Assembling Instructions for Nybble

Rongzhong Li
Jan. 25,2019

To keep this instruction simple to use, I'm focusing on the assembly rather than
in-depth explanation. If you have specific questions on “why” rather than “how”,
please post on our forum at https:/www.petoi.com/forum.

Petoi Ny[@“ e OpenCat framework

Screw-free interlocking puzzle frame

Distance sensor

4

Arduino compatible motion controller l RGB LED
|

ﬁ"'

1.5 x DoF Swinging tail

v 4
—— i (]

\ Q ‘y = f Pan-tilt head mount

Elastic neck

Spinning wheel 8 x DoF legs

>

. Rubber paws

11 x High torque digital metal servos

Shock reduction joints

Suspended and tunable center of mass

Programmable gaits and behaviors
* Patent Pending

The crowdfunding campaign is active on Indiegogo: igg.me/at/nybble

https://www.petoi.com/forum
http://igg.me/at/nybble

1. Open box. Get familiar with the components.

sanding
block

@

('_ -Petoi- r_\

‘(_-Petm r‘

thlth

thighl

C -Petoi- r_

0\/2_)

@

®
155 "

25

=

ultrasound sensor |

s

t

A
[

|

o

g 1KQ resistor

$

K

rubber toe

RGB LED | e U
4-pin male + S J v
battery holder g . 6@ N's
2 4 Pi Sta-r‘né@D D
K

T (oL

G T
lromf-HﬁP' - d’@uth
A\ lock @_

i o\ -1
\tarllz shoulder _1 | shoulderPl —-‘
ﬁ @

tuner Petoi °

\ T

mg90d

There’s a larger picture in the Appendix.
This instruction will keep consistent with the current naming method.

1.1. Cut body pieces off the baseboard.

infrared remote

There might be some tar residue on the wooden pieces from laser cutting. Use a
wet soft tissue to clean up the board.

The functional pieces are attached to the baseboard by lightly cut tabs. Though
you could pop those pieces out by hand, it's highly recommended that you use a
knife to cut on the back side of the tabs to avoid potential damage to the middle
layer, where the fiber direction is perpendicular to the surface fiber.

After taking out all the pieces from the baseboard, you are encouraged to bend
and break the remaining structures on the baseboard, to understand the mechanical

properties of plywood, such as anisotropic strength, elasticity, etc. That will give you
confidence in later handling.

1.2. Remove pointy fibers.

Use the sanding foam to clean up any thorn on the pieces. Don't sand too much
or it may affect the tightness between joints.

1.3. Screws

There are five different screws used in the kit. I'm coloring them differently to
better indicate their locations. Not all screws are required to assemble Nybble.
Some are spare for replacement.

M T L Y

% %

ALY
FrerrrrrreLLr

“hvﬂili!“;ﬂl‘lli!il?“

A B Cc D E

e Ais for attaching servo arms. D (sharp tip) is for attaching servos to the frame. A
and D come in each servo's own accessory bags.

e Bis for attaching servo arms/circuit boards to the frame. In later versions it may
be replaced by C to avoid confusion.
C (flat tip) is for binding the thighs.
E (always the longest) is for attaching the battery holder.

1.4. Springs
There are three different springs: F, G, H.
e The big spring F is used for elastic connection in the thigh. There's one spare unit;
e The hard short spring G is for the neck. It could be replaced by spring F;
e The soft short spring H is for attaching the battery holder.

2. Assemble the frame
2.1. Head and neck

2.1.1. Partlist

Part List

mid

ear

mouth

eye

chin

mg9o0d

screw D X2
base

neck X2
lock X2
servo arm |

servo arm J
screw B x4

2.1.2. Solder on the optional LED to ultrasound sensor.

The obstacle avoidance algorithm using the ultrasound sensor has not yet been
integrated in the code. The optional RGB LED can be soldered to the four pins of the
ultrasound sensor (instructions) to indicate its working status, or can be
programmed as decorative lights.

2.1.3. Trim the servo arms for attaching servos.

Pay attention to the width difference between servo arm I's two long sides, as
well as the trimming location (using screw holes as references).

https://github.com/PetoiCamp/OpenCat/blob/master/Resources/Nybble_SolderingUltrasound.pdf

f cg

thigh x 8 <= servoarm | => neckx1

2.1.4. Assemble the head group as shown in the head animation. Note that the
base should only be partially assembled before the later calibration.
Otherwise it will be difficult to insert the servo between neck pieces. Also
notice how the servo wire is organized in the head.

2.1.5. DO NOT connect the head with neck yet, because the tilt servo on the head
has to be calibrated.

2.2. Body

2.2.1. Partlist

https://youtu.be/pYvfG2Zmowc

e NyBoard only

Part List
belly
ring x4
mg92b x4
mg90d X2
shoulder x3
shoulderPi
vyl X2
y2
battery holder
rivet X2
spring G
spring H X2
screw D x4
screw E X2

Part List
belly
ring x4
mg92b x4
mg90d X2
shoulder x3
shoulderPi
y1Pi X2
Pi Stand x2
y2
battery holder
rivet X2
spring G
spring H X2
screw D x4
screw E X2

e Other controllers
| also included 5 x 1"/4 nuts for mounting other circuit boards.

2.2.2. Install the adjustable battery holder to belly

Bend the hinge L of battery holder to 90 degree, close to the wall. It functions as
a switch. Insert the long screw E through the rivet so that you can better handle the
rivet. Insert and push the rivet into the hole on the bottom of the battery holder. Pay
attention to the holes’ locations.

