
 

Atollic TrueSTUDIO® for ARM® 

Quick Start Guide 
User Guide 



 
Document Data  

 
 
 

ii | P a g e  
 

COPYRIGHT 
© Copyright 2009-2018 STMicroelectronics. All rights reserved. No part of this document may be 
reproduced or distributed without prior written consent of STMicroelectronics. The software 
product described in this document is furnished under a license and may only be used, or copied, 
according to the license terms. 

TRADEMARKS 

Atollic, Atollic TrueSTUDIO, Atollic TrueSTORE and the Atollic logotype are trademarks, or registered 
trademarks, owned by STMicroelectronics. ARM, ARM7, ARM9 and Cortex are trademarks, or 
registered trademarks, of ARM Limited. ECLIPSE is a registered trademark of the Eclipse foundation. 
Microsoft, Windows, Word, Excel and PowerPoint are registered trademarks of Microsoft 
Corporation. Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated. All other 
product names are trademarks, or registered trademarks, of their respective owners. 

DISCLAIMER 

The information in this document is subject to change without notice and does not represent a 
commitment of STMicroelectronics. The information contained in this document is assumed to be 
accurate, but STMicroelectronics assumes no responsibility for any errors or omissions. In no event 
shall STMicroelectronics, its employees, its contractors, or the authors of this document be liable for 
any type of damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses 
of any nature or kind. 

DOCUMENT IDENTIFICATION 

TS-UG  November 2012 

REVISION HISTORY 

20th  January 2018 – Applies to Atollic TrueSTUDIO® for STM32 v9.0.0 

21th  August 2018 – Applies to Atollic TrueSTUDIO® for STM32 v9.1.0 

STMicroelectronics Software AB 
Science Park 
Gjuterigatan 7 
SE- 553 18 Jönköping 
Sweden 

Email: sales@atollic.com 
Web: www.atollic.com 

STMicroelectronics  

Web: www.st.com 

mailto:sales@atollic.com
http://www.atollic.com/
http://www.st.com/


 
Table of Contents 

 
 
 

iii | P a g e  
 

Contents 
About this Document ............................................................. 29 

Intended Readers ..................................................................................... 29 

Document Conventions ........................................................................... 30 

 Getting Started .................................................... 31 

Introduction .............................................................................................. 32 

Preparing for Start .................................................................................... 33 

Workspaces & Projects ................................................................................... 33 

Perspectives & Views ...................................................................................... 34 

Views ................................................................................................ 36 

Starting the Program ................................................................................ 39 

Starting With Different Language ................................................................... 41 

Change What is Started ................................................................................... 42 

Creating a New Project ............................................................................. 43 

One-Click Example Project Installation ........................................................... 54 

Using an Existing Project ................................................................................. 55 

Prevent “GCC not found in PATH” Error ......................................................... 56 

Creating a Static Library .................................................................................. 56 

Hide Information in a Static Library ................................................................ 57 

Creating a Makefile Project From Existing Code ............................................. 58 

Importing EWARM Projects ...................................................................... 61 

Using the Project Import Converter ................................................................ 61 

Import Projects from Folder or Archive .......................................................... 61 

Before Building Imported Project ................................................................... 67 

Step-by-step checklist ..................................................................................... 68 

Common Build Errors ...................................................................................... 72 

Configuring the Debugger ............................................................................... 72 

Importing AC6 Projects ............................................................................. 75 



 
Table of Contents 

 
 
 

iv | P a g e  
 

Using the Project Import Converter ................................................................ 75 

Import Projects from Folder or Archive .......................................................... 76 

Import Projects using Double-Click ................................................................. 80 

Using Imported Projects .................................................................................. 81 

Restoring Converted Projects ......................................................................... 82 

Configuring the Project’s Build Settings ................................................... 84 

Build Configurations ........................................................................................ 88 

Create a New Build Configuration for Release ................................ 89 

Changing Active Build Configuration ............................................... 90 

Source Folders ................................................................................................. 90 

Include Libraries .............................................................................................. 93 

Compiler settings ............................................................................................ 95 

Set the Compiler to Use The C99-Standard ..................................... 96 

Compiler Optimization ..................................................................... 97 

Link Time Optimization (LTO) .......................................................................... 98 

Changing Toolchain Version .......................................................................... 100 

Create a New Build Configuration For an Old Toolchain Version .. 101 

Convert .elf-File to Another Output Format ................................................. 103 

Temporary Assembly File .............................................................................. 105 

Building the Project ................................................................................ 106 

Enable Parallel Build ...................................................................................... 107 

Enable Build on Save ..................................................................................... 107 

Rebuild Project .............................................................................................. 108 

Build All Projects ........................................................................................... 109 

Build All Build Configurations ........................................................................ 109 

Headless Build ............................................................................................... 110 

Logging .......................................................................................................... 112 

The Build Size ................................................................................................ 112 

Command Line Patterns ................................................................................ 115 

Create .list-Files .............................................................................. 115 



 
Table of Contents 

 
 
 

v | P a g e  
 

Building One File ........................................................................................... 116 

Linking the Project .................................................................................. 119 

Referring Project ........................................................................................... 119 

Dead Code Removal ...................................................................................... 121 

Adding Code to be Executed Before Main() .................................................. 122 

Page Size Allocation for Malloc ..................................................................... 123 

Include Additional Object Files ..................................................................... 124 

Treat Linker Warnings as Errors .................................................................... 126 

Linker Script ................................................................................................... 127 

Generate a New Linker Script ....................................................................... 131 

Automatically ................................................................................. 131 

Manually ........................................................................................ 132 

Modify Existing Linker Script ......................................................................... 133 

Place Code in a New Memory Region ............................................ 133 

Place Code in External Ram ........................................................... 135 

Place Variables at Specific Addresses ............................................ 136 

Linking in a Block of Binary Data .................................................... 137 

Locate Uninitialized Data in Memory ............................................ 138 

Managing Existing Workspaces .............................................................. 140 

Backup of Preferences for a Workspace ....................................................... 140 

Copy Preferences Between Workspaces ...................................................... 140 

Keeping Track on Java Heap Space ............................................................... 141 

Unlocking Locked Workspaces ...................................................................... 141 

Managing Existing Projects ..................................................................... 143 

Edit ................................................................................................................ 143 

Editor Zoom In / Zoom Out ............................................................ 143 

Quickly Find and Open a File.......................................................... 144 

Branch Folding ............................................................................... 144 

Block selection mode ..................................................................... 145 



 
Table of Contents 

 
 
 

vi | P a g e  
 

Find all Keyboard Shortcuts ........................................................... 147 

The Index ....................................................................................................... 148 

Finding Include Paths, Macros etc. ............................................................... 151 

Add or Remove Folder to Include Path ......................................................... 153 

Locate Where a File is Included .................................................................... 153 

Creating Links to External Files ..................................................................... 154 

Update CMSIS Math library ........................................................................... 155 

Converting a C-Project to a C++-Project ....................................................... 156 

Disassemble/List Object and Elf Files ..................................................... 158 

I/O Redirection ....................................................................................... 160 

Position Independent Code .................................................................... 163 

Using CMSIS-Pack in TrueSTUDIO .......................................................... 166 

Configuration ................................................................................................ 166 

CMSIS Pack Manager Perspective ................................................................. 167 

Open Installed CMSIS Packs View ................................................................. 173 

Install CMSIS Packages .................................................................................. 174 

Create CMSIS-Pack Based Projects ......................................................... 177 

Create CMSIS C/C++ Project .......................................................................... 177 

Configure the CMSIS C/C++ Project .............................................................. 180 

Updating Linker Script for CMSIS C/C++ Project ........................................... 184 

Disable CMSIS Startup File ............................................................................ 185 

Debugging the CMSIS C/C++ Project ............................................................. 185 

Adding more CMSIS-Pack Features Into Project ........................................... 187 

Installing 3rd Party Plugins ...................................................................... 188 

Install From Eclipse Marketplace .................................................................. 188 

Install Using “Install New Software” ............................................................. 189 

Uninstalling 3rd Party Plugins ........................................................................ 192 

Solving Upgrade Problem .............................................................................. 193 

Using ST-Link Utility Inside Atollic TrueSTUDIO ..................................... 194 

Requirements ................................................................................................ 194 



 
Table of Contents 

 
 
 

vii | P a g e  
 

Steps That Needs to be Performed ............................................................... 195 

Setup ST-Link Utility as an External Tool ....................................................... 195 

Convert the Build Output to Intel Hex .......................................................... 196 

Modify the Debug Configuration .................................................................. 197 

Create a Launch Group.................................................................................. 198 

Finished ......................................................................................................... 200 

Miscellaneous Tools ............................................................................... 201 

Quick Access Search Bar ................................................................................ 201 

Version control .............................................................................................. 202 

Subversion - SVN ............................................................................ 202 

Locks in SVN ................................................................................... 204 

Include SVN Revision-Number in a String ...................................... 205 

Ignore a File .................................................................................... 206 

Local SVN Repository ..................................................................... 206 

Using SVN on External Resources .................................................. 209 

Multi Monitor Support .................................................................................. 210 

Open Additional Instance of TrueSTUDIO ..................................................... 211 

Shell Access ................................................................................................... 212 

 Debugging ..........................................................215 

Introduction to Debugging with TrueSTUDIO ........................................ 216 

Starting the Debugger ............................................................................ 218 

External GDB Server ...................................................................................... 224 

JTAG Scan Chain ............................................................................................ 225 

The Startup Script ................................................................................... 227 

Start Debugging at the Very Beginning .......................................... 227 

Load the Program Without Debugging .......................................... 227 

Hardware Initialization Code ......................................................... 227 

Managing the Debug Configurations ..................................................... 228 

Generic Binary Path ....................................................................................... 229 



 
Table of Contents 

 
 
 

viii | P a g e  
 

Debug Launch Configuration Settings File .................................................... 230 

Customize the Debug Perspective .......................................................... 232 

Debugging ............................................................................................... 233 

Terminate, Rebuild and Re-launch ................................................................ 234 

Disassembly View .......................................................................................... 234 

Breakpoints ................................................................................................... 235 

Conditional Breakpoint .................................................................. 236 

Expressions .................................................................................................... 237 

Live Expressions ............................................................................................ 238 

Local Variables .............................................................................................. 239 

Fill Memory with a Byte Pattern ................................................................... 241 

SFRs ............................................................................................................... 241 

Fault Analyzer ................................................................................................ 245 

Fault Analyzer View........................................................................ 246 

Terminal View ............................................................................................... 247 

Segger Real Time Terminal ............................................................ 249 

Attach to Running Target Using SEGGER Probe ..................................... 251 

Stopping the Debugger ........................................................................... 254 

Upgrading the GDB Server ..................................................................... 256 

Configure Segger’s GDB Server .............................................................. 257 

Change Flash Caching .................................................................................... 258 

Enable Log File ............................................................................................... 258 

Settings Command Line Option .................................................................... 259 

Debugging Code in RAM ......................................................................... 260 

Debugging Two Targets at the Same Time ............................................. 261 

First Alternative - Local GDB-server Using GUI Options................................ 261 

Second Alternative - Remote GDB-server Using Command-line 

Options ......................................................................................................... 262 

 Build Analyzer ....................................................263 

Introduction to Build Analyzer ............................................................... 264 



 
Table of Contents 

 
 
 

ix | P a g e  
 

Using Build Analyzer ............................................................................... 265 

Memory Regions ........................................................................................... 265 

Memory Details ............................................................................................. 266 

Size Information ............................................................................. 267 

Sorting ............................................................................................ 269 

Search and Filter ............................................................................ 270 

Calculate Sum of Size ..................................................................... 271 

Display Size Information in Byte Format ....................................... 271 

Copy and Paste ............................................................................... 273 

 Static Stack Analyzer...........................................274 

Introduction to Static Stack Analyzer ..................................................... 275 

Using Static Stack Analyzer ..................................................................... 276 

Enable Stack Usage Information ................................................................... 276 

Basic Column Information ............................................................................. 277 

Function column ............................................................................ 277 

Depth Column ................................................................................ 278 

Max Cost Column ........................................................................... 278 

Local Cost Column .......................................................................... 278 

Type Column .................................................................................. 278 

Info Column .................................................................................... 278 

List Tab .......................................................................................................... 279 

Call Graph Tab ............................................................................................... 280 

Using Search Field ......................................................................................... 281 

Copy and Paste .............................................................................................. 282 

 Serial Wire Viewer Tracing ..................................284 

Using Serial Wire Viewer Tracing ........................................................... 285 

Serial Wire Debug (SWD) .............................................................................. 285 

Serial Wire Output (SWO) ............................................................................. 285 

Serial Wire Viewer (SWV) .............................................................................. 285 



 
Table of Contents 

 
 
 

x | P a g e  
 

Instrumentation Trace Macrocell (ITM) ........................................................ 286 

Starting SWV Tracing .............................................................................. 287 

The SWV Views ....................................................................................... 294 

The Timeline Graphs ..................................................................................... 296 

Statistical Profiling ......................................................................................... 296 

Exception Tracing .......................................................................................... 298 

Exception Data ............................................................................... 298 

Exception Statistics ........................................................................ 299 

Printf() Redirection over ITM ................................................................. 302 

Change the Trace Buffer Size ................................................................. 303 

Common SWV Problems ........................................................................ 304 

 MTB Tracing (Cortex-M0+) ..................................305 

Introduction to MTB ............................................................................... 306 

Configure MTB ........................................................................................ 307 

Using MTB ............................................................................................... 309 

Analyzing MTB Information .................................................................... 310 

Copy the MTB Log ......................................................................................... 312 

 Instruction Tracing ..............................................313 

Instruction Tracing .................................................................................. 314 

Cortex-M7 and ETMv4 .................................................................................. 314 

Enable Trace .................................................................................................. 315 

Writing a Trace Port Configuration File ......................................... 316 

Configuring the Tracing Session .................................................................... 318 

ETM Trace Port Configuration File Reference ............................................... 319 

Add Trace Trigger .......................................................................................... 319 

Add Trace Trigger in the Editor ...................................................... 321 

Managing Trace Triggers ............................................................................... 321 

Start Trace Recording .................................................................................... 322 

Analyzing the Trace ....................................................................................... 322 



 
Table of Contents 

 
 
 

xi | P a g e  
 

Display Options .............................................................................. 324 

Search the Trace Log ..................................................................... 324 

Exporting a Trace Log .................................................................................... 325 

 RTOS-Aware Debugging ......................................326 

RTOS Kernel Awareness Debugging ....................................................... 327 

Segger embOS ........................................................................................ 328 

Requirements ................................................................................................ 328 

Finding the Views .......................................................................................... 328 

System Information ....................................................................................... 329 

Task List ......................................................................................................... 330 

Timers ............................................................................................................ 331 

Resource Semaphores ................................................................................... 332 

Mailboxes ...................................................................................................... 333 

HCC Embedded eTaskSync ..................................................................... 335 

Requirements ................................................................................................ 335 

Finding the View ............................................................................................ 335 

Task List ......................................................................................................... 336 

FreeRTOS and OpenRTOS ....................................................................... 337 

Requirements ................................................................................................ 337 

Finding the Views .......................................................................................... 337 

Task List ......................................................................................................... 338 

Queues .......................................................................................................... 340 

Semaphores .................................................................................................. 341 

Timers ............................................................................................................ 342 

Quadros RTXC ......................................................................................... 344 

Requirements ................................................................................................ 344 

Finding the Views .......................................................................................... 344 

Kernel Information ........................................................................................ 345 

Tasks (Task List and Stack Info) ..................................................................... 345 

Task List tab .................................................................................... 346 



 
Table of Contents 

 
 
 

xii | P a g e  
 

Stack Info tab ................................................................................. 347 

Alarms ........................................................................................................... 348 

Counters ........................................................................................................ 349 

Event Sources ................................................................................................ 349 

Exception Backtrace ...................................................................................... 350 

Exceptions ..................................................................................................... 351 

Mailboxes ...................................................................................................... 352 

Mutexes......................................................................................................... 353 

Partitions ....................................................................................................... 354 

Pipes .............................................................................................................. 355 

Queues .......................................................................................................... 356 

Semaphores .................................................................................................. 357 

Express Logic ThreadX ............................................................................ 359 

Requirements ................................................................................................ 359 

Finding the Views .......................................................................................... 359 

Thread List ..................................................................................................... 360 

Semaphores .................................................................................................. 361 

Mutexes......................................................................................................... 362 

Message Queues ........................................................................................... 363 

Event Flags .................................................................................................... 364 

Timers ............................................................................................................ 365 

Memory Block Pools...................................................................................... 365 

Memory Byte Pools ....................................................................................... 366 

TOPPERS/ASP .......................................................................................... 368 

Requirements ................................................................................................ 368 

Finding the Views .......................................................................................... 368 

Tasks .............................................................................................................. 369 

Static Information Tab ................................................................... 369 

Current Status Tab ......................................................................... 370 

Dataqueues ................................................................................................... 371 



 
Table of Contents 

 
 
 

xiii | P a g e  
 

Static Information Tab ................................................................... 371 

Current Status Tab ......................................................................... 372 

Event Flags .................................................................................................... 373 

Static Information Tab ................................................................... 373 

Current Status Tab ......................................................................... 374 

Mailboxes ...................................................................................................... 374 

Static Information Tab ................................................................... 375 

Current Status Tab ......................................................................... 375 

Memory Pools ............................................................................................... 376 

Static Information Tab ................................................................... 376 

Current Status Tab ......................................................................... 377 

Cyclic Handlers .............................................................................................. 378 

Static Information Tab ................................................................... 378 

Current Status Tab ......................................................................... 379 

Alarm Handlers .............................................................................................. 379 

Static Information Tab ................................................................... 380 

Current Status Tab ......................................................................... 380 

Prioritized Dataqueues .................................................................................. 381 

Static Information Tab ................................................................... 381 

Current Status Tab ......................................................................... 382 

System Status ................................................................................................ 383 

Interrupt Line Configuration ......................................................................... 383 

Interrupt Handler Static Information ............................................................ 384 

CPU Exception Handler Static Information ................................................... 385 

Micrium µC/OS-III ................................................................................... 387 

Requirements ................................................................................................ 387 

Finding the Views .......................................................................................... 387 

System Information ....................................................................................... 388 

Task List ......................................................................................................... 390 



 
Table of Contents 

 
 
 

xiv | P a g e  
 

Semaphores .................................................................................................. 391 

Mutexes......................................................................................................... 392 

Message Queues ........................................................................................... 393 

Event Flags .................................................................................................... 394 

Timers ............................................................................................................ 395 

Memory Partitions ........................................................................................ 396 

 Source Code Review ...........................................398 

Introduction to Code Reviews ................................................................ 399 

Planning a Review – Review ID Creation ................................................ 401 

Creating a Review ID ..................................................................................... 402 

Tailoring a Review ID Template ..................................................................... 407 

Conducting a Source Code Review ......................................................... 409 

Individual Phase ............................................................................................ 412 

Team Phase ................................................................................................... 414 

Rework Phase ................................................................................................ 416 

Additional Settings ........................................................................................ 417 

 Revision History ................................................419 

Revision History ...................................................................................... 420 



 
List of Figures 

 
 
 

xv | P a g e  
 

Figures 
Figure 1 - Workspaces and Projects ............................................................. 34 

Figure 2 – Editing Perspective ...................................................................... 35 

Figure 3 - Switch Perspective ....................................................................... 36 

Figure 4 - Switch Perspective ....................................................................... 36 

Figure 5 – Toolbar Buttons for Perspectives and Views .............................. 36 

Figure 6 - View Menu toolbar button .......................................................... 37 

Figure 7 - Show View Dialog Box .................................................................. 38 

Figure 8 – Toolbar Buttons for Perspectives and Views .............................. 38 

Figure 9 - Workspace Launcher .................................................................... 39 

Figure 10 - Information Center .................................................................... 40 

Figure 11 – Information Center Menu Command ....................................... 41 

Figure 12 – Information Center Toolbar Button (A) ..................................... 41 

Figure 13 – Startup Preferences ................................................................... 42 

Figure 14 – Project Creation Buttons ........................................................... 43 

Figure 15 - Starting the Project Wizard ........................................................ 43 

Figure 16 - C Project Configuration .............................................................. 44 

Figure 17 - C Project Configuration .............................................................. 45 

Figure 18 - TrueSTUDIO Hardware Configuration ........................................ 46 

Figure 19 - TrueSTUDIO Project Wizard Using Search Field......................... 47 

Figure 20 – TrueSTUDIO Filter Board/Microcontroller ................................ 48 

Figure 21 - TrueSTUDIO Hardware Configuration ........................................ 49 

Figure 22 - TrueSTUDIO Software Configuration ......................................... 50 

Figure 23 - TrueSTUDIO Debugger Configuration ........................................ 51 

Figure 24 - Select Configurations ................................................................. 52 

Figure 25 - Project Explorer View ................................................................. 53 

Figure 26 – Editor View ................................................................................ 53 

Figure 27 – Project Creation Buttons ........................................................... 54 

igure 28 – Atollic TrueSTORE ........................................................................ 54 

Figure 29 – Selection of Existing Project File ............................................... 55 

Figure 30 – Selection of Static Library Project ............................................. 56 

Figure 31 – Examples of options to be used with objcopy ...................... 58 

Figure 32 – Create a Makefile Project from existing code ........................... 58 

Figure 33 – Locate the code and select <none> .......................................... 59 

Figure 34 – Edit the PATH variable ............................................................... 59 

file:///G:/Develop/V9.1.0/Doc/Atollic_TrueSTUDIO_for_ARM_User_Guide.docx%23_Toc523156153


 
List of Figures 

 
 
 

xvi | P a g e  
 

Figure 35 - Import Projects (EWARM) .......................................................... 62 

Figure 36 - Import Projects from Folder or Archive (EWARM) .................... 63 

Figure 37 - Import Projects from File System (EWARM) .............................. 64 

Figure 38 - Display Installed Project Configurators (EWARM) ..................... 64 

Figure 39 - Import Several Projects from File System (EWARM) ................. 65 

Figure 40 - EWARM CMSIS option................................................................ 69 

Figure 41 - TrueSTUDIO compiler include paths .......................................... 69 

Figure 42 - TrueSTUDIO linker script file option .......................................... 70 

Figure 43 - Edit Debug Configuration ........................................................... 73 

Figure 44 - Selecting Debug Probe ............................................................... 73 

Figure 45 – Import Projects .......................................................................... 76 

Figure 46 – Import Projects from Folder or Archive .................................... 77 

Figure 47 – Import Projects from File System .............................................. 78 

Figure 48 – Display Installed Project Configurators ..................................... 78 

Figure 49 – Project Converter Conversion Information ............................... 79 

Figure 50 – Project Imported Information ................................................... 79 

Figure 51 – Import Several Projects from File System ................................. 80 

Figure 52 – Project Converter Information .................................................. 80 

Figure 53 – Project Imported Information ................................................... 81 

Figure 54 – Edit Debugger Configuration ..................................................... 82 

Figure 55 – Build Settings Toolbar Button ................................................... 84 

Figure 56 – Build Settings Menu Selection................................................... 84 

Figure 57 - Project Properties Dialog Box .................................................... 85 

Figure 58 – Tool Settings, Miscellaneous Options ....................................... 86 

Figure 59 – Target Settings Dialog Box......................................................... 87 

Figure 60 – Select Affected Build Configuration .......................................... 88 

Figure 61 – Change active Build Configuration ............................................ 90 

Figure 62 – Source Folders ........................................................................... 91 

Figure 63 – Source Location Tab .................................................................. 91 

Figure 64 – Folder Selection Tab .................................................................. 92 

Figure 65 – New Source Folder .................................................................... 92 

Figure 66 – Include a Library ........................................................................ 93 

Figure 67 – Add the Library to the Include Paths ......................................... 94 

Figure 68 – Compiler Settings ...................................................................... 95 

Figure 69 – Finding the C/C++ Manual in Information Center ..................... 96 

Figure 70 – Compiler Optimization Settings for a Project ........................... 97 

Figure 71 – Compiler Optimization Settings for a File ................................. 98 



 
List of Figures 

 
 
 

xvii | P a g e  
 

Figure 72 – Linker LTO Settings for a Project ............................................... 99 

Figure 73 – Linker LTO Settings for a Project ............................................. 100 

Figure 74 – Build Settings Toolbar Button ................................................. 100 

Figure 75 – Tool Chain Version tab ............................................................ 101 

Figure 76 – Manage the Build Configurations............................................ 102 

Figure 77 – Create New Configuration ....................................................... 103 

Figure 78 – Old Tool Chain Version for the New Build Configuration ....... 103 

Figure 79 – Output Format Selection ......................................................... 104 

Figure 80 - Build Toolbar Button ................................................................ 106 

Figure 81 – Parallel Build ............................................................................ 107 

Figure 82 – Build on Save ........................................................................... 108 

Figure 83 – Rebuild Toolbar Button ........................................................... 108 

Figure 84 – Rebuild Active Configuration Menu Selection ........................ 109 

Figure 85 – Build All Projects ...................................................................... 109 

Figure 86 – Build All Build Configurations .................................................. 110 

Figure 87 – Open the Properties view ....................................................... 113 

Figure 88 – Open the Properties view ....................................................... 114 

Figure 89 – Build Settings Toolbar Button ................................................. 115 

Figure 90 – Generate –list Files .................................................................. 116 

Figure 91 – Enable the Build Automatically Menu Item ............................ 117 

Figure 92 – Build Selected File(s) ............................................................... 118 

Figure 93 – GNU Linker manual link ........................................................... 119 

Figure 94 – Set Project References ............................................................ 120 

Figure 95 – Set Project References ............................................................ 121 

Figure 96 – Enable Dead Code Removal .................................................... 122 

Figure 97 – Do Not Use Standard Start Files .............................................. 123 

Figure 98 – Linker Page Size Allocation for malloc() .................................. 124 

Figure 99 – Add Additional Object Files ..................................................... 125 

Figure 100 – Add File With a List of Object Files ........................................ 126 

Figure 101 – Automatically Generate a New Linker Script ........................ 131 

Figure 102 – Select New, Other… ............................................................... 132 

Figure 103 – Select New, Other… ............................................................... 132 

Figure 104 – Enter the name of the script ................................................. 133 

Figure 105 – Manage Workspaces ............................................................. 140 

Figure 106 – Display Java Heap Space Status............................................. 141 

Figure 107 – Workspace Unavailable ......................................................... 142 

Figure 108 – Editor with text zoomed in .................................................... 144 



 
List of Figures 

 
 
 

xviii | P a g e  
 

Figure 109 – Folding Markers ..................................................................... 145 

Figure 110 – Mark a column....................................................................... 146 

Figure 111 – Add text to all rows ............................................................... 146 

Figure 112 – Select a block of text ............................................................. 147 

Figure 113 – Find all Shortcuts ................................................................... 147 

Figure 114 – The Indexer Picks up the Documentation for a Function ..... 148 

Figure 115 – Workspace Indexer Settings .................................................. 149 

Figure 116 – Project Indexer Settings ........................................................ 150 

Figure 117 – Scanner Discovery Settings ................................................... 151 

Figure 118 – Preprocessor Include Paths, Macros etc. .............................. 152 

Figure 119 – Add or remove include path ................................................. 153 

Figure 120 – Include Browser ..................................................................... 154 

Figure 121 – Create Linked File .................................................................. 155 

Figure 122 – Create Linked File .................................................................. 156 

Figure 123 – Build Tools ............................................................................. 158 

Figure 124 – Disassemble file(s) without data ........................................... 159 

Figure 125 – List symbols with size ............................................................ 159 

Figure 126 – New, Other… ......................................................................... 160 

Figure 127 – Select Minimal System Calls Implementation ....................... 161 

Figure 128 – Select Location and Heap Implementation ........................... 161 

Figure 129 – Add –fPIE for Assembler and C Compiler .............................. 163 

Figure 130 – Use –fPIE for Linker ............................................................... 164 

Figure 131 – Remove the monitor reset command ................................... 165 

Figure 132 – CMSIS Packs Preferences ...................................................... 167 

Figure 133 – Open CMSIS Pack Manager Perspective ............................... 168 

Figure 134 – Packs View Empty .................................................................. 168 

Figure 135 – Packs View Toolbar................................................................ 169 

Figure 136 – Refresh all Packs .................................................................... 169 

Figure 137 – Read error during refreshing packs ....................................... 169 

Figure 138 – Packs View Updated .............................................................. 170 

Figure 139 – Devices Software Pack .......................................................... 171 

Figure 140 – Search STM32 Devices Software Pack................................... 172 

Figure 141 – Boards Software Pack ............................................................ 173 

Figure 142 – Open Installed CMSIS Packs View ......................................... 174 

Figure 143 – Install Packs ........................................................................... 175 

Figure 144 – Installing Pack ........................................................................ 175 

Figure 145 – Installed Pack ......................................................................... 176 



 
List of Figures 

 
 
 

xix | P a g e  
 

Figure 146 – Installed CMSIS-Packs ............................................................ 176 

Figure 147 – Create CMSIS C/C++ Project .................................................. 177 

Figure 148 – Create CMSIS C/C++ Project (main) ...................................... 178 

Figure 149 – Create CMSIS C/C++ Project (device) .................................... 179 

Figure 150 – Create CMSIS C/C++ Project (configurations) ....................... 179 

Figure 151 – Configure CMSIS C/C++ Project ............................................. 180 

Figure 152 – Configure CMSIS C/C++ Project with Startup file .................. 181 

Figure 153 – Configure CMSIS C/C++ Project with CMSIS CORE files ........ 182 

Figure 154 – Build CMSIS C/C++ Project .................................................... 183 

Figure 155 – Setup CMSIS C/C++ Project Linker Script File ........................ 184 

Figure 156 – Disable Startup File from CMSIS C/C++ Project .................... 185 

Figure 157 – Debug CMSIS C/C++ Project Configurations ......................... 186 

Figure 158 – Debug CMSIS RTE C/C++ Project ........................................... 187 

Figure 159 – Select Eclipse Marketplace .................................................... 188 

Figure 160 – Install Using Eclipse Marketplace .......................................... 189 

Figure 161 – Select Install New Software................................................... 189 

Figure 162 – Enter Download Site and Select Plugins ............................... 190 

Figure 163 – Accept License Agreements .................................................. 191 

Figure 164 – The Plugins are Installed ....................................................... 192 

Figure 165 – Uninstalling Plugins ............................................................... 192 

Figure 166 – ST-LINK_CLI.exe ..................................................................... 194 

Figure 167 – ST-LINK_CLI.exe ..................................................................... 195 

Figure 168 – Convert the Build Output to Intel Hex .................................. 196 

Figure 169 – Modify the Debug Configuration .......................................... 197 

Figure 170 – Create a Launch Group .......................................................... 198 

Figure 171 – Edit a Launch Group .............................................................. 198 

Figure 172 – Select Launch Mode: debug .................................................. 199 

Figure 173 – Select Launch Mode: debug .................................................. 200 

Figure 174 – Debug History ........................................................................ 200 

Figure 175 – Quick Access Search Bar ........................................................ 201 

Figure 176 – Enable SVN Command Group................................................ 203 

Figure 177 – SVN Views .............................................................................. 204 

Figure 178 – Add SVN Property .................................................................. 205 

Figure 179 – Open SVN Repositories ......................................................... 207 

Figure 180 – New Repository Button ......................................................... 207 

Figure 181 – Create Repository Dialog ....................................................... 208 

Figure 182 –Repository Created................................................................. 208 



 
List of Figures 

 
 
 

xx | P a g e  
 

Figure 183 –Share Project Dialog ............................................................... 208 

Figure 184 –Projects Version Controlled ................................................... 208 

Figure 185 – Multiple Editors, Views and Windows used at the same time

 .................................................................................................................... 211 

Figure 186 – New Window ......................................................................... 211 

Figure 187 – New Window ......................................................................... 212 

Figure 188 – Terminal................................................................................. 213 

Figure 189 –Terminal View ........................................................................ 213 

Figure 190 –Launch Terminal ..................................................................... 214 

Figure 191 –Terminal Opened .................................................................... 214 

Figure 192 –Local Debugging ..................................................................... 216 

Figure 193 –Remote Debugging ................................................................. 217 

Figure 194 – Start Debug Session Toolbar Button ..................................... 218 

Figure 195 - Debug Configuration Dialog Box ............................................ 218 

Figure 196 – The Configure Debug Toolbar Button ................................... 219 

Figure 197 - Debug Configuration, Debugger Panel for the SEGGER J-Link220 

Figure 198 - Debug Configuration, Debugger Panel for the ST-Link .......... 220 

Figure 199 - Debug Configuration, Startup Scripts Panel .......................... 222 

Figure 200 – Debug Perspective ................................................................. 224 

Figure 201 – JTAG Scan Chain Selected...................................................... 225 

Figure 202 – The Configure Debug Toolbar Button ................................... 228 

Figure 203 – The target ELF-file in Debug Session Configuration .............. 229 

Figure 204 – Using variables in the path .................................................... 230 

Figure 205 – Debug configuration as shared file ....................................... 231 

Figure 206 – Customize Perspective Dialog Box ........................................ 232 

Figure 207 - Run Menu ............................................................................... 233 

Figure 208 - Run Control Command Toolbar ............................................. 233 

Figure 209 – Terminate, Rebuild and Re-launch Toolbar Button .............. 234 

Figure 210 – Instruction Stepping Button .................................................. 234 

Figure 211 – Disassembly View .................................................................. 235 

Figure 212 - Toggle Breakpoint Context Menu .......................................... 235 

Figure 213 – Breakpoints View .................................................................. 235 

Figure 214 – Breakpoints Properties .......................................................... 236 

Figure 215 – Conditional Breakpoint ......................................................... 237 

Figure 216 – Expressions View ................................................................... 237 

Figure 217 – Drag and Drop of Variable to the Expressions View ............. 238 

Figure 218 – Complex Expressions ............................................................. 238 



 
List of Figures 

 
 
 

xxi | P a g e  
 

Figure 219 – Live Expressions View ............................................................ 239 

Figure 220 – Live Expressions View Number Format ................................. 239 

Figure 221 – Variables View ....................................................................... 240 

Figure 222 – Variables View – change Number format ............................. 240 

Figure 223 - The Memory Fill Toolbar Button ............................................ 241 

Figure 224 - The Memory Fill dialog ........................................................... 241 

Figure 225 - SFRs Menu Command ............................................................ 242 

Figure 226 - SFRs View ............................................................................... 243 

Figure 227 - SFRs Filter Clear ...................................................................... 243 

Figure 228 – SFR View Buttons .................................................................. 244 

Figure 229 – CMSIS-SVD Settings Properties Panel ................................... 244 

Figure 230 – Fault Analyzer View with STKERR .......................................... 247 

Figure 231 – Terminal View ........................................................................ 248 

Figure 232 – Terminal Toolbars.................................................................. 248 

Figure 233 – Terminal Settings ................................................................... 248 

Figure 234 – Terminal Settings ................................................................... 250 

Figure 235 – Modify Startup Script ............................................................ 252 

Figure 236 - The Terminate Menu Command ............................................ 254 

Figure 237 - C/C++ Editing Perspective ...................................................... 255 

Figure 238 – Changing the Path to the GDB Server ................................... 256 

Figure 239 –GDB Server Control Panel – General Tab ............................... 257 

Figure 240 –GDB Server Control Panel – Settings tab ............................... 258 

Figure 241 – Debug Configuration – Connect to Remote GDB Server....... 259 

Figure 242 – Build Analyzer ........................................................................ 265 

Figure 243 – Memory Regions Tab ............................................................ 266 

Figure 244 – Memory Details Tab .............................................................. 267 

Figure 245 – Memory Details Sorted ......................................................... 269 

Figure 246 – Memory Details Search/Filter ............................................... 270 

Figure 247 – Calculate Sum of Size ............................................................ 271 

Figure 248 – Show Byte Count ................................................................... 271 

Figure 249 – Size Information in Byte Format ........................................... 272 

Figure 250 – Copy and Paste ...................................................................... 273 

Figure 251 – Static Stack Analyzer List Tab ................................................ 275 

Figure 252 – Static Stack Analyzer Call Graph Tab ..................................... 275 

Figure 253 – Enable Generate per Function Stack Usage Information ...... 276 

Figure 254 –Function Symbols in Static Stack Analyzer ............................. 277 

Figure 255 –List tab .................................................................................... 279 



 
List of Figures 

 
 
 

xxii | P a g e  
 

Figure 256 –Call Graph tab ......................................................................... 281 

Figure 257 –List tab using filter .................................................................. 282 

Figure 258 –Call Graph tab using search .................................................... 282 

Figure 259 – Copy and Paste ...................................................................... 283 

Figure 260 –Different Types of Tracing ...................................................... 286 

Figure 261 – Open Debug Configurations Toolbar Button ........................ 287 

Figure 262 – Change ST-Link Debug Configuration for SWV ...................... 287 

Figure 263 – Change SEGGER J-Link Debug Configuration for SWV .......... 288 

Figure 264 – SWV Data Trace Menu Command ......................................... 289 

Figure 265 – Configure Serial Wire Viewer Button .................................... 289 

Figure 266 – The Serial Wire Viewer Settings Dialog ................................. 290 

Figure 267 – The Start/Stop Trace Button ................................................. 293 

Figure 268 – Resume Debug Button .......................................................... 293 

Figure 269 – Empty SWV Data Button ....................................................... 293 

Figure 270 – Several SWV Views Displayed Simultaneously...................... 295 

Figure 271 –Statistical Profiling Configuration .......................................... 297 

Figure 272 – Statistical Profiling View ........................................................ 297 

Figure 273 – Exception Tracing Configuration ........................................... 298 

Figure 274 – Exception View, Data Tab ...................................................... 298 

Figure 275 – Exception View, Statistics Tab ............................................... 299 

Figure 276 – Serial Wire Viewer Preferences............................................. 303 

Figure 277 –MTB Trace Log View ............................................................... 306 

Figure 278 – Configure MTB Trace Setting Button .................................... 307 

Figure 279 – Configure MTB Trace View .................................................... 307 

Figure 280 – Configure MTB with Error Setting ......................................... 308 

Figure 281 – The Start/Stop MTB Button ................................................... 309 

Figure 282 – Clear Buffer Button ............................................................... 309 

Figure 283 – Scroll Trace View on Update Button ..................................... 309 

Figure 284 –MTB Trace Log Information ................................................... 311 

Figure 285 –MTB Trace Buffer Wrapped ................................................... 311 

Figure 286 – Enable Tracing in the Debug Configuration .......................... 315 

Figure 287 – Configuration Toolbar Button ............................................... 318 

Figure 288 - Trace Configuration ................................................................ 318 

Figure 289 - Trace Configuration ................................................................ 320 

Figure 290 – Add Trace Trigger in the Editor ............................................. 321 

Figure 291 –Trace Trigger in the Editor ...................................................... 321 

Figure 292 –Trace Trigger in the Editor ...................................................... 322 



 
List of Figures 

 
 
 

xxiii | P a g e  
 

Figure 293 – Record Toolbar Button .......................................................... 322 

Figure 294 - The Trace Log View ................................................................ 323 

Figure 295 - Trace Restarted ...................................................................... 323 

Figure 296 – Display Options Toolbar Button ............................................ 324 

Figure 297 – Search Toolbar Button .......................................................... 324 

Figure 298 – Export Toolbar Button ........................................................... 325 

Figure 299 - Exporting the Trace Log ......................................................... 325 

Figure 300 - View Top Level Menu ............................................................. 328 

Figure 301 - embOS Show View Toolbar Button ........................................ 329 

Figure 302 - embOS System Information View .......................................... 329 

Figure 303 - embOS System Information View (Fault Condition) .............. 329 

Figure 304 - embOS Task List View ............................................................ 330 

Figure 305 - embOS Timers View ............................................................... 332 

Figure 306 - embOS Resource Semaphores View ...................................... 333 

Figure 307 - embOS Mailboxes View ......................................................... 333 

Figure 308 – eTaskSync Show View Toolbar Button .................................. 335 

Figure 309 - eTaskSync Task List View ....................................................... 336 

Figure 310 – FreeRTOS View Top Level Menu ........................................... 338 

Figure 311 – FreeRTOS Show View Toolbar Button ................................... 338 

Figure 312 - FreeRTOS Task List View ........................................................ 339 

Figure 313 - FreeRTOS Queues View .......................................................... 340 

Figure 314 - FreeRTOS Semaphores View .................................................. 342 

Figure 315 - FreeRTOS Timers View ........................................................... 343 

Figure 316 – RTXC Show View Toolbar Button .......................................... 344 

Figure 317 – RTXC Kernel Information View .............................................. 345 

Figure 318 - RTXC Task List tab in Task view .............................................. 346 

Figure 319 – RTXC Task Stack Info .............................................................. 347 

Figure 320 - RTXC Alarms View .................................................................. 348 

Figure 321 - RTXC Counters View ............................................................... 349 

Figure 322 - RTXC Event Sources View ....................................................... 350 

Figure 323 - RTXC Exception Backtrace View ............................................. 351 

Figure 324 - RTXC Exceptions View ............................................................ 351 

Figure 325 - RTXC Mailboxes View ............................................................. 352 

Figure 326 - RTXC Mutexes View ............................................................... 353 

Figure 327 - RTXC Partitions View .............................................................. 354 

Figure 328 - RTXC Pipes View ..................................................................... 355 

Figure 329 - RTXC Queues View ................................................................. 356 



 
List of Figures 

 
 
 

xxiv | P a g e  
 

Figure 330 - RTXC Semaphores View ......................................................... 357 

Figure 331 – ThreadX View Top Level Menu .............................................. 359 

Figure 332 - ThreadX Show View Toolbar Button ...................................... 360 

Figure 333 - ThreadX Thread List View ...................................................... 360 

Figure 334 - ThreadX Semaphores View .................................................... 362 

Figure 335 - ThreadX Mutexes View .......................................................... 362 

Figure 336 - ThreadX Message Queues View ............................................. 363 

Figure 337 - ThreadX Event Flags View ...................................................... 364 

Figure 338 - ThreadX Timers View ............................................................. 365 

Figure 339 - ThreadX Memory Block Pools View ....................................... 366 

Figure 340 - ThreadX Memory Byte Pools View ........................................ 367 

Figure 341 – TOPPERS Show View Toolbar Button .................................... 368 

Figure 342 – TOPPERS Tasks Static Information Tab ................................. 369 

Figure 343 – TOPPERS Tasks Current Status Tab ....................................... 370 

Figure 344 – TOPPERS Dataqueues Static Information Tab ....................... 371 

Figure 345 – TOPPERS Dataqueues Current Status Tab ............................. 372 

Figure 346 – TOPPERS Event Flags Static Information Tab ........................ 373 

Figure 347 – TOPPERS Event Flags Current Status Tab .............................. 374 

Figure 348 – TOPPERS Mailboxes Static Information Tab ......................... 375 

Figure 349 – TOPPERS Mailboxes Current Status Tab ............................... 375 

Figure 350 – TOPPERS Memory Pools Static Information Tab ................... 376 

Figure 351 – TOPPERS Memory Pools Current Status Tab ........................ 377 

Figure 352 – TOPPERS Cyclic Handlers Static Information Tab .................. 378 

Figure 353 – TOPPERS Cyclic Handlers Current Status Tab........................ 379 

Figure 354 – TOPPERS Alarm Handlers Static Information Tab ................. 380 

Figure 355 – TOPPERS Alarm Handlers Current Status Tab ....................... 380 

Figure 356 – TOPPERS Prioritized Dataqueues Static Information Tab ..... 381 

Figure 357 – TOPPERS Prioritized Dataqueues Current Status Tab ........... 382 

Figure 358 – TOPPERS System Status View ................................................ 383 

Figure 359 – TOPPERS Interrupt Line Config View ..................................... 384 

Figure 360 – TOPPERS Interrupt Handler Static Info View ........................ 385 

Figure 361 – TOPPERS Exception Handler Static Info View ....................... 385 

Figure 362 - View Top Level Menu ............................................................. 388 

Figure 363 - Show View Toolbar Button .................................................... 388 

Figure 364 - µC/OS-III System Information View ....................................... 389 

Figure 365 - µC/OS-III Task List View .......................................................... 390 

Figure 366 - µC/OS-III Semaphores View ................................................... 392 



 
List of Figures 

 
 
 

xxv | P a g e  
 

Figure 367 - µC/OS-III Mutexes View ......................................................... 393 

Figure 368 - µC/OS-III Message Queues View............................................ 394 

Figure 369 - µC/OS-III Event Flags View ..................................................... 395 

Figure 370 - µC/OS-III Timers View ............................................................ 395 

Figure 371 - µC/OS-III Memory Partitions View ......................................... 396 

Figure 372 – Atollic TrueSTUDIO Support for the Code Review Workflow 399 

Figure 373 – Project Properties Menu Selection ....................................... 402 

Figure 374 - GUI for Creating and Managing Code Reviews ...................... 402 

Figure 375 - Dialog for Creating a New Review ID ..................................... 403 

Figure 376 - Dialog for Managing the Work Product of a Review ............. 403 

Figure 377 - Add Reviewers to the Review ................................................ 404 

Figure 378 - Choose Author for the Review Session .................................. 404 

Figure 379 - Review Comment Parameter Options ................................... 405 

Figure 380 - Setting Default Options for Review Parameters .................... 405 

Figure 381 - Naming the Review Issue Data Folder ................................... 406 

Figure 382 - Filter Settings for the Different Phases .................................. 406 

Figure 383 - Editing the DEFAULT Review Template ................................. 408 

Figure 384 - Code Review Selected via Open Perspective Command ....... 409 

Figure 385 - The Code Review Perspective ................................................ 409 

Figure 386 – The Code Review Table View ................................................ 410 

Figure 387 – The Code Review Editor View ............................................... 411 

Figure 388 - Individual Phase Selected in the Code Review Toolbar ......... 412 

Figure 389 - Reviewer ID Selection Dialog ................................................. 412 

Figure 390 - The Source Code Button & Drop-Down Menu ...................... 413 

Figure 391 - Add Code Review Issue... ....................................................... 413 

Figure 392 – A Code Review Issue in the Review Editor View ................... 414 

Figure 393 - Review Marker Displayed on Editor Line 101 ........................ 414 

Figure 394 - Team Phase Toolbar Button ................................................... 415 

Figure 395 - Code Review Editor View Content in Team Phase ................. 415 

Figure 396 - Review Markers and Tooltip Information in the Editor ......... 416 

Figure 397 - Team Phase Toolbar Button ................................................... 416 

Figure 398 - Code Review Editor View Content in the Rework Phase ....... 417 

Figure 399 - Accessing Code Review Preference Settings ......................... 417 

Figure 400 - Customize Filters Applied for All Phases ................................ 418 

Figure 401 - Customize Visible Code Review Table Columns .................... 418 



 
List of Tables 

 
 
 

xxvi | P a g e  
 

Tables 
Table 1 – Typographic Conventions ............................................................. 30 

Table 2 - EWARM vs TrueSTUDIO build options .......................................... 68 

Table 3 – Memory Regions Usage Color .................................................... 266 

Table 4 – Memory Details .......................................................................... 267 

Table 5 – Static Stack Analyzer List tab ...................................................... 279 

Table 6 – Static Stack Analyzer Call Graph tab ........................................... 280 

Table 7 – Exception Data Columns ............................................................. 299 

Table 8 – Exception Statistics Columns ...................................................... 301 

Table 9 – MTB Trace Log View Columns .................................................... 310 

Table 10 – embOS System Variables .......................................................... 330 

Table 11 – embOS Task Parameters ........................................................... 331 

Table 12 – embOS Timer Parameters ........................................................ 332 

Table 13 – embOS Resource Semaphore Parameters ............................... 333 

Table 14 – embOS Mailbox Parameters ..................................................... 334 

Table 15 – eTaskSync Task Parameters ...................................................... 336 

Table 16 – FreeRTOS Task Parameters....................................................... 340 

Table 17 – FreeRTOS Queue Parameters ................................................... 341 

Table 18 – FreeRTOS Semaphore Parameters ........................................... 342 

Table 19 – FreeRTOS Timer Parameters .................................................... 343 

Table 20 – RTXC Kernel Information .......................................................... 345 

Table 21 – RTXC Task List Parameters ........................................................ 347 

Table 22 – RTXC Stack Info ......................................................................... 347 

Table 23 – RTXC Alarm Parameters ........................................................... 348 

Table 24 – RTXC Counter Parameters ........................................................ 349 

Table 25 – RTXC Event Source Parameters ................................................ 350 

Table 26 – RTXC Exception Backtrace Parameters .................................... 351 

Table 27 – RTXC Exception Parameters ..................................................... 352 

Table 28 – RTXC Mailbox Parameters ........................................................ 352 

Table 29 – RTXC Mutex Parameters ........................................................... 354 

Table 30 – RTXC Partition Parameters ....................................................... 355 

Table 31 – RTXC Pipe Parameters .............................................................. 356 

Table 32 – RTXC Queue Parameters .......................................................... 357 

Table 33 – RTXC Semaphore Parameters ................................................... 358 

Table 34 – ThreadX Thread Parameters ..................................................... 361 



 
Overview 

 
 
 

xxvii | P a g e  
 

Table 35 – ThreadX Semaphore Parameters ............................................. 362 

Table 36 – ThreadX Mutex Parameters ..................................................... 363 

Table 37 – ThreadX Message Queue Parameters ...................................... 364 

Table 38 – ThreadX Event Flag Parameters ............................................... 364 

Table 39 – ThreadX Timer Parameters ....................................................... 365 

Table 40 – ThreadX Memory Block Pool Parameters ................................ 366 

Table 41 – ThreadX Memory Byte Pool Parameters .................................. 367 

Table 42 – TOPPERS Tasks Static Information ........................................... 370 

Table 43 – TOPPERS Tasks Current Status ................................................. 371 

Table 44 – TOPPERS Dataqueue Static Information .................................. 372 

Table 45 – TOPPERS Dataqueues Current Status ....................................... 372 

Table 46 – TOPPERS Event Flags Static Information .................................. 373 

Table 47 – TOPPERS Event Flags Current Status ........................................ 374 

Table 48 – TOPPERS Mailboxes Static Information .................................... 375 

Table 49 – TOPPERS Mailboxes Current Status.......................................... 376 

Table 50 – TOPPERS Memory Pools Static Information ............................. 377 

Table 51 – TOPPERS Memory Pools Current Status ................................... 377 

Table 52 – TOPPERS Cyclic Handlers Static Information ............................ 379 

Table 53 – TOPPERS Cyclic Handlers Current Status .................................. 379 

Table 54 – TOPPERS Alarm Handlers Static Information ........................... 380 

Table 55 – TOPPERS Alarm Handlers Current Status Information ............. 381 

Table 56 – TOPPERS Prioritized Dataqueue Static Information ................. 382 

Table 57 – TOPPERS Prioritized Dataqueues Current Status Information . 382 

Table 58 – TOPPERS System Status Information ....................................... 383 

Table 59 – TOPPERS Interrupt Line Config Information ............................. 384 

Table 60 – TOPPERS Interrupt Handlers Static Information ...................... 385 

Table 61 – TOPPERS Interrupt Handlers Static Information ...................... 386 

Table 62 – µC/OS-III System Variables ....................................................... 390 

Table 63 – µC/OS-III Task Parameters ........................................................ 391 

Table 64 – µC/OS-III Semaphore Parameters ............................................ 392 

Table 65 – µC/OS-III Mutexes Parameters ................................................. 393 

Table 66 – µC/OS-III Message Queue Parameters ..................................... 394 

Table 67 – µC/OS-III Event Flag Parameters .............................................. 395 

Table 68 – µC/OS-III Timer Parameters ...................................................... 396 

Table 69 – µC/OS-III Memory Partitions Parameters ................................ 397 

Table 70 – Atollic TrueSTUDIO Support for the Code Review Workflow... 400 

Table 71 - Code Review Toolbar Buttons ................................................... 410 



 
Overview 

 
 
 

xxviii | P a g e  
 

Table 72 - Code Review Table View Toolbar Button Description .............. 411 

Table 73 – The Code Review Editor View Toolbar Button Description ...... 412 

Table 74 – Revision History ........................................................................ 421 

 



 
Introduction 

 
 
 

29 | P a g e  
 

ABOUT THIS DOCUMENT 
Welcome to the Atollic TrueSTUDIO® for STM32 User Guide. The purpose of this 
document is to provide information on how to use Atollic TrueSTUDIO®.   

