

Introduction

Several sections of the National Electrical Code[®] relate to proper overcurrent protection. Safe and reliable application of overcurrent protective devices based on these sections mandate that a short circuit study and a selective coordination study be conducted. These sections include, among others:

- 110.9 Interrupting Rating
- 110.10 Component Protection
- 240.1 Conductor Protection
- 250.122 Equipment Grounding Conductor Protection
- · Marked Short-Circuit Current Rating;
 - 230.82 (3) Meter Disconnect
 - 409.110 Industrial Control Panels
 - 440.4(B) Air Conditioning & Refrigeration Equipment
 - 670.3(A) Industrial Machinery
- Selective Coordination
 - 517.17 Health Care Facilities Selective Coordination
 - 517.26 Essential Electrical Systems In Healthcare Systems
 - 620.62 Selective Coordination for Elevator Circuits
 - 700.27 Emergency Systems
 - 701.18 Legally Required Standby Systems

Compliance with these code sections can best be accomplished by conducting a short circuit study as a start to the analysis. The protection for an electrical system should not only be safe under all service conditions but, to insure continuity of service, it should be selectively coordinated as well. A coordinated system is one where only the faulted circuit is isolated without disturbing any other part of the system. Once the short circuit levels are determined, the engineer can specify proper interrupting rating requirements, selectively coordinate the system and provide component protection. See the various sections of this book for further information on each topic.

Low voltage fuses have their interrupting rating expressed in terms of the symmetrical component of short-circuit current. They are given an RMS symmetrical interrupting rating at a specific power factor. This means that the fuse can interrupt the asymmetrical current associated with this rating. Thus only the symmetrical component of short-circuit current need be considered to determine the necessary interrupting rating of a low voltage fuse. For listed low voltage fuses, interrupting rating equals its interrupting capacity.

Low voltage molded case circuit breakers also have their interrupting rating expressed in terms of RMS symmetrical amps at a specific power factor. However, it is necessary to determine a molded case circuit breaker's interrupting capacity in order to safely apply it. See the section Interrupting Rating vs. Interrupting Capacity in this book.

110.16 now requires arc-flash hazard warning labeling on certain equipment. A flash hazard analysis is required before a worker approaches electrical parts that have not been put into a safe work condition. To determine the incident energy and flash protection boundary for a flash hazard analysis the short-circuit current is typically the first step.

General Comments on Short Circuit Calculations

Sources of short-circuit current that are normally taken under consideration include:

- Utility Generation
- Local Generation
- Synchronous Motors
- Induction Motors
- Alternate Power Sources

Short circuit calculations should be done at all critical points in the system. These would include:

- Service Entrance
- Transfer Switches

- Panel Boards

- Load Centers
- Motor Control Centers - Motor Starters
- Motor Starters

- Disconnects

Normally, short circuit studies involve calculating a bolted 3-phase fault condition. This can be characterized as all 3-phases "bolted" together to create a zero impedance connection. This establishes a "worst case" (highest current) condition that results in maximum three phase thermal and mechanical stress in the system. From this calculation, other types of fault conditions can be approximated. This "worst case" condition should be used for interrupting rating, component protection and selective coordination. However, in doing an arc-flash hazard analysis it is recommended to do the arcflash hazard analysis at the highest bolted 3 phase short circuit condition and at the "minimum" bolted three-phase short circuit condition. There are several variables in a distribution system that affect calculated bolted 3-phase short-circuit currents. It is important to select the variable values applicable for the specific application analysis. In the Point-to-Point method presented in this section there are several adjustment factors given in Notes and footnotes that can be applied that will affect the outcomes. The variables are utility source short circuit capabilities, motor contribution, transformer percent impedance tolerance, and voltage variance.