'mmw-:'.ﬂ

The spring attached structure of the battery holder is used for shifting the center
of mass when fine tuning gaits.

2.2.3. Assemble the body group as shown in the body animation.

Pay attention to the long pins of infrared receiver and FTDI port. They are
designed to be bent to favorable directions. Don't bend the pins too often or it will
lead to metal fatigue.

https://youtu.be/B8N2KAf8p28

NyBoard with Pi

~1,10.9.8

‘) eved 4
‘Petm PC G o YOG | i
{3 s o Ll L G ol 2 © 5@ i b
RN auzzeR 39521 { :
F) L — 2 I
ool U8 es:® g&!lﬁ‘om
o6 o M. 20l

\©

NyBoard only

2.2.4. Observe the adjusted configuration if you want to mount a Raspberry Pi.

2.3. Thigh
2.3.1. Partlist

;

° BTRSs Part List
thighl x4
thigh2 x4
servoarm| x8
spring F x8
screw C x 24

https://youtu.be/0T1K5_oxFUM

2.3.2. Trim the servo arms for attaching servos.

The location has been shown in the Head and Neck section. The trimmed
narrower servo arm is designed to be inserted into spring F.

2.3.3. Assemble the thigh as shown in the thigh animation.

Before closing thigh1 and thigh2, put the wire of the shank through the slot in
the middle of the thigh. Think about symmetry of the four legs.

 -—

optional screw

‘
|
Ll
A
v
.
"
\
|]
L J
!

The servo arm should be able to slide in the track on thigh2 with subtle friction
when thigh1 and thigh2 are screwed together. You can tune the tightness of screw
C to achieve proper friction. If you need more control on the tightness:

e Scratch the track using a flat screw driver to reduce friction.

e Apply a little paper glue and let it dry to increase friction.

https://youtu.be/3dtiFp7v2ps

2.4. Shank
2.4.1. Partlist

Part List
shank x4
rubber toe x4
mg90d x4
screw D X8

2.4.2. Attach the rubber to the tip of the shank.

The serrated structure on the tip of shank is already good for walking. The
rubber toe is optional to increase friction and soften each step.

2.4.3. Insert the servo into the slot on the shank.

Pay attention to the direction that the wire is twisted. The small dent on the long
edge is designed to let wire go through. Think about symmetry of the four legs.

2.4.4. Assemble the shank as shown in the shank animation. Don’t install the servo

screw A yet.
2.5. Tail
2.5.1. Partlist
ﬁ Part List
E ‘ ' taill
' tail2
W
~l@ ‘ ‘ ((- - servo arm K
l \ rivet X2
o screw D X2

2.5.2. Assemble the tail as shown in the tail animation.

The screw D is installed in the third hole counted from the center of servo arm K.
Pay attention to the order that every pieces are stacked. The wheel (tail2) should be

able to rotate with little friction, and the whole tail should be able to tilt by a small
degree.

2.5.3. DO NOT connect the tail to body yet.

2.6. DO NOT screw neck and legs to the body’s servos yet

3. Configure Arduino IDE and NyBoard

3.1. NyBoard

3.1.1. Read the user manual for NyBoard V0.
3.1.2. Dial the potentiometer clockwisely to start from the lowest voltage.

Higher voltage will increase the servos’ torque, making Nybble move faster. The
downside is it will increase current draw, reduce battery life, affect the stability of
circuit, and increase the wearing of the servos.

3.1.3. Dial the I°C switch (SW2) to Ar.

The I°C switch changes the master of I1°C devices (gyro/accelerometer, servo
driver, external EEPROM). On default “Ar”, NyBoard uses the on-board ATmega328P

10

https://youtu.be/OFdNQe9975Y
https://youtu.be/7QZRdKz2u_Y
https://github.com/PetoiCamp/OpenCat/blob/master/Resources/NyBoard/UserManualV0.pdf

as the master chip; On “Pi”, NyBoard uses external chips connected through the I>C
ports (SDA, SCL) as the master chip.

3.2. Downloads and installations

Note: If you have previously added other libraries and see error message "XXX
library is already installed", | would recommend you delete them first (instruction:
https://stackoverflow.com/questions/16752806/how-do-i-remove-a-library-from-th
e-arduino-environment). Due to different configurations of your Arduino IDE
installation, if you see any error messages regarding missing libraries during later
compiling, just google it and install to your IDE.

3.2.1. Install through library manager

Go to the library manager of Arduino IDE (instruction:
https://www.arduino.cc/en/Guide/Libraries), search and install Adafruit PWM Servo
Driver, IRremote and QList.

3.2.2. Install by adding .ZIP library

Go to https://github.com/jrowberg/i2cdevlib, download the zip file and unzip.
Find MPU6050/ and 12Cdev/ in the Arduino folder. Add their .ZIP library one by one.

3.2.3. Create and add NyBoard
e Locate the files
Mac location:
/Users/UserName/Library/Arduino15/packages/arduino/hardware/

avr/version#/

Or:

/Applications/Arduino.app/Contents/Java/hardware/arduino/avr

To access, right click on Arduino.app and choose Show Package Contents

Windows location:
C:\Program Files(x86)\Arduino\hardware\arduino\avr\

You should find a boards.txt is already there.
Linux (Fedora):

boards.txt is symlinked under /etc
e Make a copy of boards.txt in case you want to roll back.

11

https://stackoverflow.com/questions/16752806/how-do-i-remove-a-library-from-the-arduino-environment
https://stackoverflow.com/questions/16752806/how-do-i-remove-a-library-from-the-arduino-environment
https://www.arduino.cc/en/Guide/Libraries
https://github.com/jrowberg/i2cdevlib

e C(Create new boards.txt.

