Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In animation.xml, the oneshot attribute is set to false in the animation-list code
(Figure 10-8).

4. Click Line 3 within the animation-list element to add the four list items that are
displayed within the frame-by-frame animation. Type the following four lines to
reference the images and millisecond durations:

<item android:drawable="@drawable/surf1" android:duration="100"/>
<item android:drawable="@drawable/surf2" android:duration="100"/>
<item android:drawable="@drawable/surf3" android:duration="100"/>
<item android:drawable="@drawable/surf4" android:duration="100"/>

In animation.xml, the four frames of the animation are entered as items in the
animation-list element (Figure 10-9).

GTK
Android includes support for high-performance 2D and 3D graphics with the Open Graphics Library named
OpenGL. OpenGL is a cross-platform graphics API that specifies a standard software interface for 3D graphics
processing hardware and uses a coordinate system to map the image to the screen.

Coding the AnimationDrawable Object
The AnimationDrawable class provides the methods for Drawable animations to create a
sequence of frame-by-frame images. In Android development, frame-based animations and
image transitions are defined as drawables. The instance of the AnimationDrawable is
instantiated as a class variable because it is used in multiple methods within the Main class.
To instantiate the AnimationDrawable object in Main.java as a class variable, follow this step:

oneshot is
set to false

Figure 10-8 The oneshot attribute is set to false

Four items in
animation-list

Figure 10-9 animation-list items

352

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Save your work and then close the animation.xml tab. Expand the src and
net.androidbootcamp.waveanimation folders, and then double-click Main.java
to open its code window. Click at the end of the /** Called when the activity is
first created. */ comment, press the Enter key, and type AnimationDrawable
surfAnimation; to instantiate the object. Point to AnimationDrawable and click
‘Import AnimationDrawable’ (android.graphics.drawable).

The AnimationDrawable instance named surfAnimation is coded within Main.java
(Figure 10-10).

Setting the Background Resource
The ImageView control named imgSurf that was coded in main.xml must be coded in
Main.java to bind the Drawable resource files to the Background property. The Background
property of an image can be set to any full Drawable resource such as a .png file, a 9-patch
image file, or a solid color designated with hexadecimal code such as #FF0000 for red. A
special image, called a 9-patch image, has predefined “stretching” areas that maintain the
same look on different screen sizes. These 9-patch graphics are named for their nine areas,
called patches, that scale separately. For example, a button may change sizes when it is
stretched across different form factors.

The images used in the Wave Animation application are .png files, referenced in
animation.xml as items in the animation-list. In the following code, a new instance of
ImageView named imgFrame is assigned to the ImageView control named imgSurf, which
was defined in the main.xml layout. The list of drawable images in the animation-list is
connected to the imgFrame instance by the imgFrame.setBackgroundResource method. The
setBackgroundResource method shown in the following code places the four surfing images
in the frame-by-frame display. Each frame points to one of the surfing images that were
assembled in the XML resource file.

AnimationDrawable
statement

New
drawable
folder

Main.java

Figure 10-10 Instantiating AnimationDrawable

353

Setting the Background Resource

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Code Syntax

ImageView imgFrame=(ImageView)findViewById(R.id.imgSurf);
imgFrame.setBackgroundResource(R.drawable.animation);
surfAnimation=(AnimationDrawable) imgFrame.getBackground();

In the third line of the code syntax, the instance of AnimationDrawable called
surfAnimation is assigned as the background of the four images to display in the animation.
Android constructs an AnimationDrawable Java object before setting it as the background.
At this point, the animation is ready to display the four images, but must wait for you to
code the start() method, which actually begins the movement in the Frame animation. To
instantiate the ImageView control and assign the four images to the Background property,
follow these steps:

1. Click at the end of the setContentView (R.layout.main); line, press the Enter key, and
then instantiate the ImageView that accesses imgSurf in the XML layout file by typing
ImageView imgFrame=(ImageView)findViewById(R.id.imgSurf);. Point to
ImageView and click Import ‘ImageView’ (android.widget).

The ImageView control is instantiated (Figure 10-11).

2. Press the Enter key to insert a blank line, and then set the background
resource image for the animation-list in animation.xml by typing
imgFrame.setBackgroundResource(R.drawable.animation);.

The animation-list within animation.xml is set as the Background property of the
imgFrame ImageView (Figure 10-12).

ImageView
instance

Figure 10-11 Instantiating the ImageView control

354

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Next, access the AnimationDrawable object by “getting” the view object.
Press the Enter key, and then type surfAnimation=(AnimationDrawable)
imgFrame.getBackground();.

The AnimationDrawable is ready to display the four images (Figure 10-13).

IN THE TRENCHES
Common frame-by-frame animations include rotating timers, e-mail symbols, Activity icons, page-loading
animations, cartoons, and other useful user interface elements.

getBackground

Figure 10-13 getBackground prepares the Animation drawable

setBackgroundResource

Figure 10-12 setBackgroundResource is set for the ImageView control

355

Setting the Background Resource

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding Two Button Controls
The Button controls in the Wave Animation project turn the frame-by-frame animation on
and off. Both buttons use a setOnClickListener to await user interaction. To instantiate the
two Button controls and add the setOnClickListener, follow these steps:

1. To code the first button, press the Enter key and then type Button btFrame=(Button)
findViewById(R.id.btnStart);. Point to Button and select Import ‘Button’ (android.
widget).

The first Button control that begins the animation is instantiated (Figure 10-14).

2. To code the second button, press the Enter key and type Button btTween=(Button)
findViewById(R.id.btnStop);.

The second Button control that stops the animation is instantiated (Figure 10-15).

First Button
control instance

Figure 10-14 btFrame is the instance of the first button

Instance of second
Button control

Figure 10-15 btTween is the instance of the second button

356

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. To code the first Button listener, press the Enter key and type btFrame followed by
a period to open a code listing. Double-click the first setOnClickListener displayed
in the auto-completion list. Inside the parenthesis, type new on and then press the
Ctrl+spacebar keys to display the auto-completion list. Double-click the first choice,
which is a View.OnClickListener with an Anonymous Inner Type event handler.
If necessary, type View. before OnClickListener. Point to OnClickListener and
select Import ‘OnClickListener’ (android.view.View). If necessary, insert a right
parenthesis and semicolon after the closing brace for the auto-generated stub.

The onClickListener awaits user interaction for btFrame (Figure 10-16).

4. Press the Enter key after the semicolon to code the second Button listener.
Type btTween followed by a period to open a code listing. Double-click the first
setOnClickListener displayed in the auto-completion list. Inside the parenthesis,
type new on and then press the Ctrl+spacebar keys to display the auto-completion
list. Double-click the first choice, which is a View.OnClickListener with an
Anonymous Inner Type event handler. If necessary, type View. before OnClickListener.
If necessary, insert a right parenthesis and semicolon after the closing brace for
the auto-generated stub.

The onClickListener awaits user interaction for btTween (Figure 10-17).

OnClickListener
for first button

Parenthesis and
semicolon inserted

Figure 10-16 First button OnClickListener

357

Adding Two Button Controls

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
As in earlier chapters, the figures in this chapter include @Override statements. Depending on your Eclipse
installation, your code might not include these statements. If Eclipse doesn't insert these automatically, your
code will run without any problems.

Using the Start and Stop Methods
After associating AnimationDrawable with the animation images and coding the buttons,
you can use the start() and stop() methods of the drawable objects to control the Frame
animation. When the user taps the Start Frame Animation button, the start() method
begins the Frame animation continuously because oneshot is set to false. The Frame
animation stops only when the user taps the Start Tween Animation button, which
launches the stop() method and then initiates the startActivity, launching the second
Activity named Tween.java. In the following code, the start() method is placed within the
onClick() method for the Start Frame Animation button and the stop() method is placed
within the onClick() method for the Start Tween Animation button:

Code Syntax

surfAnimation.start();
surfAnimation.stop();

OnClickListener
for second button

Parenthesis and
semicolon inserted

Figure 10-17 Second button OnClickListener

358

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The start() method launches the surfAnimation.xml file displaying the animation-list items
and the stop() method ends the display of the animation-list. To add the start() and stop()
methods, follow these steps:

1. Click at the end of the first // TODO comment (for btFrame), press the Enter key, and
then type surfAnimation.start();.

The Start Frame Animation button is coded to start surfAnimation.xml (Figure 10-18).

2. Click at the end of the // TODO comment for btTween, press the Enter key, and then
type surfAnimation.stop();.

The Start Tween Animation button is coded to stop the Frame animation within
surfAnimation.xml (Figure 10-19).

3. To test the Frame animation, click Run on the menu bar, and then click Run to
save the application and test it in the emulator. A dialog box requesting to run
the application opens the first time the application is executed. Select Android
Application and click the OK button. Save all the files in the next dialog box,
if necessary, and unlock the emulator. The application opens in the emulator
window where you can click the Start Frame Animation button to view the
surfing animation.

start() method
for btFrame

Figure 10-18 Entering the start() method

stop() method for
btTween button

Figure 10-19 Entering the stop() method

359

Using the Start and Stop Methods

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The emulator displays the frame-by-frame animation (Figure 10-20).

Adding the Layout for the Tween Image
After the user taps the Start Tween Animation button, the Frame animation ends and a
second Activity is launched. This second Activity is named Tween.java, and it defines a
second layout with a single ImageView control identified with the id imgTween, referencing
the fourth image named surf4. To code the tween.xml file layout to display an ImageView
control, follow this step:

Figure 10-20 Frame animation displayed in the emulator

Ep
ic
St
oc
kM

ed
ia
/S
hu
tte
rs
to
ck

360

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Close Main.java. In the res folder, right-click the layout folder, point to New on the
shortcut menu, and then click Other. In the New dialog box, click Android XML
Layout File, and then click the Next button. In the New Android Layout XML File
dialog box, type tween.xml in the File text box to name the layout file. In the Root
Element list, select LinearLayout. Click the Finish button. When the emulator window
opens, click the tween.xml tab. Add the ImageView control by typing the following
custom XML code beginning on Line 6, using auto-completion as much as possible:

<ImageView
android:id="@+id/imgTween"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:src="@drawable/surf4" />

A second XML layout named tween.xml displays an ImageView control (Figure 10-21).

Creating Tween Animation
Instead of rendering several images in a sequence in Frame animation, Tween animation
manipulates a Drawable image by adding tween effects. Defined in an XML file, tween effects
are transitions that change objects from one state to another. An ImageView or TextView
object can move, rotate, grow, or shrink. As shown in Table 10-1, Tween animations include
a built-in library of tween effects. These effects are saved within an animation XML file that
belongs in the res/anim/ folder of your Android project.

ImageView control

Layout file named
tween.xml

Figure 10-21 ImageView control coded in tween.xml

361

Using the Start and Stop Methods

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The four Tween animation effects in Table 10-1 can be coded in an XML file and individually
configured or nested together to animate an object in any possible direction or size.

Coding a Tween Rotation XML File
In the Wave Animation application, the last image named surf4.png is rotated when the user
clicks the Start Tween Animation button. Android uses an XML file-creator utility that
supports 10 different Resource types. The default Resource type is Layout, but in the chapter
project, you select Tween animation. After entering the XML filename as rotation.xml, click
the root element of rotate to store the rotation.xml code for a Tween animation in the
/res/anim folder. The XML file for a Frame animation is stored in the /res/drawable folder.
The rotation.xml statements are shown in the following code:

Code Syntax

<?xml version="1.0" encoding="utf-8"?>
<rotate
xmlns:android="http://schemas.android.com/apk/res/android"
android:fromDegrees="0"
android:toDegrees="359"
android:pivotX="50%"
android:pivotY="50%"
android:duration="2000"
android:repeatCount="5"
rotate />

The rotation.xml code defines the attributes of the Tween animation. Notice the tween effect is
set to rotate in the second line. The fromDegrees and toDegrees rotate attribute spins the object
from 0 to 359 degrees, which equals 360 degrees for a full circle. The image in the chapter project
completes several clockwise rotations. The pivotX and pivotY attributes pivot an object from its
center by setting the pivot point, which can be a fixed coordinate or a percentage. By default, the
object pivots around the (0,0) coordinate, or the upper-left corner of the object. Notice pivotX

Tween effect Purpose

alpha Transitions an object from one level of transparency to another, where 0.0 is
transparent and 1.0 is opaque.

rotate Spins an object from one angular position to another. To rotate an object completely
around, start at 0 degrees and rotate to 359 degrees (a full circle). A pivotX and
pivotY percentage shows the amount of pivot based on the object’s left edge.

scale Transitions the size of an object (grow or shrink) on an X/Y scale.

translate Moves the object vertically or horizontally a percentage relative to the element width
(for example, deltaX=“100%” would move the image one image width away).

Table 10-1 Tween animation effects

362

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://schemas.android.com/apk/res/android

and pivotY are set to 50% in the code example, which determines that the pivot location is from
the center of the object. The duration for each rotation is set for 2,000 milliseconds. The
repeatCount represents how many times the object rotates after the initial rotation. You can set
repeatCount to an integer or to “infinite” if you do not want the rotation to stop. Remember that
the number of rotations is always one greater than the repeat value, so if you set the repeatCount
to the integer 5, the object rotates six times. It rotates once initially and then repeats the rotation
five more times. By creating an XML file, it is easier to make simple changes to fine-tune the
animation. You might want to try different values in the rotation.xml file to see how the
animation changes. To code the Tween animation to rotate an image, follow these steps:

1. Save and close the tween.xml layout file. To create a new rotation XML file, right-click
the layout folder. Point to New on the shortcut menu, and click Other. In the New
dialog box, click Android XML File and then click the Next button. The New Android
XML File dialog box opens. In the Resource Type drop-down box, select Tween
Animation. In the File text box, type the XML filename rotation. In Root Element,
select rotate as the type of element that is added to the XML file.

The New Android XML File dialog box opens and the Resource Type, File, and Root
Element are selected (Figure 10-22).

Resource Type

Root Element

Finish button

Filename

Figure 10-22 New Android XML File dialog box

363

Using the Start and Stop Methods

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the Finish button. The rotation.xml file opens with the rotate element already
coded. Delete the closing rotate code and the right angle bracket (>) after rotate on Line
2. Click Line 3 and type the following code after the opening rotate root element:

xmlns:android="http://schemas.android.com/apk/res/android"
android:fromDegrees="0"
android:toDegrees="359"
android:pivotX="50%"
android:pivotY="50%"
android:duration="2000"
android:repeatCount="5" />

In rotation.xml, the Tween animation attributes are coded to rotate the image
(Figure 10-23).

IN THE TRENCHES
To change an image from transparent to opaque, code an alpha statement in an XML file such as
<alpha xmlns:android=http://schemas.android.com/apk/res/android android:fromAlpha=“0.0”
android:toAlpha=“1.0” android:duration=“100”>.

Coding a Second Activity to Launch the Tween Animation
When the user taps the Start Tween Animation button in theWave Animation, two actions are
triggered within the second onClick() method. The Frame animation is concluded with the
stop() method and a startActivity intent launches a second Activity named Tween.java. To code
a second Activity and launch the startActivity, follow these steps:

1. Save and close rotation.xml. To create a second class, right-click the
src/net.androidbootcamp.waveanimation folder, point to New on the shortcut
menu, and then click Class. Type Tween in the Name text box to create a second
class that defines the Tween Activity. Click the Superclass Browse button, and then type
Activity in the Choose a type text box. As you type, matching items are displayed.
Click Activity – android.app and then click the OK button to extend the Activity class.

rotation.xml

rotate attributes

Figure 10-23 rotate attributes in rotation.xml file

364

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

A new class named Tween.java is created (Figure 10-24).

2. Click the Finish button to finish creating the Tween class. To launch the Tween
Activity class from the Main.java class, open Main.java. Scroll down to the
statement surfAnimation.stop(). Click at the end of the statement and press the
Enter key. To launch an intent that starts the second Activity, type startActivity
(new Intent(Main.this, Tween.class));. Point to Intent and then click Import
‘Intent’ (android.content).

Name of Java class

Superclass

Finish button

Figure 10-24 Tween.java class

365

Using the Start and Stop Methods

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A startActivity launches the Tween.java class (Figure 10-25).

IN THE TRENCHES
If you deploy an Android app and receive an error message similar to “Installation error: INSTALL_FAILED_
INSUFFICIENT_STORAGE,” the reason is the default internal storage is 64 MB. You can override this setting
in the Eclipse launch configuration by clicking Run on the menu bar and then selecting Run Configurations.
Click the Target tab and in the Additional Emulator Command Line Options box, type -partition-size 1024.

Coding a StartAnimation
Now that the layout, rotation XML file, and second Activity are ready, the Tween
animation can be launched using the startAnimation method. Applying the Tween
rotation animation, the startAnimation method begins animating a View object by
calling the AnimationUtils class utilities to access the resources necessary to load the
animation. To code the startAnimation method to launch the rotation, follow
these steps:

1. Save and close Main.java. To code the onCreate method in Tween.java, click at the
end of the public class Tween extends Activity { line, press the Enter key, type public
void onCreate(Bundle savedInstanceState) { and press the Enter key. A closing
brace for the onCreate method appears. Point to Bundle and then click Import
‘Bundle’ (android.os).

The onCreate method for Tween.java is coded (Figure 10-26).

startActivity

Main.java

Tween.java

Figure 10-25 Main.java launches the second Activity (complete code for Main.java)

366

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. To display the tween.xml layout, type super.onCreate(savedInstanceState);. Press
the Enter key, and then type setContentView(R.layout.tween);.

A tween.xml layout is displayed for the Tween class (Figure 10-27).

3. To instantiate the ImageView control named imgTween, press the Enter key and type
ImageView imgRotate = (ImageView) findViewById(R.id.imgTween);. Point to
ImageView and then click Import ‘ImageView’ (android.widget).

An instance of the ImageView control named imgRotate is instantiated (Figure 10-28).

onCreate method

Figure 10-26 onCreate method in Tween.java

setContentView layout

Figure 10-27 tween.xml layout is set

Instance of
ImageView control

Figure 10-28 ImageView is instantiated

367

Using the Start and Stop Methods

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. To begin the Tween rotation animation, press the Enter key and type imgRotate.
startAnimation(AnimationUtils.loadAnimation(this, R.anim.rotation));.
If necessary, point to AnimationUtils and then click Import ‘AnimationUtils’
(android.view.animation).

The Tween animation is started. The fourth image rotates six times and stops
(Figure 10-29).

