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THE COMPOUND PENDULUM 
 

OBJECT: To study the properties of a compound pendulum, 
and to determine the acceleration due to gravity by the use 
of such a pendulum. 

and the application of Newton's second law of motion for 
rotating bodies 
                                    L  Ia  

  
METHOD: An experimental pendulum is suspended 
successively about several axes at different points along its 
length and the period about each axis is observed. A graph 
is plotted of the period versus the distance of the axis of 
suspension from one end of the pendulum. The nature of the 
graph shows the physical properties of the compound 
pendulum. From values of the period and the corresponding 
length of the equivalent simple pendulum as determined 
from the graph, the acceleration due to gravity is calculated. 
From the mass of the pendulum and its radius of gyration as 
obtained from the curve, the rotational inertia of the 
pendulum is computed. 

where T  is the angular displacement, D  the angular 
acceleration, L the torque and I the rotational inertia of the 
body. 
Figure 1 represents a compound pendulum of mass m, 
consisting of a rectangular bar AB to which a cylindrical 

 

 
THEORY: A simple pendulum consists of a small body 
called a "bob" (usually a sphere) attached to the end of a 
string the length of which is great compared with the 
dimensions of the bob and the mass of which is negligible in 
comparison with that of the bob. Under these conditions the 
mass of the bob may be regarded as concentrated at its 
center of gravity, and the length l of the pendulum is the 
distance of this point from the axis of suspension. When a 
simple pendulum swings through a small arc, it executes 
linear simple harmonic motion of period T, given by the 
equation 

                                T  2S
l
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where g is the acceleration due to gravity. This relation-ship 
affords one of the simplest and most satisfactory methods of 
determining g experimentally. 

 
mass M is attached. The pendulum is suspended on a 
transverse axis through the point S. In the diagram, the 
cylindrical mass M is represented as being exactly in the 
middle of the bar, thereby making a symmetrical system in 
which the center of gravity G is at the geometrical center. 
Obviously, this particular condition is a very special case, 
and has nothing whatever to do with the general treatment of 
the problem. 

When the dimensions of the suspended body are not 
negligible in comparison with the distance from the axis of 
suspension to the center of gravity, the pendulum is called a 
compound, or physical, pendulum. Any body mounted upon 
a horizontal axis so as to vibrate under the force of gravity is 
a compound pendulum. The motion of such a body is an 
angular vibration about the axis of suspension. The 
expression for the period of a compound pendulum may be 
deduced from the general expression for the period of any 
angular simple harmonic motion 

In the equilibrium position, the center of gravity G is vertically 
below the axis of suspension S. When the body is rotated 
through an angle T , the weight of the system mg, which 
may be regarded as concentrated at the center of gravity, 
exerts a restoring torque about S given by  
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�T
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                             L  mghsinT                                     (4) 

 



where h is the distance from the axis of suspension to the 
center of gravity. If a minus sign is used to indicate the tact 
that the torque L is opposite in sign to the displacement T , 
Eqs. (3) and (4) yield 
 
                           Ia  �mghsinT                                   (5) 
 
When the angular displacement T  is sufficiently small, sinT  
is approximately equal to T  measured in radians. With this 
restriction Eq. (5) may be written 
 

                              a  
�mgh
I
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Since m, g, h and I are all numerically constant for any given 
case, Eq. (6), may be written simply 
 
                                  a  �kT                                          (7) 
 
where k is a constant. Equation (7) is the defining equation 
of angular simple harmonic motion, i.e., motion in which the 
angular acceleration is directly proportional to the angular 
displacement and oppositely directed. Since the system 
executes angular simple harmonic motion, substitution of the 
expression for a from Eq. (6) in Eq. (2) yields the equation 
for the period of a compound pendulum 
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where I is the rotational inertia of the pendulum about the 
axis of suspension S. It is convenient to express I in terms of 
I0, the rotational inertia of the body about an axis through its 
center of gravity G. If the mass of the body is m, 
 
                                                                         (9) Io  mko
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where ko is the radius of gyration about an axis through G. 
For any regular body, ko can be computed by means of the 
appropriate formula (see any handbook of physics or 
engineering); for an irregular body it must be determined 
experimentally. The rotational inertia about any axis parallel 
to the one through the center of gravity is given by 
 
