
CTI Toolkit Versions 1.0 to 3.0
Developer Guide

Versions 1.0 to 3.0, 1

 @salesforcedocs
Last updated: March 18, 2017

https://twitter.com/salesforcedocs

© Copyright 2000–2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Introduction to Salesforce CRM Call Center . 1

About This Guide . 1
About Salesforce CRM Call Center Documentation . 2
System Requirements . 2

Chapter 1: System Architecture . 4

About CTI Systems . 5
About CTI Adapters . 5

About CTI Connectors . 5
About SoftPhone Connectors . 6
Processing Events from a CTI System . 6
Processing Commands from a SoftPhone . 6
Registering a CTI adapter with a CTI System . 7

About Salesforce . 7
About SoftPhones . 7

Chapter 2: The Salesforce CTI Toolkit . 9

Contents of the CTI Toolkit Code Package . 10
The Demo Adapter . 11

Setting Up the Demo Adapter . 11
Using the Demo Adapter . 12
Customizing the Demo Adapter . 12

CTI Connector Classes . 13
Best Practices for Coding with the CTI Toolkit . 16

The CTIConstants.h File . 16
The 'L' Literal String and Character Prefix . 16
Method Name in CCTIUserInterface . 17
Specifying a Valid CTI Client Key . 18

Chapter 3: Customizing Salesforce CRM Call Center . 19

Customizing a CTI Connector . 19
Building a New CTI Connector . 20
Setting Up a New CTI Connector Project . 20

Building a CTI Connector Project in Visual Studio . 20
Adding a COM Base Class to a CTI Connector Project . 22
Instantiating a CCTIUserInterface Subclass . 24

Writing an Event Sink . 25
Determining the CTI System Events that Require an Event Sink Handler 25
Writing an Event Sink Handler . 26

SoftPhone Modification Options . 28
Using the Virtual Keyword in Your CCTIUserInterface .h File . 28
Implementing Call Center User Command Messages . 29
Writing the Initialize Method for CCTIUserInterface . 31
Enabling Call Center User Login . 31
Enabling One-Step Transfers and Conferences . 34
Enabling a Set of Buttons . 34
Changing the Display Order of SoftPhone Buttons . 35
Adding a Button . 36
Enabling Reason Codes . 37
Mapping CTI System Agent States toSalesforce CRM Call Center User States 39
Displaying Salesforce CRM Call Center User States . 40
Adding a New Salesforce CRM Call Center User State . 41
Adding a Custom Logo . 42
Modifying Displayed Call Information . 42
Customizing Automatically-Generated Call Logs . 45
Defining Custom SoftPhone Labels . 46
Translating Custom SoftPhone Labels . 46

Chapter 4: Call Center Definition Files . 47

Call Center Definition File XML Format . 47
Required Call Center Elements and Attributes . 49
Specifying Values for <item> Elements . 49
Sample Call Center Definition File . 50

Chapter 5: Packaging and Publishing a CTI Adapter . 52

Packaging a CTI Adapter . 52
Selling a CTI Adapter on the AppExchange . 52

Chapter 6: CTI Adapter Log Files . 53

Chapter 7: Salesforce CRM Call Center API Reference . 54

describeSoftphoneLayout() . 55
CallCenter . 59
AdditionalNumber . 61

Frequently Asked Questions . 63

Q: What is the difference between Salesforce CRM Call Center and the CTI Toolkit? 63
Q: Why does Salesforce CRM Call Center involve a client-side application? Isn't Salesforce the
“No Software” company? . 63
Q: Does the CTI adapter support multiple telephone lines? . 63
Q: Is it possible to have multiple CTI adapters working in parallel against the same switch? . . . 63
Q: Does a CTI adapter require any investment or changes to a switch? 63
Q: Does Salesforce CRM Call Center require VoIP? . 64
Q: Why was the CTI Toolkit written in C++ instead of .NET or Java? . 64

Contents

Q: How long does it usually take for a partner to write a custom CTI adapter? 64
Q: Is there a list of the telephony platforms that are currently covered? 64
Q: How can I demo a CTI adapter? . 64
Q: If I'm using a machine that has multiple CTI connector .dll files installed, how does the
SoftPhone connector know which CTI connector to use when I log in to Salesforce? 65
Q: I'm seeing 'L' prefixes in front of all the string and character literals in the CTI Toolkit code.
Why are these present? . 65
Q: My SoftPhone is not behaving the way that I expect it to. How can I troubleshoot it? 65

Glossary . 66

Index . 68

Contents

INTRODUCTION TO SALESFORCE CRM CALL CENTER

Important: CTI Toolkit, also known as the Desktop CTI, is retired. The CTI Toolkit is no longer supported, and any adapters built
on the CTI Toolkit won’t work. To continue using CTI functionality, migrate to Salesforce Open CTI.

Note: This guide focuses on versions 1.0 to 3.0 of the CTI Toolkit, which Salesforce no longer distributes. For information on
subsequent versions of the CTI Toolkit, see the CTI Toolkit Version 4.0 Developer's Guide.

Call Center integrates Salesforce with third-party computer-telephony integration (CTI) systems. Call center users can see Salesforce
information for incoming calls, make out-going calls directly from Salesforce, and report on call outcome, duration, and more.

After a call center is set up, call center users can make and receive calls with a softphone. Each softphone looks and behaves differently
because each CTI implementation is unique. In the console and in Lightning Experience, softphones appear in a footer. In Salesforce
Classic, softphones appear in the left sidebar of every Salesforce page.

The call center is all about customization. You can modify softphone layouts and assign specific layouts to selected user profiles. You
can also add phone numbers to call center directories so your users all have access to key phone numbers. As your needs change, your
call center can be customized and changed too. As an admin, some customization you can do yourself. However, you might want to
work with your developers or partners to make functionality changes.

About This Guide

The CTI Toolkit Developer's Guide is a reference for developers who want to customize Salesforce CRM Call Center beyond the scope of
what is currently offered by Salesforce. This guide includes the following information:

DescriptionChapter

Salesforce CRM Call Center overview, documentation, and system requirements

See About Salesforce CRM Call Center Documentation on page 2 and System Requirements
on page 2 for details.

Introduction to Salesforce CRM Call
Center

Salesforce CRM Call Center system architecture, including CTI systems, CTI adapters, the role
of the Salesforce database, and SoftPhones

See System Architecture on page 4 for details.

System Architecture

Descriptions of the types of files that are included in a CTI adapter code package and notes on
CTI Toolkit coding practices

See The Salesforce CTI Toolkit on page 9 for details.

The CTI Toolkit

Options for customizing Salesforce CRM Call Center, including project setup, event sink
implementation, and SoftPhone modification options

See Customizing Salesforce CRM Call Center on page 19 for details.

Customizing Salesforce CRM Call
Center

How to define a default XML call center definition file for a new CTI adapter

See Call Center Definition Files for details.

Call Center Definition Files

1

https://help.salesforce.com/articleView?id=000233625&type=1&language=en_US
https://help.salesforce.com/articleView?id=cloud_cti_api_overview.htm&language=en_US
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_cti_developer_guide_2.pdf
https://help.salesforce.com/articleView?id=cti_admin_cctemplateoverview.htm&language=en_US#cti_admin_cctemplateoverview

DescriptionChapter

Steps for bundling new CTI adapter code libraries into an installer and publishing it on Force.com
AppExchange.

See Packaging and Publishing a CTI Adapter on page 52 for details.

Deploying a CTI Adapter

A description of the location and format of CTI adapter log files

See CTI Adapter Log Files on page 53 for details.

CTI Adapter Log Files

Force.com API objects and methods that relate to Salesforce CRM Call Center

See Salesforce CRM Call Center API Reference on page 54 for details.

Salesforce CRM Call Center API
Reference

A set of frequently-asked questions regarding troubleshooting and CTI adapter architecture

See Frequently Asked Questions on page 63 for details.

Frequently Asked Questions

A glossary of terms related to Salesforce CRM Call Center

See Glossary on page 66 for details.

Glossary

About Salesforce CRM Call Center Documentation

For a complete understanding of Salesforce CRM Call Center, read the CTI Toolkit Developer's Guide.

The following additional documentation might also deepen your understanding of Salesforce CRM Call Center:

• Getting Started with your SoftPhone — A tip sheet that provides an overview of Salesforce CRM Call Center functionality for call center
users.

• Getting Started with Setting Up Call Centers — A tip sheet that provides an overview of how an administrator can configure Salesforce
CRM Call Center for an organization.

• Using the Salesforce CRM Call Center Demo Adapter — A tip sheet that provides an overview of the Salesforce CRM Call Center demo
adapter.

• Salesforce CTI Toolkit Code Reference — An online help system that provides detailed information about the objects and methods in
the Salesforce CRM Call Center source code that Salesforce provides.

Standard Salesforce CRM Call Center functionality is also fully documented in the Salesforce online help.

System Requirements

Salesforce CRM Call Center requires the installation of a light-weight computer-telephony integration (CTI) adapter on every Salesforce
user’s machine. The minimum system requirements for an adapter are:

• For adapters built with CTI version 4.0 or higher:

– Microsoft® Internet Explorer® 8; Mozilla® Firefox® 3.5; Apple® Safari® 4; Google Chrome™ 10.0 (Internet Explorer 11 isn’t supported)

– Microsoft Windows® XP (with Microsoft .NET framework)

• For adapters built with previous versions of CTI:

– Internet Explorer 7 or 8; Firefox 3.5 or 3.6 (Safari, Chrome, and Internet Explorer 11 aren’t supported)

2

About Salesforce CRM Call Center DocumentationIntroduction to Salesforce CRM Call Center

http://www.appexchange.com/
http://www.appexchange.com/
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_cti_enduser_cheatsheet.pdf
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_cti_admin_cheatsheet.pdf
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_cti_demo_cheatsheet.pdf
https://resources.docs.salesforce.com/rel1/doc/en-us/static/misc/salesforce_cti.chm

– For Windows 7 32-bit, 32-bit Internet Explorer 8; Firefox 3.5 or 3.6

– For Windows 7 64-bit, 64-bit Internet Explorer 8; Firefox 3.5 or 3.6

– 256 MB of RAM (512 MB recommended)

– 20 MB of disk space minimum

– Intel® Pentium® II processor, 500 MHz or above

– Windows XP

Pre-built adapters for several different CTI systems are available on http://sites.force.com/appexchange. In addition,
Salesforce provides downloadable code for a CTI adapter that runs with Cisco IPCC Enterprise on Salesforce Developers. You can use
this code as a starting point for your own custom CTI adapter implementations.

3

System RequirementsIntroduction to Salesforce CRM Call Center

http://www.appexchange.com
http://developer.salesforce.com

CHAPTER 1 System Architecture

This diagram shows the system architecture of Salesforce CRM Call Center:

Salesforce CRM Call Center uses the following components:

CTI system
A set of telephony hardware and software that supports integration with other computer systems. The CTI system provides the base
framework for the calls that are made and received through a SoftPhone

For more information, see About CTI Systems on page 5.

CTI adapter
A lightweight software program that controls the appearance and behavior of a Salesforce softphone. The adapter acts as an
intermediary between a third-party computer telephony integration (CTI) system, Salesforce, and a Salesforce CRM Call Center user.
It must be installed on any machine that needs access to Salesforce CRM Call Center functionality.

For more information, see About CTI Adapters on page 5.

Salesforce
The source of call-related data and SoftPhone layout instructions. In addition to providing access to records that are related to an
incoming call, Salesforce stores call center connection information and directories, SoftPhone layouts, and automatic call logs.

For more information, see About Salesforce on page 7.

SoftPhone
A customizable call control tool that appears in the sidebar of every Salesforce page. A SoftPhone requires a connection to a third-party
CTI system to make or receive phone calls.

For more information, see About SoftPhones on page 7.

4

About CTI Systems

A Computer-Telephony Integration (CTI) system is a set of telephony hardware and software that supports integration with other
computer systems. The CTI system provides the base framework for the calls that are made and received through a SoftPhone.

Salesforce CRM Call Center supports any CTI system that operates using an event model, in which a CTI system sends an event to all
registered listeners for any action that occurs in the phone system. For example, when a user's telephone rings, a CTI system broadcasts
a “RINGING” event. A CTI adapter, the Salesforce CRM Call Center component that acts as a listener, receives this event and updates the
SoftPhone as appropriate.

About CTI Adapters

A CTI adapter is a lightweight software program that controls the appearance and behavior of a Salesforce softphone. The adapter acts
as an intermediary between a third-party computer telephony integration (CTI) system, Salesforce, and a Salesforce CRM Call Center
user. It must be installed on any machine that needs access to Salesforce CRM Call Center functionality.

Because a CTI adapter communicates directly with an individual CTI system, an organization must use a different CTI adapter for each
type of CTI system that is in use. For example, if an organization wants to integrate one call center that runs Cisco IPCC Enterprise™ and
one call center that runs Cisco IPCC Express™, the organization must have two CTI adapters available. A call center user's machine only
requires the SoftPhone CTI adapter for the call center to which it connects.

A number of prebuilt CTI adapters for different CTI systems are available on Force.com AppExchange at
http://sites.force.com/appexchange. If your CTI system is not currently supported, you can still use Salesforce CRM Call
Center, but you must either build a new CTI adapter, or customize sample CTI adapter code provided by Salesforce.

As illustrated in this diagram, a CTI adapter consists of two components: a CTI connector that maintains an XML representation of the
SoftPhone and communicates directly with the CTI system, and a SoftPhone connector that converts SoftPhone XML to HTML and
distributes it to a call center user's browser.

About CTI Connectors
A CTI connector is the component of a CTI adapter that controls the functionality and appearance of a call center user's SoftPhone. The
CTI connector receives CTI system events, displays SoftPhone user interface elements, and searches for Salesforce records that are related

5

About CTI SystemsSystem Architecture

http://www.appexchange.com/

to incoming calls. During a call the CTI adapter generates an automatic call log, and when a call is over it allows the call center user to
enter reason codes for why the call ended, or for why the user wishes to log out of the CTI system.

The CTI connector works by maintaining an XML representation of the SoftPhone that it updates whenever it receives relevant CTI system
events or SoftPhone connector messages. After the CTI connector updates its XML, it fires a UIRefresh event. This event signals the
SoftPhone connector that the SoftPhone needs to be updated in the call center user's browser.

You can customize a CTI connector implementation with new functionality, or build a new CTI connector if you want to support a CTI
system that does not already have an adapter. Although a CTI connector can be written in any language that supports COM, Salesforce
only provides code for CTI connectors that are written in unmanaged C++ using the CTI library (CTIAdapterLib) that Salesforce
provides. When you customize a CTI connector, you extend the objects and methods already defined in CTIAdapterLib.

For more information on CTI connector customization options, see Customizing a CTI Connector on page 19.

About SoftPhone Connectors
A SoftPhone connector is the component of a CTI adapter that converts SoftPhone XML into HTML and distributes it to a call center
user's browser. Every time a call center user begins a new Salesforce session, the SoftPhone connector downloads SoftPhone labels and
layouts from Salesforce. The SoftPhone connector uses these labels and layouts to generate SoftPhone HTML from the XML passed in
by the CTI connector's UIRefresh event.

When the SoftPhone connector receives a new set of XML from the CTI connector through the UIRefresh event:

1. The SoftPhone connector converts the attached XML into HTML. All labels and layouts are resolved during this step.

2. The call center user's browser maintains a continuous link with the SoftPhone connector through COM automation. When the
browser connector generates new SoftPhone HTML, it updates the SoftPhone in the user's browser.

Processing Events from a CTI System
CTI system events are messages from a CTI system to its registered listeners, such as a CTI adapter. An adapter handles events from a
CTI system as follows:

1. When a CTI system broadcasts an event, the adapter's CTI connector receives it through its event sink class. The event sink converts
any data that is attached to the event into a standard format, and then calls the corresponding event handler in the CTI connector's
CCTIUserInterface class. CTI system events that do not affect the SoftPhone, such as those that provide statistical data, are
ignored by the event sink.

2. The CCTIUserInterface event handler updates the XML representation of the SoftPhone by hiding and revealing individual
SoftPhone components, such as buttons and dial pads, and by performing searches for related Salesforce records, such as contacts
and accounts. When finished, the CTI connector broadcasts a UIRefresh event to the SoftPhone connector.

3. The SoftPhone connector uses the XML attached to the UIRefresh event to render an HTML version of the SoftPhone.

4. The call center user's browser maintains a continuous link with the SoftPhone connector through COM automation. When the
browser connector generates new SoftPhone HTML, it updates the SoftPhone in the user's browser.

Processing Commands from a SoftPhone
Commands are messages from a call center user's SoftPhone to a CTI system. An adapter handles SoftPhone commands as follows:

1. When a call center user clicks a button in the SoftPhone (for example, Hang Up), the SoftPhone sends an HTML command message
to the SoftPhone connector that includes the ID of the button that was clicked (for example,
http://localhost:7332/HANGUP).

6

About SoftPhone ConnectorsSystem Architecture

2. The SoftPhone connector translates the button click into an XML message, and then sends it to the CTI connector with the UIAction
method.

3. When the CTI connector receives the message from the SoftPhone connector, one of two actions takes place:

• The UIHandleMessage method in CCTIUserInterface forwards the message to the CTI system and no other
changes occur until the CTI system sends a new event.

For example, the HANGUP message is passed to the CTI system so that the connected call can be terminated. Once the call
ends in the phone system, the CTI system broadcasts a hang-up confirmation event and the CTI connector proceeds as described
in Processing Events from a CTI System on page 6.

• The UIHandleMessage method in CCTIUserInterface updates the CTI connector's XML representation of the
SoftPhone by hiding and revealing individual SoftPhone components, such as buttons and dial pads, and by performing searches
for related Salesforce records, such as contacts and accounts. When finished, the CTI connector broadcasts a UIRefresh
event to the SoftPhone connector. The SoftPhone connector receives the XML and uses it to render an updated SoftPhone.

Registering a CTI adapter with a CTI System
When a call center user logs in to Salesforce, the CTI adapter that is installed on the user's machine must first register with a CTI system
before it can receive CTI events. Registration occurs as follows:

1. Upon logging in to Salesforce, the browser acquires a session ID that authenticates the user for the duration of their Salesforce
session. The CTI adapter uses this session ID to query Salesforce for information related to the user's assigned call center. All data
associated with the call center is returned to the adapter.

