
1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Everything You Need to Write Bluetooth Applications for All
Popular Operating Systems
• Complete Code-by-Examples Written by Leading Bluetooth Developers

• Complete Coverage of Keeping Your Bluetooth Applications Secure

• Hundreds of Developing & Deploying and Debugging Sidebars, Security
Alerts, and Bluetooth FAQs

Bluetooth

David Kammer

Gordon McNutt

Brian Senese

Jennifer Bray Technical Editor

T h e S h o r t R a n g e I n t e r co n n e c t S o l u t i o n

Application Developer’s Guide:

solutions@s y n g r e s s . c o m

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

■ One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

■ “Ask the Author” customer query forms that enable you to post
questions to our authors and editors.

■ Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

■ Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

www.syngress.com/solutions

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page i

http://www.syngress.com/solutions

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page ii

1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Bluetooth

David Kammer

Gordon McNutt

Brian Senese

Jennifer Bray Technical Editor

T h e S h o r t R a n g e I n t e r co n n e c t S o l u t i o n

Application Developer’s Guide:

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,” and “Ask the Author
UPDATE®,” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,”“Hack Proofing™,”
and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress Publishing, Inc.
Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.
KEY SERIAL NUMBER
001 D8LDE945T5
002 AKLRTGY7M4
003 2XW4L3N54N
004 SGBBT639UN
005 8LU8CA2H7H
006 7KG4RN5TM4
007 BW2QV7R46T
008 JPF5R565MR
009 83N5M77UBS
010 GT6YH2XZ52

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370
Bluetooth Application Developer’s Guide: The Short Range Interconnect Solution

Copyright © 2002 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-928994-42-3
Technical Editor: Jennifer Bray Cover Designer: Michael Kavish
Co-Publisher: Richard Kristof Page Layout and Art by: Reuben Kantor
Acquisitions Editor: Catherine B. Nolan Copy Editor: Michael McGee
Developmental Editor: Kate Glennon Indexer: Robert Saigh

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page iv

v

Acknowledgments

v

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous
access to the IT industry’s best courses, instructors, and training facilities.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight
into the challenges of designing, deploying and supporting world-class enterprise
networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
Kevin Votel, Kent Anderson, and Frida Yara of Publishers Group West for sharing
their incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler,Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our
vision remains worldwide in scope.

Annabel Dent of Harcourt Australia for all her help.

David Buckland,Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan,
and Joseph Chan of Transquest Publishers for the enthusiasm with which they receive
our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress
program.

Jackie Gross, Gayle Vocey,Alexia Penny,Anik Robitaille, Craig Siddall, Darlene
Morrow, Iolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates
for all their help and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, and the rest of the great folks at Jaguar Book Group
for their help with distribution of Syngress books in Canada.

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page v

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page vi

vii

Contributors

David Kammer has been involved with the handheld industry since
1997. David is currently the Technical Lead for Bluetooth technologies at
Palm Inc., and is one of the authors of the original Bluetooth specifica-
tion. Before working on Bluetooth, David worked on IR technology, and
on the Palm VII. In addition to his work at Palm, he also consults for sev-
eral companies, including In2M and Microsoft, in the field of wireless
communications and PalmOS programming. David has spoken at a
number of events, including The Bluetooth Developers Conference,The
Bluetooth World Congress, and PalmSource, and has been interviewed
about Bluetooth for the New York Times. David holds a B.A. from
Oberlin College in Computer Science, and currently lives in Seattle.
David would like to thank his folks for the education, Meredith Krieble
and Sebastian for a nice space to work in, the excellent folks of the Palm
Bluetooth Team, and Vanessa Pepoy for her understanding and patience.

Tracy Hopkins is an Applications Engineering Manager at Cambridge
Silicon Radio (CSR). She and her group offer consultancy application
services on all aspects of integrating Bluetooth into customer’s products
from initial conception through to production. She has a 2:1 BSc degree
with honors in Electronic Engineering and after completing a 6-year
apprenticeship with Phillips Telecommunications has worked in numerous
engineering disciplines designing hardware for Satellite communications,
production engineering at Studio Audio and Video (SADiE) and managed
the international post-production technical support for broadcast giant
Snell and Wilcox. She has written and presented many technical papers
for both the communications and broadcast TV industries including the
SMPTE technical conference and designs all of CSR’s technical training
seminars.

Brian P. Senese has directly participated in the development of state of
the art wireless communications networks and associated components for

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page vii

viii Contributors

15 years. He has worked for Nortel, Uniden,ADC Telecommunica-
tions, and other aggressive technology companies and has held posi-
tions from designer to senior engineering manager. Currently, as an
Applications Engineer for Extended Systems Inc., he gives seminars, is
a regular speaker at conferences, and has published several articles on
Bluetooth technology and its practical application in realizing prod-
ucts. He has spoken extensively on a wide variety of technical topics,
is internationally published, and has another book entitled Successful
High Tech Product Introduction. He holds an M.E.Sc. and B.E.Sc. in
Electrical Engineering from the University of Western Ontario,
London, Ontario, Canada.

Radina (Jiny) Bradshaw graduated with a first in Computer
Science from Kings College, Cambridge University. She received her
Ph.D. in the Laboratory for Communications Engineering, also in
Cambridge, with Professor Andy Hopper, investigating power efficient
routing in radio peer networks. She is currently a Software Engineer
at Cambridge Silicon Radio (CSR).

David McCall graduated from Edinburgh University with an MEng
in Electronics. He worked for Visteon, designing circuitry for car
stereos, before joining Cambridge Silicon Radio (CSR) in July of
2000.As a Senior Applications Engineer he is responsible for helping
CSR’s customers with all aspects of their Bluetooth product design
RF, hardware and software, from concept through production.

Wajih A. Elsallal received his B.S. degree in Electrical Engineering
from the King Fahd University of Petroleum and Minerals in 1998
and continued his education at Georgia Institute of Technology where
he received the M.S. degree in Electrical and Computer Engineering
in early 2000. Currently, he is pursuing a Ph.D. in Electrical and
Computer Engineering from Georgia Institute of Technology with a
minor in Public Policy. His fields of expertise include development of
antenna and phased array antenna design, electromagnetic computa-
tional methods, Bluetooth wireless LAN for handheld devices, Inter-
Satellite-Link networking, microstrip and packaging technologies and

www.syngress.com

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page viii

Contributors ix

www.syngress.com

sidelobe cancellor algorithms for radar applications. He has held
internships at Lucent Technology and 3Com Palm Computings, Inc.
and is currently a co-op staff member at the Antennas and Passives
Section within the Advanced Technology Center of Rockwell Collins,
Inc., a graduate teaching assistant at Georgia Tech, and a research assis-
tant for Georgia Tech Research Institute (GTRI/SEAL).

Patrick Connolly was educated at Trinity College, Dublin, where he
received a Bachelors and Masters degree in Computer Science. He has
been involved with the design and development of leading edge sys-
tems for over fifteen years, using such technologies as DCE, CORBA,
and J2EE. Patrick is the Chief Architect at Rococo Software, where
he plays a leading technical role in setting and driving product direc-
tion. His chapter in this book was co-authored by Patrick and two of
his Rococo colleagues: Karl McCabe, Rococo’s CTO, and Sean
O’Sullivan, Rococo’s CEO.

Gordon McNutt is a Kernel Developer for RidgeRun, Inc, respon-
sible for porting Linux to embedded devices containing multiple pro-
cessors.After receiving his B.S. in Computer Science from Boise State
University in 1999, he spent one year at Hewlett Packard developing
I/O firmware to support USB, IR, and 1284.4 for LaserJet printers.

Bill Munday is one of the founders of blueAid, which started as an
organization to help those companies who could not afford the high
consultancy rates for Bluetooth technology. He graduated from
UMIST (Manchester, UK) in 1991 with a double degree of
BSc(Hons) and MEng in Microelectronics Systems Engineering. He
was sponsored by NORTEL and joined them upon graduation as a
Systems Designer. He worked on first and second generation SDH
and SONET transmission systems, then pioneered new time-to-
market concepts while working on an innovative next-generation
Voice over ATM distributed switching product. In 1997 he moved to
Tality (nee Cadence, Symbionics) to start a career in wireless commu-
nications. His first project was implementing the HiperLAN 2 stan-
dard before moving on to Bluetooth. He was the first person in the

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page ix

x Contributors

United Kingdom to have access to Bluetooth technology as he man-
aged and created the Ericsson Bluetooth Development Kit. He
quickly became an expert and continued to work on dozens of proto-
type Bluetooth products including Tality’s own Bluetooth IP. He pre-
sented and attended all the Bluetooth seminars and Unplugfest
sessions around the world. In 2001 he moved on to start blueAid and
working on 3G mobile phones for a start-up company 3GLabs.

Robin Heydon is a Section Owner of HCI as a member of the
Bluetooth Special Interest Group (SIG). He obtained his degree in
Computer Science and worked for nine years in the computer
gaming industry on multiplayer flight simulator games. Robert began
working with Bluetooth technology in February 2000, specifically
working on the baseband, inquiry, sniff, and hold development, and
writing the USB device driver. Robin lives in Cambridge, UK.

www.syngress.com

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page x

xi

Technical Editor and Contributor

Jennifer Bray is a consultant at Cambridge Silicon Radio (CSR), the
single-chip Bluetooth company. She is currently working in the group
developing software for their BlueCore family of integrated circuits (ICs).
Jennifer currently holds the positions of Associate Councillor and Errata
Program Manager on the Bluetooth Architectural Review Board
(BARB). She has a bachelor’s degree in Physics with Microcomputer
Electronics, a master’s degree in Satellite Communications Engineering,
and a doctorate in the field of wireless communications. More recently,
she gained a distinction in the Open University’s Management of
Technology course. Her decade of experience in communications product
development includes working on Nortel and 3Com’s first ATM systems,
as well as wireless ATM, the first secure Ethernet repeater,ADSL to ATM
gateways, FDDI, CDMA, CDMA, and Bluetooth. In addition to her com-
munications development experience, she has worked on cutting-edge
control and monitoring systems for Formula One and Indy cars, and
acted as an ISO 9001 and CMM auditor advising blue-chip companies
on how to improve their development and support processes. Jennifer has
written and delivered technology training courses (naturally including
Bluetooth), and is a frequent speaker at conferences. She co-authored
with Charles Sturman Bluetooth: Connect without Cables.

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page xi

160.aBluetooth FM.qxd 12/6/01 9:53 AM Page xii

Every so often, a new technology comes along that, by its very nature, will change
the world.The automobile, the television, and the Internet are obvious examples of
technologies whose impact upon the entire population has been so far-reaching that
it is truly beyond measure. Bluetooth is not one of these technologies. Despite the
massive amount of media hype that has surrounded it, the effect of Bluetooth on the
average person will be more like the invention of the automatic transmission than the
invention of the car itself: it will make things easier for the user, but not fundamen-
tally change the nature of the way we live and work. Simply put, for the average
person, Bluetooth will probably merit a “Cool!” or a “What will they think of next?”
response, but probably won’t leave them stunned or slack-jawed.This is not to say
that Bluetooth will be unimportant. I’ve invested several years working on Bluetooth,
and I think it will be a valuable technology that millions of people will use, but I also
think it’s important to be realistic about it.

There is, however, a small group of people for whom I think Bluetooth could
fundamentally change the way things are perceived, and if you are reading this intro-
duction, in all probability you are one of those people—a software developer.
Traditionally, software developers have tended to look at the communication between
two devices in terms of big and small, primary or secondary (terminal and mainframe,
client and server, apparatus and accessory).While these terms are certainly still relevant
in some situations, Bluetooth definitely presents us with scenarios in which the lines
become blurry. If two people exchange business cards between PDAs, which one is
the client and which one is the server? Traditionally, both a cell phone and a printer
might be considered accessories, but when you use Bluetooth to print an SMS message
from your phone, which one is the accessory? We may still use the terms client and
server to refer to certain aspects of an interaction (like who initiates the connection),
but it is easy to see that many of the other ideas and assumptions associated with these
terms are no longer relevant.

xxv

Foreword

160.cBluetooth_foreword.qxt 12/5/01 5:46 PM Page xxv

xxvi Foreword

In the world of the Internet, the term peer-to-peer has come to describe applica-
tions that are decentralized—a relationship between equals. I believe this is a good
way to think of the relationship between devices using Bluetooth. In the Bluetooth
peer-to-peer paradigm, devices are more or less equal, dealing with data in ways that
are appropriate to their nature; sending vCard data to a phone or PDA might cause
the device to store the information in its address book, while sending the same
vCard to a printer may cause the printer to render the data and then print it.
Certainly, not all categories of Bluetooth applications will fall under the peer-to-peer
paradigm.There are many good applications out there that will retain a server-client
approach, but I think the realm of peer-to-peer applications that Bluetooth opens to
developers will prove to be exciting and extensive.

At this point, you are hopefully saying to yourself “Great, so let’s get down to the
nitty-gritty; how does it work and how do I get started?”This book will take you
through the most important aspects of Bluetooth technology, and offer guidance on
writing Bluetooth applications for some of today’s most popular operating systems.
Bluetooth is still a very young technology, but the authors of these chapters are among
those who have helped to see it through its infancy, and the experience they have
gained should prove valuable to everyone interested in creating Bluetooth applications.

Who Should Read This Book
In general, this book is aimed at software application developers who are interested in
creating Bluetooth-aware applications. Its principle goal is to provide information
and examples that are pertinent to application developers.This does not mean, how-
ever, that only application developers will find benefit in reading this book.As
someone who worked at integrating a Bluetooth protocol stack into an OS, I know
that I would have found many of the insights in this book valuable. It is important
that an OS developer understand what the world looks like from an application
developer’s point of view, and the insights that other OS developers have gained
should certainly prove useful. In addition to developers, anyone who is evaluating a
Bluetooth application for review, corporate use, or bundling may find the informa-
tion in this book valuable in making an informed evaluation. For example, I know
that if I were evaluating an application for enterprise use, I would want to have a
good understanding of how security is handled in Bluetooth, so I could decide
whether a given application met my company’s security requirements.

www.syngress.com

160.cBluetooth_foreword.qxt 12/5/01 5:46 PM Page xxvi

Foreword xxvii

What This Book Will Teach You
Simply put, this book will teach you what Bluetooth technology is all about, and
how to write Bluetooth applications for several popular operating systems.This is a
technical book, and it assumes that the reader has a solid background in application
development and has a reasonable understanding of the issues involved in creating
communications applications.The book is roughly divided into three sections:
Bluetooth technology in general, Bluetooth applications on various operating sys-
tems, and a Bluetooth usage case study.The flow of the book is designed to intro-
duce things to you in the most helpful order—first, supplementing your general
knowledge with information about ideas and situations unique to Bluetooth, then
showing you how these situations are handled in various operating systems, and
finally by stimulating your imagination from looking at several real-world scenarios
in which Bluetooth might be used.

It is probably worth noting a few things that this book does not cover. It is not
designed to serve as a detailed investigation of the low-level particulars of the
Bluetooth specification.The specification itself is publicly available, and there already
exist books that do a good job providing a detailed, blow-by-blow, examination of
the specification specifics.Although this is probably already clear, you should be
aware that this is not a general applications programming book. If you don’t already
know how to write applications for Windows, this book is not going to teach you.

Further Information
By the time you finish this book, you should have all the information you need to
get started writing your Bluetooth application. In fact, I wouldn’t be surprised if
98 percent of all developers discover that this book will be the only Bluetooth refer-
ence they ever need. Of course, no author can anticipate every situation, so for the
other 2 percent of you out there, here are some other Bluetooth references that I
think are worthwhile:

■ www.bluetooth.com Home of the Bluetooth specification. In general,
I think most people will find reading the specification itself is not terribly
helpful. In a good OS implementation, most of the protocols and procedures
defined in the specification should be nicely abstracted. Still, sometimes you
have to go straight to the source.

www.syngress.com

160.cBluetooth_foreword.qxt 12/5/01 5:46 PM Page xxvii

xxviii Foreword

■ Bluetooth: Connect Without Cables (by Jennifer Bray and Charles F.
Sturman, published by Prentice Hall, 2000). If you choose to look at the
Bluetooth Specification, I think you will find that this book is an excellent
companion. It goes into detailed explanation, and does a good job
explaining many of the oddities, ambiguities, and occasional paradoxes of the
Bluetooth specification.

■ www.syngress.com The Syngress Publishing Web site. Bluetooth tech-
nology will unquestionably evolve over time.As it does, Syngress will help
you keep up by releasing updates and new publications.

I hope you enjoy the book, and have a great time creating new and exciting
applications.

—David Kammer

www.syngress.com

160.cBluetooth_foreword.qxt 12/5/01 5:46 PM Page xxviii

Contents

xiii

Foreword xxv

Chapter 1
Introducing Bluetooth Applications 1

Introduction 2
Why Throw Away Wires? 3

Adding Usability to Products 6
Allowing for Interference 7
Considering Connection Times 8
Coping with Limited Bandwidth 9
Considering Power and Range 9
Deciding on Acceptable Range 10
Recognizing Candidate Bluetooth Products 10

Considering Product Design 11
Are You Adding End User Value? 11

Investigating Convenience 12
Enhancing Functionality 15

Do You Have Time? 17
Investigating Product Performance 18

Evaluating Connection Times 19
Discovering Devices 20
Connecting Devices 21
Quantifying Connection Times 22
Performing Service Discovery 24

Quality of Service in Connections 25
Data Rate 25
Latency 27

Delivering Voice Communications 28

Connecting Devices

The page scanning
device’s Bluetooth Device
Address can be obtained
in several ways:

■ From an inquiry
response via FHS

■ From user input
■ By preprogramming

at manufacture

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xiii

xiv Contents

Investigating Interference 29
Interfering with Other Technologies 31
Coexisting Piconets 32
Using Power Control 34
Aircraft Safety 35

Assessing Required Features 36
Enabling Security 36
Using Low Power Modes 37

Hold Mode 37
Sniff Mode 38
Park Mode 38
Unparking 39
Which Devices Need Low Power Modes? 39

Providing Channel Quality Driven Data Rate 40
Deciding How to Implement 40

Choosing a System Software Architecture 40
Constraining Implementation Options

with Profiles 43
Choosing a Hardware Implementation Option 43
Design Bluetooth Directly Onto the PCB 45

Design Verification 49
Manufacturing 50

Using a Prequalified Complete Bluetooth
Module 51

Firmware Versions 53
Dependant for Functionality 53

Considering Battery Limitations 55
Adding Batteries 56
Using Power Saving Modes to Extend

Battery Life 57
Assessing Battery Life 58

Summary 64
Solutions Fast Track 65
Frequently Asked Questions 67

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xiv

Contents xv

Chapter 2
Exploring the Foundations of Bluetooth 69

Introduction 70
Reviewing the Protocol Stack 70

L2CAP 71
RFCOMM 72
OBEX 73
PPP 73
TCS Binary 73
SDP 74
Management Entities 74
HCI 74
Lower Layers 74

Why Unconnected Devices Need to Talk 75
Discovering Neighboring Devices 77

Inquiring and Inquiry Scanning 77
Timing 80
When to Stop 81

Connecting to a Device 82
Paging and Page Scanning 82
Timing 86
Who Calls Who? 88

Finding Information on Services a Device Offers 88
Connecting to and Using Bluetooth Services 91
Summary 98
Solutions Fast Track 99
Frequently Asked Questions 101

Relationship between SP
Mode and Mandatory
Page Scan Period

Scan
Period
Mode Tmandatory_pscan

P0 >20 seconds

P1 >40 seconds

P2 >60 seconds

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xv

xvi Contents

Chapter 3
Power Management 103

Introduction 104
Using Power Management:When and

Why Is It Necessary? 104
Investigating Bluetooth Power Modes 106

Active Mode 106
Hold Mode 107
Sniff Mode 110
Park Mode 113

Evaluating Consumption Levels 117
Summary 120
Solutions Fast Track 121
Frequently Asked Questions 122

Chapter 4
Security Management 125

Introduction 126
Deciding When to Secure 126
Outfitting Your Security Toolbox 127

Authentication 128
Pairing 129
Link Keys 130
Bonding 130
Application Involvement 132

Authorization: How and Why? 132
Using the Trust Attribute 133

Enabling Encryption 133
Point-to-Point Encryption 134
Broadcasting 134
Application Involvement 135

Understanding Security Architecture 135
The Role of the Security Manager 135
Mode 1 Role 138
Mode 2 Role 138
Mode 3 Role 141
Mode Unknown 142

Using Power
Management: When and
Why Is It Necessary?

■ Consider whether
your application is
suitable for power-
managed operation.

■ Consider the
constraints imposed
by the application
(e.g., maximum
response times,
characteristics of the
data traffic, and so
on).

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xvi

Contents xvii

The Role of Security Databases 143
Service Database Content 143
Service Database Operations 144

Role of Device Databases 146
Device Database Content 146
Device Database Operations 147
Managing the Device Database

for Your Applications 147
Working with Protocols and Security Interfaces 148

Mode 2 Operation 148
Mode 3 Operation 150

Application—API Structure 150
Exploring Other Routes to Extra Security 153

Invisibility 154
Application Level Security 154
Implementing Security Profiles 155

SDP 155
Cordless Telephony and Intercom 156
Serial Port Profile 156
Headset Profile 157
Dial-Up Network and FAX 157
LAN Access 158
OBEX 159

Case Study 161
Summary 162
Solutions Fast Track 162
Frequently Asked Questions 164

Chapter 5
Service Discovery 167

Introduction 168
Introduction to Service Discovery 169

Service Discovery Protocols 170
Bluetooth SDP 171

Architecture of Bluetooth Service Discovery 172
The Structure of Service Records 172
The Service Discovery Protocol 175

Security Modes

There are three different
modes associated with
Bluetooth security:

■ Mode 1 has no
security, obviously
making it the least
secure mode.

■ Mode 2 invokes
security when a
higher layer protocol
or service is
accessed.

■ Mode 3 invokes
security when a
connection is
requested; this is the
most secure mode.

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xvii

xviii Contents

Developing an Abstract C API for SDP 176
Discovering Services 180

Short-Circuiting the Service Discovery
Process 181

Creating and Advertising a Service 181
Discovering Specific Services 186

Using Service Attributes 187
Browsing for Services 189

Service Discovery Application Profile 192
Service Discovery Non-Application

Profiles 193
Java, C, and SDP 195
Other Service Discovery Protocols 196

Salutation 197
Service Location Protocol 198
Jini 200
Universal Plug and Play (UPnP) 202

The Future of SDP 203
Summary 204
Solutions Fast Track 205
Frequently Asked Questions 209

Chapter 6
Linux Bluetooth Development 211

Introduction 212
Assessing Linux Bluetooth Protocol Stacks 212

Comparing BlueDrekar with OpenBT
by Features 213

Kernel Versions 214
Hardware Platforms 214
Bluetooth Protocols 214
SDP Support 214
API 215
License Terms 215

Other Considerations 216
Fair Warning 217

Understanding the Linux Bluetooth Driver 217

Answers to Your
Frequently Asked
Questions

Q: How are services
represented in SDP?

A: A service on a
Bluetooth device is
described in an SDP
service record, which
is stored in the
device’s “Service
Discovery Database.”
A service record
consists of service
attributes, each of
which describes
some information
about the available
service.

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xviii

Contents xix

Learning about the Kernel Driver 218
Investigating the Kernel Module 218
What Exactly Is a TTY? 219
So What’s an ldisc? 219
Building Driver Stacks in the

Linux Kernel 220
Understanding the Bluetooth Driver

Interface 221
Investigating the Bluetooth Device Files 221
Using the RFCOMM TTY Drivers 222
Using the Control Driver 226

Using Open Source Development Applications 226
Investigating the OpenBT Applications 226

Understanding the btd and btduser
Applications 227

Understanding the sdp_Server
Application 227

Understanding the BluetoothPN
Application 228

Establishing a PPP Connection Using
the btd Application 228

Writing Your Own Minimal Application 231
Connecting to a Bluetooth Device 233

Initializing the Bluetooth Stack 234
Preparing the Serial Driver 234
Stacking the Drivers 235
Starting Communication between

the PC and the Card 236
Switching to a Higher Baud Rate 237

Finding Neighboring Devices 238
Letting Other Bluetooth Devices

Discover Us 239
Sending an HCI Inquiry 239

Using Service Discovery 241
Connecting to a Remote SDP Server 241
Sending an SDP Request 242

Security Alert

Never remove the
Bluetooth driver while the
sdp_server daemon is
using /proc/sdp_srv. If you
do so in the current
release version of the
stack (0.0.2 at the time of
this writing), you will get
a kernel panic when you
stop the daemon. Future
versions of the stack will
probably not allow you to
remove the driver while
the sdp_server daemon is
using it.

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xix

xx Contents

Processing an SDP Response 244
Adding a Service to the Local Database 246
Querying the Local Database 247

Connecting to a Bluetooth Service 247
Using a Data Device 247
Creating a Connection 248
Accepting a Connection 249

Transferring Data 249
Disconnecting 250

Controlling a Bluetooth Device 251
Distinguishing between Control and

Data Applications 252
Using ioctls to Control the Device 252
Covering Basic Scenarios 255

Example: Startup 255
Example: Link Loss 255
Example: User-Initiated and Automated

Shutdown 257
Example: Idle Operation 257

Summary 259
Solutions Fast Track 260
Frequently Asked Questions 262

Chapter 7
Embedding Bluetooth Applications 265

Introduction 266
Understanding Embedded Systems 267

Understanding Tasks,Timers, and Schedulers 267
Understanding Messaging and Queues 268
Using Interrupts 268

Getting Started 271
Installing the Tool Set 273
Building a Sample Application 273

Running an Application under the Debugger 274
Using Plug-Ins 276
Debugging under BlueLab 280

Running an Application on BlueCore 280

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xx

Contents xxi

Debugging Using VM Spy 283
Using VM Packets 284
Packing Format in Messages 287

Using the BlueLab Libraries 288
Basic Libraries 290
CSR Library 291
Application Libraries 291
Using Tasks and Messages 293

Tasks and Message Queues 293
Creating and Destroying Messages 294
Using the MAKE_MSG Macro 295

Connection Manager 296
Initializing and Opening the

Connection Manager 297
Inquiry 302
Pairing 304
Connecting 306
Sending Data 311
Using Other Messages and Events 312

Deploying Applications 313
Summary 314
Solutions Fast Track 314
Frequently Asked Questions 316

Chapter 8
Using the Palm OS for Bluetooth
Applications 317

Introduction 318
What You Need to Get Started 318
Understanding Palm OS Profiles 320

Choosing Services through the Service
Discovery Protocol 322

Updating Palm OS Applications Using the
Bluetooth Virtual Serial Driver 324
Creating a VDRV Client-Only Application 329

Creating a VDRV Server-Only
Application 332

The Casira
Development Kit

The Casira development
kit provides a variety of
useful interfaces:

■ SPI interface
Connects to a PC
parallel port, and
allows you to
reconfigure the
Casira using the
PSTool utility.

■ Serial interface
Connects to a PC
serial port.

■ USB port Connects
to a PC USB port,
and supports the
Bluetooth
Specification’s USB
protocol (H2).

■ Audio I/O An audio
jack which connects
to the headsets
supplied with the
Casira.

■ LEDs These can be
used to monitor
applications running
on the BlueCore
chip.

■ PIO lines Parallel
Input-Output lines;
useful for
connecting custom
hardware.

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xxi

xxii Contents

Using Bluetooth Technology with Exchange
Manager 335

Creating Bluetooth-Aware Palm OS Applications 337
Using Basic ACL Links 339
Creating L2CAP and RFCOMM

Connections 346
Using the Service Discovery Protocol 359

Advertising a Basic Service Record for
an RFCOMM or L2CAP Listener
Socket 360

Retrieving Connection Information
about L2CAP and RFCOMM
Listeners on a Remote Device 361

Using Bluetooth Security on Palm OS 364
Writing Persistent Bluetooth Services for

Palm OS 364
The Future of Palm OS Bluetooth Support 369
Summary 370
Solutions Fast Track 372
Frequently Asked Questions 376

Chapter 9
Designing an Audio Application 379

Introduction 380
Choosing a Codec 381

Pulse Code Modulation 383
Continuous Variable Slope Delta Modulation 385

Configuring Voice Links 389
Choosing an HV Packet Type 390
Sending Data and Voice Simultaneously 391
Using ACL Links for High-Quality Audio 393

Choosing an Audio Interface 395
Selecting an Audio Profile 396

Applications Not Covered by Profiles 401
New Audio Profiles 402

Writing Audio Applications 402
Discovering Devices 403

Warning

Applications and the VDRV
use the Bluetooth Library
in different modes.
Because of this difference,
the VDRV will not be able
to open while the
application is holding the
Bluetooth stack open.

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xxii

Contents xxiii

Using Service Discovery 405
Connecting to a Service 407
Using Power Saving with Audio

Connections 409
Differentiating Your Audio Application 410

Physical Design 410
Designing the User Interface 410
Enabling Upgrades 411
Improving the Audio Path 412

Summary 413
Solutions Fast Track 413
Frequently Asked Questions 417

Chapter 10
Personal Information Base Case Study 419

Introduction 420
Why Choose Bluetooth Technology? 422

Requirements for PIB Devices 422
Implementing Optional Extra Features 425

Choosing a Wireless Technology for the
PIB Device 427

Considering the Cost of the PIB 428
Exploring the Safety and Security Concerns

of a Personal Information Base 429
Enabling Data Duplication 429
Ensuring Data Integrity 430
Providing Security 431
Meeting Medical Requirements 432

Using Bluetooth Protocols to Implement a PIB 432
Understanding the Bluetooth

Specification Hierarchy 433
Initializing the PIB 437

Understanding User Interactions 437
Sending and Receiving Information 438

Selecting a Device 448
Using the Service Discovery

Application Profile 449

Choosing a Codec

The Bluetooth
specification supports
three different audio
coding schemes on the air
interface:

■ Continuous Variable
Slope Delta
Modulation (CVSD)

■ Log Pulse Code
Modulation (PCM)
coding using A-law
compression

■ Log PCM with µ-law
compression

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xxiii

xxiv Contents

Using the Serial Port Profile 449
Using the Generic Object Exchange

Profile 450
Using the Object Push Profile 450
Using the File Transfer Profile 450

Considering the User’s View 454
Identifying the System’s Users 454
Identifying System Use Cases 455
Identifying Barriers to Adoption 455
Managing Personal Information Base

Performance 456
Summary 458
Solutions Fast Track 459
Frequently Asked Questions 460

Appendix:
Bluetooth Application Developer’s
Guide Fast Track 463

Glossary 483

Index 492

160.bBluetooth ToC_AnnNotes.qxt 12/5/01 5:58 PM Page xxiv

Introducing
Bluetooth
Applications

Solutions in this chapter:

■ Why Throw Away Wires?

■ Considering Product Design

■ Investigating Product Performance

■ Assessing Required Features

■ Deciding How to Implement

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Chapter 1

1

160bluetooth_C01.qk 12/5/01 4:31 PM Page 1

2 Chapter 1 • Introducing Bluetooth Applications

Introduction
As human beings, we accept without question that we have the ability to com-
municate, that if we speak or write according to a pre-defined set of linguistic
rules that we will succeed in conveying information to one another.The tools of
human communication, producing sounds that are perceived as speech or creating
words on a page, once learnt are used without thought.The limitation on these
physical processes that we take for granted is the actual translation of thoughts
into effective and meaningful statements.When it comes to electronic communi-
cation, however, there is very little that can be assumed or taken for granted.
Communication between electronic devices can only be achieved when they also
abide by a set of predetermined rules and standards—the Open Systems
Interconnect (OSI) model for communications systems protocol stacks being the
primary example, and the basis from which many others have evolved.

These standards need to be applied to every aspect of the communication
process, from the manipulation of data at the highest level to the utilization of
physical transmission media at the lowest. Electronic communication has evolved
significantly over the last decade from the earliest packet switched data networks
(PSDNs) and the Xerox, Ethernet, and IBM Token Ring local area network
(LAN) technologies, to the now common-place mobile telephony and dedicated
high-speed data communication. (How would we survive without e-mail and
the WWW?)

New technologies are now emerging that allow wireless communication.The
IEEE 802.11b or Wi-Fi standard is becoming accepted as the choice for the net-
working community as it supports features that enable it to perform handovers
between access points, and it can effectively become a transparent wireless net-
work, expanding the static wired network. IEEE 802.11b has a data throughput
of up to 11 Mbps, which gives it viability against wired networks.This is evolving
further with the advent of IEEE 802.11a and its competitor HyperLAN2 with
even greater data rates.This technology is expensive and therefore not compatible
with price-conscious consumer products, but we have now been provided with
the means to create wireless, low-power, cost-effective, unconscious and ad-hoc
connectivity between our devices. Its name: Bluetooth. If we believe all of the
hype surrounding Bluetooth technology, we can expect our fridge to use our
mobile phone to order groceries over the Internet, and, of course, end up
ordering an extremely expensive new car instead of a steak! Yes, we have all seen
the jokes, but in reality we can utilize this technology now to develop products
that will allow us to throw away all the wires—and communicate without cables.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:31 PM Page 2

www.syngress.com

Excellent, we all think, and our imagination races into the realms of Science
Fiction, removing the wires from everything! Musing on using our mobile phone
to communicate and control everything the same way we use the TV remote to
operate our entertainment systems.

This is a book for engineers in the real world, so let’s take a long hard look
at what Bluetooth technology really does offer. For some applications, Bluetooth
technology delivers the dream of convenient wireless connectivity. For other
applications, however, it just isn’t the right answer.You do not want to spend a
lot of time and effort learning about Bluetooth technology only to realize it isn’t
for you, so we are going to start out by analyzing what the features of a really
good Bluetooth product are. If your application does not fit into the Bluetooth
scheme of things, you can put the book down after this chapter and go and look
elsewhere.

If you make it past this chapter, you can be confident Bluetooth technology is
right for you.There will still be quite a few make or break pitfalls before you
have a killer application, but they are minor issues compared to choosing the
wrong technology.

What you need to know before reading this chapter:

■ There are no pre-requisites for this chapter, though a broad familiarity
with communications products will be useful.

Why Throw Away Wires?
Wired or wireless? Let’s examine just why we’d want to connect without wires,
and what it might offer us in tangible terms; we can use the paradigm of our
own personal area network (PAN).We have a PC with its ubiquitous mouse and
keyboard, a laptop, a personal digital assistant (PDA), a mobile phone with a
“hands free” kit and a printer. How do we currently communicate between these
devices? The answer is: with a rather unwieldy network of cables, hubs, and con-
nectors—plugging, unplugging, and synchronizing often with the compulsory
intervention of the overworked and often less-than-friendly IT department!

In the wired solution scenario that we are all accustomed to, all of the mobile
devices are used in the singular—the interaction between them is always user-
initiated.We generally keep our contacts’ addresses in our PCs or laptops, while
their phone numbers also need to be entered into our mobile phone’s directory.
We are effectively forced to become database managers simply in order to main-
tain an up-to-date record of our contact’s details.We connect to our company

Introducing Bluetooth Applications • Chapter 1 3

160bluetooth_C01.qk 12/5/01 4:31 PM Page 3

4 Chapter 1 • Introducing Bluetooth Applications

LAN via user-initiated password entry and connect to a printer only if we have
already installed the driver or have administrator rights on our PC’s—nothing is
unconscious.

Figure 1.1 illustrates the alternative scenario—to Bluetooth-enable all of these
devices.The simple act of utilizing Bluetooth technology as cable replacement
removes the problem of the actual physical connections and the unconscious and
ad-hoc connection capability of the technology can allow communication
between the devices with no user intervention at all (OK, after some software
configuration and initial device setup!).

This fully wireless scenario can be achieved because of the master/slave nature
of the Bluetooth technology.All devices are peers, identified by their own unique
48-bit address, and can be assigned as a master either by function or user interven-
tion.A master can connect to up to seven slaves at the same time, forming a
piconet—this “point-to-multipoint” feature is what sets Bluetooth apart from other
wireless technologies. Figure 1.2 illustrates several connection scenarios.

www.syngress.com

Figure 1.1 A Bluetooth PAN (Doesn’t Include Power Cables to PC
and Printer)

Headset

Cellular
Phone

PDA

Laptop

Mouse

Printer

160bluetooth_C01.qk 12/5/01 4:31 PM Page 4

Introducing Bluetooth Applications • Chapter 1 5

In the ultimate scenario, a member of one piconet can also belong to another
piconet. Figure 1.3 illustrates the scatternet, wherein a slave in one piconet is also
the master of a second piconet—thus extending the networking between devices.
A device in my PAN can communicate with one in yours!

Let us put this into context by interpreting exactly what “unconscious and
ad-hoc connections” can mean to us in real life, and how the fundamental com-
ponents of the Bluetooth PAN in Figure 1.1 can be integrated into a wireless
infrastructure to enhance our lives and even reduce the need to queue!

www.syngress.com

Figure 1.2 Bluetooth Technology Connection Scenarios

master

slave

master

slave
slave

master
slave

slave

PERSONAL: link to one preset
device

POINT TO POINT: link to any one
device (ad-hoc)

POINT TO MULTIPOINT: link to up
to seven devices (Piconet)

Figure 1.3 A Bluetooth Scatternet

slave or
master

master

slave

slave

slave

slave

slave

slave

160bluetooth_C01.qk 12/5/01 4:32 PM Page 5

6 Chapter 1 • Introducing Bluetooth Applications

Adding Usability to Products
Mr. I.M.Wireless is embarking on a business trip. At the airport, as he gets
within range of the airline’s counter, his reservation is confirmed and a message
is sent to his mobile phone detailing flight confirmation, personal boarding ref-
erence, seat information and departure gate number, which he listens to via a
headset being that his phone is actually in his briefcase.While in the departure
lounge, he connects to the Internet and accesses his e-mail via his mobile
phone or the wireless LAN Access Point fitted in the lounge. He boards his
flight and during the journey composes e-mails which will be sent as he enters
the range of a LAN in the arrivals lounge or again via his mobile phone. He
walks to the rental car company’s counter to pick up his keys—as with the air-
line, all booking, payment, and car location details would have been transmitted
between his PDA/mobile telephone and the rental company’s computer. He
starts to drive the rental car and his PDA downloads his hotel information into
the car’s on-board systems, which allows the navigation system to smoothly
direct him to its location. On arrival, his room booking reservation is already
confirmed. At his meeting, the normal 15-minute exchange of business cards is
removed as all of the personal information is exchanged automatically via his
PDA. He then uses his PDA to run his presentation from his laptop, which all
attendees at the meeting are viewing simultaneously on their own laptops. Back
in his hotel room after the meeting, his PDA synchronizes with both his laptop
and mobile phone—now the telephone details of all the new contacts he met
are stored in his mobile phone directory and the address and e-mail informa-
tion in his laptop. Later, while relaxing, he listens to MP3 files stored on his
laptop with the same headset that he answers his phone with. He also uses his
digital camera to send “an instant postcard” via his mobile phone and the
Internet to his wife’s PC at home (obviously, it won’t be a picture from the
Karaoke evening arranged by his clients!)

If we extract some conclusions from this slightly excessive example, we find
that wireless connectivity offers us immense freedom and convenience. It allows
us to perform tedious tasks with a minimum of intervention, allows some of our
devices to have dual functionality, and makes the vast array of cables we inevitably
always leave in the office redundant. Bluetooth technology “will” change the
assumptions we all have about our electronic devices.With the cables gone, the
idea of having a particular gadget for a specific job will no longer be relevant.
With many of the devices already available to consumers, this scenario grows
closer to reality every day.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 6

Introducing Bluetooth Applications • Chapter 1 7

As for networking our homes, there are two ideologies.The first predicts a
“master device” that will control everything from the video recorder to the secu-
rity system, and which will replace the PC as the technological hub of the home.
The other suggests the PC will remain at the centre of a networked home. Figure
1.4 illustrates how the PAN can be extended in our homes and combined with
our wired infrastructure to provide a home area network (HAN) that utilizes
wireless technologies for audiovisual (AV) control and distribution.The British
mobile telephone company Orange is currently promoting a wireless house that
will demonstrate various technologies in a “real-world” environment. More infor-
mation can be found on the Orange Web site at www.orange.co.uk.

Allowing for Interference
Wireless means a radio link—and radio links are subject to interference.
Interference can impact both the quality of an audio (Synchronous Connection
Oriented [SCO]) connection or the throughput of a data (Asynchronous
Connectionless [ACL]) connection. High levels of interference can interrupt
communications for long enough to cause the protocol stack to timeout and
abandon the link altogether.Although this is addressed in the Bluetooth

www.syngress.com

Figure 1.4 A Wireless HAN for AV Control and Distribution

160bluetooth_C01.qk 12/5/01 4:32 PM Page 7

8 Chapter 1 • Introducing Bluetooth Applications

Specification with a frequency-hopping scheme which does provide robustness, it
is still a serious consideration for some applications.

Bluetooth technology should not be used for safety-critical applications
where data absolutely must get through, because there is always a possibility of a
burst of interference stopping the link. Interference can come from a variety of
sources: microwave ovens, thunderstorms, other communications systems (such as
IEEE 802.11b), even other Bluetooth devices in the area (although these will not
have a great effect as they are designed to cope with interference from one
another in normal use).

It is possible to overcome the problem of link failure. For example, if you are
relying on a Bluetooth link to monitor your baby and you know the environ-
ment is such that the link will only fail approximately once a week, then you
might be happy to have the receiver alert you when the link fails. Once a week
you may be out of touch, but an alert will let you know that the link has failed,
so you have the option of returning within earshot of the infant. Since the
Bluetooth links only operate up to around 100 meters, it shouldn’t take you too
long to get there!

There are other safety-critical applications where an unreliable link may be
acceptable.An example is a system developed for Nokian tires, which allows tire
pressure to be automatically monitored and sent to the car dashboard display.A
wireless link will be subject to frequent failures in the harsh automotive environ-
ment, but the link can be re-established. Even if it only works a tenth of the time,
it is still checking tire pressures far more often than will the average motorist!
Here again, the system could be set to alert the driver if the tire pressures have not
been reported recently.This way the driver knows that a manual check is needed.

So far, we have looked at effects of the Bluetooth link receiving interference,
but, of course, it can also interfere with other devices. Bluetooth devices are obvi-
ously completely unsuitable for use in an environment where the Bluetooth link
would interfere with sensitive control equipment—an aircraft being the primary
example. Interference issues are explained in more depth later in this chapter.

Considering Connection Times
With a radio link, although the connections can be unconscious, connection
times can be lengthy as transmitters and receivers all need to synchronize before
communication can commence.These limitations could have serious conse-
quences if the wireless link was of a critical nature—for example, a “panic
button,” a life-dependant medical monitor, or an engine management system.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 8

Introducing Bluetooth Applications • Chapter 1 9

There are two delays in setting up a Bluetooth link. First, it takes time to dis-
cover devices in the neighborhood. In device discovery, a device sends out
inquiry packets, and receives responses from devices in the area, then reports these
to the user. It can take ten seconds to find all the devices in an area, and even
then you will only find those devices which are willing to report their presence.
Some devices may not be set to scan for inquiries, in which case you will never
find them!

A second delay occurs when you set up the connection itself.Again, this can
take up to ten seconds.This lengthy connection time means that Bluetooth
devices are unsuitable for systems where a fast response is needed, such as auto-
matic toll collection on busy roads.

Coping with Limited Bandwidth
Wireless can also mean “slower.”An Internet connection via a Bluetooth LAN is
limited to the maximum data rate (723.2 Kbps) over the air interface.After
allowing for management traffic and the capacity taken up by headers for the var-
ious protocol layers, even less is available to applications at the top of the stack.
This will not compete with a high-speed wired link.Thus, for sending or down-
loading vast amounts of data, a Bluetooth wireless connection would not be the
optimum method.

This also impacts on audio quality: Bluetooth technology simply does not
have the bandwidth for raw CD quality sound (1411.2 Kbps). However, if a suit-
able compression technique is employed (using MP3 to compress an audio stream
down to 128 Kbps, for example), it is feasible to use an ACL link for high-quality
audio.The quality of a Bluetooth SCO link is certainly not high quality—it is
approximately equivalent to a GSM telephone audio link (64 Kbps).

Compression can be useful for data devices. If large amounts of data are to be
sent, using a compressed format will obviously speed up transfer time.

Considering Power and Range
Power is a critical consideration for wireless devices. If a product is to be made
wireless, unleashed from its wired connection, where will its power come from?
Often the communication cable also acts as a power cable.With the cable gone,
the subject of batteries is brought into focus, and the inevitable questions arise
concerning battery life, standby time, and physical dimensions.

Some devices, such as headsets, have no need for power when they are con-
nected with wires.Audio signals come down a wire and drive speakers directly; a

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 9

10 Chapter 1 • Introducing Bluetooth Applications

very simple system with no need of extra power connections.When the wires are
replaced with a Bluetooth link, suddenly we need power to drive the link, power
to drive the microprocessor that runs the Bluetooth protocol stack, and power to
amplify the audio signal to a level the user can hear.With small mobile devices
you obviously do not want to install huge batteries, so keeping the power con-
sumption low is an important consideration.

Deciding on Acceptable Range
The Bluetooth specification defines three power classes for radio transmitters
with an output power of 1 mW, 2.5 mW and 100 mW.The output power defines
the range that the device is able to cover and thus the functionality of your
product must be considered when deciding which power class to use.The user
would not want to have to get up from his desk to connect to the LAN and
therefore requires a higher power radio. Conversely, a cellular phone headset is
likely to be kept close to the phone, making a lower range acceptable, which
allows smaller batteries and a more compact design.Table 1.1 details the respec-
tive maximum output power versus range.

Table 1.1 Bluetooth Radio Power Classes

Power Class Max Output Power Range

Class 1 100 mW 100 meters+
Class 2 2.5 mW 10 meters
Class 3 1 mW 1 meter

It is important to realize that the range figures are for typical use. In the
middle of the Cambridgeshire fens, where the land is flat and there is not much
interference, a Class 1 device has been successfully tested at over a mile. But in a
crowded office with many metal desks and a lot of people, the Bluetooth signal
will be blocked and absorbed, so propagation conditions are far worse and ranges
will be reduced.

Recognizing Candidate Bluetooth Products
Taking into account the preceding sections, we can see that for a product to be a
candidate for Bluetooth technology, it needs to adhere to the six loosely defined
conditions that follow:

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 10

Introducing Bluetooth Applications • Chapter 1 11

■ Adds usability (that is, convenience and ease-of-use—the Bluetooth
Dream!)

■ Interference or latency will not affect its primary function

■ Is tolerant to the connection time overhead

■ Can afford the limited Bluetooth bandwidth

■ Battery life or power supply requirements are compatible

■ The range is adequate

The remainder of this chapter will explore these issues in depth to attempt
to provide an insight into what actually “does” make a good candidate for the
Bluetooth technology. It will also present a case for the various implementa-
tion techniques available to the developer with their inherent advantages and
limitations.

Considering Product Design
Your product may look like a candidate Bluetooth product, but there are practical
considerations to take into account. It costs money to add a Bluetooth link, and
for some products, that cost may be more than the customer is willing to pay.

You must look long and hard at the design of your product, how Bluetooth
technology will affect the design, and whether in the final analysis that cost will
be worth it.This section covers some of the issues you will have to take into
account when moving from a wired product to a wireless one.

Are You Adding End User Value?
Having your product’s packaging be anointed with the Bluetooth logo to
announce you are part of the new technology revolution may persuade the
consumer to purchase your product over a competitor’s wired product.Your
product may even command a premium price that will pay back your devel-
opment efforts. But will the customer be satisfied when he gets it home? Will
it give him the added value he has paid his extra dollars for? Will the “out-
of-the-box” experience fulfill his notion of the promised ad-hoc wireless
connectivity?

With mobile products that are not constrained by mains power cables, the
added value of being wireless is easy for us to see.Who rushed out to try IrDA in
their PDAs? Horrendous file transfer times and the “line-of-sight” constraint

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 11

12 Chapter 1 • Introducing Bluetooth Applications

notwithstanding, the added value from simply being wireless convinced con-
sumers to try it and use it! However, for products that are inherently static, the
added value may just be initial “desire” and not really a viable investment in both
resources and dollars.

Consider the static devices in our wired PAN (Figure 1.1)—for example, the
ubiquitous mouse and keyboard. Both are dependant for their power supply
requirements upon their host PC, so if made wireless, the subject of batteries
becomes crucial.This added value of wireless connectivity can only be enjoyed if
the user does not have to change or re-charge the batteries every week! Our
static devices—desktop PCs with the obligatory mains power cable—would be
perhaps better served by a wired Ethernet link rather than a Bluetooth LAN
point (both cables embedded under the floor in your office as standard). Electric
lights are another facet to consider—just think of the reduced installation costs in
an office building of no wiring loom. Here, however, we do require power. So is
wireless really adding value? It could be valuable if added as a control extra.The
user could then connect via a handheld device or static panel to whichever light
they wished to control.At the other end of the scale, the end user value of a
Bluetooth PCMCIA card is easily visible, and will provide complete wireless
connectivity.

Ensure that your product will really give the user added value by being wire-
less, not just offer a gimmick. If the consumer has to connect a power cable, then
consider what other functionality can be offered.The desktop PC, although best
served by a wired Ethernet connection, will still need to connect to our laptop
and PDA, and thus requires both wired and wireless connectivity.

An intriguing application would be a wireless pen—consider its use for signa-
ture authentication provided by the credit company, bank, or reception desk, a
super method to try and eliminate fraud. If a wireless implementation could be
designed for the stringent size constraint, how would we stop users from walking
off with it? Why are the ordinary pens always attached to the counters? Would
being wireless really add value to this application?

Investigating Convenience
Added user value is a “big plus” for the consumer but wireless communications
may not necessarily make the product more convenient to use.We assume that
consumers are all comfortable with gadgets and electronic devices, but can your
friends all program their VCRs yet?

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 12

Introducing Bluetooth Applications • Chapter 1 13

Let’s examine the traditional headset and mobile phone and decide if
Bluetooth technology makes this more convenient for the user.With current
hands-free technology, you have to decide in advance if you require the hands-
free option.This involves fitting your car with a hands-free kit—a microphone or
headset plugged in, with the wire trailing from it to your phone which is either
in your pocket, clipped to your jacket/belt, in a cradle on your dashboard, or like
most of us, fallen down between the seat and the handbrake!

When you receive a call, you answer by pressing a button on the cable;
volume control is available via a button on the cable.The limitation is that you
always have to have your telephone with you; it can only be as far away as the
cable is long.Thus, it is always a conscious decision to use the headset, and to
decide to plug it in! With a Bluetooth headset and phone, the phone can be
inside your briefcase, in the boot of the car, in your jacket on the hook in the
office, in fact, absolutely anywhere—as long as it’s within the range of the
headset. In much the same way as the conventional technology, you press a
button on the headset to receive a call or to adjust the volume.The connection
between the two devices is extremely different, however, and although virtually
invisible to the user, it will incur a connection time overhead. First, the headset
must “pair” with the Audio Gateway (AG), the Bluetooth part of the phone.This
allows Bluetooth addresses to be swapped, and link keys to be established.The
headset will then be able to make a connection to the AG or the AG will be able
to connect to the headset—the exact operation is a software application issue. If
the headset connects to the phone, then the phone needs to know why, either to
set up voice dialing, action voice dialing, or some other function. If the phone
connects to the headset, it patches a SCO link across and the headset can be used
to take the incoming call.

The connection time could be a problem if you must connect every time a
call comes in.After ten seconds of trying to make a connection, the caller has
probably decided you are not going to answer and given up! A low power park
mode allows headset and phone to stay constantly connected without draining
their batteries; this overcomes the slow connection problem. So you must
beware—if connection time is an issue for your product, make absolutely sure
your system supports park mode—although it’s becoming increasingly common,
it’s still possible to buy devices that do not support it.

My conclusion would be that Bluetooth technology would make answering
my phone far more convenient, although extremely expensive at the moment! I
do not have to worry where my phone is, per-equip my car, or have to endure a

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 13

14 Chapter 1 • Introducing Bluetooth Applications

cable running from my ear. If the complex connection issues are invisible to me
and I look as cool as Lara Croft (she wore the original Ericsson Bluetooth
headset in the Tomb Raider movie), who really cares! However if it turns into a
software setup nightmare and I have to read through vast user guides, I would not
be so sure.

The medical sector offers many opportunities for Bluetooth technology to
add convenience. In hospitals, patient medical data could be stored on PDA
type devices that would update a central database when brought within range
of an access point (small scale trials for this application in the neurology depart-
ment at the University Hospital in Mainz, Germany, have already begun).
Wireless foot controls for medical equipment, respiratory monitors that transmit
data to a PDA rather than a body-worn data collection system, ambulatory
monitoring equipment for easier patient access in emergency situations… the
list goes on.The questions of interference and security will need to be
addressed in some of these applications, but if they are not “life-dependant”
these issues could be overcome.

Regarding the LAN access points, we need to consider the issue of range. If
the consumer has to get up and walk to be within range, there is no added con-
venience—in fact, it would become very inconvenient.A Class 1 Bluetooth
device has a range of approximately 100 meters. In reality, this could be much
further, which would be viable in an office, home, or a hotel/airport lounge sce-
nario, thus making possible the unconscious convenience of the airport check-in
and car rental confirmation detailed at the beginning of this chapter.

With our own personal “toys” the added convenience is unequivocal. Our
laptops will be able to play multiuser Quake with our colleagues in the airport or
the office! Our PDAs and phones will synchronise with our laptops—gone are
the days of database management. Our presentations can be shown at meetings
directly on the laptops of the attendees without the need for a projector or any
worries about forgetting your laptop’s I/O expander.

Against this optimistic picture there are a few inconveniences envisaged that
will affect the consumer. I wouldn’t be happy if my new wireless product spends
longer attached to a battery charger than it can be used without one, if the poor
placement of an antenna within a handheld product means I had be a contor-
tionist to be able to hold it and have it function, or if calls get dropped while
waiting for my headset to connect to my phone. But the BIG one is inevitably the
man-machine interface (MMI)—it must be simple to use, it must be simple to set
up, it simply must be simple:“connect to Adam’s PDA, Petra’s phone, or the

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 14

Introducing Bluetooth Applications • Chapter 1 15

fridge?” Using the word “convenience” in the product marketing blurb is a hollow
promise if the consumers requires a software degree to get their new PDA to con-
nect to their laptop! If people still can’t program their home AV equipment, how
will they know what a windows “system tray” is, where to put a .dll file, or where
to find the setup section in their mutlilayered phone menu system?

It is your challenge as an applications writer to make sure that the MMI is
usable. Succeed and your products could be extremely popular—fail, and your
products will likewise fail in the marketplace.

Enhancing Functionality
Convenience is one attribute that Bluetooth technology can bring to our prod-
ucts, but how else can it benefit us? It can also add enhanced functionality—
features that would not be an implementation consideration in a wired product.
Central heating control? A programmable thermostat and a Bluetooth radio inte-
grated into the common light switch, this integration would allow the mains
wiring to the light switch to power the controller.When the room is at the tem-
perature programmed by the user, it connects wirelessly to the boiler in the
utility room and can turn the entire system off.Alternatively, if each individual
radiator is equipped with Bluetooth technology, the controller can connect to
each individual radiator and shut the solenoid valve, turning only that specific
radiator off! In this application, we can see the enhanced functionality; no addi-
tional wiring is required to achieve single room climate control and the humble
light switch becomes multifunctional.The Set Top Box that sits anonymously in
our TV stand and has been delivering cable channels and e-mail to the TV screen
could be made capable of connecting to our laptops, offering us another option
to the modem in our homes.

As mentioned earlier, the people who make Nokian tires are adding
Bluetooth links to pressure monitors built into car wheel rims.This is a good
application since the data could not easily be transferred by other methods: wire
and optical wouldn’t work, other radio technologies are too expensive, and being
able to remotely read tire pressure is a real gain in functionality.

Bluetooth technology in our digital cameras and mobile phones will provide
us with the ability to send the “instant postcard” shown in Figure 1.5.This could
become almost as popular as Short Message Service (SMS) text messages.We take
a picture with our camera, which instantly transmits the photo to our mobile
phone that has a connection to the Internet via the Global System for Mobile

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 15

16 Chapter 1 • Introducing Bluetooth Applications

Communication (GSM) network. From there, the picture is sent over the
Internet to our friend’s PC. It’s a simple process which adds a new dimension to
both products.

What if our gas and electricity meters could be read by the utility’s serviceman
simply by walking into the foyer of an apartment block and connecting to each
apartment’s meters individually to determine utility consumption? Not having to
knock on each door would improve the efficiency of the job function but would
inevitably mean that fewer personnel were required.With an application of this
type, the cost implication and durability of Bluetooth technology comes to the
fore.The ubiquitous gas and electricity meters have to last a long time, far longer
than our favourite mobile phone or PDA which we change according to personal
taste or consumer trends.The cost of replacing the meter infrastructure in our
homes far exceeds the overhead of including Bluetooth technology, something
which makes utility companies adverse to new technologies. Experiments have
been conducted, but so far there has been no serious uptake.

www.syngress.com

Figure 1.5 The “Instant Postcard”

GSM Internet

160bluetooth_C01.qk 12/5/01 4:32 PM Page 16

Introducing Bluetooth Applications • Chapter 1 17

With our children’s toys, the possibilities become endless. Big soft toys are
able to communicate with PC games allowing for communication and interac-
tion external to the PC. Multiplayer handsets for our Playstations become pos-
sible without a mass huddle around the console and the constraint of the cable
length.Action figures and robotic toys could be remotely controlled from a PC,
or could transmit pictures from a camera accessory to the PC.

Far more serious is the added functionality that can be provided for the dis-
abled consumer, a headset could provide a life enhancing benefit to the physi-
cally compromised user—voice control for their heating, lights, AV, and security
systems—allowing control from anywhere in their home.Wireless Internet
access can also be of benefit. For instance, the National Star College in
Cheltenham, UK has just installed a Red-M Bluetooth network to allow their
disabled students to wirelessly access online resources and submit their course-
work directly from their laptops. Discrete intelligent proximity sensors commu-
nicating with a headset could help the visually compromised, or a vibrating
dongle could indicate to a deaf consumer that the doorbell is ringing or could
be programmed to vibrate on other sound recognitions. All of these applica-
tions simply extend the functionality of conventional products by being
Bluetooth-enabled.

Do You Have Time?
Okay, so we’ve decided we want to be wireless.We “must have” Bluetooth tech-
nology in our next product.The consumer market is not quite sure why they
want it yet, but they do, so the first and most difficult hurdle is over with. But
what do we need to do? And how long will it take? Both of these are serious
questions.After all, implementing any new technology often incurs risks that may
outweigh the advantages of the technology itself.

First of all, the Bluetooth Specification by the Special Interest Group (SIG) is
an extremely comprehensive document, which needs to be digested before any
form of implementation can begin. Both the hardware and software implementa-
tion are required in order to adhere to this specification and be able to utilize the
intellectual property (IP) contained within it. It is essential to stick with the spec-
ification to be able to interoperate with any other Bluetooth device irrespective
of manufacturer or solution provider; interoperability is the “key” to consumer
uptake of Bluetooth technology and the realization of the Bluetooth Dream.
Going up the Bluetooth learning curve can take significant time. Courses are

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 17

18 Chapter 1 • Introducing Bluetooth Applications

available which make it easier, but you must still allow significant learning time in
your development cycle.

If you are late in the product implementation cycle, you may not have time
to build in Bluetooth technology. Or you may not have enough market infor-
mation to reassure yourself that it will add sufficient value to justify the cost of
shipping Bluetooth components in every product. Many early adopters initially
added Bluetooth technology to existing products as “add-ons,” either as dongles
or accessories to battery packs—mobile telephones being the principal
example.

Using an “add-on” strategy allows you to decouple the Bluetooth develop-
ment from your main product development.This means that you do not risk the
Bluetooth development holding up your product launches. Since consumers can
buy mobile phones, laptop computers and access points with Bluetooth tech-
nology fully integrated, this shows that the risks can be conquered successfully.
Devices which implement Bluetooth technology as an “add-on” are likely to be
less attractive to consumers when competing with built-in devices. So, when
considering whether to build in or add on, you must survey the competition and
decide whether your launch date means an “add-on” will not be as lucrative.

There is more to consider than the time to develop and manufacture your
product. For any Bluetooth design to be able to display the Bluetooth logo, the
design has to undergo a stringent qualification procedure and pass a vast array of
tests on every aspect of the system from the radio, baseband, and software stack
through to the supported profiles.This is achieved at a Bluetooth Qualification Test
Facility (BQTF). Such test facilities can now be found globally, though they are
becoming exceptionally busy and require booking many weeks in advance. In addi-
tion to the Bluetooth Qualification Program, product developers and manufacturers
are required to meet all relevant national regulatory and radio emissions standards
and requirements.This involves going through national type approval processes
which vary from country to country. Qualification and type approval can signifi-
cantly delay product launches, so they MUST be allowed for in your schedule.

Investigating Product Performance
In some of the applications previously mentioned, we can see that the many ben-
efits of Bluetooth technology may outweigh the limitations, nevertheless we have
only examined the subjective questions of added value and enhanced function-
ality. Now it’s time to consider in depth some of the technical limitations that

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 18

Introducing Bluetooth Applications • Chapter 1 19

may actually influence our choice of adding Bluetooth technology to our prod-
ucts, despite the much desired benefits.

In this section, we shall look at connection times, quality of service in con-
nections, voice communications, and the various sources of interference.

Evaluating Connection Times
As we have mentioned, Bluetooth devices can’t connect instantly. It can take up
to ten seconds to establish a Bluetooth link (although this is not a typical figure;
tests with BlueCore chips show that 2.5 seconds is far more common).The con-
nection time overhead is a limitation that could have serious consequences if you
require an instant connection—a “panic button” would not be a viable applica-
tion for Bluetooth technology.We will examine why and how this overhead can
be reduced with a “known device” connection.

Wired networks are for the most part static. Components of the network are
connected together with cables, and once connected, normally remain in the
same position.A printer that was available on the network yesterday is expected
to still be available tomorrow. However, you do have the initial overhead of con-
figuring your PC to use it, the procedure being:

■ Physically connect cables to new device.

■ Type in address name on system that needs to use the new device.

■ Install drivers and configure software on system which needs to use
new device.

Bluetooth piconets are highly dynamic—they change rapidly, with devices
appearing and disappearing.The members of a piconet may change, or the whole
piconet may be dissolved in a moment. In such a dynamic network, it is not
viable to spend significant time acquiring information about devices and config-
uring software to use them: this process must be automatic.The Bluetooth core
specification provides this automatic discovery and configuration. For a Bluetooth
device, the steps to using a new device are:

■ Perform device discovery to find devices in the area.

■ Perform service discovery to get information on how to connect to ser-
vices on each device discovered.

■ Choose a service to use, and use information obtained during service
discovery to connect to it.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 19

20 Chapter 1 • Introducing Bluetooth Applications

Potentially, the user could simply select the option to print, and the processes
of device discovery, service discovery, and connection could happen automatically
without further intervention from the user.The application software should pre-
sent this to us transparently, but it is still a worthwhile exercise to understand the
complete procedures; they are covered in the following sections.

Discovering Devices
Before any two devices can go through device discovery, they must be in inquiry
and inquiry scan modes.The inquiring device must be trying to discover neigh-
bouring devices, and the inquiry scanning device must be willing to be discov-
ered (see Figure 1.6).

The inquiring device transmits a series of inquiry packets.These short packets
are sent out rapidly in a sequence of different frequencies.The inquiring device
changes frequencies 3200 times a second (twice the rate for a device in a normal
connection).This fast frequency hopping allows the inquirer to cover a range of
frequencies as rapidly as possible.These packets do not identify the inquiring
device in any way; they are ID packets containing an inquiry access code which
inquiry scanning devices will recognize.

www.syngress.com

Figure 1.6 Bluetooth Device Discovery

I am in
inquiry scan mode

I am in
inquiry scan mode

I am in
inquiry mode

Inquiry

Inquiry response

Inquiry

Inquiry response

I see a phone
and a PDA

160bluetooth_C01.qk 12/5/01 4:32 PM Page 20

Introducing Bluetooth Applications • Chapter 1 21

The inquiry scanning device changes frequencies very slowly: just once every
1.28 seconds. Because the scanner changes very slowly while the inquirer changes
rapidly, they will ultimately meet on the same frequency.

Scanning devices cannot stay on a fixed frequency, because any frequency
chosen might be subject to interference, but hopping very slowly is the next
best strategy for seeking the inquiring device. It responds to inquiries by
sending a Frequency Hop Synchronisation (FHS) packet, which tells the
inquiring device all the relevant information needed to be able to establish a
connection.

NOTE

To guarantee that the inquiring device can locate all the devices in
inquiry scan mode that are within range, the Bluetooth Specification
defines an inquiry time of 10.24 seconds.

When a device that is scanning for inquiries receives an inquiry, it waits for a
short random period, then if it receives a second inquiry, it transmits a response
back. It does not transmit this response immediately, because this may lead to all
devices in a single area responding to the first inquiry sent out, causing an unde-
sirable high-power coordinated pulse of radiation in the ISM band.The random
delay prevents this coordinated effect.

Connecting Devices
Before two devices can establish a connection, they must be in page and page scan
mode; the paging device initiates the connection, while the page scanning device
responds. In order to be able to page, the paging device must know the ID of the
page scanning device; it can calculate the ID from the page scanning device’s 48-
bit Bluetooth device address.The page scanning device’s Bluetooth device address
can be obtained in several ways:

■ From an inquiry response via FHS

■ From user input

■ By preprogramming at manufacture

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 21

22 Chapter 1 • Introducing Bluetooth Applications

NOTE

Each Bluetooth device has its own unique 48 bit IEEE MAC Bluetooth
address (BD_ADDR), which identifies it to other devices; if the device is a
master, the connection timing and the hopping sequence are also
derived from this address. Addresses are obtainable from the SIG in
blocks and need to be programmed into every Bluetooth product at
manufacture—all silicon is shipped with the same default address that
must be changed. A “friendly name” may also be programmed into your
product either by the user or at manufacture to enable the MMI to con-
nect to “CSR development module,” “Daisy’s phone,” “Lara’s headset,”
or “Amy’s little black book,” concealing the actual address. The address is
concealed from the user because it is a string of numbers (typically
expressed in hexadecimal) which is not a very user-friendly format. An
example of a Bluetooth device address is 0x0002 5bff 1234.

By programming the device information that would normally be received in
the FHS packet directly into the device, the inquiry and inquiry scanning can be
avoided—devices move directly to paging, thus saving the 10.24 seconds required
for inquiry.As previously noted, this could either be performed at manufacture,
or carried out by the users. If we are manufacturing a mobile phone and a
headset to be packaged together, the “out-of-the-box” experience will be one of
disappointment if they do not communicate—they could be programmed such
that they are both aware of each others’ BD_ADDR.This way they become
“known devices” to each other and can avoid the inquiry stage—what’s called a
preset link.We are also able to create a list of “known devices”—perhaps all the
devices in our PAN.

Quantifying Connection Times
Now, we are aware of why connection times can be so long, but how long is
long? What does this mean in minutes and seconds? The actual time is variable,
depending upon the application software you are using, so you should look at
what the Baseband Specifications specify.These, however, can be very confusing in
giving definite minimum/maximum times used in inquiry and paging operations
between devices, with the result that there may be a lot of speculation as to what
these times actually are. Detailed in Table 1.2 are what the theory states should be

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 22

Introducing Bluetooth Applications • Chapter 1 23

the time taken to complete a typical successful Inquiry and Page operation, (that
is, the typical time taken to set up an active Bluetooth link).To enable us to
understand the basis of these figures, we will also briefly look at their origin.

Table 1.2 Connection Times to Set Up an Active Bluetooth Link

Operation Minimum Average Maximum
Time (sec) Time (sec) Time (sec)

Inquiry 0.00125 3 – 5 10.24 – 30.72
Paging 0.0025 1.28 2.56
Total 0.00375 4.28 – 6.28 12.8 – 33.28

Inquiry Times An inquiry train must be repeated at least 256 times
(2.56s duration), before the other train is used.Typically, in an error-free
environment, three train switches must take place.This means that 10.24s
could elapse unless the inquirer collects enough responses and deter-
mines to abort the procedure. However, during a 1.28s window, a slave
on average responds four times, but on different frequencies and at dif-
ferent times.

Minimum Inquiry Time A minimum time for an inquiry operation
is two slots (1.25ms).The master transmits an inquiry message at the f(k)
frequency in the first instant, and the slave scans the inquiry at the f(k)
frequency at the same time. So, the slave receives the inquiry message in
the first slot.The slave could respond with a FHS packet to the master’s
inquiry message in the next slot. So, in total two slots are needed.This is
highly unlikely as the slave will not respond after receiving the first
inquiry message but rather, wait a random number of slots.This random
value varies between 0 and 1023.

Average Inquiry Time As stated previously, 10.24s could elapse
unless the inquirer receives enough responses and decides to abort the
procedure.This value can vary considerably, depending on alignment of
the device clocks and their respective states.This, however, is not suffi-
cient to guarantee all the devices within range will be “found”!

Maximum Inquiry Time 10.24s is what the user would typically
expect for a maximum inquiry time—the amount of time specified until

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 23

24 Chapter 1 • Introducing Bluetooth Applications

the inquiry is halted. 30.72 seconds has been suggested as a maximum
time, although specifications state this can be up to a minute.

Paging Times Assuming you are employing the mandatory paging
scheme (using page mode R1, where each train is repeated 128 times,
before switching to the next one), then the average time for connection
should be 1.28s.The maximum time for connection is 2.56s. During
this, the A+ B train will have been repeated 128 times each, and a
response returned.

Minimum Page Time This is similar to the Minimum Inquiry Time.
When the master transmits a page message at the f(k) frequency in the
first instant, the slave scans the inquiry at the f(k) frequency at the same
time.Thus, the slave receives the page message in the first slot.The slave
responds with an ID packet for the master’s page message in the next
slot.Then in the third slot, the master transmits a FHS packet to the
slave. Finally, in the next slot, the slave answers.Thus four slots (2.5ms)
are needed for the minimum page duration.

Performing Service Discovery
When a Bluetooth-enabled device first enters an area there may be numerous
other devices offering services it wishes to use. How does it tell which of these
devices supports which service—in other words, which device will allow it to
send an e-mail, print a fax, or exchange a business card? The Service Discovery
Protocol (SDP) allows a device to retrieve information on services offered by a
neighbouring device. (A service is any feature that another device can use.) A
basic data connection must be set up before Service Discovery can be used.
Then a special higher layer connection for use by Service Discovery is set up.
Once the connection to service discovery is established, requests for informa-
tion can be transmitted, and responses received back containing information on
services.This information is known as the service’s attributes. If a device is
finding out information about many other devices in an area, then it makes
sense to disconnect after finding information on any particular device.This
relieves system resources (memory, processor power), which can be more effec-
tively used establishing new connections to other devices to determine what
they have to offer. Because SDP uses ACL, connection devices must use inquiry
and paging before they can exchange SDP information. As a result, SDP can be
slow. SDP is mandatory for all the profiles released with version 1.1 of the
Bluetooth specification.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 24

Introducing Bluetooth Applications • Chapter 1 25

Quality of Service in Connections
In Bluetooth technology, the ACL link supports data traffic.The ACL link is based
on a polling mechanism between master and up to seven active slaves in a piconet.
It can provide both symmetric and asymmetric bandwidth, which is determined
by the ACL packet type and the frequency with which the device is polled.

The ACL payload is protected by a CRC check, which may be used in a
retransmission scheme.The delay involved with retransmissions on the ACL link
is small, as an acknowledgement can be received within 1.25ms. Further, the
number of unsuccessful retransmissions can be limited by a Flush Timeout set-
ting, which flushes the transmission buffer after a specified period of unsuccessful
retransmissions.This opens the possibility to perform retransmissions for delay-
sensitive applications such as interactive real-time and streaming (IP-based)
audio/video applications. In most implementations currently available, the ACL
link only provides a best-effort type of service (i.e., there are no Quality of
Service (QoS) guarantees associated with the transfer of packets). It especially
does not provide any guarantees of bandwidth and delay.

The Bluetooth specification does provide mechanisms to balance traffic
between slaves in a piconet, allowing a so-called “guaranteed” Quality of Service.
However, because the quality of the underlying radio link can never be guaran-
teed, in practice all that Bluetooth technology can do is to make an attempt to
support the QoS it has guaranteed.

The unpredictability of radio interference means that if a guaranteed band-
width is absolutely necessary for your product, then a wired link is really your
best choice.

However, it is worth considering whether guaranteed bandwidth is really
necessary. By compressing data and buffering it on reception, it is possible to
overcome glitches in transmission.This can make a radio link appear far more
reliable at the application level than it really is down at the baseband level!

Data Rate
If a Bluetooth device transmitted constantly on only one frequency, the max-
imum raw data rate would be 1 Mbps. However, this is not the data rate we will
obtain over the air interface. Bandwidth is required for a 72-bit access code to
identify the piconet, and a 54-bit packet header to identify the slave—total slot
time: 405µs.The radio requires a guard band of 220µs between packets to allow it
to retune and stabilize on the next hopping frequency.This guard band consumes
the rest of the slot.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 25

26 Chapter 1 • Introducing Bluetooth Applications

Within a one slot packet these requirements leave only one-third of the
bandwidth for the payload data—and this can only be transmitted every other
slot, or every 1250µs. One way to mitigate this limitation is to transmit for a
longer period of time: 3 or 5 slots.All of the extra bandwidth is used for payload
data with a consequent improvement in efficiency (illustrated in Figure 1.7).
While transmitting over more than one slot, the devices remain at the same fre-
quency, moving to the next frequency in the hopping sequence at the end of the
packet.Thus, in a five slot packet, the master will transmit on f(k), and after the
five slots will transmit on f(k+5). (A 16-bit CRC is also included in every ACL
packet, but this is not illustrated in Figure 1.7.)

Bluetooth ACL packets can either be of Data Medium (DM) or Data High
(DH) type.The DH packets achieve a higher data rate by using less error correc-
tion in the packet.A DH5 packet which utilizes five slots can carry the max-
imum amount of data: 339 bytes, or 2712 bits. So, if we take account of the
packet overheads already discussed, 2858 bits are transmitted over the air interface
for every 2712 bits of data payload.This gives us the maximum baseband data
rate in a single direction of 723.2 Kbps – the single slot packets in this asym-
metric link would carry 57.6 Kbps. If we chose to send five slot packets in both
directions, the data rate would be reduced to 433.9 Kbps!

The choice of symmetric or asymmetric links allows our user scenarios to
take account of the improvement in data rate in one direction of the asymmetric
link (for example, our PDA browsing the Web via a server will require more
bandwidth while downloading pages than it will require for us to specify the
next link to browse.) Table 1.3 illustrates the maximum data rates with all of the
packet types in both symmetric and asymmetric links.

www.syngress.com

Figure 1.7 The Payload in Bluetooth Packets

13/15 Data

1 Slot 1/3 Data

3 Slot 7/9 Data

5 Slot

Access Header Payload Guard

160bluetooth_C01.qk 12/5/01 4:32 PM Page 26

Introducing Bluetooth Applications • Chapter 1 27

Table 1.3 Bluetooth ACL Packet Maximum Data Rates

ACL Payload User Symmetric Asymmetric
Packet Header Payload Max Data Max Data
Type (Bytes) (Bytes) FEC CRC Rate (Kbps) Rate (Kbps)

Forward Reverse

DM1 1 0 – 17 2/3 Yes 108.8 108.8 108.8
DH1 1 0 – 27 0 Yes 172.8 172.8 172.8
DM3 2 0 – 120 2/3 Yes 258.1 387.2 54.4
DH3 2 0 – 180 0 Yes 390.4 585.6 86.4
DM5 2 0 – 224 2/3 Yes 286.7 477.8 36.3
DH5 2 0 – 338 0 Yes 433.9 723.2 57.6

Latency
Bluetooth technology achieves reliability by retransmitting packets. Each packet
carries a header with an acknowledgement bit in it.When a device sends a
packet, it uses the acknowledgement bit to signal whether the last packet it
received was good or corrupted.When a device receives a packet with the
acknowledgement bit set to indicate that its last packet was corrupted in trans-
mission, it simply retransmits the corrupted packet.This retransmission carries on
until it receives an acknowledgement that the packet got through correctly.

This can add delays (latency), and sometimes these delays can be variable (a
bursty link).This may cause problems for applications needing a constant feed of
data (e.g., compressed video).The effects of bursty links can be smoothed out by
writing data into buffers as it is received, and reading it out a short time after-
wards.As the on air link speeds up and slows down, the amount of data in the
buffers gets greater or less, but as long as data is read out at the same average rate
as it arrives, buffers can be used to smooth out a bursty link.

Some applications do not care if data comes in bursts, but they do need low
latency (fresh) data.An example might be a monitoring application. If data has to
be retransmitted, the monitor might freeze momentarily, but it is more important
to get the most recent data than to have a smooth flow of packets. In this case,
flushing can be used: at the transmitting end, data from the monitor could back
up in the device’s buffers.A flush command tells a Bluetooth device to dump all
stale data and start transmitting fresh data. It is possible to set up automatic
flushing to avoid stale data accumulating.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 27

28 Chapter 1 • Introducing Bluetooth Applications

Delivering Voice Communications
The voice quality on a Bluetooth SCO link is roughly what you’d get from a cell
phone—in other words, it’s not hi-fi quality.

The audio data is carried on SCO channels, and to establish a SCO channel,
you must first set up an ACL (data) channel.This is because the ACL channel is
used by the Link Manager to send control messages to set up and manage the
SCO channel.

SCO channels use prereserved slots; reservation of slots ensures the integrity
of the SCO packet.There are three different types of SCO packets, each of
which requires a different pattern of reserved slots.

■ An HV3 packet carries 30 bytes of encoded speech with no error cor-
rection.A SCO link using HV3 packets reserves every third pair of time
slots available to a device.

■ An HV2 packet carries 20 bytes of encoded speech plus 2/3 Forward
Error Correction (for every 2 bits of data, 1 bit of error correction is
added to give a total of 3 bits).A SCO link using HV2 packets reserves
every second pair of time slots available to a device.

■ An HV1 packet carries just 10 bytes of encoded speech protected with
1/3 Forward Error correction (for every bit of data, 2 bits of error cor-
rection is added to give a total of 3 bits).A SCO link using HV1 packets
reserves every pair of time slots available to a device.

Because the SCO links reserve slot pairs for voice packets, they prevent the
use of 3 or 5 slot packets for data transmission.The multislot packets can support
higher data rates than single slot packets, this combines with the slots used by the
voice link to reduce the maximum data throughput if SCO and ACL transmis-
sion occur concurrently.

The Bluetooth specification supports several coding schemes: Log PCM A-law,
Log PCM µ-Law, and CVSD. Log PCM coding with either A-law or µ-law com-
pression was adopted by the Bluetooth specification because it is popular in cellular
phone systems. Continuous Variable Slope Delta (CVSD) modulation is supported
in the Bluetooth specification because it can offer better voice quality in noisy
environments.The Bluetooth audio quality is approximately the same as a GSM
mobile phone—this translates to audio transmitted at a fixed data rate of 64 Kbps.

A master is capable of supporting up to three duplex audio channels simulta-
neously.These channels could be either to the same slave or to different slaves.
Because voice transmissions are inherently time-dependant, SCO packets are

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 28

Introducing Bluetooth Applications • Chapter 1 29

never retransmitted, so any packets that are not received correctly are lost. In
noisy environments, the errors introduced by lack of retransmission capabilities
can have a serious impact on the quality or intelligibility of the received audio.

Bluetooth technology does not have the bandwidth for raw CD quality
sound: 1411.2 Kbps. However, if a suitable compression technique is employed
(for example, MP3 compressing an audio stream to 128 Kbps), it is feasible to use
an ACL link for high-quality audio.An audio-visual workgroup is currently
working within the Bluetooth SIG to provide a profile which will improve the
maximum audio quality that can be delivered across Bluetooth links.As com-
pressed audio incurs a delay in transmission, the existing SCO scheme will be
retained for applications (such as cell phone headsets) where the bandwidth of
the audio signal is already low.

Investigating Interference
The Bluetooth system operates in the 2.4GHz band.This band is known as the
Industrial Scientific and Medical (ISM) band. In the majority of countries around
the world, this band is available from 2.40–2.4835GHz and thus allows the
Bluetooth system to be global. It is available for free unlicensed use in most of
the world, although some countries have restrictions on which parts of the band
may be used. However this freedom has a price—many other technologies also
reside in the band:

■ 802.11b
■ Home RF
■ Some Digital Enhanced Cordless Communications (DECT) variants
■ Some handheld short-range two-way radio sets (walkie-talkies)

These are all intentional emitters—one way or another their function is to
generate microwave radiation in the ISM band. In addition to the intentional
emitters, Bluetooth technology is subject to interference from a variety of sources
which emit accidentally:

■ Microwave ovens
■ High-power sodium lights
■ Thunderstorms
■ Overhead cables
■ Communications channels in other bands—e.g., GSM, CDMA
■ Spark generators such as poorly suppressed engines

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 29

30 Chapter 1 • Introducing Bluetooth Applications

There are also problems from signal fading due to distance or blockers such as
walls, furniture, and human bodies.The more water content in the object, the
more significant the effect of blocking. Old brick walls will have a higher water
concentration than modern ones due to the nature of their constitution.This
tends to cause fading in European houses where brick is a common construction
material. In the USA, where timber frames are more popular, signals are much
less affected by internal walls.

As with any radio technology, Bluetooth technology is prone to interference
from its co-residents in the ISM band and will produce interference to them.To
achieve a degree of robustness to interference, the Bluetooth system utilizes a
frequency-hopping scheme: Frequency Hopping Spread Spectrum (FHSS).
Constantly hopping around the different radio channels ensures that packets
affected by interference can be retransmitted on a different frequency, which will
hopefully be interference free. Bluetooth radios hop in pseudo random sequences
around all the available channels. During a connection, they hop every 625
microseconds.When establishing a connection, they can hop every 312.5
microseconds.

The screenshot in Figure 1.8 is taken from a Sony/Tektronix WCA380 spec-
trum analyser and illustrates 30MHz of spectrum in the centre of the ISM band.
The upper section shows a snapshot of output power against frequency at a single
instant in time.The lower section shows time against frequency with the power
level displayed by way of shading.

www.syngress.com

Figure 1.8 Bluetooth Packets in a Noisy Environment

160bluetooth_C01.qk 12/5/01 4:32 PM Page 30

Introducing Bluetooth Applications • Chapter 1 31

The screenshot clearly illustrates the spectral characteristics of microwave
ovens with a strong but narrow spike of power, on the lower section of the
screenshot.This wanders around the center of the ISM band as the oven operates,
showing on the analyser screen as a curving red line. Our Bluetooth FHSS
system can be seen to be hopping with 1MHz channel spacing with a strong
central peak.The IEEE 802.11b or Wi-Fi DSSS system can be seen to have lower
output power, indicated by the broad seep of power in the center, but the signal
can spread across about 16MHz. (This is why co-located Wi-Fi networks cannot
use adjacent channels.)

A Bluetooth FHSS system operating near an interfering signal can cope if a
packet is hit by interference.The affected device simply retransmits the packet
contents in the next slot when it has moved to a different frequency which is no
longer affected by interference.This will impact on the throughput of an ACL
link—the more interference, the more retransmissions.With a SCO link, it’s a dif-
ferent matter. SCO data is not reliable, due to its inherent nature of being in real
time, and retransmission is not tangible, so audio clarity becomes significantly
worse with any interference.This can be overcome by sending SCO data via an
ACL link.

Transfer of ACL information will still be reliable in a noisy environment. No
information is lost as each dropped packet is retransmitted.The impact manifests
itself in the data rate: the more noisy the environment, the more retransmissions
will be required.

Figure 1.9 illustrates the effect of Bluetooth technology throughput in the
presence of Wi-Fi interference.We can see that our Bluetooth device’s
throughput is degraded when a Wi-Fi device is very near. However, when the
Wi-Fi device is relocated ten meters away, the throughput significantly improves.
It is actually approximately 90 percent of the baseline throughput independent of
range, thus illustrating that when Bluetooth and Wi-Fi devices are at a reasonable
distance, the degradation in performance is tolerable.

Interfering with Other Technologies
Figure 1.10 illustrates the degradation our Bluetooth devices can have on Wi-Fi
when they are extremely close to a Wi-Fi station.The impact on performance
due to interference is significant. However, when our Bluetooth devices are relo-
cated as little as ten meters away, the throughput is only minimally reduced com-
pared to the baseline.

The last two figures indicate that the two wireless technologies can easily
coexist as long as we are sensible in our expectations and attempt to combine

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 31

32 Chapter 1 • Introducing Bluetooth Applications

the technologies in our PAN and HAN paradigms intelligently. One way is to
not have a Wi-Fi access point, providing us with the high data rate required for
video streaming too close to the desk where our PDA and laptop “do their
thing”!

Coexisting Piconets
A consideration not yet discussed is Bluetooth devices interfering with Bluetooth
devices. How many devices do we need to reduce the data throughput to a trickle?

www.syngress.com

Figure 1.9 The Effect of Bluetooth Throughput with Wi-Fi Interference
(Courtesy of Texas Instruments)

160bluetooth_C01.qk 12/5/01 4:32 PM Page 32

Introducing Bluetooth Applications • Chapter 1 33

Consider the scenario of having Bluetooth devices in every room,With
PANs for each member of the household.The majority of teenagers today have
a PC and a mobile phone at the very least. Combine this with the toys of our
younger children (and ourselves!) and any “household” Bluetooth devices;
access points, control units, security systems, and so on.This adds up to tens of
devices operating in the same area. Admittedly, they will not all be operational
at the same time, so significant degradation is not likely to occur, But if our
product requires dependable data delivery, the retransmission overhead that

www.syngress.com

Figure 1.10 The Effect of Wi-Fi Throughput with Bluetooth Interference
(Courtesy of Texas Instruments)

160bluetooth_C01.qk 12/5/01 4:32 PM Page 33

34 Chapter 1 • Introducing Bluetooth Applications

interference can cause might make Bluetooth technology unviable. Figure 1.11
illustrates how the probability of a packet collision increases with the number
of operating piconets.

Using Power Control
We must also consider the respective power class of our Bluetooth devices.To
enable all classes of device to communicate in a piconet without damage to the
RF front ends of the lower power devices, a method of controlling the output
power of Class 1 (100mW) devices is required.

Transmit power control is mandatory for Bluetooth devices using power
levels at or above 4 dBm. Below this level (i.e., all Class 2 and 3 modules), it is
optional.To implement a power control link, the remote device must also imple-
ment a Receive Signal Strength Indicator (RSSI).A transceiver that wishes to
take part in a power-controlled link must be able to measure its own receiver
signal strength and determine if the transmitter on the other side of the link
should increase or decrease its output power level.

To set up a power controlled link, the transmit side must support Transmit
Power Control and the receive side must support RSSI. Support is indicated in

www.syngress.com

Figure 1.11 The Effect of Interfering Bluetooth Devices on Each Other

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91

Number of coexisting piconets

Pr
ob

ab
ili

ty
 o

f n
o

co
lli

sio
n

in
 a

 sl
ot

 p
ai

r

160bluetooth_C01.qk 12/5/01 4:32 PM Page 34

Introducing Bluetooth Applications • Chapter 1 35

the Locally Supported Features (Bluetooth Spec 1.1 Part C (LMP) Section 3.11).
The RSSI need only be able to compare the incoming signal strength to two
levels: the Upper and Lower Limits of the Golden Receiver Range.The Lower
Limit is between -56 dBm and is 6 dB above the receive sensitivity (0.1 percent
BER level) for the particular implementation.The Upper Limit is 20 dB +/- 6
dB above this.The RSSI level is monitored by the receive side’s Link Controller.
When it strays outside the Golden Receiver range, the Link Manager is notified.
A message is sent to the transmit side, requesting an increase or decrease in
transmit power to bring the RSSI back in line. If the transmitter is a master, it
must maintain separate transmit powers for each slave.

Host Controller Interface (HCI) commands exist to find out the current
transmit power and RSSI level, but they are for information only. Layers above
the Link Manager are not directly involved in power control.The implication of
this is that it is perfectly possible to sit a Class 1 module transmitting at +20 dBm
right next to another module which does not support RSSI and not limit the
first’s transmit power. If the second module’s maximum receivable level is the
Bluetooth spec of -20 dBm, there is every chance its RF front end will be over-
loaded. RSSI, although not mandatory, is highly recommended, as is a large
power control range implemented on all modules, not just Class 1.

Figure 1.12 illustrates interfering Bluetooth piconets, but the principle holds
true for coexisting networks of different technologies. Devices that are close to
one another turn their power down and do not interfere with devices at a dis-
tance. Devices transmitting a long distance have to turn their power up to reach
one another, which generates more interference and affects more devices.The
hypothesis for us is ultimately to persuade our consumers to site devices intelli-
gently.The home user is typically unaware of the implications of radio interfer-
ence and will not position their devices for best performance!

Aircraft Safety
The Federal Aviation Authority (FAA) does not permit “intentional emitters” to
be active on planes in flight. Bluetooth technology is an intentional emitter and
as such is not legally usable on flights covered by FAA regulations.This means
that any systems such as Bluetooth radio tags, which automatically identify bag-
gage for airline baggage handling systems, need to be deactivated in-flight.The
inconvenience of deactivating devices may mean that passive radio tags would
better suit some applications. Certainly, in-flight deactivation issues must be con-
sidered by anybody whose products may be used in an aircraft in flight.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 35

36 Chapter 1 • Introducing Bluetooth Applications

Assessing Required Features
The Bluetooth specification has many optional features, and even if features are
mandatory to support, they do not have to be enabled.This section briefly
examines a few features of the Bluetooth specification that may affect your
product.

Enabling Security
To prevent unwanted devices connecting to our personal devices, or to prevent
our personal data from being “snatched” from the air, Bluetooth technology pro-
vides security in the form of a process called pairing. It utilizes the SAFER+

www.syngress.com

Figure 1.12 Interfering Piconets

Class 1 Slave

Class 3 Slave

Class 2 Slave

Class 1
Master

Class 1 Slave

Class 1 Slave

Class 3 Slave

Class 3 Slave

Class 2 Slave

Class 2 Slave

Class 2 Master

Class 3 Master

Class 2 Master

Class 3 Slave Class 3 Slave

160bluetooth_C01.qk 12/5/01 4:32 PM Page 36

Introducing Bluetooth Applications • Chapter 1 37

encryption engine, using up to 128-bit keys. How this provides us with the means
to “pair” with another selected device and create a secure link is interesting.

It is possible to “authenticate” a device—this allows a pair of devices to verify
that they share a secret key.This secret key is derived from a Bluetooth pass key
or Personal Identification Number (PIN).The PIN is either entered by the user
or, for devices with no MMI (such as a headset), it will be programmed in at
manufacture.After the devices have authenticated, they are able to create shared
link keys which are used to encrypt traffic on a link.This combination of authen-
tication and link key creation is called pairing.

Pairing devices allows communication secure from eavesdropping, but
enabling security can make it much more difficult to connect with other people’s
devices, thus security features can seriously compromise usability. For devices
where disabling security may be appropriate, the user interface should allow secu-
rity to be turned on and off simply.

Using Low Power Modes
The Bluetooth specification provides low power modes, hold, sniff, and park.
Devices in low power modes can still be connected to another device, remaining
synchronized to that specific hopping sequence and timing, even though they do
not have to be active.Thus, when they wish to communicate, they do not have to
perform the inquiry, page, SDP procedure again—they are effectively just “reacti-
vated.”

Hold Mode
The ACL link of a connection between two Bluetooth devices can be placed in
hold mode for a specified hold time. During this time no ACL packets will be
transmitted from the master.

Hold mode is typically entered when there is no need to send data for a rela-
tively long time—for example, if the master is establishing a link with a new
device. During hold mode, the Bluetooth transceiver can be turned off in order
to save power.

What a device actually does during the hold time is not controlled by the
hold message, but it is up to each device to decide.The master can force hold
mode if there has previously been a request for hold mode that has been
accepted.The device in hold mode always retains its active member address
(AM_ADDR).After the hold period has expired, the slave resynchronizes to the
master and the active connection resumes.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 37

38 Chapter 1 • Introducing Bluetooth Applications

This allows for our laptop to place our PDA that it is connected to in hold
mode while it establishes a connection to a LAN access point, thus minimizing
PDA power consumption when not in use.

Sniff Mode
In sniff mode, the slave remains synchronized to the master, but the duty cycle of
the slave’s listen activity can be reduced, thus placing the constraint upon the
master to only transmit in certain slots.To enter sniff mode, master and slave
devices negotiate a sniff interval and a sniff offset, which specifies the timing of
the sniff slots and the occurrence of the first sniff slot.After this negotiation, the
sniff slots follow periodically according to the prenegotiated sniff interval. In
order to avoid problems with a clock wrap-around during the initialization, one
out of two options is chosen for the calculation of the first sniff slot.A timing
control flag in the message from the master indicates this. In sniff mode, the slave
retains its AM_ADDR.This mode is extremely useful if we have our PDA
waiting to receive e-mail from our phone. Normally, there will not be any traffic,
but the PDA needs to be ready quickly when there is.

Park Mode
If a slave does not need to participate in the channel (that is, it is no longer
actively transmitting or receiving data, but needs to remain in the piconet and
thus remain synchronized to the master), it must monitor the master’s transmis-
sions periodically so that it can keep synchronized. Park mode allows this by
having the master guarantee to periodically transmit in a beacon slot. Because the
parked slave can predict when a beacon transmission will happen, it can sleep
until the master’s beacon is due.

In park mode, the device relinquishes its AM_ADDR. Instead, when a slave is
placed in park mode it is assigned a unique park-mode-address (PM_ADDR),
which can be used by the master to unpark slaves.

Parked slaves must still resynchronize to the channel by waking up at the
beacon instants separated by the beacon interval.A beacon offset and a flag are
sent in the park message to indicate the instant when the beacon will first
happen.A beacon interval is also sent in the park message. Beacons happen peri-
odically separated by the beacon interval.

Park mode conserves the most power and would be appropriate for a device
in our PAN that we would only want to randomly access—for example, the

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 38

Introducing Bluetooth Applications • Chapter 1 39

printer, which we could un-park when we required its services but not go
through the lengthy inquiry procedure each time.

The headset profile allows park mode to be used with headsets, this is so that
when an incoming call is received, a cellular phone can rapidly unpark the
headset instead of having to wait for a lengthy connection procedure to finish.

Unparking
Via the beacon instant, the master can activate the parked slave, change the park
mode parameters, transmit broadcast information, or allow the parked slave’s
request access to the channel.All messages sent from the master to the parked
slaves are broadcasted, and to increase reliability for broadcast, the packets are
made as short as possible.

Following the beacon slots, there are a number of access windows defined,
through which parked slaves can request to be unparked.The access window that
they request to be unparked in is determined by the PM_ADDR assigned to
them by the master when they are parked.This allows the parked population to
share the access windows, thus reducing the probability of a collision if two slaves
require unparking at the same time. Slaves have to be unparked periodically by
the master in order to ensure that they are present and that any virtual connec-
tions can be maintained.

Which Devices Need Low Power Modes?
In practice, most devices will need to support low power modes. Consider the
case of a desktop PC. It is connected to mains power, so it has no need to save
power. However, it could communicate with a battery-powered Bluetooth
mouse, which will want to use sniff mode to extend its battery life. If the PC
does not support sniff mode, the mouse cannot use it, and so its battery life can
be seriously compromised by lack of features in the PC.

Similarly the PC may connect with a PDA which wants to synchronize and
would like to be put in hold mode if the PC needs to interrupt the synchro-
nizing process to go and service another device.

Park mode might be needed if the PC is connected to a cellular phone so
that the PC’s microphone and speakers can be used as a hands-free set for the
phone.

Do not just consider the requirements of your product—think about the
impact your product’s capabilities could have on other devices used with it.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 39

40 Chapter 1 • Introducing Bluetooth Applications

Providing Channel Quality Driven Data Rate
The Bluetooth specification provides a variety of packet types—single and mul-
tiple slot packets, each coming in medium- and high-rate types.

Multislot packets pack more data into longer packets, and provide higher
throughput in noise-free environments, but their throughput is worse than single
slot packets in noisy environments because they take longer to retransmit.

Medium rate packets have more error protection.This makes them tolerant to
noise, but the space taken up by error protection means they cram less data into
each packet. High-rate packets get better throughput in error-free environments,
while medium-rate packets get better throughput in noisy environments.

Channel quality driven data rate (CQDDR) allows the lower layers of the
Bluetooth protocol stack to measure the quality of the Bluetooth channel, and
choose the packets most appropriate to the noise levels. Not all chips/chip sets
implement CQDDR, so if you expect maximum throughput in noisy conditions
to be an important factor for your product, you should ensure that you choose a
chip/chip set which implements this feature.

Deciding How to Implement
Once you have made the decision to implement, what are the available options
for Bluetooth technology enabling your products?

There are many options to consider in both hardware and software. Even
once you have chosen a chip set and protocol stack, there are different ways that
these can be added into your product. In this section, we shall begin by looking
at software system architecture, then we’ll consider some of the hardware options.

Choosing a System Software Architecture
The choice of system architecture will obviously be determined by footprint,
cost, and time-to-market, but the end functionality will have the biggest influ-
ence.We will briefly examine the Bluetooth protocol stack as it can have an
influence on our product’s system architecture.

We will examine the stack in its simplest form—the upper stack and the
lower stack.The lower stack controls all of the physical functionality, the radio,
the baseband, and the Link Manager (LM) and Link Controller (LC) layers.

The upper stack deals with the channel multiplexing, with the logical link
control and adaptation protocol (L2CAP). Serial port emulation and the interface
with the application software happens in the RFCOMM layer.A Service

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 40

Introducing Bluetooth Applications • Chapter 1 41

Discovery Protocol (SDP) layer is also essential for all Bluetooth devices, as it
allows them to find out about one another’s capabilities—an essential facility
when you are forming ad-hoc connections with devices you may never have seen
before.

There are three implementation models for the stack, dependant upon the
functionality or resources the respective product has: hosted, embedded, and fully
embedded (see Figure 1.13).

In the hosted model, the lower stack layers reside on the Bluetooth (BT)
device, while the upper stack resides on a host (this may be a PC or a micro-con-
troller if the product is mobile or standalone).They communicate via the Host
Controller Interface, which sits between the lower layers and upper layers of the
protocol stack forming a bridge between them.The two most common physical
transports are UART (H4) and USB (H2).The UART protocol was designed for
communication between chips on the same board and does not cope well with
errors that occur in cables, so there are also proprietary transports which add
extra facilities to the simple UART protocol. One example is CSR’s BlueCore
Serial Protocol (BCSP) which achieves a more reliable form of UART transport
with retransmission and error checking.The hosted model is optimum for appli-

www.syngress.com

Figure 1.13 Software Stack Implementations

Embedded
Full stack on chip
Application on host

Radio Radio

Link Controller Link Controller

Link Manager Link Manager

Host Controller Interface

chip/chip set

SDP RFCOMM

L2CAP

Application

Connection Manager

SDP RFCOMM

L2CAP

Application

host

chip/chip set

Radio

Link Controller

Link Manager

SDP RFCOMM

L2CAP

Application

Connection Manager

chip/chip set

host

Hosted
Lower stack on chip
Upper stack on chip

Fully Embedded
Stack and application on chip

160bluetooth_C01.qk 12/5/01 4:32 PM Page 41

42 Chapter 1 • Introducing Bluetooth Applications

cations where powerful host processors are already available and there is plenty of
memory. Examples of hosted devices include USB dongles, PCMCIA cards, com-
pact flash cards,V90 modems, Internet gateways, and PC motherboards.

In the embedded model, the complete stack resides on a BT device, but a
separate user application is running on a host.This model is ideal for 2 and 3G
mobile phones, ticket or vending machines, or PC peripherals that have limited
processing power and available memory.

In the fully embedded model, the complete stack and the user application are
all on the Bluetooth device.There is limited memory resource on the BT device so
any application will need to be relatively simple.The best example of a fully
embedded device is a headset. It has no need for complex processing, so the whole
Bluetooth stack can run on the single microprocessor within the BT chip/chip set.

The lower stack up to the HCI is always provided with the Bluetooth
chip/chip set as it is unique to that silicon implementation.With the embedded
model, the upper layers are also provided by the chip/chip set vendor—either
free of charge if it is their own stack or there may be a license fee per device if
they are using another vendor’s upper layers.The fully embedded model requires
a silicon solution that allows the application code to be written and downloaded
to it without compromising the integrity of the Bluetooth stack which should
have already undergone the stringent qualification procedure.Any changes to the
stack requires it to be requalified!

The upper stack layers, above HCI, can be licensed from numerous vendors.
Due to the inherent interoperability requirement of any qualified Bluetooth
component, the choice is open.All of the available stack offerings “will” be com-
patible with the chosen silicon’s lower layers.You can, of course, write your own
upper layers, but it will be a vast software undertaking—illustrated by the cost of
licensing one. Protocol stacks can be expensive, but an expensive stack might just
offer you extra features which help to sell your product. Because of this, examine
all the available options closely.

NOTE

As the Specification stabilizes, there will be chips entering the market
dedicated to a specific purpose only—the headset profile being the pri-
mary example. The chips will have all the relevant stack layers and the
profile implementation in masked ROM, reducing the cost significantly.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 42

Introducing Bluetooth Applications • Chapter 1 43

Constraining Implementation Options with Profiles
The Bluetooth profiles deliberately restrict implementation choices. If you are
implementing functionality, which is covered by a profile, then you must imple-
ment that profile.This is intended to make it easier for devices to interoperate: if
everybody implemented their own proprietary methods of communicating, then
nobody’s devices would ever work together.

You may find that you do not want to follow the profiles, many of them are
compromises intended to provide functionality that will address a variety of
potential use cases.This means that they may not be optimum for what your
application and your product wants to do.This need not be a problem: once you
have implemented the relevant Bluetooth profile, you are free to also implement
your own proprietary solution.

You may find that having to implement profiles makes Bluetooth technology
too burdensome, and this might start to make alternative technologies such as
infra-red look attractive. However, you should consider that by implementing a
profile, you have vastly increased the number of devices which will interoperate
with your product.

Choosing a Hardware Implementation Option
Choosing a software architecture may limit the choice of hardware. Some
chips/chip sets can not support the complete protocol stack, so if you do not
have a hosted system, you will have ruled out these options. Still, there is likely to
be a range of chips/chip sets open to you, each with its own inherent compro-
mises, in time-to-market, cost, and R&D resource.

There are numerous solutions currently available from multiple vendors.
Chip sets come as separate radio and baseband devices in a variety of tech-
nologies: silicon-germanium, silicon-on-insulator, and CMOS, or as single-
chip CMOS device integrating the radio with the baseband. Chip set prices
range from $8 to $29, although this will no doubt decrease with large vol-
umes.This option is designed-in directly onto the product’s printed circuit
board (PCB).

The alternative to buying a chip set is to get a “module.”These are
PCBs complete with RF deign and antenna, and will be pre-tested and
pre-qualified.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 43

44 Chapter 1 • Introducing Bluetooth Applications

TIP

All qualified Bluetooth components and products are listed on the “qual-
ified products” section at www.Bluetooth.com (the official SIG Web site).
Here you will find the manufacturers of chips/chip sets, modules, devel-
opment kits, and software components. Data sheets or specifications can
then be attained from the respective manufacturer’s own Web site, as
well as information on how to purchase.

The single chip/chip set approach requires an RF design resource to provide
the matching networks, filters, amplifiers, and antennas to the transmitter and
receiver paths and will require expensive synthesis and test equipment along with
a lengthy qualification process. It will, however, incur a significantly lower finan-
cial cost per unit along with a reduced PCB real estate overhead. Many chip/chip
set manufacturers will supply you with reference designs. If you exactly follow
their instructions, you can get away without designing your own system.You
must be very careful if you are following a reference design; apparently insignifi-
cant changes can alter the radio performance. For instance, changing the manu-
facturer of a capacitor can change its characteristics even though it might be
listed as the same value and type.

The module approach is far simpler since the primary RF hardware concern
is soldering the module onto your motherboard. Keep in mind that it’s larger to
integrate onto your motherboard and financially more expensive. Figure 1.14
provides examples of some of the available options and their dimensions.The
multiple chip approach separates baseband and radio into two packages, whereas
single chip combines both.The single chip approach can also be divided into
single chip plus flash (allowing larger flash memory), or single chip with inte-
grated flash (for minimum size).

Whichever stack configuration you choose, you will still have to somehow
add the hardware.There are two primary options for adding the Bluetooth hard-
ware to a product: designing Bluetooth technology directly onto the PCB, or
using a pre-qualified complete Bluetooth module. In the following sections, we
will briefly question how each method will impact on time-to-market and what
the more common risks of implementation are likely to be.

This is by no means a definitive summary. Every individual application will
have its own unique implementation issues.You can, of course, employ a third
party design house to do it for you and let their designers go through the learning

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 44

Introducing Bluetooth Applications • Chapter 1 45

process! The most expensive, yes, but if you have no R&D resource yourself, this
may be your only route to joining in the Bluetooth Dream, and it is certainly
easier than trying to recruit and manage a complete development team if you
don’t have one already.There are many design houses that now specialize in
Bluetooth design, thus you would get the additional benefit of their experience.

Design Bluetooth Directly Onto the PCB
Designing Bluetooth technology directly onto the PCB is the optimum method
if PCB real estate or end unit costs are our primary design constraints. Choose
the silicon wisely. Devices are available that have a comprehensive level of inte-
gration and do not require difficult-to-source/expensive external components—
SAW filters being the obvious example. If we are using a “hosted” stack
configuration, we need to ensure that the HCI transport is available and fully
functional.As the Bluetooth system has many optional features, we also need to
check that our chosen silicon vendors lower stack implementation provides the
Bluetooth functionality that we require. PCB real estate needs to be available and
thus will affect our choice of solution.A PCMCIA card or PC motherboard, for
instance, is a predefined size, irrespective of component population.As a result,
the smallest solution is not a primary objective; however for a headset, a compact
flash card or a mobile phone size would be a significant determining factor.

PCB structure is an issue if we use this method. Due to the inherent nature
of RF striplines and microstrip, a multilayer PCB is needed to give the required

www.syngress.com

Figure 1.14 Examples of Bluetooth Hardware Solutions

Multiple chip

33 x 7 mm
area = 5.6 cm2

Single chip and
integrated flash

Single chip

8 x 8 mm
area = 0.64 cm223 x 15 mm

area = 3.4 cm2

160bluetooth_C01.qk 12/5/01 4:32 PM Page 45

46 Chapter 1 • Introducing Bluetooth Applications

power planes, ground planes, and associated dielectrics, and to separate the digital
signals to avoid noise pickup in the RF and crystal sections.The PCB is a high
proportion of the manufacture cost, if the product typically uses a two layer PCB.
This additional cost overhead can impact significantly on the total unit budget.
For large PCBs, the cost of a multilayer board may swing the balance in favor of
a separate Bluetooth module, allowing the multilayer section to be kept as small
as possible. Figure 1.15 is an example of the PCB structure required for a Class1
Bluetooth design.

The fastest time-to-market approach if we use this method is for us to use
one of the chosen silicon vendor’s reference designs.These are normally free-of-
charge on purchase of a Development Kit, and will have been proven and quali-
fied. Most vendors provide a schematic and a set of Gerber files that can be
imported into our own computer aided design (CAD) packages ensuring exact
translation of the crucial PCB tracking layout. Some of us may know better,
however, or have our own ideas (for instance, if a lumped balun is recommended
in the reference design but you wish to use a printed one as a cost-saving exer-
cise). Experience has illustrated that this can work but may incur repeatability
problems with secondary PCB batches.You may wish to use a different power
amplifier (PA) for a Class 1 design to the one recommended.Again, cost or a
favorite supplier may be an influencing factor. Check with the silicon vendor.
They would have evaluated several prior to selecting the one in the reference
design. Most chip/chip set vendors work closely with the other Bluetooth
component manufactures to provide us with a wide choice of options not all at a
cost premium! To get Bluetooth technology into as many consumer products as

www.syngress.com

Figure 1.15 PCB Construction Example for a Class 1 Bluetooth Module

Resin coated copper (RCC)

450 mm
350 mm
200 mm

100 mm

300 mm

100 mm

600 mm

FR4

2x1080 prepeg layers

1x7628 prepeg layer

copper foil

63 mm
369 mm

306 mm
0.8mm

160bluetooth_C01.qk 12/5/01 4:32 PM Page 46

Introducing Bluetooth Applications • Chapter 1 47

possible, the ultimate aim is to get the Bill Of Material (BOM) cost on a down-
ward spiral to the now infamous $5 target, which was set during the press hype
of the initial technology rollout.This sum represents the cost to replace the
average data cable! Figure 1.16 illustrates this method, showing the Bluetooth
device and the flash memory (the two chips towards the bottom of the card).

The most common risks associated with this approach can be very simple but
add serious time delays to project schedules.A simple component change to
improve a matching network between the Bluetooth device’s transmitter output
and a PA, for example, can incur problems with your manufacturer’s component
stock and tooling, and cause havoc with any quality assurance (QA) procedures
that have been developed concurrently with the design to meet a project produc-
tion deadline. Examples of the two problems that could have a significant impact
on time-to-market are detailed next (design verification and manufacturing).
However, test equipment incompatibility, qualification testing, and ultimately, pro-
duction test development will also have their own impact.

www.syngress.com

Figure 1.16 Bluetooth Technology Designed Onto the PCB of a
Compact Flash Card

160bluetooth_C01.qk 12/5/01 4:32 PM Page 47

48 Chapter 1 • Introducing Bluetooth Applications

www.syngress.com

Programming and Upgrading Firmware
How we get the firmware into our chip/chip sets could become a design
nightmare considering that the Bluetooth specification is still under-
going revision, and the silicon vendors are still developing their lower
stack firmware either for the purpose of adding new functionality or
remedying interoperability “bugs.” We must have a means to upgrade
the firmware in our development labs, our manufacturing sites, or in the
“field,” if we have put our products onto the market.

All of the silicon available today uses flash technology as the storage
media. This enables programmability for upgrades. The ideal scenario
would be to program the flash initially via a programming/debug inter-
face. This would require the respective interface pins from the chip to be
brought out to pads on the PCB. In a development environment, we
could then attach a cable; while in a production environment, we could
use a “bed-of-nails” approach.

But what about the “field” products? Do they join the ever
increasing pile of technical obsolescence, or do we recall them? Do we
really want to put ten thousand or more products straight off the pro-
duction line back through the same production line for reprogramming?
The solution is to follow the example of those clever USB chaps: Device
Firmware Upgrade (DFU). A DFU facility allows us to upgrade our prod-
ucts over the standard UART or USB interfaces via software, and requires
no soldering of cables or secondary production runs. A “bootloader” is
programmed into the chip when it is initially programmed via the
methods previously mentioned. The bootloader can be used with
upgrade software shipped with our products to provide the “in-the-field”
upgrade facility to our customers.

As lower stacks mature and the specification stabilizes, this will not
be such a pertinent issue. Nevertheless, before selecting a silicon solu-
tion check the programming and upgrade facilities that it offers you,
and when designing your systems, consider how you might take care of
upgrades both on the production line and in the field.