You can download my boards.txt file, or:

Edit your boards.txt with admin privilege. Find the section of
pro.name=Arduino Pro or Pro Mini

and insert the
Arduino Pro or Pro Mini (5V, 20 MHz) w/ ATmega328P

code block. Save and quit your editor.
B

pro.name=Arduino Pro or Pro Mini

pro.upload.tool=avrdude

pro.upload.protocol=arduino

pro.bootloader.tool=avrdude
pro.bootloader.unlock_bits=0x3F
pro.bootloader.lock_bits=0x0F

pro.build.board=AVR_PRO
pro.build.core=arduino

pro.build.variant=eightanaloginputs

#3# Arduino Pro or Pro Mini (5V, 20 MHz) w/ ATmega328P
--- -- -- --
pro.menu.cpu.20MHzatmega328=ATmega328P (5V, 20 MHz) NyBoard

pro.menu.cpu.20MHzatmega328.upload.maximum_size=30720
pro.menu.cpu.20MHzatmega328.upload.maximum_data_size=2048
pro.menu.cpu.20MHzatmega328.upload.speed=57600

pro.menu.cpu.20MHzatmega328.bootloader.low_fuses=0xFF
pro.menu.cpu.20MHzatmega328.bootloader.high_fuses=0xDA
pro.menu.cpu.20MHzatmega328.bootloader.extended_fuses=0xFD

pro.menu.cpu.20MHzatmega328.bootloader.file=atmega/ATmega328_20MHz.hex

pro.menu.cpu.20MHzatmega328.build.mcu=atmega328p
pro.menu.cpu.20MHzatmega328.build.f_cpu=20000000L

Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmega328P

12

https://github.com/PetoiCamp/OpenCat/blob/master/Resources/NyBoard/boards.txt

##

e Download ATmega328_20MHz.hex and put it in your Arduino folder
./bootloaders/atmega/. You should see other bootloaders with .hex suffix in
the save folder.

e Restart your Arduino IDE. In Tools->Boards, select Arduino Pro or Pro Mini.
You should find ATmega328P (5V, 20 MHz) in Processor menu.

@ Arduino File Edit Sketch Tools Help
Auto Format

Archive Sketch
Fix Encoding & Reload
Nybble Serial Monitor

80 // describing Remote IR cody e sy

81 { WiFi101 Firmware Updater
82 switch (results.value) { /
83 //IR signal (Gl Board: "Arduino Pro or Pro Mini"

84 [N GY YO BRI Qe Processor: "ATmega328P (5V, 20 MHz) NyBoard" » v ATmega328P (5V, 20 MHz) NyBoard
85 case @xFF629D: PTLF(" Port: "/dev/cu.usbserial-A7005e32" ATmega328P (5V, 16 MHz)

86 case OxFFE21D: PTLF(" Get Board Info ATmega328P (3.3V, 8 MHz)

87 I ATmega168 (5V, 16 MHz)

88 Programmer: "USBtinyISP" ATmega168 (3.3V, 8 MHz)
Burn Bootloader

89 case @xFF22DD: PTLF(" |

90 case OxFF@O2FD: PTLF(C" >>1"); return (F("pu™)); // push up

91 case @xFFC23D: PTLF(" >11"); return (F("str")); //stretch

92

93 case @xFFE@1F: PTLF(" -"); return (F("buttUp")); //butt up

94 case OxFFA857: PTLF(" +"); return (FC"ly")); //1ay down crawling
95 case @xFF906F: PTLF(" EQ"); return (F("pee")); //stand on three feet
9

97 case OxFF6897: PTLF(" @"); return (F("trL")); //trot left

OxFF9867: PTLF(" 100+"); return (F("tr")); //trot fast/run

Sketch uses 30406 bytes (98%) of program storage space. Maximum is 30720 bytes.

Global variables use 1155 bytes (56%) of dynamic memory, leaving 893 bytes for local variables. Maximum is 2048 b

Arduino Pro or Pro Mini, ATmega328P (5V, 20 MHz) NyBoard on /dev/cu.usbserial-A7005e3Z

e Note: If you cannot find the board, your Arduino IDE may be using the
boards.txt in another path. Search boards.txt in all the folders on your
computer. Find out the right file that's in effect.

3.2.4. Burn the bootloader (only if the bootloader of NyBoard collapsed)

e Whatis a bootloader?

Every NyBoard has to go through functionality checks before shipping, so they
should already have compatible bootloader installed. However, in rare cases, the
bootloader may collapse then you won't be able to upload sketch through Arduino
IDE.

13

https://github.com/PetoiCamp/OpenCat/blob/master/Resources/NyBoard/bootloaders/atmega/ATmega328_20MHz.hex
https://www.arduino.cc/en/Hacking/Bootloader?from=Tutorial.Bootloader

185
186
187
188
189
190
191
192
193

1943

195
196
197
198

Well, it's not always the bootloader if you cannot upload your sketch:

e Sometimes your USB board will detect a large current draw from a device
and deactivate the whole USB service. You will need to restart your USB
service, or even reboot your computers;

e You need to install the driver for the FTDI USB 2.0 to UART uploader;
e You haven't selected the correct port;
e Bad contacts;

Bad luck. Tomorrow is another day!