2. The adapter's CTILogin method uses the call center data to connect with the specified CTI system. In most cases the call center
user must provide authentication information to the CTI system. After logging in for the first time, users have the option of saving
their CTI system credentials within Salesforce for automatic login in the future.

About Salesforce

The Salesforce database stores call center connection information, SoftPhone formatting instructions, and call center directory numbers.
In addition, the CTI connector component of a CTI adapter uses Salesforce Object Query Language (SOQL) and Salesforce Object Search
Language (SOSL) to retrieve Salesforce records that are associated with data attached to incoming calls, such as an account number
(SOQL) or the phone number from which a customer is calling (SOSL).

About SoftPhones

A softphone is a customizable call-control tool that appears to users assigned to a call center. Although administrators and developers
can customize SoftPhones, they usually include the following components when built with version 3.0 of the CTI Toolkit:

7

Registering a CTI adapter with a CTI SystemSystem Architecture

Call center state area
Includes a drop-down list that lets you specify whether you're ready to receive calls.

Phone line header
Shows the status of the phone line. A status icon changes colors and blinks (), and provides a text description. You can click the
name of the line (Line 1) to show or hide the line's dial pad and call information area.

Call information area
Shows data related to the call, such as the phone number the customer used to dial, the duration of the call, and links to any records
associated with the call.

Call button area
Shows buttons that let you make call commands, such as dialing, hanging up, putting a caller on hold, transferring, conferencing,
and opening a second line while on a call.

My Calls Today report
Opens a report of all the calls you've made or received in the last day.

SoftPhone logo
Displays a customizable logo for each CTI adapter.

8

About SoftPhonesSystem Architecture

CHAPTER 2 The Salesforce CTI Toolkit

Important: CTI Toolkit, also known as the Desktop CTI, is retired. The CTI Toolkit is no longer supported, and any adapters built
on the CTI Toolkit won’t work. To continue using CTI functionality, migrate to Salesforce Open CTI.

The Salesforce CTI Toolkit provides you with all of the source code, libraries, and files you need to develop your own custom CTI adapter.

There are three versions of the CTI Toolkit. Each version provides users with different Salesforce CRM Call Center functionality. However,
Salesforce only distributes CTI Toolkit version 4.0 or higher. The following table lists the functionality available in CTI adapters built with
each CTI Toolkit:

Version 4.0 or HigherVersion 3.0 or HigherVersion 2.0 or HigherVersion 1.0 or HigherFunctionality

Change the fields and
order of fields that display
in a SoftPhone

Change the objects and
order of links to objects
that display in a
SoftPhone

Specify the fields that
display in the SoftPhone
if a single record for a
particular object is found

Specify screen pop
settings for inbound calls
with single, multiple, or
no record matches

Specify screen pops for
inbound calls to display
in browser windows that
are already open, or in
new browser windows or
tabs

Specify screen pops to
Visualforce pages for
inbound calls

Specify screen pops to
search pages for inbound
calls with multiple record
matches

View a call center's
version in a Version

9

https://help.salesforce.com/articleView?id=000233625&type=1&language=en_US
https://help.salesforce.com/articleView?id=cloud_cti_api_overview.htm&language=en_US

Version 4.0 or HigherVersion 3.0 or HigherVersion 2.0 or HigherVersion 1.0 or HigherFunctionality

field (from Setup, enter
Call Centers in the
Quick Find box,
then select Call Centers
and choose a call center)

View an enhanced
SoftPhone user-interface
in the footer of the
Salesforce console

Log calls in the
customizable interaction
log of the Salesforce
console

Support browsers that are
cross-domain messaging
compatible

Reduce CTI adapter size
and complexity

You can download the CTI Toolkit by visiting developer.salesforce.com.

Note: This guide focuses on versions 1.0 to 3.0 of the CTI Toolkit, which Salesforce no longer distributes. For information on
subsequent versions of the CTI Toolkit, see the CTI Toolkit Version 4.0 Developer's Guide.

Contents of the CTI Toolkit Code Package

All CTI toolkit code packages include the following components:

SoftPhone connector executable (SalesforceCTI.exe)
This component runs the SoftPhone connector portion of a SoftPhone CTI adapter. It comes as a pre-compiled executable file with
the logo.

CTI connector code package (<cti_system_adapter_name>.Primary Output)
This Visual Studio.NET 2003 code package contains the classes that make up a CTI connector for the specified CTI system. Once you
have customized this code package, it is compiled into a .dll file. See CTI Connector Classes on page 13 for a description of the
classes in this package.

Demo CTI connector code package (DemoAdapter.Primary Output)
This Visual Studio.NET 2003 code package contains the classes that make up the CTI connector for the Salesforce CRM Call Center
Demo Adapter. For more information, see The Demo Adapter on page 11.

Note: A compiled version of the demo adapter is also available on Salesforce Developers for quick installation.

The Salesforce Office Toolkit Library (SF_MSApi4.dll)
This .dll component is required for access to the Salesforce Force.com API.

10

Contents of the CTI Toolkit Code PackageThe Salesforce CTI Toolkit

https://developer.salesforce.com/
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_cti_developer_guide_2.pdf
http://www.salesforce.com/developer/

Microsoft XML Library 6 (msxml6.dll and msxml6r.dll)
These .dll files allow the SoftPhone connector to translate the SoftPhone user interface XML into HTML.

Any dynamically-linked libraries that are required for the CTI system
Most CTI adapter implementations require additional CTI-system-specific .dll files to enable communication.

Default call center definition files (<cti_system_adapter_name>.xml or DemoAdapter.xml)
These XML files provide the default definition format for a call center that uses the specified adapter. For more information, see Call
Center Definition Files on page 47.

For a complete list of the files that are included with a particular CTI adapter code package, see its associated Adapter Guide.

The Demo Adapter

Included with the Salesforce CTI Toolkit is the Salesforce CRM Call Center demo adapter, an executable that can be used to mimic
SoftPhone functionality without requiring an operational CTI system. Users can manually trigger CTI system events, such as an incoming
call with an automatic number identification (ANI) value, an incoming call without an ANI value, an incoming conference call, and an
incoming transfer request. The SoftPhone operates as if these events had been triggered by a valid CTI system and allows the user to
view associated records and generate call logs as if they had been real. As a developer, you can use the demo adapter to quickly prototype
new SoftPhone functionality, or as a template for a new CTI connector implementation.

Setting Up the Demo Adapter
To install and set up a Salesforce CRM Call Center demo adapter:

1. Download the demo adapter installation package from the Salesforce Developers website at
https://developer.salesforce.com/page/CTI_Toolkit.

2. From the demo adapter's installation directory, run Setup.exe as a Windows administrator user.

3. Log in to Salesforce as an administrator user.

4. From Setup, enter Call Centers in the Quick Find box, then select Call Centers.

5. Click Import.

6. Click Browse and navigate to the call center definition file in your demo adapter installation directory. In default installations, this
file is located at C:\Program Files\salesforce.com\Demo Adapter\DemoAdapter.xml.

7. Click Import.

8. Click Demo Call Center Adapter.

9. Click Manage Call Center Users.

10. Click Add More Users.

11. Enter search criteria to find a Salesforce user who can be a demo adapter user. Click Find.

12. Select the checkbox next to the name of one or more users with access to the demo adapter. Click Add to Call Center.

13. Log in to Salesforce as a demo adapter user.

14. Log in to the SoftPhone. The demo adapter's login screen accepts any values as valid credentials.

11

The Demo AdapterThe Salesforce CTI Toolkit

https://developer.salesforce.com/page/CTI_Toolkit

Using the Demo Adapter
Once you have logged in to the demo adapter you can use it like a normal SoftPhone. To trigger a CTI system event while you are using
the demo adapter SoftPhone:

1. Right-click the CTI adapter system tray icon () in the lower right corner of your computer screen.

2. Select Go To Wrapup After Call if you want to view wrap-up reasons after ending a demo call.

3. Select one of these demo CTI system events:

DescriptionDemo CTI System Event

An inbound call from (415) 555-1212 that does not include interactive voice response
(IVR) data. You can also initiate this event by typing Winkey-SHIFT-Z.

Call From 415-555-1212

An inbound call from (415) 555-1212 that includes IVR data identifying case 1001. You
can also initiate this event by typing Winkey-SHIFT-X.

Call Via IVR (Case 1001)

A call that has been transferred from another call center user at extension x8120Transfer From x8120

A conference request from another call center user at extension x8120Conference From x8120

Note: When the demo adapter receives a call, your computer plays a ring tone. When the demo adapter initiates a call via
click-to-dial, your computer plays a dialing sound.

Customizing the Demo Adapter
You can customize the demo adapter system tray menu and the logo that displays at the bottom of the SoftPhone by modifying
demo_menu.xml in the installation directory.

• To customize the first system tray menu item, edit the menu item label or automatic number identification (ANI) attributes in the
following line:

<ITEM ID="MENU_CALL_FROM_PHONE" LABEL="Call From 415-555-1212" ANI="4155551212"/>

• To customize the second system tray menu item, edit the menu item label, ANI, search field, or search value attributes in the following
line:

<ITEM ID="MENU_CALL_FROM_IVR" LABEL="Call Via IVR (Case 1001)" ANI="4155551212"
SEARCHFIELD="Case.CaseNumber" SEARCHVALUE="00001001"/>

Note: Use any object-field pair for the SEARCHFIELD attribute. For example, Case.CaseNumber,
Account.AccountNumber, and Support_Program__c.Program_Number__c are all valid.

• To customize the SoftPhone logo, edit the image URL in the following line:

<LOGO IMAGE_URL="https://yourInstance.salesforce.com/servlet/servlet.ImageServer
?oid=00D000000000062&id=015300000007JX6"/>

Note: To ensure that SoftPhone logo images are available on any machine, save your logo image as an externally available
document in the Documents tab of any Salesforce organization.

12

Using the Demo AdapterThe Salesforce CTI Toolkit

CTI Connector Classes

When a developer wants to customize a CTI adapter, he or she modifies its CTI connector component. This diagram shows the classes
that make up a CTI connector. Descriptions of each class follow:

ILockable
A container for classes that can lock and release resources.

CCritical Section
A wrapper class for the Win32 CRITICAL_SECTION object. Objects that must be thread-safe should derive from this class.

CCTILogger
A class that logs CTI Adapter events to a file and classifies them by level (Low, Medium and High). Low-level events are used
for errors only, medium-level events are used for informational messages, and high-level events are used for granular
information, such as the specific XML that was sent back and forth in messages.

CMutex
A wrapper class for the Win32 MUTEX object.

CCTIAdapter
An interface between the CCTIUserInterface class and the base COM class of the CTI connector. This class provides a
common way for methods in CCTIUserInterface to fire a UIRefresh event.

CCTIAppExchange
An interface between CCTIUserInterface and the Force.com API.

13

CTI Connector ClassesThe Salesforce CTI Toolkit

CCTIAppExchangeSaveThread
Encapsulates a thread for saving items to the Salesforce database with the Force.com API. When using this thread, data can be saved
in the background without freezing the Salesforce user interface. For example, this class is used to create and update task objects
for call logs, and saves user login parameters.

CCTIAppExchangeSearchThread
Encapsulates a thread for searching for items in the Salesforce database with the Force.com API. When using this thread, search can
occur in the background without freezing the Salesforce user interface. For example, this class is used to search for automatic number
identifiers (ANIs) and interactive voice response (IVR) data.

CCTICallLogThread
Encapsulates a thread for creating and updating task objects for call logs using the Force.com API. When using this thread, tasks can
be created in the background without freezing the Salesforce user interface.

<Your Event Sink Class>
Normally a subclass of a library provided by a CTI system vendor, an event sink captures interesting events broadcast by a CTI system.
This class receives events, populates attached data into a PARAM_MAP structure, and calls the corresponding event handlers in
CCTIUserInterface.

CCTIObject
A base class for all visual objects in a SoftPhone. It provides common functionality, such as determining when an object is hidden
or visible, attribute handling, and serialization to XML.

CCTIAgent
A class that represents the call center state picklist in a SoftPhone. A call center state indicates whether the user is ready to receive
calls.

CCTIDialpad
A class that represents the dial pad for a single phone line in a SoftPhone.

CCTIForm
A class that represents a set of related combo boxes, edit boxes, check boxes, buttons, and other user interface elements in a
SoftPhone. When this form is rendered, all element values are sent in a group when a user presses a submit button.

CCTIIdLabelObject
A class that represents any CCTIObject that requires a label and ID. At runtime, the browser controller uses an object's ID
to translate any text to the proper language for the call center user. If the browser controller does not have a mapping for a
particular ID, the label associated with the object is used instead.

CCTIButton
A class that represents a button in a SoftPhone.

CCTICallLog
A class that represents a call log for a current or previous call in a SoftPhone.

CCTICheckbox
A class that represents a checkbox in a SoftPhone.

CCTINoRelatedObjectSet
A class that represents the absence of any related objects for incoming search parameters.

Available in the CTI Toolkit version 2.0 or higher.

CCTIPayload
A class that represents a data passing from a call to a Visualforce page via URL parameters.

Available in the CTI Toolkit version 2.0 or higher.

14

CTI Connector ClassesThe Salesforce CTI Toolkit

CCTIPayloadData
A class that represents the name value pairs of payload data passed from a call to a Visualforce page.

Available in the CTI Toolkit version 2.0 or higher.

CCTIProgressBar
A class that represents a progress bar control that indicates that processing is occurring. This class can exist within the context
of CCTIUserInterface or CCTILine.

CCTIReasonCodeSet
A class that represents a set of reason codes in a SoftPhone. A reason code is an explanation that users can select when they
want to enter wrap-up mode after a call, set their user status to Not Ready for Calls, or log out of a CTI system entirely.
Organizations can define sets of reason codes to track the activities of their call center users. This class does not distinguish
between wrap-up, not ready, and logout reason codes.

CCTIRelatedObject
A class that represents a single related record (like an individual contact or account) in a SoftPhone.

CCTIRelatedObjectSet
A class that represents a set of related records (like contacts or accounts) in a SoftPhone.

CCTISelectableIdLabelObject
A base class that represents any object with an ID, Label, and Selected parameter in a SoftPhone.

CCTIAgentState
A class that represents a single call center state in a SoftPhone, such as Not Ready for Calls.

CCTIStatic
A class that represents a static text element in a SoftPhone.

CCTITimer
A class that represents a timer that ticks in real-time in a SoftPhone. A CCTITimer can only be attached to a phone line.

CCTIValueObject
A class that represents any CCTIIdLabelObject that also requires a value.

CCTIEditBox
A class that represents an edit field in a SoftPhone.

CCTIField
A class that represents a single field from a CTIRelatedObject in a SoftPhone.

CCTILine
A class that represents a single phone line in a SoftPhone.

CCTILogo
A class that represents the logo section of a SoftPhone.

CCTIPreviousCalls
A class that represents a single phone line in a SoftPhone.

CCTIUserInterface
A class that encapsulates the connection between a CTI server and a SoftPhone. All CTI connectors should subclass this class,
overriding the command methods to actually perform the described actions. CCTIUserInterface should also include
methods for events that are captured in an event sink.

CCTIWhoWhat
A class that holds data about any record that is related to a call log. A call log can be related to one contact, lead, or person
account record (the “who”), and one additional record of any other type (the “what”).

15

CTI Connector ClassesThe Salesforce CTI Toolkit

CSearchThreadInfo
A class that provides information to CCTIAppExchangeSearchThread. This class generally does not need to be instantiated
by classes other than CCTIAppExchangeSearchThread.

CSaveThreadInfo
A class that provides information to CCTIAppExchangeSaveThread. This class generally does not need to be instantiated
by classes other than CCTIAppExchangeSaveThread.

LockImpl<T>
A resource grabber class that automatically locks a resource on construction and releases the resource on destruction.

CCTIUtils
A utility class for convenience methods, such as conversions to and from COM data types.

For more information about the methods and attributes associated with these classes, see the Salesforce CTI Toolkit Code Reference.

Best Practices for Coding with the CTI Toolkit

The following practices are recommended for coding with the CTI Toolkit.

The CTIConstants.h File
In addition to the .h files that are included for every class, the CTI Toolkit also includes CTIConstants.h. This file contains all of the
constant values that are used to control the display of the SoftPhone, as well as constants for all commonly used terms that appear in
the CTI Toolkit code.

The 'L' Literal String and Character Prefix
The Salesforce CTI Toolkit includes an 'L' character in front of all literal strings and characters. The 'L' prefix indicates that the string will
be stored as an array of “wide” (2-byte) characters, which are necessary to support Unicode character encoding. Salesforce enforces the
use of this prefix on all string values to support localization.

