

Aras Innovator 11

Data Synchronization Service
Programmer’s Guide

Document #: 11.0.02018110601

Last Modified: 11/16/2018

2018 Aras Corporation All Copyrights Reserved. 2

Aras Innovator 11

DSS Programmer's Guide

Copyright Information

Copyright © 2018 Aras Corporation. All Rights Reserved.

Aras Corporation

100 Brickstone Square

Suite 100

Andover, MA 01810

Phone: 978-806-9400

Fax: 978-794-9826

E-mail: Support@aras.com

Website: https://www.aras.com/

Notice of Rights

Copyright © 2018 by Aras Corporation. This material may be distributed only subject to the terms and conditions set forth in the

Open Publication License, V1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohibited unless

prior permission is obtained from the copyright holder.

Aras Innovator, Aras, and the Aras Corp "A" logo are registered trademarks of Aras Corporation in the United States and other

countries.

All other trademarks referenced herein are the property of their respective owners.

Notice of Liability

The information contained in this document is distributed on an "As Is" basis, without warranty of any kind, express or implied,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose or a warranty of non-

infringement. Aras shall have no liability to any person or entity with respect to any loss or damage caused or alleged to be caused

directly or indirectly by the information contained in this document or by the software or hardware products described herein.

file:///C:/Users/amoharir/Desktop/Working%20DIrectory/Templates/Support@aras.com
https://www.aras.com/

2018 Aras Corporation All Copyrights Reserved. 3

Aras Innovator 11

DSS Programmer's Guide

Table of Contents

Send Us Your Comments ... 4

Document Conventions .. 5

1 Terminology ... 6

2 Overview ... 7

3 API Guide .. 9

3.1 Overview .. 9
3.2 Data Types ... 10

3.2.1 Global Version ... 10
3.2.2 Unsigned BigInt ... 10

3.3 Identities ... 11

3.3.1 dss_SyncReceiver ... 11
3.3.2 Examples of Authentication and Permission Set up on Destination System for

Synchronization Requests ... 11

3.4 Item Actions.. 14

3.4.1 dss_syncAdd ... 14
3.4.2 dss_syncUpdate .. 19
3.4.3 dss_syncPurge .. 22

3.5 Server Events ... 23

3.5.1 onBeforeSyncAdd .. 23
3.5.2 onAfterSyncAdd ... 23
3.5.3 onBeforeSyncUpdate .. 24
3.5.4 onAfterSyncUpdate ... 25

 2018 Aras Corporation All Copyrights Reserved. 4

Aras Innovator 11

DSS Programmer's Guide

Send Us Your Comments

Aras Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for future revisions.

o Did you find any errors?

o Is the information clearly presented?

o Do you need more information? If so, where and what level of detail?

o Are the examples correct? Do you need more examples?

o What features did you like most?

If you find any errors or have any other suggestions for improvement, indicate the document title, and the
chapter, section, and page number (if available).

You can send comments to us in the following ways:

Email:
Support@aras.com
Subject: Aras Innovator Documentation

Or,

Postal service:
Aras Corporation
100 Brickstone Square
Suite 100
Andover, MA 01810
Attention: Aras Innovator Documentation

Or,

FAX:
978-794-9826
Attn: Aras Innovator Documentation

If you would like a reply, provide your name, email address, address, and telephone number.

If you have usage issues with the software, visit https://www.aras.com/support

mailto:Support@aras.com?subject=Aras%20Innovator%20Documentation
https://www.aras.com/support

 2018 Aras Corporation All Copyrights Reserved. 5

Aras Innovator 11

DSS Programmer's Guide

Document Conventions

The following table highlights the document conventions used in the document:

 Document Conventions

Convention Description

Bold

This shows the names of menu items, dialog boxes, dialog
box elements, and commands.

Example: Click OK.

Code
Code examples appear in courier font. It may represent

text you type or data you read.

