
C51ASM
..

User Guide
3710A–MICRO–10/10

1-2 C51ASM User Guide

3710A–MICRO–10/10

C51ASM User Gu

Table of Contents
Section 1
Introduction... 1-1

1.1 References... 1-1

Section 2
Running the Assembler ..2-1

2.1 Installation.. 2-1

2.1.1 Installation under Microsoft Windows .. 2-1

2.1.2 Installation under Linux.. 2-6

2.2 Environment... 2-7

2.2.1 Microsoft Windows Environment ... 2-7

2.2.2 Linux Environment ... 2-7

2.3 Command Line Operation.. 2-8

2.3.1 Output Files ... 2-9

2.3.2 Command Line Options... 2-10

2.4 Batch File Operation .. 2-19

2.4.1 Drag–and–Drop ... 2-19

2.4.2 Send To Menu ... 2-19

Section 3
C51ASM Assembly Language ... 3-1

3.1 Statements... 3-1

3.2 Comments.. 3-1

3.3 Symbols ... 3-2

3.3.1 Labels .. 3-2

3.3.2 Predefined Symbols... 3-3

3.4 Constants... 3-4

3.5 Expressions ... 3-6

3.6 Segment Type.. 3-7

3.7 The 8051 Instruction Set.. 3-9

3.8 Assembler Directives ... 3-10

3.9 Assembler Controls.. 3-12

3.10 Conditional Assembly .. 3-14

Section 4
Macro Processing... 4-1

4.1 Standard Callable Macros.. 4-1
ide i

3710A–MICROC–10/10

Table of Contents (Continued)

ii

3710A–MICROC–10/10
4.1.1 Defining Macros... 4-1

4.1.2 Calling Macros... 4-2

4.1.3 Macro Parameters ... 4-3

4.1.4 Local Symbols ... 4-4

4.1.5 Macro Operators.. 4-5

4.1.6 Exiting Macro Expansion ... 4-8

4.2 Repeat Macros... 4-8

4.3 Nested and Recursive Macro Calls.. 4-9

4.4 Nested Macro Definitions... 4-10

Section 5
Assembler Directives.. 5-1

5.1 DB.. 5-3

5.2 DW... 5-3

5.3 DS.. 5-4

5.4 DBIT... 5-4

5.5 DEFINE.. 5-5

5.6 NAME... 5-5

5.7 ORG... 5-6

5.8 USING.. 5-6

5.9 END ... 5-7

5.10 EQU ... 5-7

5.11 CODE... 5-8

5.12 DATA ... 5-8

5.13 SFR.. 5-9

5.14 BIT ... 5-9

5.15 IDATA .. 5-10

5.16 EDATA... 5-10

5.17 FDATA ... 5-11

5.18 XDATA... 5-11

5.19 CSEG... 5-12

5.20 DSEG... 5-12

5.21 ISEG .. 5-13

5.22 ESEG... 5-13

5.23 FSEG ... 5-14

5.24 BSEG... 5-15

5.25 XSEG... 5-15

5.26 SET.. 5-16

5.27 #UNDEF... 5-17

5.28 IF.. 5-17

5.29 IFN ... 5-18
C51ASM User Guide

Table of Contents (Continued)

C51ASM User Gu
5.30 IFDEF... 5-18

5.31 IFNDEF.. 5-19

5.32 IFB ... 5-19

5.33 IFNB... 5-20

5.34 #IF.. 5-21

5.35 #IFDEF... 5-22

5.36 #IFNDEF.. 5-22

5.37 .IF... 5-23

5.38 ELSEIF... 5-23

5.39 ELSEIFN.. 5-24

5.40 ELSEIFDEF ... 5-25

5.41 ELSEIFNDEF... 5-25

5.42 ELSEIFB .. 5-25

5.43 ELSEIFNB.. 5-26

5.44 #ELIF ... 5-27

5.45 ELSE.. 5-28

5.46 #ELSE.. 5-28

5.47 .ELSE... 5-29

5.48 ENDIF .. 5-29

5.49 #ENDIF .. 5-30

5.50 .ENDIF ... 5-30

5.51 MACRO.. 5-31

5.52 LOCAL ... 5-32

5.53 ENDM .. 5-32

5.54 EXITM.. 5-33

5.55 REPT ... 5-33

Section 6
Assembler Controls .. 6-1

6.1 $DATE ... 6-2

6.2 $DEBUG .. 6-3

6.3 $NODEBUG... 6-3

6.4 $DEVICE.. 6-4

6.5 $INCDIR... 6-4

6.6 $MACRO.. 6-5

6.7 $NOMACRO .. 6-5

6.8 $MAPFSEG ... 6-6

6.9 $MOD51... 6-6

6.10 $MOD52... 6-7

6.11 $NOMOD51 ... 6-7

6.12 $OBJECT... 6-8

6.13 $NOOBJECT ... 6-8
ide iii

3710A–MICROC–10/10

Table of Contents (Continued)

iv

3710A–MICROC–10/10
6.14 $PAGING... 6-9

6.15 $NOPAGING.. 6-9

6.16 $PAGELENGTH .. 6-10

6.17 $PAGEWIDTH ... 6-10

6.18 $PRINT .. 6-11

6.19 $NOPRINT... 6-11

6.20 $SYMBOLS.. 6-12

6.21 $NOSYMBOLS .. 6-12

6.22 $NOBUILTIN.. 6-13

6.23 $NOTABS .. 6-13

6.24 $XREF ... 6-14

6.25 $NOXREF.. 6-14

6.26 $COND .. 6-15

6.27 $NOCOND... 6-15

6.28 $CONDONLY... 6-16

6.29 $EJECT.. 6-16

6.30 $ERROR.. 6-17

6.31 $WARNING.. 6-17

6.32 $MESSAGE ... 6-18

6.33 $GEN ... 6-18

6.34 $NOGEN.. 6-19

6.35 $GENONLY ... 6-19

6.36 $INCLUDE ... 6-20

6.37 $LIST ... 6-20

6.38 $NOLIST .. 6-21

6.39 $SAVE ... 6-21

6.40 $RESTORE.. 6-22

6.41 $TITLE ... 6-22

Section 7
Assembler Compatibility... 7-1

7.1 7.1 Restrictions .. 7-1

7.2 7.2 Extensions ... 7-1

Section 8
Supported Devices ...8-1

Section 9
Instruction Set Reference... 9-1

9.1 Addressing Modes ... 9-1

9.2 Instructions in Alphabetical Order .. 9-2
C51ASM User Guide

9.3 Instruction Set Extensions.. 9-5

9.4 Instruction Definitions... 9-6

9.4.1 ACALL addr11 ... 9-6

9.4.2 ADD A, <src-byte>... 9-7

9.4.3 ADDC A, <src-byte> .. 9-8

9.4.4 AJMP addr11 ... 9-9

9.4.5 ANL <dest-byte>, <src-byte>... 9-9

9.4.6 ANL C,<src-bit> ... 9-11

9.4.7 ASR M ... 9-11

9.4.8 BREAK... 9-12

9.4.9 CJNE <dest-byte>,<src-byte>, rel ... 9-12

9.4.11 CLR M.. 9-14

9.4.10 CLR A .. 9-14

9.4.12 CLR bit ... 9-15

9.4.13 CPL A .. 9-15

9.4.14 CPL bit ... 9-16

9.4.15 DA A .. 9-16

9.4.16 DEC <byte> ... 9-17

9.4.17 DIV AB ... 9-18

9.4.18 DJNZ <byte>,<rel-addr> .. 9-19

9.4.19 ECALL addr24 ... 9-20

9.4.20 EJMP addr24 ... 9-21

9.4.21 ERET ... 9-21

9.4.22 INC <byte>... 9-22

9.4.23 INC DPTR.. 9-23

9.4.24 JB blt,rel ... 9-24

9.4.25 JBC bit,rel .. 9-24

9.4.26 JC rel ... 9-25

9.4.27 JMP @A+<base_reg> ... 9-25

9.4.28 JNB bit,rel .. 9-26

9.4.29 JNC rel ... 9-26

9.4.30 JNZ rel ... 9-27

9.4.31 JZ rel .. 9-27

9.4.32 LCALL addr16.. 9-28

9.4.33 LJMP addr16 ... 9-28

9.4.34 LSL M .. 9-29

9.4.35 MAC AB ... 9-29

9.4.36 MOV <dest-byte>,<src-byte>... 9-30

9.4.37 MOV DPTR,#data16.. 9-33

9.4.38 MOV <dest-bit>,<src-bit>... 9-34

9.4.39 MOVC A,@A+ <base-reg> .. 9-34

9.4.40 MOVX <dest-byte>,<src-byte> .. 9-35
C51ASM User Guide 1-v

3710A–MICROC–10/10

9.4.41 MUL AB ... 9-37

9.4.42 NOP ... 9-38

9.4.43 ORL <dest-byte> <src-byte> ... 9-38

9.4.44 ORL C,<src-bit>... 9-40

9.4.45 POP direct ... 9-40

9.4.46 PUSH direct ... 9-41

9.4.47 RET.. 9-41

9.4.48 RETI... 9-42

9.4.49 RL A... 9-43

9.4.50 RLC A .. 9-44

9.4.51 RR A .. 9-44

9.4.52 RRC A.. 9-45

9.4.53 SETB <bit> .. 9-45

9.4.54 SJMP rel .. 9-46

9.4.55 SUBB A,<src-byte>.. 9-46

9.4.56 SWAP A... 9-47

9.4.57 XCH A,<byte>.. 9-48

9.4.58 XCHD A,@Ri ... 9-48

9.4.59 XRL <dest-byte>,<src-byte>.. 9-49

Section 10
Appendix A - Error Messages...10-1

10.1 Assembly Errors... 10-1

10.1.1 ERROR #1... 10-1

10.1.2 ERROR #2... 10-1

10.1.3 ERROR #3... 10-1

10.1.4 ERROR #4... 10-1

10.1.5 ERROR #5... 10-2

10.1.6 ERROR #6... 10-2

10.1.7 ERROR #8... 10-2

10.1.8 ERROR #9... 10-2

10.1.9 ERROR #12... 10-2

10.1.10 ERROR #15... 10-3

10.1.11 ERROR #16... 10-3

10.1.12 ERROR #17... 10-3

10.1.13 ERROR #18... 10-3

10.1.14 ERROR #19... 10-3

10.1.15 ERROR #20... 10-3

10.1.16 ERROR #21... 10-4

10.1.17 ERROR #23... 10-4

10.1.18 ERROR #24... 10-4

10.1.19 ERROR #25... 10-5
1-vi C51ASM User Guide

3710A–MICROC–10/10

10.1.20 ERROR #27... 10-5

10.1.21 ERROR #28... 10-5

10.1.22 ERROR #30... 10-6

10.1.23 ERROR #31... 10-6

10.1.24 ERROR #33... 10-6

10.1.25 ERROR #34... 10-7

10.1.26 ERROR #35... 10-7

10.1.27 ERROR #37... 10-7

10.1.28 ERROR #40... 10-7

10.1.29 ERROR #41... 10-8

10.1.30 ERROR #43... 10-8

10.1.31 ERROR #44... 10-8

10.1.32 ERROR #45... 10-8

10.1.33 ERROR #46... 10-8

10.1.34 ERROR #47... 10-8

10.1.35 ERROR #48... 10-9

10.1.36 ERROR #50... 10-9

10.2 Runtime Errors ... 10-9

10.2.1 I/O ERROR .. 10-9

10.2.2 FATAL ERROR.. 10-10

Section 11
Appendix B - List File Format ...11-1

11.1 List File Headings... 11-1

11.2 Source Listing .. 11-1

11.3 Symbol Table ... 11-4

Section 12
Appendix C - Predefined Symbols..12-1

Section 13
Appendix D - Reserved Keywords..13-1

Section 14
Appendix E - Object File Formats...14-1

14.1 Intel-HEX Format ... 14-1

14.2 Motorola SREC Format.. 14-2

14.3 Intel Object Module Format.. 14-4

14.3.1 Extensions ... 14-4

14.4 Other Object Formats... 14-4

14.4.1 Binary... 14-4

14.4.2 Generic Hexadecimal .. 14-4
C51ASM User Guide 1-vii

3710A–MICROC–10/10

Section 15
Appendix F - The ASCII Character Set...15-1

Section 16
Revision History..16-1
1-viii C51ASM User Guide

3710A–MICROC–10/10

Section 1

Introduction

C51ASM is a two-pass macro assembler for the Atmel® 8051 family of microcontrollers. C51ASM trans-
lates a symbolic code text file (assembly language source) into a machine executable object file. During
the first pass, the assembler builds a symbol table from the symbols and labels used in the source file,
processes conditional statements and expands macros. In the second pass, the assembler maps the
source file into machine code and generates the listing file. C51ASM is an advanced absolute assembler
and only generates absolute object files. Users who need a relocatable assembler and linker for modular
programming should try the open source as8051 assembler distributed with the Small Device C Com-
piler (SDCC) or one of the commercially available relocatable assemblers.

C51ASM is meant to be compatible with other standard 8051 assemblers that follow the syntax of the
original Intel® ASM51 (discontinued). These include assemblers such as the freely available ASM51
from MetaLink™ Corporation or ASEM-51 by W.W. Heinz; and the commercial A51/Ax51 assembler from
Keil. Note that some differences will exist between any assembler, such that every source file may not
assemble directly in another assembler without some source modifications or tweaks to the command
line.

People already familiar with standard 8051 assemblers can continue to Section 2 “Running the Assem-
bler”. If this is your first introduction to 8051 assembly programming, check out Section 3 “C51ASM
Assembly Language” first.

1.1 References

Ax51 User's Guide. Keil - An ARM® Company, 2004
<http://www.keil.com/support/man/docs/a51/default.htm>.

ASEM-51 User's Manual V1.3. W.W. Heinz, 2002 <http://plit.de/asem-51/contents.htm>.

8051 Cross Assembler User's Manual. Metalink Corporation, 1990
<http://www.metaice.com/ASM51/Files/ASM51MAN.pdf>.

Intel HEX. Wikipedia, 2009 <http://en.wikipedia.org/w/index.php?title=Intel_HEX&oldid=308770754>.

SREC (file format). Wikipedia, 2009
<http://en.wikipedia.org/w/index.php?title=SREC_(file_format)&oldid=301168678>.

External Product Specification for the MCS-51 Object Module Format. Intel Corp., 1982
<http://www.keil.com/download/files/omf51.zip>.
C51ASM User Guide 1-1

3710A–MICRO–11/09

#opt_devices
#DEFINE
#EQU
#EQU
#MACRO
#DEVICE
http://plit.de/asem-51/contents.htm
#opt_target
#opt_target
http://www.metaice.com/ASM51/Files/ASM51MAN.pdf
http://www.metaice.com/ASM51/Files/ASM51MAN.pdf
http://en.wikipedia.org/w/index.php?title=Intel_HEX&oldid=308770754
#OBJECT
#NOOBJECT
#NOOBJECT
http://en.wikipedia.org/w/index.php?title=SREC_(file_format)&oldid=301168678
#DW
#ELSE
#ELSEIF
#ENDIF
#IFN
#IFN
#PAGING
#TITLE
http://www.keil.com/download/files/omf51.zip
http://www.keil.com/download/files/omf51.zip
#opt_debug
#4.1.1
#opt_omf51
#opt_omf51
http://plit.de/asem-51/omf51eps.htm
#LOCAL
4.1.2
#opt_omf51
http://www.keil.com/download/files/omf51.zip
#DB
#DB
#ELSE
#ELSE
#ELSEIF
#ENDIF
#NODEBUG
#IF
#IF
#opt_debug
#DBIT
#NOPRINT
#NOPRINT
#DEBUG
#opt_dptr
#opt_dptr
#DS
#opt_target
#COND
#NOCOND
#2
#4.3
#4.4
#ELSE
3
#opt_listfile

Introduction
1-2 C51ASM User Guide

3710A–MICRO–11/09

Section 2

Running the Assembler

The Atmel® C51ASM is a command line tool for translating assembly source files. The following sections
describe its installation on the supported host platforms.

2.1 Installation

2.1.1 Installation under Microsoft Windows

C51ASM for Microsoft Windows® is available as a zipped archive containing the C51ASM.EXE execut-
able and this manual. To manually install C51ASM as a Windows console application, follow these
steps:

Extract the c51asm_win_1-1.zip archive to your harddisk. This will create a folder called C51ASM.

Copy the C51ASM folder to your desired install location such as C:\ or C:\Programs Files\.

Add the executable path, <install>\C51ASM\BIN, to your PATH variable:

– Microsoft Windows® 98 or earlier

Append it to your PATH statement in the AUTOEXEC.BAT file. Each different directory is separated
with a semicolon as shown in the example below (your path my differ):

PATH C:\DOS;C:\UTIL;C:\C51ASM\BIN

– Microsoft Windows® 2000, Microsoft Windows® XP or later

1. From the desktop, right-click My Computer and click Properties as shown in Figure 2-1.

Figure 2-1. My Computer — Properties
C51ASM User Guide 2-1

3710A–MICRO–10/10

Running the Assembler
2. In the System Properties window, click on the Advanced tab as shown in Figure 2-2.

Figure 2-2. System Properties — Advanced — Environment Variables

3. In the Advanced section, click the Environment Variables button as shown in Figure 2-2.

4. In the Environment Variables window, highlight the Path variable in the System variables sec-
tion and click Edit as shown in Figure 2-3 on page 2-3.
2-2 C51ASM User Guide

3710A–MICRO–10/10

Running the Assembler
Figure 2-3. Environment Variables — System Variables — Edit Path

5. Append the path to the executable, e.g. <install>\C51ASM\BIN, to the Path variable value. Each
different directory is separated with a semicolon as shown in Figure 2-4below (your path may
differ):

Example: C:\Program Files;C:\Winnt;C:\Winnt\System32;C:\C51ASM\BIN

Figure 2-4. Edit System Variable

Optionally define an environment variable C51ASMINC to specify a search path for include files:

– Microsoft Windows 98 or earlier

Set the variable in the AUTOEXEC.BAT file. Each different directory is separated with a semicolon
as shown in the example below (your path may differ):

SET C51ASMINC=C:\C51ASM\INC;D:\MICROS\MCS51\INCL
C51ASM User Guide 2-3

3710A–MICRO–10/10

Running the Assembler
– Microsoft Windows 2000, Microsoft Windows XP or later

1. From the desktop, right-click My Computer and click Properties.

2. In the System Properties window, click on the Advanced tab.

3. In the Advanced section, click the Environment Variables button.

4. In the Environment Variables window, click the New button under User variables.

Figure 2-5. Environment Variables — User variables — New

5. Finally, in the dialog enter C51ASMINC as the variable name. Enter the search path as the vari-
able value and click OK. Each different directory is separated with a semicolon as shown in
Figure 2-6 below (your path may differ):

Example: C:\C51ASM\INC;D:\PROJECTS\8051\INC

Figure 2-6. New User Variable
2-4 C51ASM User Guide

3710A–MICRO–10/10

Running the Assembler
Note that the C51ASMINC variable can be used to point to both the include directory containing
header files supplied with C51ASM and any user specified directories. The user can always update
the variable to add or remove more items.

Optionally install the C51ASM.BAT file in your “Send To” menu:

1. From the desktop, click Start and then click Run.

2. In the Open box type sendto and then click OK.

3. Open the directory where you installed C51ASM and copy the C51ASM.BAT file found under
DOC to the open SendTo window as shown in Figure 2-7. Do NOT create a shortcut as this will
not work correctly with a batch file.

Figure 2-7. Copying batch file to SendTo Folder
C51ASM User Guide 2-5

3710A–MICRO–10/10

Running the Assembler
2.1.2 Installation under Linux

C51ASM for Linux is available as an RPM package or zipped archive.

The RPM package is zipped on ther server. If you have the zipped package, perform the following steps:

1. Extracted the RPM and install

unzip c51asm_linux_1-1-rpm.zip
rpm -i c51asm-1.1.i386.rpm

This will install the package under /usr/local/share/c51asm and create symbolic links under
/usr/local/bin and /usr/local/share/man/man1.

2. To specify a search path for the include files, define the optional environment variable C51ASMINC.

For bash, ksh, and sh shells, insert the following line into your .profile file:

export C51ASMINC=/usr/local/share/c51asm/include

For csh, tcsh, and zsh shells, insert the following line into your .login file:

setenv C51ASMINC /usr/local/share/c51asm/include

3. On most Linux systems, /usr/local/bin and /usr/local/share/man should already be in your PATH and
MANPATH variables. If not you will need to add them.

For bash, ksh, and sh shells, insert the following lines into your .profile file:

export PATH=${PATH}:/usr/local/bin
export MANPATH=${MANPATH}:/usr/local/share/man

For csh, tcsh, and zsh shells, insert the following lines into your .login file:

setenv PATH ${PATH}:/usr/local/bin
setenv MANPATH ${MANPATH}:/usr/local/share/man

If you have the zip archive, you can do a manual install by perform the following steps:

1. Extracted the archive to the desired installation directory

unzip c51asm_linux_1-1.zip -d <install-path>

or

unzip c51asm_linux_1-1.zip
cp -r c51asm <install-path>

2. Add <install-path>/c51asm/bin to your PATH.

For bash, ksh, and sh shells, insert the following line into your .profile file:

export PATH=${PATH}:<install-path>/c51asm/bin

For csh, tcsh, and zsh shells, insert the following line into your .login file:

setenv PATH ${PATH}:<install-path>/c51asm/bin

3. To specify a search path for include files, define the optional environment variable C51ASMINC.

For bash, ksh, and sh shells, insert the following line into your .profile file:

export C51ASMINC=<install-path>/c51asm/include

For csh, tcsh, and zsh shells, insert the following line into your .login file:

setenv C51ASMINC <install-path>/c51asm/include
2-6 C51ASM User Guide

3710A–MICRO–10/10

Running the Assembler
2.2 Environment

To specify a search path for include files, an optional environment variable C51ASMINC can be defined.
The search path can include any number of directories. If C51ASMINC is defined, the assembler
searches the specified path(s) for include files that cannot be found in the working directory, nor in the
search path specified with the --include option. The path directories will be searched from left to right.

2.2.1 Microsoft Windows Environment

To define the C51ASMINC environment variable under Microsoft Windows, type:

SET C51ASMINC=<path>

at the Windows console. <path> may be any number of directories separated by ';' characters.

Examples:

SET C51ASMINC=C:\C51ASM\INC;D:\MICROS\MCS51\INC

If include files cannot be found in the working directory, nor in the --include path (if specified), the assem-
bler searches next C:\C51ASM\INC and finally D:\MICROS\MCS51\INC.

SET C51ASMINC=C:\C51ASM\INC;%PATH%

If you want to have a default value for C51ASMINC, you can install it as described in Section 2.1.1. You
can then create a local setting by following:

SET C51ASMINC=<path>;%C51ASMINC%

All the directories in <path> will be searched before the any found in the original definition of
C51ASMINC.

2.2.2 Linux Environment

To specify a search path for include files, an optional environment variable C51ASMINC can be defined:

For bash, ksh, and sh shells:

export C51ASMINC=<path>

For csh, tcsh, and zsh shells:

setenv C51ASMINC <path>

<path> may be any number of directories separated by ':' characters. Be sure that the whole definition
doesn't contain any blanks or tabs! If C51ASMINC is defined, the assembler searches the specified
<path> for include files that can neither be found in the working directory, nor in the search path specified
with the --includes option. The <path> directories will be searched from left to right.

Example:

bash:

export C51ASMINC=/usr/local/share/c51asm/include:~/micros/mcs51/inc

If include files can neither be found in the working directory, nor in the --includes path (if specified), the
assembler searches next /usr/local/share/c51asm/include and finally ~/micros/mcs51/inc.

csh:

setenv C51ASMINC /usr/local/share/c51asm/include

If C51ASMINC is defined as above in .login, the assembler finally searches the directory
/usr/local/share/c51asm/include for include files.
C51ASM User Guide 2-7

3710A–MICRO–10/10

Running the Assembler
2.3 Command Line Operation

The assembler is invoked by typing:

c51asm [<options>] <source> [<options>]

where <source> is the 8051 assembler source and <options> are command line options. Options may
appear before or after the source file with the restriction that an option with an optional argument (such
as -l) cannot immediately precede the source file when the argument in not specified, or else the source
file will be interpreted as the argument. Only the first source file listed will be assembled; other listed files
will be ignored.

By default C51ASM will output version and copyright lines, assembly status, a segment usage summary,
a register bank summary, and an error summary:

C51ASM: advanced C51 macro assembler Version 1.2 (12 Oct. 2010)
Copyright (C) 2010 Atmel Corp.

Pass 1 completed with no warnings and no errors

Pass 2 completed with no warnings and no errors

Segment usage:
Code : 687 bytes
Data : 35 bytes
Idata : 16 bytes
Edata : 0 bytes
Fdata : 0 bytes
Xdata : 5 bytes
Bit : 4 bits

Register banks used: 0, 1

Warnings: 0
Errors: 0

Use the --quiet option to turn off all information except warning and error messages.

Errors

When the assembler encounters an error in a source file, a corresponding error message is output to
standard error. The error message includes the error code, the name and line number of the source or
include file where the error occurred, and the error message itself.

ERROR #18 uart.asm(6): Relative offset exceeds -128 / +127.
ERROR #16 uart.asm(23): Divide by zero.
ERROR #2 baud.inc(2): Undefined symbol.
ERROR #6 uart.asm(30): Missing END directive.

For more location information use the --columns option to output the column numbers additionally after
the line numbers. However, the column number is just a guess and may not be the exact location.

ERROR #18 uart.asm(6,17): Relative offset exceeds -128 / +127.
ERROR #16 uart.asm(23,18): Divide by zero.
ERROR #2 baud.inc(2,17): Undefined symbol.
ERROR #6 uart.asm(30,1): Missing END directive.
2-8 C51ASM User Guide

3710A–MICRO–10/10

Running the Assembler
When errors occur in macro expansion lines, the error is flagged with the line number (and optionally col-
umn number) of the corresponding line in the macro definition. The macro name is also listed (or REPT
for repeat macros).

ERROR #3 uart.asm(26,1) TRANSMIT: Duplicate symbol.
ERROR #8 uart.asm(34,3) REPT: Illegal assembly line.

When terminating, C51ASM returns an exit code to the calling process:

Note: Warnings are also output on standard error, but do not influence the exit code!

Examples:

c51asm program.a51

will assemble the 8051 assembly language program program.a51 and produce an Intel-HEX file
program.hex.

c51asm example.asm -l example.prn

will assemble the 8051 assembly language program example.asm and produce an Intel-HEX file exam-
ple.hex and a listing example.prn.

c51asm demo.a51 -o demo.obj -l listing.txt

will assemble the 8051 assembly language program demo.a51 and produce an Intel-HEX file demo.obj
and a listing listing.txt.

c51asm -fM sample.asm -l

will assemble the 8051 assembly language program sample.asm and produce a Motorola SREC file
sample.srec and a listing sample.lst.

c51asm -I /usr/local/include/c51asm:~/8051/inc proto.a51

will assemble the program app.a51, while all required include files will be searched first in the default
directory, then in /usr/local/include/c51asm, and finally in ~/8051/inc.

c51asm --define=USE_AUTOBAUD uart.asm

will assemble the program uart.asm, while the symbol USE_AUTOBAUD will be predefined during
assembly.

2.3.1 Output Files

C51ASM outputs one or more object files and an optional listing file during compilation. By default, each
output file shares the same filename as the source file, but with a different file extension. Output file-
names can be changed either on the command line or through assembler controls in the source file. All
file names that are specified explicitly on the command line with the --datafile , --listfile , --outfile or --omf-
51 options are left unchanged. The arguments for --listfile and --omf-51 are optional. If command line
options are not present, the files may be specified by the $DEBUG , $OBJECT and $PRINT controls in
the source file.

Table 2-1. Exit Status

Exit Code Description

0 No Errors

1 Program Errors Detected

2 Fatal Runtime Errors
C51ASM User Guide 2-9

3710A–MICRO–10/10

Running the Assembler
By default, C51ASM generates an object file in Intel-HEX format. When one of the --debug or --omf-51
options is specified, an absolute OMF-51 module is also generated. C51ASM can generate object files in
other formats with the --filetype option as shown below.

2.3.2 Command Line Options

The Atmel C51ASM assembler recognizes the following options listed in Table 2-3. Most command line
options have an assembler control equivalent that can be placed directly in the source code in lieu of the
command line.

Table 2-2. Supported Object Formats

Short Long File Format Extension

-fB
--filetype BINARY

--filetype BIN
Binary .bin

-fG --filetype GENERIC Generic Hexadecimal (ASCII) .mem

-fI
--filetype INTEL
--filetype HEX

Intel Hexadecimal (ASCII) .hex

-fM
--filetype MOTOROLA

--filetype SREC
Motorola S-Record (ASCII .srec

-fO --filetype OMF51
Intel Object Module Format

(Binary)
.omf

Table 2-3. Command Line Options

Option Arguments Short Form Description

--include <path1>;...;<pathN> (Win)
<path1>:...:<pathN> (Linux)

-I Specify additional include directories

--define <symbol>[=<value>[:<type>]] -D Define symbol with optional value and type

--datafile <filename> -d Generate data object file called filename

--filetype <format> -f<F> Specify object file format

--debug -g Generate debug information in OMF format

--help -h Print usage information and exit

--listfile [<filename>] -l Generate listing file optionally called filename

--outfile <filename> -o Generate code object file called filename

--columns -c Print column position of errors

--devices List supported devices and exit

--dptr Enable dual data pointer alias extensions

--mapfseg <offset>[:<start>] Remap FSEG location in object file

--nolist Suppress listing file

--noobject Suppress object file(s)

--nopaging Disable page formatting of listing file

--omf-51 [<filename>]
Generate OMF-51 object optionally called
filename
2-10 C51ASM User Guide

3710A–MICRO–10/10

Running the Assembler
Note: The short and long options in the same row are equivalent. All option names are case-sensitive!

2.3.2.1 --include

When the --include option is used, the assembler searches the specified path for include files that cannot
be found in the working directory. The path may be any number of directories separated by ';' characters
on Microsoft Windows or by ':' characters on Linux. The directories will be searched from left to right.
Windows allows paths with spaces if the path is listed between quotes. The path specified with the --
include option, is searched before the path defined with the (optional) environment variable
C51ASMINC!

Syntax:

--include <path1>[;<path2>[;<path3> ...]] (Windows)
--include <path1>[:<path2>[:<path3> ...]] (Linux)

Short Form:

-I <path1>[;<path2>[;<path3> ...]] (Windows)
-I <path1>[:<path2>[:<path3> ...]] (Linux)

Example:

> c51asm my_prog.asm --include C:\ASM\INC;D:\LIB;"C:\Documents and
Settings\user"
> c51asm my_prog.asm -I /usr/local/lib:~/ASM

2.3.2.2 --define

The --define option is useful for selecting particular program variants from the command line that have
been implemented with conditional assembly. It allows to define a symbol with a value and a segment
type in the command line. Value and type are optional. The segment type of the symbol defaults to NUM-
BER, if omitted. The symbol value defaults to 0, if omitted. The symbol value may be any numerical
constant. The symbol type must be one of the following characters:

--quiet -q
Suppress all console output except error
messages.

--target <device> Use the specified device model

--version Print version and exit

Table 2-3. Command Line Options

Option Arguments Short Form Description

Table 2-4. Define Type Codes

Code Type

B BIT

C CODE

D DATA

I IDATA

E EDATA

F FDATA

X XDATA

N NUMBER (default)
C51ASM User Guide 2-11

3710A–MICRO–10/10

Running the Assembler
Syntax:

--define <symbol>[=<value>[:<type>]]

Short Form:

-D <symbol>[=<value>[:<type>]]

Example:

> c51asm my_prog.asm --define BAUD=19200

2.3.2.3 --filetype

By Default C51ASM generates an object file in Intel Hex format. The --filetype option changes the format
of the object file. The following object types are supported.

Syntax:

--filetype <BINARY|BIN|GENERIC|INTEL|HEX|MOTOROLA|SREC|OMF51>

Short Form:

-f<B|G|I|M|O>

Example:

> c51asm my_prog.asm --filetype BINARY
> c51asm mu_prog.asm -fM

2.3.2.4 --outfile

By Default C51ASM generates a code object file using the source file name with an extension that
depends on the file format. The --outfile option explicitly specifies the name of the object file and will
override any $OBJECT or $NOOBJECT controls in the assembly source.

Syntax:

--outfile <filename>

Short Form:

-o <filename>

Example:

> c51asm my_prog.asm --outfile my_prog.hex
> c51asm mu_prog.asm -o my_prog.o

Table 2-5. Supported Object Formats

Short Long File Format Extension

B BINARY or BIN Binary .bin

G GENERIC Generic Hexadecimal (ASCII) .mem

I INTEL or HEX Intel Hexadecimal (ASCII) .hex

M MOTOROLA or SREC Motorola S-Record (ASCII) .srec

O OMF51 Intel Object Module Format (Binary) .omf
2-12 C51ASM User Guide

3710A–MICRO–10/10

Running the Assembler
2.3.2.5 --datafile

By Default C51ASM generates a data object file using the source file name appended with ".dat" and an
extension that depends on the file format. The --datafile option explicitly specifies the name of the data
object file. The data object file is only generated if the source contains an FDATA segment with initialized
data.

Syntax:

--datafile <filename>

Short Form:

-d <filename>

Example:

> c51asm my_prog.asm --datafile my_prog.dat.hex
> c51asm mu_prog.asm -d dflash.o

2.3.2.6 --listfile

The --listfile option causes C51ASM to generate a listing file, overriding any $NOPRINT controls in the
assmebly source. By default the listing file uses the source file name with a ".lst" extension. The optional
argument explicitly specifies the name of the listing file and will override any $PRINT controls is the
assembly source.

Syntax:

--listfile [<filename>]

Short Form:

-l [<filename>]

Example:

> c51asm my_prog.asm --listfile my_prog.lst
> c51asm my_prog.asm -l

2.3.2.7 --omf-51

The --omf-51 option instructs C51ASM to generate an additional object file in Intel Object Module Format
whenever the filetype is not set to OMF51. By default the object file uses the source file name with a
".omf" extension. The optional argument explicitly specifies the name of the object file and will override
any $DEBUG controls is the assembly source. The --omf-51 option must be paired with the --debug
option or $DEBUG control to include debugging information in the object file.

Syntax:

--omf-51 [<filename>]

Short Form:

None

Example:

> c51asm my_prog.asm --omf-51 my_prog.omf
> c51asm my_prog.asm --omf-51
C51ASM User Guide 2-13

3710A–MICRO–10/10

Running the Assembler
2.3.2.8 --columns

The --columns option tells the assembler to output the column numbers of program errors additionally
after the line numbers.

