LEARNING OBJECTIVES

The overall learning objective of Chapter 5 is to help you understand a category of probability distributions that produces only discrete outcomes, thereby enabling you to:

- **1.** Define a random variable in order to differentiate between a discrete distribution and a continuous distribution
- **2.** Determine the mean, variance, and standard deviation of a discrete distribution
- **3.** Solve problems involving the binomial distribution using the binomial formula and the binomial table
- **4.** Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table
- 5. Solve problems involving the hypergeometric distribution using the hypergeometric formula

CHAPTER OUTLINE

- 5.1 Discrete Versus Continuous Distributions
- 5.2 Describing a Discrete Distribution
 - Mean, Variance, and Standard Deviation of Discrete Distributions Mean or Expected Value Variance and Standard Deviation of a Discrete Distribution
- 5.3 Binomial Distribution
 Solving a Binomial Problem
 Using the Binomial Table
 Using the Computer to Produce a Binomial Distribution
 Mean and Standard Deviation of the Binomial Distribution
 Graphing Binomial Distributions

5.4 Poisson Distribution

Working Poisson Problems by Formula Using the Poisson Tables Mean and Standard Deviation of a Poisson Distribution Graphing Poisson Distributions Using the Computer to Generate Poisson Distributions Approximating Binomial Problems by the Poisson Distribution

5.5 Hypergeometric Distribution

Using the Computer to Solve for Hypergeometric Distribution Probabilities

KEY TERMS

Binomial Distribution Continuous Distributions Continuous Random Variables Discrete Distributions Discrete Random Variables Hypergeometric Distribution Lambda (λ) Mean, or Expected Value Poisson Distribution Random Variable

STUDY QUESTIONS

- 2. If the set of all possible values of a variable is at most finite or a countably infinite number of possible values, then the variable is called a ______ variable.
- 3. An experiment in which a die is rolled six times will likely produce values of a ______ random variable.
- 4. An experiment in which a researcher counts the number of customers arriving at a supermarket checkout counter every two minutes produces values of a ______ random variable.
- 5. An experiment in which the time it takes to assemble a product is measured is likely to produce values of a ______ random variable.
- 6. A binomial distribution is an example of a _____ distribution.
- 7. The normal distribution is an example of a ______ distribution.
- 8. The long-run average of a discrete distribution is called the _____ or

Use the following discrete distribution to answer 9 and 10	<u></u>	P(x)
	1	.435
	2	.241
	3	.216
	4	.108

9. The mean of the discrete distribution above is _____.

10. The variance of the discrete distribution above is ______.

11. On any one trial of a binomial experiment, there can be only _____ possible outcomes.

- 12. Suppose the probability that a given part is defective is .10. If four such parts are randomly drawn from a large population, the probability that exactly two parts are defective is _____.
- 13. Suppose the probability that a given part is defective is .04. If thirteen such parts are randomly drawn from a large population, the expected value or mean of the binomial distribution that describes this experiment is _____.
- 14. Suppose a binomial experiment is conducted by randomly selecting 20 items where p = .30. The standard deviation of the binomial distribution is _____.

- 15. Suppose forty-seven percent of the workers in a large corporation are under thirty-five years of age. If fifteen workers are randomly selected from this corporation, the probability of selecting exactly ten who are under thirty-five years of age is ______.
- 16. Suppose that twenty-three percent of all adult Americans fly at least once a year. If twelve adult Americans are randomly selected, the probability that exactly four have flown at least once last year is ______.
- 17. Suppose that sixty percent of all voters support the President of the United States at this time. If twenty voters are randomly selected, the probability that at least eleven support the President is
- 18. The Poisson distribution was named after the French mathematician ______.
- 19. The Poisson distribution focuses on the number of discrete occurrences per _____.
- 20. The Poisson distribution tends to describe ______ occurrences.
- 21. The long-run average or mean of a Poisson distribution is ______.
- 22. The variance of a Poisson distribution is equal to ______.
- 23. If Lambda is 2.6 occurrences over an interval of five minutes, the probability of getting six occurrences over one five minute interval is _____.
- 24. Suppose that in the long-run a company determines that there are 1.2 flaws per every twenty pages of typing paper produced. If ten pages of typing paper are randomly selected, the probability that more than two flaws are found is ______.
- 25. If Lambda is 1.8 for a four minute interval, an adjusted new Lambda of ______ would be used to analyze the number of occurrences for a twelve minute interval.
- 26. Suppose a binomial distribution problem has an n = 200 and a p = .03. If this problem is worked using the Poisson distribution, the value of Lambda is _____.
- 27. The hypergeometric distribution should be used when a binomial type experiment is being conducted without replacement and the sample size is greater than or equal to _____% of the population.
- 28. Suppose a population contains sixteen items of which seven are X and nine are Y. If a random sample of five of these population items is selected, the probability that exactly three of the five are X is _____.
- 29. Suppose a population contains twenty people of which eight are members of the Catholic church. If a sample of four of the population is taken, the probability that at least three of the four are members of the Catholic church is _____.
- 30. Suppose a lot of fifteen personal computer printers contains two defective printers. If three of the fifteen printers are randomly selected for testing, the probability that no defective printers are selected is ______.

