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1. CCF 

CCF (CGRA Compilation Framework) is an end-to-end prototype demonstrating the code generation 
and simulation process for CGRA (or Coarse-Grained Reconfigurable Array) accelerators. Through CCF 
infrastructure, the users can simulate acceleration of loops of general-purpose applications on a 
heterogeneous processor core+CGRAs architecture. 

1.1. Overview of CCF 

With LLVM 5.0 [1,2] as a foundation, the implementation of CCF-compiler includes numerous compiler 
analysis and transformation passes, along with a customized code generation CGRA back-end. The user 
only needs to mark the performance-critical loops that they want to execute on CGRA, by using the 
annotation: #pragma CGRA, and the CCF-compiler automatically extracts the marked loops and maps 
them to the CGRA, generates code to communicate live data between the processor core and CGRA, 
pre-load the live values into CGRA registers, and generates the machine instructions to configure the 
PEs to execute the loop, and finally generates a binary that will execute on the CCF-simulator. The CCF-
simulator is built by modifying cycle-accurate processor simulator Gem5 [3], and it models CGRA as a 
separate core coupled to ARM Cortex-like processor core with ARMv7a profile. 

 

Figure 1: A High-Level Overview of CCF 

This open-source platform has been developed at Arizona State University and through CCF, we target 
accelerating the CGRA research by developing and making accessible a community-wide CGRA 
compilation infrastructure. While current release of CCF supports code generation for several 
performance-critical loops of embedded MiBench benchmark suite, we hope to integrate the enhanced 
functionality in the future release. 
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1.2. Organization of Source Code Directories 

Before realizing the code generation process through CCF, let’s quickly see that which directories of the 
source code correspond to what part of the framework. Directory 'llvm' is a bit modified version of the 
LLVM compiler, which serves as a front and middle end of the current CCF release. The LLVM front end 
is modified to enable extracting of the loops for their acceleration on CGRA. It also contains the passes 
responsible for the data communication between CPU and CGRA, supporting the communication 
interface (directories DDGGen, InvokeCGRA, CGRAGen in the transformations). 

Directory 'RAMP' is responsible for mapping the loop on the CGRA, and the directory 
'InstructionGenerator' delivers the necessary machine instructions. Together, they both forms the back-
end of the framework. The directory gem5 models the execution of CPU-CGRA platform via a system 
emulation mode. The directory 'scripts' contains the installation script, the CGRA library functions, and 
few other shell scripts to automate the code generation process. 

The directory 'benchmarks’ contains examples of the code generation process using CCF for the given 
benchmarks. Since the CCF is a prototype of emerging general-purpose CGRA accelerator, current 
release of the CCF supports few performance critical loops of MiBench [4], an embedded benchmark 
suite. It also supports execution of all the loops from few MiBench applications. For example, directory 
'basicmath' contains the different sub-directories, where each sub-directory corresponds to one 
distinct loop from the application source code, annotated for its execution on CGRA.  

For the demonstration of the code generation process throughout this document, we refer to the 
example of 'basicmath', an application taken from the MiBench. In particular, we refer to the sub-
directory 'basicmath13' which corresponds to the annotated loop for computing the square root.  
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2. Code Generation and Validation Using CCF 

Let’s see how we can generate the code for the target application that we want to execute on 
core+CGRA architecture.  The steps are as follows: 

2.1. Loop Annotation 

Once the programmer has profiled the compute-intensive application, and have identified a 
performance-critical loop, (s)he can annotate it with #pragma CGRA. Then, the CCF compiler can 
generate the code for the application's execution on the heterogeneous platform.  

 

Figure 2: Loop Annotation for Execution on CGRA 

For example, as shown in Fig. 2, we can annotate the loop computing a square root, for its execution 
on CGRA (source file isqrt.c of basicmath benchmark, from MiBench).  

2.2. Make 

Once the target loop(s) have been annotated, the code can be generated by compiler through the 
Makefile. As shown in Fig. 3, the user has to just to replace the target compiler (gcc in our case) with 
cgracc (CCF's CGRA Compiler Collection). (Often, it decently supports complex makefiles.) Then, typing 
'make' will generate the required executable.  