5. Save your work.

Updating the Android Manifest File
The Android Manifest file must be updated to include the second Activity named
Tween.java and to remove the title bar in the theme of both Activities to provide
more display room for the animation. To add the second Activity to the Android Manifest
file, follow these steps:

1. In the Package Explorer, double-click the AndroidManifest.xml file. To add the
Tween class to the Android Manifest file, click the Application tab at the bottom of
the Wave Animation Manifest page. Scroll down to display the Application Nodes
section. In the Application Nodes section, click the Add button. Select Activity in the
Create a new element at the top level, in Application dialog box. Click the OK button.
The Attributes for Activity section opens in the Application tab. In the Name text
box, type the class name preceded by a period (.Tween) to add the Tween Activity to
the AndroidManifest.xml file.

startAnimation
rotation

Figure 10-29 Image rotates using Tween animation (complete code for Tween.java)

368

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The class .Tween is entered in the Name text box of the Attributes for Activity section
(Figure 10-30).

2. To change the Android theme, click the AndroidManifest.xml tab at the bottom
of the window. Inside the Activity code, click at the end of the code that states
android:name.Main. Press the Enter key to insert a new blank line. Type android:
theme=“@android:style/Theme.Black.NoTitleBar”. The theme also needs to be
changed for the second Activity. Before the closing brace of <activity android:
name=“.Tween”, press the Enter key. Type android:theme=“@android:style/
Theme.Black.NoTitleBar”. If a right angle bracket does not appear at the end of the
line, type > to insert the closing bracket.

.Tween Activity added

Figure 10-30 Adding the Tween Activity to the Android Manifest file

369

Using the Start and Stop Methods

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mailto:theme=%E2%80%9C@android:style/Theme.Black.NoTitleBar%E2%80%9D

The Android theme is coded within both Activities in the Android Manifest file
(Figure 10-31).

3. Close the Wave Animation Manifest tab and save your work.

Changing the Emulator to Landscape Orientation
Most Android phones and tablets automatically rotate the display from portrait to
landscape orientation when the user turns the device 90 degrees. Throughout this text,
the emulator has been shown in a portrait orientation because when you first install the
Android emulator, the default screen orientation layout is vertical. To switch the emulator
to a landscape orientation on a PC, press the Ctrl+F12 keys simultaneously (or press the
7 key on the keypad when Num Lock is turned off) when the emulator is displayed during
execution, as shown in Figure 10-2. To rotate the phone emulator back to the initial
portrait position, press the Ctrl+F12 keys again. Mac users can press the Fn+Ctrl+F12 keys
to change the orientation.

Theme added for
Main Activity

Theme added for
Tween Activity

Closing bracket
and tag

Figure 10-31 Adding the theme to the Android Manifest file

370

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Running and Testing the Application
With all this exciting animation, it is time to see both types of animation running in
the Android emulator. Click Run on the menu bar, and then select Run to save and test
the application in the emulator. Save all the files, if necessary, and unlock the emulator. The
application opens in the emulator window where you can click the Start Frame Animation
button to begin the Frame animation of the four surfing images, as shown in Figure 10-1.
To end the Frame animation and begin the rotation shown in Figure 10-2, click the Start
Tween Animation button. The Tween animation rotates the image six times in a complete
circle and ends.

Wrap It Up—Chapter Summary
Android supports two types of animations: frame-by-frame and Tween animations, as shown
in the Wave Animation application in this chapter. Frame-by-frame animation shows
different drawable images in a View in the opening window. The second Activity displays a
Tween animation that rotates an image. Using the animation methods provided in the
Android environment, developers can explore the user interface layouts that provide more
usability and interest.

l Android provides two types of animation. Frame animation assigns a sequence of images
to play as in a slide show with a specified interval between images. Tween animation
performs a series of transformations on a single image, such as to change its position, size,
rotation, and transparency.

l To create a layout that displays two controls side by side, you can nest a Relative layout
within a Linear layout.

l To create a Frame animation, you write code in an XML file to load a sequence of images
from the drawable folder. In the XML code, an animation-list root element references
these images. Each item in the animation-list specifies how many milliseconds to display
the image.

l In the animation-list code, you can include the oneshot property to determine how many
times to play the animation. The oneshot property is set to true by default, meaning the
animation plays once and then stops. Set the oneshot property to false to have the
animation repeatedly play through to the end and then play again from the beginning.

l When you add the XML file with the animation-list code to the Android project, select
Drawable as the Resource type and select animation-list as the root element so that
Android stores the XML file in the res/drawable folder.

l The AnimationDrawable class provides the methods for Drawable animations to create a
sequence of frame-by-frame images. In Android development, frame-based animations
and image transitions are defined as drawables.

371

Wrap It Up—Chapter Summary

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l You can set the Background property of an image to any full Drawable resource such as
a .png file. In Main.java, you must specify the ImageView control that contains the
animation images so you can bind the Drawable resource files to the Background
property. Assign a new instance of ImageView to the ImageView control that was
originally defined in the main.xml layout. Use the setBackgroundResource method
to connect the images in the animation-list to the instance of ImageView.

l In Main.java, also include an instance of AnimationDrawable and assign it as the
background of the animation images. Android constructs an AnimationDrawable Java
object before setting it as the background. The animation is now ready to display the four
images, though it does not actually start playing them until the start() method is
triggered.

l You can use the start() and stop() methods of the drawable objects to control a Frame
animation. When the user taps one button, the start() method begins playing the
animation continuously if the oneshot property is set to false. The animation stops only
when the user taps another button to execute the stop() method. The code can then
initiate a startActivity that launches another Activity.

l A Tween animation manipulates a Drawable image by adding tween effects, which are
predefined transitions that change an object from one state to another. Save a tween effect
within an animation XML file. Specify the Resource type of this XML file as Tween
animation so that Android stores the file in the res/anim/ folder of your Android project.

l The XML file for a Tween animation defines rotate attributes such as the number of
degrees to spin, the pivot location, the rotation duration, and the number of times to
repeat the rotation.

l To launch a Tween animation, use the startAnimation method, which begins animating a
View object by calling the AnimationUtils class utilities to access the resources it needs to
play the animation.

l To switch the emulator to use a landscape orientation on a PC, press the Ctrl+F12 keys.
To rotate the emulator to the original portrait position, press the Ctrl+F12 keys again.
Mac users can press the Fn+Ctrl+F12 keys to change the orientation.

Key Terms
9-patch image—A special image with predefined stretching areas that maintain the same
look on different screen sizes.

android:oneshot—An attribute of the animation-list that determines whether an animation
plays once and then stops or continues to play until the Stop Animation button is tapped.

AnimationDrawable class—A class that provides the methods for Drawable animations to
create a sequence of frame-by-frame images.

animation-list—An XML root element that references images stored in the drawable folders
and used in an animation.

372

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Frame animation—A type of animation, also called frame-by-frame animation, that plays a
sequence of images, as in a slide show, with a specified interval between images.

motion tween—A type of animation that specifies the start state of an object, and then
animates the object a predetermined number of times or an infinite number of times using
a transition.

setBackgroundResource—A method that places images in the frame-by-frame display for an
animation, with each frame pointing to an image referenced in the XML resource file.

startAnimation—A method that begins the animation process of a View object by calling the
AnimationUtils class utilities to access the resources necessary to load the animation.

Tween animation—A type of animation that, instead of using a sequence of images, creates an
animation by performing a series of transformations on a single image, such as position, size,
rotation, and transparency, on the contents of a View object.

tween effect—A transition that changes objects from one state to another, such as by moving,
rotating, growing, or shrinking.

Developer FAQs
1. What are the two types of built-in Android animation?

2. Which type of animation displays a slide show type of presentation?

3. Which type of animation is applied to a single image?

4. What is the root element of a Frame animation within the XML file?

5. Write the code that sets an attribute to play a Frame animation until the app ends.

6. Write the code that sets an attribute to play a Frame animation for three seconds.

7. Would the oneshot property be set to true or false in question 6?

8. Which type of Drawable image stretches across different screen sizes?

9. Name three types of Drawable objects that can be set as a Background drawable.

10. Which method launches a Frame animation?

11. Which method ends a Frame animation?

12. Name four tween effects.

13. Which tween effect shrinks an image?

14. Which tween effect changes the transparency of the image?

15. When you create a Tween XML file, which folder is the file automatically saved in?

16. If you wanted to turn an image one-quarter of a circle starting at 0 degrees, write two
lines of the code necessary to make that rotation.

373

Developer FAQs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17. Write the attribute for a rotation that repeats 10 times.

18. When an emulator launches, which orientation type is displayed?

19. Which keys change the orientation of the emulator on a PC?

20. Which keys change the orientation of the emulator on a Mac?

Beyond the Book
Using the Internet, search the Web for the answers to the following questions to further your
Android knowledge.

1. Research how smartphone animation games have changed the sales of console games
in the gaming industry. Write at least 200 words on this topic.

2. Research OpenGL graphic development. Write at least 150 words on this topic.

3. A new player to the mobile platform is the Windows 8 smartphone. Research why
this phone might or might not be successful in the long term. Write at least 150 words
on this topic.

4. At the Android Market site, determine the top five grossing apps. Write a paragraph
about each.

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps and
techniques taught within the chapter. Submit the program you create to your instructor. The
level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆⋆

Challenging: ⋆⋆⋆

374

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 10–1: Learn How to Make Biscuits App ⋆

Requirements Document

Application title: Learn How to Make Biscuits App

Purpose: A series of images use Frame animation to demonstrate the five steps in
making biscuits.

Algorithms: 1. The opening screen displays the first image in the process of making
biscuits (Figure 10-32).

2. When the user taps the Make a Biscuit button, the five steps are each
displayed for two seconds. After each image is shown once, the
animation ends (Figure 10-33).

Conditions: 1. The pictures of the five steps in biscuit preparation are provided with
your student files with the names biscuit1, biscuit2, biscuit3, biscuit4,
and biscuit5.

2. Display each image in the Frame animation with the size 250, 500.

3. Code a theme with no title bar.

375

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 10-32

iS
to
ck
ph
ot
o/
ed
en
ex
po
se
d

376

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 10-33

iS
to
ck
ph
ot
o/
ed
en
ex
po
se
d

377

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 10–2: Improve Your Golf Stroke App ⋆

Requirements Document

Application title: Improve Your Golf Stroke App

Purpose: A series of images use Frame animation to demonstrate the proper positions
of the perfect golf swing.

Algorithms: 1. The screen displays six images, each showing the proper position during
the process of making a golf swing. Display the images in a Frame
animation with 0.5 seconds between each image. Each image should
only be displayed once when the user taps the Perfect Golf Swing button
(Figure 10-34).

2. When the user taps the Rotate Your Swing button, rotate the fifth image
around 270 degrees nine times with an interval of three seconds
(Figure 10-35).

Conditions: 1. The pictures of the six golf positions are provided with your student files
with the names golf1, golf2, golf3, golf4, golf5, and golf6.

2. Display each image with the size 200, 400.

3. Code a theme with no title bar.

378

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 10-34

iS
to
ck
ph
ot
o/
A-
Di
gi
t

379

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 10-35

iS
to
ck
ph
ot
o/
A-
Di
gi
t

380

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 10–3: Droid Rotation App ⋆⋆

Case Project 10–4: Cartoon Animation App ⋆⋆

Requirements Document

Application title: Droid Rotation App

Purpose: As an advertisement at the end of a television commercial, a Droid phone
rotates in a perfect circle four times.

Algorithms: 1. The opening screen displays a Droid phone in the center and automatically
begins rotating the image four times in a perfect circle with an interval of
1.5 seconds.

Conditions: 1. The picture of the Droid phone is provided with your student files with the
name droid.

2. Display the image with the size 100, 170.

3. Code a theme with no title bar.

Requirements Document

Application title: Cartoon Animation App

Purpose: A sequence of cartoon images is displayed to create the sense of motion.

Algorithms: 1. The opening screen displays one of four cartoon images of a man with an
idea. When the user taps the Begin Cartoon button, each image is
displayed for 0.15 seconds.

2. When the user taps the Stop Cartoon button, the current image rotates
once and then stops.

Conditions: 1. The pictures of the cartoon are provided with your student files with the
names cartoon1, cartoon2, cartoon3, and cartoon4.

2. Display each image with the size 200, 270.

3. Code a theme with no title bar.

381

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 10–5: Flags of the World App ⋆⋆⋆

Case Project 10–6: Frame and Tween Animation Game App ⋆⋆⋆

Requirements Document

Application title: Flags of the World App

Purpose: A sequence of flag images appears when the app starts.

Algorithms: 1. The opening screen displays images of seven world flags. When the
user taps a World Flags button, a Frame animation displays each flag
for 0.75 seconds until the app ends.

2. When the user taps the Stop Flags button, the Frame animation stops.
The last flag image fades away for 10 seconds until it is no longer visible.

Conditions: 1. The pictures of the seven world flags are provided with your student files
with the names flag1, flag2, flag3, flag4, flag5, flag6, and flag7.

2. Display each image with the size 400, 300.

3. Code a theme with no title bar.

Requirements Document

Application title: Frame and Tween Animation Game App

Purpose: Display images of your favorite game in action.

Algorithms: 1. Locate at least four images of your favorite game character (such as
one in Angry Birds) and create a custom Frame animation of your choice.

2. Create a Tween animation with one of the images that uses at least two
of the tween effects.

Conditions: 1. Select your own images.

2. Use a layout of your choice.

3. Code a theme with no title bar.

382

C H A P T E R 1 0 Move! Creating Animation

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 11
Discover! Incorporating
Google Maps

In this chapter, you learn to:

Create an Android project displaying a Google map

Install the Google API to the SDK

Set up a Google API Android Virtual Device

Locate your MD5 certificate

Sign up for a Google Maps API key

Understand security and permissions

Access the MapView class

Code the populate() method

Add the onTap() method

Set permissions for maps in the Android Manifest file

Create a GeoPoint overlay

Un
le
ss

ot
he
rw
is
e
no
te
d
in
th
e
ch
ap
te
r,
al
ls
cr
ee
n
sh
ot
s
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you own a smartphone, using an online map to find directions to a friend’s home, a new
restaurant, or a business interview is most likely part of a typical week in your digital world.
The most popular mapping application is owned by Google. In addition to simply using
the built-in Android Google Maps application, you can embed it into your own applications
to create a customized mapping app. Using Google Maps within your project, you can
change the view of Google Maps, displaying a particular latitude and longitude of a location.
The Maps application shown in Figure 11-1 displays a Google map with two pushpin images
indicating the hometown locations of the author and the editor of this book.

The Android app in Figure 11-1 allows the user to zoom in to see the map in more detail.
Figure 11-2 displays the location of the hometown of the author of this text in Lynchburg,
Virginia, and the editor’s hometown in Madison, Wisconsin. The app uses the Google Maps
API to bring the power of Google Maps to the Android platform.

Overlay pushpins display
two locations on a Google
map

Co
ur
te
sy

of
Go
og
le
In
c.

Figure 11-1 Maps application

384

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
Google provides a text messaging service that includes Google Maps directions. Send a text message to
Google with the from and to locations, and Google quickly responds with a text message containing complete,
step-by-step directions. For example, you can send Google a text message similar to the following: Directions
Atlanta, GA to Miami, FL.

To create this application, the developer must understand how to perform the following
processes, among others:

1. Install the Google API add-on to the SDK.

2. Add the AVD that uses the Google API deployment target.

3. Obtain a personal Maps API key from Google.

4. Define a MapView inside a Linear layout in main.xml.

5. Add permissions to the Android Manifest file to access the Internet and the
Google library.

6. Add a no title bar theme to the Android Manifest file.

7. Add the pushpin image to the drawable folder.

Co
ur
te
sy

of
Go
og
le
In
c.

Figure 11-2 Hometown locations of the author and editor on the Android Google map

Co
ur
te
sy

of
Go
og
le
In
c.

Co
ur
te
sy

of
Go
og
le
In
c.

385

Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Code the MapView in Main.java.

9. Add Overlay objects to the map.

10. Call the populate() method to read each Overlay object.

11. Display two GeoPoint overlays.

Using Google Maps
Google Maps is an online mapping service that contains a variety of features, such as
turn-by-turn directions and GPS location services. Google introduced Google Maps in
the United States in 2005 and has subsequently released versions throughout the world.
Google Maps is an integral part of the Android experience, allowing apps to display
information such as directions to a hotel, the distance of your morning run, street view
images, bike path directions, possible traffic delays, and public transit routes. Google
updates its maps frequently, especially in its version for Android.

Installing the Google API
To use Google Maps within an Android application, you must install the Google
API (application programming interface), a set of tools for building software applications,
in the Android SDK. By installing the Google Maps API, you can embed the Google Maps
site directly into an Android application, and then overlay app-specific data on the maps.
The Android Google Maps API is free for commercial use providing that the site using it
is publicly accessible and does not charge for access. If the app is for public sale, you must
use Google Maps API Premier, which can be accessed for a per-usage subscription fee.
The classes of the Google Maps Android library offer built-in downloading, rendering,
and caching of mapping tiles, as well as a variety of display options and controls. Multiple
versions of the Google Maps API add-on are available, corresponding to the Android API
level supported in each version. This text uses Android 4.0 Google APIs by Google Inc.
You must download the add-on to your computer and install it in your SDK environment
to create an Android Google Maps app. To install the Android 4.0 Google API, follow
these steps:

1. Open the Eclipse program. Click Window on the menu bar and then click Android
SDK Manager to view the SDK files available.

The Android SDK Manager dialog box opens with the current SDK packages listed
(Figure 11-3).

386

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. In the Android 4.0 (API 14) category, check the Google APIs by Google Inc. check box,
if it is not already installed (as indicated in the Status column). Click to remove the
check mark from any other selected check boxes. Click the Install Packages button to
install the Google API package. Close the Android SDK Manager after the installation.

The Android SDK Manager is updated to include the Google APIs for use with the
Google Maps features.

Adding the AVD to Target the Google API
After you install the Android Google API, you set the application’s properties to select the
Google APIs add-on as the build target. Doing so sets the Android Virtual Device (AVD)
Manager to use the new Google API package. Make sure to select the version (by API level)
appropriate for the Google API target. To target the Google API within the AVD Manager,
follow these steps:

1. Click Window on the menu bar and then click AVD Manager.

The Android Virtual Device Manager dialog box opens (Figure 11-4).