For example, in this constant definition, the 'L' is placed in front of the constant's literal string value:

#define CTI_CLIENT_KEY L"/cti/1.0/"

If an 'L' prefix is not placed in front of a string's first " character, the following type of error appears when you attempt to compile:

CTICallLog.cpp(193) : error C2665: 'CCTILogger::Log' : none of the 11 overloads can convert
parameter 2 from type 'const char [93]'

c:\dev\144\clients\Salesforce_CTI\CTIAdapterLib\include\CTILogger.h(96): could be 'void
CCTILogger::Log(int,const wchar_t *,const wchar_t *,const wchar_t *,const wchar_t *,const
wchar_t *)'

c:\dev\144\clients\Salesforce_CTI\CTIAdapterLib\include\CTILogger.h(101):or 'void
CCTILogger::Log(int,const wchar_t *,long,const wchar_t *,const wchar_t *)'

c:\dev\144\clients\Salesforce_CTI\CTIAdapterLib\include\CTILogger.h(106): or 'void
CCTILogger::Log(int,const wchar_t *,long,long,const wchar_t *)'

c:\dev\144\clients\Salesforce_CTI\CTIAdapterLib\include\CTILogger.h(111):or 'void
CCTILogger::Log(int,const wchar_t *,const wchar_t *,long,const wchar_t *)'

16

Best Practices for Coding with the CTI ToolkitThe Salesforce CTI Toolkit

https://resources.docs.salesforce.com/rel1/doc/en-us/static/misc/salesforce_cti.chm

c:\dev\144\clients\Salesforce_CTI\CTIAdapterLib\include\CTILogger.h(121): or 'void
CCTILogger::Log(int,const wchar_t *,const std::wstring &,const std::wstring &)'

c:\dev\144\clients\Salesforce_CTI\CTIAdapterLib\include\CTILogger.h(126): or 'void
CCTILogger::Log(int,const wchar_t *,const std::wstring &,const wchar_t *)'

c:\dev\144\clients\Salesforce_CTI\CTIAdapterLib\include\CTILogger.h(141): or 'void
CCTILogger::Log(int,const wchar_t *,long,const std::wstring &)'

c:\dev\144\clients\Salesforce_CTI\CTIAdapterLib\include\CTILogger.h(146): or 'void
CCTILogger::Log(int,const wchar_t *,const std::wstring &,long)'

while trying to match the argument list '(int, const char [93], std::wstring, std::wstring)'

Method Name in CCTIUserInterface
This table shows the naming convention for most methods in CCTIUserInterface:

DescriptionNaming Convention

A method that initiates or somehow affects an active callCallXxx (for example,
CallInitiate)

A method that allocates memory for a new objectCreateXxx (for example,
CreateParty)

A method that affects the overall state of the call center user in the CTI system, but does
not pertain to any specific call

CTIXxx (for example,
CTIChangeAgentState)

A method that deallocates memory that was created for a specific objectDestroyXxx (for example,
DestroyVirtualLine)

A method that provides access to a property or sub-object of CCTIUserIntefaceGetXxx (for example,
GetAppExchange)

A CTI eventOnXxx (for example,
OnAgentStateChange)

A CTI event pertaining to a specific callOnCallXxx (for example,
OnCallAttemptFailed)

A method that implements the specific action after some precondition has completedQueueXxx (for example,
QueueChangeAgentState)

A method that sets a property on CCTIUserInterface or on one of its sub-objectsSetXxx (for example,
SetAllowDialpad ForAllLines)

A method that renders the SoftPhone user interface or handles input from itUIXxx (for example, UIRefresh)

17

Method Name in CCTIUserInterfaceThe Salesforce CTI Toolkit

Specifying a Valid CTI Client Key
If you are developing a CTI adapter that will be published on Force.com AppExchange, you must provide a valid client key in
CTIAppExchange.h. A client key allows an organization to download and deploy your CTI adapter even if the organization does
not normally have access to the Force.com API. All CTI adapters require access to the API in order to communicate with the Salesforce
database.

• If you are creating a CTI adapter from a third-party vendor's adapter source code, a valid client key is already specified in
CTIAppExchange.h. You do not need to provide a new client key.

• If you are creating a CTI adapter directly from a Salesforce CTI Toolkit, request a client key from Salesforce Support and use it to
update the following constant in CTIAppExchange.h:

#define CTI_CLIENT_KEY L"<your_client_key_value_here>"

18

Specifying a Valid CTI Client KeyThe Salesforce CTI Toolkit

http://www.appexchange.com/

CHAPTER 3 Customizing Salesforce CRM Call Center

While Force.com AppExchange offers prebuilt CTI adapters for several CTI systems, many organizations want to implement additional
features for these adapters or use a CTI system for which an adapter has not yet been built. In either case, an organization can customize
a CTI adapter by modifying the CTI connector source code provided by Salesforce. You can either customize an existing CTI connector
or build a new one for a CTI system that is not yet supported.

Customizing a CTI Connector

Salesforce allows you to customize CTI adapters that have already been built and posted on AppExchange. To do so:

1. Download the CTI adapter code package. (See The Salesforce CTI Toolkit on page 9 for information.)

2. Read the entirety of this guide to understand how a CTI connector should work with other CTI adapter components, and how it can
be customized.

3. Use Visual Studio.NET 2003 to customize the CTI connector code base. For example, you can:

• Use any CTI system event to update the SoftPhone for a user. For example, a warning icon can blink if customers are forced to
be on hold for more than five minutes. (See Writing an Event Sink Handler on page 26 for information.)

• Define new commands for call center users. For example, you can add a Record button that allows a user to record his or her
phone conversations. (See Implementing Call Center User Command Messages on page 29 for information.)

• Customize the buttons that are displayed in a SoftPhone. For example, you can modify the length, icon, and placement of any
button. (See Adding a Button on page 36 and Changing the Display Order of SoftPhone Buttons on page 35 for information.)

• Display custom Salesforce fields in a SoftPhone layout. For example, you can display a field that shows the local time of the
person who is calling. (See Modifying Displayed Call Information on page 42 for information.)

• Customize the call center user login screen. For example, an organization that allows free seating might require their users to
enter a desk number when they log in. (See Enabling Call Center User Login on page 31 for information.)

• Enable one-step (blind) transfers and conference calls. For example, a call center user might wish to transfer a caller to another
party without speaking to them first. (See Enabling One-Step Transfers and Conferences on page 34 for information.)

• Manage wrap-up, not-ready, and logout reason codes. For example, you can ensure that a user specifies why they cannot take
a new call before they enter the Not Ready for Calls state. (See Enabling Reason Codes on page 37 for information.)

• Modify the logo at the bottom of the SoftPhone. For example, you can display the logo for your organization rather than the
logo of the CTI system. (See Adding a Custom Logo on page 42 for information.)

• Customize the search for call-related Salesforce records. For example, you can query other data repositories in your organization
for information before searching Salesforce. (See Displaying Call-Related Records on page 43 for information.)

• Customize automatically-generated call logs. For example, you can add a field to a call's activity record that shows the amount
of time a caller was left on hold. (See Customizing Automatically-Generated Call Logs on page 45 for information.)

• Translate SoftPhone labels. For example, you can display French labels for your call center in Paris and Japanese labels for your
center in Tokyo. (See Translating Custom SoftPhone Labels on page 46 for information.)

4. Update the CTI adapter's call center definition file as required. (See Call Center Definition Files on page 47 for information.)

5. Compile the CTI connector .dll and test it with the Salesforce CRM Call Center SoftPhone connector.

6. Deploy your adapter. (See Packaging and Publishing a CTI Adapter on page 52 for information.)

19

Building a New CTI Connector

If you want to use Salesforce CRM Call Center with a CTI system that does not currently have a CTI adapter, you must build a new CTI
connector. Building a new CTI connector is similar to customizing an existing CTI connector, except that in addition to performing the
customizations outlined in the previous section, you must also build an event sink.

To build a new CTI connector:

1. Read the entirety of this guide to understand how a CTI connector should work with other CTI adapter components, and how it can
be customized.

2. Download the CTI connector files from Salesforce. (See The Salesforce CTI Toolkit on page 9 for information.)

3. Use Visual Studio.NET 2003 to build a CTI connector project. (See Setting Up a New CTI Connector Project on page 20 for information.)

4. Write an event sink for your new CTI connector to handle events that are generated by your CTI system. (See Writing an Event Sink
on page 25 for information.)

5. Write subclasses of CCTIUserInterface and CCTIAppExchange to maintain a representation of a SoftPhone based on
CTI system events and user commands. (See SoftPhone Modification Options on page 28 for information.)

6. Update the CTI adapter's call center definition file as required. (See Call Center Definition Files on page 47 for information.)

7. Compile the CTI connector .dll and test it with the Salesforce CRM Call Center SoftPhone connector.

8. Deploy your adapter. (See Packaging and Publishing a CTI Adapter on page 52 for information.)

Setting Up a New CTI Connector Project

If you are building a new CTI connector for a CTI system that does not currently have a CTI adapter, you must set up a new project in
Visual Studio.NET 2003. If you simply want to customize an existing CTI connector, it is not necessary to perform these steps.

To set up a project for a new CTI connector:

1. Build a CTI connector project in Visual Studio.NET 2003, as described in Building a CTI Connector Project in Visual Studio on page
20.

2. Add the COM base class to your project, as described in Adding a COM Base Class to a CTI Connector Project on page 22.

3. Instantiate a subclass of CCTIUserInterface, as described in Instantiating a CCTIUserInterface Subclass on page 24.

Building a CTI Connector Project in Visual Studio
If your organization uses a CTI system that does not have a SoftPhone CTI adapter built by Salesforce, you must first build a CTI connector
project in Visual Studio.NET 2003:

1. Download the Salesforce CRM Call Center libraries. See The Salesforce CTI Toolkit on page 9 for details.

2. In Visual Studio, click File > New... > Project.

3. In the Project Types area, select Visual C++ Projects > ATL.

4. In the Templates area, select ATL Project.

5. Specify a name and location for your CTI connector, and click OK.

6. In the ATL Project Wizard, click Finish. Two projects are created: one with the name you specified and another with the name you
specified and a postfix of “PS” (for example, “MyCTIConnector” and “MyCTIConnectorPS”). The second “PS” project is not necessary
and can be removed from your solution.

20

Building a New CTI ConnectorCustomizing Salesforce CRM Call Center

7. Right-click the CTI connector project you just created and select Properties.

8. Select Configuration Properties > C/C++ > General.

a. Set the Configuration picklist to All Configurations and make the following changes:

• In the Additional Include Directories field, add the CTIAdapterLib include directory (for example,
..\CTIAdapterLib\include).

• In the Debug Information Format field, specify Program Database for Edit & Continue (/ZI).

• In the Warning Level field, specify Level 3 (/W3).

• In the Detect 64-bit Portability Issues, specify Yes (/Wp64).

b. Set the Configuration picklist to Release.

c. Change the Debug Information Format field to Line Numbers Only (/Zd).

9. Select Configuration Properties > C/C++ > Code Generation.

a. Set the Configuration picklist to All Configurations and make the following changes:

• In the Enable Minimal Rebuild field, specify Yes (/Gm).

• In the Basic Runtime Checks field, specify Both (/RTC1, equiv. to /RTCsu).

• In the Runtime Library field, specify Multithreaded Debug DLL (/MDd).

• In the Enable Function-Level Linking field, specify Yes (/Gy).

b. Set the Configuration picklist to Release.

c. Change the Runtime Library field to Multithreaded (/MT).

10. Select Configuration Properties > C/C++ > Language.

a. Set the Configuration picklist to All Configurations.

b. In the Enable Run-Time Type Info field, specify Yes (/GR).

11. Select Configuration Properties > Linker > Input.

a. Set the Configuration picklist to Debug.

b. In the Additional Dependencies field, include the debug version of the CTIAdapterLib library,
CTIAdapterLibD.lib (for example, ..\CTIAdapterLib\Debug\CTIAdapterLibD.lib).

c. Set the Configuration picklist to Release.

d. In the Additional Dependencies field, include the release version of the CTIAdapterLib library, CTIAdapterLib.lib
(for example, ..\CTIAdapterLib\Debug\CTIAdapterLib.lib).

e. Click OK to close the Properties window and save your changes.

12. In your project, open stdafx.h and add the following lines to the bottom of the file if they are not already there:

#include <atlbase.h>
#include <atlcom.h>
#include <atlwin.h>
#include <atltypes.h>
#include <atlctl.h>
#include <atlhost.h>
#include <comutil.h>

using namespace ATL;

21

Building a CTI Connector Project in Visual StudioCustomizing Salesforce CRM Call Center

Adding a COM Base Class to a CTI Connector Project
Once you have built a CTI connector project, you must add the base adapter class that implements the provided COM interface:

1. Right-click your adapter project and select Add Class.

2. Choose the ATL Simple Object template, and click Open.

3. Click Names in the left navigation pane. Specify object names according to the following guidelines:

• Choose a Class and ProgID name that represent the CTI system with which you are integrating.

• In the Interface field, specify ISalesforceCTIAdapter.

• Make a note of the value that you choose for ProgID. You will need it again when you define a call center that uses your
custom CTI adapter.

To serve as examples in the remainder of the procedure, suppose you specified the following names:

• Short name = MyAdapterBase

• .h file = MyAdapterBase.h

• Class = CMyAdapterBase

• .cpp file = MyAdapterBase.cpp

• Type = MyAdapterBase Class

• Interface = ISalesforceCTIAdapter

• ProgID = MyAdapter.MyAdapter

4. Click Options in the left navigation pane.

5. Select the Connection points checkbox, and click Finish.

6. By default, the wizard automatically creates a new interface called ISalesforceCTIAdapter. You will need the version of
ISalesforceCTIAdapter that has been defined by Salesforce for your new CTI connector. To use Salesforce’s version, open
the .h file that the wizard generated (MyAdapterBase.h in the example above). In this file:

a. Delete the entry for __interface ISalesforceCTIAdapter : IDispatch and its corresponding attributes
and comments.

b. Add the following lines to the #include statement section:

#include "CTIAdapter.h"
#include "ISalesforceCTIAdapter.h"

c. Edit the class so that it inherits from ISalesforceCTIAdapter and CCTIAdapter, as follows:

class ATL_NO_VTABLE CMyAdapterBase :
public ISalesforceCTIAdapter,
public CCTIAdapter

d. Reset a default event linkage that the wizard created. In the example above, the wizard created:

__event __interface _IMyAdapterBaseEvents;

Replace that line with:

__event __interface _ISalesforceCTIAdapterEvents;

22

Adding a COM Base Class to a CTI Connector ProjectCustomizing Salesforce CRM Call Center

e. Add the following four methods to the public: section of the class header. Your class must implement each:

public:

/**
* Returns the name and author of the adapter (for
* example "Salesforce.com CTI Adapter For Cisco IPCC
* Enterprise").
*
* @param bsName Contains the return value.
*/
STDMETHOD(GetAdapterName)(BSTR* bsName);

/**
* Returns the version of the adapter, (for example "1.01b").
*
* @param bsName Contains the return value.
*/
STDMETHOD(GetAdapterVersion)(BSTR* bsVersion);

/**
* Receives an inbound XML-formatted message via COM
* from the browser controller. It should be formatted
* as (with as many parameters as needed):
* <MESSAGE ID="MESSAGE_ID">
* <PARAMETER NAME="PARAM1" VALUE="VALUE1"/>
* <PARAMETER NAME="PARAM2" VALUE="VALUE2"/>
* </MESSAGE>
*
* @param message The XML-formatted message to handle
* @return An HRESULT indicating whether the message
* was successfully received and parsed
*/
STDMETHOD(UIAction)(BSTR message);

/**
* A method that takes in an XML string and generates a
* COM UIRefresh event with it.
*
* @param xml The XML to include with the event.
*/
virtual void SendUIRefreshEvent(_bstr_t xml);

f. Save your changes and close the file.

7. Open the .cpp file that the wizard generated (MyAdapterBase.cpp in the example above). Add bodies for the following
methods:

STDMETHODIMP CMyAdapterBase::GetAdapterName(BSTR* bsName)
{
*bsName = SysAllocString(L"My Sample CTI Adapter");

return S_OK;
}

23

Adding a COM Base Class to a CTI Connector ProjectCustomizing Salesforce CRM Call Center

STDMETHODIMP CMyAdapterBase::GetAdapterVersion(BSTR* bsName)
{
*bsName = SysAllocString(L"1.0 Candidate 2");

return S_OK;
}

STDMETHODIMP CMyAdapterBase::UIAction(BSTR message)
{
//Do something with the incoming XML message here

return S_OK;
}

void CMyAdapterBase::SendUIRefreshEvent(_bstr_t xml)
{
CCTILogger::Log(LOGLEVEL_HIGH,"Sending XML (len %d): %s",xml.length(),(wchar_t*)xml);
_ISalesforceCTIAdapterEvents_UIRefresh(xml);
}

8. Compile the project. You now have a functioning COM object that can send and receive XML.

Instantiating a CCTIUserInterface Subclass
The CTI connector class that provides the link between Salesforce, the end user, and a CTI system is called CCTIUserInterface.
This class receives commands sent by the user, interprets events coming from the CTI server, and contains a representation of the
SoftPhone user interface.

Every CTI connector must have a subclass of CCTIUserInterface instantiated in its base COM class. The subclass implements
the command methods specified in CCTIUserInterface and calls the event methods of the base class when appropriate to
update the SoftPhone.

Use the FinalConstruct method of the CTI connector's base class to instantiate a subclass of CCTIUserInterface. For
example:

HRESULT CMyAdapterBase::FinalConstruct()
{
m_pUI = new CMyUserInterface(this);
m_pUI->Initialize();
}

Note: Always call the Initialize method after the CCTIUserInterface subclass is instantiated. This allows the
SoftPhone to create all of its child user interface objects in advance.

The subclass’s constructor passes a pointer to the CTI connector base class and the number of available phone lines to the superclass
constructor. For example:

CMyUserInterface:: CMyUserInterface (CMyAdapterBase* pAdapter) :CCTIUserInterface(pAdapter,2)

In this example, CMyUserInterface supports two phone lines. Your CMyUserInterface subclass needs to specify the
maximum number of lines that can be used by a single call center user. This allows CCTIUserInterface to create those phone
lines in advance.

24

Instantiating a CCTIUserInterface SubclassCustomizing Salesforce CRM Call Center

Use the FinalRelease method of the CTI connector's base class to delete your instance of CCTIUserInterface. This action
terminates all related threads, allowing the .dll to be unloaded. For example:

void CMyAdapterBase::FinalRelease()
{
if (m_pUI) {
delete m_pUI;
}
CoUninitialize();
}

Writing an Event Sink

A CTI connector requires an event sink class that receives events from its associated CTI system and calls the appropriate event methods
in the CCTIUserInterface subclass. As illustrated in this diagram, an event sink only requires a handler method for CTI system
events that affect the appearance or functionality of a SoftPhone. These handler methods can then call one or more methods in
CCTIUserInterface:

Event sink implementations vary for each CTI system depending on the interfaces that a vendor makes available. For each implementation:

1. Determine the CTI system events that your event sink must capture. See Determining the CTI System Events that Require an Event
Sink Handler on page 25 for information.

2. For each CTI system event that must be captured, write an event handler that calls the appropriate methods in your
CCTIUserInterface subclass. See Writing an Event Sink Handler on page 26 for sample event sink handler code.

Determining the CTI System Events that Require an Event Sink Handler
In general, any CTI system event that affects a user's SoftPhone requires a handler in your event sink. While events vary from system to
system, some common events that need a handler include:

• Events related to a user's CTI server connection

• Events related to a user's state (Ready for Calls, On a Call, Not Ready for Calls, and so on)

• Events related to the types of buttons that should be enabled

• Call events that affect the SoftPhone, such as the start and end of a call, or the fact that a caller has been put on hold

25

Writing an Event SinkCustomizing Salesforce CRM Call Center

Although the following types of events do not require event sink handlers for default Salesforce CRM Call Center functionality, you may
want to add event sink handlers for some of these events if you are implementing a new SoftPhone feature:

• Statistical events that appraise a user of CTI system usage, such as the number of call center users that are currently on a call

• Chat, email, or other channel events that Salesforce CRM Call Center does not currently support

• Informational events that apprise a user of activity on the system, such as the fact that another call center user has just logged in

• Call events that do not affect the SoftPhone, such as the fact that a call has been queued

Writing an Event Sink Handler
Event handlers in an event sink pass data related to an event directly to a comparable method in CCTIUserInterface. Some
event handlers consist of single one-line calls to CCTIUserInterface, while others require deeper levels of processing.

