
App Sandbox Design
Guide

Contents

About App Sandbox 5
At a Glance 6
How to Use This Document 6
Prerequisites 6
See Also 7

App Sandbox Quick Start 8
Create the Xcode Project 8
Enable App Sandbox 10
Confirm That the App Is Sandboxed 11
Resolve an App Sandbox Violation 12

App Sandbox in Depth 14
The Need for a Last Line of Defense 14
Entitlements and System Resource Access 15
Container Directories and File System Access 16

The App Sandbox Container Directory 16
The Application Group Container Directory 18
Powerbox and File System Access Outside of Your Container 19
Related Items 21
Open and Save Dialog Behavior with App Sandbox 22

Security-Scoped Bookmarks and Persistent Resource Access 23
Two Distinct Types of Security-Scoped Bookmark 23
Using Security-Scoped Bookmarks 24

App Sandbox and Code Signing 26
External Tools, XPC Services, and Privilege Separation 28

XPC Services 29
Launching Helpers with Launch Services 29

IPC and POSIX Semaphores and Shared Memory 31

Designing for App Sandbox 32
Six Steps for Adopting App Sandbox 32
Determine Whether Your App Is Suitable for Sandboxing 33
Resolve API Incompatibilities 34

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

2

Opening, Saving, and Tracking Documents 35
Retaining Access to File System Resources 35
Creating a Login Item for Your App 35
Accessing User Data 35
Accessing Preferences of Other Apps 36
Using HTML5 Embedded Video in Web Views 36

Apply the App Sandbox Entitlements You Need 36
Add Privilege Separation Using XPC 37
Implement a Migration Strategy 38

Migrating an App to a Sandbox 39
Creating a Container Migration Manifest 40
Undoing a Migration for Testing 42
An Example Container Migration Manifest 43
Use Variables to Specify Support-File Directories 44

Document Revision History 46

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

3

Contents

Tables and Listings

App Sandbox in Depth 14
Table 2-1 The App Sandbox mindset 14
Table 2-2 Open and Save class inheritance with App Sandbox 22
Listing 2-1 Creating an app group container directory 19

Migrating an App to a Sandbox 39
Table 4-1 How system directory variables resolve depending on context 44
Table 4-2 Variables for support-file directories 44
Listing 4-1 An example container migration manifest 43

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

4

A non-sandboxed app has the full rights of the user who is running that app, and can access any resources
that the user can access. If that app or the frameworks it is linked against contain security holes, an attacker
can potentially exploit those holes to take control of that app, and in doing so, the attacker gains the ability
to do anything that the user can do.

By limiting access to resources on a per-app basis, App Sandbox provides a last line of defense against the
theft, corruption, or deletion of user data if an attacker successfully exploits security holes in your app or the
frameworks it is linked against.

Your app
All

system resources

All
user data

Unrestricted
access

Other
system resources

Other
user data

Your app

Unrestricted
accessNo access

Without App Sandbox With App Sandbox

Your sandbox

App Sandbox is an access control technology provided in OS X, enforced at the kernel level. Its strategy is
twofold:

1. App Sandbox enables you to describe how your app interacts with the system. The system then grants
your app the access it needs to get its job done, and no more.

2. App Sandbox allows the user to transparently grant your app additional access by way of Open and Save
dialogs, drag and drop, and other familiar user interactions.

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

5

About App Sandbox

At a Glance
Based on simple security principles, App Sandbox provides strong defense against damage from malicious
code. The elements of App Sandbox are container directories, entitlements, user-determined permissions,
privilege separation, and kernel enforcement. It’s up to you to understand these elements and then to use
your understanding to create a plan for adopting App Sandbox.

Relevant chapters: App Sandbox Quick Start (page 8), App Sandbox in Depth (page 14)

After you understand the basics, look at your app in light of this security technology. First, determine if your
app is suitable for sandboxing. (Most apps are.) Then resolve any API incompatibilities and determine which
entitlements you need. Finally, consider applying privilege separation to maximize the defensive value of App
Sandbox.

Relevant chapter: Designing for App Sandbox (page 32)

Some file system locations that your app uses are different when you adopt App Sandbox. In particular, you
gain a container directory to be used for app support files, databases, caches, and other files apart from user
documents. OS X and Xcode support migration of files from their legacy locations to your container.

Relevant chapter: Migrating an App to a Sandbox (page 39)

How to Use This Document
To get up and running with App Sandbox, perform the tutorial in App Sandbox Quick Start (page 8). Before
sandboxing an app you intend to distribute, be sure you understand App Sandbox in Depth (page 14). When
you’re ready to start sandboxing a new app, or to convert an existing app to adopt App Sandbox, read Designing
for App Sandbox (page 32). If you’re providing a new, sandboxed version of your app to users already running
a version that is not sandboxed, read Migrating an App to a Sandbox (page 39).

Prerequisites
Before you read this document, make sure you understand the place of App Sandbox and code signing in the
overall OS X development process by reading Mac App Programming Guide .

About App Sandbox
At a Glance

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

6

See Also
To complement the damage containment provided by App Sandbox, you must provide a first line of defense
by adopting secure coding practices throughout your app. To learn how, read Security Overview and Secure
Coding Guide .

An important step in adopting App Sandbox is requesting entitlements for your app. For details on all the
available entitlements, see Entitlement Key Reference .

You can enhance the benefits of App Sandbox in a full-featured app by implementing privilege separation.
You do this using XPC, an OS X implementation of interprocess communication. To learn the details of using
XPC, read Daemons and Services Programming Guide .

About App Sandbox
See Also

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

7

In this Quick Start you get an OS X app up and running in a sandbox. You verify that the app is indeed sandboxed
and then learn how to troubleshoot and resolve a typical App Sandbox error. The apps you use are Xcode,
Keychain Access, Activity Monitor, and Console.

Create the Xcode Project
The app you create in this Quick Start uses a WebKit web view and consequently uses a network connection.
Under App Sandbox, network connections don’t work unless you specifically allow them—making this a good
example app for learning about sandboxing.

To create the Xcode project for this Quick Start

1. In Xcode 4, create a new Xcode project for an OS X Cocoa application.
 ● Name the project AppSandboxQuickStart.

 ● Set a company identifier, such as com.yourcompany, if none is already set.

 ● Ensure that Use Automatic Reference Counting is selected and that the other checkboxes are
unselected.

2. In the project navigator, click the MainMenu nib file (MainMenu.xib).

The Interface Builder canvas appears.

3. In the Xcode dock, click the Window object.

The app’s window is now visible on the canvas.

4. In the object library (in the utilities area), locate the WebView object.

5. Drag a web view onto the window on the canvas.

6. (Optional) To improve the display of the web view in the running app, perform the following steps:
 ● Drag the sizing controls on the web view so that it completely fills the window’s main view.

 ● Using the size inspector for the web view, ensure that all of the inner and outer autosizing
constraints are active.

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

8

App Sandbox Quick Start

7. Add the WebKit framework to the app.
 ● Import the WebKit framework by adding the following statement above the interface block in the

AppDelegate.h header file:

#import <WebKit/WebKit.h>

 ● Link the WebKit framework to the Quick Start project as a required framework.

Note: If you are compiling for OS X v10.7 and want to play HTML5 embedded videos in this
application, you must also link to the AV Foundation framework. This is not required in OS X
v10.8 and later.

8. Create and connect an outlet for the web view in the AppDelegate class.

In the app delegate’s interface (either in AppDelegate.h or in a category in AppDelegate.m), add
this:

@property (weak) IBOutlet WebView *webView;

Then synthesize the property in the implementation (in AppDelegate.m):

@synthesize webView = _webView;

9. Connect the web view to the app delegate outlet you just created.

10. Add the following awakeFromNib method to the AppDelegate.m implementation file:

- (void) awakeFromNib {

[self.webView.mainFrame loadRequest:

[NSURLRequest requestWithURL:

[NSURL URLWithString: @"http://www.apple.com"]]];

}

On application launch, this method requests the specified URL from the computer’s network connection
and then sends the result to the web view for display.

App Sandbox Quick Start
Create the Xcode Project

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

9

Now, build and run the app—which is not yet sandboxed and so has free access to system resources
including its network sockets. Confirm that the app’s window displays the page you specified in the
awakeFromNib method. (If you get a blank window, make sure the outlet is properly connected to the
web view.)

When done, quit the app.

Enable App Sandbox

Important: For Xcode 6 and later, readAppDistributionQuick Start for how to create your team provisioning
profile and enable App Sandbox.

You enable App Sandbox by selecting a checkbox in the Xcode target editor.

In Xcode, click the project file in the project navigator and click the AppSandboxQuickStart target, if they’re
not already selected. View the Summary tab of the target editor.

