

Android NDK
Beginner's Guide

Discover the native side of Android and inject the power
of C/C++ in your applications

Sylvain Ratabouil

BIRMINGHAM - MUMBAI

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Android NDK
Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2012

Production Reference: 1200112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-152-9

www.packtpub.com

Cover Image by Marcus Grandon (marcusgrandon@mac.com)

Credits

Author

Sylvain Ratabouil

Reviewers

Marko Gargenta

Dr. Frank Grützmacher

Robert Mitchell

Acquisition Editor

Sarah Cullington

Lead Technical Editor

Dayan Hyames

Technical Editor

Pramila Balan

Copy Editor

Laxmi Subramanian

Project Coordinator

Jovita Pinto

Proofreader

Lynda Sliwoski

Indexer

Hemangini Bari

Graphics

Valentina D'silva

Production Coordinators

Prachali Bhiwandkar

Melwyn D'sa

Nilesh Mohite

Cover Work

Alwin Roy

About the Author

Sylvain Ratabouil is a confirmed IT consultant with experience in C++ and Java
technologies. He worked for the space industry and got involved in aeronautic projects at
Valtech Technologies where he now takes part in the Digital Revolution.

Sylvain earned the master's degree in IT from Paul Sabatier University in Toulouse and did
M.Sc. in Computer Science from Liverpool University.

As a technology lover, he is passionate about mobile technologies and cannot live or sleep
without his Android smartphone.

I would like to thank Steven Wilding for offering me to write this book;
Sneha Harkut and Jovita Pinto for awaiting me with so much patience;
Reshma Sundaresan, and Dayan Hyames for putting this book on the
right track; Sarah Cullington for helping me finalizing this book;
Dr. Frank Grützmacher, Marko Gargenta, and Robert Mitchell for
all their helpful comments.

About the Reviewers

Dr. Frank Grützmacher has worked for several major German firms in the area of large
distributed systems. He was an early user of different Corba implementations in the past.

He got his Ph.D. in the field of electrical engineering, but with the focus on distributed
heterogeneous systems. In 2010, he was involved in a project, which changed parts of the
Android platform for a manufacturer. From there, he got his knowledge about the android
NDK and native processes on this platform.

He has already worked as a reviewer for another Android 3.0 book.

Robert Mitchell is an MIT graduate with over 40 years experience in Information
Technology and is semiretired. He has developed software for all the big iron companies:
IBM, Amdahl, Fujitsu, National Semiconductor, and Storage Technology. Software companies
include Veritas and Symantec. Recent languages that he knows are Ruby and Java, with a
long background in C++.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1

Chapter 1: Setting Up your Environment 7
Getting started with Android development 7
Setting up Windows 8
Time for action – preparing Windows for Android development 8
Installing Android development kits on Windows 12
Time for action – installing Android SDK and NDK on Windows 13
Setting up Mac OS X 18
Time for action – preparing Mac OS X for Android development 18
Installing Android development kits on Mac OS X 20
Time for action – installing Android SDK and NDK on Mac OS X 20
Setting up Linux 22
Time for action – preparing Ubuntu Linux for Android development 22
Installing Android development kits on Linux 27
Time for action – installing Android SDK and NDK on Ubuntu 27
Setting up the Eclipse development environment 29
Time for action – installing Eclipse 29
Emulating Android 33
Time for action – creating an Android virtual device 33
Developing with an Android device on Windows and Mac OS X 37
Time for action – setting up your Android device on Windows and Mac OS X 37
Developing with an Android device on Linux 39
Time for action – setting up your Android device on Ubuntu 39
Troubleshooting a development device 42
Summary 43

Chapter 2: Creating, Compiling, and Deploying Native Projects 45
Compiling and deploying NDK sample applications 46
Time for action – compiling and deploying the hellojni sample 46

Table of Contents

[ii]

Exploring Android SDK tools 51
Android debug bridge 51
Project configuration tool 54

Creating your first Android project using eclipse 56
Time for action – initiating a Java project 56

Introducing Dalvik 59
Interfacing Java with C/C++ 60
Time for action – calling C code from Java 60

More on Makefiles 65

Compiling native code from Eclipse 67
Time for action – creating a hybrid Java/C/C++ project 67
Summary 72

Chapter 3: Interfacing Java and C/C++ with JNI 73
Working with Java primitives 74
Time for action – building a native key/value store 75
Referencing Java objects from native code 85
Time for action – saving a reference to an object in the Store 85

Local and global JNI references 90
Throwing exceptions from native code 91
Time for action – raising exceptions from the Store 92

JNI in C++ 96
Handling Java arrays 96
Time for action – saving a reference to an object in the Store 97

Checking JNI exceptions 106
Summary 107

Chapter 4: Calling Java Back from Native Code 109
Synchronizing Java and native threads 110
Time for action – running a background thread 111

Attaching and detaching threads 120
More on Java and native code lifecycles 121

Calling Java back from native code 122
Time for action – invoking Java code from a native thread 122

More on callbacks 133
JNI method definitions 134

Processing bitmaps natively 135
Time for action – decoding camera feed from native code 136
Summary 146

Chapter 5: Writing a Fully-native Application 147
Creating a native activity 148
Time for action – creating a basic native activity 148

Table of Contents

[iii]

Handling activity events 155
Time for action – handling activity events 155

More on Native App Glue 166
UI thread 167
Native thread 168
Android_app structure 170

Accessing window and time natively 171
Time for action – displaying raw graphics and implementing a timer 172

More on time primitives 181
Summary 181

Chapter 6: Rendering Graphics with OpenGL ES 183
Initializing OpenGL ES 184
Time for action – initializing OpenGL ES 184
Reading PNG textures with the asset manager 193
Time for action – loading a texture in OpenGL ES 194
Drawing a sprite 208
Time for action – drawing a Ship sprite 209
Rendering a tile map with vertex buffer objects 220
Time for action – drawing a tile-based background 221
Summary 238

Chapter 7: Playing Sound with OpenSL ES 239
Initializing OpenSL ES 241
Time for action – creating OpenSL ES engine and output 241

More on OpenSL ES philosophy 248
Playing music files 249
Time for action – playing background music 249
Playing sounds 256
Time for action – creating and playing a sound buffer queue 257

Event callback 266
Recording sounds 268
Summary 272

Chapter 8: Handling Input Devices and Sensors 273
Interacting with Android 274
Time for action – handling touch events 276
Detecting keyboard, D-Pad, and Trackball events 288
Time for action – handling keyboard, D-Pad, and trackball, natively 289
Probing device sensors 298
Time for action – turning your device into a joypad 300
Summary 313

Table of Contents

[iv]

Chapter 9: Porting Existing Libraries to Android 315
Developing with the Standard Template Library 316
Time for action – embedding GNU STL in DroidBlaster 316

Static versus shared 326
STL performances 327

Compiling Boost on Android 328
Time for action – embedding Boost in DroidBlaster 328
Porting third-party libraries to Android 338
Time for action – compiling Box2D and Irrlicht with the NDK 339

GCC optimization levels 346
Mastering Makefiles 346

Makefile variables 347
Makefile Instructions 348

Summary 351

Chapter 10: Towards Professional Gaming 353
Simulating physics with Box2D 353
Time for action – simulating physics with Box2D 354

More on collision detection 366
Collision modes 367
Collision filtering 368
More resources about Box2D 369

Running a 3D engine on Android 369
Time for action – rendring 3D graphics with Irrlicht 370

More on Irrlicht scene management 381
Summary 382

Chapter 11: Debugging and Troubleshooting 383
Debugging with GDB 383
Time for action – debugging DroidBlaster 384
Stack trace analysis 392
Time for action – analysing a crash dump 392

More on crash dumps 396
Performance analysis 397
Time for action – running GProf 398

How it works 403
ARM, thumb, and NEON 403

Summary 405

Index 411

Preface
The short history of computing machines has witnessed some major events, which
forever transformed our usage of technology. From the first massive main frames to
the democratization of personal computers, and then the interconnection of networks.
Mobility is the next revolution. Like the primitive soup, all the ingredients are now
gathered: an ubiquitous network, new social, professional and industrial usages, a
powerful technology. A new period of innovation is blooming right now in front of our
eyes. We can fear it or embrace it, but it is here, for good!

The mobile challenge
Today's mobile devices are the product of only a few years of evolution, from the first
transportable phones to the new tiny high-tech monsters we have in our pocket. The
technological time scale is definitely not the same as the human one.

Only a few years ago, surfing on the successful wave of its musical devices, Apple and
its founder Steve Jobs combined the right hardware and the right software at the right
time not only to satisfy our needs, but to create new ones. We are now facing a new
ecosystem looking for a balance between iOS, Windows Mobile, Blackberry, WebOS, and
more importantly Android! The appetite of a new market could not let Google apathetic.
Standing on the shoulder of this giant Internet, Android came into the show as the best
alternative to the well established iPhones and other iPads. And it is quickly becoming
the number one.

In this modern Eldorado, new usages or technically speaking, applications (activities, if
you already are an Android adept) still have to be invented. This is the mobile challenge.
And the dematerialized country of Android is the perfect place to look for. Android is
(mostly) an open source operating system now supported by a large panel of mobile
device manufacturers.

Preface

[2]

Portability among hardware and adaptability to the constrained resources of mobile devices:
this is the real essence of the mobile challenge from a technical perspective. With Android,
ones has to deal with multiple screen resolutions, various CPU and GPU speed or capabilities,
memory limitations, and so on, which are not topics specific to this Linux-based system,
(that is, Android) but can particularly be incommoding.

To ease portability, Google engineers packaged a virtual machine with a complete framework
(the Android SDK) to run programs written in one of the most spread programming language
nowadays: Java. Java, augmented with the Android framework, is really powerful. But first,
Java is specific to Android. Apple's products are written for example in Objective C and can be
combined with C and C++. And second, a Java virtual machine does not always give you enough
capability to exploit the full power of mobile devices, even with just-in-time compilation
enabled. Resources are limited on these devices and have to be carefully exploited to offer
the best experience. This is where the Android Native Development Kit comes into place.

What this book covers
Chapter 1, Setting Up your Environment, covers the tools required to develop an application
with the Android NDK. This chapter also covers how to set up a development environment,
connect your Android device, and configure the Android emulator.

Chapter 2, Creating, Compiling, and Deploying Native Projects, we will compile, package, and
deploy NDK samples and create our first Android Java/C hybrid project with NDK and Eclipse.

Chapter 3, Interfacing Java and C/C++ with JNI, presents how Java integrates and
communicates with C/C++ through Java Native Interface.

Chapter 4, Calling Java Back from Native Code, we will call Java from C to achieve
bidirectional communication and process graphic bitmaps natively.

Chapter 5, Writing a Fully-native Application, looks into the Android NDK application life-cycle.
We will also write a fully native application to get rid of Java.

Chapter 6, Rendering Graphics with OpenGL ES, teaches how to display advanced 2D and 3D
graphics at full speed with OpenGL ES. We will initialize display, load textures, draw sprites
and allocate vertex and index buffers to display meshes.

Chapter 7, Playing Sound with OpenSL ES, adds a musical dimension to native applications
with OpenSL ES, a unique feature provided only by the Android NDK. We will also record
sounds and reproduce them on the speakers.

Preface

[3]

Chapter 8, Handling Input Devices and Sensors, covers how to interact with an Android
device through its multi-touch screen. We will also see how to handle keyboard events
natively and apprehend the world through sensors and turn a device into a game controller.

Chapter 9, Porting Existing Libraries to Android, we will compile the indispensable C/C++
frameworks, STL and Boost. We will also see how to enable exceptions and RunTime Type
Information. And also port our own or third-party libraries to Android, such as, Irrlicht 3D
engine and Box2D physics engine.

Chapter 10, Towards Professional Gaming, creates a running 3D game controlled with
touches and sensors using Irrlicht and Box2D.

Chapter 11, Debugging and Troubleshooting, provides an in-depth analysis of the running
application with NDK debug utility. We will also analyze crash dumps and profile the
performance of our application.

What you need for this book
A PC with either Windows or Linux or an Intel-based Mac. As a test machine, an Android device
is highly advisable, although the Android NDK provides an emulator which can satisfy most of
the needs of a hungry developer. But for 2D and 3D graphics, it is still too limited and slow.

I assume you already understand C and C++ languages, pointers, object-oriented features,
and other modern language concepts. I also assume you have some knowledge about
the Android platform and how to create Android Java applications. This is not a strong
prerequisite, but preferable. I also guess you are not frighten by command-line terminals.
The version of Eclipse used throughout this book is Helios (3.6).

Finally, bring all your enthusiasm because these little beasts can become really amazing
when they demonstrate all their potential and sense of contact.

Who this book is for
Are you an Android Java programmer who needs more performance? Are you a C/C++
developer who doesn't want to bother with Java stuff and its out-of-control garbage
collector? Do you want to create fast intensive multimedia applications or games? Answer
yes to any of the above questions and this book is for you. With some general knowledge
of C/C++ development, you will be able to dive head first into native Android development.

Preface

[4]

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Open a command line window and key in
java –version to check the installation."

A block of code is set as follows:

export ANT_HOME=`cygpath –u "$ANT_HOME"`
export JAVA_HOME=`cygpath –u "$JAVA_HOME"`
export ANDROID_SDK=`cygpath –u "$ANDROID_SDK"`
export ANDROID_NDK=`cygpath –u "$ANDROID_NDK"`

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.hellojni"
 android:versionCode="1"
 android:versionName="1.0">

Any command-line input or output is written as follows:

$ make –version

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "When proposed, include
Devel/make and Shells/bash packages".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Preface

[6]

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website, or added to any list of existing errata, under the
Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

1
Setting Up your Environment

Are you ready to take up the mobile challenge? Is your computer switched on,
mouse and keyboard plugged in, and screen illuminating your desk? Then let’s
not wait a minute more!

In this first chapter, we are going to do the following:

 � Download and install the necessary tools to develop applications using Android

 � Set up a development environment

 � Connect and prepare an Android device for development

Getting started with Android development
What differentiates mankind from animals is the use of tools. Android developers,
this authentic species you are about to belong to, are no different!

To develop applications on Android, we can use any of the following three platforms:

 � Microsoft Windows PC

 � Apple Mac OS X

 � Linux PC

Windows 7, Vista, Mac OS X, and Linux systems are supported in both 32 and 64-bit versions,
but Windows XP in 32-bit mode only. Only Mac OS X computers of version 10.5.8 or later and
based on Intel architectures are supported (not PowerPC processors). Ubuntu is supported
only from version 8.04 (Hardy Heron).

Setting Up your Environment

[8]

Right, this is a good start but unless you are able to read and write binary language like English,
having an OS is not enough. We also need software dedicated to Android development:

 � The JDK (Java Development Kit)

 � The Android SDK (Software Development Kit)

 � The Android NDK (Native Development Kit)

 � An IDE (Integrated Development Environment): Eclipse

Android, and more specifically Android NDK compilation system is heavily based on Linux.
So we also need to set up some utilities by default, and we need to install one environment
that supports them: Cygwin (until NDK R7). This topic is covered in detail later in the chapter.
Finally, a good old command-line Shell to manipulate all these utilities is essential: we will
use Bash (the default on Cygwin, Ubuntu, and Mac OS X).

Now that we know what tools are necessary to work with Android, let’s start with the
installation and setup process.

The following section is dedicated to Windows. If you are a Mac or Linux
user, you can immediately jump to the Setting up Mac OS X or the
Setting up Linux section.

Setting up Windows
Before installing the necessary tools, we need to set up Windows to host our Android
development tools properly.

Time for action – preparing Windows for Android development
To work with the Android NDK, we need to set up a Cygwin Linux-like environment
for Windows:

Since NDK R7, Cygwin installation is not required anymore
(steps 1 to 9). The Android NDK provides additional native Windows
binaries (for example, ndk-build.cmd).

1. Go to http://cygwin.com/install.html.

2. Download setup.exe and execute it.

3. Select Install from Internet.

Chapter 1

[9]

4. Follow the wizard screens.

5. Select a download site from where Cygwin packages are going to be downloaded.
Consider using a server in your country:

6. When proposed, include Devel/make and Shells/bash packages:

Setting Up your Environment

[10]

7. Follow the installation wizard until the end. This may take some time depending
on your Internet connection.

8. After installation, launch Cygwin. Your profile files get created on first launch.

9. Enter the following command to check if Cygwin works:

$ make –version

To run Eclipse and allow compilation of Android Java code to bytecode, a Java Development
Kit is required. On Windows, the obvious choice is the Oracle Sun JDK:

1. Go to the Oracle website and download the latest Java Development Kit: http://
www.oracle.com/technetwork/java/javase/downloads/index.html.

2. Launch the downloaded program and follow the installation wizard. At the end
of the installation, a browser is opened asking for JDK registration. This step is
absolutely not compulsory and can be ignored.

3. To make sure the newly installed JDK is used, let’s define its location in environment
variables. Open the Windows Control panel and go to the System panel (or right-
click on Computer item in the Windows Start menu and select Properties). Then go
to Advanced system settings. The System Properties window appears. Finally, select
Advanced tab and click on the Environment Variables button.

4. In the Environment Variables window, inside the System variables list, insert the
JAVA_HOME variable with JDK installation directory as value and validate. Then
edit PATH (or Path) and insert the %JAVA_HOME%\bin directory before any other
directory and separate it with a semicolon. Validate and close the window.

5. Open a command-line window and key in java –version to check the installation.
The result should be similar to the following screenshot. Check carefully to make
sure that the version number corresponds to the version of the newly installed JDK:

$ java –version

Chapter 1

[11]

To compile projects from the command line, the Android SDK supports Ant—a Java-based
build automation utility. Let’s install it:

1. Go to http://ant.apache.org/bindownload.cgi and download Ant binaries,
packed within a ZIP archive.

2. Unzip Ant in the directory of your choice (for example, C:\Ant).

3. Go back to the Environment Variables window, as in step 12, and create the
ANT_HOME variable with the Ant directory as the value. Append the %ANT_HOME%\
bin directory to PATH:

4. From a classic Windows terminal, check the Ant version to make sure it is
properly working:

Setting Up your Environment

[12]

What just happened?
We have prepared Windows with the necessary underlying utilities to host Android
development tools: Cygwin and Java Development Kit.

Cygwin is an open source software collection that allows the Windows platform to emulate
a Unix-like environment. It aims at natively integrating software based on POSIX standard
(such as Unix, Linux, and so on) into Windows. It can be considered as an intermediate layer
between applications originated from Unix/Linux (but natively recompiled on Windows) and
the Windows OS itself.

We have also deployed a Java Development Kit in version 1.6 and checked if it is properly
working from the command line. Because Android SDK uses generics, the JDK in version 1.5
is the least required when developing with Android. JDK is simple to install on Windows but
it is important to make sure a previous installation, such as JRE (Java Runtime Environment,
which aims at executing applications but not developing them) is not interfering. This is why
we have defined JAVA_HOME and PATH environment variables to ensure proper JDK is used.

Finally, we have installed Ant utility that we are going to use in the next chapter to build
projects manually. Ant is not required for Android development but is a very good solution
to set up a continuous integration chain.

Where is Java’s home?

Defining the JAVA_HOME environment variable is not required. However,
JAVA_HOME is a popular convention among Java applications, Ant being one
of them. It first looks for the java command in JAVA_HOME (if defined)
before looking in PATH. If you install an up-to-date JDK in another location
later on, do not forget to update JAVA_HOME.

Installing Android development kits on Windows
Once JDK is installed on our system, we can start installing Android SDK and NDK to create,
compile, and debug Android programs.

Chapter 1

[13]

Time for action – installing Android SDK and NDK on Windows
1. Open your Web browser and go to http://developer.android.com/sdk.

This web page lists all available SDKs, one for each platform.

2. Download Android SDK for Windows, packaged as an Exe installer.

3. Then, go to http://developer.android.com/sdk/ndk and download the
Android NDK (not SDK!) for Windows, packaged as a ZIP archive this time.

4. Execute Android SDK installer. Select an appropriate installation location (for example,
C:\Android\android-sdk), knowing that Android SDK and NDK together can take
more than 3 GB of disk space (currently!) with all official API versions installed. As a
precaution, avoid leaving any space in the target installation path.

5. Follow the installation wizard until the end. Check the Start SDK Manager:

6. The Android SDK and AVD Manager is launched. The Package installation window
appears automatically.

Setting Up your Environment

[14]

7. Check the Accept All option and click on Install to start the installation of
Android components:

8. After a few minutes, all packages get downloaded and a message asking to restart
ADB service (the Android Debug Bridge) appears. Validate by clicking on Yes.

9. Close the application.

10. Now, unzip Android NDK archive into its final location (for example, C:\Android\
android-ndk). Again, avoid leaving any space in the installation path (or some
problems could be encountered with Make).

To easily access Android utilities from the command line, let’s define the
environment variables:

11. Open the Environment Variables system window, as we did in the previous part.
Inside the System variables list, insert the ANDROID_SDK and ANDROID_NDK
variables with the corresponding directories as values.

12. Append %ANDROID_SDK%\tools, %ANDROID_SDK%\platform-tools and
%ANDROID_NDK%, all separated by a semicolon, to your PATH.

Chapter 1

[15]

13. All the Windows environment variables should be imported automatically by Cygwin
when launched. Let’s verify this by opening a Cygwin terminal and checking whether
NDK is available:

$ ndk-build –-version

14. Now, check the Ant version to make sure it is properly working on Cygwin:

$ ant -version

The first time Cygwin should emit a surprising warning: paths are in MS-DOS style
and not POSIX. Indeed, Cygwin paths are emulated and should look similar to /
cygdrive/<Drive letter>/<Path to your directory with forward
slashes>. For example, if Ant is installed in c:\ant, then the path should be
indicated as /cygdrive/c/ant.

15. Let’s fix this. Go to your Cygwin directory. There, you should find a directory named
home/<your user name> containing a .bash_profile. Open it in edition.

16. At the end of the script, translate the Windows environment variables into
Cygwin variables with the cygpath utility. PATH does not need to be translated as
this essential variable is processed automatically by Cygwin. Make sure to use the
prime character (`) (to execute a command inside another), which has a different
meaning than the apostrophe (‘) (to define a variable) with Bash. An example
.bash_profile is provided with this book:

export ANT_HOME=`cygpath –u “$ANT_HOME”`
export JAVA_HOME=`cygpath –u “$JAVA_HOME”`
export ANDROID_SDK=`cygpath –u “$ANDROID_SDK”`
export ANDROID_NDK=`cygpath –u “$ANDROID_NDK”`

Setting Up your Environment

[16]

17. Reopen a Cygwin window and check the Ant version again. No warning is issued
this time:

$ ant -version

What just happened?
We have downloaded and deployed both Android SDK and NDK and made them available
through command line using environment variables.

We have also launched the Android SDK and AVD manager, which aims at managing SDK
components installation, updates, and emulation features. This way, new SDK API releases
as well as third-party components (for example, Samsung Galaxy Tablet emulator, and so
on) are made available to your development environment without having to reinstall the
Android SDK.

If you have trouble connecting at step 7, then you may be located behind a proxy. In this
case, Android SDK and AVD manager provide a Settings section where you can specify your
proxy settings.

At step 16, we have converted the Windows paths defined inside the environment variables
into Cygwin paths. This path form, which may look odd at first, is used by Cygwin to emulate
Windows paths as if they were Unix paths. Cygdrive is similar to a mount or media directory
on Unix and contains every Windows drive as a plugged file system.

Cygwin paths

The rule to remember while using paths with Cygwin is that they must
contain forward slashes only and the drive letter is replaced by /cygdrive/
[Drive Letter]. But beware, file names in Windows and Cygwin are
case-sensitive, contrary to real Unix systems.

Chapter 1

[17]

Like any Unix system, Cygwin has a root directory named slash (/). But since there is no real
root directory in Windows, Cygwin emulates it in its own installation directory. In a Cygwin
command line, enter the following command to see its content:

$ ls /

These files are the ones located in your Cygwin directory (except /proc, which is an
in-memory directory). This explains why we updated .bash_profile in the home
directory itself, which is located inside the Cygwin directory.

Utilities packaged with Cygwin usually expect Cygwin-style paths, although Windows-style
paths work most of the time. Thus, although we could have avoided the conversion in
.bash_profile (at the price of a warning), the natural way to work with Cygwin and avoid
future troubles is to use Cygwin paths. However, Windows utilities generally do not support
Cygwin paths (for example, java.exe), in which case, an inverse path conversion is required
when calling them. To perform conversion, cygpath utility provides the following options:

 � -u: To convert Windows paths to Unix paths

 � -w: To convert Unix paths to Windows paths

 � -p: To convert a list of paths (separated by ; on Windows and : on Unix)

Still at step 17, you may have some difficulties when editing .bash_profile: some weird
square characters may appear and the entire text is on one very long line! This is because it
is encoded using Unix encoding. So use a Unix compatible file editor (such as Eclipse, PSPad,
or Notepad++) when editing Cygwin files. If you already got into trouble, you can use either
your editor End-Of-Line conversion feature (Notepad++ and PSPad provide one) or apply
command-line dos2unix utility (provided with Cygwin) on the incriminated file.

Setting Up your Environment

[18]

Char return on Cygwin

Unix files use a simple line-feed character (better known
as \n) to indicate an end of line whereas Windows uses a
carriage return (CR or \r) plus a line feed. MacOS, on the
other hand, uses a carriage return only. Windows newline
markers can cause lots of trouble in Cygwin Shell scripts,
which should be kept in Unix format.

This is the end of the section dedicated to Windows setup.
If you are not a Mac or Linux user, you can jump to the
Setting up Eclipse development environment section.

Setting up Mac OS X
Apple computers and Mac OS X have a reputation for being simple and easy to use. And
honestly, this adage is rather true when it comes to Android development. Indeed, Mac OS X
is based on Unix, well adapted to run the NDK toolchain, and a recent JDK is already installed
by default. Mac OS X comes with almost anything we need with the exception of Developer
Tools, which need to be installed separately. These Developer Tools include XCode IDE, many
Mac development utilities, and also some Unix utilities, such as Make and Ant.

Time for action – preparing Mac OS X for Android development
All developer tools are included in XCode installation package (version 4, at the time this
book was written). There exist four solutions to get this package, and they are as follows:

 � If you have Mac OS X installation media, open it and look for the XCode installation
package

 � XCode is also provided on the AppStore for free (but this has changed recently and
may change in the future too)

 � XCode can also be downloaded from the Apple website with a paying program
subscription at the address http://developer.apple.com/xcode/

 � Older version 3, compatible with Android development tools, is available for free
as a disc image from the same page with a free Apple Developer account

Using the most appropriate solution for your case, let’s install XCode:

1. Find your XCode installation package and run it. Select the UNIX Development
option when the customization screen appears. Finish installation. We are done!

Chapter 1

[19]

2. To develop with Android NDK, we need the Make build tool for native code. Open a
terminal prompt and ensure Make correctly works:

$ make --version

3. To run Eclipse and allow compilation of Android Java code to bytecode, Java
Development Kit is required. Let’s check if the default Mac OS X JDK works fine:

$ java –version

4. To compile projects from the command line, the Android SDK supports Ant,
 a Java-based build automation utility. Still in a terminal, ensure Ant is
correctly installed:

$ ant –version

What just happened?
We have prepared our Mac OS X to host Android development tools. And as usual with
Apple, that was rather easy!

We have checked if Java Development Kit in version 1.6 is properly working from the
command line. Because Android SDK uses generics, a JDK in version 1.5 is the least
required for Android development.

We have installed Developer Tools, which include Make—to run the NDK compiler—and
Ant—that we are going to use in the next chapter to build projects manually. Ant is not
required for Android development but is a very good solution to set up a continuous
integration chain.

Setting Up your Environment

[20]

Installing Android development kits on Mac OS X
Once a JDK is installed on your system, we can start installing Android Development SDK
and NDK to create, compile, and debug Android programs.

Time for action – installing Android SDK and NDK on Mac OS X
1. Open your web browser and go to http://developer.android.com/sdk.

This web page lists all available SDKs, one for each platform.

2. Download Android SDK for Mac OS X, which is packaged as a ZIP archive.

3. Then, go to http://developer.android.com/sdk/ndk and download the
Android NDK (not SDK!) for Mac OS X, packaged as a Tar/BZ2 archive this time.

4. Uncompress the downloaded archives separately into the directory of your choice
(for example, /Developer/AndroidSDK and /Developer/AndroidNDK).

5. Let’s declare these two directories as environment variables. From now on, we will
refer to these directories as $ANDROID_SDK and $ANDROID_NDK throughout this
book. Assuming you use the default Bash command-line shell, create or edit your
.profile file (be careful, this is a hidden file!) in your home directory and add the
following variables:

export ANDROID_SDK=”<path to your Android SDK directory>”
export ANDROID_NDK=”<path to your Android NDK directory>”
export PATH=”$PATH:$ANDROID_SDK/tools:$ANDROID_SDK/platform-
tools:$ANDROID_NDK”

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.com/
support and register to have the files e-mailed directly to you.

6. Save the file and log out from your current session.

7. Log in again and open a terminal. Enter the following command:

$ android

8. The Android SDK and AVD Manager window shows up.

9. Go to the Installed packages section and click on Update All:

Chapter 1

[21]

10. A package selection dialog appears. Select Accept All and then Install.

11. After few minutes, all packages get downloaded and a message asking to restart
ADB service (the Android Debug Bridge) appears. Validate by clicking on Yes.

12. You can now close the application.

What just happened?
We have downloaded and deployed both Android SDK and NDK and made them available
through the command line using environment variables.

Mac OS X and environment variables

Mac OS X is tricky when it comes to environment variables. They can be easily
declared in a .profile for applications launched from a terminal, as we just
did. They can also be declared using an environment.plist file for GUI
applications, which are not launched from Spotlight. A more powerful way to
configure them is to define or update /etc/launchd.conf system file (see
http://developer.apple.com/).

We have also launched the Android SDK and AVD manager, which aims at managing the
installation, updates, and emulation features of the SDK components. This way, new SDK API
releases as well as third-party components (for example, Samsung Galaxy Tablet emulator,
and so on) are made available to your development environment without having to reinstall
the Android SDK.

Setting Up your Environment

[22]

If you have trouble connecting at step 9, then you may be located behind a proxy. In this
case, Android SDK and AVD manager provide a Settings section where you can specify your
proxy settings.

This is the end of the section dedicated to Mac OS X setup. If you are
not a Linux user, you can jump to the Setting up Eclipse development
environment section.

Setting up Linux
Although Linux is more naturally suited for Android development, as the Android toolchain is
Linux-based, some setup is necessary as well.

Time for action – preparing Ubuntu Linux for
Android development

To work with Android NDK, we need to check and install some system packages and utilities:

1. First, Glibc (the GNU C standard library, in version 2.7 or later) must be installed. It is
usually shipped with Linux systems by default. Check its version using the following
command:

$ ldd -–version

2. We also need the Make build tool for native code. Installation can be performed
using the following command:

$ sudo apt-get install build-essential

Alternatively, Make can be installed through Ubuntu Software Center. Look for
build-essential in the dedicated search box and install the packages found:

Chapter 1

[23]

Package build-essential contains a minimal set of tools for compilation and
packaging on Linux Systems. It also includes GCC (the GNU C Compiler), which is not
required for standard Android development as Android NDK already packages its
own version.

3. To ensure that Make is correctly installed, type the following command. If correctly
installed, the version will be displayed:

$ make --version

Setting Up your Environment

[24]

Special note for 64-bit Linux owner

We also need 32-bit libraries installed to avoid compatibility problems. This can
be done using the following command (to execute in a command-line prompt)
or again the Ubuntu Software Center:
sudo apt-get install ia32-libs

To run Eclipse and allow compilation of Android Java code to bytecode, Java Development Kit
is required. We need to download and install Oracle Sun Java Development Kit. On Ubuntu,
this can be performed from the Synaptic Package Manager:

1. Open Ubuntu System/Administration menu and select Synaptic Package Manager
(or open your Linux package manager if you use another Linux distros).

2. Go to the Edit | Software Sources menu.

3. In the Software Sources dialog, open the Other Software tab.

4. Check the Canonical Partners line and close the dialog:

Chapter 1

[25]

5. Package cache synchronizes automatically with the Internet, and after a few seconds
or minutes some new software is made available in the Canonical Partners section.

6. Find Sun Java™ Development Kit (JDK) 6 (or later) and click on Install. You are
also advised to install Lucida TrueType fonts (from the Sun JRE), the Java(TM)
Plug-in packages.

7. Accept the license (after reading it carefully of course!). Be careful as it may open
in the background.

8. When installation is finished, close Ubuntu Software Center.

9. Although Sun JDK is now installed, it is not yet available. Open JDK is still used by
default. Let’s activate Sun JRE through the command line. First, check available JDK:

$ update-java-alternatives –l

10. Then, activate the Sun JRE using the identifier returned previously:

$ sudo update-java-alternatives –s java-6-sun

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Setting Up your Environment

[26]

11. Open a terminal and check that installation is OK by typing:

$ java –version

The Android SDK supports Ant, a Java-based build automation utility, to compile projects
from the command line. Let’s install it.

1. Install Ant with the following command or with the Ubuntu Software Center:

$ sudo apt-get install ant

2. Check whether Ant is properly working:

$ ant --version

What just happened?
We have prepared our Linux operating system with the necessary utilities to host Android
development tools.

We have installed a Java Development Kit in version 1.6 and checked if it is properly working
from the command line. Because Android SDK uses generics, the JDK in version 1.5 is the
least required for Android development.

You may wonder why we bothered with the installation of Sun JDK while Open JDK is already
ready to use. The reason is simply that Open JDK is not officially supported by Android SDK.
If you want to avoid any possible interaction with Open JDK, think about removing it entirely
from your system. Go to the Provided by Ubuntu section in the Ubuntu Software Center and
click on Remove for each OpenJDK line. For more information, look for the official Ubuntu
documentation: http://help.ubuntu.com/community/Java.

Chapter 1

[27]

Finally, we have installed Ant utility that we are going to use in the next chapter to build
projects manually. Ant is not required for Android development but is a very good solution
to set up a continuous integration chain.

There is no more Sun JDK on Linux repositories since Java 7.
The Open JDK becomes the official Java implementation.

Installing Android development kits on Linux
Once JDK is installed on your system, we can start installing Android Development SDK and
NDK to create, compile, and debug Android programs.

Time for action – installing Android SDK and NDK on Ubuntu
1. Open your web browser and go to http://developer.android.com/sdk.

This web page lists all available SDKs, one for each platform.

2. Download Android SDK for Linux, which is packaged as a Tar/GZ archive.

3. Then, go to http://developer.android.com/sdk/ndk and download the
Android NDK (not SDK!) for Linux, packaged as a Tar/BZ2 archive this time.

4. Uncompress the downloaded archives separately into the directories of your choice
(for example, ~/AndroidSDK and ~/AnroidNDK). On Ubuntu, you can use Archive
Manager (right-click on the archive file and Extract Here).

5. Let’s declare these two directories as environment variables. From now on, we
will refer to these directories as $ANDROID_SDK and $ANDROID_NDK throughout
this book. Assuming you use a Bash command-line shell, edit your .profile file
(be careful, this is a hidden file!) in your home directory and add the following
variables:

export ANDROID_SDK=”<path to your Android SDK directory>”
export ANDROID_NDK=”<path to your Android NDK directory>”
export PATH=”$PATH:$ANDROID_SDK/tools:$ANDROID_SDK/platform-
tools:$ANDROID_NDK”

6. Save the file and log out from your current session.

7. Log in again and open a terminal. Enter the following command:

$ android

8. The Android SDK and AVD Manager window shows up.

Setting Up your Environment

[28]

9. Go to the Installed packages section and click on Update All:

10. A package selection dialog appears. Select Accept All and then Install.

11. After a few minutes, all packages get downloaded and a message asking to restart
ADB service (the Android Debug Bridge) appears. Validate by clicking on Yes.

12. You can now close the application.

What just happened?
We have downloaded and deployed both Android SDK and NDK and made them available
through the command line using environment variables.

We have also launched the Android SDK and AVD manager, which aims at managing the
installation, updates, and emulation features of the SDK components. This way, new SDK API
releases as well as third-party components (for example, Samsung Galaxy Tablet emulator,
and so on) are made available to your development environment without having to reinstall
Android SDK.

If you have trouble connecting at step 9, then you may be located behind a proxy. In this
case, Android SDK and AVD manager provide a Settings section where you can specify your
proxy settings.

This is the end of the section dedicated to the Linux setup.
The following section is mixed.

Chapter 1

[29]

Setting up the Eclipse development environment
Command line lovers, vi fanatics, please go to the next chapter or you may feel sick! For most
humans, having a comfortable and visual-friendly IDE is essential. And hopefully, Android
works with the greatest of all: Eclipse!

Eclipse is the only officially supported IDE for Android SDK through the Google official plugin
named ADT. But ADT is only for Java. Hopefully, Eclipse supports C/C++ as well through CDT,
a general C/C++ plugin. Although not specific to Android, it works well with the NDK. The
version of Eclipse used throughout this book is Helios (3.6).

Time for action – installing Eclipse
1. Open your web browser and go to http://www.eclipse.org/downloads/.

This web page lists all available Eclipse packages: for Java, J2EE, C++.

2. Download Eclipse IDE for Java Developers.

3. Extract the downloaded Tar/GZ file (on Linux and Mac OS X) or ZIP file (on Windows)
with your archive manager.

4. Once extracted, run Eclipse by double-clicking on the eclipse executable inside its
directory. On Mac OS X, make sure to execute eclipse alias and not Eclipse.app or
else environment variables defined earlier in .profile will not be available
to Eclipse.

5. If Eclipse asks for a workspace, define a custom workspace directory if you want
to (default workspace is fine) and click OK.

6. After Eclipse has started, close the Welcome Page.

7. Go to the Help | Install New Software menu.

If a problem occurs in the next steps while accessing update sites, then check
your Internet connection. You may be either disconnected or your computer
is behind a proxy. In the latter case, it is possible to download ADT plugin as
an archive file from the ADT web page and install it manually (or configure
Eclipse to connect through a proxy but that is another matter).

Setting Up your Environment

[30]

8. Enter https://dl-ssl.google.com/android/eclipse/ in the Work with
field and validate.

9. After a few seconds, a Developer Tools plugin appears; select it and click on the
Next button.

10. Follow the wizard and accept conditions when asked. On the last wizard page, click
on Finish.

11. ADT gets installed. A warning may appear indicating that plugin content is unsigned.
Ignore it and click on OK.

Chapter 1

[31]

12. When finished, restart Eclipse as requested.

13. When Eclipse is restarted, go to menu Window | Preferences (Eclipse | Preferences
on Mac OS X) and go to the Android section.

14. Click on Browse and select the path to your Android SDK directory.

15. Validate preferences.

16. Go back to the Help | Install New Software... menu.

17. Open the Work with combobox and select the item containing Eclipse version name
(here Helios).

18. Find Programming Languages in the plugin tree and open it.

Setting Up your Environment

[32]

19. Select CDT plugins. Incubation plugins are not essential. C/C++ Call Graph
Visualization is for Linux only and cannot be installed on Windows or Mac OS X:

20. Follow the wizard and accept conditions when asked. On the last wizard page,
click on Finish.

21. When finished, restart Eclipse.

What just happened?
Eclipse is now installed and official Android development plugin ADT and C/C++ plugin CDT
are installed. ADT refers to the Android SDK location.

The main purpose of ADT is to ease integration of Eclipse with SDK development tools. It
is perfectly possible to develop in Android without an IDE using command line only. But
automatic compilation, packaging, deployment, and debugging are addictive features, which
are hard to get rid of!

Chapter 1

[33]

You may have noticed that no reference to the Android NDK is given to ADT. This is because
ADT works for Java only. Hopefully, Eclipse is flexible enough to handle hybrid Java/C++
projects! We will talk about that further when creating our first Eclipse project.

In the same way, CDT allows easy integration of C/C++ compilation features into Eclipse.
We also “silently” installed JDT, the Java plugin for Eclipse. It is embedded in the Eclipse IDE
for Java Developers package. An Eclipse package including only CDT is also available on the
Eclipse Website.

More on ADT

ADT update site given to Eclipse in step 8 comes from the official ADT
documentation that you can find at http://developer.android.
com/sdk/eclipse-adt.html. This page is the main information point
to visit if new versions of Eclipse or Android are released.

Emulating Android
Android SDK provides an emulator to help developers who do not have a device (or are
impatiently waiting for a new one!) get started quickly. Let’s now see how to set it up.

Time for action – creating an Android virtual device
1. Open Android SDK and AVD Manager using either the command line (key in

android) or the Eclipse toolbar button:

2. Click on the New button.

3. Give a name to this new emulated device: Nexus_480x800HDPI.

4. Target platform is Android 2.3.3.

5. Specify SD card size: 256.

6. Enable snapshot.

7. Set Built-in resolution WVGA800.

Setting Up your Environment

[34]

8. Leave the Hardware section the way it is.

9. Click on Create AVD.

10. The newly created virtual device now appears in the list:

Chapter 1

[35]

11. Let’s check how it works: click on the Start button.

12. Click on the Launch button:

13. The emulator starts up and after a few minutes, your device is loaded:

Setting Up your Environment

[36]

What just happened?
We have created our Android Virtual Devices which emulate a Nexus One with an HDPI
(High Density) screen of size 3.7 inches and a resolution of 480x800 pixels. So we are now
able to test applications we are going develop in a representative environment. Even better,
we are now able to test them in several conditions and resolutions (also called skins)
without requiring a costly device.

Although this is out of the scope of this book, customizing additional options, such as the
presence of a GPS, camera, and so on, is also possible when creating an AVD to test an
application in limited hardware conditions. And as a final note, screen orientation can be
switched with Ctrl + F11 and Ctrl + F12. Check out the Android website for more information
on how to use and configure the emulator (http://developer.android.com/guide/
developing/devices/emulator.html).

Emulation is not simulation

Although emulation is a great tool when developing, there are a few
important points to take into account: emulation is slow, not always perfectly
representative, and some features such as GPS support may be lacking.
Moreover, and this is probably the biggest drawback: Open GL ES is only
partially supported. More specifically, only Open GL ES 1 currently works on
the emulator.

Have a go hero
Now that you know how to install and update Android platform components and create an
emulator, try to create an emulator for Android Honeycomb Tablets. Using the Android SDK
and AVD Manager, you will need to do the following:

 � Install Honeycomb SDK components

 � Create a new AVD which targets Honeycomb platform

 � Start the emulator and use proper screen scaling to match real tablet scale

Depending on your computer resolution, you may need to tweak AVD display scale. This
can be done by checking Scale display to real size when starting the emulator and entering
your monitor density (use the ? button to calculate it). If you perform well, you should obtain
the new Honeycomb interface at its real scale (no worries, it is also in Landscape mode on
my computer):

Chapter 1

[37]

The following section is dedicated to Windows and Mac OS
X. If you are a Linux user, you can immediately jump to the
Developing with an Android device on Linux section.

Developing with an Android device on Windows and
Mac OS X
Emulators can be of really good help, but nothing compared to a real device. Hopefully,
Android provides the sufficient connectivity to develop on a real device and make the testing
cycle more efficient. So take your Android in hand, switch it on and let’s try to connect it to
Windows or Mac OS X.

Time for action – setting up your Android device on
Windows and Mac OS X

Installation of a device for development on Windows is manufacturer-specific. More
information can be found at http://developer.android.com/sdk/oem-usb.html
with a full list of device manufacturers. If you have got a driver CD with your Android device,
you can use it. Note that the Android SDK also contains some Windows drivers under
$ANDROID_SDK\extras\google\usb_driver. Specific instructions are available for
Google development phones, Nexus One, and Nexus S at http://developer.android.
com/sdk/win-usb.html.

Setting Up your Environment

[38]

Mac users should also refer to their Manufacturer’s instructions. However, as Mac’s ease of
use is not only a legend, simply connecting an Android device to a Mac should be enough to
get it working! Your device should be recognized immediately without installing anything.

Once the driver (if applicable) is installed on the system, do the following:

1. Go to the home menu, then go to Settings | Application | Development on your
mobile device (may change depending on your manufacturer).

2. Enable USB debugging and Stay awake.

3. Plug your device into your computer using a data connection cable (beware some
cables are alimentation cables only and will not work!). Depending on your device,
it may appear as a USB disk.

4. Launch Eclipse.

5. Open the DDMS perspective. If working properly, your phone should be listed in the
Devices view:

6. Say cheese and take a screen capture of your own phone by clicking the
corresponding toolbar button:

Now you are sure your phone is correctly connected!

What just happened?
We have connected an Android device to a computer in development mode and enabled
the Stay awake option to stop automatic screen shutdown when the phone is charging.
If your device is still not working, go to the Trouble shooting a device connection section.

Chapter 1

[39]

The device and the computer communicate through an intermediate background service: the
Android Debug Bridge (ADB) (more about it in the next chapter). ADB starts automatically the
first time it is called, when Eclipse ADT is launched or when invoked from the command line.

This is the end of the section dedicated to Windows and Mac OS X.
If you are not a Linux user, you can jump to the Trouble shooting a
device connection or the Summary section.

Developing with an Android device on Linux
Emulators can be of really good help, but it is nothing compared to a real device.
Hopefully, Android provides the sufficient connectivity to develop on a real device and
make the testing cycle more efficient. So take your Android in hand, switch it on and let’s
 try to connect it to Linux.

Time for action – setting up your Android device on Ubuntu
1. Go to Home | Menu | Settings | Application | Development on your mobile device

(may change depending on your manufacturer).

2. Enable USB debugging and Stay awake.

3. Plugin your device to your computer using a data connection cable (beware, some
cables are alimentation cables only and will not work!). Depending on your device, it
may appear as a USB disk.

4. Try to run ADB and list devices. If you are lucky, your device works out of the box
and the list of devices appears. In that case, you can ignore the following steps:

$ adb devices

Setting Up your Environment

[40]

5. If ????????? appears instead of your device name (which is likely), then ADB does
not have proper access rights. We need to find your Vendor ID and Product ID.
Because Vendor ID is a fixed value for each manufacturer, you can find it in the
following list:

Manufacturer USB Vendor ID

Acer 0502

Dell 413c

Foxconn 0489

Garmin-Asus 091E

HTC 0bb4

Huawei 12d1

Kyocera 0482

LG 1004

Motorola 22b8

Nvidia 0955

Pantech 10A9

Samsung 04e8

Sharp 04dd

Sony Ericsson 0fce

ZTE 19D2

The current list of Vendor IDs can be found on the Android website at http://
developer.android.com/guide/developing/device.html#VendorIds.

6. The device Product ID can be found using the lsusb command “greped” with Vendor
ID to find it more easily. In the following example, the value 0bb4 is the HTC Vendor
ID and 0c87 is the HTC Desire product ID:

$ lsusb | grep 0bb4

Chapter 1

[41]

7. With the root user, create a file /etc/udev/rules.d/52-android.rules with
your Vendor and Product ID:

$ sudo sh -c ‘echo SUBSYSTEM==\”usb\”, SYSFS{idVendor}==\”<Your
Vendor ID>\”, ATTRS{idProduct}=\”<Your Product ID>\”,
MODE=\”0666\” > /etc/udev/rules.d/52-android.rules’

8. Change file rights to 644:

$ sudo chmod 644 /etc/udev/rules.d/52-android.rules

9. Restart the udev service (the Linux device manager):

$ sudo service udev restart

10. Relaunch the ADB server in the root mode this time:

$ sudo $ANDROID_SDK/tools/adb kill-server

$ sudo $ANDROID_SDK/tools/adb start-server

11. Check whether your device works by listing the devices again. If ????????? appears,
or worse, nothing appears, then something went wrong in the previous steps:

$ adb devices

What just happened?
We have connected an Android device to a computer in development mode and enabled the
Stay awake option to stop automatic screen shutdown when the phone is charging. If your
device is still not working, go to the Trouble shooting a device connection section.

We have also started the Android Debug Bridge (ADB), which is a background service used as
a mediator for computer/device communication (more about it in the next chapter). ADB is
started automatically the first time it is called, when Eclipse ADT is launched or when invoked
from the command line.

And more important than anything, we have discovered that HTC means High Tech
Computer! Jokes apart, the connection process can become tricky on Linux. If you belong to
the unlucky group of people who need to launch ADB as the root, you are highly advised to
create a startup script similar to the following one, to launch ADB. You can use it from the
command line or add it to your main menu (Menu | Preferences| Main Menu on Ubuntu):

#!bin/sh
stop_command=”$ANDROID_SDK/platform-tools/adb kill-server”
launch_command=”$ANDROID_SDK/platform-tools/adb start-server”
/usr/bin/gksudo “/bin/bash –c ‘$stop_command; $launch_command’” |
zenity –text-info –title Logs

Setting Up your Environment

[42]

This script displays daemon startup message in a Zenity window (a Shell toolkit to display
graphical windows using GTK+).

At step 6, if 52-android.rules does not work, then try 50-android.rules or
51-android.rules (or all of them). Although udev (the Linux device manager)
should only use the prefix number to order rule files lexicographically, that
sometimes seems to do the trick. The magic of Linux!

This is the end of the section dedicated to Linux setup. The following section
is mixed.

Troubleshooting a development device
Having trouble connecting an Android development device to a computer can mean any of
the following:

 � Your host system is not properly set up

 � Your development device is not working properly

 � The ADB service is malfunctioning

If the problem comes from your host system, check your device manufacturer instructions
carefully to make sure any needed driver is correctly installed. Check the Hardware
properties to see if it is recognized and turn on the USB storage mode (if applicable) to see
if it is working properly. Indeed, after getting connected, your device may be visible in your
hardware settings but not as a disk. A device can be configured as a Disk drive (if a SD-card
or similar is included) or in charge-only mode. This is absolutely fine as the development
mode works perfectly in the charge-only mode.

Disk-drive mode is generally activated from the Android task bar (USB connected item).
Refer to your device documentation for the specificities of your device.

Chapter 1

[43]

SD Card access

When the charge-only mode is activated, SD card files and directories are
visible to the Android applications installed on your phone but not to your
computer. On the opposite side, when Disk drive mode is activated, those
are visible only from your computer. Check your connection mode when your
application cannot access its resource files on a SD Card.

If problem comes from your Android device, a possible solution is to deactivate and
reactivate the Debug mode on your device. This option can be switched from the Home |
Menu | Settings | Application | Development screen on your mobile device (which may
change depending on your manufacturer) or accessed more quickly from the Android task
bar (USB debugging connected item). As a last measure, reboot your device.

Problem may also come from the ADB. In that case, check whether the ADB is working by
issuing the following command from a terminal prompt:

$ adb devices

If your device is correctly listed, then ADB is working. This command will launch ADB service
if it was not already. You can also restart it with commands:

$ adb kill-server

$ adb start-server

In any case, to solve a specific connection problem or get up-to-date information, visit the
following web page: http://developer.android.com/guide/developing/device.
html. As a feedback from experience, never neglect hardware. Always check with a second
cable or device if you have one at your disposal. I once purchased a bad quality cable, which
performed badly when some contortions occurred...

Summary
Setting up our Android development platform is a bit tedious but is hopefully performed
once and for all! We have installed the necessary utilities using the package system on Linux,
Developer Tools on Mac OS X, and Cygwin on Windows. Then we have deployed the Java and
Android development kits and checked if they are working properly. Finally, we have seen how
to create a phone emulator and connect a real phone for test purposes.

We now have the necessary tools in our hands to shape our mobile ideas. In the next chapter,
we are going to handle them to create, compile, and deploy our first Android projects!

2
Creating, Compiling, and

Deploying Native Projects

A man with the most powerful tools in hand is unarmed without the knowledge
of their usage. Eclipse, GCC, Ant, Bash, Shell, Linux—any new Android
programmer needs to deal with this technologic ecosystem. Depending on your
background, some of these names may sound familiar to your ears. Indeed,
that is a real strength; Android is based on open source bricks which have
matured for years. Theses bricks are cemented by the Android Development
Kits (SDK and NDK) and their set of new tools: Android Debug Bridge (ADB),
Android Asset Packaging Tool (AAPT), Activity Manager (AM), ndk-build, and so
on. So, since our development environment is set up, we can now get our hands
dirty and start manipulating all these utilities to create, compile, and deploy
projects which include native code.

In this second chapter, we are going to do the following:

 � Compile and deploy official sample applications from the Android NDK
with Ant build tool and native code compiler ndk-build

 � Learn in more detail about ADB, the Android Debug Bridge, to control
a development device

 � Discover additional tools like AM to manage activities and AAPT to
package applications

 � Create our first own hybrid multi-language project using Eclipse

 � Interface Java to C/C++ through Java Native Interfaces (in short JNI)

By the end of this chapter, you should know how to start up a new Android native
project on your own.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating, Compiling, and Deploying Native Projects

[46]

Compiling and deploying NDK sample applications
I guess you cannot wait anymore to test your new development environment. So why
not compile and deploy elementary samples provided by the Android NDK first to see it
in action? To get started, I propose to run HelloJni, a sample application which retrieves a
character string defined inside a native C library into a Java activity (an activity in Android
being more or less equivalent to an application screen).

Time for action – compiling and deploying the hellojni sample
Let's compile and deploy the HelloJni project from command line using Ant:

1. Open a command-line prompt (or Cygwin prompt on Windows)

2. Go to hello-jni sample directory inside the Android NDK. All the following steps
have to performed from this directory:

$ cd $ANDROID_NDK/samples/hello-jni

3. Create Ant build file and all related configuration files automatically using android
command (android.bat on Windows). These files describe how to compile and
package an Android application:

android update project –p .

4. Build libhello-jni native library with ndk-build, which is a wrapper Bash
script around Make. Command ndk-build sets up the compilation toolchain for
native C/C++ code and calls automatically GCC version featured with the NDK.

$ ndk-build

Chapter 2

[47]

5. Make sure your Android development device or emulator is connected and running.

6. Compile, package, and install the final HelloJni APK (an Android application
package). All these steps can be performed in one command, thanks to Ant build
automation tool. Among other things, Ant runs javac to compile Java code, AAPT
to package the application with its resources, and finally ADB to deploy it on the
development device. Following is only a partial extract of the output:

$ ant install

The result should look like the following extract:

Creating, Compiling, and Deploying Native Projects

[48]

7. Launch a shell session using adb (or adb.exe on Windows). ADB shell is similar to
shells that can be found on the Linux systems:

$ adb shell

8. From this shell, launch HelloJni application on your device or emulator. To do so, use
am, the Android Activity Manager. Command am allows to start Android activities,
services or sending intents (that is, inter-activity messages) from command line.
Command parameters come from the Android manifest:

am start -a android.intent.action.MAIN -n com.example.hellojni/
com.example.hellojni.HelloJni

9. Finally, look at your development device. HelloJni appears on the screen!

What just happened?
We have compiled, packaged, and deployed an official NDK sample application with Ant and
SDK command-line tools. We will explore them more in later part. We have also compiled
our first native C library (also called module) using the ndk-build command. This library
simply returns a character string to the Java part of the application on request. Both sides
of the application, the native and the Java one, communicate through Java Native Interface.
JNI is a standard framework that allows Java code to explicitly call native C/C++ code with a
dedicated API. We will see more about this at the end of this chapter and in the next one.

Finally, we have launched HelloJni on our device from an Android shell (adb shell) with
the am Activity Manager command. Command parameters passed in step 8 come from the
Android manifest: com.example.hellojni is the package name and com.example.hellojni.
HelloJni is the main Activity class name concatenated to the main package.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.hellojni"

 android:versionCode="1"
 android:versionName="1.0">

Chapter 2

[49]

...
 <activity android:name=".HelloJni"

 android:label="@string/app_name">
...

Automated build

Because Android SDK, NDK, and their open source bricks are not bound to
Eclipse or any specific IDE, creating an automated build chain or setting up a
continuous integration server becomes possible. A simple bash script with Ant
is enough to make it work!

HelloJni sample is a little bit... let's say rustic! So what about trying something fancier?
Android NDK provides a sample named San Angeles. San Angeles is a coding demo created in
2004 for the Assembly 2004 competition. It has been later ported to OpenGL ES and reused
as a sample demonstration in several languages and systems, including Android. You can
find more information by visiting one of the author's page: http://jet.ro/visuals/4k-
intros/san-angeles-observation/.

Have a go hero – compiling san angeles OpenGL demo
To test this demo, you need to follow the same steps:

1. Go to the San Angeles sample directory.

2. Generate project files.

3. Compile and install the final San Angeles application.

4. Finally run it.

As this application uses OpenGL ES 1, AVD emulation will work, but may be somewhat slow!

You may encounter some errors while compiling the application with Ant:

Creating, Compiling, and Deploying Native Projects

[50]

The reason is simple: in res/layout/ directory, main.xml file is defined. This file usually
defines the main screen layout in Java application—displayed components and how they are
organized. However, when Android 2.2 (API Level 8) was released, the layout_width and
layout_height enumerations, which describe the way UI components should be sized,
were modified: FILL_PARENT became MATCH_PARENT. But San Angeles uses API Level 4.

There are basically two ways to overcome this problem. The first one is selecting the right
Android version as the target. To do so, specify the target when creating Ant project files:

$ android update project –p . -–target android-8

This way, build target is set to API Level 8 and MATCH_PARENT is recognized. You can also
change the build target manually by editing default.properties at the project root
and replacing:

target=android-4

with the following line:

target=android-8

The second way is more straightforward: erase the main.xml file! Indeed, this file is in
fact not used by San Angeles demo, as only an OpenGL screen created programmatically
is displayed, without any UI components.

Target right!

When compiling an Android application, always check carefully if you are
using the right target platform, as some features are added or updated
between Android versions. A target can also dramatically change your
audience wideness because of the multiple versions of Android in the wild...
Indeed, targets are moving a lot and fast on Android!

All these efforts are not in vain: it is just a pleasure to see this old-school 3D environment
full of flat-shaded polygons running for the first time. So just stop reading and run it!

Chapter 2

[51]

Exploring Android SDK tools
Android SDK includes tools which are quite useful for developers and integrators. We
have already overlooked some of them including the Android Debug Bridge and android
command. Let's explore them deeper.

Android debug bridge
You may have not noticed it specifically since the beginning but it has always been there,
over your shoulder. The Android Debug Bridge is a multifaceted tool used as an intermediary
between development environment and emulators/devices. More specifically, ADB is:

 � A background process running on emulators and devices to receive orders or
requests from an external computer.

 � A background server on your development computer communicating with
connected devices and emulators. When listing devices, ADB server is involved.
When debugging, ADB server is involved. When any communication with a device
happens, ADB server is involved!

 � A client running on your development computer and communicating with devices
through ADB server. That is what we have done to launch HelloJni: we got connected
to our device using adb shell before issuing the required commands.

Creating, Compiling, and Deploying Native Projects

[52]

ADB shell is a real Linux shell embedded in ADB client. Although not all standard commands

are available, classical commands, such as ls, cd, pwd, cat, chmod, ps, and so on are
executable. A few specific commands are also provided such as:

logcat To display device log messages

dumpsys To dump system state

dmesg To dump kernel messages

ADB shell is a real Swiss Army knife. It also allows manipulating your device in a flexible
way, especially with root access. For example, it becomes possible to observe applications
deployed in their "sandbox" (see directory /data/data) or to a list and kill currently
running processes.

ADB also offers other interesting options; some of them are as follows:

pull <device path> <local path> To transfer a file to your computer

push <local path> <device path> To transfer a file to your device or emulator

install <application package> To install an application package

install –r <package to reinstall> To reinstall an application, if already deployed

devices To list all Android devices currently connected,
including emulators

reboot To restart an Android device programmatically

wait-for-device To sleep, until a device or emulator is connected
to your computer (for example, in a script)

start-server To launch the ADB server communicating with
devices and emulators

kill-server To terminate the ADB server

bugreport To print the whole device state (like dumpsys)

help To get an exhaustive help with all options and
flags available

To ease the writing of issued command, ADB provides facultative flags to specify
before options:

-s <device id> To target a specific device

-d To target current physical device, if only one is
connected (or an error message is raised)

-e To target currently running emulator, if only one is
connected (or an error message is raised)

Chapter 2

[53]

ADB client and its shell can be used for advanced manipulation on the system, but most
of the time, it will not be necessary. ADB itself is generally used transparently. In addition,
without root access to your phone, possible actions are limited. For more information,
see http://developer.android.com/guide/developing/tools/adb.html.

Root or not root

If you know the Android ecosystem a bit, you may have heard about rooted
phones and non-rooted phones. Rooting a phone means getting root access
to it, either "officially" while using development phones or using hacks with
an end user phone. The main interest is to upgrade your system before the
manufacturer provides updates (if any!) or to use a custom version (optimized
or modified, for example, CyanogenMod). You can also do any possible
(especially dangerous) manipulations that an Administrator can do (for
example, deploying a custom kernel).

Rooting is not an illegal operation, as you are modifying YOUR device. But not
all manufacturers appreciate this practice and usually void the warranty.

Have a go hero – transferring a file to SD card from command line
Using the information provided, you should be able to connect to your phone like in the
good old days of computers (I mean a few years ago!) and execute some basic manipulation
using a shell prompt. I propose you to transfer a resource file by hand, like a music clip or a
resource that you will be reading from a future program of yours.

To do so, you need to open a command-line prompt and perform the following steps:

1. Check if your device is available using adb from command line.

2. Connect to your device using the Android Debug Bridge shell prompt.

3. Check the content of your SD card using standard Unix ls command. Please note
that ls on Android has a specific behavior as it differentiates ls mydir from ls
mydir/, when mydir is a symbolic link.

4. Create a new directory on your SD card using the classic command mkdir.

5. Finally, transfer your file by issuing the appropriate adb command.

Creating, Compiling, and Deploying Native Projects

[54]

Project configuration tool
The command named android is the main entry point when manipulating not only projects
but also AVDs and SDK updates (as seen in Chapter 1, Setting Up your Environment). There
are few options available, which are as follows:

 � create project: This option is used to create a new Android project
through command line. A few additional options must be specified to allow
proper generation:

-p The project path

-n The project name

-t The Android API target

-k The Java package, which contains application's main class

-a The application's main class name (Activity in Android terms)

For example:

$ android create project –p ./MyProjectDir –n MyProject –t
android-8 –k com.mypackage –a MyActivity

 � update project: This is what we use to create Ant project files from an existing
source. It can also be used to upgrade an existing project to a new version. Main
parameters are as follows:

-p The project path

-n To change the project name

-l To include an Android library project (that is, reusable code).
The path must be relative to the project directory).

-t To change the Android API target

There are also options to create library projects (create lib-project, update
lib-project) and test projects (create test-project, update test-project).
I will not go into details here as this is more related to the Java world.

As for ADB, android command is your friend and can give you some help:
 $ android create project –help

Chapter 2

[55]

Command android is a crucial tool to implement a continuous integration toolchain
in order to compile, package, deploy, and test a project automatically entirely from
command line.

Have a go hero – towards continuous integration
With adb, android, and ant commands, you have enough knowledge to build a minimal
automatic compilation and deployment script to perform some continuous integration. I
assume here that you have a versioning software available and you know how to use it.
Subversion (also known as SVN) is a good candidate and can work in local (without a server).

Perform the following operations:

1. Create a new project by hand using android command.

2. Then, create a Unix or Cygwin shell script and assign it the necessary execution
rights (chmod command). All the following steps have to be scribbled in it.

3. In the script, check out sources from your versioning system (for example, using
a svn checkout command) on disk. If you do not have a versioning system, you
can still copy your own project directory using Unix commands.

4. Build the application using ant.

Do not forget to check command results using $?. If the returned value
is different from 0, it means an error occurred. Additionally, you can use
grep or some custom tools to check potential error messages.

5. If needed, you can deploy resources files using adb.

6. Install it on your device or on the emulator (which you can launch from the script)
using ant as shown previously.

7. You can even try to launch your application automatically and check Android logs
(see logcat option in adb). Of course, your application needs to make use of logs!

A free monkey to test your App!

In order to automate UI testing on an Android application, an interesting utility
that is provided with the Android SDK is MonkeyRunner, which can simulate
user actions on a device to perform some automated UI testing. Have a look at
http://developer.android.com/guide/developing/tools/
monkeyrunner_concepts.html.

Creating, Compiling, and Deploying Native Projects

[56]

To favor automation, a single Android shell statement can be executed from command-line
as follows:

adb shell ls /sdcard/

To execute a command on an Android device and retrieve its result back
on your host shell, execute the following command: adb shell "ls /
notexistingdir/ 1> /dev/null 2>&1; echo \$?"
Redirection is necessary to avoid polluting the standard output. The
escape character before $? is required to avoid early interpretation by the
host shell.

Now you are fully prepared to automate your own build toolchain!

Creating your first Android project using eclipse
In the first part of the chapter, we have seen how to use Android command-line tools. But
developing with Notepad or VI is not really attractive. Coding should be fun! And to make
it so, we need our preferred IDE to perform boring or unpractical tasks. So let's see now
how to create an Android project using Eclipse.

Eclipse views and perspectives

Several times in this book, I have asked you to look at an Eclipse View like the
Package Explorer View, the Debug View, and so on. Usually, most of them are
already visible, but sometimes they are not. In that case, open them through
main menu: Window | Show View | Other….

Views in Eclipse are grouped in perspectives, which basically store your
workspace layout. They can be opened through main menu: Window | Open
Perspective | Other…. Note that some contextual menus are available only in
some perspectives.

Time for action – initiating a Java project
1. Launch Eclipse.

2. In the main menu, select File | New | Project….

3. In the project wizard, select Android | Android Project and then Next.

Chapter 2

[57]

4. In the next screen, enter project properties:

 � In Project name, enter MyProject.

 � Select Create a new project in workspace.

 � Specify a new location if you want to, or keep the default location
(that is, your eclipse workspace location).

 � Set Build Target to Android 2.3.3.

 � In Application name, enter (which can contain spaces): MyProject.

 � In Package name, enter com.myproject.

 � Create a new activity with the name MyActivity.

 � Set Min SDK Version to 10:

Creating, Compiling, and Deploying Native Projects

[58]

5. Click on Finish. The project is created. Select it in Package Explorer view.

6. In the main menu, select Run | Debug As | Android Application or click on

the Debug button in the toolbar.

7. Select application type Android Application and click OK:

8. Your application is launched, as shown in the following screenshot:

Chapter 2

[59]

What just happened?
We have created our first Android project using Eclipse. In a few screens and clicks, we have
been able to launch the application instead of writing long and verbose commands. Working
with an IDE like Eclipse really gives a huge productivity boost and makes programming much
more comfortable!

ADT plugin has an annoying bug that you may have already encountered:
Eclipse complains that your Android project is missing the required source
folder gen whereas this folder is clearly present. Most of the time, just
recompiling the project makes this error disappear. But sometimes, Eclipse
is recalcitrant and refuses to recompile projects. In that case, a little-known
trick, which can be applied in many other cases, is to simply open the
Problems view, select these irritating messages, delete them without
mercy (Delete key or right-click and Delete) and finally recompile the
incriminated project.

As you can see, this project targets Android 2.3 Gingerbread because we will access latest
NDK features in the next chapters. However, you will need a proper device which hosts this
OS version else testing will not be possible. If you cannot get one, then use the emulator set
up in Chapter 1, Setting Up your Environment.

If you look at the project source code, you will notice a Java file and no C/C++ files. Android
projects created with ADT are always Java projects. But thanks to Eclipse flexibility, we can
turn them into C/C++ projects too; we are going to see this at the end of this chapter.

Avoiding space in file paths

When creating a new project, avoid leaving a space in the path where
your project is located. Although Android SDK can handle that without
any problem, Android NDK and more specifically GNU Make may not
really like it.

Introducing Dalvik
It is not possible to talk about Android without touching a word about Dalvik. Dalvik, which
is also the name of an Icelandic village, is a Virtual Machine on which Android bytecode is
interpreted (not native code!). It is at the core of any applications running on Android. Dalvik
is conceived to fit the constrained requirements of mobile devices. It is specifically optimized
to use less memory and CPU. It sits on top of the Android kernel which provides the first
layer of abstraction over hardware (process management, memory management, and so on).

Creating, Compiling, and Deploying Native Projects

[60]

Android has been designed with speed in mind. Because most users do not want to wait for
their application to be loaded while others are still running, the system is able to instantiate
multple Dalvik VMs quickly, thanks to the Zygote process. Zygote, whose name comes from
the very first biologic cell of an organism from which daughter cells are reproduced, starts
when the system boots up. It preloads (or "warms up") all core libraries shared among
applications as well as a Dalvik instance. To launch a new application, Zygote is simply forked
and the initial Dalvik instance is copied. Memory consumption is lowered by sharing as many
libraries as possible between processes.

Dalvik operates on Android bytecode, which is different from Java bytecode. Bytecode is
stored in an optimized format called Dex generated by an Android SDK tool named dx. Dex
files are archived in the final APK with the application manifest and any native libraries
or additional resources needed. Note that applications can get further optimized during
installation on end user's device.

Interfacing Java with C/C++
Keep your Eclipse IDE opened as we are not done with it yet. We have a working project
indeed. But wait, that is just a Java project, whereas we want to unleash the power of
Android with native code! In this part, we are going to create C/C++ source files, compile
them into a native library named mylib and let Java run this code.

Time for action – calling C code from Java
The native library mylib that we are going to create will contain one simple native method
getMyData() that returns a basic character string. First, let's write the Java code to declare
and run this method.

1. Open MyActivity.java. Inside main class, declare the native method with the
native keyword and no method body:

public class MyActivity extends Activity {
 public native String getMyData();
...

2. Then, load the native library that contains this method within a static initialization
block. This block will be called before Activity instance gets initialized:

...
 static {
 System.loadLibrary("mylib");
 }
...

Chapter 2

[61]

3. Finally, when Activity instance is created, call the native method and update the
screen content with its return value. You can refer to the source code provided with
this book for the final listing:

...
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 setTitle(getMyData());
 }
}

Now, let's prepare the project files required to build the native code.

4. In Eclipse, create a new directory named jni at the project's root using menu
File | New | Folder.

5. Inside the jni directory, create a new file named Android.mk using menu
File | New | File. If CDT is properly installed, the file should have the following
specific icon in the Package Explorer view.

6. Write the following content into this file. Basically, this describes how to
compile our native library named mylib which is composed of one source
file the com_myproject_MyActivity.c:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := mylib
LOCAL_SRC_FILES := com_myproject_MyActivity.c

include $(BUILD_SHARED_LIBRARY)

As project files for native compilation are ready, we can write the expected native
source code. Although the C implementation file must be written by hand, the
corresponding header file can be generated with a helper tool provided by the
JDK: javah.

7. In Eclipse, open Run | External Tools | External Tools Configurations….

Creating, Compiling, and Deploying Native Projects

[62]

8. Create a new program configuration with the following parameters:

 � Name: MyProject javah.

 � Location refers to javah absolute path, which is OS-specific. In Windows, you
can enter ${env_var:JAVA_HOME}\bin\javah.exe. In Mac OS X and Linux,
it is usually /usr/bin/javah.

 � Working directory: ${workspace_loc:/MyProject/bin}.

 � Arguments: –d ${workspace_loc:/MyProject/jni} com.myproject.
MyActivity}.

In Mac OS X, Linux, and Cygwin, you can easily find the location of
an executable available in $PATH, by using the which command.
For example,

$ which javah

9. On the Refresh tab, check Refresh resources upon completion and select Specific
resources. Using the Specify Resources… button, select the jni folder.

10. Finally, click on Run to save and execute javah. A new file com_myproject_
MyActivity.h is generated in the jni folder. It contains a prototype for the
method getMyData() expected on the Java side:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>

...

JNIEXPORT jstring JNICALL Java_com_myproject_MyActivity_getMyData
 (JNIEnv *, jobject);

...

11. We can now create com_myproject_MyActivity.c implementation inside the
jni directory to return a raw character string. Method signature originates from the
generated header file:

#include "com_myproject_MyActivity.h"

JNIEXPORT jstring Java_com_myproject_MyActivity_getMyData
 (JNIEnv* pEnv, jobject pThis)
{
 return (*pEnv)->NewStringUTF(pEnv,
 "My native project talks C++");
}

Chapter 2

[63]

Eclipse is not yet configured to compile native code, only Java code. Until we do that in
the last part of this chapter, we can try to build native code by hand.

12. Open a terminal prompt and go inside the MyProject directory. Launch
compilation of the native library with the command ndk-build:

$ cd <your project directory>/MyProject

$ ndk-build

The native library is compiled in the libs/armeabi directory and is named
libmylib.so. Temporary files generated during compilation are located
in the obj/local directory.

13. From Eclipse, launch MyProject again. You should obtain following result:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating, Compiling, and Deploying Native Projects

[64]

What just happened?
In the previous part, we created an Android Java project. In this second part, we have
interfaced Java code to a native library compiled with the Android NDK from a C file. This
binding from Java to C allows retrieving through Java Native Interfaces a simple Java string
allocated in the native code. The example application shows how Java and C/C++ can
cooperate together:

1. By creating UI components and code on the Java side and defining native calls.

2. Using javah to generate header file with corresponding C/C++ prototypes.

3. Writing native code to perform the expected operation.

Native methods are declared on the Java side with the native keyword. These methods
have no body (like an abstract method) as they are implemented on the native side. Only
their prototype needs to be defined. Native methods can have parameters, a return value,
any visibility (private, protected, package protected or public) and can be static, like
classic Java methods. Of course, they require the native library with method implementations
to be loaded before they are called. A way to do that is to invoke System.loadLibrary()
in a static initialization block, which is initialized when the containing class is loaded. Failure to
do so results in an exception of type java.lang.UnsatisfiedLinkError, which is raised
when the native method is invoked for the first time.

Although it is not compulsory, javah tool provided by the JDK is extremely useful to
generate native prototypes. Indeed, JNI convention is tedious and error-prone. With
generated headers, you immediately know if a native method expected by the Java side is
missing or has an incorrect signature. I encourage you to use javah systematically in your
projects, more specifically, each time native method's signature is changed. JNI code is
generated from .class files, which means that your Java code must be first compiled before
going through javah conversion. Implementation needs to be provided in a separate C/C++
source file.

How to write JNI code on the native side is explored in more details in the next chapter. But
remember that a very specific naming convention, which is summarized by the following
pattern, must be followed by native side methods:

<returnType> Java_<com_mypackage>_<class>_<methodName> (JNIEnv* pEnv,
<parameters>...)