Simple Event Handler: OnCallEnd
The following simple event handler passes an OnCallEnd event directly to the OnCallEnd method in CCTIUserInterface.
The first parameter value indicates the ID of the call that is affected, while the second specifies whether the log for this call should be
moved to the Previous Calls section of the SoftPhone:

void CMyEventSink::OnCallEnd(EventArguments* pArguments)
{
std::wstring sCallObjectId = pArguments->GetValue("CallObjectID");
m_pUI->OnCallEnd(sCallObjectId,true);
}

Complex Event Handler: OnCallRinging
More complex event handlers perform additional processing and often must pass one or more PARAM_MAP parameters into
CCTIUserInterface. A PARAM_MAP is a map of the form std::map<std::wstring,std::wstring>. Elements of
a PARAM_MAP can be obtained by calling map["paramName"].

For example, OnCallRinging is a CTI system event that occurs when a call has arrived on any phone line. For incoming calls,
OnCallRinging marks the start of a phone conversation and maps to the OnCallRinging method in CCTIUserInterface.
For outgoing calls, OnCallRinging marks the start of the dialing process and maps to the OnCallDialing method in
CCTIUserInterface.

In addition to their other parameters, both the OnCallRinging and OnCallDialing methods in CCTIUserInterface
require a PARAM_MAP attribute called mapInfoFields. In addition, OnCallRinging requires a second PARAM_MAP attribute
called mapAttachedData:

• mapInfoFields includes information that pertains to the incoming call, such as the automatic number identification (ANI,the
number from which the caller is calling), dialed number identification service (DNIS, the number the caller dialed), and any other
custom fields that you add. This data displays in the SoftPhone.

• mapAttachedData includes all other data attached to an OnCallRinging event, such as account data generated from an
interactive voice response (IVR) system. This data is used for performing SOSL and SOQL searches of Salesforce data and generally
is not displayed in the SoftPhone interface.

The following sample code implements the OnCallRinging handler in an event sink. For more information about the parameters
in these calls, see the Salesforce CTI Toolkit Code Reference.

void CMyEventSink::OnCallRinging(EventArguments* pArguments)
{

26

Writing an Event Sink HandlerCustomizing Salesforce CRM Call Center

https://resources.docs.salesforce.com/rel1/doc/en-us/static/misc/salesforce_cti.chm

PARAM_MAP mapInfoFields;
PARAM_MAP mapAttachedData;

//First convert the attached data to a parameter map so that we
//can later pass it to OnCallRinging() in CCTIUserInterface.
//To simplify this example, this conversion is represented by
//a call to a method called ResolveAttachedData().
//In practice, salesforce.com adapters handle this with several
//lines of inline code. See the OnCallRinging() implementation
//for your adapter for details.
ResolveAttachedData(pArguments,mapAttachedData);

//Determine the call object ID
std::wstring sCallObjectId = pArguments->GetValue("CallObjectID");

//We always perform a search
bool bPerformSearch = true;

//We don't log internal calls
bool bLogCall = !pArguments->IsInternal();

//Check whether the call is incoming or outbound
if (pArguments->IsIncoming()) {

//Assume that the call is from an external number (since those
//calls do not have an associated call type), but if it is
//internal, change it to CALLTYPE_INTERNAL

int nCallType = CALLTYPE_INBOUND;
if (pArguments->IsInternal()) nCallType = CALLTYPE_INTERNAL;

//Pull the DNIS and ANI (the number from which the
//caller is dialing), and put these values in mapInfoFields

std::wstring sANI = pArguments->GetValue("ANI");
mapInfoFields[KEY_ANI]=sANI;
std::wstring sDNIS = pArguments->GetValue("DNIS");
mapInfoFields[KEY_DNIS]=sDNIS;

//Call the OnCallRinging() event handler in CCTIUserInterface

m_pUI->OnCallRinging(sCallObjectId,nCallType,bPerformSearch,bLogCall,mapInfoFields,mapAttachedData);

} else {

//If outbound, call the OnCallDialing() event handler in
//CCTIUserInterface, and attach the mapInfoFields PARAM_MAP.

m_pUI->OnCallDialing(sCallObjectId,mapInfoFields,bPerformSearch,bLogCall);
}
}

27

Writing an Event Sink HandlerCustomizing Salesforce CRM Call Center

SoftPhone Modification Options

You can modify CCTIUserInterface and CCTIAppExchange to customize the appearance and functionality of a SoftPhone.
Whether you are building a new CTI connector or customizing one that has already been built by Salesforce, you should read the following
topics to understand how the code works and what elements are required to make a SoftPhone operational:

• Using the Virtual Keyword in Your CCTIUserInterface .h File

• Implementing Call Center User Command Messages

• Writing the Initialize Method for CCTIUserInterface

• Enabling Call Center User Login

• Enabling One-Step Transfers and Conferences

• Enabling a Set of Buttons

• Changing the Display Order of SoftPhone Buttons

• Adding a Button

• Enabling Reason Codes

• Mapping CTI System Agent States toSalesforce CRM Call Center User States

• Adding a Custom Logo

• Modifying Displayed Call Information

• Customizing Automatically-Generated Call Logs

• Translating Custom SoftPhone Labels

For more detailed information about the objects and methods in the Salesforce CRM Call Center source code that Salesforce provides,
see the Salesforce CTI Toolkit Code Reference.

Using the Virtual Keyword in Your CCTIUserInterface .h File
When you write the .h file for your CCTIUserInterface subclass, you must use the virtual keyword for all the methods that
you override, other than the constructor. This ensures that CTILib and other parts of the CTI connector call the correct method for your
extended objects, regardless of how they are declared.

For example, the interface for a subclass of CCTIUserInterface might include a constructor, destructor, and two additional
overridden methods:

#pragma once
#include ctiuserinterface.h"

class CMyAdapterBase;
class CMyAdapterUserInterface :
public CCTIUserInterface
{
public:
CMyAdapterUserInterface(CMyAdapterBase* pAdapter);
virtual ~CMyAdapterUserInterface(void);
virtual void Initialize();
virtual void CallInitiate(PARAM_MAP& parameters);
};

28

SoftPhone Modification OptionsCustomizing Salesforce CRM Call Center

https://resources.docs.salesforce.com/rel1/doc/en-us/static/misc/salesforce_cti.chm

If the following method were to receive a MyAdapterUserInterface object instead of the CCTIUserInterface object
that the method declaration expects, the virtual keyword prevents the code from calling the wrong implementation of the
CallInitiate method :

void foo(CCTIUserInterface *x, PARAM_MAP parameters)
{

x->CallInitiate(parameters);
}

Implementing Call Center User Command Messages
As illustrated below, a CTI connector receives call center user command messages from the SoftPhone connector. These messages arrive
formatted in XML and are received by the UIParseIncomingXMLMessage method of CCTIUserInterface. This method
parses the incoming command message into a command ID and a set of parameters, and then passes the data to its
UIHandleMessage method. UIHandleMessage routes the command message to the proper handler based on its command
ID.

If you need to override UIHandleMessage to add a call to a custom command message, your implementation should handle your
custom message first and then make a call to the base UIHandleMessage method. For example, the following UIHandleMessage
override handles a custom command message called “EXIT.” Once “EXIT” is processed, the base UIHandleMessage method in
CCTIUserInterface is called:

void CDemoUserInterface::UIHandleMessage(std::wstring& message, PARAM_MAP& parameters)
{

if (message=="EXIT")
{

m_pEventSink->SetShellVisible(false);
}
CCTIUserInterface::UIHandleMessage(message,parameters);

}

Commands That Require Implementation in a CCTIUserInterface Subclass
At minimum, a subclass of CCTIUserInterface must implement the following command methods:

• virtual void CTIConnect (PARAM_MAP ¶meters);

• virtual void CTIDisconnect (PARAM_MAP ¶meters);

• virtual void CTILogin (PARAM_MAP ¶meters);

29

Implementing Call Center User Command MessagesCustomizing Salesforce CRM Call Center

• virtual void CTILogout (PARAM_MAP ¶meters);

• virtual void CallAlternate (PARAM_MAP ¶meters);

• virtual void CallInitiate (PARAM_MAP ¶meters);

• virtual void CallRelease (PARAM_MAP ¶meters);

• virtual void CTIChangeAgentState (PARAM_MAP ¶meters);

• virtual void CallAnswer (PARAM_MAP ¶meters);

• virtual void CallHold (PARAM_MAP ¶meters);

• virtual void CallRetrieve (PARAM_MAP ¶meters);

• virtual void CallSetWrapupCode (PARAM_MAP ¶meters);

• virtual void CallSaveWrapup();

• virtual void CallInitiateTransfer (PARAM_MAP ¶meters);

• virtual void CallInitiateConference (PARAM_MAP ¶meters);

• virtual void CallOneStepTransfer (PARAM_MAP ¶meters);

• virtual void CallOneStepConference (PARAM_MAP ¶meters);

• virtual void CallCompleteTransfer (PARAM_MAP ¶meters);

• virtual void CallCompleteConference (PARAM_MAP ¶meters);

• virtual void CallAttachData (std::wstring sCallObjectId, PARAM_MAP mapAttachedData);

• virtual CCTIForm* CreateLoginForm();

Note: You do not need to implement a command method if it is not supported by your CTI system.

In most methods above, a PARAM_MAP is included that contains parameters relevant to the command. A PARAM_MAP is a map of
the form std::map<std::wstring,std::wstring>. Elements of a PARAM_MAP can be obtained by calling
map["paramName"]. For details on any required values in an individual command's PARAM_MAP, see the CCTIUserInterface
documentation in the Salesforce CTI Connector Code Reference.

Important: With the exception of UIHandleMessage, all subclass method implementations must first call their base class
method implementation before performing any additional processing. For example:

void MyAdapterUserInterface::CallInitiateTransfer(PARAM_MAP& parameters)
{
CCTIUserInterface::CallInitiateTransfer(parameters);

<remaining code...>
}

In most cases UIHandleMessage should also call its base class, but if it is intercepting a message for special handling, it does
not need to be called.

Commands That Do Not Require Implementation in a CCTIUserInterface Subclass
The following commands generally do not require implementation by a subclass of CCTIUserInterface. These commands only
affect the SoftPhone and are not intended to have any effect on the underlying CTI system:

• UIUpdateSid (PARAM_MAP ¶meters)

• CallUpdateComments (PARAM_MAP ¶meters)

• ToggleComments (int nLineNumber)

30

Implementing Call Center User Command MessagesCustomizing Salesforce CRM Call Center

https://resources.docs.salesforce.com/rel1/doc/en-us/static/misc/salesforce_cti.chm

• UIShowDialpad (int nLineNumber, int nDialpadType, bool bUpdateXML)

• UIHideDialpad (int nLineNumber, int nDialpadType, bool bUpdateXML)

Writing the Initialize Method for CCTIUserInterface
In general, the Initialize method of CCTIUserInterface is responsible for the following tasks:

• Establishing a connection between the CTI system and a user's machine

• Logging the user into the CTI system

• Associating the CTI connector's event sink with the CTI system and user session, where applicable

In addition, Initialize is typically the method in which visual elements of the SoftPhone are defined, including the login form,
the call center state area, reason codes, phone lines, the SoftPhone logo, and buttons. Once defined, these objects can then be shown
or hidden by the other CTI connector methods as needed.

Enabling Call Center User Login
Two CCTIUserInterface methods are responsible for logging a call center user into a CTI system:

• CreateLoginForm() defines the user interface in which call center users enter their authentication information, such as a
username and password.

• CTILogin() uses the data that a user provided in a login form to connect to the associated CTI system.

CreateLoginForm() Method
To implement a call center user login form, override the CreateLoginForm method in your CCTIUserInterface subclass.
This method returns a CCTIForm, which is a container for the following types of form elements:

DescriptionForm Element Type

A static text element in the user interface, such as a welcome
message

CCTIStatic

A text box in which a call center user can enter a stringCCTIEditBox

A checkbox that a call center user can select and deselectCCTICheckbox

A button that a call center user can clickCCTIButton

An individual login form element is identified and labeled according to its SID. By default, Salesforce includes SIDs and standardized,
translated labels for the following commonly-used login form elements:

• AGENT_ID

• USER_ID

• LOGIN_NAME

• AGENT_NAME

• PASSWORD

• DN

• POSITION_ID

31

Writing the Initialize Method for CCTIUserInterfaceCustomizing Salesforce CRM Call Center

• QUEUE

• SKILL

• PLACE

• PERIPHERAL_ID

• SWITCH

• EXTENSION

• ROUTE_POINT

• DOMAIN

• LOGIN* (this SID is reserved for the mandatory “Login.” button that is required on all Login forms)

If you require a login form element that does not appear in the list above, use one of the ten custom element SIDs (CUSTOM1,
CUSTOM2, ... CUSTOM10) that Salesforce also provides, and specify its label with the SetLabel method. It is your responsibility
to ensure that a custom login form element has the correct label for every language that your CTI adapter supports. For information, see
Translating Custom SoftPhone Labels on page 46.

Warning: A Salesforce-provided SID must be used for every element in your login form to ensure that user login information is
properly saved by the application.

Login form elements are displayed in the SoftPhone login form in the same order that they are added to the form. There must be at least
one CCTIButton element with a SID of “LOGIN” that performs the actual login function.

For example, the following CreateLoginForm method implementation creates a form with text boxes for Agent ID, Password,
Peripheral ID, and MyCustomLoginField. It also includes a Save Values check box and a large green login button:

CCTIForm* CMyAdapterUserInterface::CreateLoginForm()
{
CCTIForm* pForm = new CCTIForm();

std::wstring sAgentId;
std::wstring sPassword;
std::wstring sPeripheralId;
std::wstring sMyCustomLoginField;

//Add form elements in the order they should appear.
CCTIEditBox* pAgentId = pForm->AddEditBox("AGENT_ID");
pAgentId->SetValue(sAgentId);

CCTIEditBox* pPassword = pForm->AddEditBox("PASSWORD");
pPassword->SetValue(sPassword);
pPassword->SetPassword(true);

CCTIEditBox* pPeripheralId = pForm->AddEditBox("PERIPHERAL_ID");
pPeripheralId->SetValue(sPeripheralId);

//Use one of the custom SIDs for the custom field
CCTIEditBox* pCustom = pForm->AddEditBox("CUSTOM1");
pCustom->SetValue(sMyCustomLoginField);

//Use the SetLabel() method to specify the custom
//field's label
pCustom->SetLabel("My Custom Login Field Label");

32

Enabling Call Center User LoginCustomizing Salesforce CRM Call Center

pForm->AddCheckbox("SAVE_VALUES","",true);

CCTIButton* pLogin = pForm->AddButton("LOGIN");
pLogin->SetColor("GREEN");
pLogin->SetLongStyle(true);

return pForm;
}

CTILogin() Method
When your CTILogin implementation is called, its parameter map contains the SIDs and values of the visual elements that you
specified in the login form. You can use this data to connect directly to the CTI server and perform other user initialization functions.

For example, the following CTILogin method implementation:

1. Performs some basic error checking

2. Initializes a user object and an event sink for receiving CTI system events

3. Makes a call toMyCTISystemLib::CTILogin to finish the user's login

void CMyAdapterUserInterface::CTILogin(PARAM_MAP& parameters)
{
// Check to see if we are already connected
if (!GetConnected())
{
CCTILogger::Log(LOGLEVEL_LOW,"Must be connected first to log in!");
return;
}

// Check to see if we are already logged in
if (GetLoggedIn())
{
CCTILogger::Log(LOGLEVEL_LOW,"Login attempted while already logged in.");
return;
}

// Create a new call center user object to handle the login
if (m_pAgent!=NULL) m_pAgent.Release();
m_pAgent.CreateInstance("MyCTISystemLib.ComAgent");

// Initialize the event sink
m_pEventSink->SetAgentPtr(m_pAgent);

// Set the call center user object
m_pAgent->SetValue("AgentID", parameters["AGENT_ID"]);
m_pAgent->SetValue("AgentPassword", parameters["PASSWORD"]);
m_pAgent->SetValue("AgentPeripheralId", parameters["PERIPHERAL_ID"]);

// Log in to the CTI system
m_pMyCTISystemLib->CTILogin(m_pAgent);}

33

Enabling Call Center User LoginCustomizing Salesforce CRM Call Center

Enabling One-Step Transfers and Conferences
In Salesforce CRM Call Center, performing a transfer or conference while on a call can be either a one- or two-step process. In a two-step
process:

1. The user clicks Transfer or Conference in the SoftPhone. This action places the first call on hold and displays a dial pad in which
the user can enter a phone number.

2. The user clicks Dial to connect with the new phone number. After speaking with the third party, the user can click Complete
Transfer or Complete Conference to complete the operation.

In a one-step process, the user clicks Transfer or Conference, enters a number into the dial pad that is displayed, and clicks One-Step
Transfer or One-Step Conference to complete the operation without speaking separately to the third party.

Note: Other common terms for “one-step” transfers or conferences include “blind,” “mute,” “cold,” or “single-step.”

Because not all CTI systems allow one-step transfer and conference functionality, CTI connector code disables one-step transfers and
conferences by default. If you want to enable this functionality, call the SetOneStepTransferEnabled and
SetOneStepConferenceEnabled methods at any time. For example, to call these methods in the Initialize method of
your CCTIUserInterface subclass, use code similar to the following:

void CMyAdapterUserInterface::Initialize() {
//First call the Initialize() method of the base class.
CCTIUserInterface::Initialize();
...
//Then enable one-step transfers and conferences later in
//the method.
CCTIUserInterface::SetOneStepTransferEnabled(TRUE);
CCTIUserInterface::SetOneStepConferenceEnabled(TRUE);
...
}

When a user clicks Transfer or Conference in a SoftPhone, the CTI connector code uses the CallInitiateTransfer or
CallInitiateConference methods to transfer or conference the call in two steps. When a user clicks One-Step Transfer or
One-Step Conference in a SoftPhone, the CTI connector code uses the CallOneStepTransfer or CallOneStepConference
methods to transfer or conference the call in a single step.

