Chapter 2: Measurement, Problem Solving, and the Mole Concept

2.1: The Metric Mix-up: A \$125 Million Unit Error

1998 - Mars Climate Orbiter

- Onboard Computers programmed in metric
- Ground engineers working in English units
- Corrections to trajectory 4.45 times too small
- Orbiter burned up in Mars' atmosphere

- Scientists have agreed on a set of international standard units for comparing all our measurements called the SI units
\checkmark Système International = International System

Quantity	Unit	Symbol
length	meter	m
mass	kilogram	kg
time	second	s
temperature	kelvin	K

Temperature

- Measure of the average amount of kinetic energy caused by motion of the particles
\checkmark higher temperature = larger average kinetic energy
- Heat flows from the matter that has
\checkmark heat flows from hot object to cold
\checkmark heat is exchanged through molecular collisions between the two materials

$$
\begin{aligned}
{ }^{\circ} \mathrm{C} & =\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273.15
\end{aligned}
$$

Temperature Scales

- Fahrenheit scale, ${ }^{\circ} \mathrm{F}$
\checkmark used in the U.S.
- Celsius scale, ${ }^{\circ} \mathrm{C}$
\checkmark used in all other countries
- Kelvin scale, K
\checkmark absolute scale
$>$ no negative numbers

\qquad
\qquad
$\checkmark 0 \mathrm{~K}=$ absolute zero

Common Prefix Multipliers in the SI System

Prefix	Symbol	Decimal Equivalent	Power of 10
mega-	M	$1,000,000$	Base $\times 10^{6}$
kilo-	k	1,000	Base $\times 10^{3}$
deci-	d	0.1	Base $\times 10^{-1}$
centi-	c	0.01	Base $\times 10^{-2}$
milli-	m	0.001	Base $\times 10^{-3}$
micro-	μ or mc	0.000001	Base $\times 10^{-6}$
nano-	n	0.000000001	Base $\times 10^{-9}$
pico	p	0.000000000001	Base $\times 10^{-12}$

Volume

- Measure of the amount of space occupied
- SI unit = cubic meter $\left(\mathrm{m}^{3}\right)$
- Commonly measure solid volume in cubic centimeters (cm^{3})
- Commonly measure liquid or gas volume in milliliters (mL)
$\checkmark 1 \mathrm{~L}$ is slightly larger than 1 quart $\checkmark 1 \mathrm{~L}=1 \mathrm{dm}^{3}=1000 \mathrm{~mL}=10^{3} \mathrm{~mL}$ $\checkmark 1 \mathrm{~mL}=0.001 \mathrm{~L}=10^{-3} \mathrm{~L}$
$\checkmark 1 \mathrm{~mL}=1 \mathrm{~cm}{ }^{3}$

Measurement and Significant Figures

What Is a Measurement?

- Quantitative observation
- Comparison to an agreed standard
- Every measurement has a number and a unit
- The unit tells you what standard you are comparing your object to
- The number tells you
- what multiple of the standard the object measures
- the uncertainty in the measurement

Reliability of Measurements: Precision and Accuracy

- Uncertainty comes from limitations of the instruments used for comparison, the experimental design, the experimenter, and nature's random behavior
- To understand how reliable a measurement is, we need to understand the limitations of the measurement Accuracy
- Precision is an indication of how close repeated measurements are to each other
\checkmark how reproducible a measurement is

Precision and Accuracy

- Measurements are said to be
- precise if they are consistent with one another;
- accurate only if they are close to the actual value.
- Scientific measurements are reported so that \qquad

Consider the following reported value of 5.213:

- The first three digits are certain; the last digit is estimated.

Estimation in Weighing

(a)

Markings every 1 g Estimated reading 1.2 g

(b)

Markings every 0.1 g Estimated reading 1.27 g

(b)

Precision and Accuracy

Example 2.1
Reporting the Correct Number of Digits.

The graduated cylinder shown here has markings every 0.1 mL . Report the volume (which is read at the bottom of the meniscus) to the correct number of digits.

Precision and Accuracy: An Illustration Problem

Consider the results of three students who repeatedly weighed a lead block known to have a true mass of 10.00 g .

	Student \boldsymbol{A}	Student B	Student C
Trial 1	10.49 g	9.78 g	10.03 g
Trial 2	9.79 g	9.82 g	9.99 g
Trial 3	9.92 g	9.75 g	10.03 g
Trial 4	10.31 g	9.80 g	9.98 g
Average	$\mathbf{1 0 . 1 3 ~ \mathbf { ~ g }}$	$\mathbf{9 . 7 9} \mathbf{~ g}$	$\mathbf{1 0 . 0 1 ~ \mathbf { ~ g }}$

Precision and Accuracy: An Illustration Problem

Consider the results of three students who repeatedlv

© 2015 Pearson Education, Inc.
From the above data, what can you conclude about each of the students' recorded data?