Native method name is prefixed with Java_ and the packages/class name (separated by _)
containing it separated. First argument is always of type JNIEnv (more on this in the next
chapter) and the preceding arguments are the actual parameters given to the Java method.

Chapter 2

[65]

More on Makefiles
Native library building process is orchestrated by a Makefile named Android.mk. By
convention, Android.mk is in folder jni, which is located inside the project's root. That
way, ndk-build command can find this file automatically when the command is invoked.
Therefore, C/C++ code is by convention also located in jni directory (but this can be
changed by configuration).

Android Makefiles are an essential piece of the NDK building process. Thus, it is important
to understand the way they work to manage a project properly. An Android.mk file is
basically a "baking" file, which defines what to compile and how to compile. Configuration
is performed using predefined variables, among which are: LOCAL_PATH, LOCAL_MODULE
and LOCAL_SRC_FILES. See Chapter 9, Porting Existing Libraries to Android, for more
explanation on Makefiles.

The Android.mk file presented in MyProject is a very simple Makefile example. Each
instruction serves a specific purpose:

LOCAL_PATH := $(call my-dir)

The preceding code indicates native source files location. Instruction $(call <function>)
allows evaluating a function and function my-dir returns the directory path of the last
executed Makefile. Thus, as Makefiles usually share their directory with source files, this line
is systematically written at the beginning of each Android.mk file to find their location.

include $(CLEAR_VARS)

Makes sure no "parasite" configuration disrupts compilation. When compiling an application,
a few LOCAL_XXX variables need to be defined. The problem is that one module may define
additional configuration settings (like a compilation MACRO or a flag) through these variables,
which may not be needed by another module.

Keep your modules clean

To avoid any disruption, all necessary LOCAL_XXX variables should be cleared
before any module is configured and compiled. Note that LOCAL_PATH is an
exception to that rule and is never cleared out.

LOCAL_MODULE := mylib

The preceding line of code defines your module name. After compilation, the output library
is named according to the LOCAL_MODULE variable flanked by a lib prefix and a .so suffix.
This LOCAL_MODULE name is also used when a module depends on another module.

LOCAL_SRC_FILES := com_myproject_MyActivity.c

Creating, Compiling, and Deploying Native Projects

[66]

The preceding line of code indicates which source files to compile. File path is expressed
relative to the LOCAL_PATH directory.

include $(BUILD_SHARED_LIBRARY)

This last instruction finally launches the compilation process and indicates which type of
library to generate.

With Android NDK, it is possible to produce shared libraries (also called dynamic libraries,
like DLL on Windows) as well as static libraries:

 � Shared libraries are a piece of executable loaded on demand. These are stored on
disk and loaded to memory as a whole. Only shared libraries can be loaded directly
from Java code.

 � Static libraries are embedded in a shared library during compilation. Binary code
is copied into a final library, without regards to code duplication (if embedded by
several different modules).

In contrast with shared libraries, static libraries can be stripped, which means that
unnecessary symbols (like a function which is never called from the embedding library) are
removed from the final binary. They make shared libraries bigger but "all-inclusive", without
dependencies. This avoids the "DLL not found" syndrome well known on Window.

Shared vs. Static modules

Whether you should use a static or shared library depends on the context:

 � If a library is embedded in several other libraries

 � If almost all pieces of code are required to run

 � If a library needs to be selected dynamically at runtime

then consider turning it into a shared library because they avoid memory
duplication (which is a very sensible issue on mobile devices).

On the other hand:

 � If it is used in one or only a few places

 � If only part of its code is necessary to run

 � If loading it at the beginning of your application is not a concern

then consider turning it into a static library instead. It can be reduced in size at
compilation-time at the price of some possible duplication.

Chapter 2

[67]

Compiling native code from Eclipse
You probably agree with me, writing code in Eclipse but compiling it by hand is not very
satisfying. Although the ADT plugin does not provide any C/C++ support, Eclipse does this
through CDT. Let's use it to turn our Android project into a hybrid Java-C/C++ project.

Time for action – creating a hybrid Java/C/C++ project
To check whether Eclipse compilation works fine, let's introduce surreptitiously an error
inside the com_myproject_MyActivity.c file. For example:

#include "com_myproject_MyActivity.h"

private static final String = "An error here!";

JNIEXPORT jstring Java_com_myproject_MyActivity_getMyData
...

Now, let's compile MyProject with Eclipse:

1. Open menu File | New | Other....

2. Under C/C++, select Convert to a C/C++ Project and click on Next.

3. Check MyProject, choose MakeFile project and Other Toolchain and
finally click on Finish.

4. Open C/C++ perspective when requested.

5. Right-click on MyProject in Project explorer view and select Properties.

Creating, Compiling, and Deploying Native Projects

[68]

6. In the C/C++ Build section, uncheck Use default build command and enter
ndk-build as a Build command. Validate by clicking on OK:

And... oops! An error got insidiously inside the code. An error? No we are not
dreaming! Our Android project is compiling C/C++ code and parsing errors:

Chapter 2

[69]

7. Let's fix it by removing the incriminated line (underlined in red) and saving the file.

8. Sadly, the error is not gone. This is because auto-build mode does not work. Go back
to project properties, inside C/C++ Settings and then the Behaviour tab. Check Build
on resource save and leave the value to all.

9. Go to the Builders section and place CDT Builder right above Android Package
Builder. Validate.

10. Great! Error is gone. If you go to the Console view, you will see the result of
ndk-build execution like if it was in command line. But now, we notice that
the include statement of jni.h file is underlined in yellow. This is because it
was not found by the CDT Indexer for code completion. Note that the compiler
itself resolves them since there is no compilation error. Indeed, the indexer is
not aware of NDK include paths, contrary to the NDK compiler

If warnings about the include file which the CDT Indexer could not find do not
appear, go to C/C++ perspective, then right-click on the project name in the
Project Explorer view and select Index/Search for Unresolved Includes item.
The Search view appears with all unresolved inclusions.

11. Let's go back to project properties one last time. Go to section C/C++ General/Paths
and Symbols and then in Includes tab.

12. Click on Add... and enter the path to the directory containing this include file which
is located inside NDK's platforms directory. In our case, we use Android 2.3.3 (API
level 9), so the path is ${env_var:ANDROID_NDK}/platforms/android-9/
arch-arm/usr/include. Environment variables are authorized and encouraged!
Check Add to all languages and validate:

Creating, Compiling, and Deploying Native Projects

[70]

13. Because jni.h includes some "core" include files (for example, stdarg.h),
also add ${env_var:ANDROID_NDK}/toolchains/arm-linux-
androideabi-4.4.3/prebuilt/<your OS>/lib/gcc/arm-linux-
androideabi/4.4.3/include path and close the Properties window. When
Eclipse proposes to rebuild its index, say Yes.

14. Yellow lines are now gone. If you press Ctrl and click simultaneously on string.h,
the file gets automatically opened. Your project is now fully integrated in Eclipse.

What just happened?
We managed to integrate Eclipse CDT plugin with an Android project using CDT conversion
wizard. In a few clicks, we have turned a Java project into a hybrid Java/C/C++ project! By
tweaking CDT project properties, we managed to launch ndk-build command to produce
the library mylib defined in Android.mk. After getting compiled, this native library is
packaged automatically into the final Android application by ADT.

Chapter 2

[71]

Running javah automatically while building

If you do not want to bother executing manually javah each time native
methods changes, you can create an Eclipse builder:

1. Open your project Properties window and go to the Builder
section.

2. Click on New… and create a new builder of type Program.

3. Enter configuration like done at step 8 with the External tool
configuration.

4. Validate and position it after Java Builder in the list (because
JNI files are generated from Java .class files).

5. Finally, move CDT Builder right after this new builder (and
before Android Package Builder).

JNI header files will now be generated automatically each a time project is
compiled.

In step 8 and 9, we enabled Building on resource save option. This allows automatic
compilation to occur without human intervention, for example, when a save operation is
triggered. This feature is really nice but can sometimes cause a build cycle: Eclipse keeps
compiling code so we moved CDT Builder just before Android Package Builder, in step 9,
to avoid Android Pre Compiler and Java Builder to triggering CDT uselessly. But this is not
always enough and you should be prepared to deactivate it temporarily or definitely as
soon as you are fed up!

Automatic building

Build command invocation is performed automatically when a file is saved.
This is practical but can be resource and time consuming and can cause some
build cycle. That is why it is sometimes appropriate to deactivate the Build

automatically option from main menu through Project. A new button:
appears in the toolbar to trigger a build manually. You can then re-enable
automatic building.

Creating, Compiling, and Deploying Native Projects

[72]

Summary
Although setting up, packaging, and deploying an application project are not the most
exciting tasks, but they cannot be avoided. Mastering them will allow being productive
and focused on the real objective: producing code.

In this chapter, we have seen how to use NDK command tools to compile and deploy Android
projects manually. This experience will be useful to make use of continuous integration in
your project. We have also seen how to make both Java and C/C++ talk together in a single
application using JNI. Finally we have created a hybrid Java/C/C++ project using Eclipse to
develop more efficiently.

With this first experiment in mind, you got a good overview of how the NDK works. In the
next chapter, we are going to focus on code and discover in more detail the JNI protocol for
bidirectional Java to C/C++ communication.

3
Interfacing Java and C/C++ with JNI

Android is inseparable from Java. Although its kernel and its critical libraries
are native, the Android application framework is almost entirely written in Java
or wrapped inside a thin layer of Java. Obviously, a few libraries are directly
accessible from native code, such as Open GL (as we will see in Chapter 6,
Rendering Graphics with OpenGL ES). However, most APIs are available only
from Java. Do not expect to build your Android GUI directly in C/C++. Technically
speaking, it is not yet possible to completely get rid of Java in an Android
application. At best, we can hide it under the cover!

Thus, native C/C++ code on Android would be nonsense if it is was not
possible to tie Java and C/C++ together. This role is devoted to the Java Native
Interface framework, which has been introduced in the previous chapter. JNI
is a specification standardized by Sun that is implemented by JVMs with two
purposes in mind: allowing Java to call native code and native code to call Java.
It is a two-way bridge between the Java and native side and the only way to
inject the power of C/C++ into your Java application.

Thanks to JNI, one can call C/C++ functions from Java like any Java method,
passing Java primitives or objects as parameters and receiving them as result.
In turn, native code can access, inspect, modify, and call Java objects or raise
exceptions with a reflection-like API. JNI is a subtle framework which requires
care as any misuse can result in a dramatic ending…

Interfacing Java and C/C++ with JNI

[74]

In this chapter, we are going to learn how to do the following:

 � Pass and return Java primitives, objects, and arrays to/from native code

 � Handle Java objects references inside native code

 � Raise exceptions from native code

JNI is a vast and highly technical subject, which could require a whole book to be covered
exhaustively. Instead, the present chapter focuses on the essential knowledge to bridge
the gap between Java and C++.

Working with Java primitives
You are probably hungry to see more than the simple MyProject created in previous chapter:
passing parameters, retrieving results, raising exceptions... to pursue this objective, we will
see through this chapter how to implement a basic key/value store with various data types,
starting with primitive types and strings.

A simple Java GUI will allow defining an “entry” composed of a key (a character string),
a type (an integer, a string, and so on), and a value related to the selected type. An entry
is inserted or updated inside the data store which will reside on the native side (actually
a simple fixed-size array of entries). Entries can be retrieved back by the Java client.
The following diagram presents an overall view of how the program will be structured:

Store Wrapper
Functions

Java

StoreActivity

<<user>>

int

StoreType

StoreType

StoreValue
Internal Store
structure

<<Union>> StoreEntry

String

Store
Internal Store
Structure

1

<<user>>

1

1

1

1

C

*

com_packtpub_Store

Store

Chapter 3

[75]

The resulting project is provided with this book under the
name Store_Part3-1.

Time for action – building a native key/value store
Let’s take care of the Java side first:

1. Create a new hybrid Java/C++ project like shown in the previous chapter:

 � Name it Store.

 � Its main package is com.packtpub.

 � Its main activity is StoreActivity.

 � Do not forget to create a jni directory at project’s root.

Let’s work on the Java side first, which is going to contain three source files:
Store.java, StoreType.java, and StoreActivity.java.

2. Create a new class Store which loads the eponym native library and defines the
functionalities our key/value store provides. Store is a front-end to our native code.
To get started, it supports only integers and strings:

public class Store {
 static {
 System.loadLibrary(“store”);
 }

 public native int getInteger(String pKey);
 public native void setInteger(String pKey, int pInt);

 public native String getString(String pKey);
 public native void setString(String pKey, String pString);
}

3. Create StoreType.java with an enumeration specifying supported data types:

public enum StoreType {
 Integer, String
}

Interfacing Java and C/C++ with JNI

[76]

4. Design a Java GUI in res/layout/main.xml similar to the following screenshot.
You can make use of the ADT Graphical Layout designer included in ADT or simply
copy it from project Store_Part3-1. GUI must allow defining an entry with a key
(TextView, id uiKeyEdit), a value (TextView, id uiValueEdit) and a type
(Spinner, id uiTypeSpinner). Entries can be saved or retrieved:

5. Application GUI and Store need to be bound together. That is the role devoted to
the StoreActivity class. When activity is created, set up GUI components: Type
spinner content is bound to the StoreType enum. Get Value and Set Value buttons
trigger private methods onGetValue() and onSetValue() defined in the next
steps. Have a look at final project Store_Part3-1 if you need some help.

Finally, initialize a new instance of the store:

public class StoreActivity extends Activity {
 private EditText mUIKeyEdit, mUIValueEdit;
 private Spinner mUITypeSpinner;
 private Button mUIGetButton, mUISetButton;
 private Store mStore;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Initializes components and binds buttons to handlers.
 ...

 mStore = new Store();
 }

Chapter 3

[77]

6. Define method onGetValue(), which retrieves an entry from the store according
to type StoreType currently selected in the GUI:

 private void onGetValue() {
 String lKey = mUIKeyEdit.getText().toString();
 StoreType lType = (StoreType) mUITypeSpinner
 .getSelectedItem();

 switch (lType) {
 case Integer:
 mUIValueEdit.setText(Integer.toString(mStore
 .getInteger(lKey)));
 break;
 case String:
 mUIValueEdit.setText(mStore.getString(lKey));
 break;
 }
 }

7. Add method onSetValue() in StoreActivity to insert or update an entry into
the store. Entry data needs to be parsed according to its type. If value format is
incorrect, an Android Toast message is displayed:

 ...
 private void onSetValue() {
 String lKey = mUIKeyEdit.getText().toString();
 String lValue = mUIValueEdit.getText().toString();
 StoreType lType = (StoreType) mUITypeSpinner
 .getSelectedItem();

 try {
 switch (lType) {
 case Integer:
 mStore.setInteger(lKey, Integer.parseInt(lValue));
 break;
 case String:
 mStore.setString(lKey, lValue);
 break;
 }
 } catch (NumberFormatException eNumberFormatException) {
 displayError(“Incorrect value.”);
 }
 }

 private void displayError(String pError) {
 Toast.makeText(getApplicationContext(), pError,
 Toast.LENGTH_LONG).show();
 }
}

Interfacing Java and C/C++ with JNI

[78]

The Java side is ready and native method prototypes defined. We can switch to the
native side.

8. In the jni directory, create Store.h which defines store data structures. Create a
StoreType enumerate that matches exactly the Java enumeration. Also create the
main structure Store, which contains a fixed size array of entries. A StoreEntry is
composed of a key (a C string), a type, and a value. StoreValue is simply the union
of any of the possible values (that is, an integer or a C string pointer):

#ifndef _STORE_H_
#define _STORE_H_

#include “jni.h”
#include <stdint.h>

#define STORE_MAX_CAPACITY 16

typedef enum {
 StoreType_Integer, StoreType_String
} StoreType;

typedef union {
 int32_t mInteger;
 char* mString;
} StoreValue;

typedef struct {
 char* mKey;
 StoreType mType;
 StoreValue mValue;
} StoreEntry;

typedef struct {
 StoreEntry mEntries[STORE_MAX_CAPACITY];
 int32_t mLength;
} Store;
...

9. Terminate the Store.h file by declaring utility methods to create, find, and destroy
an entry. JNIEnv and jstring types are defined in header jni.h already included
in the previous step:

...
int32_t isEntryValid(JNIEnv* pEnv, StoreEntry* pEntry,
 StoreType pType);
StoreEntry* allocateEntry(JNIEnv* pEnv, Store* pStore,
jstring pKey);

Chapter 3

[79]

StoreEntry* findEntry(JNIEnv* pEnv, Store* pStore, jstring pKey,
 int32_t* pError);
void releaseEntryValue(JNIEnv* pEnv, StoreEntry* pEntry);

All these utility methods are implemented in file jni/Store.c. First,
isEntryValid() simply checks an entry is allocated and has the expected type:

#include “Store.h”
#include <string.h>

int32_t isEntryValid(JNIEnv* pEnv, StoreEntry* pEntry,
 StoreType pType) {
 if ((pEntry != NULL) && (pEntry->mType == pType)) {
 return 1;
 }
 return 0;
}
...

10. Method findEntry() compares the key passed as parameter with every entry
key currently stored until it finds a matching one. Instead of working with classic C
strings, it receives directly a jstring parameter, which is the native representation
of a Java String.

A jstring cannot be manipulated directly in native code. Indeed, Java and C
strings are completely different beasts. In Java, String is a real object with
member methods whereas in C, strings are raw character arrays.

To recover a C string from a Java String, one can use JNI API method
GetStringUTFChars() to get a temporary character buffer. Its content can
then be manipulated using standard C routines. GetStringUTFChars() must be
systematically coupled with a call to ReleaseStringUTFChars() to release the
temporary buffer:

...
StoreEntry* findEntry(JNIEnv* pEnv, Store* pStore, jstring pKey,
 Int32_t* pError) {
 StoreEntry* lEntry = pStore->mEntries;
 StoreEntry* lEntryEnd = lEntry + pStore->mLength;

 const char* lKeyTmp = (*pEnv)->GetStringUTFChars(pEnv, pKey,
 NULL);
 if (lKeyTmp == NULL) {
 if (pError != NULL) {
 *pError = 1;
 }

Interfacing Java and C/C++ with JNI

[80]

 return;
 }

 while ((lEntry < lEntryEnd)
 && (strcmp(lEntry->mKey, lKeyTmp) != 0)) {
 ++lEntry;
 }
 (*pEnv)->ReleaseStringUTFChars(pEnv, pKey, lKeyTmp);

 return (lEntry == lEntryEnd) ? NULL : lEntry;
}
...

11. Still in Store.c, implement allocateEntry() which either creates a new entry
(that is, increments store length and returns last array element) or returns an
existing one (after releasing its previous value) if key already exists. If entry is new,
convert the key to a C string kept in memory outside method scope. Indeed, raw JNI
objects live for the time of a method and cannot be kept outside its scope:

It is a good practice to check that GetStringUTFChars() does not return
a NULL value which would indicate that the operation has failed (for example,
if temporary buffer cannot be allocated because of memory limitations). This
should theoretically be checked for malloc too, although not done here for
simplicity purposes.

...
StoreEntry* allocateEntry(JNIEnv* pEnv, Store* pStore, jstring
pKey)
{
 Int32_t lError = 0;
 StoreEntry* lEntry = findEntry(pEnv, pStore, pKey, &lError);
 if (lEntry != NULL) {
 releaseEntryValue(pEnv, lEntry);
 } else if (!lError) {
 if (pStore->mLength >= STORE_MAX_CAPACITY) {
 return NULL;
 }
 lEntry = pStore->mEntries + pStore->mLength;

 const char* lKeyTmp = (*pEnv)->GetStringUTFChars
 (pEnv, pKey, NULL);
 if (lKeyTmp == NULL) {
 return;

Chapter 3

[81]

 }

 lEntry->mKey = (char*) malloc(strlen(lKeyTmp));
 strcpy(lEntry->mKey, lKeyTmp);
 (*pEnv)->ReleaseStringUTFChars(pEnv, pKey, lKeyTmp);

 ++pStore->mLength;
 }
 return lEntry;
}
...

12. The last method of Store.c is releaseEntryValue(), which frees memory
allocated for a value if needed. Currently, only strings are dynamically allocated
and need to be freed:

...
void releaseEntryValue(JNIEnv* pEnv, StoreEntry* pEntry) {
 int i;
 switch (pEntry->mType) {
 case StoreType_String:
 free(pEntry->mValue.mString);
 break;
 }
}
#endif

13. Generate JNI header file for the class com.packtpub.Store with javah as
seen in Chapter 2, Creating, Compiling, and Deploying Native Projects. A file jni/
com_packtpub_Store.h should be generated.

14. Now that our utility methods and JNI header are generated, we need to write the
JNI source file com_packtpub_Store.c. The unique Store instance is saved in
a static variable which is created when library is loaded:

#include “com_packtpub_Store.h”
#include “Store.h”
#include <stdint.h>
#include <string.h>

static Store gStore = { {}, 0 };
...

15. With the help of the generated JNI header, implement getInteger() and
setInteger() in com_packtpub_Store.c.

Interfacing Java and C/C++ with JNI

[82]

The first method looks for the passed key in the store and returns its value (which
needs to be of type integer). If any problem happens, a default value is returned.

The second method allocates an entry (that is, creates a new entry in the store or
reuses an existing one if it has the same key) and stores the new integer value in it.

Note here how mInteger, which is a C int, can be “casted” directly to a Java jint
primitive and vice versa. They are in fact of the same type:

...
JNIEXPORT jint JNICALL Java_com_packtpub_Store_getInteger
 (JNIEnv* pEnv, jobject pThis, jstring pKey) {
 StoreEntry* lEntry = findEntry(pEnv, &gStore, pKey, NULL);
 if (isEntryValid(pEnv, lEntry, StoreType_Integer)) {
 return lEntry->mValue.mInteger;
 } else {
 return 0.0f;
 }
}
JNIEXPORT void JNICALL Java_com_packtpub_Store_setInteger
 (JNIEnv* pEnv, jobject pThis, jstring pKey, jint pInteger) {
 StoreEntry* lEntry = allocateEntry(pEnv, &gStore, pKey);
 if (lEntry != NULL) {
 lEntry->mType = StoreType_Integer;
 lEntry->mValue.mInteger = pInteger;
 }
}
...

16. Strings have to be handled with more care. Java strings are not real primitives.
Types jstring and char* cannot be used interchangeably as seen in step 11.

To create a Java String object from a C string, use NewStringUTF().

In second method setString(), convert a Java string into a C string with
GetStringUTFChars() and SetStringUTFChars() as seen previously.

...
JNIEXPORT jstring JNICALL Java_com_packtpub_Store_getString
 (JNIEnv* pEnv, jobject pThis, jstring pKey) {
 StoreEntry* lEntry = findEntry(pEnv, &gStore, pKey, NULL);
 if (isEntryValid(pEnv, lEntry, StoreType_String)) {
 return (*pEnv)->NewStringUTF(pEnv, lEntry->mValue.mString);
 }
 else {
 return NULL;
 }
}

Chapter 3

[83]

JNIEXPORT void JNICALL Java_com_packtpub_Store_setString
 (JNIEnv* pEnv, jobject pThis, jstring pKey, jstring pString) {
 const char* lStringTmp = (*pEnv)->GetStringUTFChars(pEnv,
 pString, NULL);
 if (lStringTmp == NULL) {
 return;
 }

 StoreEntry* lEntry = allocateEntry(pEnv, &gStore, pKey);
 if (lEntry != NULL) {
 lEntry->mType = StoreType_String;
 jsize lStringLength = (*pEnv)->GetStringUTFLength(pEnv,
 pString);
 lEntry->mValue.mString =
 (char*) malloc(sizeof(char) * (lStringLength + 1));
 strcpy(lEntry->mValue.mString, lStringTmp);
 }
 (*pEnv)->ReleaseStringUTFChars(pEnv, pString, lStringTmp);
}

17. Finally, write the Android.mk file as follows. Library name is store and the two C
files are listed. To compile C code, run ndk-build inside project’s root:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_CFLAGS := -DHAVE_INTTYPES_H
LOCAL_MODULE := store
LOCAL_SRC_FILES := com_packtpub_Store.c Store.c

include $(BUILD_SHARED_LIBRARY)

What just happened?
Run the application, save a few entries with different keys, types, and values and try to get
them back from the native store. We have managed to pass and retrieve int primitives and
strings from Java to C. These values are saved in a data store indexed by a string key. Entries
can be retrieved from the store with respect to their key and type.

Interfacing Java and C/C++ with JNI

[84]

Integer primitives wear several dresses during native calls: first an int in Java code, then
a jint during transfer from/to Java code and finally an int/int32_t in native code.
Obviously, we could have kept the JNI representation jint in native code since both types
are equivalent.

Type int32_t is a typedef refering to int introduced by the C99 standard
library with the aim at more portability. More numeric types are available in
stdint.h. to force their use in JNI, declare -DHAVE_INTTYPES_H macro
in Android.mk.

More generally, primitive types have all their proper representations:

Java type JNI type C type Stdint C type

boolean Jboolean unsigned char uint8_t

byte Jbyte signed char int8_t

char Jchar unsigned short uint16_t

double Jdouble double double

float jfloat float float

int jint Int int32_t

long jlong long long int64_t

short jshort Short int16_t

On the other hand, Java strings need a concrete conversion to C strings to allow processing
using standard C string routines. Indeed, jstring is not a representation of a classic char*
array but of a reference to a Java String object, accessible from Java code only.

Conversion is performed with JNI method GetStringUTFChars() which must match with
a call to ReleaseStringUTFChars(). Internally, this conversion allocates a new string
buffer. The resulting C string is encoded in modified UTF-8 format (a slightly different flavor
of UTF-8) that allows processing with standard C routine. Modified UTF-8 can represent
standard ASCII characters (that is, on one byte) and can grow to several bytes for extended
characters. This format is different than Java string, which uses an UTF-16 representation
(which explains why Java characters are 16-bit, as shown in the preceding table). To avoid an
internal conversion when getting native strings, JNI also provides GetStringChars() and
ReleaseStringChars(), which returns an UTF-16 representation instead. This format is
not zero-terminated like classic C strings. Thus, it is compulsory to use them in conjunction
with GetStringLength() (whereas GetStringUTFLength() can be replaced by a classic
strlen() with modified UTF-8).

Chapter 3

[85]

See JNI specification at http://java.sun.com/docs/books/jni/html/jniTOC.
html for more details on the subject. Refer to http://java.sun.com/docs/books/
jni/html/types.html for details to know more about JNI types and to http://java.
sun.com/developer/technicalArticles/Intl/Supplementary for an interesting
discussion about strings in Java.

Have a go hero – passing and returning other primitive types
The current store deals only with integers and strings. Based on this model, try to implement
store methods for other primitive types: boolean, byte, char, double, float, long,
and short.

Project Store_Part3-Final provided with this book implements these cases.

Referencing Java objects from native code
We know from a previous part that a string is represented in JNI as a jstring, which is in
fact a Java object which means that it is possible to exchange Java objects through JNI! But
because native code cannot understand or access Java directly, all Java objects have the
same representation: a jobject.

In this part, we are going to focus on how to save an object on the native side and how
to send it back to Java. In the next project, we are going to work with colors, although any
other type of object would work.

Project Store_Part3-1 can be used as a starting point for this part. The
resulting project is provided with this book under the name Store_Part3-2.

Time for action – saving a reference to an object in the Store
First, let’s append the Color data type to the Java client:

1. In package com.packtpub, create a new class Color that contains an integer
representation of a color. This integer is parsed from a String (HTML codes such
as #FF0000) thanks to the Android android.graphics.Color class:

public class Color {
 private int mColor;

Interfacing Java and C/C++ with JNI

[86]

 public Color(String pColor) {
 super();
 mColor = android.graphics.Color.parseColor(pColor);
 }

 @Override
 public String toString() {
 return String.format(“#%06X”, mColor);
 }
}

2. Change StoreType enumeration to include the new Color data type:

public enum StoreType {
 Integer, String, Color
}

3. Open the Store.java file created in the previous part and add two new methods
to retrieve and save a Color object in the native store:

public class Store {
 static {
 System.loadLibrary(“store”);
 }
 ...

 public native Color getColor(String pKey);
 public native void setColor(String pKey, Color pColor);
}

4. Open the existing file StoreActivity.java and update methods onGetValue()
and onSetValue() to display and parse Color instances. Note that color parsing
can generate an IllegalArgumentException if color code is incorrect:

public class StoreActivity extends Activity {
 ...
 private void onGetValue() {
 String lKey = mUIKeyEdit.getText().toString();
 StoreType lType = (StoreType) mUITypeSpinner
 .getSelectedItem();

 switch (lType) {
 ...
 case Color:
 mUIValueEdit.setText(mStore.getColor(lKey).toString());
 break;
 }
 }

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[87]

 private void onSetValue() {
 String lKey = mUIKeyEdit.getText().toString();
 String lValue = mUIValueEdit.getText().toString();
 StoreType lType = (StoreType) mUITypeSpinner
 .getSelectedItem();

 try {
 switch (lType) {
 ...
 case Color:
 mStore.setColor(lKey, new Color(lValue));
 break;
 }
 }
 catch (NumberFormatException eNumberFormatException) {
 displayError(“Incorrect value.”);
 } catch (IllegalArgumentException eIllegalArgumentException)
 {
 displayError(“Incorrect value.”);
 }
 }
 ...
}

The Java side is now ready. Let’s write the necessary code to retrieve and store a
Color entry inside native code.

5. In jni/Store.h, append the new color type to the StoreType enumeration and
add a new member to the StoreValue union. But what type to use, since Color
is an object known only from Java? In JNI, all java objects have the same type:
jobject, an (indirect) object reference:

...
typedef enum {
 StoreType_Integer, StoreType_String, StoreType_Color
} StoreType;

typedef union {
 int32_t mInteger;
 char* mString;
 jobject mColor;
} StoreValue;
...

Interfacing Java and C/C++ with JNI

[88]

6. Re-generate JNI header file jni/com_packtpub_Store.h with javah.

7. Two new method prototypes getColor() and setColor() have been freshly
generated. We have to implement them. First one simply returns the Java Color
object kept in the store entry. No difficulties here.

The real subtleties are introduced in the second method setColor(). Indeed, at
first sight, simply saving the jobject value in the store entry would seem sufficient.
But this assumption is wrong. Objects passed in parameters or created inside a JNI
method are local references. Local references cannot be kept in native code outside
method scope.

To be allowed to keep a Java object reference in native code after method returns,
they must be turned into global references to inform the Dalvik VM that they
cannot be garbage collected. To do so, JNI API provides NewGlobalRef()and
its counterpart DeleteGlobalRef(). Here, global reference is deleted if entry
allocation fails:

#include “com_packtpub_Store.h”
#include “Store.h”
...

JNIEXPORT jobject JNICALL Java_com_packtpub_Store_getColor
 (JNIEnv* pEnv, jobject pThis, jstring pKey) {
 StoreEntry* lEntry = findEntry(pEnv, &gStore, pKey, NULL);
 if (isEntryValid(pEnv, lEntry, StoreType_Color)) {
 return lEntry->mValue.mColor;
 } else {
 return NULL;
 }
}

JNIEXPORT void JNICALL Java_com_packtpub_Store_setColor
 (JNIEnv* pEnv, jobject pThis, jstring pKey, jobject pColor) {
 jobject lColor = (*pEnv)->NewGlobalRef(pEnv, pColor);
 if (lColor == NULL) {
 return;
 }

 StoreEntry* lEntry = allocateEntry(pEnv, &gStore, pKey);
 if (lEntry != NULL) {
 lEntry->mType = StoreType_Color;
 lEntry->mValue.mColor = lColor;
 } else {
 (*pEnv)->DeleteGlobalRef(pEnv, lColor);
 }
}
...

Chapter 3

[89]

8. A call to NewGlobalRef() must always match with a call to DeleteGlobalRef().
In our example, global reference should be deleted when entry is replaced
by a new one (removal is not implemented). Do it in Store.c by updating
releaseEntryValue():

...
void releaseEntryValue(JNIEnv* pEnv, StoreEntry* pEntry) {
 switch (pEntry->mType) {
 ...
 case StoreType_Color:
 (*pEnv)->DeleteGlobalRef(pEnv, pEntry->mValue.mColor);
 break;
 }
}

What just happened?
Run the application, enter and save a color value such as #FF0000 or red (which is a
predefined value allowed by the Android color parser) and get the entry back from the store.
We have managed to store a Java object on the native side.

All objects coming from Java are represented by a jobject. Even jstring, which is in fact
a typedef over jobject, can be used as such. Because native code invocation is limited to
method boundaries, JNI keeps object references local to this method by default. This means
that a jobject can only be used safely inside the method it was transmitted to. Indeed, the
Dalvik VM is in charge of invoking native methods and can manage Java object references
before and after method is run. But a jobject is just a “pointer” without any smart or
garbage collection mechanism (after all, we want to get rid of Java, at least partially). Once
native method returns, the Dalvik VM has no way to know if native code still holds object
references and can decide to collect them at any time.

Global references are also the only way to share variables between threads
because JNI contexts are always thread local.

To be able to use an object reference outside its scope, reference must be made global with
NewGlobalRef() and “unreferenced” with DeleteGlobalRef(). Without the latter, the
Dalvik VM would consider objects to still be referenced and would never collect them.

Have a look at JNI specification at http://java.sun.com/docs/books/jni/html/
jniTOC.html for more information on the subject.

Interfacing Java and C/C++ with JNI

[90]

Local and global JNI references
When getting an object reference from JNI, this reference is said to be Local. It is
automatically freed (the reference not the object) when native method returns to
allow proper garbage collection later in the Java code. Thus, by default, an object
reference cannot be kept outside the lifetime of a native call. For example:

static jobject gMyReference;
JNIEXPORT void JNICALL Java_MyClass_myMethod(JNIEnv* pEnv,
 jobject pThis, jobject pRef) {
 gMyReference = pRef;
}

The piece of code above should be strictly prohibited. Keeping such a reference outside
JNI method will eventually lead to a disaster (memory corruption or a crash).

Local references can be deleted when they are no longer used:

pEnv->DeleteLocalRef(lReference);

A JVM is required to store at least 16 references at the same time and can refuse to
create more. To do so, explicitly inform it, for example:

pEnv->EnsureLocalCapacity(30)

It is a rather good practice to eliminate references when they are no longer
needed. There are two benefits to act as such:

Because the number of local references in a method is finite. When a piece
of code contains and manipulates many objects such as an array, keep your
number of simultaneous local references low by deleting them as soon as
possible.

Because released local references can be garbage collected immediately and
memory freed if no other references exist.

To keep object references for a longer period of time, one needs to create a global reference:

JNIEXPORT void JNICALL Java_MyClass_myStartMethod (JNIEnv* pEnv,
 jobject pThis, jobject pRef) {
 ...
 gMyReference = pEnv->NewGlobalRef(pEnv, pRef<);
 ...
}

Chapter 3

[91]

And then delete it for proper garbage collection:

JNIEXPORT void JNICALL Java_MyClass_myEndMethod (JNIEnv* pEnv,
 jobject pThis, jobject pRef) {
 ...
 gMyReference = pEnv->DeleteGlobalRef(gMyReference)
 ...
}

Global reference can now be safely shared between two different JNI calls or threads.

Throwing exceptions from native code
Error handling in the Store project is not really satisfying. If the requested key cannot
be found or if the retrieved value type does not match the requested type, a default
value is returned. We definitely need a way to indicate an error happened! And what
better (note that I do not say faster...) to indicate an error than an exception?

Store Wrapper
Functions

int
Color

StoreActivity

<<user>>

StoreType

StoreType

StoreValue
Internal Store
structure

<<Union>> StoreEntry

String

Store
Internal Store
Structure

1

<<user>>

1

1

1

1

Java

C

*

com_packtpub_Store

Store
InvalidTypeException

NotExistingKeyException
StoreFullException

<<throws>>

Project Store_Part3-2 can be used as a starting point for this part. The
resulting project is provided with this book under the name Store_Part3-3.

Interfacing Java and C/C++ with JNI

[92]

Time for action – raising exceptions from the Store
Let’s start by creating and catching exceptions on the Java side:

1. Create a new exception class InvalidTypeException of type Exception in
package com.packtpub.exception as follows:

public class InvalidTypeException extends Exception {
 public InvalidTypeException(String pDetailMessage) {
 super(pDetailMessage);
 }
}

2. Repeat the operation for two other exceptions: NotExistingKeyException of
type Exception and StoreFullException of type RuntimeException instead.

3. Open existing file Store.java and declare thrown exceptions on getter
prototypes only (StoreFullException is a RuntimeException and does
not need declaration):

public class Store {
 static {
 System.loadLibrary(“store”);
 }

 public native int getInteger(String pKey)
 throws NotExistingKeyException, InvalidTypeException;
 public native void setInteger(String pKey, int pInt);

 public native String getString(String pKey)
 throws NotExistingKeyException, InvalidTypeException;
 public native void setString(String pKey, String pString);

 public native Color getColor(String pKey)
 throws NotExistingKeyException, InvalidTypeException;
 public native void setColor(String pKey, Color pColor);
}

4. Exceptions need to be caught. Catch NotExistingKeyException and
InvalidTypeException in onGetValue(). Catch StoreFullException in
onSetValue() in case entry cannot be inserted:

public class StoreActivity extends Activity {
 ...
 private void onGetValue() {

Chapter 3

[93]

 String lKey = mUIKeyEdit.getText().toString();
 StoreType lType = (StoreType) mUITypeSpinner
 .getSelectedItem();

 try {
 switch (lType) {
 ...
 }
 }
 catch (NotExistingKeyException eNotExistingKeyException) {
 displayError(“Key does not exist in store”);
 } catch (InvalidTypeException eInvalidTypeException) {
 displayError(“Incorrect type.”);
 }
 }

 private void onSetValue() {
 String lKey = mUIKeyEdit.getText().toString();
 String lValue = mUIValueEdit.getText().toString();
 StoreType lType = (StoreType) mUITypeSpinner
 .getSelectedItem();

 try {
 switch (lType) {
 ...
 }
 }
 catch (NumberFormatException eNumberFormatException) {
 displayError(“Incorrect value.”);
 } catch (IllegalArgumentException eIllegalArgumentException)
 {
 displayError(“Incorrect value.”);
 } catch (StoreFullException eStoreFullException) {
 displayError(“Store is full.”);
 }
 }
 ...
}

Let’s throw these exceptions from native code. As exceptions are not part of the
C language, JNI exceptions cannot be declared on C method prototypes (the same
goes for C++ which has a different exception model than Java). Thus, there is no
need to re-generate JNI header.

Interfacing Java and C/C++ with JNI

[94]

5. Open jni/Store.h created in previous parts and define three new helper methods
to throw exceptions:

#ifndef _STORE_H_
#define _STORE_H_

...
void throwInvalidTypeException(JNIEnv* pEnv);
void throwNotExistingKeyException(JNIEnv* pEnv);
void throwStoreFullException(JNIEnv* pEnv);
#endif

6. NotExistingKeyException and InvalidTypeException are only thrown
when getting a value from the store. A good place to raise them is when checking an
entry with isEntryValid(). Open and change the jni/Store.c file accordingly:

#include “Store.h”
#include <string.h>

int32_t isEntryValid(JNIEnv* pEnv, StoreEntry* pEntry,
 StoreType pType) {
 if (pEntry == NULL) {
 throwNotExistingKeyException(pEnv);
 } else if (pEntry->mType != pType) {
 throwInvalidTypeException(pEnv);
 } else {
 return 1;
 }
 return 0;
}
...

7. StoreFullException is obviously raised when a new entry is inserted. Modify
allocateEntry()in the same file to check entry insertions:

...
StoreEntry* allocateEntry(JNIEnv* pEnv, Store* pStore, jstring
pKey){
 StoreEntry* lEntry = findEntry(pEnv, pStore, pKey);
 if (lEntry != NULL) {
 releaseEntryValue(pEnv, lEntry);
 } else {
 if (pStore->mLength >= STORE_MAX_CAPACITY) {
 throwStoreFullException(pEnv);
 return NULL;
 }

Chapter 3

[95]

 // Initializes and insert the new entry.
 ...
 }
 return lEntry;
}
...

8. We must implement throwNotExistingException(). To throw a Java exception,
the first task is to find the corresponding class (like with the Java Reflection API).
A Java class reference is represented in JNI with the specific type jclass. Then,
raise the exception with ThrowNew(). Once we no longer need the exception class
reference, we can get rid of it with DeleteLocalRef():

...
void throwNotExistingKeyException(JNIEnv* pEnv) {
 jclass lClass = (*pEnv)->FindClass(pEnv,
 “com/packtpub/exception/NotExistingKeyException”);
 if (lClass != NULL) {
 (*pEnv)->ThrowNew(pEnv, lClass, “Key does not exist.”);
 }
 (*pEnv)->DeleteLocalRef(pEnv, lClass);
}

9. Repeat the operation for the two other exceptions. The code is identical (even to
throw a runtime exception), only the class name changes.

What just happened?
Launch the application and try to get an entry with a non-existing key. Repeat the operation
with an entry which exists in the store but with a different type then the one selected in the
GUI. In both cases, there is an error message because of the raised exception. Try to save
more than 16 references in the store and you will get an error again.

Raising exception is a not a complex task. In addition, it is a good introduction to the Java
call-back mechanism provided by JNI. An exception is instantiated with a class descriptor of
type jclass (which is also a jobject behind the scenes). Class descriptor is searched in
the current class loader according to its complete name (package path included).

Do not forget about return codes

FindClass() and JNI methods in general can fail for several reasons (not
enough memory is available, class not found, and so on). Thus checking their
result is highly advised.

Interfacing Java and C/C++ with JNI

[96]

Once an exception is raised, do not make further call to JNI except cleaning methods
(DeleteLocalRef(), DeleteGlobalRef(), and so on). Native code should clean its
resources and give control back to Java, although it is possible to continue “pure” native
processing if no Java is invoked. When native method returns, exception is propagated
by the VM to Java.

We have also deleted a local reference, the one pointing to the class descriptor because
it was not needed any more after its use (step 8). When JNI lends you something, do not
forget to give it back!

JNI in C++
C is not an object-oriented language but C++ is. This is why you do not write JNI in C like
in C++.

In C, JNIEnv is in fact a structure containing function pointer. Of course, when a JNIEnv is
given to you, all these pointers are initialized so that you can call them a bit like an object.
However, the this parameter, which is implicit in an object-oriented language, is given as
first parameter in C (pJNIEnv in the following code). Also, JNIEnv needs to be dereferenced
the first time to run a method:

 jclass ClassContext = (*pJNIEnv)->FindClass(pJNIEnv,
 “android/content/Context”);

C++ code is more natural and simple. The this parameter is implicit and there is no need to
dereference JNIEnv, as methods are not declared as function pointer anymore but as real
member methods:

 jclass ClassContext = lJNIEnv->FindClass(
 “android/content/Context”);

Handling Java arrays
There is one type we have not talked about yet: arrays. Arrays have a specific place in JNI
like in Java. They have their proper types and their proper API, although Java arrays are also
objects at their root. Let’s improve the Store project by letting users enter a set of values
simultaneously in an entry. Then, this set is going to be communicated to the native backend
in a Java array which is then going to be stored as a classic C array.

Project Store_Part3-3 can be used as a starting point for this part. The
resulting project is provided with this book under the name Store_Part3-4.

Chapter 3

[97]

Time for action – saving a reference to an object in the Store
Let’s start again with the Java code:

1. To help us handling operations on arrays, let’s download a helper library: Google
Guava (release r09 in this book) at http://code.google.com/p/guava-
libraries. Guava offers many useful methods to deal primitives and arrays and
perform “pseudo-functional” programming. Copy guava-r09 jar contained in
the downloaded ZIP in libs.

2. Open project Properties and go to the Java Build Path section. In the
Libraries tab, reference Guava jar by clicking on the Add JARs... button. Validate.

3. Edit StoreType enumeration initiated in previous parts and add two new values
the IntegerArray and ColorArray:

public enum StoreType {
 Integer, String, Color,
 IntegerArray, ColorArray
}

4. Open Store.java and add new methods to retrieve and save int and Color
arrays:

public class Store {
 static {
 System.loadLibrary(“store”);
 }
 ...

 public native int[] getIntegerArray(String pKey)
 throws NotExistingKeyException;
 public native void setIntegerArray(String pKey,
int[] pIntArray);

 public native Color[] getColorArray(String pKey)
 throws NotExistingKeyException;
 public native void setColorArray(String pKey,
 Color[] pColorArray);
}

Interfacing Java and C/C++ with JNI

[98]

5. Finally, connect native methods to the GUI in file StoreActivity.java. First,
onGetValue() retrieves an array from the store, concatenates its values with a
semicolon separator thanks to Guava joiners (more information can be found in
Guava Javadoc at http://guava-libraries.googlecode.com/svn) and
finally displays them:

public class StoreActivity extends Activity {
 ...
 private void onGetValue() {
 String lKey = mUIKeyEdit.getText().toString();
 StoreType lType = (StoreType) mUITypeSpinner
 .getSelectedItem();

 try {
 switch (lType) {
 ...
 case IntegerArray:
 mUIValueEdit.setText(Ints.join(“;”,
 mStore.getIntegerArray(lKey)));
 break;

 case ColorArray:
 mUIValueEdit.setText(Joiner.on(“;”).join(
 mStore.getColorArray(lKey)));
 break;
 }
 }
 catch (NotExistingKeyException eNotExistingKeyException) {
 displayError(“Key does not exist in store”);
 } catch (InvalidTypeException eInvalidTypeException) {
 displayError(“Incorrect type.”);
 }
 }
 ...

6. In StoreActivity.java, improve onSetValue() to convert a list of user
entered values into an array before sending it to the Store. Use the Guava
transformation feature to accomplish this task: a Function object (or functor)
converting a string value into the target type is passed to the helper method
stringToList(). The latter splits the user string on the semicolon separator
before running transformations:

 ...
 private void onSetValue() {
 String lKey = mUIKeyEdit.getText().toString();

Chapter 3

[99]

 String lValue = mUIValueEdit.getText().toString();
 StoreType lType = (StoreType) mUITypeSpinner
 .getSelectedItem();

 try {
 switch (lType) {
 ...
 case IntegerArray:
 mStore.setIntegerArray(lKey,
 Ints.toArray(stringToList(
 new Function<String, Integer>() {
 public Integer apply(String pSubValue) {
 return Integer.parseInt(pSubValue);
 }
 }, lValue)));
 break;
 case ColorArray:
 List<Color> lIdList = stringToList(
 new Function<String, Color>() {
 public Color apply(String pSubValue) {
 return new Color(pSubValue);
 }
 }, lValue);
 Color[] lIdArray = lIdList.toArray(
 new Color[lIdList.size()]);
 mStore.setColorArray(lKey, lIdArray);
 break;
 }
 }
 catch (NumberFormatException eNumberFormatException) {
 displayError(“Incorrect value.”);
 } catch (IllegalArgumentException eIllegalArgumentException)
 {
 displayError(“Incorrect value.”);
 } catch (StoreFullException eStoreFullException) {
 displayError(“Store is full.”);
 }
 }

 private <TType> List<TType> stringToList(
 Function<String, TType> pConversion,
 String pValue) {
 String[] lSplitArray = pValue.split(“;”);
 List<String> lSplitList = Arrays.asList(lSplitArray);
 return Lists.transform(lSplitList, pConversion);
 }
}

Switch back to the native side.

Interfacing Java and C/C++ with JNI

[100]

7. In jni/Store.h, add the new array types to the enumeration StoreType.

Also declare two new fields mIntegerArray and mColorArray in StoreValue
union. Store arrays are represented as raw C arrays (that is, a pointer).

We also need to remember the length of these arrays. Put this information in a new
field mLength in StoreEntry.

#ifndef _STORE_H_
#define _STORE_H_

#include “jni.h”
#include <stdint.h>

#define STORE_MAX_CAPACITY 16

typedef enum {
 StoreType_Integer, StoreType_String, StoreType_Color,

 StoreType_IntegerArray, StoreType_ColorArray

} StoreType;

typedef union {
 int32_t mInteger;
 char* mString;
 jobject mColor;
 int32_t* mIntegerArray;
 jobject* mColorArray;
} StoreValue;

typedef struct {
 char* mKey;
 StoreType mType;
 StoreValue mValue;

 int32_t mLength;

} StoreEntry;
...

8. Open jni/Store.c and insert new cases in releaseEntryValue() for
arrays. Array allocated memory has to be freed when corresponding entry is
released. As colors are Java objects, delete global references or garbage
collection will never happen:

...
void releaseEntryValue(JNIEnv* pEnv, StoreEntry* pEntry) {
 int32_t i;
 switch (pEntry->mType) {

Chapter 3

[101]

 ...
 case StoreType_IntegerArray:
 free(pEntry->mValue.mIntegerArray);
 break;
 case StoreType_ColorArray:
 for (i = 0; i < pEntry->mLength; ++i) {
 (*pEnv)->DeleteGlobalRef(pEnv,
 pEntry->mValue.mColorArray[i]);
 }
 free(pEntry->mValue.mColorArray);
 break;
 }
}
...

9. Re-generate JNI header jni/com_packtpub_Store.h.

10. Implement all these new store methods in com_packtpub_Store.c, starting with
getIntegerArray(). A JNI array of integers is represented with type jintArray.
If an int is equivalent to a jint, an int* array is absolutely not equivalent to
a jintArray. The first is a pointer to a memory buffer whereas the second is a
reference to an object.

Thus, to return a jintArray here, instantiate a new Java integer array with JNI API
method NewIntArray(). Then, use SetIntArrayRegion() to copy the native
int buffer content into the jintArray.

SetIntArrayRegion() performs bound checking to prevent buffer overflows
and can return an ArrayIndexOutOfBoundsException(). However, there is no
need to check it since there is no statement further in the method to be executed
(exceptions will be propagated automatically by the JNI framework):

#include “com_packtpub_Store.h”
#include “Store.h”
...

JNIEXPORT jintArray JNICALL Java_com_packtpub_Store_
getIntegerArray
 (JNIEnv* pEnv, jobject pThis, jstring pKey) {
 StoreEntry* lEntry = findEntry(pEnv, &gStore, pKey, NULL);
 if (isEntryValid(pEnv, lEntry, StoreType_IntegerArray)) {
 jintArray lJavaArray = (*pEnv)->NewIntArray(pEnv,
 lEntry->mLength);
 if (lJavaArray == NULL) {
 return;
 }

Interfacing Java and C/C++ with JNI

[102]

 (*pEnv)->SetIntArrayRegion(pEnv, lJavaArray, 0,
 lEntry->mLength, lEntry->mValue.mIntegerArray);
 return lJavaArray;
 } else {
 return NULL;
 }
}
...

11. To save a Java array in native code, the inverse operation GetIntArrayRegion()
exists. The only way to allocate a suitable target memory buffer is to measure
array size with GetArrayLength(). GetIntArrayRegion() also performs
bound checking and can raise an exception. So method flow needs to be
stopped immediately when detecting one with ExceptionCheck(). Although
GetIntArrayRegion() is not the only method to raise exceptions, it has the
particularity with SetIntArrayRegion() to return void. There is no way to check
return code. Hence the exception check:

...
JNIEXPORT void JNICALL Java_com_packtpub_Store_setIntegerArray
 (JNIEnv* pEnv, jobject pThis, jstring pKey, jintArray
pIntegerArray) {
 jsize lLength = (*pEnv)->GetArrayLength(pEnv, pIntegerArray);
 int32_t* lArray = (int32_t*) malloc(lLength *
sizeof(int32_t));
 (*pEnv)->GetIntArrayRegion(pEnv, pIntegerArray, 0, lLength,
 lArray);
 if ((*pEnv)->ExceptionCheck(pEnv)) {
 free(lArray);
 return;
 }

 StoreEntry* lEntry = allocateEntry(pEnv, &gStore, pKey);
 if (lEntry != NULL) {
 lEntry->mType = StoreType_IntegerArray;
 lEntry->mLength = lLength;
 lEntry->mValue.mIntegerArray = lArray;
 } else {
 free(lArray);
 return;
 }
}
...

Chapter 3

[103]

12. Object arrays are different than primitive arrays. They are instantiated with a Class
type (here com/packtpub/Color) because Java arrays are mono-type. Object
arrays are represented with type jobjectArray.

On the opposite of primitive arrays, it is not possible to work on all elements at the
same time. Instead, objects are set one by one with SetObjectArrayElement().
Here, array is filled with Color objects stored on the native side, which keeps global
references to them. So there is no need to delete or create any reference here
(except the class descriptor).

Remember that an object array keep references to the objects it holds.
Thus, local as well as global references can be inserted in an array and
deleted safely right after.

...
JNIEXPORT jobjectArray JNICALL Java_com_packtpub_Store_
getColorArray
 (JNIEnv* pEnv, jobject pThis, jstring
pKey) {
 StoreEntry* lEntry = findEntry(pEnv, &gStore, pKey, NULL);
 if (isEntryValid(pEnv, lEntry, StoreType_ColorArray)) {
 jclass lColorClass = (*pEnv)->FindClass(pEnv,
 “com/packtpub/Color”);
 if (lColorClass == NULL) {
 return NULL;
 }
 jobjectArray lJavaArray = (*pEnv)->NewObjectArray(
 pEnv, lEntry->mLength, lColorClass, NULL);
 (*pEnv)->DeleteLocalRef(pEnv, lColorClass);
 if (lJavaArray == NULL) {
 return NULL;
 }

 int32_t i;
 for (i = 0; i < lEntry->mLength; ++i) {
 (*pEnv)->SetObjectArrayElement(pEnv, lJavaArray, i,
 lEntry->mValue.mColorArray[i]);
 if ((*pEnv)->ExceptionCheck(pEnv)) {
 return NULL;
 }
 }
 return lJavaArray;
 } else {
 return NULL;
 } }
...

Interfacing Java and C/C++ with JNI

[104]

13. In setColorArray(), array elements are also retrieved one by one with
GetObjectArrayElement(). Returned references are local and should be
made global to store them safely in a memory buffer. If a problem happens,
global references must be carefully destroyed to allow garbage collection, as
we decide to interrupt processing.

...
JNIEXPORT void JNICALL Java_com_packtpub_Store_setColorArray
(JNIEnv*
 pEnv, jobject pThis, jstring pKey, jobjectArray
pColorArray) {
 jsize lLength = (*pEnv)->GetArrayLength(pEnv, pColorArray);
 jobject* lArray = (jobject*) malloc(lLength *
sizeof(jobject));
 int32_t i, j;
 for (i = 0; i < lLength; ++i) {
 jobject lLocalColor = (*pEnv)->GetObjectArrayElement(pEnv,
 pColorArray, i);
 if (lLocalColor == NULL) {
 for (j = 0; j < i; ++j) {
 (*pEnv)->DeleteGlobalRef(pEnv, lArray[j]);
 }
 free(lArray);
 return;
 }

 lArray[i] = (*pEnv)->NewGlobalRef(pEnv, lLocalColor);
 if (lArray[i] == NULL) {
 for (j = 0; j < i; ++j) {
 (*pEnv)->DeleteGlobalRef(pEnv, lArray[j]);
 }
 free(lArray);
 return;
 }
 (*pEnv)->DeleteLocalRef(pEnv, lLocalColor);
 }

 StoreEntry* lEntry = allocateEntry(pEnv, &gStore, pKey);
 if (lEntry != NULL) {
 lEntry->mType = StoreType_ColorArray;
 lEntry->mLength = lLength;
 lEntry->mValue.mColorArray = lArray;
 } else {
 for (j = 0; j < i; ++j) {

Chapter 3

[105]

 (*pEnv)->DeleteGlobalRef(pEnv, lArray[j]);
 }
 free(lArray);
 return;
 }
}

What just happened?
We have transmitted Java arrays from native to C code and vice versa. Java arrays are objects
which cannot be manipulated natively in C code but only through a dedicated API.

Primitives array types available are jbooleanArray, jbyteArray, jcharArray,
jdoubleArray, jfloatArray, jlongArray, and jshortArray. These arrays are
manipulated “by set”, that is, several elements at a time. There are several ways to
access array content:

Get<Primitive>ArrayRegion() and
Set<Primitive>ArrayRegion()

Copy the content of a Java array into a native
array or reciprocally. This is the best solution
when a local copy is necessary to native code.

Get<Primitive>ArrayElements(),
Set<Primitive>ArrayElements(),
and Release<Primitive>ArrayEle
ments()

These methods are similar but work on a buffer
either temporarily allocated by them or pointing
directly on the target array. This buffer must be
released after use. These are interesting to use if
no local data copy is needed.

Get<Primitive>ArrayCritical()
and Release<Primitive>ArrayCri
tical()

These are more likely to provide a direct access
to the target array (instead of a copy). However,
their usage is restricted: JNI functions and Java
callbacks must not be performed..

The final project Store provides an example of
Get<Primitives>ArrayElements() usage for setBooleanArray().

Objects arrays are specific because on the opposite of primitive arrays each array element
is a reference which can be garbage collected. As a consequence, a new reference is
automatically registered when inserted inside the array. That way, even if calling code
removes its references, array still references them. Object arrays are manipulated with
GetObjectArrayElement() and SetObjectArrayElement().

See http://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/
functions.html for a more exhaustive list of JNI functions.

Interfacing Java and C/C++ with JNI

[106]

Checking JNI exceptions
In JNI, methods which can raise an exception (most of them actually) should be carefully
checked. If a return code or pointer is given back, checking it is sufficient to know if something
happened. But sometimes, with Java callbacks or methods like GetIntArrayRegion(),
we have no return code. In that case, exceptions should be checked systematically with
ExceptionOccured() or ExceptionCheck(). The first returns a jthrowable type
containing a reference to the raised exception whereas the latter just returns a
Boolean indicator.

When an exception is raised, any subsequent call fails until either:

 � method returns and exception is propagated.

 � or exception is cleared. Clearing an exception mean that the exception is handled
and thus not propagated to Java. For example:

Jthrowable lException;
pEnv->CallObjectMethod(pJNIEnv, ...);
lException = pEnv->ExceptionOccurred(pEnv);
if (lException) {
 // Do something...
 pEnv->ExceptionDescribe();
 pEnv->ExceptionClear();
 (*pEnv)->DeleteLocalRef(pEnv, lException);
}

Here, ExceptionDescribe() is a utility routine to dump exception content like done by
printStackTrace() in Java. Only a few JNI methods are still safe to call when handling
an exception:

DeleteLocalRef() PushLocalFrame()

DeleteGlobalRef() PopLocalFrame()

ExceptionOccured() ReleaseStringChars()

ExceptionDescribe() ReleaseStringUTFChars()

ExceptionOccured() ReleaseStringCritical()

ExceptionDescribe() Release<Primitive>ArrayElements()

MonitorExit() ReleasePrimitiveArrayCritical()

Chapter 3

[107]

Have a go hero – handling other array types
With the knowledge freshly acquired, implement store methods for other array types:
jbooleanArray, jbyteArray, jcharArray, jdoubleArray, jfloatArray,
jlongArray, and jshortArray. When you are done, write operations for string arrays.

The final project Store implementing these cases
is provided with this book.

Summary
In this chapter, we have seen how to make Java communicate with C/C++. Android is now
almost bilingual! Java can call C/C++ code with any type of data or objects. More specifically,
we have seen how to call native code with primitive types. These primitives have their C/
C++ equivalent type they can can be casted to. Then, we have passed objects and handled
their references. References are local to a method by default and should not be shared
outside method scope. They should be managed carefully as their number is limited (this
limit can still be manually increased). After that, we have shared and stored objects with
global references. Global references need to be carefully deleted to ensure proper garbage
collection. We have also raised exceptions from native code to notify Java if a problem
occurred and check exceptions occurring in JNI. When an exception occurs, only a few
cleaning JNI methods are safe to call. Finally, we have manipulated primitive and objects
arrays. Arrays may or may not be copied by the VM when manipulated in native code. The
performance penalty has to be taken into account.

But there is still more to come: how to call Java from C/C++ code. We got a partial overview
with exceptions. But actually, any Java object, method, or field can be handled by native
code. Let’s see this in the next chapter.

4
Calling Java Back from Native Code

To reach its full potential, JNI allows calling Java code from C/C++. This is often
referred to as a callback since native code is itself invoked from Java. Such calls
are performed through a reflective API, which allows doing almost anything
that can be done directly in Java. Another important matter to consider with
JNI is threading. Native code can be run on a Java thread, managed by
the Dalvik VM, and also from a native thread created with standard POSIX
primitives. Obviously, a native thread cannot call JNI code unless it is turned
into a managed thread! Programming with JNI necessitates knowledge of all
these subtleties. This chapter will guide you through the main ones.

Since version R5, the Android NDK also proposes a new API to access natively
an important type of Java objects: bitmaps. This bitmap API is Android-specific
and aims at giving full processing power to graphics applications running on
these tiny (but powerful) devices. To illustrate this topic, we will see how to
decode a camera feed directly inside native code.

To summarize, in this chapter, we are going to learn how to:

 � Attach a JNI context to a native thread

 � Handle synchronization with Java threads

 � Call Java back from native code

 � Process Java bitmaps in native code

By the end of the chapter, you should be able to make Java and C/C++ communicate
together in both directions.

Calling Java Back from Native Code

[110]

Synchronizing Java and native threads
In this part, we are going to create a background thread, the watcher, which keeps an eye
constantly on what is inside the data store. It iterates through all entries and then sleeps
for a fixed amount of time. When the watcher thread finds a specific key, value, or type
predefined in code, it acts accordingly. For this first part, we are just going to increment a
watcher counter each time the watcher thread iterates over entries. In next part, we will
see how to react by calling back Java.

Of course, threads also needs synchronization. The native thread will be allowed to access
and update the store only when a user (understand the UI thread) is not modifying it. The
native thread is in C but the UI thread in Java. Thus, we have two options here:

 � Use native mutexes as our UI thread makes native calls when getting and setting
values anyway

 � Use Java monitors and synchronize native thread with JNI

Of course, in a chapter dedicated to JNI, we can only choose the second option! The final
application structure will look as follows:

Internal Store
structure
Internal Store
Structure

Store Wrapper
Functions

int
Color

StoreActivity

<<user>>

StoreType

StoreType

StoreValue<<Union>> StoreEntry

String

Store

1

<<user>>

1

1

1

1

Java

C

*

com_packtpub_Store

Store
InvalidTypeException

NotExistingKeyException
StoreFullException

<<throws>>

StoreWatcher

1

Project Store_Part3-4 can be used as a starting point for this part. The resulting
project is provided with this book under the name Project Store_Part4-1.

Chapter 4

[111]

Time for action – running a background thread
Let's add some synchronization capabilities on the Java first:

1. Open Store.java created in the previous chapter. Create two new native methods,
initializeStore() and finalizeStore(), to start/stop the watcher thread and
initialize/destroy the store when activity is started and stopped, respectively.

Make every Store class's getter and setter synchronized, as they are not allowed
to access and modify store entries while the watcher thread iterates through them:

public class Store {
 static {
 System.loadLibrary("store");
 }

 public native void initializeStore();
 public native void finalizeStore();

 public native synchronized int getInteger(String pKey)
 throws NotExistingKeyException, InvalidTypeException;
 public native synchronized void setInteger(String pKey,
 int pInt);

 // Other getters and setters are synchronized too.
 ...
}

2. Call initialization and finalization methods when activity is started and stopped.
Create a watcherCounter entry of type integer when store is initialized.
This entry will be updated automatically by the watcher:

public class StoreActivity extends Activity {
 private EditText mUIKeyEdit, mUIValueEdit;
 private Spinner mUITypeSpinner;
 private Button mUIGetButton, mUISetButton;
 private Store mStore;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Initializes components and binds buttons to handlers.
 ...
 // Initializes the native side store.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Calling Java Back from Native Code

[112]

 mStore = new Store();
 }

 @Override
 protected void onStart() {
 super.onStart();
 mStore.initializeStore();
 mStore.setInteger("watcherCounter", 0);
 }

 @Override
 protected void onStop() {
 super.onStop();
 mStore.finalizeStore();
 }
 ...
}

The Java side is ready to initialize and destroy the native thread... Let's switch to the
native side to implement it:

3. Create a new file StoreWatcher.h in folder jni. Include Store, JNI, and native
threads headers.

The watcher works on a Store instance updated at regular intervals of time
(three seconds here). It needs:

 � A JavaVM, which is the only object safely shareable among threads from
which a JNI environment can be safely retrieved.

 � A Java object to synchronize on, here the Java Store frontend object
because it has synchronized methods.

 � Variables dedicated to thread management.

4. Finally, define two methods to start the native thread after initialization and stop it:

#ifndef _STOREWATCHER_H_
#define _STOREWATCHER_H_

#include "Store.h"
#include <jni.h>
#include <stdint.h>
#include <pthread.h>

#define SLEEP_DURATION 5
#define STATE_OK 0

Chapter 4

[113]

#define STATE_KO 1

typedef struct {
 // Native variables.
 Store* mStore;
 // Cached JNI references.
 JavaVM* mJavaVM;
 jobject mStoreFront;
 // Thread variables.
 pthread_t mThread;
 int32_t mState;
} StoreWatcher;

void startWatcher(JNIEnv* pEnv, StoreWatcher* pWatcher,
 Store* pStore, jobject pStoreFront);
void stopWatcher(JNIEnv* pEnv, StoreWatcher* pWatcher);

#endif

5. Create jni/StoreWatcher.h and declare additional private methods:

 � runWatcher(): This represents the native thread main loop.

 � processEntry(): This is invoked while a watcher iterates through entries.

 � getJNIEnv(): This retrieves a JNI environment for the current thread.

 � deleteGlobalRef(): This helps delete global references previously
created.

#include "StoreWatcher.h"
#include <unistd.h>

void deleteGlobalRef(JNIEnv* pEnv, jobject* pRef);
JNIEnv* getJNIEnv(JavaVM* pJavaVM);

void* runWatcher(void* pArgs);
void processEntry(JNIEnv* pEnv, StoreWatcher* pWatcher,
 StoreEntry* pEntry);
...

6. In jni/StoreWatcher.c, implement startWatcher(), invoked from the UI
thread, that set up the StoreWatcher structure and starts the watcher thread,
thanks to POSIX primitives.

Calling Java Back from Native Code

[114]

7. Because the UI thread may access store content at the same time the watcher
thread checks entries, we need to keep an object to synchronize on. Let's use Store
class itself since its getters and setters are synchronized:

In Java, synchronization is always performed on an object. When a Java method
is defined with the synchronized keyword, then Java synchronizes on
this (the current object) behind the scene: synchronized(this) {
doSomething(); ... }.

...
void startWatcher(JNIEnv* pEnv, StoreWatcher* pWatcher,
 Store* pStore, jobject pStoreFront) {
 // Erases the StoreWatcher structure.
 memset(pWatcher, 0, sizeof(StoreWatcher));
 pWatcher->mState = STATE_OK;
 pWatcher->mStore = pStore;
 // Caches the VM.
 if ((*pEnv)->GetJavaVM(pEnv, &pWatcher->mJavaVM) != JNI_OK) {
 goto ERROR;
 }

 // Caches objects.
 pWatcher->mStoreFront = (*pEnv)->NewGlobalRef
 (pEnv, pStoreFront);
 if (pWatcher->mStoreFront == NULL) goto ERROR;

 // Initializes and launches the native thread. For simplicity
 // purpose, error results are not checked (but we should...).
 pthread_attr_t lAttributes;
 int lError = pthread_attr_init(&lAttributes);
 if (lError) goto ERROR;

 lError = pthread_create(&pWatcher->mThread, &lAttributes,
 runWatcher, pWatcher);
 if (lError) goto ERROR;
 return;

ERROR:
 stopWatcher(pEnv, pWatcher);
 return;
}

...

Chapter 4

[115]

8. In StoreWatcher.c, implement helper method getJNIEnv(), which is called
when the thread starts. The watcher thread is native, which means that:

 � No JNI environment is attached. Thus, JNI is not activated by default for the
thread.

 � It is not instantiated by Java and has no "Java root", that is, if you look at the
call stack, you never find a Java method.

Having no Java root is an important property of native threads because it
impacts directly the ability of JNI to load Java classes. Indeed, it is not possible
from a native thread to access the Java application class loader. Only a
bootstrap class loader with system classes is available. A Java thread on the
opposite always has a Java root and thus can access the application class
loader with its application classes.

A solution to that problem is to load classes in an appropriate Java thread and
to share them later with native threads.

9. The native thread is attached to the VM with AttachCurrentThread() in order to
retrieve a JNIEnv. This JNI environment is specific to the current thread and cannot
be shared with others (he opposite of a JavaVM object which can be shared safely).
Internally, the VM builds a new Thread object and adds it to the main thread group,
like any other Java thread:

...
JNIEnv* getJNIEnv(JavaVM* pJavaVM) {
 JavaVMAttachArgs lJavaVMAttachArgs;
 lJavaVMAttachArgs.version = JNI_VERSION_1_6;
 lJavaVMAttachArgs.name = "NativeThread";
 lJavaVMAttachArgs.group = NULL;

 JNIEnv* lEnv;
 if ((*pJavaVM)->AttachCurrentThread(pJavaVM, &lEnv,
 &lJavaVMAttachArgs) != JNI_OK) {
 lEnv = NULL;
 }
 return lEnv;
}
...

10. The most important method is runWatcher(), the main thread loop. Here, we are
not anymore on the UI thread but on the watcher thread. Thus we need to attach it
to the VM in order to get a working JNI environment.

Calling Java Back from Native Code

[116]

11. The thread works only at regular intervals of time and sleeps meanwhile. When
it leaves its nap, the thread starts looping over each entry individually in a critical
section (that is, synchronized) to access them safely. Indeed, the UI thread (that is,
the user) may change an entry value at any time.

12. Critical section is delimited with a JNI monitor which has exactly the same properties
as the synchronized keyword in Java. Obviously, MonitorEnter() and
MonitorExit() have to lock/unlock on the object mStoreFront to synchronize
properly with its getters and setters. These instructions ensure that the first thread
to reach a monitor/synchronized block will enter the section while the other will
wait in front of the door until the first has finished.

13. Thread leaves the loop and exits when state variable is changed by the UI thread
(in stopWatcher()). An attached thread which dies must eventually detach from
the VM so that the latter can release resources properly:

...
void* runWatcher(void* pArgs) {
 StoreWatcher* lWatcher = (StoreWatcher*) pArgs;
 Store* lStore = lWatcher->mStore;
 JavaVM* lJavaVM = lWatcher->mJavaVM;

 JNIEnv* lEnv = getJNIEnv(lJavaVM);
 if (lEnv == NULL) goto ERROR;

 int32_t lRunning = 1;
 while (lRunning) {
 sleep(SLEEP_DURATION);

 StoreEntry* lEntry = lWatcher->mStore->mEntries;
 int32_t lScanning = 1;
 while (lScanning) {
 // Critical section begining, one thread at a time.
 // Entries cannot be added or modified.
 (*lEnv)->MonitorEnter(lEnv, lWatcher->mStoreFront);
 lRunning = (lWatcher->mState == STATE_OK);
 StoreEntry* lEntryEnd = lWatcher->mStore->mEntries
 + lWatcher->mStore->mLength;
 lScanning = (lEntry < lEntryEnd);

 if (lRunning && lScanning) {
 processEntry(lEnv, lWatcher, lEntry);
 }

 // Critical section end.

Chapter 4

[117]

 (*lEnv)->MonitorExit(lEnv, lWatcher->mStoreFront);
 // Goes to next element.
 ++lEntry;
 }
 }

ERROR:
 (*lJavaVM)->DetachCurrentThread(lJavaVM);
 pthread_exit(NULL);
}
...

14. In StoreWatcher, write processEntry() which detects the watcherCounter
entry and increment its value. Thus, watcherCounter contains how many
iterations the watcher thread has performed since the beginning:

...
void processEntry(JNIEnv* pEnv, StoreWatcher* pWatcher,
 StoreEntry* pEntry) {
 if ((pEntry->mType == StoreType_Integer)
 && (strcmp(pEntry->mKey, "watcherCounter") == 0) {
 ++pEntry->mValue.mInteger;
 }
}
...

15. To finish with jni/StoreWatcher.c, write stopWatcher(), also executed on the
UI thread, which terminates the watcher thread and releases all global references.
To help releasing them, implement deleteGlobalRef() helper utility which will
help us make the code more consise in the next part. Note that mState is a shared
variable among threads and need to be accessed inside a critical section:

...
void deleteGlobalRef(JNIEnv* pEnv, jobject* pRef) {
 if (*pRef != NULL) {
 (*pEnv)->DeleteGlobalRef(pEnv, *pRef);
 *pRef = NULL;
 }
}

void stopWatcher(JNIEnv* pEnv, StoreWatcher* pWatcher) {
 if (pWatcher->mState == STATE_OK) {
 // Waits for the watcher thread to stop.
 (*pEnv)->MonitorEnter(pEnv, pWatcher->mStoreFront);
 pWatcher->mState = STATE_KO;

Calling Java Back from Native Code

[118]

 (*pEnv)->MonitorExit(pEnv, pWatcher->mStoreFront);
 pthread_join(pWatcher->mThread, NULL);

 deleteGlobalRef(pEnv, &pWatcher->mStoreFront);
 }
}

16. Generate JNI header file with javah.

17. Finally, open existing file jni/com_packtpub_Store.c, declare a static Store
variable containing store content and define initializeStore() to create and
run the watcher thread and finalizeStore() to stop it and release entries:

#include "com_packtpub_Store.h"
#include "Store.h"
#include "StoreWatcher.h"
#include <stdint.h>
#include <string.h>

static Store mStore;
static StoreWatcher mStoreWatcher;

JNIEXPORT void JNICALL Java_com_packtpub_Store_initializeStore
 (JNIEnv* pEnv, jobject pThis) {
 mStore.mLength = 0;
 startWatcher(pEnv, &mStoreWatcher, &mStore, pThis);
}

JNIEXPORT void JNICALL Java_com_packtpub_Store_finalizeStore
 (JNIEnv* pEnv, jobject pThis) {
 stopWatcher(pEnv, &mStoreWatcher);

 StoreEntry* lEntry = mStore.mEntries;
 StoreEntry* lEntryEnd = lEntry + mStore.mLength;
 while (lEntry < lEntryEnd) {
 free(lEntry->mKey);
 releaseEntryValue(pEnv, lEntry);

 ++lEntry;
 }
 mStore.mLength = 0;
}
...

