
B L A C K W O O D D E S I G N S

Quality Software
Design

SOFTWARE DESIGN GUIDES

A U T H O R R A N D A L L M A A S

O V E R V I E W This guide describes the design of high quality software for embedded systems. The intent is to

promote well-founded, justified designs and confidence in their operation. It provides guides,

checklists and templates.

B E N E F I T S Improve the quality of source code: its maintainability, testability, etc.

Prevent potential defects

Smoother, shorter design / release cycles

Better software products

T E M P L A T E S Design documentation templates

Design review checklists

Bug reporting template

Coding Style guides for C and Java

Bug defect type classification

Code review checklists

Code quality rubric

Copyright © 2003-2018 Blackwood
Designs, LLC. All rights reserved. No
part of this document may be
reproduced or transmitted in any form
or by any means, electronic or
mechanical, including photocopying
and recording, for any purpose,
without the express written permission
of Blackwood Designs.

F I L E : G:\My Documents\BD4 SW Design Documents\guide-quality software\BD4 Quality

Software Guide - 2018-7-8.doc

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 ii

RANDALL MAAS has spent decades in Washington and Minnesota. He consults in embedded

systems development, especially medical devices. Before that he did a lot of other things…

like everyone else in the software industry. He is also interested in geophysical models,

formal semantics, model theory and compilers.

You can contact him at randym@randym.name.

LinkedIn: http://www.linkedin.com/pub/randall-maas/9/838/8b1

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 iii

PREFACE ..1

1. ORGANIZATION OF THIS DOCUMENT ...1

SPECIFICATIONS ...5

OVERVIEW OF SOFTWARE DESIGN QUALITY ...7

2. OVERVIEW ...7
3. SOFTWARE QUALITY OVERVIEW ..8
4. A TIP ON STAFFING ... 10
5. REFERENCES AND RESOURCES ... 10

PROCESS .. 11

6. PROCESS ... 11
7. THE ROLE OF CERTIFYING STANDARDS ... 14
8. SOFTWARE DEVELOPMENT PLAN .. 18
9. RISK ANALYSIS .. 18
10. TERMS RELATED TO TESTING, VERIFICATION, AND VALIDATION ... 20
11. REFERENCES AND RESOURCES ... 20

REQUIREMENTS CHECKLISTS .. 23

12. OVERVIEW OF WELL WRITTEN REQUIREMENTS .. 23
13. REQUIREMENTS REVIEW CHECKLIST .. 24

SOFTWARE RISK ANALYSIS ... 27

14. SOFTWARE REQUIREMENTS RISK ANALYSIS .. 27
15. REFERENCE DOCUMENTS ... 31

SOFTWARE DESIGN & DOCUMENTATION ... 33

DESIGN OVERVIEW & WRITING TIPS ... 35

16. THE ROLE AND CHARACTERISTICS OF DESIGN DOCUMENTATION ... 35
17. DOCUMENTATION ORGANIZATION ... 36
17.1.1 TIPS FOR GETTING THE DEFINITIONS FOR STANDARDS TERMS ... 38
17.2.1 THE ACRONYMS AND GLOSSARY .. 38
17.2.2 THE REFERENCES, RESOURCES AND SUGGESTED READING .. 39

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 iv

17.2.3 FILES ... 39
18. REFERENCES AND RESOURCES ... 40

HIGH-LEVEL DESIGN TEMPLATE .. 41

19. BASIC OUTLINE .. 41
20. DIVISION INTO MODULES ... 44
21. REFERENCES AND RESOURCES ... 46

SOFTWARE ARCHITECTURE RISK ANALYSIS ... 47

22. SOFTWARE ARCHITECTURE RISK ANALYSIS ... 47

DETAILED DESIGN .. 51

23. DIAGRAMS AND DESIGN DECOMPOSITION INTO MODULES .. 51
24. REFERENCES AND RESOURCES ... 54

COMMUNICATION PROTOCOL TEMPLATE .. 55

25. COMMUNICATION PROTOCOL OUTLINE ... 55
26. INTERACTIONS .. 56
27. THE DIFFERENT TRANSPORT MECHANISMS .. 57
28. TIMING CONFIGURATION AND CONNECTION PARAMETERS ... 59
29. MESSAGE FORMATS ... 59
29.1.1 COMMAND ... 60
29.1.2 RESPONSE RESULT ... 60
30. REFERENCES AND RESOURCES ... 61

SOFTWARE MODULE DOCUMENTATION TEMPLATE .. 62

31. DETAILED DESIGN OUTLINE .. 62
32. THE OVERVIEW SECTION .. 62
33. THE SOFTWARE INTERFACE DOCUMENTATION .. 63
FOO_T STRUCT REFERENCE ... 64
34. THE DETAILED DESIGN SECTION ... 67
35. CONFIGURATION INTERFACE ... 68
36. THE TEST SECTION .. 69
37. REFERENCES AND RESOURCES ... 69

SOFTWARE DESIGN GUIDANCE ... 70

38. CODE REUSE ... 70
39. DESIGN TO BE DEBUGGABLE ... 71

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 v

40. FAULT DETECTION: DETECTING AN ERROR CONDITION ... 72
40.7.1 THE THEORY OF OPERATION .. 76
40.7.2 THE DETAILED IMPLEMENTATION .. 76
40.7.3 COMMENTARY ON DESIGN ALTERNATIVES .. 78
41. SYSTEM AND MICROCONTROLLER SPECIFIC DETAILED DESIGN ELEMENTS 79
41.1.1 ATOMICITY ... 79
41.1.2 A NOTE ON ARM CORTEX-M0 PROCESSORS .. 79
41.1.3 SOFTWARE BREAKPOINTS .. 79
41.1.4 HARDWARE EXCEPTIONS ... 79
41.1.5 MEMORY BARRIERS.. 79
41.1.6 DIGITAL INPUTS AND OUTPUTS ... 80
41.1.7 BITBAND .. 80
41.1.8 PROCEDURE BLIP ... 80
41.1.9 FIND-FIRST SET BIT ... 81
41.1.10 INTERRUPT PRIORITIZATION ... 81
42. TESTS ... 82
43. REFERENCES AND RESOURCES ... 90

DESIGN REVIEW CHECKLISTS .. 91

44. DESIGN REVIEW ... 91
45. DETAILED DESIGN REVIEW CHECKLISTS .. 92

SOFTWARE DETAILED DESIGN RISK ANALYSIS ... 98

46. SOFTWARE DETAILED DESIGN RISK ANALYSIS ... 98

SOURCE CODE CRAFTSMANSHIP ... 101

OVERVIEW OF SOURCE CODE WORKMANSHIP .. 103

47. SOURCE CODE WORKMANSHIP ... 103

C CODING STYLE ... 105

48. CODING STYLE OVERVIEW.. 105
49. SOURCE CODE FILES .. 106
49.4.1 GUARDS ... 107
49.4.2 EXTERN DECLARATION / PROCEDURE PROTOTYPES ... 107
49.4.3 DOCUMENTED CODE .. 107
50. PREFERRED TYPES .. 109
50.3.1 INTEGER NUMBERS .. 110
50.3.2 FLOATING POINT NUMBERS ... 110
50.5.1 THE CONST QUALIFIER .. 111
50.5.2 THE VOLATILE QUALIFIER ... 111

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 vi

50.6.1 CANARY METHOD (AKA RED ZONES) ... 112
51. MACROS ... 112
51.1.1 EXAMPLES OF EFFECTS .. 113
51.2.1 EXAMPLES OF EFFECTS .. 113
51.2.2 HOW TO FIX THESE PROBLEMS ... 114
51.2.3 OTHER COMMENTS .. 115
52. OPERATORS & MATH .. 115
52.4.1 USE OF RATIONAL NUMBER FORMS ... 117
53. CONTROL FLOW, AVOIDING COMPLEXITY ... 118
53.4.1 LOOP CONDITIONS ... 119
54. PROCEDURE STRUCTURE .. 119
55. NAMING CONVENTIONS .. 121
56. MATH, STRINGS, AND ASSEMBLY .. 122
57. MICROCONTROLLER SPECIFIC GUIDELINES .. 123
57.1.1 DO NOT USE FLOATS ON CORTEX-M0 AND CORTEX-M3 .. 123
57.2.1 USING THE “SLEEP” INSTRUCTION ... 123
57.2.2 USE OF MULTIPLICATION AND DIVISION ... 123
57.2.3 INTERRUPT TIME AND NORMAL TIME .. 123
57.2.4 USE OF ARRAYS INSTEAD OF SWITCHES OR PURE FUNCTIONS .. 124
58. REFERENCES AND RESOURCES ... 124

JAVA CODING STYLE GUIDE .. 126

59. BASICS .. 126
60. LOCKS AND SYNCHRONIZATION ... 126
61. TYPE CONVERSION ... 129
62. GUI RELATED CODE ... 130

CODE INSPECTIONS AND REVIEWS ... 134

63. WHEN TO REVIEW .. 134
64. WHO SHOULD REVIEW .. 134
65. HOW TO INSPECT AND REVIEW CODE .. 135
66. THE OUTCOMES OF A CODE REVIEW .. 136
67. REFERENCES AND RESOURCES ... 137

CODE INSPECTION & REVIEWS CHECKLISTS ... 138

68. REVIEWS ... 138
69. BASIC REVIEW CHECKLIST ... 138
70. SPECIALIZED REVIEW CHECKLISTS ... 141

APPENDICES .. 147

ABBREVIATIONS, ACRONYMS, GLOSSARY ... 149

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 vii

PRODUCT STANDARDS ... 155

71. STANDARDS ... 155
72. PRODUCT STANDARDS .. 156
73. REFERENCES AND RESOURCES ... 157

BUG REPORT TEMPLATE ... 158

74. OUTLINE OF A PROPER BUG REPORT ... 158
75. BUG HEADER INFORMATION .. 158
76. BUG TITLE AND DESCRIPTION ... 159
77. ADDITIONAL INFORMATION REQUIREMENTS (GENERAL) ... 161
78. CONTACT INFORMATION ... 162
79. PRODUCT-SPECIFIC ADDITIONAL INFORMATION .. 163

TYPES OF DEFECTS ... 164

80. OVERVIEW ... 164
81. CLASSIFYING THE TYPE OF DEFECT .. 164

CODE-COMPLETE REQUIREMENTS REVIEW CHECKLISTS .. 171

82. CHECKLIST: REQUIREMENTS ... 171

CODE-COMPLETE DESIGN REVIEW CHECKLISTS ... 173

83. CHECKLIST: ARCHITECTURE ... 173
84. CHECKLIST: MAJOR CONSTRUCTION PRACTICES ... 174
85. CHECKLIST: DESIGN IN CONSTRUCTION ... 175
86. CHECKLIST: CLASS QUALITY .. 176
87. CHECKLIST: THE PSEUDOCODE PROGRAMMING PROCESS .. 177
88. CHECKLIST: A QUALITY-ASSURANCE PLAN ... 177
89. CHECKLIST: EFFECTIVE PAIR PROGRAMMING .. 178
90. CHECKLIST: TEST CASES ... 178
91. CHECKLIST: DEBUGGING REMINDERS .. 179
92. CHECKLIST: CODE-TUNING STRATEGY ... 180
93. CHECKLIST: CONFIGURATION MANAGEMENT .. 181
94. CHECKLIST: INTEGRATION .. 181
95. CHECKLIST: PROGRAMMING TOOLS .. 182

DESIGN REVIEW RUBRIC ... 183

96. DOCUMENTATION.. 183
97. DESIGN ... 185

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 viii

FLOATING-POINT PRECISION .. 187

CODE-COMPLETE CODE REVIEW CHECKLISTS .. 188

98. CHECKLIST: EFFECTIVE INSPECTIONS ... 188
99. CHECKLIST: HIGH-QUALITY ROUTINES ... 188
100. CHECKLIST: DEFENSIVE PROGRAMMING .. 189
101. CHECKLIST: GENERAL CONSIDERATIONS IN USING DATA .. 190
102. CHECKLIST: NAMING VARIABLES .. 191
103. CHECKLIST: FUNDAMENTAL DATA .. 192
104. CHECKLIST: CONSIDERATIONS IN USING UNUSUAL DATA TYPES .. 193
105. CHECKLIST: ORGANIZING STRAIGHT LINE CODE ... 194
106. CHECKLIST: CONDITIONALS ... 194
107. CHECKLIST: LOOPS ... 195
108. CHECKLIST: UNUSUAL CONTROL STRUCTURES ... 196
109. CHECKLIST: TABLE DRIVEN METHODS ... 196
110. CHECKLIST: CONTROL STRUCTURE ISSUES ... 196
111. REFACTORING ... 197
112. CHECKLIST: CODE-TUNING TECHNIQUES .. 200
113. CHECKLIST: LAYOUT .. 200
114. CHECKLIST: GOOD COMMENTING TECHNIQUE ... 201
115. CHECKLIST: SELF-DOCUMENTING CODE ... 203

CODE REVIEW RUBRIC .. 205

116. SOFTWARE READABILITY RUBRIC .. 205
117. SOFTWARE COMMENTS & DOCUMENTATION .. 206
118. IMPLEMENTATION .. 207
119. ERROR HANDLING .. 210
120. BEHAVIOUR .. 210

REFERENCES & RESOURCES .. 211

121. REFERENCE DOCUMENTATION AND RESOURCES ... 211

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 ix

FIGURE 1: THE HIERARCHY OF SYSTEMS & SUBSYSTEMS .. 7
FIGURE 2: LEVELS OF ABSTRACTION IN DEVELOPMENT PROCESS ... 8
FIGURE 3: LEVELS OF ABSTRACTION IN DEVELOPMENT PROCESS ... 12
FIGURE 4: WHERE KEY FUNCTIONS & REQUIREMENTS ARE IDENTIFIED IN THE PROCESS ... 17
FIGURE 5: STRUCTURE OF A BROAD DESIGN WITH MODERATE-FAN OUT ... 37
FIGURE 6: STRUCTURE OF A MID-SIZE DESIGN, WITH HIGH-FAN OUT .. 37
FIGURE 7: BASIC FLOW STRUCTURE OF THE SOFTWARE ... 42
FIGURE 8: PROCESSOR WITH A SUPERVISOR PROCESSOR ... 43
FIGURE 9: MAJOR FUNCTIONALITY GROUPS ... 44
FIGURE 10: THE CONFIGURATION OF THE PRODUCTION FIRMWARE .. 46
FIGURE 11: BASIC FLOW STRUCTURE OF THE SOFTWARE ... 52
FIGURE 12: HOW .H AND .C FILES RELATED TO A MODULE ... 53
FIGURE 13: SEQUENCE FOR READING PORTION OF THE XYZ DATA .. 56
FIGURE 14: THE XYZ DATA RETRIEVAL ALGORITHM ... 57
FIGURE 15: LOGICAL OVERVIEW OF THE COMMUNICATION STACK OVERVIEW ... 58
FIGURE 16: THE FORMAT OF THE COMMAND/QUERY AND RESPONSE MESSAGES ... 59
FIGURE 17: READ COMMAND SEQUENCE ON SUCCESS .. 60
FIGURE 18: READ COMMAND WITH ERROR RESPONSE .. 61
FIGURE 19: OVERVIEW OF THE FOO MODULE ... 62
FIGURE 20: DETAILED MODULE ORGANIZATION .. 67
FIGURE 21: SEGMENTATION OF MEMORY WITH CANARIES .. 74
FIGURE 22: OVERVIEW OF BUFFERS WITH CANARIES .. 74
FIGURE 23: OVERVIEW OF THE STACK STRUCTURE WITH CANARIES ... 75
FIGURE 24: PRIORITIZED INTERRUPTS AND EXCEPTIONS .. 82
FIGURE 25: HOW .H AND .C FILES RELATED TO A MODULE ... 106
FIGURE 26: TYPICAL PROCEDURE TEMPLATE ... 108
FIGURE 27: OVERVIEW OF BUFFERS WITH CANARIES .. 112

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 x

TABLE 1: ISO/IEC 25010 MODEL OF SOFTWARE QUALITY.. 8
TABLE 2: MCCALL MODEL OF SOFTWARE QUALITY ... 8
TABLE 3: INPUTS FOR EACH KIND OF RISK ANALYSIS .. 19
TABLE 4: VALUE ACCURACY RISKS... 28
TABLE 5: HAZARD PROBABILITY LEVELS BASED ON MIL-STD 882 .. 28
TABLE 6: AN EXAMPLE RISK ACCEPTABILITY MATRIX DETERMINING RISK ACCEPTABILITY ... 28
TABLE 7: MESSAGE CAPACITY RISKS .. 29
TABLE 8: TIMING CAPACITY RISKS ... 29
TABLE 9: SOFTWARE FUNCTION RISKS ... 30
TABLE 10: SOFTWARE ROBUSTNESS RISKS .. 30
TABLE 11: SOFTWARE CRITICAL SECTIONS RISKS .. 31
TABLE 12: UNAUTHORIZED USE RISKS ... 31
TABLE 13: THE SOFTWARE DESIGN ELEMENTS .. 43
TABLE 14: THE EXTERNAL ELEMENTS .. 43
TABLE 15: THE FUNCTIONALITY GROUPS ... 44
TABLE 16: SUMMARY OF MODULE PREFIXES .. 45
TABLE 17: TIMING CAPACITY RISKS ... 48
TABLE 18: SOFTWARE FUNCTION RISKS ... 49
TABLE 19: THE SOFTWARE DESIGN ELEMENTS .. 52
TABLE 20: SUMMARY OF THE READ DATA COMMAND ... 60
TABLE 21: PARAMETERS FOR READ COMMAND .. 60
TABLE 22: PARAMETERS FOR READ RESPONSE ... 60
TABLE 23: FOO STRUCTURES .. 64
TABLE 24: FOO _T STRUCTURE .. 65
TABLE 25: FOO VARIABLES ... 65
TABLE 26: FOO INTERFACE PROCEDURES ... 65
TABLE 27: MODULE FILES .. 68
TABLE 28: CONFIGURATION OF THE FOO MODULE .. 69
TABLE 29: REWRITING ... 76
TABLE 30: SOFTWARE FUNCTION RISKS ... 99
TABLE 31: THE PREFERRED C INTEGER TYPE FOR A GIVEN SIZE .. 110
TABLE 32: COMMON ACRONYMS AND ABBREVIATIONS .. 149
TABLE 33: GLOSSARY OF COMMON TERMS AND PHRASES ... 150
TABLE 34: SAFETY STANDARDS AND WHERE THEY ADAPT FROM ... 157
TABLE 35: READABILITY RUBRIC ... 183
TABLE 36: DOCUMENTATION ORGANIZATION AND CLARITY RUBRIC .. 184
TABLE 37: IMPLEMENTATION RUBRIC ... 185
TABLE 38: FLOAT RANGE .. 187
TABLE 39: ACCURACY OF INTEGER VALUES REPRESENTED AS A FLOAT .. 187
TABLE 40: READABILITY RUBRIC ... 205
TABLE 41: COMMENTS AND DOCUMENTATION RUBRIC .. 206
TABLE 42: IMPLEMENTATION RUBRIC ... 207
TABLE 43: ERROR HANDLING RUBRIC .. 210
TABLE 44: BEHAVIOUR RUBRIC .. 210

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 1

Preface

This guide aims to provide relevant tools to support creating quality software. It tries to do so

in a manner that the reader may apply to their projects. Why create such a thing? As a

consultant who has seen many client development organizations, I’ve found that few have the

material that I present here. None has any guidelines on good software designs, design

reviews and hazard analysis of software. Many lack coding style guide, code review

guidance, and bug reporting standards. If they do have code guidelines, it is sparse, and could

do so much more to improve quality.

This is a guide will only cover the quality of software design and the workmanship of source

code. It does not cover:

 Writing software requirements

 Testing of the software

 Debugging the software

 Project and development management

 Planning, scheduling or budgeting

1. ORGANIZATION OF THIS DOCUMENT
This guide is written in 3 parts, with the broadest up front, and the most specific or esoteric

toward the rear.

 CHAPTER 1: PREFACE. This chapter describes the other chapters.

PART I: SPECIFICATIONS.

 CHAPTER 2: OVERVIEW OF SOFTWARE DESIGN QUALITY. Introduces what is meant by

quality.

 CHAPTER 3: PROCESS.

 CHAPTER 4: REQUIREMENTS CHECKLISTS. This chapter provides checklists for reviewing

requirements.

 CHAPTER 5: SOFTWARE RISK ANALYSIS.

PART II: SOFTWARE DESIGN & DOCUMENTATION. This part provides guides for software

design and its documentation

 CHAPTER 6: DESIGN OVERVIEW & WRITING TIPS.

 CHAPTER 7: GUIDELINES FOR HIGH-LEVEL DESIGNS. Provides guidelines for high-level

designs (e.g. architectures).

 CHAPTER 8: SOFTWARE ARCHITECTURE RISK ANALYSIS.

 CHAPTER 9: GUIDELINES FOR DETAILED DESIGNS. Provides guidelines for detailed

designs (e.g. major subsystems or “stacks”).

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 2

 CHAPTER 10: PROTOCOL DOCUMENTATION TEMPLATE. Provides a guide for protocol

documentation.

 CHAPTER 11: SOFTWARE MODULE DOCUMENTATION TEMPLATE. Provides a guide for

detailed design documentation of a module.

 CHAPTER 12: GUIDELINES FOR MODULE DESIGNS. Provides guidelines for low-level

module designs.

 CHAPTER 13: DESIGN REVIEWS CHECKLISTS. Provides checklists for reviewing a design.

 CHAPTER 14: SOFTWARE DETAILED DESIGN RISK ANALYSIS. Describes reviewing

software for hazard analysis.

PART III: SOURCE CODE CRAFTSMANSHIP. This part provides source code workmanship guides

 CHAPTER 15: OVERVIEW OF SOURCE CODE WORKMANSHIP. Provides TBD.

 CHAPTER 16: C CODING STYLE. This chapter outlines the style used for C source code.

 CHAPTER 17: JAVA CODING STYLE. This chapter outlines the style used for Java source

code.

 CHAPTER 18: CODE INSPECTION & REVIEWS. Describes code reviews.

 CHAPTER 19: CODE INSPECTION & REVIEWS CHECKLISTS. Provides checklists for

reviewing source code.

APPENDICES: The appendices provides extra material

 APPENDIX A: ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss

of terms, abbreviations, and acronyms.

 APPENDIX B: PRODUCT STANDARDS. This appendix provides supplemental information

on standards and how product standards are organized

 APPENDIX C: BUG REPORTING TEMPLATE. This appendix provides a template (and

guidelines) for reporting bugs

 APPENDIX D: TYPES OF DEFECTS. This appendix provides a classification of different

kinds of software defects that are typically encountered.

 APPENDIX E: CODE COMPLETE REQUIREMENTS REVIEW CHECKLISTS. This appendix

reproduces checklists from Code Complete, 2nd Ed that are relevant to requirements

reviews.

 APPENDIX F: CODE COMPLETE DESIGN REVIEW CHECKLISTS. This appendix reproduces

checklists from Code Complete, 2nd Ed that are relevant to design reviews.

 APPENDIX G: DESIGN REVIEW RUBRIC. This appendix provides rubrics relevant in

assessing the design and its documentation.

 APPENDIX H: FLOATING POINT PRECISION. This appendix recaps the limits of floating

point precision.

 APPENDIX I: CODE COMPLETE CODE REVIEW CHECKLISTS. This appendix reproduces

checklists from Code Complete, 2nd Ed that are relevant to code reviews.

 APPENDIX J: SOFTWARE REVIEW RUBRIC. This appendix provides rubrics relevant in

assessing software workmanship.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 3

REFERENCES AND RESOURCES. This provides further reading and referenced documents.

“The project development people seemed to be a special breed of programmers whose

incomprehensibility was matched only by their desire to document in a level of detail

that baffled the minds of ordinary folk.”

– NSA Cryptolog, 1979 June

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 4

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 5

PART I

Specifications

This first part provides guides for software design and its documentation

 OVERVIEW OF SOFTWARE DESIGN QUALITY. Introduces what is meant by quality.

 PROCESS

 REQUIREMENTS CHECKLISTS. This chapter provides checklists for reviewing

requirements.

 SOFTWARE RISK ANALYSIS.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 6

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 7

CHAPTER 2

Overview of Software

Design Quality

This chapter promotes good software quality:

 Software quality overview

 Where do bugs come from?

 How quality software can be achieved

 A tip on staffing

2. OVERVIEW

Software lives as part of a system within a product. Typical embedded software can be

described as fit into a hierarchy of systems and subsystems:

Product

Programmable

System

Mechanical Electronics

Programmable

Component &

Software

There is the “final” product itself, with a portion – sometimes a large portion, sometimes a

small portion – that is the programmable system. This system has mechanical and electronic

subsystems, as well as the programmable component (usually a microcontroller) that is

executing the software that will be discussing through this guidebook.

The diagram below synopsizes the levels of abstraction in the normative software

development process. Guidance documents help the work to be performed be done quickly,

and with appropriate craftsmanship. The tests and reviews help catch errors and improve the

construction of the software.

Figure 1: The

hierarchy of systems &

subsystems

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 8

Detailed

design

Code

Reviews

Design

reviews

Source code

Design

Guidance

Coding Style

Guidelines

High-level

Design

Design

review

Bug Report

Guidelines

Integration

tests

Unit Tests

Specification Review

Review checklists & rubrics should be a dual (twin) to the coding style. Everything in one

should be in the other.

3. SOFTWARE QUALITY OVERVIEW

It may be helpful to provide a brief overview of what “software quality” is. ISO/IEC 25010

model of software quality is one useful way to organize the areas of quality:

Quality factor Quality Criteria

Functionality Completeness, Correctness, Appropriateness

Performance &
Efficiency

Time behavior, Resource utilization, Capacity

Compatibility Interoperability

Usability Appropriateness, Recognisability, Learnability, Operability, User

error protection, Aesthetics, Accessibility

Reliability Maturity, Availability, Fault tolerance, Recoverability

Security Confidentiality, Integrity, Non-repudiation, Accountability,

Authenticity

Maintainability Analyzability, Modifiability, Modularity, Reusability, Testability

Portability Adaptability, Installability, Replaceability

McCall’s model is another way to organize the areas of quality. It maps each top-level area of

quality to a more specific quality.

Quality factor Quality Criteria

Correctness Traceability, Completeness, Consistency

Reliability Consistency, Accuracy, Error tolerance

Efficiency Execution efficiency, Storage efficiency

Integrity Access control, Access audit

Usability Operability, Training, Communicativeness

Maintainability Simplicity, Conciseness, Self-descriptiveness, Modularity

Testability Simplicity, Instrumentation, Self-descriptiveness, Modularity

Flexibility Simplicity, Expandability, Generality, Modularity

Figure 2: Levels of

abstraction in

development process

Table 1: ISO/IEC

25010 model of

software quality

Table 2: McCall model

of software quality

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 9

Portability Simplicity, Software system independence, Machine independence

Reusability Simplicity, Generality, Modularity, Software system independence,

Machine independence

Interoperability Modularity, Communications commonality, Data commonality

These same metrics apply to the programmable system, and perhaps the product overall.

3.1. WHERE DO BUGS & DEFECTS COME FROM?

Where do the bugs & defects come from?

 The wrong requirements – that the product and programmable system was designed to

the wrong set of rules.

 Operation action and input – inconsistent settings, out of range entries, and so forth.

These errors indicate insufficient requirements about the constraints on the user

interface.

 Poor design – a design is unsound, an algorithm has too high of computational

complexity, bottlenecks & contention for resources, prioritization issues, etc.

 Edge case circumstances, such as race conditions and overloading of processing

resources.

 Programmer mistakes, such as language mistakes, or incorrect of use of hardware –

use of disabled peripherals, bad parameters, index out of range, hardware exceptions,

divide by zero, and the like. These are often in the form of “exceptions” and “assert”

failures.

 Hardware components may have shifted values; connections break.

 Environmental conditions – such as a component being used out of its operating

range, a low battery, and so forth.

It is important to note: the software can perform with high quality, and the programmable

system low quality. This can come from the wrong requirements, at any level.

3.2. HOW QUALITY SOFTWARE CAN BE ACHIEVED

Steps to quality software include recognizing that

 It is an acquired, disciplined art.

 It requires practice, diligence and assessment

 Organizations must teach how to write quality code.

 The organization must value quality software in order for the individual to value it

 The development organization has a culture of accountability and commitment

 There is encouragement for respectful, frank, rational conversations about failures

 Information, activities and agreements are explicitly communicated (rather than tacit

and assumed)

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 10

3.3. TESTING

Testing

 Has an important role in quality

 Most often removes the “easy” and frequent bugs

 Won’t find subtle timing bugs and edge cases. It can help regression test to ensure

that specific occurrences do not recur

 Doesn't improve workmanship

4. A TIP ON STAFFING

This guidebook generally does not address development process – plans, schedules,

sequencing, staffing, and so on. However, here are some opinionated tips:

1. Assign leadership to those who care about the quality. In any organization, there is a

leader somewhere who capitates the quality – even if there is a leaders who drives a

minimum quality standard. It doesn’t matter if the quality is something aesthetic (like

being stylish & usable), or a process quality (like being maintainable and traceable),

or other quality.

2. Work with people who value the development artifacts they are creating and the

processes they work in. For instance, my experience has been that people who dislike

writing or reading documentation will create poor documentation and the hate shines

thru.

3. Encourage gracious professionalism1 where the staff is fiercely driven, seeks mutual

gain, are intensely respectful and kind

4. Reduce stress. Faux urgency and cranking up the time pressure is a common

managerial technique in too many places. Meeting regular shipment schedules or

quality goals is a long marathon.

In short, care and drive (or passion, internal motivation, pride).

5. REFERENCES AND RESOURCES

ISO/IED FDIS 25010:2011, “Systems and software engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - System and software quality models” 2011

IEEE Std 730-2014, IEEE Standard for Software Quality Assurance Processes, 2014

IEEE Std 1061-1998, IEEE Standard for a Software Quality Metrics Methodology

1 Coined by Dr Woodie Flowers, registered trademark of FIRST

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 11

CHAPTER 3

Process

This chapter describes the software development process:

 Process, specifications, and requirements

 The role of standards & certification

 System engineering

 Development plan

 Risk analysis

 Testing, Verification, Validation, and Testing

6. PROCESS

A process is how – implicitly or explicitly – an organization achieves a goal. Explicit

processes decompose the steps of what an organization may do (or must do or should do),

spelling out the activities and artifacts (more importantly information to be captured in the

artifacts). Rigorous processes attempt to assure that

 the project will succeed,

 that the schedule will be reasonably met,

 the cost of development is acceptable,

 the product is acceptable & performs as intended

 the product does not pose an unacceptable risk of harm

 the product is well made

 the product can be kept in use / operation for a time period, including revising and

maintaining the product.

project assurance

design assurance

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 12

Detailed

design

Code

Reviews

Design

reviews

Source code

Design

Guidance

Development

plan

Coding Style

Guidelines

High-level

Design

Design

review

Planning

Guidance

Integration

tests

Unit Tests

Plan review

Specification Review Product test Test plan

Standard(s)Standard(s)
Certification

Tests

A design should be thoughtfully worked out, drilling down from the high-level specifications

to the more specialized specifications, and designs.2 Ideally – and depending on the rigor –

each should be assessed or reviewed for appropriateness, and matching the products intent and

requirements. Once a module’s detailed design has been approved, the creation of its source

code may begin in earnest.3

The process should call out (and provide) workmanship guidelines, style guides, standards,

and evaluation rubrics used to craft the source code; this is often done in the development

plan. One goal of the guides is to provide direction to producing clear code, with a low

barrier to understanding and evaluation. The following chapters provide reference guides.

The source code should be reviewed (and otherwise inspected) against those guides, designs,

and against workmanship evaluation guides. The purpose of reviewing the work is to examine

quality of construction – it is not an evaluation of the engineers, and it is more identifying

defects.

6.1. THE DIFFERENT TYPES OF SPECIFICATION DOCUMENTS

The documents – or portions of documents – discussed here include:

A high-level specification is a finite set of requirements specification, e.g. system

specification, customer inputs, marketing inputs, etc.

A requirements specification is a set of requirements, and clear text explaining or justifying

the requirements. A justification may base the requirement in other documents, such as

research, standards, regulations or other laws.

2 Designing of a “lower” layer can begin (and often does) based on the anticipated top-level design, and norms for

the lower layer. Its completion is dependent the top-level design being settled.

3 Not all reviews or designs must be complete before implementations begin, except in the most stringent of

processes. Modules built in an investigatory (or as a short-term shim) fashion are useful but should be considered in

an “as-is” or draft state, until they have been revised to match the design, workmanship rules, and so in.

Figure 3: Levels of

abstraction in

development process

high-level specification

requirements

specification

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 13

 A requirement defines what an item must do, and often is presented as text in a special

form.

 A customer requirement is a requirement in any of the top-level documents, but

especially in the customer (or user) requirements specification.

 A comment is text, usually to provide context, clarify or explain the requirement(s).

 An identifier can refer to product, specific version of the product, a document,

requirement, test, external document, or comment. In practice this is so important that

each item is given a label.

A design document explains the design of a product, with a justification how it addresses

safety and other concerns.

Test specifications describe a set of tests intended to check that the product meets it

requirements. The test specifications define:

 A set of test requirements that define what tests a product must pass.

 A set of test procedures that carry out the test requirement and test the product

 A mapping of a test requirement to a set of requirements that it tests. {note: this may be

covered in the trace below.}

A test report is a set of outcomes: <test id, product id, result> describing how a product

performed under test. (The performance may vary with versions of the product)

A trace matrix is used to identify requirements in a higher level specification that are not

carried thru to lower requirements specifications and designs; and (in stringent cases) identify

features of the design without requirements, and requirements in lower documents that are not

drive by requirements at a higher level. Logically it defines two functions, forming a directed

acyclic graph:

 It maps a requirement to the set of requirements that it directly descends (or dervices)

from

 It maps a requirement to a set of requirements that directly or indirectly descends from it.

6.2. CRITICAL THINKING

Quality oriented – and especially safety oriented – processes apply analysis and reasoning to

further improve the product being developed. All processes try to the address

what/why/where/when/how questions, by identifying where the information is or comes from:

What are we making?

1. The high level specification

How do we know that we have the right (product) specification(s)?

1. Standards

2. Stakeholder reviews

3. Customer feedback (e.g. voice of customer)

4. Hazard analysis

5. Usability studies

6. Field tests

requirement

customer requirement

comment

identifier

design document

test specification

test requirements

test procedure

test report

trace matrix

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 14

How do we know that the product meets the specification(s)?

1. Verification activities of the system and subsystem

2. Validation activities of the product

Why are we confident that product is well made and safe?

1. Reviews of specifications and design

2. Analysis of the specification for key qualities, esp. safety

3. Verification & validation, testing

How do we know if a part of a higher-level specification was missed when making a lower-

level (more specific) specification?

1. Tracing

2. Validation & validation, testing

How do we know what to do?

1. Specifications

2. Development plans

3. Guidelines, e.g. coding style guides, design guides

4. Development protocols & work instructions

Why the product was designed and made this way?

1. Specifications

2. Guidelines, e.g. coding style guides, design guides

3. Design documentation

4. Design reviews

and so on

7. THE ROLE OF CERTIFYING STANDARDS

Product certification – specifically the standards being certified against – may drive software

quality. Standards approach software quality as necessary to achieve product quality,

especially safety and security. To simplify (and over generalize), such standards have

specifications that address the following areas of software quality:

 Risk management, including analysis, assessment and control of the risks

 The process and artifacts, and how they will be stored and updated. These include a

software development lifecycle (SDLC) and quality management systems (QMS)

 Techniques to be applied in the software design and implementation

 Tests and characterizations to be applied.

Some important examples of the safety-facing standards are:

 IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-

related systems (Part 3 deals with software and Part 7 with specific techniques)

 IEC 60730: Automatic Electrical Controls. (Annex H deals with software)

 ANSI/IEC 62304:2006 Medical Device Software – Software Lifecycle Processes

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 15

 DO-178C, Software Considerations in Airborne Systems and Equipment Certification

 IEEC Std 7-4.3.2 2010 IEEE Standard Criteria for Digital Computers in Safety

Systems of Nuclear Power Generating Stations

7.1. IEC 61508 AND DERIVATIVE STANDARDS (E.G. IEC 60730)

IEC 61508’s has many process facing areas, over a complete safety life cycle. It mandated a

 A specific safety management approach, parallel to the development of primary

functionality. This produces a set of software safety requirements.

 A specific risk management approach, including a risk assessment and analysis

approach that is far more strenuous than the art in many fields. (And was when it was

introduced).

 A software development lifecycle4, with several activities to be performed, and

several artifacts to be produced.

 A mandate and guidance to apply very specific & detailed software design and

implementation techniques, depending on the classification of software. Most of the

techniques had been documented at least two decades prior to the first version of the

version (1998-2000); all were documented at least decade prior. Most, however, were

not in common use outside of niche applications.

Several IEC standards adapt IEC 61508 for an industry segment, a kind of product, or specific

applications. These IEC standards are organized into a main standard (with dash 1 suffix).

These normatively reference the IEC 61508 standard (that is, mandate its use), or choose to

incorporate the relevant portions into the narrower standard, with some modifications. Then

there are a set of specific standards targeting requirements of specific categories of products

or applications. (These have the same major number as the standard, followed by dash 2 with

another suffix). These specific standards often modify the “dash 1” standard, reducing the

stringency in some areas.

IEC 60730-1 incorporates much of IEC 61508’s software requirements (but not the risk

assessment system) for home appliances. This includes the production of software safety

requirements. The IEC 60730-2-xyz standards specify requirements for various types of

appliances. IEC 60730 divides functionality (including software function) into three

categories of safety:

 Class A are the functions that are not relied upon for safety

 Class B are the functions that directly (or indirectly) prevent unsafe operation

 Class C are the functions that directly (or indirectly) prevent special hazards (such as

explosion).

IEC 60335 follows the same pattern: 60335-1 incorporates most (but not all) of IEC 60730

software requirements. The IEC 60335-2-xyz standards specify requirements for various

types of appliances.

This guidebook has been structured in such a manner to directly support software

development under these standards. This includes not just software design & implementation,

but the artifacts: requirements, design, and documentation.

4 Modern software development lifecycle can be found in IEEE Std 12207 (ISO/IEC 12207).

IEC 61508

see Appendix B

IEC 60730

see Appendix B for

other classifications

IEC 60335

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 16

7.2. ANSI/IEC 62304

ANSI/IEC 62304 is a software development lifecycle document, and it is organized in the

classic “v-model” fashion. It mandates a variety of artifacts and activities in the software

development. It works intimately with a separate risk management process, and quality

management system.

Like IEC 60730, it divides software into three categories of safety:

 Class A are the functions that pose no risk of injury

 Class B are the functions that pose a “non-serious” risk of injury

 Class C are the functions that could result in death or serious injury

It mandates a formal development processes, including checkpoints with formal reviews and

signoffs by key personnel, assuring successful completion of all criteria.

This guidebook has been structured in such a manner to directly support software

development under these standards. This includes not just software design & implementation,

but the artifacts: requirements, design, and documentation.

Note: ANSI/IEC 62304 is meant to work with a risk management approach, but – unlike IEC

61508 – it is expected to be provided separately. It also expects to work with a separated

defined quality management system.

7.3. A SIDE NOTE ON THE ECONOMIC BENEFIT TO DEVELOPMENT

Vendors have developed support for these software functions, as these functions are employed

in a many product markets. Their support is in the form of certified microcontroller self test

libraries, and application notes giving guidance on how to meet these standards (especially

using their libraries).

This standardization also provides a means of identifying the skills and experience needed,

and thus able to find expert workers.

ANSI/IEC 62304

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 17

7.4. THE SAFETY ELEMENTS

The standards atomize – with respect to behaviour and element of electronics and software –

the product functions & requirements into:

Product high-level

specification

functions

Risk

management

Detailed

Specification(s)

Safety requirements

Standard(s)

Safety related control

functions

Design

functions

Control functions

Safety related control functions

Safety critical functions

The high-level specification of the product defines the intended, primary function of the

product. The function is its role or purpose, and the operations that it is intended to perform.

The standards identify control functions5 that are to be provided by the product and its design.

The standards categorize functions along three axes:

1. Whether or not it is a control function relevant to safety (earlier this was rated as type

A, B, or C);

2. Whether or not the function is critical to the operation of a control function used in

safety

3. Whether or not software is responsible (at least in part) for the function

This becomes:

Safety-related control functions are a type of control function that prevents unsafe conditions

and/or allows the operator to use the equipment in the intended, safe manner. In IEC 60730

Type B control functions prevent unsafe state; Type C prevents special harms. The product

specifications and design often expand the number of control functions, and elaborate their

specific operation.

The safety critical functions are those functions that, should they fail, present a hazardous

situation. This may be because they impair the ability for safety-related control function to

fulfill its specification. The standards impose a variety of software functions to “self-check”

that the microcontroller (or other programmable element) is functioning sufficiently to carry

out the other functions. A safety-related control function is often (but may not be) a safety

critical function, but not all safety critical functions are safety-related control functions.

When software is used to realize (i.e. implement) a safety-related control function, or a safety

critical function, the standards impose a many requirements on the design and behaviour of

5 Function(s) can have types (or roles) such as control, filter, protection, monitoring, test, conversion, limiting,

distribution, isolation, protection, and so on.

Figure 4: Where key

functions &

requirements are

identified in the process

function

control function

safety-related control

function

safety-critical function

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 18

the software (and supporting electronics). This is a very good thing for quality, and this

guidebook is intended to help address these.

The product and subsystem specifications are to provide a detailed set of safety requirements,

which specify in detail the functional behaviour of the product, and each of those safety-

related control functions and safety-critical functions. This is true for the functions

implemented by software. The software safety requirements are to provide added

requirements that address:

 potential faults in the software as well as the programmable element (e.g. the

microcontroller) and the electronics,

 construction techniques of the software to prevent or mitigate software flaws

8. SOFTWARE DEVELOPMENT PLAN

A development plan should be put into place before the software is created. The development

plan typically includes:6

 Names

 Location of artifacts and sources

 Tools and key components

 Workmanship guides and how the workmanship will be evaluated. This includes a

coding style guide, which identifies a good, restricted subset of a programming

language.

