
GENERAL ELECTRIC
COMPUTERS

)

I
c , ~.

"",' .,

CPS-11BO

GE-200 Series
General Assembly

Pro ram II

, .' ". 1·

, ,

GENERAL fj ELECTRIC

cps"'"ao

GE-200 SERIES

GENERAL ASSEMBLY

PROGRAM II

REFERENCE MANUAL

Program Numbers

CD225F1.006

CD225F1.007

CD225F1.008

CD225F1.009

CD225F1.010
C D225F1 .011

CD225F1.012

CD225F1.013

CD225F1.014

May 1963

Rev. January 1966

GENERAL. ELECTRIC
INFORMATION SYSTEMS DIVISION

PREFACE

This manual has been prepared by the General Electric Computer Equipment Department for the
programmer and operator of the GE-200 Series Information Processing Systems. It is one of
the many programming manuals available to users of General Electric systems. The manual
describes and tells how to use the General Assembly Program II.

The programs described in this manual are available from the Program Library according to
the user's configuration of equipment as follows:

CD225F1.006/7 This is an 8k version of the General Assembly Program II and contains
processing facilities for DATANET-15*, Document Handler (1200dpm),
GE-235 Auxiliary Arithmetic Unit, and Multiple Tape Lister instructions.

CD225F1.008 This is an 8k BRIDGE II-compatible version of the General Assembly
Program II, and it contains processing facilities for DATANET-15,
Document Handler (1200dpm), GE-235 Auxiliary Arithmetic Unit, and
Multiple Tape Lister instructions.

CD225F1.009/10 - This is a 4k version of the General Assembly Program II and does not
contain processing facilities for DATANET-15, Document Handler
(1200dpm), GE-235 Auxiliary Arithmetic Unit, and Multiple Tape Lister
instructions.

CD225F1.011/12 - This is an 8k version of the General Assembly Program II which
contains processing facilities for the 300 lpm printer.

CD225F1.013/14 - This is a 4k version of the General Assembly Program II which
contains proceSSing facilities for the 300 lpm printer.

This publication supersedes the General Assembly Program II manual dated January 1966.

Suggestions and criticisms relative to form, content, purpose, or use of this manual are invited.
Comments may be sent on the Document Review Sheet in the back of this manual or may be
addressed directly to Documentation Standards and Publications, B-90, Computer Equipment
Department, General Electric Company, 13430 North Black Canyon Highway, Phoenix, Arizona,
85029.

o 1963, 1965, 1966 by General Electric Company.

*DATANET, Reg. Trademark of the General Electric Company.

@~a~@@ ~~[ffiO~~-------------(-500-6~-67)

)

..

CONTENTS

I. THE GENERAL ASSEMBLY PROGRAM 1

How the Assembly Works . . • . . • • • • • • . . • 1
The Source Programs. • . • • . • • 3
The Assembly Passes ..•.•..............•.........•......• 3

Pass O. • 3
Pass 1 . • . . • . . • . . . • . . • . • . • • . . • . . 3
Pass 2 • • • . • . . • . . • . • • • . . . • . 3

Programming the Source Program. • . . • . . • . . • . . • . . • • • . . • . • . . . 4
Coding Sheet. • • . • . . . • • 5

Symbol Field . . • • • • . • • 5
Opr (operation) Field. • • • . 6

Instruction Line•.........•..•.........•••. 6
Assembly Control Line. . . • . . • . . • • 6
Constant Line . . • . . • • . . • • . . • . . • . • • • . . • . . • . . 6

Operand Field. . . • . . • • • • • • • 7
Mnemonic. . . • • • . • . • • • . • • . . • . . • • . 7
Decimal. . • . . • • . . • . . • . . • • . • • . • . • . . 7
Symbol .•....•.........••......•.••.••....•..• 8

X Field. . . . • . • • • • • . . • . . • • • • . . . • 8
Remarks Field • • . . • . . • . . • . . • . . • 9
Sequence Field . • • . . . • . . • . . • • . . • . • . . • • • • . . • . . 9

Pseudo Instructions ..•...•........••..•..••...•..•.•.•.•. 10
Constant Line. • • . . . • • • • • • . • • • • • • . • . • . . 10
Control Line. • . • • • • • . . • . . • . • . . . • • • 19
Additional Pseudo Instructions. . . • • • . . . • • . • • . • • • . . . • . . 27

Relocatable Assembly Instructions . • • • • . . . • . . 27
Relative Addressing. . . • • . • . . • . . . • • • . • • . • • . • • • . . . • 29

Relative Addressing Using Plus or Minus••••.•..•...•••..••. 30
Relative Addressing Using ORG • • • • . . • . . • • . . . • . . • • • • • . . • • . • . • • 30
Relative Addressing Using Asterisk . • . • • . . . • . • . . . • • • • . . • . . 31
Multiple Relative Addressing. . • . . • • • • . • . . . • 31

General Assembly Program--Detected Coding Errors. . • . • . • • . . • • • . . • 32
Pass 0 Detected Coding Errors • . . . • . . • • • • 32
Pass 1 Detected Coding Errors. . . . • • . . • • • 32
Pass 2 Detected Coding Errors. • • • • . • . • . . . • • . . • • • . • . • . • • • 33

II. ASSEMBLY OPERATIONS 36

System Configurations. . • • • • . • . . • 36
A-Register Input. . . . • . . . • • • • . • . • . . . • . • • . • . . . • • . . . 38

Switch Settings . • • • . • • • . • • . . • • . • • . . . • . . • • • . • • . • • • • . . . • . . . 38
Card-to-Card Operations with Minimum Card Equipment. . • . • • • • . • • . • . 41

Pass 0 Card-to-Card • . • . . • • • . • . . . • • 41
A Table of Special Symbols . • . . • • • • • • • • . • . . • . • . . • 42

(~ .

iii

Pass 0 Messages . 43
Recovery of a Card Read Error. 43
Other Halts or Loops. 44

Pass 1 Card-to- Card . 44
A Sorted Symbol Table (ST2) . 45
Pass 1 Messages . 45

Pass 2 Card-to-Card . 46
Object Program. 47
Pass 2 Messages . 49

Card Operations with Magnetic Tape and Printer Equipment 49
Pass 0 Cards with Magnetic Tape and Printer. 50

Pass 0 Messages . 50
Pass 1 Cards with Magnetic Tape and Printer. 51

Sorted Symbol Table (ST2). 51
Pass 1 Messages. 51

Pass 2 Cards with Magnetic Tape and Printer. 51
Object Program. 51
Pass 2 Messages . 52

Alternate Assembly Configuration. 52
Pass 0 Alternate Assembly . • 52
Pass 1 Alternate Assembly . 52
Pass 2 Alternate Assembly • 53

Systems Tapes .. 53
Operating with Systems Tape . 53

Master Deck . 53
Tape Format. 54
Instructions for Generating Systems Tape 54
Systems Tape Operations. 55

Pass 0 Systems Tape . 55
Pass 1 Systems Tape • 55
Pass 2 Systems Tape . 55

Addition of Service Routines. • . 56
Adcli.+ion of Symbolic Subroutines•......... 56

Subroutines Are Called . • 56
Multiple Assemblies. • . 58

When an Absolute Object Program•..... 58
When a Relocatable Object Program . 58

End-of-Tape C'1rrl . 58
Bridge II Compatible .<;,.,' ~,Jrns 58

Systems Tape Setup . • 58
Symbolic Subroutines . • . 59
Assembly. • . . • 60

Modifications to General Assembly Program II . 60
Symbol Table Length 60

Symbol Table 1 . 61
Symbol Table 2 . • • . 61

Priority Control Channel. • 61
Vacuum Pocket Retrofit 63
System Tape Controller Modification . • . . 63

Relocatable Object Programs. 63
General. 63
Calculation of Checksum • • 64

Perforated Tape Assembly•....................... 66
General . 66
Perforated Tape Input/Output Conversion Tables. 66

@[E o~(Q)(ID ~[E[ffi~[E~ -----------
iv

ILLUSTRATIONS

1. Diagram of the General Assembly Program II 2
2. Sample General Assembly Program Coding Sheet . 4
3. Symbol Fields. 5
4. Instruction Lines . 6

5. Control Lines . 6
6. Constant Lines . 7
7. Operand Field Instruction Line . 7
8. Operand Field Control and Constant Lines. 8

9. X(Index) Field. 9
10. Remarks and Sequence Field. • 9
11. Pseudo-Instructions for Constant Lines. 10
12. Control Lines for Pseudo-Instruction. 19

13. Transfer Card End Instruction. 26
14. Printer Listing from Pass 0 Coding Errors. 32
15. Diagram of General Assembly Program IT Programs. 37
16. Pass O--Symbolic Program Deck. • 42

17. Special Symbol Table (ST1) . 42
18. Printer Listing of Symbol Errors, Pass 0 . 43
19. Pass 0 Messages. 44
20. Sorted Symbol Table (ST2). 45

21. Pass 1 Messages. 46
22. Object Program Card Deck. 47
23. Object Program Assembly, Pass 2 . 48
24. Pass 2 Messages .. 49

25. Pass 0 Magnetic Tape Messages 51
26. Relocatable Instruction Card . 65
27. Relocatable Assembly Listing Format. 65
28. Perforated Tape Character Set 8-Channel, Friden Flexowriter Model SPD 68

@~ c~m)(m ~~[ffi~~~ -----------
v

j

THE GENERAL ASSEMBLY PROGRAM II

The General Assembly Program has been constantly improved to provide more features and
greater flexibility. General Assembly Program II is the latest version to which several new
operation and pseudo-operation codes have been added. The system transforms the symbolic
mnemonic codes used by the programmer in coding the source program into a ready-to-execute
machine language (or object) program. The features of the system are:

1. Memory addresses may be assigned either by using decimal or octal numeric notation
or by using symbolic notation, whichever results in maximum convenience to the pro
grammer.

2. Additions to and/or deletions from the coding are easily made when the program is
being written.

3. During assembly, either of the following output formats may be selected:

a. Absolute numeric coding which is executed only in a predetermined fixed area
of the computer memory

b. Relocatable numeric coding which is executable in any area of the computer memory
(Its ultimate position in memory is decided by its loader routine.)

4. Many types of clerical or language errors are detected and listed, thus reducing the
amount of machine debugging time needed in new programs.

5. A listing of the assembled program is printed out, including error indications, symbolic
listings, and assigned memory addresses.

6. The system is completely compatible with the BRIDGE II, Operating Service System
providing retrieval and execution of programs stored on magnetic tapes.

General Assembly Program II is a tool that provides accurate, well documented programs,
which can be quickly debugged and placed in operation, resulting in significant savings to the
user.

HOW THE ASSEMBLY WORKS

The General Assembly Program produces an object program by successively processing the
symbolic coding of the source program. The source program is processed with the assembly
programs through the computer in three passes. The output produced by each pass forms part
of the input for the next pass. A flow chart of a typical General Assembly Program is shown
in Figure 1. Note that the outputs from both pass a and pass 1 are used as inputs to pass 2.

-1-

PASS 0 PROGRAM
Cards, Perforated
or Magnetic Tape

PASS 1 PROGRAM

Cards, Perforated
or Magnetic Tape

Printer
(Opt ional)

PASS 2A
Cards, Perforated
or Magnetic Tape

Input

Output

ASSEMBLED PROGRAM
Cards, Perforated
and/or Magnetic

Tape

PASS 2R
Cards or

Magnetic Tape

ut

Printer

SYMBOLIC PROGRAM
Cards or

Perforated Tape

STl (Output)
Cards or

Perforated Tape

ST2 (Output)
Cards, Perforated
or Magnetic Tape

Input

Figure 1. Diagram of the General Assembly Program II

@[E c~(O)(Q) ~[E[ffiO[E~ -----------

-2-

j

The program produces as its final output an object program in any of the following media or
combinations of them:

1. A program deck of punched cards in binary or octal notation
2. A program magnetic tape
3. A program perforated tape
4. A printed listing of the object program

The Source Program

The source program is written using pseudo-instructions, symbolic addresses and mnemonics
of operations to be performed. Cards punched for each line of the programmer's coding sheet
become the symbolic source deck used in each of the assembly passes.

The Assem by Passes

Each of the three passes of the assembly performs certain functions which are designed to
provide the programmer with maximum information concerning the object program.

PASS 0 accomplishes 3 operations:

1. It prepares the source program for subsequent use in other assembly passes.

2. A table of special symbols is formed containing all symbolic operands appearing in
the Input/Output (I/O) instructions. This symbol table is referred to as ST1.

3. It checks all symbolic names in the input deck and identifies undefined symbols,
multiple symbols and those with no reference.

Pass 0 further provides a listing on the printer, or if desired, the listing can be printed on
the console typewriter.

The output from Pass 0 will be a packed symbolic program deck starting with sequence number
20000 and a special symbolic table (STI) deck with sequence numbers starting at 10000. The
program decks will be punched into cards, written on magnetic tape or punched on perforated
tape depending upon the configuration of the system.

PASS 1 uses the output of pass 0 to assign memory locations to all symbols in the input source
deck. It forms a sorted table of these symbols and the numeric values assigned. This table
is referred to as ST2 and is listed by the printer or on the console typewriter.

The output from pass 1 (ST2) can be punched into cards, written on magnetic tape, or punched
on perforated tape, again depending upon the configuration of the user's system.

PASS 2 uses the outputs of pass 0 (Packed 20000 deck, STI symbols table) and pass 1 (ST2
symbol table) as input to the final pass. Pass 2 does the complete assembly of each instruction
as specified by the source program.

-3-

Pass 2 can be either absolute (2A) or relocatable (2R), since both are not used in the same
assembly. However their end result is the same. The output of pass 2 is the assembly listing
with indicated errors and the object program itself on punched cards, perforated tape, or magnetic
tape.

PROGRAMMING THE SOURCE PROGRAM

The General Assembly Program coding sheet (CK 34), illustrated in Figure 2, contains repre
sentative pseudo-operation codes, symbolic addresses, and mnemonics.

GENERAL. ELECTRIC
225 GENERAL ASSEMBLY PROGRAM CODING SHEET

COMPUTER EQUIPMENT DEPARTMENT

PHOENIX, ARIZONA

PROENC';der PR(J(.RAM JIJAT~' PA('I:
Manufacturing Cost - Run Hi 01'

Symbol Op' Operand X REMARKS Sequence , , , . , , ,
" 00 " It 14 I~ 1(, P 18 I') lO 11 1~ 7(, 71 1M -'J 110 ,

ORG 1 0 0 0 5
'ROUND D D C 5 0 ROUNDlNG CONSTANT 1 0
3 R A,T,E D,E ,C ,0 ,2 5 PROCERq CO""" PER ITEM 1 5

• MAS K OCT 3 7 7 6 4 3 0 MASKING CONSTANT FOR MOD ROUTINE 2 0
5 F I V E DEC 5 2 5
• CON * 1 DEC - 3 4 30

'START L D X Z E R 0 2 ZERO lNDEX REGISTERS 2 & 3 3,5
8 L,D X Z E R 0 3 4 ,0
9 S,PR IC,R ,n ,I N. CARnRF..m ,4,5

" B R.1l I C ,R D ,E .0 F. CARD END-OF-FILE RETIlRN UL
" S P B S T R I P 1 BCD-BINARY CONVERSION ROUTINE 5 5

" DEC C R D CARD IMAGE ORIGIN 6 0
13 In,E ,C : OF FIELD ,6 ,5

" ID,E ,C 4 FJELD SIZE ,7 ,0
15 S,T ,A A,M T # 1 ITEMS PREVIOUSLY PROCESSED 7 5
16 S P B S T R I P 1 8 0
17 LD,E ,C C,R,D 8 5

" DEC 1 6 9 0

" LD,E.i: 4 9 5
2D IS.T ,A A,M,T,' 2 ITEMS ~Y .0,0

" ADD A M T * 1 105
22 S,T ,A S ,11 ,M, , TOTAL ITEMS ,0
23 MAQ 1 1 5

" MP ,Y R A,T,E I PROCESS COST PER ITEM 1 2 0
25 D,A ,D R ,O,U ,~LD I ROUND PROCESS COST 1 2 5

c

Figure 2. Sample General Assembly Program Coding Sheet

Each of the fields is designated from left to right as:

Symbol
Opr (abbreviation for operation)
Operand
X (abbreviation for index)
Remarks
Sequence

indicates to the assembly program that certain operations are to be performed.