Chapter 4

[119]

18. Do not forget to add StoreWatcher.c to the Android.mk file as usual.

19. Compile and run the application.

What just happened?
We have created a background native thread and managed to attach it to the Dalvik VM,
allowing us to get a JNI environment. Then we have synchronized Java and native threads
together to handle concurrency issues properly. Store is initialized when application starts
and when it stops.

On the native side, synchronization is performed with a JNI monitor equivalent to the
synchronized keyword. Because Java threads are based on POSIX primitives internally,
it would also be possible to implement thread synchronization completely natively
(that is, without relying on Java primitive) with POSIX mutexes:

pthread_mutex_t lMutex;
pthread_cond_t lCond;

// Initializes synchronization variables
pthread_mutex_init(&lMutex, NULL);
pthread_cond_init(&lCond, NULL);

// Enters critical section.
pthread_mutex_lock(&lMutex);

// Waits for a condition
While (needToWait)
 pthread_cond_wait(&lCond, &lMutex);

// Does something...

// Wakes-up other threads.
pthread_cond_broadcast(&lCond);

// Leaves critical section.
pthread_mutex_unlock(&lMutex);

Depending on the platform, mixing Java thread synchronization and native
synchronization based on different models is considered as a harmful practice
(for example, platforms which implement green threads). Android is not
concerned by this problem but keep it in mind if you plan to write portable
native code.

Calling Java Back from Native Code

[120]

As a last note I would like to point out that Java and C/C++ are different languages, with
similar but somewhat different semantics. Thus, always be careful not to expect C/C++ to
behave like Java. As an example, the volatile has a different semantic in Java and C/C++
since both follow a different memory model.

Attaching and detaching threads
A good place to get JavaVM instance is from JNI_OnLoad(), a callback that a native library
can declare and implement to get notified when library is loaded in memory (when System.
loadLibrary() is called from Java). This is also a good place to do some JNI descriptor
caching as we will see in next part:

JavaVM* myGlobalJavaVM;

jint JNI_OnLoad(JavaVM* pVM, void* reserved) {
 myGlobalJavaVM = pVM;

 JNIEnv *lEnv;
 if (pVM->GetEnv((void**) &lEnv, JNI_VERSION_1_6) != JNI_OK) {

 // A problem occured
 return -1;
 }
 return JNI_VERSION_1_6;
}

 An attached thread like the watcher thread must be eventually unattached before activity is
destroyed. Dalvik detects threads which are not detached and reacts by aborting and leaving
a dirty crash dump in your logs! When getting detached, any monitor held is released and
any waiting thread is notified.

Since Android 2.0, a technique to make sure a thread is systematically detached is to
bind a destructor callback to the native thread with pthread_key_create() and
DetachCurrentThread(). A JNI environment can be saved into thread local storage
with pthread_setspecific() to pass it as an argument to the destructor.

Although attaching/detaching can be performed at any time, these
operations are expensive and should be performed once or punctually
rather than constantly.

Chapter 4

[121]

More on Java and native code lifecycles
If you compare Store_Part3-4 and Store_Part4-1, you will discover that values remain
between executions in the first one. This is because native libraries have a different lifecycle
than usual Android activities. When an activity is destroyed and recreated for any reason
(for example, screen reorientation), any data is lost in the Java activity.

But native library and its global data are likely to remain in memory! Data persists between
executions. This has implications in terms of memory management. Carefully release
memory when an application is destroyed if you do not want to keep it between executions.

Take care with create and destroy events

In some configurations, onDestroy() event has the reputation of
sometimes being executed after an activity instance is recreated. This means
that destruction of an activity may occur unexpectedly after the second
instance is recreated. Obvisously, this can lead to memory corruption or leak.

Several strategies exist to overcome this problem:

 � Create and destroy data in other events if possible (like onStart() and onStop()).
But you will probably need to persist your data somewhere meanwhile (Java file),
which may impact responsiveness.

 � Destroy data only in onCreate(). This has the major inconvenience of not releasing
memory while an application is running in the background.

 � Never allocate global data on the native side (that is, static variables) but save
the pointer to your native data on the Java side: allocate memory when activity is
created and send back your pointer to Java casted as an int (or even better a long
for future compatibility reasons). Any futher JNI call must be performed with this
pointer as parameter.

 � Use a variable on the Java side to detect the case where destruction of an activity
(onDestroy()) happens after a new instance has been recreated (onCreate()).

Do not cache JNIEnv between executions!

Android applications can be destroyed and recreated at any time. If a JNIEnv
is cached on the native side and the application gets closed meanwhile, then
its reference may become invalid. So get back a new reference each time an
application is recreated.

Calling Java Back from Native Code

[122]

Calling Java back from native code
In the previous chapter, we have discovered how to get a Java class descriptor with JNI
method FindClass(). But we can get much more! Actually, if you are a regular Java
developer, this should remind you of something: the Java reflection API. Similarly, JNI can
modify Java object fields, run Java methods, access static members... but from native
code. This is often referred to as a Java callback, because Java code is run from native code
which descends itself from Java. But this is the simple case. Since JNI is tightly coupled with
threads, calling Java code from native threads is slightly more difficult. Attaching a thread
to a VM is only part of the solution.

For this last part with the Store project, let's enhance the watcher thread so that it warns
the Java activity when it detects a value it does not like (for example, an integer outside a
defined range). We are going to use JNI callback capabilities to initiate communication from
native code to Java.

Project Store_Part4-1 can be used as a starting point for this part. The resulting
project is provided with this book under the name Project Store_Part4-2.

Time for action – invoking Java code from a native thread
Let's make a few changes on the Java side:

1. Create a StoreListener interface as follows to define methods through which
native code is going to communicate with Java code:

public interface StoreListener {
 public void onAlert(int pValue);

 public void onAlert(String pValue);

 public void onAlert(Color pValue);
}

2. Open Store.java and make a few changes:

 � Declare one Handler member. A Handler is a message queue associated
with the thread it was created on (here, it will be the UI thread). Any message
posted from whatever thread is received in an internal queue processed
magically on the initial thread. Handlers are a popular and easy inter-thread
communication technique on Android.

Chapter 4

[123]

 � Declare a delegate StoreListener to which messages (that is, a method call)
received from the watcher thread are going to be posted. This will be the
StoreActivity.

 � Change Store constructor to inject the target delegate listener.

 � Implement StoreListener interface and its corresponding methods.
Alert messages are recorded as Runnable tasks and posted to the target
thread, on which the final listener works safely.

public class Store implements StoreListener {
 static {
 System.loadLibrary("store");
 }

 private Handler mHandler;
 private StoreListener mDelegateListener;

 public Store(StoreListener pListener) {
 mHandler = new Handler();
 mDelegateListener = pListener;
 }

 public void onAlert(final int pValue) {
 mHandler.post(new Runnable() {
 public void run() {
 mDelegateListener.onAlert(pValue);
 }
 });
 }

 public void onAlert(final String pValue) {
 mHandler.post(new Runnable() {
 public void run() {
 mDelegateListener.onAlert(pValue);
 }
 });
 }

 public void onAlert(final Color pValue) {
 mHandler.post(new Runnable() {
 public void run() {
 mDelegateListener.onAlert(pValue);
 }
 });
 }
 ...
}

Calling Java Back from Native Code

[124]

3. Update the existing class Color and add methods to check equality. This will later
allow the watcher thread to compare an entry to a reference color:

public class Color {
 private int mColor;

 public Color(String pColor) {
 super();
 mColor = android.graphics.Color.parseColor(pColor);
 }

 @Override
 public String toString() {
 return String.format("#%06X", mColor);
 }

 @Override
 public int hashCode() {
 return mColor;
 }

 @Override
 public boolean equals(Object pOther) {
 if (this == pOther) { return true; }
 if (pOther == null) { return false; }
 if (getClass() != pOther.getClass()) { return false; }
 Color pColor = (Color) pOther;
 return (mColor == pColor.mColor);
 }
}

4. Open StoreActivity.java and implement StoreListener interface. When
an alert is received, a simple toast message is raised. Change Store constructor
call accordingly. Note that this is the moment where the thread on which the
internal Handler processes messages is determined:

public class StoreActivity extends Activity implements
StoreListener{
 private EditText mUIKeyEdit, mUIValueEdit;
 private Spinner mUITypeSpinner;
 private Button mUIGetButton, mUISetButton;
 private Store mStore;

 @Override

Chapter 4

[125]

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Initializes components and binds buttons to handlers.
 ...

 // Initializes the native side store.
 mStore = new Store(this);
 }

 ...

 public void onAlert(int pValue) {
 displayError(String.format("%1$d is not an allowed integer",
 pValue));
 }

 public void onAlert(String pValue) {
 displayError(String.format("%1$s is not an allowed string",
 pValue));
 }

 public void onAlert(Color pValue) {
 displayError(String.format("%1$s is not an allowed color",
 pValue.toString()));
 }
}

The Java side is ready to receive callbacks. Let's go back to native code to emit them:

5. Open existing file jni/StoreWatcher.c. The StoreWatcher structure already
has access to the Java Store frontend. But to call its methods (for example, Store.
onAlert()), we need a few more items: declare the appropriate class and method
descriptors like if you were working with the reflection API. Do the same for Color.
equals().

6. In addition, declare a a reference to a Color object which is going to be used as a
base for color comparison by the watcher. Any identical color will be considered as
an alert:

Calling Java Back from Native Code

[126]

What we do here is cache references so that we do not have to find
them again for each JNI call. Caching has two main benefits: it improves
performances (JNI lookups are quite expensive compare to a cached access)
and readability.

Caching is also the only way to provide JNI references to native threads as
they do not have access to the application class loader (only the system one).

#ifndef _STOREWATCHER_H_
#define _STOREWATCHER_H_

...

typedef struct {
 // Native variables.
 Store* mStore;

 // Cached JNI references.
 JavaVM* mJavaVM;
 jobject mStoreFront;
 jobject mColor;
 // Classes.
 jclass ClassStore;
 jclass ClassColor;
 // Methods.
 jmethodID MethodOnAlertInt;
 jmethodID MethodOnAlertString;
 jmethodID MethodOnAlertColor;
 jmethodID MethodColorEquals;

 // Thread variables.
 pthread_t mThread;
 int32_t mState;
} StoreWatcher;
...

7. In jni directory, open implementation file StoreWatcher.c. Declare helper
methods to create a global reference and process entries.

8. Implement makeGlobalRef(), which turns a local into a global reference. This is
a "shortcut" to ensure proper deletion of local references and NULL value handling
(if an error occurs in a previous instruction):

#include "StoreWatcher.h"

Chapter 4

[127]

#include <unistd.h>

void makeGlobalRef(JNIEnv* pEnv, jobject* pRef);
void deleteGlobalRef(JNIEnv* pEnv, jobject* pRef);
JNIEnv* getJNIEnv(JavaVM* pJavaVM);

void* runWatcher(void* pArgs);
void processEntry(JNIEnv* pEnv, StoreWatcher* pWatcher,
 StoreEntry* pEntry);
void processEntryInt(JNIEnv* pEnv, StoreWatcher* pWatcher,
 StoreEntry* pEntry);
void processEntryString(JNIEnv* pEnv, StoreWatcher* pWatcher,
 StoreEntry* pEntry);
void processEntryColor(JNIEnv* pEnv, StoreWatcher* pWatcher,
 StoreEntry* pEntry);

void makeGlobalRef(JNIEnv* pEnv, jobject* pRef) {
 if (*pRef != NULL) {
 jobject lGlobalRef = (*pEnv)->NewGlobalRef(pEnv, *pRef);
 // No need for a local reference any more.
 (*pEnv)->DeleteLocalRef(pEnv, *pRef);
 // Here, lGlobalRef may be null.
 *pRef = lGlobalRef;
 }
}

void deleteGlobalRef(JNIEnv* pEnv, jobject* pRef) {
 if (*pRef != NULL) {
 (*pEnv)->DeleteGlobalRef(pEnv, *pRef);
 *pRef = NULL;
 }
}
...

9. Here is the big piece, still in StoreWatcher.c. If you remember the previous part,
method startWatcher() is called from the UI thread to initialize and start the
watcher. Thus, this is a perfect place to cache JNI descriptors. Actually, this is almost
one of the only places because as the UI thread is a Java thread, we have total
access to the application class loader. But if we were trying to cache them inside
the native thread, the latter would have access only to the system class loader and
nothing else!

Calling Java Back from Native Code

[128]

10. One can find a class descriptor thanks to its absolute package path (for example,
com./packtpub/Store). Because classes are objects, the only way to share them
safely with the native thread is to turn them into global references. This is not the
case for "IDs" such as jmethodID and jfieldID which are in now way references:

...
void startWatcher(JNIEnv* pEnv, StoreWatcher* pWatcher,
 Store* pStore, jobject pStoreFront) {
 // Erases the StoreWatcher structure.
 memset(pWatcher, 0, sizeof(StoreWatcher));
 pWatcher->mState = STATE_OK;
 pWatcher->mStore = pStore;
 // Caches the VM.
 if ((*pEnv)->GetJavaVM(pEnv, &pWatcher->mJavaVM) != JNI_OK) {
 goto ERROR;
 }

 // Caches classes.
 pWatcher->ClassStore = (*pEnv)->FindClass(pEnv,
 "com/packtpub/Store");
 makeGlobalRef(pEnv, &pWatcher->ClassStore);
 if (pWatcher->ClassStore == NULL) goto ERROR;

 pWatcher->ClassColor = (*pEnv)->FindClass(pEnv,
 "com/packtpub/Color");
 makeGlobalRef(pEnv, &pWatcher->ClassColor);
 if (pWatcher->ClassColor == NULL) goto ERROR;
...

11. In start_watcher(), method descriptors are retrieved with JNI from a class
descriptor. To differentiate different overloads with the same name, a description
of the method with a simple predefined formalism is necessary. For example, (I)
V which means an integer is expected and a void returned or (Ljava/lang/
String;)V which means a String is passed in parameter). Constructor descriptors
are retrieved in the same way except that their name is always <init> and they do
not return a value:

...
 // Caches Java methods.
 pWatcher->MethodOnAlertInt = (*pEnv)->GetMethodID(pEnv,
 pWatcher->ClassStore, "onAlert", "(I)V");
 if (pWatcher->MethodOnAlertInt == NULL) goto ERROR;

 pWatcher->MethodOnAlertString = (*pEnv)->GetMethodID(pEnv,

Chapter 4

[129]

 pWatcher->ClassStore, "onAlert", "(Ljava/lang/String;)V");
 if (pWatcher->MethodOnAlertString == NULL) goto ERROR;

 pWatcher->MethodOnAlertColor = (*pEnv)->GetMethodID(pEnv,
 pWatcher->ClassStore, "onAlert","(Lcom/packtpub/Color;)V");
 if (pWatcher->MethodOnAlertColor == NULL) goto ERROR;

 pWatcher->MethodColorEquals = (*pEnv)->GetMethodID(pEnv,
 pWatcher->ClassColor, "equals", "(Ljava/lang/Object;)Z");
 if (pWatcher->MethodColorEquals == NULL) goto ERROR;

 jmethodID ConstructorColor = (*pEnv)->GetMethodID(pEnv,
 pWatcher->ClassColor, "<init>", "(Ljava/lang/String;)V");
 if (ConstructorColor == NULL) goto ERROR;
...

12. Again in the same method start_watcher(), cache object instances with a global
reference. Do not use makeGlobalRef() utility on the Java store frontend because
local reference is actually a parameter and does not need to be released.

13. The color is not an outside object referenced and cached like others. It is instantiated
with JNI by a call to NewObject(), which takes a constructor descriptor in parameter.

...
 // Caches objects.
 pWatcher->mStoreFront = (*pEnv)->NewGlobalRef(pEnv, pStoreFront);
 if (pWatcher->mStoreFront == NULL) goto ERROR;
 // Creates a new white color and keeps a global reference.
 jstring lColor = (*pEnv)->NewStringUTF(pEnv, "white");
 if (lColor == NULL) goto ERROR;

 pWatcher->mColor = (*pEnv)->NewObject(pEnv,pWatcher->ClassColor,
 ConstructorColor, lColor);
 makeGlobalRef(pEnv, &pWatcher->mColor);
 if (pWatcher->mColor == NULL) goto ERROR;

 // Launches the native thread.
 ...
 return;

ERROR:
 stopWatcher(pEnv, pWatcher);
 return;
}
...

Calling Java Back from Native Code

[130]

14. In the same file, rewrite processEntry() to process each type of entry separately.
Check that integers are in the range [-1000, 1000] and send an alert if that is not
the case. To invoke a Java method on a Java object, simply use CallVoidMethod()
on a JNI environment. This means that the called Java method returns void. If Java
method was returning an int, we would call CallIntMethod(). Like with the
reflection API, invoking a Java method requires:

 � An object instance (except for static methods, in which case we would
provide a class instance and use CallStaticVoidMethod()).

 � A method descriptor.

 � Parameters (if applicable, here an integer value).

...
void processEntry(JNIEnv* pEnv, StoreWatcher* pWatcher,
 StoreEntry* pEntry) {
 switch (pEntry->mType) {
 case StoreType_Integer:
 processEntryInt(pEnv, pWatcher, pEntry);
 break;
 case StoreType_String:
 processEntryString(pEnv, pWatcher, pEntry);
 break;
 case StoreType_Color:
 processEntryColor(pEnv, pWatcher, pEntry);
 break;
 }
}

void processEntryInt(JNIEnv* pEnv,StoreWatcher* pWatcher,
 StoreEntry* pEntry) {
 if(strcmp(pEntry->mKey, "watcherCounter") == 0) {
 ++pEntry->mValue.mInteger;
 } else if ((pEntry->mValue.mInteger > 1000) ||
 (pEntry->mValue.mInteger < -1000)) {
 (*pEnv)->CallVoidMethod(pEnv,
 pWatcher->mStoreFront,pWatcher->MethodOnAlertInt,
 (jint) pEntry->mValue.mInteger);
 }
}
...

Chapter 4

[131]

15. Repeat the operation for strings. Strings require allocating a new Java string. We do
not need to generate a global reference as it is used immediately in the Java callback.
But if you have kept in mind previous lessons, you know we can release the local
reference right after it is used. Indeed, we are in a utility method and we do not always
know the context they may be used in. In addition, whereas in a classic JNI method,
local references are deleted when method returns, here we are in an attached native
thread. Thus, local references would get deleted only when thread is detached
(that is, when activity leaves). JNI memory would leak meanwhile:

...
void processEntryString(JNIEnv* pEnv, StoreWatcher* pWatcher,
 StoreEntry* pEntry) {
 if (strcmp(pEntry->mValue.mString, "apple")) {
 jstring lValue = (*pEnv)->NewStringUTF(
 pEnv, pEntry->mValue.mString);
 (*pEnv)->CallVoidMethod(pEnv,
 pWatcher->mStoreFront, pWatcher->MethodOnAlertString,
 lValue);
 (*pEnv)->DeleteLocalRef(pEnv, lValue);
 }
}

16. Finally, process colors. To check if a color is identical to the reference color, invoke
the equality method provided by Java and reimplemented in our Color class.
Because it returns a Boolean value, CallVoidMethod() is inappropriate for the
first test. But CallBooleanMethod() is:

void processEntryColor(JNIEnv* pEnv, StoreWatcher* pWatcher,
 StoreEntry* pEntry) {
 jboolean lResult = (*pEnv)->CallBooleanMethod(
 pEnv, pWatcher->mColor,
 pWatcher->MethodColorEquals, pEntry->mValue.mColor);
 if (lResult) {
 (*pEnv)->CallVoidMethod(pEnv,
 pWatcher->mStoreFront, pWatcher->MethodOnAlertColor,
 pEntry->mValue.mColor);
 }
}
...

Calling Java Back from Native Code

[132]

17. We are almost done. Do not forget to release global references when a thread exits!

...
void stopWatcher(JNIEnv* pEnv, StoreWatcher* pWatcher) {
 if (pWatcher->mState == STATE_OK) {
 // Waits for the watcher thread to stop.
 ...

 deleteGlobalRef(pEnv, &pWatcher->mStoreFront);
 deleteGlobalRef(pEnv, &pWatcher->mColor);
 deleteGlobalRef(pEnv, &pWatcher->ClassStore);
 deleteGlobalRef(pEnv, &pWatcher->ClassColor);
 }
}

18. Compile and run.

What just happened?
Launch the application and create a string entry with the value apple. Then try to create
an entry with white color. Finally, enter an integer value outside the [-1000, 1000] range.
In each case, a message should be raised on screen (every time the watcher iterates).

In this part, we have seen how to cache JNI descriptors and perform callbacks to Java. We
have also introduced a way to send messages between threads with handlers, invoked
indirectly in Java. Android features several other communication means, such as AsyncTask.
Have a look at http://developer.android.com/resources/articles/painless-
threading.html for more information.

Java callbacks are not only useful to execute a Java piece of code, they are also the only way
to analyze jobject parameters passed to a native method. But if calling C/C++ code from
Java is rather easy, performing Java operations from C/C++ is bit more involving! Performing
a single Java call that holds in one single line of Java code requires lots of work! Why? Simply
because JNI is a reflective API.

To get a field value, one needs to get its containing class descriptor and its field descriptor
before actually retrieving its value. To call a method, one needs to retrieve class descriptor
and method descriptor before calling the method with the necessary parameters. The
process is always the same.

Chapter 4

[133]

Caching definitions

Retrieving all these element definitions is not only tedious, it is absolutely not
optimal in terms of performance. Thus, JNI definitions used frequently should
be cached for reuse. Cached elements can be kept safely for the lifetime of
an activity (not of the native library) and shared between threads with global
references (for example, for class descriptors).

Caching is the only solution to communicate with native threads, which do not have access
to the application class loader. But there is a way to limit the amount of definitions to
prepare: instead of caching classes, methods, and fields, simply cache the application class
loader itself.

Do not call back in callbacks!

Calling native code from Java through JNI works perfectly. Calling Java code
from native works perfect too. However, interleaving several levels of Java and
native calls should be avoided.

More on callbacks
The central object in JNI is JNIEnv. It is provided systematically as first parameter to
JNI C/C++ methods called from Java. We have seen:

jclass FindClass(const char* name);
jclass GetObjectClass(jobject obj);
jmethodID GetMethodID(jclass clazz, const char* name,
 const char* sig) ;
jfieldID GetStaticFieldID(jclass clazz, const char* name,
 const char* sig);

but also:

jfieldID GetFieldID(jclass clazz, const char* name, const char* sig);
jmethodID GetStaticMethodID(jclass clazz, const char* name,
 const char* sig);

These allow retrieving JNI descriptors: classes, methods, and fields, static and instance
members having different accessors. Note that FindClass() and GetObjectClass()
have the same purpose except that FindClass finds class definitions according to their
absolute path whereas the other finds the class of an object directly.

Calling Java Back from Native Code

[134]

There is a second set of methods to actually execute methods or retrieve field values.
There is one method per primitive types plus one for objects.

jobject GetObjectField(jobject obj, jfieldID fieldID);
jboolean GetBooleanField(jobject obj, jfieldID fieldID);
void SetObjectField(jobject obj, jfieldID fieldID, jobject value);
void SetBooleanField(jobject obj, jfieldID fieldID, jboolean value);

The same goes for methods according to their return values:

jobject CallObjectMethod(JNIEnv*, jobject, jmethodID, ...)
jboolean CallBooleanMethod(JNIEnv*, jobject, jmethodID, ...);

Variants of call methods exist, with an A and V postfix. Behavior is identical except that
arguments are specified using a va_list (that is, variable argument list) or a jvalue array
(jvalue being an union of all JNI types):

jobject CallObjectMethodV(JNIEnv*, jobject, jmethodID, va_list);
jobject CallObjectMethodA(JNIEnv*, jobject, jmethodID, jvalue*);

Parameters passed to a Java method through JNI must use the available JNI type: jobject
for any object, jboolean for a boolean value, and so on. See the following table for a more
detailed list.

Look for jni.h in the Android NDK include directory to feel all the possibilities by JNI
reflective API.

JNI method definitions
Methods in Java can be overloaded. That means that there can be two methods with
the same name but different parameters. This is why a signature needs to be passed
to GetMethodID() and GetStaticMethodID().

Formally speaking, a signature is declared in the following way:

(<Parameter 1 Type Code>[<Parameter 1 Class>];...)<Return Type Code>

For example:

(Landroid/view/View;I)Z

Chapter 4

[135]

The following table summarizes the various types available in JNI with their code:

Java type Native type Native array type Type code Array type
code

boolean jboolean jbooleanArray Z [Z

byte jbyte jbyteArray B [B

char jchar jcharArray C [C

double jdouble jdoubleArray D [D

float jfloat jfloatArray F [F

int jint jintArray I [I

long jlong jlongArray J [J

short jshort jshortArray S [S

Object jobject jobjectArray L [L

String jstring N/A L [L

Class jclass N/A L [L

Throwable jthrowable N/A L [L

void void N/A V N/A

Processing bitmaps natively
Android NDK proposes an API dedicated to bitmap processing which allows accessing
bitmap surface directly. This API is specific to Android and is not related to the JNI
specification. However, bitmaps are Java objects and will need to be treated as such
in native code.

To see more concretely how bitmaps can be modified from native code, let's try to
decode a camera feed from native code. Android already features a Camera API on the
Java side to display a video feed. However, there is absolutely no flexibility on how the feed is
displayed—it is drawn directly on a GUI component. To overcome this problem, snapshots can
be recorded into a data buffer encoded in a specific format, YUV, which is not compatible with
classic RGB images! This is a situation where native code comes to the rescue and can help us
improve performances.

The final project is provided with this book under the
name LiveCamera.

Calling Java Back from Native Code

[136]

Time for action – decoding camera feed from native code
1. Create a new hybrid Java/C++ project like shown in Chapter 2, Creating, Compiling,

and Deploying Native Projects:

 � Name it LiveCamera.

 � Its main package is com.packtpub.

 � Its main activity is LiveCameraActivity.

 � Get rid of res/main.xml as we will not create a GUI this time.

 � Do not forget to create a jni directory at project's root.

2. In the application manifest, set the activity style to fullscreen and its orientation to
landscape. Landscape orientation avoids most camera orientation problems that can
be met on Android devices. Also request acces permission to the Android camera:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.packtpub" android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="10" />

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".LiveCameraActivity"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
 android:screenOrientation="landscape">
 ...
 </activity>
 </application>
 <uses-permission android:name="android.permission.CAMERA" />
</manifest>

Let's take care of the Java side. We need to create a component to display the
camera feed captured from the Android system class android.hardware.Camera.

3. Create a new class CameraView which extends andoid.View.SurfaceView
and implements Camera.PreviewCallback and SurfaceHolder.Callback.
SurfaceView is a visual component provided by Android to perform
custom rendering.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[137]

Give CameraView the responsibility to load livecamera library, the native
video decoding library we are about to create. This library will contain one
method decode() which will take raw video feed data in input and decode
it into a target Java bitmap:

public class CameraView extends SurfaceView implements
 SurfaceHolder.Callback, Camera.PreviewCallback {
 static {
 System.loadLibrary("livecamera");
 }

 public native void decode(Bitmap pTarget, byte[] pSource);
...

4. Initialize CameraView component.

In its constructor, register it as a listener of its own surface events, that is, surface
creation, destruction, and change. Disable the willNotDraw flag to ensure its
onDraw() event is triggered as we are going to render the camera feed from the
main UI thread.

Render a SurfaceView from the main UI thread only if a
rendering operation is not too time consuming or for prototyping
purposes. This can simplify code and avoid synchronization
concerns. However, SurfaceView is designed to be rendered
from a separate thread and should be generally used that way.

...
 private Camera mCamera;
 private byte[] mVideoSource;
 private Bitmap mBackBuffer;
 private Paint mPaint;

 public CameraView(Context context) {
 super(context);

 getHolder().addCallback(this);
 setWillNotDraw(false);
 }
...

Calling Java Back from Native Code

[138]

5. When surface is created, acquire the default camera (there can be a front
and rear camera, for example) and set its orientation to landscape (like the
activity). To draw the camera feed ourself, deactivate automatic preview (that is,
setPreviewDisplay(), which causes the video feed to be automatically drawn
into SurfaceView) and request the use of data buffers for recording instead:

...
 public void surfaceCreated(SurfaceHolder holder) {
 try {
 mCamera = Camera.open();
 mCamera.setDisplayOrientation(0);
 mCamera.setPreviewDisplay(null);
 mCamera.setPreviewCallbackWithBuffer(this);
 } catch (IOException eIOException) {
 mCamera.release();
 mCamera = null;
 throw new IllegalStateException();
 }
 }
...

6. Method surfaceChanged() is triggered (potentially several times) after surface
is created and, of course, before it is destroyed. This is the place where surface
dimensions and pixel format get known.

First, find the resolution that is closest to the surface. Then create a byte buffer to
capture a raw camera snapshot and a backbuffer bitmap to store the conversion
result. Set up camera parameters: the selected resolution and the video format
(YCbCr_420_SP, which is the default on Android) and finally, start the recording.
Before a frame is recorded, a data buffer must be enqueued to capture a snapshot:

...
 public void surfaceChanged(SurfaceHolder pHolder, int pFormat,
 int pWidth, int pHeight) {
 mCamera.stopPreview();
 Size lSize = findBestResolution(pWidth, pHeight);
 PixelFormat lPixelFormat = new PixelFormat();
 PixelFormat.getPixelFormatInfo(mCamera.getParameters()
 .getPreviewFormat(), lPixelFormat);
 int lSourceSize = lSize.width * lSize.height
 * lPixelFormat.bitsPerPixel / 8;
 mVideoSource = new byte[lSourceSize];
 mBackBuffer = Bitmap.createBitmap(lSize.width,
lSize.height,Bitmap.Config.ARGB_8888);

Chapter 4

[139]

 Camera.Parameters lParameters = mCamera.getParameters();
 lParameters.setPreviewSize(lSize.width, lSize.height);
 lParameters.setPreviewFormat(PixelFormat.YCbCr_420_SP);
 mCamera.setParameters(lParameters);

 mCamera.addCallbackBuffer(mVideoSource);
 mCamera.startPreview();
 }
...

7. An Android camera can support various resolutions which are highly dependent on
the device. As there is no rule on what could be the default resolution, we need to
look for a suitable one. Here, we select the biggest resolution that fits the display
surface or the default one if none can be found.

...
 private Size findBestResolution(int pWidth, int pHeight) {
 List<Size> lSizes = mCamera.getParameters()
 .getSupportedPreviewSizes();
 Size lSelectedSize = mCamera.new Size(0, 0);
 for (Size lSize : lSizes) {
 if ((lSize.width <= pWidth)
 && (lSize.height <= pHeight)
 && (lSize.width >= lSelectedSize.width)
 && (lSize.height >= lSelectedSize.height)) {
 lSelectedSize = lSize;
 }
 }
 if ((lSelectedSize.width == 0)
 || (lSelectedSize.height == 0)) {
 lSelectedSize = lSizes.get(0);
 }
 return lSelectedSize;
 }
...

8. In CameraView.java, release camera when surface is destroyed as it is a
shared resource. In memory, buffers can also be nullified to facilitate garbage
collector work:

...
 public void surfaceDestroyed(SurfaceHolder holder) {
 if (mCamera != null) {
 mCamera.stopPreview();
 mCamera.release();

Calling Java Back from Native Code

[140]

 mCamera = null;
 mVideoSource = null;
 mBackBuffer = null;
 }
 }
...

9. Now that surface is set up, decode video frames in onPreviewFrame() and store
the result in the backbuffer bitmap. This handler is triggered by the Camera class
when a new frame is ready. Once decoded, invalidate the surface to redraw it.

To draw a video frame, override onDraw() and draw the backbuffer into the target
canvas. Once done, we can re-enqueue the raw video buffer to capture a new image.

The Camera component can enqueue several buffers to
process a frame while others are getting captured. Although
this approach is more complex as it implies threading and
synchronization, it can achieve better performance and can
handle punctual slow down. The single-threaded capture
algorithm shown here is simpler but much less efficient since a
new frame can only be recorded after the previous one is drawn.

...
 public void onPreviewFrame(byte[] pData, Camera pCamera) {
 decode(mBackBuffer, pData);
 invalidate();
 }

 @Override
 protected void onDraw(Canvas pCanvas) {
 if (mCamera != null) {
 pCanvas.drawBitmap(mBackBuffer, 0, 0, mPaint);
 mCamera.addCallbackBuffer(mVideoSource);
 }
 }
}

Chapter 4

[141]

10. Open the LiveCameraActivity.java file, which should have been
created by the Android project creation wizard. Initialize the GUI with
a new CameraView instance.

public class LiveCameraActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(new CameraView(this));
 }
}

Now that the Java side is ready, we can write the decode() method on the
native side.

11. Generate JNI header file with javah.

12. Create corresponding implementation file com_packtpub_CameraView.c. Include
android/bitmap.h, which defines the NDK bitmap processing API. The following
are a few utility methods to help decode video:

 � toInt(): This converts a jbyte to an integer, erasing all useless bits
with a mask.

 � max(): This gets the maximum between two values.

 � clamp(): This method is used to clamp a value inside a defined interval.

 � color(): This method builds an ARGB color from its component.

13. Make them inline to gain a bit of performance:

#include "com_packtpub_CameraView.h"
#include <android/bitmap.h>

inline int32_t toInt(jbyte pValue) {
 return (0xff & (int32_t) pValue);
}

inline int32_t max(int32_t pValue1, int32_t pValue2) {
 if (pValue1 < pValue2) {
 return pValue2;
 } else {
 return pValue1;
 }
}

Calling Java Back from Native Code

[142]

inline int32_t clamp(int32_t pValue, int32_t pLowest, int32_t
pHighest) {
 if (pValue < 0) {
 return pLowest;
 } else if (pValue > pHighest) {
 return pHighest;
 } else {
 return pValue;
 }
}

inline int32_t color(pColorR, pColorG, pColorB) {
 return 0xFF000000 | ((pColorB << 6) & 0x00FF0000)
 | ((pColorG >> 2) & 0x0000FF00)
 | ((pColorR >> 10) & 0x000000FF);
}
...

14. Still in the same file, implement decode(). First, retrieve bitmap information
and lock it for drawing with the AndroidBitmap_* API.

Then, gain access to the input Java byte array with
GetPrimitiveArrayCritical(). This JNI method is similar to
Get<Primitive>ArrayElements() except that the acquired array is less likely
to be a temporary copy. In return, no JNI or thread-blocking calls can be performed
until the array is released.

...
JNIEXPORT void JNICALL Java_com_packtpub_CameraView_decode
(JNIEnv * pEnv, jclass pClass, jobject pTarget, jbyteArray
pSource) {
 AndroidBitmapInfo lBitmapInfo;
 if (AndroidBitmap_getInfo(pEnv, pTarget, &lBitmapInfo) < 0) {
 return;
 }
 if (lBitmapInfo.format != ANDROID_BITMAP_FORMAT_RGBA_8888) {
 return;
 }

 uint32_t* lBitmapContent;
 if (AndroidBitmap_lockPixels(pEnv, pTarget,
 (void**)&lBitmapContent) < 0) {
 return;
 }

Chapter 4

[143]

 jbyte* lSource = (*pEnv)->GetPrimitiveArrayCritical(pEnv,
 pSource, 0);
 if (lSource == NULL) {
 return;
 }
...

15. Continue decode()method. We have access to the input video buffer with a video
frame inside and to the backbuffer bitmap surface. So we can decode the video feed
into the output backbuffer.

The video frame is encoded in the YUV format, which is quite different from RGB.
YUV format encodes a color in three components:

 � One luminance component, that is, the grayscale representation of a color.

 � Two chrominance components which encode the color information (also
called Cb and Cr as they represent the blue-difference and red-difference).

16. There are many frames available whose format is based on YUV colors. Here,
we convert frames following the YCbCr 420 SP (or NV21) format. This kind of
image frame is composed of a buffer of 8 bits Y luminance samples followed by a
second buffer of interleaved 8 bits V and U chrominance samples. The VU buffer
is subsampled, which means that there are less U and V samples compared to Y
samples (1 U and 1 V for 4 Y). The following algorithm processes each pixel and
converts each YUV pixel to RGB using the appropriate formula (see http://www.
fourcecc.org/fccyvrgb.php for more information).

17. Terminate decode() method by unlocking the backbuffer bitmap and releasing the
Java array acquired earlier:

...
 int32_t lFrameSize = lBitmapInfo.width * lBitmapInfo.height;
 int32_t lYIndex, lUVIndex;
 int32_t lX, lY;
 int32_t lColorY, lColorU, lColorV;
 int32_t lColorR, lColorG, lColorB;
 int32_t y1192;

 // Processes each pixel and converts YUV to RGB color.
 for (lY = 0, lYIndex = 0; lY < lBitmapInfo.height; ++lY) {
 lColorU = 0; lColorV = 0;
 // Y is divided by 2 because UVs are subsampled vertically.
 // This means that two consecutives iterations refer to the

Calling Java Back from Native Code

[144]

 // same UV line (e.g when Y=0 and Y=1).
 lUVIndex = lFrameSize + (lY >> 1) * lBitmapInfo.width;

 for (lX = 0; lX < lBitmapInfo.width; ++lX, ++lYIndex) {
 // Retrieves YUV components. UVs are subsampled
 // horizontally too, hence %2 (1 UV for 2 Y).
 lColorY = max(toInt(lSource[lYIndex]) - 16, 0);
 if (!(lX % 2)) {
 lColorV = toInt(lSource[lUVIndex++]) - 128;
 lColorU = toInt(lSource[lUVIndex++]) - 128;
 }

 // Computes R, G and B from Y, U and V.
 y1192 = 1192 * lColorY;
 lColorR = (y1192 + 1634 * lColorV);
 lColorG = (y1192 - 833 * lColorV - 400 * lColorU);
 lColorB = (y1192 + 2066 * lColorU);

 lColorR = clamp(lColorR, 0, 262143);
 lColorG = clamp(lColorG, 0, 262143);
 lColorB = clamp(lColorB, 0, 262143);

 // Combines R, G, B and A into the final pixel color.
 lBitmapContent[lYIndex] = color(lColorR,lColorG,lColorB);
 }
 }
 (*pEnv)-> ReleasePrimitiveArrayCritical(pEnv,pSource,lSource,0);
 AndroidBitmap_unlockPixels(pEnv, pTarget);
}

18. Write livecamera library Android.mk. Link it to jnigraphics NDK module:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := livecamera
LOCAL_SRC_FILES := com_packtpub_CameraView.c
LOCAL_LDLIBS := -ljnigraphics

include $(BUILD_SHARED_LIBRARY)

19. Compile and run the application.

Chapter 4

[145]

What just happened?
Right after starting the application, the camera feed should appear on your device screen.
Video is decoded in native code into a Java bitmap which is then drawn into the display
surface. Accessing the video feed natively allow much faster processing than what could
be done with classic Java code (see Chapter 11, Debugging and Troubleshooting for further
optimizations with the NEON instruction set). It opens many new possibilities: image
processing, pattern recognition, augmented reality, and so on.

Bitmap surface is accessed directly by native code thanks to the Android NDK Bitmap library
defined in library in jnigraphics. Drawing occurs in three steps:

1. Bitmap surface is acquired.

2. Video pixels are converted to RGB and written to bitmap surface.

3. Bitmap surface is released.

Bitmaps must be systematically locked and then released to access them
natively. Drawing operations must occur between a lock/release pair.

Video decoding and rendering is performed with with a non-threaded SurfaceView,
although this process could be made more efficient with a second thread. Multithreading
can be introduced thanks to the buffer queue system introduced in latest releases of the
Android Camera component. Do not forget that YUV to RGB is an expensive operation that is
likely to remain a point of contention in your program.

Adapt snapshot size to your needs. Indeed, beware of the surface to process
quadruple when snapshot's size doubles. If feedback is not too important,
snapshot size can be partially reduced (for example, for pattern recognition in
Augmented Reality). If you can, draw directly to the display window surface
instead of going through a temporary buffer.

The video feed is encoded in the YUV NV21 format. YUV is a color format originally invented
in the old days of electronics to make black-and-white video receivers compatible with color
transmissions and still commonly used nowadays. Default frame format is guaranteed by the
Android specification to be YCbCr 420 SP (or NV21) on Android. The algorithm used to decode
the YUV frame originates from the Ketai open source project, an image and sensor processing
library for Android. See http://ketai.googlecode.com/ for more information.

Calling Java Back from Native Code

[146]

Although YCbCr 420 SP is the default video format on Android, the emulator
only supports YCbCr 422 SP. This defect should not cause much trouble as it
basically swaps colors. This problem should not occur on real devices.

Summary
We have seen more in-depth how to make Java and C/C++ communicate together. Android is
now fully bilingual! Java can call C/C++ code with any type of data or object and native code
can call Java back. We have discovered, in more detail, how to attach and detach a thread to
the VM and synchronize Java and native threads together with JNI monitors. Then we saw how
to call Java code from native code with the JNI Reflection API. Practically any Java operation
can be performed from native code thanks to it. However, for best performance, class, method,
or fields descriptor must be cached. Finally, we have processed bitmaps natively thanks to JNI
and decoded a video feed manually. But an expensive conversion is needed from default YUV
format (which should be supported on every device according to Android specification) to RGB.

When dealing with native code on Android, JNI is almost always somewhere in the way.
Sadly, it is a verbose and cumbersome API which requires lot of setup and care. JNI is full of
subtleties and would require a whole book for an in-depth understanding. This chapter gave
you the essential knowledge to get started. In the next chapter, we are going to see how to
create a fully native application, which gets completely rid of JNI.

5
Writing a Fully-native Application

In previous chapters, we have breached Android NDK's surface using JNI. But
there is much more to find inside! NDK R5 is a major release which has seen
several long-awaited features finally delivered, one of them is native activities.
Native activities allow creating applications based only on native code, without
a single line of Java. No more JNI! No more references! No more Java!

In addition to native activities, NDK R5 has brought some APIs for native
access to some Android resources such as display windows, assets, device
configuration… These APIs help dismantle the JNI bridge, often necessary to
develop native applications opened to their host environment. Although still a
lot is missing and is not likely to be available (Java remains the main platform
language for GUIs and most frameworks), multimedia applications are a
perfect target to apply them.

I propose now to enter into the heart of the Android NDK by:

 � Creating a fully native activity

 � Handling main activity events

 � Accessing display window natively

 � Retrieving time and calculating delays

The present chapter initiates a native C++ project developed progressively throughout this
book: DroidBlaster. Based on a top-down viewpoint, this sample scrolling shooter will
feature 2D graphics, and later on 3D graphics, sound, input, and sensor management.
In this chapter, we are going to create its base structure.

Writing a Fully-native Application

[148]

Creating a native activity
The class NativeActivity provides a facility to minimize the work necessary to create
a native application. It lets the developer get rid of all the boilerplate code to initialize and
communicate with native code and concentrate on core functionalities. In this first part,
we are going to see how to create a minimal native activity that runs an event loop.

The resulting project is provided with this book under the
name DroidBlaster_Part5-1.

Time for action – creating a basic native activity
First, let's create DroidBlaster project:

1. In Eclipse, create a new project Android project with the following settings:

 � Enter Eclipse project name: DroidBlaster.

 � Set Build target to Android 2.3.3.

 � Enter Application name: DroidBlaster.

 � Enter Package name: com.packtpub.droidblaster.

 � Uncheck Create Activity.

 � Set Min SDK Version to 10.

2. Once the project is created, go to the res/layout directory and remove main.
xml. This UI description file is not needed in our native application. You can also
remove src directory as DroidBlaster will not contain even a piece of Java code.

3. The application is compilable and deployable, but not runnable simply because
we have not created an activity yet. Let's declare NativeActivity in the
AndroidManifest.xml file at the project's root. The declared native activity refers
to a native module named droidblaster (property android.app.lib_name):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.packtpub.droidblaster" android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="10"/>

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">

Chapter 5

[149]

 <activity android:name="android.app.NativeActivity"
 android:label="@string/app_name">
 <meta-data android:name="android.app.lib_name"
 android:value="droidblaster"/>
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <categoryandroid:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

Let's set up the Eclipse project to compile native code:

4. Convert the project to a hybrid C++ project (not C) using Convert C/C++
Project wizard.

5. Then, go to project, select Properties in C/C++ Build section and change default
build command to ndk-build.

6. In the Path and Symbols/Includes section, add Android NDK include directories to all
languages as seen in Chapter 2, Creating, Compiling, and Deploying Native Projects:

${env_var:ANDROID_NDK}/platforms/android-9/arch-arm/usr/include

${env_var:ANDROID_NDK}/toolchains/arm-linux-androideabi-4.4.3/
prebuilt/<your OS>/lib/gcc/arm-linux-androideabi/4.4.3/include

7. Still in the same section, add native app glue directory to all languages. Validate and
close the project Properties dialog:

${env_var:ANDROID_NDK}/sources/android/native_app_glue

8. Create directory jni at the project's root containing the following Android.mk file.
It describes the C++ files to compile and the native_app_glue module to link to.
The native glue binds together native code and NativeActivity:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := droidblaster
LOCAL_SRC_FILES := Main.cpp EventLoop.cpp Log.cpp
LOCAL_LDLIBS := -landroid -llog
LOCAL_STATIC_LIBRARIES := android_native_app_glue

Writing a Fully-native Application

[150]

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)

Now we can start writing some native code that runs inside the native activity.
Let's begin with some utility code:

9. In jni directory, create a file Types.hpp. This header will contain common types
and the header stdint.h:

#ifndef _PACKT_TYPES_HPP_
#define _PACKT_TYPES_HPP_

#include <stdint.h>

#endif

10. To still get some feedback without the ability to input or output anything from or
to the screen, let's write a logging class. Create Log.hpp and declare a new class
Log. You can define packt_Log_debug macro to activate debug messages with
a simple flag:

#ifndef PACKT_LOG_HPP
#define PACKT_LOG_HPP

namespace packt {
 class Log {
 public:
 static void error(const char* pMessage, ...);
 static void warn(const char* pMessage, ...);
 static void info(const char* pMessage, ...);
 static void debug(const char* pMessage, ...);
 };
}

#ifndef NDEBUG
 #define packt_Log_debug(...) packt::Log::debug(__VA_ARGS__)
#else
 #define packt_Log_debug(...)
#endif

#endif

Chapter 5

[151]

By default, NDEBUG macro is defined by the NDK compilation toolchain.
To undefined it, the application has to be made debuggable in its
manifest: <application android:debuggable="true" …>

11. Create Log.cpp file and implement method info(). To write messages to Android
logs, the NDK provides a dedicated logging API in header android/log.h. which
can be used similarly to printf() and vprintf() (with varargs) in C:

#include "Log.hpp"

#include <stdarg.h>
#include <android/log.h>

namespace packt {
 void Log::info(const char* pMessage, ...) {
 va_list lVarArgs;
 va_start(lVarArgs, pMessage);
 __android_log_vprint(ANDROID_LOG_INFO, "PACKT", pMessage,
 lVarArgs);
 __android_log_print(ANDROID_LOG_INFO, "PACKT", "\n");
 va_end(lVarArgs);
 }
}

12. Other log methods are almost identical. The only piece of code which changes
between each method is the level macro: ANDROID_LOG_ERROR, ANDROID_LOG_
WARN, and ANDROID_LOG_DEBUG instead.

Finally, we can write the code to poll activity events:

13. Application events have to be processed in an event loop. To do so, still in jni
directory, create EventLoop.hpp defining the eponym class with a unique
method run().

Included header android_native_app_glue.h defines android_app structure,
which represents what could be called an "applicative context", with all information
related to the native activity: its state, its window, its event queue, and so on:

#ifndef _PACKT_EVENTLOOP_HPP_
#define _PACKT_EVENTLOOP_HPP_

#include "Types.hpp"

Writing a Fully-native Application

[152]

#include <android_native_app_glue.h>

namespace packt {
 class EventLoop {
 public:
 EventLoop(android_app* pApplication);

 void run();

 private:
 android_app* mApplication;
 };
}
#endif

14. Create EventLoop.cpp and implement activity event loop in method run
()as follows. Include a few log events to get some feedback in Android log.

During the whole activity lifetime, run() loops continuously over events
until it is requested to terminate. When an activity is about to be destroyed,
destroyRequested value in android_app structure is changed internally
to notify the event loop:

#include "EventLoop.hpp"
#include "Log.hpp"

namespace packt {
 EventLoop::EventLoop(android_app* pApplication) :
 mApplication(pApplication)
 {}

 void EventLoop::run() {
 int32_t lResult;
 int32_t lEvents;
 android_poll_source* lSource;

 app_dummy();

 packt::Log::info("Starting event loop");
 while (true) {
 while ((lResult = ALooper_pollAll(-1, NULL, &lEvents,
 (void**) &lSource)) >= 0)
{
 if (lSource != NULL) {
 packt::Log::info("Processing an event");

Chapter 5

[153]

 lSource->process(mApplication, lSource);
 }
 if (mApplication->destroyRequested) {
 packt::Log::info("Exiting event loop");
 return;
 }
 }
 }
 }
}

15. Finally, create the main entry point running the event loop in a new file Main.cpp:

#include "EventLoop.hpp"

void android_main(android_app* pApplication) {
 packt::EventLoop lEventLoop(pApplication);
 lEventLoop.run();
}

16. Compile and run the application.

What just happened?
Of course, you will not see anything tremendous when starting this application. Actually,
you will just see a black screen! But if you look carefully at the LogCat view in Eclipse
(or command adb logcat), you will discover a few interesting messages that have
been emitted by your native application in reaction to activity events:

We have initiated a Java Android project without a single line of Java code! Instead of a new
Java Activity child class, in AndroidManifest.xml, we have referenced the android.
app.NativeActivity class, which is launched like any other Android activity.

Writing a Fully-native Application

[154]

NativeActivity is a Java class. Yes, a Java class. But we never confronted to it directly.
NativeActivity is in fact a helper class provided with Android SDK and which contains
all the necessary glue code to handle application lifecycle and events and broadcast them
transparently to native code. Being a Java class, NativeActivity runs, of course, on the
Dalvik Virtual Machine and is interpreted like any Java class.

A native activity does not eliminate the need for JNI. In fact, it just hides it!
Hopefully, we never face NativeActivity directly. Even better, the C/C++
module run by a NativeActivity runs outside Dalvik boundaries in its
own thread… entirely natively!

NativeActivity and native code are connected together through the native_app_glue
module. Native glue has the responsibility of:

 � launching the native thread which runs our own native code

 � receiving events from NativeActivity

 � routing these events to the native thread event loop for further processing

Our own native code entry point is declared at step 15 with an android_main() method
similar to main methods in desktop applications. It is called once when a native application
is launched and loops over application events until NativeActivity is terminated by user
(for example, when pressing device back button). The android_main() method runs the
native event loop, which is itself composed of two nested while loops. The outer one is an
infinite loop, terminated only when application destruction is requested. Destruction request
flag can be found in android_app "application context" provided as an argument to the
android_main() method by the native glue.

Inside the main loop is an inner loop which processes all pending events with a call to
ALooper_pollAll(). This method is part of the ALooper API which is a general-purpose
event loop manager provided by Android. When timeout is -1 like at step 14, ALooper_
pollAll() remains blocked while waiting for events. When at least one is received,
ALooper_pollAll() returns and code flow continues. The android_poll_source
structure describing the event is filled and used for further processing.

If an event loop was a heart, then event polling would be a heartbeat. In
other words, polling makes your application alive and reactive to the outside
world. It is not even possible to leave a native activity without polling events;
destruction is itself an event!

Chapter 5

[155]

Handling activity events
In the first part, we have run a native event loop which flushes events without really
processing them. In this second part, we are going to discover more about these events
occurring during activity lifecycle. Let's extend the previous example to log all events
that a native activity is confronted to.

EventLoop DroidBlaster
ActivityHandler

Log

Project DroidBlaster_Part5-1 can be used as a starting point for this
part. The resulting project is provided with this book under the name
DroidBlaster_Part5-2.

Time for action – handling activity events
Let's improve the code created in the previous part:

1. Open Types.hpp and define a new type status to represent return codes:

#ifndef _PACKT_TYPES_HPP_
#define _PACKT_TYPES_HPP_

#include <stdint.h>

typedef int32_t status;

const status STATUS_OK = 0;
const status STATUS_KO = -1;
const status STATUS_EXIT = -2;
#endif

2. Create ActivityHandler.hpp in jni directory. This header defines an interface
to observe native activity events. Each possible event has its own handler method:
onStart(), onResume(), onPause(), onStop(), onDestroy(), and so on.
However, we are generally interested in three specific moments in the activity lifecycle:

 � onActivate(): This method is invoked when activity is resumed and its
window is available and focused.

Writing a Fully-native Application

[156]

 � onDeactivate(): This activity is invoked when activity is paused or the
display window loses its focus or is destroyed.

 � onStep(): This activity is invoked when no event has to be processed
and computations can take place.

#ifndef _PACKT_EVENTHANDLER_HPP_
#define _PACKT_EVENTHANDLER_HPP_

#include "Types.hpp"

namespace packt {
 class EventHandler {
 public:
 virtual status onActivate() = 0;
 virtual void onDeactivate() = 0;
 virtual status onStep() = 0;

 virtual void onStart() {};
 virtual void onResume() {};
 virtual void onPause() {};
 virtual void onStop() {};
 virtual void onDestroy() {};

 virtual void onSaveState(void** pData,
 int32_t* pSize) {};
 virtual void onConfigurationChanged() {};
 virtual void onLowMemory() {};

 virtual void onCreateWindow() {};
 virtual void onDestroyWindow() {};
 virtual void onGainFocus() {};
 virtual void onLostFocus() {};
 };
}
#endif

All these events have to be triggered from the activity event loop.

3. Open existing file EventLoop.hpp. Although its public face is conserved,
EventLoop class is enhanced with two internal methods (activate() and
deactivate()) and two state variables (mEnabled and mQuit) to save activity
activation state. Real activity events are handled in processActivityEvent()
and its corresponding callback activityCallback(). These events are routed
to mActivityHandler event observer:

Chapter 5

[157]

#ifndef _PACKT_EVENTLOOP_HPP_
#define _PACKT_EVENTLOOP_HPP_

#include "EventHandler.hpp"
#include "Types.hpp"

#include <android_native_app_glue.h>

namespace packt {
 class EventLoop {
 public:
 EventLoop(android_app* pApplication);

 void run(EventHandler& pEventHandler);

 protected:
 void activate();
 void deactivate();

 void processActivityEvent(int32_t pCommand);

 private:
 static void activityCallback(android_app* pApplication,
 int32_t pCommand);

 private:
 bool mEnabled; bool mQuit;
 ActivityHandler* mActivityHandler;
 android_app* mApplication;
 };
}
#endif

4. Open and edit EventLoop.cpp. Constructor initialization list is trivial to implement.
However, the android_app application context needs to be filled with some
additional information:

 � onAppCmd: This points to an internal callback triggered each time an
event occurs. In our case, this is the role devoted to the static method
activityCallback.

 � userData: This is a pointer in which you can assign any data you want.
This piece of data is the only information accessible from the callback
declared previously (except global variables). In our case, this is the
EventLoop instance (this).

Writing a Fully-native Application

[158]

#include "EventLoop.hpp"
#include "Log.hpp"

namespace packt {
 EventLoop::EventLoop(android_app* pApplication) :
 mEnabled(false), mQuit(false),
 mApplication(pApplication),
 mActivityHandler(NULL) {
 mApplication->onAppCmd = activityCallback;
 mApplication->userData = this;
 }
...

5. Update the run() main event loop to stop blocking while polling events. Indeed,
ALooper_pollAll() behavior is defined by its first parameter, timeout:

 � When timeout is -1 like at step 14, call is blocking until events are received.

 � When timeout is 0, call is non-blocking so that if nothing remains in the
queue, program flow continues (inner while loop is terminated) and makes
it possible to perform recurrent processing.

 � When timeout is greater than 0, then we have a blocking call which remains
until an event is received or the duration is elapsed.

 � Here, we want to step the activity (that is, perform computations)
when it is in active state (mEnabled is true): in that case, timeout is 0.
When activity is in deactivated state (mEnabled is false), events are still
processed (for example, to resurrect the activity) but nothing needs to
get computed. The thread has to be blocked to avoid consuming battery
and processor time uselessly: timeout is -1.

 � To leave the application programmatically, NDK API provides
ANativeActivity_finish()method to request activity termination.
Termination does not occur immediately but after a few events (pause,
stop, and so on)!

...
 void EventLoop::run(ActivityHandler& pActivityHandler)
{
 int32_t lResult;
 int32_t lEvents;
 android_poll_source* lSource;

 app_dummy();
 mActivityHandler = &pActivityHandler;

Chapter 5

[159]

 packt::Log::info("Starting event loop");
 while (true) {
 while ((lResult = ALooper_pollAll(mEnabled ? 0 : -1,
 NULL, &lEvents, (void**) &lSource)) >= 0) {
 if (lSource != NULL) {
 packt::Log::info("Processing an event");
 lSource->process(mApplication, lSource);
 }
 if (mApplication->destroyRequested) {
 packt::Log::info("Exiting event loop");
 return;
 }
 }

 if ((mEnabled) && (!mQuit)) {
 if (mActivityHandler->onStep() != STATUS_OK) {
 mQuit = true;
 ANativeActivity_finish(mApplication->activity);
 }
 }
 }
 }
...

6. Still in EventLoop.cpp, implement activate() and deactivate(). Both check
activity state before notifying the observer (to avoid untimely triggering). As stated
earlier, activation requires a window to be available before going further:

...
 void EventLoop::activate() {
 if ((!mEnabled) && (mApplication->window != NULL)) {
 mQuit = false; mEnabled = true;
 if (mActivityHandler->onActivate() != STATUS_OK) {
 mQuit = true;
 ANativeActivity_finish(mApplication->activity);
 }
 }
 }

 void EventLoop::deactivate()
 {
 if (mEnabled) {
 mActivityHandler->onDeactivate();
 mEnabled = false;
 }
 }
...

Writing a Fully-native Application

[160]

7. Finally, implement processActivityEvent() and its companion callback
activityCallback(). Do you remember the onAppCmd and userData fields
from android_app structure that we initialized in the constructor? They are used
internally by the native glue to trigger the right callback (here activityCallback())
when an event occurs. The EventLoop object is gotten back thanks to the userData
pointer (this being unavailable from a static method). Effective event processing is
then delegated to processActivityEvent(), which brings us back into the
object-oriented world.

Parameter pCommand contains an enumeration value (APP_CMD_*) which describes
the occurring event (APP_CMD_START, APP_CMD_GAINED_FOCUS, and so on). Once
an event is analyzed, activity is activated or deactivated depending on the event and
the observer is notified.

A few events such as APP_CMD_WINDOW_RESIZED are available but never
triggered. Do not listen to them unless you are ready to stick your hands in
the glue…

Activation occurs when activity gains focus. This event is always the last event that
occurs after activity is resumed and window is created. Getting focus means that
activity can receive input events. Thus, it would be possible to activate the event
loop as soon as window is created.

Deactivation occurs when window loses focus or application is paused (both can occur
first). By security, deactivation is also performed when window is destroyed although
this should always occur after focus is lost. Losing focus means that application does
not receive input events anymore. Thus, it would also be possible to deactivate the
event loop only when window is destroyed instead:

To make your activity lose and gain focus easily, just press your device
home button to display the Recent applications pop up (which may be
manufacturer specific). If activation and deactivation occur on a focus
change, activity pauses immediately. Otherwise, it would keep working in the
background until another activity is selected (which could be desirable).

...
 void EventLoop::processActivityEvent(int32_t pCommand) {
 switch (pCommand) {
 case APP_CMD_CONFIG_CHANGED:
 mActivityHandler->onConfigurationChanged();
 break;
 case APP_CMD_INIT_WINDOW:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

[161]

 mActivityHandler->onCreateWindow();
 break;
 case APP_CMD_DESTROY:
 mActivityHandler->onDestroy();
 break;
 case APP_CMD_GAINED_FOCUS:
 activate();
 mActivityHandler->onGainFocus();
 break;
 case APP_CMD_LOST_FOCUS:
 mActivityHandler->onLostFocus();
 deactivate();
 break;
 case APP_CMD_LOW_MEMORY:
 mActivityHandler->onLowMemory();
 break;
 case APP_CMD_PAUSE:
 mActivityHandler->onPause();
 deactivate();
 break;
 case APP_CMD_RESUME:
 mActivityHandler->onResume();
 break;
 case APP_CMD_SAVE_STATE:
 mActivityHandler->onSaveState(&mApplication->savedState,
 &mApplication->savedStateSize);
 break;
 case APP_CMD_START:
 mActivityHandler->onStart();
 break;
 case APP_CMD_STOP:
 mActivityHandler->onStop();
 break;
 case APP_CMD_TERM_WINDOW:
 mActivityHandler->onDestroyWindow();
 deactivate();
 break;
 default:
 break;
 }
 }

 void EventLoop::activityCallback(android_app* pApplication,
 int32_t pCommand)

Writing a Fully-native Application

[162]

 {
 EventLoop& lEventLoop = *(EventLoop*) pApplication->userData;
 lEventLoop.processActivityEvent(pCommand);
 }
}

Finally, we can implement application-specific code.

8. Create a DroidBlaster.hpp file which implements ActivityHandler interface:

#ifndef _PACKT_DROIDBLASTER_HPP_
#define _PACKT_DROIDBLASTER_HPP_

#include "ActivityHandler.hpp"
#include "Types.hpp"

namespace dbs {
 class DroidBlaster : public packt::ActivityHandler {
 public:
 DroidBlaster();
 virtual ~DroidBlaster();

 protected:
 status onActivate();
 void onDeactivate();
 status onStep();

 void onStart();
 void onResume();
 void onPause();
 void onStop();
 void onDestroy();

 void onSaveState(void** pData; int32_t* pSize);
 void onConfigurationChanged();
 void onLowMemory();

 void onCreateWindow();
 void onDestroyWindow();
 void onGainFocus();
 void onLostFocus();
 };
}
#endif

Chapter 5

[163]

9. Create DroidBlaster.cpp implementation. To keep this introduction to the
activity lifecycle simple, we are just going to log events for each occurring event.
Computations are limited to a simple thread sleep:

#include "DroidBlaster.hpp"
#include "DroidBlaster.hpp"
#include "Log.hpp"

#include <unistd.h>

namespace dbs {
 DroidBlaster::DroidBlaster() {
 packt::Log::info("Creating DroidBlaster");
 }

 DroidBlaster::~DroidBlaster() {
 packt::Log::info("Destructing DroidBlaster");
 }

 status DroidBlaster::onActivate() {
 packt::Log::info("Activating DroidBlaster");
 return STATUS_OK;
 }

 void DroidBlaster::onDeactivate() {
 packt::Log::info("Deactivating DroidBlaster");
 }

 status DroidBlaster::onStep() {
 packt::Log::info("Starting step");
 usleep(300000);
 packt::Log::info("Stepping done");
 return STATUS_OK;
 }

 void DroidBlaster::onStart() {
 packt::Log::info("onStart");
 }
 ...
}

Writing a Fully-native Application

[164]

10. Let's not forget to initialize our activity and its new event handler DroidBlaster:

#include "DroidBlaster.hpp"
#include "EventLoop.hpp"

void android_main(android_app* pApplication) {
 packt::EventLoop lEventLoop(pApplication);
 dbs::DroidBlaster lDroidBlaster;
 lEventLoop.run(lDroidBlaster);
}

11. Update the Android.mk Makefile to include all the new .cpp files created
in the present part. Then compile and run the application.

What just happened?
If you like black screen, you are served! Again, everything happens in the Eclipse LogCat
view. All messages that have been emitted by your native application in reaction to
application events are displayed there:

We have created a minimalist framework which handles application events in the native
thread using an event-driven approach. These events are redirected to an observer object
which performs its own specific computations. Native activity events correspond mostly
to Java activity events. Following is an important schematic inspired from official Android
documentation showing events that can happen during an activity lifecycle:

Chapter 5

[165]

Activity is running

Another activity comes
in front of the activity

Other applications
need memory

Activity is shut down

User navigates
back to the

activity

Process is killed

The activity
comes to the
foreground

The activity
comes to the
foreground

onRestart()

onCreate()

onStart()

onResume()

onCreatewindow()

onGainFocus()

onSaveInstanceState()

onLoseFocus()

onDestroyWindow()

onPause()

The activity
in no longer visible

onStop()

onDestroy()

Activity starts

See http://developer.android.com/reference/android/app/Activity.
html for more information.

Writing a Fully-native Application

[166]

Events are a critical point that any application needs to handle properly. Although event
pairs, that is, start/stop, resume/pause, create/destroy window, and gain/lose focus occur
most of the time in a predetermined order, some specific cases generate different behaviors,
for example:

 � Pressing for a long time the device home button and then getting back should cause
a loss and gain of focus only

 � Shutting down phone screen and switching it back on should cause window to
be terminated and reinitialized immediately right after activity is resumed

 � When changing screen orientation, the whole activity may not lose its focus
although it will regain it after activity is recreated

Choice has been made to use a simplified event handling model in
DroidBlaster, with only three main events occurring in the application
lifecycle (activation, deactivation, and stepping). However, an application can be
made more efficient by performing more subtle event handling. For example,
pausing an activity may not release resources whereas a stop event should.

Have a look at the NVIDIA developer site where you will find interesting documents
about Android events and even more: http://developer.nvidia.com/content/
resources-android-native-game-development-available.

More on Native App Glue
You may still wonder what the native glue framework does exactly behind your back and
how. The truth is android_main() is not the real native application entry point. The real
entry point is ANativeActivity_onCreate() method hidden in the android_native_
app_glue module. The event loop we have seen until now is in fact a delegate event loop
launched in its own native thread by the glue code so that your android_main() is not
correlated anymore to NativeActivity on the Java side. Thus, even if your code takes a
long time to handle an event, NativeActivity is not blocked and your Android device still
remains responsive. Native glue module code is located in ${ANDROID_NDK}/sources/
android/native_app_glue and can be modified or forked at will (see Chapter 9, Porting
Existing Libraries to Android).

android_native_app_glue ease your life

The native glue really simplifies code by handling initialization and
system-related stuff that most applications do not need to worry about
(synchronization with mutexes, pipe communication, and so on). It frees
the UI thread from its load to keep device ability to handle unexpected events
such as a sudden phone call.

Chapter 5

[167]

UI thread
The following call hierarchy is an overview of how Native App Glue proceeds internally
on the UI thread (that is, on the Java side):

Main Thread
NativeActivity
+___ANativeActivity_onCreate(ANativeActivity, void*, size_t)
 +___android_app_create(ANativeActivity*, void*, size_t)

ANativeActivity_onCreate() is the real native-side entry point and is executed on
the UI thread. The given ANativeActivity structure is filled with event callbacks used in
the native glue code: onDestroy, onStart, onResume, and so on. So when something
happens in NativeActivity on the Java side, callback handlers are immediately triggered
on the native side but still on the UI thread. Processing performed by these handlers is very
simple: they notify the native thread by calling internal method android_app_write_
cmd(). Here is a list of some of the occurring events:

onStart, onResume,

onPause, onStop

changes the application state by setting
android_app.activityState with the
appropriate APP_CMD_* value.

onSaveInstance sets the application state to APP_CMD_SAVE_
STATE and waits for the native application
to save its state. Custom saving has to be
implemented by Native App Glue client in its own
command callback.

onDestroy notifies the native thread that destruction is
pending, and then frees memory when native
thread acknowledges (and does what it needs
to frees resources!). Structure android_app
is not useable anymore and application itself
terminates.

onConfigurationChanged,
onWindowFocusedChanged,
onLowMemory

notifies the native-side thread of the event (APP_
CMD_GAINED_FOCUS, APP_CMD_LOST_
FOCUS, and so on).

onNativeWindowCreated and
onNativeWindowDestroyed

calls function android_app_set_window()
which provides and requests the native thread to
change its display window.

onInputQueueCreated and
onInputQueueDestoyed

uses a specfic method android_app_set_
input() to register an input queue. Input
queue comes from NativeActivity and is
usually provided after native thread loop has
started.

Writing a Fully-native Application

[168]

ANativeActivity_onCreate() also allocates memory and initializes the application
context android_app and all the synchronization stuff. Then the native thread itself is
"forked", so that it can live its life. Thread is created with entry point android_app_entry.
Main UI thread and native thread communicates via Unix pipes and mutexes to ensure
proper synchronization.

Native thread
The native thread call tree is a bit harsher! If you plan to create your own glue code,
you will probably need to implement something similar:

+___android_app_entry(void*)
 +___AConfiguration_new()
 +___AConfiguration_fromAssetManager(AConfiguration*,
 | AAssetManager*)
 +___print_cur_config(android_app*)
 +___process_cmd(android_app*, android_poll_source*)
 | +___android_app_read_cmd(android_app*)
 | +___android_app_pre_exec_cmd(android_app*, int8_t)
 | | +___AInputQueue_detachLooper(AInputQueue*)
 | | +___AInputQueue_attachLooper(AInputQueue*,
 | | | ALooper*, int, ALooper_callbackFunc, void*)
 | | +___AConfiguration_fromAssetManager(AConfiguration*,
 | | | AAssetManager*)
 | | +___print_cur_config(android_app*)
 | +___android_app_post_exec_cmd(android_app*, int8_t)
 +___process_input(android_app*, android_poll_source*)
 | +___AInputQueue_getEvent(AInputQueue*, AInputEvent**)
 | +___AInputEvent_getType(const AInputEvent*)
 | +___AInputQueue_preDispatchEvent(AInputQueue*,
 | | AInputEvent*)
 | +___AInputQueue_finishEvent(AInputQueue*,
 | AInputEvent*, int)
 +___ALooper_prepare(int)
 +___ALooper_addFd(ALooper*, int, int, int,
 | ALooper_callbackFunc, void*)
 +___android_main(android_app*)
 +___android_app_destroy(android_app*)
 +___AInputQueue_detachLooper(AInputQueue*)
 +___AConfiguration_delete(AConfiguration*)

Chapter 5

[169]

Let's see in detail what this means. Method android_app_entry() is executed exclusively
on the native thread and performs several tasks. First, it creates the Looper, which processes
the event queue by reading data coming into the pipe (identified by a Unix File Descriptor).
Creation of the command queue Looper is performed by ALooper_prepare() when native
thread starts (something similar exists in Java in the equivalent class Looper). Attachment of
the Looper to the pipe is performed by ALooper_addFd().

Queues are processed by Native App Glue internal methods process_cmd() and
process_input() for the command and input queue, respectively. However both
are triggered by your own code when you write lSource->process() in your
android_main(). Then, internally, process_cmd() and process_input() calls
itself your own callback, the one we created in Activity.cpp. So finally we know
what is happening when we receive an event in our main loop!

The input queue is also attached to the looper, but not immediately inside thread entry
point. Instead, it is sent in differed-time from the main UI thread to the native thread using
the pipe mechanism explained before. That explains why command queue is attached to the
looper and not the input queue. Input queue is attached to the looper through a specific API:
AInputQueue_attachLooper() and AInputQueue_detachLooper().

We have not talked about it yet but a third queue, the user queue, can be attached to the
looper. This queue is a custom one, unused by default and which can be used for your own
purpose. More generally, your application can use the same ALooper to listen to additional
file-descriptors.

Now, the big part: android_main(). Our method! Our code! As you now know, it is
executed on the native thread and loops infinitely until destruction is requested. Destruction
requests as well as all others events are detected by polling them, hence the method
ALooper_pollAll()used in DroidBlaster. We need to check each event that happens
until nothing remains in the queue, then we can do whatever we want, like redrawing the
window surface, and then we go back to the wait state until new events arrive.

Writing a Fully-native Application

[170]

Android_app structure
The native event loop receives an android_app structure in parameter. This structure,
described in android_native_app_glue.h, contains some contextual information
such as:

 � void* userData: This is a pointer to any data you want. This is essential to give
some contextual information to the activity event callback.

 � void (*pnAppCmd)(…) int32_t (*onInputEvent)(…): These are callbacks
triggered respectively when an activity and an input event occur. We will see input
events in Chapter 8, Handling Input Devices and Sensors.

 � ANativeActivity* activity: This describes the Java native activity (its class as
a JNI object, its data directories, and so on) and gives the necessary information to
retrieve a JNI context.

 � AConfiguration* config: This contains information about current hardware
and system state, such as the current language and country, the current screen
orientation, density, size, and so on This is a place of choice to learn more about
the host device.

 � void* savedState size_t savedStateSize: This is used to save a buffer of
data when an activity (and thus its native thread) is destroyed and restored later.

 � AInputQueue* inputQueue: This handles input events (used internally by the
native glue). We will see input events in Chapter 8.

 � ALooper* looper: This allows attaching and detaching event listeners (used
internally by the native glue). The listeners poll and wait for events represented as
data on a Unix file descriptor.

 � ANativeWindow* window ARect contentRect: This represents the "drawable"
area, in which graphics can be drawn. The ANativeWindow API declared in
native_window.h allows retrieving window width, height and pixel format and
changing these settings.

 � int activityState: This describes the current activity state, that is, APP_CMD_
START, APP_CMD_RESUME, APP_CMD_PAUSE, and so on.

 � int destroyRequested: This is a flag when equals to 1, indicates that
application is about to be destroyed and native thread must be terminated
immediately. This flag has to be checked in the event loop.

The android_app structure also contains some internal data that should not be changed.

Chapter 5

[171]

 Have a go hero – saving activity state
It is very surprising for many new Android developers, but when screen orientation changes,
an Android activity needs to be completely recreated. Native activities and their native
thread are no exception. To handle this case properly, the native glue triggers an APP_CMD_
SAVE_STATE event to leave you a chance to save your activity state before it is destroyed.

Based on DroidBlaster current code, the challenge is to track the number of times activity
is recreated by:

1. Creating a state structure to save the activation counter.

2. Saving the counter when activity requests it. A new state structure will need
to be allocated each time with malloc() (memory is released with free())
and returned via savedState and savedStateSize fields in the
android_app structure.

3. Restoring the counter when activity is recreated. State will need to be checked:
if it is NULL, then the activity is created for the first time. If it is not, then activity
is recreated.

Because the state structure is copied and freed internally by the native glue, no pointers can
be saved in the structure.

Project DroidBlaster_Part5-2 can be used as a starting point for this part.
The resulting project project is provided with this book under the name
DroidBlaster_Part5-SaveState.