 Steps that will be done in the development process, such as reviews and risk analysis

 How changes to the software will be managed. What is the source code repository? Is

commit approval required from a module owner? (e.g. the owner evaluates the

appropriateness of the changes to their area of the code base.)

 How issues, bugs and so on are tracked, prioritized, and dispositioned. Example

templates for bug reporting can be found Appendix C and categorization of the defect

in Appendix D.

Software development plans are about being organized to succeed, and to keep succeeding for

a long time. Most projects (e.g. those lasting a few months with a small number of people) do

not need to spell out all of the potential elements; the ones listed above are often sufficient.

9. RISK ANALYSIS

At regular steps, an analysis is performed to double check that the safety control functions,

safety requirements, and design are provide a acceptably safe product. The objective of these

analyses is “to identify and correct deficiencies and to provide information on the necessary

safeguards.”

A hazard analysis is a process that is performed on the product, its specifications, functions,

and design.

 It identifies a set of potential harms that the product (or its use) presents

6 A development plan includes much more, related project assurance, process, management, staffing, etc.

safety requirements

software safety

requirements

UCRL-ID-122514

hazard analysis

harms

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 19

 It maps a harm to severity or severity class

 It identifies a set of hazards or hazard classes that are potential sources of harm

 It maps a hazard or hazard class to likelihood or frequency that it may occur

 It maps the combined severity of harm and likelihood of occurrence to an acceptability

level. This is done using an accepted rubric, most often a risk acceptability matrix.

The acceptability level is used to prioritize changes to the specifications and design. The

changes must be made until there are no unacceptable risks presented, and that the cumulative

(overall) risks presented is at an acceptable level. The changes often included added functions

(such as tests of the hardware or operating conditions), tighter conditions on existing

requirements, added requirements, and the like.

A risk analysis follows the same pattern, checking that the specification, functions and design

of a subsystem for the risks that the subsystem will present a hazard. A software risk analysis

is what the software may contribute to risk or control of the product risks.

 Each risk analysis builds an upon earlier risk analysis

 Each type of analysis may produce a different, but related, form of output

 Each produces a summation of hazards (and risks), any identified rework, and

mandates for tests for Verification & Validation activities.

9.1. INPUTS AT EACH STAGE OF SOFTWARE RISK ANALYSIS

Software is analyzed at several stages of development to assess how it will impact products

risk. The table below summarizes the inputs to each of the software risk analysis:

Requirements risk
analysis

Architecture risk
analysis

Detailed Design risk
analysis

Source code analysis

Product Preliminary
Hazards list

Product Preliminary
Hazards list

Product Preliminary Hazards
list

Product Preliminary Hazards
list

Product Risk analysis Product Risk analysis Product Risk analysis Product Risk analysis

Programmable system
requirements

Programmable system
requirements

Programmable system
requirements

Programmable system
requirements

Programmable system
description

Programmable system
description

Programmable system
description

Programmable system
description

Software requirements Software requirements Software requirements Software requirements

 Software requirements
risk analysis

Software requirements risk
analysis

Software requirements risk
analysis

 Software architecture
description

Software architecture
description

Software architecture
description

 Software architecture risk
analysis

Software architecture risk
analysis

 Software design description Software design description

 Software design risk analysis

 Coding style guide

Source code

severity

severity class

hazards

hazard class

likelihood

 risk acceptability level

risk acceptability

matrix

risk analysis

software risk analysis

Table 3: Inputs for

each kind of risk

analysis

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 20

10. TERMS RELATED TO TESTING, VERIFICATION, AND VALIDATION

A fault is a system or subsystem deviating from its specification, e.g. not meeting one or more

of its functional requirement.

A failure is not providing service to the user, e.g. not meeting user requirement, often a user

non-functional requirement.

Verification7 is set of activities that include

 Testing the item against its specifications.

 Inspecting and review the items standards, specifications, design, and construction

Validation includes verification of the item, and activities that include

 Testing the item against the higher-level (such as the product’s) specifications.

 Inspecting and review the items against the higher-level (such as the product’s)

standards, specifications, design, and construction

 Testing the item against use cases

 Performing field trials, usability studies

 Evaluating customer feedback.

11. REFERENCES AND RESOURCES

DO-178C, Software Considerations in Airborne Systems and Equipment Certification, RTCA,

Inc. 2012 Jan 5

This is a particularly stringent standard. It seeks to ensure that not only ensure that all

requirements and functions (from the top on down) are carried thru and test… it also

seeks proof that no element of software, function, or requirement is present unless it

traces all the way back to the top.

RTCA/DO-254, Design Assurance Guidance for Airborne Electronic Hardware, RTCA, Inc.

2000 Apr 19

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related

systems 2010

Part 3 deals with software and Part 7 with specific techniques

IEC 60730: Automatic Electrical Controls, 2010

Annex H deals with software

UL 1998, Standard for safety – Software in Programmable Components

11.1. RISK MANAGEMENT

UCRL-ID-122514, Lawrence, J Dennis “Software Safety Hazard Analysis” Rev 2, U.S.

Nuclear Regulatory Commission, 1995-October

ISO 14971:2007, Medical devices – Application of risk management to medical devices

EN ISO 14971:2012, Medical devices. Application of risk management to medical devices

7 As there are many muddled definitions of verification and validation, I am using definitions that are compatible

the FDA guidance, DO-178C, and DO-254

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 21

This standard is for the European market; the earlier one is used rest of the world

Speer, Jon “The Definitive Guide to ISO 14971 Risk Management for Medical Devices”

Greenlight Guru, October 5, 2015

https://www.greenlight.guru/blog/iso-14971-risk-management

A clear introduction to the concepts and steps, with some elegant diagrams.

11.2. DEVELOPMENT LIFECYCLE

ANSI/IEC 62304:2006 Medical Device Software – Software Lifecycle Processes

This is a well written standard on the development life-cycle.

ATR-2011(8404)-11, Marvin C. Gechman, Suellen Eslinger, “The Elements of an Effective

Software Development Plan: Software Development Process Guidebook” 2011-Nov 11,

Aerospace Corporation, Prepared for: Space and Missile Systems Center, Air Force Space

Command

http://www.dtic.mil/dtic/tr/fulltext/u2/a559395.pdf

The above guide is particularly rigorous and intended for long-lived project (e.g. two

decades) with large & changing hierarchies of many people working for many

different organizations (thus many organizational boundaries), across a geographic

area, and wide range of organizational roles and backgrounds. The SDP is creating an

institution for the development & maintenance.

ISO/IEC/IEEE 12207:2017(E) “Systems and software engineering – Software life cycle

processes”

This standard is a successor to J-STD-016, which is a successor to MIL-STD-498,

which is a successor to DOD-STD-2167A and DOD-STD7935A. (And that only

dates to the 1980s!) It “does not prescribe a specific software life cycle model,

development methodology, method, modelling approach, or technique.”

ISO/IEC/IEEE 15288:2015, Systems and software engineering – System life cycle processes

Wikipedia, Software development process

https://en.wikipedia.org/wiki/Software_development_process

Provides a history of the different contributions to software development processes

11.3. QUALITY MANAGEMENT, TEST

FDA, “Design Control Guidance for Medical Device Manufacturers,” 1997 March 11

IEEE Std 1012-2004 - IEEE Standard for Software Verification and Validation. 2005.

doi:10.1109/IEEESTD.2005.96278. ISBN 978-0-7381-4642-3.

ISO/IED FDIS 25010:2011, “Systems and software engineering – Systems and software

Quality Requirements and Evaluation (SQuaRE) - System and software quality models” 2011

ISO/IEC/IEEE 29119, Software Testing Standard

ISO/IEC/IEEE 29119-1: Concepts & Definitions, 2013 September

ISO/IEC/IEEE 29119-2: Test Processes, 2013 September

ISO/IEC/IEEE 29119-3: Test Documentation, 2013 September

ISO/IEC/IEEE 29119-4: Test Techniques, 2015 December

ISO/IEC/IEEE 29119-5: Keyword Driven Testing, 2016 November

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 22

ISO/IEC 90003 Software engineering – Guidelines for the application of ISO 9001:2008 to

computer software

“A good engineer tries to get something not to work – that is, after getting it working,

the good engineer tries to find its limits and make sure they are well-understood and

acceptable.”

– Michael Covington

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 23

CHAPTER 4

Requirements

Checklists

This chapter provides a requirements review checklist

12. OVERVIEW OF WELL WRITTEN REQUIREMENTS

The presentation of a requirement in the text should include:

 Clear demarcation of the requirement. For instance, place the requirement on an

indented line, by itself.

 A means to uniquely identify or refer to the requirement. It is important to be able to

identify the requirement be discussed. The requirement will be referred to in other

documents, trouble tracking, etc.

 A brief summary of the requirement and its purpose or intent.

 The actor who carries out or meets the requirement. The actors should be defined

earlier in the section or the document.

 What the actor is to do

 Time bounds: how fast, how long, how soon it act or when, etc

 What value and bounds

 Rationale, the description of the requirements role, purpose, motivation, and/or intent

must be clear and readable

12.1. PROPERTIES OF A GOOD REQUIREMENT

A well-written requirement exhibits the following characteristics:

 Complete – contains sufficient detail to guide the work of the developer & tester

 Correct – error free, as defined by source material, stakeholders & subject matter

experts

 Concise – contains just the needed information, succinctly and easy to understand

 Consistent – does not conflict with any other requirement

 Unambiguous – must have sufficient detail to distinguish from undesired behaviour.

includes diagrams, tables, and other elements to enhance understanding

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 24

 Verifiable (or testable) – when it can be proved that the requirement was correctly

implemented

 Feasible – there is at least one design and implementation for it.

 Necessary – it is traced to a need expressed by customer, user, stakeholder;

 Traceable – can be traced to and from other designs, tests, usage models, etc. These

improves impact assessment, schedule/effort estimation, coverage analysis scope

management/prioritization

13. REQUIREMENTS REVIEW CHECKLIST

See also

 Appendix E for the Code Complete Requirements Review check lists

Names:

 Are the names clear and well chosen? Do the names convey their intent? Are they

relevant to their functionality?

 Do they use a good group / naming convention (e.g. related items should be grouped by

name)

 Is the name format consistent?

 Names only employ alphanumeric characteristics?

 Are there typos in the names?

13.1. ARE THE PROPERTIES, STATES AND ACTIONS WELL DEFINED?

 Is a definition duplicated?

 Is a property defined multiple different times.. but defined differently?

 Are the definitions complete?

o Are all instances and kinds defined – or some missing?

o Are there undefined (i.e., referred to, but not defined) nouns, properties, verbs?

o Are events referred to but not defined?

 Are they consistent?

 Are the properties something that the system can measure or otherwise detect?

 Are the instances something that the system can identify or otherwise distinguish?

 Is a state not needed? Is it unused by any state classification, action, event, or

requirement?

 Is a property not needed? Is it unused by any state classification, action, event, or

requirement?

 Are the properties something that the system can detect?

 Are the events something that the system can detect?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 25

13.2. REQUIREMENTS REVIEW

Reviewing requirements should look to identify:

 Are the requirements organized in a logical and accessible way?

 Is the requirement clearly demarcated?

 Does the requirement have a clear and fixed identifier? Is the identifier unique?

 Is the description supporting the requirement clear? Is it sufficient to support the

requirement?

 Is the requirement too wordy? A requirement should be concise, containing just the

needed information.

 Does the requirement use the proper modal auxiliaries?

 Does the requirement have the right conditions? The ubiquitous form of requirement is

rare. Look for missing triggers and other conditions on the requirement.

 Are the time-critical features, functions and behaviours identified? Is the timing criteria

specified?

 Is there requirement declarative? Or is the requirement an attempt to repackage an

existing implementation with imperative statements? These are bad.

 Does the requirement conflict with any other requirement? Is its use of conditions (e.g.

thresholds) consistent with the other requirements?

 Is the action to carry out clear? Is the action well defined within the rest of the

specification?

 Are the actions something that can be accomplished?

 Duplicated requirements?

 Ambiguity. Can the requirement be interpreted different ways? Is there sufficient detail

to distinguish from undesired behaviour?

 Is the requirement vague or ambiguous in any way? Pronouns, demonstratives, and

indexicals often introduce ambiguity.

 Is the requirement specifying a single action.. or many? A requirement should specify

only a single action.

 Complexity. Is the requirement over specified, too complex?

 Requirements that are too expensive, burdensome, impractical or impossible

 Are the requirements ones that fit the practical use with customer wants/needs/etc?

 Is the requirement unnecessary? Does it lack a trace to a need expressed by customer,

user, or stakeholder? Is each requirement traceable to a customer that requires it?

 Check for consistency and sufficient definition

 Does the requirement have errors, such as misstating bounds, or conditions in the source

material, or from other stakeholders or subject matter experts?

 Are there missing requirements? Is there a lack of sufficient detail to guide the work?

13.3. ARE THE REQUIREMENTS TESTABLE?

 Are the triggers something that the system can detect?

 Is the action or result of the requirement observable? Can it be measured?

 Are the quality requirements measurable?

 Is the requirement time bound? Is there a clear time bounds between the condition or

trigger, and the action?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 26

 Is the requirement untestable? Is there a direct means of stating how to test that the

requirement was correctly implemented?

 Is the actor to carry out or meet the requirement clear? Is the actor well-defined within

the rest of the specification?

 Are the actions testable? Is their outcome testable?

 Is the requirement bounded? Or is the actor allowed to do the requirement at the end of

the universe?

13.4. THE LEADS REVIEW REQUIREMENTS

 Are they complete? Are requirements or definitions missing? Are there undefined

nouns, properties, verbs?

 Are they consistent?

 Are they doable?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 27

CHAPTER 5

Software Risk

Analysis

This chapter provides an initial template for software risk analysis.

14. SOFTWARE REQUIREMENTS RISK ANALYSIS

The outputs of a software requirements risk analysis include:

 A table mapping risks to the requirements that address it. This table may have been

produced by another activity and is only referenced in the output

 A list of software risks, acceptability level, and their disposition

 A criticality level for each hazard that can be affected by software

 Recommended changes to the software requirements specification, programmable

system architecture, etc. For example, actions required of the software to prevent or

mitigate the identified risks.

 Recommended Verification & Validation activities, especially tests

The steps of a software requirements risk analysis include:

1. Identify the requirements that address each product hazards

2. Examine the risks of errors with values

3. Examine the risks of message capacity

4. Examine the risks of timing issues

5. Examine the risks of software functionality

6. Examine the risks of software robustness

7. Examine the risks of software critical sections

8. Examine the risks of unauthorized use

9. Recommendations for rework

14.1. STEP 1: IDENTIFY THE REQUIREMENTS THAT ADDRESS PRODUCT HAZARDS

Go thru each of the identified product hazards, and list the software requirements that address

it.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 28

14.2. STEP 2: EXAMINE ALL VALUES FOR ACCURACY

Identify all the elements of the system – sensor 1, sensor 2, actuator, motor, calculations,

operator inputs, operator outputs, each parameter received, etc. For each of these elements,

create a copy of Table 4 (below) and populate it with an analysis with respect to the

requirements. Strike inapplicable conditions, and add other identified conditions.

Condition Hazard, likelihood & severity

the value is off by 5% of the actual value

the value is stuck at all zeroes

the value is stuck at all ones

the value is stuck at some other value

the value is too low; the value/ result is below minimum range

the value is within range, but wrong; with calculation, e.g. the

formula or equation is wrong

the physical units are incorrect

the value is incorrect (for non-numerical values)

the value type, or format size is wrong

In reviewing each condition, identify the least acceptable risk for each applicable condition.

Other documents (i.e. the product safety risk analysis) are responsible for the identifying the

set of possible hazards and their severity. Table 5 provides an example likelihood levels;

Table 6 provides an example mapping of severity & likelihood pair to risk acceptability.

Likelihood Estimate of Probability

Frequent Likely to occur on in the life of an item, with a probability of occurrence greater than 10-1 in

that life.

Probable Will occur several times in the life of an item, with a probability of occurrence less than 10-1 by
greater than 10-2 in that life

Occasional Likely to occur sometime in the life of an item, with a probability of occurrence less than 10-2
but greater than 10-3 in that life.

Remote Unlikely, but possible to occur in the life of an item, with a probability of occurrence less than
10-3 but greater than 10-4 in that life.

Improbable So unlikely, it can be assumed occurrence may not be experienced, with a probability of

occurrence of less than 10-4 in that life.

 Catastrophic Critical Marginal Negligible

Frequent high high high medium

Probable high high medium low

Occasional high high medium low

Remote high medium low low

Improbable medium low low low

Table 4: Value

accuracy risks

Table 5: Hazard

probability levels

based on Mil-Std 882

Table 6: An example

risk acceptability

matrix determining risk

acceptability

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 29

14.3. STEP 3: EXAMINE THE MESSAGES CAPACITY

This step examines the ability of the software to achieve its objectives within the hardware

constraints.

Identify all the messaging elements of the system – I2C sensor, task 1, user input, etc. For

each of these elements, create a copy of Table 7 (below) and populate it with respect to the

requirements. Strike inapplicable conditions, and add other identified conditions.

Condition Hazard, likelihood & severity

message is smaller than state minimum

message is larger than stated maximum

message size is erratic

messages arrive faster than stated maximum (e.g. response time)

messages arrive slower than stated minimum (e.g. response time)

message contents are incorrect, but plausible

message contents are obviously scrambled

In reviewing each condition, identify the least acceptable risk for each applicable condition.

14.4. STEP 4: EXAMINE THE CONSEQUENCES OF TIMING ISSUES

This step examines the ability of the software to achieve its objectives within the hardware

constraints.

Identify all the input elements of the system – button #1, frequency input, I2C sensor, task 1,

user input, etc. This list should include elements those receive messages, and send messages.

For each of these elements, create a copy of Table 8 (below) and populate it with respect to

the requirements. Strike inapplicable conditions, and add other identified conditions.

Condition Hazard, likelihood & severity

input signal fails to arrive

input signal occurs too soon

input signal occurs too late

input signal occurs unexpectedly

input signal occurs at a higher rate than stated maximum

input signal occurs at a slower rate than stated minimum

system behavior is not deterministic

output signal fails to arrive at actuator

output signal arrives too soon

output signal arrives too late

output signal arrives unexpectedly

insufficient time allowed for operator action

In reviewing each condition, identify the least acceptable risk for each applicable condition.

Table 7: Message

capacity risks

Table 8: Timing

capacity risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 30

14.5. STEP 5: EXAMINE SOFTWARE FUNCTION

This step examines the ability of the software to carry out its functions.

Identify all the functions of the system; that is, the operations which must be carried out by

the software. For each of these elements, create a copy of Table 9 (below) and populate it

with respect to the requirements. Strike inapplicable conditions, and add other identified

conditions.

Condition Hazard, likelihood & severity

Function is not carried out as specified (for each mode of operation)

Function preconditions or initialization are not performed properly

before being performed

Function executes when trigger conditions are not satisfied

Trigger conditions are satisfied but function fails to execute

Function continues to execute after termination conditions are satisfied

Termination conditions are not satisfied but function terminates

Function terminates before necessary actions, calculations, events, etc.

are completed

Function is executed in incorrect operating mode

Function uses incorrect inputs

Function produces incorrect outputs

In reviewing each condition, identify the least acceptable risk for each applicable condition.

14.6. STEP 6: EXAMINE SOFTWARE ROBUSTNESS RISKS

This step examines the ability of the software to function correctly in the presence of invalid

inputs, stress conditions, or some violations of assumptions in its specification.

Create a copy of Table 10 (below) and populate it with respect to the requirements. Strike

inapplicable conditions, and add other identified conditions.

Condition Hazard, likelihood & severity

Software fails in the presence of unexpected input signal/data

Software fails in the presence of incorrect input signal/data

Software fails when anomalous conditions occur

Software fails to recover itself when required

Software fails during message, timing or event overload

Software fails when messages are missed

Software does not degrade gracefully when required (e.g. crashes

instead)

In reviewing each condition, identify the least acceptable risk for each applicable condition.

Table 9: Software

function risks

Table 10: Software

robustness risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 31

14.7. STEP 7: EXAMINE SOFTWARE CRITICAL SECTIONS RISKS

This step examines the ability of the system to perform the functions that address or control

risks.

Create a copy of Table 11 (below) and populate it with respect to the requirements. Strike

inapplicable conditions, and add other identified conditions.

Condition Hazard, likelihood & severity

Software causes system to move to a hazardous state

Software fails to move system from hazardous to risk-addressed state

Software fails to initiate moving to a risk-addressed when required to

do so

Software fails to recognize hazardous state

In reviewing each condition, identify the least acceptable risk for each applicable condition.

14.8. STEP 8: UNAUTHORIZED USE RISKS

Create a copy of Table 12 (below) and populate it with respect to the requirements:

Condition Hazard, likelihood & severity

Unauthorized person has access to software system

Unauthorized changes have been made to software

Unauthorized changes have been made to system data

In reviewing each condition, identify the least acceptable risk for each applicable condition.

14.9. STEP 9: RECOMMENDATIONS FOR REWORK

Summarize each of the identified conditions with a risk level of “medium” or “high.” These

items mandate rework, further analysis, and/or Verification & Validation activities.

15. REFERENCE DOCUMENTS

MIL-STD-882E “Standard Practice System Safety” 2012 May 11

NASA-GB-8719.13, NASA Software Safety Guidebook, NASA 2004-3-31

NASA-STD-8719.12., “NASA Software Safety Standard,” Rev C 2013-5-7

UCRL-ID-122514, Lawrence, J Dennis “Software Safety Hazard Analysis” Rev 2, U.S.

Nuclear Regulatory Commission, 1995-October

Table 11: Software

critical sections risks

Table 12:

Unauthorized use

risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 32

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 33

PART II

Software Design &

Documentation

This part provides guides for software design and its documentation

 OVERVIEW & WRITING TIPS.

 OVERVIEW OF SOFTWARE DESIGN.

 GUIDELINES FOR HIGH-LEVEL DESIGNS. Provides guidelines for high-level designs (e.g.

architectures).

 SOFTWARE ARCHITECTURE RISK ANALYSIS.

 GUIDELINES FOR DETAILED DESIGNS. Provides guidelines for detailed designs (e.g. major

subsystems or “stacks”).

 PROTOCOL DOCUMENTATION TEMPLATE. Provides a guide for protocol documentation.

 SOFTWARE MODULE DOCUMENTATION TEMPLATE. Provides a guide for detailed design

documentation of a module.

 GUIDELINES FOR MODULE DESIGNS. Provides guidelines for low-level module design.

 DESIGN REVIEWS CHECKLISTS. Provides checklists for reviewing a design.

 SOFTWARE DETAILED DESIGN RISK ANALYSIS REVIEWS. Describes reviewing software

for risk analysis.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 34

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 35

CHAPTER 6

Design Overview &

Writing Tips

This chapter describes the recommended approach for design documentation

 The role and characteristic of design documentation

 Organization of the documentation

16. THE ROLE AND CHARACTERISTICS OF DESIGN DOCUMENTATION

This chapter describes my recommendations for writing design documentation. The role of

documentation is to

 Provide assurance to an outside reviewer – who is without the tacit knowledge that the

developing team and organization will share – that the product is well-craft and suitable

for its intended purpose, and will achieve the safety & quality requirements;

 Communicate with future software development, and test teammates; and to reduce the

puzzles and mysteries when handed a completed software implementation with the

expectation to make it work/modify it/test it;

 Drive clarity of thought on the part of the designers; experience has repeatedly shown

that if it can’t be explained clearly, it isn’t understood. A lack of understanding impairs

product quality, and creates project risk (thrashing).

The design document…

 Establishes the shape of the software modules

 Shows how the design addresses the software requirements and other specifications

 Provides a mental map of the design, making the design understandable.

Characteristics of a good design description include:

 A straightforward mapping to the implementation

 Mixing visuals and text to explain the concepts in alternate ways

 Scoping diagrams so that the amount to hold in the readers head is small

The requirements at the design stage should provide a clear enough view to allow the high-

level design to be crafted.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 36

16.1. TIPS ON THE WRITING PROCESS

This section focuses on presenting the design as much as it does on tips for crafting a design.

I’ve found that most engineers dislike documentation and defending in detail their designs.8

That’s a pity, since the documentation is a necessary skill in quality software domains (such

as safety critical products), and an important one to project success. Some tips:

1. Read & study good examples of design, and design documentation. These can be

found in books like McKusick (2004), and Kehan (1987). Other examples might be

found in application notes, and past projects

2. Use templates and writing guides. They provide the scope and main outline, reducing

the burden of how to organize the documentation.

3. Plan on the design in stages of completeness: a preliminary version of the design

before the development begins in earnest, revisions during design discussions, and a

finished design at the end of the project.

4. Take the writing in small, doable pieces. Write the document in a series of drafts,

targeting only a few pages a day. Revise the draft, and repeat.

5. Start with the areas that you know what to write; don’t necessarily worry about

starting with lower-level design documents if that is what you know. They won’t be

committed to yet, but the information and experience will help write the upper layers.

6. Then work down from the top – or up from the bottom – in a vertical slice relevant to

what you do know. Add in organizational material (such as outlines for the section)

or an expository explanation, and keep moving. Use stubs – such as “TBD” – for

specific values, names or other references that you do not know yet.

16.2. AUDIENCE

The audience for the design documentation includes:

 The certifying body

 The development team

 Management, such as project manager

 The regulatory affairs department (i.e. the design history file)

 Release engineering

 The software and system test group

 Technical publications

17. DOCUMENTATION ORGANIZATION

One of the first steps in the developing the documentation is to pick a style or organization for

the documentation. This will help layout (block) the overall documentation, and provide not

just the structure, but the start of an outline and size of the work to accomplish the scope.

8 I’ve also found that the best designs, the highest quality ones, were produced quickly by designers who will love

talking with others about their designs, and crave to find others who will appreciate it.

McKusick, Marshall

Kirk and George V.

Neville-Neil. The

Design and

Implementation of

the FreeBSD

Operating System, 1st

Edition Addison-

Wesley Professional;

1st edition, 2004

Kenah, Lawrence;

Ruth Goldenberg.

VAX/VMS Internals

and Data Structures:

Version 5.2, Digital

Press, 1987

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 37

An expansive, large system might be best served with documentation that subdivides the

design into several large portions with a mid-level design, and then breaks into detailed design

of the individual components.

Communication

Top-level

Design

References

Glossary &

Acronyms

Appendices

GraphicsStorage

Application Motor Control Hdw Specific

Other

Appendices

Other

Appendices

Other

Appendices

Component

design

Component

design

Component

design

Microcontroller

Specifcs

Power

Management

Component

design

Component

design

Component

design

Component

design

Component

design

Component

design Self Test

Signal

Processing

Component

design

Component

design

Component

design Component

design

Component

design

Component

design

Component

design

Component

design

Component

design

A moderate, small system might be best served with documentation that introduces the high-

level design and then breaks into detailed design of the (many) individual components.

Top-level

Design

References

Glossary &

Acronyms

Appendices

Other

Appendices

Other

Appendices

Other

Appendices

Microcontroller

Specifcs

Power

Management
Component

design

Component

design

Component

design
Self TestApplication

logic

Note: Major portions of the structure may be mandated by the standards the product is being

certified against; and/or by the developing institute’s processes. Many, for example, mandate

the presence of the references and glossary, but that they be in the front of the document.

17.1. TERMS AND PHRASES TO EMPLOY

Once the broad structure is selected, begin thinking about the terms and phrases that are and

will be used in the project, and your approach in the documentation:

 What terms and phrases will be used?

 Which will not be used in the documentation?

 What additional terms and phrases should be given a translation to the project – a

mapping to the terms and phrases used in the design documentation?

The standards (to which the product may be certified against), and the specifications will

already be employing a stock of terms and phrases. The design doesn’t necessarily need to

Figure 5: Structure of a

broad design with

moderate-fan out

Figure 6: Structure of a

mid-size design, with

high-fan out

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 38

use them (and it isn’t always warranted). In that case, the design document should provide a

definition of what those terms and phrases are in within the project.

The terms and phrases used should make sense for the project and design. They could come

from

1. The requirements and other specifications for the product

2. The jargon used within the rest of the organization, or team

3. Other conventions, such as the industry jargon.

The design should address the terms and phrases of the standards and specifications that are

not otherwise used in the design documentation. This can be achieved by providing a

mapping of these terms and phrases used in the standards and specifications to those in the

design.

17.1.1 Tips for getting the definitions for standards terms

Most standards provide a glossary of the terms and phrases that they use. However, the

definitions within a standard can sometimes be unclear, confusing or otherwise not helpful.

Fortunately there are resources that can be used to gather variations of the definition to help

clarify the term or phrase.

The IEEE provides a glossary of terms in IEEE Std 610.12-1990.

There are two search-tool resources than can be used to look up the definitions across IEC

standards:

 http://www.electropedia.org/

 http://std.iec.ch/glossary

And for ISO standards:

 https://www.iso.org/obp/ui

17.2. APPENDICES

The design documentation often includes several appendices. The ones described here

 Acronyms and Glossary

 References, Resources and Suggested Reading

The ones described in the software development plan:

 Configuration of the compiler, linker and similar tools

 Configuration or settings of the analysis tools and similar

 The files used in the project

 The configuration of the software. This is often divided into application and board-

specific configurations.

17.2.1 The Acronyms and Glossary

 I recommend that the list of acronyms and glossary be in the rear of the documentation. In

some development protocols it is preferred that they be in the front of the documentation.

In this appendix, define all acronyms, terms and phrases. We have all seen documents that

include definitions for simple, common items (such as a LED), while not defining specialized

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 39

items (such as “adaptive linear filter,” or “hybrid turboencabulator”) referred to heavily in a

document. Don’t do this.

I recommend that the expansion of acronyms to its words be presented in a separate list from

the definition of terms and phrases.

This appendix “living,” which is to say, they acronyms, terms and phrases will continue to

expand and be added to throughout the development. In good documentation the glossary can

be extensive.

Tip: The acronyms and glossary are well suited for reuse in many projects. Make a stock

document with the most common terms and potted definitions to be included in each project.

17.2.2 The References, Resources and Suggested Reading

I recommend that the references be in the rear of the documentation, excluding (perhaps) the

list of standards that are inputs to the design. In some development protocols it is preferred

that they be in the front of the documentation.

In this references appendix the list should include data sheets, industry and legal standards,

communication protocols, etc. Include a designator for each document. Use this through the

remainder of this specification to refer to the document.

17.2.3 Files

The detailed design often includes an appendix listing the files. How much to list really

depends on the stringency of development. Exhaustively listing the files is simply no joy.

I’m still a fan of listing and getting on the names, or at least most. In every case, the list

should include

 Files with strange names

 Files with particular importance

The list should not include temporary or generated files. Separate out the object files,

assembly listings, temporary files, etc. unless there is good reason to keep them.

Should describe what each file is and its role.

Can use groupings, folders and names to help organize the names.

17.3. REUSING DESIGNS AND DOCUMENTATION

Some observations on design and documentation reuse:

 Software libraries are one way to reuse designs. However, the design, creation, and

support of a library is a development effort in and of itself, with many factors that impair

success;

 The high-level design ideas are readily reused; so are specific low-level modules (e.g.

digital input, output, analog conversion, etc.).

 Good design practices facilitate easier reuse.

Some approaches and techniques to help promote reuse of designs:

 Divide the documentation in pieces that can be reused

 Provide a segment of time (e.g. at the end of the project) for reviewing and identifying

reusable sections.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 40

 Identify, during design reviews, areas where prior design should9 have been reused (but

was not).

Existing designs are (mostly) worked out; their reuse can accelerate a project schedule – if the

design is appropriate to the project. Such design must be stored in manner so that it is

accessible, easily found, and readily reusable. Each successive project may contribute to the

collection of reusable design pieces. I recommend:

1. Break out each chapter into its own file.

2. Create an overall structuring document for the design documentation.

To merge these into a single design document for release with a project:

1. Make a copy of that overall structuring document

2. Insert each of the files for the chapter

When it comes time to do another project, the chapters of the past projects serve as a starting

point for documentation reuse. The levels of documentation & design reuse:

1. Verbatim: The chapter is picked up and used without changes.

2. The chapter is copied and modified it to adapt it to the project.

3. A template document is reused where the structure is used largely unchanged, but the

contents are customized for the new project. This avoids re-inventing the structure,

and while using a fill-in-the-blank approach.

18. REFERENCES AND RESOURCES

IEEE Std 610.12-1990, IEEE Standard Glossary of Software engineering Terminology, 1990.

Alred, Gerald, Charles Brusaw, Walter Oliu; Handbook of Technical Writing, 10nth Ed, St

Martin’s Press, 2011

9 Note the emphasis is on should, not could. This step is fraught with politics in some offices, which will undermine

quality

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 41

CHAPTER 7

High-Level Design

Template

This chapter is my template for a high-level design description

19. BASIC OUTLINE

The structure of top level design changes the most between projects. Initially the design is

skeletal, and fleshed out over time. The following is an outline for a design description:

1. Synopsis

2. Other front matter

a. Related documents and specifications (documents that are part of the

product)

3. Design overview

4. Appendices:

a. Glossary, acronyms

b. References, resources, suggested reading

The appendices can be expanded upon as the design is developed:

 Compiler Configuration, flags, etc.

 Analysis tool (e.g. LINT, MISRA C checks, etc.) configuration including which

checks are enabled and disabled.

 Linker configuration & Linker scripts

 The software configuration settings.

 Files employed in the software.

19.1. SYNOPSIS AND FRONT MATTER

THE SYNOPSIS. A one or two paragraph synopsis of what the software’s role in the product is.

THE RELATED DOCUMENTS & SPECIFICATIONS. This is a list of internal organization & project

standards, and design specifications, with a designator for each document. The designator is

to be used through the remainder of this specification to refer to the document.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 42

19.2. THE GLOSSARY, REFERENCES

Next, prepare place holders for the common elements, such as the acronyms, glossary of

terms, and references. These are “living,” which is to say, they will continue to expand and be

added to throughout the development. In good documentation the glossary can be extensive.

Note: I recommend the following be in the rear of the documentation, along with all of the

other supplemental information.

THE ACRONYM AND GLOSSARY TABLES. Define all acronyms, terms and phrases. We have all

seen documents that include definitions for simple, common items (such as a LED), while not

defining specialized items (such as “adaptive linear filter,” or “hybrid turboencabulator”)

referred to heavily in a document. Don’t do this.

I recommend that the expansion of acronyms to its words be presented in a separate list from

the glossary definition of terms and phrases.

Tip: The acronyms and glossary are well suited for reuse in many projects. Make a stock

document with the most common terms and potted definitions to be included in each project.

THE REFERENCES, RESOURCES, SUGGESTED READING. The documents to list include data

sheets, industry and legal standards, communication protocols, etc. Include a designator for

each document. Use this through the remainder of this specification to refer to the document.

19.3. DESIGN OVERVIEW

Describe the role and responsibility of the software. Include the features that it is responsible

for.

Include a diagram summarizing the software design, with the major sections and their

interconnections. This may include a reference to external elements that it controls or

depends on. The diagram should include a description introducing to how inputs are turned

into outputs. It should show the basic structure of the signal flow (both control signals and

TBD signals). Ideally it would also provide context, and show key external elements (where

relevant).

State

Timers

Store

O
u

tp
u

ts

In
p

u
ts

Comm Display

Main

Loop

Figure 7: Basic flow

structure of the software

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 43

Provide a description of the main elements of the software design:

Element Description

element 1 Description of the element

…

element n
Description of the element

The external elements are:

External Element Description

element 1 Description of the element

…

element n
Description of the element

Note: this diagram (architecture) is often stylized and reused across products as a platform or

design style. Requirements may be written against an abstract model based on it.

Other sections to include

1. Detailed block diagram of the software organization. This should include the IO,

communication, power management, sensors, drivers, control loops and other

subsections that will be described in detail in the rest of the document.

2. Major modules and module prefixes

3. Storage and data integrity

4. Communication and data integrity

5. Time keeping

6. Sensors, the signal chain and other inputs to the microcontrollers

7. Safety model, Self-check / self-protect functions, watchdog, prioritization

8. Power management

9. Configuration

Is an RTOS used? That provides a specific kind of structure and breakdown.

19.4. PARTITIONING INTO A TWO PROCESSOR MODEL

Consider separating the more stringent functions (such as safety critical functions) from the

main – but less stringent functions – by placing them into a separate processor.

Main

Supervisor
Shutdown

Split

ARM Event bus □

Dual-port memory □

UART □

CAN □

Table 13: The

software design

elements

Table 14: The

external elements

Figure 8: Processor

with a supervisor

processor

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 44

The second processor monitors condition and places the system into a safe state in the event

that the main processor or system conditions leave a well-defined safe operating region

(within some abstract space).

20. DIVISION INTO MODULES

There should be a solid discussion of how the software is structured and implemented in a

modular manner. This design approach breaks the development down into manageable

chunks. It also supports unit testing of the software. Some example text (plus a supplemental

diagram)

The software system has 5 major module groupings, based on the kind of work they do, or

information they organize:

Communication

Stack

Application

Logic

Instrumentation

Subsystem

Storage

Subsystem

Microcontroller

Specifics

This is only if the diagram did not include them. It usually does not. I don’t get much out of

this but it is better to include a diagram than to omit one.

The modules

Group Description

application logic The logic specific to the application and its requirements.

communication This group provides the communication stack to send and receive information remotely.

instrumentation This includes functions for gathering signals and applying the control logic

microcontroller
specifics

This includes the drivers and chip-specific software, helping improve portability by supporting
the designs uses of alternative microcontroller.

storage
subsystem

This logs relevant information, and configuration information. Critical data is store in a manner

to prevent data loss if there is a loss of power.

20.1. CRITICAL ELEMENTS

Highlight or emphasize elements that are “critical” and need special precaution. Some

elements that may be critical include:

 Elements that are necessary to achieve the safety functions of the product

 Elements mandated by the standards (being certified against) as critical

 Elements that are depended up by those elements, or are necessary to prevent systematic

faults of any critical element.

The critical elements should get extra review steps and have more documentation. While not

all critical elements may be known in the first pass of the design, experienced designers will

be able to anticipate many that will be.

Figure 9: Major

functionality groups

Table 15: The

functionality groups

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 45

Separate the software into different categories:

 The stringently defined area that is focused on addressing the functions critical to the

safety requirements in those standards. The risk management, process, techniques

and testing are most focused on this category of software

 The other elements of software that whose functionality does not present a safety risk

(since the above category is responsible for that function).

This separation allows the other elements to be construction in a less stringent manner. For

instance, a high-degree of assurance may not be tractable or even meaningfully definable (in

the present state of the art).

20.2. MODULE PREFIXES

{It is arguable whether this information should in the high-level design, or in the appendices.

I find it helpful as guidance to the development}

Each module has a separate prefix. The table below describes the prefixes employed for the

modules

Prefix Module

AIn The analog input module, including ADC sampled values, etc.

AOut The analog output procedures

App Application procedures and application specific logic

BSP Board specific package related procedures

DIn The digital inputs are GPIO logic signals.

IIR Infinite impulse response filters

Poly Polynomial correction of signals

Time Time-keeping related

Tmr Timer related

UART UART, a hardware serial interface

20.3. SOURCE CODE CONFIGURATION FILE(S)

The firmware is configurable, allowing changes in the electronics design and specific features

of the application. The settings for the other three configuration files are described in

appendix TBD.

Table 16: Summary of

module prefixes

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 46

 Source Code

AppConfig.h

BSPConfig.h

Firmware

BSPStub.c

The BSPStub.c provides the linkages the microcontroller register, such as the digital input and

output data registers. (These differ between microcontroller families, and sometimes within

them; but every microcontroller has some form of these registers). This also provides

resource sizing and buffers related to these inputs.

THE CONFIGURATION HEADER FILES are used to enable (or disable) features, and size the

remaining resources. The features that can be enabled have a control macro suffixed with

_EN. For example to enable, feature XYZ:

#define XYZ_EN (1)

Alternatively, to disable it:

#define XYZ_EN (0)

The board specific defines are located in a file called BSPConfig.h. The application or

framework features are located in a file called AppConfig.h.

21. REFERENCES AND RESOURCES

DI-IPSC- 81432A, Data Item Description: System/Subsystem Design Description (SSDD),

1999 Aug 10

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/DI-IPSC-81432A_3766/

DI-IPSC-81435A, Data Item Description: Software Design Description (SDD), 1999 Dec 15

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/DI-IPSC-81435A_3747/

ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture description.

Note: this supersedes IEEE Std 1471-2000

Figure 10: The

configuration of the

production firmware

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 47

CHAPTER 8

Software Architecture

Risk Analysis

 This chapter provides an initial template for software architecture risk analysis.

22. SOFTWARE ARCHITECTURE RISK ANALYSIS

The outputs of a software architecture risk analysis include:

 A table mapping the software requirements to the architecture element that addresses

it. This table may have been produced by another activity and is only referenced in

the output.

 A list of software risks, acceptability level, and their disposition

 A criticality level for each hazard that can be affected by software

 Recommended changes to the software architecture, software requirements

specification, programmable system architecture, etc. For example, actions required

of the software to prevent or mitigate the identified risks.

 Recommended Verification & Validation activities, especially tests

The steps of a software architecture risk analysis include:

1. Identify the architecture element that addresses each requirement. This may have

been produced by another activity and is only referenced in the output.

2. Examine the risks of errors with values

3. Examine the risks of message capacity

4. Examine the risks of timing issues

5. Examine the risks of software functionality

6. Examine the risks of software robustness

7. Examine the risks of software critical sections

8. Examine the risks of unauthorized use

9. Recommendations for rework

22.1. STEP 1: IDENTIFY THE ARCHITECTURE ELEMENTS THAT ADDRESS EACH
REQUIREMENT

Go thru each of the software requirements and list the architecture elements that address it.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 48

22.2. STEP 2: EXAMINE ALL VALUES FOR ACCURACY

Identify all the elements of the architecture – sensor 1, sensor 2, actuator, motor, calculations,

operator inputs, operator outputs, each parameter received, etc. For each of these elements,

create a copy of Table 4 (“Value accuracy risks”) and populate it with respect to the

architecture. In reviewing each condition, identify the least acceptable risk for each

applicable condition.

22.3. STEP 3: EXAMINE THE MESSAGES CAPACITY

This step examines the ability of the software to achieve its objectives within the hardware

constraints.