Syntax:

--columns

Short Form:

-c

Example:

> c51asm my_prog.asm --columns
> c51asm -c my_prog.asm

2.3.2.9 --debug

The --debug option instructs C51ASM to generate an object file in Intel Object Module Format and
include debugging information such as the symbol table and line number mappings. By default the object
file uses the source file name with a ".omf" extension. The object file can be explicitly specified with the -
-omf-51 option or the $DEBUG control.

Syntax:

--debug

Short Form:

-g

Example:

> c51asm my_prog.asm --debug
> c51asm -g my_prog.asm

2.3.2.10 --devices

The --devices option causes C51ASM to print a list of supported devices. The listed devices can be
selected by name with the --target option.

Syntax:

--devices

Short Form:

None

Example:

> c51asm --devices

C51ASM: advanced C51 macro assembler Version 1.1 (12 Oct. 2010)
Copyright (C) 2010 Atmel Corp.

Device name | Flash | Flash | RAM | ERAM | XRAM
 | Code | Data | | |
------------+-------+-------+-----+-------+------
(default) | 65536 | 65536 | 256 | 65536 | Y
2-14 C51ASM User Guide

3710A–MICRO–10/10

Running the Assembler
AT89LP2052 | 2048 | 0 | 256 | 0 | N
AT89LP4052 | 4096 | 0 | 256 | 0 | N
AT89LP213 | 2048 | 0 | 128 | 0 | N
AT89LP214 | 2048 | 0 | 128 | 0 | N
AT89LP216 | 2048 | 0 | 128 | 0 | N
AT89LP428 | 4096 | 512 | 256 | 512 | N
AT89LP52 | 8192 | 256 | 256 | 0 | Y
AT89LP828 | 8192 | 1024 | 256 | 512 | N
AT89LP6440 | 65536 | 8192 | 256 | 4096 | Y
AT89S2051 | 2048 | 0 | 256 | 0 | N
AT89S4051 | 4096 | 0 | 256 | 0 | N
AT89S51 | 4096 | 0 | 128 | 0 | Y
AT89S52 | 8192 | 0 | 256 | 0 | Y
AT89S53 | 12288 | 0 | 256 | 0 | Y
AT89S8252 | 8192 | 2048 | 256 | 0 | Y
AT89S8253 | 12288 | 2048 | 256 | 0 | Y
AT89LS51 | 4096 | 0 | 128 | 0 | Y
AT89LS52 | 8192 | 0 | 256 | 0 | Y
AT89C2051 | 2048 | 0 | 128 | 0 | N
AT89C4051 | 4096 | 0 | 128 | 0 | N
AT89C51 | 4096 | 0 | 128 | 0 | Y
AT89C52 | 8192 | 0 | 256 | 0 | Y
AT89C55WD | 20480 | 0 | 256 | 0 | Y
AT89C51RC | 32768 | 0 | 256 | 256 | Y
AT89C51RB2 | 16384 | 0 | 256 | 1024 | Y
AT89C51RC2 | 32768 | 0 | 256 | 1024 | Y
AT89C51RD2 | 65536 | 0 | 256 | 1792 | Y
AT89C51IC2 | 32768 | 0 | 256 | 1024 | Y
AT89C51ID2 | 65536 | 2048 | 256 | 1792 | Y
AT89C51ED2 | 65536 | 2048 | 256 | 1792 | Y

2.3.2.11 --dptr

Some devices include enhanced data pointer modes that modify the behavior of the DPTR-based
instructions. The --dptr option enables support for instruction aliases to make the programmer's intent
explicit.

Syntax:

--dptr

Short Form:

None

Example:

> c51asm my_prog.asm --dptr

2.3.2.12 --mapfseg

Many device programmers map nonvolatile data segments to some location in their input buffers. Use
the --mapfseg option to move FSEG data to a different location in the object file. <offset> specifies the
address in the object file where the FSEG data will start. <start> optionally specifies the initial address in
FSEG that will map to <offset>. If a device is explicitly specified with $DEVICE or --target , <start> should
C51ASM User Guide 2-15

3710A–MICRO–10/10

Running the Assembler
be limited to either 0 or the normal starting address of FDATA. <offset> and <start> both default to 0.
The --mapfseg overrides any $MAPFSEG controls in the assembly source.

Syntax:

--mapfseg <offset>[:<start>]

Short Form:

None

Example:

> c51asm my_prog.asm --mapfseg 2000H:0x200

2.3.2.13 --nolist

The --nolist option suppresses generation of the listing file and overrides any $PRINT controls in the
assembly source.

Syntax:

--nolist

Short Form:

None

Example:

> c51asm my_prog.asm --nolist

2.3.2.14 --noobject

The --noobject option suppresses generation of the object file and overrides any $OBJECT controls in
the assembly source. An OMF object will still be generated if requested by the --debug or --omf-51
options.

Syntax:

--noobject

Short Form:

None

Example:

> c51asm my_prog.asm --noobject

2.3.2.15 --nopaging

The --nopaging option disabled page formatting of the listing file and overrides any $PAGING controls in
the assembly source.

Syntax:

--nopaging

Short Form:

None

Example:
2-16 C51ASM User Guide

3710A–MICRO–10/10

Running the Assembler
> c51asm my_prog.asm --nopaging

2.3.2.16 --quiet

The --quiet option suppresses all generated console output except error messages.

Syntax:

--quiet

Short Form:

-q

Example:

> c51asm my_prog.asm --quiet

2.3.2.17 --target

The --target option selects a specific device model from the list of supported devices. The supported
devices can be listed with the --devices option. Some assembler features are only supported for certain
devices. The --target option will override any $DEVICE control in the assembly source.

Syntax:

--target <device>

Short Form:

None

Example:

> c51asm my_prog.asm --target at89lp828

2.3.2.18 --version

The --version option prints the version of C51ASM.

Syntax:

--version

Short Form:

None

Example:

> c51asm my_prog.asm --version at89lp828
C51ASM: advanced C51 macro assembler Version 1.1 (12 Oct. 2010)
Copyright (C) 2010 Atmel Corp.

2.3.2.19 --help

When invoked without parameters, or with the

-h

or

--help
C51ASM User Guide 2-17

3710A–MICRO–10/10

Running the Assembler
options, the assembler displays a help screen listing the available options/

Syntax:

--help

Short Form:

-h

Example:

> c51asm

C51ASM: advanced C51 macro assembler Version 1.1 (12 Oct. 2010)
Copyright (C) 2010 Atmel Corp.

Usage: c51asm [options] <file> [options]
Options:
-d <datafile> : Generate data object called datafile
-f <B|G|I|M|O> : Specify object file format
-g : Generate debug information in OMF format
-h : This help text
-I <dir> : Specify additional include directories
-l [filename] : Generate list file optionally called filename
-o <filename> : Generate object file called filename
-q : Suppress information messages
-D <symbol>[=<value>[:type]]
: Define symbol optionally with value
More Options:
--columns : Print column location of errors
--datafile <file> : Generate data object called file
--debug : Generate debug information in OMF format
--devices : List supported devices
--dptr : Enable DPTR mode instruction aliases
--help : This help text
--include <dir> : Specify additional include dirs.
--listfile [list] : Create list file optionally called list
--nolist : Disable list file
--noobject : Disable object file
--nopaging : Disable paging in listing file
--omf-51 [file] : Generate OMF object optionally file called file
--outfile <obj> : Generate object file called obj
--quiet : Suppress information messages
--target : Use specified device
--verbose : Enable parser messages
--version : Version information
--filetype <O|G|I|M|B>
: Specify object file format
--define <symbol>[=<value>[:type]]
: Define symbol optionally with value

Report bugs to 8051@atmel.com
2-18 C51ASM User Guide

3710A–MICRO–10/10

Running the Assembler
2.4 Batch File Operation

Under Microsoft Windows® C51ASM may also be run using the included C51ASM.BAT batch file. The
batch file allows running of the assembler from the Windows GUI with minimal command shell interac-
tion. The user is free to edit the file to add command line options as needed (See Section 2.3.2 on page
2-10); however, most options have an assembler control equivalent that can be placed directly in the
source file. The batch file is located under the <install>\C51ASM\DOC\ folder. There are two methods for
running the batch file.

2.4.1 Drag–and–Drop

Using this method you can assemble source files by dragging them on top of the C51ASM.BAT icon.

1. Move or copy C51ASM.BAT to a visible place such as the Desktop or you local project directory.

2. Locate the assembly source file you want to assemble and drag it on top of the C51ASM.BAT icon as
shown in Figure 2-8. Note that you may only drag-and-drop one file at a time.

Figure 2-8. Assembling a file by drag and drop on top of batch file

3. A command shell will open with the C51ASM results. Press any key to close the shell.

Note that if you want the shell to close automatically, you can remove the “pause” line from the batch file.
However, you will lose any diagnostic messages output by the assembler unless you also redirect the
results to a log file.

2.4.2 Send To Menu

Using this method you can send source files to the assembler with the right-click context menu.

1. Install C51ASM.BAT in your “Send To” menu as described in Section 2.1.1.

2. Locate the assembly source file you want to assemble.

3. Right-click the source file and select first Send To and then C51ASM.BAT as shown in Figure 2-9 on
page 2-20.

4. A command shell will open with the C51ASM results. Press any key to close the shell.
C51ASM User Guide 2-19

3710A–MICRO–10/10

Running the Assembler
Figure 2-9. Using the Send To Menu to assemble a file
2-20 C51ASM User Guide

3710A–MICRO–10/10

Section 3

C51ASM Assembly Language

The following section describes the general syntax of assembler statements and the assembler instruc-
tions that have been implemented in the Atmel® C51ASM assembler .The user should be familiar with
both 8051 microcontrollers and assembly language programming before reading this manual. This man-
ual does not describe the architecture of the 8051 microcontroller family in general, or of the Atmel AT89
devices specifically, nor does it review the basic concepts of assembly language programming.

3.1 Statements

Assembly source files consist of a sequence of statements that include assembler controls, directives or
8051 instructions (mnemonics). Each line of an assembly program can contain only one type of state-
ment. Statements must be contained on exactly one line; multi-line statements are not allowed.
Statements have one of the following forms, where everything in [] brackets is optional:

[label:] [instruction [arguments]] [;comment]
[label:] directive [arguments] [;comment]
$control [(argument)] [control [(argument)]] [;comment]

The maximum length of assembly source lines is not limited; however, lines should be kept shorter than
255 characters for compatibility with other assemblers. The lexical elements of a statement must be sep-
arated by spaces or tabs if another delimiting character is not present. The assembler is case
insensitive, upper and lower case letters are equivalent, except in character string constants.

Example:

LABEL1: MOV A,#0FFH ;define label LABEL1 and load A with FFH
YEAR EQU 2010 ;define symbol for current year
$INCLUDE (AT89LP828.inc) ;include AT89LP828 register definitions header

3.2 Comments

Comments are user-defined lines of text that identify and explain the program, but are not processed by
the assembler. Comments must be preceded with either a semicolon character (;) or a double forward
slash (//). All text after the comment character(s) is ignored by the assembler up to the end of line. Blank
lines are also considered to be commentary.

;[comment text]
//[comment text]

Comments may be included anywhere in your assembly program. A comment can appear on a line by
itself or can appear at the end of an instruction. Double semicolon comments (;;) have special meaning
inside macro definitions, see Section 4.1.5 ”Macro Operators” on page 4-5.
C51ASM User Guide 3-1

3710A–MICRO–10/10

C51ASM Assembly Language
Example:

;This is a comment line
//This is also a comment
NOP ;This is an end comment
NOP //This is a C-style end comment

3.3 Symbols

Symbols are user-defined names for addresses, numbers or macros. Symbols are composed of letters
(A–Z, a–z), digits (0–9), and the special characters underline (_) and question mark (?). A symbol name
can start with any of these characters except the digits 0–9. Upper and lower case letters are considered
to be equivalent. Assembly language keywords cannot be redefined as user symbols! See “Appendix D -
Reserved Keywords” for a list of reserved keywords. C51ASM defines some internal symbols that start
with a double question mark (??), see Section 3.3.2 ”Predefined Symbols” on page 3-3. User symbols
that start with "??" are not recommended. The following are examples of legal symbols:

BUFFER
LOC_1024
Is_this_a_valid_SYMBOL_?
?_?_1

Symbols can have unlimited length; however for cross compatibility the maximum significant length is 31
characters. Therefore the symbol should be unique within the first 31 characters.

Symbols are frequently used in assembly programs. A symbolic name is much easier to understand and
remember than an address or numeric constant, and a symbol that is defined once and used many times
reduces errors. Symbols may be defined in several of ways. The EQU and SET directives define sym-
bols to represent expressions:

TEN EQU 10
COUNTER SET R7

Labels are special symbols that implicitly define an address of a physical location:

LOOP: DJNZ R7, LOOP

Symbols can also explicitly define an address:

ACC DATA 0E0H

3.3.1 Labels

A label is a special symbol that defines a "physical" location (i.e. an address) in your program or data
space. Labels must follow all rules that apply to symbol names. When defined, a label must be the first
text field in a line. It may be preceded by tabs or spaces and must be immediately followed by a colon
character (:) to identify it as a label. Only one label may be defined on a line.

Labels may only be used before statements that have a physical address associated with them. These
include instruction mnemonics, data storage directives (DB and DW), and data reservation directives
(DS and DBIT). Labels may also be used before empty lines. For example, the following are valid labels:

POLL: JNB TI, POLL
TABLE: DB 0,1,2,3,4,5
STACK: DS 16
START:
3-2 C51ASM User Guide

3710A–MICRO–10/10

C51ASM Assembly Language
When a label is defined, it receives the current value of the location counter in the currently selected seg-
ment and takes the type of that segment. Labels are never typeless.

Once a label has been defined it can be used just like any other symbol. Labels defined in the program
space are generally used to transfer program execution to a different location by specifying them as the
target of a jump instruction. Data labels are usually used to access variables in memory at the specified
location.

3.3.2 Predefined Symbols

C51ASM has a number of predefined (built-in) DATA, BIT and CODE symbols for access to the standrd
80C51 special function registers and interrupt addresses. These predefined symbols can be switched off
with the $NOMOD51 control. To suppress the predefined symbols from appearing in the symbol table
use the $NOBUILTIN control. For detailed information on predfined symbols and addresses refer to
“Appendix C - Predefined Symbols” .

For identification of the assembler and its version number, the following NUMBER type symbols in Table
3-1 are predefined:

Note: These two symbols can not be switched off!

The following device specific symbols in Table 3-2 are also predefined. If a specific device is set by the
$DEVICE control or on the command line by --target, their values will reflect the parameters of the
selected device.

In addition each supported device listed by the --devices option has a variable defined with a unique
value with the following form:

??_<devicename>_

where <devicename> is replaced by the device name. This allows the currently selected device in
??DEVICE to be checked against specific devices. For example:

IF ??DEVICE == ??_AT89LP216_
. . . ;configure for AT89LP216
. . .
ELSEIF ??DEVICE == ??_AT89LP828_
. . . ;configure for AT89LP828
. . .
ENDIF

Table 3-1. Assembler Info Symbols

Symbol Value Description

??C51ASM 8051H Assembler is C51ASM

??VERSION 0100H Version is 1.0

Table 3-2. Target Device Symbols

Symbol Default Description

??DEVICE 0 ID of targeted device

??CODE_SIZE 65536 Code memory size of targeted device

??RAM_SIZE 256 RAM size of targeted device

??ERAM_SIZE 65536 Extended RAM size of targeted device

??FDATA_SIZE 65536 Flash data memory size of targeted device
C51ASM User Guide 3-3

3710A–MICRO–10/10

C51ASM Assembly Language
C51ASM reserves the names of several 8051 registers for use as operands. These predefined names
are used to access the processor registers as described below in Table 3-3.

3.4 Constants

C51ASM supports numbers in binary, octal, decimal and hexadecimal format. Numeric constants consist
of a sequence of digits followed by a radix specifier. The first character must always be a decimal digit.
Alternatively for binary, octal and hexadecimal numbers a radix may be prefixed to the digits. The letter
digits and radix designators can be in upper or lower case. The legal digits and radix specifiers are
shown in Table 3-4.

Thus, for example, the following constants are equivalent:

 1111111B binary
 177Q octal
 177o octal
 127 decimal
 127d decimal
 07FH hex
0b1111111 binary
 0177 octal
 0x7FH hex

Table 3-3. Special Operand Symbols

Symbol Description

$
The current value of the location counter in the current segment, before a line is assembled. $
will be the starting address for the assembled line.

A
The 8051 accumulator register. It is used to specify the accumulator as the source or
destination operand. Note A cannot be used as the address of the accumulator for direct
addresses.

AB The A and B register pair used in MAC, MUL and DIV operations.

AR0–AR7

The absolute data addresses of R0 through R7 in the current register bank. The absolute
address for these registers changes depending on the register bank that is currently selected.
These symbols are only available when the USING assembler statement is given. Refer to the
USING assembler statement for more information on selecting the register bank.

C The Carry flag. Used by operations that generate a carry or borrow.

DPTR The selected 16-bit Data Pointer.

PC
The Program Counter. PC can represent the address of the next instruction when used with
indexed addressing, i.e A+PC, or the address of the current instruction as a synonym for $ in
expressions. Note PC always refers to the CODE segment.

R0–R7 The eight general purpose 8051 registers in the currently active register bank.

Table 3-4. Supported Number Formats

Base Legal Digits Radix (Suffix) Radix (Prefix)

binary 0–1 B 0b

octal 0–7 Q or O 0

decimal 0–9 D or none

hexadecimal 0–9, A–F, a–f H 0x
3-4 C51ASM User Guide

3710A–MICRO–10/10

C51ASM Assembly Language
Character constants may be used wherever a numeric value is allowed. A character constant consists of
one or two printing characters enclosed in single quotes (') or double quotes ("). The single quote char-
acter itself can be represented by two subsequent quotes (''). For example:

 'A' 8 bit constant: 41H
"b?" 16 bit constant: 623FH
'''' 8 bit constant: 27H

In DB statements, character constants may have any length to create character strings. For example:

DB 'This is sample text!'

The difference between single-quoted and double-quoted strings is that double-quoted strings allow C-
style escaped characters using the backslash (\). The double quote itself can be represented if it is pre-
ceeded by a backslash (\"). Valid escape characters are listed in Table 3-5. Escaped octal and
hexidemical codes are not supported.

Null terminated strings can be constructed by mixing string and numeric data, or by using the \0.

DB 'This is a null terminated string',0
DB "and so is this\0"

The location counter may be used to automatically compute the length of a string constant at assembler
run time.

text: DB "Find the length of this string",0
textlen EQU $-text ; textlen = strlen(text)+1

Table 3-5. Character String Escape Characters

Escape Value Description

\0 0x00 Null character

\a 0x07
Alert (bell)
character

\b 0x08 Backspace

\f 0x0C Formfeed

\n 0x0A Newline

\r 0x0D
Carriage
return

\t 0x07 Horizontal tab

\v 0x0B Vertical tab

\\ 0x5C Backslash

\' 0x27 Single quote

\" 0x22 Double quote
C51ASM User Guide 3-5

3710A–MICRO–10/10

C51ASM Assembly Language
3.5 Expressions

Arithmetic expressions are composed of operands, operators and parentheses. Operands may be user-
defined symbols, constants or special assembler symbols. All operands are treated as unsigned 16-bit
numbers. Special assembler symbols, that can be used as operands are shown in Table 3-6.

The following operators in Table 3-7 are implemented:

Table 3-6. Special Expression Symbols

Symbol Description

AR0–AR7 Direct addresses of registers R0 thru R7

$
PC

the location counter of the currently active segment
(start address of the current assembler statement)

Table 3-7. Supported Operators

Operator Text Form Function

Unary operators:

+ Identity: +x = x

- Two's complement: -x = 0-x

~ NOT One's complement: NOT x = FFFFH-x

 HIGH High order byte

 LOW Low order byte

Binary operators:

+ Unsigned addition

- Unsigned subtraction

* Unsigned multiplication

/ Unsigned division

% MOD Unsigned remainder

<< SHL Logical shift left

>> SHR Logical shift right

& or && AND Bitwise Logical and

| or || OR Bitwise Logical or

^ XOR Bitwise Exclusive or

. Bit operator used for bit-adressable locations

= or == EQ Equal to

<> or != NE Not equal to

< LT Less than

<= LE Less or equal than

> GT Greater than

>= GE Greater or equal than
3-6 C51ASM User Guide

3710A–MICRO–10/10

C51ASM Assembly Language
Nonsymbolic keyword operators, such as SHR or AND, must be separated from their operands by at
least one blank or tab. Expressions are evaluated from left to right according to operator precedence,
which may be overridden by parentheses. Parentheses may be nested to any level. Expressions always
evaluate to unsigned 16-bit numbers, while overflows are ignored. When an expression result is to be
assigned to an 8-bit quantity, the high byte must be either 00 or FF. For relational operators TRUE eval-
uates to FFFFH and FALSE evaluates to 0.

Example: The expression

P1.((87+3)/10 AND -1 SHR 0DH)

will evaluate to 91H.

3.6 Segment Type

Every expression is assigned a segment type at assembly time, depending on its operands and opera-
tors. The segment type indicates which address space the expression result would point to as an
address. There are eight possible segment types as shown in Table 3-9.

Table 3-8. Operator Precedence

Precedence Operators

1 (highest) ()

2 NOT HIGH LOW + - (unary)

3 .

4 * / MOD

5 SHL SHR

6 + - (binary)

7 EQ = NE <> LT < LE <= GT > GE >=

8 AND

9 (lowest) OR XOR

Table 3-9. Segment Types

Type Description

CODE Address in program memory

DATA Address in directly addressable data memory

IDATA Address in indirectly addressable data memory

EDATA Address in extended data memory

FDATA Address in flash data memory

XDATA Address in external data memory

BIT Address in bit addressable data memory

NUMBER Generic number (typeless)
C51ASM User Guide 3-7

3710A–MICRO–10/10

C51ASM Assembly Language
Most expression results are typeless and have the segment type NUMBER. However, some expressions
will evaluate to a particular segment type when the following six rules are applied:

Numerical constants are always typeless and are assigned to NUMBER.

Symbols are assigned a segment type during definition. Symbols that are defined with EQU or SET
have NUMBER type. Symbols that are defined with an explicit type directive, e.g. DATA, BIT, etc., will
have that type. Labels get the segment type of the segment in which they were defined.

The result of a unary operation (+, -, NOT, HIGH, LOW) will have the segment type of its operand.

The results of all binary operations (except "+", "-" and ".") will have no segment type.

If only one operand in a binary "+" or "-" operation has a segment type, then the result will have that
segment type, too. In all other cases, the result will have no segment type.

The result of the bit operation "." will always have the segment type BIT.

Example:

The following symbols have been defined in a program:

OFFSET EQU 16
START CODE 30H
DOIT CODE 0100H
REDLED BIT P1.3
VARIAB4 DATA 20H
PORT DATA 0C8H
RELAY EQU 5

The expression START+OFFSET+3 will have the segment type CODE.

The expression START+DOIT will be typeless.

The expression DOIT-REDLED will be typeless.

The expression 2*VARIAB4 will be typeless.

The expression PORT.RELAY will have the segment type BIT.

The segment type is checked only when expressions appear as addresses. If the expression result is not
typeless and does not have the segment type of the corresponding segment, the instruction is flagged
with an error message. The only exceptions are the segment types DATA and IDATA, which are
assumed to be compatible in the address range of 0 to 7FH.

Example:

Line I Addr Code Source

 1: N 30 DSEG AT 030H ;internal RAM
 2: 30 N 01 COUNT: DS 1 ;counter variable
 3:
 4: CSEG ;ROM
 5: 0000 C2 30 START: CLR COUNT
 ^
 @@@@@ segment type mismatch @@@@@

The CLR instruction is flagged with the error message "segment type mismatch" in the assembler list file,
because only a BIT type address is allowed here. However, COUNT is a label with the segment type
DATA.
3-8 C51ASM User Guide

3710A–MICRO–10/10

C51ASM Assembly Language
3.7 The 8051 Instruction Set

The Atmel® C51ASM assembler implements all 255 of the standard 8051 machine instructions. A table
of all 8051 instructions with their opcodes, mnemonics, arguments, and lengths , along with detailed
descriptions can be found in Section 9 “Instruction Set Reference” .

C51ASM also supports the extended instruction set of the Atmel AT89LP family. These instructions may
not be supported on every device. The extensions to the instruction set are listed below:

In addition to instructions the assembler supports generic jumps and calls that do not represent a spe-
cific opcode. The assembler implements the following two generic instructions:

JMP <address>
CALL <address>

These instructions evaluate to a jump or call, although not necessarily the shortest, that will reach the
specified address. JMP may assemble to SJMP, AJMP, LJMP or EJMP, while CALL can evaluate to
ACALL, LCALL or ECALL. Note that the assembler decision may not be optimal. For code addresses
that are forward references (a location later on in the program), the assembler cannot determine which
form is most efficient. For forward references the assembler always generates LJMP or LCALL respec-
tively for standard (<=64KB) mode and EJMP or ECALL respectively for extended (>64KB) mode.
However, for backward references this is still a powerful tool to reduce code size without extra trouble.

Table 3-10. Instruction Set Extensions

Hex Code Bytes Mnemonic Operands Description

A5 00 2 BREAK Software Breakpoint

A5 02 5 EJMP code addr Extended Jump

A5 03 2 ASR M Arithmetic Shift MAC Accumulator Right

A5 12 5 ECALL code addr Extended Subroutine Call

A5 22 2 ERET Extended Subroutine Return

A5 23 2 LSL M Logically Shift MAC Accumulator Left

A5 73 2 JMP @A+PC Jump indirect relative to PC

A5 90 4 MOV /DPTR, #data
Load Alternate Data Pointer with a 16-bit
constant

A5 93 2 MOVC A, @A+/DPTR
Move Code byte relative to Alternate DPTR to
Acc

A5 A3 2 INC /DPTR Increment Alternate Data Pointer

A5 A4 2 MAC AB Multiply and Accumulate {AX,A} and {BX,B}

A5 B6 3 CJNE A, @R0, code addr Compare indirect to Acc and jump if not equal

A5 B7 3 CJNE A, @R1, code addr Compare indirect to Acc and jump if not equal

A5 E0 2 MOVX A, @/DPTR
Move External RAM (16-bit addr from Alternate
DPTR) to Acc

A5 E4 2 CLR M Clear MAC Accumulator

A5 F0 2 MOVX @/DPTR, A
Move Acc to External RAM (16-bit addr from
Alternate DPTR)
C51ASM User Guide 3-9

3710A–MICRO–10/10

C51ASM Assembly Language
Some AT89LP devices support special modes for data pointer (DPTR) instructions. C51ASM supports
some alias instructions that better capture the intent of the programmer. These aliases are not new
instructions, but map to existing instructions. No attempt is made to check if the correct mode has been
set when these aliases are used. To enable parsing of the aliases the --dptr option must be included on
the command line.

3.8 Assembler Directives

C51ASM provides a number of pseudo instructions for defining symbol values, reserving and initializing
storage, and controling the placement of code and data. These statements are not to be confused with
processor instructions or assembler controls. They do not produce executable code and, with the excep-
tion of the DB, DW, BYTE and WORD statements, they have no direct effect on the contents of code
memory. These directives change the state of the assembler, define user symbols, and add information
to the object file. For further information see the full reference in Section 5 “Assembler Directives” .

Directives statements may be divided into the following categories:

Table 3-11. Data Poiner Aliases

MOVC A, @A+DPTR++ MOVC A, @A+DPTR-- MOVC B, @A+DPTR++ MOVC B, @A+DPTR--

MOVC A, @A+/DPTR++ MOVC A, @A+/DPTR-- MOVC B, @A+/DPTR++ MOVC B, @A+/DPTR--

MOVC A, @DPTR MOVC A, @/DPTR MOVC B, @DPTR MOVC B, @/DPTR

MOVC A, @DPTR++ MOVC A, @DPTR-- MOVC B, @DPTR++ MOVC B, @DPTR--

MOVC A, @/DPTR++ MOVC A, @/DPTR-- MOVC B, @/DPTR++ MOVC B, @/DPTR--

DEC DPTR DEC /DPTR MOVX B, @DPTR MOVX B, @/DPTR

MOVX A, @DPTR++ MOVX A, @DPTR-- MOVX B, @DPTR++ MOVX B, @DPTR--

MOVX A, @/DPTR++ MOVX A, @/DPTR-- MOVX B, @/DPTR++ MOVX B, @/DPTR--

MOVX @DPTR++, A MOVX @DPTR--, A MOVX @DPTR++, B MOVX @DPTR--, B

MOVX @/DPTR++, A MOVX @/DPTR--, A MOVX @/DPTR++, B MOVX @/DPTR--, B

Table 3-12. Address Control Directives

Directive Description

ORG Set the location counter to a specific offset or address.

USING Specify which register bank to use.

Table 3-13. Segment Control Directives

Directive Description

BSEG Define an absolute bit segment, or switch to previous bit segment.

CSEG Define an absolute code segment, or switch to previous code segment.

DSEG Define an absolute data segment, or switch to previous data segment.

ESEG Define an absolute extended data segment, or switch to previous extended data
segment.
3-10 C51ASM User Guide

3710A–MICRO–10/10

C51ASM Assembly Language
FSEG Define an absolute flash data segment, or switch to previous flash data segment.

ISEG Define an absolute indirect data segment, or switch to previous indirect data segment.

XSEG Define an absolute external data segment, or switch to previous external data segment.

Table 3-14. Segment Defintion Directives

Directive Description

BIT Define an address in bit space.

CODE Define an address in code space.

DATA Define an address in data space.

DEFINE Define a symbol value.

EDATA Define an address in extended data space.

EQU Define a symbol value.

FDATA Define an address in flash data space.

IDATA Define an address in indirect data space.

SET Set a variable symbol value.

SFR Define an address in SFR space.

XDATA Define an address in external data space.

Table 3-15. Conditional Assembly Directives

Directive Description

IF Begin an IF-ELSE-ENDIF block.

IFN Begin an IFN-ELSE-ENDIF block.

IFDEF Begin an IFDEF-ELSE-ENDIF block.

IFNDEF Begin an IFNDEF-ELSE-ENDIF block.

IFB Begin an IFB-ELSE-ENDIF block.

IFNB Begin an IFNB-ELSE-ENDIF block.

ELSEIF Begin an alternate IF block.

ELSEIFN Begin an alternate IFN block.

ELSEIFDEF Begin an alternate IFDEF block.

ELSEIFNDEF Begin an alternate IFNDEF block.

ELSEIFB Begin an alternate IFB block.

ELSEIFNB Begin an alternate IFNB block.

ELSE Begin an ELSE block.

ENDIF Terminate an IF block.

Table 3-13. Segment Control Directives

Directive Description
C51ASM User Guide 3-11

3710A–MICRO–10/10

C51ASM Assembly Language
3.9 Assembler Controls

C51ASM implements a number of assembler controls that influence the assembly process and list file
generation. There are two groups of controls: primary and general controls.

Primary controls can only be used at the beginning of the program and remain in effect throughout the
assembly. They may be preceded only by control statements, blank and commentary lines. If the same
primary control is used multiple times with different parameters, the last one counts. Many primary con-
trols also have command line option equivalents. Command line options always override equivalent
controls in the assembly source.

General controls may be used everywhere in the program. They perform a single action, or remain in
effect until they are cancelled or changed by a subsequent control statement.

A control statement starts with a dollar sign ($) character, followed by one or more assembler controls.
Spaces or tabs are allowed between the '$' and the first control. Subsequent controls on the same line
must be separated by spaces or tabs. $INCLUDE controls must be the last control on a line. Any controls
after the $INCLUDE will be ignored until the end of the line.

Table 3-16. Macro Defintion Directives

Directive Description

MACRO Defines a macro

LOCAL Declare labels with local scope inside macro

ENDM End of macro definition

EXITM Terminates macro expansion immediately

REPT Defines a block that is expanded a specified number of times

Table 3-17. Memory Initialization Directives

Directive Description

BYTE Allocate memory for one or more defined byte values. Alias for DB

DB Allocate memory for one or more defined byte values.

DW Allocate memory for one or more defined word values.

WORD Allocate memory for one or more defined word values. Alias for DW

Table 3-18. Memory Reservation Directives

Directive Description

DBIT Reserve space for one or more bits.

DS Reserve space for one or more bytes.

Table 3-19. Miscellaneous Directives

Directive Description

END End of program.

NAME Define module name
3-12 C51ASM User Guide

3710A–MICRO–10/10

C51ASM Assembly Language
Assembler controls may have a number or string type operand, which must always be enclosed in
parentheses. Number type operands are decimal, octal or hexadecimal constants in standard C form.
String type operands are character strings which are enclosed in parentheses instead of quotes. In anal-
ogy to quoted strings, no control characters (including tabs) are allowed within these strings! The string
delimiters '(' and ')' are allowed as long as the number of open and closing parentheses is balanced.

If a control statement changes the listing mode, the control statement itself is always listed in the new
listing mode!

The following tables lists all the implemented controls and their abbreviations. For further information see
the full reference in Section 6 “Assembler Controls” .