 

INTENDED READERS 
This document is primarily intended for users of Atollic TrueSTUDIO®.  

 

 

 

 

  

Please note that this manual applies to users of STM32 target devices only. 



 
Introduction 

 
 
 

30 | P a g e  
 

DOCUMENT CONVENTIONS 
The text in this document is formatted to ease understanding and provide clear and 
structured information on the topics covered. The following typographic conventions 
apply: 

 

 

Table 1 – Typographic Conventions 

  Style Use 

Command Keyboard Command or Source Code Section. 

Object Name Name of a User Interface Object (Menu, Menu Command, 
Button, Dialog Box, etc.) that appears on the computer 
screen. 

Cross Reference Cross reference within the document, or to an external 
document. 

Product Name Name of Atollic product. 

 

Identifies instructions specific to the Graphical User 
Interface (GUI). 

 

Identifies instructions specific to the Command Line 
Interface (CLI). 

 
Identifies Help Tips and Hints. 

 
Identifies a Caution. 

  



 
Introduction 

 
 
 

31 | P a g e  
 

 GETTING STARTED 
This section provides information on how to begin using Atollic TrueSTUDIO® for STM32.  

The following topics are covered: 

 Introduction 

 Preparing for Start 

 Starting the Program 

 Creating a New Project 

 Configuring the Project 

 Building the Project 

 Debugging 



 
Getting Started 

  
 
 

32 | P a g e  
 

INTRODUCTION 
Welcome to Atollic® TrueSTUDIO® for STM32. The product is available for free. Advanced 
functionality which earlier required a license is now fully enabled directly after installation.  

TrueSTUDIO has the following key features:  

 Built on Open Standards (Eclipse, CDT, GCC, and GDB) 

 Edit, Compile & Build (No code size limitation) 

 Project Management 

o STM32 MCUs and  Board support 

o CMSIS-Pack project support 

o Build/Memory Analyzer 

o Stack Analyzer 

o Bug Tracking 

o Version Control 

 Debug 

o Hard Fault Analyzer 

o Live Variable Watch 

o Trace (SWV, ETM, ETB, MTB) 

o Statistical Profiling 

o RTOS-aware Debug 

o Multi Project Debug  



 
Getting Started 

  
 
 

33 | P a g e  
 

PREPARING FOR START 
Atollic TrueSTUDIO is built using the ECLIPSE™ framework, and thus inherits some 
characteristics that may be unfamiliar to new users. The following sections outline 
important information to users without previous experience of ECLIPSE™. 

 

WORKSPACES & PROJECTS 
As Atollic TrueSTUDIO is built using the ECLIPSE™ framework, the ECLIPSE™ project and 
workspace model applies. The basic concept is outlined below: 

 A workspace contains projects. Technically, a workspace is a directory containing 
project directories or references to them. 

 A project contains files. Technically, a project is a directory containing files that 
may be organized in sub-directories. 

 A single computer may hold several workspaces at various locations in the file 
system. Each workspace may contain many projects. 

 The user may switch between workspaces, but only one workspace can be active 
at any one time.  

 The user may access any project within the active workspace. Projects located in 
another workspace cannot be accessed, unless the user switches to that 
workspace. 

 Switching workspace is a quick way of shifting from one set of projects to another 
set of projects. It will trigger a quick restart of the product. 

In practice, the project and workspace model facilitates a well-structured hierarchy of 
workspaces, containing projects, containing files. 



 
Getting Started 

  
 
 

34 | P a g e  
 

 

 

 

 

PERSPECTIVES & VIEWS 
Atollic TrueSTUDIO is a very powerful product with a great many views, loaded with 
various features. Displaying all views simultaneously would overload the user with 
information that may not be relevant to the task at hand. 

To overcome this problem, views can be organized in perspectives, where a perspective 
contains a number of predefined views. A perspective typically handles one development 
task, such as: 

 C/C++ Code Editing 

 Debugging 

 Bug Database Access 

 Version Control 

 Code Review 

As an example, the C/C++ Editing perspective displays views that relate to code editing, 
such as Editor Outline and Class Browser. The Debug perspective displays views that relate 
to Debugging, such as Breakpoints and CPU Registers. 

 

Atollic TrueSTUDIO® 

Workspace 1 
(C:\Joe\Workspace) 

 

Project A 

Project B 

. . .  

 

Workspace 2 
(C:\Customer1) 

 

Project C 

Project D 

. . .  

 

Workspace 3 
(X:\NewProjects) 

 

Project E 

Project F 

. . .  

 

Workspace 

currently inactive 

Workspace 

currently active 

Workspace 

currently inactive 

Figure 1 - Workspaces and Projects 



 
Getting Started 

  
 
 

35 | P a g e  
 

Switching from one perspective to another is a quick way to hide some views and display 
others. 

Atollic TrueSTUDIO comes with a number of pre-configured perspectives. Developers may 
modify these, or create entirely new, at will. Atollic TrueSTUDIO is designed around a 
philosophy that one perspective shall be used for one task, and that a perspective should 
not contain a lot of GUI objects from other perspectives. 

As the figure below outlines, the idea is that one perspective shall be used for each work 
task. It is however clear that one perspective, the C/C++ editing perspective is the 
“master” perspective where developers spend most time.  Therefor that perspective is the 
center-point of Atollic TrueSTUDIO, and developers temporarily jump to other 
perspectives to do other tasks, and when completed, jump back to the editing and building 
perspective again. 

The C/C++ Editing perspective is also the perspective that is opened when Atollic 
TrueSTUDIO is started the first time.  

 

Figure 2 – Editing Perspective 

We think it is valuable to use the editing and building perspective as the master 
perspective, and all other perspectives used temporarily for other work tasks. 

To switch perspective, select the Open Perspective toolbar button or use the menu 
command View, Open Perspective:  

Editing 

Building 
Debug 

Version 

control 

. . . 



 
Getting Started 

  
 
 

36 | P a g e  
 

 

Figure 3 - Switch Perspective 

 

Alternatively, click any of the perspective buttons in the top right corner of the main 
window (only the last few ones active are displayed here): 

 

Figure 4 - Switch Perspective 

 

Figure 5 – Toolbar Buttons for Perspectives and Views 

One can always return to the default C/C++ Editing and Building perspective by clicking the 
Return to editor and building perspective toolbar button (D). Editing and Building is the 
main activity for most C/C++ developers, hence the dedicated button. 

VIEWS 

When Atollic TrueSTUDIO is started for the first time, the C/C++ Editing Perspective is 
activated by default. This perspective does not show all available views by default, to 
reduce information overload. The same principle applies to all perspectives. 



 
Getting Started 

  
 
 

37 | P a g e  
 

To access additional features built into the product, open additional views. To do this, 
select the View toolbar button (C) or use the menu command View: 

 

Figure 6 - View Menu toolbar button 

The above list of views, while comprehensive, is still not complete. This list only contains 
the most common views for the work task related to the currently selected Perspective. To 
access even more views, select Other… from the list. This opens the Show View dialog box. 
Double click on any view to open it and access the additional features: 

  



 
Getting Started 

  
 
 

38 | P a g e  
 

 

Figure 7 - Show View Dialog Box 

 

The remaining toolbar buttons related to perspectives and views are: 

 

Figure 8 – Toolbar Buttons for Perspectives and Views 

Information Center (A) – Displays the initial welcome screen from the first time the 
product was started, after being installed. More details will follow in “Starting the 
Program” below. 

Perspective (B) – A shortcut that opens a perspective of the user’s choice. 



 
Getting Started 

  
 
 

39 | P a g e  
 

STARTING THE PROGRAM 
After installing Atollic TrueSTUDIO according to Atollic TrueSTUDIO Installation Guide, start 
the program by performing the following steps (applies to Microsoft® Windows® Vista® 
and Windows 7®): 

1. Open the Microsoft® Windows® Start Menu 

2. Click on All Programs 

3. Open the Atollic folder 

4. Open the TrueSTUDIO for STM32 folder 

5. Click on the Atollic TrueSTUDIO item in this folder  

6. Wait for the program to start, and the Workspace Launcher dialog to be 
displayed. 

 

 

Figure 9 - Workspace Launcher 

This dialog enables the user to select the name and location of the Active 
Workspace. The Active Workspace is a folder that will hold all projects 
currently accessible by the user. The user may open any existing project in the 
workspace. Any newly created projects will be stored in the workspace. 

7. Enter the full name (with path) of the workspace folder to be used for the 
current session. Alternatively, browse to an existing workspace folder, or use 
the default workspace folder. This is located within the home directory of the 
current user, e.g. C:\Users\User\Atollic\TrueSTUDIO  
 
If the appointed workspace folder does not yet exist, it will be created. 

8. Click on the OK button 

 



 
Getting Started 

  
 
 

40 | P a g e  
 

 

 

1. Wait for the Information Center window to be displayed.  

 

Figure 10 - Information Center 

The user must have write-access to the home directory to be able to start 
Atollic TrueSTUDIO. 

Atollic recommends that the Active Workspace folder is located not too 
many levels below the file system root. This is to avoid exceeding the 
Windows® path length character limitations. This can cause build errors if the 
file paths become longer than Windows can handle.  



 
Getting Started 

  
 
 

41 | P a g e  
 

 

This window enables the user to quickly reach information regarding the product, and how 
to use it, by clicking on the corresponding hypertext links. It is not required to read all 
material before using the product for the first time. Rather, it is recommended to consider 
the Information Center as a collection of reference information to return to, whenever 
required during development. When connected to internet also Atollic TruePERSPECTIVES 
Blog articles can be reached. 

The Information Center window may be reached at any time via the Help, Information 
Center menu command or via the Information Center toolbar button. 

 

Figure 11 – Information Center Menu Command 

 

 

Figure 12 – Information Center Toolbar Button (A) 

 

9. Start using Atollic TrueSTUDIO by closing the Information Center page (click 
the “X” in the Information Center page tab above its main window area). The 
Information Center window is closed, but may be restored at any time, as 
described above. 

 

STARTING WITH DIFFERENT LANGUAGE 
Start Atollic TrueSTUDIO from command line using following options: 

Sometimes when opening an old workspace the Information Center does not 
display valid information, e.g.  “This page can’t be displayed” is shown or old 
manuals are opened when accessing documents. In such case reload the 

page by clicking the Home button, , at the top right corner of the 
Information Center window.  



 
Getting Started 

  
 
 

42 | P a g e  
 

English TrueSTUDIO.exe -nl en 
Japanese TrueSTUDIO.exe -nl ja 
Korean TrueSTUDIO.exe -nl ko 
Simplified Chinese TrueSTUDIO.exe -nl zh 

 

CHANGE WHAT IS STARTED 
If some parts of Atollic TrueSTUDIO is never used, it is a good idea to not start them at all. 
That reduces the memory used and speeds things up a bit. 

In the menu select Window, Preferences and in the Preference Dialog select General, 
Startup and Shutdown. 

 

Figure 13 – Startup Preferences 

 



 
Getting Started 

  
 
 

43 | P a g e  
 

CREATING A NEW PROJECT 
Atollic TrueSTUDIO supports both Managed and Unmanaged projects. Managed projects 
are handled entirely by the IDE and may be configured via GUI settings. Unmanaged 
projects require the existence of a makefile, which needs to be maintained manually.  

The toolbar has three buttons for quick creation of new projects. 

 

Figure 14 – Project Creation Buttons 

 

 To create a new Managed Mode C project, perform the following steps: 

1. Click the button A to create a C Project (A). 

As an alternative, select the File, New…, C Project menu command to start 
the Atollic TrueSTUDIO project wizard. 

 

  Figure 15 - Starting the Project Wizard 

 

  



 
Getting Started 

  
 
 

44 | P a g e  
 

Wait for the C Project configuration page to be displayed where different kind of 
projects can be created. The Atollic TrueSTUDIO product contains two kind of 
toolchains, an Atollic ARM Tools and a Atollic PC Tools. The Atollic ARM Tools 
toolchain shall be used when building embedded projects. The Atollic PC Tools 
toolchain is usable for testing code on the PC. 

 

Figure 16 - C Project Configuration 

Enter a Project name (such as “MyProject”), select Embedded C Project as 
Project type. Click the Next button.  

 

 

The project type CMSIS C/C++ Project requires some preparations before it 
can be used. Please read the Using CMSIS-Pack in TrueSTUDIO section at 
page 166 and Create CMSIS-Pack Based Projects at page 177. 



 
Getting Started 

  
 
 

45 | P a g e  
 

 

Figure 17 - C Project Configuration 

2. Wait for the TrueSTUDIO Hardware configuration page to be displayed. 

 



 
Getting Started 

  
 
 

46 | P a g e  
 

 

Figure 18 - TrueSTUDIO Hardware Configuration 

 



 
Getting Started 

  
 
 

47 | P a g e  
 

Configure the hardware settings according to your evaluation board or custom 
board design. The Atollic TrueSTUDIO product contains support for STM32 and 
BlueNRG microcontrollers and boards. 

To make the selection easier to find a specific board or microcontroller the Select 
Hardware Settings dialog includes a Target Filter search field. When this field 
contains some characters only Board/Microcontroller matching the text in the 
filter field is selectable in the Board/Microcontroller fields. Enter some 
characters in the Filter field to reduce the number of selectable 
boards/microcontrollers.  

For instance if you know the name of your Board/MCU contains “F446” then 
enter F446 into the search field. This will limit the number of items which can be 
selected and makes it much more easy to find the Board/MCU. 
  

  

Figure 19 - TrueSTUDIO Project Wizard Using Search Field 

 



 
Getting Started 

  
 
 

48 | P a g e  
 

If the name of your board starts with “Disc” then just enter Disc into the search 
field and only boards and devices containing Disc in the name will be listed. 
 

 

Figure 20 – TrueSTUDIO Filter Board/Microcontroller 

Select the board or microcontroller to create a project for.  

 

 

 

The Info table in the Project Wizard displays Atollic TrueSTUDIO provided this 
device. or CMSIS-Pack provided this device. The information depends on if the 
project will be created based upon Atollic TrueSTUDIO Target Supported 
Device information or if it will be based on installed CMSIS Pack files. See the 
section Using CMSIS-Pack in TrueSTUDIO on page 166 for more information 
about CMSIS-Pack. 

 



 
Getting Started 

  
 
 

49 | P a g e  
 

 

Figure 21 - TrueSTUDIO Hardware Configuration 

 

The default selection for floating point operations is either Software 
implementation, Mix HW/SW implementation or Hardware 
implementation, depending on the selected microcontroller.  

Some microcontrollers have floating point support implemented in hardware. 
For such microcontrollers, the selection Hardware implementation is more 
efficient, and will thus be default.  

However, this setting will not work properly on devices that do not have 
floating point support in hardware. In such a case, Software implementation 
will be default. 

Please note that evaluation boards may have hardware switches for 
configuration of Code location in RAM or FLASH. The setting selected in the 
project wizard must correspond to the settings on the board.  

The text field below the tree displays information about the used device when 
a Board or MCU is selected in the tree.  

 



 
Getting Started 

  
 
 

50 | P a g e  
 

The Mix HW/SW implementation is for those projects that have libraries that 
aren’t compiled for hardware floating point. In this implementation the 
function calls are not using the FPU-registers as in a pure Hardware 
implementation. The FPU will however still be used inside the project 
functions. 

When finished, click the Next button. 

3. Wait for the TrueSTUDIO Software configuration page to be displayed. 

  

Figure 22 - TrueSTUDIO Software Configuration 

Select the desired Runtime library to be used. For information about the 
differences between Newlib–nano and the regular Newlib, please refer to 
the Newlib-nano readme file, accessible from the Information Center (Figure 
10). 

If the target board has a limited amount of memory, the Use tiny 
printf/sprinf/fprintf (small code size) setting is recommended.  

When finished, click the Next button.  

 



 
Getting Started 

  
 
 

51 | P a g e  
 

 

 

4. Wait for the TrueSTUDIO Debugger configuration page to be displayed. 

  

Figure 23 - TrueSTUDIO Debugger Configuration 

Atollic TrueSTUDIO supports several different types of JTAG probes. Select the 
probe to be used during debugging.  

When finished, click the Next button. 

  

If Newlib-nano is used and float shall be used by scanf/printf add these options 
to the “C Linker” options field 

-u _scanf_float   -u _printf_float 

E.g. The option field line may now look like  

-Wl,-cref,-u,Reset_Handler   -u scanf_float  -u_printf_float 

 

If using an RTOS, it is recommended to generate a system calls file, and select 
the Fixed Heap size option. This option requires that the _Min_Heap_Size 

symbol is defined in the linker script .ld file. The .ld file is stored in the root 
directory of the currently selected project.  The heap size defined by 
_Min_Heap_Size must meet the heap size required by the application. 

 



 
Getting Started 

  
 
 

52 | P a g e  
 

5. Wait for the TrueSTUDIO Select Configurations page to be displayed. 

  

Figure 24 - Select Configurations 

Keep the default selections. Click on the Finish button. 

A new Managed Mode C-project is now created. Atollic TrueSTUDIO 
generates target specific sample files in the project folder to simplify 
development. 

  



 
Getting Started 

  
 
 

53 | P a g e  
 

6. Expand the project folder (“MyProject” in this example) and the src 
subfolder in the Project Explorer view.  

 

Figure 25 - Project Explorer View 

7. Double click on the main.c file in the Project Explorer tree to open the file 
in the editor. 

  

Figure 26 – Editor View 

 



 
Getting Started 

  
 
 

54 | P a g e  
 

ONE-CLICK EXAMPLE PROJECT INSTALLATION 
The Atollic TrueSTORE system is a repository with hundreds of free example projects for 
various evaluation boards. Atollic TrueSTUDIO users can easily find the latest available set 
of example projects on our server, as well as download and install them into the Atollic 
TrueSTUDIO Active Workspace, with a single mouse-click! Any example application of 
interest is up and running on the target hardware in less than a minute. 

 

To find the examples relevant to a specific target board, select the Download button in the 
toolbar (C in the image below). 

 

Figure 27 – Project Creation Buttons 

 Wait for the Atollic TrueSTORE Dialog box to open. 

 

igure 28 – Atollic TrueSTORE 

The Atollic TrueSTORE® requires an internet connection to work, as all 
example projects are stored on our internet server. 

 



 
Getting Started 

  
 
 

55 | P a g e  
 

Select the project(s) of interest and click Finish. The project is imported into the Active 
Workspace and is immediately ready to be built and executed on the target board.  
The whole process typically takes less than a minute. 

 

USING AN EXISTING PROJECT 
To use an existing project in Atollic TrueSTUDIO, double-click the .project file located 
within the project folder to open it. This requires that Atollic TrueSTUDIO is associated to 
be used for .project files. 

 

Figure 29 – Selection of Existing Project File 

Wait for Atollic TrueSTUDIO to start, as a result of double-clicking the .project file.  

 

 

When clicking on the.project file the Project Import Converter will investigate the project 
and if it is made for Atollic TrueSTUDIO it is directly imported. But if the project is made 
from some other tool the Project Import Converter tries to identify if it is a known project 
format and in such case will convert the project to an Atollic TrueSTUDIO project. There 
are two sections which covers conversion of projects in this manual:  

 Importing AC6 Projects - conversion of STM32CubeMX (AC6) projects 

 Importing EWARM Projects – importing IAR EWARM projects 

Please note that if the File Browser is configured not to display file extensions, 
two nameless icons will appear in the file list, representing the .project and 
the .cproject files. The use of files without a filename is an unfortunate 
heritage from the ECLIPSE™ framework.  

 

Atollic recommends that example projects downloaded from outside Atollic 
TrueSTUDIO®, e.g. from STMicroelectronics, be located not too many levels 
below the file system root. This is to avoid exceeding the Windows® path 
length character limitations. 



 
Getting Started 

  
 
 

56 | P a g e  
 

PREVENT “GCC NOT FOUND IN PATH” ERROR  
Some old projects will issue an error in the Problems view saying Program “gcc” not found 
in PATH. The error is caused when the project uses a deprecated discovery method 
setting. The error can be removed by updating Window Preferences and Project 
Properties settings. 

1. Open Window, Preferences. In Preferences dialog select C/C++, Property Pages 
Settings and enable checkbox: Display “Discovery Options” page. 

2. Open Project , Properties, C/C++ Build, Discovery Options and disable checkbox: 
Automate discovery of paths and symbols. 

CREATING A STATIC LIBRARY 
To create a Static Library-project select in the top menu File, New, C Project and in the 
wizard-dialog that pops up select Static Library, Embedded C Library and Atollic ARM 
Tools. 

 

 

Figure 30 – Selection of Static Library Project 

Press Next and select the device to be used. This will make the project build settings 
correct. The project will then be built as an archive file with the name lib{project-
name}.a, as for an instance libMyLibrary.a 



 
Getting Started 

  
 
 

57 | P a g e  
 

 

 

The GNU Binary Utilities command line tools are needed to create an archive file from an 
object file without first creating a library project. 

1. Open a Windows command prompter – cmd.exe 

2. Move to the ARMTOOLS\bin folder in TrueSTUDIO installation folder 
cd C:\%installdir%\ARMTools\bin    

3. Run the archive command 
arm-atollic-eabi-ar -r libStaticLibrary.a src\syscalls.o 

 

HIDE INFORMATION IN A STATIC LIBRARY 
The GNU Binary Utilities is included in the Atollic Toolchain and contains several programs. 
The programs strip and objcopy takes parameters which removes information or 
change information from the archive file. 

For instance objcopy can be used if a library shall be exported and used by other people 
and there is a need to hide information in the library such as function names or variables. 

Below is an example on how to remove symbols and redefine some names in a library. 

1. Open a Windows command prompter – cmd.exe 

2. Move to the ARMTOOLS\bin folder in TrueSTUDIO installation folder 
cd C:\%installdir%\ARMTools\bin   

3. Run the objcopy command to change some information. 
arm-atollic-eabi-objcopy --strip-unneeded --redefine-sym 

myfunc=aaaa libTest.a libRenamed.a  

This will open library libTest, remove all symbols that are not needed for relocation 
processing and will also redefine myfunc to aaaa, and create a new library libRenamed.  

Option Information 
 

-g 
--strip-debug 

Do not copy debugging symbols or sections from the source 

file. 
 

It is recommended to always place a library and the library code in a separate 
project and never include them in the main-project. 

If the library project should be recompiled at the same time as the project 
that have included it, the library project should be added as a reference to 
the other project. Select Project, Properties, C/C++ General, Paths and 
Symbols and in References-tab select the library project. 

For more information about Project referring, see Referring Project on page 
119 



 
Getting Started 

  
 
 

58 | P a g e  
 

--strip-unneeded 
 

Strip all symbols that are not needed for relocation processing. 

--redefine-sym old=new 
 

Change the name of a symbol old, to new. This can be useful 

when one is trying link two things together for which you 

have no source, and there are name collisions. 
 

Figure 31 – Examples of options to be used with objcopy 

The GNU Binary Utilities Manual contains complete information on how to use the 
included Binary Utilities software.    
 

CREATING A MAKEFILE PROJECT FROM EXISTING 

CODE 
To import an existing makefile project select File, New and Makefile Project with Existing 
Code. 

 

 

Figure 32 – Create a Makefile Project from existing code 

Enter the name of the new project and the location of the existing code.  

Make sure to select <none> as the Toolchain for the Indexer Settings.  



 
Getting Started 

  
 
 

59 | P a g e  
 

 

Figure 33 – Locate the code and select <none> 

Then add the path to the existing toolchain to the system PATH environment variable. 
That can be done from within Atollic TrueSTUDIO by select Project, Properties and then 
C/C++ Build, Environment. 

Locate the PATH variable in the list, select it and click Edit. If PATH can’t be located, click 
Add and write PATH in the Name textbox. 

   

Figure 34 – Edit the PATH variable 



 
Getting Started 

  
 
 

60 | P a g e  
 

In the Value textbox, add the full path to the location of the toolchain, and also any other 
location from where any executables in the makefile are located. Separate the paths with 
a “;”.  

 



 
Getting Started 

  
 
 

61 | P a g e  
 

IMPORTING EWARM PROJECTS 
Atollic TrueSTUDIO v8.0 has a new Project Import Converter supporting IAR Embedded 
Workbench® for ARM® (EWARM) projects. The new Project Import Converter 
automatically updates EWARM projects to Atollic TrueSTUDIO format during import. After 
an import the project will need manual updates in order to build correctly. 

The Project Import Converter will not modify any source or project files for your original 
EWARM project. It is however recommended that you backup or make a copy of the 
original EWARM project since you most likely need to modify some of the source code 
after the project has been imported to Atollic TrueSTUDIO. 

 

A log file is created in the project folder during import. The name of this log file is 
ProjectName_converter.log. This log file is placed into the same folder as the 
.project file and can be investigated to find information about the conversion. The 
ProjectName_converter.log. can for instance contain the following info. 

Project: STM32F4-Discovery 

Converter: IARProjectParser 

Date: 20170421 

 

Project needs GCC compatible startup code and linker script 

 

 

USING THE PROJECT IMPORT CONVERTER 
You must use Import Projects from Folder or Archive in Atollic TrueSTUDIO in order to 
import EWARM projects into Atollic TrueSTUDIO. 

 

IMPORT PROJECTS FROM FOLDER OR ARCHIVE 
Use the following method to import one or many projects.  

To open the Import wizard, select File, Import… 

It is always recommended to make backups of the project files and source code 
before converting projects. 

Please note! The imported project will not be copied to the workspace. All 
files in the project will be located at the original place and will be overwritten 
when manual changes are made.  



 
Getting Started 

  
 
 

62 | P a g e  
 

 

Figure 35 - Import Projects (EWARM) 

In the Import wizard select Projects from Folder or Archive and press Next. 



 
Getting Started 

  
 
 

63 | P a g e  
 

 

Figure 36 - Import Projects from Folder or Archive (EWARM) 

The Import Projects from File System or Archive dialog is opened. 



 
Getting Started 

  
 
 

64 | P a g e  
 

 

Figure 37 - Import Projects from File System (EWARM) 

To see the Installed project configurators in the product, press the installed project 
configurators link in the Import Projects from File System or Archive dialog. 

 

Figure 38 - Display Installed Project Configurators (EWARM) 

In the Import Projects from File System or Archive dialog browse to the folder containing 
the project to be imported.  

 



 
Getting Started 

  
 
 

65 | P a g e  
 

 

Select the project and make sure the checkbox Detect and configure project natures is 
enabled otherwise the Project Import Converter will not be used. Press Finish to import 
the project. 

The project is now imported into the workspace. Please note that files included in the 
project are not copied to the workspace, instead all files are linked to the workspace. This 
means that the actual files will be updated in the original EWARM project. Press OK to use 
the imported project. 

If a folder which contains several projects are selected and Search for nested projects are 
selected several projects will be seen in the dialog.  

 

Figure 39 - Import Several Projects from File System (EWARM) 

Eclipse cannot handle two projects with the same name in a workspace. 
Therefore it may only be possible to import one project for a board into the 
workspace. If an attempt is made to import a second project with the same 
name, the import will be cancelled silently without any specific message. 
Remove the first project from the workspace or create a new workspace if 
another project shall be tested.  



 
Getting Started 

  
 
 

66 | P a g e  
 

Many projects can then be imported in one step using this method. However, as 
mentioned earlier, Eclipse requires different names to be used for each selected project. If 
you run into this problem you can either rename the original EWARM project(s), or import 
them into different Atollic TrueSTUDIO Workspaces.  



 
Getting Started 

  
 
 

67 | P a g e  
 

 

BEFORE BUILDING IMPORTED PROJECT 
Start by having a look in the generated log file that is included in your imported project. 
This log file contains valuable information about the imported project, for example if there 
were problems importing certain parts for EWARM. 

Before we build we need to make some manual modifications to the source code and 
make sure that the build options are set correctly. Below is a step-by-step list and we will 
walk through this list and give examples on what typically needs to be done to get to a 
project that builds in Atollic TrueSTUDIO. 

 

There are essentially four parts of the migration process that you need to manually 
update. Review and modify build options, modify assembler source code, add a linker 
script file and watch out for tool specific code. These steps are described below and will in 
most cases lead to a project that builds and functions correctly. 

 

  

For more detailed information on how to migrate EWARM code and build 
options, please see the IAR to Atollic Migration Guide, sections 3 and 4. 

You can access the IAR to Atollic Migration Guide from Atollic TrueSTUDIO 
Information Center. 

 

Linker scripts, startup code and standard C/C++ libraries are tightly releated so 
we must make sure to use either Atollic TrueSTUDIO or EWARM versions of 
this code and scripts. It is strongly recommended to use Atollic TrueSTUDIO  
versions since migrating all this from EWARM to Atollic TrueSTUDIO would be 
very time consuming and prone to errors. 

 

In the process of manullay updating our new Atollic TrueSTUDIO project we 
will need startup code and a linker script file. We can easily get this if we 
create a dummy project in our Atollic TrueSTUDIO Workspace. The only thing 
you have to remember is to make sure that our dummy project is based on 
the same ARM device as our original project. 

 



 
Getting Started 

  
 
 

68 | P a g e  
 

STEP-BY-STEP CHECKLIST 
The following steps are necessary to double-check in order to obtain a successful build. 

1. Update Atollic TrueSTUDIO build options. 
We should make sure that pre-defined symbols, include paths, FPU selection and 
C/C++ language settings match the original project. 
 
With one exception, all pre-defined symbols and search paths have already been 
updated but you should make sure that options like FPU and C/C++ language 
matches the original project. See table below for information on where to find 
different build options. 
 

Option EWARM TrueSTUDIO 

FPU General Options -> Target -> Floating point 
settings 

[Build tool] -> Taget -> Floating point / FPU 
 
Note: [Build tool] is either Assembler, C Compiler, 
C++ Compiler or C++ Linker. If you change the FPU 
option then you should make the same change in 
all four build tools. 

C/C++ language C/C++ Compiler -> Language 1 C Compiler -> General 
C++ Compiler -> General 
 
Note: The Atollic TrueSTUDIO project will by 
default use the C compiler for C files and C++ 
compiler for C++ files. 

Compiler defines C/C++ Compiler -> Preprocessor -> Defined 
Symbols 

C Compiler -> Symbols -> Defined symbols 

Compiler paths Assembler -> Preprocessor -> Additional 
include directories 

C Compiler -> Directories -> Include path 

Assembler defines Assembler-> Preprocessor -> Defined 
Symbols 

Assembler -> Symbols -> Defined symbols 

Assembler paths C/C++ Compiler -> Preprocessor -> 
Additional include directories 

Assembler -> Directories -> Include path 

Table 2 - EWARM vs TrueSTUDIO build options 

 

 
 
The exception mentioned in the paragraph above is the CMSIS include path. In 
EWARM you can specify to use CMSIS with the Use CMSIS option. 



 
Getting Started 

  
 
 

69 | P a g e  
 

 

 

Figure 40 - EWARM CMSIS option 

If Use CMSIS is checked then you will need to add a path to the CMSIS library to use in 
your application. You can do this in the Directory part of the C Compiler settings. The path 
to add is the absolute path the CMSIS/Include located in your EWARM installation, 
typically something like this: 
C:\Program Files (x86)\IAR Systems\Embedded Workbench x.x\arm\CMSIS\Include 
 

In the Directory part of the C Compiler setting (see picture below), click the Add… icon ( ) 
to add your path. 

 

 

Figure 41 - TrueSTUDIO compiler include paths 



 
Getting Started 

  
 
 

70 | P a g e  
 

2. Modify or replace assembler source files. 
The IAR assembler code syntax differs from what is used by Atollic TrueSTUDIO 
so we will need to rewrite all assembler source code. 
 
A special case is the startup file that comes with most projects and usually are 
written in assembler code. Atollic TrueSTUDIO can generate this startup file for 
you so that you do not have to write this code yourself. A recommended way is 
to add an. iar extension to the startup file that was added to your imported 
EWARM project. After this you can add a Atollic TrueSTUDIO startup file based 
on the same ARM device to your imported project. If you created a dummy 
project as described in the tip above, then you can simply drag-and-drop the 
startup file from your dummy project to your imported project. 
 
Once we have our new startup file we can compare it against the original startup 
file. We can ignore the C/C++ initialization code since we will be using Atollic 
TrueSTUDIO standard libraries and we are using an Atollic TrueSTUDIO 
generated startup file now. What we should pay attention to is for example the 
content of vector table and exception/interrupt handlers. For example, interrupt 
handlers that was implemented and used in the original project must also be 
implemented in our new startup file. 

3. Add an Atollic TrueSTUDIO linker script file. 
No linker script file is included so we need to add one that matches what we had 
in our original EWARM project. A starting point is to have Atollic TrueSTUDIO 
generate a linker script file that is based on the same ARM device as the original 
project and add that linker script file to your imported project.  
 
If you have your dummy project as described above, then you can simply, in 
Atollic TrueSTUDIO Project Explorer, drag-and-drop that linker script file into the 
root of your imported project. 
 
We need to let the linker know which linker script file to use and this is done in 
the General Settings of the C++ Linker.  

 

Figure 42 - TrueSTUDIO linker script file option 



 
Getting Started 

  
 
 

71 | P a g e  
 

You can either Browse to the linker script file, or if it is located in the root of your 
imported project, type in the path.  
In our example, we use STM32F4 so that path would be then “../stm32f4_flash.ld”. 
 
With the linker script file in place we need to make sure that the memory 
configuration in the linker script matches the configuration in the IAR .icf-file. Usually 
most memory segments do not have to be located at a specific address, as long as it is 
in the correct memory region. There are however applications that require that some 
memory regions and entry labels are located at an absolute address. In this case you 
should make sure your new application locate these regions/labels at the same 
memory location. See the IAR to Atollic Migration Guide for more details on how this 
can be done in Atollic TrueSTUDIO. 

4. The last step before we try our build is to see if there are tool specific code in our 
project, other than the startup file mentioned above. 
 
Applications and libraries that comes from silicon vendors or 3’rd party 
companies can contain source code, or libraries, that are created just for a 
specific development toolchain. If this is the case in your project, then you 
should see if you can find that corresponding code for TrueSTUDIO or GCC and 
replace source code, libraries and include paths with the versions created for 
TrueSTUDIO or possible GCC. 
 
As an example, FreeRTOS have in their Source folder a sub-folder called 
portable. Here you have source code ported to various development tool 
vendors. An imported EWARM project using FreeRTOS would normally contain 
files in the Source/portable/IAR folder. We should replace that code with 
the code in Source/portable/GCC.  
Once we have replaced this code we must also update our build tools include 
paths so that any reference to Source/portable/IAR is changed to 
Source/portable/GCC. 
 
Intrinsic functions are also part of code that can differ from tool vendor to tool 
vendor. Luckily CMSIS defines a set of intrinsic functions used for Cortex-M and 
both EWARM and Atollic TrueSTUDIO follow CMSIS. In order to make sure that 
we include declarations of CMSIS we should include CMSIS cmsis_gcc.h 
instead of EWARM intrinsics.h in our source code. 
For information about none CMSIS intrinsic functions and other ARM language 
extensions used by, see ARM® C Language Extensions and CMSIS Core 
documentation. 
 

  

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf
http://www.keil.com/pack/doc/CMSIS/Core/html/index.html
http://www.keil.com/pack/doc/CMSIS/Core/html/index.html


 
Getting Started 

  
 
 

72 | P a g e  
 

You are now ready to build the newly imported project and correct any remaining error 
and check warnings. Depending on your project there might be more things that you 
manually would need to modify in order to get to a Atollic TrueSTUDIO project that 
matches the original EWARM project. For this reason, and for those who would not use 
the EWARM import wizard, there is an IAR to Atollic Migration Guide available from Atollic 
TrueSTUDIO Information Center with detailed information on how migrate a project from 
EWARM to Atollic TrueSTUDIO. 

 

COMMON BUILD ERRORS 
This section will list and suggest solutions for the most common errors you would see after 
building a project imported from EWARM to Atollic TrueSTUDIO. 

 

fatal error: intrinsics.h: No such file or directory 

EWARM intrinsics.h mostly contains declarations of various intrinsic functions. Most 
the once used in a Cortex-M project are available in the CMSIS core_cmFunc.h and 
cmsis_gcc.h header files. So, what we can do is to replace all occurrences of 
intrinsics.h with for example cmsis_gcc.h. 

 

undefined reference to ‘xyz' 

Here ‘xyz’ can be a variable or a function that used in your application but not defined. 
One way to find where this missing variable/function should be defined is to find the 
definition in the original EWARM project. 

There is a chance that the missing function could be defined as an intrinsic function that is 
not included in our core_cmFunc.h or cmsis_gcc.h header files.  

 

 

CONFIGURING THE DEBUGGER 
After the imported project builds without errors we can test and debug the application 
using any of the Atollic TrueSTUDIO supported debuggers. Before we download and debug 
our application we need to configure the debugger and we do this in the Debug 

Configuration dialog that we can access from the Run menu or the toolbar icon. (The 

 Unresolved issues? If still not successful after reading the IAR to Atollic 
Migration Guide, please contact your local distributor or Atollic support for 
assistance. 



 
Getting Started 

  
 
 

73 | P a g e  
 

same dialog will open if we attempt to start a debug session before we have created our 
debug configuration.) 

In the Main tab, we need to make sure that the Name of the ElfDwarf file is correct as well 
as the Application and the Project selected. 

 

Figure 43 - Edit Debug Configuration 

After this is done we select the Debugger tab. Here we first of all select which Debug 
probe we will be using. Once we have selected our debug probe we can modify our GDB 
Connection, select debug interface, add trace (if we have that available) and more. 

 

Figure 44 - Selecting Debug Probe 



 
Getting Started 

  
 
 

74 | P a g e  
 

 

 

If you like to get more control over the download and debug session, then you can do this 
in the Startup Scripts tab. Here you can add commands to for example load additional files 
or debug information, chose to download without starting a debug session, stop at the 
application entry point or run to main (or any global label in your application) and much 
more. For more information see The Startup Script chapter at page 227. 

Now we are ready to download and test our application and we can do this by clicking on 
OK or Debug (depending on how you started the Debug Configuration dialog). 

For more detailed information on migrating EWARM projects, see the IAR to Atollic 
TrueSTUDIO migration guide. 

If you are uncertain on how to configure your debugger after selecting the 
debug probe, then try the default vaules. 

After you select a debug probe, Atollic TrueSTUDIO will default to a debug 
configuration that works for most projects that use that particular debug 
probe. 

In case the default values does not work, check your debug settings in EWARM 
and apply the same values to your debug configuration in Atollic TrueSTUDIO. 



 
Getting Started 

  
 
 

75 | P a g e  
 

IMPORTING AC6 PROJECTS 
As of Atollic TrueSTUDIO v7.1, there is a new Project Import Converter supporting System 
Workbench for STM32 (AC6, SW4STM32) projects. Such projects can be found in 
STMicroelectronics software such as STM32Cube Firmware Package projects.  

The new Project Import Converter automatically updates System Workbench for STM32 
(AC6, SW4STM32) projects to Atollic TrueSTUDIO format during import. After an import 
the project shall build and it shall be possible to debug the project in Atollic TrueSTUDIO. 
In some cases it may be needed to do some manual target or build setting changes. 

The Project Import Converter makes it easy to import, build and debug ready-made 
projects located in the STMicrolectronics STM32Cube Firmware Package projects even if 
STMicrolelectronics only have prepared SW4STM32 projects in the examples package. 
Example from STM32CubeF7: 
G:ST\STM32Cube\en.stm32cubef7\STM32Cube_FW_F7_V1.5.0\Projects\STM32F

769I-

Discovery\Examples\DMA\DMA_FLASHToRAM\SW4STM32\STM32769I_DISCOVERY 

The Project Import Converter will update the imported project but it will make backup 
copies of the .project and .cproject files before these are changed. See the section 
Restoring Converted Projects at page 82 for information on how to restore the project if it 
shall be used with AC6 later.  

 

During import a log file is created in the project folder. The name of this log file is 
ProjectName_converter.log. This log file is placed into the same folder as the 
.project file and can be investigated to find information about the conversion. The 
ProjectName_converter.log. can for instance contain the following info. This is 
normal behavior. 

Project: STM32F4-Discovery 

Converter: AC6 project converter 

Date: 20170127 

 

 

USING THE PROJECT IMPORT CONVERTER 
The Project Import Converter can be started in two ways: 

It is always recommended to take manual backups of the project files and 
source code before converting projects. When using STM32Cube Firmware 
Package projects it could be possible to reinstall the complete package. 



 
Getting Started 

  
 
 

76 | P a g e  
 

1. Use Import Projects from Folder or Archive in Atollic TrueSTUDIO. 

2. Double-click the .project file in Windows File Explorer. 

These two different ways of using the Project Import Converter is described in next 
sections.  

 

 

IMPORT PROJECTS FROM FOLDER OR ARCHIVE 
Use the following method to import one or many projects.  

To open the Import wizard select File, Import… 

 

Figure 45 – Import Projects 

Please note! The imported project will not be copied to the workspace. All 
files in the project will be located at the original place and will be overwritten 
when changes are made.  



 
Getting Started 

  
 
 

77 | P a g e  
 

In the Import wizard select Projects from Folder or Archive and press Next. 

 

Figure 46 – Import Projects from Folder or Archive 

The Import Projects from File System or Archive dialog is opened.  



 
Getting Started 

  
 
 

78 | P a g e  
 

 

Figure 47 – Import Projects from File System 

To see the Installed project configurators in the product press the installed project 
configurators link in the Import Projects from File System or Archive dialog. 

 

Figure 48 – Display Installed Project Configurators 

In the Import Projects from File System or Archive dialog browse to the folder containing 
the project to be imported.  



 
Getting Started 

  
 
 

79 | P a g e  
 

 

 

Select the project and make sure the checkbox Detect and configure project natures is 
enabled otherwise the Project Import Converter will not be used. Press Finish to import 
the project. 

The following dialog can be displayed if the Project Import Converter prepares to convert 
the project. 

 

Figure 49 – Project Converter Conversion Information 

Press OK to import the project with conversion.  

 

Figure 50 – Project Imported Information 

The project is now imported into the workspace. Please note that files included in the 
project are not copied to the workspace, instead all files are linked to the workspace. This 
means that the actual files will be updated in the STM32Cube package in this case. Press 
OK to use the imported project.  

In the Import as column in the Import Projects from File System or Archive 
dialog it displays TrueSTUDIO project or TrueSTUDIO project (Converted 
from AC6) which informs how the project will be imported. 

Do not try to import lines where no information is available in the Import as 
column. 

The Import as column may also display Folder already imported as project 
and in such cases it will not be possible to import it again into current 
workspace. 

Some examples may use identical project names for projects aimed at 
different boards. Eclipse cannot handle two ormore projects with the same 
name in a workspace. Therefor, it may only be possible to import one project 
for a board into the workspace. If an attempt to import a second project with 
the same name is made, the import will be cancelled silently without any 
specific message. To import a second project, remove the first project from 
the workspace or create a new workspace.  



 
Getting Started 

  
 
 

80 | P a g e  
 

If a folder which contains several projects are selected and Search for nested projects are 
selected several projects will be seen in the dialog.  

 

Figure 51 – Import Several Projects from File System 

Many projects can then be imported in one step using this method. However, as 
mentioned earlier the STM32Cube examples uses the same project name for each board 
and as Eclipse requires different names to be used only one of the selected project in such 
case will be imported.  

IMPORT PROJECTS USING DOUBLE-CLICK 
When using double-click on the .project file in Windows File Explorer to import an 
STM32CubeMX (AC6, SW4STM32) project follow this guide.  

After double-click on .project file, Atollic TrueSTUDIO will be opened if it is not already 
started, and the following dialog is displayed.  

 

Figure 52 – Project Converter Information 



 
Getting Started 

  
 
 

81 | P a g e  
 

Press OK to convert the project and import it into the workspace and a new dialog is 
opened after a successful conversion. 

 

Figure 53 – Project Imported Information 

The project is now imported into the workspace. Press OK to use the imported project. 
Please note that files included in the project are not copied to the workspace, instead all 
files are linked to the workspace. This means that the actual files will be updated in the 
STM32Cube package in this case.  

 

 

USING IMPORTED PROJECTS 
When a STM32CubeMX (AC6, SW4STM32) project has been imported and is converted to 
Atollic TrueSTUDIO project there could be some updates needed. But in most cases it 
should work to build and debug the project directly. 

The first step to use the project in Atollic TrueSTUDIO could be to make a build and verify 
that it builds without errors. After the project has been built a debug session can be 
started.  

First time a debug session is started the Debug Configurations dialog will be opened. Make 
sure to configure to use correct Debug probe, e.g. ST-LINK or SEGGER J-LINK, and Interface 
SWD or JTAG according to hardware requirements. If SWV shall be used then make sure to 
set the Core Clock to the speed of the clock that will used by the target when debugging 
the project.  

  

Some examples may use identical project names for projects aimed at 
different boards. Eclipse cannot handle two ormore projects with the same 
name in a workspace. Therefor, it may only be possible to import one project 
for a board into the workspace. If an attempt to import a second project with 
the same name is made, the import will be cancelled silently without any 
specific message. To import a second project, remove the first project from 
the workspace or create a new workspace. 



 
Getting Started 

  
 
 

82 | P a g e  
 

 

Figure 54 – Edit Debugger Configuration 

When correct setting for debugging is set make sure the debugger probe and board is 
connected and start a debug session by pressing the OK button. 

RESTORING CONVERTED PROJECTS 
As mentioned earlier the Project Import Converter made copy of the .project and 
.cproject files when the project was coverted. The original .project file was copied 
to .project_org file. The original .cproject file was copied to .cproject_org 
file. 

One way to restore the project and use it with AC6 again is to replace these project files 
with the original files. Open a command prompt and rename the files. (Note! The filename 
can not be renamed using Windows File Explorer as this program does not allow to 
rename a file to start with “.”   .) 

E.g. In a Command Prompt window use the move command to rename the files 
1. Rename the converted projet files if you these files shall be kept. 
move .project .project_ts  
move.cproject .cproject_ts 
2. Replace and use the original files 
move .project_org .project  
move.cproject_org .cproject 



 
Getting Started 

  
 
 

83 | P a g e  
 

The project should now be ready to be opened with System Workbench for STM32 (AC6, 
SW4STM32) again. 



 
Getting Started 

  
 
 

84 | P a g e  
 

CONFIGURING THE PROJECT’S BUILD 

SETTINGS 

 

Managed Mode projects can be configured using dialog boxes. Unmanaged Mode projects 
require a manually maintained makefile.  

Atollic TrueSTUDIO provides extensive GUI controls for configuration of command line tool 
options using a simple point-and-click mechanism. 

To configure a Managed Mode project, perform the following steps: 

1. Select a project in Project Explorer view. 

2. Click on the Build settings toolbar button or select Project, Build 
Settings…. 

 

Figure 55 – Build Settings Toolbar Button 

 

Figure 56 – Build Settings Menu Selection 

3. The project Properties dialog box is displayed. 

4. Expand the C/C++ Build item in the tree in the left column. Then select the 
Settings item to display the build Settings panel for the active Build 
Configuration. 

 

How a project is built is saved in a Build Configuration. Each configuration has 
many Build settings.  

 



 
Getting Started 

  
 
 

85 | P a g e  
 

    

Figure 57 - Project Properties Dialog Box 

5. Select panels as desired and configure the command line tool options using 
the GUI controls.  

 

Advanced users may wish to enter command line options manually. This can be 
done in the Miscellaneous panel for any tool. 

 



 
Getting Started 

  
 
 

86 | P a g e  
 

     

Figure 58 – Tool Settings, Miscellaneous Options 

6. Some project build settings are relevant for both Managed Mode projects 
and Unmanaged Mode projects. For instance the selected microcontroller 
or evaluation board may affect both the options to the compiler during a 
Managed Mode build, and also how additional components in Atollic 
TrueSTUDIO, for instance the SFR view, and debugger, will behave. 

Project build settings relevant for both Managed Mode projects and 
Unmanaged Mode projects are collected in the Target Settings panel.  

 

 



 
Getting Started 

  
 
 

87 | P a g e  
 

   

Figure 59 – Target Settings Dialog Box 

 

 

Any changes made here will be reflected in ALL build configurations for this 
project.  

Changing to a different hardware target, will cause a new linker script file 

(.ld) to be generated, with FLASH and RAM settings adjusted to the 
memory size of the new target device. See Generate a New Linker Script, 
page 131 for more information. 

However, libraries, header files, etc. will not be generated automatically for 
the new target! These must be added manually to the project.  

