

Arduino
Solarmeter
Software manual

Use this manual to configure and install the software in your Arduino

5/18/2017 Revision 11.43

1

Table of Contents
Introduction... 1

Installation ... 2

Arduino Installation (for Windows) ... 2

Solarmeter installation .. 2

Library installation ... 3

PvOutput ... 3

Configuration ... 6

Mindergas.nl.. 10

Exosite.com ... 11

Setup ... 11

Dashboard ... 12

Testing ... 15

Updating day values .. 17

Save actual values ... 17

Change an individual value .. 17

Change the absolute value of a meter .. 18

Reset all values .. 18

Restart the Arduino ... 18

Update the time .. 18

Test uploading of gas value ... 18

Introduction
The purpose of the Arduino Solar Meter software is to collect data from different sensors and send

the data via internet to different sites. These sites store the data and can show different graphs

representing the actual or history data.

The Arduino Solar Meter software runs on the Arduino. This software has to be downloaded to the

Arduino via a host system. This can be any computer that can run the Arduino IDE (Integrated

development Environment) program. After downloading, the Arduino is a stand-alone system.

The program will always be uploading data to the PvOutput.org site. This site is specially designed to

monitor solar panel performance.

 It is also possible to upload the Gas meter readings to mindergas.nl. This is a dutch site that can be used

to store and compare gas usage.

Finally, all data can be uploaded to Exosite.com. This generic site can show actual and history data of all

sensors in a number of formats.

2

Installation
Arduino IDE (current version 1.8.2) http://arduino.cc/en/Main/Software

Arduino Solar Meter https://github.com/harold65/SolarMeter

Arduino Installation (for Windows)
Download the latest Arduino installation file and execute it. This will install the development environment

in the “Program files(x86)” folder.

Solarmeter installation
Go to the solarmeter github page (see link above)

On this page you see a green “Clone or download” button. Click it.

Then click the blue “Download ZIP” button and store the file somewhere on your system.

Unzip the file Solarmeter_V11_43.zip file to a folder where you want to keep all Arduino projects. In this

example, the projects are stored in D:\Arduino\Projects.

You now have a folder structure like this:

D:\Arduino\Projects\Solarmeter

 Readme.md
 AnalogSensor.cpp
 AnalogSensor.h
 BaseSensor.cpp
 BaseSensor.h
 Exosite.ino
 Exosite_org.h
 FerrarisSensor.cpp
 FerrarisSensor.h
 FlashMini.h
 Logging.ino
 Mail.ino
 Mindergas.ino
 P1Power.cpp
 P1Power.h
 P1GasSensor.cpp
 P1GasSensor.h
 PVoutput.ino
 S0Sensor.cpp
 S0Sensor.h
 Solarmeter.ino
 Temperature.cpp
 Temperature.h
 Time.ino
 userdefs_org.h
 Watchdog.ino
 Webstuff.ino
 Docs
 Hardware manual
 Software manual

http://arduino.cc/en/Main/Software
https://github.com/harold65/SolarMeter

3

The main program is called Solarmeter.ino. All other files are classes and functions used by the main

program. Make sure you have all the capitals right. Arduino is case sensitive!

The files userdefs_org.h and exosite_org.h are templates for the system configuration.

They contain a sample of all configuration options. The real configuration must be stored in the files

userdefs.h and exosite.h.

If you do not have these files from a previous configuration, you must copy them from the template files.

The rest of the files contain the source code of the project and do not need to be altered.

Library installation
Since version 1.6, the Arduino IDE has a library manager.

Installation of the required libraries is not really complex but you have to take care that the names and

locations of the files are correct.

A separate manual is present in the docs folder explaining all the steps to take for proper ilstallation.

PvOutput
The main goal of the PvOutput site is to get an overview of the electrical energy usage of an object,

normally a house. Energy is consumed (by equipment) and energy is generated (by solar panels).

PvOutput can store these energy flows per 5 or 10 minutes. It uses nice graphics to show live or history

data per day, week, month or year. Also the data can be compared to all other systems on the site.

PvOutput can also calculate energy cost and savings, based on different tariffs that can be set on the site.

Before you can send data to PvOutput you have to create an account and add one or more systems.

