C1sco SYSTEMS

Cisco ICM Software CTI OS
Developer’'s Guide
ICM Software Version 4.6

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

Customer Order Number:
Text Part Number: OL-1392-01

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT
NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT
ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR
THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION
PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO
LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as
part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE
PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL
DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR
INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

AccessPath, AtmDirector, Browse with Me, CCIP, CCSI, CD-PAC, CiscoLink, the Cisco Powered Network logo, Cisco Systems Networking
Academy, the Cisco Systems Networking Academy logo, Fast Step, Follow Me Browsing, FormShare, FrameShare, GigaStack, IGX, Internet
Quotient, IP/VC, iQ Breakthrough, iQ Expertise, iQ FastTrack, the iQ Logo, iQ Net Readiness Scorecard, MGX, the Networkers logo, Packet,
RateMUX, ScriptBuilder, ScriptShare, SlideCast, SMARTnet, TransPath, Unity, Voice LAN, Wavelength Router, and WebViewer are trademarks
of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, Discover All That’s Possible, and Empowering the Internet Generation,
are service marks of Cisco Systems, Inc.; and Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCNA, CCNP, Cisco, the Cisco Certified
Internetwork Expert logo, Cisco IOS, the Cisco IOS logo, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Enterprise/Solver,
EtherChannel, EtherSwitch, FastHub, FastSwitch, I0S, IP/TV, LightStream, MICA, Network Registrar, PIX, Post-Routing, Pre-Routing, Registrar,
StrataView Plus, Stratm, SwitchProbe, TeleRouter, and VCO are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and
certain other countries.

All other trademarks mentioned in this document or Web site are the property of their respective owners. The use of the word partner does not imply
a partnership relationship between Cisco and any other company. (0106R)

Cisco ICM Software CTI OS Developer’s Guide
Copyright © 2001, Cisco Systems, Inc.
All rights reserved.

cHAPTER 1

, A
oo a8

About This Guide xxv

Purpose xxv

Audience xxv
Conventions xxv
Organization xxvi
Other Publications xxvii

Obtaining Documentation xxvii
World Wide Web xxvii
Documentation CD-ROM xxviii
Ordering Documentation xxviii
Documentation Feedback xxviii

Obtaining Technical Assistance xxix
Cisco.com xxix
Technical Assistance Center xxix
Contacting TAC by Using the Cisco TAC Website xxx
Contacting TAC by Telephone xxx

Introduction 1-1
Overview 1-2
Extensibility and Ease of Use 1-5
Accessing Properties with GetValue 1-7
GetElement 1-9
Property Names and Enumerated Constants 1-9
Property Attributes 1-9

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Bl Contents

Platform Issues 1-11

Accessing Call and ECC Variables 1-12
Handling Errors 1-13

Event Driven Model 1-14

Event Cascade Model 1-15

Event Publication Model 1-16
Subscribing to an Event Interface 1-16
Special Values 1-16

Start Up, Connect, Snapshot 1-16

CHAPTER 2 CTI OS Client Interface Library Architecture 2-1

Object Interface Framework 2-1

Session Object 2-2

Session Manager 2-3

Session Behavior 2-3
Connection 2-3
Connection Failure and Recovery 2-3
Session Modes 2-3

Object Manager and Event Passing 2-4

Creating Objects 2-5
Call Object Lifetime 2-5
Agent Object Lifetime 2-6
SkillGroup Object Lifetime 2-6
Object Factory 2-6

Event Publisher 2-7
Exposed Interfaces 2-7
Adding and Removing Subscribers 2-7
Event Distribution 2-7

Service Layer 2-8

r Cisco ICM Software CTI 0S Developer's Guide

0L-1392-01 |

Contents W

Connection Layer 2-8
Multithreaded CTI OS Client Application 2-8
Support for Multithreaded Client in CIL 2-9
Wait Object 2-9

Properties 2-10

Methods 2-10

Usage at the Client 2-11
Multithreaded Application Example 2-12
Subclassing 2-14

cuaprTER 3 Handling Events 3-1

Handling Events in C++ 3-2

Creating a Subscriber Object Class 3-2

Registering a C++ Subscriber Object 3-4
Input Parameters 3-4
Return Value 3-4
Example 3-5

Unregistering Subscriber 3-5
Input Parameters 3-5
Return Value 3-6
Example 3-6

Handling Events in COM 3-6
Automation Based Applications 3-7
ATL, MFC and COM SDK Based Applications 3-7

cHAPTER 4 Session Object 4-1
Working With CTI OS Objects 4-2

Methods 4-4
Connect 4-5

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .n

Bl Contents

Syntax 4-5
Input Parameters 4-5
Return Values 4-6
Examples 4-7
Disconnect 4-8
Syntax 4-8
Parameters 4-8
Return Values 4-9
Examples 4-9
GetPropertyAttribute 4-9
Syntax 4-12
GetValue 4-12
Syntax 4-12
isAgentMode 4-12
Syntax 4-12
Parameters 4-13
Return Values 4-13
Examples 4-13
isSupervisorMode 4-14
Syntax 4-14
Parameters 4-14
Return Values 4-14
Examples 4-15
MakeRequest 4-15
Syntax 4-15

Input Parameters 4-16

Return Values 4-16
Examples 4-16
OnEvent (C++ Only) 4-18
Syntax 4-18

r Cisco ICM Software CTI 0S Developer's Guide

0L-1392-01 |

Input Parameters 4-18
Return Values 4-18
RequestDesktopSettings 4-18

Syntax 4-19
SetAgent 4-19

Syntax 4-19

Input Parameters 4-19

Return Values 4-20

Examples 4-20
SetCurrentCall 4-21

Syntax 4-21

Input Parameters 4-21

Return Values 4-22

Examples 4-22
SetMessageFilter 4-23

Operator 4-23

Expression 4-24

Keyword 4-24

Value 4-25

Syntax 4-25

Input Parameters 4-25

Return Values 4-26

Examples 4-26

ISessionEvents Interface 4-27

OnConnection 4-27
OnConnectionFailure 4-28
OnHeartbeat 4-28
OnMissingHeartbeat 4-28

OnMonitorModeEstablished 4-29

OnConnectionClosed 4-29

[oL-1392-01

Contents W

Cisco ICM Software CTI 0S Developer's Guide g

Bl Contents

OnConnectionRejected 4-30
OnSetAgentModeEvent 4-30
OnCurrentCallChanged 4-30
OnCurrentAgentReset 4-30

CHAPTER B Agent Object 5-1

Methods 5-1
AgentTeamlList 5-3
Syntax 5-3
Parameters 5-3
Return Values 5-3
Examples 5-4
BadCallLine 5-5
Syntax 5-5
Parameters 5-5
Return Values 5-5
Examples 5-6
Emergency 5-6
Syntax 5-7
Parameters 5-7
Return Values 5-7
Examples 5-7
EnableAgentStatistics/DisableAgentStatistics 5-8
Syntax 5-8
Parameters 5-9
Return Values 5-9
Examples 5-9
GetAgentState 5-10
Syntax 5-10
Output Parameters 5-10

Cisco ICM Software CTI 0S Developer's Guide
m. 0L-1392-01 |

Return Values 5-11

Examples 5-11
GetElement 5-12
GetMonitoredAgent 5-12

Syntax 5-12

Output Parameters 5-12

Return Values 5-13

Examples 5-13
GetMonitoredCall 5-14

Syntax 5-14

Output Parameters 5-14

Return Values 5-14

Examples 5-15
GetPropertyAttribute 5-16

Syntax 5-16
GetSkillGroups 5-21

Syntax 5-21

Example 5-21
GetValue 5-21

Syntax 5-22
Login 5-22

Syntax 5-22

Input Parameters 5-22

Return Values 5-23

Examples 5-23
Logout 5-24

Syntax 5-24

Input Parameters 5-25

Return Values 5-25

Examples 5-25

[oL-1392-01

Contents W

Cisco ICM Software CTI 0S Developer's Guide g

Bl Contents

MakeCall 5-26
Syntax 5-28
Input Parameters 5-28
Return Values 5-28
Examples 5-29
MonitorAgentTeam 5-30
Syntax 5-30
Input Parameters 5-30
Return Values 5-30
Examples 5-31
MonitorAgentTeamAll 5-31
Syntax 5-31
Input Parameters 5-32
Return Values 5-32
Examples 5-32
OnEvent (C++ Only) 5-33
Syntax 5-33
Input Parameters 5-33
Return Values 5-33
Examples 5-33

SendUserMessage/SendChatMessage 5-34

Syntax 5-34

Input Parameters 5-35

Return Values 5-35

Examples 5-35
SetAgentState 5-36

Syntax 5-36

Input Parameters 5-37

Return Values 5-37

Examples 5-37

r Cisco ICM Software CTI 0S Developer's Guide

0L-1392-01 |

SetMonitoredAgent 5-38
Syntax 5-38
Input Parameters 5-38
Return Values 5-39
Examples 5-39
SetMonitoredCall 5-40
Syntax 5-40
Input Parameters 5-40
Return Values 5-40
Examples 5-41
SetValue 5-41
Syntax 5-41
Example 5-42
SuperviseCall 5-42
Syntax 5-42
Input Parameters 5-42
Return Values 5-43
Examples 5-43
SupervisorAssist 5-44
Syntax 5-44
Parameters 5-44
Return Values 5-44
Examples 5-45

|AgentEvents Interface 5-45
OnAgentStateChange 5-46
OnAgentStatistics 5-47
OnUserMessage 5-47

cHAPTER 6 Call Obiect 6-1
Active Call 6-1

Contents W

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .“

Bl Contents

Methods 6-2
Alternate 6-3
Syntax 6-3

Parameters 6-3
Return Values 6-4
Examples 6-4
Answer 6-5
Syntax 6-5
Parameters 6-5
Return Values 6-5
Examples 6-6
Clear 6-6
Syntax 6-7
Parameters 6-7
Return Values 6-7
Examples 6-7
ClearConnection 6-8
Syntax 6-8
Parameters 6-8
Return Values 6-9
Examples 6-9
Conference 6-10
Syntax 6-10
Input Parameters 6-11
Return Values 6-11
Examples 6-11
Deflect 6-12
Syntax 6-12
Input Parameters 6-13
Return Values 6-13

Cisco ICM Software CTI OS Developer’'s Guide
“. 0L-1392-01 |

Contents W

Examples 6-13
GetElement 6-14

Syntax 6-14
GetPropertyAttribute 6-14

Syntax 6-16
GetValue 6-16

Syntax 6-16

Example 6-17
Hold 6-17

Syntax 6-17

Parameters 6-17

Return Values 6-18

Examples 6-18
MakeConsultCall 6-19

Syntax 6-20

Input Parameters 6-20

Return Values 6-21

Examples 6-21
OnEvent (C++ Only) 6-22

Syntax 6-22

Input Parameters 6-22

Return Values 6-23

Examples 6-23
Reconnect 6-23

Syntax 6-23

Parameters 6-24

Return Values 6-24

Examples 6-24
Record 6-25

Syntax 6-25

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Bl Contents

Input Parameters 6-25

Return Values 6-26

Examples 6-26
Retrieve 6-27

Syntax 6-27

Parameters 6-27

Return Values 6-28

Examples 6-28
SendDTMFSignal 6-29

Syntax 6-29

Input Parameters 6-29

Return Values 6-30

Examples 6-30
SetCallData 6-31

Syntax 6-31

Input Parameters 6-32

Return Values 6-32

Examples 6-32
SingleStepConference 6-34

Syntax 6-34

Input Parameters 6-34

Return Values 6-34

Examples 6-35
SingleStepTransfer 6-36

Syntax 6-36

Input Parameters 6-36

Return Values 6-36

Examples 6-37
Snapshot 6-38

Syntax 6-38

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

Parameters 6-38

Return Values 6-38

Examples 6-39
Transfer 6-40

Syntax 6-40

Input Parameters 6-40

Return Values 6-41

Examples 6-41

ICallEvents Interface 6-42

OnCallBegin 6-42

OnCallEnd 6-44
OnCallDataUpdate 6-45
OnCallDelivered 6-46
OnCallEstablished 6-48
OnCallHeld 6-51
OnCallRetrieved 6-52
OnCallCleared 6-53
OnCallConnectionCleared 6-53
OnCallOriginated 6-54
OnCallFailed 6-56
OnCallTransferConferencelnitiated 6-57
OnCallTransferred 6-57
OnCallConferenced 6-59
OnCallDiverted 6-61
OnTranslationRoute 6-62
OnCallEnterpriseAgent 6-63
OnCallPreEventAbort 6-65
OnCallRequestFailed 6-65
OnAgentPrecallEvent 6-65
OnAgentPrecallAbortEvent 6-67

[oL-1392-01

Contents W

Cisco ICM Software CTI 0S Developer's Guide g

Bl Contents

OnCallServicelnitiatedEvent 6-67
OnCallQueuedEvent 6-68
OnCallDequeuedEvent 6-70
OnCallReachedNetworkEvent 6-71
OnControlFailureConf 6-72
OnSnapshotCallConf 6-72
OnServicelnitiated 6-73

CHAPTER 7 SkillGroup Object 7-1

Methods 7-2
EnableSkillGroupStatistics/DisableSkillGroupStatistics 7-2
Syntax 7-2
Parameters 7-3
Return Values 7-3
Examples 7-3
GetPropertyAttribute 7-4
Syntax 7-22
Example 7-23
GetValue 7-23
Syntax 7-23
Example 7-23
OnEvent 7-24
Syntax 7-24

SkillGroupEvents Interface 7-24
OnSkillGroupStatisticsUpdated 7-24

cHAPTER 8 Helper Classes 8-1
Arg Class 8-2
Createlnstance 8-3
Syntax 8-3

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

Parameters 8-4

Return Values 8-4

Examples 8-4
SetValue 8-5

Syntax 8-5

Input Parameters 8-6

Return Values 8-7

Examples 8-7
GetValueType 8-9

Syntax 8-9

Output Parameters 8-9

Return Values 8-10

Examples 8-11
Clone 8-12

Syntax 8-12

Output Parameters 8-13

Return Values 8-13

Examples 8-13
GetType 8-14

Syntax 8-14

Output Parameters 8-15

Return Values 8-15

Examples 8-15
GetClassiD 8-17

Syntax 8-17

Output Parameters 8-17

Return Values 8-17

Examples 8-17

Arguments Class 8-19

Addltem 8-20

[oL-1392-01

Contents W

Cisco ICM Software CTI 0S Developer's Guide g

Bl Contents

Syntax 8-21
Parameters 8-21
Returns 8-21
Clear 8-21
Syntax 8-21
Parameters 8-21
Clone 8-21
Syntax 8-21
Parameters 8-22
Returns 8-22
Createlnstance 8-22
Syntax 8-22
DumpArgs 8-22
Syntax 8-22
Parameters 8-22
GetClassiD 8-23
Syntax 8-23
Parameters 8-23
Returns 8-23
GetElement 8-23
Syntax 8-23
GetValue 8-23
Syntax 8-24
Initialize 8-24
Syntax 8-24
Parameters 8-24
IsValid 8-24
Syntax 8-24
NumElements 8-24
Syntax 8-24

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

Contents W

Parameters 8-25
Removeltem 8-25

Syntax 8-25
Setklement 8-25

Syntax 8-25
SetValue 8-25

Syntax 8-26

CILRefArg Class 8-26

SetValue 8-26

Syntax 8-26

Input Parameters 8-27

Return Values 8-27

Examples 8-27
GetValue 8-27

Syntax 8-27

Parameters 8-27

Return Values 8-28

Examples 8-28
GetClassiD 8-28

Syntax 8-28

Return Values 8-28

Examples 8-29
GetType 8-29

CCtiOsException Class 8-29

CCtiosException 8-30

Syntax 8-30

Input Parameters 8-30

Return Values 8-31

Example 8-31
GetCode 8-31

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Bl Contents

Syntax 8-31
Parameters 8-31
Return Values 8-31
Example 8-31
GetStatus 8-32
Syntax 8-32
Parameters 8-32
Return Values 8-32
Example 8-32
GetString 8-32
Syntax 8-32
Parameters 8-33
Return Values 8-33

Example 8-33
What 8-33
Syntax 8-33

Parameters 8-33
Return Values 8-33
Example 8-34
CCtiOsObject Class 8-34
DumpProperties 8-35
Syntax 8-35
Parameters 8-35
Return Values 8-35
Example 8-36
GetPropertyName 8-36

Input Parameters 8-36

Return Values 8-36
Example 8-36
GetNumProperties 8-36

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

APPENDIX A

Syntax 8-36
Parameters 8-37
Return Values 8-37
Example 8-37
GetValueType 8-37
Syntax 8-37
Input Parameters 8-37
Return Values 8-38
Example 8-38
GetElement 8-38
Syntax 8-38
Input Parameters 8-38
Return Values 8-39
GetPropertyAttribute 8-39
Input Parameters 8-39
Return Values 8-39
SetValue 8-40
Syntax 8-40
Input Parameters 8-40
Return Values 8-40
Example 8-41
IsValid 8-41
Syntax 8-41
Input Parameters 8-41
Return Values 8-41
Example 8-41

CTI 0S CIL Messages A-1
CIL CTI Server Message Equivalents A-1

Call Requests A-1

[oL-1392-01

Contents W

Cisco ICM Software CTI 0S Developer's Guide g

Bl Contents

Agent Requests A-2

Skill Group Requests A-2
Supervisor Requests A-2

Generic CTI Server Confirmation Events A-3
Call Confirmation Events A-3
Agent Confirmation Events A-4
Supervisor Confirmation Events A-4
Error and Failure Events A-5

Call Events A-5

Call Recording Events A-6

Agent Events A-6

Skill Group Events A-6

Supervisor Events A-6

CIL CTI OS-specific messages A-7
Session Requests A-7
Single Step Transfer/Conference Requests A-7
Supervisor Requests A-7
Statistics Requests A-7
Timer Service Requests A-8
Team Maintenance Requests A-8
CTI OS Specific Confirmation Events A-8
CTI OS Specific Events A-8
Session Events A-8
Button Enablement Events A-9
Supervisor Events A-9
Filter Events A-10
Name Lookup Service Requests A-10
Name Lookup Service Event A-10
Timeout Events A-10
Supervised Calls A-10

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

Contents W

Supervised Agent Events A-11
Team Maintenance Events A-11

arpenpix B CTIOS Keywords B-1

INDEX

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Bl Contents

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

About This Guide

Purpose

This manual provides an overview of the Cisco CTI Object Server (CTI OS)
product, describes the CTI OS Client Interface and CTI OS Architecture, and
provides syntax and descritions for CTI OS methods and events.

Audience

This manual is for system integrators and programmers who want to use CTI OS
to integrate CTI applications with Cisco ICM software.

Conventions

This manual uses the following conventions.

Cisco ICM Software CTI 0S Developer's Guide
[oL1392-m .m

About This Guide |

M Organization

Format Example

Boldface type is used for user Choose Edit > Find from the ICM
entries, keys, buttons, and folder |Configure menu bar.
and submenu names.

Italic type indicates one of the e A skill group is a collection of agents
following: who share similar skills.
e A newly introduced term ® Do not use the numerical naming

convention that is used in the
predefined templates (for example,
e A generic syntax item that persvc01).
you must replace with a
specific value

e For emphasis

e [IF (condition, true-value, false-value)

e For more information, see the Cisco

e A title of a publication
ICM Software Database Schema

Handbook.
An arrow (>) indicates an item |The Save command from the File menu is
from a pull-down menu. referenced as File > Save.

Organization

The manual is divided into the following chapters.

Chapter Description

Chapter 1, Provides an overview of the CTI OS Client
“Introduction” Interface.

Chapter 2, “CTI OS Discusses CTI OS architecture.

Client Interface Library

Architecture”

Chapter 3, “Handling Discusses CTI OS event handling.

Events”
Chapter 4, “Session Describes the methods and events associated with
Object” the CTI OS Session object.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| About This Guide

Other Publications W

Chapter Description
Chapter 5, “Agent Describes the methods and events associated with
Object” the CTI OS Agent object.

Chapter 6, “Call Object” |Describes the methods and events associated with
the CTI OS Call object.

Chapter 7, “SkillGroup |Describes the methods and events associated with

Object” the CTI OS SkillGroup object.

Chapter 8, “Helper Describes the methods and events associated with
Classes” the CTI OS Arguments classes.

Appendix A, “CTI OS Lists the CTI OS messages.

CIL Messages”

Appendix B, “CTI OS Lists the CTI OS keywords.

Keywords”

Other Publications

For additional information about Cisco Intelligent Contact Management (ICM)
software and Cisco Computer Telephony Integration (CTI) products, see the
Cisco web site listing ICM and CTI documentation.

Obtaining Documentation

The following sections provide sources for obtaining documentation from Cisco
Systems.

World Wide Web

You can access the most current Cisco documentation on the World Wide Web at
the following sites:

e http://www.cisco.com
e http://www-china.cisco.com

e http://www-europe.cisco.com

Cisco ICM Software CTI 0S Developer's Guide
[oL1392-m .m

http://www.cisco.com
http://www-china.cisco.com
http://www-europe.cisco.com
http://www.cisco.com/univercd/cc/td/doc/product/icm/index.htm

About This Guide |

M Obtaining Documentation

Documentation CD-ROM

Cisco documentation and additional literature are available in a CD-ROM
package, which ships with your product. The Documentation CD-ROM is updated
monthly and may be more current than printed documentation. The CD-ROM
package is available as a single unit or as an annual subscription.

Ordering Documentation

Cisco documentation is available in the following ways:

e Registered Cisco Direct Customers can order Cisco Product documentation
from the Networking Products MarketPlace:

http://www.cisco.com/cgi-bin/order/order_root.pl

e Registered Cisco.com users can order the Documentation CD-ROM through
the online Subscription Store:

http://www.cisco.com/go/subscription

¢ Nonregistered Cisco.com users can order documentation through a local
account representative by calling Cisco corporate headquarters (California,
USA) at 408 526-7208 or, in North America, by calling 800
553-NETS(6387).

Documentation Feedback

If you are reading Cisco product documentation on the World Wide Web, you can
submit technical comments electronically. Click Feedback in the toolbar and
select Documentation. After you complete the form, click Submit to send it to
Cisco.

You can e-mail your comments to bug-doc @cisco.com.

To submit your comments by mail, use the response card behind the front cover
of your document, or write to the following address:

Attn Document Resource Connection
Cisco Systems, Inc.

170 West Tasman Drive

San Jose, CA 95134-9883

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

http://www-europe.cisco.com
http://www.cisco.com/cgi-bin/order/order_root.pl
http://www.cisco.com/go/subscription

| About This Guide

Obtaining Technical Assistance | |

We appreciate your comments.

Obtaining Technical Assistance

Cisco.com

Cisco provides Cisco.com as a starting point for all technical assistance.
Customers and partners can obtain documentation, troubleshooting tips, and
sample configurations from online tools. For Cisco.com registered users,
additional troubleshooting tools are available from the TAC website.

Cisco.com is the foundation of a suite of interactive, networked services that
provides immediate, open access to Cisco information and resources at anytime,
from anywhere in the world. This highly integrated Internet application is a
powerful, easy-to-use tool for doing business with Cisco.

Cisco.com provides a broad range of features and services to help customers and
partners streamline business processes and improve productivity. Through
Cisco.com, you can find information about Cisco and our networking solutions,
services, and programs. In addition, you can resolve technical issues with online
technical support, download and test software packages, and order Cisco learning
materials and merchandise. Valuable online skill assessment, training, and
certification programs are also available.

Customers and partners can self-register on Cisco.com to obtain additional
personalized information and services. Registered users can order products, check
on the status of an order, access technical support, and view benefits specific to
their relationships with Cisco.

To access Cisco.com, go to the following website:

http://www.cisco.com

Technical Assistance Center

The Cisco TAC website is available to all customers who need technical assistance
with a Cisco product or technology that is under warranty or covered by a
maintenance contract.

[oL-1392-01

Cisco ICM Software CTI 0S Developer’s Guide

http://www.cisco.com

About This Guide |

| Obtaining Technical Assistance

Contacting TAC by Using the Cisco TAC Website

If you have a priority level 3 (P3) or priority level 4 (P4) problem, contact TAC
by going to the TAC website:

http://www.cisco.com/tac
P3 and P4 level problems are defined as follows:

e P3—Your network performance is degraded. Network functionality is
noticeably impaired, but most business operations continue.

¢ P4—You need information or assistance on Cisco product capabilities,
product installation, or basic product configuration.

In each of the above cases, use the Cisco TAC website to quickly find answers to
your questions.

To register for Cisco.com, go to the following website:
http://www.cisco.com/register/

If you cannot resolve your technical issue by using the TAC online resources,
Cisco.com registered users can open a case online by using the TAC Case Open
tool at the following website:

http://www.cisco.com/tac/caseopen

Contacting TAC by Telephone

If you have a priority level 1 (P1) or priority level 2 (P2) problem, contact TAC
by telephone and immediately open a case. To obtain a directory of toll-free
numbers for your country, go to the following website:

http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml
P1 and P2 level problems are defined as follows:

e Pl1—Your production network is down, causing a critical impact to business
operations if service is not restored quickly. No workaround is available.

e P2—Your production network is severely degraded, affecting significant
aspects of your business operations. No workaround is available.

Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

http://www.cisco.com/tac
http://www.cisco.com/register/
http://www.cisco.com/tac/caseopen
http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

, A
\ T -
! CH A-EY E R L

Introduction

CTI Object Server (CTI OS) is a high performance, scalable, fault-tolerant
server-based solution to deploy CTI applications. CTI OS makes possible
deployment of thin-client browser based applications that require no additional
software to be installed at a desktop client. CTI OS serves as a single point of
integration for third-party applications, including ERP systems, data mining and
workflow solutions. Configuration and behavior information is managed at the
server, simplifying customization, updates, and maintenance. Servers can be
accessed and managed remotely.

Client applications interface to CTI OS using session, agent, and call interfaces.
These interfaces are implemented in COM, C++, and C, allowing for a wide range
of application development uses. The interfaces are used for control, to access to
data values, and to receive event notifications.

The client interface was designed to support all of the following features:

e Extensible. The interface is designed so that it can be easily extended. New
functionality in future revisions will not obsolete the current interfaces.

e Simplified and easy of use. Each method supports a variable number of
arguments. This simplifies the use of optional arguments.

¢ No differentiation between Call Variables, ECC variables, or arguments
stored in the Cisco Enterprise Data Store. The client interface simplifies
access and use of ECC variables.

e Subclassable object architecture. Subclassing allows your custom defined
call or agent object to be created instead of ours. This is a powerful
mechanism that provides a client application complete control over all events
and responses.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 1 Introduction |

H overview

e Automatic connection failover.

e The architecture supports multiple threads and is thread safe. An application
can spawn multiple threads using a single connection (session) object.

e Applications can be deployed on virtually any platform and any host
container, such as VB, PowerBuilder, or Siebel.

Overview

Clients connect to CTI OS through a client interface library. The library is
responsible for establishing and automatically recovering connection failures,
even if it must switch between CTI OS servers. It provides a set of wrapper classes
to support COM, C++, and C applications.

A client application can connect in one of two possible modes:

¢ In Agent Connection, the client receives messages for a specific agent, such
as calls and agent state changes;

¢ In Monitor Mode, the client provides a filter expression that selects the types
of events that are forwarded to the application. These event messages can be
used to provide notification of specific call events, agent state changes, or
statistics.

The client application interacts with CTI OS through Session, Agent, Skill Group,
and Call objects. The object model is shown in Figure 1-1.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter1

Introduction

Figure 1-1 CTI OS Client Interface Object Model

CCtiBase

CCtiOsObject

Overview W

CSession

CcCall

CAgent

SkillGroup

Agent and Monitor Mode connections apply regardless of the type of customer
interaction. They apply to any and all type of interactions and serve to select the
type of messages sent to the client application. To connect in Agent Mode, the
client application must login as an agent. To connect in Monitor Mode, the
application specifies a message filter.

To connect:

Dim m_sessionresolver As CTIOSSESSIONRESOLVERLib.SessionResolver

Dim WithEvents m_session As CTIOSCLIENTLib.Session

Dim m_Agent As CTIOSCLIENTLib.Agent

Sub ConnectToServer (

)

' Get a session to work with
= m_sessionresolver.GetSessionRef ("")

Set m_session

‘Builds connect parameters
Dim m_Args As New Arguments

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 1 Introduction |

H overview

‘Side A information

m_Args.AddItem "CtiOsA", machinename A
m_Args.AddItem "PortA", 42028

‘Side B information

m_Args.AddItem "CtiOsB", machinename B
m_Args.AddItem "PortB", 43028
m_Args.AddItem "Heartbeat", 5

‘Get ready to submit connection request
Dim vRequestParam As Variant

Set vRequestParam = m_Args

‘sends connection request
m_session.Connect vRequestParam

End Sub

To set Agent Mode:

Sub EstablishAgentMode ()
Dim m_Args As New Arguments

m_Args.AddItem "Agentid", “23840”
m_Args.AddItem "Instrument", “23801”
m_Args.AddItem "PeripheralID", 5000

' Create a new agent

Set m_Agent = New Agent

' intialize the agentobject using setvalue
m_Agent.SetValue "Agentid", “23840”
m_Agent.SetValue "Instrument", “23801"
m_Agent.SetValue "PeripheralID", 5000

' Tell the session about the agent to establish agent mode

connection
m_session.SetAgent m_Agent
Dim vRequestParam As Variant
Set vRequestParam = m_Args
' Send login request
m_Agent.Login vRequestParam
End Sub

To set Monitor Mode:

Sub EstablishMonitorMode ()
Dim strFilter As String
Dim m_Args As New Arguments

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter1

Introduction

Extensibility and Ease of Use I

strFilter = "Agent=23840;Agent=23845;"
'Tell the session about the filter to use to establish a
‘Monitor mode connection

m_session.SetMessageFilter strFilter

End Sub

Extensibility and Ease of Use

CTI OS class definitions are designed for extensibility. Each method definition
supports a variable number of arguments. The design is intended to allow future
revisions to add additional arguments when needed without requiring new
methods or new classes to be defined.

For almost all arguments to method calls, the argument can be in one of the
following forms:

e an integer value;

e astring value;

e astring containing one or more key/ value pairs; or

e an array of key/ value pairs using the Arguments class.

MakeCall is a typical method that takes advantage of optional arguments. The
Arguments class is a helper class used to build key/ value pairs. For example:

Dim agent As New ctios. agent
Dim CallArgs As New Arguments

' any of the following is valid
agent. MakeCall "23814" ' string
agent. MakeCall "DN=23814" ' key/value string
agent. MakeCall 23814 ' integer

' array of arguments is possible

CallArgs. AddItem "DN", "23814"

CallArgs. AddItem "CallVariablel", "Y"

CallArgs. AddItem "ExtDataArg", "Agent N"
CallArgs. AddItem "UserToUser", "from agent 23813"

agent. MakeCall CallArgs ' CallArgs cleared after call

' multiple key/values defined as a string
agent. MakeCall "DN=23814;CallVariablel='Y'; "
"ExtDataArg='Agent N';UserToUser='from agent 23813'"

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 1 Introduction |

M Extensibility and Ease of Use

agent. MakeCall

"DN=" + agent_id + "; " + _
"CallVariablel=" + callvariable item + "; " + _
"ExtDataArg=" + agent identifier + "; " + _

"UserToUser=" + user_message

' this may be more efficient

CallArgs. AddItem eDN, "23814"

CallArgs. AddItem eCallvVariablel, "Y"

CallArgs. AddItem "ExtDataArg", "Agent N"
CallArgs. AddItem eUserToUser, "from user 23813"
agent. MakeCall CallArgs

C++ has a slightly more flexible syntax:

Arguments &args;
Arguments: :CreateInstance ()

args[eDN] = "23814";

args[eCallvariablel] = "Y";

args["ExtDataArg"] = "Agent N";

args[eUserToUser] = "from user 23813";

agent. MakeCall(args);
args.Release ()

The arguments to method calls can be in one of the following forms:
e An integer
e A string
e A string containing key/value pairs
¢ An array of key/ value pairs

MakeCall is a typical method that takes advantage of optional arguments. The
Arguments class is a helper class used to build key/ value pairs.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter1 Introduction

Accessing Properties with GetValue ||

Table 1-1 Client Interface Argument Types

Argument Type Meaning

String or Key/value string May contain a single or multiple values.
Semi-colons separate multiple values.

String may contain key/ value pairs when
in the form key=value. Semi-colons
separate multiple key/ value pairs.

Values may contain spaces. All leading
and trailing spaces are removed unless
encapsulated in quoted string.

Integer May only represent a single value

Array of key/value pairs May be an Arguments object. Arguments
is a collection of key/ value pairs supplied
as a helper class for CTI OS clients.

May be an array of Variants.

For C++, may use STL map..

Accessing Properties with GetValue

Properties are set by events and can be retrieved through the GetValue method. To
retrieve one or more property values, the client application passes a name or an
array of property names to the GetValue method. The method returns either a
single value or an array of key/ value pairs containing the requested properties.
For example:

Dim argValue As Arg
Dim argAllCalls as Arguments
Dim nPeripheralId as Integer

'Returns extension number in an Argument object

Set argValue = m_Agent.GetValue (“Extension”) ‘' Using property
name
Or

Set argValue = m_Agent.GetValue (eExtension) ‘' Using Property
enumerated value

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter 1 Introduction |

M Accessing Properties with GetValue

‘GetValue from Arg returns the correct value using the appropriate
data type
MsgBox “Agent Extension = “ & argValue.GetValue

Set argsAllCalls = m_session.GetValue(“Calls”)

The method returns a reference to an Argument or Arguments object. The
Arguments classes are helper classes that encapsulate strings, integers, and array
of values.

COM interface:

Dim argValue As Arg
Dim argAllCalls as Arguments

Set argValue = m_Agent.GetValue (“Extension”)
Set argsAllCalls = m_session.GetValue(“Calls”)

C++ interface:

Arg & argValue = m_Agent.GetValue (EXTENSION) ;

argValue.Release() ;

Arguments & argAllCalls = (Arguments &) m_session.GetValue(“Calls”)
argAllCalls.Release() ;

For clients that require a return value of a specific data type, use one of the
following methods: GetValuelnt, GetValueString, GetValueArg, or GetValueOb;.
They return integer, string, and argument array, respectively.

int n = GetValuelInt(key);

string s = GetValueString(key);

args a = GetValueArg(key);

object obj = GetValueObj(key);

a.Release() ;

The signature(s) for the GetValue method are:
COM interface:

VARIANT GetValue ([in] LPVARIANT vProperty)

C++ interface:

Arg & GetValue(string & strProperty) ;
Arg & GetValue (char * strProperty);
Arg & GetValue (int strProperty) ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter1

Introduction

GetElement W

GetElement

Some properties are arrays of values, such as Call Variables, ECC Array
Variables, or number of call parties. Each element of an array is accessible using
the GetElement method. The method is identical to GetValue, except that an
additional index value argument is required.

Dim call As New CTIOSCLIENTLib. Call

Dim Properties As New Arguments

Dim CallVariablel As String

Set Call = GetValue (“ActiveCall”)

' any of the following is valid

CallVariablel = call. GetElement("CallVariables", 1)
CallvVariablel = call. GetElement (eCallVariables, 1)

Property Names and Enumerated Constants

Properties are identifiable by a unique name or enumerated constant. The list of
properties and their format are listed in individual class definitions in the chapters
that follow. The enumerated constant value for a property is equivalent to its
name, except that it begins with the letter e, as in the following example

' string versus enumerated constant

obj. GetValue("CurrentServer")
obj. GetValue(eCurrentServer)

Property Attributes

It is possible to retrieve attribute information such as maximum length, format,
and read-only status for any property at run time using the following syntax.

COM Interface:

VARIANT ICtiOsObjectClass::GetPropertyAttribute([in] LPVARIANT
pPropName, [in] int nAttribute);

C++ Interface:

Arg& CCtiOsObject::GetPropertyAttribute(string& strPropName,
enumCTIOS_Attribute nAttribute);

Arg& CCtiOsObject::GetPropertyAttribute(char * pstrzPropName,
enumCTIOS Attribute nAttribute);

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 1 Introduction |

M Property Attributes

Arg&

CCtiOsObject: :GetPropertyAttribute(int nPropName,
enumCTIOS Attribute nAttribute);

' get type: string, integer, or boolean

nType = obj. GetPropertyAttribute("property name",

' if string,

"type")

length is actual number of bytes, else returns 0

nLength = obj. GetPropertyAttribute("property name",

CTIOS_ATTRIBUTE_LENGTH)

' size is valid regardless of type
if string, size is maximum number of

' if boolean, 1.
bytes

if integer, 4.

nMaxBytes = obj. GetPropertyAttribute("property name",

CTIOS_ATTRIBUTE_SIZE)

' can retrieve multiple attributes into an array
' but cannot get all attributes all at once
argArray = obj. GetPropertyAttribute ("AgentID;Extension;Instrument",

CTIOS _ATTRIBUTE SIZE)

Table 1-2 Property Attributes

Attribute
CTIOS_ATTRIBUTE_TYPE =0

One of following values:
CTIOS_DATATYPE_STRING,
CTIOS_DATATYPE_INTEGER,
CTIOS_DATATYPE_BOOLEAN, or
CTIOS_DATATYPE_REFERENCE

CTIOS_ATTRIBUTE_LENGTH =1

Current length of string type, otherwise 0.

CTIOS_ATTRIBUTE_SIZE =2

Max size of string or size of data type.
If string is of unlimited size, returns the
value CTIOS_DATASIZE _
UNLIMITED = 32,767. Other defined
types: CTIOS_DATASIZE_BOOL =1,
CTIOS_DATASIZE_INTEGER =4

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter1

Introduction

Platform Issues

Table 1-2 Property Attributes (continued)

Attribute Meaning
CTIOS_ATTRIBUTE_DEFINED _ An identifier for which type of server
BY=3 connected to CTI OS has defined the

properties of the constant. The only
defined servers available at this time
are:

CTIOS_SERVERID_SYSTEM,
CTIOS_SERVERID_CTISERVER

The following names are reserved for
future use:

CTIOS_SERVERID_CISCOEMAIL
CTIOS_SERVERID_CISCOCOLLAB

CTIOS_SERVERID_
UNDEF3RDPARTY

CTIOS_ATTRIBUTE_ISVALID =4 |Key. Returns true if the key is valid.
CTIOS_ATTRIBUTE_ISARRAY =5 |Returns true if value is an array or

items.
CTIOS_ATTRIBUTE_ Number of elements in array or 1 if not
NUMELEMENTS =6 array type.

Platform Issues

Among the different platforms supported, not all of them support unsigned
integers or shorts and there exist variations in how boolean values are handled.
This section addresses how these differences are handled.

The CTI OS Client Interface Library does not use nor support unsigned shorts or
unsigned integers. Any unsigned shorts or integers used or reported by CTI Server
are converted to integers.

Booleans are represented as true and false and have a value of 1 or zero. COM

applications represent booleans as type VIT_BOOL and represent true and false as
O0xFFFF and zero. There is good technical reason for expressing true as all ones,
but it conflicts with the C/C++ definitions. When COM calls are made within the

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 1 Introduction |

M Accessing Call and ECC Variables

Accessing

CIL, boolean values are converted to (or from) VT_BOOL. COM applications
such as VisualBasic, Internet Explorer, and other COM specific clients can treat
TRUE as OxFFFF.

The Client Interface Libraries for C and C++ maintain True and False as defined
by the language, namely as 1 and 0.

Call and ECC Variables

Call, ECC variables, and arrays are passed as data with calls. These variables are
accessible individually by name or as an array of values. Standard call variables
1 to 10 can be accessed as follows:

Dim org Callvariable as Arg

' access call variables

Set argCallVariable = call. GetValue("CallVariablelO")
Set argCallvariable = call. GetValue(eCallvVariablelO)

' ECC variables
Set argECCVar = call. GetValue("ecc.acct _no")' no equiv enumerated
value

ECC variables in an object or an event parameter list are stored as an embedded
arguments array that can be access in the following manner:

Dim argECCs As Arguments
Dim argECCVar as Arg
Dim argNamedArrayItem As Arg

Set argsECCs = call.GetValue (“ECC")
Set argECCVar = argsECCs.GetValue (“user.CustomerID”)

Set argNamedArrayltem = argsECCs.GetValue (“user.AccountNumber[1]”)

ECC array variables are handled using special syntax. When the name of an ECC
array variable is used, an array of values is returned. Variable and array names
begin with the term “user” to distinguish ECC variable names from other CTI OS
properties.

Adding a subscript to the reference can access each element of an ECC array
variable as follows

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter1

Introduction

Handling Errors W

‘Accessing the n-th call variable
Set argCallvar = call.GetElement (eArrayCallvVariables, n)

‘Accesing ECC variable at offset “n”
Set argNamedArrayItem = call.GetElement (“user.AccountNumber”, n)
Set argNamedArrayItem = call. GetElement (“user.AccountNumber [n]”)

Special keywords are available to retrieve an array of all call variables, all ECC
variables, or a specific named ECC array. Examples:

Dim argsCallVars As Arguments

Dim argsECCVars As Arguments

' access arrays

Set argsCallVars = call. GetValue(eArrayCallVariables)

Set argsECCVars = call. GetValue(“ECC”)

Set argsECCVars = call. GetValue("user. name_ arrayvariable")

Handling Errors

The CTI OS Client Library provides a mechanism such that if any error occurs
during the invocation of a method in an object; the method returns a numeric value
that you can check using the macros CIL_SUCCESS (code) or CIL_FALIED
(code). The method upon detecting the error will set the LASTERROR property
in the object to the code that identifies the error. Any successful method invoked
after the error will override the object’s property and will set it to CIL_OK. No
exception is thrown, unless the method invoked returns a reference to an object
and it failed to allocate memory for it.

try
//Allocates arguments instance
Arguments & arConnParams = Arguments::CreatelInstance() ;
arConnParams.AddItem(_ T (“PrimaryServer”), //Wrong Property Name
_T (“MyCtiOSserver”)) ;
L]
L]
L]
arConnParams.AddItem(_T(“Heartbeat”), _T (“MyCtiOSserver”));

int nRetcode = m_Session.Connect (arConnParams) ;

if (CIL_FAILED (nRetCode))

{

switch (nRetCode)

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 1 Introduction |

M Event Driven Model

case E_CTIOS_ INVALID PROPERTY:

{

cout << “Invalid Parameter Received on
Connection Parameters " <<
endl << arConnParams.DumpArgs () ;

}

break;

}

//Continue working

L]
L]
L]
catch(int * nExceptionCode)
if (*nExceptionCode == E_CTIOS ARGUMENT ALLOCATION FAILED)
cout << “CMyClass::MyMethod(): There is not much memory
available ” << endl

//you need to release arConnParams after you are done with it
arConnParams.Release ()

Event Driven Model

Most CTI OS Client Interface Library method calls send requests to a CTI OS
server. In turn, these requests are forwarded to ACD, email or other servers. Any
response can take from a few to several hundred milliseconds to several seconds.
Waiting for a response would seriously impact the client’s performance.

Instead, method calls operate in asynchronous mode. The client application
submits a request through a method call, then at some point in the future an event
may be generated that indicates the success or failure of the request.

An event or response is not guaranteed. The operation may not result in any state
change, may not create a telephony or other server response, may have failed
outside in a link on the network outside of the CTI OS, or may have failed between
the client application and CTI OS. The following guidelines and features will
assist in diagnosing in real-time problems across servers:

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter1

Introduction

Event Cascade Model

Any request made that results in an error from CTI Server or other server are
reported back to the client in the form of an OnError event.

The client system can request periodic heartbeats to CTI OS. When heartbeats are
enabled, the library generates OnHeartbeat and OnMissingHeartbeat events that
describe the quality and reliability of the connection. When heartbeats are missed,
the connection to an active CTI OS server are automatically reestablished;

CTI OS automatically monitors the quality and reliability of its connection to CTI
Server and other servers using periodic heartbeats.

Event Cascade Model

The CTI OS Client Interface Library uses an event cascade model. The model is
designed to allow an application to override standard event handling for any event.
Every event method uses the same signature: an event id code followed by a
reference to an Arguments array containing all parameters passed.

The OnEvent method in the Session object receives every event. An application
can override this method and replace it with its own implementation. It can then
delegate to the standard behavior when and where appropriate. The standard
implementation of the event handler in the Session object examines the event Id
code, determines the event type, and forwards the event to the proper object's own
OnEvent implementation. If the event is for an Agent object, it locates the proper
Agent object and calls that object's OnEvent method. If the correct agent object
does not exist, a new Agent object is created and the event is forwarded to that
object's OnEvent implementation. The same logic is used for Call and SkillGroup
objects.