 

If the target device needs to be changed, Atollic recommends generating a 
new project for that target. Copy the source code from the current project to 
the new project. 



 
Getting Started 

  
 
 

88 | P a g e  
 

7. Click the OK button to accept the new settings. This will change the 
settings for the selected Build Configuration. 

 

 

 

BUILD CONFIGURATIONS 
A Build Configuration stores how a project is built. Each Build configuration has several 
Build Settings. Each Build Setting can be individually set for each Build Configuration. 

A Project can have an unlimited number of Build Configurations. This is a very powerful 
tool to be able to quickly build a project in different ways, such as with different 
optimization levels, tool chain versions and even different build behavior can be set. It is 
even possible to have a project be built as both a library and an executable with two 
different Build Configurations. 

A project created in Atollic TrueSTUDIO contains by default two Build configurations, the 
Debug and the Release configuration. In these configurations there are two build settings 
that differentiate them. The Debug configuration is built with debugging information and 
no optimization level. The Release configuration is optimized for small code size and with 
no debugging information. 

Settings done in the project will usually only affect the current configuration. However 
what Build Configuration that is affected can be selected in the dropdown list located at 
the top of the panel.  

  

Figure 60 – Select Affected Build Configuration 

The Build Analyzer view can be used to analyse the size and location of  a 
program in detail. Please read more about the Build Analyzer at page 264 



 
Getting Started 

  
 
 

89 | P a g e  
 

This does not change what Build Configuration is used when building. To change that the 
Active Configuration needs to be changed, see Changing Active Build Configuration on 
page 90. 

When building is done, the build-result such as an .elf-file, is stored in a folder with the 
same name as the Build Configuration. This makes it easy to locate. For this reason it is 
also a good idea to not use white space in the name of a Build Configuration. 

 

CREATE A NEW BUILD CONFIGURATION FOR RELEASE 

When most of the development is done and it is time to switching to the Release 
configuration, there might be a lot of settings done under the development process that is 
missing in the Release configuration.  
To make sure that the Release configuration contains all necessary settings, it may be 
easiest to create a new Release configuration, copy the settings from the Debug 
configuration, and then just change the debug information level and optimization level. 

1. Select the project in the Project Explorer and right click Project, Manage Build 
Configurations… 

2. Optional - Delete the old Release configuration or the configuration that does not have 
all the used settings 

3. Click New… 

4. Name the new configuration. E.g. NewRelease. It is recommended not to use any 
whitespaces in the name of the Build Configuration. 

5. Select to copy settings from the existing Debug configuration. 

6. Click OK. 

7. Select the new NewRelease configuration and click Set Active. This determines what 
Build Configuration is to be used when building the project. 

8. Close the dialog by clicking the OK button. 

Next, open up Project, Properties, and navigate to C/C++ Build, Settings, Tool Settings. In 
the Debugging node, for the Assembler and C/C++ Compiler, set the debug level to none. 
Then select an optimization level in the Optimization node for the C/C++ Compiler. 

The build output folder will be named as the active build configuration. So when the 
project is built, the .elf file will be located in the NewRelease folder for the new Release 
configuration. 

Building all Build Configurations 

It is easy to build all Build Configurations at the same time. 



 
Getting Started 

  
 
 

90 | P a g e  
 

For another example see Create a New Build Configuration For an Old Toolchain Version on 
page 101.  

CHANGING ACTIVE BUILD CONFIGURATION 

To change what Build Configuration is used to build, right click the project and select Build 
Configuration, Set Active and select the preferred Build Configuration 

 

Figure 61 – Change active Build Configuration 

 

SOURCE FOLDERS 
A folder within a project can be recognized as a source folder if it is annotated with a small 
C-icon in the Project Explorer. 



 
Getting Started 

  
 
 

91 | P a g e  
 

For Atollic TrueSTUDIO to be able to recognize changes in a source file, it needs to be 
located in a source folder. Either as a resource located within the project or linked from 
some other location. 

 

Figure 62 – Source Folders 

To make Atollic TrueSTUDIO handle an existing folder as a new source folder do the 
following steps: 

1. Select the project and in the top menu select Project, Properties.  

2. In the Properties panel open C/C++ General, Paths and Symbols and then the Source 
Location tab. 

  

Figure 63 – Source Location Tab 



 
Getting Started 

  
 
 

92 | P a g e  
 

3. Click Add Folders… and select the new source location.  

 

Figure 64 – Folder Selection Tab 

There should then be a new Source folder in the project. 

 

 

Figure 65 – New Source Folder 



 
Getting Started 

  
 
 

93 | P a g e  
 

 

INCLUDE LIBRARIES 
This guide is for including libraries into Atollic TrueSTUDIO projects. For information how 
to refer to a library created in an existing project, see Referring Project on page 119. On 
page 155 there is a guide for how to Update CMSIS Math library.  

 

In order to include a library into a project right-click on the project where the library will 
be included; select Properties, C/C++ Build and Settings. Then select the Tool Settings-tab, 
select C Linker, Libraries. 

 

Figure 66 – Include a Library 



 
Getting Started 

  
 
 

94 | P a g e  
 

3. In the Libraries list add the name of the library - not the path! The name is the 
filename without “lib” prefix and without the file extension (.a). It is important 
not to include those parts of the name. This is a GCC convention. 

Example: For a library-file named libMyLibrary.a add the name MyLibrary. 

If by any chance the library’s name don’t confirm to the GCC convention, the full 
name to the library can be entered, preceded by a colon “:”. 

Example: For a library-file name STemWin524b_CM4_GCC.a add the name 
:STemWin524b_CM4_GCC.a 

4. In the Library Paths list, set the path to where the library is located. Do not 
include the name of the library in the path. 

Example: ../../MyLibrary/Debug, this is the path to the archive file of the 
library project myLibrary residing in the same workspace as the application 
project. 

5. The source folder for the header files should also be added to the Include paths. 
Do that by selecting Project, Properties, Tool Settings, C Compiler, Directories 
and press the Add… button. Then add the path to the source folder for the 
header files in the library.  

 

Figure 67 – Add the Library to the Include Paths 

 



 
Getting Started 

  
 
 

95 | P a g e  
 

 

The included libraries can also be found by right-clicking the project and select C/C++ 
General and open the Libraries-tab and the Libraries Path-tab. 

See Referring Project on page 119 for more information if a project is referring to another 
project, a library or a normal project. 

 

COMPILER SETTINGS 
All the settings for the compiler can be found by open the Build Configuration with the 
Build Settings Toolbar button. 

Then select the Build Configuration that should be changed and the Tool Setting tab. 
Select the C Compiler tool node. 

The compilers command line command and options are then displayed.  

  

Figure 68 – Compiler Settings 

Libraries added by include paths are considered static in that way that they 
are provided by external parties. The .h files are not rescanned as the content 
should not have changed for external header files. 

If external libraries is to be treated as normal source folder, the folders must 
also be added as source-folders to the project. 

This is particularly important when using tools that generates external code, 
such as STM32CubeMX 



 
Getting Started 

  
 
 

96 | P a g e  
 

The different nodes below the C Compiler can then be selected to configure how the 
compiling is done. More about these options are found in the following pages in this 
chapter. 

The options can also be manually changed by editing the All options field.  
More about all options are found in the Compiler manual found in the Information Center 
as the C/C++ Compiler link.  

 

 

More information about compiler settings can be found in the Compiler manual. The 
manual can be found from the Information Center view.  

 

 

 

 

Figure 69 – Finding the C/C++ Manual in Information Center 

 

SET THE COMPILER TO USE THE C99-STANDARD 

User can set the compiler to use the C99 standard by adding the '-std=c99' switch to the c 
compiler tool. 

Do this by selecting the General node. 

From the dropdown menu select C99. 

See also section Add or Remove Folder to Include Path  on page 153  for 
information on an easy way to update the include path.  



 
Getting Started 

  
 
 

97 | P a g e  
 

This change will also be reflected in the editor’s behavior. 

Read more about the status of the C99 implementation here http://gcc.gnu.org/gcc-
4.5/c99status.html. 

Other C standards can also be set with the same drop down menu. 

 

COMPILER OPTIMIZATION 

The GNU C/C++ compiler (and hence Atollic TrueSTUDIO) have 6 levels of compiler 
optimization; -O0 for no optimization up to -O3 for full optimization. There is one level for 
size optimization (-Os) which is commonly required in embedded projects and another 
level for speed optimization (-Ofast).  

Also available is a level for turning on optimizations that won’t interfere with the debug 
experience (-Og). 

To enable compiler optimization in the commercial versions of Atollic TrueSTUDIO, select 
optimization option from the dropdown list in the C/C++ Build, Settings, Tool Settings, C 
compiler, Optimization panel in the Project Properties dialog box. The optimization 
options can also be set per file in the File Properties dialog box, found by right-clicking an 
individual file. 

  

Figure 70 – Compiler Optimization Settings for a Project 

http://gcc.gnu.org/gcc-4.5/c99status.html
http://gcc.gnu.org/gcc-4.5/c99status.html


 
Getting Started 

  
 
 

98 | P a g e  
 

  

Figure 71 – Compiler Optimization Settings for a File 

The optimization setting is per Build Configuration. Per default the Debug configuration is 
optimized with –O0 and the Release configuration has -Os. 

In addition to the simplified optimization settings mentioned above, about 100 
optimization settings can be set individually using various command line options and 
#pragmas. Consult the Compiler manual for details. It can be found from the Information 
Center view.  

To define a specific optimization level on a block of code, use the optimize attribute on the 
block: 

void __attribute__((optimize("O1"))) myFunc(unsigned char 

data) { 

    // The code the needs to have the –O1 optimizing 

} 

 

 

LINK TIME OPTIMIZATION (LTO) 
Using LTO means that when compiling individual files the output is not object code, but 
instead an intermediate internal format between the original source code and assembly 
code. This means that when the linker is doing the final link it has access to more 
optimizable information about each file and a globally optimized program is generated. 

However, because of the way this works also means that in order to use this feature fully it 
is necessary to provide the linker tool with some extra information that usually has only 
been supplied to the compiler tool. This extra information can be any optional extra flag 
that you might have added to the compiler process.  



 
Getting Started 

  
 
 

99 | P a g e  
 

In most cases however it will only be required to add the following flags to the Linker tool 
Miscellaneous field 

-flto -ffunction-sections -fdata-sections -Os -g 

 

Figure 72 – Linker LTO Settings for a Project 

The optimization flag (-Os) should have the same value as the optimization flag for the 
compiler, see page 93 for more information.  

Please note!  -g shall be used to get extra debug information needed when debugging the 
program. 

It is also required to change the Compiler tool settings and there add the –flto flag to the 
miscellaneous field. 



 
Getting Started 

  
 
 

100 | P a g e  
 

 

Figure 73 – Linker LTO Settings for a Project 

 

CHANGING TOOLCHAIN VERSION 
When upgrading to a new version of Atollic TrueSTUDIO it is a good idea to not 
immediately also switch the tool chain.  

To change to an older version of the Atollic ARM Tools toolchain or the PC toolchain click 
on the Build Settings toolbar button. 

 

Figure 74 – Build Settings Toolbar Button 

Select the Toolchain Version tab. 

 



 
Getting Started 

  
 
 

101 | P a g e  
 

 

Figure 75 – Tool Chain Version tab 

There are three options available here: 

 Default – This option will use the tool chain in the currently running installation of 
TrueSTUDIO. 

 Fixed TrueSTUDIO version – if there are other versions of Atollic TrueSTUDIO 
installed on the computer, this option allows the user to select from what version 
the tool chain will be selected. It will then select that version even if the 
installation folder for the selected version is changed.  

 Fixed toolchain location – Used to point to a specific folder. 

 

These setting are saved individually for each Project’s Build Configuration. That way it is 
possible to have different Build Configurations using different toolchain versions. This way 
a quick regression test can be created.  

 

CREATE A NEW BUILD CONFIGURATION FOR AN OLD 

TOOLCHAIN VERSION 

To create a new Build Configuration for an older version of the toolchain, do the following: 

1. Right click the project and select Build Configurations, Manage… 

When working with a version control system in a team, the second option is 
strongly recommended for a project. That way all developers will use the same 
toolchain even if using different versions of Atollic TrueSTUDIO. 



 
Getting Started 

  
 
 

102 | P a g e  
 

 

Figure 76 – Manage the Build Configurations 

2. In the panel select New… to create a new Build Configuration. 

3. Enter a good name for the new Build Configuration. Use one word, such as 
OldToolChain, without white space and press OK and OK again in the Manage 
Configuration panel. 

 



 
Getting Started 

  
 
 

103 | P a g e  
 

Figure 77 – Create New Configuration 

4. In the Toolchain Version tab it is now possible to set the Default version of the tool 
chain for the normal Debug Build Configuration and a Fixed TrueSTUDIO version for 
the OldToolChain Build Configuration.  

 

Figure 78 – Old Tool Chain Version for the New Build Configuration 

 

CONVERT .ELF-FILE TO ANOTHER OUTPUT FORMAT  
To convert your program to another output format, do the following: 

1. Open up Project, Properties, C/C++ Build, Settings, Tool Settings, Other, Output 
format 

2. Check the box Convert build output and choose a format in the dropdown menu. 



 
Getting Started 

  
 
 

104 | P a g e  
 

 

Figure 79 – Output Format Selection 

3. Build the project 

The converted output will be located in the output directory associated with the currently 
active Build Configuration, typically Debug/Release directory. 

Other supported file formats are:  Binary, Motorola S-record, Motorola S-record with 
symbols, IAR Simple Code and Verilog Hex Dump. 

To manually create .hex, .srec and .bin-files, add Post-build steps in the Build Step tab: 

arm-atollic-eabi-objcopy -O binary myfile.elf myfile.bin  

arm-atollic-eabi-objcopy -O ihex myfile.elf myfile.hex 

arm-atollic-eabi-objcopy -O srec myfile.elf myfile.srec 

 

 

 

 

 

Conversion to the IAR Simple Code File Format can only be made using the 
dropdown menu in Atollic TrueSTUDIO. The IAR Simple Code File Format can 
not be generated with objcopy. 



 
Getting Started 

  
 
 

105 | P a g e  
 

TEMPORARY ASSEMBLY FILE 
Save the temporary assembly file by adding the -save-temps flag to the compiler. 

In the menu select Project, Properties, C/C++ build, Settings. 

Open the Tool Settings tab. 

Then C Compiler, Miscellaneous. Add –save-temps and rebuild the project. 

The assembler file will be located in the build output directory and will be called: 

FILENAME.s 

There will also be a FILENAME.i that is the preprocessed c-code. That is the code as it will 
look after the preprocessor but before the code is compiled. If there might be a problem 
with some #define then looking into this file is a good idea. 

 



 
Getting Started 

  
 
 

106 | P a g e  
 

BUILDING THE PROJECT 
To start a Build, click on the Build toolbar button. Only files that are changed since the last 
build, or that depends on changed files or settings, will be built. 

 

Figure 80 - Build Toolbar Button 

 

The Build result is displayed in the Console window. At the end are the code size figures. 
For example: 

Print size information 

text data bss dec hex   filename 

66232 2808 4004 73044 11d54 GSM lib cb1.elf 

Print size information done 

 

The values are organized according to memory sections and areas. Per default, the linker 
arranges the memory into the sections text, data, bss. More information is found 

in the linker script file (.ld). 

The dec and hex figures express the size of the .elf file. Below the filename header 

is the name of the .elf file. 

 

 

 

  

The Build Analyzer view can be used to analyse the size and location of  a 
program in detail. Please read more about the Build Analyzer at page 264  



 
Getting Started 

  
 
 

107 | P a g e  
 

 

ENABLE PARALLEL BUILD 
Parallel Build is when more than one thread is used at the same time to compile and build 

the code. Most of the times it will reduce the build time significantly. The optimal 

number of threads to use is usually equal to the number of CPU cores on the computer. 

To enable Parallel Build select Project, Properties and in the Properties panel select C/C++ 
Build. Open the Behavior tab and Enable Parallel Build.  

 

Figure 81 – Parallel Build 

 

ENABLE BUILD ON SAVE 
To enable Atollic TrueSTUDIO to automatically build a file when it is saved, the Build 
Behavior setting needs to be changed.  

In the top menu select Project, Properties and in the Properties panel select C/C++ Build. 
Open the Behavior tab and enable Build on resource save.  

 



 
Getting Started 

  
 
 

108 | P a g e  
 

 

Figure 82 – Build on Save 

 

REBUILD PROJECT 
To force a Rebuild of all files included in the project, click on the Rebuild toolbar button or 
select the menu command Project, Rebuild Project. 

 

Figure 83 – Rebuild Toolbar Button 



 
Getting Started 

  
 
 

109 | P a g e  
 

 

Figure 84 – Rebuild Active Configuration Menu Selection 

 

BUILD ALL PROJECTS 
To build all open projects in a workspace, select Project in the top menu and then Build All or 

press Ctrl+B. This will build the active Build Configuration for each project. 

 

Figure 85 – Build All Projects 

 

BUILD ALL BUILD CONFIGURATIONS 
To build all Build Configurations for a project, right-click the project and in the context menu select 

Build Configurations and Build All.  



 
Getting Started 

  
 
 

110 | P a g e  
 

 

Figure 86 – Build All Build Configurations 

 

HEADLESS BUILD 
This is intended for Managed Mode projects that are to be integrated into script-
controlled builds, such as nightly builds on build servers for continuous integration process 
methods, etc. It is possible to start a build process from the operating system command 
line also for Managed Mode projects. The IDE GUI is never displayed in this case, and the 
user does not have to interact manually with the IDE at all.  

The IDE installation folder, e.g. C:\Program Files (x86)\Atollic\TrueSTUDIO for 

STM32 9.0.0\ide, contains the file headless.bat, which is used for running 
headless builds. 



 
Getting Started 

  
 
 

111 | P a g e  
 

Option Description 

-data {[uri:/]/path/to/workspace} This option is always required and selects which workspace to 
use for the headless build. If the selected workspace folder 
does not exist, it will be created automatically. 

-import {[uri:/]/path/to/project} Optionally import a project into the workspace before the 
headless build starts. Please note that importing into a 
workspace is not the same as copying the files to the 
workspace. It tells Atollic TrueSTUDIO that there exists new 
files in a workspace. 

-importAll {[uri:/]/path/to/projectTreeURI} Optionally import several projects into the workspace before 
the headless build starts. 

-build {projname_reg_exp} Build all build configurations (see page 88 for more 
information) of the selected project. If the project name 
contains wildcards (? and *), all matching projects will be 
built. 

-build {projname_reg_exp/configname} Build the selected project using only the selected build 
configuration. If the project name contains wildcards (? and 
*), all matching projects will be built. 
This option can be used several times. That way libraries can 
be built before the project depending on them. 

-build all Build all configurations of all projects in the selected 
workspace. 

-cleanBuild {projname_reg_exp} Rebuild all build configurations of the selected project. If the 
project name contains wildcards (? and *), all matching 
projects will be rebuilt. 

-cleanBuild 
{projname_reg_exp/configname} 

Rebuild the selected build configuration of the selected 
project. If the project name contains wildcards (? and *), all 
matching projects will be rebuilt. 

-cleanBuild all Rebuild all build configurations of all projects in the selected 
workspace. 

-I {include_path}  Additional include path to add to tools. 

-include {include_file}  Additional include file to pass to tools. 

-D {prepoc_define}        Additional preprocessor defines to pass to the tools. 

-E {var=value} Replace/add value to environment variable when running all 
tools. 

-Ea {var=value} Append value to environment variable when running all tools. 

-Ep {var=value}  Append value to environment variable when running all tools. 



 
Getting Started 

  
 
 

112 | P a g e  
 

Option Description 

-Er {var} Remove/unset the given environment variable. 

  

 

An option argument is parsed as a string, a comma separated list of strings, or a boolean, 
depending on the type of option. 

Example: 

headless.bat -data "C:\Users\User\headless\buildWS" -

importAll "C:\Users\User\headless\checkOutDir" -cleanBuild 

all > "C:\Users\User\headless\build.log" 

This command will create a temporary workspace folder buildWS for this build. It will 

import all projects from the folder checkOutDir (not copy, just import to the temporary 
workspace) and build all build configurations defined in each project. The result will be 

stored in the folder checkOutDir. A log file will be created in the folder headless. 

Doing an import is vital if ether a temporary workspace is used or a batch-script is used 
and the project to build is checked out from a repository before the build. This is because 
Atollic TrueSTUDIO needs to know about the files before using them to build. 

 

LOGGING 
To enable project build logging, right-click on the project and select Properties. Then 
select C/C++ Build, Loggings. 

  
The logs can then by default be found in 

WORKSPACE_PATH\.metadata\.plugins\org.eclipse.cdt.ui\MyProjec

t.build.log 

A global build log for all projects in a workspace can be enabled by selecting Window, 
Preferences and in the dialog open C/C++, Build, Logging and Enable global build logging. 

 

THE BUILD SIZE 
After building a project, object files and an application binary file (typically in ELF format) 
exist under the Debug or Release folder in the Project Explorer view file tree. 



 
Getting Started 

  
 
 

113 | P a g e  
 

To study the properties (such as code or data size) of an object file, open the Properties 
view.  

To open the Properties view, press the Show View toolbar button and select the 
Properties view. 

 

Figure 87 – Open the Properties view 

Then select the object file in the Project Explorer view. The Property view will display a 
large number of properties, including code and data sizes of the object module. 

To study the properties (such as code or data size) of a linked application binary file, open 
the Properties view and select the ELF file in the Project Explorer view.  



 
Getting Started 

  
 
 

114 | P a g e  
 

 

Figure 88 – Open the Properties view 

The Property view will display a large number of properties, including code and data sizes 
of the complete application. 

Data is normally stored in the “data" segment and code is normally stored in the "text" 
segment. 

 

 

 

 

  

The Build Analyzer view can be used to analyse the size and location of  a 
program in detail. Please read more about the Build Analyzer at page 264  



 
Getting Started 

  
 
 

115 | P a g e  
 

COMMAND LINE PATTERNS 
The Command Line Pattern is used to assemble parts the builds up the command line that is 

used to build the project.  

To find it, press the Build Settings toolbar button. 

 

Figure 89 – Build Settings Toolbar Button 

In the C/C++ Build, Settings select the Tool Settings tab. Each one of the different tools in 
the toolchain (Assembler, Compiler, Linker and Other) has its own patter that can be 
modified.  

The pattern consists of the replaceable variables COMMAND, FLAGS, OUTPUT_FLAG, 

OUTPUT_PREFIX, OUTPUT and INPUTS.   

The default command line pattern is ${COMMAND} ${FLAGS} ${OUTPUT_FLAG} 

${OUTPUT_PREFIX} ${OUTPUT} ${INPUTS} 

White space and other characters are significant and are copied to the created command. 

The environment variables can also be used. They are defined in Project, Properties, 

C/C++ Build, and then Environment.  

 

CREATE .LIST-FILES 

To get list files with assembler information when the files in the projects are compiled the 
build conigurations for the C/C++ compiler needs to be updated.   

In the C/C++ Build, Settings select the Tool Settings tab and then C Compiler. In the Expert 
settings for Command Line Pattern add -Wa,-aln=${OUTPUT}.list as shown below. 

 



 
Getting Started 

  
 
 

116 | P a g e  
 

 

Figure 90 – Generate –list Files 

 

BUILDING ONE FILE 
It is a bit complicated to enable the build option to build only one file in a project. It cannot 
be done while the default setting Build Automatically is enabled. This will also disable the 
Build on resource save behavior.  

In the top menu select Window, Customize Perspective and in the dialog window open 
the Menu Visibility tab. 
Expand the Project node and enable the Build Automatically option. 

 



 
Getting Started 

  
 
 

117 | P a g e  
 

 

Figure 91 – Enable the Build Automatically Menu Item 

Press OK, then go to the Project menu and make sure Build automatically is unchecked for 
the project. 
 

The popup menu option Build Selected File(s) is now enabled. 



 
Getting Started 

  
 
 

118 | P a g e  
 

 

Figure 92 – Build Selected File(s) 

 

 



 
Getting Started 

  
 
 

119 | P a g e  
 

LINKING THE PROJECT 
For detailed information about the linker, please read The GNU Linker manual. It can be 
found by selecting the Information Center toolbar button and open the Information 
Center view. Locate Document center, Debugger utilities in the Information Center and 
press the Linker link. 

 

Figure 93 – GNU Linker manual link 

This chapter will explain some of the more common problems encountered during linking. 

 

REFERRING PROJECT 
Whenever one project is using code from another project, these should be referring to 
each other.  

If a project needs to refer to a specific build of another project, select instead Project, 
Properties and then C/C++ General, Paths and Symbols and open the References tab and 
select the Build Configuration that the current project is referring to.  

 



 
Getting Started 

  
 
 

120 | P a g e  
 

 

Figure 94 – Set Project References 

With this way of referring between different Build Configurations. Note that the 
references also can have priority among each other.  

There are many advantages to having project references correctly set: 

 The involved projects will not be rebuilt more than necessary.  

 The Indexer will also be able to find functions from the library and open them. To 
do that press the Ctrl key and in the editor, click the library-function where it is 
used. The source file in the library will then be opened in an editor. For more 
information about the Indexer, see page 148. 

 It is possible to create the Call hierarchy for the functions in the library. To find 
the Call Hierarchy, mark the function name and press Ctrl+Alt+H. The Call 
Hierarchy will then be displayed in the Call Hierarchy view. 

If a library project is added as a reference, all the correct setting in Paths and Symbols 
property page for the library will be entered. The tool settings that depends on this 
Property page will also be adjusted. 

This is the recommended method of adding libraries that is developed locally. For more 
information about adding libraries see page 93. 

 

There is another way to have projects referring to each other. In the top menu select 
Project, Properties and select Project References. Then select and mark the referred 
project. 
However it is not possible to refer to different Build Configurations from this preference 
and it will not automatically set up libraries. 

 



 
Getting Started 

  
 
 

121 | P a g e  
 

 

Figure 95 – Set Project References 

 

DEAD CODE REMOVAL 
Linker optimization is the process where the linker removes unused code and data 
sections from the output binary. Runtime- and middleware libraries typically include many 
functions that are not used by all applications, thus wasting valuable memory unless 
removed from the output binary. 

To enable linker optimization, select the Remove unused code and/or the Remove unused 
data checkboxes in the Project wizard as appropriate (at project creation time). 

Dead code removal can be selected at any time by opening the Build Configuration in the 
properties for the project. Right-click the project and select Properties and in the dialog 
select C/C++ Build, Settings. In the panel select the Tool Settings-tab, C Linker, General. 
Enable Dead code removal and rebuild the project.  



 
Getting Started 

  
 
 

122 | P a g e  
 

 

Figure 96 – Enable Dead Code Removal 

ADDING CODE TO BE EXECUTED BEFORE MAIN() 
The check-box Do not use standard start files gives two options to execute user-defined 
code before entering main, instead of modifying the Reset-handler. Both are triggered by 
the libc_init_array call in the startup code. 



 
Getting Started 

  
 
 

123 | P a g e  
 

 

Figure 97 – Do Not Use Standard Start Files 

Option1: Constructors for objects or constructor functions are placed in a list called 
.init_array. These functions are then executed one by one by the libc_init_array. 

Option2: Add code to an .init section. libc_init_array will run the _init function 
which will execute all instructions added to the .init section. The crti and crtn contains 

the start and end of the _init function. 

 

PAGE SIZE ALLOCATION FOR MALLOC 
The page size setting for malloc can be changed from 128 bytes to 4096 bytes. The 
setting for a new project uses 128 as the default value (malloc-getpagesize_P=0x80 is used 
when building the project). This means that the heap increases in chunks of 128 bytes. 
When the page size is set to 4096 the heap will increase in chunks of 4096 bytes. Update 
the setting if a page size of 4096 is preferred.  



 
Getting Started 

  
 
 

124 | P a g e  
 

 

Figure 98 – Linker Page Size Allocation for malloc() 

 

INCLUDE ADDITIONAL OBJECT FILES 
In Atollic TrueSTUDIO it is easy to include additional object files. It can be files from other 
projects, precompiled libraries where no source code is available or object files created 
with other compilers. 

To do that, open the Build Settings panel by pressing the Build Settings button.  

Then navigate to the Tool Settings tab and select the C Linker, Miscellaneous node.  

Additional object files can either be entered with the Add file path dialog or simply cut and 
pasted into the panel. 



 
Getting Started 

  
 
 

125 | P a g e  
 

 

Figure 99 – Add Additional Object Files 

If a project has many object files, either created during compilation or added as additional 
object files, this method is no longer possible. Instead an external list of object files needs 
to be referred to during linking.  

In the Other Options field add -Wl,@FILENAME where FILENAME is a file containing a list 
of object files to be included during linking. 



 
Getting Started 

  
 
 

126 | P a g e  
 

 

Figure 100 – Add File With a List of Object Files 

 

TREAT LINKER WARNINGS AS ERRORS 
The GNU Linker is normally silent for warnings. However, the linker can treat warnings as 
errors by adding the option --fatal-warnings.  

One example on how the silent warnings appears is if the startup code containing the 
normal Reset_Handler function is missing in the project. Then the GNU Linker will in 
normal silent mode create an elf file and only report a warning output in the Console 
window about the missing Reset_Handler. Example of warning message: 

c:/program files (x86)/atollic/truestudio for arm 

7.1.0/armtools/bin/../lib/gcc/arm-atollic-

eabi/5.3.1/../../../../arm-atollic-eabi/bin/ld.exe: warning: cannot 

find entry symbol Reset_Handler; defaulting to 08000000 

When the --fatal-warnings option is used the linker will not generate the .elf file but 
display an error in the console log. Example of error message: 

arm-atollic-eabi-gcc: error: Wl,--fatal-warnings,-cref,-

u,Reset_Handler: No such file or directory 

 

The easiest way to add the --fatal-warnings option is to: 



 
Getting Started 

  
 
 

127 | P a g e  
 

1. Open the Build Settings panel by pressing the Build Settings button.  

2. Navigate to the Tool Settings tab and select the C Linker, Miscellaneous node.  

3. Add the --fatal-warnings option to the Other options field, e.g. 
Update the field from  
Wl,-cref,-u,Reset_Handler 
to  
Wl,--fatal-warnings,-cref,-u,Reset_Handler 

 

 

 

LINKER SCRIPT 
The linker (.ld) script file defines where things end up in memory. Some important parts 
of the linker script file is described below. 

1. The ENTRY defines the start of the program.  

The first instruction to execute in a program is called is defined with the ENTRY command. 

Example: 

/* Entry Point */ 

ENTRY(Reset_Handler) 

 

 

 

2. The location of stack.   

Example: 

/* Highest address of the user mode stack */ 

_estack = 0x20020000;    /* end of 128K RAM */ 

 

The ENTRY information is used by GDB so the program counter (PC) is set to 
the value of the ENTRY address when a program has been loaded. In the 
described example the program will start to execute from Reset_Handler 
when a step or continue command is given to GDB. 
  
Note! The start of the program can be overridden if the GDB script contains a 
monitor reset command after the load command. Then the code will 
start to run from reset.  



 
Getting Started 

  
 
 

128 | P a g e  
 

 

 

3. Define the minimum size of Heap and Stack 

It is common to define in the linker script the minimum size of Heap and Stack to be used 
by the system. Example: 

/* Generate a link error if heap and stack don't fit into RAM 

*/ 

_Min_Heap_Size = 0;      /* required amount of heap  */ 

_Min_Stack_Size = 0x400; /* required amount of stack */ 

 

The values defined here are normally used later in the linker script to make it possible for 
the linker to test if the Heap and Stack will fit into memory. The linker can then issue an 
error if there is not enough memory available.  

 

4. Specify memory regions 

The memory regions are specified with name, ORIGIN and LENGTH. It is common also to 
have an attribute list specifying the usage of a particular memory region, e.g. (rx) , ‘r’ (Read 
Only section) and ‘x’ (Executable section), but there is no need to specify any attribute. 
Example: 

/* Specify the memory areas */ 

MEMORY 

{ 

  FLASH (rx)      : ORIGIN = 0x08000000, LENGTH = 1024K 

  RAM (xrw)       : ORIGIN = 0x20000000, LENGTH = 128K 

  MEMORY_B1 (rx)  : ORIGIN = 0x60000000, LENGTH = 0K 

} 

 

5. Specify output sections (.text and .rodata) 

The output sections defines where in memory the sections such as ‘.text’, ‘.data’ etc. shall 
be located. The following example tells the linker to put all .text, .rodata etc. sections in 
the FLASH region. There are alos some glue sections mentioned here and these are used 
by GCC if there are some mixed code in the program. The glue code is used if there are 
some arm code which makes a call to thumb code or vice versa. Example: 

/* The program code and other data goes into FLASH */ 

The location of stack is normally used by the startup file. The startup code 
normally initialize the stack pointer with the address given in the linker script. 
For Cortex-M based devices the stack address is also set at the first address in 
the interrupt vector table. 



 
Getting Started 

  
 
 

129 | P a g e  
 

  .text : 

  { 

    . = ALIGN(4); 

    *(.text)    /* .text sections (code) */ 

    *(.text*)   /* .text* sections (code) */ 

    *(.rodata)  /* .rodata sections (constants, etc.) */ 

    *(.rodata*) /* .rodata* sections (constants, etc.) */ 

    *(.glue_7)  /* glue arm to thumb code */ 

    *(.glue_7t) /* glue thumb to arm code */ 

    *(.eh_frame) 

  

    KEEP (*(.init)) 

    KEEP (*(.fini)) 

  

    . = ALIGN(4); 

    _etext = .; /* define a global symbols at end of code */ 

  } >FLASH 

 

 

6. Specify initialized data (.data) 

Initialized data values needs some extra handling as the initialization values needs to be 
placed in flash and the startup code must be able to initialize the RAM variables with 
correct values. The following example creates symbols _sidata, _sdata and _edata. The 
startup code can then use these symbols to copy the values from FLASH to RAM during 
program start. Example: 

  /* used by the startup to initialize data */ 

  _sidata = LOADADDR(.data); 

  /* Initialized data sections into RAM, load LMA copy after code */ 

  .data :  

  { 

    . = ALIGN(4); 

    _sdata = .;        /* create a global symbol at data start */ 

    *(.data)           /* .data sections */ 

    *(.data*)          /* .data* sections */ 

 

    . = ALIGN(4); 

    _edata = .;        /* define a global symbol at data end */ 

  } >RAM AT> FLASH 

 

 



 
Getting Started 

  
 
 

130 | P a g e  
 

7. Specify uninitialized data (.bss) 

Uninitialized data values shall be reset to 0 by the startup code so the linker script file 
needs to identify the location of these variables. The following example creates symbols 
_sbss and _ebss. The startup code can then use these symbols to set the values of the 
variables to 0.  

  /* Uninitialized data section */ 

  . = ALIGN(4); 

  .bss : 

  { 

    /* This is used by the startup to initialize the .bss secion */ 

    _sbss = .;         /* define a global symbol at bss start */ 

    __bss_start__ = _sbss; 

    *(.bss) 

    *(.bss*) 

    *(COMMON) 

 

    . = ALIGN(4); 

    _ebss = .;         /* define a global symbol at bss end */ 

    __bss_end__ = _ebss; 

  } >RAM 

 

When building an Atollic TrueSTUDIO Project Wizard generated project, a .map and a 
.list file is created in the build output folder (Debug/Release). These files contains 
detailed information on final location of code/data in the program. 

 

 

The Build Analyzer view can be used to analyse the size and location of  a 
program in detail. Please read more about the Build Analyzer at page 264  

 

Please read the Linker manual, accessible from the Atollic TrueSTUDIO 
Information Center, for details about how the linker works. Especially section 
3.6 and 3.7 could be of interest. 



 
Getting Started 

  
 
 

131 | P a g e  
 

GENERATE A NEW LINKER SCRIPT 
From time to time there is the need for a new Linker script, as for instance when changing 
the target platform for an existing project. 

AUTOMATICALLY 

This is the recommended method to generate a new Linker script. 

Whenever anything in the Target Setting tab is changed a new Linker script can be selected 
to be generated.  

If the script is generated it can also be automatically used in the selected Build 
Configuration. If possible the path to the script will be set to be relative to the project. 

 

Figure 101 – Automatically Generate a New Linker Script 

 



 
Getting Started 

  
 
 

132 | P a g e  
 

MANUALLY 

The linker scripts can also be manually created. These scripts will not be automatically 
added to any Build Configuration. 

To manually create a new linker script, start by selecting the project to add the script into. 
Right click the project and select New, Other… 

 

Figure 102 – Select New, Other… 

1. In the dialog that then pops up select C/C++ and then Linker script.  

 

Figure 103 – Select New, Other… 

2. Click Next. 

3. The target must now be select properly. Here is the chance to select a new target. 
The current settings can be found by right-clicking the project and selecting 
Properties, C/C++ Build, Settings. 

4. Click Finish. 

The script is now generated. 



 
Getting Started 

  
 
 

133 | P a g e  
 

In order to use the new script it needs to be selected in a Build Configuration. Right-click 
the project and select Properties and in the dialog select C/C++ Build, Settings and in the 
panel select the Tool Settings-tab, C Linker, General. 

Enter the name of the new linker script. 

 

Figure 104 – Enter the name of the script 

 

MODIFY EXISTING LINKER SCRIPT 
This chapter includes some common use cases for how to edit the linker script. Editing and 
managing the script allows for more exact placement of the code and data. 

 

PLACE CODE IN A NEW MEMORY REGION 

Many modern devices has more than one memory region. It is possible to use the linker 
script in Atollic TrueSTUDIO to specifically place code in different areas.  

Modify the .ld-linker script’s memory regions. This is an example of a linker script file 
containing the following memory regions: 

MEMORY 



 
Getting Started 

  
 
 

134 | P a g e  
 

{ 

FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 128K 

RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 16K 

MEMORY_B1 (rx) : ORIGIN = 0x60000000, LENGTH = 0K 

} 

 

Add a new area by editing the file. In this example the IP-Code region is added. 

MEMORY 

{ 

FLASH (rx)      : ORIGIN = 0x08000000, LENGTH = 64K 

IP_CODE (x)     : ORIGIN = 0x08010000, LENGTH = 64K 

RAM (xrw)       : ORIGIN = 0x20000000, LENGTH = 8K 

MEMORY_B1 (rx)  : ORIGIN = 0x60000000, LENGTH = 0K 

} 

 

 

Place the following code a bit further down in the script, between the .data { ... } and the 
.bss { ... } section: 

.ip_code : 

{ 

*(.IP_Code*); 

} > IP_CODE 

 

This tells the linker to place all sections named .IP_Code* into the IP_CODE memory region 
which is specified to start at target memory address: 0x8010000. 

In the C-code, tell the compiler which functions should go to this section by adding 
__attribute__((section(".IP_Code"))) before the function declaration.  

Example: 

__attribute__((section(".IP_Code"))) int placed_logic() 

{ 

/* TODO - Add your application code here */ 

return 1; 

} 

 

The placed_logic()-function will now be placed in the IP_CODE memory region by the 
linker. 

Variables and functions may not be placed in the same memory region. 



 
Getting Started 

  
 
 

135 | P a g e  
 

PLACE CODE IN EXTERNAL RAM 

To place code in external ram some modifications of the linker script is needed. In short 
this is what to do. 

Define a new memory region in the MEMORY {} region  in the Linker script: 

MEMORY { 

... 

EXT_RAM (xrw)      : ORIGIN = 0x64000000, LENGTH = 8K 

... 

} 

 

Then also define an output section for the code/data. This should be placed with a Load 
Memory Address in EXT_RAM, and a Virtual Memory Address in FLASH: 

/* used by the startup to initialize the external ram */ 

_siextram = LOADADDR(.EXTRAM); 

.EXTRAM :  

{ 

. = ALIGN(4); 

_sextram = .;  /* create a global symbol at ext_ram start */ 

*(.EXTRAM)  /* .EXTRAM sections */ 

*(.EXTRAM*)  /* .EXTRAM* sections */ 

 

. = ALIGN(4); 

_eextram = .;  /* define a global symbol at ext_ram end */ 

} >EXT_RAM AT> FLASH 

 

Startup Code: 

Then the external ram needs to be initialized and the code/data copied from flash to 
external ram. The startup code can access the location information symbols _siextram, 
_sextram and _eextram by doing something like: 

extern int _siextram; 

extern int _sextram; 

extern int _eextram; 

 

void copy_fn() { 

const int *origin = &_siextram; 

int *dest = &_sextram; 

const int * const dest_end = &_eextram; 

.... copy loop .... 

} 

 



 
Getting Started 

  
 
 

136 | P a g e  
 

How to use this in the code: 

Mark variables or functions with the correct attribute, for example: 

__attribute__((section(".EXTRAM"))) int placed_logic() 

{ 

return 1; 

} 

 

PLACE VARIABLES AT SPECIFIC ADDRESSES 

The first step in order to place variables at a specified address in memory is to create a 
new memory region in the linker script (the .ld-file). Take a look at an example of a linker 
script file containing the following memory regions: 

MEMORY 

{ 

FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 128K 

RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 16K 

MEMORY_B1 (rx) : ORIGIN = 0x60000000, LENGTH = 0K 

} 

A new memory region should be added by editing the file. In this example add the MYVARS 
region. 

MEMORY 

{ 

FLASH (rx)     : ORIGIN = 0x08000000, LENGTH = 64K 

MYVARS (x)  : ORIGIN = 0x08010000, LENGTH = 64K 

RAM (xrw)       : ORIGIN = 0x20000000, LENGTH = 8K 

MEMORY_B1 (rx)  : ORIGIN = 0x60000000, LENGTH = 0K 

} 

 

 

Now the memory section should be added. Place the following a bit further down in the 
script, between the .data { ... } and the .bss { ... } section: 

.myvars : 

{ 

*(.myvars*); 

} > MYVARS 

 

Variables and functions may not be placed in the same memory region. 



 
Getting Started 

  
 
 

137 | P a g e  
 

This tells the linker to place all sections named .myvars* from input into the .myvars 
output section in the MYVARS memory region, which is specified to start at target memory 
address: 0x8010000.  

A section can be called almost anything except some predefined names such as data. 

Now the variables need to be put in that region.  

 

To be absolutely certain that the order will stay the same even if they are spread in 
multiple files, add each variable to its own section. Then map the order of the variables in 
the linker script. 

So for example, the c code could be: 

__attribute__((section(".myvars.VERSION_NUMBER"))) uint32_tVERSION_N

UMBER; 

__attribute__((section(".myvars.CRC"))) uint32_t CRC; 

__attribute__((section(".myvars.BUILD_ID"))) uint16_t BUILD_ID; 

__attribute__((section(".myvars.OTHER_VAR"))) uint8_t OTHER_VAR; 

 

And then decide the order in the linker script by adding the specially named sections like: 

.myvars : 

{ 

*(.myvars.VERSION_NUMBER) 

*(.myvars.CRC) 

*(.myvars.BUILD_ID) 

*(.myvars*); 

} > MYVARS 

 

LINKING IN A BLOCK OF BINARY DATA 

The scenario is that there is a file with binary data needs to be put in the memory. It is 
named ../readme.txt. 

Then the reference in the C file might look like this using the incbin directive and the 
allocatable (“a”) option on the section. 

 

asm(".section .binary_data,\"a\";" 

      ".incbin \"../readme.txt\";" 

); 

 

That section is then added in the linker script with instructions that the section should be 
put in flash. 



 
Getting Started 

  
 
 

138 | P a g e  
 

 

.binary_data : 

  { 

            _binary_data_start = .; 

            KEEP(*(.binary_data)); 

            _binary_data_end = .; 

  } > FLASH 

 

This block can then be accessed from the C code with code similar to the following:  

extern int _binary_data_start; 

 

int main(void) 

{ 

  int *bin_area = &_binary_data_start; 

  … 

} 

LOCATE UNINITIALIZED DATA IN MEMORY 

Sometimes there is a need to have variables located into flash, or some other non-volatile 
memory, which do not shall be initialized at startup. In such cases it is possible to create a 
specific MEMORY AREA in the linker script and use the NOLOAD directive. 

Example 

1. Update the linker script with a MY_DATA area. 

MEMORY 

{ 

  FLASH (rx)      : ORIGIN = 0x08000000, LENGTH = 64K 

  MY_DATA (rx)    : ORIGIN = 0x08010000, LENGTH = 64K 

  RAM (xrw)       : ORIGIN = 0x20000000, LENGTH = 128K 

} 

 

2. Add a section for MY_DATA using the NOLOAD directive. This can be done using the 
following code a bit further down in the linker script. 

.my_data (NOLOAD) :   

/* .my_data  :  */ 

{ 

*(.MY_Data*); 

} > MY_DATA 

 

Finally data can be used somewhere in the program by adding a section attribute when 
declaring variables which shall be located in MY_DATA memory. 



 
Getting Started 

  
 
 

139 | P a g e  
 

__attribute__((section(".MY_Data.a"))) int Distance; 

__attribute__((section(".MY_Data.a"))) int Seconds; 

 

 



 
Getting Started 

  
 
 

140 | P a g e  
 

MANAGING EXISTING WORKSPACES 
The workspaces known to Atollic TrueSTUDIO can be managed by selecting Window, 
Preferences and in the Preferences Dialog select General, Startup and Shutdown, 
Workspaces.  

 

Figure 105 – Manage Workspaces 

However, removing a Workspace from that list will not remove the files. Neither will 
removing the files from the file system remove the workspace from this list.  

 

BACKUP OF PREFERENCES FOR A WORKSPACE 
It is generally a very good idea to take a copy of the existing preferences for a workspace. 
If the workspace crashes and needs to be recreated, they will otherwise needs to be set 
again by hand. A both time-consuming and complicated process.   

In the menu select File, Export. Then in the panel select General, Preferences. Press the 
Next button and in the next page enable Export All and a good filename of your choice.  

 

COPY PREFERENCES BETWEEN WORKSPACES 
To copy Workspace preferences from one workspace to another, an existing export of 
preferences should first be created, see above.   

Then select File, Switch Workspace and your new workspace. Atollic TrueSTUDIO will then 
restart and open with the new workspace.  



 
Getting Started 

  
 
 

141 | P a g e  
 

In the menu select File, Import and in the panel select General, Preferences. Press the 
Next button and on the next page enable Import All and enter your file name. The 
preferences will now be the same in the two workspaces. 

 

KEEPING TRACK ON JAVA HEAP SPACE 
Too keep track on how much Java heap space is used, select Window in the menu and 
then Preferences.  

 

Figure 106 – Display Java Heap Space Status 

Select the General node and then enable Show heap status. The currently used and 
available Java Heap Space will then be displayed in the lower right corner of the 
Workspace. The garbage collector can also be manually triggered there. 

 

UNLOCKING LOCKED WORKSPACES 
Only one instance of Atollic TrueSTUDIO can access one workspace at a time. This is to 
prevent conflicting changes in the workspace.  

If Atollic TrueSTUDIO is started with a workspace that already is used by another instance 
of the program, the following error message is displayed: 



 
Getting Started 

  
 
 

142 | P a g e  
 

  

Figure 107 – Workspace Unavailable 



 
Getting Started 

  
 
 

143 | P a g e  
 

MANAGING EXISTING PROJECTS 
If no other instance of Atollic TrueSTUDIO is accessing the workspace, delete 
the .lock file in the .metadata folder in the workspace directory. 

 

 

 

EDIT 
Atollic TrueSTUDIO contains a state-of-the-art editor with almost any feature one can 
imagine! Noteworthy features are spell checking of C/C++ comments, word- and code 
completion, content assist, parameter hints and code templates. The editor also includes 
an include-file dependency browser, code navigation using hypertext-links, bookmark & 
to-do lists, and powerful search mechanisms. 

There are so many features that it is easy to miss some really useful capabilities. While we 
have simplified the user experience in Atollic TrueSTUDIO, there are probably still many 
features that could be put to good use by more developers.  

Below are some of the useful tools that are easily missed.  

EDITOR ZOOM IN / ZOOM OUT 

It is possible to increase/decrease default font size for text editors by pressing Ctrl++ and 
Ctrl+-.  

Ctrl++    Zoom in text 

Ctrl+-    Zoom out text 

If a keyboard with numeric keypad is used and the + or – keys are pressed on the numeric 
keypad then also use Shift key to make zoom work (Ctrl+Shift+ or Ctrl+Shift-).  

It is a good idea to only have the currently active projects opened. Close the 
rest of the opened projects in the workspace. This will make the indexer work 
faster and reduce the memory used by TrueSTUDIO. It also makes it easier 
finding errors and bug in the code. 

A project is closed by right-clicking it and select Close Project. 



 
Getting Started 

  
 
 

144 | P a g e  
 

 

Figure 108 – Editor with text zoomed in 

QUICKLY FIND AND OPEN A FILE 

Pressing Ctrl+Shift+R to find and open a file quickly is one of these featured easily missed. 
Type a couple of characters that is part of the file name to open. It is possible to add * and 
? symbols as appropriate for wildcard search as well. The editor then lists the matching. 
Select the correct file in the matching items search result list, and open the file in any of 
these 3 ways: 

Show In: Sends this file to one of the views chosen in the dropdown list (such as the 
#include file dependency browser view) 

Open With: Opens this file in any of the editors listed in the drop down list. 

Open: This is probably the most commonly used option; it just opens the file in the 
standard C/C++ editor. 

BRANCH FOLDING 

If a block is enclosed within #if/#endif, it can be folded. To activate the functionality, go to 
Window, Preferences, C/C++, Editor, Folding and check the checkbox Enable folding of 
preprocessor branches (#if/#endif). After the checkbox has been checked, the editor has 
to be restarted. Just close the file and open it again and there should be a small icon in the 
left margin of the editor. 



 
Getting Started 

  
 
 

145 | P a g e  
 

 

Figure 109 – Folding Markers 

BLOCK SELECTION MODE 

An often missed feature in Atollic TrueSTUDIO is the Block selection mode. 

Alt+Shift+A toggles selection mode between normal and block. When block mode is 
enabled a block of text can be selected by either the mouse or the keyboard using SHIFT 
and ARROW buttons. 

How to use Block selection mode: 

Press Alt+Shift+A 

Press the cursor somewhere in the text and drag it down. A column will now be marked. 

 



 
Getting Started 

  
 
 

146 | P a g e  
 

 

Figure 110 – Mark a column 

Add some text there. It will be entered in all marked rows. 