Identify all the messaging elements of the system – I2C sensor, task 1, user input, etc. For

each of these elements, create a copy of Table 7 (“Message capacity risks”) and populate it

with respect to the architecture. In reviewing each condition, identify the least acceptable risk

for each applicable condition. Strike inapplicable conditions, and add other identified

conditions.

22.4. STEP 4: EXAMINE THE CONSEQUENCES OF TIMING ISSUES

This step examines the ability of the software to achieve its objectives within the hardware

constraints.

Identify all the input elements of the system – button #1, frequency input, I2C sensor, task 1,

user input, etc. This list should include elements those receive messages, and send messages.

For each of these elements, create a copy of Table 17 (below) and populate it with respect to

the architecture. Strike inapplicable conditions, and add other identified conditions.

Condition Hazard, likelihood & severity

input signal fails to arrive

input signal occurs too soon

input signal occurs too late

input signal occurs unexpectedly

input signal occurs at a higher rate than stated maximum

input signal occurs at a slower rate than stated minimum

system behavior is not deterministic

output signal fails to arrive at actuator

output signal arrives too soon

output signal arrives too late

output signal arrives unexpectedly

processing occurs in an incorrect sequence

code enters non-terminating loop

deadlock occurs

interrupt loses data

interrupt loses control information

Table 17: Timing

capacity risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 49

In reviewing each condition, identify the least acceptable risk for each applicable condition.

22.5. STEP 5: EXAMINE SOFTWARE FUNCTION

This step examines the ability of the software to carry out its functions.

Identify all the functions of the system; that is, the operations which must be carried out by

the software. For each of these elements, create a copy of Table 18 (below) and populate it

with respect to the architecture. Strike inapplicable conditions, and add other identified

conditions.

Condition Hazard, likelihood & severity

Function is not carried out as specified (for each mode of operation)

Function preconditions or initialization are not performed properly

before being performed

Function executes when trigger conditions are not satisfied

Trigger conditions are satisfied but function fails to execute

Function continues to execute after termination conditions are satisfied

Termination conditions are not satisfied but function terminates

Function terminates before necessary actions, calculations, events, etc.

are completed

Hardware or software failure is not reported to operator

Software fails to detect inappropriate operation action

In reviewing each condition, identify the least acceptable risk for each applicable condition.

22.6. STEP 6: EXAMINE SOFTWARE ROBUSTNESS RISKS

This step examines the ability of the software to function correctly in the presence of invalid

inputs, stress conditions, or some violations of assumptions in its specification.

Create a copy of Table 10 (“Software robustness risks”) and populate it with respect to the

architecture. In reviewing each condition, identify the least acceptable risk for each

applicable condition. Strike inapplicable conditions, and add other identified conditions.

22.7. STEP 7: EXAMINE SOFTWARE CRITICAL SECTIONS RISKS

This step examines the ability of the system to perform the functions that address or control

risks.

Create a copy of Table 11 (“Software critical section risks”) and populate it with respect to

the architecture. In reviewing each condition, identify the least acceptable risk for each

applicable condition. Strike inapplicable conditions, and add other identified conditions.

22.8. STEP 8: UNAUTHORIZED USE RISKS

Create a copy of Table 12 (“Unauthorized use risks”) and populate it with respect to the

architecture. In reviewing each condition, identify the least acceptable risk for each

applicable condition. Strike inapplicable conditions, and add other identified conditions.

Table 18: Software

function risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 50

22.9. STEP 10: RECOMMENDATIONS FOR REWORK

Summarize each of the identified conditions with a risk level of “medium” or “high.” These

items mandate rework, further analysis, and/or Verification & Validation activities.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 51

CHAPTER 9

Detailed Design

This chapter is my detailed design tips.

 Diagrams and design decomposition into modules

 Firmware and subsystem test

 Instrumentation type designs

 Communication system type designs

 Storage system type designs

 Motor control type designs

23. DIAGRAMS AND DESIGN DECOMPOSITION INTO MODULES

The architecture introduced, perhaps with diagrams, structural and connective elements. The

detailed design breaks the design out into major areas and then into modules (with specific

function) for that area. Classic structured decomposition.

 Stratified diagram of modules

 Structural network diagram

 Design criteria for modules

 File grouping for a module’s implementation

 Architecture steps

Example of the architectures structural elements may include:

 Libraries

 Functionality built into libraries

 Code layers

 Threads / processes / tasks

23.1. STRATIFIED DIAGRAM OF MODULES

Layers closest to mechanics, successively higher layers present more abstraction. They show

much less of the structure, and little of the connectivity.. But they may show the dependency –

what module depends on another’s function to deliver its own.

Many of the lower layers are specific to the hardware… and thus limit portability of the

application to other hardware. However, they may be used in other projects. The show

1. Presentation and display

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 52

2. Function

3. Microcontroller and board peripherals

4. Energy – electrical, primarily, but may be any of the physical dimensions for energy

5. Mechanical items. These are usually presented only to show the role

the stratified flows are up and down; all inputs and outputs are at the bottom. The flow is not

as clear as with a structural diagram in this regard. Better at showing dependency

What functions & requirements are leveled to the hardware? To the software?

23.2. STRUCTURAL NETWORK DIAGRAM

Include a structural diagram summarizing the software design, with the major structural

elements and their interconnections. This may include a reference to external elements that it

controls or depends on. The diagram should include a description introducing to how inputs

are turned into outputs. It should show the basic structure of the signal flow (both control

signals and TBD signals). Ideally it would also provide context, and show key external

elements (where relevant).

State

Timers

Store

O
u

tp
u

ts

In
p

u
ts

Comm Display

Main

Loop

This provides a mental map of the design

 Make the design understandable

 The modules are functionality

 The links show the flow of signal/info/data

Provide a description of the main elements of the software design:

Element Description

element 1 Description of the element

…

element n
Description of the element

Figure 11: Basic flow

structure of the software

Table 19: The

software design

elements

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 53

23.3. DESIGN CRITERIA FOR MODULES

Each module should perform a distinct task. The modules should be thin:

 Easy to define it’s input-output behaviour; it should perform specific, limited

functionality

 Preferably no internal state or ‘memory’ (memory not in the sense of RAM usage, but

in the sense that it’s functioning or output is dependent on past inputs and/or outputs)

 Low usage of timers

 Ensuring that isolated modules handle state/memory and are low complexity

23.4. THE SIGNAL/DATA

The connective links should be described (and annotated) to provide information about:

 The signal/info/data The mechanism of representing the signal/info/data

(format/encoding/structures/other object)

 The mechanism of the link. Software module to carry it out the operations (treated at

a lower layer)

 The mechanism of transporting the represented data over the link

Example connective elements

 Variables

 Buffers

 Queues

 Mailboxes

 Semaphores

23.5. FILE GROUPING FOR A MODULE’S IMPLEMENTATION

A module may implemented by one or more source files.

.

Declares the interface to the module

.c .c

.c .c

-int.h

.h

The module’s implementation

Declarations internal to the module.

 One or more .c files that implement the module – it is better to break down a module

into groups of relatively short files rather than one large file a thousand lines or

longer.

 The module may have other .h files (suffixed as –int.h) that are for use only within the

module. These should not contain information intended to be used for the whole

system

Figure 12: How .h and

.c files related to a

module

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 54

 A module has one (or more) .h files that declares the procedures, variables, and

macros that other modules may use. This file should not have ‘internal’ only

information; that is it should not include information that other modules should not

use.

24. REFERENCES AND RESOURCES

DI-IPSC- 81432A, Data Item Description: System/Subsystem Design Description (SSDD),

1999 Aug 10

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/ DI-IPSC-81432A_3766/

[61508-7 outlines a good number of resources on how to approach the design process)

24.1. CLEANROOM SOFTWARE ENGINEERING AND BOX STRUCTURED DESIGN

Hevner, A; Harlan Mills; Box-structured methods for systems development with objects, IBM

Systems Journal, V32 No2, 1993

Harlan Mills write extensively on a process he called Cleanroom Software

Engineering. His approach to structure decomposition, which he called Box-

structured design, is a clear description on the process.

CMU/SEI-96-TR-022, Richard Linger, Carmen J. Trammell, Cleanroom Software

Engineering Reference, Software Engineering Institute, Carnegie Mellon University, 1996

Nov

24.2. INSTRUMENTATION & SIGNAL PROCESSING

Garrett, Patrick H. Advanced Instrumentation and Computer I/O Design: Real-Time System

Computer Interface Engineering, IEEE Press, 1994

Redmon, Nigel Biquad Formulas 2011-1-2

http://www.earlevel.com/main/2011/01/02/biquad-formulas/

Smith, Steven W “The Scientists and Engineer’s Guide to Digital Signal Processing,”

Newnes, 1997, http://www.dspguide

24.3. MOTOR CONTROL

ST Microelectronics, BRSTM32MC “Motor control with STM32 32-bit ARM-based MCU for

3-phase brushless motor vector drives” (brochure)

ST Microelectronics, STM32PMSMFOCSDK40_HandsOn v1.1 “STM32 PMSM FOC SDK

v4.0 Hands On” Presentation slides, rev 1.4

ST Microelectronics, DM00195530 “STSW-STM32100 STM32 PMSM FOC Software

Development Kit Data brief” #025811 Rev 2, 2014 Mar (useless)

Texas Instruments, BPRA073, Field Orientated Control of 3-Phase AC-Motors, 1998 Feb

Simon, Erwan; Texas Instruments, SPRA588, Implementation of a Speed Field Oriented

Control of 3-phase PMSM Motor using TMS320F240, 1999 September

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 55

CHAPTER 10

Communication

Protocol Template

This chapter is my template for communication protocol documentation.

 The kinds of activities that can be done thru communication channels

 Interaction sequences

 Overview of the communication protocol stack

 The link message formats

Note: this chapter is placed before the detailed software design as it often drives some module

design.

25. COMMUNICATION PROTOCOL OUTLINE

AN OVERVIEW, which includes:

 Name, designator, or unique identifier for the protocol

 A synopsis of the functions that it is responsible for

 The roles of the communicating parties

 A description of the transport methods, organized with OSI-like layers or TCP/IP-like

layers.

INTERACTIONS. This section describes the typical interactions that would take place between

the communicating parties.

THE PHYSICAL LAYER(S). This section describes the configurations employed with the

different types of interconnection.

THE LINK / DATA LINK LAYER(S). This section describes the detailed framing and other

differences employed with the different types of interconnection.

THE FRAME FORMAT for each type of link/transport media. (This corresponds to the network

layer).

THE MESSAGE FORMAT covers the information in a command and response, and how it is

encoded. (This often corresponds to the application layer).

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 56

26. INTERACTIONS

This section describes the typical interactions that would take place between the

communicating parties. This is often flow diagrams.

26.1. READING A BIG BLOB OF DATA

The XYZ data is a binary “file” stored on the slave. The intended algorithm to retrieve the

XYZ data is:

1. Read the size of the XYZ data, in number of bytes. For convenience, this will be

called “size.”

2. Set the current offset (which will be called “offset” here) to zero.

3. Send a read command with the read offset to the new offset value. The slave will

send the data corresponding to that area of the XYZ data. This is synopsized in the

diagram below

Master Slave

Read Command

Status ok

Data response

4. The packet received will be an offset – this should match the one set – and a number

of bytes of XYZ data. Place these bytes onto the end of the local copy of the XYZ

data.

5. Increment offset by the number of bytes of data received.

6. If the offset is less than size, continue with step 3.

Figure 13: Sequence for

reading portion of the

XYZ data

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 57

The figure below captures this process:

Start

Fetch XYZ Data size

(as size)

No

offset += # data bytes

received

Is the offset

>= size?

Done

Yes

Receive the record (and

store it)

Send read command with

offset set to XYZ data Offset

Offset = 0

27. THE DIFFERENT TRANSPORT MECHANISMS

The protocol is often possible to be conveyed over several different underlying interconnect

methods. This section describes the detailed framing and other differences employed with the

different types of interconnection.

Figure 14: The XYZ

data retrieval algorithm

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 58

For example:

Command &

Response

Link Management

B
lu

e
to

o
th

L

E
C

h
a

ra
c
te

ri
s
ti
c

Data

S
e

ri
a

l

L
e

n
g

th

C
o

n
tr

o
l Data

C
o

m
m

a
n

d

C
R

C

S
y
n

c

W
e

b

S
o

c
k

e
ts

C
o

n
tr

o
l Data

C
o

m
m

a
n

d

C
A

N

L
e

n
g

th

C
o

n
tr

o
l Data

C
R

C

Fragmentation &

Reassembly

L
e

n
g

th

C
o

n
tr

o
l

Data

C
o

m
m

a
n

d

C
R

C

 Bluetooth LE

 Serial communication, such as RS232, RS485, VCOM (over USB), or RFCOMM

(over Bluetooth). This is a common protocol linking different microcontrollers

together.

 WebSockets is a message-oriented protocol used on networks, such as available with

Wifi, Ethernet, or Cellular data.

 CAN is a message-oriented protocol. This is a common protocol linking different

microcontrollers together.

The communication links vary in the features they offer:

 Bluetooth LE handles the delivery, error detection, encryption, authentication, and

much of the timeout of exchanging message frames. Bluetooth LE handles errors

signaling, and the reference to the object being queried or acted on.

 Serial handles the delivery of the message. The software must provide mechanisms to

detect errors, and lost messages. Serial has no encryption, authentication, or other

security measures.

 WebSockets handles delivery, error detection, encryption (if a TLS module is

employed), and much of the timeout of exchanging message frames. The software

must provide its own error signaling, and means to reference the object being queried

or acted on.

 CAN handles the delivery, and error detection of exchanging message frames. The

software must detect damaged or missing messages, as wells as frames received in a

non-sequential order.

Figure 15: Logical

overview of the

Communication stack

overview

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 59

27.1. THE COMMON LINK FIELDS

The link structures share many of the following fields:

 The length field is the number of bytes (octets) that follow the length byte, including

the CRC field.

 The control field distinguishes between fetching a value, storing such a value,

confirming the receipt of one, and so on. {A detailed explanation of these should be

included below}

 The status field indicates success, any error, an indication, or notification. {A detailed

explanation of these should be included below}

 The command field is which element to modify, and corresponds directly to a

Bluetooth LE attribute / characteristic.

 The data fields are variable length, and optional.

 The CRC is the check value of message to help detect errors. {Of course, this is the

place to describe in detail the parameters of the CRC, what is fed into it, the format of

the value and so on.}

27.2. SERIAL FORMAT

RS232 serial interconnections lack the CRC checks, the start of packet, packet length and

other information. This information is often added in by protocols using a serial interconnect.

This section should describe that.

The commands/queries and responses have the following format

Command / Query Response

L
e

n
g

th

C
o

n
tr

o
l Params

C
o

m
m

a
n

d

C
R

C

L
e

n
g

th

S
ta

tu
s Value

C
o

m
m

a
n

d

C
R

C

S
y
n

c

S
y
n

c

Other things to describe:

 What to do if the message doesn’t pass CRC check? Ignore it?

 What about header field doesn’t make sense?

This section should include the relevant (custom) configuration of the physical layers. Bit

rate, number of bits, parity, etc.

28. TIMING CONFIGURATION AND CONNECTION PARAMETERS

This is the section to discuss the varied connection parameters and timing of recurring events

on a per interconnect protocol basis.

29. MESSAGE FORMATS

This section should describe format and interpretation of the messages that go between the

parties. What the fields are, how they are encoded, their units/dimension, scale, range, etc.

Figure 16: The format of

the command/query and

response messages

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 60

The example here is for a command-response mode, but can be adapter to other modes of

communication.

It is easiest to specify the types as format, size, and sign types that match the C Coding Style

(see Chapter 16), with a little endian encoding (or big endian if you prefer). The command

and responses then provide

29.1. READ DATA

This command is used to retrieve a segment of data.

Command Code {the hex value for the command goes here}

Characteristic UUID {the hex for a Bluetooth LE characteristic UUID goes here}

Modes Read, Notify, Indicate {this is more useful for Bluetooth LE}

Response Code {the hex value of the response message}

Signature offset× nBytes → MemStore → offset × bytesnBytes

Command Size 4

Response Size 4-252

Equivalent Procedure Foo_data_encode()

29.1.1 Command

The parameters of the command body are:

Offset Size Type Parameter Description

0 2 uint16_t offset The offset to retrieve the data from

2 2 uint16_t size The number of bytes to retrieve

29.1.2 Response result

The parameters for the Read response message:

Offset Size Type Parameter Description

0 4 uint16_t offset The offset of data

4 varies uint8_t[] data The retrieved data

The intended use is to read a segment of the data buffer. The typical read sequence is below:

Master Slave

Read Command

Status ok

Data response

Table 20: Summary of

the Read Data

command

Table 21: Parameters

for Read Command

Table 22: Parameters

for Read Response

Figure 17: Read

command sequence on

success

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 61

The sequence for an invalid read command is show below:

Master Slave

Error Status

Read Command

30. REFERENCES AND RESOURCES

DI-IPSC-81436A, Data Item Description: Interface Design Description (SDD), 1999 Dec 15

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/DI-IPSC-81436A_3748/

Figure 18: Read

command with error

response

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 62

CHAPTER 11

Software Module

Documentation

Template

This chapter is my template for a detailed software design description of a module.

31. DETAILED DESIGN OUTLINE

I use the following template for the documentation of each software module:

AN OVERVIEW, which includes:

 Name of module

 A synopsis of the functions that it is responsible for

 Diagram and description of the module's main organization. This isn’t intended to be

the design diagram; it is intended to show where it fits into the bigger design.

SOFTWARE INTERFACE DOCUMENTATION. This section describes how software would

communicate with the module system using procedure calls.

DETAILED DESIGN. This section describes the detailed internal structures and procedures used

within the module.

THE TESTING section describes how to test the module.

32. THE OVERVIEW SECTION

The overview section introduces the module, and its role. I include a diagram that shows the

where the module fits in the bigger design, and how the other modules interface to it:

Comm

Stack
Instrumentation

Loop

Foo module

Microcontroller

(GPIO)

Procedures: Foo_update()

State Variables: Foo_values[]

Config Variables: Foo_index[]

Foo_numChannels

Foo_numRegisters

Foo_registers[]

Figure 19: Overview

of the Foo module

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 63

The diagram is usually vertically organized. The upper layer communicates with the rest of

the system; the lower layer works with the hardware or more specific work tasks. Between

the nodes for the different modules (and hardware elements) are callouts synopsizing the

procedures, variables, and IPC structures that act as the links between the nodes. The typical

major interfaces include:

 Interface that the system can use to configure the module.

 Interfaces that the rest of the stack or software system may interact with the module

 Interfaces from the module to the underlying layers, or the lower-layers of the stack

that it interacts with.

33. THE SOFTWARE INTERFACE DOCUMENTATION

The software interface section describes how software would communicate with the module

system using procedure calls. This includes a description of the procedures, structures, the

respective parameters of these, calling sequences, responses, timing, and error handling.

A good software interface is…

 Easy to learn / memorize

 Leads to readable code

 Hard to misuse

 Easy to extend

 Sufficient or complete for the tasks at hand

The overview should describe:

 INITIALIZATION, which is passed information about how the microcontroller is

connected to the board, and which of the internal resources that should be used.

 DATA ACCESS. The procedures that get data from the module or provide data to the

module

 CONFIGURATION. How the module is configured to use lower-level resources, and the

parameters (such as data rate) in how it should use the resources. (Included where

appropriate.)

After the overview there should be:

 Description of operations

 Diagram of interaction, algorithm

 The #defines and enumerations used in the software interface

 The data structures employed by the software interface

 The variables provided by the software interface

 The procedures (and their parameters) provided the software interface

33.1. CALLING SEQUENCES FOR THE INTERFACE

All interfaces should provide a BNF-style description of the acceptable calling sequences, or

phrases, for the API. For example:

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 64

::= open [optional_calls] (read | write | lseek)* close;

or

::= open mmap (MemoryOp | mincore | lseek | read | write) munmap close

 | open shmat (MemoryOp | mincore | lseek | read | write) shmdt close ;

The conventions for such BNF-like statements include:

 Parameters aren’t specified in the rules

 Only specify calls related, usually in a context. That is, specify only the API related

to an ‘instance’ (object, file channel, etc.) from its creation and manipulation through

its destruction.

 Items in italic refer to other rules

 Items in parenthesis form a regex-like set of alternatives

 Items in braces are optional, the equivalent of a null option in an alternative grouping

 A sequence of calls is only valid if it is accepted by the rules outlined. Under the

rules of software validation, the software is erroneous if it is possible that the software

executes a calling sequence not recognized by the BNF.

 Keep the number of rules small, but reflect the real constraints on the calling sequence

33.2. DEFINES

This sections describes the #defines used in the software interface.

#define CMD_READ (0xA000u)

The read command value.

#define CMD_WRITE (0x2000u)

The write command value.

33.3. ENUMERATION TYPE DOCUMENTATION

This section describes the enumerations used in the software interface.

enum ABC

This enumeration is such and such, used for so and so.

33.4. DATA STRUCTURE DOCUMENTATION

This section describes the data structures used in the software interface. The table below

synopsizes the data structures:

Structure Description

Foo_t This structure is used to track info

Foo_t struct Reference

This structure tracks the hours of operation.

Table 23: Foo

Structures

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 65

Field Type Description

secondsElapsed uint32_t The number seconds since the start of operation

prevSeconds uint32_t The number of seconds of operation that were logged

startTime uint32_t The time that the operation was started.

33.5. VARIABLES

This section describes the variables in the software interface. The table below describes the

variables provided by the module:

Variable Description

Foo_errorCount The number of errors encountered

Foo_successCount The number of successes encountered

33.6. PROCEDURES: SYNOPSIS

This section introduces the procedures used in the interface. The table below describes the

modules procedure interface:

Procedure Description

Foo_update() Called to update the state of the module each time step.

Foo_write() Write a data block to the device

Table 24: Foo _t

structure

Table 25: Foo

variables

Table 26: Foo

interface procedures

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 66

33.7. FUNCTION DOCUMENTATION

This section describes procedures that the module exports.

void Foo_update(void)

This updates the internal state of the module with each time step, and prepare output results.

Parameters:

 none

Returns:

 none

This should describe the behaviour of the procedure, its algorithm, or other steps that it may

take.

Err_t Foo_write (void* address, uint8_t* buffer, uint16_t length)

Write a data block to the device

Parameters:

 address The address within the device to store at

 buffer The buffer holding the data to write; this must hold length bytes

 length The number of bytes to write

Returns:

 Err_NoError The data was successfully written

 Err_Address The address is not a valid memory page

 Err_Timeout The operation did not complete timed out

 other Other access error

This should describe the behaviour of the procedure, its algorithm, or other steps that it may

take.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 67

34. THE DETAILED DESIGN SECTION

The detailed design section describes the detailed internal structures and procedures used

within the module. This includes a description of the procedures, structures, the respective

parameters of these, calling sequences, responses, timing, and error handling:

 Diagram(s) breaking down the module

 Description of operation, such as the main functions of the module, any threads and/or

interrupt service routines

 Diagram of interaction, algorithm

 Detailed design info

 The #defines and enumerations used within the module

 The data structures employed by the module

 The variables internally employed in the module

 The procedures (and their parameters) within by the module

 The files employed in the module

Most of these sections follow the same format as used in the software interface.

The diagram below synopsizes the organization of the Foo module:

Procedures

Synopsis

Procedures :

Files : Foo.c

Variables :

Structures/Types:

Init

Configures the Foo module

Procedures : Foo_init()

Files : Foo.c

ISR

Services the hardware

interrupts

Procedures :

Files : Foo_IRQ.c

Variables :

Structures/Types:

Semaphores:

semaphore xyz

Variables:

variable name

buffer[]

Files: Foo_Cfg.h

Variables: var1

var2

Procedures:Foo_init()

Main systems
Procedure:

Foo_update()

Foo_write()

34.1. INTERRUPT SERVICE ROUTINES

This section should introduce and describe the interrupt service routines. This should define

why they are called, what action they take, and how they interact with the rest of the system.

34.2. DEFINES

This sections describes the #defines used internally.

same format as in the interface section

Figure 20: Detailed

module organization

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 68

34.3. ENUMERATION TYPE DOCUMENTATION

This section describes the enumerations used internally.

same format as in the interface section

34.4. DATA STRUCTURE DOCUMENTATION

This section describes the data structures used internally.

same format as in the interface section

34.5. VARIABLES

This section describes the variables used internally.

same format as in the interface section

34.6. PROCEDURES: SYNOPSIS

This section introduces the procedures used internally.

same format as in the interface section

34.7. PROCEDURE INTERFACE

This section describes the procedures used internally.

same format as in the interface section

34.8. FILES EMPLOYED IN THE MODULE

The table below describes the files employed in the module:

File Description

Foo.c The foo modules API procedures

Foo.c Public interface to the Foo module

Foo_cfg.h Public interface to the configuration of the Foo module

Foo_IRQ.h Header file describing the local interface to the Foo Interrupt service routine

Foo_IRQ.c The interrupt service routines.

35. CONFIGURATION INTERFACE

This section describes the configuration of the module.

The configuration is usually defined statically, at build time. The main application defines

const variables with the values to configure the module. This allows a module to be reused in

many applications, without specifying the exact size of resources used or coupling to the

hardware

Table 27: Module files

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 69

35.1. VARIABLES

The table below describes the BSP configuration variables provided to the module to

configure it:

Variable Description

Foo_numChannels The number of channels used by the module.

Foo_numRegisters The number of peripheral registers defined.

Foo_register[] The set of peripheral registers

36. THE TEST SECTION

The test section describes how to test the module. It should include a description of

1. How to observe when the module is performing work, when, and for how long

2. How to confirm that the module performs its intended function

3. How to find and test the limits of the unit performing its intended function

Planning the test:

 Start with tests for a single unit under test, and expand to more layers.

 Different mechanisms of tests

The rest of the test section should focus on three different mechanisms for performing the

tests:

 The software-based tests are intended to catch coding and calculation bugs. These

checks typically cannot catch hardware interaction bugs, but they can do regression

checks on software and (some) hardware configuration bugs.

 Desk checks look at the actual system execution, probed by hand

 Bench checks are more automated checks, with software and hardware probes

Note: the test documentation is often placed in other documents. I find it beneficial to include

an outline of tests. It helps ensure that the design is focused on the testability of the module

(and module stack).

37. REFERENCES AND RESOURCES

DI-IPSC-81435A, Data Item Description: Software Design Description (SDD), 1999 Dec 15

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/DI-IPSC-81435A_3747/

Table 28:

Configuration of the

Foo module

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 70

CHAPTER 12

Software Design

Guidance

This chapter describes my guidance for detailed software design:

 Specific guidance

 Design to be debuggable

 System microcontroller specific guidance

 Tests

38. CODE REUSE

Some observations on code reuse:

 Library design, creation, and support are a development effort in and of itself, with

many factors that impair success;

 Small pieces of code are more readily reused;

 The file is the easiest basis of reuse. If a function is potentially reusable, pull it out

into its own file. Files should be small, single-purposed, and well focused.

 Good design & coding practices facilitate easier reuse.

Some approaches and techniques to help promote reuse of code and designs:

 Use small size procedures and files in the design

 Divide the procedures and sub-procedures, where possible, into those that can be used

across a wide range, and those which are specific to the project (i.e., the hardware or

application). Keep feature-specific code segregated into different files to for later

leverage and reuse.

 Provide a segment of time (e.g. at the end of the project) for reviewing and identifying

reusable code.

 Identify, during design reviews, areas where prior design should10 have been reused

(but was not).

Existing code is (mostly) worked out, so can accelerate a project schedule – if the code is

appropriate to the project. Such code must be stored in manner so that it is accessible, easily

10 Note the emphasis is on should, not could. This step is also fraught with politics in some offices, which will

undermine quality.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 71

found, and readily reusable. Each successive project may produce more of the “library” of

reusable code.

Decide what code will be reused. There levels of code reuse

1. Verbatim: The file is picked up and used with zero changes.

2. The code is copied and modified it to fit some custom nature of the project

3. A code template is reused where the structure is used unchanged, but the contents are

customized for each project. This avoids re-inventing mechanisms, and supports (to

some extent) a fill-in-the-blank approach to reuse.

Limits and conditions for reuse. Some code modules have license restrictions, such as to the

hardware supplied by the vendor. Some are certified; so the reuse must match the

certification. Use in a more stringent domain, should plan on TBD;

The application must cover (1) the areas that the certification doesn’t cover (2) areas that the

coverage isn’t sufficient (2)

CAVAET. It’s socially unpopular to suggest reuse is overrated. Yet it is overrated. The intent

of reuse is noble; the effort, time, skill, and development organization required to accomplish

these is too often provides insufficient return on that expenditure.

39. DESIGN TO BE DEBUGGABLE

If you don’t design it to be debuggable, you won’t implement it to be debuggable, and you

won’t have a debuggable system. You’re stuck hacking till the problem that you are

experiencing goes away.

 Make a clean design

 Use good implementation techniques

 Fault detection support (this is covered in detail in the next section)

 Performance support is covered in the performance document.

 Gathering instruction traces

 Gathering other kinds of traces

39.1. SUPPORT STATIC ANALYSIS

Static analysis tools – tools like lint that are fed all of the source code for the project – can

often find bugs. They tend to find bugs of misuse, out of range, pointer errors, potential

buffer overflows, and the like.

The design can support this analysis making it easier to analysis. Here are some tips (not all

are practical):

Use indices rather than pointers. Why? Pointer analysis is still a difficult subfield of static

analysis – that is, a pointer have any address, but only a discrete set is valid, and it is hard to

know what those are. In contrast, an index can be check for a small range of valid values.

Lint and other tools may do a better job in those cases for analyze correct usage, data flow,

and spotting bugs / issues.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 72

39.2. CLEAN DATA FLOW

Intent easy to reason how a variable (or other element) took on the value it has, where the data

came from, and was calculated. Avoid coding style that generates confusion11

 Use meaningful names the variables.

 Don’t reuse variables in a procedure. At least with Keil based debugging use –o0

until the function is correct. The compiler will optimize away the variables (in a

properly constructed procedure).

39.3. CLEAN CONTROL FLOW

Intent easy to reason how the execution reached a particular point in the code, and why the

software took the actions that did.

Code complexity measures12 tell you when it’s too complex to maintain, understand, reason

about.

 MC/DC branch metrics tell you as well (branching and/or indeterminate values)

where you will have increasing inference pain.

39.4. DON’T USE LARGE PROCEDURE: USE MORE SMALLER PROCEDURES

A large procedure is not good. It is hard to reason about what variables are live, dead, and

what the control flow was to the failure point. The use of procedures partition the problem

down – in the sense of what is relevant, what isn’t.

Give them good names too.

39.5. EVENT COUNTERS

Include a series of event counters that can be watched in a debuggers “live watch” window.

The can include counters of:

 Send events

 Receive events

 Send errors

 Receive errors

 Allocation events

 Free events

40. FAULT DETECTION: DETECTING AN ERROR CONDITION

Something like “smart breakpoints” can be used. These are breakpoints that trigger the

debugger (or signal the test system in other ways) when certain conditions are met (or,

conversely, if certain rules are broken). They can be implemented in software (as assertions

or other techniques), in some debugger (which may break on certain memory accesses or

modifications, or software break instructions), or in simulation environment monitors.

The key is the condition or rule: How do we know when something is wrong?

11 single point of return forces confusion and questions where the return variable was bound
12 The formulary doesn’t matter

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 73

 Check parameters – range and conditions

 Check returned values

 Check intermediate values / conditions, error flags

 Canary methods to find buffer overruns

 Canary methods to find stack overruns

 Library exceptions

 Hardware exceptions and faults

40.1. CHECKING PARAMETER VALUES

AT THE COMPONENT LEVEL, messages are checked for correctness. These checks mimic those

above for a procedure call.

PROCEDURES check their parameters at the start, and reserve any resources they will need to

complete the task. If the checks do not pass, or resources cannot be reserved, the procedure

exits early with an error code. Check error returns from calls. Their use of other procedures

use appropriate timeout values.

The parameter value range and constraints is typically specified at the interface level.

40.2. CHECKING THE RETURN VALUES AND ERROR CONDITION

The procedure or message processing can signal a fault when the return values are out of

specified bounds, or there is an error return.

40.3. CHECKING INTERMEDIATE VALUES / CONDITIONS, ERROR FLAGS

Check the values of intermediate calculations.

Check the error return or flags of procedures it calls.

40.4. MEMORY SEGMENTATION

Working memory should be segmented by the criticality classification of its use or owning

module. Canaries should be placed between segments to detect over run/under run between

segments.

“This application has

requested the

Runtime to terminate

it in an unusual way.”

– An actual Microsoft

error message

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 74

An example partitioning of memory into segments is shown below

Canary

Stack

Task 1

(initialized variables)

Canary

Task 1

(initialized variables)

Canary

Task n

(uninitialized variables)

Canary

Task n

(uninitialized variables)

Canary

Interrupt stack

Canary

The canary values should be checked frequently, such as during a timer tick, or every run thru

a main loop. It is recommended to use different canary values (0xdeadbeef, 0xc0fecafe, etc)

to help id what’s going on in a memory dump situation.

40.5. BUFFER OVERFLOW CHECK

BUFFER ADDRESSING CHECKS. Buffers should have canary values before and after the buffer

area to aid in identifying stack overflow and underflow events. Buffer over and under runs

are very common form of software bug, this will help detect such out-of-bounds modification:

Buffer

Canary

Canary

To catch overflow

To catch underflow

The canary values should be checked frequently, such as during a timer tick, or every run thru

a main loop. It is recommended to use different canary values (0xdeadbeef, 0xc0fecafe, etc)

to help id what’s going on in a memory dump situation.

Figure 21:

Segmentation of

memory with canaries

Figure 22: Overview of

buffers with canaries

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 75

40.6. STACK OVERFLOW CHECK: CANARY METHOD (AKA RED ZONES)

Stacks should be monitored for overflow conditions by checking that the memory surrounding

the stack has not been modified.

Stack Area

Canary

Canary

To catch underflow

Grows down

To catch overflow

Software should place canary values on either end of the stack – or stacks, when an RTOS is

used. Some compilers or linkers automate this.

FINDING UNDERFLOWS AND OVERFLOWS are a matter of checking each of the aforementioned

buffers to verify that that the canary’s still have valid values at the start and end.

The canary values should be checked frequently, such as during a timer tick, or every run thru

a main loop. It is recommended to use different canary values (0xdeadbeef, 0xc0fecafe, etc)

to help id what’s going on in a memory dump situation.

THE ADVANTAGE of this approach is that it is easy to implement, easy to understand, and has

low overhead costs on the executing firmware.

THE DRAWBACK is that it still possible to miss overflows and underflows: the stack pointer can

be incremented by large amounts, completely skipping over the canary area.

40.7. DETECTING LOSS OF INTEGRITY OF A RAM VARIABLE OR DATA STRUCTURE

This section will look at how to prepare variables and access variables in a way that will

detect a loss of integrity.

A typical module has, for globals, one or more of the following:

 An array of values (e.g. myValues[])

 Individual variables

 An array of structs (e.g myStructs[])

STEP 1: First, gather the individual variables into a struct. For purpose of an example, this

struct will be typedef’d with the name bar_t.

STEP 2: Create primary and secondary instances of these. For example:

static bar_t barPrime, barMirror;

Arrays of values and structs would be renamed, and a mirror added. For example, myValues[]

becomes:

static type myValuesPrime[size], myValuesMirror[size];

Figure 23: Overview of

the stack structure with

canaries

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 76

And myStructs[] becomes:

static type myStructsPrime[size], myStructsMirror[size];

STEP 3: Define wrapper macros around these. Respectively the examples become:

#define barFetch(field) structFetch(barPrime, barMirror, field)
#define barStore(field, value) structStore(barPrime, barMirror, field, value)
#define myValuesFetch(field) aryFetch(myValuesPrime, myValuesMirror, field)
#define myValuesStore(field, value) aryStore(myValuesPrime, myValuesMirror, field, value)

#define myStructsFetch(idx,field) structFetch(myStructsPrime[idx], myStructsMirror[idx], field)
#define myStructsStore(idx,field, value) structStore(myStructsPrime[idx], myStructsMirror[idx], field, value)

STEP 4: Modify references in the code to use these wrapper macros. The table below

summarizes how to convert from conventional accesses.

Conventional Becomes

value = myValues[idx]; value = myValuesFetch(idx);

myValues[idx] = value; myValuesStore(idx, value);

value = bar.field; value = barFetch(field);

bar.field = value; barStore(field, value);

value = myStructs[idx].field; value = myStructsFetch(idx, field);

myStructs[idx].field = value; myStructsStore(idx, field, value);

40.7.1 The Theory of operation

Each variable (or data field) has a mirror, which holding complementary value. The mirror

values are ones-complemented. A one’s complement is used rather than a direct copy to

better reject common-mode faults such as a brown-out. These would flip bits toward the same

bias (usually ground).

The process of storing is simple:

1. Store the value in the primary variable or storage field

2. Store the ones complement (~value) in the mirror variable or field.

Fetching the field is a bit

1. Get the value from primary field, and perform a 1’s complement on it. We

intentionally don’t complement the same field as above.

2. Get the value from the mirror field

3. Xor the mirror and complemented primary value.

4. If the result is non-zero, at least one was corrupt. This triggers the fail-safe handler,

where it will remain until the software or hardware resets the microcontroller. The

reset will reinitialize the values of the programs variables.

5. If the result is zero, the value is good and can be used.

40.7.2 The detailed implementation

An earlier section discussed use of structFetch(), structStore(), aryFetch() and aryStore() to

gain the benefits of error detection. Their implementation is tricky, but important, so it is

Table 29: Rewriting

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 77

explained here. We will look at the macros for structures. The ones for arrays are nearly

identical, so we will not look at them.

THE STORE MACRO is:

#define structStore(prime,mirror,fieldName, value) \
 ((mirror).fieldName = ~(value), \
 (prime).fieldName = (value))

This matches the steps in the previous section. Some notes about this macro:

 A macro lets us use a field name (rather than identify a field by index and employing

an enumeration.) So this means a small number of fetch macros, and store macros

total, no matter how many fields or structures

 The whole macro is wrapped in a parenthesis. This lets the substituted text act as an

expression, especially a statement. It also prevents the internal steps from interacting

with other expressions, and control structures in surprising ways.

 The “mirror” and “prime” macro variables are wrapped in a parenthesis. This allows

an expression to be passed into the macro, and not have unexpected evaluation results

when it is expanded. That is, a pointer expression could be used with this macro for

prime or mirror.

 The “value” macro variable is wrapped in a parenthesis, for similar reasons as above.

Wrapping the variable before the complement (~) operator is especially important. If

an expression “0+x” was passed in, only the “0” would be complemented, not the

result of the addition.

 The comma operator is used to allow to separate expression statements to be

employed in the macro. The comma operator should be employed rarely, but this is an

instance it is needed. Without it, we would have to employ a more complicated

structure to allow access to the fields without ballooning the code, and protecting the

macro contents from unexpected interactions.

THE FETCH MACRO also follows the corresponding steps in the previous section. It also has

similarities to the store macros construction. The macro is:

#define structFetch((rime,mirror,fieldName) \
 (~((prime).fieldName ^ (mirror).fieldName) ? \
 FailSafe(Err_ramErrorDetected) : \
 (prime).fieldName)

 The macro is wrapped in parenthesis, as described above. So are the macros

parameters.

 The second line of the macro performs the complement of the primary; it’s XOR

against the mirror, and comparison against zero.

 The third line handles the case of a mismatch. It calls FailSafe(), which is intended to

places the system into a safe state and then reset the microprocessor. It is not intended

to return, but for C syntax it is defined as returning a value.

 The fourth line returns the primary value, if there was a match.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 78

40.7.3 Commentary on design alternatives

There were several other design alternatives considered.

 Using direct procedures would increase the amount of software to be written, making

it harder to understand and maintain over all. There would be two procedures per

field per structure. The procedures written without a macro risk a local defect that is

not spotted by tool or inspection. A helper macro to write them would provide

consistency, yet would still leave a lot of code.

 It is possible to reduce the number of procedures is by referencing the fields with an

index (and an enumeration, to name the index). This would be a small number of

procedures per structure – two for every type used in the structure.

 Returning an error code from a procedure is the usual, mandated design approach in a

long running, reliable system. In this design, it is not necessary as there is no clean up

to perform, and external peripherals to manage. The RAM has been compromised, so

the best, least burdensome recovery is to restart.

These macros make heavy use of the comma operator, and are the only known place to do so

in the code.

40.8. MEMORY PROTECTION

Many microcontroller (e.g. Cortex-M) include some facilities to protect regions of memory.

This is recommended to be used where possible. It is not as fine grained as the techniques

above, so it is no substitute.

40.9. INCLUDE A MEMORY MANAGER THAT CAN DETECT LEAKS

In systems that dynamically allocate and release memory, it is helpful to have debug-builds

that can detect when memory has been leaked.

40.10. TASK SWITCH

The µC/OS-II hook App_TaskSwHook() is implemented to check the stack canaries when task

switching occurs. If the canary variables do not have their proper value, then the software can

signal an error condition.

40.11. LIBRARY ASSERTS, EXCEPTIONS

Many of the firmware libraries perform checking, and signal errors by called a procedure,

similar to “assert”.13 By supplying this error procedure, the software can signal an error

condition. The error procedure should trigger a software breakpoint (to trigger the debugger)

and handle the error, perhaps by putting the machine into a safe state and halting.

13 I personally think that this is a sign of a very poor design and implementation.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 79

41. SYSTEM AND MICROCONTROLLER SPECIFIC DETAILED DESIGN
ELEMENTS

41.1. CORTEX-M PROCESSORS

This section covers design features specific to Cortex-M based microcontrollers.

41.1.1 Atomicity

On the Cortex-M processors, loads and stores are atomic only if:

 It is an 8-bit transaction, or

 It is a 16-bit transaction to an address aligned 16-bits, or

 It is a 32-bit transaction to an address aligned 32-bits

Normally the compiler takes care of this of this alignment. The exceptions – which will void

the atomicitiy – are if

 a compiler option has been used to change padding or alignment

 The variable was specified with an address

 The C “pack” qualifier was used

This means that volatiles are not read or written atomically on the Cortex-M unless all of the

conditions mentioned are followed. Compare and swap techniques or disabling interrupts

must be used when modifying memory shared with an interrupt routine

41.1.2 A note on ARM Cortex-M0 processors

The ARM Cortex-M0 instruction core cannot do:

 Compare and swap (LDREX/STREX)

 Atomic writes or increments

 Bit-banding

 Detecting that debugger is attached

The techniques below are still (largely) applicable, but will have Cortex-M0 specific

adaptations.

