Installation and Operation Manual
o
Blackmagic

3G-SDI Shield
for Arduino

June 2018

English, HAE, Francais, Deutsch, Espafiol,
f3Z, =204, Pycckuit and ltaliano.

~>\ /i
Blackmagicdesign a

Languages

To go directly to your preferred language, simply click on the hyperlinks listed in the
contents below.

ENGliSh. 3
BAREE 31
Francais. 60
Deutsch 89
ESpafol 18
o 147
S O 176
Pycckwn 205

Welcome

Thank you for purchasing your new Blackmagic 3G-SDI Shield for Arduino.

We are always interested in new technologies and are excited by all the creative ways our SDI
products can be used. With your 3G-SDI Shield for Arduino, you can now integrate the Arduino
into your SDI workflow to get more control options with your Blackmagic Design equipment.

For example, ATEM switchers can control Blackmagic URSA Mini and Blackmagic Studio
Cameras via data packets embedded in the SDI signal. If you are not running an ATEM switcher,
but you would still like the ability to control your Blackmagic cameras, you can build custom
control solutions with your 3G-SDI Shield for Arduino. The shield gives you the SDI platform to
build upon, so you can loop the program return feed from your switcher, through the shield, and

into the program input on your Blackmagic Cameras.

Writing the code to send the commands to the camera is easy and all the supported commands
are included in this manual.

You can control the cameras using a computer, or you can add buttons, knobs and joysticks to
your shield and build dynamic hardware controllers for adjusting features such as lens focus
and zoom, aperture settings, pedestal and white balance control, the camera’s powerful built
in color corrector, and much more. Building your own custom controller is useful for production,
but it’s also a lot of fun!

We are excited by this technology and would love to hear about any SDI controllers you have
built for your 3G-SDI Shield for Arduino!

This instruction manual contains all the information you need to start using your

Blackmagic 3G-SDI Shield for Arduino. Please check the support page on our website at
www.blackmagicdesign.com for the latest version of this manual and for updates to your
shield’s internal software. Keeping your software up to date will ensure you get all the latest
features! When downloading software, please register with your information so we can keep
you updated when new software is released. We are continually working on new features and
improvements, so we would love to hear from you!

Tt

Grant Petty
CEO Blackmagic Design

http://www.blackmagicdesign.com

Contents

Blackmagic 3G-SDI Shield for Arduino

Getting Started

Attaching and Soldering Headers
Mounting to the Arduino Board
Plugging in Power

Connecting to SDI Equipment
Software Installation

Installing Internal Software

Installing Arduino Library Files
Blackmagic Shield for Arduino Setup
I2C Address

Video Format

Programming Arduino Sketches
Testing your Blackmagic Shield and Library Installation
LED Indicators

Attaching Shield Components
Communicating with your Blackmagic Shield for Arduino
High Level Overview

I2C Interface

Serial Interface

Example Usage

Studio Camera Control Protocol
Blackmagic SDI Camera Control Protocol
Overview

Assumptions

Blanking Encoding

Message Grouping

Abstract Message Packet Format
Defined Commands

Example Protocol Packets

Developer Information

Physical Encoding - I2C

Physical Encoding - UART

Help

Warranty

O© 00 00 N O O 01 o

W NN N NN o & 8 s s s s s s s s A A A A s s
O O 0 01 01 M 0 N N N N N N o oo DD WN o O OO

Getting Started

Your Blackmagic 3G-SDI Shield for Arduino is supplied with 4 stackable headers, including two
8 pin headers, a 10 pin, and a 6 pin header. Headers are bridging connectors used to mount
your shield to the Arduino board, and because they are stackable you can attach other shields
on top with additional components, such as control buttons, knobs and joysticks. The header
layout supports mounting to Arduino boards with an R3 footprint, such as the Arduino UNO.

To attach the headers to your shield:

Insert the pins of each header through the corresponding pin holes on each side of
your Blackmagic 3G-SDI Shield. Refer to the illustration below for the header layout

arrangement.

Q

Blackmagicdesign O

O
0O
@)

NOTE When connecting to the shield, communication is via I°C or Serial.

We recommend I?°C as this enables the serial monitor to be used and makes all
other pins available. Select the communication mode when defining the
BMDSDIControl object in the sketch. Refer to the ‘Communicating with your
Blackmagic 3G-SDI Shield for Arduino’ section for more information.

Solder the base of each header pin to the underside of your shield. Make sure
the solder on each pin creates a firm join with the pin hole, but does not touch

the solder on nearby pins.

Getting Started

To help make sure all pins on your shield are aligned with the female header pin
slots on the Arduino board, it's helpful to solder just one pin on each header first.
Now place the shield onto the Arduino board to check the pin alignment. If any
headers need adjusting, you can then warm the solder joint on the corresponding
header and improve its alignment. This is a much easier method than soldering all the
joints first and then trying to make adjustments.

Now that your headers are soldered to your shield, you can mount the 3G-SDI shield to your
Arduino board.

Carefully holding each side of the shield, align the header pins with your Arduino board’s
headers and gently push the pins into the header slots. Be careful not to bend any of the pins
while mounting the shield.

With all pins plugged in, the connection between the Blackmagic
shield and the Arduino board should be firm and stable.

To power your Blackmagic 3G-SDI Shield for Arduino, simply plug in a 12V power adapter into
the 12V power input on your Blackmagic shield.

NOTE Plugging power into the Arduino board will not provide sufficient power to the
Blackmagic shield, however, powering the Blackmagic shield will provide power to the
Arduino as well, so make sure power is connected to your Blackmagic shield only.

Getting Started

With power supplied, you can now plug your Blackmagic 3G-SDI Shield into your
SDI equipment. For example, to plug into a switcher and a Blackmagic URSA Mini:

Plug the program output from your switcher to the Blackmagic 3G-SDI Shield’s
SDlinput.

Plug your Blackmagic 3G-SDI Shield’s SDI output into the ‘program’ SDI input marked
PGM on your Blackmagic URSA Mini.

A connection diagram is provided below.

SDI IN o I O . 99999
- |: = 0 =2 0 5
[Fome g(desgng M|
SDI OUT o = []o
0000 =
00
[958 a00%
OO OO
Switcher
Blackmagic 3G-SDI Shield for Arduino
SDI ‘PGM’ Input

Blackmagic URSA Mini

That’s all there is to getting started!

Now that your shield is mounted to the Arduino board, powered, and connected to your
SDI equipment, you can install the internal software and library files, program the Arduino
software and begin using the shield to control your equipment.