ANSWERS TO STUDY QUESTIONS

1.	Continuous Random	16.	.1712
2.	Discrete Random	17.	.755
3.	Discrete	18.	Poisson
4.	Discrete	19.	Interval
5.	Continuous	20.	Rare
6.	Discrete	21.	Lambda
7.	Continuous	22.	Lambda
8.	Mean, Expected Value	23.	.0319
9.	1.997	24.	.0232
10.	1.083	25.	5.4
11.	Two	26.	6.0
12.	.0486	27.	5
13.	0.52	28.	.2885
14.	2.049	29.	.1531
15.	.0661	30.	.6286

SOLUTIONS TO THE ODD-NUMBERED PROBLEMS IN CHAPTER 5

5.1 x P(x) x·P(x) (x-\mu)² (x-\mu)²·P(x)
1 .238 2.775556 0.6605823
2 .290 .580 0.443556 0.1286312
3 .177 .531 0.111556 0.0197454
4 .158 .632 1.779556 0.2811700
5 .137 .685 5.447556 0.2811700
5
$$\mu = \sum [x \cdot P(x)] = 2.666$$
 $\sigma^2 = \sum [(x-\mu)^2 \cdot P(x)] = 1.836444$
 $\sigma = \sqrt{1.836444} = 1.355155$

5.3	$\frac{x}{\alpha}$	$\underline{P(x)}$	$\frac{x \cdot P(x)}{2000}$	$(x-\mu)^2$	$\frac{(x-\mu)^2 \cdot P(x)}{2}$
	0	.461	.000	0.913936	0.421324
	1	.285	.285	0.001936	0.000552
	2	.129	.238	1.089930	0.140002
	5 1	.087	.201	4.177930	0.303460
	4	$E(x) = \mu =$	$\sum [x \cdot P(x)] = 0.956$	$\sigma^2 = \sum [(x-\mu)$	$^{2} \cdot P(x)] = 1.278064$
			$\sigma = \sqrt{1.2780}$	064 = 1.1305	5

5.5 a)
$$n = 4$$
 $p = .10$ $q = .90$
 $P(x=3) = {}_{4}C_{3}(.10)^{3}(.90)^{1} = 4(.001)(.90) = .0036$

b)
$$n = 7$$
 $p = .80$ $q = .20$
 $P(x=4) = {}_{7}C_{4}(.80)^{4}(.20)^{3} = 35(.4096)(.008) = .1147$

c)
$$n = 10$$
 $p = .60$ $q = .40$
 $P(x \ge 7) = P(x=7) + P(x=8) + P(x=9) + P(x=10) =$
 ${}_{10}C_7(.60)^7(.40)^3 + {}_{10}C_8(.60)^8(.40)^2 + {}_{10}C_9(.60)^9(.40)^1 + {}_{10}C_{10}(.60)^{10}(.40)^0 =$
 $120(.0280)(.064) + 45(.0168)(.16) + 10(.0101)(.40) + 1(.0060)(1) =$
 $.2150 + .1209 + .0403 + .0060 = .3822$

d)
$$n = 12$$
 $p = .45$ $q = .55$
 $P(5 \le x \le 7) = P(x=5) + P(x=6) + P(x=7) =$
 ${}_{12}C_5(.45)^5(.55)^7 + {}_{12}C_6(.45)^6(.55)^6 + {}_{12}C_7(.45)^7(.55)^5 =$
 $792(.0185)(.0152) + 924(.0083)(.0277) + 792(.0037)(.0503) =$
 $.2225 + .2124 + .1489 = .5838$