The standard implementation of the OnEvent method for Agent, Call, and
SkillGroup objects is to identify the event. Client applications can override the
default implementation of the OnEvent method and thus intercept any event,
giving it substantial control over flow, timing, and content. One benefit of this
architecture is that it permits subclassing, as shown below. It permits the use of
application specific custom objects to override the standard behavior where
necessary. This model cascades events across object instances.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 1 Introduction |

M Event Publication Model

Event Publication Model

Clients can subscribe to an event interface for each class of objects. The published
event interfaces are ISessionEvent, [AgentEvents, ICallEvents,
ISkillGroupEvents, and IAlIEvents. When an object needs to fire an event, it calls
the Session’s FireEvent method, which then publishes the event to all subscribers.
For example, as part of its OnEvent handler, the Call object fires an
OnCallDelivered event. (This can also be overridden through subclassing; see the
section entitled “Subclassing” in Chapter 2, “CTI OS Client Interface Library
Architecture.”)

Subscribing to an Event Interface

The Session object manages all event subscription lists and the adding and
removing of event subscribers. In C++ and COM, connection points are used
(often implemented under the covers by the IDE).

Special Values

Throughout this document, special reference is made to values such as
CallPlacementType, DeviceIDType, Reason code, and many others. These values
are defined by CTI Server or other server. CTI OS passes these values through.

Start Up, Connect, Snapshot

A client receives call and agent events when it establishes a connection mode:
Agent or Message filter. Unless one of these modes is selected, the client will not
receive any events from any CTI OS server. The client establishes the connection
using a two step process.

e The client connects to a CTI OS server using the Session object Connect()
method.

e The client then establishes the connection mode. For Agent Mode, the client
uses the Session object SetAgent() method. For Monitor Mode, the client uses
the Session object SetMessageFilter() method.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter1 Introduction

Start Up, Connect, Snapshot W

The CTI OS server responds to the client’s SetAgent or SetMessageFilter request
by sending an exact copy of the current agent and call states, using the following
events:

¢ eQueryAgentStateConf. This event contains the current state of the agent in
all the skill groups it belongs to.

¢ eSnapshotDeviceConf. This event contains a list of all the calls the agent is
or was working on.

This information download allows a client application to have the immediate
control over calls and the phone via software in the following situations:

e The agent logged in to the system using a hard phone and then launched the
softphone.

e The softphone reconnected to the system after a failure.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter 1 Introduction |

W start Up, Connect, Snapshot

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

, A
CHAP‘I‘ERL‘Z 3

CTI OS Client Interface Library
Architecture

The CTI OS Client Interface Library (CIL) consists of the following components:

¢ Object Interface Framework (OIF) — The Object Interface Framework is the
interface between the CIL and the client application.

e Service — The Service object (or Service layer) is isolates the OIF object from
the Connection object so that neither object directly impacts the performance
of the other. The Service object also converts message formats between that
used by the Session (and its clients) and the format sent across the network.

e Connection — The Connection object (or Connection layer) monitors the
CIL’s connection with the server. It also sends and receives server messages.

This chapter describes each layer of the CIL architecture.

Object Interface Framework

The CTI Object Interface Framework is the topmost layer on the CIL architecture.
It consists of a group of object classes that enable an application developer to
write robust applications for CTI in a short time. The framework can be extended
to accommodate special requirements by subclassing one or more of the CTI OS
object classes.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

| Chapter2 CTI OS Client Interface Library Architecture

Object Interface Framework

Session Object

The Session object class provides the client with access to CTI Services offered
by CTI OS. It is responsible for event distribution, object creation and connection
maintenance. From an architecture perspective, the Session object is really a
wrapper for four subobjects, which handle all the work.

e Session Manager
e Session Behavior
¢ Object Manager
e Event Publisher

Figure 2-1 depicts the Session object with all its components and relationships.

Figure 2-1 Object Interface Framework Block Diagram

To Client f:}olication — Call — | SkillGroup
=

Session Object
/ Manager
Event Session
Publisher Menager
Session Behavior
From Service Layer To Service Layer
v

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

| Chapter2 CTI OS Client Interface Library Architecture

Object Interface Framework

Session Manager

The Session Manager is responsible for the internal state of the Session object.
This state functionality includes making the connection, recovering from link
failure, and specifying the Session mode.

Session Behavior

The session behavior is the set of public and private methods of the class that
allows iteration between layers.

Connection

The Session Manager services requests to the Session object for connecting and
disconnecting from the CTI OS Server. In addition, the Session Manager
maintains the state of the connection based on events arriving in its OnEvent
method.

Connection Failure and Recovery

The Session Manager object will be notified of any Connection Failure messages.
In the event of a connection failure, the Session Manager will execute the
reconnect algorithm to attempt to reconnect to an alternate CTI OS Server.

Session Modes

A Session object can be set to work one of two modes: Agent Mode or Monitor
Mode. The Session Manager is responsible for maintaining the state of the
Session mode. Once the client connects to the CTIOS server it cannot change its
mode without closing the session.

Agent Mode

The client specifies its intent to work as an Agent or a Supervisor by creating an
Agent object (or subclassing from one) and then calling SetAgent (Agent). The
server is informed of the client’s mode selection via the

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

| Chapter2 CTI OS Client Interface Library Architecture

Monitor Mode

Object Interface Framework

eSetSessionModeRequest. The Agent object contains a reference to the Session
object for the purpose of sending requests to CTI OS Server. The client may not
change agents or change modes once Connect is called.

The client specifies its intent to work in Monitor mode by calling
SetMessageFilter. The server is not informed of the client’s mode selection,
however, until the client calls Connect. From this point on, the Session can
accommodate multiple agent, and calls for multiple agents. (Creation of object for
multiple agents is explained in the next section.) The client may not change
message filters or change modes once Connect is called.

Object Manager and Event Passing

The Object Manager is responsible for the creation and destruction of CTI OS
objects. The main event entry into each of these objects (Session, Agent, Call,
SkillGroup) is the OnEvent method. At startup , when the client creates a Session
object, the Session creates the Service Layer object and passes a reference back
to itself to the Service Layer. From that point forward, when new events arrive at
the Message Receiver (in the Service layer), the Service Layer will deliver the
event to the session via its OnEvent method. The arguments passed to OnEvent
are EventID and an Argument array of key-value pairs. Each event is targeted to
a particular object (Session, Agent, Call, SkillGroup, etc.). The event arguments
contain a field UniqueObjectID that identifies the object that the event is directed
to. Event arguments correspond to properties on the target object.

Within the Session’s OnEvent, the Object Manager performs the following steps
using the EventID and UniqueObjectID that came in the event parameters:

e It determines whether the object identified by UniqueObjectID (Session,
Call, Agent or SkillGroup) exists or not. If it exists, the object manager will
return a reference to the target object. Otherwise, it will create a new object
(see Creating Objects) for that UniqueObjectID and return a reference to the
new object.

e Using the reference to the targeted object the Session object forwards the
event to by invoking that object’s OnEvent method.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

| Chapter2

CTI 0S Client Interface Library Architecture

Object Interface Framework

Creating Objects

The Object Manager component maintains a collection for each class of objects it
manages (e.g. Agents, Calls, SkillGroups, etc.).

An instance of an object is created when Object Manager determines that the
object to which the UniqueObjectID in the event refers does not exist in any of
the object lists it maintains. The creation process starts by determining what
object type is required in order to invoke the appropriate object factory. Once the
object is instantiated and initialized using the event arguments, the object is added
the collection it belongs to.

Lifetime of objects is controlled using reference counting. Any application that
will hold a reference to an object it is required to perform and AddRef() on the
object to gain ownership and when it does not longer needs the object it must
execute Release(). This way the object manager will not release the object before
any client is done with it. Next it is explained the lifetime for each of the standard
CTI OS object types

Call Object Lifetime

A Call object is created and its reference count is incremented in the handler for
the OnCallBegin event. Any data available for the call that is passed in the
OnCallBegin event is used to set up the Call objects initial state and properties.
Upon receipt of the OnCallEnd event, the Session object forwards the event to the
Call object via its OnEvent method in the usual manner. The Call object forwards
the event to any subscribers. Call event subscribers should release their references
to the Call object within their event handler for OnCallEnd to allow the Call
object to be deleted. When the Call object’s OnEvent method returns after
handling OnCallEnd, the object manager decrements the Call object’s reference
count. If the reference count does not decrement to zero, then some client has not
released its reference to the Call object. In that case, the Object Manager will log
an error and remove the object from the calls collection. After the object was
removed, no client will be able to aces it from Session. Finally the object will
destroy itself when the last client releases the reference it had.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

| Chapter2 CTI OS Client Interface Library Architecture

Object Interface Framework

Agent Object Lifetime

In Agent mode, the client will creates an Agent Object (which causes its reference
count to be incremented) and passes it to the Session in the SetAgent method.
Since the Agent object already exists at the time that the OnEvent is first
triggered, the existing Agent Object is updated with the arguments accompanying
the OnAgentStateChange event.

In Monitor Mode objects are created and their reference counts incremented in the
handler for an OnAgentStateChange event. When OnEvent receives an
OnAgentStateChange event for an unrecognized Agent, that new Agent is added
to the Session’s collection of agents. This new Agent will be created with the
arguments accompanying the OnAgentStateChange event set as properties, and
it’s initial state will be the state passed in the OnAgentStateChange event.

In Agent mode the Session object decrements the reference count on the agent In
Monitor mode the Session object cycles through its Agent collection and
decrements the reference count of each Agent in the collection.

SkillGroup Object Lifetime

Object Factory

The SkillGroup Object is simply a container for SkillGroup statistics. A
SkillGroup Object is created and its reference count is incremented the first time
an OnNewSkillGroupStatisticsEvent event occurs for that Skill Group, and is
subsequently updated by OnNewSkillGroupStatisticsEvent events.

In both Agent mode and Monitor mode the Session object decrements the
reference count on the SkillGroup object when the Session object is destroyed. In
its destructor, the Session cycles through its SkillGroup collection and
decrements the reference count of each SkillGroup in the collection.

An object factory is a special method in CIL for C++ that has to be declared in
any class derived from CCtiOsObject class. The factory is declared in the class
definition using DECLARE_CIL_OBJECT_FACTORY () and implemented in the
class module using IMPLEMENT_CIL_OBJECT_FACTORY (ClassName). By
default CIL provides standard object factories for CCall, CAgent, CSkillGroup
and CWaitObject. For more details on the use of object factories, see the section
entitled Subclassing.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

| Chapter2

CTI 0S Client Interface Library Architecture

Object Interface Framework

Event Publisher

The Session’s Event Publisher component is based on the publisher-subscriber
design pattern, and is responsible for firing events to subscribing clients of the
Session.

Exposed Interfaces

The following event interfaces are exposed to the client.
e ISessionEvents (e.g. OnConnection, OnConnectionClosed)
¢ JAgentEvents (e.g. OnAgentStateChange, OnNewAgentStatisticsEvent)
e ICallEvents (e.g. OnCallBegin, OnCallDelivered, OnCallDataUpdate)
e ISkillGroupEvents (e.g. OnNewSkillGroupStatisticsEvent)
e JAllInOne (all events)

Adding and Removing Subscribers

The Event Publisher manages lists of all clients to notify for each category of
event. To subscribe for the events of a particular interface, a client must call
Session’s AddXYZEventsListener (..) method, The argument passed to this
method is a callback handle to the subscriber’s own implementation of the
interface. Now, a client to drop its subscription to events it registered before. It
must call Session’s RemoveXYZEventsListener(..) method. The XYZ is the
name of the event interface to be removed.

Event Distribution

When a CTI OS Object receives its OnEvent, it will first update its internal state,
and decide whether to fire the event to clients. If the object decides to fire the
event, it will call the Session’s FireEvent. This last method forwards the request
to the Event Publisher. The Event Publisher then determines what kind of event
this event is and fires the event on the appropriate interface(s).

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

| Chapter2

CTI 0S Client Interface Library Architecture

Service Layer W

Service Layer

The service layer sits between the OIF and the connection layer. Its main purpose
is to translate between the high-level command/event message structure of the
upper CIL and the low-level network message structure of the connection layer.
A secondary purpose of the service layer is to isolate the client from the network
such that network issues do not block the client and vice versa.

Connection Layer

The purpose of the connection layer is to provide a low-level connection
management mechanism between the CIL and CTI OS. It sits as the bottom tier
of the CIL’s layered architecture. A layer at this level allows the CIL to decouple
the higher-level event and message architecture from the handling and specifics
of a low-level communication link such as TCP/IP sockets.

The Connection Layer provides basic communication and connection recovery
facilities. This layer has no knowledge about the format or meaning of CTI OS
messages. It simply receives a buffer and sends it to the other end.

Multithreaded CTI OS Client Application

A CTI OS Client Application can be designed to run with multiple threads, such
that, one thread can be use to process a single event type while the remaining
threads process all the other types.

To write a multithreaded client, the application programmer will need to adhere
to the programming model described in this document.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

| Chapter2 CTI OS Client Interface Library Architecture

Support for Multithreaded Clientin CIL

Support for Multithreaded Client in CIL

Wait Object

To accommodate multithreaded applications, the CTI OS Client Interface library
provides a wait object per thread that will be signaled whenever a new event is
sent to the client application.

The architecture shown in Figure 2-2 guarantees consistency with the server
because all CTI OS objects are updated before the client knows about the event.

Figure 2-2 Multithreaded Application Support

To Client Application — Call I —»|SkillGroup
A
f Agent I

Session ;
- / Manager
Session
Manager

Session Behavior

Event
Publisher

A

From Service Layer To Service Layer
v

A Wait Object is responsible for signaling a waiting thread when one of the events
specified on the mask arrived from the server. The object class maintains the event
mask and the operating system object on which the thread waits on. The system
object type will depend on the platform. It can be an Event or Mutex under Win32
and a Semaphore or Signal under UNIX. The following sections outline the
properties and methods exported by the class.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

| Chapter2 CTI OS Client Interface Library Architecture

Support for Multithreaded Clientin CIL

Properties
Table 2-1 lists the Wait Object properties. All the properties listed are private to
the class.
Table 2-1 Wait Object Properties
Property Description
Threadld Double word type variable to store the system assigned
thread ID.
EventMask Integer type variable to store the event mask for which the
thread will be waiting on
WaitObject Handle type variable to store the handle to the system’s
wait object.
Methods

Table 2-2 lists the Wait Object methods. All the methods listed belong to the
public user interface.

Table 2-2 Wait Object Methods

Method Description

InMask(int iEventId) Returns true if iEventld is part of the event
mask.

GetMask() Returns the Event Mask currently in use

SetMask(int iEventMask) Sets the list of events for which the

synchronization object will signal the
awaiting thread.

SignalEvent (int iEventld) Causes the system object to be signaled if
iEventld is part of the event mask.

WaitOnMultipleEvents() Makes the current thread to go to sleep until
one of the events in the mask arrives and the
system object is signaled.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

| Chapter2 CTI OS Client Interface Library Architecture

Support for Multithreaded Clientin CIL

Usage at the Client

On a multithreaded application, you must create a Wait Object for each thread that
uses CTI OS Objects.

In order to create an instance, the application must call CreateWaitObject at the
beginning of the thread, then call SetEventMask to specify the events to wait for.
To make the thread stop for events, then call WaitOnMultipleEvents via the Wait
Object. Before the thread is terminated, to destroy the object, call DestroyObject.
DWORD WINAPI WorkerThread(LPVOID lpParameter).

CAgent * pAgent = (CAgent *) lpParameter;
Arguments & argsWaitParams = Arguments::CreatelInstance() ;

CWaitObject * pWaitCall = pSession->
CreateWaitObject (argsWaitParams) ;

oWaitCall.SetMask (eCallDeliveredMask |
eCallEstablished |
eCallControlFailureMask) ;

pAgent->MakeCall (“DN=1234") ;

pWaitCall->WaitOnMultipleEvents () ;

pSession->DestroyOject (pWaitCall) ;
argsWaitParams.Release() .

return TERMINATED_ OK;

Other example:

DWORD WINAPI WorkerThread (LPVOID lpParameter)

CAgent * pAgent = (CAgent *) lpParameter;
Arguments & argsWaitParams = Arguments::CreatelInstance() ;

int nEventMask = eCallDeliveredMask |
eCallEstablishedMask |

eCallControlFailureconfMask;

argsWaitParams.AddItem (EVENTMASK, nEventMask) ;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

| Chapter2 CTI OS Client Interface Library Architecture

Multithreaded Application Example ||

CWaitObject * pWaitCall = pSession->
CreateWaitObject (argsWaitParams) ;

pAgent->MakeCall ("DN=1234") ;
pWaitCall->WaitOnMultipleEvents () ;

pSession->DestroyOject (pWaitCall) ;
argsWaitParams.Release() .

return TERMINATED_ OK;

Multithreaded Application Example

Figure 2-3 shows a client application with two threads. The main client’s thread
deals with agent activity and call management. The second, updates a corporate
database used for account billing.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

| Chapter2 CTI OS Client Interface Library Architecture

Multithreaded Application Example ||

Figure 2-3 Multithreaded Application Example

StatisticsProcThread

CWaitObject & oWaitStat =
CreateObject(“Wait”);
oWaitStat.S
‘While(!bTerminateProcess)

\
\
\

\

|

|

t

oWaitStat .WaitOnMultipleEvents()
varStatistics = pSkillGrp-
>GetValue(Stats) ;

N, oDataBase.Write(varStatistics);
N~

/
eNgwSkillStatistics
/

;

Event ___-——
Distribution, .-~ N
- N
. N
Threag PSt FireE S\
(T3y .
! pSession ->OnEvent(...); \
1 . I
‘\ Service->Parse(Msg) I‘
\\ /I
\ /
N /
N s
Receive .
Queue [—W_ o= Receive Thread
ueue -7 Tess
\ e \\(\T3)

>
,7 Conn ->PutMessage(InMsg); \\\
.

.
Conn->.Receive(Msg)

T From CTI OS Server

/
/

s \
e o N
- oWaitStat AN
- o
SN

Client Thread

,/ pSkillGrp =
Agent.GetValue(“Skill; Group”,75);

CreateThread(pSkillGrp,
StatisticsProcThread);

oWaitAgent.SetMask(eDelivered);

Agent.MakeCall(“DN=12324");
oWaijtAget .\WaitOnMultipleEvents();

eCallDelivered

oWaitAgent

Send Thread

Transmit
Queue

Conn ->GetRequest(MsgReq);
.

Conn->.Send(Msg)

To CTI OS Serveer

This example shows clearly how an application can take advantage of workload
distribution by using different threads to do the work. CIL’s programming model
is easy to use and does not compromise extensibility. Moreover, the architecture
guaranties that all CTI OS objects remain consistent during the lifetime of the
application. CIL will only signal Wait Objects after the event owners (CTI OS

Objects) processed the event(s).

Although CIL is very robust, the application programmer is still responsible for

executing the following steps in order.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

| Chapter2

CTI 0S Client Interface Library Architecture

Step 1

Step 2

Step 3

Step 4

Note

Step 5

Subclassing W

Create a Wait Object at the beginning of each thread of the application that will
use references to CTI OS Objects.

CWaitObject * pWaitCall = pSession->CreatWaitObject (argsWaitParams”) ;
Before calling WaitOnMultipleEvents, set the mask of events for which the thread
will wait for.

PWaitCall->SetMask (eCallDeliveredMask) ;

Execute action on CTI OS Object that will result on events.
pAgent->MakeCall (“DN=1234").

Use the Wait Object created at the beginning of the thread to call
WaitOnMultipleEvents.

pWaitCall ->WaitOnMultipleEvents () ;

Never use wait objects other than those created in the current thread.

Destroy all Wait Objects created on a thread before it is terminated.

pSession->DestroyObject (oWaitCall) ;
argsWaitParams.Release ()

Subclassing

Subclassing is a mechanism that allows an application to replace CIL’s standard
implementation of an object with its own. Without subclassing, an application is
required to contain our object within their object and it is also required to define
a separate object to receive events. Subclassing eliminates this additional
overhead. Subclassing is particularly useful for the Call or Agent object.
Subclassing is only supported under C++ .

To use subclassing an application programmer must follow the following steps:

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

| Chapter2 CTI OS Client Interface Library Architecture

Subclassing W

Step 1 Create a class that derives from any of the standard OIF classes, as shown in the
following example.

class CSupportCall : public CCall

{

//Class members

private:
long m_tTalkingTime;
short m_nPrioryty;
CAduitTrail m_objAuditInfo;
protected:
public:
//Constructors and Destructors
CSupportCall () ;
~ CSupPortCall() ;
//Class Methods
private:
protected:
//Class public interface
public:
virtual long etTalkingTime () ;
virtual wvoid SetPriority () ;
//Events
public:
virtual void OnEvent (int _iEventID, Arguments &
rEventParam); //Overides CCall::OnEvent

//Event Handlers
protected:
void OnCallBegin (Arguments & rEventParam) ;
void OnEnd (Arguments & rEventParam) ;
//Object Factory declaration
DECLARE_CIL_ OBJECT_ FACTORY ()

}i

Step2 Declare an object factory for this class and implement the factory in the class
module, as shown in the following example.

#include “CIL.h”

//Implement Class factory
IMPLEMENT CIL_OBJECT FACTORY (CSupportCall)

CSupportCall: :CSupportCall ()

{

//members initalization goes here

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter2 CTI 0S Client Interface Library Architecture |

M Subclassing

}

CSupportCall:: ~ CSupportCall ()

{

}
[177

// Process Events Received from CTI OS Server
[1117177771777177771777777777

void CSupportCall::OnEvent (int iEventID, Arguments & rEventParam)

{

//cleanup goes here

switch (iEventID)

{

case eCallBeginEvent:
OnCallBegin (rEventParam) ;
break;
case eCallEndEvent:
OnCallEnd (rEventParam) ;
break;

//other events

}

//Let default processing at the CIL to happen
CCall: :OnEvent (rEventParam) ;

}

L1717 71777 707777777777 7777777777777777777777777777777777177771777777777
void CSupportCall::0OnCallBegin (Arguments & rEventParam)
{
CILRefArg & rCILRefArg = (CILRefArg &) GetValue (CURRENTAGENT) ;
CAgent * pCurrAgent = (CAgent *) rCILRefArg.GetValue() ;

m_objAuditInfo.TrackServiceRep (*pCurrAgent) ;
m_objAuditInfo.TrackStartTime (GetTime ()) ;
m_objAuditInfo.TrackPriority (GetPriority()) ;

rCILRefArg .Release() ;
pCurrAgent ->Release () ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter2

CTI 0S Client Interface Library Architecture

Step 3

Subclassing W

Register the class factory for your new subclass with the instance of the Session
object that will use this subclass instead of the default. It is important to remember
that only the Session where the factory was registered knows about it. If the
application uses more than one instance of a Session object it is required to
register the new class on all the other Sessions so they can use it. It is
recommended that all factories registrations be performed before any connection
is open. This guarantees that CIL will use the new classes to create new object
instances.

#include <iostream.h>
#include ”CIL.h”
#include “SupportCall.h”

void main (void)

{

CCtiOsSession ctiSession;

//Register Subclassed object factories
string strFactoryTypeName = _T("Call");
tCilObjectFactory newClassFactory =
GET _CIL OBJECT_FACTORY (CSupportCall) ;
ctiSession.SetFactory(strFactoryTypeName, newClassFactory);

//Continue with program

}

In the example, after SetFactory() was invoked, CIL registered the new factory
for calls. When a call event arrives and a new object is needed, the object manager
in Session will use the specified factory and instantiate a CCSupportCall object.
Session will treat this object as a if it was a CCall. To deliver incoming events it
will invoke OnEvent() on the object as usual. To illustrate, consider the
implementation of OnEvent and assume that the event passed by Session to the
object is eCallBeginEvent. In this case, CSupportCall maintains an audit trail of
who is handling the call, the time the call was assigned to the agent and sets the
priority of the call based on company business rules. After that code is executed
the object lets CIL to continue with the standard processing.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter2 CTI 0S Client Interface Library Architecture |

M Subclassing

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

R

Handling Events

The CTI OS Client Library makes events available to applications using a
publisher-subscriber design pattern. In this pattern, the client subscribes with CIL
and specifies the type of events it is interested in. After the subscription is
established in CIL, it will start forwarding events to the client application.

The subscription mechanism, in essence, is the same in all the environments
supported by CTI OS. The few differences that exist are explained later in this
chapter.

In order for a client application to be notified of events, it must first implement
an object or objects that derive from any other CIL interfaces:

IAllInOne, which contains event handlers for all the events that are processed
in the CIL, the interface.

IAgentEvents, which contains handlers for agent events.

IButtonEnablementEvents, which contains handlers for GUI enablement
events.

ICallEvents, which contains handlers for call events.
ISkillGroupEvents, which contains handlers for skill group events

ISessionEvents, which contains handlers for session events.

Finally, the application subscribes the new interface objects with CIL such that
messages can be forwarded.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter3 Handling Events |

M Handling Events in C++

Handling Events in C++

In order for a CIL C++ application to receive events, it must create a derivative
class from one of the event interfaces and then register the object or objects with
the session event publisher.

Creating a Subscriber Object Class

The event handlers in all the event interface classes in CIL for C++ are declared
as pure virtual functions, such that a derived class will have to provide an
implementation for each handler.

To facilitate this work CIL provides a set of adapter classes (Table 3-1) that
implement event handlers as virtual functions with an empty body. It is preferable
that application programmers create subclasses of the adapter classes rather than
of the interfaces themselves.

Table 3-1 CIL Adapter Classes

Adapter Class Description

AllInOneEventsAdapter Provide the default implementation for
the message handlers in IAllEvents

AgentEventsAdapter Provide the default implementation for
the message handlers in IAgentEvents

ButtonEnablementEventsAdapter Provide the default implementation for
the message handlers in
IButtonEnablementevents

CallEventsAdapter Provide the default implementation for
the message handlers in ICallEvents

SkillGroupEventsAdapter Provide the default implementation for
the message handlers in
ISkillGroupEvents

SessionEventsAdapter Provide the default implementation for

the message handlers in ISessionEvents

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter3

Handling Events

Creating a Subscriber Object Class W

The following example shows a class, which derives from CallEventsAdapter and
implements a few message handlers.

#include "CIL.h"

class MyCallEventSink : public CallEventsAdapter
{

public:

// Constructor

// Destructor

//We are interested only on these events
virtual void OnCallRequestFailed (Arguments & rArguments)
virtual void OnCallQueuedEvent (Arguments & rArguments) ;
virtual void OnCallDequeuedEvent (Arguments & rArguments) ;
virtual void OnCallReachedNetworkEvent (Arguments & rArguments) ;

Vi
//Notify the user and undo database transaction
void MyCallEventSink ::0nCallRequestFailed (Arguments & rArguments)

{

7

pWallBoard->NotifyUI (rArguments) ;
pDataBase->RollBack (m_CurTransaction) ;

//Registers arrival to queue and starts tracking of mean wait until
service

//For this call

void MyCallEventSink ::0nCallQueuedEvent (Arguments & rArguments)

{
}

//Registers departure from queue and stops tracking of mean wait until
service

//For this call

void MyCallEventSink ::0nCallDequeuedEvent (Arguments & rArguments)

{
}

//Keeps track of the calls that end up leaving the call center
void MyCallEventSink ::0nCallReachedNetworkEvent (Arguments &
rArguments)

{
}

pAuditTrail->StartTrackingMeanWait (rArguments) ;

pAuditTrail->StopTrackingMeanWait (rArguments) ;

pAuditTrail->RegisterDeparture (rArguments) ;

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter3 Handling Events |

M Registering a C++ Subscriber Object

Registering a C++ Subscriber Object

CIL only forwards events to a client application after an event subscriber object
is registered. The registration of subscribers in CIL for C++ takes place via the
Session object. The methods available from CCtiOsSession are as follows:

int AddAllInOneEventListener (IA11InOne * pAllInOneEvents) ;
int AddAgentEventListener (IAgentEvents * pAgentEvents) ;
int AddButtonEnablementEventListener (

IButtonEnablementEvents * pButtonEvents) ;

int AddCallEventListener (ICallEvents * pCallEvents) ;
int AddSkillGroupEventListener (ISkillGroupEvents *
pSkillGroupEvents) ;

intAddSessionEventListener (ISessionEvents * pSessionEvents) ;

Input Parameters

pAllInOneEvents

Points to an IAllInOne subscriber object.
pAgentEvents

Points to an TAgentEvents subscriber object.
pButtonEvents

Points to an IButtonEnablementEvents subscriber object.
pCallEvents

Points to an ICallEvents subscriber object.
pSkillGroupEvents

Points to an ISkillGroupEvents subscriber object.
pSessionEvents

Points to an ISessionEvents subscriber object.

Return Value

If successful it returns CIL_OK, otherwise it returns
E_CTIOS_INVALID_ARGUMENT.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter3 Handling Events

Unregistering Subscriber W

Example

CMyCtiApplication: :StartSubscriptionToEvents (void)

{
//Creates subscriber object
m_pCallSubscriber = new MyCallEventSink() ;

//Register Subscriber
m_ctiSession.AddCallEventListener ((ICallEvents *)

m_pCallSubscriber) ;

//More things to initialize

Unregistering Subscriber

In order to stop the flow of events to the client, the application has to remove the
subscriber from the session event publisher. The C++ methods provided by the
CCtiOsSession object are as shown:

int RemoveAllInOneEventListener (IA11InOne * pAllInOneEvents) ;
int RemoveAgentEventListener (IAgentEvents * pAgentEvents) ;
int RemoveButtonEnablementEventListener (

IButtonEnablementEvents * pButtonEvents) ;

int RemoveCallEventListener (ICallEvents * pCallEvents) ;
int RemoveSkillGroupEventListener (

ISkillGroupEvents * pSkillGroupEvents) ;
intRemoveSessionEventListener (ISessionEvents * pSessionEvents) ;

Input Parameters

pAllInOneEvents

Points to an IAllInOne subscriber object to be removed.
pAgentEvents

Points to an IAgentEvents subscriber object to be removed
pButtonEvents

Points to an IButtonEnablementEvents subscriber object to be removed

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter3 Handling Events |

M Handling Events in COM

pCallEvents

Points to an ICallEvents subscriber object to be removed

pSkillGroupEvents

Points to an ISkillGroupEvents subscriber object to be removed

pSessionEvents

Points to an ISessionEvents subscriber object to be removed

Return Value

If successful it returns CIL_OK, otherwise it returns
E_CTIOS_INVALID_ARGUMENT.

Example

CMyCtiApplication: :RevokeSubscriptionToEvents (void)

//UnRegister Subscriber
m_ctiSession.RemoveCallEventListener ((ICallEvents *)

m_pCallSubscriber) ;

//More things to initialize

Handling Events in COM

COM CIL client applications can be classified in two different groups:
e Automation based Applications.

e COM (ATL, MFC, COM SDK) based Applications.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter3

Handling Events

Handling Events incCOM

Automation Based Applications

The clients in this group include those applications built with MS Visual Basic,
MS Access, MS Fox Pro, MS Office, and other development environments that
make use of ActiveX controls and COM objects via Automation (IDispatch
interface). By definition a COM Server Object that supports Automation will fire
events to its Automation clients through one interface only. For this reason CIL
for COM exposes _IAllEvents for all its automation clients to use. The following
Visual Basic example shows how an Automation client application will subscribe
for events with the session object.

' VB sample for a simple CTIOS phone

' needs references to CTIOSCLIENTLib CTIOSSESSIONRESOLVERLib
‘and CTIOSARGUMENTSLib

1

' dim CTIOS session interface

' the session interface handles connect, setagent and others

Dim WithEvents m_Session As CTIOSCLIENTLib.Session

Private Sub m Session OnCallBegin (ByVal pDispParam As Object)
LogEvent "OnCallBegin", pDispParam
End Sub

Private Sub m Session_OnCallCleared (ByVal pDispParam As Object)
LogEvent "OnCallCleared", pDispParam
End Sub

Private Sub m Session OnCallConferenced (ByVal pDispParam As Object)
LogEvent "OnCallConferenced", pDispParam

End Sub

End Sub

ATL, MFC and COM SDK Based Applications

The clients in this group are all those applications built using ATL, MFC, or
Common object Model SDK. These applications are usually written in C++.
Client applications are usually created this way to take advantage of the
performance improvements that are obtained by using directly the v-tables and
IUnknown objects. Applications of this type tend to be more complex but faster.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter3 Handling Events |

M Handling Events in COM

In this model client applications subscribe for events with a COM server object
by registering an event sink instance in the client with the connection point at the
event interface from which events are expected. This is the standard protocol
defined in MS COM SDK. If a COM server provides more than one event
interface a client is allowed to connect to any of them.

The COM Session object publishes the following interfaces:
¢ JAllEvents

_IAgentEvents

_IButtonEnablementEvents
_ICallEvents
_ISkillGroupEvents

e [SessionEvents

When building a COM client application, an application programmer is free to

choose what interface or interfaces it wants the application to subscribe to. Then,
a CTI OS client application will be able to connect any of the interfaces published
by the COM session. After the application executes, it must drop its registration.

The following example shows how an ATL application will receive events for call
and Agents only.

//Call Event Sink

class ATL_NO_VTABLE CSinkCallEvents :

public CComObjectRootEx<CComSingleThreadModels,

public CComCoClass<CSinkCallEvents, & uuidof(_ICallEvents)>,
public IDispatchImpl< ICallEvents,

& uuidof (_ICallEvents),
&LIBID CTIOSCLIENTLib>,
public IDispEventImpl<l,
CSinkCallEvents,

& uuidof (_ICallEvents),

&LIBID CTIOSCLIENTLib, 1, 0>

{
}i

//Class definition

//Agent Event Sink

class ATL_NO_VTABLE CSinkAgentEvents :

public CComObjectRootEx<CComSingleThreadModels,

public CComCoClass<CSinkAgentEvents, &__uuidof (_IAgentEvents)>,

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter3 Handling Events

Handling Events incCOM

public IDispatchImpl< IAgentEvents,
& uuidof (_IAgentEvents),
&LIBID CTIOSCLIENTLib>,
public IDispEventImpl<l,
CSinkAgentEvents,

& uuidof (_IAgentEvents),

&LIBID CTIOSCLIENTLib, 1, 0>

{
}i

//Class definition

Registering Event Sink

//Register with the Session Object for Call Events
hr = CComObject<CSinkCallEventss>::CreateInstance(&m_pSinkCallEvents
)i
_ASSERTE (SUCCEEDED (hr)) ;
m_pSinkCallEvents-> AddRef () ;
m_pSinkCallEvents-> RegisterCallbackClass(this);
hr = m_pSinkCallEvents-> DispEventAdvise (m_pSession) ;
_ASSERTE (SUCCEEDED (hr)) ;

//Register with the Session Object for Agent Events
hr = CComObject<CSinkAgentEventss>::Createlnstance (
&m_pSinkAgentEvents) ;

_ASSERTE (SUCCEEDED (hr)) ;

m_pSinkAgentEvents-> AddRef () ;

m_pSinkAgentEvents-> RegisterCallbackClass(this);
hr = m_pSinkAgentEvents-> DispEventAdvise (m pSession) ;

_ASSERTE (SUCCEEDED (hr)) ;

Unregistering Event Sink

if (m_pSession)
{
// Stop event notification for ICallEvents
hr = m_pSinkCallEvents->DispEventUnadvise(m_pSession) ;
_ASSERTE(SUCCEEDED(hr));
m_pSinkCallEvents->Release() ;
m_pSinkCallEvents = NULL;

// Stop event notification for IAgentEvents

hr = m_pSinkAgentEvents->DispEventUnadvise(m_pSession);
_ASSERTE (SUCCEEDED (hr)) ;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter3 Handling Events |

M Handling Events in COM

m_pSinkAgentEvents->Release() ;
m_pSinkAgentEvents = NULL;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

, A
;‘CHAP‘I‘ERL‘4 3

Session Object

The session object establishes and maintains a connection to an active CTI OS
server. The object provides two main functions: automatically recovery from
connection failures and filtering and distributing events. The session object acts
as a class factory for agent call and skill group objects. The session object receives
all events from a CTI OS connection. It interprets the event, determines whether
it applies to an agent, an existing call, or whether it must create a new call object.

Typically, an application has a single instance of the session object. However,
there are no restrictions on the number or types of session connections from either
a single application or workstation. It is possible, and sometimes desirable, to
establish and manage multiple independent sessions. A restriction on agent login
applies. An agent may only be logged in once.

If there is more than one session object monitoring the same agent or call, each
session object will receive its own events. There is no guarantee on the order of
event receipt when there are multiple session objects.

The session object creates new objects upon receipt of an event only if the
targeted object does not exist. The session object maintains a list of agents, calls,
subgroups, and wait objects. It is important that the client application not delete
the objects; that makes the object reference invalid and can lead to unpredictable
results. In COM and C++ applications, all CTI OS objects support reference
counting. An application must release the reference count instead of deleting the
object.

If the session is released and terminated, the connection to CTI OS server is
dropped. Each object maintained by the session object (that is, any Agent, Call,
Skill Group, or Wait object) will be released. As long as no other references are
used by the client application, all objects are automatically removed from
memory.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter4 Session Object |

B Working With CTI 0S Objects

Working With CTI 0S Objects

A client application can access the objects maintained in the session using the
GetValue method. The application can obtain a list containing references to all the
objects, a list of a objects of particular type and a reference to one single object.

First, to get a list of all objects in a session, the client application would include
code similar to the following:

Dim argsAllObjects As Arguments
Dim argsAgents As Arguments
Dim argsCalls As Arguments
Dim argsSkills As Arguments
Dim strUOID As String

‘Gets all the references from Session grouped by object type
Set argsAllObjects = m session.GetValue("ObjectReferences")
‘Access each reference collection

Set argsAgents = argsAllObjects.GetValue ("Agents")

Set argsCalls = argsAllObjects.GetValue("Calls")

Set argsSkills = argsAllObjects.GetValue ("SkillGroups")

'Loop through Calls
Dim ctiCall As CTIOSCLIENTLib.Call
Dim sCallData As new Arguments
For nI = 1 To argsCalls.NumElements
Set ctiCall = argsCalls.GetElement (nI)
sCallData.AddItem “CallVariablel”, Format (Time, “Long Time”)
sCallData.AddItem “user.CustSrvAgent”, “CtiOSClient”
ctiCall. SetCallbData sCallData
Set ctiCall = Nothing
Next

This example shows that Session returns the reference to all the objects in an
embedded arguments array whose keys are “Agents”, “Calls” and “SkillGroups”.
The values corresponding to those keys are arguments arrays that use the
UniqueObjectID of each object as key and for value the actual reference to the
object.

If the client application is interested only on all the calls available at a given point
in time, it retrieves them from session as follows:

Dim argsCalls As Arguments
Dim strUOID As String

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object
Working With CTI 0S Objects W
‘Gets all calls from Session
Set argsCalls = m session.GetValue("Calls")
'Loop through Calls
Dim ctiCall As CTIOSCLIENTLib.Call
Dim sCallData As new Arguments
For nI = 1 To argsCalls.NumElements
strUOID = argsCalls.GetElementKey (nI)
Set ctiCall = argsCalls.GetElement (nI)
sCallData.AddItem “CallVariablel”, Format (Time, ”Long Time”)
sCallData.AddItem “user.CustSrvAgent”, “CtiOSClient”
ctiCall. SetCallData sCallData
‘Releases the reference to the call
Set ctiCall = Nothing
Next
‘Releases reference to collection
Set argsCalls = Nothing
The collection of calls is returned as an arguments array in which the key is the
UniqueObjectID of the object whose reference is returned as value when the
argument array is accessed either with GetElement(index) or GetValue(key). The
same procedure can be employed to retrieve Agents or Skill Groups.
Last, when the application only knows the UniqueObjectID of an object for which
it needs a reference. It uses GetValue from session as described in the following
example:
Private Sub m session OnCallDelivered(ByVal argEventParams As Object)
Dim ctiCall As CTIOSCLIENTLib. Call
Dim strUOID As String
strUOID = argEventParams.GetValue (“UniqueObjectID”)
' Compose string "UniqueObjectID=XXXXXX" to retrieve a Call
referenece
strUOID = m_session.GetValue ("Uniqueobjectid")
Dim strObjToRetrieve As String
strObjToRetrieve = "UniqueObjectID=" & strUOID
' Retrive Call Reference and use it
Set ctiCall = m_session.GetValue (strObjToRetrieve)
‘Pick up the call
CtiCall.Aswer
Set ctiCall = Nothing
End Sub
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01

Chapter4 Session Object |

H Methods

The application developer should note that the type of reference returned by
GetValue() and GetElement() variates from environment to environment as
follows:

Table 4-1 Returned References

Reference
Environment Type Description

C++ CILRefArg Any method returning a reference to a CTI
OS object will return a reference to the
helper class named CILRefArg (See
Chapter 8, “Helper Classes™) that contains
the actual reference to a CAgent, CCall or
CSkillGroup object instance.

COM Idispatch Any method returning a reference to a CTI
OS COM object will return a reference to
IAgent, ICall and ISkillGroup interfaces.

Methods

Table 4-2 lists the available session object methods.

Table 4-2 Session Object Methods

Method Description

Connect Establishes a connection to a CTI OS server.
Disconnect Closes the connection to the CTI OS server.
GetPropertyAttribute Retrieves attribute information for a specified

session property.

GetValue (also GetValuelnt, |Retrieves the value of a specified session property.

GetValueString)

isAgentMode Checks the current mode and returns true if agent
mode.

isSupervisorMode Checks the current mode and returns true if

supervisor mode.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

Methods
Table 4-2 Session Object Methods
MakeRequest Sends a message request to the CTI OS Server
OnEvent Specifies an action to take on occurrence of a

specified event.

RequestDesktopSettings Sends a message request to the CTI OS Server to
retrieve the desktop settings configured for this

site.
SetAgent Sets an agent to a session object.
SetCurrentCall Associates the current call to a session object
SetMessageFilter Sets a message filter that the client application

must pass in order to connect in Monitor Mode,

Connect
The Connect method establishes a connection to a CTI OS server. The application
must provide the name or TCP/IP address of at least one CTI OS server.
Syntax
C++
int Connect (Arguments& rArguments) ;
CoOM

HRESULT Connect([in] VARIANT * pVariantArgs) ;

Input Parameters

rArguments

Reference to an arguments array containing the connection parameters listed
in Table 4-3.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter4 Session Object |

Bl Methods
Table 4-3 Connect Parameters
Parameter Meaning
Ctios, or ctiosA |Name or tcp/ip address of a CTI OS server
CtiosB Name or tcp/ip address of alternate CTI OS server.
Port, or portA (optional) Tcp/ip port for ctiosA.
PortB (optional) Tcp/ip port for ctiosB
Hb, or heartbeat |(optional) Heartbeat time, expressed in seconds.
pVariantArgs
Pointer to a variant that contains a pointer to an [Arguments object containing
the connection parameters listed on Table 4-3.
Return Values
C++
Return Code When Returned
CIL_OK If Successful
E_CTIOS_IN_FAILOVER If the Session object has started the
connection recovery algorithm
E_CTIOS_INVALID_PROPERTY |When a parameter passed in the
connection parameters is invalid
COM

If the method was able to connect it returns S_OK, otherwise it returns E_FAIL.
To determine the error cause you can access the object’s LASTERROR property.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

Examples

C++

try

{
Arguments &rArgSessionConn = Arguments::CreatelInstance() ;
rArgSessionConn.AddItem (CTIOSA, "localhost");
rArgSessionConn.AddItem (PORTA, 42028) ;
rArgSessionConn.AddItem (CTIOSB, "localhost");
rArgSessionConn.AddItem (PORTB, 42028) ;
rArgSessionConn.AddItem (HEARTBEAT, 5);

nRetVal = ctiSession.Connect (rArgSessionConn) ;
rArgSessionConn.Release () ;

if (CIL_FAILED (nRetVal))

{

switch (nRetVal)
case E_CTIOS IN FAILOVER:
printf (“Session is recovering from failure..”);
break;
case E _CTIOS_INVALID PROPERTY:

printf (“*Failed to connect. Invalid parameter...

catch (.) { }

COM C++

HRESULT hr = S_OK;

IArgumentsPtr arConnectArgs;
VARIANT vParam;

VariantInit (&vParam) ;

hr = arConnectArgs.CreateInstance (
OLESTR ("CtiOsComArguments.ComArguments")) ;

vParam.vt = VT _DISPATCH;
hr = arConnectArgs->QueryInterface (IID_IDispatch ,

(void **) &vParam.pdispval) ;
m_pSession->Connect (&vParam) ;

Methods W

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter4 Session Object |

H Methods

VB

Disconnect

Syntax

C++

COM

Parameters

arConnectArgs =

NULL;

' Prepares the connect request
Dim m_Args As New Arguments

m_Args.
m_Args.
m_Args.
m_Args.
m_Args.