Table 3-20. Primary Controls

Control Abbreviation Description

$DATE $DA inserts date string into page header

$DEBUG $DB include debug information into object

$NODEBUG $NODB don't include debug information

$DEVICE select device

$INCDIR add a directory to search path

$MACRO $MR reserve n % of free memory for macros

$NOMACRO $NOMR reserve all for the symbol table

$MAPFSEG remap FSEG location in object file

$MOD51 $MO enable predefined 80C51 SFR symbols

$MOD52 enable predefined 80C52 SFR symbols

$NOMOD51 $NOMO disable predefined SFR symbols

$NOBUILTIN don't list predefined symbols

$NOTABS don't use tabs in list file

$OBJECT $OJ generate object file

$NOOBJECT $NOOJ don't generate object file

$PAGING $PI enable listing page formatting

$NOPAGING $NOPI disable listing page formatting

$PAGELENGTH $PL set lines per page for listing

$PAGEWIDTH $PW set columns per line for listing

$PRINT $PR generate list file

$NOPRINT $NOPR don't generate list file

$SYMBOLS $SB create symbol table

$NOSYMBOLS $NOSB don't create symbol table

$XREF $XR create cross reference

$NOXREF $NOXR don't create cross reference
C51ASM User Guide 3-13

3710A–MICRO–10/10

C51ASM Assembly Language
The default state of the assembler controls corresponds to the following:

$DATE()
$TITLE(Copyright (c) 2010 Atmel Corp.)
$MACRO(50)
$MOD51
$OBJECT NOPRINT NODEBUG
$PAGING PAGELENGTH(64) PAGEWIDTH(132)
$SYMBOLS NOXREF
$COND GEN LIST

3.10 Conditional Assembly

C51ASM supports conditional program assembly using several conditional assembly directives. Condi-
tional assembly allows selected parts of source code to be assembled or ignored. Conditional assembly
may be used to simplify configuration control and maintenance by implementing different program ver-
sions or different memory models within a single source file. Using conditional assembly, you can easily
maintain one source module that satisfies several applications. The following directive instructions are
supported:

Table 3-21. General Controls

Control Abbreviation Description

$COND list full IF .. ENDIF constructions

$NOCOND don't list lines in false branches

$CONDONLY list assembled lines only

$EJECT $EJ start a new page in list file

$ERROR force a user-defined error

$MESSAGE output a message to console

$WARNING output a warning message to console

$GEN $GE list macro calls and expansion lines

$NOGEN $NOGE list macro calls only

$GENONLY $GO list expansion lines only

$INCLUDE $IC include a source file

$LIST $LI list subsequent source lines

$NOLIST $NOLI don't list subsequent source lines

$SAVE $SA save current $LIST/$GEN/$COND state

$RESTORE $RS restore old $LIST/$GEN/$COND state

$TITLE $TT inserts title string into page header
3-14 C51ASM User Guide

3710A–MICRO–10/10

C51ASM Assembly Language
The IF, ELSEIF, ELSE and ENDIF directives define conditional assembly blocks. C51ASM supports a
number of variants of the the IF and ELSEIF directives that test different conditions in both positive and
negative sense. For this document, assume that IF and ELSEIF are synonymous with their respective
variants.

Conditional assembly blocks must start with an IF statement and must conclude with an ENDIF state-
ment. A conditional assembly block can include optional alternative blocks beginning with the ELSEIF
and ELSE directives. Each ELSEIF or ELSE statement terminates the previous IF or ELSEIF block. The
ENDIF terminates the last ELSEIF or ELSE block and the entire IF-ELSE-ENDIF construct.

Syntax:

Table 3-22. Conditional Assembly Directives

Directive Arguments Description

IF <expr> Assemble block if <expr> is true.

IFN <expr> Assemble block if <expr> is false.

IFDEF <symbol> Assemble block if <symbol> is defined.

IFNDEF <symbol> Assemble block if <symbol> is not defined.

IFB <literal> Assemble block if <literal> is blank.

IFNB <literal> Assemble block if <literal> is not blank.

ELSEIF <expr> Assemble block if <expr> is true and a previous IF or ELSEIF is false.

ELSEIFN <expr>
Assemble block if <expr> is not true and a previous IF or ELSEIF is
false.

ELSEIFDEF <symbol>
Assemble block if <symbol> is defined and a previous IF or ELSEIF is
false.

ELSEIFNDEF <symbol>
Assemble block if <symbol> is not defined and a previous IF or
ELSEIF is false.

ELSEIFB <literal>
Assemble block if <literal> is blank and a previous IF or ELSEIF is
false.

ELSEIFNB <literal>
Assemble block if <literal> is not blank and a previous IF or ELSEIF is
false.

ELSE Assemble block if the condition of a previous IF is false.

ENDIF Ends an IF block

#IF <expr> Assemble block if <expr> is true.

#ELIF <expr> Assemble block if <expr> is true and a previous #IF or #ELIF is false.

#IFDEF <symbol> Assemble block if <symbol> is defined.

#IFNDEF <symbol> Assemble block if <symbol> is not defined.

#ELSE Assemble block if the condition of a previous #IF is false.

#ENDIF Ends a #IF block

.IF <expr> Assemble block if <expr> is true.

.ELSE Assemble block if the condition of a previous .IF is false.

.ENDIF Ends a .IF block
C51ASM User Guide 3-15

3710A–MICRO–10/10

C51ASM Assembly Language
IF <condition 1>
. . . ;assembled if <condition 1> is TRUE
. . .
ELSEIF <condition 2>
. . . ;assembled if <condition 1> is FALSE,
. . . ;and <condition 2> is TRUE
. . .
ELSEIF <condition n>
. . . ;assembled if <condition 1> through
. . . ;<condition n-1> are FALSE and
. . . ;<condition n> is TRUE
ELSE
. . . ;assembled if <condition 1> through
. . . ;<condition n> are FALSE
ENDIF

The body of each conditional and alternative block may contain any number of assembly language state-
ments, including instruction mnemonics, controls, directives, macros and nested conditional IF-ELSE-
ENDIF blocks. IF-ELSE-ENDIF blocks may be nested to any depth! Use the $COND, $NOCOND and
$CONDONLYcontrols to set the listing mode of conditional assembly blocks.

Example:

Simple IF-ENDIF block checking if NOLISTING is defined.

IFDEF NOLISTING
$NOPRINT
ENDIF

Example:

IF-ELSE-ENDIF block optimizing for case when X is zero.

IF (X == 0)
CLR A
ELSE
MOV A, #X
ENDIF

Example:

IF-ELSEIF-ELSE-ENDIF block ensuring macro has valid operands

CMP MACRO OP1, OP2
IFB
$ERROR(Missing 1st operand to CMP)
ELSEIFB
$ERROR(Missing 2nd operand to CMP)
ELSE
MOV A, OP1
CLR C
SUBB A, OP2
ENDIF
ENDM
3-16 C51ASM User Guide

3710A–MICRO–10/10

Section 4

Macro Processing

The Atmel® C51ASM assembler supports a standand macro processor that is similar to those found in
other assemblers. The macro processor is a string replacement tool for writing resuable code blocks (i.e.
macros) that are used in one or more places in your assembly source code. Each macro call in a pro-
gram is replaced by its definition and assembled as if the statements were written explicitly, a process
called expansion. Macro expansion occurs at assembly time, so the macro processor can take advan-
tage of the standard assembler facilities. Macro expansion can be suppressed with the $NOMACRO
control.

Macros are not subroutines. Subroutines are fixed blocks of code that are defined and assembled once
in the program and will generate machine code even if they are never called. Subroutines are called
explicitly with the CALL instructions and all the requirements of context-switching must be handled in the
program. Macros generate in-line code every time they are called. If a macro is never called, its body will
not appear is the assembled program, but if it is called many times the associated code is generated
many times as well and the size of the program can increase rapidly. Macros may also generate different
code at each call, depending on the state of their parameters. The programmer must determine if com-
mon code should be implemented as a subroutine or macro depending on the requirements of the
application. The following assembler directives support macro definition:

4.1 Standard Callable Macros

4.1.1 Defining Macros

Standard macros must be defined before they are called in a program. A MACRO directive statement
starts a macro definition as follows:

Syntax:

<macro-name> MACRO [<parameter 1>[, <parameter 2>[, ... ,<parameter n>]]]
[LOCAL <symbol 1>[,<symbol 2>[, ... , <symbol n>]]]
. . .
<macro-body>
ENDM

Table 4-1. Macro Defintion Directives

Directive Description

MACRO Defines a macro

LOCAL Declare labels with local scope inside macro

ENDM End of macro definition

EXITM Terminates macro expansion immediately

REPT Defines a block that is expanded a specified number of times
C51ASM User Guide 4-1

3710A–MICRO–10/10

Macro Processing
The macro definition header contains the macro name and formal parameter list. The <macro-name>
must be a unique symbol that obeys all the rules of symbol creation. Macro names cannot be keywords
and cannot be redefined. The macro can have an optional list of one or more parameters that are passed
to the macro body, see “Macro Parameters” on page 4-3.

Following the header is an optional list of symbols declared in local scope using the LOCAL directive,
see “Local Symbols” on page 4-4.

The <macro-body> contains the template that will replace the macro name in the assembly source. The
body may contain instruction mnemonics, directives, controls, macro calls and even further macro defini-
tions. This is no limit on the number of lines in the body. The macro body and consequently the macro
definition is terminated with the ENDM directive. Note that the macro body is treated as text. Any nested
macro calls will not be expanded until the parent macro is called. Likewise, any nested macro definitions
will not be defined until the parent macro is called. See “Nested and Recursive Macro Calls” on page 4-9
and “Nested Macro Definitions” on page 4-10.

Example:

ADD16 MACRO ;definition of ADD16
MOV A, R0 ; add {R1,R0} + {R3,R2}
ADD A, R2 ; result in {B,A}
XCH A, B
CLR A
MOV A, R1
ADDC A, R3
XCH A, B
ENDM

4.1.2 Calling Macros

To call a macro, specify the macro name followed by the list of arguments, if any. When a macro is
called, the macro body is expanded in place of the calling statement and then assembled as normal
source lines. A macro can be called by its name in the subsequent program as often as desired. Note
that the macro definition must occur before the macro is called. Forward references to macros are not
allowed.

Syntax:

<macro-name> [<arg 1>[, <arg 2>[, ... ,<arg n>]]]

Example:

ADD16 ;call

After the call of the macro ADD16, the body lines

MOV A, R0 ; add {R1,R0} + {R3,R2}
ADD A, R2 ; result in {B,A}
XCH A, B
CLR A
MOV A, R1
ADDC A, R3
XCH A, B

are inserted into the program and assembled.
4-2 C51ASM User Guide

3710A–MICRO–10/10

Macro Processing
4.1.3 Macro Parameters

Macro parameters allow callable macros to be called with arguments that are passed to the macro body.
This allows for creation of more dynamic, flexible macros that are written once, but can be adapted to
each calling context. The names of the formal parameters are specified in the macro definition header
following the MACRO keyword, separated by commas. All parameter names must be unique symbols
that obey all the rules of symbol creation. Keywords cannot be used as parameter names. Macros may
have any number of parameters, as long as they fit on one line. Parameter symbols have local scope
within the macro body. The same parameter names may be used in other macros, or as standard sym-
bols in the main assembly code, without conflict.

Parameters in the body of the macro are represented by the parameter name. They may be used any
number of times and in any order within the macro body. The assembler cannot recognize a parameter
symbol if it is part of another symbol, is contained in a quoted string, or appears in commentary. In these
cases the special macro operator '&' is required. See “Macro Operators” on page 4-5.

Syntax:

<macro-name> MACRO [<parameter 1>[, <parameter 2>[, ... ,<parameter n>]]]

Example:

macro_with_5_params MACRO p1, p2, p3, p4, p5

When a macro is called, arguments can be passed to the macro in place of the parameters. The argu-
ments must be separated by commas. Arguments are non-delimited character strings that, during macro
expansion, replace the symbols of the corresponding parameters in the macro body. The first argument
replaces the symbol of the first parameter, the second argument replaces the symbol of the second
parameter, and so forth, in a process called substitution. Valid macro arguments are:

Arbitrary sequences of printable characters, not containing spaces, tabs, commas, or semicolons

Quoted strings (in single or double quotes)

Single printable characters, preceded by '!' as an escape character

Character sequences, enclosed in literal brackets < ... >, which may be arbitrary sequences of valid
macro arguments (types 1–4), plus spaces, commas and semicolons

Arbitrary sequences of valid macro arguments (types 1–4)

Expressions preceded by a '%' character

Example:

DELAY MACRO NUM, REGISTER
MOV REGISTER, #NUM
DJNZ REGISTER, $
ENDM

DELAY 16, R7

After calling the macro DELAY, the body lines:

MOV R7, #16
DJNZ R7, $

are inserted into the program, and assembled. The parameter names NUM and REGISTER have been
replaced by the macro arguments "16" and "R7".
C51ASM User Guide 4-3

3710A–MICRO–10/10

Macro Processing
You may pass a NULL value for a parameter by omitting that parameter from the macro call. If an argu-
ment is omitted, the corresponding parameter is replaced by an empty string. Arguments at the end of
the call line are omitted by simply passing a fewer number of arguments that parameters. If arguments in
the middle of the call are to be omitted, the separating comma is still required. The number of arguments
passed to a macro can not be greater than the number of parameters.

Example:

MYMACRO MACRO P1,P2,P3,P4,P5,P6,P7,P8

The macro MYMACRO has eight parameters. If it is called as follows:

MUMACRO A1,,A3,,A5,A6

Then the formal parameters P1, P3, P5 and P6 are replaced by the arguments A1, A3, A5 and A6 during
substitution. The parameters P2, P4, P7 and P8 are replaced by a zero length string. To recognize
empty macro arguments, use the IFB and IFNB conditional assembly directives. (See Section 3.10 ”Con-
ditional Assembly” on page 3-14)

4.1.4 Local Symbols

Macros with internal branches may require labels to be defined within the macro body. However, static
label names cause errors when the macro is called more than once because the same label name is
defined in multiple places. One way to solve this is to have the macro pass the label name as a parame-
ter. Another way is to generate a label within the macro body. C51ASM hides this from the programmer
with the concept of local symbols.

The LOCAL directive declares one or more symbols, separated by commas, to have local scope within a
macro. Local symbols must be valid symbols, unique within the macro, and different from the formal
parameter names (if any). Keywords cannot be used as local symbol names. If a local symbol has the
same name as a global symbol, the local scope takes precedance during substitution. LOCAL state-
ments can only occur directly after a MACRO or REPT statement, before any body lines. Any number of
LOCAL statements is allowed.

During macro expansion local macro symbols are replaced with a unique, sequentially-numbered label
that increments each time the macro is invoked. These have the format "??xxxx", where xxxx is a unique
number in hexadecimal format. To avoid name conflicts with substituted local symbols, is not recom-
mended to use symbols with the format "??xxxx" in the main assembly source.

Example:

The following macro implements compare and jump if greate than or equal:

CJGE MACRO OP1, OP2, TARGET
CJNE OP1, OP2, NEQ
SJMP TARGET
NEQ: JNC TARGET
ENDM

If the macro CJGE is called multiple times, the label NEQ will be defined multiple times. NEQ can be
declared as a local symbol as shown:

CJGE MACRO OP1, OP2, TARGET
LOCAL NEQ
CJNE OP1, OP2, NEQ
SJMP TARGET
NEQ: JNC TARGET
ENDM
4-4 C51ASM User Guide

3710A–MICRO–10/10

Macro Processing
When CJGE is called for the first time, the local symbol NEQ will be replaced by ??0000:

CJGE A, #45, somewhere

CJNE A, #45, ??0000
SJMP somewhere
??0000: JNC somewhere

when it is called for the second time, NEQ will be replaced by ??0001, and so on:

CJGE R3, #56, somewhereelse

CJNE R3, #56, ??0001
SJMP somewhereelse
??0001: JNC somewhereelse

4.1.5 Macro Operators

Several special operators are available that are very useful for macro definition, call and expansion:

4.1.5.1 ;; Operator

The double-semicolon operator (;;) is used to precede comments that are not required in the macro
expansion. Single-semicolon (;) and C-style (//) comments are always stored with the macro definition
and will appear in the list file. Commentary that begins with (;;) is ignored during macro definition and
only appears in the macro definition part of the list file.

Example:

DELAY MACRO NUM, REGISTER
MOV REGISTER, #NUM ;; Use a DJNZ loop to delay processor
DJNZ REGISTER, $
ENDM

DELAY 5, R3

The commentary should only be visible in the definition of the macro DELAY. When DELAY is called, the
macro body is expanded as:

Table 4-2. Macro Operators

Operator Description

;;
The macro commentary operator indicates that subsequent text on the line should be
ignored.

!
The literal escape operator forces the assmebler to treat the next character literally. The
escaped character is passed to the macro, even if it is a control character, while the
literal operator itself is removed.

< >
The literal bracket operators pass the entire enclosed character string, including any
control characters, to the macro as one argument string, while the outermost pair of
brackets is removed.

%
The macro evaluation operator causes the subsequent macro argument to be
interpreted as an expression, which will be evaluated before it is passed to the macro.

&
The macro substitution operator separates parameter names from surrounding text,
including inside quoted strings and commentary.
C51ASM User Guide 4-5

3710A–MICRO–10/10

Macro Processing
MOV R3, #5
DJNZ R3, $

4.1.5.2 ! Operator

The exclamation mark operator (!) indicates that a special character is to be passed to a macro literally.
This operator enables you to pass as arguments comma (,) and angle bracket characters (< >) that are
normally interpreted as delimiters, or a semi-colon (;) that is interpreted as commentary, to a macro. To
pass more than one character literally, use the <...> operator.

Example:

SEND_ASCII_CHAR MACRO CH
MOV SBUF, #'&CH'
JNB TI, $
CLR TI
ENDM

The above macro transmits an ASCII character on the UART. To transmit a special character such as ';'
you would call SEND_ASCII_CHAR as follows:

SEND_ASCII_CHAR !;

which would then be expanded to:

MOV SBUF, #';'
JNB TI, $
CLR TI

4.1.5.3 <...> Operator

The angle bracket operators (< >) enclose text that should be passed literally to a macro. This operator
enables you to pass as arguments comma (,) characters that are normally interpreted as delimiters, or a
semi-colon (;) that is interpreted as commentary, to a macro. To pass an angle bracket, use the !
operator.

Example:

MAKE_TABLE MACRO NAME, VALUES
NAME: INC A
MOVC A, @A+PC
RET
DB VALUES
ENDM

Macro MAKE_TABLE creates a table lookup subroutine with a set of values. To call MAKE_TABLE with
any number of values, place the VALUES argument between < > so that it is passed directly to the DB
statement.

MAKE_TABLE MY_TABLE, <1, 1, 2, 3, 5, 8, 13, 21>

will expand to:

MY_TABLE: INC A
MOVC A, @A+PC
RET
DB 1, 1, 2, 3, 5, 8, 13, 21
4-6 C51ASM User Guide

3710A–MICRO–10/10

Macro Processing
4.1.5.4 % Operator

The percent operator (%) causes the subsequent argument to be evaluted as an expression rather than
being passed literally. An ASCII representation of the numeric value will be passed to the macro during
substitution. The value of the expression must be known on pass 1.

The % operator is frequently used with recursive macros.

Example:

SERIES MACRO STARTV, ENDV
IF STARTV LE ENDV
DB STARTV
SERIES STARTV+1, ENDV
ENDIF
ENDM

If macro SERIES is called as:

SERIES 1,3

the expansion would be:

DB 1
DB 1+1
DB 1+1+1

By prepending the first argument of the recursive call to SERIES with a %, the macro expansion
becomes much more readable:

SERIES MACRO STARTV, ENDV
IF STARTV LE ENDV
DB STARTV
SERIES %STARTV+1, ENDV
ENDIF
ENDM

SERIES 1,3
DB 1
DB 2
DB 3

4.1.5.5 & Operator

The ampersand operator (&) concatenates text and macro parameters by separating parameter names
from surrounding text. The & operator is the only way for the macro processor to recognize parameters
that are part of a larger symbol, or contained within quotes strings and comments. During substitution,
the assembler removes one '&' character from each sequence of '&' characters. To use a & character lit-
erally in a macro definition you must write two ampersands '&&'.

Example:

MAKE_LABEL MACRO NAM, NUM
NAM&NUM:
ENDM

When MAKE_LABEL is called as follows:

MAKE_LABEL LABEL, 08
C51ASM User Guide 4-7

3710A–MICRO–10/10

Macro Processing
the parameters NAM and NUM are substituted during macro expansion as shown below:

LABEL08:

4.1.6 Exiting Macro Expansion

The EXITM directive immediately terminates macro expansion before the end of the macro body is
reached.. When this directive is detected, the macro processor stops expanding the current macro and
resumes processing after the next ENDM directive. The EXITM directive only makes sense in conjunc-
tion with conditional assembly.

When macro expansion is terminated with EXITM, all IF-ELSE-ENDIF conditional assembly blocks that
have been opened within the macro body at the point of the EXITM are closed.

Example:

DELAY MACRO NUM, REGISTER
IFB
$ERROR(MACRO DELAY requires two arguments)
EXITM
ELSEIFB
EXITM
ENDIF
MOV REGISTER, #NUM ;; Use a DJNZ loop to delay processor
DJNZ REGISTER, $
ENDM

If macro DELAY is called with no arguments like:

DELAY

It will expand to:

$ERROR(MACRO DELAY requires two arguments)

4.2 Repeat Macros

A "Repeat" macro is a special built-in macro that expands its body a set number of times. Repeat macros
start with the REPT keyword, followed by an <expr> for the number of repetitions, which must be known
on pass 1. The repeat macro defintion is terminated with an ENDM directive. Repeat macros don't have
a macro name and therefore cannot be called multiple times. They are always expanded immediately
after their definition.

Repeat macros can also have local symbols like callable macros.

Syntax:

REPT <expr>
[LOCAL <symbol 1>[,<symbol 2>[, ... , <symbol n>]]]
. . .
<macro-body>
. . .
ENDM
4-8 C51ASM User Guide

3710A–MICRO–10/10

Macro Processing
Example:

REPT 5
NOP
ENDM

This REPT block will expand to five NOP instructions immediately after its definition:

NOP
NOP
NOP
NOP
NOP

Repeat macros can be made reusable by nested them in a standard callable macro:

DO_NOPS MACRO N
REPT N
NOP
ENDM
ENDM

4.3 Nested and Recursive Macro Calls

It is perfectly legal for macro bodies to contain macro calls. If a macro call is encountered during the
expansion of a macro, the assembler starts immediately expanding the called macro. The expanded
body lines are simply inserted into the expanded macro body of the calling macro, until the called macro
is completely expanded. Then the expansion of the calling macro is continued with the body line follow-
ing the nested macro call. The nested macro is not expanded when the calling macro is defined, only
when the calling macro itself is expanded.

Example:

LOWER MACRO
MOVC A, @A+DPTR
INC DPTR
ENDM

UPPER MACRO
MOV A,#13
LOWER
MOV @R0,A
INC R0
ENDM

The macro UPPER calls the macro LOWER in its body. If UPPER is called the expansion will look like:

MOV A,#13
MOVC A, @A+DPTR
INC DPTR
MOV @R0,A
INC R0
C51ASM User Guide 4-9

3710A–MICRO–10/10

Macro Processing
Macros can also recursively call themselves. There must be a stop condition to prevent the macro from
calling itself over and over until the assembler runs out of memory. Conditional assembly can be
employed to check the limits of some value within the macro.

Example:

SERIES MACRO STARTV, ENDV
IF STARTV LE ENDV
DB STARTV
SERIES %STARTV+1, ENDV
ENDIF
ENDM

The macro SERIES defines constants from STARTV through ENDV in ascending order in ROM. If
SERIES is called like this:

$GENONLY CONDONLY
SERIES 1,7

results in the following macro expansion:

DB 1
DB 2
DB 3
DB 4
DB 5
DB 6
DB 7

4.4 Nested Macro Definitions

It is also valid for a macro body to contain further macro definitions. Nested macro will only be defined
when the enclosing macro has been expanded! Therefore, the enclosing macro must have been called
before the nested macro can be called, otherwise the macro will be undefined. Nested macro definitions
are generally used to define macros with arbitrary names or wrap repeat macros in a reusable macro
shell.

Example:

MAKE_MACRO MACRO MACNAME, REG
MACNAME MACRO
XCH A, REG
PUSH ACC
XCH A, REG
ENDM
ENDM

A call of:

MAKE_MACRO PUSH_R0, R0

would define the macro:

PUSH_RO MACRO
XCH A, R0
PUSH ACC
4-10 C51ASM User Guide

3710A–MICRO–10/10

Macro Processing
XCH A, R0
ENDM

while the call:

MAKE_MACRO PUSH_AT_R1, @R1

would define the following macro:

PUSH_AT_R1 MACRO
XCH A, @R1
PUSH ACC
XCH A, @R1
ENDM

Example:

In the section on Repeat Macros we introduced the nested repeat block.

DO_NOPS MACRO N
REPT N
NOP
ENDM
ENDM

The macro call

DO_NOPS 4

will result in:

REPT 4
NOP
ENDM
NOP
NOP
NOP
NOP
C51ASM User Guide 4-11

3710A–MICRO–10/10

Macro Processing
4-12 C51ASM User Guide

3710A–MICRO–10/10

Section 5

Assembler Directives

In the subsequent paragraphs, all C51ASM assembler directives are described. Lexical symbols are
written in lower case letters, while assembler keywords are written in upper case. Instruction arguments
are represented by <arg>, <arg1> or something like that. Numeric expressions are represented by
<expr>, <expr1> and so on. Syntax elements enclosed in brackets are optional. The ellipsis "..." means
always "a list with any number of elements".

Table 5-1. Supported Assembler Directives

Directive Description

BIT Define bit address

BSEG Switch to BIT segment

BYTE Define bytes (Alias for DB)

CODE Define CODE address

CSEG Switch to CODE segment

DATA Define direct data address

DB Define bytes

DBIT Define bits

DEFINE Define numeric constant

DS Define space

DSEG Switch to DATA segment

DW Define words

EDATA Define extended RAM address

ELSE Start an ELSE alternate conditional block

ELSEIF Start an alternate IF conditional block

ELSEIFB Start an alternate IFB conditional block

ELSEIFDEF Start an alternate IFDEF conditional block

ELSEIFN Start an alternate IFN conditional block

ELSEIFNB Start an alternate IFNB conditional block

ELSEIFNDEF Start an alternate IFNDEF conditional block

END End of program

ENDIF Terminate an IF conditional block

ENDM End of macro definition

EQU Define numeric constant
C51ASM User Guide 5-1

3710A–MICRO–10/10

Assembler Directives
ESEG Switch to EDATA segment

EXITM Exit macro expansion

FDATA Define flash data address

FSEG Switch to FDATA segment

IDATA Define indirect data address

IF Start an IF–ELSE–ENDIF conditional block

IFB Start an IFB–ELSE–ENDIF conditional block

IFDEF Start an IFDEF–ELSE–ENDIF conditional block

IFN Start an IFN–ELSE–ENDIF conditional block

IFNB Start an IFNB–ELSE–ENDIF conditional block

IFNDEF Start an IFNDEF–ELSE–ENDIF conditional block

ISEG Switch to IDATA Segment

LOCAL Define local symbol

MACRO Define a callable macro

NAME Define module name

ORG Origin of segment location

REPT Define a repeat macro

SET Define numeric variable

SFR Define direct SFR address

USING Using register bank

WORD Define words (alias for DW)

XDATA Define external RAM address

XSEG Switch to XDATA segment

Table 5-2. C Preprocessor Style Directives

Directive Description

#DEFINE Define numeric constant

#ELIF Start an alternate #IF conditional block

#ELSE Start an #ELSE alternate conditional block

#ENDIF Terminate an #IF conditional block

#IF Start an #IF–#ELSE–#ENDIF conditional block

#IFDEF Start an #IFDEF–#ELSE–#ENDIF conditional block

#IFNDEF Start an #IFNDEF–#ELSE–#ENDIF conditional block

#UNDEF Undefine symbol

Table 5-1. Supported Assembler Directives

Directive Description
5-2 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
5.1 DB

Function:

Define bytes in memory

Description:

The DB instruction reserves and initializes a number of bytes with the values defined by the argu-
ments. The arguments may either be expressions (which must evaluate to 8-bit values) or character
strings of any length.

DB is only allowed in the CODE and FDATA segments!

Syntax:

 DB <arg1> [,<arg2> [,<arg3> ...]]
.DB <arg1> [,<arg2> [,<arg3> ...]]
.BYTE <arg1> [,<arg2> [,<arg3> ...]]

Example:

DB 19,'January',98,(3*7+12)/11

See Also:

– DW

5.2 DW

Function:

Define words in memory

Description:

The DW instruction reserves and initializes a number of words with the values defined by the argu-
ments. Every argument may be an arbitrary expression and requires two bytes of space. DW does
not accept character strings with more than two characters.

DW is only allowed in the CODE and FDATA segments!

Syntax:

 DW <expr1> [,<expr2> [,<expr3> ...]]
.DW <expr1> [,<expr2> [,<expr3> ...]]
.WORD <expr1> [,<expr2> [,<expr3> ...]]

Example:

DW 0,0C800H,1999,4711
DW ‘AB’

See Also:

– DB
C51ASM User Guide 5-3

3710A–MICRO–10/10

Assembler Directives
5.3 DS

Function:

Allocate byte space in memory

Description:

Reserves a number of uninitialized bytes in the current segment. The value of <expr> must be
known on pass 1!

DS is allowed in every segment, except in the BIT segment (use DBIT)!

Syntax:

 DS <expr>
.DS <expr>

Example:

DS 200H

See Also:

– DBIT

5.4 DBIT

Function:

Allocate bit space in memory

Description:

Reserves a number of uninitialized bits. The value of <expr> must be known on pass 1!

DBIT is only allowed in the BIT segment! Use DS in other segments.

Syntax:

 DBIT <expr>
.DBIT <expr>

Example:

DBIT 16

See Also:

– DS
5-4 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
5.5 DEFINE

Function:

Define numeric constant

Description:

The DEFINE instruction defines a symbol for a numeric constant or a register. If a numeric expres-
sion <expr> is assigned to the symbol, it will be of the type NUMBER. If a register <reg> is assigned
to the symbol, it will be of the type REGISTER. <reg> may be one of the special assembler symbols
A, R0, R1, R2, R3, R3, R4, R5, R6, or R7. Unlike SET, a symbol once defined with DEFINE can
never be changed! The values of <expr> and <reg> must be known on pass 1! Forward references
are not allowed.

Syntax:

#DEFINE <symbol> <expr>
.DEFINE <symbol> <expr>

Example:

#DEFINE MAXMONTH 12
#DEFINE OCTOBER MAXMONTH-2
#DEFINE COUNTREG R5
.DEFINE TEN 10
.DEFINE FIVE TEN/2

See Also:

– EQU

– SET

– #UNDEF

5.6 NAME

Function:

Define module name

Description:

Defines a module name for the OMF-51 object file. If no module name is defined, the module name
is derived from the source file name. When generating Intel-HEX file output, the NAME instruction
has no effect. The module name must be a legal assembler symbol. Only one NAME instruction is
allowed within the program. The symbol however, may be redefined in the subsequent program.

Syntax:

 NAME <symbol>
.NAME <symbol>

Example:

NAME My_1st_Program

See Also:

None
C51ASM User Guide 5-5

3710A–MICRO–10/10

Assembler Directives
5.7 ORG

Function:

Set origin of segment location

Description:

Sets the location counter of the current segment to the value <expr>. The value of <expr> must be
known on pass 1! It must be greater or equal to the segment base address. The default value of all
location counters at program start is 0.

Syntax:

 ORG <expr>
.ORG <expr>

Example:

ORG 08000H

See Also:

– BSEG

– CSEG

– DSEG

– ESEG

– FSEG

– ISEG

– XSEG

5.8 USING

Function:

Use Register Bank

Desciption:

Sets the register bank used to <expr>, which must be in the range of 0...3. The USING instruction
only affects the values of the special assembler symbols AR0, ... , AR7 representing the direct
addresses of registers R0, ... , R7 in the current register bank. The value of <expr> must be known
on pass 1! The default value for the register bank is 0.

Syntax:

 USING <expr>
.USING <expr>

Example:

USING 1

See Also:

None
5-6 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
5.9 END

Function:

End of program

Description:

This must be the last statement in the source file. After the END statement only commentary and
blank lines are allowed!

Syntax:

 END
.END

Example:

END ;end of program

See Also:

None

5.10 EQU

Function:

Define numeric constant

Description:

The EQU instruction defines a symbol for a numeric constant or a register. If a numeric expression
<expr> is assigned to the symbol, it will be of the type NUMBER. If a register <reg> is assigned to
the symbol, it will be of the type REGISTER. <reg> may be one of the special assembler symbols A,
R0, R1, R2, R3, R3, R4, R5, R6, or R7. Unlike SET, a symbol once defined with EQU can never be
changed! The values of <expr> and <reg> must be known on pass 1! Forward references are not
allowed.

Syntax:

<symbol> EQU <expr>
<symbol> EQU <reg>
.EQU <symbol> , <expr>
.EQU <symbol> , <reg>
.EQU <symbol> = <expr>
.EQU <symbol> = <reg>

Example:

MAXMONTH EQU 12
OCTOBER EQU MAXMONTH-2
COUNTREG EQU R5
.EQU TEN, 10
.EQU FIVE = TEN/2

See Also:

– DEFINE, SET, #UNDEF
C51ASM User Guide 5-7

3710A–MICRO–10/10

Assembler Directives
5.11 CODE

Function:

Define code memory address

Description:

The CODE directive defines symbolic addresses for the program memory segment (address space).
The symbol will be of type CODE and cannot be redefined. The value of <expr> must be known on
pass 1!

Syntax:

<symbol> CODE <expr>

Example:

EPROM CODE 08000H

See Also:

– BIT

– DATA, IDATA

– EDATA, FDATA

– XDATA

5.12 DATA

Function:

Define direct data address

Description:

The DATA directive defines symbolic addresses for the directly addressable internal data memory
segment (address space). If the numeric value of the address is between 0 and 127 decimal, it is an
address of an internal RAM location. If the numeric value of the address is between 128 and 255, it
is an address of a Special Function Register. Addresses greater than 255 are illegal and will be
flagged as an error. The symbol will be of type DATA and cannot be redefined. The value of <expr>
must be known on pass 1!

Syntax:

<symbol> DATA <expr>

Example:

STACK DATA 7

See Also:

– BIT

– CODE

– IDATA

– EDATA, FDATA

– XDATA
5-8 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
5.13 SFR

Function:

Define direct SFR address

Description:

The SFR directive defines symbolic addresses for the directly addressable special function register
space in the DATA memory segment. SFR is similar to DATA except that the numeric value of the
address must be between 128 and 255. Addresses less than 128 or greater than 255 are illegal and
will be flagged as an error. The symbol will be of type DATA and cannot be redefined. The value of
<expr> must be known on pass 1!

Syntax:

<symbol> SFR <expr>
SFR <symbol> = <expr>

Example:

P0 SFR 80H

See Also:

– DATA

5.14 BIT

Function:

Define bit address

Description:

The BIT directive defines symbolic addresses for the bit addressable segment of internal data mem-
ory. If the numeric value of the address is between 0 and 127 decimal, it is a bit address mapped in
an internal RAM location. If the numeric value of the address is between 128 and 255, it is an
address of a bit located in a Special Function Register. Addresses greater than 255 are illegal and
will be flagged as an error. The symbol will be of type BIT and cannot be redefined. The value of
<expr> must be known on pass 1!

Syntax:

<symbol> BIT <expr>

Example:

REDLED BIT P1.5

See Also:

– CODE

– DATA

– IDATA

– EDATA

– FDATA

– XDATA
C51ASM User Guide 5-9

3710A–MICRO–10/10

Assembler Directives
5.15 IDATA

Function:

Define indirect data address

Description:

The IDATA directive defines symbolic addresses for the indirectly addressable internal data memory
segment (address space). The numeric value of the address must be between 0 and 255 decimal.
Addresses greater than 255 are illegal and will be flagged as an error. The symbol will be of type
IDATA and cannot be redefined. The value of <expr> must be known on pass 1!

