

EXAMPLE CSA A23.3-14 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8 m spans in each direction, as shown in Figure 1.

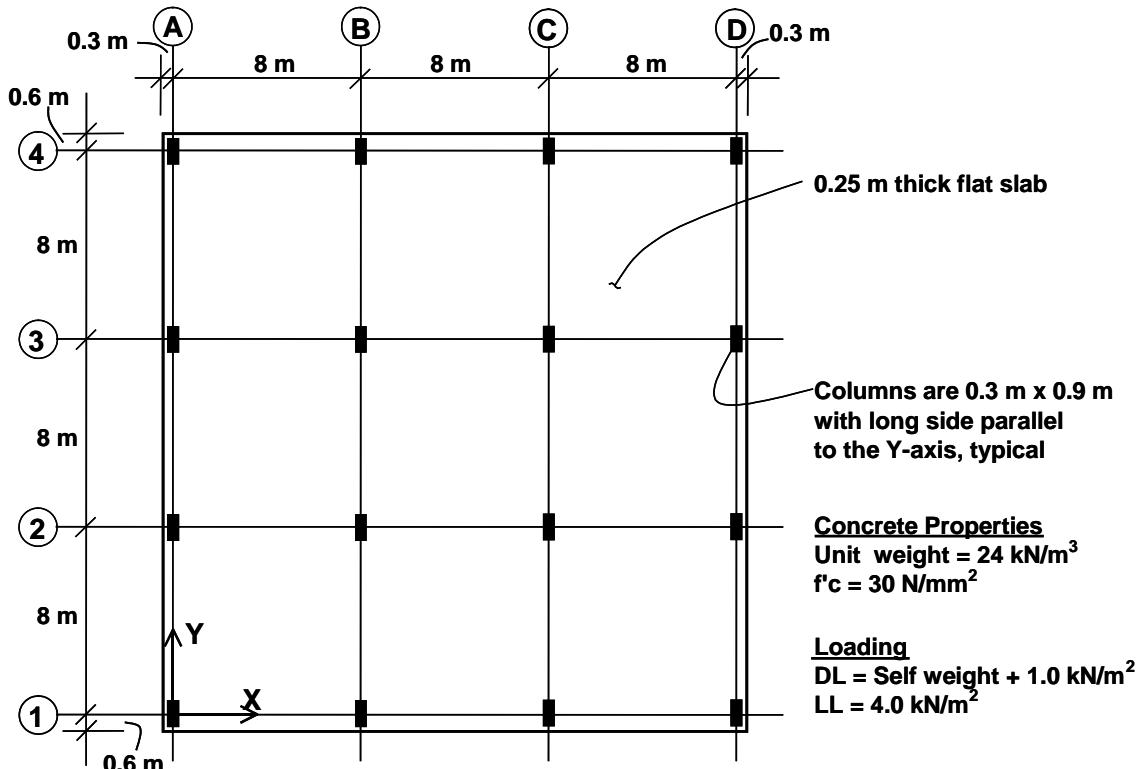


Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. The slab is typically 0.25 m thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m^3 and a f'_c of 30 N/mm^2 . The dead load consists of the self weight of the structure plus an additional 1 kN/m^2 . The live load is 4 kN/m^2 .

Software Verification

PROGRAM NAME: SAFE
 REVISION NO.: 0

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

Method	Shear Stress (N/mm ²)	Shear Capacity (N/mm ²)	D/C ratio
SAFE	1.792	1.127	1.59
Calculated	1.792	1.127	1.59

COMPUTER FILE: CSA A23.3-14 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

$$d = [(250 - 26) + (250 - 38)]/2 = 218 \text{ mm}$$

Refer to Figure 2.