Accessing window and time natively
Application events are essential to understand. But they are only a part of the puzzle and
will not get your users much excited. An interesting feature of the Android NDK is the ability
to access display window natively to draw graphics. But who talks about graphics talks also
about timing. Indeed, Android devices have different capabilities. Animations should be
adapted to their speed. To help us in this task, Android gives access to time primitives thanks
to its good support of Posix APIs.

Writing a Fully-native Application

[172]

We are now going to exploit these features to get a graphic feedback in our application: a red
square moving on the screen. This square is going to be animated according to time to get a
reproducible result.

EventLoop DroidBlaster
ActivityHandler

Log

TimeService

Project DroidBlaster_Part5-2 can be used as a starting point for this
part. The resulting project project is provided with this book under
the name DroidBlaster_Part5-3.

Time for action – displaying raw graphics and
implementing a timer

First, let's implement a timer in a dedicated module:

Throughout this book, we will implement several modules named with the
postfix Service. These services are purely design concepts and are not
related to Android services.

1. In the jni directory, create TimeService.hpp which includes time.h
Posix header.

It contains methods reset() and update() to manage timer state and two
interrogation methods to read current time (method now()) and the time
elapsed in seconds between the last two updates (method elapsed()):

#ifndef _PACKT_TIMESERVICE_HPP_
#define _PACKT_TIMESERVICE_HPP_

#include "Types.hpp"

#include <time.h>

namespace packt {
 class TimeService {
 public:

Chapter 5

[173]

 TimeService();

 void reset();
 void update();

 double now();
 float elapsed();

 private:
 float mElapsed;
 double mLastTime;
 };
}
#endif

2. Create a new TimeService.cpp file in jni. Use Posix primitive clock_gettime()
to retrieve current time in now() method implementation. A monotonic clock is
essential to ensure time always goes forward and is not subject to system changes
(for example, if user change its settings).

To accommodate the need of graphics applications, define method elapsed()
to check elapsed time since last update. This allows adapting application behavior
according to device speed. It is important to work on doubles when manipulating
absolute time to avoid losing accuracy. Then the resulting delay can be converted
back to float:

#include "TimeService.hpp"
#include "Log.hpp"

namespace packt {
 TimeService::TimeService() :
 mElapsed(0.0f),
 mLastTime(0.0f)
 {}

 void TimeService::reset() {
 Log::info("Resetting TimeService.");
 mElapsed = 0.0f;
 mLastTime = now();
 }

 void TimeService::update() {
 double lCurrentTime = now();
 mElapsed = (lCurrentTime - mLastTime);
 mLastTime = lCurrentTime;

Writing a Fully-native Application

[174]

 }

 double TimeService::now() {
 timespec lTimeVal;
 clock_gettime(CLOCK_MONOTONIC, &lTimeVal);
 return lTimeVal.tv_sec + (lTimeVal.tv_nsec * 1.0e-9);
 }

 float TimeService::elapsed() {
 return mElapsed;
 }
}

3. Create a new header file Context.hpp. Define Context helper structure to hold
and share all DroidBlaster modules, starting with TimeService. This structure
is going to be enhanced throughout the next chapters:

#ifndef _PACKT_CONTEXT_HPP_
#define _PACKT_CONTEXT_HPP_

#include "Types.hpp"

namespace packt
{
 class TimeService;

 struct Context {
 TimeService* mTimeService;
 };
}
#endif

The time module can now be embedded in the application code:

4. Open already existing file DroidBlaster.hpp. Define two internal methods
clear() and draw() to erase the screen and draw the square cursor on it.
Declare a few member variables to store activity and display state as well as
cursor position, size, and speed:

#ifndef _PACKT_DROIDBLASTER_HPP_
#define _PACKT_DROIDBLASTER_HPP_

#include "ActivityHandler.hpp"
#include "Context.hpp"
#include "TimeService.hpp"
#include "Types.hpp"

Chapter 5

[175]

#include <android_native_app_glue.h>

namespace dbs {
 class DroidBlaster : public packt::ActivityHandler {
 public:
 DroidBlaster(packt::Context& pContext,
 android_app* pApplication);
 ~DroidBlaster();

 protected:
 status onActivate();
 void onDeactivate();
 status onStep();

 ...

 private:
 void clear();
 void drawCursor(int pSize, int pX, int pY);

 private:
 android_app* mApplication;
 ANativeWindow_Buffer mWindowBuffer;
 packt::TimeService* mTimeService;

 bool mInitialized;

 float mPosX;
 float mPosY;
 const int32_t mSize;
 const float mSpeed;
 };
}
#endif

5. Now, open DroidBlaster.cpp implementation file. Update its constructor
and destructor. Cursor is 24 pixels large and moves at 100 pixels per second.
TimeService (and in near future all other services) is transmitted in the
Context structure:

#include "DroidBlaster.hpp"
#include "Log.hpp"

#include <math.h>

Writing a Fully-native Application

[176]

namespace dbs {

 DroidBlaster::DroidBlaster(packt::Context& pContext,
 android_app* pApplication) :
 mApplication(pApplication),
 mTimeService(pContext.mTimeService),
 mInitialized(false),
 mPosX(0), mPosY(0), mSize(24), mSpeed(100.0f) {
 packt::Log::info("Creating DroidBlaster");
 }

 DroidBlaster::~DroidBlaster() {
 packt::Log::info("Destructing DroidBlaster");
 }
...

6. Still in DroidBlaster.cpp, re-implement activation handler to:

 � Initialize the timer.

 � Force the window format in 32-bit with ANativeWindow_
setBuffersGeometry(). The two zeros passed in parameters are the
wanted window width and height. They are ignored unless initialized with
a positive value. Note that window area defined by width and height is
scaled to match screen size.

 � Retrieve all the necessary window information in an ANativeWindow_
Buffer structure to allow drawing. To fill this structure, window must
be locked.

 � Initialize cursor position the first time activity is launched.

...
 status DroidBlaster::onActivate() {
 packt::Log::info("Activating DroidBlaster");

 mTimeService->reset();

 // Forces 32 bits format.
 ANativeWindow* lWindow = mApplication->window;
 if (ANativeWindow_setBuffersGeometry(lWindow, 0,
0,
 WINDOW_FORMAT_RGBX_8888) < 0) {
 return STATUS_KO;
 }

 // Needs to lock the window buffer to get its
properties.

Chapter 5

[177]

 if (ANativeWindow_lock
 (lWindow, &mWindowBuffer, NULL) >= 0) {
 ANativeWindow_unlockAndPost(lWindow);
 } else {
 return STATUS_KO;
 }

 // Position the mark in the center.
 if (!mInitialized) {
 mPosX = mWindowBuffer.width / 2;
 mPosY = mWindowBuffer.height / 2;
 mInitialized = true;
 }
 return STATUS_OK;
 }
...

7. Continue with DroidBlaster.cpp and step the application by moving the cursor
at a constant rate (here 100 pixels per second). The window buffer has to be locked
to draw on it (method ANativeWindow_lock()) and unlocked when drawing is
finished (method ANativeWindow_unlockAndPost()):

...
 status DroidBlaster::onStep() {
 mTimeService->update();

 // Moves the mark at 100 pixels per second.
 mPosX = fmod(mPosX + mSpeed * mTimeService->elapsed(),
 mWindowBuffer.width);

 // Locks the window buffer and draws on it.
 ANativeWindow* lWindow = mApplication->window;
 if (ANativeWindow_lock(lWindow, &mWindowBuffer, NULL) >= 0) {
 clear();
 drawCursor(mSize, mPosX, mPosY);
 ANativeWindow_unlockAndPost(lWindow);
 return STATUS_OK;
 } else {
 return STATUS_KO;
 }
 }
...

Writing a Fully-native Application

[178]

8. Finally, implement the drawing methods. Clear the screen with a brute-force
approach using memset(). This operation is supported by display window surface
which is in fact just a big continuous memory buffer.

Drawing the cursor is not much more difficult Like for bitmaps processed natively,
display window surface is directly accessible via the bits field (only when surface
is locked!) and can be modified pixel by pixel. Here, a red square is rendered line by
line at the requested position. The stride allows jumping directly from one line
to another.

Note that no boundary check is performed. This is not a
problem for such a simple example but a memory overflow
can happen really quickly and cause a violent crash.

...
 void DroidBlaster::clear() {
 memset(mWindowBuffer.bits, 0, mWindowBuffer.stride
 * mWindowBuffer.height * sizeof(uint32_t*));
 }

 void DroidBlaster::drawCursor(int pSize, int pX, int pY) {
 const int lHalfSize = pSize / 2;

 const int lUpLeftX = pX - lHalfSize;
 const int lUpLeftY = pY - lHalfSize;
 const int lDownRightX = pX + lHalfSize;
 const int lDownRightY = pY + lHalfSize;

 uint32_t* lLine =
 reinterpret_cast<uint32_t*> (mWindowBuffer.bits)
 + (mWindowBuffer.stride * lUpLeftY);
 for (int iY = lUpLeftY; iY <= lDownRightY; iY++) {
 for (int iX = lUpLeftX; iX <= lDownRightX; iX++) {
 lLine[iX] = 255;
 }
 lLine = lLine + mWindowBuffer.stride;
 }
 }
}

The test code must be launched from the main entry point.

Chapter 5

[179]

9. Update android_main in file Main.cpp to launch the DroidBlaster activity
handler. You can temporarily comment DroidBlaster declaration:

#include "Context.hpp"
#include "DroidBlaster.hpp"
#include "EventLoop.hpp"
#include "TimeService.hpp"

void android_main(android_app* pApplication) {
 packt::TimeService lTimeService;
 packt::Context lContext = { &lTimeService };

 packt::EventLoop lEventLoop(pApplication);
 dbs::DroidBlaster lDroidBlaster(lContext, pApplication);
 lEventLoop.run(lDroidBlaster);
}

10. Are you fed up with adding new .cpp files each time you create a new one? Then
change the Android.mk file to define a Make macro LS_CPP that lists all .cpp
files in jni directory automatically. This macro is invoked when LOCAL_SRC_FILES
variable is initialized. Please refer to Chapter 9, Porting Existing Libraries to Android
for more information on the Makefile language:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LS_CPP=$(subst $(1)/,,$(wildcard $(1)/*.cpp))
LOCAL_MODULE := droidblaster
LOCAL_SRC_FILES := $(call LS_CPP,$(LOCAL_PATH))
LOCAL_LDLIBS := -landroid -llog

LOCAL_STATIC_LIBRARIES := android_native_app_glue

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)

11. Compile and run the application.

Writing a Fully-native Application

[180]

What just happened?
If you run DroidBlaster, you will discover the following result. The red square crosses
the screen at a constant rhythm. Result should be reproducible among each run:

Graphic feedback is performed through the ANativeWindow_* API which gives native access
to the display window and allow manipulating its surface like a bitmap. Like with bitmaps,
accessing window surface requires locking and unlocking before and after processing.

Be safe!

Native applications can crash. They can crash badly and although there are
means to detect where an application crashed (like core dumps in Android
logs, see Chapter 11, Debugging and Troubleshooting), it is always better
to develop carefully and protect your program code. Here, if the cursor was
drawn outside surface memory buffer, a sudden crash would be very likely
to happen.

You can start experimenting more concretely with application events by pressing the power
button, leaving to the home screen. Several situations can occur and should be systematically
tested carefully:

 � Leaving the application using the Back button (which destroys the native thread)

 � Leaving the application using the Home button (does not destroy the native thread
but stops the application and releases the window)

 � Long press on the power button to open the Power menu (application loses focus)

 � Long press on the Home button to show application switching menu (loses focus)

 � An unexpected phone call

Leaving the application using the Back button, reinitializes the mark in the middle;
this is because the native thread gets destructed. This is not the case in other scenarios
(for example, pressing the Home button).

Chapter 5

[181]

More on time primitives
Timers are essential to display animations and movement at correct speed. They can be
implemented with the POSIX method clock_gettime() which retrieves time with a high
precision, theoretically until the nanosecond.

Clock has been configured with the option CLOCK_MONOTONIC. A monotonic timer gives the
elapsed clock time since an arbitrary starting point in the past. It is unaffected by potential
system date change and thus cannot go back in the past compared to other options. The
downside with CLOCK_MONOTONIC is that it is system specific and it is not guaranteed to be
supported. Hopefully, Android supports it but care should be taken when porting Android
code to other platforms.

An alternative, less precise but which is affected by changes in the system time, is
gettimeofday(), also provided in time.h. Usage is similar but precision is in microseconds
instead of nanoseconds. Here could be an usage example that could replace the current now()
implementation in TimeService:

double TimeService::now() {
 timeval lTimeVal;
 gettimeofday(&lTimeVal, NULL);
 return (lTimeVal.tv_sec * 1000.0) + (lTimeVal.tv_usec / 1000.0);
}

Summary
In this chapter, we created our first fully native application without a line of Java code
and started to implement the skeleton of an event loop which processes events. More
specifically, we have seen how to poll events accordingly and make an application alive.
We have also handled events occurring during activity lifecycle to activate and deactivate
activity as soon as it is idling.

We have locked and unlocked natively the display window to display raw graphics. We can
now draw graphics directly without a temporary back buffer. Finally, we have retrieved time
to make the application adapt to device speed, thanks to a monotonic clock.

The basic framework initiated here will form the base of the 2D/3D game that we will
develop throughout this book. However, although nowadays simplicity is fashion, we need
something a bit fancier than just a red square! Follow me into the next chapter and discover
how to render advanced graphics with OpenGL ES for Android.

6
Rendering Graphics with OpenGL ES

Let's face it: one of the main interests of the Android NDK is to write multimedia
applications and games. Indeed, these programs consume lots of resources and
need responsiveness. That is why one of the first available APIs (and almost
the only one until recently) in Android NDK is an API for graphics: the Open
Graphics Library for Embedded Systems (abbreviated OpenGL ES).

OpenGL is a standard API created by Silicon Graphics and now managed by the
Khronos Group (see http://www.khronos.org/). OpenGL ES derivative is
available on many platforms such as iOS or Blackberry OS and is the best hope
for writing portable and efficient graphics code. OpenGL can do both 2D and 3D
graphics with programmable shaders (if hardware supports it). There are two
main releases of OpenGL ES currently supported by Android:

 � OpenGL ES 1.1: This is the most supported API on Android devices.
It offers an old school graphic API with a fixed pipeline (that is, a fixed
set of configurable operations to transform and render geometry).
Although specification is not fully implemented, its current
implementation is perfectly sufficient. This is a good choice to
write 2D games or 3D games targeting older devices.

 � OpenGL ES 2: This is not supported on old phones (like the antic HTC G1)
but more recent ones (at least not so old like the Nexus One… time goes
fast in the mobile world) support it. OpenGL ES 2 replaces the fixed
pipeline with a modern programmable pipeline with vertex and pixel
shaders. This is the best choice for advanced 3D games. Note that
OpenGL ES 1.X is frequently emulated by an OpenGL 2 implementation
behind the scene.

Rendering Graphics with OpenGL ES

[184]

This chapter teaches how to create 2D graphics. More specifically, it shows how to
do the following:

 � Initialize OpenGL ES and bind it to an Android window

 � Load a texture from a PNG file

 � Draw sprites using OpenGL ES 1.1 extensions

 � Display a tile map using vertex and index buffers

OpenGL ES and graphics in general is a wide subject. This chapter covers the essential basics
to get started with OpenGL ES 1.1, largely enough to create the next mind-blowing app!

Initializing OpenGL ES
The first step to create awesome graphics is to initialize OpenGL ES. Although not terribly
complex, this task is a little bit involving when binding to an Android window (that is,
attaching a rendering context to a window). These pieces are glued together with the help
of the Embedded-System Graphics Library (or EGL), a companion API of OpenGL ES.

For this first part, I propose to replace the raw drawing system implemented in a previous
chapter with OpenGL ES. We are going to take care of EGL initialization and finalization and
try to fade screen color from black to white to ensure everything works properly.

Project DroidBlaster_Part5-3 can be used as a starting point for this part. The
resulting project is provided with this book under the name DroidBlaster_Part6-1.

Time for action – initializing OpenGL ES
First, let's encapsulate OpenGL ES initialization code in a dedicated C++ class:

1. Create header file GraphicsService.hpp in jni folder. It needs to include EGL/
egl.h which defines EGL API to bind OpenGL ES to the Android platform. This
header declares among others EGLDisplay, EGLSurface, and EGLContext
types which are handles to system resources.

Our GrapicsService lifecycle is composed of three main steps:

 � start(): This binds an OpenGL rendering context to the Android
native window and loads graphic resources (textures and meshes later
in this chapter).

Chapter 6

[185]

 � stop(): This unbinds rendering context from Android window and frees
allocated graphic resources.

 � update(): This performs rendering operations during each
refresh iteration.

#define _PACKT_GRAPHICSSERVICE_HPP_

#include "TimeService.hpp"
#include "Types.hpp"

#include <android_native_app_glue.h>
#include <EGL/egl.h>

namespace packt {
 class GraphicsService {
 public:
 GraphicsService(android_app* pApplication,
 TimeService* pTimeService);

 const char* getPath();
 const int32_t& getHeight();
 const int32_t& getWidth();

 status start();
 void stop();
 status update();

 private:
 android_app* mApplication;
 TimeService* mTimeService;

 int32_t mWidth, mHeight;
 EGLDisplay mDisplay;
 EGLSurface mSurface;
 EGLContext mContext;
 };
}
#endif

Rendering Graphics with OpenGL ES

[186]

2. Create jni/Graphics.Service.cpp. Include GLES/gl.h and GLES/glext.h,
which are the official OpenGL include files for Android. Write constructor, destructor,
and getter methods:

#include "GraphicsService.hpp"
#include "Log.hpp"

#include <GLES/gl.h>
#include <GLES/glext.h>

namespace packt
{
 GraphicsService::GraphicsService(android_app* pApplication,
 TimeService* pTimeService) :
 mApplication(pApplication),
 mTimeService(pTimeService),
 mWidth(0), mHeight(0),
 mDisplay(EGL_NO_DISPLAY),
 mSurface(EGL_NO_CONTEXT),
 mContext(EGL_NO_SURFACE)
 {}

 int32_t GraphicsService::getPath() {
 return mResource.getPath();
 }

 const int32_t& GraphicsService::getHeight() {
 return mHeight;
 }

 const int32_t& GraphicsService::getWidth() {
 return mWidth;
 }
...

3. In the same file, carry out the bulk of the work by writing start(). The first
initialization steps consist of the following:

 � Connecting to a display, that is, an Android window, with
eglGetDisplay() and eglInitialize().

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

[187]

 � Finding an appropriate framebuffer configuration with
eglChooseConfig() for the display. Framebuffer is an OpenGL term
referring to a rendering surface (including additional elements like a
Z-buffer). Configurations are selected according to requested attributes:
OpenGL ES 1 and a 16 bits surface (5 bits for red, 6 for green, and 5 for
blue). The attribute list is terminated by EGL_NONE sentinel. Here, we
choose the default configuration.

 � Re-configuring the Android window according to selected configuration
attributes (retrieved with eglGetConfigAttrib()). This operation is
Android-specific and is performed with Android ANativeWindow API.

A list of all available framebuffer configurations is also available through
eglGetConfigs() which can then be parsed with eglGetConfigAttrib().
Note how EGL defines its own types and re-declares primitive types EGLint
and EGLBoolean to favor platform independence:

...
 status GraphicsService::start() {
 EGLint lFormat, lNumConfigs, lErrorResult;
 EGLConfig lConfig;
 const EGLint lAttributes[] = {
 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES_BIT,
 EGL_BLUE_SIZE, 5, EGL_GREEN_SIZE, 6, EGL_RED_SIZE, 5,
 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
 EGL_NONE
 };

 mDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
 if (mDisplay == EGL_NO_DISPLAY) goto ERROR;
 if (!eglInitialize(mDisplay, NULL, NULL)) goto ERROR;

 if(!eglChooseConfig(mDisplay, lAttributes, &lConfig, 1,
 &lNumConfigs) || (lNumConfigs <= 0)) goto ERROR;

 if (!eglGetConfigAttrib(mDisplay, lConfig,
 EGL_NATIVE_VISUAL_ID, &lFormat)) goto ERROR;
 ANativeWindow_setBuffersGeometry(mApplication->window, 0, 0,
 lFormat);
...

Rendering Graphics with OpenGL ES

[188]

4. Continue start() method to create the display surface according to the
configuration selected previously and context. A context contains all data
related to OpenGL state (enabled and disabled settings, matrix stack, and so on).

OpenGL ES supports the creation of multiple contexts for one
display surface. This allows dividing rendering operations among
threads or rendering to several windows. However, it is not well
supported on Android hardware and should be avoided.

Finally, activate the created rendering context (eglMakeCurrent()) and
define the display viewport according to surface attributes (retrieved with
eglQuerySurface()).

...
 mSurface = eglCreateWindowSurface(mDisplay, lConfig,
 mApplication->window, NULL);
 if (mSurface == EGL_NO_SURFACE) goto ERROR;
 mContext = eglCreateContext(mDisplay, lConfig,
 EGL_NO_CONTEXT, NULL);
 if (mContext == EGL_NO_CONTEXT) goto ERROR;

 if (!eglMakeCurrent (mDisplay, mSurface, mSurface, mContext)
 || !eglQuerySurface(mDisplay, mSurface, EGL_WIDTH, &mWidth)
 || !eglQuerySurface(mDisplay, mSurface, EGL_HEIGHT, &mHeight)
 || (mWidth <= 0) || (mHeight <= 0)) goto ERROR;
 glViewport(0, 0, mWidth, mHeight);

 return STATUS_OK;

 ERROR:
 Log::error("Error while starting GraphicsService");
 stop();
 return STATUS_KO;
 }
...

Chapter 6

[189]

5. In GraphicsService.cpp, unbind the application from the android window
and release EGL resources when the application stops running:

OpenGL contexts are lost frequently on Android applications (when
leaving or going back to the home screen, when a call is received,
when devices go to sleep, and so on). As a lost context becomes
unusable, it is important to release resources as soon as possible.

...
 void GraphicsService::stop() {
 if (mDisplay != EGL_NO_DISPLAY) {
 eglMakeCurrent(mDisplay, EGL_NO_SURFACE, EGL_NO_
SURFACE,
 EGL_NO_CONTEXT);
 if (mContext != EGL_NO_CONTEXT) {
 eglDestroyContext(mDisplay, mContext);
 mContext = EGL_NO_CONTEXT;
 }
 if (mSurface != EGL_NO_SURFACE) {
 eglDestroySurface(mDisplay, mSurface);
 mSurface = EGL_NO_SURFACE;
 }
 eglTerminate(mDisplay);
 mDisplay = EGL_NO_DISPLAY;
 }
 }
...

6. Finally, implement the last method update() to refresh the screen during each step
with eglSwapBuffers(). To have a concrete visual feedback, change the display
background color gradually according to the time step with glClearColor() and
erase the framebuffer with glClear(). Internally, rendering is performed on a back
buffer which is swapped with the front buffer shown to the user meanwhile. The
front buffer becomes the back buffer and vice versa (pointers are switched):

This technique is more commonly referred to as page flipping.
Front and back buffers form a swap chain. According to driver
implementation, they can be extended with a third buffer, in which
case we talk about triple buffering. Swapping is often synchronized
with the screen refresh rate to avoid image tearing: this is a VSync.

Rendering Graphics with OpenGL ES

[190]

...
 status GraphicsService::update() {
 float lTimeStep = mTimeService->elapsed();

 static float lClearColor = 0.0f;
 lClearColor += lTimeStep * 0.01f;
 glClearColor(lClearColor, lClearColor, lClearColor, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);

 if (eglSwapBuffers(mDisplay, mSurface) != EGL_TRUE) {
 Log::error("Error %d swapping buffers.", eglGetError());
 return STATUS_KO;
 }
 return STATUS_OK;
 }
}

We are done with GraphicsService. Let's use it in the final application.

7. Add GraphicsService to the Context structure in existing file
jni/Context.hpp:

...
namespace packt
{
 class GraphicsService;
 class TimeService;

 struct Context
 {
 GraphicsService* mGraphicsService;
 TimeService* mTimeService;
 };
}
...

8. Now, modify DroidBlaster.hpp to include GraphicsService as a member
variable. You can get rid of previous members mApplication, mPosX, mPosY,
mSize, mSpeed, and methods clear() and drawCursor() created in the
previous chapter:

#ifndef _PACKT_DROIDBLASTER_HPP_
#define _PACKT_DROIDBLASTER_HPP_

#include "ActivityHandler.hpp"

Chapter 6

[191]

#include "Context.hpp"
#include "GraphicsService.hpp"
#include "TimeService.hpp"
#include "Types.hpp"

namespace dbs {
 class DroidBlaster : public packt::ActivityHandler {
 public:
 DroidBlaster(packt::Context* pContext);
 ...

 private:
 packt::GraphicsService* mGraphicsService;
 packt::TimeService* mTimeService;
 };
}
#endif

9. And obviously, rewrite jni/DroidBlaster.cpp. Method onStep() is completely
rewritten and do not make use of DrawingUtil or ANativeWindow locking and
unlocking features anymore. This is completely replaced by GraphicsService,
which is started when the application is made available. The same goes for
TimeService:

#include "DroidBlaster.hpp"
#include "Log.hpp"

namespace dbs {
 DroidBlaster::DroidBlaster(packt::Context* pContext) :
 mGraphicsService(pContext->mGraphicsService),
 mTimeService(pContext->mTimeService)
 {}

 packt::status DroidBlaster::onActivate() {
 if (mGraphicsService->start() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }

 mTimeService->reset();
 return packt::STATUS_OK;
 }

 void DroidBlaster::onDeactivate() {
 mGraphicsService->stop();
 }

Rendering Graphics with OpenGL ES

[192]

 packt::status DroidBlaster::onStep() {
 mTimeService->update();

 if (mGraphicsService->update() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }
 return packt::STATUS_OK;
 }
 ...
}

10. Finally, update the main loop in existing file Main.cpp to instantiate
GraphicsService:

#include "Context.hpp"
#include "DroidBlaster.hpp"
#include "EventLoop.hpp"
#include "GraphicsService.hpp"
#include "TimeService.hpp"

void android_main(android_app* pApplication) {
 packt::TimeService lTimeService;
 packt::GraphicsService lGraphicsService(pApplication,
 &lTimeService);

 packt::Context lContext = { &lGraphicsService, &lTimeService
};

 packt::EventLoop lEventLoop(pApplication);
 dbs::DroidBlaster lDroidBlaster(&lContext);
 lEventLoop.run(&lDroidBlaster);
}

11. Let's not forget compilation. OpenGL ES 1.x libraries need to be included: libEGL
for device initialization and libGLESv1_CM for drawing calls:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LS_CPP=$(subst $(1)/,,$(wildcard $(1)/*.cpp))
LOCAL_MODULE := droidblaster
LOCAL_SRC_FILES := $(call LS_CPP,$(LOCAL_PATH))
LOCAL_LDLIBS := -landroid -llog -lEGL -lGLESv1_CM

Chapter 6

[193]

LOCAL_STATIC_LIBRARIES := android_native_app_glue

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)

What just happened?
Launch the application. If everything works fine, your device screen will progressively fade
from black to white. But instead of clearing display with a raw memset()or setting pixels
one by one like seen in previous chapter, efficient OpenGL ES drawing primitives are invoked
instead. Note that the effect appears only the first time the application is started because
the clear color is stored in a static variable, which has a different lifecycle than local and Java
variables on Android (see Chapter 4, Calling Back Java from Native Code). To make it appear
again, kill the application or relaunch it in Debug mode.

We have initialized and connected OpenGL ES and the Android native window system
together with EGL. Thanks to this API, we have queried a display configuration that matches
our expectations and created a framebuffer to render our scene on. We have taken care
of releasing resources when the application is deactivated, as OpenGL contexts are lost
frequently on mobile systems. Although EGL is a standard API, specified by the Khronos
group like OpenGL, platforms often implement their own variant (haphazardly, EAGL on
iOS). Portability is also limited by the fact that display window initialization remains the
responsibility of client application.

Reading PNG textures with the asset manager
I guess you need something more consistent than just changing the screen color! But before
showing awesome graphics in our application, we need to load some external resources.

In this second part, we are going to load a texture into OpenGL ES thanks to the Android asset
manager, an API provided since NDK R5. It allows programmers to access any resources stored
in the assets folder of their project folder. Assets stored there are then packaged into the
final APK archive during application compilation. Asset resources are considered as raw binary
files that your application needs to interpret and access using their filename relative to the
assets folder (a file assets/mydir/myfile can be accessed with mydir/myfile path).
Files are read-only and likely to be compressed.

If you have already written some Java Android application, then you know that Android also
provides resources accessible through compile-time generated IDs inside the res project
folder. This is not directly available on the Android NDK and unless you are ready to use a JNI
bridge, assets are the only way to package resources in your APK.

Rendering Graphics with OpenGL ES

[194]

In the current part, we are going to load a texture encoded in one of the most popular
picture formats used nowadays: Portable Network Graphics or more commonly known
as PNG. To help us in this task, we are going to integrate libpng NDK to interpret a PNG
file added to our assets. The resulting application will look like the following diagram:

Project DroidBlaster_Part6-1 can be used as a starting point for this
part. The resulting project is provided with this book under the name
DroidBlaster_Part6-2.

Time for action – loading a texture in OpenGL ES
PNG is a complex format to read. So let's embed libpng third-party library:

1. Go to the libpng website at http://www.libpng.org/pub/png/libpng.html
and download the libpng source package (version 1.5.2 in this book).

Original libpng 1.5.2 archive is provided with this book in Chapter6/
Resource folder under the name lpng152.zip. A second archive
lpng152_ndk.zip with the modifications made in the following steps
is also available.

2. Create a folder libpng inside $ANDROID_NDK/sources/. Move all files from the
libpng package in it.

3. Copy file libpng/scripts/pnglibconf.h.prebuilt into root folder libpng
with other source files. Rename it pnglibconf.h.

Chapter 6

[195]

4. Write an Android.mk file inside $ANDROID_NDK/sources with the content as
follows. This Makefile compiles all C files (macro LS_C called from LOCAL_SRC_
FILES directive) inside libpng folder, excluding example.c and pngtest.c.
The library is linked with prerequisite library libzip (option -lz) and packaged as a
static library. All include files are made available with directive LOCAL_EXPORT_C_
INCLUDES to clients.

Folder $ANDROID_NDK/sources is a special folder considered
by default as a module folder (which contains reusable libraries. See
Chapter 9, Porting Existing Libraries to Android for more information).

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LS_C=$(subst $(1)/,,$(wildcard $(1)/*.c))

LOCAL_MODULE := png
LOCAL_SRC_FILES := \
 $(filter-out example.c pngtest.c,$(call LS_C,$(LOCAL_PATH)))
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)
LOCAL_EXPORT_LDLIBS := -lz

include $(BUILD_STATIC_LIBRARY)

5. Now, open jni/Android.mk in DroidBlaster. Link and import libpng thanks
to the LOCAL_STATIC_LIBRARIES and import-module directives:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LS_CPP=$(subst $(1)/,,$(wildcard $(1)/*.cpp))
LOCAL_MODULE := droidblaster
LOCAL_SRC_FILES := $(call LS_CPP,$(LOCAL_PATH))
LOCAL_LDLIBS := -landroid -llog -lEGL -lGLESv1_CM
LOCAL_STATIC_LIBRARIES := android_native_app_glue png

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)
$(call import-module,libpng)

Rendering Graphics with OpenGL ES

[196]

6. Add libpng folder (${env_var:ANDROID_NDK}/sources/libpng) to your
project paths in the Project | Properties | Path and Symbols | Includes tab.

7. Ensure your module works by compiling DroidBlaster. If everything works fine,
libpng source files should get compiled (note that NDK will not recompile already
compiled sources). Some warnings are likely to appear. You can safely ignore them:

Library libpng is now included in our project. So let's now try to read a PNG
image file.

8. First, create in jni/Resource.hpp a new class Resource to access asset files.
We need three simple operations: open(), close(), and read().

Resource will encapsulate calls to the native Android asset management API.
This API is defined in android/asset_manager.hpp which is already included in
header android_native_app_glue.h. Its main entry point is an AAsetMAnager
opaque pointer, from which we can access an asset file represented by an AAsset:

#ifndef _PACKT_RESOURCE_HPP_
#define _PACKT_RESOURCE_HPP_

#include "Types.hpp"

#include <android_native_app_glue.h>

namespace packt {
 class Resource {
 public:
 Resource(android_app* pApplication, const char* pPath);

 const char* getPath();

 status open();
 void close();
 status read(void* pBuffer, size_t pCount);

 private:
 const char* mPath;

Chapter 6

[197]

 AAssetManager* mAssetManager;
 AAsset* mAsset;
 };
}
#endif

Implement class Resource in jni/Resource.cpp. The asset manager opens
assets with AAssetManager_open(). This is its sole responsibility apart from
listing folders. Assets are opened in default AASSET_MODE_UNKNOWN mode.
Other possibilities are:

 � AASSET_MODE_BUFFER: This performs fast small reads

 � AASSET_MODE_RANDOM: This reads chunks of data forward and backward

 � AASSET_MODE_STREAMING: This reads data sequentially with occasional
forward seeks

Then, code operates on asset files with AAsset_read() to read data and
AAsset_close() to close the asset:

#include "Resource.hpp"
#include "Log.hpp"

namespace packt {
 Resource::Resource(android_app* pApplication, const char*
pPath):
 mPath(pPath),
 mAssetManager(pApplication->activity->assetManager),
 mAsset(NULL)
 {}

 const char* Resource::getPath() {
 return mPath;
 }

 status Resource::open() {
 mAsset = AAssetManager_open(mAssetManager, mPath,
 AASSET_MODE_UNKNOWN);
 return (mAsset != NULL) ? STATUS_OK : STATUS_KO;
 }

 void Resource::close() {
 if (mAsset != NULL) {
 AAsset_close(mAsset);
 mAsset = NULL;
 }

Rendering Graphics with OpenGL ES

[198]

 }

 status Resource::read(void* pBuffer, size_t pCount) {
 int32_t lReadCount = AAsset_read(mAsset, pBuffer, pCount);
 return (lReadCount == pCount) ? STATUS_OK : STATUS_KO;
 }
}

9. Create jni/GraphicsTexture.hpp as follows. Include OpenGL and PNG header
GLES/gl.h and png.h. A texture is loaded from a PNG file with loadImage() and
callback_read(), pushed into OpenGL with load() and released in unload().

A texture is accessible through a simple identifier and has a format (RGB, RGBA, and
so on). Texture width and height have to be stored when as image is loaded from file:

#ifndef _PACKT_GRAPHICSTEXTURE_HPP_
#define _PACKT_GRAPHICSTEXTURE_HPP_

#include "Context.hpp"
#include "Resource.hpp"
#include "Types.hpp"

#include <android_native_app_glue.h>
#include <GLES/gl.h>
#include <png.h>

namespace packt {
 class GraphicsTexture {
 public:
 GraphicsTexture(android_app* pApplication, const char*
pPath);
 ~GraphicsTexture();

 int32_t getHeight();
 int32_t getWidth();

 status load();
 void unload();
 void apply();

 protected:
 uint8_t* loadImage();

 private:
 static void callback_read(png_structp pStruct,

Chapter 6

[199]

 png_bytep pData, png_size_t pSize);

 private:
 Resource mResource;
 GLuint mTextureId;
 int32_t mWidth, mHeight;
 GLint mFormat;
 };
}
#endif

10. Create the C++ source counterpart jni/GraphicsTexture.cpp with a constructor,
a destructor, and getters:

#include "Log.hpp"
#include "GraphicsTexture.hpp"

namespace packt {
 GraphicsTexture::GraphicsTexture(android_app* pApplication,
 const char* pPath) :
 mResource(pApplication, pPath),
 mTextureId(0),
 mWidth(0), mHeight(0)
 {}

 int32_t GraphicsTexture::getHeight() {
 return mHeight;
 }

 int32_t GraphicsTexture::getWidth() {
 return mWidth;
 }
...

11. Then, in the same file, implement loadImage() method to load a PNG file. File
is first opened through our Resource class and then its signature (the first 8 bytes)
is checked to ensure file is a PNG (note that it can still be corrupted):

...
 uint8_t* GraphicsTexture::loadImage() {
 png_byte lHeader[8];
 png_structp lPngPtr = NULL; png_infop lInfoPtr = NULL;
 png_byte* lImageBuffer = NULL; png_bytep* lRowPtrs = NULL;
 png_int_32 lRowSize; bool lTransparency;

Rendering Graphics with OpenGL ES

[200]

 if (mResource.open() != STATUS_OK) goto ERROR;
 if (mResource.read(lHeader, sizeof(lHeader)) != STATUS_OK)
 goto ERROR;
 if (png_sig_cmp(lHeader, 0, 8) != 0) goto ERROR;
...

12. In the same method, create all structures necessary to read a PNG image.

After that, prepare reading operations by giving our callback_read()
(implemented later in this tutorial) to libpng with our Resource reader.

Set up error management with setjmp(). This mechanism allows jumping like a
goto but through the call stack. If an error occurs, control flow comes back at the
point where setjmp() has been called first, but enters the if block instead (here
goto ERROR):

...
 lPngPtr = png_create_read_struct(PNG_LIBPNG_VER_STRING,
 NULL, NULL, NULL);
 if (!lPngPtr) goto ERROR;
 lInfoPtr = png_create_info_struct(lPngPtr);
 if (!lInfoPtr) goto ERROR;

 png_set_read_fn(lPngPtr, &mResource, callback_read);
 if (setjmp(png_jmpbuf(lPngPtr))) goto ERROR;
...

13. In loadImage(), start reading PNG file header with png_read_info(), ignoring
the first 8 bytes read for file signature with png_set_sig_bytes().

PNG files can be encoded in several formats: RGB, RGBA, 256 colors with a palette,
grayscale… R,G, and B color channels can be encoded on up to 16 bits. Hopefully,
libpng provides transformation functions to decode unusual formats to more
classical RGB and luminance formats with 8 bits per channel with or without an
alpha channel. Transformations are validated with png_read_update_info():

...
 png_set_sig_bytes(lPngPtr, 8);
 png_read_info(lPngPtr, lInfoPtr);

 png_int_32 lDepth, lColorType;
 png_uint_32 lWidth, lHeight;
 png_get_IHDR(lPngPtr, lInfoPtr, &lWidth, &lHeight,
 &lDepth, &lColorType, NULL, NULL, NULL);
 mWidth = lWidth; mHeight = lHeight;

Chapter 6

[201]

 // Creates a full alpha channel if transparency is encoded as
 // an array of palette entries or a single transparent color.
 lTransparency = false;
 if (png_get_valid(lPngPtr, lInfoPtr, PNG_INFO_tRNS)) {
 png_set_tRNS_to_alpha(lPngPtr);
 lTransparency = true;
 goto ERROR;
 }
 // Expands PNG with less than 8bits per channel to 8bits.
 if (lDepth < 8) {
 png_set_packing (lPngPtr);
 // Shrinks PNG with 16bits per color channel down to
8bits.
 } else if (lDepth == 16) {
 png_set_strip_16(lPngPtr);
 }
 // Indicates that image needs conversion to RGBA if
needed.
 switch (lColorType) {
 case PNG_COLOR_TYPE_PALETTE:
 png_set_palette_to_rgb(lPngPtr);
 mFormat = lTransparency ? GL_RGBA : GL_RGB;
 break;
 case PNG_COLOR_TYPE_RGB:
 mFormat = lTransparency ? GL_RGBA : GL_RGB;
 break;
 case PNG_COLOR_TYPE_RGBA:
 mFormat = GL_RGBA;
 break;
 case PNG_COLOR_TYPE_GRAY:
 png_set_expand_gray_1_2_4_to_8(lPngPtr);
 mFormat = lTransparency ? GL_LUMINANCE_ALPHA:GL_
LUMINANCE;
 break;
 case PNG_COLOR_TYPE_GA:
 png_set_expand_gray_1_2_4_to_8(lPngPtr);
 mFormat = GL_LUMINANCE_ALPHA;
 break;
 }
 png_read_update_info(lPngPtr, lInfoPtr);
...

Rendering Graphics with OpenGL ES

[202]

14. Allocate the necessary temporary buffer to hold image data and a second one with
the address of each output image row for libpng. Note that row order is inverted
because OpenGL uses a different coordinate system (first pixel is at bottom-left)
then PNG (first pixel at top-left). Then start reading effectively image content with
png_read_image().

...
 lRowSize = png_get_rowbytes(lPngPtr, lInfoPtr);
 if (lRowSize <= 0) goto ERROR;
 lImageBuffer = new png_byte[lRowSize * lHeight];
 if (!lImageBuffer) goto ERROR;

 lRowPtrs = new png_bytep[lHeight];
 if (!lRowPtrs) goto ERROR;
 for (int32_t i = 0; i < lHeight; ++i) {
 lRowPtrs[lHeight - (i + 1)] = lImageBuffer + i * lRowSize;
 }

 png_read_image(lPngPtr, lRowPtrs);
...

15. Finally, release resources(whether an error occurs or not) and return loaded data.

...
 mResource.close();
 png_destroy_read_struct(&lPngPtr, &lInfoPtr, NULL);
 delete[] lRowPtrs;
 return lImageBuffer;

 ERROR:
 Log::error("Error while reading PNG file");
 mResource.close();
 delete[] lRowPtrs; delete[] lImageBuffer;
 if (lPngPtr != NULL) {
 png_infop* lInfoPtrP = lInfoPtr != NULL ? &lInfoPtr: NULL;
 png_destroy_read_struct(&lPngPtr, lInfoPtrP, NULL);
 }
 return NULL;
 }
...

Chapter 6

[203]

16. We are almost done with loadImage()… almost because libpng still requires
callback_read() to be implemented. This callback method, passed to libpng
at step 11, is a mechanism designed to integrate custom read operations… like the
Android asset management API! The asset file is read through Resource instance
transmitted as an untyped pointer at step 11:

...
 void png_read_callback(png_structp png, png_bytep data,
 png_size_t size) {
 ResourceReader& lReader =
 ((ResourceReader) png_get_io_ptr(png));
 if (lReader.read(data, size) != STATUS_OK) {
 lReader.close();
 png_error(png, "Error while reading PNG file");
 }
 }
...

17. We are done with PNG loading! In GraphicsTexture.hpp, get the temporary
image buffer loaded in loadImage() back in method load(). Creating a texture
once image data is in memory is easy:

 � Generate a new texture ID with glGenTextures().

 � Tell OpenGL we are working on a new texture with glBindTexture().

 � Configure texture parameters, which need to be set only when texture
is created. GL_LINEAR smooths textures drawn on screen. This is not
essential for a 2D game which does not scale textures but the smallest
zoom effect will require it. Texture repetition is prevented with GL_CLAMP_
TO_EDGE.

 � Push image data into current OpenGL texture with glTexImage2D().

 � And, of course, do not forget to free the temporary image buffer!

...
 status GraphicsTexture::load() {
 uint8_t* lImageBuffer = loadImage();
 if (lImageBuffer == NULL) {
 return STATUS_KO;
 }

 // Creates a new OpenGL texture.
 GLenum lErrorResult;
 glGenTextures(1, &mTextureId);
 glBindTexture(GL_TEXTURE_2D, mTextureId);

Rendering Graphics with OpenGL ES

[204]

 // Set-up texture properties.
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_EDGE);

 // Loads image data into OpenGL.
 glTexImage2D(GL_TEXTURE_2D, 0, mFormat, mWidth, mHeight,
0,
 mFormat, GL_UNSIGNED_BYTE, lImageBuffer);
 delete[] lImageBuffer;
 if (glGetError() != GL_NO_ERROR) {
 Log::error("Error loading texture into OpenGL.");
 unload();
 return STATUS_KO;
 }
 return STATUS_OK;
 }
...

18. The rest of the code is much simpler. Method unload() releases Open GL texture
resources when application exits with glDeleteTextures():

...
 void GraphicsTexture::unload() {
 if (mTextureId != 0) {
 glDeleteTextures(1, &mTextureId);
 mTextureId = 0;
 }
 mWidth = 0; mHeight = 0; mFormat = 0;
 }
...

19. Finally, implement method apply() to indicate to OpenGL ES which texture
to draw on screen when refreshing the scene:

...
 void GraphicsTexture::apply() {
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, mTextureId);
 }
}

Chapter 6

[205]

Code to properly load textures is ready. Let's manage them in GraphicsService:

20. Open jni/GraphicsService.hpp. Add a destructor and create a method
registerTexture() to allow clients to create new textures by passing an asset
path. Textures are stored in a C++ array. They are loaded when GraphicsService
starts (with loadResources()) and unloaded when it stops (with
unloadResources()):

#ifndef _PACKT_GRAPHICSSERVICE_HPP_
#define _PACKT_GRAPHICSSERVICE_HPP_

#include "GraphicsTexture.hpp"
#include "TimeService.hpp"
#include "Types.hpp"

...

namespace packt {
 class GraphicsService
 {
 public:
 GraphicsService(android_app* pApplication,
 TimeService* pTimeService);
 ~GraphicsService();
 ...

 status start();
 void stop();
 status update();

 GraphicsTexture* registerTexture(const char* pPath);

 protected:
 status loadResources();
 status unloadResources();

 private:
 ...

 GraphicsTexture* mTextures[32]; int32_t mTextureCount;
 };
}
#endif

Rendering Graphics with OpenGL ES

[206]

21. In jni/GraphicsService.cpp, implementation of the constructor, destructor,
start() and stop() is rather trivial:

...
namespace packt
{
 GraphicsService::GraphicsService(android_app* pApplication,
 TimeService* pTimeService) :
 ...,
 mTextures(), mTextureCount(0)
 {}

 GraphicsService::~GraphicsService() {
 for (int32_t i = 0; i < mTextureCount; ++i) {
 delete mTextures[i];
 mTextures[i] = NULL;
 }
 mTextureCount = 0;
 }

 ...

 status GraphicsService::start() {
 ...
 glViewport(0, 0, mWidth, mHeight);

 if (loadResources() != STATUS_OK) goto ERROR;
 return STATUS_OK;

 ERROR:
 Log::error("Error while starting GraphicsService");
 stop();
 return STATUS_KO;
 }

 void GraphicsService::stop() {
 unloadResources();

 if (mDisplay != EGL_NO_DISPLAY) {
 ...
 }
...

Chapter 6

[207]

22. To finish with jni/GraphicsService.cpp, append new methods for texture
resource management. There is no specific difficulty here. A lookup is performed
when registering a texture to prevent duplication:

...
 status GraphicsService::loadResources() {
 for (int32_t i = 0; i < mTextureCount; ++i) {
 if (mTextures[i]->load() != STATUS_OK) {
 return STATUS_KO;
 }
 }
 return STATUS_OK;
 }

 status GraphicsService::unloadResources() {
 for (int32_t i = 0; i < mTextureCount; ++i) {
 mTextures[i]->unload();
 }
 return STATUS_OK;
 }

 GraphicsTexture* GraphicsService::registerTexture(
 const char* pPath) {
 for (int32_t i = 0; i < mTextureCount; ++i) {
 if (strcmp(pPath, mTextures[i]->getPath()) == 0) {
 return mTextures[i];
 }
 }

 GraphicsTexture* lTexture = new GraphicsTexture(
 mApplication, pPath);
 mTextures[mTextureCount++] = lTexture;
 return lTexture;
 }
}

What just happened?
In the previous chapter, we have just embedded existing module NativeAppGlue to create
a fully native application. This time, we have created our first reusable module to integrate
libpng. Combined with the Android asset manager, we are now able to create an OpenGL
texture from a PNG file packaged as an asset. The only drawback is that PNG does not
support 16 bits RGB.

Rendering Graphics with OpenGL ES

[208]

Do not be greedy with assets

Assets take space, lots of space. Installing large APK size can be problematic,
even when they are deployed on a SD Card (see the installLocation
option in the Android manifest). Moreover, opening assets of more than 1 MB
or which were compressed was problematic in OS prior to version 2.3. Thus, a
good strategy to deal with tons of megabytes of resources is to keep essential
assets in your APK and download remaining files to SD Card at runtime the first
time application is launched.

To test if code loads textures without error, you can insert the following lines in
jni/DroidBlaster.cpp. Texture must be located in the assets project folder:

File ship.png loaded is provided with this book in Chapter6/Resource.

...
 packt::GraphicsTexture* lShipTex =
 mGraphicsService->registerTexture("ship.png");
...

When dealing with textures, an important requirement to remember is that OpenGL
textures must have a power of two dimensions (for example, 128 or 256 pixels). This allows,
for example, the generation of mipmaps, that is, smaller versions of the same texture, to
increase performance and reduce aliasing artifacts when rendered object distance changes.
Other dimensions will fail on most devices. In addition, textures consume a lot of memory
and bandwidth. So consider using a compressed texture format such as ETC1 which is getting
wider support (but cannot handle alpha channels natively). Have a look at http://blog.
tewdew.com/post/7362195285/the-android-texture-decision for an interesting
article about texture compression.

Drawing a sprite
The base of 2D games is sprites, pieces of images composited (or blitted) on screen and
which represent an object, character, or anything else animated or not. Sprites can be
displayed with a transparency effect using the Alpha channel of an image. Typically, an
image will contain several frames for a sprite, each frame representing a different
animation step or different objects.

Chapter 6

[209]

Editing sprite images

If you need a powerful multiplatform image editor, consider using
GIMP, the GNU Image Manipulation Program. This program available
on Windows, Linux and Mac OS X is really powerful and open source.
You can download it at http://www.gimp.org/.

To implement sprites, we are going to rely on an OpenGL ES extension generally supported
on Android devices : GL_OES_draw_texture. It allows drawing pictures directly onto the
screen from an texture. This is one of the most efficient technique when creating a 2D game.

Project DroidBlaster_Part6-2 can be used as a starting point for
this part. The resulting project is provided with this book under the
name DroidBlaster_Part6-3.

Time for action – drawing a Ship sprite
Let's write the necessary code to handle a sprite first:

1. First, we need a class to contain sprites coordinates. Update jni/Types.hpp
to define a new structure Location:

...
namespace packt {
 typedef int32_t status;

 const status STATUS_OK = 0;
 const status STATUS_KO = -1;
 const status STATUS_EXIT = -2;

 struct Location {
 Location(): mPosX(0), mPosY(0) {};
 void setPosition(float pPosX, float pPosY)
 { mPosX = pPosX; mPosY = pPosY; }

 void translate(float pAmountX, float pAmountY)
 { mPosX += pAmountX; mPosY += pAmountY; }

 float mPosX; float mPosY;
 };
}
...

Rendering Graphics with OpenGL ES

[210]

2. Create GraphicsSprite.hpp in folder jni. A sprite is loaded when
GraphicsService starts with load() and rendered when screen is refreshed
with draw(). It is possible to set an animation with setAnimation() and play
it infinitely or not by drawing sprite frames consecutively in time.

A sprite requires several properties:

 � A texture containing the sprite sheet (mTexture).

 � A location to draw on screen (mLocation).

 � Information about sprite frames: mWidth and mHeight, horizontal,
vertical, and total number of frames in mFrameXCount, mFrameYCount,
and mFrameCount.

 � Animation information: first and total number of frames of an animation
in mAnimStartFrame and mAnimFrameCount, animation speed in
mAnimSpeed, currently shown frame in mAnimFrame, and a looping
indicator in mAnimLoop.

#ifndef _PACKT_GRAPHICSSPRITE_HPP_
#define _PACKT_GRAPHICSSPRITE_HPP_

#include "GraphicsTexture.hpp"
#include "TimeService.hpp"
#include "Types.hpp"

namespace packt {
 class GraphicsSprite {
 public:
 GraphicsSprite(GraphicsTexture* pTexture,
 int32_t pHeight, int32_t pWidth, Location*
pLocation);

 void load();
 void draw(float pTimeStep);

 void setAnimation(int32_t pStartFrame, int32_t
pFrameCount,
 float pSpeed, bool pLoop);
 bool animationEnded();

 private:
 GraphicsTexture* mTexture;
 Location* mLocation;
 // Frame.
 int32_t mHeight, mWidth;

Chapter 6

[211]

 int32_t mFrameXCount, mFrameYCount, mFrameCount;
 // Animation.
 int32_t mAnimStartFrame, mAnimFrameCount;
 float mAnimSpeed, mAnimFrame;
 bool mAnimLoop;
 };
}
#endif

3. Write GraphicsSprite.cpp in jni folder. Frame information (horizontal,
vertical, and total number of frames) needs to be recomputed in load()
as texture dimensions are known only at load time.

When setting up an animation with setAnimation(), compute the first frame index
mAnimStartFrame inside the sprite sheet and the number of images composing the
animation, mAnimFrameCount. The animation speed is set through mAnimSpeed and
current animation frame (updated at each step) is saved in mAnimFrame:

include "GraphicsSprite.hpp"
#include "Log.hpp"

#include <GLES/gl.h>
#include <GLES/glext.h>

namespace packt {
 GraphicsSprite::GraphicsSprite(GraphicsTexture* pTexture,
 int32_t pHeight, int32_t pWidth, Location* pLocation) :
 mTexture(pTexture), mLocation(pLocation),
 mHeight(pHeight), mWidth(pWidth),
 mFrameCount(0), mFrameXCount(0), mFrameYCount(0),
 mAnimStartFrame(0), mAnimFrameCount(0),
 mAnimSpeed(0), mAnimFrame(0), mAnimLoop(false)
 {}

 void GraphicsSprite::load() {
 mFrameXCount = mTexture->getWidth() / mWidth;
 mFrameYCount = mTexture->getHeight() / mHeight;
 mFrameCount = (mTexture->getHeight() / mHeight)
 * (mTexture->getWidth() / mWidth);
 }

 void GraphicsSprite::setAnimation(int32_t pStartFrame,
 int32_t pFrameCount, float pSpeed, bool pLoop) {
 mAnimStartFrame = pStartFrame;
 mAnimFrame = 0.0f, mAnimSpeed = pSpeed, mAnimLoop = pLoop;

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Rendering Graphics with OpenGL ES

[212]

 int32_t lMaxFrameCount = mFrameCount - pStartFrame;
 if ((pFrameCount > -1) && (pFrameCount <= lMaxFrameCount))
{
 mAnimFrameCount = pFrameCount;
 } else {
 mAnimFrameCount = lMaxFrameCount;
 }
 }

 bool GraphicsSprite::animationEnded() {
 return mAnimFrame > (mAnimFrameCount - 1);
 }
...

4. In GraphicsSprite.cpp, implement last method draw(). First, compute the
current frame to display depending on the animation state and then draw it with
OpenGL. They are three main steps involved to draw a sprite:

 � Ensure OpenGL draws the right texture with apply() (that is,
glBindTexture()).

 � Crop texture to draw only the required sprite frame with
glTexParameteriv() and GL_TEXTURE_CROP_RECT_OES.

 � Finally send a draw order to OpenGL ES with glDrawTexfOES().

...
 void GraphicsSprite::draw(float pTimeStep) {
 int32_t lCurrentFrame, lCurrentFrameX,
lCurrentFrameY;

 // Updates animation in loop mode.
 mAnimFrame += pTimeStep * mAnimSpeed;
 if (mAnimLoop) {
 lCurrentFrame = (mAnimStartFrame +
 int32_t(mAnimFrame) %
mAnimFrameCount);
 }
 // Updates animation in one-shot mode.
 else {
 // If animation ended.
 if (animationEnded()) {
 lCurrentFrame = mAnimStartFrame +
(mAnimFrameCount-1);
 } else {
 lCurrentFrame = mAnimStartFrame +
int32_t(mAnimFrame);

Chapter 6

[213]

 }
 }
 // Computes frame X and Y indexes from its id.
 lCurrentFrameX = lCurrentFrame % mFrameXCount;
 // lCurrentFrameY is converted from OpenGL
coordinates
 // to top-left coordinates.
 lCurrentFrameY = mFrameYCount - 1
 - (lCurrentFrame /
mFrameXCount);

 // Draws selected sprite frame.
 mTexture->apply();
 int32_t lCrop[] = { lCurrentFrameX * mWidth,
 lCurrentFrameY * mHeight,
 mWidth, mHeight };
 glTexParameteriv(GL_TEXTURE_2D,
 GL_TEXTURE_CROP_RECT_OES,
 lCrop);
 glDrawTexfOES(mLocation->mPosX - (mWidth / 2),
 mLocation->mPosY - (mHeight / 2),
 0.0f, mWidth, mHeight);
 }
}

Code to render sprites is ready. Let's make use of it:

5. Modify GraphicsService to manage sprite resources (like textures in the
previous part):

#ifndef _PACKT_GRAPHICSSERVICE_HPP_
#define _PACKT_GRAPHICSSERVICE_HPP_

#include "GraphicsSprite.hpp"
#include "GraphicsTexture.hpp"

...

namespace packt {
 class GraphicsService {
 public:
 ...
 GraphicsTexture* registerTexture(const char* pPath);
 GraphicsSprite* registerSprite(GraphicsTexture* pTexture,
 int32_t pHeight, int32_t pWidth, Location* pLocation);

Rendering Graphics with OpenGL ES

[214]

 protected:
 status loadResources();
 status unloadResources();
 void setup();

 private:
 ...

 GraphicsTexture* mTextures[32]; int32_t mTextureCount;
 GraphicsSprite* mSprites[256]; int32_t mSpriteCount;
 };
}
#endif

6. Modify GraphicsService.cpp so that it creates a buffer of sprite to draw
while operating. We define a method registerSprite for this purpose:

...

namespace packt {
 GraphicsService::GraphicsService(android_app* pApplication,
 TimeService* pTimeService) :
 ...,
 mTextures(), mTextureCount(0),
 mSprites(), mSpriteCount(0)
 {}

 GraphicsService::~GraphicsService() {
 for (int32_t i = 0; i < mSpriteCount; ++i) {
 delete mSprites[i];
 mSprites[i] = NULL;
 }
 mSpriteCount = 0;

 for (int32_t i = 0; i < mTextureCount; ++i) {
 delete mTextures[i];
 mTextures[i] = NULL;
 }
 mTextureCount = 0;
 }

 ...

 status GraphicsService::start() {
 ...

Chapter 6

[215]

 if (loadResources() != STATUS_OK) goto ERROR;
 setup();
 return STATUS_OK;

 ERROR:
 Log::error("Error while starting GraphicsService");
 stop();
 return STATUS_KO;
 }
...

7. Erase screen with black and draw sprites over using the method update().
Transparency is enabled with glBlendFunc() which blends source texture pixel
with final framebuffer according to the specified formula. Here, source pixel affects
destination pixel according to its alpha channel (GL_SRC_ALPHA/GL_ONE_MINUS_
SRC_ALPHA). This is commonly referred to as alpha blending:

...
 status GraphicsService::update() {
 float lTimeStep = mTimeService->elapsed();

 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);

 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 for (int32_t i = 0; i < mSpriteCount; ++i) {
 mSprites[i]->draw(lTimeStep);
 }
 glDisable(GL_BLEND);

 if (eglSwapBuffers(mDisplay, mSurface) != EGL_TRUE) {
 Log::error("Error %d swapping buffers.", eglGetError());
 return STATUS_KO;
 }
 return STATUS_OK;
 }

 status GraphicsService::loadResources() {
 for (int32_t i = 0; i < mTextureCount; ++i) {
 if (mTextures[i]->load() != STATUS_OK) {
 return STATUS_KO;
 }
 }

Rendering Graphics with OpenGL ES

[216]

 for (int32_t i = 0; i < mSpriteCount; ++i) {
 mSprites[i]->load();
 }
 return STATUS_OK;
 }
...

8. To finish with jni/GraphicsService.cpp, implement setup() to initialize
main OpenGL settings. Here, enable texturing but disable the Z-buffer which is
not needed in a simple 2D game. Ensure sprites are rendered (for the emulator)
with glColor4f():

...
 void GraphicsService::setup() {
 glEnable(GL_TEXTURE_2D);
 glDisable(GL_DEPTH_TEST);
 glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
 }

 ...

 GraphicsSprite* GraphicsService::registerSprite(
 GraphicsTexture* pTexture, int32_t pHeight,
 int32_t pWidth, Location* pLocation) {
 GraphicsSprite* lSprite = new GraphicsSprite(pTexture,
 pHeight, pWidth, pLocation);
 mSprites[mSpriteCount++] = lSprite;
 return lSprite;
 }
}

We are almost done! Let's use our engine drawing capabilities to render a spaceship:

9. Create a Ship game object in jni/Ship.hpp file:

#ifndef _DBS_SHIP_HPP_
#define _DBS_SHIP_HPP_

#include "Context.hpp"
#include "GraphicsService.hpp"
#include "GraphicsSprite.hpp"
#include "Types.hpp"

namespace dbs {
 class Ship {

Chapter 6

[217]

 public:
 Ship(packt::Context* pContext);

 void spawn();

 private:
 packt::GraphicsService* mGraphicsService;

 packt::GraphicsSprite* mSprite;
 packt::Location mLocation;
 float mAnimSpeed;
 };
}
#endif

10. The Ship class registers the resource it needs when it is created, here
ship.png sprite (which must be located in the assets folder) contains
64x64 pixel frames. It is initialized in spawn() in the lower quarter of the
screen and uses an 8-frame animation:

File ship.png is provided with this book in the Chapter6/
Resource folder.

#include "Ship.hpp"
#include "Log.hpp"

namespace dbs {
 Ship::Ship(packt::Context* pContext) :
 mGraphicsService(pContext->mGraphicsService),
 mLocation(), mAnimSpeed(8.0f) {
 mSprite = pContext->mGraphicsService->registerSprite(
 mGraphicsService->registerTexture("ship.png"), 64, 64,
 &mLocation);
 }

 void Ship::spawn() {
 const int32_t FRAME_1 = 0; const int32_t FRAME_NB = 8;
 mSprite->setAnimation(FRAME_1, FRAME_NB, mAnimSpeed, true);
 mLocation.setPosition(mGraphicsService->getWidth() * 1 / 2,

Rendering Graphics with OpenGL ES

[218]

 mGraphicsService->getHeight() * 1 / 4);
 }
}

11. Include the new Ship class in jni/DroidBlaster.hpp:

#ifndef _PACKT_DROIDBLASTER_HPP_
#define _PACKT_DROIDBLASTER_HPP_

#include "ActivityHandler.hpp"
#include "Context.hpp"
#include "GraphicsService.hpp"
#include "Ship.hpp"
#include "TimeService.hpp"
#include "Types.hpp"

namespace dbs {
 class DroidBlaster : public packt::ActivityHandler {
 ...
 private:
 packt::GraphicsService* mGraphicsService;
 packt::TimeService* mTimeService;

 Ship mShip;
 };
}
#endif

12. Modify jni/DroidBlaster.cpp accordingly. Implementation is trivial:

#include "DroidBlaster.hpp"
#include "Log.hpp"

namespace dbs {
 DroidBlaster::DroidBlaster(packt::Context* pContext) :
 mGraphicsService(pContext->mGraphicsService),
 mTimeService(pContext->mTimeService),
 mShip(pContext)
 {}

 ...

 packt::status DroidBlaster::onActivate() {

Chapter 6

[219]

 if (mGraphicsService->start() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }

 mShip.spawn();

 mTimeService->reset();
 return packt::STATUS_OK;
 }
 ...
}

What just happened?
Launch DroidBlaster now to see the following screen with the ship animated at a rate
of 8 FPS:

In this part, we have seen how to draw a sprite efficiently with a common OpenGL ES
extension GL_OES_draw_texture. This technique is simple to use and is generally the
way to go to render sprites. However, it suffers from a few caveats that can be solved only
by going back to polygons:

 � glDrawTexOES() is available on OpenGL ES 1.1! OpenGL ES 2.0 and some old
devices do not support it.

 � Sprite cannot be rotated.

 � This technique may cause lots of state changes when drawing many different sprites
(like a background) which could impact performance.

Rendering Graphics with OpenGL ES

[220]

A common cause of bad performance in OpenGL programs relies in state changes. Changing
OpenGL device state (for example, binding a new buffer or texture, changing an option with
glEnable(), and so on) is a costly operation and should be avoided as much as possible,
for example, by sorting draw calls and changing only the needed states. For example,
we could improve our Texture::apply() method by checking the texture currently
set before binding it.

One of the best OpenGL ES documentation is available, well…
from the Apple developer site: http://developer.apple.
com/library/IOS/#documentation/3DDrawing/
Conceptual/OpenGLES_ProgrammingGuide/.

Rendering a tile map with vertex buffer objects
What would a 2D game be without a map; more precisely a tile map. A tile map is a full-size
map composed of small quad polygons or tiles mapped with a piece of image. These tiles
are made so that they can be pasted beside, repeatedly. We are now going to implement a
tile map to draw a background. The rendering technique is inspired from the Android game
Replica Island (see http://replicaisland.net). It is based on vertex and index buffer
to batch tile rendering in a few OpenGL calls (thus minimizing state changes).

Tiled map editor

Tiled is an open source program available on Windows, Linux, and
Mac OS X to create your own custom tile maps with a friendly editor.
Tiled exports XML-based files with the TMX extension. Download it
from http://www.mapeditor.org/.

Let's now implement our own tile map. The final application should look like the following:

Chapter 6

[221]

Project DroidBlaster_Part6-3 can be used as a starting point for
this part. The resulting project is provided with this book under
the name DroidBlaster_Part6-4.

Time for action – drawing a tile-based background
First, let's embed RapidXml library to read XML files:

1. Download RapidXml (version 1.1.13 in this book) at http://rapidxml.
sourceforge.net/.

RapidXml archive is provided with this book in the Chapter6/
Resource folder.

2. Find rapidxml.hpp in the downloaded archive and copy it into your jni folder.

3. RapidXml works with exceptions by default. As we will study exception handling
later in this book, deactivate them in jni/Android.mk with a predefined macro:

...
LS_CPP=$(subst $(1)/,,$(wildcard $(1)/*.cpp))
LOCAL_CFLAGS := -DRAPIDXML_NO_EXCEPTIONS
LOCAL_MODULE := droidblaster
LOCAL_SRC_FILES := $(call LS_CPP,$(LOCAL_PATH))
LOCAL_LDLIBS := -landroid -llog -lEGL -lGLESv1_CM
...

4. For efficiency reasons, RapidXml read XML files directly from a memory buffer
containing the whole file. So open Resource.hpp and add a new method to get
a full buffer from an asset (bufferize()) and retrieve its length (getLength()):

...
namespace packt {
 class Resource {
 public:
 ...

 off_t getLength();
 const void* bufferize();

 private:
 ...

Rendering Graphics with OpenGL ES

[222]

 };
}
...

5. The asset management API offers all the required stuff to implement
these methods:

...
namespace packt {
 ...

 off_t Resource::getLength() {
 return AAsset_getLength(mAsset);
 }

 const void* Resource::bufferize() {
 return AAsset_getBuffer(mAsset);
 }
}

Now, let's write the code necessary to handle a simple TMX tile map:

6. Create a new header file jni/GraphicsTileMap.hpp as follows.
A GraphicsTileMap is first loaded, then drawn when the screen
refreshes and finally unloaded. Loading itself occurs in three steps:

 � loadFile(): This loads a Tiled TMX file with RapidXml

 � loadVertices(): This sets up an OpenGL Vertex Buffer Object
and generate vertices from file data

 � loadIndexes(): This generates an index buffer with indexes delimitating
two triangle polygons for each tile

A tile map requires the following:

 � A texture containing the sprite sheet.

 � Two resource handles (mVertexBuffer, mIndexBuffer) pointing
to OpenGL vertex and index buffers, the number of elements they
contain (mVertexCount, mIndexCount) and the number of coordinate
components (X/Y/Z and U/V coordinates in mVertexComponent).

 � Information about the number of tiles in the final map (mWidth and
mHeight).

 � A description of tile width and height in pixels (mTileHeight and
mTileHeight) and count (mTileCount and mTileXCount).

Chapter 6

[223]

#ifndef _PACKT_GRAPHICSTILEMAP_HPP_
#define _PACKT_GRAPHICSTILEMAP_HPP_

#include "GraphicsTexture.hpp"
#include "Types.hpp"

#include <android_native_app_glue.h>

namespace packt {
 class GraphicsTileMap {
 public:
 GraphicsTileMap(android_app* pApplication, const
char* pPath,
 GraphicsTexture* pTexture, Location*
pLocation);

 status load();
 void unload();
 void draw();

 private:
 int32_t* loadFile();
 void loadVertices(int32_t* pTiles, uint8_t**
pVertexBuffer,
 uint32_t* pVertexBufferSize);
 void loadIndexes(uint8_t** pIndexBuffer,
 uint32_t* pIndexBufferSize);

 private:
 Resource mResource;
 Location* mLocation;
 // OpenGL resources.
 GraphicsTexture* mTexture;
 GLuint mVertexBuffer, mIndexBuffer;
 int32_t mVertexCount, mIndexCount;
 const int32_t mVertexComponents;
 // Tile map description.
 int32_t mHeight, mWidth;
 int32_t mTileHeight, mTileWidth;
 int32_t mTileCount, mTileXCount;
 };
}
#endif

Rendering Graphics with OpenGL ES

[224]

7. Start implementing GraphicsTileMap in jni/GraphicsTileMap.cpp. Because
exceptions are not supported in the current project, define parse_error_
handler() method to handle parsing problems. By design, result of this handler is
undefined (that is, a crash). So implement a non-local jump instead, similar to what
we have done for libpng:

#include "GraphicsTileMap.hpp"
#include "Log.hpp"

#include <GLES/gl.h>
#include <GLES/glext.h>

#include "rapidxml.hpp"

namespace rapidxml {
 static jmp_buf sJmpBuffer;

 void parse_error_handler(const char* pWhat, void* pWhere) {
 packt::Log::error("Error while parsing TMX file.");
 packt::Log::error(pWhat);
 longjmp(sJmpBuffer, 0);
 }
}

namespace packt {
 GraphicsTileMap::GraphicsTileMap(android_app* pApplication,
 const char* pPath, GraphicsTexture* pTexture,
 Location* pLocation) :
 mResource(pApplication, pPath), mLocation(pLocation),
 mTexture(pTexture), mVertexBuffer(0), mIndexBuffer(0),
 mVertexCount(0), mIndexCount(0), mVertexComponents(5),
 mHeight(0), mWidth(0),
 mTileHeight(0), mTileWidth(0), mTileCount(0),
mTileXCount(0)
 {}
...

8. Let's write the code necessary to read a TMX file exported by Tiled. Asset file is
read with resource and copied into a temporary buffer which is not modifiable
(the opposite of the buffer returned by bufferize(), which is flagged
with const).

RapidXml parses XML files through an xml_document instance. It works directly
on the provided buffer, which it may modify to normalize space, translate character
entities, or terminate strings with zero. A non-destructive mode without these
features is also available. XML nodes and attributes can then be retrieved easily:

Chapter 6

[225]

...
 int32_t* GraphicsTileMap::loadFile() {
 using namespace rapidxml;
 xml_document<> lXmlDocument;
 xml_node<>* lXmlMap, *lXmlTileset, *lXmlLayer;
 xml_node<>* lXmlTile, *lXmlData;
 xml_attribute<>* lXmlTileWidth, *lXmlTileHeight;
 xml_attribute<>* lXmlWidth, *lXmlHeight, *lXmlGID;
 char* lFileBuffer = NULL; int32_t* lTiles = NULL;

 if (mResource.open() != STATUS_OK) goto ERROR;
 {
 int32_t lLength = mResource.getLength();
 if (lLength <= 0) goto ERROR;
 const void* lFileBufferTmp = mResource.bufferize();
 if (lFileBufferTmp == NULL) goto ERROR;
 lFileBuffer = new char[mResource.getLength() + 1];
 memcpy(lFileBuffer, lFileBufferTmp,mResource.getLength());
 lFileBuffer[mResource.getLength()] = '\0';
 mResource.close();
 }
 // Parses the document. Jumps back here if an error occurs
 if (setjmp(sJmpBuffer)) goto ERROR;
 lXmlDocument.parse<parse_default>(lFileBuffer);

 // Reads XML tags.
 lXmlMap = lXmlDocument.first_node("map");
 if (lXmlMap == NULL) goto ERROR;
 lXmlTileset = lXmlMap->first_node("tileset");
 if (lXmlTileset == NULL) goto ERROR;
 lXmlTileWidth = lXmlTileset->first_attribute("tilewidth");
 if (lXmlTileWidth == NULL) goto ERROR;
 lXmlTileHeight = lXmlTileset->first_attribute("tileheight");
 if (lXmlTileHeight == NULL) goto ERROR;

 lXmlLayer = lXmlMap->first_node("layer");
 if (lXmlLayer == NULL) goto ERROR;
 lXmlWidth = lXmlLayer->first_attribute("width");
 if (lXmlWidth == NULL) goto ERROR;
 lXmlHeight = lXmlLayer->first_attribute("height");
 if (lXmlHeight == NULL) goto ERROR;

Rendering Graphics with OpenGL ES

[226]

 lXmlData = lXmlLayer->first_node("data");
 if (lXmlData == NULL) goto ERROR;
...

9. Continue implementing loadFile() by initializing member data. After that, load
each tile index into a new memory buffer that we will use later to create a vertex
buffer. Note that vertical coordinates are reversed between TMX and OpenGL
coordinates and that TMX files first tile index is 1 instead of 0 (hence -1 when
setting lTiles[] value):

...
 mWidth = atoi(lXmlWidth->value());
 mHeight = atoi(lXmlHeight->value());
 mTileWidth = atoi(lXmlTileWidth->value());
 mTileHeight = atoi(lXmlTileHeight->value());
 if ((mWidth <= 0) || (mHeight <= 0)
 || (mTileWidth <= 0) || (mTileHeight <= 0)) goto ERROR;
 mTileXCount = mTexture->getWidth()/mTileWidth;
 mTileCount = mTexture->getHeight()/mTileHeight * mTileXCount;

 lTiles = new int32_t[mWidth * mHeight];
 lXmlTile = lXmlData->first_node("tile");
 for (int32_t lY = mHeight - 1; lY >= 0; --lY) {
 for (int32_t lX = 0; lX < mWidth; ++lX) {
 if (lXmlTile == NULL) goto ERROR;
 lXmlGID = lXmlTile->first_attribute("gid");
 lTiles[lX + (lY * mWidth)] = atoi(lXmlGID->value())-1;
 if (lTiles[lX + (lY * mWidth)] < 0) goto ERROR;

 lXmlTile = lXmlTile->next_sibling("tile");
 }
 }
 delete[] lFileBuffer;
 return lTiles;

 ERROR:
 mResource.close();
 delete[] lFileBuffer; delete[] lTiles;
 mHeight = 0; mWidth = 0;
 mTileHeight = 0; mTileWidth = 0;
 return NULL;
 }
...