Yellow highlight
Code highlighted in yellow draws attention to the code that
is being indicated in the content.

Yellow highlight

with red text

Red text highlighted in yellow indicates the code parameter
that needs to be changed or replaced.

Italics Reference to other documents.

Note: Notes contain additional useful information.

Warning
Warnings contain important information. Pay special
attention to information highlighted this way.

Successive menu
choices

Successive menu choices may appear with a greater than
sign (-->) between the items that you will select
consecutively.

Example: Navigate to File --> Save --> OK.

 2018 Aras Corporation All Copyrights Reserved. 6

Aras Innovator 11

DSS Programmer's Guide

1 Terminology

The following table describes the terms used in the Programmer’s Guide.

Term Definition

DSS Data Synchronization Service. The set of APIs introduced in 11.0
SP15 that enable one way data synchronization.

Source System The source Aras Innovator instance from which the data is being
pushed.

Destination System The destination Aras Innovator instance to which the data from the
Source system is being pushed.

Synchronization Scope The set of Items which will are being synchronized between the
Source and Destination systems.

 2018 Aras Corporation All Copyrights Reserved. 7

Aras Innovator 11

DSS Programmer's Guide

2 Overview

The Data Synchronization Service (DSS) provides Item Actions and Events that you can use to create an
environment where data from one Aras Innovator instance can be synchronized with another Aras
Innovator instance. These actions and events target the Destination system and are used to add, update,
or delete data passed from the Source system to the Destination system. This document contains a
detailed API guide for the Item Actions and Events.

There is a separate Data Synchronization Service Sample Package Guide that contains additional
ItemTypes and methods to demonstrate possible customizations such as:

 Adding, Updating, and Deleting Items that are to be synchronized between the Source and
Destination systems.

 Synchronizing Items using the Synchronize action.

 Monitoring Items that are in the Synchronization Scope but have not yet been synchronized using
the Show Synchronization Scope action.

 Viewing synchronized items on the Destination systems.

Note: Please see the Data Synchronization Service Sample Package Guide for further

information and considerations.

Figure 1.

 2018 Aras Corporation All Copyrights Reserved. 8

Aras Innovator 11

DSS Programmer's Guide

Figure 2.

 2018 Aras Corporation All Copyrights Reserved. 9

Aras Innovator 11

DSS Programmer's Guide

3 API Guide

3.1 Overview

During synchronization, the Source system adds new Items from a Synchronization Scope and updates
already synchronized Items on the Destination system.

Unfortunately, you cannot use the existing Item actions add and update for these operations for the
following reasons:

 Synchronization may require overwriting some fields that are automatically calculated in
add/update actions (for example: id, config_id, state, generation, etc.).

 The add/update/delete actions on ItemTypes may contain additional logic using Server Events
that may not be necessary during synchronization. For example:

o Data validation in onBefore events – the data should be considered as already verified by the
Source system.

o Field pre-calculation in onBefore events – the data should be considered as already
calculated by the Source System. The result is passed to the Destination system for saving.

o Sequence field value calculation.

 The add and update actions also handle infrastructural processing (LifeCycle handling,
workflows start, history tracking) which may be unnecessary or handled in a different way for
synchronized Items.

 The standard add action treats received data as the initial generation of an Item which is not
registered in the database. During synchronization the received data may correspond to a higher
generation and should be written directly into the database.

 The Standard update action also performs additional generation handling for versionable Items,

while for synchronization it is only necessary to update the record with the received data.

The following Item Actions were introduced in Innovator 11.0 SP15 for synchronization purposes:

 dss_syncAdd

 dss_syncUpdate

 dss_syncPurge

Synchronization actions perform the required Server Events onBefore-/onAfter- Add/Update/Delete
configured for the ItemType (i.e. with @is_required=1). In addition, each of the specialized
synchronization actions come with a couple of corresponding onBeforeSync-/onAfterSync- Server Events
(see New Server Events for Synchronization). Where possible, the new synchronization Server Events
provide the means for more efficient processing of Item sets.