Continue reading the manual for information on how to install the shield’s internal software, and
where to install the Arduino library files so the shield can communicate with your Arduino.

You can also use your Blackmagic 3G-SDI Shield for Arduino to control other
Blackmagic Design products, such as Blackmagic MultiView 16. For example, when
your shield is connected to input 16, you can display a tally border on the multi view.

Getting Started

Software Installation

NOTE Before installing the Blackmagic Shield for Arduino setup utility, download the
latest Arduino IDE software from www.arduino.cc and install it on your computer.

After installing the Arduino software, you can now install your Blackmagic 3G-SDI
Shield’s internal software.

Blackmagic Shield for Arduino Setup is used to update your shield’s internal software. The
internal software communicates with the Arduino board, and controls the board using Arduino
library files. These library files are installed with the setup software and all you need to do is
copy the folder containing the files and paste it into your Arduino application folder. You can
find information about the library files and how to install them in the next section of this manual.

We recommend downloading the latest Blackmagic Shield for Arduino software and updating
your shield so you can benefit from new features and improvements. The latest version can be
downloaded from the Blackmagic Design support center at
www.blackmagicdesign.com/support

To install the internal software using Mac OS X:
Download and unzip the Blackmagic Shield for Arduino software.

Open the resulting disk image and launch the Blackmagic Shield for Arduino installer.
Follow the on screen instructions.

After installing the latest version of Blackmagic Shield for Arduino installer, power your
Blackmagic shield and connect it to your computer via a USB cable.

Now launch the setup utility and follow any onscreen prompt to update your shield’s
internal software. If no prompt appears, the internal software is up to date and there is
nothing further you need to do.

To install the internal software using Windows:
Download and unzip the Blackmagic Shield for Arduino software.
You should see a Blackmagic Shield for Arduino folder containing this manual and

the Blackmagic Shield for Arduino installer. Double-click the installer and follow the
onscreen prompts to complete the installation.

After installing the latest version of the Blackmagic Shield for Arduino installer, power
your Blackmagic shield and connect it to your computer via a USB cable.

Now launch the setup utility and follow any onscreen prompt to update your shield’s
internal software. If no prompt appears, the internal software is up to date and there is
nothing further you need to do.

Software Installation

http://www.arduino.cc
http://www.blackmagicdesign.com/support

Installing Arduino Library Files

The programs written to control your Arduino are called sketches and your Blackmagic 3G-SDI
Shield for Arduino uses Arduino library files that help make writing sketches easier. After
installing your shield’s setup software, the library files are installed into a folder named ‘Library’.
All you need to do now is copy the folder containing the library files and paste it into your
Arduino libraries folder.

NOTE The Arduino IDE software needs to be closed when installing libraries.

To install the library files on Mac OS X:
Open ‘Blackmagic Shield for Arduino’ in your ‘applications’ folder.

Open the ‘Library’ folder and right click/copy the folder named: BMDSDIControl.
Now go to your computer’s ‘documents’ folder and open the Arduino folder.

You will see a sub-folder named ‘libraries’. Paste the BMDSDIControl folder into the
‘libraries’ folder.

To install the library files on Windows:
Open the Programs/ Blackmagic Shield for Arduino folder.

You will now see a subfolder named ‘Library’. Open this folder and then right click/copy
the folder named: BMDSDIControl.

Now go to your computer’s ‘documents’ folder and open the Arduino folder.

You will see a sub-folder named ‘libraries’. Paste the BMDSDIControl folder into the
‘libraries’ folder.

That’s all you need to do to install the Blackmagic Design library files on your computer. When
running the Arduino software, you will now also have Blackmagic Design example sketches to
choose from.

Simply go to the ‘file’ drop down menu in the Arduino software menu bar, and select ‘examples’.
Now select BMDSDIControl and you will see a list of example sketches you can use.

With the library files stored in the correct folder, your shield can now use them to communicate
with the Arduino board. All you need to do is program the Arduino IDE software. Refer to the
‘Programming Arduino Sketches’ section for more information.

NOTE If an updated library file with examples is released in the future, you will need to
delete the old BMDSDIControl folder and replace it with the new folder using the
method described above.

Installing Arduino Library Files

Blackmagic Shield for Arduino Setup

Shield for Arduino Setup

3G-SDI Shield for Arduino

3G-SDI Shield for Arduino

Elackmagic 3G-5D1 Shield for Arduino

Configure
PC Address

Getaddress to: Ox6E

Videa Format

Default autput format: 1080i59.84

Cancel

The Blackmagic Shield for Arduino Setup software lets you change
settings on your shield such as the I°C address and video output format.

With Blackmagic Shield for Arduino Setup installed on your computer, you can now change
settings for your shield, such as the ‘I?’C address’, which identifies your shield so the Arduino
board can communicate with it, and the ‘video format’, which sets the output format for

your shield.

In very rare cases, there is a potential for another shield mounted to your Blackmagic shield to
share the same 12C address as your shield’s default address which will create a conflict. If this
occurs, you can change your shield’s default address setting.

Blackmagic Shield for Arduino Setup

10

The default address for your shield is Ox6E, however, you can choose from a range of
addresses between 0x08 and Ox77.

To change the address for your shield:
Launch Blackmagic Shield for Arduino Setup and click on your shield’s ‘settings’ icon.

In the ‘set address to:” edit box, type the address you wish to use.

Click ‘save’.

The default output format is selected in the setup utility for when no input is connected. When
an input is detected, the output will follow the same format as the input. If this input is removed
the output will revert to the default output format selected in the utility. You can change the
video format by clicking in the ‘default output format’ drop down menu and selecting the
format you want.

You can choose from the following video output formats:
= 720p50
= 720p59.94
= 720p60
= 1080i50
= 1080i59.94
= 1080i60
* 1080p23.98
= 1080p24
= 1080p25
* 1080p29.97
= 1080p30
= 1080p50
= 1080p59.94
= 1080p60

Programming Arduino Sketches

The programs, or sketches, written into the Arduino software are very easy to write! Sketches

are written using common ‘C’ programming language. When programming your sketches using
commands from the Studio Camera Control Protocol, the shield embeds these commands into
the SDI output which lets you control your Blackmagic URSA Mini or Blackmagic Studio Cameras.

All supported commands are included in the Studio Camera Control Protocol section of this
manual so you can take the commands from the protocol and use them in your sketch.

Programming Arduino Sketches

1"

Testing your Blackmagic Shield
and Library Installation

After everything is connected as described in the ‘Getting Started’ section and you have
installed the setup software and library files, you'll want to check that your shield is
communicating with the Arduino board and that everything is working as it should.