If you really decide to re-burn the bootloader:

@ Arduino File Edit Sketch | Tools Help
Auto Format

Archive Sketch
Fix Encoding & Reload

Nybble Serial Monitor

mpu . dmpGetQuaternion(&q, f Serial Plotter

mpu . dmpGetGravity(&gravity) - " -
mpu. dmpGetYawPi tchRol1(yp WiFi101 Firmware Updater

#1fdef MPU_YAW180

o ' He
yor[2] = -ypr[21; 1 Board: Ardlll.uno Pro or Pro Mini i
#else Processor: "ATmega328P (5V, 20 MHz)
ypr[1] = -ypr[1] ; Port
#endif | Get Board Info
#endif e
/*PTCypr[1] * degPer «2); | Programmer: "Arduino as ISP" Atmel EDBG
ﬁ‘{‘l ‘ ‘:I , 3 N Burn Bootloader Atmel-ICE
PTLCypr[2] * deg d); §
// overflow is detected after the ypr is read. it's neces Atmel SAM-ICE
#ifdef FIX_OVERFLOW AVR ISP
for (byte g = @; g < 2; g++) { AVRISP mkll
yprLag[lag][g] = ypr[g + 1] * degPerRad; USBtinyISP
yprlg + 1] = yprLag[(lag - 1 + HISTORY) % HISTORY][g] * ArduinolSP
E ArduinolSP.org
lag = (lag + 1) % HISTORY; USBasp

#endif
. Parallel Programmer

v Arduino as ISP
Arduino Gemma
BusPirate as ISP
Atmel STK500 development board
Atmel JTAGICE3 (ISP mode)

Atmel JTAGICE3 (JTAG mode)
Atmel-ICE (AVR)

Arduino Pro or Pro Mini, ATmega328P (5V, 20 MHz) on /dev/cu.usbserial-A7005e3Z

e Select the ATmega328P (5V, 20 MHz) board under the Tool tab of Arduino
IDE.

e Select your ISP (In-System Programmer). The above screenshot shows two
popular programmers: the highlighted USBtinyISP is a cheap bootloader you
can buy, while the checked Arduino as ISP can let you use a regular Arduino
as ISP!

e Burn bootloader. If it's your first time doing so, wait patiently until you see
several percent bars reach 100% and no more messages pop up for one
minute.

14

https://www.arduino.cc/en/Tutorial/ArduinoISP
https://www.arduino.cc/en/Tutorial/ArduinoISP

3.2.5. Download OpenCat package

e Download a fresh OpenCat repository from GitHub. It's better if you utilize
Git's version control feature. Otherwise make sure you download the WHOLE
FOLDER every time. All the codes should be the same version to work
together.

e Open any testX.ino sketch with test prefix. (I recommend using
testBuzzer.ino as your first test sketch)

e Choose board as Arduino Pro or Pro Mini and compile. There should be no
error messages. Upload the sketch to your board and you should see
messages in the serial monitor. Make sure that your baudrate setting (57600)
and board frequency(16MHz or 20MHz) matches with the configuration.

e |If there're input prompts, make sure you set "No line ending". Otherwise the
invisible "\n' or '\r' characters will confuse the parsing functions.

Writelnstinct

142
143 E SO ARE T AS I ITHO ARRA OF A I E E
144 | IMPLIED, INCLUDING E IOT LIMITEL E WARRANTIES MERCHANTABILITY,
145 | A PARTICULAR | E A I AL
146 A 4)PYRIGE LDE BE LIA ER
147 IABILI WHETHER IN AN ACTION OF CC A ORT OR OTHERWISE, ARISING FF
148 (F OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
ig; ESOF @ @ @ /dev/cu.usbserial-A7005e3Z
151 Send
152
153 / I2Cdev|® o

154 include <* OpenCat Writing Constants to EEPROM...
155 1include 4Reset all joint calibration? (Y/n)

156 include 4

157 * Do you need to update Instincts? (Y/n)
158 ///////74

159 /Change {

160 nt discar

Autoscroll v Noline ending JEEFEINTCO I © | Clear output

Newline
Carriage return
Both NL & CR

Arduino Pro or Pro Mini, ATmega328P (5V, 20 MHz) on /dev/cu.usbserial-A7005e3Z

15

3.3. Arduino IDE as interface

With the FTDI to USB converter connecting NyBoard and Arduino IDE, you have
the ultimate interface to communicate with NyBoard and change every byte on it.
| have define a set of serial communication protocol for NyBoard:

OpenCat
Communication Protocol and Parsing
Interface Token | Encoding Parameters Format Bytes Function
W char 1 print help information
'c' idx*,angle** \n'| string strlen + 2 | calibrate servoii by angle
'm' idx* angle** \n'| string strlen +2 | move servoiy to angle
. 'd' char 1 shut down servos
Arduino
Serial 'p' char 1 pause motion
. : Ascii

Raspi | Monitor ‘a' char 1 abandon calibration

Serial

Port 's' char 1 save calibration
'k' abbreviation \n'| string strlen +2 | load skill
'w' command \n' | string strlen + 2 | some future command words
r char 1 reset board
" len | idxs | a1 I idxy | an | string len +2 list of indexed rotation angles

Binary

T a | a apoF string DoF+1 |list of all DoF rotation angles

* index range: 0 ~ (DoF - 1)

** angle range: -90 ~ 90. fits in the range of signed char (-128 ~ 127). Also depends on the servos’ parameters

All the token starts with a single Ascii encoded character to specify its parsing
format. They are case-sensitive and usually in lower case.

Note: Some tokens haven't been implemented, such as 'h'. Token 'i'and 'I' still
have some bugs.

3.4. Raspberry Pi serial port as interface (only if you are going to use Pi as

a master controller)

As shown in the serial protocol, the arguments of tokens supported by Arduino
IDE's serial monitor are all encoded as Ascii char strings for human readability.
While a master computer (e.g. RasPi) supports extra commands, mostly encoded
as binary strings for efficient encoding.