To enable App Sandbox for the project

1. In the Summary tab of the target editor, be sure the “Use Entitlements file” checkbox is checked, and
specify a file for those entitlements.

An entitlement is a key-value pair, defined in a property list file, that confers a specific capability or
security permission to a target.

When you click Enable Entitlements, Xcode automatically checks the Code Sign Application checkbox
and the Enable App Sandboxing checkbox. Together, these are the essential project settings for enabling
App Sandbox.

When you click “Use Entitlements file”, Xcode also creates a .entitlements property list file, visible
in the project navigator. As you use the graphical entitlements interface in the target editor, Xcode
updates the property list file.

2. If you are using an older version of Xcode that does not have a checkbox for enabling iCloud, clear the
contents of the iCloud entitlement fields.

This Quick Start doesn’t use iCloud. Because older versions of Xcode automatically added iCloud
entitlement values when you enabled entitlements, delete them as follows:

 ● In the Summary tab of the target editor, select and then delete the content of the iCloud Key-Value
Store field.

 ● Click the top row in the iCloud Containers field and click the minus button.

App Sandbox Quick Start
Enable App Sandbox

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

10

At this point in the Quick Start, you have enabled App Sandbox but have not yet provided a code signing
identity for the Xcode project. If you have already configured your system with a signing identity, Xcode should
default to using your development identity when signing this app.

If your system is not configured with a development identity and you attempt to build the project, the build
will fail; before you continue with this tutorial, create a code signing identity as described in App Distribution
Guide .

Now, build the app.

Confirm That the App Is Sandboxed
Build and run the Quick Start app. The window opens, but if the app is successfully sandboxed, no web content
appears. This is because you have not yet conferred permission to access a network connection.

Apart from blocked behavior, there are three specific signs that an OS X app is successfully sandboxed.

To confirm that the Quick Start app is successfully sandboxed

1. In Finder, look at the contents of the ~/Library/Containers/ folder.

If the Quick Start app is sandboxed, there is now a container folder named after your app. The name
includes the company identifier for the project, so the complete folder name would be, for example,
com.yourcompany.AppSandboxQuickStart.

The system creates an app’s container folder, for a given user, the first time the user runs the app.

2. In Activity Monitor, check that the system recognizes the app as sandboxed.
 ● Launch Activity Monitor (available in /Applications/Utilities).

 ● In Activity Monitor, choose View > Columns.

Ensure that the Sandbox menu item is checked.

 ● In the Sandbox column, confirm that the value for the Quick Start app is Yes.

To make it easier to locate the app in Activity monitor, enter the name of the Quick Start app in
the Filter field.

3. Check that the app binary is sandboxed.

codesign -dvvv --entitlements :- executable_path

App Sandbox Quick Start
Confirm That the App Is Sandboxed

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

11

where executable_path is the complete path for the app’s main executable binary (for example,
Quick Start.app/Contents/MacOS/Quick Start).

Important: The above steps are sufficient for the Quick Start app, but are not sufficient for apps that contain
embedded helper apps, XPC services, or other tools. For more information, read External Tools, XPC Services,
and Privilege Separation (page 28).

Tip: If the app crashes when you attempt to run it, specifically by receiving an EXC_BAD_INSTRUCTION signal,

the most likely reason is that you previously ran a sandboxed app with the same bundle identifier but a different
code signature. This crashing upon launch is an App Sandbox security feature that prevents one app from
masquerading as another and thereby gaining access to the other app’s container.

You learn how to design and build your apps, in light of this security feature, in App Sandbox and Code
Signing (page 26).

Resolve an App Sandbox Violation
An App Sandbox violation occurs if your app tries to do something that App Sandbox does not allow. For
example, you have already seen in this Quick Start that the sandboxed app is unable to retrieve content from
the web. Fine-grained restriction over access to system resources is the heart of how App Sandbox provides
protection should an app become compromised by malicious code.

The most common source of App Sandbox violations is a mismatch between the entitlement settings you
specified in Xcode and the needs of your app. In this section you observe and then correct an App Sandbox
violation.

To diagnose an App Sandbox violation

1. Build and run the Quick Start app.

The app starts normally, but fails to display the webpage specified in its awakeFromNib method (as
you’ve previously observed in Confirm That the App Is Sandboxed (page 11)). Because displaying the
webpage worked correctly before you sandboxed the app, it is appropriate in this case to suspect an
App Sandbox violation.

2. Open the Console application (available in/Applications/Utilities/) and ensure that All Messages
is selected in the sidebar.

In the filter field of the Console window, enter sandboxd to display only App Sandbox violations.

App Sandbox Quick Start
Resolve an App Sandbox Violation

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

12

sandboxd is the name of the App Sandbox daemon that reports on sandbox violations. The relevant
messages, as displayed in Console, look similar to the following:

3:56:16 pm sandboxd: ([4928]) AppSandboxQuickS(4928) deny network-outbound 111.30.222.15:80
3:56:16 pm sandboxd: ([4928]) AppSandboxQuickS(4928) deny system-socket

The problem that generates these console messages is that the Quick Start app does not yet have the
entitlement for outbound network access.

Tip: To see the full backtraces for either violation, click the paperclip icon near the right edge

of the corresponding Console message.

The steps in the previous task illustrate the general pattern to use for identifying App Sandbox violations:

1. Confirm that the violation occurs only with App Sandbox enabled in your project.

2. Provoke the violation (such as by attempting to use a network connection, if your app is designed to do
that).

3. Look in Console for sandboxd messages.

There is also a simple, general pattern to use for resolving such violations.

To resolve the App Sandbox violation by adding the appropriate entitlement

1. Quit the Quick Start app.

2. In the Summary tab of the target editor, look for the entitlement that corresponds to the reported
sandboxd violation.

In this case, the primary error is deny network-outbound. The corresponding entitlement is Allow
Outgoing Network Connections.

3. In the Summary tab of the target editor, select the Allow Outgoing Network Connections checkbox.

Doing so applies a TRUE value, for the needed entitlement, to the Xcode project.

4. Build and run the app.

The intended webpage now displays in the app. In addition, there are no new App Sandbox violation
messages in Console.

App Sandbox Quick Start
Resolve an App Sandbox Violation

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

13

The access control mechanisms used by App Sandbox to protect user data are small in number and easy to
understand. But the specific steps for you to take, as you adopt App Sandbox, are unique to your app. To
determine what those steps are, you must understand the key concepts for this technology.

The Need for a Last Line of Defense
You secure your app against attack from malware by following the practices recommended in Secure Coding
Guide . But despite your best efforts to build an invulnerable barrier—by avoiding buffer overflows and other
memory corruptions, preventing exposure of user data, and eliminating other vulnerabilities—your app can
be exploited by malicious code. An attacker needs only to find a single hole in your defenses, or in any of the
frameworks and libraries that you link against, to gain control of your app’s interactions with the system.

App Sandbox is designed to confront this scenario head on by letting you describe your app’s intended
interactions with the system. The system then grants your app only the access your app needs to get its job
done. If malicious code gains control of a properly sandboxed app, it is left with access to only the files and
resources in the app’s sandbox.

To successfully adopt App Sandbox, use a different mindset than you might be accustomed to, as suggested
in Table 2-1.

Table 2-1 The App Sandbox mindset

When adopting App Sandbox…When developing…

Minimize system resource useAdd features

Partition functionality, then distrust each partTake advantage of access throughout your app

Use the most secure APIUse the most convenient API

View restrictions as safeguardsView restrictions as limitations

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

14

App Sandbox in Depth

When designing for App Sandbox, you are planning for the following worst-case scenario: Despite your best
efforts, malicious code breaches an unintended security hole—either in your code or in a framework you’ve
linked against. Capabilities you’ve added to your app become capabilities of the hostile code. Keep this in
mind as you read the rest of this document.

Entitlements and System Resource Access
An app that is not sandboxed has access to all user-accessible system resources—including the built-in camera
and microphone, network sockets, printing, and most of the file system. If successfully attacked by malicious
code, such an app can behave as a hostile agent with wide-ranging potential to inflict harm.

When you enable App Sandbox for your app, you remove all but a minimal set of privileges and then deliberately
restore them, one-by-one, using entitlements. An entitlement is a key-value pair that identifies a specific
capability, such as the capability to open an outbound network socket.

One special entitlement—Enable App Sandboxing—turns on App Sandbox. When you enable sandboxing,
Xcode creates a .entitlements property list file and shows it in the project navigator.

If your app requires a capability, request it by adding the corresponding entitlement to your Xcode project
using the Summary tab of the target editor. If you don’t require a capability, take care to not include the
corresponding entitlement.

You request entitlements on a target-by-target basis. If your app has a single target—the main application—you
request entitlements only for that target. If you design your app to use a main application along with helpers
(in the form of XPC services), you request entitlements individually, and as appropriate, for each target. You
learn more about this in External Tools, XPC Services, and Privilege Separation (page 28).

