Quartiles

Quartiles are merely particular percentiles that divide the data into quarters, namely:
$Q_{1}=1$ st quartile $=25$ th percentile $\left(P_{25}\right)$
$Q_{2}=2$ nd quartile $=50$ th percentile $=$ median $\left(\mathrm{P}_{50}\right)$
$Q_{3}=$ 3rd quartile $=75$ th percentile $\left(P_{75}\right)$

Quartile Example

Using the applicant (aptitude) data, the first quartile is:

$$
n \cdot \frac{P}{100}=(50)(.25)=12.5
$$

Rounded up $Q_{1}=13$ th ordered value $=46$

Similarly the third quartile is:
$n \cdot \frac{P}{100}=(50)(.75)=37.538$ and $Q_{3}=75$

Interquartile Range

The interquartile range (IQR) is essentially the middle 50% of the data set

$$
\operatorname{IQR}=Q_{3}-Q_{1}
$$

Using the applicant data, the IQR is:

$$
\text { IQR }=75-46=29
$$

Z-Scores

\square Z-score determines the relative position of any particular data value x and is based on the mean and standard deviation of the data set

- The Z-score is expresses the number of standard deviations the value x is from the mean
- A negative Z-score implies that x is to the left of the mean and a positive Z-score implies that x is to the right of the mean

Z Score Equation

$$
z=\frac{x-\bar{x}}{s}
$$

For a score of 83 from the aptitude data set,

$$
z=\frac{83-60.66}{18.61}=1.22
$$

For a score of 35 from the aptitude data set,

$$
z=\frac{35-60.66}{18.61}=-1.36
$$

Standardizing Sample Data

The process of subtracting the mean and dividing by the standard deviation is referred to as standardizing the sample data.

The corresponding z-score is the standardized score.

Measures of Shape

- Skewness

- Skewness measures the tendency of a distribution to stretch out in a particular direction

\square Kurtosis

- Kurtosis measures the peakedness of the distribution

Skewness

- In a symmetrical distribution the mean, median, and mode would all be the same value and $\mathrm{Sk}=0$
- A positive Sk number implies a shape which is skewed right and the
mode < median < mean
In a data set with a negative Sk value the mean < median < mode

Skewness Calculation

Pearsonian coefficient of skewness

$$
S_{k}=\frac{3(\bar{x}-M d)}{S}
$$

Values of Sk will always fall between -3 and 3
Histogram of Symmetric Data

Kurtosis

- Kurtosis is a measure of the peakedness of a distribution
- Large values occur when there is a high frequency of data near the mean and in the tails
- The calculation is cumbersome and the measure is used infrequently

Chebyshev's Inequality

1. At least 75% of the data values are between $\bar{x}-2$ s and $\bar{x}+2 \mathrm{~s}$, or
At least 75% of the data values have a z-score value between -2 and 2
2. At least 89% of the data values are between $\bar{x}-3 s$ and $\bar{x}+3 \mathrm{~s}$, or
At least 75% of the data values have a z-score value between -3 and 3
3. In general, at least $\left(1-1 / k^{2}\right) \times 100 \%$ of the data values lie between $\bar{x}-k s$ and $\bar{x}+k s$ for any $k>1$

Empirical Rule

Under the assumption of a bell shaped population:

1. Approximately 68% of the data values lie between $\overline{x-s}$ and $x+s$ (have z-scores between -1 and 1)
2. Approximately 95% of the data values lie between $\bar{x}-2$ s and $x \mp 2 s$ (have z-scores between -2 and 2)
3. Approximately 99.7% of the data values lie between $\bar{x}-3$ s and $x+3 s$ (have z-scores between -3 and 3)

A Bell-Shaped (Normal)
Population

Figure 3.10

Chebyshev's Versus Empirical

Allied Manufacturing Example
Is the Empirical Rule applicable to this data?
Probably yes.
Histogram is approximately bell shaped.

$\bar{x}-2 s=10.275$ and $\bar{x}+2 s=10.3284$
96 of the 100 data values fall between these limits closely approximating the 95% called for by the Empirical Rule