Debugging…

160bluetooth_C01.qk 12/5/01 4:32 PM Page 48

Introducing Bluetooth Applications • Chapter 1 49

Design Verification
Design verification can be a problem: despite the most precise synthesis, the pro-
totype may not always exhibit the same RF characteristics in reality.This can
involve lengthy diagnosis, component changes, or a board respin if layout issues
are suspected to be the cause of the problem.

This can be overcome by the development of several prototypes concurrently,
as well as adhering to the selected silicon vendors’ design guidelines. If advice
states that the device is sensitive to noise, you will know not to run digital lines
from the flash next to the Bluetooth device or under the system crystal, and to
take de-coupling very seriously! Figure 1.17 illustrates the problems caused if a
design routes the address and data bus (or another digital line that changes
rapidly) near the crystal or its traces.Any digital signal has fast edges which can
easily couple several millivolts into a small signal output from a crystal; this is not
helped by the lack of drive you receive from a crystal.As the crystal output passes
through the Phase locked loop (PLL) comparator, a slice level is used to deter-
mine if the crystal output has changed from a zero to a one, or vice-versa. If
there are glitches on the crystal output from digital coupling that are greater than
the hysteresis of the comparator, it can result in the square wave output having
glitches or excessive jitter. Glitches can confuse the divider and phase comparator
and result in excessive frequency deviation at the output, which will cause varia-
tions in the RF output.

www.syngress.com

Figure 1.17 The Effect of Routing Digital Signals Near a System Crystal

Crystal Output Glitching on
crystal output

Glitches and Jitter on
Oscillator Output

Slice Level

Faster rise time = Less jitter

Digital Signal

cr

160bluetooth_C01.qk 12/5/01 4:32 PM Page 49

50 Chapter 1 • Introducing Bluetooth Applications

Figure 1.18 illustrates the noise incurred on the output spectrum due to
insufficient filtering of the power supply to the BT device, the top trace.This will
have a detrimental effect on system performance and will impact negatively on
some of the qualification tests for frequency drift and drift rate.

Manufacturing
As previously indicated, the manufacture of Bluetooth PCBs themselves can be
problematic. Repeatability of performance with printed RF components and the
expense of the multilayer PCB, as well as other problems can be incurred with
component placement.As this method of design is optimum for size, the physical
dimensions we are working with can be extremely small.This means we have to
be precise not only in our layout for noise, feedback, and coupling issues, but also
with pad size and component placement.

www.syngress.com

Figure 1.18 The Effect of Poor Filtering on the Bluetooth Output Spectrum

160bluetooth_C01.qk 12/5/01 4:32 PM Page 50

Introducing Bluetooth Applications • Chapter 1 51

The Bluetooth chips/chip sets available are mainly packaged as ball grid
arrays (BGAs), and the associated passive components have to be the surface
mount 0402 type to adhere to the size constraint.There are many factors to take
into account when using components on this scale: unless the solder resist finish
is of the photo image type with a maximum thickness of 0.025mm, the 0402
resistors and capacitors could be lifted away from the pads on the PCB.A max-
imum solder resist window around the component pad should be in the region
of 0.05mm with an alignment tolerance of 0.05mm to ensure that any tracks or
vias between the pads of the BGA are not exposed, reducing the risk of short cir-
cuits. Figure 1.19 illustrates some of the problems expected if we get this wrong!

Using a Prequalified Complete
Bluetooth Module
Using a prequalified complete Bluetooth module is optimum if time-to-market is
our primary design constraint.We have the PCB real estate available and can
transfer the additional cost per unit to our end users while remaining competitive.

www.syngress.com

Figure 1.19 PCB Solder Mask Considerations

BGA pad

BGA pad covered

Very badly aligned solder mask
- not within tolerance

Via exposed

Aligned oversized
solder mask window

Badly aligned solder mask - at
maximum tolerance

 Via

160bluetooth_C01.qk 12/5/01 4:32 PM Page 51

52 Chapter 1 • Introducing Bluetooth Applications

Modules are available from numerous sources with a choice of Bluetooth sil-
icon.They are available in class 1 or class 2 and can take several forms. Modules
are currently being developed that integrate the entire external RF and system
components (flash, crystal, filters, and amplifiers) into a single device—predicted
sizes being as small as 5mm by 5mm! These modules are all pretested and pre-
qualified, thus simplifying both the production test and qualification required for
our end product. Examples of two modules currently available are illustrated in
Figures 1.20 and 1.21.

The PCB issues examined in the previous method are irrelevant when using a
module since we just solder the module onto our own PCB.There are no new
Bluetooth technology-induced RF layout considerations or BGA placement issues.
Of course, we must ensure that the antenna is placed in a position where propaga-
tion is not adversely affected by surrounding components, and this will require some
RF expertise. But antenna siting is really the only RF issue we have to think about.

This method, however, would not suit size-conscious products.The added
module will currently increase the overall height of the PCB, which isn’t appro-
priate if your product has to fit in a PC slot where dimensions are predefined and
resolute.There are limitations to this method other than cost, size, and supply,
although how seriously they affect us will be subjective and dependent upon our
own requirements.

www.syngress.com

Figure 1.20 An Example of a Class 1 Bluetooth Module (Courtesy of
ALPS, Japan)

160bluetooth_C01.qk 12/5/01 4:32 PM Page 52

Introducing Bluetooth Applications • Chapter 1 53

Firmware Versions
The module will be supplied with a version firmware deemed appropriate at
manufacture. However, the respective silicon on the module may have undergone
many revisions since the module was produced.We are dependant on the module
manufacturer to provide us with access to this new firmware and provide us with
the means to upgrade it.

Dependant for Functionality
The module we have chosen will be static. It will only provide us with the
ability to configure our product designs according to its specification. If we
require, for instance, to change the PCM interface to utilize a more price-
conscious or better performing codec, we will require access to the Bluetooth
chip/chip set that the module is based upon to reconfigure it. If this could
affect your product, then ensure that this reconfigure option is available from
the module you choose.

www.syngress.com

Figure 1.21 An Example of a Class 2 Bluetooth Module (Courtesy of
Mitsumi, Japan)

160bluetooth_C01.qk 12/5/01 4:32 PM Page 53

54 Chapter 1 • Introducing Bluetooth Applications

www.syngress.com

Obtaining Bluetooth Technology Qualification
In order to obtain qualification of a component or product, the manu-
facturer may use a test house for two services:

■ The test house is contracted to make tests to a Bluetooth test
specification, and to produce a test report containing the
results of the tests.

■ An employee of the test house who is appointed by the
Bluetooth SIG as a Bluetooth Qualification Body (BQB)
reviews evidence submitted by the manufacturer in a
Compliance Folder (CF), and if satisfactory, the BQB submits
the product or component to the Bluetooth Qualification
Administrator (BQA) for listing on the Bluetooth Qualified
Products List (BQPL).

A Bluetooth component is an implementation that contains some
Bluetooth functionality, and which can be included into another compo-
nent or product. It can be prequalified so that components or products
containing the component do not have to be tested for the prequalified
functionality. A Bluetooth product or end product is a device to be sold
to the end user, and it can be made up of prequalified components to
reduce the testing required by the product manufacturer.

The list that follows gives more details on the tests necessary for
qualification:

■ RF Tests are required to be made once for each new PCB
design. If the same pretested module is reused in other end
equipment, no tests need to be repeated.

■ USB, UART, or BCSP variants should not need to be retested
for RF as the HCI does not affect radio performance. PCB vari-
ants where all RF layout and components are identical should
not need to be tested, subject to agreement with the BQB.

■ The Bluetooth Qualification Body (BQB) may require one or
more BB timing tests to be repeated for each new PCB
design. This may not be necessary if the crystal is the same as
used by the qualified component. If extra testing is required,
one timing test needs to be tested at extreme conditions.

Developing & Deploying…

Continued

160bluetooth_C01.qk 12/5/01 4:32 PM Page 54

Introducing Bluetooth Applications • Chapter 1 55

Considering Battery Limitations
Current handheld PCs offer considerably longer battery life than notebooks
because they do not have hard drives, CD-ROMs, or floppy drives.This makes it
possible for users to work for hours, and in some case weeks, without having to
worry about losing power. Most Palm-size PCs use AAA batteries that last for 20
hours to several weeks, while handheld-size PC batteries last from 8 to 15 hours
on a single battery charge. Mobile phone battery technologies offer 130 hours
standby and 5 hours talk time as standard. Key consideration when adding
Bluetooth technology to any product is the additional power consumption
inevitably reducing the overall battery life of the product.This is a serious consid-
eration in products that are normally static, where battery life has not been an
issue before and size constraint is predefined.

Due to the expected size constraint within a typical headset mould, a battery
with a high charge density/gram would be the most effective solution to employ.
A typical application example would be to have a headset capable of 2 hours talk
time combined with 100 hours of standby time before recharging.Assuming that
the headset has been paired, the RFCOMM connection has been established and
the most optimum power configuration is used (see the following section), we
can calculate the following:

Codec power consumption = 3 milliAmperes (mA)

SCO connection power = (28mA + 3mA) × 2 [2 hour talk time] = 62mAH

Standby power = (0.6mA) × 100 [100 hours standby] = 60mAH

www.syngress.com

(Currently these tests can be performed by manufacturers
using standard test equipment. In the future, there are plans
to move this testing into test facilities.)

■ Both Module manufacturers and end product users can use a
software component that is prequalified at baseband (BB)
and LM.

■ If the new design includes the upper layer stack components
HCI, L2CAP, RFCOMM, Service Discovery Protocol (SDP), or
Bluetooth Profiles, these must also be qualified.

■ Software components affecting profiles must be qualified. This
could be done by developing and qualifying your own profile
software components, or by buying in prequalified profile soft-
ware components and integrating them into the end product.

160bluetooth_C01.qk 12/5/01 4:32 PM Page 55

56 Chapter 1 • Introducing Bluetooth Applications

Therefore we would select a battery capable of delivering 122mA hours of
energy.

Table 1.4 illustrates some of the currently available rechargeable battery tech-
nologies indicating the respective weight energy density.

Table 1.4 Battery Technologies

Battery Operating Weight Energy Number of
Technology Voltage Density (WH/KG) Cells Required

Ni-Cd 1.2V 40 – 60 3
Ni-MH 1.2V 60 – 80 3
Li-ion Circular 3.6V 90 – 100 1
Li-ion Prismatic 3.6V 100 – 110 1
Li-ion Polymer 3.7V 130 – 150 1

Adding Batteries
We are all aware that although the lack of cables makes our lives convenient, the
simple act of recharging batteries is tiresome. How many of us have picked up our
cell phones to make a call and found it needs recharging? This even with the vast
battery life and battery status indicators in current phone battery technology! The
ultimate aim with any wireless product is to ensure the time differential between
charging sessions will not affect the user’s experience in other words, to make sure
their products are not connected to the mains longer than they are wireless!

Long battery life means designs with low power as the primary objective.
With any low power application, choice of design configuration is crucial in
achieving the power consumption targets that you require for optimum use.
Initially, there are the hardware configurations relating to choice of processor,
design topology, asynchronous (event-driven) over synchronous (polling) designs.
Then there is hardware power management and efficient power supply designs.
Software considerations include speed gearing, idle, and sleep operations.

Fundamentally determined by the application is the system’s design topology.
This is the most effective utilization of the hardware and software parameters to
achieve a design specifically targeted towards low power operation. Parameters we
should consider include:

■ Selection of duty cycles for active and passive periods

■ Choice of power saving features versus system performance

■ Vendor-specific deep sleep modes

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 56

Introducing Bluetooth Applications • Chapter 1 57

Most of the silicon chip/chip sets or modules available offer a wide selection
of options to provide for applications where power efficiency may be an absolute
necessity, including on chip battery monitors. Check with the manufacturer’s data
sheets or specifications for information.

Using Power Saving Modes to Extend Battery Life
To appreciate how power saving modes can effect current consumption, we will
again take the example of a headset and the audio gateway (AG) of a mobile phone.

The first step in establishing a functional system when both devices are virgin
is pairing, where both the headset and audio gateway become aware of each other’s
BT addresses and generate the associated link keys. Generally authentication will
be requested through the use of a PIN code which will be built into the headset
at time of manufacture. Once paired, there is no need for the audio gateway to do
inquiry and SDP searches for subsequent connections to the headset. During the
pairing process, the headset must be in page scan mode so as to be able to connect
to the audio gateway enquiry.A page scan interval of 800ms with a 12ms window
is appropriate here since the connection is not time critical (the typical current
figure in this state is 2.5mA). Once the pairing has been completed, the headset
must decide to go into page scan again or to go idle.

Once the headset and audio gateway have paired, an RFCOMM link will
need to be established before any communication can take place.This is usually
initiated by a user action at both the headset and audio gateway.The headset will
go to page scan mode where an interval of 800mS is sufficient, and the audio
gateway will try to connect to the headset. Once a connection is established, the
audio gateway will have control over the headset’s power-saving features.
Generally, a 40mS sniff mode interval can be set for a period of time in which
some action may take place.This will allow acceptable delays for “Ring” com-
mands or “Talk” button pushes while significantly reducing the power consump-
tion figures of the headset (typically 5.5mA). Once it has been deemed that there
is no further activity required, then the audio gateway can choose to disconnect
altogether, or put the link into park mode.

NOTE

This example is based on CSR’s BlueCore2 single chip CMOS device with a
recommended operating voltage of 1.8V and optimum device configura-
tion for low power in a Class 2 design. (A class 1 design requires a PA and
therefore the power consumption of the PA would need to be considered.)

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 57

58 Chapter 1 • Introducing Bluetooth Applications

A beacon interval of about 1 second is appropriate for a parked headset link.
This significantly reduces the headset power consumption (typically 1mA) while
still allowing a rapid response to an incoming call even when the device is
unparked.A rapid response is also possible if the headset initiates a button push:
the button push triggers an unpark request on the next beacon, then the headset
is unparked by the audio gateway and a SCO connection is established.

The audio gateway will ultimately decide the quality of the audio link and
the power consumption of the headset during a SCO link. CVSD is the more
appropriate method of encoding for use with speech and is mandatory with the
headset profile.There is an option as to what type of packets should be used.
HV1 will allow a clearer connection at the expense of increased power consump-
tion. HV3, however, can reduce the power consumption by a third and take
advantage of sniff mode.There will be some degradation in the quality of the
audio link but the degree of degradation may not be sufficient to warrant the use
of HV1.A good design can still give a very clear HV3 packet signal and decent
voice intelligibility. For headset applications where voice bandwidth is already
limited, HV3 would be the recommended packaging method. Once the call has
been terminated, the audio gateway can decide whether to park the link once
again or disconnect the RFCOMM connection. Usually, the link is put back into
park mode.Table 1.5 summarizes the preceding scenario.

Table 1.5 Typical Power Consumption Figures

Mode Remarks Current

ACL Connection Master [115k2 UART] no power saving 15mA

ACL Connection Sniff mode, 40ms sniff interval [38k4 UART] 4mA

ACL Connection Sniff mode 1.28s interval [38k4 UART] 0.5mA

Link Parked 1.28s interval [38k4 UART] 0.6mA

SCO Connection HV1 packet, CVSD encoded, no sniff interval 53mA

SCO Connection HV3 packet, CVSD encoded, 40ms sniff interval 28mA

Deep Sleep CSR proprietary power saving mode 50µA

Figure 1.22 illustrates the scenario just described indicating the complete pro-
cedure with current consumption per action.

Assessing Battery Life
As we are now acutely aware, a Bluetooth device consumes current, and thus can
have an influence on the battery life of any Bluetooth-enabled product. For

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 58

Introducing Bluetooth Applications • Chapter 1 59

products with powerful batteries inherent to their normal use, a laptop being the
primary example, it will not be a significant issue. For smaller products like
mobile phones and PDAs, it could impact on the overall time available for use.
We have examined the power consumption on the headset and AG scenario,
which is restricted in its functionality, but a multifunctional product like a PDA
will have many varying needs for power, dependant upon what activity it is
involved in—exchanging a business card, waiting for an e-mail, or Web browsing
will all involve different connection models.We will now consider this in a “real-
life” situation.To try to get an objective view of the effect on battery life of the
Bluetooth functionality in a PDA, it is necessary for us to make some assump-
tions.These assumptions are variables but will give us a viable model to consider.

www.syngress.com

Figure 1.22 The Headset and AG Scenario with Current Consumption

Audio
Gateway Headset

Setup RFCOMM link

Park = 1s interval I ave = 0.6mA

Incoming Call Unpark

OK

Sniff int. = 40mS
 = 4mA

AT = Ring Ring Tone

I ave = 15mA

Talk ButtonAT = CKPD Interrupt
Generated

Open SCO = HV3
 = 28mA

Audio Opened

OKAudio Opened

Talk ButtonAT = CKPD Interrupt
Generated

Close SCO
 = 4mA

Audio Closed

Audio Closed OK

Park = 1s interval = 0.6mA

Activity Wait Period
(5s)

I ave

I ave

I ave

I ave

160bluetooth_C01.qk 12/5/01 4:32 PM Page 59

60 Chapter 1 • Introducing Bluetooth Applications

Let us assume that when the PDA is on (with the Bluetooth unit fully pow-
ered and operational for eight hours per day), the number of times it is used are
limited to:

■ Four Web browsing sessions

■ The exchange of nine business cards

■ Two 30-minute presentations using the PDA as a radio mouse

■ Receiving an e-mail every hour

■ Using power-saving modes built into the Bluetooth system

For the purpose of modeling power consumption, we need to define a
number of states that the Bluetooth device could be in, and for each state, note
the power consumption:

■ State 1: Inactive The device is powered, with clocks running and
ready to receive commands over HCI. It has no active connections.
Consumption average = 50µA

■ State 2a: Discoverable and Connectable The device is performing
Inquiry Scan and R1 Page Scan every 1.28 seconds.The PDA software
will probably require human input to put it into this mode.A timeout
will return it to the inactive state after some time if no connection is
made, perhaps after 1 minute. Consumption average = 1.3mA

■ State 2b: Connectable but not Discoverable The parameters are
the same as state 2a, except that only Page Scan is enabled. Consumption
average = 0.6mA

■ State 3: Paging The master of the piconet has to page a known slave
in order to establish the baseband connection.The time this takes
depends on the duty cycle of the slave device.We will assume that the
slave is using the parameters described in State 2b, in which case, the
mean time to connect is 1.5 seconds. Consumption = 41mA

■ State 4: Connection establishment and parameter negotiation
Once a baseband connection is established, the slave and the master
transmit or receive in nearly all slots.There may be power control, authen-
tication, SDP database searches and other management traffic before the
link is fully established.This takes on the order of 250 milliseconds (ms),
determined by the reaction times of the host. Consumption = 47mA

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 60

Introducing Bluetooth Applications • Chapter 1 61

■ State 5a: Connected, low latency The device is a slave in a piconet
(in sniff mode).The latency before data flows can be up to 40 ms, but
the mean is 20.The latency is programmable. Consumption = 4mA for a
40ms sniff interval.

■ State 5b: Connected, high latency The device is a slave in a
piconet, in sniff or park mode.The latency before data flows can be up
to 1.28 seconds, but the mean is 0.64 seconds.The latency is pro-
grammable between zero and 42 seconds.1 second is a usual compro-
mise. Consumption = 0.5mA for 1.28 second sniff or beacon interval.

■ State 6: Data transfer in progress We assume a UART connection.
The consumption depends on packet rate and whether the unit is a
master or a slave. However, with appropriate choices of sniff parameters,
the slave and master will have similar consumption. Consumption =
15mA for an ACl link with a baud rate of 115k2.

With these states defined, we can now examine use of the PDA in specific
activities to determine what the power consumption is expected to be:

Web browsing The user initiates connection to an access point, and
the PDA enters State 3 and then State 4. Once connected to the access
point, an IP connection is made to the Internet.The slave listens in
every slot by default but transmits infrequently. It may request sniff
mode; a mean latency of 20ms is appropriate and will dramatically
reduce consumption during the time, assume 10 seconds, during which
the URL is being searched for.This is State 5a.While data is transferred,
assume a mean transfer rate of 24 Kbps, limited by the Internet (the
slower this is, the longer it will take, and hence the more pessimistic the
result).Assume 90k of bytes transfer, comprising 2 or 3 GIF or JPEG
files and one HTML page.Thus, it is in State 6 for 3.84 seconds.
Following the data transfer, the device returns to State 5a for a time
(e.g., 10 seconds), and then to State 5b if no more traffic is seen.After a
further timeout period (for example, 120 seconds), it disconnects and
returns to State 1.

Business card or file exchanges with another PDA The users put
one PDA into discoverable mode, State 2a, and the other initiates a con-
nection, entering State 3 and leading to State 4. For this analysis, we will
consider the slave only.After connection establishment, the data transfers

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 61

62 Chapter 1 • Introducing Bluetooth Applications

at the ACL data rate allowed by the UART, the filing systems and the
upper layer stacks on the two PDAs.Assume a low speed UART, 38k4
and a small file; 1000 bytes is typical for a business card or diary syn-
chronization.The device is thus in State 6 for approximately 0.3 seconds.
Following the data transfer, the connection is broken and the device
goes to State 2b for 60 seconds.After 60 seconds, it returns to State 1.
Clearly, these timeouts are under the control of the application pro-
grammer.

Use as a “cordless mouse” (to control a PowerPoint presenta-
tion, for instance) The user initiates connection to the PC, and the
device enters State 3 and then State 4.Typically, the PC will request a
role switch, become master and put the device into State 5a.This lasts
the length of the session; there is no timeout. Let us assume a 30-minute
presentation, after which the user ends the session and the device returns
to State 1.

“Unconscious” synchronization The purpose of this use case is to
ensure that the diary or e-mail inbox is always up to date.The PDA runs
a daemon. Every so often (5 minutes) it tries to connect to the access
point(s) it is paired with, by entering States 3 and then 4.An alternative
scenario is for the PDA to do an Inquiry to look for public access points
instead, or in addition to the ones it is already paired with.The slight
extra traffic required for this is ignored here. Once connected, an IP
connection to the appropriate server is made.The slave listens in every
slot by default, but transmits infrequently. It may request sniff mode: a
mean latency of 20ms is appropriate and will reduce consumption
during the time the database is being searched, so the master should put
the PDA into State 5a. Let us assume the connection is up for 2 seconds
while the server responds, and the data to be transferred, when there is
some, is 30K. Further assume that there is new data only once per hour.
Thus, when there is new data, the PDA is in State 6 for about 3 seconds,
assuming a UART speed of 115k2 baud.After the data, if any, is trans-
ferred, the application disconnects and the unit returns to State 1 until
the next time it is scheduled by the daemon.

Table 1.6 illustrates the actual power consumption for each of the specific
activities previously listed.The model assumes a Class 2 device is used based on
CSR’s BlueCore2.We must note that there are many variables in each case, and

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 62

Introducing Bluetooth Applications • Chapter 1 63

this is only recommended as a model to provide us with some guidance to enable
us to determine the effect of Bluetooth technology within a multifunctional
device such as a PDA. It is apparent from this table that the proportion of the
time that data is being transmitted or received is low, and that the average current
consumption is dominated by the time spent in power saving modes.

Table 1.6 PDA Power Consumption for Specific Activities

Use Case Web Object Mouse or Unconscious
Browsing Exchange Keyboard Synchronization

Number of sessions
per day 4 9 2 96
Number of pages
or files downloaded 3 1 - 8
Time in State 1 27785.92 28210.05 25196 28392
Time in State 2a 0 45 0 0
Time in State 2b 0 540 0 0
Time in State 3 7 0 3.5 168
Time in State 4 1 2.25 0.5 24
Time in State 5a 120 0 3600 192
Time in State 5b 840 0 0 0
Time in State 6 46.08 2.70 0 24
Consumption in
mAH per day 65 0.3 4.2 2.7

The application program, which is above the Bluetooth specified profiles,
determines the efficiency of the use of power saving modes and will be a very
important differentiator between manufacturers or software providers.This clearly
illustrates the importance of the application programmer being aware of hardware
performance issues.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 63

64 Chapter 1 • Introducing Bluetooth Applications

Summary
We began this chapter by examining the factors that may influence whether a
product is a suitable candidate for becoming Bluetooth-enabled.The answer is
that a device is suitable if data rates of a few hundred kilobits per second are ade-
quate, if it can tolerate short outages in the communications link, if instant con-
nections are not needed, if it can cope with the power consumption of the
Bluetooth system, if a range of 100m or less is adequate, and if Bluetooth tech-
nology will add end-user value by increasing usability or functionality.

It is all very well to talk of “adding end-user value” but sometimes it is not
obvious how that can be achieved, so it is important to consider how Bluetooth
technology can add value to various products.The primary value add is through
enabling unconscious connectivity, through the ability to seamlessly connect
devices without lengthy software installation and configuration.

A product that misses its market is no good to anyone; time factors must also
be examined when implementing a Bluetooth device.There is a significant
learning curve, and development takes time. Finally, qualification and type
approval are necessary before a product can go to market.These factors may
mean that adding Bluetooth wireless technology may not be compatible with
your product’s development cycle.

Before deciding to add Bluetooth capability to your product, you must be
aware of the performance limitations of wireless links. It can take ten seconds to
find a Bluetooth device and the same again to connect with it. Once connected,
data rates in the hundreds of kilobits are to be expected, but these may be
reduced drastically by interference. Latency (delay) on the link is likely to be sig-
nificantly higher than for wired links.

Before choosing hardware, it is wise to assess the features which Bluetooth
technology offers, decide whether you need them in your product, and whether
they should be enabled by default. Security features can make it difficult to estab-
lish links, but offer privacy when enabled. Low power may not be needed by
your product, but you will still need it if you are likely to connect with devices
which require low power modes.

Once the decision to implement is taken and you are broadly familiar with
the criteria for choosing between Bluetooth solutions, there are many options for
hardware and software.The protocol stack on a chip can stop at a host controller
interface allowing the higher layers of the Bluetooth protocol stack to run on a
separate host processor.Alternatively, the whole stack can be embedded on a

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 64

Introducing Bluetooth Applications • Chapter 1 65

Bluetooth chip/chip set. In the latter case, the application could be run on the
Bluetooth chip, or on a host device.

When looking at hardware implementation, there are many more options to
consider. Either a single chip or a chipset incorporating multiple chips can be
chosen. Factors which can influence chip/chip set choice include available space,
power consumption, and, of course, price.

Once the silicon is chosen, you must decide upon a design strategy: whether
to design your own PCB, or use a prequalified module.A module is undoubtedly
the faster and easier option, but your own PCB can give you more flexibility in
component placement, and for very high-volume products will be cheaper in the
long term.

Finally, you may have to consider batter technology. Obviously, not an issue
for anything connected to the mains, but many Bluetooth devices will be hand-
held and will require batteries. Bluetooth subsystems will drain the battery when
active, but the good news is that most of the time they are not active, and there
are many long life battery technologies available which are adequate for the
power requirements of the Bluetooth subsystem.

Many of the issues in this chapter may seem to be the province of the hard-
ware designer, and you might wonder why they are included in a book on appli-
cations.We have seen, however, that hardware choices influence the available
features used by software, so it makes sense for our introductory chapter to take a
holistic view of Bluetooth products.

Solutions Fast Track
Why Throw Away Wires?

� You know Bluetooth technology is a good idea if your product satisfies
the following six criteria:

1. Adds usability, convenience, or ease-of-use—the Bluetooth Dream!

2. Interference or latency will not affect its primary function.

3. Is tolerant to the connection time overhead.

4. Can afford the limited Bluetooth bandwidth.

5. Battery life or power supply requirements are compatible.

6. The range is adequate.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 65

66 Chapter 1 • Introducing Bluetooth Applications

Considering Product Design
� Think about the following items:

■ Are you adding end-user value by using Bluetooth technology?

■ Does your product’s development cycle allow you to add Bluetooth
technology to it?

Investigating Product Performance
� To know whether Bluetooth technology is right for your product, you

must consider:

■ Connection times—it can take up to ten seconds to find a device
and ten more seconds to connect

■ The quality of service—throughput and latency; this will be lower
than wired links

■ Interference can badly slow down your links, or even cause them to fail

Assessing Required Features
� Question whether or not you need to support all the following features:

■ Security—you must support it, but will you enable it by default?

■ Low power modes—if your product doesn’t need them, will it con-
nect with one that does?

■ Channel Quality Driven Data Rate—is maximum throughout in
noisy conditions important?

Deciding How to Implement
� Should your stack be hosted, embedded with application on host, or

fully embedded?

� Should you design your own PCB (cheap in volume), or buy in a
module (faster and easier)?

� Battery—if your product is not mains-powered, consider the impact of
time spent in different modes on the battery life. Constantly running in
scan modes might give you fast connection time, but it will also rapidly
drain your batteries. Setting short windows of activity can give almost
equivalent performance, and greatly extend your battery life.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 66

Introducing Bluetooth Applications • Chapter 1 67

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Should I embed the whole stack, or use the host controller interface?

A: This depends on whether you have a host processor with spare resources
available. If you have an application which runs on a host device, such as a
PC with a powerful processor and lots of memory, then you should run the
upper protocol stack on the host and connect to the Bluetooth subsystem
using the Host Controller Interface. If you have an application like a headset
where your existing device has no processor at all, then you should run the
whole Bluetooth solution lower stack, upper stack, and application on one
processor to save power, cost, and space. If you have a host with limited
resources, such as a mobile phone, you may do best taking an intermediate
approach and running the whole stack on the Bluetooth processor instead of
running the application on your host processor.

Q: Which hardware solution is for me? A complete prequalified module or a
chip?

A: This is dependant upon what your primary design constraint is—cost, time-
to-market or PCB real estate—and the recourses you have available.The
chip/chip set designed onto your product motherboard will ultimately be the
most cost effective option per unit and afford you the smallest footprint but
you will require RF design skills and equipment and can encounter signifi-
cant problems with PCB layout, affecting the performance of your design.
This approach also requires that you undergo all of the stringent qualification
tests—the chip/chip set you use will ultimately be prequalified, but you will
need to perform all the RF tests on your hardware.The module approach
offers a faster time-to-market, but the cost overhead per unit will be increased
and you will be limited to functionality.

If you need to get to market in a hurry, then a module is probably the
way to go. If you have time, development resources with knowledge of radio
hardware, and you are anticipating very high volumes for your product, then a
chip may be the best option.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 67

68 Chapter 1 • Introducing Bluetooth Applications

Q: Generally, what is the range of battery life?

A: This depends upon the product functionality. Power consumption is much
higher when either transmitting or receiving, so the longer you expect your
product to be in these states the shorter the battery life. Clever power man-
agement design, battery monitoring and use of the Bluetooth power saving
modes will all contribute to reducing power consumption.

www.syngress.com

160bluetooth_C01.qk 12/5/01 4:32 PM Page 68

Exploring the
Foundations of
Bluetooth

Solutions in this chapter:

■ Reviewing the Protocol Stack

■ Why Unconnected Devices Need to Talk

■ Discovering Neighboring Devices

■ Connecting to a Device

■ Finding Information on Services
a Device Offers

■ Connecting to and Using Bluetooth Services

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Chapter 2

69

160bluetooth_C02.qk 12/5/01 4:15 PM Page 69

70 Chapter 2 • Exploring the Foundations of Bluetooth

Introduction
Bluetooth wireless technology differs from wired connections in many ways.
Some differences are obvious immediately: when you are not tied to a device by
a cable, you have to find it and check if it is the device you think it is before you
connect to it. Other differences are more subtle: you may have to cope with
interference, or with the link degrading and dying as devices move out of range.

If you’re used to developing applications for static wired environments, all of
this may sound daunting, but don’t worry—there are simple well-defined proce-
dures for coping with the complexity of Bluetooth connections.This chapter will
take you through those procedures step by step, along the way explaining the pit-
falls and how to avoid them.

We will start with a review of the protocol stack, and then look at some of
the basic requirements of wireless communications the stack cannot hide: finding
nearby devices, connecting to them, discovering what services they can provide,
and then using those services.

You need to know the basic structure of the Bluetooth protocol stack before
reading this chapter.

Reviewing the Protocol Stack
The wide range of possible Bluetooth applications means that there are many
Bluetooth software layers.The lower layers (Radio Baseband, Link Controller, and
Link Manager) are very similar to the over-air transmissions.They can provide
voice connections and a single data pipe between two Bluetooth devices.To ease
integration of Bluetooth into existing applications, the specification provides
middle layers that attempt to hide some of the complexities of wireless commu-
nications. In combination, these layers, when transmitting, can take many familiar
data formats and protocols, package them, multiplex them together, and pass
them on in a manner that matches the lower layers’ capabilities. Matching layers
at the receiving end de-multiplex and un-package the data.

At the bottom of the stack are some layers that are fundamental to Bluetooth
wireless technology: Radio Baseband, Link Manager, Logical Link Control and
Adaptation Protocol (L2CAP), and Service Discovery Protocol (SDP).Above
these layers, different applications require different selections from the higher
layers. Each profile calls up the higher layers it requires. If you implement more
than one profile in your application, you may be able to reuse the common
layers. Not all stack vendors support all layers so, if you are buying in a stack,

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 70

www.syngress.com

make sure that it supports the layers required for your application’s profiles.
Figure 2.1 shows the layers defined by the Bluetooth specification (shown
unshaded) and some other common layers (shown shaded).

L2CAP
Logical Link Control and Adaptation Protocol multiplexes upper layer data onto
the single Asynchronous ConnectionLess (ACL) connection between two
devices and, in the case of a master device, directs data to the appropriate slave.
It also segments and reassembles the data into chunks that fit into the maximum
HCI payload (the HCI is the Host Controller Interface, which connects higher
layers on a host to lower layers on a Bluetooth device). Locally, each L2CAP
logical channel has a unique Channel Identifier (CID), although this does not
necessarily match the CID used by the remote device to identify the other end
of the same channel. CIDs 0x0000 to 0x003F are reserved with 0x0000 being

Exploring the Foundations of Bluetooth • Chapter 2 71

Figure 2.1 Bluetooth Protocol Stack

Application

Baseband:
Link Manager,
Link Controller

and Radio

L2CAP

SDP

Au
dio

TCS
RFCOMM

OBEX

De
vic

e M
an

ag
er

Connection
Manager

Security
Manager

Co
nt

ro
l

Da
ta

Au
dioHCI HCI

160bluetooth_C02.qk 12/5/01 4:15 PM Page 71

72 Chapter 2 • Exploring the Foundations of Bluetooth

unused; 0x0001 carrying signaling information; and 0x0002 identifying received
broadcast data.

The stack layers that sit above L2CAP can be identified by a Protocol
Service Multiplexor (PSM) value. Remote devices request a connection to a
particular PSM, and L2CAP allocates a CID.There may be several open channels
carrying the same PSM data. Each Bluetooth defined layer above L2CAP has its
own PSM:

■ SDP – 0x0001

■ RFCOMM – 0x0003

■ Telephony Control Protocol Specification Binary (TCS-BIN) – 0x0005

■ TCS-BIN-CORDLESS – 0x0007

L2CAP only deals with data traffic, not voice, and all channels, apart from
broadcasts (transmissions from a master to more than one slave simultaneously),
are considered reliable.

RFCOMM
RFCOMM (a name coming from an Radio Frequency [RF]-oriented emulation
of the serial COM ports on a PC) emulates full 9-pin RS232 serial communica-
tion over an L2CAP channel. It is based on the TS 07.10 standard for a software
emulation of the RS232 hardware interface.TS 07.10 includes the ability to mul-
tiplex several emulated serial ports onto a single data connection using a different

www.syngress.com

Reliability of L2CAP
Because of the nature of wireless communications, the links provided by
the baseband are not reliable. Errors are caused by radio interference or
fading of signals. There is a chance that two or more errors in a packet
will combine to give a packet that contains errors but still has a correct
checksum. The Bluetooth Special Interest Group (SIG) is considering
implementing error correction at L2CAP, which would make such errors
less likely to affect applications.

Debugging…

160bluetooth_C02.qk 12/5/01 4:15 PM Page 72

Exploring the Foundations of Bluetooth • Chapter 2 73

Data Link Connection Identifier (DLCI) for each port. However, each TS 07.10
session can only connect over a single L2CAP channel and thus only communi-
cate with one device.A master device must have separate RFCOMM sessions
running for each slave requiring a serial port connection.

Version 1.1 of the Bluetooth specification has added to the capabilities of the
standard TS07.10 specification by providing flow control capabilities.This caters
for mobile devices with limited data processing and storage capabilities allowing
them to limit the incoming flow of data.

OBEX
The Object Exchange standard (OBEX) was developed by the Infrared Data
Association (IrDA) to facilitate operations common to IR-enabled devices like
personal digital assistants (PDAs) and laptops. Rather than develop a new stan-
dard, the Bluetooth SIG took OBEX largely as is, detailed a few specifics
regarding Bluetooth implementation (e.g., making some optional features manda-
tory), and used it in the File Transfer, Synchronisation, and Object Push profiles.
OBEX allows users to put and get data objects, create and delete folders and
objects, and specify the working directory at the remote end of the link. IrDA has
also provided formats for data objects, while the Bluetooth specification has
adopted the vCard format for business card exchange and the vCal format for
exchanging calendars.

PPP
The Point-to-Point Protocol (PPP) is the existing method used when transfer-
ring Transmission Control Protocol/Internet Protocol (TCP/IP) data over
modem connections.The Bluetooth specification reuses this protocol in the
local area network (LAN) Access Profile to route network data over an
RFCOMM port.Work is already underway on a TCP/IP layer that will sit
directly above L2CAP, bypassing and removing the overhead of PPP and
RFCOMM.This work is hinted at in some areas of the specification, but in v1.1
PPP, is all that’s available.

TCS Binary
Telephony Control Protocol Specification Binary (TCS Binary, also called TCS-
BIN), is based on the International Telecommunication Union-Telecommunication
Standardization Sector (ITU-T) Q.931 standard for telephony call control. It
includes a range of signaling commands from group management to incoming

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 73

74 Chapter 2 • Exploring the Foundations of Bluetooth

call notification, as well as audio connection establishment and termination. It is
used in both the Cordless Telephony and Intercom profiles.

SDP
The Service Discovery Protocol differs from all other layers above L2CAP in that
it is Bluetooth-centered. It is not designed to interface to an existing higher layer
protocol, but instead addresses a specific requirement of Bluetooth operation:
finding out what services are available on a connected device.The SDP layer acts
like a service database.The local application is responsible for registering available
services on the database and keeping records up to date. Remote devices may
then query the database to find out what services are available and how to con-
nect to them.The details of service discovery can be complex and are discussed
further in Chapter 5, but each profile describes exactly what information should
be registered with SDP based on the application implementation.

Management Entities
Device, Security, and Connection Managers are not protocol layers so much as
function blocks.The Device Manager handles the lower level operation of the
Bluetooth device.The Connection Manager is responsible for coordinating the
requirements of different applications using Bluetooth channels and sometimes
automating common procedures.The Security Manager checks that users of the
Bluetooth services have sufficient security privileges.

HCI
The Host Controller Interface is not a software layer, but a transport and com-
munications protocol that aids interoperability between different manufacturers’
solutions. It is not mandatory to use the HCI interfaces defined in the specifica-
tion (Universal Serial Bus [USB]; RS232; or a simple Universal Asynchronous
Receive Transmit [UART]), or indeed any HCI transport at all, if there are better
solutions for your application.

Lower Layers
The lower layers (Radio Baseband, Link Controller, and Link Manager) format
the over-air transmissions, handle error detection and re-transmission, and manage
the links between devices.

Table 2.1 illustrates which profiles use which layers.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 74

Exploring the Foundations of Bluetooth • Chapter 2 75

Table 2.1 Stack Layer Requirements by Profile

Lower
Profile Layers L2CAP SDP RFCOMM PPP OBEX TCS-Bin

Service Discovery
Application X X X
Cordless
Telephony X X X X
Intercom X X X X
Serial Port X X X X
Headset X X X X
Dial-up
Networking X X X X
FAX X X X X
LAN Access X X X X X
Generic Object
Exchange X X X X
Object Push X X X X
File Transfer X X X X
Synchronization X X X X

Why Unconnected Devices Need to Talk
As mentioned in the Introduction, not all the details of operating a radio com-
munication link can be hidden from the application by intervening software
layers. Some of the basics of wireless communications will be exposed and it is
essential to handle these functions correctly if operation is to be as seamless as
Bluetooth proponents envisage.With wired connections, the user might check
that two devices have the same type of physical interface port, that the ports sup-
port the same communications protocol, and that both devices run applications
that can use this protocol to talk to each other. If all these checks are passed, the
user might then plug a cable into the two ports and expect some useful commu-
nication.With Bluetooth devices, the user may not initially know that there are
other Bluetooth devices nearby, so a method is required to find them.Then there
is the Bluetooth equivalent of plugging in a cable: forming a connection.The
checks on communications protocols and applications compatibility are actually
done once a basic Bluetooth link is established.They are called service discovery.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 75

76 Chapter 2 • Exploring the Foundations of Bluetooth

This is not a book about the details of Bluetooth radio operation, but a little
knowledge about a few fundamental principles of the radio and baseband will
greatly help you understand what application level decisions are key, why they are
key, and how making the wrong decisions could lead to some very undesirable
behavior.

First, it is important to understand that Bluetooth radios use a frequency-
hopping scheme.When connected, the precise frequency for each hop is selected
by a pseudorandom algorithm that depends on the master device’s clock and
Bluetooth address. Slaves in a piconet synchronize on the master’s hopping pat-
tern. However, when unconnected, there is no master to synchronize to.
Bluetooth devices need a way to exchange a limited amount of data, allowing
them to find and connect to each other before synchronizing on a common
clock and Bluetooth address.

The procedure used to find devices is called inquiry, and the procedure used
to connect to devices is called paging. In both cases, one device transmits and
receives on special sequences of frequencies that are known to all devices.The
other device needs to be listening for the transmissions—if a transmission is
received correctly, it sends out a reply. Since it knows the sequences used for
inquiry and paging, it can work out the correct frequency on which to send the
reply.The key points are:

1. The application must place a device in a listening mode if it is to be
found or connected to.The listening mode that allows a device to be
found is called discoverable mode or inquiry scanning.The listening mode
that allows a device to be connected is called connectable mode or page
scanning.The terms discoverable and connectable are used at the user inter-
face, and the terms inquiry scanning and page scanning are used within the
software layers.

2. Whether finding or connecting, for communication to take place, one
device must transmit on the frequency that the other is receiving on.
This is done by the transmitter changing frequency quickly (1600 times
a second) while the receiver changes frequency slowly (every 1.28 sec-
onds).Their frequency hopping is not synchronized, so the procedure
must last long enough for the two devices to collide on a frequency that
isn’t subject to interference.This also introduces a random element to
the procedure: how long they take before transmitting/receiving on the
same frequency.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 76

Exploring the Foundations of Bluetooth • Chapter 2 77

3. A Bluetooth device will not reliably find or connect to other devices at
the same time as transferring voice.Voice links take priority over every-
thing, while inquiry and page operations take precedence over other data
transfers. It is allowed to inquire and page in the gaps between voice trans-
missions, but because the voice transmission takes priority, often responses
will be lost due to a voice transmission, so finding and connecting devices
can be slow and unreliable when voice links are in use.You must be aware
of these limitations when deciding how your application will behave.

In the following sections, we will discuss the inquiry and page procedures in
more detail.

Discovering Neighboring Devices
All Bluetooth devices must be discovered before a connection to them can be
initiated.You may not need to carry out a device discovery every time you wish
to connect to a device. Instead, you might be able to reuse information gathered
from a previous device discovery.There must always be an initial device discovery
before the connection, however.

There are two reasons to carry out device discovery. Either you do not know
what devices are within range and wish to find out, or you know a device is
within range and want to know its details so you can connect to it. In both cases,
the procedure is the same and is called an inquiry.

Inquiring and Inquiry Scanning
To discover other nearby devices, a Bluetooth device conducts an inquiry.The
basic command is HCI_Inquiry and has three parameters:

■ Lower Address Part (LAP)

■ Inquiry_Length The inquiry will time-out after this period. Note
that this parameter is in 1.28s units.

■ Number_Of_Responses If the number of responses given here is
reached, then the inquiry will end before the Inquiry_Length period has
elapsed.

The LAP determines the Inquiry Access Code (IAC) used in the transmitted
ID message which listening devices respond to.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 77

78 Chapter 2 • Exploring the Foundations of Bluetooth

There is also the option for the application to use HCI_Periodic_Inquiry_Mode
and configure the Bluetooth lower layers to conduct periodic inquiry procedures
automatically.There are corresponding commands, HCI_Inquiry_Cancel and
HCI_Exit_Periodic_Inquiry_Mode, which cancel the inquiry commands.

The listening mode for inquiry is called Inquiry Scan. Only devices in Inquiry
Scan will respond to inquiries and then only to inquiries which contain the correct
IAC.This has consequences for your application—you can hide from other devices
by not enabling Inquiry Scan; a device which does this is in non-discoverable
mode. Conversely, you are not guaranteed to find all Bluetooth devices in an
area because devices which are not inquiry scanning are effectively invisible.

Placing a device in Inquiry Scan mode involves setting up the right param-
eters, then enabling the mode. HCI_Write_Inquiry_Scan_Activity is used to set up
the scan duration and the interval between scans.

HCI_Write_IAC_LAP is used to define the IAC that the device will be lis-
tening for.There are currently only two valid IACs.The General IAC (GIAC),
0x9e8b33, is used by most devices, most of the time. It is the default, the common
meeting place for all devices, and must be supported. Some devices may also sup-

www.syngress.com

Messaging across HCI
Some host stacks do not handle multiple simultaneous transactions
across HCI. These protocol stacks will wait for one command to com-
plete before sending the next. If you have one of these stacks, then the
inquiry cancel command will not work: this is because the inquiry com-
mand will be allowed to run until the inquiry complete event returns
from the lower layers. Only after the inquiry complete has been returned
will the next command (inquiry cancel) be sent. This means that the
inquiry cancel is sent after the inquiry has already completed, so the
lower layers respond with an error message as they cannot cancel an
inquiry which is not in progress.

This is a rare problem as few commercial stacks now available
cannot handle multiple simultaneous HCI transactions. But if you find
your HCI misbehaving, it is worth investigating whether your stack is one
that queues up messages for simultaneous HCI transactions rather than
sending them to the lower layers.

Debugging…

160bluetooth_C02.qk 12/5/01 4:15 PM Page 78

Exploring the Foundations of Bluetooth • Chapter 2 79

port the Limited IAC (LIAC), 0x9e8b00, which can be used if you only wish to
be discovered for a limited amount of time and in response to a specific event.
Instructions and guidelines on their use are provided in the Bluetooth profiles.

The GIAC is most commonly used.All devices that scan will listen for this
code.The Limited Inquiry Access Code (LIAC) could be used in crowded envi-
ronments where many devices are answering inquiries and it can be difficult to
select the desired device.The owners of a pair of devices can agree to temporarily
put them into Limited Inquiry mode.They will then use the LIAC as well as the
GIAC for a short period before automatically reverting back to using only the
GIAC.The Generic Access Profile (GAP) mandates that any device listening for
the LIAC must also scan for the GIAC. If the Bluetooth hardware supports it,
both IACs can be listened for at the same time, in parallel. However, many hard-
ware implementations can only listen for one IAC at a time, so the scanning must
be done in series. In this case, it is the application’s responsibility to manage the
time-slicing between IACs so that GAP requirements are met.

The Limited Inquiry Access facility has not proved popular so far since it
requires user intervention at both ends of the link and tends to be seen as an
unnecessary complication for the user.

HCI_Write_Scan_Enable is used to both enable and disable the Inquiry Scan
mode.

If a device in Inquiry Scan responds to an inquiry this is reported, at the
Inquiring device, by an HCI_Inquiry_Result event. It is not reported at the
Inquiry Scanning device. In fact, the application is unaware that a response has
been generated.The HCI_Inquiry_Result event is variable in length, depending on
the number of responses, and has seven parameters:

■ Num_Responses The number of responses being reported in this
message.

■ BD_ADDR The Bluetooth Device Address for each device
responding.

■ Page_Scan_Repetition_Mode For each device responding.

■ Page_Scan_Period_Mode For each device responding.

■ Page_Scan_Mode For each device responding.

■ Class_Of_Device (CoD) CoD is a brief description of the type of
device responding. Details are in Section 1.2 of the Bluetooth Assigned
Numbers document.Again, there is one CoD for each responding device.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 79

80 Chapter 2 • Exploring the Foundations of Bluetooth

■ Clock_Offset Since the hop frequency of the responding device is
determined by its address and clock, information on the clock offset can
be used to predict what frequency it will be listening on and reduce the
time to connect to it.Again, one response for each device.

The Page_Scan parameters all refer to the frequency, intervals and exact
method by which the scanning device allows other devices to connect to it. See
the following section for more details.

Since both Inquiring and Inquiry Scanning devices randomly hop frequency,
they may end up on the same frequency more than once during an inquiry pro-
cedure and several responses may be generated.Whether each response is
reported by an HCI_Inquiry_Result event is dependent on the lower layer imple-
mentation and how many previous responses the lower layers can keep track of.
The application must therefore be able to identify duplicate responses and filter
them out.

When an inquiry is complete, because either the specified number of
responses or duration has been reached, an HCI_Inquiry_Complete event is gener-
ated. It contains only a status parameter.

You can carry out inquiries or inquiry scans as an unconnected device, a
master, or a slave. However, a slave’s responsibility to regularly listen for master
transmissions means it will not be able to devote as much of it’s time to the pro-
cedure, which may need to continue for longer to compensate. It is also possible
to define intervals and windows to allow both operations to run over the same
period. See the next section on timing for more detail.

Timing
Since one device needs to be in Inquiry and the other in Inquiry Scan for a suc-
cessful discovery, it is important for applications to give a high chance of finding
devices in a short time.The Generic Access Profile offers guidelines on how to
accomplish this. Devices that are generally discoverable (using the GIAC) repeat-
edly conduct a short inquiry scan over a long period of time while Inquiring
devices conduct a long inquiry either once, upon user prompting, or periodically,
but with a large interval in-between inquiries.

The actual numbers from the GAP are as follows:

■ While discoverable, enter Inquiry Scan for at least 10.625 milliseconds
every 2.65 seconds. Remain discoverable for at least 30.72 seconds.

■ When inquiring, enter Inquiry mode for at least 10.24 seconds.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 80

Exploring the Foundations of Bluetooth • Chapter 2 81

■ For devices using the LIAC, it is not recommended to stay in Inquiry
Scan mode for more than 1 minute.

If there are any voice links present, the data transfer required for them will
take priority over both Inquiry and Inquiry Scan operations.You need to con-
sider this when setting up the operations.

■ If one HV3 Synchronous Connection Oriented (SCO) link is present,
then the inquiry scan period should be extended to 22.5 milliseconds.

■ If two HV3 SCO links are present (or one HV2 link), the inquiry scan
period should be extended to 33.75 milliseconds.

These rules do not altogether compensate for the effect of SCO links, so you
should still consider inquiry and paging procedures to be slower and less reliable
if SCO links are in use.

It is often a good idea, if possible, to scale back voice connections to HV3
before entering Inquiry Scan. But note that with three HV3 links present, no
inquiry scanning can take place at all: the device is non-discoverable (the same is
applied to two HV2 links or one HV1 link; each of these configurations uses up
all possible slots and leaves no space for inquiring or scanning).

The inquiry period must be increased to compensate for the presence of
SCO connections, or being a slave, in the same way as the inquiry scan period.
The Link Controller also makes appropriate changes to the sequence of inquiry
transmission frequencies.Again, the presence of three SCO connections would
prevent any other operations, including inquiry.

The Bluetooth profiles define which devices within a usage scenario should
be discoverable and which should do the discovering.

When to Stop
In an ideal world, once you took the decision to be discoverable, other devices
would be able to find you immediately, all the time. In the real world of
Bluetooth devices, there are prices to be paid for that level of visibility: power
consumption and bandwidth.

Power consumption explains why the default inquiry scan duty cycle is 0.4
percent. For some battery-powered devices, even this may be too high, so drop-
ping into a non-discoverable state may be necessary to save power. Equally, if you
are designing a mains-powered device, it may be desirable to increase the duty
cycle and thus reduce the time it takes for other devices to find you.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 81

82 Chapter 2 • Exploring the Foundations of Bluetooth

Although transfer of voice (SCO) data takes precedence over Inquiry Scan
operations, other (ACL) data transfer does not. In other words, Inquiry Scan uses
up bandwidth. If you have chosen a high Inquiry Scan duty cycle, you may need
to reduce it, or even disable Inquiry Scan, to achieve a high data rate.

In all applications, there should be an option for the user to manually switch
from a discoverable to a non-discoverable mode.The GAP also includes guide-
lines on how these modes should be described in the User Interface.

Inquiry operations are less problematic.Although the same principles apply as
for Inquiry Scan (SCO data has higher priority,ACL data does not), the inquiry
operation is normally a one off, and generally triggered by the user. If carrying
out an inquiry is going to disrupt a critical data transfer, it might be a good idea
to warn the user before proceeding.Automatic periodic scanning should be sen-
sitive to bandwidth use if unexpected drops in transfer rates are to be avoided.
Note that if the lower layers are set to periodically inquire, they will schedule
inquiries with no allowances for data transfers: intelligent inquiry scheduling is
only possible at the application level.The user should also be given the option of
disabling periodic inquiry if the feature is offered.

One other consideration for inquiring devices is their effect on other ISM
band users. Every inquiry transmission potentially interferes with another piconet,
or even with other wireless technologies using the same frequencies as Bluetooth.
So, by specifying short inquiry periods the GAP helps Bluetooth devices to be
good neighbors, causing the minimum possible interference to nearby devices.

Connecting to a Device
Once a device has been discovered via inquiry, the information gathered can be
used to form a Bluetooth connection between devices.At the Bluetooth Radio
level, a connection means that the devices in a piconet are all frequency-hopping
together, synchronized to the master device’s Bluetooth address and clock.
Further up the protocol stack, it means that an ACL link has been established that
data can pass over.This allows the use of L2CAP and all the other layers that sit
above it, including the service discovery layer.The protocol for forming the link
is called paging.

Paging and Page Scanning
To create a connection between Bluetooth devices one device pages another
device, which must be in Page Scan to respond.The terms “create connection”

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 82

Exploring the Foundations of Bluetooth • Chapter 2 83

and “page” are often used interchangeably although the latter is more specific
since connections can also be created between upper stack layers.A successful
page results in an ACL connection between the paging device, which, by default,
becomes the master, and the paged device, the slave.

To allow an incoming connection, a device must be placed in Page Scan
mode.This is similar to Inquiry Scan in that the mode must be configured, using
the HCI_Write_Page_Scan_Activity, HCI_Write_Page_Scan_Mode, and
HCI_Write_Page_Scan_Period_Mode, and then activated using the same
HCI_Write_Scan_Enable command that controls the Inquiry Scan operation.
Provided both modes have been configured with timing that allows it (see the fol-
lowing), a device can be in both Inquiry and Page Scan modes at the same time.

HCI_Write_Page_Scan_Activity sets the page scan period and the interval
between scans, and hence the duty cycle. HCI_Write_Page_Scan_Mode determines if
the device scans using the mandatory paging scheme or an optional one. Only one
optional scheme is currently defined, although there is a provision for three. It is
defined in Appendix VII of the Core Specification and trades an increased level of
complexity and a higher duty cycle at the paging device for a lower duty cycle at
the Page Scanning device. Few, if any, hardware vendors currently support the
optional paging scheme, so a method must exist for hardware that doesn’t support
it to connect to hardware that does. For this reason, devices in both Page and
Inquiry Scan that receive an incoming inquiry must then use the mandatory paging
scheme for Tmandatory_pscan seconds following. HCI_Write_Page_Scan_Period_Mode sets
the number of seconds according to the Page Scan mode (see Table 2.2).

Table 2.2 Relationship between SP Mode and Mandatory Page Scan Period

Scan Period Mode Tmandatory_pscan

P0 >20 seconds
P1 >40 seconds
P2 >60 seconds

To initiate a page, an application issues an HCI_Create_Connection command
that contains the following parameters:

■ BD_ADDR The Bluetooth device address of the device you wish to
page.

■ Packet_Type The types of ACL packet the local device will support
on this link (i.e. DH/M 1/3/5).

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 83

84 Chapter 2 • Exploring the Foundations of Bluetooth

■ Page_Scan_Repetition_Mode How often the target device enters
Page Scan mode.

■ Page_Scan_Mode Whether to use the mandatory Page Scan mode,
or an optional mode.

■ Clock_Offset The estimated difference between the local device’s
clock and the target device’s clock.

■ Allow_Role_Switch Determines whether the local device will accept
a request from the target device to swap master/slave roles.

Apart from Packet_Type, the first five parameters are provided as part of an
inquiry response.The BD_ADDR is required to identify the target device.The
two Page_Scan parameters determine the exact baseband operation during the
page. Knowing the Clock_Offset of a device is not essential to making a connec-
tion—it can still be made if this value is completely wrong—but the better the
estimate, the shorter the connection time.The paging device uses the
BD_ADDR and Clock_Offset parameters to calculate the frequency the target
device will be page scanning on and starts its paging transmission there. If initially
unsuccessful, the paging device then tries other, progressively less-likely frequen-
cies until eventually all possibilities have been covered.

When the target device receives an incoming page, it does not necessarily
accept it immediately.The HCI_Set_Event_Filter command can be used to switch
between three possible behaviors:

■ Send an HCI_Connection_Request event to the host and wait for an
HCI_Accept_Connection_Request or an HCI_Reject_Connection_Request
command.

■ Accept the Page automatically.

■ Accept the Page automatically only if the paging device accepts
master/slave role switch.

The last is important for profiles such as LAN access where an access point is
discoverable and connectable while being a master of a piconet.A new device,
when it connects, becomes, by definition, the master.The new device must allow
the role switch so that the access point can become a master again and continue
to maintain communications with the existing slaves.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 84

Exploring the Foundations of Bluetooth • Chapter 2 85

www.syngress.com

Masters, Slaves, Role Switches, and Scatternets
To upper stack layers, the only difference between a master and a slave
is that a master can talk to several slaves in a piconet, while a slave can
only talk to the master of the piconet.

For some devices, this relationship is important. Take, for example,
a PC with a Bluetooth mouse and keyboard already operating. The PC
may also wish to allow a PDA to connect and synchronize. Since the PDA
initiates the connection, it becomes the master of the new piconet, but
the PC will only have allowed this connection if, as part of the connec-
tion request, the PDA stated it allows master/slave role switches. As soon
as the connection is established at baseband level, the PC requests a
switch. If the PDA does not grant it, the PC drops the connection.

Interestingly, for the time between the connection completing and
the role switch taking place, the PC is still master of its old piconet even
though it’s a slave of the PDA’s piconet. When a single device is a master
of one piconet, and slave of another simultaneously, this is, by defini-
tion, a scatternet.

Several manufacturers now support the limited form of scatternet
required for a master/slave role switch while master of an existing
piconet, but maintaining the scatternet for any length of time is still
problematic. The Bluetooth specification gives no way for a slave to
demand hold, sniff, or park modes from a master; they must always be
requested. The master is entitled to refuse such requests, so it is impos-
sible to guarantee that a slave in one piconet will be granted the time
required to participate in another piconet as a master or a slave. Even if
devices choose to simply switch between piconets as they see fit,
ignoring the normal request procedures, there are still problems with
how to time these switches in order to maintain multiple connections.

The master of each piconet must periodically poll all its slaves in
order to give them an opportunity to transmit (since slaves only transmit
data in response to a master transmission). How to cope with the vari-
ability of the interval between poll transmissions from a master is par-
ticularly awkward. It is possible to devise solutions to these problems,
but there are a number of possible solutions and no guarantee that two
implementers will choose the same one. A single chip set vendor may be
able to demonstrate scatternet operation provided they produce all

Developing & Deploying…

Continued

160bluetooth_C02.qk 12/5/01 4:15 PM Page 85

86 Chapter 2 • Exploring the Foundations of Bluetooth

If the page is successful, an HCI_Connection_Complete event is generated at both
ends of the new link with a “Success” status and other parameters describing the
connection.This includes the Connection Handle that, for a master with multiple
slaves, is used to route data.A page can fail because it times out or is actively
rejected in which case the paging device generates an HCI_Connection_Complete
event with the appropriate “Failure” status parameter.

Timing
Many of the same principles that apply to inquiry also apply to paging.Where
restrictions on inquiry timing are contained in the GAP, the core specification
defines restrictions on page scanning.The restrictions on the length of each indi-
vidual page scan, called the scan window, vary according to the number of SCO
links present. SCO traffic has a higher priority than page operations, so the scan
window must be extended to compensate for the lost bandwidth:

■ If no SCO links are present, the scan window must be at least 11.25
milliseconds (ms).

■ If an HV3 link is present, the scan window should be at least 22.4 ms.

■ If two HV3 links (or an HV2 link) are present, the scan window should
be at least 33.75 ms.

Restrictions are also placed on the period between page scans, called the scan
interval.The maximum interval between the start of successive scans is 2.56 sec-
onds. If page scanning is continuous (i.e., the scan window is the same length as

www.syngress.com

devices in the scatternet, but this provision goes against the funda-
mental Bluetooth concept of interoperability. Work is progressing in the
Bluetooth SIG to devise a standard solution to these problems.

There is an even greater problem with SCO connections in a scat-
ternet, however. The reserved slots for SCO connection in two scatternet-
connected piconets are running on different clocks. They will eventually
drift, relative to each other, so that the reserved slots coincide, making it
impossible for a single device to be part of both piconets. There is no way
to renegotiate the SCO timing once the link has been set up.

Fortunately, the problems with ACL scatternets may be resolved
soon, but those of SCO scatternets will likely be around for a very long
time. For the moment though, no profiles use, let alone require, scat-
ternet operation.

160bluetooth_C02.qk 12/5/01 4:15 PM Page 86

Exploring the Foundations of Bluetooth • Chapter 2 87

the scan interval), this is classed as Repetition Mode R0. If page scanning is not
continuous, but the interval is less than 1.28 seconds, this is classed as Repetition
Mode R1. Intervals between 1.28 seconds and the 2.56 second maximum are
classed as Repetition Mode R2.A paging device alters the way it pages
depending on the repetition mode of the target device, which is why this infor-
mation is returned as part of an inquiry response and is a parameter of the
HCI_Create_Connection command.

There is little point in a device being discoverable via Inquiry Scan but not
connectable.Although it is theoretically possible to place a device in Inquiry
Scan, but not Page Scan, this mode of operation is not currently used by any pro-
file. Most devices will be in Inquiry Scan and Page Scan at the same time.To do
this, the two scan intervals should be set equal, with the scan periods each occu-
pying a maximum of half the scan interval. Like Inquiry Scan, shorter scan inter-
vals can be used to reduce power consumption.

If an inquiry has previously been performed, then there is no need to repeat
the process every time a link between two devices is re-established. In fact,
placing a device in Inquiry Scan unnecessarily wastes power and allows any other
device within range to find it, generating unwanted inquiry responses.The
Inquiring device may also attempt to connect—if only to check the device’s
friendly name—wasting even more power. It is therefore common for devices to
be in Page Scan only.This is especially true of devices, like headsets, that are
bonded: linked securely to another device. One device of the bonded pair might
go into Page Scan when powered on, and the other would page it.The informa-
tion for the Page operation would come from a single inquiry when the devices
first bonded.

As mentioned previously, how long is spent paging before a connection is
established largely depends on how accurately the paging device knows the paged
device’s Clock_Offset. If it is exact, then connecting can take as little as 4ms.
However, when not in a link, devices’ offsets drift.The longer it has been since
the last connection between two devices, the less accurate the offset information.
It will take longer to connect next time. If one device has been powered off and
on between connections, the offset information is useless: no better than a
random guess. However, as long as the Bluetooth Address is correct, a connection
will still be formed eventually.The theoretical worst-case duration for a page is
just over five seconds. Interference or the presence of SCO links may extend this
time.The timeout period is set by the HCI_Write_Page_Timeout command.The
default is 5.12 seconds.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 87

88 Chapter 2 • Exploring the Foundations of Bluetooth

Who Calls Who?
Many Bluetooth profiles don’t care which device is the master of a link and
which is a slave. For a Point-to-Point Profile, the distinction is meaningless at the
higher layers. However, the distinction should be considered, especially for bat-
tery-powered devices, as it can have a huge effect on a device’s power consump-
tion, for two reasons.

Take, for example, a PDA that wishes to periodically and unconsciously syn-
chronize with a PC. Firstly, if by default, the PC initiates connections, then the
PDA must be connectable at all times. Even with an average Page Scan current
draw of 0.5 mA, it is still going to use 12 mA-hours of power per day just main-
taining the Page Scan mode. It may be more efficient to have the PDA wake
periodically and attempt to page the PC.

Secondly, although a slave can request power saving modes such as sniff and
park, a master is under no obligation to grant them. If they are not granted, then
a slave must listen for a master’s transmissions in every possible transmit slot,
draining power each time.As a master, a device only needs to transmit enough to
maintain a link and there is a better chance that power saving modes can be
negotiated and used.

Finding Information on
Services a Device Offers
There are many different potential types of Bluetooth device, each with dif-
ferent possible combinations of supported profiles, some of which have not
even been thought of yet. All these devices can connect and talk to each other,
but they may not support compatible profiles. For example, a headset has little
use for Internet access.When initial contact is made, the devices need to ask
each other a question.The exact question depends on circumstances. It is a
choice between either “Do you provide service X?” or “What services do you
provide?”

The first question is appropriate when the device asking the question is only
interested in a specific service. Our headset will only be interested in finding
devices that can act as an audio gateway. It has no interest in LAN Access Points,
so it will ask,“Do you provide an Audio Gateway service?”The second question
would be asked, for example, by a PC that wishes to know what devices are in
the neighborhood and what services they all provide.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 88

Exploring the Foundations of Bluetooth • Chapter 2 89

The mechanism to ask and answer these questions is provided by the
Service Discovery Protocol, a protocol for accessing a database of the services
a device offers.The database also contains the information required to answer
the subsequent question, “How do I use service X?” Since the application sup-
plies the services, it is also responsible for maintaining accurate SDP records of
them. Remote devices connect to the SDP server as clients and query these
records.

A service discovery record contains a number of attributes drawn from 28
possible types.They describe six broad types of information:

■ The services on offer (e.g., Generic Audio, Headset Audio Gateway,
Handsfree Audio Gateway); their names, availability, and descriptions.

■ The protocols used to access the services (e.g., L2CAP and RFCOMM).

■ How to connect to these protocols (e.g., the RFCOMM port).

■ The supported profiles (e.g., Headset, Handsfree).

■ How the service browsing tree is constructed.

■ The behavior of the database (e.g., when the service record is likely to
change).

Attributes are identified by their own Universally Unique Identifiers
(UUIDs).The ideas and mathematics of UUIDs are not unique to Bluetooth.
They are designed so that users can generate their own UUIDs with such a low
chance of two independently generated IDs being the same that this, in itself, is
sufficient to ensure they are not repeated. No central register of new UUIDs
needs to be kept. UUIDs in the range 0 to 232 are reserved for SIG-defined
attributes, but others can be created by product manufacturers. New manufac-
turer-created attributes will only be recognized by other products that already
know how the related services and protocols work and will not, therefore, expe-
rience the high level of interoperability that SIG-defined services enjoy. New ser-
vices must be different from SIG-defined services, or extensions to them.You are
not allowed to create a service that is similar to a headset, but that isn’t interoper-
able with the Headset profile.

The construction of the service discovery record can be complicated, but it is
essential if devices are going to interoperate correctly. Fortunately, a majority of
attributes that an application should store in the database are exactly specified in
each profile.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 89

90 Chapter 2 • Exploring the Foundations of Bluetooth

Every service record browsing tree must have a root named
PublicBrowseRoot. PublicBrowseRoot is required as all service browsing trees
contain this entry as their root.The presence of PublicBrowseRoot means that all
client devices have a known location where they can begin browsing.

Apart from the requirement for a known root, the construction of the ser-
vice record browsing tree is not defined by the profiles, but by the manufacturer.
You should simply try to make the browsing tree logical. For example, a Global
System for Mobile Communication (GSM) phone might offer the following
services:

■ Headset Audio Gateway

■ Handsfree Audio Gateway

■ Cordless Telephony

■ Intercom

With the addition of the Generic Audio service group, Generic Telephony
service group, and the PublicBrowseRoot entry, the service record browsing tree
shown in Figure 2.2 can be constructed.

To browse a remote device’s service discovery database, a local device must
page and set up an ACL connection with it.This means that a device must be in
Page Scan mode and accepting connections before information on the services it
offers can be gathered. Once an ACL connection is formed, the local device must

www.syngress.com

Figure 2.2 A Service Record Browsing Tree

Generic Audio
service group

PublicBrowseRoot

Handsfree
Audio Gateway

service

Headset
Audio Gateway

service

Generic
Telephony

service group

Cordless
Telephony

service

Intercom
service

160bluetooth_C02.qk 12/5/01 4:15 PM Page 90

Exploring the Foundations of Bluetooth • Chapter 2 91

then open an L2CAP channel and use the reserved PSM (0x0001) to request a
connection to the SDP layer.This PSM never changes, and SDP is always present,
so you always know where to look for information on a device’s services.The
L2CAP connection can only be used for service discovery. If you wish to use
other services, another L2CAP connection is required.This is important for
maintaining security while still allowing service discovery to take place.

The process of service discovery is covered in detail in Chapter 5.

Connecting to and Using
Bluetooth Services
Several stages must be completed before you can use a Bluetooth service.

1. Find the device – Inquire.
2. Connect to the device – Page.
3. Discover what services the device supports – SDP.
4. Decide what service to connect to and find out how to connect to it –

SDP.
5. Connect to the service.

Stages 3 thru 5 all involve connecting to more than one upper layer.
Connections to these upper layers must each be opened separately and in order.
The following figures illustrate this process for an Audio Gateway connecting to
and setting up an audio link to a Headset.This is a conceptual summary, not a
detailed systematic guide.The exact steps an Audio Gateway application will need
to go through will depend on how much of the detail is abstracted by a
Connection Manager.The following sections give one example sequence.

Stage 1: Finding the device by Inquiring. (See Figure 2.3.) These diagrams
are simplified, and omit details of configuration. So, for instance it’s assumed that
somehow the Audio Gateway has configured inquiry parameters, and that the
Headset has been placed in Inquiry Scan mode.

1. The Audio Gateway application sends an inquiry request to the lower
layers.

2. The lower layers send inquiry packets to the neighborhood.

3. All Inquiry Scanning devices in the neighborhood, including the
headset, reply with inquiry responses.

4. The lower layers send the responses to the Audio Gateway application.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 91

92 Chapter 2 • Exploring the Foundations of Bluetooth

Note that the Headset application is not involved at all: once it has config-
ured the lower layers to Inquiry Scan, it is completely unaware of any inquiry
responses they generate.

Stage 2: Connecting to the device by paging. (See Figure 2.4.) Again, these
diagrams are simplified, and omit details of the configuration. So, for instance, it is
assumed that somehow the Audio Gateway has configured Page parameters, and
that the Headset has been set into Page Scan mode.

1. The Audio Gateway application sends a page request to the lower
layers

2. The lower layers of the Audio Gateway page the Headset, using its
Bluetooth device address to generate ID packets, which only it will be
listening for. Other page scanning devices in the neighborhood will not
detect the paging or respond to it.At this stage, a series of low-level
packets are exchanged.The details are not important except to note that
the Headset is passed information on the Audio Gateway device,
including its Bluetooth device address and Class of Device.

3. The lower layers on the Headset send a message to the Headset applica-
tion notifying it of the connection request.This notification will include
the Audio Gateway’s Bluetooth device address and Class of Device,
which were gathered during paging.

www.syngress.com

Figure 2.3 Simplified Inquiry Procedure

L2CAP

AG Application

Baseband

L2CAP

RFCOMM SDP

Headset Application

Baseband

Au
dio

Au
dio1

2

3

4

Inquiry
1. Application starts inquiry
2. Baseband inquiry
3. Baseband inquiry response
 (Headset in Inquiry Scan)
4. Inquiry result reported

SDPRFCOMM

160bluetooth_C02.qk 12/5/01 4:15 PM Page 92

Exploring the Foundations of Bluetooth • Chapter 2 93

4. The Headset application replies to the lower layers accepting the
connection.

5. The lower layers on the headset send the response to the lower layers on
the Audio Gateway.

6. The lower layers on the Audio Gateway forward the message, accepting
the connection to the Audio Gateway application.The Audio Gateway
application now knows it has an ACL (data) connection ready for use.

Stage 3: Discovering what service a device supports through SDP. (See
Figure 2.5.) The first thing to do when connecting to SDP is establish an L2CAP
connection using the PSM which identifies the SDP layer.

1. The Audio Gateway application sends a request to its local L2CAP layer
asking for an L2CAP connection to the PSM for SDP on the Headset.

2. The request is relayed to the L2CAP layer on the Headset, which asks
the Headset application if it is willing to accept the request.

3. The Headset application responds that it will accept a connection to the
SDP layer.

4. The response is relayed to the L2CAP layer on the Audio Gateway,
which informs the Audio Gateway application that an L2CAP connec-
tion to the SDP layer on the headset is available for use.

www.syngress.com

Figure 2.4 Simplified Page Procedure

L2CAP

AG Application

Baseband

L2CAP

Headset Application

Baseband

Au
dio

Au
dio1

2

5

6

Page
1. Application requests connection
2. Baseband page
3. Incoming connection request
 (Headset not set up to auto-accept connections)
4. Accept connection
5. Baseband page response - connection accepted
6. Connection complete (ACL link in place)

3 4
RFCOMM SDPSDP RFCOMM

160bluetooth_C02.qk 12/5/01 4:15 PM Page 93

94 Chapter 2 • Exploring the Foundations of Bluetooth

www.syngress.com

Stage 4: Decide what service to connect to and find out how to connect to
it. (See Figure 2.6.) The Audio Gateway application can now send SDP requests
and will receive SDP responses from the SDP server on the Headset. Notice that
once the Headset application has registered a service record with the SDP layer, it
does not need to be involved in SDP transactions—the SDP layer can respond to
requests autonomously.

Figure 2.5 Simplified L2CAP Connection to SDP Procedure

L2CAP

AG Application

Baseband

L2CAP

Headset Application

Baseband

Au
dio

Au
dio

1
4

Initialize L2CAP to SDP
1. AG requests connection to SDP (PSM 0x0001)
2. L2CAP connection request indication at Headset
3. Headset accepts connection
4. L2CAP CID for SDP connection is reported at AG

ACL

2 3 SDPSDP
RFCOMM RFCOMM

Figure 2.6 Simplified SDP Search Procedure

L2CAP

RFCOMM SDP

AG Application

Baseband

L2CAP

RFCOMM SDP

Headset Application

Baseband

Au
dio

Au
dio

SDP Search
AG application uses SDP to discover services
offered by Headset application. Headset application
should already have placed a correct service record
in the database. Information returned includes PSM
for RFCOMM and DLCI for RFCOMM channel.
Once information is gathered, SDP connection can
be closed.

ACL

160bluetooth_C02.qk 12/5/01 4:15 PM Page 94

Exploring the Foundations of Bluetooth • Chapter 2 95

The Audio Gateway will send requests to retrieve the service record for the
Headset Service.This checks that the service is really supported, and provides
information on how to connect with it.

Stage 5: Connect to the service. (See Figure 2.7.) This stage begins in the
same way as connecting to the SDP layer by creating an L2CAP connection.The
procedures are exactly the same as those for creating an L2CAP connection to
SDP, except that the PSM used this time is the PSM for RFCOMM.

Once the L2CAP connection to RFCOMM is established, it can be used to
carry messages between the Audio Gateway application and the Headset applica-
tion.As we noted in “Reviewing the Protocol Stack,” RFCOMM can carry
many emulated serial links simultaneously, therefore the Audio Gateway must
identify the correct link to use to communicate with the Headset service.This is
done by using the DLCI for the Headset service, which was passed to the Audio
Gateway in the Headset’s service record. See Figure 2.8.

Once the Audio Gateway and Headset are communicating across
RFCOMM, the Audio Gateway can send control messages using AT commands
(the same command set that is commonly used to control modems). See Figure
2.9.To notify the Headset application that there is a call waiting, and to ask the
headset application to alert the user with a ring tone, the Audio Gateway applica-
tion sends an AT+RING command over the RFCOMM link. If the headset user

www.syngress.com

Figure 2.7 Simplified L2CAP Connection to RFCOMM Procedure

L2CAP

AG Application

Baseband

L2CAP

Headset Application

Baseband

Au
dio

Au
dio

1 4

Initialize L2CAP to RFCOMM
1. AG requests connection to RFCOMM
 (PSM 0x0003)
2. L2CAP connection request indication at Headset
3. Headset accepts connection
4. L2CAP CID for RFCOMM connection is reported at AG

ACL

2 3 SDPSDP
RFCOMM RFCOMM

160bluetooth_C02.qk 12/5/01 4:15 PM Page 95

96 Chapter 2 • Exploring the Foundations of Bluetooth

presses a button to accept the call, the Headset sends this button press in a keypad
command:AT+KPD.

Once the user has accepted the call, a voice (SCO) link must be set up (see
Figure 2.10). Although this link is controlled using the RFCOMM link, it is
established separately, usually by a separate audio control layer. Once the SCO
link is established, it is still controlled by the RFCOMM link. For instance,
some headsets support remote volume control using AT commands, and the

www.syngress.com

Figure 2.9 Simplified Headset Service Connection Procedure

L2CAP

RFCOMM SDP

AG Application

Baseband

L2CAP

RFCOMM SDP

Headset Application

Baseband

Au
dio

Au
dio

Set Up Audio Connection
Control messages are exchanged over RFCOMM
channel to open an audio connection.

ACL

SCO

Figure 2.8 Simplified L2CAP Connection to RFCOMM Procedure

L2CAP

RFCOMM SDP

AG Application

Baseband

L2CAP

RFCOMM SDP

Headset Application

Baseband

Au
dio

Au
dio

RFCOMM Connection to Headset Service
AG uses RFCOMM channel with CID from SDP
query to connect to Headset service and exchange
control information.

ACL

160bluetooth_C02.qk 12/5/01 4:15 PM Page 96

Exploring the Foundations of Bluetooth • Chapter 2 97

SCO link can be destroyed by sending a hang-up command AT+HUP on the
RFCOMM link.

The exact procedure for using the service is defined in the appropriate
Bluetooth profile.As we have seen, the level of detail in a profile goes to the
exact AT command to be sent over an RFCOMM channel when a particular
button is pressed. It is this level of detail that allows such a high level of inter-
operability. Some procedures, such as those for a Headset, are relatively simple,
while others are a lot more complex; the Printer Profile is a good example.

www.syngress.com

Figure 2.10 Simplified SCO Connection Procedure

L2CAP

RFCOMM SDP

AG Application

Baseband

L2CAP

RFCOMM SDP

Headset Application

Baseband

Au
dio

Au
dio

Audio Connection In Place
Although RFCOMM and L2CAP layers are still
active, they do not carry any audio data. (In Headset
and AG devices, to reduce latency, audio is often
routed over a PCM connection directly to and from
the baseband rather than over the HCI transport.)

ACL

SCO

160bluetooth_C02.qk 12/5/01 4:15 PM Page 97

98 Chapter 2 • Exploring the Foundations of Bluetooth

Summary
The Bluetooth stack does a good job of hiding the complexities of a wireless
interface, but some peculiarities are still apparent. Before connections can be
made between devices, they must find each other. One device discovers another
by sending out inquiry transmissions, while the other listens for these inquiries
and replies to them. A device must be in Inquiry Scan mode to be discoverable.
The specification details timing restrictions on Inquiry and Inquiry Scan
designed to ensure that devices have the best chance possible of discovering
each other, while still allowing a low duty cycle and hence, minimal power
consumption. Increasing the duty cycle reduces latency, but increases power
consumption.

Once two devices have found each other, they use a paging procedure to
connect.This is similar to inquiry in that one device transmits while the other
listens and then responds. Only devices that are in Page Scan mode can be con-
nected to, but devices in Page Scan may reject an incoming connection request if
they choose.The Bluetooth specification places limits on Page Scan to allow a
good chance of connection while keeping power consumption low.

Devices are usually in Page Scan only (connectable but not discoverable), or
Page and Inquiry Scan (connectable and discoverable).

While a Bluetooth service is being used, the complexities of the air interface
are hidden by abstracting the interface across a number of software layers.The
HCI transport provides a standardized interface to the Bluetooth integrated cir-
cuit (IC).Audio is routed directly over the HCI interface. Data traffic from sev-
eral upper layers is multiplexed through the Logical Link Control and Adaptation
Protocol (L2CAP), which identifies upper layer types by their Protocol Service
Multiplexor (PSM) values.The actual L2CAP channels each have unique
Channel Identifiers (CIDs).The Bluetooth specification describes several different
types of layers above L2CAP, including RFCOMM for serial port emulation, and
TSC-BIN for telephony profiles.

Different Bluetooth devices support different profiles and offer different ser-
vices. Each Bluetooth application must maintain an accurate record of the ser-
vices it offers in a service discovery database. Remote devices can then connect
to this database and use the Service Discovery Protocol (SDP) to query it.The
SDP layer can always be found in the same place, above L2CAP. Service discovery
can be complex, but the Bluetooth profiles detail most of the attributes that
should be stored in a service record.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 98

Exploring the Foundations of Bluetooth • Chapter 2 99

Once a remote device has connected to a local device and found a service in
the service database that it wants to connect to, attributes in the service record
provide the information on the upper layers required to use the service and how
to connect to them. Connections to each protocol layer must be made in turn
from lowest to highest.

Solutions Fast Track
Reviewing the Protocol Stack

� The protocol stack hides the complexity of the wireless interface and
presents, at its highest level, a software interface that resembles that of a
wired connection.

� Not all the differences between a wired and a wireless interface can be
hidden. In particular, the steps required to find and connect to other
devices are peculiar to wireless.

� Bluetooth devices can contain various combinations of upper stack
layers to support various profiles.The Bluetooth specification details a
service discovery layer so that devices can find out what services are
available and how to connect to them.

Why Unconnected Devices Need to Talk
� With Bluetooth devices, the user may not initially know that there are

other Bluetooth devices nearby, so a method is required to find them.
The Bluetooth equivalent of plugging in a cable is the forming of a
connection.The checks on communications protocols and applications
compatibility are actually done once a basic Bluetooth link is established,
and are called service discovery.

� The procedure used to find devices is called inquiry, and the procedure
used to connect to devices is called paging. In both cases, one device
transmits and receives on special sequences of frequencies that are
known to all devices.The other device needs to be listening for the
transmissions—if a transmission is received correctly, it sends out a reply.
Since it knows the sequences used for inquiry and paging, it can work
out the correct frequency on which to send the reply.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 99

100 Chapter 2 • Exploring the Foundations of Bluetooth

Discovering Neighboring Devices
� Only devices in Inquiry Scan can be discovered.

� An inquiry is normally a periodic or user-initiated event.

� An inquiry response contains all the information required to connect to
a device by paging.

Connecting to a Device
� Only devices in Page Scan can accept connections, although they may

choose to reject incoming connection requests.

� If a page and connection request is successful, then the paging device
becomes the master of the piconet and the paged device becomes the
slave.An Asynchronous ConnectionLess (ACL) connection now exists
between the two.

� A master can have connections to several slaves, but a slave can only have
a connection to a master. For the upper stack layers, this is the only dif-
ference between the two.

Finding Information on Services a Device Offers
� The application is responsible for maintaining accurate records of the

services it offers in a service database.

� An ACL and a Logical Link Control and Adaptation Protocol (L2CAP)
connection must exist to a remote device before it can browse the ser-
vice database using the Service Discovery Protocol (SDP).

� The service database contains all the information required for a remote
device to identify and connect to local Bluetooth services.

Connecting to and Using Bluetooth Services
� A remote device must conduct an SDP query before connecting to a

local Bluetooth service, and must support a complementary profile.

� Connecting to a service involves first opening L2CAP, then higher layer
connections in turn, using the information from the SDP query.

� The procedure for using a service is detailed in the appropriate
Bluetooth profile.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 100

Exploring the Foundations of Bluetooth • Chapter 2 101

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: I don’t like the way the Radio Baseband/Link Controller/Link Manager
works. Can I change it?

A: No. Interoperability is a fundamental concept of the Bluetooth specification.
If you change the way the lower layers function, they will no longer interop-
erate with other Bluetooth devices. In addition, several core technologies of
the Bluetooth specification use Intellectual Property (IP) licensed from
Ericsson, or the Bluetooth SIG (depending on which version of the adopter’s
agreement you signed).The Bluetooth Adopters Agreement gives this license
free of charge, provided your products meet the Bluetooth specification. If
you change the operation, you would be breaking the specification, the free
license would not apply, and you would be using IP without permission.
Litigation may follow.

Q: I don’t like the way the upper layers work. Can I change them?

A: Yes, up to a point.You can create your own upper layers and profiles, pro-
vided the Generic Access Profile (GAP) is still met.The GAP mandates cer-
tain minimum functionality, including support for service discovery.This
allows other Bluetooth devices to connect and find out what services are
offered, even if the devices do not know how to use them: the responses are
coherent and sensible. Support for SDP implies the presence of a specifica-
tion compliant L2CAP layer. New profiles must be different from or exten-
sions to current ones.You are not allowed to create something that is similar
to the Headset profile, but will not interoperate with Bluetooth Headset
Audio Gateways. However, any stack layer or profile functionality can only
be used by an application that knows how it operates. Everyone can read
how the Bluetooth specification defined layers and profiles work, so they
experience a high degree of interoperability. Manufacturer defined layers and
profiles will have a much lower visibility and a correspondingly lower level
of interoperability.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 101

102 Chapter 2 • Exploring the Foundations of Bluetooth

Q: What is the difference between an L2CAP PSM value and an L2CAP CID?

A: Protocol Service Multiplexor (PSM) values identify the protocol used to
communicate over an L2CAP channel. In effect, this defines the higher layer
that uses the channel. Multiple instances of the same higher layer may use dif-
ferent L2CAP channels, but they will all be identified by the same PSM
value. Each separate channel is uniquely identified by its Channel ID (CID).
A higher layer may request an L2CAP connection to a remote RFCOMM
entity by specifying a PSM value of 0x0003.The local and remote L2CAP
layers then assign CIDs to this link.The CIDs are used to actually identify
traffic sent between RFCOMM layers.

Q: What is the lowest power that a Bluetooth device can draw?

A: This question is only slightly less open-ended than “How long is a piece of
string?”The absolute lowest power consumption will be when a device is not
doing anything and can drop into a deep sleep mode. Many devices can do
this when not part of an active connection; some can also do this in intervals
between activity in low-power sniff, park, and hold modes. If low power
modes are not used, then slaves can often draw more current than masters,
since slaves have to listen in every possible slot for a master’s transmission,
while masters only have to transmit when they need to.Although page scan-
ning draws a lot less continuous current than paging, if paging is only to be
an infrequent activity, the paging device may end up drawing less average
current than a device in constant Page Scan mode. In summary, current con-
sumption depends on the mode of device operation, which is determined by
the application design. Power consumption implications should therefore be
considered carefully when the application is designed. If an application is to
be a good neighbor, it should also permit as much flexibility for devices that
connect to it as possible (e.g., accept low power mode requests).The actual
power consumption during each mode of operation will depend on the
Bluetooth hardware implementation.

www.syngress.com

160bluetooth_C02.qk 12/5/01 4:15 PM Page 102

Power
Management

Solutions in this chapter:

■ Using Power Management: When and
Why Is It Necessary?

■ Investigating Bluetooth Power Modes

■ Evaluating Consumption Levels

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Chapter 3

103

160bluetooth_C03.qk 12/5/01 4:17 PM Page 103

104 Chapter 3 • Power Management

Introduction
Bluetooth technology finally makes the mobile application a reality. Not only can
users be mobile whilst connected but radio networks can also be used in places
where fixed infrastructure is too expensive, dangerous, or difficult to deploy.This,
however, leaves you with the difficulty that all these devices must be powered
using batteries, which have to be frequently recharged or replaced. If the
Bluetooth device uses too much power, this can become a real problem.

As an applications designer, you may think there is nothing you can do about
the problem—after all, you have no control over the amount of power your hard-
ware consumes.The good news for Bluetooth applications is that designers do
have the ability to do something about improving the power efficiency of their
application.The Bluetooth specification offers a range of power-saving features,
tailored to suit the needs of different applications, which can give your applica-
tions a real edge.

The drawback (and there always is one) is that if you use these features badly,
you will slow down the response time of your application, making it infuriating
to use.This chapter will tell you how to get the best of both worlds: save power
while still producing usable applications.

Using Power Management:
When and Why Is It Necessary?
Before going further, its worth spending a little time defining what a power man-
aged application actually is and exploring some of the reasons why such applica-
tions are necessary.A power-managed application is one that allows the device it
is running on to go into sleep mode for significant portions of its duty cycle.
Sleep mode need not involve powering down the whole device; in fact, this is
highly unlikely, as certain functional blocks will always need to be powered.
However, when a device is in sleep mode it should be consuming significantly
less power than when it is fully “awake,” otherwise power management will be a
waste of time.

A further characteristic of application level power management is that it
should not adversely affect the performance of the application. In fact, the user
should not be aware that your application is using power management and that
the Bluetooth device is not constantly powered on. Powering down a device at
the wrong time can not only result in almost no energy being saved, but it can

www.syngress.com

160bluetooth_C03.qk 12/5/01 4:17 PM Page 104

www.syngress.com

also make an application virtually unusable by making it slow to respond. Let’s
consider the example of a wireless headset and a mobile phone. If the headset is
powered down at the wrong time, the phone will not be able to notify it of an
incoming call. Even though the headset may be saving significant amounts of
power, as far as the user is concerned, it is unusable, because it cannot receive calls
in a timely manner.

So, if power management has the potential to make your application unusable
or infuriatingly slow, why bother with it? Used in the correct way, the Bluetooth
power management modes have the potential to extend the battery life of your
device significantly, yet be completely transparent to the user. In general, users do
not like having to lug about heavy batteries or recharge their devices frequently.
A typical mobile phone has a small battery and yet can last several days without
recharging. If adding Bluetooth functionality to such a phone reduces its average
battery life significantly, it is unlikely to be popular with the user. Power manage-
ment at both the hardware and software levels of Bluetooth technology is there-
fore necessary in order to make these networks viable.A further benefit of
application power management is that the energy savings are independent of the
underlying technology.This means that if through power management you
double the battery life of your device, this will hold true even if the power con-
sumption of the underlying hardware was significantly improved.

A relatively minor, but nevertheless important, point to consider is who owns
the devices that are being power managed. Often greater power savings can be
achieved by one device at the expense of the energy resources of another.An
obvious example would be where a device is powered down for the majority of
its duty cycle while another device buffers packets destined for it and therefore
must be constantly powered on. Periodically, the first device wakes up to pick up
these packets, acts on them if necessary and then powers down again.Thus, the
first device can achieve very high power savings at the expense of the buffering
device. If the same user owns both devices (and especially if one of those devices
can be mains powered, e.g., a PC) then this is a very good approach to achieving
high power savings. However, if the devices belong to different users then there is
an obvious conflict of interests as both users might be keen to prolong the bat-
tery life of their particular device rather than altruistically providing a service for
others. In this case, a scheme where both devices achieve some, but not maximal,
power savings may be a better compromise rather than having no power saving at
all.The anticipated uses of a power-managed application can therefore be impor-
tant in choosing the power management approach taken.

Power Management • Chapter 3 105

160bluetooth_C03.qk 12/5/01 4:17 PM Page 105

106 Chapter 3 • Power Management

Having discussed how useful power-managed applications can be, it is worth
looking at what types of applications are suitable for these techniques and which
ones will have their performance adversely affected by power management.The
first thing to remember is that in order to save power, the device must be put
into sleep mode.Applications that require large amounts of data to be sent or
received, or that need very fast response times, are not suitable for power man-
agement. On the other hand, applications requiring small amounts of data to be
transmitted or where data transfers are infrequent are very well-suited to being
powered down for the majority of the time they are inactive. Similarly, applica-
tions where a delay in the response time can be tolerated should also consider
power management.

Before choosing a given Bluetooth power management mode to use with
your application you should consider the maximum amount of time the device
can be powered down without adversely affecting the performance of your appli-
cation. In general, when using power management, an application designer trades
off an increase in latency and a decrease in data throughput for an increase in the
battery life of the device running the application.The following sections will dis-
cuss the Bluetooth power management modes and the use of each mode in the
context of different types of applications.

Investigating Bluetooth Power Modes
For most applications, if a connection exists between two or more Bluetooth-
enabled devices, one of the Bluetooth low power modes can be used to extend
the battery life of either some or all of these devices. In fact, power-managed
devices can be in one of four states, listed in order of decreasing power consump-
tion: active, hold, sniff, and park mode. Each of these low power modes will be
described, along with a discussion of what type of applications will and will not
be suitable for it.

Active Mode
In active mode, the device actively participates on the radio channel.The master
schedules data transmissions as necessary and the slaves must listen to all active
master-slave slots for packets that may be destined for them.This mode is a
useful benchmark for comparison with the performance of the low power
modes since it not only consumes the most power but also has the highest

www.syngress.com

160bluetooth_C03.qk 12/5/01 4:17 PM Page 106

Power Management • Chapter 3 107

achievable data throughput due to the devices being able to use all available
slots.The power consumption of Bluetooth devices is highly dependent on the
manufacturer of the device and the application that it is running. Furthermore,
as the technology matures, the power consumption of Bluetooth-enabled devices
will improve further and hence it is best to compare low power modes relative
to the active mode.

We will briefly discuss the type of applications best suited to active mode,
which are unlikely to benefit or be able to utilize any of the other low power
modes.An application that has very high data rate requirements is unlikely to
power save as it will need to have its radio transceiver powered on for the majority
of its duty cycle. Similarly, applications that require very low latencies are also
unlikely to be able to use the low power modes since they will power down for
such short periods that the overhead in powering down the device will be greater
than the energy saving made (or powering down for longer periods will mean the
application is no longer able to conform to its latency requirements).

Hold Mode
This is the simplest of the Bluetooth low power modes.The master and slave
negotiate the duration that the slave device will be in hold mode for. Once a
connection is in hold mode, it does not support data packets on that connection
and can either power save or participate in another piconet. It is important to
note that the hold period is negotiated each time hold mode is entered. Figure
3.1 shows what the interaction between two devices using hold mode might
look like.A further important aspect of hold mode is that once it has been
entered, it cannot be cancelled and the hold period must expire before commu-
nications can be resumed.

www.syngress.com

Figure 3.1 Hold Mode Interaction

Po
we

r c
on

su
mp

tio
n

Active mode

Hold mode

Time

160bluetooth_C03.qk 12/5/01 4:17 PM Page 107

108 Chapter 3 • Power Management

Given these constraints, what type of application would benefit from using
hold mode? If your application can determine or control the time of its next data
transmission, then it can most probably use hold mode for power management.
One example of an application that has some degree of control over when its
next data transmission should take place is a wireless e-mail delivery system.
E-mail is not a synchronous communications medium and messages can take
anything from a few seconds to several hours to be delivered to their destination.
More importantly, users do not perceive e-mail delivery to be instantaneous and
hence would tolerate a small additional delay in favor of extending the battery
life of their device.The following sidebar,“Power Management Using Hold
Mode,” discusses in more detail how hold mode can be used by such an applica-
tion, along with power saving techniques available.

www.syngress.com

Power Management Using Hold Mode
Given that e-mail is not an instantaneous communications medium and
the delivery delays involved can be relatively large, any wireless e-mail
delivery system has a lot of flexibility in the way it checks for new mes-
sages and sends off ones that have just been written. In fact, if correctly
implemented, the delivery delay should not be perceptible to the user.

Let’s assume we have a Bluetooth-enabled organizer that periodi-
cally communicates with an access point and retrieves newly arrived e-
mails as well as sending off ones that have just been written. A simple
way of implementing such a service will be to set up an RFCOMM con-
nection between the two devices and have the checking device periodi-
cally search for new e-mails. Placing such a link in hold mode is unlikely
to have a significant impact on the delivery time of e-mail and can result
in power savings at both ends of the link. Furthermore, as each hold
interval is negotiated independently of the previous ones, this gives us
the opportunity to write an application that dynamically adapts to its
usage. For example, successive hold intervals can be increased by a cer-
tain factor (up to a particular ceiling, of course) if there are no e-mails
retrieved or sent during the previous “active” period. In the same way,
successive hold intervals can be decreased if the frequency of e-mail
arrivals increases. This approach allows the application to better adapt
to the way it is being used and achieve higher power savings when the

Developing & Deploying…

Continued

160bluetooth_C03.qk 12/5/01 4:17 PM Page 108

Power Management • Chapter 3 109

A very different candidate for hold mode is one which relies on the use of
a SCO link and does not need to send data packets. Furthermore, if the appli-
cation can tolerate a poorer audio quality it can use fewer slots and hence
power down for longer periods of time. For example, a baby monitor needs to
have an active SCO link but does not need the ACL link. Also, given that par-
ents are mainly interested in detecting whether the baby is crying or not, this
application could probably get away with a slightly poorer quality of audio. By
placing the ACL link in hold mode for relatively long periods of time and
reducing the quality of the SCO link, the application can achieve greater power
savings.

Having discussed application types able to benefit from using hold mode, we
will briefly consider applications that should not use this mode, being it’s likely to
have a negative impact on performance. Hold mode is not suitable for applications
whose traffic pattern is unpredictable and which cannot tolerate unbounded com-
munication latencies.An obvious example is a device that allows a user to browse
the Web over a wireless link. Even though access to the World Wide Web is noto-
rious for being slow, if this latency is further increased by using hold mode, the
application becomes too frustrating to use.At this point, it’s worth remembering
that once entered, hold mode cannot be exited until the negotiated hold interval
has expired. Furthermore, the traffic pattern of such an application is impossible to
predict due to the nature of Web browsing.The user may make a number of page
requests in quick succession whilst browsing for a particular page. However, once
the page has been found, they may spend considerably longer looking at the page
and not need the use of the wireless link for some time.

www.syngress.com

load on the radio is light whilst still being responsive at higher usage
rates. However, designers of such applications should be careful not to
make such transitions too rapid as this may result in a yo-yo effect with
the application swinging from one extreme to the other.

A further power saving technique at the application level, not
directly connected with the use of Bluetooth low power modes, may be
to compress data before transmitting it. If a high enough compression
ratio can be achieved, the time that the transceiver has to be powered on
can be reduced enough to justify the extra work. However, this should
also be used with caution. A small device with relatively little computa-
tion power will use up energy in compressing (or decompressing) a file
and this may offset the savings made in transmitting a smaller file. Such
power-saving techniques are highly dependent, not only on the type of
data being sent, but also on the underlying hardware.

160bluetooth_C03.qk 12/5/01 4:17 PM Page 109

110 Chapter 3 • Power Management

A very different application type whose performance will be negatively
impacted is a network of sensors which need timely delivery of their data—for
instance, intruder detection. Once a sensor has been triggered, fast delivery of this
information to the control center is imperative.A sensor with a long battery life
that spends much of its day powered down may just give an intruder time
enough to avoid being caught.

Sniff Mode
This low power mode achieves power savings by reducing the number of slots in
which a master can start a data transmission and correspondingly reducing the slots
in which the slaves must listen.The time interval,Tsniff, between the slots when a
master can start transmitting is negotiated between the master and slave when sniff
mode is entered.When the slave listens on the channel it does so for Nsniff attempt
slots and can then power down until the end of the current sniff interval.The time
of reception of the last data packet destined for the slave is important, as the slave
must listen for at least Nsniff timeout after the last packet is received.

Figure 3.2(A) shows the lower bound of the number of slots that the slave
must listen. In this case it just listens for Nsniff attempt.This happens if the last
packet for the slave is received when there are more than Nsniff timeout slots
remaining in the sniff attempt.The slave just listens for the remainder of the sniff
attempt interval and can then power down.

Conversely, Figure 3.2(B) shows a slave listening for an extended period. In
this case the slave listens Nsniff attempt, then receives a packet and listens for a fur-
ther Nsniff timeout slots.This shows how the slave must listen for a further Nsniff

timeout slots if the last packet is received when there are less than Nsniff timeout slots
left in its sniff attempt interval. If the slave continued receiving packets it would
continue listening for Nsniff timeout slots after the last packet is received, so if the
master kept on transmitting the slave would remain continuously active.

The slave can vary its activity from just Nsniff attempt slots thru (Nsniff attempt +
Nsniff timeout) slots, and even go all the way to continuously active, all without rene-
gotiating any parameters.You can therefore see that by choosing suitable values for
the sniff interval and the number of slots that the slave listens for, power savings can
be achieved without adversely affecting the performance of the application.

This section will consider what types of applications are suitable for use with
sniff mode and which are not. Sniff mode is more flexible than hold mode since
either the master or the slave can request for sniff mode to be exited. However,
there is a trade off in the overhead associated with exiting sniff mode and it is
more advantageous to choose the sniff mode parameters so as to minimize the

www.syngress.com

160bluetooth_C03.qk 12/5/01 4:17 PM Page 110

Power Management • Chapter 3 111

likelihood of exit. Since sniff mode requires the slave device to periodically wake-
up and listen to the radio channel, it is particularly well-suited to applications
where devices regularly transmit (or receive) data.An example of such an applica-
tion is discussed in the case study that follows. Sniff mode can also be used when
there is an active SCO link. Once again, by accepting a slight degradation in the
audio quality, power savings can be achieved since SCO links using HV2 or HV3
packets can be placed into sniff mode (note that SCO links using HV1 packets
can also be placed into sniff, but in this case it will not have much effect since the
device is transmitting in every slot).

Another set of applications that could use sniff mode are ones where the
devices can aggregate data and maybe even do a limited amount of processing
before communicating with the master.Thus, not only the frequency of commu-
nication can be reduced, but also the actual amount of data transmitted. Once
again, sensor networks are an obvious area of application. For example, a traffic
monitoring system would be wasting resources transmitting every second the
number of cars that have passed through a given point. Since the information is
not time-critical, the update frequency can be decreased (i.e., the car count is
aggregated at the sensor without affecting the performance of the system).
However, this need not be limited to sensor applications—for example, the e-mail
delivery system described in the previous example could be implemented using
sniff mode instead of hold mode.

www.syngress.com

Figure 3.2 Sniff Mode Interaction

Sniff
Attempt

Po
w

er
 co

ns
um

pt
io

n

Active mode

Sniff mode

Time

Sniff
Attempt

Sniff interval

Sniff
Attempt

Po
w

er
 co

ns
um

pt
io

n

Active mode

TimeSniff interval

Sniff mode

Sniff
Attempt

Sniff
Timeout

A

B

160bluetooth_C03.qk 12/5/01 4:17 PM Page 111

112 Chapter 3 • Power Management

Application types not particularly well-suited to using sniff mode are ones
frequently requiring relatively large data transfers. In this case, the time necessary
to transmit the data is important, because if it takes too much time, your applica-
tion will not be able to power down for very long, if at all.The application itself
will not see a degradation in performance, but it will not achieve any power sav-
ings either.

www.syngress.com

Power-Managed Sensor Networks
One application that Bluetooth seems particularly well-suited for is
sensor networks. As the technology matures, single chip Bluetooth solu-
tions will not only become smaller but also much cheaper, making it fea-
sible to embed them into even the cheapest devices. The number of
possible sensor applications is virtually infinite. For this example, we
shall consider what a patient monitoring system in a hospital might do
and how it can benefit from using sniff mode to prolong the battery life
of its sensors. Currently, remote monitoring of patients is limited mostly
to intensive care wards and usually only one or two of the patient’s vital
life signs are monitored. The main reason behind this is that once this
information has been collected, it is difficult to disseminate it so that
both doctors and nurses have easy access to it. By using wireless sensors,
the collected information can be periodically transmitted to a wireless
access point and from there stored centrally so it can be accessed from
anywhere in the hospital, or even from outside it (e.g., a consultant log-
ging in from home to check up on a patient).

One such system might involve a set of sensors such as heart rate,
blood pressure, temperature, and respiration monitors that frequently
transmit their readings to a central access point in the ward. This infor-
mation could then be displayed at the nurses’ station so that patients
are monitored continuously. In addition, doctors would be able to
access the same information from anywhere in the hospital or even
from home using their own Bluetooth-enabled organizer and hence be
able to react quickly to changes in the patient’s condition. To save
power, the sensors use sniff mode and during the listen slots are
addressed by the access point and transmit their readings. The sensor
can then power down for the remainder of the sniff interval. This solu-

Developing & Deploying…

Continued

160bluetooth_C03.qk 12/5/01 4:17 PM Page 112

Power Management • Chapter 3 113

Park Mode
Park mode is the Bluetooth low power mode that allows the greatest power sav-
ings. However, while parked, a device cannot send or receive user data and
cannot have an established SCO link. In this mode, the slave does not participate
in the piconet, but nevertheless remains synchronized to the channel.This mode
has the further advantage of allowing the master to support more than seven
slaves by parking some whilst activating others.A parked slave periodically wakes
up in order to resynchronize to the channel and listen for broadcast messages. In
order to allow this, the master supports a complicated beacon structure that it
communicates to the slave at the time it parks it. However, the beacon structure
may change and the master then uses broadcast messages to communicate these
changes to the parked slaves.

The structure of the beacon channel is covered in detail in other sources; it is
sufficient to say here that every beacon interval number of time slots, the master
transmits a train of beacons that the slave tries to listen for in order to resynchro-
nize to the channel.

As an application designer, you have to choose the correct beacon interval to
save the maximum power whilst maintaining acceptable response times. Response
times are governed by how long it takes a slave to request unpark, or how long it
takes a Master to unpark a slave, both of which are affected by the park beacon
interval.

One factor to consider when choosing the park beacon interval is the
clock drift in the devices between successive beacons. If a parked slave loses

www.syngress.com

tion has great power-saving potential, but there is one obvious flaw in
its design. If a patient suddenly takes a downturn, the sensors might
not transmit this information for a relatively long time. This obviously
makes the system unusable. However, sniff mode has an important
feature in that either the master or the slave can request to exit sniff
mode. This would allow a sensor to immediately transmit its readings
and the alarm can be raised. Of course, for such safety-critical appli-
cations, it is also crucial to include a back-up emergency alert system
that does not rely on radio. Adding a small piezo-electric beeper to
each sensor will not significantly increase its size, cost, or power con-
sumption. This can then be used in conjunction with the unsniff mode
or as an emergency back-up if the sensor is unable to communicate
with the master.

160bluetooth_C03.qk 12/5/01 4:17 PM Page 113

114 Chapter 3 • Power Management

synchronization, it will stop responding to the master, and may lose the connec-
tion altogether.The master will then have to restore the connection by paging it
and then parking it again.This is obviously wasteful.Therefore, devices parked
for the majority of their duty cycle should have the park beacon intervals set
well within the maximum threshold so that if the slave device misses a beacon it
can re-synchronize on the next one. So far, park mode sounds very similar to
sniff mode.The main difference, however, is that in order to send data packets to
a slave, that slave must firstly be unparked (also as mentioned earlier, a slave
cannot have an established SCO link when parked).The next section will con-
sider the types of applications suitable for use with park mode.

An application that has been described as being unsuitable for hold mode is
one where a Bluetooth-enabled laptop is used for wireless Web browsing.
However, the pattern of usage for such an application does make it particularly
suitable for park mode. It consists of “bursts” of activity while the user is
searching for a particular page, followed by a relatively long period of inactivity
while they are reading that page.The slave device can therefore be parked for
the majority of the time, while the radio link is not being used. However, when
the user needs to send data (assuming the beacon interval is kept relatively
short) the slave can be unparked quickly and the request dispatched.Thus, the
application can save power whilst keeping response times high. Another advan-
tage of having a short beacon interval is that the slave device has a greater
chance of remaining synchronized with the master. As the case study that fol-
lows shows, the Headset profile recommends the use of park mode while the
headset and Audio Gateway are not actively communicating.This is another
good example of an application suited to park mode, since activity is concen-
trated in bursts, but the response times are bounded by a maximum tolerable
latency.

A network of sensors (as discussed previously) is a good example of an appli-
cation where park mode is not particularly suitable as a low power mode.This is
mainly because in order for the sensors to send their data, they would have to be
unparked, allowed to transmit, and then parked again. For very short beacon
intervals, this is particularly wasteful due to the overhead of the park/unpark pro-
cedure. Furthermore, sniff mode perfectly fits the pattern of the application
without imposing this extra overhead.This point illustrates quite nicely the con-
clusion that there is no preferred low power mode. Each of the Bluetooth low
power modes is suited to a different class of applications and must be used
accordingly in order to achieve optimal performance (in terms of both power
consumption and usability).

www.syngress.com

160bluetooth_C03.qk 12/5/01 4:17 PM Page 114

Power Management • Chapter 3 115

www.syngress.com

Power Management for the Headset Profile
The Headset profile as defined in the Bluetooth specification (part K-6) is
designed to provide two-way audio communications between a headset
and an “Audio Gateway,” allowing the user greater freedom of move-
ment while maintaining call privacy. The profile envisages the user
wearing a Bluetooth-enabled wireless headset and communicating with,
for example, a mobile phone or laptop computer (the Audio Gateway).

This application is a very good example of what could be termed an
asymmetrically power-managed application. In this case, the headset
has extremely limited energy resources (a coin cell or smaller battery)
whose lifetime must be maximized. The Audio Gateway, on the other
hand, has considerably greater resources since it is running on a device
with a larger battery. The overhead associated with power management
should therefore be placed on the Audio Gateway end of the link. By this
we mean that not only should the Audio Gateway be responsible for
power management on the link but also, if possible, it should use more
of its energy resources so that the headset can save more power.
Furthermore, as security is an important factor in this application, it is
likely that the same user will own both devices and hence it is particu-
larly suitable for asymmetric power management.

A headset must provide pairing functionality, allowing it to set up a
link key with the Audio Gateway for security purposes. This is not a state
that is likely to be entered frequently since once it is paired, the headset
will remain so until it is paired again. The headset must also provide
audio transfer functionality being that is what it is designed to do. Each
of these states should be considered with respect to power management.

Whilst pairing, the headset should be in discoverable mode (i.e., it
should respond to inquiries and also allow the Audio Gateway to con-
nect to it). In this state, power savings can be achieved by reducing the
time the headset spends with its radio transceiver powered on. This can
be achieved by setting the page scan and inquiry scan intervals so that
the radio is powered on for a relatively small fraction of the time. The
downside to this is that the Audio Gateway might take slightly longer to
find the headset and pair with it, but this delay is not likely to be signif-
icant. Furthermore, given that pairing is performed relatively infre-
quently, this is not a significant overhead.

Developing & Deploying…

Continued

160bluetooth_C03.qk 12/5/01 4:17 PM Page 115

116 Chapter 3 • Power Management

www.syngress.com

Once the devices have paired and are ready to connect to each
other there are two power-saving strategies to be adopted. The first is
saving energy while the devices are attempting to establish an RFCOMM
connection, and the second is once the RFCOMM connection has been
established—an RFCOMM connection must be established in order for
“AT” commands to be exchanged so that the audio link (through the use
of a SCO connection) can be set up. This is achieved by placing one
device into connectable mode (i.e., into page scan mode and letting the
other initiate the creation of the connection. According to the Headset
profile, either the headset or the Audio Gateway can initiate the con-
nection attempt. If the headset is in slave mode (waiting for the Audio
Gateway to connect to it), then it can employ the same technique used
in pairing. It can save power by reducing the time it spends scanning
(i.e., with its radio transceiver powered on).