You may require finer-grained control over your app’s entitlements than is available in the Xcode target editor.
For example, you might request a temporary exception entitlement because App Sandbox does not support
a capability your app needs, such as the ability to send an Apple event to an app that does not yet provide
any scripting access groups. To work with temporary exception entitlements, use the Xcode property list editor
to edit a target’s .entitlements property list file directly.

App Sandbox in Depth
Entitlements and System Resource Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

15

Note: If you request a temporary exception entitlement, be sure to follow the guidance regarding
entitlements provided on the iTunes Connect website. In particular, file a bug asking for the
functionality that you need, and use the Review Notes field in iTunes Connect to explain why your
app needs the temporary exception. Be sure to provide the bug number.

OS X App Sandbox entitlements are described in Enabling App Sandbox in Entitlement Key Reference . For a
walk-through of requesting an entitlement for a target in an Xcode project, see App Sandbox Quick Start (page
8).

Container Directories and File System Access
When you adopt App Sandbox, your application has access to the following locations:

 ● The app container directory. Upon first launch, the operating system creates a special directory for use
by your app—and only by your app—called a container . Each user on a system gets an individual container
for your app, within their home directory; your app has unfettered read/write access to the container for
the user who ran it.

 ● App group container directories. A sandboxed app can specify an entitlement that gives it access to one
or more app group container directories, each of which is shared among all apps with that entitlement.

 ● User-specified files. A sandboxed app (with an appropriate entitlement) automatically obtains access to
files in arbitrary locations when those files are explicitly opened by the user or are dragged and dropped
onto the application by the user.

 ● Related items. With the appropriate entitlement, your app can access a file with the same name as a
user-specified file, but a different extension. This can be used for accessing files that are functionally related
(such as a subtitle file associated with a movie) or for saving modified files in a different format (such as
re-saving an RTF flat file as an RTFD container after the user added a picture).

 ● Temporary directories, command-line tool directories, and specific world-readable locations. A
sandboxed app has varying degrees of access to files in certain other well-defined locations.

These policies are detailed further in the sections that follow.

The App Sandbox Container Directory
The app sandbox container directory has the following characteristics:

 ● It is located at a system-defined path, within the user’s home directory. In a sandboxed app, this path is
returned when your app calls the NSHomeDirectory function.

App Sandbox in Depth
Container Directories and File System Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

16

https://itunesconnect.apple.com/

 ● Your app has unrestricted read/write access to the container and its subdirectories.

 ● OS X path-finding APIs (above the POSIX layer) refer to locations that are specific to your app.

Most of these path-finding APIs refer to locations relative to your app’s container. For example, the container
includes an individual Library directory (specified by the NSLibraryDirectory search path constant)
for use only by your app, with individual Application Support and Preferences subdirectories.

Using your container for support files requires no code change (from the pre-sandbox version of your app)
but may require one-time migration, as explained in Migrating an App to a Sandbox (page 39).

Some path-finding APIs (above the POSIX layer) refer to app-specific locations outside of the user’s home
directory. In a sandboxed app, for example, the NSTemporaryDirectory function provides a path to a
directory that is outside of the user’s home directory but specific to your app and within your sandbox;
you have unrestricted read/write access to it for the current user. The behavior of these path-finding APIs
is suitably adjusted for App Sandbox and no code change is needed.

 ● OS X establishes and enforces the connection between your app and its container by way of your app’s
code signature.

 ● The container is in a hidden location, and so users do not interact with it directly. Specifically, the container
is not for user documents. It is for files that your app uses, along with databases, caches, and other
app-specific data.

For a shoebox-style app, in which you provide the only user interface to the user’s content, that content
goes in the container and your app has full access to it.

iOS Note: Because it is not for user documents, an OS X container differs from an iOS
container—which, in iOS, is the one and only location for user documents.

In addition, an iOS container contains the app itself. This is not so in OS X.

iCloud Note: Apple’s iCloud technology, as described in iCloud Design Guide , uses the name
“container” as well. There is no functional connection between an iCloud container and an App
Sandbox container.

Thanks to code signing, no other sandboxed app can gain access to your container, even if it attempts to
masquerade as your app by using your bundle identifier. Future versions of your app, however—provided that
you use the same code signature and bundle identifier—do reuse your app’s container.

For each user, a sandboxed app’s container directory is created automatically when that user first runs the app.
Because a container is within a user’s home directory, each user on a system gets their own container for your
app.

App Sandbox in Depth
Container Directories and File System Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

17

The Application Group Container Directory
In addition to per-app containers, in OS X v10.7.5 and in OS X v10.8.3 and later, an application can use the
com.apple.security.application-groups entitlement to request access to a shared container that is
common to multiple applications produced by the same development team. This container is intended for
content that is not user-facing, such as shared caches or databases.

Note: Applications that are members of an application group also gain the ability to share Mach
and POSIX semaphores and to use certain other IPC mechanisms in conjunction with other group
members. See IPC and POSIX Semaphores and Shared Memory (page 31) for more details.

These group containers are automatically added into each app’s sandbox container as determined by the
existence of these keys, and are stored in ~/Library/Group Containers/<application-group-id>,
where <application-group-id> is the name of the group. The group name itself must begin with your
development team ID, followed by a period.

Beginning in OS X v10.8.3, your app can obtain the path to the group containers by calling the
containerURLForSecurityApplicationGroupIdentifier: method of NSFileManager.

App Sandbox in Depth
Container Directories and File System Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

18

Note: In OS X v10.9, calling this method creates the group container directory automatically, along
with Library/Preferences, Library/Caches, and Library/Application Support folders
within that group container directory.

In previous versions of OS X, although the group container directory is part of your sandbox, the
directory itself is not created automatically. Your app must create this directory as shown in Listing
2-1:

Listing 2-1 Creating an app group container directory

NSFileManager *fm = [NSFileManager defaultManager];

NSString *appGroupName = @"Z123456789.com.example.app-group"; /* For example
*/

NSURL *groupContainerURL = [fm
containerURLForSecurityApplicationGroupIdentifier:appGroupName];

NSError* theError = nil;

if (![fm createDirectoryAtURL: groupContainerURL
withIntermediateDirectories:YES attributes:nil error:&theError]) {

// Handle the error.

}

You should organize the contents of this directory in the same way that any other Library folder
is organized, using standard folder names—Preferences, Application Support, and so on—as
needed.

For more details, see Adding an Application to an Application Group in Entitlement Key Reference .

Powerbox and File System Access Outside of Your Container
Your sandboxed app can access file system locations outside of its container in the following three ways:

 ● At the specific direction of the user

 ● By using entitlements for specific file-system locations (described in Entitlements and System Resource
Access (page 15))

 ● When the file system location is in certain directories that are world readable

App Sandbox in Depth
Container Directories and File System Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

19

The OS X security technology that interacts with the user to expand your sandbox is called Powerbox. Powerbox
has no API. Your app uses Powerbox transparently when you use the NSOpenPanel and NSSavePanel classes.
You enable Powerbox by setting an entitlement using Xcode, as described in Enabling User-Selected File Access
in Entitlement Key Reference .

When you invoke an Open or Save dialog from your sandboxed app, the window that appears is presented
not by AppKit but by Powerbox. Using Powerbox is automatic when you adopt App Sandbox—it requires no
code change from the pre-sandbox version of your app. Accessory panels that you’ve implemented for opening
or saving are faithfully rendered and used.

Note: When you adopt App Sandbox, there are some important behavioral differences for the
NSOpenPanel and NSSavePanel classes, described in Open and Save Dialog Behavior with App
Sandbox (page 22).

The security benefit provided by Powerbox is that it cannot be manipulated programmatically—specifically,
there is no mechanism for hostile code to use Powerbox for accessing the file system. Only a user, by interacting
with Open and Save dialogs via Powerbox, can use those dialogs to reach portions of the file system outside
of your previously established sandbox. For example, if a user saves a new document, Powerbox expands your
sandbox to give your app read/write access to the document.

When a user of your app specifies they want to use a file or a folder, the system adds the associated path to
your app’s sandbox. Say, for example, a user drags the ~/Documents folder onto your app’s Dock tile (or onto
your app’s Finder icon, or into an open window of your app), thereby indicating they want to use that folder.
In response, the system makes the ~/Documents folder, its contents, and its subfolders available to your app.

If a user instead opens a specific file, or saves to a new file, the system makes the specified file, and that file
alone, available to your app.