If your CTI system does not transmit the automatic number identifier (ANI) of the original call to the third party when a transfer or
conference is initiated, you must attach this value to the call in CallOneStepTransfer, CallOneStepConference,
CallInitiateTransfer, and CallInitiateConference. To do so, use the key “ANI” to attach the data as shown in this
example:

CCTILine* pLine = GetLine(nLineNumber);
CallAttachSingleItem(nLineNumber,"ANI",pLine->GetANI());

Attaching the ANI to the call in this manner allows the CTI adapter of the third party to interpret this value as the true ANI for the call.

Enabling a Set of Buttons
By default, a SoftPhone line is created with the following buttons (the ID that identifies each button in the CTI connector code is listed
in parentheses):

• Answer (BUTTON_ANSWER)

• Reject (BUTTON_REJECT)

• Release (BUTTON_RELEASE)

34

Enabling One-Step Transfers and ConferencesCustomizing Salesforce CRM Call Center

• Hold (BUTTON_HOLD)

• Retrieve (BUTTON_RETRIEVE)

• Transfer (BUTTON_TRANSFER)

• Accept Transfer (BUTTON_ACCEPT_TRANSFER)

• Complete Transfer (BUTTON_COMPLETE_TRANSFER)

• Conference (BUTTON_CONFERENCE)

• Accept Conference (BUTTON_ACCEPT_CONFERENCE)

• Complete Conference (BUTTON_COMPLETE_CONFERENCE)

All buttons are created when a line is initialized and are shown when necessary using the OnButtonEnablementChange event
in CCTIUserInterface. To display a set of buttons in the SoftPhone, call OnButtonEnablementChange with the number
of the affected line and the list of button IDs that should be shown. The system automatically shows the buttons in the list and hides all
other buttons.

For example, the following code displays the Answer and Reject buttons in line one:

std::list<int> listEnabledButtons;

listEnabledButtons.push_back(BUTTON_ANSWER);
listEnabledButtons.push_back(BUTTON_REJECT);

CCTIUserInterface::OnButtonEnablementChange(1, listEnabledButtons)

Changing the Display Order of SoftPhone Buttons
SoftPhone buttons are displayed whenever they are enabled through the OnButtonEnablementChange event in
CCTIUserInterface. The order in which they are displayed is controlled by the index values they are assigned in
CTIConstants.h:

#define BUTTON_ANSWER 10
#define BUTTON_REJECT 20
#define BUTTON_RELEASE 30
#define BUTTON_HOLD 40
#define BUTTON_RETRIEVE 50
#define BUTTON_TRANSFER 60
#define BUTTON_ACCEPT_TRANSFER 70
#define BUTTON_COMPLETE_TRANSFER 80
#define BUTTON_CONFERENCE 90
#define BUTTON_ACCEPT_CONFERENCE 100
#define BUTTON_COMPLETE_CONFERENCE 110

Buttons that have a lower index value are listed first in the SoftPhone, above buttons with greater index values. For example, if the
Conference, Hold, Release, and Transfer buttons are enabled during a call, they appear in the following order:

• Release (ID=30)

• Hold (ID=40)

• Transfer (ID=60)

• Conference (ID=90)

35

Changing the Display Order of SoftPhone ButtonsCustomizing Salesforce CRM Call Center

Adding a Button
To add a new button to your SoftPhone:

1. Override the Initialize method of CCTIUserInterface:

a. Call your base Initialize method first.

b. Create a CCTIButton object with the ID and label that you want your button to have.

c. Specify the width of the button with the SetLongStyle method. By passing FALSE into this method, your button will be
short and you will be able to display an icon with the label. By passing TRUE into this method, your button will be long and will
not have an associated icon.

d. If you passed TRUE into the SetLongStyle method, specify the color of your button with the SetColor method. Color
constant names are specified in CTIObject.h.

e. If you passed FALSE into the SetLongStyle method, specify the URL of the icon that should be displayed within the button
with the SetIconURL method. Icons should be exactly 46 pixels wide by 17 pixels high.

Note: Salesforce recommends storing any button icons in your organization's Documents tab. See Adding a Custom
Logo on page 42 for information.

f. Make a call to UIAddButtonToAllLines that includes the index of where the new button should be placed in relation
to other buttons. For example, if you added a button with an index value of 15, it would appear between the Answer and Reject
buttons, if both of those buttons were visible (see Changing the Display Order of SoftPhone Buttons on page 35).

2. Add a method to your CCTIUserInterface subclass that handles the message that is sent to the CTI connector when the
new button is clicked.

3. Override the UIHandleMessage method of CCTIUserInterface so that it calls the method you specify when the new
button is clicked. The SoftPhone connector will pass the button's ID as the command message when this button is clicked.

The following code sample shows an overridden Initialize method that adds a short Begin Recording button to the SoftPhone:

//Define the index value for the new button. A value of 15 places
//the new button just after the Answer button, or at the top of the
//button list if the Answer button is not visible. Note that default
//button indexes are stored in CTIObject.h.
#define BEGIN_RECORDING 15

void CMyAdapterUserInterface::Initialize() {
//First call the Initialize() method of the base class.
CCTIUserInterface::Initialize();

//Then add the new button. Note that its ID, BEGIN_RECORDING, is
//the command message that will be passed to the UIHandleMessage
//method whenever this button is clicked.
CCTIButton pRecordButton("BEGIN_RECORDING","Begin Recording");

//Set the size and icon of the button.
pRecordButton.SetLongStyle(FALSE);

pRecordButton.SetIconURL("https://yourInstance.salesforce.com/servlet/servlet.ImageServer?oid=00Dx000000000Ps&id=015x00000000qsK")

//Add a copy of this button to all phone lines, in the location specified by

36

Adding a ButtonCustomizing Salesforce CRM Call Center

//the BEGIN_RECORDING constant.
UIAddButtonToAllLines(BEGIN_RECORDING,&pRecordButton);
}

Enabling Reason Codes
A reason code is an explanation that users can select when they want to enter wrap-up mode after a call, set their user status to Not
Ready for Calls, or log out of a CTI system entirely. Organizations can define sets of reason codes to track the activities of their call center
users.

Enabling Wrap-Up Reason Codes
Wrap-up mode allows a call center user to complete work related to a call, such as filling out a call log, without interruption from a new
inbound call. When wrap-up mode is available, some organizations require their users to enter reason codes before entering this mode
so that their time can be more accurately tracked.

To enable wrap-up codes for your CTI SoftPhone adapter, you must initialize them either in the Initialization method of
CCTIUserInterface or when receiving an appropriate event. To initialize wrap-up codes in one of these methods:

1. Convert the codes to a PARAM_MAP in which the keys are the wrap-up code IDs and the values are the wrap-up code labels. A
PARAM_MAP is a map of the form std::map<std::wstring,std::wstring>. Elements of a PARAM_MAP can be
obtained by calling map["paramName"].

2. Call the SetWrapupReasonCodes method in CCTIUserInterface with the PARAM_MAP as its only parameter. If this
method is called multiple times, the existing wrap-up codes are replaced by the newly-specified ones.

Once enabled, wrap-up codes are automatically displayed in the SoftPhone when a call center user's state is set to Wrap-Up.

Enabling Not-Ready Reason Codes
Not-ready reason codes allow an organization to track the reasons why a user cannot take a new inbound call. To enable not-ready
reason codes:

1. In the CCTIUserInterface::Initialize method or just after user login, make a call to
CCTIUserInterface::SetNotReadyReasonRequired. When this method is set to TRUE, a user is prompted to
enter a reason code when he or she changes state to Not Ready for Calls.

2. Specify the reason codes for changing to the Not Ready for Calls state:

a. Convert the not-ready reason codes to a PARAM_MAP in which the keys are the reason code IDs and the values are the reason
code labels. A PARAM_MAP is a map of the form std::map<std::wstring,std::wstring>. Elements of a
PARAM_MAP can be obtained by calling map["paramName"].

b. Call CCTIUserInterface::SetNotReadyReasonCodes with the PARAM_MAP as its only parameter. If this method
is called multiple times, the existing codes are replaced by the newly-specified ones.

Enabling Logout Reason Codes
Similarly to wrap-up and not-ready reason codes, logout codes allow an organization to track the reasons why a call center user is logging
out of the CTI system. To enable logout reason codes:

1. In the CCTIUserInterface::Initialize method or just after user login, make a call to
CCTIUserInterface::SetLogoutReasonRequired for logout reason codes. When this method is set to TRUE, a
user is prompted to enter a reason code when he or she attempts to log out.

37

Enabling Reason CodesCustomizing Salesforce CRM Call Center

2. Specify the reason codes for logout:

a. Convert the logout reason codes to a PARAM_MAP in which the keys are the reason code IDs and the values are the reason
code labels. A PARAM_MAP is a map of the form std::map<std::wstring,std::wstring>. Elements of a
PARAM_MAP can be obtained by calling map["paramName"].

b. Call CCTIUserInterface::SetLogoutReasonCodes with the PARAM_MAP as its only parameter. If this method
is called multiple times, the existing codes are replaced by the newly-specified ones.

Example: Enabling Wrap-Up, Not-Ready, and Logout Reason Codes
The following example shows an event sink method that might be called just after a user logs in to a CTI system. The attached data
(pArguments) specifies whether wrap-up, not-ready, and logout reasons are required, and if so, what the valid reason codes are:

void MyAdapterEventSink::OnJustLoggedIn(EventArguments* pArguments)
{

PARAM_MAP mapReasonCodes;

// First extract the wrap-up codes from pArguments if they
// exist, and put them in the mapReasonCodes PARAM_MAP.
EventArguments* pReasonCodes=pArguments->GetValueArray("IncomingWrapupStrings");
if (pReasonCodes!=NULL) {

for (int i=0;i<=pReasonCodes->NumElements();i++) {
std::wstring sId = pReasonCodes->GetElementKey(i);
std::wstring sLabel = pReasonCodes->GetElement(i);
mapReasonCodes[sId]=sLabel;

}

// Make the call to SetNotReadyReasonCodes with the
// mapReasonCodes PARAM_MAP.

m_pUI->SetWrapupReasonCodes(mapReasonCodes);
}

// Next, extract the not-ready codes from pArguments if
// they exist, and put them in the mapReasonCodes PARAM_MAP.
EventArguments* pNRReasonCodes=pArguments->GetValueArray("NotReadyReasonCodes");
if (pNRReasonCodes!=NULL) {

mapReasonCodes.clear();
for (int i=1;i<=pNRReasonCodes->NumElements();i++) {

std::wstring sId = pNRReasonCodes->GetElementKey(i);
std::wstring sLabel = pNRReasonCodes->GetElement(i);
mapReasonCodes[sId]=sLabel;

}

// Make the call to SetNotReadyReasonCodes with the
// mapReasonCodes PARAM_MAP.
m_pUI->SetNotReadyReasonCodes(mapReasonCodes);

}

// Finally, extract the logout codes from pArguments if
// they exist, and put them in the mapReasonCodes PARAM_MAP.
EventArguments* pLogoutReasonCodes=pArguments->GetValueArray("LogoutReasonCodes");
if (pLogoutReasonCodes!=NULL) {

38

Enabling Reason CodesCustomizing Salesforce CRM Call Center

mapReasonCodes.clear();
for (int i=1;i<=pLogoutReasonCodes->NumElements();i++) {

std::wstring sId = pLogoutReasonCodes->GetElementKey(i);
std::wstring sLabel = pLogoutReasonCodes->GetElement(i);
mapReasonCodes[sId]=sLabel;

}
// Make the call to SetLogoutReasonCodes with the
// mapReasonCodes PARAM_MAP.
m_pUI->SetLogoutReasonCodes(mapReasonCodes);

}
}

Mapping CTI System Agent States toSalesforce CRM Call Center User States
By default, a Salesforce CTI adapter allows call center users to be in one of the following states while using Salesforce CRM Call Center
(the call center state ID that is used in the CTI connector code is also listed):

DescriptionCall Center State IDCall Center State

The user is not logged in to a CTI system.AGENTSTATE_LOGOUTLog Out

The user is not currently on a call, and is
prepared to accept the next inbound call.

AGENTSTATE_READYReady for Calls

The user is not currently on a call, and is not
prepared to receive the next inbound call.

AGENTSTATE_NOT_READYNot Ready for Calls

The user is currently connected to a caller.AGENTSTATE_BUSYOn a Call

The user is currently connected to a caller,
and wishes to go directly to the Not Ready
for Calls state when the call is complete.

AGENTSTATE_WRAPUPWrap-Up

The user is logged into the system.

Note that this state is meant to be used in
those CTI systems that do not support call
center user states.

AGENTSTATE_LOGGED_INLogged In

All CTI system agent states must be mapped to one of the Salesforce CRM Call Center states for the SoftPhone to behave appropriately.
For example, a CTI system might have a state for talking on the phone and another state for waiting on hold. In both cases, these states
should be mapped to the Salesforce CRM Call Center Busy state so that the SoftPhone does not display functionality that should not be
available when a user is on a call.

To map CTI system agent states to Salesforce CRM Call Center user states, modify the AgentStateToString method in your
CCTIUserInterface subclass. AgentStateToString is used by the OnAgentStateChange event handler to map
your CTI system agent state values to the correctSalesforce CRM Call Center user state. For example:

std::wstring MyAdapterUserInterface::AgentStateToString(enumMY_AgentState State)
{

switch(State)
{

case Logout:

39

Mapping CTI System Agent States toSalesforce CRM Call
Center User States

Customizing Salesforce CRM Call Center

return AGENTSTATE_LOGOUT;
case NotReady:
case Login:

return AGENTSTATE_NOT_READY;
case Available:

return AGENTSTATE_READY;
case BusyOther:
case Talking:
case Reserved:
case Hold:
case Unknown:

return AGENTSTATE_BUSY;
case WorkNotReady:
case WorkReady:

return AGENTSTATE_WRAPUP;
default:

return "";
}

}

Displaying Salesforce CRM Call Center User States
All call center states are created when a line is initialized and are selectively displayed in the SoftPhone's call center state drop-down list
using the OnAgentStateEnablementChange event in CCTIUserInterface. To change the set of call center states that
are available in the SoftPhone at any one time, call OnButtonEnablementChange with the list of call center states that should
be available and the ID of the currently selected state. The SoftPhone automatically updates the call center state drop-down list.

For example, the following event sink method creates a list of enabled agent states depending on the current agent state and then
makes a call to OnAgentStateEnablementChange:

void CCTIOSEventSink::SetAgentStateEnablement(std::wstring& sAgentState) {
std::list<std::wstring> listEnabledAgentStates;

if (sAgentState == AGENTSTATE_LOGOUT) {
// do nothing
} else if (sAgentState == AGENTSTATE_NOT_READY || sAgentState == AGENTSTATE_READY) {
listEnabledAgentStates.push_back(AGENTSTATE_READY);
listEnabledAgentStates.push_back(AGENTSTATE_NOT_READY);
listEnabledAgentStates.push_back(AGENTSTATE_LOGOUT);
} else if (sAgentState == AGENTSTATE_BUSY) {
// if an agent is busy (on a call), show busy status and wrapup (allow agent to queue

wrapup)
listEnabledAgentStates.push_back(AGENTSTATE_BUSY);
listEnabledAgentStates.push_back(AGENTSTATE_WRAPUP);
} else if (sAgentState == AGENTSTATE_WRAPUP) {
listEnabledAgentStates.push_back(AGENTSTATE_WRAPUP);
} else if (sAgentState == AGENTSTATE_LOGGED_IN) {
// do nothing
}

m_pUI->OnAgentStateEnablementChange(listEnabledAgentStates, sAgentState);
}

40

Displaying Salesforce CRM Call Center User StatesCustomizing Salesforce CRM Call Center

Adding a New Salesforce CRM Call Center User State
To add a new call center state to your SoftPhone:

1. Override the Initialize method of CCTIUserInterface:

a. Call your base Initialize() method first.

b. Make a call to UIAddAgentState() with the ID, display order, and label for your new call center state.

Display order is specified as an integer with the lowest number displaying first in the list. The display order values for default call
center states are:

0AGENTSTATE_READY

1AGENTSTATE_NOT_READY

2AGENTSTATE_WRAPUP

3AGENTSTATE_BUSY

4AGENTSTATE_LOGOUT

If two or more call center states are assigned the same display order number, the state that was most recently defined appears
first. For example, if you add a new call center state with display order “2,” the new call center state is displayed between
AGENTSTATE_NOT_READY and AGENTSTATE_WRAPUP, since the default call center states were already defined in the
base Initialize() method.

2. Override the CTIChangeAgentState method of CCTIUserInterface so that the SoftPhone displays the correct behavior
when your new call center state is selected.

3. Override the CTIIsOccupiedAgentState method of CCTIUserInterface so that the method returns the appropriate
boolean value when your new call center state is selected.

OnAgentStateChange uses CTIIsOccupiedAgentState to determine whether it is time to move an open call log to
the Previous Calls section of the SoftPhone:

• When CTIIsOccupiedAgentState returns True, the call log remains open for editing.

• When CTIIsOccupiedAgentState returns False, the call log is saved and moved to the Previous Calls section.

By default, the two states that return True are AGENTSTATE_BUSY (“On a Call”) and AGENTSTATE_WRAPUP. If your new call
center state indicates that a phone line is engaged, then it should also return True when passed in to this method.

The following code sample shows an overridden Initialize method that adds a “Processing Account” call center state:

void CMyAdapterUserInterface::Initialize() {
//First call the Initialize() method of the base class.
CCTIUserInterface::Initialize();

//Then add the new call center state. Note that its ID, PROCESSING_ACCOUNT, is
//the command message that will be passed to the CTIChangeAgentState()
//method whenever this call center state is selected.
UIAddAgentState(L"PROCESSING_ACCOUNT",5,L"Processing Account");

}

41

Adding a New Salesforce CRM Call Center User StateCustomizing Salesforce CRM Call Center

Adding a Custom Logo
You can customize the logo that appears at the bottom of a SoftPhone by calling SetLogoImageUrl from an overridden
Initialize method in your CCTIUserInterface subclass. For example:

void CMyAdapterUserInterface::Initialize() {
//First call the Initialize() method of the base class.
CCTIUserInterface::Initialize();
...
//Then set the logo URL in the body of the method.

SetLogoImageUrl("https://yourInstance.salesforce.com/servlet/servlet.ImageServer?oid=00Dx000000000Ps&id=015x00000000qsK");

...
}

Logos must be no more than 116 pixels wide by 31 pixels high and must be stored on a server that is accessible to all Salesforce CRM
Call Center users. Salesforce recommends that you store the image as an externally available document in the Documents tab for your
organization. For information on how to create an externally available document, see “Uploading and Replacing Documents” in the
Salesforce online help.