Once an RFCOMM connection has been established, it can be
placed in park mode until a SCO connection is needed. This avoids the
overhead of establishing an RFCOMM connection (and tearing it down)
every time a call is placed to or from the headset. Once a connection has
been parked, either end is allowed to unpark it. This is to allow an
incoming call to be placed through to the headset so the user can uti-
lize voice dialing and dial out. Once the audio call has been completed,
the SCO is disconnected and the RFCOMM connection is placed in park
mode once more. It is important to note that neither the RFCOMM nor
the L2CAP channels are released during park mode, so the connection
can be brought up very quickly when required. However, while the con-
nection is parked, data cannot be transmitted or received. Figure 3.3
shows how an example headset application can use both sniff and park
to reduce its power consumption. An RFCOMM connection and an
ongoing voice call (SCO connection) are assumed to exist between the
two devices. The first diagram shows that as soon as the voice call is dis-
connected the RFCOMM link is placed in park mode. Note that either the
headset or the Audio Gateway may initiate park. If at some later time
either end wishes to transmit data, the connection must first be
unparked. Once again, either device may initiate the unpark. At this
point zero or more data packets may be sent and a SCO connection may
be initiated. The link cannot be parked until the SCO (if created) has
been released and there is no data pending transmission. The second
diagram in Figure 3.3 shows how sniff mode can also be used by the
headset. If, for example, either device expects to have data to transmit
shortly after the voice call is disconnected and does not want to incur
the overhead associated with entering park mode, it can place the link

Continued

160bluetooth_C03.qk 12/5/01 4:17 PM Page 116

Power Management • Chapter 3 117

Evaluating Consumption Levels
As discussed earlier, the Bluetooth low power modes have different characteristics
and are suited to different classes of applications. Each low power mode also has a
different cost in terms of energy consumption.The power consumption of a
device is influenced by the hardware used, the low power parameters negotiated,
and the type of application it is running.This section will aim to give a very gen-
eral indication of the relative power consumption characteristics of the Bluetooth
low power modes.Absolute values for the average current consumption in each
mode are meaningless since it is highly dependent on the underlying hardware.
This section will therefore concentrate on the relative power consumption of
some of the Bluetooth low power modes.

Figure 3.4 shows a comparison of the average current consumption of a
device using different Bluetooth low power modes.Transmission of ACL data has
the greatest power cost and will be used as a benchmark against which to compare

www.syngress.com

into sniff mode. In this state, the headset can transmit its button press
without exiting sniff. Furthermore, a SCO connection can be set up while
still in sniff mode allowing the devices to conserve energy even while
there is an ongoing voice call. Figure 3.3 shows that an application is not
restricted to using just one of the Bluetooth low power modes, and by
using more than one mode it can adapt better to its usage.

Figure 3.3 Headset Use of Park and Sniff Modes

Button
Press

Headset Audio Gateway

Ongoing voice call

Release SCO

PARK

UNPARK

Create SCO

Active voice link

Button Press

Headset Audio Gateway

Ongoing voice call

Release SCO

SNIFF

Create SCO

Active voice link

Button Press

Button Press

(using HV3 packets)

(but ACL still in sniff mode)

Button
Press

Button
Press

160bluetooth_C03.qk 12/5/01 4:17 PM Page 117

118 Chapter 3 • Power Management

www.syngress.com

Figure 3.4 Relative Current Consumption for Different Bluetooth
Low Power Modes

100%

25%

4% 3% 2%

10%
5% 5% 4%

ACL data Sniff
40ms

Sniff
1.28s

Park
1.28s

Park
2.56s

Inq/page
Scan

i-0x800
w-0x12

Inq/page
Scan

i-0x1000
w-0x12

Page
Scan

i-0x800
w-0x12

Inquiry
Scan

i-0x800
w-0x12

160bluetooth_C03.qk 12/5/01 4:17 PM Page 118

Power Management • Chapter 3 119

the other modes.As can be seen, a device in sniff mode consumes more current
than a parked device. It is also important to note that the interval used while in
sniff or park mode also affects its power consumption.The shorter the sniff
interval or park beacon used, the more current the device will consume as it has
to “wake up” more frequently in order to service that interval. Of course, the trade
off is that the shorter the interval, the lower the communication latency.As you
can see, there is always a trade off that has to be made between power consump-
tion and latency.

A device must be in inquiry scan mode in order to be discoverable. Similarly,
in order to be connectable, the device must be in page scan mode. Of course,
both modes can also be enabled simultaneously.As can be seen from Figure 3.4,
inquiry and page scan have a current consumption cost associated with them, and
as such, should be used only when necessary. For example, if we only need the
device to be connectable, then enabling inquiry scan will almost double the cur-
rent consumption of the device but will not give it the functionality actually
needed. Furthermore, as can be seen, the scan interval (denoted by i in the graph)
and window (denoted by w in the graph) also have an effect on power consump-
tion, so they should be chosen with care.

Although the graph in Figure 3.4 gives only a very approximate idea of the
relative energy consumption costs of the different Bluetooth low power modes, it
is easy to see that significant advantages can be gained by having an application
use one or more of these modes.

www.syngress.com

160bluetooth_C03.qk 12/5/01 4:17 PM Page 119

120 Chapter 3 • Power Management

Summary
This chapter has described the properties of power-managed applications and
provided a discussion of why applications for Bluetooth-enabled devices can
benefit from the use of power management. It has also detailed the different
Bluetooth low power modes, illustrating the use of each one with example
applications.

Power-managed applications allow the device to power down for a large part
of its duty cycle thus saving energy and prolonging its battery life. However, the
drawback is that the response time of the application is increased and, if not used
correctly, power management can make applications infuriatingly unresponsive.
This also means that the application allowing the underlying hardware to power
down should be completely transparent to the end user. Bluetooth provides a
number of low power modes and each one is suited to a different type of appli-
cation. Before deciding on the power management mode to use, the maximum
allowed latency and expected radio traffic pattern of the application must be con-
sidered.Applications with a very low latency or requirements to transmit very
frequently might even make it inefficient to use a low power mode due to the
overhead incurred in entering and exiting it.

Bluetooth provides three low power modes for application designers to use,
hold, sniff, and park. Each mode has different characteristics and is suitable for a
different class of application. Hold mode is suitable for applications that can pre-
dict or control the time of their next data transmission.As each hold interval is
negotiated independently of subsequent ones, this mode is suitable for adaptive
power management where the application monitors the usage of the link and
increases or decreases its sleep time accordingly. Hold mode cannot be exited and
therefore should not be used for applications with hard latency requirements.

Sniff mode allows a Bluetooth-enabled device to save power by reducing the
number of slots that the master can transmit in, thereby reducing the slots the
slave must listen to.This mode is more flexible than hold mode as it can be
exited at any time.The slave listens periodically for a number of slots and this
makes sniff mode particularly suitable for use in applications where data regularly
requires transmission.Applications that are not suitable for sniff mode are ones
that frequently require large data transfers that force the device to remain awake
beyond its sniff interval.This does not have a detrimental effect on the applica-
tion’s performance, but it does not allow the device to achieve its full power
saving potential either.

www.syngress.com

160bluetooth_C03.qk 12/5/01 4:17 PM Page 120

Power Management • Chapter 3 121

Park mode is the mode that allows greatest power savings to be made.This
mode is best suited for applications where the radio traffic pattern is unpre-
dictable and the connection establishment latency is bounded by some upper
limit.The Headset profile (from the Bluetooth specification) is a good example
of such an application.The RFCOMM link must be unparked as soon as pos-
sible, once a call needs to be put through from the Audio Gateway to the
headset.

The Bluetooth low power modes are different in the power management
support they provide and there is therefore no single mode that is best to use.
The low power mode used is determined by a wide range of factors dependent
on the type of application and its requirements.When considering which
Bluetooth low power mode an application should use, the main factors to con-
sider are:

■ Whether the application is suitable for power management

■ What is the maximum latency the application can tolerate

■ What is the expected radio traffic pattern (random, periodic, bursty, and
so on)

Solutions Fast Track
Using Power Management:When and
Why Is It Necessary?

� Consider whether your application is suitable for power-managed
operation.

� Consider the constraints imposed by the application (e.g., maximum
response times, characteristics of the data traffic, and so on).

Investigating Bluetooth Power Modes
� Hold mode One-off event, allowing a device to be placed into hold

mode for a negotiated period of time. Hold interval must be negotiated
each time this mode is entered.

� Sniff mode Slave periodically listens to the master and can power
save for the remainder of the time. Important to note that data can be

www.syngress.com

160bluetooth_C03.qk 12/5/01 4:17 PM Page 121

122 Chapter 3 • Power Management

transferred while devices are in this mode and a SCO link may be
active. Sniff intervals are negotiated once, before sniff is entered, and
remain valid until sniff mode is exited.

� Park mode Parked slave periodically synchronizes with the master
and for the remainder of the time can power save. Data packets cannot
be sent on a parked connection and the devices must be unparked
before a SCO connection can be established. Furthermore, there cannot
be an active SCO when its associated ACL is parked.

Evaluating Consumption Levels
� All other things being equal, the power consumption of a Bluetooth low

power mode depends on the parameters negotiated before that mode is
entered.

� Page and inquiry scan also have a power consumption cost, so these
should be entered only when necessary.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Why don’t low power modes work with different version Bluetooth devices?

A: Between version 1.0b and 1.1, improvements were made to the link manage-
ment protocol messages, which put a device in hold, park, or sniff mode.
These improvements made entering the low power modes much more reli-
able. However, because the protocol messages have changed, devices which
have the old version of the protocol cannot work with the new version.

Q: Which versions of the Bluetooth specification are compatible for low power
modes?

A: The changes in the link management protocol messages were first introduced
as errata to the 1.0b specification. Changes, which were required to interop-
erate with version 1.1 of the specification, were labeled “critical errata.” So:

www.syngress.com

160bluetooth_C03.qk 12/5/01 4:17 PM Page 122

Power Management • Chapter 3 123

■ “1.0b plus critical errata” should be compatible with 1.1.

■ 1.0b is not compatible with 1.1 or “1.0b plus critical errata.”

■ Any version should be compatible with the same version, but there have
been interoperability problems with older versions, caused by ambiguity
in the specification.

Q: What is the best power saving mode to use?

A: There is no “best” mode, it depends upon the requirements of your applica-
tion. Look at the case studies in this chapter and consider the requirements
of your particular application to decide which power saving mode is best
for you.

www.syngress.com

160bluetooth_C03.qk 12/5/01 4:17 PM Page 123

160bluetooth_C03.qk 12/5/01 4:17 PM Page 124

Security
Management

Solutions in this chapter:

■ Deciding When to Secure

■ Outfitting Your Security Toolbox

■ Understanding Security Architecture

■ Working with Protocols and
Security Interfaces

■ Exploring Other Routes to Extra Security

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Chapter 4

125

160bluetooth_C04.qk 12/5/01 4:22 PM Page 125

126 Chapter 4 • Security Management

Introduction
As with engineers and administrators whose wired networks provide access to the
general public, a very large dose of well-founded paranoia exists in those who
want to protect their data as they flow between Bluetooth nodes.There is cause
for greater concern when wireless connections are used in establishing peer-to-
peer connections, because such communication is easily intercepted.This senti-
ment has been captured in a statement recently made in the July issue of the
technical journal RFDesign,“… any high-school freshman with a scanner and
some basic software knowledge can crack a Bluetooth network.”

Without considering the implementation of security measures in your
product, as outlined in the Bluetooth specification, such beliefs may, in fact, prove
very accurate. Presented within this section are very powerful tools that, when
properly implemented, can thwart the efforts of those making an attempt to
extract information flowing in a completely unprotected public network.

What you need to know before reading this chapter:

■ Bluetooth protocol stack component function

■ Generic access protocol procedures

■ Peer-to-peer protocol connection establishment mechanics

■ Host Controller and Host function

■ Embedded systems programming

■ Familiarity with Bluetooth profiles

Deciding When to Secure
Bluetooth technology is designed to support wireless connectivity inheriting with
it a number of unique characteristics associated with this method of invisible
communication. For instance, anyone toting a Bluetooth-enabled device could
potentially connect to your Bluetooth device, gaining access to data without your
knowledge or permission.This should be cause for alarm for two reasons. First,
allowing anyone to establish a connection is problematic when your application is
to support one specific connection, as is the case in the Headset profile. Secondly,
free public access to your data or service can present a problem.Accessing net-
work data and implanting a virus through a local area network (LAN) Access
Point (LAP) or having unrestricted access to the telephone network via a wireless

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 126

www.syngress.com

telephony gateway are only two examples of applications where the use of secu-
rity makes sense.

Additionally, once a service is being provided, protecting data being sent
wirelessly is necessary for preventing eavesdroppers from intercepting and then
interpreting the information.

When to implement security is a related yet different issue. Pragmatically, you
will fashion your own security measures around the needs of the application
being developed; hints will be provided in this chapter to assist in this endeavour.
Reliance upon the Bluetooth specification is obvious for guidance in this matter,
but ultimately the decision is yours as a systems designer or application developer.

By offering your end customer the option of enabling or disabling security,
you provide them with the option of making your product simpler and easier to
use, thereby improving the end users’ out-of-the-box experience.

NOTE

Older versions of the protocol stack (pre V1.0B release) have security fea-
tures incompatible with V1.0B and later releases as a result of changes
made to the protocol. To interoperate with earlier versions of the pro-
tocol, it is necessary that your device offer the end user the ability to dis-
able all security features.

Outfitting Your Security Toolbox
There are three components that serve as the security “troika” in any network:
authentication, authorization, and encryption. Each has a specific function in the
scheme of security and can be either enabled or disabled—it all depends on what
makes sense for your application.

Authentication is used to verify a device making sure that it is who it says it
is. If another Bluetooth device is trying to gain access to your device, either
through establishing a radio link or by making a request to use a particular ser-
vice, you first ask, essentially,“Who goes there?” then “What’s the secret pass-
word?” In the world of Bluetooth security, you will already have the address of
the remote Bluetooth device (from performing the connect procedures), and will
use a derivative of a unique secret “link key” stored in your device as the very
specific password. If the remote device provides you with the correct password, it
is considered authenticated and is free to proceed in accessing all services offered

Security Management • Chapter 4 127

160bluetooth_C04.qk 12/5/01 4:22 PM Page 127

128 Chapter 4 • Security Management

by your device.This process is far more complicated in terms of mechanical
operation—something that will be examined in greater detail in the next section.

Authorization has a different function in the security toolbox. It determines if
the remote device is to be granted access to specific services offered by your
device.Three services, as an example, are supported on your device.They could
consist of service discovery, fax, and dial-up modem capability, and have an
authorization procedure associated with each. If they do have a requisite proce-
dure, any time a remote device attempts to access a service, authorization is to be
triggered.With a remote device requesting access to a service, you would be pre-
sented with the name of the remote device, the service it wants to access, and be
asked whether you will permit access to this service. Granting permission to a
remote device is based upon who it is and the service being requested.

Because authorization depends upon knowing who is asking for access to a
service, authentication must be completed successfully prior to entering the
authorization procedures.

Encryption protects data by encoding it prior to transmission over the air-
waves.The encryption key used is derived from the unique link key associated
with the authentication process.To encrypt data, authentication must be triggered
and have passed.

A more thorough explanation of each of these security elements is provided
in the next sections. Basically, their underlying operation is revealed with an
emphasis on the role that the application has in participating in the process.

Authentication
Authentication is the cornerstone of the security paradigm upon which both
authorization and encryption depend.Without its successful completion, neither
authorization nor encryption will be attempted.The term authentication is
somewhat misleading as it refers to only a very specific procedure of verifying a
remote device. In the grander scheme of things, other procedures are actually
invoked in support of the security measure titled authentication.

Pairing for instance is a procedure invoked when a link key has not been cre-
ated for the unique connection between devices. (A link key is a secret number
associated with a link between two devices.) The pairing procedure requires that
an identical personal identification number (PIN) be made available to devices
attempting to authenticate for the first time.The PIN is either stored in memory,
entered through a man-machine interface (MMI), or changed back to a default
value (a byte which is set to the value zero).

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 128

Security Management • Chapter 4 129

Authentication is a very specific procedure used in creating a correct response
to a challenge; don’t worry, this will be explained shortly. Suffice to say that it fol-
lows the pairing procedures in the scheme of things if a link key does not exist.

Bonding refers to the entire process of link-creating, pairing, authentication,
link key creation, and semi-permanent storage. Once devices are bonded, pairing
does not have to be done again and authentication can proceed without the need
for PIN entry. If a device is requested to bond with another device that it already
possesses a link key for, this link key is erased. Pairing is then initiated, estab-
lishing another link key.

Pairing
Take a look at what happens when successfully traversing the authentication
barrier (see Figure 4.1). Let’s assume two devices are new to one another, never
having gone through authentication before. In this case, the pairing procedure is
required for the purposes of creating a temporary link key (Kinit) used by the
next process: authentication. In addition to this, Kinit is used in encoding the
semi-permanent link key (Ka or Kb) prior to transmitting to the other side for
storage and future reference. Here is what happens.

www.syngress.com

Figure 4.1 The Bonding Process Including Pairing and Authentication

PIN

User interface

Verifier (Device A) Claimant (Device B)

Connection request
 to a service

PINKey
(Kinit)

Key
(Ka)

Key
(Kb)

Key
(Kinit)

Link
Key

Link
Key

User interface
Random
number

Ka
Response

Ka

Random
number

Bonding

Pairing

Authentication

Host
Controller

Host Host
Host

Controller

Exchange Link Key

160bluetooth_C04.qk 12/5/01 4:22 PM Page 129

130 Chapter 4 • Security Management

There are two roles: the Claimant, which claims to be a particular device, and
the Verifier, which checks to make sure the Claimant really is who it claims.The
Claimant makes a connection request to the Verifier; this can be a request made at
the Link Manager level or at upper protocol layers.The trigger point invoking
authentication is determined by the application when it configures the service
database. Once triggered, however, a PIN is required.The PIN, along with a
random number generated within the Link Manager and the claimant’s Bluetooth
address (not shown) is used in creating the temporary link key, Kinit.This key is
created independently by the Claimant and Verifier. Pairing has now completed.

As mentioned, the PIN is furnished either by an MMI, from memory, or pro-
vided as a default value by a zero length number.Without an MMI or a stored
PIN value, the application should at least try the default PIN value to generate
Kinit prior to attempting authentication.

Devices with user interfaces such as phones or laptops will be able to change
their PIN numbers.These devices are said to have “variable PINs.” Devices such
as headsets have no means of entering a PIN, so they have a number programmed
in when they are manufactured.This is called a “fixed PIN.” Obviously, when
connecting a phone to a headset the phone that has the variable PIN must
change it’s value to match the fixed PIN on the headset.

Link Keys
Authentication is managed by the Link Manager using a link key. If a previously
stored link key (called a semi-permanent key) exists, it is used to complete
authentication. In continuing with the case where a semi-permanent link key
does not exist, the next stage is bonding, which creates a semi-permanent key.

Bonding
Kinit is used to encode the unit key (Ka), which is then sent across the airwaves
to the other Bluetooth unit for storage.At this point, devices can both exchange
unit keys and create a combination key (Kab) which is calculated from both unit
keys, or they can agree to just use one device’s unit key.A combination key is
more secure, but some devices cannot create such a key, so they must use their
own unit key as the semi-permanent link key.

This semi-permanent link key is created for future use.With this key now
safely stored in memory, the pairing process is eliminated. Now, every time
authentication is requested between these two devices, authentication can pro-
ceed using the stored link key.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 130

Security Management • Chapter 4 131

Bonding really refers to the entire process of pairing, authenticating, link key
creation, and storage.As shown in this example, Ka became the link key. Kb
could have become the link key as well; this is dependant upon the Link
Manager and is transparent to the application as far as selection is concerned.

In summary, these are the keys:

■ Kinit is calculated from the PIN key and is kept temporarily; it is used
to encode unit keys so they can’t be read by eavesdroppers.

■ The unit key, Ka (or Kb) is derived only once by the Host Controller
and stored permanently; this key can be changed but usually isn’t.This
key can be used as a link key as well (as shown in Figure 4.1). It not
only is designated as a link key by the Verifier but is passed to the
Claimant and stored as the link key.

■ A combination key (Kab) can be created from two unit keys then
used as the link key providing even greater security supporting
authentication.

The creation of combination keys requires that both Bluetooth devices per-
manently store this unique key placing a greater burden on Host memory
resources required especially when multiple device keys are to be stored. Instead
of storing just one key (Ka) as the secret link key to be used for multiple devices,
a separate combo key, if used, must be stored for each unique device.

Once the two devices have agreed on a semi-permanent link key, the
Verifier begins authentication by issuing a challenge.The challenge is a random
number which the verifier sends to the Claimant. A numerical response is cal-
culated by the Claimant (using the link key) and is sent back to the Verifier.
The verifier does the same calculations, and compares its results with the
claimant’s response. If these numbers match, authentication is deemed suc-
cessful, and the devices are bonded. If the numbers don’t match, it will be
because one side was using the incorrect PIN key. If this is the case, authentica-
tion fails and the devices are not bonded.

At the risk of getting ahead of ourselves, we will briefly mention one last key,
Kmaster.This key is temporary, is generated by the master device, and is used to
derive an encryption key used in encoding broadcast messages sent to other
Bluetooth devices. Each slave also has a copy of the Kmaster, using it to create
their own encryption keys, which enables them to decode broadcast messages.
Many profiles do not use broadcasts, so some manufacturers have chosen not to
implement broadcast encryption.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 131

132 Chapter 4 • Security Management

Application Involvement
With respect to the procedures necessary in supporting authentication, you can
see that there is not that much involvement by the application layer outside of
providing a PIN to the Link Manager—this is partially true. Generally speaking,
as an applications designer, your responsibility will be to configure your device to
instigate security measures as you see fit. Handling PIN entry is an additional
interface you will be responsible for (we’ll discuss application interfaces later in
the chapter).

Also, there are variations on the type of link key that can be created, stored,
and used: a unit link key, a combination link key, a master link key, and so on.
Each key type has a specific use.

Authorization: How and Why?
Authorization requires that authentication complete successfully. It is then trig-
gered when the remote Bluetooth device makes an attempt to connect to a ser-
vice. More accurately, this security procedure is invoked when a peer-to-peer
protocol connection is requested at the Logical Link and Control Adaptation
Protocol (L2CAP) or Radio Frequency Communications port (RFCOMM)
layers.We will get to that later, however, when we discuss how to configure
security.

www.syngress.com

Security Timeouts: How Long Will the Stack Wait?
During the pairing procedure, there is opportunity for the user to take
their time in entering a PIN number. This time period cannot be indefi-
nite as stack timers begin to expire; a connection cannot be established
half-way and remain in this state permanently. Interoperability issues
have been identified with regard to this situation. Several solutions exist
to alleviate the problem. Stack timers can be set not to expire while a
PIN is entered. When asking for a PIN at the application level, the
amount of time the user has in entering a valid number can also be lim-
ited to prevent timer expiry. This situation also presents itself for the
authorization procedures since user interaction is required.

Debugging…

160bluetooth_C04.qk 12/5/01 4:22 PM Page 132

Security Management • Chapter 4 133

Authorization requires that the remote device be identified and that the ser-
vice being requested be reported to the service provider; this generally happens
through an MMI.With this information in hand, the user can choose to permit
access to the service requested, granting temporary Trust.

Using the Trust Attribute
Trust is an attribute that links authorization permission to a particular service and
a device address.When the device is marked as Trusted, the authorization process
completes successfully without user interaction.Trust is granted both temporarily,
as a result of successful authorization, or permanently. Permanent Trust can be
conferred upon any device at any time but is usually done during the initial
authorization via the MMI. For Bluetooth devices that do not have a user inter-
face, the Trusted attribute can be granted during an Inquiry session. By simply
being within the serving area, remote Bluetooth devices can be labeled as
Trusted, tagging their unique Bluetooth address with the Trusted attribute and
storing this information in the device database for future reference. Switch into
this mode of operation only when you are confident that safe devices are nearby.

A common consideration for devices marked as Trusted is to allow this privi-
lege to expire some time in the future. Expiry of this privilege means that the
stored information in the device database remains intact with the exception that
the once trusted device is now tagged as Untrusted. Permanently marking a
device as Trusted is not a recommended policy as it circumvents the Bluetooth
security measures as they relate to authorization. Untrusted devices require that
the user intervene on the next attempt to authorize.

Remote Bluetooth devices can also be classified as Unknown. If the device
has never been seen before and has no record of existence in the device database,
it is referred to as being unknown. If the service being requested by such a device
is protected by authorization, then the MMI is used to grant permission.
Alternately, a record containing this device’s address, the service that it is
accessing, along with the Trusted attribute are stored in the device database auto-
matically upon being discovered, bypassing the need for using an MMI.

Enabling Encryption
The last component of security to be described is that of encryption.You really
cannot prevent the interception of data that is transmitted wirelessly.What you
can do, however, is transform the data into something that cannot be (easily)
understood. Encryption is the process through which transmitted data is

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 133

134 Chapter 4 • Security Management

encoded, only to be decoded on the receiving side.When activated, encryption
relies upon a special encryption key generated from the stored link key.The
encryption key is then used to encode data sent over the airwaves. On the
receiving end, the same encryption key (generated from the same link key) is
used to decode the data.

Point-to-Point Encryption
Encryption, if used, must be enabled on both sides of the radio link.You cannot
use encryption in a unidirectional data transfer. Up until this point, the connec-
tion being discussed has been point-to-point (one Bluetooth unit communicating
with another unit exclusively). In the case where one unit is broadcasting data to
multiple units, there exists a need to distribute an identical encryption key to all
other slave units listening in on the broadcast.This scenario is very specific to the
master—a slave relationship where the master initiates the point-to-multipoint
encryption.

Broadcasting
A new encryption key, briefly mentioned earlier, is based upon Kmaster, which is
generated using two random numbers.Without going into detail, Kmaster is sent
to all slave units that have a need to participate in receiving a broadcast transmis-
sion. Once Kmaster is sent to all units, the master device instructs each slave to
now use this key in generating a new encryption key, this being now the
common denominator allowing all units to decode data originating from the
master device.This encryption key is used only while broadcast messages are
being sent. Once this activity is no longer required, all units revert to their orig-
inal link keys under the command of the master. Using point to multipoint
encryption is usually temporary and is less secure than point-to-point encryption
since it relies upon the lowest common denominator security, that being a
common encryption key as shared by a number of different units. For instance, if
one unit in a piconet supports 32-bit keys, and all others support 128-bit keys
when using broadcast encryption, all units will have to use a 32-bit key.

Under all circumstances, as just described, the application software remains
virtually isolated from this process; it does not have to manipulate the link keys
used in point-to-point or point-to-multipoint communication. Nor does it con-
cern itself with the operations taking place at the physical layer to manage the
use of different link keys.The Link Manager handles the determination of the
link key and subsequent use of the encryption keys.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 134

Security Management • Chapter 4 135

Application Involvement
This brings us to an interesting point in the discussion regarding security.What
exactly is the application software responsible for? Thus far, we have examined
the basic mechanism used in protecting both a Bluetooth device, or its services
from unauthorized access by an unknown and possibly hostile device.
Authentication, authorization, and encryption can be considered building blocks
on which security rests. Controlling these security instruments, or more accu-
rately, configuring security, is the responsibility of the application developer.

Point-to-multipoint communications can be supported where an encryption
key is shared among many different devices—in other words, it is derived from
the Kmaster link key. In any event, encryption can be specified for use by the
Security Manager and required that authentication be completed successfully.

Understanding Security Architecture
We will now turn our attention toward how security measures are used in the
context of a commercial Bluetooth implementation. Figure 4.2 portrays a com-
mercial embedded solution for a Bluetooth device.A Host Controller provides
services associated with radio control and is responsible for containing the
authentication and encryption engines.When commanded to do so, these engines
are fired up and complete the procedures necessary in completing their task: Link
key management, random number generation, challenge response routines, and
encryption key generation and management. Note that the Unit key (Ka) is per-
manently stored in the Host Controller, with temporary storage being provided
for different types of link keys as required.

The Role of the Security Manager
The Host, on the other hand, is responsible for at least setting up the environ-
ment required to start security and in some instances, initiates security itself.A
Security Manager module is tasked with many diverse responsibilities, which
include providing an application interface to:

■ Configure security

■ Request PIN entry

■ Query the user for an authorization response

■ Respond to the Link Manager with PIN information or a link key sup-
porting authentication

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 135

136 Chapter 4 • Security Management

Internal to the Security Manager is a service database, a repository that is
configured by the user via application software. As will be explained later, this
database is used to implement Mode 2 security and is referenced by the
Security Manager to determine which security measures to invoke and when

www.syngress.com

Figure 4.2 A Commercial Bluetooth Implementation Showing Interfaces to
the Security Manager

SDP
Service
dBase

L2CAP

Device
dBase

PIN
entry

Authorization
response Modify

Database
Setup

Database

HCI

Link Manager

Authentication engine

Link key
Master key

Authenticate - yes / no
Encrypt -------- yes / no

Baseband

Encryption engine

HCI

Ho
st

Co
nt

ro
lle

r

Ho
st

RFCOMMTCS

Security
Manager

Temporary store

Unit Key

Non-volatile store

160bluetooth_C04.qk 12/5/01 4:22 PM Page 136

Security Management • Chapter 4 137

to invoke them. In addition to this, there is a device database which stores link
key information, and also keeps tabs on which devices are Trusted and which
are not.

Supporting the Security Manager in its responsibilities are three entities:

■ The service database, which holds the security configuration information
as provided by the application software.

■ The device database, that persistently stores information regarding past ses-
sions with other Bluetooth nodes, allowing quick connections to be
established without having to traverse the security barrier again.

■ Application software that provides a user interface (UI) for the purposes
of entering a PIN or confirming an authorization request and setting up
a Trusted relationship.Alternately, in embedded systems where a UI is
not to be found, the application will respond to requests in a manner
that makes most sense without user intervention.

Two issues loosely related to the Security Manager are:

■ Setting up authentication and/or encryption at the Link Manager level;
this is done by the application, either indirectly through the Security
Manager, or directly by configuring the Host Controller via the Host
Controller Interface (HCI) layer.

■ The device database, which can be modified by the application code; the
time limit associated with a Trusted relationship between two Bluetooth
units may expire thereby changing this parameter to Untrusted.The link
key can also be erased to force authentication once again.

Before we go any further, we must first understand where triggers can be set
to start security procedures.This all begins with defining the three different
modes associated with Bluetooth security.

■ Mode 1 has no security, obviously making it the least secure mode.

■ Mode 2 invokes security when a higher layer protocol or service is
accessed.

■ Mode 3 invokes security when a connection is requested; this is the
most secure mode.

Typically, security is associated not so much with protecting a Bluetooth
device as it is with preventing access to services supported by the device itself.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 137

138 Chapter 4 • Security Management

For instance, would it matter that much if another person were to simply
establish a radio connection to your device, not invoking peer-to-peer pro-
tocol connections at the upper layers of protocol? Or would you be more
concerned about the fact that another device could covertly extract files from
your device, without your knowledge? More insidious would be the notion
that the intruder could plant a virus on your device without your knowledge,
then sadistically watch as you frantically tried to prevent your device from self-
destructing.The most important line of defense is in protecting services. A
close second would be to protect your radio hardware from being tied up by
an unwanted intruder, keeping the Host Controller free and available for
communication.

Mode 1 Role
Mode 1 security is the simplest of all. It specifies that there are no Bluetooth
security procedures at all.Any connection initiated by another device is granted
as far as the Bluetooth protocol stack is concerned. Be very careful here as this
does not mean that there is no security at all.There is plenty of opportunity at
the application layer to implement some level of security, such as the use of a user
ID and password in granting access to a network.This can even be done at the
object exchange (OBEX) transport layer, which supports the use of authorization
independent of the Bluetooth protocol stack.These additional elements of secu-
rity will be discussed later.

Mode 2 Role
The most common (and useful) form of security is Mode 2 security and is
used primarily to protect services being offered by a Bluetooth unit. It is
invoked only when a request is made for a specific service, or more accurately,
when a connection request is made to establish a connection to a specific layer
of protocol.

With reference to Figure 4.3, you will see that the Security Manager is cog-
nizant of the goings on in both the L2CAP and RFCOMM layers.When an
attempt is made to establish a peer-to-peer connection at either of these layers,
the Security Manager is made aware of this and acts as an arbiter. It does not
matter if the connection is being initiated by your application, or requested by a
remote device, the Security Manager has intimate knowledge of what is hap-
pening and responds appropriately. It can decide on the course of action, basing

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 138

Security Management • Chapter 4 139

its decision on configuration data placed in the service database.The options
available to the Security Manager are as follows:

■ Do nothing and allow the peer-to-peer connection to establish itself.

■ Initiate authentication procedures.

■ Initiate authorization procedures.

■ Start encryption once a communications link is established.

With security being triggered at the L2CAP layer, there is the potential for
blocking access to services above this layer. Service Discovery Protocol (SDP),
Telephony Control Specification (TCS), RFCOMM, and OBEX functions (and
all application profiles relying on these underlying building blocks) can be selec-
tively protected.When an L2CAP connection is established, a value called a pro-
tocol service multiplexor (PSM) must be specified, identifying which of the
modules above this layer is to be accessed.Table 4.1 lists the PSM values along

www.syngress.com

Figure 4.3 Trigger Points Are Located within RFCOMM and L2CAP to Invoke
Mode 2 Security

Security
Manager

Security
Database

Device
Database

SDP

L2CAP

RFCOMM
TCS -
BIN

TCS -
Cordless

Application

OBEX

0x0003 0x0005 0x0007 0x0001

Channel #2 Channel #nChannel #1

User Interface

HCI

PSM values

160bluetooth_C04.qk 12/5/01 4:22 PM Page 139

140 Chapter 4 • Security Management

with their corresponding upper layer connection module to give you a view of
services that can be protected if security is linked to L2CAP.

Table 4.1 Associated Protocol Service Multiplexor Specifying the Service It
Represents

Service Module Protocol Service Multiplexor

SDP 0x0001
TCS-BIn 0x0005
TCS-Cordless 0x0007
RFCOMM 0x0003

Usually, when using the L2CAP layer as the security trigger, your intention is
to protect either the cordless telephony/intercom profile (TCS) or SDP.
Protecting SDP may not be in your best interest as this implies you are not
inclined to provide services to other devices that do not know what it is you do.
Don’t forget that once a remote device passes authentication, and if the link key
is stored (bonding completes), authentication will successfully pass in future ses-
sions without user intervention. Perhaps a different strategy would suffice in pro-
tecting your device from others that do not know what you do—like
configuring your device to be non-discoverable.

In a manner similar to L2CAP, the Security Manager has access to the internal
workings of RFCOMM as well and can trigger security based upon connection
requests being made at this level.Associating security with the RFCOMM pro-
tocol layer protects applications requiring the serial port profile and profiles built
upon this foundation such as fax, modem, LAN access, and OBEX.

As was the case with L2CAP, the Security Manager can be selective in
determining which applications to protect as well. Peer-to-peer connection
establishment at the RFCOMM layer requires that a specific channel (out of a
possible 60 channel values) be specified for the connection to complete suc-
cessfully.This channel number is always associated with a particular service or
profile being offered by the Bluetooth server unit.This channel number is
made available to client devices through SDP.Therefore, to protect a specific
service relying upon serial profile support, you would set up the Security
Manager to trigger when a connection attempt is made using RFCOMM and
a service-specific channel ID.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 140

Security Management • Chapter 4 141

There are a few interesting things you should be made aware of. First, server
applications (such as a LAN Access Point) relying on RFCOMM must register
their use of the RFCOMM interface by entering information into the SDP ser-
vice database; specifically, this equates to a channel number associated with the
RFCOMM module along with the service supported, such as LAN access.
Devices interested in using this service must query the service database using the
SDP facility, extract this information, then make a request to connect to the spec-
ified RFCOMM channel number.The Security Manager detecting this request
will make a determination if security is required based upon configuration infor-
mation contained within its own internal service database. It will then take action
and invoke security measures as required.

The Security Manager, in accordance with the Bluetooth specification, can
also initiate security measures if a particular type of connection (RFCOMM or
L2CAP) is initiated by your own application. For instance, assuming for a
moment that as a client application, I want to establish a connection to a server
offering “FAX” capability (RFCOMM channel #7 as revealed by an earlier SDP
session).After establishing a radio connection at the Link Manager level, a con-
nection request would be made to the server unit at the L2CAP layer. Next,
before attempting to connect at the RFCOMM layer, authentication would be
invoked by my side. My device would be the Verifier. If successful, a connect
request to RFCOMM would then proceed. Note that authentication is sup-
ported on outgoing (as well as incoming) connection requests.Authorization and
encryption are only triggered on incoming connection requests.

Mode 3 Role
Mode 3 security is the most stringent form supported.When Mode 3 is speci-
fied, any radio connection request being made, whether incoming or outgoing,
triggers authentication. Optionally, if authentication completes successfully,
encryption can be applied to the data link if specified.Authorization is not sup-
ported in Mode 3.

Successful completion of authentication results in the establishment of a radio
link. For Mode 3 security, the Security Manager remains relatively detached, yet
still supports the need for PIN information when required, or link key informa-
tion, if it exists in the device database.With reference to Figure 4.2, the Host
Controller (or more specifically, the Link Manager) has an authentication flag
associated with it (Authenticate—yes/no).The application code sets this flag, and
if set, authentication is initiated automatically by the Link Manager, allowing the

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 141

142 Chapter 4 • Security Management

radio frequency (RF) connection to complete once authentication passes. Passing
authentication requires the following underlying operations to be managed by
the Security Manager running on the Host:

■ Getting a PIN if required during the pairing process.

■ Providing a link key if one exists as generated from a previous session.

■ Storing a link key if one is created by the Link Manager for future
reference.

The Link Manager is capable of being configured, initiating authentication
procedures independent of the application software. Under this scenario, any
attempt to connect at the Link Manager level triggers authentication.As you can
see, there is provision to store link key information in the Host Controller as
well.The Unit key (Ka or Kb) is usually calculated only one time and stored
away in non-volatile store (NVS) for future reference. If you recall, this unit key
can be used as a link key only after pairing has been completed.Alternately, the
unit key of the other device (Kb) or a combination key (Kab) can also be used as
the link key, requiring that it be stored in the Host Controller for use in deriving
the encryption key.The link key is also sent via the HCI to the Host for perma-
nent storage as well in the device database.There is also temporary storage avail-
able for a master key (Kmaster), which is generated by the Host Controller and
used for point-to-multipoint data transfers requiring encryption.The master key
is not placed in NVS at the Host Controller level, and as a result is lost once the
connection between Bluetooth devices is relinquished.

Mode Unknown
There is one more issue that needs to be addressed and that is the way in which
connectionless packets are managed. L2CAP supports connectionless data trans-
fers. Bluetooth supports the notion of datagram transmission—in other words, the
ability of one device to send another device a data packet without expecting any
type of acknowledgment that the data packet was ever received.

An example illustrating the use of a datagram is in the wireless telephony
profile. Multiple terminal units attach themselves to a wireless telephony gateway.
Each terminal unit eventually takes on the role of a slave device.With the arrival
of an incoming call from the public service telephone network (PSTN), the
gateway responds by broadcasting a datagram containing the phone number of
the unit being called.All terminal units examine this datagram, and if it contains
their phone number, they can then respond by setting up a connection-oriented

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 142

Security Management • Chapter 4 143

link.The Security Manager has the ability to block datagrams at the L2CAP layer
if it is configured to do so by the application.

So far, the building blocks of security have been presented: authentication,
authorization, and encryption.Where and how security is managed has also been
covered, yet absent from this picture is how the Security Manager is configured
and how it knows what it’s supposed to do.This is the next topic of discussion.

The Role of Security Databases
Security management, although automatically administered, depends upon how it
is configured, which is the responsibility of the application.There are three ways
in which the application participates in setting up the security system.They are:

■ Configuring the Host Controller to enforce Mode 3 security.

■ Configuring the Security Manager to respond appropriately when
L2CAP and RFCOMM layers are attempting to establish a peer-to-peer
connection; this is related to Mode 2 security.

■ Using the application to command the Host Controller to begin
authentication and/or encryption.

In this section, we will examine, from the perspective of the application, how
to configure security as it relates to Mode 2.

Service Database Content
Mode 2 security configuration data is stored in a service database under the
direction of the application software and through an interface that is supported
by the Security Manager.This database is managed exclusively by the Security
Manager.The application must access the Security Manager in order to create
database records which define the trigger points for security, and identify the
components to use in implementing security.

Figure 4.4 illustrates the record content required when characterising Mode 2
security.

First, the trigger point for initiating any security procedure is specified not by
specifically referring to a service that requires protection, but rather by the pro-
tocol “pipe” leading to this service.Triggering security when a client attempts to
attach itself to a Cordless Telephony gateway would have a service definition of:

Protocol level = L2CAP

PSM = 0x0007

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 143

144 Chapter 4 • Security Management

Another example would be a modem server using channel 2 (supported by
the RFCOMM module).This would have its service defined as:

Protocol level = RFCOMM

Channel ID = 2

Associated with the service descriptor are security attributes that are exercised
prior to allowing the establishment of the peer-to-peer protocol connection.The
attributes to be defined are as follows:

■ Authentication to be applied (for an outgoing connection) – yes or no

■ Authentication to be applied (for an incoming connection) – yes or no

■ Authorization to be applied (incoming connection only) – yes or no

■ Encryption to be applied (in response to an incoming connection) – yes
or no

■ Connectionless datagrams to be accepted – yes or no

Service Database Operations
The service database is used only when a protocol event occurs.The Security
Manager is activated if a connection is required at the L2CAP or RFCOMM

www.syngress.com

Figure 4.4 The Service Database Determines When to Invoke Security

Service Database

Security
Authentication

Authorization

Encryption...........................
Accept Datagrams................

inbound connection
outbound connection

inbound connection only....

Authentication

Authorization

Encryption...........................
Accept Datagrams................

inbound connection
outbound connection

inbound connection only....

Service

L2CAP
PSM = 0x0005

RFCOMM
Channel #7

160bluetooth_C04.qk 12/5/01 4:22 PM Page 144

Security Management • Chapter 4 145

layers; it looks up the corresponding reference in the database. If one exists, it
takes action as dictated.The order in which security measures are invoked is:

1. Authentication

2. Authorization

3. Encryption

Attributes in the service database can be modified at any time and must
reflect the services offered by the device; in essence, if the SDP database
changes in terms of RFCOMM ports being used in supporting services, the
same changes have to be taken into account if security is to be applied to the
same services. Updates must be reflected in the service database if security is to
be effective.

Authorization is the process whereby permission is granted to the device
requesting access to services offered.When the Security Manager determines that
authorization is to be invoked, it simply asks the server application the following
questions:

■ Do you want the device requesting service (as identified by remote user-
name or remote device address) to have access to the particular service
being requested (for example, the Fax service)?

■ Is this device to be Trusted for future sessions?

In answering yes to both questions, the protocol connections required are
completed and the applications’ service is offered to the client.The device

www.syngress.com

Mode 1 Security: Configuring for No Security
The absence of a record in the service database for services offered by
the device will result in no security measures being executed at least as
related to Mode 2. Of course, Mode 3 is different as it is configured by
writing to the Host Controller via the HCI; some implementations offer
an application programming interface (API) structure associated with
the Security Manager that provide commands necessary in configuring
the Host Controller.

Developing & Deploying…

160bluetooth_C04.qk 12/5/01 4:22 PM Page 145

146 Chapter 4 • Security Management

database is modified to reflect that the remote device or client (as enumerated by
its address) is Trusted.

In the future, if authorization is invoked, the device database is consulted. If
the Trusted parameter is set for the device requesting access to the service, autho-
rization is deemed to have passed without need for user intervention.

Role of Device Databases
Initiating Mode 2 or Mode 3 security is determined by the application during
setup of the service database, or when configuring the Host Controller indirectly
through the Security Manager respectively.We now turn our attention to the
support activities and structures that need to be managed once the security pro-
cess is underway.As has been mentioned earlier, there must be a mechanism in
place by which historical data is kept for future reference. For example, upon the
successful completion of authentication, a link key is created that is unique to the
two devices participating in the process.This key must be persistently stored
along with the address of the authenticated device for future reference.As equally
important as the attribute of Trust, this tag is assigned specifically to devices that
have passed the authorization process. It, too, must be stored for future reference.
Both entities are placed in the device database, an area that provides persistent
storage of information.

Device Database Content
Figure 4.5 illustrates the device database and the content of a record.When
authentication is requested, the device database is first accessed to determine
whether a link key exists for the device being authenticated. If such a key is avail-
able, it is used in calculating the correct response to the challenge issued. If this
key is absent, or if it is incorrect, the pairing procedure must begin and a PIN
needs to be entered.A new link key will be generated then possibly stored in the
device database for future reference. Storage of the key for future use is an option
that is managed by the application.

Authorization is very similar in terms of operation. If during the authoriza-
tion procedure the application determines that the device is to be Trusted (either
in response to User input or it is automatically granted without the need for UI),
this attribute is stored in the device database as well. Future sessions between the
same devices will make reference to this stored parameter, determine that the
attribute is Trusted, and bypass the authentication procedure as a result.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 146

Security Management • Chapter 4 147

www.syngress.com

Device Database Operations
This database is accessed by both application and Security Manager.The applica-
tion can access records for the purposes of changing parameters if required.An
example would be in modifying the Trusted attribute to Untrusted upon expiry
of a predetermined time period.The Security Manager accesses the device
database in response to actions that are dictated by the service database.
Extracting a link key in response to authentication activity (as requested by the
Host controller), examining the Trust relationship (in response to having to
authorize a connection) are two such examples whereby the Security Manager
uses information stored in this structure.

Managing the Device Database for Your Applications
Data storage in the device database is persistent to prevent the loss of data as a
result of turning the power off.With this in mind, you must be aware of the need
to develop your own drivers to manage the device database. Because embedded
systems are developed to run on different hardware platforms and to use different
operating systems, they require the applications developer to take on the added
responsibility of porting the Bluetooth protocol stack to the particular Host
target environment. Obviously, you will need to do the work necessary in getting
the stack to work with your operating system as well as in developing both trans-
port and hardware drivers required for communicating with the Host Controller.
In addition to this porting activity, you must develop drivers that will be used in
accessing and managing the device database. Because this database is to be kept in
non-volatile store, the hardware implementation could be just about anything

Figure 4.5 The Device Database Persistently Stores Data Resulting
from Successful Completion of Security Procedures

Device Database

Attributes
Link key = _______

Trusted
(permanent)..........

Device

Device
Address _____

160bluetooth_C04.qk 12/5/01 4:22 PM Page 147

148 Chapter 4 • Security Management

from a disk drive to FLASH memory, requiring either a serial interface or parallel
interface. Because this is implementation-specific, you will have to assume
responsibility for completing this custom work.

Such work is highly dependant upon the protocol stack you are using.
Hopefully, your stack vendor has provided an interface that you can write to which
supports this activity.The stack can then call the drivers that you have developed in
managing the device database. It is desirable to access the device database via an
application programming interface (API), provided by the stack itself.

Working with Protocols and
Security Interfaces
With all components of security now defined, we are now able to look at the
mechanics of how security functions are carried out in an embedded device.
Secondly, we will be able to look at how your application is to interface to the
Security Manager for the purposes of setting up a proper security regime. Lastly,
managing the device database is briefly discussed to complete the discussion of
how your application is to treat the issue of security with the intention of jump-
starting your design work in meeting time-to-market pressures.

Mode 2 Operation
Figure 4.6 is an illustration of the messaging that takes place when the full com-
plement of Mode 2 security is assigned to a particular service, such as access to
the TCS binary group of functions in a wireless telephony profile. In this
example, L2CAP is identified as the service-related protocol with the designated
PSM of 0x0005; this is the security trigger that invokes the Security Manager.
Here is what happens when authentication, authorization, and encryption are
required.

Authenticate 1 Commands the Host Controller to authenticate the
other device.

Authenticate 2 Host Controller responds, asking for a link key (if one
exists).

Authenticate 3 The device database is checked by the Security
Manager or a link key associated with the address of the device being
authenticated (assume no key exists yet).

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 148

Security Management • Chapter 4 149

Authenticate 4 The Host responds with “no key.”

Authenticate 5 The Host Controller makes a request for a PIN and
the Security Manager asks the application for a PIN (either through a
UI or from memory).

Authenticate 6 The PIN is returned to the Host Controller and an
initial, temporary link key is created (Kinit).

Authenticate 7 A permanent link key (Kab, Ka, or Kb) is created and
shared between devices.

Authenticate 8 Authentication proceeds using this permanent link
key and passes.

Authenticate 9 The permanent link key is sent to the Host for
storage in the device database for future reference.

Authorization 1 The Security Manager examines the device database
to see if the device is Trusted (assume it isn’t yet).

www.syngress.com

Figure 4.6 Operation of Mode 2 Security in Completing the Authentication
Procedure as Dictated by the Security Manager

User Interface

Authorize connection? y or n
Permanently Trust device? y or n

Enter PIN ____
Save Link Key? y or n

RFCOMM

L2CAP

Security
Manager

HCI

Link Manager

Baseband controller and radio hardware

Service
database

Device
database

Bluetooth
Device

authenticate

Request L2CAP
connection

160bluetooth_C04.qk 12/5/01 4:22 PM Page 149

150 Chapter 4 • Security Management

Authorization 2 The Security Manager presents the name of the
device attempting to make a connection, and the service it wants to
access to the application software.The application must respond back to
the Security Manager if this connection is to 1) be authorized, and 2) if
this device is to be Trusted.

Authorization 3 The Trust attribute is entered into the device
database by the Security Manager and the peer-to-peer protocol con-
nection is permitted to proceed in establishing itself.

Encryption 1 The Security Manager then commands the Host
Controller to invoke encryption, which it does.

During the execution of security measures, there are only two points where
the application software is invoked. PIN entry and response to the authorization
request are the two elements requiring handlers.

Mode 3 Operation
Mode 3 security is similar in that authentication is initiated by the Host
Controller without involvement from the Security Manager; steps Authenticate 2
through 7 are then used in completing the procedure. If encryption is also
enabled on the Host Controller, it will automatically be enforced without
Security Manager intervention.

Application—API Structure
Application development will now be addressed in terms of implementing secu-
rity.As was explained throughout the text, there are three application interface
points that you will have to concern yourself with after you determine the level
of security that you will implement for your device.They are:

■ Setting up security (service database for Mode 2 or Host Controller
configuration for Mode 3).

■ Responding to requests for PIN, specifying permanent storage of the
link key, approving authorization requests and allocating semi-permanent
Trust (all MMI related).

■ Modifying the device database to reflect a change in Trust upon the
expiration of a timer or removing link key information if required to
do so.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 150

Security Management • Chapter 4 151

www.syngress.com

NOTE

The “Bluetooth Security Architecture” white paper currently available
through the Bluetooth Web site (www.bluetooth.com) is an excellent ref-
erence in how to deal with Bluetooth security.

With an understanding of security as it has been addressed, it is now time to
examine the software routines required in supporting security and how the
defined interfaces are to be used, as they pertain to developing your application.

We will look first at configuring a system requiring Mode 2 security, the
interface routines that are necessary and what you can expect from a commercial
Bluetooth protocol stack in terms of implementing your particular solution.

Being able to configure the service database with both service information
and the levels of security to be applied when this service is being instantiated is
supported by the following routine abstractions supported by the Security
Manager API:

■ SEC_registerApplication (Name, Security Level, PSM, Protocol ID,
Channel ID); this interface configures the service database to trigger
security measures when connections are being set up at a particular PSM
at the L2CAP layer.

■ SEC_registerMultiplexingProtocol (Protocol ID, Lower Protocol, Lower
Channel, Security Level); this interface configures the service database to
trigger when a link is being requested at a particular channel number on
an RFCOMM connection.

In either instance, the parameter governing security being passed into the
routine is “security level” and it defines which security elements are to be associ-
ated with the specified service.

■ Authentication incoming connect request

■ Authentication outgoing connect request

■ Authorization incoming connect request

■ Authorization outgoing connect request

■ Encryption incoming connect request

160bluetooth_C04.qk 12/5/01 4:22 PM Page 151

152 Chapter 4 • Security Management

■ Encryption outgoing connect request

■ Connectionless packets (datagrams) allowed

Commercial implementations may differ somewhat from this description, yet
they should provide the same level of functionality in the configuration of secu-
rity Mode 2. Mode 3 is slightly different, as it is setup by sending commands
directly to the Host Controller via the Host Controller Interface. Command
abstractions recommended in the security white paper are:

■ HCI_Write_Encryption_Mode

■ HCI_Write_Authentication_Enable

Again, when you are using a commercially available stack, the command
structure made available to the application layer may be slightly different; all you
really need is to have the capability to configure the Host Controller to imple-
ment authentication and or encryption. Such calls could be made through an API
specific to the Security Manager which in turn communicates with the Host
Controller. Unlike Mode 2, security measures will be applied to both incoming
and outgoing connection requests.You do not have a choice.

Mode 1 is the simplest in terms of setting up security; specify nothing. For those
that want to play it safe, simply ensure that the security service database contains no
record for the service being protected and Mode 2 will not be used.Also, remember
to configure the Host controller to disable authentication and encryption.

In support of the completing authentication or authorization, the application
code has to be notified of when a PIN is to be entered or if authorization is to be
granted.This is wholly dependant upon the protocol stack, as its architecture will
determine how this is to be managed.Two potential ways of handling the required
activity are to use a messaging structure and inform another task that information
is required, or to make use of callback functions. In the case of either method, the
application has to respond and does so by using the following abstractions:

■ SEC_PinRequest (Bluetooth address, Name, PIN); this interface returns
the PIN, gathered from a User Interface or from memory, to the
Security Manager which then passes the PIN to the Host Controller
such that it can continue the pairing process.

■ SEC_AuthorizationRequest (Service name, Device name,Trusted rela-
tionship); this interface presents to the user both the name of the service
being requested and the name of the device making this request. In
return, the application returns the Trust value that gets written into the

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 152

Security Management • Chapter 4 153

device database. If Trust = TRUE, future sessions will proceed without
the need to authorize. If Trust = FALSE, authorization will be manda-
tory once again. In addition to this parameter, there must also be a way
for the application to inform the Security Manager that Trust is granted
temporarily, at least for this session.Your protocol stack will have its own
way of handling this since it is not addressed in the Bluetooth security
white paper.

In the case of responding to a request for authorization, the Security Manager
should automatically handle the setup and configuration of the device database to
reflect the status of a device. Remember that Trust is a parameter which can be
changed from TRUE to FALSE with the passage of time.The application is
responsible for keeping track of this and must have a way of modifying the device
database to make such changes.

To complete the discussion on the programming interfaces, there is opportu-
nity for the application itself to initiate either authentication or encryption.
Supporting this are the following interfaces:

■ HCI_Authentication_Request; this interface commands the Host
Controller to begin authentication on a specific connection. Remember
that if the device is a master, it is capable of supporting up to seven
unique data connections to slave units.The Security Manager is used to
either respond with a link key to the Host Controller, or to inform the
application that a PIN is required and handle the entry
(SEC_PINRequest) as described previously.

■ HCI_Set_Connection_Encryption; this interface instructs the Host
Controller to encrypt a data channel associated with a specific connec-
tion that has already been established. Earlier, it was stated that once a
device is authorized for one service, it is authorized for all services. If
you have a need to re-authorize a device for a service, this is the way
you do it. By directly requesting authorization upon the initialization of
the service, you are able to protect access to the service by outside users.

Exploring Other Routes to Extra Security
You should now feel very comfortable regarding the Bluetooth security troika
and how to apply it in your device.This may not be enough, however.There are
a few other tricks you can consider when actually deploying your device to your

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 153

154 Chapter 4 • Security Management

customer base, as well as a few tricks your customers may have up their sleeves in
enhancing system security. Is this being paranoid? You decide.

Invisibility
The ultimate in security is to make your device non-connectable.This is only for
the truly paranoid who will go to any measure to protect their services, their
data, and their device from hostile as well as legitimate users. Unfortunately, this is
not very practical when used as a security measure, even though it is very desir-
able should the device ever be taken out of service for any reason. (Perhaps the
LAN to which a LAN Access Point is connected.)

Less onerous, and quite clever, is to make your device non-discoverable yet
connectable. By doing this, your device cannot be “seen” by other devices while
they are scanning the vicinity using the Inquiry procedures. By not responding to
an Inquiry message, your device will not reveal its presence, nor will it divulge its
address, thereby becoming a silent device.Without an address, all other devices
will be unable to establish a connection, consequently enhancing security. Users
that have been told about the presence of this device can be provided with its
address.They can then manually enter this unique address into their Bluetooth
device and proceed to connect to the device at will.

An added benefit of configuring your device as either non-connectable or
non-discoverable is in saving power consumed by the Host Controller, thereby
prolonging battery life (if the device is battery powered).

Application Level Security
Applications themselves often use their own forms of security giving them
greater control over the selection of legitimate users. LAN access, for example,
relies upon a Point to Point Protocol (PPP) layer which, among other responsi-
bilities, usually asks the client for its user ID and a pre-determined password.
When PPP security is in use, network access is granted only after this informa-
tion is provided and verified by the network, although using the security features
at this level is optional.The network manager can dynamically modify network
access parameters, providing access to users that are new to the corporation, or
restricting access to others that may have left.With reference to the LAN Access
profile, there are several different types of PPP that can be supported, each having
a similar way of implementing security.

Additionally, network access may have user ID and password requirements
that are under complete control of the IT department.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 154

Security Management • Chapter 4 155

OBEX, although included as part of the Bluetooth protocol stack, can pro-
vide a layer of security that acts in a manner similar to that of authorization.
When security is used at this level, a connection between OBEX transport layers
invokes user interaction generally through a User interface. If the connection is
approved, the OBEX transport layer completes the peer to peer connection and
application profiles can then be used.

Using application specific security may be preferred since complete control is
maintained by the IT department and is not dependant upon Bluetooth security
alone.

Implementing Security Profiles
To assist your efforts in developing a strategy for implementing security, a sum-
mary of all profiles defined in Bluetooth specification V1.0B and their associated
Bluetooth security levels are presented. In addition to this information, which is
used to provide guidance as well as to ensure interoperability between different
products in the marketplace, different strategies will be presented to provide fur-
ther assistance toward applying sufficient security to your application.

SDP
We will start by looking at support functions first, that being SDP. Do you
really need to protect this feature? The profile specification indicates that
authentication and encryption can assume a default value of ‘not active’, yet
authentication and encryption are to be supported. If another device, during
the establishment of a connection to SDP, enforces authentication and encryp-
tion, then you must reply in kind supporting such requests. It should be
obvious that level 2 security is used in this instance as this is the only mode
supporting service protection.

Why would you want to protect SDP and would this be a prudent move?
Remember, once authenticated, a remote device can then access all services
during the same session since the link key is established between devices and is
stored temporarily in the Host Controller. (It can also be stored permanently on
the Host.) In denying access to information in this fashion may imply that you
really don’t want people knowing what you do or how to connect to your
device. It is better to use a different security measure – perhaps setting your
device as non-discoverable to prevent strangers from ‘seeing’ you. It is probably
best to offer unprotected access to SDP providing important connection infor-
mation, then protecting the actual application that your server provides.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 155

156 Chapter 4 • Security Management

Cordless Telephony and Intercom
Above the L2CAP protocol layer resides the TCS module supporting cordless
telephony and intercom profiles. It is mandatory to use security modes 2 or 3;
you get to select.Authentication and encryption are to be used and the bonding
process is to be initiated by the terminal unit.

In a public environment, a gateway may be provided for users to access the
PSTN. Mode 3 may be appropriate, quickly keeping radio connections from
being established for unauthorized users. In doing so, you would prevent the loss
of an otherwise useful and limited resource: the radio link. Only users that could
enter the correct PIN would be able to establish a link with the gateway.Another
approach would be to enhance this security by making the gateway non-discov-
erable; further preventing the occupation of a radio link by casual Bluetooth
users. Others that are aware of the gateways presence could connect without
having to go through the discovery process.

Mode 2 security is best used in a controlled environment such as an office
where users are known.Also, with a fixed number of users known, gateway access
may not be a concern. Under this situation, terminal units are able to collect
information about the gateway via SDP and choose to continue in establishing a
connection. Bandwidth considerations are not that important when compared to
the convenience for potential users.Also, being deployed in a friendlier environ-
ment, the level of security used can be relaxed to Mode 2.

Placing the device in the non-discoverable mode also limits access to the
gateway to those already cognizant of its presence (these are typically regulars that
work within the same office space). For larger numbers of users, the address of
the gateway could be provided to a fixed number of users. In such a controlled
environment, bandwidth considerations (the number of users that can be sup-
ported by the gateway) can be managed effectively.

The intercom profile is simpler and does not require security (it is really just
an option). Given that a 10-meter distance is not far, one could yell loud enough
to overcome the security barrier—unfortunately, your communication would be
heard by all!

Serial Port Profile
Security recommendations for this profile are not specific since the applications
making use of a simple serial connection are very diverse.As such, I will leave it
up to you to decide on what security to use. Suffice to say that you should have a

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 156

Security Management • Chapter 4 157

www.syngress.com

very good idea of what to do after examining security associated with the other
profiles that rely upon the serial port profile.

The approach to use is dependant upon the reason for security. If a point-to-
point connection (exclusivity) is required, authentication is suggested.

Headset Profile
This is a great example of where a communications link is restricted for use by
only a very specific device.A cell phone and headset go through a bonding pro-
cess—the exchange and storage of a link key. How this is managed is generally up
to the vendors of such devices.To date, headset terminals have all been embedded
devices incapable of supporting manual PIN entry.Two approaches can be used
to accomplish bonding. One approach has the gateway discovering all headset
devices in the vicinity and paging at random one of the devices in its headset list
of devices. If this is the gateway to which the user wishes to bond with the
gateway (cell phone), they acknowledge this connection (by perhaps pushing a
button on the headset).The gateway now knows that this device is the correct
one. It then begins the pairing process with this unit—using the default PIN.
Both devices must use the default PIN (one byte set to the value zero) for this to
work. Once authentication passes, a link key is passed between devices (normally
from the headset terminal to the cell phone) for storage.With the link key and
the address of the headset terminal unit established, authentication can now com-
plete without delay between these bonded devices. Note that authorization is not
used in this profile.

A second more convenient approach can be used.A PIN can be pro-
grammed into the terminal headset at the factory (and printed on literature
accompanying the headset unit). If the cell phone allows it, the user enters this
PIN number into the phone. Now bonding proceeds, using this PIN number
instead of the default PIN.

Exclusivity in terms of a connection is maintained. Disabling the discover-
ability of the headset terminal may not be possible given the limited MMI sup-
ported, but it is another possibility in supporting an exclusive connection meant
to be shared by only two units.

Dial-Up Network and FAX
Access to a service—whether data or the public telephone network (long dis-
tance)—must be protected.According to the Bluetooth profile specification,

160bluetooth_C04.qk 12/5/01 4:22 PM Page 157

158 Chapter 4 • Security Management

security Modes 2 or 3 are to be implemented for this profile.Also, the client, or
terminal unit, is to initiate the bonding process meaning that it initiates authenti-
cation, forcing the erasure of its internal link key if one exists.The question now
is to identify what security should be used and if it makes sense on the client or
the server side of the link.

Clients normally access the dial-up network or FAX server, using SDP to first
get a description of the service as well as information required to establish a con-
nection via the RFCOMM interface. Mode 3 security would force any device,
either on an inbound connection or outbound connection, to pass through
authentication before it was provided with information regarding services offered;
this is quite inconvenient. Mode 2 security configured to trigger on an outbound
connection attempt at the L2CAP of RFCOMM protocol layers again would
protect very little.

Addressing the server (gateway) side, it makes a great deal of sense to trigger
security at the RFCOMM protocol layer on incoming connections, allowing
client devices access to service discovery information. From this, they can pro-
ceed to access FAX or dial-up services. Only then will authentication and pos-
sibly authorization be invoked.Typically, either the default PIN (zero length PIN)
or one that has been configured into the server will be used.

Bonding is a mandatory procedure initiated by the client (terminal) side of
the connection. In essence, the client will initiate this procedure.

LAN Access
Protection of data is the most important consideration when implementing secu-
rity in a LAN Access Point (LAP).Visibility to potential users can be restricted, as
this is an option that is available for use by the security model you use.
Restricting access to the LAP is another use of configuring the device as non-
discoverable; the notion of exclusivity takes shape when the LAP is perhaps oper-
ating to near full capacity. Being non-connectable is a mode that can be
configured if the back-end server is down, blocking access to the LAN as a result
of equipment malfunction.

Authentication and encryption are to be used in support of connections
made to the LAP. Implementing security Mode 3 will force the potential user
to authenticate prior to accessing service discovery resulting in tying up an
active connection to the LAP.Tying Mode 2 security to RFCOMM allows the
potential user to access SDP and determine if an LAP is what they are looking
for. Accessing the LAP service will then result in both authentication and

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 158

Security Management • Chapter 4 159

encryption to be used in support of the connection. Implied is the need for
pairing to take place, as well as bonding; both procedures are to be supported
by the LAP.

Client management is not directly addressed by the specification. Security is
not critical on the client since information from this device is not made acces-
sible to the LAP unless the user desires to make this data available through their
own action.

OBEX
Data transfers and synchronization can be initiated on either the client side or the
server side, under the control of the upper layers of the application. Limited dis-
coverable is the preferred mode regarding security on the server side of the con-
nection. Only selected devices are to have direct access to information as
provided on the server; non-discoverable is supported to allow the server to com-
pletely eliminate others from seeing their device. In configuring the device in this
manner, they become completely covert relying on other means to disseminate
information. Perhaps this is initially done during conversation, or information is
placed into the device manually in order to provide required address information
necessary for completing a connection.

Normally, devices providing OBEX services have a user interface of some
sort. Computers, cell phones, and PDAs are only a few devices that fall into this
category.

Authentication and encryption is supported by both client and server;
whether it is used is up to the designer.Where it is used, Mode 2 or 3 is also a
design choice. Guidelines that can be applied are dependant on the application
supported by the OBEX transport layer.

Object push applications, such as the exchange of business cards over PDAs,
could be conducted between users in an area permeated by Bluetooth devices.
Use of authentication (and encryption for data that is sensitive) will provide the
exclusivity between PDAs required to prevent others from gaining access to the
OBEX layer and file information that this layer can provide.

File transfer is similar to object push, and can be treated in much the same way.
Synchronization is slightly different in that this application can be set up to

work transparently; the users have no knowledge of the data being synched
between a computer and a PDA. In this instance, mutual authentication could be
used to protect both devices from establishing connections to a wrong device.
Authentication and encryption could be triggered in Mode 2 or 3.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 159

160 Chapter 4 • Security Management

Table 4.2 provides a summary of security attributes for profiles outlined in
the Bluetooth specification V1.0B.A mandatory classification indicates that the
device must support the corresponding operation, not necessarily use it. For
instance, with reference to the LAN Access profile, it is mandatory that the LAN
Access Point be pairable.This means that if another device were to begin
bonding procedures requiring the invocation of pairing, your device would
respond by executing pairing procedures; it does not mean you are required to
initiate pairing procedures yourself in support of security. It would be a very
good idea, however, to consider using the mandatory features in your security
model.

An optional classification indicates that your device can support the security
feature, but also has the option of not supporting the feature.

Table 4.2 Summary of Security Attributes Associated with Each Profile

Dial-Up
Security Cordless Networking LAN
Attribute SDP Telephony Intercom Headset and FAX Access OBEX

Non- Gateway: Mandatory HS: Gateway: LAP: Server:
discoverable mandatory mandatory mandatory optional mandatory

Limited Gateway: Optional HS: Gateway: Server:
Discoverable optional optional optional 1st choice

General Gateway: Mandatory HS: Gateway: LAP: Server:
Discoverable mandatory mandatory mandatory mandatory 2nd choice

Non- LAP: Server:
connectable optional optional

Pairable Terminal: Mandatory HS: Terminal: LAP: Server:
optional if bonding optional optional mandatory mandatory
Gateway: used, AG: Gateway:
mandatory otherwise optional mandatory

optional

Non-pairable Terminal: Optional HS: Terminal: LAP: Server:
mandatory optional mandatory optional mandatory
Gateway: AG: Gateway:
mandatory optional mandatory

Bonding Terminal: Optional HS: Terminal: Optional
initiates accepts initiates
Gateway: AG: Gateway:
accepts initiates accepts

Authentication Mandatory Mandatory Mandatory Mandatory Mandatory Mandatory

Encryption Optional Optional Optional Mandatory

Security Mode 1

Security Mode 2 Mandatory Mandatory Mandatory

Security Mode 3 (2 or 3) (2 or 3) (2 or 3)

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 160

Security Management • Chapter 4 161

Case Study
One of the most popular profiles being pursued by many companies is the
Headset profile.The audio gateway resides on a cellular phone and the actual
headset rests in the human ear. Incoming calls can be answered by the headset,
either automatically or by using manual intervention. How does the cell phone
know that it is actually communicating with the correct headset? Security proce-
dures are used in ensuring this connection using the following strategy.

The process of bonding the cell phone and the headset is required in estab-
lishing and storing a common link key for the purposes of future authentication.
If the headset is within range of the cell phone and an incoming call, the cell
phone immediately establishes a radio connection with the headset. Relying on
Mode 2 security, the cell phone initiates authentication procedures which, in
using the stored link key, pass.The headset application then responds and is ready
to accept an audio connection to support the call.

Setting this situation up is of great interest. For instance, bonding requires that a
PIN be entered during the pairing procedures.This PIN can be managed in two
ways. For headset devices that are manufactured to use the default PIN, the
bonding procedures would proceed as follows.The cell phone would issue an
inquiry, collect addresses of all Bluetooth devices within range, perform service dis-
covery to isolate all headset applications and then attempt to access each headset.
This requires that pairing takes place; the default PIN is then used.Authentication
is then completed successfully since the cell phone also uses the default PIN.The
headset is then paged and if it responds (because the user pushes a button to indi-
cate it is willing to accept the connection), the cell phone knows that this is the
headset to be bonded with the cell phone. If for instance there were several head-
sets in range and the incorrect headset was accessed, the user should not respond.
The cell phone will then know that this is not the device to bond to and will con-
nect to the next headset device in the list of headsets discovered.

Alternatively, the user can be presented with a list of possible headsets and
choose which one to connect with, thereby avoiding a query for every headset in
range.

Headsets that have a PIN programmed in them (identifying this PIN on the
packaging) are bonded differently. If the cell phone permits it, this PIN number is
entered into the phone. Pairing continues using this PIN, authentication com-
pletes, and bonding is established.

In either case, now that bonding has completed, the headset is now accessible
for use by the cell phone.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 161

162 Chapter 4 • Security Management

Summary
Bluetooth security is used to protect services offered by devices as well as enforce
exclusivity, permitting only very specific devices to connect. In accomplishing
this end, the security troika was introduced consisting of authentication, autho-
rization, and encryption. Specific use of these fundamental building blocks was
then discussed in context of three different security modes; Mode 1 was the eas-
iest to understand as it refers to no security, Mode 2 enforces the security troika
at the L2CAP and RFCOMM protocol layers, while Mode 3 enforces authenti-
cation and encryption at the Link Manager level.

With this basic architecture defined, a commercial implementation of how
security was to be configured by using components such as the Security
Manager, service database, and device database was shown. Dataflows, although
transparent to the application, were discussed to complete the picture.Application
interfaces were then introduced to assist the developer in understanding how to
implement the security levels required for their particular application. For those
developers requiring assistance on this front, a table summarizing Bluetooth pro-
files and the security measures to be used was provided.

Finally, additional security measures that form part of a larger security strategy
were addressed, including the configuration of the Host Controller to remain
non-discoverable or non-connectable.Additionally, authorization at the PPP level,
as well as that supported by OBEX, were also briefly mentioned.

Practical examples of implementing security features capped off the discus-
sion, introducing real-world solutions to the reader, hopefully providing them
with a greater sense that developing applications relying on Bluetooth security is
not as complicated as it appeared prior to reading this chapter.

Solutions Fast Track
Deciding When to Secure

� Secure for protection of data from eavesdroppers.

� Create exclusive links between devices.

Outfitting Your Security Toolbox
� Authentication verifies that the other Bluetooth device is the device you

believe it is, using a link key as the secret password.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 162

Security Management • Chapter 4 163

� Authorization grants permission to a device making a request to use a
particular service.

� Encryption encodes data being passed between two devices; it requires
successful authentication.

Understanding Security Architecture
� The Security Manager, which resides in the protocol stack, manages

Mode 2 security transparently to the application.

� The Host Controller manages Mode 3 security if configured to do so by
the application software.

� The Security database is configured by the application and specifies
when to trigger Mode 2 security procedures as well as which security
measures are to be taken.

� The device database offers persistent storage for parameters created
during the successful completion of security and makes these available
for future sessions to reduce security procedures required.

Working with Protocols and Security Interfaces
� Mode 2 security is invoked when a client application attempts to estab-

lish a connection with the server application and can use authentication,
authorization, and/or encryption.

� Mode 3 security is triggered by the Host Controller when either an
incoming or outgoing request for a radio connection is made.
Authentication and/or encryption can be specified.

� Application Programming Interfaces support the configuration of the
type of security to use and offer a way to insert user input (PIN entry)
when required.

Exploring Other Routes to Extra Security
� Security measures are to be supported in many profiles, such that if

another device wants to invoke a component of the security troika, it
will be met with an appropriate response.

� In many instances, implementing security is not made mandatory
since this is left up to the discretion of the system designer.What is

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 163

164 Chapter 4 • Security Management

made mandatory in many instances is supporting security as men-
tioned previously.

� Non-discoverable mode as configured into the Host Controller can pre-
vent device detection during the Inquiry process.

� Non-accessibility can prevent any device from establishing a radio con-
nection, thereby preventing access.

� Applications often have associated with them User IDs and passwords as
further measures toward protecting information resident on a server.
Authorization, the act of granting permission to a service, is another
application-based security measure used by the OBEX transport layer.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What happens if authentication fails? What could be the cause of such a
failure?

A: When authentication fails, the connection is rejected. If the connection is
repeatedly attempted, perhaps because a hacker is trying to penetrate the
security shield, the authentication procedures will respond by delaying a
response at ever-greater time intervals, allowing authentication to be
attempted repeatedly whilst still hopefully discouraging hackers.

Q: Can I prevent the storage or even removal of a link key as stored in the
device database, ensuring that each encounter with another Bluetooth device
will result in the need to re-enter a PIN?

A: The link key is stored in the device database which should be made acces-
sible to the application; this is dependant upon the implementation of the
particular stack you are using.You have direct access to records in the
device database, allowing your application to find a record, modify it, then
return it to the database for reference by the Security Manager.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 164

Security Management • Chapter 4 165

Modification of the Trust parameter as well as complete eradication of the
stored link key is supported.

Q: If I am developing an embedded device without a User interface, how can I
use authentication or authorization when I cannot enter a PIN or respond to
granting either temporary or permanent Trust?

A: PIN information can be stored in memory and accessed by the application
when a request for this data is made. If you use this strategy, you must reveal
the stored PIN to the user allowing them to enter this same PIN information
into another device to successfully complete the pairing procedure.
Authorization can be managed transparent to the user as well. By earmarking
every device as Trusted that comes into range of a Bluetooth unit (as deter-
mined by the Inquiry procedures), authorization will be successful.Another
method that can be used is in parsing out the name of the remote device, and
if this is recognized by comparing strings, authorization will successfully com-
plete; note that this requires the entry of valid device names implying that
there is some user interface available. Keep in mind, this method is open to
spoofing, as eavesdroppers can read the name, too.

Q: Do I have to use Bluetooth security even when I can rely upon legacy secu-
rity already built into the profile?

A: The simple answer is yes. Support for security, as determined by the specifica-
tion, is mandatory in many instances, yet its use is optional.Your device may
not instigate security procedures, yet another device may (and could) request
you participate in traversing the security boundary.The ability to participate
in this exercise means you will ultimately have to implement security just in
case another device wants to use it.

Q: Do I have to implement the device database in non-volatile store? What
about the service database configuration? Do I have to be concerned about
its contents being erased after powering down the device?

A: Using NVS is convenient as it allows the retention of device information
(link key and Trust) even when the device is powered down.Volatile
storage can also be used, but requires that the user enter data back into this
database for future reference.The service database is generally managed in
RAM; its contents are determined by application code as it initializes data

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 165

166 Chapter 4 • Security Management

structures (like the service database associated with SDP) prior to offering
services.

Q: Who determines which key (Kinit, Kmaster, Kab, Ka) to use and when to
use it?

A: The Link Manager makes this decision, generating keys and storing them
when required.The Link Manager only communicates with the Security
Manager to get PINs and store link keys as necessary.The application has
minimal involvement with link key management.

www.syngress.com

160bluetooth_C04.qk 12/5/01 4:22 PM Page 166

Service
Discovery

Solutions in this chapter:

■ Introduction to Service Discovery

■ Architecture of Bluetooth Service
Discovery

■ Discovering Services

■ Service Discovery Application Profile

■ Java, C, and SDP

■ Other Service Discovery Protocols

■ The Future of SDP

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Chapter 5

167

160bluetooth_C05.qk 12/5/01 3:54 PM Page 167

168 Chapter 5 • Service Discovery

Introduction
Computing is part of almost everyone’s daily routine. From communicating via
e-mail and mobile phone to shopping online, computing has found its way into
mainstream living.As more people use mobile phones, personal digital assistants
(PDAs) and laptop computers to perform daily tasks, it becomes critical that
people be able to find services in their local area in a standard way that makes
them easy to connect to and use.

The evolution of networking parallels the evolution of computing.As com-
puters evolved from special-purpose, high-cost devices to general-purpose, low-
cost devices, so too have networks evolved from single-function and
limited-access (university and military networks), to open, multifunction plat-
forms built around core standards (Transmission Control Protocol/Internet
Protocol [TCP/IP], Hypertext Transfer Protocol [HTTP], HyperText Markup
Language [HTML]). But the very success of such open and truly global net-
works can create its own problems.A key problem is one that every Internet
user has experienced: the “finding stuff ” problem.We know the information or
service we need is out there, but we don’t know how to find it. Most of our first
online experiences were slightly overwhelming as we grappled with quantities of
information presented to us. Hence, the rise of search engine technology (such
as Google) and specialized portals that categorize information for us (such as
Yahoo!).The more information there is out there, the more help we need
finding it.

As computers became smaller and more powerful, a new category called infor-
mation appliance emerged; it includes PDAs, ultra-light laptops, high-end phones,
and Web tablets.These devices are typically used in many different scenarios—at
home, at the office, and on-the-move. New types of connectivity available on
these appliances is creating a new kind of networking: spontaneous and instant
(ad-hoc) networks of consumer devices that join and leave a network at will.
Much of the power in this new wave of appliances lies in their potential to con-
nect to other devices, similar to or different from themselves.The purpose of
connecting is not just to form a network, but to do something, like send a file,
print a file, access a Web page or perform a transaction.

As these networked appliances become more popular, a problem emerges: to
benefit from this kind of connectivity, the appliances need to work together.
The appliances and services must be able to discover each other, negotiate what
they need to do and proceed with business—with no intervention from the
user. In corporate networks, the problem of finding services is often handled by

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 168

www.syngress.com

a directory service. A directory-centric approach relies on the availability of a
centralized or federated directory of available services. A given member of the
network (a client) finds a service by asking the directory to look it up.The
client sends an input query (name, address, or other wide-ranging criteria) to
the directory, which then responds by sending a list of matching services back
to the client.

For this system to work, the directory must be configured with information
about available services that are updated either by an administrator, or by new
services registering directly with the directory as they become available.This
approach is common in traditional wired (or enterprise) networks. For example,
the Domain Name Service (DNS), Lightweight Directory Access Protocol
(LDAP) and the Common Object Request Broker Architecture (CORBA)
Naming Service all provide directory services where a client queries the direc-
tory using some criteria.These systems work well for relatively stable environ-
ments—where the available services change relatively infrequently compared to
the overall set of services. However, these systems are not ideal for ad-hoc net-
works, where no centralized services (such as directory services) may be present,
where the resources of the appliances are themselves limited, and where the net-
work itself is unreliable.This problem led to the development of less directory-
centric approaches to the “finding stuff ” problem, and, in particular, to the use of
service discovery protocols and frameworks, which allow participants in a net-
work to co-operate in advertising and using services with minimal external
infrastructure.

Before reading this chapter, you should have a basic understanding of the
layers of a Bluetooth stack, in particular Logical Link Control and Adaptation
Protocol (L2CAP) and the Radio Frequency Communication (RFCOMM) pro-
tocol.You will also need a good understanding of the C programming language,
along with some knowledge of Java.

Introduction to Service Discovery
The term service discovery is used to describe the way a networked device (or
client) discovers available services on the network.The emphasis is on being able
to discover at runtime what services exist, and how to talk to those services.
Service discovery makes it possible to have zero configuration networks—where
the user doesn’t have to manually configure the network. Instead, the network
configures itself as it discovers new available services.The ability to self-configure
is critical to ad-hoc networks because:

Service Discovery • Chapter 5 169

160bluetooth_C05.qk 12/5/01 3:54 PM Page 169

170 Chapter 5 • Service Discovery

■ There is no other infrastructure available, such as a directory service.

■ The network is unreliable, so connections will appear/disappear.

■ Nodes themselves—such as the supplier of a service—will move in and
out of the network.

Discovery protocols specify the “rules of engagement” between those seeking
a service (clients) and the service provider (servers). Discovery protocols aim to
minimize the configuration required in the system and to maximize the system’s
flexibility. Key features of a discovery protocol are:

■ “Spontaneous” discovery and configuration of network services

■ Low (preferably zero) administrative requirements

■ Automatic adaptation to the changing nature of the network: addition or
removal of nodes, or services

■ Interoperability across platforms

Service Discovery Protocols
There are several discovery protocols available, each with different characteristics
and a different focus (see Table 5.1 for a summary of service discovery protocols).
We will examine these protocols in more detail at the end of this chapter.

Table 5.1 Summary of Service Discovery Protocols

Protocol Originator Comment

Salutation Salutation Originally designed for printers,
Consortium faxes, copiers

Service Location Sun, IETF Generic service discovery protocol
Protocol (SLP) RFC 2608 intended for corporate networks
Jini Sun/JavaSoft Extends the Java platform and lan-

guage to allow dynamic, self-con-
figuring networking

UPnP and Simple Microsoft, IETF Extends Microsoft Plug and Play to
Service Discovery Draft a wider, networked world
Protocol (SSDP)
Service Discovery Bluetooth SIG Designed for Bluetooth ad-hoc
Protocol (SDP) networks

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 170

Service Discovery • Chapter 5 171

Bluetooth SDP
It should be no surprise to discover that service discovery is fundamental to the
architecture of the Bluetooth standard. Given that Bluetooth is explicitly designed
to facilitate ad-hoc networking between a wide variety of devices, it places a
strong emphasis on how those devices discover and use services in the network.
The standard does not assume that any form of centralized or federated directory
service exists, and so is one of the few discovery protocols that is truly peer-to-
peer in nature (see Figure 5.1 for a comparison of service discovery protocols).

The standard defines a Service Discovery Protocol (SDP) that enables a client
to directly query a device it detects on the network about the services offered
by that device.We have characterized Bluetooth Service Discovery as being
protocol-dependent, in that it mandates the use of the underlying Bluetooth
communication protocol as the basis for service discovery. However, it’s important
to note the following:

■ Bluetooth SDP could indeed be implemented using other underlying
transport mechanisms.

■ Higher-level protocols (such as TCP/IP) may be run over Bluetooth.

The latter attribute allows Bluetooth clients to use other forms of service dis-
covery (for example, Jini) once they have bootstrapped themselves with initial
services in the Bluetooth network. It also means that Bluetooth SDP may be

www.syngress.com

Figure 5.1 Comparison of Service Discovery Protocols

Centralized,
Directory-based

Distributed,
Peer-to-peer

Protocol
Dependent

Protocol
Independent

Salutation

UPnP
(TCP/IP)

Jini
(TCP/IP)

SLP
(TCP/IP)

Bluetooth SDP
(Bluetooth)

160bluetooth_C05.qk 12/5/01 3:54 PM Page 171

172 Chapter 5 • Service Discovery

integrated with a number of the other service discovery protocols.We will discuss
some examples of this at the end of the chapter.

Architecture of Bluetooth
Service Discovery
To understand the architecture of service discovery in Bluetooth, three key ele-
ments need to be considered: Service Discovery data structures, the Service
Discovery Protocol, and the Service Discovery Application Profile (SDAP).The
SDP, a part of the Bluetooth specification, describes both the data structures that
represent information about services and the protocol used to communicate
between SDP components. SDAP stipulates how SDP can, and should, be used
by Bluetooth applications. Next, we’ll discuss the high-level architecture of each
of these elements.

The Structure of Service Records
A Bluetooth application user will need to access an entity on a remote device
that will do something for the user.The remote entity is called a service.A service
might provide information, carry out an action, or access a resource. In order for
a user to find information about what services are provided by a device, the
device must have an SDP server.The SDP server contains enough information
about each supported service to allow it to be accessed by the user (or client).
For a particular service (and there may be many services on one device) a service
record contains a description of that service.The description takes the form of a
sequence of service attributes, each one describing a piece of information about the
service.Within the SDP server, each service record is uniquely identified by a ser-
vice record handle (a 32-bit number).This handle is unique only within the scope
of the SDP server.

A service class defines the set of service attributes that a particular service record
may have. In other words, a service record is a particular instance of a class of ser-
vices. For example, a service record whose service class is PrinterClass is a collection
of attributes that describe a specific printer service. In fact, a service record may be
an instance of multiple different service classes, each with their own set of service
attributes.This is useful for building hierarchies of service types.A service class B
can be said to be a subclass of service class A if it contains all of the service
attributes of A and also adds its own attributes.You can tell what service classes a
particular service record instance belongs to by looking at a particular attribute of

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 172

Service Discovery • Chapter 5 173

the record, namely the ServiceClassIDList attribute.The Bluetooth specification
defines 15 service attributes that are common to all service records.They’re not
mandatory, but when used they have to conform to the definition in the Bluetooth
specification.These are the Universal Attribute Definitions, and they include
attributes likeServiceClassIDList, ServiceRecordHandle, and ProtocolDescriptorList (a list
of protocol stacks that may be used to access the service).

A service attribute is a name-value pair that includes an attribute ID and an
attribute value.The attribute ID uniquely identifies the attribute within the scope
of the service record.The attribute ID also identifies the type of the associated
attribute value (for example, whether the attribute value is a text string, an
unsigned integer, a Boolean, and so on). Since an attribute ID is unique only
within the scope of a service record, the same ID can be used in different service
records to represent different attributes of different types.

An attribute value can contain data of arbitrary complexity, rather than just
simple types.This is accomplished using data elements.A data element is made up
of a header and a data field.The header field includes a size descriptor and a type
descriptor.The size descriptor identifies the size (in bytes) of the data in the data
element.The type descriptor identifies the type of data stored in the data ele-
ment, such as:

■ Nil, the null type

■ Unsigned integer

■ Signed twos-complement integer

■ Universally Unique Identifier (UUID)

■ Text string

■ Boolean

■ Data element sequence

■ Data element alternative (a sequence of data elements from which one
element is selected)

■ Uniform Resource Locator (URL)

One of the valid types for a service attribute ID is a UUID, as defined by the
International Organization for Standardization (ISO) [in ISO/IEC 11578:1996
“Information technology - Open Systems Interconnection - Remote Procedure
Call (RPC)”].These 128-bit numbers are guaranteed to be unique across all
space and time (actually, unique until A.D. 3400, based on the UUID algorithm).

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 173

174 Chapter 5 • Service Discovery

One of the key uses of UUIDs is as a type for the members of the
ServiceClassIDList.That is, each service class is uniquely identified by a UUID.A
set of pre-defined service classes is provided in the Bluetooth Assigned Numbers
specification.Another use of UUID is as a unique identifier for a particular ser-
vice instance.This identifier is the ServiceID service attribute. Later, you’ll see that
UUIDs play a key role in searching a service discovery server.

The basic structure of the datatypes used by Bluetooth Service Discovery is
summarized in the sample SDP server shown in Figure 5.2. For simplicity’s sake,
the service class identifiers are shown as text strings rather than UUIDs.

A client wanting to access the service records of a service discovery server can
do so in one of two ways: they can search for a particular service record or they
can browse the available service records.The search capability of the Service
Discovery Protocol is simple but effective. It allows a client to specify a list of
UUIDs and then retrieve a list of service record handles for service records,
whose attributes contain all of the UUIDs specified by the client. Later in this
chapter, you’ll see how this mechanism is used in practice.

To support the browsing of service records, Bluetooth Service Discovery uses
special service attributes and service classes that allow for the construction of a
browseable hierarchy.A service class called BrowseGroupDescriptor is defined.A ser-
vice record that is an instance of this class is analogous to a directory in a file

www.syngress.com

Figure 5.2 The Data Structures of a Sample SDP Server

Service Record 165

Service Attribute

Attribute ID Attribute Value

ServiceClassIDList
OBEXFileTransfer,
GenericFileTransfer

Service Attribute

Attribute ID Attribute Value

ServiceID 0x3004

Service Discovery Server

Service Record 166

Service Record 167

160bluetooth_C05.qk 12/5/01 3:54 PM Page 174

Service Discovery • Chapter 5 175

hierarchy—it’s a place in a hierarchy where related services can be stored, or
where child BrowseGroupDescriptor records can be stored.The BrowseGroupList
attribute of a service record specifies the list of BrowseGroupDescriptors that a ser-
vice record instance is a member of (it may be in more than one).The members
of this list attribute are the UUIDs of the BrowseGroupDescriptor records. So, a
client can browse the Service Discovery Server by specifying the UUID of the
Browse Group of interest as a search pattern to the server.This search will match
all service records that have specified this BrowseGroupDescriptor UUID in their
BrowseGroupList attribute.

Before looking at the Service Discovery Protocol, it’s worth considering the
semantics of a service attribute value.Although the Bluetooth specification says
that an attribute ID describes both the type and the semantics of an attribute
value, this is somewhat sketchy.The semantics of an attribute value are not, in fact,
codified within a service attribute. Instead, the meaning of a particular attribute
value is understood by the client application once it knows what service class the
attribute’s service record belongs to. For example, a client accessing a service
record of service class 0x1113 (the last 16 bits of the UUID for the Wireless
Application Protocol [WAP] service class) must know, at application development
time, that the service attribute with attribute ID 0x0306 is the attribute that iden-
tifies the Internet Protocol (IP) network address of a WAP Server.This informa-
tion is not made available to it at runtime for presentation to the end user, for
example. If you’re familiar with richer software abstractions for discovering net-
work services, this example illustrates the opportunities for an abstract layer of
primitives to hide some of the programming detail from an application developer.

The Service Discovery Protocol
So, how exactly do clients discover services in their local areas? Services are dis-
covered using the Service Discovery Protocol, a simple protocol that communi-
cates between SDP clients and servers. It can be implemented over any reliable
packet-based transport layer, though it’s typically implemented over the Logical
Link Control and Adaptation Protocol.The Service Discovery Protocol includes
a set of Protocol Data Units (PDUs) that contain the basic requests and responses
needed to implement the functionality of Bluetooth Service Discovery.The
actual PDU format and protocol are not directly relevant to an application pro-
grammer who will work exclusively through the API of a Bluetooth stack. But
it’s worth summarizing the protocol here since the stack API is usually derived
from the structure of underlying PDUs.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 175

176 Chapter 5 • Service Discovery

An SDP PDU contains a PDU ID, a transaction ID, and a parameter length
in its header. Its body contains some number of additional parameters—what
these parameters are depends on which type of transaction the PDU contains.
The PDU ID identifies the type of transaction.The following are transaction
types supported by the protocol:

■ SDP_ErrorResponse

■ SDP_ServiceSearch

■ SDP_ServiceAttribute

■ SDP_ServiceSearchAttribute

With the exception of SDP_ErrorResponse, the transaction types are
Request/Response pairs. For an SDP implementation to match an incoming
Response with a previously issued Request, a number is assigned to the Request
that is unique among currently outstanding Requests.This is the Transaction ID.
The SDP_ErrorResponse PDU is generated if a Request PDU is improperly for-
matted, or if some other error has prevented the generation of an appropriate
Response PDU.The parameters of this PDU will give you some information
about the nature of the error.The ServiceSearch transaction, embodied in a
Request/Response pair, searches for services containing service records that
match a submitted search pattern.The search pattern (of UUIDs) is passed as a
Request PDU parameter; the service record handles of the matching service
records are then passed in a Response PDU parameter.The ServiceAttribute
transaction retrieves particular service attributes from a specified service record.
The parameters of the Request PDU specify the service record handle of the
target record, as well as the list of attribute IDs to be retrieved.A list of attribute
values is passed in a parameter in the Response PDU.The capabilities of the two
preceding transactions are combined in the ServiceSearchAttribute transaction.
This transaction retrieves attributes matching the specified Attribute list from the
service records matching a specified search pattern.

Developing An Abstract C API for SDP
The Service Discovery Protocol of the Bluetooth specification identifies the pro-
tocol data units exchanged between protocol peer entities. Ultimately, it’s not the
role of the specification to provide an API. So, we start here by providing an API
in C that covers the low-level functionality of the protocol. Coding examples in
the rest of the text reference this API.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 176

Service Discovery • Chapter 5 177

The API uses an “object-oriented” flavor with liberal use of opaque types.All
memory management is performed by the API implementation.

First, we look at the API needed from the server point of view—in other
words, an API allowing for the creation and advertising of service records.

//The basic types are opaque

typedef implementationHandle SDP_SERVICE_RECORD_t;

// service record

typedef implementationHandle SDP_DATA_ELEMENT_t;

// Data element

typedef short SDP_ATTRIBUTE_ID_t;

// attribute

typedef unsigned short SDP_DE_TYPE_t;

// Data element type bitmask

typedef unsigned short SDP_DE_SIZE_t;

// Data element size bitmask

//Used to create a service record

status_t sdp_create_service_record(SDP_SERVICE_RECORD_t *srh);

//Used to free a previously created service record

status_t sdp_free_service_record(SDP_SERVICE_RECORD_t srh) ;

//Create a basic data element from its given type and value

//Type is constructed by ORing a type and size bitmask

//size is ignored for String, URL and sequence types.

//For String, URL types, the given value must be a char*,

//from which the size is calculated.

//For a sequence type the size is calculated directly from the

//list of elements added into the sequence.

//For integer types greater than 32 bit, and for 128 bit UUID

//types, the value is given as a byte array.

status_t sdp_create_data_element(SDP_DE_TYPE_t type,

void *value,

SDP_DATA_ELEMENT_t *elem);

//These are the bitmask values for the type and size,

//derived directly from the specification

//[SPEC] part E, section 3

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 177

178 Chapter 5 • Service Discovery

#define SDP_DE_TYPE_NIL 0x00 /* Nil, the null type */

#define SDP_DE_TYPE_UINT 0x08 /* Unsigned Integer */

#define SDP_DE_TYPE_STCI 0x10 /* Signed, twos-complement

integer */

#define SDP_DE_TYPE_UUID 0x18 /* UUID, a universally

unique identifier */

#define SDP_DE_TYPE_STR 0x20 /* Text string */

#define SDP_DE_TYPE_BOOL 0x28 /* Boolean */

#define SDP_DE_TYPE_DES 0x30 /* Data Element Sequence */

#define SDP_DE_TYPE_DEA 0x38 /* Data Element Alternative */

#define SDP_DE_TYPE_URL 0x40 /* URL, a uniform resource

locator */

#define SDP_DE_SIZE_8 0x0 /* 8 bit integer value */

#define SDP_DE_SIZE_16 0x1 /* 16 bit integer value */

#define SDP_DE_SIZE_32 0x2 /* 32 bit integer value */

#define SDP_DE_SIZE_64 0x3 /* 64 bit integer value */

#define SDP_DE_SIZE_128 0x4 /* 128 bit integer value */

//Used to create a data element sequence or data element

//alternative

status_t sdp_create_data_element_sequence(

SDP_DATA_ELEMENT_t *head);

//Used to add a data element to a previously constructed data

//element sequence or alternative

status_t sdp_add_element(SDP_DATA_ELEMENT_t head,

SDP_DATA_ELEMENT_t elem);

//Used to free a previously created data element

status_t sdp_free_data_element(SDP_DATA_ELEMENT_t elem) ;

//Used to add an attribute to a previously constructed service

//record

status_t sdp_add_attribute(SDP_SERVICE_RECORD_t srh,

SDP_ATTRIBUTE_ID_t attrId,

SDP_DATA_ELEMENT_t attribute);

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 178

Service Discovery • Chapter 5 179

//Used to advertise a previously constructed service record

status_t sdp_register_service(SDP_SERVICE_RECORD_t srh);

//Used to stop advertising a previously advertised service

//record

status_t sdp_unregister_service(SDP_SERVICE_RECORD_t srh);

Next, we present the API from the client’s point of view—in other words, an
API for the retrieval of service records and their attributes in order to use the
information.

//The basic types are opaque

typedef implementationHandle SDP_DEVICE_t;

typedef implementationHandle SDP_CONNID_t;

typedef short SDP_COUNT_t;

//Used to create an SDP connection to a remote device's SDP

//server.

status_t sdp_open_connection(SDP_DEVICE_t device

SDP_CONNID_t *sdpConnID);

//Used to close an SDP connection to a remote device's SDP

//server.

status_t sdp_close_connection(SDP_CONNID_t sdpConnID);

//Used to retrieve a list of service records that match

//the given list of UUIDs. Adhering strictly to the protocol

//only the service record handles are retrieved.

status_t sdp_service_search(SDP_CONNID_t sdpConnId,

SDP_DATA_ELEMENT_t[] searchPattern,

SDP_COUNT_t searchPatternCount,

SDP_COUNT_t maxRecordCount,

SDP_COUNT_t *numFound,

SDP_SERVICE_RECORD_t **res);

//Used to retrieve a list of attributes from the remote SDS

//for the given service record handle. Note that the remote

//nature of the api is explicit, reflecting the SDP protocol

status_t sdp_get_attributes(SDP_CONNID_t sdpConnId,

SDP_SERVICE_RECORD_t srh,

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 179

180 Chapter 5 • Service Discovery

SDP_ATTRIBUTE_ID_t[] attrIds,

SDP_COUNT_t attributeIdCount);

//Used to retrieve the attribute value (as a data element)

//corresponding to the given attribute ID from the

//given service record. If the attribute value was not

//previously retrieved by the sdp_get_attributes function

//this function will return null.

status_t sdp_get_attribute(SDP_SERVICE_RECORD_t srh,

SDP_ATTRIBUTE_ID_t attrId,

SDP_DATA_ELEMENT_t *attrValue);

//Used to parse the attribute values (as data elements)

//retrieved from the service record by the preceding api.

//The type, size, and value are returned. For most types (except

//the sequence types), the value can be cast to the appropriate

//C type as given by the type parameter (see the notes for

//sdp_crete_data_element)

status_t sdp_parse_data_element(SDP_DATA_ELEMENT_t dataElement,

SDP_DE_TYPE_t *type,

SDP_DE_SIZE_t *size,

void **value);

//Used to retrieve successive data elements from a data element

//sequence. This function will only work on data elements of

//type sequence.

status_t sdp_get_next_element(SDP_DATA_ELEMENT_t sequence,

SDP_DATA_ELEMENT_t *nextElement);

Discovering Services
We’ve put together a practical guide to help you make sense of using SDP to
advertise and discover services within a network. Following on the previous sec-
tion, we’ll create and advertise a service record on a server device using the API
in the earlier section titled “Developing An Abstract C API for SDP.”We’ll then
connect to the SDP server and find a specific service record or browse service
records from a client device. But first, let’s discuss how to use the Class of Device
(CoD) to assist in short-circuiting the service discovery process.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 180

Service Discovery • Chapter 5 181

Short-Circuiting the Service Discovery Process
Every Bluetooth device can contain a Service Discovery Server (SDS) that adver-
tises the services available on that particular device, be it a mobile phone, PDA, or
something else. It can do this by making available the service records that
describe those services.A client starts by finding a Bluetooth device.Then they
use the SDS to pinpoint a service or to browse available services. Bluetooth device
discovery can help short circuit this service discovery process. During the device inquiry
process (before any ACL connection is made between devices), the low-level
Frequency Hopping Synchronization (FHS) packet is exchanged between discov-
ering and discovered devices. One of the pieces of information in the FHS
packet is the Class of Device.The CoD is a 24-bit value composed of three parts:
Major Device Class, Minor Device Class and Major Service Class. Checking
these values can be beneficial when determining if a connection should be opened
to the device. For example, if a PDA is looking for a printer, it can tell immediately
from the CoD if a discovered device can print. It doesn’t have to open a connec-
tion to the SDS and check the Service Discovery Database (SDDB) of the discov-
ered device. So, a client will know if a device hosts the required service before a
connection is made.This “short-circuiting” of service discovery is powerful and
increases the speed and efficiency of service discovery.The Bluetooth SIG controls
the values of the three CoD attributes. For further information on the CoD, see
[SPEC], part B, section 4.4.1.4, and [ASSN] section 1.2.

Creating and Advertising a Service
If the CoD indicates that a service or category of service is available, then a con-
nection can be opened to the SDS on the discovered device.This connection can
be used to find an exact match service or to determine the precise mechanism to
interact with a service. In general, the service record should only be advertised
when the service is available, and the service itself should be responsible for this.
(The service is advertised as part of a service bootstrapping process, and con-
versely, advertising the service is stopped as part of service termination.)

To create a service record, individual data elements that correspond to the
attribute values of the service attributes need to be constructed.They are then
added into the service record.The following piece of code in this section creates
a service record for an Example service.The Example service belongs to the
Example service class.This service class has a class description that defines the
contents of the service record that defines the Example service.The service

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 181

182 Chapter 5 • Service Discovery

description in Table 5.2 lists each of the attributes contained in an Example ser-
vice record, including the name, ID, value type, and meaning.

Table 5.2 Service Attributes Example

Attribute Attribute Attribute Attribute
Name ID Value Semantic

ServiceClassIDList 0x0001 Sequence a & b in list
ProtocolDescriptorList 0x0004 Sequence a & c in list
LanguageBaseAttributeIdList 0x0006 Sequence a & d in list
ServiceName offset (0x0000) String a & e in list

a) This service attribute has the definition as given by the corresponding
universal attribute definition, available in the SDP protocol specification
[SPEC] part E, section 5.1.

b) This service attribute provides a list of UUIDs that identify the classes
(or class definitions) of which this service is an instance. In this case, the
class list contains the single ID for the Example class.

c) This service attribute provides a list of the protocols and protocol
attributes needed for a client to access this service. In this case, the pro-
tocol list contains the single Bluetooth protocol L2CAP, and its attribute is
the Protocol Service Multiplexor (PSM) value for the service (this PSM
value is assigned dynamically at runtime by the L2CAP implementation).

d) This service attribute contains a list of natural languages supported, and
for each language a triple: the ISO language identifier, the encoding
used for attributes in this language, and the base ID to be used for all
attributes that encode natural language strings in this language (see
ServiceName).

e) This service attribute contains the name of the service in a natural lan-
guage.The offset is added to the base language ID as given in the
LanguageBaseAttributeIdList to give the ID for the ServiceName attribute
in the given language.

The code samples that follow are pseudo-code samples that use our abstract
C API.Variables are typically declared close to their first use rather than in an ini-
tial declaration block.This is illegal in C (though not in C++), but it improves
readability and is an aid to understanding.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 182

Service Discovery • Chapter 5 183

//Create an element for the service class identifier, which is a

//UUID that uniquely identifies the service class description that

//describes the service record contents for this service

char exampleServiceClassUUID[32] = 0x12672536752ABBC12612AB12BC125A7F;

SDP_DATA_ELEMENT_t exampleServiceClassID;

sdp_create_data_element(SDP_DE_TYPE_UUID _ SDP_DE_SIZE_128,

exampleServiceClassUUID,

&exampleServiceClassID);

//Create the element sequence for the mandatory attribute

//ServiceClassIDList, which lists the service class IDs of

//all the service classes to which this service belongs

SDP_DATA_ELEMENT_t serviceClassIDList;

sdp_create_data_element_sequence(&serviceClassIdList);

//Add the one service class ID to this list

sdp_add_element(serviceClassIdList, exampleServiceClassID);

//Create the element sequence to describe the access paths through

//the protocol stack, and the element sequence to describe the access

//path through L2CAP

SDP_DATA_ELEMENT_t protocolList, l2capList;

sdp_create_data_element_sequence(&protocolList);

sdp_create_data_element_sequence(&l2capList);

//This Example service is accessed through the L2CAP transport on a

//dynamically assigned PSM (imagine this code is being executed as the

//service is bootstrapping)

//Create the individual elements that constitute the access through

//L2CAP, i.e. the UUID for L2CAP, and the PSM value

SDP_DATA_ELEMENT_t l2capId, psmValue;

sdp_create_data_element(SDP_DE_TYPE_UUID _ SDP_DE_SIZE_16,

0x0100, &l2capId);

sdp_create_data_element(SDP_DE_TYPE_UINT _ SDP_DE_SIZE_16,

0x1001, &psmValue);

//Add the elements to the sequence

sdp_add_element(l2capList, l2capId);

sdp_add_element(l2capList, psmValue);

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 183

184 Chapter 5 • Service Discovery

//Add the L2CAP access to the general service access path list

sdp_add_element(protocolList, l2capList);

//Create the attribute ID for LanguageBaseAttributeIdList

SDP_ATTRIBUTE_ID_t langBaseAttributeId = x0006;

//Create the element sequence to describe the main human readable

//language base, i.e. English

SDP_DATA_ELEMENT_t englishLanguageBase;

sdp_create_data_element_sequence(&englishLanguageBase);

//Create the individual elements that constitute the members of the

//language base element sequence, i.e. the ISO language identifier, the

//ISO character encoding of strings in this language, and the base

//attribute ID that all human readable attribute IDs will be added to,

//to determine the actual attribute ID.

SDP_DATA_ELEMENT_t enLangId, enLangCharSet, enLangBaseID;

//For simplicity 'en' and 'fr' are used to represent 'English' and

//'French', as specified by ISO 639:1988(E/F), rather than converting to

//a 16 bit integer, as specified in the Bluetooth specification

sdp_create_data_element(SDP_DE_TYPE_UINT _ SDP_DE_SIZE_16,

'en', &enLangId);

sdp_create_data_element(SDP_DE_TYPE_UINT _ SDP_DE_SIZE_16,

UTF-8, &enLangCharSet);

sdp_create_data_element(SDP_DE_TYPE_UINT _ SDP_DE_SIZE_16,

0x0100, &enLangBaseID);

//Add the elements to the sequence

sdp_add_element(englishLanguageBase, enLangId);

sdp_add_element(englishLanguageBase, enLangCharSet);

sdp_add_element(englishLanguageBase, enLangBaseID);

//Create an element sequence for each human readable language that will

//be supported, e.g. French

SDP_DATA_ELEMENT_t frenchLanguageBase;

sdp_create_data_element_sequence(&frenchLanguageBase);

SDP_DATA_ELEMENT_t frLangId, frLangCharSet, frLangBaseID;

sdp_create_data_element(SDP_DE_TYPE_UINT _ SDP_DE_SIZE_16,

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 184

Service Discovery • Chapter 5 185

'fr', &frLangId);

sdp_create_data_element(SDP_DE_TYPE_UINT _ SDP_DE_SIZE_16,

UTF-8, &frLangCharSet);

sdp_create_data_element(SDP_DE_TYPE_UINT _ SDP_DE_SIZE_16,

0x0200, &frLangBaseID);

sdp_add_element(frenchLanguageBase, frLangId);

sdp_add_element(frenchLanguageBase, frLangCharSet);

sdp_add_element(frenchLanguageBase, frLangBaseID);

//Finally, create the element sequence to hold all the language

//lists and add them in

SDP_DATA_ELEMENT_t languageList;

sdp_create_data_element_sequence(&languageList);

sdp_add_element(languageList, englishLanguageBase);

sdp_add_element(languageList, frenchLanguageBase);

//Now create the element to define the service name in both English and

//French

SDP_DATA_ELEMENT_t enServiceName;

sdp_create_data_element(SDP_DE_TYPE_STR, 'Service Name',

&enServiceName);

SDP_DATA_ELEMENT_t frServiceName;

sdp_create_data_element(SDP_DE_TYPE_STR, 'Nom de Service',

&frServiceName);

//We can now create the service record and add all the attributes

SDP_SERVICE_REC_t exampleServiceRecord;

sdp_create_service_record(&exampleServiceRecord);

sdp_add_attribute(exampleServiceRecord,

ServiceClassIDList,

serviceClassIdList);

sdp_add_attribute(exampleServiceRecord,

langBaseAttributeId,

languageList);

sdp_add_attribute(exampleServiceRecord,

0x0100,

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 185

186 Chapter 5 • Service Discovery

enServiceName);

sdp_add_attribute(exampleServiceRecord,

0x0200,

frServiceName);

//Finally we can advertise the service

sdp_advertise_service(exampleServiceRecord);

As you can see, creating and advertising individual service records can be an
involved process. In an upcoming section, we will explore how the API can be
improved with “helper” functions based on the use of the Bluetooth profiles.
Now, we’ll look at the client side of service discovery and the two ways a service
can be discovered: by looking for a specific service or by browsing.

Discovering Specific Services
The Bluetooth Service Discovery Protocol allows for services to be discovered
on the basis of a series of attributes with values of type UUID. In reality, when
talking about discovering specific services, one of the most important attributes
of a service, if not the most important, is the ServiceClassIDList. It provides a list of
the classes to which the service belongs. For example a Headset service as defined
by the Headset profile belongs to ServiceClass Headset and ServiceClass Generic
Audio.The following code is used to search for an instance of the Example ser-
vice, as defined in the previous section.

//We assume here that the device is obtained through the device

//discovery procedure, and is not discussed here

SDP_DEVICE_t device;

//The SDP connection to the peer device

SDP_CONNID_t connection;

//The search pattern, containing the list of UUIDs to be used. Each

//service record must contain every UUID given in order to qualify.

//In this case we will only have one UUID – the UUID of the Example

//service class.

SDP_DATA_ELEMENT_t searchPattern[1] = {exampleServiceClassID};

//The number of service records found as a result of the search

SDP_COUNT_t numberFound;

//The service records found

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 186

Service Discovery • Chapter 5 187

SDP_SERVICE_RECORD_t[] found;

//Open an SDP connection to the device.

sdp_open_connection(device, &connection);

//Do the search for the specific service, specifying a maximum of one

//result to be returned. In this instance numberFound will be one or 0.

sdp_service_search(connection,

searchPattern, 1, 1,

&numberFound,

&found);

If the service class ID used to perform the search represents the most specific
class needed, then any service represented by the returned service records can be
used. Individual attributes which further refine the search may be given, but with
our C API, they must be attributes whose values are of type UUID.To provide a
search facility using non-UUID type attributes would mean writing this code
yourself.This could be done by performing a base search with the UUID types,
and then accessing the appropriate non-UUID attributes and comparing them
with the values given.The next section shows how this could be done, by dis-
cussing how individual service attributes are examined.