Once you have done this, go to the settings page and scroll to the bottom. You will see something like

this:

The API key is needed once and is used to ‘login’ to your account. Do not give this number away or others

can use your account. Note that the number does not fit in the textbox. Use ‘Select all’ if you want to

copy the key. Also take care not to accidentally press the ‘new key’ button. A running system will not be

able to upload data anymore.

4

The System ID (or SID) is created for every system you have added. This is also used to show the graphs

and is public to everyone. To view the system above, for instance, you go to:

http://pvoutput.org/intraday.jsp?sid=2812

Every PvOutput SID has a number of variables to log to. These show up on the live page in different colors.

Parameter: Field Graph color Solarmeter:

v1 Energy Generation Green area

v2 Power Generation Green line 2

v3 Energy Consumption Red area

v4 Power Consumption Red line 4 (or 24, see below)

v5 Temperature Orange 5

v6 Voltage Purple 6

v7 Extended value 1 Custom

v8 Extended value 2 Custom 8

v9 Extended value 2 Custom

v10 Extended value 2 Custom 10

v11 Extended value 2 Custom

v12 Extended value 2 Custom 12

V1 and v2 belong together and show Todays generated energy and the actual power generation.

V3 and v4 also belong together for the consumed energy and power.

V5 and v6 do not have a total but only display actual values on the live pages.

V7 to v12 are only available if you are a donor of PvOutput.

To make the configuration not too complicated, the solarmeter sensors must be configured for one of the

variables in the last column. The corresponding energy values will automatically be uploaded to the

correct variable.

An exception to this is the P1 power sensor and the Ferraris sensor. Because these sensors measure the

net energy that flows in or out the house, they cannot be used as ‘consumption’ sensor directly.

The total energy consumption is the value measured by the P1 or Ferraris sensor PLUS the power

generated by the solar panels.

These sensors have to get variable number ‘24’. This triggers the software to do the calculation

automatically.

http://pvoutput.org/intraday.jsp?sid=2812

5

Example:

If you connect an S0 meter to ‘2’, the actual power measured will be logged to ‘v2’ and shown as a green

line and the corresponding energy value for that day will be logged to variable ‘v1’ and show as a green

area.

 If you connect an Analog sensor to ‘6’, only the actual value will be logged to v6

 If you put multiple sensors on the same variable, their values will be added.

 If you do not want values to be added, you have to put them on a separate graph by using a

different SID.

 V1, v2, v3 or v4 has to be present on every SID you upload to.

The exact configuration of your sensor is explained in the ‘configuration’ chapter.

6

Configuration
In the userdefs.h file there are a number of options you have to select before you can build the software.

Note: The software will not check if the options set in this file are correct. There simply is no room in the

Arduino to check all correct combinations. If the program does not work or is showing strange data, most

likely there is a mistake in this file. So please check this carefully.

File logging settings Meaning

#define USE_LOGGING Logging to SD card is enabled

Note: due to a bug in the Arduino precompiler, you also have to

change a line in Sorarmeter.ino: remove the slashes before

//#include <SD.h>.

//#define USE_LOGGING Logging to SD card is disabled

 If you do not plan to use the SD card, please remove it from the Ethernet shield. Users reported

bad behavior when the card is present but not used.

PvOutput settings Meaning

#define PVOUTPUT_API_KEY "xx" Replace the xxx with

your own API key

#define UPDATEINTERVAL 5 The update interval must match what you have set in the PvOutput

settings: PvOutput->Settings->System->Live settings->Status interval

Sensor settings Meaning

#define NUMSENSORS 3 Set this value to the total number of sensors you want to use. If you

have 1 S0 meter and 1 Gas sensor, set NUMSENSORS to 2

S0Sensor S1(p,n,sid,v,f);

For every S0 sensor you have, add this line and replace the

parameters as follows:

S1 = a unique name for the sensor

p = the digital pin where the sensor is connected

n = the number of pulses per kWh that this sensor generates

sid = the pvoutput SID where you want the data to be logged

v = the variable number of the SID. See PvOutput section for an

explanation

f = the scaling factor. The value calculated by the sensor will be

divided by the factor before uploading to PvOutput.