In addition, the system automatically permits a sandboxed app to:

 ● Connect to system input methods

 ● Invoke services chosen by the user from the Services menu (only those services flagged as “safe” by the
service provider are available to a sandboxed app)

 ● Open files chosen by the user from the Open Recent menu

 ● Participate with other apps by way of user-invoked copy and paste

 ● Read files that are world readable, in certain directories, including the following directories:

 ● /bin

 ● /sbin

 ● /usr/bin

App Sandbox in Depth
Container Directories and File System Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

20

 ● /usr/lib

 ● /usr/sbin

 ● /usr/share

 ● /System

 ● Read and write files in directories created by calling NSTemporaryDirectory.

Note: The /tmp directory is not accessible from sandboxed apps. You must use the
NSTemporaryDirectory function to obtain a temporary location for your app’s temporary
files.

After a user has specified a file they want to use, that file is within your app’s sandbox. The file is then vulnerable
to attack if your app is exploited by malicious code: App Sandbox provides no protection. To provide protection
for the files within your sandbox, follow the recommendations in Secure Coding Guide .

By default, files opened or saved by the user remain within your sandbox until your app terminates, except
for files that were open at the time that your app terminates. Such files reopen automatically by way of the
OS X Resume feature the next time your app launches, and are automatically added back to your app’s sandbox.

To provide persistent access to resources located outside of your container, in a way that doesn’t depend on
Resume, use security-scoped bookmarks as explained in Security-Scoped Bookmarks and Persistent Resource
Access (page 23).

Related Items
The related items feature of App Sandbox lets your app access files that have the same name as a user-chosen
file, but a different extension. This feature consists of two parts: a list of related extensions in the application’s
Info.plist file and code to tell the sandbox what you’re doing.

There are two common scenarios where this makes sense:

Scenario 1:

Your app needs to be able to save a file with a different extension than that of the original file. For example,
when you paste an image into an RTF file in TextEdit and save it, TextEdit changes the file’s extension from
.rtf to .rtfd (and it becomes a directory).

To handle this situation, you must use an NSFileCoordinator object to coordinate access to the file.
Before you rename the file, call the itemAtURL:willMoveToURL: method. After you rename the file,
call the itemAtURL:didMoveToURL: method.

Scenario 2:

App Sandbox in Depth
Container Directories and File System Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

21

Your app needs to be able to open or save multiple related files with the same name and different extensions
(for example, to automatically open a subtitle file with the same name as a movie file, or to allow for a
SQLite journal file).

To gain access to that secondary file, create a class that conforms to the NSFilePresenter protocol.
This object should provide the main file’s URL as its primaryPresentedItemURL property, and should
provide the secondary file’s URL as its presentedItemURL property.

After the user opens the main file, your file presenter object should call the addFilePresenter: class
method on the NSFileCoordinator class to register itself.

Note: In the case of a SQLite journal file, beginning in 10.8.2, journal files, write-ahead logging
files, and shared memory files are automatically added to the related items list if you open a
SQLite database, so this step is unnecessary.

In both scenarios, you must make a small change to the application’s Info.plist file. Your app should already
declare a Document Types (CFBundleDocumentTypes) array that declares the file types your app can open.

For each file type dictionary in that array, if that file type should be treated as a potentially related type for
open and save purposes, add the key NSIsRelatedItemType with a boolean value of YES.

To learn more about file presenters and file coordinators, read File System Programming Guide .

Open and Save Dialog Behavior with App Sandbox
Certain NSOpenPanel and NSSavePanel methods behave differently when App Sandbox is enabled for your
app:

 ● You cannot invoke the OK button using the ok: method.

 ● You cannot rewrite the user’s selection using the panel:userEnteredFilename:confirmed:method
from the NSOpenSavePanelDelegate protocol.

In addition, the effective, runtime inheritance path for the NSOpenPanel and NSSavePanel classes is different
with App Sandbox, as illustrated in Table 2-2.

Table 2-2 Open and Save class inheritance with App Sandbox

NSOpenPanel : NSSavePanel : NSPanel : NSWindow : NSResponder : NSObjectWithout App Sandbox

NSOpenPanel : NSSavePanel : NSObjectWith App Sandbox

App Sandbox in Depth
Container Directories and File System Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

22

Because of this runtime difference, an NSOpenPanel or NSSavePanel object inherits fewer methods with
App Sandbox. If you attempt to send a message to an NSOpenPanel or NSSavePanel object, and that method
is defined in the NSPanel, NSWindow, or NSResponder classes, the system raises an exception. The Xcode
compiler does not issue a warning or error to alert you to this runtime behavior.

Security-Scoped Bookmarks and Persistent Resource Access
Your app’s access to file-system locations outside of its container—as granted to your app by way of user
intent, such as through Powerbox—does not automatically persist across app launches or system restarts.
When your app reopens, you have to start over. (The one exception to this is for files open at the time that
your app terminates, which remain in your sandbox thanks to the OS X Resume feature).

Starting in OS X v10.7.3, you can retain access to file-system resources by employing a security mechanism,
known as security-scoped bookmarks , that preserves user intent. Here are a few examples of app features that
can benefit from this:

 ● A user-selected download, processing, or output folder

 ● An image browser library file, which points to user-specified images at arbitrary locations

 ● A complex document format that supports embedded media stored in other locations

Two Distinct Types of Security-Scoped Bookmark
Security-scoped bookmarks, available starting in OS X v10.7.3, support two distinct use cases:

 ● An app-scoped bookmark provides your sandboxed app with persistent access to a user-specified file or
folder.

For example, if your app employs a download or processing folder that is outside of the app container,
obtain initial access by presenting an NSOpenPanel dialog to obtain the user’s intent to use a specific
folder. Then, create an app-scoped bookmark for that folder and store it as part of the app’s configuration
(perhaps in a property list file or using the NSUserDefaults class). With the app-scoped bookmark, your
app can obtain future access to the folder.

 ● A document-scoped bookmark provides a specific document with persistent access to a file.

For example, a video editing app typically supports the notion of a project document that refers to other
files and needs persistent access to those files. Such a project document can store security-scoped
bookmarks to the files it refers to.

Obtain initial access to a referred item by asking for user intent to use that item. Then, create a
document-scoped bookmark for the item and store the bookmark as part of the document’s data.

App Sandbox in Depth
Security-Scoped Bookmarks and Persistent Resource Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

23

A document-scoped bookmark can be resolved by any app that has access to the bookmark data itself
and to the document that owns the bookmark. This supports portability, allowing a user, for example, to
send a document to another user; the document’s secure bookmarks remain usable for the recipient. The
document can be a single flat file or a package containing multiple files.

A document-scoped bookmark can point only to a file, not a folder, and only to a file that is not in a location
used by the system (such as /private or /Library).

Using Security-Scoped Bookmarks
To use either type of security-scoped bookmark requires you to perform five steps:

1. Set the appropriate entitlement in the target that needs to use security-scoped bookmarks.

Do this once per target as part of configuring your Xcode project.

2. Create a security-scoped bookmark.

Do this when a user has indicated intent (such as via Powerbox) to use a file-system resource outside of
your app’s container, and you want to preserve your app’s ability to access the resource.

3. Resolve the security-scoped bookmark.

Do this when your app later (for example, after app relaunch) needs access to a resource you bookmarked
in step 2. The result of this step is a security-scoped URL.

4. Explicitly indicate that you want to use the file-system resource whose URL you obtained in step 3.

Do this immediately after obtaining the security-scoped URL (or, when you later want to regain access to
the resource after having relinquished your access to it).

5. When done using the resource, explicitly indicate that you want to stop using it.

Do this as soon as you know that you no longer need access to the resource (typically, after you close it).

After you relinquish access to a file-system resource, to use that resource again you must return to step 4
(to again indicate you want to use the resource).

If your app is relaunched, you must return to step 3 (to resolve the security-scoped bookmark).

The first step in the preceding list, requesting entitlements, is the prerequisite for using either type of
security-scoped bookmark. Perform this step as follows:

 ● To use app-scoped bookmarks in a target, set thecom.apple.security.files.bookmarks.app-scope
entitlement value to true.

 ● To use document-scoped bookmarks in a target, set the
com.apple.security.files.bookmarks.document-scope entitlement value to true.

App Sandbox in Depth
Security-Scoped Bookmarks and Persistent Resource Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

24

You can request either or both of these entitlements in a target, as needed. These entitlements are available
starting in OS X v10.7.3 and are described in Enabling Security-Scoped Bookmark and URL Access.

With the appropriate entitlements, you can create a security-scoped bookmark by calling the
bookmarkDataWithOptions:includingResourceValuesForKeys:relativeToURL:error: method
of the NSURL class.

When you later need access to a bookmarked resource, resolve its security-scoped bookmark by calling the
theURLByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:method
of the NSURL class.

In a sandboxed app, you cannot access the file-system resource that a security-scoped URL points to until you
call the startAccessingSecurityScopedResource method on the URL.

When you no longer need access to a resource that you obtained using security scope (typically, after you
close the resource) you must call the stopAccessingSecurityScopedResource method on the resource’s
URL.