Chapter 6

[227]

10. Now the big piece: loadVertices(), populating a temporary memory buffer with
vertices. First we need to compute some information such as the total number of
vertices and allocate the buffer accordingly, knowing that it contains four vertices
composed of five float components (X/Y/Z and U/V) per tile. We also need to know
the size of a texel, that is, the size of one pixel in UV coordinates. UV coordinates are
bound to [0,1] where 0 means texture left or bottom and 1 texture right or bottom.

Then, we basically loop over each tile and compute vertex coordinates (X/Y
position and UV coordinates) at the right offset (that is, location) in the buffer. UV
coordinates are slightly shifted to avoid seams at tile edges especially when using
bilinear filtering which can cause adjacent tile textures to be blended:

...
 void GraphicsTileMap::loadVertices(int32_t* pTiles,
 uint8_t** pVertexBuffer, uint32_t*
pVertexBufferSize) {
 mVertexCount = mHeight * mWidth * 4;
 *pVertexBufferSize = mVertexCount * mVertexComponents;
 GLfloat* lVBuffer = new GLfloat[*pVertexBufferSize];
 pVertexBuffer = reinterpret_cast<uint8_t>(lVBuffer);
 int32_t lRowStride = mWidth * 2;
 GLfloat lTexelWidth = 1.0f / mTexture->getWidth();
 GLfloat lTexelHeight = 1.0f / mTexture->getHeight();

 int32_t i;
 for (int32_t tileY = 0; tileY < mHeight; ++tileY) {
 for (int32_t tileX = 0; tileX < mWidth; ++tileX) {
 // Finds current tile index (0 for 1st tile, 1...).
 int32_t lTileSprite = pTiles[tileY * mWidth + tileX]
 % mTileCount;
 int32_t lTileSpriteX = (lTileSprite % mTileXCount)
 * mTileWidth;
 int32_t lTileSpriteY = (lTileSprite / mTileXCount)
 * mTileHeight;

 // Values to compute vertex offsets in the buffer.
 int32_t lOffsetX1 = tileX * 2;
 int32_t lOffsetX2 = tileX * 2 + 1;
 int32_t lOffsetY1 = (tileY * 2) * (mWidth * 2);
 int32_t lOffsetY2 = (tileY * 2 + 1) * (mWidth * 2);
 // Vertex positions in the scene.
 GLfloat lPosX1 = tileX * mTileWidth;

Rendering Graphics with OpenGL ES

[228]

 GLfloat lPosX2 = (tileX + 1) * mTileWidth;
 GLfloat lPosY1 = tileY * mTileHeight;
 GLfloat lPosY2 = (tileY + 1) * mTileHeight;
 // Tile UV coordinates (coordinates origin needs to be
 // translated from top-left to bottom-left origin).
 GLfloat lU1 = (lTileSpriteX) * lTexelWidth;
 GLfloat lU2 = lU1 + (mTileWidth * lTexelWidth);
 GLfloat lV2 = 1.0f - (lTileSpriteY) * lTexelHeight;
 GLfloat lV1 = lV2 - (mTileHeight * lTexelHeight);
 // Small shift to limit edge artifacts (1/4 of texel).
 lU1 += lTexelWidth/4.0f; lU2 -= lTexelWidth/4.0f;
 lV1 += lTexelHeight/4.0f; lV2 -=
lTexelHeight/4.0f;

 // 4 vertices per tile in the vertex buffer.
 i = mVertexComponents * (lOffsetY1 + lOffsetX1);
 lVBuffer[i++] = lPosX1; lVBuffer[i++] = lPosY1;
 lVBuffer[i++] = 0.0f;
 lVBuffer[i++] = lU1; lVBuffer[i++] = lV1;
 i = mVertexComponents * (lOffsetY1 + lOffsetX2);
 lVBuffer[i++] = lPosX2; lVBuffer[i++] = lPosY1;
 lVBuffer[i++] = 0.0f;
 lVBuffer[i++] = lU2; lVBuffer[i++] = lV1;
 i = mVertexComponents * (lOffsetY2 + lOffsetX1);
 lVBuffer[i++] = lPosX1; lVBuffer[i++] = lPosY2;
 lVBuffer[i++] = 0.0f;
 lVBuffer[i++] = lU1; lVBuffer[i++] = lV2;
 i = mVertexComponents * (lOffsetY2 + lOffsetX2);
 lVBuffer[i++] = lPosX2; lVBuffer[i++] = lPosY2;
 lVBuffer[i++] = 0.0f;
 lVBuffer[i++] = lU2; lVBuffer[i++] = lV2;
 }
 }
 }
...

11. Our vertex buffer is pretty useless without its index buffer companion. Populate it
with two triangle polygons per tile (that is, 6 indexes) to form quad:

...
 void GraphicsTileMap::loadIndexes(uint8_t** pIndexBuffer,
 uint32_t* pIndexBufferSize)
{
 mIndexCount = mHeight * mWidth * 6;
 *pIndexBufferSize = mIndexCount;
 GLushort* lIBuffer = new GLushort[*pIndexBufferSize];

Chapter 6

[229]

 pIndexBuffer = reinterpret_cast<uint8_t>(lIBuffer);
 int32_t lRowStride = mWidth * 2;

 int32_t i = 0;
 for (int32_t tileY = 0; tileY < mHeight; tileY++) {
 int32_t lIndexY = tileY * 2;
 for (int32_t tileX = 0; tileX < mWidth; tileX++) {
 int32_t lIndexX = tileX * 2;

 // Values to compute vertex offsets in the buffer.
 GLshort lVertIndexY1 = lIndexY * lRowStride;
 GLshort lVertIndexY2 = (lIndexY + 1) * lRowStride;
 GLshort lVertIndexX1 = lIndexX;
 GLshort lVertIndexX2 = lIndexX + 1;

 // 2 triangles per tile in the index buffer.
 lIBuffer[i++] = lVertIndexY1 + lVertIndexX1;
 lIBuffer[i++] = lVertIndexY1 + lVertIndexX2;
 lIBuffer[i++] = lVertIndexY2 + lVertIndexX1;

 lIBuffer[i++] = lVertIndexY2 + lVertIndexX1;
 lIBuffer[i++] = lVertIndexY1 + lVertIndexX2;
 lIBuffer[i++] = lVertIndexY2 + lVertIndexX2;
 }
 }
 }
...

12. In GraphicsTileMap.cpp, terminate loading code by generating final buffers with
glGenBuffers() and binding them (to indicate we are working on them) with
glBindBuffer(). Then, push vertex and index buffer data into graphics memory
through glBufferData(). Our temporary buffers can then be discarded:

 status GraphicsTileMap::load() {
 GLenum lErrorResult;
 uint8_t* lVertexBuffer = NULL, *lIndexBuffer = NULL;
 uint32_t lVertexBufferSize, lIndexBufferSize;

 // Loads tiles and creates temporary vertex/index buffers.
 int32_t* lTiles = loadFile();

Rendering Graphics with OpenGL ES

[230]

 if (lTiles == NULL) goto ERROR;
 loadVertices(lTiles, &lVertexBuffer, &lVertexBufferSize);
 if (lVertexBuffer == NULL) goto ERROR;
 loadIndexes(&lIndexBuffer, &lIndexBufferSize);
 if (lIndexBuffer == NULL) goto ERROR;

 // Generates new buffer names.
 glGenBuffers(1, &mVertexBuffer);
 glGenBuffers(1, &mIndexBuffer);
 glBindBuffer(GL_ARRAY_BUFFER, mVertexBuffer);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mIndexBuffer);

 // Loads buffers into OpenGL.
 glBufferData(GL_ARRAY_BUFFER, lVertexBufferSize *
 sizeof(GLfloat), lVertexBuffer, GL_STATIC_DRAW);
 lErrorResult = glGetError();
 if (lErrorResult != GL_NO_ERROR) goto ERROR;

 glBufferData(GL_ELEMENT_ARRAY_BUFFER, lIndexBufferSize *
 sizeof(GLushort), lIndexBuffer, GL_STATIC_DRAW);
 lErrorResult = glGetError();
 if (lErrorResult != GL_NO_ERROR) goto ERROR;

 // Unbinds buffers.
 glBindBuffer(GL_ARRAY_BUFFER, 0);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

 delete[] lTiles; delete[] lVertexBuffer;
 delete[] lIndexBuffer;
 return STATUS_OK;

 ERROR:
 Log::error("Error loading tilemap");
 unload();
 delete[] lTiles; delete[] lVertexBuffer;
 delete[] lIndexBuffer;
 return STATUS_KO;
 }
...

Chapter 6

[231]

13. We are done with resource loading. Take care of unloading them in unload():

...
 void GraphicsTileMap::unload() {
 mHeight = 0, mWidth = 0;
 mTileHeight = 0, mTileWidth = 0;
 mTileCount = 0, mTileXCount = 0;

 if (mVertexBuffer != 0) {
 glDeleteBuffers(1, &mVertexBuffer);
 mVertexBuffer = 0; mVertexCount = 0;
 }
 if (mIndexBuffer != 0) {
 glDeleteBuffers(1, &mIndexBuffer);
 mIndexBuffer = 0; mIndexCount = 0;
 }
 }
...

14. To finish with GraphicsTileMap.cpp, write draw() method to render the
tile map:

 � Bind the tile sheet texture for rendering.

 � Set up geometry transformations with glTranslatef() to position
the map to its final coordinates in the scene. Note that matrices are
hierarchical, hence the preliminary call to glPushMatrix() to stack
tile map matrix on top of the projection and world matrices. Position
coordinates are rounded to prevent seams from appearing between tiles
because of rendering interpolation.

 � Enable, bind, and describe vertex and index buffer contents
with glEnableClientState(), glVertexPointer(), and
glTexCoordPointer().

 � Issue a rendering call to draw the whole map mesh with
glDrawElements().

 � Reset OpenGL machine state when done.

...
 void GraphicsTileMap::draw() {
 int32_t lVertexSize = mVertexComponents *
sizeof(GLfloat);
 GLvoid* lVertexOffset = (GLvoid*) 0;
 GLvoid* lTexCoordOffset = (GLvoid*)
(sizeof(GLfloat) * 3);
 mTexture->apply();

Rendering Graphics with OpenGL ES

[232]

 glPushMatrix();
 glTranslatef(int32_t(mLocation->mPosX + 0.5f),
 int32_t(mLocation->mPosY + 0.5f),
0.0f);

 // Draws using hardware buffers
 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
 glBindBuffer(GL_ARRAY_BUFFER, mVertexBuffer);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,
mIndexBuffer);
 glVertexPointer(3, GL_FLOAT, lVertexSize,
lVertexOffset);
 glTexCoordPointer(2, GL_FLOAT, lVertexSize,
lTexCoordOffset);

 glDrawElements(GL_TRIANGLES, mIndexCount,
 GL_UNSIGNED_SHORT, 0 * sizeof(GLushort));

 glBindBuffer(GL_ARRAY_BUFFER, 0);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
 glPopMatrix();
 glDisableClientState(GL_VERTEX_ARRAY);
 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
 }
}

Let's append our new tile map module to the application:

15. Like for textures and sprites, let GraphicsService manage tile maps:

#ifndef _PACKT_GRAPHICSSERVICE_HPP_
#define _PACKT_GRAPHICSSERVICE_HPP_

#include "GraphicsSprite.hpp"
#include "GraphicsTexture.hpp"
#include "GraphicsTileMap.hpp"
#include "TimeService.hpp"
#include "Types.hpp"

#include <android_native_app_glue.h>
#include <EGL/egl.h>

namespace packt {
 class GraphicsService {

Chapter 6

[233]

 public:
 ...
 GraphicsTexture* registerTexture(const char* pPath);
 GraphicsSprite* registerSprite(GraphicsTexture* pTexture,
 int32_t pHeight, int32_t pWidth, Location* pLocation);
 GraphicsTileMap* registerTileMap(const char* pPath,
 GraphicsTexture* pTexture, Location* pLocation);
 ...

 private:
 ...
 GraphicsTexture* mTextures[32]; int32_t mTextureCount;
 GraphicsSprite* mSprites[256]; int32_t mSpriteCount;
 GraphicsTileMap* mTileMaps[8]; int32_t mTileMapCount;
 };
}
#endif

16. In jni/GraphicsService.cpp, implement registerTileMap() and update
load(), unload(), and class destructor like for sprites previous tutorial.

Change setup() to push a projection and ModelView matrix in the matrix stack:

 � Projection is orthographic since 2D games do not need a perspective effect.

 � ModelView matrix describes basically the position and orientation of the
camera. Here, camera (that is, the whole scene) does not move; only the
background tile map moves to simulate a scrolling effect. Thus, a simple
identity matrix is sufficient.

Then, modify update() to effectively draw tile maps:

...
namespace packt {
 ...
 void GraphicsService::setup() {
 glEnable(GL_TEXTURE_2D);
 glDisable(GL_DEPTH_TEST);
 glColor4f(1.0f, 1.0f, 1.0f, 1.0f);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrthof(0.0f, mWidth, 0.0f, mHeight, 0.0f, 1.0f);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

Rendering Graphics with OpenGL ES

[234]

 status GraphicsService::update() {
 float lTimeStep = mTimeService->elapsed();

 for (int32_t i = 0; i < mTileMapCount; ++i) {
 mTileMaps[i]->draw();
 }

 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 for (int32_t i = 0; i < mSpriteCount; ++i) {
 mSprites[i]->draw(lTimeStep);
 }
 glDisable(GL_BLEND);

 if (eglSwapBuffers(mDisplay, mSurface) != EGL_TRUE) {
 Log::error("Error %d swapping buffers.", eglGetError());
 return STATUS_KO;
 }
 return STATUS_OK;
 }
}

17. Write jni/Background.hpp to declare a game object drawing a background
tile map:

#ifndef _DBS_BACKGROUND_HPP_
#define _DBS_BACKGROUND_HPP_

#include "Context.hpp"
#include "GraphicsService.hpp"
#include "GraphicsTileMap.hpp"
#include "Types.hpp"

namespace dbs {
 class Background {
 public:
 Background(packt::Context* pContext);

 void spawn();
 void update();

 private:

Chapter 6

[235]

 packt::TimeService* mTimeService;
 packt::GraphicsService* mGraphicsService;

 packt::GraphicsTileMap* mTileMap;
 packt::Location mLocation; float mAnimSpeed;
 };
}
#endif

18. Then implement this class in jni/Background.cpp. Register a tile map tilemap.
tmx which must be copied in asset project folder:

File tilemap.tmx is provided with this book
in the Chapter6/Resource folder.

#include "Background.hpp"
#include "Log.hpp"

namespace dbs {
 Background::Background(packt::Context* pContext) :
 mTimeService(pContext->mTimeService),
 mGraphicsService(pContext->mGraphicsService),
 mLocation(), mAnimSpeed(8.0f) {
 mTileMap = mGraphicsService->registerTileMap("tilemap.
tmx",
 mGraphicsService->registerTexture("tilemap.png"),
 &mLocation);
 }

 void Background::update() {
 const float SCROLL_PER_SEC = -64.0f;
 float lScrolling = mTimeService->elapsed() * SCROLL_PER_
SEC;
 mLocation.translate(0.0f, lScrolling);
 }
}

19. We are close to the end. Add a Background object in jni/DroidBlaster.hpp:

#ifndef _PACKT_DROIDBLASTER_HPP_
#define _PACKT_DROIDBLASTER_HPP_

#include "ActivityHandler.hpp"

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Rendering Graphics with OpenGL ES

[236]

#include "Background.hpp"
#include "Context.hpp"
#include "GraphicsService.hpp"
#include "Ship.hpp"
#include "TimeService.hpp"
#include "Types.hpp"

namespace dbs {
 class DroidBlaster : public packt::ActivityHandler {
 ...
 Background mBackground;
 Ship mShip;
 };
}
#endif

20. Finally, initialize, and update this Background object in jni/DroidBlaster.cpp:

#include "DroidBlaster.hpp"
#include "Log.hpp"

namespace dbs {
 DroidBlaster::DroidBlaster(packt::Context* pContext) :
 mGraphicsService(pContext->mGraphicsService),
 mTimeService(pContext->mTimeService),
 mBackground(pContext), mShip(pContext)
 {}

 packt::status DroidBlaster::onActivate() {
 if (mGraphicsService->start() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }

 mBackground.spawn();
 mShip.spawn();

 mTimeService->reset();
 return packt::STATUS_OK;
 }

 status DroidBlaster::onStep() {
 mTimeService->update();

 mBackground.update();

Chapter 6

[237]

 if (mGraphicsService->update() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }
 return packt::STATUS_OK;
 }
}

What just happened?
The final result should look like the following. The terrain is scrolling below the ship:

Vertex Buffer Objects, coupled with index buffers, are a really efficient way to render lots
of polygons in a single call, by pre-computing vertices and textures coordinates in advance.
They largely minimize the number of necessary state changes. Buffer objects are also
definitely the way to go for 3D rendering. Note however that if this technique is efficient
when many tiles are rendered, it will be much less interesting if your background is only
composed of only a few tiles, in which case sprites may be more appropriate.

However, the work done in this part can still be vastly improved. The tile map rendering
method here is inefficient: it draws the whole vertex buffer systematically. Hopefully, today's
graphic drivers are optimized to clip invisible vertices, which still gives us good performance.
But an algorithm could, for example, issue draw calls only for the visible portions of the
vertex buffer.

This tile map technique also allows multiple extensions. For example, several tile maps
scrolled at different speeds can be superposed to create a parallax effect. Of course, one
would need to enable alpha blending (at step 16 in GraphicsService::update()) to
properly blend layers. Let your imagination do the rest!

Rendering Graphics with OpenGL ES

[238]

Summary
OpenGL and graphics, in general, is a really vast domain. One book is not enough to cover it
entirely. But drawing 2D graphics with textures and buffer objects opens the door to much
more advanced stuff! In more detail, we have learned how to initialize and bind OpenGL ES
to the Android windows with EGL. We have also loaded a PNG texture packaged as assets
with an external library. Then, we have drawn sprites efficiently with OpenGL ES extensions.
This technique should not be overused as it can impact performance when many sprites are
blitted. Finally, we have rendered a tile map efficiently by pre-computing rendered tiles in
vertex and index buffers.

With the knowledge acquired here, the road to OpenGL ES 2 is at a perfectly walkable
distance! But if you cannot wait to see 3D graphics, Chapter 9, Porting Existing Libraries to
Android and Chapter 10, Towards Professional Gaming, are your next destination to discover
how to embed a 3D engine. But if you are a bit more patient, let's discover how to reach the
fourth dimension, the musical one, with OpenSL ES.

7
Playing Sound with OpenSL ES

Multimedia is not only about graphics; it is also about sound and music.
Applications in this domain are among the most popular in the Android market.
Indeed, music has always been a strong engine for mobile devices sales
and music lovers are a target of choice. This is why an OS like Android could
probably not go far without some musical talent!

When talking about sound on Android, we should distinguish Java from the
native world. Indeed, both sides feature completely different APIs: MediaPlayer,
SoundPool, AudioTrack, and JetPlayer on one hand, Open SL for Embedded
Systems (also abbreviated OpenSL ES) on the other hand:

 � MediaPlayer is more high-level and easy to use. It handles not only
music but also video. It is the way to go when simple file playback
is sufficient.

 � SoundPool and AudioTrack are more low-level and closer to low
latency when playing sound. AudioTrack is the most flexible but
also complex to use and allows sound buffer modifications on the
fly (by hand!).

 � JetPlayer is more dedicated to the playback of MIDI files. This API
can be interesting for dynamic musing synthesis in a multimedia
application or game (the see JetBoy example provided with Android SDK).

 � OpenSL ES which aims at offering a cross-platform API to manage audio
on embedded systems. In other words, the OpenGL ES for audio. Like
GLES, its specification is led by the Khronos Group. On Android,
OpenSL ES is in fact implemented on top of AudioTrack API.

OpenSL ES was first released on Android 2.3 Gingerbread and is not available
on previous releases (Android 2.2 and lower). While there is a profusion of APIs
in Java, OpenSL ES is the only one provided on the native side and is exclusively
available on it.

Playing Sound with OpenSL ES

[240]

However, OpenSL ES is still immature. The OpenSL specification is still
incompletely supported and several limitations shall be expected. In addition,
OpenSL specification is implemented in its version 1.0.1 on Android although
version 1.1 is already out. Thus, OpenSL ES implementation is not frozen yet
and should continue evolving. Some subsequent change may have to be
expected in the future.

For this reason, 3D Audio features are available starting from Android 2.3
through OpenSL ES, but only for devices whose system is compiled with the
appropriate profile. Indeed, current OpenSL ES specification provides three
different profiles, Game, Music, and Phone for different types of devices.
At the time this book is written, none of these profiles are supported.

Another important point to consider is that Android is currently not suited for
low latency! OpenSL ES API does not improve this situation. This issue is not only
related to the system itself but also to the hardware. And if latency is becoming
a concern for the Android development team and manufacturers, months will be
needed to see decent progress. Anyway, expect OpenSL ES and low-level Java APIs
SoundPool and AudioTrack to support low latency sooner or later.

But OpenSL ES has qualities. First, it may be easier to integrate in the
architecture of a native application, since it is itself written in C/C++. It does not
have to carry a garbage collector on its back. Native code is not interpreted and
can be optimized in-depth through assembly code (and the NEON instruction
set). These are some of the many reasons to consider it.

The OpenMAX AL low-level multimedia API is also available since NDK R7
(although not fully supported). This API is, however, more related to video/
sound playback and is less powerful than Open SL ES for sound and music.
It is somewhat similar to the android.media.MediaPlayer on the
Java side. Have a look at http://www.khronos.org/openmax/ for
more information.

Chapter 7

[241]

This chapter is an introduction to the musical capabilities of OpenSL ES on the Android NDK.
We are about to discover how to do the following:

 � Initialize OpenSL ES on Android

 � Play background music

 � Play sounds with a sound buffer queue

 � Record sounds and play them

Initializing OpenSL ES
Let’s start this chapter smoothly by initializing OpenSL ES inside a new service, which we
are going to call SoundService (the term service is just a design choice and should not
be confused with Android Java services).

Project DroidBlaster_Part6-4 can be used as a starting point for
this part. The resulting project is provided with this book under the
name DroidBlaster_Part7-1.

Time for action – creating OpenSL ES engine and output
First, let’s create this new class to manage sounds:

1. Open project DroidBlaster and create a new file jni/SoundService.hpp.
First, include OpenSL ES headers: the standard header OpenSLES.h, OpenSLES_
Android.h, and OpenSLES_AndroidConfiguration.h. The two latter define
objects and methods , and are specifically created for Android. Then create
SoundService class to do the following:

 � Initialize OpenSL ES with the method start()

 � Stop the sound and release OpenSL ES with the method stop()

There are two main kinds of pseudo-object structures (that is, containing function
pointers applied on the structure itself like a C++ object with this) in OpenSL ES:

 � Objects: These are represented by a SLObjectItf, which provides a few
common methods to get allocated resources and get object interfaces. This
could be roughly compared to an Object in Java.

 � Interfaces: These give access to object features. There can be several
interfaces for an object. Depending on the host device, some interfaces
may or may not be available. These are very roughly comparable to
interfaces in Java.

Playing Sound with OpenSL ES

[242]

In SoundService, declare two SLObjectItf instances, one for the
OpenSL ES engine and other for the speakers. Engines are available through
an SLEngineItf interface:

#ifndef _PACKT_SOUNDSERVICE_HPP_
#define _PACKT_SOUNDSERVICE_HPP_

#include “Types.hpp”

#include <android_native_app_glue.h>
#include <SLES/OpenSLES.h>
#include <SLES/OpenSLES_Android.h>
#include <SLES/OpenSLES_AndroidConfiguration.h>

namespace packt {
 class SoundService {
 public:
 SoundService(android_app* pApplication);

 status start();
 void stop();

 private:
 android_app* mApplication;

 SLObjectItf mEngineObj; SLEngineItf mEngine;
 SLObjectItf mOutputMixObj;
 };
}
#endif

2. Implement SoundService in jni/SoundService.cpp. Write method start():

 � Initialize OpenSL ES engine object (that is, the basic type SLObjectItf)
with method slCreateEngine(). When we create an OpenSL ES object,
the specific interfaces we are going to use have to be indicated. Here, we
request (as compulsory) the SL_IID_ENGINE interface to create other
OpenSL ES objects, the engine being the central object of the OpenSL ES API.

Android OpenSL ES implementation is not really strict. Forgetting to declare
some required interfaces does not mean you will not be allowed to access
them later.

Chapter 7

[243]

 � Then, invoke Realize() on the engine object. Any OpenSL ES object needs
to be realized to allocate required internal resources before use.

 � Finally, retrieve SLEngineItf-specific interface.

 � The engine interface gives us the possibility to instantiate an audio output
mix with the method CreateOutputMix(). The audio output mix defined
here delivers sound to default speakers. It is rather autonomous (played
sound is sent automatically to the speaker), so there is no need to request
any specific interface here.

#include “SoundService.hpp”
#include “Log.hpp”

namespace packt {
 SoundService::SoundService(android_app* pApplication):
 mApplication(pApplication),
 mEngineObj(NULL), mEngine(NULL),
 mOutputMixObj(NULL)
 {}

 status SoundService::start() {
 Log::info(“Starting SoundService.”);
 SLresult lRes;
 const SLuint32 lEngineMixIIDCount = 1;
 const SLInterfaceID lEngineMixIIDs[]={SL_IID_ENGINE};
 const SLboolean lEngineMixReqs[]={SL_BOOLEAN_TRUE};
 const SLuint32 lOutputMixIIDCount=0;
 const SLInterfaceID lOutputMixIIDs[]={};
 const SLboolean lOutputMixReqs[]={};

 lRes = slCreateEngine(&mEngineObj, 0, NULL,
 lEngineMixIIDCount, lEngineMixIIDs, lEngineMixReqs);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;
 lRes=(*mEngineObj)->Realize(mEngineObj,SL_BOOLEAN_FALSE);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;
 lRes=(*mEngineObj)->GetInterface(mEngineObj,
 SL_IID_ENGINE, &mEngine);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;

 lRes=(*mEngine)->CreateOutputMix(mEngine,
 &mOutputMixObj,lOutputMixIIDCount,lOutputMixIIDs,
 lOutputMixReqs);

Playing Sound with OpenSL ES

[244]

 lRes=(*mOutputMixObj)->Realize(mOutputMixObj,
 SL_BOOLEAN_FALSE);

 return STATUS_OK;

ERROR:
 Packt::Log::error(“Error while starting SoundService.”);
 stop();
 return STATUS_KO;
}
...

3. Write the stop() method to destroy what has been created in start():

...
 void SoundService::stop() {
 if (mOutputMixObj != NULL) {
 (*mOutputMixObj)->Destroy(mOutputMixObj);
 mOutputMixObj = NULL;
 }
 if (mEngineObj != NULL) {
 (*mEngineObj)->Destroy(mEngineObj);
 mEngineObj = NULL; mEngine = NULL;
 }
 }
}

Now, we can embed our new service:

4. Open existing file jni/Context.hpp and define a new entry for
SoundService:

#ifndef _PACKT_CONTEXT_HPP_
#define _PACKT_CONTEXT_HPP_

#include “Types.hpp”

namespace packt {
 class GraphicsService;
 class SoundService;

 class TimeService;

 struct Context {
 GraphicsService* mGraphicsService;

Chapter 7

[245]

 SoundService* mSoundService;

 TimeService* mTimeService;
 };
}
#endif

5. Then, append SoundService inside jni/DroidBlaster.hpp:

#ifndef _PACKT_DROIDBLASTER_HPP_
#define _PACKT_DROIDBLASTER_HPP_

#include “ActivityHandler.hpp”
#include “Background.hpp”
#include “Context.hpp”
#include “GraphicsService.hpp”
#include “Ship.hpp”
#include “SoundService.hpp”
#include “TimeService.hpp”
#include “Types.hpp”

namespace dbs {
 class DroidBlaster : public packt::ActivityHandler {
 ...

 private:
 packt::GraphicsService* mGraphicsService;
 packt::SoundService* mSoundService;
 packt::TimeService* mTimeService;

 Background mBackground;
 Ship mShip;
 };
}
#endif

6. Create, start, and stop the sound service in jni/DroidBlaster.cpp source file.
Code implementation should be trivial:

#include “DroidBlaster.hpp”
#include “Log.hpp”

namespace dbs {
 DroidBlaster::DroidBlaster(packt::Context* pContext) :
 mGraphicsService(pContext->mGraphicsService),
 mSoundService(pContext->mSoundService),

Playing Sound with OpenSL ES

[246]

 mTimeService(pContext->mTimeService),
 mBackground(pContext), mShip(pContext)
 {}

 packt::status DroidBlaster::onActivate() {
 if (mGraphicsService->start() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }
 if (mSoundService->start() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }

 mBackground.spawn();
 mShip.spawn();

 mTimeService->reset();
 return packt::STATUS_OK;
 }

 void DroidBlaster::onDeactivate() {
 mGraphicsService->stop();
 mSoundService->stop();
 }
 ...
}

7. Finally, instantiate the sound service in jni/Main.cpp:

#include “Context.hpp”
#include “DroidBlaster.hpp”
#include “EventLoop.hpp”
#include “GraphicsService.hpp”
#include “SoundService.hpp”
#include “TimeService.hpp”

void android_main(android_app* pApplication) {
 packt::TimeService lTimeService;
 packt::GraphicsService lGraphicsService(pApplication,
 &lTimeService);
 packt::SoundService lSoundService(pApplication);

 packt::Context lContext = { &lGraphicsService, &lSoundService,

Chapter 7

[247]

 &lTimeService };

 packt::EventLoop lEventLoop(pApplication);
 dbs::DroidBlaster lDroidBlaster(&lContext);
 lEventLoop.run(&lDroidBlaster);
}

Link to libOpenSLES.so in the jni/Android.mk file:
LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LS_CPP=$(subst $(1)/,,$(wildcard $(1)/*.cpp))
LOCAL_CFLAGS := -DRAPIDXML_NO_EXCEPTIONS
LOCAL_MODULE := droidblaster
LOCAL_SRC_FILES := $(call LS_CPP,$(LOCAL_PATH))
LOCAL_LDLIBS := -landroid -llog -lEGL -lGLESv1_CM -lOpenSLES

LOCAL_STATIC_LIBRARIES := android_native_app_glue png

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)
$(call import-module,libpng)

What just happened?
Run the application and check that no error is logged. We have initialized OpenSL ES library
which gives us access to efficient sound handling primitives directly from native code. The
current code does not perform anything apart from initialization. No sound comes out from
the speakers yet.

The entry point to OpenSL ES here is the SLEngineItf, which is mainly an OpenSL ES object
factory. It can create a channel to an output device (a speaker or anything else) as well as
sound players or recorders (and even more!), as we will see later in this chapter.

The SLOutputMixItf is the object representing the audio output. Generally, this will be
the device speaker or headset. Although OpenSL ES specification allows enumerating
available output (and also input) devices, NDK implementation is not mature enough to
obtain or select proper one (SLAudioIODeviceCapabilitiesItf, the official interface
to obtain such an information). So when dealing with output and input device selection
(only input device for recorders needs to be specified currently), prefer sticking to default
values: SL_DEFAULTDEVICEID_AUDIOINPUT and SL_DEFAULTDEVICEID_AUDIOOUTPUT
defined in OpenSLES.h.

Playing Sound with OpenSL ES

[248]

Current Android NDK implementation allows only one engine per application (this should not
be an issue) and at most 32 created objects. Beware however that creation of any object can
fail as this is dependent on available system resources.

More on OpenSL ES philosophy
OpenSL ES is different from its graphics compatriot GLES, partly because it does not have a
long history to carry. It is constructed on an (more or less...) object-oriented principle based
on Objects and Interfaces. The following definitions come from the official specification:

An object is an abstraction of a set of resources, assigned for a well-defined set
of tasks, and the state of these resources. An object has a type determined on its
creation. The object type determines the set of tasks that an object can perform.
This can be considered similar to a class in C++.

An interface is an abstraction of a set of related features that a certain object
provides. An interface includes a set of methods, which are functions of the
interface. An interface also has a type which determines the exact set of methods
of the interface. We can define the interface itself as a combination of its type and
the object to which it is related.

An interface ID identifies an interface type. This identifier is used within the source
code to refer to the interface type.

An OpenSL ES object is set up in few steps as follows:

1. Instantiating it through a build method (belonging usually to the engine).

2. Realizing it to allocate necessary resources.

3. Retrieving object interfaces. A basic object only has a very limited set of operations
(Realize(), Resume(), Destroy(), and so on). Interfaces give access to real
object features and describes what operations can be performed on an object,
for example, a Play interface to play or pause a sound.

Any interfaces can be requested but only the one supported by the object is going to be
successfully retrieved. You cannot retrieve the record interface for an audio player because
it returns (sometimes it is annoying!) SL_RESULT_FEATURE_UNSUPPORTED (error code 12).
In technical terms, an OpenSL ES interface is a structure containing function pointers
(initialized by OpenSL ES implementation) with a self parameter to simulate C++ objects
and this , for example:

struct SLObjectItf_ {
 SLresult (*Realize) (SLObjectItf self, SLboolean async);
 SLresult (*Resume) (SLObjectItf self, SLboolean async);
 ...
}

Chapter 7

[249]

Here, Realize(), Resume(), and so on are object methods that can be applied on an
SLObjectItf object. The approach is identical for interfaces.

For more detailed information on what OpenSL ES can provide, refer to the specification
on Khronos web site: http://www.khronos.org/opensles as well as the OpenSL ES
documentation in Android NDK docs directory. Android implementation does not fully
respect the specification, at least for now. So do not be disappointed when discovering
that only a limited subset of the specification (especially sample codes) works on Android.

Playing music files
OpenSL ES is initialized, but the only thing coming out of speakers yet is silence! So what
about finding a nice piece of music (sometimes abbreviated BGM) and playing it natively
with Android NDK? OpenSL ES provides the necessary stuff to read music files such as MP3s.

Project DroidBlaster_Part7-1 can be used as a starting point
for this part. The resulting project is provided with this book
under the name DroidBlaster_Part7-2.

Time for action – playing background music
Let’s improve the code written in the previous part to read and play an MP3 file:

1. MP3 files are opened by OpenSL ES using a POSIX file descriptor, pointing to the
file. Improve jni/ResourceManager.cpp created in the previous chapters by
injecting a new structure ResourceDescriptor and appending a new method
descript():

#ifndef _PACKT_RESOURCE_HPP_
#define _PACKT_RESOURCE_HPP_

#include “Types.hpp”

#include <android_native_app_glue.h>

namespace packt {
 struct ResourceDescriptor {
 int32_t mDescriptor;
 off_t mStart;
 off_t mLength;
 };

Playing Sound with OpenSL ES

[250]

 class Resource {
 public:
 ...

 off_t getLength();
 const void* bufferize();

 ResourceDescriptor descript();

 private:
 ...
 };
}
#endif

2. Implementation in ResourceManager.cpp, of course, makes use of the asset
manager API to open the descriptor and fill a ResourceDescriptor structure:

...
namespace packt {
 ...
 ResourceDescriptor Resource::descript() {
 ResourceDescriptor lDescriptor = { -1, 0, 0 };
 AAsset* lAsset = AAssetManager_open(mAssetManager, mPath,
 AASSET_MODE_UNKNOWN);
 if (lAsset != NULL) {
 lDescriptor.mDescriptor = AAsset_openFileDescriptor(
 lAsset, &lDescriptor.mStart, &lDescriptor.
mLength);
 AAsset_close(lAsset);
 }
 return lDescriptor;
 }
}

3. Go back to jni/SoundService.hpp and define two methods, playBGM()
and stopBGM(), to play a background music.

Also declare an OpenSL ES object for the music player along with the
following interfaces:

 � SLPlayItf: This plays and stops music files

 � SLSeekItf: This controls position and looping

Chapter 7

[251]

...
namespace packt
{
 class SoundService {
 public:
 ...

 status playBGM(const char* pPath);
 void stopBGM();

 ...

 private:
 ...

 SLObjectItf mBGMPlayerObj; SLPlayItf mBGMPlayer;
 SLSeekItf mBGMPlayerSeek;
 };
}
#endif

4. Start implementing jni/SoundService.cpp. Include Resource.hpp to get
access to asset file descriptors. Initialize new members in constructor and update
stop() to stop the background music automatically (or some users are not going
to be happy!):

#include “SoundService.hpp”
#include “Resource.hpp”
#include “Log.hpp”

namespace packt {
 SoundService::SoundService(android_app* pApplication) :
 mApplication(pApplication),
 mEngineObj(NULL), mEngine(NULL),
 mOutputMixObj(NULL),
 mBGMPlayerObj(NULL), mBGMPlayer(NULL), mBGMPlayerSeek(NULL)
 {}

 ...

 void SoundService::stop() {
 stopBGM();

Playing Sound with OpenSL ES

[252]

 if (mOutputMixObj != NULL) {
 (*mOutputMixObj)->Destroy(mOutputMixObj);
 mOutputMixObj = NULL;
 }
 if (mEngineObj != NULL) {
 (*mEngineObj)->Destroy(mEngineObj);
 mEngineObj = NULL; mEngine = NULL;
 }
 }
...

5. Enrich SoundService.cpp with playback features by implementing playBGM().
First we need to describe our audio setup through two main structures:
SLDataSource and SLDataSink. The first describes the audio input channel
and the second, the audio output channel.

Here, we configure the data source as a MIME source so that file type gets detected
automatically from file descriptor. File descriptor is, of course, opened with a call to
ResourceManager::descript().

Data sink (that is, destination channel) is configured with the OutputMix object
created in the first part of this chapter while initializing OpenSL ES engine
(and which refers to default audio output, that is, speakers or headset):

...
 status SoundService::playBGM(const char* pPath) {
 SLresult lRes;

 Resource lResource(mApplication, pPath);
 ResourceDescriptor lDescriptor = lResource.descript();
 if (lDescriptor.mDescriptor < 0) {
 Log::info(“Could not open BGM file”);
 return STATUS_KO;
 }

 SLDataLocator_AndroidFD lDataLocatorIn;
 lDataLocatorIn.locatorType = SL_DATALOCATOR_ANDROIDFD;
 lDataLocatorIn.fd = lDescriptor.mDescriptor;
 lDataLocatorIn.offset = lDescriptor.mStart;
 lDataLocatorIn.length = lDescriptor.mLength;

 SLDataFormat_MIME lDataFormat;
 lDataFormat.formatType = SL_DATAFORMAT_MIME;

Chapter 7

[253]

 lDataFormat.mimeType = NULL;
 lDataFormat.containerType = SL_CONTAINERTYPE_UNSPECIFIED;

 SLDataSource lDataSource;
 lDataSource.pLocator = &lDataLocatorIn;
 lDataSource.pFormat = &lDataFormat;

 SLDataLocator_OutputMix lDataLocatorOut;
 lDataLocatorOut.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 lDataLocatorOut.outputMix = mOutputMixObj;

 SLDataSink lDataSink;
 lDataSink.pLocator = &lDataLocatorOut;
 lDataSink.pFormat = NULL;
...

6. Then create the OpenSL ES audio player. As always with OpenSL ES objects,
instantiate it through the engine first and then realize it. Two interfaces
SL_IID_PLAY and SL_IID_SEEK are imperatively required:

...
 const SLuint32 lBGMPlayerIIDCount = 2;
 const SLInterfaceID lBGMPlayerIIDs[] =
 { SL_IID_PLAY, SL_IID_SEEK };
 const SLboolean lBGMPlayerReqs[] =
 { SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE };

 lRes = (*mEngine)->CreateAudioPlayer(mEngine,
 &mBGMPlayerObj, &lDataSource, &lDataSink,
 lBGMPlayerIIDCount, lBGMPlayerIIDs, lBGMPlayerReqs);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;
 lRes = (*mBGMPlayerObj)->Realize(mBGMPlayerObj,
 SL_BOOLEAN_FALSE);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;

 lRes = (*mBGMPlayerObj)->GetInterface(mBGMPlayerObj,
 SL_IID_PLAY, &mBGMPlayer);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;
 lRes = (*mBGMPlayerObj)->GetInterface(mBGMPlayerObj,
 SL_IID_SEEK, &mBGMPlayerSeek);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;
...

Playing Sound with OpenSL ES

[254]

7. Finally, using the play and seek interfaces, switch the playback in loop mode
(that is, music keeps playing) from the track beginning (that is, 0 ms) until its
end (SL_TIME_UNKNOWN) and then start playing (SetPlayState() with
SL_PLAYSTATE_PLAYING).

...
 lRes = (*mBGMPlayerSeek)->SetLoop(mBGMPlayerSeek,
 SL_BOOLEAN_TRUE, 0, SL_TIME_UNKNOWN);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;
 lRes = (*mBGMPlayer)->SetPlayState(mBGMPlayer,
 SL_PLAYSTATE_PLAYING);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;

 return STATUS_OK;

 ERROR:
 return STATUS_KO;
 }
...

8. The last method stopBGM() is shorter. It stops and then destroys the player:

...
 void SoundService::stopBGM() {
 if (mBGMPlayer != NULL) {
 SLuint32 lBGMPlayerState;
 (*mBGMPlayerObj)->GetState(mBGMPlayerObj,
 &lBGMPlayerState);
 if (lBGMPlayerState == SL_OBJECT_STATE_REALIZED) {
 (*mBGMPlayer)->SetPlayState(mBGMPlayer,
 SL_PLAYSTATE_PAUSED);

 (*mBGMPlayerObj)->Destroy(mBGMPlayerObj);
 mBGMPlayerObj = NULL;
 mBGMPlayer = NULL;
 mBGMPlayerSeek = NULL;
 }
 }
 }
}

Chapter 7

[255]

9. Copy an MP3 file into the assets directory and name it bgm.mp3.

File bgm.mp3 is provided with this book in Chapter7/Resource.

10. Finally, in jni/DroidBlaster.cpp, start music playback right after
SoundService is started:

#include “DroidBlaster.hpp”
#include “Log.hpp”

namespace dbs {
 ...
 packt::status DroidBlaster::onActivate() {
 packt::Log::info(“Activating DroidBlaster”);

 if (mGraphicsService->start() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }
 if (mSoundService->start() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }

 mSoundService->playBGM

 mBackground.spawn();
 mShip.spawn();

 mTimeService->reset();
 return packt::STATUS_OK;
 }

 void DroidBlaster::onDeactivate() {
 mGraphicsService->stop();
 mSoundService->stop();
 }
 ...
}

Playing Sound with OpenSL ES

[256]

What just happened?
We have discovered how to play a music clip from an MP3 file. Playback loops until the
game is terminated. When using a MIME data source, the file type is auto-detected. Several
formats are currently supported format in Gingerbread including Wave PCM, Wave alaw,
Wave ulaw, MP3, Ogg Vorbis and so on. MIDI playback is currently not supported.

You may be surprised to see that, in the example, startBGM() and stopBGM() recreates
and destroys the audio player, respectively. The reason is that there is currently no way to
change a MIME data source without completely recreating the OpenSL ES AudioPlayer
object. So although this technique is fine to play a long clip, it is not adapted for playing
short sound dynamically.

The way the sample code is presented here is typical of how OpenSL ES works. The OpenSL
ES engine object, that kind of object factory, creates an AudioPlayer object which cannot
do much in that state. First, it needs to be realized to allocate necessary resources. But that
is not enough. It needs to retrieve the right interfaces, like the SL_IID_PLAY interface to
change audio player state to playing/stopped. Then OpenSL API can be effectively used.

That is quite some work, taking into account result verification (as any call is susceptible to
fail), which kind of clutters the code. Getting inside this API can take a little bit more time
than usual, but once understood, these concepts become rather easy to deal with.

Playing sounds
The technique presented to play BGM from a MIME source is very practical but sadly, not
flexible enough. Recreating an AudioPlayer object is not necessary and accessing asset
files each time is not good in term of efficiency.

So when it comes to playing sounds quickly in response to an event and generating them
dynamically, we need to use a sound buffer queue. Each sound is preloaded or even
generated into a memory buffer, and placed into a queue when playback is requested. No
need to access a file at runtime!

A sound buffer, in current OpenSL ES Android implementation, can contain PCM data. PCM,
which stands for Pulse Code Modulation, is a data format dedicated to the representation of
digital sounds. It is the format used in CD and in some Wave files. A PCM can be Mono (same
sound on all speakers) or Stereo (different sound for left and right speakers if available).

PCM is not compressed and is not efficient in terms of storage (just compare a musical CD
with a data CD full of MP3). But this format is lossless and offers the best quality. Quality
depends on the sampling rate: analog sounds are represented digitally as a series of measure
(that is, sample) of the sound signal.

Chapter 7

[257]

A sound sample at 44100 Hz (that is 44100 measures per second) has a better quality
but also takes more place than a sound sampled at 16000 Hz. Also, each measure can
be represented with a more or less fine degree of precision (the encoding). On current
Android implementation:

 � A sound can use 8000 Hz, 11025 Hz, 12000 Hz, 16000 Hz, 22050 Hz, 24000 Hz,
32000 Hz, 44100 Hz, or 48000 Hz sampling,

 � A sample can be encoded on 8-bit unsigned or 16-bit signed (finer precision) in
little-endian or big-endian.

In the following step-by-step tutorial, we are going to use a raw PCM file encoded over
16-bit in little-endian.

Project DroidBlaster_Part7-2 can be used as a starting point for
this part. The resulting project is provided with this book under the
name DroidBlaster_Part7-3.

Time for action – creating and playing a sound buffer queue
First, let’s create a new object to hold sound buffers:

1. In jni/Sound.hpp, create a new class Sound to manage a sound buffer. It features
a method load() to load a PCM file and unload() to release it:

#ifndef _PACKT_SOUND_HPP_
#define _PACKT_SOUND_HPP_

class SoundService;

#include “Context.hpp”
#include “Resource.hpp”
#include “Types.hpp”

namespace packt {
 class Sound {
 public:
 Sound(android_app* pApplication, const char* pPath);

 const char* getPath();

 status load();
 status unload();

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Playing Sound with OpenSL ES

[258]

 private:
 friend class SoundService;

 private:
 Resource mResource;
 uint8_t* mBuffer; off_t mLength;
 };
}
#endif

2. Sound loading implementation is quite simple: it creates a buffer with the same
size as the PCM file and loads all file content in it:

#include “Sound.hpp”
#include “Log.hpp”

#include <png.h>
#include <SLES/OpenSLES.h>
#include <SLES/OpenSLES_Android.h>
#include <SLES/OpenSLES_AndroidConfiguration.h>

namespace packt {
 Sound::Sound(android_app* pApplication, const char* pPath) :
 mResource(pApplication, pPath),
 mBuffer(NULL), mLength(0)
 {}

 const char* Sound::getPath() {
 return mResource.getPath();
 }

 status Sound::load() {
 status lRes;

 if (mResource.open() != STATUS_OK) {
 return STATUS_KO;
 }

 mLength = mResource.getLength();
 mBuffer = new uint8_t[mLength];
 lRes = mResource.read(mBuffer, mLength);
 mResource.close();

 if (lRes != STATUS_OK) {
 Log::error(“Error while reading PCM sound.”);

Chapter 7

[259]

 return STATUS_KO;
 } else {
 return STATUS_OK;
 }
 }

 status Sound::unload() {
 delete[] mBuffer;
 mBuffer = NULL; mLength = 0;

 return STATUS_OK;
 }
}

We can manage sound buffers in the dedicated sound service.

3. Open SoudService.hpp and create a few new methods:

 � registerSound() to load and manage a new sound buffer

 � playSound() to send a sound buffer to the sound play queue

 � startSoundPlayer() to initialize the sound queue when
SoundService starts

A sound queue can be manipulated through SLPlayItf and SLBufferQueueItf
interfaces. Sound buffers are stored in fixed-size C++ array:

#ifndef _PACKT_SOUNDSERVICE_HPP_
#define _PACKT_SOUNDSERVICE_HPP_

#include “Sound.hpp”
#include “Types.hpp”

...

namespace packt {
 class SoundService {
 public:
 ...
 Sound* registerSound(const char* pPath);
 void playSound(Sound* pSound);

 private:
 status startSoundPlayer();

 private:

Playing Sound with OpenSL ES

[260]

 ...
 SLObjectItf mPlayerObj; SLPlayItf mPlayer;
 SLBufferQueueItf mPlayerQueue;
 Sound* mSounds[32]; int32_t mSoundCount;
 };
}
#endif

4. Now, open jni/SoundService.cpp implementation file. Update start()
to call startSoundPlayer() and load sound resources registered with
registerSound(). Also create a destructor to release these resources
when application exits:

...
namespace packt {
 SoundService::SoundService(android_app* pApplication) :
 ...,
 mPlayerObj(NULL), mPlayer(NULL), mPlayerQueue(NULL),
 mSounds(), mSoundCount(0)
 {}

 SoundService::~SoundService() {
 for (int32_t i = 0; i < mSoundCount; ++i) {
 delete mSounds[i];
 mSoundCount = 0;
 }
 }

 status SoundService::start() {
 ...

 if (startSoundPlayer() != STATUS_OK) goto ERROR;

 for (int32_t i = 0; i < mSoundCount; ++i) {
 if (mSounds[i]->load() != STATUS_OK) goto ERROR;
 }
 return STATUS_OK;

 ERROR:
 packt::Log::error(“Error while starting SoundService”);
 stop();
 return STATUS_KO;
 }

 ...

Chapter 7

[261]

 Sound* SoundService::registerSound(const char* pPath) {
 for (int32_t i = 0; i < mSoundCount; ++i) {
 if (strcmp(pPath, mSounds[i]->getPath()) == 0) {
 return mSounds[i];
 }
 }

 Sound* lSound = new Sound(mApplication, pPath);
 mSounds[mSoundCount++] = lSound;
 return lSound;
 }
...

5. Write startSoundPlayer(), beginning with the SLDataSource and
SLDataSink to describe the input and output channel. On the opposite to the BGM
player, the data format structure is not SLDataFormat_MIME (to open an MP3 file)
but a SLDataFormat_PCM with sampling, encoding, and endianness information.
Sounds need to be Mono (that is, only one sound channel for both left and right
speakers when available). The queue is created with the Android-specific extension
SLDataLocator_AndroidSimpleBufferQueue():

...
 status SoundService::startSoundPlayer() {
 SLresult lRes;

 // Set-up sound audio source.
 SLDataLocator_AndroidSimpleBufferQueue lDataLocatorIn;
 lDataLocatorIn.locatorType =
 SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE;
 // At most one buffer in the queue.
 lDataLocatorIn.numBuffers = 1;

 SLDataFormat_PCM lDataFormat;
 lDataFormat.formatType = SL_DATAFORMAT_PCM;
 lDataFormat.numChannels = 1; // Mono sound.
 lDataFormat.samplesPerSec = SL_SAMPLINGRATE_44_1;
 lDataFormat.bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_16;
 lDataFormat.containerSize = SL_PCMSAMPLEFORMAT_FIXED_16;
 lDataFormat.channelMask = SL_SPEAKER_FRONT_CENTER;
 lDataFormat.endianness = SL_BYTEORDER_LITTLEENDIAN;

 SLDataSource lDataSource;
 lDataSource.pLocator = &lDataLocatorIn;
 lDataSource.pFormat = &lDataFormat;

Playing Sound with OpenSL ES

[262]

 SLDataLocator_OutputMix lDataLocatorOut;
 lDataLocatorOut.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 lDataLocatorOut.outputMix = mOutputMixObj;

 SLDataSink lDataSink;
 lDataSink.pLocator = &lDataLocatorOut;
 lDataSink.pFormat = NULL;
...

6. Then, in startSoundPlayer(), create and realize the sound player. We are going
to need its SL_IID_PLAY and also SL_IID_BUFFERQUEUE interface now available
thanks to the data locator configured in previous step:

...
 const SLuint32 lSoundPlayerIIDCount = 2;
 const SLInterfaceID lSoundPlayerIIDs[] =
 { SL_IID_PLAY, SL_IID_BUFFERQUEUE };
 const SLboolean lSoundPlayerReqs[] =
 { SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE };

 lRes = (*mEngine)->CreateAudioPlayer(mEngine, &mPlayerObj,
 &lDataSource, &lDataSink, lSoundPlayerIIDCount,
 lSoundPlayerIIDs, lSoundPlayerReqs);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;
 lRes = (*mPlayerObj)->Realize(mPlayerObj, SL_BOOLEAN_FALSE);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;

 lRes = (*mPlayerObj)->GetInterface(mPlayerObj, SL_IID_PLAY,
 &mPlayer);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;
 lRes = (*mPlayerObj)->GetInterface(mPlayerObj,
 SL_IID_BUFFERQUEUE, &mPlayerQueue);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;
...

7. To finish with startSoundPlayer(), start the queue by setting it in the playing
state. This does not actually mean that a sound is played. The queue is empty so that
would not be possible. But if a sound gets enqueued, then it is automatically played:

...
 lRes = (*mPlayer)->SetPlayState(mPlayer,
 SL_PLAYSTATE_PLAYING);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;

Chapter 7

[263]

 return STATUS_OK;

 ERROR:
 packt::Log::error(“Error while starting SoundPlayer”);
 return STATUS_KO;
 }
...

8. Update method stop() to destroy the sound player and free sound buffers:

...
 void SoundService::stop() {
 stopBGM();

 if (mOutputMixObj != NULL) {
 (*mOutputMixObj)->Destroy(mOutputMixObj);
 mOutputMixObj = NULL;
 }
 if (mEngineObj != NULL) {
 (*mEngineObj)->Destroy(mEngineObj);
 mEngineObj = NULL; mEngine = NULL;
 }

 if (mPlayerObj != NULL) {
 (*mPlayerObj)->Destroy(mPlayerObj);
 mPlayerObj = NULL; mPlayer = NULL; mPlayerQueue = NULL;
 }

 for (int32_t i = 0; i < mSoundCount; ++i) {
 mSounds[i]->unload();
 }
 }
...

9. Terminate SoundService by writing playSound(), which first stops any sound
being played and then enqueue the new sound buffer to play:

...
 void SoundService::playSound(Sound* pSound) {
 SLresult lRes;
 SLuint32 lPlayerState;
 (*mPlayerObj)->GetState(mPlayerObj, &lPlayerState);
 if (lPlayerState == SL_OBJECT_STATE_REALIZED) {
 int16_t* lBuffer = (int16_t*) pSound->mBuffer;
 off_t lLength = pSound->mLength;

Playing Sound with OpenSL ES

[264]

 // Removes any sound from the queue.
 lRes = (*mPlayerQueue)->Clear(mPlayerQueue);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;

 // Plays the new sound.
 lRes = (*mPlayerQueue)->Enqueue(mPlayerQueue, lBuffer,
 lLength);
 if (lRes != SL_RESULT_SUCCESS) goto ERROR;
 }
 return;

 ERROR:
 packt::Log::error(“Error trying to play sound”);
 }
}

Let’s play a sound file when the game starts:

10. Store a reference to sound buffer in file jni/DroidBlaster.hpp:

#ifndef _PACKT_DROIDBLASTER_HPP_
#define _PACKT_DROIDBLASTER_HPP_

#include “ActivityHandler.hpp”
#include “Background.hpp”
#include “Context.hpp”
#include “GraphicsService.hpp”
#include “Ship.hpp”
#include “Sound.hpp”
#include “SoundService.hpp”
#include “TimeService.hpp”
#include “Types.hpp”

namespace dbs {
 class DroidBlaster : public packt::ActivityHandler {
 ...

 private:
 ...
 Background mBackground;
 Ship mShip;
 packt::Sound* mStartSound;
 };
}
#endif

Chapter 7

[265]

11. Finally, play the sound in jni/DroidBlaster.cpp when the application
is activated:

#include “DroidBlaster.hpp”
#include “Log.hpp”

namespace dbs {
 DroidBlaster::DroidBlaster(packt::Context* pContext) :
 mGraphicsService(pContext->mGraphicsService),
 mSoundService(pContext->mSoundService),
 mTimeService(pContext->mTimeService),
 mBackground(pContext), mShip(pContext),
 mStartSound(mSoundService->registerSound(“start.pcm”))
 {}

 packt::status DroidBlaster::onActivate() {
 ...
 mSoundService->playBGM(“bgm.mp3”);
 mSoundService->playSound(mStartSound);

 mBackground.spawn();
 mShip.spawn();
 ...
 }
}

What just happened?
We have discovered how to preload sounds in a buffer and play them as needed. What
differentiates the sound playing technique from the BGM one showed earlier is the use of
a buffer queue. A buffer queue is exactly what its name reveals: a FIFO (First In, First Out)
collection of sound buffers played one after the other. Buffers are enqueued for playback
when all previous buffers are played.

Buffers can be recycled. This technique is essential in combination with streaming files: two
or more buffers are filled and sent to the queue. When first buffer has finished playing, the
second one starts while the first buffer is filled with new data. As soon as possible, the first
buffer is enqueued before the queue gets empty. This process repeats forever until playback
is over. In addition, buffers are raw data and can thus be processed or filtered on the fly.

Playing Sound with OpenSL ES

[266]

In the present tutorial, because DroidBlaster does not need to play more than one sound
at once and no form of streaming is necessary, the buffer queue size is simply set to one
buffer (step 5, lDataLocatorIn.numBuffers = 1;). In addition, we want new sounds
to pre-empt older ones, which explains why queue is systematically cleared. Your OpenSL
ES architecture should be of course adapted to your needs. If it becomes necessary to play
several sounds simultaneously, then several audio players (and therefore buffer queues)
should be created.

Sound buffers are stored in the PCM format, which does not self-describe its internal format.
Sampling, encoding, and other format information needs to be selected in the application
code. Although this is fine for most of them, a solution, if that is not flexible enough, can be
to load a Wave file which contains all the necessary header information.

If you have read carefully the second part of this chapter about playing BGM, you will
remember that we have used a MIME data source to load different kind of sound files,
Waves included. So why not use a MIME source instead of a PCM source? Well, this is
because a buffer queue works only with PCM data. Although improvements can be expected
in the future, audio file decoding still need to be performed by hand. Trying to connect a
MIME source to a buffer queue (like we are going to do with the recorder) will cause an
SL_RESULT_FEATURE_UNSUPPORTED error.

OpenSL ES has been updated in NDK R7 and now allows decoding
compressed files such as MP3 files to PCM buffers.

Exporting PCM sounds with Audacity

A great open source tool to filter and sequence sounds is Audacity. It
allows altering sampling rate and modifying channels (Mono/Stereo).
Audacity is able to export as well as import sound as raw PCM data.

Event callback
It is possible to detect when a sound has finished playing using callbacks. A callback can be
set up by calling the RegisterCallback() method on a queue (but other type of objects
can also register callbacks) like in the following example:

...

namespace packt {
 class SoundService {
 ...

Chapter 7

[267]

 private:
 static void callback_sound(SLBufferQueueItf pObject,

 void* pContext);

 ...
 };
}
#endif

For example, the callback can receive this, that is, a SoundService self reference, to allow
processing with any contextual information, if needed. Although this is facultative, an event
mask is set up to ensure callback is called only when event SL_PLAYEVENT_HEADATEND
(player has finished playing the buffer) is triggered. A few others play events are available
in OpenSLES.h:

...

namespace packt {
 ...
 status SoundService::startSoundPlayer() {
 ...

 // Registers a callback called when sound is finished.
 lResult = (*mPlayerQueue)->RegisterCallback(mPlayerQueue,

 callback_sound, this);

 slCheckErrorWithStatus(lResult, “Problem registering player
callback (Error %d).”, lResult);
 lResult = (*mPlayer)->SetCallbackEventsMask(mPlayer, SL_
PLAYEVENT_HEADATEND);

 slCheckErrorWithStatus(lResult, “Problem registering player
callback mask (Error %d).”, lResult);

 // Starts the sound player
 ...
 }

 void callback_sound(SLBufferQueueItf pBufferQueue, void *context)
 {
 // Context can be casted back to the original type.
 SoundService& lService = *(SoundService*) context;

 ...
 Log::info(“Ended playing sound.”);
 }
 ...
}

Playing Sound with OpenSL ES

[268]

Now, when a buffer ends playing, a message is logged. Operations like, for example,
enqueuing a new buffer (to handle streaming for example) can be performed.

Callback and threading

Callbacks are like system interruptions or application events:
their processing must be short and fast. If advanced processing
is necessary, it should not be performed inside the callback but
on another thread, native threads being perfect candidates.

Indeed, callbacks are emitted on a system thread, different than the one requesting OpenSL
ES services (that is, the native thread in our case). Of course, with threads rise the problem
of thread-safety when accessing your own variables from the callback. Although protecting
code with mutexes is tempting, they are not always compatible with real-time audio as their
effect on scheduling (inversion of priority issues) can disturb playback. Prefer using thread
safe technique like a lock-free queue to communicate with callbacks.

Recording sounds
Android devices are all about interactions. And interactions can come not only from touches
and sensors, but also from audio input. Most Android devices provide a micro to record
sound and allow an application such as the Android desktop search to offer vocal features
to record queries.

If sound input is available, OpenSL ES gives access to the sound recorder natively. It
collaborates with a buffer queue to take data from the input device and fill an output sound
buffer from it. Setup is pretty similar to what has been done with the AudioPlayer except
that data source and data sink are permuted.

To discover how this works, next the challenge consists in recording a sound when an
application starts and playing it when it has finished recording.

Project DroidBlaster_Part7-3 can be used as a starting point for
this part. The resulting project is provided with this book under the
name DroidBlaster_Part7-Recorder.

Chapter 7

[269]

Have a go hero – recording and playing a sound
Turning SoundService into a recorder can be done in four steps:

1. Using status startSoundRecorder() initialize the sound recorder. Invoke it
right after startSoundPlayer().

2. With void recordSound() start recording a sound buffer with device micro.
Invoke this method at instances such as when the application is activated in
onActivate() after background music playback starts.

3. A new callback static void callback_recorder(SLAndroidSimpleBuffe
rQueueItf, void*) to be notified of record queue events. You have to register
this callback so that it is triggered when a recorder event happens. Here, we are
interested in buffer full events, that is, when the sound recording is finished.

4. void playRecordedSound() to play a sound once recorded. Play it at instances
such as when sound has finished being recorded in callback_recorder().
This is not technically correct because of potential race conditions but is fine for
an illustration.

Before going any further, recording requires a specific authorization and, of course,
an appropriate Android device (you would not like an application to record your
secret conversations behind your back!). This authorization has to be requested in
Android manifest:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.packtpub.droidblaster” android:versionCode=”1”
 android:versionName=”1.0”>
 ...
 <uses-permission android:name=”android.permission.RECORD_AUDIO”/>

</manifest>

Sounds are recorded with a recorder object created from the OpenSL ES engine, as usual.
The recorder offers two interesting interfaces:

 � SLRecordItf: This interface is to start and stop recording. The identifier is
SL_IID_RECORD.

 � SLAndroidSImpleBufferQueueItf: This manages a sound queue for the
recorder. This is an Android extension provided by NDK because current OpenSL
ES 1.0.1 specification does not support recording to a queue. The identifier is
SL_IID_ANDROIDSIMPLEBUFFERQUEUE.

const SLuint32 lSoundRecorderIIDCount = 2;
const SLInterfaceID lSoundRecorderIIDs[] =
 { SL_IID_RECORD, SL_IID_ANDROIDSIMPLEBUFFERQUEUE };

Playing Sound with OpenSL ES

[270]

const SLboolean lSoundRecorderReqs[] =
 { SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE };
SLObjectItf mRecorderObj;
(*mEngine)->CreateAudioRecorder(mEngine, &mRecorderObj,
 &lDataSource, &lDataSink,
 lSoundRecorderIIDCount, lSoundRecorderIIDs,
lSoundRecorderReqs);

To create the recorder, you will need to declare your audio source and sink similar to the
following one. The data source is not a sound but a default recorder device (like a microphone).
On the other hand, the data sink (that is, the output channel) is not a speaker but a sound
buffer in PCM format (with the requested sampling, encoding, and endianness). The Android
extension SLDataLocator_AndroidSimpleBufferQueue must be used to work with
a recorder since standard OpenSL buffer queues cannot be used as with a recorder:

SLDataLocator_AndroidSimpleBufferQueue lDataLocatorOut;
lDataLocatorOut.locatorType =
 SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE;
lDataLocatorOut.numBuffers = 1;

SLDataFormat_PCM lDataFormat;
lDataFormat.formatType = SL_DATAFORMAT_PCM;
lDataFormat.numChannels = 1;
lDataFormat.samplesPerSec = SL_SAMPLINGRATE_44_1;
lDataFormat.bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_16;
lDataFormat.containerSize = SL_PCMSAMPLEFORMAT_FIXED_16;
lDataFormat.channelMask = SL_SPEAKER_FRONT_CENTER;
lDataFormat.endianness = SL_BYTEORDER_LITTLEENDIAN;

SLDataSink lDataSink;
lDataSink.pLocator = &lDataLocatorOut;
lDataSink.pFormat = &lDataFormat;

SLDataLocator_IODevice lDataLocatorIn;
lDataLocatorIn.locatorType = SL_DATALOCATOR_IODEVICE;
lDataLocatorIn.deviceType = SL_IODEVICE_AUDIOINPUT;
lDataLocatorIn.deviceID = SL_DEFAULTDEVICEID_AUDIOINPUT;
lDataLocatorIn.device = NULL;

SLDataSource lDataSource;
lDataSource.pLocator = &lDataLocatorIn;
lDataSource.pFormat = NULL;

Chapter 7

[271]

To record a sound, you also need to create a sound buffer with an appropriate size according
to the duration of your recording. Size depends on the sampling rate. For example, for a
record of 2 s with a sampling rate of 44100 Hz and 16-bit quality, sound buffer size would
look like the following:

mRecordSize = 44100 * 2
mRecordBuffer = new int16_t[mRecordSize];

In recordSound(), you can stop the recorder thanks to SLRecordItf to ensure it is not
already recording and clear the queue. The same process applies to destroy the recorder
when application exits.

(*mRecorder)->SetRecordState(mRecorder, SL_RECORDSTATE_STOPPED);
(*mRecorderQueue)->Clear(mRecorderQueue);

Then you can enqueue a new buffer and start recording:

 (*mRecorderQueue)->Enqueue(mRecorderQueue, mRecordBuffer,
 mRecordSize * sizeof(int16_t));
(*mRecorder)->SetRecordState(mRecorder,SL_RECORDSTATE_RECORDING);

Of course, it would be perfectly possible to just enqueue a new sound so that any current
recording is processed to its end (for example, to create a continuous chain of recording).
The sound being enqueued would be processed potentially later in that case. All depends
on your needs.

You eventually need to know when your sound buffer has finished recording. To do so,
register a callback triggered when a recorder event happens (for example, a buffer has been
filled). An event mask should be set to ensure callback is called only when a buffer has been
filled (SL_RECORDEVENT_BUFFER_FULL). A few others are available in OpenSLES.h but
not all are supported (SL_RECORDEVENT_HEADATLIMIT, and so on):

(*mRecorderQueue)->RegisterCallback(mRecorderQueue,
 callback_recorder, this);
(*mRecorder)->SetCallbackEventMask(mRecorder,
 SL_RECORDEVENT_BUFFER_FULL);

Finally, when callback_recorder() is triggered, just stop recording and play the recorded
buffer with playRecordedSound(). The recorded buffer needs to be enqueued in the
audio player’s queue for playback:

(*mPlayerQueue)->Enqueue(mPlayerQueue, mRecordBuffer,
 mRecordSize * sizeof(int16_t));

Playing Sound with OpenSL ES

[272]

Playing recorded sound directly from a callback is nice to perform quick
and simple tests. But to implement such a mechanism properly, more
advanced thread-safe technique (preferably lock-free) is required.

Indeed, in this example, there is a risk of race condition with SoundService destructor
(which destroys the queue used in the callback).

Summary
In this chapter, we saw how to create and realize an OpenSL ES engine connected to
an output channel. We played music from an encoded file and saw that an encoded file
cannot be loaded in a buffer.

We also played sound buffers in a sound queue. Buffers can either be appended to a queue,
in which case they are played with delay, or inserted in replacement of previous sounds,
in which case they are played immediately. Finally, we have recorded sound in buffers and
played them back.

Should you prefer OpenSL ES over Java APIs? There is no definite answer. Devices evolve
at much quieter pace than Android itself. So if your application aims at a large compatibility,
that is, Android 2.2 or less, Java APIs are the only solution. On the other hand, if it is planned
for later releases, then OpenSL ES is an option to consider, praying that most devices will
be migrated to Gingerbread! But you have to be ready to support the cost of possible
future evolutions.

If all you need is a nice high-level API, then Java APIs may suit your requirements better. If
you need finer playback or recording control, then there is no significant difference between
low-level Java APIs and OpenSL ES. In that case, choice should be architectural: if your code
is mainly Java, then you should probably go with Java and reciprocally. If you need to reuse
an existing sound-related library, optimize performance or perform intense computations,
like sound filtering on the fly, then OpenSL ES is probably the right choice. There is no
garbage collector overhead and aggressive optimization is favored in the native code.

Whatever choice you make, know that Android NDK has a lot more to offer. After rendering
graphics with Open GL ES and playing sound with OpenSL ES, the next chapter will take care
of handling input natively: keyboard, touches, and sensors.

8
Handling Input Devices and Sensors

Android is all about interaction. Admittedly, that means feedback, through
graphics, audio, vibrations, and so on. But there is no interaction without input!
The success of today's smart-phones takes its root in their multiple and modern
input possibilities: touch screens, keyboard, mouse, GPS, accelerometer, light
detector, sound recorder, and so on. Handling and combining them properly is a
key to enrich your application and and to make it successful.

Although Android handles many input peripherals, the Android NDK has long been very
limited in their support, not to say good for nothing, until the release of R5! We can now
access them directly through a native API. Examples of available devices are:

 � Keyboard, either physical (with a slide-out keyboard) or virtual (which appears
on screen)

 � Directional pad (up, down, left, right, and action buttons), often
abbreviated D-Pad

 � Trackball (optical ones included)

 � Touch screen, which has made the success of modern smart-phones

 � Mouse or Track Pad (since NDK R5, but available on Honeycomb devices only)

We can also access hardware sensors, for example:

 � Accelerometer, which measures linear acceleration applied to a device.

 � Gyroscope, which measures angular velocity. It is often combined with the
magnetometer to compute orientation accurately and quickly. Gyroscope has
been introduced recently and is not available on most devices yet.

Handling Input Devices and Sensors

[274]

 � Magnetometer, which gives the ambient magnetic field and thus (if not perturbed)
cardinal direction.

 � Light sensor, for example, to automatically adapt screen luminosity.

 � Proximity sensor, for example, to detect ear distance during a call.

In addition to hardware sensors, "software sensors" have been introduced with Gingerbread.
These sensors are derived from hardware sensor's data:

 � Gravity sensor, to measure the gravity direction and magnitude

 � Linear acceleration sensor, which measures device "movement" excluding gravity

 � Rotation vector, which indicates device orientation in space

Gravity sensor and linear acceleration sensor are derived from the accelerometer. On the
other hand, rotation vector is derived from the magnetometer and the accelerometer.
Because these sensors are generally computed over time, they usually incur a slight delay
to get up-to-date values.

To familiarize more deeply with input devices and sensors, this chapter teaches how to:

 � Handle screen touches

 � Detect keyboard, D-Pad, and trackball events

 � Turn the accelerometer sensor into a joypad

Interacting with Android
The most emblematic innovation of today's smart phones is the touch screen, which has
replaced the now antique mice. A touch screen detects, as its name suggests, touches
made with fingers or styluses. Depending on the quality of the screen, several touches
(also referred as cursors in Android) can be handled, de-multiplying interaction possibilities.

So let's start this chapter by handling touch events in DroidBlaster. To keep the example
simple, we will only handle one touch. The goal is to move the ship in the direction of a
touch. The farther the touch is, the faster goes the ship. Beyond a pre-defined range, ship
speed reaches a top limit.

Chapter 8

[275]

The final project structure will look as shown in the following diagram:

DroidBlaster

Ship

LogContext

TimeService

GraphicsService

EventLoop

GraphicsTexture Resource

packt

ActivityHandler

*
Background

GraphicsTileMap

GraphicsSprite Location

*

*

dbsdbs

RapidXml

SoundService

InputService

* Sound

InputHandler

Project DroidBlaster_Part7-3 can be used as a starting
point for this part. The resulting project is provided with this
book under the name DroidBlaster_Part8-1.

Handling Input Devices and Sensors

[276]

Time for action – handling touch events
Let's begin with the plumber to connect Android input event queue to our application.

1. In the same way we created an ActivityHandler to process application events
in Chapter 5, Writing a Native Application, create a class InputHandler, in a new
file jni/InputHandler.hpp to process the input events. Input API is declared in
android/input.h.

2. Create a onTouchEvent() to handle touch events. These events are packaged in
an AInputEvent structure defined in Android include files. Other input peripherals
will be added later in this chapter:

#ifndef _PACKT_INPUTHANDLER_HPP_
#define _PACKT_INPUTHANDLER_HPP_

#include <android/input.h>

namespace packt {
 class InputHandler {
 public:
 virtual ~InputHandler() {};

 virtual bool onTouchEvent(AInputEvent* pEvent) = 0;
 };
}
#endif

3. Modify jni/EventLoop.hpp header file to include and handle an
InputHandler instance. Like with activity event, define an internal method
processInputEvent() triggering a static callback callback_input():

#ifndef _PACKT_EVENTLOOP_HPP_
#define _PACKT_EVENTLOOP_HPP_

#include "ActivityHandler.hpp"
#include "InputHandler.hpp"
#include "Types.hpp"

#include <android_native_app_glue.h>

namespace packt {
 class EventLoop {
 public:
 EventLoop(android_app* pApplication);

Chapter 8

[277]

 void run(ActivityHandler* pActivityHandler,
 InputHandler* pInputHandler);

 protected:
 ...
 void processAppEvent(int32_t pCommand);
 int32_t processInputEvent(AInputEvent* pEvent);
 void processSensorEvent();

 private:
 ...
 static void callback_event(android_app* pApplication,
 int32_t pCommand);
 static int32_t callback_input(android_app* pApplication,
 AInputEvent* pEvent);

 private:
 ...
 android_app* mApplication;
 ActivityHandler* mActivityHandler;
 InputHandler* mInputHandler;
 };
}
#endif

4. We need to process input events in jni/EventLoop.cpp source file and notify
the associated InputHandler.

First, connect the Android input queue to our callback_input(). The
EventLoop itself (that is, this) is passed anonymously through the userData
member of the android_app structure. That way, callback is able to delegate
input processing back to our own object, that is, to processInputEvent().