A fast way is to open and run the supplied tally blink example sketch.
To do this:
Launch the Arduino IDE software.

Go to the ‘tools’ menu and select the Arduino board and Port number.

From the ‘File’ menu, select ‘Examples/BMDSDIControl” and choose the sketch

named ‘TallyBlink’.
Upload the sketch to your board.

_

#include <BMDSDIControl.h

BMD_SDITallyControl _I2C sdiTallyControl (8x6E);

vold setup()
{

sdiTallyControl. beging);
sdiTallyControl. setOverridetrue);

pinMoce(13, WUIPUID;

vold loop()
{
digitalirite(13, HIGH);
sdiTallyControl . setComeraTul Ly
1,
true,
false
%
delay(1689} ;
cigitalWrite(1d, LOWD;
sdilallyControl. setlameralal Ly(
1,
false,

false

bH

delay(10ea);

£F the setup function runs once when you press reset or power the board

/¢ the loop function runs over and over again forever

/7 need to include the library

/7 define the Tally object using I2C using the default shield address

/7 initialize tally control
/' enable tally override

A7 initiglize digital pin 13 as on output

/7 turn the LED ON

/7 turn tally ON
/7 Camera Number
/7 Program Tally
47 Preview Tally

4/ leave 1t UN for 1 sacond
/7 turn the LED OFF

/7 turn tally Ok

4 Comera Number

// Program Tally
/7 Preview lally

#/ leave 1t OFF for 1 second

The Tally Blink example sketch is a fast and easy way to test your Blackmagic 3G-SDI
Shield for Arduino. Raw data can be sent to your shield via I12C using commands from
the Studio Camera Protocol document, but we have also provided custom libraries to
make programming sketches much easier.

Testing your Blackmagic Shield and Library Installation

12

NOTE Make sure your Blackmagic Camera’s tally number is set to 1.

You should now see the tally light on your Blackmagic Studio Camera blink once every second.
If you see the tally light blinking you can be sure your Blackmagic shield is communicating with
the Arduino and everything is working properly.

If the tally light is not blinking, check that your Blackmagic camera’s tally number is set to 1.

If you need further assistance, please visit the Blackmagic Design support center at
www.blackmagicdesign.com/support. Refer to the help section of this manual for more
information on the different ways you can get help setting up your shield.

Your Blackmagic 3G-SDI Shield for Arduino has six indicator LEDs that confirm activity on your
shield such as power, UART, 12C and SPI communication, plus indicators to show when tally and
camera control overrides are enabled.

ol
olamn

| O oo Oorrrn OD
Emm][o U g [L
=

| Blackmagicdesign

| DDDEDED 0
[Jooo“o“o% o]am

]

i
[]
O

LED 1 - System Active
[luminates when power is connected to the shield.

LED 2 - Control Overrides Enabled
llluminates if you have enabled camera control in your Arduino sketch.

LED 3 - Tally Overrides Enabled
[lluminates if you have enabled tally in your Arduino sketch.

LED 5 - I12C Parser Busy
[lluminates when communication is detected between your shield and the Arduino
using the I12C protocol.

LED 6 - Serial Parser Busy
[lluminates when UART communication is detected.

When your Blackmagic shield is booting, the power indicator will remain off and LEDs 3,4 and 5
will indicate the following activity.

LED 3 - Application image loading
LED 4 - EEPROM initializing

LED 5 - Memory check in progress

Testing your Blackmagic Shield and Library Installation

13

http://www.blackmagicdesign.com/support

After a successful boot, the power LED will turn on and all LEDs will resume their standard
functions during operation.

In the rare case of a boot failure, all LEDs except for the failed activity will flash rapidly so you
can identify the cause of the failure.

Attaching Shield Components

If you want to build your own hardware controller, you can create a new shield with buttons,
knobs and a joystick for more tactile, hands on control. Simply mount the custom shield to your
Blackmagic 3G-SDI Shield for Arduino by plugging it into your shield’s header slots. There is no
limit to the types of controllers you can build. You can even replace the circuitry in an old CCU
with your own custom Arduino solution for an industry standard camera control unit.

You can create your own hardware controller and plug it into your Blackmagic
3G-SDI Shield for Arduino for more interactive and refined control.

Communicating with your Blackmagic
Shield for Arduino

You can communicate with your Blackmagic 3G-SDI Shield for Arduino via I>’C or Serial. We
recommend I°C because of the low pin count and it frees up the serial monitor. This also allows
you to use more I>C devices with the shield.

The library provides two core objects, BMD_SDITallyControl and BMD_SDICameraControl,
which can be used to interface with the shield’s tally and camera control functionalities. Either
or both of these objects can be created in your sketch to issue camera control commands, or
read and write tally data respectively. These objects exist in several variants, one for each of
the physical 12C or Serial communication busses the shield supports.

Communicating with your Blackmagic Shield for Arduino

14

[2C Interface
To use the 12C interface to the shield:

// NOTE: Must match address set in the setup utility software
const int shieldAddress = O0x6E;

BMD SDICameraControl I2C sdiCameraControl(shieldAddress);
BMD SDITallyControl 1I2C sdiTallyControl(shieldAddress);

Serial Interface

To use the Serial interface to the shield:

BMD SDICameraControl Serial sdiCameraControl;
BMD SDITallyControl Serial sdiTallyControl;

Note that the library will configure the Arduino serial interface at the required 38400 baud rate.
If you wish to print debug messages to the Serial Monitor when using this interface, change the
Serial Monitor baud rate to match. If the Serial Monitor is used, some binary data will be visible
as the IDE will be unable to distinguish between user messages and shield commands.

Example Usage

Once created in a sketch, these objects will allow you to issue commands to the shield over
selected bus by calling functions on the created object or objects. A minimal sketch that uses
the library via the 12C bus is shown below.

// NOTE: Must match address set in the setup utility software
const int shieldAddress = O0x6E;

BMD SDICameraControl I2C sdiCameraControl(shieldAddress);
BMD SDITallyControl 1I2C sdiTallyControl(shieldAddress);

void setup() {
// Must be called before the objects can be used
sdiCameraControl.begin();
sdiTallyControl.begin();

// Turn on camera control overrides in the shield
sdiCameraControl.setOverride(true);

// Turn on tally overrides in the shield
sdiTallyControl.setOverride(true);

!

void loop()
// Unused

1

The list of functions that may be called on the created objects are listed further on in this
document. Note that before use, you must call the ‘begin’ function on each object before
issuing any other commands.

Some example sketches demonstrating this library are included in the Arduino
IDE’s File->Examples->BMDSDIControl menu.

