oA
€ ChipCraft *

User Guide

CC-IDE User Guide
1.0

Scope

This document contains the user guide of Integrated Development En-
vironment for CC100/150/200 processor class. Instalation requirements
and basic usage are described. The document covers project creation,
compilation and debugging with build-in simulator as well as the FPGA or
ASIC hardware.

European European Union
Funds NA\/[SC)O European Regional
Smart Growth Development Fund




Contents

1. Installation . . . . . . . 3
1.1 Download . . . . . . 3
1.2 Requirements . . . . . . . . e 4

1.2.1  Operating System . . . . . . . e 4
1.22 Java8 . . . 4
1.23 Python . . . 5
1.2.4 Pythonpyserialmodule . . . . . . . . . 5

2. Using CCIDE . . . . . . . . . 6
21 Startingandclosing IDE . . . . . . . e 7
2.2 Crealing aprojeCt . . . . . . . e e 9
2.3 Buildingaproject . . . . . . e e 12

2.3.1 Perspectives . . . . . . 13

2.4  Project properties . . . . . .. e e 14
25 Debugging . . . .. e 18
2.6 IDEpreferences . . . . . . . . L 22
3. Troubleshooting CCIDE . . . . . . . . . . . . 23
4. Revision History . . . . . . . . . 24

User Guide
[CC-IDE User Guide 1.0] <CD>



1. Installation

1.1 Download

CCIDE is free and available at https://github.com/chipcraft—ic. It contains software development kit
(CCSDK) with cycle-accurate CC150-S processor model and graphical user interface based on Eclipse CDT (Eclipse

for C++ Developers).

CD User Guide 3
[CC-IDE User Guide 1.0]


https://github.com/chipcraft-ic

1.2 Requirements

1.2.1 Operating System

CCIDE is distributed for Linux (64-bit CCIDE version) and for Windows (32-bit CCIDE version).
Supported Linux distributions: CentOS 6, Ubuntu 18.04.

Supported Windows versions: 7, 8, 8.1, 10.

CCIDE should work on different versions of Linux and Windows, however ChipCraft company can not guarantee that.

1.2.2 Java8

CCIDE requires Java 8 runtime environment.

On Windows you can install 32-bit Oracle JRE manually after downloading it from Oracle website:

https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads—-2133155.html
On Linux you can install OpenJDK 8 using your favorite package manager. In Ubuntu 18.04 run in terminal:
sudo apt-get install openjdk-8-jre

Please make sure you use version 8 of JRE software. CCIDE can work on newer versions however ChipCraft
company can not guarantee that. To verify version of JRE run:

java -version

User Guide
[CC-IDE User Guide 1.0] <CD>


https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

1.2.3 Python

CCIDE uses Python module for debugging programs running in ChipCraft devices or in a simulator. It is recommended
to use latest version of Python 2.7 (2.7.15 as time of writing).

On Windows you can install it manually after downloading from official Python website:

https://www.python.org/downloads/
On Linux install it using your favorite package manager. On Ubuntu 18.04:

sudo apt-get install python2

1.2.4 Python pyserial module

CCIDE uses pyserial Python module to connect with device through serial port. Install it using your favorite Python
package manager, e.g.

pip install pyserial
If pip command cannot be found try:

python2 -m pip install pyserial

CD User Guide 5
[CC-IDE User Guide 1.0]


https://www.python.org/downloads/

2. Using CCIDE

CCIDE is an integrated development environment provided by ChipCraft for developing software for hardware pro-
duced by the company. Itis based on Eclipse CDT. Basic usage and concepts are the same. This manual is describing
custom elements added over Eclipse CDT and basic features important for embedded software development for
ChipCraft’s products.

Eclipse CDT documentation can be found on: https://www.eclipse.org/cdt/documentation.php.

User Guide
[CC-IDE User Guide 1.0] <CD>


https://www.eclipse.org/cdt/documentation.php

2.1 Starting and closing IDE

To start CCIDE run ccide.exe (Windows) or ccide (Linux) executable file in ide subdirectory.

During the first start IDE will ask for selecting a workspace directory as can be seen on figure 2.1. This directory
is used as a default location for all new projects. Please select some empty directory outside of CCSDK. You can
change it later using File menu. If you are going to work with this directory for a longer time it is recommended to
check Use this as the default and do not ask again option.

Eclipse Launcher X

Select a directory as workspace

ChipCraft IDE uses the workspace directory to steore its preferences and development artifacts.

Workspace: | /home/frafalh/ccide-workspace ~ || Browse...

[E] Use this as the default and do not ask again

Cancel | Launch

Figure 2.1. Workspace directory selection window.

After starting the IDE you should see empty IDE window (figure 2.2)

To close the IDE select File —> Exit from menu or click a cross symbol on the window titlebar. In the latter case
you will be asked for confirmation (figure 2.3).