In addition, two new Data Types were introduced to enable tracking of item changes on the source
system:

 Global Version

 Unsigned BigInt

Synchronization API actions have the following common restrictions:

file:///R:/Docs/specifications/Data%20Sync%20Service/Phase%201%20Uni-directional%20Sync/Data%20Sync%20Service%20Design%20Spec.docx%23_New_Server_Events

 2018 Aras Corporation All Copyrights Reserved. 10

Aras Innovator 11

DSS Programmer's Guide

 They can only be called by the dss_SyncReceiver identity (which is also introduced in Innovator
11.0 SP15)

 They are supported for Table ItemTypes, where custom OnAdd, OnUpdate, OnDelete events are
not defined.

 They return an error if the target Item is locked.

 They return an error in calls for Items associated with ItemTypes representing Innovator metadata
(ItemType, RelationshipType, Property, Method, SystemEvent, LifeCycle, Variable, Locale,
Language, Permission, Workflow, WorkflowProcess, etc.)

Warning It is assumed that permissions on Source and Destination systems are controlled separately

therefore it is not possible to synchronize permission items or set custom permissions on an

Item using synchronization. As result of the dss_syncAdd or dss_syncUpdate operations an

Item should receive the permissions that are configured on the Destination system.

Important! Files are not immutable in Innovator. Use the CheckInManager to add files and

their associated content. The add action is sufficient for the synchronization of Files. The File

ItemType is not supported by synchronization actions. However, ItemTypes that reference

Files and play the role of File Containers should be synchronized using synchronization

actions.

3.2 Data Types

There are two new Innovator Data Types that were introduced in 11.0 SP15 that enable the tracking of
changes to items on a Source system. These Data Types are very important in order to monitor and
maintain synchronization between the Source and Destination systems.

3.2.1 Global Version

The Global Version is a unique value across the entire database that should be attached to every
ItemType that is intended to be synchronized. ItemTypes that will be synched should have the optional
global_version property attached that will be incremented any time the item is updated. The value of a
global_version property is handled by the system and cannot be modified by an administrator. In order to
ensure that the value is unique, the Data Type supports values between 0 and 264-1.

3.2.2 Unsigned BigInt

The Global Version is a unique Data Type that is only used for the global_version property. In order to
store and compare the current global_version value with a previously stored version, the Unsigned BigInt
Data Type is introduced in order to be able to track the Global Version of an item. Since the value of a
global_version property can range from 0 to 264-1, an Integer will not support values large enough to store
and compare a global_version value, requiring the support for an Unsigned BigInt.

 2018 Aras Corporation All Copyrights Reserved. 11

Aras Innovator 11

DSS Programmer's Guide

3.3 Identities

3.3.1 dss_SyncReceiver

Data synchronization is a low-level, specialized process. Therefore, permissions to configure and run it
should be granted carefully. The new dss_SyncReceiver identity can receive synchronization requests
and perform Item synchronization on the Destination system

When applying synchronization requests, you must have create/update/delete permissions for Items
associated with ItemTypes that come from a particular Source system. By default, dss_syncReceiver
does not have these types of permissions. When preparing the Destination system for synchronization
the Administrators of that system should give corresponding permissions either to the entire
dss_SyncReceiver Identity or to a particular User Identity that will be used for synchronization requests
from a particular Source system. Although this type of approach requires some time for manual
configuration, it has the following advantages:

 It controls the amount of data that can be changed using the Synchronization API. It is only
possible to modify Items associated with ItemTypes that have been specially configured for that.

 It is possible to receive synchronization requests from different Source systems on the same
Destination System and ensure that they will modify different sets of Items.

3.3.2 Examples of Authentication and Permission Set up on Destination System

for Synchronization Requests

The following diagram shows a One Source system where dss_SyncReceiver is an Alias Identity for sync
request authentication User:

 2018 Aras Corporation All Copyrights Reserved. 12

Aras Innovator 11

DSS Programmer's Guide

Figure 3.