 

 

Figure 111 – Add text to all rows 

 

 

 



 
Getting Started 

  
 
 

147 | P a g e  
 

Whole areas can also be selected and edited in group. 

 

 

Figure 112 – Select a block of text 

FIND ALL KEYBOARD SHORTCUTS 

To find all current Keyboard Shortcuts press Ctrl+Shift+L. This will open up information 
about the other shortcuts.  

 

Figure 113 – Find all Shortcuts 



 
Getting Started 

  
 
 

148 | P a g e  
 

 

Press Ctrl+Shift+L again to open up the preferences to change the shortcuts. 

 

THE INDEX 
In Atollic TrueSTUDIO there is an important mechanism called Indexer that creates a 
database of the source and header files. That database is called the Index and is used to 
provide information for all navigation and content assist in Atollic TrueSTUDIO. It includes 
the information about where to find information such as where a function is located and 
used, where a preprocessor symbol is located and where global variables are defined.  
Try pressing Ctrl and clicking on a function that is used somewhere in the code. The editor 
will jump to its definition. Also hovering over it will display its comments and 
documentation. 

 

Figure 114 – The Indexer Picks up the Documentation for a Function 

The Indexer is running in the background and keeps track on all changes in the project. 

The Indexer is normally customized per Workspace, but can also be set on a per project 
basis. To customize the Indexer per Workspace in the menu select Window, Preferences 
and in the Preferences dialog select C/C++, Indexer. 



 
Getting Started 

  
 
 

149 | P a g e  
 

 

Figure 115 – Workspace Indexer Settings 

To customize the Indexer setting per project right-click the project and select Properties. 
In the Properties dialog select C/C++ General and then Indexer.  



 
Getting Started 

  
 
 

150 | P a g e  
 

 

Figure 116 – Project Indexer Settings 

Select Enable project specific settings. It is a good idea to skip large files and files with 
many hundreds of includes. This will prevent the Java heap from running out of space. If 
the project is version controlled, it is also a good idea to store the settings within the 
project.  

From time to time the Index fails to keep track on the changes in the project. Most likely 
this is due to some includes being changed or missed. Then the Index database needs to 
be rebuilt. To do that right-click the project and select Index, Rebuild. 

If this doesn’t solve the problem or the indexer’s database file (the .pdom-file) is corrupted, 
open the workspace folder and locate the hidden directory: 
.metadata\.plugins\org.eclipse.cdt.core 
Delete the file: YOUR_PROJECT_NAME.pdom and restart Atollic TrueSTUDIO. The Index is 
now rebuilt from scratch.  

The most likely reason for a corrupted .pdom-file is that TrueSTUDIO somehow crashed 
during indexing. That can happen if Atollic TrueSTUDIO runs out of Java heap space, see 
Keeping Track on Java Heap Space on page 141 for more information about the Java Heap.  

 



 
Getting Started 

  
 
 

151 | P a g e  
 

FINDING INCLUDE PATHS, MACROS ETC. 
For the Indexer to work correctly it needs to be fed with information about all the symbols 
and included files. The process providing that information is called the Scanner Discovery 
mechanism. It uses Language Setting Providers to try to automatically provide that 
information. 

 

The preferences for the Scanner Discovery mechanism can be found by selecting Window 
in the menu and then Preferences.  

 

Figure 117 – Scanner Discovery Settings 

In the Preferences panel select C/C++, Build, Settings and then to the right the Discovery-
tab.  

A list of the available Language Setting Providers are then displayed. A Language Setting 
Provider is a specialized mechanism to discover settings. Some providers calls the tool 
chain for built in compiler symbol and includes. Others scan the build output for that 
information. The found entries are then stored in the workspace (shared) or for each 
project.  
 
The Atollic ARM Tools Language Settings is by default not shared between projects.  

The Scanner Discovery mechanism is rewritten and the old property 
Discovery Options for projects is deprecated and replaced with the new 
Preprocessor Include Paths, Macros etc. property. 



 
Getting Started 

  
 
 

152 | P a g e  
 

By selecting one provider that individual provider can be configured. If that provider have 
found and are sharing some entries in the workspace, those entries can be removed by 
pressing Clear Entries. That can be a good idea to do if the path to included files are 
wrong.  
Enable Allocate console in the Console View will send output to the console each time the 
providers runs.  
 

The project and Build Configuration specific settings and entries can be found by selecting 
the project and then in the menu select Project, Properties and in the Properties panel for 
the project select C/C++ General, Preprocessor Include Paths, Macros etc. and select the 
Providers tab first. 

 

Figure 118 – Preprocessor Include Paths, Macros etc. 

When using a version control system it is best to enable Store entries in project setting 
folder.  

Do not enable the Use global provider shared between projects option! The Atollic ARM 
Tools Language Settings is by default not shared between projects. Since each project has 
different arguments to the tools based on the Target Settings, sharing between projects 
will not give a totally accurate result. 

The Entries tab displays the found entries for the different providers. At the top is the CDT 
User Setting Entries. By selecting that user defined entries can be added.  

By pressing Restore Default all locally stored entries will be removed.   

 

It is recommended to always Restore Default when changing tool chain version 
or upgrading Atollic TrueSTUDIO. This replaces the old method for clearing of 
discovered entries found in the deprecated Discovery Options properties. 



 
Getting Started 

  
 
 

153 | P a g e  
 

 

 

ADD OR REMOVE FOLDER TO INCLUDE PATH 
To add or remove folder(s) from the include path, right-click on a folder in the Project 
Explorer view and select Add/remove include path… A dialog is opened and here it is 
possible to select the configurations that should include the selected directories in their 
include paths. Select the configurations which shall contain the folder in the include path. 
Then press OK to update the path. This is an easy way to update the include path for a 
project.  

 

Figure 119 – Add or remove include path 

 

LOCATE WHERE A FILE IS INCLUDED 
To locate where in the code a specific file is included, open the Include Browser view. From 
the Project Explorer view, click and drag the file you want to know inclusions for to the 
Include Browser view. All the places it is included will be displayed and the inclusion tree 
for those files also. 

The view is also able to display all the files included in the selected file and the name of the 
folder where the files are located. 

When sharing a project in a version control system, it is a good idea to set the 
SVN property svn:ignore on the file 
%PROJECT_LOCATION%/.settings/language.settings.xml since it 
includes a hash specific to each individual environment. See more in the 
chapter about SVN on page 206.   



 
Getting Started 

  
 
 

154 | P a g e  
 

 

Figure 120 – Include Browser 

 

CREATING LINKS TO EXTERNAL FILES 
Even if the Indexer will find external source files and libraries included in other source files, 
Atollic TrueSTUDIO will not keep track on changes in these files.  

To be able to keep track on these changes and properly edit external source files in Atollic 
TrueSTUDIO, a link to the folders or to the files needs to be added to the project. To add a 
link to a file, right-click on a source folder and select New, File. 

In the dialog click on the Advanced button and select Link to file in the file system.  

Enter the file name and Browse to the file you want to create a link to. 



 
Getting Started 

  
 
 

155 | P a g e  
 

 

Figure 121 – Create Linked File 

When this is done, Atollic TrueSTUDIO will keep track of all changes in the file and rebuild 
when the file is changed. 

The process to create a link to a folder is similar.   

 

UPDATE CMSIS MATH LIBRARY 
Follow these steps to use the latest version of the CMSIS library provided by ARM. Other 
libraries from ARM or other source can be added with a similar method. 



 
Getting Started 

  
 
 

156 | P a g e  
 

1. Download the latest version of the library from https://silver.arm.com/ 
(registration is needed). 

2. Unpack the zip-file. 

3. Create a folder in the project in Libraries\CMSIS named lib. 

4. Add the path to the library and the library name by selecting Project, Properties, 
C/C++ General, Paths and Symbols and then use the Path tab. (On page 93 
another method is explained in Include Libraries). Remember not to include the 
“lib”-prefix and the file extension (.a). 

 

Figure 122 – Create Linked File 

5. Add the symbol ARM_MATH_CM4 or ARM_MATH_CM3 in the Symbol tab. 

6. Copy the library files from the extracted folder CMSIS\lib\GCC to the folder 
created in step 3. Very with the FPU settings in the Target Settings that the 
correct library is used. 

7. To be able to debug the library, the source to it must also be added to the known 
sources, see page 90 for more information about how to do that. 

It might also be a good idea to also update the header files with the ones provided in the 
download.  

 

CONVERTING A C-PROJECT TO A C++-PROJECT 
To convert a C-project to a C++-project do the following steps: 

https://silver.arm.com/


 
Getting Started 

  
 
 

157 | P a g e  
 

1. Open the Navigator view. 

2. Select the project and open it. 

3. Double click the file .project to open it in the editor 

4. Locate the row <nature>org.eclipse.cdt.core.cnature</nature> 

5. Insert a row after it that looks almost the same, but with an extra “c”: 

6. <nature>org.eclipse.cdt.core.ccnature</nature> 

7. Do not remove the cnature-row! 

8. Save the file and the project will now also compile with the C++ tools. 



 
Getting Started 

  
 
 

158 | P a g e  
 

DISASSEMBLE/LIST OBJECT AND ELF FILES 
Sometimes it can be interesting to get detailed information about the content of an object 
or elf file. This can be done using the build tools included in the Toolchain. To make it even 
easier to get access to the such information a Build tools selection has been added. To use 
this feature just make a right-click on the object or elf file in the Project Explorer view and 
select Build tools.  

 

Figure 123 – Build Tools 

The Build tools selection has three options. Select option depending on your needs and 
the file will be opened in the editor. The options are:  

 Disassemble file(s) without data 

 Disassemble file(s) with data 



 
Getting Started 

  
 
 

159 | P a g e  
 

 List symbols with size 

Example of a file opened with Disassemble file(s) without data. 

 

Figure 124 – Disassemble file(s) without data 

Example of a file opened with List symbols with size. 

 

Figure 125 – List symbols with size 



 
Getting Started 

  
 
 

160 | P a g e  
 

I/O REDIRECTION 
The C runtime library includes many functions, including some that typically handle I/O. 
The I/O related runtime functions include printf(), fopen(), fclose(), and many 

others. 

It is common practice to redirect the I/O from these functions to the actual embedded 

platform, such as redirecting printf() output to an LCD display or a serial cable, or to 

redirect file operations like fopen() and fclose() to some Flash file system 
middleware. Atollic TrueSTUDIO also comes with an integrated Terminal that can be used 
to display redirected I/O, see page 247 for more information. 

In Atollic TrueSTUDIO three different techniques are generally most used. It is the old 
UART output, Segger’s Real Time Terminal (RTT) that is explained on page 249 and on 
targets that has support for SWV, the ITM output that is explained on page 302. 

A fair comparison between the three techniques to generate debug output: 

SWV Low or none CPU overhead but very limited bandwidth. Only supported by some 
targets. 

UART Some CPU overhead and medium bandwidth. 

RTT A bit smaller CPU overhead than UART and higher bandwidth. Needs a Segger Probe. 

 

Atollic TrueSTUDIO do support I/O redirection. To enable I/O redirection the file 
syscalls.c should be included and built into the project: 

1. In the Project explorer view, Right click on the project and select New, Other... 

 

Figure 126 – New, Other… 

2. Expand System calls. 

3. Select Minimal System Calls Implementation and click next. 



 
Getting Started 

  
 
 

161 | P a g e  
 

 

Figure 127 – Select Minimal System Calls Implementation 

4. Click Browse... and select the src folder as new file container. Also select the 
Heap Implementation. There is one dynamic heap implementation that is default 
and a fixed one intended for RTOS use. If the latter is selected a modification of 

the script linker_script.ld in accordance with the instructions is also 
needed. 

 

Figure 128 – Select Location and Heap Implementation 

 

5. Click OK. 



 
Getting Started 

  
 
 

162 | P a g e  
 

6. Click on Finish and verify that syscalls.c is added to the project. 
 

To redirect the printf() to the target output, the _write() function needs to be 
modified. Exactly how this is done depends on the hardware and library implementation. 
Here is an example: 

 

int _write(int file, char *ptr, int len) 

{ 

 int index; 

 for(index=0 ; index<len ; index++){ 

   __io_putchar(*ptr++) /* Your target output function */ 

  } 

} 

 



 
Getting Started 

  
 
 

163 | P a g e  
 

POSITION INDEPENDENT CODE 
When for instance working on a bootloader, position independency is a great help. PIC 
(Position Independent Code) is relative to the program counter. If it is compiled for 
address 0 but placed at 0x81000 it still runs properly. 
 
The compiler has an option -fPIE that enables the compiler to generate position 
independent code for executable. Add this option into the tool settings for the Assembler 
and C Compiler in the Miscellaneous settings. 

 

Figure 129 – Add –fPIE for Assembler and C Compiler 

Also use this -fPIE option for the linker. E.g.  in the Miscellaneous settings the Other 
options field for the C linker, the command may look like 

-Wl,-cref,-u,Reset_Handler -fPIE  



 
Getting Started 

  
 
 

164 | P a g e  
 

 

Figure 130 – Use –fPIE for Linker 

Make sure that the stack pointer is set up correctly. Normally this is done by issuing a 
monitor reset command as part of the Startup-script for the debug session.  
However now the start code needs to set the stack pointer instead; do this by adding the 
following assembly line at the top of the Reset_Handler()-function located in the 
startup file: 

  ldr sp, =_estack 

This will make sure that the stack pointer is initialized when the Reset_Handler()-
function runs. 
Since the monitor reset command is not used any more, it needs to be removed from 
the Debug Startup Script.  
Do this by opening your debug configuration, by pressing the Debug Configuration button, 
switch to the Startup Scripts tab. 
This contains all commands that are used to launch a debug session. Try commenting 
the monitor reset line out by adding a # sign in front. 



 
Getting Started 

  
 
 

165 | P a g e  
 

 

Figure 131 – Remove the monitor reset command 

Also in some examples the SystemInit()-function for the vector table relocation needs 
to be changed. 

SCB->VTOR = FLASH_BASE | 0x20000; /* Vector Table Relocation in 

Internal FLASH */ 

If not, this SystemInit()-function will relocate interrupts to flash beginning. 

 

To test that the code is started where it should be, also comment out the continue 
command from the Debug Startup script. This will suspend execution on the first 
instruction in the Reset_Handler(), making it possible to debug the start-up code. 



 
Getting Started 

  
 
 

166 | P a g e  
 

USING CMSIS-PACK IN TRUESTUDIO 
The Cortex Microcontroller Software Interface Standard (CMSIS) is a vendor-independent 
hardware abstraction layer for the Cortex-M processor series and defines generic tool 
interfaces. The CMSIS enables consistent device support and simple software interfaces to 
the processor and the peripherals, simplifying software re-use, reducing the learning curve 
for microcontroller developers, and reducing the time to market for new devices. 

CMSIS-Pack is one of these components and from version 6.0 Atollic TrueSTUDIO supports 
the CMSIS-Pack standard.  

 

The CMSIS-Pack Management for Eclipse v2.0 software created by ARM is integrated into 
Atollic TrueSTUDIO v7.0. and used to:  

 Install, remove, delete Packs as well as to import examples  

 create and manage CDT-based C/C++ projects  

The CMSIS-Pack software also includes: 

 an editor for configuration files supporting configuration wizard annotations  

 version tracking of configuration files with merge functionality  

 integrated help based on Eclipse help framework 

CONFIGURATION 
Before using CMSIS-Pack the CMSIS Pack root folder needs to be configured. In the menu 
select Window, Preferences and in the Preferences dialog configure the CMSIS-Pack root 
folder to point to some location on the disk where downloaded Packs shall be stored. For 
instance in this case the Packs are stored into F:\CMSIS_Pack. 

  

 

ARM has made the following definition of CMSIS-Pack.  

“CMSIS-Pack: describes with a XML based package description (PDSC) file the 
user and device relevant parts of a file collection (called software pack) that 
includes source, header, and library files, documentation, Flash programming 
algorithms, source code templates, and example projects. Development tools 
and web infrastructures use the PDSC file to extract device 
parameters, software components, and evaluation board configurations.”  

 
More information about CMSIS can be found on the ARM website: 

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-
software-interface-standard.php 

 

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php


 
Getting Started 

  
 
 

167 | P a g e  
 

 

Figure 132 – CMSIS Packs Preferences 

The CMSIS Packs configuration also contains links to the sites where packages are 
published. Use Add, Edit and Delete to change the sites which will be searched by the 
CMSIS Pack plugin.  

 

 

CMSIS PACK MANAGER PERSPECTIVE 
There is a specific CMSIS Pack Manager perspective which is used when downloading and 
using a new CMSIS-Pack. 

Open the CMSIS Pack Manager perspective, e.g. this can be done by writing Pack in the 
Quick Access field and select CMSIS Pack Manager.   

 

The configuration of the location of CMSIS-Pack files needs to be done in the 
preferences each time a new Workspace is used. 

Atollic TrueSTUDIO version 6.0 was using the older CMSIS-Pack v1.1 software. 
Please use a new location as CMSIS Pack root folder when using this new 
CMSIS-Pack v2.0.  
 



 
Getting Started 

  
 
 

168 | P a g e  
 

 

Figure 133 – Open CMSIS Pack Manager Perspective 

The Packs perspective is now opened and when using it first time the Packs view is empty. 

 

Figure 134 – Packs View Empty 

 

See the figure below and the information about what the Packs view toolbar buttons does.  



 
Getting Started 

  
 
 

169 | P a g e  
 

 

Figure 135 – Packs View Toolbar 

(A) Expands all nodes 

(B) Collapse all expanded nodes 

(C) Help for Packs view 

(D) Check for updates on the web 

(E) Import existing Packs 

(F) Reload Packs in the CMSIS Pack root folder 

 

Use the Blue Arrow icon  to check for updates of the packages definitions from all 
repositories. All packs are now read from the repositories. This may take some minutes 

 

Figure 136 – Refresh all Packs 

If any errors occurs press Yes, if this does not help then press No or Cancel. 

 

Figure 137 – Read error during refreshing packs 



 
Getting Started 

  
 
 

170 | P a g e  
 

When updating is finished the Packs view is populated with new Device Specific and 
Generic information. The Devices and Board tabs are populated with device and board 
information from different vendors.  

The Packs view shows the Software Packs available for the selected device or board. Enter 
a pack name using wildcards into the field Search Pack to narrow the list. 

 

Figure 138 – Packs View Updated 

The Devices and Boards tabs contains information on devices and boards from different 
vendors.   

The Devices view lists devices that are supported in available Software Packs. Select a 
device to narrow the list in the Packs and Examples view. 



 
Getting Started 

  
 
 

171 | P a g e  
 

 

Figure 139 – Devices Software Pack  

 

  



 
Getting Started 

  
 
 

172 | P a g e  
 

Enter a device name in the Devices tab using wildcards into the field Search Device to 
reduce the list. 

 

Figure 140 – Search STM32 Devices Software Pack  

  



 
Getting Started 

  
 
 

173 | P a g e  
 

The Boards view lists the boards that are supported in available Software Packs. Select a 
board to narrow the list in the Packs and Examples view. E.g. STM32 

 

Figure 141 – Boards Software Pack  

 

OPEN INSTALLED CMSIS PACKS VIEW 
Open the Installed CMSIS Packs view by writing Installed in the Quick Access field and 
select Views Installed CMSIS Packs.   



 
Getting Started 

  
 
 

174 | P a g e  
 

 

Figure 142 – Open Installed CMSIS Packs View 

The Installed CMSIS Packs  (Sample view) displays the installed packages. Currently no 
packages has been installed so at this time the view is empty. There is also a similar 
Installed CMSIS devices  (Sample view) which displays installed devices. 

INSTALL CMSIS PACKAGES 
The Packs view is used to install new CMSIS Packs. Select a Pack in the view and click on 
the right mouse button and select Install.  

It is recommended to install the ARM.CMSIS Pack as this contains basic CMSIS software 
and is used by most other CMSIS Packs.  



 
Getting Started 

  
 
 

175 | P a g e  
 

 

Figure 143 – Install Packs 

Select the version of the Pack that shall be installed and press the Install button in the 
action column. The installation will then start. We will now install the Keil.STM32F4xx_DFP 
and the generic ARM.CMSIS packages. 

 

Figure 144 – Installing Pack 



 
Getting Started 

  
 
 

176 | P a g e  
 

 

Figure 145 – Installed Pack 

When a Pack is installed the color of the icon for the Pack is changed to yellow in the Packs 
view.  

 

Figure 146 – Installed CMSIS-Packs 

 



 
Getting Started 

  
 
 

177 | P a g e  
 

CREATE CMSIS-PACK BASED PROJECTS 
It is possible to create a new project in Atollic TrueSTUDIO based on installed CMSIS-Packs. 

There are several ways to create projects based on CMSIS-Pack. One way is to create a 
CMSIS C/C++ Project and another way is to use the Embedded C Project which will be 
populated with devices/boards defined also in installed CMSIS-Pack files.   

CREATE CMSIS C/C++ PROJECT 
Open the C/C++ perspective Atollic TrueSTUDIO and create a new project. Enter a project 
name and select CMSIS C/C++ Project. 

 

Figure 147 – Create CMSIS C/C++ Project 

Press Next.  

The CMSIS C/C++ Project dialog is displayed. 

 



 
Getting Started 

  
 
 

178 | P a g e  
 

 

Figure 148 – Create CMSIS C/C++ Project (main) 

Select Create default main.c file, the Atollic ARM GCC Toolchain will be used and GCC and 
software will be taken from the CMSIS-Pack files.  

 

Press Next. 

Select the device from a package to generate the project for. In this case we use the 
STMicroelectronics STM32F407VGTx device  

Note! Unfortunately many CMSIS-Pack files are not yet complete with GCC 
startup and linker files included in the CMSIS-Pack so some manual 
adaptations may be required after a project is created, to make it build 
correctly.  

 

If the startup and/or linker script file is missing when the project is generated 
then investigate if these files are included in the Pack by using a file browser. 
If the files are found then copy them into the project and rebuild the project.  

 

If the startup and/or linker script file is missing in the Pack then create a 
TrueSTUDIO project for the device if it is supported by Atollic TrueSTUDIO and 
copy those files to the project. Alternatively create a basic ARM project for a 
similar ARM core and base the startup and linker script for the CMSIS project 
on these files. Make sure to update the startup file to include the interrupt 
vectors and linker script file with the device memory mapping etc. 

 

If the CMSIS-Pack project provides a linker script and you would like to change 
some information in it there is a need to create a linker script outside the 
normal folder, see information about this in the Updating Linker Script for 
CMSIS C/C++ Project chapter at page  184. 



 
Getting Started 

  
 
 

179 | P a g e  
 

 

Figure 149 – Create CMSIS C/C++ Project (device) 

Press Next. 

The Select Configurations dialog is displayed. By default a Debug and a Release 
configurations are prepared.  

 

Figure 150 – Create CMSIS C/C++ Project (configurations) 



 
Getting Started 

  
 
 

180 | P a g e  
 

Press Finish and the project will be created.  

CONFIGURE THE CMSIS C/C++ PROJECT 
When a CMSIS C/C++ project has been created it needs to be configured to use the 
software from the CMSIS-Pack. The configuration of a project is made by selecting needed 
software using the *.rteconfig file.  

 

Figure 151 – Configure CMSIS C/C++ Project 

For instance we would like use the Startup file from the STM32F407VGTx device.  



 
Getting Started 

  
 
 

181 | P a g e  
 

 

Figure 152 – Configure CMSIS C/C++ Project with Startup file 

As seen in the figure above the Startup file depends on files in the CMSIS CORE group so 
we need to include also the CMSIS CORE files to this project.  



 
Getting Started 

  
 
 

182 | P a g e  
 

 

Figure 153 – Configure CMSIS C/C++ Project with CMSIS CORE files 

Save the setting by pressing on the Disk icon on the toolbar. If we build the project we get 
the following build result. 



 
Getting Started 

  
 
 

183 | P a g e  
 

 

Figure 154 – Build CMSIS C/C++ Project 

As seen this project does not build correctly. The reason is that the CMSIS Pack file does 
not contain correct information to build with gcc.  

 

Note! If there are any build errors please check if the project contains a 
startup file and a linker script file.  

When using GCC the startup file and linker script file is tightly connected as for 
instance the startup file needs to get information from the linker script where 
memory and stack should be located.  

If the Pack does not contain any startup or linker script file the Atollic 
TrueSTUDIO wizard will generate and add generic startup and linker script 
files to the project. In such cases there is a need to manually update the linker 
script with stack location and memory location and size information. Also the 
startup script only contains the first 16 generic Cortex-M interrupts so there is 
a need to add the device specific interrupts into the startup file if such 
interrupts are used.  

 



 
Getting Started 

  
 
 

184 | P a g e  
 

To solve the problem in this case copy the startup file from the 
RTE/Device/STM32F407VGTx folder (Note! This folder was not created as a source 
folder) to the project root folder were the main.c file is located. Also copy the 
system_stm32f4xx.c file to the project root directory.  

 

UPDATING LINKER SCRIPT FOR CMSIS C/C++ 

PROJECT 
CMSIS-Pack components that provides linker scripts will automatically set the linker script 
used to the one provided from the Pack. To still allow the user to modify and create their 
own linker scripts, the toolchain linker script option is only updated by CMSIS-Packs  if the 
location of the linker script is not changed.  

If the linker script file is missing in the pack it can be copied from some other project for 
STM32. The best way could be to create a standard Atollic TrueSTUDIO project for the 
board and copy the linker script files from that project into the created CMSIS Pack 
project. When the linker script file has been copied update the properties for the project 
so that the linker file is used.  

 

Figure 155 – Setup CMSIS C/C++ Project Linker Script File 

 



 
Getting Started 

  
 
 

185 | P a g e  
 

If the linker script for this project needs to be updated manually then please take a copy of 
the linker script and make the updates in this new file. Then update the Linker script 
setting in the Tool Settings tab in Properties for the project to point to the new script.  

DISABLE CMSIS STARTUP FILE 
Disable the Startup file from the CMSIS Component configuration if the Startup file has 
been copied to the project.  

 

Figure 156 – Disable Startup File from CMSIS C/C++ Project 

DEBUGGING THE CMSIS C/C++ PROJECT 
Finally when the project builds OK it is ready for testing.  

Start a debug session for the project. First time a project is debugged a new Debug 
Configuration needs to be created. Select ST-LINK as debug probe and make sure that SWD 
is enabled if the board to be debugged is using ST-LINK and SWD.  



 
Getting Started 

  
 
 

186 | P a g e  
 

The RTE project can be debugged using a debug probe and a board. In this case we will 
debug the created STM32project using the STM32F4-Discovery board which includes a ST-
LINK onboard.  

Press F11 and the Edit Configuration dialog appears. In the Debugger tab select Interface 
SWD.  

 

Figure 157 – Debug CMSIS C/C++ Project Configurations 

Make sure the board is connected to the PC using the Debug connector on the board and 
then Press OK. 

The program is now loaded to the board and the debug session is started.  



 
Getting Started 

  
 
 

187 | P a g e  
 

 

Figure 158 – Debug CMSIS RTE C/C++ Project 

 

ADDING MORE CMSIS-PACK FEATURES INTO 

PROJECT 
The project can be updated according your application needs.  

The Keil CMSIS_Pack for STM32 contains many examples for different board. One way to 
easy test examples is to open the Pack in file explorer and double-click on a .project file in 
an example. The project will then be imported into TrueSTUDIO. E.g. Open the following 
folder in the Pack to discover how to use STM32 drivers. 
F:\CMSIS_Pack\Keil\STM32F4xx_DFP\2.11.0\Projects\STM32F4-
Discovery\Examples\GPIO\GPIO_EXTI\TrueSTUDIO\STM32F4-Discovery 

Build and test the program in the Debugger to discover the usage of GPIO drivers on the 
board.   
 

 



 
Getting Started 

  
 
 

188 | P a g e  
 

INSTALLING 3RD PARTY PLUGINS 
It is possible to install hundreds of additional third party ECLIPSE™ plugins in Atollic 
TrueSTUDIO for users that want even more functionality in their TrueSTUDIO IDE.  

 

ECLIPSE™ plugins are easily found by searching at Eclipse marketplace 
(http://marketplace.eclipse.org/). However, please bear in mind that not all plugins for 
ECLIPSE™ are compatible with Atollic TrueSTUDIO.  

INSTALL FROM ECLIPSE MARKETPLACE 
To install from Eclipse Marketplace select Help, Eclipse Marketplace… 

 

Figure 159 – Select Eclipse Marketplace 

Search for the plugin and make the installation. 

Atollic does not provide support for any third party plugins. 

Support for third party plugins are always provided by their respective 
manufacturer. 

 

http://marketplace.eclipse.org/


 
Getting Started 

  
 
 

189 | P a g e  
 

 

Figure 160 – Install Using Eclipse Marketplace 

INSTALL USING “INSTALL NEW SOFTWARE” 
2. To install a plugin select Help, Install New Software… 

 

Figure 161 – Select Install New Software 

3. Then enter the URL to the update site for the plugin. If the URL is not known, 
All Available Sites can be selected. 



 
Getting Started 

  
 
 

190 | P a g e  
 

Select the appropriate plugins. Please remember that not all ECLIPSE™ 
plugins are compatible with Atollic TrueSTUDIO. 

Click the Next button. 

 

 

 

Figure 162 – Enter Download Site and Select Plugins 

4. Review the items to be installed and click the Next button. 

5. Read all the licenses agreements and click accept if the terms are found 
acceptable. Then click the Finish button. 

If no direct internet connection is available, the plugin can be downloaded in 
archive form from a computer with internet connection, and then manually 
moved to the computer with a TrueSTUDIO installation. Add the archived file 
by clicking the Add button and then select Archive and select the 
downloaded file. 



 
Getting Started 

  
 
 

191 | P a g e  
 

 

Figure 163 – Accept License Agreements 

 

  



 
Getting Started 

  
 
 

192 | P a g e  
 

6. The plugins are now automatically downloaded and installed. 

 

Figure 164 – The Plugins are Installed 

7. Restart Atollic TrueSTUDIO and the plugins are ready to be used. 

 

UNINSTALLING 3RD PARTY PLUGINS 
To uninstall a 3rd Party Plugin that is no longer preferred, in the top menu select Help, 
About Atollic TrueSTUDIO, Installation Details. 

In the new panel select the plugin to uninstall and press Uninstall… 

 

Figure 165 – Uninstalling Plugins 

 



 
Getting Started 

  
 
 

193 | P a g e  
 

SOLVING UPGRADE PROBLEM 
If some problem occurs when upgrading or installing new software into Atollic 
TrueSTUDIO then please try to uninstall the software again and restart the product. If 
there are problems to run Atollic TrueSTUDIO after restarting then try this: 

1. Go to the .eclipse directory in your home directory in Windows, Eg. 
C:\Users\your_name\.eclipse 

2. Identify the folder which corresponds to the Atollic TrueSTUDIO version you are 
using. 

3. Rename this folder and restart Atollic TrueSTUDIO. The product should now start 
as it was first installed without any updates. 



 
Getting Started 

  
 
 

194 | P a g e  
 

USING ST-LINK UTILITY INSIDE ATOLLIC 

TRUESTUDIO 
 

 

The ST-Link GDB-server used for debugging STM32 devices does not implement all 
functionality available in the ST-Link utility. It is however possible to call ST-Link Utility 
from inside the IDE, this can save a lot of time when performing various debugging related 
tasks. 

Typical use cases when this is beneficial: 

 When certain parts of the flash need to be erased before loading binary 

 When you want to compare the binary file in target with the one just built with 
Atollic TrueSTUDIO. 

 For setting option bytes such as read out protection. 

 For faster loading into flash than is offered by the ST-Link GDB-server 

 

Figure 166 – ST-LINK_CLI.exe 

REQUIREMENTS 
 St-Link Utility (Download it from http://www.st.com) 

 A working ST-Link 

The ST-Link utility does not support elf-files. Use Intel Hex. 

This chapter shows and explains many useful techniques in Atollic 
TrueSTUDIO. External tools and Launch groups are features that can be used 
to solve many other problems.  
We recommend all users of Atollic TrueSTUDIO to read this chapter. 

http://www.st.com/


 
Getting Started 

  
 
 

195 | P a g e  
 

 

STEPS THAT NEEDS TO BE PERFORMED 
1. Setup ST-Link Utility with suitable input parameters as an external tool 

2. Convert your build output to Intel Hex 

3. Create / modify a debug configuration so that the flash operation is only 
performed by ST-Link Utility 

4. Create a Launch Group to perform the ST-Link Utility operations before the Atollic 
TrueSTUDIO debugger starts 

 

SETUP ST-LINK UTILITY AS AN EXTERNAL TOOL 
In the main menu select Run, External Tools…, External Tools Configurations… 

Create a new Launch configuration as shown below. 

 

Figure 167 – ST-LINK_CLI.exe 

 Name i.e. “ST-LINK_CLI” 

 Location i.e. C:\Program Files (x86)\STMicroelectronics\STM32 ST-LINK Utility\ST-
LINK Utility\ST-LINK_CLI.exe  



 
Getting Started 

  
 
 

196 | P a g e  
 

 Working Directory i.e. C:\Program Files (x86)\STMicroelectronics\STM32 ST-LINK 
Utility\ST-LINK Utility\ 

 Arguments i.e. -c ID=0 SWD UR LPM -P C:\workspace\Project\Debug\Project.hex 

Press Apply 

Test that the external tool just setup is working by clicking Run or Run, External Tools…, 
ST-LINK_CLI 

 

CONVERT THE BUILD OUTPUT TO INTEL HEX 
In the top menu select Project, Build settings…, C/C++ Settings, Tool Settings, other, 
Output format. 

 

Figure 168 – Convert the Build Output to Intel Hex 

Be cautious about which Configuration that is selected! In the screenshot Debug was 
selected so the conversion will not take place when  building a Release configuration. 

 Check the Convert build output checkbox 

 Select Intel Hex 

 Click OK 

Build your project! 



 
Getting Started 

  
 
 

197 | P a g e  
 

The output name will be %PROJECT%.hex. Make sure that this binary is selected when 
creating the debug configuration. This will not work with an .elf-file. 

 

MODIFY THE DEBUG CONFIGURATION 
It is recommended that you make a copy of your current debug configuration as we will 
need to modify the debug script slightly. 

 In the top menu select Run, Debug Configurations… 

 

Figure 169 – Modify the Debug Configuration 

 Right-click on your debug configuration and select duplicate. 

 Change the name of this configuration to “… NO LOAD”, this is since GDB will not 
be used to load the hex. 

 Open the Startup Scripts tab, comment out the “load” command load, #load. It 
might also be a good idea to comment out the “monitor reset” command. 

 Click Apply. 

 



 
Getting Started 

  
 
 

198 | P a g e  
 

CREATE A LAUNCH GROUP 
The Launch Group is used to launch several applications (configurations) by just clicking 
one button. 

Double-click on the Launch Group node to create a Launch group and give it a name. 

 

Figure 170 – Create a Launch Group 

 Click Add… 

 

Figure 171 – Edit a Launch Group 

 Select Launch Mode: run 

 Expand Programs and select your external tool configuration, i.e. ST-LINK_CLI. 



 
Getting Started 

  
 
 

199 | P a g e  
 

 Set Post launch action to Wait until terminated. 

 Click OK to return to the previous panel. 

In that panel click Add… 

 

Figure 172 – Select Launch Mode: debug 

 Select Launch Mode: debug 

 Expand Embedded C/C++ Applications and select your debug configuration, i.e. 
Project NO LOAD. 

 Set Post launch action to None. 

 Click OK to return to the previous panel. 

 

 



 
Getting Started 

  
 
 

200 | P a g e  
 

Figure 173 – Select Launch Mode: debug 

Open the Common-tab 

Enable Display in favorites menu = Run 

Enable Display in favorites menu = Debug 

Click Apply 

This will make the launch group available in Atollic TrueSTUDIO from the Run, Run-menu 
and later the Run, Debug History… 

 

FINISHED 
ST-Link Utility is now flashing the binary into the target memory and the debugger is 
started as soon as the ST-Link Utility has finished. 

 

Figure 174 – Debug History 

 

 

 



 
Introduction 

 
 
 

201 | P a g e  
 

MISCELLANEOUS TOOLS 
 

QUICK ACCESS SEARCH BAR 
Quick Access search bar that is a massive time saver.  

  

Figure 175 – Quick Access Search Bar 

The Quick Access search bar is an edit field in the toolbar, where any search phrase or 
keyword can be entered. GUI objects like menu commands, toolbar buttons, preference 
settings or views ca be found with it. 

As any search string is typed, the Quick Access search bar shows all the GUI objects that 
match the criteria, in “real-time”. Type a couple of more characters and the search results 
list is refined correspondingly “on-the-fly”. 

The Quick Access search bar is an enormous time saver when looking for a specific GUI 
object that can’t be found quickly, such as finding a preference setting deeply buried in the 
configuration dialogs. Or to just issue a menu command or toolbar button hidden in the 
currently active perspective. 

For example, in the screenshot above the search string “SWV” has been entered and the 
Quick Access search bar immediately provides the list of matching views, GUI commands 
and preference settings. To open the view or preference setting just click on the GUI 
object in the search result list 



 
Getting Started 

  
 
 

202 | P a g e  
 

VERSION CONTROL 
Atollic TrueSTUDIO includes a basic version-system for projects that works well for a 
project with just one developer on one computer. It allows users to keep tracks on local 
file history.   

For more information about a local repository see Local SVN Repository below. 

However if users need to collaborate, keep better track of changes and perhaps work on 
many workstations, a better version control-system is needed. 

Atollic TrueSTUDIO supports three such systems GIT, Concurrent Versions System (CVS) 
and Subversion (SVN). The CVS is an older system that Atollic TrueSTUDIO supports for 
those that already have CVS-repositories.  

Atollic TrueSTUDIO includes: 

 Fully integrated GUI client for SVN & CVS 

 Check-in/out and Branch/merge (including a merge-conflict editor) 

 Repository & history browser  

 File revision annotations, file difference viewer and revision graph viewer 

 Full traceability of all lines, in all files, throughout complete project history 

 Who did what, when and why? 

 What did the code look like at time or version X? 

 Who added code line X, when and why? 

SUBVERSION - SVN 

Subversion (SVN) is an open source version control system that was design to replace the 
older CVS. It is more or less a de facto standard in the computer industry.  

A free and very good online book about SVN can be found here 

http://svnbook.red-bean.com/  

SVN manages files, directories and the changes made to them. That way it is possible to go 
back to previous version of the code or inspect what changes has been made over time. It 
also operates over a network and allows the same code to be changed simultaneously on 
many computers, even over the internet. Thus development can be done faster and with 
fewer errors. If some incorrect code is entered it can just revert to the previous version. 

 

There are several other clients to use with SVN.  

http://svnbook.red-bean.com/


 
Getting Started 

  
 
 

203 | P a g e  
 

 

To be able to use SVN a Subversion repository is needed. How to set up and maintain a 
network repository is out of the scope of this manual. On page 206 set up off a local 
repository is explained. There are also several websites such as Freepository, Google Code 
and SourceForge provides free source code hosting that can be accessed with Atollic 
TrueSTUDIO’s SVN-integration. A good introduction to how to set up a repository can also 
be found in chapter 5 in the SVN-book and in several good tutorials on the net. 

After making sure a repository exists, the next thing to do to be able to use SVN in a 
project, is to enable SVN in Atollic TrueSTUDIO. In the top menu select Window, 
Customize Perspective.  

 

Figure 176 – Enable SVN Command Group 

In the dialog that opens up select the Command Groups Availability-tab. Find SVN in the 
Available command groups-column and make sure it is selected. Click OK. 

Some extra items are now available in the toolbar. However they should be greyed out. 
There will also be a new top-menu called SVN.  

There are several views in Atollic TrueSTUDIO for managing SVN. They can be found by in 
the top-menu select Window, Show View, Other.  

 

Atollic do not recommend to use different clients within a project, since 
version-conflicts can occur and will probably cause more problems than it’s 
worth. 



 
Getting Started 

  
 
 

204 | P a g e  
 

 

Figure 177 – SVN Views 

The first view needed is the SVN Repositories since that where repositories are connected. 

Connect to an existing repository (in the organization or on the web) by right-clicking in 
the view and select New, Repository location. A new dialog will be displayed. In that 
dialog enter the URL and other communication-options for the repository.  

Next step is to share the project in the repository. Right-click on the project and select 
Team, Share Project. In the dialog that then pops up, select SVN and click on Next. Select 
the repository and then Finish.  

Do the initial commit into the repository. 

For more information about how to use SVN, see the tutorials at 

http://www.atollic.com/index.php/videotutorials 

 

LOCKS IN SVN 

In normal cases locks is never used in SVN. SVN is very good in merging different versions 
and branches of the same file. That way more than one developer can edit the same 
source-file without fearing to interfere in other developers work.  

However in very special cases, such as editing images and other complex file-types, SVN 
can’t merge. In that case we recommend to lock the file before editing it. 

For more information about how to use SVN, see the tutorials at 

http://www.atollic.com/index.php/videotutorials 

 

http://www.atollic.com/index.php/videotutorials
http://www.atollic.com/index.php/videotutorials


 
Getting Started 

  
 
 

205 | P a g e  
 

Locking is easy. Just right-click on the file, select Team, Lock and enter a brief comment on 
why the file is locked. 

If others now want to edit the same file, they will only have a read-only version of the file 
and can’t save or check it in. 

Remember to unlock the file after editing it.  

To make sure a file is always locked before anyone can edit it, do the following: 

 Right-click on it and select Team, Set Property 

 Add a property with the name svn:needs-lock, no value is needed 

 Check in the file. 

INCLUDE SVN REVISION-NUMBER IN A STRING 

A file can have a string in the source code that is the SVN revision number for the latest 
time when the file was checked in to the repository. 

1. Right-click on the file and select Team, Set Property 

2. Add the property svn:keywords with the value Revision 

  

Figure 178 – Add SVN Property 

3. Check with Team, Show Properties that the property is correctly added 

4. Add $Revision$ anywhere in the code 

That string will be replaced with a text showing the revision number of that file. 



 
Getting Started 

  
 
 

206 | P a g e  
 

It can be something like this: 

define MESSAGE5 "SVN $Revision$" 

Remember to edit the file and commit it to the repository to update the value to the 
current revision. 

Other possible values to the svn:keywords is Date, Author, HeadURL and Id. 

To have a fixed length of the $Revision$-string, it can be written like  

"$Revision::               $". 

IGNORE A FILE 

To ignore sharing a specific file in a repository, the property svn:ignore needs to be set 
instead. It is done in the same manner as the other properties above. 

When sharing a project in a version control system, it is a good idea to set the SVN 
property svn:ignore on the file 
%PROJECT_LOCATION%/.settings/language.settings.xml since it includes a hash 
specific to each individual environment.  

LOCAL SVN REPOSITORY 

A local Subversion repository is easy to set up and is an excellent tool even for developers 
who don’t work in a team. It provides a simple way to go back to older versions of the 
code and try out ideas. Some sort of version control is strongly recommended for all 
developers.  

 

To set up a local repository, do the following: 

Local repositories is not possible if the SNVKit SVN connector is selected. 



 
Getting Started 

  
 
 

207 | P a g e  
 

1. Open the SVN Repositories by selecting Window, Show View, Other… and in the 
panel select SVN, SVN Repositories and press OK.  

  

Figure 179 – Open SVN Repositories 

2. In the view click the New Repository button.  

  

Figure 180 – New Repository Button 

3. In the Create Repository dialog enter the name and location for the new local 
repository and make sure File System is selected.  

  



 
Getting Started 

  
 
 

208 | P a g e  
 

Figure 181 – Create Repository Dialog 

When creating a repository in this way, using Berkley DB as repository-type is 
not recommended and can cause problem. 

4. The new local repository is now created.  

  

Figure 182 –Repository Created 

5. To start version controlling a project in the repository, right click the project and 
select Team, Share Project… 

6. In the Share Project dialog select SVN and press Next. 

  

Figure 183 –Share Project Dialog 

7. Now select the new repository and Finish.  

8. Enter an initial comment and the project is version controlled. 

  

Figure 184 –Projects Version Controlled 



 
Getting Started 

  
 
 

209 | P a g e  
 

 

USING SVN ON EXTERNAL RESOURCES 

Since SVN doesn't commit files that reside physically outside of the project it is necessary 
to show the files within an Atollic TrueSTUDIO project.  

This is particularly important to remember when using tools such as STM32CubeMX that 
crates project with code that are linked into the project and for different downloadable 
example projects that lets the actual code reside outside the project.  

There is however at least two different method to solve this. Since SVN doesn't commit 
files that reside physically outside of the project it is necessary to show the files within a 
Atollic TrueSTUDIO project. These examples are for STM32CubeMX but can easily be 
adapted to fit other external resources. 

 

Alternative 1 - Live with linked files/folders 

Create a project for version control in the CubeMX-project-root (the folder that contains 
the TrueSTUDIO, Inc, Src etc) and use it together with the normal development project. 

This will set up the workspace with a versioning-project, and a development-project. 

Versioning project 
In the top menu select File, New, Project 
In the New Project wizard that is opened, select General, Project 
Input a name for this project, for example MyVersionedCubeMXProject 
Uncheck the Use default location, then browse to the CubeMX-project’s-root folder 
Commit MyVersionedCubeMXProject to SVN 

Development project 
In the top menu select File, Import, General, Existing Projects into Workspace 
Select root directory and browse to the MyVersionedCubeMXProject\TrueSTUDIO 
folder 
Make sure Copy projects into workspace is Unchecked! 

Workflow of this setup is to develop/debug using the development project and version 
control the project using the MyVersionedCubeMXProject 

 

Alternative 2 - Resolve the project so that all code reside physically within the project 

Export the CubeMX project as an archive, this will resolve all .c source code. 
Remove the CubeMX project from the TrueSTUDIO workspace. Do not delete them, but 
keep the CubeMX files on the disk a while longer. 
Import the project that was exported in step one. This project will now contain all .c files 
and settings. Lets call this project CubeMX-resolved from now on. 



 
Getting Started 

  
 
 

210 | P a g e  
 

However since CubeMX doesn't make references to header files in the generated project 
these will be missing. Included directories also needs to be manually inspected that they 
still are intact. 
Manually copy the needed header files from the original CubeMX project to the CubeMX-
resolved project 
Open the Build Configuration for the CubeMX-resolved project and correct the include 
paths in the C-Compiler, Directories node. 
If the same structure for the header files is kept as they were in the original CubeMX 
project then only ..\..\ needs to be removed from the include paths. 
For example..\..\..\Drivers\STM32F4xx_HAL_Driver\Inc\Legacy 
becomes..\Drivers\STM32F4xx_HAL_Driver\Inc\Legacy. 
Commit the CubeMX-resolved to SVN 

 

MULTI MONITOR SUPPORT 
The Atollic TrueSTUDIO IDE can be dragged between monitors and even extended to cover 
several monitors. 

Individual views can also be de-attached from the IDE by clicking the tab with the view 
name located in the upper left corner of the view and dragged to a new place on any 
monitor. This can also be done with open editors, so that individual files can be opened 
and edited in individual windows. 

By in the top menu selecting Windows, New Editor the same file can also be edited 
simultaneously in different editor windows. Changes will be displayed immediately in both 
windows. One editor-window be dragged to another monitor. This is very practical when 
editing large files. 

If instead in the top menu Window, New Window is selected a cloned copy of the current 
Atollic TrueSTUDIO IDE will be opened. It will however always work with the same 
workspace and all editing done in the projects will be displayed in both opened IDEs. They 
are after all clones and not individual instantiations Atollic TrueSTUDIO. 

The individual clones of Atollic TrueSTUDIO can however be opened in different 
perspectives. It is thus possible to open one window for editing and one for debugging. 



 
Getting Started 

  
 
 

211 | P a g e  
 

 

Figure 185 – Multiple Editors, Views and Windows used at the same time 

 

OPEN ADDITIONAL INSTANCE OF TRUESTUDIO 
It is possible to open two instances of Atollic TrueSTUDIO for the same workspace at the 
same time. To do that select in the top menu Window, New Window. 

 

Figure 186 – New Window 

Atollic TrueSTUDIO will now be opened in an additional window. This is useful when the 
workplace is equipped with two screens. It is then possible to edit and debug at the same 
time. One instance of Atollic TrueSTUDIO can then be used for editing and the other for 
debugging. 



 
Getting Started 

  
 
 

212 | P a g e  
 

 

Figure 187 – New Window 

 

SHELL ACCESS 
To access Windows Shell (cmd.exe) open the shell by selecting Window, Show View and 
select Terminal view. 



 
Getting Started 

  
 
 

213 | P a g e  
 

 

 

Figure 188 – Terminal 

In the Terminal view a Terminal is launched by clicking the Open a Terminal icon.  

 

Figure 189 –Terminal View 

The Launch Terminal dialog is now opened. Select Local Terminal and the Encoding to use.  



 
Getting Started 

  
 
 

214 | P a g e  
 

 

Figure 190 –Launch Terminal  

The Terminal is now opened and is ready to use. 

 

Figure 191 –Terminal Opened 

 



 
Introduction 

 
 
 

215 | P a g e  
 

 DEBUGGING 
This section provides information on how to begin using Atollic TrueSTUDIO for STM32.  

The following topics are covered: 

 Introduction to Debugging with TrueSTUDIO 

 Starting the Debugger 

 Debug Configuration 

 Debug Perspective 

 Debugging 

 Stopping the Debugger 

 Upgrading the GDB Server 

 Configure the GDB Server 

 Advanced Debugging 

  



 
Debugging 

  
 
 

216 | P a g e  
 

INTRODUCTION TO DEBUGGING WITH 

TRUESTUDIO 
Atollic TrueSTUDIO includes a very powerful graphical debugger based on the GDB 
command line debugger. Atollic TrueSTUDIO also bundles GDB servers for the ST-LINK and 
SEGGER J-Link JTAG probes. 

Debugging with Atollic TrueSTUDIO is done with a GDB Server. The GDB Server is a 
program that connects GDB (GNU Debugger) on the PC to a target system. It can be 
started locally or remotely as shown in the two conceptual pictures below: 

 

Figure 192 –Local Debugging 



 
Debugging 

  
 
 

217 | P a g e  
 

 

Figure 193 –Remote Debugging 

If Local debugging is selected Atollic TrueSTUDIO automatically starts and stops the GDB 
server as required during debugging, thus creating a seamless integration of the GDB 
server.  