AddItem
AddItem
AddItem
AddItem
AddItem

"CtiOsA", CStr(m_SideA)
"PortA", m_PortA
"CtiOsB", CStr(m_SideB)
"PortB", m_PortB
"Heartbeat", m Heartbeat

Dim vRequestParam As Variant
Set vRequestParam = m_Args

m_Session.Connect vRequestParam

Set m_Args = Nothing

The Disconnect method disconnects the open connection to the CTI OS server. If
there is more than one session object connected, only the object that requested the
connection to be closed will be disconnected. The session object will not receive
any additional events after disconnect.

void Disconnect

HRESULT Disconnect

None.

()

()3

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

Return Values

C++

None.
com

Always returns S_OK .
Examples
C++

ctiSession.Disconnect () ;
COM C++

m_pSession-> Disconnect () ;
VB

m_Session. Disconnect

GetPropertyAttribute

Methods W

The GetPropertyAttribute method retrieves attribute information for any of the
session properties listed in Table 4-4. For additional information on GetValue and
GetPropertyAttributes, see Chapter 1, “Introduction.”

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter4 Session Object |

H Methods

Table 4-4 Session Properties

Property Type Description

CurrentServer string Name or tcp/ip address of the current
connected CTI OS server. The value is
blank when the client is not connected
to any server. The name may able be
blank if it has temporarily lost the
current connection even if it is trying to
reconnect. Otherwise, the name of the
server should be the name of CTI OS
server A or B.

CurrentPort integer Tcp/ip address of the current connected
CTI OS server. May be port A or B.
ConnectedSince integer Time of day in milliseconds when
connected.
CurrentAgent object Returns reference to current agent
reference object set by the SetAgent method.

Object reference is incremented by one
and must be released when no longer
used.

ConnectionMode integer value eAgentConnection,
eMonitorConnection, or
eNotConnected.

LastError integer value Last error code, if any. Otherwise this
value is 0.

TryingServer string Contains the name or tcp/ip address of
the server where a connection is being
attempted. The value is blank if no
connection is being attempted (see
CurrentServer). The name of the server
should be the name of CTI OS server A
or B.

TryingPort integer Tcp/ip address of the server where a
connection is being attempted. May be
port A or B.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

Methods

Table 4-4 Session Properties (continued)

Property Type Description

TryingSince integer Time of day in milliseconds when try
began.

MessageFilter string Message expression.

Ctios, or ctiosA string Name or tcp/ip address passed as CTI
OS server A.

CtiosB string Name or tcp/ip address passed as CTI
OS server B

Port, or portA integer Tcp/ip port for ctiosA.

PortB integer Tcp/ip port for ctiosB.

Hb, or heartbeat integer Heartbeat time, expressed in seconds.

If not set, default heartbeats are
configurable on CTI OS server.

MaxHeartbeats integer Max heartbeats that can be missed
before switching CTI OS servers.
Default is 3 missed heartbeats.

ActiveCall object Valid only if in Agent Connect mode.
reference When there is more than one call, this
references the current active call. The
current active call is the call just
answered. For additional information,
refer to ActiveCall in the Call object.

ObjectReferences argument list | Array of object references maintained
by the session object. Typically
includes AgentReferences,
CallReferences, and
SkillGroupReferences. Can also
include EmailReferences or Chat

References.
AgentReference agent object Reference to Agent Array.
Array reference
CallReferenceArray |call object Reference to Call Array.
reference

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter4 Session Object |

Bl Methods
Table 4-4 Session Properties (continued)
Property Type Description
SkillGroup call skill group |Reference to SkillGroup Array.
Reference Array reference
EmailReference call object Reference to Call Array.
Array reference
Syntax

GetPropertyAttribute (propertyname, attribute requested)

GetValue

The GetValue method retrieves the value for any property listed in Table 4-4. For
additional information on GetValue and GetPropertyAttributes, see Chapter 1,
“Introduction.”.

Syntax

GetValue (key)

isAgentMode

The isAgentMode method checks if the current connection mode is agent mode.

Syntax

C++

bool isAgentMode () ;

COM

HRESULT isAgentMode ([out, retvall]
VARIANT BOOL * pbAgentMode) ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

Methods W

Parameters

None.

Return Values

C++

If the current session is on agent mode it returns true, otherwise it returns false.
CcoM

If the current session is on agent mode it returns VARIANT_TRUE, otherwise it

returns VARIANT_FALSE.
Examples
C++

if (m_pSession->isAgentMode ())

{

fnAutoLogin() ;

1
COM C++

VARIANT BOOL bRet = VARIANT FALSE;

m_pSession->isAgentMode (&bRet) ;

if (bRet == AVRIANT TRUE)
{
fnAutoLogin () ;

1
VB

bRet = m_Session.isAgentMode

if bRet = True Then
fnAutoLogin
End If

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter4 Session Object |

H Methods
isSupervisorMode
The isSupervisorMode method checks if the current connection mode is supervisor
mode.
Syntax
C++
bool isSupervisorMode () ;
com
HRESULT isSupervisorMode ([out, retvall
VARIANT BOOL * pbAgentMode) ;
Parameters
None.
Return Values
C++
If the current session is on supervisor mode it returns true, otherwise it returns
false.
com

If the current session is on supervisor mode it returns VARIANT_TRUE.
Otherwise it returns VARIANT _FALSE.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

Methods W

Examples
C++
if (m_pSession->isSupervisorMode ())
{
fnAutoLogin() ;
}
COM C++
VARIANT BOOL DbRet = VARIANT_ FALSE;
m_pSession->isSupervisorMode (&bRet) ;
if (bRet == AVRIANT_ TRUE)
{
fnAutoLogin() ;
}
VB
bRet = m_Session.isSupervisorMode

if bRet = True Then
fnAutoLogin
End If

MakeRequest

The MakeRequest method sends a message request to the CTI OS Server. Any
application or object that make use of the method is required to include as part or
the parameters a UniqueObjectID that identifies what object is requiring the
action. The objects created using CIL (e.g. Calls, Agents and Skill Groups)
always include their UniqueObjectID as part of the message request by default.

Syntax

C++

void MakeRequest (int nRequestId, Arguments & rRegParam) ;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter4 Session Object |

H Methods

CoOM

HRESULT MakeRequest ([in] int nRequestId,
[in] VARIANT *pRegParams)

Input Parameters

nRequestld

Enumerated value that identifies the command request to be executed by CTI
OS Server.

rReqParam
Reference to an arguments array that contains the request parameters.
pReqParams

Pointer to a variant that contains a pointer to an IArguments object that that
contains the request parameters.

Return Values

C++
None.
COM
Always returns S_OK.
Examples
C++

Args. AddItem(“DialNumber”, “1234");
Args. AddItem(“UniqueObjectID”,

ctiAgent.GetValueString (“*UniqueObjectID”)) ;
m_pSession->MakeRequest (eMakeCallRequest, Args);

Args.Release() ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

COM C++
HRESULT hr = S_OK;
IArgumentsPtr Args;
VARIANT vParam;
VariantInit (&vParam) ;
hr = Args.CreateInstance (

OLESTR ("CtiOsComArguments.ComArguments")) ;

Args. AddItem(“DialNumber”, “1234");
Args. AddItem(“UniqueObjectID”,

ctiAgent->GetValueString (“UniqueObjectID”)) ;

vParam.vt = VT _DISPATCH;
hr = Args ->QueryInterface(IID IDispatch ,

&vParam.pdispval) ;
m_pSession->MakeRequest (eMakeCallRequest,

Args = NULL;

VB

' Prepares the connect request
Dim m_Args As New Arguments

m_Args. AddItem “DialNumber”, “1234"
m_Args. AddItem “UniqueObjectID”,

ctiAgent.GetValueString (“UniqueObjectID”)

Dim vRequestParam As Variant
Set vRequestParam = m_Args

(void *¥*)

& vParam) ;

m_pSession.MakeRequest eMakeCallRequest, Args

Methods W

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter4 Session Object |

H Methods

OnEvent (C++ Only)

The OnEvent method specifies an action to take on occurrence of a specified

event. The session object receives every event. The default behavior of the session
object is to examine the event type and route the event to the proper corresponding
object: agent, call, or skill group object. If this represents a new agent, new call,
or new skill group, it will create a new object and pass the event to the new object.

Syntax
virtual void OnEvent (int iEventID, Arguments & rEventParam) ;
Input Parameters
iEventID
Enumerated value that identifies the event received by CIL. Appendix CIL
Messages.
rEventParam

Reference to an Arguments object that that contains the event parameters.

Return Values

None.

RequestDesktopSettings

The RequestDesktopSettings method sends a request to the CTI OS Server to
download the configuration settings defined for a desktop application. A client
application can request the download for either an Agent or a Supervisor desktop.
The possible values for desktop_type are eDesktopTypeUnknown (-1),
eAgentDesktop (0), and eSupervisorDesktop (1). The CTI OS Server responds to
a successful request with an eGlobalSettingsDownloadConf event.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

Syntax

SetAgent

Methods W

RequestDesktopSettings (desktop_type)

The SetAgent method assigns an agent to the session. This is necessary to
establish an Agent Mode connection. If no agent is set, the agent associated with
the Agent object will be unable to login.

When the Agent is connected to the session object, the agent object's reference
count is increased by one. The reference will be decreased by one when any of the
following occurs: the session object is deleted; a new agent is set using SetAgent,
or ResetAgent is called.

The current agent object reference can be retrieved using
GetValue(“CurrentAgent”). The value is only set when a reference was set by
SetAgent(). If no agent reference was set, the value returned in null.

Syntax
C++
int SetAgent (CAgent & ctiAgent) ;
COM
HRESULT SetAgent ([in] LPDISPATCH pDispParam) ;
Input Parameters
ctiAgent
Reference to a CAgent object instance of the agent to be set.
pDispParam
Pointer to an IAgent object instance of the agent to be set.
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Chapter4 Session Object |

H Methods

Return Values

C++
If the agent was set in the session it returns CIL_OK, otherwise it returns
CIL_FAIL.
CcoM
If the agent was set in the session it will return S_OK, otherwise E_FAIL.
Examples
C++
CAgent ctiAgent;
ctiAgent .SetValue (AGENTID, "23840");
ctiAgent.SetValue (PASSWORD, "23840");
ctiAgent .SetValue (PERIPHERALID, 5000) ;
ctiAgent .SetValue (INSTRUMENT, "23801");
nRetVal = ctiSession.SetAgent (ctiAgent) ;
if (CIL_FAILED (nRetVal))
{
printf (" Failed to set Agent. RetVal = %d...\n", nRetVal);
exit (1) ;
1
COM C++

IAgentPtr m_ pAgent;
m_pAgent.CreateInstance (OLESTR ("CTIOSClient.ComAgent")) ;
m_pAgent->SetValue (AGENTID, "23840") ;
m_pAgent->SetValue (PASSWORD, "23840");
m_pAgent->SetValue (PERIPHERALID, 5000) ;
m_pAgent->SetValue (INSTRUMENT, "23801");

m_pSession->SetAgent (m_pAgent) ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

Methods
VB
Dim ctiAgent As New CTIOSClientLib.Agent
ctiAgent.SetValue “AgentID”, "23840"
ctiAgent.SetValue “Password” , "23840"
ctiAgent.SetValue “PeeripheralID”, 5000
ctiAgent.SetValue “Instrument”, "23801"
nRetVal = ctiSession.SetAgent (ctiAgent) ;
If nRetVal = CIL_FAIL Then
Print " Failed to set Agent. RetVal = “ & nRetVal &
Chr$(10) & Chrs(13)
End
End If

SetCurrentCall

The SetCurrentCall method associates the current call to a session object. It lets you
set any call to the current call.

Syntax
C++
void SetCurrentCall (CCall * pCall);
com
HRESULT SetCurrentCall ([in] LPDISPATCH pCallParam) ;
Input Parameters
pCall

Pointer to the CCall to make current.
pCallParam

Pointer to an ICall to make current .

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter4 Session Object |

H Methods

Return Values

C++
None.
com
Always returns S_OK
Examples
C++
void CMyListBox::0nSelChange (...)
{
int nCurSel = this->GetCurSel() ;
CCall * pCall = GetItemDataPtr (nCurSel);
m_pSesion->SetCurrentCall (pCall) ;
}
COM C++
void CMyActiveListBox::0nSelChange (..)
{
int nCurSel = this->GetCurSel() ;
ICall * pCall = GetItemDataPtr (nCurSel);
m_pSesion->SetCurrentCall ((LPDISPATCH)pCall) ;
}
VB

Private Sub m_session_OnCallBegin(ByVal pDispParam As Object)
' Get UniqueObjectID to get the actual call and answer right away

Dim m_uid As String
m_uid = pDispParam.GetValue ("UniqueObjectID")

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapterd

Session Object

Methods W

Dim tmp As String
tmp = "UniqueObjectID=" + m_uid

' Get call object
Set m_call = m_session.GetValue (tmp)

m_session.SetCurrentCall (m_call)
m_call.Answer () ;

End Sub

SetMessageFilter

The SetMessageFilter method sets a message filter that the client application must
pass in order to connect in Monitor Mode; the message filter is a string value that
selects which agents and/or which system events to monitor. It is possible to
monitor events on one or more agents, skill groups, or call events. To receive

pre-route events, you must set up a Monitor Mode connection and filter on
OnCallPreRoute.

A filter is a set of conditions that an event must meet in order to be sent to the
client. It consists of zero or more logical operations performed on one or more
expressions.

Operator
Logical operators allow a filter to specify more than one expression in one single
filter. Table 4-5 lists the logical operators supported by CTI OS.
Table 4-5 CTI OS Logical Operators
Operator Description
AND Logical AND
; Logical AND
OR Logical OR
NOT Logical NOT
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Chapter4 Session Object |

Bl Methods
Expression
An expression is a single condition within a filter. An expression can consist of
an event (such as OnCallBegin or OnCallEnd), or a keyword and its required
value separated by “=". For example,
AgentID=222
CallvVariablel=mike
SkillGroupNumber=22,23
Extension=23+*
Keyword

A keyword is a string that is recognized by the server. Table 4-6 lists the most
common CTI OS keywords and events.

Table 4-6 Common CTI OS Keywords and Events

Keywords Events

AgentlID, Instrument, OnAgentStateChange,
AgentExtension, AgentState OnNewAgentStatistics,
OnQueryAgentStateConf

SkillGroupNumber, OnNewSkillGroupStatistics
SkillGoupPriority

CallID, CallState, OnCallPreRoute, OnCallBegin,
CallVarablel, ..., OnCallDelivered,
CallVariable10, OnCallEstablished, OnCallHeld,
user.NamedVariable, OnCallReceived,
user.NamedArray[Offset], OnCallTransferlnit,

UserToUser, WrapUp OnCallTransferComplete,

OncCallCleared, OnCallEnd

For a complete list see Appendix B, “CTI OS Keywords.”

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

Methods W

Value

The value of a keyword may be expressed in several manners. It may be expressed
explicitly as a single value:

222

It may be expressed as a list of allowed values separated by commas:

222,333,444

It may be expressed using the wildcard “*” to represent any character

22* , which means any character string beginning with 22.

It may be a combination of the preceding:

222,333 ,44%*

Syntax

C++

int SetMessageFilter (string strFilter)

COM

HRESULT SetMessageFilter ([in] BSTR bstrFilter) ;

Input Parameters

strFilter
String text containing the message filter.
bstrFilter

String text containing the message filter.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter4 Session Object |

H Methods

Return Values

C++

COM C++

Examples

C++

If successful it returns CIL_OK. Otherwise it returns
E_CTIOS_MODE_CONFLICT, indicating that the session cannot be set on
monitor mode because the session is already in a mode different than monitor.

Always returns S_OK. To determine the error cause, access the object’s
LASTERROR property.

string strFilterl, strFilter2, strFilter3, strFilter4, strFilter5;

//Filters events for all agents that start with 2381
strFilterl = “AgentID=2381*";

//Filters events for skills groups 23 and 24
strFilter2 = “SkillGroupNumber=23,24”";

//Filters only OnCallBegin events for the entire contact center
strFilter3 = “OnCallBegin”

//Filters messages SkillGroups and OnCallbegin
strFilter4 = “SkillGroupNumber=23,24;0OnCallBegin”

//Filters messages all agents that start with 2381 or the bigining and

end of a call strFilter5 = “(AgentID=2381*) OR (OnCallBegin AND
OnCallEnd)”;

m_pSession->SetMessageFilter (strFilter4) ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

ISessionEvents Interface M

COM C++
BSTR bstrFilter =
SysAllocString (OLESTR (“SkillGroupNumber=23,24;0nCallBegin”)) ;
m_pSession->SetMessageFilter (bstrFilter) ;
SysFreeString (bstrFilter) ;
VB

m_Session. SetMessageFilter “SkillGroupNumber=23,24;0OnCallBegin”

ISessionEvents Interface

The Session object fires events on the ISessionEvents interface. The following
events are published to subscribers of the ISessionEvents interface.

OnConnection

The OnConnection event is generated after the Connect method succeeds. It
returns the name of the connected server and the connection time of day. The
client application need not take any special action but may use it to display
connection status.

Field Description

TimeOfDay Integer value with time of day expressed in milliseconds.

CurrentServer Name or tcp/ip address of the current connected CTI OS
Server.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter4 Session Object |

M 1SessionEvents Interface

OnConnectionFailure

OnHeartheat

The OnConnectionFailure event is generated when an already established. It
returns the name of the failed connected server and the failure time of day. Retry
is automatic and can be followed by an OnConnection when connection has been
successfully reestablished. The client application need not take any special action
but may use it to display connection status.

Field Description
TimeOfDay Integer value with time of day expressed in milliseconds.
FailedServer Name or tcp/ip address of the server that has failed to

respond. See reason code.

ReasonCode CTIOS_SERVER_CONNECTIONBROKEN,
CTIOS_SERVER_MISSINGHEARTBEATS

The OnHeartbeat event is generated when a heartbeat response is received from a
CTI OS server. It returns the time of day.

Field Description

TimeOfDay Integer value with time of day expressed in milliseconds.

OnMissingHeartheat

The OnMissingHeartbeat event is generated when an expected heartbeat is not
received. It returns the number of consecutive heartbeats missed and time of day.
When the number of heartbeats missed equals or exceeds the maximum number
of heartbeats allowed (set in the MaxHeartbeats property) the connection to a new
CTI OS server is automatically restarted.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter4 Session Object

ISessionEvents Interface M

Field Description
TimeOfDay Integer value with time of day expressed in
milliseconds.

ConsecutiveMissedHeartbeats |Integer value with the number of heartbeats
missed.

HeartbeatInterval Integer value with the heartbeat interval, in
milliseconds.

OnMonitorModeEstablished

The OnMonitorModeEstablished event is generated when Monitor Mode is
established or released. There is no corresponding OnAgentModeEstablished.
Agent mode can be identified by the first OnAgentStateChange event. The event
returns the current state of the Monitor Mode, either
CTIOS_SERVER_MONITORMODE, or
CTIOS_SERVER_MONITORMODE_EXIT.

Field Description

TimeOfDay Integer value with time of day expressed in milliseconds.

Mode CTIOS_SERVER_MONITORMODE or
CTIOS_SERVER_MONITORMODE_EXIT

OnConnectionClosed

The OnConnectionClosed message is generated when a connection is terminated.

Field Description

MessagelD Integer, Message ID

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter4 Session Object |

M 1SessionEvents Interface

OnConnectionRejected

The OnConnectionRejected message is generated when a connection is rejected.

Field Description

EventTime Integer, Time of day
ReasonCode Integer, Reason code
MessagelD Integer, Message ID

OnSetAgentModeEvent

The OnSetAgentModeEvent message is generated when the agent mode is set.
This message has no fields.

OnCurrentCallChanged

The OnCurrentCallChanged message is generated when the current call has
changed to another call.This message has no fields.

OnCurrentAgentReset

The OnCurrentAgentReset message is generated when the current agent is
removed from the session. This message has no fields.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

Methods

, A
leCHAPAERL‘.Ba

Agent Object

The Agent object provides an abstraction of Agent behavior. It incorporates all
information necessary to login to various devices and servers, such as an ACD,
and email and collaboration servers. The object stores specific information, which
can include agent id, password, instrument, extension, email address and skill
group(s). The Login/ Logout method is used to login or out of specific servers.

If the agent is logged into an ACD, the agent object will receive agent state events.
It will also receive other agent information such as Agent Statistics and Skill
Group information. Skill Group information is encapsulated in a separate
SkillGroup object, discussed in Chapter 1. An agent can be a member of more
than one skill group and methods exist to access each skill group. The Skill Group
object receives skill group statistics.

Table 5-1 lists the supported Agent object methods.

Table 5-1 Agent Object Methods

Method Description

AgentTeamList Retrieves the current agent team list.
BadCallLine Informs the CTI OS Server of a bad line.
Disable AgentStatistics Disables agent statistic messages.
DisableSkillGroupStatistics Disables skill group statistic messages.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter5 Agent Object |

H Methods

Table 5-1 Agent Object Methods (continued)

Method

Description

Emergency

Lets an agent makes an emergency call to
the supervisor.

EnableAgentStatistics

Enables agent statistic messages.

EnableSkillGroupStatistics

Enables skill group statistic messages.

GetAgentState Returns the current agent state.

GetElement Retrieves a property from the Agent object
based on the property’s index value.

GetMonitored Agent Returns the agent object that is currently
being monitored.

GetMonitoredCall Returns the call object that is currently
being monitored.

GetPropertyAttribute Retrieves attribute information for a
specified agent property.

GetSkillGroups Returns an array of SkillGroups objects

GetValue (also contains
GetValuelnt, GetValueString)

Retrieves a property from the Agent object
based on the property’s name key.

Login Logs an agent into the ACD.

Logout Logs an agent out of the ACD.

MakeCall Initiates a call to a device or agent

MonitorAgentTeam Enables monitoring of a specified agent
team.

MonitorAgentTeamAll Enables monitoring of all agent teams.

OnEvent Specifies an action to take when an agent
object receives agent state, agent statistic
and associated skill group events.

SendChatMessage, Send asynchronous messages between

SendUserMessage CTI clients

SetAgentState Requests a new agent state.

SetMonitoredAgent Sets an agent object to be monitored.

SetMonitoredCall Sets a call object to be monitored.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter5 Agent Object

Methods
Table 5-1 Agent Object Methods (continued)
Method Description
SetValue Sets a value for a property name key.
SuperviseCall Enables monitoring a call of an agent on
your team.
SupervisorAssist Lets an agent makes a request for
assistance call to the supervisor.

AgentTeamList

The AgentTeamList method retrieves the current agent team list.

Syntax
C++

int RequestAgentTeamList ();
COM (standard COM API)

HRESULT AgentTeamList ();
Parameters

None.
Return Values
C++

If the method was able to get AgentTeamL.ist, it returns CIL_OK. Otherwise, it
returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter5 Agent Object |

W Methods
com
If the method was able to get AgentTeamList, it returns S_OK. Otherwise, it
returns E_FAIL.
Examples
C++
CAgent * pAgent = NULL;
Int nRet = 0;
// Get a valid agent pointer
if (pAgent)
{
nRet = pAgent->RequestAgentTeamList () ;
// Check if the RequestAgentTeamList method failed
1
COM C++

HRESULT hr =S_OK;
IAgentPtr pAgent = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

hr = pAgent->AgentTeamList () ;

if (FAILED (hr))

{
}

pAgent = NULL;

}

// You might want to log an error description HERE

return hr;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

BadCallLine

Methods W

The BadCallLine method lets the CTI OS server know that the quality of a line is
bad.

Syntax
C++
int BadCallLineRequest ();
CoOM
HRESULT BadCallLine ();
Parameters
None.
Return Values
C++
If the method was able to send BadCallLine request, it returns CIL_OK.
Otherwise, it returns error code E_CTIOS_IN_FAILOVER if the session is on
FailOver mode.
COM
If the method was able to send BadCallLine request, it returns S_OK. Otherwise,
it returns E_FAIL.
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Chapter5 Agent Object |

Hl Methods
Examples
C++
CAgent * pAgent = NULL;
Int nRet = 0;
// Get a valid agent pointer
if (pAgent)
{
nRet = pAgent-> BadCallLineRequest () ;
// Check if the BadCallLineRequest method failed
1
\COM C++
HRESULT hr =S_OK;
IAgentPtr pAgent = NULL;
// First, get agent object and make sure it is valid pointer
if (pAgent)
{
hr = pAgent->BadCallLine () ;
1f (FAILED (hr))
{
// You might want to log an error description HERE
}
pAgent = NULL;
1
return hr;

The Emergency method lets an agent makes an emergency call to the supervisor.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

Syntax
C++

int EmergencyCallRequest ();
com

HRESULT Emergency ();
Parameters

None.

Return Values

C++
If the method was able to send Emergency request, it returns CIL_OK. Otherwise,
it returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver
mode.

CoOM
If the method was able to send Emergency request, it returns S_OK. Otherwise, it
returns E_FAIL.

Examples

C++

CAgent * pAgent = NULL;
Int nRet = 0;

// Get a valid agent pointer
if (pAgent)
{
nRet = pAgent-> EmergencyCallRequest () ;
// Check if the EmergencyCallRequest method failed

}

Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01

Chapter5 Agent Object |

H Methods

COM C++

HRESULT hr =S_OK;
IAgentPtr pAgent = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

hr = pAgent-> Emergency () ;

if (FAILED (hr))

{
}

pAgent = NULL;

}

// You might want to log an error description HERE

return hr;

EnableAgentStatistics/DisableAgentStatistics

Syntax

C++

CoM

These methods enable or disable agent statistic messages. You should supply an
empty Arguments array for these methods.

When statistics are enabled, the client will periodically receive Agent statistics as
an OnAgentStatistics message. The frequency at which statistics messages are
sent is configured on the CTI OS Server. See Table 5-3 for a description of the
individual agent statistics and how to access them.

int EnableAgentStatistics (Arguments & rArguments) ;
int DisableAgentStatistics (Arguments & rArguments) ;

HRESULT EnableSkillGroupStatistics ([in] VARIANT * pVariantArgs) ;
HRESULT DisableSkillGroupStatistics ([in] VARIANT * pVariantArgs)

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

Parameters

pVariantArgs

Pointer to variant that wraps an empty argument

Return Values

C++
If the methods EnableAgentStatistics / DisableAgentStatistics succeed , it returns
CIL_OK. Otherwise, it returns error code E_CTIOS_IN_FAILOVER if the
session is on FailOver mode.

COM
If the Enable AgentStatisticsand Disable AgentStatistics methods succeed, they
return S_OK. Otherwise, they return E_FAIL.

Examples

C++

CAgent * pAgent = NULL;
Int nRet = 0;

// Get a valid agent pointer
if (pAgent)
// Create an empty argument
Argument & rArgs;
nRet = pAgent-> EnableAgentStatistics (rArgs);

// Check if the EnableAgentStatistics method failed

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter 5

Agent Object |

H Methods

COM C++

HRESULT hr =S_OK;

IAgentPtr pAgent = NULL;

IArguments * pArgs = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

// Create and empty argument

hr = pAgent-> DisableAgentStatistics (pArgs) ;

1f (FAILED (hr))

{
}

pAgent = NULL;

}

// You might want to log an error description HERE

return hr;

GetAgentState

The GetAgentState method returns the current agent state as an
enumCTIOSAgentState.

Syntax

C++

virtual enumCTIOS_AgentState GetAgentState();

COM (standard COM API)

HRESULT GetAgentState ([out, retval] long * pAgentStateCode

Output Parameters

pAgentStateCode

Pointer that returns agent state

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter5 Agent Object

Methods W

Return Values

C++
Returns the agent state.
coMm
If the method succeeds, it returns S_OK and the agent state. Otherwise, it returns
E_FAIL.
Examples
C++
CAgent * pAgent = NULL;
enumCTIOS AgentState AgentState;
// Get a valid agent pointer
if (pAgent)
{
AgentState = pAgent-> GetAgentState () ;
// Check if the GetAgentState method failed
}
COM C++

HRESULT hr =S_OK;

IAgentPtr pAgent = NULL;

Long AgentState;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

hr = pAgent-> GetAgentState (&AgentState);

if (FAILED (hr))

{
}

pAgent = NULL;

}

// You might want to log an error description HERE

return hr;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter5 Agent Object |

Hl Methods

VB
Dim myState As ctios.enumCTIOSAgentState
MyState = agent.GetAgentState

The GetElement method retrieves an element from an array property, see
Table 5-2. For additional information see Chapter 1, “Introduction.”.

GetMonitoredAgent

The GetMonitoredAgent method returns the agent object that is currently being
monitored.

Syntax

C++

virtual CAgent * GetMonitoredAgent () ;

CoM

HRESULT GetMonitoredAgent ([out] IAgent ** pIAgent);

Output Parameters

pIAgent

The returned agent object

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

Return Values

C++
An agent object.
coMm
If the method succeeds, it returns S_OK and an agent object. Otherwise, it returns
E_FAIL.
Examples
C++
CAgent * pAgent = NULL;
// Get a valid agent pointer
if (pAgent)
{
CAgent * pMonitoredAgent = pAgent-> GetMonitoredAgent () ;
// Check if the pMonitoredAgent is a good
pointer
}
COM C++

HRESULT hr =S_OK;

IAgentPtr pAgent = NULL;

IAgentPtr pMonitoredAgent = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

hr = pAgent-> GetMonitoredAgent (&pMonitoredAgent) ;

if (FAILED (hr))

{
}

pAgent = NULL;

}

// You might want to log an error description HERE

return hr;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter5 Agent Object |

H Methods

GetMonitoredCall

The GetMonitoredCall method returns the call object that is being monitored.

Syntax

C++

virtual CCall * GetMonitoredCall() ;

COM (standard COM API)

HRESULT GetMonitoredCall ([out 1] ICall ** pICall);

Output Parameters
pIAgent

The returned call object

Return Values

C++

Returns a call object.

COM

If the method succeeds, it returns S_OK and a call object. Otherwise, it returns
E_FAIL.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

Examples
C++
CAgent * pAgent = NULL;
// Get a valid agent pointer
if (pAgent)
{
CCall * pMonitoredCall = pAgent-> GetMonitoredCall () ;
// Check if the pMonitoredCall is a good
pointer
1
COM C++

HRESULT hr =S_OK;

IAgentPtr pAgent = NULL;

ICallPtr pMonitoredCall = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

hr = pAgent-> GetMonitoredCall (&pMonitoredCall) ;

1f (FAILED (hr))

{
}

pAgent = NULL;

}

// You might want to log an error description HERE

return hr;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter5 Agent Object |

H Methods

GetPropertyAttribute

Syntax

GetPropertyAttribute(propertyname, attribute requested)

The GetPropertyAttribute method retrieves attribute information for any of the
properties listed in Table 5-2. For additional information on
GetPropertyAttribute, see Chapter 1, “Introduction.”.

Table 5-2 Agent Properties

Property Type Meaning

AgentID string Can be set prior to Login or after Logout.

Instrument string Instrument associated by ACD to agent.

Extension string Extension associated by ACD to agent.

PeripherallD integer ID of peripheral.

PeripheralType integer The type of the peripheral.

AgentState integer Agent State value reported by ACD.

LastError integer Last error code, if any. Otherwise this value
value is 0.

Statistics arguments |An arguments array containing the statistics
array listed in Table 5-3.

Statistics can be accessed by first using GetValue on the Agent object to obtain
the “Statistics” arguments array and then using GetValue on the “Statistics”
arguments array to obtain the desired value:

' First get the statistics arguments
Dim args As Arguments
args = agent.GetValue (“Statistics”)

' Then get the desired statistics

Dim availTimeSession As Integer

Dim loggedOnTimeSession As Integer

availTimeSession = args.GetValue (“AvailTimeSession”)
bargeInCallsToday = args.GetValue (“BargeInCallsToday”)

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

Note Not all the statistics values listed below are present in every system
configuration. Whether or not a particular statistic value is available
depends both on the protocol version of CTIServer with which CTIOS
connects and on the peripheral on which the agent resides.

Table 5-3 Agent Statistics

Statistic Meaning

AvailTimeSession Total time, in seconds, the agent was in the
Available state for any skill group.

LoggedOnTimeSession Total time, in seconds, the agent has been
logged on.

NotReadyTimeSession Total time, in seconds, the agent was in the

Not Ready state for all skill groups.

AgentOutCallsSession Total number of completed outbound ACD
calls made by agent.

AgentOutCallsTalkTimeSession Total talk time, in seconds, for completed
outbound ACD calls handled by the agent.
The value includes the time spent from the
call being initiated by the agent to the time
the agent begins after call work for the
call. The time includes hold time
associated with the call.

AgentOutCallsTimeSession Total handle time, in seconds, for
completed outbound ACD calls handled
by the agent. The value includes the time
spent from the call being initiated by the
agent to the time the agent completes after
call work time for the call. The time
includes hold time associated with the call.

AgentOutCallsHeldSession The total number of completed outbound
ACD calls the agent has placed on hold at
least once.

AgentOutCallsHeldTimeSession |Total number of seconds outbound ACD
calls were placed on hold.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter5 Agent Object |

H Methods

Table 5-3 Agent Statistics (continued)

Statistic Meaning

HandledCallsSession The number of inbound ACD calls
handled by the agent.

HandledCallsTalkTimeSession Total talk time in seconds for Inbound
ACD calls counted as handled by the
agent. Includes hold time associated with

the call.
HandledCallsAfterCall Total after call work time in seconds for
TimeSession Inbound ACD calls counted as handled by
the agent.
HandledCallsTimeSession Total handle time, in seconds, for inbound

ACD calls counted as handled by the
agent. The time spent from the call being
answered by the agent to the time the agent
completed after call work time for the call.
Includes hold time associated with the

call.

IncomingCallsHeldSession The total number of completed inbound
ACD calls the agent placed on hold at least
once.

IncomingCallsHeldTimeSession Total number of seconds completed

inbound ACD calls were placed on hold.

InternalCallsSession Number of internal calls initiated by the
agent.

InternalCallsTimeSession Number of seconds spent on internal calls
initiated by the agent.

InternalCallsRcvdSession Number of internal calls received by the
agent.

InternalCallsRcvdTimeSession Number of seconds spent on internal calls

received by the agent.

InternalCallsHeldSession The total number of internal calls the agent
placed on hold at least once.

InternalCallsHeldTimeSession Total number of seconds completed
internal calls were placed on hold.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5

Agent Object

Methods W

Table 5-3 Agent Statistics (continued)

Statistic Meaning

AvailTimeToday Total time, in seconds, the agent was in the
Available state for any skill group.

LoggedOnTimeToday Total time, in seconds, the agent has been
logged on.

NotReadyTimeToday Total time, in seconds, the agent was in the
Not Ready state for all skill groups.

AgentOutCallsToday Total number of completed outbound ACD

calls made by agent.

AgentOutCallsTalkTimeToday

Total talk time, in seconds, for completed
outbound ACD calls handled by the agent.
The value includes the time spent from the
call being initiated by the agent to the time
the agent begins after call work for the
call. The time includes hold time
associated with the call.

AgentOutCallsTimeToday

Total handle time, in seconds, for
completed outbound ACD calls handled
by the agent. The value includes the time
spent from the call being initiated by the
agent to the time the agent completes after
call work time for the call. The time
includes hold time associated with the call.

AgentOutCallsHeldToday

The total number of completed outbound
ACD calls the agent has placed on hold at
least once.

AgentOutCallsHeldTimeToday

Total number of seconds outbound ACD
calls were placed on hold.

HandledCallsToday

The number of inbound ACD calls
handled by the agent.

HandledCallsTalkTimeToday

Total talk time in seconds for Inbound
ACD calls counted as handled by the
agent. Includes hold time associated with
the call.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter5 Agent Object |

H Methods

Table 5-3 Agent Statistics (continued)

Statistic Meaning

HandledCallsAfterCallTimeToday |Total after call work time in seconds for
Inbound ACD calls counted as handled by
the agent.

HandledCallsTimeToday Total handle time, in seconds, for inbound
ACD calls counted as handled by the
agent. The time spent from the call being
answered by the agent to the time the agent
completed after call work time for the call.
Includes hold time associated with the
call.

IncomingCallsHeldToday The total number of completed inbound
ACD calls the agent placed on hold at least
once.

IncomingCallsHeldTimeToday Total number of seconds completed
inbound ACD calls were placed on hold.

InternalCallsToday Number of internal calls initiated by the
agent.

InternalCallsTimeToday Number of seconds spent on internal calls
initiated by the agent.

InternalCallsRcvdToday Number of internal calls received by the
agent.
InternalCallsRcvdTimeToday Number of seconds spent on internal calls

received by the agent.

InternalCallsHeldToday The total number of internal calls the agent
placed on hold at least once.

InternalCallsHeldTimeToday Total number of seconds completed
internal calls were placed on hold.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

GetSkillGroups

Syntax

Example

GetValue

The GetSkillGroups method returns an array of SkillGroups Objects. If one or
more skill groups are specified in the method, the returned array of skill group
objects will be limited to the requested skill groups. The skill group list is
generated by the ACD (or other servers) when the agent performs a Login or when
detected in Monitor Mode. The purpose of the method is to provide a list of
objects to iterate.

GetSkillGroups (optionalSkillGroup)

' assume login performed

Dim args As ctios.Arguments
args = agent.GetSKillGroups ()
for each skill in args do

Next

The GetValue method retrieves a property from the Agent object based on the
property’s name key(see Table 5-2). GetValue takes either a single key name or
an array of key names as its required argument, and returns the value associated
with that key.

Dim myExt As String

MyExt = agent.GetValue (“Extension”)

You can use GetValue to retrieve agent statistics. Statistics are read-only. Any
attempt to write to a statistic will fail.

' get any one statistic
Dim nAvgCallDuration As Integer
nAvgCallDuration = agent.GetValue(“AvgCallDuration”)

' iterate over all statistics
Dim agent As CTIOSCLIENTLIB.Agent

Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01

Chapter5 Agent Object |

Hl Methods
Dim allStatistics As Arguments
allStatistics = agent.GetValue(“Statistics”)
For Each stat In allStatistics
Next
Syntax

GetValue (key)

Login

The Login method performs a login to the ACD (if supported). Generally, the
minimum parameters required to log into an ACD are AgentID and Instrument.
Often, based on customer configuration, the minimum requirement includes an
ACD password. Optional arguments include Extension or PositionID and
Password.

Syntax

C++

virtual int Login (Arguments & rArguments) ;

COM (standard COM API)

HRESULT Login ([in] VARIANT * pVariantArgs);

Input Parameters

rArguments
Arguments array that contains login parameters.
pVariantArgs

Arguments array that contains login parameters.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Return Values

Methods W

C++

If the method was able to login the agent, it returns CIL_OK. Otherwise, it returns

error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
coMm

If the method was able to login the agent, it returns S_OK. Otherwise, it returns

E_FAIL.
Examples
C++

CAgent * pAgent = NULL;

Arguments & rArgs;

int nRet = 0

// Get a valid agent pointer

if (pAgent)
{
// Fill out the argument with agent information
nRet = pAgent-> Login (rArgs) ;
// Check if the Login method failed

1
COM C++

HRESULT hr =S _OK;

IAgentPtr pAgent = NULL;

IArguments pArgs = NULL;

// First, get agent object and make sure it is valid pointer

if (pAgent)

{

// Fill out the argument with agent information

hr = pAgent-> Login (pArgs);

1f (FAILED (hr))

{

// You might want to log an error description HERE
Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01 .m

Chapter5 Agent Object |

H Methods

}

pAgent = NULL;

}

return hr;

VB

Dim argsLogin Param As New Arguments
Dim WithEvents session As ctios. Session

Dim WithEvents agent As ctios. Agent

session.SetAgent (agent)

agent.Login("agentid=23814;instrument=23815;password=1234")

Logout

The Logout method logs out the agent from the ACD. Optionally, if the ACD
configuration supports logout reason codes (currently only the Avaya Definity
ECS does), the Logout method accepts a reason code passed by the client as an
integer.

Syntax

C++

virtual int Logout (Arguments & rArguments) ;

COM (standard COM API)

HRESULT Logout ([in] VARIANT * pVariantArgs);

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

Input Parameters

rArguments
Arguments array that contains login parameters.
pVariantArgs

Arguments array that contains login parameters.

Return Values

C++
If the method was able to Logout agent, it returns CIL_OK. Otherwise, it returns
error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

com
If the method was able to Logout agent, it returns S_OK. Otherwise, it returns
E_FAIL.

Examples

C++

CAgent * pAgent = NULL;
Arguments & rArgs;
int nRet = 0

// Get a valid agent pointer

if (pAgent)

{
// Fill out the argument with agent information
nRet = pAgent-> Logout (rArgs);

// Check if the Logout method failed

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter5 Agent Object |

Hl Methods
COM C++
HRESULT hr =S_OK;
IAgentPtr pAgent = NULL;
IArgumentptr pArgs = NULL;
// First, get agent object and make sure it is valid pointer
if (pAgent)
{
// Fill out the argument with agent information
hr = pAgent-> Logout (pArgs) ;
1f (FAILED (hr))
{
// You might want to log an error description HERE
}
pAgent = NULL;
}
return hr;
VB

MakeCall

Dim argsLoginParam As New Arguments
Dim WithEvents session As ctios. Session
Dim WithEvents agent As ctios. Agent

argsLoginParam .AddItem(
"agentid=23814;instrument=23815;password=1234")

agent.Login (argsLoginParam)

agent .Logout (argsLoginParam)

The MakeCall method initiates a call to a device or agent. The simplest form of
the request only requires a dialed number. The request may also include all of the
parameters in Table 5-4.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

Table 5-4 Make Call Optional Parameters

Parameter

Description

CallPlacementType

One of the values specifying how the call
is to be placed identified in the Call
Placement Type Table.

CallMannerType

One of the values specifying additional
call processing options identified in the
Call Manner Type Table.

AlertRings

The maximum amount of time that the
call’s destination will remain alerting,
specified as an approximate number of
rings. A zero value indicates that the
peripheral default (typically 10 rings)
should be used.

CallOption

One of the values specifying additional
peripheral-specific call options.

FacilityType

One of the values indicating the type of
facility to be used.

AnsweringMachine

One of the values specifying the action to
be taken if the call is answered by an
answering machine.

Priority

This field should be set to TRUE if the call
should receive priority handling.

PostRoute

When this field is set to TRUE, the Post
Routing capabilities of the Intelligent Call
Manager are to be used to determine the
new call destination.

UserToUserInfo

The ISDN user-to-user information.

Call and ECC Variables

Up to 10 call variables and any of the
defined ECC variables or array variables.

CallWrapupData

Call-related wrapup data.

FacilityCode

A trunk access code, split extension, or
other data needed to access the chosen
facility.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter5 Agent Object |

Bl Methods
Table 5-4 Make Call Optional Parameters (continued)
Parameter Description
AuthorizationCode An authorization code needed to access
the resources required to initiate the call.
AccountCode A cost-accounting or client number used
by the peripheral for charge-back
purposes.
Syntax
C++

virtual int MakeCall (Arguments & rArguments) ;

COM (standard COM API)

HRESULT MakeCall ([in] VARIANT * pVariantArgs);

Input Parameters

rArguments
Arguments array that holds parameters from Table 5-4.
pVariantArgs

Arguments array that holds parameters from Table 5-4.

Return Values

C++

If the method succeeds, it returns CIL_OK. Otherwise, it returns the error code
E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

CoOM

If the method succeeds, it returns S_OK. Otherwise, it returns E_FAIL.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Examples

C++

COM C++

CAgent * pAgent = NULL;
Arguments & rArgs;
int nRet;
// Get a valid agent pointer
if (pAgent)
{
// Fill out the argument with valid paramaters
nRet = pAgent-> MakeCall (rArgs);
// Check if the method fails

}

HRESULT hr =S_OK;

IAgentPtr pAgent = NULL;

IArgumentsPtr & rArgs;

int nRet;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

// Fill out the argument with valid paramaters

hr = pAgent-> MakeCall (&rArgs) ;

if (FAILED (hr))

{
}

pAgent = NULL;

}

return hr;

// You might want to log an error description HERE

[oL-1392-01

Methods W

Cisco ICM Software CTI 0S Developer's Guide g

Chapter5 Agent Object |

Bl Methods

MonitorAgentTeam
The MonitorAgentTeamAll method enables monitoring of the agent teams
specified by the TeamID parameter.