The following diagram shows a One Source system where Sync request authentication User Identity
is a member of dss_SyncReceiver:

 2018 Aras Corporation All Copyrights Reserved. 13

Aras Innovator 11

DSS Programmer's Guide

Figure 4.

The following diagram shows two Source systems with different sets of synced Item types and two sync
request authentication Users:

 2018 Aras Corporation All Copyrights Reserved. 14

Aras Innovator 11

DSS Programmer's Guide

Figure 5.

3.4 Item Actions

3.4.1 dss_syncAdd

AML

<Item type='Part' id='7073098207234317BBC2CA865413CAD5' action='dss_syncAdd'>

 <config_id>7073098207234317BBC2CA865413CAD5</config_id>

 <generation>1</generation>

 <major_rev>A</major_rev>

 <!-- Item properties with sync data-->

 <item_number>PA-1586-0</item_number>

 <name>Engine</name>

 <!-- … the rest of Item props to be synced -->

</Item>

Implementation Details

The main differences between the add action and dss_syncAdd are dss_syncAdd:

 Requires id, generation and config_id values to be provided for the Item. dss_syncAdd does
not generate an ID.

 2018 Aras Corporation All Copyrights Reserved. 15

Aras Innovator 11

DSS Programmer's Guide

 Skips determination of the initial LifeCycle State.

 Allows the setting of system properties such as created_on, modified_on, etc.

 The default onBeforeAdd/onAfterAdd events are not called. Use the new server events
onBeforeSyncAdd/onAfterSyncAdd instead.

Generally, dss_syncAdd directly saves the provided properties to the database.

The following table describes the processing of system properties in the dss_syncAdd action.

System
Property

Required
*

Validation in
syncAdd

Comments

id Yes ** Is not null.

Has valid ID
format.

Saved as is.

Since synchronization is run per Item
generation, it is required that properties
id, config_id, generation are provided
from the Source system or at least set
inside the onBeforeSyncAdd event
handler. If any of these properties are
missing, an error occurs and the Item is
not saved.

config_id Yes Is not null.

Has valid ID
format.

If generation is
“1”, config_id
should be the
same as id.

generation Yes Is not null.

Is a positive
number.

major_rev Yes Is not null.

If the ItemType
has a Revision
List, the
property value
should match
its values;
otherwise, it
should be
empty (to
match the
current logic of
major_rev
initialization in
such cases)

Saved as is.

 2018 Aras Corporation All Copyrights Reserved. 16

Aras Innovator 11

DSS Programmer's Guide

System
Property

Required
*

Validation
in syncAdd

Comments

locked_by_id No - Value provided from Source is ignored.

Because the initial DSS implementation
only supports read-only data being passed
to the Destination system, the locked_by_id
property on the synchronized Item is set to
null as a result of the synchronization
action.

is_current No - Value provided from Source is ignored.

The value for the property is set by the
Destination system:

 For a non-Versionable ItemType the
value is set to 1 (as there can only be
one generation per Item).

 For a Versionable ItemType the
is_current property is adjusted on the
whole sequence of generations sharing
the same config_id. is_current is set to
1 only on the last generation.

new_version No - Value provided from Source is ignored.

The new_version property is an internal
system property required for proper update
handling for versionable Items. For the add
action, it is closely coupled with the value
for the current item lock state and
depending on the versioning method, may
dictate if a new Item version should be
created to save changes to the Item. For
dss_syncAdd any passed value for this
property from Source is ignored. The value
is set on the Destination system. The
resulting value in this property after
dss_syncAdd is calculated in the same way
that it is done for the add action with the
difference being that dss_syncAdd does not
lock the item.

classification No If provided,
should match
class structure
declared on
an ItemType

Saved as is.

