[‘fywish

Beetle—Bot

Instruction Manual
V.1.2

Github https://github. com/keywish/keywish—-beetle-bot

[‘fywish

H#

Revision History

o557 iR =3
2018-11-19 V.1.0 Create a document Ken
2019-2-12 V.11 Optimize servo installation steps Abbott
2019-2-13 V.12 | Change wire

Carl

[‘fgwish

Table Of Contents

LAV o I TS (o] OSSR 2
CRAPLErL INTFOUUCTION ...ttt bbb bbbt et e b e b e bbbt et e ne e e e 4
1.1 WWIIEING PUMPOSE ...ttt ettt et e e ae et e e e e ne e s te e teeneesneenneaneenneeneans 4

1.2 e oTo (8T i [11 0o (0ot o] o ISP PSPRT 4

(@8 T T] 2 o =T oo T L4 o] S OS 7
2.1 Development environment Arduino IDE...........ccooi i 8

(O T] T T oL [=10 €SP SS SRS 17
3. 1BEELIE BOt ASSEMDIY ...ttt b bbb 17
3.1.1 Base board universal wheel inStallation.............cooeiiiiiiiiieieiesee e 17

3.1.2 Install MOtOr and WHEEN...........ouiieiee e e enes 18

3.1.3 Motor Driver Board INStAllationcccoooiiiiiiiiniieee e 20

3.1.4 Tracing module and copper column inStallation............ccocoveiiiiiiiiie e 23

3.1.5 Battery box and Keywish Uno R3 motherboard installationccccceeviieiieniiceseennee 25

3.1.6 Installation of the Servo and UIFaSONICcccviiieieiie e 29

3.1.7 Infrared obstacle avoidance module inStallation............ccccvveriiiniiiiniee e 35

3.1.8 Voltage display module INStallation..............cocooiiiiiiiiii e 36

3.1.9 WEldING POWEE COMU.....cuuiiiieiiieieciie sttt ettt be et e s te e s e e reesbeenteeneesreennennes 38

3.1.10 WHOIE ASSEIMDIY ...ttt 39

3.1.11 Expansion board Wiring diagramcccueiiiieiieeie e 41

3.2 Beetle Bot MOAUIE BXPEIMENTiiiiiiiieieie ettt 44
3.2.1 Walking PrinCiple O the Carcccveiiiieie e 44

3.2.2 Infrared ODbStacle AVOITANCEcceeiiiiieiiee e enes 50

3.2.3 INFrar€d TIACINQ . ..cvveivieie ettt sttt e et e e e te e s e e aeeabeebeeneesreeneenes 60

3.2.4 Ultrasonic ODStacle AVOIJANCE.........c.cciiiiiiee et sre e enes 70

3.2.5 Infrared REMOLE CONIOL.......c.oiiiiiieiee ettt 82

3.2.6 Maobile Phone BIUEtOOth CONLIOL..........coiiiieeeieseee e e 91

3.2.7 PS2 Handle (OPLioNaAl)ccueiiiiiiicie ettt re e nne s 100

[‘ngish

Chapterl Introduction

1.1 Writing Purpose

The purpose of this manual is to create a fast, practical and convenient development learning platform
for the vast number of electronic enthusiasts and let them grasp the Arduino and its extended system design
methods and design principles, as well as the corresponding hardware debugging methods.

This manual will lead you to learn every function of "Beetle-Bot" step by step and open a new
"Beetle-Bot" journey for you. It is divided into two parts:

1, Preparation chapter, which mainly introduces the use of common Arduino development software and
some downloading and debugging skills.

2, Experiment chapter, which contains hardware and software, the former mainly introduces the
function and principle of each module; the latter mainly introduces each part of the program and leads you to
understand and grasp the principle of Arduino and the car development through written examples step by
step.

This manual is a specifications for "Beetle-Bot" , the file whose format is PDF which is in the CD along
with our product requires the corresponding software to open. It contains detailed schematic diagrams and
complete source codes for all instances, the codes won't have any mistake under our strict test. In addition,
the library files used in the source codes are put into the corresponding path, you only need to see
corresponding phenomenon of the car and personally experience the process of experiment by downloading
the source codes to Arduino via the serial port emulator.

This manual is very suitable for students and electronic enthusiasts to learn, all course videos will be
synchronized to_https://github.com/keywish/keywish-beetle-bot, please real-time synchronization of the

latest information

1.2 Product Introduction

"Beetle-Bot" is a multifunctional car based on the Arduino UNO and L298N motor. Compared with the
traditional car, "Beetle-Bot" is also equipped with wireless control (Bluetooth, infrared, WIFI and so on);
ultrasonic; infrared. It can trace and avoid obstacles automatically, of course, makers can also automatically
control the car with wireless and make full use of each module, as well as integrate all kinds of related
sensors to make the car more intelligent, which is more challenging. "Beetle-Bot" has various types of
information, technical manuals, routines, etc., which can teach you step by step. Each electronic fan can use
it easily to achieve their desired function.

Product Features

@ Three groups of black line infrared tracing module

[‘fgwish

2

Two groups of infrared obstacle avoidance module

Ultrasonic obstacle avoidance

Four DC motor drive

Two 1865mZh, 3.7V rechargeable lithium battery with longer endurance
Remaining capacity of battery real-time detection

Infrared remote control

Bluetooth app control

PS2 handle control (optional)

LK R R 2R K R R 2

Support handle control of nRF24L01 (optional)

[‘Eywish

Product device list:

\

Power indicator
digital tube

13
Infrared receiver
module

8

2x
Universal wheel

oy yr

70

2x
Motor Fixing frame

2 x DC Motor
2 x Motor line

1x 1x 1x
Keywish UNO R3 L298N motor The charger USB Cable
Controller Board drive board
E - «
Py ,O b c—
1x 1x 1x 2x 3x .
SG90 servo JDY-16 Bluetooth Infrared remote Infrared obstacle Infrared line tracking
module avoidance module module
~ \

2%
wheel

1x
Ultrasonic Holder

1x
SG90 Servo fixed plate

1x
Power DC head

1x
Cross wrench

N

1x
3.0-7.5mm Phillips
scrowdriver

6%
M3*55 Dual channel
copper posts

8 x
M3*10+6mm Single
channel copper pillar

3Ix
M3*5+6mm Single
channel copper pillar

D

14 x
M3*10mm screw

g

11 x
M3*5mm scrow

4x
M3*10 Flat-headscrew

3 x M2*12
Flat-headscrew

®

28 x
M3 nut

0

X
M2 nut

20cm Dupont Line (10pin

3 x black wire
3 x White wire

Several cable ties

1 x CD-ROM with
tutorial

[‘fywish

Chapter2 Preparations

About Arduino unor3

In "Beetle-Bot", we used the Arduino uno r3 as the main control board, which has 14 digital input/output
pins (6 of which can be used as PWM output), 6 analog inputs, and a 16 MHz ceramic resonator, 1 USB
connection, 1 power socket, 1 ICSP head and 1 reset button. It contains everything that supports the
microcontroller; You just need to connect it to a computer via a USB cable or start with an AC-DC adapter
or battery.

@D O NVOTOMN—~ S
eali [H
2

DIGI TALCPUM ~)

. " 1
) C) () o) O

Technical specifications:

Working voltage: 5V

Input voltage: USB powered or external 7V~12V DC input

Output voltage: 5V DC output and 3.3V DC output and external power input
Microprocessor: ATmega328 (Chip data sheet is in the documentation)
Bootloader: Arduino Uno

Clock frequency: 16 MHz

Support USB interface protocol and power supply (without external power supply)
Support ISP download function

Digital 1/0 port: 14 (4 PWM output ports)

Analog input port: 6

DC Current 1/0 Port: 40mA

DC Current 3.3V Port: 50mA

Flash memory: 32 KB (ATmega328) (0.5 KB for bootloader)

SRAM : 2 KB (ATmega328)

EEPROM: 1 KB (ATmega328)

Size: 75x55x15mm

[‘fgwish

2.1 Development environment Arduino IDE

AduinolDE is an open source software and hardware tool written by open source software such as Java,
Processing, and avr-gcc. It is an integrated development environment that runs on a computer. It can write
and transfer programs to the board. The major feature of the IDE is cross-platform compatibility for
Windows, MaxOSX, and Linux. Only a simple code base is needed, and the creators can create personalized
home internet solutions through the platform, such as remote home monitoring and constant temperature
control and so on.

In this tutorial, we use the version is 1.6.0, download address
is:https://www.arduino.cc/en/Main/OldSoftwareReleases#previous, After opening the link, we can see the

interface as shown in Figure 2.1.1. In this interface, we can see the different versions of the IDE and
different operating environments. Everyone can download according to their own computer system, of
course, There will be a downloaded installation package on our companion CD, but only the Windows
version, because this tutorial is all running under Windows system.

Linux 32 Bit
Windows Source code
181 i MAC OS X Linux 64 Bit
Windows Installer on Github
Linux ARM
. Linux 32 Bit
Windows - Source code
1.8.0 MAC OS X Linux 64 Bit -
Windows Installer on Github
Linux ARM
i Linux 32 Bit
Windows Source code
1.6.13 MAC OS X Linux 64 Bit
Windows Installer on Cithub
Linux ARM
Linux 32 Bit
Windows ~ . Source code
1612 i MAC OS X Linux 64 Bit _
Windows Installer on Github
Linux ARM
Linux 32 Bit
Windows Source code
1.enm MAC OS X Linux 64 Bit
Windows Installer on Github
Linux ARM
. Linux 32 Bit
Windows - Source code
1.6.10 MAC OS X Linux 64 Bit -
Windows Installer on Github
Linux ARM
‘ Linux 32 Bit
Windows . Source code
1.6.9 o MAC OS X Linux 64 Bit
Windows Installer on Github
Linux ARM
Windows - Linux 32 Bit Source code
16.8) MAC 05 X) N
Windows Installer Linux 64 Bit on Github
Windows Linux 32 Bit Source code
16.7) MAC 05 X)
Windows Installer Linux 64 Bit on Github

Figure 2.1.1 ArduinolDE download interface
After the downloading, we will get a compressed package as shown in Figure 2.1.2. The compressed
package will be decompressed. After decompression, the files in Figure 2.1.3 are extracted. The “drivers” is
the driver software. When the “Arduino.exe” is installed, it will be Install the driver automatically. Because
the installation of "arduino.exe™ is very simple, it will not be explained here. It is recommended to exit the

[‘Eywish

anti-virus software during the installation process, otherwise it may affect the installation of the IDE. After
the installation is complete, click "arduino.exe" again to enter the IDE programming interface.
arduino-1. | arduino-1.

6.0-winda | 6.0-windo
ws ws.Zip

Figure 2.1.2 Arduino IDE Installation Package

Lk B b b b b b)@ S

drivers examples hardware java lib libraries reference tools tools-buil | arduino.ex | arduine.l4j arduino_d
der e .ini ebug.exe
. - - - . N
—] B e A e | <@>
b o g =y =
arduino_d arduino-b libusb0.dll mswvcpl00. msverl00. revisionst wrapper-
ebug.ldjini uilder.exe dll dll ot manifestx
ml

Figure 2.1.3 Extracted files
When finish the installation of the IDE, connect to the Arduino motherboard, click“My Computer”—>

“Properties” 2 “Device Manager” - “Viewing Ports (COM and LTP)”, If you can see as the Figure
2.1.4

File Action View Help

== @ HE®

a = PC-20180429UK0G
>-$ Batteries
> -JM Computer
= Disk drives
> B Display adapters
>-Cﬁ Human Interface Devices
L IDE ATA/ATAPT controllers
s -Z2 Keyboards
> --B Mice and other pointing devices
>--‘__-_L Meonitors
> ¥ Metwork adapters
4 75 Ports (COM & LPT)

T Arduine Uno (COMlS)I
>-E rOCEessors

b -%| Sound, video and game controllers

> -JM System devices
- i Universal Serial Bus controllers

e _

Figure 2.1.4 Driver installation success interface

[‘fywish

that indicates the driver has been installed successfully, At this time we open the IDE, select the
corresponding development board model and port in the toolbar to use normally. If you see Figure 2.1.5, it

means that the computer does not recognize the development board and you need to install the driver
yourself.

File Action View Help
&5 = HEl 8

a = PC-20180429UK0G
b & Batteries
b M Computer
:, - Disk drives
> B Display adapters
"E’ﬁi Human Interface Devices
b g IDE ATASATAPI controllers
b &2 Keyboards
b }3 Mice and other pointing devices
» M Monitors
¥ Metwork adapters
4|5 Other devices
[y Unknown device
b o Frocessors

b -% Sound, video and game controllers

>)M Systern devices
> - i Universal Serial Bus controllers

Figure 2.1.5 Driver is not successfully installed interface
Notice:
1) If you connect the controller board to the computer, the computer does not respond. Right-click "My
Computer"” and select Open Device Manager then find viewing port (com & Ipt). If there is no com or Ipt, or
only an unknown device, there is a problem with the controller board or the USB cable.
2) Right-click "My Computer" and select Device Manager, find the viewing ports (COM and LPT). If there
is a yellow Arduino UNO exclamation point, this means you need to install the driver yourself.

3) If you install the driver again and again, it eventually fails. Please uninstall the driver and re-install>
install the driver automatically> restart the computer.

If your computer is a Windows 7 system

1) Right-click on "My Computer" and open the Device Manager, find viewing the ports (COM and LPT). At

this point you will see a "USB Serial Port", right-click "USB Serial Port™" and select the "Update Driver
Software™ option.

10

File Action View Help

e | @ E HE| %S

4 2 PC-20180429UKOG
b 3 Batteries
> 8 Computer
b - Disk drives
» B Display adapters
b l); Human Interface Devices
b g IDE ATA/ATAPI controllers
bED Keyboards
b --ﬂ Mice and other pointing devices
b - Monitors
» &Y Network adapters
i -3 Other devices
[l Unknown device|
» 73 Ports (COM & LPT| Update Driver Software...
[23 Processors Disable
[q Sound, video and
1:> .M System devices
5@ Universal Serial Bu Scan for hardware changes

Uninstall

Properties

Launches the Update Driver Software Wizard for the selected device.

Figure 2.1.6 Updated Driver Interface
2) Next, select the "Browse my computer for driver software" option.

K.}’ [Update Driver Software - Arduino Mega 2560 (COML0)

How do you want to search for driver software?

= Search automatically for updated driver software
Windows will search your computer and the Internet for the latest driver software
for your device, unless you've disabled this feature in your device installation
settings.

* OOV SE TTHY CLITIRALET 1T UNIVET SUTLWATE

Locate and install driver software manually.

Figure 2.1.7 Driver Update Selection Screen

11

[ﬁywish

3) Finally select the driver file named "FTDI USB Drivers" located in the "Drivers" folder of the Arduino

software download.

@ [l Update Driver Software - Arduino Mega 2560 (COM10)

Browse for driver software on your computer

Search for driver software in this location:

D:vunatarduino'drivers - Browse...

[¥] Include subfolders

= Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device.

I Mext I[Cancel]

Browse For Folder =

Select the folder that contams drivers for your hardware.

“ Arduino

.. drivers

.. exampjes

.. hardwage
. java
& hb

.. hibranes

L

.. reference

tools

Figure 2.1.8 Driver file selection interface
4) If you have already installed, the following figure will automatically inform you that the driver was

successful.

[‘fywish

U I Update Driver Software - Arduino Uno (COMZ21)

Windows has successfully updated your driver software
Windows has finished installing the driver software for this device:

Arduino Uno

Close

Figure 2.1.9 Driver Installation Successful Interface
At this time, we return to the "Device Manager" interface, the computer has successfully identified
Arduino, as shown in the below Figure 2.1.10 .then open the Arduino compilation environment, you can
open the Arduino trip.

File Action View Help

a2 = HEl =

a = PC-20180429UK0G
b-% Batteries

|.>--;-;| Computer
|.>-u Disk drives
'.>"Lu'1 Display adapters
b l:% Human Interface Devices

g IDE ATA/ATAPI controllers
bED Keyboards

E--ﬂ Mice and other pointing devices
|>l,-_:| Monitors

|>l‘3‘ Network adapters
L

Y5 Arduine Uno (COML5)

[dl ProCessors

|.> f‘| Sound, video and game controllers
> {8 System devices
[- i Universal Serial Bus controllers

Figure 2.1.10 Driver Success Recognition Interface

[‘ngish

Notice In Win10 system, some Arduino are connected to the computer (non-genuine chips are difficult to
identify), the system will automatically download the corresponding driver, so you can not install the driver
yourself, but in the Win7 system, you have to do it yourself.