41.1.3 Software breakpoints

41.1.4 Hardware Exceptions

Exceptions, and faults, are a type of error detected by the processor at run-time. By supplying

the appropriate handling procedure, the software can signal an error condition. The handlers

can preserve the call stack, key register values, and key global variables. This may be helpful

for identifying what was going on.

41.1.5 Memory barriers

Memory barrier are a necessary mechanism to force the commit of memory access before next

step. Specifically it is ensure that data has been moved from any cache / buffer to the

destination, and blocks execution until that has been done.

 Some instruction cores have write buffers – the Cortex-M0 does not.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 80

 The microcontroller may have a cache at system level (outside of instruction engine)

 There may be queue or buffer between the memory mapped peripheral (esp. external

item on memory bus). Note: the memory region often should also be marked as non-

cacheable.

 There may be a queue or buffer between the processor and the event bus.

Memory barriers should be employed

 Before wait for event/interrupt (sleep)

 In the construction of IPC mechanisms, e.g. mutexes and semaphores

The barrier CMSIS wrappers are:

_DAB()
_DSB()
_ISB()

41.1.6 Digital inputs and outputs

The majority of microcontrollers have “Input Data Registers” and “Output Data registers” per

port. Save the data register, and the masks (for the relevant ones to access), and possibly any

index substitution index from internal reference to the data register and pin.

No microcontroller I’ve seen has more than 32 pins per port; most keep to 16 or fewer.

41.1.7 Bitband

Cortex-M3 and above processors have bit-banding. This can be leveraged for simplifying IO.

It can create a pointer to a single pin. For instance, for the chip select on I2C or SPI

communication. (Assuming that the hardware peripheral doesn’t already handle the chip

select).

41.1.8 Procedure blip

One useful technique is to have procedures raise a digital output line when they enter and

lower it when they exit. This can used to

 Validate that key procedures execute when stimulated

 Measure the duration of interrupt or other procedure

 Check that procedures execution timing holds, even under load or high events

 To demonstrate the regularity of procedure execution

 To demonstrate regularity of events, such as CPU timers, and interrupt servicing.

The design is simple. Create a variable for each potential procedure of interest, defined like

so:

uint32_t volatile* XYZ_blip= &XYZ_null;

In side of each procedure – called XYZ_procedure() here – have the following template:

void XYZ_procedure()
{
 XYZ_blip[0] = 1;

 … do work ….

 XYZ_blip[0] = 0;
}

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 81

When the procedure it will set the value at the destination of the pointer to 1, and when it exit

it will set the value at the destination of the pointer to 0. The probe effect is minimal: the

procedure executes the same code no matter what XYZ_blip points to. Both steps take only an

instruction or two; there are no conditions, branches or other variations.

To cause the procedure to blip a digital output pin:

1. Ensure that the GPIO is configured to be an output

2. Set XYZ_blip to point to the bitband address for the pins bit in the digital output

register of the target port.

Note: multiple procedures can drive the same output pin.

The disable the procedure blip:

1. Set XYZ_blip to point to XYZ_null. This way the procedure only stores to a dummy

variable.

The execution time of the procedure is the same whether or not the probe is enabled, and the

over head is negligible.

Note: as stated above, Cortex-M0 based (and non-Cortex) processors do not have banding.

The above technique can be adapted in a straight forward manner to those processors.

41.1.9 Find-first set bit

Finding the first set bit in O(1) time is an important utility procedure. It is used to find, for

example, the highest queued item in a bit list. Cortex-M3 and above include a “count left

zeros” instruction which will tell one the highest bit set in a 32-bit word:

highest bit set = 32- clz(x)

However, the usual convention is that bit 0 is the highest priority and bit 32 is the lowest.

This conventions allows working with longer bit queues by using a hierarchy. To find the

right most bit set, one could (but should not do):

FFS(x) = 32- clz(x&(-x))

This takes several instructions. Finding the highest priority is often performed in a time

critical procedure, such as PendSV exception handler to switch tasks. The next option is to

employ the ARM “reverse bits” instruction:

arm_clz(arm_rbit(xx))

gcc:

__builtin_clz(__builtin_bswap32(x))

This is better, but still 1 instruction slower than need be.

The fix is to reverse the bits when they are set in the mask:

mask |= 0x80000000uL >>idx;

On the ARM that takes the same number of instructions as:

mask |= 1uL << idx;

41.1.10 Interrupt prioritization

The ARM Cortex-M microcontrollers have a prioritizable interrupt controller. Many

processors can have as few as four levels of prioritization. Others can have a great range of

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 82

prioritization. The diagram gives some idea of how higher interrupts & exceptions can

interrupt lower ones.

ISR

Hard Fault

Thread(s) Thread(s)

SysTickSysTick

PendSV

ISR

The Hard fault exception (and other similar faults, such as NMI, etc.) is at the highest priority,

and is fixed in the hardware. Interrupts cannot occur within these handlers. If this is invoked,

the software (and/or hardware) has failed. The software design should place the hardware in

safe state, but take no complex actions.

PendSV is an exception at the lowest priority, in that it is invoked infrequently – only when a

thread, timer (in systick), and other IPC object in the interrupt changes the CPU’s ready-to run

list.

The System Tick is an exception that occurs regularly. It is (in this design guide) at a priority

lower than all of the interrupts. This is done to service the interrupts with lower latency,

preserving the quality of their function. It is the same priority (or higher than) PendSV’s

priority. If it were at a priority lower than PendSV, the regular switching of tasks would be a

much higher cost.

The low priority of the system tick handler serves an integrity role: this is how interrupt

overload is detected. A watchdog timer – such as the windowed watchdog timer on the

STM32 product family – will be serviced (or partly serviced) in the system tick routine. If the

system tick routine can’t execute regularly either because of interrupt overload, or someone

having disabled interrupts for too long, the watchdog servicing will be inhibited, triggering

the microcontroller to reset, and proceed to the fail safe state.

Note: by partially serviced can mean that the watchdog timer in question can only by reset if

the system tick has hand-shaked with some other thread. By requiring all the parties to

handshake (or other demonstration of liveliness) the watchdog timer can detect failure to

service those parties in a timely fashion.

42. TESTS

This section offers basic tests of the software units, starting with the most fundamental units.

The test can check that the software module function as expected:

 Basic input or outputs

 Time based behaviour

 Basic function of the module

 Signal processing qualities

 and can be employed as a hardware test:

 Signals stuck. e.g. stuck high or stuck low

Figure 24: Prioritized

interrupts and

exceptions

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 83

 Signals shorted together

 Signals that are open

The digital input tests:

 Test 1: Test CPU input with a line high

 Test 2: Test CPU input with a line low

The digital output tests include:

 Test 3: Test CPU output with a line high

 Test 4: Test CPU output with a line low

The analog input tests include:

 Test 5: Test CPU input with a line high

 Test 6: Test CPU input with a line midrange

 Test 7: Test CPU input with a line low

This analog output tests include:

 Test 8: Test CPU output with a line high

 Test 9: Test CPU output with a line midrange

 Test 10: Test CPU output with a line low

This polynomial correction tests include:

 Test 11: Test CPU input with a line high

 Test 12: Test CPU input with a line midrange

 Test 13: Test CPU input with a line low

This IIR signal processing tests include:

 Test 14: Inject a stable signal

 Test 15: Inject a signal with a fast rising pulse

 Test 16: Inject a signal with a fast rising step

 Test 17: Inject a signal with a fast descending pulse

 Test 18: Inject a signal with a fast descending step

This debounce module tests include:

 Test 19: Check that a rising edge is passed thru

 Test 20: Check that a falling edge is passed thru

 Test 21: Check that rising-edge bounces are rejected

 Test 22: Check that falling-edge bounces are rejected

42.1. TEST 1: TEST CPU INPUT WITH A LINE HIGH

The basic test is:

1. Set the input high to the pin, using an external tool

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 84

2. Read the digital input (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

42.2. TEST 2: TEST CPU INPUT WITH A LINE LOW

The basic test is:

1. Set the input low to the pin, using an external tool

2. Read the digital input (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

It integrates several elements together that are, in other approaches, separate documentation

efforts. The testing is often separate, later pass. This is included here for several reasons.

Control flow errors: how did it get to the wrong spot? Bug in control flow implementation?

Individual values right, but altogether not right. Wrong implementation of control flow.

42.3. TEST 3: TEST CPU OUTPUT WITH A LINE HIGH

The basic test is:

1. With the diagnostic tool, have the software set the output high

2. Using an external tool, read the digital pin. Confirm that it is high.

Stretch: This should be done with all output lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

software problem, or a hardware short.

42.4. TEST 4: TEST CPU OUTPUT WITH A LINE LOW

The basic test is:

1. With the diagnostic tool, have the software set the output low

2. Using an external tool, read the digital pin. Confirm that it is low.

Stretch: This should be done with all output lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

software problem, or a hardware short.

42.5. TEST 5: TEST CPU INPUT WITH A LINE HIGH

The basic test is:

1. Set the input high to the pin, using an external tool

2. Read the analog input (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 85

42.6. TEST 6: TEST CPU INPUT WITH A LINE MIDGRANGE

The basic test is:

1. Set the input to the mid range value, using an external tool

2. Read the analog input (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become low unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

42.7. TEST 7: TEST CPU INPUT WITH A LINE LOW

The basic test is:

1. Set the input low to the pin, using an external tool

2. Read the analog input (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

42.8. TEST 8: TEST CPU OUTPUT WITH A LINE HIGH

The basic test is:

1. Set the output high to the pin, using an external tool

2. Read the analog output (using external tool).

Stretch: This should be done with all output lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

software problem, or a hardware short.

42.9. TEST 9: TEST CPU OUTPUT WITH A LINE MIDRANGE

The basic test is:

1. Set the output midrange to the pin, using an external tool

2. Read the analog output (using an external tool).

Stretch: This should be done with all output lines. All lines should be read to check that their

states are at the commanded level, ± a range. If a line is in the wrong state, this may indicate

a software problem, or a hardware short.

42.10. TEST 10: TEST CPU OUTPUT WITH A LINE LOW

The basic test is:

1. Set the output low to the pin, using an external tool

2. Read the analog output (using an external tool).

Stretch: This should be done with all output lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

software problem, or a hardware short.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 86

42.11. TEST 11: TEST CPU INPUT WITH A LINE HIGH

The basic test is:

1. Set the input high to the pin, using an external tool

2. Read the conversion results (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

42.12. TEST 12: TEST CPU INPUT WITH A LINE MIDGRANGE

The basic test is:

1. Set the input low to the mid range value, using an external tool

2. Read the conversion results (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become low unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

42.13. TEST 13: TEST CPU INPUT WITH A LINE LOW

The basic test is:

1. Set the input low to the pin, using an external tool

2. Read the conversion results (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

42.14. TEST 14: INJECT A STABLE SIGNAL

The basic test is:

1. Route the filter output to an analog output test point.

2. Using an external tool, set the input to the pin to a known, stable voltage

3. Read the filter results (using diagnostic tool). The reported voltage should match the

injected voltage, after the input divider.

4. Check that the output signal is stable (i.e. no self-induced noise)

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

42.15. TEST 15: INJECT A SIGNAL WITH A FAST RISING PULSE

The basic test is:

1. Route the filter output to an analog output test point.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 87

2. Using an external tool, set the input to the pin to a known, stable voltage

3. Read the filter results (using diagnostic tool). The reported voltage should match the

injected voltage, after the input divider.

4. Check that the output signal is stable (i.e. no self-induced noise)

5. Inject a fast rising pulse, returning to the prior level

6. Read the filter results (using diagnostic tool). The reported voltage should match the

prior injected voltage, after the input divider.

7. Check that the output signal is stable (i.e. no self-induced noise as a response), and

that blip negligible pass-thru.

Stretch: This should be done with all input lines. All lines should be read to check that their

states did not have an unexpected pulse. If a line did have a pulse, this may indicate a

coupling or error with the filter implementation.

42.16. TEST 16: INJECT A SIGNAL WITH A FAST RISING STEP

The basic test is:

1. Route the filter output to an analog output test point.

2. Using an external tool, set the input to the pin to a known, stable voltage

3. Read the filter results (using diagnostic tool). The reported voltage should match the

injected voltage, after the input divider.

4. Check that the output signal is stable (i.e. no self-induced noise)

5. Inject a fast rising step to a higher voltage level

6. Read the filter results (using diagnostic tool). Within TBD msecs, the reported

voltage should match the new injected voltage, after the input divider.

7. Check that the output signal is stable (i.e. no self-induced noise as a response), and

that blip negligible pass-thru.

Stretch: This should be done with all input lines. All lines should be read to check that their

states did not have an unexpected pulse. If a line did have a pulse, this may indicate a

coupling or error with the filter implementation.

42.17. TEST 17: INJECT A SIGNAL WITH A FAST DESCENDING PULSE

The basic test is:

1. Route the filter output to an analog output test point.

2. Using an external tool, set the input to the pin to a known, stable voltage

3. Read the filter results (using diagnostic tool). The reported voltage should match the

injected voltage, after the input divider.

4. Check that the output signal is stable (i.e. no self-induced noise)

5. Inject a fast descending pulse, returning to the prior level

6. Read the filter results (using diagnostic tool). The reported voltage should match the

prior injected voltage, after the input divider.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 88

7. Check that the output signal is stable (i.e. no self-induced noise as a response), and

that blip negligible pass-thru.

Stretch: This should be done with all input lines. All lines should be read to check that their

states did not have an unexpected pulse. If a line did have a pulse, this may indicate a

coupling or error with the filter implementation.

42.18. TEST 18: INJECT A SIGNAL WITH A FAST DESCENDING STEP

The basic test is:

1. Route the filter output to an analog output test point.

2. Using an external tool, set the input to the pin to a known, stable voltage

3. Read the filter results (using diagnostic tool). The reported voltage should match the

injected voltage, after the input divider.

4. Check that the output signal is stable (i.e. no self-induced noise)

5. Inject a fast descending step to a lower voltage level

6. Read the filter results (using diagnostic tool). Within TBD msecs, the reported

voltage should match the new injected voltage, after the input divider.

7. Check that the output signal is stable (i.e. no self-induced noise as a response), and

that blip negligible pass-thru.

Stretch: This should be done with all input lines. All lines should be read to check that their

states did not have an unexpected pulse. If a line did have a pulse, this may indicate a

coupling or error with the filter implementation.

42.19. TEST 19: CHECK THAT RISING EDGE IS PASSED

The basic test is:

1. Set the input signal low

2. Check that the output signal is low

3. Set the input signal high

4. Check that the output signal is high within TBD ms.

42.20. TEST 20: CHECK THAT FALLINGING EDGE IS PASSED

The basic test is:

1. Set the input signal high

2. Wait TBD ms

3. Check that the output signal is high

4. Set the input signal low

5. Check that the output signal is low within TBD ms.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 89

42.21. TEST 21: CHECK THAT RISING-EDGE BOUNCES ARE REJECTED

The basic test is:

1. Set the input signal low

2. Check that the output signal is low

3. Set the input signal high

4. Check that the output signal is high within TBD ms.

5. Set the input signal low

6. Check that the output signal is high

7. Raise signal within TBD ms

8. Check that the output signal is high

42.22. TEST 22: CHECK THAT FALLING-EDGE BOUNCES ARE REJECTED

The basic test is:

1. Set the input signal high

2. Check that the output signal is high

3. Set the input signal low

4. Check that the output signal is low within TBD ms.

5. Set the input signal high

6. Check that the output signal is low

7. Set the input signal low within TBD ms

8. Check that the output signal is low

42.23. NON-VOLATILE STORAGE TESTS

The Foo module includes a non-volatile storage (e.g. Flash) to retain the program, and non-

volatile information. The non-volatile data storage can be confirmed to be functional with the

conventional “marching” tests. To describe just one test, I will sketch the “walking ones” test

below. The steps are:

1. In the storage, area set all bits, save one, to zero. The single bit should be set high.

2. Check the storage area contents match the expected value.

3. Repeat the above for each bit.

4. Repeat the above, but with the majority of bits set high, and the single bit set low.

This test checks that each bit in the storage area can hold clear and set values; that a bit does

not clear or set other bits in the storage area. Note this is a test that the storage area works as

intended, not that the access is done on a bit level.

The storage area is non-volatile – it retains the intended values after power has been removed

from the system. To check this non-volatile property:

1. Setting the values in non-volatile area to known, but non-default values.

See Mikitjuk et al for a

description of

marching memory

tests and what they

diagnose

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 90

2. Remove power. The duration should be for a time longer than it takes internal power

caps to deplete.

3. Applying power

4. Checking that the storage area holds the expected values.

42.24. FIRMWARE STORAGE

The program memory is integrated into the microcontroller. The software shall include

features to test it. This may include ability to read program storage, and/or perform a CRC

check on it.

42.25. INFORMATION STORAGE

The firmware shall include a means of setting, clearing, and reading the information storage.

This includes at a low-level (accessing the Flash by address), and a service level (clearing and

setting the values by communication).

43. REFERENCES AND RESOURCES

Warren, Henry S., Hacker's Delight, 2nd Edition, Addison-Wesley Professional; 2012

October

43.1. CORTEX MICROPROCESSOR RELATED RESOURCES
ARM, DDI0403, “ARM v7-M Architecture Reference Manual,” Rev E.b, 2014-Dec

ARM, DDI0406, “ARM Architecture Reference Manual, ARM v7-A and ARM v7-R edition”

Rev C.c, 2014-May

ARM, DDI0419, “ARMv6-M Architecture Reference Manual,” Rev D 2017-May

ARM, DDI 0432C, “Cortex-M0: Technical Reference Manual” r0p0 Rev C 2009 Nov 30

ARM, DDI 0439B, “Cortex-M4: Technical Reference Manual,” Rev r0p0 2009-2010

ARM, DUI 0497A “Cortex-M0 Devices: Generic User Guide” Rev A 2009 Oct 8

ARM, QRC0011, “ARMv6-M Instruction Set Quick Reference Guide,” Rev L 2007 March

Keil, “Using Cortex-M3 and Cortex-M4 Fault Exceptions,” Application Note 209. 2010

CMSIS “Cortex Microcontroller Software Interface Standard,” Version: 1.10 - 24. 2009 Feb

Doulos, “Getting started with CMSIS” 2009

43.2. MEMORY PROTECTION

Atmel, “AT02346: Using the MPU on Atmel Cortex-M3 / Cortex-M4 based

Microcontrollers,” 2013

ST Micro, DocID029037, “AN4838 Managing memory protection unit (MPU) in STM32

MCUs”, Rev 1, 2016 Mar

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 91

CHAPTER 13

Design Review

Checklists

This chapter provides checklists for use in reviewing the software designs (before

implementation proceeds too far):

 Design review checklist

 Detail design review checklist

See also

 Appendix F for the Code Complete Design Review check lists

 Appendix G for a rubric to apply in the reviews

44. DESIGN REVIEW

A software design review is intended to answer a basic set of questions:

1. What the inputs and how does the design turn them into outputs?

2. What are the major elements that make up the system?

3. How do these elements work together to achieve the goals set out by the

requirements?

A good design is:

 Simple

 Able to be constructed in a timely fashion

 Adaptable to other applications

 Dependable: no bugs, or unexplainable behaviour and can achieve long-lasting

operation

 Efficient: applies its key resources to useful work (skillfully)

44.1. STARTING

 Are the requirements sufficiently defined to create the high-level design?

 Is the high-level design understandable?

 Are there terms or concepts introduced / defined before they are used?

 Are the requirements realizable?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 92

44.2. MODULES AND FLOWS

 Are the main areas of functionality explained?

 Are the main inputs and outputs described?

 Are the main modules or components and their roles described?

 Is a structural diagram showing the flows given?

 Are the main signal chains and logic flows show and described?

 Are the roles of the signals and logic explained?

 Is the application logic discussed and outlined?

 Does it describe the approach to testing and diagnostics?

 Is the approach to power management outlined?

 Is data management outlined? Is the roughly what will be stored, whether it will be non-

volatile discussed?

 Is the communication outlined?

 Is the safety model discussed? Timeouts? Watchdog timers?

 Is the approach to software configuration (of features, parameters, etc) discussed?

 Is the approach to other IO described?

 Are the module prefixes provided and described?

 Are the main file groupings provided and described?

44.3. NAMES

 Are the module names well chosen?

 Are the signals, and other object names well chosen? Are the names clear? Do the

names convey their intent? Are they relevant to their functionality?

 Is the name format consistent?

 Names only employ alphanumeric and underscore characters?

 Are there typos in the names?

45. DETAILED DESIGN REVIEW CHECKLISTS

45.1. BASIC FUNCTIONALITY

 Does the detailed design match the overall design and requirements?

 Are the requirements sufficiently defined to create the detailed design?

 Is the high-level design sufficient and agreed upon to support the detailed design?

 Is all the detailed design easily understood? Is the design simple, obvious, and easy to

review?

 Is the detailed design sufficiently detailed to create/update a work breakdown structure?

 …to create a schedule, down to half-day increments?

 Is the design sufficiently detailed to delegate work?

45.2. DOCUMENTATION

 Are all modules and interconnecting mechanisms documented?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 93

 Do they properly describe the intent of the module?

 Is the modules interface (procedures, data structure, sequences) documented?

 Are all parameters of the procedures documented?

 Is the use and function of third-party libraries documented?

 Are data structures and units of measurement explained?

45.3. DIAGRAMS

 Are block diagrams employed?

 Are the boxes labeled with their designator?

 Are the boxes connected?

 Do the diagrams show the flow of signals and external control?

 Code complexity measure is low (below set threshold)?

 Is there sufficient annotation on the connection to understand how they communicate?

Is this covered in the expository text?

 Are there sequence diagrams?

 Are there flow charts? Does the text in the diagrams match the terms used in the

expository?

45.4. MAINTAINABILITY AND UNDERSTANDABILITY

 Is the design unnecessarily ornate or complex?

 Is the design appropriately modular? Would it be better with more modules? Fewer?

 Can any of the modules be replaced with library or built-in functions?

 Does the design have too many dependencies?

 Any changes that would improve readability, simplify structure, and utilize cleaner

models?

45.5. NAMES & STYLE

 Are the module names well chosen? Are they relevant to their functionality?

 Are the signals, variables, and other object names well chosen? Are the names clear?

Do the names convey their intent? Are they relevant to their functionality?

 Do the names of these objects use a good group / naming convention? e.g. related items

should be grouped by name

 Is the name format consistent?

 Do the names only employ alphanumeric and underscore characters?

 Are there typos in the names?

45.6. PRIORITIZATION REVIEW CHECKLIST

 Are all threads identified? These should be in a table summarizing them.

 Are the resource protecting mutexes identified? These should be in a table summarizing

them.

 Are all of the interrupts and their sources identified?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 94

 Has a Rate Monotonic Analysis (RMA) and dead-line analysis been performed?

 Have the task/threads and mutexes been assigned priorities, based on this analysis?

 Have the interrupts been prioritized based on a similar analysis?

 Have the DMA channels been prioritized based on a similar analysis?

 Have the CAN message been prioritized based on a similar analysis?

 Does the ADC use prioritization? Have the ADC priorities been prioritized based on a

similar analysis?

 Have the Bluetooth LE notification/indication priorities been prioritized based on a

similar analysis?

45.7. CONCURRENCY REVIEW CHECKLIST

 Are the protect resources, and how they are protected listed?

 Are there resource missing protecting mutexes?

 Is the acquisition order of locks/mutexes defined?

 Are the appropriate IPC mechanisms specified?

 Is the order of multiple accesses defined?

 How do interrupts signal threads? Which threads do they signal?

 Are there ways to reduce the blocking time?

45.8. CRITICAL FUNCTION / SUPERVISOR REVIEW CHECKLIST

Check that critical functions (e.g. Class B and C of IEC 60730) are suitably crafted:

 Does the detailed design identify the critical functions?

 Are the critical functions limited to a small number of software modules?

 Is the relation between the input and output parameters simple? Or at least, simple as

possible?

 Is a power supervisor / brown-out detect employed? Should one be?

 Are self-tests and/or function tests performed before any action that depends on the

critical functions?

 Are periodic self-tests or functional tests performed? How do they work? Is a vendor

supplied module performing the test? Which one(s)?

 Is there a defined acceptable state for when self-check (or other functions) fail?

 Are the clock(s) functionality and rates checked?

 Is a watchdog timer is employed? Correctly? Does the design only reset the watchdog

after all protected software elements are shown to be live? An example of a bad design

would be to reset the watchdog.

 Does the design describe where the watchdog timer may be disabled? Is this

acceptable?

 Is an external watchdog employed? Is the external watchdog handshake done only after

all of the software has checked liveliness? A bad approach is to use a PWM for the

handshake, as a PWM can continue while software has locked up or is held in reset.

 Is there a fail-safe and fail-operational procedure defined to bring the product to the

defined acceptable state? There should be a very small number of such procedures: only

one or two.

 Is there acceptable handling of interrupt overload conditions?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 95

 Is the critical program memory is protected from modification? How? Hardware?

Software?

 Is the program memory checked for validity? How? CRC check? Hardware based?

Software?

 Is the stack checked for overflow? How?

 Is the critical data separated, checked, and protected? How?

 Are independent checks / reciprocal comparisons to verify that data was exchanged

correctly? How does it work? For example, how does it know that the correct device

and correct address within the device was modified or read?

 Are there possible partition violations from data handling errors, control errors, timing

errors, or other misuse of resources?

45.9. MEMORY HANDLING REVIEW CHECKLIST

Has the memory been partitioned in a manner suitable for Class B? i.e., does the software

isolate and check the regions?

 Does the detailed design outline good practices to prevent buffer overflows – bound

checking, avoid unsafe string operations?

 Are memory regions write protected?

 Is the memory protection unit enabled?

 What is the access control configuration?

 Is it appropriate?

Non-volatile storage:

 Does the design have a plan to not overwrite or erase the non-volatile data that is in use?

Or does the design use a “replacement” strategy of writing the most recent/highest good-

copy of the data?

 Does the design account for loss of power, reset, timeout, etc during read/write

operation? This should include checking supply voltage before erasing/writing non-

volatile memory, performs read back after write, and CRC data integrity checks

 Are data recovery methods used? Will the design work?

 Does the design ensure that the correct version of stored data will be employed (such as

on restart)?

45.10. POWER MANAGEMENT REVIEW CHECKLIST

Power configuration for low power modes:

 Are power management goals defined?

 Are the target power performance characteristics/requirements defined?

 How will it enter the states?

 How will it exit the states?

 Are the states of clocks, IOs, and external peripherals defined for the low power states?

 Is there a race condition in going into low-power state and not being able to sleep or

wake?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 96

45.11. NUMERICAL PROCESSING REVIEW CHECKLIST

Check for correct specification of numerical operations, such as might be used in signal

processing, kinematics, control loops, etc.:

 Is there a description of the numerical processing that will occur?

 Is the theory of operation (e.g. that forms the system of equations) sound?

 Is it numerically sound?

 Are the equations ill-conditioned?

 Is the method of calculation slow? Is the algorithm slow? Is floating point emulated on

the target platform?

 Would use of fixed point be more appropriate?

 Is simple summation or Euler integration specified? This is most certainly lower quality

than employing Simpsons rule, or Runge-Kutta.

 Floats and doubles are not used in interrupt handlers, fault handlers, or the kernel.

 The RTOS is configured to preserve the state of the floating point unit(s) on task switch.

45.12. SIGNAL PROCESSING REVIEW CHECKLIST

 Is the signal chain described?

 Is the relation between the input and output of the signal chain simple? Or at least,

simple as possible?

 Is the sampling approach to linear signals (aka analog inputs) described?

 Is the description of sample acquisition time defined? Does it match with the hardware

design description and target signal? (e.g. input impedance, signal characteristics)

 Is the method for acquiring samples appropriate? If the processing requires low jitter, the

design should support this. For instance, a design that uses a DMA ring-buffer has low

variation, while run-loop or interrupt trigger can have a great deal of time variation.

 Is oversampling applied? Is the design done in a proper way?

 Is simple summation or Euler integration specified? This is most certainly lower quality

than employing Simpsons rule, or Runge-Kutta.

 Are appropriate forms of filter specified? Is an unstable form used? (Would the form

have ringing, feedback, self-induced oscillation or other noise?)

 Is the signal processing unnecessarily complex?

45.13. TIMING REVIEW CHECKLIST

 Is the sequence of interactions documented?

 Is the timing of interactions documented? Are the timeouts defined and documented?

 From the time the trigger is made to the action, what worst case round-trip? Include

interrupts, task switching, interrupts being disabled, etc. Is this timing acceptable?

45.14. TESTABILITY

 Is the design testable?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 97

45.15. OTHER

 Are there regular checks of operating conditions? Should there be?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 98

CHAPTER 14

Software Detailed

Design Risk Analysis

This chapter provides an initial template for software detailed design risk analysis.

46. SOFTWARE DETAILED DESIGN RISK ANALYSIS

The outputs of a software detailed design risk analysis include:

 A table mapping the software requirements to the detailed design element (e.g.

procedure) that addresses it. This table may have been produced by another activity

and is only referenced in the output.

 List of software risks, acceptability level, and their disposition

 A criticality level for each hazard that can be affected by software

 Recommended changes to the software design, software architecture, software

requirements specification, programmable system architecture, etc. For example,

actions required of the software to prevent or mitigate the identified risks.

 Recommended test Verification & Validation activities, especially tests

The steps of a software detailed design risk analysis include:

1. Identify the design elements that address each requirement. This may have been

produced by another activity and is only referenced in the output.

2. Examine the risks of errors with values

3. Examine the risks of message capacity

4. Examine the risks of timing issues

5. Examine the risks of software function

6. Recommendations for rework

46.1. STEP 1: IDENTIFY THE DESIGN ELEMENTS THAT ADDRESS EACH
REQUIREMENT

Go thru each of the software requirements and list the design elements that address it.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 99

46.2. STEP 2: EXAMINE ALL VALUES FOR ACCURACY

Identify all the elements of the design – sensor 1, sensor 2, actuator, motor, calculations,

operator inputs, operator outputs, each parameter received, etc. For each of these elements,

create a copy of Table 4 (“Value accuracy risks”) and populate it with respect to the

architecture. In reviewing each condition, identify the least acceptable risk for each

applicable condition.

46.3. STEP 3: EXAMINE THE MESSAGES CAPACITY

Identify all the messaging elements of the system – I2C sensor, task 1, user input, etc. For

each of these elements, create a copy of Table 7 (“Message capacity risks”) and populate it

with respect to the architecture. In reviewing each condition, identify the least acceptable risk

for each applicable condition.

46.4. STEP 4: EXAMINE THE CONSEQUENCES OF TIMING ISSUES

Identify all the input elements of the system – button #1, frequency input, I2C sensor, task 1,

user input, etc. This list should include elements those receive messages, and send messages.

For each of these elements, create a copy of Table 17 (“Timing capacity risks”) and populate

it with respect to the design. In reviewing each condition, identify the least acceptable risk for

each applicable condition.

46.5. STEP 5: EXAMINE SOFTWARE FUNCTION

This step examines the ability of the software to carry out its functions.

Identify all the functions of the system; that is, the operations which must be carried out by

the software. For each of these elements, create a copy of Table 30 (below) and populate it

with respect to the architecture. (Strike inapplicable conditions)

Condition Hazard, likelihood & severity

Hardware or software failure is not reported to operator

Data is passed to incorrect process

Non-deterministic

Non-terminating state

Software fails to detect inappropriate operation action

In reviewing each condition, identify the least acceptable risk for each applicable condition.

The risk analysis shall illustrate how events, or logical combinations of events, are capable of

leading to an identified hazard

An analysis shall be conducted to identify states or transitions that are capable of resulting in a

risk.

46.6. STEP 6: RECOMMENDATIONS FOR REWORK

Summarize each of the identified conditions with a risk level of “medium” or “high.” These

items mandate rework, further analysis, and/or Verification & Validation activities.

Table 30: Software

function risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 100

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 101

PART III

Source Code

Craftsmanship

This part provides guides for source code workmanship

 OVERVIEW OF SOURCE CODE WORKMANSHIP.

 C CODING STYLE. This chapter outlines the style used for C source code.

 JAVA CODING STYLE. This chapter outlines the style used for Java source code.

 CODE INSPECTION & REVIEWS. Describes code reviews.

 CODE INSPECTION & REVIEWS CHECKLISTS. Provides checklists for reviewing source

code.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 102

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 103

CHAPTER 15

Overview of Source

Code Workmanship

This part promotes good source code construction:

47. SOURCE CODE WORKMANSHIP

This part seeks to reduce bugs from language mistakes and mis-implementing the detailed

design. It presents coding guides and review tools.

Source code should follow good practices. Some of these practices are covered in industry

guides, such as MISRA C, and Lint. Chapters 16 and 17 give specific coding guidance that

the industry guides do not cover. These guides provide direction to producing clear code,

with a low barrier to understanding and analysis.

Chapter 18 discusses review the resulting source code against the guides and the detailed

design to help ensure that the result has a good construction.

The source code should be reviewed (and otherwise inspected) against those guides, designs,

and against workmanship evaluation guides. The purpose of reviewing the work is to examine

quality of construction – it is not an evaluation of the engineers, and it is looking for more

than finding defects. It is to get a second opinion on the implementation.

The review checklists & rubrics are a dual to the coding style; everything in one should be in

the other.

47.1. WHAT DOES GOOD CODE LOOK LIKE?

Good code is

 Well-structured. It is consistent & neat, using accepted (or mandated) practices

 Structured simply. It uses simple operations, with one action per line. It makes

minimal use of macros. It modularizes effectively. It limits a function to fit one screen

of code.

 Clean interfaces. It passes minimal data, reducing memory requirements and

increasing speed. It exposes only variables that are necessary: minimal use of global

variables (IO port and configuration registers as well as variable use to communicate

with ISRs are notable exceptions.) It minimizes dependencies and confines processor

dependent code to specific functions.

 Functional. The code is simple, and compact. It has been tested frequently,

completely, and thoroughly. It uses a layered approach to add the needed complexity.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 104

47.2. THE ROLE OF REVIEWS AND INSPECTIONS

The purpose of reviewing the work is to examine quality of construction (the workmanship).

(Note: it is not an evaluation of the engineers.) Code review is looking for more than finding

defects. Reviews check that:

 The construction is consistent, and coherent

 That the style is easy to understand, and clear

 That the work is maintainable over time, by many people

 That it avoids known and potential defects

 Consistent execution

 Evaluate quality of construction

 Planning goals for schedule and quality

 Improve meeting quality goals

The reviews can also be used as an education for new team members.

Tools can be used to automate some of the checks, relieving some of the reviewer labor:

 LINT

 MISRA C checks

 Compiler tool warnings

 Klockwork Coverity

 TI Optimization assistant

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 105

CHAPTER 16

C Coding Style

This chapter describes the subset of C that we will use, and how to format the source code.

 Coding style overview

 The language used

 The source code file format

 Preferred types

48. CODING STYLE OVERVIEW

The goals of a coding style guide are to promote understandable source code that is

 Easier to maintain (than would be the case without such a guide),

 Reduces misinterpretations and

 Discourages the use of unreliable techniques.

To do so, the guidelines often emphasize:

 Readability of layout and comments so as to be clear about the source codes intent

 Decomposing the code so as to make it clear what is going on

 Being consistent, so that it is predictable about intent based on other analogs

 Value checking

48.1. SOFTWARE LANGUAGE

The software for applications created with this guide are written in the ANSI C99

programming language.

Compiler specifics should be used frugally. This includes Keil, IAR, MDK and GNU C

extensions. Where possible, use the more portable forms. For instance, use the ARM C

Specification forms for portability across

Tools should be used to check for possible misinterpretation of intent. This can include:

 LINT

 MISRA C checks

 Compiler tool warnings

 Klockwork Coverity

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 106

48.2. THE REMAINDER

The rest of this chapter will narrow the subset of C that we will use:

 Source code files – spaces (no tabs), file layout, and code must be well commented

 Code layout – braces, spacing,

 Preferred Types, esp. number types

 Control flow: conditionals, goto/label/return/break/continue

 Pointers

49. SOURCE CODE FILES

49.1. FILE NAMES

The file names should be prefixed with the modules prefix.

49.2. FILE GROUPINGS FOR A MODULES IMPLEMENTATION

A module has an .h that declares the procedures, variables, and macros that other modules

may use. This file should not have ‘internal’ only information; that is information that other

modules should not use. It may have many .c files that implement the module – it is better to

break down a module into groups of relatively short files rather than one large file a thousand

lines or longer. The module may have other .h files (suffixed as –int.h) that are for use only

within the module.

.

Declares the interface to

the module

.c .c

.c .c

-int.h

.h

The modules

implementation

Declarations internal to

the module.

The documentation distinguished between external interface (procedure and variables other

modules may use) and an internal one.

49.3. A BRIEF NOTE ON CHARACTER SETS

Tab characters shall not be used in software source code. Text editors have different tabbing

configuration and this guide is independent of any particular text editor. Indents shall use

spaces, not tab characters.

49.4. HEADER FILES

Header files describe the interface to the modules and the system.

Header files should not define variables or procedures; it should only declare them.

Figure 25: How .h and

.c files related to a

module

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 107

49.4.1 Guards

Header files (file ending with the extension .h) should have guard defines in the file, so the

file’s declarations/definitions are not made twice.

GOOD:

#ifndef MYSTUFF_H
#define MYSTUFF_H

…

#endif

RATIONALE. Some poorly planned header files create include cycles, meaning that they are

forever including each other. Although it is better to resolve the include cycle and improve

division of declarations to have acyclic dependencies, this [BANDAID] is used.

49.4.2 Extern declaration / procedure prototypes

Non-static extern declarations and procedure prototypes are to be done in header files. (Not in

C files). There is to be only one declaration of a variable, macro, procedure or any other

symbol.

49.4.3 Documented code

Header files describe the interface to the modules and the system. Thus, the header files must

be documented completely – they should contain all the information a developer needs to

understand and use the interface. Each declaration must have descriptive comments.

Procedure or function headers must contain:

 The procedure declaration,

 A description of the procedure including requirements for input parameters

 The specification of the return value, results, and output parameters.

 Changes to any global data.

49.5. C SOURCE FILES

Local data declarations must have comments.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 108

A procedure should look like

/**Synopsis of the procedure

 @param param1 Description

 @return

*/

ErrType_t MyProcedure(param1)

{

 // Check parameters for bounds.

 if (...)

 {

 // On error:

 // Set error message

 // Perform error return

 return err;

 }

 // Do work, Check results

...

 // Return with any errors

}

Procedure Header

Declaration

Check parameters

Perform work

Return

The elements include

1. Description (in comments)

2. Declaration, with parameter list. Must be declared in header file or top of current file.

The header file declaration was discussed in a previous section

3. The procedure itself checks it's parameters

4. Performs work, and checks the error return of all calls

5. Returns with error code

Like the header file, each the procedure (or function) header must contain:

 The procedure declaration,

 A description of the procedure including requirements for input parameters

 The specification of the return value, results, and output parameters.

 Changes to any global data.

 Details of the implementation

Comments are required when the code is non-trivial. It is better to explain every line than to

argue that the code is the documentation.

49.6. BRACE PLACEMENT

The diagram earlier showed the placement of braces and indentation style. Open braces and

their closing brace are to be in the same column.

Figure 26: Typical

procedure template

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 109

49.7. LONG LINES

When you split an expression into multiple lines, split it before an operator, not after one:

if (foo_this_condition && bar > win(x, y, z)
 && remaining_condition)

Try to avoid having two operators of different precedence at the same level of indentation. For

example, don’t write this:

mode = (inmode[j] == VOIDmode
 || GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j])
 ? outmode[j] : inmode[j]);

Instead, use extra parentheses so that the indentation shows the nesting:

mode = ((inmode[j] == VOIDmode
 || (GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j])))
 ? outmode[j] : inmode[j]);

50. PREFERRED TYPES

Use proper, standardized C99 types, rather made up or ad hoc type names.

50.1. BOOLEAN TYPES LARGER THAN 1 BIT ARE BAD

Do not use BOOL. It does not work the way you think. Use of BOOL may be mandated if an

unchangeable 2nd or 3rd party code employs. If you do have to use a BOOL – never ever cast

it. A Boolean value may only be checked against false.

RATIONALE: Only “false” has a defined value in C (0). Only expressions are true or false.

When comparing a number as a Boolean, C casts the number to an expression and compares it

against zero to determine if it is false (if zero) or true (not zero). The reverse produces a non-

zero number for true expressions, and 0 for false ones. However, casting to a smaller type

does not preserve the important “non zero” property. It only keeps the lower bits sufficient

for the smaller type. For instance, FF0016 when cast to 8 bits is 008. C would consider the

former “true” and the later “false.”

50.2. CHARACTERS AND STRINGS

char should only be used to represent characters, and nothing should be assumed about its

sign. Characters might use char type, or a wider type, as appropriate.

Similarly, strings might use char const*, but strings might use a more specific type.

Text strings should be zero-terminated UTF-8 strings without embedded nulls. Unicode has

many flaws.

50.3. NUMERICAL TYPES

Variables of a numerical type are to specify

 If they may be signed, or only unsigned;

 Their representation format; and

 Their size.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 110

50.3.1 Integer numbers

Preferred number types. C99 style, with all lower cases, and ‘_t’ suffix:

Size Signed Unsigned

8 bits int8_t uint8_t

16 bits int16_t uint16_t

32 bits int32_t uint32_t

Number literals are to use a suffix to match type.

Suffixes are uppercase.

Wrong:

int I;
for (I = 1; I < 32; I++)
{
…
}

Correct:

uint8_t I;
for (I = 1U; I < 32U; I++)
{
…
}

50.3.2 Floating point numbers

Floating-point representation is expected to be used in this project. The microcontroller has a

standard implementation of IEEE floats. If you need to represent a wide dynamic range (and

floating-point representation is chosen), use IEEE 754 floats.