-4-

The Coding Sheet

The following simple rules ensure that correct results will be obtained if followed by the pro
grammer in his source program. The purpose of each field and its applicable rules are as
follows:

SYMBOL field is an address. The following rules apply to its use:

Rule 1. Symbols can vary from one to six characters in length and be any combination
of alphabetic and numerics.

Rule 2. Plus (+) or minus (-) characters are not allowed in the symbol field due to the
principle of relative addressing.

Rule 3. Symbols used must contain at least one nonnumeric character.

Rule 4. Symbols may start at any point within the field because leading and inserted blanks
are ignored by the General Assembly Program.

The assembly program assigns a Symbol field entry, along with its associated information,
a specific memory location. Thus, the programmer need not know the actual address but can
refer to the symbolic address when the information is needed. Figure 3 shows both proper
and improper use of symbols. The symbols shown are for illustrative purposes only.

2

3

4

9

10

11

12

13

PROGRAMMER PROGRAM

Symbol Opr Operand X
1 -I 2 -r 31 4 1) 1 (, B I 9 I 10 12 113 114 I 1) 11(, I pi 18 11<) 2() 11

C o N # 1 D E C 5

Z E R 0 D E C 0
TOT A 1 S B S S 3 0

A B 4 0 C T 2 1 7 6 5 3 1

1 1 0 DEC 1 1 0

I MPROPER USE OF SYMBOLS

C 0 N + 1 D E C 5

1 1 0 D E C 1 1 0

A - B 4 0 C T 2 1 7 6 5 3 1
A B 4 D E C 4

Figure 3. Symbol Fields

Entry Lines 1, 2, and 3 are proper entries because they follow Rule 1.
Entry Line 4 is proper because it follows Rule 3 and Rule 4.
Entry Lines 8 and 10 are improper because they violate Rule 2.
Entry Line 9 is improper because it violates Rule 3.

,
REMARKS

~

I
r

Entry Line 11 is proper because it follows Rule 4, however the assembly program would interpret
A B4 as AB4. If the symbol AB4 were defined and used elsewhere in the same program, errors
would occur, and the entries would be recognized as multiple symbols.

-5-

THE OPR (operation) field of the coding sheet uses a three-character mnemonic to specify
the required function of the line. These mnemonics indicate to the assembly program the type
of line--that is, an instruction, a control, or a constant line. The latter two types of lines involve
pseudo-instructions which are discussed in detail later.

An "Instruction Line" contains a mnemonic indicating the desired computer operation. Usually
this line is handled by the assembly program as one computer machine operation for each instruc
tion mnemonic. Typical instruction lines are shown by Figure 4.

PROGRAMMER

Symbol Opr Operand X

11213141516 8 I 9 I 10 12 113 114 I 15 116 I p I IR 119 20

LD A AMT
AD D AMT 2
S T A S U M

B Z E
BR U C H E C K

DL D TO T A L

Figure 4. Instruction Lines

A "Control Line" is interpreted and used by the program for internal assembly operations and
does not become part of the assembled program. However, a control line in certain applications
can cause additional words to be reserved in the assembled program. Figure 5 illustrates
typical control lines.

Symbol Opr Operand X
1 I 2 I 3 I 4 I 5 I 6 8 I 9 I 10 12 J 13 114 115 116 II? I 18 119 20

o R G 1 0 0
S U M B S S 2 0
CR D I N E Q U 2 5 6

Figure 5. Control Lines

A "Constant Line" indicates to the assembly program the type of constant required by the user.
The assembly program then assembles the constant in the correct form. Figure 6 contains
constant lines.

-6-

.~

Symbol Opr Operand X

1 I 2 I 3 I 4 I S I (, 8 I 9 I 10 12 113 114 lIS I 16 II? I 18 11') 2U

F I V E D E C 5

D E C 3 1 4 1 7

C 0 N # 1 D D C 6 2 5 8 9 2

0 C T 3 7 7 7 7 6 6

F D C 1 0 B 1

Figure 6. Constant Lines

OPERAND field. The content of the Operand field depends upon the type of line--whether it is
instruction, control, or constant. If an instruction line is involved, the operand may be:

A Mnemonic specifying an operation to be performed as shown by line 1 of Figure 7.

Symbol Opr Operand X

1 I 'I 1 I 4 I S I (, H r ~ T 10 12T1l114115 I J(, I J7118T1~ 20

R r ~ RP N 6

B R U * - 1

1 D A P R I N T + 3 9

C H S

S T A P R I N T + 3 9

R C N
B R U * - 1

R C D 2 5 6

H C R

L D A S Y N C

Figure 7. Operand Field Instruction Line

A Decimal number which is the address portion of a computer instruction. This decimal
address will be converted to binary by the General Assembly Program. For an example,
see line 8 of Figure 7.

-7-

A Symbol representing some address or number within the program. This symbol in con
junction with plus (+) or minus (-) can be used for relative addressing. The combination
of symbol and sum (+) or difference (-) must not exceed 8 characters. Also an asterisk
(*) can be used to denote reference to the line itself. Figure 7 contains illustrative examples.
The asterisk and relative addressing involving arithmetic expressions can be used to reduce
the total number of program symbols used, if necessary. Additional uses of the asterisk
symbol are explained under "Relative Addressing. n

When a control line is specified, the Operand field of the line contains information required by
the General Assembly Program. Figure 8 contains illustrative examples.

Symbol Opr Operand X REMARKS
1 I 2 I 'I 4 1) 1 (, a 1 ~ 1 10 12 1 13 114 1 15 1 Ii, 1 p 1 IB 119 20 31 7)

o R G 100 0
C A R D B S S 3 4

S T 0 R E B S S 4 0

T 0 T A L E Q u 5 0 0

R E M CONSTANTS
C 0 N S T D E C 2 8

C 0 N # 1 D D C 6 2 8 1 5 4

OCT :i7 '1 7 '1 6 6

Figure 8. Operand Field Control and Constant Lines

When the Operand field is part of a constant line, the operand must specify the constant.

THE X (index) field (column 20) specifies address modification before execution of the assembled
instruction, or it may provide additional information to the assembly program, such as priority
control channel or tape handler number. If the X field is part of an instruction line, it may be
blank or contain either a number or an alphabetic.

Figure 9 shows examples of how the X field is used. Address modification and use of the X
registers are explained in detail in the PROGRAM REFERENCE MANUAL for the COMPATIBLES/
200. An" A" is used in the X field for certain auxiliary arithmetic unit instructions.

-8-

Symbol Opr Operand X

1 I ,I 1 I 4 I 5 I 6 8 I 9 I 10 12 113 114 I 15 11(, I J7 I 18 11') 20 11

B C S B P N 6

B R U * - 1 -

f
-

Figure 9. X (Index) Field

THE REMARKS field is a helpful programming aid in that it can be used by the coder to explain
or describe the actions of each program line. The Remarks field does not require memory
locations within the assembled program, nor does it affect the assembly process. It should be
used extensively by programmers for adequate documentation. Refer to Figure 10 for examples.

THE SEQUENCE field specifies the order of the lines to be assembled. This is strictly a pro
grammer's convenience and is checked only when specifically requested by use of an SEQ pseudo
instruction (on magnetic tape General Assembly Program only). Cards for the source program
should be sequenced to prevent accidental mixing gOing unnoticed. Normally, the General Assembly
Program does not check the card sequence; it does however show the sequence on the object
program listing. Figure 10 shows sequenced lines.

Opr Operand X REMARKS Sequence

8 I ') I 10 12 111 114 I 1\ I j(, I j7 I 18 11') 20 .11 75 76 I 77 I 78.1 79 I 80

R E M SUBROUTINE TO CHECK VOID DATE 5
D L D V 0 I D VOID DATE DAY/MONTH/YEAR 1 0
S U B C 0 N # 1 VOID CONSTANT 1 5
B N Z 0 K DAT A NOT VOID SO PROCESS 2 0
S P B C L 0 S E 1 CLOSE FILE DATA VOID 2 5

Figure 10. Remarks and Sequence Field

-9-

Pseudo-Instructions

A symbolic program written for General Assembly Program II has both pseudo- and machine
instructions. Pseudo-instructions are symbols representing information needed by the assembly
program for proper assembly. These instructions, along with the machine instructions, are
included in the object program listing. Pseudo-instructions are not executed by the Processor,
but are used to generate constants, control the assembly, and provide information on the program
listing.

CONSTANT-LINE pseudo-instructions for the General Assembly Program and the type of infor
mation assembled for each is given in Figure 11. This is followed by explanations of the indi
vidual instructions.

CONTENTS OF
OPR FIELD TYPE OF ASSEMBLED INFORMATION NUMBER OF CHARACTERS SPECIFIED

ALF/NAL One BCD Word 3 Alphanumeric
MAL One to fifteen consecutive BCD Words 3 Alphanumeric per word
PAL One to fifteen consecutive BCD Words

with sign bit on in last words 3 Alphanumeric per word
DEC One Fixed Point Binary Number
DDC One Double Length (2 word) Fixed Point

Binary Number
FDC One Floating Point (2 word) Binary

Number
OCT One Binary Word Up to 7 Octal Characters
Z(XX} One Binary Word Up to 7 Octal Characters

Figure 11. Pseudo-Instructions for Constant Lines

In the following text each instruction is introduced in the standard format, name of instruction
(operation to be performed), and General Assembly Program mnemonic operation code.

ALPHANUMERIC

ALF

This instruction causes alphanumeric constants (three alphabetic or numeric characters) to
be entered in the object program. The first three characters in the operand are converted to
BCD and placed in a memory location determined by the assembly program. Blanks or spaces,
where desired, must be indicated. Only columns 12, 13, and 14 of the Operand field can contain
the data for the instruction.

Example: The words, PLANT CODE NOT IN TABLE, constitute a program typewriter mes
sage and may be entered in the object or assembled program by using the ALF
instruction.

@~c~@@ ~~[ffi~~~-----------

-10-

(

Symbol Opr Operand J
1 I 2 I \ I 4 I 5 I (, 8 I 'J I \0 12 I 13 I 14 I 15 I 16 I \7 I'

Appears in Memorv
T Y P E A L F P L A 0474321

A L F N T 0456360

A L F C 0 D .I 0234624

A L F E N
,

0256045
A L F 0 T 0466360
A L F I N 0314560

A L F T A B 0632122

A L F L E 0432560 ,
Note that a space is indicated by leaving the column blank, which results in an octal 60 being
placed in the memory location by the assembly program. If the desired data is not left-justified,
starting with column 12, incorrect constants will result.

Example:

Symbol Opr Operand

1 I 2 I 3 I 4 I j I (, B I 9 I \0 12 113 114 115 116 117 I
Appears in

I Memory
A L F P L A

,
0604743

A L F N T f 0606045

I

The constant in line 3 results in the loss of the character A, and line 4 contains two blanks
(octal 60) and the character N only, losing the character T.

It should also be noted that an ALF command is required for each line containing the desired
alphanumeric constant.

NEGA TIVE ALPHANUMERIC

NAL

This pseudo-instruction is used to enter the 2's complement of an alphanumeric constant in the
object program. The assembly program applies the same requirements to this instruction as
it does to ALF.

Example: The 2's complement of the codes A14, AB2, ABF are to be placed in the object
program.

-11-

Symbol Opr Operand I
112101 4 1516 8 1 9 1 10 12 1 13 114 1 15 1 1(, 1 pU

Annears in ,
Memorv

COD E N A L A 1 4 3567674

N A L A B 2 I 3565576

N A L A B F J 3565552

I ,
MULTIPLE ALPHANUMERIC

MAL

This pseudo-instruction will enter alphanumeric data into as many as fifteen consecutive memory
locations. The number of words to be filled must be specified by a numeric in columns 12 and
] 3 and the data must be placed in the Remarks field.

Example:

Symbol Opr Operand X ,
1 1 2 I 3 I 4 1 5 1 (, 8 1 9 I 10 12 I 13 I 14 J 15 j16 1 17 J 18 119 20 31 I

~ ,
T Y P E M A L 0 8 PLANT CODE NOT IN TABLE

J
I
J

This data is placed in memory as follows:

Data Memor~

PLA 0474321
NT 0456360
COD 0234624
EN 0256045
OT 0466360
IN 0314560
TAB 0632122
LE 0432560

(see also note following example of PAL pseudo-instruction.)

MULTIPLE ALPHANUMERIC FOR PRINTER WITH PRINT LINE INDICATOR
PAL

This pseudo-instruction is similar to the MAL instruction with the exception of entering a minus
sign in the last word of the alphanumeric data. (The minus sign Signifies an end-of-line dur!ng
the prmter operation.)

-12-

J

)

Example:

Symbol Opr Operand X REMARKsJ

1 I 2 I 1 I 4 I 5 I 6 8 I 9 I to 12 113 114 I 15 116 117 I 18 119 20 31

P A L 4 PLANT CODE

j

The data enters memory as shown below. Note that memory word 4 of the data contains a 1
in the sign bit, or 0 position of the word.

Data Memory

1. PLA 0474321
2. NT 0456360
3. COD 0234624

.4. E 2256060

Note: Pseudo-instructions MAL and PAL cannot be used when a symbolic General Assembly
Program is entered from magnetic tape during the assembly operation.

DECIMAL
DEC

This instruction places the binary equivalent of a decimal constant in the object program. The
constant is assigned a memory location as determined by the assembly program. The operand
portion of the constant can be symbolic or decimal. If symbolic, at least one character must be
used other than 0- 9, plus (+), minus (-), decimal point (.), B, or E. If no sign is present, the
number is assumed to be plus (+). A minus sign, specifying a negative number, results in the
2's complement of the number being placed in memory.

Examples of Positive numbers:

Opr Operand

8 I 9 I to 12 113 114 I 15 I 16 I 17 II

Appears in
Memory

D E C 5 0000005
D E C 1 2 8 0000200

D E C 7 3 7 3 8 0220012

D E C 9 2 8 0001640

D E C 1 2 0000014
D E C + 1 7 5 0 0003326

-13-

Examples of Negative numbers:

Opr Operand

8 I 9 I 10 12 I 13 I 14 I 1\ I 16 I 17 I 1

Appears in
Memory

DEC - 5 :>'777773

D E C - 1 2 8 3777600
D E C - 7 3 7 3 8 3557766

D E C - 6 3 9 7 8 3603026

D E C - 1 3777777

J

The character B can be used to specify a binary scale for either positive or negative numbers.
The number following B is used to position the binary point for the decimal constant preceding
the B in the Operand field. If no scale is specified, the assembly program assumes a binary
scale of 19.