Communicating with your Blackmagic Shield for Arduino

15

Studio Camera Control Protocol

This section contains the Studio Camera Control Protocol from the Blackmagic Studio Camera
manual. You can use the commands in this protocol to control your Blackmagic URSA Mini or
Blackmagic Studio Camera via your Blackmagic 3G-SDI Shield for Arduino.

The Blackmagic Studio Camera Protocol shows that each camera parameter is arranged in
groups, such as:

Group ID Group
(o] Lens
1 Video
2 Audio
3 Output
4 Display
5 Tally
6 Reference
7 Configuration
8 Color Correction
10 Media
1 PTZ Control

The group ID is then used in the Arduino sketch to determine what parameter to change.

The function: sdiCameraControl.writeXXXX, is named based on what parameter you wish to
change, and the suffix used depends on what group is being controlled.

For example sdiCameraControl.writeFixed16 is used for focus, aperture, zoom, audio, display,
tally and color correction when changing absolute values.

The complete syntax for this command is as follows:

sdiCameraControl.writeFixedl6 (
Camera number

Group,

Parameter being controlled,
Operation,

Value

)i

The operation type specifies what action to perform on the specified parameter
0 = assign value. The supplied Value is assigned to the specified parameter.

1= offset value. Each value specifies signed offsets of the same type to be added to the current
parameter Value.

For example:

sdiCameraControl.writeCommandFixedl6 (
1,

8,

0,

0,

liftAdjust

)i

Studio Camera Control Protocol

16

1= camera number 1

8 = Color Correction group

0 = Lift Adjust

0 = assign value

liftAdjust = setting the value for the RGB and luma levels

As described in the protocol section, liftAdjust is a 4 element array for RED[O], GREENT[1],
BLUE[2] and LUMA[3]. The complete array is sent with this command.

The sketch examples included with the library files contain descriptive comments to explain
their operation.

Version 1.2

If you are a software developer you can use the SDI Camera Control Protocol to construct
devices that integrate with our products. Here at Blackmagic Design our approach is to open up
our protocols and we eagerly look forward to seeing what you come up with!

Overview

The Blackmagic SDI Camera Control Protocol is used by ATEM switchers, Blackmagic 3G-SDI
Shield for Arduino and Blackmagic Camera Remote to provide Camera Control functionality
with supported Blackmagic Design cameras. Please refer to the ‘Understanding Studio Camera
Control’ section in the Blackmagic URSA Broadcast and URSA Mini manuals, or the ATEM
Switchers Manual and ATEM Switchers SDK manual for more information. These can be
downloaded at www.blackmagicdesign.com/support.

This document describes an extensible protocol for sending a uni directional stream of small
control messages embedded in the non-active picture region of a digital video stream. The
video stream containing the protocol stream may be broadcast to a number of devices. Device
addressing is used to allow the sender to specify which device each message is directed to.

Assumptions

Alignment and padding constraints are explicitly described in the protocol document. Bit fields
are packed from LSB first. Message groups, individual messages and command headers are
defined as, and can be assumed to be, 32 bit aligned.

Blanking Encoding

A message group is encoded into a SMPTE 291M packet with DID/SDID x51/x53 in the active
region of VANC line 16.

Message Grouping

Up to 32 messages may be concatenated and transmitted in one blanking packet up to a
maximum of 255 bytes payload. Under most circumstances, this should allow all messages to
be sent with a maximum of one frame latency.

If the transmitting device queues more bytes of message packets than can be sentin a single
frame, it should use heuristics to determine which packets to prioritize and send immediately.
Lower priority messages can be delayed to later frames, or dropped entirely as appropriate.

Abstract Message Packet Format

Every message packet consists of a three byte header followed by an optional variable length
data block. The maximum packet size is 64 bytes.

Studio Camera Control Protocol

17

http://www.blackmagicdesign.com/support

Destination device (uint8)

Command length (uint8)

Command id (uint8)

Reserved (uint8)

Command data (uint8[])

Padding (uint8[])

Device addresses are represented as an 8 bit unsigned integer. Individual
devices are numbered O through 254 with the value 255 reserved to indicate
a broadcast message to all devices.

The command length is an 8 bit unsigned integer which specifies the length
of the included command data. The length does NOT include the length of
the header or any trailing padding bytes.

The command id is an 8 bit unsigned integer which indicates the message
type being sent. Receiving devices should ignore any commands that they do
not understand. Commands O through 127 are reserved for commands that
apply to multiple types of devices. Commands 128 through 255 are device
specific.

This byte is reserved for alignment and expansion purposes. It should be set
to zero.

The command data may contain between 0 and 60 bytes of data. The format
of the data section is defined by the command itself.

Messages must be padded up to a 32 bit boundary with Ox0 bytes. Any
padding bytes are NOT included in the command length.

Receiving devices should use the destination device address and or the command identifier to
determine which messages to process. The receiver should use the command length to skip
irrelevant or unknown commands and should be careful to skip the implicit padding as well.

Defined Commands

Command 0 : change configuration

Category (uint8)

Parameter (uint8)

Data type (uint8)

The category number specifies one of up to 256 configuration categories
available on the device.

The parameter number specifies one of 256 potential configuration
parameters available on the device. Parameters O through 127 are device
specific parameters. Parameters 128 though 255 are reserved for parameters
that apply to multiple types of devices.

The data type specifies the type of the remaining data. The packet length is
used to determine the number of elements in the message. Each message
must contain an integral number of data elements.

Currently defined values are:

0: void / boolean

1: signed byte

2: signed 16 bit integer

3: signed 32 bit integer

4: signed 64 bit integer

5: UTF-8 string

A void value is represented as a boolean array of length zero.

The data field is a 8 bit value with O meaning false and all other values
meaning true.

Data elements are signed bytes

Data elements are signed 16 bit values

Data elements are signed 32 bit values

Data elements are signed 64 bit values

Data elements represent a UTF-8 string with no terminating character.

Studio Camera Control Protocol

18

Group

Lens

Data types 6 through 127 are reserved.

Data elements are signed 16 bit integers representing a real number with 5
bits for the integer component and 11 bits for the fractional component. The

128: signed 5.11 fixed point
representable range is from -16.0 to 15.9995
(15 + 2047/20438).

Data types 129 through 255 are available for device specific purposes.

fixed point representation is equal to the real value multiplied by 2*1. The

The operation type specifies what action to perform on the specified

Operation type (uint8
P ype () parameter. Currently defined values are:

The supplied values are assigned to the specified parameter. Each element
will be clamped according to its valid range. A void parameter may only be

0: assign value

'assigned' an empty list of boolean type. This operation will trigger the action

associated with that parameter. A boolean value may be assigned the value

zero for false, and any other value for true.