Precision and Accuracy: An Illustration Problem

Lead block known to have a true mass of 10.00 g

- Student A's results are both \qquad (not close to the true value) and \qquad (not consistent with one another).
- Random error
\qquad
\qquad
- Student B's results are \qquad (close to one another in value) but
- Systematic error
- Student C's results display little systematic error or random error-they are both \qquad and \qquad .

Significant Figures

- Significant figures deal with writing numbers to reflect precision of their \qquad .
- The precision of a measurement depends on the instrument used to make the measurement.
- The preservation of this precision during calculations can be accomplished by using significant figures.
- The greater the number of significant figures, the greater the certainty of the measurement.

Significant Figures

- The non-place-holding digits in a reported measurement are called significant figures
\checkmark some zeros in a written number are only there to help you locate the decimal point

12.3 cm
has 3 sig. figs. and its range is
12.2 to 12.4 cm

12.30 cm
has 4 sig. figs.
and its range is
12.29 to 12.31 cm
\checkmark the more significant figures there are in a measurement, the smaller the range of values is

Rules of Significant Figures

1. Nonzero digits are always significant.

96	2 significant digits
61.4	3 significant digits

2. Zeros that are "sandwiched" between nonzero digits are significant.
5.023 significant digits $6004 \quad 4$ significant digits
3. Zeros used as placeholders are NOT significant.

7000
0.00783
4. One or more final zeros used after the decimal point are significant.
4.7200
0.250
3 significant digits

Using Significant Figures in Mathematical Operations:

Multiplication and Division:

The answer has the same number of significant figures as the least precise factor in the calculations.
3.05

3 sig figs \quad\begin{tabular}{l}
1.3

2 sig figs

\quad

$3.965=$

answer in calc

$\quad 4.0 \quad$

correct ans

w/ 2 sig figs
\end{tabular}

$\frac{9.247 \mathrm{~g}(4 \text { sig figs })}{13.5 \mathrm{~cm}^{3}(3 \text { sig figs })} \quad=\quad \begin{aligned} & .684962= \\ & \text { (ans in calc) })\end{aligned} \quad \frac{0.685 \mathrm{~g} \text { correct ans }}{\mathrm{cm}^{3}} \mathrm{w} / 3$ sig figs

Review

How many significant figures are in each of the following?
0.04450 m
5.0003 km
$10 \mathrm{dm}=1 \mathrm{~m}$
$1.000 \times 10^{5} \mathrm{~s}$
0.00002 mm

10,000 m

Exact Numbers

- Exact numbers have an unlimited number of significant figures.
- Exact counting of discrete objects
- Integral numbers that are part of an equation
- Defined quantities
- Some conversion factors are defined quantities, while others are not.

Intensive and Extensive Properties

Extensive properties are properties whose value depends on amount of the substance
\checkmark extensive properties cannot be used to identify what type of matter something is
>if you are given a large glass containing 100 g of a clear, colorless liquid and a small glass containing 25 g of a clear, colorless liquid, are both liquids the same stuff?

Intensive properties are properties whose value is independent of the amount of the substance
\checkmark intensive properties are often used to identify the type of matter
>samples with identical intensive properties are usually the same material

Density

Density = mass
 volume

Density $(d)=\underline{m}$

Density is a physical property: the ratio of mass to volume

- is an intensive property
- The physical properties of mass and volume that determine a substance's density are EXTENSIVE.
- Units of Density
- Solids $=\mathrm{g} / \mathrm{cm}^{3}$

Liquids $=\mathrm{g} / \mathrm{mL}$
Gases = g/L $\checkmark 1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$

- Volume of a solid can be determined by water displacement
- Density : solids > liquids >>> gases
\checkmark except ice is less dense than liquid water!

Density

Density $=\frac{\text { Mass }}{\text { Volume }}$

- For equal volumes, denser object has larger mass
- For equal masses, denser object has smaller volume
- Heating an object generally causes it to expand, therefore the density changes with temperature

TABLE 1.4 The Density of Some	
Common Substances at $20{ }^{\circ} \mathbf{C}$	
Substance	Density $\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$
Charcoal	0.57
(from oak)	
Ethanol	0.789
Ice	0.917 (at $0^{\circ} \mathrm{C}$)
Water	$1.00\left(\right.$ at $\left.4^{\circ} \mathrm{C}\right)$
Sugar (sucrose)	1.58
Table salt	2.16
(sodium chloride)	
Glass	2.6
Aluminum	2.70
Titanium	4.51
Iron	7.86
Copper	8.96
Lead	11.4
Mercury	13.55
Gold	19.3
Platinum	21.4

Calculations and Solving Chemical Problems

- Many problems in science involve using relationships to convert one unit of measurement to another
- unit conversion problems.
- Using units as a guide to solving problems is - dimensional analysis.
- Units should always be included in calculations; they are multiplied, divided, and canceled like any other algebraic quantity.

