
Make OAuth implementation simple for your organization

A How-to Guide to
OAuth & API Security

WHITE PAPER | NOVEMBER 2014

2 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

Table of Contents

ca.com

What is OAuth? 3

Can You Provide a Simple OAuth Example? 4

Hasn’t This Problem Been Solved Before? 6

How Does OAuth 2.0 Differ from Previous Versions? 6

Why is OAuth Hard to Do? 8

How Does The CA API Gateway Help Me Implement OAuth? 9

What is the Benefit of an OAuth Toolkit? 10

How Does The CA API Gateway Help for Two or Three-Legged OAuth Use Cases? 11

Contact CA Technologies 12

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com3 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

What is OAuth?
OAuth is an emerging Web standard for authorizing limited access to applications and data. It is designed
so that users can grant restricted access to resources they own—such as pictures residing on a site like
Flickr or SmugMug—to a third-party client like a photo printing site. In the past, it was common to ask the
user to share their username and password with the client, a deceptively simple request masking
unacceptable security risk. In contrast to this, OAuth promotes a least privilege model, allowing a user to
grant limited access to their applications and data by issuing a token with limited capability.

OAuth is important because it places the management of Web delegation into the hands of the actual
resource owner. The user connects the dots between their accounts on different Web applications without
direct involvement from the security administrators on each respective site. This relationship can be
long-lasting but can easily be terminated at any time by the user. One of the great advancements OAuth
brings to the Web community is formalizing the process of delegating identity mapping to users.

OAuth is rapidly becoming a foundation standard of the modern Web and has grown far beyond its social
media roots. OAuth is now very important for the enterprise; insurance companies, cable operators and
even healthcare providers are using OAuth to manage access to their resources. Much of this adoption is
driven by the corporate need to support increasingly diverse clients and mobile devices, in particular. These
organizations are aggressively deploying APIs to service this new delivery channel and OAuth is the best
practice for API authorization.

But it is important to recognize that OAuth is only one component of a full API access control and security
solution. It is easy to focus on the details of the protocol and lose sight of the big picture of API
Management—encompassing everything from user management to auditing, throttling and threat
detection. APIs often represent a direct conduit to mission-critical enterprise applications. They need an
enterprise-class security solution to protect them.

CA Technologies is committed to providing infrastructure to OAuth-enable enterprise applications. We offer
drop-in solutions that fully integrate with existing investments in identity and access management (IAM)
technology to provide a consistent authorization model across the enterprise. All CA API Gateway solutions
are available as simple-to-deploy virtual images. CA Technologies also provides the flexibility to integrate
with third-party OAuth implementations that may not be entirely compliant with the current standards,
thus insulating you from the changes that come from a rapidly-evolving technology.

This white paper from CA Technologies describes what OAuth is and shows how you can make OAuth simple
in your organization.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com4 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

Can You Provide a Simple OAuth Example?
Social media has been the largest early adopter of OAuth. Facebook and Twitter owe much of their success
to the fact that they are not simply standalone Web sites but platforms that encourage integration with
other applications. The integration points are RESTful APIs that typically use OAuth as a means of
authentication, authorization and binding together of different personal accounts.

Twitter and Facebook provide excellent examples of OAuth in action. Like many people, you probably have
separate accounts on both of these social media powerhouses. Your account names may be similar (and in the
name of good security, hopefully you use different passwords) but they are distinct accounts managed on
different sites. So, how can you set things up so that your tweets show up instantly on your Facebook wall?

In the past, you would probably have had to store your Facebook username and password in your Twitter
profile. This way, whenever you published a new tweet, the Twitter application could sign on for you to
cross-post it onto Facebook. This approach has come to be called the password anti-pattern and it is a bad
idea for a number of reasons. Entrusting Twitter with your Facebook password simply gives this application
too much power. If a hacker was to compromise the site or an internal administrator went rogue, they could
leverage your plain text password to post damaging pictures, lock you out of Facebook or even delete your
entire account.

Fortunately, Twitter and Facebook both use OAuth to overcome this challenge. OAuth provides a delegated
authorization model permitting Twitter to post on your wall—but nothing else. This is shown in Figure A below.

Letting Twitter Post Tweets to Your Facebook Wall

Client

Resource Owner
(aka The User)

1. User posts
new tweet

2. Twitter posts
tweet to Facebook
on user’s behalf

Authorization
Server (AS) Resource

Server (RS)

Figure A.

OAuth allows
Twitter to post
tweets to your
Facebook account
without using your
Facebook password.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com5 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

From the user perspective, the interaction is very simple and intuitive. You can follow it in Figure B below.
From their Twitter settings panel, a user clicks on a button that transfers them to Facebook, where they can
sign in. This creates an association between this user’s two separate accounts without any involvement
from Facebook or Twitter security administrators. Once authenticated on Facebook, the user undergoes a
consent ceremony, where they can choose the subset of privileges they want to grant to Twitter to permit
the application to perform actions on their behalf. Finally, the user returns automatically to Twitter, where
they can resume posting tweets, which now appear on their Facebook wall as well. The relationship they
have set up persists indefinitely or until they decide to break it explicitly, using controls found on the
settings page.

For the user, this is a simple and intuitive process—and indeed, that is much of OAuth’s appeal. But
underneath the hood is a much more complex interaction between the sites, often called the OAuth dance.
Three-legged OAuth is the popular name for the scenario described here; it is the most typical use case for
the OAuth 1.0a specification, now published as RFC 5849.

This specification is detailed but surprisingly narrow. It defines the redirection flow that allows a user to
associate their accounts, to authorize a limited subset of operations and return an opaque token that
Twitter can persist safely for access instead of an all-powerful password. It even details—at least in the 1.0
version—a method for binding the token to parameter content using digital signatures, thus allowing
integrity checks on content submitted over unencrypted channels.

One of the strengths of the OAuth 1.0a specification is that, rather than attempting to define a generalized
authorization framework, it instead set out to offer a solution to the common design challenge described
above. It was a grass-roots initiative by people with a problem to solve and its timing was perfect.
Unsurprisingly, it became wildly successful, seeing implementation on sites such as Google, DropBox,
SalesForce, FourSquare and LinkedIn.

OAuth, however, is evolving. Version 2, which was published in October 2012, ambitiously aims to satisfy a
much more generalized set of use cases. This naturally adds complexity to the solution and adds to the
difficulty faced by developers trying to implement it to protect enterprise APIs.

1. No authorization
to post to Facebook

2. Sign on to Facebook and
authorize Twitter to post to wall

3. Now authorized
to post to Facebook

Figure B.

How a user
authorizes Twitter
to post tweets on
their Facebook wall.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com6 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

Hasn’t This Problem Been Solved Before?
There are not any fully defined, formal processes for solving the delegated authorization problem addressed
by OAuth. Its designers considered the alternatives and came up with only a handful of (completely
proprietary) solutions. Necessity was certainly the mother of OAuth’s invention but openness was a key
goal.

It is certainly conceivable that SAML, most often used for federated Single Sign-On (SSO), could be used as
a token format to communicate delegated operations between sites using the sender-vouches token type.
However, SAML on its own does not define the flow of interactions to set up the trust relationship or
account bindings. Furthermore, as a very complex XML format, SAML does not sit well with current
development practices focused on RESTful principles and simple JSON data structures.

Open ID Connect attempted to offer a single Web sign-on. In a perfect world where Open ID Connect was
universal, then OAuth might never have been necessary. But despite success at influential sites such as
Yahoo and WordPress, Open ID Connect has never seen widespread adoption. Nevertheless, Open ID
Connect may have a second chance for success because of how it complements OAuth.

How Does the OAuth 2.0 Differ from Previous Versions?
OAuth 1 evolved very rapidly because of demand; it offered a solution to a common problem and its
adoption by leading social applications gave it wide exposure. The most common implementation at
present is 1.0a, which incorporates a slight modification from the original specification, to address a
security vulnerability.

The 1.0a specification is well-designed and quite complete but only for a narrow set of use cases. Arguably,
this is one of its strengths; it does one thing, and does it very well. OAuth 1.0 enjoys wide support, with
libraries available in most languages. Still, it suffers from a largely do-it-yourself feel—a characteristic that
may appeal to individual developers but one that leaves the enterprise cold.

OAuth 1.0a has some additional complexities that have held it back from enjoying wider acceptance. It
pushes complexity into clients—particularly around cryptographic processing—which can be difficult to
code using languages like JavaScript. For example, OAuth 1.0a requires that clients sign HTTP parameters;
this is a good idea for unencrypted transmissions (a common usage pattern on the conventional Web) but
less so with APIs.

The signing process itself is confusing because of the need to canonicalize parameters (for example,
normalizing ordering, dealing with escape sequences etc.) This has been a major source of developer
frustration, as clients and resource servers often have different interpretations of how signatures
are applied.

Certainly there exist libraries that can help here, but a bigger problem is that the signature requirement
limits the ability of developers to test transactions using simple command-line utilities like cURL. Much of
the appeal of the RESTful style over using alternatives like SOAP Web services is that the former requires no
special tools to code. OAuth signatures work against this advantage.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com7 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

The earlier specification also had a limited view of client types. In the cleanest, three-legged case, the client
was usually a Web application. However, developers increasingly wanted to use OAuth in applications
running inside a browser or within standalone apps running on mobile devices like phones or tablets. This is
possible with OAuth 1.0 but the user experience is poor, as it may involve an awkward copy-and-paste
operation between a browser and the app.

OAuth 2.0 attempts to generalize the original OAuth implementation in order to simplify client
development, improve the overall user experience and scale OAuth deployments. This required significant
changes, not backwardly compatible with previous versions.

The new specification explicitly separates out the roles of authorization from access control. Now the
authorization server is cleanly separated from the resource server. Aside from the logical segregation of
roles, this also promotes use of a central authorization server and distribution of multiple resource servers,
much like a classical SSO architecture. In fact, an OAuth 2.0 authorization server is really the RESTful
equivalent of a security token service (STS).

OAuth 2.0 attempts to support three client profiles: conventional Web applications; applications based inside a
user-agent (that is, a Web browser); native applications (such as a mobile phone app, a set-top box or even a
game console). Each of these may have different capabilities in terms of interacting between resource owners,
authorization servers and protected resources. Each may also be subject to different security requirements. The
specification describes a number of new authorization grants to accommodate these diverse needs. The grants
describe a process by which a client can acquire authorized access to a resource.

These grants include:

• Authorization Code — This grant describes the typical three-legged scenario, where the client is a Web
application such as Twitter. It uses an intermediate authorization code to securely delegate authorization
from an authorization server to a client via the resource owner’s user agent (browser). It has the benefits
that a resource owner’s credentials are never shared with the client, nor is the access token ever shared
with the resource owner’s user agent where it could be hijacked.

Client

Resource
Owner

Authorization
Server

Resource
Server

Acquire
Token

Use
Token

Figure C.

OAuth 2.0 makes
a clear distinction
between Authorization
server and resource
server and further
defines the flows
describing token
acquisition.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com8 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

• Implicit — This is a slightly simpler grant that is best suited to applications running inside a user agent,
such as JavaScript apps. The client directly acquires an access token from the authorization server. This
eliminates much of the complexity of the intermediary authorization code but has the drawback that the
resource owner could potentially get the access token.

• Resource Owner Password Credentials — In this grant, the resource owner shares credentials directly
with the client—which uses these to obtain an access token directly, in a single transaction. The
credentials are not persisted, as the client uses the access token for all subsequent interactions with
protected resources. This is a very simple flow but it demands that there be trust between a resource
owner and a client.

• Client Credentials — In this flow, the client uses its own credentials to access a resource. Thus, it is really
leveraging the client’s existing entitlements.

In addition to these grants, there is an extensibility mechanism to accommodate other forms of
authorization. For example, a SAML bearer token specification exists that describes the use of SAML tokens
as a means of acquiring OAuth access tokens. This is very important because it represents a bridge between
classic browser SSO infrastructure and modern APIs.

Tokens have changed in OAuth 2.0, to better support session management. In the past, access tokens were
very long-lived (up to a year) or—as is the case with Twitter—they had an unlimited lifespan. OAuth 2.0
introduces the concept of short-lived tokens and long-lived authorizations. Authorization servers now issue
client refresh tokens. These are long-lived tokens a client can user multiple times to acquire short-term
access tokens. One of the benefits of this is that either resource owners or security administrators can easily
cut off clients from acquiring new tokens if they need to.

Token signatures are now optional. The preference is to use simple bearer tokens (meaning the token is
used directly to gain access and is considered secret) protected by SSL. This is much simpler than
processing signatures, though the later still exist in a simplified form to support non-SSL transactions.

Why is OAuth Hard to Do?
Building a simple OAuth proof-of-concept is not difficult; there are libraries in most major languages that
can help with the challenge of hand coding an end-to-end OAuth demonstration. However, implementing
OAuth at scale—where transaction volume, the number of APIs to protect and the number of diverse clients
all contribute to scale—remains a great challenge for any development and operations group.

OAuth 2.0 is also a moving target. The 1.0a specification solved one problem and solved it well. But the
increased scope and generalization of the new specification has created considerable ambiguity that makes
interoperability extremely challenging. This is why many social networking applications—the core
constituency of the OAuth movement—remain at the 1.0 spec, waiting for things to settle down.

The opening of token formats illustrates this nicely. While, on the one hand, this has greatly simplified the
signature process, which was challenging for developers in the earlier specifications, it has also introduced
the ability to encapsulate different tokens (such as SAML)—opening up opportunities to leverage existing
investments but also creating significant interoperability challenges.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com9 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

The biggest mistake people make with OAuth today is looking at it in isolation. OAuth is indeed a
compelling trend but it is only one piece of the enterprise access control puzzle. Authorization cannot be
dictated entirely by the client; the enterprise hosting the protected resource must also have control.
Single-point OAuth implementations rarely acknowledge this two-way street but reciprocal trust and
control are essential for the enterprise.

OAuth must be a part of the general policy-based access control system for enterprise APIs, not simply a
standalone solution. Policy-based access control gives both parties control over access. It incorporates
controls such as time-of-day restrictions and IP white/black lists. It identifies and neutralizes threats like
SQL Injection or Cross-Site Scripting (XSS) attacks. It validates parameter and message content (including
JSON or XML) against acceptable values. It integrates fully with enterprise audit systems so resource
providers know exactly who is accessing what and when. And finally, rich policy-based access control allows
management of SLAs by shaping network communications, routing transactions to available servers and
throttling excess traffic before it can affect user experience or threaten servers.

The enterprise would never consider building its own IAM infrastructure for its Web site—architects and
developers recognize that there is much more to this than simple HTTP basic authentication. OAuth is
similar—deceptively simple but ultimately a piece of a very complex overall authorization process.

How Does the CA API Gateway Help Me Implement OAuth?
CA Technologies provides a complete, turnkey solution for OAuth 1.0a and OAuth 2.0 implementations.
OAuth is included within the rich, policy-based access control engine in CA API Gateway. This is truly OAuth
at scale, handling tens of thousands of transactions per second on a single Gateway instance. These
Gateways can be deployed as hardware appliances or low-cost virtualized images. Both form factors bring
military-grade security infrastructure to enterprise OAuth, incorporating FIPS-certified cryptographic
modules, advanced threat detection, SLA traffic management and fine-grained access control in a single
package. It is like having a guard at your door, instead of just a lock.

The API gateways from CA Technologies can be deployed both as authorization servers (AS) and protected
resource servers (RS). Both architectural elements can be merged into a single Gateway instance or they can
be separated, allowing a centralized AS to service many distributed RS instances, as illustrated in Figure D.

Because CA API Gateways come in both hardware and virtual appliance form factors, they support the
widest possible range of deployments. Hardware Gateways are available with onboard hardware security
modules (HSMs), providing key protection for the most secure environments. Virtual appliances make
deployment simple and can run anywhere from the desktop to the most powerful server infrastructure.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com10 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

What is the Benefit of an OAuth Toolkit?
The CA API Gateway OAuth Toolkit uses standardized templates designed to work out-of-the box for typical
OAuth Toolkit deployments. Using these, customers can add robust OAuth Toolkit capabilities to existing
APIs in minutes, instead of days.

The truth is, however, that the one-size-fits-all solution promised by so many vendors rarely works well
outside of a very limited, green-field opportunity. For example, most real-world projects have existing
identity systems they need to access or PKI infrastructure they need to integrate with. As an industry, we
are very good at application and data integration; security integration remains an ongoing challenge.