CD User Guide .
[CC-IDE User Guide 1.0]



workspace - ChipCraft IDE - + X
File Edit Source Refactor Navigate Search Project Run Window Help

|Q ” o ||E I—- v || No Launch Configurations v|on:|— v |: 0 1 0
@vﬁﬁv&?v@v:#vev‘Ev L E N (e w 1 FE | e Al v ) w X E{@

[t Project Explorer 23]_ | =0 | gEout &2 @Bul =0

An outline is not available.

*! Problem £ ) Tasks & Console ] Properti = O | | # EmbSys Registers im
P ¥
2 o~ ofe |- Arch: ccproc Vendor: ChipCraft Chip; sim Board: —
57

0 items Register Hex Bin

Description Resource » (= MULTICORE
» (= PWD
b (= IRQ
» (= ICACHE

ﬁ items selected

Figure 2.2. Empty CCIDE window.

Confirm Exit x

9 Do you want to exit the ChipCraft IDE?

|_|Remember my decision

Cancel || Exit

Figure 2.3. Confirmation on closing CCIDE.

User Guide
[CC-IDE User Guide 1.0] <CD>



2.2 Creating a project

To create a new project select File —> New -> CCSDK Project from main window menu (figure 2.4).

Edit Source Refactor MNavigate Search Project Run Window Help

Open File... = Project...

5} Open Projects from File System... &% Source Folder
Close Cerl+W ¥ Folder i
Close All Shift+Cerl+W [¢] source File
Save tri+S |n| Header File
[zl Save As... [ File from Template -
Save All S hift-Ctrl+ & Class I
i Other... Ctrl+N e
s | 65 if (1(u->C1

Figure 2.4. File -> New menu.

First page of New Project wizard will show up (figure 2.5). Specify a project name. Project location is auto-generated
using workspace path and project name. If you want you can override it by unselecting Use default location
checkbox.

After filling the fields click Next.

Create CCSDK Project... + X
CCSDK Project
Create a new CCSDK project
Project name: | hello-world|
[E)Use default location
Location: | /fhome/frafalhieclipse/committers-photon/runtime-—ccid | Browse.
@ < Back Next = Cancel Finish

Figure 2.5. First page of New Project wizard.

In the second page of New Project wizard (figure 2.6) you can provide basic configuration of the project. Option
specified on this page are persisted so next wizard invocation will restore all lastly used values.

CCSDK Location field allows customization of CCSDK location. By default parent directory of CCIDE directory is
used.

CD User Guide 9
[CC-IDE User Guide 1.0]



Target board and connection options are also configured in this page. If you have a hardware ASIC or FPGA board

please select its name in Board combo-box. If you have no dedicated hardware or would like to use build-in simulator
please select special board named sim.

For physical board select proper debug and UART port. The first one is used for sending debugger commands and
receiving results. The second one is used as STDIO stream. On Linux ports usually follow a pattern: /dev/ttyUSBn.
On Windows ports follow a different pattern: COMn. CCIDE will show all connected ports as combo-box suggestions.

C++ Support option makes the project C++ compatible. Enable it if you are considering usage of C++ source files.

Built Type allows to specify how build process looks. Select Managed Build if you want CCIDE to always generate
Makefiles from configuration provided in graphical user interface. If you want to have control over Makefiles select
Makefile Build option.

After filling all fields click Next.

Create CCSDK Project... + X |
CCSDK Project

Configure CCSDK project environment variables...

5DK options-

CCSDK location; | /nome/rafalh/chipcrafticesdk Browse...

Board: | ml605| -

Debug Port: | /dev/ttyUSBO | = || Browse...

UART Part: | /dev/ttyUSBO w || Browse...

|_|€++ Support
Build Type

|_Managed Build - Makefile is generated automatically
{C)Makefile Build - Makefile is managed by user

@:. < Back | Next> Cancel Finish

Figure 2.6. Second page of New Project wizard.

In the third page of New Project wizard (2.7) user can configure initial code generation. Select peripherals required
by your project in a tree on the left part of the wizard window. Selecting a peripheral allows to customize its options
on the right panel.

After configuring peripherals click Finish. New project is being generated.

After project is created IDE opens main.cfile (figure 2.8). Peripherals selected in New Project wizard have initialization
routines generated and called from main() function.

User Guide
10 |CC-IDE User Guide 1.0] <CD>



Peripherials
Configure peripherials for code generation

Create CCSDK Project...