Calls to start and stop access are not nested. When you call the stopAccessingSecurityScopedResource
method, you immediately lose access to the resource. If you call this method on a URL whose referenced
resource you do not have access to, nothing happens.

Warning: If you fail to relinquish your access to file-system resources when you no longer need them,

your app leaks kernel resources. If sufficient kernel resources are leaked, your app loses its ability to

add file-system locations to its sandbox, such as via Powerbox or security-scoped bookmarks, until

relaunched.

For detailed descriptions of the methods, constants, and entitlements to use for implementing security-scoped
bookmarks in your app, read NSURL Class Reference , and read Enabling Security-Scoped Bookmark and URL
Access in Entitlement Key Reference .

App Sandbox in Depth
Security-Scoped Bookmarks and Persistent Resource Access

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

25

Note: The Core Foundation framework also provides equivalent C functions for working with
security-scoped bookmarks. For details, see the documentation for CFURLCreateBookmarkData,
CFURLCreateByResolvingBookmarkData,CFURLStartAccessingSecurityScopedResource,
and CFURLStopAccessingSecurityScopedResource in CFURL Reference .

App Sandbox and Code Signing
After you enable App Sandbox and specify other entitlements for a target in your Xcode project, you must
code sign the project. Take note of the distinction between how you set entitlements and how you set a code
signing identity:

 ● Entitlements must be set on a target-by-target basis using the Xcode target editor.

 ● The code signing identity is typically set for a project as a whole using the Xcode project build settings,
but may be overridden on a per-target basis, if desired.

You must perform code signing because entitlements (including the special entitlement that enables App
Sandbox) are built into an app’s code signature. From another perspective, an unsigned app is not sandboxed
and has only default entitlements, regardless of settings you’ve applied in the Xcode target editor.

OS X enforces a tie between an app’s container and the app’s code signature. This important security feature
ensures that no other sandboxed app can access your container. The mechanism works as follows:

1. When the system creates a container for an app, it sets an access control list (ACL) on that container. The
initial access control entry in that list contains the app’s Designated Requirement (DR), which is part of
the app’s signature that describes how future versions of the app can be recognized.

2. Each time an app with the same bundle ID launches, the system checks that the app’s code signature
matches the designated requirements specified in one of the entries in the container’s ACL. If the system
does not find a match, it prevents the app from launching.

OS X’s enforcement of container integrity impacts your development and distribution cycle. This is because,
in the course of creating and distributing an app, the app is code signed using various signatures. Here’s how
the process works:

1. Before you create a project, you obtain three code signing certificates from Apple: a development certificate,
a distribution certificate, and (optionally) a Developer ID certificate. (To learn how to obtain these code
signing certificates, read App Distribution Guide .)

App Sandbox in Depth
App Sandbox and Code Signing

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

26

When used in conjunction with the corresponding private keys from your keychain, these certificates form
three separate digital identities. For development and testing, you sign your app with your development
identity. When you submit a version to the app store, you use your distribution identity. If you are
distributing a version outside the app store, you use your Developer ID identity.

2. When the Mac App Store distributes your app, it is signed with an Apple code signature.

For testing and debugging, you may want to run both versions of your app: the version you sign and the
version Apple signs. But OS X sees the Apple-signed version of your app as an intruder and won’t allow it to
launch: Its code signature does not match the one expected by your app’s existing container.

If you try to run the Apple-signed version of your app, you get a crash report containing a statement similar
to this:

Exception Type: EXC_BAD_INSTRUCTION (SIGILL)

The solution is to adjust the access control list (ACL) on your app’s container to recognize the Apple-signed
version of your app. Specifically, you add the designated code requirement of the Apple-signed version of
your app to the app container’s ACL.

To adjust an ACL to recognize an Apple-signed version of your app

1. Open Terminal (in /Applications/Utilities).

2. Open a Finder window that contains the Apple-signed version of your app.

3. In Terminal, enter the following command:

asctl container acl add -file <path/to/app>

In place of the <path/to/app> placeholder, substitute the path to the Apple-signed version of your
app. Instead of manually typing the path, you can drag the app’s Finder icon to the Terminal window.

The container’s ACL now includes the designated code requirements for both versions of your app. OS X then
allows you to run either version of your app.

You can use this same technique to share a container between (1) a version of an app that you initially signed
with a development identity, such as the one you used in App Sandbox Quick Start (page 8), and (2) a released
version downloaded from the Mac App Store.

You can view the list of code requirements in a container’s ACL. For example, after adding the designated code
requirement for the Apple-signed version of your app, you can confirm that the container’s ACL lists two
permissible code requirements.

App Sandbox in Depth
App Sandbox and Code Signing

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

27

To display the list of code requirements in a container’s ACL

1. Open Terminal (in /Applications/Utilities).

2. In Terminal, enter the following command:

asctl container acl list -bundle <container name>

In place of the <container name> placeholder, substitute the name of your app’s container directory.
(The name of your app’s container directory is typically the same as your app’s bundle identifier.)

For more information about working with App Sandbox container access control lists and their code
requirements, read the man page for the asctl (App Sandbox control) tool.

External Tools, XPC Services, and Privilege Separation
Some app operations are more likely to be targets of malicious exploitation. Examples are the parsing of data
received over a network, and the decoding of video frames. By using XPC, you can improve the effectiveness
of the damage containment offered by App Sandbox by separating such potentially dangerous activities into
their own address spaces.

Your app can also launch existing helper apps using launch services, but only if certain conditions are met.

Important: If you are submitting your app to the Mac App Store, you must verify that any embedded
helper tools or helper apps are also properly sandboxed.

To do this, run the following command on each embedded executable in your app bundle and confirm
that each one has an App Sandbox entitlement:

codesign -dvvv --entitlements :- executable_path

where executable_path is the complete path to an executable binary in your app bundle.

The sections below explain these concepts in more detail.

App Sandbox in Depth
External Tools, XPC Services, and Privilege Separation

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

28

XPC Services
XPC is an OS X interprocess communication technology that complements App Sandbox by enabling privilege
separation. Privilege separation, in turn, is a development strategy in which you divide an app into pieces
according to the system resource access that each piece needs. The component pieces that you create are
called XPC services .

You create an XPC service as an individual target in your Xcode project. Each service gets its own
sandbox—specifically, it gets its own container and its own set of entitlements.

Note: If you are distributing your app in the Mac App Store, XPC services must be sandboxed. For
apps distributed elsewhere, sandboxing XPC services is strongly recommended.

In addition, an XPC service that you include with your app is accessible only by your app. These advantages
add up to making XPC the best technology for implementing privilege separation in an OS X app.

By contrast, a child process created by using the posix_spawn function, by calling fork and exec (discouraged),
or by using the NSTask class simply inherits the sandbox of the process that created it. You cannot configure
a child process’s entitlements. For these reasons, child processes do not provide effective privilege separation.

To use XPC with App Sandbox:

 ● Confer minimal privileges to each XPC service, according to its needs.

 ● Design the data transfers between the main app and each XPC service to be secure.

 ● Structure your app’s bundle appropriately.

The life cycle of an XPC service, and its integration with Grand Central Dispatch (GCD), is managed entirely by
the system. To obtain this support, you need only to structure your app’s bundle correctly.

For more on XPC, see Creating XPC Services in Daemons and Services Programming Guide .

Launching Helpers with Launch Services
A sandboxed app is allowed to launch a helper using Launch Services if at least one of these conditions has
been met:

 ● Both the app and helper pass the Gatekeeper assessment. By default that means both are signed by the
Mac App Store or with a Developer ID.

Note: This does not include your development ("Mac Developer") or distribution ("3rd Party
Mac Developer Application") signing identities.

App Sandbox in Depth
External Tools, XPC Services, and Privilege Separation

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

29

 ● The app is installed in /Applications and the app bundle and all contents are owned by root.

 ● The helper has been (manually) run at least once by the user.

If none of these conditions have been met, you'll see errors like the following:

 ● "Not allowing process 19920 to launch '/Applications/Main.app/Contents/Resources/Helper.app' because
the security assessment verdict was denied."

This message means that the Gatekeeper assessment was denied. You can confirm that with the spctl
tool as follows:

$ spctl --assess -vvvv /Applications/Main.app/

/Applications/Main.app/: rejected

origin=Mac Developer: Developer Name

$ spctl --assess -vvvv
/Applications/Main.app/Contents/Resources/Helper.app/

/Applications/Main.app/Contents/Resources/Helper.app/: rejected

origin=Mac Developer: Developer Name

 ● "The application “Helper” could not be launched because it is corrupt."

"The operation couldn’t be completed. (OSStatus error -10827.)"

This is the typical error if none of the above conditions have been fulfilled.

