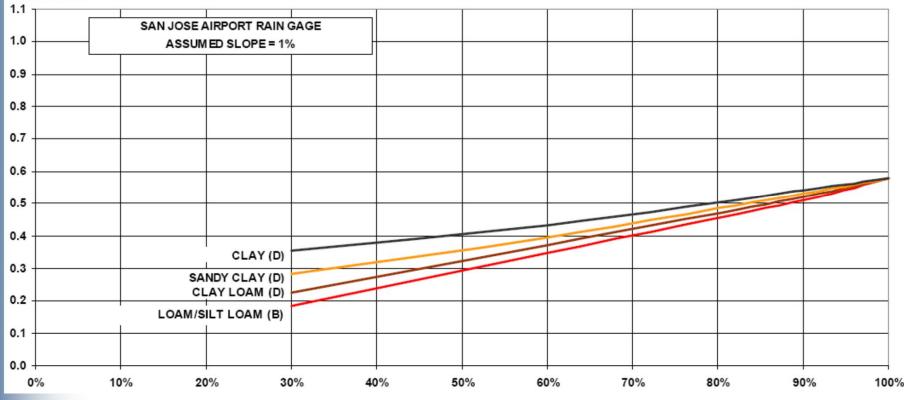
C.3 Workshop – Track 2: Sizing Calculations and Design Considerations for LID Treatment Measures

Jill Bicknell, P.E., EOA, Inc.

Santa Clara Valley Urban Runoff Pollution Prevention Program

Presentation Overview

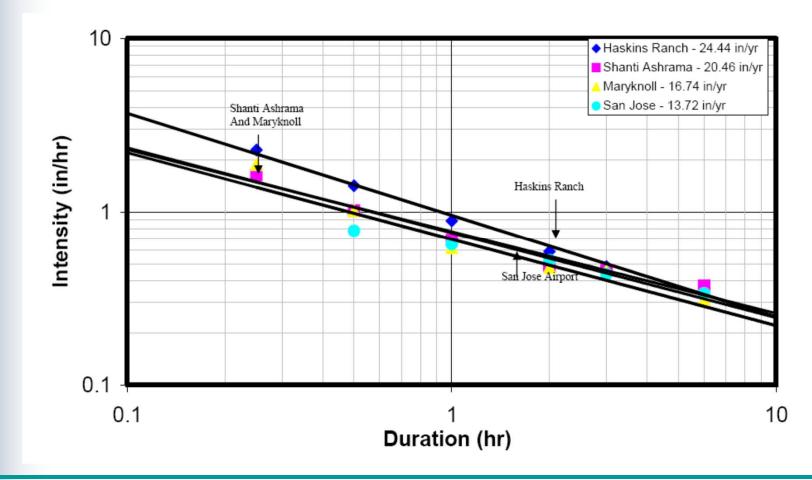
- Determining Water Quality Design Flow and Volume ("Q_{BMP}" and "V_{BMP}")
- Sizing Bioretention and Flow-Through Planters
- Sizing Pervious Paving and Infiltration Trenches
- Sizing Rainwater Harvesting Cisterns
- Sizing Non-LID Components


- Volume-based sizing criteria:
 - <u>URQM Method</u> use formula and volume capture coefficients in "Urban Runoff Quality Management", WEF/ASCE MOP No. 23 (1998), pages 175-178
 - <u>CASQA BMP Handbook Method</u> Determine volume equal to 80% of the annual runoff, using methodology in Appendix D of the CASQA BMP Handbook (2003) using local rainfall data
 - Sizing curves specific to Santa Clara Valley provided in Appendix B of C.3 Handbook

Unit Basin Storage Volume for 80% Capture (inches)

San Jose Rain Gage, 1% Slope

Percent Imperviousness


Flow-based sizing criteria:

- <u>Factored Flood Flow</u> 10% of the 50-year peak flow rate, determined using Intensity-Duration-Frequency curves published by the local flood control agency
- <u>Percentile Rainfall Intensity</u> Flow of runoff produced by a rain event equal to two times the 85th percentile hourly rainfall intensity
 - Data for Santa Clara Valley rain gages in Sizing Worksheets (Appendix B of C.3 Handbook)
- <u>Uniform Intensity</u> Flow of runoff resulting from a rain event equal to 0.2 inches per hour intensity