Baudrate: |9500 = | +

[E) Transmitter
Receiver
CIRTS

[]eTs

["IBig Endian

Stop Bits: | 1 Stop Bit |

= Back J Next =

| | Cancel

Finish

Figure 2.7. Third page of New Project wizard.

cide_product - hell /main.c - ChipCraft IDE - & x
File Edit Source Refactor Navigate Search Project Run Window Help
[&][][w] |- + || No Launch configurations v |on: — v B S R N ABSEERT  giva v dv Gy O Qr | @
st drles Aot sl
¢ Project Explorer 5% 5% ¥ =0 |[@maincs| =8 | B outline X @ Build Targets =8
* < hello-world 1 #include <stdio.h= AN ok ~
» @ Build Targets 7 #isclude <board. i U stdich
Vi i 3 #include <ccproc.h>
B inciiges 4 sinclude <ccproc-amba.h> w1 board.h
5 #include <ccproc-amba-spi.hs = ceproch
6 #include <spi.h> &1 ceproeambalt
s Makefle z #include <ccproc-amba-uart.h> R
o= static void initspie() { o spih
18 volatile amba_spi t *spi = AMBA SPI PTR(8); U ccproc-amba-uarth
© 5initSPIO() : void

spi_set_baud div(spi, 200000, PERIPHO_FREQ);
spi_transmit_data_LSB_first(spi);
spi_set_transmission_mode{spi, SPI_CTRL_MODES);
spi_set_frame_length(spi, SPI_CTRL_FLENS);
spi_enable(spi);

}
- static void initUARTL() {

volatile amba_uart_t *uart = AMBA_UART_PTR(1);
uint32_t baudrate = 9600;

uart->CTRL = UART_CTRL_TXEN|UART_CTRL_RXEN|®;

main(void)

/* Initialization */
1initSPIB();
initUARTL();

/* Display hello world */
printf("Hello World\n");

while (1) {

/* Main loop /

add user code here */

T

return 0;

}

uart->PRES = AMBA_UART_PRES((PERIPHO_FREQ / baudrate) / 1s,
uart->MODE = UART_MODE CHRL8 | UART MODE_STOP BITS 1 | UART MODE_PARITY NONE;

(PERIPHO_FREQ / baudrate) % 16);

© ® initUARTL()

|21 Problems 4] Tasks | B Console £2 |[[] Properties
No consoles to display at this time.

28~ v

=

0 EmbSys Registers 53 =
o= = Arch: CCPROC Vendor: ChipCraft Chip: ccproc Board: — none —
Register ‘ Hex ‘ Bin ‘ Res
» (= MULTICORE
» (= PWD
> ian

Writable Smart Insert  30: 16

Figure 2.8. CCIDE main window after project creation.

&

User Guide

[CC-IDE User Guide 1.0] 1



2.3 Building a project

To build a project click on a build button % . You can also select option Project —-> Build All from menu.

CCIDE has dedicated toolbar for most used actions when working with CCSDK projects. It is visible on figure 2.9.
Sl B

Figure 2.9. CCIDE Toolbar.

Toolbar has following buttons:

e Clean - cleans build artifacts,

e Build - builds the project,

e Rebuild - cleans and builds the project,
e Save in RAM,

e Save in Flash memory,

e Reset device,

e Serial terminal.

All toolbar buttons work in context of current project. It is determined from selected element in project tree or from file
currently open in editor window (depending on input focus).

Project created by CCSDK Project wizard contains ccsdk_common virtual folder (visible on figure 2.10). All files in
this folder are symbolic links to corresponding files in CCSDK. You should not modify them because all projects share
them. If you need to make changes you should copy a file to your project and remove from ccsdk_common folder.

| 5 Project Explorer 23 |
| * 15 hello-world

¥ (&) Build Targets

¥ 4P Binaries

¥ it Includes
| » @ build

L A e
-sdk-common

¥ [g board.c
[ spic
» [§ startup.S
¥ [& syscalls.c
» [guart.c

¥ lg main.c
[ & Makefile

Figure 2.10. Linked source files.
Custom Makefile actions can be configured in CCIDE as Build Target items. They are visible in Project Explorer

(figure 2.11) and a dedicated view (figure 2.12). By default new project wizard adds Build Targets for resetting and
programming a device.

User Guide
12 |CC-IDE User Guide 1.0] <CD>



¥ Project Explorer £2 |

(& Reset MCU
(@) Write Flash Memory
(@) Write RAM Memory

» 3 Binaries

¥ il Includes

» (= build

¥ g cesdk-common

» g main.c

[.@ Makefile

Figure 2.11. Build targets in project tree.

|EE Outline | @ Build Targets 23 | S

¥ =5 hello-world
(& .settings
» (= build
[= cesdk-common
(@) Reset MCU
(& Write Flash Memory
(@ Write RAM Memory

Figure 2.12. Build targets view.

2.3.1 Perspectives

CCIDE supports perspective concept. User can customize the main IDE window by adding views and changing
their position. All such actions happen in context of a perspective. IDE can have multiple perspectives optimized for
different tasks e.g. code development, debugging etc. By default CCIDE uses two perspectives: C/C++ and Debug.
User can create more if needed. List of all visible views and their positions are persisted in perspective so when IDE
is restarted they are in the same place.

