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Overview of the “Barrier Approach”

to lower the upper bound of the 

de Bruijn-Newman constant.



The basic De Bruijn idea leading to the function Ht(x+iy).

How to effectively bound a good estimate for Ht?

 Some observations on the zeros of Ht.

How could zeros of Ht be 'blocked' to lower the Λ upper bound.

The key ideas behind the “Barrier approach”.

How to ensure no zeros have passed the Barrier?

How to show that Ht doesn’t vanish from the Barrier to Nb ?

Numerical results showing Λ < 0.22 (and lower, but conditionally on RH).

 Software used and detailed results available.

High level storyline



Fourier
transform

New family
introduced

by De Bruijn

Basic idea by De Bruijn

First step: develop an effectively bounded estimate.



Optionally: a more effective C-term is available

Choice of ‘Euler mollifiers’ 

Error terms

Error upper bounds

If Lower bound ≥ Upper bound then

Hence,

Main estimate

Main estimate lower bound

Estimating and effectively bounding Ht(x+iy)

Designed for:

Normalize by B0 and bound effectively

(triangle)

(lemma)



Real example of trajectories of real and complex zeros of Ht(x+iy)
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trajectory of a complex zero trajectory of a real zero

Zeroes get denser as one moves 
away from the origin, so there 
are more zeros to the right of xn

then to the left, hence their 
trajectories “lean” leftwards.

Once a zero becomes real, it stays 
real forever and ends up roughly 
equally spaced with:

The complex parts of zeros 
attract each other and the real 
parts repel each other. From 
isolating the imaginary “force”, 
it can be derived that all 
complex zeroes will be forced 
into the real axis in a finite time 
leading to the bound: 



The De Bruijn – Newman Λ and a ‘ceiling’ the complex zeroes can’t cross

Possible trajectory of a complex zero (Ht (x+�|�|>0) = 0)
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1. Introduce a ‘ceiling’ and 

verify that  Ht0 (x+iy) ≠ 0
for � = 0 . . ∞, � = �0 ..1 (or 
the blue hyperbola).

Even this extreme trajectory is 
theoretically possible since 
there is no upper bound on 

the speed by which zeros fall 
to the real line.

A “Lehmer pair”.

Complex zeros are “attracted” to their 
conjugates and “fall” to the real line 

with a lower bounded speed.

The blue DbN hyperbola 
is only valid for t ≥ 0. 

2. If so, then the new 
upper bound:

Λ ≤ t0 + 0.5 y0
2

has been established.



“ Barrier” approach to assure Ht (x+iy) ≠ 0 for a certain y>y0, t0.

Numerical
verification

Analytical
proof
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1. Area where the RH has been 
verified e.g. 6x1010 certain, 1013

to be confirmed. Or assume 
that it has been verified up to X.

3. Verify Ht0 (x+iy0) ≠ 0
i.e. Lemma lower bound

> Error upper bound.

2. Verify Ht (x+iy) ≠ 0 
in the Barrier area

x=X..X+1, y=y0..1, t=0..t0

4. Analytical proof
that Ht0 (x+iy0) ≠ 0 

� ≤ �� +
�

�
��

�

Possible trajectories of a complex zeros that should be “blocked”.



“Barrier” approach: how to clear the barrier?

1. Area cleared since all �-
zeros have been, or are 

assumed to be, verified to 
be on the critical line. 

2. For a given t, clear 
rectangle X..X+1, y=y0..1 (or 
a point on the hyperbola) 

using the argument principle 
and Rouché's theorem.

3. Use an adaptive mesh to 
establish the optimal next t 

and continue with 2. until t=t0.

0. Pick a promising 
combination of t0 ,y0 

and an X to lower
Λ ≤ t0 + 0.5 y0

2

Possible trajectories of a complex zeros that should be “blocked”.