Examples using the B character:

Opr Operand ,
819110 12 113 114 11\ 116 117 I 18 119

I Appears in
Memory

D E C 5 B 1 6 I 0000050

D E C - 5 B 1 6 3777730

D E C 7 3 7 3 8 B 1 8 0440024

D E C - 4 B 3 3000000

D E C + 4 B 3 ~ 1000000 ,
The characters decimal point (.) and E can be used to specify decimal scales or decimal exponents.
Normally, the. indicates a nuxed number (lines 3-6 in the following example), while E specifies
the power of 10 by which the constant is multiplied. For example, E-2 indicates 10-2 and E2
indicates 102. If the character B is not used with decimal point (.) or E, only the integral portion
of the number will be converted by the program. If the number of characters used to specify a
decimal constant exceeds eight, the OPR (operation) field of the next line is left blank and the
constant is continued in the operand field, using two lines for one entry (see lines 7 and 8, 9 and
10, 11 and 12). Only one binary scale and one decimal scale can be indicated for a Single decimal
constant.

-14-

.,

..

Examples using the characters. and E:

Opr Operand ,
8 I 9 I IO 12 113 114 115 116 117 I 18 119

Appears in
Memory

D E C 5 5 2 0000005

D E C 5 5 2 B 1 8 0000013

D E C 5 2 B 1 8 0000001

D E C 5 5 B 1 8 E 2 \ 0002114

D E C 7 3 7 3 8 E 2 0000223

~-~- B 1 8
,

DEC - 5 6 2 5 B 1
0 3777340

D E C - 1 8 7 5 B 1 3777640
0

D E C 3 2 1 7 B 0
,

0511327

"
In using the DEC instruction it is possible to express the decimal constant in the Operand field
in symbolic notation. However, unless there is some specific advantage, doing this results in
having to add an EQU instruction immediately following the DEC that is otherwise not required.

DOUBLE LENGTH DECIMAL

DDC

DDC, like DEC, is used to enter a decimal constant in the object program. This constant is
assigned two sequential memory locations starting with the first even-numbered location available.
If no binary scale is specified, the assembly program assumes a binary scale of 38.

-15-

I

Example of DDC:

Opr Operand

8L 9 I 10 12 11.l 114 I 15 11(, I p I 18 119 J 1

Appears in
Memory

D D C 1 2 0000000
0000014

D D C 7 8 6 4 3 2 0000001
1000000

D D C - 2 4 3777777
3777750

D D C 0 7 9 6 8 9 6 0024315

7 9 2 8 B 2 0127545
D D C 2 4 B 3 6 0000000

0000140

D D C 1 5 7 0 7 9 6 0622077
3 1 8 4 7 .B 2 0651010

D D C 1 0 1 8 B 0 E - 0000000

1 0 I 0066516
D D C 1 5 2 5 2 7 B 0 0000007

E - 1 0
,

1774566
J ,

FLOATING POINT DECIMAL

FDC

This instruction is used to enter a floating point decimal constant in the object program. The
use of FDC is the same as the DDC--that is, two sequential memory locations, starting with an
even-numbered location, are aSSigned by the assembly program. After conversion, the constant
is in normalized form, if the specified binary scale is minimum; otherwise the constant is un
normalized. If no binary scale is specified, the assembly program determines the binary scale
and a normalized floating point number results.

A detailed description of floating point decimal formats and operations appears in the General
Electric reference manual covering the auxiliary arithmetic unit subsystem.

-16-

Examples of FDC:

Opr Operand

8 1 9 1 10 12 1 13 114 1 15 1 16 1 17 I 18 119 31

Appears in

Memorv

0006000
F D C 1 B 1 0000000

0006705
F D C 1 4 4 2 6 9 5 0507312

0 4 1 B 1
0013244

F D C 3 3 2 1 9 2 8 1517022
0 9 4 B 2 0022400

F D C 1 0 B 4 0000000

Rnth lrive

F D C 1 E 4 0 same results:
an~ 1027530

F D C 1 E 4 0 B 1 3 3 1451743
Result unnor-

malized

1031654
F D C 1 E 4 o B 1 3 4 0624761

OCTAL

OCT

The entering of octal constants in the object program is accomplished with the OCT pseudo
instruction. The octal number specified in the Operand is right- justified and assigned one
memory location designated by the assembly program. Leading zeros in the Operand field
are ignored. A leading minus (-) in the operand sets the sign bit of the constant to 1. Octal
constants are used primarily for establishing particular bit configurations in memory.

-17-

I

I

I

Example of OCT:

Opr Operand

B I 9 I 10 12 III 114115 116 1 17118 111 11

I Appears in
Memory

o C T 2 7 7 7 7 6 6 , 2777766

o C T 3 7 7 0000377

o C T - 3 7 7
,

2000377
0 C T 2 7 6 0 0 0027600

o C T 3 7 7 7 7 4 6 3777746

o C T - 1 7 7 7 7 4 6 I 3777746

J

OCTAL OPERATION CODE

z (XX)

The Z pseudo-instruction is used to set the operation bits of the assembled instruction to any
desired configuration. The Operand can be decimal or symbolic, and indexing is optional. In
use, a Z is placed in column 8 with the two octal digits desired as an operation code in columns
9 and 10.

Sample Coding:

Opr Operand X REMARKS
B 1 9 1 10 12 113 114 I IS I 16 I p I 18 119 20 31 75

Z 0 0 T E M P 2 EQUIVALENT TO· LDA TEMP 2

Z 0 4 - 1 0 0 2 EQUIVALENT TO BXL 100 2

Z 2 0 0 EQUIVALENT TO WORD 1 of RWD

-18-

..

Listing:

Memory Memory
Location Contents Assembly
(Octal) (Octal) Program

01764 0000000 TEMP DDC 0
01765 0000000

~ ~ ~ S j 5
0770 0041764 ZOO TEMP 2
0771 0457634 Z04 -100
0772 2000000 Z20 0

CONTROL-LINE PSEUDO-INSTRUCTIONS. Control line instructions provide information which
controls the internal operations of the General Assembly Program, although this information
does not become part of the assembled program. In certain cases, additional words maybe
reserved in, or added to the assembled program. Figure 12 is a list of control instructions.
Following it are explanations of the individual instructions.

Contents Operand Field Type of Assembled Information of Opr Field

SBR Symbol of subroutine Calls subroutine
ORG Decimal or symbolic Assigns memory address
LOC Octal Assigns memory address

Optional EQU Decimal or symbolic Equates memory address
Optional EQO Octal Equates memory address
Optional BSS Decimal or symbolic Reserves memory blocks

TCD Decimal or symbolic Transfers control
END Decimal or symbolic Terminates assembly

Figure 12. Control Lines for Pseudo-Instructions

SUBROUTINE CALL

SBR

This pseudo-instruction can be used only if the General Assembly Program is called from
the master assembly tape. An SBR instruction is used to instruct pass 0 to obtain the specified
subroutine from the master program tape. An error indication results if the specified subroutine
is not present. The library subroutines furnished for the GE-225 are in symbolic form and
not in binary format.

-19-

The subroutine calls are saved until the user's END card is encountered. The specified sub
routines are then placed behind the user's coding.

The SBR pseudo-instruction cannot be used if a symbolic General Assembly Program is entered
from magnetic tape during the assembly operation.

Note: The subroutines are assigned memory locations following the last instruction of the
user's coding, If the user desires, the subroutines can be placed in reserved memory locations,
as shown in the following examples.

Example:

Opr

8 I 9 I 10

S B R
E N D

Listing:

Operand X

12 113 114 II, 116 117 118 II') 20 .ll

S T R I
S T A R

P
T

02623
02624
02625

02623

2514003
0000000
0000000

REMARKS

BINARY - BCD CONVERSION ROUTINE

STRIP
=1102

SBR STRIP
REM
BOV
LOA 0
LOA 1

This subroutine can also be called in the following manner.

Example:

Syn.bol Opr Operand X

11213141,16 8 I 9 I 10 12 113 114 I I, 116 117 I 18 119 20

1 D A T ~E ,MP
ADD TOT A L

\

S P B N P R I B D 1

N P R I B D S B R

Z E R 0 D D C 0
E N D S TAR T

7,

@~ o~(Q)(ID ~~[ffi~~~ -----------
-20-

In both instances the STRIP and NPRIBD subroutines could be assigned memory locations follow
ing the last instruction (ZERO DDeO) of the coding.

If the programmer desires to place the subroutine in a specific location other than at the end of
his program, he must reserve a sufficient number of words in memory by using a BSS instruction
and by placing an ORG card with the origin of the reserved area immediately preceding the END
card.

Example:

Symbol Opr Operand X REMARKS

1 I 2 I 1 I 4 I 5 I 6 8 I 9 I 10 12 III 114 I 15 16 17 18 19 20 31 75

S U B R # 1 B S S 7 6 RESERVE 76 LOCATIONS FOR

L D A IT .E,M. p,

S P B N P R I B D 1
S B R N P R I B A

B R U *
0 R G S U B R # 1
E N D S T AR T

E N D

S B R N P R I B D

The NPRIBD subroutine is listed at the end of the object program, but the ORG SUBR#! instruction
causes General Assembly Program to assign memory locations starting at SUBR#! rather than
locations following the BRU*.

Pass 0 of the General Assembly Program will report as "possible undefined" symbols any reference
to subroutine symbols made by the main program, because the subroutines are not obtained until
after the undefined check.

ORIGIN

ORG

This pseudo-instruction controls the memory assignments performed by the general assembly
program. When an ORG instruction is encountered, the assembly program uses the contents
of the Operand field to reset an internal counter in the assembly program referred to as the
memory allocation register (MAR). Normally, the MAR is increased by ! for each instruction
encountered.

-21-

If the Operand is a decimal, it is converted to binary by the program before being used. If the
Operand is symbolic, the symbol(s) must be predefined before being used. A symbol is defined
by placing its name in the Symbol field (columns 1-6) once, and only once, in a given program.
The General Assembly Program ignores aU· but the Operand field on an ORG instruction. When
no ORG is used, the program assigns an origin of memory location 00000.

Examples:

Opr Operand X REMARKS
8 I 9 I 10 12 I II I 14 I 15 I 16 I 17 I 18 I 19 20 31 75

o R G 1 2 8 THE MAR IS SET TO 200(1281 n) AND NEXT
INSTRUCTION STARTS AT AN OCTAL 200

Opr Operand X REMARKS
8 1 9 1 10 12 1 I.l 114 I 15 I 1(, I 17 I 18 119 20 31 75

o R G BEG I N THE SYMBOL "BEGIN" MUST BE PREDEFINED
AND THE MAR IS SET TO THE ASSIGNED VALUE
IF BEGIN IS NOT PREDEFINED THE MAR IS SET

TO ZERO

Example: Use an ORG to assemble an object program at memory location 1000 (decimal).

Symbol Opr Operand X

11213141516 8 I 9 I 10 12 113 114 I 15 116 117 I 18 119 20

0 R G 1 0 0 0

T W 0 D E C 2
T E N D E C 1 0

LOCATION IN OCTAL

LOC

This operation performs the same functions as an ORG; however, the contents of the Operand
field must be an octal number. The assembly program will ignore leading zeros.

@j~ c~(o)(ID ~~[ffiO~~ -----------
-22-

Example:

Symbol Opr Operand X REMARKS

1 I 'I l I 4 I \ I (, R I ~ I 10 12 113 114 I 15 I 16 117 I 18 119 20 31 75

L 0 C 1 7 5 0 MAR IS SET TO OCTAL 1750

T W 0 D E C 2

T E N D E C 1 0

EQUALS
EQu

This instruction equates a new symbol to some memory location already known to the assembly
program. The Operand (decimal or symbolic) indicates the specific memory location to be used.
This instruction does not affect the memory allocation register; thus it may be used as often
as necessary and at any point within the source or symbolic program without disturbing the
memory assignment sequence. If the operand is symbolic, the symbol must be predefined. A
decimal operand is converted to binary before being utilized.

Example:

Symbol Opr Operand X REMARKS
11213141516 8 I 9 I 10 12 113 114 I 15 116 I 17 I 18 119 20 31 75

C R D E Q U 2 5 6

A R E A E Q U C R D CRD MUST HAVE BEEN PREDEFINED
A R E A 2 E Q U C R D + 4 0

EQUALS OCTAL

EQO

The EQO instruction is the same as the EQU except that the Operand field must be in octal form.
Leading zeros in the Operand field are ignored.

Example:

Symbol Opr Operand X REMARKS
11213141516 8 I 9 I 10 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 20 31 75

C R D E Q 0 4 0 0

A R E A E Q U C R D CRD MUST HAVE BEEN PREDEFINED

@~ D~(Q)(ID ~~[ffi~~~ -----------
-23-

BLOCK STARTED BY SYMBOL

BSS

A BSS causes the assembly program to increase the memory allocation register (MAR) by
the number in the Operand field. This instruction is used to reserve a block of memory locations
in the object program. The Operand field may be decimal or symbolic. If symbolic, the symbol
used must be predefined; if decimal, the operand is converted to binary by the assembly program
before use. The BSS can be used as often as needed.

Example:

Symbol Opr Operand X REMARKS
1 I 2 I 3 I 4 I 5 I G 8 I 9 I 10 12 III 114 I 15 I 16 I 17 I 18 119 20 31 75

0 R G 0 2 5 6
C R D B S S 2 8 MAR IS INCREASED BY 28

P R I N T B S S 4 0 MAR IS INCREASED BY 40

I N D E X B S S 3 MAR IS INCREASED BY 3

S T 0 R E B S S S A V E SAVE MUST BE PREDEFINED

The BSS instruction of line 2 of the example will reserve 28 consecutive memory locations
starting at location 256. The other BSS commands reserve additional blocks of memory.

A negative decimal operand can be used to reduce the MAR, in effect equating a block of memory
to another block already defined.

PUNCH TRANSER CARD

TCD

A TCD generates an instruction that will cause the loader to transfer control to the location
specified by the Operand field at execution. In the relocatable format this is a type 5 card.
The operand may be decimal or symbolic. A TCD (transfer control data card) may be used
as often as necessary in a source program, because this instruction does not affect the memory
allocation register. A symbol in the operand must be predefined.

-24-

Example:

Symbol Opr Operand X REMARKS

1 1 2 1 3 1 4 1 5 1 6 8 1 9 1 10 12 1 1.3 1 14 1 15 1 16 1 17 1 18 119 20 31 75

T C D 2 9 0 0

T C D S T ART # 1 START #1 MUST BE PREDEFINED

The transfer card is the last card of the object program; when the program is loaded for execu
tion, the transfer card directs the central processor to the location of the initial program instruc
tion:

START 4~~---~e----.

++
PROGRAM

BODY

+* STOP
CON#l
etc.
ORG
BSS
ORG
BSS
TCD START ------I.~'

The TCD should not be used in place of an END instruction at the end of a source program.
Information on END follows.

END OF PROGRAM

END

This pseudo-instruction causes the assembly program to generate a transfer card to transfer
control to the initial program location (specified in the Operand field) when the object program
is loaded into memory for execution. In the relocatable format, this is a type 3 card. The
Operand field may be decimal or symbolic; if symbolic, the symbol must be predefined. The
END instruction indicates the end-of-program and terminates assembly. It must be used only
once and must be the last instruction of the source program.

-25-

The TCD instruction previously described should be used where a transfer control card is to
be generated before the end of the assembly program.

Failure to use the END instruction results in a typewriter message so indicating. Assembly
continues, but no transfer card is generated. Thus, this instruction should appear in the program.

Example:

Opr Operand X REMARKS
8 I 9 \ 10 12 \13 \14 \ 15 \16 \17 \ 18 \19 20 31 75

E N D 1 0 0 0

E N D S T A R T ST ART MUST BE PREDEFINED
E N D C 0 N S T + 3 CONST MUST BE PREDEFINED

The END instruction of line 1 would result in the punching of a transfer card as shown in Figure
13.