$$b_0 = 518 + 1118 + 1118 + 518 = 3272 \text{ mm}$$

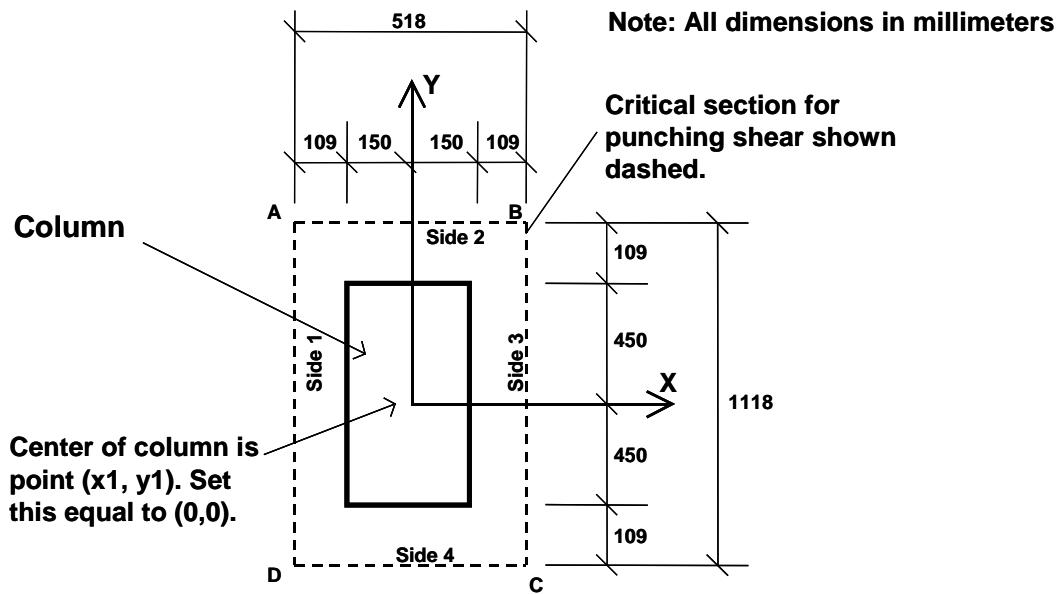


Figure 2: Interior Column, Grid B-2 in SAFE Model

$$\gamma_{V2} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right) \sqrt{\frac{1118}{518}}} = 0.495$$

$$\gamma_{V3} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right) \sqrt{\frac{518}{1118}}} = 0.312$$

 The coordinates of the center of the column (x_1, y_1) are taken as $(0, 0)$.

Software Verification

PROGRAM NAME: SAFE
 REVISION NO.: 0

The following table is used for calculating the centroid of the critical section for punching shear. Side 1, Side 2, Side 3, and Side 4 refer to the sides of the critical section for punching shear as identified in Figure 2.

Item	Side 1	Side 2	Side 3	Side 4	Sum
x_2	-259	0	259	0	N.A.
y_2	0	559	0	-559	N.A.
L	1118	518	1118	518	$b_0 = 3272$
d	218	218	218	218	N.A.
Ld	243724	112924	243724	112924	713296
Ldx_2	-63124516	0	63124516	0	0
Ldy_2	0	63124516	0	-63124516	0

$$x_3 = \frac{\sum Ldx_2}{Ld} = \frac{0}{713296} = 0 \text{ mm}$$

$$y_3 = \frac{\sum Ldy_2}{Ld} = \frac{0}{713296} = 0 \text{ mm}$$

The following table is used to calculate I_{XX} , I_{YY} and I_{XY} . The values for I_{XX} , I_{YY} and I_{XY} are given in the "Sum" column.

