CalibrationToolkit Manual

HMW-Alexander
2014-11-19

1 Introduction

CalibrationToolkit is a pre-compiled static library of Qt-widget for manually calibrating camera and Velodyne
with chessboard (Fig.1). It can not only calibrate camera itself (intrinsic parameters), but also calibrate cam-
era to Velodyne (extrinsic parameters). The calibration process could be either on-line (data from sensors)
or off-line (data from records). CalibrationToolkit is programmed in object-oriented style, therefore, its func-
tionality could be extended conveniently. CalibrationToolkit provides a pseudo-ROS implementation with the
help of "ROSInterface”® library and this can work in ROS environment properly. Meanwhile, you could also
reimplement it as a real ROS implementation.

Figure 1: Calibration of camera and Velodyne with chessboard

1.1 Requirement
1.1.1 OS

e Linux

1.1.2 Dependency
e Qt-5.x
e OpenCV
e ROS-indigo
e PCL (included in ROS)
e Eigen-3.x
e nlopt
e ROSInterface °
e GLViewer °

Ohttps://github.com/RobotSDK/SDK.git

https://github.com/RobotSDK/SDK.git

1.2 Installation

e Download source code!.

e Open Terminal and change directory to the source code.
e gmake CalibrationToolkit.pro "CONFIG+=release"
e make & make install

e gmake CalibrationToolkit.pro "CONFIG+=debug"

e make & make install

After successful installation, you can find its header file located in:

$ (HOME) /SDK/CalibrationToolkit/include

and its library located in:

$ (HOME) /SDK/CalibrationToolkit/1lib

The installation of ROSInterface and GLViewer is same with CalirbationToolkit and you only need to change
the .pro file’s name from CalibrationToolkit to ROSInterface or GLViewer.

1.3 Structure

CalibrationToolkit is programmed in object-oriented style and its structure is shown as Fig.2. Therefore, the
extension of CalibrationToolkit is very convenient. You could extend it as multi-LIDAR calibration toolkit from
the CalibrationToolkitBase class, or as Camera calibration toolkit using other patterns from the CalibrateCam-
eraBase class, or as Calibration of camera and 2D LIDAR using chessboard from the CalibrateCameraChess-
boardBase class.

| Qwidget ‘

| CalibrationTaolkitBase ‘

| CalibrateCameraBase ‘

| CalibrateCameraChesshoardBase ‘

CalibrateCameraChesshoardROS | ‘ CalibrateCameraelodyneChessboardBase ‘

‘ CalibrateCameravelodyneChesshoardROS ‘

Figure 2: Structure of CalibrationToolkit

The CalibrateCameraChessboardBase class contains all chessboard-based calibration elements for camera
intrinsic calibration except that how to grab camera data, and the CalibrateCameraChessboardROS grabs data
from ROS by implementing the virtual functions bool refreshImage() and bool grabCalibData() with the help of
ROSInterface. Therefore, you could reimplement the Calibrate CameraChessboardBase as real ROS-application
or custom applications using other data sources.

Thttps://github.com/CPFL/Autoware/tree/master/ros/src/sensing/calibration/packages/camera_lidar3d/
CalibrationToolkit

https://github.com/CPFL/Autoware/tree/master/ros/src/sensing/calibration/packages/camera_lidar3d/CalibrationToolkit
https://github.com/CPFL/Autoware/tree/master/ros/src/sensing/calibration/packages/camera_lidar3d/CalibrationToolkit

The CalibrateCameraVelodyneChessboardBase class is derived from the CalibrateCameraChessboardBase
class, and it extends the camera extrinsic calibration in Velodyne’s coordinate. Similar to the CalibrateCamer-
aChessboardBase class, the Calibrate CameraVelodyneChessboardBase class contains all chessboard-basaed cali-
bration elements for calibrating camera to Velodyne, except that how to grab camera and Velodyne data, and
similar to the CalibrateCameraChessboardROS class, the CalibrateCameraVelodyneChessboardROS class grabs
data from ROS by implementing the virtual functions bool refreshimage(), bool refreshVelodyne() and bool
grabCalibData(). Therefore, you could also reimplement the CalibrateCameraVelodyneChessboardROS class for
different applications.

2 How to use CalibrationToolkit

2.1 GUI application development

CalibrationToolkit is derived from QWidget?, therefore, it can play a role as widget in Qt-based GUI application.
The CalibrationToolkit provides a set of signal-slot functions® (see Tab.1) to call calibration functions and get
status of calibration process.