I :2 3 4 5 6 "7 e 910 11121314151617181920 2122232425262728293031 3~2~3343536373B39

,""

c.OIOIOIOIOIOIO'OIOIO'O DaD 0 OlD 0'010'0'01010101010.01000'0!C!~80!!~:I!'!'0
5;1,. 1t1!114!. n.,.. 22D 2S » n 3t 41 6" $4 •

, WKIIIIIIIIIIIl111~111~1111111111
POD 2 2 2 2 2 2 2 1 2 1 2 1 2 2 211221212 122 2 2 112 2 2 2 2 2 2 1 2 2 11 2 2 11 2 2 2 2 1 2 1 2 1 2 2 2 1 1~1zI~l'T 11222121 2

E R 3331333 I 3 1 3 3 3 3 333 I 3 3 3 I 3 3 3 3 3 3 3 3 3 3 3 3 3 3 31~13 I 3 3 3333333333333 3 3,~ 3 31313 J 31~t 333333 J 3

o s 4 4 4 4 4 4 4 4 4 4 4 4 44444444444 4H4 4 44444444 4 4~4 4 4444444444444 4 ~4 4 4 4 4 4 4 4 4~:~~ 4 4 414 4 444

S E suS 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 555555 5 51!1~15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 15 35 5 5 5 515 5 T 5 5 5 5 5 5 5 5 51~1515151511i 515 5 i 5

T _ 1666.6' 6 , 6 I 6 6 6 & 6 G 6 ~ 6 66& 6'G 6 6 6 & 6 • 6 & 6 • 6 & 6 I 6 8 6 & 6 6 6 & 6 & 6 , 6 6 6 !oS & 6,I~i 6 6 6 i~6~i~G 6 6 G 6

AS C M 111'1 I 11 I 1 I 11 I I 111111 1111 II II I 11 11111111111 I 1111 I 1111 II I i 1111) 11;'tll~1! 711~)~ 7 1

R S H B 18 B II II I B , II II B a II 81 B I~' 88 B B I ~~'. B • B I 8 • 8 lB. B • B • B • 8 • B • 8 i BIB i B • B 'i811~~IB1~B • B 8,

T E 9 9 9t 9S 91 9 9t 9S 9 9 Sf 9t 91 9t 9 9 I 91 9 9 9! 9 I 9 S 91 91 9 • 9 S 9! 9 , 91 gs 91 9 sgl,lgs 9 919 9
I 2J45'J.tl'II'~13uI5Kl1n~aMDnu~~n~a~~ » »AV»» ~ U~~.~.~ ~~~~~~n~9.~ n~~ ~u~~7InnH»~nJn

Figure 13. Transfer Card END Instruction

@~a~@@ ~~[ffiU~~-----------

-26-

ADDITIONAL PSEUDO-INSTRUCTIONS

REMARKS

REM

The REM mnemonic in the Opr field is used to provide additional information on the object
program listing as given in the Remarks and Sequence fields (columns 31 through 80). All other
fields in the instruction line are ignored.

Example of REM:

Opr Operand X REMARKS Sequence
HI') I 10 12 1 11 1 14 1 15 1 j(, 1 p 1 18 1 I') 20 31 75 761 77178 1 79180

R E M SUBROUTINE TO CHECK VOID DATE V 0 0 5

EJECT PRINTER PAPER

EJT

Normally the assembly program prints 54 lines per page and then ejects to the top of the next
page. When the EJT command is encountered, the line count is reset and the paper is imme
diately ejected to the top of the next page.

Example:

Opr Operand X REMARKS
8 1 9 1 10 12 J II 114 1 15 116 1 j7 1 18 119 20 31 75

D E C 6 2 1 5

R E M END ADJUSTMENT CONSTANTS
E J T CONTINUE LISTING ON NEXT PAGE

-27-

CHECK SOURCE PROGRAM CARD SEQUENCE NUMBERS

SE~

Except for listings, sequence numbers are normally ignored. However, if the SEQ command
is used, the assembly program checks to see that the card sequence numbers are in ascending
order (tape General Assembly Program only). Blanks are ignored. Numbers less than or equal
to the preceding number are errors and are flagged with an S in the right margin of the listing.
However, the assembly process continues.

Example:

apr Operand X REMARKS
B I 9 I \0 12 113 114 I IS 116 117 I 18 119 20 31 75

S E Q CHECK SEQUENCE NOS. ·05
L D X Z E R 0 2 10

D L D T E M P 2 15

PRINT NAME OR TITLE ON EACH PAGE

NAM

A page number is printed at the top of each page of a listing. When NAM is used with a name
or title, which would appear in the Remarks field of the coding sheet (columns 31 to 75), the
name is printed at the top of eachpage. The name may be changed by issuing a new NAM instruc
tion. The name can contain a maximum of 45 characters.

Example:

Symbol apr Operand X REMARKS
11213141516 8 I 9 I \0 12 113 114 I IS 116 117 I 18 119 20 31 75

N A M E D I T if 3 ROUTINE TITLE

0 R G 1 0 0 0
Z E R 0 D E C 0

@3[g c~(Q)(m ~[g[ffi~[g~ -----------

-28-

..

NO LIST

NLS

General Assembly Program normally lists the object program on the high-speed printer.
The NLS pseudo-instruction may be used at any point in the source program to inhibit the printer
listing.

LIST

LST

Where the assembled program listing has been stopped by an NLS, the listing can be resumed
wi th an LST instruction.

Example:

Symbol Opr Operand X REMARKS
1 I 2 I 3 I 4 I 5 I 6 8 I 9 I 10 12 113 114 I 15 116 117 I 18 119 20 31 75

N L S ELIMINATE LISTING OF

P U N D D C 0 NPRIBD SUBROUTINE
P U N 1 B S S 4

P U N 2 R SS 2

N P R I B D E Q U P U N + 1 2

L S T RESUME LISTING
T E MP B S S 2 0

RELATIVE ADDRESSING

The General Assembly Program II provides the facility for assigning addresses relative to
some starting point or some symbolic memory location. This is termed "relative addressing"
and is a useful programming aid. Relative addressing can be accomplished in several ways
as the following examples show.

-29-

Relative Addressing Using + (plus) or - (minus) Symbols

Example Coding:

Symbol Opr Operand X REMARKS
• , • I • i .! ,I ' • i ' i to 121 "i '·I"I"j"'''''' .0 31 75

A M T E. Q U 2 0 0 THIS INSTRUCTION EQUATES THE SYMBOL AM'!
TO MEMORY LOCATION 200 (DECIMAL)

L D A A M T + 6 THIS INSTRUCTION ILLUSTRATES RELATIVE

ADDRESSING. + 6 REFERS TO ME:.MORY_

LOCATION 206

L D A A M T - 2 AMT - 2 IS MEMORY LOCATION 198

Since the General Assembly Program has relative addressing capabilities, it will assign the
correct memory addressed to AMT+6 and AMT-2.

Relative Addressing Using ORG Instruction

Example Coding:

Symbol Opr Operand X REMARKS

·1·1·1·I,j, • i ' i' 0 '2] .31 '·1 "1"j'7 j" i" 20 31 75

C O,N E Q U 5 0 0

n R r. r. n N THIS ORG WILL START AT MEMORY LOCATION

500 AS ESTABLISHED BY USE OF EQU FOR THE
n~",.~~T

-.--
o R.G CON + 5 0 STARTING MEMORY LOCATION HERE IS 550

nTTF. 'T'n ~li'T.A'T'n.Tli' AnnR

The starting locations of subdivisions within a program can be determined by a relative address
as defined with an ORG instruction.

@j~ c~(Q)(ID ~~[ffiO~~ -----------

-30-

Relative Addressing Using * (asterisk) Symbols

Example Coding:

Opr Operand X REMARKS
H I q I 1(1 I! I Il 114 Ilj 116 I]7 118 11<) 2011 75 76 I
B C N IF THESE INSTRUCTIONS START AT MEMORY

B R U * - 1 LOCATION 1000 THE ASTERISK IN THE OPERAr D

ReD C R D FIELD OF THE SECOND INSTRUCTION TS N .t<:~-

H C R PRETED BY GAP AS BEING 100l. THE ADDRESE J

L D A * + 6 IN THE OPERAND FIELD IS 1001-1 or 1000. I
B M I

B R U * THE INSTRUCTION ON LINE 7 CAUSES THE COM

S U B C 0 N 4 PUTER TO ENTER A CONTINUOUS LOOP SINCE

B R U * + 8 THE ASTERISK IS INTERPRETED BY GAP AS TH ~

ADDRESS OF THE INSTRUCTION ITSELF. THE

MACHINE THEN EXECUTES THE SAME INSTRUC J
TION CONTINUOUSLY.

,

A convenient method of relative addressing that reduces the number of symbols required in
the use of the asterisk (*) character. An asterisk in the Operand field of an instruction is inter
preted by the assembly program as the address of the instruction itself. As shown in line 7
of the example, the use of the asterisk is equivalent to writing the same symbol in both the
Symbol and Operand fields of the same line (that is, STOP, BRU, STOP).

Multiple Relative Addressing

Multiple relative addressing is permitted by which combinations of symbols, numbers, and
asterisks can be added or subtracted in any given Operand field. The order of symbols, numbers,
and asterisks in the operand is not restricted.

Example Coding:

Symbol Opr Operand X

11213141516 8 I 9 I 10 12 III 114 1151161]7118119 20

B X L S U M - B + 8 2
B S S * + B - C + 4

B R U 9 + 4 + 3 + G

L D A 8 + * + *
S T A 1 2 8 + 5 + 2 4

-31-

Line 1 illustrates a convenient way to define the size of a memory area to be manipulated under
the control of a BXL instruction. The area is 8 locations larger than the memory area between
the SUM and B.

Line 5 leaves to the assembly program simple arithmetic that often causes error and documents
the programmer's intention to store a quantity in the 14th location of the second field of a card
image starting a location 128.

The other lines singly illustrate valid combinations about which the programmer should know,
no matter how infrequently they are used.

GENERAL ASSEMBLY PROGRAM-:DETECTED CODING ERRORS

As an aid to the programmer, the General Assembly Program detects certain types of coding
errors and lists them on either the typewriter or high-speed printer.

Pass 0 Detected Coding Errors

Pass 0 provides a listing of possible undefined symbols; multiple symbols; symbols with no
reference; and, if the tape assembly program is used, an indication of any tape errors. Figure
14 is a sample printout from pass O.

These symbols have not appeared in~
the Symbol field; the corresponding>
octal addresses are thus unknown. -1

• UNDEFI NED SYMBOLS
AMT OUT SAVE STRIP •

• MUL TIPLE SYMBOLS
SUM

• NO REFERENCE
#3 #4 #5 #6 #7

• #11 #12 #13 #14 #15
#19 #20 #21 #22 #23 • 0 ERRORS TAPE 3

0 ERRORS TAPE 4
• END OF PASS 0 -

(This symbol has appeared more than once
) in the Symbol field; the octal address
~ corresponding to the first appearance

\,.will be used.

#8 #9
#16 #17
#24 START

-

•
•
•
•

#10
#18 •

•
• -

These symbols have never
appeared ~n the operand field
and are unnecessary.

Figure 14. Printer Listing from Pass 0 Coding Errors

Pass 1 Detected Coding Errors

Pass 1 provides a multiple symbol list that gives the memory locations referring to the symbol.

-32-

This printout can be done on the high-speed printer or, if no printer is available, the console
typewriter. A printout from the printer appears below.

•
• MULTIPLE SYMBOLS
• SUM 01760 01756

END OF PASS 1
•
•

Pass 2 Detected Coding Errors

Pass 2 lists the assembled program along with codes which indicate an error or a suspected
error in the program coding. Six symbols (0, U, M, A, T, and S) are used as error codes.
These error codes are printed to the left of each line on which they occur. A brief description
of these codes follows:

Symbol

o

Example:

Symbol

U

Example:

Meaning

Illegal Mnemonic Operation. This mnemonic is unknown to the General Assembly
Program. The program generates a 00 octal operation code as a substitute.

Meaning

•
•
•
•

o 01752 0001757

The Opr. field
contains an

illegal operation.

Undefined Symbol. A symbolic name appearing in the Operand field does not
appear in the Symbol field of any instruction or constant line. The address
assigned to this symbol is 0000.

• U 0175 0000000

The symbol AMT is not
defined in the Symbol field.

@[go~@@ ~[g[ffi~[g~ -----------
-33-

Symbol

M

Example:

Symbol

A

Example:

Symbol

T

Meaning

Multiple Defined Symbol. A symbolic name in this line appears in the Symbol
field more than once in the program. The symbol in question is given an octal
address corresponding to the address ofthe instruction in which it first appeared
in the Symbol field.

Meaning

E_0_'_7_5_' __ 0_~_0_'_76_0 ___ ST~A~
The symbol SUM is used
more than once in the
symbol field.

Error or Suspected Error in the Operand Address.

1. Blank Operand field in a line normally requiring an address.
2. An entry in the Operand field of a line which normally should be blank.
3. Numeric value of the operand not meeting the requirements of the line

in which it was used.

• A 0'753

Meaning

0100000

Address left blank. This
is a possible error, because
the address may be added
later in the program

Error or Suspected Error in X- Field.

1. The X-field is blank in a line normally requiring an entry.
2. The X-field contains an entry in an instruction line which ordinarily does

not require address modification.
3. The numeric value of the entry in the X-field violates the requirements

of the line in which it appears.

@[E c~®® ~[E[ffi~[E~ -----------

-34-

.'

Example:

Symbol

S

Example:

T •

Meaning

01754 1400001

The X-field is blank on an
instruction which requires
an entry.

Erroneous Scale Factors in DEC, DD, FDC.

1. The specified binary and decimal scales are incompatible.
2. Two decimal or binary scales have been specified in the constant line.
3, The specified or implied binary scale causes the constant to exceed 1

binary word (overflow),

• s

The constant in the Operand field
is larger than the scale permits
(assumed by the assembly program
to be binary 19) This constant
must be double length.

-35-

II ASSEMBLY OPERATIONS

The General Assembly Program II consists of four separate programs: Pass 0, Pass 1, Pass
2A (absolute), and Pass 2R (relocatable for 8k or larger memory systems only). Operating
instructions depend upon whether a card, paper tape, or magnetic tape subsystem is used for
assembly and upon the configuration of the system.

A flow diagram of the 3 passes is shown in Figure 15. Pass 2 can be either 2A (absolute) or
2R (relocatable) since both are not used in the same assembly. The specifications of the input/
output media can be changed during assembly, so long as the output from one pass is acceptable
as input to the subsequent passes. Thus, the operating instructions and console switch settings
vary with different systems' hardware configurations.

SYSTEM CONFIGURATIONS

The hardware requirements for the operation of General Assembly Program II (225F1.006/7)
with all possible media are:

Card Reader subsystem
Card Punch subsystem
Magnetic Tape Controller and a minimum of 4 Magnetic Tape Handlers
Printer subsystem (900 or 450 lpm)*
Typewriter
4k Memory or 8k (minimum for relocatable).

*Refer to 225E6.001/2/3 for 300 lpm simulators.

The mlmmum hardware requirements for the operation of the General Assembly Program II
(CD225F1.009/010) using punched cards as input/output are:

Card Reader subsystem
Card Punch subsystem
Typewriter
4k Memory

The minimum hardware requirements using paper tape as input/output are:

Card Reader subsystem
Perforated Tape Reader and Punch subsystems
Typewriter
4k Memory

-36-

~
~

Card

ff]
Input Pass 2A

Input Pass 0 =

Symbolic Program + Pass 0

Output Pass 0

Input Pass 1 =
Output Pass 0 + Pass 1

/
/

Output Pass 1

Input Pass 2A ~rogr 4
Output Pass 0 +
Pass 1 + Pass 2A

Inpu ass 2R

Output Pass 2A or 2R

/
/

/

Input Pass 2R =
Output Pass 0 +
Pass 1 + Pass 2R

t----------., - - - - - - - -I

Assembled Program
Cards, Perforated
Tape, or Magnetic

Tape

Listing
(Printer)

Figure 15. Diagram of General Assembly Program II Programs

-37-

Regardless of the hardware configuration used during assembly of the source program, General
Assembly Program II will assemble object programs for any hardware configuration.