 2018 Aras Corporation All Copyrights Reserved. 17

Aras Innovator 11

DSS Programmer's Guide

System
Property

Required
*

Validation in
syncAdd

Comments

current_state No If value is not
null, it should
correspond to
the ID of the
lifecycle state
from the
Destination
system.

If valid, saved as is.

If not provided, should be set to null.

state No Since state contains the name of an LCS
referenced via the current_state property,
the value will be overridden:

If current_state is null (and this is valid),
state property is also set to null

Otherwise, it gets the name of the LC state
corresponding to current_state on the
Destination system.

is_released No - Saved as is.

If not provided, set to False = 0

released_date,

effective_date

No If provided for
a released
Versionable
Item it should
not be null and
should be in a
valid date
format

Saved as is.

permission_id No - Value provided from Source is ignored.

If required, it is possible to add the
permission_id property to the Item in the
onBeforeSyncAdd event handler on the
Destination system.

keyed_name No - If the keyed_name is provided and is not
null or empty, it is used as is.

Otherwise it is calculated in the same way
it is done for the add action. Assuming that
the Source and Destination systems have
the same metadata, the result should be
the same.

 2018 Aras Corporation All Copyrights Reserved. 18

Aras Innovator 11

DSS Programmer's Guide

System
Property

Required
*

Validation in
syncAdd

Comments

System
Property

Required
*

Validation in
syncAdd

Comments

created_by_id,
modified_by_id

No -

Saved as is if not null or empty, otherwise
should be initialized using the same logic
as the add action.

Source values for the obligatory
modified_by_id, created_by_id and
optional owned_by_id, managed_by_id,
team_id may not correspond to the
user/team items in the Destination
database. It may break permissions
calculation for dynamic roles and links in
the UI. However, if required, the values
from the Source system can be replaced
with local Destination values in the
onBeforeSyncAdd event handler.

created_on,
modified_on

No If provided,
should be a
valid date.

Saved as is if not null or empty. Otherwise,
it is initialized using the same logic as the
add action.

sort_order No - The processing of sort_order is the same
as the add action:

 If passed from Source, sort_order on
Relationship Items is written on
Destination as is.

 If it is not provided, the value should be
calculated.

* - Required properties should be provided with an Item, otherwise an error is returned.

** - For compatibility with the format of the standard add action, the id property is expected to be provided

for an Item as an attribute in the AML request. The <id/> property tag is ignored.

 2018 Aras Corporation All Copyrights Reserved. 19

Aras Innovator 11

DSS Programmer's Guide

3.4.2 dss_syncUpdate

AML

<Item type="Part" id="7073098207234317BBC2CA865413CAD5" action="dss_syncUpdate">

 <!-- Item properties with sync data-->

 <item_number>PA-1586-0</item_number>

 <name>Main Engine</name>

 <!-- … the rest of Item props to be synced -->

</Item>

Implementation Details

The main differences from update are that dss_syncUpdate:

 Allows the setting of system properties like modified_on, modified_by_id.

 Does not handle the float behavior of Relationships.

 The default onBeforeUpdate/onAfterUpdate events are not called. Instead, the new server events
onBeforeSyncUpdate/onAfterSyncUpdate should be used.

 Does not handle versioning for Versionable Items.

Generally, dss_syncUpdate directly saves the provided properties to the database on the Item generation
corresponding to the provided Item ID.

The following table describes the processing of system properties in the dss_syncUpdate action.

 System
Property

Required
*

Validation in
syncUpdate

Comments

config_id

generation

itemtype

created_on

created_by_id

relationship_id

is_current

source_id

No - Are ignored.

 2018 Aras Corporation All Copyrights Reserved. 20

Aras Innovator 11

DSS Programmer's Guide

System
Property

Required
*

Validation in
syncUpdate

Comments

major_rev No If provided, validated
that:

It is not null.