The CCF compiler will inform that whether it would be executing the loop on the CGRA or not. For 
example, for the current release of the compilation infrastructure, if the annotated loop contains the 
system calls, it is not executed on CGRA. Or, if the compiler was able to vectorize the code (which may 
imply that the loop can be efficiently accelerated by SIMDization or on chip multi-processors), it will 
not generate the code for CGRA. Thus, CCF compiler will inform that why it currently did not generate 
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the code for the CGRA. On the other hand, if the CCF compiler generated the code for CGRA, then we 
can find it in the directory 'CGRAExec'. This directory contains information about all the loops compiled 
for their execution on CGRA. 

 

Figure 3: Required Modifications in the Makefile 

Once the compilation process is terminated, you can see that the target executable is generated. 
Then, we can simulate the execution on the heterogeneous platform. 

2.3. Simulate Heterogeneous Execution 

Our simulation platform is built in gem5, where we have modeled the CGRA as a separate core coupled 
to ARM Cortex like processor. Instead of executing file se.py for system emulation mode, we can 
execute a file se_hetro.py, which models the heterogeneous execution. For example, Fig. 4 shows that 
how we can launch simulation using CPU+CGRA gem5 model. If we want to simulate the execution with 
n=2 cores, 1 core is specified as a CGRA, and another n-1=1 is the processor core.  

 

Figure 4: Modifying the Command to Simulate CPU+CGRA Execution on gem5 

If you are interested to do a detailed debug, you can turn on the debug flags, i.e., --debug-

flags=CGRA,CGRA_Detailed. Such command will show comprehensively all the details about 
the status of the CGRA’s micro-architectural components. 
 

  



8 
 

3. CCF’s Code Generation Steps 

In this section, we describe the intermediate steps of the code generation process, elaborating the 
overview provided in section 1.  

3.1. Extraction of the Annotated Loop(s)  

CCF compiler’s front-end (implemented by modifying clang) identifies and extracts the loops from 
C/C++ code, annotated by the programmer. Then, it generates the intermediate representation (IR) 
('temporary.ll'). In compiling the application, CCF targets the highest optimization, i.e. optimization 
level 3, including auto-vectorization enabled. Part of the IR corresponding to the annotated loop 
contains metadata ('llvm.loop.CGRA.enable', shown in Fig. 5) so that CCF compiler can perform analysis 
and transformations on it. CCF compiler analyzes whether it will generate the code for this loop for its 
execution on CGRA, or not. If it can, it acts on the part of the IR corresponding to the loop, generating 
the data dependency graph (DDG). 

    Input:  application.c,  Makefile 

    Output:  temporary.ll 

 

Figure 5: Part of the IR Corresponding to the Annotated Loop 

 

3.2. Generation of DDG and Communication of the Live Data 

An LLVM pass (DDGGen) generates the DDG of the loop, which can be visualized using the dot tool [5]. 
In DDG, the circles show the operations to be performed and the arcs show the data dependencies. Fig. 
6 shows one such DDG for our target loop of 'basicmath' benchmark. 
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Figure 6: DDG of Targeted Loop 

The red arc shows a loop-carried dependence, with an arc weight equals to the dependence distance. 
For example, there is a loop-carried dependence between operations 7 and 3, forming a cycle with a 
path delay of 2 cycles (if the operations have a latency of 1 cycle each). Similarly, there is a recurrence 
between operations 16 and 1, with the path delay of the 6 cycles. The loop-carried dependencies limits 
minimizing the total cycles required to finish executing a single loop iteration on the CGRA (For more 
details, refer to the iterative modulo scheduling (IMS) literature [6] for determining recurrence-
constrained II). 

The gray faced operations represent the constants or live-in values. The yellow arc indicates the live 
edges that is the input is a live-in value or a store to live-out variable (e.g. gVar3→3, or 14→gVar4). 
The memory accesses to the live variables occur typically just once, since the CCF compiler manages 
them in the CGRA registers. The alignment of the memory access is indicated by the weight of the arc 
(typically 4, for 32-bit system). 

