Apricot DB

The User Guide

v0.2

“Apricot DB”, v 0.2 February 2019

Preface

The “Apricot DB” is a desktop application, which purpose is to help users with the design,
generation, analysis and maintenance of the structure of the complex relational databases.

The main audience of this software are presumable the software developers, who’s been working
with the multi- tables databases and need a tool for graphic representation of existing and newly
created database- structures.

The database structure is a set of tables, connected with each other by relationships (that’s been
making the database “relational”). Tables also can be called “entities”. The entity-relationship
diagram (ER-diagram, or ERD) is a graphical representation of the database structure.

2 “Apricot DB”, v 0.2 February 2019

Running the “Apricot DB”
The runnable file of the current edition of “Apricot DB” is a Java- archive, which can be started by

command:
$ java -jar apricot-ui-xx.jar

The “apricot-ui-xx.jar” is a runnable Java archive. You need the Java Machine of version 8.x to be
installed on your system.

3 “Apricot DB”, v 0.2 February 2019

Introduction
Here I'll explain the important basics of “Apricot DB”.

The “Apricot DB” application is similar to the “classic” IDEs like Eclipse, NetBeans. The top element of
the interface is the Project. There might be any number of the Projects created and maintained in
“Apricot DB”, but only one Project can be opened at any moment of time.

.
Project Operations Snapshot: | TESTT - Save New: | Snapshot View Scale: | 100%

¥ Apricot-Test-Structure o N . -
Main View | Test View | Test2 | Full Person View | Payment Transactions | Big View | Identifying Relationships | Two Tables | Creatures | Person+ | Persons+ | Copied from Creatures | Airport | Strange Tables
book_author

bookref L,
book_shelf | erson
ayroll ' . '
book title P 4 person_id * (PK) by s -
department payroll_id * (PK) i it religion
epartmen —— ' , tabel_nummer * (UIDX) ——-<) religion_name * (PK)
master_doom persen_id * {FK, UC, IDX) - . ! first_name * (IDX) '
payment code payment_transaction_id * (FK1, UC, IDXT) [----------- ' i secand_name * (IDX) : religion def
- payment_code * (FK2, UC) a \ o 1

payment_group payment_period * (UC, IDX) 1 i relgion (FKJV -) 7

et ot — e 1 ! department * (FK1, IDX1)
payment_transaction payment_amount a I- @) mansger (F2)
payment_transaction_type - S @ position_code * (FK3)
payral it f a position_suffix * [FK3)

. . position code*(P) p----: '
code_in_payment grou i
peocein payment.greup position_suffix * (PK) 1
person H payment transaction
erson_feature_history position_name * ! id*
person_feature_history woment | id* (PK)
person_feature value

transaction_period =
person_in_payment_group payment. ion_type. transaction_started_date * (IDX)

personal feature_type e transaction finished_date

]
ositio I transaction_overall_amount *
position ot name 1

ref_strange pt_period * I

ref_table

transaction_approved *
.......... @ transaction_type * (FK. IDX1)

religion
triller
triller_book

tt_user

Ideally, a Project is dedicated to one database (or schema, or any other stable database structure
depending on the type of the database). In my example (see the screenshot) the project named
“Apricot-Test-Structure” represents the SQL Server database - “APRICOT_TEST”.

The Project contains Snapshots and Views.

The Snapshot

The Snapshot is a container of tables and relationships between them. Project has to have at least
one Snapshot. There might be any number of Snapshots in one Project. The different Snapshots in
the Project might have not equivalent collections of tables/relationships. The Snapshot might be
considered as a primitive version control system, which stores a graphical representation of the
database structure in different moments of time. Technically, the Snapshots can have completely
different and not overlapping sets of tables in them. It makes sense, though, to stick with the
logically the same database structure in all Snapshots of the Project. It allows to perform efficient
comparison between different Snapshots in one Project.

The View

The view contains the graphical representation of entities/relationships (see the screen shot above).
There always one mandatory View included in any Project: the “Main View”. It shows all tables of
the chosen Snapshot. This view cannot be removed.

For the big database structures, which might include hundreds of tables and relationships between
them, it is more convenient to “split” the whole set of the tables of the current Snapshot into the
logical subsets: Views (do not confuse the “Apricot DB View” with the database view which has been
created by CREATE VIEW... DDL command!).