Touch screen events are of the type MotionEvent (as opposed to key events). They
can be discriminated according to their source (AINPUT_SOURCE_TOUCHSCREEN)
thanks to Android native input API (here, AInputEvent_getSource()):

Note how callback_input() and by extension processInputEvent()
return an integer value (which is in fact a Boolean). This value indicates that
an input event (for example, a pressed button) has been processed by the
application and does not need to be processed further by the system. For
example, return 1 when the back button is pressed to stop event processing and
prevent activity from getting terminated.

Handling Input Devices and Sensors

[278]

#include "EventLoop.hpp"
#include "Log.hpp"

namespace packt {
 EventLoop::EventLoop(android_app* pApplication) :
 mEnabled(false), mQuit(false),
 mApplication(pApplication),
 mActivityHandler(NULL), mInputHandler(NULL) {
 mApplication->userData = this;
 mApplication->onAppCmd = callback_event;
 mApplication->onInputEvent = callback_input;
 }

 void EventLoop::run(ActivityHandler* pActivityHandler,
 InputHandler* pInputHandler) {
 int32_t lResult;
 int32_t lEvents;
 android_poll_source* lSource;

 // Makes sure native glue is not stripped by the linker.
 app_dummy();
 mActivityHandler = pActivityHandler;
 mInputHandler = pInputHandler;

 packt::Log::info("Starting event loop");
 while (true) {
 // Event processing loop.
 ...
 }

 ...

 int32_t EventLoop::processInputEvent(AInputEvent* pEvent) {
 int32_t lEventType = AInputEvent_getType(pEvent);
 switch (lEventType) {
 case AINPUT_EVENT_TYPE_MOTION:
 switch (AInputEvent_getSource(pEvent)) {
 case AINPUT_SOURCE_TOUCHSCREEN:
 return mInputHandler->onTouchEvent(pEvent);
 break;
 }
 break;
 }

Chapter 8

[279]

 return 0;
 }

 int32_t EventLoop::callback_input(android_app* pApplication,
 AInputEvent* pEvent) {
 EventLoop& lEventLoop = *(EventLoop*) pApplication->userData;
 return lEventLoop.processInputEvent(pEvent);
 }

}

Plumber is ready. Let's handle these events concretely.

5. To analyze touch events, create a InputService class in jni/InputService.
hpp implementing our InputHandler. It contains a start() method to realize
necessary initializations and implements onTouchEvent().

More interestingly, InputService provides getHorizontal() and
getVertical() methods, which indicate the virtual joypad direction. Direction
is defined between the touch point and a reference point (which will be the ship).

We also need to know window height and width (reference values, which come
from GraphicsService) to handle coordinate conversions:

#ifndef _PACKT_INPUTSERVICE_HPP_
#define _PACKT_INPUTSERVICE_HPP_

#include "Context.hpp"
#include "InputHandler.hpp"
#include "Types.hpp"

#include <android_native_app_glue.h>

namespace packt {
 class InputService : public InputHandler {
 public:
 InputService(android_app* pApplication,
 const int32_t& pWidth, const int32_t& pHeight);

 float getHorizontal();
 float getVertical();
 void setRefPoint(Location* pTouchReference);

 status start();

 public:

Handling Input Devices and Sensors

[280]

 bool onTouchEvent(AInputEvent* pEvent);

 private:
 android_app* mApplication;

 float mHorizontal, mVertical;

 Location* mRefPoint;
 const int32_t& mWidth, &mHeight;
 };
}
#endif

6. Now, the interesting part: jni/InputService.cpp. First, define the constructor,
destructor, getters, and setters.

Input service needs a start() method to clear state members:

#include "InputService.hpp"
#include "Log.hpp"

#include <android_native_app_glue.h>
#include <cmath>

namespace packt {
 InputService::InputService(android_app* pApplication,
 const int32_t& pWidth, const int32_t& pHeight) :
 mApplication(pApplication),
 mHorizontal(0.0f), mVertical(0.0f),
 mRefPoint(NULL), mWidth(pWidth), mHeight(pHeight)
 {}

 float InputService::getHorizontal() {
 return mHorizontal;
 }

 float InputService::getVertical() {
 return mVertical;
 }

 void InputService::setRefPoint(Location* pTouchReference) {
 mRefPoint = pTouchReference;
 }

 status InputService::start() {

Chapter 8

[281]

 mHorizontal = 0.0f, mVertical = 0.0f;
 if ((mWidth == 0) || (mHeight == 0)) {
 return STATUS_KO;
 }
 return STATUS_OK;
 }

The effective event processing comes in onTouchEvent(). Horizontal and vertical
directions are computed according to the distance between the reference point and
the touch point. This distance is restricted by TOUCH_MAX_RANGE to an arbitrary
range of 65 pixels. Thus, ship max speed is reached when reference-to-touch point
distance is beyond TOUCH_MAX_RANGE pixels. Touch coordinates are retrieved
thanks to AMotionEvent_getX() and AMotionEvent_getY() when finger
moves. Direction vector is reset to 0 when no more touch is detected:

Beware that the way touch events are fired is not homogeneous among
devices. For example, some devices emit events continuously while
finger is down whereas others only emit them when finger moves. In
our case, we could re-compute movement each frame instead of when
an event is triggered to get a more predictable behavior.

...
 bool InputService::onTouchEvent(AInputEvent* pEvent) {
 const float TOUCH_MAX_RANGE = 65.0f; // In pixels.

 if (mRefPoint != NULL) {
 if (AMotionEvent_getAction(pEvent)
 == AMOTION_EVENT_ACTION_MOVE) {
 // Needs a conversion to proper coordinates
 // (origin at bottom/left). Only lMoveY needs it.
 float lMoveX = AMotionEvent_getX(pEvent, 0)
 - mRefPoint->mPosX;
 float lMoveY = mHeight - AMotionEvent_getY(pEvent, 0)
 - mRefPoint->mPosY;
 float lMoveRange = sqrt((lMoveX * lMoveX)
 + (lMoveY * lMoveY));

 if (lMoveRange > TOUCH_MAX_RANGE) {
 float lCropFactor = TOUCH_MAX_RANGE / lMoveRange;
 lMoveX *= lCropFactor; lMoveY *= lCropFactor;
 }

 mHorizontal = lMoveX / TOUCH_MAX_RANGE;

Handling Input Devices and Sensors

[282]

 mVertical = lMoveY / TOUCH_MAX_RANGE;
 } else {
 mHorizontal = 0.0f; mVertical = 0.0f;
 }
 }
 return true;
 }
}

7. Insert InputService into the Context structure in jni/Context.hpp.

#ifndef _PACKT_CONTEXT_HPP_
#define _PACKT_CONTEXT_HPP_

#include "Types.hpp"

namespace packt {
 class GraphicsService;
 class InputService;
 class SoundService;
 class TimeService;

 struct Context {
 GraphicsService* mGraphicsService;
 InputService* mInputService;
 SoundService* mSoundService;
 TimeService* mTimeService;
 };
}
#endif

Finally, let's react to touch events in the game itself.

8. Get the InputService back in jni/DroidBlaster.hpp:

#ifndef _PACKT_DROIDBLASTER_HPP_
#define _PACKT_DROIDBLASTER_HPP_

#include "ActivityHandler.hpp"
#include "Background.hpp"
#include "Context.hpp"
#include "InputService.hpp"
#include "GraphicsService.hpp"
#include "Ship.hpp"
...

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

[283]

namespace dbs {
 class DroidBlaster : public packt::ActivityHandler {
 public:
 ...

 private:
 packt::InputService* mInputService;
 packt::GraphicsService* mGraphicsService;
 packt::SoundService* mSoundService;
 packt::TimeService* mTimeService;
 ...
 };
}
#endif

9. InputService is started in jni/DroidBlaster.cpp when the activity is
activated. Because it calls ANativeWindow_lock() to retrieve window height
and width, InputService needs to be started before GraphicsService to
avoid a deadlock:

#include "DroidBlaster.hpp"
#include "Log.hpp"

namespace dbs {
 DroidBlaster::DroidBlaster(packt::Context* pContext) :
 mInputService(pContext->mInputService),
 mGraphicsService(pContext->mGraphicsService),
 mSoundService(pContext->mSoundService),
 ...
 {}

 packt::status DroidBlaster::onActivate() {
 if (mGraphicsService->start() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }
 if (mInputService->start() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }
 ...
 }

 ...

 packt::status DroidBlaster::onStep() {

Handling Input Devices and Sensors

[284]

 mTimeService->update();

 mBackground.update();
 mShip.update();

 // Updates services.
 if (mGraphicsService->update() != packt::STATUS_OK) {
 ...
 }
}

10. The InputService is used by the Ship class to reposition. Open jni/Ship.hpp
and associate it with the InputService and TimeService. The ship position is
moved according to user input and time step in a new method update():

#ifndef _DBS_SHIP_HPP_
#define _DBS_SHIP_HPP_

#include "Context.hpp"
#include "InputService.hpp"
#include "GraphicsService.hpp"
#include "GraphicsSprite.hpp"
#include "Types.hpp"

namespace dbs {
 class Ship {
 public:
 Ship(packt::Context* pContext);

 void spawn();
 void update();

 private:
 packt::InputService* mInputService;
 packt::GraphicsService* mGraphicsService;
 packt::TimeService* mTimeService;

 packt::GraphicsSprite* mSprite;
 packt::Location mLocation;
 float mAnimSpeed;
 };
}
#endif

Chapter 8

[285]

11. The reference point from which distance to the touch is computed is initialized with
the ship position. During update, ship is moved toward the touch point according to
the time step and the direction calculated in InputService class:

#include "Ship.hpp"
#include "Log.hpp"

namespace dbs {
 Ship::Ship(packt::Context* pContext) :
 mInputService(pContext->mInputService),
 mGraphicsService(pContext->mGraphicsService),
 mTimeService(pContext->mTimeService),
 mLocation(), mAnimSpeed(8.0f) {
 mSprite = pContext->mGraphicsService->registerSprite(
 mGraphicsService->registerTexture("ship.png"), 64, 64,
 &mLocation);
 mInputService->setRefPoint(&mLocation);
 }

 ...

 void Ship::update() {
 const float SPEED_PERSEC = 400.0f;
 float lSpeed = SPEED_PERSEC * mTimeService->elapsed();

 mLocation.translate(mInputService->getHorizontal() * lSpeed,
 mInputService->getVertical() * lSpeed);
 }
}

12. Finally, update the android_main() method in jni/Main.cpp to build
an instance of InputService and pass it to the event processing loop:

#include "Context.hpp"
#include "DroidBlaster.hpp"
#include "EventLoop.hpp"
#include "InputService.hpp"
#include "GraphicsService.hpp"
#include "SoundService.hpp"
#include "TimeService.hpp"

void android_main(android_app* pApplication) {
 packt::TimeService lTimeService;
 packt::GraphicsService lGraphicsService(pApplication,
 &lTimeService);

Handling Input Devices and Sensors

[286]

 packt::InputService lInputService(pApplication,
 lGraphicsService.getWidth(),lGraphicsService.getHeight());
 packt::SoundService lSoundService(pApplication);

 packt::Context lContext = { &lInputService, &lGraphicsService,
 &lSoundService, &lTimeService };

 packt::EventLoop lEventLoop(pApplication);
 dbs::DroidBlaster lDroidBlaster(&lContext);
 lEventLoop.run(&lDroidBlaster, &lInputService);
}

What just happened?
We have created a simple example of an input system based on touch events. The ship
flies toward the touch point at a speed dependent on the touch distance. Yet, many
improvements are possible such as taking into account screen density and size, following
one specific pointer…

Touch screen event coordinates are absolute. Their origin is in the upper-left corner of the
screen (on the opposite of OpenGL which is on the lower-left corner). If screen rotation is
authorized by an application, the origin will stay on the upper, left whether the screen is in
portrait or landscape mode.

To implement it, we have connected our event loop to the input event queue provided
by the native_app_glue module. This queue is internally represented as an Unix pipe,
like the activity event queue. Touch screen events are embedded in an AInputEvent
structure, which stores also other kind of input events. Input events can be handled with
the functions declared in android/input.h. Input event types can be discriminated
using AInputEvent_getType() and AInputEvent_getSource() methods (note the
AInputEvent_ prefix). Methods related to touch events are prefixed by AMotionEvent_.

Chapter 8

[287]

The touch API is rather rich. Many details can be requested such as (non-exhaustively):

AMotionEvent_getAction() To detect whether a finger is entering in contact with
the screen, leaving it, or moving over the surface.

The result is an integer value composed of the event
type (on byte 1, for example, AMOTION_EVENT_
ACTION_DOWN) and a pointer index (on byte 2, to
know which finger the event refers to).

AMotionEvent_getX()

AMotionEvent_getY()

To retrieve touch coordinates on screen, expressed in
pixels as a float (sub-pixel values are possible).

AMotionEvent_getDownTime()

AMotionEvent_getEventTime()

To retrieve how much time finger has been sliding
over the screen and when the event has been
generated in nanoseconds.

AMotionEvent_getPressure()

AMotionEvent_getSize()

To detect how careful users are with their device.
Values usually range between 0.0 and 1.0 (but may
exceed it). Size and pressure are generally closely
related. Behavior can vary greatly and be noisy
depending on hardware.

AMotionEvent_
getHistorySize()

AMotionEvent_
getHistoricalX()

AMotionEvent_
getHistoricalY()

...

Touch events of type AMOTION_EVENT_ACTION_
MOVE can be grouped together for efficiency purpose.
These methods give access to these "historical points"
that occurred between previous and current events.

Have a look at android/input.h for an exhaustive list of methods.

If you look more deeply at AMotionEvent API, you will notice that some events have a
second parameter pointer_index, which ranges between 0 and the number of active
pointers. Indeed, most touch screens today are multi-touch! Two or more fingers on a screen
(if hardware supports it) are translated in Android by two or more pointers. To manipulate
them, look at:

AMotionEvent_
getPointerCount()

To know how many fingers touch the screen.

AMotionEvent_getPointerId() To get a pointer unique identifier from a pointer
index. This is the only way to track a particular
pointer (that is, finger) over time, as its index may
change when fingers touch or leave the screen.

Handling Input Devices and Sensors

[288]

Do not rely on hardware

If you followed the story of the (now prehistoric!) Nexus One, then you know
that it came out with an hardware defect. Pointers were often getting mixed
up, two of them exchanging one of their coordinates. So be always prepared
to handle hardware specificities or hardware that behaves incorrectly!

Detecting keyboard, D-Pad, and Trackball events
The most common input device among all is the keyboard. This is true for Android too. An
Android keyboard can be physical: in the device front face (like traditional blackberries) or
on a slide-out screen. But a keyboard can also be virtual, that is, emulated on the screen at
the cost of a large portion of space taken. In addition to the keyboard itself, every Android
device should include a few physical buttons (sometimes emulated on screen) such as Menu,
Home, Search, and so on.

A much less common type of input device is the Directional-Pad. A D-Pad is a set of physical
buttons to move up, down, left, or right and a specific action/confirmation button. Although
they often disappear from recent phones and tablets, D-Pads remain one of the most
convenient ways to move across text or UI widgets. D-Pads are often replaced by trackballs.
Trackballs behave similarly to a mouse (the one with a ball inside) that would be upside-down.
Some trackballs are analogical, but others (for example, optical ones) behave as a D-Pad
(that is, all or nothing).

To see how they work, let's use these peripherals to move our space ship in DroidBlaster.
The Android NDK now allows handling all these input peripherals on the native side. So let's
try them!

Chapter 8

[289]

Project DroidBlaster_Part8-1 can be used as a starting
point for this part. The resulting project is provided with this
book under the name DroidBlaster_Part8-2.

Time for action – handling keyboard, D-Pad, and
trackball, natively

First, let's handle keyboard and trackball events.

1. Open jni/InputHandler.hpp and add keyboard and trackball event handlers:

#ifndef _PACKT_INPUTHANDLER_HPP_
#define _PACKT_INPUTHANDLER_HPP_

#include <android/input.h>

namespace packt {
 class InputHandler {
 public:
 virtual ~InputHandler() {};

 virtual bool onTouchEvent(AInputEvent* pEvent) = 0;
 virtual bool onKeyboardEvent(AInputEvent* pEvent) = 0;
 virtual bool onTrackballEvent(AInputEvent* pEvent) = 0;
 };
}

#endif

2. Update method processInputEvent() inside the existing file jni/EventLoop.
cpp to redirect keyboard and trackball events to InputHandler.

Trackballs and touch events are assimilated to motion events and can be
discriminated according to their source. On the opposite side, key events are
discriminated according to their type. Indeed, there exist two dedicated APIs for
MotionEvents (the same for trackballs and touch events) and for KeyEvents
(identical for keyboard, D-Pad, and so on):

#include "EventLoop.hpp"
#include "Log.hpp"

namespace packt {
 ...
 int32_t EventLoop::processInputEvent(AInputEvent* pEvent) {

Handling Input Devices and Sensors

[290]

 int32_t lEventType = AInputEvent_getType(pEvent);
 switch (lEventType) {
 case AINPUT_EVENT_TYPE_MOTION:
 switch (AInputEvent_getSource(pEvent)) {
 case AINPUT_SOURCE_TOUCHSCREEN:
 return mInputHandler->onTouchEvent(pEvent);
 break;

 case AINPUT_SOURCE_TRACKBALL:
 return mInputHandler->onTrackballEvent(pEvent);
 break;
 }
 break;

 case AINPUT_EVENT_TYPE_KEY:
 return mInputHandler->onKeyboardEvent(pEvent);
 break;
 }
 return 0;
 }
 ...
}

3. Now, modify the jni/InputService.hpp file to override these new methods…
also define an update() method to react to pressed keys. We are interested in
the menu button that is going to cause the application to exit:

#ifndef _PACKT_INPUTSERVICE_HPP_
#define _PACKT_INPUTSERVICE_HPP_

...

namespace packt {
 class InputService : public InputHandler {
 public:
 ...
 status start();
 status update();

 public:
 bool onTouchEvent(AInputEvent* pEvent);
 bool onKeyboardEvent(AInputEvent* pEvent);
 bool onTrackballEvent(AInputEvent* pEvent);

Chapter 8

[291]

 private:
 ...
 Location* mRefPoint;
 int32_t mWidth, mHeight;

 bool mMenuKey;
 };
}
#endif

4. Now, update the class constructor jni/InputService.cpp and implement
method update() to exit when the menu button is pressed:

#include "InputService.hpp"
#include "Log.hpp"

#include <android_native_app_glue.h>
#include <cmath>

namespace packt {
 InputService::InputService(android_app* pApplication,
 const int32_t& pWidth, const int32_t& pHeight) :
 mApplication(pApplication),
 mHorizontal(0.0f), mVertical(0.0f),
 mRefPoint(NULL), mWidth(pWidth), mHeight(pHeight),
 mMenuKey(false)
 {}

 ...

 status InputService::update() {
 if (mMenuKey) {
 return STATUS_EXIT;
 }
 return STATUS_OK;
 }
...

5. Still in InputService.cpp, process keyboard events in onKeyboardEvent(). Use:

 � AKeyEvent_getAction() to get event type (that is, pressed or not).

 � AKeyEvent_getKeyCode() to get the button identity.

Handling Input Devices and Sensors

[292]

In the following code, when left, right, up, or down buttons are pressed,
InputService compute corresponding direction into fields mHorizontal
and mVertical defined in previous part. Movement starts when button is
down and stops when it is up.

We also process the Menu button here, when it gets unpressed:

This code works only on devices with a D-Pad, which is the
case of the emulator. Note however that due to Android
fragmentation, reaction may differ according to hardware.

...
 bool InputService::onKeyboardEvent(AInputEvent* pEvent) {
 const float ORTHOGONAL_MOVE = 1.0f;

 if(AKeyEvent_getAction(pEvent)== AKEY_EVENT_ACTION_DOWN) {
 switch (AKeyEvent_getKeyCode(pEvent)) {
 case AKEYCODE_DPAD_LEFT:
 mHorizontal = -ORTHOGONAL_MOVE;
 break;
 case AKEYCODE_DPAD_RIGHT:
 mHorizontal = ORTHOGONAL_MOVE;
 break;
 case AKEYCODE_DPAD_DOWN:
 mVertical = -ORTHOGONAL_MOVE;
 break;
 case AKEYCODE_DPAD_UP:
 mVertical = ORTHOGONAL_MOVE;
 break;
 case AKEYCODE_BACK:
 return false;
 }
 } else {
 switch (AKeyEvent_getKeyCode(pEvent)) {
 case AKEYCODE_DPAD_LEFT:
 case AKEYCODE_DPAD_RIGHT:
 mHorizontal = 0.0f;
 break;
 case AKEYCODE_DPAD_DOWN:
 case AKEYCODE_DPAD_UP:
 mVertical = 0.0f;
 break;
 case AKEYCODE_MENU:

Chapter 8

[293]

 mMenuKey = true;
 break;
 case AKEYCODE_BACK:
 return false;
 }
 }
 return true;
 }
...

6. Similarly, process trackball events in a new method onTrackballEvent(). Retrieve
trackball magnitude with AMotionEvent_getX() and AMotionEvent_getY().
Because some trackballs do not offer a gradated magnitude, the movement is
quantified with plain constants. Possible noise is ignored with an arbitrary
trigger threshold:

When using trackball that way, the ship moves until a "counter-movement"
(for example, requesting to go to the right when going left) or action button
 is pressed (last else section):

For a wide audience application, code should be adapted
to handle hardware capabilities and specificities such as
gradated values of analogical trackballs.

...
 bool InputService::onTrackballEvent(AInputEvent* pEvent) {
 const float ORTHOGONAL_MOVE = 1.0f;
 const float DIAGONAL_MOVE = 0.707f;
 const float THRESHOLD = (1/100.0f);

 if (AMotionEvent_getAction(pEvent)
 == AMOTION_EVENT_ACTION_MOVE) {
 float lDirectionX = AMotionEvent_getX(pEvent, 0);
 float lDirectionY = AMotionEvent_getY(pEvent, 0);
 float lHorizontal, lVertical;

 if (lDirectionX < -THRESHOLD) {
 if (lDirectionY < -THRESHOLD) {
 lHorizontal = -DIAGONAL_MOVE;
 lVertical = DIAGONAL_MOVE;
 } else if (lDirectionY > THRESHOLD) {
 lHorizontal = -DIAGONAL_MOVE;
 lVertical = -DIAGONAL_MOVE;

Handling Input Devices and Sensors

[294]

 } else {
 lHorizontal = -ORTHOGONAL_MOVE;
 lVertical = 0.0f;
 }
 } else if (lDirectionX > THRESHOLD) {
 if (lDirectionY < -THRESHOLD) {
 lHorizontal = DIAGONAL_MOVE;
 lVertical = DIAGONAL_MOVE;
 } else if (lDirectionY > THRESHOLD) {
 lHorizontal = DIAGONAL_MOVE;
 lVertical = -DIAGONAL_MOVE;
 } else {
 lHorizontal = ORTHOGONAL_MOVE;
 lVertical = 0.0f;
 }
 } else if (lDirectionY < -THRESHOLD) {
 lHorizontal = 0.0f;
 lVertical = ORTHOGONAL_MOVE;
 } else if (lDirectionY > THRESHOLD) {
 lHorizontal = 0.0f;
 lVertical = -ORTHOGONAL_MOVE;
 }

 // Ends movement if there is a counter movement.
 if ((lHorizontal < 0.0f) && (mHorizontal > 0.0f)) {
 mHorizontal = 0.0f;
 } else if((lHorizontal > 0.0f)&&(mHorizontal < 0.0f)){
 mHorizontal = 0.0f;
 } else {
 mHorizontal = lHorizontal;
 }

 if ((lVertical < 0.0f) && (mVertical > 0.0f)) {
 mVertical = 0.0f;
 } else if ((lVertical > 0.0f) && (mVertical < 0.0f)) {
 mVertical = 0.0f;
 } else {
 mVertical = lVertical;
 }
 } else {
 mHorizontal = 0.0f; mVertical = 0.0f;
 }
 return true;
 }
}

Let's finish by making a slight modification to the game itself.

Chapter 8

[295]

7. Finally, edit DroidBlaster.cpp and update InputService at each iteration:

#include "DroidBlaster.hpp"
#include "Log.hpp"

namespace dbs {
 ...
 packt::status DroidBlaster::onStep() {
 mTimeService->update();

 mBackground.update();
 mShip.update();

 if (mInputService->update() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }
 if (mGraphicsService->update() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }
 return packt::STATUS_OK;
 }
 ...
}

What just happened?
We have extended our input system to handle the keyboard, D-Pad, and trackball events.
D-Pad can be considered as a keyboard extension and is processed the same way. Indeed,
D-Pad and keyboard events are transported in the same structure (AInputEvent) and
handled by the same API (prefixed with AKeyEvent). The following table lists the main key
event methods:

Handling Input Devices and Sensors

[296]

AKeyEvent_getAction() Indicate if button is down (AKEY_EVENT_ACTION_
DOWN) or released (AKEY_EVENT_ACTION_UP). Note
that multiple key actions can be emitted in batch (AKEY_
EVENT_ACTION_MULTIPLE).

AKeyEvent_getKeyCode() To retrieve the actual button being pressed (defined in
android/keycodes.h), for example, AKEYCODE_
DPAD_LEFT for the left button.

AKeyEvent_getFlags() Key events can be associated with one or more flags
that give various information on the event like AKEY_
EVENT_LONG_PRESS, AKEY_EVENT_FLAG_SOFT_
KEYBOARD for event originated from an emulated
keyboard.

AKeyEvent_getScanCode() Is similar to a key code except that this is the raw key ID,
dependent and different from device to device.

AKeyEvent_getMetaState() Meta states are flags that indicate if some modifier keys
like Alt or Shift are pressed simultaneously (for example,
AMETA_SHIFT_ON, AMETA_NONE, and so on).

AKeyEvent_
getRepeatCount()

Indicates how many times the button event occurred,
usually when you leave button down.

AKeyEvent_getDownTime() To know when a button was pressed.

Although some of them (especially optical ones) behave like a D-Pad, trackballs are not using
the same API. Actually, trackballs are handled through the AMotionEvent API (like touch
events). Of course, some information provided for touch events is not always available on
trackballs. The most important functions to look at are:

AMotionEvent_getAction() To know if an event represents a move action (as opposed
to a press action).

AMotionEvent_getX()

AMotionEvent_getY()

To get trackball movement.

AKeyEvent_getDownTime() To know if trackball is pressed (like D-Pad action button).
Currently, most trackballs use an all-or-nothing pressure
to indicate the press event.

Something tricky with trackballs, that may not be obvious at first, is that no event up is
generated to indicate that trackball has finished moving. Moreover, trackball events are
generated as a series (as a burst) which makes it harder to detect when movement is
finished. There is no easy way to handle this except using a manual timer and checking
regularly that no event has happened for a sufficient amount of time.

Chapter 8

[297]

Again, do not rely on an expected behaviour

Never expect peripherals to behave exactly the same on all phones.
Trackballs are a very good example: they can either indicate a direction like
an analogical pad or a straight direction like a D-Pad (for example, optical
trackballs). There is currently no way to differentiate device characteristics
from the available APIs. The only solutions are to either calibrate device
and configure it at runtime or save a kind of device database.

Have a go hero – displaying software keyboard
An annoying problem with the Android NDK and NativeActivity is that there is no easy
way to display a virtual keyboard. And of course, without a virtual keyboard, nothing can
be keyed in. This is where the JNI skills you have gained by reading Chapter 3 and Chapter 4
come to the rescue.

The piece of Java code to show or hide the keyboard is rather concise:

InputMethodManager mgr = (InputMethodManager)
 myActivity.getSystemService(Context.INPUT_METHOD_SERVICE);
mgr.showSoftInput(pActivity.getWindow().getDecorView(), 0);
...

mgr.hideSoftInput(pActivity.getWindow().getDecorView(), 0);

Write the equivalent JNI code in four steps:

1. First, create a JNI helper class which:

 � Takes an android_app instance and attaches the JavaVM during
construction. The JavaVM is provided in member activity->vm
of android_app.

 � Detaches the JavaVM when class gets destroyed.

 � Offers helper methods to create and delete global references like
implemented in Chapter 4, Calling Back Java from Native Code
(makeGlobalRef() and deleteGlobalRef()).

 � Provides getters to a JNIEnv cached on VM attachment and the
NativeActivity instance provided in member activity->clazz
of android_app.

Handling Input Devices and Sensors

[298]

2. Then, write a Keyboard class which receives a JNI instance in parameter and cache
all the necessary jclass, jmethodID, and jfieldID to execute the piece of Java
code presented above. This is similar to the StoreWatcher in Chapter 4, Calling
Back Java from Native Code, but in C++ this time.

Define methods to:

 � Cache JNI elements. Call it when InputService is initialized to handle
error cases properly and report a status.

 � Release global references when application is deactivated.

 � Show and hide the keyboard by executing the JNI methods cached earlier.

3. Instantiate both the JNI and the Keyboard classes in your android_main()
method and pass the latter to your InputService.

4. Open the virtual keyboard when the menu key is pressed instead of leaving the
game. Finally, detect keys that are pressed on the virtual keyboard. For example,
try to detect the key AKEYCODE_E to exit the game.

The final project is provided with this book in
DroidBlaster_Part8-2-Keyboard.

Probing device sensors
Handling input devices is essential to any application, but probing sensors is important
for the smartest one! The most spread sensor among Android game applications is
the accelerometer.

An accelerometer, as its name suggests, measures the linear acceleration applied to a
device. When moving a device up, down, left, or right, the accelerometer gets excited and
indicates an acceleration vector in 3D space. Vector is expressed relative to screen default
orientation. Coordinates system is relative to device natural orientation:

 � X axis points left

 � Y points up

 � Z points from back to front

Axes become inverted if device is rotated (for example, Y points left if the device is rotated
90 degrees clockwise).

Chapter 8

[299]

A very interesting feature of accelerometers is that they undergo a constant acceleration:
gravity, around 9.8m/s2 on earth. For example, when lying flat on a table, acceleration vector
indicates -9.8 on the Z-axis. When straight, it indicates the same value on Y axis. So assuming
device position is fixed, device orientation on two axes in space can be deduced from the
gravity acceleration vector. Magnetometer is still required to get full device orientation in
3D space.

Remember that accelerometers work with linear acceleration.
They allow detecting translation when device is not rotating and
partial orientation when device is fixed. But both movements
cannot be combined without a magnetometer and/or gyroscope.

The final project structure will look as shown in the following diagram:

DroidBlaster

Ship

LogContext

TimeService

GraphicsService

EventLoop

GraphicsTexture Resource

packt

ActivityHandler

*
Background

GraphicsTileMap

GraphicsSprite Location

*

*

dbsdbs

RapidXml

SoundService

InputService

* Sound

InputHandler
Sensor

*

*

Handling Input Devices and Sensors

[300]

Project DroidBlaster_Part8-2 can be used as a
starting point for this part. The resulting project is provided
with this book under the name DroidBlaster_Part8-3.

Time for action – turning your device into a joypad
First, we need to handle sensor events in the event loop.

1. Open InputHandler.hpp and add a new method onAccelerometerEvent().
Include android/sensor.h official header for sensors.

#ifndef _PACKT_INPUTHANDLER_HPP_
#define _PACKT_INPUTHANDLER_HPP_

#include <android/input.h>
#include <android/sensor.h>

namespace packt {
 class InputHandler {
 public:
 virtual ~InputHandler() {};

 virtual bool onTouchEvent(AInputEvent* pEvent) = 0;
 virtual bool onKeyboardEvent(AInputEvent* pEvent) = 0;
 virtual bool onTrackballEvent(AInputEvent* pEvent) = 0;
 virtual bool onAccelerometerEvent(ASensorEvent* pEvent) = 0;
 };
}
#endif

2. Update jni/EventLoop.hpp class by adding a static callback dedicated to
sensors named callback_sensor(). This method delegates processing to
member method processSensorEvent(), which redistributes events to
InputHandler instance.

A sensor event queue is represented by an ASensorManager opaque structure.
On the opposite of the activity and input event queues, the sensor queue is not
managed by the native_app_glue module (as seen in Chapter 5, Writing a Fully
Native Application). We need to set it up ourselves with an ASensorEventQueue
and an android_poll_source:

#ifndef _PACKT_EVENTLOOP_HPP_
#define _PACKT_EVENTLOOP_HPP_

Chapter 8

[301]

...

namespace packt {
 class EventLoop {
 ...
 protected:
 ...

 void processAppEvent(int32_t pCommand);
 int32_t processInputEvent(AInputEvent* pEvent);
 void processSensorEvent();

 private:
 friend class Sensor;

 static void callback_event(android_app* pApplication,
 int32_t pCommand);
 static int32_t callback_input(android_app* pApplication,
 AInputEvent* pEvent);
 static void callback_sensor(android_app* pApplication,
 android_poll_source* pSource);

 private:
 ...
 ActivityHandler* mActivityHandler;
 InputHandler* mInputHandler;

 ASensorManager* mSensorManager;
 ASensorEventQueue* mSensorEventQueue;
 android_poll_source mSensorPollSource;
 };
}
#endif

3. Modify file jni/EventLoop.cpp, starting with its constructor:

#include "EventLoop.hpp"
#include "Log.hpp"

namespace packt {
 EventLoop::EventLoop(android_app* pApplication) :
 mEnabled(false), mQuit(false),
 mApplication(pApplication),
 mActivityHandler(NULL), mInputHandler(NULL),

Handling Input Devices and Sensors

[302]

 mSensorPollSource(), mSensorManager(NULL),
 mSensorEventQueue(NULL) {
 mApplication->userData = this;
 mApplication->onAppCmd = callback_event;
 mApplication->onInputEvent = callback_input;
 }
...

4. When starting an EventLoop in activate(), create a new sensor queue and
attach it with ASensorManager_createEventQueue() so that it gets polled
with the activity and input event queues. LOOPER_ID_USER is a slot defined
inside native_app_glue to attach a custom queue to the internal glue Looper
(see Chapter 5, Writing a Fully Native Application. The glue Looper already has
two internal slots (LOOPER_ID_MAIN and LOOPER_ID_INPUT handled
transparently). Sensors are managed through a central manager ASensorManager
which can be retrieved using ASensorManager_getInstance().

In the deactivate() method, destroy the sensor event queue without mercy
with method ASensorManager_destroyEventQueue():

...
 void EventLoop::activate() {
 if ((!mEnabled) && (mApplication->window != NULL)) {
 mSensorPollSource.id = LOOPER_ID_USER;
 mSensorPollSource.app = mApplication;
 mSensorPollSource.process = callback_sensor;
 mSensorManager = ASensorManager_getInstance();
 if (mSensorManager != NULL) {
 mSensorEventQueue = ASensorManager_createEventQueue(
 mSensorManager, mApplication->looper,
 LOOPER_ID_USER, NULL, &mSensorPollSource);
 if (mSensorEventQueue == NULL) goto ERROR;
 }

 mQuit = false; mEnabled = true;
 if (mActivityHandler->onActivate() != STATUS_OK) {
 goto ERROR;
 }
 }
 return;

 ERROR:
 mQuit = true;

Chapter 8

[303]

 deactivate();
 ANativeActivity_finish(mApplication->activity);
 }

 void EventLoop::deactivate() {
 if (mEnabled) {
 mActivityHandler->onDeactivate();
 mEnabled = false;

 if (mSensorEventQueue != NULL) {
 ASensorManager_destroyEventQueue(mSensorManager,
 mSensorEventQueue);
 mSensorEventQueue = NULL;
 }
 mSensorManager = NULL;
 }
 }
...

5. Finally, redirect sensor events to the handler in processSensorEvent().
Sensor events are wrapped in an ASensorEvent structure. This structure
contains a type field to identify the sensor the event originates from
(here, to keep accelerometer events):

...
 void EventLoop::processSensorEvent() {
 ASensorEvent lEvent;
 while (ASensorEventQueue_getEvents(mSensorEventQueue,
 &lEvent, 1) > 0) {
 switch (lEvent.type) {
 case ASENSOR_TYPE_ACCELEROMETER:
 mInputHandler->onAccelerometerEvent(&lEvent);
 break;
 }
 }
 }

 void EventLoop::callback_sensor(android_app* pApplication,
 android_poll_source* pSource) {
 EventLoop& lEventLoop = *(EventLoop*) pApplication->userData;
 lEventLoop.processSensorEvent();
 }
}

Handling Input Devices and Sensors

[304]

6. Create a new file jni/Sensor.hpp as follows. The Sensor class is responsible for
the activation (with enable()) and deactivation (with disable()) of the sensor.
Method toggle() is a wrapper to switch the sensor state.

This class works closely with EventLoop to process sensor messages (actually,
this code could have been integrated in EventLoop itself). Sensors themselves
are wrapped in an ASensor opaque structure and have a type (a constant defined
in android/sensor.h identical to the ones in android.hardware.Sensor):

#ifndef _PACKT_SENSOR_HPP_
#define _PACKT_SENSOR_HPP_

#include "Types.hpp"

#include <android/sensor.h>

namespace packt {
 class EventLoop;

 class Sensor {
 public:
 Sensor(EventLoop& pEventLoop, int32_t pSensorType);

 status toggle();
 status enable();
 status disable();

 private:
 EventLoop& mEventLoop;
 const ASensor* mSensor;
 int32_t mSensorType;
 };
}
#endif

7. Implement Sensor in jni/Sensor.cpp file and write enable() in three steps:

 � Get a sensor of a specific type with ASensorManager_
getDefaultSensor().

 � Then, enable it with ASensorEventQueue_enableSensor() so that the
event queue receives related events.

Chapter 8

[305]

 � Set the desired event rate with ASensorEventQueue_setEventRate().
For a game, we typically want measures close to real time. The minimum
delay is queried with ASensor_getMinDelay() and setting it to a lower
value results in failure.

Obviously, we should perform this setup only when the sensor event queue
is ready. Sensor is deactivated in disable() with ASensorEventQueue_
disableSensor() thanks to the sensor instance retrieved previously.

#include "Sensor.hpp"
#include "EventLoop.hpp"
#include "Log.hpp"

namespace packt {
 Sensor::Sensor(EventLoop& pEventLoop, int32_t pSensorType):
 mEventLoop(pEventLoop),
 mSensor(NULL),
 mSensorType(pSensorType)
 {}

 status Sensor::toggle() {
 return (mSensor != NULL) ? disable() : enable();
 }

 status Sensor::enable() {
 if (mEventLoop.mEnabled) {
 mSensor = ASensorManager_getDefaultSensor(
 mEventLoop.mSensorManager, mSensorType);
 if (mSensor != NULL) {
 if (ASensorEventQueue_enableSensor(
 mEventLoop.mSensorEventQueue, mSensor) < 0) {
 goto ERROR;
 }

 int32_t lMinDelay = ASensor_getMinDelay(mSensor);
 if (ASensorEventQueue_setEventRate(mEventLoop
 .mSensorEventQueue, mSensor, lMinDelay) < 0) {
 goto ERROR;
 }
 } else {
 packt::Log::error("No sensor type %d", mSensorType);
 }
 }

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Handling Input Devices and Sensors

[306]

 return STATUS_OK;

 ERROR:
 Log::error("Error while activating sensor.");
 disable();
 return STATUS_KO;
 }

 status Sensor::disable() {
 if ((mEventLoop.mEnabled) && (mSensor != NULL)) {
 if (ASensorEventQueue_disableSensor(
 mEventLoop.mSensorEventQueue, mSensor) < 0) {
 goto ERROR;
 }
 mSensor = NULL;
 }
 return STATUS_OK;

 ERROR:
 Log::error("Error while deactivating sensor.");
 return STATUS_KO;
 }
}

Sensors are connected to our event loop. Let's handle sensor events in our
input service.

8. Manage the accelerometer sensor in jni/InputService.hpp. Add a method
stop() to disable sensors when service stops:

#ifndef _PACKT_INPUTSERVICE_HPP_
#define _PACKT_INPUTSERVICE_HPP_

#include "Context.hpp"
#include "InputHandler.hpp"
#include "Sensor.hpp"
#include "Types.hpp"

#include <android_native_app_glue.h>

namespace packt {
 class InputService : public InputHandler {
 public:
 InputService(android_app* pApplication,

Chapter 8

[307]

 Sensor* pAccelerometer,
 const int32_t& pWidth, const int32_t& pHeight);

 status start();
 status update();
 void stop();
 ...

 public:
 bool onTouchEvent(AInputEvent* pEvent);
 bool onKeyboardEvent(AInputEvent* pEvent);
 bool onTrackballEvent(AInputEvent* pEvent);
 bool onAccelerometerEvent(ASensorEvent* pEvent);

 private:
 ...
 bool mMenuKey;

 Sensor* mAccelerometer;
 };
}
#endif

9. Rewrite update() to toggle the accelerometer when the menu button is pressed
(instead of leaving the application). Implement stop() to disable sensors when
application is stopped (and save battery):

...
namespace packt {
 InputService::InputService(android_app* pApplication,
 Sensor* pAccelerometer,
 const int32_t& pWidth, const int32_t& pHeight) :
 mApplication(pApplication),
 mHorizontal(0.0f), mVertical(0.0f),
 mRefPoint(NULL), mWidth(pWidth), mHeight(pHeight),
 mMenuKey(false),
 mAccelerometer(pAccelerometer)
 {}

 ...

 status InputService::update() {
 if (mMenuKey) {
 if (mAccelerometer->toggle() != STATUS_OK) {

Handling Input Devices and Sensors

[308]

 return STATUS_KO;
 }
 }

 mMenuKey = false;
 return STATUS_OK;
 }

 void InputService::stop() {
 mAccelerometer->disable();
 }
...

10. Here is the core code which computes direction from the accelerometer captured
values. In the following code, X and Z axis express the roll and the pitch respectively.
We check for both, the roll and the pitch, whether the device is in a neutral
orientation (that is, CENTER_*) or sloping to the extreme (MIN_* and (MAX_*). Z
values need to be inverted:

Android devices can be naturally portrait-oriented (most smart-phones
if not all) or landscape-oriented (mostly tablets). This has an impact on
applications which require portrait or landscape mode: axes are not
aligned the same way. Use y-axis (that is, vector.y) instead of x axis in
the following piece for landscape oriented devices.

...
 bool InputService::onAccelerometerEvent(ASensorEvent* pEvent) {
 const float GRAVITY = ASENSOR_STANDARD_GRAVITY / 2.0f;
 const float MIN_X = -1.0f; const float MAX_X = 1.0f;
 const float MIN_Y = 0.0f; const float MAX_Y = 2.0f;
 const float CENTER_X = (MAX_X + MIN_X) / 2.0f;
 const float CENTER_Y = (MAX_Y + MIN_Y) / 2.0f;

 float lRawHorizontal = pEvent->vector.x / GRAVITY;
 if (lRawHorizontal > MAX_X) {
 lRawHorizontal = MAX_X;
 } else if (lRawHorizontal < MIN_X) {
 lRawHorizontal = MIN_X;
 }
 mHorizontal = CENTER_X - lRawHorizontal;

 float lRawVertical = pEvent->vector.z / GRAVITY;

Chapter 8

[309]

 if (lRawVertical > MAX_Y) {
 lRawVertical = MAX_Y;
 } else if (lRawVertical < MIN_Y) {

 lRawVertical = MIN_Y;
 }
 mVertical = lRawVertical - CENTER_Y;

 return true;
 }

}

11. In jni/DroidBlaster.cpp, call stop() to ensure sensors get disabled:

#include "DroidBlaster.hpp"
#include "Log.hpp"

namespace dbs {
 ...
 void DroidBlaster::onDeactivate() {
 packt::Log::info("Deactivating DroidBlaster");
 mGraphicsService->stop();
 mInputService->stop();
 mSoundService->stop();
 }
 ...

}

Let's terminate by initializing the input service properly after all the
modifications are done.

12. Finally, initialize the accelerometer in jni/Main.hpp. Because they are closely
related, move the EventLoop initialization line on top:

...
#include "GraphicsService.hpp"
#include "InputService.hpp"
#include "Sensor.hpp"
#include "SoundService.hpp"
#include "TimeService.hpp"
#include "Log.hpp"

void android_main(android_app* pApplication) {
 packt::EventLoop lEventLoop(pApplication);
 packt::Sensor lAccelerometer(lEventLoop,
 ASENSOR_TYPE_ACCELEROMETER);

Handling Input Devices and Sensors

[310]

 packt::TimeService lTimeService;
 packt::GraphicsService lGraphicsService(pApplication,
 &lTimeService);
 packt::InputService lInputService(pApplication,
&lAccelerometer,
 lGraphicsService.getWidth(),lGraphicsService.getHeight());
 packt::SoundService lSoundService(pApplication);

 packt::Context lContext = { &lGraphicsService, &lInputService,
 &lSoundService, &lTimeService };

 dbs::DroidBlaster lDroidBlaster(&lContext);
 lEventLoop.run(&lDroidBlaster, &lInputService);
}

What just happened?
We have created an event queue to listen to sensor events. Events are wrapped in an
ASensorEvent structure, defined in android/sensor.h. This structure provides the:

 � Sensor event origin, that is, which sensor produced this event.

 � Sensor event occurrence time.

 � Sensor output value. This value is stored in a union structure, that is, you
can use either one of the inside structures (here, we are interested in the
acceleration vector).

The same ASensorEvent structure is used for any Android sensor:

typedef struct ASensorEvent {
 int32_t version;
 int32_t sensor;
 int32_t type;
 int32_t reserved0;
 int64_t timestamp;
 union {
 float data[16];
 ASensorVector vector;
 ASensorVector acceleration;
 ASensorVector magnetic;
 float temperature;
 float distance;
 float light;
 float pressure;
 };

Chapter 8

[311]

 int32_t reserved1[4];
} ASensorEvent;

typedef struct ASensorVector {
 union {
 float v[3];
 struct {
 float x;
 float y;
 float z;
 };
 struct {
 float azimuth;
 float pitch;
 float roll;
 };
 };
 int8_t status;
 uint8_t reserved[3];
} ASensorVector;

In our example, the accelerometer is set up with the lowest event rate possible, which may
vary between devices. It is important to note that sensor event rate has a direct impact on
battery saving! So use a rate that is sufficient for your application. ASensor_ API offers
some method to query available sensors and their capabilities: ASensor_getName(),
ASensor_getVendor(), ASensor_getMinDelay(), and so on.

Sensors have a unique identifier, defined in android/sensor.h, which is the same on all
Android devices: ASENSOR_TYPE_ACCELEROMETER, ASENSOR_TYPE_MAGNETIC_FIELD,
ASENSOR_TYPE_GYRISCOPE ASENSOR_TYPE_LIGHT, ASENSOR_TYPE_PROXIMITY.
Additional sensors may exist and be available even if they are not named in android/
sensor.h header. On Gingerbread, this is the case of the gravity sensor (identifier 9),
the linear acceleration sensor (identifier 10) and the rotation vector (identifier 11).

The sense of orientation

The rotation vector sensor, successor of the now deprecated orientation
vector, is essential in Augmented Reality application. It gives you device
orientation in 3D space. Combined with the GPS, it allows locating any object
through the eye of your device. The rotation sensor provides a data vector,
which can be translated to an OpenGL view matrix thanks to the android.
hardware.SensorManager class (see its source code). An example is
provided with this book in DroidBlaster_Part8-3-Orientation.

Handling Input Devices and Sensors

[312]

Have a go hero – Handling screen rotation
There is sadly no way to get device rotation relative to screen natural orientation with native
APIs. Thus, we need to rely on JNI to get current rotation properly. The piece of Java code to
detect screen rotation is the following:

WindowManager mgr = (InputMethodManager)
 myActivity.getSystemService(Context.WINDOW_SERVICE);
int rotation = mgr.getDefaultDisplay().getRotation();

Rotation values are can be ROTATION_0, ROTATION_90, ROTATION_180, or ROTATION_270
(provided in the Java class Surface). Write the equivalent JNI code in four steps:

1. Create a Configuration class which takes an android_app as constructor
parameter and whose only purpose is to provide the rotation value.

2. In Configuration constructor, attach the JavaVM, retrieve the rotation,
and finally detach the VM.

3. Instantiate both the Configuration class in your android_main() method
and pass it to your InputService to get rotation value.

4. Write a utility method toScreenCoord() to convert canonical sensor coordinates
(that is, in the natural orientation referential) to screen coordinates:

void InputService::toScreenCoord(screen_rot pRotation,
 ASensorVector* pCanonical, ASensorVector* pScreen) {
 struct AxisSwap {
 int8_t mNegX; int8_t mNegY;
 int8_t mXSrc; int8_t mYSrc;
 };
 static const AxisSwap lAxisSwaps[] = {
 { 1, -1, 0, 1}, // ROTATION_0
 { -1, -1, 1, 0}, // ROTATION_90
 { -1, 1, 0, 1}, // ROTATION_180
 { 1, 1, 1, 0}}; // ROTATION_270
 const AxisSwap& lSwap = lAxisSwaps[pRotation];

 pScreen->v[0] = lSwap.mNegX * pCanonical->v[lSwap.mXSrc];
 pScreen->v[1] = lSwap.mNegY * pCanonical->v[lSwap.mYSrc];
 pScreen->v[2] = pCanonical->v[2];
}

This piece of code comes from an interesting document about sensors on the NVidia
developer site at http://developer.download.nvidia.com/tegra/docs/
tegra_android_accelerometer_v5f.pdf.

Chapter 8

[313]

5. Finally, fix onAccelerometerEvent() to reverse accelerometer axis according
to the current screen rotation. Just call the utility method and use resulting X
and Z axes.

The final project is provided with this book
in DroidBlaster_Part8-3-Keyboard.

Summary
In this chapter, we learnt different ways to interact with Android natively using input
and sensors. We discovered how to handle touch events. We also read key events from
keyboard and D-Pad and processed trackballs motion events. Finally, we have turned the
accelerometer into a Joypad. Because of Android fragmentation, expect specificities in
input device's behavior and be prepared to adapt your code.

We have already been far in the capabilities of Android NDK in terms of application structure,
graphics, sound, input, and sensors. But reinventing the wheel is not a solution! In the next
chapter, we are going to unleash the real power of Android by porting existing libraries.

9
Porting Existing Libraries to Android

There are two main reasons why one would be interested in the Android NDK:
first, for performance, and second, for portability. In the previous chapters,
we have seen how to access main native Android APIs from native code for
efficiency purposes. In this chapter, we are going to bring the whole C/C++
ecosystem to Android. Well, at least discovering the path, as decades of C/
C++ development would be difficult to fit the limited memory of mobile devices
anyway! Indeed, C and C++ are still some of the most widely used programming
languages nowadays.

In previous NDK releases, portability was limited due to the partial support of
C++, especially Exceptions and Run-Time Type information (or RTTI, a basic C++
reflection mechanism to get data types at runtime such as instanceof in Java).
Any library requiring them could not be ported without modifying their code or
installing a custom NDK (the Crystax NDK, rebuilt by the community from official
sources and available at http://www.crystax.net/). Hopefully, many of
these restrictions have been lifted in NDK R5 (except wide character support).

In this chapter, in order to port existing code to Android, we are going to learn how to:

 � Activate the Standard Template Library and Boost framework

 � Enable exceptions and Run Time Type Information (or RTTI)

 � Compile two open source libraries: Box2D and Irrlicht

 � Write Makefiles to compile modules

By the end of this chapter, you should understand the native building process and know
how to use Makefiles appropriately.

Porting existing libraries to Android

[316]

Developing with the Standard Template Library
The Standard Template Library (or STL) is a normalized library of containers, iterators,
algorithms, and helper classes, to ease most common programming operations: dynamic
arrays, associative arrays, strings, sorting, and so on. This library gained reconnaissance
among developers over years and is widely spread. Developing in C++ without the STL
is like coding with one hand behind to the back!

Until NDK R5, no STL was included. The whole C++ ecosystem was only one step ahead,
but not yet reachable. With some efforts, compiling an STL implementation (for example,
STLport), for which exceptions and RTTI were optional, was possible, but only if the code
built upon did not require these features (unless building with the Crystax NDK). Anyway,
this nightmare is over, as STL and exceptions are now officially included. Two
implementations can be chosen:

 � STLport, a multiplatform STL, which is probably one of the most portable
implementations, well accepted among open source projects

 � GNU STL (more commonly libstdc++), the official GCC STL

The STLport version included in the NDK R5 does not support exceptions (RTTI being
supported from NDK R7) but can be used either as a shared or a static library. On the
other hand, GNU STL supports exceptions but is currently available as a static library only.

In this first part, let's embed STLport in DroidBlaster to ease collection management.

Project DroidBlaster_Part8-3 can be used as a starting point
for this part. The resulting project is provided with this book under the
name DroidBlaster_Part9-1.

Time for action – embedding GNU STL in DroidBlaster
1. Create a jni/Application.mk file beside jni/Android.mk and write the

following content. That's it! Your application is now STL-enabled, thanks to this
single line:

APP_STL = stlport_static

Of course, enabling the STL is useless, if we do not actively use it in our code.
Let's take advantage of this opportunity to switch from asset files to external
files (on a sdcard or internal memory).

Chapter 9

[317]

2. Open the existing file, jni/Resource.hpp, and:

 � Include the fstream stl header to read files.

 � Replace the Asset management members with an ifstream object
(that is, an input file stream). We are also going to need a buffer for the
bufferize() method.

 � Remove the descript() method and the ResourceDescriptor class.
Descriptors work with the Asset API only.

#ifndef _PACKT_RESOURCE_HPP_
#define _PACKT_RESOURCE_HPP_

#include "Types.hpp"

#include <fstream>

namespace packt {
 ...

 class Resource {
 ...

 private:
 const char* mPath;
 std::ifstream mInputStream;
 char* mBuffer;
 };
}

#endif

3. Open the corresponding implementation file jni/Resource.cpp. Replace the
previous implementation, based on the asset management API with STL streams.
Files will be opened in binary mode (even the tile map XML file that is going to be
directly buffered in memory). To read the file length, we can use the stat() POSIX
primitive. Method bufferize() is emulated with a temporary buffer:

#include "Resource.hpp"
#include "Log.hpp"

#include <sys/stat.h>

namespace packt {
 Resource::Resource(android_app* pApplication, const char*
pPath):

Porting existing libraries to Android

[318]

 mPath(pPath), mInputStream(), mBuffer(NULL)
 {}

 status Resource::open() {
 mInputStream.open(mPath, std::ios::in | std::ios::binary);
 return mInputStream ? STATUS_OK : STATUS_KO;
 }

 void Resource::close() {
 mInputStream.close();
 delete[] mBuffer; mBuffer = NULL;
 }

 status Resource::read(void* pBuffer, size_t pCount) {
 mInputStream.read((char*)pBuffer, pCount);
 return (!mInputStream.fail()) ? STATUS_OK : STATUS_KO;
 }

 const char* Resource::getPath() {
 return mPath;
 }

 off_t Resource::getLength() {
 struct stat filestatus;
 if (stat(mPath, &filestatus) >= 0) {
 return filestatus.st_size;
 } else {
 return -1;
 }
 }

 const void* Resource::bufferize() {
 off_t lSize = getLength();
 if (lSize <= 0) return NULL;

 mBuffer = new char[lSize];
 mInputStream.read(mBuffer, lSize);
 if (!mInputStream.fail()) {
 return mBuffer;
 } else {
 return NULL;
 }
 }
}

These changes to the reading system should all be transparent. Except one.

Chapter 9

[319]

4. Background music was previously played through an asset descriptor. Now, we
provide a real file. So, in jni/SoundService.cpp, change the data source by
replacing the SLDataLocator_AndroidFD structure with SLDataLocation_URI.

The file location has to be prefixed with file://, when it comes from the sdcard
(it could also be, for example, http://, if the file was coming from a server). To
help building the final URI, concatenate the prefix and the path using STL strings.
The file is still an MP3, so the data format does not change:

#include "SoundService.hpp"
#include "Resource.hpp"
#include "Log.hpp"

#include <string>

namespace packt {
 ...

 status SoundService::playBGM(const char* pPath) {
 SLresult lRes;
 Log::info("Opening BGM %s", pPath);

 SLDataLocator_URI lDataLocatorIn;
 std::string lPath = std::string("file://") + pPath;
 lDataLocatorIn.locatorType = SL_DATALOCATOR_URI;
 lDataLocatorIn.URI = (SLchar*) lPath.c_str();

 SLDataFormat_MIME lDataFormat;
 lDataFormat.formatType = SL_DATAFORMAT_MIME;
 ...

 return STATUS_OK;

 ERROR:
 return STATUS_KO;
 }
 ...
}

Porting existing libraries to Android

[320]

5. Copy resources in your asset directory to your sdcard (or internal memory,
depending on your device) in the directory droidblaster (for example,
/sdcard/droidblaster).

Almost all Android devices can store files in an additional storage location
mounted in directory /sdcard. "Almost" is the important word here… Since
the first Android G1, the meaning of "sdcard" has changed. Some recent
devices have an external storage that is in fact internal (e.g. flash memory
on some tablets), and some others have a second storage location at their
disposal (although in most cases, the second storage is mounted inside /
sdcard). Moreover, path /sdcard is not engraved into the marble…

To detect safely the additional storage location, the only solution
is to rely on JNI, by calling android.os.Environment.
getExternalStorageDirectory(). You can also check that storage
is available with getExternalStorageState(). Note that the word
"External" in API method names is here for historical reasons only.

Replace paths to resources in each file that needs one (change the path
if necessary):

 � /sdcard/droidblaster/tilemap.png in jni/Background.cpp.

 � /sdcard/droidblaster/tilemap.tmx in jni/Background.cpp.

 � /sdcard/droidblaster/start.pcm in jni/DroidBlaster.cpp.

 � /sdcard/droidblaster/bgm.mp3 in jni/DroidBlaster.cpp.

 � /sdcard/droidblaster/ship.png in jni/Ship.cpp.

6. Run the application. Noticed it? Everything runs like before!

Now, let's take advantage of the STL to give some company to our lonely ship.

7. First, let's create a little randomization helper macro in existing file jni/Type.hpp:

#ifndef _PACKT_TYPES_HPP_
#define _PACKT_TYPES_HPP_

#include <stdint.h>
#include <cstdlib>

namespace packt {
 ...
}

#define RAND(pMax) (float(pMax) * float(rand()) / float(RAND_MAX))

#endif

Chapter 9

[321]

8. The random value generator has to be initialized first, with a seed. A possible
solution is to set the seed value to the current time in jni/TimeService.cpp:

#include "TimeService.hpp"
#include "Log.hpp"

#include <cstdlib>

namespace packt {
 TimeService::TimeService() :
 mElapsed(0.0f),
 mLastTime(0.0f) {
 srand(time(NULL));
 }
 ...
}

9. Create a new header file jni/Asteroid.hpp, similar to the one used for the
Ship game object, to represent a dangerous and frightening asteroid:

#ifndef _DBS_ASTEROID_HPP_
#define _DBS_ASTEROID_HPP_

#include "Context.hpp"
#include "GraphicsService.hpp"
#include "GraphicsSprite.hpp"
#include "Types.hpp"

namespace dbs {
 class Asteroid {
 public:
 Asteroid(packt::Context* pContext);

 void spawn();
 void update();

 private:
 packt::GraphicsService* mGraphicsService;
 packt::TimeService* mTimeService;

 packt::GraphicsSprite* mSprite;
 packt::Location mLocation;
 float mSpeed;
 };
}

#endif

Porting existing libraries to Android

[322]

10. Implement the Asteroid class in jni/Asteroid.cpp. An asteroid is represented
with a sprite loaded at construction time.

The Asteroid game object itself is initialized in spawn(), above the top of the
screen (that is, they are initially hidden). Asteroids are distributed randomly over
screen width and have a random animation and movement speed.

During frame processing in update(), asteroids fall from top to bottom, according
to their speed. When they reach the bottom, they are recreated.

#include "Asteroid.hpp"
#include "Log.hpp"

namespace dbs {
 Asteroid::Asteroid(packt::Context* pContext) :
 mTimeService(pContext->mTimeService),
 mGraphicsService(pContext->mGraphicsService),
 mLocation(), mSpeed(0.0f) {
 mSprite = pContext->mGraphicsService->registerSprite(
 mGraphicsService->registerTexture(
 "/sdcard/droidblaster/asteroid.png"),
 64, 64, &mLocation);
 }

 void Asteroid::spawn() {
 const float MIN_SPEED = 4.0f;
 const float MIN_ANIM_SPEED = 8.0f, ANIM_SPEED_RANGE = 16.0f;

 mSpeed = -RAND(mGraphicsService->getHeight()) - MIN_SPEED;
 float lPosX = RAND(mGraphicsService->getWidth());
 float lPosY = RAND(mGraphicsService->getHeight())
 + mGraphicsService->getHeight();
 mLocation.setPosition(lPosX, lPosY);

 float lAnimSpeed = MIN_ANIM_SPEED + RAND(ANIM_SPEED_RANGE);
 mSprite->setAnimation(8, -1, lAnimSpeed, true);
 }

 void Asteroid::update() {
 mLocation.translate(0.0f, mTimeService->elapsed() * mSpeed);
 if (mLocation.mPosY <= 0) {
 spawn();
 }
 }
}

Chapter 9

[323]

11. Open the jni/DroidBlaster.hpp header and include the vector header, the
most common STL container that encapsulates C arrays. Then, declare a vector of
asteroid pointers (prefixed with the std namespace):

#ifndef _PACKT_DROIDBLASTER_HPP_
#define _PACKT_DROIDBLASTER_HPP_

#include "ActivityHandler.hpp"
#include "Asteroid.hpp"
#include "Background.hpp"
#include "Context.hpp"
...
#include "Types.hpp"

#include <vector>

namespace dbs {
 class DroidBlaster : public packt::ActivityHandler
 {
 ...
 private:
 ...

 Background mBackground;
 Ship mShip;
 std::vector<Asteroid*> mAsteroids;
 packt::Sound* mStartSound;
 };
}

#endif

12. Finally, open jni/DroidBlaster.cpp. Include this new container in the
constructor initialization list and insert Asteroid instances with method
push_back().

Then, in the destructor, we can iterate through the vector using an iterator to
release every vector entry. Syntax is a bit more tedious, but gives more flexibility:

#include "DroidBlaster.hpp"
#include "Log.hpp"

namespace dbs {
 DroidBlaster::DroidBlaster(packt::Context* pContext) :

Porting existing libraries to Android

[324]

 mGraphicsService(pContext->mGraphicsService),
 mInputService(pContext->mInputService),
 mSoundService(pContext->mSoundService),
 mTimeService(pContext->mTimeService),
 mBackground(pContext), mShip(pContext), mAsteroids(),
 mStartSound(mSoundService->registerSound(
 "/sdcard/droidblaster/start.pcm")) {
 for (int i = 0; i < 16; ++i) {
 mAsteroids.push_back(new Asteroid(pContext));
 }
 }

 DroidBlaster::~DroidBlaster() {
 std::vector<Asteroid*>::iterator iAsteroid =
 mAsteroids.begin();
 for (; iAsteroid < mAsteroids.end() ; ++iAsteroid) {
 delete *iAsteroid;
 }
 mAsteroids.clear();
 }
...

13. Still in jni/DroidBlaster.cpp, apply the same iteration technique to initialize
asteroid game objects (in onActivate()) and iterate each frame (in onStep()):

...
 packt::status DroidBlaster::onActivate() {
 ...

 mBackground.spawn();
 mShip.spawn();
 std::vector<Asteroid*>::iterator iAsteroid =
 mAsteroids.begin();
 for (; iAsteroid < mAsteroids.end() ; ++iAsteroid) {
 (*iAsteroid)->spawn();
 }

 mTimeService->reset();
 return packt::STATUS_OK;
 }

 ...

Chapter 9

[325]

 packt::status DroidBlaster::onStep() {
 mTimeService->update();

 mBackground.update();
 mShip.update();
 std::vector<Asteroid*>::iterator iAsteroid =
 mAsteroids.begin();
 for (; iAsteroid < mAsteroids.end(); ++iAsteroid) {
 (*iAsteroid)->update();
 }

 // Updates services.
 ...
 return packt::STATUS_OK;
 }
 ...
}

14. Copy the asteroid.png sprite sheet to your droidblaster storage directory.

File asteroid.png is provided with this book in Chapter9/Resource.

What just happened?
We have seen how to access a binary file located on the SD-Card through STL streams. All
asset files became simple files on the additional storage. This change can be made almost
transparent at the exception of OpenSL ES MIME player, which needs a different locator.
We have also seen how to manipulate STL strings and avoid using the complex C string
manipulation primitives.

Finally, we have implemented a set of Asteroid game objects managed inside an STL
container vector, instead of a raw C array. STL containers automatically handle memory
management (array resizing operations and so on). File access happens like on any Unix
file systems, SD-Card being available from a mount point (located generally, but not always,
in /sdcard).

 SD-card storage should always be considered for applications with heavy resource
files. Indeed, installing heavy APK causes trouble on memory-limited devices.

Porting existing libraries to Android

[326]

Android and endianness

Beware of platform and file endianness with external files. Although all
official Android devices are little-endian, there is no guarantee this will
remain true (for example, there exist some unofficial ports for Android on
other CPU architectures). ARM supports both little-and big-endian encoding,
whereas x86 (available since NDK R6) are little-endian only. Endian encoding
is convertible, thanks to POSIX primitives declared in endian.h.

We have linked STLport as a static library. But, we could have linked it dynamically, or linked
to the GNU STL. Which choice to make depends on your needs:

 � No exceptions or RTTI needed, but STL required by several libraries: In that case, if a
consequent subset of STL features is necessary, stlport_shared should be used.

 � No exceptions or RTTI needed and STL used by a single library or only a small subset
required: Consider using stlport_static instead, as memory usage may be
lower.

 � Exception handling or RTTI are needed: Link against gnustl_static.

Since NDK R7, RTTI are supported by STLport, but not exceptions.

STL is definitely a huge improvement that avoids repetitive and error-prone code. Many
open source libraries require it and can now be ported without much trouble. More
documentation about it can be found at http://www.cplusplus.com/reference/stl
and on SGI's website (publisher of the first STL), at http://www.sgi.com/tech/stl.

Static versus shared
Remember that shared libraries need to be loaded manually at runtime. If you forget to
load one of them, an error is raised, as soon as dependent libraries (or the application)
are loaded. As it is not possible to predict in advance which functions are going to be
called, they are loaded entirely in memory, even if most of their contents remain unused.

On the other hand, static libraries are de facto loaded with dependent libraries. Indeed, static
libraries do not really exist as such. They are copied into dependent libraries during linking.
The drawback is that binary code may get duplicated in each library, and memory is thus
wasted. However, since the linker knows precisely which part of the library gets called from the
embedding code, it can copy only what is needed, resulting in a limited size after compilation.

Chapter 9

[327]

Also remember that a Java application can load shared libraries only (which can be
themselves linked against either shared or static libraries). With a native activity, the main
shared library is specified through the android.app.lib_name property, in the application
manifest. Libraries referenced from another library must be loaded manually before. The
NDK does not do this itself.

Shared libraries can be loaded easily, using System.loadLibrary() in a JNI application.
But, a NativeActivity is transparent. So, if you decide to use shared libraries, then
the only solution is to write your own Java activity, inheriting from NativeActivity
and invoking the appropriate loadLibrary() directives. For instance, below is what
DroidBlaster activity would look like, if we were using stlport_shared instead:

package com.packtpub.droidblaster

import android.app.NativeActivity

public class MyNativeActivity extends NativeActivity {
 static {
 System.loadLibrary("stlport_shared");
 System.loadLibrary("droidblaster");
 }
}

STL performances
When developing for performance, a standard STL container is not always the best
choice, especially in terms of memory management and allocation. Indeed, STL is an
all-purpose library, written for common cases. Alternative libraries should be considered
for performance-critical code. A few examples are:

 � EASTL: An STL replacement library, developed by Electronic Arts, and developed
with gaming in mind. Only 50 percent of the projects have been released (as part
of the EA open source program), which are nevertheless highly interesting. An
extract is available in the repository https://github.com/paulhodge/EASTL.
A must-read paper detailing EASTL technical details can be found on the Open
Standards website at http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2007/n2271.html.

 � RDESTL: It is an open source subset of the STL, based on the EASTL technical paper,
which was published several years before EASTL code release. The code repository
can be found at http://code.google.com/p/rdestl/.

 � Google SparseHash: For a high performance associative array library (note that
RDESTL is also quite good at that).

This is far from exhaustive. Just define your exact needs to make the most appropriate choice.

Porting existing libraries to Android

[328]

Compiling Boost on Android
If STL is the most common framework among C++ programs, Boost probably comes right
after. A real Swiss army knife, this toolkit contains a profusion of utilities to handle most
common needs, and even more! The most popular features of Boost are smart pointers, an
encapsulation of raw pointers in a reference-counting class to handle memory allocation, and
deallocation automatically. They avoid most memory leaks or pointer misuse for almost free.

Boost, like STL, is mainly a template library, which means that no compilation is needed for
most of its modules. For instance, including the smart pointer header file is enough to use
them. However, a few of its modules need to be compiled as a library first (for example, the
threading module).

We are now going to see how to build Boost on the Android NDK and replace raw,
unmanaged pointers with smarter ones.

Project DroidBlaster_Part9-1 can be used as a starting
point for this part. The resulting project is provided with this book,
under the name DroidBlaster_Part9-2.

Time for action – embedding Boost in DroidBlaster
1. Download Boost from http://www.boost.org/ (version 1.47.0, in this book).

The Boost 1.47.0 archive is provided with this book in
directory Chapter09/Library.

2. Uncompress the archive into ${ANDROID_NDK}/sources. Name the
directory boost.

3. Open a command line window and go to the boost directory. Launch bootstrap.
bat on Windows or the ./bootstrap.sh script on Linux and Mac OS X, to build
b2. This program, previously named BJam, is a custom building tool similar to Make.

4. Open the file boost/tools/build/v2/user-config.jam. This file is, like
its name suggests, a configuration file that can be set up to customize Boost
compilation.

Update user-config.jam. Initial content contains only comments
and can be erased:
import os ;

Chapter 9

[329]

if [os.name] = CYGWIN || [os.name] = NT {
 androidPlatform = windows ;
}
else if [os.name] = LINUX {
 androidPlatform = linux-x86 ;
}
else if [os.name] = MACOSX {
 androidPlatform = darwin-x86 ;
}
...

5. Compilation is performed statically. BZip is deactivated, because it is unavailable,
by default, on Android (we could however compile it separately):

...
modules.poke : NO_BZIP2 : 1 ;
...

6. Compiler is reconfigured to use the NDK GCC toolchain (g++, ar, and ranlib) in
static mode (the ar archiver being in charge of creating the static library). Directive
sysroot indicates which Android API release to compile and link against. The
specified directory is located in the NDK and contains include files and libraries
specific to this release:

...
ANDROID_NDK = ../.. ;

using gcc : android4.4.3 :
 $(ANDROID_NDK)/toolchains/arm-linux-androideabi-4.4.3/
prebuilt/$(androidPlatform)/bin/arm-linux-androideabi-g++ :
 <archiver>$(ANDROID_NDK)/toolchains/arm-linux-
androideabi-4.4.3/prebuilt/$(androidPlatform)/bin/arm-linux-
androideabi-ar
 <ranlib>$(ANDROID_NDK)/toolchains/arm-linux-androideabi-4.4.3/
prebuilt/$(androidPlatform)/bin/arm-linux-androideabi-ranlib

 <compileflags>--sysroot=$(ANDROID_NDK)/platforms/android-9/
arch-arm
 <compileflags>-I$(ANDROID_NDK)/sources/cxx-stl/gnu-libstdc++/
include
 <compileflags>-I$(ANDROID_NDK)/sources/cxx-stl/gnu-libstdc++/
libs/armeabi/include
...

Porting existing libraries to Android

[330]

7. A few options have to be defined to tweak Boost compilation:

 � NDEBUG to deactivate debug mode

 � BOOST_NO_INTRINSIC_WCHAR_T to indicate the lack of support for wide
chars

 � BOOST_FILESYSTEM_VERSION is set to 2, because the latest version of
Boost FileSystem module (version 3) brings incompatible changes related
to wide chars

 � no-strict-aliasing to disable optimizations related to type aliasing

 � -02 to specify optimization level

...
 <compileflags>-DNDEBUG
 <compileflags>-D__GLIBC__
 <compileflags>-DBOOST_NO_INTRINSIC_WCHAR_T
 <compileflags>-DBOOST_FILESYSTEM_VERSION=2
 <compileflags>-lstdc++
 <compileflags>-mthumb
 <compileflags>-fno-strict-aliasing
 <compileflags>-O2
 ;

8. With the previously opened terminal, still in the boost directory, launch
compilation using the command line below. We need to exclude two modules
not working with the NDK:

 � The Serialization module, which requires wide characters (not supported
by the official NDK yet)

 � Python, which requires additional libraries not available on the NDK
by default

b2 --without-python --without-serialization toolset=gcc-
android4.4.3 link=static runtime-link=static target-os=linux
--stagedir=android

9. Compilation should take quite some time, but eventually it will fail! Launch
compilation a second time to find the error message hidden inside thousands of
lines the first time. You should get a ::statvfs has not been declared... This problem
is related to boost/libs/filesystem/v2/src/v2_operations.cpp. This
file, normally at line 62, includes the sys/statvfs.h system header. However,
the Android NDK provides sys/vfs.h instead. We have to include it in v2_
operations.cpp:

Chapter 9

[331]

 Android is (more or less) a Linux with its own specificities. If a library does
not take them into account (yet!), expect to encounter these kinds of
annoyances frequently.

...

else // BOOST_POSIX_API
include <sys/types.h>
if !defined(__APPLE__) && !defined(__OpenBSD__) \
 && !defined(__ANDROID__)
include <sys/statvfs.h>
define BOOST_STATVFS statvfs
define BOOST_STATVFS_F_FRSIZE vfs.f_frsize
else
#ifdef __OpenBSD__
include <sys/param.h>
#elif defined(__ANDROID__)
include <sys/vfs.h>
#endif
include <sys/mount.h>
define BOOST_STATVFS statfs
...