5.7 a)
$$n = 20$$
 $p = .70$ $q = .30$
 $\mu = n \cdot p = 20(.70) = 14$
 $\sigma = \sqrt{n \cdot p \cdot q} = \sqrt{20(.70)(.30)} = \sqrt{4.2} = 2.05$
b) $n = 70$ $p = .35$ $q = .65$
 $\mu = n \cdot p = 70(.35) = 24.5$
 $\sigma = \sqrt{n \cdot p \cdot q} = \sqrt{70(.35)(.65)} = \sqrt{15.925} = 3.99$
c) $n = 100$ $p = .50$ $q = .50$
 $\mu = n \cdot p = 100(.50) = 50$
 $\sigma = \sqrt{n \cdot p \cdot q} = \sqrt{100(.50)(.50)} = \sqrt{25} = 5$

5.9 Looking at the graph, the highest probability appears to be at x = 1 followed by x = 2. It is most likely that the mean falls between x = 1 and x = 2 but because of the size of the drop from x = 1 to x = 2, the mean is much closer to x = 1. Thus, the mean is something like 1.2. Since the expected value $\mu = n \cdot p$, if n = 6 and μ is 1.2, solving for p results in p = .20. So, p is near to .20 and the mean or expected value is around 1.2.

5.11 a)
$$n = 20$$
 $p = .27$ $x = 8$
 ${}_{20}C_8 (.27)^8 (.73)^{12} = 125,970 (.000028243) (.022902) = .0815$
b) $n = 20$ $p = .30$ $x = 0$
 ${}_{20}C_0 (.30)^0 (.70)^{20} = (1)(1) (.0007979) = .0007979$
c) $n = 20$ $p = .30$ $x > 7$
Use table A.2:
 $P(x=8) + P(x=9) + \ldots + P(x=14) =$
 $.114 + .065 + .031 + .012 + .004 + .001 + .000 + \ldots = .227$

5.13 n = 25 p = .60a) $x \ge 15$ $P(x \ge 15) = P(x = 15) + P(x = 16) + \dots + P(x = 25)$ Using Table A.2 n = 25, p = .60

<u>x</u>	Prob
15	.161
16	.151
17	.120
18	.080
19	.044
20	.020
21	.007
22	.002
	.585

b) x > 20

P(x > 20) = P(x = 21) + P(x = 22) + P(x = 23) + P(x = 24) + P(x = 25) =

Using Table A.2 n = 25, p = .60

.007 + .002 + .000 + .000 + .000 = .009

c) P(x < 10)

Using Table A.2 n = 25, p = .60 and x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

<u>x</u>	Prob.
9	.009
8	.003
7	.001
<u><</u> 6	.000
	.013

5.15
$$n = 15$$
 $p = .20$
a) $P(x = 5) = {}_{15}C_5(.20)^5(.80)^{10} = 3003(.00032)(.1073742) = .1032$
b) $P(x > 9)$: Using Table A.2
 $P(x = 10) + P(x = 11) + ... + P(x = 15) = .000 + .000 + ... + .000 = .000$
c) $P(x = 0) = {}_{15}C_0(.20)^0(.80)^{15} = (1)(1)(.035184) = .0352$
d) $P(4 \le x \le 7)$: Using Table A.2

$$P(x=4) + P(x=5) + P(x=6) + P(x=7) = .188 + .103 + .043 + .014 = .348$$

e) Graph

Binomial Distribution for n=15 and p=.20

5.17 a)
$$P(x=5 | \lambda = 2.3) = \frac{2.3^5 \cdot e^{-2.3}}{5!} = \frac{(64.36343)(.100259)}{120} = .0538$$

b) $P(x=2 | \lambda = 3.9) = \frac{3.9^2 \cdot e^{-3.9}}{2!} = \frac{(15.21)(.020242)}{2} = .1539$
c) $P(x \le 3 | \lambda = 4.1) = P(x=3) + P(x=2) + P(x=1) + P(x=0) = \frac{4.1^3 \cdot e^{-4.1}}{3!} = \frac{(68.921)(.016573)}{6} = .1904$
 $\frac{4.1^2 \cdot e^{-4.1}}{2!} = \frac{(16.81)(.016573)}{2} = .1393$
 $\frac{4.1^1 \cdot e^{-4.1}}{1!} = \frac{(4.1)(.016573)}{1} = .0679$
 $\frac{4.1^0 \cdot e^{-4.1}}{0!} = \frac{(1)(.016573)}{1} = .0166$
 $.1904 + .1393 + .0679 + .0166 = .4142$
d) $P(x=0 | \lambda = 2.7) =$