A-REGISTER INPUT SWITCHES

The A-register input switches are used to indicate the peripheral configuration available to
the General Assembly Program II program as well as other modifications that may be employed
while assembling. The setting of the console switches may be altered between passes, but care
must be exercised to maintain peripheral compatibility between passes.

Example: It is possible to specify magnetic tape, card, or paper tape as input to and only magnetic
tape as output from pass O. At the end of pass 0, the switches must be altered to specify magnetic
tape input; output to pass 1. At the end of pass 1, the switches may be altered to specify magnetic
tape input and paper tape as output to pass 2. Figure 15 diagrams the input/output relationships.
The individual switch settings for various conditions are given below.

Switch Settings

Switch 1

Normal:

Down:

Switch 2

Normal:

Down:

Switch 3

Normal:

Down:

Switch 4

Normal:

Down:

Switch 5

Not used.

Absolute output

Relocatable output.

Printer is on line.

No on-line printer. An octal deck is punched instead of binary cards.

Tape 3 is used to obtain comments on the pass 2 program listing.

Tape 3 is not available, and no comments will appear on the listing. (If switch 4
is down, switch 3 is ignored.)

Tape 4 is used as output by pass 0 and input by pass 1 and pass 2. Tape 5 is used
as output by pass 1 and input/output by pass 2.

No magnetic tapes available, all input/output via cards or perforated tape (switch
4 overrides switches 3 and 6).

@~ cP2@@ ~~[ffiO~~ -----------
-38-

..

Switch 6

This switch is used only by pass 2.

Normal:

Down:

Switch 7

Not used.

Switch 8

Not used.

Switch 9

Normal:

Down:

Switch 10

Not used.

Switch 11

Normal:

Down:

Switch 12

Normal:

Down:

Switch 13

No tape 6 available. Punched output on cards or paper tape.

Binary program output from pass 2 is written on tape 6 (if switch 4 is down, switch
6 is ignored).

Card punch on line.

No on-line card punch (if switch 4 is down and/or switch 6 is normal, switch 9 is
ignored).

Card or magnetic tape input.

Perforated tape input.

Card or magnetic tape output. Switch 13 is ignored.

Perforated tape output. Switch 13 is interrogated.

Switch 13 affects only pass 2.

Normal:

Down:

If switch 2 is normal, printer listing and perforated tape program. If switch 2 is
down, perforated tape listing.

Typewriter listing and perforated tape program (if switch 2 is normal, switch 13
is ignored).

-39-

Switch 14

Normal: No packed symbolic listing.

Down: Print packed symbolic listing (if switch 2 is down, switch 14 is ignored).

Switch 15

This switch is used only by pass O.

Normal:

Down:

Switch 16

Read input from card or perforated tape and process concurrently.

Read input from card or perforated tape and write tape 3. Alter pass 0 to read
input from tape 3 and process.

This switch is used only by pass O.

Normal:

Down:

Switch 17

Not used.

Switch 18

Normal:

Down:

Switch 19

Input to pass 0 is on cards or perforated tape. Switch 15 is interrogated.

Input to pass 0 is on magnetic tape 3. (If switch 3 or 4 is down, switch 16 is ignored;
if switch 16 is down, switch 15 is ignored.)

"No reference" symbols are typed or printed after pass O.

Suppresses or terminates the typing or printing of the "no reference" symbols.

Except for machine malfunctions, the central processor will halt during assembly under three
circumstances only:

1. The number of special symbolic operands (symbol table 1) exceeds 250, the maximum
size allowed by the symbol table.

2. The total number of symbols (symbol table 2) exceeds the size of the table.

3. During the final phase of assembly, a name appearing in the Symbol field cannot be
found in the symbol table.

When these errors occur, an indicative typeout results and the central processor goes into a
programmed loop. Toggling switch 19 bypasses the" symbol table overflow" halt during passes
o and 1 and the "symbol lost" halt during pass 2.

-40-

..

CARD-TO-CARD OPERATIONS WITH MINIMUM CARD EQUIPMENT

The following instructions are for loading General Assembly Program II (CD225F1.006) from
cards for card-to-card operations with this equipment configuration:

Card Reader
Card Punch
Typewriter
Printer (optional)

Pass 0 Card-to-Card Operations

When operating a minimum card system, pass 0 must be processed first, as follows:

1. Place the symbolic program followed by one blank card behind the binary pass 0 deck.

Pass 0
Deck Setup ~--- Blank Card

.. Symbolic Source Deck

I'III· ----Pass 0 Binary Deck

2. Load card deck into card reader.

3. Set A-register input switches as desired for end result.

Switch

4
2
2

Setting

Down
Normal
Down

All other switches normal.

4. Start pass O.

Result

no magnetic tapes
on-line printer
no printer on line

Pass 0 prepares the source program for subsequent use in other assembly passes by packing
the symbolic input program deck, four instructions to one card, as shown by Figure 16. This
packed deck is produced in the form of punched cards. The assembly program creates pass 0
sequence numbers for its own use (20000 series equals packed symbolic numbers), as shown
in the upper right corner of the three cards in Figure 16.

-41-

::'l"" , .. ,. <, ," ~J
I I III I I III I I

II II I I I I I
11111'1 1111111111' tl't 1 .. 1 tl'I' 1'1,1111'111 "'1'.1. f '1'1 t 11111.1111111111111111 ;;;;;. ,; ;."" '··········"":·,:.~;·;!i;···"···" .. ···········;""·;;··;·;;"";.".;.

II I III I III - ;" 'I 1- ; I" I ':~
II I 1111 III

1111111111111111111111,. I. t. 111111111111,111111'111'111'1 .,11111111.11111111_1.1

; ; ; : ; ; ; ; ; ~'; "~~'; ~ ;~~~~~ .. ,..~~"~.~~~ .. ,..~~:."." " u •• ~ •• ~ •• """'uo .. n ~u

IIIIill ;'·'("QI]tl I .~.cl-'i

1111
I I I

I I II I
I I I

I

I I

','"
lIlll))llll

IUHlluu

HII!H')I!

ISilliii"!

.1,111111111111'111111111.'11111' 11111111111'1111111111111 t 1111.1111 111"'111' ••
",.,." •• "U""~." ••• ~"D" •• """."""""."."""."" •• " ••• ".""".".".".a ,.71""""."
I 11 I! 111111! 1111111 rill! 11111 III! 1111111111111111111111111111111111111! 1111 11111

111111111!11111l ! 1121 ! 121!!! 21!! 2 !!! 211!! 211111111111111! 11111111111112121121!! 2

1IIIIIIlll)III)I!I)!I))!!lll!II!!ll!!!!lllllllllll!111Illlllllllllllll!l)lll)ll)

