
Expanding the SAP function library
Contents
Introduction .. 2

Pre-Requisites ... 2

Procedure .. 2

Editing the SAPElements file ... 3

Editing the Actions file .. 4

Functions for working with SAP controls .. 5

SAPGetProperty .. 5

SAPSetProperty ... 5

SAPInvokeMethod .. 6

Testing new functions ... 7

Example of adding a new action to an existing control .. 8

Appendix 1: List of Argument Data Types ... 10

Appendix 2: List of SAP Controls ... 11

Appendix 3: Useful references .. 13

Troubleshooting .. 14

Introduction
Although Blue Prism provides accessibility to most of the main controls and functions which SAP

exposes via its Application Programmable Interface (API) there are some controls and functions

which have not been implemented as standard within the SAP product. Instead, Blue Prism have

created a method to enable controls and functions to be added to the list of exposes items which

can be spied and interacted with. This document explains the procedure to expose these features

and make them available.

This procedure is not expected to be attempted by the majority of customers. If you need assistance

with creating and validating new methods then please raise a support request for help.

Pre-Requisites
It is assumed that the following software products are installed and configured before using this

procedure:-

 Blue Prism v4.2.43 or higher

 SAP GUI for Windows (SAP Netweaver 7.1). The system ID for this is “NSP”.

Procedure
In order to extend the functionality of how Blue Prism interacts with an SAP control it is only

necessary to amend two important XML files. There are two files that define the Elements that can

be worked with (i.e. the SAP controls and their component parts) and the Actions that can be

performed with those controls.

The XML files are:-

 SAPElements.XML

 Actions.XML

Both of these files can be found in the default Blue Prism installation directory, e.g.

The two XML configuration files are read by the Blue Prism application when the Interactive Client is

started. Once the changes have been added to these files then they will be available in the

Application Modeller interface.

Editing the SAPElements file
The SAPElements XML file contains a list of SAP controls, and provides Blue Prism with information

about how to interact with these controls.

A typical SAPElements file will contain a description of a number of controls. Here is the XML

description of the SAP Treeview control:-

 <element id="SAPCtrlTree">

 <apptype>SAP</apptype>

 <name>SAP Treeview</name>

 <helptext>A SAP Treeview</helptext>

 <sapidentification>GuiCtrlTree,GuiShell/Tree</sapidentification>

 <readquery action="GetSelectedNodeKey">sapgetproperty

propname=selectedNode</readquery>

 <readquery action="GetNodeText">sapinvokemethod

methodname=getNodeTextByKey arguments=key</readquery>

 </element>

 id – a bespoke unique name used by Blue Prism to identify the SAP control

 apptype - will always be “SAP”

 name – the name for the control, as it will appear in the Application Modeller interface

 helptext – some text to describe the type of control

 sapidentification - contains a comma-separated list of SAP Component Types (as per the SAP
API documentation – see Appendix 3) which should be mapped on to this element type.

o a forward slash character ‘/’ can be used to specify a subtype
o an asterisk '*' means that any control that hasn't been matched elsewhere will

match this one

In the above example, two readquery elements mean that there will be two actions available in a
Read Stage for this element type. The action functions (e.g. “GetNodeText”) may be ones already in
use in the product, since most activities (e.g. pressing a button) are already defined and used. All
currently available actions are listed in the Actions.xml file.

If a control requires a new action, it can be added to the Actions.xml file (see ‘Editing the Actions file’
below).

As well as Read Stage actions, we can define actions for Write and Navigate Stages. A Navigate stage
will use an actionquery and a Write stage will use a writequery XML element.

NOTE: Aside from writequery, of which there can be only one, there can be

multiple instances of actionquery or readquery elements.

This example using a Radio Button control illustrates the actionquery and writequery elements:-

 <element id="SAPRadioButton">

<apptype>SAP</apptype>

<name>SAP Radio Button</name>

<helptext>A SAP radio button.</helptext>

<sapidentification>GuiRadioButton</sapidentification>

<actionquery action="Select">sapinvokemethod

methodname=select</actionquery>

https://portal.blueprism.com/wiki/index.php?title=SAP#Actions
https://portal.blueprism.com/wiki/index.php?title=SAP#Actions

<readquery action="GetWindowText">sapgetproperty

propname=text</readquery>

<writequery>sapsetproperty propname=selected

arguments=$NewText$</writequery>

 </element>

The default data type for all elements is text. If this needs to be changed, it can be specified using a
'datatype' XML element. See ‘List of Argument Data Types’ for more details.