$$\frac{2.7^{\circ} \cdot e^{-2.7}}{0!} = \frac{(1)(.06721)}{1} = .0672$$

e)
$$P(x=1 \mid \lambda = 5.4) =$$

$$\frac{5.4^{1} \cdot e^{-5.4}}{1!} = \frac{(5.4)(.0045166)}{1} = .0244$$
f) $P(4 < x < 8 \mid \lambda = 4.4)$: $P(x=5 \mid \lambda = 4.4) + P(x=6 \mid \lambda = 4.4) + P(x=7 \mid \lambda = 4.4) =$

$$\frac{4.4^{5} \cdot e^{-4.4}}{5!} + \frac{4.4^{6} \cdot e^{-4.4}}{6!} + \frac{4.4^{7} \cdot e^{-4.4}}{7!} =$$

$$\frac{(1649.1622)(.01227734)}{120} + \frac{(7256.3139)(.01227734)}{720} + \frac{(31,927.781)(.01227734)}{5040}$$

$$= .1687 + .1237 + .0778 = .3702$$

5.19

a)	$\lambda = 6.3$	mean = 6.3	Standard deviation =	$\sqrt{6.3} =$	2.51
		<u>_x</u>	Prob		
		0	.0018		
		1	.0116		
		2	.0364		
		3	.0765		
		4	.1205		
		5	.1519		
		6	.1595		
		7	.1435		
		8	.1130		
		9	.0791		
		10	.0498		
		11	.0285		
		12	.0150		
		13	.0073		
		14	.0033		
		15	.0014		
		16	.0005		
		17	.0002		
		18	.0001		
		19	.0000		

b) $\lambda = 1.3$	mean = 1.3	standard deviation =	$\sqrt{1.3} = 1.14$
	<u>x</u>	Prob	
	0	.2725	
	1	.3542	
	2	.2303	
	3	.0998	
	4	.0324	
	5	.0084	
	6	.0018	
	7	.0003	
	8	.0001	
	9	.0000	

Poisson Distribution with Lambda = 1.3

c) $\lambda = 8.9$	mean = 8.9	standard deviation =	$\sqrt{8.9} = 2.98$
	<u>_x</u>	Prob	
	0	.0001	
	1	.0012	
	2	.0054	
	3	.0160	
	4	.0357	
	5	.0635	
	6	.0941	
	7	.1197	
	8	.1332	
	9	.1317	
	10	.1172	
	11	.0948	
	12	.0703	
	13	.0481	
	14	.0306	
	15	.0182	
	16	.0101	
	17	.0053	
	18	.0026	
	19	.0012	
	20	.0005	
	21	.0002	
	22	.0001	

Poisson Distribution with Lambda = 8.9

d) $\lambda = 0.6$	mean = 0.6	standard deviation =	$\sqrt{0.6} = .775$
	X	Prob	
	$\frac{x}{0}$.5488	
	1	.3293	
	2	.0988	
	3	.0198	
	4	.0030	
	5	.0004	
	6	.0000	

Poisson Distribution with Lambda = 0.6

Using Table A.3

- a) P(x = 0) = .0302
- b) $P(x \ge 6) = P(x = 6) + P(x = 7) + \ldots =$

.0771 + .0385 + .0169 + .0066 + .0023 +

.0007 + .0002 + .0001 = .1424

c) P(x < 4 | 10 minutes)

Double Lambda to $\lambda = 7.0$ | 10 minutes

$$P(x < 4) = P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) =$$

.0009 + .0064 + .0223 + .0521 = .0817

d) $P(3 \le x \le 6 \mid 10 \text{ minutes})$

 $\lambda = 7.0$ | 10 minutes $P(3 \le x \le 6) = P(x = 3) + P(x = 4) + P(x = 5) + P(x = 6)$ = .0521 + .0912 + .1277 + .1490 = .42

e) $P(x=8 \mid 15 \text{ minutes})$

Change Lambda for a 15 minute interval by multiplying the original Lambda by 3.