To communicate the necessary variables or the live data, our CCF compiler inserts instructions to 
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manage the data automatically through global variables. For example, Fig. 5 shows that live data is 
replaced by using communication through global variables/pointers gVar3 and gVar4. Such 

compilation strategy avoids inserting mem copies, rather by adopting a shared memory model. It is 
because we visualize CGRA accelerator as tightly coupled with the core, at the interface of level 2 cache, 
or by sharing a scratch-pad with the processor.  

Finally, the library call pertaining to the loop execution on CGRA is inserted and IR corresponding to the 
loop body is purged. This modified IR (temporaryIR.ll) is then taken to the machine code generation for 
the CPU.  

 

Figure 7: IR Modification for Transferring the Control of Execution to CGRA 

For example, Fig. 7 shows the new IR, in which the part corresponding to the target loop is now purged. 
We can see that a library call is automatically inserted, which is to accelerate the loop on the CGRA. The 
argument is the loop number, and along with the help of our CGRA library functions, our CCF compiler 
will generate the code for the application execution on heterogeneous CPU+CGRA platform. 

    Input:  temporary.ll 

    Output:  temporaryIR.ll, loop_DFG.dot, loop_node.txt, loop_edge.txt 
  livein_node.txt, livein_edge.txt, liveout_node.txt, liveout_edge.txt 
 
Format of an entry in the node file: <node number> <vopc> <node name> <mem alignment> 

Format of an entry in the edge file: <from node #> <to node #> <arc weight> <edge type> <op order>  

Here, vopc implies virtual opcode for the operations in the DDG. Table 1 summarizes the various opcode 
numbers and corresponding operations. It also shows corresponding opcodes of LLVM instructions. 
Please note that this vopc is not the actual opcode embedded in the CGRA machine instructions. They 
are described later along with a discussion on CGRA microarchitecture. It is important to note that many 
other LLVM opcodes are realized using these VOPCs, e.g. Trunc or ZExt is translated to andop, or 
GetElementPtr is realized using add etc. 

Memory alignment is for the memory access operations, and 0 otherwise. Node name is often same as 
the node number, except for the constants or for live values. 

For edge file, arc weight denotes the dependence distance for a loop-carried dependency. Edge types 
are TRU (true dependency for most of the arcs, including for loop-carried dependencies), LRE for load  
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Table 1: Translation of LLVM IR Opcode to CCF Virtual Opcode 

Opcode VOPC LLVM Opcode 

0 add Add 

1 sub Sub 

2 mult Mul 

3 div SDiv 

4 shiftl Shl 

5 shiftr Ashr 

6 andop And 

7 orop Or 

8 xorop Xor 

9 cmpSGT ICMP_SGT 

10 cmpEQ ICMP_EQ 

11 cmpNEQ ICMP_NE 

12 cmpSLT ICMP_SLT 

13 cmpSLEQ ICMP_SLE 

14 cmpSGEQ ICMP_SGE 

15 cmpUGT ICMP_UGT 

16 cmpULT ICMP_ULT 

17 cmpULEQ ICMP_ULE 

18 cmpUGEQ ICMP_UGE 

19 ld_add Load 

20 ld_data 

21 st_add Store 

22 st_data 

23 ld_add_cond reserved 

24 ld_data_cond reserved 

25 loopctrl special function 

26 cond_select Select 

27 route special function 

28 llvm_route reserved 

29 select PHI 

30 constant ConstantIntVal 

31 rem SRem 

32 sext SExt 

33 shiftr_logical LShr 

34 rest default 

operation (an arc between operations with VOPC ld_add and ld_data), SRE for store operation (an arc 
between operations with VOPC st_add and st_data), LIE for the data dependency from live-in operation, 
and PRE for the data dependency indicating predicated execution. Typically, operation with VOPC 
cond_select has an input arc of the type PRE, from the operation corresponding to a condition. <Op 
Order> denotes the operand order, in case an operation having more than one operands. 
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3.3. Mapping of DDG on the Target CGRA 

The mapping technique maps the DDG on the target CGRA, and generates the prologue, kernel, and 
the epilogue of the mapping. Mapping process includes iterative modulo scheduling of the DDG and a 
place and route of scheduled DDG on the CGRA's architectural resources. Register allocation is also 
done during the mapping. 