3.4.1. Config Raspberry Pi serial port

In Pi's terminal, type sudo raspi-config

16

Under Interface option, find Serial. Disabled the serial login shell and enable the
serial interface.

A good tutorial on Instructable

If you plug Pi into NyBoard's 2x5 socket, their serial ports should be
automatically connected at 3.3V. Otherwise pay attention to the Rx and Tx pins on
your own Al chip, and its voltage rating. The Rx on your chip should connect to the
Tx of NyBoard, and Tx should connect to Rx.

3.4.2. Change the permission of ardSerial.py

If you want to run it as bash command, you need to make it executable:
chmod +x ardSerial.py

You may need to change the proper path of your Python binary on the first line:
#!/usr/bin/python

3.4.3. Use ardSerial.py as the commander of Nybble

You need to UNPLUG the FTDI converter if you want to control Nybble with Pi's
serial port.

Typing ./ardSerial.py <args> is almost equivalent to typing <args> in Arduino's
serial monitor.

For example, ./ardSerial.py ker means "perform skill crawl".

Both ardSerial.py and the parsing section in Nybble.ino need more
implementations to support all the serial commands in the protocol.

Note: Reduced motion capability when connected to Pil

With the additional current draw by Pi, Nybble will be less capable for intense
movements, such as trot (the token is “ktr”). The system is currently powered by
two 14500 batteries in serial. You may come up with better powering solutions,
such as using high drain 7.4 Lipo batteries, or 2S-18650. There're a bunch of
considerations to collaborate software and hardware for a balanced performance.
With Nybble's tiny body, it's better to serve as a platform for initiate the
communication framework and behavior tree rather than a racing beast.

3.5. Battery
Though you can program NyBoard directly with the FTDI uploader, external
power is required to drive the servos.
When powering the NyBoard with only USB FTDI, there's obviously charging and
uncharging in the servo's capacitor and cause the yellow LED to pulse. However the

17

https://www.instructables.com/id/Read-and-write-from-serial-port-with-Raspberry-Pi/
https://github.com/PetoiCamp/OpenCat/blob/master/SerialMasterPython/ardSerial.py
https://github.com/PetoiCamp/OpenCat/blob/master/SerialMasterPython/ardSerial.py

USB's current is not sufficient to keep the servos working. The servo circuit has to
be powered by external batteries to work properly.

3.5.1. Voltage

NyBoard requires 7.4~12V external power to drive the servos. That's usually two
li-ion or li-poly batteries connected in serial. A single battery is 4.2V when fully
charged and can work normally until voltage drops to 3.6V. That's about 7.2V with
two batteries connected in serial. Before installation, dial the potentiometer on
NyBoard clockwisely to try minimum output first for best output stability. You can
turn it up depending on your future need.

3.5.2. Dimensions

The included battery holder is sized for 14500 batteries, that's 14 mm in
diameter, and 50 mm in length. 50 £ 1 mm should still fit in. They are the same size
as AA batteries, but much more powerful. If you are in the US, we have tested with
EBL 14500 li-ion batteries on Amazon.

You can also design other battery holders to carry larger batteries for better
performance. That's especially necessary if you mount a Raspberry Pi and want
Nybble run as fast.

3.5.3. Connection

Be careful with the polarity when connecting the power supply. Reversed

connection may damage NyBoard! Make sure you can find the positive (+)
and negative (-) sign on both the NyBoard's power terminal and your power supply.

Loosen the screws of the power block. Insert the wires of the battery holder then
tighten the screws. When turn the switch on, both the blue LED (for chip) and the
yellow LED (for servo) should lit up.

3.5.4. Battery life varies according to usage

It can last hours if you're mainly coding and testing postures, or less than 30
mins if you keep Nybble running.

When the battery is low, the yellow LED will blink slowly. Although NyBoard can
still drive one or two servos, it will be very unstable to drive multiple servos at once.
That will lead to repeatedly restarting the program, or awkward joint rotations. In
rare cases, it may even alter the bits in EEPROM. You will need to re-save the
constants to restore their values.

18

3.5.5. Charging

You will need compatible smart chargers for the batteries. Keep batteries
attended during charging.

3.5.6. After use

After playing, remember to remove the batteries from battery holder to avoid
over discharging.

3.5.7. Signal Interference

It's ok to connect both FTDI and battery at the same time. You can type in serial
commands while the battery is connected. | do notice that the USB serial port could
be disabled randomly. | think that's due to the sudden current draw by servos. It will
trigger the computer’s over current protection and disable the USB port. In that
case, you can change the USB port you're connecting to, reset the USB bus, or

restart the computer. So actually it's better to power the board by battery before
plug in the FTDI.

4. Connect servos
4.1. Joint map

Nybble's servos are connected to NyBoard's PWM pins symmetrically and
resembles the nerves along spinal cord. Though Nybble doesn't have shoulder roll
DoF, those indexes(4~7) are reserved for the full OpenCat framework.

19

Joint Indexes of Nyblble

Use h for head, t for tail, r for shoulder roll joint, s for shoulder pitch joint, k for
knee joint, F for front, H for hind, L for left, R for right, the full joints map of OpenCat
is:

Joint Map of OpenCat

-- Top view on the back

mmmmmm

hPan 7 1 hTilt
rFL 4 6 1 rFR
| Abbreviation | oint LSRN 2 SAM Abbreviation | Direction |
h head kFL 12 4 3 13 kFR F Front
t tail H Hind
r shoulder roll kHL 15 11 12 14 kHR L Left
s shoulder pitch sHL 1 10 13 10 sHR R Right
K knee rHL 7 9 14 | 6 rHR
tPan 2 8 15 3 N/A

Encoding Jointindex 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Virtual
Array PWMPIn 7 0 8 15 6 1 14 9 5 2 13 10 4 3 12 11 Hardware

20

4.2. Pluginthe servos

Observe the indexing pattern to connect servos with correct PWM pins. Be
careful with the wires’ direction. The brown wire of servo is GND, while the GND on

NyBoard are along the centerline.