 $\lambda = 10.5$ | 15 minutes

$$P(x=8 \mid 15 \text{ minutes}) = \frac{\lambda^x \cdot e^{-\lambda}}{x!} = \frac{(10.5^8)(e^{-10.5})}{8!} = .1009$$

a) $P(x=0 | \lambda = 1.2)$:

from Table A.3 = **.3012**

b) $P(x=2 \mid 2 \text{ months})$:

The interval has been decreased (by $\frac{1}{2}$)

New Lambda = $\lambda = 0.6$ collisions 2 months

P(*x*=2 $| \lambda = 0.6$):

from Table A.3 = **.0988**

c) $P(x \le 1 \text{ collision} \mid 6 \text{ months})$:

The interval length has been increased (by 1.5)

New Lambda = $\lambda = 1.8$ collisions | 6 months

 $P(x \le 1 \mid \lambda = 1.8):$

from Table A.3

Prob.
.1653
.2975
.4628

The result is likely to happen almost half the time (46.26%). Ship channel and weather conditions are about normal for this period. Safety awareness is about normal for this period. There is no compelling reason to reject the lambda value of 0.6 collisions per 4 months based on an outcome of 0 or 1 collisions per 6 months.

<u>x</u>

0 1 a) $P(x \ge 7 \mid n = 100,000 \ p = .00004)$:

 $\lambda = \mu = n \cdot p = 100,000(.00004) = 4.0$

Since n > 20 and $n \cdot p \le 7$, the Poisson approximation to this binomial problem is close enough.

 $P(x \ge 7 \mid \lambda = 4):$

Using Table A.3	<u></u>	<u>Prob.</u>
	7	.0595
	8	.0298
	9	.0132
	10	.0053
	11	.0019
	12	.0006
	13	.0002
	14	<u>.0001</u>
		.1106

b) $P(x > 10 | \lambda = 4)$:

Using Table A.3	<u></u>	Prob.
-	11	.0019
	12	.0006
	13	.0002
	<u>14</u>	.0001
		.0028

c) Since getting more than 10 is a rare occurrence, this particular geographic region appears to have a higher average rate than other regions. An investigation of particular characteristics of this region might be warranted.

5.27 a)
$$P(x = 3 | N = 11, A = 8, n = 4)$$

$$\frac{{}_{8}C_{3} \cdot {}_{3}C_{1}}{{}_{11}C_{4}} = \frac{(56)(3)}{330} = .5091$$
b) $P(x < 2) | N = 15, A = 5, n = 6)$
 $P(x = 1) + P (x = 0) =$

$$\frac{{}_{5}C_{1} \cdot {}_{10}C_{5}}{{}_{15}C_{6}} + \frac{{}_{5}C_{0} \cdot {}_{10}C_{6}}{{}_{15}C_{6}} = \frac{(5)(252)}{5005} + \frac{(1)(210)}{5005}$$
.2517 + .0420 = .2937

c)
$$P(x=0 | N=9, A=2, n=3)$$

$$\frac{{}_{2}C_{0} \cdot {}_{7}C_{3}}{{}_{9}C_{3}} = \frac{(1)(35)}{84} = .4167$$

d)
$$P(x > 4 | N = 20, A = 5, n = 7) =$$

$$P(x = 5) + P(x = 6) + P(x = 7) =$$

$$\frac{{}_{5}C_{5}\cdot_{15}C_{2}}{{}_{20}C_{7}} + \frac{{}_{5}C_{6}\cdot_{15}C_{1}}{{}_{20}C_{7}} + \frac{{}_{5}C_{7}\cdot_{15}C_{0}}{{}_{20}C_{7}} =$$

$$\frac{(1)(105)}{77520} + {}_{5}C_{6} \text{(impossible)} + {}_{5}C_{7} \text{(impossible)} = .0014$$

5.29
$$N = 17$$
 $A = 8$ $n = 4$
a) $P(x = 0) = \frac{{}_{8}C_{0} \cdot {}_{9}C_{4}}{{}_{17}C_{4}} = \frac{(1)(126)}{2380} = .0529$
b) $P(x = 4) = \frac{{}_{8}C_{4} \cdot {}_{9}C_{0}}{{}_{17}C_{4}} = \frac{(70)(1)}{2380} = .0294$
c) $P(x = 2 \text{ non computer}) = \frac{{}_{9}C_{2} \cdot {}_{8}C_{2}}{{}_{17}C_{4}} = \frac{(36)(28)}{2380}$