 Note for Arduino MEGA users: Do not use pin 4 for a S0 sensor. This pin will not work correctly.

AnalogSensor S2(a,n,sid,v,f); For every Analog sensor you have (gas, water), add this line and

replace the parameters as follows:

7

 S2 = a unique name for the sensor

a = the analog pin where the sensor is connected

n = the number of pulses per m3 that this sensor generates

sid = the pvoutput SID where you want the data to be logged

v = the variable number of the SID. See PvOutput for an explanation.

f = the scaling factor. The value calculated by the sensor will be

divided by the factor before uploading to PvOutput.

FerrarisSensor S3(a1,a2,n,sid,f);

If you want to monitor your ferrarismeter, add this line and replace

the parameters as follows:

S3 = a unique name for the sensor

a1 = the analog pin where the left sensor is connected

a2 = the analog pin where the right sensor is connected

n = the number of pulses per kWh that this sensor generates. This

number is printed on the meter as “C=275”. Fill in the number behind

the “C=”

sid = the pvoutput SID where you want the data to be logged

The FerrarisSensor always logs to v3 and v4

f = the scaling factor. The value calculated by the sensor will be

divided by the factor before uploading to PvOutput.

Temperature T1(“station”,sid,f) By using this sensor, the actual temperature will be retrieved from

XML.BUIENRADAR.NL. The station number is a string with the number

of a nearby weatherstation. Go to

http://gratisweerdata.buienradar.nl/#Station to find this number or

go directly to xml.buienradar.nl and lookup a nearby station and its

number.

sid = the pvoutput SID where you want the temperature to be logged.

f = the scaling factor. The value calculated by the sensor will be

divided by the factor before uploading to PvOutput.

The Temperature sensor always logs to v5.

Set the scaling factor (f) to 10 if you want to log in correct units.

P1Power P1(&Serial,sid,v,f); This sensor will be reading values from the smart meter P1 port. The

meter will send the actual counter values for production and

consumption, actual consumed and generated power and if your

gasmeter is also ‘smart’, the P1 port will also contain the actual gas

counter value.

&Serial defines the serial port that is connected to the P1 port.

If you have an Arduino Uno or compatible, there is only one serial

port “&Serial”.

If you have an Arduino MEGA, you can select one of 4 serial ports

named “&Serial”, “&serial1”, “&Serial2” and “&Serial3”.

sid = the pvoutput SID where you want the temperature to be logged.

v = the variable number of the SID. See PvOutput for an explanation.

f = the scaling factor. The value calculated by the sensor will be

http://gratisweerdata.buienradar.nl/#Station
http://xml.buienradar.nl/

8

divided by the factor before uploading to PvOutput.

P1GasSensor P1Gas(&P1,sid,v,f); This sensor can only be used if you also have the P1Power sensor

defined.

&P1 = The name of the P1Power sensor

sid = the pvoutput SID where you want the gas usage to be logged.

v = the variable number of the SID. See PvOutput for an explanation.

f = the scaling factor. The value calculated by the sensor will be

divided by the factor before uploading to PvOutput.

BaseSensor* sensors[] =

{&S1,&S2,&S3};

This line defines the scanning order of the sensors in the software.

Each defined sensor must be in this list or it will not be used by the

software. Also the sequence must be so that different SID’s appear in

ascending order. The number of items in the list must match

NUMSENSORS. Also do not change the formatting of this line.

Temperature sensor settings Meaning

//#define USE_GRAADDAGEN If temperature sensor T1 is defined, it will log the

actual temperature of the selected weatherstation.

#define USE_GRAADDAGEN If T1 and G1 (Analog Sensor) are defined, todays gas

usage and average temperature are used to

calculate a factor. This factor is calculated as: F =

(24/hour) * (Gas / (18-Tavg)

The factor gives you an indication of the isolation

factor of your house and the way you use the

heating..