The results are the same whether you use Launch Services directly (by calling LSOpenCFURLRef, for example)
or indirectly (by calling the launchApplicationAtURL:options:configuration:error: method in
NSWorkspace, for example).

In addition, upon failure, in OS X v10.7.5 and earlier, you will also see a bogus deny file-write-data
/Applications/Main.app/Contents/Resources/Helper.app sandbox violation. This error has no
functional impact and can be ignored.

App Sandbox in Depth
External Tools, XPC Services, and Privilege Separation

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

30

IPC and POSIX Semaphores and Shared Memory
Normally, sandboxed apps cannot use Mach IPC, POSIX semaphores and shared memory, or UNIX domain
sockets (usefully). However, by specifying an entitlement that requests membership in an application group,
an app can use these technologies to communicate with other members of that application group.

Note: System V semaphores are not supported in sandboxed apps.

UNIX domain sockets are straightforward; they work just like any other file.

Any semaphore or Mach port that you wish to access within a sandboxed app must be named according to a
special convention:

 ● POSIX semaphores and shared memory names must begin with the application group identifier, followed
by a slash (/), followed by a name of your choosing.

 ● Mach port names must begin with the application group identifier, followed by a period (.), followed by
a name of your choosing.

For example, if your application group’s name is Z123456789.com.example.app-group, you might create
two semaphore namedZ123456789.myappgroup/rdyllwflg andZ123456789.myappgroup/bluwhtflg.
You might create a Mach port named Z123456789.com.example.app-group.Port_of_Kobe.

Note: The maximum length of a POSIX semaphore name is only 31 bytes, so if you need to use
POSIX semaphores, you should keep your app group names short .

To learn more about application groups, read The Application Group Container Directory (page 18), then read
Adding an Application to an Application Group in Entitlement Key Reference .

App Sandbox in Depth
IPC and POSIX Semaphores and Shared Memory

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

31

There’s a common, basic workflow for designing or converting an app for App Sandbox. The specific steps to
take for your particular app, however, are as unique as your app. To create a work plan for adopting App
Sandbox, use the process outlined here, along with the conceptual understanding you have from the earlier
chapters in this document.

Six Steps for Adopting App Sandbox
The workflow to convert an OS X app to work in a sandbox typically consists of the following six steps:

1. Determine whether your app is suitable for sandboxing.

2. Design a development and distribution strategy.

3. Resolve API incompatibilities.

4. Apply the App Sandbox entitlements you need.

5. Add privilege separation using XPC.

6. Implement a migration strategy.

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

32

Designing for App Sandbox

Note: It is not sufficient to perform this task for the main app in your app bundle. For apps distributed
through the Mac App Store, all included helper apps and tools must also be sandboxed. For apps
distributed through other mechanisms, you should sandbox each executable in your app bundle if
at all possible.

For a list of all executable binaries in your app bundle, type the following command in Terminal:

find -H YourAppBundle.app -print0 | xargs -0 file | grep "Mach-O .*executable"

where YourAppBundle.app should be replaced by the path to your app bundle.

Determine Whether Your App Is Suitable for Sandboxing
Most OS X apps are fully compatible with App Sandbox. If you need behavior in your app that App Sandbox
does not allow, consider an alternative approach. For example, if your app depends on hard-coded paths to
locations in the user’s home directory, consider the advantages of using Cocoa and Core Foundation path-finding
APIs, which use the sandbox container instead.

If you choose to not sandbox your app now, or if you determine that you need a temporary exception
entitlement, use Apple’s bug reporting system to let Apple know what’s not working for you. Apple considers
feature requests as it develops the OS X platform. Also, if you request a temporary exception, be sure to use
the Review Notes field in iTunes Connect to explain why the exception is needed.

The following app behaviors are incompatible with App Sandbox:

 ● Use of Authorization Services

With App Sandbox, you cannot do work with the functions described in Authorization Services C Reference .

 ● Use of accessibility APIs in assistive apps

With App Sandbox, you can and should enable your app for accessibility, as described in Accessibility
Programming Guide for OS X . However, you cannot sandbox an assistive app such as a screen reader, and
you cannot sandbox an app that controls another app.

 ● Sending Apple events to arbitrary apps

With App Sandbox, you can receive Apple events and respond to Apple events, but you cannot send Apple
events to arbitrary apps.

However, for applications that specifically provide scripting access groups, you can send appropriate Apple
events to those apps if your app includes a scripting targets entitlement.

For other applications, by using a temporary exception entitlement, you can enable the sending of Apple
events to a list of specific apps that you specify, as described in Entitlement Key Reference .

Designing for App Sandbox
Determine Whether Your App Is Suitable for Sandboxing

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

33

https://bugreport.apple.com/

Finally, your app can use the subclasses of NSUserScriptTask class to run user-provided AppleScript
scripts out of a special directory, NSApplicationScriptsDirectory (~/Library/Application
Scripts/code-signing-identifier/). Although your app can read files within this directory, it cannot write
files into this directory; the user must manually place scripts here. For details, see the documentation for
NSUserScriptTask and WWDC 2012: Secure Automation Techniques in OS X.

 ● Sending user-info dictionaries in distributed notifications to other tasks

With App Sandbox, you cannot include a userInfo dictionary when posting to an
NSDistributedNotificationCenter object for messaging other tasks. (You can , as usual, include a
userInfo dictionary when messaging other parts of your app by way of posting to an
NSNotificationCenter object.)

 ● Loading kernel extensions

Loading of kernel extensions is prohibited with App Sandbox.

 ● Simulation of user input in Open and Save dialogs

If your app depends on programmatically manipulating Open or Save dialogs to simulate or alter user
input, your app is unsuitable for sandboxing.

 ● Accessing or setting preferences on other apps

With App Sandbox, each app maintains its preferences inside its container. Normally, your app has no
access to the preferences of other apps.

However, if your app requires access to the preferences files of other applications, there are temporary
exception entitlements available that allow you to specify a list of named preference domains that your
app needs to access. For details, see Entitlement Key Reference .

 ● Configuring network settings

With App Sandbox, your app cannot modify the system’s network configuration (whether with the System
Configuration framework, the CoreWLAN framework, or other similar APIs) because doing so requires
administrator privileges.

 ● Terminating other apps

With App Sandbox, you cannot use the NSRunningApplication class to terminate other apps.

Resolve API Incompatibilities
If you are using OS X APIs in ways that were not intended, or in ways that expose user data to attack, you may
encounter incompatibilities with App Sandbox. This section provides some examples of app design that are
incompatible with App Sandbox and suggests what you can do instead.

Designing for App Sandbox
Resolve API Incompatibilities

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

34

https://developer.apple.com/videos/wwdc/2012/?id=206

Opening, Saving, and Tracking Documents
If you are managing documents using any technology other than the NSDocument class, you should convert
to using this class to benefit from its built-in App Sandbox support. The NSDocument class automatically works
with Powerbox. NSDocument also provides support for keeping documents within your sandbox if the user
moves them using the Finder.

Remember that the inheritance path of the NSOpenPanel and NSSavePanel classes is different when your
app is sandboxed. See Open and Save Dialog Behavior with App Sandbox (page 22).

If you don’t use the NSDocument class to manage your app’s documents, you can craft your own file-system
support for App Sandbox by using the NSFileCoordinator class and the NSFilePresenter protocol, but
this requires a lot of extra work.

Retaining Access to File System Resources
If your app depends on persistent access to file system resources outside of your app’s container, you need to
adopt security-scoped bookmarks as described in Security-Scoped Bookmarks and Persistent Resource
Access (page 23).

Creating a Login Item for Your App
To create a login item for your sandboxed app, use the SMLoginItemSetEnabled function (declared in
ServiceManagement/SMLoginItem.h) as described in Adding Login Items Using the Service Management
Framework.

(With App Sandbox, you cannot create a login item using functions in the LSSharedFileList.h header file.
For example, you cannot use the function LSSharedFileListInsertItemURL. Nor can you manipulate the
state of launch services, such as by using the function LSRegisterURL.)

Accessing User Data
Most OS X path-finding APIs return paths relative to the container instead of relative to the user’s home
directory. If your app, before you sandbox it, accesses locations in the user’s actual home directory (~) and you
are using Cocoa or Core Foundation APIs, then, after you enable sandboxing, your path-finding code
automatically uses your app’s container instead.

For first launch of your sandboxed app, OS X automatically migrates your app’s main preferences file. If your
app uses additional support files, perform a one-time migration of those files to the container, as described in
Migrating an App to a Sandbox (page 39).

Designing for App Sandbox
Resolve API Incompatibilities

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

35

If you are using a POSIX function such as getpwuid to obtain the path to the user’s actual home directory
from directory services (rather than by using the HOME environment variable), consider instead using a Cocoa
or Core Foundation symbol such as the NSHomeDirectory function. By using Cocoa or Core Foundation, you
support the App Sandbox restriction against directly accessing the user’s home directory.