Using Service Attributes
Once a client has retrieved service records, the service record’s attributes can be
examined.The client can retrieve the service name attribute for displaying to the
user in the language of the Locale of the user machine. For example, this is how a
user in a French Locale would do it:

//We assume here that the service record has been returned by the

//previous code. We describe a C function to return the Service name

//as a char*.

char* getServiceName(SDP_CONNID_t connection,

SDP_SERVICE_RECORD_t serviceRecord) {

//The name as a char*

char* serviceNameString;

//Utility variables for type and size

SDP_DE_TYPE type;

SDP_DE_SIZE size;

//Get the value of the LanguageBaseAttributeIdList attribute from

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 187

188 Chapter 5 • Service Discovery

//the remote device

sdp_get_attributes(connection,

serviceRecord,

&langBaseAttributeId, 1);

//Retrieve the value of the attribute – the sequence of supported

//languages

SDP_DATA_ELEMENT_t langaugeList;

sdp_get_atribute(serviceRecord,

langBaseAttributeId,

&languageList);

//Iterate through the sequence of languages looking for French

//as given in the language ID – the first element in the language

//sequence

SDP_DATA_ELEMENT_t langauge;

unsigned short langBaseId = 0;

while (sdp_get_next_element(languageList, &language) == SUCCESS) {

SDP_DATA_ELEMENT_t langaugeId;

sdp_get_next_element(language, &languageId);

//Parse out the type, size, and value from the element

//we know the value should be an unsigned short

unsigned short id;

sdp_parse_data_element(languageId, &type, &size, &id);

//If this is the French language sequence, then parse out the base

//attribute ID.

if (id == 'fr') {

SDP_DATA_ELEMENT_t languageEncoding, baseAttributeId;

sdp_get_next_element(language, &languageEncoding);

sdp_get_next_element(language, &baseAttributeId);

sdp_parse_data_element(baseAttributeId, &type,

&size, &langBaseId);

break;

}

}

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 188

Service Discovery • Chapter 5 189

if (langBaseId != 0) {

//The attribute ID for the service name in French is given by the

// langBaseId, since the ServiceName attribute has a 0x0000 offset.

sdp_get_attributes(connection,

serviceRecord,

&langBaseId, 1);

SDP_DATA_ELEMENT_t serviceName;

sdp_get_attribute(serviceRecord,

langBaseId,

&serviceName);

sdp_parse_data_element(serviceName,

&type, &size,

&serviceNameString);

}

return serviceNameString;

}

Browsing for Services
If the service Class ID for a particular service is unknown, or if a client wants to
browse the services on a device, the service discovery protocol provides a way to
do this.To be “browseable,” a service must be explicitly marked as browseable
with a BrowseGroupList attribute in its service record. If the service record doesn’t
have this attribute, it can’t be browsed.The BrowseGroupList attribute contains the
list of UUIDs that identifies the groups that a service belongs to.A well-known
root browse group UUID (called PublicBrowseRoot) is defined by the SIG (see the
[ASSN] section 4.4). Because the root is a well-known UUID, a client knowing
nothing about services always has a place to start browsing.A group is defined by
a BrowseGroupDescriptor service record.This service record has two attributes of
interest: the GroupID (whose UUID value is contained in a service’s
BrowseGroupList), and the BrowseGroupList attribute, which specifies the list of
browse groups to which this group itself belongs.The BrowseGroupDescriptor ser-
vice class definitions are given in [SPEC], part E, section 5.3, and its service class
ID is defined in the [ASSN], section 4.4.

If you want the Example service to be in a Sample Services group—a group
available from the root browse group—you would define a Browse group with

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 189

190 Chapter 5 • Service Discovery

this name and some GroupID UUID to tag the group.You’d then insert this tag
into the BrowseGroupList of the Example Service. Of course, the BrowseGroupList
of the Sample Services group must contain the root browse group.The following
code shows how the Sample Service browse group is created and how the
Example service is put into that group.

//Create an element for the service class identifier, which in this

//case is a well known UUID for the BrowseGroupDescriptor service class

//ID (defined by the SIG as a 16 bit UUID of value 0x1001)

SDP_DATA_ELEMENT_t browseGroupDescriptorServiceClassID;

sdp_create_data_element(SDP_DE_TYPE_UUID _ SDP_DE_SIZE_16,

0x1001,

&browseGroupDescriptorServiceClassID);

//Create the element sequence for the mandatory attribute

//ServiceClassIDList, which lists the service class IDS of

//all the service classes to which this service belongs

SDP_DATA_ELEMENT_t serviceClassIDList;

sdp_create_data_element_sequence(&serviceClassIdList);

//Add the one service class ID to this list

sdp_add_element(serviceClassIdList,

browseGroupDescriptorServiceClassID);

//Create an element for the GroupID attribute, which is a

//UUID that uniquely identifies the group defined by this browse

//group.

SDP_DATA_ELEMENT_t sampleBrowseGroupID;

sdp_create_data_element(SDP_DE_TYPE_UUID _ SDP_DE_SIZE_128,

0x87634324b34232cb434d43a43d3444dd,

&sampleBrowseGroupID);

//Create an element for the root browse group ID, which is a

//well known UUID defined by the SIG

SDP_DATA_ELEMENT_t rootBrowseGroupID;

sdp_create_data_element(SDP_DE_TYPE_UUID _ SDP_DE_SIZE_16,

0x1002,

&rootBrowseGroupID);

//Create the element sequence for the BrowseGroupList attribute

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 190

Service Discovery • Chapter 5 191

//which lists GroupID of all the groups that this record is

//browsable from.

SDP_DATA_ELEMENT_t sampleGroupBrowseGroupList;

sdp_create_data_element_sequence(&sampleGroupBrowseGroupList);

//Add the one UUID to this list – the well-known root browse group

sdp_add_element(sampleGroupBrowseGroupList,

rootBrowseGroupID);

//Now create the service record and add all the attributes

SDP_SERVICE_REC_t sampleGroupServiceRecord;

sdp_create_service_record(&sampleGroupServiceRecord);

sdp_add_attribute(sampleGroupServiceRecord,

ServiceClassIdList (0x0001),

serviceClassIdList);

sdp_add_attribute(sampleGroupServiceRecord,

GroupID (0x0200),

sampleBrowseGroupID);

sdp_add_attribute(sampleGroupServiceRecord,

BrowseGroupList (0x0500),

sampleGroupBrowseGroupList);

//Finally we can advertise the service

sdp_advertise_service(sampleGroupServiceRecord);

The Example Service (as defined in the previous section) needs to have the
following code added in order to be included in the Sample Group.The code
should be added just before the service record is advertised.

//Create the element sequence for the BrowseGroupList attribute

//which lists GroupID of all the groups that this record (the

//Example Service) is browsable from.

SDP_DATA_ELEMENT_t exampleServiceBrowseGroupList;

sdp_create_data_element_sequence(&exampleServiceBrowseGroupList);

//Add the one UUID to this list – the UUID of the sample group

//GroupID attribute

sdp_add_element(exampleServiceBrowseGroupList,

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 191

192 Chapter 5 • Service Discovery

sampleBrowseGroupID);

sdp_add_attribute(exampleServiceRecord,

BrowseGroupList (0x0005),

exampleServiceBrowseGroupList);

This code makes the Example Service browseable from the Sample Browse
Group.

Clients can now discover the service by browsing on their mobile devices.
The specific client code for doing this is not given as it will follow the template
given already in the earlier section “Discovering Specific Services.”, but it
employs the following algorithm:

A service search is performed using the UUIDS for both the Public Browse
Group (defined by the SIG as a 16-bit UUID of value 0x1002), and the
BrowseGroupDescriptorServiceClassId (defined by the SIG as a 16-bit UUID of
value 0x1001).This specific search should yield only those BrowseGroupDescriptors
service records that are browseable from the public root. In this instance, given
the preceding Example code, this search would yield one record, the SampleGroup
record. From this, we extract the Group ID, and perform another search using this
UUID as the sole UUID in the search pattern.This will yield any service records
that are members of the group—in other words, which have the Group ID in
their BrowseGroupList (in addition to the BrowseGroupDescriptor service record
itself). In this instance, the Example service record will be returned.

Service Discovery Application Profile
Bluetooth profiles define usage scenarios for Bluetooth devices as well as the
functionality that should be available from the underlying protocol stack.The
profiles don’t present individual programming interfaces (which would be
platform-dependent), but instead present a platform-neutral description of func-
tionality to be provided by an application that realizes the profile.

In the previous section, we presented a C-based API for service discovery. If
you are familiar with the SDP protocol, you’ll notice that the API is based on the
description of the protocol PDUs exchanged between the protocol’s client and
server entities. It’s not based on the Service Discovery Application Profile, for rea-
sons that will become clear shortly.The SDAP is a usage scenario describing the
functionality a Service Discovery Application (SrvDscApp) should provide to an
end user on a Local Device (LocDev) so that user can discover services on a

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 192

Service Discovery • Chapter 5 193

Remote Device (RemDev).The SDAP doesn’t specify an API that will provide
this functionality, but suggests primitives that can be mapped to an API.This dif-
fers from most other profiles that describe functionality without using primitives.
The primitives are:

a) Enumerate Remote Devices This primitive is used for device discovery
and would likely be implemented by the baseband inquiry mechanism.

b) Search Services This primitive is used to search for specific services
based on the class of the service or the class of service and some specific
attributes of the service. It would likely be implemented by the
searchServices functionality (shown in the previous section).

c) Browse Services This primitive is used to browse services according to
the browse groups. It would likely be implemented by functionality (as
shown in the Browsing Services section).

d) Terminate Primitive This primitive is used to terminate a previously
started primitive.

The SrvDscApp is only necessary on the LocDev device—the client device.
Though the profile says devices without user interfaces are not candidates for
LocDev, devices can still use the procedures defined by the profile to exercise the
SDP protocol. For instance, where another application profile (such as Serial
Port Profile) is using SDP to recover applicable service records.We look at this
scenario in the next section,“Service Discovery Non-Application Profiles.”
Primitives c and d give the necessary procedures for this usage (which are covered
by the API in the previous section).Adding APIs to cover the first two primitives
creates an interface that achieves the functionality of the SDAP.

Service Discovery Non-Application Profiles
No, it’s not a misprint.The title is deliberately jarring to draw your attention to
the fact that most profiles detailed in the Bluetooth specification have a service
discovery component.This component specifies the structure and content of the
service record that accompanies the service (or application) that realizes the pro-
file.The SDAP (in addition to dealing with application functionality for service
discovery) specifies the procedures that an application realizing a profile must use
to perform service discovery.

If these procedures are upheld, interoperability is ensured. For example, an
application that realizes a profile should be able to advertise its service via the

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 193

194 Chapter 5 • Service Discovery

Service Discovery Server and be found by any client on any device that accesses
the profile’s SDP record—according to the service discovery procedures
described by the SDAP.This example of an individual profile’s service discovery
component (see Table 5.3) describes the Serial Port profile’s service record.

Table 5.3 Serial Port Profile Service Record Example

Attribute Name Definition ID Type Value

ServiceClassIdList List of services 0x0001 Sequence N/A
supported

ServiceClass0 Serial Port N/A UUID Assigned
Number

ProtocolDescriptorList List of 0x0004 Sequence N/A
protocols
supported

Protocol0 L2CAP N/A UUID Assigned
Number

Protocol1 RFCOMM N/A UUID Assigned
Number

ProtocolSpecificParm0 Server Channel N/A UINT8 2

ServiceName Text name 0x0000 String “Com1 as
example”

The serial port profiles describe a usage scenario where two applications,A and
B, are communicating via a serial cable emulation. Device B, which acts the role of
the server, must register the previous record with the SDDB.As the profile states,
this is the most generic type of service, which indicates nothing of the application
functionality. So, additional service class IDs can be inserted into the
ServiceClassIDList.As you saw in the previous section, the amount of code needed
to create and advertise a service record can be extensive.The API offered to the
developer can be improved by providing an API for the serial port profile itself:

status_t sdp_create_serial_port_record(SDP_TYPE_t UUIDType,

void *UUID,

SDP_SERVICE_RECORD_t *srh);

This function performs most of the drudgery of the previous section, and
provides a service record ready to be registered with the SDDB. Of course, any
updates or extra information needed can be added with the usual API.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 194

Service Discovery • Chapter 5 195

Java, C, and SDP
The Bluetooth Service Discovery Protocol doesn’t prescribe an API for program-
mers to use.Although both the SDP transactions and data representation imply
the structure of an API, Bluetooth stack implementations vary widely in the APIs
and programming abstractions they provide. Some stacks represent SDP transac-
tions asynchronously, through a function call for making a request and a separate
callback for replies. Others provide one synchronous function that blocks the
caller while waiting for a reply. Stacks also differ in the level of abstraction of
their function calls. Some stacks provide functions that return, in essence, raw
SDP PDUs that the programmer must then disassemble and interpret—for
example, the abstract C API examined earlier. Others return structured data from
which the relevant data elements are more easily extracted. Some stacks provide
richer abstractions that allow a programmer to carry out simple, routine tasks in
fewer steps (for particular profiles, for example).When choosing a stack, it’s wise
to consider the design and richness of an SDP API to ensure that you can write
readable, maintainable code as efficiently as possible, without giving up access to
all the features and flexibility you need. Is it more important for you to be able to
create, populate, and advertise a service record in one or two function calls, or to
have full control over each PDU element in minute detail?

When considering abstraction levels, programming language is a key choice.
Most stacks expose C APIs, while others provide Java or C++ interfaces. Service
Discovery is arguably the Bluetooth component best placed to take advantage of
the richness and usability of the Java programming platform. Java, in particular the
Java 2 Platform Micro Edition (J2ME), is rapidly becoming the platform of
choice for developing embedded wireless applications.This is evidenced by its
adoption by industry heavyweights Nokia, Motorola, Siemens, Matsushita, Sharp,
and others. It provides a level of portability, maintainability and ease of program-
ming that languages such as C do not. Of particular relevance here is the poten-
tial for rich SDP abstractions that can largely remove the programmer from the
detail of PDUs and completely remove them from error-prone pointer and
memory manipulation.

As part of Java Community Process (JCP)—the vehicle for standardizing the
Java platform—a set of standard Java APIs for Bluetooth is being developed.The
Java Specification Request (JSR) 82 Expert Group is carrying out this work.
Motorola chairs the group, with contributing experts from a number of compa-
nies, including Rococo Software.At the time of writing, the first full version of
this specification is due for publication at the end of 2001. Implementations of

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 195

196 Chapter 5 • Service Discovery

this standard will allow programmers to implement Bluetooth applications within
the J2ME environment in a standard and portable way.

Historically, Java as a programming language for embedded applications has
suffered most from one criticism—it was too slow and bulky.This was true in its
early versions, primarily since it is an interpreted language and the Virtual
Machines in which applications ran weren’t optimized, but this has changed.
Many developments contributed to Java becoming a key open platform for
embedded application development in general, and wireless development in par-
ticular.Virtual Machines have been optimized for such environments—for
example, the “KVM” in Sun’s J2ME Connected Limited Device Configuration
(CLDC).Virtual Machines have found their way into silicon, with Java bytecodes
being interpreted directly on the chip.The Jazelle product suite from ARM and
the MachStream platform from Parthus are good examples of this. Java has also
been tailored for particular platforms, with precompilers providing the perfor-
mance power required by embedded applications without sacrificing the advan-
tages of the Java platform.

In addition to the abstractions possible for SDP implementations in Java, the
J2ME platform provides a useful Input/Output (I/O) framework that can be
applied to Bluetooth application development.A key element of the J2ME speci-
fication is the Generic Connection Framework (GCF). It’s a mechanism that
allows a programmer to create different types of networking connections through
a standard Connector interface. In a Bluetooth extension to the GCF, a
Connector could create instances of Bluetooth-specific connection classes, say
RFCOMMConnection or L2CAPConnection. Since this is a standard networking
framework used by all J2ME applications, programmers can quickly produce Java
Bluetooth applications by applying existing techniques and design patterns.

Rococo Software (www.rococosoft.com) provides an implementation of the
standard Java Bluetooth APIs, along with a simulator that allows programmers to
run their applications and test their use cases without the need for underlying
Bluetooth hardware or stacks.

Other Service Discovery Protocols
Let’s elaborate on some other discovery protocols: the Salutation Consortium’s
Salutation service discovery protocol, the Internet Engineering Task Force
(IETF)’s Service Location Protocol (SLP), Microsoft’s Universal Plug and Play
(UPnP), and Sun Microsystems’ Jini.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 196

Service Discovery • Chapter 5 197

Salutation
Formed in 1995 by a group of U.S. and Japanese companies, the Salutation
Consortium defines an architecture for networking devices, applications, and
services.The core focus of the group (and most implementations of the
standard to date) has been to enable seamless access to office equipment such
as fax machines, printers, copiers, and so on. However, the standard has
evolved to include phones, PDAs, and general electronic equipment.The
Salutation architecture defines a uniform way of labeling devices with descrip-
tions of their capabilities and with a single, common method of sharing that
information.

The architecture is composed of Salutation Managers (SLMs), which coordi-
nate all aspects of registering new services and searching for services on behalf
of clients. It also contains Transport Managers (TMs), which sit between the
SLMs and the rest of the system (see Figure 5.3 for an illustration of the
Salutation architecture).This architecture allows Salutation to be “transport inde-
pendent.”That is, a separate TM may be written for each underlying transport
required, and the SLM, which provides the core functionality of the system,
remains transport neutral. SLMs act as repositories for local service information
as well as brokers who seek services on behalf of clients. SLMs periodically
check available services to update their repositories.Table 5.4 outlines the func-
tions of the Salutation protocol.

www.syngress.com

Figure 5.3 The Salutation Architecture

Server Client Client Server Client

SLM

TM

Xport

Salutation Manager

TM TM

Transport Transport

SLM

TM

Xport

SLM-API

SLM-TI
Salutation
Manager
Protocol

160bluetooth_C05.qk 12/5/01 3:54 PM Page 197

198 Chapter 5 • Service Discovery

Table 5.4 Salutation Highlights

Function Description

Announcing Through cooperation between Salutation Managers
Presence (SMs). Register with a known, probably local SM.
Discovering Other Send queries to the local SM. SMs coordinate and
Services return results.
Describing Structured description of services as functional
Services units, which in turn contain attribute records.

Functional units identify the “type” or “features” of
a service. Attributes provide much more detail.
Standard functional unit definitions exist for well-
defined services (print, fax).

Self Configuration Salutation does not address this issue.
Invoking Services Flexible. Provides for vendor-specific protocols,

SLM-managed sessions providing transport inde-
pendence, as well as defined (standard) data and
protocols for selected functional units. The defined
APIs can be implemented on most platforms.

Transports Transport independent architecture
More Information www.salutation.org

Service Location Protocol
Service Location Protocol (SLP) originated from a working group of the Internet
Engineering Task Force (IETF). It’s a language-independent protocol for auto-
matic resource discovery on IP-based networks. SLP is designed to be lightweight
and decentralized with minimal administration requirements. SLP (like some of
the other service discovery protocols) makes use of UDP/IP multicast function-
ality in TCP/IP.This makes it particularly useful for networks where there is
some form of centralized administrative control, such as corporate and campus
networks.The discovery mechanism is based on service attributes, which are used
to characterize a service.The SLP architecture has three main components:

■ User Agent (UA) Performs service discovery on a client’s behalf
(which might be a user or an application).

■ Service Agent (SA) Advertises the service’s location and characteris-
tics on behalf of services, and registers this information with the
Directory Agent.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 198

Service Discovery • Chapter 5 199

■ Directory Agent (DA) Accumulates service information received
from SAs in its repository and responds to service requests from UAs.

User Agents send a Service Request describing the service they seek to one
or more Directory Agents.The Directory Agents respond with Service Replies
describing services that match the query (see Figure 5.4).

Services are located by their address, the so-called service:URL.The address
format is composed of the prefix service:, the service type, the network address and,
optionally, a path. Service types can be of concrete or abstract type. For example,
they may either name a particular service type (which is usually a particular pro-
tocol), or name a family of service types. For example, in the service:URL:

service:printer:lpr://www.rococosoft.com/laserprinter

the service type is service:printer:lpr, a service type name with abstract type printer
and concrete type printer:lpr.

SLP doesn’t mandate the presence of a DA. Users Agents will try to locate a
DA when they first start up, but if they don’t find any, they will try to operate
directly with service agents.When a DA starts to operate on the network, it
advertises its presence and all agents that receive the advertisement can start using
the DA. Small networks with few services and users may not require a DA on the
network.The DA is designed to allow the system to scale in larger networks
without imposing undue network traffic. Both Sun Microsystems and Hewlett
Packard, among others, have implemented SLP in their products.

www.syngress.com

Figure 5.4 SLP Service Discovery

User Agent (UA)
Server Agent

(SA)

Directory Agent
(DA)

Service
ReplyService

Request
Service
Acknowledgment

Service
Register

160bluetooth_C05.qk 12/5/01 3:54 PM Page 199

lpr://www.rococosoft.com/laserprinter

200 Chapter 5 • Service Discovery

www.syngress.com

Table 5.5 outlines the functions of SLP.

Table 5.5 SLP Highlights

Function Description

Announcing Presence Register with DA.
Discovering Other Query DA. Can also multicast a service request in
Services the absence of a DA.
Describing Services Attribute value pairs.
Self Configuration Does not address this area. An IP device when

plugged onto a network will have to be configured
with an IP address, subnet mask and optionally a
gateway and DNS server.

Invoking Services Does not address this area.
Transports TCP/IP
More Information www.srvloc.org

Jini
Jini is a distributed service-oriented architecture developed by Sun Microsystems.
Jini is considered an extension of the Java language and platform.The key con-
cept in Jini is the service, which can be almost anything: a process, a piece of hard-
ware, a communications stream, or a user. Services can be collected together to
achieve a task.A collection of Jini services forms a Jini federation: services coor-
dinate with each other within the federation and can join and leave a federation
dynamically. Services communicate with each other using a service protocol,
which is defined as a set of interfaces in Java.The standard itself provides a base
set of interfaces to facilitate core interaction between services—a given imple-
mentation of the system may extend these as needed.

A key component of Jini is the lookup service. Services are found and resolved
by a lookup service.The lookup service is the central bootstrapping mechanism
for the system and provides the major point of contact between the system and
the system’s users.The lookup service maps interfaces indicating the functionality
provided by a service to sets of objects that implement the service.Additionally,
descriptive entries associated with a service allow more fine-grained selection of
services based on properties people understand.A service is added to a lookup ser-
vice by a pair of protocols called discovery and join—first the service locates an
appropriate lookup service (by using the discovery protocol), then it joins it (by
using the join protocol). Having joined, a service is now a member of a federation.

160bluetooth_C05.qk 12/5/01 3:54 PM Page 200

Service Discovery • Chapter 5 201

Communication between services occurs using Java Remote Method
Invocation (RMI). RMI is a Java-based extension to traditional remote procedure
call (RPC) mechanisms. One important extension is that it enables actual code,
not just data, to be exchanged between services.

This allows services to provide not only a description of the service they offer
to the lookup service, but also the actual client-code (called a service object) that
is configured to access the service (see Figure 5.5). Clients can then receive this
service object as part of the lookup, and access the service directly.

Table 5.6 outlines the functions of Jini.

Table 5.6 Jini Highlights

Function Description

Announcing Unicast/Multicast to Jini lookup services and
Presence subsequent registration.
Discovering Other Query lookup service(s) with properties of services
Services of interest.
Describing Services Registration information composed of attribute/value

pairs.
Self Configuration Does not directly address this area. An IP device when

plugged onto a network will have to be configured
with an IP address, subnet mask, and optionally a
gateway and DNS server. From then on, the lookup
services can be used.

Invoking Services Download service proxy and use proxy to access service.
Transports TCP/IP and proxies to other transports.
More Information www.jini.org

www.syngress.com

Figure 5.5 Using a Service in Jini

Client

Lookup Service

Service Provider
Service Object

Service Object
Service Attributes

A client requests a service by
Java type and, perhaps, other
service attributes. A copy of
the service object is moved to
the client and used by the
client to talk to the service.

160bluetooth_C05.qk 12/5/01 3:54 PM Page 201

202 Chapter 5 • Service Discovery

Universal Plug and Play (UPnP)
In January 1999, Microsoft announced its Universal Plug and Play (UPnP) initia-
tive.The UPnP initiative seeks to extend the original Microsoft Plug and Play
peripheral model to a highly-dynamic world of many network devices supplied
by many vendors. UPnP defines a set of lightweight, open, IP-based discovery
protocols that allow appliances (telephones, televisions, printers, game consoles,
and so on) to exchange and replicate relevant data between themselves and the
PCs on the network. UPnP is a “wire-only” protocol—it defines the format and
meaning of what is transmitted between members of the network and says
nothing about how the standard is actually implemented. It requires TCP/IP and
HTTP to be present to operate.

UPnP uses the Simple Service Discovery Protocol (SSDP) to discover ser-
vices on IP-based networks. SSDP can be operated with or without a lookup
or directory service in the network. SSDP operates on the top of the existing
open standard protocols, using the HTTP over both Unicast UDP and
Multicast UDP.

When a service wants to join the network, it first sends out an advertise (or
announcement) message notifying the world about its presence. In the case of
multicast advertising, the service sends out the advertisement on a reserved
multicast address. If a lookup or directory service is present, it can record the

www.syngress.com

Table 5.7 UPnP Highlights

Function Description

Announcing Presence Use SSDP and Directory service proxies
(optional).

Discovering Other Services Listen to SSDP multicast channel directly or
contact a directory service proxy.

Describing Services XML description of the service is made avail-
able at a specified URL.

Self Configuration DHCP (if available) or AutoIP, and
multicast DNS.

Invoking Services UPnP does not address this area.
Transports TCP/IP and proxies to other transports
More Information www.upnp.org

160bluetooth_C05.qk 12/5/01 3:54 PM Page 202

Service Discovery • Chapter 5 203

advertisement. Meanwhile, other services in the network can directly see these
advertisements as well.The “advertise” message contains a URL that identifies
the advertising service and a URL to a file that provides a description of the
advertising service. Devices can also cancel advertisements in order to leave a
network.

When a service client wants to discover a service, it can either contact the
service directly through the URL provided in the service advertisement, or it can
send out a multicast query request.

Table 5.7 outlines the functions of UPnP.

The Future of SDP
The SDP protocol is a low-level, lightweight, compact, and efficient service dis-
covery protocol. Its inclusion in the Bluetooth protocol stack was considered
critical to Bluetooth technology’s success as its use spread across many types of
devices exporting varied services. But, as you’ve seen, SDP is one of many proto-
cols that deal with the concept of service discovery. One of the key issues is
interoperability of the various protocols. One of the Bluetooth white papers
[Mill99] deals with the mapping of the SDP protocol to the Salutation service
discovery architecture. In the immediate future of SDP, the Bluetooth SIG is
defining the Extended Service Discovery Protocol.This “new” protocol is
expressed as a profile (dependent on the Generic Access Profile) and allows the
Universal Plug and Play (UPnP) protocol suite to run over a Bluetooth stack.
The suite runs directly over L2CAP using a connection management layer (to
provide flow control, and so on), or over IP, either as currently defined by the
LAN Access profile or using the new Personal Area Profile (PAN).As such, the
core SDP protocol remains unchanged, but it is used to discover the UPnP ser-
vice that can then be used.Though not proposed at present, a similar profile
could be developed for the Jini service discovery protocol.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 203

204 Chapter 5 • Service Discovery

Summary
The problem of how a device locates useful services and applications in a dis-
tributed network is common in many domains. In Bluetooth, it is the Service
Discovery Protocol (SDP) that addresses this problem. Unlike many other
lookup or discovery protocols, SDP is a true peer-to-peer protocol that does not
rely on centralized, third-party infrastructure.The service record is the unit used
to describe a Bluetooth Service. Service records are made up of attributes that
capture information about a service.These attributes may contain data that is
reasonably complex in structure, through the use of data elements, in addition to
simple types.

There are a number of ways to query the services that a particular Bluetooth
device supports.The first approach is to use the Class of Device (CoD) which
may be extracted from the Frequency Hopping Synchronization (FHS) packet.
The CoD contains, among other information, the Major Service Class of the
device.This may be used to decide if a remote device is of interest to the
inquiring device, and helps to short-circuit the service discovery process.
Secondly, a client may search the service discovery server.They may search for
specific attributes—most importantly the ServiceClassIDList attribute.A client may
also search for service records containing attributes with values that match a speci-
fied list of UUIDs. Finally, a client may browse a hierarchy of service records by
searching for a particular BrowseGroupDescriptor (or “directory” in the hierarchy).

Bluetooth SDP does not mandate a particular programming interface or set
of programming abstractions.We presented an abstract C API that exposes the
functionality of SDP to the programmer.We examined how, using this API, we
would create and advertise a service, discover specific services, use service
attributes and browse for services.There are opportunities for richer APIs that
provide “helper” functions based on the use of Bluetooth profiles. Such functions
could take the drudgery out of some of the coding effort.

The Service Discovery Application Profile (SDAP) is a usage scenario
describing the functionality of a Service Discovery Application. It consists of sug-
gested primitives that may be implemented in terms of the underlying SDP API.
These primitives are used both by local devices discovering services on remote
devices, and also by other Bluetooth profiles that need to advertise their services
via SDP.

Though many Bluetooth stack implementations expose a C language API, Java
is gaining ground as a platform for developing embedded wireless applications.As

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 204

Service Discovery • Chapter 5 205

part of the Java Community Process, standard Java Bluetooth APIs are being
defined.They will be components of the Java 2 Platform, Micro Edition (J2ME).

Future developments in Bluetooth SDP include the definition by the
Bluetooth SIG of the Extended Service Discovery Protocol.This Profile will pro-
vide a mechanism for integrating the Universal Plug and Play (UPnP) protocols
with Bluetooth SDP.

Solutions Fast Track
Introduction to Service Discovery

� The term service discovery is used to describe the way a networked device
(or client) discovers available services on the network. Service discovery
makes zero configuration networks possible—the user doesn’t have to
manually configure the network.

� Key features of a discovery protocol are: spontaneous discovery and
configuration of network services, low (preferably zero) administrative
requirements, automatic adaptation to the changing nature of the
network (addition or removal of nodes or services), and interoperability
across platforms.

� Bluetooth Service Discovery is protocol-dependent; it mandates the use
of the underlying Bluetooth communication protocol as the basis for
service discovery. However, Bluetooth SDP could indeed be
implemented using other underlying transport mechanisms, and higher-
level protocols (such as TCP/IP) may be run over Bluetooth.

Architecture of Bluetooth Service Discovery

� For a particular service (and there may be many services on one device)
a service record contains a description of that service.The description takes
the form of a sequence of service attributes, each one describing a piece of
information about the service.

� Within the SDP server, each service record is uniquely identified by a
service record handle.A service class defines the set of service attributes that a
particular service record may have. In other words, a service record is a
particular instance of a class of services.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 205

206 Chapter 5 • Service Discovery

� A service attribute is a name-value pair that includes an attribute ID and
an attribute value.The attribute ID uniquely identifies the attribute within
the scope of the service record.

� An attribute value can contain data of arbitrary complexity, rather than
just simple types.This is accomplished using data elements.A data element
is made up of a header and a data field.

� The Service Discovery Protocol includes a set of Protocol Data Units
(PDUs) that contain the basic requests and responses needed to
implement the functionality of Bluetooth Service Discovery.An SDP
PDU contains a PDU ID, a transaction ID, and a parameter length in its
header. Its body contains some number of additional parameters,
depending on which type of transaction the PDU contains.

Discovering Services

� Every Bluetooth device can contain a Service Discovery Server (SDS)
that advertises the services available on that particular device, be it a
mobile phone, PDA, or something else. It can do this by making
available the service records that describe those services.

� The Bluetooth-defined Class of Device (CoD) value can tell a
discovering device if a connection should be opened to the discovered
device—it doesn’t have to open a connection to the SDS and check the
Service Discovery Database (SDDB) of the discovered device,“short-
circuiting” service discovery.

� The Bluetooth Service Discovery Protocol allows for services to be
discovered on the basis of a series of attributes with values of type
UUID. In reality, when talking about discovering specific services, one of
the most important attributes of a service, if not the most important, is
the ServiceClassIDList.

Service Discovery Application Profile

� The SDAP is a usage scenario describing the functionality a Service
Discovery Application (SrvDscApp) should provide to an end user on a
local device (LocDev) so that user can discover services on a Remote
Device (RemDev).The SDAP doesn’t specify an API that will provide
this functionality, but suggests primitives that can be mapped to an API.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 206

Service Discovery • Chapter 5 207

� Most profiles detailed in the Bluetooth specification have a service
discovery component that specifies the structure and content of the
service record that accompanies the service (or application) and which
realizes the profile.The SDAP (in addition to dealing with application
functionality for service discovery) specifies the procedures that an
application realizing a profile must use to perform service discovery. If
these procedures are upheld, interoperability is ensured.

Java, C, and SDP

� As part of Java Community Process (JCP), a set of standard Java APIs for
Bluetooth is being developed and is due for publication at the end of
2001. Implementations of this standard will allow programmers to
implement Bluetooth applications within the J2ME environment in a
standard and portable way.

� A key element of the J2ME specification is the Generic Connection
Framework (GCF), a mechanism that allows a programmer to create
different types of networking connections through a standard
Connector interface.This would allow programmers to quickly produce
Java Bluetooth applications by applying existing techniques and design
patterns.

Other Service Discovery Protocols

� The Bluetooth SDP may be integrated with a number of the other
service discovery protocols, including Salutation, UPnP, Service Location
Protocol (SLP), and Jini.

� The Salutation architecture defines a uniform way of labeling devices
(fax machines, printers, copiers, and also phones, PDAs, and general
electronic equipment) with descriptions of their capabilities and with a
single, common method of sharing that information.

� Salutation is “transport independent,” that is, a separate Transport
Manager may be written for each underlying transport required, and the
Salutation Manager, which provides the core functionality of the system,
remains transport neutral.

� SLP is a language-independent protocol for automatic resource discovery
on IP-based networks. Like some of the other service discovery protocols,

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 207

208 Chapter 5 • Service Discovery

www.syngress.com

it makes use of UDP/IP multicast functionality in TCP/IP.This makes it
particularly useful for networks where there is some form of centralized
administrative control, such as corporate and campus networks.

� Jini is a distributed service-oriented architecture, considered an extension
of the Java language and platform. Services communicate with each other
using a service protocol, which is defined as a set of interfaces in Java.The
standard itself provides a base set of interfaces to facilitate core interaction
between services.A key component of Jini is the lookup service.

� Communication between services in Jini occurs using Java Remote
Method Invocation (RMI). RMI is a Java-based extension to
traditional remote procedure call (RPC) mechanisms. One important
extension is that it enables actual code, not just data, to be exchanged
between services.

� Universal Plug and Play (UPnP) defines a set of lightweight, open, IP-
based discovery protocols that allow appliances to exchange and replicate
relevant data between themselves and the PCs on the network. UPnP is
a “wire-only” protocol—it defines the format and meaning of what is
transmitted between members of the network and says nothing about
how the standard is actually implemented. It requires TCP/IP and
HTTP to be present to operate.

� UPnP uses the Simple Service Discovery Protocol (SSDP) to discover
services on IP-based networks. SSDP can be operated with or without a
lookup or directory service in the network. SSDP operates on the top of
the existing open standard protocols, using the HTTP over both Unicast
UDP and Multicast UDP.

The Future of SDP

� SDP is one of many protocols that deal with the concept of service
discovery. One of the key issues is interoperability of the various
protocols.

� In the immediate future of SDP, the Bluetooth SIG is defining the
Extended Service Discovery Protocol.This “new” protocol is expressed
as a profile (dependent on the Generic Access Profile) and allows the
Universal Plug and Play (UPnP) protocol suite to run over a Bluetooth
stack.Though not proposed at present, a similar profile could be
developed for the Jini service discovery protocol.

160bluetooth_C05.qk 12/5/01 3:54 PM Page 208

Service Discovery • Chapter 5 209

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What is Bluetooth SDP?

A: The Bluetooth Service Discovery Protocol (SDP) is a distributed, peer-to-
peer lookup mechanism for discovering which services are supported by in-
range Bluetooth devices. It is defined in the Bluetooth Specification.

Q: How are services represented in SDP?

A: A service on a Bluetooth device is described in an SDP service record, which
is stored in the device’s “Service Discovery Database.”A service record con-
sists of service attributes, each of which describes some information about the
available service.

Q: How does Class of Device (CoD) relate to SDP?

A: The CoD may be retrieved from a Frequency Hop Synchronization (FHS)
packet.This information contains, among other things, the Major Service
Class of the device.This tells the discovering device what “kind” of device it
has discovered (e.g., a printer, an access point, and so on) Using this informa-
tion, the discovering device can rule out certain devices that are not inter-
esting, and only query the Service Discovery Databases of those devices that
are interesting. For many application types, this is likely to result in an effi-
ciency gain.

Q: What’s the difference between SDP and SDAP?

A: SDP is a part of the core Bluetooth specification and defines the data repre-
sentation of SDP data structures as well as the set of transactions used to
communicate between SDP clients and servers.The Service Discovery
Application Profile (SDAP) is one of the Bluetooth profiles defined by the
Bluetooth SIG. It describes usage scenarios for a Service Discovery
Application, and suggests primitives for achieving these scenarios that may be
implemented in terms of the underlying SDP API.

www.syngress.com

160bluetooth_C05.qk 12/5/01 3:54 PM Page 209

160bluetooth_C05.qk 12/5/01 3:54 PM Page 210

Linux Bluetooth
Development

Solutions in this chapter:

■ Assessing Linux Bluetooth Protocol Stacks

■ Understanding the Linux Bluetooth Driver

■ Using Open Source Development
Applications

■ Connecting to a Bluetooth Device

■ Controlling a Bluetooth Device

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Chapter 6

211

160bluetooth_C06.qk 12/5/01 3:56 PM Page 211

212 Chapter 6 • Linux Bluetooth Development

Introduction
Bluetooth technology is an open standard while Linux is open source.There’s
some obvious synergy there: combine low cost devices with free software and
you’ve got a communications technology anybody can afford.

Linux is proving to be the obvious system of choice for students and aca-
demics trying to get into Bluetooth technology on tight budgets. But don’t
think it’s just for educational use: Linux is being deployed in real commercial
products from local area network (LAN) access points to laptops, and more
besides.To give it a real stamp of credibility, Linux Bluetooth development has
backing from a Bluetooth Special Interest Group (SIG) promoter with IBM’s
BlueDrekar middleware, and, of course, a myriad of smaller companies and
individuals are contributing to the development of open source, too.

This chapter takes a look at what Linux can do for your Bluetooth applications,
and gives you some useful insight from inside the Linux developer’s community.

Assessing Linux Bluetooth Protocol Stacks
Until recently, the Linux kernel did not come with a Bluetooth stack among its
stock drivers. But shortly after this chapter was originally completed, a new
Bluetooth project was released as open source and rapidly accepted into the 2.4.6
kernel.This project is called Bluez (bluez.sourceforge.net), and at the time of this
writing, its recent 1.2 release includes stable Host Controller Interface (HCI) and
Logical Link Control and Adaptation Layer (L2CAP) drivers, as well as user-space
Radio Frequency Communications Port (RFCOMM) and Service Discovery
Protocol (SDP) applications leveraged from the OpenBT project (which we’ll
discuss in short order).Although it has gained acceptance into the mainline Linux
kernel, it may not yet be the driver of choice for developers.As of now, it does
not support as many features as some of the other available stacks. It does not yet
appear to have the developer and user following that OpenBT does, and most
importantly, has not been ported back to earlier kernel versions.

Currently, there are two other major Linux Bluetooth protocol stacks: IBM’s
BlueDrekar and the OpenBT project.Another future contender will be Rappore
Technology’s stack, which is already ported to Windows and BlueCat embedded
Linux.

IBM’s BlueDrekar can be downloaded from their project Web site at
www.alphaWorks.ibm.com/tech/bluedrekar.This is not an open source stack.
What you get for free are the binary modules. If you want the source, you can

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 212

www.syngress.com

get it, but according to their documentation and Web site, you must be a SIG
member and you must sign a limited license with IBM.You will also need a
license to distribute their stack.

SourceForge hosts the OpenBT project.You can find their Web site at
www.sourceforge.net/projects/OpenBT.Axis Communications (www.axis.com)
originally developed this stack for their embedded Linux product and most of the
main developers work there.This is a truly open source stack.

If you’re an embedded developer using BlueCat Linux on your target, you
can find out more about the status of Rappore’s stack at their Web site: www.rap-
pore.com. (This stack is not open source; we won’t cover the Rappore stack in
detail in this chapter.)

Comparing BlueDrekar with OpenBT by Features
The big factor that distinguishes BlueDrekar from OpenBT is source code avail-
ability.Why would you even consider a closed source solution when an open
source one is available? For an x86 application developer, BlueDrekar offers more
than the OpenBT stack. For embedded developers who need to cross-compile
and don’t want to license source, OpenBT may be good enough.

Table 6.1 shows a breakdown of the feature differences between the two
stacks, which we’ll discuss in the following sections.

Table 6.1 Feature Comparison between OpenBT and BlueDrekar

Feature OpenBT BlueDrekar

Kernel versions 2.0.x – 2.4.x 2.2.12, 2.2.14
Hardware X86, ARM, MIPS, PowerPC X86
platforms
Bluetooth Host Controller Interface (HCI), HCI, L2CAP, SDP,
protocols Logical Link Control and RFCOMM, Synchronous

Adaptation Protocol (L2CAP), Connection Oriented
Service Discovery Protocol (SCO), HCI-UART
(SDP), RFCOMM, HCI-Universal
Asynchronous receiver Trans-
mitter (HCI-UART), HCI-USB

SDP server Server, XML database Server, dynamic
support database
API Standard Unix device driver Custom lib Applications

Programming Interface (API)
License terms AXIS OpenBT Stack license AlphaWorks

Linux Bluetooth Development • Chapter 6 213

160bluetooth_C06.qk 12/5/01 3:56 PM Page 213

214 Chapter 6 • Linux Bluetooth Development

The basic Bluetooth host protocols are supported by both stacks. Beginning
at the HCI, which links a host to a module, both stacks support the UART trans-
port layer needed for basic serial communications. OpenBT goes on to also sup-
port the higher speed Universal Serial Bus (USB). L2CAP, RFCOMM, and SDP
are also provided by both protocol stacks.

Kernel Versions
Developers have used the OpenBT source on a wide range of kernel versions,
including uCLinux. Because the source is available, people are free to port it to
whatever kernel version they require.

The BlueDrekar binaries, on the other hand, are compiled only against cer-
tain 2.2.x kernel versions at the time of this writing, so you can’t use them with
older or newer kernels.

Hardware Platforms
Developers around the world have used OpenBT on a variety of processor types.
This author’s company has used it on ARM and MIPS, as well as x86 processors,
and according to the mailing list archives for OpenBT, some people have used it
with PowerPCs as well.Again, because you have the source, if you need to port it
or even just cross-compile it for a non-x86 platform, you can do so.

With BlueDrekar, you only get the x86 binaries.You don’t have the source
unless you apply for a license, so obviously you’re limited to just x86 platforms.

Bluetooth Protocols
Here’s where BlueDrekar starts to catch up.The OpenBT project does not cur-
rently support the Synchronous Connection Oriented (SCO) connections used
for voice, which is a major drawback. It does include support for an HCI-USB
layer, however.

BlueDrekar does have support for SCO already. For BlueDrekar, you can get
the source for their HCI-UART module.This is the one part of their stack,
which is open source. IBM released this source under GPL with the hope that
others could use it as a basis for developing the other HCI link drivers.

SDP Support
The Service Discovery Protocol (SDP) is used by a client device to find out
about the services it can use on a server device.An SDP server maintains a
database of services; this can be preconfigured (static), or can be built up dynami-

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 214

Linux Bluetooth Development • Chapter 6 215

cally as services register with the database system. Once a database is in place,
clients send SDP requests to query its contents, and servers reply with SDP
responses giving details of services supported and information needed to connect
to those services.

SDP is another area where BlueDrekar is ahead of OpenBT.The OpenBT
project does provide an SDP server daemon to handle SDP requests from remote
devices. However, it does not yet provide an API for local applications to dynami-
cally register themselves in the SDP database.Another disadvantage is that appli-
cations must frame their own SDP request packets and parse the resulting SDP
responses.

BlueDrekar is much nicer. It also provides a server daemon, but additionally, it
has an API for dynamically registering services in the local database as well as
handling a lot of the details of SDP.Applications still need to know the basic
components of SDP packets, but they don’t have to hand-tool the packets them-
selves like they do with OpenBT.

API
The OpenBT stack provides a set of device files for applications to use.These are
all TTYs (terminals) and follow the standard Linux API for TTY drivers. Stack con-
trol is done via blocking ioctl calls. Since there’s no intervening library layer, all of
the control I/O is synchronous.There is no event notification aspect of the API.

The BlueDrekar stack provides a library layer and a daemon (referred to col-
lectively as middleware).Although data transfers are handled over standard drivers,
control operations are done via library calls.These often employ callback mecha-
nisms for event notification.

License Terms
Licensing is the big issue.The OpenBT project is released under the AXIS
OpenBT Stack license.You can see the text of this license at
http://developer.axis.com/software/bluetooth/OpenBT_license.txt. Basically, it is
the GPL with some additional freedoms. If you write applications that use the
stack, they will not fall under the GPL and may remain proprietary. But if you
write applications that are a derived work of the applications in the OpenBT
source tree, then they will fall under the GPL—unless they have nothing to do
with Bluetooth technology. Note that just because the stack is under GPL doesn’t
mean applications that use the stack must be. However, if you modify or add SCO
support to the stack (for example) then these changes would be under GPL.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 215

http://developer.axis.com/software/bluetooth/OpenBT_license.txt

216 Chapter 6 • Linux Bluetooth Development

BlueDrekar is released under IBM’s AlphaWorks license.You can download
the binaries for free and write applications that use them, but if you want to see
the source or distribute the binaries with a product then, you’ll need extra per-
missions.According to their Web site, you must be a Bluetooth SIG member to
get this additional permission.

Other Considerations
If you’re a PC application developer, then you may not have any control over
which Bluetooth stack the user has on his or her PC.The OpenBT and
BlueDrekar APIs are not at all similar, so it would be tough to write an applica-
tion that works on both. It’s likely you’d have to pick one particular stack and
require users to install it.

If you’re an embedded developer, then chances are you’re probably not only
writing applications, but you’re also trying to decide which stack to ship with
your device.You have total control over which stack your application will use,
because you decide which stack the user gets. Note that at the time of this
writing the OpenBT stack produced a somewhat smaller image when compiled
for an x86, but probably not enough to make too much of a difference. If size is
important, then cross-compile the latest release of OpenBT against your target
platform and check it.To compare it with BlueDrekar you’ll have to ask IBM
about getting this information.The open source nature of OpenBT can be a real
bonus for embedded developers because it’s easy to check things.

Axis Communications originally designed the OpenBT stack to serve as a
LAN Access Profile server on their embedded Linux products. If you need a PPP
server over RFCOMM, then once you get the stack running on your platform,
you’re basically done. However, although it functions well in this regard, developers
who want to leverage the stack for other purposes should expect to do some work.

For the rest of this chapter, we’re going to discuss using the OpenBT stack. I
have to pick one, just like you will. I’m not picking OpenBT because it’s a better
implementation than BlueDrekar—to be perfectly frank I don’t think it is (yet).
Instead, I chose it for the following reasons:

■ It’s freely available.

■ I’m under no restrictions to not discuss any aspect of it.

■ I have access to the source, so I understand it much better.

■ I’ve used it in the past on several different platforms, for several different
kernel versions.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 216

Linux Bluetooth Development • Chapter 6 217

■ I’ve contributed to it in the past.

■ I think it has the best chance of making it into the standard Linux
kernel tree (eventually).

■ If I can encourage you to use it and contribute, then I benefit from your
use as you can benefit from mine.

Fair Warning
It’s only fair to be perfectly clear on something at this point: the OpenBT stack is
a work in progress, and is not feature-complete as a client stack. Here are the big
issues, in order of severity:

■ There is no way to bind RFCOMM server channels for server applica-
tions other than PPP.

■ There is no interface for dynamic SDP registration.

■ Applications must assemble their own SDP requests and parse the SDP
responses.

■ There is no SCO support.

■ There are no interfaces for supporting other protocols above L2CAP.

■ The stack still has many bugs ranging from annoying behavior to full
system lockups.

Also, as with any implementation, the stack still has some bugs—especially
when supporting client applications.You can get a list of the current known bugs
from the OpenBT Web site on SourceForge.

Nonetheless, OpenBT has one major advantage: the source is open. It goes
without saying that one of the reasons I know about all these problems is because
I can look in the source and see them. I can also look in the source and fix them.

That being said, let’s talk about the basics of how the OpenBT stack works.
From here on, when I use the term Bluetooth driver I’ll be referring to the
OpenBT stack. Specifically, I will be referring to version 0.0.2, released in March
of 2001.

Understanding the Linux Bluetooth Driver
The first thing you should do is go to the OpenBT project Web site, download their
latest release, and then follow the instructions for installing and using the driver. Go

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 217

218 Chapter 6 • Linux Bluetooth Development

ahead and play with included applications until you’re satisfied that you’ve got things
working on your system. If you don’t have Bluetooth hardware, that’s okay, because
the stack includes several options for simulating hardware connections between two
devices.You don’t even necessarily need more than one PC to try it out.

Note that the OpenBT stack comes with a lot of options about user mode,
kernel mode, and real versus simulated hardware connections. In this chapter, I’m
going to limit the discussion to using the kernel mode driver with real hardware.
In the end, your application will have to work under these conditions anyway.

In this section, we’ll first talk about what the Bluetooth driver is, and tour
some of its visible properties.Then we’ll cover the basics of using the Bluetooth
driver interfaces.

Learning about the Kernel Driver
The actual kernel Bluetooth driver is the bt.o module.This is built in the
linux/drivers/char/bluetooth directory of the OpenBT source tree.This loadable
module implements a TTY (terminal) driver and an ldisc, the line discipline that
affects how the data stream to a terminal is interpreted. I’ll explain those terms in
more detail after taking a quick look at what happens when you load the
Bluetooth driver into the kernel.

Investigating the Kernel Module
To load the Bluetooth driver into the kernel, execute the following command in
a terminal window as root:

$ insmod bt.o

Now let’s browse through the proc directory and see what just happened.
Enter this:

$ cat /proc/devices

One of the char driver entries will be listed as bt.This is our driver. On the
same line, you’ll see its major number.This major number uniquely identifies the
Bluetooth driver in the kernel. Later, when we look at the Bluetooth device files,
we’ll see that their major number matches up with this, effectively binding them
to this driver.This is what tells the Linux kernel which driver to invoke when we
make system calls like open on those device files.

Now enter this:

$ ls /proc/bt_*

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 218

Linux Bluetooth Development • Chapter 6 219

And you’ll see the proc files installed by the driver. Enter this to see some
status information on the driver:

$ cat /proc/bt_status

Finally enter this:

$ cat /proc/tty/drivers; cat /proc/tty/ldiscs

The first command lists all the TTY drivers currently registered in the kernel.
Ours is now one of them.The second lists all the ldiscs currently registered in the
kernel. Note bt_ldisc—that’s ours.

What Exactly Is a TTY?
One way to think of a TTY is as a subclass of a character driver.A TTY imple-
ments the same interface as a character driver and then some. In fact, you might
think of a TTY as a character driver with an attached filter.The filter sits in the
kernel between the TTY and an upper layer.This filter is called an ldisc, or “line
discipline.”

So What’s an ldisc?
A line discipline (ldisc) monitors and even modifies the data stream that passes
between an upper layer and the TTY. It might do things like look for special
control characters in the data stream. It might even reformat the data stream into
protocol packets of some kind or other.

www.syngress.com

What Exactly Do You Mean by “Character Driver”?
A character driver is one of the basic driver types supported by the Linux
kernel (some others are block drivers and network drivers). A character
driver represents a connectionless data stream over some type of device.
All character drivers must support the following system calls: open,
close, and write. Most character drivers also support the read, select,
and ioctl system calls. Examples of character drivers you might find on
your system are /dev/audio, /dev/ttyS0 (the serial TTY), and /dev/mem.

Developing & Deploying…

160bluetooth_C06.qk 12/5/01 3:56 PM Page 219

220 Chapter 6 • Linux Bluetooth Development

One really important feature of the relationship between a TTY and its ldisc is
that you can change the ldisc at runtime. In effect, you can swap filters. In the
next section, I’ll show you how this affects the Bluetooth driver.

Building Driver Stacks in the Linux Kernel
Figure 6.1 is a simplified diagram of the default TTY driver configuration after you
load the bt.o module.You see how both the bt and serial TTY drivers use the
N_TTY ldisc as an adapter between themselves and the standard TTY I/O code?
The N_TTY ldisc is suitable for console TTY drivers. It does things like scan for
control characters in the byte stream. But an application can change any TTY
driver’s line discipline by using a special ioctl call. For example, we could have an
application change the serial driver’s line discipline to be bt_ldisc instead of N_TTY.

Guess what? That’s exactly how we make the Bluetooth driver talk to a
Bluetooth card attached by a serial cable. Figure 6.2 shows a picture of this.
The bt_ldisc in effect will route all data to and from the serial port through the
Bluetooth driver.That’s where all the parsing and packet assembly will take
place.

www.syngress.com

Figure 6.1 Default TTY Driver Configuration

n_tty

bt

bt_ldisc

Serial
Driver

tty_io

n_tty

160bluetooth_C06.qk 12/5/01 3:56 PM Page 220

Linux Bluetooth Development • Chapter 6 221

In summary, line disciplines are important because they allow user-space
applications to stack TTY drivers in the kernel. Note that this is exactly how PPP
works over a TTY—and therefore RFCOMM devices must be TTY drivers.

Understanding the Bluetooth Driver Interface
Now that you understand what the Bluetooth driver is, how exactly do applica-
tions use it? They use it by making system calls on the Bluetooth device files.

Investigating the Bluetooth Device Files
You may have noticed during the installation that at one point you had to create
some files in the /dev directory.Take a look at them now by entering:

$ ls –l /dev/ttyBT*

These device files are your application’s interface to the Bluetooth driver. Notice
that all the devices have the same major number but different minor numbers (if
you’re not sure how to tell, then check the man page for ls). Having the same major
number means that the same kernel driver implements them all.The different minor
numbers represent different instances of an interface to the kernel driver.

www.syngress.com

Figure 6.2 Stacked TTY Driver Configuration

n_tty

bt

bt_ldisc

Serial
Driver

tty_io

160bluetooth_C06.qk 12/5/01 3:56 PM Page 221

222 Chapter 6 • Linux Bluetooth Development

There are two types of Bluetooth device files: data device files and control device
files.Table 6.2 shows the main differences between them.

Table 6.2 Comparison of the Control and Data Device Files

Feature /dev/ttyBTC /dev/ttyBT[0-6]

Can open before stack is initialized YES NO
Multiple processes can open at the
same time YES NO
Can transfer data over an RFCOMM
connection NO YES
Can execute stack control ioctls YES NO

Using the RFCOMM TTY Drivers
The data device files are named /dev/ttyBT0 through /dev/ttyBT6.These are all
instances of RFCOMM TTYs. Once they’re opened and connected, they behave
exactly like serial ports, as we’ll see later. Only one process at a time can open
any individual RFCOMM TTY.All the standard system calls which work over
standard character drivers and all of the ioctls, which work over standard TTY
drivers, also work over the RFCOMM TTY driver.

The minor number for the RFCOMM TTY’s has special significance to the
Bluetooth driver. Each minor number corresponds to a line number used inter-
nally by the driver to index a connection session. Each possible RFCOMM or
SDP connection, which the driver can make with a remote peer, is represented
internally by a session. Since there are seven RFCOMM TTYs, there are seven
session “objects” maintained by the driver.

The only trick to using the RFCOMM TTY device files is in understanding
the concept of an RFCOMM session.Within the driver, each RFCOMM session
has a state machine.The driver indexes sessions internally by a line number.
When opening an RFCOMM device file, the line number comes from the
minor number of the device file.When connecting to a remote service, you
specify the local line number as one of the connection parameters. Figure 6.3
illustrates the state machine for a single session.

In Figure 6.3, you can see the three parameters that specify the state of a ses-
sion are: whether or not the device file is open, whether or not the TTY is hung
up, and whether or not an RFCOMM connection to a remote peer exists.The
important points to take away from this are as follows:

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 222

Linux Bluetooth Development • Chapter 6 223

■ The driver hangs up the TTY when an existing RFCOMM connection
gets disconnected.

■ The only way to return a hung-up TTY to normal is to close and
reopen the device file.

■ Data can only be transferred in the open/normal/connected state.

One very interesting consequence is that one process can establish an
RFCOMM connection on a session without opening its device file, and another
process can then open the device file and transfer data across the connection.

Multiplexing over RFCOMM
All of the RFCOMM device files operate independently of one another. Each rep-
resents a different potential RFCOMM channel.That’s all you really need to know
about multiplexing! You don’t have to worry about it much at the application layer.
If you have an application that can handle multiple connections, it should open and
listen on multiple RFCOMM device files. Figure 6.4 illustrates this.

When you open an RFCOMM device file, your process gets exclusive access to
it.True, other processes can establish RFCOMM connections for it, but yours is the
only one that can transfer data through it. None of your data transfers will affect any
other RFCOMM session (other than using up some of the link’s bandwidth).

www.syngress.com

Figure 6.3 The RFCOMM Session State Diagram

closed
disc

open
norm
disc

open
norm
con

open
hung
disc

open
hung
con

closed
con

connect

open close disconnect

close
connect

close

close

open

disconnect

160bluetooth_C06.qk 12/5/01 3:56 PM Page 223

224 Chapter 6 • Linux Bluetooth Development

However, there are things your application can do that will affect other pro-
cesses using the Bluetooth driver. Most of the ioctl calls specific to the Bluetooth
driver have global affects. For example, if your application decides that it needs to
shut down or reinitialize the stack, it could interrupt another application’s data
transfer.

The OpenBT stack lacks a central stack manager. In other words, there is no
single process responsible for running the driver in an orderly fashion.The
Bluetooth driver itself does not enforce any policy. For example, it does not

www.syngress.com

Figure 6.4 Multiple Simultaneous RFCOMM Connections

/dev/ttyBT0

client
app

session 0

/dev/ttyBT0 /dev/ttyBT1

server
app

session 1session 0

Device A Device B

other device
(not shown)

160bluetooth_C06.qk 12/5/01 3:56 PM Page 224

Linux Bluetooth Development • Chapter 6 225

decide when to enable Inquiry Scans, or security procedures.All policy is left to
the applications.And the OpenBT source tree does not come with a central
management application to make sure applications don’t conflict with one
another. If one application wants Inquiry Scan enabled and another wants it dis-
abled, the winner is whoever issued the ioctl call last.

So how can you write applications that cooperate well with others? Short
answer: you can’t.This is a problem for desktop applications. For embedded
developers, odds are you control all the applications that will use Bluetooth and
you can design your own cooperation strategy.

The one device file /dev/ttyBTC is a special device, dedicated to controlling
the kernel driver as a whole.We’ll see later how to use this device to initialize
and shut down the Bluetooth stack.Any number of processes can open
/dev/ttyBTC at the same time.

Note that there are no device files for SDP, L2CAP, or any of the other
Bluetooth protocols implemented by the driver.We’ll see that we can access SDP
and HCI using ioctl calls on any of the devices.And there simply is no interface
to L2CAP—it’s completely internal to the driver.

Can you add your own device files to implement other protocol layers above
L2CAP? That’s a pretty frequent question to the bluetooth-dev mailing list.And
the disappointing answer is no, not without modifying the stack itself—but
remember, you do have the source.

Although the Bluetooth driver is “just another TTY driver,” there are some
specific things you need to understand about its interface.You need to be familiar
with some of the more important ioctl calls used to control Bluetooth-specific
features, and you need to know the difference between the control device file
and the other device files.

Installing a Line Discipline over an RFCOMM TTY
Because the RFCOMM device files are TTYs, you can set up line disciplines
above the RFCOMM layer.This is exactly the way PPP works. In the same
way that the Bluetooth driver sets up a line discipline above the serial driver,
PPP sets up a line discipline above the Bluetooth driver.The whole key to
using RFCOMM comes from understanding this principle. Any application
that works over a TTY will work over an RFCOMM TTY, once the under-
lying RFCOMM connection has been established. Any process can establish
that connection—it doesn’t have to be the process that will use the TTY to
transfer data.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 225

226 Chapter 6 • Linux Bluetooth Development

Using the Control Driver
The control device file is /dev/ttyBTC. Unlike the other Bluetooth device files,
this one isn’t used to transfer data between different devices.This one is only used
to control the local Bluetooth driver.Whenever you need to issue a stack control
ioctl, you should do it using this device file.This includes the ioctl calls for initial-
ization, shutdown, security, connection, hardware control, and so on.

The most important role of this device file is to initialize the driver. Until the
driver is initialized, you cannot open any of the other device files.You can only
open the control device file. However, once the stack is initialized, you cannot
only open the other devices’ files, but you can use them to execute all of the
stack control ioctls which can be used on /dev/ttyBTC. In a way, the only pur-
pose of the control device file is to initialize the stack.

Using Open Source
Development Applications
The OpenBT source tree comes with several applications.You can use these
applications to:

■ Provide your SDP server.

■ Manually establish PPP connections between devices.

■ Manually establish RFCOMM connections between devices.

■ Browse the SDP database on a target device.

■ Provide examples to learn how to write applications for the stack.

■ Provide a starting point for your own application.

Depending on what you want to use the Bluetooth stack for, you may not
need to write any code at all. For instance, once you establish a PPP connection
over RFCOMM, all the power of the standard GNU network applications is at
your disposal—the Bluetooth connection is just like any other network connec-
tion.All existing applications that use a socket interface are instantly ported to use
Bluetooth:Web browsers,Web servers, FTP,Telnet, and so on.

Investigating the OpenBT Applications
The OpenBT source tree comes with some applications.Table 6.3 summarizes
their features.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 226

Linux Bluetooth Development • Chapter 6 227

Table 6.3 Summary of Features in OpenBT Applications

Application Features

btd/btduser Initialize the stack
Do HCI Inquiries
Establish RFCOMM connections
Spawn PPP over RFCOMM
Send test data over an RFCOMM link

sdp_server Query an XML database

Receive and parse SDP requests
Compose and send SDP replies

BluetoothPN Browse a remote device’s SDP database

Understanding the btd and btduser Applications
The btd application will probably be the most useful for you.The difference
between btd and btduser is that btd is meant to work with the kernel mode
Bluetooth driver, while btduser works with the user mode Bluetooth driver.
Many people prefer btduser since it is less prone to lock up your system if things
go badly. However, the OpenBT developers do not support it as well as btd.

For btd you have to install the Bluetooth kernel driver (i.e., insmod bt.o). For
btduser, you don’t. Other than that, their usage is basically the same.

The btd application can take a number of different arguments on startup.An
example follows. If you’re curious about other arguments besides the one I men-
tion, then look in the sdp.c source file.At the top of the main() routine, you’ll see
the argument parsing. From that, you can figure out what the other arguments to
btd are.The README that comes with OpenBT talks about starting btd, but it
is not always up-to-date. Remember, OpenBT is still early in its development,
and often the source code is the best documentation.

Understanding the sdp_Server Application
The sdp_server application provides you with an SDP database server daemon.
Once you’ve installed the Bluetooth driver, you can start this daemon and it will
automatically receive and respond to SDP queries from remote devices.

If you start the daemon with no arguments, it will automatically use
/etc/sdp.xml as the SDP database file and /tmp/sdp_sock as the source of SDP

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 227

228 Chapter 6 • Linux Bluetooth Development

requests.The /tmp/sdp_sock file is a Unix socket created by the btduser appli-
cation.You can specify a different XML file as the first argument to sdp_server
and a different source device as the second argument. Note that if you provide
one argument, you must provide the other as well. If you want to use the SDP
server when the Bluetooth driver is in kernel mode, then you should specify
/proc/sdp_srv as the source of SDP requests.

The following is an example of starting the sdp_daemon with command-line
arguments:

$ sdp_daemon /tmp/my_sdp_database.xml /proc/sdp_srv &

SECURITY ALERT

Warning! Never remove the Bluetooth driver while the sdp_server daemon
is using /proc/sdp_srv. If you do so in the current release version of the
stack (0.0.2 at the time of this writing), you will get a kernel panic when
you stop the daemon. Future versions of the stack will probably not allow
you to remove the driver while the sdp_server daemon is using it.

Understanding the BluetoothPN Application
This application provides a GUI that displays the SDP database on a remote device.
It provides some examples of how to make SDP requests and process their results.

Establishing a PPP Connection
Using the btd Application
The quickest, most useful way to establish and exploit a Bluetooth connection
from Linux is to use the standard GNU network applications over PPP.And the
easiest way to do that is with the btd application. Let’s look at an example.

It assumes the following setup:

■ Two Linux PCs configured to use PPP; one will be the server and one
the client.

■ Both PCs are connected to Ericsson Bluetooth Developer kits via
RS232 to /dev/ttyS0.

■ The OpenBT Bluetooth driver is installed in both PCs kernels.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 228

Linux Bluetooth Development • Chapter 6 229

■ There us an open terminal window with root permissions on each PC.

■ The server should have the “local” and “nodetach” options specified in
its /etc/ppp/options file (see man(8) pppd).

■ The client should have the “local,”“nodetach,” and “noauth” options
specified in its /etc/ppp/options file.

Here are the steps:

1. On the server:
$ btd –-server –-physdev=/dev/ttyS0 –-speed=57600 –-
modem=0

2. On the client:
$ btd –-client –-physdev=/dev/ttyS0 –-speed=57600
–modem=0

3. On the client, you will now see a menu of options. Select an HCI
Inquiry for one device, with a maximum timeout of about five seconds:

> inq 1 5

4. If the inquiry succeeds, the program will report the Bluetooth Device
Address (BD ADDR) of the server’s Bluetooth card on the terminal. For
example, it might return 11:22:33:44:55:66 (it’s unlikely, but this is just
an example). Next, create an RFCOMM connection to server channel 2
of that device, using line 0.When the server btd application detects the
connection, it will spawn PPP and pass in /dev/ttyBT0 on the com-
mand line as the TTY.The line 0 argument maps to /dev/ttyBT0 on the
local device.When the client btd application spawns PPP, it will also pass
/dev/ttyBT0 to the local PPP as the TTY. Here’s the command:

> rf_conn 11:22:33:44:55:66 2 0

5. If the command succeeds, then after a few seconds you will see the con-
nected message on the client’s terminal window. On the server, you
should see PPP start up and wait for an incoming PPP connection.At
this point, we’re ready to start PPP on the client. Here’s the command:

> ppp

6. If the PPP connection succeeds, you should see a message like this on
both the client and server side:

local IP address 192.168.1.249

remote IP address 192.168.1.17

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 229

230 Chapter 6 • Linux Bluetooth Development

7. At this point, you can test the connection. First, on either the client or
server, open a terminal window and use ifconfig to determine the IP
address of the remote PPP connection. It should report the ppp con-
nection similar to this:

> ifconfig

ppp0 Link encap:Point-to-Point Protocol

inet addr:192.168.1.249 P-t-P:192.168.1.17

8. Now, open another terminal window on the client and ping the remote IP.
> ping 192.168.1.17

Those ping responses are coming back across the Bluetooth link! Pretty exciting,
eh? Well, the first time anyway.You can also go ahead and try some other net-
work commands like Telnet and FTP. Have some fun.

www.syngress.com

Watching Driver Debug Messages
If you want to watch exchanges between the stack and the card (a
good idea for debugging problems) then you can turn on some of the
debug messages before you compile the stack. Edit the btdebug.h file
in the OpenBT source tree. My favorite macro to turn on is
BT_DATAFLOW_DEBUG. Change its #define from 0 to 1 and then
recompile and insert the OpenBT module. Then, when you’re running
your application, open another terminal and execute this command to
see the running transactions between the host and the card (on most
systems you must be root to do this):

$ tail –f /var/log/messages

If you see a lot of messages to the effect of “HCI timeout” in this
debug, then chances are your card is not responding to HCI commands
from the host. You should make sure your serial port is set up right and
you are using the right type of cable (null modem for Ericsson Bluetooth
Developer Kits; other hardware may vary). A good way to double-check
your serial port settings is to do this:

$ cat /proc/tty/driver/serial

Debugging…

160bluetooth_C06.qk 12/5/01 3:56 PM Page 230

Linux Bluetooth Development • Chapter 6 231

The btd application provides the quickest way to get started, but it assumes that:

■ You know the remote server channel number without doing an SDP
discovery.

■ You want to use PPP over RFCOMM, and not some other application.

If you have other requirements, then you’ll need to produce your own appli-
cation. If you’re willing to accept a GPL-like license on your application, then
you can use btd.c as a starting point to make a derived work.

Writing Your Own Minimal Application
Admittedly, btd.c has grown to become rather large and complicated.You’re
probably wondering,“What’s the bare minimum I need to establish a connec-
tion?”The following source will give you a starting point.This program does
essentially the same thing as btd, and makes the same assumptions. But it boils
down btd.c into the absolute minimum amount of code needed to establish an
RFCOMM connection.

#include <linux/bluetooth/btcommon.h>

#include <linux/bluetooth/l2cap.h>

#include <linux/bluetooth/rfcomm.h>

#include <sys/ioctl.h>

#include <sys/time.h>

#include <fcntl.h>

#include <termios.h>

#include <errno.h>

#define SYSCALL(v,x,s) if ((v) = (x)) < 0) { perror(s); exit(errno); }

void tty_init(int fd)

{

int ret;

struct termios t;

SYSCALL(ret, ioctl(fd, TCGETS, &t), "TCGETS");

cfmakeraw(&t);

t.c_cflag &= ~CBAUD;

t.c_cflag |= B57600 | CS8 | CLOCAL;

t.c_oflag = 0;

t.c_lflag = 0;

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 231

232 Chapter 6 • Linux Bluetooth Development

t.c_cflag &= ~CRTSCTS;

SYSCALL(ret, ioctl(fd, TCSETS, &t), "TCSETS");

}

int main(int argc, char **argv)

{

int phys_fd, bt_cfd, bt_ldisc = N_BT, ret, wrscan = 0x03;

bt_connection_con = {

{ 0x00, 0xd0, 0xb7, 0x03, 0x48, 0x9a }, /* BD ADDR */

CREATE_RFCOMM_ID(0, 2)

}

SYSCALL(phys_fd, open("/dev/ttyS0", O_RDWR, 0), "/dev/ttyS0");

tty_init(phys_fd);

SYSCALL(ret, ioctl(phys_fd, TIOCSETD, &bt_ldisc), "TIOCSETD");

SYSCALL(bt_cfd, open("/dev/ttyBTC", O_RDWR, 0), "/dev/ttyBTC");

SYSCALL(ret, ioctl(bt_cfd, BTINITSTACK), "BTINITSTACK");

SYSCALL(ret, ioctl(bt_cfd, HCIWRITESCANENABLE, &wrscan),

"HCIWRITESCANENABLE");

#ifdef CLIENT

SYSCALL(ret, ioctl(bt_cfd, BTCONNECT, &con), "BTCONNECT");

#endif

for(;;) sleep(10);

}

I’ll explain most of the things this application is doing in the next section,
“Connecting to a Bluetooth Device,” but first I’ll show you how to use the
application.

I defined the SYSCALL macro so that I could show a real example of
checking system call returns while conserving space in the text. It does a primi-
tive form of exception handling (if you can call exiting the application exception
handling) that shows the user what the error is.

The tty_init routine is based on the fd_setup routine in btd.c. It sets up the
serial port TTY to work in raw mode, sets the baud rate, hardware flow control,
and so on.

Note that this program has the server device’s BD ADDR hard-coded into
the declaration of the bt_connection struct! Yours will differ, so change this before
trying it.A real-world application wouldn’t do this, of course.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 232

Linux Bluetooth Development • Chapter 6 233

To build the program, put the following Makefile in the same directory:

bt_mod_inc_dir := /home/gmcnutt/OpenBT/linux/include

0CFLAGS += -g –MD –I$(bt_mod_inc_dir) $(EXTRA_FLAGS)

Change the bt_mod_inc_dir variable to match the location where you installed
the OpenBT source tree.Assuming you saved this file as simple.c, to make the
server, type:

$ make simple

And to make the client, type:

$ make EXTRA_CFLAGS=-DCLIENT simple

First run the program on the server, and then run it on the client. Next, open
new terminal windows on the server and client. On one, type:

$ cat /dev/ttyBT0

And on the other one, type:

$ echo hello > /dev/ttyBT0

You should see “hello” appear on the opposite side.Any program that works
over a character device or a TTY should work over this connection. Go ahead
and try some others.Try catting a binary file, too, just to see why we need to
make TTYs raw before we can safely transmit binary data.

Connecting to a Bluetooth Device
At this point, you’re probably impatient to start writing some code. I know I
would be. In fact, if you’re like me, this is probably the first section you jumped
to. In this section, I’ll give you some examples to start with and talk through
some of the issues. I’ll show you how to get the stack up and talking to the hard-
ware, how to discover other Bluetooth devices, and how to find and connect to
applications on those devices.

For all of these examples, I used the following setup:

■ The OpenBT Bluetooth driver version 0.0.2
■ Ericsson Bluetooth development h/w, ROK 101, firmware revision P9A
■ RS-232 connection between the host and the Ericsson card
■ Red Hat 6.2
■ Linux 2.2.18 kernel

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 233

234 Chapter 6 • Linux Bluetooth Development

In the rest of this section, we’ll see how to initialize the stack, look for
remote devices, do SDP queries and initiate and shut down connections. I’ll also
show an example of adding a new service to the XML database.

Initializing the Bluetooth Stack
Figure 6.1 illustrated what your system is like after you load the Bluetooth
module and connect the serial cable between the host and the card.At this point,
the Bluetooth driver and the serial port driver are both registered as TTY drivers
in the kernel, but both are idle. Both are using the default N_TTY line discipline
and standard termios settings.The Bluetooth line discipline is registered in the
kernel, but nothing is using it. No data is moving between the host and the card.

The Bluetooth driver must use the serial driver to talk to the card. In order
to do this, we need to “hook up” the Bluetooth driver on top of the serial driver
so that when it sends data, it sends it through the serial driver to the serial port;
and when the serial driver receives data from the serial port, it pushes it up to the
Bluetooth driver.

We also must change the default settings of the serial driver. For one thing,
the default settings are not compatible with binary data.That’s because TTYs are
commonly used for things which require some control character processing, like
consoles.That won’t work for us because this processing might change, replace, or
insert certain values in the data passing through the TTY.We just want the TTY
to pass the data exactly as we tell it to.

Also, the default baud rate for serial ports is typically 9600. But the Ericsson
Bluetooth Developer’s kit will expect us to talk to it at 57600—at least until we
can tell it to switch to a different baud rate.This default baud rate is vendor-spe-
cific. Unfortunately, it is not part of the HCI UART spec.

Of course, if you’re using USB instead of serial, then you don’t have to worry
about any of this.The USB Bluetooth driver provides a TTY interface, but the
baud rate is meaningless.

Preparing the Serial Driver
The following example shows how to open the serial port and make it a raw
TTY.When it’s raw, that means it won’t mess with our data as it moves between
the Bluetooth driver and the serial port. If you don’t make it raw, it will try to
filter the data stream looking for special characters. If you think this is confusing,
just try using cat on /dev/ttyS0. It works great… for text files.Try it with a
binary and you’ll probably hose your terminal settings. But we can fix this by
using a raw TTY.The following code shows how to do this:

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 234

Linux Bluetooth Development • Chapter 6 235

int fd;

struct termios t;

/* open the device for reading and writing */

fd = open("/dev/ttyS0", O_RDWR, 0);

/* get a copy of the driver settings */

ioctl(fd, TCGETS, &t);

/* raw mode settings */

cfmakeraw(&t);

/* set the baud rate to 57600 baud, 8 data bits,

1 stop bit */

t.c_cflag &= ~CBAUD;

t.c_cflag |= B57600 | CS8;

t.c_cflag |= CLOCAL;

t.c_oflag = t.c_lflag = 0;

/* hardware flow control */

t.c_cflag &= ~CRTSCTS;

/* put the setting into effect */

ioctl(fd, TCSETS, &t);

Whether or not you need hardware flow control depends on the Bluetooth
hardware you’re using. Some products are okay with it, while some specifically
tell you not to use it.The Ericsson hardware seems to work okay either way.
Note that many embedded devices have custom UART hardware. Sometimes
these don’t support the hardware lines necessary for hardware flow control. If you
have trouble getting the Bluetooth driver to talk to the card, then find out
whether or not this setting is correct for your hardware.

Observant readers will wonder if we need to fix the termios setting for the
Bluetooth driver itself.After all, it’s a TTY driver.Won’t we have the same
problem with binary data? Yes—once we start trying to read or write from it. But
that’s fine at this point. It won’t affect any of the ioctl calls we’ll be doing. Later,
when we want to transfer binary data, we’ll address this. If we just set the driver
up for another application like PPP, then that application should be responsible
for dealing with this (PPP does).

Stacking the Drivers
Now that the serial driver is ready, we can connect it to the Bluetooth driver.
Remember that the Bluetooth stack registered its own line discipline with the
kernel when we loaded the module.The way we stack the drivers is by telling

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 235

236 Chapter 6 • Linux Bluetooth Development

the serial port to switch from using the N_TTY line discipline to the Bluetooth
line discipline.That way, when the serial driver receives data, it will push it up
into the Bluetooth stack, and when the Bluetooth stack wants to send data, it has
a handle to the serial driver.

/* hookup serial driver and Bluetooth driver */

int bt_ldisc = N_BT;

ioctl(fd, TIOCSETD, &bt_ldisc);

The N_BT constant uniquely identifies the Bluetooth line discipline among
all other line disciplines registered in the kernel.This identifier is what tells the
serial TTY to use the Bluetooth stack as its upper layer interface. It’s defined in
btcommon.h—part of the OpenBT source tree.

The TIOCSETD ioctl replaces the serial port’s current line discipline with the
one specified. It also causes the Bluetooth line discipline’s open() routine to be
called, passing in the serial port’s TTY.This gives the Bluetooth stack a handle to
the serial TTY driver so it can use it as the lower layer.At this point, Figure 6.2
shows our driver configuration in the kernel.

Starting Communication between the PC and the Card
Once the drivers are stacked, the host can start talking to the hardware.There are
some specific things the Bluetooth stack needs to find out from the card before it
does anything else. It also needs to do some internal initialization as well.

/* open the bt control channel */

bt_cfd = open("/dev/ttyBTC", O_RDWR, 0);

/* initialize the stack */

ioctl(bt_cfd, BTINITSTACK);

If you’re going to initialize the stack, you have to use the /dev/ttyBTC device
(the control device).The Bluetooth data devices (for example, /dev/ttyBT0) won’t
work. In fact, you can’t even open these other devices until the stack is initialized.
This, and the fact that multiple processes can open /dev/ttyBTC at the same time,
makes it unique. Note that closing /dev/ttyBTC is safe.The stack will remain ini-
tialized.To shut it down, we’ll use the BTSHUTDOWN ioctl.You’ll learn more
on that in the section “Disconnecting” later in the chapter.

The BTINITSTACK ioctl tells the Bluetooth driver to initialize itself and begin
talking to the Bluetooth hardware. It will query the hardware for things like buffer
sizes and numbers, read the local BD_ADDR, and so forth.As an application
writer, you don’t really need to worry about the details.There is one thing you

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 236

Linux Bluetooth Development • Chapter 6 237

should know, however: this ioctl call can return before initialization is complete. For
this reason, it’s sometimes a good idea to pause your application before continuing.

Switching to a Higher Baud Rate
If we want the Bluetooth driver and the hardware to use a higher baud rate we can
tell it to do so now.At 57600 baud, the bottleneck will be the serial connection
between the host and the card.This doesn’t mean we’ll lose data.We just won’t be
taking full advantage of what the radio can do. If we jack it up to 115200 baud,
then we’re more in line with the maximum radio data rate of 723.2 Kbps, which is
already pretty slow compared to currently extant wired media. Keep in mind that
this only affects the baud rate between the host and the Bluetooth hardware. In
other words, we’re not changing the radio characteristics of the card in any way.

NOTE

Keep in mind that if you change the baud rate from the power on default,
if you ever shut down the stack, you’ll need to physically reset the hard-
ware before starting it up again. Both the stack and the hardware have to
start up at the same baud rate or they won’t talk to each other.

www.syngress.com

Detecting UART Overruns
A common problem people have (especially on embedded devices) is
UART overruns. A UART overrun is what happens when data is coming
in on the serial port too fast for the serial driver to read it. Embedded
devices with slow CPUs, bad IRQ latency, and/or cheap UART hardware
sometimes see this problem.

$ cat /proc/tty/driver/serial

The preceding command will show you if your UART is getting
receive overruns. If an “oe” field appears in the report, then this gives a
count of the number of UART overruns detected by the serial driver. If you
are having problems with data corruption, then definitely check for this.

Debugging…

160bluetooth_C06.qk 12/5/01 3:56 PM Page 237

238 Chapter 6 • Linux Bluetooth Development

/* tell the card to switch baud rates */

int final_baud_rate = 115200;

if (ioctl(bt_cfd, HCISETBAUDRATE,

&final_baud_rate) == 0) {

/* switch the serial port baud rate */

struct termios t;

ioctl(fd, TCGETS, &t);

t.c_cflag &= ~CBAUD;

t.c_cflag |= B115200;

ioctl(fd, TCSETS, &t);

}

The HCISETBAUDRATE ioctl will try to send a vendor-specific command to
tell the hardware to change the baud rate. Keep in mind that the command to
switch baud rates is vendor-specific. Some vendors might not provide this feature.
This is an example of why it’s important for your application to check the return
results of system calls. In this case, if the ioctl call fails, then presumably the card won’t
change its baud rate.This could be because it has a fixed baud rate, or because it uses
a different vendor-specific command, either way we’d better just leave the serial port
baud rate alone or the Bluetooth driver will lose communication with the card.

Finding Neighboring Devices
Now that the Bluetooth driver is talking to the hardware we can engage in some
Bluetooth traffic. Of course, we’ll need somebody to talk to. In order to find

www.syngress.com

Avoiding Race Conditions When Changing Baud Rates
Incidentally, there’s something of a race condition here between when
the card switches baud rates and when the serial port switches baud
rates. What happens if the card sends us data at the higher baud rate
before we manage to change the serial port settings? If this happens, it
is usually not fatal, but it’s essential to change the serial port immedi-
ately after changing the card’s baud rate. You should also stop any data
streams before changing baud rates.

Developing & Deploying…

160bluetooth_C06.qk 12/5/01 3:56 PM Page 238

Linux Bluetooth Development • Chapter 6 239

other Bluetooth devices in range, we’ll do an HCI Inquiry.Also, we probably
want to let other devices find us, too, so we’ll see how to tell the hardware to
respond to other device’s Inquiries.

Letting Other Bluetooth Devices Discover Us
By default, the Ericsson Bluetooth Development Kit hardware doesn’t respond to
other device’s inquiries.This is okay, because we don’t really want other people
trying to connect with us until we’re ready.The following example shows how to
enable both scan and inquiry responses:

/* enable page scan & inquiry scan */

#define PAGE_SCAN_ENABLE 0x01

#define INQUIRY_SCAN_ENABLE 0x02

int wrscan = (PAGE_SCAN_ENABLE |

INQUIRY_SCAN_ENABLE);

ioctl(bt_cfd, HCIWRITESCANENABLE, &wrscan);

The HCIWRITESCANENABLE ioctl takes a bit mask parameter. Only the first
two bits have meaning. Bit 0 corresponds to Page Scan, and bit 1 corresponds to
Inquiry Scan.You set the bit to enable the corresponding scan type.To find out
more about Page Scan and Inquiry Scan, consult the Bluetooth Core Specification.
For now, just realize that other devices won’t see you if you don’t turn on scan enable.

Sending an HCI Inquiry
To find other neighboring devices use the HCIINQUIRY ioctl.This ioctl takes a
parameter of type inquiry_results, which serves both as an in-param and an out-
param.The btcommon.h header defines this structure.

typedef struct inquiry_results {

u32 nbr_of_units;

u32 inq_time;

u8 bd_addr[0];

}

The nbr_of_units field specifies the maximum number of responses, which the
hardware should listen for before ending the Inquiry procedure.The valid range
for this value is 0 through 255. But 0 means an unlimited number of responses!
Not a good idea since you’ve only allocated a finite amount of space in which to
receive responses.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 239

240 Chapter 6 • Linux Bluetooth Development

The inq_time field specifies the time, in units of 1.28 seconds, which the hard-
ware should allow for the Inquiry to finish.The hardware will terminate the
Inquiry procedure if either it receives the maximum number of responses, or the
said amount of time expires—whichever comes first.The valid range for this
value is 0x01−0x30, or 1.28−61.44 seconds.

The bd_addr field marks the start of a block of memory set aside for the
Inquiry responses. By default, there isn’t any space for responses. One way to make
space is to allocate enough memory for the inquiry_results structure, plus some
extra for the responses. It turns out that the driver will only store the BD ADDR
from each response, so you’ll need to set aside 6 bytes per response. One way to
do this is to wrap it with your own structure that has a static buffer, like this:

typedef struct my_inq_result {

inquiry_results hdr;

unsigned char buf[MAX_RESPONSES * 6];

} my_inq_result_t;

/* issue the inquiry and block */

my_inq_result_t inq;

inq.hdr.inq_time = 5;

inq.hdr.nbr_of_units = MAX_RESPONSES;

ioctl(bt_cfd, HCIINQUIRY, &inq);

/* parse the results */

for (i = 0; i < inq.hdr.nbr_of_units; i++) {

unsigned char *bd_addr = inq.buf + i * 6;

printf("%x:%x:%x:%x:%x:%x\n", bd_addr[0],

bd_addr[1], bd_addr[2], bd_addr[3],

bd_addr[4], bd_addr[5]);

}

The inquiry response actually carries extra information, like the class of
device responding.This information is not passed up the stack at the moment,
but it’s worth being aware that it’s there, as in the future the driver may change to
store more information. If that happens, of course, more memory would have to
be allocated for responses.

The ioctl call will block until either the Inquiry completes, or an error occurs.
Possible errors include timeouts waiting for the hardware to send the expected
HCI commands. If the call is successful, then the inq argument contains informa-
tion from any inquiry responses received. Note that the ioctl returns success even
if no remote devices responded.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 240

Linux Bluetooth Development • Chapter 6 241

Upon successful return, the nbr_of_units field now indicates the actual number
of responses received (this is less than or equal to the number you specified) and
the bd_addr field contains the received BD ADDRs of remote devices.

Using Service Discovery
Once you’ve discovered another device, you’re ready to find out what services it
offers. Likewise, you may want other devices to discover the services your appli-
cation provides. By now, you probably know that this is where the Service
Discovery Protocol comes into play.

Let me reiterate some of the caveats regarding SDP on OpenBT:

■ You cannot dynamically register a new service in the SDP database.

■ Your application must know how to assemble SDP requests and parse
SDP responses.

■ Services cannot register themselves with the RFCOMM layer.

With these limitations, you may well wonder what’s the point of even dis-
cussing SDP.Well, there are some benefits:

■ You can statically add services to the SDP database, and for embedded
developers this may work well enough.

■ Your client applications will know how to discover and connect to services
running on a stack, which correctly supports RFCOMM registration.

■ OpenBT

In the rest of this section, we’ll talk about how to connect to a remote SDP
server, how to send requests, and how to process responses.This will cover the
client side of things and should be useful even with the current state of the
OpenBT stack.After that, we’ll look at an example regarding how to add a ser-
vice to the SDP database.

Connecting to a Remote SDP Server
Before you can do a query, you need to establish an SDP connection with the
remote device.Anytime we need to establish a connection, we’ll use the
BTCONNECT ioctl call.This call takes a parameter of type bt_connection.The
btcommon.h header defines this structure.

struct bt_connection {

u8 bd[6];

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 241

242 Chapter 6 • Linux Bluetooth Development

u32 id;

};

The bd field is the BD ADDR of the remote device you want to connect to.
For instance, you can use one of the BD ADDRs discovered in your inquiry.

L2CAP uses a Protocol Service Multiplexor field (PSM) to uniquely identify
an instance of a higher layer protocol using an L2CAP connection. For some
protocols, this value is well-known (i.e., in the Core Specification), and for others
you have to discover it.The Bluetooth Core Specification defines the PSM for
SDP to be 1.

The id field is a combination of the PSM for the protocol instance you want
to connect to: the line number and the SDP ID.The high 16 bits of the id field
indicate the PSM.The next 8 bits of the id field specify the line or session
number. Remember the session state machine in Figure 6.2? This value identifies
one of those sessions. It also maps to the minor number of a Bluetooth TTY
(/dev/ttyBT0, and so on).When we specify a line here, we’re telling the
Bluetooth driver to use the session associated with one of the Bluetooth TTYs.

The lowest 8 bits represent the SDP connection ID. For the BTCONNECT
call, these are not important. Later, when we look at the BT_SDP_REQUEST
ioctl, we will see how these bits are used.

To make things easier on yourself, you should include the sdp.h header so you
can use the CREATE_SDP_ID macro.This macro automatically fills in the PSM.
The following example shows its usage:

/* set remote BD ADDR from the inquiry results */

bt_connection con;

memcpy(con.bd, inq.hdr.bd_addr, 6);

con.id = CREATE_SDP_ID(SDP_LINE, 0);

sdp_con_id = ioctl(bt_fd, BTCONNECT, &con);

The BTCONNECT ioctl blocks until the connection completes or an error
occurs. It returns an SDP connection ID on success.This is a little out of the
ordinary for a system call, which should normally return 0 on success!

Sending an SDP Request
After a successful BTCONNECT call, we can start sending SDP requests to a
remote device.We’ll send SDP requests (and receive responses) by using the
BT_SDP_REQUEST ioctl.This call takes a parameter of type bt_sdp_request.The
header btcommon.h defines this structure.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 242

typedef struct bt_sdp_request {

u32 conID;

u8 sdpCommand;

u8 pduPayload[256];

int pduLength;

u8 requestResponse[256];

int responseLength;

} bt_sdp_request;

The conID field has the same format as the id field of the bt_connect structure.
Again, we’ll use the CREATE_SDP_ID macro, but this time, when we pass in
the SDP index, it will be the value returned by the BTCONNECT ioctl.

The sdpCommand field is the actual SDP command. For example, the
ServiceSearchRequest command is 0x02. See the SDP chapter of the Bluetooth
Core Specification for other commands.

The pduPayload field is a buffer where we have to put the raw SDP protocol,
which comprises our request.The driver will build the SDP packet header for us,
but we have to provide the payload of the request in this buffer. Unfortunately,
nobody has provided a nice library to build these requests for us.Yet.You can
consult the Core Specification or other references to learn more about con-
structing your own payloads. But one thing you need to note: the SDP specifica-
tion defines multibyte fields to be “big endian.” So, when you define these fields
in your payload, you need to put the high bytes first.

The pduLength field indicates the number of bytes in our payload buffer. Note
that we’re limited to 256 bytes.

www.syngress.com

Picking an SDP Line Number
When you specify a line number for an SDP connection, you must specify
the line number of a session that is in the closed/disconnected state.
Unfortunately, there is no way for your application to know a priori
which sessions are in this state. Until the OpenBT developers introduce
a fix for this problem, your application will have to use a trial-and-error
algorithm. If a BTCONNECT ioctl fails, this means the session state is not
suitable for SDP, and your application can try another one. This problem
is not specific to the Bluetooth stack—it applies to any device file.

Developing & Deploying…

Linux Bluetooth Development • Chapter 6 243

160bluetooth_C06.qk 12/5/01 3:56 PM Page 243

244 Chapter 6 • Linux Bluetooth Development

www.syngress.com

The requestResponse field is a buffer where we’ll find the response to our
request when the ioctl call returns (assuming we received a response).

The responseLength field tells us how many bytes we received in our response
when the ioctl call returns. If this is zero, then it’s safe to assume we didn’t get the
response.

Let’s look at an example of a service search request for our custom echo service:

bt_sdp_request sdp_req;

int i = 0;

memset(&sdp_req, 0, sizeof(sdp_req));

sdp_req.conID = CREATE_SDP_ID(0, 0);

sdp_req.Command = 0x02; /* service search req */

sdp_req.pduPayload[i++] = 0x35; /* des hdr */

sdp_req.pduPayload[i++] = 0x03; /* des sz */

sdp_req.pduPayload[i++] = 0x19; /* uuid hdr */

sdp_req.pduPayload[i++] = 0x13; /* uuid[1] */

sdp_req.pduPayload[i++] = 0x02; /* uuid[0] */

sdp_req.pduPayload[i++] = 0x00; /* count[1] */

sdp_req.pduPayload[i++] = 0x03; /* count[0] */

sdp_req.pduPayload[i++] = 0x00; /* continuation */

sdp_req.pduLength = i;

ioctl(bt_fd, BT_SDP_REQUEST, &sdp_req);

Remember my warning about multibyte fields and endianness? Look at the
Service Class UUID field in our example.We put the high byte before the low
byte in our buffer. Likewise for the MaxServiceRecordCount field. Sometimes
developers are tempted to define structs, which correspond to protocol packets so
that they can fill out the struct and then copy it to the buffer (or cast the buffer
to a struct of that type). Beware of doing this! If your application is running on a
little-endian processor, then this will not work correctly for SDP.You will get the
bytes backwards.The ugly but reliable technique in the previous example will
work correctly regardless of the endianness of your host processor.Another alter-
native is to define or use existing macros that do safe byte-swapping conversions.

Processing an SDP Response
The BT_SDP_REQUEST ioctl call will block while the Bluetooth driver sends
the request and waits for the response. If the ioctl succeeded, then the response
will appear in the bt_sdp_request struct, which you passed in.

160bluetooth_C06.qk 12/5/01 3:56 PM Page 244

Linux Bluetooth Development • Chapter 6 245

The responseLength field tells you how many bytes are in the requestResponse
buffer. If this field is zero, then the Bluetooth driver did not receive any response
before timing out.

The first byte of a well-formed response indicates the SDP status of the
response. Zero means success; non-zero indicates an SDP error. Consult the SDP
spec if you want your application to decode the error type. Remember: the ioctl
call can succeed even when the SDP request fails.

/* any response? */

if (sdp_req.responseLength == 0) {

printf("SDP response length zero\n");

exit(0);

}

/* was it an error? */

if (sdp_req.requestResponse[0] == 0x01) {

printf("SDP Error Code 0x%x\n",

sdp_req.requestResponse[5] << 8 |

sdp_req.requestResponse[6]);

exit(0);

}

/* any matching service records? */

if (!sdp_req.requestResponse[8]) {

printf("No remote service!\n");

exit(0);

}

/* get the first service handle */

server_hdl = sdp_req.requestResponse[9] << 24 |

sdp_req.requestResponse[10] << 16 |

sdp_req.requestResponse[11] << 8 |

sdp_req.requestResponse[12];

If the number of ServiceRecords is zero, then the remote device does not
support the service we were looking for. Otherwise, using the service handle, we
can send more SDP requests to fetch back attributes of the matching
ServiceRecords.The ultimate goal is to establish a connection, so we should send
an AttributeRequest for the ProtocolDescriptorList next and parse the
RFCOMM server channel out of the response.The purpose of this chapter is not
to teach you how to parse SDP, so I’ll leave that as an exercise for the reader.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 245

246 Chapter 6 • Linux Bluetooth Development

When your application is finished making requests, it should close the SDP
connection by using the BTDISCONNECT ioctl call.That way, the remote
server can free up any resources it has committed to servicing your connection.
However, the current release of OpenBT appears to have a bug in it such that
BTDISCONNECT does not work for SDP connections.

Adding a Service to the Local Database
The SDP service database is an XML file. Remember that we can use the
sdp_server daemon to handle SDP queries from remote devices to our local
database.To add a service, we edit an XML file and pass it as an argument when
we start the sdp_server daemon.

Example:Adding an Echo Service
Here’s an example of adding an echo service. It uses RFCOMM over L2CAP as
its protocol stack.We place it within the <bluetoothSDP></bluetoothSDP> tags
of the XML file:

<EchoServerServiceClassID ServiceRecordHandle = "0x0111ffff">

<ServiceRecordHandle Parameter0 = "0x0a0111ffff">

</ServiceRecordHandle>

<ServiceClassIDList NbrOfEntities = "1">

<EchoServerServiceClassID>

</EchoServerServiceClassID>

</ServiceClassIDList>

<ProtocolDescriptorList NbrOfEntities = "2">

<L2CAP type = "DES" Parameter0 = "0x0003">

</L2CAP>

<RFCOMM type = "DES" Parameter0 = "0x0802">

</RFCOMM>

</ProtocolDescriptorList>

<BrowseGroupList NbrOfEntities = "1">

<PublicBrowseGroup>

</PublicBrowseGroup>

</BrowseGroupList>

<BluetoothProfileDescriptorList NbrOfEntities = "1">

<EchoServerServiceClassID type = "DES" Parameter0 = "0x090100">

</EchoServerServiceClassID>

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 246

Linux Bluetooth Development • Chapter 6 247

</BluetoothProfileDescriptorList>

<ServiceName>Echo Server</ServiceName>

<ServiceDescription>Echo Server</ServiceDescription>

<ServiceAvailability Parameter0 = "0x0815">

</ServiceAvailability>

</EchoServerServiceClassID>

In the <ServiceClasses> tag, add this:

EchoServerServiceClassID = "0x1302"

I pulled the EchoServerServiceClassID out of thin air (there is no echo server
in the Bluetooth specification), so for all I know it conflicts with an existing class
ID! Just another reason why OpenBT needs an SDP interface before armies of
irresponsible hackers like myself start filling the world with pirate IDs. I did make
sure that the ServiceRecordHandle didn’t conflict with any of the other ones in
the file, however.

The “Bluetooth assigned numbers” part of the Bluetooth specification lists
the numbers that have been allocated.You can use Universally Unique IDs
(UUIDs) to safely allocate your own numbers.

Querying the Local Database
Currently there is no interface to query the local SDP database from within your
application. If you want to do this, then you can look at how the sdp_server code
invokes the XML parser and processes queries from remote devices.

Connecting to a Bluetooth Service
Usually the purpose of making SDP requests is to discover if a remote device
supports a particular service, and if so, what the pertinent connection parameters
are. Once this discovery phase is over, your application needs to connect to the
actual service. Connecting involves two steps: opening a data device and con-
necting its associated line.

Using a Data Device
So far, all of the examples have used /dev/ttyBTC as the device. Once we’re ready
to actually begin transferring data across a session, we’ll need to open one of the
data TTYs. Recall from our session state machine that a session must be in the
opened/normal/connected state to transfer data. If you look back at Figure 6.2,

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 247

248 Chapter 6 • Linux Bluetooth Development

you’ll see that it really doesn’t matter whether we establish the RFCOMM con-
nection first or open the TTY first.

Opening a data device is trivial, but here’s the code in case you have any
doubts about how to do it:

int bt_fd = open("/dev/ttyBT0", O_RDWR);

On success, the device is all yours. If the open fails and errno is EBUSY, then
some other process already has it. In this case, you can just keep trying the other
devices (e.g., /dev/ttyBT1) until you find one that’s available. Unfortunately,
there isn’t really a cleaner way to tell if a device is already being used.

If the open fails and errno is EPERM, then the stack is not initialized. In this
case, you can open the control device and use the INITSTACK ioctl call (see ear-
lier) to initialize it and then try again.

Creating a Connection
The SDP transactions give you the parameters you need to know to establish a
connection to a remote service.And, in fact, you’ve already seen the command to
establish a connection: the BTCONNECT ioctl.We used it to establish an SDP
connection. But this time, you’ll be connecting to a different protocol to access
the service—which protocol depends on the particular service and what it’s
ProtocolDescriptorList indicated.

Here’s an example of establishing an RFCOMM connection.

bt_connection con;

int server_channel;

/* do the SDP queries, assign 'server_channel'

a value based on the results */

/* connect via RFCOMM */

memcpy(con.bd, inq.hdr.bd_addr, 6);

con.id = CREATE_RFCOMM_ID(line, server_channel);

sdp_con_id = ioctl(bt_fd, BTCONNECT, &con);

The CREATE_RFCOMM_ID macro is similar to the CREATE_SDP_ID
macro.You can find it in the rfcomm.h header.

The line parameter should match the minor number of the TTY you intend
to use for data transfers.

The server_channel parameter should match the value obtained from the
ProtocolDescriptorList you get during the SDP session. See the SDP chapter of
the Bluetooth Core Specification for an explanation.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 248

Linux Bluetooth Development • Chapter 6 249

Accepting a Connection
Remember the caveat about not being able to register services with RFCOMM?
Well, that makes accepting a connection random luck. It could be done better,
and maybe in the future it will be, so I’ll start by explaining how I believe con-
nection acceptance should work.At the moment, the protocol stack has many
compromises, and you’ll have to use it as is, so I’ll go on to explain how connec-
tion acceptance works now.

Understanding the Way It Should Work
When you register a service with SDP, and you provide a parameter in the
RFCOMM Protocol Descriptor, that parameter is supposed to identify the server
channel your application will be listening on.The remote client gets this value
and uses it to request a connection to your service.When the RFCOMM driver
sees a connection come in on that channel number, it should make sure that the
correct server application gets it.

Understanding the Way It Does Work
The problem with the OpenBT stack is that there is no way for the RFCOMM
driver to map a server channel to a session on the side receiving the connection
request (everything works fine on the side initiating the connection—it just asso-
ciates the connection with the session indexed by the line number).

Instead, when the RFCOMM driver gets a connection request it looks for
the first available TTY, starting with minor number 0, and associates the connec-
tion with that session.

This is why btd works. It doesn’t really matter which server channel the
client requests as long as it is a legal value (even numbers 2 through 60).The first
connection on the server side will go to the session for ttyBT0—which is what
btd, by default, passes to PPP when it spawns it.

In other words, the only way to make sure the correct server accepts the
connection is to carefully control the order in which connections are made. For
a shipping product with more than one server application, this would be totally
unacceptable. On the other hand, the client side works fine. So, if a product is
shipping with only client applications, then this problem won’t be an issue.

Transferring Data
Since the Bluetooth driver is just another TTY driver, transferring data is as
simple as reading and writing from a file or any other device.You can find any

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 249

250 Chapter 6 • Linux Bluetooth Development

number of books discussing I/O in C for Unix clones, so I’ll just provide an
example showing an echo application.

Don’t forget that Bluetooth devices are TTY devices and by default they are
not raw. Remember how we had to set up the serial device so that it wouldn’t
interfere with a binary data stream? The same thing applies to the Bluetooth data
devices. If your application is going to use read and write calls on a Bluetooth
device to transfer binary data, then follow the earlier examples used on the serial
device to make it raw.

/* declare a buffer to fetch & hold the data */

char buf[BUF_SZ];

/* while we can read more data… */

while ((n = read(data_fd, buf, sizeof(buf))) > 0) {

/* echo the data back out the same

channel */

write(data_fd, buf, n);

}

This loop will read and echo data from our RFCOMM channel as long as it
remains open.The call to read will block until data becomes available, the
channel closes, or an error occurs. If, and only if, some data becomes available,
then read will copy as much as it has or will fit into the buffer and return the
number of bytes it put in the buffer. If the channel closes, read returns 0. If an
error occurs, read returns a negative error number.

The write will queue up the data for transmission. Its semantics are similar to
read. Note that this is not a perfectly reliable echo routine since it just assumes
that all the bytes went out okay, but it shows the basics of I/O.

Disconnecting
Disconnecting always takes two steps: a Bluetooth disconnect and a system call
to close. At most, only one side of the connection needs to execute a discon-
nect, and in cases where two devices go out of range, the Bluetooth stack
cleans up the connection automatically. But your application will always need
to do a close after a disconnection occurs. Refer to Figure 6.3 to see the state
machine.

If your client application succeeds in making a connection, then it’s important
to disconnect before exiting. If you don’t, then the Bluetooth driver won’t let
anyone else use the line associated with the connection until someone reinitial-

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 250

Linux Bluetooth Development • Chapter 6 251

izes the stack with a BTSHUTDOWN or BTINIT ioctl call. Note that the
Bluetooth driver will not automatically disconnect a line if the application closes
the file descriptor or exits.You have to explicitly tell it to disconnect.

You close a connection with the BTDISCONNECT ioctl call.This call takes
a parameter of type bt_connect. If you like, you can use the same one you passed in
to the BTCONNECT ioctl.

ioctl(bt_fd, BTDISCONNECT, &con);

Even after doing a BTDISCONNECT, no other process can use the line
associated with your device file until your application either explicitly calls close
or exits. So, if you disconnect the line but don’t close the file descriptor, other
applications will get EBUSY if they try to open that device file.

An application can always tell when the session disconnects from below.An
RFCOMM link can disconnect if it or any layer below it disconnects, or if the
remote peer goes out of range. In all these cases, the Bluetooth driver will do a
hang-up on the upper TTY.This means that any time your application does a
select, read, or write on the file descriptor, these system calls will return a negative
value. If it is blocked on one of these calls, it will return immediately.

When this happens, your device file descriptor is pretty much out of com-
mission.You won’t be able to do anything else with it until you close and reopen
it. In this case, there’s no need to do a BTDISCONNECT ioctl call. It will just
return an error since the connection doesn’t exist any more.

To summarize, when an application wants to end a session, it should call
BTDISCONNECT followed by close. If an application detects a disconnection
during a session, it should only call close.

Controlling a Bluetooth Device
The following list covers everything a Bluetooth application can do:

■ Transferring data

■ Establishing connections

■ Controlling Bluetooth features

Not all applications will do all three things. For example, PPP transfers data
over an RFCOMM TTY, but it knows nothing about establishing the connec-
tion it uses. In the previous section, we covered the first two items on this list.
In this section, we’ll talk about controlling features of the Bluetooth device

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 251

252 Chapter 6 • Linux Bluetooth Development

itself.We’ll see the differences between applications that use the stack and
applications that control the stack, we’ll learn what things an application can
control, and we’ll cover the basic scenarios that a controlling application must
be able to deal with.

Distinguishing between
Control and Data Applications
PPP uses the Bluetooth stack without knowing it. It requires a TTY interface. It
relies on another application to set up the connection for it. For example, we saw
how to use the btd application to set up the connection and then spawn PPP. Of
the three items on our list, an application can do any combination of one or
more of those things by itself, and cooperate with other applications to provide
any capabilities it doesn’t do.

We already saw that the OpenBT project does not come with a stack man-
ager.The btd application provides some features of a stack manager, but you’ll
probably need to either extend it or write your own application that gives you a
broader set of features.

In this section, let’s talk about designing our own hypothetical stack manager.
On a desktop PC, this application might provide an interface for the user to
monitor and control the Bluetooth device. In an embedded device, this applica-
tion may provide hooks for other applications like power management, or a con-
trol panel driver to affect the Bluetooth driver.

Using ioctls to Control the Device
The first thing we should consider is what exactly an application can monitor
and control.As with any other device driver, an application uses ioctl calls to per-
form control of the Bluetooth driver. Some ioctl calls are strictly informational
and provide a way to monitor certain parameters of the Bluetooth driver.

Table 6.4 provides a summary of the ioctl calls currently supported by the
OpenBT Bluetooth driver.Although you should always program to an interface
and not an implementation, this advice assumes that the interfaces are stable and
well documented! Currently, the only documentation on these ioctls is the source
code.You can find the implementation for all of these calls in the
linux/drivers/char/bluetooth/bluetooth.c file in the OpenBT source tree. Some
of these are ioctls we’ve already seen in previous sections. I include them here just
to give you a complete reference.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 252

Linux Bluetooth Development • Chapter 6 253

Table 6.4 Summary of OpenBT ioctls

Name Description

BT_SDP_REQUEST Sends an SDP request and blocks (with no
timeout) until the response returns.

BTCONNECT Requests an SDP or RFCOMM connection
with a remote device. Blocks until the
connection operation completes or, in the
case of RFCOMM, a timeout occurs.

BTDISCONNECT Disconnects an existing RFCOMM connection.
Blocks until the disconnect operation
completes or a timeout occurs.

BTWAITFORCONNECTION Checks if a connection exists on the specified
line and, if not, blocks until one appears on
that line. Does not return on stack shutdown.

BTWAITNEWCONNECTIONS Blocks until a new connection appears on
any line. Does not return on stack shutdown.

BTISLOWERCONNECTED Checks if a connection exists on the specified
line and returns the result in the out-parameter.

BTINITSTACK Initializes the driver. If the driver is already
initialized, it implicitly performs the
equivalent of BTSHUTDOWN first.

BTSHUTDOWN Shuts down the driver, disconnecting all
active connections and hanging up their
associated TTYs.

BTREADREMOTEBDADDR Returns the BD ADDR of the last remote
device to establish a link-level connection in
the out-parameter.

BTISINITIATED Checks if the driver has been initialized yet
and returns the Boolean result in the out-
parameter.

www.syngress.com

Continued

160bluetooth_C06.qk 12/5/01 3:56 PM Page 253

254 Chapter 6 • Linux Bluetooth Development

Table 6.4 (continued)

Name Description

BTHWVENDOR Returns a string describing the name of the
hardware, which the stack was compiled to
support. Warning: currently, this does not
limit the size of the string being copied into
the user’s buffer.

HCIINQUIRY These ioctls all provide access to the HCI
HCILINKKEYREPLY Protocol commands. See the HCI chapter of
HCILINKKEYNEGATIVEREPLY the Bluetooth Core Specification for a
HCIPINCODEREPLY description of what these commands are
HCIPINCODENEGATIVEREPLY used for.
HCISWITCHROLE
HCISETLOCALNAME If a command does not provide any status
HCIAUTHENTICATION_ information back to the Host, it returns

REQUESTED immediately.
HCISETCONNECTION_

ENCRYPTION If a command expects a Command Complete
HCIRESET event, it blocks until either the Host
HCICREATE_NEW_UNIT_KEY Controller sends this event or a timeout
HCIREADSTOREDLINKKEY occurs.
HCIWRITESTOREDLINKKEY
HCIDELETESTOREDLINKKEY
HCIREADSCANENABLE
HCIWRITESCANENABLE
HCIWRITEPAGESCANACTIVITY
HCIWRITECLASSOFDEVICE
HCIREAD_AUTHENTICATION_

ENABLE
HCIWRITE_AUTHENTICATION_

ENABLE
HCIREAD_ENCRYPTION_MODE
HCIWRITE_ENCRYPTION_MODE
HCISET_EVENT_FILTER
HCIREADLOCALBDADDR
HCIENABLEDUT
HCISETBAUDRATE
HCIWRITEBDADDR
HCISENDRAWDATA
BTSETMSSWITCH

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 254

Linux Bluetooth Development • Chapter 6 255

Covering Basic Scenarios
Now that we know what our stack manager can do, what should it do? What fea-
tures should it provide? Let’s consider the bare minimum.You can always add
more to fit your needs. One basic assumption of our design is that the stack man-
ager is responsible for the parameters that affect the entire driver or the hardware.
In other words, a bare-bones stack manager won’t concern itself with establishing
RFCOMM connections or transferring data.

