Overview of the "Barrier Approach" to lower the upper bound of the *de Bruijn-Newman* constant.

D.H.J. Polymath

June 2018

- \succ The basic De Bruijn idea leading to the function H_t(x+iy).
- \succ How to effectively bound a good estimate for H_t?
- \succ Some observations on the zeros of H_t.
- \succ How could zeros of H_t be 'blocked' to lower the Λ upper bound.
- > The key ideas behind the "Barrier approach".
- > How to ensure no zeros have passed the Barrier?
- \succ How to show that H_t doesn't vanish from the Barrier to N_b?
- > Numerical results showing Λ < 0.22 (and lower, but conditionally on RH).
- Software used and detailed results available.

Estimating and effectively bounding $H_t(x+iy)$

Zeroes get denser as one moves away from the origin, so there are more zeros to the right of x_n then to the left, hence their trajectories "lean" leftwards.

The De Bruijn – Newman Λ and a 'ceiling' the complex zeroes can't cross

Possible trajectories of a complex zeros that should be "blocked".

"Barrier" approach: how to clear the barrier?

WindingNumber_Calculator

"Barrier" approach: how to verify the area from the barrier up to N_b ?

Possible trajectory of a complex zeros that should be "blocked".

Selected wit Location op	h Barrier ptimizer						Selected wit LemmaBound u	h itility	Selected with N _b Location finder			
							[Ť]	ſ		
x	Barrier offset	RH verified?	to	yo	٨	Winding number	mollifier # primes	Lemma bound value	Na	Triangle bound value	Nb	
6.00E+10	155019	yes	0.20	0.20	0.22	0	4	0.067	69098	0.077	1.7E+06	√
1.00E+11	78031	yes	0.19	0.20	0.21	0	4	0.067	89206	0.081	6.0E+06	\
1.00E+12	46880	yes	0.18	0.20	0.20	0	3	0.135	282094	0.089	1.3E+07]✓
5.00E+12	194858	yes 1)	0.17	0.20	0.19	0	3	0.180	630783	0.116	1.5E+07	√
1.00E+13	9995	not yet	0.16	0.20	0.18	0	3	0.109	892062	0.091	3.0E+07	
1.00E+14	2659	not yet	0.15	0.20	0.17	0	3	0.195	2820947	0.076	7.0E+07	
1.00E+15	21104	not yet	0.14	0.20	0.16	0	3	0.251	8920620	0.073	2.0E+08	
1.00E+16	172302	not yet	0.13	0.20	0.15	0	3	0.278	28209479	0.077	7.0E+08	
1.00E+17	31656	not yet	0.12	0.20	0.14	0	3	0.279	89206205	0.080	3.0E+09	
1.00E+18	44592	not yet	0.11	0.20	0.13	tbd	2	0.207	282094791	0.103	2.0E+10	1
1.00E+19	12010	not yet	0.10	0.20	0.12	tbd	2	0.128	892062059	0.097	1.5E+11	
1.00E+20	37221	not yet	0.09	0.20	0.11	tbd	3	0.037	2820947918	0.075	1.5E+12	

The Barrier model in action: some real numbers (wip)

1) Gourdon-Demichel 2004

All software was developed in two languages and all results were reconciled:

- Symbolic math programming language pari/gp (<u>https://pari.math.u-bordeaux.fr</u>)
 - Short development time
 - Relatively fast
- Arithmetic Balls C-based library Arb (<u>http://arblib.org</u>)
 - Longer development time
 - Very fast (up to 20 x pari/gp)

All software and results are free to use (under the LGPL-terms) and can be found here:

https://github.com/km-git-acc/dbn_upper_bound