Table 1: Slot and Signal Functions of CalibrationToolkit
Class SLOT & SIGNAL Function

CalibrationToolkitBase | grabCalibDataSlot() Grab calibration data
calibDataGrabbedSignal()
calibDataGrabbedErrorSignal()
calibrateSensorSlot () Calibrate sensor
sensorCalibratedSignal()
sensorCalibratedErrorSignal()
loadCalibResultSlot() Load calibration result
calibResultLoadedSignal()
calibResultLoadedErrorSignal()
saveCalibResultSlot() Save calibration result
calibResultSavedSignal()
calibResultSavedErrorSignal()
CalibrateCameraBase refreshImageSlot() [protected] Refresh image viewer
imageRefreshedSignal()
imageRefreshedErrorSignal()
refreshParametersSlot () Refresh parameters from GUI

CalibrateCamera- refreshVelodyneSlot() [protected] | Refresh Velodyne viewer
VelodyneChessboardBase | velodyneRefreshedSignal()
velodyneRefreshedErrorSignal()
extractionResultSlot(...) Get extraction result
projectVelodynePointsSlot () Project extractions onto images

To create a simple Qt-based GUI application for calibration (4 steps):
1. You can simply create an application using QtCreator* as shown in Fig.3.

2. Add the dependency in .pro file of the project as follow:

unixq{

INCLUDEPATH += $$(HOME)/SDK/CalibrationToolkit/include

INCLUDEPATH += $$(HOME)/SDK/ROSInterface/include

INCLUDEPATH += $$(HOME)/SDK/GLViewer/include

CONFIG(debug, debug|release)q{
LIBS += -L$$(HOME)/SDK/CalibrationToolkit/lib -1CalibrationToolkit_Debug
LIBS += -L$$(HOME)/SDK/ROSInterface/lib/ -1R0OSInterface_Debug
LIBS += -L$$(HOME)/SDK/GLViewer/1ib -1GLViewer_Debug

}elsed{

2https://qt-project.org/doc/qt-5/quidget . html#details
Shttp://qt-project.org/doc/qt-5/signalsandslots.html
4http://qt-project.org/wiki/Category:Tools: : QtCreator

https://qt-project.org/doc/qt-5/qwidget.html#details
http://qt-project.org/doc/qt-5/signalsandslots.html
http://qt-project.org/wiki/Category:Tools::QtCreator

]]]
Load Save Refresh IHWW”WHWWW’ Grab Calibrate Project
New Project

Choose a template: Desktop Templates|v

Creates a Qt application for the
Libraries B at Console Application based main window.
Other Project < Qt Quick UI
Non-Qt Project Preselects a desktop Qt for building
Import Project the application if available.

Files and Classes L} L
Supported Platforms: Desktop

Cancel | | Choose
] "]

Figure 3: Left: Create Qt Widgets Application. Right: Create a GUI with 6 buttons and a tab area.

LIBS += -L$$(HOME)/SDK/CalibrationToolkit/1ib -1CalibrationToolkit_Release
LIBS += -L$$(HOME)/SDK/ROSInterface/1ib/ -1R0SInterface_Release
LIBS += -L$$(HOME)/SDK/GLViewer/1lib -1GLViewer_Release

INCLUDEPATH += /usr/include

LIBS += -L/usr/1ib/x86_64-1linux-gnu -lopencv_core

LIBS += -L/usr/1ib/x86_64-1linux-gnu -lopencv_highgui
LIBS += -L/usr/1ib/x86_64-linux-gnu -lopencv_features2d
LIBS += -L/usr/1ib/x86_64-linux-gnu -lopencv_objdetect
LIBS += -L/usr/1ib/x86_64-linux-gnu -lopencv_contrib
LIBS += -L/usr/1ib/x86_64-1linux-gnu -lopencv_calib3d
LIBS += -L/usr/1ib/x86_64-1linux-gnu -lopencv_imgproc

INCLUDEPATH += /usr/include/pcl-1.7
INCLUDEPATH += /usr/include/eigen3
LIBS += -L/usr/1lib -1lpcl_common
LIBS += -L/usr/1lib -1lpcl_filters
LIBS += -L/usr/lib -lpcl_search
LIBS += -L/usr/lib -lpcl_kdtree
LIBS += -L/usr/lib -lpcl_features

INCLUDEPATH += /opt/ros/indigo/include

LIBS += -L/opt/ros/indigo/1ib -lroscpp

LIBS += -L/opt/ros/indigo/lib -lrosconsole

LIBS += -L/opt/ros/indigo/lib -lroscpp_serialization

LIBS += -L/opt/ros/indigo/lib -lrostime

LIBS += -L/opt/ros/indigo/1ib -lxmlrpcpp

LIBS += -L/opt/ros/indigo/1ib -lcpp_common

LIBS += -L/opt/ros/indigo/1ib -lrosconsole_logé4cxx

LIBS += -L/opt/ros/indigo/lib -lrosconsole_backend_interface
LIBS += -L/usr/1ib/x86_64-linux-gnu -lboost_system

LIBS += -L/usr/1ib/x86_64-1linux-gnu -lnlopt

LIBS += -L/usr/1ib/i386-1linux-gnu -1GLU

3. Add #include <calibrationtoolkit.h> to header file

4. Add following code to the .cpp file, you could add this to the construction function of the GUI class

generated by QtCreator.