Syntax:

<symbol> IDATA <expr>

Example:

V24BUF IDATA 080H

See Also:

– BIT

– CODE

– DATA

– EDATA, FDATA

– XDATA

5.16 EDATA

Function:

Define extended RAM address

Description:

The EDATA directive defines symbolic addresses for the internal extended RAM memory segment
(address space). The numeric value of the address must be between 0 and 65536 decimal. The
symbol will be of type EDATA and cannot be redefined. The value of <expr> must be known on pass
1!

Syntax:

<symbol> EDATA <expr>

Example:

FIFO EDATA 1000H

See Also:

– BIT

– CODE

– DATA, IDATA

– FDATA

– XDATA
5-10 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
5.17 FDATA

Function:

Define flash data Address

Description:

The FDATA directive defines symbolic addresses for the internal flash (non-volatile) data memory
segment (address space). The numeric value of the address must be between 0 and 65536 decimal.
The symbol will be of type FDATA and cannot be redefined. The value of <expr> must be known on
pass 1!

Syntax:

<symbol> FDATA <expr>

Example:

EEVAR1 FDATA 2400H

See Also:

– BIT

– CODE

– DATA

– IDATA

– EDATA

– XDATA

5.18 XDATA

Function:

Define external RAM address

Description:

The XDATA directive defines symbolic addresses for the external data memory segment (address
space). The numeric value of the address must be between 0 and 65536 decimal. The symbol will
be of type XDATA and cannot be redefined. The value of <expr> must be known on pass 1!

Syntax:

<symbol> XDATA <expr>

Example:

SAMPLER XDATA 0100H

See Also:

– BIT

– CODE

– DATA

– IDATA

– EDATA, FDATA,
C51ASM User Guide 5-11

3710A–MICRO–10/10

Assembler Directives
5.19 CSEG

Function:

Switch to CODE segment

Description:

The CSEG directive defines the start of a CODE (program memory) Segment. An assembly source
file can consist of several CODE Segments, which are concatenated into one CODE Segment when
assembled. The default segment type is CODE. The CODE Segments have their own location coun-
ter. If a segment base address is specified with "AT <expr>", a new absolute segment is started, and
the location counter is set to <expr>. If "AT <expr>" is omitted, the location counter keeps the previ-
ous value of the particular segment. The value of <expr> must be known on pass 1! The ORG
directive can also be used to place code and constants at specific locations in the program memory.

At program start, the base address and location counter of the CODE segment are set to zero.

Syntax:

 CSEG [AT <expr>]
.CSEG [AT <expr>]

Example:

CSEG AT 8000h ;start a new CODE segment at address 8000H
CSEG ;switch to previous CODE segment

See Also:

– BSEG, DSEG

– ESEG, FSEG

– ISEG, XSEG

5.20 DSEG

Function:

Switch to DATA segment

Description:

The DSEG directive defines the start of a DATA (internal direct data memory) Segment. An assem-
bly source file can consist of several DATA Segments, which are concatenated into one DATA
Segment when assembled. The DATA Segments have their own location counter. If a segment base
address is specified with "AT <expr>", a new absolute segment is started, and the location counter is
set to <expr>. If "AT <expr>" is omitted, the location counter keeps the previous value of the particu-
lar segment. The numeric value of <expr> must be between 0 and 255 decimal, although in general
<expr> will usually be less than 128. The value of <expr> must be known on pass 1! The ORG direc-
tive can also be used to place variables at specific locations in the internal RAM.

At program start, the base address and location counter of the DATA segment are set to zero.

Syntax:

 DSEG [AT <expr>]
.DSEG [AT <expr>]
5-12 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
Example:

DSEG AT 40h ;start a new DATA segment at address 40H
DSEG ;switch to previous DATA segment

See Also:

– BSEG, CSEG, ESEG

– FSEG, ISEG, XSEG

5.21 ISEG

Function:

Switch to IDATA segment

Description:

The ISEG directive defines the start of a IDATA (internal direct data memory) Segment. An assem-
bly source file can consist of several IDATA Segments, which are concatenated into one IDATA
Segment when assembled. The IDATA Segments have their own location counter. If a segment
base address is specified with "AT <expr>", a new absolute segment is started, and the location
counter is set to <expr>. If "AT <expr>" is omitted, the location counter keeps the previous value of
the particular segment. The numeric value of <expr> must be between 0 and 255 decimal. The value
of <expr> must be known on pass 1! The ORG directive can also be used to place variables at spe-
cific locations in the internal RAM.

At program start, the base address and location counter of the IDATA segment are set to zero.

Syntax:

 ISEG [AT <expr>]
.ISEG [AT <expr>]

Example:

ISEG AT 80h ;start a new IDATA segment at address 80H
ISEG ;switch to previous IDATA segment

See Also:

– BSEG, CSEG, DSEG

– ESEG, FSEG, XSEG

5.22 ESEG

Function:

Switch to EDATA segment

Description:

The ESEG directive defines the start of a EDATA (internal extended data memory) Segment. An
assembly source file can consist of several EDATA Segments, which are concatenated into one
EDATA Segment when assembled. The EDATA Segments have their own location counter. If a seg-
ment base address is specified with "AT <expr>", a new absolute segment is started, and the
location counter is set to <expr>. If "AT <expr>" is omitted, the location counter keeps the previous
C51ASM User Guide 5-13

3710A–MICRO–10/10

Assembler Directives
value of the particular segment. The numeric value of <expr> must be between 0 and 65536 deci-
mal. The value of <expr> must be known on pass 1! The ORG directive can also be used to place
variables at specific locations in the internal extended RAM.

At program start, the base address and location counter of the EDATA segment are set to zero.

Syntax:

 ESEG [AT <expr>]
.ESEG [AT <expr>]

Example:

ESEG AT 1000h ;start a new EDATA segment at address 1000H
ESEG ;switch to previous EDATA segment

See Also:

– BSEG, CSEG

– DSEG, FSEG

– ISEG, XSEG

5.23 FSEG

Function:

Switch to FDATA segment

Description:

The FSEG directive defines the start of a FDATA (internal non-volatile data memory) Segment. An
assembly source file can consist of several FDATA Segments, which are concatenated into one
EDATA Segment when assembled. The FDATA Segments have their own location counter. If a seg-
ment base address is specified with "AT <expr>", a new absolute segment is started, and the
location counter is set to <expr>. If "AT <expr>" is omitted, the location counter keeps the previous
value of the particular segment. The numeric value of <expr> must be between 0 and 65536 deci-
mal. The value of <expr> must be known on pass 1! The ORG directive can also be used to place
constants and variables at specific locations in the internal non-volatile data memory (Data Flash or
EEPROM).

At program start, the base address and location counter of the FDATA segment are set to zero.

Syntax:

 FSEG [AT <expr>]
.FSEG [AT <expr>]

Example:

FSEG AT 1000h ;start a new FDATA segment at address 1000H
FSEG ;switch to previous FDATA segment

See Also:

– BSEG, CSEG

– DSEG, ESEG

– ISEG, XSEG
5-14 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
5.24 BSEG

Function:

Switch to BIT segment

Description:

The BSEG directive defines the start of a BIT (internal bit addressable data memory) Segment. An
assembly source file can consist of several BIT Segments, which are concatenated into one BIT
Segment when assembled. The BIT Segments have their own location counter. If a segment base
address is specified with "AT <expr>", a new absolute segment is started, and the location counter is
set to <expr>. If "AT <expr>" is omitted, the location counter keeps the previous value of the particu-
lar segment. The numeric value of <expr> must be between 0 and 255 decimal, although in general
<expr> will usually be less than 128. The value of <expr> must be known on pass 1! The ORG direc-
tive can also be used to place bit variables at specific locations in the internal RAM.

At program start, the base address and location counter of the BIT segment are set to zero.

Syntax:

 BSEG [AT <expr>]
.BSEG [AT <expr>]

Example:

BSEG AT 40h ;start a new BIT segment at address 40H
BSEG ;switch to previous BIT segment

See Also:

– CSEG, DSEG

– ESEG, FSEG

– ISEG, XSEG

5.25 XSEG

Function:

Switch to XDATA segment

Description:

The XSEG directive defines the start of a XDATA (external data memory) Segment. An assembly
source file can consist of several XDATA Segments, which are concatenated into one EDATA Seg-
ment when assembled. The XDATA Segments have their own location counter. If a segment base
address is specified with "AT <expr>", a new absolute segment is started, and the location counter is
set to <expr>. If "AT <expr>" is omitted, the location counter keeps the previous value of the particu-
lar segment. The numeric value of <expr> must be between 0 and 65536 decimal. The value of
<expr> must be known on pass 1! The ORG directive can also be used to place variables at specific
locations in the external RAM.

At program start, the base address and location counter of the XDATA segment are set to zero.

Syntax:

 XSEG [AT <expr>]
.XSEG [AT <expr>]
C51ASM User Guide 5-15

3710A–MICRO–10/10

Assembler Directives
Example:

XSEG at 0 ;start a new XDATA segment at address 0
XSEG ;switch to previous XDATA segment

See Also:

– BSEG, CSEG

– DSEG, ISEG

– ESEG, FSEG

5.26 SET

Function:

Define numeric variable

Description:

The SET instruction defines a symbol for a numeric constant or a register. If a numeric expression
<expr> is assigned to the symbol, it will be of the type NUMBER. If a register <reg> is assigned to
the symbol, it will be of the type REGISTER. <reg> may be one of the special assembler symbols A,
R0, R1, R2, R3, R3, R4, R5, R6, or R7. The SET instruction is similar to EQU; however, symbols
defined with SET can be redefined with subsequent SET instructions! The values of <expr> and
<reg> must be known on pass 1! A symbol that has been SET, cannot be redefined with EQU! A
symbol that has been EQU'd cannot be reSET!

On pass 2, forward references to a SET symbol always evaluate to the last value, the symbol has
been SET to on pass 1. Register symbols can be used as instruction operands within the whole pro-
gram instead of the corresponding registers. Forward references to register symbols are not
allowed!

Syntax:

<symbol> SET <expr>
<symbol> SET <reg>
.SET <symbol> , <expr>
.SET <symbol> , <reg>
.SET <symbol> = <expr>
.SET <symbol> = <reg>

Example:

CHAPTER SET 1
CHAPTER SET CHAPTER+1
CHAPTER SET A
.SET POINTER, R0
.SET POINTER = R1

See Also:

– DEFINE

– EQU

– #UNDEF
5-16 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
5.27 #UNDEF

Function:

Undefine symbol

Description:

The UNDEF instruction undefines a previously defined symbol. If <symnbol> is not previously
defined the directive is silently ignored. This is intended to support configuration management and
can be applied sensefully with conditional assembly and include files only.

Syntax:

#UNDEF <symbol>

Example:

#UNDEF POINTER

See Also:

– DEFINE

– EQU

– SET

5.28 IF

Function:

Assemble if TRUE

Description:

The IF statement begins an IF-ELSE-ENDIF construct that is used for conditional program assem-
bly. If the expression <expr> is TRUE (not-zero) the IF block is assembled, otherwise any
subsequent ELSEIF or ELSE blocks are evaluated. The value of <expr> must be known on pass 1!

IF blocks are terminated by ELSEIF, ELSE, or ENDIF statements.

Syntax:

IF <expr>

Example:

IF A = 1
. . .

ELSEIF A = 2
. . .

ELSE
. . .

ENDIF

See Also:

– IFN, ENDIF

– ELSE, ELSEIF
C51ASM User Guide 5-17

3710A–MICRO–10/10

Assembler Directives
5.29 IFN

Function:

Assemble if FALSE

Description:

The IFN statement begins an IFN-ELSE-ENDIF construct that is used for conditional program
assembly. If the expression <expr> is FALSE (zero) the IFN block is assembled, otherwise any sub-
sequent ELSEIF or ELSE blocks are evaluated. IFN is equivalent to IF NOT <expr>. The value of
<expr> must be known on pass 1!

IFN blocks are terminated by ELSEIF, ELSE, or ENDIF statements.

Syntax:

IFN <expr>

Example:

IFN NO_TITLE == 1
$TITLE(My program)

ENDIF

See Also:

– IF, ENDIF

– ELSE, ELSEIF

5.30 IFDEF

Function:

Assemble if defined

Description:

The IFDEF statement begins an IFDEF-ELSE-ENDIF construct that is used for conditional program
assembly. If <symbol> is defined in the program the IFDEF block is assembled, otherwise any sub-
sequent ELSEIF or ELSE blocks are evaluated. Forward references to <symbol> are not allowed.

IFDEF blocks are terminated by ELSEIFDEF, ELSE, or ENDIF statements.

Syntax:

IFDEF <symbol>

Example:

IFDEF USE_XRAM
ORL AUXR, #EXRAM ; enable EXRAM bit

ENDIF

See Also:

– IFNDEF, ENDIF

– ELSE, ELSEIFDEF
5-18 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
5.31 IFNDEF

Function:

Assemble if not defined

Description:

The IFNDEF statement begins an IFNDEF-ELSE-ENDIF construct that is used for conditional pro-
gram assembly. If <symbol> is not defined in the program the IFNDEF block is assembled,
otherwise any subsequent ELSEIF or ELSE blocks are evaluated. Forward references to <symbol>
are not allowed.

IFNDEF blocks are terminated by ELSEIFDEF, ELSE, or ENDIF statements.

Syntax:

IFNDEF <symbol>

Example:

IFNDEF USE_XRAM
ANL AUXR, #NOT EXRAM ; clear EXRAM bit

ENDIF

See Also:

– IFDEF

– ENDIF

– ELSE

– ELSEIFDEF

– ELSEIFNDEF

5.32 IFB

Function:

Assemble if blank

Description:

The IFB statement begins an IFB-ELSE-ENDIF construct that is used for conditional program
assembly. If the literal string <literal> is empty the IFB block is assembled, otherwise any subse-
quent ELSEIF or ELSE blocks are evaluated. <literal> is an unquoted string and must be enclosed in
angle brackets (<. . .>).

IFB statements can only be applied sensibly in macro bodies. IFB and IFNB are used to decide
whether macro arguments have been left blank, or not.

IFB blocks are terminated by ELSEIFB, ELSE, or ENDIF statements.

Syntax:

IFB < <literal> >
C51ASM User Guide 5-19

3710A–MICRO–10/10

Assembler Directives
Example:

SUM MACRO A1, B1, C1
IFB <A1>

IFB <B1>
IFB <C1>

$ERROR(At least one operand required for SUM)
ELSE

MOV A, C1
ENDIF

ELSE
MOV A, B1
IFNB <C1>

ADD A, C1
ENDIF

ENDIF
ELSE

MOV A, A1
IFNB <B1>

ADD A, B1
ENDIF
IFNB <C1>

ADD A, C1
ENDIF

ENDIF
ENDM

See Also:

– IFNB, ENDIF

– ELSE, ELSEIFB

5.33 IFNB

Function:

Assemble if not blank

Description:

The IFNB statement begins an IFNB-ELSE-ENDIF construct that is used for conditional program
assembly. If the literal string <literal> is empty the IFNB block is assembled, otherwise any subse-
quent ELSEIF or ELSE blocks are evaluated. <literal> is an unquoted string and must be enclosed in
angle brackets (< . . . >).

IFNB statements can only be applied sensibly in macro bodies. IFB and IFNB are used to decide
whether macro arguments have been left blank, or not.

IFNB blocks are terminated by ELSEIFB, ELSE, or ENDIF statements.

Syntax:

IFNB < <literal> >
5-20 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
Example:

SUM MACRO A1, B1, C1
IFNB <A1>

MOV A, A1
IFNB <B1>

ADD A, B1
ENDIF
IFNB <C1>

ADD A, C1
ENDIF

ELSEIFNB <B1>
MOV A, B1
IFNB <C1>

ADD A, C1
ENDIF

ELSEIFNB <C1>
MOV A, C1

ELSE
$ERROR(At least one operand required for SUM)

ENDIF
ENDM

See Also:

– IFB, ENDIF

– ELSE, ELSEIFB

5.34 #IF

Function:

Assemble if TRUE

Description:

The #IF statement begins a C-Preprocessor style #IF-#ELSE-#ENDIF construct that is used for con-
ditional program assembly. If the expression <expr> is TRUE (not-zero) the #IF block is assembled,
otherwise any subsequent #ELIF or #ELSE blocks are evaluated. The value of <expr> must be
known on pass 1!

#IF blocks are terminated by #ELIF, #ELSE, or #ENDIF statements.

Syntax:

#IF <expr>

Example:

#IF A = 1
. . .

#ELIF A = 2
. . .

#ELSE
. . .

#ENDIF
C51ASM User Guide 5-21

3710A–MICRO–10/10

Assembler Directives
See Also:

– #ELSE, #ELIF, #ENDIF

5.35 #IFDEF

Function:

Assemble if defined

Description:

The #IFDEF statement begins a C-Preprocessor style #IFDEF-#ELSE-#ENDIF construct that is
used for conditional program assembly. If <symbol> is defined in the program the #IFDEF block is
assembled, otherwise any subsequent #ELIF or #ELSE blocks are evaluated. Forward references to
<symbol> are not allowed.

#IFDEF blocks are terminated by #ELIF, #ELSE, or #ENDIF statements.

Syntax:

#IFDEF <symbol>

Example:

#IFDEF USE_XRAM
ORL AUXR, #EXRAM ; enable EXRAM bit

#ENDIF

See Also:

– #IFNDEF, #ENDIF

– #ELSE, #ELIF

5.36 #IFNDEF

Function:

Assemble if not defined

Description:

The #IFNDEF statement begins a C-Preprocessor style #IFNDEF-#ELSE-#ENDIF construct that is
used for conditional program assembly. If <symbol> is not defined in the program the #IFNDEF
block is assembled, otherwise any subsequent #ELIF or #ELSE blocks are evaluated. Forward refer-
ences to <symbol> are not allowed.

#IFNDEF blocks are terminated by #ELIF, #ELSE, or #ENDIF statements.

Syntax:

#IFNDEF <symbol>

Example:

#IFNDEF USE_XRAM
ANL AUXR, #NOT EXRAM ; clear EXRAM bit

#ENDIF
5-22 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
See Also:

– #IFDEF, #ENDIF

– #ELSE, #ELIF

5.37 .IF

Function:

Assemble if TRUE

Description:

The .IF statement begins an .IF-.ELSE-.ENDIF construct that is used for conditional program assem-
bly. If the expression <expr> is TRUE (not-zero) the .IF block is assembled, otherwise the
subsequent .ELSE block, if present, is evaluated. The value of <expr> must be known on pass 1!

.IF blocks are terminated by .ELSE, or .ENDIF statements.

Syntax:

.IF <expr>

Example:

.IF A = 1

. . .

.ELSE

.IF A = 2

. . .

.ELSE

. . .

.ENDIF

.ENDIF

See Also:

– #ELSE, #ELIF, #ENDIF

5.38 ELSEIF

Function:

Alternatively assembler if TRUE

Description:

The ELSEIF statement begins an alternate block after an IF or ELSEIF block. If the expression
<expr> is TRUE (not-zero) the ELSEIF block is assembled, otherwise any subsequent ELSEIF or
ELSE blocks are evaluated. The value of <expr> must be known on pass 1!

ELSEIF blocks are terminated by ELSEIF, ELSE, or ENDIF statements.

Syntax:

ELSEIF <expr>
C51ASM User Guide 5-23

3710A–MICRO–10/10

Assembler Directives
Example:

IF A = 1
. . .

ELSEIF A = 2
. . .

ELSE
. . .

ENDIF

See Also:

– IF

– ENDIF

– ELSE

– ELSEIFN

5.39 ELSEIFN

Function:

Alternatively assemble if FALSE

Description:

The ELSEIFN statement begins an alternate block after an IF or ELSEIF block. If the expression
<expr> is FALSE (zero) the ELSEIFN block is assembled, otherwise any subsequent ELSEIF or
ELSE blocks are evaluated. ELSEIFN is equivalent to ELSEIF NOT <expr>. The value of <expr>
must be known on pass 1!

ELSEIFN blocks are terminated by ELSEIF, ELSE, or ENDIF statements.

Syntax:

ELSEIFN <expr>

Example:

IF A = 0
. . .

ELSEIFN A > MAX
. . .

ELSE
. . .

ENDIF

See Also:

– IFN

– ENDIF

– ELSE

– ELSEIF
5-24 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
5.40 ELSEIFDEF

Function:

Alternatively assemble if defined

Description:

The ELSEIFDEF statement begins an alternate block after an IF or ELSEIF block. If <symbol> is
defined in the program the ELSEIFDEF block is assembled, otherwise any subsequent ELSEIF or
ELSE blocks are evaluated. Forward references to <symbol> are not allowed.

ELSEIFDEF blocks are terminated by ELSEIF, ELSE, or ENDIF statements.

Syntax:

ELSEIFDEF <symbol>

Example:

IFDEF USE_XRAM
ORL AUXR, #EXRAM ; enable EXRAM bit

ENDIF

See Also:

ELSE, ELSEIFNDEF, ENDIF, IFDEF

5.41 ELSEIFNDEF

Function:

Alternatively assemble in not defined

Description:

The ELSEIFNDEF statement begins an alternate block after an IF or ELSEIF block. If <symbol> is
not defined in the program the ELSEIFNDEF block is assembled, otherwise any subsequent ELSEIF
or ELSE blocks are evaluated. Forward references to <symbol> are not allowed.

ELSEIFNDEF blocks are terminated by ELSEIF, ELSE, or ENDIF statements.

Syntax:

ELSEIFNDEF <symbol>

Example:

IFNDEF USE_XRAM
ANL AUXR, #NOT EXRAM ; clear EXRAM bit

ENDIF

See Also:

ELSE, ELSEIFDEF, ENDIF, IFNDEF

5.42 ELSEIFB

Function:
C51ASM User Guide 5-25

3710A–MICRO–10/10

Assembler Directives
Alternatively assemble if blank

Description:

The IFB statement begins an IFB-ELSE-ENDIF construct that is used for conditional program
assembly. If the literal string <literal> is empty the IFB block is assembled, otherwise any subse-
quent ELSEIF or ELSE blocks are evaluated. <literal> is an unquoted string and must be enclosed in
angle brackets.

IFB statements can only be applied sensibly in macro bodies. IFB and IFNB are used to decide
whether macro arguments have been left blank, or not.

ELSEIFB blocks are terminated by ELSEIF, ELSE, or ENDIF statements.

Syntax:

ELSEIFB < <literal> >

Example:

SUM MACRO A1, B1, C1
IFB
IFB
IFB
$ERROR(At least one operand required for SUM)
ELSE
MOV A, C1
ENDIF
ELSE
MOV A, B1
IFNB
ADD A, C1
ENDIF
ENDIF
ELSE
MOV A, A1
IFNB
ADD A, B1
ENDIF
IFNB
ADD A, C1
ENDIF
ENDIF
ENDM

See Also:

ELSE, ELSEIFB, ENDIF, IFNB

5.43 ELSEIFNB

Function:

Alternatively assemble if not blank

Description:
5-26 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
The IFNB statement begins an IFNB-ELSE-ENDIF construct that is used for conditional program
assembly. If the literal string <literal> is empty the IFNB block is assembled, otherwise any subse-
quent ELSEIF or ELSE blocks are evaluated. <literal> is an unquoted string and must be enclosed in
angle brackets.

IFNB statements can only be applied sensibly in macro bodies. IFB and IFNB are used to decide
whether macro arguments have been left blank, or not.

IFNB blocks are terminated by ELSEIF, ELSE, or ENDIF statements.

Syntax:

ELSEIFNB < <literal> >

Example:

SUM MACRO A1, B1, C1
IFNB
MOV A, A1
IFNB
ADD A, B1
ENDIF
IFNB
ADD A, C1
ENDIF
ELSEIFNB
MOV A, B1
IFNB
ADD A, C1
ENDIF
ELSEIFNB
MOV A, C1
ELSE
$ERROR(At least one operand required for SUM)
ENDIF
ENDM

See Also:

ELSE, ELSEIFB, ENDIF, IFNB

5.44 #ELIF

Function:

Alternatively assemble if TRUE

Description:

The #IF statement begins a C-Preprocessor style #IF-#ELSE-#ENDIF construct that is used for con-
ditional program assembly. If the expression <expr> is TRUE (not-zero) the #IF block is assembled,
otherwise any subsequent #ELIF or #ELSE blocks are evaluated. The value of <expr> must be
known on pass 1!

#ELIF blocks are terminated by #ELIF, #ELSE, or #ENDIF statements.

Syntax:
C51ASM User Guide 5-27

3710A–MICRO–10/10

Assembler Directives
#ELIF <expr>

Example:

#IF A = 1
. . .
#ELIF A = 2
. . .
#ELSE
. . .
#ENDIF

See Also:

#ELSE, #ELIF, #ENDIF

5.45 ELSE

Function:

Alternatively assemble block

Description:

The ELSE statement introduces an alternate program block after an IF or ELSEIF statement. The
ELSE block is assembled only if the prior IF or ELSEIF condition expression was false.

ELSE blocks are terminated by ENDIF statements.

Syntax:

ELSE

Example:

IF A = 1
. . .
ELSEIF A = 2
. . .
ELSE
. . .
ENDIF

See Also:

IF, ELSEIF, ENDIF

5.46 #ELSE

Function:

Alternatively assemble block

Description:

The #ELSE statement introduces an alternate program block after an #IF or #ELIF statement. The
#ELSE block is assembled only if the prior #IF or #ELIF condition expression was false.

#ELSE blocks are terminated by #ENDIF statements.
5-28 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
Syntax:

#ELSE

Example:

#IF A = 1
. . .
#ELSEIF A = 2
. . .
#ELSE
. . .
#ENDIF

See Also:

#IF, #ELIF, #ENDIF

5.47 .ELSE

Function:

Alternatively assemble block

Description:

The .ELSE statement introduces an alternate program block after an .IF statement. The .ELSE block
is assembled only if the prior .IF condition expression was false.

.ELSE blocks are terminated by .ENDIF statements.

Syntax:

.ELSE

Example:

.IF A = 1

. . .

.ELSE

. . .

.ENDIF

See Also:

.IF, .ENDIF

5.48 ENDIF

Function:

Terminate an IF conditional block

Description:

The ENDIF statement terminates an IF-ELSE-ENDIF statement construct. When the assembler
encounters an ENDIF statement, it concludes processing the IF block and resumes assembly on the
next line which may involve continuing in another IF block if the current block was nested.
C51ASM User Guide 5-29

3710A–MICRO–10/10

Assembler Directives
The ENDIF statement must be preceded by an IF, ELSEIF, or ELSE block.

Syntax:

ENDIF

Example:

IF A = 1
. . .
ELSEIF A = 2
. . .
ELSE
. . .
ENDIF

See Also:

IF, ELSEIF, ELSE

5.49 #ENDIF

Function:

Terminate a #IF conditional block

Description:

The #ENDIF statement terminates an #IF-#ELSE-#ENDIF statement construct. When the assembler
encounters an #ENDIF statement, it concludes processing the #IF block and resumes assembly on
the next line which may involve continuing in another IF block if the current block was nested.

The #ENDIF statement must be preceded by an #IF, #ELIF, or #ELSE block.

Syntax:

#ENDIF

Example:

#IF A = 1
. . .
#ELIF A = 2
. . .
#ELSE
. . .
#ENDIF

See Also:

#IF, #ELIF, #ELSE

5.50 .ENDIF

Function:

Terminate a .IF conditional block

Description:
5-30 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
The .ENDIF statement terminates an .IF-.ELSE-.ENDIF statement construct. When the assembler
encounters an .ENDIF statement, it concludes processing the .IF block and resumes assembly on
the next line which may involve continuing in another IF block if the current block was nested.

The .ENDIF statement must be preceded by an .IF or .ELSE block.

Syntax:

.ENDIF

Example:

.IF A = 1

. . .

.ELSE

. . .

.ENDIF

See Also:

.IF, .ELSE

5.51 MACRO

Function:

Define a macro

Description:

Defines a callable macro called <macro name> with optional parameters separated by commas. All
parameter names of a macro must be valid symbols and unique within the macro (parameter names
are local to the macro only). Keywords cannot be used as parameter names. A call to <macro
name> will expand to <macro body>.

Macro definitions are terminated by ENDM statements.

Syntax:

<macro name> MACRO [<parameter 1>[, <parameter 2>[, ... ,<parameter n>]]]
. . .
<macro body>
. . .
ENDM

Example:

SERIES MACRO STARTV, ENDV
IF STARTV LE ENDV
DB STARTV
SERIES %STARTV+1, ENDV
ENDIF
ENDM

$GEN CONDONLY
SERIES 1,3
DB 1
C51ASM User Guide 5-31

3710A–MICRO–10/10

Assembler Directives
DB 2
DB 3

See Also:

ENDM, EXITM, LOCAL, REPT

5.52 LOCAL

Function:

Declare a local symbol

Description:

Defines one or more locally scoped labels, separated by commas. Local labels must be valid sym-
bols, unique within the macro, and different from the formal parameters (if any). Keywords cannot be
used as local symbol names. If a local symbol has the same name as a global symbol, the local
scope takes precedance during substitution.

LOCAL statements are only valid at the start of a macro defintion, before any body lines are defined.

Syntax:

LOCAL <symbol 1>[, <symbol 2>[, ... ,<symbol n>]]

Example:

CJLT MACRO OP1, OP2, TARGET
LOCAL NEQ, NO_JMP
CJNE OP1, OP2, NEQ
SJMP NO_JMP
NEQ: JC TARGET
NO_JMP:
ENDM

See Also:

ENDM, EXITM, MACRO, REPT

5.53 ENDM

Function:

Terminate a macro or repeat definition

Description:

Terminates a MACRO or REPT macro defintion block. ENDM statements must be preceded by a
MACRO or REPT statement.

Syntax:

ENDMACRO
ENDM

Example:
5-32 C51ASM User Guide

3710A–MICRO–10/10

Assembler Directives
SIMPLE MACRO
NOP
NOP
ENDM

See Also:

EXITM, LOCAL, MACRO, REPT

5.54 EXITM

Function:

Exit macro expansion

Description:

The EXITM directive immediately terminates expansion of the current macro. When EXITM is
detected, the macro processor stops expanding the current macro prematurely and resumes pro-
cessing after the next ENDM directive. The EXITM directive is only useful in conditional statements.

Syntax:

EXITM

Example:

MYADD MACRO OP1, OP2
MOV A, OP1
IFB
EXITM
ELSE
ADD A, OP2
ENDIF
ENDM

See Also:

ENDM, LOCAL, MACRO, REPT

5.55 REPT

Function:

Define a repeat macro

Description:

Defines a repeat macro. The <macro body> will be expanded <expr> times immediately after the
ENDM statement. The value of <expr> must be known on pass 1!

Repeat definitions are terminated by ENDM statements.

Syntax:

REPT <expr>
. . .
<macro body>
C51ASM User Guide 5-33

3710A–MICRO–10/10

Assembler Directives
. . .
ENDM

Example:

REPT 4
NOP
ENDM
NOP
NOP
NOP
NOP

See Also:

ENDM, EXITM, LOCAL, MACRO
5-34 C51ASM User Guide

3710A–MICRO–10/10

Section 6

Assembler Controls

The following table lists all the implemented controls and their abbreviations. In the subsequent para-
graphs, all C51ASM assembler directives are described. Lexical symbols are written in lower case
letters, while assembler keywords are written in upper case. Instruction arguments are represented by
<arg>, <arg1> or something like that. Numeric expressions are represented by <expr>, <expr1> and so
on. Syntax elements enclosed in brackets are optional. The ellipsis "..." means always "a list with any
number of elements". Primary controls (P) can only be used at the beginning of the program and remain
in effect throughout the assembly. General controls (G) may be used everywhere in the program. See
Section 3.9 ”Assembler Controls” on page 3-12.

Table 6-1. C51ASM Controls

Control Type Abbreviation Description

$COND G list full IF .. ENDIF constructions

$CONDONLY G list assembled lines only

$DATE P $DA inserts date string into page header

$DEBUG P $DB include debug information into object

$DEVICE P select device

$EJECT G $EJ start a new page in list file

$ERROR G force a user-defined error

$GEN G $GE list macro calls and expansion lines

$GENONLY G $GO list expansion lines only

$INCDIR P add a directory to search path

$INCLUDE G $IC include a source file

$LIST G $LI list subsequent source lines

$MACRO P $MR reserve n % of free memory for macros

$MAPFSEG P remap FSEG location in object file

$MESSAGE G output a message to console

$MOD51 P $MO enable predefined 80C51 SFR symbols

$MOD52 P enable predefined 80C52 SFR symbols

$NOBUILTIN P don't list predefined symbols

$NOCOND G don't list lines in false branches

$NODEBUG P $NODB don't include debug information

$NOGEN G $NOGE list macro calls only

$NOLIST G $NOLI don't list subsequent source lines

$NOMACRO P $NOMR reserve all for the symbol table
C51ASM User Guide 6-1

3710A–MICRO–10/10

Assembler Controls
6.1 $DATE

Function:

Insert Date in Header

Description:

Inserts a date string into the list file page header. If $DATE() or $DATE is specified, the actual date is
inserted. Date strings will be truncated to a maximum length of 11 characters. Default is: no date
string. The control has no effect, when the $NOPAGING control has been specified.

Syntax:

$DATE [(string)]

Abbreviation:

$DA

Example:

$DATE(10/09/2008) ;date of latest version
$DATE ;use today's date
$DA(1-JUL-1984)

See Also:

– $PAGING, $TITLE

$NOMOD51 P $NOMO disable predefined SFR symbols

$NOOBJECT P $NOOJ don't generate object file

$NOPAGING P $NOPI disable listing page formatting

$NOPRINT P $NOPR don't generate list file

$NOSYMBOLS P $NOSB don't create symbol table

$NOTABS P don't use tabs in list file

$NOXREF P $NOXR don't create cross reference

$OBJECT P $OJ generate object file

$PAGELENGTH P $PL set lines per page for listing

$PAGEWIDTH P $PW set columns per line for listing

$PAGING P $PI enable listing page formatting

$PRINT P $PR generate list file

$RESTORE G $RS restore old $LIST/$GEN/$COND state

$SAVE G $SA save current $LIST/$GEN/$COND state

$SYMBOLS P $SB create symbol table

$TITLE G $TT inserts title string into page header

$WARNING G output a warning message to console

$XREF P $XR create cross reference

Table 6-1. C51ASM Controls

Control Type Abbreviation Description
6-2 C51ASM User Guide

3710A–MICRO–10/10

Assembler Controls
6.2 $DEBUG

Function:

Generate Debugging Information

Description:

Includes debug information into the OMF-51 module. $DEBUG has no effect unless -g/--debug or --
omf-51 was specified on the command line. The string if specified will be used for the OMF-51 file
name unless previously set by the --omf-51 option.