Google APIs for
Android 4.0 (API 14)

Figure 11-3 Android SDK Manager

New button

Android
Virtual
Device
Manager
dialog box

Figure 11-4 Android Virtual Device Manager dialog box

387

Installing the Google API

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the New button. Type Google_API in the Name text box. Click the Target
button, and then click Google APIs (Google Inc.) – API Level 14.

A target device named Google_API is configured (Figure 11-5).

3. Click the Create AVD button.

The Google_API is displayed in the Android Virtual Device Manager dialog box
(Figure 11-6).

Create AVD
button

Target
button

Name

Create new Android
Virtual Device (AVD)
dialog box

Figure 11-5 Create new Android Virtual Device (AVD) dialog box

388

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Click the Close button to close the Android Virtual Device Manager dialog box.

The Android Virtual Device Manager dialog box closes after creating a new Android
Virtual Device.

GTK
Android Google Map capabilities include instantly posting your present location on social
networking sites.

Obtaining a Maps API Key from Google
Before you can run an Android Google Maps application, you need to apply for a free Google
Maps API key so you can integrate Google Maps into your Android application. An Android
map application gives you access to Google Maps data, but Google requires that you register
with the Google Maps service and agree to the Terms of Service before your mapping
application can obtain data from Google Maps. This applies whether you are developing your
application on the emulator or preparing your application for deployment to mobile devices.
Registering for a Google Maps API key is free. The process involves registering your
computer’s MD5 fingerprint. An MD5 (Message-Digest Algorithm 5) digital fingerprint is a
value included as part of a file to verify the integrity of the file. Signing up with Google to
register for a Google Maps API key is a task that needs to be performed only once and the
purpose is mainly for security. A unique Google Maps API key is a long string of seemingly
random alphanumeric characters that may look like this:

87:B9:58:BC:6F:28:71:74:A9:32:B8:29:C2:4E:7B:02:A7:D3:7A:DD

Certificate fingerprint (MD5): 94:1E:43:49:87:73:BB:E6:A6:88:D7:20:F1:8E:B5:98

The first step in registering for a Google Maps API key is to locate an MD5 fingerprint of
the certificate used to sign your Android application. You cannot run a Google mapping
application in your Eclipse Android emulator if it is not signed with your local API key.
The Android installed environment contains a file named debug.keystore, which contains a

Close button

Google_API

Figure 11-6 Google_API displayed in the AVD list

389

Obtaining a Maps API Key from Google

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

unique identification. To locate the MD5 fingerprint of the debug certificate on your
computer, follow these steps:

1. To generate an MD5 fingerprint of the debug certificate, first use Windows
Explorer or the Finder to locate the debug.keystore file in the active AVD directory.
The location of the AVD directories varies by platform:

u Windows 7 or Windows Vista: C:\Users\<user>\.android\debug.keystore

u Windows XP: C:\Documents and Settings\<user>\.android\debug.keystore

u Mac OS X: ~/.android/debug.keystore

Note: The <user> portion of this path statement indicates your user account
name on your computer. For example, using a Windows 7 computer, the
location of the AVD directory on a computer with a username of Corinne is:
C:\Users\Corinne\.android\debug.keystore.

The location of the AVD directory is determined (Figure 11-7).

2. On a Windows 7 or Vista computer, click the Start button. Type cmd in the Search
box and press the Enter key. On a Windows XP computer, click the Start button.
Click Run. Type cmd and press the Enter key. On a Mac computer, on the Desktop
toolbar, click the Spotlight button (upper-right corner). In the Spotlight box, type
terminal and then press the Return key. To find the MD5 fingerprint of your
computer, in the Command Prompt window, type the following command, replacing
<user> with the name of the account:

debug.keystore

Figure 11-7 Location of the debug.keystore file on a Windows 7 computer

Us
ed

w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n

390

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Windows 7 or Vista:

keytool.exe -list -alias androiddebugkey -keystore C:\Users\<user>\.android\
debug.keystore -storepass android –keypass android

In Windows XP:

keytool.exe -list -alias androiddebugkey -keystore C:\Documents and Settings\
<user>\.android\debug.keystore -storepass android –keypass android

In Mac OS X:

keytool -list -keystore ~/.android/debug.keystore

Press the Enter key.

On a Mac, when asked for your password, enter android and then press the
Return key.

The MD5 fingerprint is displayed in the Command Prompt window (Figure 11-8).

3. To select the MD5 fingerprint in Windows, right-click the Command Prompt
window and then click Mark on the shortcut menu. Select the MD5 fingerprint
code, being careful not to include any extra spaces.

On a Mac, drag to select the MD5 fingerprint code.

The MD5 fingerprint is selected (Figure 11-9).

MD5 fingerprint

First two lines typed
into the Command
Prompt window

Figure 11-8 MD5 fingerprint in the Command Prompt window

391

Obtaining a Maps API Key from Google

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. To copy the MD5 highlighted code, press the Ctrl+C keys (Windows) or the
Command+C keys (Mac) to copy the code to the system Clipboard.

The MD5 fingerprint is copied. You paste this code into a Web page in the next step.

Troubleshooting
If an MD5 fingerprint is not displayed when you perform the previous steps, refer to the
following suggestions to solve the problem.

l You receive a “keytool is not recognized” message—If a message similar to “keytool is not
recognized” appears after you enter the long keytool command, you need to locate the
keytool executable file on your computer, which is stored in a subfolder of the Java folder.
On Windows 7, this folder is:

C:\Program Files\Java\jdk1.7.0_01\bin

After locating the keytool executable file, open the Command Prompt window and
enter the following command to change to the directory containing the keytool
executable file:

cd C:\Program Files\Java\jdk1.7.0_01\bin

Enter the command to generate the MD5 fingerprint for your computer:

keytool –list –alias androiddebugkey –keystore
C:\Users\<user>\.android\debug.keystore –storepass android –keypass android

MD5 fingerprint
selected

Figure 11-9 MD5 fingerprint selected

392

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l A fingerprint other than MD5 is generated—After entering the long keytool command, a
fingerprint such as SHA1 might appear instead of the MD5 fingerprint. To generate an
MD5 fingerprint, add –v for version by entering the following command (for Windows 7)
in the Command Prompt window:

keytool –v –list –alias androiddebugkey –keystore
C:\Users\<user>\.android\debug.keystore –storepass android –keypass android

Be sure to copy the MD5 fingerprint so you can register it with the Google Maps service.

Registering the MD5 Fingerprint with the Google Maps Service
Using theMD5 fingerprint, you can register with Google for a Maps API key. A single Maps API
key is valid for all applications signed by a single certificate. After placing the MD5 fingerprint in
the Google Registration page, a generated API key is displayed in the browser. You need a Gmail
account to receive the API key, so sign up for a free Gmail account before completing the
following steps, if necessary. Later in the chapter, you place the API key in the XML layout code.
When the code is executed, it allows your application to connect with Google Maps. To register
the MD5 certificate fingerprint with Google Maps service, follow these steps:

1. Start a browser and display the following Web site:
http://developers.google.com/android/maps-api-signup

The Android Maps API Key Sign Up Web page is displayed (Figure 11-10).

Android Maps API Key
Sign Up Web page

Co
ur
te
sy

of
Go
og
le
In
c.

Figure 11-10 Android Maps API Key Signup Web site

393

Obtaining a Maps API Key from Google

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://developers.google.com/android/maps-api-signup

2. Scroll down the page, if necessary, and check the I have read and agree with the terms
and conditions check box. Click the My certificate’s MD5 fingerprint text box and
then press the Ctrl+V keys (Windows) or the Command+V keys (Mac) to paste
the MD5 fingerprint code from the Command Prompt window.

The MD5 fingerprint code is pasted in the text box (Figure 11-11).

3. To display the Android Maps API key, click the Generate API Key button.
If necessary, enter your Gmail e-mail address and password. (You need to create
a Google account if you do not have one.)

The Android Maps API key is displayed. Because you need the API key later, do not
close this window. You might want to take a screen shot of this key for future access
(Figure 11-12).

MD5 fingerprint unique
to your computer

Check box
selected

Generate API Key
button

Co
ur
te
sy

of
Go
og
le
In
c.

Figure 11-11 Unique MD5 fingerprint code

394

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GTK
If you receive a message similar to “The fingerprint you entered is not a valid Google Maps API key,” you did
not enter the MD5 fingerprint for your computer. See the Troubleshooting section earlier in this chapter to
generate the MD5 fingerprint (not another type of fingerprint).

Adding the MapView Element in the XML Code
After obtaining the Google Maps API key, the next step is to create the Maps Android
application in Eclipse. The API key attribute holds the Google Maps API key that proves your
application and signed certificate are registered with the Google Maps service. To display a
Google map in an Android app, the API key must be added to the main.xml layout file.
To display Google Maps in your Android application, modify the main.xml file located in
the res/layout folder.

To make it easier for you to add powerful mapping capabilities to your application, Google
provides a Maps external library that includes the com.google.android.maps package. You
must use the <com.google.android.maps.MapView /> element to display the Google Maps
in your Activity, as shown in the following code:

Code Syntax

<com.google.android.maps.MapView
android:id="@+id/mapview"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:enabled="true"
android:clickable="true"
android:apiKey="0HljqLj_jO8oBj4g8zSxyEuezie5-mE_56_UiXA" />

Note: Your generated apiKey will be different.

Unique apiKey
is created

Co
ur
te
sy

of
Go
og
le
In
c.

Figure 11-12 Android Maps API key

395

Obtaining a Maps API Key from Google

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The apiKey in the last line of code can be copied and pasted from the browser window
displayed in Figure 11-12. To begin the application and code the API key for the Google Maps
in main.xml, follow these steps:

1. Click the New button on the Standard toolbar. Expand the Android folder and
select Android Project. Click the Next button. In the New Android Project dialog box,
enter the Project NameMaps. To save the project on your USB drive, click to remove
the check mark from the Use default location check box. Type E:\Workspace
(if necessary, enter a different drive letter that identifies the USB drive). Click the
Next button. For the Build Target, select Google APIs (for platform 4.0) and then
click the Next button. For the Package Name, type net.androidbootcamp.maps.
Enter Main in the Create Activity text box.

The Build Target of Google APIs is selected. The new Android Maps project has a
Project Name, a Package Name, and an Activity named Main (Figure 11-13).

New Android
Project dialog box

Application Name

Package Name

Main Activity

Figure 11-13 Application information for the Maps project

396

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the Finish button. Expand the Maps project in the Package Explorer. In the
res\layout folder, double-click main.xml. By default, LinearLayout is already set.
Delete the TextView lines of code that display Hello World! Click the main.xml tab
at the bottom of the window. To display a Google Android map using the unique
API code for your computer, type the following code on Line 6, using auto-completion
as much as possible:

<com.google.android.maps.MapView
android:id="@+id/mapview"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:enabled="true"
android:clickable="true"
android:apiKey="Your API Code here" />

Note: Replace “Your API Code here” with your personal API code.

The Google map is coded in main.xml with the unique API code created earlier in this
chapter (Figure 11-14).

Adding Permissions to the Android Manifest File
Permissions are necessary in Android applications to prevent malicious outside applications
from corrupting data and accessing sensitive information. The projects created in this text
have not required any permissions thus far, but to access the Internet and connect with
the Google mapping feature, the Maps application requires special permission. Typical
permissions include full access to the Internet, your GPS location, your personal information,
phone calls, SMS messages, and other system tools. The Android Manifest file can contain
permission requests that are granted or denied when the application is run on the Android
platform. With the permission tag in the Android Manifest file, you can mandate the level
of access permitted. When you access Google Maps, the app requires permission to
connect to the Internet. The following code gives permissions for this app to connect to
the Internet and must be placed within the manifest element of the Android Manifest file:

Display the MapView by
referencing the unique
apiKey

Figure 11-14 Android Google Maps XML code

397

Obtaining a Maps API Key from Google

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Code Syntax

<uses-permission
android:name="android.permission.INTERNET" />

In addition to the Internet permissions granted in the Android Manifest file, permissions
are also necessary to inform the system that a Google library is being used. Because the
actual maps reside at Google, your application requires permission to access this map data.
As part of the application element within the Android Manifest file, include the following
line to grant permissions to the Google library:

Code Syntax

<uses-library
android:name="com.google.android.maps" />

In addition to the two permissions, the map display should have as much room as possible,
so the Android Manifest theme is set to not display a title bar. To code the permissions
and change the theme within the Android Manifest file, follow these steps:

1. Close main.xml and save your work. To add the permission request to access
the Internet to the Android Manifest file, in the Package Explorer double-click
the AndroidManifest.xml file. Click the AndroidManifest.xml tab at the bottom
of the window. Inside the application code, click at the end of the line <uses-sdk
android:minSdkVersion=“14” />. Press the Enter key. Type <uses-permission
android:name=“android.permission.INTERNET” />.

The Android permission for the Internet is coded in the AndroidManifest file (Figure 11-15).

Permission to access
the Internet

Figure 11-15 Android Manifest code with the Internet permission

398

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. To add the permission request to access the Google library, click at the end of the
line android:label=“@string/app_name” > in the application. Press the Enter key.
Type <uses-library android:name=“com.google.android.maps”/>.

The Android permission for the Google library is coded in the Android Manifest file
(Figure 11-16).

3. To remove the title bar from the theme, click at the end of the line android:
label=“@string/app_name” > in the application. Delete the closing brace of this line.
Press the Enter key. Type android:theme=“@android:style/Theme.NoTitleBar”>.

The Android theme is changed to NoTitleBar in the Android Manifest file
(Figure 11-17).

Permission set for
accessing the Google
Maps library

Figure 11-16 Android Manifest code with the Google library permission

399

Obtaining a Maps API Key from Google

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mailto:theme=%E2%80%9C@android:style/Theme.NoTitleBar%E2%80%9D

GTK
Google Maps now extends beyond the Earth’s surface boundaries. Google Maps now includes Google Sky,
Google Moon, and Google Mars.

Understanding MapView
The Google mapping technology relies on the MapView class within Android. The MapView
class displays and manipulates a Google map within the Android environment. The Main
Activity must extend MapActivity instead of the default Activity to use the MapView class.
The MapView class must be linked to the Google Maps API key in the XML code when it
is instantiated. The following code instantiates the MapView control:

Code Syntax

MapView mapView = (MapView) findViewById(R.id.mapview);
mapView.setBuiltInZoomControls(true);

The instance of MapView named mapView has the setBuiltInZoomControls set to true.
The setBuiltInZoomControls property allows the site visitor to use the built-in zoom feature.
As the user pans the map, zoom controls are automatically shown at the bottom of the
MapView display with a large plus and minus sign in the zoom controls.

Theme is set to
NoTitleBar

Figure 11-17 No Title Bar theme

400

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Later in the code, a red pushpin will be overlaid on the map. The pushpin image needs to be
placed in the res\drawable folder. To add the image to the drawable folder and instantiate the
MapView control, follow these steps:

1. Close the Android Manifest file and save your work. To add the image file to the
drawable-hdpi resource folder, drag pushpin.png from the student files to the
drawable-hdpi folder until a plus sign pointer appears. Release the mouse button.
If necessary, click the Copy files option button, and then click the OK button.

A copy of the image file appears in the drawable-hdpi folder (Figure 11-18).

2. To instantiate the MapView control, double-click Main.java (in the
src\net.androidbootcamp.maps folder) to open its code window. In the public
class Main, change the extends Activity to extends MapActivity. Point to MapActivity
and click Import ‘MapActivity’ (com.google.android.maps). Point to Main and click
Add unimplemented methods.

The Main Activity extends the MapActivity. The isRouteDisplayed auto-generated stub
appears. This required method determines if the application is displaying any route
information. This Maps app does not display a route, so false is returned (Figure 11-19).

pushpin.png in the
drawable-hdpi folder

Figure 11-18 Image file in the drawable-hdpi folder

401

Understanding MapView

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Click to the right of the setContentView statement and press the Enter key.
Type MapView mapView = (MapView) findViewById(R.id.mapview);.
Point to MapView and click Import ‘MapView’ (com.google.android.maps).
Press the Enter key. To use the map’s zoom in and zoom out controls, type
mapView.setBuiltInZoomControls(true);.

The instance of MapView is instantiated and the setBuiltInZoomControls are set to
true to enable the zoom capabilities (Figure 11-20).

Main class extends
the MapActivity

isRouteDisplayed is
auto-generated

Figure 11-19 Main extends MapActivity

setBuiltInZoomControls
are set to true

Instance of MapView

Figure 11-20 Instance of MapView and the Zoom controls set to true

402

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. To view a zoomable map that loads the layout file and displays map tiles that allow
the user to pan around the map, click Run on the menu bar. Select Run to save and
test the application in the emulator. A dialog box requesting how you would like to
run the application opens the first time the application is executed. Select Android
Application and click the OK button. Save all the files in the next dialog box, if
necessary, and unlock the emulator. The application opens in the emulator window
where you can zoom in and out of the map.

A Google map appears in the emulator (Figure 11-21).

Figure 11-21 Google Maps displayed in the Android emulator

Co
ur
te
sy

of
Go
og
le
In
c.

403

Understanding MapView

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
As you zoom in and out of the map, be aware that Android defines 21 levels of zoom. At zoom Level 1,
the equator of the Earth is 256 pixels long. Each successive zoom level is magnified by a factor of 2.

Adding Overlay Items
The map is displayed in Figure 11-21, but adding a specific location to a map customizes
the application. In the Maps chapter project, two overlay objects are added to find particular
locations on the Google map. The first location in Figure 11-2 displayed the author’s
hometown of Lynchburg, Virginia. The second map location was defined as the book editor’s
hometown of Madison, Wisconsin. A map marker, or overlay, uses a graphic image to
indicate a specific location on a map. To add a map marker such as a red pushpin image
to the map, an instance of the MapOverlay class is necessary. Several overlays can be placed
on the same map. For example, you may have seen an app such as Yelp that displays dozens
of popular restaurants by displaying red triangles within a city map as an overlay layer.
To create an overlay, you must implement the ItemizedOverlay class, which manages the
individual items placed as a layer on the map. A new Java class named Overlay is added to
the Maps app and extends the ItemizedOverlay class. To add a second class that extends
the ItemizedOverlay class, follow these steps:

1. Save your work. To create a second class, right-click the src/net.androidbootcamp.maps
folder in the Package Explorer, point to New on the shortcut menu, and
then click Class. Type Overlay in the Name text box to create a second
class that defines the Overlay Activity. In the Superclass text box, type
com.google.android.maps.ItemizedOverlay. Click the Constructors from
superclass check box.