CalibrateCameraVelodyneChessboardROS * calibration=
new CalibrateCameraVelodyneChessboardROS("/camera/image_raw",1000,10
,"/velodyne_points",1000,10,30,cv::Size2f(0.108,0.108) ,cv::5ize2i(8,6));

ui->tabWidget->addTab(calibration,"Calibration");

connect (ui->grab,SIGNAL(clicked()),calibration,SLOT (grabCalibDataSlot()));

connect (ui->calibrate,SIGNAL(clicked()),calibration,SLOT(calibrateSensorSlot()));
connect (ui->load,SIGNAL(clicked()),calibration,SLOT(loadCalibResultSlot()));

connect (ui->save,SIGNAL(clicked()),calibration,SLOT (saveCalibResultSlot()));

connect (ui->project,SIGNAL(clicked()),calibration,SLOT (projectVelodynePointsSlot()));
connect (ui->refresh,SIGNAL(clicked()),calibration,SLOT (refreshParametersSlot()));

Then, after compiling, the calibration toolkit for calibrating camera and velodyne is ready for use as shown
in Fig.4 while ROS is running. The sample code could be found at https://github.com/RobotSDK/APP/tree/
master/QtAPP/CalibrationToolkit.

Mat | CameraMiat | DistCoeft 02:53:10:239 02:53:10:320

1-0994122 00185544 0106659 00132757
200231318 0998856 00418404 0.105899

30105761 00440617 -0.993415 4.95453

7 629708 |01ese32 L3l

s 63288 025733 |1
5 635915 0226414 140567 39

10 634326 0147886 13257 212

12 634001 0.4509 139952 52

Figure 4: GUI Application of CalibrationToolkit

2.2 Code Explanation

Here, we briefly explain the code in step 4 shown in last subsection:

e Create CalibrationToolkit widget:

CalibrateCameraVelodyneChessboardROS * calibration=
new CalibrateCameraVelodyneChessboardROS("/camera/image_raw",1000,10
,"/velodyne_points",1000,10,30,cv::Size2f(0.108,0.108) ,cv::5ize2i(8,6));

Construction function:
CalibrateCameraVelodyneChessboardROS (
QString cameraTopic, u_int32_t cameraQueueSize, int cameralnterval

https://github.com/RobotSDK/APP/tree/master/QtAPP/CalibrationToolkit
https://github.com/RobotSDK/APP/tree/master/QtAPP/CalibrationToolkit

, QString velodyneTopic, u_int32_t velodyneQueueSize, int velodynelnterval
, float maxRange, cv::Size2f patternSize, cv::Size2i patternNum
, QWidget *parent=0)

Parameters Explanation:

— cameraTopic : Topic name of camera data.

— cameraQueueSize : Queue size for camera data.

— cameralnterval : Time interval of camera data query.

— velodyneTopi : Topic name of Velodyne data.

— velodyneQueueSize : Queue size for Velodyne data.

— velodynelnterval : Time interval of Velodyne data query (ms).
— maxRange : Range filter for Velodyne data (m).

— patternSize : Geometric size of one grid in chessboard (m).

— patternNum : Number of inner cornor in chessboard.

— parent : Parent widget.

You could also use CalibrateCameraChessboardROS for only calibrating intrinsic parameters without
using Velodyne:

CalibrateCameraChessboardROS * calibration=
new CalibrateCameraChessboardR0OS("/camera/image_raw",1000,10
,cv::81ze2f(0.108,0.108) ,cv::8ize2i(8,6));

Construction function:
CalibrateCameraChessboardROS (
QString topic, u_int32_t queueSize, int interval
, cv::5ize2f patternSize, cv::Size2i patternNum
, QWidget *parent=0)

e Attach CalibrationToolkit widget to the tab area created in Fig.3 right:

ui->tabWidget->addTab(calibration,"Calibration");

This is Qt TabWidget’s function to add a Tab to show widget®. You could attach the CalibrationToolkit
widget anywhere you want in practice.