As a bare minimum, the stack manager should initialize and shut down the stack
at the proper times. It should detect link loss and cleanup if necessary. It would also
be helpful if it kept tabs on remote devices coming in and out of the vicinity.

Example: Startup
In previous sections, we’ve seen examples of how to initialize the stack and to set
it up over a lower TTY like the serial driver so that it can talk to hardware.These
steps will always be necessary at some point. For an embedded solution, the
Bluetooth hardware might be on board, interfacing with the CPU via a UART or
some other bus. In these cases, you might have to provide your own TTY driver
over a custom hardware interface. Remember, the Bluetooth driver relies on the
ability to use a line discipline in order to communicate with the hardware driver.
Only TTY driver’s use line disciplines, so the hardware driver must be a TTY.

But when should your stack manager start up the driver? It depends on the
application.You can start it automatically when the application runs, or you can
wait for a command from a User Interface (UI), or a signal from another process,
and so on.

Probably the simplest thing to do on an embedded device is to start the stack
on system bootup.You can do this by having the init process automatically start
your stack manager from /etc/rc.local or whatever startup script you use for your
configuration.

Example: Link Loss
There really isn’t any way for a central stack manager to detect a link loss.When
a link with another device goes down, the Host Controller sends the host a
sequence of disconnection event notices for each handle on the link.The
Bluetooth driver processes these events by disconnecting all sessions on that link.
Any processes using the TTYs for these sessions can detect a hang-up. But a cen-
tral stack manager won’t necessarily get any kind of notification if it’s not using
one of those TTYs.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 255

256 Chapter 6 • Linux Bluetooth Development

Is this important? It could be if the stack manager kept local cached data
about link status or peers. In that case, it would be nice to get notification so that
it could clean the caches. But as it is, any active processes using the links for data
will be notified. If a stack manager worked in the mode of establishing connec-
tions and then spawning applications to use them (this is how btd works with
PPP), then it can determine when the process terminates on a hang-up using
normal Linux process handling.

The following example illustrates this model.

for (;;) {

retry:

if (!do_hci_inquiry()) goto retry;

if (!do_sdp_request()) goto retry;

if (!do_connect()) goto retry;

if ((pid = fork()) == 0) {

execvp(APP, APP, APPARGS);

} else {

wait(pid);

do_disconnect();

}

}

The do_hci_inquiry() function and its friends would do what their names imply
(the previous section illustrated code for implementing these kinds of functions).
Once a connection is ready, the stack manager spawns a child process to use the
connected TTY, then it waits for the child to exit.When the child exits, the stack
manager makes sure the session is disconnected and then repeats the process.

If the link goes down at any point prior to the connection being made, one
of the functions will fail and we’ll go back to try again. If the link goes down
after the connection is made, the child process will exit when it detects the
hung-up condition of the TTY (actually, this depends on the behavior of the
child application, but most legacy applications that use TTYs will exit by default
when they can’t use the TTY anymore).The do_disconnect is benign if the con-
nection was already severed, but it makes sure the connection is cleaned up in
case the child exited for a reason other than a TTY hang-up.

Note that a stack manager could handle a whole set of child applications like
this, where each application is kept in a structure associating it with the relevant
info needed to do SDP queries for the services it likes.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 256

Linux Bluetooth Development • Chapter 6 257

Example: User-Initiated and Automated Shutdown
If your stack management application has a user interface, then it can give the
user the option of starting up or shutting down the driver. Alternatively, it
might provide a means for other processes (like a power management service)
to initiate a shutdown or startup via an IPC (InterProcess Communication)
mechanism.

This example shows how a stack manager might install a signal handler to
shut down or start up the stack based on requests from other processes.

static int stack_init = 0, bt_cfd;

void handler(int sig)

{

if (stack_init) {

ioctl(bt_cfd, BTSHUTDOWN);

stack_init = 0;

} else {

ioctl(bt_cfd, BTINITSTACK);

stack_init = 1;

}

}

int main(int argc, char **argv) {

do_init_stack();

stack_init = 1;

signal(SIGUSR1, handler);

for (;;) do_whatever();

}

This example assumes that if a user or another process wants to shut down
the stack or bring it back up, then they will send the stack manager a SIGUSR1.
Other forms of IPC might be more pertinent in different cases.The BTSHUT-
DOWN and BTINITSTACK ioctls take care of all the gritty details, shutting
down connections, hanging up TTYs, flushing buffers, and so on.

Example: Idle Operation
Stack management applications can keep tabs on what other remote devices are
in the area by doing periodic inquiries and keeping the results cached locally.You
could provide an API for other applications to access this cache so that they don’t

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 257

258 Chapter 6 • Linux Bluetooth Development

have to do their own inquiries.You could even keep a cache of remote SDP
databases for devices in range.

This example shows how a stack manager might maintain a remote BD
ADDR cache.You could extend this example to keep other information about
remote devices in the local cache. It polls a local socket for requests from local
processes to retrieve the cache.You extend this by providing a functional API to
handle IPC with the stack manager daemon.

typedef char BD_ADDR[6];

BD_ADDR cache[MAX_ADDRS];

for (;;) {

ioctl(bt_cfd, HCIINQUIRY, &inq);

memcpy(cache, inq.buf, inq.hdr.nbr_of_units);

do_listen_for_cache_requests_with_timeout();

}

This is just a simple example. It uses the HCIINQUIRY command (see pre-
vious sections) with one of our wrapper structs for the inquiry results. It also has
a buffer for keeping the results of HCI inquiries. Every so often it executes an
HCI inquiry request to see what remote units are in the vicinity and puts their
BD ADDRs in the cache.

The do_listen_for_cache_requests_with_timeout() could implement any form of
IPC you like to field requests from other processes for the latest inquiry results.
Every once in a while the process stops listening for requests and refreshes the
cache.

The usefulness of something like this depends on how many processes are
potentially doing their own HCI inquiries. But you could extend the idea to
cover more expensive operations like searching remote SDP databases.Also, since
we won’t automatically receive notice when another device modifies its SDP
database, the process could periodically update its cache of another device’s SDP
database.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 258

Linux Bluetooth Development • Chapter 6 259

Summary
The publicly available Bluetooth stacks for Linux are limited in number.As of
this writing, the only two released implementations are IBM’s BlueDrekar and
the OpenBT project. BlueDrekar has some nice features, looks pretty complete,
and is freely available for download in binary form for x86 platforms running
2.2.x kernels. OpenBT is an open source project with support for most stack
protocols and features and may work well enough for embedded devices. It has
been ported to a variety of processors and can be cross-compiled, but it is still
early in its development and not a fully-featured implementation.The focus of
the discussion and examples is on OpenBT in this chapter because it is open
source and may someday be a part of the standard Linux distribution as a stable
implementation.

The OpenBT stack provides a loadable kernel module, which implements a
TTY driver. It currently supports six data TTYs for RFCOMM connections and
one control TTY for managing the driver.The driver internally manages
RFCOMM connections with a session state machine.Applications use ioctl calls
to establish the RFCOMM connection. Once an RFCOMM connection exists
on a session, any application can use the TTY for that session, just like any other
TTY device.

The OpenBT source tree comes with some applications that you can use as
examples or starting points for derived works.The entire source is released under
a modified form of the GPL, so if you create derived works that are used to
implement Bluetooth operations, then these derived works will fall under the
same license.The btd application provides a quick way to get network connec-
tions working over a Bluetooth link via PPP over RFCOMM.The sdp_server
daemon will handle SDP requests from other devices.

Connecting to a Bluetooth device takes several steps. If your application
functions as a stack manager, then it must first stack the Bluetooth driver over an
underlying hardware TTY driver like serial or USB. Next, it must use a sequence
of ioctl calls to initialize the stack, discover remote devices, and browse remote
SDP databases to find services and connection parameters. Once an application
has identified a remote service to connect to, it uses an ioctl call to establish an
RFCOMM connection session.At that point, it or any other application may use
the corresponding data TTY for data transfers.When the RFCOMM session dis-
connects, the driver performs a hang-up on the data TTY, thus signaling the end
of the session.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 259

260 Chapter 6 • Linux Bluetooth Development

Applications can do three things with the Bluetooth driver: transfer data,
manage individual connections, and manage the overall driver. Not all applications
need to do all three. Legacy applications (like PPP) that just use a TTY require
another application to set up the connection and perform stack management for
them. Developers may want to provide a stack management process for their
system, which handles scenarios like link loss, system shutdown requests, and
caching remote device data.

Solutions Fast Track
Assessing Linux Bluetooth Protocol Stacks

� The standard kernel source tree only recently accepted the Bluez
Bluetooth stack, but it may not yet possess all the features some
application developers require. It requires Linux 2.4.4 or greater.

� IBM’s BlueDrekar is a nice-looking implementation distributed in
binary form for x86 platforms running 2.2.x. Source is not freely
available to the general public.

� The OpenBT project is a not-as-nice open source project that works for
most things an embedded developer would want. Source is available and
has been used on x86,ARM9,ARM7, MIPS, and PowerPCs.

Understanding the Linux Bluetooth Driver

� The OpenBT stack implements TTY drivers for RFCOMM, SDP, and
stack control.

� The Bluetooth driver must be stacked over a lower-layer hardware driver
that implements a TTY.

� Any legacy application that uses a TTY can use RFCOMM once
another application sets up the underlying RFCOMM connection.

� SDP, connection setup, and stack control are accomplished with
ioctl calls.

� No interface exists for SCO, or L2CAP, although ioctls are available to
support most HCI commands.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 260

Linux Bluetooth Development • Chapter 6 261

Using Open Source Development Applications

� The OpenBT source tree comes with some applications: btd/btduser,
sdp_server, and BluetoothPN.

� The difference between btd and btduser is that btd is meant to work
with the kernel mode Bluetooth driver while btduser works with the
user mode Bluetooth driver. Many people prefer btduser since it is less
prone to lock up your system if things go badly. However, the OpenBT
developers do not support it as well as btd.

� The sdp_server application provides you with an SDP database server
daemon. Once you’ve installed the Bluetooth driver, you can start this
daemon and it will automatically receive and respond to SDP queries
from remote devices.

� This application provides a GUI that displays the SDP database on a
remote device. It provides some examples of how to make SDP requests
and process their results.

� The quickest, most useful way to establish and exploit a Bluetooth
connection from Linux is to use the standard GNU network
applications over PPP.And the easiest way to do that is with the btd
application.

Connecting to a Bluetooth Device

� An application manager must set up the driver stack over the hardware
TTY and initialize the Bluetooth driver.This can be any application; the
OpenBT source tree does not provide a general stack manager.

� Client applications must obtain the Bluetooth Device address of the
remote device and—for RFCOMM connections—the channel number
of the remote service in order to establish a connection.

� Once a connection is established, any application can use the TTY
associated with the connection for data transfer.

� The driver indicates a disconnection event with a hang-up of the
associated TTY.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 261

262 Chapter 6 • Linux Bluetooth Development

Controlling a Bluetooth Device

� Use ioctl calls to control the device and get information about device
status.

� Use /proc/bt_status to get information about device status.

� A stack manager must be able to deal with link loss and system
shutdown requests. It should provide an interface for users as well as
other processes like power management to signal shutdown requests.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Is the OpenBT stack really ready for prime time on an embedded Linux
device?

A: It’s the closest thing to it that has freely available source.You can ask IBM
about licensing and distribution costs for BlueDrekar, but it’s hard to beat the
price/performance ratio of OpenBT. If you’re faced with the prospect of
leveraging OpenBT or developing your own Bluetooth stack… well, you
know your project schedule better than I do!

Q: How can I get the latest source for OpenBT?

A: Go to the OpenBT Web site (www.sourceforge.net/projects/OpenBT) and
look for the instructions on accessing the CVS repository.This will give you
the very latest, bleeding-edge code. Occasionally new tarballs appear for
download on this site as well.You might also want to subscribe to the mailing
list to keep in touch with progress on this front.

Q: Can a Java application use the Linux Bluetooth stack?

A: Any language that provides some kind of access to the standard I/O system
calls (read, write, and ioctl) can use the OpenBT.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 262

Linux Bluetooth Development • Chapter 6 263

Q: When I try to “insmod bt.o” I get an error about missing kernel symbols.
What is this and how do I fix it?

A: This happens because the kernel which bt.o was compiled against does not
match the kernel you are trying to load it into.When you build bt.o, make
sure you provide the INCLUDE_DIR=<path> argument to make, indicating
the path to your target kernel’s include files.Also, if your kernel has symbol
versioning configured, then make sure linux/include/modversions.h is being
included in the build process.

Q: I just want to use L2CAP and HCI, not RFCOMM. Is there an interface I
can use to access these layers?

A: Not with OpenBT. However, if you aren’t limited to using a Linux kernel
version earlier than 2.4.4 then Bluez is probably what you want.The Bluez
Bluetooth stack has been distributed with kernel source since kernel version
2.4.6; the latest is available from bluez.sourceforge.net.

www.syngress.com

160bluetooth_C06.qk 12/5/01 3:56 PM Page 263

160bluetooth_C06.qk 12/5/01 3:56 PM Page 264

Embedding
Bluetooth
Applications

Solutions in this chapter:

■ Understanding Embedded Systems

■ Getting Started

■ Running an Application under the
Debugger

■ Running an Application on BlueCore

■ Using the BlueLab Libraries

■ Deploying Applications

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Chapter 7

265

160bluetooth_C07.qk 12/5/01 3:57 PM Page 265

266 Chapter 7 • Embedding Bluetooth Applications

Introduction
Bluetooth wireless technology is proving popular for handheld mobile devices
such as mobile phones and headsets, which have very limited space and power.
Using an extra host processor to run applications takes up extra space, uses extra
power, and adds cost, too. For the ultimate in compact design, low cost, and
energy efficiency Bluetooth applications can be run directly on the same pro-
cessor that drives the Bluetooth baseband.

Vendors who supply designs for Bluetooth Application-Specific Integrated
Circuits (ASICs) also provide interfaces which allow custom applications to run
on the same microprocessor which drives the Bluetooth baseband. It is also pos-
sible to run applications on commercially available chips.This chapter looks at
embedded applications using as an example Cambridge Silicon Radio (CSR)’s
BlueLab system for programming embedded applications on BlueCore chips.

Not every application is suitable for embedding on a BlueCore chip. Small
simple applications such as the Headset and Audio Gateway profiles, as well as
things like central heating controllers or TV remote controllers, are suitable for
embedding on a single chip. High-bandwidth or complex applications such as a
local area network (LAN) access point are better suited to implementation using
a separate host processor.

This is because when an application is running on the same chip as a
Bluetooth protocol stack, the application and firmware stack must share the avail-
able RAM on the chip. For a single channel RFCOMM-based application, the
available RAM is several hundred words.The application code and its constant
data must fit into just under 32K words.

Embedded applications running on a BlueCore chip are run under an inter-
preter called the Virtual Machine (VM). Interpreting application opcodes confers
a significant performance penalty which limits suitable applications. For devices
such as headsets, most of the time all that is happening is audio input/output
(I/O). Control operations are comparatively infrequent, and involve simpler oper-
ations than would happen on devices such as LAN access points.

In this chapter, we’ll look at some of the implications of these limitations and
give some examples of how much can still be done in embedded applications.We’ll
take you through how to build applications which can be run on BlueCore, and
explain how to build run and debug both on PCs and on the BlueCore chip itself.

What you need to know before reading this chapter is:

■ The C programming language

■ The basics of embedded programming: tasks and message queues

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:57 PM Page 266

Embedding Bluetooth Applications • Chapter 7 267

www.syngress.com

Understanding Embedded Systems
This section assumes that you’ve done some programming, but you don’t have
embedded experience. If you’ve worked with embedded systems before, you
might want to skip straight to the “Getting Started” section. For the rest of you,
we’ll go over tasks, queues, stacks, interrupts, and the difference between running
code on a PC and code embedded on hardware.

Understanding Tasks, Timers, and Schedulers
In a Bluetooth system, there are many different tasks to take care of: Link
Management messages must be processed; incoming data must be dealt with as it
arrives; outgoing data has to be sent to the baseband and radio; if there is a sepa-
rate host communications through the host controller interface this must be
addressed; all this and more must be handled simultaneously. Having a micropro-
cessor for each task would be far too expensive, so the solution is for one micro-
processor to swap between tasks, spending a little time on each in turn.This is
called multi-tasking.

Each task has its own call stack, its own I/O queues, and each task gets a turn
at the processor.There is one task which coordinates the rest.This is usually called a
kernel, but is also referred to as a scheduler. Different embedded systems handle swap-
ping between tasks in different ways, some assign priorities to tasks, so that a low-
priority task does not stop a high-priority task from running.The BlueCore01
system has a simple round-robin scheduler, which runs each task in turn.

The scheduler stops running a task when the task blocks.A task blocks by
making a system call which waits for an event.This behavior means that the
scheduler is vulnerable to a task putting itself into an infinite loop. Since the task
would never block, no other task would ever get a chance to run.

On the face of it, this means you could disable the whole Bluetooth system if
your application didn’t block often enough. Since there are many time-critical
operations within the Bluetooth stack, you could easily stop the stack from
working properly.To solve this problem BlueCore provides an environment called
the Virtual Machine which protects the stack code from applications which try to
take too much processor time. Instead of your application code being called
directly, the scheduler calls the Virtual Machine.The Virtual Machine then runs a
number of operations through its interpreter, and afterward blocks so the sched-
uler can call another task. It doesn’t matter if your code is in an infinite loop, the
Virtual Machine will still only run a preset number of your application’s instruc-
tions, so your endless loop can’t run endlessly!

160bluetooth_C07.qk 12/5/01 3:57 PM Page 267

268 Chapter 7 • Embedding Bluetooth Applications

The processor time used by other tasks in the system will vary. For instance,
when the Link Manager task is in the middle of negotiating link configuration, it
will require more processor time than when no Link Management messages are
being received.This means that the time between calls to the Virtual Machine
will vary.The impact on your application is that BlueCore does not provide Real
Time Operating System (RTOS) capabilities because it makes no guarantees
regarding how often it will call your application code.

Understanding Messaging and Queues
The tasks in a system need some way of passing information to one another. One
task may not be ready to receive a message at the same time another task wants
to send it, so some way is needed to store messages for a task until it is ready to
deal with them.

Each task has a queue where messages can wait to be picked up.A queue is a
first-in first-out (FIFO) data structure.That is to say, the first message to be put
into the queue is the first message to come out: messages are received in the same
order that they were sent. Several different tasks can send messages to one task by
putting messages onto that task’s queue.

When a message is created and sent, some memory is temporarily allocated to
store the message. It then waits on the queue until it can be processed by the
receiving task.After processing, the message is destroyed and its memory is
returned to the free pool.

The message queues allow tasks to send one another messages asyn-
chronously: it doesn’t matter if tasks run at different speeds, the queues buffer
messages so that they can still communicate.The exact mechanisms for sending
and receiving messages are explained in more detail in the following section on
the message library:“Using Tasks and Messages.”

Using Interrupts
Embedded systems need to react to the outside world.A typical embedded
system will be connected to some electronic hardware and must react to signals
from it, and send signals to control it. Interrupts provide the means for hardware
to interact with software.An interrupt is a signal which makes the CPU stop
running its current program and jump to a special interrupt routine.The inter-
rupt routine is essentially just another subroutine—you just get to the interrupt
routine because of an interrupt signal, rather than because you were called by
another function.

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:57 PM Page 268

Embedding Bluetooth Applications • Chapter 7 269

Hardware is connected to pins which cause interrupts—commonly called
interrupt lines. BlueCore01 has two interrupt lines available for connecting up to
custom hardware. But keep in mind, the number of interrupt lines available will
vary from system to system.

On BlueCore01 the interrupt routines are already written. If the interrupt
lines change state, the interrupt routine will cause an event to be generated.The
event is VM_EVENT _PIOINT, which stands for Virtual Machine Event Parallel
Input Output Interrupt.

Interrupts usually have to be enabled before they can be used.This stops lines
which are not currently in use, causing undesirable effects. BlueLab works just the
same: by default, no events will happen, if you want your application to respond
to an event, you must enable that event using the following call:

uint16 EventEnable(vm_event_source source, int enable);

So, to enable the PIO interrupt event you use:

EventEnable(VM_EVENT_PIOINT, 1);

A common use for an interrupt line is to connect a push button switch so
that software can react to a user pressing a button. One problem, which is not
immediately obvious, is that switches don’t just move straight from one state to
another.As the contacts close, there is usually a “bounce,” which causes the switch
to rapidly open and close several times (see Figure 7.1). Software can run fast
enough for one push on a button to trigger several interrupts.

The solution to the problem is to debounce interrupt lines which are con-
nected to pushbuttons, keyboards, or any other hardware which might oscillate
before settling to a stable value. On many embedded systems, you will have to
write a debounce function which catches the first interrupt from a line, disables
interrupts, and then samples the line state periodically until it is stable. System
code on BlueCore01 includes a debounce engine, and BlueLab provides a func-
tion for you which accesses it.All you need to do is call:

Void Debouncesetup(uint16 mask, uint16 count, uint16 period);

This sets up the debounce engine so that when the interrupt line specified by
the mask parameter changes, the engine begins reading the pin at the interval
specified by the period parameter (in milliseconds), until it has seen the same value
count times. Once the line is stable, the engine sends the VM_EVENT_PIOINT
event to application code.The application code can then get the stable value of
the interrupt line using the call:

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:57 PM Page 269

270 Chapter 7 • Embedding Bluetooth Applications

uint16 DebounceGet (void);

So, for instance, to sample PIO line 5 at 2 millisecond (ms) intervals and wait
until it has been stable four times in a row, you would use:

Void Debouncesetup(1 << 5, 4, 2);

Setting the sampling period to zero switches off debouncing, so you then get
an event for every single transition of the line.To switch off debounce on PIO
line 5, you would use:

DebounceSetup(1<<5, 1, 0);

Hardware interrupts aren’t the only type of interrupt. Many systems also
allow software to generate interrupts.This is done when errors happen, such as a
divide by zero operation, or an attempt to access memory that doesn’t exist.
Software interrupts are usually irrecoverable and result in a system reset.To pre-
vent this from happening, the Virtual Machine interpreter checks user application
code on BlueCore for illegal accesses.

www.syngress.com

Figure 7.1 Switch Bounce

Switch on
(interrupt line
high)

User presses
switch here

Switch stops
oscillating here

Switch off
(interrupt line low)

Keep sampling until
switch is in a stable state

160bluetooth_C07.qk 12/5/01 3:57 PM Page 270

Embedding Bluetooth Applications • Chapter 7 271

Getting Started
BlueLab builds code for CSR’s BlueCore chips. So, in addition to BlueLab, you
will need a Casira development system.The development tools run on a Win32
PC—therefore, you will need administrator rights on the PC to install the tools.

The BlueCore module is supplied on a carrier board which slots into a blue
plastic carrier in the center of the Casira (see Figure 7.2).The circuitry on this
board is what would be used in most end-user products.The rest of the Casira
development kit provides extra facilities to allow you to develop and debug appli-
cations, providing a variety of useful interfaces:

■ SPI interface Connects to a PC parallel port, and allows you to
reconfigure the Casira using the PSTool utility. Images can also be
downloaded to the Casira using the Serial Peripheral Interface (SPI).

■ Serial interface Connects to a PC serial port. BlueLab uses BlueCore
Serial Protocol (BCSP), so you must ensure your Casira is configured to
use BCSP. (Casiras are sold ready to use BCSP.)

■ USB port Connects to a PC USB port, and supports the Bluetooth
Specification’s USB protocol (H2) when correctly configured.

www.syngress.com

Figure 7.2 Casira Development Kit

160bluetooth_C07.qk 12/5/01 3:57 PM Page 271

272 Chapter 7 • Embedding Bluetooth Applications

■ Audio I/O An audio jack which connects to the headsets supplied
with the Casira.

■ LEDs These can be used to monitor applications running on the
BlueCore chip.

■ PIO lines Parallel Input-Output lines; useful for connecting custom
hardware.

www.syngress.com

BCSP and H4
The 1.1 Bluetooth Specification provided two serial interfaces: UART (H4)
and RS232 (H3). Casiras can be configured to use the UART (H4) protocol
across its serial port interface, but they are sold configured to use
BlueCore Serial Protocol (BCSP). BCSP provides extra error checking on
the serial interface, so it is more reliable in situations where errors can
happen on the serial interface. BCSP also provides separate channels for
voice, control, and data. This allows data to be flow-controlled while
voice traffic flows remain uninterrupted.

Some stack vendors support BCSP, but not all do. To compensate,
Casiras may be reconfigured to support the 1.1 Specification’s UART
(H4) interface.

The serial port settings are stored in the BlueCore persistent store
(flash). A Persistent Store tool (PSTool) utility is available to change these
settings.

The procedure for changing the serial port settings to BSCP is as fol-
lows:

■ Connect the SPI cable between the Casira and a PC parallel port.
■ Give the PSTool utility low-level access to the parallel port by

installing a device driver. To do this, run the batch file
BlueLab20\bin\InstParSPI.bat (this requires administrator rights).

■ Register the PSTool user interface in the Windows registry by
running BlueLab20\bin\RegPSToolocx.bat.

■ Run the PSTool utility, selecting SPI interface.
■ Access the developer list of tools by pressing Ctrl+Alt+D.
■ Set the key Host Interface to UART link running BCSP.

Developing & Deploying…

Continued

160bluetooth_C07.qk 12/5/01 3:57 PM Page 272

Embedding Bluetooth Applications • Chapter 7 273

Installing the Tool Set
BlueLab uses Cygwin, a Unix- like environment run under Windows. Cygwin is
installed by running setup.exe from the Cygwin directory on the BlueLab CD.
When prompted, choose to Install from local directory, and press Next
twice. Now choose your installation directory, Unix text file type, and install for
All.This installs all the tools which BlueLab needs.

The debugger from BlueLab is written in Java and requires version 1.3 or
later of the Java2 runtime environment.To install the Java2 runtime environment,
run the file setup.exe from the Java directory on the CD and follow the instruc-
tions. Finally, install BlueLab by running BlueLab.exe from the main directory on
the CD.

Building a Sample Application
To test the installation, it is a good idea to compile a sample application. Starting
Cygwin, go to the relevant directory and run make.

$ cd /cygdrive/c/BlueLab20/apps/hello

$ make

The main compiler xap-local-xap-gcc is derived from the GNU C compiler.
This compiles the C code and produces an object file hello.o.The linker then
works with the assembler xap2asm to analyze the object file, link in libraries and
produce the application files hello.app, hello.dbg, hello.sym, and hello.xap. (See
Figure 7.3.)

www.syngress.com

■ Set the key UART Configuration Bitfields to 6.

To set a Casira to use the 1.1 Specifications UART protocol (H4), the
following settings are used:

■ Set the key Host Interface to UART link running H4.
■ Set the key UART Configuration Bitfields to 168.

Note that to set a PS key, the Set button in the PSTool application
must be pressed. Simply typing in the new value will not work. To be
absolutely sure you have successfully set the new value, you can use the
Read button to read back the current value.

160bluetooth_C07.qk 12/5/01 3:57 PM Page 273

274 Chapter 7 • Embedding Bluetooth Applications

All you have done so far is build a “Hello World” program—this is not a
BlueCore image, and you can’t download it to the Casira yet. But you can use it
to play with the debugging tools.

Running an Application
under the Debugger
The debugger allows you to set breakpoints as well as single-step your code, and
has many of the functions you find in a typical modern debugging environment.
Code executes on the PC, but if you need to use functions from the BlueCore
chip, such as the Radio or PIO, these are handled by the attached Casira.

www.syngress.com

Figure 7.3 The BlueLab Tool Chain

hello.c

gcc

hello.o

ld

libc.a crt0.o

hello.symhello.dbghello.app hello.xap

chip / emulator debugger

160bluetooth_C07.qk 12/5/01 3:57 PM Page 274

Embedding Bluetooth Applications • Chapter 7 275

Start off appdebug.jar by double-clicking the appdebug.jar icon in the
C:\BlueLab20\bin directory.You should see the debugger window as shown
in Figure 7.4.

Select File | Open project, and load hello.sym. Once the project has
loaded, you can browse the application downloaded using the Modules and
Symbols tabs. Click a module name to see that module. Right-click a symbol to
see the different places it appears.

Without communications, the debugger will report a problem and will fail
to start.You can modify the comm port settings on the chip using PSTool, and
editing the UART: baud rate.The Host Interface must be BCSP.To adjust the
PC baud rate to match the Casira, select File | Preferences and click the
Comms tab.

To run the program under the debugger, click the Start Debugger button.
This opens communications to the Virtual Machine, lets you set break points, and
allows you to run the code. Now, run the code by pressing the Run button.You
should see “Hello World” in the debug output window (see Figure 7.5).

The Hello World program will run, output “Hello world,” and then exit. It’s
not exactly a killer application, but it does verify that you have successfully
installed all the tools, and configured the Casira correctly.

www.syngress.com

Figure 7.4 Debugger Main Window

160bluetooth_C07.qk 12/5/01 3:57 PM Page 275

276 Chapter 7 • Embedding Bluetooth Applications

Using Plug-ins
The debugger can simulate code running on a BlueCore chip, and by communi-
cating with the Casira can also use the radio and PIO ports on the BlueCore
itself. Embedded applications are likely to run on custom hardware, so it may also
be necessary to simulate extra hardware. For example, if you are creating a
headset, a plug-in to simulate the buttons and lights on your headset will make it
much easier to debug your headset application.

Simulating custom hardware is done by adding plug-ins to the debugger.The
debugger is written in Java, so to create a plug-in, you just derive a new class to
extend the existing Java class JComponent. Custom hardware will be controlled
by the BlueCore chip’s PIO pins, so plug-ins which simulate custom hardware
must implement the PIOPlugin interface.

www.syngress.com

Figure 7.5 Active Debugger Window

160bluetooth_C07.qk 12/5/01 3:57 PM Page 276

Embedding Bluetooth Applications • Chapter 7 277

BlueLab includes an abstract PIOPanel class, which extends Jcomponent, and
implements the PIOPlugin interface. It also provides useful functions for con-
structing and registering controls.

The following example is based on PIOPanel.The class implements two
functions: tabName, which returns a string giving the name of the panel as it
appears within the debugger, and the constructor function, which creates items
that are displayed within the panel, positions them in the correct place, and
informs the underlying PIOPanel about them.The items added to the panel must
all implement the “Updater” interface:

public interface Updater

{

void setEnabled(boolean show);

void update(int on, int isout);

void setDriver(PIODriver lis);

}

The updater interface specifies three functions that the control should sup-
port:

■ setEnabled is called for each item in the panel whenever the panel
becomes activated or deactivated. It is commonly used for graying out
the controls.

■ update is most useful for output items (lights).This interface function is
called for each item in the panel whenever the PIO bits change state.

■ PIODriver is used to drive PIO bits.This is needed to accept input
from the user (e.g., a button press).An instance of “PIODriver” is passed
to the item’s “setDriver” function when the item is added to the
PIOPanel.

If the hardware being simulated is just simple buttons or lights, then these can
be added much more easily.The PIOPanel class provides utility functions that
produce labels, buttons, and lights that are integrated into the panel in the correct
way.These functions are:

// produces a simple text label, that is enabled in the correct manner.

public JLabel makeLabel(String label);

// produces a simple light, that is connected to one bit of the PIO port

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:57 PM Page 277

278 Chapter 7 • Embedding Bluetooth Applications

public OnOffLight makeLight(int bit);

// produces a simple push-button, connected to one bit of the PIO port

public JToggleButton makeToggleButton(String label, int bit);

public JButton makeButton(String label, int bit);

Using these simple primitives, it is now possible to create the Headset plug-in
panel.We begin by adding variables for each element of the panel, and creating
them with calls to the make* functions.Then we use the initialization function
to position the elements on the panel in a pleasing arrangement.This is achieved
through the use of the standard Java Swing functions.A simplified version of the
headset code is shown in the following:

// The new class 'Headset' is derived from the class 'PIOPanel'

public class Headset extends PIOPanel

{

// The labels

private JLabel volumeLabel = makeLabel("Volume");

private JLabel powerLabel = makeLabel("Power");

private JLabel[] labels = { volumeLabel, powerLabel };

// The Light

private OnOffLight powerLight = makeLight(9);

// The Buttons

private JToggleButton talkButton = makeToggleButton("!!Talk!!", 2);

private JToggleButton upButton = makeToggleButton("Up", 4);

private JToggleButton downButton = makeToggleButton("Down", 5);

// A function to return the name of the panel

public String tabName()

{ return "Headset"; }

// The constructor - contains initialization code

public Headset()

{

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:57 PM Page 278

Embedding Bluetooth Applications • Chapter 7 279

// bracket the initialization function a try/catch block

try

{ jbInit(); }

catch(Exception e)

{ e.printStackTrace(); }

}

private void jbInit() throws Exception

{

// We want everything laid out on a grid

setLayout(new GridLayout());

// Set the alignment of the labels

for(int i = 0; i < labels.length; ++i)

{ labels[i].setHorizontalAlignment(SwingConstants.RIGHT); }

// Add the items to the panel

add(talkButton, new GridConstraints(0, 1, 1, 1, 0.0, 0.0,

GridConstraints.CENTER, GridConstraints.HORIZONTAL,

new Insets(4, 8, 4, 8), 0, 0));

add(volumeLabel, new GridConstraints(1, 1, 1, 2, 0.0, 0.0,

GridConstraints.WEST, GridConstraints.NONE,

new Insets(4, 8, 4, 4), 0, 0));

add(upButton, new GridConstraints(2, 1, 1, 1, 0.0,0.0,

GridConstraints.CENTER, GridConstraints.HORIZONTAL,

new Insets(4, 4, 4, 8), 0, 0));

add(downButton, new GridConstraints(2, 2, 1, 1, 0.0, 0.0,

GridConstraints.CENTER, GridConstraints.HORIZONTAL,

new Insets(4, 4, 4, 8), 0, 0));

add(powerLabel, new GridConstraints(3, 1, 1, 1, 0.0, 0.0,

GridConstraints.WEST, GridConstraints.BOTH,

new Insets(4, 8, 4, 4), 0, 0));

add(powerLight, new GridConstraints(4, 1, 1, 1, 0.0, 0.0,

GridConstraints.CENTER, GridConstraints.NONE,

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:57 PM Page 279

280 Chapter 7 • Embedding Bluetooth Applications

new Insets(4, 4, 4, 8), 0, 0));

// Everything should start off disabled

setEnabled(false);

}

}

BlueLab includes example plug-ins for a Headset,Telephone button grid, a
16-bit port expander using the I2C bus, a seven segment display and an output
trace which reflects the state of the PIO pins. Rather than try to write plug-ins
from scratch, you should pick the example closest to your application’s needs and
modify it as necessary.

Debugging under BlueLab
The Memory tab at the bottom of the main debugger window will show all
active memory regions including their start and extent. If any address has a blank
value, it means that address isn’t acceptable.To follow a pointer from the variable
window, just right-click it.This moves the memory window to that location.

If the application crashes, the debugger will stop just after the offending
instruction.The call stack will show in the middle of the Context panel at the
left of the main window.As you double-click the call stack, the source and vari-
able displays are updated to that stack context.

Running an Application on BlueCore
To run a final application on the Casira, you must merge the application with a
full Bluetooth stack.The Casira development kit arrives preloaded with a
firmware image which allows the Casira to run the lower layers of the Bluetooth
stack.

Figure 7.6 shows how an application image differs from the default Casira
image.The application image has extra protocol stack layers: Logical Link Control
and Adaptation Protocol (L2CAP), RFCOMM and Service Discovery Protocol
(SDP).These are the protocol stack layers required to support the serial port pro-
file, and are also used to support simple profiles based on the serial port profile
such as the Headset profile.These stack layers are written by Mezoe and are col-
lectively called BlueStack. BlueLab provides a royalty-free version of these stack
layers for use on BlueCore chips.Above the BlueStack layers, a Connection
Manager handles management of RFCOMM connections.The Connection
Manager library is provided with BlueLab to make it easier to manage connec-

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:57 PM Page 280

Embedding Bluetooth Applications • Chapter 7 281

tions, but it is not compulsory to use it: if it does not meet the needs of your
application, you can write your own Connection Manager.

At the top of the application stack is the VM.The Virtual Machine allows the
Connection Manager, Libraries, and application software to run in a protected
memory space.Application software is compiled into Virtual Machine opcodes.As
this is run, the Virtual Machine checks each instruction for invalid memory
access. In this way, the Virtual Machine guarantees that your application software
cannot interfere with correct running of the Bluetooth protocol stack.

When you are running applications under the debugger, you must have
RFCOMM present on the Casira to drive the radio. However your application
will actually be running under the debugger on a PC, so you do not want an
image with your application built into it.The answer is to load the Casira with a
“null” image—this is a firmware image that contains the Virtual Machine, but has
no valid application. Note that if you have version 2.1 or later, you can have an
image with an on-chip application installed; the on-chip application will auto-
matically be disabled when the debugger is connected.

www.syngress.com

Figure 7.6 Default Image and Image with Application

CSR BlueCore stack

Mezoe BlueStack

Image with full stack and application

Radio Radio

Link Controller Link Controller

Link Manager Link Manager

Host Controller Interface

Default image

SDP RFCOMM

L2CAP

Application

Connection Manager Libraries

CSR Bluecore stack

Virtual Machine

160bluetooth_C07.qk 12/5/01 3:57 PM Page 281

282 Chapter 7 • Embedding Bluetooth Applications

www.syngress.com

Virtual Machine Scheduling
The on-chip scheduler only allows a limited number of Virtual Machine
instructions before giving another process some time. This means that
you can not rely on an application running on the Virtual Machine to
react quickly. This can be demonstrated by using VM code to toggle a
PIO line. Consider the following code fragment:

while (1)

{

val ^=4;

PIOset (OUTPUT_BITS, val);

}

You should not write real code like this, as a continuous while loop
is very bad for power consumption and can stop the chip from going
into sleep states, but it is a useful routine to illustrate the scheduling of
the Virtual Machine.

The while loop should execute, endlessly toggling the PIO line. If the
line was connected to an LED, we would expect to see it shining brightly,
as it flickers faster than the human eye can follow. In fact, if you follow
the PIO line on an oscilloscope, you will see that what happens is the while
loop toggles the PIO line at 3 KHz for 3 ms then remains in the last state
for a while before another 3 ms of switching. (The exact time between
bursts of switching varies depending on the other processes running.)

When writing applications for the Virtual Machine, you must bear
in mind that your code will run fairly slowly since it’s being interpreted.
The preceding toggling speed equates to an equivalent clock speed of,
at best, 40 KHz. Of course, the chip’s real clock runs much faster, but
your application effectively sees a slower clock because it is running
through the delays caused by guarding the Bluetooth protocol stack.

You must also allow for the delays caused by other tasks being
scheduled, as shown by the gaps in toggling the PIO line in the previous
example.

Despite all these delays, it is still possible to write many useful appli-
cations, and even implement complete profiles under the Virtual
Machine.

Developing & Deploying…

160bluetooth_C07.qk 12/5/01 3:57 PM Page 282

Embedding Bluetooth Applications • Chapter 7 283

To program the Casira with a null image, simply go to the null project in the
apps directory and run make bc01.

$ make bc01

This calls the command line version of the BlueFlash utility and downloads
the image to the Casira for you. (You can also download images to the Casira
across the SPI interface using a GUI version of the BlueFlash utility. Just run up
BC01flash.exe and follow the instructions.)

Debugging Using VM Spy
Debug output from the application can be viewed using the VM Spy utility.To
begin using VM Spy, complete the following steps:

1. Make sure the debugger isn’t running, and nothing else is using the PC
serial port.

2. Ensure the Casira serial cable is connected to the PC.

3. Make sure the Casira is configured to use BCSP.

4. Run VMSpy.exe.

5. Select Connect.

6. Select the COM port and baud rate that match the Casira configuration.

Figure 7.7 shows the VM Spy window (this figure also shows the VM data
window which is explained in the next section,“Using VM Packets”). If the VM
Spy window doesn’t open, check to make sure the serial cable is connected cor-
rectly, that the Casira is configured for BCSP, and that no other applications are
using the COM port.

VM Spy connects to the Casira, and debugging output (from BCSP Channel
11) is displayed in the main window.The window has several buttons which can
be used to control the debugging session:

■ Disconnect This button disconnects from the Casira, but leaves the
debugger window open.

■ Log This button allows a session to be logged to a file.

■ VM Data This button activates a window showing traffic on the VM
data channel (BCSP Channel 13). Of course, this only works if the
application makes use of the VM data channel.The bottom of the VM

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:57 PM Page 283

284 Chapter 7 • Embedding Bluetooth Applications

Data window includes an edit box which can be used to send com-
mands to the Casira.

■ Quit This button shuts down the debugger.

Using VM Packets
Applications running under the Virtual Machine can use BSCP Channel 13 to
communicate with a host.The user application can send and receive packets of
16-bit data. For the final product, you will need to write software on the host to
form the other end of the connection, but while developing embedded applica-
tions, Channel 13 can be a useful debugging tool.Applications which do not use

www.syngress.com

Figure 7.7 The VM Spy Window

160bluetooth_C07.qk 12/5/01 3:57 PM Page 284

Embedding Bluetooth Applications • Chapter 7 285

BCSP Virtual Machine packets can still communicate with Virtual Machine
packets. (See Figure 7.8.) On USB and H4 they are sent over the Host
Controller Interface (HCI) using the manufacturer’s extension command.

Incoming packets from the host cause a VM_EVENT_HOST event.The
packets can then be retrieved using the HostGetMessage function. If there is no
packet waiting, HostGetMessage returns NULL, otherwise a pointer to a new
block of dynamic memory containing the packet is returned.This memory
must be freed by the application once the application has finished with the
packet.

The HostSendMessage function is used to send a message to the host.The
application uses malloc to allocate a block of memory for the packet, and fills it in
with the packet.Then HostSendMessage is passed a pointer to the memory block.
The application can not access the memory block after the call, and should
remove all references to it.

The Virtual Machine packet format is very simple (see Figure 7.9).The packet
begins with a 16-bit word length field, which gives the total length of the packet,
including the header. Note that the length is in 16-bit words, not in bytes.

www.syngress.com

Figure 7.8 Sending and Receiving Packets across Channel 13

Application
(running under Virtual Machine)

Host

HostGetMessageHostSendMessage

160bluetooth_C07.qk 12/5/01 3:57 PM Page 285

286 Chapter 7 • Embedding Bluetooth Applications

The second field is a 16-bit sub-type word.The sub-type must be set to a value
between 0 − 127 (0x00 − 0x7f).The sub-type is useful to indicate the type of the
packet to the code at either end.

The rest of the packet can contain any 16-bit data.
The code fragments that follow show how the HostSendMessage and

HostGetMessage can be used.

#include <host.h> /* HostSendMessage and HostGetMessage */

#include <stdlib.h> /* malloc */

...

/* Send a small packet to the host */

uint16* data = (uint16 *) malloc(3 * sizeof(uint16));

if(data != NULL)

{

data[0] = 3; /* length */

data[1] = 0x7e; /* sub-type */

data[2] = 0x1234; /* data */

HostSendMessage(data);

data = NULL; /* removing reference to memory block */

}

/* receive a packet from the host */

if((data = HostGetMessage()) != NULL)

{

/* do something with the data here */

free(data);

}

www.syngress.com

Figure 7.9 Format of a Virtual Machine Packet

Data
(Length - 2) x 16 bits

Sub-type
 16 bits

Length
 16 bits

160bluetooth_C07.qk 12/5/01 3:58 PM Page 286

Embedding Bluetooth Applications • Chapter 7 287

The VM Data window of VM Spy can be used to send VM packets to test an
application.The edit box at the bottom of the VM Data window is used to send
commands to the Casira on BCSP Channel 13.The line can be used to input
hexadecimal, decimal, or octal numbers.The line can also take character strings
delimited with a quotation mark (").

The first entry on the edit window line is the sub-type number.This is followed
by the contents of the packet.VM Spy will automatically calculate the packet length
and fill in that field for you, so you don’t need to worry about the length field.

Packing Format in Messages
The XAP2 processor on BlueCore works with 16-bit words.This means that
single byte parameters are packed into 16-bit words.There are a few other rules
to bear in mind when interpreting data structures from BlueCore:

■ 8-bit values are sent as a 16-bit word, padded by setting the most signifi-
cant byte to 0x00.

■ 16-bit words are sent the least significant byte first.

■ 24-bit words are sent as a 32-bit long word, padded by setting the most
significant byte to 0x00.The most significant word is sent first.

■ 32-bit long words are sent as two 16-bit words with the most significant
word first.

■ Pointers are sent as two bytes with their values set to [0x00 0x00].

■ Data referenced by a pointer is appended to the primitive. If a primitive
contains more than one pointer, the dereferenced data is appended in
the same order that the pointers appear in the primitive.

■ Where a primitive contains a pointer to uint8 data, the dereferenced data
is appended to the primitive and is sent as consecutive bytes (i.e., no
padding bytes are inserted).

■ Arrays are sent as a series of elements with the lowest indexed element
first.

For example, consider the message CM_CONNECT_AS_MASTER_REQ:

CM_CONNECT_AS_MASTER_REQ:

uint16 length = 0x10

uint16 type = 0x6

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 287

288 Chapter 7 • Embedding Bluetooth Applications

/* Security */

uint16 use.authentication = 1

uint16 use.encryption = 1

/* BD address */

uint24 bd_addr.lap = 0xAABBCC

uint8 bd_addr.uap = 0x5B

uint16 bd_addr.nap = 0x0002

/* Target UUID */

uint16 target = 0x1108 /* Headset */

/* Master timeout */

uint16 timeout = 0xDDEE

/* Park parameters */

uint16 park.max_intval = 0x800,

uint16 park.min_intval = 0x800

/* Sniff parameters */

uint16 sniff.max_intval = 0x800

uint16 sniff.min_intval = 0x800

uint16 sniff.attempt = 0x08

uint16 sniff.timeout = 0x08

This message would be packed as shown in Figure 7.10.

Using the BlueLab Libraries
BlueLab offers a variety of libraries which provide functions to support basic C
functions, BlueCore hardware, and Bluetooth applications (see Figure 7.11 for a
graphical overview).

When linking, all object files are used, and then missing symbols are imported
from the libraries. Each symbol is taken from the first library (in command-line
order) which provides that routine.This means that the application’s makefile must
list libraries which override a routine before the libraries with default versions.

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 288

Embedding Bluetooth Applications • Chapter 7 289

This makes it important that libraries are linked in the correct order. Each
library should be listed before any others which appear after it in the list that
follows.

The scheduler relies on the message and timer libraries. Some applications
require the scheduler, but may not need both of those libraries. In that case, the
libraries can be replaced with their stub versions which take less code and data
space. Obviously, if messages and timers are stubbed out, then messages or timers
can’t be used.

www.syngress.com

Figure 7.10 Message Packing Format for CM_CONNECT_AS_MASTER_REQ

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
0x10 0x00 0x06 0x00 0x01 0x00 0x01 0x00
uint16
length 0x10

uint16
type = 0x6

uint16
authentication = 1

uint16
encryption=1

0xAA 0x00 0xCC 0xBB 0x5B 0x00 0x02 0x00
uint32
bd_addr.lap = 0xAABBCC

u int8
bd_addr.uap = 0x5B

uint16
bd_addr.nap = 0x0002

0x08 0x11 0xEE 0xDD 0x00 0x08 0x00 0x08
uint16
target = 0x1108

uint16
timeout = 0xDDEE

uint16
park.max_intval=0x0800

uint 16
park.min_intval = 0x800

0x00 0x08 0x00 0x08 0x08 0x00 0x08 0x00
uin t16
sniff.max_intval = 0x800

uint16
sniff.max_intval = 0x800

uint16
sniff.attempt = 0x08

uint16
sniff.timeout = 0x08

Figure 7.11 Library Overview

Ps

Message
Standard library, Print, Panic

Event

Scheduler Audio

Basic
Libraries

ConnectionManager

Codec

CSR
Library

Debounce

Pio

Application
Libraries

I2c

Vm

Timer

Host

Batt

Adc

SdpParse

BlueStack

Framework

Sequence

160bluetooth_C07.qk 12/5/01 3:58 PM Page 289

290 Chapter 7 • Embedding Bluetooth Applications

Basic Libraries
The basic libraries provide facilities required to run and debug C code:

■ Standard library Provides a selection of functions defined by the
ANSI/ISO standard: assert, limits, stdarg, stdio, stdlib, string, memory, printf,
sprintf, vprintf, vsprintf, putchar, malloc, free, calloc, realloc, atoi, strcat, strcpy,
strncpy, strcmp, strncmp, strchr, strrchr, memchr, strlen, memset, memcpy, mem-
move, bcopy, bzero, memcmp8, strdup.These are provided in libc.a which is
always linked in.

■ Panic Provides small utility routines which panic the application if
conditions aren’t met. Provided in libpanic.a with header file <panic.h>.

■ Print A simple header file which enables printing of debug messages
when DEBUG_PRINT_ENABLED is defined.

www.syngress.com

Support for ANSI C
The XAP2 processor on BC01 is a 16-bit architecture with no direct sup-
port for 8-bit values.

As a result, the “char” type is a 16-bit quantity. While this is per-
mitted by the C standard, care must be taken with code which assumes
8-bit characters.

Both “short” and “int” are 16-bit, while “long” is 32-bit. 32-bit
quantities incur a significant performance overhead and should be
avoided wherever possible. 64-bit quantities are not supported (“long
long” is mapped to a 32-bit integer).

As is the case with most embedded systems, floating point values
and floating point arithmetic are not available.

The amount of RAM on BC01 is limited, and memory must be
shared between the Bluetooth stack and the application. RAM is divided
into “pools” using fixed block sizes which limits the maximum size of a
block that can be allocated. Finally, the memory management mecha-
nism limits the application to holding at most 12 dynamically allocated
blocks of memory. The size constraints also apply to the amount of stack
space available to the application.

Developing & Deploying…

160bluetooth_C07.qk 12/5/01 3:58 PM Page 290

Embedding Bluetooth Applications • Chapter 7 291

CSR Library
The CSR library provides facilities specific to the BlueCore chip and the Virtual
Machine.All of these routines are provided in libcsr.a.You can either include the
corresponding header files (<event.h>, ...) selectively or use <csr.h> which will
include all of them.

■ Event Enable and poll for application events.

■ Vm Reads the millisecond timer; VmWait suspends the VM execution
until an event occurs; this library also supports sending and receiving
BlueStack primitives.

■ Ps Accesses the on-chip persistent store: PSstore sets a key and
PSretrieve reads a key.

■ Pio Provides access to the PIO pins on the BlueCore chip. PIOset sets
a line; PIOget reads it. PIOsetDir and PIOgetDir can be used to change
the line’s direction.

■ Audio Allows an application to play audio sequences.

■ Codec Adjusts attenuation for the pulse-code modulation (PCM)
compression/decompression (codec).

■ Debounce Provides debounced reading of PIO inputs; useful for con-
necting to push buttons or keys.

■ Host Supports communications with the host over BCSP Channel 13
using HostGetMessage and HostSendMessage.

■ Adc Allows an application to read values from the analog-digital con-
verter (ADC).This is used by the battery library.

The Application Framework, Connection Manager, Scheduler,Timer,
BlueStack, I2C, Message, and SDPparse libraries are interpreted, as are parts of the
Standard Library.The rest of the libraries run in native mode and do not have to
go through the Virtual Machine’s interpreter.

Application Libraries
The application libraries (listed in the following) provide support for applications
running on BlueCore.The source for these libraries is in src/lib.They can be
rebuilt and installed by typing make install in that directory.This allows source
level debugging in library code as well as application code.

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 291

292 Chapter 7 • Embedding Bluetooth Applications

■ Timer Manages queues of functions to call after specified delays,
checks for any that are due to be run, and calculates the shortest period
which can be passed to VmWait before the next check is required. Most
significant applications use the scheduler to manage this. Use timerAdd to
add a new timer.

www.syngress.com

PIO Pins
PSKEY_PIO_PROTECT_MASK stops you from setting values for PIO pins
which are masked out, allowing pins used by the Casira to be protected.
You should not tamper with this PS key.

■ 0 – Used to control external hardware on Class 1 modules
■ 1 – Used to control external hardware on Class 1 modules
■ 2 – External RAM bank switch (optional); USB control
■ 3 – Controls the LED on Microsiras
■ 4 – USB control/reset
■ 5 – USB on some modules (check your data sheet)
■ 6 – Some packaging schemes use this for power (check your

data sheet)
■ 7 – Some packaging schemes use this for power (check your

data sheet)

Lines 4 and 5 are connected to hardware interrupts, so if you need
interrupts you must use these lines.

Lines 6 and 7 are best for connecting to custom hardware—as long
as they aren’t connected to a power line in the packaging of the
BlueCore chip you plan to use!

Line 5 can be used if you want an interrupt line.
If you’re not using USB line 2 is available; on most modules, line 3

is also available.
On some Casiras (revision F), line 4 is connected to a reset line

and can cause resets when held low for longer than the value speci-
fied by PSKEY_HOSTIO_UART_RESET_TIMEOUT. As a result, this line is
best avoided.

Debugging…

160bluetooth_C07.qk 12/5/01 3:58 PM Page 292

Embedding Bluetooth Applications • Chapter 7 293

■ Sequence Built on top of the timer library, it provides routines which
can orchestrate a timed sequence of calls to designated user functions.

■ Message Manages queues of messages (in dynamically allocated buffers).

■ Scheduler Orchestrates the tasks which form the timer, message, and
event libraries. Calls timer routines and VmWait; dispatches to appro-
priate handlers when events are triggered.

■ BlueStack Header files which define Bluetooth primitives.

■ Connection Manager An example connection manager using
RFCOMM.

■ SdpParse Utility functions for unpacking an SDP record.

■ Framework Library to support the example applications supplied
with BlueLab. For example, the headset framework adapts the framework
library for use with the example headset supplied with BlueLab.

■ I2c A sample library which uses the PIO routines to support devices
on the I2C bus.

■ Battery Provides periodic battery readings from a test pin.

A series of example applications are supplied with BlueLab.These include adapta-
tions of the application framework which provide complete implementations of
the Headset profile and Audio Gateway profile.

There are also examples of using Libraries, including the I2C Library, host
communications, the Sequence Library, the Timer Library, General Purpose Input
Output (GPIO), and a program to flash LEDs.

Rather than write your own applications from scratch, you should adapt the
examples supplied, which will greatly speed up development time.

Using Tasks and Messages
The message library provides a mechanism for asynchronously posting messages
between tasks.The scheduler library will automatically run tasks which have mes-
sages pending (the scheduler also runs tasks which have events pending). Messages
have a type property and may also contain a user-defined payload.

Tasks and Message Queues
Messages are posted to MessageQueues which are owned by Tasks.A Task which
owns a non-empty MessageQueue will be run by the scheduler. In the current

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 293

294 Chapter 7 • Embedding Bluetooth Applications

implementation, the binding between Tasks and MessageQueues is static; a
MessageQueue n is owned by Task n.

The DECLARE_TASK macro declares a task, and takes a Task identifier as an
argument, which identifies the task’s MessageQueue. For example:

DECLARE_TASK(4)

{

void * msg = MessageGet(4,0) ;

...

Note that the task is declared with the same identifier, 4, that is used in the
call to MessageGet.The argument to DECLARE_TASK must be an integer; it
cannot be another macro.There are no restrictions upon which MessageQueues a
task can post to.

Task and MessageQueue identifiers range from 0 to 15 although 0 and 1 are
reserved (see Table 7.1).

Table 7.1 Reserved Task/Message Identifiers

Task/Message Identifier Task Name

0 Connection Manager
1 Application Framework (e.g., Headset Framework)

Creating and Destroying Messages
Messages are dynamically allocated.All messages have a type property and some
may also contain a payload. Both of these properties are specified when using the
MessageCreate function.The code that follows shows how a message can be used
to transfer a block of uint16s to a task:

#define TRANSFER_MSG 100

...

void sendMsg(uint16 * data,uint16 length)

{

uint16 * msg = (uint16*) MessageCreate(TRANSFER_MSG,length)

memcpy(msg,data,length) ;

MessagePut(6,msg) ;

}

...

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 294

Embedding Bluetooth Applications • Chapter 7 295

DECLARE_TASK(6)

{

MessageType type ;

void * msg = MessageGet(6,&type) ;

if (msg)

{

switch (type)

{

case TRANSFER_MSG :

uint16 * data = (uint16 *) data ;

break ;

...

}

MessageDestroy(msg) ;

}

}

Any task can use the sendMsg function to send data to the application frame-
work (Task 1). Note that the type of the message does not appear in the message
payload. Instead, it is set after creation using msgSetType and read after retrieval
using MessageGetType.

It is important to delete messages using the MessageDestroy function rather than
free. Messages are dynamically allocated which means that they come out of the
very limited dynamic-block budget.This means it is important to ensure that mes-
sages are consumed as soon as possible after being produced. Put another way, mes-
sages are intended to be a signaling mechanism, not a data-buffering mechanism.

Using the MAKE_MSG Macro
Functions that use the message library declare a message with type X and struc-
ture X_T where X identifies the library. For example, messages for the Connection
Manager open are defined as follows:

#define CM_OPEN 13 /* declare a message type for CM_OPEN */

typedef struct

{

uint16 blah ; /* declare the structure for messages to CM_OPEN */

...

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 295

296 Chapter 7 • Embedding Bluetooth Applications

} CM_OPEN_T ;

This leads to code that looks like:

void doOpen(void)

{

CM_OPEN_T*msg = (CM_OPEN_T

*)MessageCreate(CM_OPEN,sizeof(CM_OPEN_T));

msg->blah = ...

}

The MAKE_MSG macro can be used to reduce typing and minimize opportuni-
ties for mistakes.This macro creates a variable named msg of the requested type.
So the preceding code can be replaced with the following call:

void doOpen(void)

{

MAKE_MSG(CM_OPEN);

msg->blah = ...

}

Connection Manager
The Connection Manager handles all the layers of the Bluetooth protocol stack
from RFCOMM downwards.Without a Connection Manager, you would need
to establish ACL links, configure the links for RFCOMM, set up and configure
L2CAP links, and finally set up an RFCOMM link.With a Connection Manager,
you can have all the layers you need set up and configured with a single call.

Most applications which send data will want to use RFCOMM connections,
but for those who need to get in at a lower level, the BlueLab Connection Manager
allows your application to send L2CAP packets as well as RFCOMM packets.
(L2CAP is the lowest level of the Bluetooth Protocol stack that an application will
send data to, since all user data on Bluetooth links has to be sent as L2CAP packets.)

Packets are sent on a connection, and every connection has to lead to some
peer device, so, naturally enough, before any packets can be sent, the Connection
Manager must be paired with a peer device.

The section on tasks and message queues mentioned that Task/Message
Identifier 0 is reserved for the Connection Manager, and Task/Message Identifier 1
is reserved for the Application Framework.The practical effect of this is that when-
ever your application sends a message to the Connection Manager, it will send it to

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 296

Embedding Bluetooth Applications • Chapter 7 297

MessageQueue 0, and whenever you get a message back from the Connection
Manager, it will come back on MessageQueue 1.This rule on message queue num-
bers applies whether the message is control information, or data packets.

The Connection Manager’s messages are all declared in cm_rfcomm.h..The
Connection Manager itself is implemented in the CM_RFCOMM library:
libcm_rfcomm.a.

Initializing and Opening the Connection Manager
The libraries which make up BlueStack and implement the Bluetooth protocol
stack are compulsory to have in the system.This is because the basic protocol
stack is essential to implement any Bluetooth product.To make sure that the pro-
tocol stack runs properly it is started up for you automatically.

www.syngress.com

Receiving Messages from Multiple Sources
Some tasks will have to receive messages from several sources. One
example is the application framework, which sits between an applica-
tion and the Connection Manager and has to communicate with both.

Message types are just integers, so when the framework gets a mes-
sage of type 5, it could have trouble deciding whether the message is a
“data_indication” from the Connection Manager or a “close_request”
from the application! There are two approaches to solving this problem:

1. Choose message type numbers so there is never any overlap
between message type numbers going to the same task.

2. Ensure that the payloads of messages sent to the framework
always contain a “source” field which is filled in before the
message is sent.

Many embedded messaging systems provide a mandatory “source”
field on all messages. This solves the problem of messages from multiple
sources, but wastes valuable memory from the scare dynamic-block
budget, so BlueLab leaves it up to the application programmer to decide
when these identifiers are appropriate. In many cases, it will be possible
to solve the problem using unique message type numbers, thus mini-
mizing message size and saving memory.

Developing & Deploying…

160bluetooth_C07.qk 12/5/01 3:58 PM Page 297

298 Chapter 7 • Embedding Bluetooth Applications

The Connection Manager is not part of the Bluetooth protocol stack. It’s a
separate library which you can choose to use or not. Because the Connection
Manager is not a compulsory part of the system, it isn’t started up automatically.
If you want to use the Connection Manager, then you must initialize and open it
by making a few calls.

First, your application initializes the Connection Manager by sending it a
CM_INIT_REQ message (see Figure 7.12).The Connection Manager will
respond with a CM_INIT_CFM message once it has successfully registered with
BlueStack.These messages just start the Connection Manager running, so neither
message has any parameters.

You could create and send the initialization message like this:

MAKE_MSG(CM_INIT_REQ);

PutMsg(msg);

But to make it even easier, the file rfc_init.c is supplied with BlueLab.This
gives you a function CmInit, which makes and sends the message. So, if you link
rfc_init into your build, all you need to do is use this call:

CmInit();

www.syngress.com

Figure 7.12 Message Sequence Chart for Initializing and Opening the
Connection Manager

Connection
ManagerApplication

CM_INIT_REQ

CM_INIT_CFM

CM_OPEN_REQ

CM_OPEN_CFM

CM_ADD_SM_DEVICE_REQ

160bluetooth_C07.qk 12/5/01 3:58 PM Page 298

Embedding Bluetooth Applications • Chapter 7 299

Now that the Connection Manager is running, the next stage is to tell the
Connection Manager some information about your application.

BlueCore chips usually arrive with the Class of Device (CoD) set to
Miscellaneous (all zeroes).This is probably not going to be appropriate for your
application. For instance, if you are writing a headset application, you want the class
of device to be set to Audio for the Major Device Class, and conforms to the
Headset profile for the Minor Device Class. It is important to get this set cor-
rectly because the Class of Device is sent out in inquiry responses, and is then used
by other applications to find devices they can connect with. It is possible to filter
out inquiry responses based on the Class of Device information they contain. So, if
your Class of Device doesn’t accurately reflect your application’s capabilities, then
other applications may not even report your device’s presence to the user.

You also need to let the Connection Manager know what Service Record
you want used to describe the services provided by your application. Once you
have done this, the Connection Manager can take care of handling service dis-
covery queries without needing any more intervention from your application.

Your application passes the Class of Device and Service Record information
to the Connection Manager in a CM_OPEN_REQ call, whereupon the
Connection Manager responds with CM_OPEN_CFM.The CM_OPEN_REQ
is sent as follows:

CM_OPEN_REQ(uint8 * serviceRecord,

uint16 sizeServiceRecord,

uint32 classOfDevice);

The serviceRecord parameter is a pointer to an area of dynamically allocated
memory containing the service record which describes your application’s ser-
vices.The service record must contain a blank entry for the RFCOMM channel
to be used for your application’s service—in other words, a universal unique
identifier (UUID) of 3 followed by an unsigned integer (UINT).The channel
will be filled in by the Connection Manager.The SizeServiceRecord parameter is
the size of the complete service record, and the classOfDevice parameter specifies
the class of device to be used when responding to inquiries.

Having opened up the Connection Manager and told it about your applica-
tion, you could just stop there, but you have the option of going on and using
the Security Manager features, too.You can tell the Security Manager there are
some devices you trust, and the Security Manager will store information about
those devices in its Trusted Devices database. Once a device is registered as

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 299

300 Chapter 7 • Embedding Bluetooth Applications

Trusted in the Security Manager database, the Security Manager can automati-
cally carry out all authentication procedures and allow a device to connect
without further authorization from your application.

To use the Security Manager, your application sends a CM_ADD_SM_
DEVICE_REQ with details of the device you want to add to the Security
Manager’s trusted devices database.

CM_ADD_SM_DEVICE_REQ (BD_ADDR_T addr,

uint8 link_key[SIZE_LINK_KEY],

Bool_t trust)

The addr parameter gives the Bluetooth Device Address of the device being
added to the Security Manager database.The link_key parameter, meanwhile,
gives the link key for that device, and the trust parameter is a Boolean value:
TRUE if the device is trusted, FALSE if it is not. If you don’t have a link key at
this stage, you will have to skip this step for now. Later on you can go through
pairing to get a link key, then call the Security Manager.

In addition to the preceding messages, you will need to start the timer sub-
system and the scheduler.These calls go on either side of the call to initialize the
Connection Manager as follows:

/* Initialize timer subsystem so the application can use timers */

TimerInit();

/* Initialise the connection manager */

CmInit();

/* start Virtual Machine scheduler to call application's tasks */

Sched();

You should not send the CM_OPEN_REQ until the CM_INIT_CFM is
received, so you will need to wait until the message comes in.You need a mes-
sage handler to check the message queue and process the event when it arrives.
The following code fragment illustrates how this can be done.

void * msg; /* incoming messages require a void msg pointer */

MessageType type; /* we need to know what type of message was sent.

This type may be different in each application,

but the messages will not be very different from

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 300

Embedding Bluetooth Applications • Chapter 7 301

those already defined by the Connection Manager.

*/

/* Get the message, if any, from our queue so that we can process it.

Notice that only one message is processed at a time.

*/

msg = MessageGet(1, &type);

if(msg)

{

switch (type)

{

/* Connection manager library is ready, so send CM_OPEN_REQ */

case CM_INIT_CFM :

MAKE_MSG(CM_OPEN_REQ);

msg->serviceRecord = opCreateServiceRecord(

&msg->sizeServiceRecord);

msg->classOfDevice = HEADSET_COD; /* set your device's class */

MessagePut(0,msg);

break ;

/* you will need a case statement for each event you can receive */

case CM_XXXXXXX:

some message handling code goes here

break;

/* Always a good idea to track unhandled primitives */

default :

PRINT(("rfc Unrecognised msg type %x\n",type));

break;

}

MessageDestroy(msg);

Now you know how your application can start up the Connection Manager,
tell it about its services, and register devices you trust.This is all very necessary,

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 301

302 Chapter 7 • Embedding Bluetooth Applications

but so far all you’ve done is configure the Connection Manager: not a single
packet has been sent on the radio.The next sections will explain how to use the
Connection Manager to communicate with other devices.

Inquiry
Before you initiate a connection, you might want to look around to find what
other Bluetooth devices are in the neighborhood.At the user interface level this
procedure is called Device Discovery, but in the Core Bluetooth Specification,
you’ll find it referred to as inquiry. Since your application is dealing with a
Bluetooth protocol stack, you use the technical term not the user interface term,
so you call the process inquiry.

An inquiry can be requested with CM_INQUIRY_REQ (see Figure 7.13).
Your application will need to specify the overall length of the inquiry (the timeout)
and the maximum number of unique responses required.The Connection Manager
may perform more than one inquiry for you in the specified timeout. If the max-
imum number of responses is reached, the inquiry is terminated and your applica-
tion is sent an inquiry complete returned with the appropriate status flag.

An inquiry gets you back information like a Bluetooth Device Address and
the Class of Device, but if you are displaying information on devices to a user, you
might want to know a bit more about them.You have the option of asking the
Connection Manager to automatically go and get the user-friendly name of each
device that responds to your device.This will take some time, as it involves setting

www.syngress.com

Figure 7.13 Message Sequence Chart for Conducting an Inquiry

Connection
ManagerApplication

CM_INQUIRY_REQ

CM_INQUIRY_RESULT_IND

CM_INQUIRY_COMPLETE_CFM

(delay while device does one or more inquiries)

160bluetooth_C07.qk 12/5/01 3:58 PM Page 302

Embedding Bluetooth Applications • Chapter 7 303

up a connection to each device you haven’t seen before. Setting up connections
will also take up power and shorten your battery life, so you should only ask the
Connection Manager to do this if your application will use the information.

To get BlueCore to perform an inquiry, use the following call:

CM_INQUIRY_REQ (uint8 max_responses, uint16 inq_timeout, uint32 class_

of_device, uint16 remote_name_request_enabled);

The max_responses parameter gives the maximum number of unique
inquiry responses that can be received.The inq_timeout parameter is the
timeout (in seconds) for the inquiry process, so this gives the maximum length
of the inquiry.The class_of_device parameter acts as a filter: only inquiry
responses with this Class of Device will be passed up from the Connection
Manager to the application.The remote_name_request_enabled parameter is a flag
indicating whether to perform a remote name request for each inquiry result
not seen before.

The application can wait pending the arrival of a
CM_INQUIRY_RESULT_IND or CM_INQUIRY_COMPLETE_CFM. By
waiting on an event, the application allows the scheduler to allocate all its time to
other tasks until the inquiry indication events occur.The
CM_INQUIRY_RESULT_IND carries the results from the inquiry as follows

CM_INQUIRY_RESULT_IND (HCI_INQ_RESULT_T inq_result,

uint8 *handles[HCI_LOCAL_NAME_BYTE_PACKET_PTRS]);

The handles parameter is an array of handles corresponding to pointers to the
name of the remote device as discovered by the remote name request.The
inq_result parameter is the Inquiry result which is structured as follows:

typedef struct

{

BD_ADDR_T bd_addr;

page_scan_rep_mode_t page_scan_rep_mode;

uint8_t page_scan_period_mode;

page_scan_mode_t page_scan_mode;

uint24_t dev_class;

bt_clock_offset_t clock_offset;

} HCI_INQ_RESULT_T;

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 303

304 Chapter 7 • Embedding Bluetooth Applications

These parameters are straight out of the Bluetooth Core Specification for
HCI Inquiry Result Event (see part H:1 of the Specification for more details).

When all of the inquiry results are in, your application will get the
CM_INQUIRY_COMPLETE_CFM as follows:

CM_INQUIRY_COMPLETE_CFM (inquiry_status_t status)

The status parameter lets you know why the inquiry completed. It is set to
CmInquiryComplete if the user specified timeout for the inquiry has expired,
CmInquiryCancelled if the inquiry was terminated before it finished, or
CmInquiryMaxResponsesReached if the inquiry finished because it had reached the
number of responses you specified.

At this point you may be thinking,“Why would I want an inquiry to finish
before it had collected as many responses as possible?”.There are two reasons,
both to do with the limited resources you have. Firstly, you want to set a timeout
because if you leave the device permanently inquiring, it will use up power and
shorten battery life. Secondly, you may have to limit the number of responses
because you need to store and process responses. Since you don’t have an infinite
amount of memory available there’s a limit to how many responses you can pro-
cess at one time.

Pairing
After the inquiry process, your application will have found some devices it could
connect with, but there’s one more step you should go through before creating a
connection: pairing.

The pairing process creates a link key which can be used to encrypt commu-
nications on the Bluetooth link.The link key can also be used to authorize a
device—that is, to check that the device is really the one you want to connect
with, not just somebody trying to fool you into sending them all your private
data. Figure 7.14 shows the process of creating a link key.

First you need to ask the Connection Manager to pair with a device using
the CM_PAIR_REQ which is structured as follows:

CM_PAIR_REQ (role_t role,

Delay timeout,

bool_t authentication,

BD_ADDR_T bd_addr);

The role parameter is set to CM_MASTER or CM_SLAVE, and identifies
which role the device is taking.The timeout parameter gives the delay before the

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 304

Embedding Bluetooth Applications • Chapter 7 305

attempt to pair is abandoned.The authentication parameter is a Boolean flag which
is TRUE if authentication should be used and FALSE otherwise.The addr param-
eter is the Bluetooth Device Address of the remote device to pair with (this only
applies when initiating pairing by attempting to create a connection).

The shared link key is created using a PIN code which must be input sepa-
rately at either end of the link. For devices without a user interface, the PIN
code can be preprogrammed.These are called fixed PINs. Devices with fixed
PINs have to be sold with a note to the user of the PIN code so that they can
enter the same PIN in whichever device they want to pair with.

The Connection Manager needs to get the PIN code from your application.
To do this, it will send you a PIN request CM_PIN_CODE_REQ as follows:

CM_PIN_CODE_REQ (BD_ADDR_T bd_addr);

The PIN code request carries a Bluetooth Device Address which you can use
to look up the PIN code if you have PIN codes for various devices stored. If you
don’t have the PIN code stored, you may need to ask the user for a PIN code.
You can use the Bluetooth Device Address to let the user know which device is
asking for a PIN code. (If you stored the user-friendly name of the device along
with it’s Bluetooth Device Address, you could display the user-friendly name to
the user instead of the Bluetooth Device Address.)

However you get hold of the PIN code, your application should send it to
the Connection Manager in a CM_PIN_CODE_RE response as follows:

www.syngress.com

Figure 7.14 Message Sequence Chart for Pairing

Connection
ManagerApplication

CM_PAIR_REQ

CM_PAIR_CFM

CM_PIN_CODE_REQ

CM_PIN_CODE_RES

160bluetooth_C07.qk 12/5/01 3:58 PM Page 305

306 Chapter 7 • Embedding Bluetooth Applications

CM_PIN_CODE_RES (BD_ADDR_T addr,

uint8 pin_length,

uint16 pin[8]);

The parameters are fairly obvious: addr is the address of the device we are
trying to pair with, pin_length is the length of the PIN key in bytes, and pin is an
array containing the PIN code. One thing which is not immediately obvious is
that you can reject the PIN code response just by setting the pin_length to zero.
This works because the Bluetooth Specification does not allow you to use a zero
length PIN, so this illegal value is taken as an indication that you don’t want to
supply a PIN for this device.

If the pairing is successful, the Connection Manager will store the address and
link key associated with the paired peer device, and issue a confirmation giving
the status of the pairing operation (see Figure 7.14).

CM_PAIR_CFM(pair_status_t status, BD_ADDR_T addr, uint8 link_key

[SIZE_LINK_KEY]);

The status parameter is set to CmPairingComplete if successful or
CmPairingTimeout if unsuccessful.The addr parameter is the Bluetooth Device
Address of the device we have paired with.The link_key parameter is the link key
to use with that device.

The link key will be needed later for authentication and encryption.You
could store the link key in your application, but it is more efficient to use the
CM_ADD_SM_DEVICE_REQ to pass the link key and device details to the
Security Manager.

Now that you’ve learnt all about pairing, it’s time to break the news that it
isn’t actually compulsory! You could skip past pairing and go straight to making
a connection. However, if you don’t create a link key then you wont be able to
use encryption and authentication, so your connection will be unsecure.
Because Bluetooth links can be intercepted, it is highly recommended you use
encryption.

Connecting
Finally, your application is at the stage where it can request a data connection.
The messages used to do this are shown in Figure 7.15.

If your application is initiating a connection as a master, then you need to
send a CM_CONNECT_AS_MASTER_REQ message to the Connection
Manager as follows:

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 306

Embedding Bluetooth Applications • Chapter 7 307

CM_CONNECT_AS_MASTER_REQ (cm_auth_config_t use, BD_ADDR_T addr, uint16

target, Delay timeout, cm_park_config_t park, cm_sniff_config_t sniff)

The use parameter configures authentication and encryption.The addr param-
eter gives the Bluetooth Device address of the device you want to connect to.
The target parameter provides the UUID of the service your application wants to
use; this information will be used for an SDP search.The timeout parameter gives
a delay to wait before abandoning the connection attempt.The park parameter
configures the park parameters to use on the connection.The sniff parameter con-
figures the sniff parameters to use on the connection.

CM_CONNECT_AS_SLAVE_REQ is used to configure the BlueCore chip
to accept connections as a slave.This will start page scanning, using parameters
supplied as follows:

CM_CONNECT_AS_SLAVE_REQ (cm_auth_config_t use,

BD_ADDR_T bd_addr,

uint16 ps_interval,

uint16 ps_window,

Delay timeout,

cm_park_config_t park,

cm_sniff_config_t sniff);

The use parameter configures authentication and encryption.The addr param-
eter is the Bluetooth Device Address to connect to.The ps_interval parameter

www.syngress.com

Figure 7.15 Message Sequence Chart for Connecting as Master

Connection
ManagerApplication

CM_CONNECT_AS_MASTER_REQ

CM_LINK_KEY_REQ

CM_CONNECT_CFM

CM_LINK_KEY_RES

160bluetooth_C07.qk 12/5/01 3:58 PM Page 307

308 Chapter 7 • Embedding Bluetooth Applications

specifies the Page Scan interval.The ps_window parameter specifies the Page Scan
window.The timeout parameter gives a delay to wait before abandoning connec-
tion attempt.The park parameter gives the parameters for configuring park mode.
The sniff parameter gives the parameters for configuring sniff mode.

Both CM_CONNECT_AS_MASTER_REQ and CM_CONNECT_
AS_SLAVE_REQ take as parameters structures for configuring authentication,
park, and sniff.These structures are as follows:

typedef struct

{

uint16 authentication; /* 1 if connection is authenticated 0 if not

*/

uint16 encryption; /*1 to enable encryption, 0 to disable encryp-

tion*/

}cm_auth_config_t;

typedef struct

{

/* parameters for park mode negotiation */

uint16 max_intval; /* maximum beacon interval in slots */

uint16 min_intval; /* minimum beacon interval in slots */

}cm_park_config_t park;

typedef struct

{

/* parameters for sniff mode negotiation */

uint16 max_intval; /* maximum sniff interval, in slots */

uint16 min_intval; /* minimum sniff interval, in slots */

uint16 attempt; /* sniff attempt length in slots */

uint16 timeout; /* sniff timeout length in slots */

}

cm_sniff_config_t sniff;

The following function illustrates how these parameters are filled in. It sends
a message to the Connection Manager requesting a connection as master, but
similar code would be used to fill in the parameters when connecting as a slave.

static void connect_as_master(uint16 timeout)

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 308

Embedding Bluetooth Applications • Chapter 7 309

{

MAKE_MSG(CM_CONNECT_AS_MASTER_REQ) ;

/* Security */

msg->use.authentication = 0 ;

msg->use.encryption = 0;

/* BD address */

msg->bd_addr.lap = SLAVE_LAP;

msg->bd_addr.uap = SLAVE_UAP;

msg->bd_addr.nap = SLAVE_NAP;

/* Target UUID */

msg->target = 0x1108; /* Headset */

/* Master timeout */

msg->timeout = timeout ;

/* Park parameters */

msg->park.max_intval = 0x800;

msg->park.min_intval = 0x800;

/* Sniff parameters */

msg->sniff.max_intval = 0x800;

msg->sniff.min_intval = 0x800;

msg->sniff.attempt = 0x08;

msg->sniff.timeout = 0x08;

MessagePut(0,msg);

}

If the use parameter requested that the connection should use authentica-
tion or encryption, then a link key is needed. If your application has called
CM_ADD_SM_DEVICE_REQ to register the device on the other end of the
link, then the Security Manager already has link keys, and it can handle

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 309

310 Chapter 7 • Embedding Bluetooth Applications

authentication and encryption without further intervention from your
application.

Figure 7.15 shows the case where a link key is needed, but the application has
not called CM_ADD_SM_DEVICE_REQ to pass the link key and device
details to the Security Manager. In this case, the Connection Manager has to
come to your application and ask it for a link key using the
CM_LINK_KEY_REQ message as follows:

CM_LINK_KEY_REQ (BD_ADDR_T addr);

The addr parameter is the Bluetooth Device Address of the device we’re
trying to authenticate with.Your application has a link key for this device, so
you should send it to the Connection Manager in a CM_LINK_KEY_RES
message.

CM_LINK_KEY_RES(bool_t accept, BD_ADDR_T addr, uint8

key_val[SIZE_LINK_KEY]);

The accept parameter is a Boolean flag which signals whether to accept or
reject the link key request.The addr parameter is the Bluetooth Device Address of
the device we’re trying to authenticate with, and the key_val parameter is the link
key for that device.

If you don’t have a link key, you have two options: you can either start
pairing so you generate a link key, or you can set the accept flag to FALSE and
reject the connection attempt.

The CM_CONNECT_CFM message is used to inform the application of
the status of a connection attempt when it has succeeded or failed. It’s structure is
as follows:

CM_CONNECT_CFM (connect_status_t status, BD_ADDR_T addr)

The status parameter gives the result of the connection attempt. Possible
values include:

CmConnectComplete Success

CmConnectTimeout Timed out

CmConnectCancelled Error during RFCOMM (or SDP) negotiation

CmConnectDisconnect Disconnect after connectComplete

The addr parameter is the Bluetooth Device Address of the device which is
the target of the connection attempt.

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 310

Embedding Bluetooth Applications • Chapter 7 311

Once you have set up a basic ACL link, your application could add a SCO
link by using a CM_SCO_CONNECT_REQ.There must be an ACL link pre-
sent and not in park mode for this call to succeed.

CM_SCO_CONNECT_REQ (BD_ADDR_T addr, uint16 pkt_type)

The addr parameter gives the Bluetooth Device Address of the device which
the SCO connection will be opened to.The pkt_type parameter gives the type of
SCO packet to use on the connection.The Connection Manager is intended for
simple applications, so it only supports a single SCO link.The BlueCore chip
itself supports up to three SCO links, so there is no hardware limitation on estab-
lishing SCO links. However, the Connection Manager was written this way
because it was thought unlikely that an embedded on-chip application would
need to use more than one bi-directional voice link.

The CM_DISCONNECT_REQ message is used to destroy a link. If a SCO
link is destroyed, the underlying ACL link will still exist.

CM_DISCONNECT_REQ (link_type_t link_type, BD_ADDR_T addr)

The link_type parameter is the type of link being destroyed, RFCOMM or
SCO.The addr parameter gives the Bluetooth Device Address of the device at the
other end of the connection being destroyed.

Sending Data
Once a connection has been established, data may be sent to or received from the
peer. CM_DATA_REQ is used to transmit data; CM_DATA_IND is used to
indicate incoming data. CM_DATA_CFM is used to indicate to the library client
how many more packets can be sent before flow control is asserted.

The data parameter is a pointer to a dynamically allocated data block.The
length parameter, meanwhile, gives the length of the data:

CM_DATA_REQ (uint8 * data, uint16 length);

The addr parameter gives the Bluetooth Device Address of the device which data
is to be transmitted to.The length parameter gives the length of the data block, and
data points to the dynamically allocated data block.This must be freed by the client:

CM_DATA_IND(BD_ADDR_T addr, uint16 length, uint8 *data);

The tx_credits_left parameter gives the number of transmit credits that the
application has left under the RFCOMM credit-based flow control scheme:

CM_DATA_CFM (uint16 tx_credits_left)

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 311

Embedding Bluetooth Applications • Chapter 7 312

Using Other Messages and Events
The Connection Manager supports three indication messages which are used to
asynchronously indicate when a connection status changes, or when an error occurs.

The Connection Manager uses the CM_CONNECT_STATUS_IND mes-
sage to inform the client of changes in the status of an RFCOMM connection.
This is structured as follows:

CM_CONNECT_STATUS_IND (connect_status_t status, BD_ADDR_T addr)

The status parameter is set to CmConnectComplete or CmConnectDisconnect.
The addr parameter is the Bluetooth Device Address of the device whose link
status is being reported.

The Connection Manager uses a similar indication to let your application
know about changes in the status of a SCO link.

CM_SCO_STATUS_IND (connect_status_t status);

The status parameter is just the same as for the
CM_CONNECT_STATUS_IND: it is set to CmConnectComplete or
CmConnectDisconnect.The Connection Manager uses the
CM_SCO_STATUS_IND message to inform the client of the establishment or
loss of a SCO link.There is no need for the addr parameter, as you can only
establish one SCO link at a time.

CM_ERROR_IND (cm_error_t error, BD_ADDR_T addr);

The error parameter identifies the error which occurred while performing an
operation related to the remote device with Bluetooth Device Address addr.An
error indication may be generated if the client application attempts to:

■ Issue a connection request while the Connection Manager is not idle.

■ Issue a pairing request while the Connection Manager is not idle.

■ Send data before a connection is established.

■ Issue a cancel request while the Connection Manager is idle.

The Connection Manager also provides a cancel request.This is used to cancel
any pairing or connection activity in progress, so it takes no parameters.There is
no confirmation for this message. However, a pairing or connection confirm with
a status of CM_cancelled may be generated as a result of a cancellation.

CM_CANCEL_REQ();

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 312

Embedding Bluetooth Applications • Chapter 7 313

Deploying Applications
The most direct route to deploying an application is to generate a complete
image, including the firmware, and to program it in to your device over SPI.This
is the approach used during development.Alternatively Device Firmware
Upgrade (DFU) tools are available from CSR (see www.csr.com) which allow
you to produce an image of the application and, optionally, any application per-
sistent store data.This image can be loaded using the DFU protocol over USB,
H4, or BCSP.

Why would you want to go to the extra trouble of producing an image suitable
for loading using the device firmware upgrade tools? There are several reasons:

■ End users can use the DFU tools to upgrade their devices.

■ The DFU protocol works over USB, H4, or BCSP, so your end-user
products do not need the extra circuitry to support the SPI interface.

■ The DFU process permits signing and verification of application images.
This means you can stop end users from downloading images other than
the ones you provide.This allows you to control which applications run
on your products, stopping anyone with a copy of BlueLab from hacking
your devices.

Device Firmware Upgrade is not possible with RFCOMM firmware.The
reason for this is that there is not enough code space on a BlueCore chip to sup-
port both RFCOMM and the bootloader used by DFU.

www.syngress.com

Using Event-Driven Code to Save Power
Applications running under the Virtual Machine should be event-driven.
You should avoid using polling loops. If you must poll for a value then
use a timer event to wake up your application periodically. This is more
efficient than constantly running loops, as it will allow the chip to place
itself in low-power mode whenever possible.

Debugging…

160bluetooth_C07.qk 12/5/01 3:58 PM Page 313

314 Chapter 7 • Embedding Bluetooth Applications

Summary
This chapter has shown how to create, debug, and download embedded applica-
tions for the BlueCore single chip Bluetooth device.

The BlueCore Bluetooth stack takes care of managing RFCOMM links.You
just have to write applications to run on top of RFCOMM.Your applications
will run under an interpreter called the Virtual Machine (VM) which will safe-
guard the Bluetooth protocol stack, allowing it to keep its prequalified status.

You can run your BlueLab applications on a PC under a debugger.This
allows you to develop and debug your applications in an environment with all
the usual debugging facilities.When your application runs on the chip,VM Spy
can be used to communicate on BCSP Channel 13—this is the only way of
debugging on the chip.

By using the libraries and sample applications supplied with BlueLab, you can
speed up application development.

Device Firmware Upgrade (DFU) tools are available which allow field
upgrade for applications which do not use RFCOMM.The bootloader required
for DFU will not yet fit on builds with RFCOMM, so applications using
RFCOMM cannot be upgraded with the DFU tools.

Solutions Fast Track

Understanding Embedded Systems
� Embedded systems commonly have many tasks running simultane-

ously. Since the processor can only run one line of code at a time, a
scheduler swaps between tasks running a few instructions from each
in turn.

� On BlueCore, your application task is called through an interpreter
referred to as the Virtual Machine, which interprets a few of your
instructions each time it is called.This interpreter means that even if you
write code in an endless loop, the other tasks in the system will still get
to run.The Virtual Machine’s interpreter also stops you from accessing
areas of memory which are needed for other tasks.

� Tasks communicate by sending messages to one another, using areas of
memory which are set up as queues.The first message in the queue is
the first out, so these are sometimes called FIFOs (First In First Out).

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 314

Embedding Bluetooth Applications • Chapter 7 315

� Application software can interact with hardware using interrupts.There
are two pins on BlueCore which will generate an interrupt when they
change state.An application can register to be notified when these inter-
rupts happen.

� When you close a switch, the contacts usually bounce off one another.
This bouncing causes the switch to oscillate, making and breaking a
connection.This means that if a switch (such as a pushbutton, or keypad)
is connected to an interrupt line, you will get many interrupts as the
switch closes. BlueLab provides debounce routines.

Getting Started
� To create embedded applications to run on CSR’s BlueCore chip, you

need BlueLab and a Casira.The Casira must be configured to run BCSP.

Running an Application under the Debugger
� The PC is connected to the Casira with a serial cable and an SPI cable.

� The Casira must be loaded with a null image containing an empty ver-
sion of the Virtual Machine.

� Applications running under the debugger on the PC can then use facili-
ties on the Casira, so they can access PIO pins and the BlueCore chip’s
radio while still having full PC debugging facilities.

Running an Application on BlueCore
� You must make a special firmware build linking your application with a

Virtual Machine build to run your application on the Casira.

� Your application should be fully debugged before you build it for
BlueCore, since on-chip debugging facilities are very limited.

� You can communicate with the Virtual Machine on BCSP Channel 13
using VM Spy.

Using the BlueLab Libraries
� A selection of libraries provide ANSII C support as well as access to the

Bluetooth protocol stack, PIO pins, and various operating system facili-
ties such as scheduling, timers, messaging, and so on.

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 315

316 Chapter 7 • Embedding Bluetooth Applications

Deploying Applications
� If you do not have RFCOMM in your build, you can upgrade devices

in the field using the Device Firmware Upgrade (DFU) tools.
Otherwise, you must program the flash using an interface similar to the
SPI interface.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Why does the Casira use BCSP instead of the H4 UART interface from the
Bluetooth 1.1 Core Specification?

A: The H4 UART interface was designed for chips separated by about 3 mm of
copper on a circuit board.When the ends of the serial interface are separated
by a few feet of serial cable, errors can occur. BCSP protects against those
errors. It also provides separate flow control for voice and data, which is not
possible when using the 1.1 H4 UART Specification. Finally, BCSP provides
a debug channel which is essential for developing and debugging embedded
applications on BlueCore chips.

Q: Where does the output from printf or putchar go when the application is run-
ning on the chip?

A: STDIO is routed over BCSP and appears on the Channel 13 debug datas-
tream.You can view it with the VM Spy utility. If you are running H4, the
BCSP Channel 13 appears as a manufacturer extension.

Q: If the Virtual Machine slows my application down, why do I have to run
applications under the Virtual Machine?

A: Your application could alter the way the Bluetooth protocol stack runs by
taking too many system resources, such as processor time and memory.The
VM checks all memory accesses and jumps, thus safeguarding the memory that
the Bluetooth protocol stack needs.Without the Virtual Machine, the
Bluetooth protocol stack could have its performance compromised, which
would affect its qualified status.

www.syngress.com

160bluetooth_C07.qk 12/5/01 3:58 PM Page 316

Using the Palm OS
for Bluetooth
Applications

Solutions in this chapter:

■ What You Need to Get Started

■ Understanding Palm OS Profiles

■ Updating Palm OS Applications Using the
Bluetooth Virtual Serial Driver

■ Using Bluetooth Technology with
Exchange Manager

■ Creating Bluetooth-Aware Palm OS
Applications

■ Writing Persistent Bluetooth Services for
Palm OS

■ The Future of Palm OS Bluetooth Support

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Chapter 8

317

160bluetooth_C08.qk 12/5/01 3:59 PM Page 317

318 Chapter 8 • Using the Palm OS for Bluetooth Applications

Introduction
Of all the PDAs on the market, it is probably Palm, Inc.’s devices that have made
the most use of short-range communications. Previously, this has been limited to
line of sight beaming via the infrared (IR) interface, but with version 4.0 Palm
OS support was in place for Bluetooth wireless technology and line of sight limi-
tations became a thing of the past. Palm, Inc. has said that it will begin to ship
Bluetooth accessories in the near future (some are already available to devel-
opers), and it plans to integrate Bluetooth technology into its handheld devices
before too long.A number of Palm OS licensees have also expressed interest in
shipping a Bluetooth solution.

However convenient handhelds may be, it’s undeniably awkward trying to
juggle more than one device while you’re on the move.Adding Bluetooth wire-
less technology to a Palm device frees users from the necessity of trying to physi-
cally line up two devices while they’re mobile. It also allows up to eight devices
to communicate at once.The Bluetooth system is omni-directional and its radio
waves can pass straight through solid objects.

Bluetooth technology includes traditional Palm OS applications like Internet
usage and “beaming” easier in mobile environments, but it also creates interesting
opportunities for new applications. Object push opens up the possibility of sponta-
neous communication: you only need to walk into range of a server to see its
information pop up on your Palm device’s display. Of course with new commu-
nication channels come new security and user experience concerns. Security and
ease of use are prime concerns of the new Bluetooth support.

This chapter will give you an insight into Palm OS Bluetooth support,
enabling you to port your existing Palm OS applications to use Bluetooth tech-
nology, or explore a whole new vista of applications which were not practical with
previous communication technologies. Examples make it clear exactly how things
are done, so you can start using Palm OS for Bluetooth applications right away.

What You Need to Get Started
Before you start work on your first Palm OS Bluetooth application, there are a
few tools you will need. Fortunately, if you are currently a Palm OS developer,
you probably have many of these tools already, and those you don’t have are easily
available from the Palm, Inc.Web site at www.palmos.com.

Bluetooth support in the Palm OS is an extension to Palm OS 4.0, and is made
up of several Palm Application files (.prc files) that may be included in a device’s

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 318

Using the Palm OS for Bluetooth Applications • Chapter 8 319

www.syngress.com

ROM image, or may be installed with the HotSync install tool and run from RAM.
In order to begin using Bluetooth technology, you will need to have a Palm OS
device with at least 4 MB of memory that is running Palm OS version 4.0 or
greater.Alternatively, if you wish to develop using the Palm OS Emulator, often the
easiest and fastest way to create new application, you can obtain a 4.0 ROM image,
and the 4.0 Software Development Kit (SDK), from the Palm Resource Pavilion at
www.palmos.com/alliance/join.The Palm OS Emulator is available for download
from the Development Support area of the Palm, Inc.Web site at www.palmos.com/
dev/tech/emulator.You may also find it useful to download the Palm Reporter
application, which allows you to see real-time traces from your application.

In addition to a Palm 4.0 device, you will need to have the Bluetooth Support
Package installed.The Bluetooth Support Package consists of several .prc files that
work together. For the moment, don’t worry about understanding what each indi-
vidual piece does, simply make sure that you have them all installed.The easiest
way to know if your Palm device has Bluetooth support installed is to go into the
“Preferences” application and check to see if “Bluetooth” appears in the list of
preference screens in the upper-right corner.This indicates that at least part of the
Bluetooth Support Package has been installed. If you find that you have trouble
using Bluetooth technology later on, you may wish to double-check that all the
files in the package are installed by going to the Info screen in the launcher (from
the menu, choose “App” then “Info”) or by simply reinstalling all of the .prc files
in the package. Unless the device you are using has Bluetooth technology built-in,
it is unlikely that the installed ROM image will include Bluetooth support.The
latest version of the Bluetooth support .prc files, along with the Bluetooth header
files and several pieces of example code, can be found in the Bluetooth area of the
Palm Resource Pavilion at www.palmos.com/dev/tech/bluetooth. Developers can
also find information on how to obtain early releases of Palm OS Bluetooth
development hardware at this site.

In addition to the tools listed here, you will also want to have a copy of the
Palm OS 4.0 SDK documentation, also available on the Palm, Inc.Web site.You
may find that it is useful to have the 4.0 documentation on hand as you read
through this chapter, since there may be references to Palm OS functions calls
and data structures with which you are not yet familiar.

Finally, before you get started, you should know that the function definitions
and data structures used in the code examples in this chapter are not final.As this
text is being written, the Palm OS Bluetooth solution is still in the alpha phase,
and while the overall model and methods are not expected to change, some char-
acteristics and arguments of individual API calls, along with some file names, may

160bluetooth_C08.qk 12/5/01 3:59 PM Page 319

320 Chapter 8 • Using the Palm OS for Bluetooth Applications

vary from what is presented here.The code examples presented here should be
seen as a basis from which to work, but may require slight modification in order
to compile. Refer to the Palm OS documentation and header files for the final
word on the API.

Understanding Palm OS Profiles
This section will present an overview of the different profiles supported in the
Palm OS Bluetooth Support Package. If you are not familiar with the general con-
cept of profiles, you way wish to go back and review Chapter 2 before continuing.

The Palm OS currently supports five Bluetooth profiles defined in the
Bluetooth 1.1 Specification.As shown in Figure 8.1, these profiles are:

■ Generic Access Profile

■ Serial Port Profile

■ Dial-up Networking Profile

■ LAN Access Profile

■ Object Push Profile

www.syngress.com

Figure 8.1 Bluetooth Profiles Supported by the Palm OS

Supported directly by the Palm OS

Generic Access Profile

Service Discovery
Application Profile

Telephony Control Protocol

Cordless Telephony Profile Intercom Profile

Serial Port Profile

Dial-Up Networking Profile

Fax Profile

Headset Profile

LAN Access Profile

Generic Object Exchange Profile

File Transfer Profile

Object Push Profile

Synchronization Profile

Not supported directly by the Palm OS

160bluetooth_C08.qk 12/5/01 3:59 PM Page 320

Using the Palm OS for Bluetooth Applications • Chapter 8 321

All the profiles help to ensure interoperability by providing common rules
that all Bluetooth devices follow. It is vital to follow these rules as they form part
of the Bluetooth qualification process. (Products must pass qualification to obtain
the free license to use Bluetooth technology.)

Of these profiles, the Generic Access Profile (GAP) is unique. Unlike the other
profiles, which describe a method for accomplishing a specific user goal, the GAP
is a general look at the overall process of carrying out a Bluetooth transaction
without regard to the nature of that transaction, and is background for all the
other profiles.As such, there is no one place in the Bluetooth Support Package
that the GAP is exposed, rather the values and language specified by the GAP are
built into the Bluetooth Library and other Bluetooth components. GAP’s main
goal is to create a friendly and consistent user experience, a goal that is also con-
sidered critical in the Palm OS.We will see how the Bluetooth Support Package
tries to help application developers maintain easy and consistent experience
across applications.

The Bluetooth Support Package includes a new virtual serial driver (a VDRV
for short), similar to the IrComm virtual serial driver you may already be familiar
with, which provides support for the Serial Port Profile. Both Device A and
Device B roles of the profile are supported. Existing OS components that make
use of serial services such as Point-to-Point Protocol (PPP), HotSync, and the
Telephony Manager are ready to take advantage of the Bluetooth VDRV, and
other serial-based applications can easily be updated to make use of the
Bluetooth VDRV.We will explore the use of the Bluetooth VDRV in great depth
later in this chapter.

The Network Library (NetLib) supports the Data Terminal role of both the
Dial-up Networking and LAN Access Profiles.After installing the Bluetooth Support
Package, you’ll notice that the Connection panel in the preferences application
will allow users to choose Bluetooth technology as a transport when configuring
a connection to a local network, phone, modem, or PC.The OS uses these set-
tings to determine which profile to use when NetLib is opened. Since applica-
tions that use NetLib are unconcerned with how it creates its underlying
transport, the use of the Dial-up Networking and LAN Access Profile is trans-
parent to NetLib-based applications.An e-mail application, for example, that was
developed using NetLib running over a normal modem can be used with
Bluetooth technology when the user configures the Network panel to use a
Bluetooth device. Since the application is unaware of the use of the Dial-up
Networking and LAN Access Profiles, we will not spend too much time talking
about them.

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 321

322 Chapter 8 • Using the Palm OS for Bluetooth Applications

The Bluetooth Support Package also includes the Bluetooth Exchange
Library.This new Exchange Library implements the Object Push Profile, much in
the same way that the Exchange Manager supports IR-based Object Exchange
Protocol (OBEX) push.You may have noticed that the Exchange Manager in OS
4.0 has been extended to handle multiple transports. Using these new features, it
is easy to update legacy Exchange Manager-based code to take advantage of
Bluetooth technology (in some cases by changing only a single line of code).
New functions allow Bluetooth savvy applications to better handle multiple
recipients, and create a better user experience.We will spend a bit of time going
over some of these new functions and give some suggestions on how to update
your application.

Choosing Services through the Service
Discovery Protocol
You may have noticed that support for the Service Discovery Application Profile, a
major part of many platforms’ user experience, is absent from the Palm OS’s list
of supported profiles. It is important to note that supporting the Service
Discovery Application Profile is very different from supporting the Service
Discovery Protocol (SDP), which the Bluetooth specification mandates and for
which Palm OS offers full support.The aim of the Service Discovery Application

www.syngress.com

Using NetLib with Bluetooth Technology
The Bluetooth protocol stack uses a good bit more heap space than a
simple serial driver does. Because of this additional heap usage, you may
run into problems if your application is already on the edge of causing a
stack overflow, or running out of heap space. Running out of heap space
will most likely cause your application to receive NULL back from a
memory allocation operation. A well-written operation will always test
for failure when allocating memory, and fail gracefully if the needed
memory chunk can’t be allocated. Testing with the Palm OS Emulator is a
good way to watch for stack overflow conditions; the emulator will tell
you when your application is running close to stack boundary conditions.

Debugging…

160bluetooth_C08.qk 12/5/01 3:59 PM Page 322

Using the Palm OS for Bluetooth Applications • Chapter 8 323

Profile is to define how information gained through the Service Discovery
Protocol might be presented to the user, and presents two basic usage models:
Service Browsing and Service Searching.

In the Service Browsing model, the user would see a list of available devices
(the result of a inquiry) and be able to open each device and look through the list
of services that that device presents.After browsing, the user would presumably pick
the device and service that they wish to utilize. Palm, Inc. does not endorse this
model because they believe that the application, not the end user, should be
responsible for knowing which service it needs to communicate with, and for
being able to find that service.When I sit down at a PC, for example, and type an
IP address into an application, I don’t get a list of all of the possible services I can
connect to on the remote server as well as a query about which one I wish to con-
nect to. Rather, the application knows that it is a Web browser or a Ping applica-
tion, and it knows how to find and connect to the appropriate service; if the host
does not offer the service, I get an appropriate error message.The same should be
true with Bluetooth technology; applications should be responsible for knowing
which services they want to use and for knowing how to connect to them.

In the Service Searching model, the user (or application) selects which service
they wish to use and then are presented with a list of available devices that present
that service. From a user-experience point of view, this is clearly a better model.
Unfortunately, this model still causes a problem.The most obvious time to do a ser-
vice search is during the discovery process, an operation which most users find
takes too long already.You could conceivably cache the service lists of remote
devices, but this cache would need to be quite large to be useful and it would be
difficult to know when your cache was out-of-date. On a large device that has lots
of CPU time and battery power to waste making regular inquiries in the back-
ground, Service Searching might be a good model, but on a small device it seems
like overkill. Rather, it seems to make more sense to use the Class of Device (CoD)
information returned during inquiry to do the same kind of service-based filtering.
While the information in the CoD is less specific than the information available
through SDP, using CoD is probably sufficient in most cases and can actually
shorten the total discovery time since devices can be eliminated before a name
request is done.As we will see later on, the Palm OS offers a robust model for
CoD-based filtering during discovery. Finally, if a developer decides that he or she
really wants to use the Service Discovery Application Profile, all of the tools neces-
sary to implement the desired parts of the profile are available to the application.

If none of the profiles cover what you are trying to do, don’t despair.The
Palm OS also provides a robust API that allows you direct access to the SDP,

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 323

324 Chapter 8 • Using the Palm OS for Bluetooth Applications

RFCOMM, and Logical Link and Control Adaptation Protocol (L2CAP) layers
of the Bluetooth stack, along with calls to allow you to manage the Bluetooth-
specific concerns like discovery and piconet creation.

Updating Palm OS Applications Using
the Bluetooth Virtual Serial Driver
Using the Bluetooth Virtual Serial Driver allows existing serial-based applications
to quickly be updated to take advantage of Bluetooth technology, and is an easy
way to create new Bluetooth-enabled applications.Virtual serial drivers in the
Palm OS are individual .prc files of type vdrv and are used throughout the new
Serial Manager interface, much the same way as traditional physical serial ports
are used.The Bluetooth VDRV is included with the Palm OS Bluetooth Support
Package.This section will focus on the unique aspects of using the Bluetooth
VDRV; for information on the general use of the new Serial Manager, refer to
the Palm OS documentation directly. Figure 8.2 shows a basic overview of how
Bluetooth technology fits into the Palm OS communications architecture.

The Bluetooth VDRV, in accordance with the Serial Port Profile, runs on top
of the RFCOMM protocol layer. It is worth noting that the VDRV does not
implement RFCOMM itself.The RFCOMM protocol layer is implemented in
the Bluetooth Library and can be accessed directly through the Bluetooth Library
API (discussed in depth later in the chapter).The VDRV itself is “glue code” that
allows Bluetooth functionality to be accessed though a more traditional API.
Using the VDRV also gives you an advantage in writing multi-transport applica-
tions. Since there are only a few differences between using the IrComm VDRV
and the Bluetooth VDRV, much of your code will not need to be altered in order
to use both transports.

Gluing new technology underneath an old interface always presents some
challenges and there are a few limitations to using the Bluetooth VDRV that you
should be aware of. In order to achieve certain performance optimizations, the
Bluetooth VDRV opens the Bluetooth Library with a slightly different configura-
tion than is normally used when an application opens the Library.As such, the
Bluetooth VDRV and the Bluetooth Library cannot be opened by the application
at the same time. Since NetLib and the Telephony Manager can be configured to
use the Bluetooth VDRV, the Bluetooth Library and the VDRV may not be avail-
able when these other components are in use.Applications are also limited to
using a single instance of the Bluetooth VDRV at any given time.

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 324

Using the Palm OS for Bluetooth Applications • Chapter 8 325

One of the challenges of mapping Bluetooth underneath a traditional serial
API is that traditional serial ports are single-channel and non-addressed in nature,
while the Bluetooth system is a multiplexing, address-based protocol stack.A tra-
ditional serial port driver can simply initialize its local hardware, start talking and
hope that there is a cable in place and someone listening on the other side, while
Bluetooth technology needs to know which device and which service on that
device it is going to talk to; it must also actively create the underlying baseband
connection. Since most Bluetooth radios are not capable of simultaneously lis-
tening for an inbound connection and trying to create an outbound connection,
an instance of the Bluetooth VDRV also needs to know whether it is initiating or
accepting the connection.

Since a traditional serial API does not present a mechanism for passing all of
this extra information, Palm OS 4.0 has added a new call, SrmExtOpen() (found

www.syngress.com

Figure 8.2 How Bluetooth Technology Fits into the Palm OS Communications
Architecture

NetLib

Bluetooth
Library API

Bluetooth Transport Bluetooth Transport Bluetooth Transport

Bluetooth Library & Stack

Host Controller Interface (HCI)

Management
Functions

RFCOMM

Service
Discovery
Protocol
(SDP)

Logical Link Control and Adaptation Protocol (L2CAP)

Bt VDRV
Bt

Exchange
Library

PPP
Serial Manager Exchange

Manager

IP
Apps

Serial
Apps

Web
Clipping

Hot-
Sync

Exchange
Apps Direct Bluetooth Apps Applications

Existing
Palm OS

Components

New Palm OS
Bluetooth

Components

160bluetooth_C08.qk 12/5/01 3:59 PM Page 325

326 Chapter 8 • Using the Palm OS for Bluetooth Applications

in SerialMgr.h), to the New Serial Manager API.The SrmExtOpen() call allows
an application to pass down additional configuration data, along with a driver-
specific configuration structure. SrmExtOpen() must be used to initialize the
Bluetooth VRDV—passing the Bluetooth VDRV into the older SrmOpen() call
will simply cause the call to fail.

The top level configuration structure that is passed into the SrmExtOpen() func-
tion for the Bluetooth VDRV is defined in the SerialMgr.h file as the following:

typedef struct SrmOpenConfigType {

UInt32 baud; // Baud rate that the connection is to

// be opened at. The Bluetooth VDRV

//ignores this value.

UInt32 function; // Designates the function of the

// connection.

// Non-OS components should set this value

// to zero.

MemPtr drvrDataP; // For the Bluetooth VDRV, a pointer to an

// instance of RfVdOpenParams.

UInt16 drvrDataSize; // For the Bluetooth VDRV,

// sizeof(RfVdOpenParams).

UInt32 sysReserved1; // System Reserved.

UInt32 sysReserved2; // System Reserved.

} SrmOpenConfigType;

When using the Bluetooth VDRV, the drvrDataP element should be filled in
with a pointer to an instance of the RfVdOpenParams structure.This is a
Bluetooth VDRV-specific structure, and applications should be sure that they are
dealing with the Bluetooth VDRV before passing the pointer.The
RfVdOpenParams structure, along with several supporting structures, is defined in
RfCommVdrv.h. Later, we’ll see examples of how these structures are used. First,
let’s take a look at the structures themselves.

typedef struct {

RfVdRole role; // client or server?

Boolean authenticate; // force link authentication

Boolean encrypt; // force link encryption

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 326

Using the Palm OS for Bluetooth Applications • Chapter 8 327

union {

RfVdOpenParamsClient client; // client parameters

RfVdOpenParamsServer server; // server parameters

} u;

} RfVdOpenParams;

typedef enum {

rfVdClient, // RFCOMM client

rfVdServer // RFCOMM server

} RfVdRole;

As mentioned earlier, most Bluetooth radios are not capable of receiving
inbound connections while trying to create outbound connections. For this
reason, it is necessary for an application to indicate whether it wishes to initiate
or accept the Asynchronous Connectionless Link (ACL) and RFCOMM con-
nections. Palm OS refers to these roles as the client role and the server role, respec-
tively.The application indicates its preference by setting the corresponding value
for the role element in the RfVdOpenParams structure and filling the appropriate
role-specific parameter structure inside the union.The authenticate and encrypt
values are used to specify the security requirements for the link; if these require-
ments cannot be met, the link will be dropped.

typedef struct {

BtLibSdpUUIDType uuid; // UUID of the service to be advertised

Char* name; // optional readable name of the service

} RfVdOpenParamsServer;

When the VDRV is opened in the server configuration, it will register for an
RFCOMM channel and advertise that channel via SDP.This creates a simple ser-
vice record utilizing the Unique Universal Identifier (UUID) and name string
defined in the RfVdOpenParamsServer. If the application wants to create a more
robust service record, it should use RFCOMM and SDP directly through the
Bluetooth Library (BtLib) API.

UUIDs are used to uniquely identify an application, or more specifically, the
protocol the application expects to communicate with. If the application is
willing to handle the possibility that it may get a connection to an incompatible
application, and the application will only be used between two Palm OS devices,
the uuid can be set to 0.This will cause the VDRV to use a predefined UUID
unique to the Palm OS. If the server chooses to set the uuid to 0, the client
should do so as well.

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 327

328 Chapter 8 • Using the Palm OS for Bluetooth Applications

Since all actions involved in a server open are local, the open call should only
fail if there is a resource conflict.

typedef struct {

BtLibDeviceAddressType remoteDevAddr; // the device to connect to

RfVdClientMethod method; // how to determine remote

// RFCOMM channel

union {

BtLibRfCommServerIdType channelId; // method ==

// rfVdUseChannelId

RfVdUuidList uuidList; // mettod ==

// rfVdUseUuidList

} u;

} RfVdOpenParamsClient;

typedef enum {

rfVdUseChannelId, // use an RFCOMM channel id

rfVdUseUuidList // use SDP to find a channel based upon a

// service UUID.