A new class named Overlay.java is created to extend the ItemizedOverlay class
(Figure 11-22).

404

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Click the Finish button. If necessary, click the Overlay.java tab.

The Overlay class extends the ItemizedOverlay class with three auto-generated method
stubs called constructors (Figure 11-23).

Name of the
new class

Constructors from
superclass selected

Finish button

Superclass that
extends
ItemizedOverlay

Figure 11-22 Overlay.java class

405

Adding Overlay Items

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding Overlay Objects to an ArrayList
The Overlay class must first assign an array called an ArrayList, an expandable array that
holds the overlay objects displayed in a layer on the map image. In the case of the chapter
project, two pushpins are displayed as overlay objects. The context instantiation temporarily
holds each of the items displayed in the array. Each of the constructors must be customized
to define the default marker for each of the items in the Overlay array. For the app to
actually draw the pushpin Drawable object, code must define where to place its boundaries.
The center-point of the bottom of the image should be placed on the map using coordinates
based on latitude and longitude. To do so, the four constructors are customized after the
ArrayList and Context are instantiated, as shown in the following code:

Overlay.java tab

This argument might
appear as int arg0;
the code will still run
correctly

Figure 11-23 Overlay.java class automated code

406

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Code Syntax

private ArrayList<OverlayItem> mOverlays = new ArrayList<OverlayItem>();
private Context mContext;
public Overlay(Drawable defaultMarker, Context context) {

super(boundCenterBottom(defaultMarker));
mContext = context;
// TODO Auto-generated constructor stub

}
public void addOverlay(OverlayItem overlay) {

mOverlays.add(overlay);
populate();

}
@Override
protected OverlayItem createItem(int i) {

// TODO Auto-generated method stub
return mOverlays.get(i);

}

@Override
public int size() {

// TODO Auto-generated method stub
return mOverlays.size();

}

The first super constructor ties the overlay object to a default marker. The
boundCenterBottom() method wraps the overlay object around the defaultMarker on
the map. The addOverlay method is called each time a new OverlayItem is added to
the ArrayList. A method called populate() is necessary to add each new item in the
ItemizedOverlay, which reads each of the OverlayItems such as the pushpin image and
prepares for each image to be drawn on top of the map in a new visible layer. Each time
the populate() method executes, the createItem(int) constructor retrieves each
OverlayItem in the array. This method returns the OverlayItem from the position
specified by an integer value. The size constructor returns the number of items being
overlaid on the map. To code the ArrayList and Context and customize the constructors,
follow these steps:

1. In Overlay.java, click the blank line after the statement beginning with public class
Overlay to instantiate ArrayList and Context. Type private ArrayList<OverlayItem>
mOverlays = new ArrayList<OverlayItem>();. Point to ArrayList and click Import
‘ArrayList’ (java.util). Press the Enter key and then type private Context mContext;.
Point to Context and click Import ‘Context’ (android.content).

The ArrayList and Context are instantiated (Figure 11-24).

407

Adding Overlay Items

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. To customize the Overlay constructor to define a default marker for each item in
the array, after defaultMarker in the statement beginning with public Overlay
(Drawable defaultMarker), type , (comma and a space) and then type Context
context within the parentheses. On the next line, change the statement to
super(boundCenterBottom(defaultMarker)); to bind the bottom center of the
marker to a certain location. Press the Enter key. To assign the context to the
instance of Context, type mContext = context;.

The Overlay constructor sets the boundary of the default Marker and the Context
(Figure 11-25).

Context

ArrayList

Figure 11-24 ArrayList and Context instantiated in the Overlay class

408

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. To populate the overlay objects on the map, add a method named addOverlay by
clicking after the closing curly brace below the first //TODO statement, pressing
the Enter key, and then typing public void addOverlay(OverlayItem overlay) {.
Press the Enter key. Type mOverlays.add(overlay);. Press the Enter key. To populate
the overlay with the images in the array, type populate(); and press the Enter key.
If necessary, type a closing brace to complete the method.

The addOverlay method populates the overlay images in a layer over the map display
(Figure 11-26).

Overlay constructor
is customized

Figure 11-25 Overlay constructor

409

Adding Overlay Items

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Change the return type in the return null; line from null to mOverlays.get(i) to
return the Overlay item from the position specified by the integer.

The return type is changed to return the correct Overlay item (Figure 11-27).

addOverlay method

Figure 11-26 The addOverlay method populates the pushpin images

410

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Change the return type in the return 0; line from 0 to mOverlays.size() to return
the Overlay item’s current number of items in the ArrayList.

The return type is changed to return the correct number of items (Figure 11-28).

Return type changed

Figure 11-27 OverlayItem method

411

Adding Overlay Items

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding the onTap Method
When the user taps the pushpin image on the Google map, a text message appears on the
screen to identify whether this spot shows the author’s or editor’s hometown. The onTap()
method receives the index of the overlay item that was tapped by the user. The text message
such as Author’s Hometown Lynchburg, VA appears in an AlertDialog box, which is a simple
dialog box that displays a message to the user about the overlay item. The AlertDialog box
can contain a getTitle() method that displays a larger title at the top and a getSnippet()
method that displays a message in a smaller font below the title. To actually display the alert
dialog box, the show() method is used. The following code shows how the chapter project
uses the onTap() method:

Code Syntax

@Override
protected boolean onTap(int index) {

OverlayItem item = mOverlays.get(index);
AlertDialog.Builder dialog = new AlertDialog.Builder(mContext);
dialog.setTitle(item.getTitle());
dialog.setMessage(item.getSnippet());
dialog.show();
return true;

}

Change the return type

Figure 11-28 size() method

412

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the onTap() method, notice that a return type is expected as a Boolean. Recall that a
Boolean data type returns either true or false based on whether the user taps the overlay item.
To code the onTap() method, follow these steps:

1. Click after the closing brace below the return statement and press the Enter key.
To override the method, type @Override and press the Enter key. To code the
onTap() method, type protected boolean onTap(int index) { and press the Enter
key to create the closing brace. Point to the onTap method and select Add return
statement. Change the return false; statement to return true;.

The onTap() method awaits user interaction with the overlay items (Figure 11-29).

2. To instantiate the index value of the overlay item, click after the opening brace
of the onTap() method and press the Enter key. Type OverlayItem item =
mOverlays.get(index); and press the Enter key. To create an AlertDialog box,
type AlertDialog.Builder dialog = new AlertDialog.Builder(mContext);.
If necessary, point to AlertDialog and import ‘AlertDialog’ (android.app).

onTap() method

Figure 11-29 onTap() method

413

Adding Overlay Items

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The instance of item holds the index of each overlay item and the AlertDialog box
builds a message dialog box (Figure 11-30).

3. Press the Enter key. To set the title for the dialog box, type
dialog.setTitle(item.getTitle()); and press the Enter key. To set a message
snippet below the title, type dialog.setMessage(item.getSnippet()); and press
the Enter key. To display the dialog box, type dialog.show();.

Instance named
item instantiated

AlertDialog box
instantiated

Figure 11-30 Instance named item and the AlertDialog box are coded

414

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The dialog box’s title and message are displayed (Figure 11-31).

Coding the Drawable Overlay
To place the pushpin images on a separate transparent layer on top of the map grid, the
MapView class allows you to supply a list of points of interest from the getOverlays() method
to overlay on the Android map. By creating an instance named mapOverlays, as shown in the
following code, the map locations can be listed by the pushpin image display:

Code Syntax

List<com.google.android.maps.Overlay> mapOverlays = mapView.getOverlays();
Drawable drawable = this.getResources().getDrawable(R.drawable.pushpin);
Overlay itemizedoverlay = new Overlay(drawable,this);

Figure 11-31 Complete code of Overlay.java

415

Adding Overlay Items

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The pushpin.png file represents the map marker, which was saved in the res/drawable folder.
The second class Overlay.java is instantiated in the code with an instance of itemizedoverlay.
To create the List, Drawable, and the instance of the Overlay class, follow these steps:

1. Close and save the Overlay.java file. In Main.java, click at the end of the mapView.
setBuiltInZoomControls (true); line and press the Enter key. To create a list for
the overlay items, type List<com.google.android.maps.Overlay> mapOverlays =
mapView.getOverlays();. Point to List and click Import ‘List’ (java.util).

The getOverlays method is called to hold a list of items in the map (Figure 11-32).

2. To access the pushpin.png file from the drawable folder and set the image as the map
marker, press the Enter key and type Drawable drawable = this.getResources().
getDrawable(R.drawable.pushpin);. Point to Drawable and import ‘Drawable’
(android.graphics.drawable).

The Drawable resource for the map overlay is set to pushpin.png (Figure 11-33).

Main.java

List of overlay
items

Figure 11-32 List of overlay items

pushpin image set as
the drawable image
for map overlay

Figure 11-33 The pushpin image becomes the map marker

416

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. To create an instance of the Overlay class and send the drawable image to the
second Activity for display on the map, press the Enter key and type Overlay
itemizedoverlay = new Overlay(drawable,this);.

The Overlay class is referenced (Figure 11-34).

GTK
Android devices typically include GPS (global positioning system) to show you where you are on the map
using a similar method called MyLocationOverlay.

Locating a GeoPoint
By default, the Android Google Maps service displays the map of the United States when
it is first loaded, but through the use of panning and zooming, any worldwide location can
be found. After coding the Overlay class, the Main.java class is responsible for calling the
Overlay class and displaying an exact location with the pushpin image in the Maps app.
This map location is called a GeoPoint, and it contains the latitude and longitude coordinates.
GeoPoint coordinates are specified in microdegrees (degrees * 1e6). For example, Lynchburg,
Virginia, has the latitude and longitude coordinates of 37.4198°, -79.14°. To convert the
latitude and longitude degrees to a GeoPoint location, each degrees value must be multiplied
by one million. GeoPoint accepts integers only, so by multiplying by one million, the result is
an integer value. When you multiply the coordinates of Lynchburg, Virginia, by one million,
the GeoPoint location is (37419800, -79140000) using microdegrees. When an OverlayItem is
created, it must have a GeoPoint location, a String title, and a String snippet before the item
can be called by the populate() method.

drawable image is
referenced in the
Overlay class

Figure 11-34 Instance of the Overlay class is created

417

Locating a GeoPoint

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
To locate the latitude and longitude coordinates of any location in the world, use the Web site
http://maps.google.com. On the Google Maps page, click the Maps Labs link in the lower-left part of the
page, and then click Enable LatLng Marker and Save changes. Next, right-click the map and then click Drop
LatLng Marker. A marker appears on the Google map with the coordinates of the location selected.

Coding the GeoPoint Location
Each GeoPoint location is defined with a microdegrees location representing latitude and
longitude. The GeoPoint is passed to an OverlayItem method identifying the String title and
String snippet that displays when tapped. In the Map app, the first GeoPoint is defined with
the coordinates to Lynchburg, Virginia. The second GeoPoint is set for Madison, Wisconsin.
The two GeoPoints are displayed as an overlay on the map with the add() method. To code
the two GeoPoint locations as an overlay for the map display, follow these steps:

1. To add the code to set a GeoPoint with the coordinates of Lynchburg, Virginia,
press the Enter key, type GeoPoint point1 = new GeoPoint(37419800,-79140000);
and point to GeoPoint to import ‘GeoPoint’ (com.google.android.maps). Press the
Enter key. To set the GeoPoint as an overlay item with a title and text snippet,
type OverlayItem overlayitem1 = new OverlayItem(point1, “Author’s
Hometown”,“Lynchburg, VA”); and point to OverlayItem to import ‘OverlayItem’
(com.google.android.maps).

The coordinates of the author’s hometown are set in a GeoPoint location (Figure 11-35).

point1 represents
the coordinates of
Lynchburg, Virginia

Figure 11-35 First GeoPoint

418

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://maps.google.com

2. To add the code to set a second GeoPoint with the coordinates of Madison, Wisconsin,
named point2, press the Enter key, type GeoPoint point2 = new GeoPoint
(43075900,-89400800); and press the Enter key. To set the second GeoPoint as an
overlay item with a title and text snippet, type OverlayItem overlayitem2 = new
OverlayItem(point2, “Editor’s Hometown”,“Madison, WI”);.

The coordinates of the editor’s hometown are set in a second GeoPoint location
(Figure 11-36).

3. To display the two GeoPoints as an overlay, press the Enter key and then type
itemizedoverlay.addOverlay(overlayitem1); to add the first item to the overlay.
Press the Enter key and type itemizedoverlay.addOverlay(overlayitem2); to add
the second item to the overlay. Press the Enter key and type mapOverlays.add
(itemizedoverlay); to display the overlay with both items on top of the map.

The overlay is populated with two items and displayed (Figure 11-37).

point2 represents
the coordinates of
Madison, Wisconsin

Figure 11-36 Second GeoPoint

419

Locating a GeoPoint

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Running and Testing the Application
To view the finished maps in the Android application, click Run on the menu bar, and then
select Run to save and test the application in the emulator. If necessary, select Android
Application and click the OK button. Save all the files in the next dialog box, if necessary, and
unlock the emulator. The application opens in the emulator window where you can touch the
map to zoom in and out. Touch each pushpin image to display each message, as shown in
Figure 11-1 and Figure 11-2. If the application does not display a map, this indicates that you
did not find your personal API key and place it within the main.xml file.

Wrap It Up—Chapter Summary
Using Google Maps within the Android environment provides a real-life application showing
an exact location of a special interest. Two GeoPoint locations placed as an overlay on a map
identified the locations of two cities in the United States in Main.java. The second class
Overlay.java created an array list that held each overlay item.

l To use Google Maps in an Android application, you must install the Google API
(application programming interface) in the Android SDK. You can then embed the
Google Maps site directly into an Android application and overlay app-specific data
on the map.

Two GeoPoints are
overlaid and added
to the map

Figure 11-37 Main.java complete code

420

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l After installing the Android Google API, you set the application’s properties to select the
Google APIs add-on as the build target, which sets the Android Virtual Device (AVD)
Manager to use the new Google API package.

l Before you can execute an Android Google Maps application, you need to apply for a free
Google Maps API key so you can integrate Google Maps into your Android application. To
do so, you register your computer’s MD5 fingerprint, which is a value in the debug.keystore
file included in the Android installation. Using the MD5 fingerprint, you can register with
Google for aMaps API key at the online GoogleMaps service. To display a Google map in an
Android app, you must add the API key to the main.xml layout file in your project.

l Google provides a Maps external library that includes the com.google.android.maps
package. You must use the <com.google.android.maps.MapView> element to display
the Google Maps in your Activity.

l In general, Android apps use permissions to prevent malicious outside applications
from corrupting data and accessing sensitive information. A mapping application needs
permission to access the Internet and connect with the Google mapping feature. You add
this permission request to the Android Manifest file, and the request is granted or denied
when the application is run on the Android platform. The app also needs permission to
use a Google library to access the current map data.

l Because Google mapping technology relies on the Android MapView class, your project’s
Main Activity must extend MapActivity instead of the default Activity to use the
MapView class. When instantiating the MapView class in the XML code, you must
link it to the Google Maps API key.

l An instance of MapView uses the setBuiltInZoomControls property. When set to true,
this property allows site visitors to use the built-in zoom feature on the map in your
Android app.

l A map marker, or overlay, uses a graphic image such as a pushpin to indicate a specific
location on a map. To add an overlay to the map, first implement the ItemizedOverlay
class, which manages the individual items placed as a layer on the map and then uses
an instance of the MapOverlay class.

l The Overlay class assigns an ArrayList to hold the overlay objects, such as pushpin
images, displayed in a layer on the map. The context instantiation temporarily holds
each of the items displayed in the array. Customize each constructor to define the
default marker for each item in the Overlay array. You must specify the center-point of
the bottom of the overlay object using coordinates based on latitude and longitude.

l Use the populate() method to add each new item in the ItemizedOverlay to the map.
This method reads an OverlayItem such as a pushpin image and prepares for it to be
drawn on the map in a new visible layer. When the populate() method executes, a
constructor such as createItem(int) retrieves an OverlayItem in the array, and then
returns the OverlayItem from the position specified by an integer value. The size
constructor returns the number of items being overlaid on the map.

421

Wrap It Up—Chapter Summary

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l When the user taps an overlay object, such as a pushpin image, on the Google map, you
can display a text message. To do so, use the onTap() method, which receives the index
of the selected overlay item. The text message appears in an AlertDialog box. You can
use a getTitle() method to specify a title for the dialog box and a getSnippet() method
to display a message. To actually display the dialog box, use the show() method.

l To place overlay objects on a separate transparent layer on top of the map grid, use an
instance of the MapView class to list points of interest from the getOverlays() method.

l By default, the Android Google Maps service displays the map of the United States when
it is first loaded, but users can pan and zoom to find any location in the world. After
coding the Overlay class, the Main.java class is responsible for calling the Overlay class
and displaying an exact location. This map location is called a GeoPoint, and it contains
the latitude and longitude coordinates. GeoPoint coordinates are specified in
microdegrees (degrees * 1e6).

l When an OverlayItem is created, it must have a GeoPoint location, a String title, and a
String snippet before the populate() method can call the item. Use the add() method to
display the GeoPoints as an overlay on the map.

Key Terms
AlertDialog box—A simple dialog box that displays a message to the user about an overlay
item.

API (application programming interface)—A set of tools for building software applications.

ArrayList—An expandable array, which, in this chapter, holds the overlay objects displayed
in a layer on the map image.

Google Maps API key—A unique value consisting of a long string of seemingly random
alphanumeric characters.

ItemizedOverlay class—A class that you must implement to create an overlay and manage
the items placed as a layer on the map.

MapView class—A class that displays and manipulates a Google map within the Android
environment.

MD5 (Message-Digest Algorithm 5) digital fingerprint—An algorithm that is widely used to
verify data integrity. When the result of the algorithm is provided as part of a file, it verifies
the integrity of the file.

onTap()—A method that receives the index of the overlay item that was tapped by the user.

overlay—A map marker that uses a graphic image to indicate a specific location on a map.

permissions—A part of Android applications that prevents malicious outside applications
from corrupting information and accessing sensitive information.

422

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

populate()—A method necessary to add each new item in an ItemizedOverlay, which reads
each of the OverlayItems such as the pushpin image and prepares for each image to be drawn
on top of the map in a new visible layer.

setBuiltInZoomControls—A property that allows the site visitor to use the built-in zoom feature.

Developer FAQs
1. Which API is used with an Android mapping program?