Each value specifies signed offsets of the same type to be added to the
current parameter values. The resulting parameter value will be clamped

1: offset / toggle value

according to their valid range. It is not valid to apply an offset to a void value.

Applying any offset other than zero to a boolean value will invert that value.

Operation types 2 through 127 are reserved.

Operation types 128 through 255 are available for device specific purposes.

The data field is O or more bytes as determined by the data type and number

Data (void) of elements

The category, parameter, data type and operation type partition a 24 bit operation space.

ID Parameter Type Index Minimum Maximum
0.0 Focus fixed16 - (o] 1
0.1 | Instantaneous autofocus void - — -
0.2 | Aperture (f-stop) fixed16 - -1 16
0.3 | Aperture (normalised) fixed16 - [¢] 1
0.4 | Aperture (ordinal) int16 - 0 n
05 Instantaneous void _ _ B
auto aperture
0.6 | Optical image stabilisation boolean - - -
0.7 | Set absolute zoom (mm) int16 - 0 max

08 Set absglute zoom fixed16 _ 0 1
(normalised)

0.9 Set continuous fixed16 _ 1 +1.0
zoom (speed)

Interpretation
0.0 =near, 1.0 =far

trigger
instantaneous autofocus

Aperture Value (where
fnumber = sqrt(2”AV))

0.0 = smallest, 1.0 = largest

Steps through available
aperture values from
minimum (0) to maximum (n)

trigger instantaneous
auto aperture

true = enabled, false
= disabled

Move to specified focal
length in mm, from minimum
(0) to maximum (max)

Move to specified focal
length: 0.0 = wide, 1.0 = tele

Start/stop zooming at
specified rate: -1.0 = zoom
wider fast, 0.0 = stop,
+1=zoom tele fast

Studio Camera Control Protocol 19

Group

Video

ID

1.0

1.2

13

1.5

1.6

1.8

1.9

110

m

112

113
114

Parameter

Video mode

Gain

Manual White Balance

Set auto WB

Restore auto WB

Exposure (us)

Exposure (ordinal)

Dynamic Range Mode

Video sharpening level

Recording format

Set auto exposure mode

Shutter angle

Shutter speed

Gain

ISO

Type

int8

int8

int16
int16

void

void

int32

int16

int8 enum

int8 enum

int16

int8

int32

int32

int8
int32

Index

[0] = frame rate

[11=M-rate

[2] = dimensions

[3]=interlaced

[4] = Color space

[0] = color temp

[1] = tint

[0] =file
frame rate

[1]=sensor
frame rate

[2] = frame width
[3] = frame height

[4]=flags

Minimum

2500
-50

100

24

-128

Maximum

16

10000
50

42000

36000

2000

127
2147483647

Interpretation
24,25, 30, 50, 60
0 =regular, 1= M-rate

0=NTSC,
1=PAL,
2=720,
3=1080,
4 =2k,
5=2k DCI,
6 =UHD

0 = progressive, 1=
interlaced

0=YUV

1=1001S0O,
2=2001S0,
4=4001S0,
8=8001S0,
16 =1600 ISO

Color temperature in K
tint

Calculate and set
auto white balance

Use latest auto white
balance setting

time in us

Steps through available
exposure values from
minimum (0) to maximum (n)

0 =film, 1=video,
2 = extended video

0 = off, 1=low,
2 = medium, 3 =high

fps as integer
(eg 24, 25, 30, 50, 60, 120)

fps as integer, valid when
sensor-off-speed set (eg 24,
25, 30, 33, 48, 50, 60, 120),
no change will be performed
if this value is set to O

in pixels
in pixels
[0] = file-M-rate

[1] = sensor-M-rate, valid
when sensor-off-speed-set

[2] = sensor-off-speed
[3] = interlaced
[4] = windowed mode

0 = Manual Trigger,
1=lris,

2 = Shutter,

3 =Iris + Shutter,

4 = Shutter + Iris

Shutter angle in degrees,
multiplied by 100

Shutter speed value as a
fraction of 1, so 50 for 1/50th
of a second

Gain in decibel (dB)
ISO value

Studio Camera Control Protocol 20

Group

Audio

Output

Display

ID

2.0

21

2.2

23

2.4

25

26

3.0

31

3.2

33

4.0

41

4.2

4.4

4.5

Parameter

Mic level

Headphone level

Headphone program mix

Speaker level

Input type

Input levels

Phantom power

Overlay enables

Frame guides style
(Camera 3.x)

Frame guides opacity
(Camera 3.x)

Overlays
(replaces .1and .2
above from
Cameras 4.0)

Brightness

Overlay enables

Zebra level

Peaking level

Color bars display
time (seconds)

Focus Assist

Type

fixed16

fixed16

fixed16

fixed16

int8

fixed16

boolean

uint16
bit field

int8

fixed16

int8

fixed16

int16
bit field

fixed16

fixed16

int8

int8

Index

[0] chO

[1] cht

[0] = frame
guides style

[1]=frame
guide opacity

[0] = frame
guides style

[1]=frame
guide opacity

[2] = safe area
percentage

[3]=grid style

[0] = focus
assist method

[1]=focus
line color

Minimum

0

0.1

Maximum

100

100

30

Interpretation

0.0 = minimum,
1.0 = maximum

0.0 = minimum,
1.0 = maximum

0.0 = minimum,
1.0 = maximum

0.0 = minimum,
1.0 = maximum

0 = internal mic,
1=line level input,

2 =low mic level input,
3 =high mic level input

0.0 = minimum,
1.0 = maximum

0.0 = minimum,
1.0 = maximum

true = powered,
false = not powered

bit flags:
[0] = display status,
[1] = display frame guides

Some cameras don't allow
separate control of frame
guides and status overlays.