Y0 

1

x

t

y

t0 

0

X X+1

Λ

0.5

1

0

�

��
 upper bound required

�

��
=

�

��
 upper bound required

Can’t happen due 
to double barrier.

Will be detected 
by barrier.

Known areas where 
Ht (x+iy) ≠ 0 

Fast integral based 
approach developed.

Location of Barrier can be optimized
by selecting an X and X+1 with a 

relatively high value of ABBeff (and 
where the ‘mollified’ lower lemma 

bound is sufficiently positive).

t=t + (minABBeff - 0.5) /|
�

��
|

Available software tools:
 Barrier_Location_Optimizer
 Stored_Sums_Generator
 WindingNumber_Calculator



“Barrier” approach: how to verify the area from the barrier up to Nb?

y0 

x

t

y
t0 

X X+1

Λ

0.5

1

0

2. A fast Approximate Triangle
bound is used to establish the 
Nb point after which analytical 

proof takes over (currently 
‘unmollified’ bound only).   

Na
Nb

3. Only the lower Lemma bound for the line
y0, t0 needs to be verified to stay above the 

error bounds, since the Lemma bound 
monotonically increases for y  going to 1. 

A fast “Sawtooth” mechanism has been 
developed, that only calculates the required 
incremental Lemma Bound terms and only 

requires a full calculation when the incremental 
bound passes a user defined threshold.

1. Select a ‘mollifier’ that 
makes the Lemma bound 

sufficiently positive.

Possible trajectory of a complex zeros that should be “blocked”.

Available software tools:
 Na_Lemmabound_calculator
 Nb_Location_Finder
 LemmaBound_Sawtooth_calculator



The Barrier model in action: some real numbers (wip)

Selected with Barrier
Location optimizer

Selected with
Nb Location finder

Selected with
LemmaBound utility

1) Gourdon-Demichel 2004

x
Barrier 

offset

RH 

verified?
t0 y0 Λ

Winding 

number

mollifier 

# primes

Lemma 

bound value
Na

Triangle 

bound value
Nb

6.00E+10 155019 yes 0.20 0.20 0.22 0 4 0.067 69098 0.077 1.7E+06

1.00E+11 78031 yes 0.19 0.20 0.21 0 4 0.067 89206 0.081 6.0E+06

1.00E+12 46880 yes 0.18 0.20 0.20 0 3 0.135 282094 0.089 1.3E+07

5.00E+12 194858 yes 0.17 0.20 0.19 0 3 0.180 630783 0.116 1.5E+07

1.00E+13 9995 not yet 0.16 0.20 0.18 0 3 0.109 892062 0.091 3.0E+07

1.00E+14 2659 not yet 0.15 0.20 0.17 0 3 0.195 2820947 0.076 7.0E+07

1.00E+15 21104 not yet 0.14 0.20 0.16 0 3 0.251 8920620 0.073 2.0E+08

1.00E+16 172302 not yet 0.13 0.20 0.15 0 3 0.278 28209479 0.077 7.0E+08

1.00E+17 31656 not yet 0.12 0.20 0.14 0 3 0.279 89206205 0.080 3.0E+09

1.00E+18 44592 not yet 0.11 0.20 0.13 tbd 2 0.207 282094791 0.103 2.0E+10

1.00E+19 12010 not yet 0.10 0.20 0.12 tbd 2 0.128 892062059 0.097 1.5E+11

1.00E+20 37221 not yet 0.09 0.20 0.11 tbd 3 0.037 2820947918 0.075 1.5E+12

1)



Software used and useful links

All software was developed in two languages and all results were reconciled:

 Symbolic math programming language - pari/gp (https://pari.math.u-bordeaux.fr )

 Short development time
 Relatively fast

 Arithmetic Balls C-based library - Arb (http://arblib.org)

 Longer development time
 Very fast (up to 20 x pari/gp)

All software and results are free to use (under the LGPL-terms) and can be found here:

https://github.com/km-git-acc/dbn_upper_bound