Intensity-Duration-Frequency Curve (50-Year Return Period)

85th Percentile Rainfall Intensity Data:

Reference Rain Gages	85 th Percentile Hourly Rainfall Intensity (in/hr)	Design Rainfall Intensity (in/hr)*
San Jose Airport	0.087	0.17
Palo Alto	0.096	0.19
Morgan Hill	0.12	0.24

*Design rainfall intensity = 2 X 85th percentile hourly rainfall intensity

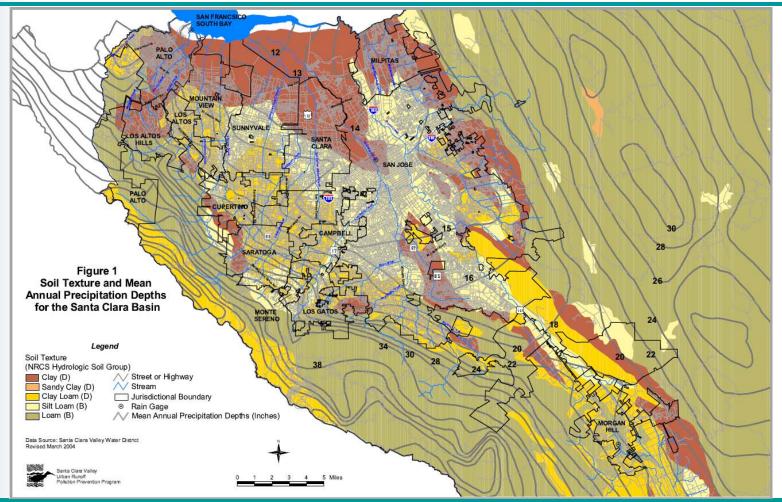
By comparison, Uniform Intensity = 0.2 in/hr

- Flow-based sizing criteria:
 - <u>Simplified Sizing Approach</u> Variation of Uniform Intensity Method (0.2 in/hr)
 - The surface area of a biotreatment measure is sized to be 4% of the contributing impervious area
 - Based on a runoff inflow of 0.2 in/hr (assume equal to the rainfall intensity), with an infiltration rate through the biotreatment soil of 5 in/hr $(0.2 \text{ in/hr} \div 5 \text{ in/hr} = 0.04)$
 - Conservative approach because does not account for surface ponding – good for planning purposes

- Combination Flow & Volume Design Basis:
 - Treatment systems can be sized to treat "at least 80% of total runoff over the life of the project"
 - Option 1: Use a continuous simulation hydrologic model (typically not done for treatment measures)
 - Option 2: Show how treatment measure sizing meets both flow and volume-based criteria
 - Used for bioretention and flow-through planters
 - Appropriate where drainage area is mostly impervious

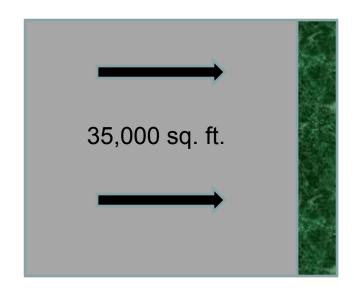
Flow- or Volume-Based Sizing for Treatment Measures?

Table 5-1 Flow and Volume Based Treatment Measure Sizing Criteria			
Type of Treatment Measure	LID?	Hydraulic Sizing Criteria	
Bioretention area	Yes	Flow- or volume-based or combination	
Flow-through planter box	Yes	Flow- or volume-based or combination	
Tree well filter	Yes	Flow-based	
Infiltration trench	Yes	Volume-based	
Subsurface infiltration system	Yes	Volume-based	
Rainwater harvesting and use	Yes	Volume-based	
Media filter	No	Flow-based	
Extended detention basin	No	Volume-based	


Sizing Criteria Worksheets

- Appendix B of SCVURPPP C.3 Handbook
 - Worksheets for determining water quality design flow and volume
 - Figure B-1: Soil Texture and Mean Annual Precipitation (MAP) Depths
 - Figures B-2 B-7: Unit Basin Storage Volume for 80% Capture (3 gages, 1% and 15% slopes)
 - Figure B-8: Intensity-Duration-Frequency Curves for 50-year Return Period (4 gages)