Syntax

C++

virtual int MonitorAgentTeam(bool bStart, int TeamId) ;

COM (standard COM API)

HRESULT MonitorAgentTeam ([in] VARIANT BOOL bStart, [in] ULONG TeamId
)i

Input Parameters

.bStart
Specifies whether to start or stop monitoring
Teamld

Team ID for the agent teams to be monitored

Return Values

C++
If the method succeeds, it returns CIL_OK. Otherwise, it returns error code
E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

COM

If the method succeeds, it returns S_OK. Otherwise, it returns E_FAIL.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods
Examples
C++
CAgent * pAgent = NULL;
Arguments & rArgs;
int nRet;
// Get a valid agent pointer
if (pAgent)
{
nRet = pAgent-> MonitorAgentTeam((0 == bStart) ? false : true, Teamld
)i
// Check if the method fails
1
COM C++

HRESULT hr =S_OK;

IAgentPtr pAgent = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

hr = pAgent-> MonitorAgentTeam((bStart, TeamId) ;

if (FAILED (hr))

{
}

pAgent = NULL;

}

return hr;

// You might want to log an error description HERE

MonitorAgentTeamAll

The MonitorAgentTeamAll method enables monitoring of all agent teams.

Syntax

C++

virtual int MonitorAgentTeamAll (bool bStart) ;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter5 Agent Object |

H Methods

COM (standard COM API)

HRESULT MonitorAgentTeamAll ([in] VARIANT BOOL bStart) ;

Input Parameters

bStart

Specifies whether to start or stop monitoring all agent teams.

Return Values

C++
If the method succeeds, it returns CIL_OK. Otherwise, it returns error code
E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
CcoM
If the method succeeds, it returns S_OK. Otherwise, it returns E_FAIL.
Examples
C++
CAgent * pAgent = NULL;
Arguments & rArgs;
int nRet;
// Get a valid agent pointer
if (pAgent)
{
nRet = pAgent-> MonitorAgentTeamAll ((0 == bStart) ? false : true);
// Check if the method fails
1
COM C++

HRESULT hr =S_OK;

IAgentPtr pAgent = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

OnEvent (C++

Syntax

Input Parameters

Return Values

Methods W

hr = pAgent-> MonitorAgentTeamAll ((bStart);
1f (FAILED (hr))

{
}

pAgent = NULL;

}

return hr;

// You might want to log an error description HERE

Only)

The OnEvent method specifies an action to take when an agent object receives
agent state, agent statistic and associated skill group events. The default behavior
of the object is to update its internal state based on the event, and fire events to
clients via the IAgentEvents interface. Applications are free to override the
OnEvent method and add their own logic, where applicable.

virtual void OnEvent (int iEventID, Arguments & rEventParam) ;

iEventID
A unique number that points to a unique event.
rEventParam

Parameters for an event

None.

Examples
CAgent * pAgent = NULL;
Arguments & rArgs;
int nRet;
// Get a valid agent pointer
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Chapter5 Agent Object |

H Methods

if (pAgent)

{

// Fill out the rEventParam with valid parameters , and set the
eventID with the

// event that you need to process
Y b
pAgent -> OnEvent (iEventID, rEventParam) ;

SendUserMessage/SendChatMessage

The SendUserMessage and SendChatMessage methods send asynchronous
chat-like messages between CTI clients. These methods let the user specify a
distribution of one or more clients, and attach a text message. The recipient
receives the message via the OnUserMessage event. The request may also include
all of the parameters from Table 5-5.

Table 5-5 SendUserMessage/SendChatMessage Parameters

Parameter Description

Distribution Specifies one of the values of eDistributeToClient,
eDistributeToSupervisor, eDistributeToTeam, or
eDistributeToAll indicating to whom this message is to
be sent.

ClientID (optional) When the Distribution is set to DistributeToClient, this
field must be included with the ClientID of the
intended recipient.

Text (optional) The text of the user message. Maximum message size
is 255 bytes.

Syntax

C++

virtual int SendUserMessage (Arguments & rArguments) ;
virtual int SendChatMessage (Arguments & rArguments) ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

COM (standard COM API)

HRESULT SendUserMessage ([in] UINT nDistribution, [in] VARIANT
*pVariantArgs) ;
HRESULT SendChatMessage ([in] VARIANT * pVariantArgs);

Input Parameters

rArguments

Array that contains parameters from Table 5-5.
nDistribution

Indicates to whom this message is to be sent.
pVariantArgs

Array that contains parameters fromTable 5-5.

Return Values

C++
If the method succeeds, it returns CIL_OK. Otherwise, it returns error code
E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
COM
If the method succeeds, it returns S_OK. Otherwise, it returns E_FAIL.
Examples
C++

CAgent * pAgent = NULL;
Arguments & rArgs;
int nRet;
// Get a valid agent pointer
if (pAgent)
{
// Fill out the argument with valid parameters
nRet = pAgent-> SendUserMessage (rArgs);

Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01

Chapter5 Agent Object |

H Methods

COM C++

// Check if the method fails

}

HRESULT hr =S _OK;

IAgentPtr pAgent = NULL;

IArgumentsPtr rArg = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

// Fill out the argument with valid parameters

hr = pAgent-> SendUserMessage (rArgs) ;

if (FAILED (hr))

{
}

pAgent = NULL;

}

return hr;

// You might want to log an error description HERE

SetAgentState

Syntax

C++

The SetAgentState method requests a new agent state. The work states are
provided by agent state model of the ACD and is vendor-specific. When a client
tries to SetAgentState to an invalid state, such as no functional equivalent is
supported on the ACD, or illegal transition, an exception will be returned
explaining the error.

Login and Logout are valid states and can be set using the SetAgentState method.
The Login method provides shorthand that helps to organize the required
arguments.

virtual int SetAgentState (Arguments & rArguments) ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

COM (standard COM API)

HRESULT SetAgentState ([in] VARIANT * pVariantArgs) ;

Input Parameters

rArguments
Contains the new agent state.
pVariantArgs

Contains the new agent state.

Return Values

C++
If the method succeeds, it returns CIL_OK. Otherwise, it returns error code
E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
COM
If the method succeeds, it returns S_OK. Otherwise, it returns E_FAIL.
Examples
C++

CAgent * pAgent = NULL;
Arguments & rArgs;
int nRet;
// Get a valid agent pointer
if (pAgent)
{
// Fill out the argument with valid parameters
nRet = pAgent-> SetAgentState (rArgs);

// Check if the method fails

}

Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01

Chapter5 Agent Object |

H Methods

COM C++

HRESULT hr =S_OK;

IAgentPtr pAgent = NULL;

IArgumentsPtr rArg = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

// Fill out the argument with valid parameters

hr = pAgent-> SetAgentState (rArgs) ;

1f (FAILED (hr))

{
}

pAgent = NULL;

return hr;

// You might want to log an error description HERE

SetMonitoredAgent

The SetMonitoredAgent method sets a agent object to be monitored.

Syntax

C++

virtual int SetMonitoredAgent (CAgent * pAgent, bool bMonitor) ;
virtual int SetMonitoredAgent (CAgent * pAgent) ;

COM (standard COM API)

HRESULT SetMonitoredAgent ([in] IAgent * pIAgent, [in]
VARIANT BOOL bMonitor) ;

Input Parameters

pAgent / pIAgent
Pointer to the agent object to be monitored.
bMonitor / bMonitor

Whether to enable or disable agent monitoring.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Methods W

Return Values
C++
If the method succeeds, it returns CIL_OK. Otherwise, it returns error code
E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
CcoM
If the method succeeds, it returns S_OK. Otherwise, it returns E_FAIL.
Examples
C++
CAgent * pAgent = NULL;
int nRet;
// Get a valid agent pointer
if (pAgent)
{
nRet = pAgent-> SetMonitoredAgent (pAgent, vbMonitor) ;
// Check if the method fails
1
COM C++

HRESULT hr =S _OK;

IAgentPtr pAgent = NULL;

IAgentPtr pAgent = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

hr = pAgent-> SetMonitoredAgent (pAgent, vbMonitor) ;

if (FAILED (hr))

{
}

pAgent = NULL;

}

return hr;

// You might want to log an error description HERE

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter5 Agent Object |

H Methods

SetMonitoredCall

The SetMonitoredCall method sets a call object to be monitored.

Syntax

C++

virtual int SetMonitoredCall(CCall * pCall);

COM (standard COM API)

HRESULT SetMonitoredCall ([in] ICall * pICall) ;

Input Parameters

pCall
Pointer to the call object that needs to be monitored.
pICall

Pointer to the com call object that needs to be monitored.

Return Values

C++

If the method succeeds, it returns CIL_OK. Otherwise, it returns error code
E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

CoOM

If the method succeeds, it returns S_OK. Otherwise, it returns E_FAIL.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Examples

C++

COM C++

SetValue

Syntax

Methods W

CAgent * pAgent = NULL;
CCall * pCall =NULL;
int nRet;
// Get a valid agent pointer
if (pAgent)
{

nRet = pAgent-> SetMonitoredCall (pCall);

// Check if the method fails

}

HRESULT hr =S_OK;

IAgentPtr pAgent = NULL;

ICallbPtr pCall = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

hr = pAgent-> SetMonitoredCall (pCall);

1f (FAILED (hr))

{
}

pAgent = NULL;

}

return hr;

// You might want to log an error description HERE

The SetValue method sets a value for a key. A True return value means the entry
was located. Keys are not case sensitive. In C++ version, there is SetValue method
that takes a string which contains more then one key and one value.

SetValue (key)

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter5 Agent Object |

Bl Methods

Example
string kvstr = "Keyl = Vall; Key2 = Val2; Key3 = Val3.l, Val3.2,
Val3.3"; Argumentsl.SetValue(kvstr); //
Leading and trailing spaces are always removed from the key.
The SuperviseCall method lets you start monitoring a call of an agent on your
team. You must be in Supervisor mode to use this method.

Syntax

C++

virtual int SuperviseCallRequest (int nSuperviseMode, CAgent * pAgent,
CCall * pCall = 0);

COM (standard COM API)

HRESULT SuperviseCall ([in] UINT nSuperviseMode, [in] IAgent *
pIAgent, [in] ICall * pICall);

Input Parameters

nSuperviseMode

Supervisor or agent mode.
pAgent / pIAgent

Pointer to COM agent object.
pCall / pICall

Pointer to call object.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

Return Values

Methods W

C++
If the method succeeds, it returns CIL_OK. Otherwise, it returns error code
E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
com
If the method succeeds, it returns S_OK. Otherwise, it returns E_FAIL.
Examples
C++
CAgent * pAgent = NULL;
CAgent * pAnotherAgent = NULL;
CCall * pCall =NULL;
int nRet;
// Get a valid agent pointer
if (pAgent)
{
nRet = pAgent-> SuperviseCallRequest (nSuperviseMode, pAnotherAgent,
pCall);
// Check if the method fails
}
COM C++
HRESULT hr =S_OK;
IAgentPtr pAgent = NULL;
IAgentPtr pAnotherAgent = NULL;
ICallPtr pCall = NULL;
// First, get agent object and make sure it is valid pointer
if (pAgent)
{
hr = pAgent-> SuperviseCall (nSuperviseMode, pAnotherAgent, pCall);
if (FAILED (hr))
{
// You might want to log an error description HERE
}
pAgent = NULL;
}
return hr;
Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter5 Agent Object |

Bl Methods

SupervisorAssist
The Supervisor Assist method allows the agent to make a call back to the
supervisor requesting for assistance.

Syntax

C++

virtual int SupervisorAssistRequest () ;

COM (standard COM API)

HRESULT SupervisorAssist () ;

Parameters
None.

Return Values

C++
If the method succeeds, it returns CIL_OK. Otherwise, it returns error code
E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

com

If the method succeeds, it returns S_OK. Otherwise, it returns E_FAIL.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5 Agent Object

IAgentEvents Interface 1l

Examples
C++
CAgent * pAgent = NULL;
int nRet;
// Get a valid agent pointer
if (pAgent)
{
nRet = pAgent-> SupervisorAssistRequest () ;
// Check if the method fails
}
COM C++

HRESULT hr =S_OK;
IAgentPtr pAgent = NULL;

// First, get agent object and make sure it is valid pointer
if (pAgent)

{

hr = pAgent-> SupervisorAssist () ;

if (FAILED (hr))

{
}

pAgent = NULL;

}

return hr;

// You might want to log an error description HERE

IAgentEvents Interface

The Agent object fires events on the IAgentEvents interface. The following
events are published to subscribers of the IAgentEvents interface.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter5 Agent Object |

M 1AgentEvents Interface

OnAgentStateChange

The OnAgentStateChange event is generated when the agent state at the ACD
changes. This may be a response to a Login, Logout, or SetAgentState request.
The message is generated when CTI OS receives an AGENT_STATE_EVENT

message.

Field Description

PeripherallD The ICM PeripherallD of the ACD where the
occurred.

Peripheral Type The type of the peripheral.

SkillGroupState Values representing the current state of the

associated agent with respect to the indicated
Agent Skill Group.

StateDuration The number of seconds since the agent
entered this state (typically 0).

SkillGroupNumber The number of the agent SkillGroup affected
by the state change, as known to the
peripheral. May contain the special value
NULL_SKILL_GROUP when not applicable
or not available.

SkillGroupID The ICM SkillGrouplID of the agent
SkillGroup affected by the state change. May
contain the special value
NULL_SKILL_GROUP when not applicable
or not available.

SkillGroupPriority The priority of the skill group, or 0 when skill
group priority is not applicable or not
available.

AgentState One of the values representing the current

overall state of the associated agent.

EventReasonCode A peripheral-specific code indicating the
reason for the state change.

CTIClientSignature (optional) |The Client Signature of the CTI Client that is
associated with this agent.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter5

Agent Object

IAgentEvents Interface 1l

Field

Description

AgentID (optional)

The agent’s ACD login ID.

AgentExtension (optional)

The agent’s ACD teleset extension.

Agentlnstrument (optional)

The agent’s ACD instrument number.

OnAgentStatistics

The OnAgentStatistics event is generated when an agent statistic is reported.

Field Description

PeripherallD The ICM PeripherallD of the ACD where
the occurred.

PeripheralType The type of the peripheral.

SkillGroupState Values representing the current state of the
associated agent with respect to the
indicated Agent Skill Group.

OnUserMessage

The OnUserMessage event is generated when a user message (asynchronous text

from another user) is received

Field Description

ICMCentralControllerTime The current ICM Central Controller date
and time.

Distribution One of value of eDistributeToClient,
eDistributeToSupervisor,
eDistributeToTeam, or eDistributeToAll.

ClientID The ClientID of the message sender.

Text The text message provided by the sender.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter5 Agent Object |

M 1AgentEvents Interface

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

Active Call

, A
ORI Y 7
! CH A-EY E R L

Call Object

The Call object controls calls, receives call events, and manages call context. The
Call object is created when the Session object receives an OnCallBegin event.
Once a call has been created, it will receive call events.

Client applications do not have to distinguish between CallVariables and ECC
variables. Both types of variables are accessible as any other property through the
GetValue method. Applications can access each variable by name or iterate
through call variables, ECC variables, or ECC arrays.

Client applications do not have to track calls by ConnectionCallID,
ConnectionDevicelD, or ConnectionDeviceIDType. Although these properties
are accessible, clients should track calls by call identifier or call reference. The
call identifier is a unique string used to identify the call. The call reference is a
pointer to a call object. The reference is only valid in the current execution context
and while the call is active.

The session object maintains a reference to the current active call object. The
active call is the call the agent has currently selected. The ActiveCall property is
set in the session object by the default implementation of Call object. The active
call is maintained to facilitate some types of CTI applications.

The rules for determining the current active object are as follows:
e The active call is set when the call is answered,;

e The active call is set when another call is retrieved from hold;

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter6 Call Object |

H Methods

Methods

e When the active call clears, the previous call in the stack is selected as the

active call.

Table 6-1 lists the available call object methods.

Table 6-1 Call Object Methods

Method Description

Alternate Places the current call on hold and then either retrieves
a previously held call or answers another call.

Answer Answers a call that is in the alerting or ringing state.

Clear Clears a call.

ClearConnection Clears a call connection.

Conference Conferences a third party to a call.

Deflect Dialed number

GetElement Retrieves a property from the Agent object based on
the property’s index value.

GetPropertyAttribute |Retrieves attribute information for a specified call

property.

GetValue (also

Retrieves a property from the Agent object based on

GetValuelnt, the property’s name key.

GetValueString)

Hold Places an active call on hold.

MakeConsultCall Places an active call on hold and makes a new call.

OnEvent Specifies an action to take when a call variable or call
state changes.

Reconnect Clears the current call and then retrieves a specified
call.

Record Lets the user record a call.

Retrieve Retrieves a held call.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

Methods
Table 6-1 Call Object Methods (continued)
Method Description
SetCallData Sets call and expanded call context (ECC) variables.
SendDTMFSignal Requests the ACD transmit to send a sequence of
DTMF tones.
SingleStepConference |Initiates a single step (blind) conference.
SingleStepTransfer Initiates a single step (blind) transfer.
Snapshot Issues a server request to update the current call
information.
Transfer Transfers a call to a third party

Alternate
The Alternate method combines the action of placing the current call on hold and
then either retrieving a previously held call or answering an alerting call at the
same device. The reference to the call to be retrieved or answered is passed in the
method. If successful, the method will result in generating an OnCallHold event
on this call.

Syntax

C++

int Alternate ();

COM (standard COM API)

HRESULT Alternate ();

Parameters

None.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H Methods

Return Values

C++

CoOM

Examples

C++

COM C++

If the method was able to alternate the call, it returns CIL_OK. Otherwise, it
returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

If the method was able to alternate the call, it returns S_OK. Otherwise, it returns
E_FAIL.

CCall * pCall = NULL;
Int nRet = 0;

if (pCall)

{

nRet = pCall->Alternate();

// Check if the alternate call method failed

HRESULT hr =S _OK;
ICallbPtr pCall = NULL;

// First, get call object and make sure it is valid pointer
if (pCall)

{

hr = pCall->Alternate();

if (FAILED (hr))

{
}

pCall = NULL;

}

// You might want to log an error description HERE

return hr;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Methods W

Answer
The Answer method answers a call that is in the alerting or ringing state. No
arguments are required. The state of the call is accessible using GetValue and
retrieving either the “CurrentState” or “IsAlerting” properties. Once the call
status has changed to established, this method will return an error. An
OnCallRequestFailed event may be generated if the request fails.

Syntax

C++

int Answer ();

COM (standard COM API)

HRESULT Answer ();

Parameters
None.
Return Values
C++
If the method was able to answer the call, it returns CIL_OK. Otherwise, it
returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
com

If the method was able to answer the call, it returns S_OK. Otherwise, it returns
E_FAIL.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

W Methods
Examples
C++
CCall * pCall = NULL;
Int nRet = 0;
if (pCall)
{
nRet = pCall-> Answer ();
// Check if the Answer call method failed
1
// Release the call after you are done with it
pCall->Release() ;
COM C++
HRESULT hr =S_OK;
ICall * pCall = NULL;
// First, get call object and make sure it is valid pointer
if (pCall)
{
hr = pCall-> Answer ();
if (FAILED (hr))
{
// You might want to log an error description HERE
1
// Release the call after you are done with it
pCall->Release() ;
1
return hr;

The Clear method clears a call. No arguments are required. The call must be in
Established (talking) or Active state, otherwise the method returns an exception.
An OnCallRequestFailed event may be generated if the request fails.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Methods W

Syntax

C++

int Clear ();

COM (standard COM API)

HRESULT Clear ();

Parameters

None.

Return Values

C++
If the method was able to Clear the call, it returns CIL_OK. Otherwise, it returns
error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

CcoM
If the method was able to Clear the call, it returns S_OK. Otherwise, it returns
E_FAIL.

Examples

C++

CCall * pCall = NULL;
Int nRet = 0;

if (pCall)

{
nRet = pCall-> Clear();
// Check if the Clear call method failed

1
// Release the call after you are done with it
pCall->Release() ;

Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01

Chapter6 Call Object |

H Methods
COM C++
HRESULT hr =S_OK;
ICall * pCall = NULL;
// First, get call object and make sure it is valid pointer
if (pcall)
{
hr = pCall-> Clear ();
if (FAILED (hr))
{
// You might want to log an error description HERE
1
// Release the call after you are done with it
pCall->Release() ;
1
return hr;
ClearConnection
The ClearConnection method clears a call connection. No arguments are required.
The call must be in Established (talking) or Active state, otherwise the method
returns an exception. An OnCallRequestFailed event may be generated if the
request fails.
Syntax
C++

int ClearConnection ();

COM (standard COM API)

HRESULT ClearConnection ();

Parameters

None.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Return Values

Methods W

C++
If the method was able to clear the call connection, it returns CIL_OK. Otherwise,
it returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver
mode.
CcoM
If the method was able to clear the call connection it returns S_OK. Otherwise, it
returns E_FAIL.
Examples
C++
ccall * pCall = NULL;
Int nRet = 0;
if (pCall)
{
nRet = pCall-> ClearConnection () ;
// Check if the ClearConnection call method failed
1
// Release the call after you are done with it
pCall->Release() ;
COM C++
HRESULT hr =S_OK;
ICall * pCall = NULL;
// First, get call object and make sure it is valid pointer
if (pCall)
{
hr = pCall-> ClearConnection () ;
if (FAILED (hr))
{
// You might want to log an error description HERE
1
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Chapter6 Call Object |

H Methods

// Release the call after you are done with it
pCall->Release() ;

}

return hr;

Conference

The Conference method conferences a third party to a call. If the optional call
reference is not provided, CTI OS will automatically locate the consultative call
initiated on the current agent device and join the call to the conference.

If the optional call reference is provided, the current call is joined with the
referenced call. It does not matter either call is a consultative call, or which of the
two calls is the consultative call. A consultative call can be dialed using MakeCall
or MakeConsultCall.

To support Conference/Dial/Conference, use the following sequence:
e Place the current call on hold;

e Initiate a consultative call using MakeConsultCall 1(* conference”), or
optionally MakeCall;

e Join the two calls with Conference.

Syntax

C++

int Conference(CCall * pCall = NULL) ;

COM (standard COM API)

HRESULT Conference ([in] VARIANT * pVariantArgs);

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Input Parameters

Methods W

PCall
Pointer to a Call object. The default value is NULL.
pVariantArgs

Pointer to a variant to holds a pointer to a call object.

Return Values
C++

If the method was able to conference a call, it returns CIL_OK. Otherwise, it

returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
CoOM

If the method was able to conference a call, it returns S_OK. Otherwise, it returns

E_FAIL.
Examples
C++

CCall * pCall = NULL;

CCall * pAnotherCall = NULL;

Int nRet = 0;

if (pCall)

{

//
// You need a second call to make the conference, it also could be
null
nRet = pCall-> Conference (pAnotherCall);
// Check if the Conference call method failed

1

// Release the call after you are done with it

pCall->Release() ;

Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01 .m

Chapter6 Call Object |

H Methods

COM C++

Deflect

Syntax

C++

HRESULT hr =S_OK;

ICall * pCall = NULL;

VARIANT * vAnotherCall = NULL;

// First, get call object and make sure it is valid pointer

if (pCall)

{

// You need a second call to make the conference, it also could be
null

// and use variant to wrap it

hr = pCall-> Conference (vAnotherCall) ;

if (FAILED (hr))

{
}

// Release the call after you are done with it
pCall->Release() ;

}

// You might want to log an error description HERE

return hr;

The Deflect method allows a client to take an alerting call from a known device
and move it to another device. Note that since there is no formal connection
between a call and an alerting device, the ConnectionDevicelD of the calling
conneciton is used here, as given in the OnCallDelivered event.

The default argument is the instrument id where the alerting call should be
deflected.

int Deflect(string & strDialedNumber) ;

COM (standard COM API)

HRESULT Deflect ([in] VARIANT * pVariantArgs);

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Methods W

Input Parameters

strDialedNumber
String that contains a dialed number.
pVariantArgs

Pointer to a variant that wraps a dialed number.

Return Values

C++
If the method was able to Deflect a call, it returns CIL_OK. Otherwise, it returns
error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode or
E_CTIOS_INVALID_ARGUMENT if the string is empty.

CoOM
If the method was able to Deflect a call, it returns S_OK. Otherwise, it returns
E_FAIL.

Examples

C++

CCall * pCall = NULL;
CCall * pAnotherCall = NULL;
Int nRet = 0;

if (pCall)

{

// Get a valid dialed number from somewhere
nRet = pCall-> Deflect(strDialedNumber) ;

// Check if the Deflect call method failed

}

// Release the call after you are done with it
pCall->Release() ;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

Bl Methods
COM C++
HRESULT hr =S_OK;
ICall * pCall = NULL;
VARIANT * vDialedNumber = NULL;
// First, get call object and make sure it is valid pointer
if (pCall)
{
// Wrap a valid dialed number into variant
hr = pCall-> Deflect (vDialedNumber) ;
if (FAILED (hr))
{
// You might want to log an error description HERE
}
// Release the call after you are done with it
pCall->Release() ;
}
return hr;
The GetElement method is identical to the GetValue method, except that is uses
an index value instead of a key. The index value is not related the order in which
items are added or removed. The order of items in the Arguments array is never
guaranteed. This method is useful for sequentially iterating over all items in
Arguments. The index is one (1) based. The index parameter should never be less
than one or equal to the number of elements in Arguments.
Syntax

GetElement (index)

GetPropertyAttribute

The GetPropertyAttribute method retrieves attribute information for any of the
properties listed in Table 6-2. You can access properties with the GetValue
Method. For additional information on GetPropertyAttribute, see Chapter 1,
“Introduction.”

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object
Methods
Table 6-2 Call Properties
Property Type Meaning
UniqueObjectID string Unique reference generated for a
call at a client.
ConnectionDevice Indicates the type of
IDType ConnectionDevicelD value.
ConnectionDevicelD string, maximum |The device identifier of the
length 64 connection between the call and
the device.
ConnectionCallID The Call ID value assigned to
this call by the peripheral or the
ICM.
Call and ECC Variables Array of call and ecc variables.
CallType The general classification of the
call type.
ANI string, maximum |The calling line ID of the caller.
length 64
UserToUserInfo unspecified, upto |The ISDN user-to-user
131 bytes. information element.
DNIS string, maximum |The DNIS provided with the call.
length 32
DialedNumber string, maximum |The number dialed.
length 40
CallerEnteredDigits string, maximum |The digits entered by the caller
length 40 in response to IVR prompting.
NumCTIClients integer The number of CTI Clients
previously associated with this
call. This value also indicates the
number of CTI Client signatures
and timestamps that are present
in the floating part of the
message.
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Chapter6 Call Object |

Bl Methods
Table 6-2 Call Properties (continued)
Property Type Meaning
RouterCallKeyDay integer Together with the
RouterCallKeyCallID field
forms the unique 64-bit key for
locating this call’s records in the
ICM database. Only provided for
Post-routed and
Translation-routed calls.
RouterCallKeyCallID integer The call key created by the ICM.
The ICM resets this counter at
midnight.
CallWrapupData string, maximum |Call-related wrapup data.
length 40
CallStatus integer The status of a call at a client.
Syntax

GetPropertyAttribute (propertyname,

GetValue

attribute requested)

The GetValue method retrieves a property from the Agent object based on the

property’s name key. The list of properties appears in Table 6-2. GetValue takes
either a single key name or an array of key names as its required argument, and
returns the value associated with that key.

You can use the GetValue method to retrieve agent statistics. Statistics are
read-only. Any attempt to write to a statistics will fail.

Syntax

GetValue (key)

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

Methods W

Example

Dim myExt As String
MyExt = agent.GetValue(eExtension)

' get any one statistic

Dim nAvgCallDuration As Integer

nAvgCallDuration = agent.GetValue(eAvgCallDuration)
' iterate over all statistics

Dim agent As ctios.Agent

Dim allStatistics As ctios.Arguments

allStatistics = agent.GetValue(eStatistics)
For Each stat In allStatistics

Next

Hold

The Hold method places an active call on hold. No arguments are required. This
method only works when the call is in Established (talking) or Active state. All
other times, this method will return an exception. An OnCallRequestFailed event
may be generated if the request fails.

Syntax

C++

int Hold() ;
COM (standard COM API)

HRESULT Hold() ;

Parameters

None.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H Methods

Return Values

C++
If the method was able to hold a call, it returns CIL_OK. Otherwise, it returns
error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
CcoM
If the method was able to hold a call, it returns S_OK. Otherwise, it returns
E_FAIL.
Examples
C++
CCall * pCall = NULL;
Int nRet = 0;
if (pCall)
{
nRet = pCall ->Hold();
// Check if the Hold call method failed
1
// Release the call after you are done with it
pCall->Release() ;
COM C++

HRESULT hr =S_OK;
ICall * pCall = NULL;

// First, get call object and make sure it is valid pointer
if (pcCall)

{

hr = pCall-> Hold() ;

if (FAILED (hr))

{
}

// Release the call after you are done with it
pCall->Release() ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

// You might want to log an error description HERE

| Chapter6 Call Object

Methods W

}

return hr;

MakeConsultCall

The MakeConsultCall method initiates the combined action of placing an active
call on hold and then making a new call. By default, the call context data of
theactive call is used to initialize the context data of the consultation call. The
application may override some or all of the original call context in the
consultation call by providing the desired values in this request.

The simplest form of the request only requires a dialed number. The request may
also include the parameters in Table 6-3.

Table 6-3 MakeConsultCall Optional Parameters

Parameter Description

CallPlacementType A value specifying how the call is to be placed
identified in the Call Placement Type Table.

CallMannerType A value specifying additional call processing
options identified in the Call Manner Type
Table.

AlertRings The maximum amount of time that the call’s

destination will remain alerting, specified as an
approximate number of rings. A zero value
indicates that the peripheral default (typically
10 rings) should be used.

CallOption A value specifying additional
peripheral-specific call options.

FacilityType A value indicating the type of facility to be used.

AnsweringMachine A value specifying the action to be taken if the
call is answered by an answering machine.

Priority This field should be set to TRUE if the call

should receive priority handling.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

Bl Methods
Table 6-3 MakeConsultCall Optional Parameters (continued)
Parameter Description
PostRoute When this field is set to TRUE, the Post-Routing
capabilities of the ICM are to be used to
determine the new call destination.
UserToUserInfo The ISDN user-to-user information.
Call and ECC Variables Up to 10 call variables and any of the defined
ECC variables or array variables.
CallWrapupData Call-related wrapup data.
FacilityCode A trunk access code, split extension, or other
data needed to access the chosen facility.
AuthorizationCode An authorization code needed to access the
resources required to initiate the call.
AccountCode A cost-accounting or client number used by the
peripheral for charge-back purposes.
Syntax
C++

int MakeConsultCall (Arguments & rArguments) ;

COM (standard COM API)

HRESULT MakeConsultCall

Input Parameters

rArguments

[in] VARIANT * pVariantArgs) ;

Arguments array that holds optional parameters from Table 6-3.

pVariantArgs

Pointer of variant that wraps an Arguments array that holds parameters from

Table 6-3.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

Return Values

Methods W

C++
If the method was able to MakeConsultCall a call, it returns CIL_OK. Otherwise,
it returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver
mode.
com
If the method was able to MakeConsultCall a call, it returns S_OK. Otherwise, it
returns E_FAIL.
Examples
C++
CCall * pCall = NULL;
Arguments * pArguments = NULL;
Int nRet = 0;
if (pCall)
{
// Fill out the arguments with valid parameters
nRet = pCall -> MakeConsultCall (*pArguments) ;
// Check if the MakeConsultCall call method failed
}
// Release the call after you are done with it
pCall->Release() ;
COM C++
HRESULT hr =S_OK;
ICall * pCall = NULL;
VARIANT * vArguments = NULL;
// First, get call object and make sure it is valid pointer
if (pCall)
{
// Fill out the arguments with valid parameters and then use variant
to wrap it
hr = pCall-> MakeConsultCall (vArguments) ;
Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H Methods

if (FAILED (hr))

{
}

// Release the call after you are done with it
pCall->Release() ;

}

// You might want to log an error description HERE

return hr;

OnEvent (C++ Only)

Call events are received any time the call variables or call state changes. Every
call receives an OnCallBegin just after the call object is created and receives an
OnCallEnd just before the call object is destroyed. The call itself may not have
terminated upon receipt of an OnCallEnd, just an agent's association with the call.

The standard behavior for the call object OnEvent method is to update is internal
state and call context data, and then to fire the event to subscribers of
thelCallEvents interface.

Applications are free to override the OnEvent method and add their own logic,
where applicable. For additional information on the event model, see Chapter 1,
“Introduction.”

Syntax

virtual void OnEvent (int iEventID, Arguments & rEventParam) ;

Input Parameters

iEventID
A unique number that points to a unique event.
rEventParam

Arguments array that contains parameters for an event.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Methods W
Return Values
None.
Examples
C++
CcCall * pCall = NULL;
Arguments & rEventParam;
if (pCall)
{
// Fill out the rEventParam with valid parameters , and set the
eventID with the event
//that you need to process
pCall -> OnEvent (iEventID, rEventParam) ;
1
// Release the call after you are done with it
pCall->Release() ;
The Reconnect method combines the action of clearing the current call and then
retrieving the referenced call. If successful, the method will result in generating
OnCallCleared followed by OnCallEnd events on this call.
Syntax
C++

int Reconnect ();

COM (standard COM API)

HRESULT Reconnect ();

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H Methods

Parameters

Return Values

C++

CoOM

Examples

C++

COM C++

None.

If the method was able to Reconnect a call, it returns CIL_OK. Otherwise, it
returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

If the method was able to Reconnect a call, it returns S_OK. Otherwise, it returns
E_FAIL.

CCall * pCall = NULL;
Int nRet = 0;

if (pCall)
{
nRet = pCall -> Reconnect ();
// Check if the Reconnect call method failed

}

// Release the call after you are done with it
pCall->Release() ;

HRESULT hr =S _OK;

ICall * pCall = NULL;

// First, get call object and make sure it is valid pointer
if (pcall)

{

hr = pCall-> Reconnect ();

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Methods W

if (FAILED (hr))

{
}

// Release the call after you are done with it
pCall->Release() ;

}

// You might want to log an error description HERE

return hr;

Record
The Record method lets the user record a call. Arguments such as call recording
media features should take default values if not specified by the client.

Syntax

C++

int Record(bool bEnable, Argumentsé& rArguments) ;

COM (standard COM API)

HRESULT Record ([in] VARIANT BOOL bEnable, [in] VARIANT
*pVariantArgs) ;

Input Parameters

bEnable

Boolean value, true for start recording and false for stop recording.
rArguments

Information that is sent to the server. This parameter may be empty.
pVariantArgs

Pointer to a variant that wraps an argument array.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H Methods

Return Values

C++

CoOM

Examples

C++

COM C++

If the method was able to Record a call, it returns CIL_OK. Otherwise, it returns
error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

If the method was able to Record a call, it returns S_OK. Otherwise, it returns
E_FAIL.

CCall * pCall = NULL;
Arguments & rArgs;
Int nRet = 0;

if (pCall)
{
// Start recording
nRet = pCall -> Record (true, rArgs);
// Check if the Record call method failed

}

// Release the call after you are done with it
pCall->Release() ;

HRESULT hr =S_OK;

ICall * pCall = NULL;

// First, get call object and make sure it is valid pointer
if (pCall)

{

// Stop recording

bEnable = VARIANT FALSE;

// Send empty Arguments
VARIANT vParam;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Retrieve

Syntax

C++

Methods W

hr = pCall->Record(bEnable, &vParam) ;
VariantClear (&vParam) ;
if (FAILED (hr))

{

// you might need to log an error HERE

}

// Release the call after you are done with it
pCall->Release() ;

}

return hr;

The Retrieve method takes a held call and retrieves it from hold. No arguments

are required. This method only works while the call is in a Held state. All other
times, this method will return an exception. An OnCallRequestFailed event may
be generated if the request fails.

int Retrieve() ;

COM (standard COM API)

Parameters

HRESULT Retrieve ();

None.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter6 Call Object |

H Methods

Return Values

C++

CoOM

Examples

C++

COM C++

If the method was able to Retrieve a call, it returns CIL_OK. Otherwise, it returns
error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.

If the method was able to Retrieve a call, it returns S_OK. Otherwise, it returns
E_FAIL.

CCall * pCall = NULL;
Int nRet = 0;

if (pCall)

{

nRet = pCall -> Retrieve ();
// Check if the Retrieve call method failed

}

// Release the call after you are done with it
pCall->Release() ;

HRESULT hr =S _OK;

ICall * pCall = NULL;

// First, get call object and make sure it is valid pointer
if (pCall)

{

hr = pCall-> Retrieve ();

if (FAILED (hr))

{
}

// Release the call after you are done with it

// You might want to log an error description HERE

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Methods W

pCall->Release() ;

}

return hr;

SendDTMFSignal

The SendDTMFSignal method requests the ACD transmit to send a sequence of
DTMF tones.

Syntax

C++

int SendDTMFSignal (Arguments & rArguments) ;

COM (standard COM API)

HRESULT SendDTMFSignal ([in] VARIANT * pVariantArgs)i

Input Parameters

rArguments
Arguments array that can contain the paramaters listed in Table 6-4.
pVariantArgs

Pointer to variant that wraps an argument array that can contain the
parameters listed in Table 6-4.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

W Methods
Table 6-4 SendDTMFSignal Parameters
Parameter Description
DTMFString The sequence of tones to be generated.
ToneDuration (optional) Dial number. The number to be dialed to establish
the new call.
PauseDuration (optional) One of the values specifying how the call is to be
placed identified in the Call Placement Type
Table.
Return Values
C++
If the method was able to SendDTMFSignal a call, it returns CIL_OK. Otherwise,
it returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver
mode.
CoM
If the method was able to SendDTMFSignal a call, it returns S_OK. Otherwise, it
returns E_FAIL.
Examples
C++

CCall * pCall = NULL;
Arguments & rArguments;
Int nRet = 0;

if (pCall)

// £ill the argument with the paramters that you are interested
in

nRet = pCall -> SendDTMFSignal (rArguments) ;
// Check if the SendDTMFSignal call method failed

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

COM C++

SetCallData

Syntax

C++

Methods W

// Release the call after you are done with it
pCall->Release() ;

HRESULT hr =S _OK;

ICall * pCall = NULL;

VARIANT * pVariantArgs;

// First, get call object and make sure it is valid pointer

if (pCall)

{

// £ill the argument with the paramters that you are interested in
hr = pCall-> SendDTMFSignal (pVariantArgs) ;

if (FAILED (hr))

{
}

// Release the call after you are done with it
pCall->Release() ;

}

// You might want to log an error description HERE

return hr;

The SetCallData method sets Call variables, ECC variables, and other variables
such as ANI, and/or user-to-user information. The method requires an array of
key/value pairs describing the data to be updated.

int SetCallData (Arguments & rArguments) ;

COM (standard COM API)

HRESULT SetCallData ([in] VARIANT * pVariantArgs) ;

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter6 Call Object |

H Methods

Input Parameters

rArguments

Arguments array that contains call data parameters.

pVariantArgs
Pointer to a variant that wraps an argumenst array that contains call data
parameters.
Return Values
C++
If the method was able to SetCallData a call, it returns CIL_OK. Otherwise, it
returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
CoOM
If the method was able to SetCallData a call, it returns S_OK. Otherwise, it
returns E_FAIL.
Examples
C++

CCall * pCall = NULL;
Arguments & rArguments;
Int nRet = 0;

if (pCall)
{

// £ill the argument with the paramters that you are interested
in

nRet = pCall -> SetCallData (rArguments) ;
// Check if the SetCallData call method failed

}

// Release the call after you are done with it
pCall->Release() ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Methods W

COM C++
HRESULT hr =S_OK;
ICall * pCall = NULL;
VARIANT * pVariantArgs;
// First, get call object and make sure it is valid pointer
if (pCall)
{
// £ill the argument with the paramters that you are interested in
hr = pCall-> SetCallData (pVariantArgs) ;
1f (FAILED (hr))
{
// You might want to log an error description HERE
}
// Release the call after you are done with it
pCall->Release() ;
}
return hr;
VB

' update call variables using one call to SetCallData
call.SetCallData (
"CallVariablel='1200"';ecc.acct_no='45"';ecc.array var[9]='Y'")

' update call variables using Arguments array and SetCallData

Dim WithEvents args As New ctios.Arguments

args.AddItem("CallVariablel", "1200")
args.AddItem("ecc.acct_no", "45")
args.AddItem("array var([9]", "Y")

call.SetCallData(args)

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H Methods

SingleStepConference

The SingleStepConference method initiates a blind conference without the
intermediate consultative call. When the called party answers the call, they will
be joined with the current call. The method requires a DialedNumber to
conference argument.

Syntax

C++

int SingleStepConference (Arguments & rArguments) ;

COM (standard COM API)

HRESULT SingleStepConference ([in] VARIANT * pVariantArgs) ;

Input Parameters

rArguments
Arguments array that contains a consult call.
pVariantArgs

Pointer to a variant that contains a consult call

Return Values

C++
If the method was able to SingleStepConference a call, it returns CIL_OK.
Otherwise, it returns error code E_CTIOS_IN_FAILOVER if the session is on
FailOver mode.

COM

If the method was able to SingleStepConference a call, it returns S_OK.
Otherwise, it returns E_FAIL.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Methods W

Examples
C++
CCall * pCall = NULL;
Arguments & rArguments;
Int nRet = 0;
if (pCall)
{
// £ill the argument with the consult call
nRet = pCall -> SingleStepConference (rArguments) ;
// Check if the SingleStepConference call method
failed
}
// Release the call after you are done with it
pCall->Release() ;
COM C++

HRESULT hr =S_OK;

ICall * pCall = NULL;

VARIANT * pVariantArgs;

// First, get call object and make sure it is valid pointer
if (pcCall)

{

// £ill the argument with the consult call

hr = pCall-> SingleStepConference (pVariantArgs) ;

if (FAILED (hr))

{
}

// Release the call after you are done with it
pCall->Release() ;

}

return hr;

// You might want to log an error description HERE

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H Methods

SingleStepTransfer

The SingleStepTransfer method initiates a blind transfer without the intermediate
consultative call. When the called party answers the call, the other party to this
call will be joined with the dialed party. This call receives an OnCallCleared
event. The method requires a DialedNumber argument.

Syntax

C++

int SingleStepTransfer (Arguments & rArguments) ;

COM (standard COM API)

HRESULT SingleStepTransfer([in] VARIANT * pVariantArgs

Input Parameters

rArguments
Arguments array that contains a consult call.
pVariantArgs

Pointer to a variant that contains a consult call.

Return Values

C++
If the method was able to SingleStepTransfer a call, it returns CIL_OK.
Otherwise, it returns error code E_CTIOS_IN_FAILOVER if the session is on
FailOver mode.

COM

If the method was able to SingleStepTransfer a call, it returns S_OK. Otherwise,
it returns E_FAIL.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Methods W

Examples
C++
CCall * pCall = NULL;
Arguments & rArguments;
Int nRet = 0;
if (pCall)
{
// £ill the argument with the consult call
nRet = pCall -> SingleStepTransfer (rArguments) ;
// Check if the SingleStepTransfer call method
failed
}
// Release the call after you are done with it
pCall->Release() ;
COM C++

HRESULT hr =S_OK;

ICall * pCall = NULL;

VARIANT * pVariantArgs;

// First, get call object and make sure it is valid pointer
if (pcCall)

{

// £ill the argument with the consult call

hr = pCall-> SingleStepTransfer (pVariantArgs);

if (FAILED (hr))

{
}

// Release the call after you are done with it
pCall->Release() ;

}

return hr;

// You might want to log an error description HERE

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H Methods

Snapshot

The Snapshot method issues a server request to update the current call
information. If values are passed in the optional ArgumentList, the snapshot
record will return the server's current call information for the requested
arguments; otherwise all call information is returned. The server returns the
requested values as an OnCallDataUpdate event with the following key/ value
pair "snapshot=true".