+
-Q‘_

491415 ‘

GND
SOA o) il s

5
el (@ [[& [& |-

x0AO
a0 0| I

iR
A=

&
+1lv8 N9

ON9 OND AS+ XY OX1 ¥10

HCPOOW®

A quick check is that all the brown wires should be on top of the other two wires.

—x=4 b
e
| — _.)‘bv— — 1‘
ﬁ, b 2<= mll‘
¢ T = m

=R
e [— —
40\ A j { z -
;;g’ g 88 B2 > — 2 GNDD® D9 ona
X A (1) [R
@@ @ EX AR 2. 00O
it C@ ceo|B K] ° (Ml

21

5. Calibration

Calibration is vital for Nybble to work properly.

In previous sections, we have prepared those body parts but haven't screw them
onto servos. If we don't calibrate the servos before attaching them, they may rotate
to any direction, get stuck, and cause damage to either the servos or body parts.

The calibration has four steps: 1.Write constants to the board; 2. Power on the
circuit, let servos rotate freely to zero angle/calibration state; 3. Attach body parts
to the servos; 4. Fine tune the offsets in software.

5.1. Write constants

5.1.1.

5.1.2.

There are three types of constants to be saved to NyBoard:

Assembly related definitions, like joint mapping, rotation direction, sensor
pins. They are pretty fixed and are mostly defined in OpenCat.h. They are
even kept consistent with my future robots;

Calibration related parameters, like MPU6050 offsets and joint corrections.
They are measured in realtime and are saved in on-board EEPROM. They only
need to be measured once;

Skill related data, like postures, gaits, and pre-programmed behaviors. They
are mostly defined in Instinct.h. You can add more customized skills too.

Upload and run Writelnstinct.ino.

The role for Writelnstinct.ino is to write constants to either onboard or I°C
EEPROM, and save calibration values. It will be overwritten by the main sketch
Nybble.ino afterward.

After finish uploading Writelnstinct.ino, open the serial monitor. You will see
several questions:

Reset all joint calibration? (Y/n)

If you have never calibrated the joints, or if you want to recalibrate the
servos with fresh start, type Y’ to the question. The ‘Y’ is CASE SENSITIVE!
Do you need to update Instincts? (Y/n)”

If you have modified the Instinct.h in any way, you should type Y’. Though
it's not always necessary once you have a deeper understanding in the
memory management.

Calibrate MPU? (Y/n)

22

If you have never calibrated the MPU6050, i.e. the gyro/accelerometer
sensor, type 'Y'.

Sometimes the program could hang at the connection stage. You can close the
serial monitor and reopen it, or press the reset button on NyBoard, to restart the
program.

® @ /dev/cu.Nybble-DevB

¢

* Starting *
Initializing I2C
Connecting MPUGR50. . .

5.2. Enter calibration mode

The calibration state is defined as the middle point of servo’s reachable range.
Calibration for servos can be done in either Writelnstinct.ino or Nybble.ino. |
recommend you do it with Writelnstinct.ino in case there’'s something wrong with
the constants.

You MUST plug in all the servos and battery for proper calibration. Then in the
serial monitor, type ‘c’ to enter calibration mode. The servos should rotate, make
noise, then stop. You will see the calibration table:

o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

The first row is the joint indexes, the second row is their calibration offsets:

Index [O | 1 2 13|14 |5 |6 |7 |89 (101112131415

offset [-1 |1 |1 |1 |1 |11 1]]a]a]-A

Initial values are “-1”, and should be changed by later calibration.

23

Note: The servos are using potentiometer for feedback loop in position control.
When holding at static position, they tend to vibrate around target angle. This
Parkinson’s will develop after a period of use. It won't affect during continuous
motion.

5.3. Attach head, tail, and legs.

5.3.1. Coordinate system

With all servos rotated to their zero angle, now attached the head, tail, and legs
prepared in previous section to the body. They are generally perpendicular to their
linked body frames. Avoid rotating the servo shaft during the operation.

Rotating the limbs counter-clockwisely from their zero state will be positive
(same as in polar coordinates). The only exception is the tilt angle for head. It's
more natural to say head up, while it's the result from rotating clockwisely.

Zero Angle/Calibration State

* DON'T install limbs without first-time calibration
¢ Type ‘¢’ in serial monitor to start calibration

¢ Attach limbs closest to calibration state

« ‘c8 6’ means calibrate 8t servo to 6°

* Use the included ‘L' Tuner for parallel reference
*« REMEMBER to type ‘s’ to save your calibration

5.3.2. Understand the angle divisions

If we take a close look at the servo shaft, we can see it has a certain number of
gears. That's for attaching the servo arms, and avoid sliding in the rotational
direction. In our servo sample, the gears are dividing 360 degree to 20 sectors, each
taking 18 degree. That means we cannot always get exact perpendicular

24

installation. But try to get them as close as possible to their zero states. Use screw
A to fix the limbs onto servos.

20
A9 1 2

'\«% >

5.4. Find and save calibration offsets

5.4.1. Fine tune the calibration on software side

The command for calibration (refer to the serial communication protocol for
NyBoard) is formatted as cIndex Offset. Notice that there’s a space between Index
and Offset.