0=HDTV,1=4:3,2=2.41,
3=2.39:1,4=2.351,
5=1.85:1, 6 = thirds

0.0 = transparent,
1.0 = opaque

0= off, 1=2.4:1,2 = 2.3911,
3=2.35:1,4=1851,5=16:9,
6=14:9,7=4:3

0 = transparent,

100 = opaque

percentage of full frame
used by safe area guide
(0 means off)

bit flags: [0] = display thirds,
[1] = display cross hairs,
[2] = display center dot

0.0 = minimum,
1.0 = maximum

Ox4 = zebra

0x8 = peaking

0.0 = minimum,
1.0 = maximum

0.0 = minimum,
1.0 = maximum

0 =disable bars, 1-30 =
enable bars with timeout (s)

0 = Peak,
1=Colored lines
0 =Red,
1=Green,

2 =Blue,

3 =White,

4 = Black

Studio Camera Control Protocol 21

Group ID Parameter Type Index Minimum Maximum Interpretation
Sets the tally front and tally
rear brightness to the
5.0 | Tally brightness fixed16 - 0 1 same level.
0.0 = minimum,
1.0 = maximum
Sets the tally front
.) brightness.
Tally 5.1 Front tally brightness fixed16 - 0 1 0.0 = minimum,
1.0 = maximum
Sets the tally rear brightness.
0.0 = minimum,
5.2 | Rear tally brightness fixed16 - 0 1 1.0 = maximum
Tally rear brightness cannot
be turned off
O =internal,
6.0 | Source int8 enum | — 0 2 1=program,
Reference 2 = external
6.1 Offset int32 - - - +/- offset in pixels
[O] time _ _ BCD - HHMMSSFF (UCT)
7.0 Real Time Clock int32
[1] date _ _ BCD - YYYYMMDD
71 System language strin 1ISO-639-1two character
’ 4 guag 9 - - - language code
7.2 Timezone int32 _ _ _ Minutes offset from UTC
Confi- BCD - sQDDddqddddddddd
. where s is the sign:
guration [O] latitude _ _ 0 = north (+), 1=south (-);
DD degrees, dddddddddddd
decimal degrees
73 Location int64
BCD - sDDDdddddddddddd
where s is the sign: 0 = west
[1] longitude _ _ (-), 1= east (+); DDD degrees,
dddddddddddd
decimal degrees
[O] red -2 2 default 0.0
[1] green -2 2 default 0.0
8.0 | Lift Adjust fixed16
[2] blue -2 2 default 0.0
[3]luma -2 2 default 0.0
[O] red -4 4 default 0.0
[1 green -4 4 default 0.0
8.1 Gamma Adjust fixed16
[2] blue -4 4 default 0.0
[3]luma -4 4 default 0.0
[O] red 0 16 default 1.0
[1] green] 16 default 1.0
8.2 | Gain Adjust fixed16
Color [2] blue 0 16 default 1.0
Correction [3]luma 0 16 default 1.0
[O] red -8 8 default 0.0
[1] green -8 8 default 0.0
8.3 | Offset Adjust fixed16
[2] blue -8 8 default 0.0
[3]luma -8 8 default 0.0
[O] pivot 0 1 default 0.5
8.4 | Contrast Adjust fixed16
[1] adj 0 2 default 1.0
8.5 | Luma mix fixed16 - 0 1 default 1.0
[0] hue -1 1 default 0.0
8.6 | Color Adjust fixed16
[1] sat 0 2 default 1.0
8.7 | Correction Reset Default void - - - reset to defaults

Studio Camera Control Protocol 22

Group

Parameter

Type

Index

Minimum

Maximum

Interpretation

Media

10.0

Codec

int8
enum

[0] = basic codec

0 =RAW,
1=DNxHD,
2 =ProRes

[1]1= codec variant

RAW:

0 =Uncompressed,
1=lossy 3:1,

2 =lossy 4:1

ProRes:

0=HQ,

1=422,

2 =LT, 3 =Proxy,
4=444,5=444XQ

10.1

Transport mode

int8

[0] = mode

0 = Preview,
1= Play,
2 =Record

[1] = speed

-ve = multiple speeds
backwards,

0 = pause,

+ve = multiple
speeds forwards

[2] =flags

1<<0 =loop,

1<<1=play all,

1<<5 = disk1 active,

1<<6 = disk2 active,

1<<7 =time-lapse recording

[3] = active
storage medium

0 = CFast card,
1=SD

PTZ
Control

1.0

Pan/Tilt Velocity

fixed 16

[0] = pan velocity

1.0

-1.0 = full speed left,
1.0 = full speed right

[1] = tilt velocity

1.0

-1.0 = full speed down,
1.0 = full speed up

11

Memory Preset

int8 enum

[01=
preset command

0 =reset,
1= store location,
2 =recall location

int8

1=

preset slot

Studio Camera Control Protocol 23

Example Protocol Packets

Packet

Operation Length Byte
0 1 2 3 4 5 6 7 8 9 |10 Mmn 12 13 14 |15
header command data
c —
o ° o > Q 5
< S g g o © o 2
c (o)} IS j (o)} c Q ©
= c [0} Q © > @
g 2 5§ ¢ § § T 8
8 o s o 8)

trigger instantaneous 8

auto focus on camera 4

turn on OIS on all cameras 12

set exposure to 10 ms on
camera 4 (10 ms =10000 12
us = 0x00002710)

add 15% to zebra level -
(15 % = 0.15 f = 0x0133 fp)

select 1080p 23.98 mode on =
all cameras

subtract 0.3 from gamma

adjust for green & blue 16
(-0.3 ~= 0xfd9a fp)

all operations combined 76

O0x10, 0x27 0x00 0x00

Studio Camera Control Protocol 24

Developer Information

This section of the manual provides all the details you will need if you want to write custom
libraries and develop your own hardware for your Blackmagic 3G-SDI Shield for Arduino.
Physical Encoding - I12C

The shield operates at the following I2C speeds:

1. Standard mode (100 kbit/s)
2. Full speed (400 kbit/s)

The default 7-bit shield I2C slave address is Ox6E.

Shield Pin | Function

-]--
A4 | Serial Data (SDA)
A5 | Serial Clock (SCL)

12C Protocol (Writes):

(START W) [REG ADDR L][REG ADDR H][VAL][VAL][VAL] ... (STOP)
12C Protocol (Reads):

(START W) [REG ADDR L] [REG ADDR H] ... (STOP) (START R) [VAL] [VAL][VAL] ... (STOP)
The maximum payload (shown as **VAL** in the examples above) read/write length (following

the internal register address) in a single transaction is 255 bytes.

Physical Encoding - UART
The shield operates with a UART baud rate of 115200, 8-N-1format.

Shield Pin | Function

-
101 | Serial Transmit (TX)
100 | Serial Receive (RX)

UART Protocol (Writes):

[OXDC] [0x42][REG ADDR L] [REG ADDR H]['W’] [LENGTH] [0x00] [VAL] [VAL] [VAL] ...
UART Protocol (Reads).

[0xDC] [0x42] [REG ADDR L] [REG ADDR H][‘R’] [LENGTH] [0x00] [VAL] [VAL] [VAL] ...