If your app requires access to the user’s home directory in order to function, let Apple know about your needs
using the Apple bug reporting system. In addition, be sure to follow the guidance regarding entitlements
provided on the iTunes Connect website.

Accessing Preferences of Other Apps
Because App Sandbox directs path-finding APIs to the container for your app, reading or writing to the user’s
preferences takes place within the container. Preferences for other sandboxed apps are inaccessible. Preferences
for apps that are not sandboxed are placed in the ~/Library/Preferencesdirectory, which is also inaccessible
to your sandboxed app.

If your app requires access to another app’s preferences in order to function—for example, if it requires access
to the playlists that a user has defined for iTunes—let Apple know about your needs using the Apple bug re-
porting system. In addition, be sure to follow the guidance regarding entitlements provided on the iTunes
Connect website.

Using HTML5 Embedded Video in Web Views
If you are compiling an app that uses the WebKit framework, and your target is OS X v10.7, you must also link
your app against the AV Foundation framework. If you do not do so, because of the way App Sandbox interacts
with CoreMedia, your app will be unable to play HTML5 embedded videos.

This additional linking step is not required for apps that run only on OS X v10.8 and later.

Apply the App Sandbox Entitlements You Need
To adopt App Sandbox for a target in an Xcode project, apply the <true/> value to the
com.apple.security.app-sandbox entitlement key for that target. Do this in the Xcode target editor
by selecting the Enable App Sandboxing checkbox.

Apply other entitlements as needed. For a complete list, refer to Entitlement Key Reference .

Designing for App Sandbox
Apply the App Sandbox Entitlements You Need

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

36

https://bugreport.apple.com/
https://itunesconnect.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/
https://itunesconnect.apple.com/
https://itunesconnect.apple.com/

Important: App Sandbox protects user data most effectively when you minimize the entitlements you
request. Take care not to request entitlements for privileges your app does not need. Consider whether
making a change in your app could eliminate the need for an entitlement.

Here’s a basic workflow to use to determine which entitlements you need:

1. Run your app and exercise its features.

2. In the Console app (available in /Applications/Utilities/), look for sandboxd violations in the All
Messages system log query.

Each such violation indicates that your app attempted to do something not allowed by your sandbox.

Here’s what a sandboxd violation looks like in Console:

3:56:16 pm sandboxd: ([4928]) AppSandboxQuickS(4928) deny network-outbound 111.30.222.15:80
3:56:16 pm sandboxd: ([4928]) AppSandboxQuickS(4928) deny system-socket

Click the paperclip icon to the right of a violation message to view the backtrace that shows what led to
the violation.

3. For each sandboxd violation you find, determine how to resolve the problem. In same cases, a simple
change to your app, such as using your Container instead of other file system locations, solves the problem.
In other cases, applying an App Sandbox entitlement using the Xcode target editor is the best choice.

4. Using the Xcode target editor, enable the entitlement that you think will resolve the violation.

5. Run the app and exercise its features again.

Either confirm that you have resolved the sandboxd violation, or investigate further.

If you choose not to sandbox your app now or to use a temporary exception entitlement, use Apple’s bug re-
porting system to let Apple know about the issue you are encountering. Apple considers feature requests as
it develops the OS X platform. Also, be sure use the Review Notes field in iTunes Connect to explain why the
exception is needed.

Add Privilege Separation Using XPC
When developing for App Sandbox, look at your app’s behaviors in terms of privileges and access. Consider
the potential benefits to security and robustness of separating high-risk operations into their own XPC services.

When you determine that a feature should be placed into an XPC service, do so by referring to Creating XPC
Services in Daemons and Services Programming Guide .

Designing for App Sandbox
Add Privilege Separation Using XPC

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

37

https://bugreport.apple.com/
https://bugreport.apple.com/

Implement a Migration Strategy
Ensure that customers who are currently using a pre-sandbox version of your app experience a painless upgrade
when they install the sandboxed version. For details on how to implement a container migration manifest,
read Migrating an App to a Sandbox (page 39).

Designing for App Sandbox
Implement a Migration Strategy

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

38

An app that is not sandboxed places its support files in locations that are inaccessible to a sandboxed version
of the same app. For example, the typical locations for support files are shown here:

DescriptionPath

Legacy location~/Library/Application Support/<app_name>/

Sandbox location~/Library/Containers/<bundle_id>/Data/Library/Application
Support/<app_name>/

As you can see, the sandbox location for the Application Support directory is within an app’s
container—thus allowing the sandboxed app unrestricted read/write access to those files. If you previously
distributed your app without sandboxing and you now want to provide a sandboxed version, you must tell
OS X to move your support files into their new, sandbox-accessible locations.

Note: The system automatically migrates your app’s preferences file
(~/Library/Preferences/com.yourCompany.YourApp.plist) on first launch of your sandboxed
app. You do not need to explicitly request that it be migrated.

When a user launches any app, before the app starts running, OS X checks to see if the app is sandboxed. If
so, OS X checks to see if a sandbox container directory exists for that particular app within the user’s
Library/Containers folder. If the app’s container directory already exists, then no migration is needed,
and your app begins running immediately.

However, if the app’s container directory does not exist, OS X creates the missing sandbox container directory
and then migrates the per-user preference file for your app, along with any files that you have specifically listed
in the app's container migration manifest .

A container migration manifest is a special property list file containing an array of strings that identify the
support files and directories you want to migrate when a user first launches the sandboxed version of your
app. The file must be named container-migration.plist, and must appear in the Contents/Resources
directory within your app bundle.

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

39

Migrating an App to a Sandbox

For each file or directory you specify for migration, you have a choice of allowing the system to place the item
appropriately in your container or explicitly specifying the destination location.

OS X moves—it does not copy—the files and directories you specify in a container migration manifest. That
is, the files and directories migrated into your app’s container no longer exist at their original locations. In
addition, container migration is a one-way process: You are responsible for providing a way to undo it, should
you need to do so during development or testing. The section Undoing a Migration for Testing (page 42)
provides a suggestion about this.

Creating a Container Migration Manifest
To support migration of app support files when a user first launches the sandboxed version of your app, create
a container migration manifest.

To create and add a container migration manifest to an Xcode project

1. Add a property list file to the Xcode project.

The Property List template is in the OS X “Resource” group in the file template dialog.

Important: Be sure to name the file container-migration.plist spelled and lowercased
exactly this way.

2. Add a Move property to the container migration manifest.

The Move property contains an array of files to move into your container directory. This property is
usually the lone top-level key in a container migration manifest. You add it to the empty file as follows:

 ● Right-click the empty editor for the new .plist file, then choose Add Row.

 ● In the Key column, enter Move as the name of the key.

You must use this exact casing and spelling.

 ● In the Type column, choose Array.

3. Optionally add a Symlink property to the container migration manifest.

The Symlink property contains an array of files to link into your container directory. The resulting
symbolic links in your container directory point to files elsewhere.

Note: If you want these symbolic links to be useful, you must combine them with temporary
exception entitlements to grant access to whatever files or folders the symbolic links point to.

Migrating an App to a Sandbox
Creating a Container Migration Manifest

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

40

4. Add a string to the Move (or Symlink) array for the first file or folder you want to migrate.

For example, suppose you want to migrate your Application Support directory (along with its
contained files and subdirectories) to your container. If your directory is called App Sandbox Quick
Start and is currently within the ~/Library/Application Support directory, use the following
string as the value for the new property list item:

${ApplicationSupport}/App Sandbox Quick Start

No trailing slash character is required, and space characters are permitted. The search-path constant
in the path is equivalent to ~/Library/Application Support. This constant is described, along
with other commonly used directories, in Use Variables to Specify Support-File Directories (page 44).

Similarly, add additional strings to identify the original (before sandboxing) paths of additional files or
folders you want to migrate.

When you specify a directory to be moved, keep in mind that the move is recursive—it includes all the
subdirectories and files within the directory you specify.

Before you first test a migration manifest, provide a way to undo the migration, such as suggested in Undoing
a Migration for Testing (page 42).

To test a container migration manifest

1. In the Finder, open two windows as follows:
 ● In one window, view the contents of the ~/Library/Containers/ directory.

 ● In the other window, view the contents of the directory containing the support files named in the
container migration manifest—that is, the files you want to migrate.

2. Build and run the Xcode project.

Upon successful migration, the support files disappear from the original (nonsandbox) directory and appear
in your app’s container.

If you want to alter the arrangement of support files during migration, use a slightly more complicated .plist
structure. Specifically, for a file or directory whose migration destination you want to control, provide both a
starting and an ending path. The ending path is relative to the Data directory in your container. In specifying
an ending path, you can use any of the search-path constants described in Use Variables to Specify Support-File
Directories (page 44).