In addition, we can see that the USB serial port is identified as COM15 in the above figure, but it may be
different with different computer, you may be COM4, COMS5, etc., but USB-SERIAL CH340, this must be
the same. If you do not find the USB serial port, you may have installed it incorrectly or the system is
incompatible.

2. If your computer is a Windows 8 system: Before installing the driver, you should save the files you are
editing because there will be several shutdowns during the operation.

1) Press "Windows key" + "R"

2) lput shutdown.exe /r/o/f/t00

3) Click the "OK" button.

4) The system will reboot to the "Select an option" screen

5) Select "Troubleshooting" from the "Select an option" screen

6) Select "Advanced Options" from the "Troubleshoot" screen

7) Select “Windows startup settings screen” from “Advanced Options”

8) Click the "Restart" button

9) The system will reboot to the “Advanced Boot Options™ screen

10) Select "Disable Driver Signature Enforcement"

11) Once the system is booted, you can install Arduino driver the same as Windows7

3. If your computer is a Windows XP system: The installation steps are basically the same as for Windows 7,
please refer to the above Windows 7 installation steps.

Nextly,we introduce the Arduino IDE interface, firstly enter the software directory. Then you can see
the arduino.exe file and double-click to open the IDE. As shown in Figure 2.1.11.

drivers examples hardware java lib libraries reference tools tools-buil | arduinc.ex |arduincldj arduino_d

der e Jani ebug.exe
= el a?) o) = @
F 0 R] R LT T

arauino_d arduino-b libusb0.dll msvcpl00. msverl00. revisionst wrapper-
ebugldjini uilder.exe dll dll xt manifest.x
ml

Figure 2.1.11 Software Catalog
1.The first thing you can see is the interface of the following figure. The functions of the toolbar
buttons are "Compile" - "Upload™ - "New Program” - "Open Program™ - "Save Program™ - "Serial Monitor" ,
as shown in Figure 2.1.12.
14

[‘Eywish

'File Edit Sketch Tools Help

Save program
Open program
Serial Monitor
New program

Upload

Compiled

Figure 2.1.12 Arduino IDE Interface
2.There are 5 menus on the menu bar, but we mainly introduce File and Tools. Click File, the interface
as shown in Figure 2.1.13 will be displayed, you can see the Examples and Preference options. The
Examples are some of the Arduino’s own programs, these are compiled without errors, the normal use of the
program, a great help for beginners. The Preference option, It’s mainly about the parameter settings, such as
language, fonts and so on.

New CerieN

Open... Cerl+O
Sketchbook

| Examples
Close Cerl+ W
Save Ctrl+S
Save As... Cerl+Shift+S
Upload CerieU

Upload Using Programmer Ctrl+Shift+U

Page Setup Ctrl+Shift+P
Print Ctris P
Preferences Ceri+ Comma
Quit Crl+Q

J

Figure 2.1.13 File Menu Bar Options
3.Click Tools, the interface shown in Figure 2.1.14 will pop up. Here we can see two options: Board and
Port. In the board option, we can see the commonly used Arduino development board model, we only need
to choose according to their own development board. In the Port option, the USB serial port is mainly
selected, as shown in Figure 2.1.15. If you are not sure, you can check it in the "Device Manager" and select
the corresponding COM port.

15

sketch_sep07a

Sé
Board

\ Auto Format
Archive Sketch
Fix Encoding & Reload
Serial Monitor

Port

} Programmer
Burn Bootloader

Arduino Yan
Arduino Uno

Arduino Duemilanove or Diecimila

Arduino Nano
i 1oop O { Arduino Mega or Mega 2560
Arduino Mega ADK
ut I I Arduino Leonardo
Arduino Micro
Arduino Esplora
} Arduino Mini
Arduino Ethernet
Arduino Fio
Arduino BT
LilyPad Arduino USB
LilyPad Arduino
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduin o ARM (32-bits) Boards
Arduino Due (Programming Port)
Arduino Due (Native USB Port)

Figure 2.1.14 Tools interface

sketch_jun13a | Arduino 1.8.1
File Edit Sketch [Tools| Help

Auto Format Ctrl+T
Archive Sketch
sketch:juni3q Fix Encoding & Reload
void setu Serial Monitor Ctrl+Shift+M
y s Serial Plotter Ctrl+Shift+L
’ put
WiFi101 Firmware Updater
} Board: "Arduino/Genuinc Uno" T
Port: "COM15 (Arduino/Genuino Uno)" i Serial ports
Get Board Info ‘L v COMI15 (Arduino/Genuino Uno)
void 1 0op Programmer: "USBtinyISP" 4
V% put Burn Bootloader redly:

b ¥ Metwork adapters
4 Y3 Ports (COM & LPT)

l_]"? Arduino Uno (COM15) |

Kl2.4.14 USBH M3k

So far, we have basically completed all the work. The next step is actual experiments. Open any

program in Examples. First compile the program. If it is compiled correctly, it can be directly downloaded to
the development board and the corresponding device of the connection number. With wires, you can see the
corresponding phenomenon.

16

[‘ngish

Chapter3 Experiments
3.1Beetle Bot Assembly

Firstly, we open the box, take out all the components and put it on the table lightly. (Note: There are
many devices, be careful when installingto prevent some devices from being lost)

Note: The universal wheel is fixed by using its own two screws.

Figure 3.1.1.1 Schematic diagram of the universal wheel installation

Figure 3.1.1.2 Effect diagram of the universal wheel installation

17

[‘fywish

Step 1: Weld the wire to the motor

Note: The motor pin is marked with positive and negative poles, positive welding red wire and
negative welding black wire.

Figure 3.1.2.1 Effect diagram of motor welding
Step 2: Install the tire

Note: Align the motor drive shaft flat section with the tire hole

Figure 3.1.2.2 Effect diagram of Tire installation

18

[‘fgwish

Step 3: Install the motor

_-—
| /,J—

) ; \@ 9 D

Figure 3.1.2.3 Effect diagram of motor mounting bracket installation

Note: Hole 1 corresponds to the nut 1™, tightened from the bottom with an M2*9 Phillips screw, and
so on.
Figure 3.1.2.4 Motor installation diagram

19

[‘ngish

Figure 3.1.2.5 Motor installation effect diagram

Step 1: motor drive board pillar installation

Figure 3.1.3.1 Schematic diagram of motor drive board pillar installation

20

[‘fgwish

Figure 3.1.3.2 Effect diagram of motor drive board pillar installation

Step 2: motor drive board installation

Note: Hole 1 corresponds to 1”7, hole 2 corresponds to 2”7, tightened with M3*5screw and
SO on

Figure 3.1.3.3 Schematic diagram of Motor Driver Board Installation

21

[‘fgwish

Note: The left motor positive pole is connected to OUT1, the negative pole is connected
to OUT2; the right motor positive pole is connected to OUT3, and the negative pole is
connected to OUT4.

Figur 3.1.3.5 Motor and drive board connection diagram

22

[‘fgwish

Step 1: Tracing module installation

23

[‘ngish

Figure 3.1.4.2 Schematic diagram of the tracing module installation

6"""'/

o | @)

Figure 3.1.4.3 Effect diagram of the tracing module installation

Step 2: the upper acrylic plate pillar installation

M3 *55

111}

M3 * 10

Figure 3.1.4.4 Schematic diagram of the installation of the upper acrylic plate pillar

24

[‘fgwish

Figure 3.1.4.5 Effect diagram of the installation of the upper acrylic plate pillar

Step 1: Keywish Uno R3 Motherboard pillar installation

Note: This side is the front of the acrylic plate

Figure 3.1.5.1 Schematic diagram of Keywish Uno R3 Motherboard pillar installation

25

[‘fgwish

Figure 3.1.5.2 Effect diagram of Keywish Uno R3 Motherboard pillar installation

Step 2: Battery box installation

M3*10

O 000

M3

Figure 3.1.5.3 Schematic diagram of Battery box fixed

26

[‘fgwish

iy @
[.

N\

Figure 3.1.5.4 Effect diagram of Battery box fixed

i\ (&

S

M3

Figure 3.1.5.5 Schematic diagram of Battery box installation

27

[‘fgwish

|
\

AR

Note: Put the batteries on the battery box which has been installed.
Figure 3.1.5.6 Effect diagram of Battery box installation

Step 3: Keywish Uno R3 motherboard installation

W W Wfms-s

Note: 1 corresponds to 1" 2 corresponds to 2 3 corresponds to 3" 4 corresponds to 4*, fixed with
M3*5 screw.

Figure 3.1.5.7 Schematic diagram of Keywish Uno R3 motherboard installation

28

[‘fgwish

Figure 3.1.5.8 Effect diagram of Keywish Uno R3 motherboard installation

Step 1: Servo Installaion

L
i M2*12 M3*10

Do

il

o]0 O

M3

Note: Firstly, place the servo base on the corresponding position of the acrylic plate and then put the
servo and fix it with screws. The holes 1 and 2 are fixed with M2*12 screws, and the 3 and 4 holes are
fixed with M3*10 screws.

29

[‘fgwish

Figure 3.1.6.1 Schematic diagram of steering gear installation

Figure 3.1.6.2 Effect diagram of servo installation
In order to reduce the angle adjustment of the servo, we need to adjust the servo to 90 degrees.
First, we should (Lesson\ModuleDemo\ServoTest\ServoTest.ino) Download it to the control panel, and the
three wires of the steering gear are the signal wire (orange), power wire (red), and ground wire (brown), and
then connect the signal wire of the steering gear (orange) to port 13 of Arduino, and install the rudder

propeller without fixing screws, as shown in figure 3.1.6.3.

Figure. 3.1.6.3 steering gear debugging connection diagram

30

[‘Eywish

After burning the program to the UNO board, do not unplug the USB cable and plug the battery plug into

the UNO board to power it, then open the serial port monitor for the Arduino IED, as shown in figure 3.1.6.4
File Edit Sketch Tools Help

SemoTest

char inByte = 0; //Serial port to receive data -

int angle = 0; //Angle value

| String temp S/ Temporary character variables, or use i

void setup()

H i

| Serial.begin(9600); //Set the baud rate E
I pinflode (ServoPin, OUTPUT) i
|1

void SetServoDegreelint Angle)

{

[l R, TR, [Y W, R T P P Y N DT PIUT, I S, [
4 | 1 | 3

Figure 3.1.6.4 Open the serial monitor schematic diagram

After the serial port monitor is opened, the serial port monitor receives 0,90,180,90 successively, such
steering gear Angle value, as shown in figure 3.1.6.5

l COM27 (Arduine Uno) =] B)
|

Servo degree: 0 i

»

Servo degree: 90
Servo degree: 180

Servo degree: 90

m

-

Autoscroll Vo line ending | (9800 baud

Figure 3.1.6.5 Serial port input steering gear Angle value

After a serial port monitor steering Angle input above value respectively, will find the steering gear will turn,
if after entering 90, the steering wheel steering gear without a figure 3.1.6.6 perspective, the need to keep

31

[‘fywish

don't turn the steering gear and pitman arm will be removed, and then reinstall into figure 3.1.6.6, such
calibration is completed, the steering gear can be screwed good steering gear, for the next step of operation

Figure 3.1.6.6 Calibration diagram of Servo

int ServoPin = 13;

char inByte 0; //Serial port to receive data
int angle = 0; //Angle value

String temp = "";//Temporary character variables, or use it for the cache

void setup()

{
Serial.begin(9600); //Set the baud rate
pinMode (ServoPin, OUTPUT) ;

void SetServoDegree(int Angle)

{
Serial.println(Angle); //Output data to the serial port for observation
for (int i = 0; i < 80; i++) {
float pulsewidth = (Angle * 11) + 350;
digitalWrite(ServoPin, HIGH) ; //Set the servo interface level to high
delayMicroseconds (pulsewidth); //The number of microseconds of the delay pulse width
value
digitalWrite (ServoPin, LOW) ; //Set the servo interface level to low
delayMicroseconds (20000 = pulsewidth) ;
}
delay (1000);
}

void loop()
{
while (Serial.available() > 0) //Determine whether the serial data
{
inByte = Serial.read();//Read data, the serial port can only read 1 character
temp += inByte;//The characters read into temporary variables inside the cache,

//Continue to determine the serial port there is no data, know all the data read out

32

[‘fgwish

}

// Determine whether the temporary variable is empty
if (temp '= "") {

angle = temp.toInt(); //Convert variable string type to integer
Serial.print("Servo degree: ");

SetServoDegree (angle); //Control the servo to rotate the corresponding angle.

}

temp = "";//Please see temporary variables

delay ();//Delayed 100 milliseconds

Step 2: Installation of ultrasonic

Note: Firslty, use the rudder paddle to fix the ultrasonic bracket
Figure 3.1.6.7Schematic diagram of steering gear installation

33

[‘fywish

T i~ S

e
o — <
3 e e

- . %

Note: When fixing, please put the rudder paddle in the middle of the ultrasonic bracket to fix it.

o

\:'
N

¥
]
.

Figure 3.1.6.8 Effect diagram of the rudder propeller fixed ultrasonic bracket
After using the rudder propeller to fix the ultrasonic bracket, you can add the ultrasonic bracket to the
servo,copied into the compilation environment, then connect servo signal line (orange) is to the Arduino No.
13 10 port and fixed by screws, as shown in Figure 3.1.6.9.

Figure 3.1.6.9 Effect diagram of ultrasonic installation

34

[‘fgwish

35

[‘fgwish

Figure 3.1.7.2 Effect diagram of infrared obstacle avoidance module installation

Figure 3.1.8.1 Schematic diagram of voltage display module installation

36

[‘fywish

e

* 10 deNsns 0
e UNY ¥3M0d & o

= dmMg [38
{6 T T TSI v ev v v ov .
Q M N FWas®Es [« - . - - -]

Figure 3.1.9.1 Schematic diagram of infrared remote control receiver installation

37

[‘fywish

ST 10480
U NINON -y
. NI 907UNY uangms“;:

™
-

>
D i
(} ' e e D11 Y ev eV 2w 1o 1 4

[———y— .

t =905 19S .- -

Figure 3.1.9.2 Effect diagram of infrared remote control receiver installation

Connect the power cable: Firstly, find the matching two power cables (the same as the wires used by
the motor, one red and one black) and connect the two cables to the DC power head. The DC power
connector is shown in Figure3.1.10.1. The rubber ring marked as "1" can be removed to open the shell and
then welding the wires to the +12V and GND, as shown in Fig.3.1.36.

Figure 3.1.9.1 Power DC Head

38

[‘fywish

Figure 3.1.9.2 Schematic diagram of wire welding

For the whole assembly, first insert the “4Pin wire” into the “IN1—IN4" on the motor drive, and thread
the other end of the tracing module from the bottom of the trolley to the top, as shown in Figure 3.1.11.1.
Then screw the battery box and the voltage display module and the DC head wire together (as shown in
Figure 3.1.11.2), connect the positive pole (red line) to +12V, and the negative pole (black line) to GND.

@
e REH
3
llllll!!f-

Q)ti‘ui“'!

08

J ‘ — =1 U
:@ L | Y

12V GND IN1-IN4

39

[‘fgwish

u
- L
£
o
N\ &
i

[\:
54;.;_. d

=
=

Figure 3.1.10.1 Effect Diagram of Wires Arrangement

Figure 3.1.10.2 Battery connection diagram

40

[‘fywish

Note:When docking, put the lines of the tracing module and the motor drive module all on
the upper acrylic plate,and install the expansion board.

Figure 3.1.10.3 Upper acrylic plate docked with the lower acrylic plate

Through the previous steps, we have completed the installation of the main structure of the car. Now we
wire the car to connect the cable. The connection method is as shown in the following figure. For the
specific experiment of a certain module, we will introduce it in detail through the following chapters.

Motor
Control interface

SG90
Servo interface

Ultrasound
module interface

Infrared receiver

Bluetooth
module interface

Infrared ofl c@e | = =
tracking interface SCLSDA- + & ;
aomnza:smnsIICi. pragveell ¢ 3

Infrared obstacle © & g

avoidance interface SEL[--—T PUR

9 _POWER ﬁNﬁLOG IN .
IN 345

Figure 3.1.11.1 Expansion board connection diagram

41

[ﬁywish

Figure 3.1.11.2 Extension board wiring diagram

42

[‘fywish

The full installation of the car is as shown below

So far, the basic assembly of car has been completed. We believe you have some basic knowledge of your
car’s structure, function and some modules through a short period of time, then you can achieve the
corresponding functions only by downloading the program to the development board, each function has a
corresponding program in CD, so please enjoy playing. However, if you can read the program and write
your own program, there will be more fun, now let's go to the software section!

43

[‘fgwish

3.2 Beetle Bot Module experiment

In the "Beetle-Bot" car, we choose the L298N as the motor driver chip for it is a high voltage and current
full-bridge driver chip, the chip uses 15 pins package. It is a special motor driven integrated circuit (two H
bridges) with high voltage and current full-bridge driver. And it contains 4 channel logic drive circuit,
basically belongs to a kind of two-phase and four-phase special motor drive which contains two H bridges of
high voltage large current. The output current is 2A, the maximum current is 4A, the maximum working
voltage is 50V, which can drive the load under 46V and 2A, such as high power DC motor, stepper motor,
solenoid valve and so on. The chip with two enable control terminals uses the standard logic level to control
signals, allows or prohibits the device to work when the input signal is not interfered, it has a logic power
input terminal which can enable the internal logic circuit to work under low voltage, and feedback the
variation to the control circuit. Especially, the input can be connected directly with the MCU and easily
controlled. When the DC motor is driven, the stepper motor can be directly controlled, and it can be turned
forward and reversely, which only needs to change the logic level of the input. The pin arrangement is
shown in Fig.3.2.1. The pin 1 and 15 can separately connect to the current sampling resistor and form the
current sensing signal.

va |

- s > CURRENT SENSING B
t4 3 OCUTPUT4
‘@‘ O CUTPUT 2
12 3 INPUT4
m"mgEC > EMABLE 28
10 3 INPUT3
a —— 5 LOGIC SUPPLY VOLTAGE Vge
s 3 GnD
70— INPUT 2
| O ENABLEA
[=2 INPUT 1
SUPPLY VOLTAGE Vs
[=D CUTPUT 2

‘ . J OUTPUT 1

\ I s [F———— CURRENT SENSING A
-

IMultiwatt1s5

- N W ks OO

Figure .3.2.1.1 Arrangement of Chip Pins
L298N can drive 2 motors which are connected between OUTI, OUT2 and OUT3, OUT4. 5, 7, 10 and
12 pin are connected to input control level for controlling the positive and negative rotation of the motor,
ENA, ENB are connected to control enable terminal for controlling the running and shutdown of the motor.
Its characteristics:
© Signal indicator
@ The speed is adjustable

44

ﬁEyudsh

€ The strong anti-interference ability with photoelectric isolation

© Overvoltage and overcurrent protection

© Controlling of two motors separately

@ Controlling the stepper motor

@ The speed control with PWM pulse width

© Positive and negative rotation

ENA IN1 IN2 Motor status

H H L Forward
H L H Reversal
H IN2 IN1 Quick stop
L X X Stop

Figure .3.2.1.2 Logic Function Chart

u;m@
e 3
1€
=3

12V GND

Fig.3.2.1.3 Module Physical Map

Detailed L298N chip data please refer to “Beetle-Bot\Document\LL.298N_datasheet.pdf”

45

[‘fgwish

VCC 12v

u3 R1 1K
y 1 3
INl_GND _[OUT o
~ ——C6 -
1l I 5 104 3
Power--IN ! 16V A70uf b

1

Lc4
2P || \w/cz 100uf
3 9_‘ 0 ‘qu 00uf
| é o & 2 é 3

=Ne]
oW
e
=

%—{F 7

EC1
al. gw ves |2 e 129 .
e T3P IN2 Vs |
N
o — 75 PIN3 2
® P IN4 OUT1 —3
o 77 PENA OUT3 [
L] PENB OUT4
M2
| 8 1
'||| GND ISENA 3
®
|

ISENB P5 P6 P7 P
298N-1

Figure .3.2.1.4 Schematic Diagram of Motor Drive

Four DC motors with high power L298N drive enable "Beetle-Bot" to run faster than conventional
two-wheel car, the acceleration time is shorter and the structure is more stable. However, in the actual
application, we need to adjust the speed of the car because of environmental or other factors, yet this does
not affect the forward, backward, stop, flexible steering of the car, so we use PWM to control the speed of
the motor(Note: PWM is a way to simulate the simulation output via square waves with different duty

cycles.), Arduino PWM port outputs a series of square waves with fixed frequency, the power and current of

the motor can be amplified after receiving the signal, thereby changing the motor’s speed. The speed

coordination of two motors on the right and left wheels can achieve the forward, backward, turning and

other functions of the car. Figure 2.4.5 shows the sequence diagram of PWM duty cycles.

0% duty cycle

[[[[[| 10% duty cycle
[] [1] [] [[| 25% duty cycle
|—|_| | A0% duty cycle

| L L || L | | 80% duty cycle

100% duty cycle

Figure .3.2.1.5 Sequence Diagram of PWM Duty Cycles

46

[‘Eywish

In Arduino, analog voltage can’t be output, only 0 or 5V digital voltage value, we can use high

resolution counter and the duty cycles of the square wave modulation method to encode a specific level of

analog signal. The PWM signal is still digital, because at any given time, the full amplitude of DC power

supply is either 5V (ON) or OV (OFF). The voltage or current source is added to the analog load with a ON

or OFF repetitive pulse sequence. When the DC power supply is added to the load, the power supply is on,

otherwise the power supply is off. As long as the bandwidth is enough, any analog value can use PWM to

encode. The output voltage value is calculated by the on and off time. Output voltage = (turn-on time / pulse

time) * maximum voltage. Fig.2.4.6 shows the corresponding voltage to the pulse change.

. I -}

bv
ov S—
75% 25% 75% 25% 75% 25%
bV
ov — I
50% 50% 50% 50% 50% 50%
hv

" LNl

20%

80%

20%

80%

20% 80%

Figure 3.2.1.6Relation between Pulse and Voltage

In the "Beetle-Bot" car experiment, we use Arduino UNO R3 as the main control board. By referring to
the chip data, we will know that Arduino UNO has 6 PWM pins, namely digital interfaces 3, 5, 6, 9, 10, 11,
and we select 5, 6, 9, 10 as the motor control 10, the connection is shown in Fig3.1.2.7

RN
@ =

L298N Arduino Uno
IN1 D6
IN2 D10
IN3 D5
IN4 D9

47

[‘fywish

Figure 3.1.2.7Arduino and L298N driver board connection diagram and connection table
The L298N and Arduino expansion board wiring is as follows:

Motor
Control interface

Sl- - - S|~ [0] -5} -[6] JS| . . - «
AREFGRUTIIZ 111088 7 683F 3210

o r + « SCISDA-+ &
monmasnime IIC - . . .| LLI
<

Figure.3.1.2.8 L298N and Arduino Expansion Board Connection Diagram

After the connection, we do not know whether the motor can work normally or not, so we need to do a
simple test by copying the following code (You can also open the program in the CD directly.) into the IDE
development environment and downloading to the development board. And turning on the power (power
connection is introduced the tenth and eleventh steps in 3.1.2) to observe the wheels rotation, if "going
forward 5s----stopping 1s---- going back 5s---- stopping 1s----turning left 3s----stop 1s----turning right 3s"
are normal, the connection is correct, otherwise the polarities of the motor may be reversed, then you need to
adjust slightly.

Program flow chart is as follows:

Go forward ,
delaySs

Y

Turn right , dela

Stop , delayls y3s

A

Y

Recede , delay5s Stop , delayls

: i

Turn left , dela
y3s

Stop , delayls L

48

[‘Eywish

Figure 3.1.2.9 Motor Test Flow Chart
Note: This test and 10O selection are only for reference, you can choose other 10 ports or use other wiring
methods according to your own ideas.
Test demo path: Lesson\ModuleDemo\Motor Test\MotorTest\MotorTest. ino

int INPUT3 PIN = 5; //PWMA
int INPUT4 PIN = 9; //PWMA
int INPUT1 PIN = 6; //PWMB
int INPUT2 PIN = 10; //PWMB

void setup() {

Serial.begin(9600) ;

pinMode (INPUT3 PIN, OUTPUT) ;

digitalWrite (INPUT3 PIN, LOW); // When not sending PWM, we want it low
pinMode (INPUT4 PIN, OUTPUT) ;

digitalWrite (INPUT4 PIN, LOW); // When not sending PWM, we want it low
pinMode (INPUT1 PIN, OUTPUT) ;

digitalWrite (INPUT1 PIN, LOW); // When not sending PWM, we want it low
pinMode (INPUT2 PIN, OUTPUT) ;

digitalWrite (INPUT2 PIN, LOW); // When not sending PWM, we want it low

void loop () {
analogWrite (INPUT2_ PIN, 0);
analogWrite (INPUT1 PIN, 200);//the speed value of motorA is 200
analogWrite (INPUT3_ PIN, 0);
analogWrite (INPUT4 PIN, 200);//the speed value of motorB is 200
delay (5000);
//******** ******************************//forward
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 0); //the speed value of motorA is 0
analogWrite (INPUT3_ PIN, 0);
analogWrite (INPUT4 PIN, 0); //the speed value of motorB is 0
delay(lOOO);//****:***************************************//stop
analogWrite (INPUT2 PIN, 200);//the speed value of motorA is 200
analogWrite (INPUT1 PIN, 0);
analogWrite (INPUT3 PIN, 200);//the speed value of motorB is 200
analogWrite (INPUT4 PIN, 0);
delay(iooo) ;//****:**//back
analogWrite (INPUT4 PIN, 0);
analogWrite (INPUT3 PIN, 0); //the speed value of motorA is 0
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 0); //the speed value of motorB is 0
delay (1000);

[‘fgwish

//******* ***************************************//Stop

analogWrite (INPUT2 PIN, 0);

analogWrite (INPUT1 PIN, 0);

analogWrite (INPUT3 PIN, 0);

analogWrite (INPUT4 PIN,) ;//the speed value of motorA is 150
delay () ;
//***//left

analogWrite (INPUT2_ PIN, 0);

analogWrite (INPUT1 PIN, 0); //the speed value of motorA is 0
analogWrite (INPUT3_PIN, 0);

analogWrite (INPUT4 PIN, 0); //the speed value of motorB is 0
delay(); //***//Stop
analogWrite (INPUT2_ PIN, 0);

analogWrite (INPUT1 PIN,) ;//the speed value of motorB is 150
analogWrite (INPUT3_ PIN, 0);

analogWrite (INPUT4 PIN, 0);

delay();//*** ***************************************//right

}

Bynow, the car can move normally, next we will add several common sensor modules.

3.2.2.1 Introduction of Infrared Obstacle Avoidance Sensor

Infrared obstacle avoidance module is a pair of infrared transmitting and receiving tubes, the former
launches a certain frequency infrared, the receiving tube will receive the reflected infrared when the infrared
detects the obstacles. After the signal is processed by the comparator circuit, the green LED lights, and the
signal output port outputs digital signal at the same time (a low level signal). The detection distance can be
adjusted through the potentiometer knob, the effective distance range is 2-30cm, the working voltage is
3.3V-5V. The sensor uses infrared, so the anti-interference ability is very strong, the measurement accuracy
is very high when the distance is moderate. In addition, the module can be assembled easily and used
conveniently, it can be widely used in robot obstacle avoidance, car obstacle avoidance and the black&white
line tracing and many other occasions.

3.2.2.2 Working Principle

1, The module output port OUT can be directly connected with the 10 port of the microcontroller, and
directly drive a 5V relay; the connection mode is: VCC-VCC; GND-GND; OUT-IO (A3 and A4), as shown in
Fig.3.2.9 and Chart 3.2.1.

2, The module uses the 3-5V DC power as power supply. When the power is on, the indicator will light.

3, The diameter of installation hole is 3mm, you can use the same size screws (screws in the kit).
50

[‘fywish

Pin wiring definition (only for reference, you can define according to your own ideas):

arduino Uno Infrared Obstacle Avoidance Module
VvcC VCC
GND GND
A3 The left module
A4 The right module

Chart 3.2.2.1 Pin Wiring Definition
3.2.2.3 Module Parameters

The working principle of infrared obstacle avoidance sensor is very simple, that is the reflection
property of objects. In a certain range, if there is no obstacle, the infrared ray emitted will gradually weaken
because of the farther distance of transmission, and finally disappear. If there are obstacles, the infrared will
be reflected to the receiving head. As soon as the sensor detects the signal, it can confirm that there are
obstacles in front of the circuit board, the green indicator will light, the OUT port continuously outputs low
level signal to MCU at the same time, the MCU conducts a series of analysis to ensure that the two wheels
of car works properly and avoids the obstacle beautifully. The schematic diagram of the sensor is shown in
Fig.3.2.8. Infrared detector can be divided into active and passive according to its working mode.

Active infrared detector is equipped with infrared light source, it can detect the location of the object
through covering the light source, reflection, refraction and other optical means.

Passive infrared detector has no light source, and it can measure the position, temperature, or infrared
imaging of the detected object by receiving the characteristic spectral radiation of the detected object.

OUT-LED com P10
H// [O:00)
~— ||
o @
10K RS R6 R3
N A A 1K
K4Y 1K 10K
C7]|
c8 R2 104])\
— 1K 1 3 L
104
oy OUT1
2 v - (4 g P IN-1 OUT2 —g
I D [N+1 IN-2<—5
— IN+2 ¢—
)
5 R7 10K us LM393-1
N '
[e]
o n

51

[‘Eywish

Figure .3.2.10 Infrared obstacle avoidance schematic diagram

Figure 3.2.2.3 Connection of Arduino and Sensor
Note: This module can adjust the detection distance by the potentiometer, the detection distance is
2-30cm, if it is found that the distance detection is not very sensitive, you can use the potentiometer to
achieve the desired results (rotating the potentiometer clockwise will increase the detection distance;
counterclockwise will decrease), it is shown in Fig.3.2.2.4..
Manual adjustment is shown in the following diagram:

CIRY XA

Figure .3.2.2.4 Diagram of Distance Detection Adjustment

3.2.2.4 Wire connection

As the figure shown below, the upper column is the "GND" interface, the middle column is the "VCC"
interface, and the lower column is the "OUT" interface, where "A3" corresponds to the "OUT" of the left
infrared obstacle avoidance, and "A4" corresponds to the right infrared obstacle avoidance. "OUT".

52

[‘Eywish

S' > =''%S B » =« » S ¥ 8 -‘"_ - he B
ARETONDI31Z 111088 7685% 3210
v5.0

X TXRX~ +
(COM

Infrared obstacle
avoidance interface

ﬁNﬁLOG IN .
SUGNDUIN 012345

Figure 3.2.2.5 Wire connection diagram
3.2.2.5 Experimental Procedures

1, Fixing the two sensors on the car and connecting them to Arduino with wires.(Already done)

2, Testing the sensitivity of module, namely opening the switch on the battery box and the indicator will
light, placing obstacles the 10cm away from the infrared tubes, adjusting the potentiometer until the output
indicator lights up.

3, Module test. Copying the following code to the IDE compiler environment (you can also open the
program directly in the CD), downloading it to the development board, opening the serial port monitor (baud
rate is 9600) and observing the changes of data when there is an obstacle (Figure 3.2.14) and no obstacle
(Figure 3.2.15).

Note: Here we connect the infrared obstacle avoidance signal output port to the analog port on Arduino
(A0-Ab), so the serial port prints out analog value, you can connect it to digital port (2-13), and the serial port
will only print out "0" and "1".

Program flow chart is as follows:

53

[‘Eywish

Open the serial
port

l

Read the value of
infrared obstacle
avoidance

!

Print the read value
to the serial port

Test demo path:: Lesson\ModuleDemo\InfraredAvoidanceTest\ InfraredAvoidanceTest.ino

const int leftPin = A3;

const int rightPin = A4;

int dil;

int dr;

void setup() {
Serial.begin(9600) ;
pinMode (leftPin, INPUT);
pinMode (rightPin, INPUT) ;
delay(1000);

}

void loop() {
dl = analogRead(leftPin);

dr = analogRead(rightPin) ;

Serial.print("left:");
Serial.print(dl) ;
Serial.print (" "y ;
Serial.print("right:");

Serial.println(dr) ;

54

ﬁEyuﬁsh

s

&8 COM20 (Arduino/Genuino Uno) = =
left:32 right:34 -
left:32 right:35

left:32 right:35

left:32 right:35

left:32 right:35

left:32 right:34

left:33 right:34

left:32 right:35

left:32 right:35

left:32 right:34

left:32 right:34

left:32 right:35

left:32 right:35

left:32 right:34 E
left:32 right:34 Il
[#] Autoscroll No line ending v [9600 baud

Figure .3.2.2.6 Diagram of Data with Obstacles

(&% COM16 (Arduino/Genuino Uno) (=] 5 [
| i
left:1020 right:1021 }
left:1020 right:1020
left:1020 right:1020
left:1021 right:1020
left:1021 right:1020
left:1021 right:1020
left:1020 right:1020 E
left:1021 right:1020
left:1020 right:1020
left:1021 right:1020
left:1020 right:1021
left:1020 right:1021
left:1020 right:1020
left:1020 right:1021
left:1020 right:1021
left:1020 right:1020 Il
W=F 5 REARA v [9600 HHE v || Clear output

Figure .3.2.2.7 Diagram of Data without Obstacles

55

[‘Eywish

3.2.2.5 Software Design

3.2.2.5.1 Program flow chart

Read two infrared
analog values and
assign them to dl and

dr

Turn right

Go forward

t22

Turn left

Go back

:

delay 1s

3.2.2.5.2 Program code

In the above steps, we have tested the car’s driving and obstacle avoidance module respectively, they

have achieved the desired results, here the "infrared obstacle avoidance" actually has been explained in this

section, but we have not put the programs of two parts together, so we now integrate the program of the two

parts and complete this great “infrared obstacle avoidance" project. Firstly, let's read the complete program:

demo path: Lesson\Advanced experiment\Beetle_InfraredAvoidance\

Beetle InfraredAvoidance\ Beetle _InfraredAvoidance.ino

int INPUT3 PIN = 5; //PWMA

int INPUT4 PIN
int INPUT1 PIN

6; //PWMB

9’- //DIRA**Right

56

[‘fywish

int INPUT2 PIN = 10 ; //DIRBX***kkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkxkk*k*x[, o ft

/*Define 4 motor control terminals, connected to IN1-IN4 on the motor RightValueive board.
*/

const int leftPin = A3;

const int rightPin = A4; // Define the two signal receiving ends of the sensor

float LeftValue;

float RightValue;// Define two margins to store the values read by both sensors

void setup() {
Serial.begin(9600); // Set the serial port baud rate to 9600,
pinMode (leftPin, INPUT);,
pinMode (rightPin , INPUT);// Set the working mode of two sensor pins, namely "input"
digitalWrite (INPUT3 PIN, LOW); // When not sending PWM, we want it low
pinMode (INPUT4 PIN, OUTPUT) ;
digitalWrite (INPUT4 PIN, LOW); // When not sending PWM, we want it low
pinMode (INPUT1 PIN, OUTPUT) ;
digitalWrite (INPUT1 PIN, LOW); // When not sending PWM, we want it low
pinMode (INPUT2_ PIN, OUTPUT) ;
digitalWrite (INPUT2 PIN, LOW); // When not sending PWM, we want it low
delay (1000);

void loop() {
LeftValue = analogRead(leftPin);
RightValue = analogRead (rightPin); // Read the values collected by both sensors and assign
them to the defined variableso
if (LeftValue >= 38 && RightValue <= 38) {/*If the value collected by the left sensor is
greater than or equal to 38 and the RightValue value is less than or equal to 38, the following
program in {} is executed (LeftValue> = 38, there is no obstacle on the left, RightValue<=
38 shows that there is an obstacle on the RightValue, so at this time the car is turning
to the side without obstacles (ie, turning to the left). From Figure 3.2.11, we know that
the simulated value will RightValueop below about 35 in the event of an obstacle , But in
order to reduce the error, we set the threshold at 38 to prevent the car from judging the
error because of the error. We can also customize other values. If we use the digital port
to receive the value of the sensor, we only return "0" and "1" ", But the same way to judge.
The reason why I did not use digital I0, because we use the digital I0 port in other places.*/
analogWrite (INPUT4 PIN, 180);
analogWrite (INPUT3 PIN, 0);
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 100); /*Set a PWM value, the maximum PWM is 255, but the speed
of the car should not be too fast when walking, otherwise it can not hit the obstacle in

time when the obstacles are suddenly encountered.*/

57

[‘Eywish

Serial.print(LeftVvalue) ;

Serial.print (" ");

Serial.print (RightVvalue) ;

Serial.print (" ") ;

Serial.println("Turning left"); /*Through the "Serial Monitor" print the current status
of the car and the value collected by the sensor*/

delay (300);

analogWrite (INPUT4 PIN, 0);

analogWrite (INPUT3 PIN, 0);

analogWrite (INPUT2 PIN, 0);

analogWrite (INPUT1 PIN, 0);

delay(looo) ;//*****************k**k*k**k**************//Turning left

if (LeftValue <= 38 && RightValue <= 38) {/*If the value collected by the left sensor is
less than or equal to 38 and the RightValue value is less than or equal to 38, the following
program in {} is executed (LeftValue <= 38, indicating that there is an obstacle on the left
and RightValue<= 38 shows that there is an obstacle on the RightValue, so at this time the
car is rotated 180 degrees backwards. In the experiment, the car can just turn around 180
degrees after 500ms of rotation. Because the DC motor can not precisely control the angle
like the steering gear, An approximate value, of course, different motor speed is not the
same, the time used is not the same, so everyone in the experiment can be based on the
circumstances may be.)*/
analogWrite (INPUT4 PIN, 255);
analogWrite (INPUT3 PIN, 0);
analogWrite (INPUT2 PIN, 255);
analogWrite (INPUT1 PIN, 0);
Serial.print(LeftValue)
Serial.print (" ");
Serial.print (RightValue) ;
Serial.print ("™ ");
Serial.println("Turning around") ;/*Through the "Serial Monitor" print the current status
of the car and the value collected by the sensor.*/
delay (500);
analogWrite (INPUT4 PIN, 0);
analogWrite (INPUT3 PIN, 0);
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 0); /*Rotate 180 degrees and stop*/
delay(looo) ;//***‘k*:******************‘k****‘k***//Turning around
}
if (LeftValue <= 38 && RightValue >= 38) /*If the left sensor is less than or equal to

38 and the RightValue value is greater than or equal to 38, the following program in {} is

58

[‘Eywish

executed (LeftValue <= 38, indicating that there is an obstacle on the left, RightValue>
= 38 shows that there is no obstacle on the left, so at this moment the car is turning to
the side without obstacle, that is, turning to the RightValue) */
{
analogWrite (INPUT4 PIN, 100);//the speed value of motorA is wval
analogWrite (INPUT3 PIN, 0);
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 180);//the speed value of motorA is val
Serial.print(LeftVvalue);
Serial.print (" "),
Serial.print (RightVvalue) ;
Serial.print (" ");
Serial.println("Turning RightvValue");
delay (300);
analogWrite (INPUT4 PIN, 0);
analogWrite (INPUT3 PIN, 0);
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 0);/*Car must stop after each rotation, if you do not stop there
will be the phenomenon of rotating around. */
delay(looo) ;//*********************************Turning nghtvalue
}
if (LeftValue >= 38 && RightValue >= 38) {/* Judge two values collected by the sensor.
If the value collected by the left sensor is greater than or equal to 38 and the RightValue
value is greater than or equal to 38, execute the following program in {} (LeftValue > =
38, indicating that there is no obstacle on the left and RightValue > = 38 that there is
no obstacle on the left, so the car at this time straight */
int value = 200; /*When the straight line has a PWM value of 200, if the value is too
large, the speed of the car will be very fast, which may lead to the car can not hit the
obstacle in time when it encounters the obstacle. */
analogWrite (INPUT4 PIN, value);
analogWrite (INPUT3 PIN, 0);//the speed value of motorA is value
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, value);//the speed value of motorB is value
Serial.print(LeftVvalue) ;
Serial.print ("™ ");
Serial.print (RightVvalue) ;
Serial.print (" ")

Serial.println("go"),-//**********************************/ / forward

59

[‘fgwish

In the above program, we made comments on some part of the program in order to make you to learn
and understand the program easily, the program is relatively simple, you can write your own programs to
give the car more skills. Of course, if you want to use it directly, we have the corresponding source program
in the CD.

3.2.3.1 Introduction of Infrared Tracing Sensor

After infrared obstacle avoidance, let us learn the infrared tracing, their nature of work is the same,
using basically the same module, just in different ways, to achieve different functions. In this section when
we study, we have to pay attention to the color of the line we trace (the black line or white line), if your floor
is black, you should trace the white line (pasting white line on the floor); if it is white, then you should trace
the black line (pasting black line on the floor); you just need to make a distinct difference between the track
and the ground environment.

Black line tracking refers to the car drives along the black line on the white floor, it can know where to
drive according to the received reflected light due to the different light reflection coefficient on the black
and white floor.

White line tracking refers to the car drives along the white line on the black floor, it can know where to
drive according to the received reflected light due to the different light reflection coefficient on the white
and black floor.

In the "Beetle-Bot" car, we use the TCRT5000 sensor as tracing module, TCRT5000 infrared reflection
sensor is a photoelectric sensor which consists of an infrared emitting diode and an NPN infrared
photoelectric transistor. The detectable reflective distance is Imm-25mm, the sensor is specially equipped
with M3 fixed installation holes, so it is easy to adjust the direction, it also has the 74HC14 Schmidt trigger
inverter which ensure the clean signal, the good wave shape and the strong driving ability. It can be applied
to robot obstacle avoidance, robot tracing (detecting black line in white background and detecting white line
in black background), which is the necessary sensor for tracing line robot and other occasions. The PCB size

is 3.5cm*1cm, and the physical map is shown in Fig.3.2.3.1..

60

[‘ngish

13116

i) C A
I_;,
be Lo
Top view

Figure .3.2.3.1 Physical Map of the Module

3.2.3.2 Working Principle

In the above, we talked about two patterns of tracing-the white line and the black line. In fact, either the
black line or the white line, we usually adopt the infrared detection method.

Infrared detection method means that different objects with different colors have the different infrared
reflection characteristics. The car launches the infrared to the ground continually during driving process, the
infrared receiving tube will be in a shutdown state and the output of the module is low level when the
emitted infrared is not reflected or the reflected infrared is not strong enough, and indicating diode will be
off; when the diffuse reflection occurred on a white floor, the intense reflected infrared will be received by
the receiving tube on the car, the photosensitive triode will be saturated, the output end of the module is high
level and the indicating diode will light.

As is shown in the schematic diagram 3.2.3.2 (U1 is comparator, such as LM358, LM324, LM393,
LM339 and a series of comparators, we use the 74HC14D comparator in TCRT5000), A and C are
connected to the light emitting diode, C and E to the receiving diode, as shown in Fig.3.2.3.1 In the
"Beetle-Bot" car, we use three modules, two in the left and right sides, one in the middle. Its installation is

shown in Fig.3.2.3.3 ,the tracing sensors are in a straight line.

61

[‘fgwish

104 Left P PF [Rioht
whee i i H k \whee
-1 1 i i
) I |
D1 Left sensor Right sensor
T LIS
R LED

Figure .3.2.3.2 Schematic Diagram of Tracing Module Figure. 3.2.3.3 Diagram of Tracing Module
Installation

The X1 and Y1 are the first direction control sensors, and the width of the two sensors on the same side
of the black line must not be greater than the width of the black line. When the car is moving forward, the
driving track is always between the two first level sensors X1 and Y1 (the black track as shown in Fig.
3.2.18), when the car deviates from the black line:

If the left X1 detects the black line which can’t be detected by the right Y1 and intermediate sensors,
the the car has shifted to the right, then the car will turn left slightly, and keeping intermediate sensor always
detecting the black line; if the right Y1 detects the black line which can’t be detected by the left X1 and
intermediate sensors, the the car has shifted to the left, then the car will turn right slightly, and keeping
intermediate sensor always detecting the black line; if the car turns back on the track driving along the black

line, X1 and Y1 can all detect the white line, and send high level to the microcontroller.

3.2.3.3 Module Parameters

€ Using TCRT5000 infrared reflection sensor

@ The detection distance: 1mm~25mm, the focal distance is 2.5mm

€ The comparator output signal waveform is clean, good-shape and it has more than 15mA strong drive
ability.

€ The working voltage: 3.3V-5V

Using wide voltage comparator 74HC14D, digital output (0 and 1)

2

€ Easy-to-install fixed bolt holes

Detailed parameters please refer to “Beetle-bot\Document\ TCRT5000.pdf”
Note:

between positive and negative poles. Connecting the VCC to 3.3V or 5V, the OUT output port to the
microcontroller 10 port directly. The I/O port on Arduino should be set for input mode / receiving mode,

62

[‘Eywish

otherwise it can’t be used. As for other MCU, such as ARM or more advanced control boards, if the 1/0
ports need to be used as the input and output mode, they have to be set to the input mode / receiving mode.
The 51 series microcontrollers can be used directly, there is no need to set the input and output mode.

3.2.3.4 Wire connection

As shown in the below figure, the upper column is the "GND" interface, the middle column is the
"VCC" interface, and the lower column is the "OUT" interface, where "A0" corresponds to the "OUT" of the
left trace, and "Al1" corresponds to the "OUT" of the intermediate trace. "A2" corresponds to the "OUT" of
the right trarce.

——— o A e ———

“ . " « . . - - . - e O . . - -
§, 1

- . . » - » - - . . . - . . -
i !

S‘ » o ''" B N « S s a's -"_ > 3% %
ARETONDT312 (11088 7685% 3210
vh.0

+

RESET
G TXRX- +
e _Hl : 1COM

Infrared “VGC * ‘
tracking interface L* = | ouT " SCLSDA- + Q.
MoMmmaznens IIC - « . . O
§«’ d T f _CL

seLl - .. PHR
' POMER ANALOG IN .
W) wR@ SUGNDVIN 012345

-‘i

Figure .3.2.3.4 Wire connection diagram

3.2.3.5 Experimental Procedures

1, Fixing the sensor on the car (the assembly is completed) and connecting it to the Arduino as shown in
Fig.3.2.19.

2, Making the track.If your floor is white, then you could stick a black tape to form a loop, otherwise
stick a white tape, the shape of track is based on your own desires, the best width of the tape is 13-18mm. In
this manual, we use the black track, as shown in Fig.3.2.20.

63

[‘fywish

3, Module test. Copying the following codes to the IDE compiler environment (you can also open the
program in the CD directly) and downloading to the development board, opening the serial port monitor
(baud rate is 9600) to observe the changes of data when there is the white line (Fig. 3.2.21) and is not the
white line (Figure 3.2.22).