    Input:  loop_node.txt, loop_edge.txt 

    Output:  loop.sch (prolog.sch + kernel.sch + epilog.sch), dump_node.txt, dump_edge.txt, 
rfConfig.txt 

 

Figure 8: Snapshot of the Generated Schedule After Mapping the DDG 

Let’s see the schedule file generated after the mapping. The prologue, kernel, and the epilogue of the 
mapping are laid down in the generated schedule file (loop.sch). As shown in Fig. 8, the vertical axis is 
the time scale, and the horizontal expansion shows the spatial execution on PEs. Here, at every time 
instance, we can see execution for 16 different PEs. This is because, our compilation target is set as a 
4x4 CGRA by default, where each PE has 4 local registers.  

The source code of our framework is parameterized and can model different CGRA configurations. 
Certainly, this can be more generalized through an XML based input for target configuration, we plan 
to do it in future release. This is because, we rather focus on enhancing the functionalities of our code 
generation framework CCF, making support for more general-purpose applications. 
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We can see that each spot of the PE is represented by an operation that a PE would execute. For 
example, in the prologue, operation 0 is mapped first onto PE1 at time 6, and then at time 13. The letter 
F indicates that corresponding PEs are free at that time. After time 13, all the operations are mapped, 
and the schedule corresponding to prologue ends. Then, the file shows the mapping corresponding to 
the kernel. II of the mapping DDG (of Fig. 6) is 7 cycles (due to a loop-carried dependence with the path 
delay of 7 cycles), meaning, every operation will repeat its execution after 7 cycles.  

This loop iterates in total for 32 times, and the kernel will repeat for 30 times, when executed. In the 
kernel shown, we can see that the operations are labeled a number inside a parenthesis, which 
indicates the rotating register occupied for the loop execution. Operation values scheduled at distance, 
or several loop-carried dependencies, are typically routed through the register file. For example, the 
dependency 10→15 is routed through a register; 10 produces the value at modulo time 1, which is read 
by the operation 15 at modulo time 3. Finally, the mapping file shows the part corresponding to the 
epilogue. 

Note that the mapping phase generates the node and edge files (dump_node.txt and dump_edge.txt), 
which included additional routing (or spilling) operations, inserted to map the DDG. Moreover, these 
files contain information about the mapped operations only, i.e., they do not contain information about 
the static constants, which might be supplied as immediates in the CGRA instructions. 

3.4. Generation of Machine Instructions 

This phase generates the machine instructions to configure the PEs, to pre-load the live values into 
CGRA registers during the prologue, and to store live-out data during the epilogue. Our current CGRA 
instruction-set architecture (ISA) supports two different formats, including several important opcodes 
and including, support for the byte level memory accesses. 

 

Figure 9: A Snapshot of the Output File Describing Generated CGRA Machine Instructions 
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Fig. 9 shows the snippet of the output file describing decoded CGRA instructions. All the machine 
instructions and the breakdown of the corresponding instruction fields are shown in this file. The 
directory <CGRAExec/$loopnum> also contains the binaries corresponding to the prologue, kernel and 
the epilogue.  

    Input:  loop_node.txt, loop_edge.txt, dump_node.txt, dump_edge.txt, liveout_node.txt, 
liveout_edge.txt, prolog.sch, kernel.sch, epilog.sch, app.exe 

    Output:  cgra_instructions.txt, prolog_ins.bin, kernel_ins.bin, epilog_ins.bin 

 

3.4.1. Instruction Formats 

CGRA Instructions are generated based on the two formats: i) R-Type (Regular) and ii) P-Type. 
Instruction formats are decided based on the VOPC (virtual opcodes), or based on the desired 
functionality of the instruction. For example, for most of the operations, R-Type instruction is 
generated. However, for pre-loading live values, or in setting RF configuration at the beginning of the 
prologue, or for predicated execution for a conditional statement, a P-Type instruction is generated. 