CD User Guide 13
[CC-IDE User Guide 1.0]



2.4 Project properties

Project properties can be changed by clicking RMB' on the project in the Project Explorer view and selecting

Properties from a context menu.

All project properties are grouped in categories visible in a tree control in the left side of the window. Categories can
be filtered by providing a query text inside field above the category tree. To save changed properties and close the
window click Apply and Close button at the bottom.

Options directly responsible for building the project are in C/C++ Build category.

C/C++ Build -> Build Variables page allows to set custom variables accessible from some CCIDE input fields.They
can be used in a form of placeholders: $ {xxx}. They are useful if the same string is needed to be repeated multiple
times in configuration. To determine if input field supports variables check if Variables... button is nearby.

C/C++ Build -> Environment page (figure 2.13) allows to set environment variables used during the build process.
They are accessible from Makefile scope. New Project Wizard configures multiple environment variables starting
with ccspk_ prefix. They should not be changed nor removed using this page. To change CCSDK options use
CCSDK Options properties page.

i Properties for hello-world +

| type filter text a Environment T v w
» Resource i : Ful ) i e ) |
Builders Configuration: L Default [ Active ] - _.Manage Configurations... |
¥ C/C++ Build ‘
Build Variables
En ent Environment variables to set Add...
Logging i Variable Value Origin
Settings i i Select...
] ) CCSDK _BOARD ml605 USER: CONFIG
Tool Chain Editor
CCSDK _DBG_PORT jdevfttyUSB1 USER: CONFIG Edit
» C/C++ General | = = ) | .
: | CCSDK_HOME fhome/rafalh/chipcraft/i| USER: CONFIG
CCSDK Options | | Delete
) | CCSDK_UART_PORT | /dev/ttyUSBO USER: CONFIG
Project References = = y |
; | CWD fhome/rafalh/eclipse/col| BUILD SYSTEM Undefine
Run/Debug Settings ) |
| PATH fhome/rafalh/chipcraft/i| BUILD SYSTEM
| PWD fhome/rafalhfeclipse/col| BUILD SYSTEM
| QUIET o USER: CONFIG
|

@ Append variables to native environment
Replace native environment with specified one

Restore Defaults | Apply

@ Cancel | Apply and Close

Figure 2.13. Environment variables configuration.

Toolchain options in a project of Managed Build type can be configured in C/C++ Build -> Settings page (figure
2.14). All options are configuration specific (they can affect Debug or Release project configuration).

Tool settings tab allows to set optimization level for C and C++ compiler, debugging flags, warnings and other flags
for the compiler and linker. Include directories and preprocessor definitions can be configured too (it is recommended

' right mouse button

User Guide
4 [CC-IDE User Guide 1.0] <CD>



to use C/C++ General -> Paths and Symbols page for that). Every tool used by the project has separate configuration.

To configure a tool find its name in tools tree (e.g. Cross GCC Compiler) and select one of options categories
belonging to the tool.

i Properties for hello-world + X

type filter text a Settings = - w
} Resource ;
Builders Configuration: £ Default [ Active ] - _.Manage Configurations...
* C/C++ Build
Build Variables
Environment BiTool Settings |l #Build Steps || Build Artifact || yBinary Parsers |
E_ogging ey

Settings | | b | Prefix mips-cc-elf
|* 5 Cross GCC Compiler

( Dialect |Path  |/homefrafalh/chipcraft/ccsdk/toolchain/mips-cc-elfibin Browse...

Tool Chain Editor
» C/C++ General
CCSDK Options
Project References
Run/Debug Settings

(% Preprocessor

2 Includes

(% Optimization

{2 Debugging

= Warnings

(% Miscellaneous
| > &5 Cross GCC Linker

(% General

(% Libraries

(2 Miscellaneous

(% Shared Library Settings
| %5 Cross GCC Assembler

w

(?) Cancel | Apply and Close

Figure 2.14. Toolchain settings.

Build Steps tab allows to configure additional commands to run before and after the build process (figure 2.15).
Command running before build process is entered in Pre-build steps section. Commands running after build process
are entered in Post-build steps. In Managed Build project CCIDE uses post-build step to print size of resulting binary
and generate SREC file. You can add multiple commands in build steps by concatenating them using && operator.

In Makefile project C/C++ Build -> Settings page is simplified and contains only parsers configuration. User is
supposed to provide compiler and linker flags hard-coded inside a Makefile.

C/C++ General -> Paths and Symbols page is used to configure include directories, C preprocessor definitions and
libraries used by the linker.

Includes tab (figure 2.16) allows configuration of include paths. Paths are added independently for used programming
languages (e.g. C, C++, Assembly). Environment and build variables can be used in path definition.

CCIDE adds multiple paths when generating the project (they start with $ {cCcSDK_HOME }). They should never be
deleted.