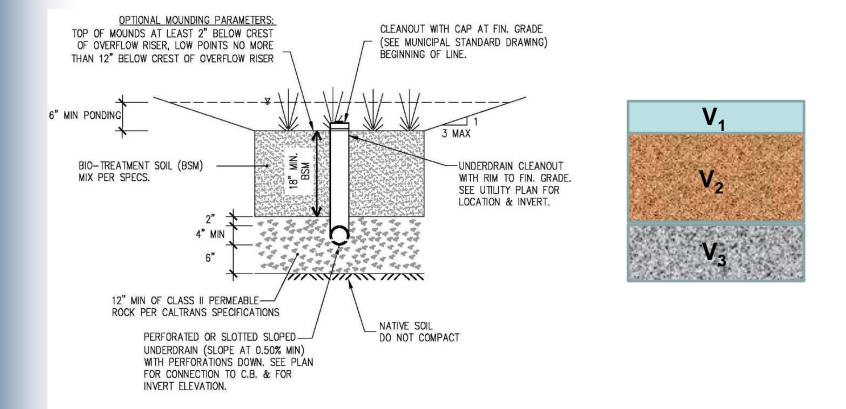
Figure B-1: Soil Texture and Mean Annual Precipitation (MAP) Depth



Sizing Example #1

- Parking lot in Santa Clara
 - Area = 35,000 sq. ft. (0.80 acres)
 - 100% impervious
 - Slope = 1%
 - Mean annual precipitation (MAP) = 15 inches
- Use the sizing worksheets to determine Q_{BMP} and V_{BMP}

Answer: V_{BMP} = 1,819 cu. ft.; Q_{BMP} = 0.103 cfs


Sizing Bioretention Facilities

- Simplified Sizing Approach
 - Surface area is 4% of contributing impervious area
 - Does not consider storage in surface ponding area
- Volume Based Approach
 - Store V_{BMP} in just surface ponding area
 - Store V_{BMP} in ponding area, soil media & drain rock
- Combination Flow and Volume Approach
 - Compute both $\mathbf{Q}_{\mathbf{BMP}}$ and $\mathbf{V}_{\mathbf{BMP}}$
 - Route through facility, allowing ponding

Sizing Bioretention Facilities: Volume-Based Approach

Sizing Bioretention Facilities: Volume-Based Approach

Method 1: Store entire volume in surface ponding area

V ₁	Depth (ft)	Porosity	Volume per sq. ft. (cubic feet)
	0.5	1.0	0.5

Surface Area = V_{BMP} (cu.ft.) ÷ 0.5 cu.ft./sq.ft.

Sizing Bioretention Facilities: Volume-Based Approach

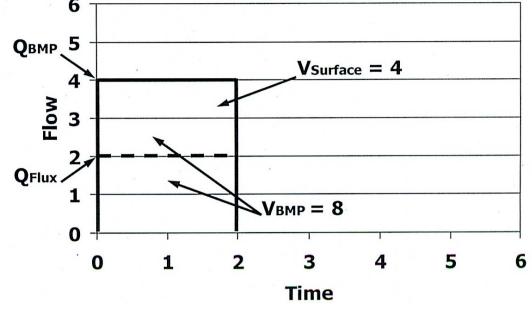
Method 2: Store volume in ponding area and media

 Depth (ft)	Porosity	Volume per sq. ft. (cubic feet)
0.5	1.0	0.5
1.5	0.30	0.45
0.5*	0.40	0.20
	Total	1.15

*Depth below bottom of underdrain

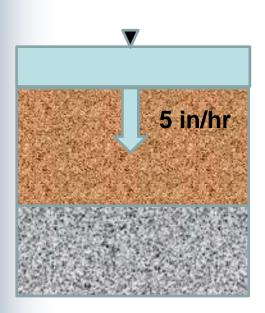
Surface Area = V_{BMP} (cu.ft.) ÷ 1.15 cu.ft./sq.ft.