444444444441444444444444441441444444444444444444444' 4 4 4 4 4 4 4 4' 4 4 4 4 4 4 4 4 4 4' 4 4 4 4 4 4' 4

~~~~~!~!!~; SS!!SS!!!s!!!I!!!!!S!!!!!!!!s!I!!!!s!!!!S!!!S!!!!!!!S!SSS!!IS!!S!!!I!!!S,S!!!!!! 

11111111111111111'1111111111111111111111111111115111111 1111111111I611illlllllll' 

111111111111111111111111111Jl1111111111Jlll11111111111JII1111111111111111111Jlll 

11111111'11111.' ••• "'.""1".'".,,,."111'11"11111'1111111111111111111'1"'1 

7 
Symbol 0" REMARKS ) 

o R G 1 0 0 0 ) 
R 0 U N D D D C 5 

or" IILE~ 1 2 I 
MASK OCT377 4 3 0 

( 
) 
\ 

Figure 16. Pass 0 -- Symbolic Program Deck 

A T ABLE OF SPECIAL SYMBOLS is formed containing all symbolic operands appearing in 
the card input/output, double length, floating point, or document handler instructions, This 
symbol table, referred to as symbol table 1 (ST1), can be recorded on magnetic tape, perforated 
tap~, or punched cards. Figure 17 shows a symbol table 1 card and a printer listing of the table. 

Columns 1-3 on the symbol card contain the identifying letters STl. In columns 9-12, octal 
0017 (1510) is a control number used by the assembly program. It equals 3 times the number 
of symbols in ST1 (5), Columns 74-78 contain the assembly-program-created sequence number 
of the card in the pass 0 packed deck, 

• 
• 
• 
• 

lllll t 

11111111111111111111111111111111111111' II" 1111111111111' 11111111' III" 1111111' I 
1 I 1'1111, 1I11,III"1$1I11111t."ZlDMZI.:n •••• ,l1i1J)"' •• S1 ••• "OI'U .... 41 ••• I,IANM •• 51 ............ 11' •• "1111111411"""". 

11111111111111111111111111111111111111111111111 '11111111111111111111111111111111 

11 Z 1 Z Z Z Z Z Z 2 Z 1 Z Z Z Z 12 Z Z Z 2 Z Z 2 Z Z n Z 12 Z 121 Z 12 Z 21 Zl Z Z Z Z2 2 Z 2 Z 2 Z Z Z 11 Z n z Z Z Z 2 n Z 11 Z Z 2 Z r! I 

313333331133333333333333333333333331333 J J 33 3 3 333 3 3 J 3 3 3 333 3 3 333333 33333 3 3 3 333 3 J J I 

"""""""""""""""""""""""""""""""""""""""" 
55555555555555555555555555555555555555555555555555555555555555555555555555555555 

STl 0017 
ROUND DL S TOR DL CON DL CONI DL RND2 DL 

Figure 17. Special Symbol Table (ST1) 

-42-

• 
• 

10000 • 
10010 • 



For any succeeding pass, the cards are arranged according to the sequence numbers--that is, 
ST1 (10000 series) cards before packed symbolic program cards (20000 series) and ST2 (00000 
series) cards before both of these. In the printer listing shown in Figure 17, the letters DL 
(double length) between ROUND and STOR is a special category symbol. 

Pass 0 checks all symbolic names in the input deck for no reference, possible undefined, or 
multiple-defined usage. If anyone of these conditions exists, pass 0 provides a listing on the 
printer; or if deSired, the listing can be printed on the console typewriter. Figure 18 is a sample 
printout by pass 0 on the printer showing these symbolic names. 

• 
• • 
• UNDEFINED SYMBOLS • 

AMT#l AMT#2 CRDIN CRDEOF STRIP SUM STOR ZERO 

• • 
NO REFERENCE 

• BEGIN CON#l FIVE MASK START • 
0 ERRORS TAPE 3 

• 0 ERRORS TAPE 4 • 
END OF PASS 0 

• • 

Figure 18. Printer Listing of Symbol Errors, Pass 0 

PASS 0 MESSAGES, at the conclusion of or during pass 0, on the typewriter or printer indicate 
operating conditions. Some of these messages require immediate intervention in the form of 
switch settings or rereading of input cards. These messages for pass 0 are described in Figure 
19. 

Recovery of a Card Read Error is as follows. If, during the loading of the input source deck, 
a card read error occurs, pass 0 types the message CARD READ ERROR. 

For the 400 cpm card reader: 

1. Depress MANUAL on the GE-225 operator's console. 

2. Remove the card deck from the input stacker; remove the card from the read platform 
and place it in front of the deck; load the card previously read incorrectly into the read 
platform; replace deck in the input stacker. 

3. Press A-Ion console. 

4. Press AUTO and then START. 

For the 1000 cpm card reader, follow essentially the same procedures, except for step 2. Step 
2 for the 1000 cpm card reader requires returning the last card in the output stacker to the 
front of the deck in the input hopper and then performing steps 3 and 4. 

-43-



MESSAGES MEANING RESULT 

NO END CARD Indicates that the symbolic deck Assembly will continue to the normal 
does not terminate with and END end of job. After assembling, the 
card. transfer card may be punched manu-

ally and added at the end of the ob-
ject deck. 

END OF PASS 0 Signifies the end of the pass 0 
run. 

STI OVERFLOW Indicates that the number of spec- Program goes into loop which may be 
ial symbolic operands exceeds 250. overridden by setting switch 19. 

This causes pass 0 to continue, but 
the special symbolic operands encoun-
tered after the error halt are not 
entered in symbol table l. This may 
result in the improper assignment of 
a memory address to these symbols in 
the following passes. 

CARD READ Indicates that the last card read If the card has a punch in either col-
ERROR by the card reader may either have umn 7 or 11, repunch the card correct-

been mis-read or have a punch pre- ly. 
sent in column 7 or 11. The card 
in error will be the last card fed Examine the card for off-center or 
into the output hopper. physical damage (causes for mis-read). 

To recover and restart program follow 
the procedure for Recovery of Card 
Read Error which follows. 

Figure 19. Pass 0 Messages 

Other Halts or Loops are recovered by placing the central processor in manual mode. Check 
the ready status of all input/output devices. If any are in a not-ready status, take the necessary 
actions to ready these. Press AUTO then START. 

If the CARD FEED light on the card reader is on, check the card deck for damaged cards. Replace 
such cards as necessary and reload pass 0 from the beginning. 

Pass 1 Card-to-Card Operations 

1. The output from pass 0 is input to pass 1, but it must be rearranged. The cards that 
have sequence numbers beginning with 10000 (columns 74-78) should be placed in front 
of cards starting with 20000 (columns 74-78). The cards are rearranged with binary 
pass 1 deck followed by output from pass 0, and one blank card. 

Pass 1 
Deck Setup 

r 
f 

4 

r 

lil!i~4 

-44-

4 
STI 

Pass 1 Bi 

4 Blank Card 

lacked 20000 Deck 

10000 Symbol Table 

nary Deck 



2. Load cards into card reader. 
3. Set console switches as desired for each result. 
4. Process pass 1. 

SORTED SYMBOL TABLE (ST2) is the output from pass 1 and gives the equivalent locations 
punched in the cards and, if the printer is on line, listed as they are punched. In addition, a list 
of all multiple-defined symbols, together with all of the equivalent values associated with each 
symbol, is printed (or typed, if no printer is available). 

Errors or possible errors detected in the Operand field of a BSS, EQU, or ORG instruction 
are printed or typed with the present setting of the memory allocation register, the card type, 
and the error code. The error codes are: 

U - an undefined symbol 
A - a possible error in an address. 

Figure 20 shows a listing of Symbol Table 2 and a representative ST2 card. 

• 
• 
• 
• 
• 

f-'ttLt 

1I""'lIt"""""""""""""""""""""""""""""""'11111" , ! J 4 I • 'I I 1111 121Jl4ltll" .. II."uDM.aZl.".PIt."' •• n •••• lCl«IoM ••• , ••• Sl.D .... I1 ....... " •• 17 •• "" 1t"l4ft"nJl1l. 

I"l I I 1 I I 1 1 I 1 I 1 I I , I I I 1111111111111111111111 1111 I I 111 I I 11111111 I t 1111111 I 111 I I 111 

1'1' , , , ! !! 'I! ! !! ! ! !! ! , , , , , , , , , , , , , , , , ! , !!!!! ! !! ! ! , ! ! ! ! ! ! ! ! ! ! ! ! !! ! !! ! ! ! ! ! ! ! ! !! ! ! ! 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

•• 444444"""""""444444444"44 ••••••••••••••••• 4 ••••••••••••••••••••••••••• 

5555555555155555555 5 5 5555555555555555555555555555555555555555555555555555 5 5 5 5 555 

11'16' 1'1111'1111', I'" I ,,, I'" 111111111 51 11111 & 11111111111' "" III'" I" & 6 61" I 

S T2 00052 
AMT 003733BEGIN 003772CONI 103752CON#1 001755CON 1 03746FI VE 101754 
MASK 001753RATE 001752RNDI 00375~~ .. ~~.~~:rD 003726ROUND 101750 
seAL 003720START 001756 
END OF PASS 1 

• 
• 00000 

00010 • 
00020 • 00030 • 

• 

Double length indicator (See STl) 

Octal equivalence of symbol (Memory address 
corresponding to this symbol) 

6-character symbol 

Figure 20. Sorted Symbol Table 2 (ST2) 

In columns 8-12 of the card and the first line of the listing, the numerals 00052 are an octal 
control number (4210) equal to 3 times the number of symbols in ST2 (14). In columns 74-78 
ofthe card, and at the right side of the listing, are the assembly-program- created pass 1 sequence 
numbers (00000 series equals ST2). Other symbols on the printer listing are explained in Figure 
20. 

PASS 1 MESSAGES that can occur during this pass are shown in Figure 21. 

@~ 0 ~(Q)(ID ~[E[ffi~~~ -----------
-45-



MESSAGES MEANING RESULT 

NO END CARD Indicates that the symbo lic deck Assembly will continue to the normal 
does not terminate with an END end of job. 
card. 

END OF PASS 1 Signifies the end of pass 1 run. 

ST2 OVERFLOW Indicates that the number of spec- Same as for pass O. 
ial symbolic operands exceeds 250. 

CARD READ Card improperly read. Same as Same as for pass 0 
ERROR indicated for pass O. 

ERROR IN DECK Input card for pass 1 are not Check arrangement, correct and re-
SETUP arranged properly. load pass 1. 

Figure 21. Pass 1 Messages 

Pass 2 Card-to-Card Operations 

1. The input for pass 2A or pass 2R is the output from pass 1 and pass O. Set up the in
put deck as follows: the output from pass 0 and 1 followed by one blank card: 

Pass 2 
Deck Setup 

t G Absolute \ 
or Relocatablv 

... "4 .... ---Blank Card 

"4 Packed 20000 Deck 

.... ~-------STI 10000 Symbol Table 

.... ~----______ ST2 Symbol Table 2 

.... r-------------- Pass 2 Binary Deck 

2. Load cards in card reader. 

3. Set console switches for desired end result. 

4. Process pass 2. 

-46-



.. 

THE OBJECT PROGRAM on cards is the output of pass 2. If a printer is available the output 
will include an assembly listing with indicated errors (0, U, A, M, S, T). If no printer is on 
line for pass 2 the cards will contain the octal memory location aSSigned to the instruction, 
symbolic instruction in octal, and the codes for read or suspected errors. Figure 22 shows the 
object program's octal deck of cards for execution with an octal loader or this card deck can 
be converted to a binary deck which can be loaded with a binary loader. 

If a printer is on line, the output deck will be a binary deck. Figure 23 illustrates a binary 
card and the assembly listing of the object program as assembled from the instructions of the 
program coding sheet shown in Figure 2. 

I Error Indication 

II I 
I 

J "'I"" ! 11111111111111111111"111111111111111111111111111111111 D 11111111111111 
Jl' I U"::'-t:'l'":<~' _f .... f.', __ I ....:~ .... _ .:....~!o.'l_ i:1L!c.. 1~'l:.!..J1 i!::.I--'_ I!1JH15J1JJJIII. 

I I I I I II III I 11111111 
I I II II I 2222222 

3333333 
IIIIIIIII~ 111111111111111111.111 :!.' !!!!,IIIIIIII ~,!!!!!!!:!!!!!!!!!!!!!!!!!!!:!~::! 

r-----~~~~I~,tl~~~~'0~P~'I~~1~0~,~I~CIW;;!~::~~~!:::::::::::::::::::::~1~1~1~l.~ff44f(. 

II 
111110', II '''II 0 II II 11111111' 11'10 1111 
1 J J4 5' J I '"l1l1lJ'.II!'\'!lllall12Z124~~T1l1l1.ll11llJol15.JJa 

1111 111 1 1 1 1 1 I '11 I 1111111 I 1 1 1 11 1 Ill' ill 

22212222222222222222222222222222222222 

333 3J 13 3 33 3 l J 3 3 3 1 3 33 1 33 3 13 II 3 J 3 J jJ 3 11 1 

... 44444444444444444""""44 ........ 

55555555555555551555555555555555555555 

11111111111111111111111111111111111111 

7 7 7 7 7 7 7 7 7 77 7 77 717 7 7 111 7 11111 77177 11 77 1 

111111."", '" .,1111 11." •• ,,11"111' 

Card 55555 

Columns ~ 11111 

1-4 
5-9 
10-11 
12-18 
19-21 
22-27 
28 
29-31 
32 
33-40 
41 
42-51 
52-80 

Blanks 
Memory location in o.::tal 
Blanks 
Instruction in octal 
Blanks 
Symbolic location name 
Blank 
Symbolic operation code (mnemonic) 
Blank 
Symbolic operand 
Tag 
Blanks 
Comments 

J 1111 

11111 

11111 
"JlJI". 

Figure 22. Object Program Card Deck 

-47-



Word 
Count 

Absolute 
Address 
(Origin) 

1st 
Instruction 

of 1st Instruction 

01750 
01750 0000000 ROUND 
01751 0000062 
01752 0002001 RATE 
01753 3776430 MASK 
01754 0000005 FIVE 
01755 3777736 CON#l 
01756 0640000 START 
01757 0660000 
01760 0720000 
01761 2600000 
01762 0720000 
01763 0000000 
01764 0000001 
01765 0000004 
01766 0300000 
01767 0720000 
01770 0000000 
01771 0000020 
01772 0000004 
01773 0300000 
01774 0100000 
01775 0300000 
01776 2504006 
01777 1501752 

°r~o 
1101750 

ORG 
DOC 

DEC 
OCT 
DE;C 
DEC 
LOX 
LOX 
SPB 
BRU 
SPB 
DEC 
DEC 
DEC 
STA 
SPB 
DEC 
DEC 
DEC 
STA 
ADD 
STA 
MAQ 
MPY 
DAD 

I ' I 

lChecksum 

1000 
50 ROUNDING CONSTANT 

1025 PROCESS COST PER ITEM 
3776430 MASKING CONSTANT FOR MOD ROUTINE 
5 
-34 
ZERO 2 ZE RO INDEX REGISTERS 2+3 
ZERO 3 
CRDIN 1 CARD READ SUB ROUTI NE 
CRDEOF CARD END-OF-FILE RETURN 
STRI P 1 BCD-BINARY CONVERSION ROUTI NE 
CRD CARD IMAGE ORIGIN 

1 BEGINNING OF FIELD 
4 FIELD SIZE 

AMT#l ITEMS PREVIOUSLY PROCESSED 
STRI P 1 
CRD 

16 
4 

AMT#2 ITEMS CURRENTLY PROCESSED 
AMT#l 
SUM TOTAL ITEMS PROCESSE 0 

RATE PROCESS COST PER ITEM 
ROUND ROUND PROCESS COST 

Figure 23. Object Program Assembly. Pass 2 

00005 
00010 

00015 
00020 
00025 
00030 
00035 
00040 
00045 
00050 
00055 
00060 
00065 
00070 
00075 
00080 
00085 
00090 
00095 
00100 
00105 
00110 
00115 
00120 
00125 

It 

@[E c~(o)(ID ~[E[ffiD[E~ -----------
-48-



PASS 2 MESSAGES are shown in Figure 24. 

MESSAGES MEANING RESULT 

ERROR Indicates presence of a real or sus-
pected programming error. 

NO ERRORS Indicates no real or suspected pro-
gramming errors were found. 

END OF PASS 2 Signifies the end of the pass 2 run. 

SYMBOL LOST Indicates a symbol appearing in the This may result from a mispunched 
Symbol field cannot be found in the symbol table from pass 1, a bad 
symbol table. read of the symbol table by pass 

2, or a bad read of the present 
instruction card. The program will 
go into a loop. Whenever a symbol-
ic name appears in the Symbol field, 
pass 2 must search the symbol table 
formed by pass 1 to insure that 
the assembled program is in phase 
with the memory assignment made in 
pass l. Toggle switch 19 to finish 
assembly or restart assembly at 
pass O. 

It can also be the result from over- If this message is overridden, the 
riding a symbol table overflow mess- symbol which was lost wi 11 not be 
age in pass l. found when it is used in the Oper-

and field. This may result in a 
number of undefined references which 
must be corrected by the user. 

ERROR IN DECK Input cards for pass 2 are not Correct the deck and reload pass 2. 
SETUP arranged properly. 

Figure 24. Pass 2 Messages 

CARD OPERATIONS WITH MAGNETIC TAPE AND PRINTER 

EQUIPMENT 

The following operating instructions are for loading General Assembly Program II from cards 
for the following configuration: 

Card Reader 
Card Punch 
2 Magnetic Tape Handlers 
Typewriter 
Printer (900 or 450 lpm) 
2 additional Magnetic Tape Handlers (optional). 

-49-



Pass 0 Cards With Magnetic Tape And Printer 

1. Set up cards as for card-to-card pass O. 

2. Load cards into the card reader. 

3. Set A-register input switches as desired for end results. 

Switch Setting 

2 Normal 
2 Down 

3 Normal 
3 Down 

6 Normal 

6 Down 

16 Optional 

All other switches normal. 

4. Start pass O. 

Result 

Printer on line. 
No on-line printer. 

1 additional magnetic tape available--for comments. 
Only two magnetic tapes available for assembly-
no comments will appear on listing. 

2 or 3 magnetic tapes available as speCified by 
switch 3. 
1 additional magnetic tape available to write assembled 
binary program on tape 6. 3 or 4 tapes available 
as speCified by switch 3. 

As the symbolic cards are read by pass 0, these will be written in card image records (27 words) 
on tape 3, if tape 3 is available. The packed symbolic output from pass 0 will be written on 
tape 4. The special symbols table (ST1) will be left in memory ready for pass 1. 

PASS 0 MESSAGES will be the same as for card-to-card pass 0 plus the following conditions 
applicable to magnetic tape as shown in Figure 25 and the following: 

1. If switch 3 is up, and the symbolic program is on tape 3 in decimal records 27 words 
long, switch 16 may be set down. This will cause pass 0 to read the symbolic program 
from tape 3 instead of from cards. If a read error occurs while reading from tape 3, 
the message, READ ERROR TAPE 3 RESTART PASS 0, will be typed and the program 
will halt. This means that either tape 3 must be corrected before trying again, or that 
assembly must be restarted from the original symbolic cards. 

2. Whenever pass 0 detects a write error while writing tape 3 or tape 4, the assembly 
will rewrite the record until a successful write is performed. 

A count of the number of rewrites necessary during pass 0 is typed and printed, if 
the printer is on line. If these error counts are not zero, it does not necessarily mean 
that the assembly should be restarted. It is merely an indication of the number of 
times pass 0 was required to rewrite the tapes, in order to get a good tape. 

-50-



MESSAGE MEANING 

XXX ERRORS TAPE 3 If tape 3 is used for comments, this typeout signifies the number 
of bad spots on tape 3. 

XXX ERRORS TAPE 4 Signifies the number of bad spots on tape 4. 