For example, c8 6 means giving the 8™ servo an offset of 6 degree. Find the best
offset that can bring the limb to zero state.

Note that if you find the absolute value of offset is larger than 9, that means you
are not attaching the limb closest to its zero state. That will result in decreased
reachable range of the servo on either side. Take off the limb and rotate it by one
gear. It will result in an opposite but smaller offset.

For example, if you have to use -13 as the calibration value, take the limb off,
rotate by one gear then attach back. The new calibration value should be around 5,
i.e., they sum up to 18. Avoid rotating the servo shaft during this adjustment.

25

Preferable

After calibration, remember to type ‘s’ to save the offsets. Otherwise they will be
forgotten when exiting the calibration state. You can even save every time you're
done with one servo.

5.4.2. ‘L shaped joint tuner

When watching at something, the observation will change from different
perspectives. That's why when measuring length, we always want to read straightly
above the ruler.

It's especially important that you keep parallel perspective when calibrating
Nybble. Use the 'L shaped joint tuner as a parallel reference to avoid reading errors.
Align the tips on the tuner with the center of the screws in shoulder and knee joints,
and the little hole on the tip of the foot. Look along the co-axis of the centers. For
each leg, calibrate shoulder servos (indexed 8~11) first, then the knee
servos(indexed 12~15). When calibrating the knee, use the matching triangle
windows on both the tuner and shank to ensure parallel alignment.

26

Perspective window for parallel alignment

5° reference

©2018 Petoi LLC

5.4.3. Validation
After calibration, type ‘d’ or ‘kbalance’ to validate the calibration. It will result in
Nybble symmetrically moving its limbs to rest or stand state.

calibrate

stand

5.4.4. Center of mass

Try to understand how Nybble keeps balance even during walking. If you are
adding new components to Nybble, try your best to distribute its weight
symmetrically about the spine. You may also need to slide the battery holder back
and forth to find the best spot for balancing.

27

6. Play with Nybble (default usage)
6.1. Control with Arduino IDE

The quotation mark just indicates they are character strings. Don't type
quotation mark in the serial monitor.

o ‘“ksit”
e "m0 30"
e “m0-30"
e “kbalance”
o “ktr”
o “ktrl”
o “d"
6.2. Control with Infrared remote
6.2.1. Key map

Only the position of the buttons matters, though those symbols can help you
remember the functionalities. I'm going to use position related symbols to refer to
those keys.

Check the detailed key definitions in function String translatelR(){...} in
Nybble.ino, and they are open to your customization. I'm using abbreviations for key
definitions to reduce SRAM usage.

<11 1> sit d balance
<22 2> rc pu str
<3| 3 3> buttUp ly pee
<414 | 4> trl tr trR
<55 |5> crL cr crR
<66 | 6> bkL | bk | bkR
<717 |7> calib zero zero

6.2.2. Check out the following featured motions
e Button 1 shuts down the servos and send Nybble to sleep. It's always safe to click it if
Nybble is doing something AWKWARD. I'm serious. There’s still some mechanism in
the system | don’t fully understand.

28

Button 1> is the neutral standing posture. You can push Nybble from side, or make it
stand up will hind legs and tail. You can test its balancing ability on a fluctuating board.
Actually balancing is activated in most postures and gaits.

With Nybble flat in your hand, click all the buttons on the IR remote to see what they
do. Then put Nybble on a wide flat table and try those buttons again.

You can pull the battery pack down and slide along the longer direction of the body.
That will tune the center of mass, which is important for walking performance.

When Nybble is walking, you can let it climb up/down a small slope (<10 degrees)
Whatever Nybble is doing, you can lift it vertically, and it will stop moving, just like a
cat scruffed on the neck.

Don’t keep Nybble walking for too long. That will overheat the electronics and reduce
the servos’ life span. The servos are designed to be driven by internal gears. Avoid
rotating the servos too fast from outside.

Be tolerant as if you are playing with a real kitten. (*=9g9=")

7. Teach Nybble new skills (advanced)

7.1.

Programmable Gaits and Behaviors
-- Make full use of every byte, down to nybble and bit!

Understand skills in Instinct.h.

Arduino Sketch

Data Instruction
Button/remote 0 Posture Single frame of joint parameters Initialization
. P Calibration
: Gait Periodic frames of postures
Arduino IDE : odl S Constant Loading
Bluetooth UART . Communication
Pe to l Parsing
. Raspberry Pi Instinct Newbility S Adaption
eria q " tatus reporting
. Inverse kinematics
Master Arduino has external g
Controller Micro: Bit m EEPROM?
register
etc. Sensor Effector address
String token ' l 1 -
Chip Implementation Serial 12 I/OPins Clock I2CEEPROM EEPROM PROGMEM Flash SRAM
Arduino Uno 5v 5v 14 16 MHz 0
ATmega328P 1KB 32KB 2KB
NyBoard VO 5V+3.3V 5V+3.3V 11 20 MHz 8KB
static + Load
MPU6050 — dynamic Staticmotion Behavior, Skill, Skill skill,
gyro derivative PCA9685 Behavior, Skill Skilly Skill,
el Final Motion Behavior, skill,

One frame of joint angles defines a static posture, while a series of frames

defines a periodic motion, usually a gait.

29

EEPROM has limited (1,000,000) write cycles. So | want to minimize write
operations on it.

There are two kinds of skills: Instincts and Newbility. The addresses of both are
written to the onboard EEPROM(1KB) as a lookup table, but the actual data is stored
at different memory locations:

e |>C EEPROM (8KB) stores Instincts.