Editing the Actions file
The Actions.xml file contains a list of the programmed actions which can be used with the various

elements listed in the SAPElements.xml file.

The Actions.xml file is located in the Blue Prism installation folder, typically:

C:\Program Files\Blue Prism Limited\Blue Prism Automate\Actions.xml

The actions specified in this file are generic actions which can be implemented against any elements

which can theoretically use those actions. The scope of such actions is defined in the SAP GUI

Scripting API document released by SAP (see Appendix 3: Useful references).

An action is defined by the following essential parameters:-

 id – a unique identifier name for the action

 name – the name of the action (which Blue Prism will display)

 helptext – helpful text describing the action’s function

 returntype – the data type returned by the action

The action may optionally require an ‘argument’ – a parameter which can be passed into the

function.

An argument can be defined by the following parameters:-

 id – the unique identifier for the argument as it will appear in the function’s parameter list

 name – the name of the argument

 description – a description of what the argument’s parameter represents

 datatype – the data type which determines the data being passed via the argument

Here is an example of the ‘DoubleClickNode’ action’s definition:

This action equates to the published SAP function ‘doubleClickNode()’:

Functions for working with SAP controls

The following functions are available to work with SAP controls:-

 sapgetproperty – for obtaining property data from an SAP element

 sapsetproperty – for defining property data for an SAP element

 sapinvokemethod – for calling an existing SAP function

SAPGetProperty
This function returns the properties which an SAP control may expose to be consumed. This function

is typically called as part of a <readquery> request.

The required parameters of this function are:-

 id – the unique identifier of the SAP component

 propname – the name of the property

A sapgetproperty() call which specifies these parameters will return a string return value.

Usage example:

<readquery action="GetWindowText">sapgetproperty

propname=text</readquery>

This action will return a string value containing the text of a Window title.

The following optional properties may be used:-

 retproc – specifies additional processing on the returned value

 colcount – if specified then it is assumed that the target SAP component is a

GuiCollection, and the count of the component’s columns is returned as a number

 targetprop - specifies the name of a property of the identified component on which the

action will actually be performed

 arguments – any arguments required to access the property, as a comma-separated list.

This must be the correct number of arguments required by the property’s definition.

SAPSetProperty
This function sets the properties which an SAP control may require. This function is typically called as

part of the <writequery> request.

The required parameters of this function are:-

 id – the unique identifier of the SAP component

 propname – the name of the property

 arguments – any arguments required to access the property, as a comma-separated list.

This includes the value(s) being set.

Usage example:

<writequery>sapsetproperty propname=text

arguments="$newtext$"</writequery>

This action will set a property called “text” to be the value of the string contained in the

“newtext” variable which is specified at runtime.

The following optional properties may be used:-

 targetprop - specifies the name of a property of the identified component on which the

action will actually be performed

SAPInvokeMethod
This function calls an existing SAP method which an SAP control may expose to be consumed. This

function is typically called as part of an <actionquery> request.

The required parameters of this function are:-

 id – the unique identifier of the SAP component

 methodname – the name of the method

A sapinvokemethod() call which specifies these parameters will not return any return value unless

the colcount property is added.

Usage example:

<actionquery action="Press">sapinvokemethod

methodname=press</actionquery>

This action will invoke the control’s ‘press’ method, thereby pressing the control (e.g. a

button). This will be exposed within Blue Prism as an action called “Press”.

The following optional properties may be used:-

 retproc – specifies additional processing on the returned value

 colcount – if specified then it is assumed that the target SAP component is a

GuiCollection, and the count of the component’s columns is returned as a number

 targetprop - specifies the name of a property of the identified component on which the

action will actually be performed

 arguments – any arguments required to invoke the method, as a comma-separated list.

This must be the correct number of arguments.

Testing new functions
Use the UIScript tool with an –AMIValidate switch inside a command prompt in order to validate

and test the new functions and actions. The UIScript tool is available from your Blue Prism

installation folder.

UIScript.exe --amivalidate

For example:

If you cannot resolve any issues with these functions then please seek the assistance of the Blue

Prism Customer Support team by emailing support@blueprism.com.

mailto:support@blueprism.com

Example of adding a new action to an existing control
Here is an example of adding the action Set Focus to the SAPOKCode field. The SAPOKCode field is

the Transaction Code text field used in the top left-hand corner of the SAP main screen:

This field is used to enter an SAP transaction code which SAP will then run.