READ ERROR TAPE 3 Indicates a read error occurred while reading from tape 3. 
RESTART PASS 0 

Figure 25. Pass 0 Magnetic Tape Messages 

Pass 1 Cards With Magnetic Tape and Printer 

The procedure for processing pass 1 and the results of the processing are as follows: 

1. The input to pass 1 is in memory and on tape 4. 
2. Place two blank cards behind the pass 1 binary deck. 
3. Load cards in the card reader, 
4. Start pass I, 

SORTED SYMBOLIC TABLE (ST2) and equivalent values are the output from pass 1. This is 
written on tape 5 and printed, if the printer is on line. The remaining outputs are the same 
as for card-to-card pass 1. 

PASS 1 MESSAGES and recovery procedures are the same as card-to-card pass 1. 

Pass 2 Cards With Magnetic Tape And Printer 

The procedure for processing pass 2 and the results of the processing are as follows: 

1. The input to pass 2 is the output from pass 0 on tape 4 and on tape 3 (if present), and 
the output from pass 1 on tape 5. 

2. Place two blank cards behind the pass 2A or 2R binary deck. 

3. Load cards in the card reader. 

4. Start pass 2. 

THE OBJECT PROGRAM as the output from pass 2 is the same as the output from card-to-card 
pass 2. In addition, the program listing is written on tape 5, which may be used to obtain multiple 
listings, If tape 6 is available, the binary program will be written on tape 6 as it is being punched. 

-51-



PASS 2 MESSAGES and recovery procedures are the same as card-to-card pass 2 plus the 
following: 

ERROR TAPE 5 indicates that tape 5 was read incorrectly. Reload pass 2. If the error 
message is repeated, restart assembly from pass a with switch 16 down. 

For all other errors, restart assembly from pass a with switch 16 down. 

ALTERNATE ASSEMBLY CONFIGURATIONS 

A user may wish to specify the input/output devices in a mixed fashion--for example, symbolic 
input from punched cards, the use of magnetic tapes as intermediate storage, and output on the 
printer and perforated tape. This can be attained by properly altering the console switch settings 
between passes. The minimum configuration required is: 

Card Reader 
Two Magnetic Tape Handlers 
Typewriter 
Printer 
Perforated Tape Punch 

Pass 0 Alternate Assembly 

1. Arrange cards as for card-to-card pass O. 

2. Set console switches. 

Switch 

2 
3 
4 

Setting 

Normal 
Down 
Normal 

3. Load pass 0 cards. 

Result 

Printer on line 
No magnetic tape 3 
Tapes 4 and 5 used in assembly 

The output from pass 0 will be written on tape 4. The special symbol table will be left in 
memory for pass 1. 

Pass 1 Alternate Assem bly 

1. No change in switches. 
2. Load pass 1 cards. 

The output from pass 1 will be written on tape 5. 

-52-

.. 



Pass 2 Alternate Assembly 

1. Set switch 12 down. 
2. Load pass 2 cards. 

The output from pass 2 will be a printed listing and paper tape program. 

SYSTEMS TAPE 

The assembly program can be operated from a systems tape by installations having magnetic 
tape capability. The tape assembly program (CD225FI.007) requires less assembly time than 
the card assembly program (CD225FI.005) because less card reading and card punching is nec
essary. The systems tape format is described in the following section. 

Operating With Systems Tape 

The description that follows is not for the BRIDGE II Compatible General Assembly Program 
system. Those installations utilizing the BRIDGE II Compatible systems must follow the special 
instruction provided with the program (CD225FI.OOB). 

The General Assembly Program II master deck to produce the systems tape is made up of the 
components listed below, including service routines for the system such as memory dumps, 
tape dumps, etc. The user may add service routines to the assembly program master deck 
as desired. It is possible for the user to insert subroutines in the master deck, and up to 10 
subroutines can be added to the symbolic deck at assembly time by use of the SBR pseudo
instruction. 

THE MASTER DECK is formed as follows: 

1. Tape writer B. LDR 
Pass 0 + 1 blank 

2. Define controller and handler 
9. WEFRCDWTD 

3. PCLLDR Subrouti nes + 1 blank (user option) 
Utility programs + 1 blank 
(additional routines may be inserted) 10. JJJJJJBSSO 

4. WEFPCLLDR II. WEFRCDWTB 
Rewind tape 3 and load test program Run pass 1 + 1 blank 
+ 1 blank 

12. LDR 
5. RCDWTB Pass 1 + 1 blank 

Run ID+EOT + 1 blank 
13. RCDWTB 

5. LDR Run pass 2A + 1 blank 
Test for ID and end of tape + 1 blank 

14. LDR 
7. RCDWTB Pass 2A + 1 blank 

Run pass 0 + 1 blank 

-53-



15. RCDWTB 19. RCDWTB 
Run tape 31D + 1 blank Run RELOAD ID TEST + 1 blank 

16. LDR 20. LDR 
Test tape 3 for ID record + 1 blank Reload ID + 1 blank 

17. RCDWTB 21. WEFRWD + 2 blanks 
Run pass 2R + 1 blank 

18. LDR 
Pass 2R + 1 blank 

THE TAPE FORMAT as produced by the master deck is as follows: 

1. Tape loader 16. Identification record 
2. Memory dump program 17. Tape loader 
3. Tape loader 18. Pass 1 
4. Tape dump program 19. Identification record 
5. End of file 20. Tape loader 
6. Tape loader 21. Pass 2A (Absolute) 
7. Rewind tape 3 for General Assembly 22. Identification record 

Program II 23. Tape loader 
8. Identification record 24. Reposition tape 3 
9. Tape loader 25. Identification record 

10. Test for program identification and 26. Tape loader 
end-of-tape record 27. Pass 2R (Relocatable) 

11. Identification record 28. Identification record 
12. Tape loader 29. Tape loader 
13. Pass 0 30. Reload test program, blocks 
14. End of file (User's subroutine library 9 and 10 

inserted here.) 31. End of file 
15. End of file 

INSTRUCTIONS FOR GENERATING THE SYSTEMS TAPE are as follows: 

1. Remove the REM cards (00001-00005) from the front of the card deck for the General 
Assembly Program II (CD225F1.007). 

2. Mount a blank magnetic tape on tape handler 1, channell. This will become the General 
Assembly Program II systems tape. 

3. Load the card deck in the card reader and depress the console START switch. 

While the deck is being read and the information is being written on magnetic tape, six cards 
will be punched by the card punch. Cards 1, 3, and 5 are in BCD mode and describe cards 2, 
4, and 6, which are in binary mode. These cards are as follows: 

BCD card 
Binary card 
BCD card 
Binary card 
BCD card 
Binary card 

1 
2 
3 
4 
5 
6 

Program call card - file 1, record 1 
Memory dump call card 
Program call card - file 1, record 2 
Tape dump call card 
Program call card - file 2, record 1 
General Assembly Program II call card. 

-54-



The binary call cards (cards 2, 4 and 6), when loaded through the card reader, locate and load 
the binary tape loader (generated with the systems tape) associated with the desired program. 
The appropriate tape loader then loads the program. 

Upon successful completion of loading the information from the cards onto magnetic tape, the 
typewriter prints out END OF RUN and the tape rewinds. 

SYSTEMS TAPE OPERATIONS are as follows: 

Pass 0 Systems Tape 

1. Set console switches as desired. 
2. Place symbolic input program behind the assembly program call card: 

Pass 0 Tape 
Deck Setup .. 4.-..::··:......--- Blank Card 

.... r------ Symbolic Source Deck 

.. 4_._------ Binary Call Card 

3. Load cards in the card reader. 

The output from pass 0 will be as specified by the switches. At the end of pass 0, pass 1 will 
automatically be loaded into memory, and will go into execution phase. 

Pass 1 Systems Tape. The output from pass 1 will be as specified by the pass 1 switch settings 
previously described. At the end of pass 1, pass 2 will automatically be loaded into memory, 
and will go into execution phase. 

Pass 2 Systems Tape. The output from pass 2 will be as speCified by the switches. At the end 
of pass 2, the systems tape will rewind and the processor will halt. 

If a tape or checksum error is detected during the actual loading of the assembly, the computer 
will halt at location 44. Restart the assembly from the beginning. If the error halt occurs 
again, use the General Assembly Program II master deck to rewrite the system tape and try 
again. 

Switch settings may be altered during the assembly. Each pass reads the control switches 
once at the beginning of each run. After each pass begins reading the input, the switches can 
be altered as desired without affecting the execution of the current phase. Duplicate listings 
of the program can be obtained by printing tape 5. 

-55-



I 

Addition Of Service Routines 

The user may add service routines to the master deck by removing any card loaders from his 
service routine deck. The deck consisting of the binary program cards and the program transfer 
card is inserted in the master deck between blocks 3 and 4 in the master deck format. Use the 
altered deck to write a new systems tape. During generation of the system tape, a call card is 
punched for each service routine in the master deck. 

Addition Of Symbolic Subroutines 

It is also possible for symbolic subroutines to be placed onto the systems tape by modifying 
the assembly program master deck. The subroutines placed on the tape are normally the ones 
most frequently used. A typical arrangement might be: 

Name 

CHOOSE 
CRDIN 
IDBNPR 
NPRIBD 
TPI/O 

Description 

Least Key Finder 
Card Read Routine 
Internal BCD-to- Binary 
Internal Binary-to-BCD 
Tape Input and Output 

Name 

SORT 
PRINT 1 
DMPY 
TRACE 

Description 

Internal Memory Sort 
Typewriter Print Routine 
Double Precision Multiply 
Trace Routine 

Although more subroutines can be stored on the tape, no more than ten can be called for during 
one assembly. 

The advantages of having the subroutines on tape are: 

1. Reduces card reading time 
2. Reduces card handling by operators and programmers 
3. Makes changing and maintaining the routines easier. 

THE SUBROUTINES ARE CALLED FOR as needed, by the programmer, using the SBR pseudo
instruction. 

To prepare a subroutine for addition to the deck, perform the following steps: 

1. Obtain a deck of the symbolic program cards for the desired subroutine. 

2. Punch two symbolic cards to be placed at the front of the deck. 

Card 1 

Card 2 

columns 1-6 
8-10 
12 

columns 8-10 

Subroutine name 
BSS 
o 

REM 

3. Punch one symbolic card to be placed at the end of the deck. 

Columns 8-10 END 
12 0 

-56-

.. 



4. Run this modified deck through pass 0 with switch 4 down to obtain a deck of punched 
cards. This deck will be as follows: 

Card 1 

Card 2 

Card 3 

~ 
Card N-l 

Card N 

Card N+l 

Card N+2 

1 
Card N+M 

columns 1-6 
7-9 
10 
74-78 

columns 7-9 
74-78 

Subroutine name 
BSS 
o 
20000 

REM 
20010 

Packed symbolic subroutine 
columns 74-78 20020 

+ + 
columns 7-9 

10 

columns 1-3 
9-12 
74-78 

Special symbol table 

END 
o 

STI 
Number of special symbols 
10000 

(These will not appear if there 
are no special symbols.) 

+ 
5. Insert cards N + 1 and N + 2 through N + M (if any) between cards 1 and 2. 

6. Insert this deck in block 9 in the assembly program master deck. If two or more sub
routines are in the library, they must be in ascending order according to the binary 
value of columns 1-6, card 1 contains the symbolic name of the subroutine. 

7. Use the altered deck to write a new systems tape. 

Any modifications to the General Assembly Program II must be inserted in the appropriate pro
gram (blocks 8, 11, 13, and 17) in the master deck. 

Where a subroutine contains a name in the symbol field of its first instruction, it is a simple 
matter to adopt this symbol as the SBR call name. Most of the programming routines have this 
symbol--FLIP, STRIP, etc. Where a subroutine does not contain a name in the symbol field 
of the first instruction, the user could insert the symbol he has chosen for his SBR call in this 
field. This ensures that the General Assembly Program will link the SBR name with a symbol 
in the subroutine. 

When a subroutine which is not on tape is called for, a printout occurs in pass O. This printout 
gives the subroutine call symbol followed by SBR OP--for example: 

CRDIN SBR OP 

-57-



Multiple Assemblies 

WHEN AN ABSOLUTE OBJECT PROGRAM IS DESIRED, using the systems tape to assemble, 
the General Assembly Program II assembles one program. 

WHEN A RELOCATABLE OBJECT PROGRAM IS DESIRED, using the system tape to assemble, 
it is possible to write several programs on tape 3 and to assemble these consecutively. If any 
one of the pseudo-instructions SBR, MAL or PAL appears in the source program contained on 
tape, it will not be possible to call the source program from tape 3 for assembly. The three 
instructions, if encountered on tape 3, will cause the assembler to write on tape and in so doing 
destroy some of the user's coding. SBR, for example, will cause the requested subroutine to 
overlay the END card image. MAL and PAL will cause the requested alphanumerics to be written 
over the adjacent sequence of instructions. 

Each program on tape 3 should be preceded by an identification card containing an asterisk in 
column 1. Columns 2-80 may contain any BCD information desired. There must be an end-of
file record after each symbolic program on tape 3. In addition, an end-of-tape record must be 
written on tape 3 after the last program to be assembled. 

End-of-Tape Card 

The format of the end-of-tape card is as follows: 

Columns 

1 
4 - 6 
7 
8 and 9 
10 
11 - 14 

Contents 

Asterisk 
END 
Blank 
OF 
Blank 
TAPE 

At the end of pass 0, and in preparation for pass 1, tape 3 is positioned at the beginning of the 
source program that was just read. To accomplish this repositioning, the assembler backspaces 
the tape until it finds the beginning of the program. The repositioning is not accomplished by 
executing the rewind command, because the tape may contain more than one symbolic program. 
Thus, the beginning of tape may not necessarily be the beginning of the program being assembled. 

Forward Sort/Merge Generator (CD225G1.002), ZOOM-A (CD225F1.002) and pass 0 of the as
sembler will build tape 3 into 27-word records. The assembler expects to find, and checks for, 
27-word records. If an input tape is built by a user's program with a record size not equal to 
27, the tape will be searched until a 27-word record is found. This search could continue to the 
end of tape. 

BRIDGE II COMPATIBLE SYSTEM 

BRIDGE II is used to build and maintain computer programs on magnetic tapes in a standardized 
format. This format includes the presence of a Next Run Locator program between each of the 
user's programs on tape. BRIDGE II is used to prepare program tapes for execution, but does 
.!!Q1 itself partiCipate in their execution. The Next Run Locators handle the finding and starting 
of each program in its turn. 

-58-



General Assembly Program II has been made compatible with BRIDGE II so that it may exist 
on a system tape with other systems such as FORWARD, GECOM, and ZOOM-A that are com
patible and can be maintained by BRIDGE II. All input, output, and the instruction repertoire 
are the same. The only requirements are that the minimum system configurations be: 

Card Reader 
Card Punch 
3 Magnetic Tapes (minimum) 
Typewriter 
8k Memory. 

As optional equipment, a printer and 2 magnetic tapes may be added. 

System Tape Setup 

The systems tape (CD225Fl.008) provided by General Electric's Program Library will contain 
the following programs: 

BRIDGE II (CD225J1.001) 
GAP II (BRIDGE Compatible version) (CD225F1.008) 
COBOL (CD225H5.000) 
GECOM II (GECOM Compatible version) (CD225H1.005) 
FORWARD SORT/MERGE (CD225G1.006) 
FORTRAN (CD225H6.001) 

The user can copy from the tape any program or group of programs or, if it is desired, the 
tape can be used in its entirety. The General Assembly Program II (BRIDGE Compatible version) 
portion of the systems tape is generated from the following parts in the sequence outlines below. 

1. Start Card 15. Loader 
2. SCC RUNBRIDGE II 16. GAP Pass 1 
3. DOP 17. PRG RUNGAP II P2A 
4. LBLBTL001GAPSYSTEM 18. LBLRUNGAPII P2AABS 
5. PRG RUNGAPII PO 19. Loader 
6. LBLRUNGAPII PO ABS 20. GAP Pass 2A 
7. Loader 2l. PRG RUNGAPII P2R 
8. GAP Pass 0 22. LBLRUNGAPII P2AABS 
9. SYM SYMSUBRUTINE 23. Loader 

10. Users Symbolic Subroutines Pre- 24. GAP Pass 2R 
pared as for GAP II 25. CPT 

11. ENDO 26. One Blank Card 
12. END 27. EBS 
13. PRG RUNGAPII PI 28. Two Blank Cards 
14. LBLRUNGAPII PI ABS 

Symbolic Subroutines 

Subroutines may be added to the General Assembly Program II portion of the systems tape 
following pass O. These subroutines are in packed symbolic form and are inserted following the 

SYM SYMSUBRUTINE 

-59-

I 

I 



I 

card that immediately follows pass 0 in the deck. The following configuration of cards defines 
the sequence necessary to copy General Assembly Program II and insert the desired subroutines. 

Start Card (BRIDGE Control) 
SCC 
DOP 
THA 
LBLBTLOOI (optional) 
COP BTL MASTERRUN 
SYM 

RUNBRIDGEII 

RUNGAPII PO RUNGAPII PO 
SYMSUBRUTINE 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Users Packed Symbolic Subroutines 
COP BTL MASTERRUN RUNGAPII PI RUNGAPII P2R 

10. 
11. 
12. 
13. 

CPT 
One Blank Card 
EBS 
Two Blank Cards 

Detailed information for the copying process together with blocking, labels, etc. will be found 
in the BRIDGE II Operating Service System manual (Publication No. CPB-1039). 

Assembly 

START and SCC (RUNGAPII PO) cards are sent out with the systems tape for use with BRIDGE 