Program flow chart is as follows:

Read the value
returned by the |«
infrared sensor

l

Print the read
value to the serial
port

Note: Here we connect the signal output port of infrared obstacle avoidance to the analog port on
Arduino (A0-Ab), so the serial port monitor prints analog values, you can connect it to the digital port (2-13),

then the serial port monitor will print out only "0" and "1".
Test demo path: Lesson\ModuleDemo\InfraredTracingTest\InfraredTracingTest. ino

64

&ywish

void setup() {
Serial.begin(9600);
pinMode (AO, INPUT) ;
pinMode (A1, INPUT) ;
pinMode (A2, INPUT) ;

}

void loop() {
int left, centre, right;
left = analogRead(A0) ;
centre = analogRead(Al);
right = analogRead(A2);
Serial.print("right:");
Serial.print (right);
Serial.print (" ");
Serial.print("centre:");
Serial.print (centre) ;

Serial.print (" ");

Figure .3.2.3.5 Example of the Black Track

65

[‘fgwish

551 COML16 (Arduine

right:1002 centre: 1004 Teft:1004 -
right:1002 centre:1004 1left:1003

right:1002 centre:1004 1left:1004

right:1002 centre:1004 left:1004

right:1002 centre:1004 1eft:1004

right:1002 centre:1004 left:1004

right:1002 centre: 1004 1eft:1003

right:1002 centre:1004 1left:1004

right:1002 centre:1004 1left:1004 U
right:1002 centre:1004 left:1004

right:1002 centre:1004 left:1004

right:1002 centre: 1004 1eft:1003

right:1002 centre:1004 1left:1004

right:1002 centre:1004 1left:1003

right:1002 centre:1004 left:1004

right:1002 centre: 1004 1eft:1003

right:1002 centre:1004 left:1004

right:1001 centre:1004 1left:1004

right:1002 centre:1004 left:1004

right:1001 centre:1004 1eft:1004

right:1002 centre:1004 left:1004

right:1002 centre:1004 1left:1004

right:1002 centre:1004 left:1004 il

To line ending Issuu band v

Fig 3.2.3.6 The Data When the Sensor Does Not Detect the Black Line

'w COM16 (Arduino

centre: left:

right:0 centre:l Tett:0 -
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0 U
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
0 0 0

To line ending v Igsnn baud v

Fig 3.2.3.7 The Data When the Sensor Does Not Detect the Black Line
From Fig.3.2.3.6 and Fig.3.2.3.7 we can see that the output is high level when the sensor does not
detect the black line, low level when detects the black line. We use the analog port to collect the sensor’s
signal, so the printed value is analog that, the high level is reaching 1024, the low level is 0. After we master
the working principle of the sensor, our tracing car in this section comes to an end, then let us open a car
journey.

66

[‘fywish

3.2.3.6 Software Design

3.2.3.6.1. Program flow chart

When the car enters the tracing mode, it keeps scanning the 1/0 port of the MCU connected to the

sensors, once detecting the changes in signal at the 1/0O port, the corresponding procedure will be

implemented, the corresponding signal will be sent to the motor so as to correct the status of the car.
When the car enters the tracing mode, it keeps scanning the 1/0 port of the MCU
connected to the sensors, once detecting the changes in signal at the 1/O port, the corresponding

procedure will be implemented. If the left sensor detects the black line (the left half of the car walked across
the black line, the car body is trended right), the car should turn the left; If the right sensor detects the black

line (the right half of the car walked across the black line, the car body is trended left), the car should turn
the right. After the direction adjustment, the car walks forward, and continues to detect the black line

repeatedly. The tracing flow chart is shown in Fig.3.2.3.8.

Read three

sensor -}
values

Turn left

Go forward

oo

Turn right

Figure .3.2.3.8 the Tracing Flow Chart

67

[‘fywish

3.2.3.6.2. Program Code
demo path: Lesson\Advanced experiment\Beetle InfraredTracing\Beetle InfraredTracing.ino

int INPUT3 PIN

5; //PWMA

9; //DIRA**left

int INPUT4 PIN

6; //PWMB

lo; //DIRB**right

int INPUT1 PIN

int INPUT2 PIN
/*Define 4 motor control terminals, connected to IN1-IN4 on the motor drive board.*/
void setup() {
Serial.begin(9600); /*Set the baud rate to 9600 */
}
void loop()
{
int left, centre, right; /*Define 3 sensors */
left = analogRead(A0) ;
centre = analogRead(Al) ;
right = analogRead(A2); /*Read the value collected by 3 sensors */
Serial.println(centre);
if ((right >= 975) && (centre <= 8) && (left >= 975)) {

/* Judge the collected value, if right > the sensor captures a value that is low and
reads 0 after analog I0. However, to reduce the error, we set the threshold In 8, to prevent
the error caused by the car to determine the wrong, we can

customize the other values, if the use of digital port to receive the value of the sensor
returns only "0" and "1", but to determine the same way. The reason why I did not use digital
I0, because we use the digital IO port in other places. */

int value = 150; /*Set a PWM value, the maximum value of PWM is 255, but the speed should
not be too fast when tracing the car, otherwise the car will shake more in the tracing process.*/

analogWrite (INPUT4 PIN, value);

analogWrite (INPUT3 PIN, 0); //the speed value of motorA is value

analogWrite (INPUT2 PIN, 0);

analogWrite (INPUT1 PIN, value); //the speed value of motorB is value

}

else if ((right <= 8) && (centre >= 975) && (left >= 975)) { /* The value collected to
judge, i1f the center > = 975 and left > = 975 are greater than 975, indicating that the middle
and left sensors did not detect the black line, right <= 8 shows the right sensor detects
a black line, then the car Has left to the left, or the black line has been turning to the
right, so the car should turn to the right. */

analogWrite (INPUT3 PIN, 0);

analogWrite (INPUT4 PIN, 0); //the speed value of motorA is value

analogWrite (INPUT2 PIN, 0);

analogWrite (INPUT1 PIN, 180); //the speed value of motorB is value

}
else if ((right >= 975) && (centre >= 975) && (left <= 8)) { /* Judge the collected value,

68

[‘Eywish

if center > = 975 and right > = 975 are greater than 975, indicating that the middle and
right sensors did not detect the black line, left <= 8 shows that the left sensor detects
the black line, then the car Has been to the right deviation, or the black line has turned
to the left, so the car should turn left at this time. */
int value = 130;
analogWrite (INPUT4 PIN, value);
analogWrite (INPUT3 PIN, 0); //the speed value of motorA is value
analogWrite (INPUT1 PIN, 0);
analogWrite (INPUT2 PIN, 0); //the speed value of motorB is value
}
if ((right <= 8) && (centre <= 8) && (left <= 8)) {/* The value collected to judge, if
the center <= 8, left <= 8 and right <= 8 are greater than 8, indicating 3 sensors have detected
a black line, then the car has reached the "ten" intersection, because We have only 3 sensors,
no way to make more sophisticated judgments, so only let the car choose to go straight. */
int value = 130;
analogWrite (INPUT4 PIN, value);
analogWrite (INPUT3 PIN, 0); //the speed value of motorA is value
analogWrite (INPUTZ2 PIN, 0);
analogWrite (INPUT1 PIN, value); //the speed value of motorB is value

69

[‘fgwish

In this product, we will integrate the ultrasonic module and steering engine together and make the two
parts working at the same time, which greatly increases the effectiveness of the data and the flexibility of the
car, the main working flow: When the power is on, steering engine will automatically rotates to 90 degrees,
the MCU will read data from the reflected ultrasonic. If the data is greater than the security value, the car
will continue to drive forward, otherwise the car will stop, then the steering engine will rotate 90 degrees to
the right. After that, the MCU reads data from the reflected ultrasonic again, the steering engine rotates 180
degrees to the left, then reading data again, the steering engine rotate 90 degrees, the MCU will contrast the
two detected data, if the left data is greater than the right data, the car will turn left, otherwise turn right, if
the two data are both less than the safety value, the car will turn around.

3.2.4.1 Suite Introduction

1.The steering gear

The steering gear is also called servo motor which is originally used in ships, since it can control the
angle continuously through the program, so it has been widely used in intelligent steering robot to achieve
all kinds of joint movement, the characteristics steering gear are small volume, large torque, high stability,
simple external mechanical design. Either in hardware or software design, the design of steering engine is an
important part of car controlling, the steering gear is mainly composed of the following parts in general,
steering wheels, gear group, position feedback potentiometer, DC motor and control circuit (shown in

Fig.3.2.4.1). Fig.3.2.4.2 shows the most commonly used 9G steering gear now.

_~Transmission

gear set

Adjustable
potentiometer

Small DC motor

s 7 Control

/, circuit

Figure .3.2.4.1 Diagram of Steering Gear

70

[‘fywish

\-
Ay e

GND

Figure .3.2.4.2 Physical Map of Steering Gear

2. The ultrasonic

An ultrasonic sensor is a device that transforms other forms of energies into ultrasonic energy with
desired frequency or transforms the ultrasonic energy into other forms of energy with the same frequency.
The ultrasonic sensors are commonly classified into two categories, the acoustic type and the hydrodynamic
type. Acoustic type mainly has: 1, piezoelectric sensor; 2, magneto strictive sensor sensor; 3, electrostatic
sensor. The hydrodynamic type includes the gas whistle and the liquid whistle. At present most of the
ultrasonic sensors are working using piezoelectric sensors. Distance measurement with the ultrasonic is also
a hot spot.

In the "Beetle-Bot" car, we use HC-SR04 ultrasonic module which has the 2cm-400cm non-contact
distance sensing function, the measurement accuracy can achieve to 3mm; the temperature sensor can
correct the measured results using the GPIO communication mode, the module has a stable and reliable
watchdog. The module includes an ultrasonic transmitter, receiver and control circuit, which can measure
distance and steer like in some projects. The smart car can detect obstacles in front of itself, so that the smart

car can change direction in time, avoid obstacles. A common ultrasonic sensor is shown in Fig.3.2.4.3.

71

[‘fywish

R &' Vcc
) 177 Tr19g
e 15 EChO

Figure 3.2.4.3 Physical Map of Ultrasonic Module

3.2.4.2Suite Parameters

1. Steering gear

The steering gear has three input wires as shown in Fig.3.2.25, the red is power wire, while the brown
is the ground, which guarantee the basic energy supply for the steering gear. The power supply has two
kinds of specifications (one is 4.8V, the other is 6.0V)which are corresponding to different torque standards,
the 6.0V torque is higher than the 4.8V torque; and the another one is the signal control wire, which is
generally white in Futaba, orange in JR. Noticing that some of the SANWA's power wires are on the edge
rather than the middle which need to be identified, so you need to remember that the red is power wire, the
brown is ground wire.

2. Ultrasonic wave

1, Working voltage: 4.5V~5.5V. In particular, voltage above 5.5V is not allowed definitely

2, Power consumption current: the minimum is ImA, the maximum is 20mA

3, Resonant frequency: 40KHz;

4, Detection range: 4 mm to 4 meters. Error: 4%. In particular, the nearest distance is 4mm, the longest
distance is 4 meters, and the data outputs continuously without setting anything. 5, Temperature
measurement range: 0°Cto +100°C; precision: 1°C

6, lllumination measurement range: bright and dark;

7, Data output mode: icc and uart (57600bps), users can choose any of them; UART mode uses 7 bytes

as a group, and the 3 data stared with 0x55 are the distance values; the 2 data started with 0x66 are the
72

[‘fgwish

temperature value; the 2 data started with 0x77 are the illumination values. 0x55\0x66\0x77 are the data
headers in order to distinguish the 3 data;

8, Supporting the following 2 detection methods: 1, continuous detection; 2, controlled intermittent
detection;

9, Distance data format: using mm as the smallest data unit, double byte 16 hexadecimal transmission;

10, Temperature data format: using Celsius degree as the smallest unit, single byte hexadecimal
transmission;

11, Light data format: single byte 16 hexadecimal transmission; the value is big when it is dark, small
when it is bright;

12, Working temperature: 0°C~+100°C

13, storage temperature: -40 to +120 degrees Celsius

14, Size: 48mm*39mm*22mm (H)

15, The size of fixing holes: 3*®3mm; Gap:10mm

3.2.4.3Working Principle

1. Steering gear

The control signal enters the signal modulation chip by the receiver channel, gets the DC bias voltage.
The steering gear has a reference circuit which generates a reference signal with a period of 20ms and a width
of 1.5ms. Comparing the obtained DC bias voltage with the voltage of the potentiometer and obtaining the
output voltage difference. Finally, the positive and negative output voltage difference in the motor driver chip
decide the positive and negative rotation of motor. When the speed of motor is certain, the cascade reducer
gear will drive potentiometer to rotate so that the voltage difference is reducing to 0, the motor will stop
rotating.

When the control circuit receives the control signal, the motor will rotate and drive a series of gear sets,
the signal will move to the output steering wheel when the motor decelerates. The the output shaft of steering
gear is connected with the position feedback potentiometer, the potentiometer will output a voltage signal to
the control circuit board to feedback when the steering gear rotates, then the control circuit board decides the
rotation direction and speed of the motor according to the position, so as to achieve the goal. The working
process is as follows: control signal—control circuit board—motor rotation—gear sets deceleration—steering
wheel rotation—position feedback potentiometer—control circuit board feedback.

The control signal is 20MS pulse width modulation (PWM), in which the pulse width varies linearly from
0.5-2.5MS, the corresponding steering wheel position varies from 0-180 degrees, which means the output

73

[‘ngish

shaft will maintain certain corresponding degrees if providing the steering gear with certain pulse width. No

matter how the external torque changes, it only changes position until a signal with different is provided as
shown in Fig.3.2.4.4. The steering gear has an internal reference circuit which can produce reference signal
with 20MS period and 1.5MS width, there is a comparator which can detect the magnitude and direction of the
external signal and the reference signal, thereby produce the motor rotation signal.

I'he Min pulse width |_| I | | | U

il [

O

I'he pulse width 1ms

90

I'he medium pulse widih

The pulse width 1.5ms

I'he Max pulse width

180

|
WG

I'he pulse width 2ms

Figure .3.2.4.4 Relationship between the Motor Output Angle and Input Pulse

2. The ultrasonic

The most commonly used method of ultrasonic distance measurement is echo detection method, the
ultrasonic transmitter launches ultrasonic toward a direction and starting the time counter at the same time,
the ultrasonic will reflect back immediately when encountering a blocking obstacle and stopping the counter
immediately as soon as the reflected ultrasonic is received by the receiver. The working sequence diagram is
shown in Fig.3.2.4.5. The velocity of the ultrasonic in the air is 340m/s, we can calculate the distance
between the transmitting position and the blocking obstacle according to the time t recorded by the time
counters, that is: s=340*t/2.

74

[‘fgwish

10u=s high lewvel

Trig pin

Eight 40khz ultrasonic pulse

Oltrasonic Sender HJ-|_|-|_|-|_|-|_|-|_|-|_|-|_|-|

Echo Pin

Neasuring result high lewvel

Figure .3.2.4.5 the Ultrasonic Working Sequence
Let us analyze the working sequence, first the trigger signal starts the HC-RS04 distance measurement
module, which means the MCU sends an at least 10us high level to trigger the HC-RS04,the signal sent
inside of the module is responded automatically by the module, so we do not have to manage it, the output
signal is what we need to pay attention to. The output high level of the signal is the transmitting and
receiving time interval of the ultrasonic, which can be recorded with the time counter, and don't forget to
divided it with 2.
The ultrasonic is a sound wave which will be influenced by temperature. If the temperature changes little, it
can be approximately considered that the ultrasonic velocity is almost unchanged in the transmission process.
If the required accuracy of measurement is very high, the measurement results should be to corrected with
the temperature compensation. Once the velocity is determined, the distance can be obtained. This is the

basic principle of ultrasonic distance measurement module which is shown in Fig.3.2.4.6:

T or |
Ultrasound 7
transmission s s o
M £

H \\.l /" obstacle

/
C—
,./ ¥ g
Ultrasound e R
reception R | | -

Figure .3.2.4.6 the Principle of Ultrasonic Distance Measurement Module
The ultrasonic is mainly divided into two parts, one is the transmitting circuit and the other is the
receiving circuit, as shown in Fig.3.2.4.7. The transmitting circuit is mainly composed of by the inverter

741L.S04 and ultrasonic transducer T40, the first 40kHz square wave from the Arduino port is transmitted

75

[‘fgwish

through the reverser to the one electrode on the ultrasonic transducer, the second wave is transmitted to
another electrode on ultrasonic transducer, this will enhance the ultrasonic emission intensity. The output
end adopts two parallel inverters in order to improve the driving ability. the resistance R1 and R2 on the one
hand can improve the drive ability of the 74LS04 outputting high level, on the other hand, it can increase the
damping effect of the ultrasonic transducer and shorten the free oscillation time.

The receiving circuit is composed of the ultrasonic sensor, two-stage amplifier circuit and a PLL circuit.
The reflected signal received by the ultrasonic sensor is very weak, which can be and amplified by the
two-stage amplifier. PLL circuit will send the interrupt request to the microcontroller when receiving the
signal with required frequency. The center frequency of internal VCO in the PLL LM567 is , the locking
bandwidth is associated with C3. Because the transmitted ultrasonic frequency is 40kHz, the center
frequency of the PLL is 40kHz, which only respond to the frequency of the signal, so that the interference of
other frequency signals can be avoided.