To determine the URL of a logo that is stored in the Documents tab:

1. View the document detail page in Salesforce.

2. Right-click on the logo image and select Properties. The logo URL is located next to the Address (URL) or Location
parameter in the dialog. It should be of the form
https://yourInstance.salesforce.com/servlet/servlet.ImageServer?oid=00Dx000000000Ps&id=015x00000000qsK.

Modifying Displayed Call Information
By default, two types of call-related information are displayed in the SoftPhone when a call begins:

• Call information fields show information about the call itself, such as the number from which the caller is dialing (the automatic
number identification or ANI) and the number that was dialed (the dialed number identification service or DNIS). These fields are
specified in the &mapInfoFields parameter of CCTIUserInterface::OnCallRinging. For information about
modifying these fields, see Adding a Call Information Field on page 42.

• Call-related records show Salesforce records that are related to the call, such as contacts, leads, activities, or accounts. These records
are discovered by running the CTIAppExchange::Search method on the ANI and any data in the &mapAttachedData
parameter from CCTIUserInterface::OnCallRinging. For more information, see Displaying Call-Related Records on
page 43.

Adding a Call Information Field
To add a custom call information field to a SoftPhone, simply add the field to the mapInfoFields PARAM_MAP in
CCTIUserInterface::OnCallRinging. For example, the following implementation of OnCallRinging adds fields for
the number from which the caller is dialing (the automatic number identification or ANI), and the number that was dialed (the dialed
number identification service or DNIS). You can use pArguments to add any other field that is passed in from your CTI system:

void CMyEventSink::OnCallRinging(EventArguments* pArguments)
{
PARAM_MAP mapInfoFields;
PARAM_MAP mapAttachedData;

42

Adding a Custom LogoCustomizing Salesforce CRM Call Center

//First convert the attached data to a parameter map so that we
//can later pass it to OnCallRinging() in CCTIUserInterface.
//To simplify this example, this conversion is represented by
//a call to a method called ResolveAttachedData().
//In practice, salesforce.com adapters handle this with several
//lines of inline code. See the OnCallRinging() implementation
//for your adapter for details.
ResolveAttachedData(pArguments,mapAttachedData);

//Determine the call object ID
std::wstring sCallObjectId = pArguments->GetValue("CallObjectID");

//We always perform a search
bool bPerformSearch = true;

//We don't log internal calls
bool bLogCall = !pArguments->IsInternal();

//Check whether the call is incoming or outbound
if (pArguments->IsIncoming()) {

//Assume that the call is from an external number (since those
//calls do not have an associated call type), but if it is
//internal, change it to CALLTYPE_INTERNAL

int nCallType = CALLTYPE_INBOUND;
if (pArguments->IsInternal()) nCallType = CALLTYPE_INTERNAL;

//Pull the DNIS and ANI (the number from which the
//caller is dialing), and put these values in mapInfoFields

std::wstring sANI = pArguments->GetValue("ANI");
mapInfoFields[KEY_ANI]=sANI;
std::wstring sDNIS = pArguments->GetValue("DNIS");
mapInfoFields[KEY_DNIS]=sDNIS;

//Call the OnCallRinging() event handler in CCTIUserInterface

m_pUI->OnCallRinging(sCallObjectId,nCallType,bPerformSearch,bLogCall,mapInfoFields,mapAttachedData);

} else {

//If outbound, call the OnCallDialing() event handler in
//CCTIUserInterface, and attach the mapInfoFields PARAM_MAP.

m_pUI->OnCallDialing(sCallObjectId,mapInfoFields,bPerformSearch,bLogCall);
}
}

Displaying Call-Related Records
When a call arrives, the CTI connector searches Salesforce for any related records using the Force.com API. The CTI connector first searches
based on data attached to the call, such as an account number that was entered by the caller during an interactive voice response (IVR)
session. If that search fails, the CTI connector then searches based on the automatic number identification (ANI, the phone number from

43

Modifying Displayed Call InformationCustomizing Salesforce CRM Call Center

which the caller is dialing). Any related records that are found during either of these searches are displayed in the user interface of the
line containing the call.

Handling Attached Data
A CTI connector built by Salesforce implements a default method of handling data attached to calls. If you are writing a new IVR script,
you can either follow this default method to format attached data or modify the CTI connector code to handle the attached data in the
format your existing script uses.

The default Salesforce method expects attached data in the form of key-value pairs:

• The keys should be of the form Object.FieldName, where Object corresponds to the developer name of an object in the
Force.com API, and FieldName corresponds to the developer name of a field on that object. For example, Case.CaseNumber
would be a valid key.

• The values should correspond to the format of the field in Salesforce. For example, for Case.CaseNumber, “00001001” would
be a valid value.

Note: Values must be exact matches for the Salesforce record. For example, if “1001” is specified but the case number is actually
“00001001,” the record is not returned.

If your IVR attaches data that is not in this format, but you wish to trigger a search using the attached data, you can resolve it in your
implementation of OnCallRinging. In this method you can convert the data into a format that Salesforce CRM Call Center can use.
OnCallRinging should return a PARAM_MAP that contains valid key-value pairs.

Examples of Attached Data Search Queries
Salesforce CRM Call Center uses attached data to generate a Salesforce Obejct Query Language (SOQL) query. For example, if the attached
data contains Case.CaseNumber="00001001", Salesforce CRM Call Center generates and executes the following query:

SELECT <fields> FROM Case WHERE CaseNumber='00001001'

where the value of <fields> is defined by the user's SoftPhone layout.

If the attached data contains two or more key-value pairs that pertain to the same object, Salesforce CRM Call Center generates a single
query with all the conditions specified for that object. For example, if the attached data contains Case.CaseNumber="00001001"
and Case.Priority="High", the search generates and executes the following query:

SELECT <fields> FROM Case WHERE CaseNumber='00001001' AND Priority='High'

If the attached data includes two or more key-value pairs that pertain to different objects, Salesforce CRM Call Center generates a query
for each object and adds all of the results to the phone line's display. For example, if the attached data contains
Case.CaseNumber="00001001" and Account.AccountNumber="1234", the search generates and executes the
following queries:

SELECT <fields> FROM Case WHERE CaseNumber='00001001'
SELECT <fields> FROM Account WHERE AccountNumber='1234'

Handling Automatic Number Identification (ANI) Search
If the search on attached data produces no results or if no attached data was found, Salesforce CRM Call Center performs a Salesforce
Object Search Language (SOSL) search on the automatic number identification (ANI) field (the number from which a caller is dialing).
The search is only performed on objects that are defined in the user's SoftPhone layout, and only returns the fields that the layout
specifies.

44

Modifying Displayed Call InformationCustomizing Salesforce CRM Call Center

For example, if the ANI is 650-555-1212 and the user's SoftPhone layout specifies that only the First Name, Last Name, and
Email fields of contact records should be displayed, Salesforce CRM Call Center generates and executes the following SOSL query:

FIND {6505551212} IN PHONE FIELDS RETURNING Contact (Email, FirstName, LastName)

Note: ANIs should be stripped of all non-standard digits. For example, if your phone system generates ANIs preceded by a “1,”
like 1 415 555-1212, the first “1” should be stripped off the number for the search to return successfully.

Overriding Default Search Behavior
To override the default search behavior and implement your own query generators:

1. Create a subclass of CTIAppExchange.

2. Override the method CCTIUserInterface::GetSearch to return an instance of your Force.com search object. All calls
to search will now use your search instead of the default. See the Salesforce CTI Toolkit Code Reference for details.

3. Override the method CCTIAppExchange::Search to implement your own query generators.

Customizing Automatically-Generated Call Logs
By default, the UpsertCallLog method of CCTIAppExchange automatically generates a closed task record for every completed
SoftPhone call. This call log task record includes the following information about the call:

• The call object ID, a field that uniquely identifies a single call in Salesforce

• The date that the call occurred

• The duration of the call, in seconds

• The type of call that took place (inbound, outbound, or internal)

• The owner of the call record (typically the user who initiated an outbound or internal call, or the user who received an inbound call)

• The text, if any, that was entered in the SoftPhone comments text box

In addition, the call log task record can also include one link to an account, one link to either a contact, lead, or person account (a “who”),
and one link to any other Salesforce record that is not a contact, lead, or person account (a “what”).

Associating Call Logs with Multiple Records
Because there is a restriction on the number of records that can be associated with a task, AddCallLog must choose how to handle
calls with multiple account, “who,” or “what” records. For example, a support user might need to create two cases (“what” objects) while
on a call because a customer has two separate problems. Since only one case can be associated with a single call log, AddCallLog
must choose which case to associate. By default, AddCallLog handles this type of situation as follows:

• Multiple accounts: AddCallLog chooses one account record to associate with the call log, and nothing is associated with the
other account objects.

• Multiple “who”s: AddCallLog chooses one “who” record to associate with the call log, and nothing is associated with the other
“who” records.

• Multiple “what”s: AddCallLog does not associate the call log with any of the “what” records.

You can customize the strategy for handling multiple records by modifying the AddCallLog method in your own CTIAppExchange
subclass. One strategy to consider is to make duplicate call log tasks for multiple records of a particular type. In the example above,
AddCallLog would make two identical call log task records - one for each case that was generated during the call. When using this
strategy, Salesforce CRM Call Center reports must be modified to group call logs by the Call Object ID field so that duplicate

45

Customizing Automatically-Generated Call LogsCustomizing Salesforce CRM Call Center

https://resources.docs.salesforce.com/rel1/doc/en-us/static/misc/salesforce_cti.chm

call logs are not counted as two separate calls. In addition, reports that sum call duration must be filtered so that the same call is not
included twice.

Defining Custom SoftPhone Labels
You can define custom labels for call information fields with the SetInfoFieldLabel() method of CCTIUserInterface.
To do so, modify the Initialize() method of your CCTIUserInterface subclass with a call to SetInfoFieldLabel()
for every label that you want to specify. SetInfoFieldLabel() takes two strings as parameters: the sId of the field that you
want to rename, and the custom label.

For example, to change the label for the QUEUE info field to “Customer List,” add the following line to your Initialize() method:

SetInfoFieldLabel("QUEUE", "Customer List");

When a field with the sId of “QUEUE” is placed in the mapInfoFields PARAM_MAP in
CCTIUserInterface::OnCallRinging, the field is displayed in the SoftPhone with a label of “Customer List.”

This table lists the default labels for call information fields that are built into Salesforce CTI adapters:

Default LabelCall Information Field sId

Caller ID #ANI

Dialed #DNIS

QueueQueue

SegmentSegment

Customer TypeCustomer Type

You can modify the labels for these default fields, or define labels for custom call information fields that you add to the mapInfoFields
PARAM_MAP of your CCTIUserInterface::OnCallRinging method implementation.

Translating Custom SoftPhone Labels
By default, all standard SoftPhone labels are translated and displayed in the language of the call center user. If you need to support
localized labels for a custom SoftPhone component or call information fields, you can use one of two strategies:

• Create a different CTI adapter for each locale that you want to support

With this strategy, the labels are hard-coded in the supported language of the adapter. While easy to implement, this method can
lead to maintenance issues if you need to support adapters for several different languages.

• Create a single CTI adapter that supports all languages

With this strategy, the adapter performs a search for the user's language and then adjust the label text accordingly. This method can
take longer to implement, but simplifies maintenance if you need to support adapters for several different languages.

46

Defining Custom SoftPhone LabelsCustomizing Salesforce CRM Call Center

CHAPTER 4 Call Center Definition Files

A call center definition file specifies a set of fields and values that are used to define a call center in Salesforce for a particular CTI system.
Salesforce uses call center definition files in order to support the integration with multiple CTI system vendors.

By default, any CTI adapter installation package includes a default call center definition file that works specifically with that adapter. This
XML file is located in the adapter installation directory and is named after the CTI system that it supports. For example, the Cisco IPCC
Enterprise™ adapter's default call center definition file is named CiscoIPCCEnterprise7x.xml.

The first instance of a call center for a particular CTI adapter must be defined by importing the call center definition file into Salesforce.
Subsequent call centers can be created by cloning the original call center that was created with the import.

If your organization modifies an adapter or builds a new one, you must customize the adapter's call center definition file so that it includes
any additional call center information that is required. For example, if you are building a CTI adapter for a system that supports a backup
server, your call center definition file should include fields for the backup server's IP address and port number. CTI adapters for systems
that do not make use of a backup server do not need those fields in their associated call center definition files.

Note: Once a call center definition file has been imported into Salesforce, the set of fields that were specified in the file cannot
be modified. The values assigned to those fields, however, can be changed within Salesforce.

If you have built a custom CTI adapter you must write a call center definition file to support it. Use a text or XML editor to define an XML
file according to the guidelines in the following topics.

Call Center Definition File XML Format

A call center definition file consists of three XML elements: callCenter, section, and item. The following list provides details
about the properties and attributes of each element:

callCenter
This element represents a definition for a single call center phone system. At least one <callCenter> element must be included
in every call center definition file. A <callCenter> element consists of one or more <section> elements.

section
This element represents a grouping of related data fields, such as server information or dialing prefixes. When a call center is edited
in Salesforce, fields are organized by the section to which they are assigned. A <section> element belongs to a single
<callCenter> element, and consists of one or more <item> elements.

Attributes:

DescriptionRequired?TypeName

The order in which the section should appear when the call center
is edited in Salesforce. For example, a section with

RequiredPositive IntegersortOrder

sortOrder="1" comes just before a section with
sortOrder="2".

The values for sortOrder must be non-negative integers, and
no numbers can be skipped within a single call center definition.
For example, if there are three section elements in a call center
definition file, one <section> element must have
sortOrder="0", one <section> element must have

47

https://help.salesforce.com/articleView?id=cti_admin_importcc.htm&language=en_US#cti_admin_importcc
https://help.salesforce.com/articleView?id=cti_admin_clonecc.htm&language=en_US#cti_admin_clonecc
https://help.salesforce.com/articleView?id=cti_admin_cctemplateoverview.htm&language=en_US#cti_admin_cctemplateoverview

DescriptionRequired?TypeName

sortOrder="1", and one <section> element must have
sortOrder="2".

The internal name of the section as defined in the Salesforce
database. You can use this value to refer to the section when writing
custom adapter or SoftPhone code.

Names must be composed of only alphanumeric characters with
no white space or other punctuation. They are limited to 40
characters each.

RequiredStringname

Names beginning with req are reserved for required Salesforce
sections only (see Required Call Center Elements and Attributes).
Other reserved words that cannot be used for the name attribute
include label, sortOrder, internalNameLabel, and
displayNameLabel.

The name of the section when viewed in Salesforce. Labels can be
composed of any string of UTF-8 characters. They are limited to
1000 characters each.

OptionalStringlabel

item
This element represents a single field in a call center definition, such as the IP address of a primary server or the dialing prefix for
international calls. When call centers are edited in Salesforce, each <item> element is listed under the section to which it belongs.
You can have multiple <item> elements in a <section> element.

Attributes:

DescriptionRequired?TypeName

The order in which the item should appear when the call center is
edited in Salesforce. For example, an item with sortOrder="1"
comes just before an item with sortOrder="2".

The values for sortOrder must be non-negative integers, and
no numbers can be skipped within a single call center definition.

RequiredPositive IntegersortOrder

For example, if there are three item elements in a call center
definition file, one <item> element must have
sortOrder="0", one <item> element must have
sortOrder="1", and one <item> element must have
sortOrder="2".

The internal name of the item as defined in the Salesforce database.
You can use this value to refer to the item when writing custom
adapter or SoftPhone code.

Names must be composed of only alphanumeric characters with
no white space or other punctuation. They are limited to 40
characters each.

RequiredStringname

48

Call Center Definition File XML FormatCall Center Definition Files

https://help.salesforce.com/articleView?id=cti_admin_definexmlccreq.htm&language=en_US#cti_admin_definexmlccreq

DescriptionRequired?TypeName

Names beginning with req are reserved for required Salesforce
sections only (see Required Call Center Elements and Attributes).
Other reserved words that cannot be used for the name attribute
include label, sortOrder, internalNameLabel, and
displayNameLabel.

The name of the item when viewed in Salesforce. Labels can be
composed of any string of UTF-8 characters. They are limited to
1,000 characters each.

OptionalStringlabel

Required Call Center Elements and Attributes

There must be one <section> that includes <item> elements with the following names in every call center definition file:

Description<item> Name

Represents the unique identifier for the call center in the database. It must have a
sortOrder value of 0, and its value must be specified in the call center definition

reqInternalName

(see Specifying Values for <item> Elements). A value for reqInternalName must
be composed of no more than 40 alphanumeric characters with no white space or other
punctuation. It must start with an alphabetic character and must be unique from the
reqInternalName of all other call centers defined in your organization.

Represents the name of the call center as displayed in Salesforce. It must have a
sortOrder value of 1. A value for reqDisplayName has a maximum length of
1,000 UTF-8 characters.

reqDisplayName

Represents a description of the call center. A value for reqDescription has a
maximum length of 1,000 UTF-8 characters.

reqDescription

Represents the Program ID (progId) of the CTI adapter that should be used for this call
center. This value is specified in the default call center definition file that comes bundled
with every CTI adapter installer, or in the base COM class of a custom CTI adapter.

reqProgId

Represents the version of the CTI Toolkit with which the adapter was built. This element
is available for call centers built with CTI Toolkit versions 3.0 or higher.

reqVersion

Represents the location of where the CTI adapter is hosted. For example,
http://localhost:11000. This element is available for call centers built with
CTI Toolkit versions 4.0 or higher.

reqAdapterUrl

Specifying Values for <item> Elements

With the exception of the reqInternalName <item>, whose value must always be specified in a call center definition file, you
can specify <item> values either in the call center definition file or in Salesforce once the definition file has been imported.

49

Required Call Center Elements and AttributesCall Center Definition Files

https://help.salesforce.com/articleView?id=cti_admin_definexmlccreq.htm&language=en_US#cti_admin_definexmlccreq
https://help.salesforce.com/articleView?id=cti_admin_cctemplateoverview.htm&language=en_US#cti_admin_cctemplateoverview
https://help.salesforce.com/articleView?id=cti_admin_definexmlccvalue.htm&language=en_US#cti_admin_definexmlccvalue
https://help.salesforce.com/articleView?id=cti_admin_cctemplateoverview.htm&language=en_US#cti_admin_cctemplateoverview

To specify a value for an <item> element in a call center definition file, place the value between the opening and closing tags of the
<item>. For example:

<item sortOrder="0" name="reqInternalName" label="Call Center Internal
Label">MyCallCenter</item>

sets the value of the reqInternalName <item> to MyCallCenter. Note that any <item> value other than the value for
reqInternalName can be edited in Salesforce after the call center definition is imported.