Compatible General Assembly Program II. When assembling a program using BRIDGE Com
patible General Assembly Program II these cards are used at the beginning of the card deck 
in place of the General Assembly Program call card. Assembly follows as previously described 
for General Assembly Program II Assembly. 

MODIFICATIONS TO GENERAL ASSEMBLY PROGRAM /I 

Modifications to General Assembly Program II are accomplished by changing the binary program 
decks with binary correction cards. The addresses to be altered to accomplish modifications 
are a function of each particular General Assembly Program II deck. Each General Assembly 
Program II deck that is issued by the General Electric Program Library is accompanied with 
a sheet that details the necessary addresses. 

Symbol Table Length and 8K Modifications 

General Assembly Program II requires a minimum of 4096 words of core storage. Each program 
is packed at the beginning of memory. All of the available memory following each program is 
used for working storage. If a larger memory is available, the following corrections to pass 0 
and pass I serve to increase the available working storage. This allows the assembly program 
to form a larger symbol table but has no effect on the internal functions. 

Program 

Pass 0 
Pass 1 

Octal 
Location 

xxxxx 
xxxxx 

Correction for 
8192 words 

xxxxxxx 
xxxxxxx 

Note: X = Information contained on the information sheet issued with the program deck 
by the Program Library. 

@J~ c~m)(ID ~~[ffi~~~ -----------
-60-

• 



These alterations specify to pass 0 and pass 1 that the constant in the specified locations is 
the address of the last memory location that may be used. This may be set to any desired constant 
beyond the programs at the user's convenience. For example, if the user desires to reserve 
the last 25610 locations of an 8192 memory, these corrections should be xxxxxxx (contained on 
the information sheet which is issued with the program deck by the program library). The size 
of the symbol table which may be held by each pass is included in the following lists of symbol 
table characteristics: 

SYMBOL TABLE 1: 

1. Built-in pass 0 only 
2. Consists of DL, I/O, FLP, and document handler symbols 
3. Maximum size is - - - decimal 
4. Printed out at end of pass 0 
5. Error message SYMBOL TABLE OVERFLOW 1 when table capacity is exceeded. 

SYMBOL TABLE 2 

1. Built-in pass 0 ~ pass 1 

2. Consists of all symbols used in a program 

3. Maximum size is indicated on assembly listing in decimal form immediately following 
the words GAP 0 and GAP 1 

4. Table size variable if the number of instructions contained in pass 0 or pass 1 is changed. 
(The General Assembly Program itself determines the number of symbols each pass 
will hold. The table size is printed out at the beginning of each assembly) 

5. Printed out only at end of pass 1 

6. Error messages: 

Pass O--SYMBOL TABLE OVERFLOW 2 when table size exceeds the number indicated 
on the listing at beginning of the pass 

Pass 1--SYMBOL TABLE OVERFLOW when table size exceeds the number indicated 
on the listing at beginning of the pass. (This number will not be the same in both pass 
o and pass 1.) 

Priority Control Channel Assignment Modification 

Without modification, the tape controller is on priority control channel 1 and the printer con
troller is on channel 6. 

Modification of channel assignments is accomplished by inserting binary correction cards just 
ahead of the branch card of each deck. 

-61-



The octal format of the controller number assignment word is: OOOOOOP. 

Octal Location of Octal Location of 
Program Printer Channel No. Tape Channel No. 

Pass 0 XXXXX XXXXX 

Pass 1 XXXXX XXXXX 

Pass 2A, 
Absolute XXXXX XXXXX 

Pass 2R, 
Re1ocatab1e XXXXX XXXXX 

Note: X = Information contained on the information sheet which is issued with the program 
deck by the program library. 

Caution: All tape channel numbers or all printer channel numbers for all four programs should 
be changed at one time. 

For example, to change the tape controller from channel 1 to channel 2: 

1. Make up octal correction cards. 

Card Columns 
5-9 12-18 

For Pass 0 
Card 1 XXXXX 0000002 

For Pass 1 
Card 2 XXXXX 0000002 

For Pass 2A 
Card 3 XXXXX 0000002 

For Pass 2R 
Card 4 XXXXX 0000002 

Note: X = Information contained on the information sheet issued by the program library. 

2. Use an octal-to-Binary Card Converter to convert the octal correction cards to binary 
correction cards with checksum and origin. (Use CD225C3.002J 

3. Insert the respective binary correction cards just before the transfer cards of passes 
0, 1, 2A, and 2R. 

-62-

• 



Vacuum Pocket Retrofit Modification 

The General Assembly Program II assumes that magnetic tapes handlers have vacuum pockets. 
If the handlers do not have vacuum pockets, the following locations in each program should be 
altered by inserting binary correction cards just ahead of the branch card. 

Octal Octal 
Program Location Instruction 

Pass 0 xxxxx XXXXXXX 
Pass 1 XXXXX XXXXXXX 
Pass 2A, XXXXX XXXXXXX 
Absolute XXXXX XXXXXXX 
Pass 2R, XXXXX XXXXXXX 
Relocatable XXXXX XXXXXXX 

Note: X = Information contained on the information sheet issued with the program deck by 
the program library. 

Modifications to assembly program card decks are easily made by punching the octal correction 
cards, converting them to binary, and inserting the binary card before the respective transfer 
cards of each assembly program deck. 

System Tape Controller Channel Modification 

To change the tape controller channel number for the system tape, it is necessary to change 
the systems tape definition card. 

Punch a card as follows: 

Columns 

1-3 
9 

15 

Contents 

CON 
Controller Channel Number 
1 

Tape loaders will be altered and written as required on the master tape. In addition, new call 
cards for the programs in block 3 and in block 4 will be punched for the specified tape. The call 
card punched for block 4 (file 2; program 1) is the required assembly program call card for 
this tape. This individual pass must be modified by inserting binary correction cards just ahead 
of the branch card. 

RELOCATABLE OBJECT PROGRAMS 

General 

General Assembly Program II can provide the user with relocatable object programs. The 
binary cards produced are in a format acceptable to the Multi-Capability Modular Loader 
(MCML 11). For additional information, refer to the MCML II (CD225B1.006R) documentation. 

-63-



To conform to the requirements of MCML, a TCD card causes a type 5 card containing the appro
priate address to be punched, and an END card causes a type 3 card containing the transfer 
address to be punched. 

Figure 26 shows the format for relocatable instruction cards. Figure 27 shows the format of 
assembly listings produced with the relocatable instruction cards. The assembly listing is 
augmented with a relocate indicator that appears in column 20 (between the octal display of the 
instruction and the Symbol field). The relocate indicator takes on three values: 

O--absolute, no modification requested 
1--develops positive address relative to the relocation constant 
2--develops negative address relative to relocation constant 

The number indicates what relocation key is associated with the instruction word as it appears 
in the binary card image. The number thereby indicates how the relocatable loading process 
will modify the operand portion of the instruction. 

The relocate flag also appears in the octal card output of General Assembly Program II in 
column 20. The octal card output can be converted to a relocatable binary deck by using the Octal 
to Relocatable Binary Converter routine (CD225C3.004R). 

Calculation of Checksum 

Figure 26 illustrates the relocatable instruction card format. The checksum is punched in bit 
positions 7-9 of column 3 and bit positions 0-9 of column 4. The checksum is the sum of all 
words in the load string with the exception of the checksum itself. * Because there is the 
possibility of overflow there must be a test for overflow after each addition and a 1 must be added 
to the sum whenever overflow does occur. The 20-bit calculated checksum must be punched in 
the 13 bits allowed for it in the relocatable card format. For this reason, bits 0-6 of the 
calculated checksum must be added to bits 7-19 of the checksum. There is the possibility of 
overflow as the result of this addition and, in the case of overflow, a 1 must be added to the 13-
bit checksum. The following coding illustrates how the checksum may be calculated for information 
punched on a card in the relocatable format. This example assumes that the overflow indicator 
has been cleared, index word zero contains the word count (WDCT), and X-word 1 contains 
the word currently being added to the checksum. 

* A load string consists of one or more sequential instructions to be consecutively loaded 
into memory immediately preceded by two words which contain the origin, the checksum, and 
other information (see Figure 27). 

-64-

• 



( 

"~' ',:,,~~~~.,,', e, g, ': ", "'~DI', ", '.,:',:.~~9G~~~::::~::::2:;:::~3~~:::::3::J.::::Q 
~

' ". 11. 1,,1i II 11 lit 4. ." 

Y D 'U 1111111111111 t lllllllli,Jlllllll111111' 1111111111111' 111111111 1111111111111' I 

~ D ~ 112 2 1 2 21 2 1 2 11 2 1 t 2 1 2 21 2 1 2 2 1111 2 1 2 2112 2 2 2 2 2 2 1 2 2 111 2 2 1 2 222 1 Z 2 1 2 121 2 1 2 2 2 1222 J 2 11 

, "ISil~33 J,I J llJ11IlJl]l] Ill]3 III 331]) J 1 Jl Jl J 13 33 llJ 5J)ll ]1] 113]) J]] 33 Ill]) J lJ 3 

BR 0 ,1.4., 4' 4"", 4""""""""""""""""""""""""""""""" 
S [ Sju'5 5 55) 5 S I 5 5 5 5 S 5 5 5 5 5 555 5 5 5 5 5 S 5 5 5 5 5 5 5 5 5 5 5 5 f 5 555 5 5 5 5 5 555 5 5 555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 ~ 555 

1111 illIlI&IIIIIUiI&UI5 & &1&151&1&1&1&15151&16151&1&1&1&111&1&1&1&1&1 I 

c .. l11 J 1111 llJlJJJJ17JJJJ 1 J 17 71711Jl Jl17171Jl11171JJ11711171JJJl 1 

s '" I ""1 1111111"" I .,. I 1IIIIII'I'I., •• ,B,IIIIIIBIIII •• ,.!,f .•. ,all I 

:1~1!!~'!!1~~1~ I 1~'1!!!.!! !ll~ IU'9 ! l~!! I~ !'9I~!!'~!!!' !'!'I~ ! !'i~ !Wl~ !!! .. ~ ! 

K~ P ----? Kk--- P ---? Kk--- p ---? K~ P--3> 

'------v-------

Words 

Figure 26. Relocatable Instruction Card 

Field Column Rows 

TYPE 0-3 

B 

START ADDRESS 5-9 
0-9 

D 

WORDS 1-6 

CKSUM 7-9 
0-9 

K as shown 

P as shown 

Type indicator: a 03 indicates a standard 
relocatable instruction card; a 05 indicates 
a mark transfer point; a 11 indicates a 
loader card. 

Checksu.m override indicator. 
o :: card checksummed during loading. 
1 = checksum ignored. 
Usually the card will contain a checksum. 

Location of the first instruction relative 
to the program origin. 

Not used 

Number of program words on the card. 

Checksum. 

Relocation key or control word for the 
next sequence of one to nine program 
words. 

This key contains a relocation indicator 
for each of the following program words 
(P). The K field consists of nine two
bit fields each of which contains a code 
which applies only to the operand portion 
of the program word. This code is: 

Code 
(Binary) 

00 
01 

Operand Address 
is 

Absolute 
Positive address 
relative to the re
location constant 

10 Negative address 
relative to relocation 
constant 

Control Word 
Bits e e ee e .... >------..., .... ~ 

not 18t 2nd" ., 9th 
used,-, _____ --...~----~ 

Program Word 

Program words to be stored In consecutive 
memory locations relative to the location 
given in field. 

Figure 27. Relocatable Assembly Listing Format 

-65-



LDX WDCT 0 
LDX ZERO 1 
LDA START First two words 
ADD START + 1 

ADD ADD START + 2 1 
BOV 
ADO Check A-register 
INX -1 0 Compute 20-bit checksum 
INX 1 1 
BXH 1 0 
BRU ADD Save 13 bits of 
STO CKSM checksum 
SRA 13 ) Position bits 0 
EXT MSK through 6 of checksum 
ADD CKSM 

} SLA 6 
SRA 6 Test for overflow 
BOV 
ADO 
STO START + 1 

MSK OCT 3777600 
CKSM DEC 0 
ZERO DEC 0 
WDCT DEC 0 Word computed by assembly program 

PERFORATED TAPE ASSEMBLY 

General 

General Assembly Program II accepts perforated tape as an input medium. The output can be 
in the same form, if desired. 

The perforated tape input is punched from the regular assembly program coding sheet using 
the standard Friden Flexowriter* SPD character set. The character set is shown in Figure 28. 
The first character punched must be a carriage return (CR) followed by the 80 columns from 
the sheet. Each source line of coding punched from the coding sheet must be separated by a 
CR. However, perforated tape codes prepared by off-line devices may vary widely and the user 
may wish to modify the perforated code used by General Assembly Program II. This is easily 
accomplished by changing the conversion tables as described below. 

Perforated Tape Input/Output Conversion Tables 

Pass 0 reads and converts perforated tape codes to internal GE-225 BCD from a conversion 
table. This table can be modified by correction cards to conform to the user's requirements. 

Each entry in the table of characters carries two BCD configurations: one corresponding to 
an upper case tape code and one to a lower case. For example, the second entry in the memory 
word shown below contains the BCD character corresponding to a lower case perforated tape, 
code for the numeral 2 in bit positions 8-13 and the BCD character corresponding to an upper 
case perforated tape code for the numeral 2 in bit positions 14-19. 

* Trademark of Friden, Inc. 

@[E c~(O)(m ~[E[ffi~[E~ -----------
-66-

) 

• 



Memory Word 

° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

101°1°101010101°1°101010111 ° I 010 1111 1 ° 1° I 
° ° ° ° 2 14 '--..r-------' \. I 

t f 
Lower Upper 

Case Case 

As pass 0 and pass 1 prepare input tapes for succeeding passes, no conversion is required, 
These intermediate tapes are punched in codes corresponding to internal GE-225 BCD. 

The output from pass 2 may be listed on off-line devices which require a character conversion. 
This is accomplished by another conversion table. A typical memory word appears below. 

Memory Word 

indicates 
upper 
case 

indicates 
lower 
case 

In pass 2A (absolute) this table occupies locations as are specified in the information sheet 
issued with the program deck. Each word in the table carries the perforated tape codes for two 
internal BCD characters, the first code in bit positions 2-10, the second in 11-19. In each 9-bit 
configuration, the first octal digit is a 0 if the corresponding tape code is in upper case and a 
1 if it is in lower case. The next two octal digits contain the tape code itself. 

Note that, in the character set shown in Figure 28, several of the Flexowriter codes are meaning
less (with the two exceptions given below) to the GE-225 and are interpreted as spaces (memory 
octal 60). Also, any other of the Flexowriter codes that are not listed are meaningless and 
interpreted as spaces. The two exceptions are LOWER CASE and UPPER CASE. These are 
not meaningless, as they are necessary in the interpretation of two identically-punched codes 
that may be punched from the same Flexowriter key, such as 3 and #. 

-67-



Paper Tape COde 
Channel Numbers 

Memory 
Tape Code 

Character Lower Case Upper Case 8 7 6 5 4 S 3 2 1 (Octal) 

0 x • 00 
1 x • 01 
2 x • 02 
3 x • • • 03 
4 x • 04 
5 x • • • 05 
6 x • • • 06 
7 x • • • 07 
8 x • 10 
9 x • • • 11 
A x x • • • 21 
B x x • • • 22 
C x x • • • • • 23 
0 x x • • • 24 

_E x x • • • • • 25 
F x x • • • • • 26 
G x x • • • • • 27 
H x x • • • 30 
I x x • • • • • 31 
.J ~ x I. • • 41 
K x x • • • 42 
L x ~ • • • 43 
M x x • • • 44 
N x x • • • 45 
0 x x I. • • 46 
P x x • • • • • 47 
Q x x • • • 50 
R x x • • • 51 
S x x • • • 62 
T x x • • • 63 
U x x • • • 64 

x x • • • 65 
W x x • • • 66 
X x x • • • • • 67 
y x x • • • 70 
Z x x • • • 71 
SPACE x x • 60 
@ x • 14 
If x • • • 13 
S x • 53 
= x • • • 16 
• x • 54 
( x • • • 75 

~ x • 76 
x • • • 61 

: x • • • 60 
- x • 40 
" x • 60 
% x • • • • • 74 

x I. • • • • 60 
+ x • • • 20 
: x • • • 60 .. 

x x • • • • • 33 , x • 60 
LOWER CASE • • • • • 60 
UPPER CASE • • • • • 60 
CARRIAGE 
RETURN x x • 

Figure 28. Perforated Tape Character Set 8-Channel, Friden Flexowriter Model SPD 

@~ o~(o)(ID ~~[ffi~~~ -----------

-68-



( 

QJ 
C 

OJ 
C 
o 
ct! 

... 
::J 
U 

QJ 
(/) 

ct! 
QJ 

0.. 

DOCUMENT REVIEW SHEET 

TITLE: GE-200 Series General Assembly Program II 

CPS #: ~1~18~O~ __ __ 

FROM" 

Name: 

Position: 

Address: 

Comments concerning this publication are solicited for use in improving future 
editions. Please provide any recommended additions, deletions, corrections, or 
other information you deem necessary for improving this manual. The following 
space is provided for your comments. 

CO~frlliNTS: ____________________________________________________________________ _ 

NO POSTAGE NECESSARY IF MAILED IN U.S.A. 
Fold on two lines shown on reverse 

side, staple, and mail. 



ST A P L E 

FOLD 

BUSINESS REPLY MAIL 
NO ~O.TACI. 8TAM" Nlle ••• AIIY ... MAILED IN THI: UNITlEa .TATE. 

POSTAGE WILL BE PAID BY 

GENERAL ELECTRIC COMPANY 
COMPUTER EQUIPMENT DEPARTMENT 

13430 NORTH BLACK CANYON HIGHWAY 

PHOENIX, ARIZONA - 85029 

ATTENTION: DOC U MEN TAT ION S TAN 0 A R 0 SAN 0 P U 8 LIe A T ION S 8 -9 0 

FOLD 

STAPLE 

FIRST CLASS 

PERMIT, No. 4332 

PHOENIX, ARIZONA 





- ."' 

tNfORMAT,ION$YSTEMS DIVISION 

LITHO U.S.A. 