V₁

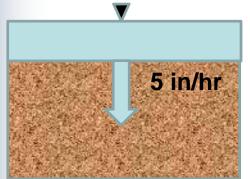

٧,

Sizing Bioretention Facilities: Flow & Volume Approach

"Hydrograph Approach"


- Runoff is routed through the treatment measure
- Assume rectangular hydrograph that meets both flow and volume criteria

Sizing Bioretention Facilities: Flow & Volume Approach



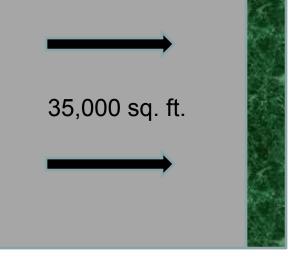
- Determine V_{BMP}
- Assume constant rainfall intensity of 0.2 in/hr continues throughout the storm (rectangular hydrograph)
- Calculate the duration of the storm by dividing the Unit Basin Storage by the rainfall intensity
- Calculate the volume of runoff that filters through the biotreatment soil at a rate of 5 in/hr over the duration of the storm and the volume that remains on the surface

Sizing Bioretention Facilities: Flow & Volume Approach

- To start the calculation, you have to assume a surface area "A_s" -- use 3% of the contributing impervious area as a first guess
- Determine volume of treated water "V_T" during storm:
 V_T = A_s x 5 in/hr x duration (hrs) x 1 in/12 ft
- Determine volume remaining on the surface "V_s":

$$V_{\rm S} = V_{\rm BMP} - V_{\rm T}$$

- Determine depth "D" of ponding on the surface:
 D = V_s ÷ A_s
- Repeat until depth is approximately 6 inches



Sizing Example #1, continued

- Parking lot in Santa Clara
 - Area = 35,000 sq. ft. (0.8 acres)
 - 100% impervious
 - **V_{BMP}** = 1,819 cu. ft.
 - UBS Volume = 0.63 in.
- Use the combination flow and volume sizing worksheet to determine the bioretention surface area
- Answer: 1,000 sq. ft. (depth of 0.5 ft.)

Sizing Bioretention Facilities: Comparison of Methods

Example: 35,000 sq. ft. parking lot in Santa Clara MAP= 15 inches, 100% impervious V_{BMP} = 1,819 cu. ft. (80% of annual runoff)

Sizing Method	Surface Area (sq. ft.)	
Simplified Method (flow-based)	1,400	
Volume ponded on surface	3,638	
Volume stored in unit $(V_1+V_2+V_3)$	1,580	
Combination flow & volume	1,000	

Sizing Pervious Paving and Infiltration Trenches

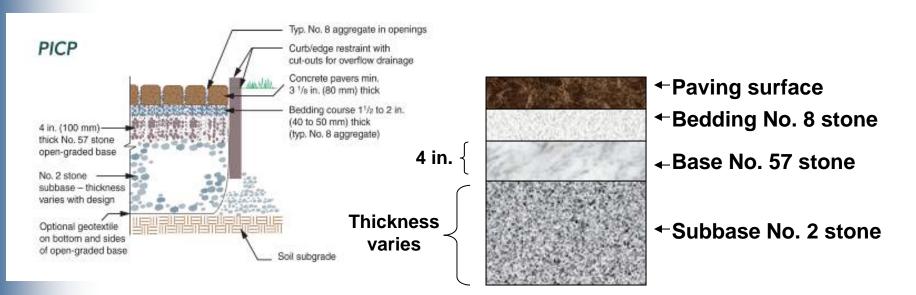
General Principles

 Store the WQD Volume in void space of stone base/subbase and infiltrate into subgrade

- Surface allows water to infiltrate at a high rate
- Any underdrains must be placed above the void space needed to store and infiltrate the WQD volume

Sizing Pervious Paving and Infiltration Trenches

Pervious Paving


- May be self-treating area or self-retaining area (accept runoff from other areas)
- Can only be considered a "pervious area" if stone base/subbase sized to store the WQD volume
- Can work where native soils have low infiltration rates (stored water depths are relatively small)
- Surface area is usually predetermined
- Base and subbase thickness usually determined by expected traffic load and saturated soil strength
- Slope should be $\leq 1\%$ (or use cutoff trenches)

Pervious Paving

Typical Section

Base and subbase layers available for water storageBoth typically have 40% void space