10. Compile again. No message …failed updating X targets… should appear this time.
Libraries are compiled in ${ANDROID_NDK}/boost/android/lib/.

11. Several other incompatibilities may appear when using the various modules of
Boost. For example, if you prefer to generate a random number with Boost and
decide to include boost/random.hpp, you will encounter a compilation error
related to endianness. To fix it, add a definition for Android in boost/boost/
detail/endian.hpp, at line 34:

...
#if defined (__GLIBC__) || defined(__ANDROID__)
include <endian.h>
if (__BYTE_ORDER == __LITTLE_ENDIAN)
define BOOST_LITTLE_ENDIAN
...

The patches applied in previous steps are provided with this
book in directory Chapter09/Library/boost_1_47_0_
android, along with compiled binaries.

Porting existing libraries to Android

[332]

12. Still in the boost directory, create a new Android.mk file to declare the newly
compiled libraries as Android modules. It needs to contain one module declaration
per module. For example, define one library boost_thread, referencing the
static library android/lib/libboost_thread.a. Variable LOCAL_EXPORT_C_
INCLUDES is important to automatically append boost includes when referenced
from a program:

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE:= boost_thread
LOCAL_SRC_FILES:= android/lib/libboost_thread.a
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)

include $(PREBUILT_STATIC_LIBRARY)

More modules can be declared in the same file with the same set of lines (for
example, boost_iostreams, etc.).

Android.mk is provided in Chapter09/Library/
boost_1_47_0_android.

Now, let's use Boost in our own project.

13. Go back to the DroidBlaster project. To include Boost in an application, we need to
link with an STL implementation supporting exceptions. Thus, we need to replace
STLport with GNU STL (available as a static library only) and activate exceptions:

APP_STL := gnustl_static
APP_CPPFLAGS := -fexceptions

14. Finally, open your Android.mk file and include a Boost module to check that
everything works. For example, try the Boost thread module:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LS_CPP=$(subst $(1)/,,$(wildcard $(1)/*.cpp))
LOCAL_MODULE := droidblaster
LOCAL_SRC_FILES := $(call LS_CPP,$(LOCAL_PATH))
LOCAL_LDLIBS := -landroid -llog -lEGL -lGLESv1_CM -lOpenSLES

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 9

[333]

LOCAL_STATIC_LIBRARIES := android_native_app_glue png boost_thread

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)
$(call import-module,libpng)
$(call import-module,boost)

DroidBlaster is now Boost-enabled! First, let's see if exceptions work.

15. Edit jni/GraphicsTilemap.cpp. Remove the RapidXML error handling block
and replace the call to setjmp() with a C++ try/catch. Catch a parse_error
exception:

...
namespace packt {
 ...
 int32_t* GraphicsTileMap::loadFile() {
 ...
 mResource.close();
 }
 try {
 lXmlDocument.parse<parse_default>(lFileBuffer);
 } catch (rapidxml::parse_error& parseException) {
 packt::Log::error("Error while parsing TMX file.");
 packt::Log::error(parseException.what());
 goto ERROR;
 }

 ...
 }
}

Now, we could use smart pointers to manage memory allocation and deallocation
automatically.

16. Boost and STL tends to cause a proliferation of unreadable definitions. Let's simplify
their use by defining custom smart pointer and vector types with the typedef
keyword in jni/Asteroid.hpp. The vector type contains smart pointers instead
of raw pointers:

#ifndef _DBS_ASTEROID_HPP_
#define _DBS_ASTEROID_HPP_

#include "Context.hpp"
#include "GraphicsService.hpp"

Porting existing libraries to Android

[334]

#include "GraphicsSprite.hpp"
#include "Types.hpp"

#include <boost/shared_ptr.hpp>
#include <vector>

namespace dbs {
 class Asteroid {
 ...
 public:
 typedef boost::ptr <Asteroid> ptr;
 typedef std::vector<shared> vec;
 typedef vec::iterator vec_it;
 }
}

#endif

17. Open jni/DroidBlaster.hpp and remove the vector header inclusion (now
included in jni/Asteroid.hpp). Use the newly defined type Android::vec:

...
namespace dbs {
 class DroidBlaster : public packt::ActivityHandler {
 ...
 private:
 ...
 Background mBackground;
 Ship mShip;
 Asteroid::vec mAsteroids;
 packt::Sound* mStartSound;
 };
}

#endif

18. Every iterator declaration involving asteroids now needs to be switched with the
new 'typedefed" types. Code is not much different except one thing… Look carefully:
the destructor is now empty! All pointers are deallocated automatically by Boost:

#include "DroidBlaster.hpp"
#include "Log.hpp"

namespace dbs {
 DroidBlaster::DroidBlaster(packt::Context* pContext) :

Chapter 9

[335]

 ... {
 for (int i = 0; i < 16; ++i) {
 Asteroid::ptr lAsteroid(new Asteroid(pContext));
 mAsteroids.push_back(lAsteroid);
 }
 }

 DroidBlaster::~DroidBlaster()
 {}

 packt::status DroidBlaster::onActivate() {
 ...
 mBackground.spawn();
 mShip.spawn();

 Asteroid::vec_it iAsteroid = mAsteroids.begin();
 for (; iAsteroid < mAsteroids.end() ; ++iAsteroid) {
 (*iAsteroid)->spawn();
 }

 mTimeService->reset();
 return packt::STATUS_OK;
 }

 ...

 packt::status DroidBlaster::onStep() {
 mTimeService->update();

 mShip.update();
 Asteroid::vec_it iAsteroid = mAsteroids.begin();
 for (; iAsteroid < mAsteroids.end(); ++iAsteroid) {
 (*iAsteroid)->update();
 }

 if (mGraphicsService->update() != packt::STATUS_OK) {
 ...
 return packt::STATUS_OK;
 }
}

Porting existing libraries to Android

[336]

What just happened?
We have fixed a minor issue with Boost code and written the proper configuration to compile
it. Finally, we have discovered one of Boost's most famous (and helpful!) features: smart
pointers. But Boost provides much more. See its documentation, located at http://www.
boost.org/doc/libs, to discover its full richness. You can find information about Android
issues on the bug tracker.

We have compiled Boost manually, using its dedicated building tool b2, customized to use
the NDK tool chain. Then, prebuilt static libraries have been published using an Android.
mk and imported into a final application with NDK import-module directive. Every time
Boost is updated or a modification is made, code has to be manually compiled again with b2.
Only the final prebuilt library is imported into client application with PREBUILT_STATIC_
LIBRARY directive (and the shared library equivalent PREBUILT_SHARED_LIBRARY). On the
other hand, BUILD_STATIC_LIBRARY and BUILD_SHARED_LIBRARY would recompile the
whole module each time a new client application imports it or changes its own compilation
settings (for example, when switching APP_OPTIM from debug to release in Application.
mk).

To make Boost work, we have switched from STLport to GNU STL, which is currently the
only one to support exceptions. This replacement occurs in the Application.mk file,
by replacing stlport_static with gnustl_static. Exceptions and RTTI are activated
very easily by appending -fexceptions and -frtti, respectively, to the APP_CPPFLAGS
directive in the same file, or the LOCAL_CPPFLAGS of the concerned library. By default,
Android compiles with -fno-exceptions and -fno-rtti flags.

A problem? Clean!

It happens often, especially when switching from one STL to another, that
libraries do not get recompiled well. Sadly, this results in rather weird and
obscure undefined link errors. If you have a doubt, just clean your project from
the Eclipse menu | Project/Clean... or the command ndk-build clean, in
your application root directory.

Exceptions have the reputation of making the compiled code bigger and less efficient.
They prevent the compiler from performing some clever optimizations. However, whether
exceptions are worse than error checking or even no check at all is a highly debatable question.
In fact, Google's engineers dropped them in first releases because GCC 3.x generated poor
exception handling code for ARM processors. However, the build chain now uses GCC 4.x,
which does not suffer from this flaw. Compared to manual error checking and handling of
exceptional cases, penalty should not be significant most of the time, assuming exceptions
are used for exceptional cases only. Thus, the choice of exceptions or not is up to you
(and your embedded libraries)!

Chapter 9

[337]

Exception handling in C++ is not easy and imposes a strict discipline!
They must be used strictly for exceptional cases and require carefully
designed code. Have a look at the Resource Acquisition Is
Initialization (abbreviated RAII) idiom to properly handle them.

Have a go hero – threading with Boost
DroidBlaster is now a bit safer, thanks to smart pointers. However, smart pointers are
based on template files. There is no need to link against Boost modules to use them. So,
to check if this works, modify the DroidBlaster class to launch a Boost thread updates
asteroids in the background. The thread must be run in a separate method (for example,
updateBackground()). You can launch the thread itself from onStep() and join it (that is,
wait for the thread to terminate its task) before the GraphicsService draws its content:

...
#include <boost/thread.hpp>

...

 void DroidBlaster::updateThread() {
 Asteroid::vec_it iAsteroid = mAsteroids.begin();
 for (; iAsteroid < mAsteroids.end(); ++iAsteroid) {
 (*iAsteroid)->update();
 }
 }

 packt::status DroidBlaster::onStep() {
 mTimeService->update();

 boost::thread lThread(&DroidBlaster::updateThread, this);
 mBackground.update();
 mShip.update();

 lThread.join();

 if (mGraphicsService->update() != packt::STATUS_OK) {
 ...
 }
 ...

The final result is available in project DroidBlaster_Part9-2-Thread,
provided with this book.

Porting existing libraries to Android

[338]

If you have experience with threads, this piece of code will probably make you jump out of
your chair. Indeed, this is the best example of what should not be done with threads because:

 � Functional division (for example, one service in its own thread) is generally not the
best way to achieve threading efficiently.

 � Only a few mobile processors are multi-cores (but this fact is changing really fast).
Thus, creating a thread on a single processor will not improve performance, except
for blocking operations such as I/O.

 � Multi-cores can have more than just 2 cores! Depending on the problem to solve,
it can be a good idea to have as many threads as cores.

 � Creating threads on demand is not efficient. Thread pools are a better approach.

Threading is a really complex matter and should be taken it into account
early in your design. The Intel developer website (http://software.
intel.com/) provides lots of interesting resources about threading and
a library named Threading Building Block, which is a good reference in
design terms (but not ported on Android, yet, despite some progress).

Porting third-party libraries to Android
With the Standard Template Library and Boost in our basket, we are ready to port almost any
library to Android. Actually, many third-party libraries have been already ported and many
more are coming. But when nothing is available, we have to rely on our own skills to port
them. In this final part, we are going to compile two of them:

 � Box2D: It is a highly popular open source physics simulation engine, embedded
in many 2D games such as Angry Birds (quite a good reference!). It is available in
several languages, Java included. But, its primary language is C++.

 � Irrlicht: It is a real-time open source 3D engine. It is cross-platform and offers
DirectX, OpenGL, and GLES bindings.

We are going to use them in the next chapter to implement the DroidBlaster physics layer
and brings graphics to the third dimension.

Project DroidBlaster_Part9-2 can be used as a starting point for
this part. The resulting project is provided with this book, under
the name DroidBlaster_Part9-3.

Chapter 9

[339]

Time for action – compiling Box2D and Irrlicht with the NDK
First, let's try to port Box2D on the Android NDK.

The Box2D 2.2.1 archive is provided with this book, in
directory Chapter09/Library.

1. Go to http://www.box2d.org/ and download the Box2D source archive (2.2.1
in this book). Uncompress it into ${ANDROID_NDK}/sources/ and name the
directory box2d.

2. Create and open an Android.mk file in the root of the box2d directory.
Save the current directory inside the LOCAL_PATH variable. This step is always
necessary, because an NDK build system may switch to another directory at
any time during compilation.

LOCAL_PATH:= $(call my-dir)
...

3. Then, list all Box2D source files to compile. We are interested in source file name
only, which can be found in ${ANDROID_NDK}/sources/box2d/Box2D/Box2D.
Use the LS_CPP helper function to avoid copying each filename.

...
LS_CPP=$(subst $(1)/,,$(wildcard $(1)/$(2)/*.cpp))

BOX2D_CPP:= $(call LS_CPP,$(LOCAL_PATH),Box2D/Collision) \
 $(call LS_CPP,$(LOCAL_PATH),Box2D/Collision/Shapes) \
 $(call LS_CPP,$(LOCAL_PATH),Box2D/Common) \
 $(call LS_CPP,$(LOCAL_PATH),Box2D/Dynamics) \
 $(call LS_CPP,$(LOCAL_PATH),Box2D/Dynamics/Contacts) \
 $(call LS_CPP,$(LOCAL_PATH),Box2D/Dynamics/Joints) \
 $(call LS_CPP,$(LOCAL_PATH),Box2D/Rope)
...

4. Then, write the Box2D module definition for a static library. First, call the $
(CLEAR_VARS) script. This script has to be included before any module definition,
to remove any potential change made by other modules and avoid any unwanted
side effects. Then, define the following settings:

 � Module name in LOCAL_MODULE: Module name is suffixed with
 _static to avoid a name clash with the shared version we are going
to define right after.

 � Module source files in LOCAL_SRC_FILES (using BOX2D_CPP defined
previously).

Porting existing libraries to Android

[340]

 � Include file directory provided to clients in LOCAL_EXPORT_C_INCLUDES.

 � Include file used internally for module compilation in LOCAL_C_INCLUDES.
Here, client include files and compilation include files are the same (and are
often the same in other libraries), so reuse LOCAL_EXPORT_C_INCLUDES,
defined previously:

...
include $(CLEAR_VARS)

LOCAL_MODULE:= box2d_static
LOCAL_SRC_FILES:= $(BOX2D_CPP)
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)
LOCAL_C_INCLUDES := $(LOCAL_EXPORT_C_INCLUDES)
...

5. Finally, request Box2D module compilation as a static library, as follows:

...
include $(BUILD_STATIC_LIBRARY)
...

6. The same process can be repeated to build a shared library by selecting
a different module name and invoking $(BUILD_SHARED_LIBRARY), instead:

...
include $(CLEAR_VARS)

LOCAL_MODULE:= box2d_shared
LOCAL_SRC_FILES:= $(BOX2D_CPP)
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)
LOCAL_C_INCLUDES := $(LOCAL_EXPORT_C_INCLUDES)

include $(BUILD_SHARED_LIBRARY)

Android.mk is provided in Chapter09/Library/
Box2D_v2.2.1_android.

7. Open DroidBlaster Android.mk and link against box2d_static, by appending it to
LOCAL_STATIC_LIBRARIES. Provide its directory with directive import-module.
Remember that modules are found, thanks to the NDK_MODULE_PATH variable,
which points by default to ${ANDROID_NDK}/sources:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

Chapter 9

[341]

LS_CPP=$(subst $(1)/,,$(wildcard $(1)/*.cpp))
LOCAL_MODULE := droidblaster
LOCAL_SRC_FILES := $(call LS_CPP,$(LOCAL_PATH))
LOCAL_LDLIBS := -landroid -llog -lEGL -lGLESv1_CM -lOpenSLES

LOCAL_STATIC_LIBRARIES:=android_native_app_glue png boost_thread \
 box2d_static

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)
$(call import-module,libpng)
$(call import-module,boost)
$(call import-module,box2d)

8. Optionally, activate include file resolution for Box2D (as seen in Chapter 2, Creating,
Compiling, and Deploying Native Projects). To do so, in Eclipse Project properties,
 go to section C/C++ General/Paths and Symbols and then the Includes tab, and
add Box2d directory ${env_var:ANDROID_NDK}/sources/box2d.

9. Launch DroidBlaster compilation. Box2D gets compiled without errors.

Now, let's compile Irrlicht. Irrlicht is currently not supporting Android in its official branch.
The iPhone version, which implements an OpenGL ES driver, is still on a separate branch
(and does not include Android support). However, it is possible to adapt this branch to
make it work with Android (let's say, in a few hours, for experienced programmers).

But there is another solution: an Android fork initiated by developers from IOPixels (see
http://www.iopixels.com/). It is ready to compile with the NDK and takes advantage
of a few optimizations. It works quite well, but is not as up-to-date as the iPhone branch.

10. Check out the Irrlicht for Android repository, from Gitorious. This repository can
be found at http://girotious.org/irrlichtandroid/irrlichtandroid.
To do so, install GIT (git package, on Linux) and execute the following command:

> git clone git://gitorious.org/irrlichtandroid/irrlichtandroid.git

The Irrlicht archive is provided with this book, in
directory Chapter09/Library.

11. The repository is on the disk. Move it to ${ANDROID_NDK}/sources and name
it irrlicht.

Porting existing libraries to Android

[342]

12. The main directory contains a ready-to-use Android project that makes use of JNI
to communicate with Irrlicht on the native side. Instead, we are going to adapt this
package to make use of NDK R5 native activities.

13. Go to ${ANDROID_NDK}/sources/irrlicht/project/jni and open
Android.mk.

14. Again, makefile starts with a $(call my-dir) directive, to save the current path,
and $(CLEAR_VARS), to erase any pre-existing values:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
...

15. After that, we define all the source files to compile. And there are lots of them!
Nothing needs to be changed, apart from the Android variable. Indeed, this port
of Irrlicht communicates with a Java application through JNI and gives you some
places to append your own simulation code.

But, what we want is to compile Irrlicht as a module. So, let's get rid of the useless
JNI binding and rely on the client application for EGL initialization. Update the
ANDROID directive to keep only:

 � importgl.cpp, which gives the option to bind dynamically to GLES runtime.

 � CIrrDeviceAndroid.cpp, which is an empty stub. It delegates EGL
initialization to the client. In our case, it is going to be performed by our
GraphicsService:

...
IRRMESHLOADER = CBSPMeshFileLoader.cpp CMD2MeshFileLoader.cpp ...
...
ANDROID = importgl.cpp CIrrDeviceAndroid.cpp
...

16. Then comes the module definition. Variable LOCAL_ARM_MODE can be removed, as
these settings will be set globally, in our own application, with the Application.
mk file. Of course, it is not forbidden to use a custom setting when needed:

...
LOCAL_MODULE := irrlicht

#LOCAL_ARM_MODE := arm
...

Chapter 9

[343]

17. Remove the -03 flag from LOCAL_CFLAGS, in the original file. This option specifies
the level of optimization (here, aggressive). However, it can be set up at application
level too.

ANDROID_NDK flag is specific to this Irrlicht port and is necessary to set up OpenGL.
It works in conjunction with DISABLE_IMPORTGL, which disables the dynamic
loading of the OpenGL ES system library, at runtime. This would be useful if we
wanted to let users choose the renderer at runtime (for example, to allow
selecting GLES 2.0 renderer). In that case, the GLES 1 system library would
not be loaded uselessly:

...
LOCAL_CFLAGS := -DANDROID_NDK -DDISABLE_IMPORTGL
LOCAL_SRC_FILES := $(IRRLICHT_CPP)
...

18. Insert LOCAL_EXPORT_C_INCLUDES and LOCAL_C_INCLUDES, to indicate
which include directory to use for library compilation and which one client
applications need. The same goes for linked libraries (LOCAL_EXPORT_LDLIBS
and LOCAL_LDLIBS). Keep only GLESv1_CM. The Irrlicht source folder, which
contains include files needed during Irrlicht compilation only, is not appended
to the export flags:

...
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/../include \
 $(LOCAL_PATH)/libpng
LOCAL_C_INCLUDES := $(LOCAL_EXPORT_C_INCLUDES) $(LOCAL_PATH)
LOCAL_EXPORT_LDLIBS := -lGLESv1_CM -lz -ldl –llog
LOCAL_LDLIBS := $(LOCAL_EXPORT_LDLIBS)
...

19. Finally, modify Irrlicht to compile as a static library. We could also compile it as a
shared library. But, because of Irrlicht's size after compilation, static mode is advised.
In addition, it is going to be linked with DroidBlaster.so only:

...
include $(BUILD_STATIC_LIBRARY)

Android.mk is provided in Chapter09/Library/
irrlicht_android.

20. Now, we need to configure what parts of Irrlicht we want to keep and which part we
are not interested in. Indeed, size is an important matter with mobile development,
and the raw Irrlicht library is actually more than 30mb.

Porting existing libraries to Android

[344]

As we are basically going to read OBJ meshes and PNG files and display them with
GLES 1.1, everything else can be deactivated. To do so, use #undef directives in
${ANDROID_NDK}/irrlicht/project/include/IrrCompileConfig.h,
and keep only a few #define where needed:

 � Target Android with GLES1 only (no GLES 2 or software renderer).
DroidBlaster requires only non-compressed files read from the file system:

#define _IRR_COMPILE_WITH_ANDROID_DEVICE_
#define _IRR_COMPILE_WITH_OGLES1_
#define _IRR_OGLES1_USE_EXTPOINTER_
#define _IRR_MATERIAL_MAX_TEXTURES_ 4
#define __IRR_COMPILE_WITH_MOUNT_ARCHIVE_LOADER_

 � Irrlicht embeds a few libraries of its own, such as, libpng, lijpeg,
and so on:

#define _IRR_COMPILE_WITH_OBJ_WRITER_
#define _IRR_COMPILE_WITH_OBJ_LOADER_
#define _IRR_COMPILE_WITH_PNG_LOADER_
#define _IRR_COMPILE_WITH_PNG_WRITER_
#define _IRR_COMPILE_WITH_LIBPNG_
#define _IRR_USE_NON_SYSTEM_LIB_PNG_

#define _IRR_COMPILE_WITH_ZLIB_
#define _IRR_USE_NON_SYSTEM_ZLIB_
#define _IRR_COMPILE_WITH_ZIP_ENCRYPTION_
#define _IRR_COMPILE_WITH_BZIP2_
#define _IRR_USE_NON_SYSTEM_BZLIB_
#define _IRR_COMPILE_WITH_LZMA_

 � Debug mode can be undef when a application gets released:

#define _DEBUG

The modified IrrCompileConfig.h is provided with this book,
in directory Chapter09/Library/irrlicht_android.

21. Finally, append Irrlicht library to DroidBlaster. We need to remove libpng from
LOCAL_LDLIBS because, from now, DroidBlaster is going to use Irrlicht's libpng,
instead of the one we compiled (which is too recent for Irrlicht):

...
LOCAL_STATIC_LIBRARIES:=android_native_app_glue png boost_thread \
 box2d_static irrlicht

Chapter 9

[345]

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)
$(call import-module,libpng)
$(call import-module,boost)
$(call import-module,box2d)
$(call import-module,irrlicht/project/jni)

22. Optionally, activate include file resolution for Irrlicht (as done with Box2D
previously). The directory is ${env_var:ANDROID_NDK}/sources/irrlicht.

23. Launch compilation and watch Irrlicht getting compiled. It may take quite some time!

What just happened?
We have compiled two open source libraries with the Android NDK, thus reusing the many
wheels already created by the community! We will see, in next chapter, how to develop code
with them. There are two main steps involved when porting a library to Android:

1. Adapting library code to Android if necessary.

2. Writing build scripts (that is, makefiles) to compile code with the NDK toolchain.

The first task is generally necessary for libraries accessing system libraries, such as Irrlicht with
OpenGL ES. It is obviously the hardest and most non-trivial task. In that case, always consider:

 � Making sure required libraries exist. If not, port them before. For instance, the main
Irrlicht branch cannot be used on Android because renderers are only DirectX and
OpenGL (not ES). Only the iPhone branch provides a GLES renderer.

 � Looking for the main configuration include file. One is often provided (such as
IrrCompileConfig.h for Irrlicht) and is a good place to tweak enabled/disabled
features or remove unwanted dependencies.

 � Giving attention to system-related macros (that is, #ifdef _LINUX ...), which
are one of the first places to change in code. Generally, one will need to define
macros such as _ANDROID_ and insert them where appropriate.

 � Commenting non-essential code, at least to check if the library can compile and its
core features work.

The second task, building scripts, is easier, although tedious. You should choose building the
import module dynamically, when compiling your application, as opposed to a prebuilt library,
like we did with Boost. Indeed, on-demand compilation allows tweaking compilation flags on
all included libraries (like optimization flags or ARM mode) from your main Application.mk
project file.

Porting existing libraries to Android

[346]

Prebuilt libraries are only interesting to redistribute binaries, without delivering code, or
to use a custom build system. In the latter case, the NDK toolchain is used in the so-called
standalone mode (that is, Do It Yourself mode!) detailed in the Android NDK documentation.
But, the default ndk-build command is, of course, considered a better practice, to make
future evolutions simpler.

Libraries are produced in <PROJECT_DIR>/libs. Intermediate binary files are available in
<PROJECT_DIR>/obj. Module size in the latter place is quite impressive. That would not
be viable if NDK toolchain was not stripping them when producing final APK. Stripping is the
process of discarding unnecessary symbols from binaries. Combined with static linking, this
reduces the size of DroidBlaster binaries from 60 MB to just 3 MB.

GCC optimization levels
There are 5 main optimization levels in GCC:

1. -O0: It disables any optimization. This is automatically set by the NDK when
APP_OPTIM is set to debug.

2. -O1: It allows basic optimizations without increasing compilation time too much.
These optimizations do not require any speed-space tradeoffs, which mean that
they produce faster code without increasing executable size.

3. -O2: It allows advanced optimization (including -O1), but at the expense of
compilation time. Like –O1, these optimizations do not require speed-space
tradeoffs. This is the default level when APP_OPTIM is set to the release option,
when releasing an application.

4. -O3: To perform aggressive optimizations (including -O2), which can increase
executable size, such as function inlining. This is generally profitable, but
sometimes, counterproductive (for example, increasing memory usage can also
increase cache misses).

5. -Os: To optimize compiled code size (a subset of –O2) before speed.

Although -O2 is generally the way to go for release mode, -O3 should also be considered
for performance critical code. -0 flags being just shortcuts for the various GCC optimization
flags, enabling –O2 and with additional fine-grain flags (for example, -finline-
functions) is an option. Anyway, the best way to find the best choice is still performing
benchmarking! To get more information about the numerous GCC optimization options,
have a look at http://gcc.gnu.org/.

Mastering Makefiles
Android makefiles are an essential piece of the NDK building process. Thus, it is important
to understand the way they work, to build and manage a project properly.

Chapter 9

[347]

Makefile variables
Compilation settings are defined though a set of predefined NDK variables. We have already
seen the three most important ones: LOCAL_PATH, LOCAL_MODULE, and LOCAL_SRC_FILES.
But many others exist. We can differentiate four types of variables, each with a different prefix:
LOCAL_, APP_, NDK_, and PRIVATE_.

 � APP_ variables refer to application-wide options and are set in Application.mk

 � LOCAL_ variables are dedicated to individual module compilation and are defined
in Android.mk files

 � NDK_ are internal variables that usually refer to environment variables (for example,
NDK_ROOT, NDK_APP_CFLAGS or NDK_APP_CPPFLAGS)

 � PRIVATE_ prefixed variables are for NDK internal use only

Here is an almost exhaustive list:

LOCAL_PATH To specify the source files, root location. Must be
defined before include $(CLEAR_VARS).

LOCAL_MODULE To define module name.

LOCAL_MODULE_FILENAME

To override default name of the compiled module,
that is,

lib<module name>.so for shared libraries

lib<module name>.a for static libraries.

No custom file extensions can be specified, so that .so
or.a remains appended.

LOCAL_SRC_FILES To define source files to compile, each separated by a
space and relative to LOCAL_PATH.

LOCAL_C_INCLUDES

To specify header file directories for both C and
C++ languages. The directory can be relative to the
${ANDROID_NDK} directory, but unless you need
to include a specific NDK file, you are advised to use
absolute path (which can be built from Makefile
variables such as $(LOCAL_PATH)).

LOCAL_CPP_EXTENSION
To change default C++ file extension that is.cpp (for
example, cc or cxx). Extension is necessary for GCC to
discriminate between files, according to their language.

LOCAL_CFLAGS,

LOCAL_CPPFLAGS,

LOCAL_LDLIBS

To specify any options, flags, or macro definitions, for
compilation and linking. The first one works for both
C and C++, the second one is for C++ only, and the last
one is for the linker.

Porting existing libraries to Android

[348]

LOCAL_SHARED_LIBRARIES,

LOCAL_STATIC_LIBRARIES

To declare a dependency with other modules
(not system libraries), shared and static modules,
respectively.

LOCAL_ARM_MODE,

LOCAL_ARM_NEON,

LOCAL_DISABLE_NO_
EXECUTE,

LOCAL_FILTER_ASM

Advanced variables dealings with processors and
assembler/binary code generation. They are not
necessary for most programs.

LOCAL_EXPORT_CFLAGS,

LOCAL_EXPORT_CPPFLAGS,

LOCAL_EXPORT_LDLIBS

To define additional options or flags in import modules
that should be appended to clients options. For
example, if a module A defines

LOCAL_EXPORT_LDLIBS := -llog

because it needs an Android logging module, then
a module B that depends on A will be automatically
linked to –llog.

LOCAL_EXPORT_ variables are not used when
compiling the module that exports them. If required,
they also need to be specified in their LOCAL
counterpart.

Makefile Instructions
Although these advanced features are marginally needed, Makefile is a real language with
programming instructions and functions. First, know that makefiles can be broken down into
several sub-makefiles, included with the instruction include.

Variable initialization comes in two flavours:

 � Simple affectation: This expands variables at the time that they are initialised.

 � Recursive affectation: This re-evaluates the affected expression, each time it is
called.

The following conditional and loop instructions are available: ifdef/endif, ifeq/endif,
ifndef/endif, for…in/do/done. For example, to display a message only when a variable
is defined, do:

ifdef my_var
 # Do something...
endif

Chapter 9

[349]

More advanced stuff, such as functional if, and, or, are at your disposal, but are rarely
used. Make also provides some useful built-in functions:

$(info <message>)
Allows printing messages to the standard output. This is the
most essential tool when writing makefiles! Variables inside
information messages are allowed.

$(warning <message>),

$(error <message>)

Allows printing a warning or a fatal error that stops
compilation. These messages can be parsed by Eclipse.

$(foreach <variable>,
<list>, <operation>)

To perform an operation on a list of variables. Each element
of the list is expanded in the first argument variable, before
the operation is applied on it.

$(shell <command>)
To execute a command outside of Make. This brings all the
power of Unix Shell into Makefiles but is heavily system-
dependent. Avoid it if possible.

$(wildcard <pattern>) Select files and directory names according to a pattern.

$(call <function>)

Allows evaluating a function or macro. One macro we
have seen is my-dir, which returns the directory path
of the last executed Makefile. This is why LOCAL_PATH
:= $(call my-dir) is systematically written at the
beginning of each Android.mk file, to save in the current
Makefile directory.

With the call directive, custom functions can easily be written. These functions look
somewhat similar to recursively affected variables, except that arguments can be defined:
$(1) for first argument, $(2) for second argument, and so on. A call to a function can be
performed in a single line:

my_function=$(<do_something> ${1},${2})
$(call my_function,myparam)

Strings and files manipulation functions are available too:

$(join <str1>, <str2>) Concatenates two strings.

$(subst <from>,

<replacement>,<string>),

$(patsubst <pattern>,

<replacement>,<string>)

Replaces each occurrence of a substring by another.
The second one is more powerful, because it allows
using patterns (which must start with "%").

Porting existing libraries to Android

[350]

$(filter <patterns>,
<text>)

$(filter-out <patterns>,
<text>)

Filter strings from a text matching patterns. This is
useful for filtering files. For example, the following
line filters any C file:

$(filter %.c, $(my_source_list))

$(strip <string>) Removes any unnecessary whitespace.

$(addprefix
<prefix>,<list>),

$(addsuffix <suffix>,
<list>)

Append a prefix and suffix, respectively, to each
element of the list, each element being separated by
a space.

$(basename <path1>,
<path2>, ...)

Returns a string from which file extensions are
removed.

$(dir <path1>, <path2>),

$(notdir <path1>,
<path2>)

Extracts respectively the directory and the filename
in a path, respectively

$(realpath <path1>,
<path2>, ...),

$(abspath <path1>,
<path2>, ...)

Return both canonical paths of each path argument,
except that the second one does not evaluate
symbolic links.

This is just really an overview of what Makefiles are capable of. For more information, refer
to the full Makefile documentation, available at http://www.gnu.org/software/make/
manual/make.html. If you are allergic to Makefiles, have a look at CMake. CMake is a
simplified Make system, already building many open source libraries on the market. A port
of CMake on Android is available at http://code.google.com/p/android-cmake.

Have a go hero – mastering Makefiles
We can play in a variety of ways with Makefiles:

 � Try the affectation operator. For example, write down the following piece of code
which uses the = operator in your Android.mk file:

my_value := Android
my_message := I am an $(my_value)
$(info $(my_message))
my_value := Android eating an apple
$(info $(my_message))

Chapter 9

[351]

 � Watch the result when launching compilation. Then do the same using =.Print
current optimization mode. Use APP_OPTIM and internal variable, NDK_APP_
CFLAGS, and observe the difference between release and debug modes:

$(info Optimization level: $(APP_OPTIM) $(NDK_APP_CFLAGS))

 � Check that variables are properly defined, for example:

ifndef LOCAL_PATH
 $(error What a terrible failure! LOCAL_PATH not defined...)
endif

 � Try to use the foreach instruction to print the list of files and directories
inside the project's root directory and its jni folder (and make sure to use
recursive affectation):

ls = $(wildcard $(var_dir))
dir_list := . ./jni
files := $(foreach var_dir, $(dir_list), $(ls))

 � Try to create a macro to log a message to the standard output and its time:

log=$(info $(shell date +'%D %R'): $(1))
$(call log,My message)

 � Finally, test the my-dir macro behaviour, to understand why LOCAL_PATH :=
$(call my-dir) is systematically written at the beginning of each Android.mk:

$(info MY_DIR =$(call my-dir))
include $(CLEAR_VARS)
$(info MY_DIR =$(call my-dir))

Summary
The present chapter introduced a fundamental aspect of the NDK: portability. Thanks to the
recent improvements in the building toolchain, the Android NDK can now take advantage
of the vast C/C++ ecosystem. It unlocks the door of a productive environment where code is
shared with other platforms with the aim of creating new cutting-edge applications efficiently.
More specifically, we learnt how to enable, include, and compile STL and Boost and use them
in our own code. We also enabled exceptions and RTTI, and selected the appropriate STL
implementation. Then, we ported Open Source libraries to Android. Finally, we discovered
how to write makefiles with advanced instructions and features.

In the next chapter, these foundations will allow us to integrate a collision system and to
develop a new 3D graphics system.

10
Towards Professional Gaming

We have seen in the previous chapter how to port third-party libraries to
Android. More specifically, we have compiled two of them: Box2D and Irrlicht.
In this chapter, we are going one step further by implementing them concretely
in our sample application DroidBlaster. This is the outcome of all the effort
made and all the stuff learned until now. This chapter highlights the path
toward the concrete realization of your own application. Of course, there
is still a very long way to go… but if the slope is steep, the road is straight!

By the end of this chapter, you should be able to do the following:

 � Simulate physics and handle collisions with Box2D

 � Display 3D graphics with Irrlicht

Simulating physics with Box2D
We have handled collisions or physics and with good cause! This is a rather complex subject,
involving maths, numerical integration, software optimization, and so on. To answer these
difficulties, physics engine have been invented on the model of 3D engine, and Box2D is one
of them. This open source engine, initiated by Erin Catto in 2006, can simulate rigid body
movements and collisions in a 2D environment. Bodies are the essential element of Box2D
and are characterized by:

 � A geometrical shape (polygons, circles, and so on)

 � Physics properties (such as density, friction, restitution, and so on)

 � Movement constraints and joints (to link bodies together and restrict
their movement)

Towards Professional Gaming

[354]

All these bodies are orchestrated inside a World, which steps simulation according to time.

In previous chapters, we have created GraphicsService, a SoundService, and
InputService. This time, let's implement PhysicsService with Box2D.

Project DroidBlaster_Part9-3 can be used as a starting point for
this part. The resulting project is provided with this book under
the name DroidBlaster_Part10-Box2D.

Time for action – simulating physics with Box2D
Let's encapsulate Box2D simulation in a dedicated service first:

1. First, create jni/PhysicsObject.hpp and insert Box2D main include file. Class
PhysicsObject exposes a location and a collision flag publicly. It holds various
Box2D properties defining a physical entity:

 � A reusable body definition to define how to simulate a body
(static, with rotations).

 � A body to represent a body instance in the simulated world.

 � A shape to detect collisions. Here use a circle shape.

 � A fixture to bind a shape to a body and define a few physics properties.

The class PhysicsObject is set up with initialize() and refreshed with
update() after each simulation step. Method createTarget() will help us create
a joint for the ship.

#ifndef PACKT_PHYSICSOBJECT_HPP
#define PACKT_PHYSICSOBJECT_HPP

#include "PhysicsTarget.hpp"
#include "Types.hpp"

#include <boost/smart_ptr.hpp>
#include <Box2D/Box2D.h>
#include <vector>

namespace packt {
 class PhysicsObject {
 public:
 typedef boost::shared_ptr<PhysicsObject> ptr;
 typedef std::vector<ptr> vec; typedef vec::iterator vec_it;
 public:
 PhysicsObject(uint16 pCategory, uint16 pMask,

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 10

[355]

 int32_t pDiameter, float pRestitution, b2World* pWorld);
 PhysicsTarget::ptr createTarget(float pFactor);

 void initialize(float pX, float pY,
 float pVelocityX, float pVelocityY);
 void update();

 bool mCollide;
 Location mLocation;

 private:
 b2World* mWorld;
 b2BodyDef mBodyDef; b2Body* mBodyObj;
 b2CircleShape mShapeDef; b2FixtureDef mFixtureDef;
 };
}
#endif

2. Implement jni/PhysicsObject.cpp constructor to initialize all Box2D properties.

The body definition describes a dynamic body (as opposed to static), awake (that
is, actively simulated by Box2D), and which cannot rotate (a property especially
important for polygon shapes, meaning that it is always pointing upward).

Also note how we save a PhysicsObject self reference in userData field, in order
to access it later inside Box2D callbacks

3. Define body shape, which we approximate to a box. Box2D requires half dimension,
from object's center to its borders.

#include "PhysicsObject.hpp"
#include "Log.hpp"

namespace packt {
 PhysicsObject::PhysicsObject(uint16 pCategory, uint16 pMask,
 int32_t pDiameter, float pRestitution, b2World* pWorld) :
 mLocation(), mCollide(false), mWorld(pWorld),
 mBodyDef(), mBodyObj(NULL), mShapeDef(), mFixtureDef() {
 mBodyDef.type = b2_dynamicBody;
 mBodyDef.userData = this;
 mBodyDef.awake = true;
 mBodyDef.fixedRotation = true;

 mShapeDef.m_p = b2Vec2_zero;
 mShapeDef.m_radius = pDiameter / (2.0f * SCALE_FACTOR);
...

Towards Professional Gaming

[356]

4. Body fixture is the glue which brings together body definition, shape, and also physical
properties. We also use it to set body category and mask. This allows us to filter
collisions between objects according to their category (for instance, asteroids must
collide with the ship but not between themselves). There is one category per bit.

Finally, effectively instantiate your body inside the Box2D physical world:

...
 mFixtureDef.shape = &mShapeDef;
 mFixtureDef.density = 1.0f;
 mFixtureDef.friction = 0.0f;
 mFixtureDef.restitution = pRestitution;
 mFixtureDef.filter.categoryBits = pCategory;
 mFixtureDef.filter.maskBits = pMask;
 mFixtureDef.userData = this;

 mBodyObj = mWorld->CreateBody(&mBodyDef);
 mBodyObj->CreateFixture(&mFixtureDef);
 mBodyObj->SetUserData(this);
 }
...

5. Then take care of mouse joint creation in createTarget().

When PhysicsObject is initialized, coordinates are converted from DroidBlaster
referential to Box2D one. Indeed, Box2D performs better with smaller coordinates.

When Box2D has finished simulating, each PhysicsObject instance converts
coordinates computed by Box2D back into DroidBlaster coordinates referential:

...
 PhysicsTarget::ptr PhysicsObject::createTarget(float pFactor)
{
 return PhysicsTarget::ptr(
 new PhysicsTarget(mWorld, mBodyObj, mLocation,
pFactor));
 }

 void PhysicsObject::initialize(float pX, float pY,
 float pVelocityX, float pVelocityY) {
 mLocation.setPosition(pX, pY);
 b2Vec2 lPosition(pX / SCALE_FACTOR, pY / SCALE_FACTOR);
 mBodyObj->SetTransform(lPosition, 0.0f);
 mBodyObj->SetLinearVelocity(b2Vec2(pVelocityX,
pVelocityY));
 }

Chapter 10

[357]

 void PhysicsObject::update() {
 mLocation.setPosition(
 mBodyObj->GetPosition().x * SCALE_FACTOR,
 mBodyObj->GetPosition().y * SCALE_FACTOR);
 }
}

6. Now, create jni/PhysicsService.hpp header and again insert the Box2D
include file. Make PhysicsService inherit from b2ContactListener. A contact
listener gets notified about new collisions each time the simulation is updated. Our
PhysicsService inherits one of its method named BeginContact().

Define constants and member variables. Iteration constants determine the
simulation accuracy. Variable mWorld represents the whole Box2D simulation
which contains all the physical bodies we are going to create:

#ifndef PACKT_PHYSICSSERVICE_HPP
#define PACKT_PHYSICSSERVICE_HPP

#include "PhysicsObject.hpp"
#include "TimeService.hpp"
#include "Types.hpp"

#include <Box2D/Box2D.h>

namespace packt {
 class PhysicsService : private b2ContactListener {
 public:
 PhysicsService(TimeService* pTimeService);

 status update();
 PhysicsObject::ptr registerEntity(uint16 pCategory,
 uint16 pMask, int32_t pDiameter, float pRestitution);

 private:
 void BeginContact(b2Contact* pContact);

 private:
 TimeService* mTimeService;
 PhysicsObject::vec mColliders;
 b2World mWorld;

 static const int32_t VELOCITY_ITER = 6;
 static const int32_t POSITION_ITER = 2;
 };
}
#endif

Towards Professional Gaming

[358]

7. In the jni/PhysicsService.cpp source file, write PhysicsService constructor.
Initialize the world, setting the first parameter to a zero vector (type b2vec). This
vector represents the gravity force, which is not necessary in DroidBlaster. Finally,
register the service as a listener of contact/collision event. This way, each time
simulation is stepped, PhysicsService gets notified through callbacks.

Destroy Box2D resources in the destructor. Box2D uses its own internal (de)allocator.

Also implement registerEntity() to encapsulate physics object creation:

#include "PhysicsService.hpp"
#include "Log.hpp"

namespace packt {
 PhysicsService::PhysicsService(TimeService* pTimeService) :
 mTimeService(pTimeService),
 mColliders(), mWorld(b2Vec2_zero) {
 mWorld.SetContactListener(this);
 }

 PhysicsObject::ptr PhysicsService::registerEntity(
 uint16 pCategory, uint16 pMask, int32_t pDiameter,
 float pRestitution) {
 PhysicsObject::ptr lCollider(new PhysicsObject(pCategory,
 pMask, pDiameter, pRestitution, &mWorld));
 mColliders.push_back(lCollider);
 return mColliders.back();
 }
...

8. Write the update() method. First, it clears collision flags buffered in
BeginContact() during previous iteration. Then simulation is performed by calling
Step() with a time period and iterations constants define simulation accuracy. Finally,
PhysicsObject is updated (that is, location extracted from Box2D into our own
Location object) according to simulation results. Box2D is going to handle mainly
collisions and simple movements. So fixing velocity and position iterations to 6 and 2,
respectively, is sufficient.

...
 status PhysicsService::update() {
 PhysicsObject::vec_it iCollider = mColliders.begin();
 for (; iCollider < mColliders.end() ; ++iCollider) {
 (*iCollider)->mCollide = false;
 }

Chapter 10

[359]

 // Updates simulation.
 float lTimeStep = mTimeService->elapsed();
 mWorld.Step(lTimeStep, VELOCITY_ITER, POSITION_ITER);

 // Caches the new state.
 iCollider = mColliders.begin();
 for (; iCollider < mColliders.end() ; ++iCollider) {
 (*iCollider)->update();
 }
 return STATUS_OK;
 }
...

9. The method BeginContact() is a callback inherited by b2ContactListener
to notify about new collisions between bodies, two at a time (named A and B).
Event information is stored in a b2contact structure, which contains various
properties, such as friction and restitution, and the two bodies involved through
their fixture, which themselves contain a reference to our own PhysicsObject
(the UserData property set in GraphicsObject). We can use this link to switch
the PhysicsObject collision flag when Box2D detects one:
...

 void PhysicsService::BeginContact(b2Contact* pContact) {
 void* lUserDataA = pContact->GetFixtureA()->GetUserData();
 if (lUserDataA != NULL) {
 ((PhysicsObject*)(lUserDataA))->mCollide = true;
 }
 void* lUserDataB = pContact->GetFixtureB()->GetUserData();
 if (lUserDataB != NULL) {
 ((PhysicsObject*)(lUserDataB))->mCollide = true;
 }
 }
}

10. Finally, create jni/PhysicsTarget.hpp to encapsulate Box2D mouse joints.
The ship will follow the direction specified in setTarget(). To do so, we need a
multiplier (mFactor) to simulate a target point from the input service output vector.

Mouse joints are usually good to simulate dragging effects or for
test purposes. They are easy to use but implementing a precise
behavior with them is difficult.

#ifndef PACKT_PHYSICSTARGET_HPP
#define PACKT_PHYSICSTARGET_HPP

Towards Professional Gaming

[360]

#include "Types.hpp"
#include <boost/smart_ptr.hpp>
#include <Box2D/Box2D.h>

namespace packt {
 class PhysicsTarget {
 public:
 typedef boost::shared_ptr<PhysicsTarget> ptr;

 public:
 PhysicsTarget(b2World* pWorld, b2Body* pBodyObj,
 Location& pTarget, float pFactor);
 void setTarget(float pX, float pY);

 private:
 b2MouseJoint* mMouseJoint;
 float mFactor; Location& mTarget;
 };
}
#endif

11. The source counterpart is jni/PhysicsTarget.cpp to encapsulate a
Box2D mouse joint. The ship will follow the direction specified in setTarget()
each frame.

#include "PhysicsTarget.hpp"
#include "Log.hpp"

namespace packt {
 PhysicsTarget::PhysicsTarget(b2World* pWorld, b2Body* pBodyObj,
 Location& pTarget, float pFactor):
 mFactor(pFactor), mTarget(pTarget) {
 b2BodyDef lEmptyBodyDef;
 b2Body* lEmptyBody = pWorld->CreateBody(&lEmptyBodyDef);

 b2MouseJointDef lMouseJointDef;
 lMouseJointDef.bodyA = lEmptyBody;
 lMouseJointDef.bodyB = pBodyObj;
 lMouseJointDef.target = b2Vec2(0.0f, 0.0f);
 lMouseJointDef.maxForce = 50.0f * pBodyObj->GetMass();
 lMouseJointDef.dampingRatio = 1.0f;
 lMouseJointDef.frequencyHz = 3.5f;
 mMouseJoint = (b2MouseJoint*)
 pWorld->CreateJoint(&lMouseJointDef);
 }

Chapter 10

[361]

 void PhysicsTarget::setTarget(float pX, float pY) {
 b2Vec2 lTarget((mTarget.mPosX + pX * mFactor) / SCALE_FACTOR,
 (mTarget.mPosY + pY * mFactor) / SCALE_FACTOR);
 mMouseJoint->SetTarget(lTarget);
 }
}

12. Finally, add the PhysicsService to jni/Context.hpp like all the other
services created in previous chapters.

We can now go back to our asteroids and simulate them with our new
physics service.

13. In jni/Asteroid.hpp, replace location and speed by PhysicsObject instance:

...
#include "PhysicsService.hpp"
#include "PhysicsObject.hpp"
...
namespace dbs {
 class Asteroid {
 ...
 private:
 ...
 packt::GraphicsSprite* mSprite;
 packt::PhysicsObject::ptr mPhysics;
 };
}

14. Makes use of this new physics object in jni/Asteroid.cpp source file. Physics
properties are registered with a category and mask. Here, Asteroids are declared
as belonging to category 1 (0X1 in hexadecimal notation) and only bodies in
group 2 (0X2 in hexadecimal) are considered when evaluating collisions.

To spawn an asteroid, replace speed with the notion of velocity (expressed in m/s).

Because asteroid direction will change when a collision occurs, asteroids are spawn
when they go outside the main area in update():

#include "Asteroid.hpp"
#include "Log.hpp"

namespace dbs {
 Asteroid::Asteroid(packt::Context* pContext) :
 mTimeService(pContext->mTimeService),
 mGraphicsService(pContext->mGraphicsService) {
 mPhysics = pContext->mPhysicsService->registerEntity(

Towards Professional Gaming

[362]

 0X1, 0x2, 64, 1.0f);
 mSprite = pContext->mGraphicsService->registerSprite(
 mGraphicsService->registerTexture(
 "/sdcard/droidblaster/asteroid.png"),
 64, 64, &mPhysics->mLocation);
 }

void Asteroid::spawn() {
 const float MIN_VELOCITY = 1.0f, VELOCITY_RANGE=19.0f;
 const float MIN_ANIM_SPEED = 8.0f, ANIM_SPEED_RANGE=16.0f;

 float lVelocity = -(RAND(VELOCITY_RANGE) + MIN_VELOCITY);
 float lPosX = RAND(mGraphicsService->getWidth());
 float lPosY = RAND(mGraphicsService->getHeight())
 + mGraphicsService->getHeight();
 mPhysics->initialize(lPosX, lPosY, 0.0f, lVelocity);

 float lAnimSpeed = MIN_ANIM_SPEED + RAND(ANIM_SPEED_RANGE);
 mSprite->setAnimation(8, -1, lAnimSpeed, true);
 }

void Asteroid::update() {
 if ((mPhysics->mLocation.mPosX < 0.0f) ||
 (mPhysics->mLocation.mPosX > mGraphicsService->getWidth())||
 (mPhysics->mLocation.mPosY < 0.0f) ||
 (mPhysics->mLocation.mPosY > mGraphicsService->getHeight()*2)){
 spawn();
 }
 }
}

15. Modify the jni/Ship.hpp header file in the same way as asteroids:

...
#include "PhysicsService.hpp"
#include "PhysicsObject.hpp"
#include "PhysicsTarget.hpp"
...
namespace dbs {
 class Ship {
 ...

Chapter 10

[363]

 private:
 ...
 packt::GraphicsSprite* mSprite;
 packt::PhysicsObject::ptr mPhysics;
 packt::PhysicsTarget::ptr mTarget;
 };
}

16. Rewrite jni/Ship.cpp with the new PhysicsObject. Ship is added to category
2 and is marked as colliding with category 1 only (that is, asteroids). Velocity and
movement is entirely managed by Box2D. We can now check in update() if an
asteroid collided:

#include "Ship.hpp"
#include "Log.hpp"

namespace dbs {
 Ship::Ship(packt::Context* pContext) :
 mInputService(pContext->mInputService),
 mGraphicsService(pContext->mGraphicsService),
 mTimeService(pContext->mTimeService) {
 mPhysics = pContext->mPhysicsService->registerEntity(
 0x2, 0x1, 64, 0.0f);
 mTarget = mPhysics->createTarget(50.0f);
 mSprite = pContext->mGraphicsService->registerSprite(
 mGraphicsService->registerTexture(
 "/sdcard/droidblaster/ship.png"),
 64, 64, &mPhysics->mLocation);
 mInputService->setRefPoint(&mPhysics->mLocation);
 }

 void Ship::spawn() {
 mSprite->setAnimation(0, 8, 8.0f, true);
 mPhysics->initialize(mGraphicsService->getWidth() * 1 / 2,
 mGraphicsService->getHeight() * 1 / 4, 0.0f, 0.0f);
 }

 void Ship::update() {
 mTarget->setTarget(mInputService->getHorizontal(),
 mInputService->getVertical());
 if (mPhysics->mCollide) {
 packt::Log::info("Ship has been touched");
 }
 }
}

Towards Professional Gaming

[364]

Finally, let's instantiate and run our physics service.

17. Modify jni/DroidBlaster.hpp to hold PhysicsService instance:

...
#include "PhysicsService.hpp"
...
namespace dbs {
 class DroidBlaster : public packt::ActivityHandler {
 ...
 private:
 packt::GraphicsService* mGraphicsService;
 packt::InputService* mInputService;
 packt::PhysicsService* mPhysicsService;
 packt::SoundService* mSoundService;
 ...
 };
}

18. Update PhysicsService each time the game is stepped:

namespace dbs {
 ...
 packt::status DroidBlaster::onStep()
 {
 ...
 if (mInputService->update() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }
 if (mPhysicsService->update() != packt::STATUS_OK) {
 return packt::STATUS_KO;
 }
 return packt::STATUS_OK;
 }
 ...
}

19. Finally, instantiate PhysicsService in the application's main method:

...
#include "PhysicsService.hpp"
...

void android_main(android_app* pApplication) {
 ...

Chapter 10

[365]

 packt::PhysicsService lPhysicsService(&lTimeService);
 packt::SoundService lSoundService(pApplication);

 packt::Context lContext = { &lGraphicsService, &lInputService,
 &lPhysicsService, &lSoundService, &lTimeService };
 ...
}

What just happened?
We have created a physical simulation using Box2D physics engine. We have seen how to do
the following:

 � Define a physical representation of entities (ships and asteroids)

 � Step a simulation and detect/filter collisions between entities

 � Extracted simulation state (that is, coordinates) to feed graphics representation

The central point of access in Box2D is b2World, which stores a collection of bodies to
simulate. A Box2D body is composed of the following:

 � b2BodyDef: This defines the body type (b2_staticBody, b2_dynamicBody, and
so on) and initial properties like its position, angle (in radians), and so on.

 � b2Shape: This is used for collision detection and to derive body mass from its
density and can be a b2PolygonShape, b2CircleShape, and so on

 � b2FixtureDef: This links together a body shape, a body definition, and its physical
properties, such as density

 � b2Body: This is a body instance in the world (that is, on per game object), created
from a body definition, a shape, and a fixture

Bodies are characterized by a few physical properties:

 � Shape: This represents a circle in DroidBlaster, although a polygon or box could
also be used.

 � Density: This is in kg/m2, to compute body mass depending on its shape and size.
Value should be greater or equal to 0.0. A bowling ball has a bigger density than a
soccer ball.

 � Friction: This property shows how much a body slides on another (for example, a car
on a road or on an icy path). Values are typically in the range 0.0 to 1.0, where 0.0
implies no friction and 1.0 means strong friction.

 � Restitution: This property shows how much a body reacts to a collision, for example,
a bouncing ball. Value 0.0 means no restitution and 1.0 full restitution.

Towards Professional Gaming

[366]

When running, bodies are subject to the following:

 � Forces: This make bodies move linearly.

 � Torques: This represents rotational force applied on a body.

 � Damping: This is similar to friction but it does not occur only when a body is in contact
with another. It can be considered as the effect of air friction slowing down a body.

Box2D is tuned for worlds containing objects at a scale from 0.1 to 10 (unit in meters). When
used outside this range, again numerical approximation can make simulation inaccurate.
Thus, it is very necessary to scale coordinates from the Box2D referential, where object
should to be kept in the (rough) range [0.1, 10] and, to the game or directly to the graphics
referential. This is where SCALE_FACTOR is used for coordinate transformation.

Box2D memory management

Box2D uses its own allocators to optimize memory management. So to create
and destroy Box2D objects, one needs to systematically use the provided
factory methods (CreateX(), DestroyX()). Most of the time, Box2D
will manage memory automatically for you. When an object is destroyed, all
related child objects get destroyed (for instance, the bodies are destroyed
when the world is destroyed). But if you need to get rid of your objects earlier,
and thus manually, then always destroy them.

More on collision detection
Several ways of detecting and handling collisions exist in Box2D. The most basic one consists
in checking all contacts stored in the world or in a body after they are updated. But this can
result in missed contacts that happen surreptitiously during Box2D internal iterations.

A better way we have seen to detect contacts is the b2ContactListener, which can be
registered on the world object. Four callbacks can be overridden:

 � BeginContact(b2Contact): This is to detect when two bodies enter in collision.

 � EndContact(b2Contact): This is the counterpart of BeginContact(), which
indicates when bodies are not in collision any more. A call to BeginContact() is
always followed by a matching EndContact().

 � PreSolve(b2Contact, b2Manifold): This is called after a collision is detected
but before collision resolution, that is, before impulse resulting from the collision
is computed. The b2Manifold structure holds information about contact points,
normals, and so on in a single place.

 � PostSolve(b2Contact, b2ContactImpulse): This is called after actual
impulse (that is, physical reaction) has been computed by Box2D.

Chapter 10

[367]

The first two callbacks are interesting to trigger game logic (for example, entity destruction).
The last two are interesting to alter physics simulation (more specifically to ignore some
collisions by disabling a contact) while it is being computed or to get more accurate details
about it. For instance, use PreSolve() to create a one-sided platform to which an entity
collides only when it falls from above (not when it jumps from below). Use PostSolve()
to detect collision strength and calculate damages accordingly.

Methods PreSolve() and PostSolve() can be called several times between
BeginContact() and EndContact(), which can be called themselves from zero to
several times during one world update. A contact can begin during one simulation step
and terminate several steps after. In that case, event solving callbacks will be occurring
continuously during in-between steps. As many collisions can occur while stepping
simulation, callbacks can be called lot of times and should be as efficient as possible.

When analyzing collisions inside BeginContact() callback, we have buffered a collision
flag. This is necessary because Box2D reuses the b2Contact parameter passed when a
callback is triggered. In addition, as these callbacks are called while simulation is computed,
physics bodies cannot be destroyed at that instance but only after simulation stepping is
over. Thus, it is highly advised to copy any information gathered there for post-processing
(for example, to destroy entities).

Collision modes
I would like to point out that Box2D offers a so-called bullet mode that can be activated
on a body definition using corresponding Boolean member:

mBodyDef.bullet = true;

This mode is necessary for fast moving objects like bullets! By default, Box2D uses Discrete
Collision Detection, which considers bodies at their final position for collision detection,
missing any body located between initial and final positions. But for a fast moving body, the
whole path followed should be considered. This is more formally called Continuous Collision
Detection. Obviously, CCD is expensive and should be used with parsimony:

Towards Professional Gaming

[368]

We sometimes want to detect when bodies overlap without generating collisions (like a
car reaching the finish line): this is called a sensor. A sensor can be easily set by setting
isSensor Boolean member to true in the fixture:

mFixtureDef.isSensor = true;

A sensor can be queried with a listener through BeginContact() and EndContact()
or by using IsTouching() shortcut on a b2Contact class.

Collision filtering
Another important aspect of collision is about... not colliding! Or more precisely about
filtering collisions… A kind of filtering can be performed in PreSolve() by disabling
contacts. This is the most flexible and powerful solution but also the most complex.

But as we have seen it, filtering can be performed in a more simple way by using categories
and masks technique. Each body is assigned one or more category (each being represented
by one bit in a short integer, the categoryBits member) and a mask describing categories
of body they can collide with (each filtered category being represented by a bit set to 0, the
maskBits member):

Body A

Category
16

0
Category Category Category Category

1
2 3 4

0 1 0
1

Category
16

0
Mask Mask Mask Mask

1
2 3 4

0
1

0 1

Category
16

0
Category Category Category Category

0
2 3 4

1 0 0
1

Body B

In the preceding figure, Body A is in category 1 and 3 and collide with bodies in categories
2 and 4, which is the case for this poor body B unless its mask filters collision with body A
categories (that is, 1 and 3). In other words, both the bodies A and B must agree to collide!

Chapter 10

[369]

Box2D also has a notion of collision groups. A body has a collision group set to any
of the following:

 � Positive integer: This means others bodies with the same collision group value
can collide

 � Negative integer: This means others bodies with the same collision group value
are filtered

This could have been a solution, although less flexible than categories and masks, to avoid
collision between asteroids in DroidBlaster. Note that groups are filtered before categories.

A more flexible solution than category/group filters is the class b2ContactFilter. This
class has a method ShouldCollide(b2Fixture, b2Fixture) that you can customize to
perform your own filtering. Actually, category/group filtering are themselves implemented
that way.

More resources about Box2D
This was a short introduction to Box2D, which is capable of much more! We have left
the following in the shadow:

 � Joints: two bodies linked together

 � Raycasting: to query a physics world (for example, which location is a gun
pointing toward).

 � Contact properties: normals, impulses, manifolds, and so on

Box2D has a really nice documentation with much useful information that can be found at
http://www.box2d.org/manual.html. Moreover, Box2D is packaged with a test bed
directory (in Box2D/Testbed/Tests) featuring many use cases. Have a look to get a better
understanding of its capabilities. Because physics simulations can sometime be rather tricky,
I also encourage you to visit Box2D forum, which is quite active, at http://www.box2d.
org/forum/.

Running a 3D engine on Android
DroidBlaster now includes a nice and shiny physics engine. Now, let's run the Irrlicht
engine, created by a game developer Nikolaus Gebhardt in 2002. This engine supports
many features:

 � OpenGL ES 1 and (partially) Open GL ES 2 support

 � 2D graphics capabilities

 � Support many images and mesh files formats (PNG, JPEG, OBJ, 3DS, and so on)

Towards Professional Gaming

[370]

 � Import Quake levels in BSP format

 � Skinning to deform and animate meshes with bones

 � Terrain rendering

 � Collision handling

 � GUI system

And even much more. Now, let's add a new dimension to DroidBlaster by running Irrlicht
GLES 1.1 renderer with the fixed rendering pipeline.

Project DroidBlaster_Part10-Box2D can be used as a starting point
for this part. The resulting project is provided with this book under
the name DroidBlaster_Part10-Irrlicht.

Time for action – rendring 3D graphics with Irrlicht
1. First, let's get rid of all unnecessary stuff. Remove GraphicsSprite,

GraphicsTexture, and GraphicsTileMap and Background header and source
files in the jni folder.

First, we need to clean up the code and rewrite the graphics service.

2. Create a new file jni/GraphicsObject.hpp, which includes Irrlicht.h
header.

GraphicsObject encapsulates an Irrlicht scene node, that is, an object in the 3D
world. Nodes can form a hierarchy, child nodes moving accordingly to their parent
(for example, a turret on a tank) and inheriting some of their properties
(for example, visibility).

We also need a reference to a location in our own coordinate format (coming from
our Box2D PhysicsService) and the name of the mesh, and texture resources
we need:

#ifndef PACKT_GRAPHICSOBJECT_HPP
#define PACKT_GRAPHICSOBJECT_HPP

#include "Types.hpp"

#include <boost/shared_ptr.hpp>
#include <irrlicht.h>
#include <vector>

namespace packt {
 class GraphicsObject {
 public:

Chapter 10

[371]

 typedef boost::shared_ptr<GraphicsObject> ptr;
 typedef std::vector<ptr> vec;
 typedef vec::iterator vec_it;

 public:
 GraphicsObject(const char* pTexture, const char* pMesh,
 Location* pLocation);

 void spin(float pX, float pY, float pZ);

 void initialize(irr::scene::ISceneManager* pSceneManager);
 void update();

 private:
 Location* mLocation;
 irr::scene::ISceneNode* mNode;
 irr::io::path mTexture; irr::io::path mMesh;
 };
}
#endif

3. In jni/GraphicsObject.cpp, write the class constructor.

Create a spin() method that will be used to animate asteroids with a continuous
rotation. First, remove any previous animation potentially set. Then, create a rotation
animator applied to the Irrlicht node. Finally, free animator resources (with Drop()):

#include "GraphicsObject.hpp"
#include "Log.hpp"

namespace packt {
 GraphicsObject::GraphicsObject(const char* pTexture,
 const char* pMesh, Location* pLocation) :
 mLocation(pLocation), mNode(NULL),
 mTexture(pTexture), mMesh(pMesh)
 {}

 void GraphicsObject::spin(float pX, float pY, float pZ) {
 mNode->removeAnimators();
 irr::scene::ISceneNodeAnimator* lAnimator =
 mNode->getSceneManager()->createRotationAnimator(
 irr::core::vector3df(pX, pY, pZ));
 mNode->addAnimator(lAnimator);
 lAnimator->drop();
 }
...

Towards Professional Gaming

[372]

4. Initialize Irrlicht resources in the corresponding method initialize(). First, load
the requested 3D mesh and its texture according to their path on disk. If resources
are already loaded, Irrlicht takes care of reusing them. Then, create a scene node
attached to the 3D world. It must contain the newly loaded 3D mesh with the newly
loaded texture applied on its surface. Although this is not compulsory, meshes are
going to be lighted dynamically (EMF_LIGHTING flag). Lights will be set up later.

Finally, we need an update() method whose only purpose is to convert coordinates
from DroidBlaster referential to Irrlicht referential, which are almost identical (both
indicate the object center with the same scale), almost because Irrlicht needs a third
dimension. Obviously, it will be possible to use Irrlicht coordinates everywhere:
...

 void GraphicsObject::initialize(
 irr::scene::ISceneManager* pSceneManager) {
 irr::scene::IAnimatedMesh* lMesh =
 pSceneManager->getMesh(mMesh);
 irr::video::ITexture* lTexture = pSceneManager->
 getVideoDriver()->getTexture(mTexture);

 mNode = pSceneManager->addMeshSceneNode(lMesh);
 mNode->setMaterialTexture(0, lTexture);
 mNode->setMaterialFlag(irr::video::EMF_LIGHTING, true);
 }

 void GraphicsObject::update() {
 mNode->setPosition(irr::core::vector3df(
 mLocation->mPosX, 0.0f, mLocation->mPosY));
 }
}

5. Open existing file jni/GraphicsService.hpp to replace the older code with
Irrlicht. GraphicsService requires quite some change! Clean up all the stuff about
GraphicsSprite, GraphicsTexture, GraphicsTileMap, and TimeService.

Then, insert Irrlicht main include file in place of previous graphics headers.

Replace previous registration methods with a registerObject() similar to
the one we created in PhysicsService. It takes a mesh and texture file path in
parameters and returns a GraphicsObject defined as follows:

#ifndef _PACKT_GRAPHICSSERVICE_HPP_
#define _PACKT_GRAPHICSSERVICE_HPP_

#include "GraphicsObject.hpp"
#include "TimeService.hpp"
#include "Types.hpp"

#include <android_native_app_glue.h>

Chapter 10

[373]

#include <irrlicht.h>
#include <EGL/egl.h>

namespace packt {
 class GraphicsService {
 public:
 ...
 GraphicsObject::ptr registerObject(const char* pTexture,
 const char* pMesh, Location* pLocation);

 protected:
 ...
...

6. Declare Irrlicht-related member variables and a vector to store all GraphicsObject
that will be displayed on screen. Irrlicht central class is IrrlichtDevice, which
gives access to any Irrlicht features. IvideoDriver is also an important class which
abstracts 2D/3D graphical operations and resource management. ISceneManager
handles the simulated 3D world:

...
 private:
 ...
 EGLContext mContext;

 irr::IrrlichtDevice* mDevice;
 irr::video::IVideoDriver* mDriver;
 irr::scene::ISceneManager* mSceneManager;

 GraphicsObject::vec mObjects;
 };
}
#endif

7. In jni/GraphicsService.cpp source file and update class constructor, EGL setup
remains as before. Indeed, the Irrlicht-to-Android glue code (CirrDeviceAndroid)
is an empty stub. Initialization is left to the client (originally on the Java side) which
is performed by our own code natively in start().

So this part does not change much: just request a depth buffer to blend 3D objects
properly and remove loadResources() as Irrlicht now takes care of that.

When application stops, releases Irrlicht resources with a call to Drop():

...
namespace packt {
 GraphicsService::GraphicsService(android_app* pApplication,
 TimeService* pTimeService) :
 ...

Towards Professional Gaming

[374]

 mContext(EGL_NO_SURFACE),
 mDevice(NULL), mObjects()
 {}
 ...
 status GraphicsService::start() {
 ...
 const EGLint lAttributes[] = {
 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES_BIT,
 EGL_BLUE_SIZE, 5, EGL_GREEN_SIZE, 6, EGL_RED_SIZE, 5,
 EGL_DEPTH_SIZE, 16, EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
 EGL_NONE
 };
 ...
 }

 void GraphicsService::stop() {
 mDevice->drop();

 if (mDisplay != EGL_NO_DISPLAY) {
 ...
 }
...

8. Now comes the interesting part: setup(). First, initialize Irrlicht by invoking
createDevice() factory method. The important parameter is EDT_OGLES1 which
indicates which renderer to use for rendering. The additional parameters describe
window properties (dimensions, bit depth, and so on).

Then, set up Irrlicht so that it accesses resources through files (resources could also
be compressed in an archive) relative to /sdcard/droidblaster directory. Finally,
retrieve the video driver and the scene manager that we are often going to use:

 void GraphicsService::setup() {
 mDevice = irr::createDevice(irr::video::EDT_OGLES1,
 irr::core::dimension2d<irr::u32>(mWidth, mHeight), 32,
 false, false, false, 0);

 mDevice->getFileSystem()->addFolderFileArchive(
 "/sdcard/droidblaster/");
 mDriver = mDevice->getVideoDriver();
 mSceneManager = mDevice->getSceneManager();
...

Chapter 10

[375]

9. In setup(), prepare the scene with a light for dynamic mesh lighting (the last
parameter being the light range) and a camera positioned to simulate a top view
(values are empirical). As you can see, every object of a 3D world is considered
as a node in the scene manager, a light as well as a camera, or anything else:

...
 mSceneManager->setAmbientLight(
 irr::video::SColorf(0.85f,0.85f,0.85f));

 mSceneManager->addLightSceneNode(NULL,
 irr::core::vector3df(-150, 200, -50),
 irr::video::SColorf(1.0f, 1.0f, 1.0f), 4000.0f);

 irr::scene::ICameraSceneNode* lCamera =
 mSceneManager->addCameraSceneNode();
 lCamera->setTarget(
 irr::core::vector3df(mWidth/2, 0.0f, mHeight/2));
 lCamera->setUpVector(irr::core::vector3df(0.0f, 0.0f, 1.0f));
 lCamera->setPosition(
 irr::core::vector3df(mWidth/2, mHeight*3/4, mHeight/2));
...

10. Instead of a tile map, we are going to create particles to simulate a background star
field. To do so, create a new particle system node, emitting particles randomly from
a virtual box located on top of the screen. Depending on the rate chosen, more or
less particles are emitted. The lifetime leaves enough time for particles to cross the
screen from their emission point from the top to the bottom. Particles can have
different sizes (from 1.0 to 8.0). When we are done setting up the particle emitter,
we can release it with drop():

...
 irr::scene::IParticleSystemSceneNode* lParticleSystem =
 mSceneManager->addParticleSystemSceneNode(false);
 irr::scene::IParticleEmitter* lEmitter =
 lParticleSystem->createBoxEmitter(
 // X, Y, Z of first and second corner.
 irr::core::aabbox3d<irr::f32>(
 -mWidth * 0.1f, -300, mHeight * 1.2f,
 mWidth * 1.1f, -100, mHeight * 1.1f),
 // Direction and emit rate.
 irr::core::vector3df(0.0f,0.0f,-0.25f), 10.0f, 40.0f,
 // darkest and brightest color

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Towards Professional Gaming

[376]

 irr::video::SColor(0,255,255,255),
 irr::video::SColor(0,255,255,255),
 // min and max age, angle
 8000.0f, 8000.0f, 0.0f,
 // min and max size.
 irr::core::dimension2df(1.f,1.f),
 irr::core::dimension2df(8.f,8.f));
 lParticleSystem->setEmitter(lEmitter);
 lEmitter->drop();
...

11. To finish with the star field, set up particle texture (here star.png) and graphical
properties (transparency is needed but not the Z-buffer nor lighting). When everything
is ready, you can initialize all GraphicsObjects referenced by game objects:

...
 lParticleSystem->setMaterialTexture(0,
 mDriver->getTexture("star.png"));
 lParticleSystem->setMaterialType(
 irr::video::EMT_TRANSPARENT_VERTEX_ALPHA);
 lParticleSystem->setMaterialFlag(
 irr::video::EMF_LIGHTING, false);
 lParticleSystem->setMaterialFlag(
 irr::video::EMF_ZWRITE_ENABLE, false);

 GraphicsObject::vec_it iObject = mObjects.begin();
 for (; iObject < mObjects.end() ; ++iObject) {
 (*iObject)->initialize(mSceneManager);
 }
 }
...

12. The important method of GraphicsService is update(). First, update each
GraphicsObject to refresh its position in the Irrlicht referential.

Then, run the device to process nodes (for example, to emit particles). Then draw
the scene between a call to beingScene() (with a background color set to black
here) and endScene(). Scene drawing is delegated to the scene manager and its
internal nodes.

Finally, rendered scene can be displayed on screen as usual:
...

 status GraphicsService::update() {
 GraphicsObject::vec_it iObject = mObjects.begin();
 for (; iObject < mObjects.end() ; ++iObject) {
 (*iObject)->update();
 }

Chapter 10

[377]

 if (!mDevice->run()) return STATUS_KO;
 mDriver->beginScene(true, true,
irr::video::SColor(0,0,0,0));
 mSceneManager->drawAll();
 mDriver->endScene();

 if (eglSwapBuffers(mDisplay, mSurface) != EGL_TRUE) {
 ...
 }
...

To finish with GraphicsService, implement registerObject() method:

...
 GraphicsObject::ptr GraphicsService::registerObject(
 const char* pTexture, const char* pMesh, Location* pLocation) {
 GraphicsObject::ptr lObject(new GraphicsObject(mSceneManager,
 pTexture, pMesh, pLocation));
 mObjects.push_back(lObject);
 return mObjects.back();
 }
}

The graphics module now renders scene with Irrlicht. So let's update game
entities accordingly.