To prepare for debugging with an ST-LINK JTAG probe connected to your electronic board, 
perform the following steps: 

1. Verify that the RAM and FLASH configuration switches on the target board 
is set to match the Atollic TrueSTUDIO project configuration, regarding 
memory. Note: Not all boards have such configuration abilities.  

2. Determine whether the board supports JTAG-mode or SWD-mode 
debugging, or both, and if Serial Wire Viewer (SWV) operation is 
supported. Note that the physical connector for the JTAG probe may be 
identical, regardless of the modes supported. Consult the hardware Circuit 
Diagram or a Hardware Designer within your organization to determine the 
actual debug modes supported. 

3. Connect the JTAG cable between the JTAG probe and the target board. 

4. Connect the USB cable between the PC and the JTAG probe. 

5. Make sure the target board has a proper power supply attached. 

Once the steps above are performed, a debug session in Atollic TrueSTUDIO can be 
started.  



 
Debugging 

  
 
 

218 | P a g e  
 

STARTING THE DEBUGGER 
Perform the following steps to start the debugger locally: 

1. Select your project in Project Explorer view to the left. 

 

2. Click on the Debug toolbar button (the insect icon) or press the F11 key to 
start the debug session.   

 

Figure 194 – Start Debug Session Toolbar Button 

Alternatively, start the debug session by right-clicking on the project name 
in the Project Explorer view. Then select Debug As, Embedded C/C++ 
Debugging from the context menu. 

 

3. The first time debugging is started for a project; Atollic TrueSTUDIO 
displays a dialog box that enables the user to confirm the debug 
configuration, before launching the debug session. After the first debug 
session is started, this dialog box will not be displayed any more. 

 

Figure 195 - Debug Configuration Dialog Box 

The debug configurations can also be reached by clicking the Configure 
Debug toolbar button. 



 
Debugging 

  
 
 

219 | P a g e  
 

 

Figure 196 – The Configure Debug Toolbar Button 

4. The Main panel contains information on the project and executable to 
debug. The settings in the Main panel do not normally have to be changed.  

Make sure the path and name to the binary to debug is correct. See also 
page 229. 

 

5. Click on the Debugger panel to display it. The panel contains information 
on the JTAG probe to use, its configuration, and how to start it. Some 
settings are probe-specific. 

 

6. Open the Debug probe drop down list. Select the JTAG probe to be used 
during the debug session. 

 

 



 
Debugging 

  
 
 

220 | P a g e  
 

Figure 197 - Debug Configuration, Debugger Panel for the SEGGER J-Link 

 

 

 

 

 

Figure 198 - Debug Configuration, Debugger Panel for the ST-Link 

The Debugger Panel for SEGGER J-Link probe contains a checkbox Use specific 
J-Link S/N. Enable this checkbox If several SEGGER debug probes are 
connected to the PC and enter the serial number of the SEGGER J-Link probe to 
be used.  

Update the Device name if there is a problem to use Segger J-Link gdbserver 
with default device name. The name to use can be found if 
JLinkGDBServer.exe is started and Target device is selected in the Config GUI.  

Select RTOS variant listbox can be used if Thread-aware RTOS support is used 
with FreeRTOS and embOS.  

It has been noticed that when Thread-aware RTOS support is used there may 
be a need to updated the gdb Target Software Startup Scripts. The script is 
available in the Startup Scripts tab. Please add “thread 2” command line 
before the last “continue” command in the script. This will force a thread 
context switch before the “continue” command is sent.  

 



 
Debugging 

  
 
 

221 | P a g e  
 

 

7. GDB Connection Settings. Normally these don’t have to be changed. For 
remote debugging change the Autostart radio-button to Connect to 
Remote, see page 224 for more information. 

The port number can always be changed. When the debug session is 
started, the GDB server will prompt Atollic TrueSTUDIO for what port to 
use in the communication.  

 

8. Select debug probe Interface: SWD or JTAG, depending on the capabilities 
of the target board and the selected JTAG probe. 

 

9. If SWD interface was selected in step above, please proceed as follows; 
otherwise skip to step 10. 

For the ST-Link JTAG probe: 

 The SWV settings include the option Wait for sync packet. 
Enabling this option will ensure that a larger part of the received 
data packages are correct (complete), but may also lead to an 
increased number of packages being lost. This is especially true if 
the data load (number of packages) is high. 

For the SEGGER J-Link JTAG probe: 

 The initial speed of the debug connection can be configured. 
Atollic recommends starting at an initial speed of 4000 KHz. If the 
communication turns out not to work as expected at that speed, 
please try another value. Proceeding stepwise in this manner, will 
lead to a quicker launch of the debug session. 

 The JTAG Scan Chain settings are specific to the JTAG interface 
and are thus disabled, see page 225 for more information about 
JTAG Scan Chains. 

 To be able to use some sort of tracings, select the appropriate 
Trace system such as the Serial Wire Viewer (SWV) feature or the 
Embedded Trace Buffer (ETB). 

The Debugger Panel for ST-Link probe contains a checkbox Use specific ST-Link 
S/N. Enable this checkbox if several ST-Link debug probes are connected to the 
PC. The Scan button can be used to get the serial numbers of connected ST-
Link’s. After a scan the serial numbers are presented in the list-box. Use the 
list-box to select the ST-LINK to be used for debugging. 

 

When using two GDB servers at the same time, they must both use different 
port numbers, e.g. 61234 and port 61244.  

 



 
Debugging 

  
 
 

222 | P a g e  
 

10.   If the ST-Link JTAG probe was selected in step 6, the Misc settings 
contains a checkbox External Loader. Enable this checkbox if the program 
shall be programmed into an external flash on the board. The Scan button 
can be used to get a list of external flash loader files, “.stldr”, included 
with STM32 CubeProgrammer. Use the list-box to select the “.stldr” file 
to be used for programming the external flash. It is also possible to 
manually enter a path and filename to a “.stldr” filename directly into 
the list-box. 

 

11.  If any other debug probe than ST-Link JTAG probe was selected in step 6, 
the following Misc settings are relevant: 

Atollic TrueSTUDIO is able to automatically recognize and launch J-Link 
scripts at the start of a debug session. If a script is needed to debug a 
wizard-created project, the wizard will also automatically create one. 

To manually select the J-Link script to be launched, please enable the Use 
J-Link script file option and browse to the desired script file. 

To be able to use the Live Expressions view during debugging the Live 
Expression mechanism has to be enabled during startup. It is enabled by 
default. 
 

12.   Click on the Startup Scripts panel to display it.  

 

Figure 199 - Debug Configuration, Startup Scripts Panel 



 
Debugging 

  
 
 

223 | P a g e  
 

13.  The Startup Script panel contains the initialization scripts that are sent to 
the GDB debugger upon debugger start. The scripts can contain any GDB or 
GDB server commands that are compatible with the application, JTAG 
probe and target board. The Startup Script tab is also where GDB script 
programs are defined.   

For more information see The Startup Script chapter at page 227. 

The Target Hardware Initialization tab is for the script used to initialize the 
hardware and the Target Software Startup Scripts tab is for the scripts 
used to initialize the software.  

 

14.  Click on the OK button to start the debug session. 

 

15.  Atollic TrueSTUDIO launches the debugger, and switches to the Debug 
perspective, which provides a number of views and windows suitable for 
debugging. 
 

 

 

If there is a problem for Atollic TrueSTUDIO to connect to the GDB  Server. 
Then please check the connection to the hardware. 



 
Debugging 

  
 
 

224 | P a g e  
 

  

Figure 200 – Debug Perspective 

 

EXTERNAL GDB SERVER 
The GDB Server can also be manually started as an external program as seen on page 216.  

To do that, open a command console window and change folder to the folder where the 
GDB server is located (%INSTALLATION_DIR%\Servers\Selected Server). 

Manually enter the command to start the GDB server. 

 For ST-Link - ST-LINK_gdbserver.exe -v -d –e 

 For Segger J-Link - JLinkGDBServer.exe 

The GDB Server will now start.  



 
Debugging 

  
 
 

225 | P a g e  
 

 
Open the debug configuration for the project and in the Debugger tab change the GDB 
connection setting to be Connect to remote GDB server.  

 
If the setting is made correctly when starting a debug session, some logging will be seen in 
the command console window. 

 

JTAG SCAN CHAIN 
Some JTAG probes can be used for multi target and multi core debugging in a JTAG Scan 
Chain. This requires the configuration of JTAG Scan Chain settings. 

Please note that the JTAG Interface must be selected in the Debug Configuration for JTAG 
Scan Chain to work. 

 

Figure 201 – JTAG Scan Chain Selected 

In most cases, Atollic TrueSTUDIO is able to automatically detect these settings, in which 
case the Auto option has been selected.  



 
Debugging 

  
 
 

226 | P a g e  
 

If manual configuration is required, please select the Manual option. Then select Position 
and IRPre for each core.  

If a Segger JTAG Probe is used, more information can be found in the J-Link User Guide, 
section 5.3.1 and 5.3.3, included with the Atollic TrueSTUDIO installation. It can be found 
by selecting the Information Center toolbar button and open the Information Center 
view. Locate Document center, Debugger utilities in the Information Center and press the 
J-Link User Guide link. 

For more information, please refer to the documentation from the debugger probe 
manufacturer, microcontroller manufacturer and/or the manufacturer of the target board. 

 

  



 
Debugging 

  
 
 

227 | P a g e  
 

THE STARTUP SCRIPT 
The Startup Script panel contains the initialization scripts that are sent to the GDB 
debugger upon debugger start. The scripts can contain any GDB commands or GDB server 
commands that are compatible with the application, JTAG probe and target board. The 
Startup Script tab is also where GDB script programs are defined.   

More about the GDB script commands can be found in the Debugger manual bundled with 
Atollic TrueSTUDIO and found in the Information Center.  

It is possible to edit the script with the GDB commands needed to start the Debugging in a 
proper way.  

START DEBUGGING AT THE VERY BEGINNING 

One common thing to edit is to change the continue statement at the end of the GDB 
script to a comment. When the continue statement is removed/commented the program 
will stop at the Reset_Handler where it is possible to step forward in the code. 

LOAD THE PROGRAM WITHOUT DEBUGGING 

Another possibility is to remove all code after the load command and replace it with a 
quit command. Atollic TrueSTUDIO will then load the program to the target, but then 
immediately quit debugging and return to the C/C++ perspective. 

HARDWARE INITIALIZATION CODE 

It is also possible to add the initialization code for external memories, such as SDRAM, 
here. It is usually done in the Target Hardware Initialization script. 
In most cases the Target Hardware Initialization script can be empty but if some hardware 
needs to be configured before software can be loaded to target commands can be added 
here. For example in some systems the external data/address bus and DRAM refresh 
control needs to be initialized before software can be loaded. 



 
Debugging 

  
 
 

228 | P a g e  
 

MANAGING THE DEBUG CONFIGURATIONS 
A majority of Atollic TrueSTUDIO users will focus on the Build Configuration for Debug. 
This is to be able to build, download and investigate the behavior of the software during 
execution. The build configuration named Debug, has two important properties: 

 Complete symbolic information is emitted by the tool chain to help the user 
navigate the information in the source code, during the debug process. 

 The lowest level of optimization is normally used, to maintain a direct relationship 
between source code and machine code.  If too high optimization levels are used, 
large portions of the generated machine code may be removed during 
optimization. This limits the abilities to map source code to machine code. 
Consequently it makes it harder to follow the execution at source code level in a 
debugger.  

When the software is considered to behave as required, a Release build configuration, 
with no symbolic debug information, and a high level of optimization, is usually built. See 
Build Configurations on page 88 for more information. 

After switching from the Debug to the Release build configuration, the target board can be 
programmed by launching a debug session. During this process, caution must be executed 
to prevent unexpected results from occurring.  

The Atollic TrueSTUDIO philosophy of determining which executable image will be loaded 
into the target, with the current project settings, must be considered carefully. 

It is possible to create multiple debug launch configurations. To do this, click on the 
Configure Debug toolbar button.  

 

Figure 202 – The Configure Debug Toolbar Button 

This brings up the list of existing debug launch configurations. By right clicking on an 
existing configuration, the options to create a new configuration, duplicate the existing, or 
delete it, appears.  

The easiest way to create a new configuration is to duplicate an existing one, edit the 
configuration settings in the dialog box, and then rename it. In this way multiple debug 
launch configurations are easily created. The user may toggle among the debug launch 
configurations in the list, and launch the most suitable session for the task at hand. 

If the user does not explicitly choose a debug launch configuration from the existing list, 
Atollic TrueSTUDIO launches the most recently used debug launch configuration.  

Assume that a user has created a build configuration named Debug, and a debug launch 
configuration that loads the ELF-file, created by the Debug build, to the target. Assume 
further that the user launches a debug session to debug this ELF-file. 



 
Debugging 

  
 
 

229 | P a g e  
 

Following this, the user switches to the build configuration named Release, and launches a 
new debug session by clicking on the debugging icon. Atollic TrueSTUDIO will fetch the 
most recent debug launch configuration, which specifies that the ELF-file from the Debug 
build configuration, and not the Release ELF-file, is to be programmed into the target.  

Atollic TrueSTUDIO has no means of automatically selecting the ELF-file associated with 
the currently active build configuration (Debug or Release), when a debug session is 
started. The build image used will always be the one specified in the debug launch 
configuration, regardless of the active build configuration.  

This behavior is different from some other development environments that automatically 
reconfigure the debug launch mechanism, to use the ELF-file from the currently active 
build configuration.  

In Atollic TrueSTUDIO, the user must create a debug launch configuration that explicitly 
refers to the particular ELF-file that is to be loaded, when a debug session is started. 

Example: The user generates a project from the Project Wizard and builds an ELF-file using 
the build configuration named Debug.  The debug session configuration dialog box shows 
the location of the ELF-file: 

 

Figure 203 – The target ELF-file in Debug Session Configuration 

To create a debug launch configuration that refers to the Release ELF-file, instead of the 
Debug ELF-file, simply change Debug in the above path to Release. It is recommended to 
rename the debug launch configuration to clearly mark it as a Release configuration. 

To load the Release ELF-file into the target, start a debug session based on this debug 
launch configuration.   

If desired, other properties of the new debug launch configuration can be edited as well. 
For example, setting the temporary breakpoint at the first line of main(), may be 
omitted by inserting a comment on the corresponding line in the GDB initialization script. 
This is done via the Debug dialog box, in the Startup Scripts, Target Software Startup 
Scripts panel. 

 

GENERIC BINARY PATH 
By default the path to the binary used when debugging includes the name to a selected 
Build Configuration. However generic binary paths is also possible. 



 
Debugging 

  
 
 

230 | P a g e  
 

It is possible to use different variables in the path to the binary. They can be accessed by 
pressing the Variables… button. 
One such variable is ${build_configuration}. When using it in the path Atollic 
TrueSTUDIO will attempt to determine the name of the active Build Configuration 
(normally Debug or Release) and replace the variable with that string. This can be used to 
create a generic Debug Configuration that can be used in all debugging for all Build 
Configurations. 

 

Figure 204 – Using variables in the path 

 

DEBUG LAUNCH CONFIGURATION SETTINGS FILE 
The debug launch configuration settings are stored in the 

DebugConfigFile.elf.launch file. Normally in TrueSTUDIO project this file is 
stored in the project folder but <*.elf.launch> files can also be stored in the workspace 
metadata folder. 

In the Debug Configurations dialog there is a Common tab. In this tab the Save as 
selection is used to select to save the debug launch configuration as Local file or as Shared 
file. Normally in projects created with TrueSTUDIO project wizard the selection is set to 
save as Shared file. The file will then be located by default in the Project folder in the 
workspace. This makes it easier to export or store the debug configuration setting into a 
version control system. 



 
Debugging 

  
 
 

231 | P a g e  
 

  

Figure 205 – Debug configuration as shared file 

 

In this way it is possible to have x number of debug launch configurations saved in the 
project. Each file will be named according to the debug configuration name you specify 
plus extension. E.g. File name: STM32F3_Discovery.elf.launch 

When save as Local file is configured the debug configuration will be saved in the 
workspace instead.  E.g. File name: 
C:\TrueSTUDIO\ARM_workspace_5.3\.metadata\.plugins\org.eclips

e.debug.core\.launches 



 
Debugging 

  
 
 

232 | P a g e  
 

CUSTOMIZE THE DEBUG PERSPECTIVE 
The Debug perspective and other perspectives in Atollic TrueSTUDIO can be 
enhanced with several toolbar buttons and menus by selecting the Window, 
Customize Perspective menu command. 

   

Figure 206 – Customize Perspective Dialog Box 

 

  



 
Debugging 

  
 
 

233 | P a g e  
 

DEBUGGING 
Once the debug session has been started, Atollic TrueSTUDIO switches automatically to 
the Debug perspective, sets a breakpoint at main(), resets the processor, and executes the 
startup code until execution stops at the first executable program line inside main(). 

The Debug perspective is now active. The next program line to be executed is highlighted 
in the source code window. A number of execution control functions are available from 
the Run menu: 

 

Figure 207 - Run Menu 

Alternatively, the execution control commands are available in the Debug view toolbar. 

 

Figure 208 - Run Control Command Toolbar 



 
Debugging 

  
 
 

234 | P a g e  
 

TERMINATE, REBUILD AND RE-LAUNCH  
By pressing this toolbar button, the current debug session is terminated, the source code is 
built (modified source code only), a new build image generated and the debug session is 
re-launched – all with just one mouse-click.  

 

Figure 209 – Terminate, Rebuild and Re-launch Toolbar Button 

 

DISASSEMBLY VIEW 
A common user action, not available from the Run menu, is to switch between C/C++ level 
stepping in the C/C++ source code window, and assembler level instruction stepping in the 
Disassembly view. 

Click on the instruction stepping button to activate assembler level instruction stepping in 
the Disassembly view. Click it once more to return to C/C++ level stepping in the C/C++ 
source code window. 

 

Figure 210 – Instruction Stepping Button 

 



 
Debugging 

  
 
 

235 | P a g e  
 

Figure 211 – Disassembly View 

By right-clicking in the left part of the view, the Function Offset can also be displayed.  

 

BREAKPOINTS 
A standard code breakpoint at a source code line can easily be inserted by double-clicking 
in the left editor margin, or by right-clicking the mouse in the left margin of the C/C++ 
source code editor. A context menu will appear in the latter case. 

 

Figure 212 - Toggle Breakpoint Context Menu 

Select the Toggle Breakpoint menu command to set or remove a breakpoint at the 
corresponding source code line. 

More complicated types of breakpoints, such as Watch Points and Event Breakpoints (for 
PC projects) are configured in the Breakpoints view. 

 

Figure 213 – Breakpoints View 



 
Debugging 

  
 
 

236 | P a g e  
 

Technically the breakpoints are either a hardware breakpoint or a software breakpoint. 
The hardware breakpoints are handled by the Debug Unit of the CPU. The number of 
hardware breakpoints depends on the target implementation, but normally an ARM 7/9 
has two breakpoints and Cortex-M has four to six breakpoints (up to eight is possible). 

A Software breakpoint is an instruction (BKPT) inserted into the code 

Atollic TrueSTUDIO does not decide if a breakpoint should be a hardware breakpoint of a 
software breakpoint. This is handled seamlessly by the GDB server. 
 
Since this is handled by the GDB server, it is handled slightly different depending on what 
GDB server is used. 
For example: the ST-Link GDB server only uses hardware breakpoints, and is therefore 
limited to 6 breakpoints. 
 
The SEGGER J-Link GDB server uses both hardware and software breakpoints depending 
on the number of breakpoints that the user want to set. 
The SEGGER J-Link GDB server should therefore be able to support virtually unlimited 
number of breakpoints using software breakpoints. But even here there is no manual 
control whether the breakpoint should be set as software or hardware breakpoint. 

CONDITIONAL BREAKPOINT 

When setting a normal breakpoint the program will break each time reaching that line. If 
that is not the desired behavior a condition can be set on the breakpoint that regulates if 
the program should actually break or not on that breakpoint.  

Set a breakpoint at a line. Right-click it and open the Breakpoint Properties... The 
Breakpoint Properties can also be opened from the Breakpoints view.  

The following view is opened.  

 

Figure 214 – Breakpoints Properties 

Enter a condition. In the example below “g1==100” is a global variable, but the variable 
can also be a local stack variable.  



 
Debugging 

  
 
 

237 | P a g e  
 

 

Figure 215 – Conditional Breakpoint 

What happens when running now is that the gdbserver will break each time the line is 
executed but gdb will test the condition and restart running if the variable g1 not is equal 
to 100. This method could be used when debugging an RTOS with several tasks if the RTOS 
kernel has a variable that the Breakpoint condition could be tested on to see which task is 
running. The only problem with this method is that it takes some time for GDB to evaluate 
the condition.  

The conditions are written in C-style so it is possible to write expressions such as 
“g1%2==0” to get more complex conditions.  

 

EXPRESSIONS  
The Expressions view displays many different types of data, including global variables, 
local variables and CPU core registers. The Expressions view also allows users to create 
mathematical expressions that are evaluated automatically, such as (Index * 4 + Offset). 

The information is updated whenever the debug execution is halted. 

 

Figure 216 – Expressions View 

An expression is displayed in many formats simultaneously, and the view can parse 

complicated data types and display complex data types like a C-language struct.   

Furthermore, CPU core registers may be added to the view, in addition to local and global 
variables. Open the Register view and select Watch to add the register to the Expressions 
view.  



 
Debugging 

  
 
 

238 | P a g e  
 

The users may drag and drop variables from the editor into the Expressions view. This 
applies to complex data types as well. 

 

Figure 217 – Drag and Drop of Variable to the Expressions View 

The value of variables and writeable registers may also be changed via the Expressions 
view.  

By starting an expression with “=” regular expressions can be used to display collapsible 
groups of local variables and arrays. 

By starting an expression with “=$” pattern matched groups of registers can also be 
created.  

 

Figure 218 – Complex Expressions 

 

LIVE EXPRESSIONS 
The Live Expressions view works a lot like the Expression view with the exceptions that all 
the expressions are sampled live during the debug execution.  

The view displays many different types of global variables. The Expressions view also 
allows users to create mathematical expressions that are evaluated automatically, such as 
(Index * 4 + Offset). 



 
Debugging 

  
 
 

239 | P a g e  
 

 

Figure 219 – Live Expressions View 

An expression is displayed in many formats simultaneously, and the view can parse 

complicated data types and display complex data types like a C-language struct.   

The sample speed is determined by the number of Expressions being sampled. An 
increased number of Expressions being sampled will result in a slower sample rate. 

Only one format of numbers is used at the same time to speed up the sampling. To change 
the format, use the dropdown arrow. 

 

 

Figure 220 – Live Expressions View Number Format 

 

 

 

LOCAL VARIABLES  
The Variables view auto-detects and display the value of local variables. It provides 
extensive information about each variable, such as value in hex/dec/bin format. The 
content of complex variable types is also displayed.  

The Live Expressions view requires a Segger J-Link probe and a Segger J-Link 
GDBServer v4.78h or later. 

 

To be able to use the Live Expressions view during debugging the Live 
Expression mechanism has to be enabled during startup.  This is by default 
enabled when Segger J-Link probe is selected in the debug configuration.  

Please read the Starting the Debugger section for more information.  



 
Debugging 

  
 
 

240 | P a g e  
 

 

Figure 221 – Variables View 

The location column can be displayed by selecting the small arrow in the upper right 
corner and then layout, Select Columns… A dialog with the selectable columns will then 
open up. 

From the same small arrow, the Number Format can also be changed for the Value 
column. 

 

Figure 222 – Variables View – change Number format 

Bi right clicking a variable, it can also be opened in the Memory view and also by selecting 
Watch to the Expression View.  

 

 

Global Variables cannot be displayed in the Variables view. Use the Expression 
view instead. See page 237 - Expressions for more information. 

 



 
Debugging 

  
 
 

241 | P a g e  
 

FILL MEMORY WITH A BYTE PATTERN 
In the Memory view and the Memory Browser view there is an added toolbar button 
called Open Memory Fill dialog 

 

Figure 223 - The Memory Fill Toolbar Button 

The Memory Fill dialog is opened when the toolbar button is pressed. 

 

Figure 224 - The Memory Fill dialog 

The filled area is up to, but not including, the end address.  

 

SFRS 
Special Function Registers (SFRs) can be viewed, accessed and edited via the SFRs view. 
The view displays the information for the current project. It will change its content if 
another project is selected. To open the view, select the View, SFRs menu command. 



 
Debugging 

  
 
 

242 | P a g e  
 

 

Figure 225 - SFRs Menu Command 

 

 

 

The SFRs view can also be useful in the C/C++ Editing Perspective, however 
then only the names and addresses of the registers will be displayed.  

 



 
Debugging 

  
 
 

243 | P a g e  
 

 

Figure 226 - SFRs View 

 

The top of the SFRs view contains a search field to filter visible nodes, e.g peripherals, 
registers, bit fields. When some text is entered in the search field only the nodes 
containing this text will be visible. When the node to view is found, select the node, then 
press the Clear button to the right of the search field if all elements shall be seen.  

 

Figure 227 - SFRs Filter Clear 

 

The information at the end of the SFRs view displays detailed information of the selected 
line. For registers and bit fields this include information of Access permission and Read 
action.  

The Access permissions contains the following information:  

RO (read-only) 
WO (write-only) 



 
Debugging 

  
 
 

244 | P a g e  
 

RW (read-write) 
W1 (writeOnce),  
RW1 (read-writeOnce) 

The Read action contains information only if there is some kind of read action when 
reading the register/bit field:  

clear 
set 

modify 

modifyExternal 

 

The toolbar buttons are found at the top right corner of the SFRs view.  

 

Figure 228 – SFR View Buttons 

 The RD button (A) is used to force a read of the selected register. This will cause a 
read of the register even if the register, or some of the bit fields in the register, 
contains a ReadAction attribute set in the SVD file.  

 

 Base format buttons (B) are used to change what base the registers values are 
displayed in.  

 The Configure SVD settings button (C) opens up the CMSIS-SVD Settings 
Properties Panel for the current project. 

 

Figure 229 – CMSIS-SVD Settings Properties Panel 

When the register has been read by pressing the RD button all other registers 
visible in the view will also be read again to reflect any other register updates. 

The program needs to be stopped to perform a read of the registers. 



 
Debugging 

  
 
 

245 | P a g e  
 

Two CMSIS-SVD (System View Description) data files can be pointed out for the project. All 
SVD-files must comply with the syntax as outlined in the CMSIS-SVD specification found on 
ARM® website. If this requirement is not met, the SFR-view is likely not to show any 
register information. 

The Device file field is typically used to for the System View Description (SVD) file. This file 
should include the information for the whole device. Other views may fetch information 
from the SVD file pointed out by this field, therefore Atollic recommends only using this 
field for SVD-files containing full system description. Updated SVD files can be obtained 
from STMicroelectronics, see the HW Model, CAD Libraries and SVD in the device 
description section on the ST web-site.  

The Custom file field can be used to define special function registers related to custom 
hardware, in order to simplify the viewing of different register states. Another possible use 
case is to create a SFR favorites’ file, containing a subset of the content in the Device file. 
This subset may be frequently checked or registers. If a Custom file is pointed out a new 
top-node in the SFR-view will be created containing the Custom file related register 
information. 

Both fields may be changed by the user and both fields may be used at the same time.  

FAULT ANALYZER 
The Fault Analyzer view helps developers to identify and resolve hard-to-find system faults 
that occur when the CPU has been driven into a fault condition by the application 
software. The fault analyzer feature interprets information extracted from the Cortex-M 
nested vector interrupt controller (NVIC) in order to identify the reasons that caused the 
fault.  

Some conditions that trigger faults are: 

 accessing invalid memory locations 

 accessing memory locations on misaligned boundaries 

 executing undefined instruction 

 include division by zero errors 

Within the debugger, after a fault has occurred, the code line where the fault occurred will 
be displayed. The user can view the reasons for the error condition. Faults are broadly 
categorized into bus, usage and memory faults.  

Bus faults occur when an invalid access attempt is made across the bus, either of a 
peripheral register or a memory location.  

Usage faults are the result of illegal instructions or other program errors.  

Memory faults include attempts of access an illegal location or violations of rules 
maintained by the memory protection unit (MPU).  



 
Debugging 

  
 
 

246 | P a g e  
 

To further aid fault analysis, an exception stack frame visualization option provides a 
snapshot of the MCU register values at the time of the crash. Isolating the fault to an 
individual instruction allows the developer to reconstruct the MCU condition at the time 
the faulty instruction was executed. 

In the Debugger perspective the Fault Analyzer view is opened from the menu. Select the 
menu command View, Fault Analyzer or use the toolbar icon Show View to open a drop 
down list; then select Fault Analyzer. 

 

FAULT ANALYZER VIEW 

The Fault Analyzer view has five main sections which can be expanded and collapsed. The 
sections contain different kind of information to help understand the reason why a 
particular fault has occurred. The sections are Hard Fault Details, Bus Fault Details, Usage 
Fault Details, Memory Management Fault Details and Register Content During Fault 
Exception. It is possible to Open editor on fault location and to Open disassembly on fault 
location by pressing the buttons in the view.  

Below is an example of the Fault Analyzer view when an error has been detected. In this 
case the error was caused by a project which configured the stack to be placed outside the 
RAM of the Cortex-M4 device. This causes a Hard Fault Detetected and the Bus Fault 
Details present the Stacking error (STKERR). The Register Content During Fault Exception 
presents the sp value 0x2003ffd8 and this device only had RAM available from 0x20000000 
to 0x2001ffff. 

 



 
Debugging 

  
 
 

247 | P a g e  
 

 

Figure 230 – Fault Analyzer View with STKERR 

TERMINAL VIEW 
A terminal is included to allow I/O communication with target using Local, SSH, Serial, and 
Telnet Terminal communication. 



 
Debugging 

  
 
 

248 | P a g e  
 

 

Figure 231 – Terminal View 

It can be located by selecting the Open View toolbar button and then select Serial 
Terminal in the dropdown list. 

 

Figure 232 – Terminal Toolbars 

To start using the terminal, press button A. This will open up the Terminal Settings Dialog. 

 

Figure 233 – Terminal Settings 

Select what type of connection is preferred. That will most likely be Serial communication. 



 
Debugging 

  
 
 

249 | P a g e  
 

For more information for how to redirect the I/O to the Terminal, see the chapter about 
I/O Redirection on page 160. 

 

SEGGER REAL TIME TERMINAL 

To use Segger Real Time Terminal (RTT) with a Segger J-Link, do the following steps: 

1. Download the RTT-library from http://segger.com/pr-j-link-real-
time.html 

2. Add the source-files from the RTT-pack to the project. 

3. Make sure that these folders are treated as source code folders by right-clicking on 
the c-file or the folder then select Resource configuration, Exclude from build… and 
Deselect all. 

4. Setup include paths by select in the menu Project, Build Settings, Tool Settings, C 
Compiler, Directories and add all headers 

5. Exclude the main.c supplied in the TrueSTUDIO example project. Also exclude the 
tiny_printf.c and the syscalls.c (if available). This since RTT will override some 
of these implementations. 

6. The RTT-pack comes with three different demonstration examples. This means 3 
different main() implementation. Make sure only one is built. Again for these (2 of 
these 3) source files use: right-click on the c-files, Resource configuration, Exclude 
from build…  and Select all. 

7. Please note that for some versions of the example package the SEGGER_RTT_printf() 
contains a bug. The va_start() call must always be followed by a va_end call. The 
function might then look like this: 

int SEGGER_RTT_printf(unsigned BufferIndex, const char * 

sFormat, ...) { 

int ret; 

  va_list ParamList; 

  

  va_start(ParamList, sFormat); 

  ret = SEGGER_RTT_vprintf(BufferIndex, sFormat, 

&ParamList); 

  va_end(ParamList); 

  return ret; 

} 

8. Build and start a debug session. Open the “Terminal”-view. Setup a connection: 

 Encoding: ISO-8859-1 

 Connection type: Telnet 

 Host: localhost 

http://segger.com/pr-j-link-real-time.html
http://segger.com/pr-j-link-real-time.html


 
Debugging 

  
 
 

250 | P a g e  
 

 Port: 19021 

 Ok 

9. Connect and run the application 

 

Figure 234 – Terminal Settings 



 
Debugging 

  
 
 

251 | P a g e  
 

ATTACH TO RUNNING TARGET USING 

SEGGER PROBE 
This approach is useful when trying to resolve problems which occur at rare occasions, 
often after several days of running your embedded application, by connecting Atollic 
TrueSTUDIO debugger via JTAG/SWD the embedded target using a SEGGER J-Link. 

Finding the root cause of the problem in case of a CPU crash is further simplified by 
learning how to use the Fault Analyzer view, see page 245. 

This method is applicable to any Atollic TrueSTUDIO user who has a SEGGER J-Link/Trace 
debugger. Before trying this approach consider whether halting the application in the 
wrong state could potentially harm the hardware (i.e. in the case of a motor controller 
application). Why? When GDB connects to the SEGGER J-Link GDB-server the target CPU 
will be halted. This behavior is currently not possible to change and applies even if the 
GDB-server is started with the -nohalt option. 

It is quite simple to make Atollic TrueSTUDIO connect using a SEGGER J-Link. Essentially 
the following three or four steps are needed: 

1. Modify the debug configuration 

2. Connect the J-Link to the embedded target 

3. Start a debug session using the modified debug configuration 

4. Optionally analyze the CPU fault condition with the Fault Analyzer tool 

 

Step 1 Modify the debug configuration 

The default generated debug configurations in Atollic TrueSTUDIO contains the GDB 
commands needed to setup target communication speed, to flash and reset the device 
and to set some breakpoints. This is not of any use to us when we want to connect to a 
running system which may, or may not, have crashed. Therefore the first step is to make 
sure that we have a debug script that will not accidentally flash or reset your CPU, which 
could be very annoying when you finally have managed to trigger a crash behavior which 
has been difficult to track down.  

In order to create a modified debug configuration perform the steps below: 

1. Press the Debug Configurations button 

2. In the left frame of the Debug Configurations GUI, select the debug configuration 
associated to the project/application that you want to debug and make a copy of 
this by right-clicking it and click Duplicate 

3. Give the duplicate Debug Configuration a name 

4. Go to the tab called Startup Script, Target Software Startup Script, Debug 

http://blog.atollic.com/how-to-attach-segger-j-link-to-crashed-target
http://blog.atollic.com/how-to-attach-segger-j-link-to-crashed-target


 
Debugging 

  
 
 

252 | P a g e  
 

5. Use the # (hash-key) to comment out all GDB-commands or simply delete all 
commands. See picture below. 

 

Figure 235 – Modify Startup Script 

Step 2: Connect the J-Link to the embedded target 

Connect the J-link to the computer. Then connect it to the embedded target. No reset 
should be issued. 

Step 3: Start a debug session using the modified debug configuration 

Important! Do not make the mistake of launching the debug session using the wrong 
debug configuration, that will probably flash and reset the target.  
Instead the safest way to launch a debug session with full control of which debug 
configuration is applied (and thereby preventing a potential reset) is by using the menu 
selection Run, Debug Configurations... Then select the modified debug configuration in 
the left frame and click Debug. 



 
Debugging 

  
 
 

253 | P a g e  
 

Voilà - the debugger should now be connected to the embedded target which is 
automatically halted. At this point different status registers and variables can be 
investigated in the application. If the CPU has crashed, then also use the Fault Analyzer to 
better understand what went wrong, why and where. 



 
Debugging 

  
 
 

254 | P a g e  
 

STOPPING THE DEBUGGER 
When the debug session is completed, the running application must be stopped. 

1. Stop the target application by selecting the Run, Terminate menu 
command, or by clicking on the Terminate toolbar button in the Debug 
view.  

 

Figure 236 - The Terminate Menu Command 

 

  



 
Debugging 

  
 
 

255 | P a g e  
 

2. Atollic TrueSTUDIO now automatically switches to the C/C++ editing 
perspective 

 

Figure 237 - C/C++ Editing Perspective 

 

 

 

Note! If the debugging is stopped in a sudden way, the actual GDB Server 
process might still be running without doing anything but eating up CPU 
power and hanging the TCP/IP port. Please make sure that no process name 
“arm-atollic-eabi-gdb.exe” is running when encountering this problem. It will 
also eat up the memory and eventually nothing will work on the computer. 



 
Debugging 

  
 
 

256 | P a g e  
 

UPGRADING THE GDB SERVER 
Some GDB probe manufacturer, such as Segger, upgrades their GDB server more 
frequently than new versions of Atollic TrueSTUDIO are released. To use the latest version, 
download it from the manufacturer website and install it in the preferred folder. 

Then change the setting that points out where the server is stored. Select the top-menu 
Window, Preferences and then open Run/Debug, Embedded C/C++ Application, Debug 
Hardware, and the name of the GDB probe used. The path to the newly installed GDB 
server can be entered there. 

 

Figure 238 – Changing the Path to the GDB Server 

 

 

 



 
Debugging 

  
 
 

257 | P a g e  
 

CONFIGURE SEGGER’S GDB SERVER 
Segger’s GDB Server can be configured for such as logging and flashing.  

Do the following steps to configure Seggers’s GDB server. 

Connect the JTAG probe to the computer. 

Open a command window (cmd) in Windows and move to the folder for the installed GDB 
server: 

cd %TrueSTUDIO installation folder%\Servers\J-Link_gdbserver  

(or where the GDB server is installed). 

Start the GDB server with  

JLINK.exe 

Now there should have a new icon in Windows Notification Area (by default in the lower 
right corner in Windows) for Segger J-Link GDB server. Right click to open it. The Control 
panel for the GDB server will then be opened. 

 

Figure 239 –GDB Server Control Panel – General Tab 

A good idea is now to in the General tab deselect Start minimized and Always on top. 

 



 
Debugging 

  
 
 

258 | P a g e  
 

CHANGE FLASH CACHING 
The Memory View does not always reflect exactly what’s flashed on the target.  
  
What does not happen is if the program alters the flash contents, the Memory panel does 
not reflect that. 

To fix this go to the Settings tab and deselect the Allow caching of flash contents. 

 

ENABLE LOG FILE 
Do the following steps to enable logging to a log file in Seggers’s GDB server 

1. Open the Control Panel as described above. 

2. Then open the Settings tab and enter a name of a log file.   

3. Close, stop the running GDB server and restart debugging. 

4. The GDB server should now save information in the new log file. 

 

Figure 240 –GDB Server Control Panel – Settings tab 



 
Debugging 

  
 
 

259 | P a g e  
 

SETTINGS COMMAND LINE OPTION 
There is a Command Line option to the Segger GDB server to include a settings file when 
debugging. In order to make this useful in Atollic TrueSTUDIO set the Debug Configuration 

to Connect to remote GDB server. 

 

Figure 241 – Debug Configuration – Connect to Remote GDB Server 

Then start the GDB server manually from the command line. 

A typical command line for a STM32F10C eval board is the following: 

JLinkGDBServerCL.exe -port 2331 -CPU Cortex-M -device STM32F107VC -

endian little -speed 4000 -if swd  

Now add the -SettingsFile C:\tmp\ExampleSettingsFile.txt   to the command. 

 



 
Debugging 

  
 
 

260 | P a g e  
 

DEBUGGING CODE IN RAM 
It is possible to debug program in RAM instead of FLASH and debugging in RAM can be 
done with any kind of debug probe but there are some requirements to do this.  

1. First the program needs to be located into the RAM so the program needs to fit 
into the RAM. In most cases microcontrollers have a smaller RAM compared to 
the size of the FLASH so unfortunately in many cases it will not be possible to 
have the complete program, data and stack stored into RAM. 

2. Normally for Cortex-M based devices there is a need to set the Vector Base 
Register (VBR) to the location in RAM where the interrupt vector is located. The 
Cortex-M0 core does not have any VBR so when a microcontroller which is based 
on Cortex-M0 is used it will not be possible to use any interrupts when code is 
located to RAM. 

 

3. When debugging in RAM the gdb script which loads the code must not have a 
monitor reset command after the load command. Remove the monitor reset 
command after the load command and gdb will set the Program Counter to the 
entry of the program which has been loaded.  
 
If there is a monitor reset command after load a reset will be issued and the 
code will then execute from FLASH. 
 
 

Some STM32-EVAL boards have special Mode switches which shall be set in 
RAM mode if debugging in RAM. This is a solution in STM32 to configure the 
device so that it uses address 0x20000000 as the base of interrupt vector. In 
that case there is no need to setup the vector base register to the RAM start 
address offset when the Mode switches are in RAM mode. 



 
Debugging 

  
 
 

261 | P a g e  
 

DEBUGGING TWO TARGETS AT THE SAME 

TIME 
Multiprocessor debugging is possible using two ST-Link or Segger’s J-Links at the same time 
connected to two different microcontrollers, these probes are both connected to one PC 
on different USB-ports. For clarity let us say that the developer have two different 
microcontrollers: HW_A and HW_B.  

In Atollic TrueSTUDIO this will typically require only running one instance of Atollic 
TrueSTUDIO containing one project for each microcontroller. 
 
The default port to be used for Segger J-Link is 2331 and for ST-Link 61234. This is 
presented in the Debugger tab in the Debug Configurations dialog. The developer needs to 
change the port for one of the projects to use another port, e.g. port 2341.  

 

FIRST ALTERNATIVE - LOCAL GDB-SERVER USING 

GUI OPTIONS 
The debug configuration for the project can use GDB connection selection Autostart local 
GDBServer.  
However, please note that as two J-Links are connected to the PC the Segger J-Link 
software will display a GUI where it must be selected which J-Link that is to be associated 
with which hardware board and the ST-Link a panel with similar functionality where the 
ST-Link with the correct serial number should be selected. 

The developer needs to be quite fast to make the selection here and start the GDB server. 
When the selection is made, the GDB server will start and connect to the board using the 
selected probe and GDB will connect to the GDB server.  
If this selection is not made fast enough the debug session in Atollic TrueSTUDIO will 
timeout because there was no server to connect to. 

When the Debug Configuration has been configured for both projects so that each board is 
associated to a specific probe, the user may try to debug each board individually first.  
 
When it is confirmed that this is working it is time to debug both targets at the same time. 
Proceed as follow:  
1. First start to debug HW_A.  
2. The developer will automatically be switched to the Debug Perspective in Atollic 
TrueSTUDIO when a debug session is started. Switch to C/C++ Perspective. 
3. Select the project for HW_B and start debugging this. The Debug perspective will now 
open again.  
4. There will be two application stacks/nodes in the debug view: One for each project 
(hardware). When changing selected node in the Debug view the depending editor, 
variable view etc. will be updated to present information valid to the selected 
project/board.  



 
Debugging 

  
 
 

262 | P a g e  
 

 

Second Alternative - Remote GDB-server 
Using Command-line Options 
It may be easier to start the GDB server manually and change the Debug Configurations to 
Connect to remote GDB server. This setting is made in the Debugger tab in the Debug 
Configurations dialog. 
 
If Connect to remote GDB server is selected, the developer must start the GDB server 
manually before starting the debug session. 
 
To start Segger J-Link GDB server manually please follow this procedure:  

 
1.  Open a Windows Console (Command Prompt, cmd.exe)  

 
2.  Change directory to the location where the GDB server is located, normally to:  
C:\Program Files (x86)\Atollic\TrueSTUDIO for STM32 9.0.0\Servers\J-

Link_gdbserver 

 
3.  Start the GDB server: E.g start using port 2341 with SWD interface mode:  
JLinkGDBServerCL.exe -port 2341 -if SWD -select usb=123456789  
(The 123456789 is serial number of dongle.) 
 
Start another GDB server in a second command prompt, using another port number in a 
similar way and let this connect to the second probe.  
 
Now when both GDB servers are running the developer can debug the two projects 
individually or multi-target. Please note that the Debug Configurations needs to use the 
same port as the GDB server is listening on and Connect to remote GDB server shall be 
used. 

 

 



 
Introduction 

 
 
 

263 | P a g e  
 

 BUILD ANALYZER 
This section provides information on how to use the Atollic TrueSTUDIO Build Analyzer view.  

The following topics are covered: 

 Introduction to Build Analyzer 

 Using Build Analyzer 

 

 

  



 
Build Analyzer 

  
 
 

264 | P a g e  
 

INTRODUCTION TO BUILD ANALYZER 
The Build Analyzer view is used to get a visual view on built programs. It analyzes an .elf 
file in detail and presents the information in the view. If a .map file, with similar name, is 
found in the same folder as the .elf file also information from the .map file is used and 
even more information can be presented. The view can also analyze and display 
information about an object file. 

The view contains two tabs. The Memory Regions tab and the Memory Details tab.  

The Memory Regions tab is populated with data if the .elf file contains a corresponding 
.map file. When the .map file is available this tab can be seen as a brief summary of the 
memory regions with information about region name, start address and size. The size 
information also comprises total size, free and used part of the region, and a usage 
number in percentage.  

The Memory Details tab contains detailed program information based on the .elf file. 
The different section names are presented with address and size information and each 
section can be expanded and collapsed. When a section is expanded functions/data in this 
section is listed (green icons are used to show function names and blue icons are used for 
data variables). Each presented function/data contains address and size information. The 
memory details tab also contain information for object files, .o files, when such files are 
selected.  

When there is a need to optimize or simplify a program the Build Analyzer view is good to 
use when there is a need to optimize or simplify a program. 

 

 

 

 



 
Build Analyzer 

  
 
 

265 | P a g e  
 

USING BUILD ANALYZER 
The Build Analyzer view is by default open in the C/C++ perspective. If the view is closed it 
can be opened from the menu. Select the menu command View, Build Analyzer or use the 
toolbar icon Show View to open a drop down list; then select Other  and in the Show View 
dialog C/C++ -> Build Analyzer. Another way to open the Build Analyzer view is to type 
Build Analyzer into the Quick Access search bar and select it from the views. 

When the Build Analyzer view is open select an .elf or an .o file in the Project Explorer 
view. The Build Analyzer view will then be updated with the information it founds in the 
file. When an .elf file is selected and a .map file, with similar name, is found in the same 
folder also information from the .map file is used by the view.  

The Build Analyzer view will also be updated if a project node in the Project Explorer view 
is selected. In this case the Build Analyzer uses the .elf file which corresponds to the 
current active build configuration for the project. The view only provides information for 
embedded projects so it will be empty for PC projects.  

 

Figure 242 – Build Analyzer 

 

MEMORY REGIONS 
The Memory Regions tab of the Build Analyzer view displays information based on the 
corresponding .map file. If no information is displayed there is no corresponding .map file 
found. When a .map file is found the Region names, Start address, End address, Total size 
of region, Free size, Used size and Usage (%) information is presented.  

These regions are normally defined in the linker script .ld file used when building the 
program. If any changes of the location or size of a memory region needs to be done then 
please update the linker script file. 

 



 
Build Analyzer 

  
 
 

266 | P a g e  
 

 

The Usage (%) column contains a bar icon corresponding to the percentage value. The bar 
has different color depending of the percentage of used memory:  

  Usage Color Description 

Green Less than 75% of memory used 

Yellow 75-90% of memory used 

Red More than 90% of memory used 

Table 3 – Memory Regions Usage Color 

 

Figure 243 – Memory Regions Tab 

 

MEMORY DETAILS 
The Memory Details tab of the Build Analyzer view contains information for the .elf file. 
The view can also display information about an object file, so if an object file is selected 
the size information for the object file is updated.  

Each section in the Memory Details tab can be expanded so that individual functions and 
data can be seen. The table contains columns with Name, Run Address (VMA), Load 
Address (LMA) and Size information.  

The column information are described in the table below: 

The Memory Regions tab is empty if the .elf file does not have a 
corresponding .map file. Memory Regions tab is also empty when a .o file is 
selected. 

 



 
Build Analyzer 

  
 
 

267 | P a g e  
 

  Name Description 

Name Name of Memory Regions (if a corresponding .map file is 
found), Sections, Symbols, Functions, Variables, …  

Run Address (VMA) The Virtual Memory Address contains the address used 
when program is running. 

Load Address (LMA) The Load Memory Address is the address used for load, 
e.g. Initialization values for global variables. 

Size The used size (total size for Memory Regions) 

Table 4 – Memory Details 

 

 

Figure 244 – Memory Details Tab 

 

SIZE INFORMATION 

The size information in the Memory Details tab is calculated from the symbol size in the 
.elf file. If a corresponding  .map file is investigated this may contain a different size 
value. Normally the size is correct for c-files but the value presented for assembler files 
depends on how the size information is written in the assembler files. The constants used 



 
Build Analyzer 

  
 
 

268 | P a g e  
 

by the function shall be defined within the .section definition. At the end of the section the 
.size directive is used by the linker to calculate the size of the function.  

Example: Reset_Handler in startup.s file 

This is an example on how to write the Reset_Handler in an assembler startup file to 
include the constants _sidata, _sdata, _edata, _sbss, _ebss in the size information for the 
Reset_Handler in the .elf file. If these constants are defined outside the Reset_Handler 
section definition the size of these constants will not be included in the calculated size of 
the Reset_Handler. To include them in the size of the Reset_Handler these definitions 
should be placed inside the Reset_Handler section in the following way.  

.section  .text.Reset_Handler 

.weak  Reset_Handler 

.type  Reset_Handler, %function 

 

Reset_Handler: 

  ldr   sp, =_estack    /* set stack pointer */ 

 

/* Copy the data segment initializers from flash to SRAM */   

  movs  r1, #0 

  b  LoopCopyDataInit 

 

CopyDataInit: 

  ldr  r3, =_sidata 

 

/* initialization code data, bss, ... */ 

  ... 

 

/* Call the application's entry point.*/ 

  bl  main 

  bx  lr     

 

/* start address for the initialization values defined in 

linker script */ 

.word  _sidata 

.word  _sdata 

.word  _edata 

.word  _sbss 

.word  _ebss 

 

.size  Reset_Handler, .-Reset_Handler 

 

 



 
Build Analyzer 

  
 
 

269 | P a g e  
 

SORTING 

The sort order of Memory Details tab can be changed by clicking on a column name.  
E.g. Sort information by size: 

 

Figure 245 – Memory Details Sorted 

  



 
Build Analyzer 

  
 
 

270 | P a g e  
 

SEARCH AND FILTER 

The information in the Memory Details tab can be filtered by entering a string in the 
search field.  

E.g. Search for names including the string “dma”. 