4 “Apricot DB”, v 0.2 February 2019

The Elements of the “Apricot DB”- main screen

The current Project and Snapshot: the current Project is shown on the left pane. The Snapshot
inside the current Project is presented by the drop-down list.

- - B
Project Operations Snapshot: | TEST7 Save

New: | Snapshot

View Scale: | 100%

¥ Apricot-Test-Structure
Main View | Test View | Test 2 | Full Person View | Payment Transactions | Big View | Identifying Relationships | Two Tables | Creatures | Person= | Person+ | Copied from Creatures | Airport | Strange Tables

beok_author

d L4
peodein-payment.group position_suffix * (PK)

person

book_ref
book shelf
I
book title 2Yro - =
payrolLid * (PK) i 1
department Il f
master_doom person id * (FK, UC, IDX) S i :
¢ cod payment_transaction_id * (FK1, UC, IDX1) - —--—————— . H
ayment code |
P payment_code * (FK2, UC) ! i
payment graup payment_period * (UC, IDX) ! a
payment_transaction payment_amount * i H
payment_transaction_type — (e 4
osition I '
payrol i I
position_code * (PK) R |
|
|

osition_name *
person_feature_history P Lemet o 0L

comment
person_feature value
person_in_payment_group payment ion_type
personal_feature_type id * (PK)
position ptname *
ref strange pt_period
ref_table
religion
triller
trller_book
t_user

- person_id * (PK)

religion

tabel_nummer * (UIDX)
first_name * (IDX)
second_name * (IDX)
religion (FK}

department * (FK1, IDX1)
@ manager (FK2)

@ position_code * [FK3)
position_suffix * (FK3)

r===<} religion_name * (PK)
i

H religion_def
i

P

payment,

- id* (PK)

transaction_pericd
transaction_started_date * (IDX)
transaction_finished_date
transaction_overall_amount
transaction_approved *
transaction_type * {FK, IDX1)

A collection of tables included into the current snapshot is shown under the current Project- name

(see the left pane).

To change the current snapshot use the drop down “Snapshot:”, see below:

@ Apricot DB
ijett Dpeml\ans Sna ot: | TEST7 v ave New: Snzpshm View Scale: | 100%
v Apricot-Test-Structure - Reverse Eng from 16/01/2019 — -
ain View 5T SN 2 ant Transactfons | Big View | Identifying Relationships | Two Tables | Creatures | Person+ | Person++ | Copied from Creatures | Airport | Strange Tables

book_author E! p
book ref N ITEST6e L ey
bock_shelf erson :
bock_title person_id * (PK) -1
department tabel_nummer * (UIDX) ~~=<) religion_name * (PK)

person_id * (FK, UC, IDX)

payment transaction_id * (FK1, UC, ID1)
payment_code * (FK2, UC)
payment_period * (U, IDX)
payment_transaction payment_amount *

master_doom
payment_code

payment_group

payment_transacti

osition

payroll

jposition_code * (PK)
peode.in_payment_group

position_suffix * (PK)

first_name * (IDX)
second_name * (IDX)
religion (FK)

department * (FK1, IDX1)
manager (FK2)
position_code * (FK3)
position_suffix (FK3)

religion_def

e

person " - ment
sition_name
person_feature_histary P | —— id* (PK)
comment

person_feature_value ransaction_period *
person_in_payment_group ment. ion_type transaction_started_date * (IDX}
personal_feature type P) transaction_finished_date

cstion i transaction_overall_amount *
P pt_name * ! e
ref_strange t d * i ansaction.approve

1 prperod®)L @ transaction_type * (FK, IDX1)

ref_table
relicion

“Apricot DB”, v 0.2 February 2019

Menus and tool bar

[

® Apricot DB
Project Operations

¥ Apricot-Test-Structure
book_author
book _ref
book _sheif
book_title
department
master_doom
payment_code
payment_group
payment transaction
payment_transaction_type
payroll
peode_in_payment_group
person
person_feature_history
person_feature value
person_in_payment_group
personal feature_type
pesition
ref strange
ref_table

religion

q 3

@TEST? -] Save Mew: | Snapshot Scale: | 100%

Main View | Test View | Test2 | Full Person View | Payment Transactions | Big View | Identifying Relationships | Two Tables | Creatures | Person= | Person=+ | Copied from Creatures | Airport | Strange Table:

erson :
ayroll -~ person_id * (PK) b— -

payroll_id * (PK)

religion

tabel_nummer * {UIDX)
first_name * (IDX)
second_name * (IDX)
religion (FK) S
department * (FK1, IDX1)
--@| manager (Fk2)