13. Modify jni/Asteroid.hpp to reference a GraphicsObject instead of a sprite:

...
#include "GraphicsService.hpp"
#include "GraphicsObject.hpp"
#include "PhysicsService.hpp"
...

namespace dbs {
 class Asteroid {
 ...
 private:
 packt::GraphicsService* mGraphicsService;
 packt::TimeService* mTimeService;

 packt::GraphicsObject::ptr mMesh;
 packt::PhysicsObject::ptr mPhysics;
 };
}
#endif

Towards Professional Gaming

[378]

14. Edit jni/Asteroid.cpp counterpart to register a GraphicsObject.

When an asteroid is recreated, its spin is updated with the corresponding method.
We do not need an animation speed anymore:

...
namespace dbs {
 Asteroid::Asteroid(packt::Context* pContext) :
 mTimeService(pContext->mTimeService),
 mGraphicsService(pContext->mGraphicsService) {
 mPhysics = pContext->mPhysicsService->registerEntity(
 0X1, 0x2, 64, 1.0f);
 mMesh = pContext->mGraphicsService->registerObject(
 "rock.png", "asteroid.obj", &mPhysics->mLocation);
 }

 void Asteroid::spawn() {
 ...
 mPhysics->initialize(lPosX, lPosY, 0.0f, lVelocity);

 float lSpinSpeed = MIN_SPIN_SPEED + RAND(SPIN_SPEED_RANGE);
 mMesh->spin(0.0f, lSpinSpeed, 0.0f);
 }
 ...
}

15. Also update jni/Ship.hpp header file, as done for asteroids:

...
#include "GraphicsService.hpp"
#include "GraphicsObject.hpp"
#include "PhysicsService.hpp"
...

namespace dbs {
 class Ship {
 ...
 private:
 ...
 packt::TimeService* mTimeService;

Chapter 10

[379]

 packt::GraphicsObject::ptr mMesh;
 packt::PhysicsObject::ptr mPhysics;
 packt::PhysicsTarget::ptr mTarget;
 };
}

#endif

16. Change Ship.cpp to register a static mesh. Remove animation stuff in spawn():

...
namespace dbs {
 Ship::Ship(packt::Context* pContext) :
 ... {
 mPhysics = pContext->mPhysicsService->registerEntity(
 0x2, 0x1, 64, 0.0f);
 mTarget = mPhysics->createTarget(50.0f);
 mMesh = pContext->mGraphicsService->registerObject(
 "metal.png", "ship.obj", &mPhysics->mLocation);
 mInputService->setRefPoint(&mPhysics->mLocation);
 }

 void Ship::spawn() {
 mPhysics->initialize(mGraphicsService->getWidth() * 1 / 2,
 mGraphicsService->getHeight() * 1 / 4, 0.0f, 0.0f);
 }
 ...
}

We are almost done. Do not forget to remove references to Background in the
DroidBlaster class.

17. Before running the application, 3D meshes and textures need to be copied on the SD
Card, in /sdcard/droidblaster directory given to Irrlicht at step 8. This path may
have to be adapted depending on your device SD Card mount point (like explained
in Chapter 9, Porting Existing Libraries to Android).

Resource files are provided with this book in Chapter10/Resource.

Towards Professional Gaming

[380]

What just happened?
We have seen how to embed and reuse a 3D engine in an Android application to display 3D
graphics. If you run DroidBlaster on your Android device, you should obtain the following
result. Asteroids look nicer in 3D and the star field gives a simple and nice depth impression:

Irrlicht main entry point is the IrrlichtDevice class, from which we have been able to
access anything in the engine, few of them are as follows:

 � IVideoDriver, which is a shell around the graphics renderer, managing graphics
resources, such as textures

 � ISceneManager, which manages the scene through a hierarchical tree of nodes

In other words, you draw a scene using the video driver and indicate the entities to display,
their position, and properties through the scene manager (which manages a 3D world
through nodes).

Memory management in Irrlicht

Internally, Irrlicht uses reference counting to manage object lifetime
properly. The rule of thumb is simple: when a factory method contains
create (for example, createDevice()) in its name, then there
must be a matching call to drop() to release resources.

Chapter 10

[381]

More specifically, we have used mesh nodes to display ship and asteroids, the later being
animated through an animator. We have used a simple rotation animator but more are
provided (to animate objects over a path, for collisions, and so on).

3D modeling with Blender

The best open source 3D authoring tool nowadays is Blender.
Blender can model meshes, texture them, export them, generate
lightmaps, and many other things. More information and the
program itself can be found at http://www.blender.org/.

More on Irrlicht scene management
Let's linger a bit on the scene manager which is an important aspect of Irrlicht. As exposed
during the step-by-step tutorial, a node basically represents an object in the 3D world, but
not always a visible one. Irrlicht features many kinds of custom nodes:

 � IAnimatedMeshSceneNode: This is the most basic node. It renders a 3D mesh to
which one or more textures (for multi-texturing) can be attached. As it is stated by
its name, such a node can be animated with key frames and bones (for example,
when using Quake .md2 format).

 � IBillboardSceneNode: This displays a sprite inside a 3D world (that is, a textured
plane which always faces the camera).

 � ICameraSceneNode: This is the node through which you can see the 3D world.
Thus, this is a non-visible node.

 � ILightSceneNode: This illuminates world objects. We are talking here about
dynamic lighting, calculated on meshes per frames. This can be expensive and
should be activated only if necessary. Light-mapping, which can be described as,
an interesting technique to avoid expensive light calculation.

 � IParticleSceneNode: This emits particles like we have done to simulate a
star field.

 � ITerrainSceneNode: This renders an outdoor terrain (with hills, moutains, …)
from an heightmap. It provides automatic Level of Detail (or LOD) handling for
depending on the distance of the terrain chunk.

Nodes have a hierarchical structure and can be attached to a parent. Irrlicht also provides
some spatial indexing (to cull meshes quickly) such as Octree or BSP to cull meshes
in complex scenes. Irrlicht is a rich engine and I encourage you to have a look at its
documentation available at http://irrlicht.sourceforge.net/. Its forum is
also quite active and helpful.

Towards Professional Gaming

[382]

Summary
This chapter demonstrated the re-usability possibilities offered by the Android NDK. It
is a step forward to the creation of the professional applications with an emphasize on
something essential in this fast-moving mobile world: productivity.

More specifically, we saw how to simulate a physical world by porting Box2D and how to
display 3D graphics with the existing engine, Irrlicht. We highlighted the path towards the
creation of professional applications using the NDK as a leverage. But do not expect all
C/C++ libraries to be ported so easily.

Talking about paths, we are almost at the end. The next, and last, chapter introduces
advanced techniques to debug and troubleshoot NDK applications and make you fully
prepared for Android development.

11
Debugging and Troubleshooting

This introduction to the Android NDK would not be complete without approaching
some more advanced topics: debugging and troubleshooting code. Indeed, C/C++
are complex languages that can fail in many ways.

I will not lie to you: NDK debugging features are rather rubbish yet. It is often
more practical and fast to rely on simple log messages. This is why debugging
is presented in this last chapter. But still, a debugger can save quite some time
in complex programs or even worse... crashing programs! But even in that case,
there exist alternative solutions.

More specifically, we are going to discover how to do the following:

 � Debug native code with GDB

 � Interpret a stack trace dump

 � Analyze program performances with GProf

Debugging with GDB
Because Android NDK is based on the GCC toolchain, Android NDK includes GDB, the GNU
Debugger, to allow starting, pausing, examining, and altering a program. On Android and
more generally on embedded devices, GDB is configured in client/server mode. The program
runs on a device as a server and a remote client, the developer's workstation connects to it
and sends debugging commands as for a local application.

GDB itself is a command-line utility and can be cumbersome to use manually. Hopefully,
GDB is handled by most IDE and especially CDT. Thus, Eclipse can be used directly to add
breakpoints and inspect a program, only if it has been properly configured before!

Debugging and Troubleshooting

[384]

Indeed, Eclipse can insert breakpoints easily in Java as well as C/C++ source files by clicking
in the gutter, to the text editor's left. Java breakpoints work out of the box thanks to the ADT
plugin, which manages debugging through the Android Debug Bridge. This is not true for CDT
which is naturally not Android-aware. Thus, inserting a breakpoint will just do nothing unless
we manage to configure CDT to use the NDK's GDB, which itself needs to be bound to the
native Android application to debug.

Debugger support has improved among NDK releases (for example, debugging purely native
threads was not working before). Although it is getting more usable, in NDK R5 (and even
R7), situation is far from perfect . But, it can still help! Let's see now concretely how to debug
a native application.

Time for action – debugging DroidBlaster
Let's enable debugging mode in our application first:

1. The first important thing to do but really easy to forget is to activate the
debugging flag in your Android project. This is done in the application manifest
AndroidManifest.xml. Do not forget to use the appropriate SDK version for
native code:

<?xml version="1.0" encoding="utf-8"?>
<manifest ...>
 <uses-sdk android:minSdkVersion="10"/>
 <application ...
 android:debuggable="true">
 ...

2. Enabling debug flag in manifest automatically activates debug mode in native code.
However, APP_OPTIM flag also controls debug mode. If it has been manually set in
Android.mk, then check that its value is set to debug (and not release) or simply
remove it:

APP_OPTIM := debug

First, let's configure the GDB client that will connect to the device:

3. Recompile the project. Plug your device in or launch the emulator. Run and leave your
application. Ensure the application is loaded and its PID available. You can check it by
listing processes using the following command. One line should be returned:

$ adb shell ps |grep packtpub

Chapter 11

[385]

4. Open a terminal window and go to your project directory. Run the ndk-gdb command
(located in $ANDROID_NDK folder, which should already be in your $PATH):

$ ndk-gdb

This command should return no message and create three files in obj/local/
armeabi:

 � gdb.setup: This is a configuration file generated for GDB client.

 � app_process: This file is retrieved directly from your device. It is a system
executable file (that is, Zygote, see Chapter 2, Creating, Compiling, and
Deploying Native Projects), launched when system starts up and forked to
start a new application. GBD needs this reference file to find its marks. It is
in some way the binary entry point of your app.

 � libc.so: This is also retrieved from your device. It is the Android standard
C library (commonly referred as bionic) used by GDB to keep track of all the
native threads created during runtime.

Append –verbose flag to have a detailed feedback on what
ndk-gdb does. If ndk-gdb complains about an already running
debug session, then re-execute ndk-gdb with the –force flag.
Beware, some devices (especially HTC ones) do not work in debug
mode unless they are rooted with a custom ROM (for example,
they return a corrupt installation error).

5. In your project directory, copy obj/local/armeabi/gdb.setup and name it
gdb2.setup. Open it and remove the following line which requests GDB client to
connect to the GDB server running on the device (to be performed by Eclipse itself):

target remote :5039

6. In the Eclipse main menu, go to Run | Debug Configurations... and create a new
Debug configuration in the C/C++ Application item called DroidBlaster_JNI. This
configuration will start GDB client on your computer and connect to the GDB Server
running on the device.

7. In the Main tab, set:

 � Project to your own project directory (for example, DroidBlaster_
Part8-3).

Debugging and Troubleshooting

[386]

 � C/C++ Application to point to obj/local/armeabi/app_process using
the Browse button (you can use either an absolute or a relative path).

8. Switch launcher type to Standard Create Process Launcher using the link Select
other... at the bottom of the window:

Chapter 11

[387]

9. Go to the debugger file and set:

 � Debugger type to gdbserver.

 � GDB debugger to ${ANDROID_NDK}/toolchains/arm-linux-
androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-
androideabi-gdb.

 � GDB command file to point to the gdb2.setup file located in obj/
local/armeabi/ (you can use either an absolute or a relative path).

Debugging and Troubleshooting

[388]

10. Go to the Connection tab and set Type to TCP. Default value for Host name or IP
address and Port number can be kept (localhost d 5039).

Now, let's configure Eclipse to run GDB server on the device:

11. Make a copy of $ANDROID_NDK/ndk-gdb and open it with a text editor.
Find the following line:

$GDBCLIENT -x `native_path $GDBSETUP`

Comment it because GDB client is going to be run by Eclipse itself:

#$GDBCLIENT -x `native_path $GDBSETUP`

12. In the Eclipse main menu, go to Run | External Tools | External Tools
Configurations... and create a new configuration DroidBlaster_GDB.
This configuration will launch GDB server on the device.

13. In the Main tab, set:

 � Location pointing to our modified ndk-gdb in $ANDROID_NDK. You can use
Variables... button to define Android NDK location in a more generic way
(that is, ${env_var:ANDROID_NDK}/ndk-gdb).

 � Working directory to your application directory location (for example,
${workspace_loc:/DroidBlaster_Part8-3})

Chapter 11

[389]

 � Optionally, set the Arguments textbox:

 � –-verbose: To see in details what happens in the Eclipse console.

 � –force: To kill automatically any previous session.

 � –start: To let GDB Server start the application instead of getting attached
to the application after it has been started. This option is interesting if you
debug native code only and not Java but it can cause troubles with the
emulator (such as to leave the back button).

We are done with configuration.

14. Now, launch your application as usual (as shown in Chapter 2, Creating, Compiling,
and Deploying Native Projects).

15. Once application is started, launch the external tool configuration DroidBlaster
GDB which is going to start GDB server on the device. GDB server receives debug
commands sent by the remote GDB client and debugs your application locally.

Debugging and Troubleshooting

[390]

16. Open jni/DroidBlaster.cpp and set a breakpoint on the first line of onStep()
(mTimeService->update()) by double-clicking on the gutter on the text editor's
left (or right-clicking and selecting Toggle breakpoint).

17. Finally, launch DroidBlaster JNI C/C++ application configuration to start GDB client.
It relays debug commands from Eclipse CDT to GDB server over a socket connection.
From the developer's point of view, this is almost like debugging a local application.

What just happened?
If set up properly, application freezes after a few seconds and Eclipse focuses into the break-
pointed line. It is now possible to step into, step out, step over a line of code or resume
application. For assembly-addict, an instruction stepping mode can also be activated.

Now, enjoy the benefit of this modern productivity tool, that is, a debugger. However, as you
are going or maybe are already experiencing, beware that debugging on Android is rather
slow (because it needs to communicate with the remote Android device) and somewhat
unstable though it works well most of the time.

Chapter 11

[391]

If the configuration process is a bit complicated and tricky, the same goes for the launch of
a debug session. Remember the three necessary steps:

1. Start the Android application (whether from Eclipse or your device).

2. Then, launch GDB server on the device (that is, the DroidBlaster_GDB configuration
here) to attach it to the application locally.

3. Finally, start GDB client on your computer (that is, the DroidBlaster_JNI
configuration here) to allow CDT to communicate with the GDB server.

4. Optionally, start the GDB server with the –start flag to make it launch the
application itself and omit the first step.

Beware gdb2.setup may be removed while cleaning your
project directory. When debugging stops working, this should
be the second thing to check, after making sure that ndk-gdb
is up and running.

However, there is an annoying limitation about this procedure: we are interrupting the
program while it is already running. So how to stop on a breakpoint in initialization code
and debug it (for example in jni/DroidBlaster.cpp on onActivate())? There are
two solutions:

 � Leave your application and launch the GDB client. Android does not manage
memory as it is in Windows, Linux, or Mac OS X: it kills applications only when
memory is needed. Processes are kept in memory even after user leaves. As your
application is still running, GDB server remains started and you can quietly start
your client debugger. Then, just start your application from your device (not from
Eclipse, which would kill it).

Debugging and Troubleshooting

[392]

 � Take a pause when the application starts... in the Java code! However, from a fully
native application, you will need to create a src folder for Java sources and add a
new Activity class extending NativeActivity. Then you can put a breakpoint
on a static initializer block.

Stack trace analysis
No need to lie. I know it happened. Do not be ashamed, it happened to all of us... your
program crashed, without a reason! You think probably the device is getting old or Android
is broken. We all made that reflection but ninety-nine percent of the time, we are the ones
to blame!

Debuggers are the tremendous tool to look for problems in your code. But they work in real
time when programs run. They assume you know where to look for. With problems that
cannot be reproduced easily or that already happened, debuggers become sterile.

Hopefully, there is a solution: a few utilities embedded in the NDK help to analyse ARM stack
traces. Let's see how they work.

Time for action – analysing a crash dump
1. Let's introduce a fatal bug in the code. Open jni/DroidBlaster.cpp and modify

method onActivate() as follows:

...
 void DroidBlaster::onActivate() {
 ...
 mTimeService = NULL;
 return packt::STATUS_KO;
 }
...

2. Open the LogCat view (from Window | Show View | Other...) in Eclipse and then
run the application. Not pretty for a candid Android developer! A crash dump
appeared in the logs:

...
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Build fingerprint: 'htc_wwe/htc_bravo/bravo:2.3.3/...
pid: 1723, tid: 1743 >>> com.packtpub.droidblaster <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0000000c
 r0 a9df2e71 r1 40815c8d r2 7cb9c28d r3 00000000
...

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11

[393]

 ip a3400000 sp 45102830 lr 00000016 pc 80410a2c cpsr 00000030
 d0 6f466e6961476e6f d1 0000000400000390
...
 scr 20000012
 #00 pc 00010a2c /data/data/com.packtpub.droidblaster/
lib/libdroidblaster.so
 #01 pc 00009fcc /data/data/com.packtpub.droidblaster/
lib/libdroidblaster.so
...
 #06 pc 00011618 /system/lib/libc.so
code around pc:
80410a0c 00017ad4 00000000 b084b510 9b019001
...
code around lr:
stack:
 451027f0 00000000
 451027f4 45102870
 451027f8 804110f5 /data/data/com.packtpub.droidblaster/lib/
libdroidblaster.so
...

This dump contains useful information about the current program state. First it
describes the error that happened: a SIGSEGV, also known as a segmentation fault.
If you look at the faulty address, that is, 0000000c, you will see that it is close to
NULL. This is an important hint!

Then we have information about ARM register states (rX, dX, ip, sp, lr, pc, and so
on). But what we are interested in comes right after this: information about where
the program was when it got interrupted. These lines are highlighted in the extract
above and can be identified by the words pc written on the line and an hexadecimal
number after it. The latter expresses the Program Counter location, that is, which
instruction was executed when problem occurred. Note that this memory address is
relative to the containing library. With this piece of information, we know exactly on
which instruction problem occurred... in the binary code!

3. We need somehow to translate this binary address into something understandable to
a normal human being. The first solution is to disassemble completely the .so library.

Open a terminal window and go to your project directory. Then execute the
objdump command located in the executable directory of the NDK toolchain:

$ $ANDROID_NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-objdump -S

 ./obj/local/armeabi/libdroidblaster.so > ~/disassembler.dump

Debugging and Troubleshooting

[394]

4. This command disassembles the library and outputs each assembler instruction and
location accompanied with the source C/C++ code. Open the output file with a text
editor and if you look carefully, you will find the same address than the one in the
crash dump, next to pc:

...
 void TimeService::update()
 {
 10a14: b510 push {r4, lr}
 10a16: b084 sub sp, #16
 10a18: 9001 str r0, [sp, #4]
 double lCurrentTime = now();
 10a1a: 9b01 ldr r3, [sp, #4]
 10a1c: 1c18 adds r0, r3, #0
 10a1e: f000 f81f bl 10a60 <_
ZN5packt11TimeService3nowEv>
 10a22: 1c03 adds r3, r0, #0
 10a24: 1c0c adds r4, r1, #0
 10a26: 9302 str r3, [sp, #8]
 10a28: 9403 str r4, [sp, #12]
 mElapsed = (lCurrentTime - mLastTime);
 10a2a: 9b01 ldr r3, [sp, #4]
 10a2c: 68dc ldr r4, [r3, #12]
 10a2e: 689b ldr r3, [r3, #8]
 10a30: 9802 ldr r0, [sp, #8]
 10a32: 9903 ldr r1, [sp, #12]
...

5. As you can see, problem seems to occur when executing mService->update() in
jni/TimeService.cpp instruction because of the wrong object address inserted
in step 1.

6. Disassembled dump file can become quite big. For this version of droidblaster.
so, it should be around 3 MB. But it could become tenth MB, especially when
libraries such as Irrlicht are involved! In addition, it needs to be regenerated each
time library is updated.

Hoperfully, another utility named addr2line, located in the same directory as
objdump, is available. Execute the following command with the pc address at the
end, where -f shows function names, -C demangles them and -e indicates the
input library:

$ $ANDROID_NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-addr2line -f –C

 -e ./obj/local/armeabi/libdroidblaster.so 00010a2c

Chapter 11

[395]

This gives immediately the corresponding C/C++ instruction and its location in its
source file:

7. Since version R6, Android NDK provides ndk-stack in its root directory. This utility
does what we have done manually using an Android log dump. Coupled with the
ADB, which is able to display Android logs while in real time, crashes can be analyzed
without a move (except your eyes!).

Simply run the following command from a terminal window to decipher crash
dumps automatically:

$ adb logcat | ndk-stack -sym ./obj/local/armeabi

********** Crash dump: **********

Build fingerprint: 'htc_wwe/htc_bravo/bravo:2.3.3/
GRI40/96875.1:user/release-keys'

pid: 1723, tid: 1743 >>> com.packtpub.droidblaster <<<

signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0000000c

Stack frame #00 pc 00010a2c /data/data/com.packtpub.
droidblaster/lib/libdroidblaster.so: Routine update in /home/
packt/Project/Chapter11/DroidBlaster_Part11/jni/TimeService.cpp:25

Stack frame #01 pc 00009fcc /data/data/com.packtpub.
droidblaster/lib/libdroidblaster.so: Routine onStep in /home/
packt/Project/Chapter11/DroidBlaster_Part11/jni/DroidBlaster.
cpp:53

Stack frame #02 pc 0000a348 /data/data/com.packtpub.
droidblaster/lib/libdroidblaster.so: Routine run in /home/packt/
Project/Chapter11/DroidBlaster_Part11/jni/EventLoop.cpp:49

Stack frame #03 pc 0000f994 /data/data/com.packtpub.
droidblaster/lib/libdroidblaster.so: Routine android_main in /
home/packt/Project/Chapter11/DroidBlaster_Part11/jni/Main.cpp:31

...

What just happened?
We have used ARM utilities embedded in the Android NDK to locate the origin of an
application crash. These utilities constitute an inestimable help and should be considered
as your first-aid kit when a bad crash happens.

Debugging and Troubleshooting

[396]

However, if they can help you finding the "where", it is another kettle of fish to find the
"why". As you can see in the piece of code at step 4, understanding why LDR instruction
(whose goal is to load in a register, some data from memory, constants, or other registers)
fails is not trivial. This is where your programmer intuition (and possibly knowledge of
assembly code) comes into play.

More on crash dumps
For general culture, let's linger briefly on what is provided in the LogCat crash dump. A crash
dump is not dedicated only to overly talented developers or people seeing red-dressed girl in
binary code, but also to those who have a minimum knowledge of assemblers and the way
ARM processors work. The goal of this trace is to give as much information as possible on the
current state of the program at the time it crashed:

 � The first line gives the build fingerprint, which is a kind of an identifier indicating
the device/Android release currently running. This information is interesting when
analyzing dumps from various origins.

 � The second line indicates the PID, process identifier, which uniquely identify an
application on Unix system, and the TID, which is the thread identifier. It can be
the same as the process identifier when crash occurs on the main thread.

 � The third line shows the crash origin represented as a signal, here a classic
segmentation fault (SIGSEGV).

 � Then, processor's register values are dumped, where:

 � rX: This is an integer register.

 � dX: This is a floating point register.

 � fp (or r11): The Frame Pointer holds a fixed location on the stack during
a routine call (in conjunction with the Stack Pointer).

 � ip (or r12): The intra procedure call scratch register may be used with
some subroutine calls, for example, when the linker needs a veneer (a small
piece of code) to aim at a different memory area when branching (a branch
instruction to jump somewhere else in the memory requires an offset
argument relative to current location, allowing a branching range of a few
MB only, not the full memory).

 � sp (or r13): This is the stack pointer, which saves location of the top of
the stack.

 � lr (or r14): The link register generally saves program counter's value
temporarily to restore it later. A typical example of its use is a function
call which jumps somewhere in the code and then go back to its previous
location. Of course, several chained subroutine calls requires the link
register to be stacked.

Chapter 11

[397]

 � pc (or r15): This represents the program counter which holds the address
of next instruction to execute. Program counter is just incremented when
executing a sequential code to fetch next instruction but is altered by
branching instructions (if/else, a C/C++ function calls, and so on).

 � cpsr: The Current Program Status Register contains a few flags about the
current processor working mode and some additional bit flags for condition
codes (such as N for an operation which resulted in a negative value, Z for a 0
or equality result, and so on), interrupts, and instruction set (Thumb or ARM).

 � Crash dump also contains a few memory words around PC (that is, the block of
instructions around) and LR (for previous location).

 � Finally, a dump of the raw call stack is logged.

Just a convention

Remember that the use of registers is mainly a convention. For
example, Apple iOS uses r7 as a frame pointer instead of r12...
So always be very careful when reusing existing code!

Performance analysis
If debugging tools are still imperfect, I have to advise you that profiling tools are rather
immature... when they even work! Actually, there is no real official support from Google
for memory or performance profiler, except in the emulator. This may change soon or later.
But right now, those who like to tweak code and analyse each instruction may starve. This
is particularly true when developing with a non-developer or non-rooted phone.

Hopefully, a few solutions exist and some are coming. Let's cite the following one:

 � Valgrind: This is probably the most famous open source profiler which can monitor
not only performance but also memory and cache usage. This utility is currently
being ported to Android. With some tweaking, it is possible to make it work on a
developer or rooted phone in ArmV7 mode. It is one of the best hopes for Android.

 � Android-NDK-Profiler: This is a port of Gprof on Android. It is a simple and basic
profiler which works by instrumenting and sampling code at runtime. It is the
simplest solution to profile performance and does not require any specific hardware.

 � OProfile is a system-wide profiler which inserts its code in the system kernel (which
thus needs to be updated) to collect profiling data with a low overhead. It is more
complicated to install and requires a developer or rooted phone to work but works
quite well and does instrument code. It is a much better solution to profile code for
free if you have proper hardware at your disposal.

Debugging and Troubleshooting

[398]

 � The commercial development suite ARM DS-5 and its StreamLine performance
analyzer may become an interesting option.

 � Open GL ES Profilers from manufacturers: Adreno Profiler for Qualcomm, PerfHUD
ES for NVidia and PVRTune for PowerVR. These profilers are hardware-specific. The
choice depends on your phone. These tools are however essential to see what is
happening under the GLES hood.

We are not going to evoke the emulator profiler here because of its inability to emulate
programs properly at an effective speed (especially when using GLES). But know that it exists.
Instead, we are now going to discover the interesting Android-NDK-Profiler, an alternative
Gprof-based profiler ported on Android by Richard Quirk (see http://quirkygba.
blogspot.com/ for more information). Android-NDK-Profiler requires a device running
at least Android Gingerbread.

Project DroidBlaster_Part8-3 can be used as a starting point for
this part. The resulting project is provided with this book under
the name DroidBlaster_Part11.

Time for action – running GProf
Let's try to profile our own application code:

1. Open a browser window and navigate to the Android-NDK-Profiler homepage at
http://code.google.com/p/android-ndk-profiler/. Go to the Downloads
section and save the latest release (3.1 at the time of writing) on your computer.

2. Unzip archive in $ANDROID_NDK/sources/android-ndk-profiler. This archive
contains an Android Makefile and two libraries: one for Arm V5 and one for Arm V7.

3. Turn Android-NDK-Profiler into a full android module (see highlighted lines). The main
missing point is the export of prof.h file that we are going to include in our code.

This Makefile uses the $TARGET_ARCH_ABI variable to select the right library
version (Arm V5/V7) automatically according to what is defined in Application.
mk (APP_ABI= armeabi, armeabi-v7a). It also filters some optimization options
which could interfere with it (for Thumb as well as ARM code):

LOCAL_PATH:= $(call my-dir)

TARGET_thumb_release_CFLAGS := $(filter-out -ffunction-
sections,$(TARGET_thumb_release_CFLAGS))

Chapter 11

[399]

TARGET_thumb_release_CFLAGS := $(filter-out -fomit-frame-
pointer,$(TARGET_thumb_release_CFLAGS))
TARGET_CFLAGS := $(filter-out -ffunction-sections,$(TARGET_
CFLAGS))

include libandprof.a in the build
include $(CLEAR_VARS)
LOCAL_MODULE := andprof
LOCAL_SRC_FILES := $(TARGET_ARCH_ABI)/libandprof.a
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/
include $(PREBUILT_STATIC_LIBRARY)

4. Android-NDK-Profiler can now be included in a normal native library. Let's append
it to DroidBlaster_Part8-3 (you can use any other version you want).

Add the optimization filter like done in profiler's own Makefile. Since compilation
is done in thumb mode by default, keep only related lines. Then include -pg
parameter which inserts additional instruction necessary to the profiler. Finally,
include profiler module as usual:

LOCAL_PATH := $(call my-dir)

TARGET_thumb_release_CFLAGS := $(filter-out -ffunction-
sections,$(TARGET_thumb_release_CFLAGS))
TARGET_thumb_release_CFLAGS := $(filter-out -fomit-frame-
pointer,$(TARGET_thumb_release_CFLAGS))
TARGET_CFLAGS := $(filter-out -ffunction-sections,$(TARGET_
CFLAGS))

include $(CLEAR_VARS)

LS_CPP=$(subst $(1)/,,$(wildcard $(1)/*.cpp))
LOCAL_CFLAGS := -DRAPIDXML_NO_EXCEPTIONS -pg
LOCAL_MODULE := droidblaster
LOCAL_SRC_FILES := $(call LS_CPP,$(LOCAL_PATH))
LOCAL_LDLIBS := -landroid -llog -lEGL -lGLESv1_CM -lOpenSLES

LOCAL_STATIC_LIBRARIES := android_native_app_glue png andprof

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)
$(call import-module,libpng)
$(call import-module,android-ndk-profiler)

Debugging and Troubleshooting

[400]

5. To run the profiler, we need to include a profiler start up and shut down function
in the code. Open jni/Main.cpp and insert them at the beginning and end
of android_main(). Set sample frequency to 6000 thanks to a predefined
environment variable CPUPROFILE_FREQUENCY:

...
#include <cstdlib>
#include <prof.h>

void android_main(struct android_app* pApplication)
{
 setenv("CPUPROFILE_FREQUENCY", "60000", 1);
 monstartup("droidblaster.so");

 // Run game services and event loop.
 ...
 lEventLoop.run(&lDroidBlaster, &lInputService);

 moncleanup();
}

6. Finally, allow application to write on a storage in AndroidManifest.xml:

<?xml xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.packtpub.droidblaster" android:versionCode="1"
 android:versionName="1.0">
 ...
 <uses-permission
 android:name="android.permission.WRITE_EXTERNAL_
STORAGE"/>
</manifest>

7. Recompile DroidBlaster project. It now includes all the necessary instructions
to start profiler and generate profiling information.

8. Run project on a device. Log messages are generated between profiler startup
and shutdown. Make sure application completely dies by pressing the back button,
a pause being not sufficient:

INFO/threaded_app(3553): Start: 0x97270
INFO/PROFILING(3553): Profile droidblaster.so 80400000-8043d000: 0
INFO/PROFILING(3553): 0: parent: carrying on
INFO/PACKT(3553): Creating GraphicsService
…

Chapter 11

[401]

INFO/PACKT(3553): Exiting event loop
INFO/PROFILING(3553): parent: moncleanup called
INFO/PROFILING(3553): 1: parent: done profiling
INFO/PROFILING(3553): writing gmon.out
INFO/PROFILING(3598): child: finished monitoring
INFO/PACKT(3553): Destructing DroidBlaster

9. After application is terminated, retrieve file gmon.out generated in the /sdcard
folder of your device (depending on your device, storage may be mounted in
another directory) and save it in your project directory. Do not forget to activate
USB Mass Storage mode to see files from your computer.

10. From a terminal window located in your project directory where gmon.out
is saved, open a terminal and run gprof analyser located beside NDK ARM
toolchain binaries:

$ ANDROID_NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-gprof obj/local/armeabi/
libdroidblaster.so

This command generates a textual output that you can redirect to a file. It contains
all profiling results. The first part (flat profile) is the consolidated result with top
functions which seem to take time. The second part is the raw index from which the
first part is calculated:

Flat profile:

Each sample counts as 1.66667e-05 seconds.

 % cumulative self self total

 time seconds seconds calls us/call us/call name

 18.64 0.00 0.00 png_read_
filter_row

 13.56 0.00 0.00 15847 0.01 0.02 packt::Graph
icsService::update()

 10.17 0.00 0.00 15847 0.01 0.01 packt::Graph
icsSprite::draw(float)

 10.17 0.00 0.00 1 100.00 566.67
packt::EventLoop::run(...)

 8.47 0.00 0.00 15847 0.01 0.03
dbs::DroidBlaster::onStep()

 5.08 0.00 0.00 15847 0.00 0.00
packt::GraphicsTileMap::draw()

...

Debugging and Troubleshooting

[402]

index % time self children called name

 <spontaneous>

[1] 57.6 0.00 0.00 android_main [1]

 0.00 0.00 1/1
packt::EventLoop::run(...) [2]

 0.00 0.00 1/1 packt::EventLoop:
:EventLoop(android_app*) [469]

 0.00 0.00 1/1 packt::Sensor::Se
nsor(packt::EventLoop&, int) [466]

 0.00 0.00 1/1 packt::TimeServic
e::TimeService() [433]

 0.00 0.00 1/1 packt::GraphicsSe
rvice::GraphicsService(...) [456]

...

What just happened?
We have compiled Android-NDK-Profiler project as an NDK module and appended it to our
own project. We turned profiling on with the help of two exported methods monstartup()
and moncleanup(). The profiling result is written to gmon.out file on the SD Card (thus
requiring write access) that can be parsed by the NDK gprof utility.

The output file contains a summary for each function hit by the sampler: the flat profile.
More specifically, it indicates the following:

 � index: This identifies an entry in the index computed from and written after the
flat profile.

 � % time: This represents the fragment of time spent in the function compared to
the total program execution times.

 � cumulative seconds: This is the accumulated total time spent in the function
and all the function above in the table (using self seconds).

 � self seconds: This is the accumulated total time spent in the function itself
over its multiple execution.

 � calls: This represents the total number of calls to a function. This is the only
information which is really accurate.

 � self s/call: This is the average time spent in one execution of the function.
This column depends on sample hits and is not reliable.

 � total s/call: This is the same as self s/call but cumulated with the time
spent in sub-functions too. This column is also depends on sample hits.

Note that functions in which no apparent time is spent (which does not mean they are
never called) are not mentioned unless -z is appended to command-line options.

Chapter 11

[403]

How it works
To profile a piece code, GCC compiler instruments your code when option -pg is
appended to compilation options. Instrumentation relies on a routine named mcount()
(more formerly __gnu_mcount_nc()) which is inserted at the beginning of each function
to gather information about its caller and compute call count indicator. The role of
Android-NDK-Profiler here is to implement this routine which is not provided by the
Android NDK.

More advanced profiling information is extracted by sampling the PC counter at constant
intervals (100hz by default), in order to detect which function the program is currently
running (and derive the call stack). From a theoretical point of view, the more a function
takes time to run, the bigger is the probability that a sample hits it.

To do so, Android-NDK-Profiler creates a separate thread to collect timing information
and a new fork process to interrupt native code and record samples. To do so, it requires
the ability to attach to a parent process which only works from Android 2.3 Gingerbread.
Thus, if you see the following message in Android logs, profiling information will not get
collected accurately:

INFO/PROFILING(3588): child: could not attach 3584

GProf is a mature (not to say antic) tool which has limitations. First, GProf instrumentation
is intrusive. It affects performance and potentially cache usage which result in perturbations.
Moreover, it does not measure time spent in I/O which is often a good place to look for
bottlenecks and does not handle recursion. Finally, because it uses sampling and makes
some assumption about code (for example, a function is assumed to use more or less the
same time to run for each call), GProf does not give very accurate results and needs many
samples to increase accuracy. This makes it difficult to analyze results properly, when they
are not misleading.

Although it is far from perfect, GProf is still easy to set up and can be a good start in profiling.

ARM, thumb, and NEON
Compiled native C/C++ code on current Android ARM devices follows an Application Binary
Interface (ABI). An ABI specifies the binary code format (instruction set, calling conventions,
and so on). GCC translates code into this binary format. ABIs are thus strongly related to
processors. The target ABI can be selected in the Application.mk file with the property
APP_ABI. There exist four main ABIs supported on Android:

 � thumb: This is the default option which should be compatible with all ARM devices.
Thumb is a special instruction set which encodes instructions on 16-bit instead of 32
to improve code size (useful for devices with constrained memory). The instruction
set is severely restricted compared to ArmEABI.

Debugging and Troubleshooting

[404]

 � armeabi (Or Arm v5): This should run on all ARM devices. Instructions are encoded
on 32-bit but may be more concise than Thumb code. Arm v5 does not support
advanced extensions like floating point acceleration and is thus slower than Arm v7.

 � armeabi-v7a: This supports extensions such as Thumb-2 (similar to Thumb but with
additional 32-bit instructions) and VFP plus some optional extensions such as NEON.
Code compiled for Arm V7 will not run on Arm V5 processors.

 � x86: This is for PC-like architectures (that is, Intel/AMD). There is no official
device that existed at the time this book was written but an unofficial open
source initiative exists.

It is possible to compile code, for example, for Arm V5 and V7 at the same time, the most
appropriate binaries are selected at installation time.

Android provides a cpu-features.h API (with android_
getCpuFamily() and android_getCpuFeatures()
methods) to detect available features on the host device at
runtime. It helps in detecting the CPU (ARM, X86) and its
capabilities (ArmV7 support, NEON, VFP).

Performance is one of the main criteria to develop with the Android NDK. To achieve this,
ARM created a SIMD instruction set (acronym Single Instruction Multiple Data, that is, process
several data in parallel with one instruction) called NEON which has been introduced along
with the VFP (the floating point accelerated unit).

NEON is not available on all chips (for example, Nvidia Tegra 2 does not support it) but is
quite popular in intensive multimedia application. They are also a good way to compensate
the weak VFP unit of some processors (for example, Cortex-A8).

NEON code can be written in a separate assembler file, in a
dedicated asm volatile block with assembler instructions or
in a C/C++ file or as intrinsics (NEON instructions encapsulated in a
GCC C routine). Intrinsics should be used with much care as GCC is
often unable to generate efficient machine code (or requires lots of
tricky hints). Writing real assembler code is generally advised.

NEON and modern processors are not easy to master. The Internet is full of examples to get
inspiration from. For example, have a look at code.google.com/p/math-neon/ for an
example of math library implemented with NEON. Reference technical documentation can
be found on the ARM website at http://infocenter.arm.com/.

Chapter 11

[405]

Summary
In this last chapter, we have seen advanced techniques to troubleshoot bugs and performance
issues. More specifically, we have debugged our code with the native code debugger, which is
slow and complex to set up but is a real life saver.

We have also executed NDK Arm utilities to decipher crash dumps. They are the ultimate
solution when a crash already occurred.

Finally, we have profiled our code to analyze performances with GProf. This solution is
limited but can give an interesting overview.

With these tools in hand, you are now ready to venture out into the NDK jungle. And if
you are adventurous, you can dive head first in ARM assembler to improve performances
drastically . However, beware this is useful only when targeting the right pieces of code
(the famous 20%!). Do not forget that optimizing a bad algorithm will never make it good,
and a good algorithm even without optimization can make a huge difference.

Afterword
Throughout this book, you have learnt the essentials to get started and overlooked the paths
to follow to go further. You now know the key elements to tame these little powerful monsters
and start exploiting their full power. However, there is still a lot to learn, but the time and space
lacks. Anyway, the only way to master a technology is to practice and practice again. I hope you
enjoy the journey and that you feel armed up for the mobile challenge. So my best advice now
is to gather your fresh knowledge and all your amazing ideas, beat them up in your mind and
bake them with your keyboard!

Where we have been
We have seen concretely how to create native projects with Eclipse and the NDK. We have
learnt how to embed a C/C++ library in Java applications through JNI and how to run native
code without writing a line of Java.

We have tested multimedia capabilities of the Android NDK with OpenGL ES and OpenSL ES,
which are becoming a standard in mobility (of course, after omitting Windows Mobile). We
have even interacted with our phone input peripherals and apprehended the world through
its sensors.

Moreover, the Android NDK is not only related to performance but also to portability. Thus,
we have reused the STL framework, its best companion Boost, and ported third-party libraries
almost seamlessly. We now have powerful 3D and physics engines in our hands!

Finally, we have seen how to debug native code (and that was not so simple) and analyze
program crashes and performance.

Afterword

[408]

Where you can go
Eclipse with ADT and CDT plugins is great. But their integration is not absolutely natural.
Debugging operations are a bit complex and not everybody will be satisfied with the lack
of advanced profiling tools. But some alternatives are emerging, such as the Nvidia Tegra
Development Pack (http://developer.nvidia.com/tegra-android-development-
pack) for glad Tegra device owners. ARM DS-5 (http://www.arm.com/products/
tools/software-tools/ds-5/) can also become an interesting option for professional
development. An open source initiative exists to bring Android features to Visual Studio
(http://code.google.com/p/vs-android/). The Android ecosystem is full of life and
quickly evolving.

A subject that is partially outside the scope of this book is the emulation of application on a
PC. Here I am not talking about the Android emulator, which runs an Android OS image on a
system virtualizer, I am talking about native emulation, that is, running an application directly
on your Linux, Mac, or Windows computer. This is the best solution to make all your usual
programming tools available, Valgrind (to analyze memory leaks) being probably the most
useful example. Have a look at the PowerVR SDK (http://www.imgtec.com/powervr/
insider/) to emulate OpenGL ES on your PC. Obviously, there is no real alternative to
emulate the native Android framework. This approach works quite well but requires a real
design effort to keep apart common code from OS-specific code. But this is worth the effort
as you can definitely gain some productivity and, even better, ease the porting of your C/C++
to other OS (you know what I am talking about!).

We have ported a few libraries, but a lot more are out there and waiting to get ported.
Actually, many of them work without the need of a code revamp. They just need to be
recompiled. For those interested in 3D physics, Bullet (http://bulletphysics.org/)
is an example of the engine that can be ported right away in a few minutes. The C/C++
ecosystem has existed for several decades now and is full of richness. Some libraries have
been specifically designed for mobile devices. A great framework that you should definitely
have a look at if you want to write mobile games, is Unity (http://unity3d.com/).

And if you really want to get your hand dirty in the guts of Android, I encourage you to have
a look at the Android platform code itself, available at http://source.android.com/.
It is not a piece of cake to download, compile, or even deploy it, but this is the only way to
get an in-depth understanding of Android internals and sometimes the only way to find out
where these annoying bugs are coming from!

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Afterword

[409]

Where to find help
The Android community is really active and following are the places to find useful information:

 � The Android Google group (http://groups.google.com/group/android-
developers) and the Android NDK group (http://groups.google.com/
group/android-ndk) where you can get some help, sometimes from the Android
team member.

 � The Android Developer BlogSpot (http://android-developers.blogspot.
com/) where you can find fresh and official information about Android development.

 � Google IO (http://www.google.com/events/io/2011, 2009 and 2010 sessions
are also available) for great Android video talks performed by Google's engineers.

 � Google Code (http://code.google.com/hosting/) for lots of NDK example
applications. Just type NDK in the search engine and let Google be your friend.

 � The NVidia Developer Centre (http://developer.nvidia.com/category/
zone/mobile-development) for Tegra but also general resources about Android
and the NDK.

 � The Qualcomm Developer Network (https://developer.qualcomm.com/) to
find information about the NVidia main competitor. The Qualcomm's Augmented
Reality SDK is especially promising.

 � Anddev (http://www.anddev.org/) is an active Android forum with an
NDK section.

 � Stack Overflow (http://stackoverflow.com/) is not dedicated to Android but
here you can ask questions and get accurate answers.

 � Marakana Website (http://marakana.com/tutorials.html) provides many
interesting resources about Android and especially video talks.

 � Packt Website (http://www.packtpub.com/), a bit of self-promotion for the
many resources available there about Android, Irrlicht, and open source software.

Afterword

[410]

This is just the beginning
Creating an application is only part of the path. Publishing and selling is another. This is, of
course, outside the scope of this book but handling fragmentation and testing compatibility
with various target devices can be a real difficulty that needs to be taken seriously. Beware,
problems start occurring when you start dealing with hardware specificities (and there are
lots of them) like we have seen with input devices. These issues are, however, not specific
to the NDK. If incompatibilities exist in a Java application, then native code will not do
better. Handling various screen sizes, loading appropriately sized resources, and adapting
to device capabilities are things that you will eventually need to deal with. But that should
be manageable.

In few words, there are a lot of marvellous but also painful surprises to discover. But Android
and mobility is still a fallow land that needs to be modelled. Look at the evolution of Android
from its earliest version to the latest one to be convinced. Revolution does not take place
every day so do not miss it!

Good luck.

Index
Symbols
-02 option 330
3D engine

about 353
features 369, 370
running, on Android 369, 370

3D graphics
rendering, with Irrlicht 370-381

3D modeling, Blender 381
3DS 369
-force flag 385
-verbose flag 385

A
AAsetMAnager opaque pointer 196
AAsset_close() 197
AAssetManager_open() 197
AASSET_MODE_BUFFER 197
AASSET_MODE_RANDOM 197
AASSET_MODE_STREAMING 197
AASSET_MODE_UNKNOWN mode 197
AAsset_read() 197
ABI

about 403
armeabi 404
armeabi-v7a 404
thumb 403
x86 404

accelerometer 273
activate() method 159
activityCallback() 156, 160

activity events
handling 155-166

ActivityHandler interface 162
Activity Manager 48
activity state

saving 171
ADB shell

about 52
flags 52
options 52

addr2line utility 394
Adreno Profiler 398
ADT plugin 33, 59
AInputEvent_getSource() method 286
AInputEvent_getType() method 286
AInputEvent structure 276
AInputQueue_attachLooper() 169
AInputQueue_detachLooper() 169
AKeyEvent_getAction() 291, 296
AKeyEvent_getDownTime() 296
AKeyEvent_getFlags() 296
AKeyEvent_getKeyCode() 291, 296
AKeyEvent_getMetaState() 296
AKeyEvent_getRepeatCount() 296
AKeyEvent_getScanCode() 296
allocateEntry() 80, 94
ALooper_addFd() 169
ALooper_pollAll() behavior 158
ALooper_pollAll() method 154, 169
ALooper_prepare() 169
am command 48
AMotionEvent_getAction() 287, 296
AMotionEvent_getDownTime() 287

[412]

AMotionEvent_getEventTime() 287
AMotionEvent_getHistoricalX() 287
AMotionEvent_getHistoricalY() 287
AMotionEvent_getHistorySize() 287
AMotionEvent_getPointerCount() 287
AMotionEvent_getPointerId() 287
AMotionEvent_getPressure() 287
AMotionEvent_getSize() 287
AMotionEvent_getX() 281, 287, 296
AMotionEvent_getY() 281, 287, 296
ANativeActivity_finish() method 158
ANativeActivity_onCreate() method 166-168
ANativeActivity structure 167
ANativeWindow_Buffer structure 176
ANativeWindow_lock() 177
ANativeWindow_setBuffersGeometry() 176
ANativeWindow_unlockAndPost() method 177
Android

3D engine, running 369, 370
Boost, compiling on 328
device sensors, probing 298, 299
hardware sensors 273
input peripherals 273
interacting with 274
software keyboard, displaying 297, 298
third-party libraries, porting to 338
touch events, handling 276-286

android_app_entry() method 169
about 170, 277
contextual information 170

android_app_write_cmd() method 167
Android debug bridge

about 51-53
file, transfering SD card from command line 53

Android Debug Bridge (ADB) 39
Android development

device, troubleshooting 42, 43
getting started 7
kit, installing, on Linux 27, 28
kit, installing on Mac OS X 20
kit, installing on Windows 12
Mac OS X, setting up 18, 19
platforms 7
software requisites 8
Ubuntu Linux, installing 22-26
Windows, setting up 8-12

Android development kits
installing, on Linux 27
installing, on Mac OS X 20
installing, on Windows 12

Android device
setting up, on Mac OS X 37-39
setting up, on Ubuntu 42
setting up, on Ubuntu Linux 39-41
setting up, on Windows 37-39

android_getCpuFamily() method 404
android_getCpuFeatures() method 404
Android Gingerbread 398
ANDROID_LOG_DEBUG 151
ANDROID_LOG_ERROR 151
ANDROID_LOG_WARN 151
android_main() method 154
Android Makefiles 65, 66, 346
AndroidManifest.xml file 384
Android.mk file 83
android_native_app_glue module 166
Android NDK

about 171, 383
Box2D, compiling 339-345
installing, on Ubuntu 28
installing, on Windows 13-16
Irrlicht, compiling 339-345

Android-NDK-Profiler 397
android_poll_source 300
android_poll_source structure 154
android project

creating, eclipse used 56
java project, initiating 56-58

Android SDK
Android virtual device, creating 33-36
emulating 33
installing, on Mac OS X 20
installing, on Ubuntu 27
installing, on Windows 13

Android SDK tools
Android debug bridge 51
exploring 51
project configuration tool 54

Application Binary Interface. See ABI
apply() method 204
APP_OPTIM flag 384
app_process file 385

[413]

ARM DS-5 398
armeabi 404
armeabi-v7a 404
ArmV7 mode 397
ArrayIndexOutOfBoundsException() 101
array types

handling 107
ASensorEventQueue_disableSensor() 305
ASensorEventQueue_enableSensor() 304
ASensorEventQueue_setEventRate() 305
ASensor_getMinDelay() 305, 311
ASensor_getName() 311
ASensor_getVendor() 311
ASensorManager_createEventQueue() 302
ASensorManager_destroyEventQueue() 302
ASensorManager_getDefaultSensor() 304
ASensorManager_getInstance() 302
asset manager 193
AttachCurrentThread() 115
AudioPlayer object 256
AudioTrack 239

B
back buffer 189
background music

playing 249
background thread

running 111-118
BeginContact() method 357-359, 366
beingScene() method 376
bionic 385
bitmaps

processing from native code 135
bitmaps, processing from native code

camera feed, decoding 136-145
BJam 328
Blender

3D modeling 381
about 381

bodies
about 353, 354
characteristics 353, 365

body definition 354
body fixture 356

Boost
about 328
compiling, on Android 328
embedding, in DroidBlaster 328-336
threading with 337, 338
URL, for documentation 336
URL, for downloading 328

boost directory 330, 332
BOOST_FILESYSTEM_VERSION option 330
BOOST_NO_INTRINSIC_WCHAR_T option 330
Box2D

about 338, 353
Box2Dresources 369
collision detection 366, 367
collision filtering 368, 369
collision modes 367, 368
compiling, with Android NDK 339-345
memory management 366
physics, simulating with 354-366
URL 339

Box2D 2.2.1 archive 339
Box2D body

about 365
b2Body 365
b2BodyDef 365
b2CircleShape 365
b2FixtureDef 365
b2PolygonShape 365
b2Shape 365

BSP 381
BSP format 370
bufferize() method 224, 317
bullet mode 367

C
C 96, 315
C++ 96, 315
C99 standard library 84
callback_input() 276
callback_read() 198, 200, 203
callback_recorder() 269
callbacks 133, 134, 268
callback_sensor() 300
CallBooleanMethod() 131

[414]

CallIntMethod() 130
CallStaticVoidMethod(). 130
CallVoidMethod() 130
camera feed

decoding, from native code 136-144
cat command 52
C/C++

java, interfacing with 60
C++ class 184
C code

calling, from java 60
cd command 52
CDT 383
chmod command 52
chrominance components 143
clamp() method 141
class loader 115
clear() method 190
clock_gettime() 173, 181
CLOCK_MONOTONIC 181
CMake 350
collision detection 366, 367
collision filtering 368, 369
collision groups 369
collision modes 367, 368
Color data type 85
Color() method 141
com.example.hellojni 48
command

executing 56
com_myproject_MyActivity.c 62
Continuous Collision Detection (CCD) 367
continuous integration 55
Cortex-A8 404
crash dump

about 396, 397
analysing 392-395

createDevice() method 374
CreateOutputMix() method 243
createTarget() method 354, 356
Crystax NDK

about 315
URL 315

Current Program Status Register 397
Cygwin

about 17
char return 18

D
Dalvik

introducing 59
damping 366
deactivate() method 159, 302
debuggers 392
decode() method 141
DeleteGlobalRef() 88, 106, 117
DeleteLocalRef() 95, 106
density property 353, 365
descript() method 249, 317
DetachCurrentThread() 120
device

turning, into joypad 300-308
device sensors

probing 298, 299
Dex 60
DirectX 338
Discrete Collision Detection 367
display

connecting 186
dmesg command 52
D-Pad

about 288
detecting 288

drawCursor() method 190
DroidBlaster

about 147, 274
Boost, embedding 328-336
debugging 384-392
Gnu STL, embedding 316-326
launching 219
project structure 275

DroidBlaster.hpp file
creating 162

DroidBlaster project
creating 148

drop() method 375
dumpsys command 52
dx tool 60

E
EASTL 327
Eclipse

about 384
configuring 388, 389

[415]

installing 29-32
native code, compiling from 67
setting up 29

Eclipse perspectives 56
Eclipse project

setting up 149
Eclipse views 56
EGL 184
eglChooseConfig() 187
eglGetConfigAttrib() 187
eglGetConfigs() 187
eglGetDisplay() 186
eglInitialize() 186
eglSwapBuffers() 189
elapsed() method 173
Embedded-System Graphics Library. See EGL
EMF_LIGHTING flag 372
EndContact() method 366
endianness 326
endScene() method 376
event callback 266-268
EventLoop class 156
EventLoop.cpp 157
EventLoop object 160
ExceptionCheck() 102, 106
ExceptionDescribe() 106
ExceptionOccured() 106
exceptions

raising, from store 92-94
throwing, from native code 91

F
features, 3D engine 369, 370
finalizeStore() method 111, 118
FindClass() method 122, 133
findEntry() method 79
fixed pipeline 183
fixture 354
forces 366
framebuffer 187
friction property 353, 365
front buffer 189
function inlining 346
Function object 98

G
GCC

about 404
optimization levels 346
URL, for optimization options 346

GCC 3.x 336
GCC 4.x 336
GCC, optimization levels

-O0 346
-O1 346
-O2 346
-O3 346
-Os 346

GCC toolchain 383
GDB

about 383
native code, debugging 384-392

gdb.setup file 385
geometrical shape 353
GetArrayLength() 102
getColor() method 88
getExternalStorageState() method 320
getHorizontal() method 279
GetIntArrayRegion() 102, 106
getInteger() 81
getJNIEnv() method 113, 115
getMyData() 60
GetObjectArrayElement() 104, 105
GetObjectClass() method 133
GetPrimitiveArrayCritical() 142
GetStringUTFChars() method 79, 82, 84
gettimeofday() 181
getVertical() method 279
glBindBuffer() 229
glBindTexture() 203, 212
glBufferData() 229
glClear() 189
glClearColor() 189
glColor4f() 216
glDeleteTextures() 204
glDrawElements() 231
glDrawTexfOES() 212
glDrawTexOES() 219
glEnable() 220

[416]

glEnableClientState() 231
glGenBuffers() 229
glGenTextures() 203
GL_LINEAR 203
global references 88
GL_OES_draw_texture 209
glPushMatrix() 231
glTexCoordPointer() 231
glTexParameteriv() 212
GL_TEXTURE_CROP_RECT_OES 212
glTranslatef() 231
glVertexPointer() 231
GNU Debugger 383
GNU STL

about 316
embedding, in DroidBlaster 316-326

Google Guava 97
Google SparseHash 327
Gprof

about 397
running 398-402
working 403

gprof utility 402
GraphicsObject 370
GraphicsService 232
GraphicsSprite.cpp 212
GrapicsService lifecycle

about 184
start() 184
stop() 185
update() 185

gravity sensor 274
gyroscope 273

H
HDPI (High Density) screen 36
hellojni sample

compiling 46-49
deploying 46-49

hybrid java/C/C++ project
creating 67-70

I
IAnimatedMeshSceneNode 381
IBillboardSceneNode 381
ICameraSceneNode 381

ILightSceneNode 381
import-module directive 336
index buffer 220
info() method 151
initialize() method 354
initializeStore() method 111
int32_t 84
interface 248
interface ID 248
interfaces 241
intra procedure call scratch register 396
IParticleSceneNode 381
Irrlicht

about 338
compiling, with Android NDK 339-345
3D graphics, rendering with 370-381
memory management 380
scene management 381

IrrlichtDevice class 380
ISceneManager 380
isEntryValid() 79, 94
IsTouching() method 368
ITerrainSceneNode 381
IVideoDriver 380

J
Java

calling back, from native code 122, 127-132
interfacing, with C/C++ 60

Java and native code lifecycles
about 121
strategies, for overcoming issues 121

Java and native threads
attaching 120
background thread, running 111-119
detaching 120
synchronizing 110

Java arrays
handling 96
object reference, saving 97-105

Java code
invoking, from native thread 122-124

JAVA_HOME environment variable 12
javah tool

about 64
running 71

[417]

java, interfacing with C/C++
Android Makefiles 65, 66
C code, calling from java 60-64

java.lang.UnsatisfiedLinkError 64
Java objects

global reference 90, 91
local reference 90, 91
reference, saving 85-89
referencing, from native code 85

Java primitives
native key/value store, building 75-84
primitive types, passing 85
primitive types, returning 85
working with 74

java project
initiating 56-58

JavaVM 112
jbooleanArray 105
jbyteArray 105
jcharArray 105
jdoubleArray 105
JetPlayer 239
jfloatArray 105
jintArray 101
jlongArray 105
JNIEnv 133
JNI exceptions

checking 106
JNI, in C++ 96
JNI method definitions 134
JNI methods

DeleteGlobalRef() 106
DeleteLocalRef() 106
ExceptionDescribe() 106
ExceptionOccured() 106
MonitorExit() 106
PopLocalFrame() 106
PushLocalFrame() 106
ReleasePrimitiveArrayCritical() 106
Release<Primitive>ArrayElements() 106
ReleaseStringChars() 106
ReleaseStringCritical() 106
ReleaseStringUTFChars() 106

JNI_OnLoad() 120
jobject parameter 85, 132
joints 353
JPEG 369

jshortArray 105
jstring parameter 79, 85
jvalue array 134

K
keyboard

detecting 288
handling 289

L
layout_height 50
layout_width 50
LDR instruction 396
Level of Detail (LOD) 381
libc.so file 385
libpng NDK

integrating 194
libstdc++ 316
libzip 195
light sensor 274
linear acceleration sensor 274
link register 396
linux

Android development kit, installing 27
Linux

Android device, setting up 39-41
Android NDK, installing 28
Android SDK, installing 27
setting up 22-26

loadFile() 222, 226
loadImage() method 198, 199, 203
loadIndexes() 222
loadLibrary() method 327
loadVertices() 222, 227
LOCAL_ARM_MODE variable 348
LOCAL_ARM_NEON variable 348
LOCAL_CFLAGS variable 347
LOCAL_C_INCLUDES variable 347
LOCAL_CPP_EXTENSION variable 347
LOCAL_CPPFLAGS variable 347
LOCAL_DISABLE_NO_EXECUTE variable 348
LOCAL_EXPORT_CFLAGS variable 348
LOCAL_EXPORT_C_INCLUDES 340
LOCAL_EXPORT_CPPFLAGS variable 348
LOCAL_EXPORT_LDLIBS variable 348
LOCAL_LDLIBS variable 347

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[418]

LOCAL_MODULE_FILENAME variable 347
LOCAL_MODULE variable 65, 347
LOCAL_PATH variable 347
local references 88
LOCAL_SHARED_LIBRARIES variable 348
LOCAL_SRC_FILES variable 179, 347
LOCAL_STATIC_LIBRARIES variable 348
LOCLOCAL_FILTER_ASM variable 348
logcat command 52
LogCat crash dump 396
Looper 169
ls command 52
luminance component 143

M
Mac OS X

and environment variables 21
Android development kit, installing 20
Android device, setting up 37-39
Android SDK, installing 20
setting up, for Android development 18, 19

mActivityHandler event 156
magnetometer 274
Make 328
makefiles

built-in functions 349
files manipulation functions 349
instructions 348
mastering 346, 350
strings manipulation functions 349
variables 347, 348

makeGlobalRef() utility 126, 129
mAnimFrameCount 211
mAnimSpeed 211
max() method 141
mcount() method 403
MediaPlayer 239
memory management, Box2D 366
memory management, Irrlicht 380
memset() 178
MIME player 325
MIME source 252
mInteger 82
moncleanup() method 402
MonitorEnter() method 116
MonitorExit() method 106, 116

MonkeyRunner 55
monotonic clock 173
monotonic timer 181
monstartup() method 402
MotionEvent 277
movement constraints 353
music files

background music, playing 249-255
playing 249

N
native activity

about 147
basic native activity, creating 148-154
creating 148

NativeActivity class 148, 154
Native App Glue

about 166
activity state, saving 171
Android_app structure 170
native thread 168, 169
UI thread 167, 168

native_app_glue module 286
native code

compiling, from eclipse 67
Java, calling back from 122-132
debugging, with GDB 384-392

Native glue module code
location 166

native key/value store
building 75-83

NDEBUG option 330
ndk-build command 46
ndk-gdb command 385
NDK sample applications

compiling 46
deploying 46
hellojni sample, compiling 46-49
hellojni sample, deploying 46-49

ndk-stack- 395
NEON 404
NewGlobalRef() 88
NewIntArray() 101
NewObject() 129
NewStringUTF() 82
nodes 381

[419]

no-strict-aliasing option 330
now() method 173
NVidia 398
Nvidia Tegra 2 404

O
OBJ 369
objdump command 393
object 241, 248
Octree 381
onAccelerometerEvent() 313
onActivate() method 155, 392
onAppCmd 157
onConfigurationChanged event 167
onDeactivate() method 156
onDestroy event 167
onDestroy() method 155
onGetValue() method 86
onInputQueueCreated event 167
onInputQueueDestoyed event 167
onKeyboardEvent() 291
onLowMemory event 167
onNativeWindowCreated event 167
onNativeWindowDestroyed event 167
onPause event 167
onPause() method 155
onPreviewFrame() 140
onResume event 167
onResume() method 155
onSaveInstance event 167
onStart event 167
onStart() method 155
onStep() method 156, 191
onStop event 167
onStop() method 155
onTouchEvent() 276, 281
onWindowFocusedChanged event 167
OpenGL 183
OpenGL ES

about 49, 183
initializing 184-192
texture, loading 194--207

OpenGL ES 1 369
OpenGL ES 1.1 183
OpenGL ES 2 183, 369

OpenGL ES initialization code 184
Open Graphics Library for Embedded Systems.

See OpenGL ES
OpenMAX AL low-level multimedia API 240
OpenSL ES

about 239, 248
initializing 241
interface 248
interface ID 248
object 248

OpenSL ES engine
creating 241-247

OpenSL ES initialization
engine, creating 241

OpenSL ES object
setting up 248

OpenSL for Embedded System. See OpenSL ES
OProfile 397
optimization levels, GCC

-O0 346
-O1 346
-O2 346
-O3 346
-Os 346

OutputMix object 252

P
packt_Log_debug macro 150
page flipping 189
parallax effect 237
parse_error_handler() method 224
pCommand 160
PerfHUD ES 398
performance 404
performance analysis 397, 398
physics

simulating, with Box2D 354-366
PhysicsObject class 354
PID 396
playBGM() method 250, 252
playRecordedSound() 271
playSound() method 259
PNG 194, 369
png_read_image() 202
png_read_update_info() 200

[420]

PNG textures
loading, in OpenGL ES 194-208
reading, asset manager used 193

PopLocalFrame() 106
Portable Network Graphics. See PNG
Posix APIs 171
PostSolve() method 366
PowerVR 398
PREBUILT_STATIC_LIBRARY directive 336
PreSolve() method 366
primitives array types

jbooleanArray 105
jbyteArray 105
jcharArray 105
jdoubleArray 105
jfloatArray 105
jlongArray 105
jshortArray 105

printf() method 151
processActivityEvent() 156, 160
process_cmd() method 169
processEntry() method 113, 117, 130
process identifier. See PID
processInputEvent() method 276, 289
process_input() method 169
Program Counter 393, 397
project configuration tool

about 54
continuous integration 55
create project option 54
update project option 54

proximity sensor 274
ps command 52
pthread_key_create() 120
pthread_setspecific() 120
PushLocalFrame() 106
PVRTune 398
pwd command 52
Python 330

Q
Quake levels 370
Qualcomm 398

R
RAII 337
RapidXml library 221
RDESTL 327
Realize() method 243
recordSound() 271
RegisterCallback() method 266 266
registerEntity() method 358
registerObject() method 372
registerSound() method 259
registerTexture() 205
registerTileMap() 233
releaseEntryValue() 81, 100
ReleasePrimitiveArrayCritical() 106
Release<Primitive>ArrayElements() 106
ReleaseStringChars() 106
ReleaseStringUTFChars() method 79, 84, 106
Resource Acquisition Is Initialization. See RAII
Resource class 199
ResourceDescriptor class 317
ResourceDescriptor structure 250
restitution property 353, 365
rotation vector 274
RTTI 315
run() method 152
runWatcher() method 113, 115

S
San Angeles 49
san angeles OpenGL demo

compiling 49
testing 49, 50

scene management, Irrlicht 381
screen rotation

handling 312
SD-Card access 43
segmentation fault 393
sensor 368
Serialization module 330
setAnimation() 210, 211
setColorArray() 104
setColor() method 88
SetIntArrayRegion() 101, 102

[421]

setInteger() 81
setjmp() 200
SetObjectArrayElement() 103, 105
SetStringUTFChars() method 82
setTarget() method 359
setup() method 375
shape 354, 365
shared libraries

versus static libraries 326
Ship class 217
ship.png sprite 217
SIMD instruction set 404
simple Java GUI 74
Single Instruction Multiple Data (SIMD) 404
skinning 370
SLAndroidSImpleBufferQueueItf interface 269
slCreateEngine() method 242
SLDataLocator_AndroidSimple

BufferQueue() 261, 270
SLDataSink structure 252
SLDataSource structure 252
SL_IID_PLAY interface 253
SL_IID_SEEK interfaces 253
SLObjectItf instance 242
SLObjectItf object 249
SLPlayItf interface 250
SLRecordItf interface 269
SLSeekItf interface 250
software keyboard

displaying 297, 298
SoudService.hpp 259
sound buffer queue

creating 257-259
playing 260-265

SoundPool 239
sounds

playing 256, 257
recorded buffer, playing 271
recording 268-271
sound buffer queue, creating 257-266
sound buffer queue, playing 260-265

spawn() method 322
spin() method 371
sprite

drawing 208
Ship sprite, drawing 209-219

sprite images
editing 209

stack pointer 396
stack trace analysis 392
Standard Template Library (STL)

about 316
performances 327

start() method 279, 280
startSoundPlayer() method 259, 260
startWatcher() method 113, 127
static libraries

versus shared libraries 326
status startSoundRecorder() 269
stay awake option 38
Step() method 358
STLport 316
stopBGM() method 250, 254
stopWatcher() method 116
StoreActivity class 76
StoreListener interface 122
StreamLine 398
stringToList () 98
Subversion(SVN) 55
surfaceChanged() method 138
System.loadLibrary() 120

T
terrain rendering 370
texel 227
texture

loading, in OpenGL ES 194-207
third-party libraries

porting, to Android 338
thread identifier. See TID
threading 268, 338
Threading Building Block library 338
ThrowNew() 95
throwNotExistingException() 95
thumb 403
TID 396
tiled map editor 220
tile map

about 220
rendering, vertex buffer objects used 220
tile-based background, drawing 221-237

[422]

tile map technique 237
timer

about 181
implementing 172-179

toInt() method 141
torques 366
touch events

analyzing 279
handling 276-291

trackball
detecting 288
handling 289

triple buffering 189

U
UI thread 167
Unix File Descriptor 169
unload() method 204
update() method 189, 290, 322, 354, 358, 372
userData 157
userData field 355
UV coordinates 227

V
Valgrind 397
vertex 220
Virtual Machine 59
void playRecordedSound() 269
void recordSound() 269
VSync 189

W
watcherCounter 111
window and time

accessing, natively 171
raw graphics, displaying 172-179

Windows
Android development kit, installing 12
Android device, setting up 37-39
Android NDK, installing 14, 15
Android SDK, installing 13, 15
Ant, installing 11
environment variables 14-16
setting up, for Android development 8-12

X
x86 404
xml_document instance 224

Y
YCbCr 420 SP (or NV21) format 143

Z
Zygote 385
Zygote process 60

Thank you for buying
Android NDK Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.PacktPub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android User Interface Development
ISBN: 978-1-84951-448-4 Paperback:304 pages

Quickly design and develop compelling user interfaces for
your Android applications

1. Leverage the Android platform's flexibility and
power to design impactful user-interfaces

2. Build compelling, user-friendly applications that
will look great on any Android device

3. Make your application stand out from the rest
with styles and themes

4. A practical Beginner's Guide to take you
step-by-step through the process of developing
user interfaces to get your applications noticed!

Android Application Testing Guide
ISBN: 978-1-84951-350-0 Paperback: 332 pages

Build intensively tested and bug free Android applications

1. The first and only book that focuses on testing
Android applications

2. Step-by-step approach clearly explaining the most
efficient testing methodologies

3. Real world examples with practical test cases that
you can reuse

Please check www.PacktPub.com for information on our titles

Android 3.0 Animations
ISBN: 978-1-84951-528-3 Paperback:304 pages

Bring your Android applications to life with stunning
animations

1. The first and only book dedicated to creating
animations for Android apps.

2. Covers all of the commonly used animation
techniques for Android 3.0 and lower versions.

3. Create stunning animations to give your Android
apps a fun and intuitive user experience.

4. A step-by-step guide for learning animation by
building fun example applications and games.

Android 3.0 Application Development
Cookbook
ISBN: 978-1-84951-294-7 Paperback: 272 pages

Over 70 working recipes covering every aspect of Android
development

1. Written for Android 3.0 but also applicable to lower
versions

2. Quickly develop applications that take advantage of
the very latest mobile technologies, including web
apps, sensors, and touch screens

3. Part of Packt's Cookbook series: Discover tips and
tricks for varied and imaginative uses of the latest
Android features

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up your Environment
	Getting started with Android development
	Setting up Windows
	Time for action – preparing Windows for Android development
	Installing Android development kits on Windows
	Time for action – installing Android SDK and NDK on Windows
	Setting up Mac OS X
	Time for action – preparing Mac OS X for Android development
	Installing Android development kits on Mac OS X
	Time for action – installing Android SDK and NDK on Mac OS X
	Setting up Linux
	Time for action – preparing Ubuntu Linux for Android development
	Installing Android development kits on Linux
	Time for action – installing Android SDK and NDK on Ubuntu
	Setting up the Eclipse development environment
	Time for action – installing Eclipse
	Emulating Android
	Time for action – creating an Android virtual device
	Developing with an Android device on Windows and Mac OS X
	Time for action – setting up your Android device on Windows and Mac OS X
	Developing with an Android device on Linux
	Time for action – setting up your Android device on Ubuntu
	Troubleshooting a development device
	Summary

	Chapter 2: Creating, Compiling, and Deploying Native Projects
	Compiling and deploying NDK sample applications
	Time for action – compiling and deploying the hellojni sample
	Exploring Android SDK tools
	Android debug bridge
	Project configuration tool

	Creating your first Android project using eclipse
	Time for action – initiating a Java project
	Introducing Dalvik

	Interfacing Java with C/C++
	Time for action – calling C code from Java
	More on Makefiles

	Compiling native code from Eclipse
	Time for action – creating a hybrid Java/C/C++ project
	Summary

	Chapter 3: Interfacing Java and C/C++ with JNI
	Working with Java primitives
	Time for action – building a native key/value store
	Referencing Java objects from native code
	Time for action – saving a reference to an object in the Store
	Local and global JNI references

	Throwing exceptions from native code
	Time for action – raising exceptions from the Store
	JNI in C++

	Handling Java arrays
	Time for action – saving a reference to an object in the Store
	Checking JNI exceptions

	Summary

	Chapter 4: Calling Java Back from Native Code
	Synchronizing Java and native threads
	Time for action – running a background thread
	Attaching and detaching threads
	More on Java and native code lifecycles

	Calling Java back from native code
	Time for action – invoking Java code from a native thread
	More on callbacks
	JNI method definitions

	Processing bitmaps natively
	Time for action – decoding camera feed from native code
	Summary

	Chapter 5: Writing a Fully-native Application
	Creating a native activity
	Time for action – creating a basic native activity
	Handling activity events
	Time for action – handling activity events
	More on Native App Glue
	UI thread
	Native thread
	Android_app structure

	Accessing window and time natively
	Time for action – displaying raw graphics and implementing a timer
	Summary

	Chapter 6: Rendering Graphics with OpenGL ES
	Initializing OpenGL ES
	Time for action – initializing OpenGL ES
	Reading PNG textures with the asset manager
	Time for action – loading a texture in OpenGL ES
	Drawing a sprite
	Time for action – drawing a Ship sprite
	Rendering a tile map with vertex buffer objects
	Time for action – drawing a tile-based background
	Summary

	Chapter 7: Playing Sound with OpenSL ES
	Initializing OpenSL ES
	Time for action – creating OpenSL ES engine and output
	More on OpenSL ES philosophy

	Playing music files
	Time for action – playing background music
	Playing sounds
	Time for action – creating and playing a sound buffer queue
	Event callback

	Recording sounds
	Summary

	Chapter 8: Handling Input Devices and Sensors
	Interacting with Android
	Time for action – handling touch events
	Detecting keyboard, D-Pad, and Trackball events
	Time for action – handling keyboard, D-Pad, and trackball, natively
	Probing device sensors
	Time for action – turning your device into a joypad
	Summary

	Chapter 9: Porting Existing Libraries to Android
	Developing with the Standard Template Library
	Time for action – embedding GNU STL in DroidBlaster
	Static versus shared
	STL performances

	Compiling Boost on Android
	Time for action – embedding Boost in DroidBlaster
	Porting third-party libraries to Android
	Time for action – compiling Box2D and Irrlicht with the NDK
	GCC optimization levels

	Mastering Makefiles
	Makefile variables
	Makefile Instructions

	Summary

	Chapter 10: Towards Professional Gaming
	Simulating physics with Box2D
	Time for action – simulating physics with Box2D
	More on collision detection
	Collision modes
	Collision filtering
	More resources about Box2D

	Running a 3D engine on Android
	Time for action – rendring 3D graphics with Irrlicht
	More on Irrlicht scene management

	Summary

	Chapter 11: Debugging and Troubleshooting
	Debugging with GDB
	Time for action – debugging DroidBlaster
	Stack trace analysis
	Time for action – analysing a crash dump
	More on crash dumps

	Performance analysis
	Time for action – running GProf
	How it works
	ARM, thumb, and NEON

	Summary
	Afterword

	Index