Symbols tab (figure 2.17) allows configuration of C preprocessor definitions. Similarly to Includes tab you can use
environment and build variables during symbol definition. Definitions are independently defined for each language
(C, C++).

CCIDE add multiple symbols when generating the project (e.9g. BOARD, BOARD_<board_name>). Please do not
delete them from configuration.

CD User Guide 15
[CC-IDE User Guide 1.0]



| type filter text

» Resource
Builders

¥ C/C++ Build

Build Variables

Environment

Logging

Tool Chain Editor

» C/C++ General
CCSDK Options
Project References
Run/Debug Settings

Properties for hello-worid + X

Settings Clwir o
H3Tool Settings | #Build Steps || 'Build Artifact ” [@Binary Parsers
Pre-build steps
Command:
| [ -
Description:
| -

Post-build steps
Command:

| mips-cc-elf-size § { BuildArtifactFileName} && mips-cc-elf-objcopy -O srec ${BuildArtifactFileName} ${BuildArtifactFilel| «

Description:

| -

Cancel ; Apply and Close
Figure 2.15. Build steps configuration.
Properties for hello-worid + % |
i:'_,f!_',.e fitter text a | Paths and Symbols (Twiw w
» Resource [ il
Builders Configuration: | Default [ Active] > || Manage Configurations... |
* C/C++ Build
Build Variables =
Environment (=includes || # Symbaols || miLibraries || B Library Paths ” [Z=Source Location || | References |
Logging - =
Settings nguages Include directories Add...
Tool Chain Editor Assembly J f:i:-': H{C - Edit...
v C/C++ General GNU C (= s{CcCSDK_HOME}/common/include
» Code Analysis @ ${CCSDK _HOME}/boards/${CCSDK _BOARD}/include Delete
Documentation (= s{CcCSDK_HOME}/driversiinclude =
File Types
Formatter
Indexer Move Up
Language Maprngs e g
Rl A - G | |
Paths and Symbo () "Preprocessor Include Paths, Macros etc.” property page may define additional entries -
Preprocessor Include f [ Show builtin values
S | & Import Settings... || B Export Settings... |
Project References = g% =% 20 L
Run/Debug Settings wrTm—— s
| ore Defaults || pp
® Cancel ; Apply and Close

Figure 2.16. Include directories configuration.

CCSDK specific configuration can be found in CCSDK Options page (figure 2.18). It has the same options as you
encounter during New CCSDK Project wizard. CCSDK home location, board, debug and UART (stdio) ports can be
configured. It is useful if configuration provided during project generation needs to be changed.

User Guide

[CC-IDE User Guide 1.0]

&



» C/C++ General
Project References
Run/Debug Settings

Properties for hello-worid + X
't'_a!:-e filter text a Paths and Symbols -
» Resource - : = 2 | fi i
Builders Configuration: | Default [ Active ] ]| | Manage Configurations...
¥ C/C++ Build
Build Variables - —
Environment (=includes || # Symbols || =iLibraries || ®=Library Paths ” [ ZSource Location || | References
Logaging [
Settings Languages Symbol _“T_““ur-.: | Add... |
Tool Chain Editor ${CCSDK_BOARD} | edit. |
¥ C/C++ General # BOARD_ML605 : -
}» Code Analysis | Delete |
Documentation Export |
File Types
Formatter
Indexer
Language Mappings
; 2 : (i) "Preprocessor Include Paths, Macros etc.” property page may define additional entries
Preprocessor Include f [ Show builtin values
CCSDK Options [ = 1 P = |
Project References | & Import Settings... || % Export Settings... |
Run/Debug Settings
| Restore Defaults | Apply |
—_—
® | Cancel | | Apply and Close |
Figure 2.17. Preprocessor symbols configuration.
Properties for hello-worid + X
[ type filter text a | €3 Debug port is not a valid device Swiw o
» Resource - "
Builders CCSDK location: |!home}rafa[h!ch'[pcraftfccsdk || Browse...
» C/C++ Build
Board: | mI60S - |

Debug Port: | /devittyUsB1 - | Browse...

UART Port: | /dev/ttyUSBO | = || Browse... |

| Apply |

Cancel | [ Apply and Close |

&

Figure 2.18. Project CCSDK specific properties.

User Guide
[CC-IDE User Guide 1.0]

17



2.5 Debugging

To debug an application in CCIDE launch configuration has to be created. There are two supported configuration
types: CCSDK Hardware and CCSDK Simulator. The first one is supposed to be used with a dedicated ASIC or
FPGA board connected to the computer with a USB cable. The second one uses simulator software included in
CCSDK package.

Launch configuration can be run in one of two defined modes: Run (for quick running without attaching a debugger
program) and Debug (full featured debug mode). Depending on launch mode different perspective is used.