Syntax:

$DEBUG [(string)]

Abbreviation:

$DB

Example:

$DEBUG ;place debug information in <srcfile>.omf
$DB(my_asm.omf) ;place debug information in my_asm.omf

See Also:

– $NODEBUG

6.3 $NODEBUG

Function:

Suppress Debug Info

Description:

Don't include debug information. (Default!) $NODEBUG is overridden by the --debug option.

Syntax:

$NODEBUG

Abbreviation:

$NODB

Example:

$NODEBUG ;do not generate debug file
$NODB

See Also:

– $DEBUG
C51ASM User Guide 6-3

3710A–MICRO–10/10

Assembler Controls
6.4 $DEVICE

Function:

Select Device

Description:

Assemble with the specified device model. $DEVICE is overridden by the --target option.

Syntax:

$DEVICE (string)

Abbreviation:

None

Example:

$DEVICE(AT89LP828) ;select at89lp828 model

See Also:

None

6.5 $INCDIR

Function:

Include Directory

Description:

The specified string is added to the include directory search path after any directories specified on
the command line with the --include option.

Syntax:

$INCDIR (string)

Abbreviation:

None

Example:

$INCDIR(C:\ASM\INC) ; look for includes in C:\ASM\INC

See Also:

– $INCLUDE
6-4 C51ASM User Guide

3710A–MICRO–10/10

Assembler Controls
6.6 $MACRO

Function:

Expand Macros

Description:

Save macro definitions and expand macro calls. (Default!) Optionally reserve n % of free memory for
macro definitions. (0 <= n <= 100) Default is n=50. The control has been implemented for compatibil-
ity purposes only. In C51ASM it has no effect except that it cancels the $NOMACRO control.

Syntax:

$MACRO [(n)]

Abbreviation:

$MR

Example:

$MACRO
$MR(10)

See Also:

– $NOMACRO

6.7 $NOMACRO

Function:

Suppress Macro Expansion

Description:

Don't save macro definitions and don't expand macro calls. Reserve all free memory for the symbol
table. The control has been implemented for compatibility purposes only. In C51ASM, it only sup-
presses the macro expansion.

Syntax:

$NOMACRO

Abbreviation:

$NOMR

Example:

$NOMACRO
$NOMR

See Also:

– $MACRO
C51ASM User Guide 6-5

3710A–MICRO–10/10

Assembler Controls
6.8 $MAPFSEG

Function:

Remap FSEG location in Object File

Description:

Many device programmers map nonvolatile data segments to some location in their input buffers.
Use $MAPFSEG to move FSEG data to a different location in the object file. <offset> specifies the
address in the object file where the FSEG data will start. <start> optionally specifies the initial
address in FSEG that will map to <offset>. If a device is explicitly specified with $DEVICE or --target,
<start> should be limited to either 0 or the normal starting address of FDATA. <offset> and <start>
both default to 0.

Syntax:

$MAPFSEG (offset[:start])

Abbreviation:

None

Example:

$MAPFSEG(1000H) ; output FSEG at 1000H starting from 0
$MAPFSEG(2000H:200H) ; output FSEG at 2000H starting from 200H

See Also:

None

6.9 $MOD51

Function:

Use 8051 Predefined Symbols

Description:

Switches on the built-in 8051 special function register and interrupt symbol definitions. (Default!)

Syntax:

$MOD51

Abbreviation:

$MO

Example:

$MOD51
$MO

See Also:

– $MOD52

– $NOMOD51
6-6 C51ASM User Guide

3710A–MICRO–10/10

Assembler Controls
6.10 $MOD52

Function:

Use 8052 Predefined Symbols

Description:

Switches on the built-in 8052 special function register and interrupt symbol definitions.

Syntax:

$MOD52

Abbreviation:

None

Example:

$MOD51
$MO

See Also:

– $MOD51

– $NOMOD51

6.11 $NOMOD51

Function:

Suppress Predefined Symbols

Description:

Switches off the built-in 8051 special function register and interrupt symbol definitions. The pre-
defined symbols ??C51ASM and ??VERSION cannot be switched off!

Syntax:

$NOMOD51

Abbreviation:

$NOMO

Example:

$NOMOD51 ;switch off 8051 SFR symbol definitions
$NOMO

See Also:

– $MOD51

– $MOD52
C51ASM User Guide 6-7

3710A–MICRO–10/10

Assembler Controls
6.12 $OBJECT

Function:

Generate Object File

Description:

Generate an object file. (Default!) By default the output format is Intel HEX unless changed on the
command line with --filetype. The string if specified is used for the object file name unless previously
set by the --outfile option. The $OBJECT control is overridden by the --noobject option.

Syntax:

$OBJECT [(string)]

Abbreviation:

$OJ

Example:

$OBJECT
$OJ(my_asm.hex)

See Also:

– $NOOBJECT

6.13 $NOOBJECT

Function:

Suppress Object File

Description:

Don't generate an object file. The $NOOBJECT control is overridden by the --outfile option.

Syntax:

$NOOBJECT

Abbreviation:

$NOOJ

Example:

$NOOBJECT
$NOOJ

See Also:

– $OBJECT
6-8 C51ASM User Guide

3710A–MICRO–10/10

Assembler Controls
6.14 $PAGING

Function:

Page Format List File

Description:

Switches on the page formatting in the list file. (Default!) The $PAGING control is overridden by the -
-nopaging option.

Syntax:

$PAGING

Abbreviation:

$PI

Example:

$PAGING
$PI

See Also:

– $NOPAGING

– $PAGELENGTH

– $PAGEWIDTH

6.15 $NOPAGING

Function:

Suppress Page Formatting

Description:

Switches off the page formatting in the list file.

Syntax:

$NOPAGING

Abbreviation:

$NOPI

Example:

$NOPAGING
$NOPI

See Also:

– $PAGING
C51ASM User Guide 6-9

3710A–MICRO–10/10

Assembler Controls
6.16 $PAGELENGTH

Function:

Set Page Length

Description:

Sets the list file page length to n lines. (12 <= n <= 65535) Default is n=64. The control has no effect,
when the $NOPAGING control has been specified.

Syntax:

$PAGELENGTH (n)

Abbreviation:

$PL

Example:

$PAGELENGTH(60) ;set page length to 60 lines per page
$PL(72) ;set page length to 72 lines per page

See Also:

– $EJECT

– $NOPAGING

– $PAGING

– $PAGEWIDTH

6.17 $PAGEWIDTH

Function:

Set Page Width

Description:

Sets the list file page width to n columns. (72 <= n <= 255) Default is n=132.

Syntax:

$PAGEWIDTH (n)

Abbreviation:

$PW

Example:

$PAGEWIDTH(72) ;set page width to 72 characters per line
$PW(80) ;set page width to 80 characters per line

See Also:

– $NOPAGING

– $PAGELENGTH

– $PAGING
6-10 C51ASM User Guide

3710A–MICRO–10/10

Assembler Controls
6.18 $PRINT

Function:

Generate Listing File

Description:

Generate a listing file. (Default!) The string if specified is used for the listing file name, unless previ-
ously set by the --listfile option. The $PRINT control is overridden by the --nolist option.

Syntax:

$PRINT [(string)]

Abbreviation:

$PR

Example:

$PRINT
$PR(my_asm.lst)

See Also:

– $NOPRINT

6.19 $NOPRINT

Function:

Suppress Listing File

Description:

Don't generate a listing file. The $NOPRINT control is overridden by the --listfile option.

Syntax:

$NOPRINT

Abbreviation:

$NOPR

Example:

$NOPRINT
$NOPR

See Also:

– $PRINT
C51ASM User Guide 6-11

3710A–MICRO–10/10

Assembler Controls
6.20 $SYMBOLS

Function:

Generate Symbol Table

Description:

Generates the symbol table at the end of the list file. (Default!) When the $XREF control is active,
$SYMBOLS has no effect!

Syntax:

$SYMBOLS

Abbreviation:

$SB

Example:

$SYMBOLS
$SB

See Also:

– $NOBUILTIN

– $NOSYMBOLS

– $XREF

6.21 $NOSYMBOLS

Function:

Suppress Symbol Table

Description:

Suppresses the symbol table at the end of the list file. When the $XREF control is active, $NOSYM-
BOLS has no effect!

Syntax:

$NOSYMBOLS

Abbreviation:

$NOSB

Example:

$NOSYMBOLS ;no symbol table required
$NOSB

See Also:

– $SYMBOLS

– $XREF
6-12 C51ASM User Guide

3710A–MICRO–10/10

Assembler Controls
6.22 $NOBUILTIN

Function:

Hide Predefined Symbols

Description:

Suppresses the predefined (built-in) symbols in the symbol table or cross-reference listing for a bet-
ter survey. Only the user-defined symbols are listed.

Syntax:

$NOBUILTIN

Abbreviation:

None

Example:

$NOBUILTIN ; hide predefined symbols

See Also:

– $SYMBOLS

– $XREF

6.23 $NOTABS

Function:

Expand Tabs

Description:

Expands all tab characters in the list file output to blanks.

Syntax:

$NOTABS

Abbreviation:

None

Example:

$NOTABS ;printer doesn't support tab characters

See Also:

None
C51ASM User Guide 6-13

3710A–MICRO–10/10

Assembler Controls
6.24 $XREF

Function:

Generate Cross-Reference

Description:

Generates a cross-reference listing instead of a symbol table. $XREF overrides $SYMBOLS.

Syntax:

$XREF

Abbreviation:

$XR

Example:

$XREF ;generate a cross-reference listing
$XR

See Also:

– $NOXREF

– $SYMBOLS

6.25 $NOXREF

Function:

Suppress Cross-Reference

Description:

Generates a symbol table instead of a cross-reference listing (Default!) unless $NOSYMBOLS is
also specified.

Syntax:

$NOXREF

Abbreviation:

$NOXR

Example:

$NOXREF ;suppress cross-reference table
$NOXR

See Also:

– $NOSYMBOLS

– $SYMBOLS

– $XREF
6-14 C51ASM User Guide

3710A–MICRO–10/10

Assembler Controls
6.26 $COND

Function:

Fully List Conditional Branches

Description:

List full IF .. ELSEIF .. ELSE .. ENDIF constructions. (Default!) The Control is overridden by
$NOLIST.

Syntax:

$COND

Abbreviation:

None

Example:

$COND

See Also:

– $CONDONLY

– $NOCOND

– $NOLIST

6.27 $NOCOND

Function:

Suppress False Conditional Branches

Description:

Don't list lines in false IF .. ELSEIF .. ELSE .. ENDIF branches. The Control is overridden by
$NOLIST.

Syntax:

$NOCOND

Abbreviation:

None

Example:

$NOCOND

See Also:

– $COND

– $CONDONLY

– $NOLIST
C51ASM User Guide 6-15

3710A–MICRO–10/10

Assembler Controls
6.28 $CONDONLY

Function:

Suppress False Conditional Branches and Conditional Directives

Description:

List lines in true IF .. ELSEIF .. ELSE .. ENDIF branches only, without the IF, ELSEIF, ELSE and
ENDIF statements itself. The Control is overridden by $NOLIST.

Syntax:

$CONDONLY

Abbreviation:

None

Example:

$CONDONLY

See Also:

– $COND

– $NOCOND

– $NOLIST

6.29 $EJECT

Function:

Insert Page Break

Description:

Starts a new page in the list file by inserting a form feed (ASCII 0x0C). The control has no effect,
when the $NOPAGING control has been specified.

Syntax:

$EJECT

Abbreviation:

$EJ

Example:

$EJECT ;new page with new title
$EJ

See Also:

– $PAGELENGTH

– $PAGING

– $NOPAGING
6-16 C51ASM User Guide

3710A–MICRO–10/10

Assembler Controls
6.30 $ERROR

Function:

Print User Error Message

Description:

Forces an assembly error with a user-defined error message, and increment the error count. This is
intended to support configuration management and can be applied sensefully with conditional
assembly only.

Syntax:

$ERROR (string)

Abbreviation:

None

Example:

$ERROR(invalid configuration: buffer size > external RAM size)

See Also:

– $MESSAGE

– $WARNING

6.31 $WARNING

Function:

Print User Warning Message

Description:

Outputs a user-defined warning message to the console, and increments the warning count. This is
also intended to ease configuration management.

Syntax:

$WARNING (string)

Abbreviation:

None

Example:

$WARNING(int. RAM doesn't meet minimum stack size requirements)

See Also:

– $ERROR

– $MESSAGE
C51ASM User Guide 6-17

3710A–MICRO–10/10

Assembler Controls
6.32 $MESSAGE

Function:

Print User Informational Message

Description:

Outputs a user-defined informational message to the console, but does not increment the warning or
error counts.

Syntax:

$MESSAGE (string)

Abbreviation:

None

Example:

$MESSAGE(Using dual datapointers)

See Also:

– $ERROR

– $WARNING

6.33 $GEN

Function:

Fully List Macros

Description:

List macro calls and expanded macros. (Default!) The listing fully shows the nesting of macro calls.
The Control is overridden by $NOLIST.

Syntax:

$GEN

Abbreviation:

$GE

Example:

$GEN
$GE

See Also:

– $GENONLY

– $NOGEN

– $NOLIST
6-18 C51ASM User Guide

3710A–MICRO–10/10

Assembler Controls
6.34 $NOGEN

Function:

Suppress Macro Bodies

Description:

List macro calls only. The expanded macros are not listed. The Control is overridden by $NOLIST.

Syntax:

$NOGEN

Abbreviation:

$NOGE

Example:

$NOGEN
$NOGE

See Also:

– $GEN

– $GENONLY

6.35 $GENONLY

Function:

Suppress Macro Calls

Description:

List the expanded macro bodies only. Macro calls and EXITM statements are not listed. The Control
is overridden by $NOLIST.

Syntax:

$GENONLY

Abbreviation:

$GO

Example:

$GENONLY
$GO

See Also:

– $GEN

– $NOGEN

– $NOLIST
C51ASM User Guide 6-19

3710A–MICRO–10/10

Assembler Controls
6.36 $INCLUDE

Function:

Include a File

Description:

Includes an external source file into the assembler program just behind the $INCLUDE statement. If
the include file has not been specified with an absolute path, and it cannot be found in the default
directory, the path specified with the /INCLUDES (Linux: -i) command line option (if present) is
searched from left to right, and if it cannot be found there either, the path specified with the environ-
ment variable C51ASMINC (if defined) is searched from left to right as well. Include files may be
nested to any depth.

Syntax:

$INCLUDE (file)
.INCLUDE (file)
#INCLUDE <file>
#INCLUDE "file"

Abbreviation:

$IC

Example:

$INCLUDE(8052.inc) ;include 8052.inc from the search path
$IC(C:\ASM\INC\my_lib.h) ;include my_lib.h from C:\ASM\INC

See Also:

– $INCDIR

6.37 $LIST

Function:

List Source Lines

Description:

List source code lines. (Default!)

Syntax:

$LIST

Abbreviation:

$LI

Example:

$LIST ;switch on listing
$LI

See Also:

– $NOLIST
6-20 C51ASM User Guide

3710A–MICRO–10/10

Assembler Controls
6.38 $NOLIST

Function:

Suppress Source Lines

Description:

Do not list source code lines, provided they do not contain errors, until the next $LIST statement
occurs. $NOLIST overrides any $COND, $CONDONLY, $GEN, or $GENONLY controls until listing
is enabled again.

Syntax:

$NOLIST

Abbreviation:

$NOLI

Example:

$NOLIST ;switch off listing
$NOLI

See Also:

– $LIST

6.39 $SAVE

Function:

Save Listing State

Description:

Saves the current $LIST/$GEN/$COND state on a $SAVE-stack. $SAVE statements can be nested
to any depth.

Syntax:

$SAVE

Abbreviation:

$SA

Example:

$SAVE ;save old $LIST/$GEN/$COND status
$SA

See Also:

– $RESTORE

– $COND

– $GEN

– $LIST
C51ASM User Guide 6-21

3710A–MICRO–10/10

Assembler Controls
6.40 $RESTORE

Function:

Restore Listing State

Description:

Restores a previously saved $LIST/$GEN/$COND state.

Syntax:

$RESTORE

Abbreviation:

$RS

Example:

$RESTORE ;restore previous listing mode
$RS

See Also:

– $SAVE

– $COND

– $GEN

– $LIST

6.41 $TITLE

Function:

Set Page Title

Description:

Inserts a title string into the list file page header. Titles may be truncated according to the specified
(or default) page width. Default: C51ASM copyright information. The control has no effect, when the
$NOPAGING control has been specified.

Syntax:

$TITLE (string)

Abbreviation:

$TT

Example:

$TITLE(My Assembly Program)
$TT(Sample Program)

See Also:

– $DATE

– $PAGING
6-22 C51ASM User Guide

3710A–MICRO–10/10

Section 7

Assembler Compatibility

The Atmel® C51ASM assembler implements a subset of the Intel® ASM51 assembly language, plus
some extensions. The Intel ASM51 syntax is supported by most 8051 assemblers, therefore a high level
of compatibility is possible with existing 8051 assembly source files. All MCS®51 instruction mnemonics
are supported. The following sections describe the differences that may exist between C51ASM and
other assemblers.

7.1 7.1 Restrictions

C51ASM only generates absolute object files instead of relocatable object modules. The entire object is
built in one step without calling a linker. Therefore the entire source code of an application program must
reside in a single file and its subsequent include files. The assembler directives that deal with relocatable
segments or external or public symbols have not been implemented, but are still reserved. These
include:

PUBLIC

EXTRN

SEGMENT

RSEG

C51ASM does not support the Intel Macro Processing Language (MPL). Only standard callable macros
and repeat macros are supported.

7.2 7.2 Extensions

C51ASM includes some features that are not found in other assemblers.

C51ASM includes support for the extended instruction set of the Atmel AT89LP family and special
data pointer mode aliases. See Section 3.7 ”The 8051 Instruction Set” on page 3-9.

C51ASM adds the additional segment types EDATA (for internal Extended RAM) and FDATA (for
internal Flash/EEPROM data memory). This includes the symbol and segment definition directives:
EDATA, FDATA, ESEG, and FSEG. An additional object file is created for initialized FDATA values,
with the $MAPFSEG control affecting the addressing in the FDATA object file.

C51ASM includes preliminary support for devices with CODE memories above 64KB. This feature will
be fully functional in a future release.
C51ASM User Guide 7-1

3710A–MICRO–10/10

Assembler Compatibility
7-2 C51ASM User Guide

3710A–MICRO–10/10

Section 8

Supported Devices

The Atmel® C51ASM assembler can support any 8051 device that uses the standard 8051 instruction
set. However, C51ASM was intended, generally, to support the Atmel 8051 family, and specifically, the
Atmel AT89LP single-cycle microcontrollers. C51ASM supports devices in two ways: predefined SFR
symbols and device models.

C51ASM includes predefined SFR address and bit symbols for the standard base registers of the 80C51
and 80C52 microcontrollers as listed in “Appendix C - Predefined Symbols” . These definitions are com-
mon to "most" 8051 devices. Use the $MOD51 and $MOD52 controls to define the symbols for 80C51
and 80C52, respectively. $MOD51 is on by default. To disabled the predefined values and use your own,
specify the $NOMOD51control.

C51ASM also includes device model support for Atmel 8051 devices. Device models will set limits on
memory segment sizes and features that correspond to the actual physical device. When a target device
is selected, the assembler checks the model and will generate errors if a certain feature is not supported,
or if memory is allocated out of bounds. Device models are specified by the --target option or $DEVICE
control. When no device is specified, a generic model is used. Note that selecting a device model does
not predefine any SFR symbols. Device specific header files can be found under the include directory.

Call C51ASM on the command line with the --devices option to print a list of the supported devices. The
following device models are supported by C51ASM:

Table 8-1. Supported Devices

Device

Flash/EEPROM

RAM ERAM XRAMCode Data

(default) 65536 65536 256 65536 Y

AT89LP2052 2048 0 256 0 N

AT89LP4052 4096 0 256 0 N

AT89LP213 2048 0 128 0 N

AT89LP214 2048 0 128 0 N

AT89LP216 2048 0 128 0 N

AT89LP428 4096 512 256 512 N

AT89LP52 8192 256 256 0 Y

AT89LP828 8192 1024 256 512 N

AT89LP6440 65536 8192 256 4096 Y

AT89S2051 2048 0 256 0 N

AT89S4051 4096 0 256 0 N

AT89S51 4096 0 128 0 Y
C51ASM User Guide 8-1

3710A–MICRO–10/10

Supported Devices
AT89S52 8192 0 256 0 Y

AT89S53 12288 0 256 0 Y

AT89S8252 8192 2048 256 0 Y

AT89S8253 12288 2048 256 0 Y

AT89LS51 4096 0 128 0 Y

AT89LS52 8192 0 256 0 Y

AT89C2051 2048 0 128 0 N

AT89C4051 4096 0 128 0 N

AT89C51 4096 0 128 0 Y

AT89C52 8192 0 256 0 Y

AT89C55WD 20480 0 256 0 Y

AT89C51RC 32768 0 256 256 Y

AT89C51RB2 16384 0 256 1024 Y

AT89C51RC2 32768 0 256 1024 Y

AT89C51RD2 65536 0 256 1792 Y

AT89C51IC2 32768 0 256 1024 Y

AT89C51ID2 65536 2048 256 1792 Y

AT89C51ED2 65536 2048 256 1792 Y

Table 8-1. Supported Devices

Device

Flash/EEPROM

RAM ERAM XRAMCode Data
8-2 C51ASM User Guide

3710A–MICRO–10/10

Section 9

Instruction Set Reference

The following sections describe all the instructions supported by the Atmel® C51ASM assembler. These
include the standard MCS®51 instructions, plus some additional extensions unique to the Atmel AT89LP
Family of microcontrollers.

All instruction cycle counts are listed in units of system clocks. Most classic 8051s divide the XTAL clock
by two to generate the system clock, therefore the listed number must be multiplied by two for 12-clocks
per machine cycle devices. The listed number is equivalent to a device operating in X2 mode (6-clocks
per machine cycle). Cycle counts are listed with three different qualifiers:

Classic: Standard 8051 timing for the Atmel AT89C and Atmel AT89S families, or for Atmel AT89LP
devices that are operating in a compatibility mode

Fast: Timing for the Atmel AT89LP single-cycle family when not in compatibility mode

Compatibility: Timing for the extended instructions of the AT89LP family during compatibility mode.
These instructions are not available on “classic” device.

9.1 Addressing Modes

The instruction set supports the following addressing modes.

Table 9-1. 8051 Addressing Modes

Symbol Description

Rn Register R0-R7 of the currently selected Register Bank.

direct
8-bit internal data location address. This could be an internal data RAM location (0-127)
or an SFR (128-255).

@Ri
8-bit internal data RAM location (0-255) addressed indirectly through the contents of R1
or R0.

#data 8-bit immediate constant included in instruction.

#data16 16-bit immediate constant included in instruction.

addr24
24-bit destination address used by EJMP or ECALL. A branch can be anywhere within
the 16MB Program Memory address space.

addr16
16-bit destination address used by LJMP or LCALL. A branch can be anywhere within
the 64KB Program Memory address space.

addr11
11-bit destination address used by AJMP or ACALL. A branch will be within the same
2KB segement of Program Memory as the first byte of the following instruction.

rel
Signed (two’s complement) 8-bit offset used by SJMP and all conditional jumps. Rnage
is -128 to +127 bytes relative to the first byte of the following instruction.

bit Directly addressed bit in internal data RAM or an SFR.
C51ASM User Guide 9-1

3710A–MICRO–10/10

Instruction Set Reference
9.2 Instructions in Alphabetical Order

Table 9-2 lists the supported instructions of the Atmel® AT89 family of 8051 microcontrollers, organized
by mnemonic.

Table 9-2. 8051 Instructions in Alphabetical Order

Mnemonic Operands Bytes Hex Code Page

ACALL code addr 2 11, 31, 51, 71, 91, B1, D1, F1 9-6

ADD A, #data 2 24 9-7

ADD A, data addr 2 25 9-7

ADD A, @Ri 1 26–27 9-7

ADD A, Rn 1 28–2F 9-7

ADDC A, #data 2 34 9-8

ADDC A, data addr 2 35 9-8

ADDC A, @Ri 1 36–37 9-8

ADDC A, Rn 1 38–3F 9-8

AJMP code addr 2 01, 21, 41, 61, 81, A1, C1, E1 9-9

ANL A, #data 2 54 9-9

ANL A, data addr 2 55 9-9

ANL A, @Ri 1 56–57 9-9

ANL A, Rn 1 58–5F 9-9

ANL C, bit addr 2 82 9-11

ANL C, /bit addr 2 B0 9-11

ANL data addr, A 2 52 9-9

ANL data addr, #data 3 53 9-9

ASR M 2 A5 03 9-11

BREAK 2 A5 00 9-12

CJNE A, #data, code addr 3 B4 9-12

CJNE A, data addr, code addr 3 B5 9-12

CJNE @Ri, #data, code addr 3 B6–B7 9-12

CJNE Rn, #data, code addr 3 B8–BF 9-12

CJNE A, @Ri, code addr 3 A5 B6, A5 B7 9-12

CLR A 1 E4 9-14

CLR bit addr 2 C2 9-15

CLR C 1 C3 9-15

CLR M 2 A5 E4 9-14

CPL A 1 F4 9-15

CPL bit addr 2 B2 9-16

CPL C 1 B3 9-16

DA A 1 D4 9-16

DEC A 1 14 9-17

DEC data addr 2 15 9-17

DEC @Ri 1 16–17 9-17
9-2 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
DEC Rn 1 18–1F 9-17

DIV AB 1 84 9-18

DJNZ data addr, code addr 3 D5 9-19

DJNZ Rn, code addr 2 D8–DF 9-19

ECALL code addr 5 A5 12 9-20

EJMP code addr 5 A5 02 9-21

ERET 2 A5 22 9-21

INC A 1 04 9-22

INC data addr 2 05 9-22

INC @Ri 1 06–07 9-22

INC Rn 1 08–0F 9-22

INC DPTR 1 A3 9-23

INC /DPTR 2 A5 A3 9-23

JB bit addr, code addr 3 20 9-24

JBC bit addr, code addr 3 10 9-24

JC code addr 2 40 9-25

JMP @A+DPTR 1 73 9-25

JMP @A+PC 2 A5 73 9-25

JNB bit addr, code addr 3 30 9-26

JNC code addr 2 50 9-26

JNZ code addr 2 70 9-27

JZ code addr 2 60 9-27

LCALL code addr 3 12 9-28

LJMP code addr 3 02 9-28

LSL M 2 A5 23 9-29

MAC AB 2 A5 A4 9-29

MOV A, #data 2 74 9-30

MOV A, data addr 2 E5 9-30

MOV A, @Ri 1 E6–E7 9-30

MOV A, Rn 1 E8–EF 9-30

MOV data addr, #data 3 75 9-30

MOV @Ri, #data 2 76–77 9-30

MOV Rn, #data 2 78–7F 9-30

MOV data addr, data addr 3 85 9-30

MOV data addr, @Ri 2 86–87 9-30

MOV data addr, Rn 2 88–8F 9-30

MOV DPTR, #data 3 90 9-33

MOV /DPTR, #data 4 A5 90 9-33

MOV bit addr, C 2 92 9-34

Table 9-2. 8051 Instructions in Alphabetical Order

Mnemonic Operands Bytes Hex Code Page
C51ASM User Guide 9-3

3710A–MICRO–10/10

Instruction Set Reference
MOV C, bit addr 2 A2 9-34

MOV @Ri, data addr 2 A6–A7 9-30

MOV Rn, data addr 2 A8–AF 9-30

MOV data addr, A 2 F5 9-30

MOV @Ri, A 1 F6–F7 9-30

MOV Rn, A 1 F8–FF 9-30

MOVC A, @A+DPTR 1 93 9-34

MOVC A, @A+/DPTR 2 A5 93 9-34

MOVC A, @A+PC 1 83 9-34

MOVX A, @DPTR 1 E0 9-35

MOVX A, @/DPTR 2 A5 E0 9-35

MOVX A, @Ri 1 E2–E3 9-35

MOVX @DPTR, A 1 F0 9-35

MOVX @/DPTR, A 2 A5 F0 9-35

MOVX @Ri, A 1 F2–F3 9-35

MUL AB 1 A4 9-37

NOP 1 00 9-38

ORL A, #data 2 44 9-38

ORL A, data addr 2 45 9-38

ORL A, @Ri 1 46–47 9-38

ORL A, Rn 1 48–4F 9-38

ORL C, bit addr 2 72 9-40

ORL C, /bit addr 2 A0 9-40

ORL data addr, A 2 42 9-38

ORL data addr, #data 3 43 9-38

POP data addr 2 D0 9-40

PUSH data addr 2 C0 9-41

RET 1 22 9-41

RETI 1 32 9-42

RL A 1 23 9-43

RLC A 1 33 9-44

RR A 1 03 9-44

RRC A 1 13 9-45

SETB bit addr 2 D2 9-45

SETB C 1 D3 9-45

SJMP code addr 2 80 9-46

SUBB A, #data 2 94 9-46

SUBB A, data addr 2 95 9-46

SUBB A, @Ri 1 96–97 9-46

Table 9-2. 8051 Instructions in Alphabetical Order

Mnemonic Operands Bytes Hex Code Page
9-4 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
9.3 Instruction Set Extensions
The following instructions are extensions to the standard 8051 instruction set that provide enhanced
capabilities not found in standard 8051 devices. All extended instructions start with an A5H escape code.
For this reason random A5H reserved codes should not be placed in the instruction stream even though
other devices may have treated these as NOPs.

These instructions are only supported on Atmel® AT89LP devices and individual AT89LP devices may
not support all of these instructions. For instruction cycle times, the number of internal CPU clock cycles
is listed. The classic 80C51 compatible timing also lists the number of machine cycles in parantheses.

SUBB A, Rn 1 98–9F 9-46

SWAP A 1 C4 9-47

XCH A, data addr 2 C5 9-48

XCH A, @Ri 1 C6–C7 9-48

XCH A, Rn 1 C8–CF 9-48

XCHD A, @Ri 1 D6–D7 9-48

XRL A, #data 2 64 9-49

XRL A, data addr 2 65 9-49

XRL A, @Ri 1 66–67 9-49

XRL A, Rn 1 68–6F 9-49

XRL data addr, A 2 62 9-49

XRL data addr, #data 3 63 9-49

Table 9-2. 8051 Instructions in Alphabetical Order

Mnemonic Operands Bytes Hex Code Page

Table 9-3. Instruction Set Extensions

Hex
Code Bytes Mnemonic Operands

Cycles Device Support

Classic Fast A
T

89
L

P
21

3

A
T

89
L

P
21

4

A
T

89
L

P
21

6

A
T

89
L

P
42

8

A
T

89
L

P
52

A
T

89
L

P
82

8

A
T

89
L

P
64

40
A5 00 2 BREAK 12 (2) 2 X X X X X X

A5 02 5 EJMP addr24 18 (3) 6

A5 03 2 ASR M 12 (2) 2 X

A5 12 5 ECALL addr24 18 (3) 6

A5 22 2 ERET 18 (3) 6

A5 23 2 LSL M 12 (2) 2 X

A5 73 2 JMP @A+PC 18 (3) 3 X X X X X X X

A5 90 4 MOV
/DPTR,
#data16

18 (3) 4 X X X X

A5 93 2 MOVC A, @A+/DPTR 18 (3) 4 X X X X

A5 A3 2 INC /DPTR 18 (3) 3 X X X X

A5 A4 2 MAC AB 30 (5) 9 X

A5 B6 3 CJNE A, @R0, rel 18 (3) 4 X X X X
C51ASM User Guide 9-5

3710A–MICRO–10/10

Instruction Set Reference
9.4 Instruction Definitions

Detailed descriptions of all the instructions supported by the Atmel® C51ASM assembler are listed
below. All stack-realted instructions include entries for both the standard IDATA stack and the extended
EDATA stack.

A5 B7 3 CJNE A, @R1, rel 18 (3) 4 X X X X

A5 E0 2 MOVX A, @/DPTR 18 (3) 3/5 X X X X

A5 E4 2 CLR M 12 (2) 2 X

A5 F0 2 MOVX @DPTR, A 18 (3) 3/5 X X X X

Table 9-3. Instruction Set Extensions

Hex
Code Bytes Mnemonic Operands

Cycles Device Support

Classic Fast A
T

89
L

P
21

3

A
T

89
L

P
21

4

A
T

89
L

P
21

6

A
T

89
L

P
42

8

A
T

89
L

P
52

A
T

89
L

P
82

8

A
T

89
L

P
64

40

9.4.1 ACALL addr11

Function: Absolute Call

Description: ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC
twice to obtain the address of the following instruction, then pushes the 16-bit result onto the stack (low-order
byte first) and increments the Stack Pointer twice. The destination address is obtained by successively
concatenating the five high-order bits of the incremented PC, opcode bits 7 through 5, and the second byte of the
instruction. The subroutine called must therefore start within the same 2 K block of the program memory as the
first byte of the instruction following ACALL. No flags are affected.

Example: Initially SP equals 07H. The label SUBRTN is at program memory location 0345 H. After executing the following
instruction,

ACALL SUBRTN

at location 0123H, SP contains 09H, internal RAM locations 08H and 09H will contain 25H and 01H, respectively,
and the PC contains 0345H.

ACALL addr11 (Standard Stack)

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

Operation: ACALL
(PC) ← (PC) + 2
(SP7-0) ← (SP7-0) + 1
((SP7-0)) ← (PC7-0)
(SP7-0) ← (SP7-0) + 1
((SP7-0)) ← (PC15-8)
(PC10-0) ← page address
9-6 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
ACALL addr11 (Extended Stack)

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

5 Fast Mode

Encoding: a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

Operation: ACALL (SP15-8 = SPX)
(PC) ← (PC) + 2
(SP15-0) ← (SP15-0) + 1
((SP15-0)) ← (PC7-0)
(SP15-0) ← (SP15-0) + 1
((SP15-0)) ← (PC15-8)
(PC10-0) ← page address

9.4.2 ADD A, <src-byte>

Function: Add

Description: ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumulator. The carry and
auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When
adding unsigned integers, the carry flag indicates an overflow occurred.
OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6; otherwise, OV is
cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive
operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C3H (1100001lB), and register 0 holds 0AAH (10101010B). The following instruction,

ADD A,R0

leaves 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry flag and OV set to 1.