See also

http://www.mindergas.nl/degree_days/explanation

for an explanation (dutch only)

Mail settings Meaning

#define USE_MAIL A mail will be sent once a day

//#define USE_MAIL Mail function is disabled

#define MAIL_TIME 21 Defines the time of the mail in hours. In this

example the mail will be sent at 21:00

#define MAIL_TO "someone@somemail.com" The destination address

#define MAIL_FROM "arduino@meterkast.nl" Any valid mail address will do here

#define MAIL_SERVER "smtp.mymailprovider.nl" Use the address of your own mail provider. Note

that google cannot be used as mail provider

http://www.mindergas.nl/degree_days/explanation

9

since this would require authentication.

Network settings Meaning

static byte mac[] = { 0xDE, 0xAD, 0xBE,

0xEF, 0xFE, 0xED };

The MAC address of the Arduino. Any address will do as

long as it is unique in your network.

static byte ip[] = { 192, 168, 1, 99 }; The IP address of the Arduino. This must match the

gateway and subnet settings of your router

static byte dnsserver[] = { 8, 8, 8, 8 }; Preferred value is the IP address of your router.

If this does not work, fill in the address of your local DNS

server.

Finally you can use Google’s DNS server at 8,8,8,8.

static byte gateway[] = { 192, 168, 1, 1 }; This is the local address of your router. If you navigate to

this address and get the router configuration page, the

address is correct.

static byte subnet[] = { 255, 255, 255, 0 }; Normally you do not need to change this value.

Miscellaneous settings Meaning

#define USE_WD If this line is present then the watchdog function is

enabled. The watchdog will make sure that the Arduino is

reset when the software is not responding anymore.

Note: Due to a bug in the Arduino MEGA bootloader, the

watchdog will not work correctly.

Newer MEGA’s already have an updated bootloader but

there is no way to check the current bootloader version. If

you enable the watchdog in a MEGA but it still hangs,

problably the bootloader must be updated.

Arduino UNO does not have this problem.

#define TIME_OFFSET 0 This number can be used to shift the internal clock in the

Arduino by a number of seconds. This is useful if you do

not want the Arduino to upload data to PvOutput exactly

on the hour, because the rest of the world is also doing

that and PvOutput sometimes cannot handle this.

By shifting the Arduino time, the upload moment is also

shifting, allowing you to upload just before or after the

bulk.

10

Mindergas.nl
www.mindergas.nl is a dutch site where users can store their daily gas-usage. Normally this is done

manually but the site makers have created the possibility to upload data automatically.

The Arduino solarmeter software can do this for you. Follow the next steps to get things running:

1. Send an email to mailto:info@mindergas.nl and request a http token for the Arduino software.
2. You will receive a 20 digit token.
3. Configure the userdefs.h file:

MinderGas settings Meaning

//#define USE_MINDERGAS Logging to mindergas is disabled

#define USE_MINDERGAS Logging to mindergas is enabled

#define MG_KEY "xxxxxxxxxxxxxxxxxxxx" Replace the xxx with the token you received via

mail

#define MG_SENSOR G1 Analog Sensor G1 is used to provide the gas meter

value (correct meter value has to be setup via

status page)

#define MG_SENSOR P1Gas Sensor P1Gas is used to provide the gas meter

value (correct meter value is already present, no

further action needed)

The meter value will be uploaded to mindergas at every midnight. Check the site or the Arduino status

page to check if all went well.

http://www.mindergas.nl/
mailto:info@mindergas.nl

11

Exosite.com
Exosite is also a site that can log data for you. Unlike PvOutput it is not restricted to energy usage or

consumption. If you would like to log your weightloss, it is also possible at Exosite ;-)

Setup
You have to follow the next steps to let the Arduino upload data to exosite:

1. Create an account.
Follow the instructions on the site

2. Create your device.
Follow the instructions on the site

3. The device will have a CIK. This is the key needed for uploading. Copy this number to the
userdefs.h file:

Exosite settings Meaning

#define EXOSITE_KEY "xxxxxxxxxxxxxxxxxxxx" Replace the xxx with the CID key of your device

//#define EXOSITE_KEY "xxxxxxxxxxxxxxxxxxxx" Exosite uploading is disabled

#define EXOSITEUPDATEINTERVAL 5 The values are sent to the server every 5 minutes

4. Create the data streams. There can be a maximum of 10 streams in the free edition.

The name, unit and other data can be freely defined.
The important parameter of the data streams is the “ALIAS” value. The Arduino software will use
this alias to reference a data stream:

To map the Sensor data to the Exosite data streams, the exosite.h file has to be changed. The program
defines 10 variables v[0] to v[9].
These variables are filled with sensor data and sent to the Exosite datastream that has the same alias as
the variable index:

For example:

http://exosite.com/products/onep/documentation?cid=978
http://exosite.com/products/onep/documentation?cid=1009

12

v[0]=S1.Actual Will be sent to “Solar actual”

v[1]=S1.Today Will be sent to “Solar today”

v[6]=T1.Actual Will be sent to “Temperature”

V[9]=S1.Midnight + S1.Today The actual total counter of S1 will be sent

Once filled correctly the Arduino will upload new data every minute.

Exosite will store all the data, but older data will be compressed to a lower resolution.

Dashboard
Now that the link between Arduino sensors and exosite datastreams is made, you can concentrate on the

dashboards

Experiment with the different types. You can also use different views of the same data. It is up to your

imagination.

More documentation is also available.

Sample dashboards:

http://exosite.com/products/portals/documentation

13

14

Build and deploy

Once you have configured the system for your needs, all you have to do is build the software and upload

it to the Arduino.

Select the correct Arduino board:

Then select the correct serial port:

Finally press the upload button:

When uploading is finished, you can disconnect the board, put it in your meter cabinet and power up.

15

Testing
Of course you can test your system by looking into the PvOutput page and see if any data is recorded.

The second method is to log in to Arduino’s own web-page. The program will generate a text page

containing all values of all sensors:

http://192.168.1.99:555 (or the ip-address you set in the userdefs file)

The ‘:555’ behind the address will tell your web browser to use port 555 instead of the default port 80.

This was done because many malware is using port 80 to see if an ip-address is ‘alive’.

A sample of this page will look like this:

V11.41

03.07.14 22:40:53

Uptime=4d+0h

ID SID Type Actual Peak Today Total Factor TodayCnt EEprom ppu Pulse Extra

0 2812 2 0 0 10310 4503801 1 10310 10310 1000 398555

1 2812 24 192 192 -4468 123818588 1 -1117 -1157 250 74940

C=3775 1=347-

396:474 2=195-

229:296

2 2812 8 0 0 580 12021950 1 58 58 100 215699

last PvOutput fail=Response timeout @ 03.07.14 10:00:01

DNS status=1

Last NTP update=03.07.14 22:23:47 (in 1x)

mgUpload=03.07.14 00:22:00

MgResponse=201

ExResponse=204

WD ctr=49

WD val=5

Reset Day=3

Free=394

This page will show you:

 The actual version number

 The actual time (synchronized twice a day)

 The uptime in days and hours since the last boot

 A table with for each sensor the SID and the Actual, Today and Peak value for this sensor.
If a sensor has extra information, it will be displayed in the ‘Extra’ column

 The code and time of the last failed upload to PvOutput. 200 is ok, 400-499 is a configuration
error. A code of 0 does not mean an error but that PvOutput took too long to respond. The data
however is saved.

 The status of the last call to the DNS server. 1=ok, -1 is timeout

 The time of the last synchronization with the time server.

 The time of the upload to Mindergas.nl (if enabled)

 The status of the Mindergas upload (201 is a successful upload, 422 is error)

 The status of the Exosite upload (‘204’ is not an error but a remark that Exosite recorded the data
but returned no data.

 The status of the watchdog.
o WD ctr counts the number of resets by the watchdog
o The counter is incremented at every reset but never set to a default value. Therefore you

can only use it to see how many resets happened since the last time you checked.

http://192.168.1.99/

16

o WD val shows the last checkpoint in the code when the reset occurred.
1 = Process new day event, collect Mindergas data
2 = Process new hour event, save sensor data and send mail
3 = Process new minute event, calculate sensor data
31 = Send to Mindergas.nl
32 = Send to PvOutput.org
33 = Reset peak data
34 = Send to Exosite.com
4 = read P1 port
5 = refresh webpage

 Reset day will show the day of the month that the meter values were reset. This is used to
prevent multiple counter resets if your Arduino reboots more than once in a day.