} RfVdClientMethod;

typedef struct {

UInt8 len; // length of table == number of UUIDs

BtLibSdpUUIDType* tab; // table of UUIDs

} RfVdUuidList;

To open the VDRV in the client configuration, a more complex structure
must be passed in to SrmExtOpen().The remoteDevAddr parameter indicates the
48-bit Bluetooth device address of the remote device the VDRV should connect
to.The application might determine what address to use by making a call to
BtLibDiscoverSingle() in the BtLib API (discussed later), or by taking an address
from a Connection Manager Profile that uses Bluetooth technology. If
remoteDevAddr is set to 0, the VDRV will perform a device discovery and ask the
user to specify a remote device during the open.After creating an ACL connec-
tion to the remote device, the VDRV attempts to establish an RFCOMM con-
nection.The application must indicate which RFCOMM channel the VDRV
should use.The channel is determined by using SDP to look up the Channel ID
of the remote service.While the application is welcome to use the SDP function

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 328

Using the Palm OS for Bluetooth Applications • Chapter 8 329

calls in the BtLib API to obtain the Channel ID (and the rfVdUseChannelId
method to pass in), the VDRV presents an easier method. By using the
rfVdUseUuidList method, the application can simply pass in the UUID of the ser-
vice it wishes to utilize. Passing in more than one UUID will cause the VDRV to
run through the list until it finds a service it can use.The VDRV will look for a
service record with the given service UUID, and if a record is found, it will then
search for the RFCOMM Channel in the record’s protocol descriptor list (if
multiple protocol descriptor lists are contained in the record, the VDRV will use
the first RFCOMM channel it comes across). Setting the method to
rfVdUseUuidList and setting len to 0 will cause the VDRV to look for the prede-
fined Palm OS UUID (discussed earlier).

Since a client-open may block for several seconds while the ACL connection
is brought up, the VDRV may display some UI to allow the user to see the con-
nection progress.

Creating a VDRV Client-Only Application
Let’s move on to looking at a real VDRV client-only application. Such an appli-
cation might be useful when you know that the Palm device will always be
playing a client-based role, and therefore never need to accept a connection. Let’s
imagine that we are creating an application for controlling home appliances, using
the (entirely imaginary) Bluetooth Based Blender Remote Control Profile
(B3RCP for short). Since, as we all know, B3RCP is based on the serial port pro-
file, it is appropriate to use the VDRV. Furthermore, since we know that the Palm
device will always initiate the connection to the blender (after all, appliances
don’t generally initiate contact with the remote control), the Blender-control
application is a good example of a client-only application. For the purpose of this
example, we will assume that the B3RCP is a well-known protocol, and that a
UUID of 07004F16-3776-11D5-83CE-0030657C543C has been established as a
service ID for B3RCP services. For your own applications, you will need to use
established UUIDs for the profile you are using, or create a new UUID yourself
using one of the many UUID (sometimes called GUID) generation tools that are
commonly available on the Web.

Let’s look at the code fragment that performs the VDRV open call.

#include <PalmOS.h>

#include <BtLib.h>

#include <BtLibTypes.h>

#include < RfCommVdrv.h>

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 329

330 Chapter 8 • Using the Palm OS for Bluetooth Applications

The structure BtLibSdpUUIDType consists of a size indicator and an array of
bytes that form the UUID itself.The size of all UUIDs not declared directly in
the Bluetooth specification is btLibUuidSize128.

#define uuuidB3RCP \

{btLibUuidSize128,{0x07,0x00,0x4f,0x16,0x37,0x76,0x11,0xd5, \

0x83,0xce,0x00,0x30,0x65,0x7c,0x54,0x3c}}

UInt16 gPortId;

Err OpenPortAsClient(void)

{

Err err;

SrmOpenConfigType config;

RfVdOpenParams rfparams;

BtLibSdpUUIDType remoteServiceID = uuuidB3RCP;

// To be on the safe side, set all of the parameter structures to 0

// before starting:

MemSet(&config, sizeof(config), 0);

MemSet(&rfparams, sizeof(rfparams), 0);

config.function = 0; // non-OS components must use zero

config.drvrDataP = (MemPtr)&rfparams; // driver specific params

config.drvrDataSize = sizeof(RfVdOpenParams);

// All other elements of the SrmOpenConfigType structure are ignored

// by the Bluetooth VDRV, so skip to filling in VDRV specific info:

rfparams.role = rfVdClient; // we are the client side

// We don't care about security but the appliance may insist on it:

Rfparams.encrypt = false;

Rfparams.autheniticate = false;

// Use the discovery function in the Bluetooth Library to get the

// remote device address:

err = GetAddressFromUser(&rfparams.u.client.remoteDevAddr);

if (err) return err;

// Connect to the B3RCP server on the remote for this device.

// Instruct the VDRV to find this device by looking for its Service

// UUID:

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 330

Using the Palm OS for Bluetooth Applications • Chapter 8 331

rfparams.u.client.method = rfVdUseUuidList;

rfparams.u.client.u.uuidList.tab = &remoteServiceID;

rfparams.u.client.u.uuidList.tab = 1; // no fallback services

err = SrmExtOpen(

sysFileCVirtRfComm, // specify the use of the Bluetooth VDRV

&config, // port configuration params

sizeof(config), // size of port config params

&gPortId // put the port id in a global

);

return err;

}

Err GetAddressFromUser(BtLibDeviceAddressType* addrP)

{

Err error;

UInt16 btLibRefNum = 0;

BtLibClassOfDeviceType filter;

// Find the Bt Library:

if(SysLibFind(btLibName, &btLibRefNum))

{

// Load the Library if it can't be found:

error = SysLibLoad(sysFileTLibrary , sysFileCBtLib, &btLibRefNum);

if(error) return error;

}

// Open the Library:

error = BtLibOpen(btLibRefNum);

if(error) return error;

// Class of Device (CoD) is a value that devices return during the

// discovery process. A CoD value can be passed to the discovery

// functions as filter, to keep devices in the wrong category from

// showing up. By setting the filter type to the values used by the

// iBlend, the user will be restricted to a more appropriate subset

// of discoverable devices.

filter = btLibCOD_ServiceAny | btLibCOD_Major_Unclassified ;

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 331

332 Chapter 8 • Using the Palm OS for Bluetooth Applications

// BtLibDiscoverSingleDevice() is defined in BtLib.h, and will be

// discussed in detail later in the chapter. Basically the call

// performs a discovery and asks the user to select a device from

// the resulting list:

error = BtLibDiscoverSingleDevice(btLibRefNum, NULL, &filter, 1,

addrP,

false, false);

// You must always close the Library before returning, or the VDRV

// will not be able to open

BtLibClose(btLibRefNum);

return error;

}

WARNING

Applications and the VDRV use the Bluetooth Library in different modes.
Because of this difference, the VDRV will not be able to open while the
application is holding the Bluetooth stack open.

The main application block can now be coded to make a call to
OpenPortAsClient(). If the call returns without error, the port is open and can be
used as any normal serial port might be used. Closing the port will cause the
RFCOMM and ACL connections to be dropped. In general, protocols that run
over standard serial ports are responsible for defining their own stay-alive and
timeout conditions. In general, this is true for Bluetooth VDRV ports as well,
though if the ACL link is lost before SrmClose() is called, the SrmSend() call will
return serErrLineErr.

Now, let’s look at the problem from the other side.

Creating a VDRV Server-Only Application
As an employee of Frappé.com, you have been made the lead software engi-
neer on the iBlend, the world’s first Palm-device powered blender. Since the
iBlend is a state-of-the-art home appliance, its feature set will clearly need to

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 332

Using the Palm OS for Bluetooth Applications • Chapter 8 333

include support for B3RCP, allowing the user to make a margarita without
the inconvenience of having to walk across the room.The iBlend will need to
open the virtual serial port in the server role, which will require a slightly dif-
ferent open call.

Err OpenPortAsServer(void)

{

Err err;

SrmOpenConfigType config;

RfVdOpenParams rfparams;

BtLibSdpUUIDType localServiceID = uuuidB3RCP;

// Define a name for the service. This is optional but may be useful

// for devices that support service browsing.

Char* serviceName = "Blender Control";

// To be on the safe side, set all of the parameter structures to 0

// before starting.

MemSet(&config, sizeof(config), 0);

MemSet(&rfparams, sizeof(rfparams), 0);

config.function = 0; // non-OS components must use zero

config.drvrDataP = (MemPtr)&rfparams; // driver specific params

config.drvrDataSize = sizeof(RfVdOpenParams);

// All other elements of the SrmOpenConfigType structure are ignored

// by the Bluetooth VDRV, so skip to filling in VDRV specific info.

rfparams.role = rfVdServer; // we are the server side

// Insist on authentication, so that the mean neighbor next door can

// not control your blender:

Rfparams.encrypt = false;

Rfparams.autheniticate = true;

// Specify that the port should advertise itself in SDP with the

// B3RCP UUID. Also provide a user friendly name for the service:

rfparams.u.server.uuid = &remoteServiceID;

rfparams.u.server.name = serviceName;

err = SrmExtOpen(

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 333

334 Chapter 8 • Using the Palm OS for Bluetooth Applications

sysFileCVirtRfComm, // specify the use of the Bluetooth VDRV

&config, // port configuration params

sizeof(config), // size of port config params

&gPortId // put the port id in a global

);

return err;

}

The OpenPortAsServer() call will take care of setting up the server serial port
for the main application on your iBlend. Note that setting up the port as a server
does not cause the driver to go out and create an ACL or RFCOMM connec-
tion, it merely sets the port up as a listener. Like a normal serial port, the VDRV
will not alert the application when an incoming connection is established, the
application will simply begin to receive data from the port. Like any protocol that
runs over a serial port, B3RCP must handle session establishment and termina-
tion.The port will also accept the first inbound connection it receives, as long as
that connection meets the security requirements set in the RfVdOpenParams
structure. If the protocol or application above the serial port requires additional
security, it’s up to that layer to implement it.

Now we have seen an example of both a client-only and a server-only use of
the VDRV.At this point, you may be saying to yourself,“That’s all great and
everything, but I’m writing a Palm-to-Palm application. I need to be able to be
both client and server!” Fortunately, this is easy.The simplest way to handle this
case is to open the serial port as a server when your application is opened.When
the user does something that requires a connection (i.e., pushes a start button,
starts to generate input, and so on), close the serial port and reopen it as a client.
You will have to somehow convey to your users that only one person should
start the connection, but this is a commonplace enough idea that most users
should get it without too much hassle.

Once the port has been opened, it behaves like any other Palm OS serial
port.This means that you can use the same code and Serial Manager calls that
you use with your existing serial application. By adding a few simple routines to
open the port, you can make your legacy application Bluetooth-aware.

You should now know everything you need to know to create your first
Palm OS Bluetooth application.Alternatively, you may have found that the
VDRV doesn’t suit your Bluetooth technology needs—it is, after all, only an
emulation layer.The rest of the chapter will cover the use of the Exchange
Manager and the Bluetooth API.

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 334

Using the Palm OS for Bluetooth Applications • Chapter 8 335

Using Bluetooth Technology with
Exchange Manager
If you’re interested in using Bluetooth technology to transfer records, or if
having a constant data flow is not important to your application (as in a turn-
based game), the Bluetooth Exchange Library might be the perfect tool for you
to use.The Exchange Library allows applications to send data blocks without
having to worry too much about the underlying transport. Unlike sockets and
virtual serial drivers, the Exchange Manager is a concept unique to Palm OS.
Gavin Peacock, the engineer at Palm, Inc. who came up with the Exchange
Manager, explains that the need for the Exchange Manager comes from the lack
of a file system in the OS (OS 4 does support a file system for use with expan-
sion cards, but the user is unaware of it). In other OSs, if the user wants to send
a file over a given transport, they save the file somewhere and then go to the
application responsible for that transport (i.e., the e-mail application, the IR
exchange application, and so forth) and specify the file they want to send. In
Palm OS, the Exchange Manager creates a singular API that brings all of the
available transports to each application, avoiding the need to deal with file sys-
tems and transport-specific applications.The Palm OS SDK documents go into
the use of the Exchange Manager in great detail; we’ll concentrate here on new
issues that are of particular relevance to using the Bluetooth Exchange Library.

The Bluetooth Exchange Library is so easy to use, your application might
already be set up to use it.The Exchange Manager in Palm OS 4.0 introduced a
new URL send scheme, known as the exgSendScheme. Rather than referring to a
specific transport, the send scheme instructs the Exchange Manager to allow the
user to pick which of the installed transports they wish to utilize.The Bluetooth
Exchange Library registers itself for the exgSendScheme, so if you’ve already
updated your application to take advantage of the exgSendScheme, it should work
with Bluetooth technology as soon as you have installed the Bluetooth .prc files.
If you haven’t yet updated your application to use send, the Address Book code in
the SDK contains a good example of how exgSendScheme is used. If you know
that your application only wants to use Bluetooth technology, you can indicate
this by using the btExgScheme (“_btObex”) instead of the exgSendScheme.The
result will be the same as using the exgSendScheme, except that the user won’t be
offered a choice of transports.

Once the Bluetooth system has been chosen as the transport, the Exchange
Library will automatically perform a discovery in order to determine the

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 335

336 Chapter 8 • Using the Palm OS for Bluetooth Applications

address of the remote device it should connect to. If you already know the
Bluetooth device address you wish to connect to, you can indicate this in the
URL by sticking the address in the URL you pass in with the exchange socket
as follows:

Char *urlBase = "_btObex://12.34.56.78.9A.BC/filename.ext"

In reality, you would probably build this URL string dynamically, instead of
hard coding it.The first section of the URL defines the scheme, as discussed ear-
lier.The second section of the URL is a character representation of the
Bluetooth device address of the target device. If you have the device address
stored in a BtLibDeviceAddressType structure, you can easily convert the address to
a string by calling BtLibAddrBtdToA() (this function can be called without first
opening the Bluetooth Library).This kind of usage might be useful in situations
where the application keeps some kind of “buddy list” of devices, making a dis-
covery unnecessary. In addition to a single device address, the second section of
the URL can also use the meta-addresses “_single” and “_multi”, which indicate
that the Exchange Library should perform a discovery and prompt the user to
select one or multiple devices, respectively. For multiple recipients, the URL
addressing convention is to separate the recipient’s Bluetooth device addresses
with a comma, as follows:

Char *urlBase = "_btObex://11.22.33.44.55.66,77.88.99.AA

.BB.CC/filename.ext"

The last section of the URL is the name and extension you wish the file to
have when it is sent to the remote device.

In some applications, such as a chess game, you may wish to have a discovery
occur on the first move, but then always use the same device address for each
move afterwards.This can be accomplished using a new ExgMgr call control call
named exgLibCtlGetURL.The Bluetooth Exchange Lib is the first to implement
this control, but it is expected that other Exchange Libraries that use addresses
(such as SMS) will be updated to use it soon.The purpose of the
exgLibCtlGetURL control is to allow the application to retrieve an exchange
sockets URL after the Exchange Library has filled it out.The call can be made
any time after a successful ExgPut(), ExgConnect() or ExgAccept() call, and before
ExgDisconnect() is called.

When invoking the exgLibCtlGetURL control, the valueP parameter passed
to ExgControl() should be a pointer to a ExgCtlGerURLType structure, which is
defined as:

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 336

btObex://12.34.56.78.9A.BC/filename.ext
btObex://11.22.33.44.55.66,77.88.99.AA

Using the Palm OS for Bluetooth Applications • Chapter 8 337

typedef struct _ ExgCtlGerURLType {

ExgSocketType *socketP;

Char *URLP;

UInt16 URLSize;

} ExgCtlGerURLType;

Obviously, socketP is a pointer to the ExgSocket you are trying to get the URL
for, URLP is a pointer to the character buffer where the URL will be stored, and
URLsize is the size of the buffer. If the call is successful, the URL buffer will be
filled in, and so will the length of the URL (including the mandatory NULL ter-
minator). If the application wants to dynamically allocate the URL buffer space, it
can first make the call with the URLP set to NULL and the URLSize parameter
set to 0. In this case, the call will simply return the URL size so that the applica-
tion can allocate an appropriately-sized buffer to retrieve the URL with. Once
the application has retrieved the URL, it can utilize the same URL with future
ExgSockets to indicate that it wants to use the same exchange scheme and remote
device.The Tic-Tac-Toe application in the Palm OS Bluetooth developer kit
provides an excellent example of an application that makes use of the Bluetooth
Exchange Libraries’ URL scheme to create a two-player game.

On the receiving side, the application is generally unaware of which exchange
transport is being used.

In certain scenarios, such as the chess game just described, the receiving app
may wish to grab the sender’s address from the URL for use in subsequent moves.

Creating Bluetooth-Aware
Palm OS Applications
The VDRV and Exchange Manager simplify using Bluetooth technology by
encapsulating it inside familiar and easy-to-use interfaces, but the simplification
also hides functionality and increases overhead. If the Exchange Manager or the
VDRV suit your needs, then you should certainly use them, but if your applica-
tion requires direct access to Bluetooth protocol layers or management functions,
then you will need to make use of the Bluetooth Library (BtLib) API.This sec-
tion will cover the use of the Library and provide some examples of good coding
practices.

The Bluetooth Library API is fairly large, consisting of over sixty calls, and
can generally be divided into six sections:

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 337

338 Chapter 8 • Using the Palm OS for Bluetooth Applications

1. Common Library calls Calls common to all libraries: Open, Close,
Sleep, and Wake.

2. Management calls Used for Discovery, managing ACL links, and
global Bluetooth settings.

3. Socket calls Used to manage RFCOMM, L2CAP, and SDP
communications.

4. SDP calls Used to create and advertise service records to remote
devices and to discover services available on remote devices.

5. Service calls Allows application developers to create persistent
Bluetooth services (daemons).

6. Security calls Used for managing the Trusted (Bonded) Device
database.

This section focuses on the Management and Socket sections of the API, with
a brief discussion of how to advertise your application using SDP.You should find
that the Bluetooth API offers extensive access to Bluetooth functionality while
managing to keep things relatively simple. Using the Bluetooth Library directly
requires a better understanding of Bluetooth technology than using the VDRV or
the Exchange Library, but the Library handles most of the minutiae of the
Bluetooth protocols.

Like many communications interfaces, the Bluetooth API is made up of both
synchronous and asynchronous calls.The synchronous calls block while they do their
work and return a result when they are complete.These calls are used when the
operations involved are purely local, not involving the radio or remote Bluetooth
devices, and thus can be assured to complete in a reasonable time frame.
Asynchronous calls are used whenever the operation involves talking to an
external entity such as the radio or a remote Bluetooth device.This is done
because most Palm OS developers work in a single thread, and thus should not be
blocked for a long period of time while waiting for a call to return.Asynchronous
calls return almost immediately and then report their results through a callback
that the application must register to receive.The header files identify the asyn-
chronous calls by noting that they return a “Pending” result and by listing the
events that you can expect the call to generate.You may notice that a few of the
asynchronous calls, such as BtLibStartInquiry(), generate multiple events.

There are two types of events: management events, which contain the results of
management API activities, and socket events, which contain information about
activity on a particular L2CAP, RFCOMM, or SDP socket. Management events

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 338

Using the Palm OS for Bluetooth Applications • Chapter 8 339

are sent to a management callback, which the application should register after
opening the Library. Socket events are passed to the callback that is passed in
when the socket is created.While these data structures are termed
“ManagementEvents” and “SocketEvents,” they should not be confused with the
general Palm OS events type used in the application event loop; the Bluetooth
Library events are separate and unrelated to Palm OS events or notifications.

NOTE

It is worth noting that there are a few things that a Palm OS application
cannot do even when using the Bluetooth Library directly. The Library
does not currently allow applications to put the Palm device or the
remote device into park, hold, or sniff modes. While an application can
request that a given link be authenticated or encrypted, for security rea-
sons the application is not allowed to specify the authentication passkey
or insist that a device be added to a list of trusted (or bonded) devices.

Using Basic ACL Links
Before you can use the Bluetooth Library, you must find the Library and open it.
Opening the Library will cause the OS to initialize the Bluetooth stack and
radio. Stack initialization is an asynchronous function, so immediately after
opening the stack, you should register a management callback.When the initial-
ization is complete (this requires about 50ms for most radios), the callback will
receive a btLibManagementEventRadioState event, whose status field will indicate
whether the initialization was successful. Most of the calls to the Bluetooth
Library require that the radio be initialized, and making these calls before the
btLibManagementEventRadioState event is received will result in an error.The
Bluetooth stack supports re-entry from the callback, so any additional configura-
tion you wish to do can be done from the callback when the radio state event is
received. Here is a quick example of how to open and close the Library:

static UInt16 gBtLibRefNum = 0;

// AppStart should be called during application initialization:

static Err AppStart(void)

{

Err error = 0;

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 339

340 Chapter 8 • Using the Palm OS for Bluetooth Applications

// Find the Library, and save its reference number in a global:

error = SysLibFind(btLibName, &gBtLibRefNum);

if(error)

{

// Normally, if a Library can't be found, then the application

// should simply load it. The Bluetooth Library, however, is pre-

// loaded by the Bluetooth Extension at boot time. Failing to find

// the Library indicates there is a problem, and the application

// should warn the user. Here we will display an alert dialog

// that has been defined in the application's resource file:

FrmAlert(BtLibNotFoundAlert);

return error;

}

// Open the Library:

error = BtLibOpen(btLibRefNum);

// If the open returned an error, warn the user:

if(error)

{

FrmAlert(BtLibOpenFailedAlert);

return error;

}

else // ... otherwise register a management callback

{

BtLibRegisterManagementNotification(gBtLibRefNum,

MyBtLibManagementCallbackProc, 0);

}

return errNone;

}

AppStop should be called just before the application exists:

static Err AppStop(void)

{

// Always unregister the management notifications before closing.

// This prevents your callback functions from accidentally being

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 340

Using the Palm OS for Bluetooth Applications • Chapter 8 341

// called after your app quits if the library is somehow kept open

// (perhaps by another application) after your application exists:

BtLibUnRegisterManagementNotification(gBtLibRefNum,

MyBtLibManagementCallbackProc);

// Close the Bluetooth Library:

BtLibClose(gBtLibRefNum);

return errNone;

}

void MyBtLibManagementCallbackProc(BtLibManagementEventType *mEventP,

UInt32 refCon)

{

switch(mEventP->event)

{

case btLibManagementEventRadioState:

if (mEventP->status == btLibErrRadioInitialized)

{

// Do any additional initialization here.

}

else

{

// Warn the user that the initialization failed:

FrmAlert(BtLibRadioInitFailedAlert);

}

break;

// Handle other events here.

}

}

If your application is going to receive inbound connections, you should check
to make sure that the radio’s accessibility mode has been set to allow connection
and (if desired) discovery.The current accessibility mode can be obtained by
calling BtLibGeneralPreferenceGet() and passing the btLibPref_UnconnectedAccessible
value for the preference type.The accessible state of the device is determined by

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 341

342 Chapter 8 • Using the Palm OS for Bluetooth Applications

the user’s settings in the Bluetooth Preferences Panel, and the application should
never override this state without first asking the user’s permission. If the applica-
tion does get the user’s permission to change the state, it can do so by making a
call to BtLibSetGeneralPreference(). Calling BtLibSetGeneralPreference() does not
change the user-defined preferences, but rather only temporarily overrides them;
nonetheless, the application should record the original radio settings, and restore
them before exiting. If the user has set Bluetooth technology to be OFF in the
Preferences panel, the Library itself will prompt the user before allowing an appli-
cation to change settings that affect the radio.The application should never
attempt to override the OFF setting.

If you plan to have your application create outbound Bluetooth connections, you
will probably want to perform a device discovery in order to allow the user to
select the remote device(s) with which she wished to create a connection.The
Bluetooth Library offers two similar calls that handle the entire discovery experi-
ence, including inquiry, name retrieval, and user selection. BtLibDiscoverSingleDevice()
and BtLibDiscoverMultipleDevices() differ only in that the number of the devices the
UI will allow the user to select, and the fact that BtLibDiscoverSingleDevice() returns
the selected device directly while BtLibDiscoverMultipleDevices() returns the number
of devices selected, which can then be retrieved by passing an appropriately sized
array to BtLibGetSelectedDevices().

The discovery calls are designed to create a standardized user experience
while still offering enough flexibility to be useful to a wide range of applications.
Some of these things are quite simple, like letting the application specify the
instruction text on the user selection screen.A chess game might pass, for
example, the string Choose an opponent while a printing application might want to
ask the user to “Select a printer.” One of the most useful features of the discovery
calls is the ability to filter out any devices that do not belong to one of the classes
specified by the application. Using this feature, a Palm-to-Palm game could pre-
vent non-PDA devices from showing up in the list of discovered devices, thus
limiting the users’ choices to the appropriate class of device. If an application
passes in multiple CoD descriptions, the application will show devices that fit any
of the indicated classes.The following is an example of a discovery call that will
display all smart phones and all classes of computers:

Err DoDiscovery(BtLibDeviceAddressType* resultP)

{

BtLibClassOfDeviceType allowedDeviceClasses[2];

// Each COD contains one or more service classes, along with a Major

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 342

Using the Palm OS for Bluetooth Applications • Chapter 8 343

// and Minor Device Class:

allowedDeviceClasses[0] = btLibCOD_ServiceAny | btLibCOD_Major_Phone

| btLibCOD_Minor_Phone_Smart;

allowedDeviceClasses[1] = btLibCOD_ServiceAny |

btLibCOD_Major_Computer |

btLibCOD_Minor_Comp_Any;

// Do the discovery. Use the default instruction, and stick the

// result in the location that was passed in:

return BtLibDiscoverSingleDevice(

gBtLibRefNum, // the Library reference number

NULL, // use the default instruction text

allowedDeviceClasses, // the filter list

2, // the filter list length

resultP, // store the selection here

false,// don't use addresses instead of names

false); // don't skip the inquiry

}

You may have noticed that the discovery call contains two arguments that
haven’t yet been mentioned, the last two arguments: addressAsName and showLastList.
The addressAsName argument instructs the Library to skip name retrieval and instead
display the numeric Bluetooth device addresses of each of the devices.This is mainly
useful as a debug tool, since in general we try to shield the user from long dealing
with long numeric addresses.The showLastList argument causes the Library to skip
the inquiry phase and instead show the same list as the last discovery.These two dis-
covery calls should be flexible enough to handle most applications’ needs; if for some
reason, however, an application requires something outside of the discovery calls sup-
ported activities, the application can implement it’s own discovery procedure using
the BtLibStartInquiry() and BtLibGetRemoteDeviceName() calls detailed in the BtLib.h
file. Once the application has set the appropriate accessibility mode and gained the
address of a remote device (or devices) it wishes to connect to, it can begin the pro-
cess of establishing ACL connections.

Bluetooth piconets have a star formation; one master connected to up to
seven active slaves.The Bluetooth specification talks about overlapping networks
of two or more piconets called scatternets (see Figure 8.3).These, however, are not
well-defined and none of the Bluetooth radios currently available are capable of
creating or managing scatternet formations.

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 343

344 Chapter 8 • Using the Palm OS for Bluetooth Applications

In single connection applications, where applications participate only in
one-to-one connections or as a slave in one-to-many connections, ACL estab-
lishment is very simple.To receive an inbound ACL connection, the application
should simply wait for the Management Callback to receive a
btLibManagementEventACLConnectInbound event.This event will contain the
address of the remote device, if the application wishes to reject the connection,
it can call BtLibLinkDisconnect() in the callback.To create an outbound link, the
application should call BtLibLinkConnect() with the address of the device it

www.syngress.com

Figure 8.3 Piconets and Scatternets

S

S

S

S

S

S

S

S

S

S

S
M

M

S
S

M

S

S

S

S/S

M

S

S/M

S

S

Piconet

Scatternets

160bluetooth_C08.qk 12/5/01 3:59 PM Page 344

Using the Palm OS for Bluetooth Applications • Chapter 8 345

wishes to connect to, and wait for a btLibManagementEventACLConnectComplete
to indicate whether the connection attempt was successful. By default, the ini-
tiator of a link is the master and the recipient of the link is the slave.When
there is only one ACL connection, the role of the local device is unimportant,
and the Palm OS will allow the master/slave switch to be performed.The OS
will also change the accessibility mode to disable page scanning and inquiry
scanning while a connection is in place, which will prevent unwanted connec-
tion attempts and increase the bandwidth available to the application.

If the application wishes to allow multiple connections, it should use the
piconet calls found in BtLib.h:

■ Err BtLibPiconetCreate(UInt16 btLibRefNum, Boolean unlockInbound,
Boolean discoverable)

■ Err BtLibPiconetDestroy(UInt16 btLibRefNum)

■ Err BtLibPiconetUnlockInbound(UInt16 btLibRefNum, Boolean
discoverable)

■ Err BtLibPiconetLockInbound(UInt16 btLibRefNum)

The applications must first call BtLibPiconetCreate().This call indicates to the
Library that you want to create a multiple device piconet, and changes some of
the policies that the OS uses. In order to have multiple ACL connections, a
device must be the master of its piconet. Calling BtLibPiconetCreate() changes the
OS policies to disable the master/slave switch on outbound connections (so that
it remains master) and forces the master/slave switch on inbound connections (so
that it becomes the master). If the device is already a slave in an ACL connection
when BtLibPiconetCreate() is called, the call will return a pending response, and
attempt to become the master of the link.The Bluetooth Lib will then generate a
btLibManagementEventPiconetComplete event to inform the application whether or
not the piconet creation was successful. If the device is a master in an ACL con-
nection, or there are no ACL connections in place to begin with,
BtLibPiconetCreate() will return a success response and no event will be generated.

Once a successful BtLibPiconetCreate() call has been made, up to seven simulta-
neous ACL connections can be established. Depending upon the usage model for
your application, you may wish to have the piconet master actively create out-
bound connections, wait for inbound connections from remote devices, or both.

Outbound connections can be created at any time, simply by having the
application call BtLibLinkConnect() with the address of each remote device with

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 345

346 Chapter 8 • Using the Palm OS for Bluetooth Applications

which it wishes to form a connection. Each call to BtLibLinkConnect() will gen-
erate a btLibManagementEventACLConnectComplete event with the result of the
connection attempt in the status field. Similarly, calling BtLibLinkDisconnect() will
cause the radio to disconnect an ACL link.Whenever a link is dropped, perhaps
as the result of having called BtLibLinkDisconnect() or as the result of an action on
the remote device or from range or interference problems, a
btLibManagementEventACLDisconnect event will be generated.The status field of
the event will give the reason for the disconnection.

In order to allow inbound connections, the piconet must be unlocked for
inbound connections. Locking and unlocking the piconet affects the accessibility
state of the radio. Unlocking the piconet causes the radio to periodically scan for
inbound connections (a state called Page Scan mode in the Bluetooth core speci-
fication, or “connectable” in the Generic Access profile).When unlocking a
piconet, the application can also specify that the radio should scan for and
respond to discovery requests (called Inquiry Scan mode in the Bluetooth core
specification or “discoverable” in the Generic Access Profile). Locking the
piconets will make the device non-connectable and non-discoverable. If the
piconet is full (i.e., if seven ACL connections are in place), the OS will also make
the radio non-connectable and non-discoverable, even if the piconet is unlocked,
until one of the ACL connections is dropped.After BtLibPiconetCreate() is called,
the lock/unlock state of the piconet overrides the user’s accessibility preferences
or the accessibility mode set with BtLibSetGeneralPreference().When the applica-
tion calls BtLibPiconetDestroy(), the OS will return, sever all ACL connections and
set the accessibility mode back to its original state.While the application is free to
leave the piconet unlocked all of the time, you should be aware that since the
radio will periodically have to spend time performing page and inquiry scans, the
throughput on the ACL links of an unlocked piconet will be lower than the
throughput of the links on a locked piconet. Bandwidth-conscious applications
should leave the piconet locked most of the time.

Creating L2CAP and RFCOMM Connections
The L2CAP and RFCOMM protocol layers are exposed in the Bluetooth API
through a sockets-based interface.The SDP interface uses the sockets-based API
as well, but that will be discussed further in the following section.The application
creates a socket by calling BtLibSocketCreate(), which allocates a socket structure
and associates it with a protocol. BtLibSocketCreate() also takes a callback function
pointer as an argument; this callback is associated with the socket and will receive
all of the events for that socket.After a socket is created, it needs to be assigned a

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 346

Using the Palm OS for Bluetooth Applications • Chapter 8 347

role.The application can make the socket into a listener for inbound connections
by calling BtLibSocketListen(), or create an outbound connection by calling
BtLibSocketConnect().When an inbound connection occurs, a listener socket will
spawn a new socket for that connection. It’s worth noting that the ability to
create and receive RFCOMM and L2CAP connections is entirely independent
of the device’s role in a piconet; a device that receives an inbound ACL connec-
tion may create an outbound L2CAP connection. It’s really up to the profile or
the application you are working with. In this section, we’ll look at how to create
and use sockets for L2CAP and RFCOMM communication.

www.syngress.com

RFCOMM versus L2CAP
Before we get too far into the Palm OS specific handling of L2CAP and
RFCOMM, let’s take moment to examine the two layers themselves. As
you will have noticed by now, the RFCOMM is built on top of the L2CAP
layer. In general, when we see protocols layered on top of each other, we
assume that the upper layer protocol somehow extends the functionality
of the protocol layer below it. For example, most of us are familiar with
the fact that the IP layer of the TCP/IP stack is responsible for routing and
delivering packets through a network, and that the TCP layer builds on
top of IP to offer reliability and in-order delivery. This is not really the case
for RFCOMM and L2CAP, however. RFCOMM and L2CAP are both what
the OSI model describe as Data-Link layer protocols; which is to say that
both are concerned with reliably delivering packets of data between two
linked devices: in our case, a master and a slave. Neither L2CAP nor
RFCOMM offer any kind of networking or routing functions. They are
only capable of delivering data to devices with which there is a direct ACL
link. Given these similarities, many people have wondered why both pro-
tocols exist in the Bluetooth stack. This is a very good question, without
a very good answer. The short answer is that RFCOMM is a legacy of the
original goal of Bluetooth technology: to create a wireless replacement
for serial cables. If you look in the RFCOMM specification, you will see
that the protocol deals heavily with physical line simulation, giving upper
layers the ability to set and poll individual line states, just as they would
with a physical serial port. In reality, however, very little use is made of

Developing & Deploying…

Continued

160bluetooth_C08.qk 12/5/01 3:59 PM Page 347

To create a listener socket, first allocate a socket with your desired protocol by
calling BtLibSocketCreate(), then register the socket as a listener by calling
BtLibSocketListen(). Since listener sockets do not need to specify a remote device,
they can be created any time after opening the Library, whether or not there are
any ACL links in place.The listenInfo argument to BtLibSocketListen() is a pointer
to a structure of type BtLibSocketListenInfoType, which contains protocol-specific
listening information.

typedef struct BtLibSocketListenInfoType {

union {

www.syngress.com

these serial port emulation features of the protocol, and in general, it is
treated as a simple packet-based data-link layer. While most of the pro-
files in the 1.1 specification make use of the RFCOMM layer, over time I
think we will see most new usage models run directly over L2CAP.

There are, however, a few differences between L2CAP and RFCOMM
that may influence which one you decide to use. Since RFCOMM runs on
top of L2CAP, RFCOMM has a slightly higher header overhead than
L2CAP does (about 5 extra bytes), which decreases RFCOMM’s total data
throughput and MTU size. A more important difference is that RFCOMM
provides flow control, while L2CAP does not. This means that an L2CAP
channel is capable of pushing data at you as fast as the remote device
can send it, and there is no way for the application to flow the L2CAP
channel off. This is not really a problem; it simply means that applica-
tions or protocols that run on top of L2CAP must be able to handle the
flow control themselves, while applications that run on top of RFCOMM
can make use of its built-in flow control. Another important difference
between RFCOMM and L2CAP is the way that inbound connections to
listeners are handled. We will talk in more detail about the differences
between L2CAP and RFCOMM listener sockets in a moment, but the
main divergence to note is that an RFCOMM listener is only capable of
supporting one connection at a time, while a L2CAP listener can receive
an unlimited number of connections. For applications that only make
use of single ACL links, the difference is probably not important, but for
an application that wants to be a server in a seven-slave piconet, having
to only register and advertise one socket can be a big convenience.

Of course, if your application involves functionality covered by a
Bluetooth profile you will not have to make a choice of which layer to
use as the profiles provide guidance on how to use the Bluetooth pro-
tocol stack.

348 Chapter 8 • Using the Palm OS for Bluetooth Applications

160bluetooth_C08.qk 12/5/01 3:59 PM Page 348

Using the Palm OS for Bluetooth Applications • Chapter 8 349

struct {

// The PSM (Protocol Service Multiplexor) identifies the

// destination of an L2CAP channel. Predefined PSM values are

// permitted; however, they must be odd, within the range of

// 0x1001 to 0xFFFF, and have the 9th bit (0x0100) set to zero.

// Passing in BT_L2CAP_RANDOM_PSM will automatically create a

// usable PSM for the channel. In this case the actual PSM value

//will be filled in by the call.

BtLibL2CapPsmType localPsm;

UInt16 localMtu;

UInt16 minRemoteMtu;

} L2Cap;

struct {

// Service IDs are assigned by the RFCOMM protocol layer. The

// serviceID assigned an RFCOMM listener socket is returned

// in the serviceID field of the listen info:

BtLibRfCommServerIdType serviceID;

// BT_RF_MIN_FRAMESIZE <= maxFrameSize <= BT_RF_MAX_FRAMESIZE

// Use BT_RF_DEFAULT_FRAMESIZE if you don't care

UInt16 maxFrameSize;

// Setting advance credit to a value other then 0 causes the

// socket (upon a successful connection) to automatically

// advance the remote device the set amount of credit.

// Additional credit can be advanced once a connection is in

// place with the BtLibSocketAdvanceCredit call.

UInt8 advancedCredit;

} RfComm;

} data;

} BtLibSocketListenInfoType;

The BtLibSocketListenInfoType structure is interpreted based upon the protocol
assigned to the socket that is becoming a listener.As you can see, slightly different
information is used to register an RFCOMM listener than to register an L2CAP

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 349

350 Chapter 8 • Using the Palm OS for Bluetooth Applications

listener. L2CAP identifies available listeners by a Protocol Service Multiplexor
(PSM), which can be thought of as being similar to an IP port. PSM values up to
0x1000 are reserved for use by the Bluetooth SIG.Values above 0x1000 can be
used by applications, as long as the ninth bit (0x0100) is set to zero (the ninth bit
is an escape bit to indicate a PSM longer than 16 bits, which the Palm OS does
not currently support).While you are welcome to define your own PSM, the fact
that there is no central registry for PSM values means that you cannot be assured
you will be able to avoid conflicts with other applications on the device.A better
idea is to pass in BT_L2CAP_RANDOM_PSM, which will cause the OS to
assign an available PSM value to the listener.You can let remote applications
know which PSM to connect to by advertising the PSM value with SDP, dis-
cussed in the next section.

The localMtu and minRemoteMtu values are used by L2CAP to negotiate the
maximum packet size from the connection. Both localMtu and minRemoteMtu
must be between BT_L2CAP_MAX_MTU and BT_L2CAP_MIN_MTU and
minRemoteMtu must be less than or equal to localMtu.

The RFCOMM protocol uses a simple enumeration called a Server ID to
distinguish its listeners. Unlike the L2CAP PSM value, an RFCOMM listener
socket’s Server ID cannot be chosen by an application. Rather, Server IDs are
sequentially assigned by the OS. Like L2CAP listener socket’s PSM values, after
an application has created an RFCOMM listener socket, it should advertise the
listener socket’s Server ID using SDP.The RFCOMM listen parameters also
include a maxFrameSize that defines the maximum frame size allowed for the
channel, and should be between BT_RF_MIN_FRAMESIZE and
BT_RF_MAX_FRAMESIZE.The RFCOMM listen parameters also contain an
advanceCredit field that allows an application to specify a default amount of credit
a remote device should be advanced upon connection (more on RFCOMM
credit-based flow control in a moment).

Once a listener socket has been created, it will wait for connection attempts
until the socket is closed with the BtLibSocketClose() call or until the Library is
closed (as a precaution, applications should always close all sockets before they
close the Library, since another application may hold the Library open even after
you close it).When an L2CAP or RFCOMM connection attempt is made, the
appropriate listener socket’s callback will be sent a btLibSocketEventConnectRequest
event.The socket must call BtLibSocketRespondToConnection() during the callback
to accept or reject the inbound connection.After responding, the listener socket
will receive a btLibSocketEventConnectedInbound event; the status field indicates
whether or not the connection was successfully negotiated. If the connection was

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 350

Using the Palm OS for Bluetooth Applications • Chapter 8 351

successful, the listener socket will spawn a new connection socket, which will be
identified in the btLibSocketEventConnectedInbound event structure.The new con-
nection socket will share a callback with its parent listener socket (you can identify
which socket an event is for by looking at the socket field of the event structure).

To create an outbound connection, the application should first allocate a
socket by calling BtLibSocketCreate(), and then create a connection with that socket
by calling BtLibSocketConnect(). Like BtLibSocketListen(), BtLibSocketConnect() takes a
pointer to a structure that indicates protocol-specific parameters.

typedef struct BtLibSocketConnectInfoType {

BtLibDeviceAddressTypePtr remoteDeviceP;

union {

struct {

BtLibL2CapPsmType remotePsm;

UInt16 minRemoteMtu;

UInt16 localMtu;

} L2Cap;

struct {

BtLibRfCommServerIdType remoteService;

UInt16 maxFrameSize;

UInt8 advancedCredit;

} RfComm;

} data;

} BtLibSocketConnectInfoType;

As you can see, most of the information contained in the
BtLibSocketConnectInfoType is analogous to information in the
BtLibSocketListenInfoType, and like the BtLibSocketListenInfoType is interpreted
based upon the protocol of the socket passed to the BtLibSocketConnect() call.
The minRemoteMtu, localMtu, and maxFrameSize fields are used by the lower
layers to negotiate the maximum packet size for the connection, and the
advancedCredit is used by RFCOMM to automatically advance flow control
credits upon connection.The remotePsm and remoteService, for L2CAP and
RFCOMM sockets respectively, are used to determine which listener socket to
connect to on the remote device. If the desired service on the remote device has
a statically assigned L2CAP PSM value (not recommended, see earlier), the PSM

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 351

352 Chapter 8 • Using the Palm OS for Bluetooth Applications

value can be defined directly in the application. In most cases, you will want to
use SDP to find the PSM or Server ID for the remote service.After
BtLibSocketConnect() has been called, the socket callback will receive a
btLibSocketEventConnectedOutbound event, with a status field that indicates
whether or not the connection was successful.

Once a connection socket, inbound or outbound, has successfully been estab-
lished, data can begin to flow.The application can send data by calling
BtLibSocketSend(), and will receive data through btLibSocketEventData events sent to
the sockets callback. BtLibSocketSend() will cause a btLibSocketEventSendComplete
event to be generated when the data has been successfully transmitted. In order to
minimize memory consumption and processing time, the Bluetooth Library does
not buffer outbound or inbound data.This means that applications are responsible
for handling their own buffering.When an application calls BtLibSocketSend(), it
should consider the memory block indicated by the data pointer to be owned by
the Bluetooth Library until the application receives a btLibSocketEventSendComplete
event. Changing or freeing the memory block during this time can corrupt the
data being sent, or even crash the device. Since the Library does not buffer data,
only one call to BtLibSocketSend() can be pending at any given time; additional
calls will result in a “busy” error. Since the Library does not buffer inbound data,
the application must handle the data indicated in a btLibSocketEventData immedi-
ately, either by processing the data immediately or by copying and storing it for
future processing. Once the btLibSocketEventData callback has returned, the event
data pointer is no longer valid.

In the case of RFCOMM connection sockets, in order to receive data, the
application must first advance credits by calling BtLibSocketAdvanceCredit(). Each
RFCOMM flow control credit represents one packet on that channel.
Advancing 10 credits indicates to the remote device that your application is
ready to receive up to ten packets. Credit advances are cumulative, so making
three calls to BtLibSocketAdvanceCredit() with a value of 5 credits would extend a
total of 15 credits to the remote device.The credit count for a socket is decre-
mented each time that the socket receives a packet.When the credit count
reaches zero, the remote device is blocked from sending data on the channel.
You should look at the total available buffer space your application has available
and divide by the channel’s maximum receivable packet size (that is, the
Maximum Receivable Unit [MRU]) for the socket (found by calling
BtLibSocketGetInfo()), and rounding down to find the number of credits your
application should initially advance.When your application has processed data
from its buffer, it can advance credits corresponding to the size of the processed

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 352

Using the Palm OS for Bluetooth Applications • Chapter 8 353

data divided by the channel MRU.A maximum of 256 total credits can be
advanced at any given time.

Handling your own buffering is not as much work as it might seem. In most
cases, a few simple queue structures will suffice.The following is an example
buffering code from a shared white board application. In this case, the application
keeps only one queue for buffering outbound data; inbound data does not need
to be buffered since it is handled immediately by drawing to the screen. Since
space is limited, instead of giving the source code for an entire Palm application,
this section will focus on a few important functions that can be used in a
Bluetooth-aware application. For example, instead of putting in an entire OS
event loop, the example only shows a pen event handler, which is called from the
main event loop. For the purpose of this example, we will assume the existence
of some standard queue functions that allow us to create and manage a normal
first-in-first-out queue.We will also assume that the application has already man-
aged to open the Library and create an L2CAP connection.

struct _DrawDataType {

UInt16 from_X;

UInt16 from_Y;

UInt16 to_X;

UInt16 to_Y;

} DrawDataType;

// Globals

UInt32 btLibRefNum;

#define TX_QUEUE_MAX_SIZE 50

QueueType txQueue;

BtLibSocketRef connectionSocket;

#define INVALID_PEN_COORD 0xFFFF

UInt16 lastLocalPen_X = INVALID_PEN_COORD;

UInt16 lastLocalPen_Y = INVALID_PEN_COORD;

// TxQueueInit is called from AppStart

Err TxQueueInit(void)

{

// Initialize the TX queue, using the defined queue size and the size

// of our data elements:

return QueueInit(txQueue, TX_QUEUE_MAX_SIZE, sizeof(DrawDataType));

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 353

354 Chapter 8 • Using the Palm OS for Bluetooth Applications

}

// TxQueueInit is called from AppStop

Err TxQueueDeInit(void)

{

return QueueDeInit(txQueue);

}

Boolean ConnectionUp(void)

{

BtLibL2CapChannelIDType channel;

if (btLibErrNoError == BtLibSocketGetInfo(btLibRefNum,

connectionSocket, btLibSocketInfo_L2CapChannel,

&channel, sizeof(channel)))

return true;

else

return false;

}

Boolean SendPending(void)

{

Boolean sending = false;

BtLibSocketGetInfo(btLibRefNum, connectionSocket,

btLibSocketInfo_SendPending, &sending,

sizeof(sending));

return sending;

}

// HandlePenEvent is called by the form event handler for pen down, pen

// move, and pen up events:

Boolean HandlePenEvent(EventPtr eventP)

{

Err error;

switch (eventP->eType)

{

case penDownEvent:

if (ConnectionUp())

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 354

Using the Palm OS for Bluetooth Applications • Chapter 8 355

{

lastLocalPen_X = eventP->screenX;

lastLocalPen_Y = eventP->screenY;

}

break;

case penUpEvent:

lastLocalPen_X = INVALID_PEN_COORD;

lastLocalPen_Y = INVALID_PEN_COORD;

break;

case penMoveEvent:

{

DrawDataType penData;

// If the last pen value is valid, than a connection is in

// place. Otherwise ignore the event:

if(lastLocalPen == INVALID_PEN_COORD)

break;

penData.from_X = lastLocalPen_X;

penData.from_Y = lastLocalPen_Y;

penData.to_X = eventP->screenX;

penData.to_Y = eventP->screenY;

// Draw the local pen stroke on our screen:

DrawData (&penData);

// Enqueue the draw data in the TxBuffer:

error = QueueEnqueue(txQueue, &penData);

if(error)

{

// The Tx queue has overflowed. Handling this is application

// dependant, so we'll just display an error and break:

FrmAlert(TxQueueOverflowAlert);

break;

}

// Attempt to send now. If there is already a send pending, the

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 355

356 Chapter 8 • Using the Palm OS for Bluetooth Applications

// call will return an error, but we don't care because the send

// complete callback will see that there is pending data in the

//queue:

AttemptSend();

break;

}

// Always return false when handling pen events so that the OS gets a

// chance to handle them too:

return false;

}

void DrawData(DrawDataType dataP)

{

WinDrawLine(dataP->from_X, dataP->from_Y, dataP->to_X, dataP->to_Y);

}

Err AttemptSend(void)

{

Err error;

UInt32 numToSend = GetNumToSend();

UInt8 *dataP;

UInt32 dataSize;

if(numToSend == 0) return errNone;

dataP = (UInt8*) QueueHeadPtr(txQueue);

dataSize = numToSend * QueueElementSize(txQueue);

return BtLibSocketSend(btLibRefNum, connectionSocket, dataP,

dataSize);

}

UInt32 GetNumToSend(void)

{

UInt32 numPossible, channelMaxTxsize;

Err error;

// find the maximum size packet the socket can send

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 356

Using the Palm OS for Bluetooth Applications • Chapter 8 357

error = BtLibSocketGetInfo(btLibRefNum, connectionSocket,

btLibSocketInfo_MaxTxSize, & channelMaxTxsize,

sizeof(channelMaxTxsize));

// Make sure we didn't get an error:

if (error)

{

ErrAlert(error);

return 0;

}

// Find the maximum number of data structures that can be sent in one

// packet:

numPossible = channelMaxTxsize / sizeof(DrawDataType);

// If numPossible == 0, then the minRemoteMtu used in establishing

// the connection was too small. You should check the value here and

// deliver some kind of appropriate error message.

// The number of queue items the application should try to send

// assume QueueSize() returns the in use size, not the max size:

return min(numPossible, QueueSize(txQueue));

}

// This is the callback associated with the connection socket:

void ConnSocketCallback(BtLibSocketEventType *sEventP, UInt32 refCon)

{

UInt32 numDataElements,i;

DrawDataType *rxDrawData;

switch(sEventP->event)

{

case btLibSocketEventSendComplete:

// Check the status of the event

if(sEventP->status != errNone)

{

ErrAlert(sEventP->status);

return;

}

// We can dequeue the sent data:

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 357

358 Chapter 8 • Using the Palm OS for Bluetooth Applications

numDataElements = sEventP->eventData.data.dataLen /

QueueElementSize(txQueue));

QueueDequeue(txQueue, numDataElements);

// Send enqueued data if there is any:

AttemptSend();

break;

case btLibSocketEventData:

// We received data to draw. Check the status of the event:

if(sEventP->status != errNone)

{

ErrAlert(sEventP->status);

return;

}

numDataElements = sEventP->eventData.data.dataLen /

QueueElementSize(txQueue));

// Draw the received data:

rxDrawData = (DrawDataType*)sEventP->eventData.data.data;

for(i=0; i<numDataElements; i++)

{

DrawData(&rxDrawData[i]);

}

break;

// Handle other socket events here.

}

return;

}

Pushing the buffering back to the application ensures that memory usage is as
efficient as possible for any given application, without adding too much burden
to the application developer.

The application should close the socket by calling BtLibSocketClose() when it
is ready to close the socket connection, or when it receives a
btLibSocketEventDisconnected event (at this point the connection is already lost, so

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 358

Using the Palm OS for Bluetooth Applications • Chapter 8 359

the close call simply frees the socket). If the ACL connection is lost, a
btLibSocketEventDisconnected event will automatically be generated.Applications
should be sure to close all sockets before closing the Bluetooth Library.

Using the Service Discovery Protocol
In the previous section, we discussed the need to use Service Discovery Protocol
to find an application’s PSM or Service ID, rather than relying on hard-coded
values.The Bluetooth Library offers an extensive set of APIs for working with
SDP. In this section, we will concentrate on the calls needed to advertise a basic
service record for an L2CAP or RFCOMM listener socket and to retrieve con-
nection information about L2CAP and RFCOMM listeners on a remote device.

As we noted earlier in the chapter, the Palm OS does not support a service-
browsing usage model; applications are expected to know what kind of service
they want to communicate with. Services in Bluetooth technology are identified
by one or more UUID values.When a service advertises more than one service

www.syngress.com

About UUIDs
UUIDs are 128-bit values that are guaranteed to be unique across time
and space without the need for a central registry. In the Service
Discovery Protocol, UUIDs are used to represent services, types, or
attributes. Bluetooth Profiles specify UUID values to identify the services
that they describe; new Bluetooth applications will need to specify their
own service UUID. A number of UUID (also called GUID) generators are
available on the Web. One point of confusion that sometimes occurs
with UUIDs involves the Bluetooth specification’s reference to 16-bit and
32-bit UUID values. All UUIDs are in fact 128-bit values, but the
Bluetooth specification has reserved a range of UUID values. Since all
values in this range have the same base address, the specification uses
16-bit and 32-bit values as a shorthand method to represent 128-bit
values within the reserved range. The Bluetooth Library allows applica-
tions to specify 16- and 32-bit UUID values and handles the conversion
and comparison between the different representations. It’s worth
noting that only the Bluetooth specification is allowed to specify 16- and
32-bit UUID values—all other applications must use 128-bit UUID values.

Developing & Deploying…

160bluetooth_C08.qk 12/5/01 3:59 PM Page 359

360 Chapter 8 • Using the Palm OS for Bluetooth Applications

class UUID, the various UUIDs are assumed to have a hierarchical nature. If you
are writing an application that will only talk to other instances of itself (a game,
for example), a single service UUID for the application is probably sufficient.

Advertising a Basic Service Record for an
RFCOMM or L2CAP Listener Socket
Let’s begin by looking at what we need to do in order to create and advertise a
basic service record for an RFCOMM or L2CAP listener socket.We’ll assume
that the application has already opened the Bluetooth Library and created a lis-
tener socket (the socket’s protocol is unimportant).A new application needs to
declare a new service UUID, so we’ll use a UUID generation tool to generate
one, in this case 7FD82E36-47E8-11D5-83CE-0030657C543C.

#define myServiceUUID \

{btLibUuidSize128,{0x7F,0XD8,0x2E,0x36,0x47,0XE8,0x11,0XD5,0x83,0xCE, \

0x00,0x30,0x65,0x7C,0x54,0x3C}}

// Globals

UInt32 btLibRefNum;

BtLibSocketRef listenerSocket;

BtLibSdpUUIDType myServiceUUIDList = myServiceUUID;

UInt8 myServiceUUIDListLen = 1;

Char *myServiceName = "MyService";

BtLibSdpRecordHandle myServiceRecordH;

// AdvertiseSocket is called after the application has successfully

created a

// listener socket.

Err AdvertiseSocket(void)

{

// Error checking for this code is fairly straight forward, and the

// error codes are well documented in BtLib.h, so we'll leave the

// error checking out for the sake of space.

// First we need to allocate a service record to advertise:

BtLibSdpServiceRecordCreate(btLibRefNum, myServiceRecordH);

// Now we will use a very useful call to fill in the important

// information for our service record:

BtLibSdpServiceRecordSetAttributesForSocket(btLibRefNum,

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 360

Using the Palm OS for Bluetooth Applications • Chapter 8 361

listenerSocket, &myServiceUUIDList,

myServiceUUIDListLen,

myServiceName, StrLen(myServiceName), myServiceRecordH);

// If we wanted to add any additional info to our service record, we

// would do so here by using BtLibSdpServiceRecordSetAttribute().

// Now all that's left to do is to advertise the record:

BtLibSdpServiceRecordStartAdvertising(btLibRefNum, myServiceRecordH);

return errNone;

}

That’s all there is to it! The BtLibSdpServiceRecordSetAttributesForSocket()
really does all the work for us, filling in the record with Service UUID, pro-
tocol listener information, and service name.There are, of course, a lot of
other attributes that can be contained in a service record (see the
BtLibSdpAttributeIDType), and we can add attributes to the record before
advertising it by calling BtLibSdpServiceRecordSetAttribute(). Before closing the
Bluetooth Library, the application should stop advertising the SDP record by
calling BtLibSdpServiceRecordStopAdvertising() and then free the service record
by calling BtLibSdpServiceRecordDestroy().

Retrieving Connection Information about L2CAP
and RFCOMM Listeners on a Remote Device
Now let’s look at the other side of the picture: retrieving L2CAP or RFCOMM
connection information from a remote device. In order to get SDP information
from a remote device, we need to have established an ACL link to that device.
Retrieving SDP information is an asynchronous operation, so we need to pro-
vide the Bluetooth Library with a callback with which it can return the SDP
query results.The Bluetooth Library uses an SDP socket to specify the callback
that should be used to return information.Although the same API calls are used
to create SDP sockets as to create L2CAP and RFCOMM sockets, SDP sockets
have very little in common with L2CAP or RFCOMM sockets; they can not be
set up as listeners, or used to create connections. SDP sockets are really just a
convenient way for the Bluetooth Library to manage information about SDP
calls.A single SDP socket can handle one pending SDP request at a time, if your
application does not need to have multiple simultaneous SDP queries pending,

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 361

362 Chapter 8 • Using the Palm OS for Bluetooth Applications

you can use a single SDP socket for all your SDP queries.The SDP socket should
be closed before closing the Bluetooth Library.

Let’s look at an example function that gets the L2CAP PSM for a service adver-
tised with the same UUID that we used in the preceding example (in this case, we
are assuming that the listener socket being advertised was an L2CAP socket).

#define myServiceUUID \

{btLibUuidSize128,{0x7F,0XD8,0x2E,0x36,0x47,0XE8,0x11,0XD5,0x83,0xCE, \

0x00,0x30,0x65,0x7C,0x54,0x3C}}

#define INVALID_SOCKET_REF 0xFFFF

// Globals

UInt32 btLibRefNum;

BtLibSocketRef sdpSocket = INVALID_SOCKET_REF;

BtLibDeviceAddressType remoteDevice;

BtLibSdpUUIDType myServiceUUIDList = myServiceUUID;

UInt8 myServiceUUIDListLen = 1;

BtLibL2CapPsmType remotePSM;

// GetRemotePSM is called after an ACL connection to a remote device has

// been established in order to retrieve PSM for the service we wish to

// connect to. That PSM can then be used in the connection

// structure passed in to BtLibSocketConnect().

Err GetRemotePSM(void)

{

Err error;

// First create an SDP socket if we haven't already created one.

// This socket should be closed before closing the Bluetooth Library

if (sdpSocket == INVALID_SOCKET_REF)

{

error = BtLibSocketCreate(btLibRefNum, &sdpSocket,

SdpSocketCallback, NULL, btLibSdpProtocol);

if (error) return error;

}

// Now request the PSM info. The call should return "pending".

error = BtLibSdpGetPsmByUUID(btLibRefNum, sdpSocket, &remoteDevice,

&myServiceUUIDList,

myServiceUUIDListLen);

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 362

Using the Palm OS for Bluetooth Applications • Chapter 8 363

return error;

}

void SdpSocketCallback(BtLibSocketEventType *sEvent, UInt32 refCon)

{

switch(sEvent->event)

{

case btLibSocketEventSdpGetServerChannelByUUID:

if(sEvent->status != btLibErrNoError)

{

// SDP was unable to find a service record for the UUID

// list you specified. This is most likely because your

// application is not running on the remote device. Warn

// the user that they need to have the application running

// on both devices.

FrmAlert(RemoteAppNotFoundAlert);

return;

}

// SDP found a service record with the UUID list you

// specified. Copy the PSM value into a global so it

// can be used to set up the connection

remotePSM = sEvent->eventData.sdpByUUID.param.psm;

// You may wish to call the code that creates the L2CAP Socket

// connection here, or wait for some user action.

break;

// Handle other socket events here if needed ...

}

}

As you can see, retrieving remote RFCOMM and L2CAP listener informa-
tion is pretty straightforward. If BtLibSdpGetPsmByUUID() or
BtLibSdpGetServerChannelByUUID() are called with multiple items in the UUID
list, the call will search for a service record that contains all of the service UUIDs
in the list, although it will not insist that they appear in the same order in the

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 363

364 Chapter 8 • Using the Palm OS for Bluetooth Applications

record as they do in the list. If multiple records with the required UUIDs are
found, the call will return the first one that it comes across.

These two cases should handle most applications’ SDP requirements.
However, if your application needs to make more extensive use of SDP, the
Bluetooth Library contains calls that allow you to make more specific searches,
retrieve and set any attribute value defined in the Bluetooth Specification, and,
for the very gung-ho, deal with SDP records as raw data.

Using Bluetooth Security on Palm OS
Palm OS provides full support for Bluetooth authentication and encryption.What
level of Bluetooth security is required for a link is up to each individual application,
which corresponds to Bluetooth Security Level 2.Applications can cause link authen-
tication or encryption to occur by calling BtLibLinkSetState() with
btLibLinkPref_Authenticated or btLibLinkPref_Encrypted, which will generate a
btLibManagementEventAuthenticationComplete or btLibManagementEventEncryptionChange
event, respectively. It is up to an application to decide what to do if an authentication
or encryption request fails.The OS will handle any pairing producers (such as asking
the user for a passkey) that are necessary for authentication to occur.

It is worth noting that Bluetooth security is link level security and does not
take the place of application level security (except perhaps on single application
devices, which Palm OS devices are not). Bluetooth authentication simply ensures
that the user is connected to the device they think they are connected to—it
does not ensure that the remote device is authorized to use your service.
Bluetooth encryption ensures that the data can not be sniffed over the air. It uses
128-bit encryption keys, but if this is not sufficient for your application, you are
free to add an extra layer of security to your application, as some writers of finan-
cial software have indicated they are likely to do.

Writing Persistent Bluetooth
Services for Palm OS
In general, a service, or server daemon, is a program that has a persistent presence
on a device, performing its function as needed, often in the background. Unlike a
client application, which normally begins operation directly in response to a user
action, services generally initiate action in response to a non-user event: in our
case, a communication event. In a resource-rich environment, such as a PC,
services often run continuously in their own process.While this approach has

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 364

Using the Palm OS for Bluetooth Applications • Chapter 8 365

advantages, particularly in terms of response performance, it means that the
resources needed by these services are always in use. Having just a few services on
a Palm device can quickly eat away at the device’s limited resources.

In order to avoid the problems associated with having truly persistent ser-
vices, Palm, Inc. has had to rethink the services model in the Palm OS, allowing
services to run on a more as-needed basis. Palm, Inc. took such an approach
when implementing the OBEX service in the IR implementation.While the
client side of OBEX starts up in response to a user action (the “beam” com-
mand), the service side of OBEX is brought up by the OS when an inbound IR
connection is detected.

Using this mechanism, the IR implementation is able to avoid the overhead of
the OBEX service and IR stack when they are not in use.This model has been
highly successful, despite the tight timing requirements for responding to an IR
connection request.The only hitch in IR service implementation is that, since the
inbound connection triggers the OBEX service directly, third parties have been
unable to develop new IR-based services. Since Palm, Inc. forged the way in the
IR world, and thus set the usage direction, this has not been a major hindrance.
However, given the diversity of usage expected for Bluetooth technology, support
for multiple services has become an important part of providing a robust Bluetooth
solution.The Bluetooth Services API attempts to take this logic a step farther and
allow third parties to create Bluetooth applications with a persistent presence.

www.syngress.com

Services and Bluetooth-Aware Applications
As with the Palm OS IR stack, the Bluetooth stack is not available for ser-
vices while it is in use by an application. Although Bluetooth technology
is a multiplexing protocol, our services will follow the same model as IR.
Service notifications are simply not generated when the Bluetooth
Library has been opened by an application. If an application opens the
stack while a service is in use, the OS will generate an “all shutdown”
message for the services. The decision not to allow services and applica-
tions to use the stack at the same time was made because, despite
Bluetooth’s multiplexing capability, there are complications that arise
with remote device management when more then one application tries
to use Bluetooth technology at the same time.

Developing & Deploying…

160bluetooth_C08.qk 12/5/01 3:59 PM Page 365

366 Chapter 8 • Using the Palm OS for Bluetooth Applications

In order to efficiently support multiple persistent services at the same time,
certain restrictions must be made.The principle restriction will be that only one
service may be in-session at a time. In other words, although multiple services
can be registered, once a given service begins a session, the other services become
unavailable until it completes its session.When used in conjunction with some
reasonable coding guidelines for the services, this restriction should allow the
availability of multiple services without a significant impact on memory usage.
The restriction has the added benefit of avoiding potential problems in which
two services simultaneously attempt to display UI.

Creating a service is actually pretty straightforward. Essentially, services are
simply pieces of code that register for and respond to Bluetooth service notification.
Bluetooth service notifications are normal Service Manager notifications of type
BtLibServiceNotifyType (btsv).The easiest way to create a service is by packaging
the service in a normal application.When the application is launched in the
“normal” manner (i.e., with sysAppLaunchCmdNormalLaunch), the application can
display controls that allow the user to enable and disable the service, which can
correspond to registering and unregistering for the Bluetooth service notifica-
tion. It is best to register for the notification to be delivered be a launch com-
mand, rather than by a callback, since this avoids the need for locking the code
resource (remember, the service notifications may be delivered while your appli-
cation is not running).

The details pointer of a Bluetooth service notification is a pointer to a
BtLibServiceNofityDetailType structure, which is defined as:

typedef enum {

btLibNotifyServiceStartup,

btLibNotifyServiceAllShutdown, // see err for reason

btLibnotifyServiceNotInSessionShutdown

} BtLibServiceNotifyEventType;

typedef struct _BtLibServiceNofityDetailType {

BtLibServiceNotifyEventType event;

Err err;

} BtLibServiceNofityDetailType;

The event element of the BtLibServiceNofityDetailType contains the event
information that will allow your service to start up and shut down correctly.The
state diagram in Figure 8.4 shows the basic flow for a service.

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 366

Using the Palm OS for Bluetooth Applications • Chapter 8 367

In general, a service sits in an uninitialized state, waiting for a
btLibNotifyServiceStartup notification.This notification is generated when the
OS detects an inbound ACL link, and the Bluetooth Library is currently not in
use by an application.The btLibNotifyServiceStartup notification is basically an
instruction to that service to initialize itself. Initialization should include allo-
cating essential globals, opening the Bluetooth Library with the
BtLibServiceOpen() call, registering for an L2CAP or RFCOMM listener socket,

www.syngress.com

Figure 8.4 Service States

Initialization
- Allocate mnimal globals.
- Call BtLibOpenByService().
- Register for management callback.
- Create listener sockets and register
 with SDP.

Ignore

btLibNotifyServiceAllShutdown
or

btLibNotifyServiceNotInSessionShutdown

Waiting for Start-Up
Notification

Shutdown
- Unregister and free SDP records.
- Close all sockets.
- Unregister callbacks.
- Call BtLibCloseByService().
- Free resources.

btLibNotifyServiceStartup

Waiting for Connection

Session Start-up
- Note that we are in session.
- Call BtLibServiceIndicateSessionStart().
- Allocate full globals (only after calling
 session start).
- Display any desired UI.
- Accept connection.

RFCOMM
/

 L2CAP
Connection Event

btLibNotifyServiceNotInSessionShutdown

btLibNotifyServiceAllShutdown

RFCOMM / L2CAP
DisconnectEvent

or
User Session
Termination

End of Session
- Tear down any UI.

160bluetooth_C08.qk 12/5/01 3:59 PM Page 367

368 Chapter 8 • Using the Palm OS for Bluetooth Applications

and advertising that socket via SDP. Since services are running in the context of
another application, it is important to make sure that the owner ID of the ser-
vices’ globals is set to 0 (the system ID) using MemPtrSetOwner(). If the owner
ID is not set, the memory will have the current application as its owner, and
will be cleaned by the system if the current foreground application exits. It is
also important that the service performs all its initialization during the notifica-
tion callback or sub-launch, since the OS will allow the ACL connection to
proceed once the notification is complete. During the startup phase, all of the
registered services will be launched, which can place a strain on the system
resources. In order to avoid overwhelming the system stack, services should ini-
tially allocate only the globals necessary to create and register a listener socket;
additional memory can be allocated later when the service is actually in session.
This helps avoid creating a big bump in memory usage during service initial-
ization. During initialization, services should avoid displaying any UI, since
multiple services may be running. Once the service is initialized and listening,
several things can happen.

The service may receive a btLibNotifyServiceAllShutdown notification, which
means that the service has timed out (the OS only allows the remote device to
hang around for a limited amount of time without connecting to a service), the
ACL link has been dropped (probably because the remote device didn’t find the
service it wanted in the SDP database), the device power has been cycled, or the
foreground application has opened the Bluetooth Library (applications take
precedence over services).The reason for the notification is not really important,
but you can check the err parameter of the notification details if you really want
to know.Whatever the reason, however, the service’s response to the
btLibNotifyServiceAllShutdown notification should be the same; the service should
remove all of its advertised records, close its sockets, call BtLibServiceClose(), and
free its allocated memory.

Alternatively, the service might receive a connection request on one of its lis-
tener’s sockets. If this happens, the service is considered “in session” and should call
BtLibServiceInSession(). Calling BtLibServiceInSession() causes the
btLibNotifyServiceNotInSessionShutdown notification to be sent out.This notification
instructs the services that did not call BtLibServiceInSession() to shut down, just as if
they had received a btLibNotifyServiceAllShutdown notification. It’s important to
note that all services will receive the btLibNotifyServiceNotInSessionShutdown notifi-
cation, so before calling BtLibServiceInSession() a service should set a value to
remind itself that it is in session and should not respond to the
btLibnotifyServiceNotInSessionShutdown notification. Once a service is in session, it

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 368

Using the Palm OS for Bluetooth Applications • Chapter 8 369

can go ahead and allocate additional memory and display UI, if necessary.When a
service’s session is complete, it should clean up and call BtLibServiceClose().

The Future of Palm OS Bluetooth Support
Bluetooth is, of course, a very young technology, and will certainly see a fair
amount of evolution over the next few years. Similarly, Palm OS’s Bluetooth sup-
port will likely continue to evolve alongside the technology. In the near future,
Bluetooth devices will address the issues of Layer 3 (Network level) support in
the Bluetooth communication protocol stack. New specifications will define a
network layer for communications between all the members of a piconet (not
just master to slave), as well as inter-piconet communication issues. Roaming and
scatternets will also be addressed.The eventual goal is the creation of true ad-hoc
networks, self-configuring network groupings that grow and change as the user’s
environment changes. For Bluetooth technology to succeed in the long run, it
will also need to address issues like discovery time (currently far too slow) and
maximum throughput (to align with 3G technologies).

As much as possible, these changes will be integrated seamlessly into the Palm
OS Bluetooth Library. New editions of the library will expand the Palm OS’s
Bluetooth capabilities, without compromising existing applications.

www.syngress.com

Creating New Services
While it is tempting to create a new service to solve a problem, in gen-
eral you should avoid creating a new service unless it is absolutely nec-
essary. When possible, it is always better to use an existing service. This
approach decreases complexity and resource usage and probably makes
your code a good bit simpler. For example, an instant-messaging type
application is more easily created by registering with the Exchange
Manager than by creating a new service. If you want to be able to invite
people nearby to join your game, this is probably also more easily done
with an Exchange Manager interaction than by creating a whole new
service. New services should be restricted to applications that are not
easily handled by existing services, like creating a Bluetooth keyboard
driver or other applications where using OBEX is simply not possible.

Developing & Deploying…

160bluetooth_C08.qk 12/5/01 3:59 PM Page 369

370 Chapter 8 • Using the Palm OS for Bluetooth Applications

Summary
With version 4.0, Palm OS support has been put in place for Bluetooth wireless
technology and line of sight limitations have become a thing of the past.Adding
Bluetooth wireless technology to a Palm device frees users from the necessity of
trying to physically line up two devices while they’re on the road. Bluetooth
technology makes traditional Palm OS applications like Internet usage and
“beaming” easier in mobile environments and introduces opportunities for appli-
cations using object push communication.

The Palm OS Bluetooth Support Package currently supports five Bluetooth
profiles that are defined in the Bluetooth 1.1 Specification: the Generic Access
Profile (GAP), the Serial Port Profile, the Dial-up Networking Profile, the LAN
Access Profile, and the Object Push Profile.The values and language specified by
the GAP are built into the Bluetooth Library and other Bluetooth components.
GAP’s main goal is to create a friendly and consistent user experience, a goal that
is also considered critical in the Palm OS.The other profiles describe a method
for accomplishing a specific user goal.

The Bluetooth Support Package includes a new virtual serial driver (VDRV),
which provides support for the Serial Port Profile. Using the Bluetooth VDRV
allows existing serial-based applications to quickly be updated to take advantage
of Bluetooth technology, and is an easy way to create new Bluetooth-enabled
applications.The Bluetooth VDRV runs on top of the RFCOMM protocol layer
(it does not implement RFCOMM itself—the RFCOMM protocol layer is
implemented in the Bluetooth Library and can be accessed directly through the
Bluetooth Library API).

One of the challenges of mapping Bluetooth technology underneath a tradi-
tional serial API is that traditional serial ports are single-channel and non-
addressed in nature, while the Bluetooth system is a multiplexing, address-based
protocol stack. Bluetooth technology needs to know which device and which
service on that device it is going to talk to; it must also actively create the under-
lying baseband connection. Most Bluetooth radios are not capable of receiving
inbound connections while trying to create outbound connections. For this
reason, it is necessary for an application to indicate whether it wishes to initiate
or accept the Asynchronous Connectionless Link (ACL) and RFCOMM con-
nections. Palm OS refers to these roles as the client role and the server role, respec-
tively.The application indicates its preference by setting the corresponding value
for the role element in the RfVdOpenParams structure and filling the appropriate
role-specific parameter structure inside the union.

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 370

Using the Palm OS for Bluetooth Applications • Chapter 8 371

When the VDRV is opened in the server configuration, it will register for an
RFCOMM channel and advertise that channel via SDP.This creates a simple ser-
vice record utilizing the Unique Universal Identifier (UUID) and name string
defined in the RfVdOpenParamsServer.To open the VDRV in the client configura-
tion, a more complex structure must be passed in to SrmExtOpen().The
remoteDevAddr parameter indicates the 48-bit Bluetooth device address of the
remote device the VDRV should connect to.After creating an ACL connection to
the remote device, the VDRV attempts to establish an RFCOMM connection.
The application must indicate which RFCOMM channel the VDRV should use.

When a constant data flow is not important to your application (as in a turn-
based game), the Bluetooth Exchange Library allows applications to send data
blocks without concern for the underlying transport. Unlike sockets and virtual
serial drivers, the Exchange Manager is a concept unique to Palm OS. Rather
than referring to a specific transport, the new exgSendScheme send scheme of
Exchange Manager in Palm OS 4.0 allows the user to pick which of the installed
transports they wish to utilize. Once Bluetooth technology has been chosen as
the transport, the Exchange Library will automatically perform a discovery in
order to determine the address of the remote device it should connect to.

Palm OS provides full support for Bluetooth authentication and encryption.
What level of Bluetooth security is required for a link is up to each individual
application, which corresponds to Bluetooth Security Level 2. Bluetooth security
is link level security and does not take the place of application level security.
Bluetooth authentication simply ensures that the user is connected to the device
they think they are connected to—it does not ensure the remote device is autho-
rized to use your service.

Given the diversity of usage expected for Bluetooth technology, support for
multiple services has become an important part of providing a robust Bluetooth
solution. Having just a few services on a Palm device, however, can quickly eat
away at the device’s limited resources. Palm OS’s new services model allows ser-
vices to run on an as-needed basis, implementing the OBEX service in the IR
implementation, the principle restriction being that only one service may be in-
session at a time. Services are simply pieces of code that register for and respond
to Bluetooth service notifications. New services should be restricted to applica-
tions that are not easily handled by existing services, or applications where using
OBEX is simply not possible.

This chapter provides a comprehensive introduction to developing
Bluetooth-aware software for Palm OS devices. From information on where to
get the tools you need to get started, to advanced techniques for creating

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 371

372 Chapter 8 • Using the Palm OS for Bluetooth Applications

Bluetooth services, this chapter walks developers through the new Bluetooth
libraries in the Palm OS, and revisits existing communications APIs that have
been enhanced with new Bluetooth-based capabilities. Developers learned tricks
for using Bluetooth technology with the Serial and Exchange Manager APIs, as
well as how to work directly with the Bluetooth Library.

Solutions Fast Track
What You Need to Get Started

� In order to begin using Bluetooth technology, you will need to have a
Palm OS device with at least 4MB of memory that is running Palm OS
version 4.0 or greater.Alternatively, you may wish to develop using the
Palm OS Emulator, often the easiest and fastest way to create new
application.

� In addition to a Palm 4.0 device, you will need to have the Bluetooth
Support Package installed.The Bluetooth Support Package consists of
several .prc files that work together.The latest version of the Bluetooth
support .prc files, along with the Bluetooth header files and several
pieces of example code, can be found in the Bluetooth area of the Palm
Resource Pavilion at www.palmos.com/dev/tech/bluetooth.

� In addition, you will also want to have a copy of the Palm OS 4.0 SDK
documentation, also available on the Palm, Inc.Web site.

Understanding Palm OS Profiles
� The Palm OS currently supports five Bluetooth profiles defined in the

Bluetooth 1.1 Specification: the Generic Access Profile, the Serial Port
Profile, the Dial-up Networking Profile, the LAN Access Profile, and the
Object Push Profile.

� Generic Access Profile (GAP) is a general look at the overall process of
carrying out a Bluetooth transaction without regard to the nature of that
transaction, and is background for all the other profiles.

� The new virtual serial driver (VDRV) in the Bluetooth Support Package
provides support for the Serial Port Profile.

� The Network Library (NetLib) supports the Data Terminal role of both
the Dial-up Networking and LAN Access Profiles.

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 372

Using the Palm OS for Bluetooth Applications • Chapter 8 373

� The new Bluetooth Exchange Library implements the Object Push
Profile, much in the same way that the Exchange Manager supports IR-
based Object Exchange Protocol (OBEX) push.

� If none of the profiles cover what you are trying to do, don’t despair—the
Palm OS also provides a robust API that allows you direct access to the SDP,
RFCOMM, and Logical Link and Control Adaptation Protocol (L2CAP)
layers of the Bluetooth stack, along with calls to allow you to manage the
Bluetooth-specific concerns like discovery and piconet creation.

Updating Palm OS Applications Using the Bluetooth
Virtual Serial Driver

� Using the Bluetooth Virtual Serial Driver allows existing serial-based
applications to quickly be updated to take advantage of Bluetooth tech-
nology.The VDRV itself is “glue code” that allows Bluetooth function-
ality to be accessed though a more traditional API. Using the VDRV also
gives you an advantage in writing multi-transport applications.

� Virtual Serial Drivers in the Palm OS are individual .prc files of type
vdrv and are used throughout the new Serial Manager interface, much
the same way as traditional physical serial ports are used.

� Since most Bluetooth radios are not capable of simultaneously listening
for an inbound connection and trying to create an outbound connec-
tion, an instance of the Bluetooth VDRV also needs to know whether it
is initiating or accepting the connection. Since a traditional serial API
does not present a mechanism for passing all of this extra information,
Palm OS 4.0 has added a new call, SrmExtOpen() (found in
SerialMgr.h), to the new Serial Manager API.

� A VDRV client-only application might be useful when you know that
the Palm device will always be playing a client-based role, and therefore
never need to accept a connection.

� Applications and the VDRV use the Bluetooth Library in different
modes. Because of this difference, the VDRV will not be able to open
while the application is holding the Bluetooth stack open.

� Setting up the serial port as a server does not cause the driver to go out
and create an ACL or RFCOMM connection, it merely sets up the port
as a listener. Like a normal serial port, the VDRV will not alert the appli-

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 373

374 Chapter 8 • Using the Palm OS for Bluetooth Applications

cation when an incoming connection is established, the application will
simply begin to receive data from the port.

Using Bluetooth Technology with Exchange Manager
� You can make an Exchange Manager-based application Bluetooth-aware

with just a few lines of code.The Bluetooth Exchange Library registers
itself for the exgSendScheme, so if you’ve already updated your application
to take advantage of the exgSendScheme, it should work with Bluetooth
technology as soon as you have installed the Bluetooth .prc files.

� The Exchange Library allows applications to send data blocks without
having to worry too much about the underlying transport.

� The VDRV and Exchange Manager simplify using Bluetooth technology
by encapsulating it inside familiar and easy to use interfaces, but the sim-
plification also hides functionality and increases overhead.

Creating Bluetooth-Aware Palm OS Applications
� If your application requires direct access to Bluetooth protocol layers or

management functions, then you will need to make use of the Bluetooth
Library (BtLib) API.

� Even when using the Bluetooth Library directly, a Palm OS application
cannot put the Palm device or the remote device into park, hold, or sniff
modes.Also, while an application can request that a given link be
authenticated or encrypted, for security reasons the application is not
allowed to specify the authentication passkey or insist that a device be
added to a list of trusted (or bonded) devices.

� The Bluetooth Library API is fairly large, and can generally be divided
into six sections: Common Library calls, management calls, socket calls,
SDP calls, services calls, and security calls.

� If your application is going to receive inbound connections, you should
check to make sure the radio’s accessibility mode has been set to allow
connection and (if desired) discovery.The accessible state of the device is
determined by the user’s settings in the Bluetooth Preferences Panel.

� If you plan to have your application create outbound Bluetooth connec-
tions, you will probably want to perform a device discovery in order to
allow the user to select the remote device(s) with which she wished to

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 374

Using the Palm OS for Bluetooth Applications • Chapter 8 375

www.syngress.com

create a connection.The Bluetooth Library offers two similar calls that
handle the entire discovery experience, including inquiry, name retrieval,
and user selection, BtLibDiscoverSingleDevice() and
BtLibDiscoverMultipleDevices().

� Bluetooth piconets have a star formation: one master connected to up
to seven active slaves. Once a successful call BtLibPiconetCreate() call has
been made, up to seven simultaneous ACL connections can be estab-
lished. Depending upon the usage model for your application, you may
wish to have the piconet master actively create outbound connections,
wait for inbound connections from remote devices, or both.

� The L2CAP and RFCOMM protocol layers are exposed in the
Bluetooth API through a sockets-based interface.The ability to create
and receive RFCOMM and L2CAP connections is entirely independent
of the device’s role in a piconet.

� Applications or protocols that run on top of L2CAP must be able to
handle the flow control themselves, while applications that run on top of
RFCOMM can make use of its built-in flow control.Also, an
RFCOMM listener is only capable of supporting one connection at a
time, while a L2CAP listener can receive an unlimited number of con-
nections. If your application involves functionality covered by a Bluetooth
profile, you will not have to make a choice of which layer to use, as the
profiles provide guidance on how to use the Bluetooth protocol stack.

� L2CAP identifies available listeners by a Protocol Service Multiplexor
(PSM), which can be thought of as similar to an IP port.The
RFCOMM protocol uses a simple enumeration called a Server ID to
distinguish its listeners.You can let remote applications know which
PSM and Server ID to connect to by advertising them with SDP.

� The Bluetooth Library offers an extensive set of APIs for working
with SDP.

Writing Persistent Bluetooth Services for Palm OS
� The Palm OS allows services to run on an as-needed basis by imple-

menting the OBEX service in the IR implementation.While the client
side of OBEX starts up in response to a user action (the “beam” com-
mand), the service side of OBEX is brought up by the OS when an
inbound IR connection is detected. Palm OS’s IR service implementa-

160bluetooth_C08.qk 12/5/01 3:59 PM Page 375

376 Chapter 8 • Using the Palm OS for Bluetooth Applications

tion is able to avoid the overhead of the OBEX service and IR stack
when they are not in use.

� Although multiple services can be registered, once a given service begins a
session, the other services become unavailable until it completes its session.

� Services are simply pieces of code that register for and respond to
Bluetooth service notifications, normal Service Manager notifications of
type BtLibServiceNotifyType (btsv).When the application is launched in
the normal manner, it displays controls that allow the user to enable and
disable the service, which can correspond to registering and unregis-
tering for the Bluetooth service notification.

The Future of Palm OS Bluetooth Support
� In the near future, Bluetooth technology will address the issues of Layer

3 (Network level) support in the Bluetooth communication protocol
stack. New specifications will define a network layer for communica-
tions between all the members of a piconet (not just master to slave), as
well as inter-piconet communication issues.

� Roaming and scatternets will also be addressed.

� The eventual goal is the creation of true ad-hoc networks, self-config-
uring network groupings that grow and change as the user’s environ-
ment changes.

� New editions of the Palm OS Bluetooth Library will expand the Palm
OS’s Bluetooth capabilities without compromising existing applications.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: How does RFCOMM credit-based flow control work with pre-Bluetooth
Specification v.1.1 devices, since credit-based flow control was not mandatory
before the 1.1 release?

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 376

Using the Palm OS for Bluetooth Applications • Chapter 8 377

A: When the Bluetooth Library cannot negotiate RFCOMM credit-based flow
control, it will try to use the aggregate flow control defined in the earlier ver-
sions of the specification to emulate credit-based flow control behavior. In
most cases, this technique is highly successful, but due to a design bug in the
pre-1.1 specification, it is possible for an application communicating with a
pre-1.1 device to receive more data than it has advanced credit for.

Q: Am I allowed to make calls back into the Bluetooth Library from within a
library callback? In other words, does the Library allow re-entry?

A: Yes, but you will not get any more callbacks until the initial callback is
released. In other words, don’t block a callback waiting for another callback,
because the second callback will not come until the first callback is allowed
to return.

Q: I’ve noticed that the passkey request mechanism does not work properly
sometimes when I am using the Telephony Manager over Bluetooth tech-
nology.What’s going on?

A: When use you the Telephony Manager in synchronous mode, it completely
blocks the UI thread, preventing the Bluetooth Library from requesting a
passkey when necessary, and causing authentication to fail.This can be
avoided by using the Telephony Manager in asynchronous mode, especially
during the open, when an authentication is most likely to occur.

Q: Where can I get help with problems or report bugs that I find?

A: There is a Palm OS developer’s mailing list set up for Bluetooth-specific
concerns.You can find out more information on the Palm, Inc.Web site at
www.palmos.com/dev/tech/support.

www.syngress.com

160bluetooth_C08.qk 12/5/01 3:59 PM Page 377

160bluetooth_C08.qk 12/5/01 3:59 PM Page 378

Designing an Audio
Application

Solutions in this chapter:

■ Choosing a Codec

■ Configuring Voice Links

■ Choosing an Audio Interface

■ Selecting an Audio Profile

■ Writing Audio Applications

■ Differentiating your Audio Application

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Chapter 9

379

160bluetooth_C09.qk 12/6/01 10:20 AM Page 379

380 Chapter 9 • Designing an Audio Application

Introduction
Bluetooth technology began in the labs of Ericsson, a major player in the mobile
phone market, so it’s not surprising that voice quality audio links play a large part
in the capabilities of Bluetooth technology.According to Semiconductor Business
News’ market research report in its May 2001 edition, Cirrus Logic, which has a
large share of the market for digital audio players and other portable consumer
electronics, says it will begin building Bluetooth into its popular Maverick
embedded processor.The Maverick processor features Internet appliances and
Internet audio players.

Moreover, the Bluetooth specification will support the next generation of
cellular radio systems for mobile telephony known as third generation (3G) that
has been defined by the International Mobile Telecommunications 2000 (IMT-
2000) program.The first group of audio/telephony profiles available for public
with the current Bluetooth Specification v1.1 includes headset, intercom, and
cordless phone.

Today, there are voice-command mobile phones and even voice-enabled
Internet browsing, so audio applications and their capabilities can be a little too
rich at times. Before writing an audio application, we need to understand the
expectations of our target users. Do they want to transmit and receive near-CD
quality audio? Do they want an acceptable range for home use with no extra-
neous sounds, clicks, or silences intruding? Do they want to listen to music, or
hold a three-way phone conversation? We also need to know whether we are
writing generic code to fit into bulky static devices such as stereos, or if we are
producing a compact purpose-built system such as might slot into the strictly
constrained resources of a tiny portable MP3 player.There are so many possible
audio applications that we can’t cover them all in detail, but this chapter will
explain the basics and help you make intelligent decisions when designing your
audio application.

First, we’ll look at the choice of analog-digital-analog conversion schemes
(Codecs).This section explains why Bluetooth technology supports several
Codecs and explains how the different types perform in the presence of errors.
We then go on to look at how Bluetooth links can support multiple voice
channels along with simultaneous data capabilities.We explain the Synchronous
Connection-Oriented (SCO) link and the three types of voice packet (High-
rate Voice [HV]1, HV2, and HV3) it uses.This section explains how each
packet type is transmitted at different rates and provides different amounts of
error correction.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 380

Designing an Audio Application • Chapter 9 381

www.syngress.com

We examine the three audio profiles released with the first Bluetooth profile
specification document, and briefly touch upon profiles that are soon to be
released.Then we look in detail at how you might implement one particular pro-
file: the Headset profile.

Finally, we present a few techniques you might use to differentiate your audio
application and add value for the end user.

What you need to know before reading this chapter:

■ Basic communications theory

■ Bluetooth protocol stack component functions

■ Generic Access Protocol procedures

■ Host Controller Interface

Choosing a Codec
This section explains the different ways that Bluetooth systems encode voice for
transmission on air.The product you are writing applications for may not allow
you to choose a Codec, in which case you can safely skip this section. If you do
need to choose a Codec type then it is worth taking time to understand what
Codecs do, and why a choice of Codecs with different performance levels were
incorporated in the Bluetooth specification.

There are several stages involved in getting from speech to the digital signals
transmitted on a SCO link.The sounds we hear in human speech, music, and so
on, are made up of pressure waves.A microphone converts those pressure waves
into analog electrical signals.The analog signal from the microphone is fed into a
Codec, which converts the analog signals of a voice signal into a digital signal to
be transmitted over a communications medium.The digital signal is passed to the
baseband for incorporating into a SCO packet; this packet is then sent to the
radio for modulating onto a carrier for transmitting on air.

In the receive direction, the radio receives and demodulates the incoming
digital signal, and passes it to the baseband.The baseband extracts the audio data
and passes it to the Codecs.The Codecs take the digital signal and convert it to
an analog signal for the speaker front end. Finally, the speakers, as we all know,
take analog electrical signals and convert them into sound waves for us to hear.

In brief, microphone and speaker convert from sound waves to analog elec-
trical signals.The Codec converts those analog signals into a digital format.The
term Codec is an acronym that stands for “coder/decoder.”

160bluetooth_C09.qk 12/6/01 10:20 AM Page 381

382 Chapter 9 • Designing an Audio Application

If all that was required was converting between analog and digital, we could
just use an Analog to Digital Converter (ADC) and Digital to Analog Converter
(DAC). However, the Bluetooth specification enforces a low data rate for its voice
channels: the SCO links carry just 64 Kbps.At this sort of low data rate, the
Codecs are required to compress the audio signal as well as convert between
analog and digital formats.The Bluetooth specification supports three different
audio coding schemes on the air interface:

■ Continuous Variable Slope Delta Modulation (CVSD)

■ Log Pulse Code Modulation (PCM) coding using A-law compression

■ Log PCM with µ-law compression

CVSD is a differential waveform quantization technique that employs a two-
level adaptive quantizer (one bit). PCM uses a non-uniform quantization (a large
number of progressively smaller quantization levels for low amplitude signals and
fewer, coarser quantization levels for larger amplitude signals).

CVSD is more robust in the presence of bit errors than PCM.With an
increase in the number of bit errors in a transmission, the perceptible voice
quality of PCM drops rapidly—much more rapidly than the voice quality of

www.syngress.com

Why Convert to Digital?
It is possible to directly modulate analog signals onto a radio without
first converting them into digital format. This raises the question of why
anybody would bother converting analog audio into digital formats to
begin with.

There are several reasons, two of which include: digital signals tend
to be more robust in the noisy environments; encoding into a digital
format allows error detection and correction to be added to the signal.
This means that digitally-encoded speech performs much better on noisy
channels.

Of course, in the case of Bluetooth wireless technology, the base-
band is designed to handle digital signals, so transmitting analog audio
signals is just not an option, even if it was desirable.

Developing & Deploying…

160bluetooth_C09.qk 12/6/01 10:20 AM Page 382

Designing an Audio Application • Chapter 9 383

CVSD. On the other hand, PCM is simple, cheap, and more importantly, it is
already used in a lot of devices. For error tolerance, we need CVSD, but for max-
imum compatibility with legacy systems, we need PCM.We’ll look at both tech-
nologies in more detail later in this section.

The overall architecture of a Codec is illustrated in Figure 9.1. On the left,
the front-end amplifiers adjust the levels between those required by the micro-
phone and speaker and those required by the converters.ADC and DAC convert
the audio signal from analog to digital format.Then some type of digital signal
processing (DSP) performs the Codec function.This could be a generic DSP
capable of performing many functions, or the Codecs could be implemented in
dedicated circuitry.

The output of the Codecs must be fed into the Bluetooth baseband. In
Figure 9.1 this is shown as a direct input to the baseband (a technique commonly
used in Bluetooth chips), but it is possible that the signal from the Codecs could
be encapsulated in a Host Controller Interface (HCI) packet and fed across the
Host Controller Interface. (This might be done, for instance, if a mobile phone
with PCM Codecs were connected to a Bluetooth chip by the HCI.)

In the following sections, we shall look at the different Bluetooth Codecs in
more detail.

Pulse Code Modulation
Pulse Code Modulation systems are commonly used in public and private tele-
phone networks. In PCM systems, a waveform Codec takes samples of an analog-

www.syngress.com

Figure 9.1 General Block Diagram of Bluetooth Codec

Linear PCM,
Log PCM,

or CVSD

Analog to Digital
Converter (ADC)

Digital
Signal

Processing
(DSP) Unit

G.711
Encoding/
Decoding

Digital to Analog
Converter (DAC)

Baseband
Pa

ra
lle

l I
nt

er
fa

ce

Mi
cro

ph
on

e
Ea

rp
eic

e
(H

ea
ds

et)

Amplifier

Amplifier

Linear
PCM

160bluetooth_C09.qk 12/6/01 10:20 AM Page 383

384 Chapter 9 • Designing an Audio Application

speech waveform and encodes them as modulated pulses, represented by logic 1
(high) and logic 0 (low).The sampling rate, or number of samples per second, is
several times the maximum frequency of the analog waveform (human-voice) in
cycles per second, usually at a rate of 8000 samples per second.

Using PCM A-law or µ-law is optional. µ-law compression is used in North
America and Japan, and A-law compression is used in Europe, the rest of the
world, and international routes.The compression schemes are as described in the
following (assuming x(t) is the current quantized message, xp is the peak value of
the message and y(t) is the compressed signal output):

µ-Law Definition:

www.syngress.com

Why Bluetooth Technology Uses Waveform Codecs
In addition to waveform Codecs, there are source Codecs that compress
speech by sending only simplified parametric information about the
voice transmission (as opposed to a compressed version of the voice
transmission); these Codecs require less bandwidth. Examples of source
Codecs include linear predicative coding (LPC), code-excited linear pre-
diction (CELP), and multipulse, multilevel quantization (MP-MLQ).

So, if source Codecs require less bandwidth, why does the Bluetooth
specification use waveform Codecs? There are two main reasons. First,
the PCM Codecs specified in the Bluetooth specification follow existing
standards. The International Telecommunication Union (ITU-T) coding
techniques and Recommendation G.711 specify the waveform Codec
providing tables to and from linear PCM and log PCM for both A-law and
µ-law compression. Because these Codecs are used by existing standards,
there is a large installed base of equipment (such as mobile phones)
already using them. Second, these waveform Codecs provide better
quality and imperceptible impairment according to Mean Opinion Score
(MOS) testing.

Configuring & Implementing…

160bluetooth_C09.qk 12/6/01 10:20 AM Page 384

Designing an Audio Application • Chapter 9 385

A-Law Definition:

A general example of PCM coding is described in Figure 9.2.The input
signal is quantized at 8KHz (meaning we take a sample every 0.125 millisec-
onds). For 255 code levels, we get 8 bits per sample.Therefore, we transmit 64
Kbps.

Continuous Variable Slope Delta Modulation
Continuous Variable Slope Delta Modulation was first proposed by Greefkes and
Riemes in 1970. CVSD requires a 1-bit sample length compared to the 8 bits
used in PCM, so more samples can be sent in the same bandwidth.As a result,
CVSD is more tolerant of communications errors. Because of its error tolerance,

www.syngress.com

Figure 9.2 PCM Waveform Sampling

160bluetooth_C09.qk 12/6/01 10:20 AM Page 385

386 Chapter 9 • Designing an Audio Application

CVSD performs well in noisy channels, and for this reason, it has been widely
used in military communications systems.The ability to tolerate errors is also
what makes CVSD attractive for use in Bluetooth systems.

CVSD quantizes the difference in amplitude between two audio samples
(that is, between the current input sample and the previous sample).The chal-
lenge is always to choose the appropriate step size δ(k). Small step sizes are
better for tracking slowly changing low amplitude signals, but a larger step size
is needed to accurately track a fast-changing high amplitude signal.This effect
is shown in Figure 9.3.

Let’s consider a random input voice signal that we would like to convert from
analog samples to digital format using CVSD. Figure 9.4 shows how this happens.
As the input signal increases, bits set to 1 are transmitted. If the input signal
decreases, bits set to zero are transmitted. In the first declining cosine slope of the
signal, we can see how poorly the signal was quantized, but since it is an adaptive
differential quantizer, it starts to adapt by changing the step size. Given this, if the
signal characteristics remain the same, it will excel in following almost exactly the
trace of the input signal.

www.syngress.com

Figure 9.3 The CVSD Operational Concept

Analog voice signal

CVSD Codec
approximation

Small
delta-step size

Large
delta-step size

160bluetooth_C09.qk 12/6/01 10:20 AM Page 386

Designing an Audio Application • Chapter 9 387

In the CVSD algorithm, the adaptive changes in step size, δ(t), are based on
the past three or four sample outputs (for example, b(k), b(k-1), b(k-2), b(k-3))
where it increases or decreases to catch up with the input signal as was shown in
the example of Figure 9.4 earlier.The step size, δ(t), is controlled by the syllabic
companding parameter, α, which determines when to increase δ(t) or allow it to
decay.The step size decay time, β, is related to speech syllable length (sometimes
called delay).The Bluetooth system specifies β to be 16 ms and the accumulator
decay factor, h, to be 0.5 ms.

The accumulator decay factor decides the threshold of how quickly the
output of the CVSD decoders decay to zero after an input; this determines how
quickly the Codec will recover from errors in the received signal. Figure 9.5
shows flow diagrams of the algorithms for the encoder and decoder.The internal
state of the accumulator depends upon the equations that follow.

www.syngress.com

Figure 9.4 The CVSD Waveform

160bluetooth_C09.qk 12/6/01 10:20 AM Page 387

388 Chapter 9 • Designing an Audio Application

A standard called Mean Opinion Scale (MOS) testing is used to assess the
subjective quality of voice links.A rating of 4 to 4.5 is considered toll quality
(equivalent to commercial telephony).As MOS decreases, so quality decreases; a
value of just less than 4 indicates communication quality with some barely per-
ceptible distortion. Figure 9.6 compares MOS ratings for µ-law PCM and CVSD
with various bit error rates on the channel.

NOTE

The term toll quality was first used about 22 years ago when T1 multi-
plexers first started transporting voice over private T1 lines. The original
idea was that a private wide area network (WAN) could provide voice
quality equal to that of the long-distance public switched telephone net-
work (PSTN), which charged a toll for each minute of use using what is
nowadays known as Voice Over IP (VoIP).

Notice CVSD performs as well as µ-law PCM in a clean communication
medium. However, CVSD operates much better than µ-law PCM in the pres-
ence of bit errors.To be more specific, CVSD retains quite good MOS ratings at

www.syngress.com

Figure 9.5 The CVSD Encoder and Decoder Block Diagram

Comparator

Accumulator
y'(k) = x'(k-1)+ b(k)d (k)

X

Encoder output bit
b(k)=

Step Size
Control

Decay Factor
h

x'(k-1)

+

-

d (k)

x(k) 1, if < 0
0, if > 0

Accumulator
y'(k) = x'(k-1)+ b(k)d (k)

X

Step Size
ControlDecay Factor

h

x'(k-1)
d (k) Dncoder Input bit

b(k)=
 1, if < 0
0, if > 0

Encoder Section

Decoder Section

Communications
Medium

160bluetooth_C09.qk 12/6/01 10:20 AM Page 388

Designing an Audio Application • Chapter 9 389

low bit error rates; however, it drops to a MOS rating of 3 (fair quality but tends
to be annoying) at higher bit error rates.This robustness to bit errors (channel
noise) makes CVSD an ideal solution for many wireless speech communication
applications, including Bluetooth technology. But because PCM is cheap and
already available in a lot of devices, we really need both.

In this section, we have described CVSD and PCM Codecs, the circum-
stances that governed their design, and how robust their performance is in the
presence of bit errors.You may be unable to choose Codecs because you are
limited by what is available in your hardware systems.Your choice may be con-
strained by Bluetooth profiles as well, but you should now appreciate the perfor-
mance impact of choosing a particular Codec. Now that we understand Codecs,
we shall turn to the code you need to write and create your audio link.

Configuring Voice Links
The Bluetooth specification provides the means for devices to transfer data and
voice simultaneously using Asynchronous ConnectionLess (ACL) channels for

www.syngress.com

Figure 9.6 MOS versus Bit Error Rate for CVSD and µ-Law PCM Codec

160bluetooth_C09.qk 12/6/01 10:20 AM Page 389

390 Chapter 9 • Designing an Audio Application

data and SCO channels for voice.The specification also allows up to three duplex
voice (SCO) channels to be active simultaneously.

The specification provides these various capabilities by using a variety of
packet types (High-rate Voice HV1, HV2, HV3, or Data-Voice [DV]).The appli-
cation initiating the connection configures the voice link by choosing an HV
packet type.The different packet types configure the link to occupy a different
percentage of the channel bandwidth.This means that the choice of packet type
determines whether space is left for other voice channels, and whether it is pos-
sible to transfer data while the voice channel is active.

As always, nothing is free—adding voice channels will severely impact your
ability to transfer data. Furthermore, if you choose to use multiple voice channels,
each channel will have less error protection, so performance will be worse on
noisy channels. If you choose to send data at the same time as voice, you will also
lose out on error protection on the voice links.

Because your application’s configuration of the voice link will affect data rates
and voice quality, it is important that you understand the implications of
choosing different types.This section will take you through the capabilities of the
different packet types, and explain their impacts on data rates and voice link
quality in the presence of errors.

Choosing an HV Packet Type
Bluetooth technology uses a combination of circuit and packet switching tech-
nology to handle voice and data traffic.A circuit switched channel is a channel
that provides regularly reserved bandwidth. Live audio needs circuit switched
channels to guarantee regular delivery of voice information—the receive Codecs
need a regular feed of information to provide a good quality output signal.The
circuit switched channels are the Synchronous Connection-Oriented links—they
occupy fixed slots assigned by the master when the link is first set up.

A packet switched channel is only active when data needs to be transmitted,
and does not have reserved bandwidth.The packet switched channels in the
Bluetooth system are the Asynchronous ConnectionLess links. If voice was sent
on the ACL links, there would be no guarantee of regular bandwidth, and the
quality of the received signal would suffer.

The various packets used on SCO links all provide the same symmetrical 64
Kbps between master and slave. Each packet type is sent in periodically reserved
slots, but the different types require different spacings of reserved slots. Each SCO
packet type, meanwhile, uses a different encoding for the payload data.The SCO
packets (HV1, HV2, and HV3) are defined as follows:

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 390

Designing an Audio Application • Chapter 9 391

■ HV1 Carries 1.25 milliseconds (ms) of voice in 10 bytes. 1/3 Forward
Error Correction (FEC) adds 2 bits of error correction for every bit of
data, increasing the payload size to 30 bytes. HV1 packets are sent and
received as single-slot packets in every pair of slots.

■ HV2 Carries 2.5 ms of voice in 20 bytes. 2/3 FEC adds one bit of
error correction for every 2 bits of data, increasing the payload size to 30
bytes. HV2 packets are sent and received as single-slot packets in two
consecutive slots out of every four slots.

■ HV3 Carries 3.75 ms of voice in 30 bytes.There is no error correc-
tion payload. HV3 packets are sent as single-slot packets in two consecu-
tive slots in every six slots.

All of the SCO packets are single slot packets, and none of them carries a
CRC, but we can easily see whether or not the packet types permit the flexibility
to use FEC in the payload. In a noisy environment, there is no retransmission of
SCO packets even if they contain errors, but the FEC scheme on the data payload
protects the 80 percent of voice samples providing higher quality audio. However,
the FEC encoding uses up space in the payload, so the packets that carry more
error protection must be transmitted more often. In a reasonably error-free envi-
ronment, FEC gives unnecessary overhead that reduces the throughput.

One more packet type can be used to carry audio data: the data-voice packet.
This combines both ACL and SCO.The DV packet uses 2/3 FEC and a 16-bit
CRC on the ACL data, but is without FEC on the SCO data.The DV packet
carries 10 bytes of audio data, so it can be used to replace an HV1 packet—that
is, it can be used on a SCO link where packets are sent every two slots.

Sending Data and Voice Simultaneously
One important question is how much voice links affect throughput of data. If we
ignore the effect of errors and retransmissions, then it’s quite a simple calculation
(reference Table 9.1 for maximum throughput).

With no voice links present, it is possible to use the highest rate packets: DH5
packets.These use up to five 625 µs slots each and carry at most 339 bytes of the
user’s data. So, in 10 x 625µs we get a maximum of 339 bytes in each direction.
This gives us 5424 bytes per second in each direction.

If we add an HV3 SCO link (the lowest load that a voice link can place on
the system), then we will only have four slots in every six to transmit data.This
means we cannot send five slot packets, and cannot send two consecutive three-
slot packets.The most intelligent use of the available slots would be to send one

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 391

392 Chapter 9 • Designing an Audio Application

three-slot DH3 packet (carrying, at most, 183 bytes of the user’s data) and one
single slot DH1 packet (carrying, at most, 27 bytes of the user’s information). If
the direction that sent the DH3 packet could be alternated, the bandwidth would
be maximized, but both ends of the link would get the same share of the avail-
able bandwidth. Now in every 6 x 625µs, we get 183 bytes in one direction and
27 bytes in the other.Assuming the three-slot packets can be allocated so that the
bandwidth averages out in each direction, our maximum data rate will average to
105 bytes transferred in each direction every 6 x 625µs.This gives us 2800 bytes
per second in each direction, at 51 percent—this is almost half the maximum data
rate without a SCO link present.

If we add an HV3 SCO link and just use single slot packets for data (which
many basebands will do when an HV3 SCO link is active), then we get a lower
throughput. In this case, we can send two DH1 packets (carrying at most 27 bytes
of the user’s information), giving 54 bytes in each direction every 6 x 625µs.This
gives us 1440 bytes per second in each direction.

If we add two HV3 SCO links, then we only have two slots in every six
available.At this point we could only send single slot packets.The best
throughput we can get will be with DH1 packets carrying, at most, 27 bytes of
the user’s information.With just two slots out of every six available, we will be
able to send one DH1 packet in each direction, giving 27 bytes transferred in
each direction every 6 x 625µs.

If we add an HV2 link, then we only have two slots in every four available.At
this point we could only send single slot packets.The best throughput we can get
will be with DH1 packets, carrying, at most, 27 bytes of user’s information.With
just two slots out of every four available, we will be able to send one DH1 packet
in each direction, giving 27 bytes transferred in each direction every 4 x 625µs.
This gives us 1080 bytes per second.

If we add an HV1 link, then decide that we also want to transfer data, we
could only transfer data by replacing the HV1 packets by DV packets.This pay-
load carries a maximum of 9 bytes of the user’s information (the 10 byte payload
includes a byte of header information).The HV3 link uses every single slot, so we
can send DV packets in every slot.This means we can transfer 9 bytes in each
direction every 2 x 625µs.This gives us 720 bytes per second.

We have zero data throughput with three simultaneous voice channels
because the DV packet type can only be used with a single voice link, and three
HV3 links will use up every single slot.

While there is no user data throughput Link Manager Protocol (LMP), mes-
sages will take higher priority and will interrupt the voice links.This has to

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 392

Designing an Audio Application • Chapter 9 393

happen, otherwise there would be no way to send the LMP messages to tear
down a voice link!

Table 9.1 Bluetooth Packet Type Maximum Throughput

SCO Packet ACL Packet Maximum Symmetric Percentage of
Type Type Throughput Throughput

(bytes per second) without SCO

No SCO link DH5 5424 100
HV3 DH3+DH1 2800 51.1
HV3 DH1 1440 26.5
HV2 DH1 1080 19.9
DV DV 720 13.2
HV3 – two links DH1 720 13.2
HV1 - 0 0

Using ACL Links for High-Quality Audio
So far, we have looked at voice links that use the HV packet types transmitted in
reserved bandwidth provided by SCO links.The SCO links support the same sort
of voice quality you would expect from a cellular phone.This is great for applica-
tions such as mobile phone headsets, but not acceptable for applications that
require higher audio bit rates.

Obviously, with a maximum bit rate of 64 Kbps, a Bluetooth SCO link can’t
serve audio CD quality sound (1411.2 Kbps). For any high bit rate audio applica-
tion (for example, a portable Bluetooth device playing MP3 music), the SCO
channels will be inappropriate.

However, with suitable compression, it would be technically feasible to send
high bit rate audio packets using asymmetric ACL channels.This allows us to get
the maximum bandwidth from the Bluetooth link by using an asymmetric ACL
link that can provide up to 723.2 Kbps, as shown in Table 9.2.

The SCO links provide guaranteed latency on the link, but do not retransmit lost
or errored packets. By contrast, the ACL link provides guaranteed delivery of packets,
but as this is done through retransmissions, there are no guarantees on latency (delay).

There are two levels of choice when configuring Bluetooth audio links. First,
you must choose whether to use the Bluetooth audio Codecs and the SCO links,
or send compressed audio across the ACL links. For real-time duplex voice com-
munications, you should always choose the SCO links because of their guaran-

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 393

394 Chapter 9 • Designing an Audio Application

teed latency. For high bit-rate simplex audio such as that required for music, the
SCO links will not provide the required quality and compressed audio must be
sent across the ACL links.

Table 9.2 Bluetooth Communication Channel Support in Master-Slave Pairs

Channel Maximum Data Rate

Maximum
Number Type Configuration Transmitting Receiving

7 732.2 Kbps 57.6 Kbps
Asymmetric

Asynchronous data 57.6 Kbps 732.2 Kbps
(ACL)

Symmetric 433.9 Kbps
data

3 Synchronous Voice 3 × 64 Kbps
(SCO)

www.syngress.com

Let’s assume audio data streaming in a wireless point-to-point network,
which includes a PC, a loudspeaker, and a subwoofer. The PC playing
MP3-coded music is the piconet’s master; the speaker and the sub-
woofer are both slaves.

Because we are listening to music, the SCO channel is too low
quality, so we want to send packets across the ACL link. The ACL link is
designed for bursty data, not for audio, so it will retransmit any packets
which are subject to errors. This introduces delay into the link.

In order to cope with the delay, we need to buffer packets at the
receiver—that way we can feed a steady stream of information to the
MP3 decoder even if there are delays in the signal.

This has important implications for our application. We must
ensure we use compression that allows all information to get through
the channel even if there are errors. Though theoretically we have 732.2
Kbps to share between our slaves, in practice some of that capacity will
be used up by errors and retransmissions, so our MP3 encoding must
compress to less than the theoretical maximum channel capacity.