In most situations, the utility source(s) or on-site energy sources, such as on-site generation, are the major short-circuit current contributors. In the Point-to-Point method presented in the next few pages, the steps and example assume an infinite available short-circuit current from the utility source. Generally this is a good assumption for highest worst case conditions and since the property owner has no control over the utility system and future utility changes. And in many cases a large increase in the utility available does not increase the short-circuit currents a great deal for a building system on the secondary of the service transformer. However, there are cases where the actual utility medium voltage available provides a more accurate short circuit assessment (minimum bolted short-circuit current conditions) that may be desired to assess the arcflash hazard.

When there are motors in the system, motor short circuit contribution is also a very important factor that must be included in any short-circuit current analysis. When a short circuit occurs, motor contribution adds to the magnitude of the short-circuit current: running motors contribute 4 to 6 times their normal full load current. In addition, series rated combinations can not be used in specific situations due to motor short circuit contributions (see the section on Series Ratings in this book).

For capacitor discharge currents, which are of short time duration, certain IEEE (Institute of Electrical and Electronic Engineers) publications detail how to calculate these currents if they are substantial.

Procedures and Methods

To determine the fault current at any point in the system, first draw a one-line diagram showing all of the sources of short-circuit current feeding into the fault, as well as the impedances of the circuit components.

To begin the study, the system components, including those of the utility system, are represented as impedances in the diagram.

The impedance tables include three-phase and single-phase transformers, cable, and busway. These tables can be used if information from the manufacturers is not readily available.

It must be understood that short circuit calculations are performed without current-limiting devices in the system. Calculations are done as though these devices are replaced with copper bars, to determine the maximum "available" short-circuit current. This is necessary to project how the system and the currentlimiting devices will perform.

Also, multiple current-limiting devices do not operate in series to produce a "compounding" current-limiting effect. The downstream, or load side, fuse will operate alone under a short circuit condition if properly coordinated.

The application of the point-to-point method permits the determination of available short-circuit currents with a reasonable degree of accuracy at various points for either 3Ø or 1Ø electrical distribution systems. This method can assume unlimited primary short-circuit current (infinite bus) or it can be used with limited primary available current.

Three-Phase Short Circuits

Basic Point-to-Point Calculation Procedure

Step 1. Determine the transformer full load amps (F.L.A.) from either the nameplate, the following formulas or Table 1:

$$3 \text{ \it Ø Transformer} \qquad I_{F.L.A.} = \frac{kVA \times 1000}{E_{L-L} \times 1.732}$$

1Ø Transformer
$$I_{F.L.A.} = \frac{kVA \times 1000}{E_{L-L}}$$

Step 2. Find the transformer multiplier. See Notes 1 and 2

Multiplier =
$$\frac{100}{*\%Z_{transformer}}$$

* Note 1. Get %Z from nameplate or Table 1. Transformer impedance (Z) helps to determine what the short circuit current will be at the transformer secondary. Transformer impedance is determined as follows: The transformer secondary is short circuited. Voltage is increased on the primary until full load current flows in the secondary. This applied voltage divided by the rated primary voltage (times 100) is the impedance of the transformer.

Example: For a 480 Volt rated primary, if 9.6 volts causes secondary full load current to flow through the shorted secondary, the transformer impedance is 9.6/480 = .02 = 2%Z.

* Note 2. In addition, UL (Std. 1561) listed transformers 25kVA and larger have a ± 10% impedance tolerance. Short circuit amps can be affected by this tolerance. Therefore, for high end worst case, multiply %Z by .9. For low end of worst case, multiply %Z by 1.1. Transformers constructed to ANSI standards have a ±7.5% impedance tolerance (two-winding construction).

Step 3. Determine by formula or Table 1 the transformer letthrough short-circuit current. See Notes 3 and 4.

Note 3. Utility voltages may vary ±10% for power and ±5.8% for 120 Volt lighting services. Therefore, for highest short circuit conditions, multiply values as calculated in step 3 by 1.1 or 1.058 respectively. To find the lower end worst case, multiply results in step 3 by .9 or .942 respectively.