Migrating an App to a Sandbox
Creating a Container Migration Manifest

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

41

If your destination path specifies a custom directory (one that isn’t part of a standard container), the system
creates the directory during migration.

The following task assumes that you’re using the Xcode property list editor and working with the container
migration manifest you created earlier in this chapter.

To control the destination of a migrated file or directory

1. In the container migration manifest, add a new item to the Move (or Symlink) array.

2. In the Type column, choose Array.

3. Add two strings as children of the new array item.

4. In the top string of the pair, specify the origin path of the file or directory you want to migrate.

5. In the bottom string of the pair, specify the destination (sandbox) custom path for the file or directory
you want to migrate.

File migration proceeds from top-to-bottom through the container migration manifest. Take care to list items
in an order that works. For example, suppose you want to move your entire Application Support directory
as-is, except for one file. You want that file to go into a new directory parallel to Application Support in
the container.

For this approach to work, you must specify the individual file move before you specify the move of the
Application Support directory—that is, specify the individual file move higher in the container migration
manifest. (If Application Support were specified to be moved first, the individual file would no longer be
at its original location at the time the migration process attempted to move it to its new, custom location in
the container.)

Undoing a Migration for Testing
When testing migration of support files, you may find it necessary to perform migration more than once. To
support this, you need a way to restore your starting directory structures—that is, the structures as they exist
prior to migration.

One way to do this is to make a copy of the directories to migrate, before you perform a first migration. Save
this copy in a location unaffected by the migration manifest. The following task assumes you have created this
sort of backup copy.

Migrating an App to a Sandbox
Undoing a Migration for Testing

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

42

To manually undo a container migration for testing purposes

1. Manually copy the files and directories—those specified in the manifest—from your backup copy to
their original (premigration) locations. (Be careful not to remove the files from your backup copy as
you do so.)

2. Delete your app’s container.

The next time you launch the app, the system recreates the container and migrates the support files
according to the current version of the container migration manifest.

An Example Container Migration Manifest
Listing 4-1 shows an example manifest as viewed in a text editor.

Listing 4-1 An example container migration manifest

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Move</key>

<array>

<string>${Library}/MyApp/MyConfiguration.plist</string>

<array>

<string>${Library}/MyApp/MyDataStore.xml</string>

<string>${ApplicationSupport}/MyApp/MyDataStore.xml</string>

</array>

</array>

</dict>

</plist>

This manifest specifies the migration of two items from the user’s Library directory to the app’s container.
For the first item, MyConfiguration.plist, only the origin path is specified, leaving it to the migration
process to place the file appropriately.

For the second item, MyDataStore.xml, both an origin and a custom destination path are specified.

Migrating an App to a Sandbox
An Example Container Migration Manifest

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

43

The ${Library} and ${ApplicationSupport} portions of the paths are variables you can use as a
convenience. For a list of variables you can use in a container migration manifest, see Use Variables to Specify
Support-File Directories (page 44).

Use Variables to Specify Support-File Directories
When you specify a path in a container migration manifest, you can use certain variables that correspond to
commonly used support file directories. These variables work in origin and destination paths, but the path
that a variable resolves to depends on the context. Refer to Table 4-1.

Table 4-1 How system directory variables resolve depending on context

Variable resolves toContext

Home-relative path (relative to the ~ directory)Origin path

Container-relative path (relative to the Data directory in the container)Destination path

The variables you can use for specifying support-file directories are described in Table 4-2 (page 44). For an
example of how to use these variables, see Listing 4-1 (page 43).

You can also use a special variable that resolves to your app’s bundle identifier, allowing you to conveniently
incorporate it into an origin or destination path. This variable is ${BundleId}.

Table 4-2 Variables for support-file directories

DirectoryVariable

The directory containing application support files. Corresponds to the
NSApplicationSupportDirectory search-path constant.

${Application-
Support}

The directory containing the user’s autosaved documents. Corresponds
to the NSAutosavedInformationDirectory search-path constant.

${Autosaved-
Information}

The directory containing discardable cache files. Corresponds to the
NSCachesDirectory search-path constant.

${Caches}

Each variable corresponds to the directory containing the user’s documents.
Corresponds to the NSDocumentDirectory search-path constant.

${Document}

${Documents}

Migrating an App to a Sandbox
Use Variables to Specify Support-File Directories

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

44

DirectoryVariable

The current user’s home directory. Corresponds to the directory returned
by the NSHomeDirectory function. When in a destination path in a
manifest, resolves to the container directory.

${Home}

The directory containing application-related support and configuration
files. Corresponds to the NSLibraryDirectory search-path constant.

${Library}

Migrating an App to a Sandbox
Use Variables to Specify Support-File Directories

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

45

This table describes the changes to App Sandbox Design Guide .

NotesDate

Corrected the explanation of the stopAccessingSecurityScopedResource
method.

2014-02-11

Added information about app group container behavior in OS X v10.9.2013-10-22

Removed inaccurate guidance about handling issues where an app needs
access to another app's preferences.

2013-08-08

Added information about related items in OS X v10.8.2013-03-14

Clarified information about launching external tools.2012-09-19

Added an explanation of app group containers.2012-07-23

Improved the explanation of security-scoped bookmarks in
Security-Scoped Bookmarks and Persistent Resource Access (page 23);
updated that section for OS X v10.7.4.

2012-05-14

Added a brief section in the Designing for App Sandbox chapter: Retaining
Access to File System Resources (page 35).

Improved the discussion in Opening, Saving, and Tracking
Documents (page 35), adding information about using file coordinators.

Corrected the information in Creating a Login Item for Your App (page
35).

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

46

Document Revision History

NotesDate

Improved explanation of security-scoped bookmarks in Security-Scoped
Bookmarks and Persistent Resource Access (page 23).

2012-03-14

Clarified the explanation of the container directory in The App Sandbox
Container Directory (page 16)

Updated for OS X v10.7.3, including an explanation of how to use
security-scoped bookmarks.

2012-02-16

Added a section explaining how to provide persistent access to file-system
resources, Security-Scoped Bookmarks and Persistent Resource
Access (page 23).

Expanded the discussion in Powerbox and File System Access Outside of
Your Container (page 19) to better explain how user actions expand your
app’s file system access.

Added a section detailing the changes in behavior of Open and Save
dialogs, Open and Save Dialog Behavior with App Sandbox (page 22).

New document that explains Apple's security technology for damage
containment, and how to use it.

2011-09-27

Portions of this document were previously published in Code Signing and
Application Sandboxing Guide .

Document Revision History

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

47

Apple Inc.
Copyright © 2014 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer or device for personal use only and to
print copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-branded products.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Cocoa, Finder,
iTunes, Keychain, Mac, OS X, Sand, and Xcode are
trademarks of Apple Inc., registered in the U.S.
and other countries.

QuickStart is a trademark of Apple Inc.

.Mac and iCloud are service marks of Apple Inc.,
registered in the U.S. and other countries.

App Store and Mac App Store are service marks
of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

UNIX is a registered trademark of The Open
Group.

APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT, ERROR OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the exclusion of
implied warranties or liability, so the above exclusion
may not apply to you.

	App Sandbox Design Guide
	Contents
	Tables and Listings
	Introduction
	App Sandbox Quick Start
	Create the Xcode Project
	Enable App Sandbox
	Confirm That the App Is Sandboxed
	Resolve an App Sandbox Violation

	App Sandbox in Depth
	The Need for a Last Line of Defense
	Entitlements and System Resource Access
	Container Directories and File System Access
	The App Sandbox Container Directory
	The Application Group Container Directory
	Powerbox and File System Access Outside of Your Container
	Related Items
	Open and Save Dialog Behavior with App Sandbox

	Security-Scoped Bookmarks and Persistent Resource Access
	Two Distinct Types of Security-Scoped Bookmark
	Using Security-Scoped Bookmarks

	App Sandbox and Code Signing
	External Tools, XPC Services, and Privilege Separation
	XPC Services
	Launching Helpers with Launch Services

	IPC and POSIX Semaphores and Shared Memory

	Designing for App Sandbox
	Six Steps for Adopting App Sandbox
	Determine Whether Your App Is Suitable for Sandboxing
	Resolve API Incompatibilities
	Opening, Saving, and Tracking Documents
	Retaining Access to File System Resources
	Creating a Login Item for Your App
	Accessing User Data
	Accessing Preferences of Other Apps
	Using HTML5 Embedded Video in Web Views

	Apply the App Sandbox Entitlements You Need
	Add Privilege Separation Using XPC
	Implement a Migration Strategy

	Migrating an App to a Sandbox
	Creating a Container Migration Manifest
	Undoing a Migration for Testing
	An Example Container Migration Manifest
	Use Variables to Specify Support-File Directories

	Revision History