The ultrasonic sensor will send the received the signal to the two-stage amplifier, the amplified signal
will be sent into the PLL for demodulation, if the frequency is 40kHz, then the 8 pins will send low level

interrupt request signal to the microcontroller P3.3, the Arduino will stop the time counter when detecting

low level. .
+5V
RI9D 1K |#J Q1
PNP
MAX232
RID 100N c12 [
R C 8 o T
u - C2+ VS-
@2 Itig LI — [C10_[[100N e 1Ic11
Echi - g
o= lC‘HZZp 5 P67 P52 :g I [11 14
° i Pe6 P53 ‘ o] T1IN T10UT | ¥
VCC T2IN T20UT
o c18|22p N N I)
& éus S {Pea P g 121 RiouT RIN 7133
10K Cipl22 — P63 P62 [— — R20UT R2IN [—
]
AIBLEC
) R20CA 120K +5V
RIC K A 1 €20 || 100
- I
Q2 R23C. 1
P SR HNK 118 6.8k
2 | R24C, 3
2K C1p[10n
ok [c21 || 10N TLO74 R M7k |
L1 liour aour 2
39K R25C R 20k 3] 1IN- AIN- 5 VT R14B
2 1IN+ AN+ g 10K
V7 5] VCC GND [RIZE R0
—& 1 2IN+ 3IN+ g
2IN- 3IN-
Dyve i Al RBB -5k] _C16 ||1n X
c19 H1n R13B. 10K ci7 i n

Figure .3.2.4.7 Schematic Diagram of Ultrasonic Transmitting and Receiving

76

[‘Eywish

3.2.4.4 Experimental Procedures

Connecting the steering gear and ultrasonic module to the Arduino motherboard as shown in Fig.3.2.4.8(you

can choose other 10 ports according to your own ideas).

Figure .3.2.4.8 Wiring of the Steering Gear and Ultrasonic Module

3.2.4.5 Wire connection

As shown in the below figure, the servo's "S" is connected to pin 13, the ultrasonic "Trlg" is connected
to pin 2, the "Echo” is connected to pin 3, the "VCC" pin is connected to VCC, and the "GND" pin is
connected to GND.

Ultrasound

SG90
module interface

Servo interface S'. w|e| = » » » aSl & s '« 2Sl'a &« & ¢
AREFGNDI312 111088 7 65% 3210
vB.0
TXRX- +

v5. 0

v TXRX- +
‘CCJr“-)‘B

L. %0 « + SCLSDA- + o
S| » o - - - « SCISDA-+ . w0 Al A2 A3 AT B nc; .5 3 Ol
oM Aa2asnens IIC) - . - -

<

SEL[- .. PHR =
D % o pouer anacos 1N @
EE & HSUGBNDVIN 01 23 4
Bfeee® 3]
TR ~.] URFO14[. . . «

3

Figure 3.2.4.9 Wiring diagram of steering gear, ultrasonic wave and expansion board

7

[‘fywish

3.2.4.6 Software design

*®

=

Get sensor values

3

and handle

Go forward Stop.

Go forward and
slow down

3

Steering gear

measuring left
and right
distance

A 4

| Turn left | Go back

| Turn

Y

right |

delay |

Code path: Lesson\Advanced experiment\Beetle_Ultrasound\Beetle_Ultrasound.ino

#include

#define
#define
#define
#define
#define
#define
#define
#define

"Ultrasonic.h"

INPUT2 PIN 10 // PWMB

INPUT1 PIN 6 // DIRB --- right
INPUT4 PIN 9 // PWMA
INPUT3 PIN 5 // DIRA --- left

SERVO PIN 13

ECHO PIN 3

TRIG_PIN 2

INFRARED AVOIDANCE LEFT PIN A3

78

[‘fywish

#define INFRARED AVOIDANCE RIGHT PIN A4

#define IA THRESHOLD 40

#define UL LIMIT MIN 50

#define UL LIMIT MID 40

#define UL LIMIT MAX 2000

Ultrasonic Ultrasonic(TRIG PIN, ECHO PIN, SERVO PIN);/*Define ultrasonic and servo pins*/

void setup()
{
Serial.begin(9600) ;
pinMode (INFRARED AVOIDANCE LEFT PIN, INPUT);
pinMode (INFRARED AVOIDANCE RIGHT PIN, INPUT);
pinMode (INPUT1 PIN, OUTPUT);
pinMode (INPUT2 PIN, OUTPUT);
pinMode (INPUT3 PIN, OUTPUT) ;
pinMode (INPUT4 PIN, OUTPUT);
Ultrasonic.SetServoBaseDegree (90) ;/*Adjust the initial angle of the steering gear
according to the steering gear error*/

Ultrasonic.SetServoDegree (90);/*Set the servo angle*/

void loop()
{
uintl6_t RightValue, LeftValue;
uintlé t UlFrontDistance, UlLeftDistance, UlRightDistance;
RightValue = analogRead (INFRARED AVOIDANCE RIGHT PIN) ;/*The infrared obstacle avoidance
module collects the left data*/
LeftValue = analogRead(INFRARED AVOIDANCE LEFT PIN) ;/*The infrared obstacle avoidance
module collects the right data*/
UlFrontDistance = Ultrasonic.GetUltrasonicFrontDistance();/*The ultrasonic module
collects the front data*/
if (((RightValue > IA THRESHOLD) && (LeftValue > IA THRESHOLD)) && ((UlFrontDistance >
UL LIMIT MID) && (UlFrontDistance < UL LIMIT MAX)))
/*According to the data collected by the ultrasonic module and the infrared obstacle
avoidance module,
it is judged whether there is an obstacle in front, and if there is no obstacle, go
straight.*/
{
analogWrite (INPUT2_ PIN, 0);
analogWrite (INPUT1 PIN, 200);
analogWrite (INPUT3 PIN, 0);
analogWrite (INPUT4 PIN, 200);

79

[‘Eywish

}
else if ((RightValue > IA THRESHOLD) && (LeftValue < IA THRESHOLD))
/*The data collected by the infrared obstacle avoidance module determines whether there
is an obstacle on the right side. If not, turn right.*/
{
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 150);
analogWrite (INPUT3 PIN, 0);
analogWrite (INPUT4 PIN, 0);
delay (200);
}
else if ((RightValue < IA THRESHOLD) && (LeftValue > IA THRESHOLD))
/*The data collected by the infrared obstacle avoidance module determines whether there
is an obstacle on the left side. If not, turn left.*/
{
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 0);
analogWrite (INPUT3 PIN, 0);
analogWrite (INPUT4 PIN, 150);
delay (200);
}
else if ((RightValue < IA THRESHOLD) && (LeftValue < IA THRESHOLD))
/*The data collected by the infrared obstacle avoidance module determines whether there
are obstacles on the left and right sides, if any, rotates 180 degrees.*/
{
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 150);
analogWrite (INPUT3 PIN, 150);
analogWrite (INPUT4 PIN, 0);
delay(150);

}
else if (((RightValue > IA THRESHOLD) && (LeftValue > IA THRESHOLD)) && ((UlFrontDistance
< UL _LIMIT MID) || (UlFrontDistance > UL LIMIT MAX)))

/*According to the data collected by the ultrasonic module and the infrared obstacle
avoidance module, it is determined whether there is an obstacle in front. For example,
* the infrared obstacle avoidance module determines that there is no obstacle in front,
and the ultrasonic module determines that the right obstacle is an obstacle,
* first stops the car, and uses the ultrasonic module to perform left and right.*/
{
analogWrite (INPUT2_ PIN, 0);
analogWrite (INPUT1 PIN, 0);
analogWrite (INPUT3 PIN, 0);

80

[‘fywish

analogWrite (INPUT4 PIN, 0);

Ultrasonic.SetServoDegree (0);/*Servo rotation to 0 degrees*/

UlRightDistance = Ultrasonic.GetUltrasonicRightDistance();/*The ultrasonic module
collects the right side*/

Ultrasonic.SetServoDegree (180);/*Servo rotation to 180 degrees*/

UlLeftDistance = Ultrasonic.GetUltrasonicLeftDistance();/*The ultrasonic module
collects the left side*/

if ((UlRightDistance > UL LIMIT MIN) && (UlRightDistance < UL LIMIT MAX) &&
(UlRightDistance > UlLeftDistance))

/*According to the ultrasonic module to collect the data on the left and right sides

to determine whether there is an obstacle on the right side.*/

{
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 150);
analogWrite (INPUT3_PIN, 0);
analogWrite (INPUT4 PIN, 0);
delay (200) ;

}

else if ((UlLeftDistance > UL LIMIT MIN) && (UlLeftDistance < UL LIMIT MAX) &&
(UlLeftDistance > UlRightDistance))
/*According to the ultrasonic module to collect the data on the left and right sides to
determine whether there is an obstacle on the left side.*/
{
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 0);
analogWrite (INPUT3_ PIN, 0);
analogWrite (INPUT4 PIN, 150);
delay (200);
}
else if ((UlRightDistance < UL_LIMIT_MIN) && (UlLeftDistance < UL_LIMIT_MIN))
/*According to the ultrasonic module to collect the data on the left and right sides
to determine whether there are obstacles on the left and right sides*/
{
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 150);
analogWrite (INPUT3 PIN, 150);
analogWrite (INPUT4_ PIN, 0);
delay (300);

81

[‘fgwish

In front the sections, we focus on the "automatic driving”, and they are obstacle avoidance experiments.
We didn't seem to have relationship with the car, it is lack of fun. Now in the next few sections, we will
develop the car from other aspects to make sure that we are able to control the car personally, then we will
start from the "infrared remote control”, followed by "2.4G handle remote control™ and the last is "mobile

phone Bluetooth control™.

3.2.5.1 Suite Introduction

Infrared remote control is widely used in every field which is known to everyone, since it can control
other electrical appliances, naturally it can control the Beetle-Bot car. Let us take a look at the infrared
remote control first:

Infrared wireless remote control kit consists of Mini ultra-thin infrared remote controller and 38KHz
infrared receiver module, the remote controller has 17 function keys, the transmission distance is up to 8
meters which is very suitable for controlling equipment indoor. The infrared receiving module can receive
38KHz modulation remote control signal. Through the Arduino programming, the decoding operation of
Infrared wireless remote control signal can be realized so as to produce all kinds of remote control robot and

interactive works. The suite is shown in Fig.3.2.5.1.

Figure 3.2.5.1 Physical Map of Remote Control Suite

82

[‘fgwish

Infrared remote control system is mainly divided into modulation, transmitting and receiving parts.

The transmitting part is mainly composed of keyboard, remote control specific integrated circuit, exciter and
infrared light emitting diode. The integrated circuit is the core part of the launch system which consists
internal oscillation circuit, timing circuit, scanning signal generator, key input encoder, instruction decoder,
user code converter, digital modulation circuit and buffer amplifier and so on. It can produce a key scanning
pulse signal, translate the key code, then obtain remote control commands of the keys by telecommand
encoder (remote control encoding pulse). Through pulse amplitude modulation of the 38KHZ carrier signal,
the infrared diode can transmit infrared remote control signal.

In the infrared receiver, photoelectric converter (usually a photodiode or photoelectric triode, here we
use PIN photodiode) converts the received infrared light instruction signal into a corresponding electrical
signal. The received signal is very weak and interference is particularly large, in order to achieve the
accurate detection and signal conversion, in addition to the infrared photoelectric conversion device with
high performance, choosing the reasonable circuit design with good performance is also required. The most
common photoelectric conversion device is a photodiode. When the photosensitive surface of the PN
junction is irradiated by light, the semiconductor material of PN junction absorbs light energy and converts
the light energy into electric energy. When the reverse voltage is added to the photodiode, the reverse
current in the diode will change with the change of the incident light intensity. The larger the radiation
intensity is, the larger the reverse current will be, the reverse current of the photoelectric varies with the
incident light pulse.

In the Beetle-Bot car, the integrated infrared receiving head has three pins, including the power supply
pin, grounding and signal output pin. The circuit is shown in Fig.3.2.5.1. Ceramic capacitors is a decoupling
capacitor which can filter the output signal interference. The 1 end is the output of the demodulation signal
which is directly connected to the number 2 port on the Arduino. When the infrared coded signal is
transmitted, it will be processed by the infrared joint, then outputs the square wave signal, and directly
supplied to the Arduino, and the corresponding operation is carried out to control the motor.

=<

/?‘ \
\Wo_ -

BHESPL

CON3 L
C3

(RS

GND \ oyt
vec \
Figure .3.2.5.1 Circuit Diagram and Physical Map of Infrared Receiving Head

83

[‘ngish

3.2.5.2 Working Principle

The remote control system in general composed of the remote controller (transmitter), and receiver,
when you press any button on the remote control, it will generate the corresponding encoding pulse and
output various control pulse signals based on the infrared, infrared monitor diode sends the signal to the the
amplifier and the pulse amplitude limiter, the limiter controls the pulse amplitude at a certain level,
regardless of the distance of infrared transmitter and receiver. AC signal enters the band-pass filter which
can pass the 30KHZ to the load wave 60KHZ and enters the comparator through the demodulation circuit.
The comparator outputs high or low level and restores the output signal waveform. The system procedure
diagram is shown in Fig.3.2.5.2.

\4

—» Kevboar Code LED [——

Remote Control

—+ Light/electronic Demodulati Decod —»

Remote Control

Fig 3.2.5.2 Remote Control System

3.2.5.3 Experimental Procedures

1, Installing the infrared receiving head on the development board (if it has been installed in the the eighth
step in "3.1.2", please ignore. The complete installation is shown in Fig.3.1.5.3.

2, Referring to Fig.3.2.5.3 and connecting the infrared receiving module to the Arduino board (you can
choose other 10 ports according to your own ideas)

Note: Do not reverse power line, otherwise the receiving head will burn up.

84

[‘Eywish

Figure .3.1.5.3 Infrared Module Connection Diagram

3, Copying the following program to IDE (you can also directly open the matching program in the CD), and
downloading to the development board, pulled out the transparent plastic sheet marked as "1" in the
Fig.3.2.33. Then opening the serial port monitor, observing and recording the values on it while pressing
keys on the remote control towards the receiving head as shown in Fig.3.2.38.

Program flow chart is as follows:

Open the serial
port

l

Read the infrared
received value

:

Print the read value
to the serial port

85

[‘fywish

Code Path: Lesson\ModuleDemo\IrTest\ IrTest.ino

#include "IRremote.h"
IRremote ir(12);
unsigned char keycode;
char str[128];
void setup() {
Serial.begin(9600);
ir.begin () ;
}
void loop()
{
if (keycode = ir.getCode()) {
String key name = ir.getKeyMap (keycode) ;
sprintf(str, "Get ir code: 0x%x key name: %s \n", keycode, (char
*)key name.c _str());

Serial.println(str);

} else {
// Serial.println("no key");
}
delay(110);
}

@ COM19 (Arduino/Genuino Uno) — a X @ COM19 (Arduino/Genuino Uno) — [m] X
| Send Send
Get ir code: 0x45 key name: 1 Get ir code: 0x16 key name: *
Get ir code: 0x46 key name: 2 Get ir code: 0x19 key name: 0
Get ir code: 0x47 key name: 3 Get ir code: 0xd key name: #
Get ir code: Ox44 key name: 4 Get ir code: 0x18 key name: up
Get ir code: 0x40 key name: 5 Get ir code: 0x8 key name: left
Get ir code: 0x43 key name: 6 Get ir code: Oxlc key name: ok
Get ir code: Ox7 key name: 7 Get ir code: 0xba key name: right
Get ir code: Ox15 key name: 8 Get ir code: 0x52 key name: down
[Pl Autoscroll No line ending ~ 9600 baud ~| | Clear output || []Autescroll Ho line ending ~ 9600 baud ~| | Clear output

Figure 3.2.5.4 Remote Encoding Query
In Figure 3.2.5.4, we can see two values of Ir Code "0x45" and keyname "1", where "0x45" is the code of a
key of the remote controller, and "1™ is the name of the key function of the remote controller.