2. Identify the following: 94:1E:43:49:87:73:BB:E6:A6:88:D7:20:F1:8E:B5:98

3. If the username of a Windows 7 computer is Daniel, what is the path statement
for the debug.keystore file?

4. Name five permissions examples mentioned in the text.

5. Write a line of code to provide permission to access the Internet within the
Android Manifest file.

6. Write a line of code to provide permission to access the Google library for maps
within the Android Manifest file.

7. Which theme was used in the chapter project to provide more room for the map
display?

8. When the setBuiltInZoomControls are set to true, what can the visitor use?

9. Where are the zoom controls displayed?

10. How many levels of zoom are available on the Android device?

11. Each time you tap the zoom control, the magnification increases by a factor
of .

12. What is another name for a map marker?

13. True or False? One map marker can be placed on an Android map at a time.

14. Which method is necessary to add each new item in an overlay?

15. GeoPoint coordinates are specified in .

16. Convert the following latitude and longitude coordinates for use with GeoPoint:
49.128, -25.2229.

17. What are the latitude and longitude coordinates for the following microdegrees:
34000000, -17672000?

18. To display the AlertDialogBox message, what must the visitor do?

19. Which method reacts to the visitor’s actions in question 18?

20. GeoPoints must be which data type?

423

Developer FAQs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Beyond the Book
Using the Internet, search the Web for the answers to the following questions to further your
Android knowledge.

1. Research five different Android map applications at the Android Market (Google
Play) site. Write a paragraph on the unique features of each.

2. Google Maps often acquires new mapping features. Write a summary of at least
100 words describing some of the latest features.

3. Another popular mobile mapping alternative is named OpenStreetMap. Write a
summary of at least 150 words describing OpenStreetMap.

4. The fitness world is now using maps in several outdoor sports. Write a paragraph
about four outdoor sports that use mobile mapping.

Case Programming Projects
Complete one or more of the following case programming projects. Use the same steps and
techniques taught within the chapter. Submit the program you create to your instructor. The
level of difficulty is indicated for each case programming project.

Easiest: ⋆

Intermediate: ⋆ ⋆

Challenging: ⋆ ⋆ ⋆

424

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 11–1: Largest U.S. Cities App ⋆

Requirements Document

Application title: Largest U.S. Cities App

Purpose: An Android Google Maps program displays the three largest U.S. cities.

Algorithms: 1. A map displays the three largest U.S. cities—New York City
(Figure 11-38), Los Angeles, and Chicago—using map markers.

2. When the user taps each of the three largest cities on the map, the
text Largest City in US, Second Largest City in US, or Third Largest

City in US is displayed in a dialog box with the name of the city.

Conditions: 1. An image named greenlocator.png is available in the student files.

2. Use Google Maps to determine the correct GeoPoint locations.
Co
ur
te
sy

of
Go
og
le
In
c.

Figure 11-38

425

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 11–2: New Year’s Eve Celebrations App ⋆

Requirements Document

Application title: New Year’s Eve Celebrations App

Purpose: An Android app displays the four top New Year’s Eve celebration locations
worldwide.

Algorithms: 1. The map displays a red pushpin for four of the top New Year’s Eve
celebrations (Figure 11-39) in Sydney, Australia, at the Sydney Harbor
Bridge; in Berlin, Germany, at the Brandenburg Gate; in London,
England, at Big Ben; and in New York City in Times Square.

2. When the user taps each of the locator images on the map,
the location of the celebration with the name of the city is displayed.

Conditions: 1. Use the same image for the pushpin used in the chapter project.

2. Use Google Maps to determine the correct GeoPoint
locations.

Figure 11-39

Co
ur
te
sy

of
Go
og
le
In
c.

426

C H A P T E R 1 1 Discover! Incorporating Google Maps

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Project 11–3: Olympic Cities App ⋆ ⋆

Case Project 11–4: Personal Map App ⋆ ⋆ ⋆

Requirements Document

Application title: Olympic Cities App

Purpose: The Olympic Cities app displays a green locator map marker on
the last eight cities where the Olympics were held.

Algorithms: 1. Research the last eight Olympic cities and display a green locator
for each city on the map.

2. When the user taps each city’s marker, a dialog box opens with the
city’s name and Olympic year.

Conditions: 1. An image named greenlocator.png is available in the student files.

2. Use Google Maps to determine the correct GeoPoint
locations.

Requirements Document

Application title: Personal Map App

Purpose: Create your own Android app showing a map with pushpins marking your
hometown and your dream vacation location.

Algorithms: 1. Place a map marker on your hometown and dream vacation location.

2. When the user taps your hometown and your dream vacation location,
a dialog box opens describing the locations.

Conditions: 1. Find your own picture of the map marker image.

2. Use Google Maps to determine the correct GeoPoint
locations.

427

Case Programming Projects

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 12
Finale! Publishing Your
Android App

In this chapter, you learn to:

Understand Google Play

Target various device configurations and languages

Prepare your app for publishing

Create an APK package by exporting an app

Prepare promotional materials

Publish your app on Google Play

Un
le
ss

ot
he
rw
is
e
no
te
d
in

th
e
ch
ap
te
r,
al
l
sc
re
en

sh
ot
s
ar
e
pr
ov
id
ed

co
ur
te
sy

of
Ec
lip
se
.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After all the work of designing your Android app, the time to publish it has arrived. Similar
to the many Android devices available, an Android app can be published to a variety of
application distribution networks. As an Android developer, you can publish your app to
Google Play, Google’s Android Market, as well as many others, such as Amazon Appstore,
AppBrain, and SlideME. Because Google Play is the largest marketplace, this chapter targets
the publication of apps on this Android network. The process to publish an app consists of
preparing your app for publication, and then registering, configuring, uploading, and, finally,
publishing it.

Before publishing an application, the developer must understand how to perform the
following processes, among others:

1. Test your app.

2. Prepare the app for publication.

3. Create an APK package and digitally sign your application.

4. Prepare promotional materials.

5. Publish your app to Google Play.

Understanding Google Play
Google Play (https://play.google.com) is a digital repository that serves as the storefront for
Android devices and apps. It includes an online store for paid and free Android apps as well as
music, movies, books, and games. Android phones, tablets, and Google television can all
access the Google Play services. The Google Play Web site, as shown in Figure 12-1, includes
the features and services of the Android Market, Google Music, and Google e-books. In
addition, Google Play provides free cloud storage services, which saves space on an Android
device. Google Play is entirely cloud based, so you can store all your music, movies, books,
and apps online and have them always available to you. Over 130 countries around the world
presently use Google Play. Competing companies such as the Apple App Store and Windows
Store also market their applications within a similar structure. When you select an app on
Google Play, the app installs directly to your Android device. Google Play is part of the default
setup on new Android devices.

430

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

https://play.google.com

GTK
With Google Play, you can store up to 20,000 songs for free using the cloud services.

Targeting Different Device Configurations
and Languages
To reach a larger audience within the Google Play market, consider targeting multiple
Android devices and translating your app into multiple languages. The Android platform runs
on a variety of devices that offer different screen sizes and densities. With over a hundred
Android handheld devices, using flexible design layouts that work on many screen sizes and
resolutions ensures that your app works on a wider range of Android phones and tablets.
Creating a custom experience for different screen sizes, pixel densities, orientations, and
resolutions guarantees that each user feels that the app was designed specifically for his or
her phone or tablet.

Android users live in every corner of the world and speak hundreds of different languages.
As you design an Android app, you can provide alternate resources such as app text
translated into multiple languages that change depending on the default locale detected
on the device. For example, if your home country is Spain, most likely your phone’s

Figure 12-1 Google Play

An
gr
y
Bi
rd
s:
©

20
12

Ro
vi
o
En
te
rta
in
m
en
tL
td
.S

cr
ee
ns
ho
t:
Co
ur
te
sy

of
Go
og
le

431

Targeting Different Device Configurations and Languages

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

locale for the dialect selection is set to Spanish (Spain). If you want your application to
support both English and Spanish text, you can create two resource directories in the
strings directory (the strings.xml file). By customizing the strings resource files, you can
write one application that recognizes many local languages. Instead of creating your app
in English only, remember that the majority of the world does not speak English and
consider extending your app’s reach to a worldwide pool of Android users.

GTK
To translate the languages used in your app, you can use Google Translate (http://translate.google.com),
a free translation service that provides instant translations among 58 different languages. If you use any
translation service, it is still important to have a native speaker test your app.

Testing Your App on an Android Device
After completing your Android app, you must test your application on various devices
before publication. Using different built-in emulators in Eclipse, you can test the design
and functionality of your application on a wide range of devices. You can also see how
your development application will perform in a real-world environment by using Eclipse
to install and test it directly on an Android phone. With an Android-powered device, you
can develop and debug your Android applications just as you would on the emulator.
After you change the settings on your Android phone or tablet, you can use a versatile
tool called the Android Debug Bridge (adb) to communicate with a connected Android
device. To set up a device for testing your app, follow these steps:

1. On the home screen of an Android device, tap the Settings app to display the
device settings. Select Applications and then select Development. Enable the USB
debugging option and then click the OK button.

The Android device changes the settings to enable USB debugging.

2. To set up your computer to detect your Android device, first install a USB driver
for Android Debug Bridge on a Windows computer following the steps at
http://developer.android.com/sdk/oem-usb.html. Each Android phone brand,
such as Motorola and Samsung, has its own drivers that must be installed on your
Windows computer.

If you are using a Mac, you do not need to install a driver.

The USB drivers are installed on a Windows computer.

3. Plug in an Android device to a USB cable. Run your application from Eclipse as usual.
The Android Device Chooser dialog box opens listing the available emulator(s) and
connected device(s). Select the device upon which you want to install and run the
application, and then click the OK button.

The Android application is tested on your Android device.

432

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://translate.google.com
http://developer.android.com/sdk/oem-usb.html

Creating an APK Package
After your Android application is successfully tested, you must create a release-ready package
that users can install and run on their Android phones and tablets. The release-ready package
is called an .apk file (application package file), which is a compressed archive similar to a
Zip file that contains the application, the manifest file, and all associated resources, such as
image files, music, and other required content. An .apk file is a file format created by Google.
Using the Eclipse Export Wizard, you can build a release-ready .apk file that is signed with
your private key and optimized for publication. A private key digitally signs your application
with your local system. All Android applications must be digitally signed with a certificate
before the system can create an .apk package of your app for application distribution. The
Android system uses the certificate as a means of identifying the author of an application and
establishing trust relationships between applications. To create an .apk package that generates
a private key for your local system, follow these steps:

1. Open a completed project in Eclipse that has been tested and runs properly.
To export the project and create an .apk package, click File on the menu bar and
then click Export.

The Export dialog box opens (Figure 12-2).

Your list might
include additional
folders

Export
dialog box

Figure 12-2 Export dialog box

433

Testing Your App on an Android Device

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Expand the Android folder in the Export dialog box. Click Export Android
Application.

The Export Android Application option is selected in the Android folder of the Export
dialog box (Figure 12-3).

3. Click the Next button. In the Export Android Application dialog box, click the
Browse button. The Project Selection dialog box opens. Click the name of the
application that you are exporting.

The present Android app project name is selected (Figure 12-4).

Export
dialog box

Export Android
Application option

Figure 12-3 Exporting an Android application

434

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Click the OK button, and then click the Next button.

The Export Android Application dialog box asks whether you are using an existing
keystore or a new keystore (Figure 12-5).

Project Selection
dialog box

Project name

OK button

Figure 12-4 Selecting the project

435

Testing Your App on an Android Device

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Click the Create new keystore option button. In the Location text box, type
the file path to your .android file and the name of the keystore file (such as
C:\. . .\.android\debug.keystore.keystore).

The debug.keystore file is selected in the Select Keystore Name dialog box
(Figure 12-6).

Export Android
Application
dialog box

Create new
keystore
option button

Figure 12-5 Selecting the keystore

436

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Enter a password of your own choosing in the Password text box. Type the same
password again in the Confirm text box.

Your password is typed in twice in the Keystore selection (Figure 12-7).

debug.keystore file

Save button

Select Keystore
Name dialog box

Figure 12-6 Keystore file is selected

437

Testing Your App on an Android Device

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Click the Next button. To create a key, you must fill out the Key Creation form with
your personal information. In the Alias text box, enter androiddebugkey. Use your
keystore password again. In the Validity (years) text box, enter a valid number of years
from 50 to 1,000 years. You can leave the Organization text box empty if you do not
belong to an organization.

The Key Creation form is filled out with your personal information (Figure 12-8).

Next button

Export Android
Application
dialog box

Enter your
password twice

Figure 12-7 Entering a password

438

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Click the Next button. The Destination and key/certificate checks dialog box opens.
Click the Browse button. Save the APK key file within the application folder.

The Destination APK file is saved within the application folder (Figure 12-9).

Enter your personal
information to
create a key

Next button

Key Creation

Figure 12-8 Key Creation form

439

Testing Your App on an Android Device

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Click the Finish button.

The Android app is now signed and ready to be saved to Google Play.

GTK
Android .apk files can be installed and run directly on an Android device.

IN THE TRENCHES
The keystore creates your private key for Android deployment. It is best to back up your keystore in a
safe file location. If you lose your keystore file, you will not be able to upgrade your Android Google
Play app.

Preparing Promotional Materials to Upload
When you publish your app in Google Play, you are required to post several images that
accompany your app to assist with marketing. With hundreds of thousands of apps in
the store, you must publicize your app so it stands out and is noticed by casual visitors.
To leverage your app in the Google Play store, you can upload your app with screen shots,

Finish button

Browse button

Figure 12-9 Destination APK file

440

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a video link, promotional graphics, and descriptive text, as in the Angry Birds Space page at
Google Play, which is shown in Figure 12-10.

Providing Images
In the Angry Birds Android app, a high-resolution application icon is displayed in the left pane
by default. The application icon does not replace your launcher icon, but serves to identify
and brand your app. The size of the application icon should be 512 × 512 pixels stored in a
PNG file. In addition, Google Play requires a minimum of two screen shots of the app to
display on the details page of your application. A large image (typically in the PNG format)
is displayed at the top of the right pane (Figure 12-10) with any of the following dimensions:
480 × 320, 800 × 480, or 854 × 480 pixels. You can upload up to eight screen shots for the
details page. The screen shots appear in the App Screenshots section of the details page, as
shown in Figure 12-11. You can also display a video to demo your app, though Google Play
does not require one. As an alternative, you can upload with your app a video link to your
demo video from YouTube.com. The short video should highlight the top features of your
app and last between 30 seconds and 2 minutes. Remember that these visual elements are
the first impression potential users have of your app. Quality media helps improves an app’s
marketability.

High resolution

Large opening
screen shot

Overview tab

Figure 12-10 Angry Birds Space Android app from Google Play

An
gr
y
Bi
rd
s:
©

20
12

Ro
vi
o
En
te
rta
in
m
en
tL
td
.S

cr
ee
ns
ho
t:
Co
ur
te
sy

of
Go
og
le

441

Preparing Promotional Materials to Upload

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Providing a Description
In addition to the promotional media items, an app description provides a quick overview
of the purpose of the app and what it does. To intrigue your readers, you can include
some of the features your application provides and describe why your app is unique in
comparison with other competitors without mentioning their names. The description
needs to sell your app to the widest audience possible. The description of the Angry
Birds Space app in Figure 12-12 appeals to a gaming audience searching for a new Angry
Birds experience in space. Notice the bullets used in the Angry Birds Space description
showing the features and benefits of the app are clear and concise. A good description is
written to motivate users to download the app. Revise the description with each update of
your app, adding new information such as new features and user reviews.

App promotional
video

Screen shots
of the app

Figure 12-11 Angry Birds Space Android app Overview tab

An
gr
y
Bi
rd
s:
©

20
12

Ro
vi
o
En
te
rta
in
m
en
tL
td
.S

cr
ee
ns
ho
t:
Co
ur
te
sy

of
Go
og
le

442

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Including App Information
In Figure 12-12, notice the ratings, date of last update, current version, Android platform
requirement, category, size, price, and content rating in the right pane. Users search for the
most popular apps as measured by their ratings. Prospective app buyers read user reviews to
determine if your app is worth their time and money. When a visitor writes a good review
about your application on the User Reviews tab (Figure 12-10), you can quote the review
within your description. Customers value a large number of good reviews and are more likely
to download your app if it has them. Notice in Figure 12-12 that the Angry Birds Space game
is free. So how do the developers make money? The left column of the page lists other
products created by this developer, including a second version of Angry Birds Space HD
available for $2.99. Upon mastering the free game, users are often motivated to buy the full
version of this product. As you price your app, consider that some users will never want to
pay for an app, but many will pay for a great app. Consider also adding Facebook, Twitter, and
other social networking links on your app’s page at Google Play so users can also market your
app within their friend networks.

When you upload your app into Google Play, you select one of the application categories
shown in Table 12-1. If your app fits into more than one category, be sure to include each
category to attract visitors in each category searched.

Description
section

About This
App section

Figure 12-12 Angry Birds Space app description

An
gr
y
Bi
rd
s:
©

20
12

Ro
vio

En
te
rta
in
m
en
tL
td
.S
cr
ee
ns
ho
t:
Co
ur
te
sy

of
Go
og
le

443

Preparing Promotional Materials to Upload

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Category Example of applications

Books & Reference Book readers, reference books, textbooks, dictionaries, thesaurus, wikis

Business Document editor/reader, package tracking, remote desktop, e-mail
management, job search

Comics Comic players, comic titles

Communications Messaging, chat/IM, dialers, address books, browsers, call management

Education Exam preparations, study aids, vocabulary, educational games, language learning

Finance Banking, payment, ATM finders, financial news, insurance, taxes, portfolio/
trading, tip calculators

Games Arcade and action

Brain and puzzles

Cards and casino

Casual

Sports

Health & Fitness Personal fitness, workout tracking, diet and nutritional tips, health and safety

Lifestyle Recipes, style guides

Media & Video Subscription movie services, remote controls, media/video players

Medical Drug and clinical references, calculators, handbooks for health care providers,
medical journals and news

Music & Audio Music services, radios, music players

News & Magazines Newspapers, news aggregators, magazines, blogging

Personalization Wallpapers, live wallpapers, home screen, lock screen, ringtone

Photography Cameras, photo-editing tools, photo management and sharing

Productivity Notepad, to-do list, keyboard, printing, calendar, backup, calculator, conversion

Shopping Online shopping, auctions, coupons, price comparison, grocery lists, product reviews

Social Social networking, check-in, blogging

Sports Sports news and commentary, score tracking, fantasy team management,
game coverage

Travel & Local City guides, local business information, trip management tools

Weather Weather reports

Table 12-1 Application categories
(Source: Google Play support site: http://support.google.com/googleplay/android-developer/bin/answer.py?hl=en&answer=113475&topic=2365760&

ctx=topic)

444

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://support.google.com/googleplay/android-developer/bin/answer.py?hl=en&answer=113475&topic=2365760&

Registering for a Google Play Account
Google Play is a publishing platform that helps you distribute your Android apps to users around
the world. Before you can publish apps through Google Play, you must register as a developer
using your Gmail account username and password at http://play.google.com/apps/publish.
Registering at Google Play requires a one-time-only payment of $25, which registers you as
an Android application developer and enrolls you in a Google Checkout account.