Comparison of floating-point values should be used sparing, be treated with care, and

regularly reviewed for correctness. Floating-point are not to be used where discrete values are

needed.

 A float (or double) must not be used as a loop counter

 Exact comparisons – equality (==) and inequality (!=) – must not be used with floats

and doubles.

 Comparisons are not transitive for floating-point values. “a <= b” and “b < a” can

both be false.

 Math operations (especially division) of non-zero numbers can create “NANs.” The software

design should have a structured approach to checking for NANS, Infinites, and Out of range

values.

Floating point should be employed (directly or indirectly) during interrupts or exceptions.

Regular review the compiler generated code to ensure that it has not employed floating points

for intermediate calculation. Not all processors preserve the floating point (sub)processors

state during these; or the processor may have been configured to not save the state. (Saving

the state can increase interrupt latency). Clear rules should be stated and enforced on the

configuration of the processor, the acceptable use of floating point and when.

Table 31: The preferred

C integer type for a

given size

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 111

See the appendix H for the limits of float precision.

50.4. POINTERS

Pointer should be to the specific type, if known. A generic type should be void*.

Pointers are to be pointers to a const target, except where they explicitly will change the

referent.

50.5. QUALIFIERS

Internal functions and variables should be declared static.

Scope Qualifiers (e.g. static, extern), should always go before the thing they modify, not

after.

50.5.1 The const qualifier

PRINCIPLE OF USE: The const qualifier should be used on all reader interfaces to data

structures and variables. Only a single writer should have the non-const access.

WHY: This helps ensure that there is a single modifier of the shared memory. It helps catch

programmer flubs, which (unintentionally) modify the memory.

PRINCIPLE OF USE: The volatile qualifier must be used to access anything modified in an ISR,

or exception handler and another ISR, exception handler or main task. Some examples of

where to use:

 When accessing CPU registers or peripheral registers

 Non-locals accessed in an ISR or SysTick handler.

 Variables/structures modified in a SysTick handler, accessed in the main execution

WHY: Without volatile, compiler has the option to delay, or reorder committing changes to

the memory (or register). The programmer's mental model is that modification occurs right

away. The compiler also has the option to reuse previously accessed values, rather than

fetching an updated value from the underlying storage.

Note, for accessing things larger than a single atomic unit (e.g. in the ARM Cortex non-32bits

aligned), further protection is needed.

The const qualifiers should always go after the thing they modify, not before.

50.5.2 The volatile qualifier

PRINCIPLE OF USE. Use it with anything that may be accessed in one context, and modified in

another context. Contexts could be interrupt handlers, OS tasks, OS timer handlers,

peripheral register access, multi CPU (or multi core) shared memory, etc.

Examples of where to use:

 When accessing CPU registers or peripheral registers

 Non-locals accessed in an ISR

 Variables/structures modified in one OS task (or thread), accessed in another

 Variables/structures modified in a OS timer handler, accessed in an OS task (or

thread)

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 112

MOTIVATION. Without volatile the compiler has the option to delay, or reorder committing

changes to the memory (or register). The programmer's mental model is that modification

occurs right away. The compiler also has the option to reuse previously accessed values,

rather than fetching an updated value from the underlying storage

EXAMPLES OF EFFECTS. The device works one without optimizations (or with a particular

optimization setting), but with optimizations, it doesn't anymore. The following pseudo code

as an example:

 set GPIO pin high

 wait 1uSec
 set GPIO pin low

This code might not work to create a blip. The compiler might toss out all of the GPIO pin

modifications, except the last one.

SEE ALSO: const, mutexes, and disabling interrupts

50.6. DATA BUFFERS AND CROSS CHECKS

50.6.1 Canary method (aka Red Zones)

Buffer over and under runs are very common form of software bug. To help detect these

bugs, the software is to place a canary around each buffer or array:

Buffer

Canary

Canary

To catch overflow

To catch underflow

50.7. MULTIDIMENSIONALS ARRAY

Do not use C’s multidimensional arrays.

RATIONALE. Dereferencing multidimensional is frequently (nearly universally)

misunderstood… and incorrect. For instance,

int array[9][20];

produces 9 arrays of 20 integer arrays. Too often, it may be misunderstood to produce 20

arrays, each holding 9 integers.

51. MACROS

There are three parts:

 Macros that act as expressions,

 Macros that act as statements (or control flow).

 Macros parameters

Figure 27: Overview of

buffers with canaries

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 113

51.1. MACROS THAT ACT AS EXPRESSIONS

PRINCIPLE OF USE: #define macros that are (or act as) an expression must be wrapped in

parenthesis.

WHY: The macro expansion can have unintended effects

51.1.1 Examples of effects

The following provides an example of a bad case:

 #define MyMacro(x) 1L + x

 MyValue = 3L * MyMacro(v);

The above will expand to:

 3L * 1L + v

Rather than the intended expansion of:

 3L * (1L + v)

51.2. MACROS THAT ACT AS STATEMENTS (OR CONTROL FLOW)

PRINCIPLE OF USE: #define macros that use complex expressions – those with statements, if-

then, whiles, etc – must be wrapped in do{}while(0)

WHY: The macro expansion can have unintended interactions with other control structures

51.2.1 Examples of effects

The following provides the first example a bad case:

#define BlipOn() if (blipPtr) *blipPtr = 1;
#define BlipOff() if (blipPtr) *blipPtr = 0;

if (myVar == 3)
 BlipOn();
else
 BlipOff();

Expands to the equivalent of

if (myVar == 3)
{

 if (blipPtr)
 {
 *blipPtr = 1;
 }
 else if (blipPtr)
 {
 *blipPtr = 0;
 }
}

Rather than the intended:

if (myVar == 3)
{
 if (blipPtr)
 {
 *blipPtr = 1;
 }
}

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 114

else
{
 if (blipPtr)
 {
 *blipPtr = 0;
 }
}

The following provides an example, where while’s can interact inappropriately with the

surrounding code:

#define WaitForSignalToGoLow() while (*input1)

 Used within code:

// Wait for signal #1 to go low and then set led on
WaitForSignalToGoLow();
*ledPtr = 1;

 This becomes

while(*input1)
{
 *ledPtr =1;
}

Rather than the intended:

while(*input1)
{
}
*ledPtr =1;

51.2.2 How to fix these problems

The “better” is that the body of these kind of #define macros can be wrapped in do{…}while(0)

statements. In the first example:

#define BlipOn() do{if (blipPtr) *blipPtr = 1;}while(0)
#define BlipOff() do{if (blipPtr) *blipPtr = 0;}while(0)

The example expands to the equivalent of

if (myVar == 3)
{
 do
 {
 if (blipPtr) *blipPtr = 1;
 }while(0);
}
else
{
 do
 {
 if (blipPtr) *blipPtr = 0;
 }while(0);
}

In the second example:

#define WaitForSignalToGoLow() do{while (*input1) ;}while(0)

The example expands to:

do
{

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 115

 while(*input1);
} while(0);
*ledPtr =1;

51.2.3 Other comments

 There are two other mitigations for the problems in the example code:

1. The body in if, else, while, for, do, etc. should be wrapped in {}.

2. Avoid using macros with statements, conditionals, loops, etc.

51.3. MACRO PARAMETERS

PRINCIPLE OF USE: The parameters to #define macros must be wrapped in parenthesis [within

the macro body]

WHY: The macro expansion can have unintended effects

EXAMPLES OF WHERE TO USE. The following example shows how the parameters are wrapped

in a parenthesis:

#define multipleAccumulation(m,b) ((m)*3L + (b))

EXAMPLES OF EFFECTS. The following example shows how the parameters, when not wrapped

in a parenthesis, can interact in unintended ways:

#define MyMacro(v) (v * 3)

local3 = MyMacro(local1 + local2);

This will expand to

local3 = local1 + local2 * 3;

Rather than the intended

local3 = (local1 + local2) * 3;

52. OPERATORS & MATH

52.1. THE PRECEDENCE OF C’S SHIFT OPERATORS

The C shift operators have a non-intuitive precedence. They should be used carefully:

1. Shift operations must be inside of a parenthesis – at least, if there are any operations

to the left or right of it.

2. The left hand and right hand operands must be in parenthesis, if they are an

expression. (That is to say, it must be "(4+2)" not "4+2".)

3. If a compiler has a flag to force precedence checking on >> as an error, it should be

used;

4. If a compiler has a flag to report possible errors on >>, it should be used.

COMMENT: Lint and many compilers, like Microsoft C’s compiler, do give a warning. The

bad news is that the error messages are pretty hard to understand:

 warning C4554: '>>' : check operator precedence for possible error; use parentheses
to clarify precedence

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 116

PRINCIPLE OF USE: The results of a computation should be as expected

EXAMPLES OF WHERE TO USE

Wrong:

 unsigned A = 4 + 2 >> 1;
 unsigned B = 2 + 1 << 1;

Correct:

 unsigned A = 4 + (2 >> 1);
 unsigned B = 2 + (1 << 1);

Correct:

 unsigned A = (4 + 2) >> 1;
 unsigned B = (2 + 1) << 1;

Note that this has a different result than the previous example of correct.

WHY & EXAMPLES OF EFFECTS. What are the computed values, for the C/C++ language, of A

and B below?

 unsigned A = 4 + 2 >> 1;
 unsigned B = 2 + 1 << 1;

The answers are 3 and 6, respectively. Many programmers would expect 5 and 4. In other

words, it is common to expect the shift operators to have more precedence than addition and

subtraction, but less than multiplication and division.

52.2. COUNTABLE AND FLOATING POINT NUMBERS ARE NOT ASSOCIATIVE NOR
DISTRIBUTIVE

One of the subtlest way to create bugs in embedded systems is with the math in C. Or, at least

to assume that it is good enough, without considering how the compiler and hardware do

math.

Arithmetic operators in C are not distributive. You need to know – and validate with – more

information, such as the actual possible range of values in the variables. To wit, the countable

numbers (int, short, unsigned and signed, etc) preserve the least significant digits under

arithmetic operation. Worse – and something few people understand – is that floating point

values (floats and doubles) only preserve the most significant digits.

52.3. THE OOPS OF INTS

In the integer family of types in C (and C-like) language values can silently overflow, leaving

you with a surprisingly small number (even a very negative one when you expect otherwise).

It helps if I give an example.

 int X = (A-B) + (D - C);

is not always the same as:

 int Y = (A + D) - (B + C);

The sum of A and D could be large enough to overflow the integer (or whatever) type. The

same for the sum of B and C. But – and the likely reason that they were written as two

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 117

subtractions before the addition – B might shrink A enough, and C might shrink D enough to

not overflow. I’ve seen it a lot in small microcontrollers that are doing control loops.

Actually, there is subtle, but frequent bug. What happens is that both the A+D and the B+C

overflow almost always at the same time, making for the difference to be pretty close. But

there are a few cases where they don’t. I haven’t found a test engineer that can design cases

to test this. Code review occasionally catches this. And nature usually triggers it only after

the code deploys (ìshipsî), and the person likely to work on the bug has no idea which formula

is correct for stability.

There isn’t a simple solution. Often I just write down a derivative of the equations so that

other people can check them. (I do make mistakes after all). And we try to use a wider type –

more bits – than we think we’ll need. And we double check. It helps.

52.4. THE OOPS OF FLOATING POINTS

Floating point preserves the most significant digits, dropping the least. That is its major

appeal – it prevents the problems you see with the integer family above. (Well, float point

can overflow too). Let’s just assume that you have a DSP, microcontroller or processor

where floating point is practical. There still is a class of bugs waiting to happen.

(Fortunately is rare if you’re just replace the equations you were using ints for earlier)

 double X = (A+B) + (D + C);

is not always the same as:

 double Y = (A + D) + (B + C);

When, say, A and B are small numbers, and C and D are big ones here is what happens. A

plus D is D, because the digits of A are insignificant and dropped. And, similarly, the digits

of B are insignificant and are dropped. But, A plus B does some up the digits, enough so that

they do add with D and C, giving a different result.

The answer, for such simple cases, is to arrange the arithmetic operations from the smallest

number to the biggest.

It all seems pretty trivial. Until you get into linear algebra, which is very heavily used in

signal processing and control systems. In those systems, the pretty matrix operations we learn

as sophomores is very unstable. Matrices get ridiculous numbers doing, say, an eigenvector.

(By ridiculous, not only the computed results not work very well, they can have not-a-number

results ñ singularities and infinites and such). One way to prevent this is to permute the

matrix before performing the operation, like that sort from smallest to largest, and the

rearrange back to the proper order when done.

And that is where I have to cop out. Numerical stability for these networks of multiplies and

divides, sums and differences, is a specialty. How to permute and all the other things you

need to do is something for good textbooks, and why you should use really, really good

libraries.

52.4.1 Use of rational number forms

For a moment, back to microcontrollers where floating point is not a practical option. Even if

you aren’t going to be doing linear algebra. What then? Use rational numbers. Basically it is

multiplying by a 100, to track the pennies in sales figures, and knowing that you are dealing

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 118

with currency in terms of pennies not dollars. (And you need to use a wide enough integer

type). It is faster than floating point on some machines.

53. CONTROL FLOW, AVOIDING COMPLEXITY

SUMMARY: Prefer techniques that simplify control flow structure. Complex control structures

tend to be harder to maintain, hard to evaluate for correctness, and more likely to have bugs.

53.1. BLOCK BODY

The flow control primitives if, else, while, for and do should be followed by a block, even if it

is an empty block. For example:

Wrong:

 while(/* do something */)
 ;

Correct:

 while(/* do something */)
 {
 }

The block following a flow control primitive should always be bounded by brackets even it

the block contains only one statement. For example:

Wrong:

 if(isOpened())
 foobar();

Correct:

 if(isOpened())
 {
 foobar();
 }

53.2. COMMA OPERATORS

Do not use the comma operator. (Exceptions may be made for very restricted use cases, and

must be reviewed.)

53.3. CONDITIONS

Do not nest if-then statements more than 2-levels.

Do not nest “switch” blocks.

53.4. LOOPS

Things to avoid with loops (as they create complete control flow)

 Do not nest “for” loops more than 2-levels.

 Too many ‘continues’ or ‘break’ statements in for loop

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 119

53.4.1 Loop conditions

Where possible, the loop conditions other than index variable should be const variables.

Wrong:

for (Idx = 0; Idx < length-2; Idx++)
{
…
}

Correct:

int const End = length-2;
for (Idx = 0; Idx < End; Idx++)
{
…
}

RATIONALE. This creates smaller, faster code, which uses fewer memory accesses and

reduces power consumption (in lower power designs).

The compiler may reload (and recalculate) the variables used in the comparison, even though

they have not changed. The compiler has to be conservative and assume that the block

(somehow) may affect the value, and so it must reload the variables with each comparison.

The exception is if it can prove (via aggressive analysis) that the block will not modify it.

53.5. EARLY RETURNS

Better to have a clear procedure than to muddle it with nesting, convoluted control flow and

return values that pass thru temporary variables.

Return errors and set the fault in the ISR or near the top of the main loop.

53.6. NO RECURSION / CALL LOOPS

Recursion – direct or indirect – is not allowed.

53.7. GOTOS

The goto statement is not allowed. However there may be instances where the use of a goto

statement may actually make the source code more understandable and robust. The software

engineer must document the use of the goto in the source code and must be prepared to defend

his/her actions rigorously in software source code reviews.

54. PROCEDURE STRUCTURE

54.1. PARAMETER LISTS

Procedures with no parameters shall be declared with parameter type void.

RATIONALE: A procedure declared without a parameter list in C, does not mean no parameters

are to be passed. It means that nothing was said about what the parameters may be. This is

ambiguous.

54.2. DO NOT USE VARARGS

Procedures shall not use variable numbers of arguments, such as varargs.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 120

RATIONALE: A variable number of arguments frequently introduce several kinds of bugs. A

procedure may erroneously access more parameters than were passed. Or a procedure may

erroneously use a different type of access than was used to pass it. There is no type checking

on passing values.

54.3. DO NOT USE A STRUCT AS A PARAMETER VALUE TYPE

Do not use a struct as a value type for parameter. Use a const pointer instead.

RATIONALE: This copies the entire struct onto the stack to pass it.

54.4. DO NOT USE A STRUCT AS A RETURN VALUE TYPE

Do not use a struct as a value type for return.

RATIONALE: This copies the entire struct onto the stack to return it.

54.5. PARAMETER CHECKING

The input parameters should be checked for acceptable value ranges. This should prior to

performing any other work.

54.6. RETURN VALUE CHECKING

Return values are to be checked. If (at this is unlikely) they are to be ignored, comment must

explain why, and use a construction like

 (void) funcCall(param1, etc); // Error doesn’t matter in this case

RATIONALE: Return codes often include error indications or resource handles. Not checking

the return values is a common source of software flaws, and incorrect error handling.

54.7. SIZE

Procedure should be small. Procedures should be small enough to fit comfortably on a screen.

RATIONALE: Big procedures are poor modularization, and undermine maintainability.

Longer procedures tend to have redundant code, something that rarely is a benefit.

54.8. INTERRUPT SERVICE ROUTINES

The interrupt service handler

 Prefix the interrupt handler with the _IRQ_ pseudo-qualifier

 The name ends with _IRQHandler (to match the CMSIS guidelines)

For convention, I am prefixing interrupt handlers in code (their declaration and definition)

with the _IRQ_ pseudo-qualifier. It is defined as nothing in the Keil environment, and as an

interrupt attribute in the GNU C environment.

An example

 IRQ void fun_IRQHandler()

 {

Example 1: IRQ handler

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 121

 .. do stuff ...

 }

There are procedures that are effectively interrupt service routines. Use the following

guidelines for these and interrupt service routines:

 Do very little in the interrupt service routine, only what is necessary. Push the rest of

the work to the main application.

 Do not use unbounded loops in an interrupt service routine

 The volatile qualifier must be used to access anything modified in the ISR and another

ISR, fault handler or main task.

 The interrupt service routine must not use mutexes or pend on IPC mechanisms.

 The interrupt service routine must not disable global interrupts.

 The interrupt service routine must not use floating point.

The ISR documentation should include:

 The function of the ISR. Common ones include:

o GPIO rising/falling edge input

o Compare / capture

o ADC interrupts

 The work of the interrupt service routine, including its flow.

 The bounds of the ISR execution time.

 The work of the access procedure – the main procedure that receives the results of the

interrupt. How does it check the values?

 When should the other contexts disable the routing?

54.9. EXCEPTION HANDLING ROUTINES

The exception handler – or microcontroller fault handler –

 The name ends with _Handler

 The volatile qualifier must be used to access anything modified in the exception

handler and another ISR or main task.

 The handler must not use floating point.

Excepting PendSV, and SysTick the handler should

 Trigger a software breakpoint, to allow debugging

 Put the outputs into a safe state

 Reset the system

55. NAMING CONVENTIONS

 Each module is named. Stick to standard to acronyms and abbreviations for the

modules identifier. See the table at the start of this document for recommended ones.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 122

 Procedures are prefixed with their module identifier

 Variables

o Parameter names begin with a lower case variable.

o local variables – no special designation

o module private variables – no special designation

o global & module exported variables are prefixed with their module identifier

 type names end with ‘_t’

 tag names – no special designation

o union – no special designation

o structure – no special designation

o enumeration – no special designation

 macro – no special designation

56. MATH, STRINGS, AND ASSEMBLY

56.1. FLOATING POINT ARITHMETIC PROHIBITIONS

Floating is not to be used in interrupt handlers, exception/fault handlers, or in the kernel.

RATIONALE: Many processors do not preserve the state of the floating point unit on interrupt

or exception. Kernels– which are preferred to execute quickly – do not preserve the state of

the floating point unit on entry to kernel space. (They do preserve it on context switch.)

56.2. HOW AND WHEN TO USE ASSEMBLY

In C, most of the math operations, such as fabs(), are procedures. This is done because a

standardization document says it should be this way, and to (presumably) make it possible to

refer the math procedure with a pointer. Many compilers include a technique to automatically

inline a procedure when possible, but defer to an external procedure if such a pointer is

necessary. Although math procedures are not commonly provided in this manner – at least in

the standard libraries – replacement functions can be made to do this. Macros can be

employed as well.

Using assembly is inherently processor specific, so it should only be created in important

blocks. The assembly must be rigorously tested against a set of known values at critical

points. The blocks that use these optimizations must be similarly tested.

56.3. STRING PROCEDURES NOT TO USE

Do not use scanf(),sprintf(), strcat(), strncat(), strcpy() or strncpy().

56.4. ASCIIZ STRING COPIES

If the length of the string is known, do not use strlcat(), strlcpy() or similar procedures. Use

the memory copy procedures instead.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 123

57. MICROCONTROLLER SPECIFIC GUIDELINES

57.1. CORTEX-M FAMILY OF MICROCONTROLLER GUIDELINES

57.1.1 Do not use floats on Cortex-M0 and Cortex-M3

The ARM Cortex-M0 thru Cortex-M3 do not support floating point (floats and doubles0. If

used, they have to be emulated in software, which is slow.

57.2. MICROCHIP PIC MICROCONTROLLER GUIDELINES

57.2.1 Using the “sleep” instruction

The “sleep” construction should almost always be:

1. The “sleep” instruction

2. A “nop” instruction (this is executed before any interrupt)

3. A conditional check – with a branch back to step 1.

4. A call for the CPU initialization

57.2.2 Use of multiplication and division

Microchip PIC microcontrollers do not include a multiplication or division unit. The

compilers are quite good, especially if only one of the terms in the multiplication is a variable.

Under some circumstances, the compiler is also able to analyze the code and translate a

formula of two or more variables into a small set of formulas of a single independent variable.

It is best to for the programmer to do this manually.

When the above technique cannot be applied, and the variables can be large in value, it may

be better to convert the value to a logarithmic form, do the operation as arithmetic, and

exponentiate the value back.

57.2.3 Interrupt Time and normal time

A procedure must not be called both at interrupt time and during “normal” execution of MCU.

Procedures store their calling parameters and local variables at a fixed location.14 If a

procedure was to be interrupted during its execution and then called by the interrupt service

routine the second call may scramble its parameters and local variables. Although there are

some ways to make a procedure “reentrant”, it is best to avoid mixing calling context for a

subroutine.

Occasionally merely avoiding the re-entrancy is not sufficient. Depending on the

circumstances, this may involve:

 Making two versions of the same subroutine, one suitable for being called at interrupt

time, and one for normal time.

 Eliminating switch()’s or a procedure, opting for an array lookup.

14 The linker works hard to identify which procedures are used (or might be used) at the same time. Only if two

procedures are not used at the same time can their parameters and local variables reuse the same memory.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 124

57.2.4 Use of Arrays instead of Switches or Pure Functions

With the Microchip MCU’s it is sometimes better to transform switch() statements and

many pure functions into a pre-computed table. Arrays have two advantages: first they are

near constant time (the upper bounds is often very near the lower bounds), and reduce issues

related to re-entrancy (see previous section) resulting from temporary variable allocation.

Try to avoid switches and functions of constructions like:

switch(x)
{
 case 0: return 3;
 case 1: return 7;
 default: return 9;
 case 3: return 13:
 …
}

Instead employ something like:

const int _Ary[]={3,7,9,13};
#define MySwitch(x) (x<0?9 : x>3?9 : _Ary[X])

58. REFERENCES AND RESOURCES

Barr, Michael, How to use the volatile keyword

http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword

Barr, Michael, Coding standard rule for use of volatile

 http://embeddedgurus.com/barr-code/2009/03/coding-standard-rule-4-use-volatile-whenever-

possible/

Boswell, Dustin; Trevor Foucher, “The Art of Readable Code,” O’Reilly Media, Inc. 2012

Ellemtel Telecommunication Systems Laboratories, “Programming in C++ Rules and

Recommendations”, Document: M 90 0118 Uen, Rev. C, 1992-April 27

http://www.doc.ic.ac.uk/lab/cplus/c++.rules/

Exida Consulting, “C/C++ Coding Standard Recommendations for IEC 61508” V1 R2 2011

Feb 23, http://exida.com/images/uploads/exida_C_C++_Coding_Standard_-_IEC61508.pdf

Gimpel Software “Reference Manual for PC-lint/FlexeLint, A Diagnostic Facility for C and

C++”, Rev. 9.00, 2009

IAR “C-STAT Static Analysis Guide”, 2015

IAR “MISRA C:1998 Reference Guide”, 2011 January

IAR “MISRA C:2004 Reference Guide”, 2011 January

Lockheed Martin Corporation, “Joint Strike Fighter, Air Vehicle, C++ Coding Standards”,

Document: 2RDU000001 Rev. C, 2005 December

Microsoft, Secure Coding Guidelines

https://docs.microsoft.com/en-us/dotnet/standard/security/secure-coding-guidelines

MISRA Limited, “MISRA-C: 2004, Guidelines for the use of the C language in critical

systems” 2004

NASA; Steven Hughes, Linda Jun, Wendy Shoan, “C++ Coding Standards and Style

Guide”, 2005

https://ntrs.nasa.gov/search.jsp?R=20080039927

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 125

Seebach, Peter “Everything you ever wanted to know about C types” 2006

Part 1: http://www.ibm.com/developerworks/library/pa-ctypes1/

Part 2: http://www.ibm.com/developerworks/power/library/pa-ctypes2/index.html

Part 3: http://www.ibm.com/developerworks/power/library/pa-ctypes3/index.html

Part 4: http://www.ibm.com/developerworks/power/library/pa-ctypes4/index.html

SEI CERT, C Coding Standard

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

Turner, Jason; C++ best practices

 https://github.com/lefticus/cppbestpractices/blob/master/00-Table_of_Contents.md

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 126

CHAPTER 17

Java Coding Style

Guide

This chapter is a Java specific guide on coding style. This guide describes:

 Suggestions on iterating over `collections’

 Improvements on handling synchronization

 How to improve GUI response time

 How to manage constants

59. BASICS

59.1. SUGGESTION ON LOOP ITERATION

The following two loops will exhibit different performance, especially as the arrays get longer

 for (int i = 0; i < MyArray.size(); i++);

 int L = MyArray.size();
 for (int i = 0; i < L; i++);

The second form of the loop will perform better since the costs of the size() method

invocation will not be done L times; this is also known as elimination of loop invariants.

(Note: size() has different overhead for different collections; some collections do

synchronization or scanning during invocation).

60. LOCKS AND SYNCHRONIZATION

60.1. AVOID SYNCHRONIZED THREAD RUN() METHODS.

The following code will not work as expected; that is another thread cannot tell the thread

below to stop:

private boolean iv_runnable=true;
public void synchronized setRunnable (boolean runnable)
{
 iv_runnable = runnable;
}

public void synchronize run()
{
 while (iv_runnable)
 {

Example 1: Two

different loops

Example 2: Thread

stopping problems

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 127

 }
}

Discussion: The thread (I'll call it A) acquires its own mutex; if any second wants to tell A to

stop, it must acquire the mutex via setRunnable(). Since A is already locked, the second

thread can never acquire the mutex, never modify the instance variable.

60.2. CONSIDER THE VOLATILE KEYWORD FOR FLAGS READ IN ONE THREAD AND
SET IN ANOTHER.

The following code may not always work as expected; that is another thread setting

iv_runnable to false may not cause the thread to stop:

public boolean iv_runnable=true;
...
public void run()
{
 while (iv_runnable);
}

This one is hard to track down in debugging. What can happen is that the while() loop gets

the value once for iv_runnable, and any updates don't check field. This is not a violation of

the language in any way. If the while loop is sufficiently complex, the compiler tends not to

cache the value for iv_runnable, and fetches the value. One solution is to apply the 'volatile'

keyword to iv_runnable; the second is to use lots of synchronize calls. The former in some

cases is much faster. The second option can be slower if there is any lock contention. Sun's

own recommendation for the volatile keyword is:

“The volatile modifier requests the Java VM to always access the shared copy of the

variable so the its most current value is always read. If two or more threads access a

member variable, AND one or more threads might change that variable's value, AND

ALL of the threads do not use synchronization (methods or blocks) to read and/or

write the value, then that member variable must be declared volatile to ensure all

threads see the changed value”

60.3. RECOMMENDATIONS ON AVOIDING CERTAIN SYNCHRONIZE CONSTRUCTS:

Example: The following probably does not provide the safety expected.

 public ArrayList getMyArray()
 {
 synchronized (iv_myarray)
 {
 return iv_myarray;
 }
 }

I'll ignore the obvious potential that iv_myarray could be null. There are two probable

intentions of the above code. The first intention is to return a valid array reference for the

iv_myarray field – even another thread assigns a different array to iv_myarray during the call.

However, the object is not being locked to prevent this inconsistency. The better way to

achieve this objective is:

 public synchronized ArrayList getMyArray()
 {
 return iv_myarray;
 }

Example 3: volatile

keyword

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 128

The second intention may be to provide the caller with the array, but not have it change while

the caller uses it. In this case, the goal may not be totally achievable. At best, the caller

should synchronize on the returned array, accepting that the array may have been altered just

before the synchronization succeeded.

There is a similar problem with the following idioms:

synchronized (iv_myarray)
{
 iv_myarray = new ArrayList();
}

This should probably be:

synchronized (this)
{
 iv_myarray = new ArrayList();
}

In the worst case, synchronizing on the instance variables instead of the object can cause dead

lock. For example, the following fragment would eventually deadlock:

Thread1:

 public Object getObj1()
 {
 synchronized (iv_obj1)
 {
 return iv_obj1;
 }
 }

 public void run()
 {
 ...
 synchronized (iv_obj1)
 {
 iv_obj1 = Thread2.getObj2();
 }
 ...
 }

Thread2:

 public Object getObj2()
 {
 synchronized (iv_obj2)
 {
 return iv_obj2;
 }
 }

 public void run()
 {
 ...
 synchronized (iv_obj2)
 {
 synchronized (iv_obj2)
 {
 iv_obj2 = Thread2.getObj1();
 }
 ...
 }

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 129

One way the deadlock would happen is that

1. Thread 1 locks iv_obj1 (in the run())

2. Thread 2 locks iv_obj2 (in the run())

3. Thread 1 calls getObj2(), which blocks waiting to get the mutex for iv_obj2

4. Thread 2 calls getObj1(), which blocks waiting to get the mutex for iv_obj1.

61. TYPE CONVERSION

The JDK is very inefficient at type conversion, creating a large number of temporary objects.

In the `normal' case, that is not a problem. The problem is where there is a large number of

conversions in a time sensitive matter. I'll explain my skepticism about the JDK's behaviour

below, and why I created custom int/long/double/float to string conversion routines.

61.1. WORST CASE AREAS

The worst-case behaviour will always be in big tables. The Log table is pretty good example.

A log table may easily have 25000 rows * 4 columns, or about 105 cells. Scrolling up once,

the getValueAt() will be called 105*Number of Rows on screen times. This is means about

107 times. (Note: right now the log table is limited to a few thousand rows because it is slow

for several reasons, some of which have been addressed, but not committed). The

getValueAt() will typically execute the following code path:

 JLabel tmp = new JLabel();
 tmp.setText("");
 tmp.setText(""+someIntValue+"/"+someIntValue);

This is very, very slow. First, the JLabel is created (and everything else it creates). And the

string concatenation creates many temporary objects. And the intValue.toString() method

creates half a dozen temporary objects. (floatValue.toString() and doubleValue.toString() are

much worse, by about an order of magnitude). In the end getValueAt() typically creates 10 to

20 temporary objects. I'll skip for now the JLabel – someone else can bring the issue up in

more detail about what has been looked at regarding the JLabel.

In a case where the implicit string constructor was used, it was used for only ONE column, so

scrolling up the table created 106 temporary objects, each object being an average of 55 bytes

in length. The performance penalties from the new() call alone are bad. Worse, the garbage

collector had a huge burden, because it had to garbage collect 1 million objects, a total of

several megabytes. Even worse, the garbage collector is triggered multiple times during the

rendering, causing rendering slow triggered multiple times during the rendering, causing

rendering slowdowns.

Other common scalar convections is roughly of the form

 String.valueOf(intValue)
 ""+intValue;

61.2. MEASURING THE COST OF CHURN

It is easy to measure the cost of object churn. You will need to get the jar file, and

1. use a command line like:

 java -cp MyJar.jar -Xms1m -Xmx4m -verbose:gc com.MyClass Arg1 … Argn

or

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 130

 java -cp MyJar.jar -Xms1m -Xmx4m -verbose:gc com.MyClass Arg1 … Argn

2. Then go to a series of screens under test, and run the scroll bar up and down. Resize

the window several times (use the grabber on the bottom)

3. Note the CPU time, in seconds, that the application used, and quit the application.

4. The console window will have a long list of Garbage Collector times. (The right most

column). Sum these times up.

5. Calculate the percentage of time wasted in the garbage collector =

100*(GCTime/CPUTime). It should be less than 10%. If it is more than 15%, it is a

serious problem.

Of course, you need to spend a lot of time doing #2. This methodology does have some

measurement limits, too. If someone wants to cheat to get a particular target number in step

5, here's how:

 To make the application & garbage collector look evil, skip step 2.

The only garbage collection times you’ll see are the costs associated with load java, AWT,

SWING, etc. These costs are huge and one time, not the recurring costs.

To make the application look golden, change -Xmx4m to -Xmx800m or some such huge

number. Skipping step 2 is optional. The -Xmx option manually controls how often the

garbage collection runs (usually). By setting it so large, the application is allowed to create a

huge amount of temporary objects, but never report it to you, since the garbage collector is

disabled.

Don't get tempted to set -Xmx to too small a number. The application will stop running since

there is a certain (large) amount of memory the application just needs to run. This number

can only really be reduced thru larger design changes, which are another topic.

61.3. REPLACEMENT METHODS

int2String (and their ilk) are intended to be much more efficient. It creates one object per call,

the resulting string. Its main drawback is that it employs a single shared preallocated

character buffer, that has to be synchronized. In this case, nearly all of the calls happen in a

single thread, so the synchronization time bounds to an uncontested mutex acquisition (a few

multiples of an integer op on the 1.4 JVM). If this character changes, then the

synchronization should be struck, and the buffers should be dynamically created.

One other peculiarity about their design – the JDK seems to not know ahead of time how long

the string will be before it converts the scalar. This causes it to use many concatenations (and

hence the temporary objects). int2String uses the log method of determining the length (along

with a sign check).

For an alternate implementation using StringBuffers, and various other performance

comparisons, anyone interested might like to see pages 135 to 150 of [Shirazi 2003].

62. GUI RELATED CODE

Below are some suggestions to make a GUI seem more responsive; they aren't necessarily

applicable to anything else.

The AWT/Swing thread runs a loop pretty much like

Shirazi, Jack “Java

Performance Tuning,”

2nd Ed, O'Reilly 2003

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 131

1. Check the Event Queue, and process those events

2. Check the repaint list, and call paint() for those items

3. Check the timer queue, and SwingWorker queues; put those items into the Event

Queue

In order for a GUI to be fast, any Event Listener, Timer, or Repaint helper should be very

very fast, in all cases. (Conversely, if they are not, the GUI may appear to be slow,

unresponsive, or stutter).

The AWT/Swing Run-loop may call any of the following methods, so they should be as fast

as possible:

actionPerformed
changedUpdate
getTableCellRendererComponent
getValueAt
getColumnName
getColumnClass
itemStateChanged
keyPressed
keyReleased
keyTyped
mouseClicked
mouseEntered
mouseExited
mousePressed
mouseReleased
paintComponent
removeUpdate
treeExpanded
treeCollapsed
valueChanged
windowActivated
windowClosed
windowClosing
windowDeactivated
windowDeiconified
windowIconified
windowOpened
insertUpdate

62.1. IMPLEMENTATION OF THESE METHODS

By fast, each implementation of these methods:

1. Must not call anything that blocks (or call anything that calls anything that blocks,

etc.). That is, they must not call:

 Any synchronized methods

 Any System.out. methods

 Throw an exception

 Any IO writes or reads

 Any while(true) loops

 Any RMI function

 Any JMS function.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 132

If a method blocks – perhaps because it is waiting on RMI, or waiting on

synchronization blockage (which happen even with a `new') – the whole display loops

grinds to a halt.

2. Must not call anything that is not O(1) time, include binary search, non-small loops,

or get() on JDK's hash maps or hash tables. Instead use arrays, switch statements, and

direct field access.

3. Avoid creating temporary objects in these routines. It may be more responsive for the

critical methods to access arrays or fields. The objects populating these arrays or

fields can be created at a more 'idle' time when temporary objects don't impact the

display loop. Earlier we discussed methods for reducing temporary objects, and how

to measure their impact.

4. Avoid calling repaint() for a GUI component unless its value has actually changed.

For example, the temperature gauge can be modified so that the only call path to

repaint() looks like:

 public void setCurrentTemp(int X)
 {
 if (iv_enabled && X==currentTemp) return;
 currentTemp=X;
 repaint();
 }

5. Avoid calling fireTableDataChanged() if the fireTableCellUpdated() can be called

instead.

6. Like 4, avoid calling fireTableCellUpdate() unless the value of the cell has changed:

 if (IOs[row] != newValeForRow)
 {
 Ios [row] = newValueForRow;
 IOsString[row] = int2String(newValueForRow);
 fireTableCellUpdated(row, col);
 }

7. Consider a hysteresis timer. If it is likely that a large number of

fireTableDataChanged() calls will be issued, consider starting a timer, and have it call

the fireTabledDataChanged() after (say) 100 ms. In the code where

fireTableDataChanged() would normally be placed, insert a check for the timer, and

start one if it is not already started. This reduces the load on the repaint() loop, and

reduces some of the flickering the user would otherwise see. For example, when

pulling down several 10,000's logs in an event driven GUI, each received log could

trigger a fireTableDataChanged(), but that would make the GUI slow. Instead, if a

single-shot timer doesn't exist (or expired), one is created to call

fireTableDataChanged() several hundred ms from now.

8. Consider reusing objects. To use a more common example, the getValueAt() will

typically execute the following code path:

 JLabel tmp = new JLabel();
 tmp.setText(someValue);

This is slow (very slow if there is lots of string concatenation and temporary objects to create

someValue). The JLabel is created (and everything else it creates). It is then return to the

caller, which uses it just once to paint the value on the screen, and then dereferences it. Of

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 133

course, this is not true of all AWT/Swing callers, but it is true for many tables. It can be

better to create one JLabel() for the Table Model instance, and reset its contents each time

getValueAt() is called. (The contents have to be reset so that some table cells don't inherit

bogus text, icons, colors, etc. from other cells). This reduces the number of temporary objects

by the number of cells displayed in the table, since a JLabel would be otherwise created once

every time getValueAt() is called, and getValueAt() can be called for every displayable cell

(and is when the user is scrolling).

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 134

CHAPTER 18

Code Inspections and

Reviews

This chapter discusses checking the source code for good workmanship, thru inspections &

reviews:

 When a review should occur

 Who should review

 How to inspect and review

 What to report, outcomes

Note: There is no universally accepted and adopted approach to peer review. Each work

enviornment has its own norms for peer review. These are checklists and templates that I

have constructed over years. (I’ve found little available elsewhere.)

63. WHEN TO REVIEW

A review might occur when

 There are proposed changes to a stable codebase,

 When closing out a bug

 When a project reaches a control gate

64. WHO SHOULD REVIEW

What kind of person should participate in a review?

 The reviewers should have experience with the class of hardware being used. In typical

embedded development today, they should be experienced with 32-bit embedded

software, and Cortex-M microcontrollers.

 In some cases, the reviews will require someone with experience in the particular

microcontroller family.

 Reviewers should have a lot experience with the way software, microcontrollers, and

hardware can go wrong.

 Some of the reviewers should be independent; they should not be working on this

artifact.

 The owner of the subsystem or other area of code

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 135

Others may participate in a review, of course, but they are optional. This includes:

 The author need not attend, as the code should stand on its own

 People interested

 People being brought into the team

 People with little experience in this area of engineering.

The later are not expected to contribute specific technical comments, but they may learn the

system, the performance of reviews, and provide feedback on the understandability &

maintainability of this foreign code.

65. HOW TO INSPECT AND REVIEW CODE

How can reviews be performed? One may apply any of the well-documented review and

inspection techniques that can be found in the references. Common review methods are:

 The reviewers can meet and perform a formal inspection: e.g. with presentation, roles,

and sign-offs.

 Some reviews can be reviewed at each person’s desk. Often a tool such as

CodeCollaborator (https://smartbear.com/product/collaborator/overview/) is helpful

This applies to general reviews, as well as specialized inspections.

 General reviews emphasize the workmanship of the code – maintainability (is it clear

enough for others to work on in the future), basic quality-of-construction, and

appropriateness.

 Specialized inspections are used to focus attention on specific areas that may be esoteric

or require particular technical skill to judge.

The reviews take, as inputs:

 Style and other workmanship guides,

 Evaluation guides and rubrics

 The top level and detailed designs

 Supporting data sheets, application notes, vendor documentation

The reviewers should be provided a summary of areas to look at. The reviewers would

examine these areas (and inputs), looking for such things as defects that can create bugs, or

constructions that can be difficult to maintain.

65.1. SPECIALIZED INSPECTIONS

Specialized inspections are used to focus attention and effort. These delve into key areas and

slices of code to answer narrow questions. Typical questions may be:

 Is the processor set up properly – are the clocks / oscillators turned on properly, etc?

 Are the watchdog timers (or similar protective timers) set up properly and detect enough

unresponsiveness in the code?

 Is the source code that is very intimately coupled with microcontroller / hardware

specifics done correctly?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 136

 Do the critical and supervisory sections of software only perform their intended functions

and do not result in a risk?

 Consistency in the data and control flows across interfaces.

 Correctness and completeness with respect to the safety requirements

 Coverage of each branching condition and function evaluation that addresses and

remediates risks associated with abnormal operations, or involves a risk associated with

its normal operation

See also

 Chapter 19 checklists

 Appendix I for the Code Complete Code Review check lists,

 Appendix J for a rubric to apply in the reviews

 Appendix D for Bug classification

66. THE OUTCOMES OF A CODE REVIEW

Reviewers comment on the aspect of the code quality:

 Detailed design

 Functionality

 Complexity

 Testing

 Naming

 Comment Quality

 Coding style

 Maintainability

 Understanding/comprehension.

The results of a review ideally should:

 Be actionable and easy to fix

 Produce few false positives

 Emphasize / focus on where there can be improvements with significant impact on code

quality.