R-Type Instruction Format: 

31:28 27 26:24 23:21 20:19 18:17 16:15 14 13 12 11:0 

Opcode P LMux RMux R1 R2 RW WE AB DB Immediate 

 
Here, the field Opcode defines the functionality performed by the CGRA PEs (see Table 2). 
         P determines the instruction format. If 1, instruction is decoded as P-Type. 
    LMux indicates the input source for the left multiplexer of the PE (see Table 3). 
  RMux indicates the input source for the right multiplexer of the PE (see Table 3). 
  R1 indicates the register number for input1, if LMux indicates register file as source 
  R2 indicates the register number for input2, if RMux indicates register file as source 
  RW indicates the register number of register file to which result should be written 

WE determines whether the PE should write the result back to register file or not. 
AB indicates asserting address bus for the memory access. 
DB indicates asserting data bus for the memory access. 
Immediate defines the static constant value, which can be supplied to the PE.  

 
P-Type Instruction Format:  

31:28 27 26:24 23:21 20:19 18:17 16:15 14:12 11:0 

Opcode P LMux RMux R1 R2 RP PMux Immediate 

 
Here, the field Opcode defines the functionality performed by the CGRA PEs (see Table 2). 
    PMux indicates the input source for the predicated multiplexer of the PE (see Table 3). 
  RP indicates the register number for input3, if PMux indicates register file as source 

  
Table 2 summarized functionalities performed by PEs. PEs perform fixed-point signed arithmetic, logical 
and memory operations, with 1-cycle latency.  
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Table 2: Translation of CCF Virtual Opcode to CCF Machine Opcode 

Instruction Format Opcode# Machine Opcode VOPC (from 
Table 1) 

Note 

 
 
 
 
 
 
 

R-Type 

0 Add add, 
ld_data, 
st_data, 

route 

 

1 Sub sub  

2 Mult mult  

3 AND andop  

4 OR orop  

5 XOR xorop  

6 cgraASR shiftr  

7 NOP -  

8 cgraASL shiftl  

9 Div div  

10 Rem rem  

11 LSHR shiftr_logical  

12 EQ cmpEQ  

13 NEQ cmpNEQ  

14  
GT 

cmpSGT, 
cmpSGEQ, 
cmpUGT, 
cmpUGEQ 

 

15  
LT 

cmpSLT, 
cmpSLEQ, 
cmpULT, 
cmpULEQ 

 

 
 
 
 
 

P-Type 

0 setConfigBoundary -  

1 LDI select Pre-load Live 
values in CGRA 

Registers 
2 LDMI - 

3 LDUI - 

4 sel cond_select Predicated 
Execution 

5 loopexit loopctrl  

6 address_generator ld_add, 
st_add 

 

7 NOP -  

8 signExtend sext  

9-15 Reserved -  

 

Table 3 defines the various type of the source inputs for the multiplexers of the PEs. 

 



16 
 

Table 3: Input Sources for Multiplexers of the PE 

# Source 

0 Register 

1 Left Neighboring PE 

2 Right Neighbor 

3 Upper Neighbor 

4 Bottom Neighbor 

5 Data Bus 

6 Immediate 

7 Self (Output Latch) 

3.5. Architectural Simulation 

Our simulation platform is built in gem5, where we have modeled the CGRA as a separate core coupled 
to ARM Cortex like processor. CCF simulator allows simulating the execution of the generated code on 
the core+CGRA heterogeneous platform. 

    Input:  app.exe  
    Output:  output.txt 

3.6. Techniques Implemented 

Following techniques/heuristics are implemented completely in CCF or in part. To understand the 
specifics of the techniques, please refer to them.   

• CCF: A CGRA Compilation Framework  

• RAMP: Resource-Aware Mapping for CGRAs  

• URECA: A Compiler Solution to Manage Unified Register File for CGRAs 

• REGIMap: Register-aware Application Mapping on Coarse-grained Reconfigurable Architectures 
(CGRAs) (for implementation of clique-based mapping heuristic, routing through registers) 

• Power-Efficient Predication Techniques for Acceleration of Control Flow Execution on CGRA (partial 
predication based execution of conditional operations) 

 
If you use the implementation pertaining to any of these techniques in your research, we would 
appreciate a citation to that. 
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3.8.  Contact Us 

For any questions or comments on CCF development, please email us at cmlasu@gmail.com 

CML's CGRA Webpage - http://aviral.lab.asu.edu/coarse-grain-reconfigurable-arrays/ 
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