The registration process requires you to have a Google account, agree to the legal terms, and
pay the fee via your Google Checkout account. If you charge for your app, Google Checkout
disperses revenue for application sales. If you register to sell applications, you must also be
registered as a Google Checkout Merchant. As a developer, you have access to your app
ratings, comments, and number of downloads. If you charge for your application, you will
receive 70 percent of the application price with the remaining 30 percent distributed among
the phone carriers. The profit after your first sale arrives in your Google Checkout account
24 hours later. After a purchaser buys and installs an app, his or her credit card is charged
24 hours later. If the user uninstalls the app before the 24-hour time period, Google issues
a full refund of the purchase price. To register as a Google Play Android developer, follow
these steps:

1. To register at Google Play, open a browser and go to the site
http://play.google.com/apps/publish. Click the Continue button. If necessary,
sign in with your Gmail account information. Enter your password for your
Gmail account.

Your Gmail account username and password are entered at the Google Checkout
Web site (Figure 12-13).

Sign in button

Figure 12-13 Google Checkout registration An
gr
y
Bi
rd
s:
©

20
12

Ro
vi
o
En
te
rta
in
m
en
tL
td
.S

cr
ee
ns
ho
t:

Co
ur
te
sy

of
Go
og
le

445

Registering for a Google Play Account

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://play.google.com/apps/publish
http://play.google.com/apps/publish

2. Click the Sign in button to sign in with your Google account information. To register
for a developer’s Google Play account, in the Developer Name text box, type your
name. In the Phone Number text box, type your phone number.

On the Getting Started Google Play Android Developer Console page, the developer’s
name and phone number are entered (Figure 12-14).

3. Click the Continue button to open the next page, which displays the Developer
Distribution Agreement. Read through the Developer Distribution Agreement and
click the ‘I agree and I am willing to associate my account registration with the
Developer Distribution Agreement’ check box.

The Developer Distribution Agreement displays with the details of the Google Play
account (Figure 12-15).

Continue button

Co
ur
te
sy

of
Go
og
le

Figure 12-14 Google Play Android developer console

446

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Click the I agree, Continue button on the Developer’s Distribution Agreement to
open the Google Play Registration Fee page displaying the $25 registration fee.

The $25 registration fee for the Google Play developer’s registration is displayed
(Figure 12-16).

5. Click the Continue button to open the next page, where you can pay the registration
fee. To pay a $25 registration fee for a developer’s Google Play account, you can enter
a credit card number and your address information.

The order details for your Google Play registration are entered. Your Web page might
appear as a Google Checkout page (Figure 12-17).

I agree, Continue
button

Agree
check box

Co
ur
te
sy

of
Go
og
le

Figure 12-15 Developer Distribution Agreement

Registration fee

Continue button

Co
ur
te
sy

of
Go
og
le

Figure 12-16 Google Play registration fee

447

Registering for a Google Play Account

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Click the Continue button to open the next page. If you would like to add additional
users to your account, click the Invite a new user button and fill in the additional
user’s information.

Additional users can be added to your Google Play account (Figure 12-18).

Co
ur
te
sy

of
Go
og
le

Figure 12-17 Google Play account order

Android Developer
Console link

Click to add another
user to your account

Co
ur
te
sy

of
Go
og
le

Figure 12-18 Add users to a Google Play account

448

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IN THE TRENCHES
After creating your account in Google Play, it may take up to 24 hours for your account to be approved for
Android app publication.

Uploading an App to Google Play
As you upload your app to Google Play, you will be prompted to enter information about
your application. Once you create an account, the Developer Console pages take you
through the steps to upload your unlocked application .apk file and the promotional assets.
The maximum supported file size for the .apk file at Google Play is 50 MB. After your app
is posted and rises in popularity, Google Play gives you higher placement in weekly “top”
lists and in promotional slots in collections such as Top Free Apps. To upload an Android
application to Google Play, follow these steps:

1. To upload your app at Google Play, click the Android Developer Console link, as
shown in Figure 12-18, to open the All Google Play Android app listings page in a
new browser window to upload an application.

The Upload Application page opens and displays a list of any apps previously
uploaded (Figure 12-19).

2. Click the Upload Application button to upload the .apk file.

The Upload new APK dialog box opens (Figure 12-20).

Upload Application
button

Previously uploaded apps
would appear here

Co
ur
te
sy

of
Go
og
le

Figure 12-19 Upload application

449

Uploading an App to Google Play

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. To upload your .apk file, click the Browse button in the Upload new APK dialog box
and locate the .apk file within your application folder. Click the .apk file and then click
the Open button. Click the Upload button to upload the app to Google Play. Click the
Save button after the .apk file uploads.

The Edit Application page opens within the browser (Figure 12-21).

Close button

Browse button

Upload button

Co
ur
te
sy

of
Go
og
le

Figure 12-20 Upload new APK dialog box

Select files
for uploading

Product
details tab

Co
ur
te
sy

of
Go
og
le

Figure 12-21 Edit Application page

450

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. On the Edit Application page, to upload the promotional assets such as the two
required screen shots, the high-resolution application icon, and optional promotional
graphics and a video link to YouTube, click the Browse button to the right of each
asset listed on the Product details tab. The specifications are listed in the right column
for each promotional asset. Scroll down the page after uploading the assets.

Scroll down the page to view the Listing details for the app (Figure 12-22).

5. In the Listing details section, you can add languages that you are using within your
application by clicking the add language link. Enter your app’s Title, Description text,
Recent Changes, if necessary, and Promo Text in the text boxes provided. Click the
Application Type box arrow, and then select Applications or Games. Next, select one
or more categories for the app (see Table 12-1 earlier in the chapter). Scroll down the
page after entering the requested listing details to view the Publishing options.

After scrolling down the page, the Publishing options for the app are displayed
(Figure 12-23).

Enter or select
product details

add language
link

Co
ur
te
sy

of
Go
og
le

Figure 12-22 Listing details

451

Uploading an App to Google Play

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. In the Publishing options portion of the page, you can apply copy protection, which
may help prevent your application from being copied from a device. This feature is
being updated in the near future. It is best to implement the Google Play licensing
service for paid apps. Click the link for a free application to implement your own copy
protection scheme if you are uploading a paid app. Select a Content Rating, which
describes the age group or maturity best suited for your app, by clicking one of the
four radio buttons. Usually, Everyone is selected for the Content Rating. If you plan
to sell your app, click the Setup a Merchant Account at Google Checkout link and
follow the steps. Typically all countries are selected to list your app for English
speakers in those countries and for their Android devices. Scroll down the page to
view the Contact information and Consent sections.

After scrolling down the page, the Contact information and Consent sections are
displayed (Figure 12-24).

Select publishing
options

Co
ur
te
sy

of
Go
og
le

Figure 12-23 Publishing options

452

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. In the Contact information section, enter at least one support channel for your app:
Website, Email, or Phone. Click the two check boxes confirming that the application
meets Android Content Guidelines and that the software application may be subject
to United States export laws, regardless of your location or nationality. Before
scrolling to the top of the Google Play form page to publish the app, click the Android
Content Guidelines link.

The Developer Program Policies page is displayed on a new browser tab (Figure 12-25).

Enter contact and
consent information

Co
ur
te
sy

of
Go
og
le

Figure 12-24 Contact information and consent sections

Co
ur
te
sy

of
Go
og
le

Figure 12-25 Developer Program Policies page

453

Uploading an App to Google Play

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Click the Developer Console browser tab and scroll to the top of the page. Click the
Publish button to publish your Android app with the promotional materials.

Your app is published in Google Play.

Wrap It Up—Chapter Summary
Before you can publish your application on Google Play, the app should be fully tested in
the emulator and on multiple Android devices. To prepare your app for publishing, an APK
package is exported using Eclipse. Successful app marketing requires paying attention to
promotional materials that appear on Google Play, such as images, videos, and
clear descriptions of the app. Publishing your app involves uploading the promotional
materials that accompany the .apk file.

l Google Play is the storefront for Android devices and apps, and provides access to Android
Market, Google Music, and Google e-books. It includes an online store for paid and free
Android apps, music, movies, books, and games. Android phones, tablets, and Google
television can access the Google Play services.

l To reach a larger audience within the Google Play market, you should target multiple
Android devices and translate your app into multiple languages. Create a custom
experience for devices with different screen sizes, pixel densities, orientations, and
resolutions so that each user feels that the app was designed specifically for his or her
phone or tablet.

l As you design an Android app, you can provide alternate resources such as strings of text
translated into multiple languages that change depending on the default locale detected
on the device.

l Before publishing an Android app, test it on various devices. Using different built-in
emulators in Eclipse, you can test the design and functionality of your application on a
wide range of devices and see how your development application performs in a real-world
environment. Using the Android Debug Bridge (adb) tool in Eclipse, you can develop and
debug an Android application on an Android device.

l After testing an Android app, you must create an .apk file (application package file), which
is a release-ready package that users can install and run on their Android phones and
tablets. An .apk file is a compressed archive that contains the application, the manifest file,
and all associated resources, such as image files, music, and other required content. Using
the Eclipse Export Wizard, you can build a release-ready .apk file that is signed with your
private key and optimized for publication.

454

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l When you publish your app in Google Play, you must post several images, including an
application icon and screen shots. You can also post an optional video or link to a video
that demonstrates your app. You must also provide a description that provides an
overview of the purpose and features of the app. Finally, include app information such
as ratings, Android platform requirement, category, and price.

l To publish apps through Google Play, you must register as a developer using your Gmail
account username and password at http://play.google.com/apps/publish. The registration
process requires you to have a Google account, agree to the legal terms, and pay a $25 fee
via your Google Checkout account.

l After creating a Google Play account, the Developer Console pages at the Google Play
Web site step you through uploading your unlocked application .apk file and its
promotional assets.

Key Terms
.apk file (application package file)—A release-ready package of an Android app stored in
a compressed archive similar to a Zip file that contains the application, the manifest file,
and all associated resources, such as image files, music, and other required content.

Android Debug Bridge (adb)—An Android tool you use to communicate with a connected
Android device.

Google Play—A digital repository that serves the Android Market and includes an online
store for paid and free Android apps, as well as music, movies, books, and games.

Developer FAQs
1. What is the URL of Google Play?

2. Approximately how many countries use Google Play?

3. Name four services of Google Play.

4. What is the name of the two largest competitors to Google Play?

5. To increase your target audience in Google Play, what two considerations should
you make?

6. How do you change your app to multiple languages?

7. What is the address of the Google Web site that assists with language translation?

8. What does adb stand for?

9. What does apk stand for?

10. Can you deploy your app to your Android phone?

455

Developer FAQs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://play.google.com/apps/publish

11. Do you have to install adb drivers on a Mac computer?

12. Name four promotional assets that you can upload with your app at Google Play.

13. What is the maximum number of screen shots of your app in action that you can
post in Google Play?

14. Where must you post your promotional video?

15. What are the minimum length and maximum length of the promotional video?

16. In which two social networking sites should you create a marketing presence?

17. Which category would you select at Google Play for a calendar app?

18. Which category would you select for a recipe app?

19. How much is the registration fee to publish Android apps at Google Play?

20. What is the maximum size of an .apk file at Google Play?

Beyond the Book
To answer the following questions, create an idea for an app that you think would sell well
at Google Play.

1. Write about 200 words describing your Google Play app idea, beginning with a catchy
title for the app.

2. Locate an image link that you would consider to be your application icon for your
Android app idea. (If you plan to use the icon, you would of course need to
properly obtain this image following copyright guidelines.)

3. Consider the price for selling your app. Write at least 150 words explaining why you
selected this price after researching the Internet for price points for Android apps.

4. Create a short YouTube video to market your app idea, and provide the link to
your instructor.

456

C H A P T E R 1 2 Finale! Publishing Your Android App

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Glossary

.apk file (application package file) A
release-ready package of an Android app
stored in a compressed archive similar to a
Zip file that contains the application, the
manifest file, and all associated resources,
such as image files, music, and other
required content.

9-patch image A special image with
predefined stretching areas that maintain
the same look on different screen sizes.

ACTION_VIEW A generic action you can
use to send any request to get the most
reasonable action to occur.

Activity An Android component that
represents a single screen with a user
interface.

adapter Provides a data model for the
layout of a list and for converting the data
from the array into list items.

AlertDialog box A simple dialog box that
displays a message to the user about an
overlay item.

Android 4.0 Library A project folder that
contains the android.jar file, which includes
all the class libraries needed to build an
Android application for the specified
version.

Android Debug Bridge (adb) An Android
tool you use to communicate with a
connected Android device.

Android Manifest A file with the filename
AndroidManifest.xml that is required in
every Android application. This file
provides essential information to the
Android device, such as the name of your
Java application and a listing of each
Activity.

Android Market An online store that sells
programs written for the Android platform.

android:oneshot An attribute of the
animation-list that determines whether an
animation plays once and then stops or
continues to play until the Stop Animation
button is tapped.

AndroidManifest.xml A file containing all
the information Android needs to run an
application.

AnimationDrawable class A class that
provides the methods for Drawable
animations to create a sequence of frame-
by-frame images.

animation-list An XML root element that
references images stored in the drawable
folders and used in an animation.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

API (application programming interface)
A set of tools for building software
applications.

array variable A variable that can store
more than one value.

ArrayAdapter<String> i A ListAdapter
that supplies string array data to a ListView
object.

ArrayList An expandable array that holds
the overlay objects displayed in a layer on
the map image.

assets folder A project folder containing
any asset files that are accessed through
classic file manipulation.

break A statement that ends a case within a
Switch statement and continues with the
statement following the Switch decision
structure.

Calendar class A class you can use to
access the Android system date. The
Calendar class also is responsible for
converting between a Date object and a set
of integer fields such as YEAR, MONTH,
and DAY_OF_MONTH.

case A keyword used in a Switch statement
to indicate a condition. In a Switch
statement, the case keyword is followed by
a value and a colon.

Change Gravity A tool that changes the
linear alignment of a control, so that it is
aligned to the left, center, right, top, or
bottom of an object or the screen.

class A group of objects that establishes an
introduction to each object’s properties.

class variable A variable with global scope;
it can be accessed by multiple methods
throughout the program.

codec A computer technology used to
compress and decompress audio and
video files.

columnWidth A GridView property that
specifies a fixed width for each column.

compound condition More than one
condition included in an If statement.

constructor A part of Java code used to
initialize the instance variables of an object.

DAY_OF_MONTH A date constant of the
Calendar class that retrieves an integer
value of the system’s current day.

DAY_OF_YEAR A date constant of the
Calendar class that retrieves the day of the
current year as an integer. For example,
February 1 is day 32 of the year.

DecimalFormat A class that provides
patterns for formatting numbers in
program output.

decision structure A fundamental control
structure used in computer programming
that deals with the different conditions that
occur based on the values entered into an
application.

element A single individual item that
contains a value in an array.

emulated application An application that
is converted in real time to run on a variety
of platforms such as a Web page, which can
be displayed on various screen sizes
through a browser.

Entries A Spinner property that connects a
string array to the Spinner control for
display.

equals method A method of the String
class that Java uses to compare strings.

event handler A part of a program coded
to respond to the specific event.

final A type of variable that can only be
initialized once; any attempt to reassign the
value results in a compile error when the
application is executed.

458

G L O S S A R Y

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Frame animation A type of animation, also
called frame-by-frame animation, that plays
a sequence of images, as in a slide show,
with a specified interval between images.

FrameLayout The part of a TabHost
control that displays the tab content.

Gallery A View container that displays a
horizontal list of objects with the center
item displaying the current image.

gen folder A project folder that contains
automatically generated Java files.

get The field manipulation method that
accesses the system date or time.

getBaseContext() A Context class method
used in Android programs to obtain a
Context instance. Use getBaseContext() in
a method that is triggered only when the
user touches the Gallery control.

getInstance A method of the Calendar
class that returns a calendar date or time
based on the system settings.

GetSelectedItem() A method that returns
the text of the selected Spinner item.

GetText() A method that reads text stored
in an EditText control.

Google Maps API key A unique value
consisting of a long string of seemingly
random alphanumeric characters.

Google Play A digital repository that
serves the Android Market and includes
an online store for paid and free Android
apps, as well as music, movies, books, and
games.

GridView A control that displays objects in
a scrollable grid, similar to the Gallery
control. A GridView control is part of the
View group and lets you specify the number
of columns, column width, and column
spacing.

hexadecimal color code A triplet of three
colors using hexadecimal numbers, where
colors are specified first by a pound sign
followed by how much red (00 to FF), how
much green (00 to FF), and how much blue
(00 to FF) are in the final color.

hint A short description of a field that
appears as light text in a Text Field control.

If Else statement A statement that
executes one set of instructions if a
specified condition is true and another set
of instructions if the condition is false.

If statement A statement that executes one
set of instructions if a specified condition is
true and takes no action if the condition is
not true.

ImageView control A control that displays
an icon or a graphic from a picture file.

import To make the classes from a
particular Android package available
throughout the application.

import statement A statement that makes
more Java functions available to a program.

instantiate To create an object of a specific
class.

intent Code in the Android Manifest file that
allows anAndroid applicationwithmore than
one Activity to navigate among Activities.

isChecked() method A method that tests
a checked property to determine if a
RadioButton object has been selected.

item In a Spinner control, a string of text
that appears in a list for user selection.

ItemizedOverlay class A class that you
must implement to create an overlay and
manage the items placed as a layer on themap.

Java An object-oriented programming
language and a platform originated by Sun
Microsystems.