 Free is the number of free ram in the cpu. This number should remain constant after a while. If
not, there is a memory leak in the software…

The values in the table shown at each sensor mean the following:

ID The number of the sensor. Used to change the

SID The System ID where the data is logged to.

Type The variable where the data is logged to. The Ferraris sensor and the P1 sensor are type 24

Actual The actual production/consumption in real units (Wh/h=W or L/h or OC) but before scaling.

The temperature shown in row 3 in the example is shown as -31 but send to PvOutput as

-3.1

Peak The maximum of Actual during the last 5 minutes (or 10 if you changed the interval)

Today The total for today in real units (Wh or litre)

Total The absolute meter value in real units (Wh or litre)

Factor The scaling factor

TodayCnt The total number of pulses counted today

Eeprom The last saved value of TodayCnt. This number will be loaded when the Arduino is powered

on.

PPU The conversion factor from pulses to real units, pulses per unit

Pulse The time between the last two pulses in ms.

Extra info that is sent by the Ferraris sensor:

C=nnnn The counter for the threshold adjustment. When nnnn reaches 10000 the thresholds

will be adjusted

1=aaa-bbb:ccc The current data for sensor 1. aaa is the lower threshold, bbb the higher threshold and

ccc is the last read analog value

2=aaa-bbb:ccc The current data for sensor 2. aaa is the lower threshold, bbb the higher threshold and

17

ccc is the last read analog value

Extra info sent by the Temperature sensor:

average The average temperature for today

gdFactor The gas usage factor

Extra info sent by the P1 sensor:

PowerUsage The actual power used

PowerSolar The actual power generated

GasUsage The current meter value of the gas meter

M1 The current meter value of energy used, high tariff

M2 The current meter value of energy used, low tariff

M3 The current meter value of energy generated, high tariff

M4 The current meter value of energy generated, low tariff

Updating day values
Normally, the measured day values of each sensor are stored in EEprom every hour. This is done so the

values will not be lost when the Arduino is reset.

Values are only written once per hour because the EEprom has a limited number of write cycles.

Save actual values
If you want to force the saving of values because you want to update the software of have to reset the

Arduino for another reason, you can do that by specifying a parameter on the webpage:

http://192.168.1.99:555/save

Change an individual value
If one value is incorrect for some reason, you can change this by entering:

http://192.168.1.99:555?1=1234

This will set the TodayCnt value of the selected sensor to the new value.

The number behind the “?” is listed in the “ID” column.

Note that the counter values are saved, not the Actual values

http://192.168.1.99/
http://192.168.1.99/

18

Change the absolute value of a meter
The absolute value for each sensor has to be entered manually (except for smart meters, they already

send absolute values)

To set the value, enter the following:

http://192.168.1.99:555?A=1234567

The character behind the “?” is ‘A’ for sensor 0, ‘B’ for sensor 1, etc.

Reset all values
If, for some reason, the daily values are not correct and you want to simulate the start of a new day, use

the reset function:

http://192.168.1.99:555/reset

This will reset all counters to 0 (or to the actual meter reading in case of a P1 meter)

If you did the reset accidentally, just press the reset button on the Arduino and the last saved values will

be restored.

To make the change permanent, execute the /save command or wait until the next hour (where the

values will be saved anyway)

Restart the Arduino
If, for some reason, you want to restart the Arduino, you can do so by entering the next command:

http://192.168.1.99:555/restart

Update the time
Since 11.41 it is also possible to force an update of the realtime clock.

http://192.168.1.99:555/ntp

Test uploading of gas value
By entering the command http://192.168.1.99:555/gas the current value of your gasmeter (if enabled)

will be uploaded to mindergas.nl immediately.

If you have any questions or problems, please contact me via the issues page on

https://github.com/harold65/SolarMeter/issues

If you know dutch, it is also possible to check out the forum on www.wijhebbenzon.nl. Many threads are

related to this software.

Enjoy!

http://192.168.1.99/
http://192.168.1.99/
http://192.168.1.99:555/restart
http://192.168.1.99:555/ntp
https://github.com/harold65/SolarMeter/issues
file:///A:/Harold/Arduino/Projects/Solarmeter_doc/www.wijhebbenzon.nl