Item	Side 1	Side 2	Side 3	Side 4	Sum
L	1118	518	1118	518	N.A.
d	218	218	218	218	N.A.
$x_2 - x_3$	-259	0	259	0	N.A.
$y_2 - y_3$	0	559	0	-559	N.A.
Parallel to	Y-Axis	X-axis	Y-Axis	X-axis	N.A.
Equations	5b, 6b, 7	5a, 6a, 7	5b, 6b, 7	5a, 6a, 7	N.A.
I_{XX}	2.64E+10	3.53E+10	2.64E+10	3.53E+10	1.23E+11
I_{YY}	1.63E+10	2.97E+09	1.63E+10	2.97E+09	3.86E+10
I_{XY}	0	0	0	0	0

From the SAFE output at Grid B-2:

$$V_f = 1126.498 \text{ kN}$$

$$\gamma_{v2} M_{f,2} = -25.725 \text{ kN-m}$$

$$\gamma_{v3} M_{f,3} = 14.272 \text{ kN-m}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

At the point labeled A in Figure 2, $x_4 = -259$ and $y_4 = 559$, thus:

$$v_f = \frac{1126.498 \cdot 10^3}{3272 \cdot 218} - \frac{25.725 \cdot 10^6 [3.86 \cdot 10^{10} (559 - 0) - (0)(-259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2} + \frac{14.272 \cdot 10^6 [1.23 \cdot 10^{11} (-259 - 0) - (0)(559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2}$$

$$v_f = 1.5793 - 0.1169 - 0.0958 = \mathbf{1.3666 \text{ N/mm}^2} \text{ at point A}$$

At the point labeled B in Figure 2, $x_4 = 259$ and $y_4 = 559$, thus:

$$v_f = \frac{1126.498 \cdot 10^3}{3272 \cdot 218} - \frac{25.725 \cdot 10^6 [3.86 \cdot 10^{10} (559 - 0) - (0)(259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2} + \frac{14.272 \cdot 10^6 [1.23 \cdot 10^{11} (259 - 0) - (0)(559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2}$$

$$v_f = 1.5793 - 0.1169 + 0.0958 = \mathbf{1.5582 \text{ N/mm}^2} \text{ at point B}$$

At the point labeled C in Figure 2, $x_4 = 259$ and $y_4 = -559$, thus:

$$v_f = \frac{1126.498 \cdot 10^3}{3272 \cdot 218} - \frac{25.725 \cdot 10^6 [3.86 \cdot 10^{10} (-559 - 0) - (0)(259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2} + \frac{14.272 \cdot 10^6 [1.23 \cdot 10^{11} (259 - 0) - (0)(-559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2}$$

$$v_f = 1.5793 + 0.1169 + 0.0958 = \mathbf{1.792 \text{ N/mm}^2} \text{ at point C}$$

At the point labeled D in Figure 2, $x_4 = -259$ and $y_4 = -559$, thus:

$$v_f = \frac{1126.498 \cdot 10^3}{3272 \cdot 218} - \frac{25.725 \cdot 10^6 [3.86 \cdot 10^{10} (-559 - 0) - (0)(-259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2} + \frac{14.272 \cdot 10^6 [1.23 \cdot 10^{11} (-259 - 0) - (0)(-559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2}$$

$$v_f = 1.5793 + 0.1169 - 0.0958 = \mathbf{1.6004 \text{ N/mm}^2} \text{ at point D}$$

Point C has the largest absolute value of v_u , thus $v_{\max} = \mathbf{1.792 \text{ N/mm}^2}$

Software Verification

PROGRAM NAME: SAFE
 REVISION NO.: 0

The shear capacity is calculated based on the minimum of the following three limits:

$$v_v = \min \begin{cases} \phi_c \left(1 + \frac{2}{\beta_c} \right) 0.19 \lambda \sqrt{f'_c} \\ \phi_c \left(0.19 + \frac{\alpha_s d}{b_0} \right) \lambda \sqrt{f'_c} \\ \phi_c 0.38 \lambda \sqrt{f'_c} \end{cases} \quad 1.127 \text{ N/mm}^2 \text{ in accordance with CSA 13.3.4.1}$$

CSA 13.3.4.1 yields the smallest value of $v_v = 1.127 \text{ N/mm}^2$, and thus this is the shear capacity.

$$\text{Shear Ratio} = \frac{v_u}{\phi v_v} = \frac{1.792}{1.127} = 1.59$$