The maximum payload (shown as **VAL™ in the examples above) read/write length (specified in
the **LENGTH** field) in a single transaction is 255 bytes.

Register Address Map

Developer Information

25

The shield has the following user address register map:

Address | Name | R/'W | Register Description
- |- -- [----- |-- - - --
0x0000 - 0x0003 [IDENTITY IR | Hardware Identifier
0x0004 - 0x0005 |HWVERSION |R | Hardware Version
0x0006 - 0x0007 | FWVERSION IR | Firmware Version
| | |
0x1000 | CONTROL IR/W | System Control
| | |
0x2000 | OCARM IR/W 1 SDI Control Override Arm
0x2001 | OCLENGTH IR/W 1 SDI Control Override Length
0x2100 - Ox21FE | OCDATA IR/W | SDI Control Override Data
| | |
0x3000 [ICARM IR/W | SDI Control Incoming Arm
0x3001 | ICLENGTH IR | SDI Control Incoming Length
0x3100 - Ox31FE | ICDATA IR | SDI Control Incoming Data
| | |
0x4000 | OTARM IR/W | SDI Tally Override Arm
0x4001 | OTLENGTH IR/W | SDI Tally Override Length
0x4100 - Ox41FE | OTDATA IR/W | SDI Tally Override Data
| | |
0x5000 [ITARM IR/W | SDI Tally Incoming Arm
0x5001 [ITLENGTH IR | SDI Tally Incoming Length
0x5100 - Ox51FE | ITDATA IR | SDI Tally Incoming Data

All multi-byte numerical fields are stored little-endian. Unused addresses are reserved and read
back as zero.
Register: IDENTITY (Board Identifier)

[IDENTITY]
31 0

|dentity: ASCII string ‘SDIC’ (i.e. '0x43494453") in hexadecimal.

Register: HWVERSION (Hardware Version)
[VERSION MAJOR][VERSION MINOR]

15 87 0
Version Major: Hardware revision, major component.
Version Minor: Hardware revision, minor component.

Register: FWVERSION (Firmware Version)
[VERSION MAJOR][VERSION MINOR]

15 87 0
Version Major: Firmware revision, major component.
Version Minor: Firmware revision, minor component.

Register: CONTROL (System Control)

[RESERVED][OVERRIDE OUTPUT][RESET TALLY][OVERRIDE TALLY][
OVERIDE CONTROL]
7 4 3 2 1 0

Developer Information

Reserved: Always zero.

Qverride Output: When 1, the input SDI signal (if present) is discarded and the
shield generates its own SDI signal on the SDI output
connector. When 0, the input signal is passed through to the
output if present, or the shield generates its own SDI
signal if not.

**Reset Tally:*™ When 1, the last received incoming tally data is immediately copied
over to the override tally data register. Automatically cleared
by hardware.

Qverride Tally: When 1, tally data is overridden with the user supplied data.
When O, input tally data is passed through to the output
unmodified.

Qverride Control: When 1, control data is overridden with the user supplied

data. When 0O, input control data is passed through to the
output unmodified.

Register: OCARM (Output Control Arm)

[RESERVED][ARM]
7 10

Reserved: Always zero.

Arm:** When 1, the outgoing control is data armed and will be sent in the
next video frame. Automatically cleared once the control has
been sent.

Register: OCLENGTH (Output Control Length)

[LENGTH]
7 0

Length: Length in bytes of the data to send in OCDATA.

Register: OCDATA (Output Control Payload Data)

[CONTROL DATA]
25581 0

Control Data: Control data that should be embedded into a future video frame.

Register: ICARM (Incoming Control Arm)

[RESERVED][ARM]
7 1 0

Reserved: Always zero.

FArm:** When 1, incoming control data is armed and will be received in the
next video frame. Automatically cleared once a control packet has
been read.

Register: ICLENGTH (Incoming Control Length)

[LENGTH]
7 0

*“*Length:** Length in bytes of the data in _ICDATA_. Automatically set when a
new packet has been cached.

Developer Information

27

Register: ICDATA (Incoming Control Payload Data)
[CONTROL DATA]
255%8-1 0

Control Data: Last control data extracted from a video frame since _ICARM.ARM_
was reset.

Register: OTARM (Output Tally Arm)
[RESERVED][ARM]
7 1 0]

Reserved: Always zero.

Arm:** When 1, the outgoing tally data is armed and will be continuously from
the next video frame until new data is set. Automatically cleared once
the tally has been sent in at least one frame.

Register: OTLENGTH (Output Tally Length)
[LENGTH]
7 0

Length: Length in bytes of the data to send in OTDATA.

Register: OTDATA (Output Tally Data)
[TALLY DATA |
25581 0

Tally Data: Tally data that should be embedded into a future video frame (one
byte per camera). Bit zero indicates a Program tally, while bit one
indicates a Preview tally.

Register: ITARM (Input Tally Arm)
[RESERVED][ARM]
7 1 0

Reserved: Always zero.

Arm: When 1, tally data armed and will be received in the next video frame.
Automatically cleared once the tally has been read.

Register: ITLENGTH (Input Tally Length)
[LENGTH]
7 0

“*Length:** Length in bytes of the data in _ITDATA_. Automatically set when a
new packet has been cached.

Register: ITDATA (Input Tally Data)
[TALLY DATA]
25581 0

Tally Data: Last tally data extracted from a video frame since _ITARM.ARM_ was
reset (one byte per camera). Bit zero indicates a Program tally, while
bit one indicates a Preview tally.

Developer Information

28

Help

Your Blackmagic 3G-SDI Shield for Arduino is a developers tool designed for you to develop
independently based on your custom requirements.

For the most up to date information about your shield, visit the Blackmagic Design online
support pages and check the latest support material.

Blackmagic Design Online Support Pages

The latest manual, software and support notes can be found at the Blackmagic Design support
center at www.blackmagicdesign.com/support.

Arduino Development Forum

If you have programming questions, you can get help from Arduino development forums on the
Internet. There is a whole community of Arduino developers and many good quality forums
where you can ask software questions, or even find a willing engineer to hire to implement your
solution for you!

Blackmagic Design Forum

The Blackmagic Design forum on our website is a helpful resource you can visit for more
information and creative ideas. This can also be a faster way of getting help as there may
already be answers you can find from other experienced users and Blackmagic Design staff
which will keep you moving forward. You can visit the forum at
https://forum.blackmagicdesign.com

Checking the Software Version Currently Installed

To check which version of Blackmagic 3G-SDI Shield for Arduino Setup software is installed on
your computer, open the About Blackmagic 3G-SDI Shield for Arduino Setup window.