Case Study Example

160bluetooth_C09.qk 12/6/01 10:20 AM Page 394

Designing an Audio Application • Chapter 9 395

Once you have chosen the link type suitable for your application, you must
configure the link by choosing a packet type for it. For ACL links, you should
always allow the baseband to choose the correct packet type for the current envi-
ronment.To do this, you simply configure the link to use all data packet types,
then the baseband automatically picks the best packet type for the current link
quality. (This is done using Channel Quality Driven Data Rate [CQDDR]—for
more details, see Chapter 1).

If you choose to use SCO links for your application, you should now have a
good feel for how to select an audio packet type (HV1, HV2, or HV3).
Basebands that support the DV packet type will automatically use it when an
HV1 link is in use and there is user data to send.

Now that we understand how Bluetooth wireless technology transmits audio, let’s
examine the interfaces by which the audio signal gets into the Bluetooth subsystem.

Choosing an Audio Interface
Audio is not a layer of the Bluetooth protocol stack, it is a just a packet format
that can be transmitted directly over the baseband layer. Figure 9.7 shows an
example system such as might be used to implement an audio gateway in a cel-
lular phone. Because the phone (the host) already has a processor, the upper layers
of the Bluetooth protocol stack can be implemented on the host processor.The
illustration shows the layers from the Bluetooth specification shaded in gray.
There are two routes for audio: either a direct link between the baseband and the
application layer, or through the HCI.

The only difference between the two routes through the system is that all
packets passing through HCI experience some latency.The time taken for the

www.syngress.com

Figure 9.7 Audio Is Part of the Baseband Protocol Stack

Audio Gateway Application

RFCOMM SDP
Control

L2CAP
Audio

HCI

Link Manager

Baseband

Radio

Host
System

Bluetoooth
System

160bluetooth_C09.qk 12/6/01 10:20 AM Page 395

396 Chapter 9 • Designing an Audio Application

Bluetooth subsystem’s microcontroller to transfer the audio data from the base-
band into HCI packets introduces some delay, but this is imperceptible. However,
there is a second factor that can cause severe delays and lead to loss of SCO
packets: this is flow control of the HCI interface.

If the Universal Asynchronous Receiver Transmitter (UART) HCI transport is
used, there is no way to separately flow control voice and data, so when data trans-
port is flow controlled, the flow of voice packets across the HCI will also stop.
Buffering in the baseband chip could be used to prevent loss of data, but in practice,
since audio signals are time-sensitive, any late samples are simply discarded, leading to
gaps in the audio signal.The problem does not arise if the USB transport is used for
HCI, as this transport provides a separate channel for voice packets; however, USB
requires complex drivers and is not appropriate for all products.To solve the problem
of flow control affecting audio quality on serial links, the Bluetooth Special Interest
Group (SIG)’s HCI working group is currently working on a new serial interface
which will allow audio and data to be flow controlled separately.

Often, by the time the application developer gets involved, hardware choices
have already been made—which means you really have no choice of audio
interface, and must work within the limitations of what you have. However, if
you are lucky enough to be involved in the choice early on, then in choosing a
chip/chip set you should be aware of the potential impacts of choosing different
interfaces to get audio into the Bluetooth subsystem.When you make a choice
of silicon, be aware that not every chip/chip set supports audio, so obviously you
need to work with a chip/chip set that does! Of those that do support audio,
most provide direct access to the baseband. Some, however, do not support audio
across HCI.

Selecting an Audio Profile
The Bluetooth specification is broken up into several parts. So far, we have
looked at items covered by the Core Specification—this includes the radio base-
band and the software layers which make up a Bluetooth protocol stack.The
Core Specification has a second volume, which provides a series of profiles.The
profiles give guidelines on how to use the Bluetooth protocol stack to implement
different end-user applications.

The first version of the profiles document provides three different profiles
covering audio applications: the Headset profile, the Cordless Telephony profile,
and the Intercom profile.Within the Bluetooth SIG, there are working groups
that are producing profiles to support further audio applications.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 396

Designing an Audio Application • Chapter 9 397

Many textbooks (such as Bluetooth: Connect Without Cables) will take you
through the details of the profiles and protocol stack layers, and, of course, the
Bluetooth specification itself provides the definitive guide to the subject.This sec-
tion will just cover enough about the audio profiles to give you a taste of what’s
involved. Use this information to decide which profiles may be appropriate for
your application.

The first thing to be aware of is that your choice need not be limited to one
particular profile. If your product supports several services, it may be appropriate
to implement more than one profile. Figure 9.8 illustrates this point: it shows a
3-in-1 Bluetooth phone, which implements the Headset, Cordless Telephony, and
Intercom profiles. Let us examine each of these profiles in turn.

www.syngress.com

Figure 9.8 Audio Profiles and Link Establishment for Bluetooth-Enabled Devices

160bluetooth_C09.qk 12/6/01 10:20 AM Page 397

398 Chapter 9 • Designing an Audio Application

The Headset profile allows the audio signal from a telephone call to be trans-
ferred between an audio gateway (AG) and a headset.A mobile phone is a typical
audio gateway, but any device that receives incoming audio calls could be used.
Similarly, the headset side is usually a headset with microphone and speaker, but it
would be possible for a laptop computer to implement the Headset profile and
use its microphone and speaker to handle the audio part of a telephone call.

The Headset profile uses AT commands across an RFCOMM connection for
control. First, an ACL link is established and a connection to RFCOMM is set up.
Then an AT+RING command is sent on the RFCOMM connection to trigger a
ring tone in the headset.The user pushes a button on the headset to pick up the
incoming call.The button push is signaled to the phone using an AT_CKPD
(keypad command). Once the button press information is received, a SCO link
can be set up to carry the voice call between the headset and the audio gateway.

The Cordless Telephony profile allows incoming calls to be transferred from a
base-station to a telephone handset. In many ways, the Cordless Telephony profile
provides similar capabilities to a digital enhanced cordless telecommunications
(DECT) telephone system, except that it is not possible to hand over an active
call to a different base station.This means that the phone handset must stay
within range of a single base station.The Cordless Telephony profile provides
control of information in addition to the transfer of audio, so, for instance, a
calling line identifier (CLI) can be sent to the phone handset so the user can see
who is calling them before deciding to answer the call.

The Intercom profile allows telephone calls to be transferred across a
Bluetooth link without involving a telephone network at all.Again, identifying
information can be sent with the call so that the receiver can display the number
of the device initiating the call.There have been some questions about whether
the Intercom profile is really useful (the lowest power Bluetooth devices only
operate within a 10 meter range, and at these distances, you may as well shout).
However, devices with class 1 radio modules can achieve 100m ranges, and this
means that the Intercom profile could provide telephony services within an office
building where it is not always appropriate to shout!

The Cordless Telephony and Intercom profiles both use Telephony Control
Protocol (TCS) commands for control.The first stage is to establish an ACL link.
Figure 9.8 shows two ways in which this can be done—the cordless telephony
example shows a connection being unparked, while the intercom example shows
a fresh connection being established. In both cases, the first step is to send a
SETUP message to indicate a new call is being established.The SETUP message
is acknowledged and the device receiving the call begins generating a ring tone

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 398

Designing an Audio Application • Chapter 9 399

to tell the user that a call is coming in. So that the device originating the call
knows the user is being alerted, an ALERTING message is sent back by the
device receiving the call.When the user accepts the call a CONNECT message
is sent to the device originating the call, this triggers the setup of a SCO link.
Once the SCO link is in place, the CONNECT message can be acknowledged.

By now, you should be realizing that the Intercom and Cordless Telephony
profiles are very similar in the ways they establish the link, whereas the Headset

www.syngress.com

Trap-Link Supervision Timeout
While considering how different devices disconnect, it is worth thinking
about one aspect of wireless connections which can trip up developers
who are used to wired systems. Bluetooth is a wireless technology, and
like other wireless technologies, it’s always possible the link will fail
because of interference or because mobile devices move out of range of
each other.

When the link fails, it will cause a link supervision timeout at the
Link Management layer. This means that the Link Manager has detected
that it has not been able to send packets on the link for a preset timeout
period.

The default link supervision timeout on a Bluetooth link is 30 sec-
onds, so by then the user will probably have given up and terminated the
connection themselves. You could set the link supervision timeout period
so that the link will automatically disconnect sooner than the default 30
seconds. To do this, you use the HCI Write_Link_Supervision_Timeout
command. When the link disconnects, the HCI will return a Disconnection
Complete event, and this should cause the various protocol stack layers
to disconnect.

When the link does disconnect, your application will be notified. At
this point, you will need to tidy up any resources in use by the link—free
memory, close down audio channels, and so forth—just as if the call had
been terminated by the user. If your device has a visual user interface, it
is a good idea to display a message to the user informing them that the
link has failed. If your device has an audio interface, you must decide
whether to generate some tone to indicate the link has failed, or just
leave the user listening to silence.

Debugging…

160bluetooth_C09.qk 12/6/01 10:20 AM Page 399

400 Chapter 9 • Designing an Audio Application

profile uses a completely different mechanism.This is because the Intercom and
Cordless Telephony profile are controlling the link with TCS commands, while
the Headset profile controls the link with AT commands.The different control
mechanisms mean that when the profiles disconnect, we again see similarities
between Intercom and Cordless Telephony, but the Headset profile still behaves
differently.

Figure 9.9 shows how the Intercom and Cordless Telephony profiles share the
same disconnection procedure. First of all, the party that is to end the call, sends a
disconnect signal to the client that replied with a release permission and waits for
the SCO link release signal to tidy up the resources and avoid memory leakage.
The Headset profile is slightly different because it sends an AT-based keypad con-
trol (AT+CKPD) command to the audio gateway first, and the audio gateway
releases both the SCO links and the connection.

It is interesting to note that the Headset profile does not provide any com-
mands for the headset to terminate the connection; however, if the headset just

www.syngress.com

Figure 9.9 Audio Profiles and Link Release for Bluetooth-Enabled Devices

160bluetooth_C09.qk 12/6/01 10:20 AM Page 400

Designing an Audio Application • Chapter 9 401

drops the link, the audio gateway must be able to cope. So, if you wish to provide
a disconnect facility for your users, then your code will be very simple: don’t
send any commands, just disconnect!

Figures 9.8 and 9.9 show example calls going in one direction. For the
headset profile, the audio gateway side always initiates the call—the headset
cannot initiate a voice call to the audio gateway, it can only accept an incoming
call.With the Intercom and Cordless Telephony profiles, either device can initiate
the call—so, for instance, with the cordless telephony profile, the base station can
receive an incoming call from the PSTN and send that call to the phone handset,
or the phone handset could initiate a call to the base station, and the base station
would then pass that call out to the PSTN.

If you just want to transfer the audio part of a call without control informa-
tion, then the Headset profile is small, simple, and definitely the one to use. If you
need to initiate voice calls to other Bluetooth devices in the area, but are not
passing them on to a network, then use the Intercom profile. If you are imple-
menting a base station to pass voice calls to and from a telephone network, then
you should use the Cordless Telephony profile.

Applications Not Covered by Profiles
You may have noticed that all of the three profiles previously described are ori-
ented towards distributing telephony devices.All of these profiles use SCO links
to carry the audio information.As we discussed earlier, that’s fine for telephones,
but not so good if you need high-quality audio for music.

If your application provides a service which is covered by the existing
Bluetooth profiles, then you should implement the relevant profile. However, at
the moment, there are many possible audio applications which are not covered by
profiles. If your application fits in this class, then you will have to design a com-
plete proprietary application yourself without guidance from a profile document.

A disadvantage of producing your own proprietary application is that it will
only work with other products that use the same control systems.That’s fine if
you are implementing a closed system, but if you want to make some Bluetooth
stereo headphones, then you’d probably prefer them to work with lots of different
brands of stereos so that more people will buy them.The solution is to join in
one of the working groups of the Bluetooth SIGs and get together with other
manufacturers to come up with a profile that lots of devices can implement.To
join a SIG working group, you must be an associate level member of the
Bluetooth SIG (there is an annual fee for associate companies). Participating in a

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 401

402 Chapter 9 • Designing an Audio Application

working group can also be quite time-consuming, often involving international
travel to meetings, so this route will not suit everyone.

Another alternative is to look on the Bluetooth Web site and find out which
working groups are producing new profiles. It may be that the profile you need is
just around the corner. If that’s the case, it may be worth your while to wait for
the profile to be released rather than go to all the trouble of developing a propri-
etary system only to discover that it fails in the market because everybody else is
using a standardized profile.

New Audio Profiles
The Bluetooth SIG has working groups who are developing new profiles.There
is a car working group, which is due to release a hands-free profile soon and an
audio/visual (AV) group, which is working on a series of profiles to provide dis-
tribution of low bit rate video and high-quality audio.

The hands-free profile being produced by the car working group is targeted at
in-car, hands-free kits, but could also be used in other applications, such as call cen-
ters.The hands-free profile will allow the hands-free device to initiate calls to the
audio gateway.This will be done by transferring dialing information using AT com-
mands across an RFCOMM serial link. Because the hands-free profile uses AT
commands to dial, it will be simpler to implement than the TCS-based profiles.

The AV working group is providing a variety of profiles which will allow
Bluetooth systems to support standardized audio and video capabilities.These
provide videoconferencing capabilities—note that a video capability suitable for
videoconferencing is probably not satisfactory for distributing video for enter-
tainment purposes. In short, you won’t find this profile much good for watching
movies! There is also an advanced audio distribution profile which supports
higher quality audio than the basic SCO links. Distribution profiles provide stan-
dardized streaming channels to be set up and controlled to support audio or
video distribution.There are also profiles defining how links should be controlled
and how remote control should be provided.

In the future, more profiles will be released. Members of the Bluetooth SIG
are notified by e-mail whenever new profiles become public.

Writing Audio Applications
In the previous section, we looked briefly at the various profiles available for audio
applications. In this section, we’ll look in more detail at how a particular profile
could be implemented at application level.We shall use the headset profile as our

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 402

Designing an Audio Application • Chapter 9 403

example application, because it is the simplest of the audio applications. Even then,
much of the application functionality will remain the same whichever profile you
use. For example, all inquiry, paging, scanning, and service discovery are the same
no matter which profile you implement. Similarly, the audio must be routed into
the Bluetooth subsystem somehow, regardless of the audio profile chosen.

As we explained in the previous section, the headset profile is used to transfer
the audio part of a call between an audio gateway and a headset. Figure 9.10
shows some examples of devices that implement the Headset profile: the Ericsson
DBA-10 snap-on Bluetooth accessory provides Bluetooth system capability to
the Ericsson T28 world phone.The combined phone and accessory act as an
audio gateway.The Ericsson and GN Netcom headsets both implement the
headset part of the Headset profile.

Discovering Devices
Whichever audio profile is being supported, the initial steps in establishing a link
will be similar.The first step will be finding suitable devices in your neighbor-
hood using the Bluetooth Device Discovery procedures.

Chapters 1 and 2 explained how Inquiry and Inquiry Scan modes are used to
implement device discovery. For audio applications, it is also worth noting that the
inquiring device can use an HCI command to filter inquiry responses by device

www.syngress.com

Figure 9.10 Bluetooth Devices that Use Audio Links (Ericsson
Bluetooth Headset and Mobile Phone, GN Netcom GN9000 Headset)

160bluetooth_C09.qk 12/6/01 10:20 AM Page 403

404 Chapter 9 • Designing an Audio Application

class.The Frequency Hopping Synchronization (FHS) packets used to respond to
inquiries, each contain a major and minor device class. For the Headset profile, we
are only interested in devices with the Class of Device set as follows:

Major class of device = audio

Minor class of device = headset

The following pseudo-code shows how an application might implement
device discovery:

// Device Discovery

Display "Discovering Devices" message to the user

Send HCI Set_Event_Filter command Filter_Type = inquiry result Filter

Condition = devices with a major class of device = audio minor class

of device = headset

Send HCI Inquiry command to initiate an inquiry

WHILE (HCI inquiry complete event not received)

{

Receive and process inquiry response events

}

The exact code used will vary from system to system, but the procedure to
set event filters, initiate an inquiry, and process the results until the inquiry com-
pletes, will remain the same. One possible variant would be to use periodic inquiry
mode.This will set the lower layers to periodically perform an inquiry. Most
audio applications will run on small battery-operated devices, and since periodic
inquiries will drain the device’s batteries, their use is not recommended for audio
applications.

Of course, the inquiry won’t get any results if there are no devices scanning,
so to match the previous inquiry code, we need the inquiry scan pseudo-code
that follows:

Send HCI Write_Inquiry_Scan_Activity

Send HCI Write_Scan_Enable scan mode = inquiry scan enabled

Start timer

Wait for timer to cause a timeout

Send HCI Write_Scan_Enable scan mode = inquiry scan disabled

As explained in Chapters 1 and 2, the inquiry scan activity should be set
according to the requirements of the Generic Access Profile.Again, because of

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 404

Designing an Audio Application • Chapter 9 405

the power drain caused by scans, it is recommended that a device should not be
left in Inquiry Scan mode for long.This is why the previous code runs a timer,
and when the timer causes a timeout, it disables the inquiry scan.

The fact that Inquiry and Inquiry Scan only happen for short periods
implies that you must be able to trigger them somehow from the user interface.
Usually, the audio gateway performs inquiries and the headset scans for them. If
the audio gateway is a phone, an inquiry can be triggered through the phone’s
menu system.A headset is more problematic since it will have a very limited
user interface—buttons take up space and cost money, so you can’t have many of
them! The Ericsson headset has a single button that is pressed to switch the
headset on and off. If you keep the button held down after switching it on, you
go into Inquiry mode. Experience shows that some users find interfaces that
have many functions attached to one button difficult to operate, but you must
balance this against the size, weight, and cost penalties of adding more controls
onto the headset.

Using Service Discovery
Once the audio gateway application has found a device that belongs to the
audio/headset class of devices, it needs to find out how to connect to the headset
service.To do this, it uses Service Discovery Protocol (SDP) and performs a ser-
vice search for the headset service.

The pseudo-code that follows illustrates the steps an audio gateway would go
through when using service discovery on a headset.

// Service Discovery

display "Discovering Services" message to the user

For (each device with audio as major class of device discovered during

device discovery)

{

send HCI_Create_Connection command to create an ACL link to device

send HCI_Remote_Name_Request command to get user-friendly name for

remote device

create L2CAP link using PSM for SDP

send SDP service search for headset service

IF (headset service record returned)

{

store headset service record for device

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 405

406 Chapter 9 • Designing an Audio Application

display device to user using user-friendly name

}

disconnect L2CAP and ACL links

}

An ACL link is created, and once the link is up, a remote name request is
used to find the user-friendly name of the remote device.This isn’t mandatory,
but it will make your application a lot easier for users if you get this information
for them.

A Logical Link Control and Adaptation Protocol (L2CAP) link is created across
the ACL link.This must be created specifically for SDP, and uses a Protocol Service
Multiplexor (PSM), which tells the remote device to connect the L2CAP link to its
SDP server. Once the L2CAP link is established, it can be used to send SDP service
search requests to retrieve the service record for the headset service.This record con-
firms that the remote device implements the headset profile, and gives version infor-
mation, along with information required to connect to the headset service.

Once the service record is returned, it can be stored locally so that if the
device is encountered in future service discovery, it does not have to be per-
formed again.Any new information can also be displayed to the user, and as the
link is now finished, it may be destroyed.

Leaving the link up wastes power, but establishing a link also takes up power,
so there is a decision to be made about disconnecting links. In the preceding
example, the L2CAP and ACL links were both disconnected, but there is a
chance that the ACL link will be reused to connect to the headset service.This
means that it might be advisable to wait a while before disconnecting the ACL
link. Because of this, you might implement something like this:

Disconnect L2CAP link

Start timer

Wait for timeout

IF (connection to headset service has not been requested)

{

disconnect ACL link

}

The L2CAP link is disconnected straight away because it was created with a
PSM value for SDP.This means that the L2CAP link cannot be used for anything
other than service discovery.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 406

Designing an Audio Application • Chapter 9 407

Connecting to a Service
Now we can finally get to the whole point of the application and connect to
an audio service.The first step is to set up an ACL link—this could be a link
leftover from the service discovery phase, or if that link was disconnected, it
could be a new link set up by repeating the paging process.This connection
is used to create an L2CAP link using the PSM value for RFCOMM. Next,
an RFCOMM channel is set up to control the headset.The Channel ID for
the headset was provided to the Audio Gateway in the headset’s service
record.

The RFCOMM connection is used to send the AT commands which control
the headset service.The first command shown in the following is an AT+RING
signal, which tells the headset to produce a ring tone.This ring tone alerts the
user that a call is coming from the audio gateway.

The user should somehow accept the call—this could be done with a voice
recognition system, but it will most likely be done by the user pressing a button
on the headset. However, the user actually accepts the call with the keypad signal
AT+CKPD, which is sent back to the audio gateway across the RFCOMM
channel.

Now that the audio gateway knows the headset is willing to accept the call, it
establishes an audio (SCO) link.This could optionally have been done earlier on,
but audio links consume power, so it is better to wait until the last possible
moment to set up the SCO link.The link must be configured, and our example
shows an HCI Write_Voice_Setting command which sets the Codec format (A-
law or µ-law PCMs and CVSD).The Codec does not have to be chosen at this
point—this could have been set earlier on, or left at some default value. Once the
Codec settings are configured as required, a SCO connection can be set up using
the HCI Add_SCO_Connection command.The parameters for this command
specify the connection handle of the ACL connection across which the SCO
connection will be set up, as well as the packet type to be used on the SCO con-
nection (HV1, HV2, and HV3).

Note that the audio gateway initiates the SCO connection, which means it
chooses the Codec and HV packet type to be used on the link. Because the
audio gateway chooses the Codec and packet type, the headset must be able to
accept all Codecs and packet types. However, because the headset does not need
to worry about deciding which type is appropriate, the headset application is
much simpler to write.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 407

408 Chapter 9 • Designing an Audio Application

Immediately after the Add_SCO_Connection, an HCI_Command_Status event
is returned to acknowledge the command.When the SCO connection is estab-
lished, an HCI_Connection_Complete event is received. If there were any problems
with the connection, the status field will carry a reason for failure.The following
pseudo-code illustrates this procedure.

//Connection

IF (headset was not found during service discovery)

{

display message "no headsets found" message to the user

}

ELSE // at least one headset was found

{

display message "please select a headset to connect with"

IF(user selects a device)

{

display message "connecting with headset"

send HCI_Create_Connection command to create an ACL link to

the device

create L2CAP link using PSM for RFCOMM

create RFCOMM link to headset service using RFCOMM channel from

headset service record

send a ring signal using an AT+RING command

IF (receive an AT+CKPD from headset)

{

send HCI Write_Voice_Setting

send HCI Add_SCO_Connection to establish SCO link

send any control commands required to route audio to user,

set volume, etc.

IF (HCI_Connection_Complete with status = success)

{

display message "Connected to headset"

}

ELSE

{

display message "could not connect to headset"

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 408

Designing an Audio Application • Chapter 9 409

disconnect links and tidy up resources used

}

}

}

}

This example is simplified and does not cover security procedures. For an in-
depth look at security, see Chapter 4. It is worth noting in passing, however, that
a headset can be paired to the audio gateway, and it is possible to pair a headset
with more than one device. If this was done, then the same headset could quickly
and easily be used with a variety of audio gateways. For instance, while on the
move, you could use your headset with a mobile phone, but in the office, the
same headset might be used with a Bluetooth-enabled desk phone.

Using Power Saving with Audio Connections
Some of the Bluetooth-audio enabled devices might have very small batteries,
because of both size and weight constraints, so optimizing power consumption
is important. Sometimes an audio device will be idle for a long time—for
example, after terminating the communications link or while waiting for an
audio connection to be established. During these idle periods, it doesn’t need
to participate in the channel.We could simply drop the ACL connection, but
then when we needed to connect with it again, there would be a delay. For a
cellular phone headset, it could be a real disadvantage to have to wait a few
seconds while the phone paged the headset.This would introduce an unaccept-
able delay in notifying the user that a call is coming in. So, to allow fast audio
connections to be made, we want to keep the ACL link, but to save power, we
want to drop the link.

The solution is to use the low-power park mode. In this mode, the Bluetooth-
enabled audio device remains frequency-hop synchronized by waking up periodi-
cally during beacon slots to resynchronize with the master.The master can use
beacon slots to reactivate the device, so that when an incoming call arrives, the
terminal can be unparked fast enough to answer the call or can start to listen to
the music from the beginning of the play.The spacing of the beacons is a trade-off
between response times and power saving. Long beacon intervals give a slow
response, but require less activity from both master and parked slave. Short beacon
intervals give faster response, but require more activity and hence consume more
power. See Chapters 1 and 3 for more details on low-power modes.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 409

Differentiating Your Audio Application
So far, we’ve looked at the basics of writing a Bluetooth audio application, but if
you’re making a product to sell, you don’t want a basic application, you want
something special! This section will look at a few of the ways you can differentiate
your audio application, adding value for the user.This is the sort of thing you need
to do if you want your product to sell better than the next guy’s.

Physical Design
Chapter 1 looked at some of the physical factors that make a Bluetooth product
succeed, so we won’t go into great detail here. But do be sure not to forget the
weight, size, and form factor.All of this may be beyond your control, but if you
are involved in the original product design, you can contribute to your devices
salability by ensuring that these are thought about.

Bluetooth wireless technology is still young.The people buying Bluetooth
audio devices today are the classic early adopters—gadget freaks who are willing
to take a risk just to have the latest thing. Something that displays the novelty of
the device can be quite an important factor—blue LEDs are much more expen-
sive than red or green, but look around and you’ll find plenty of Bluetooth prod-
ucts sporting blue flashing LEDs.The reason is that displaying their new
technological gadget is an important factor to the early adopters, and that blue
LED says “my product is a Bluetooth product.”Thinking about apparently trivial
items like the color of an LED can be the difference that makes your design
stand out and appeal to your target users.

Designing the User Interface
The user interface is the one aspect of your application that has the power to
make or break your market success.The qualification process ensures that you’ve
got the technology right, but nobody will stand over you and make sure your
product is actually usable! As you write your application, ask yourself if there are
ways to hide the complexity of Bluetooth technology.

The profiles constrain what you can do with an application—this is done
with good reason: it helps to ensure that products from different manufacturers
will interoperate.You might think that if everybody’s application is implementing
the same profile, there is no real scope for differentiating products at the user
interface level. Don’t despair—there are plenty of things you can do to make sure
your application has an edge over the competition.

www.syngress.com

410 Chapter 9 • Designing an Audio Application

160bluetooth_C09.qk 12/6/01 10:20 AM Page 410

Designing an Audio Application • Chapter 9 411

Many headsets are using a single function button, which is slid from side to
side for volume up/down and pressed for various lengths of time to perform
other functions.You should balance the complexity of such an interface with the
cost and added size involved in having more buttons.What works best will differ
from product to product, so think about what works best for your form factor.

One factor that is often overlooked in headset design is the possibility of
using the audio channel as part of the user interface. Even systems that do not
implement voice recognition can quite simply and easily use the audio path as
part of the user interface by generating tones to inform the user of events. For
example, if a call is disconnected due to link loss, a continuous tone could be
sounded for half a second alerting the user that there is a problem. Similarly, if the
device has a low battery, a series of tones could be sounded to warn the user that
they are about to lose usage of the device. Because the user interfaces are very
limited on small mobile audio devices, it is worth considering whether your
application can make use of the device’s built-in audio facilities to provide a
richer user interface.

Enabling Upgrades
One way to differentiate your product is to provide ongoing support for new
features, or for future versions of the Bluetooth specification. More and more
devices are now providing upgrade facilities for users. If you choose to do this,
then you will have to consider how to avoid the upgrade process being run acci-
dentally.This is important because the first stage of a device upgrade often
involves wiping code and leaving the device in an unusable state if there is no
upgrade code available.

Once you have an interface to start the upgrade process, you will need to
consider the route by which you can download code to upgrade to a new ver-
sion or to add features. Some part of the system will need to check the code to
be sure it is a correct authorized version.A checksum should be implemented to
ensure the new code is not corrupt, and you may like to also consider incorpo-
rating a security code to avoid unauthorized or accidental modification of your
device’s application.

Many devices are capable of being upgraded, but with the exception of PC
applications, it could be argued that very few users ever choose to take advantage
of upgrade facilities. However, just because devices installed in the field may not
be upgraded, it does not mean that upgrades are not relevant to your application.
Often, devices awaiting shipment require an upgrade before delivery; if this might

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 411

412 Chapter 9 • Designing an Audio Application

apply to your products, then it is worthwhile providing some route for upgrades
to be downloaded to your device. Manufacturers who upgrade old stock awaiting
shipment may choose to enable upgrades using special commands which are not
publicized to the end users. In this way, they can hide a complex engineering
interface from the user’s eyes, and prevent accidental use of the upgrade interface.

Improving the Audio Path
As mobile devices become ever smaller, design problems start to appear, particu-
larly with duplex voice systems. In a wired headset, the microphone typically
dangles on a flexible cord and is quite well separated from the earpiece.
Bluetooth headsets tend to be designed to clip on the ear with the microphone
carried on a small boom, which places it close to the user’s mouth.This creates
two problems: first, the microphone and earpiece are physically closer together,
creating the possibility of an audio feedback loop through free space, and second,
their linking by the rigid boom creates the potential for acoustic coupling
between the microphone and earpiece through the casing of the headset itself.

There can also be resonance effects within the components of devices—rigid
cases and printed circuit boards (PCBs) can resonate at particular frequencies, and
it is also possible for the coupling between the audio gateway and the headset to
affect the audio. Combine all these effects and there can be noticeable impacts on
the audio quality perceived by the user.

The primary solution will always lie in good physical design of the product,
but there are other things that can be done. Most mobile phones incorporate
echo canceling and other such advanced techniques, which use the digital pro-
cessing power of the phone to reduce unwanted components in the audio signal.
Digital signal processing, of course, uses processing time, adding expense and
increasing power consumption, so it should only be used in a headset as a last
resort.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 412

Designing an Audio Application • Chapter 9 413

Summary
Bluetooth wireless technology has a promising future in the mobile phone and
handheld devices’ audio markets.We have seen that Bluetooth devices can sup-
port up to three full-duplex SCO audio channels, or support up to two voice
channels with simultaneous data transfer.Those channels use three coding
schemes: CVSD, µ-law PCM, and A-law PCM. CVSD is more robust for errors
and can support higher quality over good links. However, PCM is cheap and
already available in a lot of commercial devices. For maximum compatibility, we
really need both.

There are two routes for audio into the Bluetooth system: straight into the
baseband or through HCI.The HCI route can experience latency due to flow
control of data between host and lower layers.The Bluetooth SCO links provide
toll-quality voice suitable for carrying phone calls. For high-quality audio (such
as that required for music), the SCO links do not provide sufficient quality.
Currently, there is no standardized way of providing high-quality audio across
Bluetooth links, but compressed audio (such as MP3) could be sent across an
asymmetric ACL link.

There are three audio profiles: Headset, Intercom, and Cordless Telephony.
Further profiles are being defined, including those that provide higher quality
audio across Bluetooth links.The steps involved in using an audio service are
common to all profiles—discover devices perform service discovery, exchange
control information, and configure and set up an audio link.

Audio applications can be differentiated in many ways.We considered physical
design, user interface design, enabling upgrades, and improving the audio path.

Solutions Fast Track
Choosing a Codec

� Codecs (coder/decoders) convert between analog voice samples and the
compressed digital format.

� The output of the Codecs must be fed into the Bluetooth baseband as a
direct input to the baseband (a technique commonly used in Bluetooth
chips), or encapsulated in a Host Controller Interface (HCI) packet and
fed across the Host Controller Interface.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 413

414 Chapter 9 • Designing an Audio Application

� Bluetooth technology uses CVSD and PCM Codecs. CVSD is more
robust in the presence of errors, which is what makes CVSD attractive
for use in Bluetooth systems. PCM is cheap and already available in
many commercial devices.

� There are two types of compression implemented in PCM Codecs:
A-law and µ-law.The different types are used by phones in various geo-
graphical regions.

Configuring Voice Links
� The Bluetooth system transmits data on ACL links and voice on SCO

links. SCO links use periodically reserved slots, while ACL links do not
reserve slots.

� Live audio needs circuit switched channels to guarantee regular delivery
of voice information—the receive Codecs need a regular feed of infor-
mation to provide a good quality output signal.The circuit switched
channels are the Synchronous Connection-Oriented links.They occupy
fixed slots that are assigned by the master when the link is first set up.

� Always remember that Bluetooth technology maintains a maximum of
3 × 64 Kbps full-duplex SCO voice packets.The SCO links provide
voice quality similar to a mobile phone; if higher audio quality is
desired, then compressed audio must be sent across ACL links.

� Notice that we don’t want to modify the voice packets at the L2CAP
layer. SCO packets bypass the L2CAP layer.

� If you choose to send data at the same time as voice, you will also lose
out on error protection on the voice links.

� When a link is to be established, use the following procedure: scan or
page for an audio device. Use SDP to identify service. Set up ACL con-
nection first for control, then set up SCO connection. During a voice
connection, control messages can be sent such as DTMF signals

Choosing an Audio Interface
� There are two routes for audio: either a direct link between the base-

band and the application layer, or through the HCI.All packets passing
through HCI experience some latency.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 414

Designing an Audio Application • Chapter 9 415

� If the Universal Asynchronous Receiver Transmitter (UART) HCI trans-
port is used, there is no way to separately flow control voice and data, so
when data transport is flow controlled, the flow of voice packets across
the HCI will also stop.The USB transport provides a separate channel
for voice packets; however, USB requires complex drivers.

� Not every chip/chip set supports audio. Of those that do, most provide
direct access to the baseband, but some do not support audio across HCI.

Selecting an Audio Profile
� Three different profiles cover audio applications: the Headset profile, the

Cordless Telephony profile, and the Intercom profile. If your product
supports several services, it may be appropriate to implement more than
one profile. If your application is not covered by one of the profiles, you
will have to design a complete proprietary application yourself.

� The Headset profile allows the audio signal from a telephone call to be
transferred between an audio gateway (AG) and a headset. If you just
want to transfer the audio part of a call without control information,
then the Headset profile is small, simple, and definitely the one to use.

� The Cordless Telephony profile allows incoming calls to be transferred
from a base-station to a telephone handset. If you are implementing a
base station to pass voice calls to and from a telephone network, then
you should use the Cordless Telephony profile.

� The Intercom profile allows telephone calls to be transferred across a
Bluetooth link without involving a telephone network at all. If you need
to initiate voice calls to other Bluetooth devices in the area, but are not
passing them on to a network, then you should use the intercom profile.

� The Cordless Telephony and Intercom profiles both use Telephony
Control Protocol (TCS) commands for control and share the same dis-
connection procedure.The Headset profile controls the link with AT
commands, and does not provide any commands for the headset to ter-
minate the connection.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 415

416 Chapter 9 • Designing an Audio Application

Writing Audio Applications
� In this section, we looked in detail at how a particular profile could be

implemented at application level.All inquiry, paging, scanning, and ser-
vice discovery are the same no matter which profile you implement.
Similarly, the audio must be routed into the Bluetooth subsystem
somehow, regardless of the audio profile chosen.

� The first step will be finding suitable devices in your neighborhood
using the Bluetooth Device Discovery procedures.

� Once the audio gateway application has found a device that belongs to
the audio/headset class of devices, it needs to find out how to connect
to the headset service.To do this, it uses Service Discovery Protocol
(SDP) and performs a service search for the headset service.

� Once the service discovery phase is complete, you can connect to an
audio service.The first step is to set up an ACL link.This connection is
used to create an L2CAP link using the PSM value for RFCOMM.
Next, an RFCOMM channel is set up to control the headset. Once the
audio gateway knows that the headset is willing to accept the call, it
establishes an audio (SCO) link.The headset must be able to accept all
Codecs and all packet types on the link.

Differentiating Your Audio Application
� Be sure to consider the weight, size, and form factor in your product

design.

� The user interface is the most crucial aspect of your application.Ask
yourself if there are ways to hide the complexity of Bluetooth tech-
nology. Button functions and headset designs offer opportunities for
improvement and differentiation.

� Another way to differentiate your product is to provide ongoing support
for new features or for future versions of the Bluetooth specification.

� Improving design and engineering to better the audio path can have a
noticeable impact for the user, helping to avoid audio feedback, acoustic
coupling, and resonance effects.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 416

Designing an Audio Application • Chapter 9 417

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: The input to the CVSD encoder is 64 K samples/s linear PCM. How can
you create the 64 Kbps encoder output using just using an 8 K samples/s
input?

A: It is 64 Kbps but 8 K samples/s. If there are 8 quantization levels per sample,
this is the same as saying 64 Kbps. It all depends on the number of distinct
levels the sample can represent.

Q: If a Bluetooth SCO link can’t carry CD-quality sound, how could you
develop a Bluetooth-enabled MP3 player?

A: It is possible, but we have to use ACL channel (maximum asymmetric data
rate 732.2 Kbps) audio sent in compressed format, and buffering must be
done to allow a constant flow of data to the MP3 decoder, despite delays
caused by retransmissions on the ACL link.

Q: Why is CVSD more robust for errors than PCM?

A: First of all, CVSD requires a 1-bit sample length compared to the 8-bits used
in PCM, so more samples can be sent in the same bandwidth. Second, since
CVSD is a differential scheme and depends on the slope between the symbols
(unlike PCM), when the data is corrupted, the effect is less marked, as the
signal only has a small difference from the correct signal.Third, the CVSD
algorithm incorporates a decay factor, which means that upon receipt of cor-
rect data, the output signal will tend towards the correct value.

www.syngress.com

160bluetooth_C09.qk 12/6/01 10:20 AM Page 417

160bluetooth_C09.qk 12/6/01 10:20 AM Page 418

Personal
Information Base
Case Study

Solutions in this chapter:

■ Why Choose Bluetooth Technology?

■ Using Bluetooth Protocols to Implement a
Personal Information Base

■ Considering the User’s View

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Chapter 10

419

160bluetooth_C10.qk 12/5/01 4:03 PM Page 419

420 Chapter 10 • Personal Information Base Case Study

Introduction
The word “personal” keeps coming up whenever people talk about Bluetooth
technology. Personal Area Networks, Personal Devices—it’s all about bringing
communications down to the local personal level. So the next logical step is to
use Bluetooth technology to maintain a personal information base! The example
we will be working with in this chapter looks at a hospital environment as a case
study for implementing Bluetooth technology.

In the past, medical records were limited to a few salient observations.
Today, reams of data can be gathered by complex monitoring systems. A lot of
that data is lost because it is difficult to move around and store. By creatively
using communication applications, we can send the data with the patient so it’s
easily accessible when needed. By making the database personal and trans-
portable, we guarantee its instant availability. By using Bluetooth wireless tech-
nology, we provide an open standard for accessing the data, meaning that if a
patient moves from one area or clinic to another, all the data required can
accompany them and should be instantaneously accessible—anywhere and
anytime.

What would such a Personal Information Base (PIB) device for a medical
environment be able to do? It could store all the patient information, such as
contact details, digital photographs, calendar of appointments with the doctor and
hospital, as well as all the information gathered from tests, be they electronic or
manual.These are just the basic details that can be stored.The potential to store
more data in any form is infinite.

The advantages of a PIB device for both patient and hospital are security,
instant access to almost up-to-date information, electronic and efficient transfer,
and safe and compact storage over time.

Figure 10.1 shows what a PIB card could look like and how data can be
exchanged by a Data Access Terminal (DAT). Both the PIB and DAT can
exchange information with the local server.The local server keeps a copy of the
data on the PIB and can synchronize data from other departments and DATs.The
synchronised data is backed up to the Central Control, which can then distribute
the data to all the hospitals and local servers.The aim of the system is to ensure
that the patient’s information is stored in at least two places at any one time.
Duplicate storage means that data can be recovered if there is a loss of any ele-
ment of the system.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 420

Personal Information Base Case Study • Chapter 10 421

Most of the elements are standard “off-the-shelf ” components enabled with
either wireless or wired networking.This helps to keep infrastructure costs down,
as the elements can be reused for multiple purposes.The software to run the PIB
data synchronization and distribution should have an open nonproprietary inter-
face as well as being reliable and robust.This could be either commercially avail-
able or public domain.

The only specialized element in the previous figure is the PIB card, as this has
very stringent requirements. It has to be mechanically durable, robust, and water-
resistant yet at the same time remain low in cost. Since personal information is
sacred for the people to whom it belongs, there will be secure communications
established which the owner will control, allowing him/her to manage the
amount of data that’s accessible at any given time.

www.syngress.com

Figure 10.1 A Personal Information Base System

Data Access
Terminal

PIB Card

Wireless
Connectivity
Node

Local Server

Central Control

WAN Other Hospitals

Speaker Mic.

Sensors

1 2 3

4 5 6

7 8 9

* 0 #

Mic

160bluetooth_C10.qk 12/5/01 4:03 PM Page 421

422 Chapter 10 • Personal Information Base Case Study

Why Choose Bluetooth Technology?
There are many communications technologies available, and wireless is not always
the best solution for every need.This section looks at the requirements of the
PIB device for our sample hospital environment as well as the challenges the
system imposes, and considers the factors that influence a choice of communica-
tions technology for a PIB.

Requirements for PIB Devices
A hospital environment imposes its own requirements on devices, but many of
these overlap with requirements for devices you use in an office or home.The
PIB for a hospital environment needs to have all of the following characteristics:

■ Low cost

■ Easily portable

■ Mechanically robust

■ Reliable communications

■ Hygienic

■ Conforms to medical radio restrictions

■ User-friendly

■ Adequate storage

■ Security and access controls

Let us examine each of these requirements in more detail.
It must be a low-cost option. The PIB must be affordably priced, otherwise hos-

pitals or patients will not use them. Exactly what is affordable will depend upon
the context. For the UK national health system a target price of $20 to $50
would be acceptable, and for a privately run luxury health clinic, a higher price
would be acceptable. In both cases the acceptable price will depend upon the
features and capability of the device.The cost of the major components of any
such device is likely to come down over time.These major components are re-
programmable memory (flash), color liquid crystal displays (LCDs) and robust
mechanics. Bluetooth chips are lower cost than other wireless technologies, so
they fit well with low-cost requirements.

The PIB must be portable. The PIB should be small in size and comfortable to
carry. It needs to be capable of being attached or clipped to the patient, like a

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 422

Personal Information Base Case Study • Chapter 10 423

name badge.An ideal size is a single slot PC card (100 mm by 50 mm by 4 mm).
Bluetooth modules are small in size, so Bluetooth fits well with portable devices.
Furthermore, using wireless connections eliminates the need for carrying around
bulky cables, and the adapters, which seem to always be needed, to cable different
systems together.

It should be mechanically robust. The PIB should be able to take the shock of
falling on the floor, being under body weight, and perhaps even being acciden-
tally trodden on! All of the interfaces and the PIB device itself should be durable
in everyday uses, and as a target should have a life span of two to three years of
constant use.Wires require mechanical connections to be made. Low-cost molded
plugs are notoriously unreliable, so wireless technology is ideal for creating a
mechanically robust design as all the operating parts can be hidden inside a case.

Communications must be reliable. Transfer of information has to be guaranteed.
Radio environments by their very nature are subject to interference, thus making
them unreliable.Therefore, it is desirable to have alternative interfaces such as
Infrared, which could be used if a radio connection cannot be established for
some reason. Such an alternative interface could also be useful for areas where
radio operation is not allowed.

The PIB must be hygienic. If the PIB is to be carried around with a patient, it
should be easy to clean. By eliminating sockets for wired connectors, crevices
which could harbor dirt and germs are removed.This means that wireless tech-
nology is ideal for creating a hygienic and easily-cleaned device.

It must conform to medical restrictions. The United States have allowed ISM band
within hospitals, for telemetry purposes. However, there may be areas of a hospital
where ISM band equipment cannot be used, as it would interfere with sensitive
monitoring equipment.Therefore, any devices fitted with Bluetooth wireless tech-
nology would have to have an easy way to disable the radio. (This is a requirement
for all portable devices, not just medical devices, as airlines do not permit the use
of ISM radios on aircraft. In the same way that cellular phones are switched off on
aircraft, Bluetooth devices must also have their radios disabled on airplanes.)

It must be user-friendly. Both the PIB device and the Data Access Terminal it
connects with must be easy to use. It must be simple to exchange information,
add appointments, and enable reminders.Again, this is a requirement that applies
to all devices, whether for hospital, home, or workplace.

The PIB device doesn’t really need many interfaces except for wireless con-
nectivity, a button, some indication like an LED, to show connectivity and
activity, and perhaps a speaker for audio output.This means that an interfacing
device is required for extracting and viewing the data.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 423

424 Chapter 10 • Personal Information Base Case Study

Adequate storage must be accounted for. A target might be to store information for 5
years, including: personal information and photographs, visits to a GP, hospital and
associated notes and information gathered from any tests. X-rays and CAT scans
require extremely high-resolution images, so it would probably not be practical to
store these within the PIB. Nevertheless, a considerable amount of storage is
required, for example anything from 8 to 32MB (Table 10.1 shows the size of this
type of information over five years).This is assuming that a simple compression
technique is used.The size of the memory should be extensible, either by using a
top of the range PIB or by utilizing the wireless connectivity to access old informa-
tion that may be required, which may be stored on mass storage in another device.

Table 10.1 Typical Example of Personal Information over Five Years

Type of Stored Information Size of Information over Five Years (KB)

Personal Information 10
Personal Photographs 1,000
Calendar information, including

appointments and tasks 1,000
Notes 1,000
Blood tests results 10
Ultrasound scans 4,000
Total 7,020

Security and access controls must be adequate. The PIB device is likely to carry
confidential information, so the device and the system it connects to must pro-
vide adequate protection for that information.This implies that there must be
different levels of access to the information in order to maintain confidentially,
and whenever data is transferred, it must be protected from eavesdropping.
Examples of different access levels could be:

■ Access to all information—general doctor and patient (provided the
patient is not a minor)

■ Restricted access to information—specialist consultant

■ Access to information related to current treatment—nurses

The reason for multiple access levels is that not all information is required by all
medical staff. For instance, the patient may not wish the chiropodist to know that
he/she has visited a sexual disease clinic, as it is not pertinent to the chiropodist’s

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 424

Personal Information Base Case Study • Chapter 10 425

treatment. Bluetooth provides 128-bit security, which can protect data when it is
being transferred to and from the PIB. Limiting access to different categories of
stored information could be done through a security information based on the PIB
which defines those items a particular device can view, as well as those that require
authorization. However, security features should be used with caution since the
more different the access level required, the more complex the device will be to use.

Implementing Optional Extra Features
There are many more features that would be nice to have but that are not essen-
tial to implement a PIB. It would be possible to have basic models available for all
patients, and higher cost variants for specialist uses.

An ideal PIB device has many interfaces, some of which would not be neces-
sary when creating a low-cost device. Figure 10.2 shows interfaces that might be
used in a high-end system:

■ Visual devices like LCD and LEDs

■ Input devices like a keypad or possibly buttons

■ Microphone/Speaker

■ Alternative communication interfaces, namely: Bluetooth, IrDA, and PC
Card

■ Sensors for motion, pulse rate, and temperature

There are a few internal features to the PIB that are very important:

■ Large nonvolatile memory storage

■ A small battery that is rechargeable and efficient

These extra interfaces can provide valuable functionality for high-end devices.
This section examines the improved functionality that could be offered.

Not everyone will have a Data Access Terminal, so a low-resolution color
LCD could be added to provide an instant means of accessing the information.
Such an LCD could also be used to display a photo identifying the patient. It
could be used for security purposes to show the patient’s photograph for confir-
mation of identity.There are other uses—for example, it can be used for quick
language phrase translation, to communicate to non-native speaking patients.The
PIB device can be used as a medicine reminder: it could describe the look and
feel of the medicine, how many tablets should be taken and even show a picture
of the medicine. However, a color LCD adds greatly to the cost of the device, so
for the lowest cost, this may not be practical.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 425

426 Chapter 10 • Personal Information Base Case Study

A keypad is useful to answer any questions or enter PIN codes to authorize
access to the device, and to control more complex functions on the device. If the
PIB does not have a keypad, it would have to use a pre-programmed fixed PIN
code, which prevents the user from easily changing the code if they want to bar
somebody who was previously granted access to data.

A speaker enables many multimedia options.A microphone could be used to
provide Dictaphone capabilities, enabling doctors to record notes directly into the
PIB, or allowing patients to record their own memos.This would require a com-
plete audio input system, and could be quite expensive.

LEDs are useful to provide low battery indication. LEDs can also be used to
indicate an active communications link; this could be a very useful indication,
acting as a reminder that the device is on when entering areas that do not permit
use of radio links.

The possibility of having sensors could make the PIB device more acceptable
to nurses and other hospital staff.These sensors could be used to detect move-
ment at low or high sensitivity, and would allow hospital staff to be alerted in
case the patient has decided to go on a walkabout. It could also be used to estab-
lish if the patient is wearing the device, or if it has fallen off.Temperature sensors
could be used to monitor the average temperature of the room, or the environ-
ment the patient is in.This could be employed to alert the hospital staff of any-
thing abnormal.The PIB device could also have a pulse rate monitor.The

www.syngress.com

Figure 10.2 An Ideal PIB Device

Speaker Mic.
Sensors

1 2 3

4 5 6

7 8 9

* 0 #

IrDA

Bluetooth

PC Card
Interface

Audio
Record/
Playback

LCD
Keypad

Temperature,
Pulse, Motion

LED
Disable RF

Mic

160bluetooth_C10.qk 12/5/01 4:03 PM Page 426

Personal Information Base Case Study • Chapter 10 427

monitoring capability will also ease the need to write down the measurements as
they could automatically be transferred to the Data Access Terminal.

Alternative communications interfaces might be provided, to cater for circum-
stances where the wireless radio cannot be used—for instance, near highly sensitive
equipment. However, alternative communications interfaces would raise the cost
of the PIB.A backup infrared link could add wire-free communications capabili-
ties in areas where radio cannot be used; here, the cost increment isn’t great since
infrared systems are very cheap, but development costs for dual software systems
could be high. It would even be possible to add a PCMCIA PC-card interface for
high-speed data exchange, although this would greatly add to the cost and would
also negate the advantages of hygiene and reliability, which a wire-free design has.

Specialist monitors or interfaces to monitoring equipment could be added.
You could view this as adding monitors to the PIB, (although for more complex
and expensive monitors it might be better to think in terms of adding PIB func-
tions to the monitor).A PIB device enabled with monitoring capabilities such as
temperature or pulse could continuously monitor and record any abnormal varia-
tions.Audible alarms could be triggered if the sensor exceeds either upper or
lower programmed thresholds. However, caution should be employed when using
a PIB for safety-critical purposes.Wireless links are subject to interference, which
makes them unreliable.

Choosing a Wireless Technology
for the PIB Device
There are various technologies that could be used to achieve the PIB system. See
the brief summary in Table 10.2.

The reasons for choosing Bluetooth as the wireless connectivity for the PIB
system are:

■ Its physical size is small, and there are many chip vendors to choose from.

■ The range is adequate—the lowest power version offers up to a 10 m
range, which is sufficient.

■ The available choice of chip vendors leads to a competitive market,
which means the cost will reach less than $5 over the next two to
three years.

■ There is a worldwide acceptance of the ISM band used by Bluetooth,
which means that the product design can be sold in markets all over the
world.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 427

428 Chapter 10 • Personal Information Base Case Study

■ Products are expected to interoperate if they have been qualified and
received a Bluetooth logo.This means that the data terminal side of the
Bluetooth link can be implemented with readily available, cost-effective,
commercial products.

From Table 10.2, we can see that IrDA is also a good match for the
requirements of a Personal Information Base.The advantage of Bluetooth
wireless technology is that it is not directional—with infrared technology, the
ports on two devices must be lined up, but a Bluetooth device can be accessed
while still in the patient’s pocket, for example, greatly increasing convenience
of use.

Table 10.2 Wireless Communication Alternatives

Technology Physical Power
layer Size Range Consumption Security Standards Software

Infrared Optical 1 cm by Line of Very low Application Worldwide Complete
1 cm, sight layer protocol
including – 5 m stack
processor defined
supporting
IrDA
protocol

418MHz Radio 3 cm by 100 m Medium Application Proprietary Proprietary,
3 cm, Layer however
including can use
processor whatever

is required

Whitetooth Radio Not enough Range to Very low To be Worldwide To be
information be deter- defined defined

mined

Bluetooth Radio 2 cm by From up Low Part of Worldwide Complete
2 cm to 10 m protocol protocol

to 100 m, and at stack
depending Application defined
on power layer

Considering the Cost of the PIB
Once the wireless technology is chosen, it is possible to set some cost targets. Our
example PIB device is a specialized design to be used in a hospital environment,
and as a result, it could be expensive to produce as a product.A target low-end
price would be $20 to $40.At these cost levels it is not going to be practical to
support all possible optional features, though different subsets of the possible
options could be fitted to create various levels of device.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 428

Personal Information Base Case Study • Chapter 10 429

One way to reduce component cost is to produce a single processor system.
This means that the processor must not only be able to handle the whole
Bluetooth stack for this application, but also the application including the user
interface. It also means that the processor must support additional peripheral
interfaces, which will mean that hardly any external support devices will be
required.

The rest of the infrastructure is robust: networked and Bluetooth-enabled
PDAs or desktop computers and a server for local and central control.The cost of
these items (including the software) can be targeted at:

■ PDA $200, per doctor and shared per department

■ Desktop computer $1500, per department

■ Server $2500, per major section and per central control

Exploring the Safety and Security Concerns
of a Personal Information Base
Access to accurate medical information can be a matter of life and death, so it is
important components of a medical information system can’t introduce falsified or
corrupt data into the system. It’s also important to ensure data cannot be lost from
the system. In addition, patient confidentiality is an important consideration, and
one that should be taken seriously in wireless systems, as communications can
potentially be intercepted even by somebody outside the room where data is
being exchanged. Finally, medical requirements regarding hygiene and regulations
concerning radios in hospitals must be kept in mind when considering any device
for hospital use.

Enabling Data Duplication
The aim of data duplication is that data for a patient is stored in two places at any
given time.This means that after synchronization, the central database will ensure
that any loss of patient information, be it PIB device or a doctor’s PDA, can be
completely recovered.The reason why this is possible is that no data can be
entered in the PIB device on it’s own, except for personal notes using the limited
local interface.This means data is added to the PIB device by a Data Access
Terminal or a desktop computer (local server) pushing new records to the PIB.
The Data Access Terminal has a duplicate copy of the new patient data, and can
be synchronized to the local and central server.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 429

430 Chapter 10 • Personal Information Base Case Study

Wherever data is stored on small mobile devices there is always more risk of
data loss than with desktop systems, so data loss is a general problem where
mobile data storage is used.The Bluetooth synchronization profile provides a
means to ensure data stored on a mobile device is backed up automatically.The
synchronization profile could be used to ensure any data entered directly onto
the PIB is backed up.

Synchronization software is sometimes very rigid in the way it behaves, as it
expects one part of the system, normally the desktop computer or main server, to
be the master of the data while the mobile device is a slave to the information.
For example, different appointments made by the secretary for one patient at the
same time on the server may overwrite a new appointment made on a mobile
device.Another area to be careful about is in the use of Universal Time, as dif-
ferent devices may refer to different time zones.

Figure 10.3 shows how a synchronization system could work.The Data
Access Terminal pushes data to the PIB, but keeps its own copy of the data. Both
the PIB and the Data Access Terminal can synchronize with a local host, which is
connected to a local area network. Once data has reached the network, it is
backed up across the network. Should network failures occur, backup modem
links can be used.

In addition to providing data security, the central control facility also allows
patient mobility. If a patient is moved to another hospital, their records can be
retrieved from the central backup facility, and a new PIB can easily be set up
with all the patient’s information.

Ensuring Data Integrity
It is very important that data integrity be maintained on the patient record as
decisions cannot be made on data that is in error.A well-known technique for
doing this is adding an overall checksum to the end of the patient record.

The overall checksum for the data is a number derived from applying some
algorithm to each data element (typically at byte level) of the patient’s record.
This ensures that if any part of the data is corrupted then the data cannot be
trusted and a new copy should be obtained.

Wireless links are prone to errors caused by interference, or by fading of the
signal as mobile devices reach the limits of their radio ranges.The Bluetooth
baseband implements error checks on data, but these checks will not catch every
single error.Therefore, it is a good idea to implement extra error checking on
data to be sure any errors that aren’t caught by the Bluetooth protocol stack are
flagged at the application level.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 430

Personal Information Base Case Study • Chapter 10 431

Providing Security
A simple LCD on the PIB device could display a photograph for security confir-
mation that this device belongs to the correct person.Access to data that nor-
mally would be on bedside charts is available using the PIB device; only medical
information of a current visit is readable, no other data is viewable, without using
PIN code access. Detailed information is only accessible with the use of the Data
Access Terminal; this allows the PIN code and other levels of access to be
enforced, depending upon the patient or the seriousness of the medical condi-
tion.The different levels of security can be provided by Object Exchange or by
using password-protected files.

Patient confidentiality is very important. One way of protecting confiden-
tiality is to use a reference code to identify the patient in place of their name.
Indeed, in the UK (according to the Data Protection Act) the patient’s National
Health Service number is used as an indexing method for medical records in
order to keep them confidential. Even then, a photograph and other information,
such as date of birth, can be used to verify the correct patient.This means that

www.syngress.com

Figure 10.3 Synchronizing Data with a PIB System

Access updates during the day

Push/Pull

Push/Pull

Data Access
Terminal

PIB Device

1am update
every day

Update every day

Modem bypass if
network down

Sensors

1 2 3

4 5 6

7 8 9

* 0 #

LAN

Local Central Server

WAN

Central Control

Other Hospitals

Local Server

160bluetooth_C10.qk 12/5/01 4:03 PM Page 431

432 Chapter 10 • Personal Information Base Case Study

the Data Access Terminal must be able to access a table cross-referencing index
numbers to names, so the patient’s information can be obtained.

Whenever dealing with protected information, it is important to retain a
sense of proportion. In paper-based systems, folders containing medical informa-
tion can be picked up and read by anybody.The way this information is pro-
tected is by keeping it out of sight of patients and staff.While it is good to have
extra security, it is all too easy to implement so much security in a system that it
becomes virtually unusable. If data is too difficult to access, doctors and patients
will undoubtedly resort to using paper notes, thus bypassing all the useful backup
features offered by the PIB system.Therefore, user interfaces should be designed
with care so that the entry of PINs does not become an onerous task that effec-
tively bars authorized users from the system.

By deploying Bluetooth sensors near the exit of a hospital, any accidental
removal of the PIB device can be detected and reported.This is only possible if
the device is Bluetooth-functioning, however, so it would still be possible to
deliberately remove a PIB by disabling its Bluetooth transmitter.

Meeting Medical Requirements
Mobile phones would be an ideal PIB device since they have all or most of the
capabilities described in previous sections. Unfortunately, they cannot be used in
hospitals. However, the use of 2.4GHz within US hospitals has been cleared.The
main example used to demonstrate this was the use of wireless telemetry using
802.11 Wireless LAN.This range also covers Bluetooth operation, although it is
not explicitly mentioned, in the ruling. Some medical equipment companies have
used this to start producing Bluetooth-enabled products.

As noted earlier, hygiene is a very important requirement for hospitals.This
means the PIB device should be made of material that can be easily cleaned and
must not have crevices where bacteria can accumulate.

Using Bluetooth Protocols to
Implement a PIB
So far, we have seen that Bluetooth wireless technology can fulfill the communi-
cation requirements of a PIB. In this section, we will look at some of the details
of how the communications protocol stack could work.This section briefly
explains the hierarchy of different protocols needed to exchange data, and how
those protocols are derived from many different specifications. It also provides an
overview of Bluetooth packet layering.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 432

Personal Information Base Case Study • Chapter 10 433

After this overview, we will go on to explain the details of how the PIM
device exchanges information.

Understanding the Bluetooth
Specification Hierarchy
The Bluetooth SIG has done a very good job of reusing existing standards and
adapting them.This specification reuse means it is possible for protocol stack and
applications developers to reuse code.This saves time and improves the robustness
and quality of the final system as reused layers have already been tested on other
communications systems.

However, there is a drawback to reusing specifications. Reuse means that anyone
trying to understand the whole system has many different documents to read: this
can become a challenge to understand! To help you find a path through the maze of
specifications, this section will summarize all the standards used by the PIB device.
Later sections will explain how the standards interact, allowing us to exchange data.

The main aim is to convert the layered (horizontal) approach into a vertical
slice so the interaction between the various layers can be easily understood.

www.syngress.com

Radio Regulations and the ISM Band
The following reference is from the US Federal Register amended in
2000 to harmonize the use of wireless technologies within hospitals.

Page 43999 of Federal Register / Vol. 65, No. 137 / Monday, July 17,
2000 / Rules and Regulations

47 CFR Part 15 - Changes:
15.247 Operation within the bands 902 to 928MHz, 2400 to

2483.5MHz, and 5725 to 5850MHz.
Comment: No change was made to §15.247. As noted in ¶35 of the

Final Rule: “... we will continue to allow medical telemetry equipment to
operate in the ISM bands under Part 15. While such operation will be
permissible, manufacturers and users are cautioned that equipment
operating in these bands has no protection from interference from ISM
equipment operating under Part 18 of the rules or other low power
transmitters operating under Part 15 of the rules.”

Developing & Deploying…

160bluetooth_C10.qk 12/5/01 4:03 PM Page 433

434 Chapter 10 • Personal Information Base Case Study

The following specifications are used in the PIB device:

■ Bluetooth Special Interest Group (SIG)

■ Infrared Data Association (IrDA)

■ European Telecommunications (ETSI)

■ Internet Mail Consortium (IMC)

■ Internet Engineering Task Force (IETF)

■ Internet Assigned Numbers Authority (IANA)

Figure 10.4 shows an overview of the number of packet layers involved in
sending an Object Get Response Packet. Please note that this is a summary—in
later sections, we will go into packet details and explain every field with reference
to the relevant specification.

When writing applications to run across Bluetooth, you are likely to be
using a high-level interface at the top of the Bluetooth protocol stack.
However, it is often useful to understand what is happening in the rest of the
system.The full data exchanges involved in a PIB system are extremely com-
plex, but it is possible to get a good understanding of how the different stack
layers interact using the simplest information exchange: a virtual business card
or vCard (see Figure 10.5).

Suppose a Data Access Terminal is gathering information on devices in the
area, and it wants to get a vCard object from every device that supports vCards. It
must go through a three-step process:

1. The Data Access Terminal inquires to find Bluetooth devices in the area.
Each device, which is listening for inquiries, will respond with an FHS
packet giving information needed to establish a data connection.

2. For each device found, the Data Access Terminal connects and creates a
Service Discovery L2CAP channel and performs Service Discovery on
that channel.The Service Discovery Protocol tells the Data Access
Terminal whether the device supports vCard transfer, and what parame-
ters are needed to transfer cards (for example, the RFCOMM channel
number to be used for this service).

3. The Data Access Terminal shuts down the L2CAP channel and estab-
lishes a separate L2CAP channel to RFCOMM.An RFCOMM channel
to the OBEX layer is then established.Afterward, an OBEX session is
started, enabling the Data Access Terminal to act as a client and pull a
vCard from the PIB Device, which acts as a server.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 434

Personal Information Base Case Study • Chapter 10 435

www.syngress.com

Figure 10.4 Overview of Communications Used in the Personal
Information Device

Defines a transport and
platform-independent format for
exchanging calender and
schedule information in an easy,
automated, and consistent
manner

VCalendar

Version 1.0, September 18,
1996,
The Internet Mail Consortium
(IMC)

IrDA Telecom Extensions to the
IMC vCard Format, Version 1.0,
October 15, 1997

VCard
Version 2.1, September 18,
1996,
The Internet Mail Consortium
(IMC)

IETF

Specifies the Terminal Equipment to
Mobile Station (TE-MS) multiplexer
protocol within the digital cellular
telecommunications system.
This specification allows several
serial ports to be emulated.
Each serial port is allocated its own
channel, they are all multiplexed
onto one underlying link.

TS 101 369 V6.3.0 (1999-03)
GSM 07.10 Version 6.3.0 1997

Defines the media type format

MIME Multipurpose Internet
Mail Extensions

RFC 1521

Specifies that Content Types,
Content Subtypes, Character
Sets, Access Types, and
conversion values for MIME
mail will be
assigned and listed by the
IANA

IANA media type registry

RFC2045,RFC2046

8.1 Folder Browsing Service
8.2 Simple OBEX Put file transfer +
 SetPath
8.3 Telecom/IrMC Synchronization
 Service
8.4 OBEX Get Default Object
9.1 The Folder Listing Object
9.2 Generic File Object

IrDA Object Exchange Protocol

Version 1.2, March 18, 1999

IrDA IMC

IANA

ETSI

2. OBEX OBJECT MODEL
2.1 OBEX Headers
2.2 Header descriptions
3. SESSION PROTOCOL
3.1 Request format
3.2 Response format
3.2.1 Response Code values
3.3 OBEX Operations & Opcodes
3.3.1 Connect
3.3.2 Disconnect
3.3.3 Put
3.3.4 Get
3.3.5 Abort
3.3.6 SetPath

Infra Red Mobile Comms (IrMC)

7 Phone book
8 Calendar
9 Message
10 Notes

Defines exchanging phone book or
contact directory information,
calendar information, alphanumeric
messages, short text notes and
device information.

Version 1.1, March 01, 1999
and errata

This protocol exchanges
information about services
provided by or available through a
Bluetooth device.

SDP
Part E, page 335

http://www.bluetooth.org/assigned-numbers.htm

File Transfer
Part K:12, page 369

References Infra-red
Mobile
Commuincations
specifications to define
how to synchronise
using Object Exchange

Bluetooth SIG

This protocol supports higher level protocol multiplexing, packet
segmentation and reassembly, and negotiation of quality of service.

L2CAP
Part D, page 257

HCI (optional)
Part H:1, page 548

Bluetooth link controller. Carries out the baseband protocols and other low-
level link routines. Defines basband packets used for communication.

Baseband
Part B, page 41

Provides a command interface to the baseband controller and link
manager, plus access to hardware status and control registers.

Assigned Numbers

Appendix VIII

Bluetooth
Specification
Volume 2
Profiles
Version 1.1
February 22 2001

RFCOMM

Bluetooth Specification
Assigned Numbers
Live Document

IrDA Interoperability

Setting up emulated serial cable
connections using RFCOMM
between two peer devices.

Serial Profile
Part K:5, page 175

Features and procedures to discover
and retrieve services registered in
other Bluetooth devices.

SDP Application
Part K:2, page 19

Generic Object Exchange
Part K:10, page 313

Generic Bluetooth procedures
related to discovery of devices, link
management, connecting, different
security levels and requirements for
user interface level.

Generic Access Profile
Part K:1, page 19

Bluetooth Specification
Volume 1
Core
Version 1.1
February 22 2001

Complete section cross-reference given BT Spec PartK:13, page 415

Defines the requirements
for naviagtion of a file-
system, creating and
deleting files and folders,
using Object Pull and
Push.

Defines the requirements
for Object Push, Pull and
Exchange.
Defines Own Business
Card

Object Push Profile

Part K:11, page 343

Bluetooth Serial Port Emulation, a
subset of the ETSI TS 07.10
standard, along with some
Bluetooth specific adaptations.

Defines requirements for lower layers
and procedures for higher layers:
- OBEX Connect, Disconnect,
- Authentication
- Data exchange using Push and Pull

OBEX provides features from the
IrDA protocol hierarchy, enabling
applications to work with Bluetooth
and IrDA stack.

Part F:2, page 429

Synchronistation

Part K:13, page 401

Part F:1, page 397

160bluetooth_C10.qk 12/5/01 4:03 PM Page 435

http://www.bluetooth.org/assigned-numbers.htm

436 Chapter 10 • Personal Information Base Case Study

www.syngress.com

Figure 10.5 Packets Used During vCard Exchange

Data Access Terminal

s M
Sensors

1 2 3

4 5 6

7 8 9

* 0 #

eRecord
Get vCard Request

Get Response with vCard

Baseband :: Inquiry, FHS, ACL Connection

L2CAP Connect, SDP Search, Get Attribute, L2CAP Disconnect

L2CAP Connect, RFCOMM Connect, PN, MSC

OBEX Connect

HI

vCard Information (text)

LenHI vCard Information (text)NameHIOpcode Len
OBEX Get
Response

RFCOMM Data RFCOMM Hdr.
Addr. Cntrl. Len

Payload RFCOMM
Trialer

L2CAP Hdr.
Conn IdLen

L2CAP Payload
L2CAP Data

HCI ACL Data
(Optional)

Baseband
Packets

OBEX Get

OBEX Get Response

Pkt Hdr
Access Code Hdr

Payload
Pkt Hdr

Access Code Hdr
Payload

Pkt Hdr
Access Code Hdr

Payload

ACL Header
Conn Hdr. Len

ACL Data
Payload

ACL Header
Conn Hdr.

ACL Data
Payload

ACL : Asynchronous Connection Less link
Cntrl : Control
Conn : Connection
Hdr : Header
HI : Header Identifier (OBEX)

FHS : Frequency Hop Synchronisation
L2CAP : Logical Link Control and Adaption
Protocol
Len : Length
Pkt : Packet
SDP : Service Discovery Protocol

160bluetooth_C10.qk 12/5/01 4:03 PM Page 436

Personal Information Base Case Study • Chapter 10 437

The upper part of Figure 10.5 shows the details of the OBEX session.The
Data Access Terminal sends an OBEX Connect across this RFCOMM channel,
then the PIB device responds with an OBEX OK, which means that objects can
be exchanged.The Data Access Terminal requests an OBEX Get of the local
vCard and the PIB device responds with a Get Response, which includes the
vCard.The Get Response is shown in Figure 10.5 as it traverses the different
layers from vCard to OBEX Response, RFCOMM, L2CAP, Optional HCI ACL
Data, and finally, on-air data packets.

Initializing the PIB
In the following section, we will spend more time explaining how Bluetooth
operates than how the overall PIB system works. Before we explaining how the
Bluetooth PIB device is initialized, enabled, and verified for operation, let’s take a
look at how the user interacts with it.

Understanding User Interactions
Imagine the following situation.A patient called Mary Clarkson has a check-up
scheduled at the hospital. She arrives at the hospital and goes to the receptionist
to register herself.The receptionist accesses Mary’s patient records and makes sure
that Mary has an appointment. Mary doesn’t have a PIB device of her own, so
the receptionist programs one with Mary’s details and gives it to her. If Mary has
an out-of-date picture on her records, the receptionist may even take a new pho-
tograph and update Mary’s records.The following sequence of events check if the
PIB device is operating correctly:

1. Mary checks in for her appointment.

2. The receptionist asks Mary for personal details to program into a new PIB.

3. Mary hands over her appointment letter.

4. The receptionist enters the details into her local Data Access Terminal.

5. The Data Access Terminal sends the records to a central server.

6. The central server accesses appointment records and medical history and
returns the information to the receptionist.

7. The records do not include a current photo of Mary, so the receptionist
takes a photo of her; this could be transferred across a Bluetooth link to
the Data Access Terminal.

8. The receptionist programs up a PIB for Mary.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 437

438 Chapter 10 • Personal Information Base Case Study

9. Mary is given the PIB. Since it is the first time the record has been
accessed over Bluetooth, Mary is asked to enter a password and verify it.
The receptionist informs Mary that she has to remember this password
since she may be asked to enter it during her stay.

10. Mary can now go off to the wards carrying her records with her in
the PIB.

The steps to access both public and private data look very easy, but there is a
considerable amount of initialization and protocol that has to be done in order to
achieve this level of transfer.

Without going into too much detail, entering the same password for both
sides of the link (in this case, the receptionist and patient) translates to the
Bluetooth Personal Identification Number.These have to be the same on both
devices, otherwise a link will not be established.

If the PIB has a keypad on it, then the password can be entered simply by
using the password. If the PIB does not contain a keypad, then it would come
with a default password built in.The matching password would be entered on the
Data Access Terminal to establish a secure link; an application running across the
secure link could then be used to change the password in the PIB.

Obviously, there is a potential problem in regards to patients forgetting their
password. Since the information on the PIB is duplicated elsewhere, one solution
would be to have a method of resetting the PIB to remove all information, then
it could be reinitialized with information from the central server.

Sending and Receiving Information
The previous section referred to receiving data from the PIB device in order to
test if the device was functional and if the information was programmed cor-
rectly.This section uncovers exactly what goes on when data is exchanged
between the PIB device and the communicating device.

Imagine the following situation, where the PIB device replaces the chart at
the end of the bed.A doctor (Dr. Merick), who is doing a daily check to diag-
nose the next course of action for his patients, visits Mary. Each step is illustrated
in Figure 10.6.

1. Dr. Merick asks Mary to activate the PIB device by pressing the red
button.

2. Mary presses the red button.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 438

Personal Information Base Case Study • Chapter 10 439

3. The doctor uses his PDA, finds Mary’s PIB device, and selects it. On
selection, he and Mary may have to enter the password (for simplicity,
the password entry has not been shown).

4. The doctor synchronizes with Mary’s PIB.This is a two-way synchro-
nization that exchanges any new data between the two devices.

5. The doctor reads any new information, and after a conversation with
Mary, adds new notes.

6. The doctor enables the medical equipment to take a measurement of
Mary’s condition.

www.syngress.com

Figure 10.6 Exchanging Data

Doctor

PDADr. Merick

Patient

MaryPIB

Doctor's Office

Read Information

Wirelessly Synchronise

Select Patient

Press Red
Button

Medical
Equipment

MonitorRead Value

Select Medical Equipment

Control Control

Wirelessly Synchronize

Networked Desktop

Wirelessly Synchronize

Physical Monitoring

1

2
3

4

5

"Can you enable PIB?"

6 Enable Equipment

Enable Sync

Enable Sync

7

8

9

At the end
of day

10

11

12

13

160bluetooth_C10.qk 12/5/01 4:03 PM Page 439

440 Chapter 10 • Personal Information Base Case Study

7. The doctor uses his PDA and finds the equipment he wants to use.A
unique password is entered to use the equipment.This will allow only
authorized staff to use the equipment.

8. The doctor gets the control interface on his PDA and remotely controls
the device to take the measurements.

9. Blood pressure, temperature measurements, and the doctor’s comments
and recommendations are recorded on the PIB device.

10. Before the doctor leaves, he synchronizes with Mary’s PIB, duplicating
the data in the overall system.

11. Later on in the day when the doctor goes to his office, the PDA is syn-
chronized with the local server so that data can be backed up and future
appointments can be scheduled.

Now that we understand how Mary and her doctor use the PIB, let’s consider
what happens at the Bluetooth protocol level.

When Mary presses the button and the Doctor retrieves first Mary’s public
information, then her medical records, both the doctor and patient begin by
exchanging public information.The doctor uses the information to verify that
the correct patient is being treated and the PIB can keep a record of who
accessed the information.The public information is transferred using the Object
Push Profile (BT Profile Spec Part K:11, page 339) and is known as Business
Card Exchange (Section 4.4, page 346) using vCards (IMC vCard – The
Electronic Business Card Exchange Format,Version 2.1, Sept. 1996).

The role taken by the Doctors PDA is the “Push Client” that wants to initiate
the exchange, while the role taken by the patient’s PIB device is the “Push Server.”

The patient wants this exchange to be as simple as possible, so the patient’s
PIB will automatically accept the Doctor’s information and exchange the public
patient information.This means Mary does not have to interact with her PIB
beyond enabling it.

Figure 10.7 shows people, devices, and actions involved in the Business Card
Exchange.

The doctor is the user of the PDA and asks the patient to press the red
button to enable the PIB device.

The patient is the owner of the PIB device and allows the doctor to
exchange information without any interaction.

Both the PDA and PIB devices are Bluetooth qualified products and coop-
erate to allow the exchange of information to happen wirelessly and seamlessly.
The high-level steps can be summarized as follows:

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 440

Personal Information Base Case Study • Chapter 10 441

1. The doctor asks the patient to press the red button on the PIB device.

2. By pressing the red button, the PIB device is enabled.

3. The PIB device goes through Bluetooth and application initialization.

4. The doctor selects “Get patients?” on his PDA.

5. This initializes the PDA.

6. The PDA does a search for discoverable PIB devices.

7. Discovered PIB devices are displayed in the PDA “Get patients?” window.

8. The doctor uses the remote Bluetooth name to decide which patient is
being treated, as this has been programmed with <date_of_entry>,
<patient_name>, and <patient_hospital_identification>.

9. The patient is selected and the public information is exchanged.This is
the vCard.

10. If the public information is correct, the treatment continues. Otherwise,
another patient is chosen.

www.syngress.com

Figure 10.7 The Business Card Exchange

Business Card Exchange

"Can you enable PIB?"

Doctor

PDADr. Merick

Patient

MaryPIB

Press Red ButtonGet Patients?

Select Patient
Bluetooth ACL to OBEX Connection

Get vCard

Push vCard

Bluetooth Temporary Connection
Remote Names

Initialization
Initialization

Inquiry

160bluetooth_C10.qk 12/5/01 4:03 PM Page 441

442 Chapter 10 • Personal Information Base Case Study

Initialization – PIB Device
When the patient presses the red button, the PIB device initializes the Bluetooth
hardware and software.This only happens if there is no active connection present.

We will explain the initialization by using the Host Controller Interface spec-
ification (Bluetooth Core Spec Part H:1, page 535), despite the fact that this
interface may be collapsed in the final solution.

The most important commands are described in Table 10.3 with reasons for
why they are used.

Table 10.3 PIB Initialization Commands

Command Parameters Reason

Reset None To get the Bluetooth hardware to a
known default state.

Set Event Mask All events enabled Leave all events enabled as default.

Read Buffer None This allows dimensioning of host data
Size transmitter.

Maximum length (bytes) size of data
portion of HCI ACL data packet.
Total number of HCI ACL data packets
that can be stored in the Host
Controller.
Similar values for SCO data are
returned as well.

Set Event Set auto accept This command can be used to control
Filter connection from which devices respond to the inquiry

specific Class of process at the HCI level.
Device (in other • All
words, Computer) • Specific Class of Device

• Specific Bluetooth address
It also controls how and which
devices connect.

Write Disable
Authentication
Enable

Write Disable
Encryption
Mode

www.syngress.com
Continued

160bluetooth_C10.qk 12/5/01 4:03 PM Page 442

Personal Information Base Case Study • Chapter 10 443

Table 10.3 (continued)

Command Parameters Reason

Write 10 seconds The time allowed for accepting a
Connection connection.
Accept Timeout

Write Page Page Scan When a connecting device wants to
Scan Activity Interval — Page connect, it “pages” and the

Scan Window connectable device scans for pages
(in other words, “page scan”).

Write Page
Scan Mode Inquiry and Page

Write Inquiry Inquiry Scan When an inquiring device wants to
Scan Activity Interval— discover, it “inquires” and the slave

Inquiry Scan device scans for inquiries (in other
Window words, “inquiry scan”).

Read None Read Bluetooth address for
Bluetooth application use.
Address

Change Local <data> This name is read by the remote
Name <patient_name> device to establish some sense of

<Hospital description.
Identification>

Write Class Limited Discovery This allows a device wanting to
Of Device Major Service Class:: connect to receive a first level

Object Transfer description of this device.
Major Device Class::
Computer
Minor Class::
Palm-sized PC/PDA

Write Link 20 seconds The amount of time allowed to
Supervision declare a link loss.
Timeout

Write Scan Inquiry and Page
Enable Scan enabled

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 443

444 Chapter 10 • Personal Information Base Case Study

Initialization – Doctor’s PDA
Initializing the doctor’s PDA employs the same steps for initializing the PIB
device, except for the following items:

■ Set Event Filter to filter all classes of devices except for Palm devices
with OBEX Transfer.

■ Disable Page and Inquiry Scans, so scan activity does not need setting.

■ The Name reflects <doctors_full_name> <doctors_id>.

■ The Class of Device reflects the PDA or small laptop.

Using the Generic Access Profile
The purpose of the Generic Access Profile is to select a suitable connecting
device based upon the Inquiry procedure and to get the remote name.The busi-
ness card exchange doesn’t require any security, so this will not occur until crit-
ical information has to be exchanged.

For the purposes of the Generic Access Profile (Bluetooth Profile
Specification Part K:1, page 23, section 2.2) the doctor’s PDA is known as the A-
party (the paging or initiator device) and the patient’s PIB device is known as the
B-Party (the paged or acceptor device).

When the doctor asks the patient to press the red button, the initialization of
the PIB places the device into the following mode:

■ Limited Discoverable mode for a period of three minutes.This makes
sure the device can only be discoverable during that period.

■ Connectable mode.The PIB is always in connectable mode when it is
powered.This allows other devices that know about the PIB device to
connect without going through an inquiry phase.

Afterward, the doctor’s PDA is initialized, which places the device into the
following mode:

■ Non-Discoverable mode.This means that no one can inquire for the
device.

■ Non-Connectable mode.This means that no one can connect to the
device, unless the doctor allows it.This makes sure there are no interrup-
tions when the doctor is dealing with the patient.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 444

Personal Information Base Case Study • Chapter 10 445

Device Discovery
Once both devices are initialized, the doctor’s PDA can initiate a one-time
inquiry (Bluetooth Core Specification,Appendix IX, page 1041, section 2.2).The
inquiry would be initiated by the doctor interacting with a user interface: for
instance, by clicking a Select Patients icon on the PDA. See Figure 10.8 for an
illustration of the device discovery procedure.

The PDA sends an HCI_Inquiry command to its Bluetooth Host
Controller; the Host Controller responds with an HCI_Command_Status_Event,
which acknowledges it has received the command.Then the Host Controller

www.syngress.com

Figure 10.8 Detail of Device Discovery Procedure

Doctor (A-party)

PDA
Host

Dr.
Merick

Patient (B-party)

MaryPIB

Press Red ButtonSelect Patients?

Select Patient
Remote Names

Buetooth Host
Controller

"Can you enable PIB?"

Initialization

HCI_Inquiry
(LAP, Inquiry_Length,
Number_Responses)

HCI_Command_Status_Event
(Status, Number_Commands,
Command_Opcode)

Discoverable and
Connectable Mode

Initialization

Other
Patients

PIB

GIAC - ID Packet "Inquiry"

GIAC - ID Packet "Inquiry"

FHS Packet
(Bluetooth Address,
Class of Device,
Clock Offset ...)

GIAC - ID Packet "Inquiry"

HCI_Inquiry_Result_Event
(Number_Response,
BD_ADDR[i],
Page_Scan_Repition_Mode [i],
Page_Scan_Period_Mode [i],
Page_Scan_Mode[i],
Class_of_Device [i],
Clock_Offset [i])

One or more responses
are sent to host
until reached either
Inquiry_Length timeout
OR
Number_of_response

Filtering based upon
HCI_Set_Filter_Event

FHS Packet
(Bluetooth Address,
Class of Device,
Clock Offset ...)

160bluetooth_C10.qk 12/5/01 4:03 PM Page 445

446 Chapter 10 • Personal Information Base Case Study

sends out a series of Inquiry packets (ID packets containing the General
Inquiry Access Code).

Every device within range (which is in discoverable mode) should hear these
packets and respond with an FHS (Frequency Hopping Synchronization) packet.
These packets contain all the information the PDA needs to connect with the
responding PIBs.

The Host Controller sends the inquiry response information up to the PDA
in one or more inquiry result events.

www.syngress.com

HCI Implementation Guidelines
There are many possible architectures which can be used to implement
a robust PIB system. We have already noted that for the PIB itself, a
single processor architecture could provide the cheapest option, but for
the rest of the system, it is likely that applications will run on a separate
host processor. Let’s consider the two processor architectures as defined
in Bluetooth Specification Version 1.1 (Part H:1 Introduction, page 584).
The communication occurs using HCI (Host Controller Interface) packets.
The host is the processor controlling the Bluetooth Host Controller.

Figure 10.9 shows command and dataflows between a host and Host
Controller. The dotted line connecting commands with command com-
plete events shows how the command completes correspond with com-
mands. For every command packet sent, there is a command complete
event packet. The command complete events may not come back in the
same order that the commands were sent. Some commands, such as the
inquiry command, may take many seconds to implement, so it is likely that
sometimes the host will want to send more commands while waiting for
a command complete event. This means the host must be able to send
commands and handle the command complete events synchronously.

If a Bluetooth link is established and data is being exchanged, then
data from the host can cause flow control events to come back from the
Host Controller indicating how empty the data buffers are. This needs to
be processed at a higher priority to avoid the Host Controller’s buffers
overflowing with a consequent loss of data.

Developing & Deploying…

Continued

160bluetooth_C10.qk 12/5/01 4:03 PM Page 446

Personal Information Base Case Study • Chapter 10 447

www.syngress.com

Because events are sent to the host at the same time as the host is
sending data and commands to the Host Controller, an asynchronous
communications architecture is needed.

The reason why HCI transport also has to be robust is that HCI
packets carry a length field, used to calculate where the end of the
packet is. If at any moment in time the counting of bytes is lost due to
loss of a byte(s), then the synchronization has to be reestablished, at the
expense of losing a complete HCI packet.

Version 1.1 of the Bluetooth specification was published with three
HCI transports defined: UART, RS232, and USB. RS232 has not been
widely implemented, with most Bluetooth adopters seeming to view it as
over-complicated. UART was defined for communication between chips
on a PCB and does not perform well over links which are subject to errors
(as the cabled serial port links to many PCs are). USB is tolerant of errors,
but many Bluetooth host controller devices do not implement USB as it
is quite a complex protocol. There is currently an HCI working group that
is defining a new HCI transport, which, amongst other improvements,
provides error detection and correction across serial links.

Figure 10.9 Command and Dataflows between a Host and Host Controller

Bluetooth Host Controller

CommandsEvents Command Complete Events Data

Host

160bluetooth_C10.qk 12/5/01 4:03 PM Page 447

448 Chapter 10 • Personal Information Base Case Study

The HCI_Inquiry_Result_Event illustrates one aspect of Bluetooth which is
likely to provide a challenge for applications developers. Some Host Controller
devices will gather all inquiry responses together in the Host Controller, and just
send one HCI_Inquiry_Result_Event to the host. Other Host Controller devices
will send the host an HCI_Inquiry_Result_Event for every inquiry response
received.While still other Host Controllers may even send duplicate events if
they receive multiple responses from the same device.

If you are able to specify a complete system including hardware and software,
you could write an application which was tailored to the behavior of one Host
Controller. However, this makes for a system which can be limiting and difficult
to upgrade. In the PIB system, one of the requirements is the ability to use a
variety of legacy equipment, so there is a requirement to support whatever Host
Controller devices fit onto existing equipment.

Whenever writing Bluetooth applications you should be aware that the
Bluetooth specifications often include optional parts, and thus behavior is likely
to vary subtly between different manufacturer’s Bluetooth components. If you
want your applications to be robust and useful across a wide range of platforms,
you must cater for optional parts of the specification.

Selecting a Device
Once the host has received information that the inquiry is complete, the host can
examine the responses and use this information to select a device for a connec-
tion.The host gets the Bluetooth device address of each device responding, along
with what type of device it is.The response also contains information on how
each device scans for paging, which the protocol stack can use during paging to
establish a connection.

The central database could provide the doctor’s PDA with a lookup facility
allowing Bluetooth device addresses to be cross-referenced with patient’s names.
This only works if the doctor is currently connected to the database, however. If
this is the case, then it would be possible to download all the information anyway.
The very fact that the doctor is connecting with the PIB to get records means
his PDA is not currently networked!

Since there is currently no network connection, the doctor can connect to
each PIB in turn, and retrieve their friendly names.These are human-readable
names.At it’s most basic, the name could be:

Mary Smith’s PIB

The Bluetooth specification allows user-friendly names to be up to 248 bytes
long, so the name could be used to convey a limited amount of information, such

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 448

Personal Information Base Case Study • Chapter 10 449

as a hospital index number, date of admission, date of birth, or a reason for admis-
sion.Therefore, the name could be:

Mary Smith POMI564 5 November 2001, 9 October 1943, Hip replacement

This is certainly very convenient, but care should be taken when employing
the user-friendly name in this fashion since the information can be seen by
anyone. It is possible that Mary Smith doesn’t want the whole world to know her
date of birth, or that she is in need of a new hip. Index numbers are often used to
protect patient’s privacy, so having a device publish name and index numbers
immediately provides a way around existing privacy mechanisms.

The issue arises here because the friendly name can be exchanged before
authentication and encryption procedures have been performed.When writing
Bluetooth applications, you should think about how much information is avail-
able unencrypted, and take care to make sure that information sent before
encryption is switched on does not compromise a system’s privacy or security
requirements.

Using the Service Discovery Application Profile
Once Dr. Merick has found Mary’s device, the next stage is to use the Service
Discovery Protocol. First, a data connection must be established, this could be the
same ACL link used to get the friendly name from Mary’s PIB.

An L2CAP link is set up on top of the ACL link.The L2CAP link allows
multiple services to use the ACL link (in this case, it is set up to the Service
Discovery Server). Mary’s PIB contains a Service Discovery Server which can tell
Dr. Merick ’s PDA how to connect with other services running on her PIB.

Dr. Merick ’s PDA gets information about OBEX services running on Mary’s
PIB, including the RFCOM DLCI address which is needed to connect with the
services.

The Service Discovery Application Profile provides guidance on how a ser-
vice discovery session should be set up, how the service discovery protocol
should be used, and what parameter values should be used.

Using the Serial Port Profile
Once Dr. Merick ’s PDA has all the service discovery information it needs, the
L2CAP connection can be torn down, and another L2CAP connection set up to
RFCOMM. RFCOMM provides a serial port emulation service which is used
by many profiles for communicating with higher layer applications and services.

The usage of RFCOMM is covered by the Serial Port Profile.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 449

450 Chapter 10 • Personal Information Base Case Study

Using the Generic Object Exchange Profile
The next stage is for Dr. Merick’s PDA to establish an OBEX connection.The
messages used are essentially the same as would be used with OBEX across an
infrared link.The Generic Object Exchange Profile gives guidance on how to
use OBEX across Bluetooth connections.

Using the Object Push Profile
Dr. Merick begins by just getting public information about Mary in the form of a
virtual business card or vCard.To do this, his PDA and her PIB use the Object Push
Profile.This profile defines how objects with predefined formats are exchanged
between Bluetooth devices. Using the Object Push Profile, it is possible to:

■ Get public information using the vCard format.

■ Get private information using the vCal, and vNotes formats.

This profile uses the facilities of the Generic Object Exchange Profile to
exchange data.

Using the File Transfer Profile
Once Dr. Merick has retrieved Mary’s card he will want to go on to retrieve
medical records with more complex formats. Medical records are not covered by
the Object Push Profile, so to retrieve them Dr Merick ’s PDA will need to
retrieve the data as files using the File Transfer Profile.

Like the Object Push Profile, the File Transfer Profile uses the facilities of the
Generic Object Exchange Profile to exchange data. Using the File Transfer
Profile it is possible to retrieve files from a remote device. It is also possible to
create, delete, and move files on a remote device.

Obviously, you would not want just anybody to be able to come in and alter
your medical records.With this in mind, it’s possible to set up security access so
different users get different levels of access to the file system on a device.A vital
part of the design of a PIB system would be making sure that file access was lim-
ited, so unauthorized access to files was not permitted.This is necessary to ensure
medical records could not be tampered with across the Bluetooth link, either
accidentally or maliciously.

The Object Exchange Profile provides OBEX authentication, which can take
place independently of Bluetooth authentication.While Bluetooth authentication
is extremely secure, it might be desirable to use OBEX facilities to maintain
compatibility with existing infrared-based systems.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 450

Personal Information Base Case Study • Chapter 10 451

Figure 10.10 shows how each of the Bluetooth protocols is used in turn to
set up layer after layer of connection, culminating in information exchange
through OBEX.

www.syngress.com

Figure 10.10 Information Exchange through the Bluetooth Protocols

OBEX
Client

Client
LM

Server
LM

BD_Addr=11:11:11:50:11:11

OBEX
Server

BD_Addr=11:11:11:70:11:11

Initialize, Page Scan Enable, and Auto Accept
Connection

Initialize, Page Scan Enable, and Auto Accept
Connection

Channel Establishment (SDP)

Link Establishment (SDP, RFCOMM)

RFCOMM Establishment

OBEX session Authentication (optional)

Inquiry, CoD

Service Discovery Protocol

Link Establishment (RFCOMM)

Channel Establishment (RFCOMM)

Bonding : Pairing / Encryption (optional)

Request/Response as per OBEX profile

Channel Teardown (SDP)

Temporary Link, Read Remote Name

160bluetooth_C10.qk 12/5/01 4:03 PM Page 451

452 Chapter 10 • Personal Information Base Case Study

In this section, we will look in more detail at the exchange of OBEX data
which actually gets the medical records from Mary’s PIB to Dr. Merick ’s PDA.
To begin with, it is necessary to explain a couple of terms which are fundamental
to OBEX operation: client and server (see Figure 10.11).

A server is any device that offers a service.That service could be providing
data, or storing data.A client, on the other hand, is any entity that wants to take
something from a server, or give something to a server.A client usually initiates
the connection, and can either push data, (put data onto the server) or pull data
(get data from the server).

A device can be both a client and server at the same time.ACL and L2CAP
connections made by the client can be reused by the client on the other side.
However, the client on the other side needs to create a new RFCOMM channel.
Each RFCOMM channel is identified by a DLCI (Data Link Connection
Identifier).The DLCI value space is divided between the two communicating
devices using an RFCOMM server channel and a direction bit.

Figure 10.12 shows how the RFCOMM address byte can be used to distin-
guish between server and client direction.The figure summarizes the Part F:1 5.4
DLCI Allocation with RFCOMM Server Channels section in the Bluetooth
Core Specification and 5.2.1.2 Address Field section in TS 7.10.

www.syngress.com

Figure 10.11 Using OBEX Clients and Servers

ServerClient

Create Connection

OBEX Put

OBEX Get

PUSH

PULL

OBEX Success

OBEX Success

160bluetooth_C10.qk 12/5/01 4:03 PM Page 452

Personal Information Base Case Study • Chapter 10 453

www.syngress.com

Figure 10.12 Format of OBEX Messages between Client and Server

ServerClient

Create RFCOMM channel with DLCI=2 and Server Channel = 1

PUSH

OBEX Put

Server Channel

0 0 0 0 1

Direction

Command/Response

Extended

0

DLCI

1 1

8 7 6 5 4 3 2 1Bit Num.

C/R EATS 7.10

0x0B

RFCOMM

Value

OBEX Put Response

0 0 0 0 1 0

DLCI

0 1

8 7 6 5 4 3 2 1Bit Num.

C/R EATS 7.10

0x09Value

Server Channel

Direction

Command/Response

Extended

RFCOMM

Server Client
PULL

OBEX Get Response

Server Channel

0 0 0 0 1

Direction

Command/Response

Extended

1

DLCI

0 1

8 7 6 5 4 3 2 1Bit Num.

C/R EATS 7.10

0x0D

RFCOMM

Value

OBEX Get

0 0 0 0 1 1

DLCI

1 1

8 7 6 5 4 3 2 1Bit Num.

C/R EATS 7.10

0x0FValue

Server Channel

Direction

Command/Response

Extended

RFCOMM

Initiator Responder

Create RFCOMM channel with DLCI=3 and Server Channel = 1 Initiato

r

Responder

Reuse underlying ACL and L2CAP connection

Server Channel = 1
Direction = 0 =
Client to Server
DLCI = 2

C/R = 1 = Command
Initiator to Responder

Extended = 1 = last octet
fo Address field

Server Channel = 1
Direction = 0 =
Client to Server
DLCI = 2

C/R = 0 = Response
Responder to Initiator

Extended = 1 = last octet
fo Address field

Server Channel = 1
Direction = 1 =
Server to Client
DLCI = 3

C/R = 0 = Command
Responder to Initiator

Extended = 1 = last octet
fo Address field

Server Channel = 1
Direction = 1 =
Server to Client
DLCI = 3

C/R = 1 = Response
Initiator to Responder

Extended = 1 = last octet
fo Address field

160bluetooth_C10.qk 12/5/01 4:03 PM Page 453

454 Chapter 10 • Personal Information Base Case Study

Server applications on initiating devices are reachable on odd DLCIs, and
server applications on noninitiating devices are reachable on even DLCIs.

Depending on whom the initiator or responder device is, the Command/
Response bit indicates if the data is a command or a response to a command.

Note that the byte has been shown as it would appear in a packet.This means
it is bit-reversed from all the definitions in the specifications.This is clarified by
using the appropriate bit numbering.

By using OBEX put and get messages, it is possible for Dr. Merick ’s PDA
and Mary’s PIB to exchange data in any format whatsoever. Only the application
that is interpreting the data limits the formats.

However, because of the constraints of size and price it is likely that some types
of data would not be stored on PIBs. For instance, as noted earlier, medical images
such as X-rays usually require very high resolution, which leads to extremely large
files. It is unlikely to be economical to store such files on a PIB. Furthermore, the
monitors required to display medical imaging data at a useful resolution currently
cost around $20,000 each, so even if Dr. Merick could retrieve an X-ray from
Mary’s PIB, his PDA would not have the resolution to display it.

Practical issues of what data can be usefully absorbed via the limited user
interfaces typically provided by mobile devices should always be considered when
designing Bluetooth systems.There is little point to designing a communication
system which can push a high quality image to a device if there is no way for
that device to display it, or if the image uses up all the device’s storage, preventing
it from being used for other purposes.

Considering the User’s View
A crucial part of any application is the user’s view. So, we have to ask ourselves
how a PIB will compare with the existing system as far as its users are concerned.

Identifying the System’s Users
The immediate users of the system are obvious: the patient and medical staff who
directly access the information. However, the system will also have an impact on
the staff members who maintain records. Just as the paper-shuffling activities of a
hospital are replaced by the automated distribution of information, the staff who
maintain the hospital’s information systems will also be affected by the PIB system.

In designing applications, you should be aware of all users who will be
affected by the system. For large applications, this extends to those who will con-
figure and maintain the system in addition to the direct users.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 454

Personal Information Base Case Study • Chapter 10 455

Identifying System Use Cases
In this case study, we have gone into detail of the most obvious use case for a med-
ical Personal Information Base: carrying records around and communicating them to
medical staff. However, there are many more future possibilities for the PIB device.

A PIB device could audibly announce which medicine has to be taken at
preprogrammed times, and act as a medicine reminder. Medical compliance,
ensuring that patients comply with their program of treatment, is a major
obstacle to many treatment programs. In most cases where there is a failure to
comply, the patient simply forgot to take their medicine.A portable device, which
helped to ensure compliance, offers tangible medical benefits.

With the use of Bluetooth ads, patients passing by a Bluetooth-enabled bill-
board might download information on events happening in the hospital or any
other services that are being offered such as taxis, counseling, and so on.This pre-
supposes that the patient has some way of later viewing the information.

Identifying Barriers to Adoption
With new technology, there are often barriers that prevent adoption of systems.
These barriers can mean the difference between the success or failure of an appli-
cation in the market place. In the case of a medical system, cost, safety, user confi-
dence and usability are all potential barriers to adoption. Issues of cost and safety
were considered in our earlier discussions, but in this section, we’ll look at user
confidence and usability.

For user confidence, one of the biggest challenges for the PIB system is syn-
chronizing the data so that losing the PIB device does not involve a loss of data.
It is important for the PIB system to make sure that an authorized person is con-
nected to the correct device, so that the correct information is exchanged with
the correct patient, and without any worry of malicious eavesdropping.

Prevention of data loss is very important for user confidence. Data on paper can
be seen and felt. Data in electronic format is intangible, and although back-ups may
make it safer than paper, there are still issues of confidence which lead many users to
feel more secure with paper storage.The system keeps data in two places at any one
time so that a single failure in the system will not result in any loss of data; however,
it is difficult to protect against double failures in the system. Data will only be syn-
chronized at the central base and then distributed to update any remote changes. For
the patient, the role of the PIB in data loss could easily be intimidating.What if you
are carrying a device with all your medical information on it and you lose it? What

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 455

456 Chapter 10 • Personal Information Base Case Study

if it should fall into the hands of somebody who would use the information mali-
ciously? To reassure users, security and backup features should be easy to use and
unobtrusive, but they also need to be explained well enough to reassure.

For busy medical staff, a system that is both complex to learn and use will not
prove welcome.Therefore, to ensure a good user experience, existing interfaces
and applications should be reused wherever possible.A new underlying commu-
nication system does not necessarily mean that completely new applications must
be developed.The Bluetooth protocol stack has been designed to enable a
Bluetooth system to fit in with legacy applications, and this should be done
wherever possible. Not only does this make it easier for users, it may also make it
easier for applications programmers!

For patients, usability translates to doing as little as possible.The device is set
up by staff, and most interactions with the PIB are controlled by staff.A patient
in a medical environment is already likely to be under stress: it is not the ideal
time to start learning a complex user interface! We have shown how the interac-
tion required from the patient can be kept to a minimum.

In designing any Bluetooth application, usability is a potential barrier to
adoption that should be considered. Ideally, your application will work straight
out of the box, with controls that are obvious to the uninitiated. It can be argued
that if the user has to read a manual before using basic features, then your appli-
cation has failed the usability test!

If you are replacing a legacy system (in this case paper records), you should
consider what sort of system your application is replacing, and consider whether
your application is as convenient and easy to use as what it replaces. If you are
designing a completely new product, your system arguably has greater barriers to
overcome, as the user must be convinced they want or need your product. If it is
difficult to use, they may never find out how useful your product could have been!

Managing Personal Information Base Performance
The PIB device has many interfaces for communication and for interacting with
it, but at the same time it must be extremely power-efficient.This means that the
interfaces must only be active when they need to be. Ideally, a PIB device should
be able to last for one week (with four hours use a day) before the battery needs
to be replaced.

Battery life is very important if uninterrupted access to patient records is
required. Each device could be cycled daily, meaning that the only requirement is
that it has to run on batteries for a day.This is not a very stringent requirement

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 456

Personal Information Base Case Study • Chapter 10 457

for a battery-operated device. In comparison, the Bluetooth Human Interface
Device profile suggests that a Bluetooth mouse should run for three months!

Bluetooth provides various low-power modes.These modes are most useful
when devices wish to remain connected for long periods, but do not have much
data to transfer.The PIB system usually establishes connections for short periods of
time, exchanges data, then drops the connection. For this sort of usage model,
low-power modes are irrelevant. However, if a PIB were used to collect data from
a monitor, then it would be expected to remain connected for long periods of
time. In this sort of usage scenario, using park or sniff mode would make sense.
The PIB could then wake periodically, collect a data update from the monitor, and
return to a low power sleep mode for the majority of the time.When collecting
data in this fashion, it should be kept in mind that the PIB can have slightly stale
data as there are gaps when its radio link is asleep, so data is not being updated.

The PIB must also maintain information from the central system—for
example, collecting appointments, or details of test results which have been pro-
cessed.The PIB could be set to wake every 30 minutes to connect with the
nearest networked server and collect any information.This ensures that data is
automatically transferred throughout the system.

The user could also request an update, perhaps by pressing a button on the
PIB. In this case, it can take up to ten seconds to inquire and find the nearest net-
worked server, and up to another ten seconds to connect with it, going through
link and channel setup (this is a worst-case scenario; normally, a link can be estab-
lished in two to three seconds).This may not sound like a long time, but it can
seem like an extremely long delay, so it’s likely that to convey appointment infor-
mation quickly it will still end up getting scribbled down on paper and handed to
the patient.The strength of the PIB system is not in its speed but in its automated
backup facilities, and in the automated distribution and storage of information.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 457

458 Chapter 10 • Personal Information Base Case Study

Summary
This case study has looked at a device that does not exist today, but that can be
created with current technology.Already we are seeing PDAs being used to
manage personal appointments as well as information on the move. It is a logical
step for large institutions, such as hospitals, to begin to use similar technology to
manage their information systems.

Bluetooth wireless technology suits the requirements of a Personal
Information Base (PIB) for many reasons:

■ The chips/chip sets and associated components are low cost.

■ Bluetooth modules typically have a small form factor making them suit-
able for incorporation in handheld/mobile devices.

■ Bluetooth wireless technology is low power, making it suitable for
devices which need to run on batteries.

■ The technology is available in a wide range of devices (PDAs, phones,
laptops) providing a variety of candidates for Data Access Terminals.

■ The ISM band used for Bluetooth radio links is available license-free
worldwide.

While the PIB system is not safety-critical in itself, it does handle data that
may be critical to medical treatment.The integrity and security of that data is
paramount. Bluetooth links may introduce errors, but the application can easily
compensate by backing up data, and by implementing application level error
checks on records. Security of the radio link is also important.This is provided by
authenticating communicating devices, and encrypting medical records on air.
Finally, password access can protect the PIBs contents should the device itself fall
into the wrong hands.

The Bluetooth specifications provide a variety of profiles that lay out rules for
using the Bluetooth protocol stack for particular end-user applications. For a
Personal Information Base, the Object Push Profile can be used to exchange vir-
tual business cards (vCards), which publicly identify a PIB’s owner.The File
Transfer Profile can be used to exchange medical records.

The Object Push and File Transfer Profiles both rest on the Generic Object
Exchange Profile, which uses the Infrared Data Association’s OBEX protocol to
exchange data objects.This, in turn, relies on the Serial Port Profile, which uses a
modified version of the ETSI TS07.10 specification to emulate serial ports over a

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 458

Personal Information Base Case Study • Chapter 10 459

radio link (TS07.10 is also used by GSM cellular systems to emulate serial ports).
Finally, the Generic Access Profile provides generic procedures related to discov-
ering Bluetooth devices, security levels, and parameters accessible at the user
interface.

By using Bluetooth profiles, the PIB application can use standard protocol
stacks and features; this enables applications to be easily integrated with existing
Bluetooth protocol stacks.

We have looked at a Personal Information Base in a medical context, but
many of the elements of this case study are equally applicable to other data
exchange applications.As input/output devices come down in price, we are likely
to see devices such as the Personal Information Base described in this chapter
appearing in more and more contexts.

Solutions Fast Track
Why Choose Bluetooth Technology

� The chip’s physical size is small, and there are many chip vendors to
choose from.

� The range is adequate—the lowest power version offers up to a 10
meter range, which is sufficient.

� The available choice of chip vendors leads to a competitive market.

� There is worldwide acceptance of the ISM band used by Bluetooth.

� A Bluetooth-enabled Personal Information Base (PIB) system in our
hospital case study would store all patient information and information
about visits, prescriptions, x-rays, and test information. It would be
encrypted for both doctors and patients, have a user-friendly interface
with low resolution screen; and would have a wireless connection to a
main computer or Data Access Terminal.

� Data loss is avoided using automated backups.Automated backups are
enabled by wireless communications.

� Encryption and passwords may be used to prevent unauthorized access
to data.

� Use of radio devices may be restricted in some areas, so it should be
possible to easily disable the Bluetooth transmitter.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 459

460 Chapter 10 • Personal Information Base Case Study

Using Bluetooth Protocols to Implement a PIB

� For a Personal Information Base, the Object Push Profile can be used to
exchange virtual business cards (vCards), which publicly identify a PIB’s
owner.The File Transfer Profile can be used to exchange medical
records.

� The Object Push and File Transfer Profiles both rest on the Generic
Object Exchange Profile, which uses the Infrared Data Association’s
OBEX protocol to exchange data objects.This, in turn, relies on the
Serial Port Profile.

� By using Bluetooth profiles, the PIB application can employ standard
protocol stacks and features.This enables applications to be easily inte-
grated with existing Bluetooth protocol stacks.

Considering the User’s View

� In designing any Bluetooth application, usability is a potential barrier to
adoption that should be considered. Ideally your application will work
straight out of the box, with controls that are obvious to the uninitiated.

� Do not redesign existing system interfaces if it is not necessary. Using
legacy applications wherever possible can help to ease adoption of new
technology.

� The PIB device has many interfaces for communication and for inter-
acting with it, but at the same time it must be extremely power-effi-
cient.This means that the interfaces must only be active when they need
to be. Ideally, a PIB device should be able to last one week before the
battery needs to be replaced.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 460

Personal Information Base Case Study • Chapter 10 461

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: How do I know what profiles are appropriate for my application?

A: Each profile provides a profile overview which includes user scenarios.You
need to read through the scenarios which the existing profiles offer and pick
one which best matches your requirements.

Q: What do I do if there isn’t a suitable profile?

A: The Bluetooth SIG will consider applications for new profiles. Contact the
SIG via the Bluetooth Web site at www.Bluetooth.com for nonmembers, or
www.Bluetooth.org for members.

Q: The PIB used a lot of profiles. Do I have to use profiles if I don’t want to?

A: Yes.To get Bluetooth qualification, you must implement profiles which are
relevant to the main function of your device. So, if you intend to emulate a
serial port, you must use the serial port profile. Of course, there is nothing to
stop you from adding extra functionality on top of what the profiles already
provide.

Q: What extra considerations are there for medical devices?

A: In the case of the PIB: medical confidentiality and potential life-endanger-
ment (if the medical data is corrupt).There may also be restrictions on using
the ISM band in some hospitals, and in some areas of hospitals.

Q: Are there compatibility problems if you have different options on high-end
and low-end devices?

A: No, as long as all devices implement a common basic set of functions.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 461

462 Chapter 10 • Personal Information Base Case Study

Q: The PIB used Bluetooth PINs and Bluetooth security—how do I know if
this will be enough for my application?

A: Bluetooth implements 128-bit security, which is the best currently available
on wireless systems. Only you can decide if this is enough for your applica-
tion. If you feel it isn’t, then you are free to add extra security at the applica-
tion level. For instance, many packages are available for encrypting data on
Internet links.These could be reused to provide application level security on
Bluetooth links.

www.syngress.com

160bluetooth_C10.qk 12/5/01 4:03 PM Page 462

Bluetooth Application
Developer’s Guide
Fast Track

This Appendix will provide you with a quick,
yet comprehensive, review of the most
important concepts covered in this book.

Appendix

463

160_Bluetooth Fast_Track.q 12/6/01 8:44 AM Page 463

464 Appendix • Bluetooth Application Developer’s Guide Fast Track

❖ Chapter 1 Introducing Bluetooth
Applications

Why Throw Away Wires?
You know Bluetooth technology is a good idea if your product satisfies the
following six criteria:

1. Adds usability, convenience, or ease-of-use—the Bluetooth Dream!

2. Interference or latency will not affect its primary function.

3. Is tolerant to the connection time overhead.

4. Can afford the limited Bluetooth bandwidth.

5. Battery life or power supply requirements are compatible.

6. The range is adequate.

Considering Product Design
Think about the following items:

■ Are you adding end-user value by using Bluetooth technology?

■ Does your product’s development cycle allow you to add Bluetooth
technology to it?

Investigating Product Performance
To know whether Bluetooth technology is right for your product, you must
consider:

■ Connection times—it can take up to ten seconds to find a device and
ten more seconds to connect

■ The quality of service—throughput and latency; this will be lower than
wired links

■ Interference can badly slow down your links, or even cause them to fail

Assessing Required Features
Question whether or not you need to support all the following features:

■ Security—you must support it, but will you enable it by default?

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:44 AM Page 464

Bluetooth Application Developer’s Guide Fast Track • Appendix 465

■ Low power modes—if your product doesn’t need them, will it connect
with one that does?

■ Channel Quality Driven Data Rate—is maximum throughout in noisy
conditions important?

Deciding How to Implement
Should your stack be hosted, embedded with application on host, or fully
embedded?