                                                                  (10) I  Io �mh
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where h is the distance between the two axes. Substitution 
of the relationships of Eqs. (9) and (10) in Eq. (8) yields 
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This equation expresses the period in terms of the geometry 
of the body. It shows that the period is independent of the 
mass, depending only upon the distribution of the mass (as 
measured by ko) and upon the location of the axis of 

suspension (as specified by h). Since the radius of gyration 
of any given body is a constant, the period of any given 
pendulum is a function of h only. Comparison of Eq. (1) and 
Eq. (11) shows that the period of a compound pendulum 
suspended on an axis at a distance h from its center of 
gravity is equal to the period of a simple pendulum having a 
length given by 
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The simple pendulum whose period is the same as that of a 
given compound pendulum is called the "equivalent simple 
pendulum."  
It is sometimes convenient to specify the location of the axis 
of suspension S by its distance s from one end of the bar, 
instead of by its distance h from the center of gravity G. If the 
distances s1, s2 and D (Fig. 1) are measured from the end A, 
the distance h1 must be considered negative, since h is 
measured from G. Thus, if D is the fixed distance from A to 
G, s1 = D + h1, s2 = D + h2 and, in general, s = D + h. 
Substitution of this relationship in Eq. (11) yields 
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The relationships between T and s expressed by Eq. (l3) can 
best be shown graphically. When T is plotted as a function of 
 

 
 

s, a pair of identical curves SPQ and S'P'Q' are obtained as 
illustrated in Fig. 2. (The dotted portions represent 
extrapolations over apart of the body where it is difficult to 
obtain experimental data with this particular pendulum.) 
Analysis of these curves reveals several interesting and 
remarkable properties of the compound pendulum. 
Beginning at the end A, as the axis is displaced from A 
toward B the period diminishes, reaching a minimum value 
at P, after which it increases as S approaches G. The two 
curves are asymptotic to a perpendicular line through G, 
indicating that the period becomes infinitely great for an axis 
through the center of gravity. As the axis is displaced still 
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Thus farther from A (to the other side of G), the period again 
diminishes to the same minimum value at a second point P', 
after which it again increases. 

                                    ho  ko                                         (20) 
 A horizontal line SS', corresponding to a chosen value of T, 

intersects the, graph in four points, indicating that there are 
four positions of the axis, two on each side of the center of 
gravity, for which the periods are the same. These positions 
are symmetrically located with respect to G. There are, 
therefore, two numerical values of h for which the period is 
the same, represented by h1 and h2 (Figs. 1 and 2). Thus, for 
any chosen axis of suspension S there is a conjugate point 
O on the opposite side of the center of gravity such that the 
periods about parallel axes through S and O are equal. The 
point O is called the center of oscillation with respect to the 
particular axis of suspension S. Consequently, if the center 
of oscillation of any compound pendulum is located, the 
pendulum may be inverted and supported at O without 
altering its period. This so-called reversibility is one of the 
unique properties of the compound pendulum and one that 
has been made the basis of a very precise method of 
measuring g (Kater's reversible pendulum). 

Substituting in Eq. (12) yields 
 
                                   lo  2ko                                         (21) 
 
Thus, the shortest simple pendulum to which the compound 
pendulum can be made equivalent has a length lo equal to 
twice the radius of gyration of the body about a parallel axis 
through the center of gravity. This is indicated in Fig. 2 by 
the line PP'. Inspection of the figure further shows that, of the 
two values of h for other than minimum period, one is less 
than and one greater than ko. From the foregoing it is evident 
that if two asymmetrical points S and O can be found such 
that the periods of vibration are identical, the length of the 
equivalent simple pendulum is the distance between the two 
points, and the necessity for locating the center of gravity is 
eliminated. Thus, by making use of the reversible property of 
the compound pendulum, a simplicity is, achieved similar to 
that of the simple pendulum, the experimental 
determinations being reduced to one measurement of length 
and one of period. 