If ItemType has
Revision List, then
the property value
should match its
values. Otherwise, it
should be empty (to
match the current
logic of major_rev
initialization in such
cases)

Saved as is.

locked_by_id No - Value provided from Source is
ignored.

Since the initial DSS
implementation only supports
read-only data being passed to
the Destination system, the
locked_by_id property on the
synchronized Item is set to null as
a result of the synchronization
action.

is_current No - Value provided from Source is
ignored.

new_version No - Value provided from Source is
ignored.

new_version is left unchanged on
an Item.

classification No If provided, should
match class
structure declared
on an Item Type.

Saved as is.

 2018 Aras Corporation All Copyrights Reserved. 21

Aras Innovator 11

DSS Programmer's Guide

System
Property

Required
*

Validation in
syncUpdate

Comments

current_state No If value is provided
and it is not null, it
should correspond to
the ID of the lifecycle
state from the
Destination System.

See more in
LifeCycle state
processing for a
synced Item on
Destination

If valid, saved as is.

state No Since state contains a name of a
LCS referenced via the
current_state property, the value
will be overridden:

If current_state is null (and this is
valid), state property is also set to
null

Otherwise, it gets the name of the
LC state corresponding to
current_state on the Destination
system.

is_released No - Saved as is.

released_date

effective_date

No If provided for a
released
Versionable Item it
should not null be
and should be in a
valid date format

Saved as is.

permission_id No - Value provided from Source is
ignored.

If required, it is possible to add
the permission_id property to the
Item in the onBeforeSyncUpdate
event handler on the Destination
system.

 2018 Aras Corporation All Copyrights Reserved. 22

Aras Innovator 11

DSS Programmer's Guide

System
Property

Required
*

Validation in
syncUpdate

Comments

keyed_name No - If the keyed_name is provided
and is not null or empty, it is used
as is.

Otherwise it is calculated in the
same way it is done for the
update action. Assuming that the
Source and Destination systems
have the same metadata, the
result should be the same.

modified_by_id No - Saved as is if not null or empty.
Otherwise, it is initialized using
the same logic as the update
action.

modified_on No If provided, should
be valid date

sort_order No - If passed from Source, sort_order
on Relationship Items is written
on Destination as is.

* - Required properties should be provided with an Item, otherwise an error is returned.

3.4.3 dss_syncPurge

AML

<Item type="Part" id="7073098207234317BBC2CA865413CAD5" action="dss_syncPurge" />

Implementation Details

In Innovator 11.0 SP15 this item action is implemented as a wrapper for the purge action.

In future releases, it is planned to introduce custom onBeforeSyncDelete/onAfterSyncDelete events and
switch off calls for onBeforeDelete/onAfterDelete which are not marked as required.

 2018 Aras Corporation All Copyrights Reserved. 23

Aras Innovator 11

DSS Programmer's Guide

3.5 Server Events

3.5.1 onBeforeSyncAdd

Overview

The onBeforeSyncAdd server event:

 Runs before an Item is added to the database during synchronization.

 Is called per Item.

 Can be used to populate some data with values that have not been passed from the Source
System or to add local values (e.g. values for fields created_by_id, managed_by_id)

 Runs before required onBeforeAdd events (with @is_required=1)

 The dss_syncAdd request may be rejected completely by returning an error from this event
handler.

Input/Output arguments

This event is called per Item. The request Item with the assigned ID is passed to the event handler as a

Context Item (inDom). No additional event arguments are passed to the handler.

The context Item of onBeforeSyncAdd event handlers with all the changes applied to it inside the

handlers is passed further as a Context Item to the onBeforeAdd event handlers.

The return results of onBeforeSyncAdd event handlers are ignored, unless there is an error. In this case

the dss_syncAdd is stopped and the error is returned in the action response.

3.5.2 onAfterSyncAdd

Overview

The onAfterSyncAdd server event:

 Runs after an item has been added to the database during synchronization

 Runs after required onAfterAdd events (with @is_required=1).