The results of a review might be realized one or more of the following ways:

 Gathering the results in a document (or spreadsheet) in a tabular fashion

 Annotate the source code, e.g. using a tool such as Code Collaborator

 Fill out bug reports

 Provide written feedback

66.1. A TIP ON FEEDBACK

When you are providing feedback, consider:

 Should it be said? Is the comment necessary, kind, true and helpful?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 137

 Does it have the right emphasis? The emphasis of the feedback (especially critiques)

should be proportionate. Scale using a rubric; some are included in Appendix F and

Appendix I.

 How should the comment be said? Specific, actionable, measureable or distinct (that it

has an effect when performed; can tell that it was done), timely (can be done

immediately, or has time bounds)

 What is the person try to accomplish? {with the thing they are getting feedback on?}

66.2. REWORK CODE AFTER A REVIEW

The rework, in most cases, can be done by a second person or the primary developer.

67. REFERENCES AND RESOURCES

IEEE Std 1028-2008 - IEEE Standard for Software Reviews and Audits

The standard provides minimum acceptable requirements for systematic reviews:

Wiegers, Karl Peer Reviews in Software: A Practical Guide 2001, Addison-Wesley

Professional

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 138

CHAPTER 19

Code Inspection &

Reviews Checklists

This chapter summarizes the code review checklists

 The types of reviews to perform checklist

 Basic review checklist

 Software revision control setup checklist

 Software Release checklist

68. REVIEWS

These are the kinds of reviews to perform

 Basic reviews

 Microcontroller / Hardware Initialization review

 Error returns review

 Fault handling review

 Memory/Storage handling review

 Prioritization review

 Concurrency review

 Critical function / Supervisor review

 Low power mode review

 Numerical processing review

 Signal processing review

 Timing review

69. BASIC REVIEW CHECKLIST

Before a review proceeds:

 Code has clean-result when checked with analysis tools – MISRA C rules, lint,

compiling with extensive warning checks enabled.

See also

 Appendix I for the Code Complete Code Review check lists

 Appendix J for a rubric to apply in the reviews

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 139

69.1. BASIC STYLE

Layout checks:

 Commenting: there are comments at the top of the file, the start of each function, and

with all the code that needs an explanation

 Does the source code conform to the coding style guidelines & other conventions? These

cover location of braces, variable and function names, line length, indentations,

formatting, and comments.

 Code naming, indentation, and other style elements are applied consistently (esp in areas

beyond the style guidelines)

Names:

 Are the file names well chosen?

 Are the files in the correct location in the file tree? In the repository?

 Are the names – for variables, files, procedures, and other objects – clear and well

chosen? Do the names convey their intent? Are they relevant to their functionality?

 Do they use a good group / naming convention (e.g. related items should be grouped by

name)

 Is the name format consistent?

 Names only employ alphanumeric and underscore characters?

 Are there typos in the names?

Values and operators:

 Parentheses used to avoid operator precedence confusion

 Are const and inline instead of #define?

 Is conditional compilation avoided? Can it be reduced?

 Avoid use of magic numbers (constant values embedded in code)

 Use strong typing (includes: sized types, structs for coupled data, const)

Control flow checks:

 Are all inputs checked for the correct type, length, format, range?

 Are invalid parameter values handled?

 Are variables initialized at definition?

 Are output values checked and defined?

 Are NULL pointers, empty strings, other boundary conditions (for results) handled?

69.2. BASIC FUNCTIONALITY

 Does the code match the detailed design (correct functionality)?

 Does the code work? Does it perform its intended function? Is the logic is correct? etc.

 Is the update/check of state correct? Any incorrect updates or checks?

 Is the wrong algorithm/assumption/implementation used?

 Is the work performed in the correct order?

 Check that proper types are employed

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 140

69.3. SCOPING

 Proper modularity, module size, use of .h files and #includes

 Is the code as modular as possible?

 Minimum scope for all functions and variables; e.g. few globals?

 Can any global variables be replaced?

 Are there unused or redundant variables? Macros?

 Do the variables have an appropriate storage class (and scope) – static, extern, stack?

 The register storage class is not used?

69.4. CONTROL FLOW

 There is forward progression: loops are bounded, delays are bounded, etc.

 Do loops have a set length and correct termination conditions?

 Loop entry and exit conditions correct; minimum continue/break complexity

 Conditionals should be minimally nested (generally only one or two deep)

 Conditional expressions evaluate to a boolean value

 Conditional expressions do not assignments, or side-effects

 All switch statements have a default clause, with error return

 Do the work events/messages get submitted backwards in the IO queue network? Is

there a potential infinite work loop?

69.5. DOCUMENTATION

 Are all procedures/functions/variables/etc commented?

 Do they properly describe the intent of the code?

 Is any unusual behavior or edge-case handling described?

 Are all parameters of the procedure are documented?

 Is the use and function of third-party libraries documented?

 Are data structures and units of measurement explained?

 Is there any incomplete code? If so, should it be removed or flagged with a suitable

marker like ‘TODO’?

69.6. MAINTAINABILITY AND UNDERSTANDABILITY

 Is all the code easily understood? Is the code simple, obvious, and easy to review?

 Is the code unnecessarily, ornate or complex? Are there more intermediate variables

than necessary? Is the control flow overly complex? (Look for variables that hold the

return value far from the return)

 Code complexity measure is low (below set threshold)?

 Is there any redundant or duplicate code?

 Is there any dead or commented out code?

 Can any of the code be replaced with library or built-in functions?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 141

 Any changes that would improve readability, simplify structure, and utilize cleaner

models?

 Does the code have too many dependencies?

69.7. TESTABILITY

 Is the code testable?

69.8. PERFORMANCE

 Are there obvious optimizations that will improve performance?

 Can any of the code be replaced with library functions built for performance?

Performance changes to improve the implementations:

 Can the data access be improved? E.g. caching and work avoidance.

 Can the I/O scheduling be improved? E.g. batching of writes, opportunistic read ahead

and avoiding unnecessary synchronous I/O.

 Are there better / faster data structures for in-memory and secondary storage?

 Are there other performance improve techniques that can be applied?

Synchronization-based performance improvements:

 Are the synchronization methods inefficient?

 Can a pair of unnecessary locks be removed?

 Can finer-grained locking be employed?

 Can write locks be replaced with read/write locks?

69.9. OTHER

 Can any logging or debugging code be removed?

 Are there regular checks of operating conditions?

 Data structure ordering is efficient for access pattern? Alignment and padding will not

be an issue?

 Do the variables have the appropriate qualifiers? volatile? const?

70. SPECIALIZED REVIEW CHECKLISTS

This section provides checklists for specialized, focused reviews:

 Microcontroller / Hardware Initialization review

 Error returns review

 Fault handling review

 Memory/Storage handling review

 Prioritization review

 Concurrency review

 Critical function / Supervisor review

 Low power mode review

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 142

 Numerical processing review

 Signal processing review

 Timing review

Note: these can be used in conjunction with the detailed design review checklists. If the

detailed design review covered these, the review is much faster; often there is no detailed

design review.

See also

 Chapter 13 Design review check lists

 Appendix I for the Code Complete Code Review check lists

 Appendix J for a rubric to apply in the reviews

70.1. MICROCONTROLLER / HARDWARE INITIALIZATION REVIEW CHECKLIST

Looks for bugs in the initialization and configuration of the hardware:

 Check the initialization order

 Are the clocks set correctly? i.e., no over-clocking at the voltage and/or temperature

 Does the code handle oscillator (or clock) startup failures?

 Does the code check the initial clock rate? Properly?

 Check that the source clock, prescalar, divisor, and PLL configuration are setup

correctly.

 Check the peripherals are configured and enabled properly

 Is the software using the right bus for the peripheral?

 Check that the proper clock source is enabled for the peripheral.

 Check that the peripheral is not over-clocked for the power source and temperature

range. (Some peripherals have tighter constraints)

 Check that the correct power source / enable is used in setting up the peripheral

 DMA channel assignments match hardware function constraints

 GPIO mode, direction (in/out), biasing (pull-ups, pull-downs) are configured correctly.

 Power supervisor / brown-out detect is configured properly.

 Lock bits are set on peripherals – GPIO, timer, etc.

 The microcontroller’s errata has read and applied?

70.2. ERROR RESULTS REVIEW CHECKLIST

A lack of checking results, or incorrectly handling the results, is a frequent source of critical

failures. Look for bugs in the handling (or lack thereof) of return values and error results:

 Check that NULL pointers, empty strings, other result boundary conditions are handled

 Error handling for function returns is appropriate

 Does it check the correct (or wrong) set of error codes?

 Is there missing or incorrect error code handling?

 Where third-party utilities are used, are returning errors being caught?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 143

70.3. FAULT HANDLING (WITHIN PROCEDURES) REVIEW CHECKLIST

Defects in fault handling is a frequent source of critical failures. Look for bugs on failure

paths.

 Check that the semantics for the failure are handled correctly. Is metadata updated

properly? Are the resources freed?

 Check that release allocated resources

 Check that the locks/semaphores/mutexes are released correctly

 Look for null-pointer dereferences, and code that incorrectly assume the pointers are still

valid after failure

 Check that it returns correct error code – i.e. not the wrong error code

70.4. MEMORY HANDLING REVIEW CHECKLIST

Has the memory been partitioned in a manner suitable for Class B? i.e., does the software

isolate and check the regions?

 Are the potential buffer overflows?

 Are there good practices to prevent buffer overflows – bound checking, avoid unsafe

string operations?

 Dereferences of free’d memory

 Dereferences of NULL pointer

 Dereferences of undefined pointer value

 incorrect handling of memory objects

 didn’t release memory / resource

 Free’d memory resource twice

 Parity checking enabled

 Redundant memory is segregated and stored in a different format

 Check that the data access will be performant; that an slow approach is not employed

unnecessarily

 Memory pages write protected

 Memory protection unit is enabled? Access control is configured properly?

Non-volatile storage:

 Doesn't overwrite or erase the non-volatile data in use

 Doesn't use a “replacement” strategy of writing the most recent/highest good-copy of the

data.

 Accounts for loss of power, reset, timeout, etc during read/write operation

 Checks supply voltage before erasing/writing non-volatile memory

 Performs read back after write

 Checks that software detects bit-flip and other loss of data integrity (e.g. employs CRC)

 Check that data recovery methods will work, if employed

 Check that the correct version of stored data will be employed (such as on restart)

 Interrupts and exceptions are disabled during program memory is modified.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 144

 Cache/instruction pipeline is flushed (as appropriate) after program memory

modification.

 Check that the data access will be performant; that an slow approach is not employed

unnecessarily

 Check that the data access will not interfere with the other timing.

70.5. PRIORITIZATION REVIEW CHECKLIST

 Rate Monotonic Analysis (RMA) and dead-line analysis performed

 Task/thread prioritization based on the analysis

 Mutex prioritization based on the analysis

 Events, Messages and IO queue prioritization based on the analysis

 Interrupt prioritization are based on the analysis

 DMA channel prioritization are based on the analysis

 CAN message priorities are based on the analysis

 ADC priorities are based on the analysis

 Bluetooth LE notification/indication priorities are based on the analysis

70.6. CONCURRENCY REVIEW CHECKLIST

 Are there any missing locks, and IPC mechanisms?

 Check acquisition order of locks/semaphores/mutexes – is the order wrong or potential

for dead locks?

 Check for violations of access atomicity: missing volatile keyword, assuming that

read/write is atomic when it is not, missing write barriers, etc.

 Check order of multiple accesses

 Check for missing release of lock/semaphore/mutex

 Check for unlocking lock / posting semaphore/mutex multiple times

 Look for forgotten unlock locks/semaphores/mutexes

 Are there ways to reduce the blocking time?

70.7. CRITICAL FUNCTION / SUPERVISOR REVIEW CHECKLIST

Check that critical functions (e.g. Class B and C of 60730) are suitably crafted:

 Is the code for the critical functions in a limited (and small) number of software

modules?

 Is the code for the critical functions small?

 Is the code complexity low? Are there no branches – or only simple branches?

 Are the possible paths thru the critical function code small, and simple?

 Is the relation between the input and output parameters simple? Or at least, simple as

possible?

 Are complex calculations used? They should not be. Especially as the basis of control

flow, such as branches and loops.

 Power supervisor / brown-out detect is configured properly.

 Checks the clock functionality and rates

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 145

 Watchdog timer is employed (and correctly)

 Is the watchdog reset only after all protected software elements are shown to be live?

An example of a bad design would be to reset the watchdog in the idle lop

 Check that the watchdog timer is not disabled anywhere in the code

 Is the external watchdog handshake done only after all of the software has checked

liveliness? A bad approach is to use a PWM for the handshake, as a PWM can continue

while software has locked up or is held in reset.

 Handles interrupt overload conditions

 Critical program memory is protected from writes. How: Hardware level? Software?

 Program memory CRC check.

 Stack overflowing checking

 Critical data is separated, checked, protected.

 Cross checks values

 Performs read backs of sent values

 Independent checks / reciprocal comparisons to verify that data was exchanged

correctly.

 Periodic self-tests or functional tests

 Are there possible partition violations from data handling errors, control errors, timing

errors, or other misuse of resources?

 That the software can meet the scheduling requirements and the timing constraints

specified.

 Do the fail-safe and fail-operational procedures bring the product to the defined

acceptable state?

70.8. LOW POWER MODE REVIEW CHECKLIST

Power configuration for low power modes:

 Does it switch to low clock source(s) and disable the others?

 Are the IOs set to a low direction, mode (e.g. analog in?) and bias (e.g. pull-down, pull-

up)?

 Are peripherals disabled where they can be?

 Are peripheral clocks disabled where they can be?

 Are the proper flushes, barriers, etc. executed before going into a sleep state?

 Is the proper low-power instruction used?

 Is there a race condition in going into low-power state and not being able to sleep or

wake?

 Check coming out of low power mode restores the operating state

70.9. NUMERICAL PROCESSING REVIEW CHECKLIST

Check for correct arithmetic, and other numerical operations:

 Check that division by zero, other boundary conditions are handled

 Is lazy context save of floating point state (LPSEN) disabled on ARM Cortex-M4s?

(See ARM Cortex-M4 errata, id 776924)

 Floating point is not used in interrupts, exception handlers, or the kernel

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 146

 Check that floating point equality is used properly – i.e., something other than ==. Does

it handle denormals, non-zeros, NaNs, INFS and so on?

 Are the equations ill-conditioned?

 Is the method of calculation slow?

 Check that denormals, NaNs, INFs, truncation, round off that may result from

calculations are properly handled.

 Are the use of rounding and truncation proper?

 Would use of fixed point be more appropriate?

 Is simple summation or Euler integration employed? This is most certainly lower

quality than employing Simpsons rule, or Runge-Kutta.

70.10. SIGNAL PROCESSING REVIEW CHECKLIST

 Are the ADCs over-clocked for the signal chain? Check that the sample time and input

impedance are aligned.

 Is the sample time sufficient to measure the signal?

 Is there a potential time variation (e.g. jitter) in the sampling? The code should be

implemented for low jitter. For instance, a design that uses a DMA ring-buffer has low

variation, while run-loop or interrupt trigger can have a great deal of time variation.

 Is oversampling applied? Is the oversampling done in a proper way?

 Is simple summation or Euler integration employed? This is most certainly lower

quality than employing Simpsons rule, or Runge-Kutta.

 Is the proper form of the filter used? Is an unstable form used?

 Does it have ringing, feedback, self-induced oscillation or other noise?

 Does handle potential saturation, overflows?

 Efficient, fast implementation?

 Is there good instruction locality on the kernel(s)?

 Is there good data locality on the kernel(s)?

 Is the signal processing unnecessarily complex?

 Check the step response of the signal processing

70.11. TIMING REVIEW CHECKLIST

 Does the timing meet the documented design and requirements?

 Are there possible timing violations?

 Are there race conditions?

 Is enough time given to let a signal/action/etc propagate before the next step is taken?

 Is there a potential for hidden delays (e.g. interrupt, task switch) that would violate the

timing?

 From the time the trigger is made to the action, what worst case round-trip? Include

interrupts, task switching, interrupts being disabled, etc. Is this timing acceptable?

 The length of operations, in the worst case, do not cause servicing the watchdog timer to

be missed.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 147

Appendices

 ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss of terms,

abbreviations, and acronyms.

 PRODUCT STANDARDS. This appendix provides supplemental information on standards

and how product standards are organized

 BUG REPORTING TEMPLATE. This appendix provides a template (and guidelines) for

reporting bugs

 TYPES OF DEFECTS. This appendix provides a classification of different kinds of software

defects that are typically encountered.

 CODE COMPLETE REQUIREMENTS REVIEW CHECKLISTS. This appendix reproduces

checklists from Code Complete, 2nd Ed that are relevant to requirements reviews.

 CODE COMPLETE DESIGN REVIEW CHECKLISTS. This appendix reproduces checklists from

Code Complete, 2nd Ed that are relevant to design reviews.

 DESIGN REVIEW RUBRIC. This appendix provides rubrics relevant in assessing the design

and its documentation.

 FLOATING POINT PRECISION. This appendix recaps the limits of floating point precision.

 CODE COMPLETE CODE REVIEW CHECKLISTS. This appendix reproduces checklists from

Code Complete, 2nd Ed that are relevant to code reviews.

 SOFTWARE REVIEW RUBRIC. This appendix provides rubrics relevant in assessing

software workmanship.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 148

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 149

APPENDIX A

Abbreviations,

Acronyms, Glossary

Abbreviation
/ Acronym

Phrase

ADC analog to digital converter

ANSI American National Standards Institute

ARM Advanced RISC Machines

BNF Backus-Naur Form

BSP board support package

API application programming interface.

CAN controller-area network

CRC cyclic redundancy check

DAC digital to analog converter

DMA direct memory access

EN European Norms

GPIO general purpose IO

Hz Hertz; 1 cycle/second

I2C inter-IC communication; a type of serial interface

IEC International Electrotechnical Commission

IPC interprocess communication

IRQ Interrupt request

ISO International Organization for Standardization

ISR Interrupt service routine

JTAG Joint Test Action Group

MCU microcontroller (unit)

MPU memory protection unit

NMI non-maskable interrupt

NVIC nested vector interrupt controller

NVRAM non-volatile RAM

PWM pulse width modulator

Table 32: Common

acronyms and

abbreviations

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 150

QMS quality management system

RAM random access memory; aka data memory

RISC reduced instruction set computer

RTOS real time operating system

SDK software development kit

SDLC software development lifecycle

SPI serial peripheral interface

SRAM static RAM

SWD single wire debug

TBD to be determined

TMR timer

UART universal asynchronous receiver/transmitter

WDT watchdog timer

Phrase Description

abnormal operating
condition

A condition when an operating variable has a value outside of its normal operating

limits.15 See also fault, normal operating condition.

allowed operating
condition

A condition when each of the operating variables (flow, pressure, temperature,

voltage, etc.) has a value within of its respective normal operating limits, and so

the “system will satisfy a set of operational requirements” [IEC 62845 3.10]. See

also abnormal operating condition, fault.

analog to digital converter An analog to digital converter measures a voltage signal, producing a digital value.

application logic Application logic is a set of rules (implemented in software, or hardware) that are

specific to the product.

Backus-Naur form A notation used to describe the admissible calling sequences for an interface.

Traditionally this form is used to define the syntax of a language.

bitband An ARM Cortex-M mechanism that allows a pointer to a bit.

black-box testing Testing technique focusing on testing functional requirements (and other

specifications) with no examination of the internal structure or workings of the

item.

board support package The specification to an RTOS and/or Compiler of what peripherals the MCU has

internally, and is directly connected to.

certification A “procedure by which a third party gives written assurance that a product,

process or service conforms to specified requirements, also known as conformity

assessment” [IEC 61400-22 3.4] longer description at [IEC 61836 3.7.6]

coefficient A measure of a property for a process or body. This number is constant under

specified, fixed conditions.

coding standard “specif[ies] good programming practice, proscribe unsafe language features (for

example, undefined language features, unstructured designs, etc.), promote code

understandability, facilitate verification and testing, and specify procedures for

source code documentation.” [IEC 61508-3 7.4.4.13]

comment Text, usually to provide context, clarify or explain the requirement(s).

15 Modified from http://www.wartsila.com/encyclopedia/term/abnormal-condition

Table 33: Glossary of

common terms and

phrases

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 151

control function “functions intended to regulate the behaviour of equipment or systems” [IEC

61892-2 3.9], it typically “evaluates input information or signals and produces

output information or activities” [IEC 62061 H.3.2.14]

see also safety-related control function

control function (class B) Those “control functions intended to prevent an unsafe state of the appliance...

Failure of the control function will not lead directly to a hazardous situation” [IEC

60730-1:2013 H.2.22.2]

customer requirement A requirement in any of the top-level documents, but especially in the customer

(or user) requirements specification.

cyclic redundancy check A form of error-detecting code. A check value is computed from a block of data.

data integrity That the stored data – such as program memory – is intact, unchanged, in the

expected order and complete; that is, that the entire program memory area matches

exactly with the data defined for a particular revision.

data retention The ability for a storage to hold bits

debounce Switches and contacts tend to generated multiple rising & falling edges when

coming into contact; debouncing removes the extra signals.

diagnostic A “process by which hardware malfunctions may be detected” [IEEE 2000]

defect An “imperfection in the state of an item (or inherent weakness) which can result in

one or more failures of the item itself, or of another item under the specific service

or environmental or maintenance conditions, for a stated period of time” [IEC

62271-1 3.1.16]

design document A design document explains the design of a product, with a justification how it

addresses safety and other concerns.

digital to analog converter A digital to analog converter is used create a voltage signal from an internal value.

direct memory access A special purpose microcontroller peripheral that moves data between the

microcontrollers storage and another peripheral or storage; this is useful to reduce

work done in software.

error An error is the occurrence of an incorrect (or undesired) result.

exception An “event that causes suspension of normal execution” [IEC 61499-1 3.36]

 A special condition – often an error – that changes the normal control flow. On an

ARM Cortex, this can cause the processor to suspend the currently executing

instruction stream and execute a specific exception handler or interrupt service

routine.

failure1 A failure “is a permanent interruption of a system’s ability to perform a required

function under specified operating conditions.” (Isermann & Ballé 1997).

failure2 An incident or event where the product does not perform functions (esp. critical

functions) within in specified limits.

fault1 A fault is an abnormal condition, or other unacceptable state of some subsystem

(or component) that will disallow the motor operation. See also abnormal

condition, normal operating condition.

fault2 A fault is represented an interrupt or exception on ARM processors that pass

control to handler of such an abnormal condition.

fault tolerant “The capability of software to provide continued correct execution in the presence

of a defined set of microelectronic hardware and software faults.” [ANSI/UL

1998]

firmware A program permanently recorded in ROM and therefore essentially a piece of

hardware that performs software functions.

flash A type of persistent (non-volatile) storage media.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 152

frequency monitoring “a fault/error control technique in which the clock frequency is compared with an

independent fixed frequency” [IEC 60730-1]

function The “specific purpose of an entity or its characteristic action” [IEC 61499-1] That

is, what the product is intended to do, and/or what role it is to serve.

function block A self contained unit with specific functionality

functional hazard analysis An “assessment of all hazards against a set of defined hazard classes” [IEC 62396-

1 3.21]

see also hazard analysis

hard fault A type of microcontroller fault.

harm A “physical injury or damage to health” [ISO 12100-1:2003]

hazard A “potential source of physical injury to persons.”

hazard analysis The “process of identifying hazards and analysing their causes, and the derivation

of requirements to limit the likelihood and consequences of hazards to an

acceptable level” [IEC 62280 section 3.1.24]

see also functional hazard analysis, preliminary hazard analysis, risk analysis

hazard class Energy (electric: voltage, current, electric & magnetic fields, radiation, thermal

energy, vibration/torsion/kinetic energy/force, acoustic), biological & chemical,

operational (function and use error), are informational (labeling, instructions,

warnings, markings) [ISO 14971]

hazard list A list of all identified hazards that a product may present.

high-level specification System specification, customer inputs, marketing inputs, etc.

identifier A label that can refer to product, specific version of the product, a document,

requirement, test, external document, or comment.

initialization Places each of the software and microcontroller elements into a known state;

performed at startup.

input comparison “a fault/error control technique by which inputs that are designed to be within

specified tolerances are compared.” [IEC 60730-1]

integrity “The degree to which a system or component prevents unauthorized access to, or

modification of, computer programs or data.” [ANSI/UL 1998]

integrity check Checks to see that a storage unit has retained its data contents properly and that the

contents have not changed unintentionally.

internal fault condition A programmable element resets for a reason other than a power-on reset; or a fault

occurs with any programmable-element, or power supervisor; or a self-test did not

pass.

interface An interface is a defined method of accessing functionality. An object may

support several interfaces.

non-maskable interrupt A type of microcontroller fault.

non-volatile memory A storage mechanism that will preserve information without power.

parameter A controllable quantity for a property.

parity check A simple form of error detection. Each byte in SRAM has an extra check bit that

can catch memory errors.

peripheral lock The microcontroller’s peripheral registers can be locked, preventing modification

until microcontroller reset.

power management An “automatic control mechanism that achieves the .. input power consistent with

a pre-determined level of functionality” [IEC 62542 5.10]

power on reset A type of microcontroller reset that occurs when power is applied to the

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 153

microcontroller; release from reset allows software to execute.

preliminary hazard analysis “This evaluates each of the hazards contained in the [preliminary hazard list], and

should describe the expected impact of the software on each hazard.”

product

programmable component “any microelectronic hardware that can be programmed in the design center, the

factory, or in the field.” [ANSI/UL 1998] This includes FPGAs, microcontrollers,

microprocessors, and so on.

programmable system “the programmable component, including interfaces to users, sensors, actuators,

displays, microelectronic hardware architecture,” and software [ANSI/UL 1998]

protective control A control whose “operation … is intended to prevent a hazardous situation during

abnormal operation of the equipment” [IEC 60730-1]

protective electronic circuit An “electronic circuit that prevents a hazardous situation under abnormal

operating conditions” [IEC 60335]

quality management
system

A “management system with which an organization will be directed with regard to

product quality” [IEC 60194 10.141]

realization An implementation, or a mathematical model or design that has the target input-

out behaviour and can be directly implemented.

redundant monitoring “the availability of two independent means such as watchdog devices and

comparators to perform the same task” [IEC 60730-1]

requirement An “expression ... conveying objectively verifiable criteria to be fulfilled and from

which no deviation is permitted " [ISO/IEC Directives, Part 2, 2016, 3.3.3]

requirements specification A set of requirements

risk “a measure that combines the likelihood that a system hazard will occur, the

likelihood that an accident will occur and an estimate of the severity of the worst

plausible accident.” [UCRL-ID-1222514]

risk analysis A “systematic use of available information to identify hazards and to estimate the

risk” [ISO 14971:2007 2.17]

risk management The “systematic application of management policies, procedures and practices to

the tasks of analyzing, evaluating and controlling risk” [ISO 14971:2007 2.22]

safety-critical function A “function(s) required … the loss of which would cause the tool to function in

such a manner as to expose the user to a risk that is in excess of the risk that is

permitted … under abnormal conditions” [EN 62841]

safety-related function “Control, protection, and monitoring functions which are intended to reduce the

risk of fire, electric shock, or injury to persons.” [ANSI/UL 1998]

safety-related control
functions

A “control function … that is intended to maintain the safe condition of the

machine or prevent an immediate increase of the risk(s)” [IEC 60204-32 section

3.62]

note: not all are safety critical functions.

signal TBD active and deactivated state; forms can include a digital logic signal (which

may be active high, or active low), an analog signal, some logical state conveyed

by a communication method, etc.

single event upset An ionizing particle flipped a bit or transistor state

single wire debug An electrical debugging interface for the ARM Cortex microcontrollers.

software development
lifecycle

“conceptual structure spanning the life of the software from definition of its

requirements to its release” [ISO/IEC 12207 3.11]

software risk analysis A risk analysis applied to the software

software safety
requirement

A safety requirement applied to the function or operation of software

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 154

test monitoring “the provision of independent means such as watchdog devices and comparators

which are tested at start up or periodically during operation” [IEC 60730-1]

test report A report of test outcomes describing how a product performs under test.

test requirement A requirement that define what a test must do for a product must pass the test.

test specification A requirements specification that describes a set of tests intended to check that the

product meets it requirements. This may be in the form of test requirements –

what the tests are to do – and test procedures.

to be determined The information is not known as of the writing, but will need to be known.

traceability Ability to follow the steps from output back to original sources. For products, this

allows tracing all of the products design, and features back to the original

documents approved by the company. For information, this allows tracing to

measurements, methodology and standards.

trace matrix A tool that is used to identify high level requirements that are not realized by a

low-level requirement or design element; and low-level requirements or design

requirements that are not driven by a high-level requirement.

validation Check that the product meets the users specification when the item is used as an

element of the product

verification Checking that an item meets its specification

watchdog reset A microcontroller reset triggered by the expiration of a watchdog timer.

watchdog timer A hardware timer that automatically resets the microcontroller if the software is

unable to periodically service it.

white-box testing Testing technique focusing on testing functional requirements (and other

specifications), with an examination of the internal structure or workings of the

item.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 155

APPENDIX B

Product Standards

This appendix provides further, supplemental discussion of standards.

71. STANDARDS

I did not provide a definition of “standard” earlier. Circular No A-119 provides a useful

definition of technical standard, being that a standard that includes:

1. [The] common and repeated use of rules, conditions, guidelines or characteristics

for products or related processes and production methods, and related

management systems practices[; and]

2. The definition of terms;

classification of components;

delineation of procedures;

specification of dimensions, materials, performance, designs, or operations;

measurement of quality and quantity in describing materials, processes, products,

systems, services, or practices;

test methods and sampling procedures; or

descriptions of fit and measurements of size or strength.

71.1. OTHER IMPORTANT SOFTWARE SAFETY STANDARDS

DO-178C is the aerospace industry’s software quality standard. It employs five levels

(instead of 3) and in descending order of concern (as opposed to the IEC 60730’s & 62304

ascending order):

 Level A for Catastrophic

 Level B for Hazard/Severe

 Level C for Major

 Level D for Minor

 Level E for no effect

NASA-STD-8719.13 is NASA’s software assurance standard. It classifies software criticality

in descending level of concern, based on its role and/or complexity. This classification is

based on MIL-STD-882C (the last revision to have such a classification).

 Category IA. “Partial or total autonomous control of safety-critical functions by

software[; or] Complex system with multiple subsystems, interacting parallel

processors, or multiple interfaces[; or] Some or all safety-critical software functions

are time critical exceeding response time of other systems or human operator[; or]

Failure of the software, or a failure to prevent an event, leads directly to a hazard's

occurrence.”

OMB Circular No A-

119, Revised

OMB (US

Government) 1998

Feb 10

DO-178C, Software

Considerations in

Airborne Systems and

Equipment

Certification, RTCA,

Inc. 2012 Jan 5

NASA-STD-8719.12.,

NASA Software Safety

Standard, Rev C 2013-

5-7

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 156

 Category IIA & IIB. “Control of hazard by software but other safety systems can

partially mitigate. Software detects hazards, notifies system of need for safety

actions.[or] Moderately complex with few subsystems and/or a few interfaces, no

parallel processing[; or] Some hazard control actions may be time critical but do not

exceed time needed for adequate human operator or automated system response.[; or]

Software failures will allow, or fail to prevent, the hazard's occurrence. “

 Category IIIA & IIIB. “Several non-software mitigating systems prevent hazard if

software malfunction[; or] Redundant and independent sources of safety-critical

information[; or] Somewhat complex system, limited number of interfaces[; or]

Mitigating systems can respond within any time critical period[; or] Software issues

commands over potentially hazardous hardware systems, subsystems or components

requiring human action to complete the control function.”

 Category IV. “No control over hazardous hardware. No safety-critical data generated

for a human operator. Simple system with only 2-3 subsystems, limited number of

interfaces. Not time-critical.”

NASA-STD-8739.8 is NASA’s software quality standard. It classifies software criticality in

descending level of concern, but based on a classification of intended use rather than hazard:

 Class A Human Rated

 Class B Non-Human Space rated

 Class C Mission support software

 Class D Analysis and Distribution software

 Class E Development support

72. PRODUCT STANDARDS

72.1. TYPES OF ISO SAFETY & PRODUCT STANDARDS

ISO 12100-1:2003 proposes organizing standards into a hierarchy of how broadly or

specifically they apply.

 Basic safety standards (type A), give generic concepts & principles applicable to all

machinery of a class. (ISO 12100 is itself a type A standard)

 Generic safety standards address wide range of machinery, but focus on a narrow area

of safety (type-B),

o Type B1 are those that focus on safety “aspect” – some safe operating

region often defined along a physical dimensions

o Type B2 are those that focus on safeguards or mechanisms

 Standards for groups or a particular machine (type C) are the narrowest

Many IEC and EN standards are organized in this fashion

72.2. TYPES OF IEC SAFETY STANDARDS

IEC safety standards are similarly grouped, from broadest to narrowest:

NASA-STD-8739.8,

“Software Assurance

Standard” NASA

Technical Standard

8739.8 2004, 2004 Jul

28

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 157

 Basic safety publications give general safety provisions, generic concepts & principles

applicable to many products.

 Group safety publications address all safety aspects of a specific group of products

 Product publication for “a specific product or group of related products” [IEC 2011]

An extra, informal, variant is that a country (or region) may adopt the standards, modifying

them in the process. This is important as these are the ones recognized (accepted) for the

country or region.

72.3. PRODUCT STANDARDS

The table below summarizes how several safety standards adapt software safety-related

material from other standards:

Std Adapts Type Sector Notes

EN/ISO 13849 IEC 61508 B1 machine

control

“Safety of machinery - Safety-related Parts of Control

Systems” Uses PL risk

ISO 26262 IEC 61508 Group Automotive “Road Vehicles Functional Safety” Applies ASIL to

automotive electrical/electronic systems

EN 50128:2011 Group Railway “Railway applications. Communication, signalling and

processing systems.” (includes software)

EN 60601 Group Medical Medical device product requirements

UL 61010 Safety Requirements for Electrical Equipment for

Measurement, Control, and Laboratory Use - Part 1:

General Requirements, 2015 May 11

IEC 61508 DIN 12950 Basic Adapted risk assessment from DIN 12950

IEC 61511 IEC 61508 Group Industrial

process

“Functional safety - Safety instrumented systems for the

process industry sector.”

IEC 61513:2001 IEC 61508 “Nuclear power plants - Instrumentation and control for

systems important to safety - General requirements for”

IEC/EN 62061 IEC 61508 Group Machinery “Safety of machinery: Functional safety of electrical,

electronic and programmable electronic control

systems,”

IEC 62279 IEC 61508 Railway

IEC 62841 IEC 60730 Group Garden

appliances

“Electric motor-operated hand-held tools, transportable

tools and lawn and garden machinery - Safety - Part 1:

General requirements”

73. REFERENCES AND RESOURCES

IEC, Basic Safety Publications, 2011

IEC, Basic Safety Publications: Tools

Table 34: Safety

standards and where

they adapt from

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 158

APPENDIX C

Bug Report

Template16

This Appendix describes the best means in which to file a bug report. A useful bug report is

written in simple, jargon free language, and structured using the inverted hierarchy.

74. OUTLINE OF A PROPER BUG REPORT

12 words 1 : Bug Header Information
1-5 words 1.1 : Product

2 words 1.2 : Classification
1-3 words 1.3 : Reproducibility

 1.4 : Version/Build Number
2 words 1.5 : Area of bug

< 20 words 2 : Bug Title & Description
< 20 words 2.1 : Title

 2.2 : Description
 2.3 : Requirements that are of interest or are relevant
 3 : Additional Information To Provide (General)
 3.1 : Configuration Information
 3.2 : Crashing Issues
 3.3 : Application resets
 3.4 : Hanging/Performance Issues
 3.5 : Screen shots, Scope Capture,
 4 : Contact Information
 5 : Product-specific Additional Information

The remainder of the

75. BUG HEADER INFORMATION

1.1: Product:

PC Programmer, Handheld, OurPeripheral, Implant, Telemetry Module, etc, whether it is a

first run engineering board, a second run engineering board, a first run production board, a

second run production board, etc

Include details such as the part number, or board assembly and serial number

1.2: Classification:

16 This appendix is adapted from Apple’s bug reporting form, as well as many others.

“The horror of that

moment,” the King

went on, “I shall

never, never forget!”

“You will, though,” the

Queen said, “if you

don't make a

memorandum of it”–

Lewis Carroll, Through

the Looking Glass

12 words

1 to 5 words

2 words

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 159

Classify the bug appropriately (partly by its manifestation) so that we can properly prioritize

the problem:

 Crash/Hang/Data Loss: Bugs which cause a machine to crash, resulting in an

irrecoverable hang, or loss of data.

 Performance: Issues that reduce the performance or responsiveness of an application.

 Usability: A cosmetic issue, or an issue with the usability of an application.

 Serious bug: Functionality is greatly affected, and has no workaround.

 Other bug: A bug that has a workaround.

 Unexpected behaviour: a bug that not only has a work around

 Feature (new): Request for a new feature

 Enhancement: Request for an enhancement to an existing feature.

1.3: Reproducibility

Let us know how frequently you are able to reproduce this problem.

1.4: Version/Build Number:

Provide the version of firmware / software you are using. (If it is an engineering change to a

release version please note that)

1.5 Area of bug:

This is how the bug manifests itself, or where it has the observable effect:

 Communication

 Therapy Behaviour

 Input to output logic behaviour

 Preferences

 Recharge

 Incorrect or inaccurate results: input/output is wrong, or provides inaccurate

information

 Corruption – data is corrupted, altered, lost or destroyed

 Responsiveness, Speed or Performance degradation, efficiency defects

 Power: poor battery life, high power consumption, degradation, efficiency defects

 Increased resource usage in other areas

 Other device behaviour

 It crashes my Handheld / OurPeripheral / Telemetry Module / LabPC / Display Unit

76. BUG TITLE AND DESCRIPTION

2.1: Problem Report Title:

The ideal problem title is clear, concise, succinct and informative. It should include the

following:

 Build or version of the firmware on which the problem occurred

 Verb describing the action that occurred

 Explanation of the situation which was happening at the time that the problem

occurred

Method of

manifestation is the

observable effect

1 to 3 words

2 words

<20 words

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 160

 In case of a crash or hang, include the symbol name

The title should also:

 Be objective and clear (and refrain from using idiomatic speech/colloquialisms/slang)

 Include keywords or numbers from any error messages you may be receiving

 Not employ vague terms such as “failed”, “useless”, “crashed”, “observed” etc....

The following examples demonstrate the difference between a non-functional title and a

functional title:

Example 1:

Non-functional title: Handheld Crashed.

Functional title: Handheld gave a watchdog reset while performing a lead

impedance measurement

Example 2:

Non-functional title: Failed test

Functional title: OurPeripheral return error ErrOutOfSpace when performing

recharge test.

2.2: Description:

The description includes:

 A Summary

 Steps to Reproduce

 Expected Results

 Actual Results

 Workaround, and

 Regression/Isolation

 Relevant requirements.

Summary:

Recap the problem title and be explicit in providing more descriptive summary information.

Provide what happened, what you were doing when it happened, and why you think it's a

problem. If you receive an error message, provide the content of the error message (or an

approximation of it).

Provide specifics and avoid vague language or colloquialisms. Instead of using descriptive

words or phrases when something “looks bad,” “has issues,” “is odd,” “is wrong,” “is acting

up,” or “is failing,” be concise and describe how something is looking or acting, why you

believe there is a problem, and provide any error messages that will support the problem being

reported.

Example 1:

Non-functional description: When printing, nothing happens. Application doesn't

work.

Functional description: Print Menu item enabled, print dialog box appears,

print button enabled, but progress dialog box doesn't

appear.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 161

Example 2:

Non-functional description: Handheld is slow.

Functional description: Handheld is slow when incrementing therapy

amplitude (provide durations)

If there is a clear safety implication, specify it (otherwise do not).

Steps to Reproduce:

Describe the step-by-step process to reproduce the bug, including any non-default

preferences/installation, and the system configuration information. Note: It is better to include

too much information than not enough, as this reduces the amount of back-and-forth

communications. Note: Be very specific and be sure to provide details, as opposed to high-

level actions. Test cases with clear & concise steps to reproduce that will enable us to

reproduce this and fix.

When does the problem occur? For example:

 Does it occur after power on?

 Does it occur after unlock?

 Does it occur after power off and lock?

Important points to note when providing steps to reproduce are:

 Include information about any preferences that have been changed from the

defaults.

Expected Results:

Describe what you expected to happen when performing the steps to reproduce.

Actual Results:

Explain what actually occurred.

With error codes try to include the text name of the error code

Bad: error 0x12

Good: ErrParameterOutOfRange (0x12)

Workaround:

If you have found a workaround for this problem, describe it.

Regression/Isolation:

Note any other configurations in which this issue was reproducible. Include details if it is new

to this build, or no regression testing was done.

If there are other steps that are similar to those above, but do not create an undesired outcome,

please note those. We can use this information to help resolve the issue.

2.3: Requirements that are of interest or are relevant

77. ADDITIONAL INFORMATION REQUIREMENTS (GENERAL)

Reports from developers should include:

 The hardware configuration

 The “preferences” configuration

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 162

 The device bonding or pairing configuration

 The “manufacturing data” configuration

 The embedded device(s) configuration

 If reporting an error dialog message or UI bug, provide screen shots

 Log file

Reports from developers should include

 A complete enumeration of the Revision Ids of the source files

Reports from test stations should include:

 The software / firmware version

 Event trace (e.g. log of the connection). Please provide the smallest trace

possible that captures the issue. As traces may contain a lot of spurious

information that doesn't pertain to the issue at hand, it is vital to the bug solving

effort to remove distracting volume.

The generation of this information can be done in an automated fashion.

3.2: Crashing Issues:

A crash might include a NMI, Watchdog, Stack Underflow, Stack Overflow, memory fault,

bus fault, usage fault, or Hard Fault. Extra information is essential. Please give us:

 The fault register values

 Call stack trace (if possible)

In addition to all the above, provide any information regarding what you were doing around

the time of the problem.

