
Peer-graded Assignment: User Authentication

1. Instructions

2. My submission

3. Discussions

In this assignment you will continue the exploration of user authentication. We have already set

up the REST API server to validate an ordinary user. Now, you will extend this to verify an

Admin and grant appropriate privileges to an Admin. In addition you will allow only a registered

user to update and delete his/her submitted comments. Neither another user, nor an Admin can

edit these comments.

Step-By-Step Assignment Instructions

Assignment Overview

At the end of this assignment, you would have completed the following:

• Check if a verified ordinary user also has Admin privileges.

• Allow any one to perform GET operations

• Allow only an Admin to perform POST, PUT and DELETE operations

• Allow an Admin to be able to GET all the registered users' information from the database

• Allow a registered user to submit comments (already completed), update a submitted

comment and delete a submitted comment. The user should be restricted to perform such

operations only on his/her own comments. No user or even the Admin can edit or delete

the comments submitted by other users.

Assignment Requirements

This assignment is divided into three tasks as detailed below:

Task 1

In this task you will implement a new function named verifyAdmin() in authenticate.js file.

This function will check an ordinary user to see if s/he has Admin privileges. In order to

perform this check, note that all users have an additional field stored in their records

named admin, that is a boolean flag, set to false by default. Furthermore, when the user's

token is checked in verifyOrdinaryUser() function, it will load a new property named user to

the request object. This will be available to you if the verifyAdmin() follows verifyUser() in

the middleware order in Express. From this req object, you can obtain the admin flag of the

user's information by using the following expression:

req.user.admin

You can use this to decide if the user is an administrator. The verifyAdmin() function will call

next(); if the user is an Admin, otherwise it will return next(err); If an ordinary user performs this

https://www.coursera.org/learn/server-side-nodejs/peer/ouexI/user-authentication
https://www.coursera.org/learn/server-side-nodejs/peer/ouexI/user-authentication/submit
https://www.coursera.org/learn/server-side-nodejs/peer/ouexI/user-authentication/discussions

operation, you should return an error by calling next(err) with the status of 403, and a message

"You are not authorized to perform this operation!".

Note: See the video on how to set up an Admin account

Task2

In this task you will update all the routes in the REST API to ensure that only the Admins can

perform POST, PUT and DELETE operations. Update the code for all the routers to support this.

These operations should be supported for the following end points:

• POST, PUT and DELETE operations on /dishes and /dishes/:dishId

• DELETE operation on /dishes/:dishId/comments

• POST, PUT and DELETE operations on /promotions and /promotions/:promoId

• POST, PUT and DELETE operations on /leaders and /leaders/:leaderId

Task 3

In this task you will now activate the /users REST API end point. When an Admin sends a GET

request to http://localhost:3000/users you will return the details of all the users. Ordinary users

are forbidden from performing this operation.

Task 4

In this task you will allow a registered user to update or delete his/her own comment. Recall that

the comment already stores the author's ID. When a user performs a PUT or DELETE operation

on the /dishes/:dishId/comments/:commentId REST API end point, you will check to ensure that

the user performing the operation is the same as the user that submitted the comment. You will

allow the operation to be performed only if the user's ID matches the id of the comment's author.

Note that the User's ID is available from the req.user property of the req object. Also ObjectIDs

behave like Strings, and hence when comparing two ObjectIDs, you should use the

Id1.equals(id2) syntax.

Review criteria

Your assignment will be graded based on the following criteria:

Task 1

• You have implemented the verifyAdmin() function in authenticate.js.

• The verifyAdmin() function will allow you to proceed forward along the normal path of

middleware execution if you are an Admin

• The verifyAdmin() function will prevent you from proceeding further if you do not have

Admin privileges, and will send an error message to you in the reply.

http://localhost:3000/users

Task 2

• Any one is restricted to perform only the GET operation on the resources/REST API end

points.

• An Admin (who must be first checked to make sure is an ordinary user), can perform the

GET, PUT, POST and DELETE operations on any of the resources/ REST API end

points.

Task 3

• A GET operation on http://localhost:3000/users by an Admin will return the details of the

registered users

• An ordinary user (without Admin privileges) cannot perform the GET operation on

http://localhost:3000/users.

Task 4

• A registered user is allowed to update and delete his/her own comments.

• Any user or an Admin cannot update or delete the comment posted by other users.

http://localhost:3000/users
http://localhost:3000/users.