The Instincts are already fine-tuned/fixed skills. Multiple Instincts are linearly
written to the 1°C EEPROM only once with Writelnstinct.ino. Their addresses are
calculated and saved to the lookup table in onboard EEPROM during the runtime of
Writelnstinct.ino.

e PROGMEM (sharing the 32KB flash with the sketch) stores Newbility.

A Newbility is a new experimental skill that requires a lot of tests. It's not written
to the I2C nor onboard EEPROM, but the flash memory in the format of PROGMEM.
It has to be uploaded as one part of Arduino sketch. Its address is also assigned
during the runtime of the code, though the value rarely changes if the total number
of skills (including all Instincts and Newbilities) is unchanged.

7.2. Example Instinct.h

#define WalkingDOF 8
#define NUM_SKILLS 6
#define I2C_EEPROM

const char cr[] PROGMEM = {
26, 0, -5,

35, 37,-46,-53,-23,-32, -3, 12,
40, 28,-42,-59,-24,-28, -4, 12,

33, 39,-47,-51,-22,-32,-3, 11,

|5

const char stair[] PROGMEM = {
54,0, 30,

44,90,-39,-38, 10,-32,-10, 32,
45, 90,-32,-46, 16,-38,-16, 38,

43,90,-44,-32, 6,-26, -6, 26,

2
const char pu1[] PROGMEM = {

30

1,0,0,

0-30, 0,0, 0 0,0, 0,20, 20,60, 60, 60, 60,-55,-55,};
const char pu2[] PROGMEM = {

1,0,0,

0,10, 0, 0, 0, O, 0, 0,60, 60, 40, 40,-45,-45,-55,-55,};
const char rest[] PROGMEM = {

1,0,0,

-30,-80,-45, 0,-3,-3, 3, 3,60, 60,-60,-60,-45,-45, 45, 45,};
const char zero[] PROGMEM = {

1,0,0,

0,00000000000000 0}

#if defined(MAIN_SKETCH) || !defined(I2C_EEPROM)
const char* skillNameWithType[] =

{"crl", "stairN", "pull", "pu2l", "restl", "zeroN"};
const char* progmemPointer[] =
{cr, stair, pul, pu2, rest, zero, };
#else
const char* progmemPointer[] = {stair, zero};
#endif

7.2.1. Defined constants

#define WalkingDOF 8
Means the number of DoF for walking is 8 on Nybble.

#define NUM_SKILLS 6
Means the total number of skills is 6. It should be the same as the number of
items in list const char* skillNameWithTypel[l.

#define I2C_EEPROM
Means there’s an 1°C EEPROM on NyBoard to save Instincts. If you are
building your own circuit board that doesn't have it, comment out this line.
Both skills will be saved to the flash as PROGMEM.

7.2.2. Data structure of skill array
Observe the following two skills:
const char rest[] PROGMEM = {
1,0,0,
-30,-80,-45, 0,-3,-3, 3, 3,60, 60,-60,-60,-45,-45, 45, 45,};

const char cr[] PROGMEM = {

31

26,0, -5,
35, 37,-46,-53,-23,-32,-3, 12,
40, 28,-42,-59,-24,-28, -4, 12,

33,39,-47,-51,-22,-32,-3, 11,
h

They are formatted as:

Expected Body .
Total #of | grientation Indexed Joint Angles
Frames
Roll Pitch |O| 1|2 |3 |4|5|6|7|8|9|10(11|12|13(14]15
Posture 1

#define WalkingDOF 8
Gait >1
#define WalkingDOF 12

7.2.3. Suffix for indicating Instinct and Newbility

You must upload WriteConst.ino to have the skills written to EEPROM for the
first time. The following information will be used:

const char* skillNameWithType[] =

{"crl", "stairN", "pu1l", "pu2l", "restl", "
const char* progmemPointer[] =
{cr, stair, pul, pu2, rest, zero, };

Notice the suffix I or N in the skill name strings. They tell the program where to
store skill data and when to assign their addresses.

Later, if the uploaded sketch is main sketch Nybble.ino, and you are using
NyBoard that has an I°C EERPOM, the program will only need the pointer to
Newbility list const char* progmemPointer([] = {stair, zero}; to extract the full
knowledge of defined skills.

zeroN"};

7.3. Define new skills

There’s already a skill called “zeroN” in Instinct.h. It's a posture at zero state
waiting for your new definition.
You can first use command mindex Offset to move individual joint to your target
position, then replace the joint angles (bold fonts) in array at once:
const char zero[] PROGMEM = {
1,0,0,
0,000000000000000,}

32

Because it's declared as a Newbility and doesn’t require write to I2C EEPROM,

you can simply upload Nybble.ino everytime you fine-tune the array (without
uploading Writelnstinct.ino), and trigger the new posture by pressing 7 on the IR
remote, or type kzero in the serial monitor.

You can rename this skill, but remember to update the keymap of IR remote. You
can also write short programs to perform multiple skills sequentially, like the push

up behavior in Nybble.ino. By integrating sensory data, you can even define
behaviors that's triggered by certain interactions!

Understand parameters in OpenCat.h (research)

Mess up with the code and hardware.

To be written by YOU!
Share your knowledge and creativity with the community at
https://www.petoi.com/forum.

Nybble Olympics

* Speed: Faster
» Skill: Smarter

* Cuteness: Cuter

33

https://www.petoi.com/forum

Appendix I: Parts

120(q
Suipues

Japjoy Araneq

ajew uid-y
a3 9oy 14

|
7 JOsuas punoselyn

v 10151531 UNT
20} JaQQqnu

34