Note 4. Motor short circuit contribution, if significant, may be added at all fault locations throughout the system. A practical estimate of motor short circuit contribution is to multiply the total motor current in amps by 4. Values of 4 to 6 are commonly accepted.

Step 4. Calculate the "f" factor.

3Ø Faults
$$f = \frac{1.732 \times L \times I_{3\emptyset}}{C \times n \times E_{LJ}}$$

1Ø Line-to-Line (L-L) Faults See Note 5 & Table 3 f =

$$f = \frac{2 \times L \times I_{L-L}}{C \times n \times E_{L-L}}$$

1Ø Line-to-Neutral (L-N) Faults See Note 5 & Table 3

$$f = \frac{2 \times L \times I_{L-N^{\dagger}}}{C \times n \times E_{L-N}}$$

Where:

L = length (feet) of conductor to the fault.

C = constant from Table 4 of "C" values for conductors and Table 5 of "C" values for busway.

n = Number of conductors per phase (adjusts C value for parallel runs)

I = Available short-circuit current in amperes at beginning of circuit.

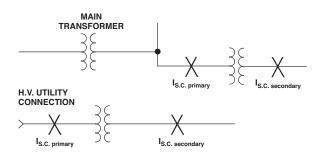
E = Voltage of circuit.

 \dagger Note 5. The L-N fault current is higher than the L-L fault current at the secondary terminals of a single-phase center-tapped transformer. The short-circuit current available (I) for this case in Step 4 should be adjusted at the transformer terminals as follows: At L-N center tapped transformer terminals, I_{L-N} = 1.5 x I_{L-L} at Transformer Terminals.

At some distance from the terminals, depending upon wire size, the L-N fault current is lower than the L-L fault current. The 1.5 multiplier is an approximation and will theoretically vary from 1.33 to 1.67. These figures are based on change in turns ratio between primary and secondary, infinite source available, zero feet from terminals of transformer, and 1.2 x %X and 1.5 x %R for L-N vs. L-L resistance and reactance values. Begin L-N calculations at transformer secondary terminals, then proceed point-to-point.

Step 5. Calculate "M" (multiplier) or take from Table 2.

$$M = \frac{1}{1+f}$$


Step 6. Calculate the available short circuit symmetrical RMS current at the point of fault. Add motor contribution, if applicable.

$$I_{S.C. sym. RMS} = I_{S.C.} \times M$$

Step 6A. Motor short circuit contribution, if significant, may be added at all fault locations throughout the system. A practical estimate of motor short circuit contribution is to multiply the total motor current in amps by 4. Values of 4 to 6 are commonly accepted.

Calculation of Short-Circuit Currents at Second Transformer in System

Use the following procedure to calculate the level of fault current at the secondary of a second, downstream transformer in a system when the level of fault current at the transformer primary is known.

Procedure for Second Transformer in System Step A. Calculate the "f" factor (I_{S.C. primary} known)

Step B. Calculate "M" (multiplier).

$$M = \frac{1}{1+1}$$

Step C. Calculate the short-circuit current at the secondary of the transformer. (See Note under Step 3 of "Basic Point-to-Point Calculation Procedure".)

$$I_{S.C.\,secondary} = \frac{V_{primary}}{V_{secondary}} \times M \times I_{S.C.\,primary}$$

©2005 Cooper Bussmann 193

Three-Phase Short Circuits

System A

Available Utility Infinite Assumption

1500 KVA Transformer, 480V, 3Ø, 3.5%Z, 3.45%X, .56%R

I_{f.I.} =1804A

25' - 500kcmil 6 Per Phase Service Entrance Conductors in Steel Conduit

2000A Switch

KRP-C-2000SP Fuse

Fault X₁

400A Switch

LPS-RK-400SP Fuse

50' - 500 kcmil Feeder Cable in Steel Conduit

Fault X₂

Motor Contribution

One-Line Diagram Fault X₁

Step 1. $I_{f.l.} = \frac{1500 \times 1000}{480 \times 1.732} = 1804A$

Step 2. Multiplier = $\frac{100}{3.5}$ = 28.57

Step 3. $I_{S.C.}$ =1804 x 28.57 = 51,540A

 $I_{S.C. motor contrib} = 4 \times 1,804^* = 7,216A$

Itotal S.C. sym RMS = 51,504 + 7,216 = 58,720A

Step 4. $f = \frac{1.732 \times 25 \times 51,540}{22,185 \times 6 \times 480} = 0.0349$