@ position_code * (FK3)

religion_name * (PK)

persan_id * (FK, UC, IDX)
payment transaction_id * (FK1, UC, IDX1) J@---
payment_code * (FK2, UC)

payment_period * (UC, IDX)

payment_amount =

religion_def

ostlica position_suffix * (FK3)
position_code * (PK)
position_suffix * (PK)
. payment_transaction
position_name * i
comment . TTTTTTTTTTA id” (PR
transaction_period *
payment ion_type transaction_started_date * (IDX)
e . transaction_finished_date
i transaction_overall_amount *
pt_name * | transaction_approved *
pt_period * S @ transaction_type * (FK, IDX1)

1) the main menu is located right above the current project (see the screen shot). It includes some
important “Apricot DB” commands;

2) menu “Snapshot” — allows edit and delete the current Snapshot;

3) menu “Save/Undo” — saves or undoes the recent changes in the selected view;

4) menu “New” — allows to create new Snapshots, Views, Entities and Relationships.

Create a new Project
Select Project/New in main menu.

® Apricot DB

prson

Open

Edit

payment_code
payment_group

payment transaction
payment_transaction_type
payroll
peode_in_payment_group
person
person_feature_history
person_feature_value
person_in_payment group
personal feature_type
position

ref strange

ref_table

religion

Snapshot: [TEST7 - Save New: | Snapshot View Scale: | 100%

Main View | Test View | Test 2 | Full Person View | Payment Transactions | Big View | Identifying Relationships | Two Tables | Creatures | Person+ | Person=+ | Copied from Creatures | Airport | Strange Tables

payment_code * (FK2, UC)
payment_period * (UC, IDX)
payment_amount *

religion (FK)
department * (FK1, IDX1)

| person
]
wyroll Fem———- 4-=- person_id * (PK)
payroll_id = (PK) il 1
person_id = (FK, UC, IDX) P 1 first_name * (IDX)
yment transaction_id * (FK1, UC, IDX1) | === ===== =~ 0 i o B relgion def
payment_transaction_id * ({) - J second_name * (IDX)
]
]
]

|
1
1
H - @ manager (FK2)
P— S . @ position_code * (FK3)
1
i
|
H
|

it .

208 0 position_suffx * (FK3)
position_code * (PK) S
position_suffix * (PK)

N yment_
position_name * "
comment F TTTTT000m id* (PK)
transaction_period *

yment type transaction_started_date * (IDX)

P . transaction_finished_date
: transaction_overall_amount *

pLname ' transaction_approved *
pt_period Semmcomoee @ transsction_type * (7K, IDX1)

The form of creation of the new Project is shown below.

The Project Name

“Apricot DB”, v 0.2 February 2019

* Apricot-Test-Structure
book _author
bock_ref
book_shelf
book_title
department
master_doom
payment code
payment_group
payment_transaction
payment_transaction_type
payroll
peode_in_payment_group
persan
person_feature_history
person_feature_value
person_in_payment_group
personal feature type
position
ref_strange
ref_teble
religion
triller
triller_book

tuser

Main View | Test View | Test 2 | Full Person View | Payment Transactions | Big View

Identifying Relationships

@ Create Project
Project Name:

Project Database:

Project Description:

Project Black List

Edit Black List

Two Tables | Creatures

(PK)

ler = (UIDX)
(1DX)
le = (D)

I (FK1, IDX1)
2)

e * (FK3)

i * (FK3)

saction

[m] x
This is my New Project
MSSQLServer -
This is a free text comment on my new Project
Cancel Save

eriod *
tarted_date * (IDX)
inished_date
verall_amount *
pproved *

pe * (FK, IDX1)

Person+

Person=+ | Copied from Creatures

Airport | Strang

n_name * (PK)

religion_def

“Apricot DB”, v 0.2 February 2019