e Connect clicked() signal of buttons created in Fig.3 to the CalibrationToolkit’s slot listed in Tab.1:

connect (ui->grab,SIGNAL(clicked()),calibration,SLOT (grabCalibDataSlot())) ;

connect (ui->calibrate,SIGNAL(clicked()),calibration,SLOT(calibrateSensorSlot()));
connect (ui->load,SIGNAL(clicked()),calibration,SLOT(loadCalibResultSlot()));

connect (ui->save,SIGNAL(clicked()) ,calibration,SLOT (saveCalibResultSlot()));

connect (ui->project,SIGNAL(clicked()),calibration,SLOT (projectVelodynePointsSlot()));
connect (ui->refresh,SIGNAL (clicked()),calibration,SLOT (refreshParametersSlot()));

You could connect any signals to these slot functions. For example, you could use the timeout() signal of
QTimerS for camera calibration with all possible frames.

You could also connect CalibrationToolkit’s signals to custom slots for status check, because one Calibra-
tionToolkit’s slot corresponds to two signals, one is for success and another on is for failure.

Another important thing is that the public slot function could be called directly instead of using signal-slot
mechanism.

Shttp://qt-project.org/doc/qt-5/qtabwidget .html#details
Shttp://qt-project.org/doc/qt-5/qtimer.html#details

http://qt-project.org/doc/qt-5/qtabwidget.html#details
http://qt-project.org/doc/qt-5/qtimer.html#details

2.3 Calibration Process

The calibration process for camera and velodyne is consist of three main steps:
e Grab calibration data.
e Extract points on chessboard. (only requred by extrinsic calibration)

e Run optimization for calibration.

2.3.1 Basic operations

Before introducing the calibration process, we need to show how to use the GLViewer, which is for visualizing
Velodyne’s point-cloud.

e Translation : 1, |, <, —, PgUp, PgDn

e Rotation : a, d, w, s, q, e

e Projection mode switch : 1 for perspective projection, 2 for orthogonal projection
e In orthogonal projection mode : - or , for small viewport, 4+ or . for large viewport
e Point size : o for small, p for large

e Line width : k for narrow, 1 for broad

e Change background color : b for color selection

e Change light color : n for color selection

e Clear screen : Delete

2.3.2 Grab calibration data

e Move chessboard around with different poses

— Make sure that the camera and velodyne can both detect the whole chessboard.

— For accurate camera intrinsic calibration, the grabbed chessboards should spread all over the image
as well as in different ranges.

— For accurate camera extrinsic calibration, the rank of the matrix formed by normals of grabbed
chessboards should be 3.

e Trigger grabCalibDataSlot() to grab calibration data.

— If the chessboard can not be seen entirely, the calibDataGrabbed ErrorSignal() will be emitted, which
means current frame is useless.

— For the calibration of camera and Velodyne, if there is no Velodyne data, the calibDataGrabbedEr-
rorSignal() will be emitted.

The grabbed data will be shown in QTabWidget® shown in Fig.4 lower two part, one is image and another
one is point-cloud, and each tab contains one frame of data. For the grabbed camera data, the detected inner
corners of chessboard are detected” and drawn® by OpenCV.

After this step, you can calibrate the camera’s intrinsic parameters and calculate the pose of each grabbed
chessboard in camera coordinate. The result will be shown at the left part of Fig.4 as QTableWidget?.

"http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#
findchessboardcorners

8http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#
drawchessboardcorners

9http://qt-project.org/doc/qt-5/qtablewidget .html#details

http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#findchessboardcorners
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#findchessboardcorners
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#drawchessboardcorners
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#drawchessboardcorners
http://qt-project.org/doc/qt-5/qtablewidget.html#details

2.3.3 Extract points on chessboard

The extraction of 3D points on chessboard from Velodyne data is done manually. A PlaneExtractor wid-
get derived from GLViewer is developed for manual extraction. After grabbing a frame of Velodyne data, A
PlaneFExtractor widget will be created to show the grabbed point-cloud. When the mouse moves in the Plane-
Eztractor, a normal indicator (a circle represents plane and a line represents normal in green shown in Fig.4)
is shown for you to extract points on chessboard:

e Click left mouse button to extract the points within the green circle.

e Click right mouse button to cancle the extraction.

The extraction result, points and normal, will be shown at the left part of Fig.4 as QTableWidget®.

2.3.4 Run optimization for calibration
The optimization for calibration is consist of two consecutive steps:
e Camera intrinsic calibration.
e Camera extrinsic calibration, if there exists extraction of points on chessboard.

For camera intrinsic calibration, OpenCV provides a PnP-based method!? and it can also calculate the pose
of each grabbed chessboard. The calibration result contains camera matrix and disortion coefficients.