= On Mac OS X, open Blackmagic 3G-SDI Shield for Arduino Setup from the Applications
folder. Select About Blackmagic Shield for Arduino Setup from the application menu to
reveal the version number.

= On Windows 7, open Blackmagic 3G-SDI Shield for Arduino Setup from your Start
menu. Click on the Help menu and select About Blackmagic 3G-SDI Shield for Arduino
Setup to reveal the version number.

= On Windows 8, open Blackmagic 3G-SDI Shield for Arduino Setup from the Blackmagic
3G-SDI Shield for Arduino Setup tile on your Start page. Click on the Help menu and
select About Blackmagic Shield for Arduino Setup to reveal the version number.

How to Get the Latest Software Updates

After checking the version of Blackmagic 3G-SDI Shield for Arduino Setup software installed
on your computer, please visit the Blackmagic Design support center at
www.blackmagicdesign.com/support to check for the latest updates. While it is usually a
good idea to run the latest updates, it is wise to avoid updating any software if you are in

the middle of an important project.

Help

29

http://www.blackmagicdesign.com/support
https://forum.blackmagicdesign.com
http://www.blackmagicdesign.com/support

Warranty

Blackmagic Design warrants that the Blackmagic 3G-SDI Shield for Arduino product will be free
from defects in materials and workmanship for a period of 12 months from the date of purchase.
If a product proves to be defective during this warranty period, Blackmagic Design, at its option,
either will repair the defective product without charge for parts and labor, or will provide a
replacement in exchange for the defective product.

In order to obtain service under this warranty, you the Customer, must notify Blackmagic Design
of the defect before the expiration of the warranty period and make suitable arrangements for the
performance of service. The Customer shall be responsible for packaging and shipping the
defective product to a designated service center nominated by Blackmagic Design, with shipping
charges pre paid. Customer shall be responsible for paying all shipping changes, insurance, duties,
taxes, and any other charges for products returned to us for any reason.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper
or inadequate maintenance and care. Blackmagic Design shall not be obligated to furnish service
under this warranty: a) to repair damage resulting from attempts by personnel other than
Blackmagic Design representatives to install, repair or service the product, b) to repair damage
resulting from improper use or connection to incompatible equipment, c) to repair any damage or
malfunction caused by the use of non Blackmagic Design parts or supplies, or d) to service a
product that has been modified or integrated with other products when the effect of such a
modification or integration increases the time or difficulty of servicing the product. THIS WARRANTY
IS GIVEN BY BLACKMAGIC DESIGN IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED.
BLACKMAGIC DESIGN AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. BLACKMAGIC DESIGN’S
RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE WHOLE AND EXCLUSIVE
REMEDY PROVIDED TO THE CUSTOMER FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER BLACKMAGIC DESIGN OR THE
VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. BLACKMAGIC
DESIGN IS NOT LIABLE FOR ANY ILLEGAL USE OF EQUIPMENT BY CUSTOMER. BLACKMAGIC
ISNOT LIABLE FOR ANY DAMAGES RESULTING FROM USE OF THIS PRODUCT. USER OPERATES
THIS PRODUCT AT OWN RISK.

© Copyright 2018 Blackmagic Design. All rights reserved. ‘Blackmagic Design’, ‘DeckLink’, ‘HDLink’, ‘Workgroup Videohub’,
* Videohub’, ‘DeckLink’, ‘Intensity’ and ‘Leading the creative video revolution” are registered trademarks in the US and other
countries. All other company and product names may be trade marks of their respective companies with which they are associated.

Arduino and the Arduino logo are trademarks of Arduino. Thunderbolt and the Thunderboltlogo are trademarks of Intel Corporation
in the U.S. and/or other countries.

Warranty

30

-\ /.
Blackmagicdesign a

AVAM=IV/ARL—3> ¥Z=a 7))
Blackmagic
3G-SDI Shield
for Arduino

201856H

HAEE

£2Z

ZDT=EHF LWL Blackmagic 3G-SDI Shield for ArduinoE&EBEWRSWZEHRICH DI ES
T WVWEL,

FIZBEEIRHFLWT I/ O0Y—ICALZR>THD, BHOSDIEGH I VI T+ JIfERSINT
W3 ZEREFERICELEBoTWET, 3G-SDI Shield for ArduinoZz{ERY uid. Arduino%SDI
T—0 70— ICAHAAT, £DELOOY bAO—ILA T 3> %Blackmagic Design®&ITEMT
gi_a-o

BIZIE, SDHEBICTYNY RUIeT =4/ y MEBR T, ATEMZA v F+—h 5Blackmagic URSA
Minit>Blackmagic Studio Cameraz > hA—)LTEE T, £fc. ATEMRA Yy Fr—%ERAET
IZBlackmagichiX >z hO—/LULWEEIF. 3G-SDI Shield for ArduinoZzfE->THRY L
IVbA—IWY) a—> a3V BETEEXT, AV—ILRESDIZZ Y NIA—LEUVTERTEZD T
ZAYF v —DOTOTILIFT—>T1—R%E, ¥—)LR%ZEBU TBlackmagichXZ 07O 54
ABDEN—TTEET,

AAXATZADIAVY REERADI—RIIBHEICELIENTE, IRTOMIGIAT Y RN CDOY =27
[CEHEHINTWET,

Ffe. AVE 21— —DS5AAZOAY MA—ILBAEETT, HDWE RIS I3A ATy
EY—)LRICBMUT Y12y RN\— ROz 7 AV A—5—%BEIFTZET LYAXTA—A
RIR=Ls, PIS—F v —8E RTRAIIIELORTA MNSY 2OV bO—)b, AXZDINT TILEA
BAZ—AL I —REDKEEZRET DI EEARETY, MEDARYLAIDY NO—5—FT7 050
YayENRET TEL AXEEARLEEVWMEETT |

DT/ AV—RFIRREDEL ZLDEAAENEZSNE T, SDITYMA—5—ZHRILE
ILRUIEBEICIZ. 2 DABZ B OEENMESEE]

ZDY=aF7IiciE, Blackmagic 3G-SDI Shield for ArduinoZ{£ERY % L THERBERMN I
TERHEINTWET, oz 7Y b www.blackmagicdesign.com/jp OB R—kR—JcZd
RZaTPLORFIN—VavEERL. Y—ILROREY TR 727y 7T —hLTLIEEW, V7T
NIz 77V IT—RT2IET BICRITOBEZRFEVWLITET, VINUzPZEY VO~
ReBBIcI—F—EHRZLTWeRFNIE LW IRz 7OV —REICEFSBWLET