5.31
$$N = 10$$
 $n = 4$
a) $A = 2$ $x = 2$ $P(x = 2)$:
 $\frac{{}_{2}C_{2} \cdot {}_{8}C_{2}}{{}_{10}C_{4}} = \frac{(1)(28)}{210} = .1333$
b) $A = 5$ $x = 0$ $P(x = 0)$:
 $\frac{{}_{5}C_{0} \cdot {}_{5}C_{4}}{{}_{10}C_{4}} = \frac{(1)(5)}{210} = .0238$
c) $A = 4$ $x = 3$ $P(x = 3)$:
 $\frac{{}_{4}C_{3} \cdot {}_{6}C_{1}}{{}_{10}C_{4}} = \frac{(4)(6)}{210} = .1143$

5.33 N = 18 A = 11 Hispanic n = 5

$$P(x \le 1) = P(1) + P(0) =$$

$$\frac{{}_{11}C_1 \cdot {}_7 C_4}{{}_{18}C_5} + \frac{{}_{11}C_0 \cdot {}_7 C_5}{{}_{18}C_5} = \frac{(11)(35)}{8568} + \frac{(1)(21)}{8568} = .0449 + .0025 = .0474$$

It is fairly unlikely that these results occur by chance. A researcher might want to further investigate this result to determine causes. Were officers selected based on leadership, years of service, dedication, prejudice, or some other reason?

Page 20

= .4235

5.35 a)
$$P(x = 14 \mid n = 20 \text{ and } p = .60) = .124$$

b)
$$P(x < 5 \mid n = 10 \text{ and } p = .30) =$$

$$P(x = 4) + P(x = 3) + P(x = 2) + P(x = 1) + P(x=0) =$$

<u>x</u>	Prob.
0	.028
1	.121
2	.233
3	.267
4	.200
	.849

c)
$$P(x \ge 12 \mid n = 15 \text{ and } p = .60) =$$

 $P(x = 12) + P(x = 13) + P(x = 14) + P(x = 15)$
 $\frac{x}{12}$.063
13 .022
14 .005
15 .000
.090

d) P(x > 20 | n = 25 and p = .40) = P(x = 21) + P(x = 22) +

$$P(x = 23) + P(x = 24) + P(x=25) =$$

<u>x</u>	<u>Prob.</u>
21	.000
22	.000
23	.000
24	.000
25	.000
	.000

5.37 a)
$$P(x = 3 \mid \lambda = 1.8) = .1607$$

b) $P(x < 5 \mid \lambda = 3.3) = .1607$

b)
$$P(x < 5 \mid \lambda = 3.3) =$$

$$P(x = 4) + P(x = 3) + P(x = 2) + P(x = 1) + P(x = 0) =$$

<u>x</u>	Prob.
0	.0369
1	.1217
2	.2008
3	.2209
4	.1823
	.7626

c)
$$P(x \ge 3 \mid \lambda = 2.1) =$$

<u>x</u>	<u>Prob.</u>
3	.1890
4	.0992
5	.0417
6	.0146
7	.0044
8	.0011
9	.0003
10	.0001
11	.0000
	.3504

d)
$$P(2 < x \le 5 \mid \lambda = 4.2)$$
:

$$P(x=3) + P(x=4) + P(x=5) =$$

<u>x</u>	<u>Prob.</u>
3	.1852
4	.1944
5	.1633
	.5429

5.39 n = 25 p = .20 retired

- a) from Table A.2: P(x = 7) = .1108
- b) $P(x \ge 10)$: P(x = 10) + P(x = 11) + ... + P(x = 25) = .012 + .004 + .001 = .017
- c) Expected Value = $\mu = n \cdot p = 25(.20) = 5$
- d) n = 20 p = .40 mutual funds

P(x = 8) = .1797

e) $P(x < 6) = P(x = 0) + P(x = 1) + \ldots + P(x = 5) =$

.000 + .000 + .003 + .012 + .035 + .075 = .125

- f) P(x = 0) = .000
- g) $P(x \ge 12) = P(x = 12) + P(x = 13) + \ldots + P(x = 20) = .035 + .015 + .005 + .001 = .056$
- h) x = 8 Expected Number = $\mu = n \cdot p = 20(.40) = 8$