Launch configuration can be created by clicking RMB on Run or Debug toolbar button and selecting Debug Config-
urations.... In next window (figure 2.19) all launch configuration for given launch mode are displayed. New launch
configuration can be created by clicking RBM on configuration type in left part of the window and selecting New.

Debug Configurations X

Create, manage, and run configurations

Name: | hello-world Default

€ ||/ g main|#5 Debugger| @ Startup| & Source| ] Common

[E] C/C++ Application Project:
[€] c/c++ Attach to Application 7

= | hello-world Browse...
[e] C/C++ Postmortem Debugger L
C/C++ Remote Application fEEE Application:
¥ 7' CCSDK Hardware | build/hello-world
¥ hello-world Default (1) '
~ B CCSDK Simulator Variables... Search Project... Browse..,

oo wartd Default:

Build (if required) before launching

[£] GDB Hardware Debugging

Build Configuration: | Select Automatically -
g Launch Group :
B Launch Group (Deprecated) _Enable auto build \_'Disable auto build
| O Use workspace settings Configure Workspace Settings...
Ravert App.
Filter matched 11 of 13 items :
@ | Close | Debug

Figure 2.19. Launch configuration.

After launch configuration is created it can be executed by selecting Debug/Run button in launch configuration
window or by selecting created launch configuration from context menu of Debug/Run buttons in the toolbar.

Launch configuration with default options can be started by using a shortcut. To do so click RMB on Debug/Run
toolbar button, then highlight Debug As/Run As submenu and select suitable configuration type (figure 2.20). If any
configuration of selected type already exists for current project it is started. If not a new configuration is created with
default options and it is started instead.

User Guide
18 |CC-IDE User Guide 1.0] <CD>



£-0-Q~ &5~ BEM fivEivioYa

B 1 multicore-test Default "

i 2 hello-world Default (1) | ) FEES

1 3 hello-world Default = 8= Outline 52 | @) Build Targe

Debug As » ¥ 1 CCSDK Application 4

Debug Configurations... ' F~ 2'CCSDK Simulation ;
Aot Organize Favorites... 3 Local C/C++ Application

Figure 2.20. Debug launch shortcut.

It is important to not create launch configurations not corresponding to project board. If project uses sim board
CCSDK Simulator configuration should be used. If project uses ASIC or FPGA board CCSDK Hardware configuration
should be used. Binary files produced for simulator are different than binary files produced for other boards so both
launch configurations cannot be used interchangeably.

After debug configuration is launched debug perspective is opened (figure 2.21). In Debug view (figure 2.22) all
launches are visible in a tree. Applications utilizing multiple cores are displayed with a list of threads instead of cores.
Every thread has associated stack-trace (if program is halted).

runtime-ccide_product - multicore-test/main.c - ChipCraft IDE - & x
Flle Edit Source Refactor Navigate Search Project Run Window Help
[ % [ #] m] |4 pebug || o mutticore test pefault vulice I | 0w ) B R P B BrOvhy @S- vyt
| 4% Debug 22 | %i» ¥ =0 ||(0=Variables % Breakpoints &< Expressions 52 il Registers B\ Modules Wosx%t - =0
| = i multicore-test Default [CCSDK Simulator] Expression ‘ Type ‘ Value
- B
uf? multicore-test (- g_currentCorelndex unsigned int T
w 4 Thread #1 1 (core 0) (Susfsnded : Signal : SIGINT:interrupt) | &5 Add new expression
= at main.c: 0x1614

= main() at main.c:266 0x1614

v o Thread #2 2 (core 1) (Suspended : Container)
= isrl5() at main.c:114 Oxdd4
= int_enter_rest() at startup.5:331 0x348

o cosim

o gdb (7.12.1)

[g main.c [ uart.c [ Makefile [ main.c 8 | [g vart.c =8 | 5= outline =¥ Disassembly &

* Make another ICI from core 8 *
/7 ke g ther Lo fon core i Enter location here | » | &1
g_expectedIciSrcCore = 0;
g_expectedIciDestCore = coreIndex; »00001614: | bne v1,v0,0x1610 <main+1920>
g_expectedIcl = 1; 00001618: nep
IRQ_CTRL_PTR->ICORE_IRQTRIG = 1 << coreIndex; // trigger interrupt on another core 168 g_stopCore = 1;
6000161c:  li ve,1
/* wait for ICI */ 00001620:  sW vo, -32336 (gp)
while (g_coreProcstate t= 2); 161 while (MCORE_PTR->STATUS != 1);
. 00001624 Tlui a0,0x3001
/* Stop core */ 00001628: 1w v1,0(a0)
g_stopCore = 1; =| eeeels2c:  bnme vl,v,0x1628 <main+1944>
while (MCORE_PTR->STATUS != 1); 08681630: lui v1,0x3003
164 IRQ_CTRL_PTR->ICORE_IRQTRIG = 0;
/* Try triggering with wrong values - nothing should happen */ 66081634:  sw zero,48(vl)
IRQ_CTRL_PTR->ICORE IRQTRIG = ©; 165 IRQ_CTRL_PTR->ICORE_IRQTRIG = ~((1 << MCORE_PTR->CORE_NUM) - 1)
TRQ_CTRL_PTR->ICORE_IRQTRIG = ~((1 << MCORE_PTR->CORE_NUM) - 1); 00001638: w _an,4(aq) i
263 for (i = 1; i < numofcores; ++i)
6000163c:  addiu  s3,s3,1
162 static int SPRAM BSS g_spramBssVar; =l 165 IRQ_CTRL_PTR->ICORE_IRQTRIG = ~((1 << MCORE_PTR->CORE_NUM) - 1)
169 static int SPRAM_DATA g_spramDatavar = 123; 00001640:  sllv  vo,ve,a0
178 00001644:  negu  vO,vO
B console 5% v Tasks [2! Problems (3 Executables Gl Debugger Console =0 | M EmbSys Registers [J Memory 32 LI > ¥ =0
5% S EREEME v v | Menitors - %%