The action ‘Set Focus’ already exists as a definition within the Actions.XML file:

To implement Set Focus against the SAPOKCode field, the Set Focus action needs to be added to the

Control’s definition in the SAPElements.XML file:

In this instance the actions is an “actionquery” type of action, and the definition was simply copied

from another control which had already got this method implemented.

Once the files have been saved, then Blue Prism can be launched. When launched Blue Prism will

read the Actions and SAPElements XML files to establish the functions and methods available.

The new action can be tested with an appropriate Stage (e.g. a Navigate stage uses ‘Set Focus’):

NOTE: The SAP transaction Code field now has the focus after the Navigate stage sets it.

Appendix 1: List of Argument Data Types
When passing arguments (parameters, or variables) to a function it is necessary to specify what data

type those arguments represent. Each argument passed must be enclosed in the symbol which

defines their data type.

The default data type (if unspecified) will be text. Here is the list of argument data type symbols:-

Data type Symbol Example

Text $ $text$

Number # #$number$

Date @ @$date$

Appendix 2: List of SAP Controls
This list is the currently recognised list of SAP controls. This can be expanded by adding new controls

to the SAPElements.xml file.

SAP element name Blue Prism element ID Appearance

GuiStatusbar SAPStatusBar

GuiTitlebar SAPTitleBar

GuiMainWindow SAPMainWindow

GuiShell/Calendar SAPCalendar

GuiShell/GridView,A
POGrid,GuiCtrlGridVi
ew

SAPGridView

GuiPasswordField SAPPasswordField

GuiCTextField,GuiTe
xtField

SAPTextBox

GuiComboBox SAPComboBox

GuiOkCodeField SAPOkCodeField

GuiButton SAPButton

GuiCheckBox SAPCheckBox

GuiRadioButton SAPRadioButton

GuiTabStrip SAPTabStrip

GuiTab SAPTab

GuiCtrlTree,GuiShell/
Tree

SAPCtrlTree

GuiUserArea SAPUserArea

GuiSplitterShell SAPSplitter

GuiContainerShell SAPGuiContainerShell

GuiToolbar SAPToolbar

GuiMenubar SAPMenubar

GuiLabel SAPLabel

GuiTableControl SAPTable

GuiScrollbar SAPScrollbar

GuiScrollContainer SAPScrollContainer

GuiHTMLViewer,Gui
Shell/HTMLViewer

SAPHTMLViewer

NOTE: Any control not recognised as a specific SAP element type will be recognised as a generic “SAP

Component” element.

Appendix 3: Useful references
This section contains a list of useful resources that can be used to add more detail to the SAP

Controls, their capabilities, and how they are used.

Reference Description Hyperlink

SAP GUI Scripting API
Reference

The SAP reference guide to
scriptable controls and
functions.

SAP GUI Scripting API

Keyboard Controls for SAP GUI
Elements

A guide to using keystrokes Keyboard controls for SAP GUI
elements.pdf

SAP GUI Scripting API
demonstration

A slide presentation in PDF
form which explains the
background to, and general
information about, SAP GUI
Scripting.

SAP GUI Scripting API

Enabling SAP Spy Mode via
GUI Scripting Settings

A quick guide to the process of
enabling SAP GUI scripting in
the SAP GUI interface.

Blue Prism Knowledge Base
article

SAP GUI Scripting Security
Guide

 Security Guide

http://www.synactive.com/download/sap%20gui%20scripting/sap%20gui%20scripting%20api.pdf
https://wcupa.edu/_Information/AFA/SAP/Shortcut_Keys.pdf
https://wcupa.edu/_Information/AFA/SAP/Shortcut_Keys.pdf
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/80aaac18-2dfe-2a10-bbb1-ec9b3760ea4c?overridelayout=true
https://blueprism.knowledgeowl.com/help/how-do-i-enable-sap-spy-mode
https://blueprism.knowledgeowl.com/help/how-do-i-enable-sap-spy-mode
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/3099a575-9cf4-2a10-9492-9838706b9262?overridelayout=true

Troubleshooting
“The process dependency information is currently being refreshed”.

When logging into Blue Prism after upgrading your version of the software you get the error “The

process dependency information is currently being refreshed”. This does not go away when you

Retry and the only option is to log out.

This can occur when there has been a change to the Actions.XML file. Blue Prism is expecting a

specific action to be in the XML file, but it cannot be found.

To determine which action is causing the problem run this command within a command prompt

from the Blue Prism Automate directory:

NOTE: Use the correct admin login credentials for this command

This will reveal the problem area:

