

SimpleLink™ Bluetooth® low energy
CC26X0 Wireless MCU

Over-the-Air Download User’s Guide
For BLE-Stack™ Version: 2.2.2

Table of Contents

Table of Contents

1. Introduction .. 5

1.1 Purpose ... 5

1.2 Scope ... 5

1.3 Document Updates ... 6

1.4 Legacy OAD Versions .. 6

1.5 Supported OAD Downloaders ... 6

2. OAD Concept Overview... 7

2.1 OAD Types ... 7

2.1.1 On-chip OAD ... 7

2.1.2 Off-chip OAD ... 8

2.2 OAD Topology Overview ... 8

2.3 OAD Image Metadata ... 9

2.3.1 CRC and CRC Shadow .. 9

2.3.2 Version .. 10

2.3.3 Length ... 10

2.3.4 User Identification (UID) ... 10

2.3.5 Start Address ... 10

2.3.6 Image Type .. 10

2.3.7 Image State ... 11

2.4 OAD Service Description ... 11

2.4.1 OAD Image Identify (0xFFC1) .. 13

2.4.2 OAD Image Block Characteristic (0xFFC2) ... 14

2.4.3 OAD Image Count Characteristic (0xFFC3) .. 14

2.4.4 OAD Image Status (0xFFC4) .. 14

2.5 OAD Process .. 15

2.5.1 Initiation of the OAD Process .. 15

2.5.2 Image Block Transfers ... 17

2.5.3 Completion of the OAD Process .. 17

2.6 OAD Reset Service ... 17

2.6.1 OAD Reset (0xFFD1) .. 17

2.7 Bootloader .. 18

3. Off-Chip OAD ... 18

3.1 Off-chip OAD Memory Map .. 19

3.2 Constraints and Requirements for Off-chip OAD.. 20

3.3 Conditions for rejecting Metadata .. 20

3.4 BIM for Off-chip OAD .. 20

4. On-Chip OAD ... 22

4.1 On-chip OAD Memory Map .. 22

4.2 Constraints and Requirements for On-chip OAD .. 23

4.3 Conditions for Rejecting Metadata ... 24

4.4 BIM for On-chip OAD .. 24

5. Running the Out of the Box Demos .. 26

5.1 Required Hardware ... 26

5.2 Required Software .. 26

5.3 OAD Downloader .. 26

5.3.1 Setting Up the CC2650 LaunchPad.. 26

5.3.2 Setting up and connecting to BTool .. 27

5.4 OAD Target .. 27

5.4.1 On-Chip OAD ... 28

5.4.2 Off-Chip OAD ... 29

5.5 Changing the Device Name to Validate OAD .. 30

5.6 Performing an OAD with BTool ... 31

5.6.1 (On-chip OAD only) Reset the device via the OAD Reset Service 31

5.6.2 Performing an OAD ... 32

6. Adding OAD to an Existing Application ... 33

6.1 Off-chip OAD ... 34

6.1.1 Project Changes For IAR .. 34

6.1.2 Project Changes for CCS .. 35

6.1.3 Source Code Changes .. 37

6.1.4 [Optional] Changing the pins of the external flash device .. 38

6.2 On-chip OAD ... 39

6.2.1 Steps for IAR .. 39

6.2.2 Source Code Changes .. 42

7. TI OAD Image Tool .. 42

7.1 Dependencies .. 42

7.2 Using the tool .. 43

7.3 Building a Production Image ... 44

8. Appendix ... 46

8.1 References .. 46

8.2 Definitions, Abbreviations, Acronyms .. 47

8.3 RTOS RCFG Section.. 47

8.4 Prevent On-chip BIM from checking the CRC ... 47

9. Troubleshooting Guide ... 48

9.1 General Troubleshooting Guide .. 48

9.2 Downloaded OAD Image Isn’t Starting ... 48

9.3 Should External Flash be used during OAD? ... 48

9.4 Individually Flashing Hex Files for On-Chip OAD - App doesn’t work! .. 48

9.5 Debugging BIM/ Pre application ... 49

Table of Figures/Diagrams

Figure 1. Two Types of OAD .. 7

Figure 2. OAD Downloader and Target ... 8

Figure 3. Metadata description ... 9

Figure 4. Off-chip OAD Image Types ... 11

Figure 5. OAD Service Overview ... 12

Figure 6. OAD Service Description .. 12

Figure 7. Reject Notification in Sniffer Capture .. 13

Figure 8. Successful OAD Initiation Sniffer Capture .. 14

Figure 9. Block Request/Response Sniffer Capture .. 14

Figure 10. OAD Status Codes .. 15

Figure 11. OAD Sequence Diagram ... 16

Figure 12. OAD Reset Service .. 17

Figure 13. Off-chip OAD Target Memory Partition ... 19

Figure 14. Functional Overview of Off-chip BIM ... 21

Figure 15. On-chip OAD Target Memory Partition ... 23

Figure 16. Functional Overview of On-chip BIM ... 25

Figure 17. OAD Downloader HostTest Setup .. 27

Figure 18. OAD On-chip Target Setup ... 29

Figure 19. OAD Advertisement Data before change... 30

Figure 20. OAD Advertisement Data after Change ... 30

Figure 21. OAD Device Name field modified .. 30

Figure 22. Read all characteristic data in BTool .. 31

Figure 23. Writing to OAD Reset pt 1. ... 31

Figure 24. Writing to OAD Reset pt 2 .. 32

Figure 25. Sending an OAD Image over the air ... 33

Figure 26. Verifying an OAD completed .. 33

Figure 27. OAD Off-Chip Files in IAR ... 35

Figure 28. OAD Off-chip files in CCS .. 37

Figure 29. OAD configuro prebuild step (IAR) ... 40

Figure 30. On-Chip OAD Boundary (compiler) .. 40

Figure 31. On-Chip OAD Boundary (linker) ... 41

Figure 32. On-Chip OAD Workspace (IAR) .. 42

Figure 33. OAD Image Tool Arguments ... 44

Figure 34. OAD Image Tool Output ... 44

Figure 35. OnChip OAD Production Image Example invocation. .. 45

Figure 36. Off-Chip OAD Production Image Example invocation.. 46

1. Introduction
1.1 Purpose
This document describes the process by which a developer can enable a SimpleLink™ Bluetooth® low

energy CC26X0 wireless MCU project and application to successfully implement the TI OAD Profile to

remotely upgrade the image on a CC26X0 BLE device, a process further referred to as an Over-the-Air

Download (OAD). This process provides tremendous value to a BLE product solution, as a target device

does not need to be physically accessed to provide a software upgrade. Our purpose here is to make

OAD simple by providing detailed instructions from enabling OAD in an application project to receiving

the new image over the air, verifying its correctness, and running it from the bootloader.

1.2 Scope
This document provides instruction on how to setup a BLE-Stack™ project to be OAD enabled, such as

our example simple_peripheral project for OAD. An overview of the OAD architecture and how to build,

download, and debug the components shall be discussed here as well. Details about the BLE runtime

system on CC26xx devices and the interrupt vector tables will be discussed as is necessary to elucidate

how an OAD build differs from a project which does not provide OAD capability.

There are two different types of OAD. One is On-chip OAD which doesn’t require any additional

hardware and the other is Off-chip OAD which supports a system where an external flash memory is

equipped. In the sample application projects, it is assumed that the hardware is the CC2650 LaunchPad

where 1MB external flash memory is connected to the CC26X0 via SPI.

OAD for the sensortag project is not specifically mentioned in this guide since it uses the same Off-chip

OAD method as the simple_peripheral project, see the SensorTag User’s Guide wiki for more

information on the SensorTag:

http://processors.wiki.ti.com/index.php/CC26X0_SensorTag_User's_Guide.

http://processors.wiki.ti.com/index.php/CC2650_SensorTag_User's_Guide

Note: On-chip OAD is currently only supported by IAR with CC26X0 devices, while Off-chip OAD works

with both IAR and CCS.

NOTE: This kit supports development of Bluetooth low energy applications on the following
SimpleLink wireless MCUs: CC2640 and CC2650. The multi-standard CC2650 wireless MCU
supports Bluetooth low energy as well as other wireless protocols, such as ZigBee® and
6LoWPAN. The CC2640 supports Bluetooth low energy only. All code generated from the
BLE-Stack v2.x SDK is binary compatible and exchangeable with both the CC2650 and
CC2640 wireless MCUs. Throughout this document, CC26X0 will be used to refer to both devices.

Also, it is assumed that the developer is familiar with the CC26X0 Software Developer’s Guide [1],

including the dual-image architecture used by the SDK.

For additional support, please visit the following online resources:

 TI Bluetooth LE Wiki-page: www.ti.com/ble-wiki

 TI E2E support forum: www.ti.com/ble-forum

1.3 Document Updates
This document is constantly being improved. For the best user experience, please ensure that you are

using the latest version. Newer revisions will be posted online on the OAD User's Guide wiki page.

1.4 Legacy OAD Versions
Prior to the BLE-Stack v2.2.0 release, there were three versions of OAD supported by the SDK:

1. Off-chip OAD with preserved page 0 using BIM

2. Off-chip OAD without preserved page 0 using Baseloader

3. On-chip OAD using BIM

In BLE-Stack SDK versions prior to 2.2.0, the SensorTag embedded project supported the baseloader

(Method 2) from above. In conjunction with the embedded project, the SensorTag mobile applications

(iOS, Android) only supported the baseloader method (Method 2). This method has been discontinued*

as of BLE-Stack v2.2.0, all projects (including the SensorTag) have now standardized on Methods 1 and 3.

This guide (and its previous versions) will describe the BIM based on On-chip and Off-chip methods

(Method 1 and Method 3 above).

*The baseloader method has been discontinued because there is a risk where a device may become

bricked (require wired JTAG access to recover) if a power loss is experienced while updating page 0*

1.5 Supported OAD Downloaders
The recommended OAD Downloader for use with this document is BTool v1.41.17. This is different than

the BTool version that is bundled with this BLE-Stack install. You can download BTool v1.41.17 from

CC2640R2 SDK Download Link. This specific version of BTool has been selected because it has support

for the legacy TI OAD profile and the HCI command set supported by v1.41.17 is the most compatible

with the CC2650 LaunchPad host_test image.

TI-provided mobile applications are out of the scope of this document.

http://processors.wiki.ti.com/index.php/CC2640_OAD_User%27s_Guide

2. OAD Concept Overview
This section aims to explain the major concepts involved in the OAD process from a high level. The

concepts here will be expanded on further in the following sections. Some concepts, such as the Boot

Image Manager (BIM) may vary in their implementation details. Wherever possible, the concepts will be

covered in this chapter with their implementation details covered in the following chapters.

2.1 OAD Types
There are two methods of performing an over the air download: On-chip and Off-chip. The key

difference between the two methods is where the downloaded image is to be stored during the OAD. In

On-chip OAD, the downloaded image is written to internal flash, allowing for a single chip OAD solution.

Off-chip OAD stores the downloaded image in an external flash part, requiring a two chip OAD solution.

A graphic showing the different OAD methods is shown below (Figure 1). Each type of OAD has

associated tradeoffs and benefits which will be discussed below and then covered in depth in their

respective sections

Figure 1. Two Types of OAD

2.1.1 On-chip OAD
On-chip OAD is best suited for applications with a very small flash footprint and very basic functionality.

The BOM cost is also reduced for on-chip applications because no external flash part is needed. The

removal of the external flash will also free up GPIO pins to be used for other applications.

The BLE-Stack instance cannot be updated in on-chip OAD, and thus all application updates must respect

the flash and RAM boundaries of the stack that is permanently resident on the device. Additionally, in an

on-chip OAD system, the device must reboot from the user application in order to perform an OAD.

2.1.2 Off-chip OAD
Off-chip OAD is best suited for complex applications that require a larger flash memory footprint.

The tradeoff with off-chip OAD is that the incoming image must be stored in external flash and thus an

external flash part is required. Additionally, the application must have enough free GPIOs to interface to

the external flash.

Both BLE-Stack and user application can be updated via OAD. The User application/functionality will be

able to operate while the OAD is in progress.

2.2 OAD Topology Overview
Two BLE capable devices are required for performing an OAD. The terms for the devices involved in an

OAD exchange are listed below:

 OAD Target: The device whose firmware is being upgraded over the air. This is assumed to be a

CC26xx device running the TI OAD service.

 OAD Downloader: The device responsible for accepting an OAD enabled image from the

compiler and transferring it over the air to the OAD target.

OAD roles are independent of the GAP role; they are dependent on which device exposes the OAD

service. The OAD target is always the device that runs the OAD service (GATT server), and the OAD

downloader is always the device that consumes the OAD service (GATT client).

Figure 2. OAD Downloader and Target

All provided TI example applications (BTool, mobile applications, etc.) are implemented such that the

OAD Target is a peripheral device, and the OAD Downloader is a central device. For this reason, other

configurations are outside of the scope of this document.

2.3 OAD Image Metadata
There are many points in the OAD process where information must be gathered about images. This

information can be used by the OAD service to determine whether or not an image is acceptable for

download or by the bootloader to determine which image should be run. In order to prevent this

information from being calculated multiple times and to assist in the linking process, all TI OAD images

use a standard 16-byte metadata vector. This metadata vector is embedded at the beginning of the

image, occupying the first 16 bytes before the application code. This section aims to explain the various

fields within the metadata vector and what they mean. The following sections will describe how the

fields are used specifically for On-chip and Off-chip OAD.

Figure 3 below shows a description of the metadata vector.

Field Size (in bytes) Description

CRC 2 Cyclic Redundancy Check

CRC Shadow 2 Place holder for CRC

Version 2 Version

Length 2 Length of the image in words*

UID 4 User Identification

Start Address 2 The destination address of the image in words*

Image Type 1 The type of image to be downloaded

State 1 The status of this image

Figure 3. Metadata description

Note that the above fields that are marked with an asterisk * are measured in 32-bit words. For

example, an image length of 0x100 describes an image that is 1024 bytes in size. This OAD word size is

defined by EFL_OAD_ADDR_RESOLUTION for off-chip OAD and by HAL_FLASH_WORD_SIZE for on-chip

OAD.

2.3.1 CRC and CRC Shadow
The cyclic redundancy check (CRC) is a means to check an image to ensure that it has not become

corrupted. This must be done in two steps. First the CRC must be calculated when the image is

generated from the toolchain, this will be stored in the CRC field in the metadata vector. This initial CRC

will be sent over the air via the OAD service (see section 2.4). Later, the target will need to ensure that

the image has not been corrupted during transfer. The target will then re-calculate the CRC of the

downloaded image; this will be stored in the CRC shadow field of the metadata vector.

If the CRC and CRC shadow are equivalent, the target can assume that the image was not corrupted

while sending over the air.

The algorithm selected for CRC calculations is the CRC-16-CCITT, it is a 16 bit CRC calculation that boasts

a 99.9984% error detection rate in the worst case.

2.3.2 Version
The image version field is used to track revisions of images and ensure upgrade compatibility. Customers

may implement their own versioning scheme. See the appendix for more information about OAD

version checks

2.3.3 Length
The length field is the length of the image in words, where the word size is defined by

EFL_OAD_ADDR_RESOLUTION and HAL_FLASH_WORD_SIZE for On-chip and Off-chip OAD respectively.

Off-chip OAD customers who are using different external flash parts may need to modify

EFL_OAD_ADDR_RESOLUTION to match the word size of their part. For On-chip OAD, the word size of

the CC26X0 is fixed.

2.3.4 User Identification (UID)
This field is un-used by the TI OAD profile, but the hooks are in place for a customer to add their own

implementation of verifying images based on UID.

For on-chip OAD, the convention is that Image A will embed ‘A’, ‘A’, ‘A’, ‘A’ and Image B will embed ‘B’,

‘B’, ‘B’, ‘B’. Off-chip images use ‘E’, ‘E’, ‘E’, ‘E’ by default. See On-chip OAD section for explanation of

image A vs Image B.

2.3.5 Start Address
The start address is the first address where the proposed image is to be stored in internal flash. Similar

to the length field, this is calculated in words. Off-chip OAD solutions put restrictions on the start

address based on image type (more on this in the next section).

Note that for On-chip OAD solutions, this field is reserved in the metadata as they use a fixed start

address that is based on the internal flash memory map (OAD_IMG_D_PAGE).

2.3.6 Image Type
In Off-chip OAD systems with external flash, there are multiple types of images that can be uploaded.

These image types include: App + Stack, App only, Network Processor, or Stack only.

Note: While BLE Stack only upgrades are possible, the user must be sure that the App/Stack boundary

has not changed between the resident OAD image and the proposed OAD image. Since there are no

runtime checks on the App/Stack boundary, a Stack only OAD will overwrite the resident application if

the boundary has grown. Users should exercise care when using this option.

If a boundary change is required (i.e. BLE stack is growing or shrinking), it is recommended that a user

perform a merged update (App+Stack) to ensure that the OAD image is ready to run.

Note that for on-chip OAD solutions this field is reserved in the metadata as they determine image

type based on the least significant bit of the image version field as discussed above.

The supported image types are listed below:

Image Type Value Description

EFL_OAD_IMG_TYPE_APP 1 An application or application +

stack merged update

EFL_OAD_IMG_TYPE_STACK 2 A stack only update

EFL_OAD_IMG_TYPE_NP 3 A network processor update.

This only applies to the SimpleAP

+ SimpleNP demo

EFL_OAD_IMG_TYPE_FACTORY 4 Describes the permanently

resident production image that

runs on the device before any

OTA updates.

Figure 4. Off-chip OAD Image Types

2.3.7 Image State
The image state is a one byte metadata field that is used only by Off-chip OAD solutions. The state

informs the bootloader whether or not the image is ready to run or currently running. This prevents the

bootloader from copying the same image from external to internal flash on every boot.

Note that for On-chip OAD solutions this field is reserved in the metadata as the OAD reset service

handles switching between images in the bootloader.

2.4 OAD Service Description
The OAD service has been designed to provide a simple and customizable implementation for the

customer. In its most rudimentary form, this service is responsible for accepting/rejecting an OAD

interaction based on image header criteria, storing the image in its appropriate location, and causing a

device reset if the download is successful so that the downloaded application image is run by the BIM.

A screenshot of BTool displaying the OAD service is shown below.

Figure 5. OAD Service Overview

The OAD service is a primary service with four characteristics. The characteristics of the OAD service,

their UUIDs, and descriptions are listed in Figure 7.

Note that the characteristics use the 128-bit TI base UUID of the format F000XXXX-0451-4000-B000-

000000000000 where XXXX is their shortened 16bit UUID. For brevity, this document will refer to the

characteristics by their 16-bit short UUID.

UUID Name Description

0xFFC0 OAD Service OAD service declaration

0xFFC1 Image Identify Used to send image properties

(metadata) over the air so that

the OAD target device can

determine if it should accept or

reject the proposed image

0xFFC2 Image Block Actual block of image data along

with offset into the image.

0xFFC3 Image Count Number of complete images to

be downloaded in the OAD

session

0xFFC4 Image Status Status of current OAD download

Figure 6. OAD Service Description

The primary method for sending data from the OAD downloader to the OAD target is the GATT writes

with no response message. GATT notifications are the primary method used to send data from the

target to the downloader. This communication scheme was selected to prevent the target device from

having to include the GATT client code required in order to receive notifications from the downloader.

The downloader shall register for notifications from any characteristic with a CCCD (by writing 01:00 to

the CCCD).

Note that both GATT notifications and GATT write with no response are non-acknowledged message

types. This means that in poor RF conditions, the OAD process may not be successful. There is an

inherent tradeoff between the speed of the OAD process and its reliability. Implementing a reliable

OAD communication protocol (with retries, acknowledgments, etc.) is outside the scope of this

document.

For a message sequence chart describing the OAD process in terms OAD service messages exchanged

between the target and downloader please see Figure 11.

2.4.1 OAD Image Identify (0xFFC1)
The Image Identify characteristic is used to exchange image metadata between downloader and target.

The OAD process begins when the downloader sends the 16 byte metadata of the proposed OAD image

to the target. Upon receiving the candidate metadata, the target will do some calculations to determine

whether or not the proposed image should be downloaded. “01:00” shall be written to the CCCD of this

characteristic so that notification for metadata rejection is enabled.

Note that the conditions under which an OAD is accepted vary slightly between the on and off-chip

methods. Please see the respective sections for more information about image reject conditions.

 If the target accepts the image it will continue the OAD process by sending a notification on the Image

Block characteristic requesting the first block. Otherwise the target will reject the image by sending back

a portion the currently resident image’s metadata. The reject metadata contains the Image Version,

Image version, and User ID fields. For more information about these fields, please refer to the metadata

section.

A sniffer capture of the image identify characteristic being used to reject a candidate OAD image is

shown below. Note that only image version, length, and user ID are contained in the reject notification.

Figure 7. Reject Notification in Sniffer Capture

Alternatively, a successful OAD initiation is shown in Figure 8.

Figure 8. Successful OAD Initiation Sniffer Capture

2.4.2 OAD Image Block Characteristic (0xFFC2)
The OAD Image Block characteristic is used to request and transfer a block of the OAD image. “01:00”

shall be written to the CCCD of this characteristic so that notification for block request is enabled. The

target requests the next block of the image by sending a GATT notification to the downloader with the

requested block number. The downloader will respond (GATT write no response) with the block number

and a 16 byte OAD image block. The image block contains the actual binary data from OAD image offset

by the block number. Figure 11 shows a block request/response sniffer capture.

Figure 9. Block Request/Response Sniffer Capture

In Figure 9 above, the block number field is 2 bytes (little endian) and highlighted in red. The OAD image

block is 16 bytes and highlighted in purple.

2.4.3 OAD Image Count Characteristic (0xFFC3)
The OAD Image Count characteristic is used to set the number of OAD images to be downloaded. This is

used for only Off-chip OAD and the default value of the characteristic is 1. Note On-chip OAD only

supports one image download per session. See On-chip OAD 4.2 for details.

2.4.4 OAD Image Status (0xFFC4)
The OAD image status characteristic is used to report various failures that may occur during the OAD

process. The downloader may use this information to determine why an OAD failed, so that it may

correct for the errors and try again. “01:00” shall be written to the CCCD of this characteristic so that

notification for status update is enabled. There are four OAD status messages that are defined by

default. The OAD status codes are listed in the table below:

OAD Status Code Value Description

OAD_SUCCESS 0 OAD succeeded

OAD_CRC_ERR 1 The downloaded image’s CRC

doesn’t match the one

expected from the metadata

OAD_FLASH_ERR 2 The external flash cannot be

opened

OAD_BUFFER_OFL 3 The block number of the

received packet doesn’t

match the one requested. An

overflow has occurred.

Figure 10. OAD Status Codes

The customer may extend these values as needed, and use the OAD_sendStatus() function to send

updates to the downloader.

2.5 OAD Process
This Profile has been designed to provide a simple and customizable OAD Profile for the customer. In its

most rudimentary form, for both On-chip and Off-chip OAD, this profile is responsible for accepting an

OAD interaction based on image header criteria, storing the image onto the flash and causing a device

reset if the download is successful so that the downloaded application image is run by the BIM.

Downloader and OAD Target perform Client role and Server role respectively.

2.5.1 Initiation of the OAD Process
After establishing a new connection, updating the connection interval for a faster OAD and enabling

notifications of OAD Image Identify and OAD Image Block characteristics on the OAD Target, the

Downloader shall write to the Image Identify characteristic of the OAD Target. The message data will be

the header retrieved from the OAD Image available for OAD.

Downloader OAD Target

Configure Image Notify Char

Configure Image Block Char

Notification with the next block index from Image Block Char
(the 1st block)

Connection Establishment

Service Discovery of OAD Service

Write to Image Count Char (optional [1])

Write Metadata to Image Notify Char

Validate Metadata

Write requested block with block index to Image Block Char

Write Metadata to
off-chip flash[1]

Notification with the metadata of the current running image
from Image Notify Char (in case verification failed)

Notification with the next block index from Image Block Char

Write requested block with block index to Image Block Char

Notification with the next block index from Image Block Char
(the last block)

Write requested block with block index to Image Block Char

Write the block to
flash[2]

Write the block to
flash[2]

.

.

. .
.
.

Write the block to
flash[2]

Read the block from
the image file

Read the block from
the image file

Reset

Read the block from
the image file

Generate metadata

.

.

.

Supervision timeout

[1] Applies only to Off-chip OAD
[2] Writes to on-chip flash if using On-chip OAD and off-chip flash if using Off-chip OAD

Figure 11. OAD Sequence Diagram

Upon receiving the write request to the Image Identify characteristic, the OAD Target will compare the

image available for OAD to its own running image. By default, only the image size and version number,

which implies whether the image is of type A or B, are checked to determine if the new image is

acceptable to download.

If the OAD Target determines that the image available for OAD is acceptable, the OAD Target will initiate

the OAD process by notifying the Image Block Transfer characteristic to the Downloader requesting the

first block of the new image. Otherwise, if the OAD Target finds that the new image does not meet its

criteria to begin the OAD process, it shall respond by notifying the Image Identify characteristic with its

own Image Header data as sign of rejection. In that case, the OAD procedure will end at the moment

where dotted ‘X’s are placed as depicted in Figure 11.

2.5.2 Image Block Transfers
The Image Block Transfer characteristic allows the two devices to request and respond with the OAD

image, one block at a time. The image block size is defined to be 16 bytes – see OAD_BLOCK_SIZE in

oad.h. The OAD Target will request an image block from the Downloader by notifying the OAD Image

Block characteristic with the correct block index. The Downloader shall then respond by writing to the

OAD Image Block characteristic. The message’s data will be the requested block’s index followed by the

corresponding 16-byte block of the image. Whenever the OAD Target is ready to digest another block of

the OAD image, it will notify the Image Block Transfer characteristic with the index of the desired image

block. The Downloader will then respond.

2.5.3 Completion of the OAD Process
After the OAD Target has received the final image block, it will verify that the image is correctly received

and stored by calculating the CRC over the stored OAD image. The OAD Target will then invalidate its

own image and reset so that the BIM can run the new image in-place. The burden is then on the

Downloader, which will suffer a lost BLE connection to the OAD Target during this verification and

instantiation process, to restart scanning and the to reestablish a connection and verify that the new

image is indeed running.

2.6 OAD Reset Service
The OAD reset service is only used by on-chip OAD solutions. It implements a method for invalidating

the currently running image and resetting the device. This must occur because in on-chip solutions the

currently running image cannot update itself. More information about the on-chip OAD process will be

covered in the on-chip OAD chapter. Figure 12 shows an overview of the OAD reset service and it’s

characteristic. Like the OAD service, the reset service uses the 128 bit TI base UUID with a 16 bit short

UUID of 0xFFD0.

Figure 12. OAD Reset Service

2.6.1 OAD Reset (0xFFD1)
The OAD reset is accomplished by invalidating Image B, which forces the bootloader to revert to Image A

until another successful OAD of Image B has occurred. Image B is invalidated by corrupting its CRC. After

the corruption, the reset service immediately invokes a HAL reset to jump to the bootloader. Note that a

GATT write of any value to the reset service will trigger a reset of the device/invalidation of Image B.

2.7 Bootloader
Since a running image cannot update itself, both On-chip and Off-chip OAD methods must employ a

bootloader. A bootloader is a lightweight section of code that is designed to run every time the device

resets, check the validity of newly downloaded images, and if necessary, load the new image into

internal flash. TI’s bootloader implementation is called the Boot Image Manager (BIM). BIM’s

implementation varies slightly for On-chip and Off-chip OAD solutions, thus there is a separate BIM

project for each.

 /util/bim – This project implements an On-chip OAD bootloader

 /util/bim_extflash – This project implements an Off-chip OAD bootloader

Note: Some BIM projects contain project configurations for a baseloader. This a legacy

implementation of BIM that is no longer used. Please see section 1.4 for more details.

BIM is always linked to page 0 and page 31 of internal flash, and will always link the CCFG section with

it.

See the on-chip and off-chip OAD sections of the guide for the details on their respective BIM

implementations.

3. Off-Chip OAD
Off-chip OAD maximizes the available user flash space by storing the incoming OAD image in external

flash as it is received over the air since a running application cannot update itself. The external flash

component adds additional value such as factory image support and having multiple copies of images in

external flash. The off-chip OAD solution is made of the following three images

 BIM: Iterates over external flash metadata table and determines which image is ready to run,

and if necessary copying that image from external to internal flash. Jumps to the active image

 BLE-Stack Image: Implements the BLE protocol stack functionality.

 User application: This is the application that implements the user’s desired functionality. This

image is upgradable via OAD.

Off-chip OAD also has the ability to update both the BLE protocol stack and application image when they

are combined as a single merged image. This section aims to explain the concepts and tradeoffs involved

in an off-chip OAD system.

3.1 Off-chip OAD Memory Map

CCFG

NV Storage Area

BLE Stack

Application
(OAD Profile embedded)

Int Vectors
0x00000

0x01000

0x1E000

0x1F000

Metadata 1

Image 1

0x00000

0x20000

0x78000

Image 2

0x40000

Image 3

Metadata 2
0x79000

Metadata 3
0x7A000

0x60000

Unused

Unused
0x7B000

0x1FFFF
0x7FFFF

On-chip
Flash Memory

Off-chip
Flash Memory

BIM

BIM

Metadata

0x01010

Boundary

Figure 13. Off-chip OAD Target Memory Partition

The Off-chip OAD Target has both on-chip flash memory and off-chip flash memory device. The on-chip

flash memory contains the Interrupt Vectors, the BLE Stack, the Application where OAD Profile is

embedded, and the BLE stack image, the NV Storage Area, the BIM and the CCFG.

The off-chip flash memory contains up to 3 OAD Images and up to 3 metadata corresponding to the OAD

Images. The size of each OAD Image placeholder is 128kB. The memory partition of the OAD Target for

off-chip OAD is depicted in Figure 13. Each OAD image, if it’s of either App only or App+Stack, must

support OAD Profile so that further OAD is enabled after it is downloaded to the off-chip memory,

copied to the on-chip memory and executed.

3.2 Constraints and Requirements for Off-chip OAD
Using the internal flash of CC26X0F128, the first page and the last page, or 8kB in total, of flash are

reserved for the flash interrupt vectors and the BIM. The flash page 31 or the last page starting at

address 0x1F000 where BIM is located is shared with the CCFG. Neither the first page nor the BIM is

designed to be upgraded by Off-chip OAD.

An off-chip flash component of at least 120kB plus space for a 16 byte image metadata block is required

for a full flash update. A SPI connection is used to communicate with the off-chip flash component.

The OAD image to be downloaded to the off-chip flash memory can be an application image, a stack

image, a hex merge of application plus stack, an image intended for the upgrade of a network processor,

or any type of image as far as it is supposed to eventually replace any part of the on-chip 120kB area

between the first and the last pages. More than one image can be downloaded before the system reset

followed by BIM’s copying the downloaded images from the off-chip flash memory to the on-chip flash

memory.

Since page 0 cannot be updated in Off-chip OAD, an application must include its own TI-RTOS instance in

flash without dependency on the TI-RTOS ROM implementation (see section 8 for more info). Also, it

must include OAD profile so that further OAD upgrades are available when it runs on the on-chip flash

memory since Off-chip OAD doesn’t require any OAD-dedicated application like Image A for On-chip

OAD.

The first and last flash pages must never be attempted to update because a power cycle during an

update of either page could render the device unresponsive until physically reprogrammed.

While On-chip OAD Target receives only one application OAD image, Off-chip OAD Target can receive up

to 3 OAD images. The metadata is inserted into the beginning of the Off-chip OAD Image when

transferred and is also stored separately in the off-chip flash.

3.3 Conditions for rejecting Metadata
Off-chip OAD Target checks that the new image’s version is greater than the current image’s version.

However, as a bypass mechanism, any image of version 0 will be accepted. See

OADTarget_validateNewImage() in oad_target_external_flash.c for more details.

3.4 BIM for Off-chip OAD
The OAD solution requires that permanently resident boot code, the BIM, exists in order to provide a

fail-safe mechanism for determining whether to run the existing application image or to copy a new

image or images from off-chip flash to on-chip flash. It is assumed that a valid image exists either in off-

chip flash ready to be copied or already placed in on-chip flash at any given time. Given this assumption,

the initial image placed in internal flash which does not exist in external flash will have invalid external

image metadata, and so the bootloader will choose to jump to the existing image’s entry point.

At startup, BIM checks if the application image metadata in off-chip flash has a status indicating that the

image is to be copied to the on-chip flash. If the status is 0xFF, copies the image if a valid CRC and CRC

Shadow are found. If the status is anything other than 0xFF, assumes the application in the on-chip flash

is valid to run. If a 2 byte value is found that is neither 0x0000 nor 0xFFFF, but a 0xFFFF shadow

checksum is found, the BIM computes the CRC over the image. Image length is determined by the

metadata that is also stored contiguous with the CRC in on-chip flash that was copied over during the

original write of the image from the off-chip flash.

If off-chip flash contains a “bad” image to be downloaded, but this image is undesirable, BIM can be

programmed with symbol NO_COPY to skip image checking and jump directly into the image already

placed in on-chip flash; at which point the on-chip flash image could invalidate the bad image’s

metadata or OAD a new image in its place. BIM will not be able to load any new images while NO_COPY

is defined in the build.

BIM is only responsible for making an application image failsafe upon entry. This could mean an app and

stack image, or just the application. BIM has exactly one entrance to the application image.

The BIM occupies the last flash page with CCFG and uses the interrupt vectors at the start of flash where

the Reset Interrupt Vector calls the BIM startup routine to ensure its control of the system upon a

device reset.

Figure 14. Functional Overview of Off-chip BIM

4. On-Chip OAD
Note: BLE On-chip OAD is only supported on CC26x0 and CC13x0 R1 devices by the IAR toolchain.

These projects also have very little available flash for application development, so it is important for

customers to understand clearly the limitations before starting a design with on-chip OAD.

On-chip OAD solutions only require a single chip and upgrade the user’s application by means of a

permanently resident application named the oad_target_app. (Not to be confused with the physical

OAD Target device). On-chip OAD solutions employ four separate images to accomplish the OAD process

 BIM: Responsible for determine which image to boot, see BIM for On-chip OAD. The BIM is not

upgradable via OAD.

 BLE-Stack Image: This image implements the BLE protocol stack functionality. This image is not

upgradable via OAD.

 OAD Target (image A): The permanently resident OAD application that is responsible for

upgrading the user application. Since a running application cannot update itself, the OAD target

application is responsible for implementing the OAD profile, and storing the incoming user

application in flash. This image is not upgradable via OAD.

 User application (Image B): This is the application that implements the user’s desired

functionality. This image is upgradable via OAD.

This section aims to explain the concepts and tradeoffs involved in an on-chip OAD system.

4.1 On-chip OAD Memory Map
The flash memory of OAD Target for On-chip OAD contains the Interrupt Vectors, RCFG, the

permanently resident OAD Target App which is also called Image A, the Image B which is initially empty

and the place holder for the downloaded OAD Image, the BLE stack, the NV Storage Area, the BIM and

the CCFG as shown in Figure 15.

CCFG, BIM,
OAD Target App Part III

BLE Stack

OAD Image B Area

OAD Target App
Part II

OAD Target App Part I,
RCFG, Int Vectors

0x00000

0x01000

0x09000

0x13000

0x1F000

0x1FFFF CCFG

OAD Target App Part III

OAD Target App
Part I

Lookup Table for RTOS
in ROM (RCFG)

Int Vectors
0x00000

0x00100

0x00600

0x01000

0x1FB00

0x1FFA7

0x1FFFF

BIM
0x1F000

Reserved by BIM
0x0003C

On-chip
Flash Memory

Page 0

Page 31

CRC16
CRC16 Shadow0x00604

Int Vectors

Page 9
CRC16

CRC16 Shadow

0x09000

0x09004
OAD Header

0x09010

0x09050

OAD Image B Area

0x0F000

Note: Figure not drawn to scale

Figure 15. On-chip OAD Target Memory Partition

BIM’s design offers the flexibility of having two valid images ready to run; the choice as to which image

will run is decided in the BIM. Only the OAD Image B can be downloaded. The OAD Target application,

Image A, is a permanent resident which relies on code in the first and last flash page – which if erased

during a power down would break the device. The advantage of a permanently resident Image A whose

sole purpose is to implement the BLE Stack and OAD Profile is that it increases the amount of available

flash for Image B. The developer of a custom Image B does not have to include the OAD Profile

implementation. The only reference to OAD feature that Image B needs is a valid image header

described in Figure 3. The reference to the valid image header is necessary to use OAD Reset Service

described in 2.6. Both Image A and Image B must be developed using exactly the same BLE Stack build,

linked at the same location in memory.

4.2 Constraints and Requirements for On-chip OAD
Using the internal flash of CC26X0F128, the first 9 pages, or 36KB, of flash are, by default, reserved for

the flash interrupt vectors, the BIM and the permanently resident OAD Target App using an instance of

TI-RTOS partially implemented in ROM. BIM and the OAD Target App also use the remaining space on

flash page 31, starting at address 0x1F000, shared with the CCFG. Neither BIM nor the OAD Target App

is designed to be upgraded by On-chip OAD.

The OAD Image to be downloaded is, by default, allocated 10 flash pages, or 40KB, from address 0x9000

to 0x12FFF. Because page 0 cannot be updated, an application must include its own TI-RTOS instance in

flash without dependence on the TI-RTOS ROM implementation. This image also shares the CCFG

referenced in the above paragraph. It is not possible to update the CCFG parameters via an OAD.

The OAD Target App and the OAD image should share the same RAM range as only one is used per

device reset. The OAD Image must be a complete application image, capable of running independently

of the permanently resident OAD Target App.

The BLE protocol stack defaults to a range of 12 flash pages, or 48kB, ranging from address 0x13000 to

0x1EFFF and no SNV pages are used by default. If the OAD Image is too large to fit in its allocated space,

consider removing some features of the BLE stack to reduce its size. The OAD Target App, or the Image

A, and the Image B shall share the same BLE stack. It is not possible to perform an On-chip OAD of the

BLE Stack image.

The first and last flash pages must never be erased as doing so puts the device in an unsafe state and a

reset at this time will “brick” the chip and prevent it from restarting without the help of a JTAG or serial

boot loader.

4.3 Conditions for Rejecting Metadata
The LSB of the new image’s version must not be equal to the LSB of the current image’s version. This is

to prevent redundant OAD sessions. The LSB is checked using the OAD_IMG_ID() macro. See

OADTarget_validateNewImage() in oad_target_internal_flash.c for more details.

4.4 BIM for On-chip OAD
The OAD solution requires that permanently resident boot code, the BIM, exists in order to provide a

fail-safe mechanism for determining (in preferential order) the image which is ready to run. When a

valid image is found, the BIM jumps to that image at which point the image takes over execution. Either

Image A or Image B must implement the proprietary TI OAD Profile. By default, this is Image A’s role.

When an image with the OAD Profile downloads a new image, a system reset can be executed to return

to BIM to verify the correctness of the download and begin execution.

The BIM co-occupies the last flash page with CCFG and additional OAD Target application code. The OAD

Target application code is linked into a specific section of the last flash page as defined in the linker file.

BIM uses the interrupt vectors at the start of flash where the Reset Interrupt Vector calls the BIM

startup routine to ensure its control of the system upon a device reset.

Figure 16. Functional Overview of On-chip BIM

As the permanent owner of the flash interrupt vectors, BIM provides a fail-safe mechanism for

intercepting the reset vector, putting the hardware into a safe state, and taking the most appropriate

action by reading the headers of Image A and Image B.

By default, BIM gives precedence to Image B, as Image A is only expected to be run when a newer

instance of Image B is ready to OAD or no valid Image B exists. If the preferred image is not ready to run,

then the other image is checked. If neither image is ready to run – an unlikely scenario because Image

A, the OAD Target App, need not ever be erased – then BIM puts the device into a low power Standby

mode. Also by default, a CRC check is not performed on Image A because it is expected that the OAD

Target App will be used as a fixed image. The check on Image A will only read the checksum placed by

IAR to see if an image exists; it will not calculate the CRC shadow.

In order to verify that an image is valid, a fixed 4-byte area known as the CRC and CRC-shadow will be

queried. If the 2-byte CRC16 output calculated at build time matches the 2-byte CRC16 shadow

calculated by BIM, then the image is commissioned to run immediately. If the CRC is not zero and not

the erased-flash value of 0xFFFF and the CRC-shadow is the erased-flash value of 0xFFFF, then the CRC

can be calculated over the entire image (not including this 4-byte area) and the result can be compared

to the valid CRC to determine whether the image should be commissioned as ready to run.

5. Running the Out of the Box Demos
TI provides a suite of software that is useful for evaluating the TI OAD solution. This section will detail

how to setup and run the out of the box demos. In order to evaluate the TI OAD solution, the OAD

Downloader and Target must be setup and configured.

5.1 Required Hardware
The demo for both on-chip and off-chip OAD requires the same hardware; the following steps assume

that you have this hardware available. Other hardware configurations may be possible such as running

on other LaunchPads, but are out of the scope of this document.

 2x CC2650 LaunchPad

 Windows PC

5.2 Required Software
In order to properly setup and configure the hardware, the following software is required

 TI BLE-Stack 2.2.x

 Smart RF Flash Programmer 2

 BTool v1.41.17 from the CC2640R2 SDK Download Link

o Note: The other software in the CC2640R2 SDK is not compatible with the CC26x0/

CC13x0 device, only use this SDK for BTool v 1.41.17

5.3 OAD Downloader
This section will cover setting up and using the OAD Downloader. The supported OAD Downloader is

BTool v1.41.17. TI recommends using BTool as the downloader for evaluating both on and off-chip OAD.

BTool is a PC application created to interface with a CC26xx device in a network processor configuration.

The required platform is a CC2650 LaunchPad. Other devices may be used, but are out of the scope of

this document.

5.3.1 Setting Up the CC2650 LaunchPad
In order to work with BTool the LaunchPad, the host_test application must be flashed on to it. Host Test

is the network processor configuration supporting the HCI interface. BTool uses this interface to

implement the BLE central role and various other configurations that are out of the scope of this

document. The following steps will detail how to setup the CC2650 LaunchPad for use with BTool.

1. Open Smart RF Flash Programmer 2

2. Connect a CC2650 LaunchPad to the computer via USB

3. The LaunchPad should appear in the left pane of Smart RF Flash Programmer 2

4. Right click on the LaunchPad and select connect

5. Under the Flash Image(s) pane select single and provide the path to the prebuilt host test hex

file (i.e. /examples/hex/CC26x0lp_host_test_rel.hex)

6. Ensure that Erase, Program, and Verify boxes are checked with the following options

a. Erase: Pages in image

b. Program: Entire source file

c. Verify: Readback

7. Hit the play button to program the image

Figure 17. OAD Downloader HostTest Setup

At this point the CC2650 LaunchPad is ready to accept commands from BTool.

5.3.2 Setting up and connecting to BTool
The following steps will cover how to get BTool up and running on your PC. BTool is a very feature rich

program, and its many features are out of the scope of this document. The following section assumes

that you have familiarized yourself with the BTool User’s Guide, particularly the sections on Starting the

Application and Creating a Connection. The following steps will detail how to get BTool setup to perform

an OAD.

Note: Many times in the BTool User’s Guide a CC26r0R2F LaunchPad is mentioned, in this case it is

safe to assume that these steps also apply to the CC2650 LaunchPad for the OAD use case as discussed

in this document.

1. Download BTool from CC2640R2 SDK Download Link

2. Open BTool (located in the tools/blestack/btool folder)

3. Attach BTool to the use/UART backchannel as per the “Starting the Application Section”

a. After attaching to the CC2650 LaunchPad running host_test, you should see a few

messages printed to the Message Log, indicating that the host_test device was

initialized properly.

At this point the OAD Downloader is properly configured and ready to connect to BLE Peers

5.4 OAD Target
This section will cover how to get an OAD target image setup for both on-chip and off-chip OAD images.

By the end of the section, you will have an OAD enabled system on the OAD Target that is ready to

accept an incoming OAD image. Since on-chip and off-chip OAD vary slightly in their setup, they will be

broken up into their own respective sections. As with the OAD Downloader, the supported OAD Target

device is the CC2650 LaunchPad. OAD may be possible on other platforms, but this guide will only cover

the CC2650 LaunchPad.

5.4.1 On-Chip OAD
Note: Please refer to the warnings/limitations in the On-Chip OAD section before starting an on-chip

OAD design.

As discussed in the On-Chip OAD section, there are four separate applications that make up an on-chip

OAD image. Three of these applications (BIM, Image A, and BLE-Stack) make up the OAD Target project.

Because BIM and Image A share portions of the same flash pages, the merged image must be used to

setup the OAD Target device, if the images are flashed straight out of the debugger, the device will not

boot. The following steps will detail how to get an OAD target project up and running.

1. Navigate to the oad_target project and import in IAR (examples\CC26x0lp\oad_target)

a. This workspace will contain three sub projects, BLE-Stack, OAD Target App, and the on-

chip BIM

2. Build the projects in the following order (order matters for setting BLE-Stack boundary)

a. BIM

i. Be sure to use the correct configuration, for CC2650 LaunchPad use the

FlashOnly_LP configuration

b. BLE-Stack

c. OAD Target app

3. After building the target app, the oad_image_tool will run and produce a merged binary image

of the BIM, BLE-Stack, and Image A.

a. The output binary will contain the proper metadata for Image A.

b. The default output location for the tool is in the same location as the .out file produced

by the toolchain. A shortcut for navigating to this file is to view the .out file in the IDE

and right click and view in system explorer.

c. The output file is of .bin type and contains “_production”

4. Flash the merged binary image onto the device using Smart RF Flash Programmer 2 using the

following steps

a. Right click on the OAD Target device in the left pane and select connect

b. Select the single image configuration and point the path to the _production image

mentioned in step C above

c. Use the following settings

i. Erase: All unprotected pages (this is important for clearing out the Image B

region)

1. Be sure to remove the “all unprotected pages” option after download as

this may inadvertently erase flash in future download

ii. Program: Entire source file

iii. Verify: Readback

Figure 18. OAD On-chip Target Setup

5. After this step, the OAD Target App (Image A) should be advertising with the address

0A:D0:AD:0A:D0:AD. Verify this via BTool (refer to the BTool User’s Guide for more info).

6. Connect to the OAD Target Device via BTool

7. Switch the active project to simple_peripheral, change build configuration to

FlashOnly_OAD_ImgB.

a. Note that for on-chip OAD the stack project contained in the simple_peripheral

workspace is not used, instead the ImgB configuration will link to the stack boundary in

the OAD Target workspace

8. Build the Image B configuration of simple_peripheral. The oad_image_tool will run and produce

an OAD ready binary. The default location of the binary is in the same folder as the .out file

produced by the IDE.

At this time you are ready to perform an on-chip OAD, please refer to the Performing an OAD with BTool

section for the steps on how to load the image into BTool to perform an OAD.

5.4.2 Off-Chip OAD
As discussed in the Off-Chip OAD section, there are four separate applications that make up an off-chip

OAD image. The following steps will detail how to get an off-chip OAD project up and running.

1. Open the Off-chip BIM project (examples/util/bim_extflash)

2. Enable the correct BIM build configuration; this is FlashOnly_LP for the CC2650 LaunchPad.

3. Build and flash the off-chip BIM on the device

4. Open the simple_peripheral project

5. Enable the correct off-chip OAD build configuration: FlashOnly_OAD_ExtFlash

6. Rebuild and flash the BLE-stack project

7. Rebuild and flash the Application project

At this time you are ready to perform an on-chip OAD, please refer to the Performing an OAD with BTool

section for the steps on how to load the image into BTool to perform an OAD.

5.5 Changing the Device Name to Validate OAD
It is helpful to be able to differentiate between the image that is permanently resident on the device

and the candidate image that is incoming via OAD. This section will detail one easy way to change the

device’s name and advertising data to validate that the image on the OAD Target device has in fact been

updated. In this section we will detail how to change this data before performing an OAD.

The advertisement and scan response data is broadcast by the device while in the advertising state

before it has established a connection. (more information about advertising and scanning in the Texas

Instruments CC2640 Bluetooth® low energy Software Developer’s Guide

http://www.ti.com/lit/pdf/swru393). The following steps will detail how to change the scan response

data

The ATT Device Name is a field that can be read when the connected state, it is most likely the easiest to

see from BTool We will change this field as well.

1. Navigate to simple_peripheral.c , find the scanRspData[] structure

2. Append a number to the scan response data, for example change the data from

this

Figure 19. OAD Advertisement Data before change

To this

Figure 20. OAD Advertisement Data after Change

Note: Be careful not change this length of this field without changing the length token above

3. Find the attDeviceName array in simple_peripheral.c

4. Change the device name in a similar fashion to below; again be careful to not overflow the

GAP_DEVICE_NAME_LEN field.

Figure 21. OAD Device Name field modified

5. Rebuild the project; this will produce a “v2” of the image to be sent over the air.

This image can be labeled as v2 and should be used to send over the air. Sending an image over the air

via BTool is detailed in Performing an OAD with BTool.

5.6 Performing an OAD with BTool
This section will detail the steps required to use BTool to perform an OAD. It assumes that you have

already followed the steps in this section for setting up the OAD Target and OAD Downloader devices,

and that you have created a “v2” image as detailed in Changing the Device Name to Validate OAD. This

section also assumes a basic working knowledge of BTool as detailed in the BTool User’s Guide. This

guide will detail the OAD specifics of the process.

5.6.1 (On-chip OAD only) Reset the device via the OAD Reset Service
If the on-chip OAD Target device is currently running the user application (Image B), it needs to be reset

in order to jump to the OAD target image (Image A). This is done via the OAD reset service. The

following section details how to switch an on-chip OAD device to the target image (Image A).

1. Connect to the device via BTool

2. Right click on the device and select Read Values, see screenshot below

Figure 22. Read all characteristic data in BTool

3. Write to the reset service by clicking on box corresponding to the characteristic value

Figure 23. Writing to OAD Reset pt 1.

4. A box should pop up, write any non-zero value to the reset service

Figure 24. Writing to OAD Reset pt 2

At this time the device should reset and it should boot into the OAD Target App (Image A). This means

the connection will drop. Any errors regarding timeout can be ignored. From this point, you can follow

the steps in the next section to perform an OAD of the user application image.

Note: If the device not appear to advertise after writing to the reset service (and a valid OAD target

image is present) then the device maybe in the Halt In Boot state, see the appendix for more

information.

5.6.2 Performing an OAD
This section will describe how to perform an OAD of an application image and verify that the download

succeeded, these steps apply to on and off-chip OAD.

1. Connect to the OAD Target device

a. Note that for on-chip OAD the device address will be 0A:D0:AD:0A:D0:AD

b. For off-chip the device address will default BLE address used by the chip

2. Change to the OAD pane on the far right panel

3. Load the application image created in the previous section into the Image File box

4. Press the send button, see below

Figure 25. Sending an OAD Image over the air

5. As the OAD process progresses, the status will be reported by BTool in the status field.

6. At the end of the process OAD_SUCCESS will be reported, and the device will disconnect

a. Note: If the device does not appear to advertise after OAD then the device may be in

Halt in Boot state, see the appendix for more information.

7. Re-connect to the device

a. Note using on-chip OAD, note the address will have changed from 0A:D0:AD:0A:D0:AD

to the default.

8. Read the values and validate that the device name has changed (should contain new data).

Figure 26. Verifying an OAD completed

At this time the OAD is considered successful and the new version of the image is running on the device.

6. Adding OAD to an Existing Application
This section details the steps to add OAD to an existing application, for evaluation purposes the default

sample applications should be used as detailed in the previous chapter.

6.1 Off-chip OAD
The simple_peripheral project contains a configuration of ‘FlashOnly_OAD_ExtFlash’ designed for the

application to run on CC2650 LaunchPad hardware platform and utilize the external flash component.

The Stack project should be used as is.

The simple_peripheral with FlashOnly_OAD_ExtFlash configuration is made through the following

procedures. The procedures can be applied to convert any existing application to the downloadable off-

chip OAD Image. In addition to the following steps, registration and callbacks for the OAD service should

be added to the application. Changes to be made for those are found under FEATURE_OAD in

simple_peripheral.c.

6.1.1 Project Changes For IAR
Using IAR, the Application Image can be built through the following procedure.

I. Select Project→Options→C/C++ Compiler→Preprocessor and add the following new definitions

to Defined symbols:
FEATURE_OAD

HAL_IMAGE_E

Add the following lines to Additional include directories:
SRC_EX/profiles/oad/cc26xx

$TI_RTOS_DRIVERS_BASE$/ti/mw/extflash

II. Select Project→Options→Linker→Config→Linker configuration file and paste the following line:
SRC_EX/common/cc26xx/iar/cc26xx_app_oad.icf

And add the following symbols to Configurable file symbol definitions:
APP_IMAGE_START=0x1000

Append the following in Build Actions under Pre-build command line:
--cfgArgs NO_ROM=1,OAD_IMG_E=1

III. Under Tools, include cc26xx_app_oad.icf and exclude cc26xx_app.icf. Also exclude

ccfg_app_ble.c. Add the OAD profile modules to the PROFILES folder of the workspace. These

files are located here: $BLE_INSTALL$/src/profiles/oad/cc26xx.

Figure 27. OAD Off-Chip Files in IAR

6.1.2 Project Changes for CCS
Using CCS, the Application Image can be built through the following procedure.

I. Select Project→Properties→Build→ARM Compiler→Advanced Options→Predefined Symbols and

add the following to Pre-define NAME:
FEATURE_OAD

II. Select Project→Properties→Build→ARM Compiler→Include Options and add the following lines

to Add dir to #include search path:
"${SRC_EX}/profiles/oad/cc26xx"

Select Project→Properties→Build and verify the lines below in Steps→Post-build steps:

${CG_TOOL_HEX} -order MS --memwidth=8 --romwidth=8 --intel -o

${ProjName}.hex ${ProjName}.out

Define “NO_ROM=1,OAD_IMG_E=1" in Project→Properties→Build→XDCtools→Advanced

Options as shown below:

III. Add the OAD profile modules to the PROFILES folder of the workspace. Use

cc26xx_ble_app_oad.cmd as a linker command file instead of cc26xx_ble_app.cmd (Right-click

on the file →Exclude from Build). These files are located here:

$BLE_INSTALL$/src/profiles/oad/cc26xx.

Figure 28. OAD Off-chip files in CCS

6.1.3 Source Code Changes
These changes are required to added OAD to an existing application are independent of toolchain or

IDE. Note that these changes should be added to the high level ICall aware application task.

1. Include the proper OAD files

#include "oad_target.h"
#include "oad.h"

2. [Optional] Set default connection interval for high performance

// Minimum connection interval (units of 1.25ms, 8=10ms) if automatic
// parameter update request is enabled
#define DEFAULT_DESIRED_MIN_CONN_INTERVAL 8

// Maximum connection interval (units of 1.25ms, 8=10ms) if automatic
// parameter update request is enabled
#define DEFAULT_DESIRED_MAX_CONN_INTERVAL 8

3. Define OAD packet size

// The size of an OAD packet.
#define OAD_PACKET_SIZE ((OAD_BLOCK_SIZE) + 2)

4. Define OAD write callback
void SimpleBLEPeripheral_processOadWriteCB(uint8_t event, uint16_t connHandle,
uint8_t *pData);

5. Define OAD Write CB structure
static oadTargetCBs_t simpleBLEPeripheral_oadCBs =
{
 SimpleBLEPeripheral_processOadWriteCB // Write Callback.
};

6. Define OAD Queue structure
// Event data from OAD profile.
static Queue_Struct oadQ;
static Queue_Handle hOadQ;

7. Inside the application’s _init function do the following
VOID OAD_addService(); // OAD Profile
OAD_register((oadTargetCBs_t *)&simpleBLEPeripheral_oadCBs);
hOadQ = Util_constructQueue(&oadQ);

8. Add the following block of code to the applications’ main task loop after ICall/Stack

message processing
while (!Queue_empty(hOadQ))
{
 oadTargetWrite_t *oadWriteEvt = Queue_get(hOadQ);

 // Identify new image.
 if (oadWriteEvt->event == OAD_WRITE_IDENTIFY_REQ)
 {
 OAD_imgIdentifyWrite(oadWriteEvt->connHandle, oadWriteEvt->pData);
 }

 // Write a next block request.
 else if (oadWriteEvt->event == OAD_WRITE_BLOCK_REQ)
 {
 OAD_imgBlockWrite(oadWriteEvt->connHandle, oadWriteEvt->pData);
 }

 // Free buffer.
 ICall_free(oadWriteEvt);
}

9. Implement the OAD write callback
void SimpleBLEPeripheral_processOadWriteCB(uint8_t event, uint16_t connHandle,
 uint8_t *pData)
{
 oadTargetWrite_t *oadWriteEvt = ICall_malloc(sizeof(oadTargetWrite_t) + \
 sizeof(uint8_t) * OAD_PACKET_SIZE);

 if (oadWriteEvt != NULL)
 {
 oadWriteEvt->event = event;
 oadWriteEvt->connHandle = connHandle;

 oadWriteEvt->pData = (uint8_t *)(&oadWriteEvt->pData + 1);
 memcpy(oadWriteEvt->pData, pData, OAD_PACKET_SIZE);

 Queue_put(hOadQ, (Queue_Elem *)oadWriteEvt);

 // Post the application's semaphore.
 Semaphore_post(sem);
 }
}

6.1.4 [Optional] Changing the pins of the external flash device
It is easiest to use the default pinout when interfacing to the external flash, but if the pins must be

changed, the following steps are recommended. Note that the pins must be changed in the BIM image

as well as any application images, and they must be in sync. If the images are out of sync in terms of the

pins used for external flash, the system may be bricked from future OADs.

1.1.1.1 Updating the BIM’s external flash pins

BIM will use the pin definitions in bsp.h to define the external flash pins. BIM will interact with the

external flash using a Driverlib only based bare metal interface.

// Board external flash defines
#define BSP_IOID_FLASH_CS IOID_20
#define BSP_SPI_MOSI IOID_9
#define BSP_SPI_MISO IOID_8
#define BSP_SPI_CLK_FLASH IOID_10

1.1.1.2 Updating the Application’s external flash pins

The application will interface to external flash via the TI-RTOS SPI driver using Board_SPI0 by default.

The SPI0’s pins are defined in the device’s board file (i.e. CC26X0_LAUNCHXL.h):

/* SPI Board */
#define Board_SPI0_MISO IOID_8 /* RF1.20 */
#define Board_SPI0_MOSI IOID_9 /* RF1.18 */
#define Board_SPI0_CLK IOID_10 /* RF1.16 */
#define Board_SPI0_CSN PIN_UNASSIGNED

/* SPI */
#define Board_SPI_FLASH_CS IOID_20
#define Board_FLASH_CS_ON 0

6.2 On-chip OAD
Although the OAD-enabled application image is built and linked separately from the supporting BIM, it

must forever adhere to the constraints of the image boundaries and relative locations of external

interfaces (e.g. CRC and Image Header) that are expected by BIM. The OAD Target App image is also

dependent on BIM existing on the device when it is downloaded as only BIM places its interrupt vectors

at the start of flash. Without interrupt vectors at this location, the device will break and become

unusable. The example project for building an Image B included in simple_peripheral workspace as

‘FlashOnly_OAD_ImgB’ configuration can be reproduced through following procedures. The procedures

can be applied to convert any existing application to downloadable On-chip OAD Image in IAR.

Note: Only IAR is supported for BLE on-chip OAD on CC26x0/CC13x0 devices.

6.2.1 Steps for IAR
I. Select Project→Options→C/C++ Compiler→Preprocessor→Defined symbols and add the

following new definitions:
FEATURE_OAD

FEATURE_OAD_ONCHIP

IMAGE_INVALIDATE

HAL_IMAGE_B

Add the following line to the “Additional include directories”:
SRC_EX/profiles/oad/cc26xx

Append the following in Build Actions under Pre-build command line:

--cfgArgs NO_ROM=1,OAD_IMG_B=1

Figure 29. OAD configuro prebuild step (IAR)

Verify in Project→Options→C/C++ Compiler→Extra Options, the correct iar_boundary.bdef file is

included:

Figure 30. On-Chip OAD Boundary (compiler)

Verify in Linker -> Extra Options, the correct iar_boundary.xcl file is included:

Figure 31. On-Chip OAD Boundary (linker)

II. Select Project→Options→Linker→Config. Paste the following line to ‘Linker configuration file’:
SRC_EX/common/cc26xx/iar/cc26xx_app_oad.icf

And add the following symbol to ‘Configuration file symbol definitions’:
FLASH_ONLY_BUILD=1

III. Setup the Linker for an image’s flash and RAM usage. By default the linker guarantees 10 flash

pages, or 40KB, to the OAD image starting at 0x9000 to Image B. It is generally recommended

that the values for Image B starting address are not changed from the default settings unless

OAD Target App needs to be modified in its size.

IV. Under Tools, include cc26xx_app_oad.icf and exclude cc26xx_app.icf. Also exclude

ccfg_app_ble.c. Add the OAD profile modules to the PROFILES folder of the workspace. These

files are located here: $BLE_INSTALL$/src/profiles/oad/cc26xx.

Figure 32. On-Chip OAD Workspace (IAR)

6.2.2 Source Code Changes
These changes are required to added OAD to an existing application are independent of toolchain or

IDE. Note that these changes should be added to the high level ICall aware application task. However,

since the OAD Target application (Image A) implements most of the OAD functionality, all the needs to

be added to the user application is the reset service.

1. Include the proper OAD files

#include "oad_target.h"
#include "oad.h"

2. In the application’s _init() function, call the following routines
Reset_addService();

7. TI OAD Image Tool
In order to accelerate the process of converting the compiler’s hex file output to an OAD ready binary

file with embedded metadata, TI has created a Python based OAD image tool. The tool supports On-chip

and Off-chip OAD implementations as well as creating super hex merges that should be flashed on the

device at production time. OAD Image Tool is provided in source and binary format.

By default the OAD Image Tool will be invoked by OAD sample applications as part of the post build

step process. This is recommended method for use.

7.1 Dependencies
The tool requires Python 2.7.10+ to run, as well as the following modules:

Needs Python 2.7.10
from __future__ import print_function

import __builtin__
import argparse
import crcmod # pip -[--proxy <addr>] install crcmod
from intelhex import IntelHex # pip [--proxy <addr>] install intelhex, needs latest version (v2.1+)
import struct
import textwrap
import sys
import math
import ntpath
from collections import namedtuple

When running from source, pip or another package manager should be used to import the required
modules.

Running from binary does not require any installation. This is the recommended method.

7.2 Using the tool
The purpose of the tool is to create OTA ready OAD images and also production images. An OTA ready

image is defined as an image that has already been processed, merged, and is ready to send to the

target device using an OAD downloader. OTA ready images have metadata embedded where necessary.

Production images are images that are intended to be flashed on the device at production time. They

contain an entire internal flash image including code that is never updated via OAD such as the BIM.

The tool is configured using a range of arguments that will allow the customer to configure the output of

the tool dynamically. The tool’s arguments are documented below in Figure 33. You may also invoke the

help menu of the script by typing:

python oad_image_tool.py –help

Argument Acceptable input Description

-h
--help

None Display the help menu

-t
--oadtype

{onchip, offchip} Whether the generated image is
for on-chip or off-chip OAD

-i
--imtype

{app, stack, np, production} The type of image to be
generated. This argument is used
to set the metadata and also
enforce some imgType based
rules

-v
--imgver

Any The version of the image. This is
used to populate the metadata

-o Valid system path Used to specify where the script

--out should place the output hex file

-ob
--outbin

Valid system path Used to specify where the script
should place the output binary
file

-f
--fill

One byte hex value Value to fill empty addresses
within the output image with.
Default is 0xFF

-m
--metta

Any valid internal flash address Address where the metadata
header should be placed

-r
--range

Any valid internal flash address Ranges of addresses to be
included in the output file

-n
--dry-run

N/A Do no produce output files, only
print information

-q
--quiet

N/A Only produce output files, do not
print to the console

--round Valid sector size Round sectors up to the nearest
internal flash sector size.

--version N/A Print the version info of this tool
Figure 33. OAD Image Tool Arguments

Once the tool has successfully run, it will print output similar to what is shown in Figure 34.

Figure 34. OAD Image Tool Output

7.3 Building a Production Image
The tool supports two types of production images depending on how your application will be supporting

OAD; On-Chip or Off-Chip. As previously described, On-Chip will require metadata of the image that will

be initially flashed onto the device. Use the –production flag for creating an image that is merged with

BIM.

1.1.1.3 On-Chip OAD Production Image Example Usage

On-Chip OAD’s Production image is a hex merge of BIM for On-Chip OAD, Image A (the resident

Application that implements the TI OAD Profile + Uses the BLE Stack), Image B (the initial Application)

and the BLE Stack.

Once all the hex files are correctly generated– invoke the TI OAD Image Tool with:

<python> <oad_image_tool.py> <BIM hexfile> <Image A hexfile> <Stack hexfile> <Image B hexfile> -o
<Output hexfile> -i production –t onchip

Where ‘<item>’ indicate location of item on the system. The flags used in the tool are highlighted. The

output should look similar to Figure 35.

Figure 35. OnChip OAD Production Image Example invocation.

1.1.1.4 Off-Chip OAD Production Image Example Usage

Off-Chip OAD’s Production image is simply a hex merge of BIM for External Flash + Initial Application

Image + Initial Stack Image.

Once all the hex files are correctly generated – invoke the TI OAD Image Tool with:

<python> <oad_image_tool.py> <BIM hexfile> <App hexfile> <Stack hexfile> -o <Output hexfile> -i

production –t offchip

Where ‘<item>’ indicate location of item on the system. The flags used in the tool are highlighted. The

output should look similar to Figure 36.

Figure 36. Off-Chip OAD Production Image Example invocation

8. Appendix
The appendix covers various topics related to OAD

8.1 References
1. Texas Instruments CC2640 Bluetooth® low energy Software Developer’s Guide

http://www.ti.com/lit/pdf/swru393

2. OAD User’s Guide Wiki Page

http://processors.wiki.ti.com/index.php/CC2640_OAD_User%27s_Guide

3. CC2640R2 SDK Download Link

http://www.ti.com/tool/download/SIMPLELINK-CC2640R2-SDK/1.30.00.25

4. SimpleLink Academy

http://software-dl.ti.com/lprf/simplelink_academy/overview.html

5. CC2650 LaunchPad

http://www.ti.com/tool/launchxl-CC2650

6. TI BLE-Stack 2.2.x

http://www.ti.com/ble-stack

7. Smart RF Flash Programmer 2

http://www.ti.com/tool/flash-programmer

8. BTool User’s Guide

http://software-

dl.ti.com/lprf/simplelink_cc2640r2_sdk/1.30.00.25/exports/docs/blestack/btool_user_guide/B

Tool_Users_Guide/index.html

http://www.ti.com/lit/pdf/swru393
http://processors.wiki.ti.com/index.php/CC2640_OAD_User%27s_Guide
http://software-dl.ti.com/lprf/simplelink_academy/overview.html
http://www.ti.com/tool/launchxl-CC2650
http://www.ti.com/ble-stack
http://www.ti.com/tool/flash-programmer
http://software-dl.ti.com/lprf/simplelink_cc2640r2_sdk/1.30.00.25/exports/docs/blestack/btool_user_guide/BTool_Users_Guide/index.html
http://software-dl.ti.com/lprf/simplelink_cc2640r2_sdk/1.30.00.25/exports/docs/blestack/btool_user_guide/BTool_Users_Guide/index.html
http://software-dl.ti.com/lprf/simplelink_cc2640r2_sdk/1.30.00.25/exports/docs/blestack/btool_user_guide/BTool_Users_Guide/index.html

8.2 Definitions, Abbreviations, Acronyms
Term Definition

BIM Boot Image Manager, the software bootloader

BLE Bluetooth low energy wireless protocol

CCCD Client Characteristic Configuration Descriptor

CCFG Customer Configuration Area, contains lock-bits on flash page 31

CCS Code Composer Studio

MCU Microcontroller Unit

OAD Over the Air Download

RCFG RTOS in ROM Configuration Table

ROM Read Only Memory

RTOS Real Time Operating System

SNV Simple Non-Volatile storage

TI Texas Instruments

TI-RTOS Texas Instruments Real Time Operating System

8.3 RTOS RCFG Section
In order to save space, the CC26xx contains portions of the TI-RTOS kernel in its ROM image. These ROM

functions have dependencies on a data structure called the RCFG within flash page 0 of internal flash.

The RCFG section is essentially a table of function pointers (and some other kernel data) that allows the

kernel ROM functions to access certain data structures in the internal flash memory.

When building a new RTOS in ROM image, the RCFG must be updated. However, since the RCFG lies

within page 0 (which contains the vector table and thus is write protected) it cannot be updated via

OAD.

This means that all images intended to be sent over the air must use an RTOS in flash configuration

that includes their own instance of the RCFG.

8.4 Prevent On-chip BIM from checking the CRC
By default on-chip BIM will not check the CRC of Image A because it is intended to be flashed during

production and not updated. If it is necessary to check the CRC of Image A, the FEATURE_FIXED_IMAGE

can be undefined.

9. Troubleshooting Guide
9.1 General Troubleshooting Guide
There are various places where OAD can fail; use the following steps to determine where the issue is

occurring during the interaction:

 Use a BLE Packet Sniffer and Record the OAD Transaction

This will verify that the profile is implemented correctly and a valid image was transferred over the

air.

o Look for a OAD Initiation

Notifications from OAD Image Notify should be requested – and the appropriate response

from the OAD Target after a GATT Write of the Candidate metadata.

o Look for OAD Image Status Characteristic

This will contain the status of the image prior to BIM launching the image.

Solutions –

 Verify that the OAD Downloader supports the TI OAD Profile as a GATT Client

 Verify that the OAD Downloader is sending the correct image with updated meta data

 Verify that the OAD Target supports the TI OAD Profile as a GATT Server

 Read external/internal flash to ensure CRC Shadow is valid and matches CRC field

This will verify that the image was received fully without errors by the OAD Target

o For Internal, various tools can be used. SmartRF Programmer 2 or using a jtag debugger and

connecting to running target and utilizing a memory viewer are possible options.

o For External, interface another MCU or another serial device to dump out the Flash.

Solutions –

 Power cycle and Retry Downloading the Image

 Verify that the Flash Pages, on-chip or off are not corrupt

9.2 Downloaded OAD Image Isn’t Starting
Assuming that the device has been flash correctly and is verified to be working prior to an OAD, then a

non-responsive device is likely stuck in Halt in Boot. The Halt in Boot scenario and how to work around it

is covered in detail on the OAD User’s Guide Wiki Page under the section “Device Does not restart after

successful OAD”

9.3 Should External Flash be used during OAD?
No, External flash should not be utilized while OAD Profile is active; the Profile is designed to have

uninterrupted access to Flash.

9.4 Individually Flashing Hex Files for On-Chip OAD - App doesn’t work!
The issue is due to the tools being designed to work on pages instead of on words. When two

applications utilize the same page this problem manifests. For example, in On-Chip OAD, BIM and Part of

the Image A (the resident application image) share Page 0. Depending on which application is flashed

second, the information from the first image will not be preserved.

Solution –

Generate a Merged Hex File instead – this can be done with the TI OAD Image Tool. Look at Section 1 for

more information on this tool. Then Smart RF Flash Programmer 2 to flash the merged hexfile.

Utilize the .out files for debugging information and connect to the running target using IAR to verify

functionality if needed.

9.5 Debugging BIM/ Pre application
In the case where the expected image is not being selected or loaded, it may be necessary to debug the

BIM. The BIM can be debugged by loading its symbols into the application before starting a debugging

session. This will trap the device in the reset_isr() routine and allow the user to debug through the BIM

main and into the application’s entry point in main(). Refer to your specific toolchain for how to load

symbols from an image in a debugging session.

	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Document Updates
	1.4 Legacy OAD Versions
	1.5 Supported OAD Downloaders

	2. OAD Concept Overview
	2.1 OAD Types
	2.1.1 On-chip OAD
	2.1.2 Off-chip OAD

	2.2 OAD Topology Overview
	2.3 OAD Image Metadata
	2.3.1 CRC and CRC Shadow
	2.3.2 Version
	2.3.3 Length
	2.3.4 User Identification (UID)
	2.3.5 Start Address
	2.3.6 Image Type
	2.3.7 Image State

	2.4 OAD Service Description
	2.4.1 OAD Image Identify (0xFFC1)
	2.4.2 OAD Image Block Characteristic (0xFFC2)
	2.4.3 OAD Image Count Characteristic (0xFFC3)
	2.4.4 OAD Image Status (0xFFC4)

	2.5 OAD Process
	2.5.1 Initiation of the OAD Process
	2.5.2 Image Block Transfers
	2.5.3 Completion of the OAD Process

	2.6 OAD Reset Service
	2.6.1 OAD Reset (0xFFD1)

	2.7 Bootloader

	3. Off-Chip OAD
	3.1 Off-chip OAD Memory Map
	3.2 Constraints and Requirements for Off-chip OAD
	3.3 Conditions for rejecting Metadata
	3.4 BIM for Off-chip OAD

	4. On-Chip OAD
	4.1 On-chip OAD Memory Map
	4.2 Constraints and Requirements for On-chip OAD
	4.3 Conditions for Rejecting Metadata
	4.4 BIM for On-chip OAD

	5. Running the Out of the Box Demos
	5.1 Required Hardware
	5.2 Required Software
	5.3 OAD Downloader
	5.3.1 Setting Up the CC2650 LaunchPad
	5.3.2 Setting up and connecting to BTool

	5.4 OAD Target
	5.4.1 On-Chip OAD
	5.4.2 Off-Chip OAD

	5.5 Changing the Device Name to Validate OAD
	5.6 Performing an OAD with BTool
	5.6.1 (On-chip OAD only) Reset the device via the OAD Reset Service
	5.6.2 Performing an OAD

	6. Adding OAD to an Existing Application
	6.1 Off-chip OAD
	6.1.1 Project Changes For IAR
	6.1.2 Project Changes for CCS
	6.1.3 Source Code Changes
	6.1.4 [Optional] Changing the pins of the external flash device
	1.1.1.1 Updating the BIM’s external flash pins
	1.1.1.2 Updating the Application’s external flash pins

	6.2 On-chip OAD
	6.2.1 Steps for IAR
	6.2.2 Source Code Changes

	7. TI OAD Image Tool
	7.1 Dependencies
	7.2 Using the tool
	7.3 Building a Production Image
	1.1.1.3 On-Chip OAD Production Image Example Usage
	1.1.1.4 Off-Chip OAD Production Image Example Usage

	8. Appendix
	8.1 References
	8.2 Definitions, Abbreviations, Acronyms
	8.3 RTOS RCFG Section
	8.4 Prevent On-chip BIM from checking the CRC

	9. Troubleshooting Guide
	9.1 General Troubleshooting Guide
	9.2 Downloaded OAD Image Isn’t Starting
	9.3 Should External Flash be used during OAD?
	9.4 Individually Flashing Hex Files for On-Chip OAD - App doesn’t work!
	9.5 Debugging BIM/ Pre application