Syntax
C++

int Snapshot ();

COM (standard COM API)

HRESULT Snapshot ();

Parameters
None.
Return Values
C++
If the method was able to Snapshot a call, it returns CIL_OK. Otherwise, it
returns error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
com

If the method was able to Snapshot a call, it returns S_OK. Otherwise, it returns
E_FAIL.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Methods W

Examples
C++
CCall * pCall = NULL;
Arguments & rArguments;
Int nRet = 0;
if (pCall)
{
// £ill the argument with the consult call
nRet = pCall -> Snapshot ();
// Check if the Snapshot call method failed
1
// Release the call after you are done with it
pCall->Release() ;
COM C++

HRESULT hr =S _OK;
ICall * pCall = NULL;

// First, get call object and make sure it is valid pointer
if (pCall)

{

hr = pCall-> Snapshot ();

if (FAILED (hr))

{
}

// Release the call after you are done with it
pCall->Release() ;

}

return hr;

// You might want to log an error description HERE

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

Bl Methods
Transfer
The Transfer method transfers a call to a third party. If the optional call reference
is not provided, CTI OS will automatically locate the consultative call initiatedon
the current agent device and join it to the current call.
If the optional call reference is provided, the current call is joined with the
referenced call. It does not matter either call is a consultative call, or which of the
two calls is the consultative call. A consultative call can be dialed using MakeCall
or MakeConsultCall.
To support Transfer/ Dial/Transfer, use the following sequence:
e Place the current call on Hold;
e [Initiate a consultative call using MakeConsultCall("transfer"), or optionally
MakeCall;
e Join the two calls with Transfer.
Syntax
C++

int Transfer (CCall * pCall = NULL) ;

COM (standard COM API)

HRESULT Transfer ([in] VARIANT * pVariantArgs);

Input Parameters

PCall
Pointer to a Call object, the default value is NULL
pVariantArgs

Pointer to a variant that holds a pointer to a call object

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object

Return Values

Methods W

C++
If the method was able to Transfer a call, it returns CIL_OK. Otherwise, it returns
error code E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
com
If the method was able to Transfer a call, it returns S_OK. Otherwise, it returns
E_FAIL.
Examples
C++
CCall * pCall = NULL;
CCall * pAnotherCall = NULL;
Int nRet = 0;
if (pCall)
{
//
// You need a second call to make the conference, it also could be
null
nRet = pCall-> Transfer (pAnotherCall);
// Check if the Transfer call method failed
1
// Release the call after you are done with it
pCall->Release() ;
COM C++
HRESULT hr =S_OK;
ICall * pCall = NULL;
VARIANT * vAnotherCall = NULL;
// First, get call object and make sure it is valid pointer
if (pCall)
{
// You need a second call to make the Transfer, it also could be null
// and use variant to wrap it
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Chapter6 Call Object |

H 1CallEvents Interface

hr = pCall-> Transfer (vAnotherCall);

if (FAILED (hr))

{
}

// Release the call after you are done with it
pCall->Release() ;

}

// You might want to log an error description HERE

return hr;

ICallEvents Interface

OnCallBegin

Note

The Call object fires events on the ICallEvents interface. The following events are
published to subscribers of the ICallEvents interface.

The OnCallBegin event is generated at the first association between a call and the
CTI Client. The event passes the call identifier and the initial call context data.
The ConnectionCallID identifies the call, and the ConnectionDeviceIDType and
ConnectionDevicelD uniquely identify the client’s local call connection, if any,
or another valid call connection. This message always precedes any other event
messages for that call.

Subsequent changes to the call context data (if any) are forwarded by an
OnCallDataUpdate event. The event contains the changed call data.

There can be multiple calls with the same ConnectionCallID value.

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call activity occurred.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6 Call Object
ICallEvents Interface

Field Description

Peripheral Type The type of the peripheral.

ConnectionDeviceIDType Indicates the type of ConnectionDevicelD
value.

ConnectionDeviceID The device identifier of the connection
between the call and the device.

ConnectionCallID The Call ID value assigned to this call by
the peripheral or the ICM.

NumCTIClients The number of CTI Clients previously
associated with this call. This value also
indicates the number of CTI Client
signatures and timestamps that are present
in the floating part of the message.

Call and ECC Variables Initial array of call and ecc variables.

CallType The general classification of the call type.

ANI (optional) The calling line ID of the caller.

UserToUserInfo (optional) The ISDN user-to-user information
element. unspecified, up to 131 bytes.

DNIS (optional) The DNIS provided with the call.

DialedNumber (optional) The number dialed.

CallerEnteredDigits (optional) The digits entered by the caller in response
to IVR prompting.

RouterCallKeyDay (optional) Together with the RouterCallKeyCallID
field forms the unique 64-bit key for
locating this call’s records in the ICM
database. Only provided for Post-routed
and Translation-routed calls.

RouterCallKeyCallID (optional) The call key created by the ICM. The ICM
resets this counter at midnight.

CallWrapupData (optional) Call-related wrapup data.

Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Chapter6 Call Object |

H 1CallEvents Interface

Field

Description

CTIClientSignature (optional)

The Client Signature of a CTI Client that
was previously associated with this call.
There may be more than one
CTIClientSignature field in the message
(see NumCTIClients).

CTIClientTimestamp (optional)

The date and time that the preceding CTI
Client signature was first associated with
the call. There may be more than one
CTIClientTimestamp field in the message
(see NumCTIClients). This field always
immediately follows the
CTIClientSignature field to which it
refers.

OnCallEnd

The OnCallEnd event is generated when the association between a call and the
CTI Client is dissolved. The OnCallEnd event is the last event received for a Call.
The event does not necessarily indicate that the subject call has been terminated.

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call activity occurred.

PeripheralType The type of the peripheral.

ConnectionDeviceIDType

Indicates the type of ConnectionDevicelD
value.

ConnectionDevicelD The device identifier of the connection
between the call and the device.
ConnectionCallID The Call ID value assigned to this call by

the peripheral or the ICM.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

ICallEvents Interface I

OnCallDataUpdate

Changes to the call context data will generate an OnCallDataUpdate event. Only
the items that have changed will be in the event argument array. The initial call

context is provided in the OnCallBegin event.

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call is located.

PeripheralType The type of the peripheral. type: integer.

NumCTIClients The number of CTI Clients associated with
this call. This value also indicates the
number of CTI Client signatures and
timestamps that are present in the floating
part of the message.

CallType The general classification of the call type.

ConnectionDeviceIDType

Indicates the type of ConnectionDevicelD
value.

ConnectionDevicelD The previous device identifier of the call
connection.
ConnectionCallID The Call ID value previously assigned to

this call by the peripheral or the ICM.

NewConnectionDeviceIDType

Indicates the type of the connection
identifier supplied in the
NewConnectionDevicelD field.

NewConnectionDevicelD

The new identifier of call connection.

NewConnectionCallID

The new Call ID value assigned to this call
by the peripheral or the ICM.

ANI (optional)

The calling line ID of the caller.

UserToUserInfo (optional)

The ISDN user-to-user information
element.

DNIS (optional)

The DNIS provided with the call.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter6 Call Object |

ICallEvents Interface

Field

Description

DialedNumber (optional)

The number dialed.

CallerEnteredDigits (optional)

The digits entered by the caller in response
to IVR prompting.

RouterCallKeyDay (optional)

Together with the RouterCallKeyCallID
field forms the unique 64-bit key for
locating this call’s records in the ICM
database. Only provided for Post-routed
and Translation-routed calls.

RouterCallKeyCallID (optional)

The call key created by the ICM. The ICM
resets this counter at midnight.

Call, ECC, and ECC Array
Variables (optional)

Call-related variable data.

CallWrapupData (optional)

Call-related wrapup data.

Snapshot (optional)

TRUE if in response to a snapshot request.

CTIClientSignature (optional)

The Client Signature of a CTI Client that
was previously associated with this call.
There may be more than one
CTIClientSignature field in the message
(see NumCTIClients).

CTIClientTimestamp (optional)

The date and time that the preceding CTI
Client signature was first associated with
the call. There may be more than one
CTIClientTimestamp field in the message
(see NumCTIClients). This field always
immediately follows the
CTIClientSignature field to which it refers.

OnCallDelivered

The OnCallDelivered event may be generated when the call arrives at the agent’s
teleset. Note that when a call is alerting at a teleset, there is no formal connection
between the call and the alerting device, so the ConnectionDevicelD of the calling
connection is reported in this message.

0L-1392-01 |

r Cisco ICM Software CTI OS Developer’'s Guide

| Chapter6 Call Object

ICallEvents Interface I

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call is located.

Peripheral Type The type of the peripheral.

ConnectionDevicelDType Indicates the type of ConnectionDevicelD
value.

ConnectionDeviceID The device identifier of the connection

between the call and the device.

ConnectionCallID The Call ID value assigned to this call by
the peripheral or the ICM.

LineHandle When LocalConnectionState is
LCS_ALERTING, this field identifies the
alerting teleset line, if known. Otherwise
this field is set to Oxffff.

LineType Indicates the type of the teleset line given
in the LineHandle field, if any.

ServiceNumber The service that the call is attributed to, as
known to the peripheral. May contain the
special value NULL_SERVICE when not
applicable or not available.

ServicelD The ICM ServicelD of the service that the
call is attributed to. May contain the
special value NULL_SERVICE when not
applicable or not available.

AlertingDeviceType Indicates the type of the device identifier
supplied in the AlertingDevicelD field.

CallingDeviceType Indicates the type of the device identifier
supplied in the CallingDevicelD field.

CalledDeviceType Indicates the type of the device identifier
supplied in the CalledDevicelD field.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H 1CallEvents Interface

Field Description

LastRedirectDeviceType Indicates the type of the device identifier
supplied in the LastRedirectDevicelD
field.

LocalConnectionState The state of the local end of the

connection. When a call first appears at an
ACD, the LocalConnectionState will be
LCS_INITIATE. When the call is
delivered to an agent teleset, the
LocalConnectionState will be
LCS_ALERTING for AllEvent clients and
the client associated with the alerting
device. For all other clients this field will
indicate the state of the client’s local
connection to the call.

EventCause Indicates a reason or explanation for the
occurrence of the event.

AlertingDevicelD (optional) The device identifier of the device that is
alerting.

CallingDevicelD (optional) The device identifier of the calling device.

CalledDevicelD (optional) The device identifier of the originally

called device.

LastRedirectDevicelD (optional) | The device identifier of the previously
alerted device.

OnCallEstablished

The OnCallEstablished event may be generated when the call is answered at the
agent’s teleset. This creates a new call connection and is reported as an
OnCallEstablished. The ConnectionCallID identifies the call, and the
ConnectionDeviceIDType and ConnectionDevicelD uniquely identify the new
call connection that was created. When more than one call with the same
ConnectionCallID value exists, the connection being created by this
CALL_ESTABLISHED_EVENT shall apply to the call that does not yet have a
destination connection established.

Cisco ICM Software CTI OS Developer’'s Guide
oL-1392-01 |

| Chapter6 Call Object

ICallEvents Interface I

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call is located.

Peripheral Type The type of the peripheral.

ConnectionDeviceIDType Indicates the type of ConnectionDevicelD
value.

ConnectionDeviceID The device identifier of the connection

between the call and the device.

ConnectionCallID The Call ID value assigned to this call by
the peripheral or the ICM.

LineHandle When LocalConnectionState is
LCS_ALERTING, this field identifies the
alerting teleset line, if known. Otherwise
this field is set to Oxffff.

LineType Indicates the type of the teleset line given
in the LineHandle field, if any.

ServiceNumber The service that the call is attributed to, as
known to the peripheral. May contain the
special value NULL_SERVICE when not
applicable or not available.

ServicelD The ICM ServicelD of the service that the
call is attributed to. May contain the
special value NULL_SERVICE when not
applicable or not available.

SkillGroupNumber The number of the agent SkillGroup the
call is attributed to, as known to the
peripheral. May contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

ICallEvents Interface

Field

Description

SkillGroupID

The ICM SkillGrouplID of the agent
SkillGroup the call is attributed to. May
contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority

The priority of the skill group, or 0 when
skill group priority is not applicable or not
available.

AnsweringDeviceType

Indicates the type of the device identifier
supplied in the AnsweringDevicelD field.

CallingDeviceType

Indicates the type of the device identifier
supplied in the CallingDevicelD field.

CalledDeviceType

Indicates the type of the device identifier
supplied in the CalledDevicelD field.

LastRedirectDeviceType

Indicates the type of the device identifier
supplied in the LastRedirectDevicelD
field.

LocalConnectionState The state of the local end of the
connection.
EventCause Indicates a reason or explanation for the

occurrence of the event.

AnsweringDevicelD (optional)

The device identifier of the device that is
alerting.

CallingDevicelD (optional)

The device identifier of the calling device.

CalledDevicelD (optional)

The device identifier of the originally
called device.

LastRedirectDevicelD (optional)

The device identifier of the previously
alerted device.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

ICallEvents Interface I

OnCallHeld

Placing a call on hold at the agent’s teleset may generate an OnCallHeld event.

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call activity occurred.

PeripheralType The type of the peripheral.

ConnectionDeviceIDType Indicates the type of ConnectionDevicelD
value.

ConnectionDevicelD The device identifier of the connection

between the call and the device.

ConnectionCallID The Call ID value assigned to this call by
the peripheral or the ICM.

HoldingDeviceType Indicates the type of the device identifier
supplied in the HoldingDevicelD field.

LocalConnectionState The state of the local end of the
connection.

EventCause Indicates a reason or explanation for the

occurrence of the event.

HoldingDevicelD (optional) The device identifier of the device that
activated the hold.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H 1CallEvents Interface

OnCallRetrieved

Resuming a call previously placed on hold at the agent’s teleset may generate an

OnCallRetrieved event.

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call activity occurred.

PeripheralType The type of the peripheral.

ConnectionDeviceIDType

Indicates the type of ConnectionDevicelD
value.

ConnectionDevicelD The device identifier of the connection
between the call and the device.

ConnectionCallID The Call ID value assigned to this call by
the peripheral or the ICM.

RetrievingDeviceType Indicates the type of the device identifier
supplied in the RetrievingDevicelD field.

LocalConnectionState The state of the local end of the
connection.

EventCause Indicates a reason or explanation for the

occurrence of the event.

RetrievingDevicelD (optional)

The device identifier of the device that
deactivated the hold.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6

Call Object

OnCallCleared

An OnCallCleared event is generated when a call is terminated, normally when
the last device disconnects from a call.

ICallEvents Interface I

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call activity occurred.

PeripheralType The type of the peripheral.

ConnectionDeviceIDType Indicates the type of ConnectionDevicelD
value.

ConnectionDevicelD The device identifier of the connection
between the call and the device.

ConnectionCallID The Call ID value assigned to this call by
the peripheral or the ICM.

LocalConnectionState The state of the local end of the
connection.

EventCause Indicates a reason or explanation for the

occurrence of the event.

OnCallConnectionCleared

An OnCallConnectionCleared event is generated when a party drops from a call.

Field Description

Callldentifier Unique reference generated for a call at client.

PeripherallD The ICM PeripherallD of the ACD where the
call activity occurred.

Peripheral Type The type of the peripheral.

ConnectionDevicelDType

Indicates the type of ConnectionDevicelD
value.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter6 Call Object |

H 1CallEvents Interface

ConnectionDeviceID The device identifier of the connection between
the call and the device.

ConnectionCallID The Call ID value assigned to this call by the
peripheral or the ICM.

ReleasingDeviceType Indicates the type of the device identifier
supplied in the ReleasingDevicelD field.

LocalConnectionState The state of the local end of the connection.

EventCause Indicates a reason or explanation for the
occurrence of the event.

ReleasingDevicelD The device identifier of the device that cleared

the connection.

OnCallOriginated

The initiation of a call from the peripheral may generate an OnCallOriginated

event.

Field Description

Callldentifier Unique reference generated for a call at client.

PeripherallD The ICM PeripherallD of the ACD where the
call activity occurred.

PeripheralType The type of the peripheral. type: integer.

ConnectionDeviceIDType

Indicates the type of ConnectionDevicelD
value.

ConnectionDevicelD The device identifier of the connection between
the call and the device.

ConnectionCallID The Call ID value assigned to this call by the
peripheral or the ICM.

LineHandle Identifies the teleset line being used.

LineType Indicates the type of the teleset line.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6

Call Object

ICallEvents Interface

Field

Description

ServiceNumber

The service that the call is attributed to, as
known to the peripheral. May contain the
special value NULL_SERVICE when not
applicable or not available.

ServicelD

The ICM ServicelD of the service that the call is
attributed to. May contain the special value
NULL_SERVICE when not applicable or not
available.

SkillGroupNumber

The number of the agent SkillGroup the call is
attributed to, as known to the peripheral. May
contain the special value
NULL_SKILL_GROUP when not applicable or
not available.

SkillGroupID

The ICM SkillGroupID of the agent SkillGroup
the call is attributed to. May contain the special
value NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority

The priority of the skill group, or O when skill

group priority is not applicable or not available.

CallingDeviceType

Indicates the type of the device identifier
supplied in the CallingDevicelD field.

CalledDeviceType

Indicates the type of the device identifier
supplied in the CalledDevicelD field.

LocalConnectionState

The state of the local end of the connection.

EventCause

Indicates a reason or explanation for the
occurrence of the event.

CallingDevicelD (optional)

The device identifier of the calling device.

CalledDevicelD

The device identifier of the originally called
device.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter6 Call Object |

H 1CallEvents Interface

OnCallFailed

The OnCallFailed event may be generated when a call cannot be completed.

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call activity occurred.

PeripheralType The type of the peripheral.

ConnectionDeviceIDType

Indicates the type of ConnectionDevicelD
value.

ConnectionDevicelD The device identifier of the connection
between the call and the device.

ConnectionCallID The Call ID value assigned to this call by
the peripheral or the ICM.

FailingDeviceType Indicates the type of the device identifier
supplied in the FailingDevicelD field.

CalledDeviceType Indicates the type of the device identifier
supplied in the CalledDevicelD field.

LocalConnectionState The state of the local end of the
connection.

EventCause Indicates a reason or explanation for the

occurrence of the event.

FailingDevicelID (optional)

The device identifier of the failing device.

CalledDevicelD

The device identifier of the originally
called device.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

OnCallTransferConferencelnitiated

ICallEvents Interface I

The OnCallTransferConferencelnitiated event is generated when a consultative
call is delivered. The event is delivered to both calls at the originating device.

Field Description
Callldentifier Unique reference generated for a call at client.
OnCallTransferred

The transfer of a call to another destination may generate an OnCallTransferred

event.

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call activity occurred.

PeripheralType The type of the peripheral.

PrimaryDevicelDType Indicates the type of the connection
identifier supplied in the PrimaryDevicelD
fields.

PrimaryCallID The Call ID value assigned to the primary
call by the peripheral or the ICM.

LineHandle Identifies the teleset line being used.

LineType Indicates the type of the teleset line.

SkillGroupNumber The number of the agent SkillGroup the

call is attributed to, as known to the
peripheral. May contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

ICallEvents Interface

Field

Description

SkillGroupID

The ICM SkillGrouplID of the agent
SkillGroup the call is attributed to. May
contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority

The priority of the skill group, or 0 when
skill group priority is not applicable or not
available.

SecondaryDeviceIDType

Indicates the type of the connection
identifier supplied in the
SecondaryDevicelD field.

SecondaryCallID

The Call ID value assigned to the
secondary call by the peripheral or the
ICM.

TransferringDeviceType

Indicates the type of the device identifier
supplied in the TransferringDevicelD
field.

TransferredDeviceType

Indicates the type of the device identifier
supplied in the TransferredDevicelD field.

LocalConnectionState The state of the local end of the
connection.

EventCause Indicates a reason or explanation for the
occurrence of the event.

PrimaryDevicelD The connection identifier of the primary
call connection.

SecondaryDevicelD The connection identifier of the secondary

call connection.

TransferringDevicelD (optional)

The device identifier of the device that
transferred the call.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

ICallEvents Interface I

Field Description

TransferredDevicelD (optional) The device identifier of the device to
which the call was transferred.

ConnectedParties (optional) The Call ID, DevicelDType, and DevicelD
of parties connected to this conference
call, up to a maximum of 16. This is an
array of arguments, each containing the
call identification information for each
connected party.

OnCallConferenced

The joining of calls into a conference call may generate an OnCallConferenced

event.

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call activity occurred.

PeripheralType The type of the peripheral.

PrimaryDevicelDType Indicates the type of the connection
identifier supplied in the PrimaryDevicelD
field.

PrimaryCallID The Call ID value assigned to the primary
call by the peripheral or the ICM.

LineHandle Identifies the teleset line being used.

LineType Indicates the type of the teleset line.

SkillGroupNumber The number of the agent SkillGroup the
call is attributed to, as known to the
peripheral. May contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

ICallEvents Interface

Field

Description

SkillGroupID

The ICM SkillGrouplID of the agent
SkillGroup the call is attributed to. May
contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority

The priority of the skill group, or 0 when
skill group priority is not applicable or not
available.

SecondaryDeviceIDType

Indicates the type of the connection
identifier supplied in the
SecondaryDevicelD field.

SecondaryCallID The Call ID value assigned to the
secondary call by the peripheral or the
ICM.

ControllerDeviceType Indicates the type of the device identifier
supplied in the ControllerDevicelD field.

AddedPartyDeviceType Indicates the type of the device identifier
supplied in the AddedPartyDevicelD field.

LocalConnectionState The state of the local end of the
connection.

EventCause Indicates a reason or explanation for the
occurrence of the event.

PrimaryDevicelD The connection identifier of the primary
call connection.

SecondaryDevicelD The connection identifier of the secondary

call connection.

ControllerDevicelD (optional)

The device identifier of the conference
controller device.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

ICallEvents Interface I

Field Description

AddedPartyDevicelD (optional) The device identifier of the device added
to the call.

ConnectedParties (optional) The Call ID, DevicelDType, and DevicelD

of parties connected to this conference

call, up to a maximum of 16. This is an
array of arguments, each containing the
call identification information for each

connected party.

OnCallDiverted

The removal of a call from a previous delivery target may generate an
OnCallDiverted event.

Field Description

Callldentifier Unique reference generated for a call at
client.

PeripherallD The ICM PeripherallD of the ACD where
the call activity occurred.

PeripheralType The type of the peripheral.
ConnectionDeviceIDType Indicates the type of ConnectionDevicelD
value.

ConnectionDevicelD The device identifier of the connection

between the call and the device.

ConnectionCallID The Call ID value assigned to this call by
the peripheral or the ICM.

ServiceNumber The service that the call is attributed to, as
known to the peripheral. May contain the
special value NULL_SERVICE when not
applicable or not available.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |
M (CallEvents Interface

Field Description

ServicelD The ICM ServicelD of the service that the
call is attributed to. May contain the
special value NULL_SERVICE when not
applicable or not available.

DivertingDeviceType Indicates the type of the device identifier
supplied in the DivertingDevicelD field.

CalledDeviceType Indicates the type of the device identifier
supplied in the CalledDevicelD field.

LocalConnectionState The state of the local end of the
connection.

EventCause Indicates a reason or explanation for the
occurrence of the event.

DivertingDevicelD (optional) The device identifier of the device from
which the call was diverted.

CalledDevicelD (optional) The device identifier of the device to
which the call was diverted.

OnTranslationRoute

This event is generated when a call is routed to a peripheral monitored by the PG
via a translation route. The event parameters contains the call context data that
will be assigned to the call after it arrives at the peripheral.

Field

Description

ANI (optional)

The calling line ID of the caller.

UserToUserInfo (optional)

The ISDN user-to-user information
element.

DNIS

The DNIS of the expected call.

DialedNumber (optional)

The number dialed.

CallerEnteredDigits (optional)

The digits entered by the caller in response
to IVR prompting.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

ICallEvents Interface I

Field

Description

RouterCallKeyDay

Together with the RouterCallKeyCallID
field forms the unique 64-bit key for
locating this call’s records in the ICM
database.

RouterCallKeyCallID

The call key created by the ICM. The ICM
resets this counter at midnight.

Call and ECC Variables (optional)

Call-related variable data.

OnCallEnterpriseAgent

The OnCallEnterpriseAgent event is generated when a call is routed to an
Enterprise Agent. The event parameters contains the call context data that will be
assigned to the call after it arrives at the agent’s desktop. Application developers
should note that, while atypical, it is possible for the call to arrive at the agent and
to receive an OnCallBegin event and other call events for the call before the
OnCallEnterpriseAgent event is received.

Field

Description

ServiceNumber

The service that the call is attributed to, as
known to the peripheral. May contain the
special value NULL_SERVICE when not
applicable or not available.

ServicelD

The ICM ServicelD of the service that the
call is attributed to. May contain the
special value NULL_SERVICE when not
applicable or not available.

SkillGroupNumber

The number of the agent SkillGroup the
call is attributed to, as known to the
peripheral. May contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter6 Call Object |

H 1CallEvents Interface

Field Description

SkillGroupID The ICM SkillGrouplID of the agent
SkillGroup the call is attributed to. May
contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority The priority of the skill group, or 0 when
skill group priority is not applicable or not
available.

AgentInstrument The agent instrument that the call will be
routed to.

RouterCallKeyDay Together with the RouterCallKeyCallID

field forms the unique 64-bit key for
locating this call’s records in the ICM

database

RouterCallKeyCallID The call key created by the ICM. The ICM
resets this counter at midnight.

ANI (optional) The calling line ID of the caller.

UserToUserInfo (optional) The ISDN user-to-user information
element.

DialedNumber (optional) The number dialed.

CallerEnteredDigits (optional) The digits entered by the caller in response

to IVR prompting.
Call and ECC Variables (optional) |Call-related variable data.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter6

ICallEvents Interface I

OnCallPreEventAbort

An OnCallPreEventAbort event is generated when a call that was previously
announced via an OnCallPreEvent cannot be routed as intended due to a busy or
other error condition detected during call routing.

Field Description

Agentlnstrument The agent instrument that the call was to
have been routed to.

RouterCallKeyDay Together with the RouterCallKeyCallID
field forms the unique 64-bit key for
locating this call’s records in the ICM
database

RouterCallKeyCallID The call key created by the ICM. The ICM
resets this counter at midnight.

OnCallRequestFailed

If an Answer, Release, Hold, Retrieve, Transfer, or Conference request fails, an
OnCallRequestFailed event is generated.

Field Description

Request ID of request

OnAgentPrecallEvent

The OnAgentPrecallEvent event is roughly equivalent to a
TranslationRouteEvent as far as CTI OS is concerned. A non-ACD agent (e.g
enterprise agent) will get this event when he has been selected to receive the call,
but before it is actually delivered. As a result we will identify the call by it's
RouterCallKeyDay and RouterCallKeyCallID. We can receive events for the call
while it is in queue, and we can set the call data. However, since this event
happens before the BEGIN_CALL_EVENT, we will not know the PeripherallD,
and thus cannot create a peripheral-specific behavior implementation object. All
we can do at this point is get and set data.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter6 Call Object |

H 1CallEvents Interface

Field Description

RouterCallKeyDay Together with the RouterCallKeyCallID
field forms the unique 64-bit key for
locating this call’s records in the ICM
database. Only provided for Post-routed
and Translation-routed calls.

RouterCallKeyCallID The call key created by the ICM. The ICM
resets this counter at midnight.

Agentlnstrument The agent instrument that the call will be
routed to.

NumNamed Variables Number of Named variables

NumNamedArrays Number of Named Array

ServiceNumber The service that the call is attributed to, as
known to the peripheral.

ServicelD The ICM ServicelD of the service that the
call is attributed to.

SkillGroupNumber The number of the agent SkillGroup the
call is attributed to, as known to the
peripheral.

SkillGroupID The ICM SkillGroupID of the agent
SkillGroup the call is attributed to.

SkillGroupPriority The priority of the skill group, or 0 when
skill group priority is not applicable or not
available.

ANI The calling line ID of the caller.

UserToUserInfo The ISDN user-to-user information
element.

DialedNumber The number dialed.

CallerEnteredDigits The digits entered by the caller in response

to IVR prompting.

CallVariable 1 through 10

Call-related variable data.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

ICallEvents Interface I

OnAgentPrecallAbortEvent

The OnAgentPrecallAbortEvent event is received when a previously identified
AgentPreCallEvent is reversed. We will identify the call by it's
RouterCallKeyDay and RouterCallKeyCallID. We can receive events for the call
while it is in queue, and we can set the call data. However, since this event
happens before the BEGIN_CALL_EVENT, you donot know the PeripherallD,
and thus cannot create a peripheral-specific behavior implementation object. All
you can do at this point is get and set data.

Field Description

RouterCallKeyDay Together with the RouterCallKeyCallID field forms
the unique 64-bit key for locating this call’s records in
the ICM database. Only provided for Post-routed and
Translation-routed calls.

RouterCallKeyCallID |The call key created by the ICM. The ICM resets this
counter at midnight.

AgentInstrument The agent instrument that the call will be routed to.

OnCallServicelnitiatedEvent

The initiation of telecommunications service (“dial tone”) at the agent’s teleset
may generate an OnCallServicelnitiatedEvent to the CTI Client.

Field Description

PeripherallD The ICM PeripheralID of the ACD where the call
or device to be monitored is located.

Peripheral Type The type of the peripheral

ConnectionCallID The Call ID value of the call to be monitored. This

field should be set to zero when creating a monitor
for a device.

ConnectionDevicelD

ConnectionDeviceIDType |Indicates the type of the connection identifier

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H 1CallEvents Interface

CallingDevicelD The device identifier of the calling device.

CallingDevicelDType Indicates the type of the device identifier supplied
in the CallingDevicelD field.

LocalConnectionState The state of the local end of the connection

EventCause Indicates a reason or explanation for the
occurrence of the event

LineHandle Identifies the teleset line being used.

LineType Indicates the type of the teleset line

ServicelD The ICM ServicelD of the service that the call is
attributed to.

ServiceNumber The service that the call is attributed to, as known
to the peripheral.

SkillGroupID The ICM SkillGroupID of the agent SkillGroup
the call is attributed to.

SkillGroupNumber The number of the agent SkillGroup the call is
attributed to, as known to the peripheral.

SkillGroupPriority The priority of the skill group, or 0 when skill

group priority is not applicable or not available.

OnCallQueuedEvent

The placing of a call in a queue pending the availability of some resource may
generate an OnCallQueuedEvent message to the CTI Client. Clients with Client
Events Service may receive this message when an outbound call is queued waiting
for a trunk or other resource. Clients with All Events Service may also receive
this message when inbound calls are queued.

Field

Description

ConnectionDevicelD

The identifier of the connection between the
call and the device.

ConnectionDevicelDType

Indicates the type of the connection identifier
supplied in the ConnectionDevicelD

QueuedDevicelD

The device identifier of the queuing device.

Cisco ICM Software CTI OS Developer’'s Guide

6-68

0L-1392-01 |

| Chapter6 Call Object

ICallEvents Interface I

Field Description
QueuedDevicelDType Indicates the type of the device identifier
supplied in the QueuedDevicelD.
CallingDevicelD The device identifier of the calling device.
CallingDevicelDType Indicates the type of the device identifier
supplied in the CalledDevicelD.
CalledDevicelD The device identifier of the called device.
CalledDevicelDType Indicates the type of the device identifier
supplied in the CalledDevicelD
LastRedirectedDevicelD The device identifier of the redirecting
device.

LastRedirectedDeviceIDType |Indicates the type of the device identifier
supplied in the LastRedirectDevicelD

LocalConnectionState The state of the local end of the connection

EventCause Indicates a reason or explanation for the
occurrence of the event

LineHandle Identifies the teleset line being used.

LineType Indicates the type of the teleset line.

ServicelD The ICM ServicelD of the service that the call
is attributed to.

ServiceNumber The service that the call is attributed to, as
known to the peripheral.

SkillGrouplID The ICM SkillGrouplID of the agent
SkillGroup the call is attributed to.

SkillGroupNumber The number of an agent SkillGroup queue that
the call has been added to, as known to the
peripheral.

SkillGroupPriority The priority of the skill group, or 0 when skill
group priority is not applicable or not
available.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H 1CallEvents Interface

Field Description

NumQueued The number of calls in the queue for this
service.

NumSkillGroups The number of Skill Group queues that the

call has queued to, up to a maximum of 20.
This value also indicates the number of
SkillGroupNumber, SkillGroupID and
SkillGroupPriority floating fields present in
the floating part of the message.

OnCallDequeuedEvent

The explicit removal of a call from a queue may generate a
OnCallDequeuedEvent message to the CTI Client.

Field

Description

ConnectionDevicelD

The identifier of the connection between the call
and the device.

ConnectionDevicelDType

Indicates the type of the connection identifier
supplied in the ConnectionDevicelD

LocalConnectionState The state of the local end of the connection

EventCause Indicates a reason or explanation for the
occurrence of the event

LineHandle Identifies the teleset line being used.

LineType Indicates the type of the teleset line.

ServicelD The ICM ServicelD of the service that the call is
attributed to.

ServiceNumber The service that the call is attributed to, as
known to the peripheral.

SkillGrouplD The ICM SkillGroupID of the agent SkillGroup
the call is attributed to.

SkillGroupNumber The number of an agent SkillGroup queue that

the call has been added to, as known to the
peripheral.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

ICallEvents Interface I

Field Description

SkillGroupPriority The priority of the skill group, or O when skill
group priority is not applicable or not available.

NumQueued The number of calls in the queue for this service.

NumSkillGroups The number of Skill Group queues that the call

has queued to, up to a maximum of 20. This
value also indicates the number of
SkillGroupNumber, SkillGroupID and
SkillGroupPriority floating fields present in the
floating part of the message.

OnCallReachedNetworkEvent

The connection of an outbound call to another network may generate an

OnCallReachedNetworkEvent.

Field

Description

ConnectionDevicelD

The identifier of the connection between the call
and the device.

ConnectionDevicelDType

Indicates the type of the connection identifier
supplied in the ConnectionDevicelD

TrunkUsedDevicelD

The device identifier of the selected trunk.

TrunkUsedDevicelDType

Indicates the type of the device identifier
supplied in the TrunkUsedDevicelD

CalledDevicelD The device identifier of the called device.

CalledDevicelDType Indicates the type of the device identifier
supplied in the CalledDevicelD

LocalConnectionState The state of the local end of the connection.

EventCause Indicates a reason or explanation for the
occurrence of the event.

LineHandle Identifies the teleset line being used.

LineType Indicates the type of the teleset line.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter6 Call Object |

H 1CallEvents Interface

OnControlFailureConf

The OnControlFailureConf event is generated when an already established

connection fails.

Field Description

FailureCode Code ID

ErrorCode Description of an error

AgentID Agent ID that represents a specific client
PeripherallD Peripheral ID

OnSnapshotCallConf

The OnSnapshotCallConf event is generated when an already established

connection fails.

Field Description

CallType The general classification of the call type

NumCTIClients The number of CTI Clients associated with
this call. This value also indicates the
number of CTI Client signatures and
timestamps

NumCallDevices Number of call devices

NumNamed Variables Number of named variables

NumNamedArrays Number of named arrays

ANI The calling line ID of the caller.

UserToUserInfo The ISDN user-to-user information element.

DNIS The DNIS provided with the call.

DialedNumber The number dialed.

CallerEnteredDigits The digits entered by the caller in response to
IVR prompting.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter6 Call Object

ICallEvents Interface I

Field Description

RouterCallKeyDay Together with the RouterCallKeyCallID field
forms the unique 64-bit key for locating this
call’s records in the ICM database. Only
provided for Post-routed and
Translation-routed calls.

RouterCallKeyCallID The call key created by the ICM. The ICM
resets this counter at midnight.

CallWrapupData Call-related wrapup data.

Ecc variables Call data variables

CallVariable 1 through 10 Call-related variable data.
OnServicelnitiated

The initiation of telecommunications service (“dial tone”) at the agent’s teleset
may generate an OnCallServicelnitiated event.

Field Description

PeripherallD The ICM PeripherallD of the ACD where
the call activity occurred.

Peripheral Type The type of the peripheral.

ConnectionDeviceIDType Indicates the type of ConnectionDevicelD
value.

ConnectionDeviceIlD The device identifier of the connection

between the call and the device.

ConnectionCallID The Call ID value assigned to this call by
the peripheral or the ICM.

LineHandle Identifies the teleset line being used.

LineType Indicates the type of the teleset line.

ServiceNumber The service that the call is attributed to, as

known to the peripheral. May contain the
special value NULL_SERVICE when not
applicable or not available.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter6 Call Object |

H 1CallEvents Interface

Field Description

ServicelD The ICM ServicelD of the service that the
call is attributed to. May contain the
special value NULL_SERVICE when not
applicable or not available.

SkillGroupNumber The number of the agent SkillGroup the
call is attributed to, as known to the
peripheral. May contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupID The ICM SkillGroupID of the agent
SkillGroup the call is attributed to. May
contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority The priority of the skill group, or 0 when
skill group priority is not applicable or not
available.

CallingDeviceType Indicates the type of the device identifier
supplied in the CallingDevicelD field.

LocalConnectionState The state of the local end of the
connection.

EventCause Indicates a reason or explanation for the

occurrence of the event.

CalledDevicelD (optional) The device identifier of the device to
which the call was diverted.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

, A
VCHAPAI'ERL‘,vé

SkillGroup Object

The SkillGroup object is the abstraction for the data associated with a skill group.
The SkillGroup is mainly a representation used for accessing statistics, and can
be used in either the agent connection mode or in a supervisor application
(monitor mode).

When an agent is logged in, the Session object receives an OnAgentStateEvent
for each skill group the agent is logged into. Based on these events, the session
create and update one SkillGroup object for each of the agent’s skill groups. The
SkillGroups will be accessible directly from the Session, as well as through the
Agent Object. The Agent Object maintains a list of the agent’s skills and provides
a type of iterator to access skill group statistics for each of the agent’s skills.

The SkillGroup object maintains the agent’s SkillGroup state and any updated
skill group statistics.

In a supervisor application (monitor mode), the application creates SkillGroup
objects for each of the skills it wishes to monitor. The SkillGroup object containd
all of the available statistics as properties. When any statistic changes, an
OnSkillGroupStatistic event is received.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 7 SkillGroup Object |

H Methods

Methods

Table 7-1 lists the SkillGroup object methods.

Table 7-1 SkillGroup Object Methods

Method Description

EnableSkillGroupStatistics/ Enable or disable skill group statistic

DisableSkillGroupStatistics messages.

GetPropertyAttribute Obtains attribute information for a skill
group property.

GetValue Retrieves a skill group property based on
the property’s name key.

OnEvent Specifies an action to take on receipt of a
skill group statistic update event.

EnableSkillGroupStatistics/DisableSkillGroupStatistics

The EnableSkillGroupStatistics and DisableSkillGroupStatistics methods enable
or disable skill group statistic messages. The user may specify the skill group
numbers of those skill groups for which statistics are to be enabled or disabled.

If you do not specify any skill group numbers, the CTI OS server will decides
which skill group statistics to enable or disable. If the agent is a supervisor, the
CTI OS server will enable or disable statistics for all skill groups to which the
supervisor's team members belong. If the agent is not a supervisor, the server will
enable or disable statistics for all skill groups to which the agent belongs.

Syntax

C++

int EnableSkillGroupStatistics (Arguments & rArguments) ;
int DisableSkillGroupStatistics (Arguments & rArguments) ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter7 SkillGroup Object

Methods W

COM (standard COM API)

HRESULT EnableSkillGroupStatistics ();
HRESULT DisableSkillGroupStatistics ();

Parameters
None.
Return Values
C++
If the method succeeds, it returns CIL_OK. Otherwise, it returns error code
E_CTIOS_IN_FAILOVER if the session is on FailOver mode.
com
If the method succeeds, it returns S_OK. Otherwise, it returns E_FAIL.
Examples
C++

CSkillGroup * pSkillGroup = NULL;
int nRet = 0;
Arguments & rArgs;
// Get a valid SkillGroup pointer
if (pSkillGroup)
{
//
nRet = pSkillGroup -> EnableSkillGroupStatistics (rArgs);

// Check if the EnableSkillGroupStatistics method
failed

}

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter 7 SkillGroup Object |

H Methods

COM C++

HRESULT hr =S_OK;
ISkillGroupPtr pSkillGroup = NULL;

// First, get SkillGroup object and make sure it is valid pointer
if (pSkillGroup)

{

hr = pSkillGroup -> DisableSkillGroupStatistics () ;

if (FAILED (hr))

{
}

pSkillGroup = NULL;

}

// You might want to log an error description HERE

return hr;

VB
Dim skillNumbers As New ctios.Arguments
skillNumbers.AddItem("Skilli", 7)
skillNumbers.AddItem("Skill2", 99)
Dim enableArgs As New ctios.Arguments

enableArgs.AddItem("SkillGroupNumbers", skillNumbers)
agent .EnableSkillGroupStatistics (enableArgs)

Dim enableArgs As New ctios.Arguments

agent .EnableSkillGroupStatistics (enableArgs)

GetPropertyAttribute

The GetPropertyAttribute method gets, sets, or retrieves attribute information for
any of the properties listed in Table 7-2. For additional information on
GetPropertyAttribute, see Chapter 1, “Introduction.” Properties can be accessed
using GetValue.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter7 SkillGroup Object

Table 7-2 SkillGroup Properties

Methods W

Property Description

SkillGroupNumber The number of the skill group from the Peripheral.

SkillGrouplID The ICM SkillGroupID of the SkillGroup, if available.

SkillGroupName The ICM SkillGroupName of the SkillGroup, if
available.

SkillGroupState Values representing the current state of the associated
agent with respect to the indicated Agent Skill Group.

Classldentifier Value represents skillgroup class

Statistics can be accessed by first

using GetValue on the Skill Group object to

obtain the “Statistics” arguments array and then using GetValue on the
“Statistics” arguments array to obtain the desired value.

Note Not all the statistics values listed in Table 7-3 are present in every system

configuration. Whether a particula
the protocol version of CTIServer
peripheral on which the agent resi

r statistic value is available depends both on
with which CTI OS connects and on the
des.

Table 7-3 SkillGroup Statistics

Statistic Description

AgentsLoggedOn Number of agents that are currently logged on
to the skill group

AgentsAvail Number of agents in the skill group in
Available state.

AgentsNotReady Number of agents in the skill group in Not
Ready state.

AgentsReady Number of agents in the skill group in Ready
state.

AgentsTalkingln Number of agents in the skill group currently
talking on inbound calls.

Cis

[oL-1392-01

co ICM Software CTI 0S Developer's Guide g

Chapter 7 SkillGroup Object

H Methods

Table 7-3 SkillGroup Statistics (continued)

Statistic Description

AgentsTalkingOut Number of agents in the skill group currently
talking on outbound calls.

AgentsTalkingOther Number of agents in the skill group currently
talking on internal (not inbound or outbound)
calls.

AgentsWorkNotReady Number of agents in the skill group in Work
Not Ready state.

AgentsWorkReady Number of agents in the skill group in Work
Ready state.

AgentsBusyOther The number of agents in the skill group
currently busy with calls assigned to other
skill groups.

AgentsReserved Number of agents in the skill group in
Reserved state.

AgentsHold Number of agents in the skill group with calls
currently on hold.

AgentsTalkingAutoOut Number of agents in the skill group currently
talking on AutoOut (predictive) calls.

AgentsTalkingPreview Number of agents in the skill group currently

talking on outbound Preview calls.

AgentsTalkingReservation

Number of agents in the skill group currently
talking on agent reservation calls.

RouterCallsQNow

The number of calls currently queued by the
ICM call router to the skill group. This field is
set to OXFFFFFFFF when this value is
unknown or unavailable.

LongestRouterCallQNow

The queue time in seconds of the ICM call
router queued call that has been queued to this
skill group the longest. This field is set to
OxFFFFFFFF when this value is unknown or
unavailable.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01

| Chapter7 SkillGroup Object

Methods W

Table 7-3 SkillGroup Statistics (continued)

Statistic

Description

CallsQNow

The number of calls currently queued to the
skill group. This field is set to OXFFFFFFFF
when this value is unknown or unavailable.

CallsQTimeNow

The total queue time, in seconds, of calls
currently queued to the skill group. This field
is set to OxXFFFFFFFF when this value is
unknown or unavailable.

LongestCallQNow

The queue time, in seconds, of the currently
queued call that has been queued to the skill
group the longest. This field is set to
OxFFFFFFFF when this value is unknown or
unavailable.

AvailTimeTo5

Total seconds agents in the skill group were in
the Available state during the last five
minutes.

LoggedOnTimeTo5

Total time, in seconds, agents in the skill
group were logged on during the last five
minutes.

NotReadyTimeTo5

Total seconds agents in the skill group were in
the Not Ready state during the last five
minutes.

AgentOutCallsTo5

Total number of completed outbound ACD
calls made by agents in the skill group during
the last five minutes.

AgentOutCallsTalkTimeTo5

Total talk time, in seconds, for completed
outbound ACD calls handled by agents in the
skill group during the last five minutes. The
value includes the time spent from the call
being initiated by the agent to the time the
agent begins after call work for the call. The
time includes hold time associated with the
call.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 7 SkillGroup Object |

H Methods

Table 7-3 SkillGroup Statistics (continued)

Statistic

Description

AgentOutCallsTimeToS5

Total handle time, in seconds, for completed
outbound ACD calls handled by agents in the
skill group during the last five minutes. The
value includes the time spent from the call
being initiated by the agent to the time the
agent completes after call work time for the
call. The time includes hold time associated
with the call.

AgentOutCallsHeldTo5

The total number of completed outbound
ACD calls agents in the skill group have
placed on hold at least once during the last
five minutes.

AgentOutCallsHeldTimeToS5

Total number of seconds outbound ACD calls
were placed on hold by agents in the skill
group during the last five minutes.