ADD A,Rn

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 0 1 0 1 r r r

Operation: (A) ← (A) + (Rn)

ADD A,direct

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 0 1 0 0 1 0 1 direct address

Operation: (A) ← (A) + (direct)

ADD A,@Ri

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 0 1 0 0 1 1 i

Operation: (A) ← (A) + ((Ri))

9.4.1 ACALL addr11
C51ASM User Guide 9-7

3710A–MICRO–10/10

Instruction Set Reference
ADD A,#data

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 0 1 0 0 1 0 0 immediate data

Operation: ADD
(A) ← (A) + #data

9.4.3 ADDC A, <src-byte>

Function: Add with Carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator contents, leaving the
result in the Accumulator. The carry and auxiliary-carry flags are set respectively, if there is a carry-out from bit 7
or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of bit 6; otherwise OV
is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive
operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) with the carry flag set. The
following instruction,

ADDC A,R0

leaves 6EH (01101110B) in the Accumulator with AC cleared and both the Carry flag and OV set to 1.

ADDC A,Rn

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 0 1 1 1 r r r

Operation: ADDC
(A) ← (A) + (C) + (Rn)

ADDC A,direct

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 0 1 1 0 1 0 1 direct address

Operation: ADDC
(A) ← (A) + (C) + (direct)

ADDC A,@Ri

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 0 1 1 0 1 1 i

Operation: ADDC
(A) ← (A) + (C) + ((Ri))

9.4.2 ADD A, <src-byte>
9-8 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
ADDC A,#data

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 0 1 1 0 1 0 0 immediate data

Operation: ADDC
(A) ← (A) + (C) + #data

9.4.4 AJMP addr11

Function: Absolute Jump

Description: AJMP transfers program execution to the indicated address, which is formed at run-time by concatenating the
high-order five bits of the PC (after incrementing the PC twice), opcode bits 7 through 5, and the second byte of
the instruction. The destination must therfore be within the same 2 K block of program memory as the first byte of
the instruction following AJMP.

Example: The label JMPADR is at program memory location 0123H. The following instruction,
AJMP JMPADR

is at location 0345H and loads the PC with 0123H.

AJMP addr11

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

Operation: AJMP
(PC) ← (PC) + 2
(PC10-0) ← page address

9.4.5 ANL <dest-byte>, <src-byte>

Function: Logical-AND for byte variables

Description: ANL performs the bitwise logical-AND operation between the variables indicated and stores the results in the
destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source
can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the
source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read
from the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (1100001lB), and register 0 holds 55H (01010101B), then the following
instruction,

ANL A,R0
leaves 41H (01000001B) in the Accumulator.

When the destination is a directly addressed byte, this instruction clears combinations of bits in any RAM
location or hardware register. The mask byte determining the pattern of bits to be cleared would either be a
constant contained in the instruction or a value computed in the Accumulator at run-time. The following
instruction,

ANL P1,#01110011B

clears bits 7, 3, and 2 of output port 1.

9.4.3 ADDC A, <src-byte>
C51ASM User Guide 9-9

3710A–MICRO–10/10

Instruction Set Reference
ANL A,Rn

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 1 0 1 1 r r r

Operation: (A) ← (A) ∧ (Rn)

ANL A,direct

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 0 1 0 1 0 1 direct address

Operation: (A) ← (A) ∧ (direct)

ANL A,@Ri

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle

2 Fast Mode

Encoding: 0 1 0 1 0 1 1 i

Operation: (A) ← (A) ∧ ((Ri))

ANL A,#data

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 0 1 0 1 0 0 immediate data

Operation: (A) ← (A) ∧ #data

ANL direct,A

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 0 1 0 0 1 0 direct address

Operation: (direct) ← (direct) ∧ (A)

ANL direct,#data

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 0 1 0 1 0 0 1 1 direct address immediate data

Operation: (direct) ← (direct) ∧ #data

9.4.5 ANL <dest-byte>, <src-byte>
9-10 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
Compatibility (2 Machine Cycles)

Fast Mode

9.4.6 ANL C,<src-bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical 0, then ANL C clears the carry flag; otherwise, this instruction
leaves the carry flag in its current state. A slash (/) preceding the operand in the assembly language indicates
that the logical complement of the addressed bit is used as the source value, but the source bit itself is not
affected. No other flags are affected.

Only direct addressing is allowed for the source operand.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, and OV = 0:
MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN STATE

ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT 7

ANL C,/OV ;AND WITH INVERSE OF OVERFLOW FLAG

ANL C,bit

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 1 0 0 0 0 0 1 0 bit address

Operation: ANL
(C) ← (C) ∧ (bit)

ANL C,/bit

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 1 0 1 1 0 0 0 0 bit address

Operation: ANL
(C) ← (C) ∧ (bit)

9.4.7 ASR M

Function: Shift MAC Accumulator Right Arithmetically

Description: The forty bits in the M register are shifted one bit to the right. Bit 39 retains its value to preserve the sign of the
value. No flags are affected.

Example: The M register holds the value 0C5B1A29384H . The following instruction,

ASR M

leaves the M register holding the value 0E2D8D149C2H.

Bytes: 2

Cycles: 12

2

Encoding: A5 0 0 0 0 0 0 1 1

Operation: ASR
(Mn) ← (Mn + 1) n = 0 - 38
(M39) ← (M39)
C51ASM User Guide 9-11

3710A–MICRO–10/10

Instruction Set Reference
9.4.8 BREAK

Function: Software Breakpoint (Halt execution)

Description: BREAK transfers control from normal execution to the On-Chip Debug (OCD) handler if OCD is enabled. The PC
is left pointing to the following instruction. If OCD is disabled, BREAK acts as a double NOP. No flags are
affected.

Example: If On-Chip Debugging is allowed, the following instruction,
BREAK
will halt instruction execution prior to the immediately following instruction. If debugging is not allowed, the
BREAK is treated as a double NOP.

Bytes: 2

Cycles: 12 Compatibility (2 Machine Cycles)

2 Fast Mode

Encoding: A5 0 0 0 0 0 0 0 0

Operation: (PC) ← (PC) + 2

9.4.9 CJNE <dest-byte>,<src-byte>, rel

Function: Compare and Jump if Not Equal.

Description: CJNE compares the magnitudes of the first two operands and branches if their values are not equal. The branch
destination is computed by adding the signed relative-displacement in the last instruction byte to the PC, after
incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer value of
<dest-byte> is less than the unsigned integer value of <src-byte>; otherwise, the carry is cleared. Neither
operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may be compared with any
directly addressed byte or immediate data, and any indirect RAM location or working register can be compared
with an immediate constant.

Example: The Accumulator contains 34H. Register 7 contains 56H. The first instruction in the sequence,

...... CJNER7, # 60H, NOT_EQ
; ;R7 = 60H.
NOT_EQ: JC REQ_LOW;IF R7 < 60H.
; ;R7 > 60H.
sets the carry flag and branches to the instruction at label NOT_EQ. By testing the carry flag, this instruction
determines whether R7 is greater or less than 60H.
If the data being presented to Port 1 is also 34H, then the following instruction,

WAIT:CJNE A, P1,WAIT

clears the carry flag and continues with the next instruction in sequence, since the Accumulator does equal the
data read from P1. (If some other value was being input on P1, the program loops at this point until the P1 data
changes to 34H.)

CJNE A,direct,rel

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

Cycles: 4 Fast Mode

Encoding: 1 0 1 1 0 1 0 1 direct address rel. address

Operation: (PC) ← (PC) + 3
IF (A) < > (direct) THEN
 (PC) ← (PC) + relative offset
IF (A) < (direct) THEN
 (C) ← 1
ELSE
 (C) ← 0
9-12 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
CJNE A,#data,rel

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

Cycles: 4 Fast Mode

Encoding: 1 0 1 1 0 1 0 0 immediate data rel. address

Operation: (PC) ← (PC) + 3
IF (A) < > data
THEN
(PC) ← (PC) + relative offset
IF (A) < data
THEN
(C) ← 1
ELSE
(C) ← 0

CJNE Rn,#data,rel

Bytes: 3

Cycles: 12 Classic (2 machine Cycles)

4 Fast Mode

Encoding: 1 0 1 1 1 r r r immediate data rel. address

Operation: (PC) ← (PC) + 3
IF (Rn) < > data
THEN
(PC) ← (PC) + relative offset
IF (Rn) < data
THEN
(C) ← 1
ELSE
(C) ← 0

CJNE @Ri,data,rel

Bytes: 3

Cycles: 12 Classic (2 machine Cycles)

4 Fast Mode

Encoding: 1 0 1 1 0 1 1 i immediate data rel. address

Operation: (PC) ← (PC) + 3
IF ((Ri)) < > data
THEN
(PC) ← (PC) + relative offset
IF ((Ri)) < data
THEN
(C) ← 1
ELSE
(C) ← 0

9.4.9 CJNE <dest-byte>,<src-byte>, rel
C51ASM User Guide 9-13

3710A–MICRO–10/10

Instruction Set Reference
Fast Mode

CJNE A, @Ri,,rel

Bytes: 3

Cycles: 12 Compatibility (2 machine Cycles)

4 Fast Mode

Encoding: A5 1 0 1 1 0 1 1 i rel. address

Operation: CJNE
(PC) ← (PC) + 3
IF (A) ≠ ((Ri))
THEN

(PC) ← (PC) + relative offset
IF (A) < ((Ri))
THEN

(C) ← 1
ELSE

(C) ← 0

9.4.10 CLR A

Function: Clear Accumulator

Description: CLR A clears the Accumulator (all bits set to 0). No flags are affected

Example: The Accumulator contains 5CH (01011100B). The following instruction,CLR Aleaves the Accumulator set to 00H
(00000000B).

CLR A

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 1 1 0 0 1 0 0

Operation: CLR
(A) ← 0

9.4.11 CLR M

Function: Clear MAC Accumulator

Description: CLR M clears the 40-bit M register. No flags are affected.

Example: The M registercontains 123456789AH. The following instruction,

CLR M

leaves the M register set to 0000000000H.

Bytes: 2

Cycles: 6 Compatibility (1 Machine Cycle)

2

Encoding: A5 1 1 1 0 0 1 0 0

Operation: (M) ← 0

9.4.9 CJNE <dest-byte>,<src-byte>, rel
9-14 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
9.4.12 CLR bit

Function: Clear bit

Description: CLR bit clears the indicated bit (reset to 0). No other flags are affected. CLR can operate on the carry flag or any
directly addressable bit.

Example: Port 1 has previously been written with 5DH (01011101B). The following instruction,CLR P1.2 leaves the port set
to 59H (01011001B).

CLR C

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 1 0 0 0 0 1 1

Operation: CLR
(C) ← 0

CLR bit

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 1 0 0 0 0 1 0 bit address

Operation: (bit) ← 0

9.4.13 CPL A

Function: Complement Accumulator

Description: CPLA logically complements each bit of the Accumulator (one’s complement). Bits which previously contained a
1 are changed to a 0 and vice-versa. No flags are affected.

Example: The Accumulator contains 5CH (01011100B). The following instruction,

CPL A

leaves the Accumulator set to 0A3H (10100011B).

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 1 1 1 0 1 0 0

Operation: (A) ← (A)
C51ASM User Guide 9-15

3710A–MICRO–10/10

Instruction Set Reference
9.4.14 CPL bit

Function: Complement bit

Description: CPL bit complements the bit variable specified. A bit that had been a 1 is changed to 0 and vice-versa. No other
flags are affected. CLR can operate on the carry or any directly addressable bit.
Note: When this instruction is used to modify an output pin, the value used as the original data is read from the
output data latch, not the input pin.

Example: Port 1 has previously been written with 5BH (01011101B). The following instruction sequence,CPL P1.1CPL
P1.2 leaves the port set to 5BH (01011011B).

CPL C

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 0 1 1 0 0 1 1

Operation: (C) ← (C)

CPL bit

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 0 1 1 0 0 1 0 bit address

Operation: (bit) ← (bit)

9.4.15 DA A

Function: Decimal-adjust Accumulator for Addition

Description: DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two variables (each in
packed-BCD format), producing two four-bit digits. Any ADD or ADDC instruction may have been used to
perform the addition.
If Accumulator bits 3 through 0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one, six is added
to the Accumulator producing the proper BCD digit in the low-order nibble. This internal addition sets the carry
flag if a carry-out of the low-order four-bit field propagates through all high-order bits, but it does not clear the
carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-1111xxxx), these high-order
bits are incremented by six, producing the proper BCD digit in the high-order nibble. Again, this sets the carry
flag if there is a carry-out of the high-order bits, but does not clear the carry. The carry flag thus indicates if the
sum of the original two BCD variables is greater than 100, allowing multiple precision decimal addition. OV is not
affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the decimal conversion by
adding 00H, 06H, 60H, or 66H to the Accumulator, depending on initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD notation, nor does DAA
apply to decimal subtraction.
9-16 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
Example: The Accumulator holds the value 56H (01010110B), representing the packed BCD digits of the decimal number
56. Register 3 contains the value 67H (01100111B), representing the packed BCD digits of the decimal number
67. The carry flag is set. The following instruction sequence

ADDC A,R3
DA A

first performs a standard two’s-complement binary addition, resulting in the value 0BEH (10111110) in the
Accumulator. The carry and auxiliary carry flags are cleared.

The Decimal Adjust instruction then alters the Accumulator to the value 24H (00100100B), indicating the packed
BCD digits of the decimal number 24, the low-order two digits of the decimal sum of 56, 67, and the carry-in. The
carry flag is set by the Decimal Adjust instruction, indicating that a decimal overflow occurred. The true sum of
56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumulator initially holds 30H
(representing the digits of 30 decimal), then the following instruction sequence,

ADD A, # 99H

DA A
leaves the carry set and 29H in the Accumulator, since 30 + 99 = 129. The low-order byte of the sum can be
interpreted to mean 30 - 1 = 29.

DA A

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 1 0 1 0 1 0 0

Operation: -contents of Accumulator are BCD
IF [[(A3-0) > 9] ∨ [(AC) = 1]]

THEN (A3-0) ← (A3-0) + 6
AND

IF [[(A7-4) > 9] ∨ [(C) = 1]]
THEN (A7-4) ← (A7-4) + 6

9.4.16 DEC <byte>

Function: Decrement

Description: DEC byte decrements the variable indicated by 1. An original value of 00H underflows to 0FFH. No flags are
affected. Four operand addressing modes are allowed: accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read
from the output data latch, not the input pins.

Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H and 40H, respectively.
The following instruction sequence,

DEC @R0
DEC R0

DEC @R0

leaves register 0 set to 7EH and internal RAM locations 7EH and 7FH set to 0FFH and 3FH.

DEC A

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 0 0 1 0 1 0 0

Operation: DEC
(A) ← (A) - 1

9.4.15 DA A
C51ASM User Guide 9-17

3710A–MICRO–10/10

Instruction Set Reference
DEC Rn

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 0 0 1 1 r r r

Operation: DEC
(Rn) ← (Rn) - 1

DEC direct

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 0 0 1 0 1 0 1 direct address

Operation: DEC
(direct) ← (direct) - 1

DEC @Ri

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 0 0 1 0 1 1 i

Operation: DEC
((Ri)) ← ((Ri)) - 1

9.4.17 DIV AB

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit integer in register B.
The Accumulator receives the integer part of the quotient; register B receives the integer remainder. The carry
and OV flags are cleared.
Exception: if B had originally contained 00H, the values returned in the Accumulator and B-register are
undefined and the overflow flag are set. The carry flag is cleared in any case.

Example: The Accumulator contains 251 (0FBH or 11111011B) and B contains 18 (12H or 00010010B). The following
instruction,

DIV AB

leaves 13 in the Accumulator (0DH or 00001101B) and the value 17 (11H or 00010001B) in B, since
251 = (13 x 18) + 17. Carry and OV are both cleared.

DIV AB

Bytes: 1

Cycles: 24 Classic (4 Machine Cycles)

4 Fast Mode

Encoding: 1 0 0 0 0 1 0 0

Operation: DIV
(A)15-8 ← (A)/(B)
(B)7-0

9.4.16 DEC <byte>
9-18 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
9.4.18 DJNZ <byte>,<rel-addr>

Function: Decrement and Jump if Not Zero

Description: DJNZ decrements the location indicated by 1, and branches to the address indicated by the second operand if
the resulting value is not zero. An original value of 00H underflows to 0FFH. No flags are affected. The branch
destination is computed by adding the signed relative-displacement value in the last instruction byte to the PC,
after incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read
from the output data latch, not the input pins.

Example: Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H, respectively. The following
instruction sequence,

DJNZ 40H,LABEL_1
DJNZ 50H,LABEL_2

DJNZ 60H,LABEL_3

causes a jump to the instruction at label LABEL_2 with the values 00H, 6FH, and 15H in the three RAM
locations. The first jump was not taken because the result was zero.

This instruction provides a simple way to execute a program loop a given number of times or for adding a
moderate time delay (from 2 to 512 machine cycles) with a single instruction. The following instruction sequence,

MOV R2, # 8
TOGGLE: CPL P1.7

DJNZ R2,TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each pulse lasts three
machine cycles; two for DJNZ and one to alter the pin.

DJNZ Rn,rel

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 1 1 0 1 1 r r r rel. address

Operation: (PC) ← (PC) + 2
(Rn) ← (Rn) - 1
IF (Rn) > 0 or (Rn) < 0
THEN

(PC) ← (PC) + rel

DJNZ direct,rel

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

4 Fast Mode

Encoding: 1 1 0 1 0 1 0 1 direct address rel. address

Operation: (PC) ← (PC) + 2
(direct) ← (direct) - 1
IF (direct) > 0 or (direct) < 0
THEN

(PC) ← (PC) + rel
C51ASM User Guide 9-19

3710A–MICRO–10/10

Instruction Set Reference
9.4.19 ECALL addr24

Function: Extended call

Description: ECALL calls a subroutine located at the indicated address. The instruction adds five to the program counter to
generate the address of the next instruction and then pushes the 24-bit result onto the stack (low byte first),
incrementing the Stack Pointer by three. The high-order middle, and low-order bytes of the PC are then loaded,
respectively, with the third, fourth, and fifth bytes of the ECALL instruction. Program execution continues with the
instruction at this address. The subroutine may therefore begin anywhere in the 16MB program memory address
space. No flags are affected.

ECALL is only supported on devices with more than 64KB of program memory.

Example: Initially the Stack Pointer equals 07H. The label SUBRTN is assigned to program memory location 123456H.
After executing the instruction,
ECALL SUBRTN

at location 012345H, the Stack Pointer will contain 0A9H, internal RAM locations 08H, 09H and 0AH will contain
4AH, 23H and 01H, and the PC will contain 123456H.

ECALL addr24 (Standard Stack)

Bytes: 5

Cycles: 18 Classic (3 Machine Cycles)

6 Fast Mode

Encoding: A5 12 addr23-addr16 addr15-addr8 addr7-addr0

Operation: ECALL
(PC) ← (PC) + 5
(SP7-0) ← (SP7-0) + 1
((SP7-0)) ← (PC7-0)
(SP7-0) ← (SP7-0) + 1
((SP7-0)) ← (PC15-8)
(SP7-0) ← (SP7-0) + 1
((SP7-0)) ← (PC23-16)
(PC) ← addr23-0

ECALL addr24 (Extended Stack)

Bytes: 5

Cycles: 18 Classic (3 Machine Cycles)

8 Fast Mode

Encoding: A5 12 addr23-addr16 addr15-addr8 addr7-addr0

Operation: ECALL (SP15-8 = SPX)
(PC) ← (PC) + 5
(SP15-0) ← (SP15-0) + 1
((SP15-0)) ← (PC7-0)
(SP15-0) ← (SP15-0) + 1
((SP15-0)) ← (PC15-8)
(SP15-0) ← (SP15-0) + 1
((SP15-0)) ← (PC23-16)
(PC) ← addr23-0
9-20 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
9.4.20 EJMP addr24

Function: Extended jump

Description: EJMP causes an unconditional branch to the indicated address, by loading the high-order, middle, and low-order
bytes of the PC (respectively) with the third, fourth, and fifth instruction bytes. The destination may therefore be
anywhere in the 16MB program memory address space. No flags are affected.

EJMP is only supported on devices with more than 64KB of program memory.

Example: The label JMPADR is assigned to the instruction at program memory location 123456H. The instruction,

EJMP JMPADR
at location 0123H will load the program counter with 123456H.

EJMP addr24

Bytes: 5

Cycles: 18 Compatibility (3 Machine Cycles)

6 Fast Mode

Encoding: A5 12 addr23-addr16 addr15-addr8 addr7-addr0

Operation: EJMP
(PC) ← addr23-0

9.4.21 ERET

Function: Extended Return from subroutine

Description: ERET pops the high-, mniddle and low-order bytes of the PC successively from the stack, decrementing the
Stack Pointer by three. Program execution continues at the resulting address, generally the instruction
immediately following an ECALL. No flags are affected.

ERET is only supported on devices with more than 64KB of program memory.

Example: The Stack Pointer originally contains the value 0BH. Internal RAM locations 09H, 0AH and 0BH contain the
values 45H, 23H and 01H, respectively. The following instruction,
ERET

leaves the Stack Pointer equal to the value 08H. Program execution continues at location 012345H.

ERET (Standard Stack)

Bytes: 1

Cycles: 18 Compatibility (3 Machine Cycles)

5 Fast Mode

Encoding: 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0

Operation: RET
(PC23-16) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1
(PC15-8) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1
(PC7-0) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1
C51ASM User Guide 9-21

3710A–MICRO–10/10

Instruction Set Reference
ERET (Extended Stack)

Bytes: 1

Cycles: 18 Compatibility (3 Machine Cycles)

8 Fast Mode

Encoding: 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0

Operation: RET (SP15-8 = SPX)
(PC23-16) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1
(PC15-8) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1
(PC7-0) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1

9.4.22 INC <byte>

Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFH overflows to 00H. No flags are affected.
Three addressing modes are allowed: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read
from the output data latch, not the input pins.

Example: Register 0 contains 7EH (011111110B). Internal RAM locations 7EH and 7FH contain 0FFH and 40H,
respectively. The following instruction sequence,

INC @R0
INC R0

INC @R0

leaves register 0 set to 7FH and internal RAM locations 7EH and 7FH holding 00H and 41H, respectively.

INC A

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 0 0 0 0 1 0 0

Operation: (A) ← (A) + 1

INC Rn

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 0 0 0 1 r r r

Operation: (Rn) ← (Rn) + 1

INC direct

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 0 0 0 0 1 0 1 direct address

Operation: (direct) ← (direct) + 1

9.4.21 ERET
9-22 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
INC @Ri

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 0 0 0 0 1 1 i

Operation: INC
((Ri)) ← ((Ri)) + 1

9.4.23 INC DPTR

Function: Increment Data Pointer

Description: INC DPTR increments the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed, and an
overflow of the low-order byte of the data pointer (DPL) from 0FFH to 00H increments the high-order byte (DPH).
No flags are affected. For device with two data pointers. The data pointer to be incremented is slected by DPS
usually in the AUXR1 register. This is the only 16-bit register which can be incremented. INC /DPTR is only
available on devices with two or more data pointers.

Example: Registers DPH and DPL contain 12H and 0FEH, respectively. The following instruction sequence,

INC DPTR
INC DPTR

INC DPTR

changes DPH and DPL to 13H and 01H.

INC DPTR

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 1 0 1 0 0 0 1 1

Operation: INC
IF DPS = 0
THEN
 (DPTR0) ← (DPTR0) + 1
ELSE

 (DPTR1) ← (DPTR1) + 1

INC /DPTR

Bytes: 2

Cycles: 18 Compatibility (3 Machine Cycles)

3 Fast Mode

Encoding: 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1

Operation: INC
IF DPS = 0
THEN
 (DPTR1) ← (DPTR1) + 1
ELSE

 (DPTR0) ← (DPTR0) + 1

9.4.22 INC <byte>
C51ASM User Guide 9-23

3710A–MICRO–10/10

Instruction Set Reference
9.4.24 JB blt,rel

Function: Jump if Bit set

Description: If the indicated bit is a one, JB jump to the address indicated; otherwise, it proceeds with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC,
after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are
affected.

Example: The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The following instruction
sequence,

JB P1.2,LABEL1

JB ACC. 2,LABEL2
causes program execution to branch to the instruction at label LABEL2.

JB blt,rel

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

4 Fast Mode

Encoding: 0 0 1 0 0 0 0 0 bit address rel. address

Operation: JB
(PC) ← (PC) + 3
IF (bit) = 1
THEN

(PC) ← (PC) + rel

9.4.25 JBC bit,rel

Function: Jump if Bit is set and Clear bit

Description: If the indicated bit is one, JBC branches to the address indicated; otherwise, it proceeds with the next instruction.
The bit will not be cleared if it is already a zero. The branch destination is computed by adding the signed
relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the original data will be read from the
output data latch, not the input pin.

Example: The Accumulator holds 56H (01010110B). The following instruction sequence,
JBC ACC.3,LABEL1

JBC ACC.2,LABEL2

causes program execution to continue at the instruction identified by the label LABEL2, with the Accumulator
modified to 52H (01010010B).

JBC bit,rel

Bytes: 3

Cycles: 12 Classic (2 Machien Cycles)

4 Fast Mode

Encoding: 0 0 0 1 0 0 0 0 bit address rel. address

Operation: JBC
(PC) ← (PC) + 3
IF (bit) = 1
THEN

(bit) ← 0
(PC) ← (PC) +rel
9-24 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
9.4.26 JC rel

Function: Jump if Carry is set

Description: If the carry flag is set, JC branches to the address indicated; otherwise, it proceeds with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the second instruction byte to the
PC, after incrementing the PC twice. No flags are affected.

Example: The carry flag is cleared. The following instruction sequence,

JC LABEL1

CPL C

 JC LABEL 2
sets the carry and causes program execution to continue at the instruction identified by the label LABEL2.

JC rel

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 0 1 0 0 0 0 0 0 rel. address

Operation: JC
(PC) ← (PC) + 2
IF (C) = 1
THEN

(PC) ← (PC) + rel

9.4.27 JMP @A+<base_reg>

Function: Jump indirect

Description: JMP @A+DPTR adds the eight-bit unsigned contents of the Accumulator with the 16-bit data pointer and loads
the resulting sum to the program counter. This is the address for subsequent instruction fetches. Sixteen-bit
addition is performed (modulo 216): a carry-out from the low-order eight bits propagates through the higher-order
bits. Neither the Accumulator nor the Data Pointer is altered. No flags are affected.
JMP @A+PC adds the eight-bit unsigned contents of the Accumulator to the program counter, which is first
incremented by two. This is the address for subsequent instruction fetches. Sixteen-bit addition is performed
(modulo 216): a carry-out from the low-order eight bits propagates through the higher-order bits. The
Accumulator is not altered. No flags are affected.

Example: An even number from 0 to 6 is in the Accumulator. The following sequence of instructions branches to one of four
AJMP instructions in a jump table starting at JMP_TBL.

MOV DPTR, # JMP_TBL
JMP @A + DPTR

JMP_TBL:AJMP LABEL0

AJMP LABEL1
AJMP LABEL2

AJMP LABEL3

If the Accumulator equals 04H when starting this sequence, execution jumps to label LABEL2. Because AJMP is
a 2-byte instruction, the jump instructions start at every other address.

JMP @A+DPTR

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 0 1 1 1 0 0 1 1

Operation: (PC) ← (A) + (DPTR)
C51ASM User Guide 9-25

3710A–MICRO–10/10

Instruction Set Reference
JMP @A+PC

Bytes: 2

Cycles: 18 Compatibility (3 Machine Cycles)

3 Fast Mode

Encoding: 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1

Operation: (PC) ← (A) + (PC) + 2

9.4.28 JNB bit,rel

Function: Jump if Bit Not set

Description: If the indicated bit is a 0, JNB branches to the indicated address; otherwise, it proceeds with the next instruction.
The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the
PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are
affected.

Example: The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B). The following
instruction sequence,
JNB P1.3,LABEL1
JNB ACC.3,LABEL2
causes program execution to continue at the instruction at label LABEL2.

JNB bit,rel

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

4 Fast Mode

Encoding: 0 0 1 1 0 0 0 0 bit address rel. address

Operation: (PC) ← (PC) + 3
IF (bit) = 0
THEN (PC) ← (PC) + rel

9.4.29 JNC rel

Function: Jump if Carry not set

Description: If the carry flag is a 0, JNC branches to the address indicated; otherwise, it proceeds with the next instruction.
The branch destination is computed by adding the signal relative-displacement in the second instruction byte to
the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified.

Example: The carry flag is set. The following instruction sequence,

JNC LABEL1
CPL C
JNC LABEL2

clears the carry and causes program execution to continue at the instruction identified by the label LABEL2.

JNC rel

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 0 1 0 1 0 0 0 0 rel. address

Operation: (PC) ← (PC) + 2
IF (C) = 0
THEN (PC) ← (PC) + rel

9.4.27 JMP @A+<base_reg>
9-26 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
9.4.30 JNZ rel

Function: Jump if Accumulator Not Zero

Description: If any bit of the Accumulator is a one, JNZ branches to the indicated address; otherwise, it proceeds with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are
affected.

Example: The Accumulator originally holds 00H. The following instruction sequence,

JNZ LABEL1
INC A

JNZ LABEL2

sets the Accumulator to 01H and continues at label LABEL2.

JNZ rel

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

3 Fsat Mode

Encoding: 0 1 1 1 0 0 0 0 rel. address

Operation: JNZ
(PC) ← (PC) + 2
IF (A) ≠ 0
THEN (PC) ← (PC) + rel

9.4.31 JZ rel

Function: Jump if Accumulator Zero

Description: If all bits of the Accumulator are 0, JZ branches to the address indicated; otherwise, it proceeds with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are
affected.

Example: The Accumulator originally contains 01H. The following instruction sequence,

JZ LABEL1
DEC A

JZ LABEL2

changes the Accumulator to 00H and causes program execution to continue at the instruction identified by the
label LABEL2.

JZ rel

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 0 1 1 0 0 0 0 0 rel. address

Operation: JZ
(PC) ← (PC) + 2
IF (A) = 0
THEN (PC) ← (PC) + rel
C51ASM User Guide 9-27

3710A–MICRO–10/10

Instruction Set Reference
9.4.32 LCALL addr16

Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction adds three to the program counter to
generate the address of the next instruction and then pushes the 16-bit result onto the stack (low byte first),
incrementing the Stack Pointer by two. The high-order and low-order bytes of the PC are then loaded,
respectively, with the second and third bytes of the LCALL instruction. Program execution continues with the
instruction at this address. The subroutine may therefore begin anywhere in the full 64K byte program memory
address space. No flags are affected.

Example: Initially the Stack Pointer equals 07H. The label SUBRTN is assigned to program memory location 1234H. After
executing the instruction,
LCALL SUBRTN

at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H will contain 26H and
01H, and the PC will contain 1234H.

LCALL addr16 (Standard Stack)

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

4 Fast Mode

Encoding: 0 0 0 1 0 0 1 0 addr15-addr8 addr7-addr0

Operation: LCALL
(PC) ← (PC) + 3
(SP7-0) ← (SP7-0) + 1
((SP7-0)) ← (PC7-0)
(SP7-0) ← (SP7-0) + 1
((SP7-0)) ← (PC15-8)
(PC) ← addr15-0

LCALL addr16 (Extended Stack)

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

6 Fast Mode

Encoding: 0 0 0 1 0 0 1 0 addr15-addr8 addr7-addr0

Operation: LCALL (SP15-8 = SPX)
(PC) ← (PC) + 3
(SP15-0) ← (SP15-0) + 1
((SP15-0)) ← (PC7-0)
(SP15-0) ← (SP15-0) + 1
((SP15-0)) ← (PC15-8)
(PC) ← addr15-0

9.4.33 LJMP addr16

Function: Long Jump

Description: LJMP causes an unconditional branch to the indicated address, by loading the high-order and low-order bytes of
the PC (respectively) with the second and third instruction bytes. The destination may therefore be anywhere in
the full 64K program memory address space. No flags are affected.

Example: The label JMPADR is assigned to the instruction at program memory location 1234H. The instruction,

LJMP JMPADR
at location 0123H will load the program counter with 1234H.
9-28 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
LJMP addr16

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

4 Fast Mode

Encoding: 0 0 0 0 0 0 1 0 addr15-addr8 addr7-addr0

Operation: (PC) ← addr15-0

9.4.34 LSL M

Function: Shift MAC Accumulator Left Logically

Description: The forty bits in the M register are shifted one bit to the left. Bit 0 is cleared. No flags are affected.

Example: The M register holds the value 0C5B1A29384H. The following instruction,

LSL M

leaves the M register holding the value 8B63452708H.

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: A5 0 0 1 0 0 0 1 1

Operation: (Mn+1) ← (Mn) n = 0 - 38
(M0) ← 0

9.4.35 MAC AB

Function: Multiply and Accumulate

Description: MAC AB multiplies the signed 16-bit integers in the register pairs {AX, A} and {BX, B} and adds the 32-bit product
to the 40-bit M register. The low-order bytes of the 16-bit operands are stored in A and B, and the high-order
bytes in AX and BX respectively. The four operand registers are unaffected by the operation. If the addition of the
product to the accumulated sum in M results in a two's complement overflow, the overflow flag is set; otherwise it
is not cleared. The carry flag is set if the result is negative and cleared if positive.

Example: Originally the Accumulator holds the value 80 (50H). Register B holds the value 160 (0A0H). The instruction,

MAC AB

will give the product 12, 800 (3200H), so B is changed to 32H (00110010B) and the Accumulator is cleared. The
overflow flag is set, carry is cleared.

Bytes: 2

Cycles: 30 Classic (5 Machine Cycles)

9 Fast Mode

Encoding: A5 1 0 1 0 0 1 0 0

Operation: (M39-0) ← (M) + { (AX), (A) } X { (BX), (B) }

9.4.33 LJMP addr16
C51ASM User Guide 9-29

3710A–MICRO–10/10

Instruction Set Reference
9.4.36 MOV <dest-byte>,<src-byte>

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the location specified by the first operand. The
source byte is not affected. No other register or flag is affected.
This is by far the most flexible operation. Fifteen combinations of source and destination addressing modes are
allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data present at input port 1 is
11001010B (0CAH).
MOV R0,#30H ;R0 < = 30H

MOV A,@R0 ;A < = 40H

MOV R1,A ;R1 < = 40H
MOV B,@R1 ;B < = 10H

MOV @R1,P1 ;RAM (40H) < = 0CAH

MOV P2,P1 ;P2 #0CAH
leaves the value 30H in register 0, 40H in both the Accumulator and register 1, 10H in register B, and 0CAH
(11001010B) both in RAM location 40H and output on port 2.