Pervious Paving

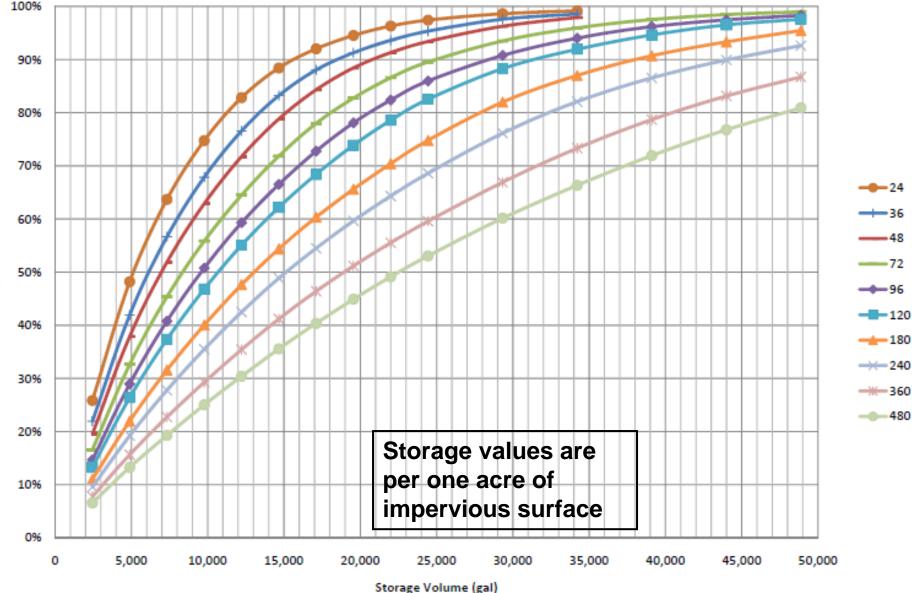
- Approach to Sizing Pervious Paving
 - Self-Treating
 - Check the depth of the WQD volume in base/subbase: UBS volume (in.) \div 0.40 = Depth (in.)
 - Example: UBS volume = 1.0 in., depth = 2.5 in. (Minimum depth for vehicular traffic is 10 in.)
 - Check the time required for stored water to drain:
 UBS Vol. (in.) ÷ Infiltration rate (in/hr) = Drain time (hrs)
 (recommend < 48 hrs)

Pervious Paving

- Approach to Sizing Pervious Paving
 - Self-Retaining
 - Check the depth of the WQD volume in base/subbase: UBS volume (in.) \div 0.40 = Depth (in.)
 - Example: UBS volume = 1.0 in., depth = 2.5 in. (Minimum depth for vehicular traffic is 10 in.)
 - Check the time required for stored water to drain:
 UBS Vol. (in.) ÷ Infiltration rate (in/hr) = Drain time (hrs)
 (recommend < 48 hrs)

Sizing Rainwater Harvesting Cisterns

- Rainwater Harvesting and Use
 - Types of Demands
 - Irrigation
 - Toilet flushing
 - Other non-potable



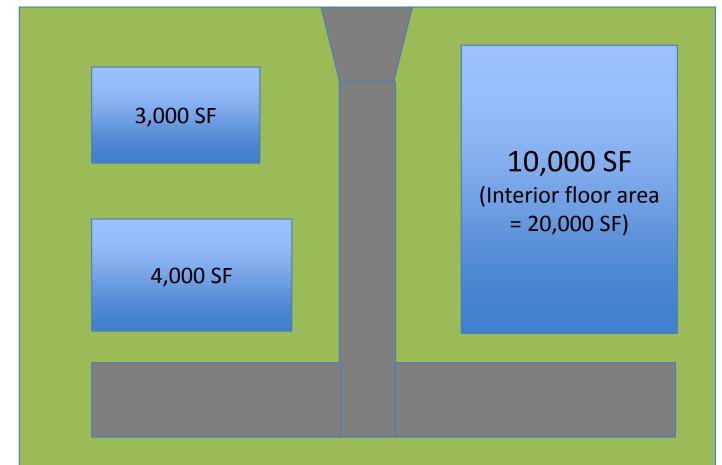
- Volume based sized criteria in C.3.d is 80% capture of the annual runoff
- Key concept is drawdown time
- Barriers: lack of plumbing codes, treatment, recycled water preference