HandledCallsTo5

The number of inbound ACD calls handled by
agents in the skill group during the last five
minutes.

HandledCallsTalkTimeTo5

Total talk time in seconds for Inbound ACD
calls counted as handled by agents in the skill
group during the last five minutes. Includes
hold time associated with the call.

HandledCallsAfterCallTime

Total after call work time in seconds for

To5 Inbound ACD calls counted as handled by
agents in the skill group during the last five
minutes.

HandledCallsTimeTo5 Total handle time, in seconds, for inbound

ACD calls counted as handled by agents in the
skill group during the last five minutes. The
time spent from the call being answered by the
agent to the time the agent completed after
call work time for the call. Includes hold time
associated with the call.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter7 SkillGroup Object

Methods
Table 7-3 SkillGroup Statistics (continued)
Statistic Description
IncomingCallsHeldTo5 The total number of completed inbound ACD

calls agents in the skill group placed on hold
at least once during the last five minutes.

IncomingCallsHeldTimeTo5 Total number of seconds completed inbound
ACD calls were placed on hold by agents in
the skill group during the last five minutes.

InternalCallsRcvdTo5 Number of internal calls received by agents in
the skill group during the last five minutes.

InternalCallsRcvdTimeTo5 Number of seconds spent on internal calls
received by agents in the skill group during
the last five minutes.

InternalCallsHeldTo5 The total number of internal calls agents in the
skill group placed on hold at least once during
the last five minutes.

InternalCallsHeldTimeTo5 Total number of seconds completed internal
calls were placed on hold by agents in the skill
group during the last five minutes.

AutoOutCallsTo5 Total number of AutoOut (predictive) calls
completed by agents in the skill group during
the last five minutes.

AutoOutCallsTalkTimeTo5 Total talk time in seconds for completed
AutoOut (predictive) calls handled by agents
in the skill group during the last five minutes.
The value includes the time spent from the
call being initiated to the time the agent
begins after call work time for the call. The
time includes hold time associated with the
call.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter 7 SkillGroup Object |

H Methods

Table 7-3 SkillGroup Statistics (continued)

Statistic

Description

AutoOutCallsTimeTo5

Total handle time in seconds for completed
AutoOut (predictive) calls handled by agents
in the skill group during the last five minutes.
The value includes the time spent from the
call being initiated to the time the agent
completes after call work time for the call.
The time includes hold time associated with
the call.

AutoOutCallsHeldTo5

Total number of completed AutoOut
(predictive) calls that agents in the skill group
have placed on hold at least once during the
last five minutes.

AutoOutCallsHeldTimeTo5

Total number of seconds AutoOut (predictive)
calls were placed on hold by agents in the skill
group during the last five minutes.

PreviewCallsTo5

Total number of outbound Preview calls
completed by agents in the skill group during
the last five minutes.

PreviewCallsTalkTimeTo5

Total talk time in seconds for completed
outbound Preview calls handled by agents in
the skill group during the last five minutes.
The value includes the time spent from the
call being initiated to the time the agent
begins after call work time for the call. The
time includes hold time associated with the
call.

PreviewCallsTimeTo5

Total handle time in seconds for completed
outbound Preview calls handled by agents in
the skill group during the last five minutes.
The value includes the time spent from the
call being initiated to the time the agent
completes after call work time for the call.
The time includes hold time associated with
the call.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter?

SkillGroup Object

Table 7-3 SkillGroup Statistics (continued)

Methods W

Statistic

Description

PreviewCallsHeldTo5

Total number of completed outbound Preview
calls that agents in the skill group have placed
on hold at least once during the last five
minutes.

PreviewCallsHeldTimeTo5

Total number of seconds outbound Preview
calls were placed on hold by agents in the skill
group during the last five minutes.

ReservationCallsTo5

Total number of agent reservation calls
completed by agents in the skill group during
the last five minutes.

ReservationCallsTalkTimeTo5

Total talk time in seconds for completed agent
reservation calls handled by agents in the skill
group during the last five minutes. The value
includes the time spent from the call being
initiated to the time the agent begins after call
work time for the call. The time includes hold
time associated with the call.

ReservationCallsTimeTo5

Total handle time in seconds for completed
agent reservation calls handled by agents in
the skill group during the last five minutes.
The value includes the time spent from the
call being initiated to the time the agent
completes after call work time for the call.
The time includes hold time associated with
the call.

ReservationCallsHeldTo5

Total number of completed agent reservation
calls that agents in the skill group have placed
on hold at least once during the last five
minutes.

ReservationCallsHeldTimeTo5

Total number of seconds agent reservation
calls were placed on hold by agents in the skill
group during the last five minutes.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 7 SkillGroup Object |

H Methods

Table 7-3 SkillGroup Statistics (continued)

Statistic

Description

BargelnCallsTo5

Total number of supervisor call barge-ins
completed in the skill group during the last
five minutes.

InterceptCallsTo5

Total number of supervisor call intercepts
completed in the skill group during the last
five minutes.

MonitorCallsTo5

Total number of supervisor call monitors
completed in the skill group during the last
five minutes.

WhisperCallsTo5

Total number of supervisor call whispers
completed in the skill group during the last
five minutes.

EmergencyCallsTo5

Total number of emergency calls completed in
the skill group during the last five minutes.

CallsQ5

The number of calls queued to the skill group
during the last five minutes. This field is set to
OxFFFFFFFF when this value is unknown or
unavailable.

CallsQTime5

The total queue time, in seconds, of calls
queued to the skill group during the last five
minutes. This field is set to OXFFFFFFFF
when this value is unknown or unavailable.

LongestCallQ5

The longest queue time, in seconds, of all
calls queued to the skill group during the last
five minutes. This field is set to OXFFFFFFFF
when this value is unknown or unavailable.

AvailTimeToHalf

Total seconds agents in the skill group were in
the Available state during the last half-hour.

LoggedOnTimeToHalf

Total time, in seconds, agents in the skill
group were logged on during the last
half-hour.

NotReadyTimeToHalf

Total seconds agents in the skill group were in
the Not Ready state during the last half-hour.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter?

SkillGroup Object

Table 7-3 SkillGroup Statistics (continued)

Methods W

Statistic

Description

AgentOutCallsToHalf

Total number of completed outbound ACD
calls made by agents in the skill group during
the last half-hour.

AgentOutCallsTalkTimeTo
Half

Total talk time, in seconds, for completed
outbound ACD calls handled by agents in the
skill group during the last half-hour. The
value includes the time spent from the call
being initiated by the agent to the time the
agent begins after call work for the call. The
time includes hold time associated with the
call.

AgentOutCallsTimeToHalf

Total handle time, in seconds, for completed
outbound ACD calls handled by agents in the
skill group during the last half-hour. The
value includes the time spent from the call
being initiated by the agent to the time the
agent completes after call work time for the
call. The time includes hold time associated
with the call.

AgentOutCallsHeldToHalf

The total number of completed outbound
ACD calls agents in the skill group have
placed on hold at least once during the last
half-hour.

AgentOutCallsHeldTime

Total number of seconds outbound ACD calls

ToHalf were placed on hold by agents in the skill
group during the last half-hour.
HandledCallsToHalf The number of inbound ACD calls handled by

agents in the skill group during the last
half-hour.

HandledCallsTalkTimeToHalf

Total talk time in seconds for Inbound ACD
calls counted as handled by agents in the skill
group during the last half-hour. Includes hold
time associated with the call.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 7 SkillGroup Object

H Methods

Table 7-3 SkillGroup Statistics (continued)

Statistic

Description

HandledCallsAfterCallTime
ToHalf

Total after call work time in seconds for
Inbound ACD calls counted as handled by
agents in the skill group during the last
half-hour.

HandledCallsTimeToHalf

Total handle time, in seconds, for inbound
ACD calls counted as handled by agents in the
skill group during the last half-hour. The time
spent from the call being answered by the
agent to the time the agent completed after
call work time for the call. Includes hold time
associated with the call.

IncomingCallsHeldToHalf

The total number of completed inbound ACD
calls agents in the skill group placed on hold
at least once during the last half-hour.

IncomingCalls
HeldTimeToHalf

Total number of seconds completed inbound
ACD calls were placed on hold by agents in
the skill group during the last half-hour.

InternalCallsRcvdToHalf

Number of internal calls received by agents in
the skill group during the last half-hour.

InternalCallsRcvdTimeToHalf

Number of seconds spent on internal calls
received by agents in the skill group during
the last half-hour.

InternalCallsHeldToHalf

The total number of internal calls agents in the
skill group placed on hold at least once during
the last half-hour.

InternalCalls HeldTimeToHalf

Total number of seconds completed internal
calls were placed on hold by agents in the skill
group during the last half-hour.

AutoOutCallsToHalf

Total number of AutoOut (predictive) calls
completed by agents in the skill group during
the last half-hour.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01

| Chapter7 SkillGroup Object

Methods W

Table 7-3 SkillGroup Statistics (continued)

Statistic Description

AutoOutCallsTalkTimeToHalf |Total talk time in seconds for completed
AutoOut (predictive) calls handled by agents
in the skill group during the last half-hour.
The value includes the time spent from the
call being initiated to the time the agent
begins after call work time for the call. The
time includes hold time associated with the
call.

AutoOutCallsTimeToHalf Total handle time in seconds for completed
AutoOut (predictive) calls handled by agents
in the skill group during the last half-hour.
The value includes the time spent from the
call being initiated to the time the agent
completes after call work time for the call.
The time includes hold time associated with
the call.

AutoOutCallsHeldToHalf Total number of completed AutoOut
(predictive) calls that agents in the skill group
have placed on hold at least once during the
last half-hour.

AutoOutCallsHeldTimeToHalf |Total number of seconds AutoOut (predictive)
calls were placed on hold by agents in the skill
group during the last half-hour.

PreviewCallsToHalf Total number of outbound Preview calls
completed by agents in the skill group during
the last half-hour.

PreviewCallsTalkTimeToHalf |Total talk time in seconds for completed
outbound Preview calls handled by agents in
the skill group during the last half-hour. The
value includes the time spent from the call
being initiated to the time the agent begins
after call work time for the call. The time
includes hold time associated with the call.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter 7 SkillGroup Object |

H Methods

Table 7-3 SkillGroup Statistics (continued)

Statistic Description

PreviewCallsTimeToHalf Total handle time in seconds for completed
outbound Preview calls handled by agents in
the skill group during the last half-hour. The
value includes the time spent from the call
being initiated to the time the agent completes
after call work time for the call. The time
includes hold time associated with the call.

PreviewCallsHeldToHalf Total number of completed outbound Preview
calls that agents in the skill group have placed
on hold at least once during the last half-hour.

PreviewCallsHeldTimeToHalf |Total number of seconds outbound Preview
calls were placed on hold by agents in the skill
group during the last half-hour.

ReservationCallsToHalf Total number of agent reservation calls
completed by agents in the skill group during
the last half-hour.

ReservationCallsTalkTime Total talk time in seconds for completed agent
ToHalf reservation calls handled by agents in the skill
group during the last half-hour. The value
includes the time spent from the call being
initiated to the time the agent begins after call
work time for the call. The time includes hold
time associated with the call.

ReservationCallsTimeToHalf Total handle time in seconds for completed
agent reservation calls handled by agents in
the skill group during the last half-hour. The
value includes the time spent from the call
being initiated to the time the agent completes
after call work time for the call. The time
includes hold time associated with the call.

ReservationCallsHeldToHalf Total number of completed agent reservation
calls that agents in the skill group have placed
on hold at least once during the last half-hour.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter7 SkillGroup Object

Methods

Table 7-3 SkillGroup Statistics (continued)

Statistic Description

ReservationCallsHeldTime Total number of seconds agent reservation

ToHalf calls were placed on hold by agents in the skill
group during the last half-hour.

BargeInCallsToHalf Total number of supervisor call barge-ins
completed in the skill group during the last
half-hour.

InterceptCallsToHalf Total number of supervisor call intercepts
completed in the skill group during the last
half-hour.

MonitorCallsToHalf Total number of supervisor call monitors
completed in the skill group during the last
half-hour.

WhisperCallsToHalf Total number of supervisor call whispers
completed in the skill group during the last
half-hour.

EmergencyCallsToHalf Total number of emergency calls completed in

the skill group during the last half-hour.

CallsQHalf The number of calls queued to the skill group
during the current half-hour. This field is set
to OxFFFFFFFF when this value is unknown
or unavailable.

CallsQTimeHalf The total queue time, in seconds, of calls

queued to the skill group during the current
half-hour. This field is set to OXFFFFFFFF
when this value is unknown or unavailable.

LongestCallQHalf The longest queue time, in seconds, of all
calls queued to the skill group during the
current half-hour. This field is set to
OxFFFFFFFF when this value is unknown or
unavailable.

AvailTimeToday Total seconds agents in the skill group were in
the Available state.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter 7 SkillGroup Object |

H Methods

Table 7-3 SkillGroup Statistics (continued)

Statistic Description

LoggedOnTimeToday Total time, in seconds, agents in the skill
group were logged on.

NotReadyTimeToday Total seconds agents in the skill group were in
the Not Ready state.

AgentOutCallsToday Total number of completed outbound ACD

calls made by agents in the skill group.

AgentOutCallsTalkTimeToday

Total talk time, in seconds, for completed
outbound ACD calls handled by agents in the
skill group. The value includes the time spent
from the call being initiated by the agent to
the time the agent begins after call work for
the call. The time includes hold time
associated with the call.

AgentOutCallsTimeToday

Total handle time, in seconds, for completed
outbound ACD calls handled by agents in the
skill group. The value includes the time spent
from the call being initiated by the agent to
the time the agent completes after call work
time for the call. The time includes hold time
associated with the call.

AgentOutCallsHeldToday

The total number of completed outbound
ACD calls agents in the skill group have
placed on hold at least once.

AgentOutCallsHeldTimeToday

Total number of seconds outbound ACD calls
were placed on hold by agents in the skill

group.

HandledCallsToday

The number of inbound ACD calls handled by
agents in the skill group.

HandledCallsTalkTimeToday

Total talk time in seconds for Inbound ACD
calls counted as handled by agents in the skill
group. Includes hold time associated with the
call.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter?

SkillGroup Object

Methods W

Table 7-3 SkillGroup Statistics (continued)

Statistic Description
HandledCallsAfter Total after call work time in seconds for
CallTimeToday Inbound ACD calls counted as handled by

agents in the skill group.

HandledCallsTimeToday

Total handle time, in seconds, for inbound
ACD calls counted as handled by agents in the
skill group. The time spent from the call being
answered by the agent to the time the agent
completed after call work time for the call.
Includes hold time associated with the call.

IncomingCallsHeldToday

The total number of completed inbound ACD
calls agents in the skill group placed on hold
at least once.

IncomingCallsHeldTimeToday

Total number of seconds completed inbound
ACD calls were placed on hold by agents in
the skill group.

InternalCallsRcvdToday

Number of internal calls received by agents in
the skill group.

InternalCallsRcvdTimeToday

Number of seconds spent on internal calls
received by agents in the skill group.

InternalCallsHeldToday

The total number of internal calls agents in the
skill group placed on hold at least once.

InternalCallsHeldTimeToday

Total number of seconds completed internal
calls were placed on hold by agents in the skill

group.

AutoOutCallsToday

Total number of AutoOut (predictive) calls
completed by agents in the skill group during
the current day.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 7 SkillGroup Object |

H Methods

Table 7-3 SkillGroup Statistics (continued)

Statistic

Description

AutoOutCallsTalkTimeToday

Total talk time in seconds for completed
AutoOut (predictive) calls handled by agents
in the skill group during the current day. The
value includes the time spent from the call
being initiated to the time the agent begins
after call work time for the call. The time
includes hold time associated with the call.

AutoOutCallsTimeToday

Total handle time in seconds for completed
AutoOut (predictive) calls handled by agents
in the skill group during the current day. The
value includes the time spent from the call
being initiated to the time the agent completes
after call work time for the call. The time
includes hold time associated with the call.

AutoOutCallsHeldToday

Total number of completed AutoOut
(predictive) calls that agents in the skill group
have placed on hold at least once during the
current day.

AutoOutCallsHeldTimeToday

Total number of seconds AutoOut (predictive)
calls were placed on hold by agents in the skill
group during the current day.

PreviewCallsToday

Total number of outbound Preview calls
completed by agents in the skill group during
the current day.

PreviewCallsTalkTimeToday

Total talk time in seconds for completed
outbound Preview calls handled by agents in
the skill group during the current day. The
value includes the time spent from the call
being initiated to the time the agent begins
after call work time for the call. The time
includes hold time associated with the call.

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter?

SkillGroup Object

Methods W

Table 7-3 SkillGroup Statistics (continued)

Statistic

Description

PreviewCallsTimeToday

Total handle time in seconds for completed
outbound Preview calls handled by agents in
the skill group during the current day. The
value includes the time spent from the call
being initiated to the time the agent completes
after call work time for the call. The time
includes hold time associated with the call.

PreviewCallsHeldToday

Total number of completed outbound Preview
calls that agents in the skill group have placed
on hold at least once during the current day.

PreviewCallsHeldTimeToday

Total number of seconds outbound Preview
calls were placed on hold by agents in the skill
group during the current day.

ReservationCallsToday

Total number of agent reservation calls
completed by agents in the skill group during
the current day.

ReservationCallsTalk
TimeToday

Total talk time in seconds for completed agent
reservation calls handled by agents in the skill
group during the current day. The value
includes the time spent from the call being
initiated to the time the agent begins after call
work time for the call. The time includes hold
time associated with the call.

ReservationCallsTimeToday

Total handle time in seconds for completed
agent reservation calls handled by agents in
the skill group during the current day. The
value includes the time spent from the call
being initiated to the time the agent completes
after call work time for the call. The time
includes hold time associated with the call.

ReservationCallsHeldToday

Total number of completed agent reservation
calls that agents in the skill group have placed
on hold at least once during the current day.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter 7 SkillGroup Object |

H Methods

Table 7-3 SkillGroup Statistics (continued)

Statistic

Description

ReservationCallsHeldTime
Today

Total number of seconds agent reservation
calls were placed on hold by agents in the skill
group during the current day.

BargeInCallsToday

Total number of supervisor call barge-ins
completed in the skill group during the current
day.

InterceptCallsToday

Total number of supervisor call intercepts
completed in the skill group during the current
day.

MonitorCallsToday

Total number of supervisor call monitors
completed in the skill group during the current
day.

WhisperCallsToday

Total number of supervisor call whispers
completed in the skill group during the current
day.

EmergencyCallsToday

Total number of emergency calls completed in
the skill group during the current day.

CallsQToday

The number of calls queued to the skill. This
field is set to OXFFFFFFFF when this value is
unknown or unavailable.

CallsQTimeToday

The total queue time, in seconds, of calls
queued to the skill group. This field is set to
O0xFFFFFFFF when this value is unknown or
unavailable.

LongestCallQToday

The longest queue time, in seconds, of all
calls queued to the skill group. This field is set
to OxFFFFFFFF when this value is unknown
or unavailable.

Syntax

GetPropertyAttribute (propertyname, attribute requested)

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter7 SkillGroup Object

Methods W

Example

' First get the statistics arguments
Dim args As ctios.Arguments
args = skillGroup.GetValue (“Statistics”)

' Then get the desired statistics

Dim agentsLoggedOn As Integer

Dim agentsAvail As Integer

agentsLoggedOn = args.GetValue (“*AgentsLoggedOn”)
agentsAvail = args.GetValue (“AgentsAvail”)

GetValue

The GetValue method retrieves a property (or an array of properties) from the
SkillGroup object based on the property’s name key. GetValue takes either a
single key name or an array of key names as its required argument, and returns the
value associated with that key.

Syntax

GetValue (key)

Example

Dim WithEvents sg as ctios. SkillGroupObject

Dim SkillGroupNumber As String

SkillGroupNumber = sg.GetValue (eSkillGroupNumber)
' Also valid

SkillGroupNumber = sg.GetValue ("skillgroupnumber")

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter 7 SkillGroup Object |

M SkillGroupEvents Interface

OnEvent

The object receives skill group statistic update events. The Agent object enables
these when the client initiates a EnableSkillGroupStatistics or skill group
statistics may have automatically been enabled on the server on behalf of all
clients.

Syntax

OnEvent (event id, arrayParameters)

SkillGroupEvents Interface

The SkillGroup object fires events on the ISkillGroupEvents interface. The
following events are published to subscribers of the ISkillGroupEvents interface.

OnSkillGroupStatisticsUpdated

The OnSkillGroupStatisticsUpdated event is generated when skill group statistics
are reported. The OnSkillGroupStatisticsUpdated message may contain the
following fields as well as the fields listed in Table 7-3.

Field Description
PeripherallD The ICM PeripherallD of the ACD on which the agent
resides.

SkillGroupNumber The number of the agent skill group as known to the
peripheral. May contain the special value
NULL_SKILL_GROUP when not available.

SkillGroupID The ICM SkillGrouplID of the skill group. May contain
the special value NULL_SKILL_GROUP when not
available.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

) A
VCHAP!I'ER“.BE

Helper Classes

The CTI OS CILincludes the following helper classes.

e The Arg class is the basic data type used in CIL for any parameter included
in methods or events. Objects of this type allow CIL to be fully extensible and
reusable.

e Arguments class is a subclass of Arg and its main responsibility is to maintain
an array of objects of type Arg. Each object contained in this class is always
associated with a key. Elements in an Arguments array can be dynamically
added, removed, accessed using a key, or sequentially by a one based index
value.

e CilRefArg class is a subclass of Arg and its main responsibility is to store a
reference of a CCtiOsObject object. For instance, it can hold reference to a
CAgent, CCall, CskillGroup, CWaitObject or CCtiOsSession.

e The CCtiosException class it is normally used within the Arguments class. It
provides access to additional information when errors are generated, such as
what parameter is in error, memory allocation failed among other.

e (CCtiOsObject is the principal base class for the CTI OS Client Library. It
serves as the root for all classes such as CAgent, CCall , CSkillGroup,
CSession and CWaitObject.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

Ml ArgClass

Arg Class

The Arg is a generic class used in parameters or return values in CIL methods.
Information sent by CTI OS server to the CIL in an event is packed in an

Arguments object where each element of the array is an object of type Arg. An
Arg object’s absolute data type is determined by the type of data it stores. The

basic types an object can store are identified by the enumerated constants in
Table 8-1.

Table 8-1 enumArgTypes

Argument Type Description

ARG_NOTSET Argument type not determined
ARG_INT Signed integer

ARG_UINT Unsigned integer
ARG_USHORT 2 bytes unsigned integer
ARG_SHORT 2 bytes signed integer
ARG_BOOL 1 byte integer

ARG_STRING STL character string
ARG_ARGARRAY Variable length array of Arg

Table 8-2 lists the available Arg class methods.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

ArgClass W
Table 8-2 Arg Class Methods
Method Description
Createlnstance Creates an Arg object
SetValue Sets the data in the Arg object
GetValuelnt Returns the value stored in the argument
GetValueUlnt
GetValueUInt
GetValueUShort
GetValueShort
GetValueBool
GetValueString
Clone Creates an exact copy of the Arg object
GetType Returns the type of the data stored in the argument (one
of the values in Table 8-1).
GetClassID Returns eArg
Createlnstance

The Createlnstance method creates an object of type Arg class. It is important to
release the object when is not longer in use in the program.

Syntax
C++

static Arg& CreatelInstance ()

static bool Createlnstance (Arg ** ppArg)
COM (standard COM API)

HRESULT CoCreateInstance (.., REFIID riid, ...)

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

Ml ArgClass
Parameters
ppArg
(output) Pointer to an Arg class object to receive the address of the new object
instance.
riid
(input) A reference to the identifier of the interface IArg.
Return Values
C++
The first format, if successful, will return a reference to a new Arg object.
Otherwise, it will raise a CCtiosException with iCode set to
E_CTIOS_ARGUMENT_ALLOCATION_FAILED.
The second format returns True if successful, False otherwise.
COM
Standard COM API error code
Examples
C++

try
//First method to create objects
Arg & arParam = Arg::Createlnstance() ;

//Second method to create objects
bool bAllocOk = false;
Arg * pParam = NULL;

bAllocOk = Arg::CreatelInstance (&pParam) ;

//Do not forget to release the two objects when done
with them
}
catch (CCtiOsException & e)
{
}

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

COM C++

VB

SetValue

IArg * pParam = NULL;

hr = CoCreatelInstance(CLSID_ Arg, NULL, CLSCTX ALL,
*) & pParam) ;

Dim arParam as Arg
Set arParam = new Arg

The SetValue method sets the value in the object.

IID_ TIArg,

ArgClass W

(LPVOID

Syntax
C++
bool SetValue(int iValue) ;
bool SetValue(unsigned int uivalue) ;
bool SetValue(unsigned short usValue) ;
bool SetValue(short sValue);
bool SetValue(bool bValue) ;
bool SetValue(char * pcValue);
bool SetValue(string& strValue) ;
bool SetValue(const string& cstrValue) ;
bool SetValue(Arg & arValue) ;
CoM
HRESULT SetValue([in] VARIANT * pVariant,
[out, retval] VARIANT BOOL * bRetVal);
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-m

Chapter8 Helper Classes |

Ml ArgClass

Input Parameters

Value
Integer value to be set
uiValue
Unsigned integer value to be set
usValue
Unsigned short integer value to be set.
sValue
Signed short integer value to be set.
bValue
Boolean value to be set.
pcValue
Points to the buffer containing the null terminated character string to be set.
strValue
Reference to an STL string object containing the character string to be set.
cstrValue

Constant reference to an STL string object containing the character string to
be set.

arValue
Reference to an Arg object to be set.
pVariant

Points to a variant parameter that contains the data to be set on the IArg
object. The following are the permitted types for this variant.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8

Helper Classes

Return Values

ArgClass W

Variant Type

Standard C++ Type

VT_INT Int

VT_UINT Unsigned int

VT_I2 Short

VT_UI2 Unsigned short

VT_BOOL Bool

VT_BSTR string, const string and char *

VT_DISPATCH

Pointer to an [Arg interface

C++
If the method was able to set the value it returns true, otherwise it returns false.
CcoM
If the method was able to set the value it returns VARIANT_TRUE. Otherwise, it
returns VARIANT_FALSE.
Examples
C++
bool bAllocOk = false;
Arg * pParam = NULL;
bAllocOk = Arg::Createlnstance (&pParam) ;
if (bAllocOk)
{
pParam->SetValue (10) ;
//Do useful work with the object
pParam->Release () ;
1
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Chapter8 Helper Classes |

Ml ArgClass

COM C++

VARIANT vParam;
VARIANT BOOL bRet = VARIANT_ FALSE;

VariantInit (&vParam) ;
hr = CoCreatelInstance (CLSID_Arg,
NULL,
CLSCTX_ALL,
IID IArg, (LPVOID *)

& pParam) ;

vParam.vt = VT INT;
vParam.intVal = 10;

pParam->SetValue (&vParam, &bRet) ;
//Do useful work with the object

pParam->Release() ;

VB

Dim arParam As Arg

Dim bRet As Boolean

Set arParam = new Arg

bRet = arParam.SetValue(10)

‘Do useful work with the object

Set arParam = Nothing

Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter8 Helper Classes

ArgClass W

GetValueType

The GetValueType method returns the value stored in the object. To extract a
specific type of data you invoke the method designated for it.

Syntax

C++

int GetValuelInt () ;

unsigned int GetValueUInt () ;
unsigned shortGetValueUShort () ;
short GetValueShort () ;

string& GetValueString() ;

bool GetValueBool () ;

bool GetValuelInt (int * piValue) ;

bool GetValueUInt (unsigned int * puivalue) ;
bool GetValueUShort (unsigned short * pusValue) ;
bool GetValueShort (short * psvVallue);

bool GetValueBool (bool * pbvalue) ;

bool GetValueString(string* pstrValue) ;

COM

HRESULT GetValue ([out, retval] VARIANT * pVariantoOut) ;

Output Parameters

piValue

Points to an integer variable that will receive the value.
puiValue

Points to an unsigned integer variable that will receive the value.
pusValue

Points to an unsigned short integer variable that will receive the value.
psValue

Points to a signed short integer variable that will receive the value.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

Ml ArgClass
pbValue
Points to a Boolean variable that will receive the value.
pstrValue
Points to a STL string object that will receive the value.
pVarianOut
Points to a variant variable that will receive the value. The following are the
possible types to be returned.
Variant Type Standard C++ Type
VT_INT Int
VT_UINT Unsigned int
VT_I2 Short
VT_UI2 Unsigned short
VT_BOOL Bool
VT_BSTR string, const string and char *
Return Values
C++
First implementation, if successful, will return the value in the object; otherwise,
it will raise a CCtiosException with iCode set to
E_CTIOS_INVALID_ARGUMENT.
Second implementation. If the method was able to get the value it returns true.
Otherwise, false.
COM

If the method was able to set the value pVarianOut->vt to any of the types listed
in the table of pVarianOut, it returns the value in the object. Otherwise it returns
VT_EMPTY.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

ArgClass W

Examples
C++
try
//First method to create objects
int iPeripheral
string strInstrument;
//Getting peripheral using first implementation
Arg & arPeripheral = m_Agent.GetValue(_T(“PeripherallD”)) ;
iPeripheral = arPeripheral.GetValuelnt () ;
//Getting instrument using second implementation
Arg & arInstrument =
m_Agent.GetValue (_T(“Instrument”)) ;
if (arInstrument.GetValueString (&strInstrument))
//Do something interesting with peripheral and
instrument
arPeripheral.Release () ;
arInstrument.Release() ;
catch (CCtiOsException & e)
COM C++
IArg * pInstrument = NULL
VARIANT vPeripherallD;

//Get peripheral from COM Agent object and assign it to
pInstrument

//Retrieveing data from argument
VariantInit (&vPeripherallD) ;

pInstrument->GetValue ((&vPeripherallD) ;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

Ml ArgClass
if (vPeripheral.vt != VT_EMPTY)
m_iPeripheralID = vPeripheral.intVal;
pInstrument->Release ()
VB
Dim arInstrument As Arg
Dim iPeripheral As Integer
‘Initializes IArg
Set arInstrument = m_Agent.GetValue (“Instrument”)
iPeripherallD = arInstrument.GetValuelInt
Set arInstrument = Nothing
The Clone method causes the object allocates a new object in memory and to copy
its value and type to the new instance.
Syntax
C++
Arg & Clone()
COM

HRESULT Clone ([out, retval] LPDISPATCH * pClonedArg) ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

ArgClass W

Output Parameters
pClonedArg
Pointer to an [Arg interface instance that receive the address of the new object
instance.
Return Values
C++

CoOM

Examples

C++

If successful, will return a reference to a new Arg object; otherwise, it will raise
a CCtiosException with iCode set to
E_CTIOS_ARGUMENT_ALLOCATION_FAILED.

If successful, will return a pointer to an [Arg interface; otherwise, it will raise a
COM Exception with error code set to
E_CTIOS_ARGUMENT_ALLOCATION_FAILED.

try

{

//First method to create objects
Arg & arDNCopied = arDiledNumber.Clone () ;

cout << “Dialing “ << arDNCopied.GetValueString() ;

arDNCopied.Release() ;
arDiledNumber.Release ()

}

catch (CCtiOsException & e)

{
}

arDiledNumber.Release () ;

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter8 Helper Classes |

Ml ArgClass
COM C++
IArg * pParam = NULL;
hr = arDiledNumber.Clone((LPDISPATCH*) & pParam) ;
if (CIL_FAILED (hr))
{
MessageBox (NULL, "Failed cloning Argument
”,"RApp” ,MB_STOP) ;
1
arDiledNumber->Release () ;
VB

On Error Goto HandleError
Dim arParam as Arg

Set arParam = arDialedNumber.Clone
Set arParam = Nothing
Set arDialedNumber = Nothing
Exit Sub
HandleError:

MsgBox “Failed cloning Argument”
ArDialedNumber = Nothing

GetType
The GetType method returns the type of the data stored by the argument. See the

table listed under the pVarianOut parameter for the GetValueType method for a
list of possible types.

Syntax

C++

enumArgTypes GetType ()

COM

HRESULT GetType ([out,retval] int * nArgType);

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

ArgClass W

Output Parameters

nArgType

Pointer to an integer that receive the enumerated constant that identifies data
type stored in [Arg.

Return Values

C++
Returns the enumerated value that identifies the data type stored in the Arg
com
If the method invocation succeeded it returns S_OK. Otherwise, it returns
CIL_FAILED.
Examples
C++
enumArgTypes enType;
for (int nI = 1; nI < arEventParam.NumElements(); nI++)
{
Arg & arParam = arEventParam.GetelEment (nI) ;
enType = arParam.GetType () ;
if (enType == ARG_STRING)
{
//Doing some work
}
arParam.Release() ;
1
COM C++

HRESULT hr = S_OK;
int nType;
int nNumElem = 0;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter 8

Helper Classes |

VB

Arg Class

arEventParam.NumElements (&nNumElem) ;

for (int nI = 1; nI < nNumElem; nI++)

{

CComVariant vParam = arEventParam.GetelEment (nI) ;
IArg * pParam = (IArg*) vParam.pdispVal

hr = pParam->GetType (&nType) ;

if (nType == ARG _STRING)

{
}

pParam->Release() ;

//Doing some work

Dim nType As Integer;
Dim nI As Integer
Dim arParam As Arg

For nI = 1 To nI < arEventParam.NumElements ()

Set arParam = arEventParam.GetelEment (nI) ;
nType = arParam.GetType;

If nType = ARG_STRING Then

//Doing some work
End If

Set arParam = Nothing;

Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Chapter8 Helper Classes

ArgClass W

GetClasslID

The GetClassID method returns the object’s class ID.

Syntax
C++
int GetClassID()
COM
HRESULT GetClassID ([out,retval] int * pClassID) ;
Output Parameters
pClassID
Pointer to an integer that receives the enumerated constant that identifies the
object class type.
Return Values
C++and COM
Retuns eArg if the pointer is referencing an Arg object.
Examples
C++

int nClassID;
for (int nI = 1; nI < arEventParam.NumElements(); nI++)

{

Arg & arParam = arEventParam.GetelEment (nI);
enType = arParam.GetClassID() ;

switch(nClassID)

Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01

Chapter 8

Helper Classes |

Ml ArgClass

case eArg:
//Doing some work
break;
case eCILRefArg:
break;

}

arParam.Release() ;

COM C++

HRESULT hr = S OK;
int nClassID;
int nNumElem = 0;

arEventParam.NumElements (&nNumElem) ;

for (int nI = 1; nI < nNumElem; nI++)
CComVariant vParam = arEventParam.GetelEment (nI) ;
IArg * pParam = (IArg*) vParam.pdispVal

hr = pParam->GetClassID(&nClassID) ;

switch(nClassID)
{
case eArg:
//Doing some work
break;
case eCILRefArg:
break;

}

pParam->Release() ;

VB

Dim nClassID As Integer;
Dim nI As Integer
Dim arParam As Arg

For nI = 1 To nI < arEventParam.NumElements ()

Set arParam = arEventParam.GetelEment (nI) ;
nClassID = arParam.GetClassID;

Cisco ICM Software CTI OS Developer’'s Guide
i 8

0L-1392-01 |

| Chapter8

Helper Classes

Arguments Class

If nClassID = eArg Then

//Doing some work
Else

If nClassID = eCILRefArg Then
End If

Set arParam = Nothing;

Next nI

Arguments Class

The Arguments class provides key/ value support. The Arguments class contains
a list of values that can be associated with a key. To add an item, use the AddItem
method and pass a key value, which must be a string or an integer, and a value,
which can be anything. To retrieve the item, use GetValue with a key value. Keys
are not case sensitive. Leading and trailing spaces are always removed from the
key.

Items stored in an Arguments array use binary trees and other techniques to
provide fast access to any item. They can support very large array of values.
Arguments also supports access by index value or by search key. The index value
is useful for retrieving items sequentially and may not be as fast as retrieval by
key.

The Arguments class methods includes all the Arg class methods plus the methods
that are listed in Table 8-3.

Table 8-3 Arguments Class Methods

Method Description

AddItem Adds an item to an Arguments array.

Clear Deletes all elements from an Arguments
array.

Clone Creates an Arguments array.

Createlnstance Creates an Arguments array.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter8 Helper Classes |

M Arguments Class

Addltem

Table 8-3 Arguments Class Methods

DumpArgs Returns Arguments object as a string
GetClassID Returns Class ID

GetElement Returns the value stored under a specified
(also GetElementlInt, index.

GetElementUlnt,

GetElementUShort,

GetElementShort, GetElementBool,
GetElementString, GetElementArg,
GetElementKey
GetElementArgType)

GetValue

(also GetValuelnt, GetValueUShort,
GetValueShort, GetValueBool,
GetValueUInt, GetValueString,
GetValueArray, GetValueArg)

Returns the value stored under a specified
key.

Initialize

Removes all items from an Arguments
array.

IsValid Tests if a key is present in the current
Arguments array.

NumElements Returns the number of arguments in the
current Arguments array,.

Removeltem Removes an item from an Arguments
array.

SetElement Sets the value of an index.

SetValue Sets the value of a key.

The AddItem method expects a key/value pair. The key value may be a string or
an integer. The value may be a string, an integer, or an object reference. If there
is an entry with the same key, it will be replaced with this entry. Keys are not case
sensitive. Leading and trailing spaces are always removed from the key.

0L-1392-01 |

r Cisco ICM Software CTI OS Developer’'s Guide

| Chapter8 Helper Classes

Arguments Class

Syntax
AddItem(key, value)
Parameters
key
Key value for the item to be added.
value
Value of the item to be added.
Returns
Returns True if the entry replaced an entry in Arguments with the same key value.
Clear
The Clear method deletes all the elements from Arguments object.
Syntax
void Clear()
Parameters
None.
Clone
The Clone method creates a copy of the Arguments structure.
Syntax

Arg & Clone()

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

M Arguments Class

Parameters
None.
Returns
A reference to the Arguments structure copy.
Createlnstance
The Createlnstance method creates an object of type Arguments class. This object
is released by calling the Release method.
Syntax

static Arguments & CreateInstance ()
static bool CreatelInstance (Arguments ** ppArguments)

DumpArgs

The DumpArgs method dumps all of the args to a string. It is used for debugging
purposes.

Syntax

string DumpArgs ()

Parameters

None.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

GetClasslID

Syntax

Parameters

Returns

GetElement

Syntax

GetValue

Arguments Class

The GetClassID method returns a ClassID as integer.

int GetClassID()

None.

Integer value for the ClassID.

The GetElement method is identical to GetValue, except that it uses an index value
instead of a key. The index value is not related to the order in which items are
added or removed. The order of items in Arguments is never guaranteed. This
method is useful for sequentially iterating over all items in Arguments. Index is
zero (0) based. Index should never be less than zero or greater than NumElements
minus 1.

GetElement (index)

The GetValue method returns the value stored under a key. This method will
return a blank string if the key is invalid. The key can be tested using IsValid.
Keys are not case sensitive. Leading and trailing spaces are always removed from
the key.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter8 Helper Classes |

M Arguments Class

Syntax
GetValue (key)

Initialize
The Initialize method removes all items from an Arguments class. This method
does not need to be called when an instance is created. It will automatically be in
initialize mode.

Syntax
Initialize()

Parameters
None.

IsValid

The IsValid method returns True if key exists in the current Arguments array,
otherwise it returns False.

Syntax
Isvalid(key)

NumElements
The NumElements method returns number of elements stored in the current
arguments array.

Syntax

NumElements ()

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

Parameters

Removeltem

Syntax

SetElement

Syntax

SetValue

Arguments Class

None.

The Removeltem method expects a key. It locate and remove the item by key in
Arguments. A True return value means the entry was located. Keys are not case
sensitive. Leading and trailing spaces are always removed from the key.

RemovelItem(key)

The SetElement method is identical to SetValue, except that it uses an index value
instead of a key. The index value is not related to the order in which items are
added or removed. The order of items in Arguments is never guaranteed. This
method is useful for sequentially iterating over all items in Arguments. Index is
zero (0) based. Index should never be less than zero or greater than NumElements
minus 1.

SetElement (index, value)

The SetValue method sets a value for a key. A True return value means the entry
was located. Keys are not case sensitive. Leading and trailing spaces are always
removed from the key.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Chapter8 Helper Classes |

M CILRefArg Class

Syntax

SetValue (key, value)

CILRefArg Class
~

Note The CILRefArg class is only available for C++.

The CILRefArg class is a subclass of the Arg class. Its main responsibility is to
store a reference of a CCtiOsObject object. This class allows object references to
be included in argument arrays. The object types that can be used are any of the
following: CAgent, CCall, CskillGroup, CWaitObject or CctiOsSession.

In addition to the methods inherited from the Arg class, the CILRefArg class
contains the methods listed in Table 8-4.

Table 8-4 CILRefArg Class Methods

Method Description

SetValue Encapsulates the pointer to CTI OS object into the
CILRefArg object.

GetValue Returns the encapsulated pointer in the object.

GetClassID Returns eCILRefArg

GetType Returns ARG_NOTSET

SetValue

Sets the reference to the CTI OS Object in the CILRefArg

Syntax

bool SetValue (CCtiOsObject * pObject) ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

CILRefArg Class W

Input Parameters

pObject
A pointer to a CtiOsObject to encapsulate (e.g. CCall, CAgent, etc)

Return Values

If the method was able to set the reference it returns true. Otherwise, it returns
false.

Examples
CILRefArg * pCILRefArg = NULL;
bool bRet = CILRefArg::Createlnstance (&pCILRefArg) ;
if ((bRet) && (pCILRefArg))

{

pCILRefArg->SetValue ((CCtiOsObject*) (*itObject) .second) ;
rArrayRef .AddItem((string) (*itObject) .first, *pCILRefArg) ;
pCILRefArg->Release() ;

}

GetValue

The GetValue method returns the reference to CTI OS object encapsulated in the
CILRefArg.

Syntax

CCtiOsObject * GetValue () ;

Parameters

None.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

M CILRefArg Class

Return Values

If successful, it returns the value in the object. Otherwise, it will raise a
CCtiosException with iCode set to E_CTIOS_INVALID_ARGUMENT.

Examples

CILRefArg & rCILRefArg =
(CILRefArg &) GetValue (“CurrentAgent”) ;

CAgent * pctiAgent = (CAgent *) rCILRefArg.GetValue() ;
if (pctiAgent)

pctiAgent->Logout () ;

GetClasslID

The GetClassID method returns the object’s class id.

Syntax

int GetClassID()
Parameters

None.
Return Values

Returns eCILRefArg if the pointer is referencing a CILRefArg object.

Cisco ICM Software CTI OS Developer’'s Guide
oL-1392-01 |

| Chapter8 Helper Classes

CCtiOsException Class

Examples

int nClassID;

for (int nI = 1; nI < arEventParam.NumElements(); nI++)

{

Arg & arParam = arEventParam.GetelEment (nI) ;
enType = arParam.GetClassID() ;

switch(nClassID)

{

case eArg:

break;

case eCILRefArg:
//Doing some work

break;

}

arParam.Release() ;

GetType

The CilRefArg class GetType method returns the ARG_NOTSET. It is defined
and enumerated type to represent CTI OS Objects references. It has the same
syntax as the Arg class GetType method.

CCtiOsException Class
~

Note The CCtiOsException class is only available for C++.

The CCtiosException class it is normally used within the Arguments class. It
provides access to additional information when errors are generated, such as what
parameter is in error, memory allocation failed, and so on.

Table 8-5 lists the available CCtiOsException class methods.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

M ccCtiOsException Class

Table 8-5 CCtiOsException Class Methods

Method Description

CCtiosException Class constructor.

GetCode Returns the error code that generated the exception.

GetStatus Returns the error status that generated the exception.

GetString Returns a text string containing the description of
the exception.

What Returns a text string containing the description of
the exception, the code of an error and the status.

CCtiosException

The CCtiosException constructor initializes an object of type CCtiosException
class.

Syntax

CCtiosException(const char *pMsg, int iCode, int iStatus);
CCtiosException(const string& rstrMsg, int iCode, int iStatus);

Input Parameters

pMsg
Pointer to string that holds a description of an error.
iCode
Number that identifies an error.
iStatus
Status of an error.
rstrMsg

An STL string that holds a description of an error.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

CCtiOsException Class

Return Values

None.

Example

String estr;

estr.Format (_T ("Arguments: :GetValue, Arg with key %d not found."),
nKey) ;
throw CCtiosException(estr, 0, 0);

GetCode

The GetCode method returns the error code that generated the exception.

Syntax

int GetCode () ;

Parameters

None.

Return Values

Returns an integer error code that generated the exception.