 

Figure 246 – Memory Details Search/Filter 

 

  



 
Build Analyzer 

  
 
 

271 | P a g e  
 

CALCULATE SUM OF SIZE 

The sum of the size of several lines in the Memory Details tab can be calculated by 
selecting several lines in the view. The sum of the selection is presented above the Name 
column in the view.  

 

Figure 247 – Calculate Sum of Size 

 

DISPLAY SIZE INFORMATION IN BYTE FORMAT 

The Build Analyzer can display size information in “Byte/Kbyte” format or in “Show Byte 

Count” format. The icon   in the Build Analyzer toolbar is used to switch between these 
two formats. The Show byte count format can be an better option to use when making 
Copy and Paste of data into an Excel document for later calculations. 

 

 

Figure 248 – Show Byte Count 



 
Build Analyzer 

  
 
 

272 | P a g e  
 

 

Figure 249 – Size Information in Byte Format 



 
Introduction 

 
 
 

273 | P a g e  
 

COPY AND PASTE 

The data in the Memory Details tab can be copied to other applications in CSV-format by 
selecting the rows to copy and type Ctrl+C. The copied data can be pasted into another 
application with the Ctrl+V command. 

 

Figure 250 – Copy and Paste 

For example when making a copy of the selected lines in previous figure the copied 
information will be: 

"image1";"0x080c8000";"0x080c8000";"80000" 

"image2";"0x080db880";"0x080db880";"52000" 

".sound";"0x080f0000";"0x080f0000";"60000" 

 



 
Introduction 

 
 
 

274 | P a g e  
 

 STATIC STACK ANALYZER 
This section provides information on how to use the Atollic TrueSTUDIO Static Stack Analyzer 
view.  

The following topics are covered: 

 Introduction to Static Stack Analyzer 

 Using Static Stack Analyzer 

 

 

  



 
Static Stack Analyzer 

  
 
 

275 | P a g e  
 

INTRODUCTION TO STATIC STACK ANALYZER 
The Static Stack Analyzer view calculates the stack usage based on the built program. It 
analyzes the .su files, generated by gcc, and the .elf file in detail and presents the 
information in the view.  

The view contains two tabs. The List tab and the Call Graph tab.  

The List tab is populated with the stack usage for each function included in the program. 
There is one line per function and each line consist of Function, Local cost, Type, Location 
and Info columns.  

 

Figure 251 – Static Stack Analyzer List Tab 

The Call Graph tab contains an expandable list with functions included in the program. 
Lines which are representing functions which are calling other functions can be expanded 
to see the call hierarchy. 

 

Figure 252 – Static Stack Analyzer Call Graph Tab 



 
Static Stack Analyzer 

  
 
 

276 | P a g e  
 

USING STATIC STACK ANALYZER 
The Static Stack Analyzer view is by default open in the C/C++ perspective. If the view is 
closed it can be opened from the menu. Select the menu command View, Static Stack 
Analyzer or use the toolbar icon Show View to open a drop down list; then select Other  
and in the Show View dialog C/C++ -> Static Stack Analyzer. Another way to open the 
Static Stack Analyzer view is to type Static Stack Analyzer into the Quick Access search 
bar and select it from the views. 

The Static Stack Analyzer view will be populated when a project has been built and is 
selected in the Project Explorer. The program needs to be built with option Generate per 
function stack usage information enabled. Otherwise the view will not be able to present 
any stack information.  

 

ENABLE STACK USAGE INFORMATION 
If the top of the view displays the message No stack usage information found, please 
enable in the compiler settings then there is a need to update the build configuration for 
the linker to generate stack information. Open the properties for the project, for instance 
with a right-click on the project in the Project Explorer view. Select Properties and in the 
dialog and select C/C++ Build, Settings. Select the Tool Settings-tab, C Compiler, 
Debugging and enable Generate per function stack usage information, see figure below. 
Then save the setting and rebuild the program. 

 

Figure 253 – Enable Generate per Function Stack Usage Information 

How to setup the compiler to generate stack usage information is explained in 
next chapter.  

 

 



 
Static Stack Analyzer 

  
 
 

277 | P a g e  
 

BASIC COLUMN INFORMATION 
The information in the Static Stack Analyzer tabs contains the following symbols and 
definitions in the columns.  

FUNCTION COLUMN 

Normally there is a small icon to the left of the function name in the Function column. The 
icon is: 

 green dot when the function uses STATIC stack allocation (fixed stack) 

 blue square when the function uses DYNAMIC stack allocation (run-time 
dependent) 

 010 icon is used if the stack information is not known. This can be the case for 
library functions or assembler functions.  

 Three arrows in a circle are used in the Call Graph view when the function makes 
recursive calls 

 

Figure 254 –Function Symbols in Static Stack Analyzer 

  



 
Static Stack Analyzer 

  
 
 

278 | P a g e  
 

DEPTH COLUMN 

The Depth column specifies the call stack depth this function uses 

 0 when function does not call any other functions 

 Number >=1 when function calls other functions 

 ?  when function makes recursive calls or the depth could not be calculated 

MAX COST COLUMN 

The Max cost column specifies how many bytes of stack the function will use including 
stack needed for called functions. 

LOCAL COST COLUMN 

The Local cost column specifies how many bytes of stack the function will use. This column 
does not take into account any stack which may be needed by functions it may call.  

TYPE COLUMN 

The Type column specifies 

 STATIC  (the function uses a fixed stack) 

 DYNAMIC (the function uses a run-time dependent stack) 

 Empty field (no stack usage information available for the function) 

INFO COLUMN 

The Info column contains specific information about the stack usage calculation. For 
instance it can hold a combination of the following messages. 

 Max cost uncertain  (the reason can be that the function makes a call to some 
sub function where the stack information is not known or the function makes 
recursive calls etc.) 

 Recursive (the function makes recursive calls) 

 No stack usage information available for this function (no stack usage 
information available for this function) 

 Local cost uncertain due to dynamic size, verify at run-time (the function 
allocates stack dynamically, e.g. depending on in parameter) 



 
Static Stack Analyzer 

  
 
 

279 | P a g e  
 

LIST TAB 
The List tab contains a list of all functions included in the selected program with options to 
Hide dead code functions and to Filter visible functions.  

The Hide dead code selection is used to enable or disable listing dead code functions.  

The Filter field works in the way that when some characters are entered into the field only 
functions matching the characters are displayed.  

The column information in the List tab is described in the table below: 

  Name Description 

Function Function name  

Local cost The number displays how many bytes of stack the function 
will use. 

Type Tells if the function uses a STATIC or DYNAMIC stack 
allocation. When DYNAMIC allocation is used the actual 
stack size is run-time dependent and the the Local cost 
value is uncertain due to the dynamic size of stack. 

Location 

 

Info 

Indicates where the function is declared. It is possible to 
double click on a line and open the file with the defined 
function in the editor. 

Additional information about the calculation. 

Table 5 – Static Stack Analyzer List tab 

   

Figure 255 –List tab 



 
Static Stack Analyzer 

  
 
 

280 | P a g e  
 

 

CALL GRAPH TAB 
The Call Graph tab contains detailed program information in a tree view. Each function 
included in the program but not called by any other function is presented on top level. It is 
possible to expand the tree to see called functions. Only functions available in the .elf file 
can be visible in the tab. 

The Filter field works in the way that when some characters are entered into the field only 
functions matching the characters are displayed.  

The column information in the Call Graph tab is described in the table below: 

  Name Description 

Function Function name.  

Depth 

 
 

 

Max cost  

 
Local cost 

Displays how many nested function levels that will be 
called by the function. The value is 0 if no functions are 
called and ? mark is displayed if the number of  called 
functions could not be calculated for instance the source 
code could not be found or the function makes recursive 
calls. 

The number displays how many bytes of stack the function 
will use including stack needed for called functions. 

The number displays how many bytes of stack the function 
will use. 

Type Tells if the function uses a STATIC or DYNAMIC stack 
allocation. When DYNAMIC allocation is used the actual 
stack size depends on run-time and then the Local cost 
value is uncertain due to the dynamic size of stack. 

Location 

 

Info 

Indicates where the function is declared. It is possible to 
double click on a line and open the file with the defined 
function in the editor. 

Additional information about the calculation. 

Table 6 – Static Stack Analyzer Call Graph tab 

 

By double-clicking on a line which displays the file location and line number in 
the List  tab, the function will be opened in the Editor view.  

 

 



 
Static Stack Analyzer 

  
 
 

281 | P a g e  
 

The main function is normally called by the Reset_Handler and can in those cases be 
seen when expanding the Reset_Handler node. In this figure below the reset function 
name is called ResetISR. By expanding the node it can be seen that the ResetISR calls 
the main function which calls initLED and toggleLED functions. The local cost of stack 
for the main function is in this case 16 and the max cost is 32 as the main function call 
initLED and toggleLED functions which also consumes 16 bytes of stack. 

  

Figure 256 –Call Graph tab 

By double-clicking on a line which displays the file location and line number in the tab, the 
function will be opened in the Editor view. 

 

 

 

USING SEARCH FIELD 
The List tab and the Call Graph tab contains a filter/search field which can be used to 
search a specific function or functions matching the characters entered into the field.  

The next figure displays the List view using Filter field to see functions containing the 
characters LED in the name.  

The main function is normally called by the Reset_Handler and can in those 
cases be seen when expanding the Reset_Handler node. 

 

 

If unused functions are listed in the tab then please check if the linker option 
dead code removal should be enabled to remove unused code from the 
program. Read more on this in the Dead Code Removal chapter, page 121. 

 



 
Static Stack Analyzer 

  
 
 

282 | P a g e  
 

 

Figure 257 –List tab using filter 

 

Another example is to use the Search field in the Call Graph tab. The function(s) matching 
the search field is find, press Serch to  find next function(s).  

 

 

Figure 258 –Call Graph tab using search 

 

COPY AND PASTE 
The data in the List tab can be copied to other applications in CSV-format by selecting the 
rows to copy and type Ctrl+C. The copied data can be pasted into another application with 
the Ctrl+V command. 



 
Static Stack Analyzer 

  
 
 

283 | P a g e  
 

  

Figure 259 – Copy and Paste 

For example when making a copy of the selected lines in previous figure the copied 
information will be: 

"STM_EVAL_LEDInit";"24";"STATIC";"stm32f4_discovery.c:122";"" 

"STM_EVAL_LEDOn";"16";"STATIC";"stm32f4_discovery.c:148";"" 

"SetSysClock";"16";"STATIC";"system_stm32f4xx.c:338";"" 

"SystemInit";"8";"STATIC";"system_stm32f4xx.c:204";"" 

"main";"16";"STATIC";"main.c:47";"" 

 



 
Getting Started 

 
 
 

284 | P a g e  
 

 SERIAL WIRE VIEWER 

TRACING 
This section provides information on how to use Serial Wire Viewer Tracing (SWV) in  
Atollic TrueSTUDIO for STM32.  

The following topics are covered: 

 Using Serial Wire Viewer Tracing 

 Start SWV Tracing 

 The Timeline graphs 

 Statistical profiling 

 Printf() redirection over ITM 

 Change the Trace Buffer Size 

 Common SWV problems 

 

  



 
Serial Wire Viewer 

  
 
 

285 | P a g e  
 

USING SERIAL WIRE VIEWER TRACING 
To use system analysis and real-time tracing in compatible ARM® processors, a number of 
different technologies interact; Serial Wire Viewer (SWV), Serial Wire Debug (SWD) and 
Serial Wire Output (SWO). These technologies are part of the ARM® Coresight™ debugger 
technology and will be explained below.  

SERIAL WIRE DEBUG (SWD) 
Serial Wire Debug (SWD) is a debug port similar to JTAG, and provides the same debug 
capabilities (run, stop on breakpoints, single-step) but with fewer pins. It replaces the JTAG 
connector with a 2-pin interface (one clock pin and one bi-directional data pin). The SWD 
port itself does not provide for real-time tracing. 

SERIAL WIRE OUTPUT (SWO) 
The Serial Wire Output (SWO) pin can be used in combination with SWD and is used by the 
processor to emit real-time trace data, thus extending the two SWD pins with a third pin. 
The combination of the two SWD pins and the SWO pin enables Serial Wire Viewer (SWV) 
real-time tracing in compatible ARM® processors.  

Please note that the SWO is just one pin and it is easy to set a configuration that produces 
more data than the SWO is able to send. 

SERIAL WIRE VIEWER (SWV) 
Serial Wire Viewer is a real-time trace technology that uses the Serial Wire Debugger 
(SWD) port and the Serial Wire Output (SWO) pin. Serial Wire Viewer provides advanced 
system analysis and real-time tracing without the need to halt the processor to extract the 
debug information. 

Serial Wire Viewer (SWV) provides the following types of target information: 

 Event notification on data reading and writing 

 Event notification on exception entry and exit 

 Event counters 

 Timestamp and CPU cycle information 

Based on this trace data, modern debuggers can provide developers with advanced 
debugger capabilities. 

 



 
Serial Wire Viewer 

  
 
 

286 | P a g e  
 

INSTRUMENTATION TRACE MACROCELL (ITM) 
The Instrumentation Trace Macrocell (ITM) enables applications to write arbitrary data to 
the SWO pin, which can then be interpreted and visualized in the debugger in various 

ways. For example, ITM can be used to redirect printf() output to a console view in 
the debugger. The standard is to use port 0 for this purpose. 

The ITM port has 32 channels, and by writing different types of data to different ITM 
channels, the debugger can interpret or visualize the data on various channels differently. 

Writing a byte to the ITM port only takes one write cycle, thus taking almost no execution 
time from the application logic.  

 

 

Figure 260 –Different Types of Tracing 



 
Serial Wire Viewer 

  
 
 

287 | P a g e  
 

STARTING SWV TRACING 
To use the Serial Wire Viewer (SWV) in Atollic TrueSTUDIO, the JTAG Probe must support 
SWV. Older JTAG Probes, such as ST-LINK V1, don’t.  

The GDB server must also support SWV. The ST-LINK gdbserver must be of version 1.4.0 or 
later, and the SEGGER J-LINK gdbserver must be of version 4.32.A or later. Older GDB 
server versions that may be installed must be upgraded to the versions included in the 
Atollic TrueSTUDIO product package in order to use SWV tracing. 

To use SWV the board must support SWD. Please note that devices based on ARM Cortex-
M0 and Cortex-M0+ cores do not support SWV tracing.  

1. Open the Atollic TrueSTUDIO debug configuration dialog by selecting the 
current project in the Project Explorer, and clicking the Configure Debug 
toolbar button. 

 

Figure 261 – Open Debug Configurations Toolbar Button  

The Debug configuration panel is then opened. 

 

Figure 262 – Change ST-Link Debug Configuration for SWV  



 
Serial Wire Viewer 

  
 
 

288 | P a g e  
 

  

Figure 263 – Change SEGGER J-Link Debug Configuration for SWV 

2. Enable SWV by selecting the SWD interface. 

3. For the ST-Link JTAG probe: 

 Check the SWV Enable checkbox.  

For the SEGGER J-Link JTAG probe: 

 Select SWV (Serial Wire Viewer) as the Trace system. 

4. Enter the Core Clock frequency. This must correspond to the value set by 
the application program to be executed.  

5. Enter the desired SWO Clock frequency. The latter depends on the JTAG 
Probe and must be a multiple of the Core Clock value. For Segger J-Link-
based probes, it is also possible to select Auto, which will automatically use 
the highest available frequency by taking into account the capacity of the 
JTAG Probe and the Core Clock. 

6. Switch to the Debug perspective by starting a debug session as described 
earlier in this document. A debug session must be running to enable 



 
Serial Wire Viewer 

  
 
 

289 | P a g e  
 

configuration and start of the Serial Wire Viewer tracing capabilities. 
Please note that switching to the Debug perspective alone is not sufficient 
for SWV to work. A debug session must also be running.  

7. Pause the target execution by clicking the yellow Pause button. 

8. Open one of the SWV views. For first-time users, Atollic recommends the 
SWV Trace log view because it will give a good view of the incoming SWV 
packages and how well the tracing is working.  

Thus, select the View, SWV, SWV Trace log menu command. 

 

Figure 264 – SWV Data Trace Menu Command 

9. Open the Serial Wire Viewer settings panel by clicking on the Configure 
Serial Wire Viewer button in the SWV Trace log view toolbar. 

 

Figure 265 – Configure Serial Wire Viewer Button 

10.  Configure the data to be traced, and the trace method.  



 
Serial Wire Viewer 

  
 
 

290 | P a g e  
 

 

Figure 266 – The Serial Wire Viewer Settings Dialog 

A. Information about the current clock settings for this session. 

 

B. Events that can be traced: 

CPI – Cycle per instruction. For each cycle beyond the first one that 

an instruction uses, an internal counter is increased with one. The 

counter (DWT CPI count) can count up to 256 and is then set to 0. 

Each time that happens one of these packages are sent. This is one 

aspect of the processors performance and used to calculate 

instructions per seconds. The lower the value, the better the 

performance. 

SLEEP – Sleep cycles. The number of cycles the CPU is in sleep 

mode. Counted in DWT Sleep Count Register. Each time the CPU has 

been in sleep mode for 256 cycles, one of these packages is sent. 

This is used when debugging for power consumption or waiting for 

external devises.  

FOLD – Folded instruction. A counter for how many instructions are 

folded (removed). Every 256 instruction folded (taken zero cycles) 

you will receive one of these events. Counted in DWT Fold count 

register. 

Branch folding is a technique where, on the prediction of most 

branches, the branch instruction is completely removed from the 

instruction stream presented to the execution pipeline. Branch 



 
Serial Wire Viewer 

  
 
 

291 | P a g e  
 

folding can significantly improve the performance of branches, 

taking the CPI for branches below 1. 

EXC – Exception overhead. The DWT Exception Count register keeps 

track on the number of cycles the CPU spends in exception 

overhead. This includes stack operations and returns but not the 

time spent processing the exception code. When the timer 

overflows one of these events is sent. Used to calculate what the 

exception-handling actually costs the program. 

LSU – Load Store Unit Cycles. DWT LSU Count Register counts the 

total number of cycles the processor is processing an LSU operation 

beyond the first cycle. When the timer overflows one of these 

events is sent. 

With this measurement how much time is spent with memory-

operations can be tracked. 

EXETRC – Trace exceptions. Whenever an exception occur one of 

these events is sent. These events can be monitored in the SWV 

Exception Trace view and the SWV Exception Timeline view. From 

these views you can also jump to the exception handler code for 

that exception. 

 

C. PC Sampling. Enabling this starts sampling the Program Counter 

with some cycle interval. Since the SWO-pin has a limited 

bandwidth it is not a good idea to sample to fast. Experiment with 

this to be able to sample often, but not too often. The results from 

the sample are used, among other things, for the Statistical 

Profiling view. 

 

D. Timestamps – Must be enabled to know when an event occurred. 

The Prescaler should only be changed as a last effort to reduce 

overflow packages. 

 

E. Data Trace - Up to four different symbols or areas of the memory 

can be traced, as for an example the value for a global variable. To 

do that, enable one comparator and enter the name of the variable 

or the memory-address to trace. The value of the traced variables 

can be displayed both in the Data trace view and the Data Trace 

Timeline graph. 

 

F. ITM stimulus ports – Enable one or more of the 32 ITM ports. The 

most common way to use this is to send information 



 
Serial Wire Viewer 

  
 
 

292 | P a g e  
 

programmatically and almost none intrusive. As for an instance the 

CMSIS function ITM_SendChar is used to send characters to port 

0, see below. 

The packages from the ITM ports is display in the SWV console view 

and the ITM Timeline Graph. 

 

 

Overflow while running SWV is an indication that SVW is configured to 
trace more data than the SWO-pin is able to process. In such a case, 
decrease the amount of data traced. 

To use any of the timeline views in Atollic TrueSTUDIO, enable 
Timestamps. The default Prescaler value is 1. Keep this value, unless 
problems occur related to SWV package overflow. 

It is possible to trace up to four different C variable symbols, or fixed 
numeric areas of the memory.  

Below are three examples for the SWV-trace configuration: 

Example 1: To trace the value of a global variable, enable a Comparator 
and enter the name of the variable or the memory address to be traced. 

The value of the traced variables is displayed both in the Data Trace view 
and the Data Trace Timeline graph. 

Example 2: To profile the program execution, enable the PC-sampling. In 
the beginning a high value for the Cycles/sample is recommended.  

The result from the PC-sampling is then displayed in the SWV Statistical 
Profiling view. 

Example 3: To trace the exceptions occurring during program execution, 
enable the Trace Event EXETRC: Trace Exceptions.  

Information about the exceptions is then displayed in the SWV Exception 
Trace Log view and the SWV Exception Timeline Graph. 

 

11.  Save the SWV configuration in Atollic TrueSTUDIO by clicking the OK 
button. The configuration is saved together with other debug 
configurations and will remain effective until changed. 

 

12.  Press the Start/Stop Trace button to send the SWV configuration to the 
target board and start SWV trace recoding. The board will not send any 

Atollic recommends limiting the amount of data traced. Most ARM® -based 
microcontrollers reads and writes data faster than the maximum SWO-pin 
throughput. Too much trace data result in data overflow, lost packages and 
possibly corrupt data. For optimum performance, trace only data vital to the 
task at hand. 



 
Serial Wire Viewer 

  
 
 

293 | P a g e  
 

SWV packages until it is properly configured. The SWV Configuration must 
be resent, if the configuration registers on the target board are reset. 
Actual tracing will not start until the target starts to execute. 

 

Figure 267 – The Start/Stop Trace Button 

Please note the tracing cannot be configured while it is running. Pause 
debugging before attempting to send a new configuration to the board. 
Each new, or changed, configuration must be sent to the board to take 
effect. 

The configuration is sent to the board when the Start/Stop Trace-button is 
pressed. 

 

13.  Start the target execution again by pressing the green Resume Debug 
button. 

 

Figure 268 – Resume Debug Button 

14.  Packages should now be arriving in the SWV Trace Log view (and possibly 
other views too, dependent on trace configuration). 
 

Collected data can be cleared by pressing the Empty SWV-Data button. All 
the timers are also restarted when this button is pressed. 

 

Figure 269 – Empty SWV Data Button 

 

 



 
Serial Wire Viewer 

  
 
 

294 | P a g e  
 

THE SWV VIEWS 

The views that displays SWV trace data are:  

  SWV Trace Log - Lists all incoming SWV packages in a spreadsheet. Useful as 
a first diagnostic for the trace quality. The data in this view can be copied to other 
applications in CSV-format by selecting the rows to copy and type Ctrl+C. The 
copied data can be pasted into another application with the Ctrl+V command. 

  SWV Trace Timeline Graph – A graph displaying all SWV-packages received 
as a function of time. 

  SWV Exception Trace Log – The view has two tabs. The first is similar to the 
SWV Trace Log, but is restricted to Exception events and also has additional 
information about the type of event. The data can be copied and pasted into 
other applications. Each row is linked to the code for the corresponding exception 
handler. Double click on the event and the corresponding interrupt hander source 
code is opened in the editor view. 

The second tab displays statistical information about the Exception events. This 
information may be of great value when optimizing the code. Hypertext links to 
exception handler source code in the editor is included. 

  SWV Exception Timeline Graph – A graph displaying the distribution of 
exceptions over time. Remember that each exception sends up to three SWV-
packages. Double click on the event in the tool tip and the code for the exception 
handler is opened up in the editor view. 

  SWV Console - Prints readable text output from the target application. 
Typically this is done via printf() with output redirected to ITM channel 0. Other 
ITM channels can get their own console view too. 

  SWV ITM Timeline Graph – A graph displaying the distribution of ITM-
packages over time. This can be used for code block execution time visualization. 

  SWV Data Trace – Tracks up to four different symbols or areas in the memory. 
For example, global variables can be referenced by name. 



 
Serial Wire Viewer 

  
 
 

295 | P a g e  
 

  SWV Data Trace Timeline Graph – A graphical display that shows the 
distribution of variable values over time. Applies to the variables or memory areas 
in the SWV Data Trace. 

 SWV Statistical Profiling – Statistics based on Program Counter (PC) sampling.  
Shows the amount of execution time spent within various functions. This is useful 
when optimizing code. The data can be copied and pasted into other applications. 
The view is updated when debugging is suspended. 

More than one SWV view may be open at the same time, for simultaneous tracking of 
various events. 

 

Figure 270 – Several SWV Views Displayed Simultaneously 

  



 
Serial Wire Viewer 

  
 
 

296 | P a g e  
 

THE TIMELINE GRAPHS 
All the timeline graphs, except the Data Trace Timeline, have some common features:  

 Any graph can be saved as an image file by clicking the camera icon. 

 The graphs show the time in seconds by default. 

 The zoom range is limited while debugging is running. More details are available 
when debugging is paused. 

 Zoom in:  Double-click on the left mouse button. Zoom out: Double-click on the 
right button or use the corresponding toolbar buttons in the view. 

 The tooltip shows the number of packages in each bar. Except for the Trace 
Timeline Graph, the content of bars with less than 50 packages is showed in a 
detailed view. 

The Data Trace Timeline displays distinct values for variables during execution and 
has different features than the above graphs. 

 

STATISTICAL PROFILING 
This is a way to obtain information about the amount of execution time spent within 
various functions. It is not based on code analysis but on statistical information regarding 
the part of the code executed. This is a technical limitation of the SWV protocol.  

1. Configure SWV to send Program Counter samples, as described below. 
Enable the PC Sampling (A) and Timestamps.  

With the given Core clock cycle intervals, SWV will report the Program 
Counter values to Atollic TrueSTUDIO. Atollic recommends beginning with 
the PC-sampling set to a high Cycle/sample value. This will ensure that the 
interface will not overflow. 



 
Serial Wire Viewer 

  
 
 

297 | P a g e  
 

 

Figure 271 –Statistical Profiling Configuration 

2. Open the Statistical Profiling view by selecting View, SWV Statistical 
Profiling. It will be empty, since no data has been collected. 

3. Push the red Start/Stop Trace button to send the configuration to the 
board.  

4. When you start executing code in the target system, Atollic TrueSTUDIO 
starts collecting statistics about function usage via SWV.  

5. Suspend (Pause) the debugging. The collected data is displayed in the view. 
The longer the debugging session, the more statistics will be collected. 

 

 

Figure 272 – Statistical Profiling View 



 
Serial Wire Viewer 

  
 
 

298 | P a g e  
 

EXCEPTION TRACING 

To make it possible to trace the exceptions encountered during execution, the exception 
packages needs to be enabled. Open SWV Configuration as described above.  

Enable EXETRC: Trace Exception. This will generate Trace Exception packages. Disable all 
other packages not needed at the moment. 

 

Figure 273 – Exception Tracing Configuration 

EXCEPTION DATA 

The exception packages are displayed in the SWV Exception Trace Log view. The view has 
two tabs, the Data tab and the Statistics tab. 

By double-clicking on an entry in the tab, the function will be opened in the Editor if it is 
available in the source code. 

 

Figure 274 – Exception View, Data Tab 



 
Serial Wire Viewer 

  
 
 

299 | P a g e  
 

The columns in the Data tab are: 

  Name Description 

Index The Id for the exception package. Are shared with the 
other SWV packages.  

Type Normally each exception will generate three packages 
each; Exception entry, Exception exit and then an 
Exception return package. TrueSTUDIO displays all three. 

Name The name of the exception provided by the manufacturer. 
Also the exception or interrupt number. 

Peripheral The peripheral for the exception. 

Function The name of the interrupt handler function for this 
interrupt. Updated when debug is paused. Is cached 
during the whole debug session. 
By double clicking the function, the editor will open that 
function in the source code. 

Cycles The timestamp for the exception in cycles. 

Time(s) The timestamp for the exception in seconds 

Extra info Optional extra information about that package. 

Table 7 – Exception Data Columns 

 

EXCEPTION STATISTICS 

The exception statistics is collected whenever Exception packages are received by SWV. It 
can be found in the SWV Exception Trace Log view, in the Statistics tab. 

 

Figure 275 – Exception View, Statistics Tab 



 
Serial Wire Viewer 

  
 
 

300 | P a g e  
 

The statistics can be access by selecting the Statistics tab in the view.  

By double-clicking on an entry in the tab, the function will be opened in the Editor if it is 
available in the source code. 

The available columns are described in the table below: 

  Name Description 

Exception The name of the exception provided by the manufacturer. 
Also the exception or interrupt number. 

Handler The name of the interrupt handler for this interrupt. 
Updated when debug is paused. Is cached during the 
whole debug session. 

By double clicking the handler, the editor will open that 
function in the source code. 

% of This exception type’s share, in percentage, of all 
exceptions. 

Number of The total number of entry packets received by SWV of this 
exception type. 

% of exception time How big part of the execution time for all exceptions that 
this exception type have. 

% of debug time How big part of the total execution time for this debug 
session that this exception type have. All the timers are 
restarted when the Empty SWV-Data button is pressed. 

Total runtime The total execution time in cycles for this exception type. 

Avg runtime The average execution time in cycles for this exception 
type. 

Fastest The execution time in cycles for the fastest exception of 
this exception type. 

Slowest The execution time in cycles for the slowest exception of 
this exception type. 

First The first encounter of an entry event for this exception 
type in cycles. 

First(s) The first encounter of an entry event for this exception 
type in seconds. 

Latest The latest encounter of an entry event for this exception 



 
Serial Wire Viewer 

  
 
 

301 | P a g e  
 

  Name Description 
type in cycles. 

Latest(s) The latest encounter of an entry event for this exception 
type in seconds. 

Table 8 – Exception Statistics Columns 



 
Serial Wire Viewer 

  
 
 

302 | P a g e  
 

PRINTF() REDIRECTION OVER ITM 
Since SWV enables target software to send data back to the debugger using any of the 32 
ITM channels, this feature can be used to redirect printf() output back to the ITM console 
view in the debugger (ITM channel 0 is typically used for printf-redirection).  

1. To make printf()send ITM-packages, the file syscalls.c must be 

configured. If no syscalls.c file was generated when the project 
where generated, the following steps can be performed to generate it: 

 In the Project explorer, right click on the project and select New, Other... 

 Expand System calls. 

 Select "Minimal System Calls Implementation" and click next. 

 Click Browse... and select the src folder as new file container and click OK. 

 Click on Finish and verify that syscalls.c is added to the project. 

2. Inside the syscalls.c file, replace the _write()function with the 
following code: 

int _write(int file, char *ptr, int len) 

{ 

  /* Implement your write code here, this is used 

by puts and printf for example */ 

  int i=0; 

  for(i=0 ; i<len ; i++) 

    ITM_SendChar((*ptr++)); 

  return len; 

} 

 

 

3. Next step is to locate the core_cmX.h file which contains the function 
ITM_SendChar(). The core_cmX.h file is included by the Device 
Peripheral Access Layer Header File (i.e. stm32f4xx.h). That file in turn 
needs to be included in the syscalls.c file.  

If uncertain about where to find the Device Peripheral Access Layer Header 
File, use the Include Browser. Drop the core file in the Include Browser 
view, and check that which files are including the core_cmX.h file. 



 
Serial Wire Viewer 

  
 
 

303 | P a g e  
 

CHANGE THE TRACE BUFFER SIZE 
The incoming SWV-packages are saved in the Serial Wire Viewer Trace buffer. It has a 
default maximum size of 2 000 000 packages. To trace more packages, this figure must be 
increased.  

Select the menu command Widows, Preferences. In the dialog select Run/Debug, 
Embedded C/C++ Application and then Serial Wire Viewer. 

 

Figure 276 – Serial Wire Viewer Preferences 

The buffer is stored in the heap. The allocated heap is displayed by first selecting Window, 
Preferences and General; then enabling “Show heap status”. The current heap and 
allocated memory will be displayed in the lower, right corner.  
There is an upper limit to the amount of memory Atollic TrueSTUDIO can allocate. This 
limit can be increased to store more information during a debug-session. 

Proceed as follows: 

 Navigate to the Atollic TrueSTUDIO installation directory. Open the 
folder in which the IDE is stored. 

 Edit the TrueSTUDIO.ini file and change the –Xmx1024m 
parameter to the desired size in megabytes. 

 Save the file and try launching Atollic TrueSTUDIO again. 



 
Serial Wire Viewer 

  
 
 

304 | P a g e  
 

COMMON SWV PROBLEMS 
Common reasons for SWV not tracing are: 

 The Core Clock of the target is incorrectly set. It is very important to select the 
right Core Clock. If the frequency of the target Core Clock is unknown, it can 
sometimes be found by setting a breakpoint in a program loop and open the 
Expressions View, when the breakpoint is hit.  

Click on Add new expression, type SystemCoreClock and press Enter. This 
is a global variable that according to the CMSIS-standard must be set to the 
correct speed of the Core Clock. 

In CMSIS standard libraries there should be a function called 
SystemCoreClockUpdate(). This can be included in main()to set the 

SystemCoreClock-variable. Then use the Variable view to track it. 

For most devices that do not have libraries that follow the CMSIS-standard, the 

Core Clock can be found in the startup code. It is often named SYSCLK, or a 
similar abbreviation. Also note that if software dynamically change the CPU clock 
speed during runtime, then SWV might stop as the clocking suddenly becomes 
wrong during execution.  

 SWV is not enabled in the currently used debug configuration. 

 The SWV configuration has not been sent to the target board. 

 Some manufacturers, such as Energy Micro, disable SWO pin by default. In this 
case, enable SWO with a function-call, such as DBG_SWOEnable(). 

 The SWO receives too much data. Reduce the amount of data enabled for tracing. 

 The JTAG Probe, the GDB server, the target board, or possibly some other part, 
does not support SWV. 

 

To make sure that any data is received, do the following steps: 

 Open the SWV configuration. Disable all tracing except PS Sampling and 
Timestamps. Set the Resolution to the highest possible value.  

 Save and open the SWV Trace Log. 

 Start tracing. 

 Make sure that incoming packages can be seen in the SWV Trace Log. 

 



 
Getting Started 

 
 
 

305 | P a g e  
 

 MTB TRACING 
(CORTEX-M0+) 

This section provides information on how to use the CoreSight Micro Trace Buffer (MTB) 
which is a simple execution trace block available on some Cortex-M0+ devices.  

The following topics are covered: 

 Introduction to MTB 

 Configure MTB 

 Using MTB 

 Analyzing and Copy MTB Information 



 
  MTB Tracing 

  
 
 

306 | P a g e  
 

INTRODUCTION TO MTB 
The CoreSight Micro Trace Buffer (MTB) is an optional hardware included on some Cortex-
M0+ processor based devices. MTB contains a simple execution trace block which can log 
trace information in a memory buffer in the processor RAM. The buffer location and size 
are configurable. Currently STM32 microcontrollers does not include MTB support. 

The MTB Tace Log view in Atollic TrueSTUDIO is used to configure MTB and view 
instruction trace data from the device. As the trace data is stored in the processor RAM 
the MTB Trace Log view does not need any special debug probe. A normal debug 
connection works fine and it works both in Serial Wire Debug mode and in JTAG Debug 
mode. 

To use MTB when debugging a Cortex-M0+ device it needs to be configured. When 
configuration is made and MTB enabled the MTB module in the processor will capture 
branches made by the processor into the RAM buffer. 

The MTB execution trace packet consists of a pair of 32-bit words generated by the MTB 
when it detects a branch instruction or an exception entry. The trace packet consist of a 
source address (current PC location) and a destination address (next PC address). The MTB 
module stores all such branches into the processor RAM. 

Open the MTB Trace Log view, for instance by writing MTB in the Quick Access field in the 
toolbar and select views MTB Trace Log. The MTB Tace Log view reads the trace packets 
from the processor when the program is stopped and then visualize the executed 
instructions using program information from the .elf file.  

 

Figure 277 –MTB Trace Log View 



 
  MTB Tracing 

  
 
 

307 | P a g e  
 

CONFIGURE MTB 
The MTB must be configured before it can be used. Buffer locations and buffer size needs 
to be set and it is also possible to configure specific behavior on MTB when buffer is full. 
Configuration of MTB is done after a debug session is started.  

Open the Configure MTB Trace dialog box by clicking on the Configure MTB Trace Setting 
button in the MTB Trace Log view toolbar. 

 

Figure 278 – Configure MTB Trace Setting Button 

In the Configure MTB Trace dialog configure the Buffer location and Buffer size and the 
trace operation to be used when/if trace buffer is full. The addresses where to store the 
configured data is read from the device CMSIS-SVD file. The CMSIS-SVD file needs to have 
a MTB node including information about the POSTION, FLOW, MASTER, and BASE 
registers. The reason to read the CMSIS-SVD file to get this information is because the 
location of MTB registers on the Cortex-M0+ device is defined by the chip manufacturer 
when designing the chip. The MTB Trace Log view updates these registers to control the 
behavior of the trace features. 

If a Cortex-M0+ device is used which includes MTB but does not have these registers 
specified in the CMSIS-SVD files the registers can be added into a custom CMSIS-SVD file. 
Make sure to add an MTB node in this custom file containing information about the 
POSTION, FLOW, MASTER, and BASE registers. 

 

Figure 279 – Configure MTB Trace View 

Please note, the buffer must be located to a memory area which is not used by the 
debugged application. There are also some restriction on the buffer location and the 
buffer size. For instance the size needs to be a power of 2. (e,g. 32, 64, 128, …) The 
configuration dialog will signal if any errors in the settings is made. See example below 
where wrong configuration is entered. 



 
  MTB Tracing 

  
 
 

308 | P a g e  
 

 

Figure 280 – Configure MTB with Error Setting 

The MTB configuration is saved in the debug information for the project and reloaded when a new 

debug session is started for the project.  

 



 
  MTB Tracing 

  
 
 

309 | P a g e  
 

USING MTB 
Press the Start/Stop Tracing button to start/stop MTB trace. Actual tracing will not start 
until the target starts to execute.  

 

Figure 281 – The Start/Stop MTB Button 

 

 

When trace is started the trace buffer in the processor will be automatically read by the 
MTB Tace Log view each time the program is stopped, after a step, breakpoint executed or 
processor stopped by some reason. Each time the buffer has been read by the the MTB 
Tace Log view it will configure the CoreSight MTB unit to store next trace instruction data 
at the start of the target trace buffer.  

Start the target execution by pressing the green Resume Debug button or by issuing step 
commands.  

The MTB Trace Log view will be updated when new trace data is found in the target trace 
buffer.  

Collected data can be cleared by pressing the Clear the Buffer button.  

 

Figure 282 – Clear Buffer Button 

The Scroll Trace on Update button is used to toggle if the view shall scroll when updated 
with new data.    

 

Figure 283 – Scroll Trace View on Update Button 

 

Note! If the Start/Stop MTB button is disabled, color grey, then the MTB 
Trace Log view has not been able to detect that MTB is available for the 
device when reading the CMSIS-SVD file. Please verify that the Cortex-M0+ 
contains MTB.  

Please also investigate the CMSIS-SVD file which can be seen in the SFRs view. 
If the MTB node is missing or if the necessary registers in the MTB view are 
missing then create a custom CMSIS-SVD file containing these registers. If the 
MTB node with registers are available in the file then please try to restart the 
debug session again. 

 



 
  MTB Tracing 

  
 
 

310 | P a g e  
 

ANALYZING MTB INFORMATION 
The MTB Trace Log view contains the following columns: 

Name Description 

Index 
 
An incremental number for each line in the view. 

Address The address of the executed instruction. 

Function The Function name which holds the address of the 
instruction. The function name is calculated by the MTB 
Trace Log view using information from the elf-file. 

Instruction Executed instruction. 

“ ” Branch information. “Arrows” displays if a branch is made 
by this instruction, “X” indicates that a conditional branch 
instruction is executed without doing a branch. 

Additional 
 
 
 

Raw packet 

Contains information about the instruction, e.g. data is 
displayed in hex format. The last line when the view is 
populated says “End of Trace…”. This makes it easier to 
find what happened since last execution. 

Packet information. E.g. If the Raw packet displays 0x752-
0x760 and then 0x744-0x74e. First time 0x752-0x760 is 
displayed the MTB instruction log signals that an 
instruction on 0x752 is executed. The MTB then signals at 
0x760 that a branch is made to 0x744. The MTB Trace Log 
view calculates the lines in between. 

Table 9 – MTB Trace Log View Columns 

 

 



 
  MTB Tracing 

  
 
 

311 | P a g e  
 

 

Figure 284 –MTB Trace Log Information 

The Additional column can also indicate “Trace buffer wrapped” which means that the 
instruction trace buffer has been wrapped over. When this happens some trace data has 
been lost since last run. 

 

 Figure 285 –MTB Trace Buffer Wrapped 

 



 
  MTB Tracing 

  
 
 

312 | P a g e  
 

COPY THE MTB LOG 
For further analyses of the MTB Log the lines in the view can be copied. This is done using 
normal windows selection and copy. The log information is copied in csv-format. 

Select the lines to be copied (using Shift) and scroll down or mark all lines in the view 
(using Ctrl+A). The marked lines are then copied in a comma separated list and placed in a 
clipboard using Ctrl+C. The clipboard can be pasted into another file using an editor.  

 

 

 

 

 

 



 
 
 

313 | P a g e  
 

 INSTRUCTION TRACING 
This section provides information on how to do Instruction Tracing with Atollic TrueSTUDIO 
for STM32.  

The following topics are covered: 

 Enable Trace 

 Configuring Start and Stop Triggers 

 Start Trace Recording 

 Analyzing the Trace 

 Exporting the Trace 

 

  



 
Instruction Tracing 

 
 
 

314 | P a g e  
 

INSTRUCTION TRACING 
Atollic TrueSTUDIO supports instruction tracing, provided that trace-enabled hardware is 
being used. Instruction tracing records the execution flow of the processor in real-time. 
The recorded trace buffer can then be analyzed to locate the cause of software errors. 
Instruction tracing is particularly useful when debugging problems that only occur 
sporadically.  

Atollic TrueSTUDIO supports instructing tracing using both the ETM and the ETB methods: 

 ETM tracing works with many Cortex-M devices but requires using an ETM-trace 
enabled JTAG probe. Atollic TrueSTUDIO supports ETM tracing using the Segger J-
Trace JTAG probe. The J-Link and ST-LINK probes cannot be used for ETM tracing 
as they have no trace buffer. The trace buffer in ETM-compatible trace probes are 
typically many megabytes in size. 

 ETB tracing can only be used with Cortex devices that have this feature enabled in 
the silicon. ETB tracing can be done using any of the supported JTAG probes, 
including Segger J-Link, as the trace buffer is not located in the JTAG probe but 
instead inside the target device. This adds to the chip cost and therefore is not 
supported by all chip vendors. The on-chip ETB trace buffer is tiny; typically 2KB 
or 4KB only. 

Both ETM and ETB tracing records all executed machine code instructions, until the 
hardware limits are reached. A trace buffer is filled very quickly even though it is highly 
compressed. The compressed trace buffer in a JTAG probe with a 16MB of trace buffer 
typically expands into 200MB of uncompressed machine readable data, and to 2-3GB of 
human readable data. Instruction tracing thus quickly generates a huge amount of data. 

 

 

CORTEX-M7 AND ETMV4 
Instruction tracing support for Cortex-M7 based cores, using the ARM Embedded Trace 
Macrocell ETMv4, are supported by Atollic TrueSTUDIO from v7.0. Earlier versions of 
Atollic TrueSTUDIO only supported ETMv3.  

ETM/ETB Trace may not work on max CPU clock speed. Please check the User 
manual from the board/microcontroller manufacturer if there are any trace 
clock limitations.  

 

There is also a limitation of the clock speed for Segger J-Trace for Cortex-M 
debug probe. This version of debug probe is specified up to 100 MHz trace 
clock. This means that, as the trace clock usually is ½ of the speed of the CPU 
clock, the max CPU clock speed is 200 MHz when using Segger J-Trace for 
Cortex-M. For higher CPU frequencies, the Segger J-Trace PRO Cortex-M 
should be used.  



 
Instruction Tracing 

 
 
 

315 | P a g e  
 

The ETMv4 uses a much more complex and packed protocol than the ETMv3 and currently 
Atollic TrueSTUDIO only supports basic instruction tracing for ETMv4 based devices.  
Support for speculated execution and data tracing is not implemented yet and only RAW 
and Assembly filtering levels in the Trace Log view can be used for Cortex-M7. 

 

 

ENABLE TRACE 
Instruction tracing (using ETM or ETB) must be enabled in the debug configuration. To 
enable instruction tracing, first open the debug configuration dialog box:  

 

Figure 286 – Enable Tracing in the Debug Configuration 

Perform the following steps to configure a project for instruction tracing: 

As mentioned earlier, the Segger J-Trace for Cortex-M debug probe is specified 
up to 100 MHz trace clock which normally means that the speed of the CPU 
clock can be up to 200 MHz. For higher CPU frequencies, the Segger J-Trace 
PRO Cortex-M should be used.  



 
Instruction Tracing 

 
 
 

316 | P a g e  
 

1. In the Debug probe dropdown list, select Segger J-Trace (for ETM and ETB 
tracing) or Segger J-Link (ETB tracing only). 

2. In the Trace systems dropdown list, select the ETM or ETB trace system. 

3. Ensure the Probe buffer size setting corresponds to the JTAG probe in use (ETM 
tracing only). 

4. For ETM tracing, make sure the Trace Port config selection points to a file that 
setup the ETM trace pins of the device in a way that works for the target board in 
use. The commands in the file are sent to the target when trace recording is 
started first time in a debug session. See the section below for information on 
how to write a new trace port configuration file for custom designed or 
unsupported boards.  
For ETM tracing it is also possible to Save raw ETM trace data to file. Such file 
contains the raw trace data received from the Cortex-M device and the file can 
be used for deeper investigation of trace data.    

5. Click OK to save the settings. 

The project is now configured to use ETM or ETB tracing.  

 

WRITING A TRACE PORT CONFIGURATION FILE 

To be able to use ETM tracing the trace port pins must be configured. A specific trace port 
configuration file can be used for this purpose, if the application software does not 
configure these pins for tracing a device or board. The configuration file is implemented in 
gdb script syntax, and configures the special function registers (SFR’s) related to the ETM 
trace port pins.  

Atollic TrueSTUDIO comes with a readymade trace port configuration file for most of the 
supported boards, but it is possible to edit them, or create new ones, to enable ETM 
tracing on new boards. It is recommended to copy such readymade file to the Project or 
some other folder on the files system if any changes are needed. Make the change in the 
copied file and make sure to point to the correct file in the Trace Port Config selection in 
the debug configuration. 

See the example below forSTM32F4xx: 

#RCC_AHB1ENR:   IO port E clock enable 

set *((unsigned long*) 0x40023830) |= 0x00000010 

 

if ($tracePortWidth == 1) 

  #Trace Port 1-bit configuration 

  #Enable trace in 1-pin mode 

  set *((unsigned long*) 0xE0042004) &= ~0x000000E0 

  set *((unsigned long*) 0xE0042004) |= 0x00000060 

   



 
Instruction Tracing 

 
 
 

317 | P a g e  
 

  #GPIOE_MODER:   PE2..PE3 = Alternate function mode 

  set *((unsigned long*) 0x40021000) &= ~0x000000F0 

  set *((unsigned long*) 0x40021000) |= 0x000000A0 

   

  #GPIOE_OTYPER:   PE2..PE3 = Output push-pull 

  set *((unsigned long*) 0x40021004) &= ~0x0000000C 

        

  #GPIOE_OSPEEDR: PE2..PE3 = 50 MHz Fast speed 

  set *((unsigned long*) 0x40021008) &= ~0x000000F0 

  set *((unsigned long*) 0x40021008) |= 0x000000F0 

     

  #GPIOE_PUPDR:   PE2..PE3 = No pull-up, pull-down 

  set *((unsigned long*) 0x4002100C) &= ~0x000000F0 

 

  #GPIOE_AFRL:    PE2..PE3 = AF0 

  set *((unsigned long*) 0x40021020) &= ~0x0000FF00 

end 

if ($tracePortWidth == 2) 

  #Trace Port 2-bit configuration 

  #Enable trace in 2-pin mode 

  set *((unsigned long*) 0xE0042004) &= ~0x000000E0 

  set *((unsigned long*) 0xE0042004) |= 0x000000A0 

   

  #GPIOE_MODER:   PE2..PE4 = Alternate function mode 

  set *((unsigned long*) 0x40021000) &= ~0x000003F0 

  set *((unsigned long*) 0x40021000) |= 0x000002A0 

   

  #GPIOE_OTYPER:   PE2..PE4 = Output push-pull 

  set *((unsigned long*) 0x40021004) &= ~0x0000001C 

        

  #GPIOE_OSPEEDR: PE2..PE4 = 50 MHz Fast speed 

  set *((unsigned long*) 0x40021008) &= ~0x000003F0 

  set *((unsigned long*) 0x40021008) |= 0x000003F0 

     

  #GPIOE_PUPDR:   PE2..PE4 = No pull-up, pull-down 

  set *((unsigned long*) 0x4002100C) &= ~0x000003F0 

 

  #GPIOE_AFRL:    PE2..PE4 = AF0 

  set *((unsigned long*) 0x40021020) &= ~0x000FFF00 

end 

if ($tracePortWidth == 4) 

  #Trace Port 4-bit configuration 

  #Enable trace in 4-pin mode 

  set *((unsigned long*) 0xE0042004) &= ~0x000000E0 

  set *((unsigned long*) 0xE0042004) |= 0x000000E0 

   

  #GPIOE_MODER:   PE2..PE6 = Alternate function mode 



 
Instruction Tracing 

 
 
 

318 | P a g e  
 

  set *((unsigned long*) 0x40021000) &= ~0x00003FF0 

  set *((unsigned long*) 0x40021000) |= 0x00002AA0 

   

  #GPIOE_OTYPER:   PE2..PE6 = Output push-pull 

  set *((unsigned long*) 0x40021004) &= ~0x0000007C 

        

  #GPIOE_OSPEEDR: PE2..PE6 = 50 MHz Fast speed 

  set *((unsigned long*) 0x40021008) &= ~0x00003FF0 

  set *((unsigned long*) 0x40021008) |= 0x00002AA0 

     

  #GPIOE_PUPDR:   PE2..PE6 = No pull-up, pull-down 

  set *((unsigned long*) 0x4002100C) &= ~0x00003FF0 

 

  #GPIOE_AFRL:    PE2..PE6 = AF0 

  set *((unsigned long*) 0x40021020) &= ~0x0FFFFF00 

end 

 

CONFIGURING THE TRACING SESSION 
Once the JTAG probe and trace system have been configured, and a debug session has 
been started, the tracing can be configured. 

To configure trace, suspend the debug session and open the Trace Log view (Select View in 
the top menu and then ETM/ETB, Trace Log). 

In the Trace Log view toolbar, click on the Configuration toolbar button.  

 

Figure 287 – Configuration Toolbar Button 

The Trace Configuration dialog box will be displayed: 

 

Figure 288 - Trace Configuration 

Configure the Trace Port Width dropdown list to match the number of pins used for ETM 
tracing on the hardware board.  



 
Instruction Tracing 

 
 
 

319 | P a g e  
 

Using the Stall processor on FIFO full checkbox, select one of these two options: 

 Stall the processor when the ETM trace FIFO buffer becomes full. With this 
setting, no trace data is lost but the timing behavior of the application can be 
changed. 

 Do not stall the processor when the ETM trace FIFO buffer becomes full. With this 
setting, the processor will always continue to run at full speed but trace data may 
be lost. 

Some devices support timestamps. Enabling the timestamps can be useful if timing 
information is needed. It will however reduce the amount of other information available. 

  

ETM TRACE PORT CONFIGURATION FILE 

REFERENCE 
When Segger J-TRACE probe is used and ETM tracing selected the Debugger tab in the 
Debug Configurations dialog contains a file reference to a trace port configuration file. This 
file is by default located in the installation of Atollic TrueSTUDIO. This means that if such 
project made with an older Atollic TrueSTUDIO version is imported and used in a new 
Atollic TrueSTUDIO version, the reference requires that the earlier version also is installed. 
Please update the reference to point to the ETM trace port configuration file available in 
the new installation.  

Example of location of ETM Trace Port configuration file for STM32F1xx: 
C:\Program Files (x86)\Atollic\TrueSTUDIO for STM32 

9.0.0\ide\plugins\com.atollic.truestudio.tsp.stm32_1.0.0. 

201712151711\tsp\etm\stm32f4xx.init 

 

ADD TRACE TRIGGER 
The trick with Instruction tracing is to trace only where tracing is needed. Otherwise the 
important information can be impossible to locate in the huge amount of data that will be 
collected or lost since it occurred to long time before debugging was suspended and the 
trace information uploaded.  

There are four hardware triggers that can be set to starting and stopping the tracing on 
different conditions.  

To access them, open the Trace Configuration as above and select Add Trace Triggers… 



 
Instruction Tracing 

 
 
 

320 | P a g e  
 

The triggers can also be added from the Breakpoints view. 

 

Figure 289 - Trace Configuration 

For each of the triggers 0-3, it is possible to define that the trigger shall start or stop 
tracing, if its configured conditions are met. Each trigger has the following options: 

 The Action to perform when the condition is triggered:  

o Trace Start: Starts collecting trace data 

o Trace Stop: Stops collecting trace data 

 The Type of memory access that triggers the action: 

o PC: Triggered when execution reaches an address 

o Data Read: Triggered when data is read from an address 

o Data Write: Triggered when data is written to an address 

o Data Read/Write: Triggered when data is read or written to an address 

 Enter the address to trigger on in the Expression/Address field. This field accepts: 

o Numeric address constants such as 0xffff0010 

o Numeric address ranges such as 0xffff0010 to 0xffff001f 

o Function symbols such as “main” 

o Variable symbols such as “MyGlobalCounter” 

o It is also possible to define mathematical expressions like “main + 7” 

Typically, at least one trigger is configured to start tracing, and another trigger is 
configured to stop tracing. Once the trace start and stop conditions have been configured, 
click OK to save the trace trigger settings. 

 

 

When using ETMv4 based devices, Cortex-M7, only PC triggered type of events 
are supported. Data Read, Data Write, or Data Read/Write triggered events 
are not supported. 



 
Instruction Tracing 

 
 
 

321 | P a g e  
 

ADD TRACE TRIGGER IN THE EDITOR 

Start and Stop Trace Triggers can also be added directly in the C/C++ Editor Ruler and the 
Disassembly view. These triggers work in line with the Breakpoints, except that they will 
not suspend the execution. Instead they will start or stop collecting of trace data when 
execution reaches that line. 

Right click on the ruler to the left in the editor window and select Add Trace Trigger. 

 

Figure 290 – Add Trace Trigger in the Editor 

A new trigger will be created and tracing starts to be collected when execution reaches 
that line of code. 

 

Figure 291 –Trace Trigger in the Editor 

 

MANAGING TRACE TRIGGERS 
All the Trace Triggers are visible from the Breakpoints view. 



 
Instruction Tracing 

 
 
 

322 | P a g e  
 

 

Figure 292 –Trace Trigger in the Editor 

From this view the triggers can easily be inactivated, activated, removed and even added. 

Bear in mind that the hardware supports up to a maximum of four simultaneous Trace 
Triggers. 

 

START TRACE RECORDING  
Once tracing has been enabled, click the Record toolbar button in the Trace Log view to 
enable recording of trace data. 

 

Figure 293 – Record Toolbar Button 

With trace recording enabled, start target execution. When execution is suspended, the 
Trace Log view is filled with the recorded instruction trace (provided the trace start trigger 
condition was fulfilled). 

 

ANALYZING THE TRACE 
When suspending execution, the trace buffer is uploaded to the Trace Log view. It is filled 
with the recorded instruction stream, along with other data that is provided by analyzing 
the trace recording. 



 
Instruction Tracing 

 
 
 

323 | P a g e  
 

 

Figure 294 - The Trace Log View 

The Trace Log view shows detailed information on what the processor was doing up to the 
point of suspending execution. 

Please note the column with graphical icons that annotate the Trace Log view with 
information about execution flow branches: 

 Call a new function 

 Return from a function 

 Jump up in the code 

 Jump down in the code 

 Iterate on the same instruction 

 A conditional branch was not taken 

At the end of the view is the End of Trace marker displayed. This is added to the Trace Log 
each time the buffer is overflowed and it indicates that some trace data most likely is lost.  

 

Figure 295 - Trace Restarted 



 
Instruction Tracing 

 
 
 

324 | P a g e  
 

The other important marker is the Trace restarted marker. It indicates that the target 
wasn’t able to generate all the trace information without affecting the performance of the 
running application. Some data is lost.  

To overcome this issue, enable Stall processor on FIFO full in the Trace Configuration. 

 

DISPLAY OPTIONS 

The Log Trace view supports several different display options: 

 Function call tracing 

 C tracing  

 C/Assembler mixed mode tracing 

 Assembler tracing  

 Raw trace packet log 

Use the different Display Options Toolbar Buttons to switch between the different view-
modes. 

The Function call tracing displays what function the execution is in and from where it is 
called or returned from. 

 

Figure 296 – Display Options Toolbar Button 

 

SEARCH THE TRACE LOG 

The recorded trace buffer can become very large. Atollic TrueSTUDIO supports appended 
trace buffers of a total of 100 million lines. For this reason, a search function is available, 
to enable users to find important information in the potentially huge dataset. 

 

Figure 297 – Search Toolbar Button 

Enabling Stall processor on FIFO full will slow down the processor in some 
situation and hence affect the timing of the execution. For some real time 
applications this is unacceptable. 

 

When using ETMv4 based devices, Cortex-M7, only Assembler tracing and Raw 
trace packet log are supported.  



 
Instruction Tracing 

 
 
 

325 | P a g e  
 

Using the search feature it is possible to search for certain data of particular interest. For 
example, assume a system crash sometimes happens because a variable has an illegal 
value. By searching the instruction trace for the address of the variable, it is possible to 
understand what code modifies the value and gives it the illegal value causing a system 
crash. 

 

EXPORTING A TRACE LOG 
It is possible to save the trace log by clicking on the Export Trace toolbar button in the 
Trace Log view.  

 

Figure 298 – Export Toolbar Button 

The trace log can be saved to either comma separated value files (*.csv) that can be 
imported into Microsoft® Excel®, or to human readable ASCII text files (*.txt). 

Configure the trace record range to export using the From Index and To Index fields.  

As the saved trace log becomes approximately 200 times larger than its compressed size in 
the JTAG probe trace buffer, the saved trace log can optionally be split to many files in 
order to avoid exported trace logs which are several gigabytes in size (for example, the 
16MB compressed trace buffer in Segger J-Trace expands to 2-3GB when saved to a 
human readable trace log file in *.CSV or *.TXT formats).  

 

Figure 299 - Exporting the Trace Log 

Select the file filename and folder to use for the export using the Browse button. In the 
Save As dialog box, select the desired filename and folder, select *.CSV or *.TXT file 
format, and click Save to return to the Export Trace dialog box. Click OK to start exporting 
the trace log. 

 



 
RTOS-Aware Debugging 

 
 
 

326 | P a g e  
 

 RTOS-AWARE 

DEBUGGING 
This section provides information on how to debug Real Time Operating Systems (RTOS) with 
Atollic TrueSTUDIO for STM32.  

The following topics are covered: 

 RTOS Kernel Awareness Debugging 

 Segger embOS 

 FreeRTOS and OpenRTOS 

 Express Logic ThreadX 

 Micrium uC/OS-III 

 HCC Embedded eTaskSync 

 Quadros RTXC 

 TOPPERS/ASP 

 

  



 
RTOS-Aware Debugging 

 
 
 

327 | P a g e  
 

RTOS KERNEL AWARENESS DEBUGGING 
This chapter provides information regarding the Atollic TrueSTUDIO Real Time Operating 
Systems kernel awareness debug features.  

Several different Real Time Operating Systems are supported and the current state of the 
RTOS kernel and the various RTOS kernel objects can easily be inspected in a set of 
dedicated views, in the Atollic TrueSTUDIO Debug perspective.  

 



 
RTOS-Aware Debugging 

 
 
 

328 | P a g e  
 

SEGGER EMBOS 
The kernel awareness features for Segger embOS in Atollic TrueSTUDIO provide the 
developer with a detailed insight into the internal data structures of the embOS kernel. 
During a debug session, the current state of the embOS kernel and the various embOS 
kernel objects such as tasks, mailboxes, semaphores and software timers, can easily be 
inspected in a set of dedicated views, in the Atollic TrueSTUDIO Debug perspective. 

REQUIREMENTS 
The kernel awareness features require Segger embOS version 3.80 or later.  

 

 

FINDING THE VIEWS 
A number of debugger views are available in the Atollic TrueSTUDIO Debug perspective 
when debugging an application containing the embOS real-time operating system.  

These views can be opened from the Show View toolbar dropdown list button. 

 

Figure 300 - View Top Level Menu 

Please note that the level of information available in the different views in 
Atollic TrueSTUDIO depends on the options used when the embOS kernel was 
built. This manual refers to an embOS kernel built with the debug and 
profiling (DP) build options. Please note that microcontrollers based on the 
ARM-cores  Cortex-M0 and Cortex-M0+ do not support Serial Wire Viewer 
tracing. 



 
RTOS-Aware Debugging 

 
 
 

329 | P a g e  
 

 

Figure 301 - embOS Show View Toolbar Button 

 

SYSTEM INFORMATION 

The embOS System Information view displays a number of system variables available in 
the embOS kernel, such as status, number of tasks, etc.  

 

Figure 302 - embOS System Information View 

This view also provides descriptive fault information messages for any fault conditions 
detected by the OS kernel. 

 

Figure 303 - embOS System Information View (Fault Condition) 



 
RTOS-Aware Debugging 

 
 
 

330 | P a g e  
 

The available system variables are described in the table below: 

  Name Description 

OS_Status The current status of embOS. 

OS_Time The number of system ticks since program start. 

OS_NumTasks The number of created tasks. 

OS_pCurrentTask The address (TCB) and name of the currently running task. 

OS_pActiveTask The address (TCB) and name of the next running task. 

embOS build The build options of the currently running embOS kernel. 
In the example, debugging and profiling information (DP) 
is available. 

Table 10 – embOS System Variables 

 

TASK LIST 
The embOS Task List view displays detailed information regarding all available tasks in the 
target system. The task list is updated automatically each time the target execution is 
suspended.  

There is one column for each type of task parameter, and one row for each task. If the 
value of any parameter for a particular task has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 304 - embOS Task List View 

Please note that due to performance reasons, stack analysis (the Stack Info column) is 
disabled by default. To enable stack analysis, use the Stack analysis toggle toolbar button 
in the View toolbar: 



 
RTOS-Aware Debugging 

 
 
 

331 | P a g e  
 

 

The available parameters are described in the table below: 

  Name Description 

N/A Indicates the currently running task. The currently running 
task is indicated by a green arrow symbol. 

Prio The task priority. 

Id The task identifier (TCB address). 

Name The task name. 

Status The current status of the task. The type of object that 
currently blocks a task is presented in parenthesis. 

Timeout The timeout value (OS_Delay) and in parenthesis the point 
in time when the timeout will occur. 

Preemptions The number of times the task has been preempted by a 
higher priority task. 

Waitable Object The address of the object the task is waiting for. 

Events The event mask of the task. A value of 0x0 means that the 
task is not waiting on any events. 

Stack Info The amount of used stack space, the available stack space 
and the stack start address. [Used/Total@Address].  
Note! This feature must be enabled in the View toolbar. 

Activations The number of times the task has been activated. 

Round Robin The number of remaining time slices (ticks) and the time 
slice reload value, during round robin scheduling. 

Table 11 – embOS Task Parameters 

 

TIMERS 
The embOS Timers view displays detailed information regarding all available software 
timers in the target system. The timers view is updated automatically each time the target 
execution is suspended.  



 
RTOS-Aware Debugging 

 
 
 

332 | P a g e  
 

There is one column for each type of timer parameter, and one row for each timer. If the 
value of any parameter for a particular timer has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 305 - embOS Timers View 

The available parameters are described in the table below: 

  Name Description 

Id The timer identifier (address). 

Hook The address and name of the function that is called when 
the timer expires. 

Time The current timer value (ticks) and in parenthesis the 
point in time when the timer expires. 

Period The timer time period (ticks). 

Active Shows whether the timer is active or not.  
1 = Active 
0 = Not active 

Table 12 – embOS Timer Parameters 

 

RESOURCE SEMAPHORES 
The embOS Resource Semaphores view displays detailed information regarding all 
available resource semaphores in the target system. The view is updated automatically 
each time the target execution is suspended. 

There is one column for each type of semaphore parameter, and one row for each 
semaphore. If the value of any parameter for a particular semaphore has changed since 
the last time the debugger was suspended, the corresponding row will be highlighted in 
yellow. 



 
RTOS-Aware Debugging 

 
 
 

333 | P a g e  
 

 

Figure 306 - embOS Resource Semaphores View 

The available parameters are described in the table below: 

  Column Description 

Id The resource semaphore identifier (address). 

Owner The address (TCB) and name of the task currently owning 
the semaphore. 

Use counter The semaphore use counter. Keeps track of how many 
times the semaphore has been claimed by a task. 

Waiting tasks The address (TCB) and name of all tasks waiting on the 
semaphore. 

Table 13 – embOS Resource Semaphore Parameters 

 

MAILBOXES 
The embOS Mailboxes view displays detailed information regarding all available mailboxes 
in the target system. The view is updated automatically each time the target execution is 
suspended.  

There is one column for each type of mailbox parameter, and one row for each mailbox. If 
the value of any parameter for a particular mailbox has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 307 - embOS Mailboxes View 



 
RTOS-Aware Debugging 

 
 
 

334 | P a g e  
 

The available parameters are described in the table below: 

  Column Description 

Id The mailbox identifier (address). 

Messages The current number of messages and the maximum 
number of messages the mailbox can hold. 

Message size The size (in bytes) of a message item. 

pBuffer The address of the message buffer. 

Waiting tasks The address (TCB) and name of all tasks waiting on the 
mailbox. 

Table 14 – embOS Mailbox Parameters 

 

 



 
RTOS-Aware Debugging 

 
 
 

335 | P a g e  
 

HCC EMBEDDED ETASKSYNC 
The kernel awareness features for eTaskSync in Atollic TrueSTUDIO provide the developer 
with a detailed insight into the task structures of the eTaskSync kernel. During a debug 
session, the current state of the tasks can be easily inspected in a dedicated view, in the 
Atollic TrueSTUDIO Debug perspective. 
 

REQUIREMENTS 
The kernel awareness features described in this document is based on eTaskSync Versions 
3.01. 

 

FINDING THE VIEW 
One view is available in the Atollic TrueSTUDIO Debug perspective when debugging an 
application containing the eTaskSync real-time operating system. 

It is available from the Show View toolbar dropdown list button. 

 

Figure 308 – eTaskSync Show View Toolbar Button 

 



 
RTOS-Aware Debugging 

 
 
 

336 | P a g e  
 

TASK LIST 
The eTaskSync Task List view displays detailed information regarding all available tasks in 
the target system. The task list is updated automatically each time the target execution is 
suspended.  

There is one column for each type of task parameter, and one row for each task. If the 
value of any parameter for a particular task has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 309 - eTaskSync Task List View 

The available parameters are described in the table below: 

  Name Description 

N/A Indicates the currently running task. The currently running 
task is indicated by a green arrow symbol. 

Name The name assigned to the task. 

ID The task base ID 

Prio The task actual priority 

Original Prio The original (base) priority of the task 

Remaining ticks Number of remaining ticks 

Time Slice The time slice. This is not always present. Only if 
SYNC_TIME_SLICE_ENABLE option is set at compile time in 
hcc/src/config/config_sync.h. 

State The state of the task. 

Table 15 – eTaskSync Task Parameters 



 
RTOS-Aware Debugging 

 
 
 

337 | P a g e  
 

FREERTOS AND OPENRTOS 
As FreeRTOS and OpenRTOS are technically identical, we will only refer to FreeRTOS here, 
but the information applies equally to both.  

The kernel awareness features for FreeRTOS in Atollic TrueSTUDIO provide the developer 
with a detailed insight into the internal data structures of the FreeRTOS kernel. During a 
debug session, the current state of the FreeRTOS kernel and the various FreeRTOS kernel 
objects such as tasks, mailboxes, semaphores and software timers, can be easily inspected 
in a set of dedicated views, in the Atollic TrueSTUDIO Debug perspective. 
 

REQUIREMENTS 
In order for the FreeRTOS Queues and the FreeRTOS Semaphores views to be able to 
locate the appropriate RTOS kernel data structures, the associated kernel objects need to 
be added to the FreeRTOS queue registry. Please consult the FreeRTOS reference manual 
for details.  

 

Also set the define configUSE_TRACE_FACILITY in FreeRTOSconfig.h to list the type 
of the semaphore in the semaphore view or it will say "N/A" 

 

FINDING THE VIEWS 
A number of debugger views are available in the Atollic TrueSTUDIO Debug perspective 
when debugging an application containing the FreeRTOS real-time operating system. 

These views are available from the Show View toolbar dropdown list button. 

The following define fixes so GDB doesn't fail when going through the stack of 
a task in FreeRTOS 7.6. The same problem might also affect earlier releases.  

 
#define configTASK_RETURN_ADDRESS 0x00 

 



 
RTOS-Aware Debugging 

 
 
 

338 | P a g e  
 

 

Figure 310 – FreeRTOS View Top Level Menu 

 

Figure 311 – FreeRTOS Show View Toolbar Button 

 

TASK LIST 
The FreeRTOS Task List view displays detailed information regarding all available tasks in 
the target system. The task list is updated automatically each time the target execution is 
suspended.  

There is one column for each type of task parameter, and one row for each task. If the 
value of any parameter for a particular task has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 



 
RTOS-Aware Debugging 

 
 
 

339 | P a g e  
 

 

Figure 312 - FreeRTOS Task List View 

Please note that due to performance reasons, stack analysis (the Min Free Stack column) 
is disabled by default. To enable stack analysis, use the Stack analysis toggle toolbar 
button in the View toolbar: 

 

The available parameters are described in the table below: 

  Name Description 

N/A Indicates the currently running task. The currently running 
task is indicated by a green arrow symbol. 

Name The name assigned to the task. 

Priority (Base/Actual) The task base priority and actual priority. The base priority 
is the priority assigned to the task. The actual priority is a 
temporary priority assigned to the task due to the priority 
inheritance mechanism. 

Start of Stack The address of the stack region assigned to the task. 

Top of Stack The address of the saved task stack pointer. 

State The current state of the task. 

Event Object The name of the resource that has caused the task to be 
blocked. 

Min Free Stack 

 
 

Run Time (%) 
 

The stack “high watermark”. Displays the minimum 
number of bytes left on the stack for a task. A value of 0 
(most likely) indicates that a stack overflow has occurred. 
Note! This feature must be enabled in the View toolbar. 

The run-time statistics provide information on the 
percentage of time the task has been used. This can be 
used for profiling the system during development. 



 
RTOS-Aware Debugging 

 
 
 

340 | P a g e  
 

  Name Description 
Note! A clock is used to generate timer interrupts and 
macros needs to be defined in  <FreeRTOSConfig.h> to get 
the profiling information. See info below. 
 

Table 16 – FreeRTOS Task Parameters 

 

 

QUEUES 
The FreeRTOS Queues view displays detailed information regarding all available queues in 
the target system. The queues view is updated automatically each time the target 
execution is suspended.  

There is one column for each type of queue parameter, and one row for each queue. If the 
value of any parameter for a particular queue has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 313 - FreeRTOS Queues View 

To get valid profiling information the run-time statistics profiling clock is 
recommended to run 10-100 times faster than the frequency of the clock used 
to handle the tick interrupt.  

The  <FreeRTOS_Config.h> files can be updated in the following way: 

1. Enable collection of run-time statistics by setting the following macro to 1. 
#define configGENERATE_RUN_TIME_STATS 1 

 

2. Define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() to call 
the function that configures a timer to be used for profiling. 
 

3. Define portGET_RUN_TIME_COUNTER_VALUE() to call the 
function witch reads current value from the profiling timer. 

More information on how to configure FreeRTOS for run-time statistics is 
available in the FreeRTOS documentation. 

 



 
RTOS-Aware Debugging 

 
 
 

341 | P a g e  
 

The available parameters are described in the table below: 

  Name Description 

Name The name assigned to the queue in the queue registry. 

Address The address of the queue. 

Max Length The maximum number of items that the queue can hold. 

Item Size The size in bytes of each queue item. 

Current Length The number of items currently in the queue. 

#Waiting Tx The number of tasks currently blocked waiting to send to 
the queue. 

#Waiting Rx The number of tasks currently blocked waiting to receive 
from the queue. 

Table 17 – FreeRTOS Queue Parameters 

 

SEMAPHORES 
The FreeRTOS Semaphores view displays detailed information regarding all available 
synchronization objects in the target system, including: 

 Mutexes 

 Counting semaphores 

 Binary semaphores 

 Recursive semaphores 

The view is updated automatically each time the target execution is suspended. 

There is one column for each type of semaphore parameter, and one row for each 
semaphore. If the value of any parameter for a particular semaphore has changed since 
the last time the debugger was suspended, the corresponding row will be highlighted in 
yellow. 



 
RTOS-Aware Debugging 

 
 
 

342 | P a g e  
 

 

Figure 314 - FreeRTOS Semaphores View 

The available parameters are described in the table below: 

  Column Description 

Name The name assigned to the object in the queue registry. 

Address The address of the object. 

Type The type of the object. 

Size The maximum number of owning tasks. 

Free The number of free slots currently available.  

#Blocked tasks The number of tasks currently blocked waiting for the 
object. 

Table 18 – FreeRTOS Semaphore Parameters 

 

TIMERS 
The FreeRTOS Timers view displays detailed information regarding all available software 
timers in the target system. The timers view is updated automatically each time the target 
execution is suspended.  

There is one column for each type of timer parameter, and one row for each timer. If the 
value of any parameter for a particular timer has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 



 
RTOS-Aware Debugging 

 
 
 

343 | P a g e  
 

 

Figure 315 - FreeRTOS Timers View 

The available parameters are described in the table below: 

  Name Description 

Name The name assigned to the timer. 

Period The time (in ticks) between timer start and the execution 
of the callback function. 

Type The type of timer. Auto-Reload timers are automatically 
reactivated after expiration. One-Shot timers expire only 
once. 

Id The timer identifier. 

Callback The address and name of the callback function executed 
when the timer expires. 

Table 19 – FreeRTOS Timer Parameters 



 
RTOS-Aware Debugging 

 
 
 

344 | P a g e  
 

QUADROS RTXC 
The kernel awareness features for Quadros RTXC RTOS in Atollic TrueSTUDIO provide the 
developer with a detailed insight into the internal data structures of the RTXC kernel. 
During a debug session, the current state of the RTXC kernel and the various RTXC kernel 
objects such as tasks, semaphores, mailboxes, etc, can be easily inspected in a set of 
dedicated views, in the Atollic TrueSTUDIO Debug perspective. 

 

REQUIREMENTS 
The kernel awareness features described in this document is based on RTXC Version 2.1.2. 

 

FINDING THE VIEWS 
The Quadros RTXC Kernel Awareness views, is available in the Atollic TrueSTUDIO Debug 
perspective when debugging an application containing the RTXC real-time operating 
system. 

The views can be accessed from the Show View toolbar dropdown list button.   

 

Figure 316 – RTXC Show View Toolbar Button 



 
RTOS-Aware Debugging 

 
 
 

345 | P a g e  
 

KERNEL INFORMATION 
The RTXC Kernel Information view displays general information about the kernel. 

 

Figure 317 – RTXC Kernel Information View 

The available system variables are described in the table below: 

  Name Description 

Kernel Version 
 
A sixteen-bit quantity defining the version number of the 
RTXC Quadros kernel. 

System RAM Base The base address of the system RAM. 

System RAM Size The size of the system RAM. 

System RAM Unused The amount of unused system RAM. 

Stack Base The base address of the kernel stack.  

Stack Size Displays the size of the kernel stack.  

Stack Unused The number of bytes unused, high watermark. 

Task Scheduling The task scheduler information (on /off). 

Table 20 – RTXC Kernel Information 

 

TASKS (TASK LIST AND STACK INFO) 
The RTXC Tasks view contains one Task List tab and one Stack Info tab. Each tab displays 
detailed information regarding all available tasks in the target system.  



 
RTOS-Aware Debugging 

 
 
 

346 | P a g e  
 

TASK LIST TAB 

The RTXC Task List tab displays detailed information regarding all available tasks in the 
target system. The task list is updated automatically each time the target execution is 
suspended.  

There is one column for each type of task parameter, and one row for each task. If the 
value of any parameter for a particular task has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 318 - RTXC Task List tab in Task view 

The available parameters are described in the table below: 

  Name Description 

N/A Indicates the currently running task. The currently running 
task is indicated by a green arrow symbol. 

# The task id. 

Name The name assigned to the task. 

Priority The priority for the task. 

Entry The task’s entry point address (in hexadecimal). 

Arguments The task’s environment arguments address. 

Tick Slice Ticks remaining / total ticks. 

State The tasks current state. 



 
RTOS-Aware Debugging 

 
 
 

347 | P a g e  
 

Table 21 – RTXC Task List Parameters 

STACK INFO TAB 

The RTXC Stack info tab displays detailed stack information for each task. The stack 
information list is updated automatically each time the target execution is suspended.  

There is one column for each type of stack information, and one row for each task. If the 
value of any parameter for a particular task has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 319 – RTXC Task Stack Info 

The available parameters are described in the table below: 

  Name Description 

# The task id. 

Name The name assigned to the task. 

Address The base address of the task’s stack. 

Size The amount of memory allocated for the stack. 

Used The number of bytes unused, high watermark. 

Spare The amount of stack space left over.  

Table 22 – RTXC Stack Info 

 



 
RTOS-Aware Debugging 

 
 
 

348 | P a g e  
 

ALARMS 
The RTXC Alarms view displays detailed information regarding all available alarms in the 
target system. The view is updated automatically each time the target execution is 
suspended. 

There is one column for each type of alarm parameter, and one row for each alarm. If the 
value of any parameter for a particular alarm has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 320 - RTXC Alarms View 

The available parameters are described in the table below: 

  Name Description 

# The object id. 

Name The name assigned to the alarm. 

Wait order The alarm’s wait order that can be either Priority or FIFO. 

Counter The alarm’s parent counter. 

State The alarm’s current state. 

Initial The alarm’s initial period in ticks. 

Recycle The alarm’s recycle value.  

Remain The number of remaining ticks.  

Waiter(s) The task(s) that is waiting on the alarm, if any. Only the 
first 5 tasks are shown. 

Table 23 – RTXC Alarm Parameters 



 
RTOS-Aware Debugging 

 
 
 

349 | P a g e  
 

 

COUNTERS 
The RTXC Counters view displays detailed information regarding all available counters in 
the target system. The counter information is updated automatically each time the target 
execution is suspended.  

There is one column for each type of parameter, and one row for each counter. If the 
value of any parameter for a particular task has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 321 - RTXC Counters View 

The available parameters are described in the table below: 

  Name Description 

# The object id. 

Name The name assigned to the counter. 

Parent The parent event source. 

Accumulator The counter’s accumulator. 

Count The counter’s count value. 

Modulus The counter’s modulus. 

Table 24 – RTXC Counter Parameters 

 

EVENT SOURCES 
The RTXC Event Sources view displays detailed information regarding all available event 
sources in the target system. The event source information is updated automatically each 
time the target execution is suspended.  



 
RTOS-Aware Debugging 

 
 
 

350 | P a g e  
 

There is one column for each type of parameter, and one row for each event source. If the 
value of any parameter for a particular event source has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 322 - RTXC Event Sources View 

The available parameters are described in the table below: 

  Name Description 

# The object id. 

Name The name assigned to the event source. 

Counter(s) The counter(s) associated with this event source. 

Accumulator The event source’s accumulator. 

Table 25 – RTXC Event Source Parameters 

 

EXCEPTION BACKTRACE 
The RTXC Exception Backtrace view displays detailed backtrace information during an 
exception.  

Each line represents an exception that is either executing, or was preempted by the item 
above it. The topmost line shows the active component, which preempted the component 
listed on the second line, which in turn preempted the third, and so on. 

 



 
RTOS-Aware Debugging 

 
 
 

351 | P a g e  
 

Figure 323 - RTXC Exception Backtrace View 

The available parameters are described in the table below: 

  Name Description 

# The exception id. A zero represents the Kernel.  

Name The name of the exception. 

Registers The saved register context for the exception (in 
hexadecimal). 

Table 26 – RTXC Exception Backtrace Parameters 

 

EXCEPTIONS 
The RTXC Exceptions view displays one line entry for each exception in the application. 

 

Figure 324 - RTXC Exceptions View 

The available parameters are described in the table below: 

  Name Description 

# The object id. 

Name The name assigned to the exception. 

Vector The vector number. 

Level The interrupt level. 

Old Handler Previous handler address. 



 
RTOS-Aware Debugging 

 
 
 

352 | P a g e  
 

Table 27 – RTXC Exception Parameters 

 

MAILBOXES 
The RTXC Mailboxes view displays detailed information regarding all available mailboxes 
in the target system. The view is updated automatically each time the target execution is 
suspended.  

There is one column for each type of mailbox parameter, and one row for each mailbox. If 
the value of any parameter for a particular mailbox has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 325 - RTXC Mailboxes View 

The available parameters are described in the table below: 

  Name Description 

# The object id. 

Name The name assigned to the mailbox. 

Wait order The mailbox’s wait order that can be either Priority or 
FIFO. 

Current The current number of messages in the mailbox. 

Usage The total number of messages that have been placed in 
the mailbox. Mailbox statistics must be enabled for 
displaying this information. 

Waiter(s) The task that is waiting on the mailbox, if any. Only the 
first 5 tasks are shown. 

Table 28 – RTXC Mailbox Parameters 

 



 
RTOS-Aware Debugging 

 
 
 

353 | P a g e  
 

MUTEXES 
The RTXC Mutexes view displays detailed information regarding all available mutexes in 
the target system. The view is updated automatically each time the target execution is 
suspended. 

There is one column for each type of mutex parameter, and one row for each mutex. If the 
value of any parameter for a particular mutex has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 326 - RTXC Mutexes View 

The available parameters are described in the table below: 

  Name Description 

# The object id. 

Name The name assigned to the mutex. 

Wait order The mutex’s wait order that can be either Priority or FIFO. 

Inversion Shows whether or not priority inversion is enabled for the 
mutex. 

Owner The task currently owning the mutex. 

Nest level The nest level. 

Usage The total number of releases performed on the mutex. 
Mutex statistics must be enabled for displaying this 
information.  

Conflicts The number of contentions that have occurred. Mutex 
statistics must be enabled for displaying this information. 

Waiter(s) The task(s) that is waiting on the mutex, if any. Only the 
first 5 tasks are shown. 



 
RTOS-Aware Debugging 

 
 
 

354 | P a g e  
 

Table 29 – RTXC Mutex Parameters 

 

PARTITIONS 
The RTXC Partitions view displays detailed information regarding all available partitions in 
the target system. The view is updated automatically each time the target execution is 
suspended.  

There is one column for each type of parameter, and one row for each partition. If the 
value of any parameter for a particular partition has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 327 - RTXC Partitions View 

The available parameters are described in the table below: 

  Name Description 

# The object id. 

Name The name assigned to the partition. 

Wait order The partition’s wait order that can be either Priority or 
FIFO. 

Available The current number of available blocks in the partition. 

Total The total number of blocks in the partition. 

BSize The size of each block in the partition. 

Usage The usage count for the partition. Partition statistics must 
be enabled for displaying this information.  

Worst The low watermark for the available blocks in the 
partition. Partition statistics must be enabled for 



 
RTOS-Aware Debugging 

 
 
 

355 | P a g e  
 

  Name Description 
displaying this information. 

Waiter(s) The task(s) currently waiting on the partition, if any. Only 
the first 5 tasks are shown. 

Table 30 – RTXC Partition Parameters 

 

PIPES 
The RTXC Pipes view displays detailed information regarding all available pipes in the 
target system. The view is updated automatically each time the target execution is 
suspended.  

There is one column for each type of pipe parameter, and one row for each pipe. If the 
value of any parameter for a particular pipe has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

 

Figure 328 - RTXC Pipes View 

The available parameters are described in the table below: 

  Name Description 

# The object id. 

Name The name assigned to the pipe. 

Buffers The maximum number of buffers. 

Size The size of each buffer. 

Full The current number of full buffers. 



 
RTOS-Aware Debugging 

 
 
 

356 | P a g e  
 

  Name Description 

Empty The current number of empty buffers. 

Usage The usage count for the pipe. Pipe statistics must be 
enabled for displaying this information.  

Worst The maximum full buffer count. Pipe statistics must be 
enabled for displaying this information. 

Table 31 – RTXC Pipe Parameters 

 

QUEUES 
The RTXC Queus view displays detailed information regarding all available queues in the 
target system. The view is updated automatically each time the target execution is 
suspended.  

There is one column for each type of queue parameter, and one row for each queue. If the 
value of any parameter for a particular queue has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 329 - RTXC Queues View 

The available parameters are described in the table below: 

  Name Description 

# The object id. 

Name The name assigned to the queue. 

Wait Order The queue’s wait order that can be either Priority or FIFO. 

Width The size of each entry in the queue. 



 
RTOS-Aware Debugging 

 
 
 

357 | P a g e  
 

  Name Description 

Depth The maximum number of entries in the queue. 

Current The current number of entries in the queue. 

Usage The total number of accesses to the queue. Queue 
statistics must be enabled for displaying this information.  

Worst The maximum numbers of entries that has been in the 
queue. Queue statistics must be enabled for displaying 
this information. 

Waiter(s) The task(s) currently waiting on the partition, if any. Only 
the first 5 tasks are shown. 

Table 32 – RTXC Queue Parameters 

 

SEMAPHORES 
The RTXC Semaphores view displays detailed information regarding all available 
semaphores in the target system. The view is updated automatically each time the target 
execution is suspended. 

There is one column for each type of semaphore parameter, and one row for each 
semaphore. If the value of any parameter for a particular semaphore has changed since 
the last time the debugger was suspended, the corresponding row will be highlighted in 
yellow. 

 

 

Figure 330 - RTXC Semaphores View 



 
RTOS-Aware Debugging 

 
 
 

358 | P a g e  
 

The available parameters are described in the table below: 

  Name Description 

# The object id. 

Name The name assigned to the semaphore. 

Wait Order The semaphore’s wait order that can be either Priority or 
FIFO. 

Signal Type The semaphore’s signal type. Can be either Single or 
Multiple. 

Count The semaphore’s current count. 

Usage The semaphore’s usage count. Semaphore statistics must 
be enabled for displaying this information.  

Waiter(s) The task(s) currently waiting on the semaphore, if any. 
Only the first 5 tasks are shown. 

 

Table 33 – RTXC Semaphore Parameters 

 

 



 
RTOS-Aware Debugging 

 
 
 

359 | P a g e  
 

EXPRESS LOGIC THREADX 
The kernel awareness features for Express Logic ThreadX® real-time operating system in 
Atollic TrueSTUDIO provide the developer with a detailed insight into the internal data 
structures of the ThreadX kernel. During a debug session, the current state of the ThreadX 
kernel and the various ThreadX kernel objects such as tasks, mailboxes, semaphores and 
software timers, can be easily inspected in a set of dedicated views, in the Atollic 
TrueSTUDIO Debug perspective. 

 

REQUIREMENTS 
The kernel awareness features described in this document is based on ThreadX Cortex-
M4/GNU Version G5.5.5.0. 

 

FINDING THE VIEWS 
A number of debugger views are available in the Atollic TrueSTUDIO Debug perspective 
when debugging an application containing the ThreadX real-time operating system. 

These views are available from the Show View toolbar dropdown list button. 

 

Figure 331 – ThreadX View Top Level Menu 



 
RTOS-Aware Debugging 

 
 
 

360 | P a g e  
 

 

Figure 332 - ThreadX Show View Toolbar Button 

 

THREAD LIST 
The ThreadX Thread List view displays detailed information regarding all available threads 
in the target system. The thread list is updated automatically each time the target 
execution is suspended  

There is one column for each type of thread parameter, and one row for each thread. If 
the value of any parameter for a particular thread has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 333 - ThreadX Thread List View 

Please note that due to performance reasons, stack analysis (the Stack Usage column) is 
disabled by default. To enable stack analysis, use the Stack analysis toggle toolbar button 
in the View toolbar: 

 

The available parameters are described in the table below: 



 
RTOS-Aware Debugging 

 
 
 

361 | P a g e  
 

  Name Description 

N/A Indicates the currently running thread. The currently 
running thread is indicated by a green arrow symbol. 

Name The thread name.  

Priority The thread priority. 

State The state of the current thread. The name of the object 
that currently suspends a thread is presented in 
parenthesis. For sleeping threads, the remaining sleep 
time (ticks) is presented. 

Run Count The threads run counter. 

Stack Start The start address of the stack area.  

Stack End The end address of the stack area. 

Stack Size The size of the stack area (bytes). 

Stack Ptr The address of the thread stack pointer. 

Stack Usage The maximum stack usage (bytes). 

Table 34 – ThreadX Thread Parameters 

 

SEMAPHORES 
The ThreadX Semaphores view displays detailed information regarding all available 
resource semaphores in the target system. The view is updated automatically each time 
the target execution is suspended. 

There is one column for each type of semaphore parameter, and one row for each 
semaphore. If the value of any parameter for a particular semaphore has changed since 
the last time the debugger was suspended, the corresponding row will be highlighted in 
yellow. 



 
RTOS-Aware Debugging 

 
 
 

362 | P a g e  
 

 

Figure 334 - ThreadX Semaphores View 

The available parameters are described in the table below: 

  Column Description 

Name The name of the semaphore. 

Count The current semaphore count. 

Suspended The threads currently suspended because of the 
semaphore state. 

Table 35 – ThreadX Semaphore Parameters 

 

MUTEXES 
The ThreadX Mutexes view displays detailed information regarding all available mutexes 
in the target system. The view is updated automatically each time the target execution is 
suspended. 

There is one column for each type of mutex parameter, and one row for each mutex. If the 
value of any parameter for a particular mutex has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 335 - ThreadX Mutexes View 

The available parameters are described in the table below: 



 
RTOS-Aware Debugging 

 
 
 

363 | P a g e  
 

  Column Description 

Name The name of the mutex. 

Owner The thread that currently owns the mutex.  

Owner Count The mutex owner count (number of get operations 
performed by the owner thread).  

Suspended The threads currently suspended because of the mutex 
state. 

Table 36 – ThreadX Mutex Parameters 

 

MESSAGE QUEUES 
The ThreadX Message Queues view displays detailed information regarding all available 
message queues in the target system. The view is updated automatically each time the 
target execution is suspended. 

There is one column for each type of message queue parameter, and one row for each 
message queue. If the value of any parameter for a particular message queue has changed 
since the last time the debugger was suspended, the corresponding row will be highlighted 
in yellow. 

 

Figure 336 - ThreadX Message Queues View 

The available parameters are described in the table below: 

  Column Description 

Name The name of the message queue. 

Address The address of the message queue. 

Capacity The maximum number of entries allowed in the queue. 

Used The current number of used entries in the queue. 



 
RTOS-Aware Debugging 

 
 
 

364 | P a g e  
 

  Column Description 

Free The current number of free entries in the queue. 

Message size The size (in 32-bit words) of each message entry. 

Suspended The threads currently suspended because of the message 
queue state. 

Table 37 – ThreadX Message Queue Parameters 

 

EVENT FLAGS 
The ThreadX Event Flags view displays detailed information regarding all available event 
flag groups in the target system. The view is updated automatically each time the target 
execution is suspended. 

There is one column for each type of parameter, and one row for each event flag group. If 
the value of any parameter for a particular event flag group has changed since the last 
time the debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 337 - ThreadX Event Flags View 

The available parameters are described in the table below: 

  Column Description 

Name The name of the event flag group.  

Flags The current value of the event flag group. 

Suspended The threads currently suspended because of the state of 
the event flag group. 

Table 38 – ThreadX Event Flag Parameters 

 



 
RTOS-Aware Debugging 

 
 
 

365 | P a g e  
 

TIMERS 
The ThreadX Timers view displays detailed information regarding all available software 
timers in the target system. The timers view is updated automatically each time the target 
execution is suspended.  

There is one column for each type of timer parameter, and one row for each timer. If the 
value of any parameter for a particular timer has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 338 - ThreadX Timers View 

The available parameters are described in the table below: 

  Name Description 

Name The name of the software timer. 

Remaining The remaining number of ticks before the timer expires. 

Re-init The timer re-initialization value (ticks) after expiration. 
Contains value 0 for One-Shot timers. 

Functions The address and name of the function that will be called 
when the timer expires. 

Table 39 – ThreadX Timer Parameters 

 

MEMORY BLOCK POOLS 
The ThreadX Memory Block Pools view displays detailed information regarding all 
available memory block pools in the target system. The view is updated automatically each 
time the target execution is suspended.  

There is one column for each type of parameter, and one row for each memory block pool. 
If the value of any parameter for a particular memory block pool has changed since the 
last time the debugger was suspended, the corresponding row will be highlighted in 
yellow. 



 
RTOS-Aware Debugging 

 
 
 

366 | P a g e  
 

 

Figure 339 - ThreadX Memory Block Pools View 

The available parameters are described in the table below: 

  Column Description 

Name The name of the block pool. 

Address The block pool starting address. 

Used The current number of allocated blocks. 

Free The current number of free blocks. 

Size The total number of blocks available. 

Block size The size (bytes) of each block. 

Pool size The total pool size (bytes). 

Suspended The threads currently suspended because of the state of 
the memory block pool. 

Table 40 – ThreadX Memory Block Pool Parameters 

 

MEMORY BYTE POOLS 
The ThreadX Memory Byte Pools view displays detailed information regarding all available 
memory byte pools in the target system. The view is updated automatically each time the 
target execution is suspended.  

There is one column for each type of parameter, and one row for each memory byte pool. 
If the value of any parameter for a particular memory byte pool has changed since the last 
time the debugger was suspended, the corresponding row will be highlighted in yellow. 



 
RTOS-Aware Debugging 

 
 
 

367 | P a g e  
 

 

Figure 340 - ThreadX Memory Byte Pools View 

The available parameters are described in the table below: 

  Column Description 

Name The name of the byte pool. 

Address The byte pool starting address. 

Used The current number of allocated bytes. 

Free The current number of free bytes. 

Size The total number of bytes available. 

Fragments The number of fragments. 

Suspended The threads currently suspended because of the state of 
the memory byte pool. 

Table 41 – ThreadX Memory Byte Pool Parameters 

 

 



 
RTOS-Aware Debugging 

 
 
 

368 | P a g e  
 

TOPPERS/ASP 
The kernel awareness features for TOPPERS RTOS in Atollic TrueSTUDIO provide the 
developer with a detailed insight into the internal data structures of the TOPPERS kernel. 
During a debug session, the current state of the TOPPERS kernel and the various TOPPERS 
kernel objects such as tasks, semaphores, mailboxes, etc, can be easily inspected in a set of 
dedicated views, in the Atollic TrueSTUDIO Debug perspective. 

Each view for the TOPPERS RTOS contains two tabs - one tab for the hardcoded Static 
Information and one tab for the Current dynamic status. 

 

REQUIREMENTS 
The kernel awareness features described in this document is based on TOPPERS/ASP 
Release 1.7.0. 

 

FINDING THE VIEWS 
The views are available in the Atollic TrueSTUDIO Debug perspective when debugging an 
application containing the TOPPERS real-time operating system. 

They are available from the Show View toolbar dropdown list button.   

 

Figure 341 – TOPPERS Show View Toolbar Button 

All displayed functions can be double-clicked and opened in the editor if the source file can 
be found in a source folder located within the Toppers project. 



 
RTOS-Aware Debugging 

 
 
 

369 | P a g e  
 

TASKS 
The TOPPERS Tasks view displays detailed information regarding all available tasks in the 
target system. The task list is updated automatically each time the target execution is 
suspended.  

There is one column for each type of task parameter, and one row for each task. If the 
value of any parameter for a particular task has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

By double-clicking on a task entry, the source code for the entry will be opened in the 
editor if it can be found in a source folder located within the project. 

By double-clicking on a Tex routine, the source code for it will be opened in the editor if it 
can be found in a source folder located within the project. 

 

STATIC INFORMATION TAB 

 

Figure 342 – TOPPERS Tasks Static Information Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Task base ID 

Auto start If the Task is to auto start or not. Displays yes or No. 

Initial Prio The Initial Prio for the task.  

Entry Task Entry function name or address. 

Tex routine Task exception function name or address. 



 
RTOS-Aware Debugging 

 
 
 

370 | P a g e  
 

  Name Description 

Entry Arg Display exinf value as Hex form. 

Stack Area Task Stack bottom address in Hex form. 

Stack Size The tasks stack size in decimal form. 

Table 42 – TOPPERS Tasks Static Information 

CURRENT STATUS TAB 

 

Figure 343 – TOPPERS Tasks Current Status Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Task base ID 

Current Prio The current Prio for the Task. 

Status Displays Running, Dormant, Ready, Waiting, Suspended, 
Waiting-Suspended or Unknown 

Waiting object When Status is Waiting, this column displays Delay, Sleep, 
Recv DTQ, Recv PDTQ, Semaphore, EventFlag, Send DTQ, 
Send PDTQ, Mailbox or Mempool 

Remaining time When Status is Waiting, this column displays the 
remaining time waiting or Forever. 

Pending Request (active) Pend or blank. 

Pending Request (wake-up) Pend or blank. 



 
RTOS-Aware Debugging 

 
 
 

371 | P a g e  
 

  Name Description 

Enable Tex Enable, Disable or blank. 

Tex Pattern Displays texptn as Hex form or blank. 

Sp The Stack Pointer in hex. 

Remaining Stack The calculated remaining stack as an integer. 

Table 43 – TOPPERS Tasks Current Status 

 

DATAQUEUES 
The TOPPERS Dataqueues view displays detailed information regarding all available data 
queues in the target system. The list is updated automatically each time the target 
execution is suspended.  

There is one column for each type of data queue parameter, and one row for each data 
queue. If the value of any parameter for a particular data queue has changed since the last 
time the debugger was suspended, the corresponding row will be highlighted in yellow. 

STATIC INFORMATION TAB 

 

Figure 344 – TOPPERS Dataqueues Static Information Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Data Queue base ID. 

Send Task Queueing Order Displays Priority or FIFO. 

Capacity The data queue quantity as a decimal value.  



 
RTOS-Aware Debugging 

 
 
 

372 | P a g e  
 

  Name Description 

Dataqueue Area The address in Hex form. 

Table 44 – TOPPERS Dataqueue Static Information 

CURRENT STATUS TAB 

 

Figure 345 – TOPPERS Dataqueues Current Status Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Data Queue base ID 

Queuing Data Count Displays count value in decimal form. 

Blocking (receive) If there is a waiting task of this object displays Yes, 
otherwise displays No. 

First Waiting Task (receive) When there is a waiting task of this object, displays 1st 
waiting task ID. When there is no waiting task of this 
object, displays blank space. 

Blocking (send) If there is a waiting task of this object displays Yes, 
otherwise displays No. 

First Waiting Task (send) When there is a waiting task of this object, displays 1st 
waiting task ID. When there is no waiting task of this 
object, displays blank space. 

Queuing Data Top When there is queuing data, display 1st queuing data 
address as Hex. 

Table 45 – TOPPERS Dataqueues Current Status 

 



 
RTOS-Aware Debugging 

 
 
 

373 | P a g e  
 

 

EVENT FLAGS 
The TOPPERS Event Flags view displays detailed information regarding all available event 
flags in the target system. The list is updated automatically each time the target execution 
is suspended.  

There is one column for each type of event flag parameter, and one row for each event 
flag. If the value of any parameter for a particular event flag has changed since the last 
time the debugger was suspended, the corresponding row will be highlighted in yellow. 

STATIC INFORMATION TAB 

 

Figure 346 – TOPPERS Event Flags Static Information Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Event Flag ID. 

Multi-task Wait If true displays Yes, otherwise displays No. 

Task Queueing Order Displays Priority or FIFO. 

Auto Clear If true displays Yes, otherwise displays No. 

Initial Pattern Display the iflgptn value as Hex form. 

Table 46 – TOPPERS Event Flags Static Information 



 
RTOS-Aware Debugging 

 
 
 

374 | P a g e  
 

CURRENT STATUS TAB 

 

Figure 347 – TOPPERS Event Flags Current Status Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Event Flag ID 

Current Pattern Display flgptn value as Hex form. 

Blocking If there is a waiting task of this object displays Yes, 
otherwise displays No. 