Sample Call Center Definition File

The following XML code makes up a sample call center definition file:

<!--
All sections and items whose name value begins with "req" are
required in a valid call center definition file. The sortOrder
and label attributes can be changed for all required sections
and items except reqGeneralInfo, reqInternalName, and
reqDisplayName, in which only the label attribute can be altered.

Note that the value for the reqInternalName item is limited to
40 alphanumeric characters and must start with an alphabetic
character. reqInternalName must be unique for all call centers
that you define.

-->

<callCenter>

<section sortOrder="0" name="reqGeneralInfo" label="General Info">
<item sortOrder="0" name="reqInternalName"

label="Internal Name">callCenter001</item>
<item sortOrder="1" name="reqDisplayName"

label="Display Name">My Call Center</item>
<item sortOrder="2" name="reqDescription"

label="Description">Located in San Francisco, CA</item>
<item sortOrder="3" name="reqProgId"

label="CTI Connector ProgId">MyAdapter.MyAdapter.1</item>
<item sortOrder="4" name="reqVersion"

label="Version">4.0</item>
<item sortOrder="5" name="reqAdapterUrl"

label="CTI Adapter URL">http://localhost:11000</item>
</section>

<section sortOrder="1" name="ServerInfo" label="CTI Server Info">
<item sortOrder="0" name="HostA"

label="Host A">Host A</item>
<item sortOrder="1" name="PortA"

label="Port A">Port A</item>
<item sortOrder="2" name="HostB"

label="Host B">Host B</item>
<item sortOrder="3" name="PortB"

label="Port B">Port B</item>
<item sortOrder="4" name="PeripheralID"

label="Peripheral ID">1000</item>

50

Sample Call Center Definition FileCall Center Definition Files

</section>

<section sortOrder="2" name="DialingOptions" label="Dialing Options">
<item sortOrder="0" name="OutsidePrefix"

label="Outside Prefix">1</item>
<item sortOrder="1" name="LongDistPrefix"

label="Long Distance Prefix">9</item>
<item sortOrder="2" name="InternationalPrefix"

label="International Prefix">01</item>
</section>

</callCenter>

51

Sample Call Center Definition FileCall Center Definition Files

CHAPTER 5 Packaging and Publishing a CTI Adapter

Once you have finished updating your CTI connector code, you can package it into a fully functional CTI adapter and publish it on
Force.com AppExchange.

Packaging a CTI Adapter

To package your CTI connector code into a CTI adapter:

1. Update the GetAdapterName() and GetAdapterVersion() methods in your COM base class as appropriate. See Steps
6 and 7 in Adding a COM Base Class to a CTI Connector Project on page 22 for details.

2. Verify that you have specified a valid client key in CTIAppExchange.h. For more information, see Specifying a Valid CTI Client
Key on page 18.

3. Compile the CTI connector into a .dll and test it with the Salesforce CRM Call Center SoftPhone connector.

4. Bundle the required files to create a complete CTI adapter package. While the contents of a CTI adapter code package will vary, all
CTI adapter code packages include the following:

The SoftPhone connector executable (SalesforceCTI.exe)
The SoftPhone connector portion of a SoftPhone CTI adapter. This file comes as a pre-compiled executable with the logo.

Your CTI connector .dll (<your_cti_system_adapter_name>.dll
The .dll component that makes up your customized CTI connector

Any dynamically-linked libraries that are required for the CTI system
Most CTI adapter implementations require additional CTI-system-specific .dll files to enable communication.

The Salesforce Office Toolkit Library (SF_MSApi4.dll)
The .dll component that is required to access the Salesforce Force.com API.

Microsoft XML Library 6 (msxml6.dll and msxml6r.dll)
The .dll files that enable the SoftPhone connector to translate the SoftPhone user interface XML into HTML.

A default call center definition file (<your_cti_system_adapter_name>.xml)
The default call center definition file for a call center that uses your custom adapter. For more information, see Call Center
Definition Files on page 47.

5. Create an installer for the CTI adapter package. To rapidly deploy the adapter to all machines in a call center at once, generate an
.msi file that can be used with your preferred Software Management System.

Selling a CTI Adapter on the AppExchange

You can make your customized CTI adapter publicly available on the AppExchange to let other Salesforce users purchase it for their own
organizations.

For detailed instructions on creating and posting your listing, see the AppExchange Publishing Guide.

52

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/appexchange_publishing_guide.pdf

CHAPTER 6 CTI Adapter Log Files

Every CTI adapter generates two log files in the installation directory of the machine where the adapter is installed:

• cti_adapter.log includes information about the CTI connector component.

• browser_connector.log includes information about the SoftPhone connector component.

In default installations, the installation directory is C:\Program Files\salesforce.com\<adapterName>\, where
<adapterName> is the name of the CTI adapter that was installed (for example, C:\Program
Files\salesforce.com\Cisco IPCC Enterprise Adapter).

The log files document all CTI adapter activity and can be configured to report at three levels of verbosity:

DescriptionLog Level

Error messages onlyErrors Only

Error messages, warnings, and information about significant actions that occur, such as setting a URL
or authenticating a new user

Medium

Note: A warning is any irregular condition that is not fatal. For example, if a call arrives and
there is no available phone line, the code issues a warning and creates a virtual line just for that
call.

Error messages, warnings, information about significant actions that occur, and the complete text of
all method calls that send data into and out of the specified component

High

By default, CTI adapters are installed with the Errors Only log level enabled. If you want to change the log level, right-click the adapter
icon () in the system tray of the call center machine and choose the desired setting.

53

CHAPTER 7 Salesforce CRM Call Center API Reference

The API provides access to information about computer–telephony integration (CTI) call centers with the
describeSoftphoneLayout() call. You must have the CTI feature enabled for your organization. Contact your account
representative for assistance.

The API supports limited access to call center-related objects, including being able to create call centers, and create or modify additional
numbers for the call center.

DescriptionTopic

Call Center object description, including fields and usage.CallCenter

Configuration settings that allow you to add an additional number if it cannot easily be categorized as a
user, contact, lead, account, or any other object. Examples include phone queues or conference rooms.

AdditionalNumber

In addition, several fields have been added to existing objects to support call centers. The following fields provide configuration settings
for operation of a call center.

DescriptionField
Properties

Field TypeField NameObject Name

Represents the result of a given call, for example,
“we'll call back,” or “call unsuccessful.” Limit is
255 characters.

Create
(Task
only)

Filter

stringCallDispositionOpenActivity

ActivityHistory

Task
For the Task object, corresponds to the Salesforce
user interface label Call Result. You can also
create and update values for this field in Task.

Nillable

Update
(Task
only)

Duration of the call in seconds.Create
(Task
only)

Filter

intCallDurationIn
Seconds

OpenActivity

ActivityHistory

Task

For Task, you can also create and update values
for this field.

Nillable

Update
(Task
only)

Name of a call center. Limit is 255 characters.Filter

Nillable

stringCallObjectOpenActivity

ActivityHistory For Task, you can also create and update values
for this field.

54

DescriptionField
Properties

Field TypeField NameObject Name

Update
(Task
only)

Task

The type of call being answered: Inbound,
Internal, or Outbound.

Create
(Task
only)

Filter

picklistCallTypeOpenActivity

ActivityHistory

Task For Task, you can also create and update values
for this field.

Nillable

Restricted
picklist

Update

The unique identifier for the call center
associated with this user.

Create

Filter

referenceCallCenterIdUser

Nillable

Update

Indicates whether a user will be automatically
logged in to a call center when logging in to the
Salesforce application (true) or not (false).

Create

Update

booleanUserPermissionsCall
CenterAutoLogin

User

describeSoftphoneLayout()

Retrieves layout information for a Salesforce CRM Call Center Softphone.

Syntax
DescribeSoftphoneLayoutResult[] = connection.describeSoftphoneLayout();

Usage
Use this call to obtain information about the layout of a Softphone. Use only in the context of Salesforce CRM Call Center; do not call
directly from client programs.

Arguments
This call does not take any objects.

55

describeSoftphoneLayout()Salesforce CRM Call Center API Reference

Response
The response is a DescribeSoftphoneLayoutResult object:

DescriptionTypeName

A set of attributes associated with each allowed call type. A call type may
be Inbound, Outbound, or Internal.

DescribeSoftphoneLayoutCallType[]callTypes

ID of layout. Note that layout objects are not exposed via the API.IDid

Name of the call type: Inbound, Outbound, or Internal.stringname

DescribeSoftphoneLayoutCallType
Each DescribeSoftphoneLayoutResult object contains one or more call types:

DescriptionTypeName

A set of information field in the softphone layout.DescribeSoftphoneLayoutInfoField[]infoFields

Name of the layout.stringname

Settings in the softphone layout that specify how to display screen
pops when the details of calls match or don't match existing
records.

This setting only displays for softphone layouts associated with CTI
2.0 adapters or higher. See “Salesforce CTI Toolkit” in the Salesforce
online help. This field is available in API version 18.0 and later.

DescribeSoftphoneScreenPopOption[]screenPopOptions

Setting in the softphone layout that specify whether to display
screen pops in a new browser window or tab when the details of
calls match or don't match existing records.

This setting only displays for softphone layouts associated with CTI
2.0 adapters or higher. See “Salesforce CTI Toolkit” in the Salesforce
online help. This field is available in API version 18.0 and later.

stringscreenPopsOpenWithin

A set of object names and the corresponding item name in the
softphone layout. There is one section for each object in a call type.

DescribeSoftphoneLayoutSection[]sections

DescribeSoftphoneLayoutInfoField
An information field in the softphone layout.

DescriptionTypeName

The name of an information field in the softphone layout that does not
correspond to a Salesforce object. For example, caller ID may be specified in

stringname

an information field. Information fields hold static information about the call
type.

56

describeSoftphoneLayout()Salesforce CRM Call Center API Reference

DescribeSoftphoneLayoutSection
Each call type returned in a DescribeSoftphoneLayoutResult object contains one section for each call type. Each section contains
object-item pairs:

DescriptionTypeName

The name of an object in the Salesforce application that
corresponds to an item displayed in the softphone layout, for
example, a set of accounts or cases.

stringentityApiName

A set of softphone layout items.DescribeSoftphoneLayoutItem[]items

DescribeSoftphoneLayoutItem
Each layout item corresponds to a record in Salesforce:

DescriptionTypeName

The name of a record in the Salesforce application that corresponds to an item displayed in the
softphone layout, for example, the Acme account.

stringitemApiName

DescribeSoftphoneScreenPopOption
Each call type returned in a DescribeSoftphoneLayoutResult object contains one screenPopOptions field for each call type. Each
screenPopOptions field contains details about screen pop settings:

DescriptionTypeName

Setting on a softphone layout to pop a screen for call details that match a single record, multiple
records, or no records.

stringmatchType

Setting on a softphone layout for a specific object or page to pop for a call's matchType. For
example, pop a specified Visualforce page when the details of a call match a record.

stringscreenPopData

Setting that specifies how to pop a screen for a call's matchType. For example, pop a detail
page or don't pop any page when the details of a call match a record.

picklistscreenPopType

Sample Code—Java
This sample describes the soft phone layout and writes its properties to the console. It then gets the allowed call types. For each call
type, it gets its information fields, layout sections, and the layout items in the layout sections. It writes these values to the console.

public void describeSoftphoneLayout() {
try {
DescribeSoftphoneLayoutResult result =

connection.describeSoftphoneLayout();
System.out.println("ID of retrieved Softphone layout: " +

result.getId());
System.out.println("Name of retrieved Softphone layout: " +

57

describeSoftphoneLayout()Salesforce CRM Call Center API Reference

result.getName());
System.out.println("\nContains following " +

"Call Type Layouts\n");
for (DescribeSoftphoneLayoutCallType type :

result.getCallTypes()) {
System.out.println("Layout for " + type.getName() +

" calls");
System.out.println("\tCall-related fields:");
for (DescribeSoftphoneLayoutInfoField field :

type.getInfoFields()) {
System.out.println("\t\t{" + field.getName());

}
System.out.println("\tDisplayed Objects:");
for (DescribeSoftphoneLayoutSection section :

type.getSections()) {
System.out.println("\t\tFor entity " +

section.getEntityApiName() +
" following records are displayed:"

);
for (DescribeSoftphoneLayoutItem item :

section.getItems()) {
System.out.println("\t\t\t" + item.getItemApiName());

}
}

}
} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample describes the soft phone layout and writes its properties to the console. It then gets the allowed call types. For each call
type, it gets its information fields, layout sections, and the layout items in the layout sections. It writes these values to the console.

/// Demonstrates how to retrieve the layout information
/// for a Salesforce CRM Call Center Softphone
public void DescribeSoftphoneLayoutSample()
{

try
{

DescribeSoftphoneLayoutResult dsplResult = binding.describeSoftphoneLayout();

// Display the ID and Name of the layout
Console.WriteLine("ID of retrieved Softphone layout: {0}", dsplResult.id);
Console.WriteLine("Name of retrieved Softphone layout: {0}", dsplResult.name);

// Display the contents of each Call Type
Console.WriteLine("\nContains following Call Type Layouts\n");
foreach (DescribeSoftphoneLayoutCallType dsplCallType in dsplResult.callTypes)
{

Console.WriteLine("Layout for {0} calls", dsplCallType.name);

58

describeSoftphoneLayout()Salesforce CRM Call Center API Reference

// Display the call-related fields contained in the call type
Console.WriteLine("\tCall-related fields:");
foreach (DescribeSoftphoneLayoutInfoField dsplInfoField

in dsplCallType.infoFields)
{
Console.WriteLine("\t\t{0}", dsplInfoField.name);
}

// Display the objects that are included in the layout
Console.WriteLine("\tDisplayed Objects:");
foreach (DescribeSoftphoneLayoutSection dsplSection

in dsplCallType.sections)
{

Console.WriteLine("\t\tFor entity {0} following records are displayed:",
dsplSection.entityApiName);

foreach (DescribeSoftphoneLayoutItem dsplItem in dsplSection.items)
{

Console.WriteLine("\t\t\t{0}", dsplItem.itemApiName);
}

}
}

}
catch (SoapException e)
{

Console.WriteLine(e.Message);
Console.WriteLine(e.StackTrace);
Console.WriteLine(e.InnerException);

}
}

CallCenter

Represents a call center, which is a logical representation of a single computer-telephony integration (CTI) system instance in an
organization.

Supported Calls
create(), describeSObjects(), getDeleted(), getUpdated(), query(), retrieve()

Special Access Rules
Customer Portal users can't access this object.

Fields

DetailsField

Type
string

AdapterURL

59

CallCenterSalesforce CRM Call Center API Reference

DetailsField

Properties
Create, Filter, Group, Nillable, Sort

Description

An optional field that specifies the location of where the CTI adapter is hosted. For example,
http://localhost:11000.

This field is available for call centers using CTI Toolkit version 4.0 and API version 23.0 or later.

Type
string

CustomSettings

Properties
Create, Filter, Group, Nillable, Sort

Description

Specifies settings in the call center definition file, such as whether the call center uses the
Open CTI, and SoftPhone properties, such as height in pixels.

This field is available for Open CTI and in API version 25.0 or later.

Type
ID

Id

Properties
Defaulted on create, Filter

Description
System field that uniquely identifies this call center. Label is Call Center ID. This ID is created
automatically when the call center is created.

Type
string

InternalName

Properties
Create, Filter, Group, Sort

Description

The internal name of the call center.

Limit is 80 characters.

Type
string

Name

Properties
Create, Filter, Group, Sort

Description

The name of the call center.

Limit is 80 characters.

60

CallCenterSalesforce CRM Call Center API Reference

DetailsField

Type
double

Version

Properties
Create, Filter, Nillable, Sort

Description
The version of the CTI Developer's Toolkit used to create the call center (for versions 2.0 and
later).

This field is available in API version 18.0 and later.

Usage
Create a call center or query an existing call center.

AdditionalNumber

Represents an optional additional number for a call center. This additional number is visible in the call center's phone directory.

Supported Calls
create(), delete(), describeSObjects(), getDeleted(), getUpdated(), query(), retrieve(),
undelete(), update(), upsert()

Special Access Rules
Customer Portal users can't access this object.

Fields

DetailsField

Type
reference

CallCenterId

Properties
Create, Filter, Group, Nillable, Sort, Update

Description
System field that contains the ID of the user who created the call center associated with this
additional number. If value is null, this additional number is displayed in every call center's
phone directory.

Type
string

Description

61

AdditionalNumberSalesforce CRM Call Center API Reference

DetailsField

Properties
Create, Filter, Group, Nillable, Sort, Update

Description
Description of the additional number, such as Conference Room B.

Limit: 255 characters.

Type
string

Name

Properties
Create, Filter, Group, Sort, Update

Description
The name of the additional number.

Limit: 80 characters.

Type
phone

Phone

Properties
Create, Filter, Nillable, Group, Sort, Update

Description
The phone number that corresponds to this additional number.

Usage
Create an additional number for a call center directory. Use this object if the number is not easily categorized as a User, Contact, Lead,
Account, or the other object. Examples include phone queues or conference rooms.

62

AdditionalNumberSalesforce CRM Call Center API Reference

FREQUENTLY ASKED QUESTIONS

Review the following frequently asked questions about the CTI Toolkit.

Q: What is the difference between Salesforce CRM Call Center and the
CTI Toolkit?

Salesforce CRM Call Center is an “edition” of Salesforce in the mold of Force.com Connect for Microsoft Outlook or Connect Offline.
Salesforce does not charge for this edition, and it can be enabled in Developer Edition, Group Edition, Professional Edition, Enterprise
Edition, Unlimited Edition, and Performance Edition.

The CTI Toolkit is a body of C++ code that allows partners to integrate telephony systems with Salesforce using Salesforce CRM Call
Center. It creates a client-side application that resides in the Windows system tray and abstracts access to the SOAP API.

Salesforce is not selling any CTI adapters for any phone systems. Instead, Salesforce is providing the CTI Toolkit to its partners so that
they can develop Salesforce CRM Call Center integrations with a consistent user interface.

Q: Why does Salesforce CRM Call Center involve a client-side
application? Isn't Salesforce the “No Software” company?