Step 5. $M = \frac{1}{1 + .0349} = .9663$

Step 6. I_{S.C.sym RMS} = 51,540 x .9663 = 49,803A

 $I_{S.C.motor\ contrib} = 4 \times 1,804^* = 7,216A$

I_{totalS.C. sym RMS} = 49,803 + 7,216 = 57,019A (fault X₁)

Fault X₂

Step 4. Use $I_{S.C.\,sym\,RMS}$ @ Fault X1 to calculate "f"

$$f = \frac{1.732 \times 50 \times 49,803}{22,185 \times 480} = .4050$$

Step 5. $M = \frac{1}{1 + .4050} = .7117$

Step 6. $I_{S.C. sym RMS} = 49,803 \text{ x } .7117 = 35,445 \text{ A}$

 $I_{\text{sym motor contrib}} = 4 \times 1,804^* = 7,216A$

 $I_{total S.C. sym RMS} = 35,445 + 7,216 = 42,661A$

System B

Available Utility Infinite Assumption

1000 KVA Transformer, 480V, 3Ø, 3.5%Z

I_{f.I.}= 1203A

30' - 500 kcmil 4 Per Phase Copper in PVC Conduit

1600A Switch

KRP-C-1500SP Fuse

400A Switch

LPS-RK-350SP Fuse

20' - 2/0 2 Per Phase Copper in PVC Conduit Fault X₂

225 KVA transformer, 208V, 3Ø 1.2%Z Fault X₃

One-Line Diagram

Step 1. $I_{f.l.} = \frac{1000 \times 1000}{480 \times 1.732} = 1203A$

Step 2. Multiplier = $\frac{100}{3.5}$ = 28.57

Step 3. I_{S.C.} = 1203 x 28.57 = 34,370A

Step 4. $f = \frac{1.732 \times 30 \times 34,370}{26,706 \times 4 \times 480} = .0348$

Step 5. $M = \frac{1}{1 + .0348} = .9664$

Step 6. $I_{S.C.sym}$ RMS = 34,370 x .9664 = 33,215A

Fault X₂

*Assumes 100% motor load. If 50% of this load was from motors, $I_{S,C}$ motor contrib. = 4 x 1.804 x .5 = 3608A

Step 4.
$$f = \frac{1.732 \times 20 \times 33,215}{2 \times 11,424 \times 480} = .1049$$

Step 5. $M = \frac{1}{1 + .1049} = .905$

Step 6. $I_{S.C.sym RMS} = 33,215 \text{ x } .905 = 30,059 \text{A}$

Fault X₃

Step A.
$$f = \frac{30,059 \times 480 \times 1.732 \times 1.2}{100,000 \times 225} = 1.333$$

Step B. $M = \frac{1}{1 + 1.333} = .4286$

Step C. $I_{S.C. \text{ sym RMS}} = \frac{480 \text{ x } .4286 \text{ x } 30,059}{208} = 29,731 \text{A}$

194

Single-Phase Short Circuits

Short circuit calculations on a single-phase center tapped transformer system require a slightly different procedure than 3Ø faults on 3Ø systems.

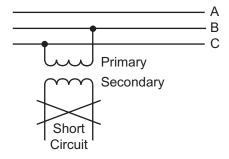
It is necessary that the proper impedance be used to represent the primary system.
 For 3Ø fault calculations, a single primary conductor impedance is only considered from the source to the transformer connection. This is compensated for in the 3Ø short circuit formula by multiplying the single conductor or single-phase impedance by 1.73.