86

[‘Eywish

The key mapping table is as follows:

ST KEY MAP irkeymap[KEY MAX] = {
{"1", 0x45},
{"2", 0x46},
{"3", 0x47},
{ran, 0x44},
{"5", 0x40},
{"e", 0x43},
{"7", 0x07},
{"g8", 0x15},
{"o", 0x09},
{"o", 0x19},
{"*", 0xle},
{"#", 0x0D},
{"up", 0x18},
{"down", 0x52},
{"ok", 0xlC},
{"left", 0x08},
{"right", 0x5A}

bi

3.2.5.4 Wire connection

6

As shown in the below figure, the infrared receiver's “s” pin is connected to “12” pin, the “-” pin is

connected to “GND”, and the middle pin is connected to “VCC”.

S‘ . B N . B . » RS - B . -‘:7 - - - .
_ AREFGNOT31? 111098 7685F 3210
Infrared receiver V5. O
TXRX~ +

e

. icom

e+ s+ s SCISDA- 4 &
maanins IIC) - .+ . .

L}

Q
<

POUWER ANALOG IN .
012348

[ﬁywish

3.2.5.5 Software Design

Read the data
acquired by the
sensor

A

Speed up Turn left Go back Stop Go forward Turn right fﬂ%e;:
i
Print received
value
Code Path : Lesson\Advanced experiment\ Beetle IR\ Beetle_IR.ino

#include "IRremote.h"/*In this section, we use infrared remote control,

so we need to call

the corresponding library file, as for what is in the library file, we will not study, and

interested friends can drive research. We have put this library files on the CD-ROM, we need

to copy this folder to the Arduino IDE installation path "libraries" folder,
program can not compile.

5;//PWMA

9;//DIRA**left

int
int
int
int
int
long
long
byte
byte
byte
byte
byte

INPUT3 PIN
INPUT4 PIN
INPUT1 PIN
INPUT2 PIN
RECV_PIN =
expeditel
expedite?
advance =
back = 82;
stop = 28;
left = 8;

12;
= 22;
= 13;
24;

right = 90;

IRremote *mIrRecv;

6;//PWMB

lo,.//DIRB****'k'k*****'k'k*****'k'k********************right

otherwise the

88

[‘Eywish

static byte value = 0;

void setup() {
Serial.begin(9600) ;
pinMode (INPUT1 PIN, OUTPUT);
pinMode (INPUT3 PIN, OUTPUT);
pinMode (INPUT4 PIN, OUTPUT) ;
pinMode (INPUT2 PIN, OUTPUT) ;
mIrRecv = new IRremote (RECV_PIN) ;
mIrRecv->begin();// Initialize the infrared receiver
}
void loop() {
byte irKeyCode;
if (irKeyCode = mIrRecv->getCode()) {/* Read the valueue received by the infrared */
if (irKeyCode == advance) { /* Judgment on the received valueue, if this valueue is advence,
execute the following {} command, here is the forward instruction. */
analogWrite (INPUT4 PIN, value);
analogWrite (INPUT3 PIN, 0);//the speed valueue of motorA is value
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, value);//the speed valueue of motorB is value
delay(500); // Receive the next valueue
}
if (irKeyCode == expeditel) {/*Judgment on the valueue received, if this valueue is
expeditel,execute the command in{}below, here is the acceleration 1 command.*/
if(value >= 240)
{
value = 2557
} else {
value +=20;
}
delay (200);
}
if (irKeyCode == expedite2) {/*Judgment on the received valueue, if the valueue is
expedite?,execute the command {} below,here for the acceleration 2 command. */

if (value <= 20)

{
value = 0;
} else {
value -= 20;
}
delay (200);

89

[‘Eywish

if (irKeyCode == stop) { /* To judge the valueue received, if this valueue is stop, execute
the command in the following {}, here is the stop instruction. */
analogWrite (INPUT4 PIN, 0);
analogWrite (INPUT3 PIN, 0);//the speed valueue of motorA is value
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 0);//the speed valueue of motorB is value
delay (500);
}
if (irKeyCode == left) {/* Judgment on the received valueue, if the valueue is left,
execute the command in the following {}, here is the instruction to the left. */
analogWrite (INPUT4 PIN, value);
analogWrite (INPUT3 PIN, 0);//the speed valueue of motorA is value
analogWrite (INPUT1 PIN, 0);
analogWrite (INPUT2 PIN, 0);//the speed valueue of motorB is value
delay(500) ;/* Rotate 500ms to the left and stop, otherwise the carwill always be spinning
around. */
analogWrite (INPUT4 PIN, 0);
analogWrite (INPUT3 PIN, 0);//the speed valueue of motorA is 0
analogWrite (INPUT2 PIN , 0);
analogWrite (INPUT1 PIN, 0);//the speed valueue of motorB is 0
}
if (irKeyCode == right) {/* Judgment on the received valueue, if the valueue is right,
execute the command in the following {}, here is the command to the right. */
analogWrite (INPUT3_ PIN, 0);
analogWrite (INPUT4 PIN, 0);//the speed valueue of motorA is value
analogWrite (INPUT2_ PIN, 0);
analogWrite (INPUT1 PIN, value);//the speed valueue of motorA is value
delay (500);
analogWrite (INPUT4 PIN, 0);
analogWrite (INPUT3 PIN, 0);//the speed valueue of motorA is 0
analogWrite (INPUT2 PIN, 0);
analogWrite (INPUT1 PIN, 0);//the speed valueue of motorB is 0
}
if (irKeyCode == back) {/* Judgment on the received valueue, if the valueue is back,
execute the command {} below, here for the back instruction. */
analogWrite (INPUT3 PIN, value);
analogWrite (INPUT4 PIN, 0);//the speed valueue of motorA is value
analogWrite (INPUT1 PIN, 0);
analogWrite (INPUT2 PIN, value);//the speed valueue of motorA is value
delay (500);
}

Serial.println(irKeyCode, HEX);// Output the receive code in hexadecimal

90

[‘fgwish

Serial.println();// Add a blank line for easy viewing of the output

The above is the infrared remote reference program, you can open it in the CD and download to the
development board, the instructions of remote control in shown in Fig.3.2.5.5.

left expeditel

5 ©00®
00000

LO0®

stop right advence

expedite2

Fig 3.2.5.5 Infrared Remote Control Instructions

3.2.6.1 Suite Introduction

Beetle-Bot supports Bluetooth mobile phone Bluetooth remote control function is JDY-16 BLE
(Bluetooth Low Energy).JDY-16 transparent transmission module is based on the Bluetooth 4.2 protocol
standard, operating frequency range is 2.4GHZ range, modulation mode is GFSK, maximum transmission
power is 0db, maximum transmission distance is 80 meters, adopts original imported chip design, and
supports users to modify device by AT command. Names, service UUIDs, transmit power, pairing
passwords, and other instructions are convenient and quick to use. For module information, see
“Beetle-bot\Document\JDY-16-V1.2(English manual).pdf”

'm«aan”

Fig 3.2.6.1 JDY-16 Module

91

[‘fgwish

1) JDY-16 function introduction
1: BLE high speed transparent transmission supports 8K Bytes rate communication.

2: Send and receive data without byte limit, support 115200 baud rate continuously send
and receive data.

Support 3 modes of work (see the description of AT+STARTEN instruction function).
Support (serial port, 10, APP) sleep wake up.

Support WeChat Airsync, WeChat applet and APP communication.

Support 4 channel 10 port control.

Support high precision RTC clock.

Support PWM function (can be controlled by UART, IIC, APP, etc.).

Support UART and 11C communication mode, default to UART communication.

© 00 N oo O B~ W

10: iBeacon mode (support WeChat shake protocol and Apple iBeacon protocol).
11: Host transparent transmission mode (transmission of data between application modules, host and
slave communication).

3.2.6.2 JDY-16 Module test

JDY-16 module test method see “hummer-bot\JDY-16\JDY-16 Module Test.pdf”

3.2.6.3 Bluetooth protocol

Using Bluetooth to control the car means we use the Android app to control the Bluetooth sending
instructions to the Arduino serial port, so as to control the motor's forwarding, reversing, speed and so on.
Since the wireless communication is involved, one of the essential issues is the communication problem
between the two terminals. But there is no common "language" between them, so designing communication
protocols are required to ensure a perfect interaction between Android and Arduino. The main process is: the
Android identification terminal packs the detected commands into the corresponding data packets, and then
sends them to the Bluetooth module (JDY-16). When JDY-16 receives the packets, it will transmit them to
Arduino through the serial port, then Arduino to analyze the data packets and execute the corresponding
actions. The data format sent by the upper computer end (Android) is as follows, which mainly contains 8

fields, we use a structure to represent it.

Protocol Data |Device Typel Device | Function | Control | Check | Protocol
Header Length Address Code Data Sum |End Code

In the 8 fields above, we use a structural body to represent.

92

[‘fgwish

typedef struct

{
unsigned char start code; // 8bit 0xAA
unsigned char len;
unsigned char type;

unsigned char addr;

unsigned short int function; // 16 bit
unsigned char *data; // n bit
unsigned short int sum; // check sum
unsigned char end code; // 8bit 0x55

}ST protocol;

“Protocol Header” means the beginning of the packet, such as the uniform designation of O0xAA.
Data length” means except the valid data length of the start and end codes of the data.
“Device type” means the type of device equipment
“Device address” means the address that is set for control
“Function code” means the type of equipment functions that need to be controlled, the function
types we currently support is as follows:

typedef enum
{
E BATTERY = 1,
E LED = 2,
E BUZZER = 3,
E INFO = 4,
E_ROBOT CONTROL = 5,
E_ROBOT CONTROL SPEED = ¢,
E TEMPERATURE = 7/,
E IR TRACKING = 8,
E ULTRASONIC = 9,
E VERSION = 10,
E UPGRADE = 11,
}E_CONTOROL_FUNC ;

The data means the specific control value of a car, such as speed, angle.

“Checksum” is the result of different or calculated data bits of the control instruction.

“Protocol end code ” is the end part of the data bag when receiving this data ,it means that the data pack
has been sent, and is ready for receiving the next data pack, here we specified it as 0x55.

For example, a complete packet can be such as "AA 070101065000 5F55", in which:

"07" is Transmission Data Length 7 bytes.

"06" is the "device type", such as motor, LED, buzzer and so on. The 06 here refers to the transmission
speed, and the 05 refers to the transmission direction.

93

[‘Eywish

"50 (or 0050)" is the controlling data, 0x50 in hexadecimal is 80 when converted to binary, which means
the speed value is 80. If the data is 05, it means the controlling direction, that is 80 degrees (forward).

"005F" is the check sum, that is, 0x01+0x01+0x06+0x50=0x5F.

"55" is the tail of the protocol, indicating the end of data transmission.

v1.0-build-20180530-4 JDY-16:connected *

send:
AA0701010650005F55

received:

current speed:80

Gravity Sensing Switch

Fig3.2.6.2 the Interface of Android APP

In the above Figure.3.2.6.2:

The "A, B" sections are the acceleration and deceleration buttons.

The "C" section includes the dashboard and the digital display area, and the two parts displaying
synchronously. They represent the current speed.

The "D" section is a gravity remote sensing switch which can be switched to the gravity remote sensing
mode.

The "E" section represents the Bluetooth name that is currently connected.

The "F" section indicates Bluetooth connection state. If the Bluetooth is not connected, the
"disconnected" is displayed here.

The "G" section is a manual rocker, and sliding it allows the car to rotate.

The "1" section is a data return area, such as the current state, speed of the car, etc. The "H" section is
the data packet, for example, the data is "AA 01 01 06 23 00 2B 55". At this time, the speed is 35 (23 is 16
hexadecimal data, which means 35 when converted to 10 hexadecimal).

If the transmitted data is "AA 01 01 05 00 5B 00 62 55", it means that the car is moving forward (05 is
the direction control instruction, and the 005B means 91 when converted to binary number. By the
Figure.3.2.48 we can know that 91 degree means the car is moving forward).

94

[‘fywish

3.2.6.4 Experimental Procedures

Connect the Bluetooth module of the wire to "1" marked in Fig.3.2.51 Connection mode: JDY-16 VCC
port on Bluetooth module is connected to Arduino 3.6V~6V DC power anode, GND port is connected to the
cathode of the DC power, the RXD port is connected to the TXD port on Arduino extended board, TXD port
is connected to RXD port on the board, as shown in Fig.3.2.52.

Note: Since Arduino UNO has only one serial port, the Bluetooth must be disconnected from the serial
port when downloading the program, otherwise the download will fail.

{ St
AO M Azmanens 1IC) &
. ¥ &

OWER ANALOG .IN .
Loy .

egnouxu Q227374

Figure .3.2.6.4 Installation of Bluetooth Module
95

[‘fywish

2, Open the mobile phone Bluetooth and the APP (There is a software installation package on the CD,
latter we will launch the 10S version.) You will see that the flashing of the Bluetooth module indicator
slows down after successful connection. If you have downloaded the program to the development board
before, you can use the phone to control the car directly, as shown in Fig.3.2.6.4.

v1.0-build-20180524-4 JDY-16:connected

send:

received:

current speed:default

Gravity Sensing Switch

Figure .3.2.6.5. Diagram of APP Control

In Fig.3.2.6.5, we can see the logo "1" and "2". When the Bluetooth connection is successful, sliding
green dot marked as "1" in any direction, the car will move towards the corresponding direction. Switching
on the gravity sensor marked in "2", the APP is switched to the gravity induction mode, and you can control
the movement direction of the car by shaking the mobile phone.
3.2.6.5 Wire connection

Bluetooth wire connection location as shown below:

96

[‘Eywish

E :
ARETBNUT 312 R T i o A e i - T0
v, 0
5 S TXRX- +
ACOM
il LT,) l SCLSOENE o
maAzaznns 1IC prapesties

+

© POWER ANALOG IN .
& R5UGNDVIN 01 23485
L= 0 C & 3]

Bluetooth
module interface

97

[‘fywish

3.2.6.6 Software Design

Read
Bluetooth |[=&
data

Get speed/direc
tion values and
execute
Direction
Speed mode mode

Read dat | I

-

Read
completed

Code path: Lesson\Advanced experiment\Beetle_Bluetooth\Beetle Bluetooth\Beetle Bluetooth.ino

#include "Beetlebot.h"

#include "ProtocolParser.h"

#include "KeyMap.h"

#include "debug.h"

#define INPUT2 PIN 10 // PWMB

#define INPUT1 PIN 6 // DIRB --- right
#define INPUT4 PIN 9 // PWMA

[‘fywish

#define INPUT3 PIN 5 // DIRA --- left

ProtocolParser *mProtocol = new ProtocolParser();
Beetlebot beetle(mProtocol, INPUTZ PIN, INPUT1 PIN, INPUT3 PIN, INPUT4_PIN);
void setup()
{
Serial.begin(9600);
beetle.init () ;
beetle.SetControlMode (E_ BLUETOOTH CONTROL) ;

}
void HandleBluetoothRemote ()

{

if (mProtocol->ParserPackage())

{
switch (mProtocol->GetRobotControlFun())

{

case E INFO:
break;

case E ROBOT CONTROL DIRECTION:
beetle.Drive (mProtocol->GetRobotDegree()) ;
break;

case E ROBOT CONTROL SPEED:
beetle.SetSpeed (mProtocol->GetRobotSpeed()) ;
break ;

case E VERSION:

break;

}
void loop ()
{
mProtocol->RecevData () ;
switch (beetle.GetControlMode ())
{
case E BLUETOOTH CONTROL:
HandleBluetoothRemote () ;
DEBUG_LOG(DEBUG_LEVEL_INFO, "E BLUETOOTH CONTROL \n'");
break;
default:

break;

99

[‘fywish

3.2.7.1 Suite Introduction

PS2 handle is SONY game remote control handle, SONY series game host is very popular in the world.
Someone has come up with the idea of the PS2 handle, cracked the communication protocol, so that the
handle can be connected to other devices for remote control, such as remote control of our familiar four
wheeled vehicles and robots. Its outstanding features are cost-effective, rich buttons and easy to extend to
other applications, Fig.3.2.7.1 shows a commonly used PS2 wireless handle.