NOTE: If you're able to reproduce the crash the exact same way each time and the ___ looks

identical in every instance, only one crash report is required. In instances where the crash

doesn't look identical, file separate reports with one crash log submitted per bug.

3.4: Hanging/Performance Issues:

If you are experiencing a “hang” (includes freeze, slow data transfer), a sample of the

application while it is in the hung state is required.

3.5: Screen shots, Scope Traces and Waveform capture:

SCREEN SHOTS. Provide a screen shot when it will help clarify the bug report. In addition to

providing any screen shots to error or dialog messages, be sure to also type the text of the

error/dialog message you're seeing in the description of the bug report (so that the contents of

the message are searchable. If there are steps involved, a sequence of screen shots, or a movie

is always appreciated. Be sure to write down the steps associated with each screen shot.

SCOPE TRACE. When working with electrical signals, please provide scope trace or screen shot

of the oscilloscope. Please provide a diagram of the setup, and a description where in the

diagram or schematic the signals were measured.

78. CONTACT INFORMATION

Be sure to include the contact information of who found the bug. Although this sounds

implicit in an email or trouble tracking system (e.g. ClearQuest, Jira), too often the bug

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 163

reporter is different than the one who found it. By including the contact information we’ll be

able to correspond with them as we investigate the issue.

79. PRODUCT-SPECIFIC ADDITIONAL INFORMATION

When submitting a bug report against certain tools, be sure to provide the following additional

information:

 Build number & version. Put the build number at the beginning of your title as such:

1.5.0_06-112: Title Here

If your setup is non-standard, indicate that in the bug report.

Handheld Power Management (sleep/wake) issues:

 Be aware of what is plugged into the Handheld

When submitting a bug report involved a sealed in the can device, be sure to provide:

 Whether the battery is connected or not

 Was it in saline?

 Were leads attached?

 Which version of firmware?

 Was an OurPeripheral being used – which version?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 164

APPENDIX D

Types of Defects

This Appendix describes a system of categorizing bugs.

80. OVERVIEW
The analysis of the bug is intended to gather information about its causes and underlying

defects (there may be many), and provide a basis to disposition or prioritize repairs.

Bugs are classified along four dimensions by

1. Method of manifestation.

2. Type of Defect

3. Implication

4. Means of testing

The bug analysis should try included a number of attributes about how the bug manifests

itself. And include a chain of analysis to other potential underlying defects.

81. CLASSIFYING THE TYPE OF DEFECT
The types of defects include:

 Hardware problem

 Hardware misuse

 Storage / access partition violation

 Resource allocation issues

 Arithmetic, numerical bug

 Logic errors

 Syntax errors

 Improper use of API’s – violates how an API should be used, including calling

sequence, parameter range, etc. Errors in interacting with others in calls, commands,

macros, variable settings, control blocks, etc.

 State errors

 Concurrency

 Interaction issues

 Graphic errors

 Security issue – disclosure, alteration/destruction/insertion

Defect is the design or

implementation

mistake

Method of

manifestation is the

observable effect

Various sources were

used in the

preparation of this.

“A comparative study

of industrial static

analysis tools (Extend

Version)” Par

Emanuelsoon, Ulf

Nilsson, January 7

2008

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 165

81.1. HARDWARE PROBLEM

 Missing component

 Component incorrectly mounted

 Component broken

o Unable to communicate

o Does not pass self test

o Does not operate correctly.

81.2. HARDWARE MISUSE

 Power is too high, too low, or off

 Power transition is too fast

 Truncated addresses

 Stack overrun

81.3. STORAGE / ACCESS PARTITION VIOLATIONS

STORAGE / ACCESS PARTITION VIOLATION may have attributes of the storage violation:

 Type of access: read, write

 Location of the segment, and access: stack, or heap

 The boundary violated: above or below the segment/partition.

 How far outside of the segment was the access?

 How much data is affected with the access?

 Stride: were the access violations in a large continuous span, or were there gaps

between the accesses?

An access violations can be classified into one of:

 NULL pointer dereference

o Is a pointer possibly NULL before its use? Is it checked before use?

o Is it checked for NULL after its use?

 Wild pointer dereference

 Pointer arithmetic error

o Pointer does not point to a meaningful location

o Pointer points outside of the bounds of its referent.

 Improper memory allocation

 Using memory that has not been initialized

o Array cell being dereferenced in a fetch (or fetch-n-modify) operation has

not been initialized.

o Pointer being dereferenced has not been initialized (a variation on the use of

a variable that has not been initialized)

 Aliasing

o Two pointers to the same region. Especially without proper volatile.

Defect is the design or

implementation

mistake

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 166

o Pointer to variable storage. Especially without proper volatile.

o Pointer to an array is assigned to point to second, smaller array

 Access (segmentation) violation – using something not allowed to

o Buffer overflow / overrun

o Array is indexed outside of its upper or lower bound.

o Pointer points outside of the bounds of its referent.

o Possible causes may include pointer arithmetic errors

 Access alignment violation – e.g. having something on a odd address that must be

align on 16 byte boundary

 Reference of pointer being dereferenced in a fetch (or fetch-n-modify) operation has

not been initialized.

 Function pointer does not point to a function – or points to a function with a different

signature.

 Casting an integer in a pointer or pointer-union when it is smaller / larger

 Use of arrays (especially large arrays) on stack. This can happen when returning a

struct, or array

 Use of large strings on stack. This can happen when returning a struct, or array

 Return of a pointer to the local stack

Possible causes of these

 Earlier access violation

 Uninitialized value, variable or field used as pointer

 Arithmetic issues, for potential sources of erroneous index and pointer calculations

o Conversion created incorrect value. Check implicit and explicit values for

proper widening and conversion.

 Input value wrong, out of range, or does not meet implicit constraints

 String or other data structure missing a termination, e.g. a NULL terminator

 The allocation was smaller than the amount of data to process

Possible fixes and mitigations

 For large strings and arrays passed on stack, pass a pointer to the array

 Add parameter checking and return a value

 Employ sentinel values, and canaries to detect inconsistencies and misuse earlier

81.4. RESOURCE AND REFERENCE MANAGEMENT ISSUES

RESOURCE AND REFERENCE MANAGEMENT ISSUES includes leaks and resources that are not

released when they are no longer used:

 Use resource after free

 Double free

 Mismatch array new / delete

 Memory leak (use more memory over time)

o Constructor / Destructor leaks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 167

o Bad deletion of arrays

 Temporary files

 Resource – esp. memory and file handle – leaks

 Database connection leaks

 Custom memory and network resource leaks

81.5. ARITHMETIC, NUMERICAL BUG & INCORRECT CALCULATIONS

Calculation bugs can include:

 Relying on operator precedence, or not understanding operator precedence.

 Overflow or underflow

 Invalid use of negative variables

 Loss of precision. These can come from using the wrong size type or casting to an

inappropriate type:

o Underflow – a number too small

o Overflow – bigger than can be represented, dropping the most significant

bits

o Truncation – dropping the least significant bits

 Inadequate precision, accuracy, or resolution of type

 Computation is inaccurate. Accuracy issues relate from the formulae used.

 Numerically unstable algorithm

o Using an IIR with an order higher than 2

o PID lacks anti-windup (e.g. timers)

o PID lacks dead-band dampening

 Equality check is incorrect

o Check for literal zero rather than within epsilon around zero

o Check equal to NaN, rather than using isnan()

 Basic inappropriate values for an operation

o Using a Not-A-Number

o Driving by zero

o Performing an operation, such as logarithm and sqrt(), on a negative

number

o Shift left by more than the size of the target

o Shift operand is negative

o Shift LHS is negative

81.6. ERRORS IN LOGIC

Errors in logical can include:

 Illegal values to operations

 Not checking taint or validating values properly

 Wrong order of parameters in a call

 Variables that have not been initialized

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 168

 Dead code cause by logical errors

 Under run – not sending enough on time

 Macros

 Dynamic-link and loading bugs

 Infinite loop / loss of forward progression; a procedure or loop does not terminate.

 Typo between variable and procedure names

 Error in internal check

 See API misuse

Logical errors can have three sub-classes of defects:

 Syntax errors

 Unused results

 Incorrect calculation

UNUSED RESULTS. Unreachable code (dead code) may indicate a logical or syntax error. Data

that is computed but not used may also indicate logical errors or misspellings. Data stored via

a pointer but is not used may indicate a problem.

81.7. API OR COMPONENT INTERFACE MISUSE

Interface Misuse – violates how an API should be used, including calling sequence, parameter

range, etc. Errors in interacting with others in calls, commands, macros, variable settings,

control blocks, etc. A description of the interface should be concise, but provide enough

information to understand the intended used and limitations

 STL usage errors

 API error handling

 Misuse of sprintf, other varargs, and argv

81.8. ERROR HANDLING

 Uncaught fault / exception.

 Inadequate fault / exception handling.

 Not checking return values

 Not checking error values

81.9. SYNTAX ERRORS

SYNTAX ERRORS may produce some of the logical errors above:

 Use of the comma operator

 Misplacement of “;”, especially in conditional statements

 Forgotten breaks.

 The use of variables that were not initialized with values

 Return statements without defined value – either the return is implicit, no value is

specified or the return accesses a variable that has not been initialized.

MISRA has

recommended these

checks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 169

 Return of a pointer to the local stack

 Inconsistent return values for input

81.10. STATE ERRORS

 Results in wrong state

 Transition from state A to state B is not allowed

 Does not handle event in given state

 Handles event incorrectly in given state.

81.11. CONCURRENCY

 Deadlocks

 Double locking

 Missing lock releases

 Release order does not match acquisition order of other thread means dead lock, etc.

(Aka reversed order of clocking)

o Static / dynamic analysis should check the lock order (for several locks)

 Blocking call misuse

 Associate variable/register/object access with particular locks

 Lock contention

81.12. INTERACTION ISSUES

 Thread prioritizations

 Contention for resources (including, but not limited to lock contention)

 Data rate is incorrect / mismatch

 Differing process rates

 Sourcing events faster than they can be processed

 Long communication and processing pipelines

 Timing violation, too soon / too late

o Timer incorrectly set

o Timer stopped

o Timer reset

 Sequence of operation is incorrect

o Wrong command sent

o Missing command

 Wrong response is sent

 Sent to wrong party

 Format is wrong

 Length is wrong

 Misinterpreted

 Ignored command or response

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 170

 Mis-estimated state of other party

 Redundant interaction

81.13. GRAPHIC ERRORS

 Position incorrect

 Size incorrect / truncated

 Shape incorrect

 Parent / child relationship is incorrect

 Incorrect sibling order / tab order

 Color is wrong

 Text is wrong

 Graphic mismatch / pixels not refreshed

 Pixels not being refreshed / dirty rectangle issue

 Item is not visible when it should be

 Item is visible when it should not be

81.14. SECURITY VULNERABILITY

 Temporary files. Not using secure temporary files, file names.

 Missing / insufficient validation of malicious data and string input (see also taint

checking)

o SQL injection attacks

 Cross-site scripting attacks

 Format string vulnerabilities

 Faulty permission models – not a bug with access checks, but many with wrong

arrangement of access controls (it’s very hard to do bottom up)

 Incorrect use of chroot, access, and chmod.

 Bad passwords

 Dynamic-link and loading bugs

 Spoofing

 Race conditions and other concurrency issues

 Poor encryption

 Command injection

 Not checking values or their origins

 Race conditions with system calls

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 171

APPENDIX E

Code-Complete

Requirements Review

Checklists

Source: https://github.com/janosgyerik/software-construction-notes/tree/master/checklists-all

82. CHECKLIST: REQUIREMENTS

82.1. SPECIFIC FUNCTIONAL REQUIREMENTS

 Are all the inputs to the system specified, including their source, accuracy, range of values, and

frequency?

 Are all the outputs from the system specified, including their destination, accuracy, range of values,

frequency, and format?

 Are all output formats specified for web pages, reports, and so on?

 Are all the external hardware and software interfaces specified?

 Are all the external communication interfaces specified, including handshaking, error-checking, and

communication protocols?

 Are all the tasks the user wants to perform specified?

 Is the data used in each task and the data resulting from each task specified?

82.2. SPECIFIC NON-FUNCTIONAL (QUALITY) REQUIREMENTS

 Is the expected response time, from the user's point of view, specified for all necessary operations?

 Are other timing considerations specified, such as processing time, data-transfer rate, and system

throughput?

Adapted from

S T E V E N C .

M C C O N N E L L ,

C O D E C O M P L E T E ,

2 N D E D .

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is

Copyright (c) 1993-2004 Steven C. McConnell. Permission is hereby given to copy, adapt, and distribute

this material as long as this notice is included on all such materials and the materials are not sold,

licensed, or otherwise distributed for commercial gain.

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 172

 Is the level of security specified?

 Is the reliability specified, including the consequences of software failure, the vital information that

needs to be protected from failure, and the strategy for error detection and recovery?

 Is maximum memory specified?

 Is the maximum storage specified?

 Is the maintainability of the system specified, including its ability to adapt to changes in specific

functionality, changes in the operating environment, and changes in its interfaces with other software?

 Is the definition of success included? Of failure?

82.3. REQUIREMENTS QUALITY

 Are the requirements written in the user's language? Do the users think so?

 Does each requirement avoid conflicts with other requirements?

 Are acceptable trade-offs between competing attributes specified—for example, between robustness

and correctness?

 Do the requirements avoid specifying the design?

 Are the requirements at a fairly consistent level of detail? Should any requirement be specified in

more detail? Should any requirement be specified in less detail?

 Are the requirements clear enough to be turned over to an independent group for construction and still

be understood?

 Is each item relevant to the problem and its solution? Can each item be traced to its origin in the

problem environment?

 Is each requirement testable? Will it be possible for independent testing to determine whether each

requirement has been satisfied?

 Are all possible changes to the requirements specified, including the likelihood of each change?

82.4. REQUIREMENTS COMPLETENESS

 Where information isn't available before development begins, are the areas of incompleteness

specified?

 Are the requirements complete in the sense that if the product satisfies every requirement, it will be

acceptable?

 Are you comfortable with all the requirements? Have you eliminated requirements that are impossible

to implement and included just to appease your customer or your boss?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 173

APPENDIX F

Code-Complete Design

Review Checklists

Source: https://github.com/janosgyerik/software-construction-notes/tree/master/checklists-all

83. CHECKLIST: ARCHITECTURE

83.1. SPECIFIC ARCHITECTURAL TOPICS

 Is the overall organization of the program clear, including a good architectural overview and

justification?

 Are major building blocks well defined, including their areas of responsibility and their interfaces to

other building blocks?

 Are all the functions listed in the requirements covered sensibly, by neither too many nor too few

building blocks?

 Are the most critical classes described and justified?

 Is the data design described and justified?

 Is the database organization and content specified?

 Are all key business rules identified and their impact on the system described?

 Is a strategy for the user interface design described?

 Is the user interface modularized so that changes in it won't affect the rest of the program?

 Is a strategy for handling I/O described and justified?

 Are resource-use estimates and a strategy for resource management described and justified?

 Are the architecture's security requirements described?

 Does the architecture set space and speed budgets for each class, subsystem, or functionality area?

 Does the architecture describe how scalability will be achieved?

 Does the architecture address interoperability?

 Is a strategy for internationalization/localization described?

 Is a coherent error-handling strategy provided?

Adapted from

S T E V E N C .

M C C O N N E L L ,

C O D E C O M P L E T E ,

2 N D E D .

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is

Copyright (c) 1993-2004 Steven C. McConnell. Permission is hereby given to copy, adapt, and distribute

this material as long as this notice is included on all such materials and the materials are not sold,

licensed, or otherwise distributed for commercial gain.

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 174

 Is the approach to fault tolerance defined (if any is needed)?

 Has technical feasibility of all parts of the system been established?

 Is an approach to overengineering specified?

 Are necessary buy-vs.-build decisions included?

 Does the architecture describe how reused code will be made to conform to other architectural

objectives?

 Is the architecture designed to accommodate likely changes?

 Does the architecture describe how reused code will be made to conform to other architectural

objectives?

83.2. GENERAL ARCHITECTURAL QUALITY

 Does the architecture account for all the requirements?

 Is any part over- or under-architected? Are expectations in this area set out explicitly?

 Does the whole architecture hang together conceptually?

 Is the top-level design independent of the machine and language that will be used to implement it?

 Are the motivations for all major decisions provided?

 Are you, as a programmer who will implement the system, comfortable with the architecture?

83.3. CHECKLIST: UPSTREAM PREREQUISITES

 Have you identified the kind of software project you're working on and tailored your approach

appropriately?

 Are the requirements sufficiently well-defined and stable enough to begin construction (see the

requirements checklist for details)?

 Is the architecture sufficiently well defined to begin construction (see the architecture checklist for

details)?

 Have other risks unique to your particular project been addressed, such that construction is not

exposed to more risk than necessary?

84. CHECKLIST: MAJOR CONSTRUCTION PRACTICES

84.1. CODING

 Have you defined coding conventions for names, comments, and formatting?

 Have you defined specific coding practices that are implied by the architecture, such as how error

conditions will be handled, how security will be addressed, and so on?

 Have you identified your location on the technology wave and adjusted your approach to match? If

necessary, have you identified how you will program into the language rather than being limited by

programming in it?

84.2. TEAMWORK

 Have you defined an integration procedure, that is, have you defined the specific steps a programmer

must go through before checking code into the master sources?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 175

 Will programmers program in pairs, or individually, or some combination of the two?

84.3. QUALITY ASSURANCE

 Will programmers write test cases for their code before writing the code itself?

 Will programmers write unit tests for their code regardless of whether they write them first or last?

 Will programmers step through their code in the debugger before they check it in?

 Will programmers integration-test their code before they check it in?

 Will programmers review or inspect each others' code?

84.4. TOOLS

 Have you selected a revision control tool?

 Have you selected a language and language version or compiler version?

 Have you decided whether to allow use of non-standard language features?

 Have you identified and acquired other tools you'll be using editor, refactoring tool, debugger, test

framework, syntax checker, and so on?

85. CHECKLIST: DESIGN IN CONSTRUCTION

85.1. DESIGN PRACTICES

 Have you iterated, selecting the best of several attempts rather than the first attempt?

 Have you tried decomposing the system in several different ways to see which way will work best?

 Have you approached the design problem both from the top down and from the bottom up?

 Have you prototyped risky or unfamiliar parts of the system, creating the absolute minimum amount

of throwaway code needed to answer specific questions?

 Has you design been reviewed, formally or informally, by others?

 Have you driven the design to the point that its implementation seems obvious?

 Have you captured your design work using an appropriate technique such as a Wiki, email, flipcharts,

digital camera, UML, CRC cards, or comments in the code itself?

85.2. DESIGN GOALS

 Does the design adequately address issues that were identified and deferred at the architectural level?

 Is the design stratified into layers?

 Are you satisfied with the way the program has been decomposed into subsystems, packages, and

classes?

 Are you satisfied with the way the classes have been decomposed into routines?

 Are classes designed for minimal interaction with each other?

 Are classes and subsystems designed so that you can use them in other systems?

 Will the program be easy to maintain?

 Is the design lean? Are all of its parts strictly necessary?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 176

 Does the design use standard techniques and avoid exotic, hard-to-understand elements?

 Overall, does the design help minimize both accidental and essential complexity?

86. CHECKLIST: CLASS QUALITY

86.1. ABSTRACT DATA TYPES

 Have you thought of the classes in your program as Abstract Data Types and evaluated their interfaces

from that point of view?

86.2. ABSTRACTION

 Does the class have a central purpose?

 Is the class well named, and does its name describe its central purpose?

 Does the class's interface present a consistent abstraction?

 Does the class's interface make obvious how you should use the class?

 Is the class's interface abstract enough that you don't have to think about how its services are

implemented? Can you treat the class as a black box?

 Are the class's services complete enough that other classes don't have to meddle with its internal data?

 Has unrelated information been moved out of the class?

 Have you thought about subdividing the class into component classes, and have you subdivided it as

much as you can?

 Are you preserving the integrity of the class's interface as you modify the class?

86.3. ENCAPSULATION

 Does the class minimize accessibility to its members?

 Does the class avoid exposing member data?

 Does the class hide its implementation details from other classes as much as the programming

language permits?

 Does the class avoid making assumptions about its users, including its derived classes?

 Is the class independent of other classes? Is it loosely coupled?

86.4. INHERITANCE

 Is inheritance used only to model “is a” relationships?

 Does the class documentation describe the inheritance strategy?

 Do derived classes adhere to the Liskov Substitution Principle?

 Do derived classes avoid “overriding” non-overridable routines?

 Are common interfaces, data, and behavior as high as possible in the inheritance tree?

 Are inheritance trees fairly shallow?

 Are all data members in the base class private rather than protected?

86.5. OTHER IMPLEMENTATION ISSUES

 Does the class contain about seven data members or fewer?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 177

 Does the class minimize direct and indirect routine calls to other classes?

 Does the class collaborate with other classes only to the extent absolutely necessary?

 Is all member data initialized in the constructor?

 Is the class designed to be used as deep copies rather than shallow copies unless there's a measured

reason to create shallow copies?

86.6. LANGUAGE-SPECIFIC ISSUES

 Have you investigated the language-specific issues for classes in your specific programming

language?

87. CHECKLIST: THE PSEUDOCODE PROGRAMMING PROCESS

 Have you checked that the prerequisites have been satisfied?

 Have you defined the problem that the class will solve?

 Is the high level design clear enough to give the class and each of its routines a good name?

 Have you thought about how to test the class and each of its routines?

 Have you thought about efficiency mainly in terms of stable interfaces and readable implementations,

or in terms of meeting resource and speed budgets?

 Have you checked the standard libraries and other code libraries for applicable routines or

components?

 Have you checked reference books for helpful algorithms?

 Have you designed each routine using detailed pseudocode?

 Have you mentally checked the pseudocode? Is it easy to understand?

 Have you paid attention to warnings that would send you back to design (use of global data,

operations that seem better suited to another class or another routine, and so on)?

 Did you translate the pseudocode to code accurately?

 Did you apply the PPP recursively, breaking routines into smaller routines when needed?

 Did you document assumptions as you made them?

 Did you remove comments that turned out to be redundant?

 Have you chosen the best of several iterations, rather than merely stopping after your first iteration?

 Do you thoroughly understand your code? Is it easy to understand?

88. CHECKLIST: A QUALITY-ASSURANCE PLAN

 Have you identified specific quality characteristics that are important to your project?

 Have you made others aware of the projects quality objectives?

 Have you differentiated between external and internal quality characteristics?

 Have you thought about the ways in which some characteristics may compete with or complement

others?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 178

 Does your project call for the use of several different error-detection techniques suited to finding

several different kinds of errors?

 Does your project include a plan to take steps to assure software quality during each stage of software

development?

 Is the quality measured in some way so that you can tell whether its improving or degrading?

 Does management understand that quality assurance incurs additional costs up front in order to save

costs later?

89. CHECKLIST: EFFECTIVE PAIR PROGRAMMING

 Do you have a coding standard to support pair programming that's focused on programming rather

than on philosophical coding-style discussions?

 Are both partners participating actively?

 Are you avoiding pair programming everything, instead selecting the assignments that will really

benefit from pair programming?

 Are you rotating pair assignments and work assignments regularly?

 Are the pairs well matched in terms of pace and personality?

 Is there a team leader to act as the focal point for management and other people outside the project?

90. CHECKLIST: TEST CASES

 Does each requirement that applies to the class or routine have its own test case?

 Does each element from the design that applies to the class or routine have its own test case?

 Has each line of code been tested with at least one test case? Has this been verified by computing the

minimum number of tests necessary to exercise each line of code?

 Have all defined-used data-flow paths been tested with at least one test case?

 Has the code been checked for data-flow patterns that are unlikely to be correct, such as defined-

defined, defined-exited, and defined-killed?

 Has a list of common errors been used to write test cases to detect errors that have occurred frequently

in the past?

 Have all simple boundaries been tested – maximum, minimum, and off-by-one boundaries?

 Have compound boundaries been tested – that is, combinations of input data that might result in a

computed variable that is too small or too large?

 Do test cases check for the wrong kind of data – for example, a negative number of employees in a

payroll program?

 Are representative, middle-of-the-road values tested?

 Is the minimum normal configuration tested?

 Is the maximum normal configuration tested?

 Is compatibility with old data tested? And are old hardware, old versions of the operating system, and

interfaces with old versions of other software tested?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 179

 Do the test cases make hand-checks easy?

91. CHECKLIST: DEBUGGING REMINDERS

91.1. TECHNIQUES FOR FINDING DEFECTS

 Use all the data available to make your hypothesis

 Refine the test cases that produce the error

 Exercise the code in your unit test suite

 Use available tools

 Reproduce the error several different ways

 Generate more data to generate more hypotheses

 Use the results of negative tests

 Brainstorm for possible hypotheses

 Narrow the suspicious region of the code

 Be suspicious of classes and routines that have had defects before

 Check code that’s changed recently

 Expand the suspicious region of the code

 Integrate incrementally

 Check for common defects

 Talk to someone else about the problem

 Take a break from the problem

 Set a maximum time for quick and dirty debugging

 Make a list of brute force techniques, and use them

91.2. TECHNIQUES FOR SYNTAX ERRORS

 Don't trust line numbers in compiler messages

 Don't trust compiler messages

 Don't trust the compilers second message

 Divide and conquer

 Find extra comments and quotation marks

91.3. TECHNIQUES FOR FIXING DEFECTS

 Understand the problem before you fix it

 Understand the program, not just the problem

 Confirm the defect diagnosis

 Relax

 Save the original source code

 Fix the problem, not the symptom

 Change the code only for good reason

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 180

 Make one change at a time

 Check your fix

 Look for similar defects

91.4. GENERAL APPROACH TO DEBUGGING

 Do you use debugging as an opportunity to learn more about your program, mistakes, code quality,

and problem-solving approach?

 Do you avoid the trial-and-error, superstitious approach to debugging?

 Do you assume that errors are your fault?

 Do you use the scientific method to stabilize intermittent errors?

 Do you use the scientific method to find defects?

 Rather than using the same approach every time, do you use several different techniques to find

defects?

 Do you verify that the fix is correct?

 Do you use compiler warnings?

92. CHECKLIST: CODE-TUNING STRATEGY

92.1. OVERALL PROGRAM PERFORMANCE

 Have you considered improving performance by changing the program requirements?

 Have you considered improving performance by modifying the program's design?

 Have you considered improving performance by modifying the class design?

 Have you considered improving performance by avoiding operating system interactions?

 Have you considered improving performance by avoiding I/O?

 Have you considered improving performance by using a compiled language instead of an interpreted

language?

 Have you considered improving performance by using compiler optimizations?

 Have you considered improving performance by switching to different hardware?

 Have you considered code tuning only as a last resort?

92.2. CODE-TUNING APPROACH

 Is your program fully correct before you begin code tuning?

 Have you measured performance bottlenecks before beginning code tuning?

 Have you measured the effect of each code-tuning change?

 Have you backed out the code-tuning changes that didn't produce the intended improvement?

 Have you tried more than one change to improve performance of each bottleneck, i.e., iterated?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 181

93. CHECKLIST: CONFIGURATION MANAGEMENT

93.1. GENERAL

 Is your software-configuration-management plan designed to help programmers and minimize

overhead?

 Does your SCM approach avoid overcontrolling the project?

 Do you group change requests, either through informal means such as a list of pending changes or

through a more systematic approach such as a change-control board?

 Do you systematically estimate the effect of each proposed change?

 Do you view major changes as a warning that requirements development isn't yet complete?

93.2. TOOLS

 Do you use version-control software to facilitate configuration management?

 Do you use version-control software to reduce coordination problems of working in teams?

93.3. BACKUP

 Do you back up all project materials periodically?

 Are project backups transferred to off-site storage periodically?

 Are all materials backed up, including source code, documents, graphics, and important notes?

 Have you tested the backup-recovery procedure?

94. CHECKLIST: INTEGRATION

94.1. INTEGRATION STRATEGY

 Does the strategy identify the optimal order in which subsystems, classes, and routines should be

integrated?

 Is the integration order coordinated with the construction order so that classes will be ready for

integration at the right time?

 Does the strategy lead to easy diagnosis of defects?

 Does the strategy keep scaffolding to a minimum?

 Is the strategy better than other approaches?

 Have the interfaces between components been specified well? (Specifying interfaces isn't an

integration task, but verifying that they have been specified well is.)

94.2. DAILY BUILD AND SMOKE TEST

 Is the project building frequently – ideally, daily to support incremental integration?

 Is a smoke test run with each build so that you know whether the build works?

 Have you automated the build and the smoke test?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 182

 Do developers check in their code frequently – going no more than a day or two between check-ins?

 Is a broken build a rare occurrence?

 Do you build and smoke test the software even when you're under pressure?

95. CHECKLIST: PROGRAMMING TOOLS

 Do you have an effective IDE?

 Does your IDE support outline view of your program; jumping to definitions of classes, routines, and

variables; source code formatting; brace matching or begin-end matching; multiple file string search

and replace; convenient compilation; and integrated debugging?

 Do you have tools that automate common refactorings?

 Are you using version control to manage source code, content, requirements, designs, project plans,

and other project artifacts?

 If you're working on a very large project, are you using a data dictionary or some other central

repository that contains authoritative descriptions of each class used in the system?

 Have you considered code libraries as alternatives to writing custom code, where available?

 Are you making use of an interactive debugger?

 Do you use make or other dependency-control software to build programs efficiently and reliably?

 Does your test environment include an automated test framework, automated test generators, coverage

monitors, system perturbers, diff tools, and defect tracking software?

 Have you created any custom tools that would help support your specific project's needs, especially

tools that automate repetitive tasks?

 Overall, does your environment benefit from adequate tool support?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 183

APPENDIX G

Design Review

Rubric

This appendix describes the rating of design.

96. DOCUMENTATION

96.1. READABILITY RUBRIC

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Process There is a clear

process to guide

design requirements

and choices

There rules of

thumb, and senior

team members are

mature guides.

There is no process.

Members duplicate

previous projects

There is no process.

People make it up as

they go a long

Follows guides /
process

Process & style

guidelines are

followed correctly.

Process & style

guidelines are

almost always

followed correctly.

Process & style

guidelines are not

followed. Style guide

may be inadequate.

Does not follow process

or does not match style

guide; style guide may

not exist.

Organization The documentation is

exceptionally well

organized

The documentation

is logically

organized.

The documentation is

poorly organized

The documentation is

disorganized

Readability The documentation

is very easy to

follow,

understandable, is

clean, and has no

errors

The documentation

is fairly easy to

read. Minor issues

with consistent

naming, or general

organization.

The documentation is

readable only by

someone who knows

what it is supposed to

be doing. At least one

major issue with

names, or

organization.

The documentation is

poorly organized and

very difficult to read.

Major problems with at

names and organization.

Diagrams Diagrams are clear

and help

understanding

Diagrams are

mostly clear and

do not sacrifice

understanding

Diagrams are mostly

confusing,

overwrought, or junk

No diagrams used

Naming All names follow

naming conventions,

are meaningful or

expressive, and

defined. Glossary is

complete.

Names are mostly

consistent in style

and expressive.

Isolated cases may

be overly terse or

ambiguous. No

glossary

Names are often are

cryptic or overly

terse, ambiguous or

misleading. No

glossary.

Names are cryptic; items

may be referred to by

multiple different names

or phrases. No glossary

is given.

Table 35: Readability

rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 184

96.2. ORGANIZATION AND CLARITY

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Documentation The documentation is

well written and

clearly explains what

the documentation is

accomplishing and

how, at an

appropriate level of

detail. All required

and most optional

elements are present,

and follows the

prescribed format.

The documentation

is not compelling;

consists of

embedded

comment and some

simple header

documentation that

is somewhat useful

in understanding

the documentation.

All files,

procedures, and

structures are

given an overview

statement.

The documentation is

simply comments

embedded in the code

and pretty-printed. Does

little to help the reader

understand the design.

No documentation.

Overview
statement

The overview is

given and explains

what the

documentation is

accomplishing.

The overview is

given, but is

minimal and is

only somewhat

useful in

understanding the

documentation.

The overview is not

given, or is not helpful

in understanding what

the documentation is to

accomplish.

No overview is given.

Top-Down
Design

Top-down design

method followed and

written in appropriate

detail.

Top-down method

followed, but level

of detail is too

vague or too exact.

Top-down design

method attempted, but

poorly executed.

No design.

Modularization &
Generalization

The description is

broken into well

thought out elements

that are of an

appropriate length,

scope and

independence.

Documentation

elements are

generally well

planned and

executed. Some

documentation is

repeated.

Individual

elements are often,

but not always,

written in a way

that invites reuse.

Documentation

elements are not well

thought out, are used in

a somewhat arbitrary

fashion, or do not

improve clarity.

Elements are seldom

written in a way that

invites reuse.

Reusability Individual elements

were developed in a

manner that actively

invites reuse in other

projects.

Most of the

documentation

could be reused in

other projects.

Some parts of the

documentation could be

reused in other projects.

The documentation is

not organized for

reusability.

Design &
Diagrams

A design tool or

diagram is correctly

used

A design or

diagram tool is

used but does not

entirely match text

A design or diagram

tool is used but is

incorrect.

No design or diagram

tool is used.

Identification All identifying

information is shown

in the documentation

Some identifying

information is

shown.

Only a small portion of

identifying information

is shown, and/or is not

correct.

No identifying

information is shown.

Table 36:

Documentation

organization and

clarity rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 185

97. DESIGN

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Overall design The design is elegant,

complete system

The design lacks

some critical

design

components;

simpler than

comparable

products

The design lacks many

critical design

components, is not

simpler than

comparable products

The design is lacking

most or all design

components, or is

excessively complex

Understanding Shows thorough

understanding of the

mission, the

components,

underlying

techniques and

science

Shows moderate

understanding of

the mission, the

components,

underlying

techniques and

science

Shows minimal

understanding of the

mission, the

components, underlying

techniques and science

Can’t describe what

the design will do,

shows little knowledge

of why some

components are

employed or

understanding of what

they do

Design, &
Structure

The design proceeds

in a clear and logical

manner. Structures

are used correctly.

The most appropriate

algorithms are used.

The design is

mostly clear and

logical. Structures

are used correctly.

Reasonable

algorithms are

employed.

The design isn’t as clear

or logical as it should

be. Structures are

occasionally used

incorrectly. Portions are

clearly inefficient or

unnecessarily

complicated.

The design is sparse or

appears to be patched

together. Requires

significant effort to

comprehend.

Modularization &
Generalization

The design is broken

into well thought out

components that are

of an appropriate

scale, scope and

independence.

Components are

generally well

planned and

executed.

Individual

components are

often, but not

always, written in

a way that invites

reuse.

Components are not

well thought out, are

used in a somewhat

arbitrary fashion, or do

not improve clarity.

Elements are seldom

written in a way that

invites reuse.

Cohesion All of the

components look like

they belong together.

Most of the

components look

like they belong

together.

Some of the

components look like

they belong together.

Few components look

like they belong

together.

Reusability Individual

components were

designed in a manner

that actively invites

reuse in other

projects.

Most of the

components could

be reused in other

projects.

Some parts of the

design could be reused

in other projects.

The design is not

organized for

reusability.

Efficiency The design is

extremely efficient,

using the best

approach in every

case.

The design is fairly

efficient at

completing most

tasks

The design uses poorly-

chosen approaches in at

least one place. For

example, the

documentation is brute

force

Many things in the

design could have

been accomplished in

an easier, faster, or

otherwise better

fashion.

Table 37:

Implementation rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 186

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Correctness Prioritization

properly based on

Rate Monotonic

Analysis. Performs

error checking in all

cases. Appropriately

bounded time checks

are used in all cases.

Resources are

appropriately sized.

Has potential or

obvious deadlocks.

Some operations

do not use time

limits or use limits

that are

inappropriate.

Does not check for

error/lack of

resources in some

case. Has

prioritization,

based on ad hoc

experience, not on

analysis. Mutexes

correctly used.

Semaphores may

overflow, or not

wake task

Has obvious deadlocks.

Does not use time limits

on operations. Doesn't

check for error, or lack

of resources. Resource

sizing is not based on

analysis. Has

prioritization, based on

ad hoc experience, not

on analysis.

Semaphores or mutexes

misused.

Has obvious

deadlocks. Does not

use time limits to

operations. Doesn't

check for error/lack of

resources. Resource

sizing is not based on

analysis. No

prioritization, not

based on analysis

Problem
Prevention

Communication /

resource utilization

has effective (or best

in class) collision

avoidance algorithms

Communication /

resource utilization

has some collision

avoidance

algorithm(s), but it

is not always

effective (or best

in class)

Communication /

resource utilization has

poorly thought out

collision avoidance

approach

Communication /

resource utilization has

no collision avoidance

algorithm

 Has fallback on

collision, reducing

further errors in all

cases

Has fallback on

collision, reducing

further errors in

most cases

Has fallback on

collision, but fails to

significantly reduces

collisions

Has no fallback on

collision

Safety Controls have been

identified from

analysis such as SIL

or FMEA. Device

handles

error/exception

circumstances

correctly. Device

engages safe

conditions in all

cases. Internal state

is monitored.

External sate is

monitored. Self-

checks are performed

correctly. Memory

and other internal

protection are

employed.

Internal state, such

as values and

Buffers are

checked. Output

monitoring is

employed. Self-

test is not

performed.

Some safe bounds are

used. Some value/range

checking is employed.

Some output monitoring

is employed.

No requirements, no

analysis, no action.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 187

APPENDIX H

Floating-point

precision

This appendix summarizes the limits of precision employing a floating-point representation.

Floats have some corner cases, and loss of precision.

 There is a -0 with floats. IEEE 754 requires that zeros be signed

 Floats can have signed infinity (+INF, and –INF)

 Floats can be NAN; there are several different encodings for NAN. (The exponent is

zero, and significand is non-zero)

 Division by zero can throw exception, and/or give a NAN as a result

 Division by non-zero numbers can also give a NAN, such as denormals.

 Due to subtleties of precision and other factors, two floating point values must not be

compared for equality or inequality using == or !=.

 Floats are not associative. The order of addition matters. Adding numbers in

different orders can give differing results.

 Float values can be correctly sorted by treating the format as 32 bit integers.

Parameter Value

maximum value 3.402823 × 1038

minimum value -3.402823 × 1038

From To Precision

−16777216 16777216 can be exactly represented

−33554432 −16777217 rounded to a multiple of two

16777217 33554432 rounded to a multiple of two

-2n+1 -2n -1 rounded to a multiple of 2n-23; n > 22

2n +1 2n+1 rounded to a multiple of 2n-23; n > 22

-∞ 2128 rounded to -INF

2128 ∞ rounded to +INF

Table 38: Float range

Table 39: Accuracy of

integer values

represented as a float

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 188

APPENDIX I

Code-Complete Code

Review Checklists

Source: https://github.com/janosgyerik/software-construction-notes/tree/master/checklists-all

98. CHECKLIST: EFFECTIVE INSPECTIONS

 Do you have checklists that focus reviewer attention on areas that have been problems in the past?

 Is the emphasis on defect detection rather than correction?

 Are inspectors given enough time to prepare before the inspection meeting, and is each one prepared?

 Does each participant have a distinct role to play?

 Does the meeting move at a productive rate?

 Is the meeting limited to two hours?

 Has the moderator received specific training in conducting inspections?

 Is data about error types collected at each inspection so that you can tailor future checklists to your

organization?

 Is data about preparation and inspection rates collected so that you can optimize future preparation and

inspections?

 Are the action items assigned at each inspection followed up, either personally by the moderator or

with a re-inspection?

 Does management understand that it should not attend inspection meetings?

99. CHECKLIST: HIGH-QUALITY ROUTINES

99.1. BIG-PICTURE ISSUES

 Is the reason for creating the routine sufficient?

 Have all parts of the routine that would benefit from being put into routines of their own been put into

routines of their own?

Adapted from

S T E V E N C .

M C C O N N E L L ,

C O D E C O M P L E T E ,

2 N D E D .

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is

Copyright (c) 1993-2004 Steven C. McConnell. Permission is hereby given to copy, adapt, and distribute

this material as long as this notice is included on all such materials and the materials are not sold,

licensed, or otherwise distributed for commercial gain.

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 189

 Is the routine's name a strong, clear verb-plus-object name for a procedure or a description of the

return value for a function?

 Does the routine's name describe everything the routine does?

 Have you established naming conventions for common operations?

 Does the routine have strong, functional cohesion – doing one and only one thing and doing it well?

 Do the routines have loose coupling – are the routine's connections to other routines small, intimate,

visible, and flexible?

 Is the length of the routine determined naturally by its function and logic, rather than by an artificial

coding standard?

99.2. PARAMETER-PASSING ISSUES

 Does the routine's parameter list, taken as a whole, present a consistent interface abstraction?

 Are the routine's parameters in a sensible order, including matching the order of parameters in similar

routines?

 Are interface assumptions documented?

 Does the routine have seven or fewer parameters?

 Is each input parameter used?

 Is each output parameter used?

 Does the routine avoid using input parameters as working variables?

 If the routine is a function, does it return a valid value under all possible circumstances?

100. CHECKLIST: DEFENSIVE PROGRAMMING

100.1. GENERAL

 Does the routine protect itself from bad input data?

 Have you used assertions to document assumptions, including preconditions and postconditions?

 Have assertions been used only to document conditions that should never occur?

 Does the architecture or high-level design specify a specific set of error handling techniques?

 Does the architecture or high-level design specify whether error handling should favor robustness or

correctness?

 Have barricades been created to contain the damaging effect of errors and reduce the amount of code

that has to be concerned about error processing?

 Have debugging aids been used in the code?

 Has information hiding been used to contain the effects of changes so that they won't affect code

outside the routine or class that is changed?

 Have debugging aids been installed in such a way that they can be activated or deactivated without a

great deal of fuss?

 Is the amount of defensive programming code appropriate – neither too much nor too little?

 Have you used offensive programming techniques to make errors difficult to overlook during

development?

100.2. EXCEPTIONS

 Has your project defined a standardized approach to exception handling?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 190

 Have you considered alternatives to using an exception?

 Is the error handled locally rather than throwing a non-local exception if possible?

 Does the code avoid throwing exceptions in constructors and destructors?

 Are all exceptions at the appropriate levels of abstraction for the routines that throw them?

 Does each exception include all relevant exception background information?

 Is the code free of empty catch blocks? (Or if an empty catch block truly is appropriate, is it

documented?)