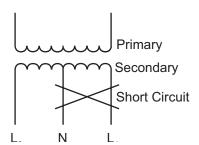
However, for single-phase faults, a primary conductor impedance is considered from the source to the transformer and back to the source. This is compensated in the calculations by multiplying the 3Ø primary source impedance by two.

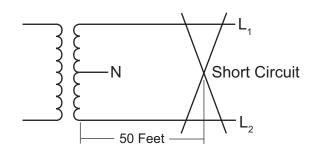
2. The impedance of the center-tapped transformer must be adjusted for the half-winding (generally line-to-neutral) fault condition.

The diagram at the right illustrates that during line-to-neutral faults, the full primary winding is involved but, only the half-winding on the secondary is involved. Therefore, the actual transformer reactance and resistance of the half-winding condition is different than the actual transformer reactance and resistance of the full winding condition. Thus, adjustment to the %X and %R must be made when considering line-to-neutral faults. The adjustment multipliers generally used for this condition are as follows:

- 1.5 times full winding %R on full winding basis.
- 1.2 times full winding %X on full winding basis.


Note: %R and %X multipliers given in "Impedance Data for Single Phase Transformers" Table may be used, however, calculations must be adjusted to indicate transformer kVA/2.


3. The impedance of the cable and two-pole switches on the system must be considered "both-ways" since the current flows to the fault and then returns to the source. For instance, if a line-to-line fault occurs 50 feet from a transformer, then 100 feet of cable impedance must be included in the calculation.


The calculations on the following pages illustrate 1Ø fault calculations on a single-phase transformer system. Both line-to-line and line-to-neutral faults are considered.

Note in these examples:

- The multiplier of 2 for some electrical components to account for the single-phase fault current flow,
- The half-winding transformer %X and %R multipliers for the line-to-neutral fault situation, and
- c. The kVA and voltage bases used in the per-unit calculations.

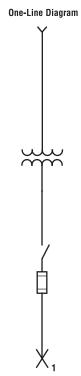
©2005 Cooper Bussmann 195

Single-Phase Short Circuits

Line-to-Line Fault @ 240V — Fault X₁

Available Utility Infinite Assumption

75KVA, 1Ø Transformer, 1.22%X, .68%R 1.40%Z


Negligible Distance

LPN-RK-400SP Fuse

120/240V

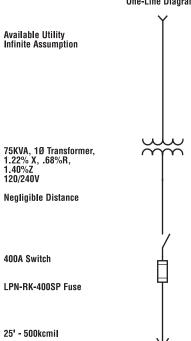
400A Switch

25' - 500kcmil Magnetic Conduit

Fault X₁

Step 1.
$$I_{f.l.} = \frac{75 \times 1000}{240} = 312.5A$$

Step 2. Multiplier =
$$\frac{100}{1.40}$$
 = 71.43


Step 4.
$$f = \frac{2 \times 25 \times 22,322}{22,185 \times 240} = .2096$$

Step 5.
$$M = \frac{1}{1 + .2096} = .8267$$

Step 6.
$$I_{S.C. L-L}(x_1) = 22,322 \times .8267 = 18,453A$$

Line-to-Neutral Fault @ 120V — Fault X₁

One-Line Diagram

Fault X₁

Step 1.
$$I_{f.l.} = \frac{75 \times 1000}{240} = 312.5A$$

Step 2. Multiplier =
$$\frac{100}{1.40}$$
 = 71.43

Step 4.
$$f = \frac{2^* \times 25 \times 22,322 \times 1.5}{22,185 \times 120} = .6288$$

Step 5.
$$M = \frac{1}{1 + .6288} = .6139$$

Step 6.
$$I_{S.C. L-N (X_1)} = 33,483 \times .6139 = 20,555A$$

Magnetic Conduit

^{*}Assumes the neutral conductor and the line conductor are the same size.