459

G L O S S A R Y

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

launcher icon An icon that appears on
the home screen to represent the
application.

layout A container that can hold widgets
and other graphical elements to help you
design an interface for an application.

life cycle The series of actions from the
beginning, or birth, of an Activity to its end,
or destruction.

Linear layout A layout that arranges
components in a vertical column or
horizontal row.

ListActivity A class that displays a list of
items within an app.

local variable A variable declared by a
variable declaration statement within a
method.

localization The use of the String table to
change text based on the user’s preferred
language.

MapView class A class that displays and
manipulates a Google map within the
Android environment.

margin Blank space that offsets a
control by a certain amount of density
independent pixels (dp) on each of its
four sides.

MD5 (Message-Digest Algorithm 5)
digital fingerprint An algorithm that is
widely used to verify data integrity. When
the result of the algorithm is provided as
part of a file, it verifies the integrity of
the file.

MediaPlayer class The Java class that
provides the methods to control audio
playback on an Android device.

method A set of Java statements that
perform a repeated task and can
be included inside a Java class.

MONTH A date constant of the Calendar
class that retrieves an integer value of the
system’s current month.

motion tween A type of animation that
specifies the start state of an object, and
then animates the object a predetermined
number of times or an infinite number of
times using a transition.

native application A program locally
installed on a specific platform such as a
phone or tablet.

nest To place one statement, such as an If
statement, within another statement.

numColumns A GridView property that
can be set to an integer value representing
the number of columns to include, or to
auto fit, which determines the number of
columns to show based on the size of the
Android screen and the image width.

object A specific, concrete instance of a class.

object-oriented programming language
A type of programming language that
allows good software engineering practices
such as code reuse.

OnCreateDialog A method that creates a
dialog box based on the argument passed by
the showDialog method call.

onDateSet An event that is triggered when
the DatePicker passes a value representing
the year, the month, and the day. In other
words, the onDateSet event is fired after the
user selects a date.

onDestroy() method A method used to
end an Activity. Whereas the onCreate()
method sets up required resources, the
onDestroy() method releases those same
resources to free up memory.

onItemClick An event the
OnItemClickListener processes when the
user touches the Gallery display layout.

460

G L O S S A R Y

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The onItemClick method is defined by
OnItemClickListener and sends a number
of arguments in the parentheses included
within the line of code.

onListItemClick() A method called when
an item in a list is selected.

onTap() A method that receives the index
of the overlay item that was tapped by
the user.

Open Handset Alliance An open-source
business alliance of 80 firms that develop
open standards for mobile devices.

overlay A map marker that uses a graphic
image to indicate a specific location on
a map.

Package Explorer A pane on the left side
of the Eclipse program window that
contains the folders for the current project.

padding property A property that you can
use to offset the content of a control by a
specific number of pixels.

Parse A class that converts a string into a
number data type.

permissions A part of Android
applications that prevents malicious outside
applications from corrupting information
and accessing sensitive information.

populate() A method necessary to add
each new item in an ItemizedOverlay,
which reads each of the OverlayItems such
as the pushpin image and prepares for each
image to be drawn on top of the map in a
new visible layer.

position The placement of an item in a list.
When an item in a list is selected, the
position of the item is passed from the
onListItemClick method and evaluated
with a decision structure. The first item is
assigned the position of 0, the second item
is assigned the position of 1, and so forth.

prompt Text that displays instructions at
the top of the Spinner control.

protected A keyword signifying that the
method or variable can only be accessed by
elements residing in its class.

RadioGroup A group of RadioButton
controls; only one RadioButton control
can be selected at a time.

Relative layout A layout that arranges
components in relation to each other.

res folder A project folder that contains all
the resources, such as images, music, and
video files, that an application may need.

scope The scope of a variable refers to the
variable’s visibility within a class.

set The field manipulation method that
changes the system date or time.

setAdapterA command that provides a data
model for the Gallery layout, similar to an
adapter, which displays a ListView control.
Also a method that provides a data model for
the layout of the GridView control. You use
the setAdapter method to instantiate a
custom BaseAdapter class called
ImageAdapter and then apply it to the
GridView.

setBackgroundResource A method that
places images in the frame-by-frame display
for an animation, with each frame pointing
to an image referenced in the XML
resource file.

setBuiltInZoomControls A property that
allows the site visitor to use the built-in
zoom feature.

setContent A method that indicates what
to display in the tab content area of a
TabHost control.

setContentView The Java code necessary to
display the content of a specific screen.

461

G L O S S A R Y

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

setIndicator A method that sets the tab
button caption and icon image in a
TabHost control.

setListAdapter A command that projects
your data to the onscreen list on your
device by connecting the ListActivity’s
ListView object to array data.

smartphone A mobile phone with
advanced computing ability and
connectivity features.

soft keyboard An onscreen keyboard
positioned over the lower part of an
application’s window.

sp A unit of measurement that stands for
scaled-independent pixels.

Spinner control A widget similar to a drop-
down list for selecting a single item from a
fixed listing.

src folder A project folder that includes the
Java code source files for the project.

startAnimation A method that begins the
animation process of a View object by calling
the AnimationUtils class utilities to access the
resources necessary to load the animation.

state A stage in an Activity’s life cycle that
determines whether the Activity is active,
paused, stopped, or dead.

static variable A program variable that
does not vary and has the same value
throughout execution of the application.

string A series of alphanumeric characters
that can include spaces.

strings.xml A default file that is part of
every Android application and holds
commonly used strings in an application.

stub A piece of code that serves as a
placeholder to declare itself, containing just
enough code to link to the rest of the
program.

Switch A type of decision statement that
allows you to choose from many statements
based on an integer or char input.

TabActivity A class that allows you to
display tabs in a TabHost control, with each
tab containing an Activity or view.

TabHost A control you use to wrap
multiple views in a single window.

TableLayout A user interface design layout
that includes TableRow controls to form
a grid.

TabSpec A statement that specifies how
the tabs in a TabHost control should appear.

TabWidget The part of a TabHost control
that displays the tabs.

Text property A property that changes the
text written within a control.

Text size property A property that sets the
size of text in a control.

theme A style applied to an Activity or an
entire application.

thread A single sequential flow of control
within a program.

Timer A Java class that creates a timed
event when the schedule method is called.

timer A tool that performs a one-time task
such as displaying an opening splash screen,
or performs a continuous process such as a
morning wake-up call set to run at regular
intervals.

TimerTask A Java class that invokes a
scheduled timer.

toast notification A message that appears
as an overlay on a user’s screen, often
displaying a validation warning.

Tween animation A type of animation that,
instead of using a sequence of images,
creates an animation by performing a series

462

G L O S S A R Y

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

of transformations on a single image, such
as position, size, rotation, and transparency,
on the contents of a View object.

tween effect A transition that changes
objects from one state to another, such
as by moving, rotating, growing, or
shrinking.

typeface A property that you can use to set
the style of control text to font families,
including monospace, sans_serif, and serif.

URI An acronym for Uniform Resource
Identifier, a URI is a string that identifies
the resources of the Web. Similar to a URL,
a URI includes additional information
necessary for gaining access to the
resources required for posting the page.

URL An acronym for Uniform Resource
Locator, a URL is a Web site address.

variable A name used in a Java program to
contain data that changes during the
execution of the program.

View A rectangular container that displays
a drawing or text object.

Visibility property The Java property that
controls whether a control is displayed on
the emulator.

widget A single element such as a
TextView, Button, or CheckBox control,
and is also called an object.

XML An acronym for Extensible Markup
Language, a widely used system for defining
data formats. XML assists in the layout of
the Android emulator.

YEAR A date constant of the Calendar class
that retrieves an integer value of the
system’s current year.

463

G L O S S A R Y

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index
<> (angle brackets), 159, 271, 364,

369, 399
* (asterisk), 15, 94, 122
: (colon), 163
, (comma), 408
{} (curly braces), 54, 88, 163, 164, 171,

194, 205, 206, 288
$ (dollar sign), 92
“ (double quotes), 47
= (equal sign), 127
/ (forward slash), 47, 94, 122, 282
() (parentheses), 55, 58, 59, 88, 124,

170, 284, 318, 326, 357
% (percent sign), 97
. (period), 9, 52, 172
+ (plus sign), 99
(pound sign), 97–98
; (semicolon), 59, 60, 170, 195, 205,

206, 288, 357
[] (square brackets), 154
_ (underscore), 87, 92

A
ACTION_VIEW, 166
activities, 166–167, 170–174,

189–190, 196–201
adding, to the Android Manifest

file, 50–53
coding, 53–61
creating, 45–49
described, 45
life cycles of, 196, 197–199
lists and, 150–152
states of, 197
themes and, 72, 74–75

Activity class, 9, 48, 57, 281, 305
adapters, 154, 155–156
add method, 418
addition operator, 97
ADT (Android Development Tools), 7
agreements, 8, 446–447

AlertDialog dialog box, 240, 242, 412,
413–417

alpha effect, 362
alphanumeric keypads, 76
Amazon Appstore, 9
AnalogClock control, 277–278
Android. See also Android devices

4.0 Library, 14
built-in media player, 188–216
features, 5–6
Market, 8, 9, 112–113, 430
overview, 2–9
SDK (Software Development Kit),

7, 9, 71, 93, 264, 304,
385, 432

versions, 7
Android Debug Bridge (adb), 432, 433
Android devices

deploying apps to, 20
targeting different, 431–432
testing apps on, 432–440
unlocking, 22

Android folder, 266
Android Google Maps app, 383–420
Android Honeycomb 3.0 operating

system, 264–268
Android Manifest file

(AndroidManfest.xml), 114,
115, 157–158, 199–200

adding activities to, 50–53
animation and, 368–370
City Guide app and, 172–173
DataPicker control and, 269, 271
described, 14
Google Maps and, 397–400, 401
overview, 50
themes and, 72, 74–75
updating, 330–332, 368–370

Android SDK Manager dialog box,
386–387

Android tablet app, 260–300
Android Terminology app, 30

Android User Interface Layout Editor,
17–20

Android Virtual Device Manager
dialog box, 265–266,
387–389

Android Virtual Devices (AVDs), 264,
385, 387–389

Android Xoom, 264
android::oneshot attribute, 349
angle brackets (<>), 159, 271
Angry Birds Android app, 441–444
animation(s)

Button controls for, 356–358
controlling, with methods,

358–270
creating, 343–382
tween, 346, 347–352, 361–366
types of, 346

animation-list root element, 349,
351–352

AnimationDrawable class, 352, 353
Anthology Wedding Photography

app, 257
APIs (application programming

interfaces), 10, 50, 264,
385–389

described, 386
Google Maps and, 385, 386–400

.apk (application package) file, 433,
434–440, 450–451

Apple App Store, 9, 291, 430
Application dialog box, 330
arguments, 238, 286, 323
arithmetic operations, 70, 72, 96–97,

111
array(s), 83–86, 152–154

elements, 152, 153
Google Maps and, 406–412
images and, 232–234
length of, calculating, 244–246
tab interfaces and, 320–322
variables, 152

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ArrayAdapter<String> i, 154, 155,
176

ArrayList array, 406, 407–412
aspect ratio, 249
assets folder, 14
asterisk (*), 15, 94, 122
audio. See also music

file types, 206–207
implementations, 187–224
recording, 207

auto-complete features, 54–55, 60, 88,
124, 159, 204, 230, 242

AVDs (Android Virtual Devices), 264,
385, 387–389

Average Income Tax by Country
app, 143

B
Back button, 268
Background property, 191, 353, 354
BaseAdapter class, 235
Bike and Barge app, 302–332
Blackberry, 3, 5
Blender, 345
boolean data type, 93
Box Office app, 183
break statement, 164, 176
browser(s), 4, 165–166

list items connecting to, 149
tab interfaces and, 325–326
tablet apps and, 262
types of, 165
uploading apps and, 450–451

Build Target option, 12, 33, 34, 72,
229, 266, 396

Business Car app, 30
button(s). See also Button control

event handlers, 56, 57, 58–60
importing, 57, 58

Button control, 15, 37, 87–92, 131,
203–205, 211–213, 237,
279–281, 346, 356–358

adding, 43–44
event handlers and, 56–60

Button property, 57
byte data type, 93

C
Calendar class, 283, 284–285
calendar controls. See CalendarView

control; DatePicker control
CalendarView control, 277–278
camel case, 92
cameras, 6
Car Rental app, 256
Cartoon Animation app, 381

case keyword, 163, 176
case sensitivity, 49, 92
Change Gravity tool, 117, 118,

120, 123
Change Margin tool, 118–120, 123
char data type, 93
CheckBox control, 15
Checked property, 116, 117, 130
Chronometer control, 277–278
City Guide app, 146–176
class(es). See also specific classes

described, 47
files, 47–49, 170–171, 173–174
names, 9, 49
variables, 203, 204–205, 208–210

clocks, in calendar apps, 277–278
cloud computing, 318
cmd command, 390
codecs, 207
Coffee Finder app, 184
colon (:), 163
color coding, 60, 117, 191
columnWidth property, 313
command prompt, 390–392
comments, 47, 59, 94, 210
compareTo method, 127, 128
compilers, 47
compound conditions, 128
concatenating operators, 99
Concert Tickets app, 70–75
conditional statements, 125–134
constructors

described, 243
ImageAdapter dialog box and,

243–244
control(s). See also specific controls

instantiating, 234–235
margin settings, 118–119
naming, 43
placing, 38–39
text color of, 117

copyright laws, 158
Country Cabin Rental Tablet

app, 289
CPUs (central processing units), 21
Create new Android Virtual Device

(AVD) dialog box, 264
Create Your Own app, 185
curly braces ({}), 54, 88, 163, 164, 171,

194, 205, 206, 288
Currency Conversion app, 142
currentDay variable, 278
currentMonth variable, 278
currentYear variable, 278

D
data

types, 93, 95
validation, 129

DATE_DIALOG_ID constant, 281,
283, 285, 286, 287

DatePicker control, 259–300
DatePickerDialog method, 283, 287
dates, 76, 277–278. See also

DatePicker control
DAY_OF_MONTH constant, 283
DAY_OF_YEAR constant, 283
debugging, enabling, 432
DecimalFormat class, 97, 98, 131, 132
decision(s)

making, 125–134
overview, 110
structures, 125, 163–165

Developer Distribution Agreement,
446–447

DigitalClock control, 277–278
disabled individuals, 175
dollar sign ($), 92
double data type, 93, 95
double quotes (“), 47
dpi (dots per inch), 41, 42, 113, 264.

See also pixels
drawable folder, 246, 311, 320,

349, 416
Drawable resource, 40–41
drawable-hdpi folder, 41, 91, 156–157,

190–191, 230, 231–232, 269,
311, 350, 401

drive letters, 11
Droid Rotation app, 381

E
Easter Music app, 188–216
Eclipse, 15–16, 33, 54–56, 72, 76,

150–152, 189
adding files with, 40–42
animation and, 346
closing, 23
creating new projects, 9–10
described, 389
displaying pictures in a gallery

with, 228–232
errors and, 366
Google Maps and, 386
installing, 9
opening saved apps with,

24–26
overview, 6–7
publishing apps and, 433–434
running/testing apps with, 23
tab interfaces and, 306–307

466

I N D E X

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EditText class, 80–81, 95, 122–123
elements, 152, 153
e-mail addresses, 76
emulated applications, 262
emulator(s), 5, 15–16, 18–19,

167, 174
deploying apps to devices rather

than, 20
Google Maps and, 404
music apps and, 188, 191, 201, 213
orientation, changing, 370
overview, 7
Spinner control and, 85–86
testing apps in, 20–24
themes and, 71
unlocking, 61

Endangered Species Android app,
226–250

Entries property, 85
Epicurious app, 33
equal sign (=), 127
equals method, 127, 128
errors, 60–61, 236, 239, 366
event handlers, 56, 57–60, 88
ExpandableListView control, 152

F
Facebook, 40, 263
facial recognition, 6
Famous Artist Tablet app, 339
File Operation dialog box, 269
file sharing, 318
final keyword, 80
Final Touch Auto Detailing Tablet

app, 299
final variable, 101
findViewByID method, 57, 121
finish method, 197, 199, 200
FIT_XY option, 247
Flags of the World app, 382
float data type, 93, 95
Floor Tiling app, 141
fonts, DataPicker control and, 273
Form Widgets category, 17–20, 39,

43, 78, 85, 119, 201
forward slash (/), 47, 94, 122, 282
Four Seasons app, 256
Fragments, 332
Frame and Tween Animation Game

app, 382
frame animation, 346
frame-by-frame animation, creating,

349–352
FrameLayout, 304, 305–317

G
Gallery control. See also images

adding, 228–232
displaying selected images in,

242–243
instantiating, 234–235
overview, 225–257

Gallery View container, 228
gen folder, 14
General folder, 24
GeoPoint locations, 417–420
get method, 284
getBaseContext method, 240,

241–242
getCount method, 244–245, 322
getInstance method, 283, 284
getOverlays method, 415, 416
GetSelectedItem method, 98, 99
getSnippet method, 412
getTabHost method, 327
GetText method, 95, 96
getView method, 246–249, 323–324
Go Web 2.0 Tabet app, 340
Golf Course Tablet app, 338–339
Google Android. See Android
Google Checkout, 445, 452
Google e-books, 430
Google Maps, 40, 383–427

API, 385, 386–400
API key, 389, 390–400
arrays and, 406–412
GeoPoint locations, 417–420
overlays and, 404–417

Google Music, 430
Google Open Handset alliance, 3
Google Play, 431–432, 440–454

accounts, 445–454
described, 430
Developer Distribution

Agreement, 446–447
uploading apps to, 449–450

Google TV, 4
graphic(s), 45, 156–158. See also

images
background, 190–192
converting, 43
copyright laws and, 158
formats, 40–41
saving, 43
vector-based, 113

Gravity property, 191
GridView control, 235, 237, 311, 312,

313–326
Guitar Solo app, 222

H
HDTV (high definition television), 249
Healthy Recipes app, 32–33, 37–61, 70
Hello World apps, 10–26, 34–35, 114,

158
Help window, 55
hexadecimal color codes, 117, 191, 353
Hint property, 79–80
hints, 79, 80
Holo.Light theme, 270–272
Home button, 268
Honeycomb applications, 264–268
Honeycomb emulator, 264–266
Hostel Travel app, 67