100.3. SECURITY ISSUES

 Does the code that checks for bad input data check for attempted buffer overflows, SQL injection,

html injection, integer overflows, and other malicious inputs?

 Are all error-return codes checked?

 Are all exceptions caught?

 Do error messages avoid providing information that would help an attacker break into the system?

101. CHECKLIST: GENERAL CONSIDERATIONS IN USING DATA

101.1. INITIALIZING VARIABLES

 Does each routine check input parameters for validity?

 Does the code declare variables close to where they're first used?

 Does the code initialize variables as they're declared, if possible?

 Does the code initialize variables close to where they're first used, if it isn't possible to declare and

initialize them at the same time?

 Are counters and accumulators initialized properly and, if necessary, reinitialized each time they are

used?

 Are variables reinitialized properly in code that's executed repeatedly?

 Does the code compile with no warnings from the compiler?

 If your language uses implicit declarations, have you compensated for the problems they cause?

101.2. OTHER GENERAL ISSUES IN USING DATA

 Do all variables have the smallest scope possible?

 Are references to variables as close together as possible – both from each reference to a variable to the

next and in total live time?

 Do control structures correspond to the data types?

 Are all the declared variables being used?

 Are all variables bound at appropriate times, that is, striking a conscious balance between the

flexibility of late binding and the increased complexity associated with late binding?

 Does each variable have one and only one purpose?

 Is each variable's meaning explicit, with no hidden meanings?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 191

102. CHECKLIST: NAMING VARIABLES

102.1. GENERAL NAMING CONSIDERATIONS

 Does the name fully and accurately describe what the variable represents?

 Does the name refer to the real-world problem rather than to the programming-language solution?

 Is the name long enough that you don't have to puzzle it out?

 Are computed-value qualifiers, if any, at the end of the name?

 Does the name use Count or Index instead of Num? Naming Specific Kinds Of Data

 Are loop index names meaningful (something other than i, j, or k if the loop is more than one or two

lines long or is nested)?

 Have all “temporary” variables been renamed to something more meaningful?

 Are boolean variables named so that their meanings when they're True are clear?

 Do enumerated-type names include a prefix or suffix that indicates the category – for example, Color

for Color Red, Color Green, Color Blue, and so on?

 Are named constants named for the abstract entities they represent rather than the numbers they refer

to?

102.2. NAMING CONVENTIONS

 Does the convention distinguish among local, class, and global data?

 Does the convention distinguish among type names, named constants, enumerated types, and

variables?

 Does the convention identify input-only parameters to routines in languages that don't enforce them?

 Is the convention as compatible as possible with standard conventions for the language?

 Are names formatted for readability? Short Names

 Does the code use long names (unless it's necessary to use short ones)?

 Does the code avoid abbreviations that save only one character?

 Are all words abbreviated consistently?

 Are the names pronounceable?

 Are names that could be mispronounced avoided?

 Are short names documented in translation tables?

102.3. COMMON NAMING PROBLEMS: HAVE YOU AVOIDED...

 ...names that are misleading?

 ...names with similar meanings?

 ...names that are different by only one or two characters?

 ...names that sound similar?

 ...names that use numerals?

 ...names intentionally misspelled to make them shorter?

 ...names that are commonly misspelled in English?

 ...names that conflict with standard library-routine names or with predefined variable names?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 192

 ...totally arbitrary names?

 ...hard-to-read characters?

103. CHECKLIST: FUNDAMENTAL DATA

103.1. NUMBERS IN GENERAL

 Does the code avoid magic numbers?

 Does the code anticipate divide-by-zero errors?

 Are type conversions obvious?

 If variables with two different types are used in the same expression, will the expression be evaluated

as you intend it to be?

 Does the code avoid mixed-type comparisons?

 Does the program compile with no warnings?

103.2. INTEGERS

 Do expressions that use integer division work the way they're meant to?

 Do integer expressions avoid integer-overflow problems?

103.3. FLOATING-POINT NUMBERS

 Does the code avoid additions and subtractions on numbers with greatly different magnitudes?

 Does the code systematically prevent rounding errors?

 Does the code avoid comparing floating-point numbers for equality?

103.4. CHARACTERS AND STRINGS

 Does the code avoid magic characters and strings?

 Are references to strings free of off-by-one errors?

 Does C code treat string pointers and character arrays differently?

 Does C code follow the convention of declaring strings to be length constant+1?

 Does C code use arrays of characters rather than pointers, when appropriate?

 Does C code initialize strings to NULLs to avoid endless strings?

 Does C code use strncpy() rather than strcpy()? And strncat() and strncmp()?

103.5. BOOLEAN VARIABLES

 Does the program use additional boolean variables to document conditional tests?

 Does the program use additional boolean variables to simplify conditional tests?

103.6. ENUMERATED TYPES

 Does the program use enumerated types instead of named constants for their improved readability,

reliability, and modifiability?

 Does the program use enumerated types instead of boolean variables when a variable's use cannot be

completely captured with TRUE and FALSE?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 193

 Do tests using enumerated types test for invalid values?

 Is the first entry in an enumerated type reserved for “invalid”?

 Named Constants

 Does the program use named constants for data declarations and loop limits rather than magic

numbers?

 Have named constants been used consistently – not named constants in some places, literals in others?

103.7. ARRAYS

 Are all array indexes within the bounds of the array?

 Are array references free of off-by-one errors?

 Are all subscripts on multidimensional arrays in the correct order?

 In nested loops, is the correct variable used as the array subscript, avoiding loop-index cross talk?

103.8. CREATING TYPES

 Does the program use a different type for each kind of data that might change?

 Are type names oriented toward the real-world entities the types represent rather than toward

programming language types?

 Are the type names descriptive enough to help document data declarations?

 Have you avoided redefining predefined types?

 Have you considered creating a new class rather than simply redefining a type?

104. CHECKLIST: CONSIDERATIONS IN USING UNUSUAL DATA TYPES

104.1. STRUCTURES

 Have you used structures instead of naked variables to organize and manipulate groups of related

data?

 Have you considered creating a class as an alternative to using a structure?

104.2. GLOBAL DATA

 Are all variables local or class-scope unless they absolutely need to be global?

 Do variable naming conventions differentiate among local, class, and global data?

 Are all global variables documented?

 Is the code free of pseudo-global data-mammoth objects containing a mishmash of data that's passed

to every routine?

 Are access routines used instead of global data?

 Are access routines and data organized into classes?

 Do access routines provide a level of abstraction beyond the underlying data-type implementations?

 Are all related access routines at the same level of abstraction?

104.3. POINTERS

 Are pointer operations isolated in routines?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 194

 Are pointer references valid, or could the pointer be dangling?

 Does the code check pointers for validity before using them?

 Is the variable that the pointer references checked for validity before it's used?

 Are pointers set to NULL after they're freed?

 Does the code use all the pointer variables needed for the sake of readability?

 Are pointers in linked lists freed in the right order?

 Does the program allocate a reserve parachute of memory so that it can shut down gracefully if it runs

out of memory?

 Are pointers used only as a last resort, when no other method is available?

105. CHECKLIST: ORGANIZING STRAIGHT LINE CODE

 Does the code make dependencies among statements obvious?

 Do the names of routines make dependencies obvious?

 Do parameters to routines make dependencies obvious?

 Do comments describe any dependencies that would otherwise be unclear?

 Have housekeeping variables been used to check for sequential dependencies in critical sections of

code?

 Does the code read from top to bottom?

 Are related statements grouped together?

 Have relatively independent groups of statements been moved into their own routines?

106. CHECKLIST: CONDITIONALS

106.1. IF-THEN STATEMENTS

 Is the nominal path through the code clear?

 Do if-then tests branch correctly on equality?

 Is the else clause present and documented?

 Is the else clause correct?

 Are the if and else clauses used correctly – not reversed?

 Does the normal case follow the if rather than the else?

 if-then-else-if Chains

 Are complicated tests encapsulated in boolean function calls?

 Are the most common cases tested first?

 Are all cases covered?

 Is the if-then-else-if chain the best implementation – better than a case statement?

 case Statements

 Are cases ordered meaningfully?

 Are the actions for each case simple-calling other routines if necessary?

 Does the case statement test a real variable, not a phony one that's made up solely to use and abuse the

case statement?

 Is the use of the default clause legitimate?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 195

 Is the default clause used to detect and report unexpected cases?

 In C, C++, or Java, does the end of each case have a break?

107. CHECKLIST: LOOPS

107.1. LOOP SELECTION AND CREATION

 Is a while loop used instead of a for loop, if appropriate?

 Was the loop created from the inside out?

107.2. ENTERING THE LOOP

 Is the loop entered from the top?

 Is initialization code directly before the loop?

 If the loop is an infinite loop or an event loop, is it constructed cleanly rather than using a kludge such

as for i = 1 to 9999?

 If the loop is a C++, C, or Java for loop, is the loop header reserved for loop-control code?

107.3. INSIDE THE LOOP

 Does the loop use { and } or their equivalent to prevent problems arising from improper

modifications?

 Does the loop body have something in it? Is it nonempty?

 Are housekeeping chores grouped, at either the beginning or the end of the loop?

 Does the loop perform one and only one function – as a well-defined routine does?

 Is the loop short enough to view all at once?

 Is the loop nested to three levels or less?

 Have long loop contents been moved into their own routine?

 If the loop is long, is it especially clear?

107.4. LOOP INDEXES

 If the loop is a for loop, does the code inside it avoid monkeying with the loop index?

 Is a variable used to save important loop-index values rather than using the loop index outside the

loop?

 Is the loop index an ordinal type or an enumerated type – not floating point?

 Does the loop index have a meaningful name?

 Does the loop avoid index cross talk?

107.5. EXITING THE LOOP

 Does the loop end under all possible conditions?

 Does the loop use safety counters – if you've instituted a safety-counter standard?

 Is the loop's termination condition obvious?

 If break or continue are used, are they correct?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 196

108. CHECKLIST: UNUSUAL CONTROL STRUCTURES

108.1. RETURN

 Does each routine use return only when necessary?

 Do returns enhance readability?

108.2. RECURSION

 Does the recursive routine include code to stop the recursion?

 Does the routine use a safety counter to guarantee that the routine stops?

 Is recursion limited to one routine?

 Is the routine's depth of recursion within the limits imposed by the size of the program's stack?

 Is recursion the best way to implement the routine? Is it better than simple iteration?

108.3. GOTO

 Are gotos used only as a last resort, and then only to make code more readable and maintainable?

 If a goto is used for the sake of efficiency, has the gain in efficiency been measured and documented?

 Are gotos limited to one label per routine?

 Do all gotos go forward, not backward?

 Are all goto labels used?

109. CHECKLIST: TABLE DRIVEN METHODS

 Have you considered table-driven methods as an alternative to complicated logic?

 Have you considered table-driven methods as an alternative to complicated inheritance structures?

 Have you considered storing the table's data externally and reading it at run time so that the data can

be modified without changing code?

 If the table cannot be accessed directly via a straightforward array index (as in the Age example), have

your put the access-key calculation into a routine rather than duplicating the index calculation in the

code?

110. CHECKLIST: CONTROL STRUCTURE ISSUES

 Do expressions use True and False rather than 1 and 0?

 Are boolean values compared to True and False implicitly?

 Are numeric values compared to their test values explicitly?

 Have expressions been simplified by the addition of new boolean variables and the use of boolean

functions and decision tables?

 Are boolean expressions stated positively?

 Do pairs of braces balance?

 Are braces used everywhere they're needed for clarity?

 Are logical expressions fully parenthesized?

 Have tests been written in number-line order?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 197

 Do Java tests uses a.equals(b) style instead of a == b when appropriate?

 Are null statements obvious?

 Have nested statements been simplified by retesting part of the conditional, converting to if-then-else

or case statements, moving nested code into its own routine, converting to a more object-oriented

design, or improved in some other way?

 If a routine has a decision count of more than 10, is there a good reason for not redesigning it?

111. REFACTORING

111.1. REASONS TO REFACTOR

 Code is duplicated

 A routine is too long

 A loop is too long or too deeply nested

 A class has poor cohesion

 A class interface does not provide a consistent level of abstraction

 A parameter list has too many parameters

 Changes within a class tend to be compartmentalized

 Changes require parallel modifications to multiple classes

 Inheritance hierarchies have to be modified in parallel

 Related data items that are used together are not organized into classes

 A routine uses more features of another class than of its own class

 A primitive data type is overloaded

 A class doesn't do very much

 A chain of routines passes tramp data

 A middle man object isn't doing anything

 One class is overly intimate with another

 A routine has a poor name

 Data members are public

 A subclass uses only a small percentage of its parents' routines

 Comments are used to explain difficult code

 Global variables are used

 A routine uses setup code before a routine call or takedown code after a routine call

 A program contains code that seems like it might be needed someday

111.2. DATA LEVEL REFACTORINGS

 Replace a magic number with a named constant

 Rename a variable with a clearer or more informative name

 Move an expression inline

 Replace an expression with a routine

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 198

 Introduce an intermediate variable

 Convert a multi-use variable to a multiple single-use variables

 Use a local variable for local purposes rather than a parameter

 Convert a data primitive to a class

 Convert a set of type codes to a class

 Convert a set of type codes to a class with subclasses

 Change an array to an object

 Encapsulate a collection

 Replace a traditional record with a data class

111.3. STATEMENT LEVEL REFACTORINGS

 Decompose a boolean expression

 Move a complex boolean expression into a well-named boolean function

 Consolidate fragments that are duplicated within different parts of a conditional

 Use break or return instead of a loop control variable

 Return as soon as you know the answer instead of assigning a return value within nested if-then-else

statements

 Replace conditionals with polymorphism (especially repeated case statements)

 Create and use null objects instead of testing for null values

 Routine Level Refactorings

 Extract a routine

 Move a routine's code inline

 Convert a long routine to a class

 Substitute a simple algorithm for a complex algorithm

 Add a parameter

 Remove a parameter

 Separate query operations from modification operations

 Combine similar routines by parameterizing them

 Separate routines whose behavior depends on parameters passed in

 Pass a whole object rather than specific fields

 Pass specific fields rather than a whole object

 Encapsulate downcasting

111.4. CLASS IMPLEMENTATION REFACTORINGS

 Change value objects to reference objects

 Change reference objects to value objects

 Replace virtual routines with data initialization

 Change member routine or data placement

 Extract specialized code into a subclass

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 199

 Combine similar code into a superclass

111.5. CLASS INTERFACE REFACTORINGS

 Move a routine to another class

 Convert one class to two

 Eliminate a class

 Hide a delegate

 Replace inheritance with delegation

 Replace delegation with inheritance

 Remove a middle man

 Introduce a foreign routine

 Introduce a class extension

 Encapsulate an exposed member variable

 Remove Set() routines for fields that cannot be changed

 Hide routines that are not intended to be used outside the class

 Encapsulate unused routines

 Collapse a superclass and subclass if their implementations are very similar

111.6. SYSTEM LEVEL REFACTORINGS

 Duplicate data you can't control

 Change unidirectional class association to bidirectional class association

 Change bidirectional class association to unidirectional class association

 Provide a factory routine rather than a simple constructor

 Replace error codes with exceptions or vice versa

111.7. CHECKLIST: REFACTORING SAFELY

 Is each change part of a systematic change strategy?

 Did you save the code you started with before beginning refactoring?

 Are you keeping each refactoring small?

 Are you doing refactorings one at a time?

 Have you made a list of steps you intend to take during your refactoring?

 Do you have a parking lot so that you can remember ideas that occur to you mid-refactoring?

 Have you retested after each refactoring?

 Have changes been reviewed if they are complicated or if they affect mission-critical code?

 Have you considered the riskiness of the specific refactoring, and adjusted your approach

accordingly?

 Does the change enhance the program's internal quality rather than degrading it?

 Have you avoided using refactoring as a cover for code and fix or as an excuse for not rewriting bad

code?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 200

112. CHECKLIST: CODE-TUNING TECHNIQUES

112.1. IMPROVE BOTH SPEED AND SIZE

 Substitute table lookups for complicated logic

 Jam loops

 Use integer instead of floating-point variables

 Initialize data at compile time

 Use constants of the correct type

 Precompute results

 Eliminate common subexpressions

 Translate key routines to assembler

112.2. IMPROVE SPEED ONLY

 Stop testing when you know the answer

 Order tests in case statements and if-then-else chains by frequency

 Compare performance of similar logic structures

 Use lazy evaluation

 Unswitch loops that contain if tests

 Unroll loops

 Minimize work performed inside loops

 Use sentinels in search loops

 Put the busiest loop on the inside of nested loops

 Reduce the strength of operations performed inside loops

 Change multiple-dimension arrays to a single dimension

 Minimize array references

 Augment data types with indexes

 Cache frequently used values

 Exploit algebraic identities

 Reduce strength in logical and mathematical expressions

 Be wary of system routines

 Rewrite routines in line

113. CHECKLIST: LAYOUT

113.1. GENERAL

 Is formatting done primarily to illuminate the logical structure of the code?

 Can the formatting scheme be used consistently?

 Does the formatting scheme result in code that's easy to maintain?

 Does the formatting scheme improve code readability?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 201

113.2. CONTROL STRUCTURES

 Does the code avoid doubly indented begin-end or {} pairs?

 Are sequential blocks separated from each other with blank lines?

 Are complicated expressions formatted for readability?

 Are single-statement blocks formatted consistently?

 Are case statements formatted in a way that's consistent with the formatting of other control

structures?

 Have gotos been formatted in a way that makes their use obvious?

113.3. INDIVIDUAL STATEMENTS

 Is white space used to make logical expressions, array references, and routine arguments readable?

 Do incomplete statements end the line in a way that's obviously incorrect?

 Are continuation lines indented the standard indentation amount?

 Does each line contain at most one statement?

 Is each statement written without side effects?

 Is there at most one data declaration per line?

113.4. COMMENTS

 Are the comments indented the same number of spaces as the code they comment?

 Is the commenting style easy to maintain?

113.5. ROUTINES

 Are the arguments to each routine formatted so that each argument is easy to read, modify, and

comment?

 Are blank lines used to separate parts of a routine?

113.6. CLASSES, FILES AND PROGRAMS

 Is there a one-to-one relationship between classes and files for most classes and files?

 If a file does contain multiple classes, are all the routines in each class grouped together and is the

class clearly identified?

 Are routines within a file clearly separated with blank lines?

 In lieu of a stronger organizing principle, are all routines in alphabetical sequence?

114. CHECKLIST: GOOD COMMENTING TECHNIQUE

114.1. GENERAL

 Can someone pick up the code and immediately start to understand it?

 Do comments explain the code's intent or summarize what the code does, rather than just repeating the

code?

 Is the Pseudocode Programming Process used to reduce commenting time?

 Has tricky code been rewritten rather than commented?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 202

 Are comments up to date?

 Are comments clear and correct?

 Does the commenting style allow comments to be easily modified?

114.2. STATEMENTS AND PARAGRAPHS

 Does the code avoid endline comments?

 Do comments focus on why rather than how?

 Do comments prepare the reader for the code to follow?

 Does every comment count? Have redundant, extraneous, and self-indulgent comments been removed

or improved?

 Are surprises documented?

 Have abbreviations been avoided?

 Is the distinction between major and minor comments clear?

 Is code that works around an error or undocumented feature commented?

114.3. DATA DECLARATIONS

 Are units on data declarations commented?

 Are the ranges of values on numeric data commented?

 Are coded meanings commented?

 Are limitations on input data commented?

 Are flags documented to the bit level?

 Has each global variable been commented where it is declared?

 Has each global variable been identified as such at each usage, by a naming convention, a comment,

or both?

 Are magic numbers replaced with named constants or variables rather than just documented?

114.4. CONTROL STRUCTURES

 Is each control statement commented?

 Are the ends of long or complex control structures commented or, when possible, simplified so that

they don't need comments?

114.5. ROUTINES

 Is the purpose of each routine commented?

 Are other facts about each routine given in comments, when relevant, including input and output data,

interface assumptions, limitations, error corrections, global effects, and sources of algorithms?

114.6. FILES, CLASSES, AND PROGRAMS

 Does the program have a short document such as that described in the Book Paradigm that gives an

overall view of how the program is organized?

 Is the purpose of each file described?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 203

 Are the author's name, email address, and phone number in the listing?

115. CHECKLIST: SELF-DOCUMENTING CODE

115.1. CLASSES

 Does the class's interface present a consistent abstraction?

 Is the class well named, and does its name describe its central purpose?

 Does the class's interface make obvious how you should use the class?

 Is the class's interface abstract enough that you don't have to think about how its services are

implemented?

 Can you treat the class as a black box?

115.2. ROUTINES

 Does each routine's name describe exactly what the routine does?

 Does each routine perform one well-defined task?

 Have all parts of each routine that would benefit from being put into their own routines been put into

their own routines?

 Is each routine's interface obvious and clear?

115.3. DATA NAMES

 Are type names descriptive enough to help document data declarations?

 Are variables named well?

 Are variables used only for the purpose for which they're named?

 Are loop counters given more informative names than i, j, and k?

 Are well-named enumerated types used instead of makeshift flags or boolean variables?

 Are named constants used instead of magic numbers or magic strings?

 Do naming conventions distinguish among type names, enumerated types, named constants, local

variables, class variables, and global variables?

115.4. DATA ORGANIZATION

 Are extra variables used for clarity when needed?

 Are references to variables close together?

 Are data types simple so that they minimize complexity?

 Is complicated data accessed through abstract access routines (abstract data types)?

115.5. CONTROL

 Is the nominal path through the code clear?

 Are related statements grouped together?

 Have relatively independent groups of statements been packaged into their own routines?

 Does the normal case follow the if rather than the else?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 204

 Are control structures simple so that they minimize complexity?

 Does each loop perform one and only one function, as a well-defined routine would?

 Is nesting minimized?

 Have boolean expressions been simplified by using additional boolean variables, boolean functions,

and decision tables?

115.6. LAYOUT

 Does the program's layout show its logical structure?

115.7. DESIGN

 Is the code straightforward, and does it avoid cleverness?

 Are implementation details hidden as much as possible?

 Is the program written in terms of the problem domain as much as possible rather than in terms of

computer-science or programming-language structures?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 205

APPENDIX J

Code Review Rubric

This appendix describes the rating of source code workmanship.

Note: This was inspired by numerous sources including the First Lego League Coaches

Handlbook, and school grading rubrics.

116. SOFTWARE READABILITY RUBRIC

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Coding Style Coding style is

checked at code

reviews, automated

tools are used to

ensure consistent

formatting; audits

 Program manager has

ensured that the

development team has

followed a set of

coding standards

No check that software

team has and is

following coding

standards

Consistency Coding style

guidelines are

followed correctly.

Coding style

guidelines are

almost always

followed correctly.

Coding style

guidelines are not

followed. Style guide

may be inadequate.

Does not match style

guide; style guide may

not exist.

Organization The code is

exceptionally well

organized

The code is

logically

organized.

The code is poorly

organized

The code is disorganized

Readability The code is very easy

to follow,

understandable, is

clean, is easy to

maintain, and has no

errors

The code is fairly

easy to read. Minor

issues with

consistent

indentation, use of

whitespace,

variable naming,

or general

organization.

The code is readable

only by someone who

knows what it is

supposed to be doing.

At least one major

issue with indentation,

whitespace, variable

names, or

organization.

The code is poorly

organized and very

difficult to read. Major

problems with at three or

four of the readability

subcategories.

Indentation /
white spaces

Indentation and

whitespace follows

coding style, and is

not distracting.

Minor issues with

consistent

indentation, use of

whitespace.

At least one major

issue with indentation,

whitespace.

The code is poorly

organized and very

difficult to read.

Naming All names follow

naming conventions,

are meaningful or

expressive without

being verbose, and

documented. Data

dictionary is

complete.

Names are mostly

consistent in style

and expressive.

Isolated cases may

be verbose, overly

terse or

ambiguous. No

data dictionary

Names are

occasionally verbose,

but often are cryptic

or overly terse,

ambiguous or

misleading. No data

dictionary.

Variable names are

cryptic and no data

dictionary is shown.

Table 40: Readability

rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 206

117. SOFTWARE COMMENTS & DOCUMENTATION

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Comments Code is well-

commented.

One or two places

that could benefit

from comments are

missing them or

the code is overly

commented.

File header missing,

lack of comments or

meaningful comments.

No file header or

comments present.

Initial Comments Initial comments are

complete. Internal

documentation is

complete and well

suited to the program

Initial comments

are complete but

internal

documentation is

in some small

fashion inadequate.

Initial comments are

incomplete or internal

documentation is

inadequate.

No internal

documentation

Coding
Comments

Every line is

commented.

Comments clarify

meaning.

Many comments

are present, in

correct format.

Comments usually

clarity meaning.

Unhelpful

comments may

exist.

Some comments exist,

but are frequently

unhelpful or

occasionally

misleading; may use an

incorrect format.

Complicated lines or

sections of code

uncommented or

lacking meaningful

comments. Comments

do not help the reader

understand the code.

No comments

Documentation The documentation is

well written and

clearly explains what

the code is

accomplishing and

how, at an

appropriate level of

detail. All required

and most optional

elements are present,

and follows the

prescribed format.

The documentation

is not compelling;

consists of

embedded

comment and some

simple header

documentation that

is somewhat useful

in understanding

the code. All files,

procedures, and

structures are given

an overview

statement.

The documentation is

simply comments

embedded in the code

with some header

comments separating

routines. Does little to

help the reader

understand the code.

No documentation.

There might be

comments embedded

in the code with some

simple header

comments separating

routines. Does not help

the reader understand

the code.

Overview
statement

The overview is

given and explains

what the code is

accomplishing.

The overview is

given, but is

minimal and is

only somewhat

useful in

understanding the

code.

The overview is not

given, or is not helpful

in understanding what

the code is to

accomplish.

No overview is given.

Top-Down
Design

Top-down design

method followed and

written in appropriate

detail.

Top-down method

followed, but level

of detail is too

vague or too exact.

Top-down design

method attempted, but

poorly executed.

No design.

Design &
Diagrams

A design tool or

diagram is correctly

used

A design or

diagram tool is

used but does not

entirely match

A design or diagram

tool is used but is

incorrect.

No design or diagram

tool is used.

Table 41: Comments

and documentation

rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 207

code

Identification All identifying

information is shown

in the documentation

Some identifying

information is

shown.

Only a small portion of

identifying information

is shown, and/or is not

correct.

No identifying

information is shown.

118. IMPLEMENTATION

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Syntax/runtime
/logic errors

The program contains

no errors.

The program has

no major errors.

Program executes but

has errors.

Program does not

execute.

Modularization &
Generalization

Program is broken

into well thought out

elements that are of

an appropriate length,

scope and

independence.

Code elements are

generally well

planned and

executed. Some

code is repeated

that should be

encapsulated.

Individual

elements are often,

but not always,

written in a way

that invites code

reuse.

Code elements are not

well thought out, are

used in a somewhat

arbitrary fashion, or do

not improve program

clarity. Elements are

seldom written in a way

that invites code reuse.

Reusability Individual elements

were developed in a

manner that actively

invites reuse in other

projects.

Most of the

routines could be

reused in other

programs.

Some parts of the code

could be reused in other

programs.

The code is not

organized for

reusability.

Design, &
Structure

Program is designed

in a clear and logical

manner. Control

structures are used

correctly. The most

appropriate

algorithms are used,

in a manner that does

not sacrifice

readability or

understanding

Program is mostly

clear and logical.

Control structures

are used correctly.

Reasonable

algorithms are

implemented, in a

manner that does

not sacrifice

readability or

understanding

Program isn’t as clear

or logical as it should

be. Control structures

are occasionally used

incorrectly. Steps that

are clearly inefficient or

unnecessarily long are

used.

The code is huge and

appears to be patched

together. Requires

significant effort to

comprehend.

Emulation has a whole system

emulation

can emulate

significant parts,

individually

in concept could

emulate

no emulation

Efficiency The code is

extremely efficient,

using the best

approach in every

case.

The code is fairly

efficient at

completing most

tasks

Code uses poorly-

chosen approaches in at

least one place. For

example, the code is

brute force

Many things in the

code could have been

accomplished in an

easier, faster, or

otherwise better

fashion.

Consistency Program behaves in a

consistent,

predictable fashion,

even for complex

tasks

Mostly predictable Somewhat

unpredictable

unpredictable

Table 42:

Implementation rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 208

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Operating
bounds

The code and design

has been reviewed by

independent experts

for arithmetic issues.

Appropriate analysis

tools have been used.

A sizable body of test

cases and tests have

been applied against

the code.

The code and

design has been

reviewed by

independent

experts for

resource arithmetic

issues.

The Designer has

ensured that the

implementation is not

vulnerable to arithmetic

issues.

No one has checked

for arithmetic issues

 The code and design

has been reviewed by

independent experts

for buffer overflow

issues. Appropriate

analysis tools have

been used. A sizable

body of test cases and

tests have been

applied against the

code.

The code and

design has been

reviewed by

independent

experts for buffer

overflow issues.

The Designer has

ensured that the

implementation is not

vulnerable to buffer

overflow issues.

No one has checked

for overflow issues

 The code and design

has been reviewed by

independent experts

for resource

exhaustion.

Appropriate analysis

tools have been used.

A sizable body of test

cases and tests have

been applied against

the code.

The code and

design has been

reviewed by

independent

experts for

resource

exhaustion issues.

The Designer has

ensured that the

implementation is not

vulnerable to resource

exhaustion issues.

No one has checked

for overflow issues

 The code and design

has been reviewed by

independent experts

for race conditions.

Appropriate analysis

tools have been used.

A sizable body of test

cases and tests have

been applied against

the code.

The code and

design has been

reviewed by

independent

experts for race

conditions

The Designer has

ensured that the

implementation is not

vulnerable to race

conditions.

No one has checked

for race conditions

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 209

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Correctness Prioritization

properly based on

Rate Monotonic

Analysis. Performs

error checking in all

cases. Appropriately

bounded time checks

are used in all cases.

Resources are

appropriately sized.

Has potential or

obvious deadlocks.

Some operations

do not usetime

limits or use limits

that are too long.

Does not check for

error/lack of

resources in some

case. Has

prioritization,

based on ad hoc

experience, not on

analysis. Mutexes

correctly used.

Semaphores may

overflow, or not

wake task

Has obvious deadlocks.

Does not use time limits

on operations. Doesn't

check for error, or lack

of resources. Resource

sizing is not based on

analysis. Has

prioritization, based on

ad hoc experience, not

on analysis.

Semaphores or mutexes

misused.

Has obvious

deadlocks. Does not

use time limits to

operations. Doesn't

check for error/lack of

resources. Resource

sizing is not based on

analysis. No

prioritization, not

based on analysis

Problem
Prevention

Communication /

resource utilization

has effective (or best

in class) collision

avoidance algorithms

Communication /

resource utilization

has some collision

avoidance

algorithm(s), but it

is not always

effective (or best

in class)

Communication /

resource utilization has

poorly thought out

collision avoidance

approach

Communication /

resource utilization has

no collision avoidance

algorithm

 Has fallback on

collision, reducing

further errors in all

cases

Has fallback on

collision, reducing

further errors in

most cases

Has fallback on

collision, but fails to

significantly reduces

collisions

Has no fallback on

collision

Safety Controls have been

identified from

analysis such as SIL

or FMEA. Device

handles

error/exception

circumstances

correctly. Device

engages safe

conditions in all

cases. Internal state

is monitored.

External sate is

monitored. Self-

checks are performed

correctly. Memory

and other internal

protection are

employed.

Internal state, such

as values and

Buffers are

checked. Output

monitoring is

employed. Self-

test is not

performed.

Some safe bounds are

used. Some value/range

checking is employed.

Some output monitoring

is employed.

No requirements, no

analysis, no action.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 210

119. ERROR HANDLING

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Robustness Program handles

erroneous or

unexpected input

gracefully; action is

taken without

surprises

All obvious error

conditions are

checked for and

appropriate action

is taken.

Some, but not sufficient

portion of, obvious

error conditions are

checked for with an

appropriate action is

taken.

Many obvious error

conditions are not

checked. Or, if

checked, appropriate

action is not taken.

PID Control Is stable and free of

oscillation (low and

high frequency) for

all manner of

conditions and

disturbances

Is stable and free

of oscillation for

most conditions

and disturbances;

may have some

high-pitch whine

or oscillation for

boundary

conditions

Is occasionally

approximately correct,

frequently has

oscillation or is easily

disturbed

Has high oscillation,

high degree of error.

Testing Testing is complete

without being

redundant. All

boundary cases are

considered and

tested.

All key items are

tested, but testing

may be redundant.

Nearly all

boundary cases are

considered and

tested.

Testing was done, but is

not sufficiently

complete. Most

boundary cases are

considered and tested.

Testing has not been

done

120. BEHAVIOUR

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Analysis of
comm and IPC
network

full structural

analysis of all

software systems as a

network

Structural analysis

of only IPC, or

communication

section.

structural analysis of

one unit software

no structural analysis

Communication
overload

Handles overload in a

graceful fashion, with

predicable/defined

behaviour, including

honoring time

bounds, priority order

of responses to

messages, and

dropping messages &

disabling services.

Thrashes on

overload.

Inefficient slow

responses

Communication fails;

does not hold safe state;

is not responsive;

crashes, or sends

erroneous behaviour.

Runs out of resources.

Critical behaviours are

missed.

crashes on overload

Interrupt / Event
overload

Handles overload in a

graceful fashion, with

predicable/defined

behaviour, including

honoring time

bounds, priority order

of responses and

dropping messages &

disabling services.

Thrashes on

overload.

Inefficient slow

responses

Communication fails;

does not hold safe state;

is not responsive;

crashes, or sends

erroneous behaviour.

Runs out of resources.

Critical behaviours are

missed.

crashes on overload

Table 43: Error

handling rubric

Table 44: Behaviour

rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 211

References &

Resources

Note: most references appear in the margins, significant references will appear at the end of

their respective chapter.

121. REFERENCE DOCUMENTATION AND RESOURCES

121.1. OVERALL SOFTWARE CRAFTSMANSHIP

McConnell, Steve “Code Complete” 2ed 2004

IEEE Computer Society, SWEBOK Guide to the Software Engineering Body of Knowledge,

version 3, 2014

IEEE Std 1044-2009 IEEE Standard Classification for Software Anomalies, IEEE-SA

Standards Board, 2009 Nov 9

121.2. SOFTWARE SAFETY

Joint Software Systems Safety Committee, “Software System Safety Handbook,” 2000-Dec

Joint Software Systems Safety Engineering Workgroup, “Joint Software Systems Safety

Engineering Handbook,” Rev 1 2010-Aug-27

While both cover much the same material – although the second has more material. I

prefer the style of the earlier edition.

MOD Defence Standard 0058 Requirements for Safety Related Software in Defence

Equipment. 1996 UK Ministry of Defence

MOD Interim Defence Standard 08-58 Issues 1: HAZOP Studies on Systems Containing SAE

ARP 4761 Guidelines and methods for conducting the safety assessment process on Civil

Airborne Systems and Equipment. 1996 Society of Automotive Engineers.

Programmable Electronics 1996 UK Ministry of Defence

UCRL-ID-122514, Lawrence, J Dennis “Software Safety Hazard Analysis” Rev 2, U.S.

Nuclear Regulatory Commission, 1995-October

121.3. OTHER

ISO/IEC/IEEE 60559:2011 “Information technology – Microprocessor Systems – Floating-

Point arithmetic”

Miktijuk et al, V.G. Mikitjuk, V.N. Yarmolik, A.J. van de Goor, RAM Testing Algorithm for

Detection Linked Coupling Faults, IEEE 1996

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 212

A

activity · 27, 47, 98
addressing · 45, 74
analog

ADC · 45, 94, 121, 144, 149, 150
input · 45, 83, 84, 85, 96
output · 45, 83, 85, 86, 87, 88

DAC · 149
Apple · 158
application logic · 44, 92, 150
authentication · 58

B

battery · 9, 159, 163
bitband · 81, 150
Bluetooth LE

central · 176, 182, 203
peripheral · 69, 80, 111, 142, 145, 150, 151, 152
product id · 13

bonding · 162
BSP · 45, 69, 149

configuration · 46
buffer · 60, 66, 71, 73, 74, 79, 80, 95, 96, 112, 130,

143, 146, 190, 208

C

camera · 175
certification · 11, 14, 71, 150
characteristic

notification & indication · 9, 35, 59, 60, 84, 85,
86, 87, 88, 94, 144, 152, 163, 168

clock · 94, 142, 144, 145, 152
coding style guide · 1, 14, 18, 105, 139, 150, 178,

189, 205
control

protective control · 153
control function · 17, 18, 151, 153, 156
conversion · 17, 39, 86, 129, 166
counter · 110, 195, 196
CPU · 80, 82, 83, 84, 85, 86, 111, 123, 130

registers · 46, 69, 79, 80, 81, 103, 111, 112, 140,
152, 162, 169

CRC · 59, 90, 95, 143, 145, 149, 175

D

debounce · 83, 151
defect · i, 18, 78, 151, 164, 179, 182, 188

diagnostic · 84, 85, 86, 87, 88, 151
digital

input · 39, 45, 46, 83, 84, 157
output · 80, 81, 83

DMA · 94, 96, 142, 144, 146, 149

E

engine · 80
enumeration · 64, 77, 78, 122, 162
exception · 81, 82, 111, 119, 121, 122, 131, 145,

151, 168, 186, 187, 189, 190, 209
external communication · 171

F

failure · 20, 49, 72, 82, 99, 143, 151, 155, 172
fault · 20, 73, 82, 96, 119, 121, 122, 143, 150, 151,

152, 162, 168, 174, 180
internal fault · 152

fault tolerant · 151
field-oriented control · 29, 54
filter · 17, 39, 42, 86, 87, 88, 96, 146

IIR · 45, 83, 167

G

gate · 134
GPIO · 45, 81, 112, 121, 142, 149

H

handle · 53, 58, 77, 78, 80, 120, 142, 146, 167, 169,
186, 209, 210

hour · 64, 188
hysteresis · 132

I

I
2
C · 29, 48, 80, 99, 149

initialization · 30, 49, 123, 142, 152, 195, 198
integrity check · 95, 152
internal fault condition · 152
interrupt · 48, 67, 68, 79, 80, 81, 82, 94, 96, 110,

111, 120, 121, 122, 123, 145, 146, 149, 151
IRQ · 68, 120, 149

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 213

L

log · 129, 130, 132, 162
logic · 44, 45, 92, 139, 150, 153, 159, 189, 196, 200,

207

M

mode
disabled · 9, 41, 82, 94, 96, 130, 143, 145, 146

model · ii, 8, 16, 21, 43, 92, 111, 112, 153, 176
motor · 28, 48, 54, 99, 151, 157

N

NMI · 82, 149, 152, 162
notification & indication · 59, 94, 144
NVRAM · 149

erase · 95, 143
flash · 151

O

operating conditions · 19, 97, 141, 151
abnormal · 150, 151, 153
allowed · 150

P

pairing · 162
peripheral lock · 152
polynomial · 83
power management · 43, 92, 95, 152
power supervisor · 94, 152
PWM · 94, 145, 149

Q

qualifier
const · 68, 109, 111, 112, 119, 120, 124, 139, 141
volatile · 80, 89, 92, 95, 111, 112, 121, 124, 127,

141, 143, 144, 149, 151, 152, 165, 166

R

RAM · 150, 152
requirement · 9, 11, 12, 13, 18, 19, 20, 23, 24, 25,

26, 27, 30, 31, 40, 47, 49, 58, 66, 70, 71, 79, 90,
98, 99, 106, 107, 108, 110, 111, 113, 115, 118,
119, 120, 121, 122, 123, 127, 131, 150, 151, 152,

153, 154, 158, 162, 166, 172, 174, 178, 184, 187,
206

reset · 76, 77, 82, 94, 95, 133, 143, 145, 152, 154,
169

S

safety requirements · 15, 18, 45, 136
safety-critical function · 17, 18, 43, 153, 155
safety-related control functions · 17, 18, 153
safety-related function · 153
sampling · 96, 146, 155
self-test · 16, 94, 145, 152, 165
service · 20, 67, 68, 82, 90, 120, 121, 123, 149, 150,

151, 154, 155, 176, 203, 210
settings · 9, 38, 41, 45, 164, 168
signal · 29, 30, 42, 43, 48, 52, 53, 72, 73, 78, 79, 83,

86, 87, 88, 89, 92, 94, 96, 114, 117, 146, 150, 151,
153

single event upset · 153
SPI · 80, 150
SRAM

parity check · 152
state · 12, 17, 24, 29, 31, 44, 45, 53, 65, 66, 77, 78,

82, 84, 85, 86, 94, 95, 96, 99, 110, 121, 122, 139,
145, 151, 152, 153, 162, 169, 170, 186, 209, 210

storage · 53, 66, 72, 73, 74, 75, 78, 79, 80, 89, 90,
95, 103, 111, 112, 119, 122, 123, 130, 141, 143,
144, 145, 149, 150, 151, 152, 162, 165, 166, 167,
172, 194
data retention · 151
mirror · 75, 76, 77
protection · 90, 95, 149

supervisor · 43, 142, 144

T

temperature · 132, 142, 150
test monitoring · 154
testing · 10, 13, 14, 17, 20, 26, 35, 36, 44, 45, 51, 62,

69, 72, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 94,
98, 117, 130, 150, 152, 154, 155, 160, 161, 162,
164, 172, 175, 177, 178, 179, 181, 182, 186, 193,
194, 196, 198, 200, 208, 209, 210
test point · 86, 87, 88
tester · 23, 162
white-box · 154

threshold · 93, 140
timer · 53, 74, 75, 80, 82, 92, 111, 131, 132, 135,

142, 145, 150, 154, 167
watchdog · 43, 82, 94, 135, 145, 146, 150, 153,

154, 160
timing · 10, 25, 27, 29, 30, 47, 48, 59, 63, 67, 80, 95,

96, 98, 99, 144, 145, 146, 171
Todo · 140

TBD · 2, 36, 42, 45, 52, 71, 87, 88, 89, 150, 153

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 1 8 . 0 7 . 0 8 214

trace matrix · 13, 154
traceability · 154

V

vendor
Atmel · 90

Microchip · 123, 124
ST · 54, 90
Texas Instruments · 54, 104