Should you design your own PCB (cheap in volume), or buy in a module
(faster and easier)?

Battery—if your product is not mains-powered, consider the impact of time
spent in different modes on the battery life. Constantly running in scan
modes might give you fast connection time, but it will also rapidly drain
your batteries. Setting short windows of activity can give almost equivalent
performance, and greatly extend your battery life.

❖ Chapter 2 Exploring the Foundations of
Bluetooth

Reviewing the Protocol Stack
The protocol stack hides the complexity of the wireless interface and presents, at
its highest level, a software interface that resembles that of a wired connection.

Not all the differences between a wired and a wireless interface can be
hidden. In particular, the steps required to find and connect to other devices
are peculiar to wireless.

Bluetooth devices can contain various combinations of upper stack layers to
support various profiles.The Bluetooth specification details a service dis-
covery layer so that devices can find out what services are available and how
to connect to them.

Why Unconnected Devices Need to Talk
With Bluetooth devices, the user may not initially know that there are other
Bluetooth devices nearby, so a method is required to find them.The
Bluetooth equivalent of plugging in a cable is the forming of a connection.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:44 AM Page 465

466 Appendix • Bluetooth Application Developer’s Guide Fast Track

The checks on communications protocols and applications compatibility are
actually done once a basic Bluetooth link is established, and are called service
discovery.

The procedure used to find devices is called inquiry, and the procedure used
to connect to devices is called paging. In both cases, one device transmits and
receives on special sequences of frequencies that are known to all devices.
The other device needs to be listening for the transmissions—if a transmis-
sion is received correctly, it sends out a reply. Since it knows the sequences
used for inquiry and paging, it can work out the correct frequency on
which to send the reply.

Discovering Neighboring Devices
Only devices in Inquiry Scan can be discovered.

An inquiry is normally a periodic or user-initiated event.

An inquiry response contains all the information required to connect to a
device by paging.

Connecting to a Device
Only devices in Page Scan can accept connections, although they may
choose to reject incoming connection requests.

If a page and connection request is successful, then the paging device becomes
the master of the piconet and the paged device becomes the slave.An
Asynchronous ConnectionLess (ACL) connection now exists between the two.

A master can have connections to several slaves, but a slave can only have a
connection to a master. For the upper stack layers, this is the only difference
between the two.

Finding Information on Services a Device Offers
The application is responsible for maintaining accurate records of the ser-
vices it offers in a service database.

An ACL and a Logical Link Control and Adaptation Protocol (L2CAP)
connection must exist to a remote device before it can browse the service
database using the Service Discovery Protocol (SDP).

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 466

Bluetooth Application Developer’s Guide Fast Track • Appendix 467

The service database contains all the information required for a remote
device to identify and connect to local Bluetooth services.

Connecting to and Using Bluetooth Services
A remote device must conduct an SDP query before connecting to a local
Bluetooth service, and must support a complementary profile.

Connecting to a service involves first opening L2CAP, then higher layer
connections in turn, using the information from the SDP query.

The procedure for using a service is detailed in the appropriate Bluetooth
profile.

❖ Chapter 3 Power Management
Using Power Management:When and
Why Is It Necessary?

Consider whether your application is suitable for power-managed operation.

Consider the constraints imposed by the application (e.g., maximum
response times, characteristics of the data traffic, and so on).

Investigating Bluetooth Power Modes
Hold mode One-off event, allowing a device to be placed into hold mode
for a negotiated period of time. Hold interval must be negotiated each time
this mode is entered.

Sniff mode Slave periodically listens to the master and can power save for the
remainder of the time. Important to note that data can be transferred while
devices are in this mode and a SCO link may be active. Sniff intervals are nego-
tiated once, before sniff is entered, and remain valid until sniff mode is exited.

Park mode Parked slave periodically synchronizes with the master and for
the remainder of the time can power save. Data packets cannot be sent on a
parked connection and the devices must be unparked before a SCO con-
nection can be established. Furthermore, there cannot be an active SCO
when its associated ACL is parked.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 467

468 Appendix • Bluetooth Application Developer’s Guide Fast Track

Evaluating Consumption Levels
All other things being equal, the power consumption of a Bluetooth low power
mode depends on the parameters negotiated before that mode is entered.

Page and inquiry scan also have a power consumption cost, so these should
be entered only when necessary.

❖ Chapter 4 Security Management

Deciding When to Secure
Secure for protection of data from eavesdroppers.

Create exclusive links between devices.

Outfitting Your Security Toolbox
Authentication verifies that the other Bluetooth device is the device you
believe it is, using a link key as the secret password.

Authorization grants permission to a device making a request to use a par-
ticular service.

Encryption encodes data being passed between two devices; it requires suc-
cessful authentication.

Understanding Security Architecture
The Security Manager, which resides in the protocol stack, manages Mode 2
security transparently to the application.

The Host Controller manages Mode 3 security if configured to do so by the
application software.

The Security database is configured by the application and specifies when to
trigger Mode 2 security procedures as well as which security measures are to
be taken.

The device database offers persistent storage for parameters created during
the successful completion of security and makes these available for future
sessions to reduce security procedures required.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 468

Bluetooth Application Developer’s Guide Fast Track • Appendix 469

Working with Protocols and Security Interfaces
Mode 2 security is invoked when a client application attempts to establish a
connection with the server application and can use authentication, autho-
rization, and/or encryption.

Mode 3 security is triggered by the Host Controller when either an
incoming or outgoing request for a radio connection is made.
Authentication and/or encryption can be specified.

Application Programming Interfaces support the configuration of the type of
security to use and offer a way to insert user input (PIN entry) when required.

Exploring Other Routes to Extra Security
Security measures are to be supported in many profiles, such that if another
device wants to invoke a component of the security troika, it will be met
with an appropriate response.

In many instances, implementing security is not made mandatory since this
is left up to the discretion of the system designer.What is made mandatory
in many instances is supporting security as mentioned previously.

Non-discoverable mode as configured into the Host Controller can prevent
device detection during the Inquiry process.

Non-accessibility can prevent any device from establishing a radio connec-
tion, thereby preventing access.

Applications often have associated with them User IDs and passwords as fur-
ther measures toward protecting information resident on a server.
Authorization, the act of granting permission to a service, is another applica-
tion-based security measure used by the OBEX transport layer.

❖ Chapter 5 Service Discovery
Introduction to Service Discovery

The term service discovery is used to describe the way a networked device (or
client) discovers available services on the network. Service discovery makes
zero configuration networks possible—the user doesn’t have to manually
configure the network.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 469

470 Appendix • Bluetooth Application Developer’s Guide Fast Track

Key features of a discovery protocol are: spontaneous discovery and configu-
ration of network services, low (preferably zero) administrative requirements,
automatic adaptation to the changing nature of the network (addition or
removal of nodes or services), and interoperability across platforms.

Bluetooth Service Discovery is protocol-dependent; it mandates the use of
the underlying Bluetooth communication protocol as the basis for service
discovery. However, Bluetooth SDP could indeed be implemented using
other underlying transport mechanisms, and higher-level protocols (such as
TCP/IP) may be run over Bluetooth.

Architecture of Bluetooth Service Discovery
For a particular service (and there may be many services on one device) a
service record contains a description of that service.The description takes the
form of a sequence of service attributes, each one describing a piece of infor-
mation about the service.

Within the SDP server, each service record is uniquely identified by a service
record handle.A service class defines the set of service attributes that a particular
service record may have. In other words, a service record is a particular
instance of a class of services.

A service attribute is a name-value pair that includes an attribute ID and an
attribute value.The attribute ID uniquely identifies the attribute within the
scope of the service record.

An attribute value can contain data of arbitrary complexity, rather than just
simple types.This is accomplished using data elements.A data element is
made up of a header and a data field.

The Service Discovery Protocol includes a set of Protocol Data Units
(PDUs) that contain the basic requests and responses needed to implement
the functionality of Bluetooth Service Discovery.An SDP PDU contains a
PDU ID, a transaction ID, and a parameter length in its header. Its body
contains some number of additional parameters, depending on which type
of transaction the PDU contains.

Discovering Services
Every Bluetooth device can contain a Service Discovery Server (SDS) that
advertises the services available on that particular device, be it a mobile

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 470

Bluetooth Application Developer’s Guide Fast Track • Appendix 471

phone, PDA, or something else. It can do this by making available the ser-
vice records that describe those services.

The Bluetooth-defined Class of Device (CoD) value can tell a discovering
device if a connection should be opened to the discovered device—it
doesn’t have to open a connection to the SDS and check the Service
Discovery Database (SDDB) of the discovered device,“short-circuiting” ser-
vice discovery.

The Bluetooth Service Discovery Protocol allows for services to be discov-
ered on the basis of a series of attributes with values of type UUID. In reality,
when talking about discovering specific services, one of the most important
attributes of a service, if not the most important, is the ServiceClassIDList.

Service Discovery Application Profile
The SDAP is a usage scenario describing the functionality a Service
Discovery Application (SrvDscApp) should provide to an end user on a local
device (LocDev) so that user can discover services on a Remote Device
(RemDev).The SDAP doesn’t specify an API that will provide this func-
tionality, but suggests primitives that can be mapped to an API.

Most profiles detailed in the Bluetooth specification have a service discovery
component that specifies the structure and content of the service record that
accompanies the service (or application) and which realizes the profile.The
SDAP (in addition to dealing with application functionality for service dis-
covery) specifies the procedures that an application realizing a profile must
use to perform service discovery. If these procedures are upheld, interoper-
ability is ensured.

Java, C, and SDP
As part of Java Community Process (JCP), a set of standard Java APIs for
Bluetooth is being developed and is due for publication at the end of 2001.
Implementations of this standard will allow programmers to implement
Bluetooth applications within the J2ME environment in a standard and
portable way.

A key element of the J2ME specification is the Generic Connection
Framework (GCF), a mechanism that allows a programmer to create dif-
ferent types of networking connections through a standard Connector inter-

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 471

472 Appendix • Bluetooth Application Developer’s Guide Fast Track

face.This would allow programmers to quickly produce Java Bluetooth
applications by applying existing techniques and design patterns.

Other Service Discovery Protocols
The Bluetooth SDP may be integrated with a number of the other service
discovery protocols, including Salutation, UPnP, Service Location Protocol
(SLP), and Jini.

The Salutation architecture defines a uniform way of labeling devices (fax
machines, printers, copiers, and also phones, PDAs, and general electronic
equipment) with descriptions of their capabilities and with a single,
common method of sharing that information.

Salutation is “transport independent,” that is, a separate Transport Manager
may be written for each underlying transport required, and the Salutation
Manager, which provides the core functionality of the system, remains trans-
port neutral.

SLP is a language-independent protocol for automatic resource discovery on
IP-based networks. Like some of the other service discovery protocols, it
makes use of UDP/IP multicast functionality in TCP/IP.This makes it par-
ticularly useful for networks where there is some form of centralized admin-
istrative control, such as corporate and campus networks.

Jini is a distributed service-oriented architecture, considered an extension of
the Java language and platform. Services communicate with each other using
a service protocol, which is defined as a set of interfaces in Java.The stan-
dard itself provides a base set of interfaces to facilitate core interaction
between services.A key component of Jini is the lookup service.

Communication between services in Jini occurs using Java Remote Method
Invocation (RMI). RMI is a Java-based extension to traditional remote pro-
cedure call (RPC) mechanisms. One important extension is that it enables
actual code, not just data, to be exchanged between services.

Universal Plug and Play (UPnP) defines a set of lightweight, open, IP-based
discovery protocols that allow appliances to exchange and replicate relevant
data between themselves and the PCs on the network. UPnP is a “wire-only”
protocol—it defines the format and meaning of what is transmitted between
members of the network and says nothing about how the standard is actually
implemented. It requires TCP/IP and HTTP to be present to operate.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 472

Bluetooth Application Developer’s Guide Fast Track • Appendix 473

UPnP uses the Simple Service Discovery Protocol (SSDP) to discover ser-
vices on IP-based networks. SSDP can be operated with or without a
lookup or directory service in the network. SSDP operates on the top of the
existing open standard protocols, using the HTTP over both Unicast UDP
and Multicast UDP.

The Future of SDP
SDP is one of many protocols that deal with the concept of service dis-
covery. One of the key issues is interoperability of the various protocols.

In the immediate future of SDP, the Bluetooth SIG is defining the Extended
Service Discovery Protocol.This “new” protocol is expressed as a profile
(dependent on the Generic Access Profile) and allows the Universal Plug
and Play (UPnP) protocol suite to run over a Bluetooth stack.Though not
proposed at present, a similar profile could be developed for the Jini service
discovery protocol.

❖ Chapter 6 Linux Bluetooth Development
Assessing Linux Bluetooth Protocol Stacks

The standard kernel source tree only recently accepted the Bluez Bluetooth
stack, but it may not yet possess all the features some application developers
require. It requires Linux 2.4.4 or greater.

IBM’s BlueDrekar is a nice-looking implementation distributed in binary
form for x86 platforms running 2.2.x. Source is not freely available to the
general public.

The OpenBT project is a not-as-nice open source project that works for
most things an embedded developer would want. Source is available and has
been used on x86,ARM9,ARM7, MIPS, and PowerPCs.

Understanding the Linux Bluetooth Driver
The OpenBT stack implements TTY drivers for RFCOMM, SDP, and stack
control.

The Bluetooth driver must be stacked over a lower-layer hardware driver
that implements a TTY.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 473

474 Appendix • Bluetooth Application Developer’s Guide Fast Track

Any legacy application that uses a TTY can use RFCOMM once another
application sets up the underlying RFCOMM connection.

SDP, connection setup, and stack control are accomplished with ioctl calls.

No interface exists for SCO, or L2CAP, although ioctls are available to sup-
port most HCI commands.

Using Open Source Development Applications
The OpenBT source tree comes with some applications: btd/btduser,
sdp_server, and BluetoothPN.

The difference between btd and btduser is that btd is meant to work with
the kernel mode Bluetooth driver while btduser works with the user mode
Bluetooth driver. Many people prefer btduser since it is less prone to lock
up your system if things go badly. However, the OpenBT developers do not
support it as well as btd.

The sdp_server application provides you with an SDP database server
daemon. Once you’ve installed the Bluetooth driver, you can start this
daemon and it will automatically receive and respond to SDP queries from
remote devices.

This application provides a GUI that displays the SDP database on a remote
device. It provides some examples of how to make SDP requests and process
their results.

The quickest, most useful way to establish and exploit a Bluetooth connec-
tion from Linux is to use the standard GNU network applications over PPP.
And the easiest way to do that is with the btd application.

Connecting to a Bluetooth Device
An application manager must set up the driver stack over the hardware TTY
and initialize the Bluetooth driver.This can be any application; the OpenBT
source tree does not provide a general stack manager.

Client applications must obtain the Bluetooth Device address of the remote
device and—for RFCOMM connections—the channel number of the
remote service in order to establish a connection.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 474

Bluetooth Application Developer’s Guide Fast Track • Appendix 475

Once a connection is established, any application can use the TTY associ-
ated with the connection for data transfer.

The driver indicates a disconnection event with a hang-up of the associated
TTY.

Controlling a Bluetooth Device
Use ioctl calls to control the device and get information about device status.

Use /proc/bt_status to get information about device status.

A stack manager must be able to deal with link loss and system shutdown
requests. It should provide an interface for users as well as other processes
like power management to signal shutdown requests.

❖ Chapter 7 Embedding Bluetooth
Applications

Understanding Embedded Systems
Embedded systems commonly have many tasks running simultaneously.
Since the processor can only run one line of code at a time, a scheduler
swaps between tasks running a few instructions from each in turn.

On BlueCore, your application task is called through an interpreter referred
to as the Virtual Machine, which interprets a few of your instructions each
time it is called.This interpreter means that even if you write code in an
endless loop, the other tasks in the system will still get to run.The Virtual
Machine’s interpreter also stops you from accessing areas of memory which
are needed for other tasks.

Tasks communicate by sending messages to one another, using areas of
memory which are set up as queues.The first message in the queue is the
first out, so these are sometimes called FIFOs (First In First Out).

Application software can interact with hardware using interrupts.There are
two pins on BlueCore which will generate an interrupt when they change
state.An application can register to be notified when these interrupts happen.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 475

476 Appendix • Bluetooth Application Developer’s Guide Fast Track

When you close a switch, the contacts usually bounce off one another.This
bouncing causes the switch to oscillate, making and breaking a connection.
This means that if a switch (such as a pushbutton, or keypad) is connected
to an interrupt line, you will get many interrupts as the switch closes.
BlueLab provides debounce routines.

Getting Started
To create embedded applications to run on CSR’s BlueCore chip, you need
BlueLab and a Casira.The Casira must be configured to run BCSP.

Running an Application under the Debugger
The PC is connected to the Casira with a serial cable and an SPI cable.

The Casira must be loaded with a null image containing an empty version
of the Virtual Machine.

Applications running under the debugger on the PC can then use facilities
on the Casira, so they can access PIO pins and the BlueCore chip’s radio
while still having full PC debugging facilities.

Running an Application on BlueCore
You must make a special firmware build linking your application with a
Virtual Machine build to run your application on the Casira.

Your application should be fully debugged before you build it for BlueCore,
since on-chip debugging facilities are very limited.

You can communicate with the Virtual Machine on BCSP Channel 13
using VM Spy.

Using the BlueLab Libraries
A selection of libraries provide ANSII C support as well as access to the
Bluetooth protocol stack, PIO pins, and various operating system facilities
such as scheduling, timers, messaging, and so on.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 476

Bluetooth Application Developer’s Guide Fast Track • Appendix 477

Deploying Applications
If you do not have RFCOMM in your build, you can upgrade devices in
the field using the Device Firmware Upgrade (DFU) tools. Otherwise, you
must program the flash using an interface similar to the SPI interface.

❖ Chapter 8 Using the Palm OS for Bluetooth
Applications

What You Need to Get Started
In order to begin using Bluetooth technology, you will need to have a Palm
OS device with at least 4MB of memory that is running Palm OS version
4.0 or greater.Alternatively, you may wish to develop using the Palm OS
Emulator, often the easiest and fastest way to create new application.

In addition to a Palm 4.0 device, you will need to have the Bluetooth
Support Package installed.The Bluetooth Support Package consists of several
.prc files that work together.The latest version of the Bluetooth support .prc
files, along with the Bluetooth header files and several pieces of example
code, can be found in the Bluetooth area of the Palm Resource Pavilion at
www.palmos.com/dev/tech/bluetooth.

In addition, you will also want to have a copy of the Palm OS 4.0 SDK
documentation, also available on the Palm, Inc.Web site.

Understanding Palm OS Profiles
The Palm OS currently supports five Bluetooth profiles defined in the
Bluetooth 1.1 Specification: the Generic Access Profile, the Serial Port
Profile, the Dial-up Networking Profile, the LAN Access Profile, and the
Object Push Profile.

Generic Access Profile (GAP) is a general look at the overall process of car-
rying out a Bluetooth transaction without regard to the nature of that trans-
action, and is background for all the other profiles.

The new virtual serial driver (VDRV) in the Bluetooth Support Package
provides support for the Serial Port Profile.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 477

478 Appendix • Bluetooth Application Developer’s Guide Fast Track

The Network Library (NetLib) supports the Data Terminal role of both the
Dial-up Networking and LAN Access Profiles.

The new Bluetooth Exchange Library implements the Object Push Profile,
much in the same way that the Exchange Manager supports IR-based
Object Exchange Protocol (OBEX) push.

If none of the profiles cover what you are trying to do, don’t despair—the
Palm OS also provides a robust API that allows you direct access to the SDP,
RFCOMM, and Logical Link and Control Adaptation Protocol (L2CAP)
layers of the Bluetooth stack, along with calls to allow you to manage the
Bluetooth-specific concerns like discovery and piconet creation.

Updating Palm OS Applications Using the Bluetooth
Virtual Serial Driver

Using the Bluetooth Virtual Serial Driver allows existing serial-based appli-
cations to quickly be updated to take advantage of Bluetooth technology.
The VDRV itself is “glue code” that allows Bluetooth functionality to be
accessed though a more traditional API. Using the VDRV also gives you an
advantage in writing multi-transport applications.

Virtual Serial Drivers in the Palm OS are individual .prc files of type vdrv
and are used throughout the new Serial Manager interface, much the same
way as traditional physical serial ports are used.

Since most Bluetooth radios are not capable of simultaneously listening for an
inbound connection and trying to create an outbound connection, an instance
of the Bluetooth VDRV also needs to know whether it is initiating or accepting
the connection. Since a traditional serial API does not present a mechanism for
passing all of this extra information, Palm OS 4.0 has added a new call,
SrmExtOpen() (found in SerialMgr.h), to the new Serial Manager API.

A VDRV client-only application might be useful when you know that the
Palm device will always be playing a client-based role, and therefore never
need to accept a connection.

Applications and the VDRV use the Bluetooth Library in different modes.
Because of this difference, the VDRV will not be able to open while the
application is holding the Bluetooth stack open.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 478

Bluetooth Application Developer’s Guide Fast Track • Appendix 479

Setting up the serial port as a server does not cause the driver to go out and
create an ACL or RFCOMM connection, it merely sets up the port as a lis-
tener. Like a normal serial port, the VDRV will not alert the application
when an incoming connection is established, the application will simply
begin to receive data from the port.

Using Bluetooth Technology with Exchange Manager
You can make an Exchange Manager-based application Bluetooth-aware
with just a few lines of code.The Bluetooth Exchange Library registers itself
for the exgSendScheme, so if you’ve already updated your application to take
advantage of the exgSendScheme, it should work with Bluetooth technology
as soon as you have installed the Bluetooth .prc files.

The Exchange Library allows applications to send data blocks without
having to worry too much about the underlying transport.

The VDRV and Exchange Manager simplify using Bluetooth technology by
encapsulating it inside familiar and easy to use interfaces, but the simplifica-
tion also hides functionality and increases overhead.

Creating Bluetooth-Aware Palm OS Applications
If your application requires direct access to Bluetooth protocol layers or
management functions, then you will need to make use of the Bluetooth
Library (BtLib) API.

Even when using the Bluetooth Library directly, a Palm OS application
cannot put the Palm device or the remote device into park, hold, or sniff
modes.Also, while an application can request that a given link be authenti-
cated or encrypted, for security reasons the application is not allowed to
specify the authentication passkey or insist that a device be added to a list of
trusted (or bonded) devices.

The Bluetooth Library API is fairly large, and can generally be divided into
six sections: Common Library calls, management calls, socket calls, SDP calls,
services calls, and security calls.

If your application is going to receive inbound connections, you should
check to make sure the radio’s accessibility mode has been set to allow con-
nection and (if desired) discovery.The accessible state of the device is deter-
mined by the user’s settings in the Bluetooth Preferences Panel.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 479

480 Appendix • Bluetooth Application Developer’s Guide Fast Track

If you plan to have your application create outbound Bluetooth connections,
you will probably want to perform a device discovery in order to allow the
user to select the remote device(s) with which she wished to create a con-
nection.The Bluetooth Library offers two similar calls that handle the entire
discovery experience, including inquiry, name retrieval, and user selection,
BtLibDiscoverSingleDevice() and BtLibDiscoverMultipleDevices().

Bluetooth piconets have a star formation: one master connected to up to
seven active slaves. Once a successful call BtLibPiconetCreate() call has been
made, up to seven simultaneous ACL connections can be established.
Depending upon the usage model for your application, you may wish to
have the piconet master actively create outbound connections, wait for
inbound connections from remote devices, or both.

The L2CAP and RFCOMM protocol layers are exposed in the Bluetooth
API through a sockets-based interface.The ability to create and receive
RFCOMM and L2CAP connections is entirely independent of the device’s
role in a piconet.

Applications or protocols that run on top of L2CAP must be able to handle
the flow control themselves, while applications that run on top of
RFCOMM can make use of its built-in flow control.Also, an RFCOMM
listener is only capable of supporting one connection at a time, while a
L2CAP listener can receive an unlimited number of connections. If your
application involves functionality covered by a Bluetooth profile, you will
not have to make a choice of which layer to use, as the profiles provide
guidance on how to use the Bluetooth protocol stack.

L2CAP identifies available listeners by a Protocol Service Multiplexor
(PSM), which can be thought of as similar to an IP port.The RFCOMM
protocol uses a simple enumeration called a Server ID to distinguish its lis-
teners.You can let remote applications know which PSM and Server ID to
connect to by advertising them with SDP.

The Bluetooth Library offers an extensive set of APIs for working with SDP.

Writing Persistent Bluetooth Services for Palm OS
The Palm OS allows services to run on an as-needed basis by implementing
the OBEX service in the IR implementation.While the client side of OBEX
starts up in response to a user action (the “beam” command), the service side
of OBEX is brought up by the OS when an inbound IR connection is

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 480

Bluetooth Application Developer’s Guide Fast Track • Appendix 481

detected. Palm OS’s IR service implementation is able to avoid the overhead
of the OBEX service and IR stack when they are not in use.

Although multiple services can be registered, once a given service begins a
session, the other services become unavailable until it completes its session.

Services are simply pieces of code that register for and respond to Bluetooth
service notifications, normal Service Manager notifications of type
BtLibServiceNotifyType (btsv).When the application is launched in the
normal manner, it displays controls that allow the user to enable and disable
the service, which can correspond to registering and unregistering for the
Bluetooth service notification.

The Future of Palm OS Bluetooth Support
In the near future, Bluetooth technology will address the issues of Layer 3
(Network level) support in the Bluetooth communication protocol stack.
New specifications will define a network layer for communications between
all the members of a piconet (not just master to slave), as well as inter-
piconet communication issues.

Roaming and scatternets will also be addressed.

The eventual goal is the creation of true ad-hoc networks, self-configuring
network groupings that grow and change as the user’s environment changes.

New editions of the Palm OS Bluetooth Library will expand the Palm OS’s
Bluetooth capabilities without compromising existing applications.

❖ Chapter 9 Designing an Audio Application
Choosing a Codec

Codecs (coder/decoders) convert between analog voice samples and the
compressed digital format.

The output of the Codecs must be fed into the Bluetooth baseband as a
direct input to the baseband (a technique commonly used in Bluetooth
chips), or encapsulated in a Host Controller Interface (HCI) packet and fed
across the Host Controller Interface.

Bluetooth technology uses CVSD and PCM Codecs. CVSD is more robust in
the presence of errors, which is what makes CVSD attractive for use in Blue-
tooth systems. PCM is cheap and already available in many commercial devices.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 481

482 Appendix • Bluetooth Application Developer’s Guide Fast Track

There are two types of compression implemented in PCM Codecs:A-law and
µ-law.The different types are used by phones in various geographical regions.

Configuring Voice Links
The Bluetooth system transmits data on ACL links and voice on SCO links.
SCO links use periodically reserved slots, while ACL links do not reserve slots.

Live audio needs circuit switched channels to guarantee regular delivery of
voice information—the receive Codecs need a regular feed of information
to provide a good quality output signal.The circuit switched channels are
the Synchronous Connection-Oriented links.They occupy fixed slots that
are assigned by the master when the link is first set up.

Always remember that Bluetooth technology maintains a maximum of 3 *
64 Kbps full-duplex SCO voice packets.The SCO links provide voice
quality similar to a mobile phone; if higher audio quality is desired, then
compressed audio must be sent across ACL links.

Notice that we don’t want to modify the voice packets at the L2CAP layer.
SCO packets bypass the L2CAP layer.

If you choose to send data at the same time as voice, you will also lose out
on error protection on the voice links.

When a link is to be established, use the following procedure: scan or page
for an audio device. Use SDP to identify service. Set up ACL connection
first for control, then set up SCO connection. During a voice connection,
control messages can be sent such as DTMF signals

Choosing an Audio Interface
There are two routes for audio: either a direct link between the baseband
and the application layer, or through the HCI.All packets passing through
HCI experience some latency.

If the Universal Asynchronous Receiver Transmitter (UART) HCI transport
is used, there is no way to separately flow control voice and data, so when
data transport is flow controlled, the flow of voice packets across the HCI
will also stop.The USB transport provides a separate channel for voice
packets; however, USB requires complex drivers.

Not every chip/chip set supports audio. Of those that do, most provide
direct access to the baseband, but some do not support audio across HCI.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 482

Bluetooth Application Developer’s Guide Fast Track • Appendix 483

Selecting an Audio Profile
Three different profiles cover audio applications: the Headset profile, the
Cordless Telephony profile, and the Intercom profile. If your product sup-
ports several services, it may be appropriate to implement more than one
profile. If your application is not covered by one of the profiles, you will
have to design a complete proprietary application yourself.

The Headset profile allows the audio signal from a telephone call to be
transferred between an audio gateway (AG) and a headset. If you just want
to transfer the audio part of a call without control information, then the
Headset profile is small, simple, and definitely the one to use.

The Cordless Telephony profile allows incoming calls to be transferred from
a base-station to a telephone handset. If you are implementing a base station
to pass voice calls to and from a telephone network, then you should use the
Cordless Telephony profile.

The Intercom profile allows telephone calls to be transferred across a
Bluetooth link without involving a telephone network at all. If you need to
initiate voice calls to other Bluetooth devices in the area, but are not passing
them on to a network, then you should use the intercom profile.

The Cordless Telephony and Intercom profiles both use Telephony
Control Protocol (TCS) commands for control and share the same discon-
nection procedure.The Headset profile controls the link with AT com-
mands, and does not provide any commands for the headset to terminate
the connection.

Writing Audio Applications
In this section, we looked in detail at how a particular profile could be
implemented at application level.All inquiry, paging, scanning, and service
discovery are the same no matter which profile you implement. Similarly,
the audio must be routed into the Bluetooth subsystem somehow, regardless
of the audio profile chosen.

The first step will be finding suitable devices in your neighborhood using
the Bluetooth Device Discovery procedures.

Once the audio gateway application has found a device that belongs to the
audio/headset class of devices, it needs to find out how to connect to the
headset service.To do this, it uses Service Discovery Protocol (SDP) and
performs a service search for the headset service.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 483

484 Appendix • Bluetooth Application Developer’s Guide Fast Track

Once the service discovery phase is complete, you can connect to an audio
service.The first step is to set up an ACL link.This connection is used to
create an L2CAP link using the PSM value for RFCOMM. Next, an
RFCOMM channel is set up to control the headset. Once the audio
gateway knows that the headset is willing to accept the call, it establishes an
audio (SCO) link.The headset must be able to accept all Codecs and all
packet types on the link.

Differentiating Your Audio Application
Be sure to consider the weight, size, and form factor in your product design.

The user interface is the most crucial aspect of your application.Ask your-
self if there are ways to hide the complexity of Bluetooth technology.
Button functions and headset designs offer opportunities for improvement
and differentiation.

Another way to differentiate your product is to provide ongoing support for
new features or for future versions of the Bluetooth specification.

Improving design and engineering to better the audio path can have a
noticeable impact for the user, helping to avoid audio feedback, acoustic
coupling, and resonance effects.

❖ Chapter 10 Personal Information
Base Case Study

Why Choose Bluetooth Technology
The chip’s physical size is small, and there are many chip vendors to choose
from.

The range is adequate—the lowest power version offers up to a 10 meter
range, which is sufficient.

The available choice of chip vendors leads to a competitive market.

There is worldwide acceptance of the ISM band used by Bluetooth.

A Bluetooth-enabled Personal Information Base (PIB) system in our hospital
case study would store all patient information and information about visits, pre-
scriptions, x-rays, and test information. It would be encrypted for both doctors
and patients, have a user-friendly interface with low resolution screen; and
would have a wireless connection to a main computer or Data Access Terminal.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 484

Bluetooth Application Developer’s Guide Fast Track • Appendix 485

Data loss is avoided using automated backups.Automated backups are
enabled by wireless communications.

Encryption and passwords may be used to prevent unauthorized access to
data.

Use of radio devices may be restricted in some areas, so it should be possible
to easily disable the Bluetooth transmitter.

Using Bluetooth Protocols to Implement a PIB
For a Personal Information Base, the Object Push Profile can be used to
exchange virtual business cards (vCards), which publicly identify a PIB’s
owner.The File Transfer Profile can be used to exchange medical records.

The Object Push and File Transfer Profiles both rest on the Generic Object
Exchange Profile, which uses the Infrared Data Association’s OBEX protocol
to exchange data objects.This, in turn, relies on the Serial Port Profile.

By using Bluetooth profiles, the PIB application can employ standard pro-
tocol stacks and features.This enables applications to be easily integrated
with existing Bluetooth protocol stacks.

Considering the User’s View
In designing any Bluetooth application, usability is a potential barrier to
adoption that should be considered. Ideally your application will work
straight out of the box, with controls that are obvious to the uninitiated.

Do not redesign existing system interfaces if it is not necessary. Using legacy
applications wherever possible can help to ease adoption of new technology.

The PIB device has many interfaces for communication and for interacting
with it, but at the same time it must be extremely power-efficient.This
means that the interfaces must only be active when they need to be. Ideally,
a PIB device should be able to last one week before the battery needs to be
replaced.

www.syngress.com

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 485

160_Bluetooth Fast_Track.q 12/6/01 8:45 AM Page 486

Glossary

487

160_bluetooth Glossary.qk 12/5/01 5:03 PM Page 487

488 Glossary

Expanded
Term/Acronym Acronym Definition

ACL Asynchronous A low-level Bluetooth data connection.
ConnectionLess

ADC Analog to Hardware used to convert analog signals (such
Digital Converter as voice) into a digital format.

AG Audio Gateway A device that takes audio (for instance from a
telephone call), and sends it across a Bluetooth
link. For example, when a cellular phone is con-
nected to a Bluetooth headset, the cellular phone
is acting as an audio gateway.

API Application A software interface designed specifically for
Programmers application programmers. APIs aim to present
Interface features in easy-to-use ways.

ARM Advanced RISC A Cambridge, UK-based company that manufactures
Machines a powerful range of processors. These have

proved popular for embedding in Bluetooth chips.

Authentication A procedure whereby one Bluetooth device checks
that the link keys on another Bluetooth device
match its own link keys.

BD_ADDR Bluetooth Device A unique address allocated to every Bluetooth
Address device on manufacture.

Bonding A process where two Bluetooth devices which
share a secret PIN code connect, generate a link
key (which can later be used for authentication
and encryption), then disconnect.

CID Channel Identifier A number used by L2CAP to identify a logical
channel.

Codec Coder-Decoder A hardware subsystem that converts audio
samples into a compressed data stream.

CVSD Continuous Variable An error tolerant Codec used in Bluetooth audio
Slope Delta systems.
Modulation

DA Directory Agent An agent that accumulates service information
and forms a repository of that information.

DAC Digital to Analog Hardware used to convert digital signals into an
Converter analog format (such as voice).

DLCI Data Link Connection A number identifying one of the emulated serial
Identifier ports carried on an RFCOMM connection.

Encryption A procedure whereby link keys are used to gen-
erate encryption keys, and the encryption keys are
then used to encode data so it cannot be read by
anyone who does not know the keys.

GAP Generic Access A profile that provides the basic operation rules
Profile for all Bluetooth devices. For instance, it defines

the timing rules for inquiry and paging.

www.syngress.com

160_bluetooth Glossary.qk 12/5/01 5:03 PM Page 488

Glossary 489

Expanded
Term/Acronym Acronym Definition

GPL Gnu General Public A free license attached to much open source code.
License

HCI Host Controller An interface that allows a Bluetooth host to
Interface communicate with a Bluetooth device. Various

transport layers are possible: UART, USB, and
RS232.

HID Human Interface A device used to interface between a human and
Device a computer (for instance, a mouse, keyboard, joy-

stick, or tracker ball).

Hold mode A device in hold mode is temporarily inactive until
a hold timer expires. A master might use hold
mode to allow slaves to save power if it knows it
will not communicate with them for a while—for
example, when it is connecting to a new slave.

IETF Internet Engineering The body that defines Internet specifications.
Task Force

Ioctl Input output An interface for controlling data transfer. There
control are a set of standard ioctl control calls used in

UNIX and Linux.

IP Intellectual Property Designs, patents, and so forth, which are intan-
gible but have an owner.

IP Internet Protocol The higher layer networking protocol that runs on
Internet connections. Layered on TCP (Transmission
Control Protocol) for reliable communications, or
UDP (User Datagram Protocol) for unreliable com-
munications.

IPC InterProcess Usually First In First Out (FIFO) queues carrying
Communications messages between processes.

IR Infrared Infrared light is used for optical communications
as another alternative to cabled connections.

IrDA Infrared Data An association which defines specifications for
Association OBEX, vCal, vCard, and so on.

L2CAP Logical Link Control The part of a Bluetooth Protocol Stack that
and Adaptation multiplexes several higher layer logical links onto
Protocol one underlying physical link. L2CAP also provides

segmentation and reassembly to adapt large higher
layer packets onto the smaller packet sizes handled
by HCI and the lower layers.

LAP LAN Access Point Bluetooth-enabled device for accessing a LAN,
which supports the LAN Access Profile.

www.syngress.com

160_bluetooth Glossary.qk 12/5/01 5:03 PM Page 489

490 Glossary

Expanded
Term/Acronym Acronym Definition

LAP Lower Address Part Part of a Bluetooth device address, or other
Bluetooth access code (such as an inquiry access
code).

Ldisc Line Discipline Line Discipline controls the format and rules you
use when reading input from a terminal (TTY) line.
Examples of line disciplines include: raw, cbreak,
select(), ioctl().

Link Key Numbers up to 128 bits long which are used in
Bluetooth security procedures.

Link Manager The layer that establishes and configures
Bluetooth connections. The Link Manager is usu-
ally implemented on a Bluetooth chip.

LMP Link Management The protocol that two Link Managers use to
Protocol communicate when they are setting up and con-

figuring Bluetooth connections.

MMI Man Machine Input and output devices used by a human to
Interface interface to a machine. For example, a keypad and

a display could make up an MMI.

MOS Mean Opinion A testing method used to assess audio quality—
Score because this is such a subjective quantity, it cannot

be measured by instrumentation, so users are sur-
veyed and asked to score the quality of signals.
The opinion scores of many users are taken and
the mean average is used to provide the MOS.

NetLib Network Library The Palm OS library, which supports networking
functions.

OBEX Object Exchange IrDA protocol which allows exchange of data
objects, as well as providing facilities for speci-
fying directories, and creating and deleting
objects and folders.

Park mode A device in park mode has given up the active
member address that identifies it as part of a
piconet. It is inactive except for occasional beacon
slots when it wakes up to listen for unpark mes-
sages that can be used to reactivate it. Parked
devices are allocated special access window slots
in which they can request the master to reactivate
them by unparking.

Pairing A process whereby two Bluetooth devices gen-
erate a link key that can be used later for authen-
tication and encryption. For devices to pair
successfully, they must have matching PIN codes.

PCM Pulse Code A type of Codec used in Bluetooth, and also used
Modulation in cellular phones.

www.syngress.com

160_bluetooth Glossary.qk 12/5/01 5:03 PM Page 490

Glossary 491

Expanded
Term/Acronym Acronym Definition

PDA Personal Digital A small handheld computing device such as a
Assistant Palm device.

PDU Protocol Data A single package of information carrying a
Unit message in a format specific to one protocol layer.

PDUs are used for peer-to-peer communication
between local and remote protocol entities. For
instance, SDP client and server communicate with
SDP PDUs.

Piconet A network of Bluetooth devices consisting of a
master device and one to seven slave devices.

PIN Personal A number used for security procedures to verify
Identification that the user is authorized to use a system.
Number

PPP Point-to-Point An Internet protocol used for transporting
Protocol datagrams across point-to-point links.

PRC Palm Resource A file containing a set of resources for a Palm OS
software module.

Profile A set of instructions for how to use a protocol
stack to implement an end-user service. For
example, the Bluetooth Headset profile describes
how to use the Bluetooth protocol stack in a
headset.

PSM Protocol Service A number used by L2CAP to identify which
Multiplexor protocol or service is connected to a channel.

PSTN Public Switched The networks provided by telephone service
Telephone Network providers to carry subscriber’s telephone calls.

RFCOMM Radio Frequency The serial port emulation layer of the Bluetooth
COMMunications port protocol stack.

SA Service Agent An agent that advertises information about a ser-
vice on behalf of the service.

SAFER+ Secure And Fast The algorithm used by Bluetooth devices to
Encryption Routine generate link keys used for authentication and
Plus encryption.

SCO Synchronous A low-level Bluetooth duplex voice connection. To
Connection Oriented set up a SCO connection, you must first set up an

ACL (data) connection.

SDAP Service Discovery A profile that gives rules for using Service
Application Profile Discovery Protocol in an application.

SDP Service Discovery A peer-to-peer protocol that allows a client
Protocol Bluetooth device to ask a server device whether it

supports a service, or to browse through a list of
services. SDP can also be used to retrieve informa-
tion on how to connect to a service.

www.syngress.com

160_bluetooth Glossary.qk 12/5/01 5:03 PM Page 491

492 Glossary

Expanded
Term/Acronym Acronym Definition

SIG Special Interest A group that shares a common interest, and joins
Group together to pursue goals related to that interest.

The Bluetooth SIG shares an interest in Bluetooth.

Sniff mode A low-power mode where a device only wakes up
to listen for data in periodic sniff slots.

TCS-Bin Telephony Control A specification based on ITU-T Q.931, which
Protocol Binary allows telephone calls to be transferred across

Bluetooth links.

TTY TeleTYpe The abbreviation that originally referred to tele-
types connected to mainframes. It is now used for
data terminals. (Linux has a TTY command that
prints the filename of the terminal connected to
standard input.)

UA User Agent An agent that performs service discovery tasks for
a client.

UART Universal A device that supports transfer of data in a serial
Asynchronous bit stream.
Receiver Transmitter

UI User Interface Also called MMI (Man Machine Interface).
Graphical User Interface (GUI) and Command Line
Interface (CLI) are both types of user interfaces.

UPnP Universal Plug A system that allows wireless devices to find one
and Play another, advertise services, and exchange status

monitoring and control information.

USB Universal Serial Bus A high-speed standard for data connections,
which allows many devices to be connected to
one hub device. USB is often used on PCs.

UUID Universally Unique 128-bit numbers that are guaranteed to be
Identifiers unique across all space and time (or at least until

A.D. 3400).

VDRV Virtual Serial Driver A Palm OS driver that provides virtual serial ports.

www.syngress.com

160_bluetooth Glossary.qk 12/5/01 5:03 PM Page 492

493

Index
802.11b. See IEEE 802.11b

A
Abstract C API, development. See

Service Discovery Protocol
Access points, 33
Access profile. See Local Area Network
Accessibility mode, 346
ACL. See Asynchronous Connectionless
Active mode, 106–107
Active period, 108
Active/passive periods, 56
Activity, bursts, 212
ADC. See Analog to Digital Converter
Adc (routine), 291
Add-on strategy, 18
addr parameter, 306
Address name, typing, 19
addressAsName argument, 343
Address-based protocol stack, 325
Add_SCO_Connection command,

407, 408
Ad-hoc connections, 5
Ad-hoc networks, 168
Ad-hoc wireless connectivity, 11
Adoption barriers, identification,

455–456
advanceCredit field, 350
AG. See Audio Gateway
Aircraft safety, 35–36
A-law definition, 384, 385
Allow_Role_Switch, 84
AlphaWorks license, 216
AM_ADDR, 37
Analog to Digital Converter (ADC),

291, 382

Analog-digital-analog conversion
schemes, 380

ANSI C, support, 290
ANSI/ISO standard, 290
API. See Application Programming

Interface
Application embedding

FAQs, 316
introduction, 266
solutions, 314–316
usage, 271–274

Application Programming Interface
(API), 145, 148, 175, 215, 320. See
also C-based API

activities, 338
development. See Service Discovery

Protocol
improvement, 186
Management/Socket sections, 338
presentation, 179
providing, 194, 257
structure. See Applications

Application-level security, 154–155
Applications

API structure, 150–153
code, 266
construction, 273–274
deployment, 313
device database management, 147–148
FAQs, 67–68
introduction, 2–3
investigation. See OpenBT
involvement, 132, 135
libraries, 291–293
profile. See Service discovery

coverage, 401–402
running

BlueCore, usage, 280–288
493

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 493

494 Index

Debugger, usage, 274–280
software, 137
solutions, 65–66
usage, 143
writing, 231–233. See also Stacks

Application-Specific Integrated Circuits
(ASICs), 266

ARM, 214
Arrays, 287
ASICs. See Application-Specific

Integrated Circuits
ASSN, 181, 189
Asymmetric ACL channels, 393
Asymmetrically power-managed

application, 115
asynchronous calls, 338
Asynchronous Connectionless (ACL)

channel, 28, 389. See also Asymmetric
ACL channels

connection, 7, 71, 83, 90, 181, 327
data, 62, 82

transmission, 117
links, 9, 109, 311, 361, 390

usage, 339–346, 407. See also High-
quality audio

packet, 25, 26
payload, 25
scatternets, 86
usage, 24

Asynchronous design, 56
AT commands, 96
AT_CKPD command, 398, 400, 407
AT+HUP, 97
AT+KPD, 96
AT+RING command, 95, 398
Attribute

ID, 173, 176
value, 173

Audio application
differentiation, 410–412
physical design, 410
upgrades, enabling, 411–412
writing, 402–409

Audio application design
FAQs, 417
introduction, 380–381
solutions, 413–416

Audio communications. See Two-way
audio communications

Audio connections, usage, 409
Audio Gateway (AG), 13, 58, 88–95,

115. See also Handsfree Audio
Gateway; Headset Audio Gateway

application, 92, 93
scenario, 59

Audio interface, choice, 395–396
Audio I/O, 266, 272
Audio path, improvement, 412
Audio profile, selection, 396–402
Audio quality, 28
Audio (routine), 291
Audio transfer functionality, 115
Audiovisual (AV) control, 7
authenticate value, 327
Authentication, 127–132, 145. See also

Link keys
applying, 144
beginning, 143
incoming connect request, 151
outgoing connect request, 151
procedures, initialization, 139
setup, 137
steps, 148–149

Authorization, 127, 132–133, 145
incoming connect request, 151
outgoing connect request, 151

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 494

Index 495

procedures, initiation, 139
requests, approval, 150
response, user query, 135
steps, 149–150

Automated shutdown, 257
AV. See Audiovisual
Average inquiry time, 23
Axis Communications, 213

B
B3RCP. See Bluetooth Based Blender

Remote Control Profile
Ball grid arrays (BGAs), 51

placement issues, 52
Bandwidth, 26

guarantees, 25
usage. See Limited bandwith

Baseband Specifications, 22
Basebands, 395
Batteries

addition, 56–57
life, 9, 55

assessment, 58–63
extension, power saving modes

(usage), 57–58
requirements, compatibility, 11

limitations, consideration, 55–63
status indicators, 56

Battery (routine), 293
Battery-operated devices, 404
Battery-powered Bluetooth mouse, 39
Baud rates

changing, race conditions (avoidance),
238

switching, 237–238
BCSP. See BlueCore Serial Protocol
BD_ADDR, 22, 79, 83, 84, 236, 258

bd_addr field, 240, 241
Beacon interval number. See Time slots
BER level, 35
BGAs. See Ball grid arrays
Bill Of Material (BOM), 47
Binary data, usage, 233
BlueCore, 303

chips, 266, 313
usage. See Applications

BlueCore Serial Protocol (BCSP), 41,
271–273

channels, 283–284
BlueCore01, 267, 269
BlueCore2, 62
BlueDrekar, 212

APIs, 216
considerations, 216–217
OpenBT, comparison, 213–216

BlueFlash, 283
BlueLab

Connection Manager, 296
libraries, usage, 288–313
usage. See Debugging

BlueStack, 297
layers, 280
(routine), 293

Bluetooth
address, 82, 87, 152. See also IEEE

MAC Bluetooth address
channels, 74
chip/chip set, functionality, 53
clock, 82
Core Specification, 19, 242, 243, 445

Part H:1, 442
design. See Printed circuit board
Developer. See Ericsson Bluetooth
development. See Linux Bluetooth
features, control, 251

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 495

496 Index

foundations, 69
FAQs, 101–102
solutions, 99–100

functionality, 45, 59
implementation

constraints, profiles usage, 43
decisions, 40–63

link, 23, 230
logo, 428
module, usage. See Prequalified

complete Bluetooth module
nodes, 137
power modes, investigation, 106–117
products

recognition, 10–11
time allotment, 17

profiles, familiarity, 126
required features, assessment, 36–40
SDP, 171–172
security

usage. See Palm OS
white paper, 151, 153

services, writing. See Palm OS
specification hierarchy, understanding,

433–437
Support Package, 321
technology, 4, 18, 347

choice, reasons, 422–432
NetLib, usage, 322
qualification, obtaining, 54–55
usage, 335–337
waveform codec usage, reasons, 384

Bluetooth Based Blender Remote
Control Profile (B3RCP), 329,
333, 334

Bluetooth Core Specification, 242, 243
Bluetooth Library (BtLib), 337, 367

API, 328–329

usage, 338
Bluetooth Qualification Administrator

(BQA), 54
Bluetooth Qualification Body

(BQB), 54
Bluetooth Qualification Program, 18
Bluetooth Qualification Test Facility

(BQTF), 18
Bluetooth Qualified Products List

(BQPL), 54
Bluetooth-aware applications, 365
Bluetooth-aware Palm OS applications,

creation, 337–364
Bluetooth-enabled applications, 324
Bluetooth-enabled desk phone, 409
Bluetooth-enabled device, 126
Bluetooth-enabled laptop, 212
Bluetooth-enabled PDAs, 429
Bluetooth-enabled products, 432
BluetoothPN application,

understanding, 228
Bluetooth-specific connection

classes, 196
Bluez, 212
BOM. See Bill Of Material
Bonding, 130–132
Boolean, 173

value, 300
Bootloader, 313
Bootstrapping

mechanism, 200
process. See Service

Bottleneck, 237
BQA. See Bluetooth Qualified

Administrator
BQB. See Bluetooth Qualification Body
BQPL. See Bluetooth Qualified

Products List

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 496

Index 497

BQTF. See Bluetooth Qualification
Test Facility

Broadcast messages, encoding, 131
Broadcasting, 134
Browse services, 193
BrowseGroupDescriptor, 174, 175
BrowseGroupList, 175, 189–190
Browsing. See Service Discovery

Protocol database
sessions. See World Wide Web
tree, construction. See Service

BT device, 42, 50
btcommon.h, 242

header, 239
BTCONNECT, 241–243, 248
bt_connection, 241

struct, 232
btd application

understanding, 227
usage. See Point-to-Point Protocol

BT_DATAFLOW_DEBUG, 230
BTDISCONNECT, 246, 251
btduser application, understanding, 227
btExgScheme, 335
BTINIT, 251
BTINITSTACK, 236, 257
BT_L2CAP_MAX_MTU, 350
BT_L2CAP_MIN_MTU, 350
BT_L2CAP_RANDOM_PSM, 350
bt_ldisc, 220
BtLib. See Bluetooth Library
BtLibAddrBtdToA() function, 336
BtLibDeviceAddressType structure, 336
BtLibDiscoverMultipleDevices(), 342
BtLibGeneralPreference(), 346
BtLibGeneralPreferenceGet(), 341
BtLibGetRemoteDeviceName()

calls, 343

BtLibGetSelectedDevices(), 342
BtLibLinkConnect(), 345, 346
BtLibLinkDisconnect(), 344, 346
btLibLinkPref_Authenticated, 364
BtLibLinkPref_Encrypted, 364
BtLibLinkSetState(), 364
btLibManagementEventACLConnect-

Complete event, 345, 346
btLibManagementEventACLConnect-

Inbound event, 344
btLibManagementEventACLDisconnect,

346
btLIBManagementEventAuthentication

Complete, 364
btLibManagementEventEncryption-

Change event, 364
btLibManagementEventPiconetComplete

event, 346
btLibManagementEventRadioState

event, 339
btLibNotifyServiceAllShutdown

notification, 368
btLibNotifyServiceNotInSessionShutdo

wn notification, 368
btLibNotifyServiceStartup notification,

367
BtLibPiconetCreate(), 345
BtLibPiconetDestroy(), 346
btLibPref_UnconnectedAccessible, 341
BtLibSdpAttributeIDType, 361
BtLibSdpGetPsmByUUID(), 363
BtLibSdpGetServerChannelByUUID(),

363
BtLibSdpServiceRecordDestroy(), 361
BtLibSdpServiceRecordSetAttribute(),

361
BtLibSdpServiceRecordSetAttributesFor

Socket(), 361
BtLibSdpServiceRecordStopAdvertising,

361

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 497

498 Index

BtLibSdpUUIDType, 330
BtLibServiceInSession(), 368
BtLibServiceNotifyDetailType, 366
BtLibServiceNotifyType, 366
BtLibServiceOpen(), 367
BtLibSetGeneralPreference(), 342
BtLibSocketAdvanceCredit(), 352
BtLibSocketClose(), 350, 358
BtLibSocketConnect(), 347, 351, 352
BtLibSocketConnectedInbound

event, 350
structure, 351

BtLibSocketConnectInfoType(), 351
BtLibSocketCreate(), 346
BtLibSocketEventData, 352
btLibSocketEventDisconnected event,

358, 359
BtLibSocketEventSendComplete(), 352
BtLibSocketGetInfo(), 352
BtLibSocketListen(), 347, 351
BtLibSocketListenInfoType, 348

structure, 349
BtLibSocketListenInfoType(), 351
BtLibSocketRespondToConnection(),

350
BtLibSocketSend(), 352
BtLibStartInquiry(), 338

calls, 343
bt_mod_inc_dir variable, 233
BT_RF_MIN_FRAMESIZE, 350
BT_SDP_REQUEST, 242, 244
bt_sdp_request, 242

struct, 244
BTSHUTDOWN, 236, 251, 257
Bursty link, 27
Business cards, exchange, 60, 440

PDA, usage, 61–62

C
C, 195–196

functions, 288
standard, 290

C++, 182
interface, 195

Cables. See Overhead cables
physical connection, 19

CAD. See Computer-aided design
Calling line identifier (CLI), 398
Cambridge Silicon Radio (CSR), 266

library, 291
Cancel request, issuing, 312
Casira, 271, 272, 274

development, 280
setting, 273

C-based API, 192
CD quality sound, 9
CDMA, 29
Cellular phone headset, 10
CELP. See Code-excited linear

prediction
CF. See Compliance Folder
Channel Identifier (CID), 71–72
Channel Quality Driven Data Rate

(CQDDR), 395
providing, 40

Channel spacing, 31
Channels, 151

number, 151
Character driver, explanation, 219
Checksum, 430
Chips/chip sets, 40

vendors, 42, 46, 427–428
CID. See Channel Identifier
Claimants, 130, 131
Class 1, 52

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 498

Index 499

design, 46
device, 10, 34
module, 35

Class 2, 52
device, 62

Class ID, 189
Class of Device (CoD), 92, 180–181,

299, 302
CoD-based filtering, 323
descriptions, 342
information, 323

class_of_device parameter, 79, 299, 303
CLDC. See Connected Limited Device

Configuration
CLI. See Calling line identifier
Client applications, 241
Client-code, 201
Client-only application, creation.

SeeVDRV
Clock wrap-around, 38
Clock_Offset, 80, 84, 87
Close system calls, 219
CM_ADD_SM_DEVICE_REQ, 300,

306, 309–310
CM_CONNECT_AS_MASTER

_REQ, 287, 306–308
CM_CONNECT_AS_SLAVE_REQ,

308
CmConnectCancelled, 310
CM_CONNECT_CFM, 310
CmConnectComplete, 310, 312
CmConnectDisconnect, 310, 312
CM_CONNECT_STATUS_IND, 312
CmConnectTimeout, 310
CM_DATA_CFM, 311
CM_DATA_IND, 311
CM_DATA_REQ, 311
CM_DISCONNECT_REQ message,

311

CmInit, 298
CM_INIT_CFM, 300
CM_INIT_REQ message, 298
CM_INQUIRY_COMPLETE_CFM,

303, 304
CM_INQUIRY_REQ, 302
CM_INQUIRY_RESULT_IND, 303
CM_LINK_KEY_REQ, 310
CM_LINK_KEY_RES message, 310
CM_MASTER, 304
CM_OPEN_CRM, 299
CM_OPEN_REQ, 299, 300
CMOS device, 57
CmPairingTimeout, 306
CM_PAIR_REQ, 304
CM_PIN_CODE_REQ, 305
CM_SCO_CONNECT_REQ, 311
CM_SCO_STATUS_IND message, 312
CM_SLAVE, 304
CoD. See Class of Device;

Class_Of_Device
Codec

choice, 381–389
power consumption, 55
(routine), 291
usage, reasons. See Bluetooth

Code-excited linear prediction (CELP),
384

COM ports. See Serial COM ports
usage, 283

Combination keys, 131
Command completes, 446
Common library calls, 338
Common Object Request Broker

Architecture (CORBA), 169
Communications

channels, variants, 29
link, establishment, 139

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 499

500 Index

theory, 381
Compact flash cards, 42, 45
Compliance Folder (CF), 54
Compressed video, 27
Computer-aided design (CAD), 46
Configuration networks. See Zero

configuration networks
conID field, 243
Connectable mode, 76, 444
Connectable state, 60
Connectable/not discoverable state, 60
Connected Limited Device

Configuration (CLDC), 196
Connected state, 223
Connected/high latency state, 61
Connected/low latency state, 61
Connection. See Data; Devices;

Disconnection; Incoming
connection; Outgoing connection

accepting, 249
contrast. See Wired connection
creation, 248. See also Logical Link

Control and Adaptation Protocol;
Radio Frequency
Communications

establishing, 60, 61, 251. See also Peer-
to-peer connection

mechanics. See Peer-to-peer protocol
forming, 75
Handle, 86
problem, 13
QoS, usage, 25–27
request, 312
time, 13

Connection Manager, 74, 281, 296–312.
See also BlueLab

idling, 312
initialization, 297–302
open, 295
opening, 297–302

(routine), 293
Connection times

consideration, 8–9
evaluation, 19–24
quantification, 22–24
tolerance, 11

Connectionless data transfers, 142
Connectionless packets, 152
Consumption levels, evaluation, 117–119
Continuous Variable Slope Delta

(CVSD), 28, 58, 382
modulation, 385–389

Control
applications, data applications

(distinction), 252
driver, usage, 226

Convenience, investigation. See End
user value

CORBA. See Common Object Request
Broker Architecture

Cordless mouse, usage, 62
Cordless telephony, 90, 156, 397–400

gateway, 143
profile, 398

Core Specification, 396
Coupling issues, 50
CQDDR. See Channel Quality Driven

Data Rate
CRC, 26
CREATE_RFCOMM_ID macro, 248
CREATE_SDP_ID macro, 242
CSR. See Cambridge Silicon Radio
CVSD. See Continuous Variable

Slope Delta

D
DA. See Directory Agent
DAC. See Digital to Analog Converter
Daemon, 62. See also Server

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 500

Index 501

DAT. See Data Access Terminal
Data

applications, distinction. See Control
button. SeeVirtual Machine
connection, 306–311
delivery, 33
device, usage, 247–248
downloading, 9
duplication, enabling, 429–430
element, 173, 181

sequence/alternative, 173
integrity, ensuring, 430
loss, 455
packets, support, 107
rate, 25–27

providing. See Channel Quality
Driven Data Rate

referencing, 287
sending, 311
structures, 339
Terminal role, 321
transfer, 61, 210, 249–251, 255. See also

Connectionless data transfers
TTYs, 247
voice, simultaneous transmission,

391–393
Data Access Terminal (DAT), 420,

429–430, 434
requests, 434
usage, 437

Data High (DH) type, 26
Data Link Connection Identifier

(DLCI), 73, 95
Data Medium (DM) type, 26
Database. See Devices; Service

behavior, 89
browsing. See Service Discovery

Protocol
management. See Applications

role. See Security
service, addition. See Local database

Datagrams, 152
Data-Link layer. See Packet-based data-

link layer
protocols, 347

Data-Voice (DV), 390
packet, 391

Debounce (routine), 291
Debouncing, 270
Debug messages. See Drivers
Debugger, usage. See Applications
Debugging

BlueLab, usage, 280
VM Spy, usage, 283–288

DEBUG_PRINT_ENABLED, 290
DECLARE_TASK, 294
DECT. See Digital Enhanced Cordless

Telecommunications
Deep sleep modes. SeeVendor-specific

deep sleep modes
Default PIN, 157, 161
Delay, 387

guarantees, 25
Design. See Printed circuit board

topology, 56
verification, 49–50

Desktop computer, 429
Device Firmware Upgrade (DFU), 48

protocol, 313
Devices. See Paging;Trusted device

address, 21, 300, 305
connection, 21–22, 77, 82–87, 150,

233–251
control, 251–258

ioctls, usage, 252–254
database, 137

checking, 148

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 501

502 Index

content, 146–147
management. See Applications
modification, 150
operations, 147
role, 146–148

discovery, 20–21, 239, 403–405,
445–448. See also Neighboring
devices

performing, 19
enumeration. See Remote devices
files, investigation, 221–222
frequency, transmitting, 76
listening mode, 76
low power mode need, 39
name, 152
networking, 5
PPP connections, manual

establishment, 226
re-authorization, 153
requesting service, 145
RFCOMM connections, manual

establishment, 226
selection, 448–449
services, information, 88–91
states, 60–61. See Bluetooth
talking, reasons. See Unconnected

devices
usage. See Data

DFU. See Device Firmware Upgrade
DH. See Data High
DH1 packet, 392
DH3 packet, 392
DH5 packets, 391
Dial-up modem capability, 128
Dial-up network, 157–158
Dial-up networking, 321

profile, 320
Digital conversion, reasons, 382

Digital Enhanced Cordless
Telecommunications (DECT), 398

variants, 29
Digital to Analog Converter (DAC), 382
Directory Agent (DA), 199
Directory service, 203
Disconnect (button), 283
Disconnection, 250–251
Discoverable state, 60
discovery (protocol), 200
Discovery protocols. See Service

discovery
DLCI. See Data Link Connection

Identifier
DM. See Data Medium
DNS. See Domain Name System
do_disconnect, 256
do_hci_inquiry(), 256
do_listen_for_cache_requests_with_time

out(), 258
Domain Name System (DNS), 169
Drivers

debug messages, 230
development, 147
installation, 19
interface, understanding, 221–226
learning. See Kernels
preparation. See Serial driver
stacking, 235–236
stacks, construction. See Linux kernel
usage. See Control;TTY

drvrDataP element, 326
Duty cycles, selection, 56
DV. See Data-Voice
Dynamic network, 19
Dynamic SDP registration, interface, 217

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 502

Index 503

E
EBUSY, 251
Echo service, addition, 246–247
EchoServerServiceClassID, 247
E-mail application, 321
E-mail delivery, 108
Embedded applications, 276
Embedded developers, 241
Embedded Linux project, 213
Embedded systems

understanding, 267–270
Embedded systems programming, 126
Encoded speech, 28
encrypt value, 327
Encryption, 127, 145. See also Point-to-

point encryption
beginning, 143
enabling, 133–135
incoming connect request, 151
keys, 131
outgoing connect request, 152
setup, 137
starting, 139
steps, 150

End user value
addition, 11–17
convenience, investigation, 12–15
functionality, enhancement, 15–17

End-user products, 271
EPERM, 248
Ericsson

DBA-10, 403
headset, 405
T28, 403

Ericsson Bluetooth
Developer, 228

Kits, 230

development h/w, 233
headset, 14

Err BtLibPiconetCreate, 345
Err BtLibPiconetDestroy, 345
Err BtLibPiconetLockInbound, 345
Err BtLibPiconetUnlockInbound, 345
Error checks, 430
Error correction, 28. See also Forward

Error Correction
Error protection, 40
/etc/ppp/options file, 229
Ethernet, 2
ETSI. See European Telecommunications
European Telecommunications

(ETSI), 434
Event Filter, 444
Event (routine), 291
Event-driven code, usage. See Power
Event-driven design, 56
Events, usage, 313
Exchange Manager, usage, 335–337
ExgAccept(), 336
ExgConnect(), 336
ExgCtlGerURLType structure, 336
ExgDisconnect(), 336
exgLibCtlGetURL control, 336
ExgPut(), 336
exgSendScheme, 335
ExgSocket, 337
eXtensible Markup Language (XML)

file, 228, 246
External RF, 52

F
FAA. See Federal Aviation Authority
Fast frequency hopping, 20
FAX, 128, 157–158

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 503

504 Index

capability, 141
fd_setup routine, 232
FEC. See Forward Error Correction
Federal Aviation Authority (FAA), 35
Federal Register, 433
Feedback layout, 50
FHS. See Frequency Hopping

Synchronization
FHSS. See Frequency Hopping Spread

Spectrum
FIFO. See First-in first-out
File transfer profile, usage, 450–454
File Transfer Protocol (FTP), 226, 230
Files

exchanges, PDA usage, 61–62
investigation. See Devices

Firmware
programming/upgrading, 48
versions, 53

First-in first-out (FIFO), 268
Fixed PIN, 130
f(k) frequency, 24
Flash cards. See Compact flash cards
Flash memory, 44
Footprint, 40
Forward Error Correction (FEC), 28,

391
Framework (routine), 293
Fraud, elimination, 12
Frequency deviation, 49
Frequency Hopping Synchronization

(FHS), 181, 446
packet, 21, 23, 404

response, 434
usage, 21

Frequency hopping scheme, 76
Frequency Hopping Spread Spectrum

(FHSS), 30

FTP. See File Transfer Protocol
Functional blocks, 104
Functionality, enhancement. See End

user value

G
GAP. See Generic Access Profile
Gateways. See Audio Gateway; Cordless

telephony; Internet
GCF. See Generic Connection

Framework
General IAC (GIAC), 78, 80
General Purpose Input Output

(GPIO), 293
Generic Access Profile (GAP), 79–82,

320–321
procedures, 381
usage, 444

Generic Access Protocol procedures, 126
Generic Audio. See ServiceClass

service group, 90
Generic Connection Framework

(GCF), 196
Generic object exchange profile,

usage, 450
Generic Telephony service group, 90
GIAC. See General IAC
GIF files, 61
Global System for Mobile

Communication (GSM), 15–16, 29
phone, 90
telephone audio link, 9

GN Netcom, 403
GNU C compiler, 273
GNU network applications, 226, 228
Google, 168
GPIO. See General Purpose Input

Output

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 504

Index 505

GPL-like license, 231
Greefkes and Riemes, 385
GroupID, 189

UUID, 190
GSM. See Global System for Mobile

Communication
GUI, 228
GUID, 329, 359

H
H4, 272–273
HAN. See Home area network
handles parameter, 303
Handsfree Audio Gateway, 89
Hands-free profile, 402
Hang-up command, 97
Hardware

implemention option, choice, 43–45
platforms. See OpenBT

HCI. See Host Controller Interface
HCI_Accept_Connection_Request

command, 84
HCI_Authentication_Request, 153
HCI_Command_Status event, 408
HCI_Command_Status_Event, 445
HCI_Connection_Complete, 84, 86
HCI_Connection_Request, 84

event, sending, 84
HCI_Create_Connection, 83, 87
HCI_Exit_Periodic_Inquiry_Mode, 78
HCIINQUIRY, 239, 258
HCI_Inquiry command, 445
HCI_Inquiry_Cancel, 78
HCI_Inquiry_Complete, 80
HCI_Inquiry_Result, 79, 80, 448
HCI_Periodic_Inquiry_Mode, 78

HCI_Reject_Connection_Request
command, 84

HCISETBAUDRATE, 238
HCI_Set_Connection_Encryption, 153
HCI_Set_Event_Filter, 84
HCI-UART module, 214
HCI_Write_Authentication_Enable, 152
HCI_Write_Encryption_Mode, 152
HCI_Write_IAC_LAP, 78
HCI_Write_Inquiry_Scan_Activity, 78
HCI_Write_Page, 87
HCI_Write_Page_Scan_Activity, 83
HCI_Write_Page_Scan_Mode, 83
HCI_Write_Page_Scan_Period_Mode,

83
HCIWRITESCANENABLE, 239
HCI_Write_Scan_Enable, 79, 83
Headset Audio Gateway, 89
Headsets, 397

application, 93, 94
power-saving features, 57
profile, 39, 126, 157, 280

power management usage, 115–117
Hewlett-Packard, 199
High amplitude signal, 386
High bit-rate simplex audio, 394
High-power sodium lights, 29
High-quality audio, 9

ACL links, usage, 393–395
High-speed wired link, 9
Hold mode, 37–38, 107–110, 339

usage. See Power management
Home area network (HAN), 7

paradigm, 32
Home RF, 29
Hop frequency, 80
Hopping

frequency, 25

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 505

506 Index

sequence, 37
spread spectrum. See Frequency

Hopping Spread Spectrum
Host Controller, 131, 135, 255

buffer, 446
commanding, 143, 148
configuration, 143, 146, 152

service database, 150
freedom, 138
function, 126
response, 148, 149
usage, 152

Host Controller Interface (HCI), 35,
54–55, 74, 381

guidelines, 446–447
HCI-USB layer, 214
inquiry, sending, 239–241
interface, 396
layer, 137
link drivers, 214
messages, 78
packet, 383
transport, 74
UART spec, 234
upper stack layers, 42
usage, 41, 71, 212

Host function, 126
Host PC, 12
Host (routine), 291
Hosted stack configuration, 45
HostGetMessage function, 285
HostSendMessage function, 285, 286
HotSync, 319, 321
HTML. See HyperText Markup

Language
HTTP. See HyperText Transfer Protocol
Hung-up TTY, 223
HV packet type, choice, 390–391

HV1, 58, 380, 391, 395
link, 81
packet, 28

HV2, 380, 391, 395
link, 86
packet, 28

HV3, 58, 81, 380, 391, 395
links, 86
packet, 28
SCO links, 81

HyperLAN2, 2
HyperText Markup Language

(HTML), 168
HyperText Transfer Protocol (HTTP),

168, 202

I
I2C bus, 280
I2c (routine), 293
IAC. See Inquiry Access Code
iBlend, 334
IBM, 2, 212
ID calculation, 21
ID packets, 20, 24, 446
Idle operation, 257–258
IEEE 802.11b, 2, 8, 29, 31
IEEE MAC Bluetooth address, 22
IETF. See Internet Engineering

Task Force
IMC. See Internet Mail Consortium
IMT. See International Mobile

Telecommunications
Inactive state, 60
In-between inquiries, 80
Incoming connect request. See

Authentication;Authorization;
Encryption

Incoming connection, 144

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 506

Index 507

Information
access, 424
base. See Personal information base
restricted access, 424
sending/receiving, 438–454

Infrared Data Association (IrDA), 73,
428, 434. See also Personal digital
assistant

Infrared (IR)
devices, 73
exchange, 335
implementation, 365
interface, 318
IR-based services, 365
stack. See Palm OS

Infrastructure, availability, 170
Input/Output (I/O). See Audio I/O

basics, 250
code. See TTY
expander, 14
framework, 196
queues, 267

inq_time field, 240
Inquiring, 77–80

device, 20
Inquiry, 20, 62, 302–304

complete, 78
message, 23
mode, 403

entering, 80
operations, 82
response, usage, 21
Scan, 81–82, 87

entering, 80
mode, 91, 403

scan modes, 20
scanning, 76–80
stage, 22

times, 23. See also Average inquiry
time; Maximum inquiry time;
Minimum inquiry time

Inquiry Access Code (IAC), 77. See also
General IAC; Limited IAC

Inquiry_Length, 77
inquiry_results, 239
Integers. See Signed twos-complement

integer; Unsigned integer
Intellectual property (IP), 17
Intentional emitters, 35
Intercom, 90

profile, 156
Interference. See Technologies

allowance, 7–8
function, impact, 11
investigation, 29–36

International Mobile
Telecommunications (IMT), 380

International Organization for
Standardization (ISO), 173

International Telecommunications
Union—Telecommunication
Standardization Sector (ITU-T)

G.711, 384
Q.931 standard, 73

Internet
access, 88
gateways, 42

Internet Assigned Numbers Authority
(IANA), 434

Internet Engineering Task Force (IETF),
196, 198, 434

Internet Mail Consortium (IMC), 434
Internet Protocol (IP)

IP-based audio/video applications, 25
IP-based networks, 198
network address, 175

Interoperability, 170

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 507

508 Index

bugs, 48
level, 89

InterProcess Communication (IPC), 257
Interrupts, usage, 268–270
Invisibility, 154
I/O. See Input/Output
ioctls, 222, 225–226

calls, 224, 252
failure, 243
system calls, 219
usage, 236–242. See also Devices

IP. See Intellectual property; Internet
Protocol

IPC. See InterProcess Communication
IrDA. See Infrared Data Association
IRQ latency, 237
ISM band, 21, 29, 427, 433

center, 30
ISM radios, 423
ISO. See International Organization for

Standardization
IT department, 154–155
ITU-T. See International

Telecommunications Union—
Telecommunication
Standardization Sector

J
J2ME. See Java 2 Platform Micro

Edition
Java, 195–196, 276

Bluetooth APIs, 196
bytecodes, 196
interface, 195
Swing functions, 278

Java 2 Platform Micro Edition (J2ME),
195–196

Java Community Process (JCP), 195

Java Specification Request (JSR), 195
Java2 runtime, 273
JComponent, 276
JCP. See Java Community Process
Jini, 196, 200–201

SDP, 203
join (protocol), 200
JPEG files, 61
JSR. See Java Specification Request

K
Kernels. See Linux 2.2.28 kernel

driver
learning, 218–221
stack, construction. See Linux kernel

mode, 218
module, investigation, 218–219
versions, 216. See also OpenBT

Kinit, 129, 131
Kmaster, 131

link key, 135
Known devices

connection, 19
list, 22

KVM, 196

L
L2CAP. See Logical Link Control and

Adaptation Protocol
L2CAPConnection, 196
LAN. See Local Area Network
LAP. See Local Area Network Access

Point; Lower Address Part
Laptops, 73, 168. See also Bluetooth-

enabled laptop
PDA connection, 12–14

Latency, 27. See also IRQ latency

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 508

Index 509

data, 27
function impact, 11

LCDs, 422. See also Low-resolution
color LCD

LDAP. See Lightweight Directory Access
Protocol

ldisc. See Line discipline
LEDs, 272, 282, 410
length parameter, 311
LIAC. See Limited IAC
Libraries, 290. See also Applications;

CSR library; Panic library; Print
library; Sequence Library; Standard
library;Timer

calls. See Common library calls
usage. See BlueLab

Lightweight Directory Access Protocol
(LDAP), 169

Limited bandwith, usage, 9
Limited Discoverable mode, 444
Limited IAC (LIAC), 79

usage, 81
Line discipline (ldisc), 218–220

installation. See Radio Frequency
Communications

relationship. See TTY
line parameter, 248
Linear predicative coding (LPC), 384
Line-of-sight constraints, 11
Linguistic rules, pre-defined set, 2
Link keys, 130, 153. See also Kmaster;

Permanent link key; Secret link
key; Semi-permanent link key;
Stored link key;Temporary link key

association, 148
information, removal, 150
passing, 157
providing, 143
storage, 143, 150

supporting authentication, 135
usage, 131

Link loss, 255–256
Link Management

layer, 399
messages, 268

Link Manager (LM), 40
level, 137
resonse, 135
usage, 134, 143

Link Manager Protocol (LMP), 35,
392, 393

link_type parameter, 311
Linux

project. See Embedded Linux project
Linux 2.2.28 kernel, 233
Linux Bluetooth

development
introduction, 212

driver, understanding, 217–226
FAQs, 262–263
protocol stacks, assessment, 212–217
solutions, 260–262

Linux kernel, 212
driver stack construction, 220–221

listenInfo argument, 346
LMP. See Link Manager Protocol
Local Area Network Access Point

(LAP), 6, 88, 126, 154
usage, 159, 212, 266

Local Area Network (LAN), 9
access, 84, 140–141, 158–159

profile, 73, 160, 216, 320–321
connecting, 10
point, 12
technologies, 2
usage, 4

Local database

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 509

510 Index

querying, 247
service addition, 246–247

Local Device (LocDev), 192
Local options, 229
localMtu field, 351
Location protocol. See Service
LocDev. See Local Device
Log (button), 283
Log PCM A-law, 28
Log PCM µ-Law, 28
Logical Link Control and Adaptation

Protocol (L2CAP), 40, 70–72,
89, 175

channel, 91, 116
communication, 347
connection, 93–95. See also Radio

Frequency Communications
creation, 346–359

device files, 225
drivers, 212
layers, 132, 138
link, 406
listeners, 348

connection information retrieval,
361–364

socket, basic service record
(advertising), 360–361

reliability, 72
RFCOMM, contrast, 347–348
support, 142
upper layer stack components, 55
usage, 82, 246

Lookup service, 200, 202
Low power modes, 117

need. See Devices
usage, 37–39

Lower Address Part (LAP), 77
Lower layers, 74–75

Low-resolution color LCD, 425
LPC. See Linear predicative coding

M
Machines, scheduling. SeeVirtual

machine scheduling
main() routine, 227
Major Device Class, 181
MAKE_MSG macro, usage, 295–296
Management

calls, 338
entities, 74

management events, 338
Man-machine interface (MMI), 14–15,

37, 128, 150
support, 157
usage, 133

Manufacturing. See Printed circuit board
Market information, 18
Mask parameter, 269
Masked ROM, 42
Master device, 7
Masters, 4, 80, 85–86, 369

guarantee, 38
slaves, distinction, 88
transmission, 88

Matsushita, 195
maxFrameSize field, 351
Maximum inquiry time, 23–24
Maximum Receivable Unit (MRU),

352–353
MaxServiceRecordCount field, 244
Mean Opinion Score (MOS)

rating, 389
testing, 384, 388

Medical requirements, 432
MemPtrSetOwner(), 368

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 510

Index 511

Message (routine), 293
MessageCreate function, 294
MessageGetType, 295
MessageQueues, 293–294
Messages

creation, 294–295
destruction, 294–295
packing format, 287–288
queues, 293–294
receiving, multiple sources, 297
type numbers, 297
usage, 293–296, 312

Messaging, understanding, 268
Mezoe, 280
Microwave ovens, 29
Minimum inquiry time, 23
Minimum paging time, 24
Minor Device Class, 181
minRemoteMtu field, 351
MIPS, 214
µ-law compression, 382
µ-law definition, 384
MMI. See Man-machine interface
Mobile phone, 3, 59
Mode 1, 137

role, 138
security, 145

Mode 2, 137, 152, 156
configuration, service database, 150
operation, 148–150
role, 138–141
security, 143, 158

Mode 3, 137
operation, 150–153
role, 141–142
security, enforcement, 143

Mode Unknown, 142–143
Modes, investigation. See Bluetooth

MOS. See Mean Opinion Score
Motherboard, 44. See also Personal

computer
Motorola, 195
MP3

compression, 29
encoding, 394
files, storage, 6
music, 393
player, 380

MP3-coded music, 394
MP-MLQ. See Multipulse multilevel

quantization
MRU. See Maximum Receivable Unit
msgSetType, 295
Multicast UDP, 202
Multifunctional device, 63
Multilayer PCB, 50
Multiplayer board, 46
Multiplayer handsets, 17
Multiplexing. See Radio Frequency

Communications
Multipulse multilevel quantization

(MP-MLQ), 384
Multi-tasking, 267

N
National Star College, 17
Navigation system, 6
nbr_of_units field, 239, 241
N_BT constant, 236
Neighboring devices, discovery, 77–82,

238–241
NetLib. See Network Library
Network Library (NetLib), 321

usage. See Bluetooth
Networking. See Devices; Dial-up

networking

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 511

512 Index

Networks. See Dial-up network; Internet
Protocol; Power-managed sensor
networks; Zero configuration
networks

address. See Internet Protocol
automatic adaptation, 170
failures, 430
services, spontaneous

discovery/configuration, 170
unreliability, 170

Nil, 173
No security, configuration, 145
Nodes, 170. See also Bluetooth
Nodetach options, 229
Noise layout, 50
Nokia, 195
Non-addressed serial ports, 325
Non-application profiles. See Service

discovery
Non-connectable device, 154, 346
Non-connectable mode, 444
Non-discoverable device, 154, 159, 346
Non-discoverable mode, 444
Non-user event, 364
Non-UUID type attributes, 187
Non-x86 binaries, 214
Normal state, 223
N_TTY ldisc, 220, 234
NULL

receiving, 322
setup, 337

Null
image, 281
type, 173

Number_Of_Responses, 77
Num_Responses, 79

O
OBEX. See Object Exchange
Object Exchange (OBEX), 73, 159–161,

322, 431
authentication, 450
connection, 450
functions, 139
layer, 434–437

access, 159
operation, 452
profile, usage. See Generic object

exchange profile
service, 365, 449
Transfer, 444

Object files, 288
Object push, 318

profile, 320, 440
usage, 450

Object-oriented usage, 177
Off-the-shelf components, 421
On-air data packets, 437
On-chip application, 281
On-chip scheduler, 282
One-to-many connections, 344
Open Source development applications,

usage, 226–233
Open state, 223
Open system calls, 219
Open Systems Interconnect (OSI), 2

model, 347
Open terminal window, 229
OpenBT, 241

applications, investigation, 226–228
Bluetooth driver

installation, 228

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 512

Index 513

version 0.0.2, 233
comparison. See BlueDrekar
considerations, 216–217
developers, 227
hardware platforms, 214
kernel versions, 214
license terms, 215–216
project, 212, 213
stack, 224

progress, 217
OpenPortAsClient(), 332
OpenPortAsServer(), 334
OSI. See Open Systems Interconnect
Outgoing connect request. See

Authentication;Authorization;
Encryption

Outgoing connection, 144
Output power, 10
Over-air transmissions, 70
Overhead cables, 29

P
PA. See Power amplifier
Packet. See HV1; HV2; HV3

collision, 34
corruption, 27
hand-tooling, 215
header, 25

Packet switched data networks
(PSDNs), 2

Packet-based data-link layer, 348
Packet-based transport layer, 175
Packet_Type, 83
Packing format. See Messages
Page

acceptance, 84
Scan mode, 116

scanning, 76, 82–86, 345
scans, 86–88

Page_Scan parameters, 80
Page_Scan_Mode, 79, 84
Page_Scan_Period_Mode, 79
Page_Scan_Repetition_Mode, 79, 84
Paging, 76, 82–86

device, 84
state, 60
times, 24. See also Minimum

paging time
Pairing, 129–130, 304–306

functionality, 115
process, 142
request, 312
usage, 36

Palm OS
applications

creation. See Bluetooth-aware Palm
OS applications

update,VDRV (usage), 324–334
Bluetooth

security, usage, 364
support, future, 369

developers, 338
devices, 327
IR stack, 365
licensees, 318
persistent Bluetooth services, writing,

364–369
profiles, understanding, 320–324

Palm OS, usage
FAQs, 376–377
introduction, 318
requirements, 318–320
solutions, 372–376

Palm-size PCs, 55
Palm-to-Palm application, 334

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 513

514 Index

PAN. See Personal area network
Panic button, 8, 19
Panic library, 290
Parallel Input-Output (PIO), 274

interrupt, 269
lines, 272, 282, 291
pins, 276, 280, 292
ports, 276

Parameter negotiation, 60
Park mode, 38–39, 113–114, 339
Parked slave, 211
Park-mode-address, 38
Passive periods. See Active/passive

periods
Password. See Pre-determined password

entry, 438. See also User-initiated
password entry

Payload data, 26
PCB. See Printed circuit board
PCM. See Pulse Code Modulation
PCMCIA

cards, 42, 45
PC-card interface, 427

PDA. See Personal digital assistant
pduLength, 243
pduPayload field, 243
PDUs. See Protocol Data Units
Peacock, Gavin, 335
Peer-to-peer connection, 138

establishment, 139, 140, 143
Peer-to-peer protocol

connection, 150
establishment mechanics, 126

Period parameter, 269
Periodic inquiry mode, 404
Permanent link key, 149
Permanent Trust, 133
Permissions. See Root permissions

Persistent Bluetooth services, writing.
See Palm OS

Persistent Store Tool (PSTool)
usage, 275
utility, low-level access, 272

Personal area network (PAN), 3,
5, 7, 203

paradigm, 32
static devices, 12
usage, 33

Personal computer (PC)
applications, 411
card, 423

communication, starting, 236–237
connection, 39
games, 17
motherboards, 42, 45
parallel port, 272

Personal digital assistant (PDA), 3, 59,
168, 429. See also Bluetooth-
enabled PDAs

change, 16
connection, 85. See also Laptops
devices, 22
exclusivity, 159
IrDA, usage, 11
radio mouse usage. See Presentations
software, 60
synchronization, 14
usage, 6. See also Business cards; Files;

World Wide Web
Personal Identification Number (PIN),

37, 128. See also Default PIN;
Fixed PIN; Zero length PIN

code, 57, 305
entering/entry, 137, 150, 152, 431

request, 135
information, 135
key, 131, 306

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 514

Index 515

obtaining, 143
passing, 152
programming, 161
request, 149, 150

response, 150
requirement, 130, 153

Personal information base (PIB), 420
case study

FAQs, 459–460
introduction, 420–422
solutions, 458–459

cost consideration, 428
devices, 434

initialization, 442–444
requirement, 422–427
wireless technology, choice, 427–428

implementation, protocols usage,
432–454

initialization, 437–438
option extra features, implementation,

425–427
performance, management, 456
safety/security concerns, exploration,

429–432
system, 448, 457

Phase locked loop (PLL) comparator, 49
PIB. See Personal information base
Piconets, 4, 35, 76, 85, 107, 343

coexistence, 32–34
PIN. See Personal Identification Number
PIO. See Parallel Input-Output
Pio (routine), 291
PIODriver, 277
PIOPanel class, 277
PIOPlugin interface, 276, 277
Pirate IDs, 247
pkt_type parameter, 311
PLL. See Phase locked loop

Plug-ins, usage, 276–280
PM_ADDR, 38, 39
Pointers, 287
Point-to-multipoint communications,

135
Point-to-point encryption, 134
Point-to-Point Protocol (PPP), 73, 235,

256, 321
connection, 226

manual establishment. See Devices
establishing, btd application (usage),

228–231
usage, 228, 231

Power. See Standby power
considerations, 9–10
consumption, 58, 81–82. See also

Codec
decrease, 106

control, usage, 34–35
modes, 107–109

investigation. See Bluetooth
usage. See Low power modes

saving, 409
event-driven code, usage, 313
features, choice, 56
modes, usage, 60. See also Batteries
usage, 409

sleep mode, 457
supply requirements, compatibility, 11

Power amplifier (PA), 46
Power management

FAQs, 122–123
hold mode, usage, 108–109
introduction, 104
necessity, 104–106
solutions, 121–122
usage, 104–106. See Headsets

Power-controlled link, 34

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 515

516 Index

Power-managed application, 105. See also
Asymmetrically power-managed
application

Power-managed sensor networks,
112–113

PowerPCs, 214
PowerPoint presentation, control, 62
PPP. See Point-to-Point Protocol
Pre-determined password, 154
Preprogramming, usage, 21
Prequalified complete Bluetooth

module, usage, 51–54
Presentations

control. See PowerPoint presentation
PDA, radio mouse usage, 60

Primitive. See Terminate primitive
usage, 278, 287

Print library, 290
Printed circuit board (PCB), 43, 412. See

also Multilayer PCB
batches, 46
Bluetooth design, 45–51
manufacturing, 50–51
pads, 48, 51
real estate, 44, 45, 51

PrinterClass, 172
printer:lpr, 199
Products

design considerations, 11–18
performance, investigation, 18–36
recognition. See Bluetooth
usability, addition, 6–7

Profiles, 43. See also Headset profile;
Local area network; Serial port
profile; Service discovery

document, 401
familiarity. See Bluetooth
implementation. See Security
selection. See Audio profile

support, 89
usage. See Bluetooth

Propagation conditions, 10
Protocol, 214. See also Service discovery

connection
establishment mechanics. See Peer-

to-peer protocol connection
establishment mechanics

procedure, 89
ID, 151
layers, 9
procedures. See Generic access

protocol procedures
stack, 40, 43, 147, 214

assessment. See Linux Bluetooth
component function, 381
layers, 280
review, 70–75

stack component function, 126
usage, 89, 148–153. See also Personal

information base
Protocol Data Units (PDUs),

175–176, 192
Protocol Service Multiplexor (PSM),

95, 139, 151, 242. See also
Reserved PSM

usage, 148, 182, 406
value, 72, 139, 350, 407

ProtocolDescriptorList, 173, 248
Proximity sensors, 17
Ps (routine), 291
PSDNs. See Packet switched data

networks
PSKEY_HOSTIO_UART-

RESET_TIMEOUT, 292
PSKEY_PIO_PROTECT_MASK, 292
PSM. See Protocol Service Multiplexor
PSTN. See Public service telephone

network

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 516

Index 517

PSTool. See Persistent Store Tool
Public service telephone network

(PSTN), 142, 388, 401
PublicBrowseRoot, 189
Pulse Code Modulation (PCM),

382–395
interface, 53

Push profile, usage. See Object push

Q
Q.931 standard. See International

Telecommunications Union—
Telecommunication
Standardization Sector

QA. See Quality Assurance
QoS. See Quality of Service
Quake, 14
Quality Assurance (QA), 47
Quality of Service (QoS)

guarantees, 25
usage. See Connection

Queues. See Input/Output; Messages;
Tasks

understanding, 268
Quit (button), 284

R
Race conditions, avoidance. See

Baud rates
Radio Baseband, 70
Radio Frequency Communications

(RFCOMM), 72–73, 89. See also
User-space RFCOMM

basic service record, advertising,
360–361

channel, 250
communication, 347
connection, 55, 58, 116, 151

creation, 346–359
establishing, 248
manual establishment. See Devices
setup, 108
usage, 223, 287, 327

contrast. See Logical Link Control and
Adaptation Protocol

devices, 221
interface, 158
L2CAP connection, 95
layers, 40, 132, 138, 143, 225, 241
link, 57, 95
listeners, 348–349

connection information retrieval,
361–364

socket, 350
module, 144
multiplexing, 223–225
port, 73, 145
protocol, 169
registration, support, 241
RFCOMM-based application, 266
server, 245

channels, 217
sessions, 73
TTY, 251

drivers, usage, 222–225
line discipline, installation, 225

usage, 231, 246
Radio Frequency (RF). See External RF

characteristics, 49
connection, 142
hardware, 44
layout. See Technology-induced RF

layout
noise pickup, avoidance, 46
RF-oriented emulation, 72
striplines, 45

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 517

518 Index

Radio regulations, 432
Radio restrictions, 422
Radio sets. See Short-range two-way

radio sets
Range

adequacy, 11
choice, 10
considerations, 9–10

R&D resource, 43
Read system calls, 219
Real hardware connections, simulated

hardware connections
(comparison), 218

Real Time Operating System
(RTOS), 268

Real-time duplex voice
communications, 393

Receive Signal Strength Indicator
(RSSI), 34–35

Red Hat 6.2, 233
Red-M Bluetooth, 17
RemDev. See Remote Device
Remote Device (RemDev), 193

enumeration, 193
usage, 361–364

Remote Method Invocation (RMI), 201
Remote Procedure Call (RPC),

173, 201
Remote SDP server, connection,

241–242
remoteDevAddr parameter, 328
remotePsm, 351
remoteService, 351
Repetition Mode R0, 87
requestResponse

buffer, 245
field, 244

Reserved PSM, 91
Response times, 211, 409

responseLength field, 244, 245
Retransmission, 27
RF. See Radio Frequency
RFCOMM. See Radio Frequency

Communications
RFCOMMConnection, 196
rfcomm.h header, 248
RfCommVdrv.h, 326
RfVdOpenParams structure, 326
RfVdOpenParamsServer, 327
rfVdUseUuidList, 329
RMI. See Remote Method Invocation
Rococo Software, 196
Role switches, 85–86
Root permissions, 229
Round-robin scheduler, 267
RPC. See Remote Procedure Call
RS232, 74, 272, 447

connection, 233
usage, 228

RSSI. See Receive Signal Strength
Indicator

RTOS. See Real Time Operating
System

S
SA. See Service Agent
SAFER+ encryption engine, 36–37
Safety concerns, exploration. See

Personal information base
Safety-critical applications, 8, 211
Salutation, 197–198
Salutation Managers (SLMs), 197
SAW filters, 45
Scan modes. See Inquiry
Scan window, 86
Scanning. See Inquiry

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 518

Index 519

Scatternets, 5, 85–86, 343. See
Asynchronous Connectionless

Scheduler (routine), 267, 293. See also
Round-robin scheduler

Schedulers, 289. See also On-chip
scheduler

understanding, 267–268
Scheduling. SeeVirtual machine

scheduling
SCO. See Synchronous Connection

Oriented
SDAP. See Service Discovery Application

Protocol
SDDB. See Service Discovery Database
SDK. See Software Development Kit
SDP. See Service Discovery Protocol
sdpCommand field, 243
SDP_ErrorResponse, 176
sdp.h header, 242
SDPparse, 291
SdpParse (routine), 293
sdp_server application, understanding,

227–228
SDP_ServiceAttribute, 176
SDP_ServiceSearch, 176
SDP_ServiceSearchAttribute, 176
Search engine technology, 168
Search pattern, 176
Search services, 193
SEC_AuthorizationRequest, 152–153
SEC_PinRequest, 152
SEC_registerApplication, 151
SEC_registerMultiplexingProtocol, 151
Secret link key, 127
Security. See Application-level security;

Mode 1; Mode 2
architecture, understanding, 135–148
barrier, 137, 156
calls, 338

concerns, exploration. See Personal
information base

configuring, 135. See also No security
databases, role, 143–146
enabling, 36–37
enforcement. See Mode 3
increase

case study, 161
routes, 153–161

interfaces, usage, 148–153
invoking, 137
level, 151
profiles, implementation, 155–160
providing, 431–432
setup, 150
timeouts, 132
toolbox, outfitting, 127–135
trigger points, 143
troika, 127
white paper. See Bluetooth

Security management
FAQs, 164–166
introduction, 126
solutions, 162–164
timing, decision, 126–127

Security Manager, 150
API, 151
authorization determination, 145
configuration, 143
options, 139
role, 135–138
usage, 148–150, 152–153

Select system calls, 219
Semi-permanent key, 130
Semi-permanent link key, 129–131
Semi-permanent storage, 129
Semi-permanent Trust, 150
sendMsg function, 295

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 519

520 Index

Sensor networks. See Power-managed
sensor networks

Sequence library, 293
Sequence (routine), 293
serErrLineErr, 332
Serial driver, preparation, 234–235
Serial interface, 271
Serial Manager, 334
Serial port

profile, 156–157, 194, 320–321
usage, 449

settings, 238
Serial TTY, 219, 236
SerialMgr.h, 326
Server, 429

applications, 217
channels. See Radio Frequency

Communications
daemon, 364

server_channel parameter, 248
Server-only application, creation. See

VDRV
Service. See Browse services; Search

services
addition. See Local database
advertising, 181–186
attributes, 172

usage, 187–189
bootstrapping process, 181
browsing, 189–192, 323

tree, construction, 89
calls, 338
choice, SDP usage, 322–324
class, 172, 359–360
connection, 91–97, 247–249, 407–409
creation, 181–186, 369
database, 136–137, 151. See also Host

Controller; Mode 2

content, 143–144
operations, 144–146

dynamic registration. See Service
Discovery Protocol database

name, 152
object, 201
offering, 89
record, 172

advertising. See Logical Link Control
and Adaptation Protocol; Radio
Frequency Communications

handle, 172
structure, 172–175

searching, 323
stages, 91–97
usage, 91–97

choice, 19
writing. See Palm OS

Service Agent (SA), 198
Service discovery, 128, 180–192

architecture, 172–180
FAQs, 209
introduction, 168–172
non-application profiles, 193–194
performing, 19, 24, 434
process, short-circuiting, 181
protocols, 170–172
solutions, 205–208
usage, 241–247, 405–406

Service Discovery Application Protocol
(SDAP), 172, 192–194, 322–323

usage, 449
Service Discovery Application

(SrvDscApp), 192–193
Service Discovery Database (SDDB),

181, 194
Service Discovery Protocol (SDP),

70, 155, 175–180. See also
Bluetooth; Jini

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 520

Index 521

abstract C API, development, 176–180
applications, 212
calls, 338
database, 215, 247, 368
device files, 225
facility, 141
functions, 139
future, 203
information, 24
layer, 40–41, 93
line number, selection, 243
programming language, interaction,

195–196
queries, 362
registration, interface. See Dynamic

SDP registration
requests, 217

assembling, 241
packets, 215
sending, 242–244

requirements, 364
responses

parsing, 217, 241
processing, 244–246

server, 89, 94, 180
connection. See Remote SDP server
providing, 226

sockets, 361
support, 214–215
usage, 24, 72–74, 405. See also Service
variations, 196–203

Service Discovery Protocol (SDP)
database

browsing, 226
service

dynamic registration, 241
static addition, 241

Service Location Protocol (SLP), 196,
198–200

Service-based filtering, 323
ServiceClass

Generic Audio, 186
Headset, 186

ServiceClassIDList, 173, 174, 194
ServiceName attribute, 182
service:printer:lpr, 199
ServiceRecordHandle, 173
Service-related protocol, 148
ServiceSearchRequest command, 243
Service-specific channel ID, 140
service:URL, 199
Set Top Box, 15
setEnabled, 277
Sharp, 195
Short Message Service (SMS), 15, 336
Short-range two-way radio sets, 29
showLastList, 343
Shutdown. See Automated shutdown;

User-initiated shutdown
Siemens, 195
SIG. See Special Interest Group
Signed twos-complement integer, 173
SIGUSR1, 257
Silicon solution, 48
Simple Service Discovery Protocol

(SSDP), 202
Simulated hardware connections,

comparison. See Real hardware
connections

Single-channel serial ports, 325
Size-conscious products, 52
SizeServiceRecord, 299
Slaves, 4, 76, 85–86, 369. See also

Parked slave
distinction. See Masters
response, 23

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 521

522 Index

responsibility, 80
unparking, 39

Sleep modes. SeeVendor-specific deep
sleep modes

SLMs. See Salutation Managers
SLP. See Service Location Protocol
SMS. See Short Message Service
Sniff mode, 38, 110–112, 339

usage, 111–112
Socket calls, 338
socket events, 338
Software. See Applications

architecture, decision. See System
configuration, 4, 19
considerations, 56
interrupts, 270

Software Development Kit (SDK), 319
Solder resist window, 51
Sony/Tektronix WCA380 spectrum

analyzer, 30
Source code, 353
Spark generators, 29
SPEC, 181–182, 189
Special Interest Group (SIG), 17, 44, 72,

86, 434
promoter, 212
SIG-defined attributes, 89
usage, 181, 189, 192

Specialist monitors/interfaces, 427
SPI

cable, connection, 272
interface, 271, 272

Spontaneous discovery. See Networks
SrmClose(), 332
SrmExtOpen(), 325, 326, 328
SrmSend(), 332
SrvDscApp. See Service Discovery

Application

SSDP. See Simple Service Discovery
Protocol

Stacks
applications, writing, 226
component function. See Protocols
configuration. See Hosted stack

configuration
construction. See Linux kernel
implementation, 45
initialization, 234–238
layers. See Host Controller Interface
manager, basic scenarios, 255–258
startup, 255
timers, 132
waiting time, 132

Standard library, 290
Standby power, 55
Startup. See Stacks
Static devices. See Personal area network
Static wired environments, 70
Status parameter, 80
status parameter, 306, 312
Stored link key, 134
Sub-type number, 287
Sun Microsystems, 196, 199
Synchronization, 447. See also

Unconscious synchronization
synchronous calls, 338
Synchronous communications

medium, 108
Synchronous Connection Oriented

(SCO), 7
channels, 28, 390
connection, 81, 116, 214

power, 55
link, 9, 13, 28, 96. See also HV3

usage, 31, 58, 86, 106–114
traffic, 86

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 522

Index 523

Synchronous design, 56
sysAppLaunchCmdNormalLaunch, 366
SYSCALL macro, 232
System

architecture, 40
ID, 368
lockups, 217
performance, 56
programming. See Embedded systems

programming
software architecture, decision, 40–43
use cases, identification, 455
user, identification, 454

T
target parameter, 307
Tasks

queues, 293–294
understanding, 267–268
usage, 293–296

TCP. See Telephony Control Protocol
TCP/IP. See Transmission Control

Protocol/Internet Protocol
TCS. See Telephony Control

Specification
TCS-BIN. See Telephony Control

Protocol Specification Binary
Technologies

interference, 31–32
qualification, obtaining. See Bluetooth

Technology-induced RF layout, 52
Telecom, 156
Telephony. See Cordless telephony
Telephony Control Protocol

Specification Binary (TCS-BIN),
72–74

Cordless, 72

Telephony Control Protocol (TCP)
commands, 398–400

Telephony Control Specification (TCS),
139, 140

TCS-based profiles, 402
Telephony Manager, 324
Telnet, 226, 230
Temporary link key, 149
Terminal window. See Open terminal

window
Terminate primitive, 193
Termios setting, 235
Text string, 173
Third generation (3G), 380
Thunderstorms, 29
Time slots, beacon interval number, 211
timeout parameter, 304
Timer. See Stacks

expiration, 150
library, 293
understanding, 267–268

Timer (routine), 292
timerAdd, 292
Time-to-market, 40

cost, 43
pressures, 148

Timing, 80–81, 86–87
TIOCSETD, 236
TMs. See Transport Managers
Token Ring, 2
Toll quality, 388
Tools

set, installation, 273
utility, low-level access. See PSTool

utility, low-level access
Transmission Control Protocol/Internet

Protocol (TCP/IP), 168, 171, 198
data, 73

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 523

524 Index

layer, 73
requirement, 202
stack, 347

Transport layer. See Packet-based
transport layer

Transport Managers (TMs), 197
Trust, 153. See also Semi-permanent

Trust
attribute, usage, 133
change, 150
parameter, 300

Trusted attribute, 133, 147
Trusted device, 145
Trusted relationship, 152

setup, 137
TTY. See Data; Hung-up TTY; Serial

TTY
availability, 249
command line, 229
data, passing, 234
devices, 250
drivers, 219, 221, 235, 249

usage. See Radio Frequency
Communications

explanation, 219
interface, 234, 252
I/O code, 220
ldisc. See N_TTY ldisc

relationship, 220
terminal driver, 218
usage, 233, 251

Two-way audio communications, 115

U
UA. See User Agent
UART. See Universal Asynchronous

Receive Transmit
UART: baud rate, editing, 275

UDP/IP multicast functionality, 198
UI. See User interface
UINT. See Unsigned integer
uint8 data, 287
Unconnected devices, 80

talking reasons, 75–77
Unconscious synchronization, 61
Unicast UDP, 202
Uniform Resource Locator (URL), 61,

173, 337
Unit keys, 131, 135
Universal Asynchronous Receive

Transmit (UART), 48, 62, 74, 396
configuration bitfields, 272, 273
connection, 61
hardware, 235
interface, 272
link, 272, 273
overruns, detection, 237
protocol, 41
speed, 62
transport, 41

Universal Plug and Play (UPnP), 196,
202–203

Universal Serial Bus (USB), 74, 214, 313
dongles, 42
interfaces, 48
port, 271
transport, 41

Universal Time, 430
Universally Unique Identifier (UUID),

89, 173–174, 359
generation tool, 360
type, 186, 187
usage, 307, 328–330
values, 359

Unix socket, 228
Unparking, 39

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 524

Index 525

Unsigned integer (UINT), 173, 299
Untrusted attribute, 147
Untrusted relationship, 137
update (function), 277
Updater interface, 277
UPnP. See Universal Plug and Play
Upper layer stacks, 62

components. See Logical Link Control
and Adaptation Protocol

Upper stack layers. See Host Controller
Interface

URL. See Uniform Resource Locator
Usability, addition, 11. See also Products
USB. See Universal Serial Bus
User Agent (UA), 198
User Datagram Protocol (UDP). See

Multicast UDP; Unicast UDP
User ID, 154
User input, usage, 21
User interactions, understanding,

437–438
User interface (UI), 255, 366

design, 410–411
providing, 137
usage, 149

User mode, 218
User query. See Authorization
User view, consideration, 454–457
User-initiated password entry, 4
User-initiated shutdown, 257
User-space RFCOMM, 212
UUID. See Universally Unique

Identifier

V
V90 modems, 42
vCard

format, 73

transfer, 434, 437
VDRV. SeeVirtual serial driver
Vendor-specific deep sleep modes, 56
Verifier, 130
Video recorder, 7
Virtual Machine (VM), 266–267, 281

code, 282
Data, button, 283–284
Event Parallel Input Output Interrupt,

269
packets, usage, 284–287
scheduling, 282
VM Spy, usage. See Debugging

Virtual Serial Driver (VDRV)
client-only application, creation,

329–334
server-only application, creation,

332–334
usage. See Palm OS

Vm (routine), 291
VM_EVENT_PIOINT, 269
VmWait, 292, 293
Voice communications, 19

delivery, 28–29
Voice links, configuration, 389–395
Voice Over IP (VoIP), 388
Voice, simultaneous transmission.

See Data
VoIP. SeeVoice Over IP

W
Walkie-talkies, 29
WAP. See Wireless Application Protocol
Waveform codec usage, reasons. See

Bluetooth
Wi-Fi

access point, 32
device, 31

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 525

526 Index

standard, 2
system, 31

Wired connection, wireless connection
(contrast), 3–11

Wire-free communications
capabilities, 427

Wireless Application Protocol
(WAP), 175

Wireless technology, choice. See Personal
information base

Wire-only protocol, 202
World Wide Web (WWW / Web), 109

browsers, 226
browsing, 61

PDA usage, 26
sessions, 60

page, 168
servers, 226

Write system calls, 219
Write_Link_Supervision_Timeout, 399
Write_Voice_Setting command, 407

X
x86 application developer, 213
x86 binaries, 214
x86 compilation, 216
XAP2 processor, 290
xap-local-xap-gcc, 273
Xerox, 2
XML. See eXtensible Markup Language

Y
Yahoo!, 168

Z
Zero configuration networks, 169
Zero length PIN, 158

160_bluetooth Index.qxt 12/6/01 9:24 AM Page 526

160_bluetooth_BM.qxd 12/6/01 9:12 AM Page 1

Train with Global Knowledge
The right content, the right method,

delivered anywhere in the world, to any

number of people from one to a

thousand. Blended Learning Solutions™

from Global Knowledge.

Train in these areas:
Network Fundamentals
Internetworking
A+ PC Technician
WAN Networking and Telephony
Management Skills
Web Development
XML and Java Programming
Network Security
UNIX, Linux, Solaris, Perl
Cisco
Enterasys
Entrust
Legato
Lotus
Microsoft
Nortel
Oracle

www.globalknowledge.com

160_bluetooth_BM.qxd 12/6/01 9:12 AM Page 2

Only Global Knowledge offers so much content
in so many formats—Classroom, Virtual Classroom,
and e-Learning. This flexibility means Global
Knowledge has the IT learning solution you need.

Being the leader in classroom IT training has paved
the way for our leadership in technology-based
education. From CD-ROMs to learning over the
Web to e-Learning live over the Internet, we have
transformed our traditional classroom-based
content into new and exciting forms of education.

Most training companies deliver only one
kind of learning experience, as if one
method fits everyone. Global Knowledge
delivers education that is an exact reflection
of you. No other technology education
provider integrates as many different
kinds of content and delivery.

www.globalknowledge.com

Every hour, every business day
all across the globe

Someone just like you
is being trained by

Global Knowledge.

160_bluetooth_BM.qxd 12/6/01 9:12 AM Page 3

Blended Learning Solutions
from Global Knowledge

The Power of Choice is Yours.
Get the IT Training you need—

how and when you need it.

Mix and match our Classroom, Virtual Classroom, and e-Learning
to create the exact blend of the IT training you need. You get
the same great content in every method we offer.

1-800-COURSES www.globalknowledge.com

Self-Paced
e-Learning

Self-paced training via CD or
over the Web, plus mentoring

and Virtual Labs.

Virtual Classroom
Learning

Live training with real
instructors delivered over the

Web.

Classroom
Learning

Train in the classroom with our
expert instructors.

™

160_bluetooth_BM.qxd 12/6/01 9:12 AM Page 4

9000 Regency Parkway, Suite 500
Cary, NC 27512
1-800-COURSES

www.globalknowledge.com

At Global Knowledge, we strive to support the multiplicity of learning styles required
by our students to achieve success as technical professionals.We do this because we
know our students need different training approaches to achieve success as technical
professionals.That’s why Global Knowledge has worked with Syngress Publishing in
reviewing and recommending this book as a valuable tool for successful mastery of this
subject.

As the world’s largest independent corporate IT training company, Global Knowledge is
uniquely positioned to recommend these books.The first hand expertise we have gained
over the past several years from providing instructor-led training to well over a million
students worldwide has been captured in book form to enhance your learning experi-
ence.We hope the quality of these books demonstrates our commitment to your life-
long learning success.Whether you choose to learn through the written word,
e-Learning, or instructor-led training, Global Knowledge is committed to providing you
the choice of when, where and how you want your IT knowledge and skills to be
delivered. For those of you who know Global Knowledge, or those of you who have
just found us for the first time, our goal is to be your lifelong partner and help you
achieve your professional goals.

Thank you for the opportunity to serve you.We look forward to serving your needs
again in the future.

Warmest regards,

Duncan M.Anderson
President and Chief Executive Officer, Global Knowledge

P.S. Please visit us at our Web site www.globalknowledge.com.

160_bluetooth_BM.qxd 12/6/01 9:12 AM Page 5

SYNGRESS SOLUTIONS…

soluti o n s @ s y n g r e s s . c o m

Webmaster’s Guide to the Wireless Internet
The mobile landscape is in a state of continual change. New devices are
introduced to the market almost weekly and wireless access options continue
to multiply. How is the aspiring wireless Webmaster to deal with developing
content for so many disparate devices? Most devices that access your site
wirelessly fall into three broad categories—mobile phones, PDAs, and
laptop computers. Each has its own unique advantages and disadvantages
and each is discussed fully in Webmaster’s Guide to the Wireless Internet.
ISBN: 1-928994-46-6

Price: $49.95 US, $77.95 CAN

AVAILABLE NOW
ORDER at
www.syngress.com

AVAILABLE JANUARY 2002
ORDER at
www.syngress.com

AVAILABLE NOW
ORDER at
www.syngress.com

Designing a Wireless Network
Wireless network design presents the IT professional with unique obsta-
cles. Your network requires the seamless and secure distribution of infor-
mation, in spite of competing communication protocols, incompatible
hardware platforms, and narrow bandwidths. This book is an introduc-
tion to developing efficient means of wireless transport in order to fully
leverage wireless technologies.
ISBN: 1-928994-45-8

Price: $49.95 US, $77.95 CAN

.NET Mobile Web Developer’s Guide

.NET Mobile Web Developer’s Guide provides readers with a solid guide
to developing mobile applications using Microsoft technologies. This
book focuses on using ASP.NET and the .NET mobile SDK. Includes
Wallet CD.
ISBN: 1-928994-56-3

Price: $49.95 US, $77.95 CAN

160_bluetooth_BM.qxd 12/6/01 9:12 AM Page 6

http://www.syngress.com/catalog/sg_main.cfm?pid=1590
http://www.syngress.com/catalog/sg_main.cfm?pid=1521
http://www.syngress.com/book_catalog/175_mobile_dev

	Cover
	Foreword
	Table of Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Appendix
	Glossary
	Index
	Related Titles