Figure .3.2.7.1 PS2 Wireless Handle

The PS2 handle is composed of the handle and the receiver, the handle uses two AAA batteries as power
supply. The controller and receiver use the same power supply whose voltage range is 3~5V, overvoltage,
reverse connection will cause the receiver to burn out. There is a power switch on the handle, ON /OFF,
when you switch it to ON, the light on handle will not stop flashing until the receiver is searched. In a
certain period of time, if the receiver can’t be find, the handle will enter the standby mode and the light will

burn out, you can press "START" button to wake up the handle.

100

[‘fywish

The receiver is powered by the Arduino as shown in Fig.3.2.7.2, in the absence of pairing, the green light
flashes. When the handle switch is opened, the handle and receiver will pair automatically, and the light will
be always on, and the handle is matched successfully. Button "MODE" (The above logo may be
"ANALOG" in different handles, but it will not affect the usefulness), you can choose "red light mode" or
"green light mode™.

Some users see that the handle and receiver cannot match properly! Most of the problems are the incorrect
wiring of the receiver and the program problems.

Solution: The receiver should only be connected with power supply (power line must be connected
correctly), not any data lines and clock lines. The handle light will be always on when pairing is successful.
Then checking whether the wiring and program transplantation are correct again. .

Figure .3.2.7.2 Remote Control Receiver Modul

There are 9 interfaces at the end of the receiving head, each of which is shown in the following table:

1 2 3 4 5 6 7 8 9

DI/DAT | DO/CMD NC GND |VDD CS/SEL CLK NC ACK

Note: The appearance of the receiver will be different due to different batches, some with a power light,
some without, but the use and definition of the pins are the same.

DI/DAT: The signal flows from the handle to the host. This signal is a serial 8-bit data which is transmitted
synchronously to the falling edge of the clock. The read of the signal is completed in the process of clock
changing from high to low;

DO/CMD: The signal flows from the host to the handle. The signal is similar to the DI, a serial 8-bit data,
which is transmitted synchronously to the falling edge of the clock;

NC: Empty port; .

GND: Ground;

VDD: The 3~5V power supply;

101

[‘fywish

CS/SEL.: Providing trigger signals for handles, the level is low during communication;

CLK: The clock signal is sent by the host to maintain data synchronization;

NC: Empty port;

ACK: The response signal from the handle to the host. This signal changes to low in the last cycle of each
8-bit data sending, and the CS remains low. If the CS signal do not remain low, the PS host will try another
device in about 60 microseconds. The ACK port is not used in programming.

3.2.7.2 Experimental Procedure

1. In order to wire simply, we use the PS2 receiver head adapter board and Arduino connection as
follows:

As shown in the below figure, the six lines of the receiving head are connected to the following places
respectively. “CLK” is connected to 11 pins, “CS” is connected to 8 pins, “CMD” is connected to pin 7,

“DAT” is connected to 4 pins, and “VCC” is connected to 5V., "GND" is grounded.

v s Al m2a3nens IIC) - .
SEL— .. PUR +~

=S # o pouer anaLos 1N @

b Vs A & MSUGNDUVIN 01 23 4 5
Ps2 Arduino Uno
DAT 4
CMD 7
CS 8
CLK 11

i

First remove the screw of the voltage display module, add two M3* 55 copper posts on the base plate
(as shown in Figure 3.2.7.4), and tie the PS2 receiving head to the two copper posts with the cable tie. When
the acrylic plate is docked with the lower acrylic plate, the hole of the voltage display module is exactly the

same as the copper column, and the screw can be screwed directly into the copper column.

102

[‘fgwish

Figure 3. 2. 7.3

Figure 3.2.7.4 PS2 Receiver Fixed Overall Effect Diagram
Connect the wires to the Aruino expansion board as shown in Figure 2.3.58. Upon completion, as

shown in Figure 3.2.7.5.

103

[‘fywish

anNoD
ON
aw>/od
1vasia

BwN =

Figure 3.2.7.5 Connection of Arduino and Receiving Head Wires

4, Open “Lesson\ModuleDemo\PS2XTest\PS2XTest. ino”

Finally, download the program to the Arduino development board and turn on the PS2 remote control. If the

receiver head is connected to the remote controller (or the pairing is successful), the indicator light on the

receiver head is long, and the LED light is blinking. Finally, we open the "serial monitor", press any button

on the remote control, you can see the corresponding data on the "serial monitor", as shown in Figure

3.2.7.5.

@ COM27 (Arduino/Genuino Uno) o x

| Send
rumble = false

Try out all the buttons, X will vibrate the controller, fasts
holding L1 or Rl will print out the analog stick values
Note: Go to www.billporter. info for updates and to report bu
DualShock Controller found

X just changed

Square just released

Up held this hard: 0

Up held this hard: 0

DOWN held this hard: 0

LEFT held this hard: 0

Right held this hard: 0

Triangle pressed

Circle just pressed

Square just released

X Jjust changed

X just changed

< >
[sutoserall Mo line snding ~ 9600 baud v Clear output

-]

Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick
Stick

<

[sutescr

Values:
Values:
Values:
Values:
Values:
Values:
Values:
Values:
Values:
Values:
Values:
Values:
Values:
Values:
Values:
Values:
Values:

Values:

oll

255
255
127
127
127

» 128,
, 128,
, 128,
, 128,
, 128,

127, 128
127, 128
127, 128
127, 128
127, 128

16, 128, 127, 128
4,128, 127, 128
0,135, 127, 128
75,132, 127, 128

127,
127,
127,
127,
127,
127,
127,
127,
127,

128,
135,
146,
146,
146,
149,
149,
149,
147,

127, 128
127,128
127, 128
127, 128
127, 128
127, 128
255, 128
255, 128
127, 255

Ho 1

ine ending (9600 baud v Clear

output

Figure 3.2.59 "serial monitor" data display

104

[‘Eywish

3.2.7.3 Software Design

#include "PS2X lib.h" //for vl.6

/**

* set pins connected to PS2 controller:
* - le column: original
* - 2e colmun: Stef?

* replace pin numbers by the ones you use

**/

#define PS2 DAT 4
#define PS2 CMD 7
#define PS2 SEL 8
#define PS2 CLK 11

/**

* select modes of PS2 controller:

* - pressures = analog reading of push-butttons

* - rumble = motor rumbling

* uncomment 1 of the lines for each mode selection
**/
//#define pressures true

#define pressures false

//#define rumble true

#define rumble false
PS2X ps2x; // create PS2 Controller Class
//right now, the library does NOT support hot pluggable controllers, meaning

//you must always either restart your Arduino after you connect the controller,

//or call config gamepad(pins) again after connecting the controller.

0;
0;

int error

byte type
byte vibrate = 0;

// Reset func

void (* resetFunc) (void) = 0;

105

[‘Eywish

void setup() {

Serial.begin(9600) ;

delay(500); //added delay to give wireless ps2 module some time to startup, before
configuring it

//CHANGES for v1.6 HERE!!! ***kkkddddskskskxpPAYy ATTENTIONR ** % *xkkkkkkk

//setup pins and settings: GamePad(clock, command, attention, data, Pressures?,
Rumble?) check for error

error = ps2x.config gamepad(PS2 CLK, PS2 CMD, PS2 SEL, PS2 DAT, pressures, rumble);

if (error == 0){
Serial.print("Found Controller, configured successful ");
Serial.print("pressures = ");
if (pressures)
Serial.println("true ");
else
Serial.println("false");
Serial.print("rumble = ");
if (rumble)
Serial.println("true)");
else
Serial.println("false");
Serial.println("Try out all the buttons, X will vibrate the controller, faster as
you press harder;");
Serial.println("holding L1 or Rl will print out the analog stick values.");
Serial.println("Note: Go to www.billporter.info for updates and to report bugs.");
}
else if(error == 1)
Serial.println("No controller found, check wiring, see readme.txt to enable debug.

visit www.billporter.info for troubleshooting tips");
else if(error == 2)
Serial.println("Controller found but not accepting commands. see readme.txt to enable

debug. Visit www.billporter.info for troubleshooting tips");

else if(error == 3)

Serial.println("Controller refusing to enter Pressures mode, may not support it. ");

type = ps2x.readType();

106

[‘fywish

switch(type) {

case 0:
Serial.println("Unknown Controller type found ");
break;

case 1:
Serial.println("DualShock Controller found ");
break;

case 2:
Serial.println("GuitarHero Controller found ") ;
break;

case 3:
Serial.println("Wireless Sony DualShock Controller found ");

break;

void loop() {

/* You must Read Gamepad to get new values and set vibration values
ps2x.read gamepad(small motor on/off, larger motor strenght from 0-255)
if you don't enable the rumble, use ps2x.read gamepad(); with no values
You should call this at least once a second

*/

if (error == 1){ //skip loop if no controller found
resetFunc() ;

}

if(type == 2){ //Guitar Hero Controller

ps2x.read gamepad() ; //read controller

if (ps2x.ButtonPressed (GREEN FRET))
Serial.println("Green Fret Pressed");

if (ps2x.ButtonPressed(RED_FRET))
Serial.println("Red Fret Pressed");

if (ps2x.ButtonPressed (YELLOW_ FRET))
Serial.println("Yellow Fret Pressed");

if (ps2x.ButtonPressed(BLUE FRET))
Serial.println("Blue Fret Pressed");

if (ps2x.ButtonPressed (ORANGE FRET))
Serial.println("Orange Fret Pressed");

if (ps2x.ButtonPressed (STAR_POWER))

Serial.println("Star Power Command") ;

107

[‘fywish

if (ps2x.Button (UP_STRUM)) //will be TRUE as long as button is pressed
Serial.println("Up Strum");

if (ps2x.Button (DOWN STRUM))
Serial.println("DOWN Strum'") ;

if (ps2x.Button(PSB_START)) //will be TRUE as long as button is pressed
Serial.println("Start is being held");

if (ps2x.Button(PSB_SELECT))
Serial.println("Select is being held");

if (ps2x.Button (ORANGE FRET)) { // print stick value IF TRUE
Serial.print ("Wammy Bar Position:");

Serial.println(ps2x.Analog(WHAMMY BAR), DEC);

}
else { //DualShock Controller
ps2x.read gamepad(false, vibrate); //read controller and set large motor to spin at
'vibrate' speed
if (ps2x.Button(PSB_START)) //will be TRUE as long as button is pressed
Serial.println("Start is being held");
if (ps2x.Button(PSB_SELECT))
Serial.println("Select is being held");

if (ps2x.Button(PSB_PAD UP)) { //will be TRUE as long as button is pressed
Serial.print("Up held this hard: ");
Serial.println(ps2x.Analog(PSAB PAD UP), DEC);

}

if (ps2x.Button (PSB_PAD RIGHT)) {
Serial.print("Right held this hard: ");
Serial.println(ps2x.Analog(PSAB_PAD RIGHT), DEC);

}

if (ps2x.Button(PSB_PAD LEFT)){
Serial.print ("LEFT held this hard: ");
Serial.println(ps2x.Analog(PSAB_PAD LEFT), DEC);

}

if (ps2x.Button(PSB_PAD DOWN)) {
Serial.print ("DOWN held this hard: ");
Serial.println(ps2x.Analog(PSAB_PAD DOWN), DEC);

108

[‘fywish

vibrate = ps2x.Analog(PSAB CROSS); //this will set the large motor vibrate speed
based on how hard you press the blue (X) button
if (ps2x.NewButtonState()) { //will be TRUE if any button changes state (on to
off, or off to on)
if (ps2x.Button(PSB_L3))
Serial.println("L3 pressed");
if (ps2x.Button(PSB_R3))
Serial.println("R3 pressed");
if (ps2x.Button(PSB L2))
Serial.println("L2 pressed");
if (ps2x.Button(PSB_R2))
Serial.println("R2 pressed");
if (ps2x.Button(PSB_TRIANGLE))

Serial.println("Triangle pressed");

if (ps2x.ButtonPressed(PSB_CIRCLE)) //will be TRUE if button was JUST

pressed
Serial.println("Circle just pressed");

if (ps2x.NewButtonState (PSB_CROSS)) //will be TRUE if button was JUST

pressed OR released
Serial.println("X just changed");
if (ps2x.ButtonReleased (PSB_SQUARE)) //will be TRUE if button was JUST

released

Serial.println("Square just released");

if (ps2x.Button(PSB _L1) || ps2x.Button(PSB R1)) { //print stick values if either is
TRUE

Serial.print("Stick Values:");

Serial.print(ps2x.Analog (PSS _LY), DEC); //Left stick, Y axis. Other options: LX,
RY, RX

Serial.print(",");
Serial.print(ps2x.Analog (PSS LX), DEC);
Serial.print(",");
Serial.print (ps2x.Analog (PSS RY), DEC);
Serial.print(",");

Serial.println(ps2x.Analog (PSS RX), DEC);

delay (50);

109

[‘fgwish

In the above program, we instructed to read the test button. In this experiment we want to implement

the PS2 remote control car function. We firstly define all the button functions as follows:

SELECT
MODE

POWER MODE LED

K]3.2.34 PS2FHR D ettt n = K

Mark UP: move forward

Mark DOWN: move backward
Mark LEFT: turn left

Mark RIGHT: right

Mark A: speed up

Mark B: Left rotation

Mark C: slow down

Mark D: Right rotation
Ps2 Control program in Lesson \Comprehensive Experiment\Beetle PS2\Beetle PS2\ Beetle PS2.ino

110

[ﬁywish

The program flow chart is as follows:

Read the data
acquired by the |
sensor

Speed

Speed up Turn left Go back Stop Go forward Turn right down

Print received
value

111

	Revision History
	Chapter1 Introduction
	1.1 Writing Purpose
	1.2 Product Introduction

	Chapter2 Preparations
	2.1 Development environment Arduino IDE

	Chapter3 Experiments
	3.1Beetle Bot Assembly
	3.1.1 Base board universal wheel installation
	3.1.2 Install motor and wheel
	3.1.3 Motor Driver Board Installation
	3.1.4 Tracing module and copper column installation
	3.1.5 Battery box and Keywish Uno R3 motherboard installation
	3.1.6 Installation of the Servo and ultrasonic
	3.1.7 Infrared obstacle avoidance module installation
	3.1.8 Voltage display module installation
	3.1.9 Welding power cord
	3.1.10 Whole Assembly
	3.1.11 Expansion board wiring diagram

	3.2 Beetle Bot Module experiment
	3.2.1 Walking Principle of the Car
	3.2.2 Infrared Obstacle Avoidance
	3.2.2.1 Introduction of Infrared Obstacle Avoidance Sensor
	3.2.2.2 Working Principle
	3.2.2.3 Module Parameters
	3.2.2.4 Wire connection
	3.2.2.5 Software Design
	3.2.2.5.1 Program flow chart
	3.2.2.5.2 Program code

	3.2.3 Infrared Tracing
	3.2.3.1 Introduction of Infrared Tracing Sensor
	3.2.3.2 Working Principle
	3.2.3.3 Module Parameters
	3.2.3.4 Wire connection
	3.2.3.5 Experimental Procedures
	3.2.3.6 Software Design
	3.2.3.6.1. Program flow chart
	3.2.3.6.2. Program Code

	3.2.4 Ultrasonic Obstacle Avoidance
	3.2.4.1 Suite Introduction
	3.2.4.2 Suite Parameters
	3.2.4.3 Working Principle
	3.2.4.4 Experimental Procedures
	3.2.4.5 Wire connection
	3.2.4.6 Software design
	3.2.4.6.1 Program flow chart
	3.2.4.6.2 Program Code

	3.2.5 Infrared Remote Control
	3.2.5.1 Suite Introduction
	3.2.5.2 Working Principle
	3.2.5.3 Experimental Procedures
	3.2.5.4 Wire connection
	3.2.5.5 Software Design
	3.2.5.5.1 Program flow chart
	3.2.5.5.2 Program code

	3.2.6 Mobile Phone Bluetooth Control
	3.2.6.1 Suite Introduction
	3.2.6.2 JDY-16 Module test
	3.2.6.3 Bluetooth protocol
	3.2.6.4 Experimental Procedures
	3.2.6.5 Wire connection
	3.2.6.6 Software Design
	3.2.6.6.1 Program flow char
	3.2.6.6.2 Program Code

	3.2.7 PS2 Handle (Optional)
	3.2.7.1 Suite Introduction
	3.2.7.2 Experimental Procedure
	3.2.7.3 Software Design