Impedance & Reactance Data

Transformers

Table 1. Short-Circuit Currents Available from Various Size Transformers

(Based upon actual field nameplate data or from utility transformer worst case impedance)

Voltage		Full	%	Short
and		Load	Impedance ^{††}	Circuit
Phase	k/A	Amps	(Nameplate)	Amps [†]
	25	104	1.5	12175
	37.5	156	1.5	18018
120/240	50	208	1.5	23706
1 ph.*	75	313	1.5	34639
	100	417	1.6	42472
	167	696	1.6	66644
	45	125	1.0	13879
	75	208	1.0	23132
	112.5	312	1.11	31259
	150	416	1.07	43237
120/208	225	625	1.12	61960
3 ph.**	300	833	1.11	83357
	500	1388	1.24	124364
	750	2082	3.50	66091
	1000	2776	3.50	88121
	1500	4164	3.50	132181
	2000	5552	4.00	154211
	2500	6940	4.00	192764
	75	90	1.00	10035
	112.5	135	1.00	15053
	150	181	1.20	16726
	225	271	1.20	25088
	300	361	1.20	33451
277/480	500	602	1.30	51463
3 ph.**	750	903	3.50	28672
	1000	1204	3.50	38230
	1500	1806	3.50	57345
	2000	2408	4.00	66902
	2500	3011	4.00	83628

^{*}Single-phase values are L-N values at transformer terminals. These figures are based on change in turns ratio between primary and secondary, 100,000 KVA primary, zero feet from terminals of transformer, 1.2 (%X) and 1.5 (%R) multipliers for L-N vs. L-L reactance and resistance values and transformer X/R ratio = 3

[†] Fluctuations in system voltage will affect the available short-circuit current. For example, a 10% increase in system voltage will result in a 10% greater available short-circuit currents than as shown in Table 1.

			$M = \frac{1}{1}$			
Table 2. "M	" (Multip	lier)	1 + f			
f	M	f	M	f	M	
0.01	0.99	0.50	0.67	7.00	0.13	_
0.02	0.98	0.60	0.63	8.00	0.11	
0.03	0.97	0.70	0.59	9.00	0.10	
0.04	0.96	0.80	0.55	10.00	0.09	
0.05	0.95	0.90	0.53	15.00	0.06	
0.06	0.94	1.00	0.50	20.00	0.05	
0.07	0.93	1.20	0.45	30.00	0.03	
0.08	0.93	1.50	0.40	40.00	0.02	_
0.09	0.92	1.75	0.36	50.00	0.02	
0.10	0.91	2.00	0.33	60.00	0.02	_
0.15	0.87	2.50	0.29	70.00	0.01	_
0.20	0.83	3.00	0.25	80.00	0.01	_
0.25	0.80	3.50	0.22	90.00	0.01	_
0.30	0.77	4.00	0.20	100.00	0.01	_
0.35	0.74	5.00	0.17			_
0.40	0.71	6.00	0.14			_

Impedance Data for Single-Phase Transformers

Suggested		Normal Range	Impedance	Impedance Multipliers**		
	X/R Ratio	of Percent	For Line-to-Neutral			
kVA	for	Impedance (%Z)*	Faults			
1Ø	Calculation		for %X	for %R		
25.0	1.1	1.2-6.0	0.6	0.75		
37.5	1.4	1.2-6.5	0.6	0.75		
50.0	1.6	1.2-6.4	0.6	0.75		
75.0	1.8	1.2-6.6	0.6	0.75		
100.0	2.0	1.3-5.7	0.6	0.75		
167.0	2.5	1.4-6.1	1.0	0.75		
250.0	3.6	1.9–6.8	1.0	0.75		
333.0	4.7	2.4-6.0	1.0	0.75		
500.0	5.5	2.2-5.4	1.0	0.75		

^{*} National standards do not specify %Z for single-phase transformers. Consult manufacturer for values to use in calculation.