For camera extrinsic calibration, the principle is to align corresponding planes of grabbed chessboards from
image and point-cloud. The optimization was done by using nlopt library and the objective function is explained
in subsection ”Calibration Theory”. The calibration result is the camera’s position and orientation relative to
the velodyne in the form of translation matrix.

2.3.5 Recalibration

The CalibrationToolkit provides a simple method to check the calibration result. This method will project all
extracted points to the image for result evaluation. If the calibration result is not good, you could continue
grabbing data and try to calibrate again till the calibration result is acceptable. You could also disable some
data for extrinsic calibration via deleting the extracted points from Velodyne by just clicking the right mouse
button.

2.4 Calibration Theory

In this section, we only discuss the camera’s extrinsic calibration. There are two ways to calculate the extrinsic
parameters, euler angles and translations along XYZ axes:

e Simultaneously optimize these six parameters.
e (Calculate rotation matrix first, and then optimize translations.

After intrinsic calibration, we could get the position and orientation of each grabbed chessboard in camera
coordinate. Meanwhile, we have extracted the points on each grabbed chessboard from Velodyne point-cloud.
Therefore, our optimization objective is to align these planes by tuning the camera’s extrinsic parameters.

(1) For the first way, the objective function is shown as Eq.1. This optimization is relatively slow and may
converge to local minimum without global optimization.

(a,ﬁm,x,y&)* = arg min ZZ ((R(aa 57’7) - P; + T(.T7y, Z) - qi,j)/ . (R(a7577> : ni))2 (1)

(eBysmoy,z) 5 5
Where,
e (a,B,7) : euler angles
e (z,y,%) : translations
e R(a,p,v) : rotation matrix
e T(x,y,z) : translation vector

e p; : ith chessboard’s position in camera coordinate

Onttp://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#calibratecamera

http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#calibratecamera

e 1 : ith chessboard’s normal vector in camera coordinate
® q; ; : ith chessboard’s jth point in Velodyne coordinate

(2) For the second way, the calculation of rotation matrix is shown as Eq.2.

RN = M
R*-(N-N') = M-N (2)
R* = (M-N')-(N-N')=' (if rank(N -N') = 3)

Where,
e R : rotation matrix
e N : matrix formed by stacking all normals of grabbed chessboards in camera coordinate.
e M : matrix formed by stacking all normals of grabbed chessbaords in Velodyne coordinate.

Then the objective function for translations optimization is shown as Eq.3. This optimization is faster and
converges to global minimum more easily than Eq.1.

(a?,y, Z)* = argminz Z ((R* “pi + T(ma Y, Z) - (li,j)/ : (R* : ni>)2 (3>

3 How to be a real ROS implementation

Currently, the CalibrationToolkit has realized a pseudo-ROS implementation, which could properly work in ROS
environment. However, after all, it is not a real ROS implementation, because the ROSInterface only provides
a communication interface to subscribe message from ROS topic and to publish topic to ROS. Therefore, here
are some suggestions for real ROS implementation.

e [think you could rewrite entire project in ROS way. Because the neccessary elements have been pro-
grammed in CalibrationToolkit and organized in an intuitive object-oriented way.

e Another way is to delete the pseudo-ROS implementation and then just reimplement the CalibrateCam-
eraChessboardBase class and the CalibrateCameraVelodyneChessboardBase by implementing the virtual
functions listed below:

— bool refreshImage() : receive camera data and refresh the image viewer
— bool refreshVelodyne() : receive velodyne data and refresh the point-cloud viewer

— bool grabCalibData() : grab current camera (and velodyne) data for calibration
and remember to connect the data arrival signal to refreshImageSlot() and refresh VelodyneSlot()

e For the GLViewer and PlaneExtractor developed by the author, if you do not want to use them, you could
also replace them at the right position:

— GLViewer : CalibrateCameraVelodyne ChessboardBase’s construction function; CalibrateCameraV-
elodyneChessboardROS’s refresh Velodyne() and grabCalibData()

— PlaneEztractor : CalibrateCameraVelodyneChessboardBase’s loadCalibResult(...) and saveCalibRe-
sult(...); CalibrateCameraVelodyneChessboardROS’s grabCalibData()

	Introduction
	Requirement
	OS
	Dependency

	Installation
	Structure

	How to use CalibrationToolkit
	GUI application development
	Code Explanation
	Calibration Process
	Basic operations
	Grab calibration data
	Extract points on chessboard
	Run optimization for calibration
	Recalibration

	Calibration Theory

	How to be a real ROS implementation