5.41
$$N = 32$$
 $A = 10$ $n = 12$

a)
$$P(x=3) = \frac{{}_{10}C_3 \cdot {}_{22}C_9}{{}_{32}C_{12}} = \frac{(120)(497,420)}{225,792,840} = .2644$$

b)
$$P(x=6) = \frac{{}_{10}C_6 \cdot {}_{22}C_6}{{}_{32}C_{12}} = \frac{(210)(74,613)}{225,792,840} = .0694$$

c)
$$P(x=0) = \frac{{}_{10}C_0 \cdot {}_{22}C_{12}}{{}_{32}C_{12}} = \frac{(1)(646,646)}{225,792,840} = .0029$$

d)
$$A = 22$$
 $P(7 \le x \le 9) = \frac{22C_7 \cdot 10C_5}{32C_{12}} + \frac{22C_8 \cdot 10C_4}{32C_{12}} + \frac{22C_9 \cdot 10C_3}{32C_{12}}$

$$= \frac{(170,544)(252)}{225,792,840} + \frac{(319,770)(210)}{225,792,840} + \frac{(497,420)(120)}{225,792,840}$$

= .1903 + .2974 + .2644 = .7521

The expected number = $\mu = n \cdot p = (20)(.25) = 5.00$

b)
$$P(x \le 1 \mid n = 20 \text{ and } p = .25) =$$

 $P(x = 1) + P(x = 0) = {}_{20}C_1(.25)^1(.75)^{19} + {}_{20}C_0(.25)^0(.75)^{20}$
 $= (20)(.25)(.00423) + (1)(1)(.0032) = .0212 + .0032 = .0244$

Since the probability is so low, the population of your state may have a lower percentage of chronic heart conditions than those of other states.

5.45 n = 12

a.)
$$P(x = 0 \text{ long hours})$$
:

$$p = .20$$
 ${}_{12}C_0(.20)^0(.80)^{12} = .0687$

b.) $P(x \ge 6)$ long hours):

$$p = .20$$

Using Table A.2: .016 + .003 + .001 = .020

c) P(x = 5 good financing):

 $p = .25, \quad {}_{12}C_5(.25)^5(.75)^7 = .1032$

d.) p = .19 (good plan), expected number $= \mu = n(p) = 12(.19) = 2.28$

5.47	$P(x \le 3) \mid n = 8 \text{ and } p = .60):$	From Table A.2:
	X	Prob.
	0	.001
	1	.008
	2	.041
	3	.124
		.174

17.4% of the time in a sample of eight, three or fewer customers are walk-ins by chance. Other reasons for such a low number of walk-ins might be that she is retaining more old customers than before or perhaps a new competitor is attracting walk-ins away from her.

5.49 $\lambda = 1.2$ hours week

- a) $P(x=0 \mid \lambda = 1.2) = (\text{from Table A.3})$.3012
- b) $P(x \ge 3 \mid \lambda = 1.2) = (\text{from Table A.3})$

<u>x</u>	Prob.
3	.0867
4	.0260
5	.0062
6	.0012
7	.0002
8	.0000
	.1203

a) $P(x < 5 \mid 3 \text{ weeks})$

If $\lambda = 1.2$ for 1 week, the $\lambda = 3.6$ for 3 weeks.

 $P(x < 5 \mid \lambda = 3.6) = (\text{from Table A.3})$

<u>x</u>	Prob.
4	.1912
3	.2125
2	.1771
1	.0984
0	.0273
	.7065

5.51
$$N = 24$$
 $n = 6$ $A = 8$

a)
$$P(x=6) = \frac{{}_{8}C_{6} \cdot {}_{16}C_{0}}{{}_{24}C_{6}} = \frac{(28)(1)}{134,596} = .0002$$

b)
$$P(x=0) = \frac{{}_{8}C_{0} \cdot {}_{16}C_{6}}{{}_{24}C_{6}} = \frac{(1)(8008)}{134,596} = .0595$$

d) A = 16 East Side

$$P(x=3) = \frac{{}_{16}C_3 \cdot {}_8C_3}{{}_{24}C_6} = \frac{(560)(56)}{134,596} = .2330$$