Salesforce continues to be the “No Software” company, except in those cases when it is necessary to integrate with a service that sits
behind a firewall. In such situations, Salesforce provides small pieces of software to perform that integration. Other examples of Salesforce
software include Connect for Office and Connect for Outlook.

Q: Does the CTI adapter support multiple telephone lines?

Yes. The Salesforce CTI adapter supports multiple fixed lines and multiple calls for the same line, for which it creates “virtual” lines that
disappear after the call has ended. In total, the adapter supports up to five fixed or virtual lines at once.

Q: Is it possible to have multiple CTI adapters working in parallel against
the same switch?

This is possible for the vast majority of switches, though some switches restrict the same agent from logging in to more than one CTI
adapter at the same time.

Q: Does a CTI adapter require any investment or changes to a switch?

This depends on your organization's needs.

There are two types of CTI adapters: those that integrate with a public-branch exchange (PBX), and those that integrate with an automatic
call distributer (ACD).

63

• Those that integrate with a PBX do not have a notion of agent presence, and do not receive any data attached to a call. This means
that a call center user cannot specify whether he or she is ready to receive calls. Instead, the adapter will simply display a new call
whenever the phone rings. Additionally, PBX-level integrations cannot generate screen pops based on interactive voice response
(IVR) data, such as when a caller enters an account number before being connected to a user. PBX-level integrations typically can
only generate screen pops based on the incoming caller ID (the automatic number identification, or ANI).

• Those that integrate with an ACD allow call center users to specify whether they are ready to take calls and can receive data attached
to calls, such as an account number.

If your organization has a PBX system but wants ACD integration, you must buy an ACD system.

Additionally, some Salesforce partners provide a middleware server that sits between the telephony system and the call center user and
normalized the messages passing between the two. If your organization chooses a partner such as this, you must install the partner's
middleware.

Q: Does Salesforce CRM Call Center require VoIP?

No, Salesforce CRM Call Center can work with regular telephone service switches, as long as they have a CTI server attached to them.

Q: Why was the CTI Toolkit written in C++ instead of .NET or Java?

Salesforce used C++ because many CTI vendor C++ toolkits are more robust and mature than their .NET and Java counterparts. In the
CTI world, .NET and Java are still considered new technologies, and support for those managed languages for many vendors arrived only
in the last year.

Although .NET does integrate well with C++/COM applications, some Salesforce customers expressed concern about installing the 30Mb
.NET framework on all agent desktops. This issue is less of a concern with Windows Vista, which has .NET built in.

Q: How long does it usually take for a partner to write a custom CTI
adapter?

Salesforce generally estimates that it should take three to six weeks of development time and three to six weeks of testing time to write
a new CTI adapter.

Q: Is there a list of the telephony platforms that are currently covered?

Yes. Please contact your Salesforce representative to learn about the commitments that have already been made by other partners.

Q: How can I demo a CTI adapter?

Salesforce has provided a “demo adapter” that does not require any phone system behind it, but that can simulate incoming and outgoing
calls. See The Demo Adapter on page 11 for information.

64

Q: Does Salesforce CRM Call Center require VoIP?Frequently Asked Questions

Q: If I'm using a machine that has multiple CTI connector .dll files
installed, how does the SoftPhone connector know which CTI connector
to use when I log in to Salesforce?

Multiple CTI connector .dll files can coexist on the same machine because every CTI connector is uniquely identified by its ProgId, a
value specified in the CTI connector's base COM class. Similarly, every call center definition includes the ProgId of the CTI connector
that works with the call center.

When a call center user logs in to Salesforce, the SoftPhone connector accesses the ProgId in the user's associated call center definition
and uses the matching CTI connector .dll for the duration of the user's session.

Q: I'm seeing 'L' prefixes in front of all the string and character literals
in the CTI Toolkit code. Why are these present?

The 'L' prefix indicates that the string will be stored as an array of “wide” (2-byte) characters, which are necessary to support Unicode
character encoding. Salesforce enforces the use of this prefix on all string values to support localization. For more information, see The
'L' Literal String and Character Prefix on page 16.

Q: My SoftPhone is not behaving the way that I expect it to. How can
I troubleshoot it?

If you are experiencing difficulties with a SoftPhone:

• Verify that you are running Internet Explorer version 7, 8, or 9 or Firefox version 3.5, 3.6, or 4 (Safari and Chrome are not supported).

• Try logging out of Salesforce and then logging back in.

• Try stopping and restarting your CTI adapter:

1. Right-click the CTI adapter system tray icon () in the lower-right corner of your computer screen and select Exit.

2. From your machine's Start menu, choose Programs > Salesforce > <Your_CTI_Adapter_Name> > Salesforce CTI Adapter.

If you are still experiencing difficulties, examine the CTI adapter log files for more information. For information, see CTI Adapter Log Files
on page 53.

65

Q: If I'm using a machine that has multiple CTI connector .dll
files installed, how does the SoftPhone connector know which

CTI connector to use when I log in to Salesforce?

Frequently Asked Questions

GLOSSARY

Agent
A Salesforce CRM Call Center user who handles inbound or outbound calls. An agent is usually identified by a four-digit number that
serves as the agent's ID within the associated computer telephony integration (CTI) system.

Automatic Number Identification (ANI)
The number from which a caller is dialing in Salesforce CRM Call Center.

Call
Any inbound, outbound, consult, or internal voice connection via telephone.

Salesforce CRM Call Center
A Salesforce feature that seamlessly integrates Salesforce with third-party computer-telephony integration (CTI) systems. For more
information, see “Salesforce Call Center” in the Salesforce online help.

Computer-Telephony Integration (CTI)
The linkage between a telephone system and a computer that facilitates incoming- and outgoing-call handling and control.

Consult Call
A call that results from a Salesforce CRM Call Center user initiating a conference or transfer.

CTI Adapter
A lightweight software program that controls the appearance and behavior of a Salesforce softphone. The adapter acts as an
intermediary between a third-party computer telephony integration (CTI) system, Salesforce, and a Salesforce CRM Call Center user.
It must be installed on any machine that needs access to Salesforce CRM Call Center functionality..

CTI Connector
A component of a computer telephony integration (CTI) adapter that maintains an in-memory representation of a Salesforce CRM
Call Center user's softphone, including the phone numbers, records, and status associated with a call. The CTI connector is the
component of a CTI adapter that can be customized by an organization.

CTI System
The hardware and software that implements computer-telephony integration (CTI) for a particular call center.

Dial-Tone Multi-Frequency (DTMF)
The system that informs a switch of the number that is being pressed by a caller in Salesforce CRM Call Center.

Dialed Number Identification Service (DNIS)
The number a caller dialed in Salesforce CRM Call Center.

Directory Number (DN)
Any internal number that is configured on a public branch exchange. You can define additional directory numbers through the
Salesforce CRM Call Center setup within Salesforce.

Event
A message broadcast from a CTI system that alerts any registered listeners that an action has taken place in the phone system. For
example, when a user's telephone rings, a CTI system broadcasts a “RINGING” event. A CTI adapter, the Salesforce CRM Call Center
component that acts as a listener, receives this event and updates the SoftPhone as appropriate.

Event Sink
An object in a computer telephony integration (CTI) connector that receives CTI system events and routes them to other methods
for processing.

66

Inbound Call
A call that originates from another party in Salesforce CRM Call Center.

Interactive Voice Response (IVR)
The hardware and software that prompts a Salesforce CRM Call Center caller to enter specific digits, such as a menu selection, or an
account number. IVR is also known as a Voice Response Unit (VRU).

Internal Call
A call between users in the same call center in Salesforce CRM Call Center.

Outbound Call
Any call that originates from a user to a number outside of a call center in Salesforce CRM Call Center.

Private Branch Exchange (PBX)
A telephony switch that is used exclusively by a single call center to route calls in Salesforce CRM Call Center.

Queue
A mechanism for storing one or more inbound calls that cannot be immediately answered by a Salesforce CRM Call Center user.
Some CTI systems use multiple queues to differentiate between different types of calls.

Routing Point
A mechanism that determines the Salesforce CRM Call Center queue that should control an incoming call.

SoftPhone
The telephone interface that a Salesforce CRM Call Center user sees in either the sidebar of pages in Salesforce Classic or the footer
of pages in Lightning Experience and the Salesforce console.

SoftPhone Connector
A component of a CTI adapter that converts SoftPhone XML into HTML and distributes it to a call center user's browser.

Voice Response Unit (VRU)
See Interactive Voice Response (IVR).

67

Glossary

INDEX

'L' prefix on string literals[L prefix on string literals] 16

A
Adapters

See CTI adapters 2
AdditionalNumber object 61
Agent states

adding 41
displaying 40
mapping 39

AgentStateToString method 39
ANI search 44
API 54
AppExchange

publishing CTI adapters 52
Attached data search 44–45

B
Blind transfers and conferences 34
browser_connector.log 53
Buttons, SoftPhone

enabling 34

C
Call center definition files

default 10
Call center states

adding 41
displaying 40
mapping 39

Call centers
associating with an adapter 63
ProgID 63

Call centers and the API 54
Call information field labels 46
Call information fields 42
Call information, displaying 42
Call logs

customizing 45
CallCenter object 59
CallInitiateConference method 34
CallInitiateTransfer method 34
Calls

describeSoftphoneLayout() 55
CCTISearch 13

CCTIUserInterface
event handlers 6
method names 17
SetInfoFieldLabel() method 46
SoftPhone command routing 6

CCTIUserInterface class
adding a call information field 42
adding a custom logo 42
adding buttons 36
adding call center states 41
button layout 35
CallInitiateConference method 34
CallInitiateTransfer method 34
CreateLoginForm method 31
CTIChangeAgentState() method 41
CTIIsOccupiedAgentState() method 41
CTILogin method 31, 33
customizing 28
customizing call logs 45
displaying call center states 40
displaying call information 42
displaying call-related records 43
enabling buttons 34
enabling reason codes 37–38
implementing an event sink 25
implementing call center user commands 29
Initialize method 31
Initialize() method 41
mapping call center states 39
non-required subclass commands 30
OnCallDialing event handler 26
OnCallRinging event handler 26
required subclass commands 29
SetOneStepConferenceEnabled method 34
SetOneStepTransferEnabled method 34
subclassing 24
UIAddAgentState() method 41
UIHandleMessage method 29
UIParseIncomingXMLMessage method 29
Virtual keyword 28

Client keys 18
COM base classes 22
Command messages

implementing 29
Command routing 6
Conferences 34

68

Constants 16
CreateLoginForm method, CCTIUserInterface 31
CTI adapters

about 5
associating with a call center 63
building a CTI connector project 20
building new CTI connectors 20
code package contents 10
CTI connectors 5
customizing 19
demo adapter 11–12
displaying call information 42
log files 53
packaging 52
ProgID 63
registering with CTI systems 7
selling on the AppExchange 52
setting up a new CTI connector project 20
SoftPhone connectors 6
system requirements 2

CTI client keys 18
CTI connector

source code 10
CTI connectors

adding a COM base class 22
building a project 20
building new 20
CCTIUserInterface commands 29–30
classes 13
Commands, call center user 29
customizing 19
event sinks 25–26
processing CTI system events 6
ProgID 22
setting up a new project 20
SoftPhone command routing 6
subclassing CCTIUserInterface 24

CTI systems
registering adapters 7

CTI toolkit 9
CTI Toolkit Developer's Guide

about 1
cti_adapter.log 53
CTIChangeAgentState() method 41
CTIConstants.h 16
CTIIsOccupiedAgentState() method 41
CTILogin method, CCTIUserInterface 31, 33
Custom SoftPhone labels 46

D
Database

Salesforce 7
Demo adapter

customizing 12
setting up 11
using 12

describeSoftphoneLayout() call 55
Documentation

about 2

E
Event sinks

OnCallRinging event handler 26
required event handlers 25

Event sinks, CTI connector 13

F
Frequently asked questions 63

G
GetAdapterName() method 22
GetAdapterVersion() method 22
Glossary 66

I
Initialize method, CCTIUserInterface 31
Initialize() method 41

L
Layout, SoftPhone

buttons 35
Localizing SoftPhones 46
Log files 53
Logos, custom SoftPhone 42
Logout reason codes, enabling 37
Logs, call

customizing 45

M
Messages

call center user command 29
Mute transfers and conferences 34

N
Not-ready reason codes, enabling 37

69

Index

O
Objects

AdditionalNumber 61
CallCenter 59

Office Toolkit library 10
OnAgentStateChange method 39
OnAgentStateEnablementChange() method 40
OnButtonEnablementChange method 34
OnCallDialing event handler, CCTIUserInterface 26
OnCallRinging event handler, CCTIUserInterface 26, 42, 44, 46
One-step transfers and conferences 34

P
PARAM_MAPs 26
ProgID 22, 63

R
Reason codes, enabling 37–38

S
Salesforce database 7
Search, modifying 43–45
SendUIRefreshEvent() method 22
SetAgentStateEnablement() method 40
SetInfoFieldLabel() method 46
SetLogoutReasonCodes method 37
SetLogoutReasonRequired method 37
SetNotReadyReasonCodes method 37
SetNotReadyReasonRequired method 37
SetOneStepConferenceEnabled method 34
SetOneStepTransferEnabled method 34
SetWrapUpReasonCodes method 37
Single-step transfers and conferences 34
SoftPhone

adding buttons 36
displaying call-related records 43
enabling buttons 34

SoftPhone connectors
executable 10
processing CTI system events 6

SoftPhone connectors (continued)
SoftPhone command routing 6

SoftPhone layouts
buttons 35

SoftPhones
adding a custom logo 42
custom labels 46
customizing 28
translating labels 46
troubleshooting 63

SOQL 7
SOSL 7
String literals and the 'L' prefix 16
System architecture 4
System events 6
System requirements 2

T
Transfers 34
Translating SoftPhone labels 46
Troubleshooting tips 63

U
UIAction() method 6, 22
UIAddAgentState() method 41
UIAddButtonToAllLines method 36
UIHandleMessage method 29
UIHandleMessage() method 6
UIParseIncomingXMLMessage method 29
UIRefresh event 5–6
User states

adding 41
displaying 40
mapping 39

V
Virtual keyword 28

W
Wrap-up reason codes, enabling 37

70

Index

	Introduction to Salesforce CRM Call Center
	About This Guide
	About Salesforce CRM Call Center Documentation
	System Requirements

	System Architecture
	About CTI Systems
	About CTI Adapters
	About CTI Connectors
	About SoftPhone Connectors
	Processing Events from a CTI System
	Processing Commands from a SoftPhone
	Registering a CTI adapter with a CTI System

	About Salesforce
	About SoftPhones

	The Salesforce CTI Toolkit
	Contents of the CTI Toolkit Code Package
	The Demo Adapter
	Setting Up the Demo Adapter
	Using the Demo Adapter
	Customizing the Demo Adapter

	CTI Connector Classes
	Best Practices for Coding with the CTI Toolkit
	The CTIConstants.h File
	The 'L' Literal String and Character Prefix
	Method Name in CCTIUserInterface
	Specifying a Valid CTI Client Key

	Customizing Salesforce CRM Call Center
	Customizing a CTI Connector
	Building a New CTI Connector
	Setting Up a New CTI Connector Project
	Building a CTI Connector Project in Visual Studio
	Adding a COM Base Class to a CTI Connector Project
	Instantiating a CCTIUserInterface Subclass

	Writing an Event Sink
	Determining the CTI System Events that Require an Event Sink Handler
	Writing an Event Sink Handler

	SoftPhone Modification Options
	Using the Virtual Keyword in Your CCTIUserInterface .h File
	Implementing Call Center User Command Messages
	Commands That Require Implementation in a CCTIUserInterface Subclass
	Commands That Do Not Require Implementation in a CCTIUserInterface Subclass

	Writing the Initialize Method for CCTIUserInterface
	Enabling Call Center User Login
	CreateLoginForm() Method
	CTILogin() Method

	Enabling One-Step Transfers and Conferences
	Enabling a Set of Buttons
	Changing the Display Order of SoftPhone Buttons
	Adding a Button
	Enabling Reason Codes
	Enabling Wrap-Up Reason Codes
	Enabling Not-Ready Reason Codes
	Enabling Logout Reason Codes
	Example: Enabling Wrap-Up, Not-Ready, and Logout Reason Codes

	Mapping CTI System Agent States toSalesforce CRM Call Center User States
	Displaying Salesforce CRM Call Center User States
	Adding a New Salesforce CRM Call Center User State
	Adding a Custom Logo
	Modifying Displayed Call Information
	Adding a Call Information Field
	Displaying Call-Related Records
	Handling Attached Data
	Examples of Attached Data Search Queries
	Handling Automatic Number Identification (ANI) Search
	Overriding Default Search Behavior

	Customizing Automatically-Generated Call Logs
	Associating Call Logs with Multiple Records

	Defining Custom SoftPhone Labels
	Translating Custom SoftPhone Labels

	Call Center Definition Files
	Call Center Definition File XML Format
	Required Call Center Elements and Attributes
	Specifying Values for <item> Elements
	Sample Call Center Definition File

	Packaging and Publishing a CTI Adapter
	Packaging a CTI Adapter
	Selling a CTI Adapter on the AppExchange

	CTI Adapter Log Files
	Salesforce CRM Call Center API Reference
	describeSoftphoneLayout()
	CallCenter
	AdditionalNumber

	Frequently Asked Questions
	Q: What is the difference between Salesforce CRM Call Center and the CTI Toolkit?
	Q: Why does Salesforce CRM Call Center involve a client-side application? Isn't Salesforce the “No Software” company?
	Q: Does the CTI adapter support multiple telephone lines?
	Q: Is it possible to have multiple CTI adapters working in parallel against the same switch?
	Q: Does a CTI adapter require any investment or changes to a switch?
	Q: Does Salesforce CRM Call Center require VoIP?
	Q: Why was the CTI Toolkit written in C++ instead of .NET or Java?
	Q: How long does it usually take for a partner to write a custom CTI adapter?
	Q: Is there a list of the telephony platforms that are currently covered?
	Q: How can I demo a CTI adapter?
	Q: If I'm using a machine that has multiple CTI connector .dll files installed, how does the SoftPhone connector know which CTI connector to use when I log in to Salesforce?
	Q: I'm seeing 'L' prefixes in front of all the string and character literals in the CTI Toolkit code. Why are these present?
	Q: My SoftPhone is not behaving the way that I expect it to. How can I troubleshoot it?

	Glossary
	Index