Example

Int nRetCode = 0;

String estr;

estr.Format (_T ("Arguments: :GetValue, Arg with key %d not found."),
nKey) ;

CctiosException HighException(estr, 1, 0);

nRetCode = HighException.GetCode() ;

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

M ccCtiOsException Class

GetStatus

The GetStatus method returns the error status that generated the exception.

Syntax
int GetStatus () ;
Parameters
None.
Return Values
Returns an integer error status that generated the exception.
Example

Int nRetStatus = 0;

String estr;

estr.Format (_T ("Arguments: :GetValue, Arg with key %d not found."),
nKey) ;

CctiosException HighException(estr, 1, 0);

nRetStatus = HighException. GetStatus ();

GetString

The GetString method returns a text string containing the description of the
exception.

Syntax

const char* GetString() ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

CCtiOsException Class

Parameters

None.

Return Values

Returns a text string containing the description of the exception.

Example

String estr;

estr.Format (_T ("Arguments::GetValue, Arg with key %d not found."),
nKey) ;

CctiosException HighException(estr, 1, 0);

cout << HighException. GetString () << endl;

What

The What method returns a text string containing the description of the exception,
the code of an error and the status.

Syntax

const char* What () ;
Parameters

None.
Return Values

Returns a text string containing the description of the exception, the code of an
error and the status.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .E.

Chapter8 Helper Classes |

B cCCtiOsObject Class

Example

String estr;

estr.Format (_T ("Arguments::GetValue, Arg with key %d not found."),
nKey) ;

CctiosException HighException(estr, 1, 0);

Cout << HighException. What () << endl;

CCtiOsObject Class

~

Note

The CCtiOsObject class is only available for C++.

CCtiOsObject is the principal base class for the CTI OS Client Library. It serves
as the root for all classes such as CAgent, CCall , CSkillGroup, CSession and
CWaitObject. CCtiOsObject provides basic services, including

¢ Object lifetime control using a reference counting mechanism
¢ Run-time class information
e Dynamic management of properties

Table 8-6lists the available CCtiOsObject class methods.

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

CCtiOsObject Class W

Table 8-6 CCtiOsObject Class Methods

Method Description

DumpProperties Dumps the properties and their values in a log file.
GetPropertyName Returns a property name in a string format.
GetNumProperties Returns the number of properties of an object.
GetValue Returns the value stored in the argument.
GetValuelnt

GetValueString

GetElement Returns a value of an element.
GetPropertyAttribute Returns information about a property.

SetValue Sets the data of a specific property.

IsValid Checks to see if the property of an object is valid.

DumpProperties

The DumpProperties method dumps the properties and their values in a log file.

Syntax

string DumpProperties() ;

Parameters

None.

Return Values

Returns a text string containing the properties and their values.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

B cCCtiOsObject Class

Example

// Get a valid CCtiOsObject pointer
cout << pCCtiOsObject-> DumpProperties().c_str() << endl;

GetPropertyName

The GetPropertyName method returns a property name in a string format.

C++

string GetPropertyName (int nProperty) ;
Input Parameters

nProperty

Property or index number

Return Values

Returns a property name in a string format.
Example

string strPropertyName;

int Index = 1; // Get a property of index name 1

// Get a valid CCtiOsObject pointer

strPropertyName = pCCtiOsObject->GetPropertyName (Index) ;

GetNumProperties

The GetNumProperties method returns the number of properties of an object.

Syntax

int GetNumProperties() ;

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Chapter8 Helper Classes

CCtiOsObject Class W

Parameters

None.

Return Values

Returns the number of properties of an object.

Example

int nNumbProp = 0;
// Get a valid CCtiOsObject pointer
nNumbProp = pCCtiOsObject-> GetNumProperties () ;

GetValueType

The GetValueType method returns data of a specific property.

Syntax

Arg &GetValue(string& sKey);

Arg &GetValue(char * pKey);
intGetValuelInt (string& sKey) ;
intGetValueInt (char * pKey);

string GetValueString(string& sKey);
string GetValueString(char * pKey);

Input Parameters

sKey
An STL character string containing the property name.
pKey

A pointer to a null terminated string containing the property name.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

B cCCtiOsObject Class

Return Values

Example

GetElement

Syntax

Input Parameters

Returns the number of properties of an object.

int iPeripheral
string strInstrument;

//Getting peripheral using first implementation
Arg & arPeripheral = m_Agent.GetValue(_ T(“PeripherallD”)) ;

iPeripheral = arPeripheral.GetValuelInt () ;

//Getting instrument using second implementation
strInstrument = m_Agent.GetValueString(T(“Instrument”)) ;

//Getting peripheral using third implementation
iPeripheral = m_Agent. GetValueInt (_T(“PeripheralID”)) ;

arPeripheral.Release () ;

The GetElement method is intended to access information in a property that was
defined as an array. It returns the information stored in position nElement.

Arg& GetElement (string& sKey , int nElement) ;
Arg& GetElement (int nKey, int nElement) ;
Arg& GetElement (char * pKey, int nElement) ;

sKey
An STL string containing the property name
pKey

A pointer to a null terminated string containing the property name

Cisco ICM Software CTI OS Developer’'s Guide
oL-1392-01 |

| Chapter8 Helper Classes

CCtiOsObject Class W

nKey
An enumerated integer that identifies the property.
nElement

A one-based index that corresponds to the n-th element in the array.

Return Values

Returns the data of an element.

GetPropertyAttribute

The GetPropertyAttribute method returns information about a property. See
Chapter 1, “Introduction” for more information.

Syntax

Arg& GetPropertyAttribute (string& strPropName,
enumCTIOS Attribute nAttribute) ;

Arg& GetPropertyAttribute (int nPropName,
enumCTIOS Attribute nAttribute) ;

Argé& GetPropertyAttribute (char * pPropName,
enumCTIOS_Attribute nAttribute) ;

Input Parameters

strPropName
An STL string containing the property name.
pPropName

A pointer to a null terminated string containing the property name.

nAttribute

An enumerated integer that identifies the property.

Return Values

Returns information about a property of an object.

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

B cCCtiOsObject Class

SetValue

The SetValue method sets the value of a property.

Syntax
bool SetValue(string& sKey, string& sValue) ;
bool SetValue(string& sKeyValuePair);
bool SetValue(string& sKey, int nValue);
bool SetValue(const char * pKey, const char * pValue);
bool SetValue(const char * pKeyValuePair);
bool SetValue(const char * pKey, int nvValue);
Input Parameters

sKey

An STL string containing the property name
pKey

A pointer to a null terminated string containing the property name
sKeyValuePair

An STL string containing the property name and the value to assign. The
format of this parameter is: “Key=Value”

pValue

A pointer to a null terminated string containing the value to set in the
property;
pKeyValuePair

A pointer to a null terminated string containing the property name and the
value to assign. The format of this parameter is: “Key=Value” .

nValue

A numeric value to set in the property.

Return Values

Returns true if the method succeeds, false otherwise.

Cisco ICM Software CTI OS Developer’'s Guide
oL-1392-01 |

| Chapter8 Helper Classes

CCtiOsObject Class W

Example

//Setting peripheral
bool bRet = m Agent. SetValue (_T(“PeripheralID”), 5000) ;

//Setting instrument
bool bRet = m Agent. SetValue (_T(“Instrument”), _T(“2229"));

//Setting Agent ID
bool bRet = m _Agent. SetValue (_T(“AgentID=23840"));

IsValid

The IsValid method checks to see if the property of an object is valid.

Syntax
bool IsValid(char * pKey);
bool IsValid(string& sKey) ;
Input Parameters
sKey

An STL string containing the property name
pKey

A pointer to a null terminated string containing the property name

Return Values

Returns true if the method succeeds, false otherwise.

Example

//setting peripheral
if (m_Agent. IsValid (_T(“PeripheralID”)))

{

// Do something if it is valid

}

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Chapter8 Helper Classes |

B cCCtiOsObject Class

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

) A
)\ P PIE I\AD 1 XAA&
CTI OS CIL Messages

This appendix lists the messages in the CTI OS CIL message set. This appendix
is divided into two sections.

¢ CIL message equivalents to CTI Server messages

e CIL CTI OS-specific messages

CIL CTI Server Message Equivalents

The following CTI OS message requests, confirmations, and events correspond to
the CTI Server messages defined in the Cisco ICM Software CTI Server Message
Reference Guide (Protocol Version 8).

Call Requests

eSetCallDataRequest
eReleaseCallRequest
eAlternateCallRequest
eAnswerCallRequest
eClearCallRequest
eClearConnectionRequest
eConferenceCallRequest

eConsultationCallRequest

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Appendix A

CTI 0S CIL Messages |

M CILCTI Server Message Equivalents

Agent Requests

eDeflectCallRequest
eHoldCallRequest
eReconnectCallRequest
eRetrieveCallRequest
eTransferCallRequest
eSnapshotCallRequest
eSendDTMFRequest

eQueryAgentStateRequest
eSetAgentStateRequest
eMakeCallRequest
eMakePredictiveCallRequest
eSnapshotDeviceRequest
eUserMessageRequest

eQueryAgentStatisticsRequest

Skill Group Requests

eQuerySkillGroupStatisticsRequest

Supervisor Requests

eSessionMonitorStartRequest
eSessionMonitorStopRequest
eMonitorAgentTeamStartRequest
eMonitorAgentTeamStopRequest

eSupervisorAssistRequest

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix A CTI OS CIL Messages

eEmergencyCallRequest
eSuperviseCallRequest
eAgentTeamConfigRequest
eSetAppDataRequest
eAgentDeskSettingsRequest
eListAgentTeamRequest
eBadCallRequest
eSetDeviceAttributesRequest
eStartRecordingRequest
eStopRecordingRequest

Generic CTI Server Confirmation Events

eControlFailureConf

Call Confirmation Events

eSetCallDataConf
eReleaseCallConf
eAlternateCallConf
eAnswerCallConf
eClearCallConf
eClearConnectionConf
eConferenceCallConf
eConsultationCallConf
eDeflectCallConf
eHoldCallConf
eReconnectCallConf

eRetrieveCallConf

CIL CTI Server Message Equivalents

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Appendix A CTI 0S CIL Messages |

M CILCTI Server Message Equivalents

eTransferCallConf
eSnapshotCallConf
eSendDTMFConf

Agent Confirmation Events

eQueryAgentStateConf
eSetAgentStateConf
eSnapshotDeviceConf
eUserMessageConf
eQueryAgentStatisticsConf
eMakeCallConf
eMakePredictiveCallConf

Supervisor Confirmation Events

eSessionMonitorStartConf
eSessionMonitorStopConf
eMonitorAgentTeamStartConf
eMonitorAgentTeamStopConf
eSupervisorAssistConf
eEmergencyCallConf
eSuperviseCallConf
eAgentTeamConfigConf
eSetAppDataConf
eAgentDeskSettingsConf
eListAgentTeamConf
eBadCallConf
eSetDeviceAttributesConf

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Appendix A CTI OS CIL Messages

CIL CTI Server Message Equivalents

eCallStartRecordingConf
eCallStopRecordingConf

Error and Failure Events

eFailureConf

eFailureEvent

Call Events

eCallDeliveredEvent
eCallEstablishedEvent
eCallHeldEvent
eCallRetrievedEvent
eCallClearedEvent
eCallConnectionClearedEvent
eCallOriginatedEvent
eCallFailedEvent
eCallConferencedEvent
eCallTransferredEvent
eCallDivertedEvent
eCallServicelnitiatedEvent
eCallQueuedEvent
eCallTranslationRouteEvent
eCallBeginEvent
eCallEndEvent
eCallDataUpdateEvent
eCallReachedNetworkEvent
eCallDequeuedEvent

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Appendix A CTI 0S CIL Messages |

M CILCTI Server Message Equivalents

eAgentPrecallEvent
eAgentPrecallAbortEvent

Call Recording Events

eRTPStartedEvent
eRTPStoppedEvent

Agent Events

eAgentStateEvent
eUserMessageEvent

eOnNewAgentStatisticsEvent

Skill Group Events

eOnNewSkillGroupStatisticsEvent

Supervisor Events

eEmergencyCallEvent
eAgentTeamConfigEvent

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

| Appendix A CTI OS CIL Messages

CIL CTI 0S-specific messages M

CIL CTI 0S-specific messages

The following messages, requests, and events are specific to CTI OS. Chapters 4
through 7 include descriptions and field definitions for the most commonly
occurring messages.

Session Requests

eOpenConnection
eCloseConnection
eSetSessionModeRequest
eGlobalSettingsDownloadRequest

Single Step Transfer/Conference Requests

eSingleStepTransferRequest

eSingleStepConferenceRequest

Supervisor Requests

eGetAllSupervisedAgentsRequest
eSetMonitoredAgentStateRequest
eMonitorAllAgentTeamsRequest

Statistics Requests

eEnableAgentStatisticsRequest
eEnableSkillGroupStatisticsRequest
eDisableAgentStatisticsRequest
eDisableSkillGroupStatisticsRequest

Cisco ICM Software CTI OS Developer’'s Guide
[oL1392-m .m

Appendix A

CTI 0S CIL Messages |

M CILCTI 0S-specific messages

eSubscribeForStatisticsRequest

eUnsubscribeForStatisticsRequest

Timer Service Requests

eStartTimerRequest

eStopTimerRequest

Team Maintenance Requests

eAssignToTeamRequest

eRemoveFromTeamRequest

CTI 0S Specific Confirmation Events

eSingleStepTransferConf

eSingleStepConferenceConf

CTI 0S Specific Events

eSendChatMessageReq
eSendChatMessageConf
eChatMessageEvent

Session Events

eOnConnection
eOnConnectionClosed
eOnConnectionRejected

eOnConnectionFailure

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix A CTI OS CIL Messages

CIL CTI 0S-specific messages M

eOnCILError
eCTIOSFailureEvent
eOnHeartbeat
eOnMissingHeartbeat
eOnMonitorModeEstablished
eOnCurrentCallChanged
eSetAgentModeEvent
eOnCurrentAgentReset
eGlobalSettingsDownloadConf
ePreLogoutEvent
ePostLogoutEvent
eLogoutFailedEvent

Button Enablement Events

eButtonEnablementMaskChange

Supervisor Events

eSupervisorNotifyAgent
eMonitored AgentStateChange
eMonitoredCallEvent
eNewAgentTeamMember
eSupervisorButtonChange
eStartMonitoringAgentEvent
eDropMonitoredAgentEvent

Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01

Appendix A

CTI 0S CIL Messages |

M CILCTI 0S-specific messages

Filter Events

eAddFilterEvent

eRemoveFilterEvent

Name Lookup Service Requests

eGetAgentNameRequest

Name Lookup Service Event

eAgentInfoEvent
eMonitored AgentInfoEvent

Timeout Events

eAgentPrecallEventTimeout

Supervised Calls

All the supervised call events are sent to an agent mode application only when the
agent logged in the session is a supervisor. Each of the event has its corresponding

CTI Server event sent to the agent being supervised.
eMonitoredCallDeliveredEvent
eMonitoredCallEstablishedEvent
eMonitoredCallHeldEvent
eMonitoredCallRetrievedEvent
eMonitoredCallClearedEvent
eMonitoredCallConnectionClearedEvent
eMonitoredCallOriginatedEvent
eMonitoredCallFailedEvent

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix A CTI OS CIL Messages

eMonitoredCallConferencedEvent
eMonitoredCallTransferredEvent
eMonitoredCallDivertedEvent
eMonitoredCallServicelnitiatedEvent
eMonitoredCallQueuedEvent
eMonitoredCallTranslationRouteEvent
eMonitoredCallBeginEvent
eMonitoredCallEndEvent
eMonitoredCallDataUpdateEvent
eMonitoredCallReachedNetworkEvent
eMonitoredCallDequeuedEvent
eMonitored AgentPrecallEvent
eMonitoredAgentPrecallAbortEvent

Supervised Agent Events

eMonitored AgentStateEvent

Team Maintenance Events

eTeamSkillGroupDataUpdateEvent,

CIL CTI 0S-specific messages M

All the supervised agent events are sent to an agent mode application only when
the agent logged in the session is a supervisor. Each of the event has its
corresponding CTI Server event sent to the agent being supervised.

Contains up-to-date information about a team composition.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Appendix A CTI 0S CIL Messages |

M CILCTI 0S-specific messages

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

“~

Note

) A
Y\ P PIE I\AD 1 XL‘B 4
CTI 0S Keywords

Table B-1 lists all the valid keywords that can be used in CTI OS for the following
purposes:

e To refer to a property in a CTI OS Object
e To refer to a parameter on a message request
e To create expressions used in a filter
The table shows the three possible forms of a CTI OS keyword.

e The first column is the keyword in text string format. Any CIL
implementation can use this form directly provided the keyword is enclosed
in double quotes.

e The second column is a constant symbols that maps directly to a text string
representation. This form is recommended over the string text representation
because if changes to the keywords occur in future versions of CIL, you need
only rebuild the executable.

e The third column is an enumerated integer value. This form eliminates the
need for an application programmer to deal with character strings when
referring to properties or parameters.

Constant symbols and enumerated integers cannot be used to build
expressions in a message filter.

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Appendix B CTI 0S Keywords |

|
Table B-1 CTI OS Keywords
Text String Constant String Enumerated Integer Value
InvokelD INVOKEID ekwInvokelD
VersionNumber VERSIONNUMBER ekwVersionNumber
IdleTimeout IDLETIMEOUT ekwldleTimeout
PeripherallD PERIPHERALID ekwPeripherallD
ServiceMask SERVICEMASK ekwServiceMask
CallMsgMask CALLMSGMASK ekwCallMsgMask
AgentStateMask AGENTSTATEMASK ekwAgentStateMask
Reserved RESERVED ekwReserved
PGStatus PGSTATUS ekwPGStatus
Peripheral Type PERIPHERALTYPE ekwPeripheral Type
AgentState AGENTSTATE ekwAgentState
Status STATUS ekwStatus
NumCTIClients NUMCTICLIENTS ekwNumCTIClients
ConnectionCallID CONNECTIONCALLID ekwConnectionCallID
CallType CALLTYPE ekwCallType
ConnectionDeviceIDType CONNECTIONDEVICEIDTYPE ekwConnectionDeviceIDType
ServiceNumber SERVICENUMBER ekwServiceNumber
ServicelD SERVICEID ekwServicelD
AlertingDeviceType ALERTINGDEVICETYPE ekwAlertingDeviceType
CallingDeviceType CALLINGDEVICETYPE ekwCallingDeviceType
CalledDeviceType CALLEDDEVICETYPE ekwCalledDeviceType
LastRedirectDeviceType LASTREDIRECTDEVICETYPE ekwLastRedirectDeviceType
LocalConnectionState LOCALCONNECTIONSTATE ekwLocalConnectionState
EventCause EVENTCAUSE ekwEventCause
SkillGroupNumber SKILLGROUPNUMBER ekwSkillGroupNumber
SkillGroupID SKILLGROUPID ekwSkillGroupID
AnsweringDeviceType ANSWERINGDEVICETYPE ekwAnsweringDeviceType
HoldingDeviceType HOLDINGDEVICETYPE ekwHoldingDeviceType

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
RetrievingDeviceType RETRIEVINGDEVICETYPE ekwRetrievingDeviceType
ReleasingDeviceType RELEASINGDEVICETYPE ekwReleasingDeviceType
FailingDeviceType FAILINGDEVICETYPE ekwFailingDeviceType
PrimaryDevicelDType PRIMARYDEVICEIDTYPE ekwPrimaryDevicelDType
PrimaryCallID PRIMARYCALLID ekwPrimaryCalllD
NumParties NUMPARTIES ekwNumParties
SecondaryDeviceIDType SECONDARYDEVICEIDTYPE ekwSecondaryDeviceIDType
SecondaryCallID SECONDARYCALLID ekwSecondaryCallID
ControllerDeviceType CONTROLLERDEVICETYPE ekwControllerDeviceType
AddedPartyDeviceType ADDEDPARTYDEVICETYPE ekwAddedPartyDeviceType

TransferringDeviceType

TRANSFERRINGDEVICETYPE

ekwTransferringDeviceType

TransferredDeviceType

TRANSFERREDDEVICETYPE

ekwTransferredDeviceType

DivertingDeviceType DIVERTINGDEVICETYPE ekwDivertingDeviceType
StateDuration STATEDURATION ekwStateDuration
QueueDeviceType QUEUEDEVICETYPE ekwQueueDeviceType
NumQueued NUMQUEUED ekwNumQueued
SystemEventID SYSTEMEVENTID ekwSystemEventID
SystemEventArgl SYSTEMEVENTARG1 ekwSystemEventArgl
SystemEventArg2 SYSTEMEVENTARG?2 ekwSystemEventArg2
SystemEventArg3 SYSTEMEVENTARG3 ekwSystemEventArg3
LineHandle LINEHANDLE ekwLineHandle
LineType LINETYPE ekwLineType
NewConnectionCallID NEWCONNECTIONCALLID ekwNewConnectionCallID

NewConnectionDeviceIDType

NEWCONNECTIONDEVICEIDTYPE

ekwNewConnectionDeviceIDType

SkillGroupPriority SKILLGROUPPRIORITY ekwSkillGroupPriority
ObjectState OBJECTSTATE ekwObjectState
TrunkUsedDeviceType TRUNKUSEDDEVICETYPE ekwTrunkUsedDeviceType
FailureCode FAILURECODE ekwFailureCode
NumSkillGroups NUMSKILLGROUPS ekwNumSkillGroups

Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Appendix B CTI 0S Keywords |

|

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
EventReasonCode EVENTREASONCODE ekwEventReasonCode

ActiveConnectionCallID

ACTIVECONNECTIONCALLID

ekwActiveConnectionCallID

ActiveConnectionDevice
IDType

ACTIVECONNECTIONDEVICEIDTYPE

ekwActiveConnectionDevicelD
Type

ActiveConnectionDevicelD

ACTIVECONNECTIONDEVICEID

ekwActiveConnectionDevicelD

OtherConnectionCallID

OTHERCONNECTIONCALLID

ekwOtherConnectiomCallID

OtherConnectionDevicelD

OTHERCONNECTIONDEVICEID

ekwOtherConnectionDevicelD

OtherConnectionDeviceIDType

OTHERCONNECTIONDEVICEIDTYPE

ekwOtherConnectionDevicelD
Type

HeldConnectionCallID

HELDCONNECTIONCALLID

ekwHeldConnectionCallID

HeldConnectionDevicelD

HELDCONNECTIONDEVICEID

ekwHeldConnectionDevicelD

HeldConnectionDeviceIDType

HELDCONNECTIONDEVICEIDTYPE

ekwHeldConnectionDeviceIDType

CallPlacementType CALLPLACEMENTTYPE ekwCallPlacementType
CallMannerType CALLMANNERTYPE ekwCallMannerType
ConsultType CONSULTTYPE ekwConsultType
FacilityType FACILITYTYPE ekwFacilityType
Priority PRIORITY ekwPriority

PostRoute POSTROUTE ekwPostRoute
Reservation RESERVATION ekwReservation
AlertRings ALERTRINGS ekwAlertRings
AlertCallerFirst ALERTCALLERFIRST ekwAlertCallerFirst
AnsweringMachine ANSWERINGMACHINE ekwAnsweringMachine
AllocationState ALLOCATIONSTATE ekwAllocationState
TypeOfDevice TYPEOFDEVICE ekwTypeOfDevice
ClassOfDevice CLASSOFDEVICE ekwClassOfDevice
NumLines NUMLINES ekwNumLines
NumCallDevices NUMCALLDEVICES ekwNumCallDevices
NumCalls NUMCALLS ekwNumCalls
ToneDuration TONEDURATION ekwToneDuration

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
PauseDuration PAUSEDURATION ekwPauseDuration
SkillGroupState SKILLGROUPSTATE ekwSkillGroupState
QueryDeviceDataType QUERYDEVICEDATATYPE ekwQueryDeviceDataType
PeripheralErrorCode PERIPHERALERRORCODE ekwPeripheralErrorCode
AgentWorkMode AGENTWORKMODE ekwAgentWorkMode
MonitorID MONITORID ekwMonitorID
MonitoredDeviceType MONITOREDDEVICETYPE ekwMonitoredDeviceType
CallOption CALLOPTION ekwCallOption
DestinationCountry DESTINATIONCOUNTRY ekwDestinationCountry
AnswerDetectMode ANSWERDETECTMODE ekwAnswerDetectMode
AnswerDetectTime ANSWERDETECTTIME ekwAnswerDetectTime
AnswerDetectControl1 ANSWERDETECTCONTROL1 ekwAnswerDetectControll
AnswerDetectControl2 ANSWERDETECTCONTROL2 ekwAnswerDetectControl2
ClientPort CLIENTPORT ekwClientPort

SessionID SESSIONID ekwSessionID
ServicesGranted SERVICESGRANTED ekwServicesGranted
PeripheralOnline PERIPHERALONLINE ekwPeripheralOnline
Distribution DISTRIBUTION ekwDistribution
CallsQNow CALLSQNOW ekwCallsQNow
CallsQTimeNow CALLSQTIMENOW ekwCallsQTimeNow
LongestCallQNow LONGESTCALLQNOW ekwLongestCallQNow
AvailTimeToHalf AVAILTIMETOHALF ekwAvailTimeToHalf
LoggedOnTimeToHalf LOGGEDONTIMETOHALF ekwLoggedOnTimeToHalf
NotReadyTimetoHalf NOTREADYTIMETOHALF ekwNotReadyTimetoHalf
AgentOutCallsToHalf AGENTOUTCALLSTOHALF ekwAgentOutCallsToHalf

AgentOutCallsTalkTimeToHalf

AGENTOUTCALLSTALKTIMETOHALF

ekwAgentOutCallsTalkTimeToHalf

AgentOutCallsTimeToHalf

AGENTOUTCALLSTIMETOHALF

ekwAgentOutCallsTimeToHalf

AgentOutCallsHeldToHalf

AGENTOUTCALLSHELDTOHALF

ekwAgentOutCallsHeldToHalf

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Appendix B CTI 0S Keywords |

|
Table B-1 CTI OS Keywords (continued)
Text String Constant String Enumerated Integer Value

AgentOutCallsHeldTime
ToHalf

AGENTOUTCALLSHELDTIMETOHALF

ekwAgentOutCallsHeldTime
ToHalf

HandledCallsToHalf

HANDLEDCALLSTOHALF

ekwHandledCallsToHalf

HandledCallsTalkTimeToHalf

HANDLEDCALLSTALKTIMETOHALF

ekwHandledCallsTalkTimeToHalf

HandledCallsTimeToHalf

HANDLEDCALLSTIMETOHALF

ekwHandledCallsTimeToHalf

IncomingCallsHeldToHalf

INCOMINGCALLSHELDTOHALF

ekwIncomingCallsHeldToHalf

IncomingCallsHeldTimeToHalf

INCOMINGCALLSHELDTIMETOHALF

ekwlncomingCallsHeldTime
ToHalf

InternalCallsRcvdToHalf

INTERNALCALLSRCVDTOHALF

ekwlinternalCallsRcvdToHalf

InternalCallsRcvdTimeToHalf

INTERNALCALLSRCVDTIMETOHALF

ekwlinternalCallsRcvdTimeToHalf

InternalCallsHeldToHalf

INTERNALCALLSHELDTOHALF

ekwlnternalCallsHeldToHalf

InternalcallsHeldTimeToHalf

INTERNALCALLSHELDTIMETOHALF

ekwlinternalcallsHeldTimeToHalf

CallsQHalf CALLSQHALF ekwCallsQHalf

CallsQTimeHalf CALLSQTIMEHALF ekwCallsQTimeHalf
LongestCallQHalf LONGESTCALLQHALF ekwLongestCallQHalf
AvailTimeToday AVAILTIMETODAY ekwAuvailTimeToday
LoggedOnTimeToday LOGGEDONTIMETODAY ekwLoggedOnTimeToday
NotReadyTimeToday NOTREADYTIMETODAY ekwNotReadyTimeToday
AgentOutCallsToday AGENTOUTCALLSTODAY ekwAgentOutCallsToday
AgentOutCallsTalkTimeToday |AGENTOUTCALLSTALKTIMETODAY ekwAgentOutCallsTalkTimeToday
AgentOutCallsTimeToday AGENTOUTCALLSTIMETODAY ekwAgentOutCallsTimeToday

AgentOutCallsHeldToday

AGENTOUTCALLSHELDTODAY

ekwAgentOutCallsHeldToday

AgentOutCallsHeldTimeToday

AGENTOUTCALLSHELDTIMETODAY

ekwAgentOutCallsHeldTimeToday

HandledCallsToday HANDLEDCALLSTODAY ekwHandledCallsToday
HandledCallsTalkTimeToday HANDLEDCALLSTALKTIMETODAY ekwHandledCallsTalkTimeToday
HandledCallsTimeToday HANDLEDCALLSTIMETODAY ekwHandledCallsTimeToday

IncomingCallsHeldToday

INCOMINGCALLSHELDTODAY

ekwlncomingCallsHeldToday

IncomingCallsHeldTimeToday

INCOMINGCALLSHELDTIMETODAY

ekwIncomingCallsHeldTimeToday

InternalCallsRecvdToday

INTERNALCALLSRECVDTODAY

ekwlnternalCallsRecvdToday

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1

CTI OS Keywords (continued)

Text String

Constant String

Enumerated Integer Value

InternalCallsRecvdTimeToday

INTERNALCALLSRECVDTIMETODAY

ekwlnternalCallsRecvdTimeToday

InternalCallsHeldToday INTERNALCALLSHELDTODAY ekwInternalCallsHeldToday
InternalCallsHeldTimeToday INTERNALCALLSHELDTIMETODAY ekwlnternalCallsHeldTimeToday
CallsQToday CALLSQTODAY ekwCallsQToday
CallsQTimeToday CALLSQTIMETODAY ekwCallsQTimeToday
LongestCallQToday LONGESTCALLQTODAY ekwLongestCallQToday
AvailTimeSession AVAILTIMESESSION ekwAvailTimeSession
LoggedOnTimeSession LOGGEDONTIMESESSION ekwLoggedOnTimeSession
NotReadyTimeSession NOTREADYTIMESESSION ekwNotReadyTimeSession
AgentOutCallsSession AGENTOUTCALLSSESSION ekwAgentOutCallsSession

AgentOutCallsTalkTime
Session

AGENTOUTCALLSTALKTIMESESSION

ekwAgentOutCallsTalkTim
eSession

AgentOutCallsTimeSession

AGENTOUTCALLSTIMESESSION

ekwAgentOutCallsTimeSession

AgentOutCallsHeldSession

AGENTOUTCALLSHELDSESSION

ekwAgentOutCallsHeldSession

AgentOutCallsHeldTime
Session

AGENTOUTCALLSHELDTIMESESSION

ekwAgentOutCallsHeldTime
Session

HandledCallsSession

HANDLEDCALLSSESSION

ekwHandledCallsSession

HandledCallsTalkTimeSession

HANDLEDCALLSTALKTIMESESSION

ekwHandledCallsTalkTimeSession

HandledCallsTimeSession

HANDLEDCALLSTIMESESSION

ekwHandledCallsTimeSession

IncomingCallsHeldSession

INCOMINGCALLSHELDSESSION

ekwIncomingCallsHeldSession

IncomingCallsHeldTime
Session

INCOMINGCALLSHELDTIMESESSION

ekwIncomingCallsHeldTime
Session

InternalCallsSession

INTERNALCALLSSESSION

ekwlInternalCallsSession

InternalCallsTimeSession

INTERNALCALLSTIMESESSION

ekwlnternalCallsTimeSession

InternalCallsRecvdSession

INTERNALCALLSRECVDSESSION

ekwlinternalCallsRecvdSession

InternalCallsRcvdTimeSession

INTERNALCALLSRCVDTIMESESSION

ekwlnternalCallsRcvdTimeSession

InternalCallsHeldSession

INTERNALCALLSHELDSESSION

ekwlInternalCallsHeldSession

InternalCallsHeldTimeSession

INTERNALCALLSHELDTIMESESSION

ekwlnternalCallsHeldTimeSession

InternalCallsToday

INTERNALCALLSTODAY

ekwlnternalCallsToday

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Appendix B CTI 0S Keywords |

|
Table B-1 CTI OS Keywords (continued)
Text String Constant String Enumerated Integer Value

InternalCallsTimeToday

INTERNALCALLSTIMETODAY

ekwlnternalCallsTimeToday

NumNamed Variables

NUMNAMEDVARIABLES

ekwNumNamed Variables

NumNamedArrays

NUMNAMEDARRAYS

ekwNumNamedArrays

HandledCallsAfterCallTime
Session

HANDLEDCALLSAFTERCALLTIME

SESSION

ekwHandledCallsAfterCallTime
Session

HandledCallsAfterCallTime
ToHalf

HANDLEDCALLSAFTERCALL
TIMETOHALF

ekwHandledCallsAfterCallTime
ToHalf

HandledCallsAfterCallTime
Today

HANDLEDCALLSAFTERCALL
TIMETODAY

ekwHandledCallsAfterCallTime
Today

MaxActiveCalls

MAXACTIVECALLS

ekwMaxActiveCalls

MaxHeldCalls

MAXHELDCALLS

ekwMaxHeldCalls

MaxDevicesInConference

MAXDEVICESINCONFERENCE

ekwMaxDevicesInConference

TransferConferenceSetup

TRANSFERCONFERENCESETUP

ekwTransferConferenceSetup

CallEventsSupported CALLEVENTSSUPPORTED ekwCallEventsSupported
CallControlSupported CALLCONTROLSUPPORTED ekwCallControlSupported
OtherFeaturesSupported OTHERFEATURESSUPPORTED ekwOtherFeaturesSupported
CCTimestamp CCTIMESTAMP ekwCCTimestamp
CallVariableMask CALLVARIABLEMASK ekwCallVariableMask
CalledPartyDisposition CALLEDPARTYDISPOSITION ekwCalledPartyDisposition
AgentsLoggedOn AGENTSLOGGEDON ekwAgentsLoggedOn
AgentsAvail AGENTSAVAIL ekwAgentsAvail
AgentsNotReady AGENTSNOTREADY ekwAgentsNotReady
AgentsReady AGENTSREADY ekwAgentsReady
AgentsTalkingIn AGENTSTALKINGIN ekwAgentsTalkingIn
AgentsTalkingOut AGENTSTALKINGOUT ekwAgentsTalkingOu
AgentsTalkingOther AGENTSTALKINGOTHER ekwAgentsTalkingOther
AgentsWorkNotReady AGENTSWORKNOTREADY ekwAgentsWorkNotReady
AgentsWorkReady AGENTSWORKREADY ekwAgentsWorkReady
AgentsBusyOther AGENTSBUSYOTHER ekwAgentsBusyOther

Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
AgentsReserved AGENTSRESERVED ekwAgentsReserved
AgentsHold AGENTSHOLD ekwAgentsHold

AvailTimeTo5 AVAILTIMETOS ekwAvailTimeTo
LoggedOnTimeTo5 LOGGEDONTIMETOS ekwLoggedOnTimeTo5
NotReadyTimeTo5 NOTREADYTIMETOS ekwNotReadyTimeTo5
AgentOutCallsTo5 AGENTOUTCALLSTOS ekwAgentOutCallsTo
AgentOutCallsTalkTimeTo5 AGENTOUTCALLSTALKTIMETOS ekwAgentOutCallsTalkTimeTo5
AgentOutCallsTimeTo5 AGENTOUTCALLSTIMETOS ekwAgentOutCallsTimeToS5
AgentOutCallsHeldTo5 AGENTOUTCALLSHELDTOS ekwAgentOutCallsHeldTo5
AgentOutCallsHeldTimeTo5 AGENTOUTCALLSHELDTIMETOS ekwAgentOutCallsHeldTimeTo5
HandledCallsTo5 HANDLEDCALLSTOS ekwHandledCallsTo5

HandledCallsTalkTimeTo5

HANDLEDCALLSTALKTIMETOS

ekwHandledCallsTalkTimeTo5

HandledCallsAfterCallTimeTo5

HANDLEDCALLSAFTERCALLTIMETOS

ekwHandledCallsAfterCallTimeTo5

HandledCallsTimeTo5 HANDLEDCALLSTIMETOS ekwHandledCallsTimeTo5
IncomingCallsHeldTo5 INCOMINGCALLSHELDTOS ekwIncomingCallsHeldTo5
IncomingCallsHeldTimeTo5 INCOMINGCALLSHELDTIMETOS ekwIncomingCallsHeldTimeTo5
InternalCallsRevdTo5 INTERNALCALLSRCVDTOS ekwInternalCallsRcvdTo5
InternalCallsRcvdTimeTo5 INTERNALCALLSRCVDTIMETOS ekwInternalCallsRcvdTimeTo5
InternalCallsHeldTo5 INTERNALCALLSHELDTOS ekwInternalCallsHeldTo5
InternalCallsHeldTimeTo5 INTERNALCALLSHELDTIMETOS ekwInternalCallsHeldTimeTo5
CallsQ5 CALLSQ5 ekwCallsQ5
CallsQTime5 CALLSQTIMES ekwCallsQTime5
LongestCallQ5 LONGESTCALLQ5 ekwLongestCallQ5
SupervisoryAction SUPERVISORYACTION ekwSupervisoryAction
TeamID TEAMID ekwTeamID
NumberOfAgents NUMBEROFAGENTS ekwNumberOfAgents
ConfigOperation CONFIGOPERATION ekwConfigOperation
Direction DIRECTION ekwDirection
RTPType RTPTYPE ekwRTPType

Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Appendix B CTI 0S Keywords |

|

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
BitRate BITRATE ekwBitRate
EchoCancellation ECHOCANCELLATION ekwEchoCancellation
PacketSize PACKETSIZE ekwPacketSize
PayloadType PAYLOADTYPE ekwPayloadType

AgentConnectionCallID

AGENTCONNECTIONCALLID

ekwAgentConnectionCallID

AgentConnectionDevicelD
Type

AGENTCONNECTIONDEVICEID
TYPE

ekwAgentConnectionDevicelD
Type

SupervisorConnectionCallID

SUPERVISORCONNECTIONCALLID

ekwSupervisorConnectionCallID

SupervisorConnectionDevice
IDType

SUPERVISORCONNECTIONDEVICE
IDTYPE

ekwSupervisorConnectionDevice
IDType

DeskSettingsMask

DESKSETTINGSMASK

ekwDeskSettingsMask

WrapupDatalncomingMode

WRAPUPDATAINCOMINGMODE

ekwWrapupDatalncomingMode

WrapupDataOutgoingMode

WRAPUPDATAOUTGOINGMODE

ekwWrapupDataOutgoingMode

LogoutNonActivityTime

LOGOUTNONACTIVITYTIME

ekwLogoutNonActivityTime

QualityRecordingRate QUALITYRECORDINGRATE ekwQualityRecordingRate
RingNoAnswerTime RINGNOANSWERTIME ekwRingNoAnswerTime
WorkModeTimer WORKMODETIMER ekwWorkModeTimer
RingNoAnswerDN RINGNOANSWERDN ekwRingNoAnswerDN
NumberOfAgentTeams NUMBEROFAGENTTEAMS ekwNumberOfAgentTeams
More MORE ekwMore
LatSupervisorID LATSUPERVISORID ekwLatSupervisorID
SilentMonitorWarningMessage |SILENTMONITORWARNING ekwSilentMonitorWarningMessage
MESSAGE
SilentMonitorAudibleIndication SILENTMONITORAUDIBLE ekwSilentMonitorAudibleIndication
INDICATION
SupervisorAssistCallMethod SUPERVISORASSISTCALLMETHOD |ekwSupervisorAssistCallMethod
EmergencyCallMethod EMERGENCYCALLMETHOD ekwEmergencyCallMethod
AutoRecordOnEmergency AUTORECORDONEMERGENCY ekwAutoRecordOnEmergency
RecordingMode RECORDINGMODE ekwRecordingMode
SegmentNumber SEGMENTNUMBER ekwSegmentNumber

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1 CTI OS Keywords (continued)
Text String Constant String Enumerated Integer Value
AutoOutCallsSession AUTOOUTCALLSSESSION ekwAutoOutCallsSession

AutoOutCallsTalkTimeSession

AUTOOUTCALLSTALKTIMESESSION

ekwAutoOutCallsTalkTimeSession

AutoOutCallsTimeSession

AUTOOUTCALLSTIMESESSION

ekwAutoOutCallsTimeSession

AutoOutCallsHeldSession

AUTOOUTCALLSHELDSESSION

ekwAutoOutCallsHeldSession

AutoOutCallsHeldTimeSession

AUTOOUTCALLSHELDTIMESESSION

ekwAutoOutCallsHeldTimeSession

AutoOutCallsToday AUTOOUTCALLSTODAY ekwAutoOutCallsToday
AutoOutCallsTalkTimeToday AUTOOUTCALLSTALKTIMETODAY ekwAutoOutCallsTalkTimeToday
AutoOutCallsTimeToday AUTOOUTCALLSTIMETODAY ekwAutoOutCallsTimeToday
AutoOutCallsHeldToday AUTOOUTCALLSHELDTODAY ekwAutoOutCallsHeldToday
AutoOutCallsHeldTimeToday | AUTOOUTCALLSHELDTIMETODAY ekwAutoOutCallsHeldTimeToday
AutoOutCallsToHalf AUTOOUTCALLSTOHALF ekwAutoOutCallsToHalf
AutoOutCallsTalkTimeToHalf |AUTOOUTCALLSTALKTIMETOHALF ekwAutoOutCallsTalkTimeToHalf
AutoOutCallsTimeToHalf AUTOOUTCALLSTIMETOHALF ekwAutoOutCallsTimeToHalf

AutoOutCallsHeldToHalf

AUTOOUTCALLSHELDTOHALF

ekwAutoOutCallsHeldToHalf

AutoOutCallsHeldTimeToHalf

AUTOOUTCALLSHELDTIMETOHALF

ekwAutoOutCallsHeldTimeToHalf

AutoOutCallsTo5 AUTOOUTCALLSTOS ekwAutoOutCallsTo
AutoOutCallsTalkTimeTo5 AUTOOUTCALLSTALKTIMETOS ekwAutoOutCallsTalkTimeTo5
AutoOutCallsTimeTo5 AUTOOUTCALLSTIMETOS ekwAutoOutCallsTimeTo5
AutoOutCallsHeldTo5 AUTOOUTCALLSHELDTOS ekwAutoOutCallsHeld To
AutoOutCallsHeldTimeTo5 AUTOOUTCALLSHELDTIMETOS ekwAutoOutCallsHeldTimeTo5
PreviewCallsSession PREVIEWCALLSSESSION ekwPreviewCallsSession

PreviewCallsTalkTimeSession

PREVIEWCALLSTALKTIMESESSION

ekwPreviewCallsTalkTimeSession

PreviewCallsTimeSession

PREVIEWCALLSTIMESESSION

ekwPreviewCallsTimeSession

PreviewCallsHeldSession

PREVIEWCALLSHELDSESSION

ekwPreviewCallsHeldSession

PreviewCallsHeldTimeSession

PREVIEWCALLSHELDTIMESESSION

ekwPreviewCallsHeldTimeSession

PreviewCallsToday

PREVIEWCALLSTODAY

ekwPreviewCallsToday

PreviewCallsTalkTimeToday

PREVIEWCALLSTALKTIMETODAY

ekwPreviewCallsTalkTimeToday

PreviewCallsTimeToday

PREVIEWCALLSTIMETODAY

ekwPreviewCallsTimeToday

PreviewCallsHeldToday

PREVIEWCALLSHELDTODAY

ekwPreviewCallsHeldToday

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Appendix B CTI 0S Keywords |

|

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
PreviewCallsHeldTimeToday PREVIEWCALLSHELDTIMETODAY |ekwPreviewCallsHeldTimeToday
PreviewCallsToHalf PREVIEWCALLSTOHALF ekwPreviewCallsToHalf

PreviewCallsTalkTimeToHalf

PREVIEWCALLSTALKTIMETOHALF

ekwPreviewCallsTalkTimeToHalf

PreviewCallsTimeToHalf

PREVIEWCALLSTIMETOHALF

ekwPreviewCallsTimeToHalf

PreviewCallsHeldToHalf

PREVIEWCALLSHELDTOHALF

ekwPreviewCallsHeldToHalf

PreviewCallsHeldTimeToHalf

PREVIEWCALLSHELDTIMETOHALF

ekwPreviewCallsHeldTimeToHalf

PreviewCallsTo5 PREVIEWCALLSTOS5 ekwPreviewCallsTo
PreviewCallsTalkTimeTo5 PREVIEWCALLSTALKTIMETOS ekwPreviewCallsTalkTimeTo5
PreviewCallsTimeTo5 PREVIEWCALLSTIMETOS5 ekwPreviewCallsTimeTo5
PreviewCallsHeldTo5 PREVIEWCALLSHELDTOS ekwPreviewCallsHeldTo
PreviewCallsHeldTimeTo5 PREVIEWCALLSHELDTIMETOS ekwPreviewCallsHeldTimeTo5
ReserveCallsSession RESERVECALLSSESSION ekwReserveCallsSession