- 5.53 $\lambda = 2.4$ calls 1 minute
 - a) $P(x=0 \mid \lambda = 2.4) = (\text{from Table A.3})$.0907
 - b) Can handle $x \le 5$ calls Cannot handle x > 5 calls

 $P(x > 5 | \lambda = 2.4) = (\text{from Table A.3})$

<u>x</u>	<u>Prob.</u>
6	.0241
7	.0083
8	.0025
9	.0007
10	.0002
11	.0000
	.0358

c) P(x = 3 calls | 2 minutes)

The interval has been increased 2 times. New Lambda: $\lambda = 4.8$ calls 2 minutes.

from Table A.3: .1517

d) $P(x \le 1 \text{ calls} | 15 \text{ seconds})$:

The interval has been decreased by ¹/₄. New Lambda = λ = 0.6 calls | 15 seconds.

 $P(x \le 1 \mid \lambda = 0.6) = (\text{from Table A.3})$

P(x = 1) = .3293P(x = 0) = .5488.8781

5.55
$$p = .005$$
 $n = 1,000$
 $\lambda = n \cdot p = (1,000)(.005) = 5$
a) $P(x < 4) = P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) =$
 $.0067 + .0337 + .0842 + .1404 = .265$
b) $P(x > 10) = P(x = 11) + P(x = 12) + \dots =$

b)
$$P(x > 10) = P(x = 11) + P(x = 12) + ... =$$

.0082 + .0034 + .0013 + .0005 + .0002 = .0136

c)
$$P(x=0) = .0067$$

5.57
$$N = 25$$

a) $n = 5$ $x = 3$ $A = 17$
 $\frac{17}{25} \frac{C_3}{25} \frac{C_2}{C_5} = \frac{(680)(28)}{53,130} = .3584$
b) $n = 8$ $x \le 2$ $A = 5$
 $\frac{5}{25} \frac{C_0}{25} \frac{C_8}{C_8} + \frac{5}{25} \frac{C_1}{25} \frac{C_2}{C_8} + \frac{5}{25} \frac{C_2}{25} \frac{C_6}{C_8} = \frac{(1)(125,970)}{1,081,575} + \frac{(5)(77,520)}{1,081,575} + \frac{(10)(38,760)}{1,081,575} = .1165 + .3584 + .3584 = .8333$
c) $n = 5$ $x = 2$ $A = 3$

$${}_{5}C_{2}(3/25)^{2}(22/25)^{3} = (10)(.0144)(.681472) = .0981$$

5.59 a) $\lambda = 3.05 | 1,000$ for U.S.

$$P(x=0) = \frac{3.05^{\circ} \cdot e^{-3.05}}{0!} = .0474$$

b) $\lambda = 6.10 | 2,000$ for U.S. (just double previous lambda)

$$P(x=6) = \frac{6.10^6 \cdot e^{-6.104}}{6!} = \frac{(51,520.37)(.002243)}{720} = .1605$$

c) $\lambda = 1.07 | 1,000 \text{ and } \lambda = 3.21 | 3,000$

from Table A.3:

$$P(x < 7) = P(x = 0) + P(x = 1) + \ldots + P(x = 6) =$$

 $\frac{(3.21^{0})(e^{-3.21})}{0!} + \frac{(3.21^{1})(e^{-3.21})}{1!} + \frac{(3.21^{2})(e^{-3.21})}{2!} + \frac{(3.21^{3})(e^{-3.21})}{3!} + \frac{(3.21^{4})(e^{-3.21})}{4!} + \frac{(3.21^{5})(e^{-3.21})}{5!} + \frac{(3.21^{6})(e^{-3.21})}{6!} + \frac{(3.21^{6})(e^{-3.21})}{6!}$

$$.0404 + .1295 + .2079 + .2225 + .1785 + .1146 + .0613 = .9547$$

- 5.61 This printout contains the probabilities for various values of x from zero to eleven from a Poisson distribution with $\lambda = 2.78$. Note that the highest probabilities are at x = 2 and x = 3 which are near the mean. The probability is slightly higher at x = 2 than at x = 3 even though x = 3 is nearer to the mean because of the "piling up" effect of x = 0.
- 5.63 This is the graph of a Poisson Distribution with $\lambda = 1.784$. Note the high probabilities at x = 1 and x = 2 which are nearest to the mean. Note also that the probabilities for values of $x \ge 8$ are near to zero because they are so far away from the mean or expected value.