To better address these integration challenges, the CA API Gateway also provides basic OAuth Toolkit
components, from cryptography to parameter canonicalization to session management. These are the s
ame basic components used in our complete, turnkey solution but surfaced as completely configurable
assertions within an access control policy. This allows architects and developers to tune their OAuth Toolkit
implementations to meet nearly any challenge they may face.

Customizing the OAuth Toolkit consent ceremony is another area that greatly benefits from the openness of
the gateways templates, augmented by the power of a flexible and open toolkit. Setting up initial trust is
a critical part of the entire OAuth Toolkit process. The CA API Gateway allows you to fully customize this step
to ensure that it integrates with existing identity infrastructure and meets enterprise compliance demands.

Client

Resource Owner
(aka The User)

Authorization
Server (AS)

Resource
Server (RS)

Enterprise
Network

The AS and RS functions can
be combined into a single Gateway
or distributed across the network

CA API
Gateway

CA API
Gateway

Figure D.

API gateways from
CA Technologies
make implementing
OAuth simple.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com11 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

How Does CA Technologies Help for Two or Three-Legged
OAuth Use Cases?
The CA API Gateway can provide both endpoint authorization services and access control for protected
services. These two functions can co-exist in a single Gateway or they can be separated out. The benefit of
separating them out is around scalability, redundancy and geographic distribution of services. It also allows
alignment around business cases, such as physical partitioning of corporate versus public APIs. Most
organizations have a large number of APIs to protect, often served from a number of different locations. In
these cases, it makes sense to deploy centralized API gateways from CA Technologies as authorization
servers (often in a cluster for redundancy) and remote clusters of gateways to protect specific API instances.

Both deployment patterns can service OAuth 1.0a and 2.0 versions simultaneously. This pattern also works
for both classic two-legged and three-legged scenarios, as well as the OAuth 2.0 grant model, including
extension grants such as SAML bearer token. These deployments are illustrated in Figures E and Figure F.

Two-Legged Deployment of CA Technologies

Resource
Owner

Clients

Firewall 1 Firewall 2

Load
Balancer

Resource
Server (RS)

Authorization
Server (AS)

Protected Resource
Server (Secure APIs)

Identity
Infrastructure

CA API
Gateway

CA API
Gateway

Three-Legged Deployment of CA Technologies

Resource
Owner

Firewall 1 Firewall 2

Load
Balancer

Resource
Server (RS)

Authorization
Server (AS)

Protected Resource
Server (Secure APIs)

Identity
Infrastructure

Client

CA API
Gateway

CA API
Gateway

Figure E.

Typical deployment
for the classic
two-legged scenario
or grants such as
resource owner
credentials and
client credentials.

Figure F.

Typical three-legged
deployment scenarios
and the authorization
code grant as well as
implicit grant types.
Note that the
CA API Gateway
can simultaneously
support all OAuth
versions, as well as
custom mappings to
accommodate
interoperability
issues.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

CA Technologies (NASDAQ: CA) creates software that fuels transformation for companies and enables
them to seize the opportunities of the application economy. Software is at the heart of every business,
in every industry. From planning to development to management and security, CA is working with
companies worldwide to change the way we live, transact and communicate – across mobile, private
and public cloud, distributed and mainframe environments. Learn more at ca.com.

Connect with CA Technologies at ca.com

12 | WHITE PAPER: MAKE OAUTH IMPLEMENTATION SIMPLE FOR YOUR ORGANIZATION

Copyright © 2014 by CA Technologies. Contents confidential. All rights reserved. CS200-87200_1114

Contact CA Technologies
CA Technologies welcomes your questions, comments and general feedback. For more information please
contact your CA Technologies representative or visit www.ca.com/api

http://www.ca.com
https://plus.google.com/+CATechnologies/posts
http://www.ca.com
http://www.ca.com
https://www.facebook.com/CATechnologies
https://www.linkedin.com/company/ca-technologies
https://twitter.com/CAInc
https://www.youtube.com/user/catechnologies
http://blogs.ca.com/
http://www.slideshare.net/cainc
http://www.ca.com/api