MOV A,Rn

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 1 1 0 1 r r r

Operation: (A) ← (Rn)

MOV A,direct

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 1 1 0 0 1 0 1 direct address

Operation: (A) ← (direct)

MOV A,@Ri

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 1 1 0 0 1 1 i

Operation: (A) ← ((Ri))

MOV A,#data

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 1 1 0 1 0 0 immediate data

Operation: (A) ← #data
9-30 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
MOV Rn,A

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 1 1 1 1 r r r

Operation: (Rn) ← (A)

MOV Rn,direct

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 1 0 1 0 1 r r r direct addr.

Operation: (Rn) ← (direct)

MOV Rn,#data

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 1 1 1 r r r immediate data

Operation: (Rn) ← #data

MOV direct,A

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 1 1 1 0 1 0 1 direct address

Operation: (direct) ← (A)

MOV direct,Rn

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 1 0 0 0 1 r r r direct address

Operation: (direct) ← (Rn)

9.4.36 MOV <dest-byte>,<src-byte>
C51ASM User Guide 9-31

3710A–MICRO–10/10

Instruction Set Reference
MOV direct,direct

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 1 0 0 0 0 1 0 1 dir. addr. (scr) dir. addr. (dest)

Operation: (direct) ← (direct)

MOV direct,@Ri

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 1 0 0 0 0 1 1 i direct addr.

Operation: (direct) ← ((Ri))

MOV direct,#data

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 0 1 1 1 0 1 0 1 direct address immediate data

Operation: (direct) ← #data

MOV @Ri,A

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 1 1 1 0 1 1 i

Operation: ((Ri)) ← (A)

MOV @Ri,direct

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 1 0 1 0 0 1 1 i direct addr.

Operation: ((Ri)) ← (direct)

9.4.36 MOV <dest-byte>,<src-byte>
9-32 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
MOV @Ri,#data

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 1 1 0 1 1 i immediate data

Operation: ((Ri)) ← #data

9.4.36 MOV <dest-byte>,<src-byte>

9.4.37 MOV DPTR,#data16

Function: Load Data Pointer with a 16-bit constant

Description: MOV DPTR,#data16 loads the Data Pointer with the 16-bit constant indicated. The 16-bit constant is loaded into
the second and third bytes of the instruction. The second byte (DPH) is the high-order byte, while the third byte
(DPL) holds the lower-order byte. No flags are affected. When multiple data pointers are available the data
pointer to load is selected by DPS usually found in the AUXR1 register.

This is the only instruction which moves 16 bits of data at once.

Example: The instruction,

MOV DPTR, #1234H

loads the value 1234H into the Data Pointer: DPH holds 12H, and DPL holds 34H.
When two data pointers are available and DPTR0 is selected, the instruction sequence,

MOV DPTR, #1234H
MOV /DPTR, #5678H

loads the value 1234H into the first Data Pointer: DPH0 holds 12H and DPL0 holds 34H; and loads the value
5678H into the second Data Pointer: DPH1 hold 56H and DPL1 holds 78H.

MOV DPTR,#data16

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

Cycles: 3 Fast Mode

Encoding: 1 0 0 1 0 0 0 0 immed. data15-8 immed. data7-0

Operation: IF DPS = 0
THEN
 (DPTR0) ← #data15-0

ELSE

 (DPTR1) ← #data15-0

MOV /DPTR,#data16

Bytes: 4

Cycles: 18 Compatibility (3 Machine Cycles)

Cycles: 4 Fast Mode

Encoding: A5 90 immed. data15-8 immed. data7-0

Operation: IF DPS = 0
THEN
 (DPTR1) ← #data15-0

ELSE

 (DPTR0) ← #data15-0
C51ASM User Guide 9-33

3710A–MICRO–10/10

Instruction Set Reference
9.4.38 MOV <dest-bit>,<src-bit>

Function: Move bit data

Description: MOV <dest-bit>,<src-bit> copies the Boolean variable indicated by the second operand into the location
specified by the first operand. One of the operands must be the carry flag; the other may be any directly
addressable bit. No other register or flag is affected.

Example: The carry flag is originally set. The data present at input Port 3 is 11000101B. The data previously written to
output Port 1 is 35H (00110101B).

MOV P1.3,C
MOV C,P3.3

MOV P1.2,C

leaves the carry cleared and changes Port 1 to 39H (00111001B).

MOV C,bit

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

Cycles: 2 Fast Mode

Encoding: 1 0 1 0 0 0 1 0 bit address

Operation: (C) ← (bit)

MOV bit,C

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

Cycles: 2 Fast Mode

Encoding: 1 0 0 1 0 0 1 0 bit address

Operation: (bit) ← (C)

9.4.39 MOVC A,@A+ <base-reg>

Function: Move Code byte

Description: The MOVC instructions load the Accumulator with a code byte or constant from program memory. The address
of the byte fetched is the sum of the original unsigned 8-bit Accumulator contents and the contents of a 16-bit
base register, which may be either the Data Pointer or the PC. In the latter case, the PC is incremented to the
address of the following instruction before being added with the Accumulator; otherwise the base register is not
altered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may propagate through
higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the Accumulator. The following instructions will translate the value in the
Accumulator to one of four values defined by the DB (define byte) directive.

REL_PC: INC A

MOVC A,@A+PC
RET

DB 66H

DB 77H

DB 88H
DB 99H

If the subroutine is called with the Accumulator equal to 01H, it returns with 77H in the Accumulator. The INC A
before the MOVC instruction is needed to “get around” the RET instruction above the table. If several bytes of
code separate the MOVC from the table, the corresponding number is added to the Accumulator instead.
9-34 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
MOVC A,@A+DPTR

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 1 0 0 1 0 0 1 1

Operation: MOVC
IF DPS = 0
THEN
 (A) ← ((A) + (DPTR0))
ELSE
 (A) ← ((A) + (DPTR1))

MOVC A,@A+/DPTR

Bytes: 1

Cycles: 18 Compatibility (3 Machine Cycles)

4 Fast Mode

Encoding: 1 0 0 1 0 0 1 1

Operation: MOVC
IF DPS = 0
THEN
 (A) ← ((A) + (DPTR1))
ELSE
 (A) ← ((A) + (DPTR0))

MOVC A,@A+PC

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 1 0 0 0 0 0 1 1

Operation: MOVC
(PC) ← (PC) + 1
(A) ← ((A) + (PC))

9.4.40 MOVX <dest-byte>,<src-byte>

Function: Move External

Description: The MOVX instructions transfer data between the Accumulator and a byte of external data memory, which is why
“X” is appended to MOV. There are two types of instructions, differing in whether they provide an 8-bit or 16-bit
indirect address to the external data RAM.
In the first type, the contents of R0 or R1 in the current register bank provide an 8-bit address multiplexed with
data on P0. Eight bits are sufficient for external I/O expansion decoding or for a relatively small RAM array. For
somewhat larger arrays, any output port pins can be used to output higher-order address bits. These pins are
controlled by an output instruction preceding the MOVX.

In the second type of MOVX instruction, the Data Pointer generates a 16-bit address. P2 outputs the high-order
eight address bits (the contents of DPH), while P0 multiplexes the low-order eight bits (DPL) with data. The P2
Special Function Register retains its previous contents, while the P2 output buffers emit the contents of DPH.
This form of MOVX is faster and more efficient when accessing very large data arrays (up to 64K bytes), since no
additional instructions are needed to set up the output ports.
It is possible to use both MOVX types in some situations. A large RAM array with its high-order address lines
driven by P2 can be addressed via the Data Pointer, or with code to output high-order address bits to P2,
followed by a MOVX instruction using R0 or R1.

9.4.39 MOVC A,@A+ <base-reg>
C51ASM User Guide 9-35

3710A–MICRO–10/10

Instruction Set Reference
Example: An external 256 byte RAM using multiplexed address/data lines is connected to the 8051 Port 0. Port 3 provides
control lines for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and
34H. Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A,@R1
MOVX @R0,A

copies the value 56H into both the Accumulator and external RAM location 12H.

MOVX A,@Ri

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

Cycles: 2/4 Fast Mode

Encoding: 1 1 1 0 0 0 1 i

Operation: MOVX
(A) ← ((Ri))

MOVX A,@DPTR

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

2/4 Fast Mode

Encoding: 1 1 1 0 0 0 0 0

Operation: MOVX
IF DPS = 0
THEN
 (A) ← ((DPTR0))
ELSE
 (A) ← ((DPTR1)

MOVX A,@/DPTR

Bytes: 1

Cycles: 18 Classic (3 Machine Cycles)

3/5 Fast Mode

Encoding: 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0

Operation: MOVX
IF DPS = 0
THEN
 (A) ← ((DPTR1))
ELSE
 (A) ← ((DPTR0)

MOVX @Ri,A

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

2/4 Fast Mode

Encoding: 1 1 1 1 0 0 1 i

Operation: MOVX
((Ri)) ← (A)

9.4.40 MOVX <dest-byte>,<src-byte>
9-36 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
1 0 1 0 0 1 0 0

MOVX @DPTR,A

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

2/4 Fast Mode

Encoding: 1 1 1 1 0 0 0 0

Operation: MOVX
IF DPS = 0
THEN
 (DPTR0) ← (A)
ELSE
 (DPTR1) ← (A)

MOVX @/DPTR,A

Bytes: 1

Cycles: 18 Compatibility (3 Machine Cycles)

3/5 Fast Mode

Encoding: 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0

Operation: MOVX
IF DPS = 0
THEN
 (DPTR1) ← (A)
ELSE
 (DPTR0) ← (A)

9.4.40 MOVX <dest-byte>,<src-byte>

9.4.41 MUL AB

Function: Multiply

Description: MUL AB multiplies the unsigned 8-bit integers in the Accumulator and register B. The low-order byte of the 16-bit
product is left in the Accumulator, and the high-order byte in B. If the product is greater than 255 (0FFH), the
overflow flag is set; otherwise it is cleared. The carry flag is always cleared.

Example: Originally the Accumulator holds the value 80 (50H). Register B holds the value 160 (0A0H). The instruction,
MUL AB

will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the Accumulator is cleared. The
overflow flag is set, carry is cleared.

MUL AB

Bytes: 1

Cycles: 24 Classic (4 Machine Cycles)

2 Fast Mode

Encoding:

Operation: MUL
(A)7-0 ← (A) X (B)
(B)15-8
C51ASM User Guide 9-37

3710A–MICRO–10/10

Instruction Set Reference
9.4.42 NOP

Function: No Operation

Description: Execution continues at the following instruction. Other than the PC, no registers or flags are affected.

Example: A low-going output pulse on bit 7 of Port 2 must last exactly 5 cycles. A simple SETB/CLR sequence generates a
one-cycle pulse, so four additional cycles must be inserted. This may be done (assuming no interrupts are
enabled) with the following instruction sequence,

CLR P2.7

NOP

NOP
NOP

NOP

SETB P2.7

NOP

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 0 0 0 0 0 0 0

Operation: NOP
(PC) ← (PC) + 1

9.4.43 ORL <dest-byte> <src-byte>

Function: Logical-OR for byte variables

Description: ORL performs the bitwise logical-OR operation between the indicated variables, storing the results in the
destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source
can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the
source can be the Accumulator or immediate data.
Note: When this instruction is used to modify an output port, the value used as the original port data is read from
the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (11000011B) and R0 holds 55H (01010101B) then the following instruction,

ORL A,R0
leaves the Accumulator holding the value 0D7H (1101011lB).When the destination is a directly addressed byte,
the instruction can set combinations of bits in any RAM location or hardware register. The pattern of bits to be set
is determined by a mask byte, which may be either a constant data value in the instruction or a variable
computed in the Accumulator at run-time. The instruction,

ORL P1,#00110010B

sets bits 5, 4, and 1 of output Port 1.

ORL A,Rn

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 1 0 0 1 r r r

Operation: ORL
(A) ← (A) ∨ (Rn)
9-38 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
ORL A,direct

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 0 0 0 1 0 1 direct address

Operation: ORL
(A) ← (A) ∨ (direct)

ORL A,@Ri

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 0 0 0 1 1 i

Operation: ORL
(A) ← (A) ∨ ((Ri))

ORL A,#data

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 0 0 0 1 0 0 immediate data

Operation: ORL
(A) ← (A) ∨ #data

ORL direct,A

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 0 0 0 0 1 0 direct address

Operation: ORL
(direct) ← (direct) ∨ (A)

ORL direct,#data

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 0 1 0 0 0 0 1 1 direct addr. immediate data

Operation: ORL
(direct) ← (direct) ∨ #data

9.4.43 ORL <dest-byte> <src-byte>
C51ASM User Guide 9-39

3710A–MICRO–10/10

Instruction Set Reference
9.4.44 ORL C,<src-bit>

Function: Logical-OR for bit variables

Description: Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state otherwise. A slash (/)
preceding the operand in the assembly language indicates that the logical complement of the addressed bit is
used as the source value, but the source bit itself is not affected. No other flags are affected.

Example: Set the carry flag if and only if P1.0 = 1, ACC. 7 = 1, or OV = 0:

MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN P10

ORL C,ACC.7 ;OR CARRY WITH THE ACC. BIT 7

ORL C,/OV ;OR CARRY WITH THE INVERSE OF OV.

ORLC,bit

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 0 1 1 1 0 0 1 0 bit address

Operation: (C) ← (C) ∨ (bit)

ORLC,/bit

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 1 0 1 0 0 0 0 0 bit address

Operation: (C) ← (C) ∨ (bit)

9.4.45 POP direct

Function: Pop from stack.

Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the Stack Pointer is
decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags are
affected.

Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H through 32H contain the
values 20H, 23H, and 01H, respectively. The following instruction sequence,

POP DPH
POP DPL

leaves the Stack Pointer equal to the value 30H and sets the Data Pointer to 0123H. At this point, the following
instruction,

POP SP

leaves the Stack Pointer set to 20H. In this special case, the Stack Pointer was decremented to 2FH before being
loaded with the value popped (20H).

POP direct (Standard Stack)

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 1 1 0 1 0 0 0 0 direct address

Operation: POP
(direct) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1
9-40 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
POP direct (Extended Stack)

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 1 1 0 1 0 0 0 0 direct address

Operation: POP (SP15-8 = SPX)
(direct) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1

9.4.46 PUSH direct

Function: Push onto stack

Description: The Stack Pointer is incremented by one. The contents of the indicated variable is then copied into the internal
RAM location addressed by the Stack Pointer. Otherwise no flags are affected.

Example: On entering an interrupt routine, the Stack Pointer contains 09H. The Data Pointer holds the value 0123H. The
following instruction sequence,
PUSH DPL

PUSH DPH

leaves the Stack Pointer set to 0BH and stores 23H and 01H in internal RAM locations 0AH and 0BH,
respectively.

PUSH direct (Standard Stack)

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2 Fast Mode

Encoding: 1 1 0 0 0 0 0 0 direct address

Operation: PUSH
(SP7-0) ← (SP7-0) + 1
((SP7-0)) ← (direct)

PUSH direct (Extended Stack)

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 1 1 0 0 0 0 0 0 direct address

Operation: PUSH (SP15-8 = SPX)
(SP15-0) ← (SP15-0) + 1
((SP15-0)) ← (direct)

9.4.47 RET

Function: Return from subroutine

Description: RET pops the high- and low-order bytes of the PC successively from the stack, decrementing the Stack Pointer
by two. Program execution continues at the resulting address, generally the instruction immediately following an
ACALL or LCALL. No flags are affected.

Example: The Stack Pointer originally contains the value 0BH. Internal RAM locations 0AH and 0BH contain the values
23H and 01H, respectively. The following instruction,

RET
leaves the Stack Pointer equal to the value 09H. Program execution continues at location 0123H.

9.4.45 POP direct
C51ASM User Guide 9-41

3710A–MICRO–10/10

Instruction Set Reference
RET (Standard Stack)

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

4 Fast Mode

Encoding: 0 0 1 0 0 0 1 0

Operation: RET
(PC15-8) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1
(PC7-0) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1

RET (Extended Stack)

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

5 Fast Mode

Encoding: 0 0 1 0 0 0 1 0

Operation: RET (SP15-8 = SPX)
(PC15-8) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1
(PC7-0) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1

9.4.48 RETI

Function: Return from interrupt

Description: For devices with 64KB or less of prgram space, RETI pops the high- and low-order bytes of the PC successively
from the stack and restores the interrupt logic to accept additional interrupts at the same priority level as the one
just processed. The Stack Pointer is left decremented by two. No other registers are affected; the PSW is not
automatically restored to its pre-interrupt status. Program execution continues at the resulting address, which is
generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or
same-level interrupt was pending when the RETI instruction is executed, that one instruction is executed before
the pending interrupt is processed.
For devices with more than 64K bytes of program memory, RETI pops the high-, middle and low-order bytes of
the PC successively from the stack and restores the interrupt logic to accept additional interrupts at the same
priority level as the one just processed. The Stack Pointer is left decremented by three.

Example: The Stack Pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at
location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The
following instruction,

RETI
leaves the Stack Pointer equal to 09H and returns program execution to location 0123H.

RETI (Standard Stack, 2-byte PC)

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

4 Fast Mode

Encoding: 0 0 1 1 0 0 1 0

Operation: (PC15-8) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1
(PC7-0) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1

9.4.47 RET
9-42 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
RETI (Extended Stack, 2-byte PC)

Bytes: 1

Cycles: 12 Classic (2 Machine Cycles)

5 Fast Mode

Encoding: 0 0 1 1 0 0 1 0

Operation: RETI (SP15-8 = SPX)
(PC15-8) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1
(PC7-0) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1

RETI (Standard Stack, 3-byte PC)

Bytes: 1

Cycles: 18 Classic (3 Machine Cycles)

5 Fast Mode

Encoding: 0 0 1 1 0 0 1 0

Operation: RETI
(PC23-16) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1
(PC15-8) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1
(PC7-0) ← ((SP7-0))
(SP7-0) ← (SP7-0) - 1

RETI (Extended Stack, 32-byte PC)

Bytes: 1

Cycles: 18 Classic (3 Machine Cycles)

8 Fast Mode

Encoding: 0 0 1 1 0 0 1 0

Operation: RETI (SP15-8 = SPX)
(PC23-16) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1
(PC15-8) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1
(PC7-0) ← ((SP15-0))
(SP15-0) ← (SP15-0) - 1

9.4.49 RL A

Function: Rotate Accumulator Left

Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position. No flags are
affected.

Example: The Accumulator holds the value 0C5H (11000101B). The following instruction,

RL A

leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected.

9.4.48 RETI
C51ASM User Guide 9-43

3710A–MICRO–10/10

Instruction Set Reference
RL A

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 0 1 0 0 0 1 1

Operation: (An + 1) ← (An) n = 0 - 6
(A0) ← (A7)

9.4.50 RLC A

Function: Rotate Accumulator Left through the Carry flag

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the
carry flag; the original state of the carry flag moves into the bit 0 position. No other flags are affected.

Example: The Accumulator holds the value 0C5H(11000101B), and the carry is zero. The following instruction,

RLC A
leaves the Accumulator holding the value 8BH (10001010B) with the carry set.

RLC A

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast mode

Encoding: 0 0 1 1 0 0 1 1

Operation: (An + 1) ← (An) n = 0 - 6
(A0) ← (C)
(C) ← (A7)

9.4.51 RR A

Function: Rotate Accumulator Right

Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 position. No flags
are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The following instruction,
RR A

leaves the Accumulator holding the value 0E2H (11100010B) with the carry unaffected.

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 0 0 0 0 0 1 1

Operation: (An) ← (An + 1) n = 0 - 6
(A7) ← (A0)

9.4.49 RL A
9-44 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
9.4.52 RRC A

Function: Rotate Accumulator Right through Carry flag

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves into the
carry flag; the original value of the carry flag moves into the bit 7 position. No other flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B), the carry is zero. The following instruction,

RRC A
leaves the Accumulator holding the value 62 (01100010B) with the carry set.

RRC A

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 0 0 1 0 0 1 1

Operation: RRC
(An) ← (An + 1) n = 0 - 6
(A7) ← (C)
(C) ← (A0)

9.4.53 SETB <bit>

Function: Set Bit

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No other
flags are affected.

Example: The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B). The following
instructions,

SETB C

SETB P1.0
sets the carry flag to 1 and changes the data output on Port 1 to 35H (00110101B).

SETB C

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 1 0 1 0 0 1 1

Operation: SETB
(C) ← 1

SETB bit

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 1 0 1 0 0 1 0 bit address

Operation: SETB
(bit) ← 1
C51ASM User Guide 9-45

3710A–MICRO–10/10

Instruction Set Reference
9.4.54 SJMP rel

Function: Short Jump

Description: Program control branches unconditionally to the address indicated. The branch destination is computed by
adding the signed displacement in the second instruction byte to the PC, after incrementing the PC twice.
Therefore, the range of destinations allowed is from 128 bytes preceding this instruction 127 bytes following it.

Example: The label RELADR is assigned to an instruction at program memory location 0123H. The following instruction,

SJMP RELADR

assembles into location 0100H. After the instruction is executed, the PC contains the value 0123H.

Note: Under the above conditions the instruction following SJMP is at 102H. Therefore, the displacement byte of
the instruction is the relative offset (0123H-0102H) = 21H. Put another way, an SJMP with a displacement of
0FEH is a one-instruction infinite loop.

SJMP rel

Bytes: 2

Cycles: 12 Classic (2 Machine Cycles)

2

Encoding: 1 0 0 0 0 0 0 0 rel. address

Operation: SJMP
(PC) ← (PC) + 2
(PC) ← (PC) + rel

9.4.55 SUBB A,<src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the Accumulator, leaving the result in the
Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7 and clears C otherwise. (If C was
set before executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a
multiple-precision subtraction, so the carry is subtracted from the Accumulator along with the source operand.)
AC is set if a borrow is needed for bit 3 and cleared otherwise. OV is set if a borrow is needed into bit 6, but not
into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers, OV indicates a negative number produced when a negative value is
subtracted from a positive value, or a positive result when a positive number is subtracted from a negative
number.
The source operand allows four addressing modes: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry flag is set. The
instruction,

SUBB A,R2
will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due to the carry
(borrow) flag being set before the operation. If the state of the carry is not known before starting a single or
multiple-precision subtraction, it should be explicitly cleared by CLR C instruction.

SUBB A,Rn

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 0 0 1 1 r r r

Operation: SUBB
(A) ← (A) - (C) - (Rn)
9-46 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
SUBB A,direct

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 0 0 1 0 1 0 1 direct address

Operation: SUBB
(A) ← (A) - (C) - (direct)

SUBB A,@Ri

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 0 0 1 0 1 1 i

Operation: SUBB
(A) ← (A) - (C) - ((Ri))

SUBB A,#data

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 0 0 1 0 1 0 0 immediate data

Operation: SUBB
(A) ← (A) - (C) - #data

9.4.55 SUBB A,<src-byte>

9.4.56 SWAP A

Function: Swap nibbles within the Accumulator

Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator (bits 3 through 0 and
bits 7 through 4). The operation can also be thought of as a 4-bit rotate instruction. No flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The instruction,
SWAP A

leaves the Accumulator holding the value 5CH (01011100B).

SWAP A

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast mode

Encoding: 1 1 0 0 0 1 0 0

Operation: SWAP
(A3-0) D (A7-4)
C51ASM User Guide 9-47

3710A–MICRO–10/10

Instruction Set Reference
9.4.57 XCH A,<byte>

Function: Exchange Accumulator with byte variable

Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time writing the original
Accumulator contents to the indicated variable. The source/destination operand can use register, direct, or
register-indirect addressing.

Example: R0 contains the address 20H. The Accumulator holds the value 3FH (0011111lB). Internal RAM location 20H
holds the value 75H (01110101B). The following instruction,

XCH A,@R0
leaves RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in the accumulator.

XCH A,Rn

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 1 1 0 0 1 r r r

Operation: (A) D ((Rn)

XCH A,direct

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 1 0 0 0 1 0 1 direct address

Operation: (A) D (direct)

XCH A,@Ri

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 1 0 0 0 1 1 i

Operation: (A) D ((Ri))

9.4.58 XCHD A,@Ri

Function: Exchange Digit

Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3 through 0), generally representing a
hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by the specified register.
The high-order nibbles (bits 7-4) of each register are not affected. No flags are affected.

Example: R0 contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal RAM location 20H
holds the value 75H (01110101B). The following instruction,
XCHD A,@R0

leaves RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the Accumulator.

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 1 1 0 1 0 1 1 i

Operation: XCHD
(A3-0) D ((Ri3-0))
9-48 C51ASM User Guide

3710A–MICRO–10/10

Instruction Set Reference
9.4.59 XRL <dest-byte>,<src-byte>

Function: Logical Exclusive-OR for byte variables

Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated variables, storing the results in
the destination. No flags are affected.
The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source
can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the
source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data is read from
the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (1100001lB) and register 0 holds 0AAH (10101010B) then the instruction,
XRL A,R0

leaves the Accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinations of bits in any
RAM location or hardware register. The pattern of bits to be complemented is then determined by a mask byte,
either a constant contained in the instruction or a variable computed in the Accumulator at run-time. The
following instruction,
XRL P1,#00110001B

complements bits 5, 4, and 0 of output Port 1.

XRL A,Rn

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

1 Fast Mode

Encoding: 0 1 1 0 1 r r r

Operation: (A) ← (A) V (Rn)

XRL A,direct

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 1 0 0 1 0 1 direct address

Operation: (A) ← (A) V (direct)

XRL A,@Ri

Bytes: 1

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 1 0 0 1 1 i

Operation: (A) ← (A) V ((Ri))

XRL A,#data

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 1 0 0 1 0 0 immediate data

Operation: (A) ← (A) V #data
C51ASM User Guide 9-49

3710A–MICRO–10/10

Instruction Set Reference
XRL direct,A

Bytes: 2

Cycles: 6 Classic (1 Machine Cycle)

2 Fast Mode

Encoding: 0 1 1 0 0 0 1 0 direct address

Operation: (direct) ← (direct) V (A)

XRL direct,#data

Bytes: 3

Cycles: 12 Classic (2 Machine Cycles)

3 Fast Mode

Encoding: 0 1 1 0 0 0 1 1 direct address immediate data

Operation: (direct) ← (direct) V #data

9.4.59 XRL <dest-byte>,<src-byte>
9-50 C51ASM User Guide

3710A–MICRO–10/10

Section 10

Appendix A - Error Messages

10.1 Assembly Errors

Assembly errors apply to the consistency of the assembly language program in syntax and semantics. If
one of these errors is detected, it is flagged in the list file, and program execution continues. When
assembly is finished, Atmel® C51ASM terminates with exit code 1:.

10.1.1 ERROR #1

Summary:

ERROR #1: Unrecognized input

Description:

A statement contains characters that are not allowed in assembly language.

10.1.2 ERROR #2

Summary:

ERROR #2: Undefined symbol

Description:

A symbol is referenced, but has never been defined.

10.1.3 ERROR #3

Summary:

ERROR #3: Duplicate symbol

Description:

Attempt to redefine a previously defined symbol.

Summary:

ERROR #3: Duplicate label

Description:

Attempt to define a previously defined label symbol.

10.1.4 ERROR #4

Summary:

ERROR #4: Illegal digit for radix

Description:
C51ASM User Guide 10-1

3710A–MICRO–10/10

Appendix A - Error Messages
An illegal digit for the specified radix was found in a numeric constant.

10.1.5 ERROR #5

Summary:

ERROR #5: Expression greater than 8-bits

Description:

An expression expected to evaluate as an 8-bit address is larger than 255.

Summary:

ERROR #5: DATA address out of range

Description:

An expression expected to evaluate as an 8-bit address is larger than 255.

10.1.6 ERROR #6

Summary:

ERROR #6: Missing END directive

Description:

The program ends without an END statement.

10.1.7 ERROR #8

Summary:

ERROR #8: Illegal assembly line

Description:

A statement contains a syntax element that is not allowed in this context.

10.1.8 ERROR #9

Summary:

ERROR #9: command past END statement

Description:

The END statement is followed by further non-comment assembler statements.

10.1.9 ERROR #12

Summary:

ERROR #12: Unbalanced parentheses (missing open)

Description:

An expression contains more closing than opening parentheses.

Summary:

ERROR #12: Unbalanced parentheses (missing closed)

Description:
10-2 C51ASM User Guide

3710A–MICRO–10/10

Appendix A - Error Messages
An expression contains more opening than closing parentheses.

10.1.10 ERROR #15

Summary:

ERROR #15: Illegal dptr instruction

Description:

DPTR instruction aliases are only valid with the --dptr option.

10.1.11 ERROR #16

Summary:

ERROR #16: Divide by zero

Description:

During evaluation of the expression, the assembler has to divide by zero.

10.1.12 ERROR #17

Summary:

ERROR #17: Invalid base address

Description:

A DATA address that is not bit-addressable has been used on the left side of a '.' operator.

Summary:

ERROR #17: Invalid bit number

Description:

A number greater than 7 has been used on the right side of a '.' operator.

10.1.13 ERROR #18

Summary:

ERROR #18: Relative offset exceeds -128 / +127

Description:

The target address of a relative jump instruction cannot be reached within +127 or -128 bytes.

10.1.14 ERROR #19

Summary:

ERROR #19: Address outside current 2K page

Description:

The target address of an AJMP or ACALL instruction is not located within the same 2048 byte page as
the next instruction.

10.1.15 ERROR #20

Summary:
C51ASM User Guide 10-3

3710A–MICRO–10/10

Appendix A - Error Messages
ERROR #20: Illegal operand

Description:

One of the operands specified is not a legal operand for the instruction.

Summary:

ERROR #20: Illegal 2nd operand

Description:

The second operand is not a legal operand for the instruction.

Summary:

ERROR #20: Illegal 3rd operand

Description:

The third operand is not a legal operand for the instruction.

Summary:

ERROR #20: Illegal operand, expecting bit

Description:

Bit operation with non-bit operand.

10.1.16 ERROR #21

Summary:

ERROR #21: Illegal indirect register

Description:

Expected R0 or R1. An indirect addressing symbol (@) is used with something other than R0 or R1.

10.1.17 ERROR #23

Summary:

ERROR #23: Unsupported directive

Description:

The assembler does not support the relocatable directives: PUBLIC, EXTRN, SEGMENT and RSEG.

Summary:

ERROR #23: EDATA Segment not implemented

Description:

The selected device does not implement EDATA.

Summary:

ERROR #23: FDATA Segment not implemented

Description:

The selected device does not implement FDATA.

10.1.18 ERROR #24
10-4 C51ASM User Guide

3710A–MICRO–10/10

Appendix A - Error Messages
Summary:

ERROR #24: Attempting to EQU a previously SET symbol

Description:

A symbol defined with the SET directive cannot later be redefined using the EQU directive.

10.1.19 ERROR #25

Summary:

ERROR #25: Attempt to SET an EQU symbol

Description:

A symbol defined with the EQU directive cannot later be redefined using the SET directive.

10.1.20 ERROR #27

Summary:

ERROR #27: Target address is undefined

Description:

The expression for the target address contains a symbol that is not defined.

Summary:

ERROR #27: Target address has wrong type

Description:

The expression for the target address is not typeless and does not have type CODE.

10.1.21 ERROR #28

Summary:

ERROR #28 Address below segment base

Description:

Attempt to set the location counter of the current segment below the segment base address.

Summary:

ERROR #28 FDATA segment below base

Description:

An FSEG AT statement attempts to define an FDATA segment that starts below the lowest logical
address for the selected device. Normally this occurs when an FSEG is set at zero, but the selected
device has FDATA starting at some higher address.

Summary:

ERROR #28 BIT segment above limit
ERROR #28 CODE segment above limit
ERROR #28 DATA segment above limit
ERROR #28 EDATA segment above limit
C51ASM User Guide 10-5

3710A–MICRO–10/10

Appendix A - Error Messages
ERROR #28 FDATA segment above limit
ERROR #28 IDATA segment above limit

Description:

Attempt to set the location counter of the current segment above the highest logical address for this seg-
ment in the selected device.

10.1.22 ERROR #30

Summary:

ERROR #30: DB not allowed in this segment!
ERROR #30: DW not allowed in this segment!

Description:

The DB and DW directives are only allowed in CODE or FDATA segments.

Summary:

ERROR #30: DBIT only allowed in BSEG!

Description:

The DBIT directive is only allowed in a BIT segment.

Summary:

ERROR #30: DS not allowed in BSEG!

Description:

The DS directive is not allowed in a BIT segment. Use DBIT.

Summary:

ERROR #30: mnemonic only allowed in CSEG

Description:

Instruction mnemonics are only allowed in a CODE segment.

10.1.23 ERROR #31

Summary:

ERROR #31: Character strings not allowed

Description:

A string with more than two characters is used in a DW statement. Use DB to generate string values.

10.1.24 ERROR #33

Summary:

ERROR #33: String not terminated

Description:
10-6 C51ASM User Guide

3710A–MICRO–10/10

Appendix A - Error Messages
A character string is not properly terminated with a quote.

10.1.25 ERROR #34

Summary:

ERROR #34: USING must be between 0-3

Description:

The register bank number specified with the USING directive exceeds 3.

10.1.26 ERROR #35

Summary:

ERROR #35: $RESTORE must be preceded by $SAVE

Description:

A $RESTORE control must be preceded by a $SAVE control.

10.1.27 ERROR #37

Summary:

ERROR #37: Illegal control statement

Description:

A statement is starting with an unknown keyword beginning with a $.

Summary:

ERROR #37: Control preceded by non-control lines

Description:

A primary control occurs after statements that are not assembler controls.

Summary:

ERROR #37: Unexpected input in control

Description:

The assembler was unable to process part of a control statement.

10.1.28 ERROR #40

Summary:

ERROR #40: Synchronization error

Description:

A label has different values defined on pass 1 and pass 2.

Summary:

ERROR #40: Address overlaps

Description:

Machine code has already been generated for the locations the current statement is targeting.
C51ASM User Guide 10-7

3710A–MICRO–10/10

Appendix A - Error Messages
10.1.29 ERROR #41

Summary:

ERROR #41: Instruction requires extended memory mode

Description:

On of the extended memory instructions: EJMP, ECALL or ERET, was found, but the assembler is not in
extended memory mode.

10.1.30 ERROR #43

Summary:

ERROR #43: No matching IF
ERROR #43: ELSE with no IF
ERROR #43: ELSEIF with no IF

Description:

An ELSEIF, ELSE or ENDIF conditional assembly directive occurs without a preceding IF directive.

Summary:

ERROR #43: Wrong conditional type

Description:

All IF-ELSE-ENDIF directives in a conditional assembly block must be of the same type.

10.1.31 ERROR #44

Summary:

ERROR #44: Missing ENDIF

Description:

A conditional assembly block as found without a terminating ENDIF directive.

