Introduction

The numbering system we use on a daily basis is *base 10* or the **decimal** system. It turns out that while the numbering system we use is a natural choice for humans, when computers are concerned, a **binary** numbering system is more suitable.

Base 10 or Decimal Numbers

Let's revisit how we were taught to read and write **decimal** numbers. This will help us understand the structure of **binary** numbers.

Digits: There are 10 digits 0 1 2 3 4 5 6 7 8 9

Place Value: The position of each **digit** determines what that value is. Recall that from right to left the first 5 place values are: *ones, tens, hundreds, thousands, ten thousands.*

ten thousands	thousands	hundreds	tens	ones
10,000	1,000	100	10	1

Base 10: Each place value can be represented in terms of 10 by using exponents. 10 is the base and each place value is a **power of 10** The table below shows the place values represented in terms of 10.

10^{4}	10^{3}	10^{2}	10^{1}	10^{0}
10,000	1,000	100	10	1

Expanded Form: Consider the decimal number **123**. Recall that the **digit** and **place value** determine what that number is. We can add the quantities in each place value to get the number 123.

100s place	10s place	1s place
1 (1 × 100)	2 (2 × 10)	$\begin{array}{c} 3 \\ (3 \times 1) \end{array}$
100	20	3

Quick Practice: Write the following numbers in their expanded form like the example above.

432 = 76 = 8632 =

$$154 = 90 = 5120 =$$

$$801 = 43 = 2922 =$$

Base 2 or Binary Numbers

A binary number system follows the same structure, but instead of powers of 10, place values are **powers of 2** as shown below:

Binary

$$\frac{2^3}{8}$$
 2^2
 2^1
 2^0

 Decimal
 $\frac{10^3}{1,000}$
 10^2
 10^1
 10^0

Digits: There are $\underline{2}$ digits 0 and 1

Expanded Form: Consider the binary number **1110**. Recall that the **digit** and **place value** determine what that number is. We can add the quantities in each place value to rewrite 1110.

8	4	2	1	
$\begin{array}{c} 1 \\ (1 \times 8) \\ \circ \end{array}$	$\begin{array}{c} 1 \\ (1 \times 4) \end{array}$	$\begin{array}{c} 1 \\ (1 \times 2) \\ \end{array}$	$\begin{array}{c} 0 \\ (0 \times 1) \\ 0 \end{array}$	$1110 = (1 \times 8) + (1 \times 4) + (1 \times 2) + (0 \times 1)$ 1110 = 8 + 4 + 2 + 0 1110 = 14

Shortcut: Since there are only two digits, 0 and 1, you can simply add every place value with a digit of 1.

Quick Practice: Convert the following binary numbers to decimal numbers as shown above. You may use a table with binary place values. $\frac{2^3 \quad 2^2 \quad 2^1 \quad 2^0}{8 \quad 4 \quad 2 \quad 1}$

 $0 \ 0 \ 1 \ 0 = 0 \ 1 \ 1 \ 0 = 0 \ 0 \ 1 \ 1 = 1 \ 0 \ 0 \ 1 =$

$$1 \ 1 \ 1 \ 1 \ 1 = 0 \ 1 \ 0 \ 0 = 0 \ 0 \ 0 \ 1 = 0 \ 0 \ 1 \ 1 =$$

 $0\ 1\ 1\ 0 = 1\ 0\ 0\ 0 = 0\ 1\ 1\ 1 = 1\ 1\ 0\ 1 =$