ReserveCallsTalkTimeSession

RESERVECALLSTALKTIMESESSION

ekwReserveCallsTalkTimeSession

ReserveCallsTimeSession

RESERVECALLSTIMESESSION

ekwReserveCallsTimeSession

ReserveCallsHeldSession

RESERVECALLSHELDSESSION

ekwReserveCallsHeldSession

ReserveCallsHeldTimeSession

RESERVECALLSHELDTIMESESSION

ekwReserveCallsHeldTimeSession

ReserveCallsToday

RESERVECALLSTODAY

ekwReserveCallsToday

ReserveCallsTalkTimeToday

RESERVECALLSTALKTIMETODAY

ekwReserveCallsTalkTimeToday

ReserveCallsTimeToday

RESERVECALLSTIMETODAY

ekwReserveCallsTimeToday

ReserveCallsHeldToday

RESERVECALLSHELDTODAY

ekwReserveCallsHeldToday

ReserveCallsHeldTimeToday

RESERVECALLSHELDTIMETODAY

ekwReserveCallsHeldTimeToday

ReserveCallsToHalf

RESERVECALLSTOHALF

ekwReserveCallsToHalf

ReserveCallsTalkTimeToHalf

RESERVECALLSTALKTIMETOHALF

ekwReserveCallsTalkTimeToHalf

ReserveCallsTimeToHalf

RESERVECALLSTIMETOHALF

ekwReserveCallsTimeToHalf

ReserveCallsHeldToHalf

RESERVECALLSHELDTOHALF

ekwReserveCallsHeldToHalf

ReserveCallsHeldTimeToHalf

RESERVECALLSHELDTIMETOHALF

ekwReserveCallsHeldTimeToHalf

ReserveCallsTo5 RESERVECALLSTOS ekwReserveCallsTo
ReserveCallsTalkTimeTo5 RESERVECALLSTALKTIMETOS ekwReserveCallsTalkTimeTo5
ReserveCallsTimeTo5 RESERVECALLSTIMETOS ekwReserveCallsTimeTo5

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1 CTI OS Keywords (continued)

Text String

Constant String

Enumerated Integer Value

ReserveCallsHeldTo5

RESERVECALLSHELDTOS

ekwReserveCallsHeldTo

ReserveCallsHeldTimeTo5

RESERVECALLSHELDTIMETOS

ekwReserveCallsHeldTimeTo5

BargeInCallsSession BARGEINCALLSSESSION ekwBargelnCallsSession
BargeInCallsToday BARGEINCALLSTODAY ekwBargeInCallsToday
BargeInCallsToHalf BARGEINCALLSTOHALF ekwBargeInCallsToHalf
BargeInCallsTo5 BARGEINCALLSTOS ekwBargelnCallsTo5
InterceptCallsSession INTERCEPTCALLSSESSION ekwlnterceptCallsSession
InterceptCallsToday INTERCEPTCALLSTODAY ekwlnterceptCallsToday
InterceptCallsToHalf INTERCEPTCALLSTOHALF ekwInterceptCallsToHalf
InterceptCallsTo5 INTERCEPTCALLSTOS ekwlnterceptCallsTo
MonitorCallsSession MONITORCALLSSESSION ekwMonitorCallsSession
MonitorCallsToday MONITORCALLSTODAY ekwMonitorCallsToday
MonitorCallsToHalf MONITORCALLSTOHALF ekwMonitorCallsToHalf
MonitorCallsTo5 MONITORCALLSTOS ekwMonitorCallsTo
WhisperCallsSession WHISPERCALLSSESSION ekwWhisperCallsSession
WhisperCallsToday WHISPERCALLSTODAY ekwWhisperCallsToday
WhisperCallsToHalf WHISPERCALLSTOHALF ekwWhisperCallsToHalf
WhisperCallsTo5 WHISPERCALLSTOS ekwWhisperCallsTo
EmergencyCallsSession EMERGENCYCALLSSESSION ekwEmergencyCallsSession
EmergencyCallsToday EMERGENCYCALLSTODAY ekwEmergencyCallsToday
EmergencyCallsToHalf EMERGENCYCALLSTOHALF ekwEmergencyCallsToHalf
EmergencyCallsTo5 EMERGENCYCALLSTOS ekwEmergencyCallsTo5
AgentsTalkingAutoOut AGENTSTALKINGAUTOOUT ekwAgentsTalkingAutoOut
AgentsTalkingPreview AGENTSTALKINGPREVIEW ekwAgentsTalkingPreview
AgentsTalkingReservation AGENTSTALKINGRESERVATION ekwAgentsTalkingReservation
RouterCallsQNow ROUTERCALLSQNOW ekwRouterCallsQNow
ServerMode SERVERMODE ekwServerMode
RegisteredServicelD REGISTEREDSERVICEID ekwRegisteredServicelD
ServerData SERVERDATA ekwServerData

Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Appendix B CTI 0S Keywords |

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
LongestRouterCallQNow LONGESTROUTERCALLQNOW ekwLongestRouterCallQNow
CampaignID CAMPAIGNID ekwCampaignID
QueryRuleID QUERYRULEID ekwQueryRulelD

TaskID TASKID ekwTaskID

MRDID MRDID ekwMRDID

ICMAgentID ICMAGENTID ekwICMAgentID
AgentMode AGENTMODE ekwAgentMode

IsAvailable ISAVAILABLE ekwlIsAvailable
MaxTaskLimit MAXTASKLIMIT ekwMaxTaskLimit
MaxTasks MAXTASKS ekwMaxTasks
MakeRoutable MAKEROUTABLE ekwMakeRoutable

Reason REASON ekwReason
PreviousICMTaskID PREVIOUSICMTASKID ekwPreviousICMTaskID
ICMDisposition ICMDISPOSITION ekwICMDisposition

ApplicationDisposition

APPLICATIONDISPOSITION

ekwApplicationDisposition

DoThisWithTaskOnTheWay

DOTHISWITHTASKONTHEWAY

ekwDoThisWithTaskOnTheWay

IsInterrupted ISINTERRUPTED ekwlsInterrupted
InterruptingMRDID INTERRUPTINGMRDID ekwlnterruptingMRDID
InterruptingInvokeID INTERRUPTINGINVOKEID ekwlnterruptingInvokeID
IsNotReady ISNOTREADY ekwlsNotReady
AvailableDuration AVAILABLEDURATION ekwAuvailableDuration
NumTasks NUMTASKS ekwNumTasks

Paused PAUSED ekwPaused

TaskState TASKSTATE ekwTaskState
OfferDuration OFFERDURATION ekwOfferDuration
BeginDuration BEGINDURATION ekwBeginDuration
InterruptDuration INTERRUPTDURATION ekwInterruptDuration
WrapupDuration WRAPUPDURATION ekwWrapupDuration
ReadyCount READYCOUNT ekwReadyCount

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
Type TYPE ekwType
ClientID CLIENTID ekwClientID
ClientPassword CLIENTPASSWORD ekwClientPassword
ClientSignature CLIENTSIGNATURE ekwClientSignature
AgentExtension AGENTEXTENSION ekwAgentExtension
AgentID AGENTID ekwAgentID
AgentLastName AGENTLASTNAME ekwAgentLastName
AgentFirstName AGENTFIRSTNAME ekwAgentFirstName
Agentlnstrument AGENTINSTRUMENT ekwAgentInstrument
ANI ANI ekwANI
UserToUserInfo USERTOUSERINFO ekwUserToUserInfo
DNIS DNIS ekwDNIS
DialedNumber DIALEDNUMBER ekwDialedNumber
CallerEnteredDigits CALLERENTEREDDIGITS ekwCallerEnteredDigits
CallVariable1 CALLVARIABLEI1 ekwCallVariable1
CallVariable2 CALLVARIABLE2 ekwCallVariable2
CallVariable3 CALLVARIABLE3 ekwCallVariable3
CallVariable4 CALLVARIABLE4 ekwCallVariable4
CallVariable5 CALLVARIABLES ekwCallVariable5
CallVariable6 CALLVARIABLE6 ekwCallVariable6
CallVariable7 CALLVARIABLE7? ekwCallVariable7
CallVariable8 CALLVARIABLES ekwCallVariable8
CallVariable9 CALLVARIABLE9 ekwCallVariable9
CallVariable10 CALLVARIABLEI10 ekwCallVariable10
CTIClientSignature CTICLIENTSIGNATURE ekwCTIClientSignature
CTIClientTimestamp CTICLIENTTIMESTAMP ekwCTIClientTimestamp
ConnectionDevicelD CONNECTIONDEVICEID ekwConnectionDeviceID
AlertingDevicelD ALERTINGDEVICEID ekwAlertingDevicelD
CallingDevicelD CALLINGDEVICEID ekwCallingDevicelD
Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Appendix B CTI 0S Keywords |

|

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
CalledDevicelD CALLEDDEVICEID ekwCalledDevicelD
LastRedirectDevicelD LASTREDIRECTDEVICEID ekwLastRedirectDevicelD
AnsweringDevicelD ANSWERINGDEVICEID ekwAnsweringDevicelD
HoldingDevicelD HOLDINGDEVICEID ekwHoldingDevicelD
RetrievingDevicelD RETRIEVINGDEVICEID ekwRetrievingDevicelD
ReleasingDevicelD RELEASINGDEVICEID ekwReleasingDevicelD
FailingDevicelD FAILINGDEVICEID ekwFailingDevicelD
PrimaryDevicelD PRIMARYDEVICEID ekwPrimaryDevicelD
SecondaryDevicelD SECONDARYDEVICEID ekwSecondaryDevicelD
ControllerDevicelD CONTROLLERDEVICEID ekwControllerDevicelD
AddedPartyDevicelD ADDEDPARTYDEVICEID ekwAddedPartyDevicelD
ConnectedPartyCallID CONNECTEDPARTYCALLID ekwConnectedPartyCallID

ConnectedPartyDeviceIDType

CONNECTEDPARTYDEVICEIDTYPE

ekwConnectedPartyDeviceIDType

ConnectedPartyDevicelD

CONNECTEDPARTYDEVICEID

ekwConnectedPartyDevicelD

TransferringDevicelD TRANSFERRINGDEVICEID ekwTransferringDevicel
TransferredDevicelD TRANSFERREDDEVICEID ekwTransferredDevicel
DivertingDevicelD DIVERTINGDEVICEID ekwDivertingDevicel
QueueDevicelD QUEUEDEVICEID ekwQueueDevicelD
CallWrapupData CALLWRAPUPDATA ekwCallWrapupData
UserText USERTEXT ekwUserText

NewConnectionDevicelD

NEWCONNECTIONDEVICEID

ekwNewConnectionDevicelD

ObjectName OBJECTNAME ekwObjectName
TrunkUsedDevicelD TRUNKUSEDDEVICEID ekwTrunkUsedDevicelD
Fl1tSkillGroupNumber FLTSKILLGROUPNUMBER ekwFl1tSkillGroupNumber
F1tSkillGroupID FLTSKILLGROUPID ekwFl1tSkillGroupID
F1tSkillGroupPriority FLTSKILLGROUPPRIORITY ekwFl1tSkillGroupPriority
Fl1tSkillGroupState FLTSKILLGROUPSTATE ekwFl1tSkillGroupState
AgentPassword AGENTPASSWORD ekwAgentPassword
PositionID POSITIONID ekwPositionID

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
SupervisorID SUPERVISORID ekwSupervisorID
ActiveConnDevicelD ACTIVECONNDEVICEID ekwActiveConnDevicelD
OtherConnDevicelD OTHERCONNDEVICEID ekwOtherConnDevicelD
HeldConnDevicelD HELDCONNDEVICEID ekwHeldConnDevicelD
FacilityCode FACILITYCODE ekwFacilityCode
FltLineHandle FLTLINEHANDLE ekwFltLineHandle
FltLineType FLTLINETYPE ekwFltLineType
CallConnectionCallID CALLCONNECTIONCALLID ekwCallConnectionCalllD

CallConnectionDeviceIDType

CALLCONNECTIONDEVICEIDTYPE

ekwCallConnectionDeviceIDType

CallConnectionDevicelD

CALLCONNECTIONDEVICEID

ekwCallConnectionDevicelD

CallDeviceType CALLDEVICETYPE ekwCallDeviceType
CallDevicelD CALLDEVICEID ekwCallDevicelD
CallDeviceConnState CALLDEVICECONNSTATE ekwCallDeviceConnState
DTMFString DTMFSTRING ekwDTMFString
RouterCallKeyDay ROUTERCALLKEYDAY ekwRouterCallKeyDay
RouterCallKeyCallID ROUTERCALLKEYCALLID ekwRouterCallKeyCallID
DataStructure DATASTRUCTURE ekwDataStructure
CallState CALLSTATE ekwCallState
MonitoredDevicelD MONITOREDDEVICEID ekwMonitoredDevicelD
AuthorizationCode AUTHORIZATIONCODE ekwAuthorizationCode
AccountCode ACCOUNTCODE ekwAccountCode
OriginatingDeviceID ORIGINATINGDEVICEID ekwOriginatingDevicelD
OriginatingLineID ORIGINATINGLINEID ekwOriginatingLinelD
ClientAddress CLIENTADDRESS ekwClientAddress
ExpandedCallContxt EXPANDEDCALLCONTXT ekwExpandedCallContxt
CallControlTable CALLCONTROLTABLE ekwCallControlTable
SupervisorInstrument SUPERVISORINSTRUMENT ekwSupervisorInstrument
AtcAgentID ATCAGENTID ekwAtcAgentID
AgentFlags AGENTFLAGS ekwAgentFlags

Cisco ICM Software CTI OS Developer’'s Guide
[oL-1392-01 .m

Appendix B CTI 0S Keywords |

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
AtcAgentState ATCAGENTSTATE ekwAtcAgentState
AtcStateDuration ATCSTATEDURATION ekwAtcStateDuration

AgentConnectionDevicelD

AGENTCONNECTIONDEVICEID

ekwAgentConnectionDevicelD

SupervisorConnectionDevicel

D

SUPERVISORCONNECTIONDEVICEI

D

ekwSupervisorConnectionDevicel
D

ListTeamID

LISTTEAMID

ekwListTeamID

DefaultDevicePortAddress

DEFAULTDEVICEPORTADDRESS

ekwDefaultDevicePortAddress

ServiceName SERVICENAME ekwServiceName
CustomerPhoneNumber CUSTOMERPHONENUMBER ekwCustomerPhoneNumber
CustomerAccountNumber CUSTOMERACCOUNTNUMBER ekwCustomerAccountNumber
ApplicationPathID APPLICATIONPATHID ekwApplicationPathID
ApplicationData APPLICATIONDATA ekwApplicationData
ScriptSelector SCRIPTSELECTOR ekwScriptSelector
ApplicationString1 APPLICATIONSTRING1 ekwApplicationString1
ApplicationString2 APPLICATIONSTRING2 ekwApplicationString2
Agentlnfo AGENTINFO ekwAgentInfo
WrapupData WRAPUPDATA ekwWrapupData
RouteSelected ROUTESELECTED ekwRouteSelected
SkillGroups SKILLGROUPS ekwSkillGroups
EnablementMask ENABLEMENTMASK ekwEnablementMask
DevicelD DEVICEID ekwDevicelD
UniqueObjectID UNIQUEOBJECTID ekwUniqueObjectID
ServerObjectID SERVEROBJECTID ekwServerObjectID
NewUniqueObjectID NEWUNIQUEOBIJECTID ekwNewUniqueObjectID
Monitored MONITORED ekwMonitored
CallStatus CALLSTATUS ekwCallStatus

EventID EVENTID ekwEventID

MessagelD MESSAGEID ekwMessagelD
MessageType MESSAGETYPE ekwMessageType

Cisco ICM Software CTI OS Developer’'s Guide

B-18

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
DriverKey DRIVERKEY ekwDriverKey

ecc ECC ekwecc

Indicator INDICATOR ekwIndicator

ForwardType FORWARDTYPE ekwForwardType
ForwardDeviceType FORWARDDEVICETYPE ekwForwardDeviceType
Forwarding FORWARDING ekwForwarding
LastNumberType LASTNUMBERTYPE ekwLastNumberType
ICMCentralControllerTime ICMCENTRALCONTROLLERTIME ekwICMCentralControllerTime
Statistics STATISTICS ekwStatistics
SupervisorMode SUPERVISORMODE ekwSupervisorMode
IncomingOrOutgoing INCOMINGOROUTGOING ekwlncomingOrOutgoing
WrapupOKEnabled WRAPUPOKENABLED ekwWrapupOKEnabled
Instrument INSTRUMENT ekwInstrument

Password PASSWORD ekwPassword

State STATE ekwState

Text CLIENT_MESSAGE_TEXT ekwClientMessageText
BMUDataField BMUDATAFIELD ekwBMUDataField
MakeCallSetup MAKECALLSETUP ekwMakeCallSetup

CallDeviceConnectionState

CALLDEVICECONNECTIONSTATE

ekwCallDeviceConnectionState

InternalCallsRcvdToday

INTERNALCALLSRCVDTODAY

ekwlnternalCallsRcvdToday

InternalCallsRcvdTimeToday

INTERNALCALLSRCVDTIMETODAY

ekwlnternalCallsRcvdTimeToday

InternalCallsRcvdSession

INTERNALCALLSRCVDSESSION

ekwlnternalCallsRcvdSession

ReservationCallsSession

RESERVATIONCALLSSESSION

ekwReservationCallsSession

ReservationCallsTalkTimeSessi
on

RESERVATIONCALLSTALKTIMESES
SION

ekwReservationCallsTalkTimeSess
ion

ReservationCallsTimeSession

RESERVATIONCALLSTIMESESSION

ekwReservationCallsTimeSession

ReservationCallsHeldSession

RESERVATIONCALLSHELDSESSION

ekwReservationCallsHeldSession

ReservationCallsHeldTimeSess
ion

RESERVATIONCALLSHELDTIMESES

SION

ekwReservationCallsHeldTimeSess
ion

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

Appendix B CTI 0S Keywords |

|
Table B-1 CTI OS Keywords (continued)
Text String Constant String Enumerated Integer Value

ReservationCallsToday

RESERVATIONCALLSTODAY

ekwReservationCallsToday

ReservationCallsTalkTime
Today

RESERVATIONCALLSTALKTIME
TODAY

ekwReservationCallsTalkTime
Today

ReservationCallsHeldTime
Today

RESERVATIONCALLSHELDTIME
TODAY

ekwReservationCallsHeldTim
eToday

ReservationCallsTimeToday

RESERVATIONCALLSTIMETODAY

ekwReservationCallsTimeToday

ReservationCallsHeldToday

RESERVATIONCALLSHELDTODAY

ekwReservationCallsHeldToday

ReservationCallsTo5

RESERVATIONCALLSTOS

ekwReservationCallsTo5

ReservationCallsTalkTimeTo5

RESERVATIONCALLSTALKTIMETOS

ekwReservationCallsTalkTimeTo5

ReservationCallsHeldTimeTo5

RESERVATIONCALLSHELDTIMETOS

ekwReservationCallsHeldTimeTo5

ReservationCallsTimeTo5

RESERVATIONCALLSTIMETOS

ekwReservationCallsTimeTo5

ReservationCallsHeldTo5

RESERVATIONCALLSHELDTOS

ekwReservationCallsHeldTo5

ReservationCallsToHalf

RESERVATIONCALLSTOHALF

ekwReservationCallsToHalf

ReservationCallsTalkTime
ToHalf

RESERVATIONCALLSTALKTIME
TOHALF

ekwReservationCallsTalkTime
ToHalf

ReservationCallsHeldTime
ToHalf

RESERVATIONCALLSHELDTIMETO
HALF

ekwReservationCallsHeldTimeTo
Half

ReservationCallsTimeToHalf

RESERVATIONCALLSTIMETOHALF

ekwReservationCallsTimeToHalf

ReservationCallsHeldToHalf

RESERVATIONCALLSHELDTOHALF

ekwReservationCallsHeldToHalf

EventTime EVENTTIME ekwEventTime
CurrentServer CURRENTSERVER ekwCurrentServer
CurrentPort CURRENTPORT ekwCurrentPort
ReasonCode REASONCODE ekwReasonCode
FailedServer FAILEDSERVER ekwFailedServer
HeartBeatInterval HEARTBEATINTERVAL ekwHeartBeatInterval
MissedHeartBeats MISSEDHEARTBEATS ekwMissedHeartbeats
ClientAgentTemporaryID CLIENTAGENTTEMPORARYID ekwClientAgentTemporaryID
Classldentifier CLASSIDENTIFIER ekwClassIdentifier
IsSupervisor ISSUPERVISOR ekwlIsSupervisor
Extension EXTENSION ekwExtension

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
LastError LASTERROR ekwLastError
CallReference CALLREFERENCE ekwCallReference
AgentReference AGENTREFERENCE ekwAgentReference
AgentCallReference AGENTCALLREFERENCE ekwAgentCallReference
MonitorFlag MONITORFLAG ekwMonitorFlag
CtiOsA CTIOSA ekwCtiOsA

CtiOsB CTIOSB ekwCtiOsB

PortA PORTA ekwPortA

PortB PORTB ekwPortB

Heartbeat HEARTBEAT ekwHeartbeat
MaxHeartbeats MAXHEARTBEATS ekwMaxHeartbeats
CurrentAgent CURRENTAGENT ekwCurrentAgent
ActiveCall ACTIVECALL ekwActiveCall
CurrentFilter CURRENTFILTER ekwCurrentFilter
Agents AGENTS ekwAgents

Calls CALLS ekwCalls

WaitObjects WAITOBJECTS ekwWaitObjects
ObjectReferences OBJECTREFERENCES ekwObjectReferences
DesktopSettings DESKTOPSETTINGS ekwDesktopSettings
CallVariables CALLVARIABLES ekwCallVariables
CallReferenceObjectID CALLREFERENCEOBIJECTID ekwCallReferenceObjectID
RecordEnable RECORDENABLE ekwRecordEnable
TimeOfDay TIMEOFDAY ekwTimeOfDay
ConnectionMode CONNECTIONMODE ekwConnectionMode
TryingServer TRYINGSERVER ekwTryingServer
TryingPort TRYINGPORT ekwTryingPort
TryingSince TRYINGSINCE ekwTryingSince
MessageFilter MESSAGEFILTER ekwMessageFilter
DesktopType DESKTOPTYPE ekwDesktopType

Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01 .m

Appendix B CTI 0S Keywords |

Table B-1 CTI OS Keywords (continued)

Text String

Constant String

Enumerated Integer Value

SupervisorBtnEnablementMask

SUPERVISORBTNENABLEMENT
MASK

ekwSupervisorBtnEnablement
Mask

ErrorMessage ERRORMESSAGE ekwErrorMessage
Mode MODE ekwMode

Call CALL ekwCall
SkillGroupName SKILLGROUPNAME ekwSkillGroupName
OldUniqueObjectID OLDUNIQUEOBIJECTID ekwOldUniqueObjectID
EmbeddedArgs EMBEDDEDARGS ekwEmbeddedArgs
EventMask EVENTMASK ekwEventMask

ID ID ekwID

Filter FILTER ekwFilter
CILConnectionID CILCONNECTIONID ekwCILConnectionID

IncomingWrapupStrings

INCOMINGWRAPUPSTRINGS

ekwIncomingWrapupStrings

OutgoingWrapupStrings

OUTGOINGWRAPUPSTRINGS

ekwOutgoingWrapupStrings

NotReadyReasonCodes NOTREADYREASONCODES ekwNotReadyReasonCodes
LogoutReasonCodes LOGOUTREASONCODES ekwLogoutReasonCodes
DriverID DRIVERID ekwDriverID
SkillGroupNumbers SKILLGROUPNUMBERS ekwSkillGroupNumbers
Target TARGET ekwTarget

Source SOURCE ekwSource

SupervisorKey SUPERVISORKEY ekwSupervisorKey
BargedInCallID BARGEDINCALLID ekwBargedInCallID
TeamUniquelD TEAMUNIQUEID ekwTeamUniquelD
ValidCalls VALIDCALLS ekwValidCalls
StatusBarMessage STATUSBARMESSAGE ekwStatusBarMessage
FailoverRequired FAILOVERREQUIRED ekwFailoverRequired
CTIOSSystemEventID CTIOSSYSTEMEVENTID ekwCTIOSSystemEventID
AutoLogin AUTOLOGIN ekwAutoLogin
SavedAgentState SAVEDAGENTSTATE ekwSavedAgentState

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

| Appendix B CTI 0S Keywords

Table B-1 CTI OS Keywords (continued)

Text String Constant String Enumerated Integer Value
WaitingforRecovery WAITINGFORRECOVERY ekwWatingForRecovery
SavedLoginInfo SAVEDLOGININFO ekwSavedLoginInfo
EventType EVENTTYPE ekwEventType
RequestID REQUESTID ekwRequestID
NonClientRequest NONCLIENTREQUEST ekwNonClientRequest
TimerInterval TIMERINTERVAL ekwTimerInterval
TimerCount TIMERCOUNT ekwTimerCount
CTIClients CTICLIENTS ekwCTIClients

Cisco ICM Software CTI OS Developer’'s Guide

[oL-1392-01 ..E.

Appendix B CTI 0S Keywords |

Cisco ICM Software CTI OS Developer’'s Guide
m. 0L-1392-01 |

A

accessing call variables 1-12
accessing ECC variables 1-12
accessing elements 1-9
accessing properties 1-7
AddItem
Arguments class method 8-20
agent object methods 5-1
AgentTeamList 5-3
BadCallLine 5-5
DisableAgentStatistics 5-8
Emergency 5-6
Enable Agent Statistics 5-8
GetAgentState 5-10
GetElement 5-12
GetMonitoredAgent 5-12
GetMonitoredCall 5-14
GetPropertyAttribute 5-16
GetSkillGroups 5-21
GetValue 5-21
Login 5-22
Logout 5-24
MakeCall 5-26
MonitorAgentTeamAll 5-30, 5-31

. 4 .:d-. -

OnEvent 5-33
SendChatMessage 5-34
SendUserMessage 5-34
SetAgentState 5-36
SetMonitoredAgent 5-38
SetMonitoredCall 5-40
SetValue 5-41
SuperviseCall 5-42
Supervisor Assist 5-44
AgentTeamList agent object method 5-3
Alternate call object method 6-3
Answer call object method 6-5
Arg class 8-2
Arg class methods
Clone 8-12
Createlnstance 8-3
GetClassID 8-17
GetType 8-14
GetValueType 8-9
SetValue 8-5
Arguments class methods
AddItem 8-20
Clear 8-21
Clone 8-21
DumpArgs 8-22

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

M ndex

GetClassID 8-23
GetElement 8-23
GetValue 8-23
Initialize 8-24
IsValid 8-24
NumElements 8-24
Removeltem 8-25
SetElement 8-25
SetValue 8-25

BadCallLine agent object method 5-5

C

C++ event handling 3-2
call object methods 6-2
Alternate 6-3
Answer 6-5
Clear 6-6
ClearConnection 6-8
Conference 6-10
Deflect 6-12
GetElement 6-14
GetPropertyAttribute 6-14
GetValue 6-16
Hold 6-17
MakeConsultCall 6-19

OnEvent 6-22

Reconnect 6-23

Record 6-25

Retrieve 6-27

SendDTMFSignal 6-29

SetCallData 6-31

SingleStepConference 6-34

SingleStepTransfer 6-36

Snapshot 6-38

Transfer 6-40
call variables

accessing 1-12
CCtiosException class 8-29
CILRefArg class 8-26
CILRefArg class methods

GetClassID 8-28

GetType 8-29

GetValue 8-27

SetValue 8-26
Clear

Arguments class method 8-21
Clear call object method 6-6
ClearConnection call object method 6-8
Clone

Arg class method 8-12

Arguments class method 8-21
COM 3-6
COM event handling 3-6

Conference call object method 6-10

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

Connect session object method 4-5
Createlnstance

Arg class method 8-3

Arguments class method 8-22
CTI OS

Architecture 2-1
CTI OS Client Interface Library (CIL) 2-1
CTI OS Keywords B-2
CTI OS messages A-1

D

Deflect call object method 6-12

DisableAgentStatistics agent object
method 5-8

DisableSkillGroupStatistics SkillGroup object
method 7-2

Disconnect session object method 4-8
DumpArgs

Arguments class method 8-22

ECC variables 1-12
Emergency agent object method 5-6

Enable Agent Statistics agent object
method 5-8

EnableSkillGroupStatistics SkillGroup object
method 7-2

enumerated constants 1-9

Index W

error handling 1-13
event handling
C++ 32
COM 3-6

G

GetAgentState agent object method 5-10
GetClassID

Arg class method 8-17

Arguments class method 8-23

CILRefArg class method 8-28
GetElement agent object method 5-12
GetElement Arguments class method 8-23
GetElement call object method 6-14
GetMonitoredAgent agent object method 5-12
GetMonitoredCall agent object method 5-14
GetPropertyAttribute agent object method 5-16
GetPropertyAttribute call object method 6-14

GetPropertyAttribute session object
method 4-9

GetPropertyAttribute SkillGroup object
method 7-4

GetSkillGroups agent object method 5-21
GetType

Arg class method 8-14

CILRefArg class method 8-29
GetValue

Arguments class method 8-23

CILRefArg class method 8-27

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

M ndex

GetValue agent object method 5-21
GetValue call object method 6-16
GetValue session object method 4-12
GetValue SkillGroup object method 7-23
GetValueType

Arg class method 8-9

Hold call object method 6-17

IAgentEvents interface 5-45
ICallEvents interface 6-42
In 3-2
Initialize

Arguments class method 8-24
isAgentMode session object method 4-12
ISessionEvents interface 4-27

ISkillGroupEvents interface. 7-24

isSupervisorMode session object method 4-14

IsValid

Arguments class method 8-24

L

Login agent object method 5-22
Logout agent object method 5-24

MakeCall agent object method 5-26
MakeConsultCall call object method 6-19
MakeRequest session object method 4-15

MonitorAgentTeamAll agent object
method 5-30, 5-31

Monitor mode 1-2

NumElements

Arguments class method 8-24

o

Object Interface Framework 2-1
OnAgentPrecallAbortEvent event 6-67
OnAgentPrecallEvent event 6-65
OnAgentStateChange event 5-46
OnAgentStatistics event 5-47
OnCallBegin event 6-42
OnCallCleared event 6-53
OnCallConferenced event 6-59
OnCallConnectionCleared event 6-53
OnCallDataUpdate event 6-45
OnCallDelivered event 6-46
OnCallDequeuedEvent event 6-70
OnCallDiverted event 6-61
OnCallEnd event 6-44

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

OnCallEnterpriseAgent event 6-63
OnCallEstablished event 6-48
OnCallFailed event 6-56

OnCallHeld event 6-51
OnCallOriginated event 6-54
OnCallPreEventAbort event 6-65
OnCallQueuedEvent event 6-68
OnCallReachedNetworkEvent event 6-71
OnCallRequestFailed event 6-65
OnCallRetrieved event 6-52
OnCallServicelnitiated event 6-73
OnCallServicelnitiatedEvent event 6-67

OnCallTransferConferencelnitiated event 6-57

OnCallTransferred event 6-57
OnConnectionClosed message 4-29
OnConnection event 4-27
OnConnectionFailure event 4-28
OnConnectionRejected message 4-30
OnControlFailureConf event 6-72
OnCurrentAgentReset message 4-30
OnCurrentCallChanged message 4-30
OnEvent agent object method 5-33
OnEvent call object method 6-22
OnEvent session object method 4-18
OnEvent SkillGroup object method 7-24
OnHeartbeat event 4-28
OnMissingHeartbeat event 4-28
OnMonitorModeEstablished event 4-29
OnSetAgentModeEvent message 4-30

Index W

OnSkillGroupStatisticsUpdated event 7-24

OnSnapshotCallConf event 6-72
OnTranslationRoute event 6-62

OnUserMessage event 5-47

P

property attributes 1-9

property names 1-9

Reconnect call object method 6-23
Record call object method 6-25
Removeltem

Arguments class method 8-25

RequestDesktopSettings session object
method 4-18

Retrieve call object method 6-27

S

SendChatMessage agent object method 5-34
SendDTMFSignal call object method 6-29
SendUserMessage agent object method 5-34

session object methods 4-4
Connect 4-5
Disconnect 4-8

GetPropertyAttribute 4-9

[oL-1392-01

Cisco ICM Software CTI 0S Developer's Guide g

M ndex

GetValue 4-12

isAgentMode 4-12

isSupervisorMode 4-14

MakeRequest 4-15

OnEvent 4-18

RequestDesktopSettings 4-18

SetAgent 4-19

SetCurrentCall 4-21

SetMessageFilter 4-23
SetAgent session object method 4-19
SetAgentState agent object method 5-36
SetCallData call object method 6-31
SetCurrentCall session object method 4-21
SetElement

Arguments class method 8-25
SetMessageFilter session object method 4-23
SetMonitoredAgent agent object method 5-38
SetMonitoredCall agent object method 5-40
SetValue

Arg class method 8-5

Arguments class method 8-25
SetValue agent object method 5-41
SingleStepConference call object method 6-34
SingleStepTransfer call object method 6-36
SkillGroup object methods 7-2

DisableSkillGroupStatistics 7-2

EnableSkillGroupStatistics 7-2

GetPropertyAttribute 7-4

GetValue 7-23

OnEvent 7-24
Snapshot call object method 6-38
SuperviseCall agent object method 5-42
Supervisor Assist agent object method 5-44

T

Transfer call object method 6-40

r Cisco ICM Software CTI OS Developer’'s Guide

0L-1392-01 |

	Title
	Contents
	About This Guide
	Purpose
	Audience
	Conventions
	Organization
	Other Publications
	Obtaining Documentation
	World Wide Web
	Documentation CD-ROM
	Ordering Documentation
	Documentation Feedback

	Obtaining Technical Assistance
	Cisco.com
	Technical Assistance Center
	Contacting TAC by Using the Cisco TAC Website
	Contacting TAC by Telephone

	Chapter 1: Introduction
	Overview
	Extensibility and Ease of Use
	Accessing Properties with GetValue
	GetElement
	Property Names and Enumerated Constants
	Property Attributes
	Platform Issues
	Accessing Call and ECC Variables
	Handling Errors
	Event Driven Model
	Event Cascade Model
	Event Publication Model
	Subscribing to an Event Interface
	Special Values
	Start Up, Connect, Snapshot

	Chapter 2: CTI OS Client Interface Library Architecture
	Object Interface Framework
	Session Object
	Session Manager
	Session Behavior
	Connection
	Connection Failure and Recovery
	Session Modes

	Object Manager and Event Passing
	Creating Objects
	Call Object Lifetime
	Agent Object Lifetime
	SkillGroup Object Lifetime
	Object Factory

	Event Publisher
	Exposed Interfaces
	Adding and Removing Subscribers
	Event Distribution

	Service Layer
	Connection Layer
	Multithreaded CTI OS Client Application
	Support for Multithreaded Client in CIL
	Wait Object
	Properties
	Methods
	Usage at the Client

	Multithreaded Application Example
	Subclassing

	Chapter 3: Handling Events
	Handling Events in C++
	Creating a Subscriber Object Class
	Registering a C++ Subscriber Object
	Input Parameters
	Return Value
	Example

	Unregistering Subscriber
	Input Parameters
	Return Value
	Example

	Handling Events in COM
	Automation Based Applications
	ATL, MFC and COM SDK Based Applications

	Chapter 4: Session Object
	Working With CTI OS Objects
	Methods
	Connect
	Syntax
	Input Parameters
	Return Values
	Examples

	Disconnect
	Syntax
	Parameters
	Return Values
	Examples

	GetPropertyAttribute
	Syntax

	GetValue
	Syntax

	isAgentMode
	Syntax
	Parameters
	Return Values
	Examples

	isSupervisorMode
	Syntax
	Parameters
	Return Values
	Examples

	MakeRequest
	Syntax
	Input Parameters
	Return Values
	Examples

	OnEvent (C++ Only)
	Syntax
	Input Parameters
	Return Values

	RequestDesktopSettings
	Syntax

	SetAgent
	Syntax
	Input Parameters
	Return Values
	Examples

	SetCurrentCall
	Syntax
	Input Parameters
	Return Values
	Examples

	SetMessageFilter
	Operator
	Expression
	Keyword
	Value
	Syntax
	Input Parameters
	Return Values
	Examples

	ISessionEvents Interface
	OnConnection
	OnConnectionFailure
	OnHeartbeat
	OnMissingHeartbeat
	OnMonitorModeEstablished
	OnConnectionClosed
	OnConnectionRejected
	OnSetAgentModeEvent
	OnCurrentCallChanged
	OnCurrentAgentReset

	Chapter 5: Agent Object
	Methods
	AgentTeamList
	Syntax
	Parameters
	Return Values
	Examples

	BadCallLine
	Syntax
	Parameters
	Return Values
	Examples

	Emergency
	Syntax
	Parameters
	Return Values
	Examples

	EnableAgentStatistics/DisableAgentStatistics
	Syntax
	Parameters
	Return Values
	Examples

	GetAgentState
	Syntax
	Output Parameters
	Return Values
	Examples

	GetElement
	GetMonitoredAgent
	Syntax
	Output Parameters
	Return Values
	Examples

	GetMonitoredCall
	Syntax
	Output Parameters
	Return Values
	Examples

	GetPropertyAttribute
	Syntax

	GetSkillGroups
	Syntax
	Example

	GetValue
	Syntax

	Login
	Syntax
	Input Parameters
	Return Values
	Examples

	Logout
	Syntax
	Input Parameters
	Return Values
	Examples

	MakeCall
	Syntax
	Input Parameters
	Return Values
	Examples

	MonitorAgentTeam
	Syntax
	Input Parameters
	Return Values
	Examples

	MonitorAgentTeamAll
	Syntax
	Input Parameters
	Return Values
	Examples

	OnEvent (C++ Only)
	Syntax
	Input Parameters
	Return Values
	Examples

	SendUserMessage/SendChatMessage
	Syntax
	Input Parameters
	Return Values
	Examples

	SetAgentState
	Syntax
	Input Parameters
	Return Values
	Examples

	SetMonitoredAgent
	Syntax
	Input Parameters
	Return Values
	Examples

	SetMonitoredCall
	Syntax
	Input Parameters
	Return Values
	Examples

	SetValue
	Syntax
	Example

	SuperviseCall
	Syntax
	Input Parameters
	Return Values
	Examples

	SupervisorAssist
	Syntax
	Parameters
	Return Values
	Examples

	IAgentEvents Interface
	OnAgentStateChange
	OnAgentStatistics
	OnUserMessage

	Chapter 6: Call Object
	Active Call
	Methods
	Alternate
	Syntax
	Parameters
	Return Values
	Examples

	Answer
	Syntax
	Parameters
	Return Values
	Examples

	Clear
	Syntax
	Parameters
	Return Values
	Examples

	ClearConnection
	Syntax
	Parameters
	Return Values
	Examples

	Conference
	Syntax
	Input Parameters
	Return Values
	Examples

	Deflect
	Syntax
	Input Parameters
	Return Values
	Examples

	GetElement
	Syntax

	GetPropertyAttribute
	Syntax

	GetValue
	Syntax
	Example

	Hold
	Syntax
	Parameters
	Return Values
	Examples

	MakeConsultCall
	Syntax
	Input Parameters
	Return Values
	Examples

	OnEvent (C++ Only)
	Syntax
	Input Parameters
	Return Values
	Examples

	Reconnect
	Syntax
	Parameters
	Return Values
	Examples

	Record
	Syntax
	Input Parameters
	Return Values
	Examples

	Retrieve
	Syntax
	Parameters
	Return Values
	Examples

	SendDTMFSignal
	Syntax
	Input Parameters
	Return Values
	Examples

	SetCallData
	Syntax
	Input Parameters
	Return Values
	Examples

	SingleStepConference
	Syntax
	Input Parameters
	Return Values
	Examples

	SingleStepTransfer
	Syntax
	Input Parameters
	Return Values
	Examples

	Snapshot
	Syntax
	Parameters
	Return Values
	Examples

	Transfer
	Syntax
	Input Parameters
	Return Values
	Examples

	ICallEvents Interface
	OnCallBegin
	OnCallEnd
	OnCallDataUpdate
	OnCallDelivered
	OnCallEstablished
	OnCallHeld
	OnCallRetrieved
	OnCallCleared
	OnCallConnectionCleared
	OnCallOriginated
	OnCallFailed
	OnCallTransferConferenceInitiated
	OnCallTransferred
	OnCallConferenced
	OnCallDiverted
	OnTranslationRoute
	OnCallEnterpriseAgent
	OnCallPreEventAbort
	OnCallRequestFailed
	OnAgentPrecallEvent
	OnAgentPrecallAbortEvent
	OnCallServiceInitiatedEvent
	OnCallQueuedEvent
	OnCallDequeuedEvent
	OnCallReachedNetworkEvent
	OnControlFailureConf
	OnSnapshotCallConf
	OnServiceInitiated

	Chapter 7: SkillGroup Object
	Methods
	EnableSkillGroupStatistics/DisableSkillGroupStatistics
	Syntax
	Parameters
	Return Values
	Examples

	GetPropertyAttribute
	Syntax
	Example

	GetValue
	Syntax
	Example

	OnEvent
	Syntax

	SkillGroupEvents Interface
	OnSkillGroupStatisticsUpdated

	Chapter 8: Helper Classes
	Arg Class
	CreateInstance
	Syntax
	Parameters
	Return Values
	Examples

	SetValue
	Syntax
	Input Parameters
	Return Values
	Examples

	GetValueType
	Syntax
	Output Parameters
	Return Values
	Examples

	Clone
	Syntax
	Output Parameters
	Return Values
	Examples

	GetType
	Syntax
	Output Parameters
	Return Values
	Examples

	GetClassID
	Syntax
	Output Parameters
	Return Values
	Examples

	Arguments Class
	AddItem
	Syntax
	Parameters
	Returns

	Clear
	Syntax
	Parameters

	Clone
	Syntax
	Parameters
	Returns

	CreateInstance
	Syntax

	DumpArgs
	Syntax
	Parameters

	GetClassID
	Syntax
	Parameters
	Returns

	GetElement
	Syntax

	GetValue
	Syntax

	Initialize
	Syntax
	Parameters

	IsValid
	Syntax

	NumElements
	Syntax
	Parameters

	RemoveItem
	Syntax

	SetElement
	Syntax

	SetValue
	Syntax

	CILRefArg Class
	SetValue
	Syntax
	Input Parameters
	Return Values
	Examples

	GetValue
	Syntax
	Parameters
	Return Values
	Examples

	GetClassID
	Syntax
	Return Values
	Examples

	GetType

	CCtiOsException Class
	CCtiosException
	Syntax
	Input Parameters
	Return Values
	Example

	GetCode
	Syntax
	Parameters
	Return Values
	Example

	GetStatus
	Syntax
	Parameters
	Return Values
	Example

	GetString
	Syntax
	Parameters
	Return Values
	Example

	What
	Syntax
	Parameters
	Return Values
	Example

	CCtiOsObject Class
	DumpProperties
	Syntax
	Parameters
	Return Values
	Example

	GetPropertyName
	Input Parameters
	Return Values
	Example

	GetNumProperties
	Syntax
	Parameters
	Return Values
	Example

	GetValueType
	Syntax
	Input Parameters
	Return Values
	Example

	GetElement
	Syntax
	Input Parameters
	Return Values

	GetPropertyAttribute
	Input Parameters
	Return Values

	SetValue
	Syntax
	Input Parameters
	Return Values
	Example

	IsValid
	Syntax
	Input Parameters
	Return Values
	Example

	Appendix A: CTI OS CIL Messages
	CIL CTI Server Message Equivalents
	Call Requests
	Agent Requests
	Skill Group Requests
	Supervisor Requests
	Generic CTI Server Confirmation Events
	Call Confirmation Events
	Agent Confirmation Events
	Supervisor Confirmation Events
	Error and Failure Events
	Call Events
	Call Recording Events
	Agent Events
	Skill Group Events
	Supervisor Events

	CIL CTI OS-specific messages
	Session Requests
	Single Step Transfer/Conference Requests
	Supervisor Requests
	Statistics Requests
	Timer Service Requests
	Team Maintenance Requests
	CTI OS Specific Confirmation Events
	CTI OS Specific Events
	Session Events
	Button Enablement Events
	Supervisor Events
	Filter Events
	Name Lookup Service Requests
	Name Lookup Service Event
	Timeout Events
	Supervised Calls
	Supervised Agent Events
	Team Maintenance Events

	Appendix B: CTI OS Keywords
	Index
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T