Note: UL Listed transformers 25 kVA and greater have a \pm 10% tolerance on their impedance nameplate.

This table has been reprinted from IEEE Std 242-1986 (R1991), IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems, Copyright[©] 1986 by the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE Standards Department.

Impedance Data for Single-Phase and Three-Phase Transformers-Supplement[†]

kVA			Suggested
1Ø	3Ø	%Z	X/R Ratio for Calculation
10	_	1.2	1.1
15	_	1.3	1.1
	75	1.11	1.5
	150	1.07	1.5
	225	1.12	1.5
	300	1.11	1.5
333	_	1.9	4.7
	500	1.24	1.5
500	_	2.1	5.5

[†]These represent actual transformer nameplate ratings taken from field installations.

Note: UL Listed transformers 25kVA and greater have a $\pm 10\%$ tolerance on their impedance nameplate.

Table 3.

Various Types of Short -Circuit Currents as a Percent of Three Phase Bolted Faults (Typical).

Three Phase Bolted Fault	100%
Line-to-Line Bolted Fault	87%
Line-to-Ground Bolted Fault	25-125%* (Use 100% near trans-
	former, 50% otherwise)
Line-to-Neutral Bolted Fault	25-125% (Use 100% near tans-
	former, 50% otherwise)
Three Phase Arcing Fault	89% (maximum)
Line-to-Line Arcing Fault	74% (maximum)
Line-to-Ground Arcing Fault (minimum)	38% (minimum)

^{*}Typically much lower but can actually exceed the Three Phase Bolted Fault if it is near the transformer terminals. Will normally be between 25% to 125% of three phase bolted fault value.

©2005 Cooper Bussmann 197

^{**}Three-phase short-circuit currents based on "infinite" primary.

^{††} UL listed transformers 25 KVA or greater have a \pm 10% impedance tolerance. Short-circuit amps shown in Table 1 reflect –10% condition. Transformers constructed to ANSI standards have a \pm 7.5% impedance tolerance (two-winding construction).

^{**} Based on rated current of the winding (one–half nameplate kVA divided by secondary line-to-neutral voltage).