It can be shown that the distance between S and O is equal 
to l, the length of the equivalent simple pendulum. Equating 
the expressions for the squares of the periods about S and 
O, respectively, from Eq. (11)  

APPARATUS: The apparatus used in this experiment is very 
simple, consisting merely of a rectangular steel bar 
approximately 1 meter long carrying a heavy cylindrical 
mass, and supported on a horizontal axis (Fig. 3). The bar 
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from which 
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or                        T  2S
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Comparison of Eqs. (1) and (16) shows that the length l of 
the equivalent simple pendulum is 
 
                                 l  h1 � h2                                       (17) 
 
Thus, the length of the equivalent simple pendulum is SO 
(Figs. 1 and 2). 
S' and O' are a second pair of conjugate points 
symmetrically located with respect to S and O respectively, 
i.e., having the same numerical values of h1 and h2.  

 Fig. 3. Experimental Pendulum 

 
has a series of holes distributed along its length to provide 
several axes of suspension. In use the pendulum is 
supported successively at the various holes on a hardened 
steel knife-edge in a wall bracket, and its period of vibration 
determined with the aid of a stopwatch. A meter stick and a 
platform balance with a set of weights are the only other 
apparatus required. 

Further consideration of Fig. 2 reveals the fact that the 
period of vibration of a given body cannot be less than a 
certain minimum value To, for which the four points of equal 
period reduce to two, S and O' merging into P, and S' and O 
merging into P' as h1 becomes numerically equal to h2. The 
value of ho corresponding to minimum period can be 
deduced by solving Eq. (14) for k0

2, which yields   PROCEDURE: 
                                  k                                      (18) o

2  h1h2 Experimental: Support the pendulum on the knife-edge at 
the hole nearest to one end of the bar, making sure that it 
swings freely in a vertical plane. With the aid of a stopwatch, 

and setting 
                                h                                     (19) o  h1  h2
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observe the time of 50 full vibrations and determine the 
period. In making this determination, begin with the count of 
"zero" as the pendulum passes through its central position, 
count "one" as it makes its next transit through center going 
in the same direction, etc. In a like manner determine the 
period about an axis through each of the several holes. 
Remove the pendulum from its support and with a meter 
stick (preferably one equipped with caliper jaws) measure 
the distances s1, s2, etc., of the various points of suspension 
from one end of the bar. Record these lengths opposite the 
corresponding periods. 
Weigh the pendulum on the platform balance and record its 
mass m. 
 
Analysis of Data: 1. Plot the data in a graph similar to Fig. 
2. Draw any horizontal line SS'. From the corresponding 
period T as determined by the ordinate of this line, and the 
length l of the corresponding equivalent simple pendulum as 
given by the average of the values of SO and S'O', calculate 
the acceleration g due to gravity, by means of Eq. (1) . 
Compare with the accepted value and record the percentage 
difference. 
    2. From the mass m of the pendulum and the radius of 
gyration ko as determined from the graph, compute the 
rotational inertia Io about the axis G by Eq. (9). Compute the 
rotational inertia I about the axis S by Eq. (10). 
 
QUESTIONS: 1. What is the minimum period with which this 
pendulum can vibrate? What is the length of a simple 
pendulum having the same period? 
    2. Describe how Fig. 2 would be altered if the cylindrical 
mass M were near one end, say the end B. 
    3. With a given, axis of suspension, say S, discuss the 
effect upon the period of (a) increasing the mass of the 
cylindrical body; (b) moving it nearer to S. 
    4. How would the value of the minimum period To be 
affected by moving the mass M in either direction from the 
middle? 
    5. With the mass M near the end B and the pendulum 
suspended about an axis S near A, how could the vibration 
of the system about the axis S' be experimentally observed? 
    6. Does the center of oscillation of a solid body, such as a 
rod or bar, lie within the body for any transverse axis of 
suspension? Explain. 
    7. Locate the center of oscillation of a meter stick 
suspended about a transverse axis at the 10cm mark. At 
what other positions could the meter stick be suspended and 
have the same period? 
    8. Prove that the period of a thin ring hanging on a peg is 
the same as that of a simple pendulum whose length is to 
the diameter of the ring. 