 Is called per Item.

 Can be used to propagate the synchronized Items to external systems if required (e.g. for Mixed
Federated Items).

Input/Output arguments

Unlike the onAfterAdd Server Event, onAfterSyncAdd Server Event handlers don’t get the created Item

as the Context Item. The event handler’s Context Item is empty. The details about the created Item are

provided in event arguments of type OnAfterSyncAddEventArgs:

public class OnAfterSyncAddEventArgs

{

 public string TypeId { get; }

 public string Id { get; }

}

If required, the event handlers can load the item from the DB themselves using the type and ID.

 2018 Aras Corporation All Copyrights Reserved. 24

Aras Innovator 11

DSS Programmer's Guide

The return results of onAfterSyncAdd event handlers should be ignored, unless there is an error. In this
case the dss_syncAdd should be stopped and the error should be returned in the action response.

3.5.3 onBeforeSyncUpdate

Overview

The onBeforeSyncUpdate event:

 Runs before an Item is updated in the database during synchronization.

 Runs before the required onBeforeUpdate event (@is_required=1).

 Can be used to populate some data with values that have not been passed from the Source
System or should be adjusted to local values (e.g. values for fields created_by_id,
managed_by_id).

 Is called per Item.

 The request may be rejected by returning an error.

Input/Output arguments

If the request Item contains a where condition or idlist, the condition is resolved to a list of Item IDs and
the event handlers are called per each Item ID.

The request Item with the condition replaced with the Item ID is passed to the event handler as a Context
Item (inDom). For example.

Request AML OnBeforeUpdate Context Items

<Item type="SyncedItem"
idlist="50DD6F18D7E14791965914314B1E156C,
5459D4256BAB4639AF564186A5174E93"
action='dss_SyncUpdate'>
 <description>New Description</description>
</Item>

<Item type='SyncedItem'
id='50DD6F18D7E14791965914314B1E156C'
action='dss_SyncUpdate'>
 <description>New Description</description>
</Item>

<Item type='SyncedItem'
id='5459D4256BAB4639AF564186A5174E93'
action='dss_SyncUpdate'>
 <description>New Description</description>
</Item>

The context Item for onBeforeSyncUpdate event handlers with all the changes applied to it inside the
handlers are passed further as a Context Item to the onBeforeUpdate event handlers.

In addition to the Context Items, the onBeforeSyncUpdate event handlers receive event arguments of
type OnBeforeSyncUpdateEventArgs that contain a list of all the IDs in the entire as well as the ItemType
ID:

public class OnBeforeSyncUpdateEventArgs

{

 public string TypeId { get; }

 public IEnumerable<string> IdList { get; }

}

The return results for onBeforeSyncUpdate event handlers are ignored, unless there is an error. In this
case that dss_syncUpdate is stopped and the error is returned in the action response.

 2018 Aras Corporation All Copyrights Reserved. 25

Aras Innovator 11

DSS Programmer's Guide

3.5.4 onAfterSyncUpdate

Overview

The onAfterSyncUpdate event:

 Runs after an item has been updated in the database during synchronization.

 Runs after a required onAfterUpdate event (@is_required=1).

 Runs once for the whole Item set in the request.

 Can be used to propagate the synchronized Items to external systems if required (e.g. for Mixed
Federated Items).

Input/Output arguments

The event handler’s Context Item is empty. The updated Items aren’t loaded. The details about the

updated Items are provided in the event arguments of type OnAfterSyncUpdateEventArgs:

public class OnAfterSyncUpdateEventArgs

{

 public string TypeId { get; }

 public IEnumerable<string> IdList { get; }

}

If required, the event handlers can load the items from the database themselves using the type and ID
list.

The return results of onAfterSyncUpdate event handlers are ignored, unless there is an error. In the
case of an error, the dss_syncUpdate is stopped, the request transaction is rolled back, and the error is
returned in the action response.