Conductors & Busways "C" Values

Table 4. "C" Values for Conductors

WG	r Three Single Conductors						Three-Co	Three-Conductor Cable					
or	Conduit	. J					Conduit						
kcmil	Steel			Nonmad					Nonmag	netic			
	600V	5kV	15kV	600V	5kV	15kV	600V	5kV	15kV	600V	5kV	15kV	
14	389	-	-	389	-	-	389	-	-	389	-	-	
12	617	-	-	617	-	-	617	-	-	617	-	-	
10	981	-	-	982	-	-	982	-	-	982	-	-	
8	1557	1551	-	1559	1555	-	1559	1557	-	1560	1558	-	
6	2425	2406	2389	2430	2418	2407	2431	2425	2415	2433	2428	2421	
4	3806	3751	3696	3826	3789	3753	3830	3812	3779	3838	3823	3798	
3	4774	4674	4577	4811	4745	4679	4820	4785	4726	4833	4803	4762	
2	5907	5736	5574	6044	5926	5809	5989	5930	5828	6087	6023	5958	
1	7293	7029	6759	7493	7307	7109	7454	7365	7189	7579	7507	7364	
1/0	8925	8544	7973	9317	9034	8590	9210	9086	8708	9473	9373	9053	
2/0	10755	10062	9390	11424	10878	10319	11245	11045	10500	11703	11529	11053	
3/0	12844	11804	11022	13923	13048	12360	13656	13333	12613	14410	14119	13462	
4/0	15082	13606	12543	16673	15351	14347	16392	15890	14813	17483	17020	16013	
250	16483	14925	13644	18594	17121	15866	18311	17851	16466	19779	19352	18001	
300	18177	16293	14769	20868	18975	17409	20617	20052	18319	22525	21938	20163	
350	19704	17385	15678	22737	20526	18672	22646	21914	19821	24904	24126	21982	
400	20566	18235	16366	24297	21786	19731	24253	23372	21042	26916	26044	23518	
500	22185	19172	17492	26706	23277	21330	26980	25449	23126	30096	28712	25916	
600	22965	20567	17962	28033	25204	22097	28752	27975	24897	32154	31258	27766	
750	24137	21387	18889	29735	26453	23408	31051	30024	26933	34605	33315	29735	
1,000	25278	22539	19923	31491	28083	24887	33864	32689	29320	37197	35749	31959	
Alumin													
14	237	-	-	237	-	-	237	-	-	237	-	-	
12	376	-	-	376	-	-	376	-	-	376	-	-	
10	599	-	-	599	-	-	599	-	-	599	-	-	
8	951	950	-	952	951	-	952	951	-	952	952	-	
6	1481	1476	1472	1482	1479	1476	1482	1480	1478	1482	1481	1479	
4	2346	2333	2319	2350	2342	2333	2351	2347	2339	2353	2350	2344	
3	2952	2928	2904	2961	2945	2929	2963	2955	2941	2966	2959	2949	
2	3713	3670	3626	3730	3702	3673	3734	3719	3693	3740	3725	3709	
1 1	4645	4575	4498	4678	4632	4580	4686	4664	4618	4699	4682	4646	
1/0	5777	5670	5493	5838	5766	5646	5852	5820	5717	5876	5852	5771	
2/0	7187	6968	6733	7301	7153	6986	7327	7271	7109	7373	7329	7202	
3/0	8826	8467	8163	9110	8851	8627	9077	8981	8751	9243	9164	8977	
4/0	10741	10167	9700	11174	10749	10387	11185	11022	10642	11409	11277	10969	
250	12122	11460	10849	12862	12343	11847	12797	12636	12115	13236	13106	12661	
300	13910	13009	12193	14923	14183	13492	14917	14698	13973	15495	15300	14659	
350	15484	14280	13288	16813	15858	14955	16795	16490	15541	17635	17352	16501	
400	16671	15355	14188	18506	17321	16234	18462	18064	16921	19588	19244	18154	
500	18756	16828	15657	21391	19503	18315	21395	20607	19314	23018	22381	20978	
600	20093	18428	16484	23451	21718	19635	23633	23196	21349	25708	25244	23295	
750 1,000	21766 23478	19685 21235	17686	25976	23702	21437	26432	25790	23750	29036	28262	25976	
			19006	28779	26109	23482	29865	29049	26608	32938	31920	29135	

Note: These values are equal to one over the impedance per foot and based upon resistance and reactance values found in IEEE Std 241-1990 (Gray Book), IEEE Recommended Practice for Electric Power Systems in Commercial Buildings & IEEE Std 242-1986 (Buff Book), IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems. Where resistance and reactance values differ or are not available, the Buff Book values have been used. The values for reactance in determining the C Value at 5 KV & 15 KV are from the Gray Book only (Values for 14-10 AWG at 5 kV and 14-8 AWG at 15 kV are not available and values for 3 AWG have been approximated).

Table 5. "C" Values for Busway

Ampacity	Busway				
	Plug-In	Feeder	High Impedance		
	Copper	Aluminum	Copper	Aluminum	Copper
225	28700	23000	18700	12000	_
400	38900	34700	23900	21300	_
600	41000	38300	36500	31300	_
800	46100	57500	49300	44100	_
1000	69400	89300	62900	56200	15600
1200	94300	97100	76900	69900	16100
1350	119000	104200	90100	84000	17500
1600	129900	120500	101000	90900	19200
2000	142900	135100	134200	125000	20400
2500	143800	156300	180500	166700	21700
3000	144900	175400	204100	188700	23800
4000	_	_	277800	256400	_

Note: These values are equal to one over the impedance per foot for impedance in a survey of industry.