I
icons, customizing, 114–116. See also

launcher icon
Id property, 43, 80–81, 78, 79, 120, 202
IDE (integrated development

environment), 6
If Else statements, 126, 127
If statements, 126, 128

described, 125
nested, 130, 131–134

image(s). See also Gallery control;
graphics

9-patch, 353
arrays for, creating, 232–234
aspect ratio, 249
Background property for, 353
displaying selected, 242–243
files, adding, 230–232
padding, 323–324
promotional materials and,

441–442
tab interfaces and, 311–312
transparency/opaqueness settings,

264
ImageAdapter class, 235–237
ImageAdapter dialog box, 243–244,

319–322
ImageButton control, 43, 44
ImageView control, 35, 37–38, 41,

159, 161, 168, 202, 227,
230–235,

242, 246–249, 346–348, 353, 360–361,
367

adding, 42–43, 87–92
described, 42

import statements, 57
Improve Your Golf Stroke app,

378–380
increment operator, 97
instantiation, 47, 234–235
int data type, 93

467

I N D E X

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

integer data type, 95
intent, use of the term, 50, 165
iOS

open-source, 2–3
overview, 3–5

iPad (Apple), 5, 260, 262
iPhone (Apple), 2, 5, 9
isChecked method, 130, 131, 136
Italian Restaurant app, 180–182
ItemizedOverlay dialog box, 404
items, 82, 83–85, 162, 163
iTunes App Store, 9, 291, 430

J
jar files, 14
Java

activities, coding, 53–61
arithmetic operators and, 96–97
City Guide app and, 149, 154–155
comments and, 47
compilers, 47
DataPicker control and, 279
described, 6
Eclipse and, 7
import statements and, 57
Medical Calculator app and,

121–122
method for building user

interfaces, 13
primitive data types and, 94
program planning and, 44
relational operators and, 126–128
variables and, 80

K
keyboards. See also onscreen

keyboards
described, 76
shortcut key combinations and, 23,

54–55, 59
simplifying input and, 76–82

L
language support, multiple, 6, 431–432
Largest U.S. Cities app, 425
Latest News app, 68
launcher icon, 112, 113–116, 157–158,

268–270
layout(s). See also user interfaces

changing, 36–37, 73
custom, 158–161
described, 15
designing, 15–17
event handlers and, 57
files, 15, 168–170
gravity, changing, 117, 118

linear, 35, 36–37, 158, 191,
272–277, 305, 308, 309,
314, 347

relative, 36–39, 45, 73
themes and, 73
XML, 15, 45–47, 158–161,

168–170, 191–206, 212
Learn How to Make Biscuits app,

375–377
length method, 245
license fees, 3
life cycles, of activities, 196, 197–199
linear layouts, 35, 36–37, 158, 191,

272–277, 305, 308,
309, 314, 347
links. See URLs (Uniform Resource

Locators)
list(s)

creating, 149–162
overview, 146

ListActivity class, 150, 151–152
ListView control, 146, 149–150,

155–156, 158–160, 162,
235, 237

localization, 82
Location text box, 11
logical operators, 128
long data type, 93, 95

M
Main class, 47
Main.java, 47, 53–60, 87–88, 90, 317,

327–330
animation and, 352–353, 361, 366
City Guide app and, 150–152, 155,

162, 166–167
DataPicker control and, 278, 279,

284, 286, 288, 289
Gallery control and, 233, 239,

242, 249
Google Maps and, 401
Medical Calculator app and, 122,

124, 131
music apps and, 189, 208, 210,

214–215
tab interfaces and, 310, 311

main.xml, 18, 34–35, 47, 58–60, 91,
119, 123, 201–206, 234,
395–398

activities and, 45
animation and, 346, 347, 350
DataPicker control and, 270,

273, 276
placing controls and, 38–39
Spinner control and, 85
tab interfaces and, 309

tablet applications and, 267
text fields and, 78
themes and, 71, 73–74

MakeText method, 129
MapView class, 400, 401–404
MapView element, 395–397
margins, 118, 119, 201, 202
market deployment, 8–9
Marlin Adventures app, 260–391
Math Flash Cards app, 142
mathematical operations, 96–98
Maya, 345
MD5 (Message-Digest Algorithm 5)

digital fingerprint, 389, 390–400
media players, 188–216
MediaPlayer dialog box, 206, 208,

209–217
MediaPlayer states, 209–213
Medical Calculator app, 110–134
memory, 86, 206
methods, use of the term, 53, 245.

See also specific methods
Mininum SDK value, 10, 34
MONTH constant, 283
motion tweens, 344
Movie Time app, 140–141
multiplication operator, 97
music, 188–224. See also audio

files, raw folder for, 207, 208
playing, 206–207

N
native applications, 262
nested If statements, 130, 131–134
New Android Layout XML File dialog

box, 313, 314, 316
New Android Project dialog box,

228, 266
New Android XML File dialog box,

351
New dialog box, 313, 361
New Year’s Eve Celebration app, 426
New York City Cab Fare app, 106
9-patch image, 353
Number Text Field control, 79, 120
numbers, formatting, 97–98. See also

mathematical operations
numColumns property, 313

O
Oasis Day Spa Tablet app, 295–296
object(s)

described, 47
instantiation and, 47
-oriented programming

languages, 6

468

I N D E X

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Office (Microsoft), 302
Olympic Cities app, 427
onClick method, 56, 131, 203,

210–211, 212, 214–215, 281,
283, 358, 364

OnClickListener event, 124–125, 131
OnClickListener method, 56–59, 88,

95, 96, 203, 205, 208, 206, 237
onCreate method, 53–55, 162, 170,

172, 196, 197, 198, 203, 234,
280, 317, 318, 325–326

OnCreateDialog method, 285,
286–291

onDataSet event, 288
onDateSetListener method, 288–290
onDestroy method, 196, 197, 199
onItemClick method, 237, 238–240,

241, 242
OnItemClickListener method, 238
onListItemClick method, 162, 163,

164, 177
onPause method, 197, 199
onRestart method, 197, 198
onscreen keyboard(s). See also

keyboards
overview, 6
simplifying input and, 76–77

onStart method, 197, 198–199
onTap method, 412, 413–417
opaqueness settings, 264
Open Handset Alliance, 3
orientation settings, 273, 370
output, displaying, 98–100
overlays, 404, 405–417

P
package(s)

files, overview, 8
names, 9

Package Explorer, 24, 33, 34, 58, 122,
168, 229, 397

adding files with, 40–42
Android Manifest file and, 51, 330
animation and, 347, 350, 368
class files and, 47
DataPicker control and, 269
deleting projects in, 26
described, 14
layouts and, 15, 45
loading apps in, 25
music apps and, 193, 200, 207
Spinner control and, 87
String table and, 83
text fields and, 81
themes and, 73, 74

packages.apk (application package)
file. See .apk (application
package) file

padding property, 273
padding settings, 273, 323–324
Paint Calculator app, 107
parentheses, 55, 58, 59, 88, 124, 170,

284
Parse class, 95
Pascal case, 49
passwords, 437–438, 445
pause method, 209
percent sign (%), 97
period (.), 9, 52, 172
permissions, 397, 398–400
Personal Map app, 427
Personal Photo app, 257
phone numbers, 76–77
Pick Your Topic Tablet app, 341
Piggy Bank Children’s app, 108
pixel(s). See also dpi (dots per inch)

density-independent (dp), 38
icon dimensions in, 268
margin settings and, 118
scaled-independent (sp), 38, 40

plus sign (+), 99
png files, 40, 41, 43, 113, 114, 156–158
populate method, 407, 409
position, of list items, 162, 163
pound sign (#), 97–98
power management, 6
Power Tools app, 254
primitive data types, 93, 94, 203
program(s). See also projects

coding, 44
development life cycle, 44
planning, 44
processing objects, designing, 44
requirements, gathering, 44

project(s). See also programs
creating new, 9–13
deleting, 26
folders, 14
names, 9, 11, 72
opening, 24–26
saving, 33
updating, 20

promotional materials, 440–454
prompts, 83
properties

changing, 40
event handlers and, 56–57
overview, 38–40
selecting, 39–40, 79–80
text fields and, 78, 80, 81

Properties pane, 37, 39, 43, 45, 78, 80,
81, 191

protected keyword, 286
publishing apps, 429–452

Q
Quote of the Day app, 29

R
RadioButton controls, 37, 116–125,

130–133
RadioGroup controls, 111, 116,

117–125, 136
raw folder, 207, 208
Recipe.java class, 49, 54, 58
recipe.xml, 45–47, 56
registration fees, 8, 9
relational operators, 126–128
relative layouts, 36–39, 45, 73.

See also layouts
remainder operator, 97
Rent a Car app, 184
Rental Property app, 65
res folder, 14, 33, 73, 156, 350, 361
resources folder, 40–42, 156–158
Rhythm of the Strings app, 220–221
Ring Tones app, 224
Root Element list, 314
rotate effect, 362–364
royalties, 3
run method, 193, 199, 200

S
scale effect, 362
screen(s). See also dpi (dots per inch);

pixels
event handlers and, 56–57
orientation settings, 370
size, 5
splash, 188–201, 216

SDK (Software Development Kit), 7, 9,
71, 93, 264, 304, 385, 432

Section 508 compliance, 175
semicolon (;), 59, 60, 170, 195, 205,

206
Serenity Sounds app, 223
set method, 284
setAdapter method, 235, 236–237,

319, 320
setBackgroundResource method, 353,

355
setBuiltInZoomControls property,

400, 401–404
setContent method, 327

469

I N D E X

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

setContentView method, 54, 55, 56,
81, 122, 172, 193–194,
204, 326

setImageResource method, 242, 323
setindicator method, 327
setListAdapter command, 154,

155–156, 161–162, 177
setOnClickListener method, 203, 206,

281, 282, 356, 357–358
setPadding method, 323
setScaleType method, 323
SetText method, 99–100, 212
setVisibility property, 213–214
short data type, 93
shortcut key combinations, 23,

54–55, 59
show method, 129, 412
showDialog method, 281–283, 286
Siri voice-recognition system, 79
Sleep Machine app, 223
smartphones, 2
Snap Fitness Table app, 340
soft keyboards. See also keyboards

described, 76
simplifying input from, 76–92

Sony, 2
sp (scaled-independent pixels),

38, 40
S.P.C.A. Rescue Shelter app, 255
spelling corrections, 6
Spinner control, 72, 81, 82–87, 99
splash screens, 188–201, 216
Split the Bill app, 107
square brackets ([]), 154
src folder, 14, 47, 193
Star Constellation app, 65
Starbucks, 263
start method, 209, 354, 358–370
Start Tween Animation button,

360–361
startActivity method, 57, 173–174
startAnimation method, 366,

367–368
states, of activities, 197
static variables, 278, 279
stop method, 209, 358–370
String class, 127
string data type, 94, 127, 153–154
String table, 82–83
strings

described, 82
list of, displaying, 82–85

strings.xml, 82, 83, 160
stubs, 96, 131, 194, 199, 205

auto-generated, 59, 88
described, 57

Study Abroad app, 104–105
subtraction operator, 97
Sushi 101 Tablet app, 336–338
Switch statement, 163, 164–166, 173,

210–212, 214–215, 287

T
tab(s)

adding images to, 311–312
layout, creating, 304–305
navigating with, 301–341

TabActivity dialog box, 310, 311
TabHost control, 304, 305–317,

327–330
Table layout, 272, 273, 274–277
tablet apps. See also DatePicker

control; tablets
creating, 266–268
designing, 262–270
navigating with tabs on, 301–341
setting Launcher icons for,

268–270
tablets. See also tablet apps

adding Android virtual devices for,
264–266

custom themes for, setting,
270–272

design tips for, 263–264
table layout for, 272–277

TabSpec statement, 327, 329–330
TabWidget, 304, 305–317
Tech Gadgets app, 185
Temperature Conversion app,

138–139
terminal command, 390
testing, 5, 174–175, 216, 250, 291, 332,

371, 432–440, 420. See also
emulators

links, 168
overview, 20–24, 44
Section 508 compliance, 175

text
button controls and, 43–44
color, 117, 120, 191
fields, 70, 76–81
size, 43–44
title bar, 160
underlined, 87

Text color property, 120, 191
Text Field control, 79–81
Text property, 38, 39–40, 43, 63, 78,

88, 89, 116, 119, 121, 123, 201,
202, 211–212

Text size property, 38, 63, 88, 119,
120, 121, 123

Text style property, 191

TextView control, 15–20, 34–39, 73,
78, 87–92, 99, 117–120,
123–124, 158–161,
190–192, 229, 260, 267,
274–275, 280–281, 289,
307, 314–316

TextView property, 190
theme(s)

custom, setting, 270–272
described, 71
overview, 72–75

threads, 193
TimePicker control, 277–278, 290
TimePickerDialog method, 290
Timer class, 192, 193, 195–196
Timer dialog box, 218
timers, 192, 193–196, 218
TimerTask class, 192, 193, 194,

199
TimerTask dialog box, 218
title bar text, 160
toast notification, 129, 240–242
TODO comment, 282, 289, 359

Gallery control and, 242, 244,
247

Google Maps and, 409
tab interfaces and, 323

ToggleButton control, 43, 44
translate effect, 362
transparency settings, 264
Tuition app, 105–106
tween animation, 346, 347–352,

361–366
tween effects, 361. 362
typeface property, 273

U
underscore (_), 87, 92
units of measure, 38
uploading apps, 449–450
URIs (Uniform Resource Identifiers),

166, 325–326
URLs (Uniform Resource Locators),

166, 168

V
variable(s), 57, 80–83, 86–87, 90–91,

132, 128
class, 203, 204–205, 208–210
declaring, 92–96
described, 80
final, 80
local, 203
overview, 102
scope of, 203

video recording, 207

470

I N D E X

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

video games, 264
View container, 228
Visibility property, 213, 214–215
voice-based recognition, 6, 79

W
wallpaper, 71, 228
Washington D.C. Walking Tour

Tablet app, 297
Wave Animation Android app,

344–371
Web browsers. See browsers
Web Site Validation Service, 168
widgets, 15, 17–20, 27, 39. See also

Form Widgets category

Wild Ginger Dinner Delivery Tablet
app, 300

Windows Marketplace, 291
Windows Store, 430
World Wide Web Consortium, 168
WXGA tablet emulator, 267–268

X
XML (Extensible Markup Language),

18, 33, 37, 44, 57, 155
animation and, 345–352, 354,

362–364
DataPicker control and, 269, 273,

275, 276, 278–280
described, 7
files, naming, 46

Gallery control and, 230, 231, 242
Google Maps and, 293, 395–397
layouts, 15, 45–47, 158–161,

168–170, 191–206, 212
method for building user

interfaces, 13
tab interfaces and, 304–309,

312–317, 325, 326

Y
YEAR constant, 283
Your Contacts app, 67
Your Personal Playlist app, 224
Your School app, 67
YouTube, 40

471

I N D E X

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover
	Title Page

	Copyright
	Statement
	Brief Contents
	Contents
	Preface
	Acknowledgements
	Ch 1: Voilà! Meet the Android
	In this Chapter, You Learn to:
	Introduction
	Meet the Android
	First Venture into the Android World
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 2: Simplify! The Android User Interface
	In this Chapter, You Learn to:
	Introduction
	Designing an Android App
	Using the Android User Interface
	Creating Activities
	The Android Manifest File
	Coding the Java Activity
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 3: Engage! Android User Input, Variables, and Operations
	In this Chapter, You Learn to:
	Introduction
	Android Themes
	Simplifying User Input
	Declaring Variables
	Working with Mathematical Operations
	Displaying Android Output
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 4: Explore! Icons and Decision-Making Controls
	In this Chapter, You Learn to:
	Introduction
	The Launcher Icon
	RadioButton and RadioGroup Controls
	Making Decisions with Conditional Statements
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 5: Investigate! Android Lists, Arrays, and Web Browsers
	In this Chapter, You Learn to:
	Introduction
	Creating a List
	Using the onListItemClick Method
	Decision Structure—Switch Statement
	Android Intents
	Launching the Browser from an Android Device
	Designing XML Layout Files
	Adding Multiple Class Files
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 6: Jam! Implementing Audio in Android Apps
	In this Chapter, You Learn to:
	Introduction
	Creating a Splash Screen
	Launching the Next Activity
	Designing the main.xml File
	Playing Music
	Creating a Raw Folder for Music Files
	Using the MediaPlayer Class
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 7: Reveal! Displaying Pictures in a Gallery
	In this Chapter, You Learn to:
	Introduction
	Adding a Gallery Control
	Creating an Array for the Images
	Instantiating the Gallery and ImageView Controls
	Using a setAdapter with an ImageAdapter
	Coding the OnItemClickListener
	Coding a Custom Toast Notification
	Displaying the Selected Image
	Customizing the ImageAdapter Class
	Calculating the Length of an Array
	Coding the getView Method
	Running and Testing the Application
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 8: Design! Using a DatePicker on a Tablet
	In this Chapter, You Learn to:
	Introduction
	Designing a Tablet Application
	Initializing the Button and TextView Controls
	ShowDialog Method
	Using the Calendar Class
	Adding the OnCreateDialog Method
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 9: Customize! Navigating with Tabs on a Tablet App
	In this Chapter, You Learn to:
	Introduction
	Creating a Tab Layout for a Tablet
	The TabHost Layout
	Coding the GridView Activity for the First Tab
	Coding the Second Tab Java File
	Coding the Third Tab Java File to Display a Web Site
	Coding the TabHost
	Updating the Android Manifest File
	Running and Testing the Application
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 10: Move! Creating Animation
	In this Chapter, You Learn to:
	Introduction
	Android Animation
	Adding the Layout for the Frame Image and Button Controls
	Coding the AnimationDrawable Object
	Setting the Background Resource
	Adding Two Button Controls
	Using the Start and Stop Methods
	Changing the Emulator to Landscape Orientation
	Running and Testing the Application
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 11: Discover! Incorporating Google Maps
	In this Chapter, You Learn to:
	Introduction
	Using Google Maps
	Installing the Google API
	Obtaining a Maps API Key from Google
	Understanding MapView
	Adding Overlay Items
	Locating a GeoPoint
	Running and Testing the Application
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book
	Case Programming Projects

	Ch 12: Finale! Publishing Your Android App
	In this Chapter, You Learn to:
	Introduction
	Understanding Google Play
	Targeting Different Device Configurations and Languages
	Testing Your App on an Android Device
	Preparing Promotional Materials to Upload
	Registering for a Google Play Account
	Uploading an App to Google Play
	Wrap It Up—Chapter Summary
	Key Terms
	Developer FAQs
	Beyond the Book

	Glossary
	Index