multicore-test Default [CCSDK Simulator] ccsim
Loading /home/rafalh/chiperaft/cesdk/tests/multicore/build/multicore-te
Starting simulator...

startin
starting multicore test (4 cores)

Figure 2.21. Main window during debugging.

To access standard input/output streams from debugged program use Console view. In case of CCSDK Simulator
configuration type console with simulator output should already be visible. In case of CCSDK Hardware configuration
serial terminal has to be opened manually by clicking Serial Terminal button in CCSDK toolbar (figure 2.9). Console
can be used both for reading program output and sending text to program input (figure 2.23).

CD User Guide 19
[CC-IDE User Guide 1.0]



%5 Debug 22 | i+ ¥ =08

~ Bl multicore-test Default [CCSDK Simulator]
v # multicore-test
¥ i Thread #1 1 (core 0) (Suspended : Signal : SIGINT:interrupt)

¥ o Thread #2 2 (core 1) (Suspended : Container)

ga ccsim
o gdb (7.12.1)

main{) at main.c:266 0x1614

isr15() at main.c:114 Oxdd4
int_enter_rest() at startup.5:331 0x348

Figure 2.22. Debug process tree.

|L:_f Problems J= Tasks | El console 22 |E Properties Eﬁ MB~tfy =8
CC Serial Terminal

Running: /[home/rafalh/chipcraft/ccsdk/toolchain/mips-cc-elf/bin/make term

" /home/rafalh/chipcraft/ccsdk/tools/ccterm” fdewv/ttyUSBe 115200

Hello! What 1s your name?

Rafal

Hello Rafal!

Figure 2.23. Debug UART console

EmbSys Registers view displays all registers of debugged device. Each register and in case of some registers

groups of bits in registers can be modified independently.

Before using this view user should manually configure it by clicking a wrench icon. Then in EmbSysRegView plugin

properties a proper board shall be selected.

» [ STATUS

[= PRES
» [35 CTRL
» [&] moDE
& TOR
RDR
» [ IrRQM
» 70 IRQF
IRQMAP
» [E TMNG
» (= UARTL
» (= UART2

i EmbSys Registers &2 | 0 memory =0
o = Arch: CCPROC Vendor: ChipCraft Chip: ccproc Board: — none —
Register Hex Bin Reset Access| Address Description

¥ (= UART UART Controller

[5]1 RxC (bit 0)
[51 T (bit 1)
[5] TXDRE (bit 2)
[=] PERR (bit 2)
[F] FRERR (bit 4)
[F] OVERR (bit 5)
[5] RXBRK (bit 6)
[F]cTs (bit 7)

0x00000006 | 00000000000000000000000| 0x00000000| RO | OxBOOO0100| Status Register

0x0 0 Reception Complete

Ox1 1 Transmission Complete

Ox1 i 2 Transmission Data Register Empty
0x0 0 Parity Error

0x0 t] Framing Error

0x0D 0 Overrun Error

0x0 0 Break Reception

0x0 0 CTS (Clear To Send) Status

0x0002000D| 00000000000010010000000| 0x00000000 | RW | OxBOOOO0104 | Prescaler Register (lo mantisa, hi fraction)
0x00000003 | 00000000000000000000000( Ox00000000| RW 0x80000108 | Control Register
0x00000000 | 00000000000000000000000| Ox00000000| RW 0xB8000010c | Mode Register
0x0000006F | 00000000000000000000000( Ox00000000| RW 0xB80000110| TX data Register
0x00000000 | 00000000000000000000000( 0x00000000 RO 0x80000114| RX data Register
0Ox00000000| 000000D00000000000000000| 0x00000000 RW 0x80000118| Interrupt mask Register
0xC00C00C0| 00000000000000000000000| 0x00000000| RW | 0x8000011c | Interrupt flags Register
0x00000002 | 00O00000000000000000000| 000000000 | RW | OxBOOO0120| Interrupt mapping
0x00000000 | 00000000000000000000000| Ox00000000 | RW | OxX80000124| RS485 timings Register
UART Controller

UART Controller

User Guide

[CC-IDE User Guide 1.0] <CD>

Figure 2.24. Debug peripherals view.