First Waiting Task When there is a waiting task of this object, displays 1st 
waiting task ID. When there is no waiting task of this 
object, displays blank space. 

Table 47 – TOPPERS Event Flags Current Status 

 

MAILBOXES 
The TOPPERS Mailboxes view displays detailed information regarding all available 
mailboxes in the target system. The list is updated automatically each time the target 
execution is suspended.  

There is one column for each type of mailbox parameter, and one row for each mailbox. If 
the value of any parameter for a particular mailbox has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 



 
RTOS-Aware Debugging 

 
 
 

375 | P a g e  
 

STATIC INFORMATION TAB 

 

Figure 348 – TOPPERS Mailboxes Static Information Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Mailbox ID. 

Task Queueing Order Displays Priority or FIFO. 

Message Queueing Order Displays Priority or FIFO. 

Max Priority of Message The maximum prio value in decimal form. 

Table 48 – TOPPERS Mailboxes Static Information 

CURRENT STATUS TAB 

 

Figure 349 – TOPPERS Mailboxes Current Status Tab 

The available system variables are described in the table below: 



 
RTOS-Aware Debugging 

 
 
 

376 | P a g e  
 

  Name Description 

ID 
 
The Mailbox ID 

Blocking If there is a waiting task of this object displays Yes, 
otherwise displays No. 

First Waiting Task When there is a waiting task of this object, displays 1st 
waiting task ID. When there is no waiting task of this 
object, displays blank space. 

Msg Queueing Displays No if there are no messages in this Mailbox, 
otherwise displays Yes. 

Msg Queueing Count When there is no message in this Mailbox display 0. 
Count posted message when there are messages in this 
Mailbox. 

Table 49 – TOPPERS Mailboxes Current Status 

 

MEMORY POOLS 
The TOPPERS Memory Pools view displays detailed information regarding all available 
memory pools in the target system. The list is updated automatically each time the target 
execution is suspended.  

There is one column for each type of memory pool parameter, and one row for each 
memory pool. If the value of any parameter for a particular memory pool has changed 
since the last time the debugger was suspended, the corresponding row will be highlighted 
in yellow. 

STATIC INFORMATION TAB 

 

Figure 350 – TOPPERS Memory Pools Static Information Tab 

The available system variables are described in the table below: 



 
RTOS-Aware Debugging 

 
 
 

377 | P a g e  
 

  Name Description 

ID 
 
The Memory Pool ID. 

Task Queueing Order Displays Priority or FIFO. 

Block Count Number of Blocks in this Memory Pool. 

Block Size Byte size of 1-block in decimal form. 

Table 50 – TOPPERS Memory Pools Static Information 

CURRENT STATUS TAB 

 

Figure 351 – TOPPERS Memory Pools Current Status Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Memory Pool ID 

Allocs Number of allocated blocks in decimal form. 

Frees Number of free blocks in decimal form. 

Blocking Display Yes if there is a waiting task of this object, 
otherwise displays No. 

First Waiting Task Display 1st waiting task ID when there is a waiting task 
of this object. 

Table 51 – TOPPERS Memory Pools Current Status 

 

 



 
RTOS-Aware Debugging 

 
 
 

378 | P a g e  
 

CYCLIC HANDLERS 
The TOPPERS Cyclic Handlers view displays detailed information regarding all available 
cyclic handlers in the target system. The list is updated automatically each time the target 
execution is suspended.  

There is one column for each type of cyclic handler parameter, and one row for each cyclic 
handler. If the value of any parameter for a particular cyclic handler has changed since the 
last time the debugger was suspended, the corresponding row will be highlighted in 
yellow. 

By double-clicking on a handler, the source code for the handler will be opened in the 
editor if it can be found in a source folder located within the project. 

 

STATIC INFORMATION TAB 

  

Figure 352 – TOPPERS Cyclic Handlers Static Information Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Cyclic Handler ID. 

Auto Startup Displays Yes if the Cyclic Handler is set to staring 
automatically, otherwise No. 

Cyclic Handler Entry Cyclic Handler Entry function name or address in 
hexadecimal form. 

Handler Entry Argument The handler argument value in hex form. 

Cyclic Interval The Cyclic interval in ms. 

Phase Time The Phase interval in ms. 



 
RTOS-Aware Debugging 

 
 
 

379 | P a g e  
 

Table 52 – TOPPERS Cyclic Handlers Static Information 

CURRENT STATUS TAB 

  

Figure 353 – TOPPERS Cyclic Handlers Current Status Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Cyclic Handler ID 

Starting If the Cyclic Handler is starting Yes is displayed, 
otherwise No. 

Rest time until cyclic event Display Remaining time as ms in decimal form when 
Cyclic event is started. 

Table 53 – TOPPERS Cyclic Handlers Current Status 

 

ALARM HANDLERS 
The TOPPERS Alarm Handlers view displays detailed information regarding all available 
alarm handlers in the target system. The list is updated automatically each time the target 
execution is suspended.  

There is one column for each type of alarm handler parameter, and one row for each 
alarm handler. If the value of any parameter for a particular alarm handler has changed 
since the last time the debugger was suspended, the corresponding row will be highlighted 
in yellow. 

By double-clicking on a handler, the source code for the handler will be opened in the 
editor if it can be found in a source folder located within the project. 

 



 
RTOS-Aware Debugging 

 
 
 

380 | P a g e  
 

STATIC INFORMATION TAB 

   

Figure 354 – TOPPERS Alarm Handlers Static Information Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Alarm Handler ID. 

Alarm Handler Entry Alarm Handler Entry function name or address in 
hexadecimal form. 

Handler Entry Argument The handler argument value in hex form. 

Table 54 – TOPPERS Alarm Handlers Static Information 

CURRENT STATUS TAB 

   

Figure 355 – TOPPERS Alarm Handlers Current Status Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Alarm Handler ID 

Starting If the Alarm Handler is starting Yes is displayed, 
otherwise No. 



 
RTOS-Aware Debugging 

 
 
 

381 | P a g e  
 

  Name Description 

Rest time until alarm Display Remaining time as ms in decimal form when 
Alarm is started. 

Table 55 – TOPPERS Alarm Handlers Current Status Information 

 

PRIORITIZED DATAQUEUES 
The TOPPERS Prioritized Dataqueues view displays detailed information regarding all 
available prioritized data queues in the target system. The list is updated automatically 
each time the target execution is suspended.  

There is one column for each type of prioritized data queue parameter, and one row for 
each prioritized data queue. If the value of any parameter for a particular prioritized data 
queue has changed since the last time the debugger was suspended, the corresponding 
row will be highlighted in yellow. 

STATIC INFORMATION TAB 

 

Figure 356 – TOPPERS Prioritized Dataqueues Static Information Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The prioritized data queue base ID. 

Send Task Queueing Order Displays Priority or FIFO. 

Capacity The prioritized data queue quantity as a decimal value.  



 
RTOS-Aware Debugging 

 
 
 

382 | P a g e  
 

  Name Description 

Max Data Priority Max priority of prioritized-Data.  

Table 56 – TOPPERS Prioritized Dataqueue Static Information 

CURRENT STATUS TAB 

 

Figure 357 – TOPPERS Prioritized Dataqueues Current Status Tab 

The available system variables are described in the table below: 

  Name Description 

ID 
 
The Data Queue base ID 

Queuing Data Count Displays count value in decimal form. 

Blocking (receive) If there is a waiting task of this object displays Yes, 
otherwise displays No. 

First Waiting Task (receive) When there is a waiting task of this object, displays 1st 
waiting task ID. When there is no waiting task of this 
object, displays blank space. 

Blocking (send) If there is a waiting task of this object displays Yes, 
otherwise displays No. 

First Waiting Task (send) When there is a waiting task of this object, displays 1st 
waiting task ID. When there is no waiting task of this 
object, displays blank space. 

Queuing Data Top When there is queuing data, display 1st queuing data 
address as Hex. 

Table 57 – TOPPERS Prioritized Dataqueues Current Status Information 



 
RTOS-Aware Debugging 

 
 
 

383 | P a g e  
 

SYSTEM STATUS 
The TOPPERS System Status view displays detailed information regarding the system. 

There is two columns with status values. If one value has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 

 

 

Figure 358 – TOPPERS System Status View 

The available system values are described in the table below: 

  Name Description 

Cpu Lock 
 
CPU lock flag 

Task Dispatch Enable flag of dispatching task 

Table 58 – TOPPERS System Status Information 

 

INTERRUPT LINE CONFIGURATION 
The TOPPERS Interrupt Line Config view displays detailed information regarding all 
available Interrupts in the target system.  

There is one column for each type of interrupt parameter, and one row for each interrupt.  

The SWV Exception view is recommended for more information about each interrupt. See 
Page 298 - Exception Tracing. 

 



 
RTOS-Aware Debugging 

 
 
 

384 | P a g e  
 

   

Figure 359 – TOPPERS Interrupt Line Config View 

The available system variables are described in the table below: 

  Name Description 

Interrupt No 
 
The Interrupt Line number 

Enable INT at startup Displays Enable or Disable 

Trigger Displays Edge or Level 

Priority Priority of Interrupt 

Table 59 – TOPPERS Interrupt Line Config Information 

 

INTERRUPT HANDLER STATIC INFORMATION 
The TOPPERS Interrupt Handler Static Info view displays detailed information regarding all 
available Interrupts in the target system 

There is one column for each type of interrupt parameter, and one row for each interrupt.  

The SWV Exception view is recommended for more information about each interrupt. See 
Page 298 - Exception Tracing. 

By double-clicking on an interrupt handler, the source code for it will be opened in the 
editor if it can be found in a source folder located within the project. 

 



 
RTOS-Aware Debugging 

 
 
 

385 | P a g e  
 

   

Figure 360 – TOPPERS Interrupt Handler Static Info View 

The available system variables are described in the table below: 

  Name Description 

Interrupt Handler No 
 
The Interrupt Line number 

Outside Kernel Displays Outside or Kernel 

Priority Handler entry address 

Table 60 – TOPPERS Interrupt Handlers Static Information 

 

CPU EXCEPTION HANDLER STATIC INFORMATION 
The TOPPERS Exception Handler Static Info view displays detailed information regarding 
all available CPU exception in the target system 

There is one column for each type of exception parameter, and one row for each 
exception.  

By double-clicking on an Exception handler, the source code for it will be opened in the 
editor if it can be found in a source folder located within the project. 

 

   

Figure 361 – TOPPERS Exception Handler Static Info View 

The available system variables are described in the table below: 



 
RTOS-Aware Debugging 

 
 
 

386 | P a g e  
 

  Name Description 

Exception Handler No 
 
CPU Exception Handler No. 

Execption Handler Entry Handler entry address 

Table 61 – TOPPERS Interrupt Handlers Static Information 

 

 



 
RTOS-Aware Debugging 

 
 
 

387 | P a g e  
 

MICRIUM µC/OS-III 
The kernel awareness features for Micriµm µC/OS-IIITM in Atollic TrueSTUDIO provide the 
developer with a detailed insight into the internal data structures of the µC/OS-III kernel. 
During a debug session, the current state of the µC/OS-III kernel and the various µC/OS-III 
kernel objects such as tasks, memory partitions, message queues, semaphores and 
software timers, can be easily inspected in a set of dedicated views, in the Atollic 
TrueSTUDIO Debug perspective. 

 

REQUIREMENTS 
The kernel awareness features described in this document is based on µC/OS-III V3.02.00. 

 

 

FINDING THE VIEWS 
A number of debugger views are available in the Atollic TrueSTUDIO Debug perspective 
when debugging an application containing the µC/OS-III real-time operating system. 

These views are available from the Show View toolbar dropdown list button. 

 

Please note that the level of information available in the different views in 
Atollic TrueSTUDIO depends on the configuration of the µC/OS-III RTOS. If 
some feature is not enabled, the views presented in this document may 
contain columns presenting information such as “N/A” (Not Applicable) or “0” 
instead of expected values when debugging the target system. The Micriµm 
µC/OS-III Users Guide contains information on how different features can be 
enabled in the operating system. 

 

E.g. Enable statistics task in os_cfg.h: 
#define OS_CFG_STAT_TASK_EN             1u   
 



 
RTOS-Aware Debugging 

 
 
 

388 | P a g e  
 

 

Figure 362 - View Top Level Menu 

 

Figure 363 - Show View Toolbar Button 

 

SYSTEM INFORMATION 
The µC/OS-III System Information view displays a number of system variables available in 
the µC/OS-III kernel, such as state, version, CPU usage, different counter information, etc.  



 
RTOS-Aware Debugging 

 
 
 

389 | P a g e  
 

 

Figure 364 - µC/OS-III System Information View 

The available system variables are described in the table below: 

  Name Description 

µC/OS-III State The current status of µC/OS-III. 

µC/OS-III Version The version of the RTOS.  

CPU Usage The actual CPU usage of all tasks. 

Idle Task Counter The idle task counter. 

Statistic Task Counter The statistic task counter. 

Tick Task Counter The tick task counter.  

Timer Task Counter The timer task counter. 

Context Switches The total number of context switches. 

Interrupt Nesting Counter The interrupt nesting level counter. 

Max Interrupt Disable Time The maximum interrupt disabled time (µs). 



 
RTOS-Aware Debugging 

 
 
 

390 | P a g e  
 

  Name Description 

Scheduler Lock Nesting Counter The counter for the nesting level of the scheduler 
lock. 

Max Scheduler Lock Time The maximum amount of time the scheduler was 

locked irrespective of which task did the locking 

Table 62 – µC/OS-III System Variables 

 

TASK LIST 
The µC/OS-III Task List view displays detailed information regarding all available tasks in 
the target system. The task list is updated automatically each time the target execution is 
suspended.  

There is one column for each type of task parameter, and one row for each task. If the 
value of any parameter for a particular task has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 365 - µC/OS-III Task List View 

The available parameters are described in the table below: 

  Name Description 

N/A Indicates the currently running task. The currently running 
task is indicated by a green arrow symbol. 

Name The task name.  

Prio The task priority. Low number indicates high priority. 

State The current state of the task.  

Pend On The type of the object the task is waiting on and in 



 
RTOS-Aware Debugging 

 
 
 

391 | P a g e  
 

  Name Description 
parenthesis the name of the actual object. 

Ticks Rem The amount of time (ticks) remaining for a delayed task to 
become ready-to-run or for a pending task to timeout 

CPU Usage The task CPU usage. 

CtxSwCtr The number of times the task has executed (switched in). 

IDT  
(Interrupt Disable Time) 

The maximum amount of time (µs) interrupts has been 
disabled by the task. 

SLT 
(Scheduler Lock Time) 

The maximum amount of time (µs) the scheduler has been 
locked by the task. 

Stack Info The stack information:  Used/Free/Size, expressed in 
number of stack entries. 

Stack Usage The stack usage. 

Task Queue Task queue information: Current/Maximum/Size. 

Task Queue Sent Times Task queue sent times: Latest/Maximum.  
The amount of time (µs) it took for a message to be sent 
and actually read by the task. 

Task Sem Ctr The number of times the task has been signaled while the 
task was not able to run. 

Task Sem Signal Times Task semaphore signal times: Latest/Maximum. 
The amount of time (µs) it took for the task to execute 
after the semaphore was signaled. 

Table 63 – µC/OS-III Task Parameters 

 

SEMAPHORES 
The µC/OS-III Semaphores view displays detailed information regarding all available 
resource semaphores in the target system. The view is updated automatically each time 
the target execution is suspended. 

There is one column for each type of semaphore parameter, and one row for each 
semaphore. If the value of any parameter for a particular semaphore has changed since 



 
RTOS-Aware Debugging 

 
 
 

392 | P a g e  
 

the last time the debugger was suspended, the corresponding row will be highlighted in 
yellow. 

 

Figure 366 - µC/OS-III Semaphores View 

The available parameters are described in the table below: 

  Column Description 

Item The semaphore item counter. 

Name The name of the semaphore. 

Counter The current semaphore count. 

Time Stamp The semaphore last signal time (µs). 

Pend List Entries The number of tasks pending on the semaphore. 

Pend List List of tasks pending on the semaphore. Highest priority 
tasks are sorted first in the list. 

Table 64 – µC/OS-III Semaphore Parameters 

MUTEXES 
The µC/OS-III Mutexes view displays detailed information regarding all available mutexes 
in the target system. The view is updated automatically each time the target execution is 
suspended. 

There is one column for each type of mutex parameter, and one row for each mutex. If the 
value of any parameter for a particular mutex has changed since the last time the 
debugger was suspended, the corresponding row will be highlighted in yellow. 



 
RTOS-Aware Debugging 

 
 
 

393 | P a g e  
 

 

Figure 367 - µC/OS-III Mutexes View 

The available parameters are described in the table below: 

  Column Description 

Item The mutex item counter. 

Name The name of the mutex. 

Owner The name of the task that currently owns the mutex.  

Owner Org Prio The owning task original priority (task priority may have 
been raised due to priority inheritance).  

Owner Nest Ctr The owning task nesting counter. Number of times the 
owning task acquired the mutex.  

Time Stamp Latest release time (µs).  

Pend List Entries Number of tasks pending on the mutex.  

Pend List List of tasks pending on the semaphore. Highest priority 
tasks are sorted first in list. 

Table 65 – µC/OS-III Mutexes Parameters 

 

MESSAGE QUEUES 
The µC/OS-III Message Queues view displays detailed information regarding all available 
message queues in the target system. The view is updated automatically each time the 
target execution is suspended. 

There is one column for each type of message queue parameter, and one row for each 
message queue. If the value of any parameter for a particular message queue has changed 
since the last time the debugger was suspended, the corresponding row will be highlighted 
in yellow. 



 
RTOS-Aware Debugging 

 
 
 

394 | P a g e  
 

 

Figure 368 - µC/OS-III Message Queues View 

The available parameters are described in the table below: 

  Column Description 

Item The message queue item counter. 

Name The name of the message queue. 

Size The maximum number of entries allowed in the queue. 

Entries The current number of entries in the queue. 

Max entries The peak number of entries in the queue. 

Pend List Entries The number of tasks pending on the queue. 

Pend List List of tasks pending on the queue. Highest priority tasks 
are sorted first in list. 

Table 66 – µC/OS-III Message Queue Parameters 

 

EVENT FLAGS 
The µC/OS-III Event Flags view displays detailed information regarding all available event 
flag groups in the target system. The view is updated automatically each time the target 
execution is suspended. 

There is one column for each type of parameter, and one row for each event flag group. If 
the value of any parameter for a particular event flag group has changed since the last 
time the debugger was suspended, the corresponding row will be highlighted in yellow. 

 



 
RTOS-Aware Debugging 

 
 
 

395 | P a g e  
 

Figure 369 - µC/OS-III Event Flags View 

The available parameters are described in the table below: 

  Column Description 

Item The event flag group item counter. 

Name The name of the event flag group.  

Flags The current value of the event flag group. 

Time Stamp The last time the group was posted to. 

Pend List Entries The number of tasks pending on the event flag group. 

Pend List List of tasks pending on the event flag group. Highest 
priority tasks are sorted first in list. 

Table 67 – µC/OS-III Event Flag Parameters 

 

TIMERS 
The µC/OS-III Timers view displays detailed information regarding all available software 
timers in the target system. The timers view is updated automatically each time the target 
execution is suspended.  

There is one column for each type of timer parameter, and one row for each timer. If the 
value of any parameter for a particular timer has changed since the last time the debugger 
was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 370 - µC/OS-III Timers View 

The available parameters are described in the table below: 

  Name Description 

Item The timer item counter. 



 
RTOS-Aware Debugging 

 
 
 

396 | P a g e  
 

  Name Description 

Name The name of the software timer. 

Type The type of the timer. 

State The state of the timer. 

Match The time when the timer expires. 

Remain The time remaining before the timer expires. 

Delay The expiration time for one-shot timers and initial delay 
for periodic timers. 

Period The timer period (for periodic timers). 

Callback The address and name of function to call when the timer 
expires. 

Table 68 – µC/OS-III Timer Parameters 

 

MEMORY PARTITIONS 
The µC/OS-III Memory Partitions view displays detailed information regarding all available 
memory partitions in the target system. The view is updated automatically each time the 
target execution is suspended.  

There is one column for each type of parameter, and one row for each memory partition. 
If the value of any parameter for a particular memory partition has changed since the last 
time the debugger was suspended, the corresponding row will be highlighted in yellow. 

 

Figure 371 - µC/OS-III Memory Partitions View 

 

 



 
RTOS-Aware Debugging 

 
 
 

397 | P a g e  
 

 

 

The available parameters are described in the table below: 

  Column Description 

Item The memory partition item counter. 

Name The name of the memory partition. 

Total The number of memory blocks available from the 
partition. 

Free The number of free memory blocks available from the 
partition. 

Block size The size of each memory blocks in the partition. 

Table 69 – µC/OS-III Memory Partitions Parameters 

 

 

 

 

 

  



 
Introduction 

 
 
 

398 | P a g e  
 

 SOURCE CODE REVIEW 
This section provides information on how to perform source code reviews and hold code 
review meetings with Atollic TrueSTUDIO for STM32. 

This section covers information on the following topics: 

 Introduction to source code reviews and code review meetings 

 The Review perspective and related views 

 Creating and configuring reviews sessions 

 Performing a 3-step source code review 

 Additional reading and available templates and appendices 



 
Revision History 

 
 
 

399 | P a g e  
 

INTRODUCTION TO CODE REVIEWS 
Atollic TrueSTUDIO for STM32 has integrated tool support for performing source code 
reviews and code review meetings. Code review is one of the most cost-effective ways of 
improving software quality. In order to learn more about code reviews, please visit the 
white paper section on the Atollic website and read our white paper on source code 
review. The tool support can be deployed in any project size, ranging from one to several 
developers. In this chapter, the project is assumed to contain more than one team 
member. 

In order to put the concepts and terminology used in Atollic TrueSTUDIO into context, the 
two flow charts below are provided.  

The first flow chart shows a commonly deployed software review workflow. The second 
flowchart shows the individual source code review steps available in Atollic TrueSTUDIO. 
The dashed lines between the two flow charts, map the steps of one flow chart to the 
corresponding steps in the other. 

 

 

 

 

 

Figure 372 – Atollic TrueSTUDIO Support for the Code Review Workflow 

 

Planning Overview Preparation Meeting Rework Follow-up 

Create review 
Individual 

phase 

Group 

phase 

Rework 
phase 

Follow-up 



 
Revision History 

 
 
 

400 | P a g e  
 

Process step Traditional content Tool support in Atollic TrueSTUDIO 

Planning / 
Create review 

The review is planned by the 
moderator. A review topic is 
determined and the work product 
is outlined. 

Create the review, choose authors, work 
product and configure problem types, 
resolution types, severity levels, etc. 

Overview / 
Individual or 
Group phase 

The author describes the 
background of the work product 
and the reviewers are educated 
regarding the work product at 
hand. 

Once a review is created, a start-up meeting 
may be held where the author and the 
reviewers go through the work product in 
order to get an overview. 

Preparation / 
Individual 
phase 

Each reviewer examines the work 
product to identify possible 
defects. 

Each reviewer examines the work product 
to identify possible defects. 

Review 
meeting / 
Group phase 

During this meeting the chairman 
goes through the work product, 
part by part, and the reviewers 
point out the defects found for 
each part. 

The accumulated defects found by the 
group of reviewers are discussed. 

Rework 

The author makes changes to the 
work product according to the 
action plans from the inspection 
meeting. 

The author makes changes to the work 
product according to the action plans from 
the review meeting. 

Follow-up 
The changes made by the author 
are checked to make sure 
everything is correct. 

 

 

Table 70 – Atollic TrueSTUDIO Support for the Code Review Workflow 

 



 
Revision History 

 
 
 

401 | P a g e  
 

PLANNING A REVIEW – REVIEW ID 

CREATION 
A pre-requisite that is necessary in order to efficiently deploy code reviews within your 
project team is the access to a shared Atollic TrueSTUDIO project, either using a version 
control system, which is recommended, or using a network drive. All review comments are 
saved as XML formatted files in a selectable folder within the Atollic TrueSTUDIO project.  

The comments may thus be shared between reviewers using a commonly accessed version 
control system. This is a big advantage, as no server-side database needs to be installed, 
configured and administered to perform code reviews. The normal version control system, 
such as GIT or Subversion, is used for team collaboration. 

In order to perform a code review the first step is to create a review ID for this specific 
code review session. Creating a review ID is typically done by a moderator, which may be a 
team leader or an employee from the quality assurance department. This is a simple 
operation where the user is prompted to configure the following options: 

 Review ID (= name) and description 

 Review comment classification types 

 Review comment severities 

 Review comment resolution decisions 

 Review comment statuses 

 Work product content 

 Authors/Reviewers for the review 

The steps to create a specific code review session can be severely simplified by taking the 
time to create a project, or company standard, review template. All future reviews that are 
created later can then be based on this review template. The moderator will thus only be 
required to configure most of the above options once for each TrueSTUDIO workspace. 
This is described in next chapter. 

Review comments are stored as XML formatted files in a selectable folder within the 
TrueSTUDIO project; one file for each reviewer. The overall review settings are saved as a 
hidden XML formatted file in the project root folder in the workspace. 

A review ID is tightly connected to inspection of resources (files) for one TrueSTUDIO 
project. A review ID should preferably not contain any whitespaces as it will be part of the 
review storage file name. 



 
Revision History 

 
 
 

402 | P a g e  
 

CREATING A REVIEW ID 
In order to create a review ID the user must access the properties for the Atollic 
TrueSTUDIO project that is containing the desired work product. This is done by 
performing the following steps: 

1. Select the project in Project Explorer view. 

2. Click on the Build Settings toolbar button or right-click on the project in 
the Project Explorer view and click Properties. 

 

Figure 373 – Project Properties Menu Selection 

3. Select the Review node 

 

Figure 374 - GUI for Creating and Managing Code Reviews 

4. The user may choose to add a New, or Edit or Remove an existing, review 
in the dialog box. 

5. Click New to add a new Review ID. 



 
Revision History 

 
 
 

403 | P a g e  
 

 

Figure 375 - Dialog for Creating a New Review ID 

6. Give the review a Review ID, i.e. a name. It is recommended not to use 
whitespaces as this will be part of the file name. Also provide a short 
description for the meeting. Click Next. 

7. The next step determines the work product for the meeting. Choose which 
files that will be subject to this review. Use the buttons to Add and 
Remove files. 

 

Figure 376 - Dialog for Managing the Work Product of a Review 

8. Create a Reviewer ID by clicking Add and entering a reviewer name. 
Repeat for each reviewer that will attend the meeting. The review issues 



 
Revision History 

 
 
 

404 | P a g e  
 

collected by each reviewer will be stored in corresponding XML-formatted 
files. It is recommended not to use whitespaces in the reviewer IDs. 

 

Figure 377 - Add Reviewers to the Review 

9. Select an author among the reviewers. The review issues identified in the 
Team Phase will be assigned to the author as default. Naturally, an explicit 
assignment overrides the default. 

 

Figure 378 - Choose Author for the Review Session 

10. In this step, it is possible to configure available parameter options for the 
review comments. The parameter options are: 

 Review comment classification types 

 Review comment severities 

 Review comment resolution decisions 

 Review comment statuses 



 
Revision History 

 
 
 

405 | P a g e  
 

 

Figure 379 - Review Comment Parameter Options 

11. It is possible to set a default option for each of the above review 
parameters. This will be used unless an option is chosen explicitly when a 
review comment is created or modified. 

 

Figure 380 - Setting Default Options for Review Parameters 

12. Choose the folder name where review issue data will be saved within the 
project. This folder will be stored in the root level of the corresponding 
project. It is possible to put the review issue data in a subfolder, i.e. 
“ProjectName/reviews/MileStone1_2013-01-02/” by using “/” 
(forward slash). The previous example would be specified as: 
“reviews/MileStone1_2013-01-02” 



 
Revision History 

 
 
 

406 | P a g e  
 

 

Figure 381 - Naming the Review Issue Data Folder 

13. In the final step the user can customize which information shall be shown 
in the Review Table view during the three different phases; Individual, 
Team, Rework. This is done by setting up filters. These filter can be toggled 
on and off in the Code Review Table view during the inspection. 

 

Figure 382 - Filter Settings for the Different Phases 

 Individual Phase – The default filter allows the reviewers to view their 
own comments only. It is recommended is to keep this filter, so that 
reviewers are not biased by each other’s review comments. 

 Team Phase – The default filter allows the moderator and the 
reviewers to view only comments which have “Resolution: Unset”. 
This means that only review comments that still require a decision are 
shown. 



 
Revision History 

 
 
 

407 | P a g e  
 

 Rework Phase – This phase is relevant to reviewers that have had 
review issues assigned to them (typically: the author), during the Team 
Phase. The default filter allows such a reviewer to view only the issues 
assigned to him, or her, and in addition have “Status: Open”. 

Click Finish to save all settings for the specific Review ID. 

14. As a final, and very important, step, make sure to commit the review 
settings file which resides in the project root folder and is called 
.code_review_properties to the version control system. Configuration 
files are typically hidden from the rest of the project resources by using a 
leading “.” (dot-character) in the filename. A file with a leading “.” in the 
filename will not be shown by the Project Explorer view. In order to 
commit this file the user must open the Navigator view which also shows 
hidden configuration files. 

 

TAILORING A REVIEW ID TEMPLATE 
The DEFAULT review ID contains the template settings which all future reviews will be 
based on. A company conducting regular code reviews can save a lot of time by making 
sure that the DEFAULT Review ID correlates well to the outlined terminology used in 
company process for code reviews and issue tracking. The following information is 
transferred from the template to any freshly created review ID: 

 Review comment classification types 

 Review comment severities 

 Review comment resolution decisions 

 Review comment statuses 

 Default selections 

 Authors for the review 

 Phase filter selections 

The DEFAULT review ID template can be edited from the Review panel in the Project 
Properties by selecting DEFAULT and clicking Edit… 



 
Revision History 

 
 
 

408 | P a g e  
 

 

Figure 383 - Editing the DEFAULT Review Template 

The user may also choose to remove a Review ID by clicking Remove… in the Review panel 
in the Project Properties. This will remove the corresponding sections from the review 
settings file and all individual reviewer files containing the individual review issue data. 

 



 
Revision History 

 
 
 

409 | P a g e  
 

CONDUCTING A SOURCE CODE REVIEW 
The source code review is conducted in a separate perspective called the Code Review 
perspective. This is accessed from the Open perspective toolbar button; or from the menu 
command View > Open perspective > Code Review 

 

Figure 384 - Code Review Selected via Open Perspective Command 

The Code Review perspective contains a number of unique views and toolbar buttons. 

 

Figure 385 - The Code Review Perspective 



 
Revision History 

 
 
 

410 | P a g e  
 

The Code Review perspective has a toolbar adapted for navigation of review issues. The 
toolbar has the following buttons and functionality: 

  Button Name Description 

 Refresh Opens/refreshes the code review session 

 Individual Phase Log into the individual phase and add code 
review comments 

 Team Phase Log into the Team Phase, and perform a code 
review meeting 

 Rework Phase Log into the Rework Phase, and correct the 
problems assigned to you at the code review 
meeting 

Table 71 - Code Review Toolbar Buttons 

 

The following views are primarily associated to the code review perspective: 

 The main editor area – The editor area of the perspective is needed to review the 
source code files. 

 The Code Review Table view – This is the list of review issues. Different set of 
issues will be listed depending on selected Phase and Reviewer. 

 The Code Review Editor view – An editor showing the current issue being created 
or modified. The editor view provides different toolbar buttons depending on the 
current phase of the review. 

 

 

Figure 386 – The Code Review Table View 

  Button Name Description 

 Go to the source code Select a file from the work product to 



 
Revision History 

 
 
 

411 | P a g e  
 

  Button Name Description 
review 

 Edit the code review Edit the settings for this specific code 
review 

 Add code review issue Adds a code review issue associated to the 
code line the marker currently is on 

 Delete code review 
issue 

Delete the currently selected code review 
issue 

 Filters… Apply the filter setup for this code review 

Table 72 - Code Review Table View Toolbar Button Description 

 

 

Figure 387 – The Code Review Editor View 

  Button Name Description 

 Go to the source code Select a file from the work product to 
review 

 Next Next review issue in the review table. Also 
saves any changes made to the current 
review issue. 

 Previous Previous review issue in the review table. 
Also saves any changes made to the current 
review issue. 

 Save Save changes to current review issue 



 
Revision History 

 
 
 

412 | P a g e  
 

  Button Name Description 

 Clear Clears the content of the editor 

Table 73 – The Code Review Editor View Toolbar Button Description 

 

INDIVIDUAL PHASE 
In order to start working in the individual phase and add review comments, the reviewer 
must use their own associated reviewer ID to log into a review session. The user does this 
by clicking on the toolbar button Individual Phase in the Code Review perspective.  

 

Figure 388 - Individual Phase Selected in the Code Review Toolbar 

The Review ID selection dialog will appear when the user clicks on either of the three code 
review phase related toolbar buttons. Review ID must be chosen so that the associated 
work product is shown to the reviewer. The user must also choose his or her name from 
the Reviewer ID drop-down menu. This will make sure that all review issues found are 
associated with the specified Reviewer ID. 

 

Figure 389 - Reviewer ID Selection Dialog 

When a user has logged into the individual phase of a certain Review ID, it is possible for 
him or her to start adding review comments. This is done by reviewing the work product. 
The work product can be browsed by using the Go to the source code button in the Code 
Review Table. 



 
Revision History 

 
 
 

413 | P a g e  
 

 

Figure 390 - The Source Code Button & Drop-Down Menu 

By selecting a file from the drop-down menu it will be opened in the Editor window of the 
IDE.  

To add a code review issue perform these two steps: 

1. In the editor select a code-line with the mouse cursor, doing so the selected text will 
be copied into the “description” field of the review issue. 

2. Right-click on the line number and choose “Add code Review Issue…” 

 

Figure 391 - Add Code Review Issue... 

 

When clicking Add Code Review Issue… the reviewer will be hyper-linked into the Code 
Review Editor view where a new review issue is being created.  

If the user right-clicks in the editor instead of the line number, the review issue 
may not be associated to the correct line number. 

If no text is selected, the review issue description field will be empty. 

 



 
Revision History 

 
 
 

414 | P a g e  
 

 

Figure 392 – A Code Review Issue in the Review Editor View 

The top of the Code Review Editor view shows information about who found the review 
issue, in which file and at which code line. The user may also choose to select a code block, 
right-click and then click Add Cod Review Issue… In this case the content of the code block 
will be copied into the description field of the Review issue. The type and severity fields 
are mandatory information for each review issue. 

The type field identifies the type of review issue and the severity field defines the severity 
level for the current issue. 

After entering all information into the review issue being added, click the Save button in 
the Code Review Editor view. Upon saving, the review issue will become visible in the 
Code Review Table view. A review marker will also be added to the left margin of the main 
editor window. 

 

 

Figure 393 - Review Marker Displayed on Editor Line 101 

Go through the different files included in the work product and add review comments. 
When an individual user has finished reviewing the work product, he/she must remember 
to commit the .review file to the version control system. This enables other reviewers  to 
access the review issues by retrieving the files them from the version control system.  

This path to the .review file was specified during the review configuration phase. By 
default the file is saved in the review subfolder within the project folder. 

 

TEAM PHASE 
In this phase the team members gather in a code review meeting to discuss all the review 
issues that were found by the individual reviewers. Before starting this phase it is 
important that the review moderator assures that all reviewers have committed their 
.review file, and subsequently updates his or her own local copy of each .review file 



 
Revision History 

 
 
 

415 | P a g e  
 

from the version control system. If this is not done properly, the issues from one, or more, 
reviewers are not taken into account, and will not show up in the collaborative Code 
Review Table view. 

To start the team phase (code review meeting), click on the Team Phase toolbar button in 
the Code Review perspective. 

 

Figure 394 - Team Phase Toolbar Button 

The Review ID Selection dialog will appear where the user is prompted to select a Project, 
a Review ID and a Reviewer ID. The Reviewer ID in this phase is typically the author of the 
work product under review or the moderator hosting the meeting. 

All review issues collected by all reviewers are now displayed in the Code Review Table 
view (provided that the review comment files have been committed to the version control 
system, and have subsequently been updated to the computer being used for the code 
review meeting).  

Click on any review issue in the Code Review Table view and its content will be shown in 
the Code Review Editor view. If an already existing review issue is modified in this phase, 
make sure to click Save, Next, or Previous button to automatically save any changes. By 
double-clicking on any review issue in the Code Review Table view, the associated source 
code lines are also shown in the editor area of the IDE. 

Review issues can also be navigated from the Code Review Editor view by using the Next 
and Previous buttons. The Go to the source code button allows jumping from the Code 
Review Editor view into the source code. 

 

Figure 395 - Code Review Editor View Content in Team Phase 

The Assigned To field contains the author’s Review ID by default, but can be changed to 
the Reviewer ID of any other team reviewer. When the group has reached a decision on 
how to handle the review issue at hand, the Resolution field must be changed to reflect 
this decision. The Annotation field allows additional information to be added. 



 
Revision History 

 
 
 

416 | P a g e  
 

By single-clicking on a review marker in the source code, the summary and description of 
the review issues for the specific code line will be shown in a tooltip. 

 

 

Figure 396 - Review Markers and Tooltip Information in the Editor 

Review markers are also subject to the filter that is configured for the current phase of the 
code review. For example, if the filter is set to show Resolution: Unset issues only, then 
only review markers associated with such review issues will be shown. 

When all review issues have been handled in the code review meeting; a reviewer has 
been assigned and a resolution has been chosen for all review comments, it is important to 
remember to commit the .review files to the version control system. When this is done 
all reviewers are able to access the decision outcome information from the Team Phase, 
and the code review can enter the Rework Phase. 

 

REWORK PHASE 
In this phase each reviewer will work on the review issues that were assigned to him/her 
at the code review meeting, in order to implement the agreed resolution. Before starting 
this phase it is important that the each reviewer updates the folder containing the 
.review files from the version control system. If this is not done, the reviewer will not be 
able to access any assigned-to or resolution information from the code review meeting. 

To start this phase click on the Rework Phase toolbar button in the Code Review 
perspective. 

 

Figure 397 - Team Phase Toolbar Button 

The Review ID Selection dialog will appear where the user is prompted to select a Project 
a Review ID and a Reviewer ID. 

In the Code Review Table view, the user will only see the review issues that were assigned 
to the reviewer that was selected in the Review ID Selection dialog when entering this 
phase. The purpose of this phase is that each reviewer addresses the review issues that 
were assigned to him/her respectively. 



 
Revision History 

 
 
 

417 | P a g e  
 

The Code Review Editor view will now contain the fields Status, Resolution and Revision. 
The Status field allows the status of each review issue to be changed. The resolution fields 
simply states the agreed resolution decided at the code review meeting. It can and should 
not be changed in this phase. The Revision field provides the possibility to write a 
comment related to the implemented resolution. 

 

Figure 398 - Code Review Editor View Content in the Rework Phase 

When all fields are filled in for the Review issue at hand, the reviewer must click Save, 
before the buttons Next and Previous can be used to view the next review issue to fix. 
When updated statuses for all review issues have been saved, the Code Review Table view 
will be empty. The reviewer must then remember to commit the .review file to the 
version control system so that the moderator can verify that everything has been fixed. 

ADDITIONAL SETTINGS 
The Code Review Table view can also be customized temporarily without overwriting the 
.code_review_properties file. This is done from the Preference settings found in the 
Code Review Table view toolbar. 

 

Figure 399 - Accessing Code Review Preference Settings 

In this customization dialog the user may change filters that are applied on the Code 
Review Table view in order to show only review issues that have a certain parameter 
combination. It is also possible to tailor which columns, and thereby which parameters, are 
visible in each phase. 



 
Revision History 

 
 
 

418 | P a g e  
 

 

Figure 400 - Customize Filters Applied for All Phases 

 

Figure 401 - Customize Visible Code Review Table Columns 



 
Revision History 

 
 
 

419 | P a g e  
 

 REVISION HISTORY 
This section provides information what’s changed in this document in each revision. 



 
Revision History 

 
 
 

420 | P a g e  
 

REVISION HISTORY 
The revision history of this document is briefly described below. 

Revision Change Page 

20 Atollic TrueSTUDIO for STM32 v9.0 updates 

Updated Static Stack Analyzer Using Search Field 

Updated text and screen shots to use STM32 examples 

Removed irrelevant information such as Licensing and 
Lite/Pro descriptionwhich no longer exist in the product. 

Added chapter Disassemble/List Object and Elf Files 

Updated product name to TrueSTUDIO for STM32 

Updated Introduction 

Updated SVD file information (get from ST instead of from 
ARM) 

Removed sections regarding license system 

Removed sections regarding non-ST target devices  

Removed sections regarding integration of non-ST tools and 
software 

Removed sections regarding P&E GDB server 

Removed sections regarding OpenOCD debug server 

Updated figure 44 and 238 regarding avialble debug probes 

Removed sections regarding connection to web shop  

Updated sections regarding difference beween Lite and Pro 
mode. All features are now available from start without 
licensning.  

 

 

 

 

 

 

 



 
Revision History 

 
 
 

421 | P a g e  
 

Revision Change Page 

21 Atollic TrueSTUDIO for STM32 v9.1 updates 

Updated Debug Configurations Screen shots (Figure 54, 157, 
198, 262) 

Added information about External Loader option when 
programming external flash devices using ST-LINK. 

 

 
 

218 

Table 74 – Revision History 


	About this Document
	Intended Readers
	Document Conventions

	Section 1. Getting Started
	Introduction
	Preparing for Start
	Workspaces & Projects
	Perspectives & Views
	Views


	Starting the Program
	Starting With Different Language
	Change What is Started

	Creating a New Project
	One-Click Example Project Installation
	Using an Existing Project
	Prevent “GCC not found in PATH” Error
	Creating a Static Library
	Hide Information in a Static Library
	Creating a Makefile Project From Existing Code

	Importing EWARM Projects
	Using the Project Import Converter
	Import Projects from Folder or Archive
	Before Building Imported Project
	Step-by-step checklist
	Common Build Errors
	Configuring the Debugger

	Importing AC6 Projects
	Using the Project Import Converter
	Import Projects from Folder or Archive
	Import Projects using Double-Click
	Using Imported Projects
	Restoring Converted Projects

	Configuring the Project’s Build Settings
	Build Configurations
	Create a New Build Configuration for Release
	Changing Active Build Configuration

	Source Folders
	Include Libraries
	Compiler settings
	Set the Compiler to Use The C99-Standard
	Compiler Optimization

	Link Time Optimization (LTO)
	Changing Toolchain Version
	Create a New Build Configuration For an Old Toolchain Version

	Convert .elf-File to Another Output Format
	Temporary Assembly File

	Building the Project
	Enable Parallel Build
	Enable Build on Save
	Rebuild Project
	Build All Projects
	Build All Build Configurations
	Headless Build
	Logging
	The Build Size
	Command Line Patterns
	Create .list-Files

	Building One File

	Linking the Project
	Referring Project
	Dead Code Removal
	Adding Code to be Executed Before Main()
	Page Size Allocation for Malloc
	Include Additional Object Files
	Treat Linker Warnings as Errors
	Linker Script
	Generate a New Linker Script
	Automatically
	Manually

	Modify Existing Linker Script
	Place Code in a New Memory Region
	Place Code in External Ram
	Place Variables at Specific Addresses
	Linking in a Block of Binary Data
	Locate Uninitialized Data in Memory


	Managing Existing Workspaces
	Backup of Preferences for a Workspace
	Copy Preferences Between Workspaces
	Keeping Track on Java Heap Space
	Unlocking Locked Workspaces

	Managing Existing Projects
	Edit
	Editor Zoom In / Zoom Out
	Quickly Find and Open a File
	Branch Folding
	Block selection mode
	Find all Keyboard Shortcuts

	The Index
	Finding Include Paths, Macros etc.
	Add or Remove Folder to Include Path
	Locate Where a File is Included
	Creating Links to External Files
	Update CMSIS Math library
	Converting a C-Project to a C++-Project

	Disassemble/List Object and Elf Files
	I/O Redirection
	Position Independent Code
	Using CMSIS-Pack in TrueSTUDIO
	Configuration
	CMSIS Pack Manager Perspective
	Open Installed CMSIS Packs View
	Install CMSIS Packages

	Create CMSIS-Pack Based Projects
	Create CMSIS C/C++ Project
	Configure the CMSIS C/C++ Project
	Updating Linker Script for CMSIS C/C++ Project
	Disable CMSIS Startup File
	Debugging the CMSIS C/C++ Project
	Adding more CMSIS-Pack Features Into Project

	Installing 3rd Party Plugins
	Install From Eclipse Marketplace
	Install Using “Install New Software”
	Uninstalling 3rd Party Plugins
	Solving Upgrade Problem

	Using ST-Link Utility Inside Atollic TrueSTUDIO
	Requirements
	Steps That Needs to be Performed
	Setup ST-Link Utility as an External Tool
	Convert the Build Output to Intel Hex
	Modify the Debug Configuration
	Create a Launch Group
	Finished

	Miscellaneous Tools
	Quick Access Search Bar
	Version control
	Subversion - SVN
	Locks in SVN
	Include SVN Revision-Number in a String
	Ignore a File
	Local SVN Repository
	Using SVN on External Resources

	Multi Monitor Support
	Open Additional Instance of TrueSTUDIO
	Shell Access


	Section 2. Debugging
	Introduction to Debugging with TrueSTUDIO
	Starting the Debugger
	External GDB Server
	JTAG Scan Chain

	The Startup Script
	Start Debugging at the Very Beginning
	Load the Program Without Debugging
	Hardware Initialization Code

	Managing the Debug Configurations
	Generic Binary Path
	Debug Launch Configuration Settings File

	Customize the Debug Perspective
	Debugging
	Terminate, Rebuild and Re-launch
	Disassembly View
	Breakpoints
	Conditional Breakpoint

	Expressions
	Live Expressions
	Local Variables
	Fill Memory with a Byte Pattern
	SFRs
	Fault Analyzer
	Fault Analyzer View

	Terminal View
	Segger Real Time Terminal


	Attach to Running Target Using SEGGER Probe
	Stopping the Debugger
	Upgrading the GDB Server
	Configure Segger’s GDB Server
	Change Flash Caching
	Enable Log File
	Settings Command Line Option

	Debugging Code in RAM
	Debugging Two Targets at the Same Time
	First Alternative - Local GDB-server Using GUI Options
	Second Alternative - Remote GDB-server Using Command-line Options


	Section 3. Build Analyzer
	Introduction to Build Analyzer
	Using Build Analyzer
	Memory Regions
	Memory Details
	Size Information
	Sorting
	Search and Filter
	Calculate Sum of Size
	Display Size Information in Byte Format
	Copy and Paste



	Section 4. Static Stack Analyzer
	Introduction to Static Stack Analyzer
	Using Static Stack Analyzer
	Enable Stack Usage Information
	Basic Column Information
	Function column
	Depth Column
	Max Cost Column
	Local Cost Column
	Type Column
	Info Column

	List Tab
	Call Graph Tab
	Using Search Field
	Copy and Paste


	Section 5. Serial Wire Viewer Tracing
	Using Serial Wire Viewer Tracing
	Serial Wire Debug (SWD)
	Serial Wire Output (SWO)
	Serial Wire Viewer (SWV)
	Instrumentation Trace Macrocell (ITM)

	Starting SWV Tracing
	The SWV Views
	The Timeline Graphs
	Statistical Profiling
	Exception Tracing
	Exception Data
	Exception Statistics


	Printf() Redirection over ITM
	Change the Trace Buffer Size
	Common SWV Problems

	Section 6. MTB Tracing (Cortex-M0+)
	Introduction to MTB
	Configure MTB
	Using MTB
	Analyzing MTB Information
	Copy the MTB Log


	Section 7. Instruction Tracing
	Instruction Tracing
	Cortex-M7 and ETMv4
	Enable Trace
	Writing a Trace Port Configuration File

	Configuring the Tracing Session
	ETM Trace Port Configuration File Reference
	Add Trace Trigger
	Add Trace Trigger in the Editor

	Managing Trace Triggers
	Start Trace Recording
	Analyzing the Trace
	Display Options
	Search the Trace Log

	Exporting a Trace Log


	Section 8. RTOS-Aware Debugging
	RTOS Kernel Awareness Debugging
	Segger embOS
	Requirements
	Finding the Views
	System Information
	Task List
	Timers
	Resource Semaphores
	Mailboxes

	HCC Embedded eTaskSync
	Requirements
	Finding the View
	Task List

	FreeRTOS and OpenRTOS
	Requirements
	Finding the Views
	Task List
	Queues
	Semaphores
	Timers

	Quadros RTXC
	Requirements
	Finding the Views
	Kernel Information
	Tasks (Task List and Stack Info)
	Task List tab
	Stack Info tab

	Alarms
	Counters
	Event Sources
	Exception Backtrace
	Exceptions
	Mailboxes
	Mutexes
	Partitions
	Pipes
	Queues
	Semaphores

	Express Logic ThreadX
	Requirements
	Finding the Views
	Thread List
	Semaphores
	Mutexes
	Message Queues
	Event Flags
	Timers
	Memory Block Pools
	Memory Byte Pools

	TOPPERS/ASP
	Requirements
	Finding the Views
	Tasks
	Static Information Tab
	Current Status Tab

	Dataqueues
	Static Information Tab
	Current Status Tab

	Event Flags
	Static Information Tab
	Current Status Tab

	Mailboxes
	Static Information Tab
	Current Status Tab

	Memory Pools
	Static Information Tab
	Current Status Tab

	Cyclic Handlers
	Static Information Tab
	Current Status Tab

	Alarm Handlers
	Static Information Tab
	Current Status Tab

	Prioritized Dataqueues
	Static Information Tab
	Current Status Tab

	System Status
	Interrupt Line Configuration
	Interrupt Handler Static Information
	CPU Exception Handler Static Information

	Micrium µC/OS-III
	Requirements
	Finding the Views
	System Information
	Task List
	Semaphores
	Mutexes
	Message Queues
	Event Flags
	Timers
	Memory Partitions


	Section 9. Source Code Review
	Introduction to Code Reviews
	Planning a Review – Review ID Creation
	Creating a Review ID
	Tailoring a Review ID Template

	Conducting a Source Code Review
	Individual Phase
	Team Phase
	Rework Phase
	Additional Settings


	Section 10. Revision History
	Revision History