10.1.32 ERROR #45

Summary:

ERROR #45: Illegal or missing macro name

Description:

The macro name is missing from a macro definition or is already defined as another symbol.

10.1.33 ERROR #46

Summary:

ERROR #46: ENDM without MACRO

Description:

An ENDM directive occurs without a preceding macro definition.

10.1.34 ERROR #47
10-8 C51ASM User Guide

3710A–MICRO–10/10

Appendix A - Error Messages
Summary:

ERROR #47: LOCAL not allowed in MACRO body

Description:

Macro body lines occur before a LOCAL statement in a macro definition. Move the LOCAL statement
before any body lines.

Summary:

ERROR #47: LOCAL instruction outside macro!

Description:

A LOCAL statement is illegal outside of a macro definition.

10.1.35 ERROR #48

Summary:

ERROR #48: Illegal parameter specification

Description:

The parameter names of a macro are not all different.

10.1.36 ERROR #50

Summary:

ERROR #50: Expected one of '(', '<; or 'â?œ'

Description:

Include file string is missing or improperly delimited.

Summary:

ERROR #50: Include string not terminated, expected ')"
ERROR #50: Include string not terminated, expected '>'
ERROR #50: Include string not terminated, expected '"'

Description:

Include file string is not terminated.

10.2 Runtime Errors

Runtime errors are operational errors, or I/O errors. If one of these errors is detected, it is flagged on the
console, and Atmel C51ASM aborts with exit code 2.

10.2.1 I/O ERROR

I/O ERROR: No such file or directory

Source or include file not found. (Linux)

I/O ERROR: Is a directory
C51ASM User Guide 10-9

3710A–MICRO–10/10

Appendix A - Error Messages
Object or listing file is actually a directory. (Linux)

I/O ERROR: Permission denied

Source or include file does not have the correct privileges. (Linux)

I/O ERROR: no source file specified

The source file is missing from the command line.

I/O ERROR: Unknown option

The specified command line option is not recognized

I/O ERROR: No argument supplied with option

The specified command line option requires an argument.

I/O ERROR: missing argument for option

The specified command line option requires an argument to be attached to the option.

I/O ERROR: wrong file type

The specified file format is not supported.

10.2.2 FATAL ERROR

FATAL ERROR: Could not open input file

Source or include file cannot be opened for input.

FATAL ERROR: Could not open file for writing

Object or listing file cannot be opened for output.

FATAL ERROR: Unable to allocate memory

No free memory is available.
10-10 C51ASM User Guide

3710A–MICRO–10/10

Section 11

Appendix B - List File Format

The listing file displays the results of the translation from assembly source to machine code. This appen-
dix describes the format of the listing file generated by the assembler.

By default the Atmel® C51ASM assembler does not generate a listing file. To produce a list file output,
include --listfile on the command line or place a $PRINTcontrol in the source file.

11.1 List File Headings

Normally, every page of the listing has a page header on the first line. The header identifies the assem-
bler and version, and lists the title, date and page number. If a title was not specified with the $TITLE
control, the assembler copyright information is substituted. When a listing page reaches the maximum
number of lines per page, a form feed character is output, followed by another page header. The page
header and form feeds can be suppressed with the --nopaging option or the $NOPAGING control. Use
the $PAGELENGTH control to adjust the number of lines per page. The page header (and all other lines)
will be truncated to fit the page width set by the $PAGEWIDTH control.

C51ASM V1.0 Copyright (c) 2010 Atmel Corp. 2010/09/01 PAGE 1

The first page of the listing contains the file header in addition to the page header. The file header identi-
fies the assembler and version, lists all input and output files and marks the columns for the line
headings. A typical file header is looking as shown below:

 8051 Macro Assembler C 5 1 A S M V 1.0
 ==

 Source File: demo.asm
 Object File(s): demo.hex
 List File: demo.lst

Line I Addr Code Source

11.2 Source Listing

The formatted source listing makes up the main body of the listing file. The format for each line in the list-
ing file depends on the type of source line that appears on it. Standard source lines contain five fields,
corresponding to the five column headings printed with each page header, as described below:

Line
C51ASM User Guide 11-1

3710A–MICRO–10/10

Appendix B - List File Format
Contains the global line number, counting the number of lines processed from the top of the program.
This includes lines from include files and macro expansions. Therefore, the global line numbers may
not necessarily correspond to actual assembly source line numbers within the particular source files.
The line number field is terminated by a colon character (:) for source lines from the main source and
all include files, and with a plus character (+) for macro expansion lines.

I
Flags the level of include file or macro nesting. This column is always empty in the body of the main
source file. If a file is included, the number of open include files id displayed in the "I" column. When a
macro is expanded, the number of open macro calls appended to the '+' following the line number.

Addr
Shows the hexadecimal start address of the listed line in the currently active segment, if it generates
code or reserves space. The field is left blank if a line cannot be assigned to a particular segment.

Code
Shows the actual machine code produced by the assembly line. The code is listed in hexadecimal byte
quantities starting from the left margin of the "Code" column. In the case of DB or DW directives that
generate code longer than four bytes, the source line is followed by additional lines containaing just
the "Addr" and "Code" fields until the whole generated code of the line is listed.

If the assembled line contains an expression, but does not cosume any address space, the assembler
lists the evaluated hexadecimal result of the expression at the right margin of the "Code" column. The
segment type of the expression is flagged with one single character at the left margin of the "Code"
column as shown in Table 11-1.

Source
Lists the original assembly source line as it appears in the source file. However, the line may be
truncated to fit the specified page width.

Example:

Line I Addr Code Source

 1: ; Uart Echo Sample Program
 2: ;==========================
 3:
 4: $TITLE(UART ECHO SAMPLE PROGRAM)
 5: $MOD52 PW(64) NOBUILTIN
 6:

Table 11-1. List File Expression Types

Flag Type

C CODE

D DATA

I IDATA

E EDATA

F FDATA

X XDATA

B BIT

N typeless number

R register
11-2 C51ASM User Guide

3710A–MICRO–10/10

Appendix B - List File Format
 7: B 00 RDY BIT 20h.0
 8: B 01 BUF_FULL BIT 20h.1
 9:
 10:
 11: N 0008 ISEG AT 8
 12: 08 N 08 STACK: DS 8
 13:
 14: N 0000 CSEG AT 0
 15:
 16: 0000 02 00 3C LJMP START
 17:
 18: N 0023 ORG 23h
 19: 0023 10 99 0A SINTR: JBC TI, TX_INT
 20: 0026 C2 98 RX_INT: CLR RI
 21: 0028 E5 99 MOV A, SBUF
 22: 002A 20 00 08 JB RDY, SEND
 23: 002D D2 01 SETB BUF_FULL
 24: 002F 32 RETI
 25:
 26: 0030 D2 00 TX_INT: SETB RDY
 27: 0032 30 01 06 JNB BUF_FULL, EXIT
 28: 0035 F5 99 SEND: MOV SBUF, A
 29: 0037 C2 00 CLR RDY
 30: 0039 C2 01 CLR BUF_FULL
 31: 003B 32 EXIT: RETI

Errors

When an error is detected on a source line, its position is marked with a caret character (^) and a com-
prehensive error message is inserted. Note that the marked location of the error is only approximate.

 29: 0037 C2 00 CLR RDY
 30: 0039 C2 00 CLR BUF_FUL
 ^
ERROR #2: @@@@@ Undefined symbol @@@@@

 31: 003B 32 EXIT: RETI

The error diagnosis at the end of program lists the segment usage, which register banks were used, and
the total number of warnings and errors detected throughout the assembly:

Segment usage:
 Code : 687 bytes
 Data : 35 bytes
 Idata : 16 bytes
 Edata : 0 bytes
 Fdata : 0 bytes
 Xdata : 5 bytes
 Bit : 4 bits

 Register banks used: 0, 1, 3

 Warnings: 0
 Errors: 7
C51ASM User Guide 11-3

3710A–MICRO–10/10

Appendix B - List File Format
A register bank counts as "used", if the program had switched to that bank with a USING instruction, or
one of the special assembler symbols AR0 ... AR7 has been used, while the bank was active. The
message

 register banks used: ---

means, that no bank has been used explicitly, and that the program code may, but need not, be register
bank independent.

11.3 Symbol Table

The symbol table or cross-reference listing is the last section of the listing file. By default, a symbol table
is generated. The symbol table is a list of all the symbols defined in a program, including predefined sym-
bols, with their type, value and first line of definition as described below:

The SYMBOL field lists the names of the symbols in alphabetical order. The name is trucated to a
maximum of 31 characters.

The TYPE field specifies the segment type of the symbol, or REGISTER or MACRO if the symbol is a
register alias or macro name.

The VALUE field shows the hexadecimal value of the symbol or the symbolic register for aliases.

The LINE field contains the global line number where the symbol was first defined. The LINE field is
blank for predefined symbols.

The symbol table listing can be suppressed with the $NOSYMBOLS control. A typical symbol table
listing is shown below:

 L I S T O F S Y M B O L S
 =============================

SYMBOL TYPE VALUE LINE
--
BUF_FULL BIT 01 8
EXIT CODE 003B 31
LP51 UNDEF 0
RDY BIT 00 7
RX_INT CODE 0026 20
SEND CODE 0035 28
SINTR CODE 0023 19
STACK IDATA 08 12
START CODE 003C 33
TX_INT CODE 0030 26
USE_AUTOBAUD UNDEF 0

If the $XREF control is specified, a cross-reference listing is generated instead of a symbol table. It lists
all the symbols of the program in alphabetical order, with their symbol name, all definitions including def-
inition lines, segment types, and numerical values. Furthermore, all symbol references are listed as well.
The SYMBOL column contains the symbol name, while the columns TYPE, VALUE, and DEFINED may
contain the segment types, numerical values, and definition lines of one, more, or no symbol defintions.

The SYMBOL field lists the names of the symbols in alphabetical order. The name is trucated to a
maximum of 31 characters.

The TYPE field specifies the segment type of the symbol, or REGISTER or MACRO if the symbol is a
11-4 C51ASM User Guide

3710A–MICRO–10/10

Appendix B - List File Format
register alias or macro name.

The VALUE field shows the hexadecimal value of the symbol or the symbolic register for aliases. If the
symbol is defined multiple times (e.g a SET symbol) then each value is listed on separate lines.

The DEFINED field contains the global line number where the symbol was defined. The LINE field is
blank for predefined symbols. If the symbol is defined multiple times (e.g a SET symbol) then each
vdefinition line numbers is listed on a separate line.

The REFERENCED field contains a list of each global line number where the symbol was referenced.
The list of references may appear on multiple lines.

The cross-reference listing can be suppressed with the $NOXREF control. The corresponding cross-ref-
erence listing for the symbol table above is as follows:

 C R O S S - R E F E R E N C E - L I S T I N G
 ===

SYMBOL TYPE VALUE DEFINED REFERENCED
--
BUF_FULL BIT 01 8 23 27
 30 50
EXIT CODE 003B 31 27
LP51 undef 0 39
RDY BIT 00 7 22 26
 29 49
RX_INT CODE 0026 20
SEND CODE 0035 28 22
SINTR CODE 0023 19
STACK IDATA 08 12
START CODE 003C 33 16
TX_INT CODE 0030 26 19
USE_AUTOBAUD undef 0 34 56
C51ASM User Guide 11-5

3710A–MICRO–10/10

Appendix B - List File Format
11-6 C51ASM User Guide

3710A–MICRO–10/10

Section 12

Appendix C - Predefined Symbols

The folling symbols are predefined by the $MOD51 and $MOD52 assembler controls. Note that the
$MOD52 control also includes the $MOD51 symbols. To prevent these symbols from appearing in the
symbol table, use the $NOBUILTIN control. $MOD51 is on by default. To disable the predefined sym-
bols, use the $NOMOD51 control.

The ??C51ASM and ??VERSION symbols are always active and cannot be switched off by the
$NOMOD51.

Table 12-1. $MOD51 Definitions

DATA Addresses BIT Addresses

Symbol Value Symbol Value Symbol Value Symbol Value

P0 080H P1 090H IT0 088H EA 0AFH

SP 081H SCON 098H IE0 089H RXD 0B0H

DPL 082H SBUF 099H IT1 08AH TXD 0B1H

DPH 083H P2 0A0H IE1 08BH INT0 0B2H

PCON 087H IE 0A8H TR0 08CH INT1 0B3H

TCON 088H P3 0B0H TF0 08DH T0 0B4H

TMOD 089H IP 0B8H TR1 08EH T1 0B5H

TL0 08AH PSW 0D0H TF1 08FH WR 0B6H

TL1 08BH ACC 0E0H RI 098H RD 0B7H

TH0 08CH B 0F0H TI 099H PX0 0B8H

TH1 08DH RB8 09AH PT0 0B9H

Plain Numbers TB8 09BH PX1 0BAH

Symbol Value Symbol Value REN 09CH PT1 0BBH

??C51ASM 8051H ??VERSION 0100H SM2 09DH PS 0BCH

SM1 09EH P 0D0H

SM0 09FH OV 0D2H

EX0 0A8H RS0 0D3H

ET0 0A9H RS1 0D4H

EX1 0AAH F0 0D5H

ET1 0ABH AC 0D6H

ES 0ACH CY 0D7H
C51ASM User Guide 12-1

3710A–MICRO–10/10

Appendix C - Predefined Symbols
Table 12-2. $MOD52 Definitions

DATA Addresses BIT Addresses

Symbol Value Symbol Value Symbol Value Symbol Value

T2CON 0C8H T2MOD 0C9H T2 090H T2EX 091H

RCAP2L 0CAH RCAP2H 0CBH ET2 0ADH PT2 0BDH

TL2 0CCH TH2 0CDH CPRL2 0C8H CT2 0C9H

TR2 0CAH EXEN2 0CBH

TCLK 0CCH RCLK 0CDH

EXF2 0CEH TF2 0CFH
12-2 C51ASM User Guide

3710A–MICRO–10/10

Section 13

Appendix D - Reserved Keywords

The Atmel® C51ASM assembler uses predefined symbols or reserved keywords that may not be rede-
fined in your program. Reserved names include instruction mnemonics, directives, operators, and
register names. The following tables list the reserved symbol names:

Table 13-1. Special Assembler Symbols

$ A AB AR0 AR1 AR2

AR3 AR4 AR5 AR6 AR7 C

DPTR PC R0 R1 R2 R3

R4 R5 R6 R7

Table 13-2. Instruction Mnemonics

ACALL ADD ADDC AJMP ANL CALL

CJNE CLR CPL DA DEC DIV

DJNZ INC JB JBC JC JMP

JNB JNC JNZ JZ LCALL LJMP

MOV MOVC MOVX MUL NOP ORL

POP PUSH RET RETI RL RLC

RR RRC SETB SJMP SUBB SWAP

XCH XCHD XRL

Table 13-3. Assembler Directives

AT BIT BSEG CODE CSEG DATA

DB DBIT DS DSEG DW EDATA

ELSE ELSEIF ELSEIFB ELSEIFDEF ELSEIFN ELSEIFNB

ELSEIFNDEF END ENDIF ENDM ENDMACRO EQU

ESEG EXITM EXTRN FDATA FSEG IDATA

IF IFB IFDEF IFN IFNB IFNDEF

ISEG LOCAL MACRO NAME ORG PUBLIC

REPT RSEG SEGMENT SET SFR USING

XDATA XSEG
C51ASM User Guide 13-1

3710A–MICRO–10/10

Appendix D - Reserved Keywords
Table 13-4. Extended Instruction Mnemonics

ASR BREAK ECALL EJMP ERET LSL

MAC

Table 13-5. Operators

AND EQ GE GT HIGH LE

LOW LT MOD NE NOT OR

SHL SHR XOR

Table 13-6. Assembler Controls

$COND $CONDONLY $DA $DATE $DB $DEBUG

$DEVICE $EJ $EJECT $ERROR $GE $GEN

$GENONLY $GO $IC $INCDIR $INCLUDE $LI

$LIST $MACRO $MAPFSEG $MESSAGE $MO $MOD51

$MR $NOBUILTIN $NOCOND $NODB $NODEBUG $NOGE

$NOGEN $NOLI $NOLIST $NOMACRO $NOMO $NOMOD51

$NOMR $NOOBJECT $NOOJ $NOPAGING $NOPI $NOPR

$NOPRINT $NOSB $NOSYMBOLS $NOTABS $NOXR $NOXREF

$OBJECT $OJ
$PAGELENGT

H
$PAGEWIDTH $PAGING $PI

$PL $PR $PRINT $PW $RESTORE $RS

$SA $SAVE $SB $SYMBOLS $TITLE $TT

$WARNING $XR $XREF
13-2 C51ASM User Guide

3710A–MICRO–10/10

Section 14

Appendix E - Object File Formats

14.1 Intel-HEX Format

The Intel® HEX object file format is supported by many assemblers, compilers, utilities and device pro-
grammers to specify executable byte code for embedded processors. An Intel HEX file is a 7-bit ASCII
text file that contains a sequence of data records, address records and an end record. Every record is a
line of text that starts with a colon and ends with CR and LF. Each record contains an 8-bit checksum to
identify corrupted data.

Each line of an Intel HEX file consists of six fields:

1. Start code: one character, an ASCII colon ':'.

2. Byte count: two hex digits representing the number of bytes (hex digit pairs) in the data field, from
0–255. C51ASM outputs 16 bytes or fewer per record.

3. Address: four hex digits representing the 16-bit starting memory address for the data within a 64 KB
block. The 64 KB limit is exceeded by specifying higher address bits via additional record types. The
address is big endian (e.g. higher order byte first).

4. Record type: two hex digits, 00 to 05, defining the type of the data field.

5. Data: a sequence of N bytes of the data themselves (2N hex digits).

6. Checksum: two hex digits representing the two's complement modulo 256 sum of the values in all
fields except fields 1 and 6 (Start code ":" and Checksum). It is calculated by adding together the
hex-encoded bytes (hex digit pairs) as an 8-bit sum (leaving only the LSB of the result) and making a
2's complement. If the checksum is correctly calculated, adding all the bytes (the byte count, both
bytes in address, the record type, each data byte and the checksum) together will always result in a
value wherein the least significant byte is zero (0x00).

For example, on :0300300002337A1E, calculate 03 + 00 + 30 + 00 + 02 + 33 + 7A = E2, and 2's
complement is 1E
C51ASM User Guide 14-1

3710A–MICRO–10/10

Appendix E - Object File Formats
Example:

:10010000214601360121470136007EFE09D2190140
:100110002146017EB7C20001FF5F16002148011988
:10012000194E79234623965778239EDA3F01B2CAA7
:100130003F0156702B5E712B722B732146013421C7
:00000001FF

14.2 Motorola SREC Format

Motorola S-records (SREC) are an alternative to the Intel HEX files that are supported by some device
programmers, especially for devices with memory above 64KB. An SREC format object file consists of a
series of ASCII records. All hexadecimal numbers are big endian. The records have the following
structure.

Each line of an SREC file consists of six fields:

1. Start code: one character, an ASCII 'S'.

2. Record type: one ASCII digit, 0–9, defining the type of the data field.

3. Byte count: two hex digits indicating the number of bytes (hex digit pairs) that follow in the rest of the
record (in the address, data and checksum fields).

Table 14-1. Intel-Hex Record Types

Type Name Description

00 Data Record Contains data and 16-bit offset address. The format is as described above.

01 End Of File Record

The file termination record. The data field is empty. Has to be the last line of the
file, and only one per file permitted. The Intel specification allows the End Of File
record to contain a start address for the program being loaded,
e.g. :00AB2F0125 would make a jump to address AB2F. For C51ASM the
address field is always zero, e.g. ':00000001FF'.

02
Extended Segment
Address Record

One megabyte (20-bit) segment-base address. Used when the object file
exceeds 64 KB. The address specified by the 02 record is multiplied by 16
(shifted 4 bits left) and added to the subsequent 00 record addresses. The
address field of this record is 0000 and the byte count is 02 (the segment is 16-
bit, big endian). In the Intel specification the least significant hex digit of the
segment address is always 0. For C51ASM the segment is fixed on 64 KB
boundaries making the three least significant hex digits always 0, for example
':0200000230009C' starts the segment at 0x30000.

03
Start Segment
Address Record

Specifies the initial contents of the CS:IP registers for 80x86 processors, but is
not used in C51ASM. The address field is 0000, the byte count is 04, the first two
bytes are the CS value, and the latter two are the IP value.

04
Extended Linear
Address Record

Specifies the upper address word for full 32-bit (4GB) addressing. The address
field is 0000, the byte count is 02 and the two data bytes represent the upper 16
bits of the 32 bit address. C51ASM supports only up to 24-bit (16MB) addressing,
so the higher order byte is always zero.

05
Start Linear
Address Record

Specfies the value of the EIP register on 80386 and higher CPUs. The address
field is 0000, the byte count is 04 and the 4 data bytes represent the 32-bit value
loaded into the EIP register. C51ASM does not use this record type.
14-2 C51ASM User Guide

3710A–MICRO–10/10

Appendix E - Object File Formats
4. Address: four, six, or eight hex digits as determined by the record type for the memory location of
the first data byte in the data field.

5. Data: a sequence of N bytes of data (2N hex digits).

6. Checksum: two hex digits representing the one's complement of the modulo 256 sum of the values
represented by the hex digit pairs for the byte count, address and data fields.

There are eight record types:

The S0 record data sequence contains vendor specific data rather than program data. The data includes
thee fixed length fields and one variable length field as described below. The offset column refers to the
starting position within the data sequence.

Example:

S00F000068656C6C6F202020202000003C
S11F00007C0802A6900100049421FFF07C6C1B787C8C23783C6000003863000026
S11F001C4BFFFFE5398000007D83637880010014382100107C0803A64E800020E9
S111003848656C6C6F20776F726C642E0A0042
S5030003F9
S9030000FC

Table 14-2. Motorola SREC Record Types

Type Name
Address

Bytes
Data

Allowed Description

S0 Block header 2 Yes
First record in a file. Contains vendor specific data.
Address field is always zero.

S1 Data sequence 2 Yes
Contains data and 16-bit offset address for a 64KB
block.

S2 Data sequence 3 Yes
Contains data and 24-bit offset address for a 16MB
block.

S3 Data sequence 4 Yes Contains data and 32-bit offset address for a 4GB block.

S5 Record count 2 No
The address field contains the number of S1, S2 or S3
record is the file.

S7 End of block 4 No
Terminates a file containing S3 records. The address
field is the 32-bit starting address.

S8 End of block 3 No
Terminates a file containing S2 records. The address
field is the 24-bit starting address.

S9 End of block 2 No
Terminates a file containing S1 records. The address
field is the 16-bit starting address.

Table 14-3. S0 Vendor Fields

Field Offset Size Desciption

Module 0 20 Ten characters representing the ASCII values of the module name

Version 20 2 A single character representing the version number in ASCII

Revision 22 2 A single character representing the revision number in ASCII

Comment 24 0-36 0-18 characters repsenting the ASCII values of a text comment
C51ASM User Guide 14-3

3710A–MICRO–10/10

14.3 Intel Object Module Format

The Atmel® C51ASM assembler can generate object files in the Intel Object Module Format for 8051s
(OMF-51). Only the Absolute OMF subset is supported as C51ASM is not a relocatable assembler.
OMF-51 objects can optionally contain debugging information including the symbol table and source line
number mappings.

The original OMF-51 specification is available on the Internet:

http://plit.de/asem-51/omf51eps.htm (online)

http://www.keil.com/download/files/omf51.zip (download zipped PDF)

14.3.1 Extensions

C51ASM implements the following extensions to the OMF-51 specification:

The SYM INFO field of Debug Item Records (type 12H) has extended USAGE TYPE values for the
expanded C51ASM segment types. A value of 6 refers to an EDATA address and a value of 7 refers to
an FDATA address.

Generated data for an FDATA segment is placed in Content Records (type 06H) with a SEG ID of one.
No Segment Definition Record (type 0EH) is generated to define this segment.

14.4 Other Object Formats

In addition to the standard Intel HEX, Motorola SREC or Intel OMF-51 formats, C51ASM supports the
following object formats:

14.4.1 Binary

C51ASM can output a pure binary image file. The binary file starts at address zero and continues to the
last generated code location. Uninitialized bytes in between the starting and ending addresses are filled
with FFH. If CODE and FDATA are unified into a single object, the FDATA data are placed at the next
address above the full capacity of the device, unless another location is specified with --mapfseg or
$MAPFSEG. Any gap between the CODE and FDATA segments is filled with FFH.

14.4.2 Generic Hexadecimal

The generic hexadecimal format is an ASCII file that specifies addresses and data. Each line starts with
a two-byte or three-byte value whose ASCII characters represent the starting hexadecimal address for
the subsequent data. Following the address is a list of hexadecimal data bytes, each represented by two
ASCII characters. Data values are separated from each other and the address by a space.

Example:

0100 21 46 01 36 01 21 47 01 36 00 7E FE 09 D2 19 01
0110 21 46 01 7E B7 C2 00 01 FF 5F 16 00 21 48 01 19
0120 19 4E 79 23 46 23 96 57 78 23 9E DA 3F 01 B2 CA
0130 3F 01 56 70 2B 5E 71 2B 72 2B 73 21 46 01 34 21
14-4 C51ASM User Guide

3710A–MICRO–10/10

http://plit.de/asem-51/omf51eps.htm
http://plit.de/asem-51/omf51eps.htm
http://www.keil.com/download/files/omf51.zip

Section 15

Appendix F - The ASCII Character Set

Table 15-1. ASCII Character Set

HEX 00 10 20 30 40 50 60 70

0 NUL DLE 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B NUL DLE 0 @ P ` p

C SOH DC1 ! 1 A Q a q

D STX DC2 " 2 B R b r

E ETX DC3 # 3 C S c s

F EOT DC4 $ 4 D T d t
C51ASM User Guide 15-1

3710A–MICRO–10/10

Appendix F - The ASCII Character Set
15-2 C51ASM User Guide

3710A–MICRO–10/10

Section 16

Revision History

Revision No. History

Revision A – October 2010 • Initial Release
C51ASM User Guide 16-1

3710A–MICRO–10/10

Revision History
16-2 C51ASM User Guide

3710A–MICRO–10/10

3710A–MICRO–10/10 /xM

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1) (408) 441-0311
Fax: (+1) (408) 487-2600
www.atmel.com
8051@atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Packring 4
D-85748 Garching b. munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81) (3) 3523-3551
Fax: (+81) (3) 3523-7581

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted
by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL,
PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING
OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with
respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel
does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

	Introduction
	1.1 References
	Running the Assembler
	2.1 Installation
	2.1.1 Installation under Microsoft Windows
	2.1.2 Installation under Linux
	2.2 Environment
	2.2.1 Microsoft Windows Environment
	2.2.2 Linux Environment
	2.3 Command Line Operation
	2.3.1 Output Files
	2.3.2 Command Line Options
	2.4 Batch File Operation
	2.4.1 Drag–and–Drop
	2.4.2 Send To Menu
	C51ASM Assembly Language
	3.1 Statements
	3.2 Comments
	3.3 Symbols
	3.3.1 Labels
	3.3.2 Predefined Symbols
	3.4 Constants
	3.5 Expressions
	3.6 Segment Type
	3.7 The 8051 Instruction Set
	3.8 Assembler Directives
	3.9 Assembler Controls
	3.10 Conditional Assembly
	Macro Processing
	4.1 Standard Callable Macros
	4.1.1 Defining Macros
	4.1.2 Calling Macros
	4.1.3 Macro Parameters
	4.1.4 Local Symbols
	4.1.5 Macro Operators
	4.1.6 Exiting Macro Expansion
	4.2 Repeat Macros
	4.3 Nested and Recursive Macro Calls
	4.4 Nested Macro Definitions
	Assembler Directives
	5.1 DB
	5.2 DW
	5.3 DS
	5.4 DBIT
	5.5 DEFINE
	5.6 NAME
	5.7 ORG
	5.8 USING
	5.9 END
	5.10 EQU
	5.11 CODE
	5.12 DATA
	5.13 SFR
	5.14 BIT
	5.15 IDATA
	5.16 EDATA
	5.17 FDATA
	5.18 XDATA
	5.19 CSEG
	5.20 DSEG
	5.21 ISEG
	5.22 ESEG
	5.23 FSEG
	5.24 BSEG
	5.25 XSEG
	5.26 SET
	5.27 #UNDEF
	5.28 IF
	5.29 IFN
	5.30 IFDEF
	5.31 IFNDEF
	5.32 IFB
	5.33 IFNB
	5.34 #IF
	5.35 #IFDEF
	5.36 #IFNDEF
	5.37 .IF
	5.38 ELSEIF
	5.39 ELSEIFN
	5.40 ELSEIFDEF
	5.41 ELSEIFNDEF
	5.42 ELSEIFB
	5.43 ELSEIFNB
	5.44 #ELIF
	5.45 ELSE
	5.46 #ELSE
	5.47 .ELSE
	5.48 ENDIF
	5.49 #ENDIF
	5.50 .ENDIF
	5.51 MACRO
	5.52 LOCAL
	5.53 ENDM
	5.54 EXITM
	5.55 REPT
	Assembler Controls
	6.1 $DATE
	6.2 $DEBUG
	6.3 $NODEBUG
	6.4 $DEVICE
	6.5 $INCDIR
	6.6 $MACRO
	6.7 $NOMACRO
	6.8 $MAPFSEG
	6.9 $MOD51
	6.10 $MOD52
	6.11 $NOMOD51
	6.12 $OBJECT
	6.13 $NOOBJECT
	6.14 $PAGING
	6.15 $NOPAGING
	6.16 $PAGELENGTH
	6.17 $PAGEWIDTH
	6.18 $PRINT
	6.19 $NOPRINT
	6.20 $SYMBOLS
	6.21 $NOSYMBOLS
	6.22 $NOBUILTIN
	6.23 $NOTABS
	6.24 $XREF
	6.25 $NOXREF
	6.26 $COND
	6.27 $NOCOND
	6.28 $CONDONLY
	6.29 $EJECT
	6.30 $ERROR
	6.31 $WARNING
	6.32 $MESSAGE
	6.33 $GEN
	6.34 $NOGEN
	6.35 $GENONLY
	6.36 $INCLUDE
	6.37 $LIST
	6.38 $NOLIST
	6.39 $SAVE
	6.40 $RESTORE
	6.41 $TITLE
	Assembler Compatibility
	7.1 7.1 Restrictions
	7.2 7.2 Extensions
	Supported Devices
	Instruction Set Reference
	9.1 Addressing Modes
	9.2 Instructions in Alphabetical Order
	9.3 Instruction Set Extensions
	9.4 Instruction Definitions
	9.4.1 ACALL addr11
	9.4.2 ADD A, <src-byte>
	9.4.3 ADDC A, <src-byte>
	9.4.4 AJMP addr11
	9.4.5 ANL <dest-byte>, <src-byte>
	9.4.6 ANL C,<src-bit>
	9.4.7 ASR M
	9.4.8 BREAK
	9.4.9 CJNE <dest-byte>,<src-byte>, rel
	9.4.10 CLR A
	9.4.11 CLR M
	9.4.12 CLR bit
	9.4.13 CPL A
	9.4.14 CPL bit
	9.4.15 DA A
	9.4.16 DEC <byte>
	9.4.17 DIV AB
	9.4.18 DJNZ <byte>,<rel-addr>
	9.4.19 ECALL addr24
	9.4.20 EJMP addr24
	9.4.21 ERET
	9.4.22 INC <byte>
	9.4.23 INC DPTR
	9.4.24 JB blt,rel
	9.4.25 JBC bit,rel
	9.4.26 JC rel
	9.4.27 JMP @A+<base_reg>
	9.4.28 JNB bit,rel
	9.4.29 JNC rel
	9.4.30 JNZ rel
	9.4.31 JZ rel
	9.4.32 LCALL addr16
	9.4.33 LJMP addr16
	9.4.34 LSL M
	9.4.35 MAC AB
	9.4.36 MOV <dest-byte>,<src-byte>
	9.4.37 MOV DPTR,#data16
	9.4.38 MOV <dest-bit>,<src-bit>
	9.4.39 MOVC A,@A+ <base-reg>
	9.4.40 MOVX <dest-byte>,<src-byte>
	9.4.41 MUL AB
	9.4.42 NOP
	9.4.43 ORL <dest-byte> <src-byte>
	9.4.44 ORL C,<src-bit>
	9.4.45 POP direct
	9.4.46 PUSH direct
	9.4.47 RET
	9.4.48 RETI
	9.4.49 RL A
	9.4.50 RLC A
	9.4.51 RR A
	9.4.52 RRC A
	9.4.53 SETB <bit>
	9.4.54 SJMP rel
	9.4.55 SUBB A,<src-byte>
	9.4.56 SWAP A
	9.4.57 XCH A,<byte>
	9.4.58 XCHD A,@Ri
	9.4.59 XRL <dest-byte>,<src-byte>
	Appendix A - Error Messages
	10.1 Assembly Errors
	10.1.1 ERROR #1
	10.1.2 ERROR #2
	10.1.3 ERROR #3
	10.1.4 ERROR #4
	10.1.5 ERROR #5
	10.1.6 ERROR #6
	10.1.7 ERROR #8
	10.1.8 ERROR #9
	10.1.9 ERROR #12
	10.1.10 ERROR #15
	10.1.11 ERROR #16
	10.1.12 ERROR #17
	10.1.13 ERROR #18
	10.1.14 ERROR #19
	10.1.15 ERROR #20
	10.1.16 ERROR #21
	10.1.17 ERROR #23
	10.1.18 ERROR #24
	10.1.19 ERROR #25
	10.1.20 ERROR #27
	10.1.21 ERROR #28
	10.1.22 ERROR #30
	10.1.23 ERROR #31
	10.1.24 ERROR #33
	10.1.25 ERROR #34
	10.1.26 ERROR #35
	10.1.27 ERROR #37
	10.1.28 ERROR #40
	10.1.29 ERROR #41
	10.1.30 ERROR #43
	10.1.31 ERROR #44
	10.1.32 ERROR #45
	10.1.33 ERROR #46
	10.1.34 ERROR #47
	10.1.35 ERROR #48
	10.1.36 ERROR #50
	10.2 Runtime Errors
	10.2.1 I/O ERROR
	10.2.2 FATAL ERROR
	Appendix B - List File Format
	11.1 List File Headings
	11.2 Source Listing
	11.3 Symbol Table
	Appendix C - Predefined Symbols
	Appendix D - Reserved Keywords
	Appendix E - Object File Formats
	14.1 Intel-HEX Format
	14.2 Motorola SREC Format
	14.3 Intel Object Module Format
	14.3.1 Extensions
	14.4 Other Object Formats
	14.4.1 Binary
	14.4.2 Generic Hexadecimal
	Appendix F - The ASCII Character Set
	Revision History