To load contents of a register user has to double click on the register itself or a containing element (e.g. entire
peripheral). Register values are displayed in red font if they changed after last program execution. To modify register
content double click on register value cell and enter a new value. Note: it only works if program is already halted.

CD User Guide o1
[CC-IDE User Guide 1.0]



2.6

IDE preferences

To open CCIDE preferences window select menu Window -> Preferences. Most of preferences are the same as in
Eclipse CDT.

In General -> Keys page (figure 2.25) you can configure hotkeys for all CCIDE commands. CCIDE specific com-

mands starts with CC prefix.

Preferences + X
i:'_;pe filter text a | Keys gl
* General

» Appearance Schemedefault -
Capabilities
Compare/Patch |t;,-rn:— filter text a |
Content Types
i L Command | Binding When Category | User
} Editors O T S 5T VDT T D cu
Globalization Cast To Type... Cast to Type or Array
B | o Cast to Type or ATay
» Network Connections CC Clean CCSDK
Perspectives CC Clean Build CCsDK
Search CC Debug Server DK
¥ Security CC Flash Memory CCSDK
» Startup and Shutdowr CC Make All CCSDK
Tracing CC Reset CespK
Ul Responsiveness Mot CC Save In RAM CCSDK
Web Browser CC Terminal CEsDK
» Workspace rhanna Methnd Sinnatira  ShiftuAlbar I Windmwe Bafactar - laua
» Ant
» CIC++ Copy Command Unbind Command Restore Command Filters... Export CS\..
» Help
» Install/Update Name:
b Java Diescription: Conflicts:
» Plug-in Development Command When
» Run/Debu
g Binding: | &
» Team L —
Terminal When: st
Restore Defaults Apply
® Cancel Apply and Close
Figure 2.25. Hotkeys preferences.
User Guide

[CC-IDE User Guide 1.0]

&



3. Troubleshooting CCIDE

ChipCraft does its best to make sure CCIDE works good on all supported platforms but not all configurations can be
tested before release so you can stand upon errors. Please report them to ChipCraft to help make our product better.
Find information in this section useful to get more details about possible errors.

In case of every error Eclipse platform log file is worth checking for the cause. The easiest way to read its contents
is to open Help > About Eclipse Platform > Configuration Details. This prints out a great number of details about the
environment and also concatenates the .log file. It is great for including in a bug report.

In case of debugging issues it is useful to enable GDB traces console. To do it go to Window -> Preferences ->
C/C++ -> Debug -> GDB. Then activate Show the GDB traces consoles with character limit and set the limit to a big
number e.g. 5000000. After you save the changes there should be console named "gdb traces" available in Console
View console selector during debugging session. All commands sent to GDB and all responses from GDB (possibly
errors) should appear there.

If you still can’t locate an issue happening during debugging you can enable debug mode of dbgserver.py script
which is translating GDB commands to OCD commands. To do it go to launch configuration properties and add
following arguments to the debug server command line:

—-—log DEBUG --log-file dbgserver.log

CD User Guide 23
[CC-IDE User Guide 1.0]



4. Revision History

‘ Doc. Rev. ‘ Date ‘ Comments ‘

‘ 1.0 ‘ 03-2019 ‘ First Issue. ‘

User Guide
[CC-IDE User Guide 1.0] <CD>



in] fR e

£ PChipCraft

ChipCraft Sp. z o.0. Dobrzanskiego 3 lok. BS073, 20-262 Lublin, POLAND www.chipcraft-ic.com
©2019 ChipCraft Sp. z o.0. CC-IDE-UserGuide-Doc_032019.

ChipCraft®, ChipCraft logo and combination of thereof are registered trademarks or trademarks of ChipCraft Sp. z 0.0. All other names are the
property of their respective owners.

Disclaimer: ChipCraft makes no representations or warranties with respect to the accuracy or completeness of the contents of this document
and reserves the right to make changes to specifications and product descriptions at any time without notice. ChipCraft does not make any
commitment to update the information contained herein.


https://www.linkedin.com/company/chipcraft-sp.-z-o.o.
https://www.facebook.com/ChipCraftIC
https://twitter.com/ChipCraft_IC
mailto:office@chipcraft-ic.com

	Installation
	Download
	Requirements
	Operating System
	Java 8
	Python
	Python pyserial module


	Using CCIDE
	Starting and closing IDE
	Creating a project
	Building a project
	Perspectives

	Project properties
	Debugging
	IDE preferences

	Troubleshooting CCIDE
	Revision History