Figure G-9: Percent Capture Achieved by BMP Storage Volume for Various Drawdown Times - San Jose

Percent Capture of Runoff

Estimate Actual Demand

Daily Use Rates for Toilets and Urinals¹


Land Use Type	User Unit	User Unit Factor ²	Daily Use/Unit (gal/day/unit)
Residential	Resident	2.9 residents per dwelling unit	8.6
Office or Retail	Employee (non-visitor)	200 SF per employee	6.9
Schools	Employee (not including students)	50 SF per employee	33.9

¹References: CCCWP Stormwater C.3 Guidebook, 6th edition, 2012; BASMAA LID Feasibility Report, 2011; California Plumbing Code, 2010. ²Use project-specific data if available

Example: 2-story Office Building

Screening Worksheet Results

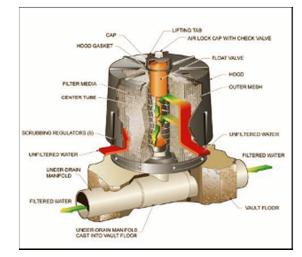
- Potential rainwater capture area = area of one building roof = 10,000 SF
- Convert to acres: 10,000 SF ÷ 43,560 SF/acre = 0.23 acres
- Demand for commercial building: Interior floor area = 20,000 SF
- Minimum floor area to meet toilet flushing demand = 70,000 SF per acre of impervious surface
- Minimum floor area for this project to meet demand = 70,000 SF/ac X 0.23 acres = 16,100 SF
- 20,000 SF > 16,100 SF ⇒ Building will have minimum toilet flushing demand

Determine Building Toilet Flushing Demand

- Building interior floor area = 20,000 SF
- Estimate no. of employees:
 - 200,000 SF ÷ 200 SF/employee = 100 employees
 - 100 employees × 6.9 gpd/employee = 690 gpd
- Convert to equivalent demand per impervious acre (to allow use of sizing curves):
 - 10,000 SF roof area ÷ 43,560 SF/ac = 0.23 ac.
 - 690 gpd \div 0.23 = 3,000 gpd per impervious acre

Determine Required Cistern Size

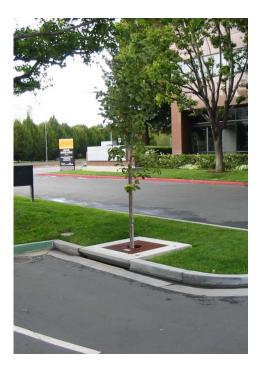
- From sizing curves, find right combination of drawdown time, tank size and required demand:
 - 480-hr (20-day) drawdown ⇒ 49,000 gallon tank ⇒ 2,450 gpd
 - 360-hr (15-day) drawdown ⇒ 40,000 gallon tank ⇒ 2,667 gpd
 - 240-hr (10-day) drawdown ⇒ 32,000 gallon tank ⇒ 3,200 gpd
 - 288-hr (12-day) drawdown \Rightarrow 36,000 gallon tank \Rightarrow 3,000 gpd $\sqrt{}$
 - Adjust tank size back to actual impervious area:
 - 36,000-gallon tank per 1 acre impervious area
 - 36,000 × 0.23 acres = <u>8,300-gallon tank</u>



Sizing Non-LID Components

Media Filters (cartridge type)

- Flow-based Treatment Measure
- Determine Q_{BMP}
- From manufacturer's specifications, determine the design flow rate per cartridge
- Divide Q_{BMP} by the cartridge flow rate to calculate the number of cartridges required (round up)



Sizing Non-LID Components

High Flow Rate Tree Box Filters

- Flow-based Treatment Measure
- Determine Q_{BMP}
- From manufacturer's specifications, determine the appropriate size of unit or combination of units
- A tree box filter that uses biotreatment soil can be sized like a bioretention area or flow-through planter

Sizing Non-LID Components

Detention Basin

Volume-based Treatment Measure (can only be used in treatment train)
Determine V_{BMP}
Design outlet for 48-hour detention time
If sizing for hydromodification

 If sizing for hydromodification management, use Bay Area
 Hydrology Model to determine
 size to meet HM standards

??? Questions ???

Contact Information:

Jill Bicknell 408-720-8811, X 1 jcbicknell@eoainc.com

www.scvurppp.org