Dimensional Analysis

- A unit equation is a statement of two equivalent quantities, such as

$$
2.54 \mathrm{~cm}=1 \mathrm{in} .
$$

- A conversion factor is a unit equation written in fraction form with the units we are converting from on the bottom and the units we are converting to on the top.
$\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \quad$ or $\quad \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}$
- Conversion factors are relationships between two units \checkmark may be exact or measured

Problem Solving and Dimensional Analysis

- Arrange conversion factors so the starting unit cancels
\checkmark arrange conversion factors so the starting unit is on the bottom of the first conversion factor
- May string conversion factors
\checkmark so you do not need to know every relationship, as long as you can find something else the starting and desired units are related to

givern-annit $\times \frac{\text { desired unnit }}{\text { guivernainit }}=$ desired uniit

given-uinit: $\times \frac{\text { rellated-umit }}{\text { given-unit }} \times \frac{\text { desired unit }}{\text { related-unfit }}=$ desired unnit

Dimensional Analysis

Units Raised to a Power:

- When building conversion factors for units raised to a power, remember to raise both the number and the unit to the power. For example, to convert from square inches to square centimeters, we construct the conversion factor as follows:

$$
\begin{aligned}
2.54 \mathrm{~cm} & =1 \mathrm{in} \\
(2.54 \mathrm{~cm})^{2} & =(1 \mathrm{in})^{2} \\
(2.54)^{2} \mathrm{~cm}^{2} & =1^{2} \mathrm{in}^{2} \\
6.45 \mathrm{~cm}^{2} & =1 \mathrm{in}^{2} \\
\frac{6.45 \mathrm{~cm}^{2}}{1 \mathrm{in}^{2}} & =1
\end{aligned}
$$

Problem Solving: Dimensional Analysis

Example:
The engineers involved in the Mars Climate Orbiter disaster entered the trajectory corrections in units of pound-second. Which conversion factor should they have multiplied their values by to conver them to the correcdt uniots of newton.second?
(1 pound \cdot second $=4.45$
newton•second)
(a) $\frac{1 \text { pound } \cdot \text { second }}{4.45 \text { newton } \cdot \text { second }}$
(b) $\frac{4.45 \text { newton } \cdot \text { second }}{1 \text { pound } \cdot \text { second }}$
(c) $\frac{1 \text { newton } \cdot \text { second }}{4.45 \text { pound } \cdot \text { second }}$
(d) $\frac{4.45 \text { pound } \cdot \text { second }}{1 \text { newton } \cdot \text { second }}$

Problem-Solving Strategy

- Identify the starting point (the given information).
- Sort out information given in the problem.
- Identify the endpoint (what we must find).
- What is the problem asking you to solve for? What units does the answer need?
- Devise a way to use the given information to get the answer.
- Solve:
- Most chemistry problems you will solve in this course are unit conversion problems.
- Using units as a guide to solving problems (dimensional analysis)
- Units should always be included in calculations; they are multiplied, divided, and canceled like any other algebraic quantity.
- Check whether the numerical value and its units make sense.

Example 2.3: Convert 1.76 yards to centimeters.

Note: $1.094 \mathrm{yd}=1 \mathrm{~m}$ and $1 \mathrm{~cm}=10^{-2} \mathrm{~m}$

1. Sort into
a. Given
b. Find
2. Strategize: Devise a conceptual plan from the given units, using the appropriate conversion factors and ending with the desired units.
3. Solve: Begin with the given quantity. Multiply by the appropriate conversion factors, canceling units to arrive at the find quantity. Round to correct number of significant figures.
4. Check: Correct units? Does the answer make sense?
5. Sort
6. Strategize
7. Solve
8. Check

1. Sort

2. Strategize

3. Solve

4. Check

1. Sort

2. Strategize

3. Solve

4. Check

1. Sort
2. Strategize
3. Solve
4. Check

Moles

Counting Atoms by Moles

- If we can find the mass of a particular number of atoms, we can use this information to convert the mass of an element sample into the number of atoms in the sample
- A mole (mol) of anything contains 6.02214×10^{23} of those things.
- Examples:
- 1 mol of marbles corresponds to 6.02214×10^{23} marbles.
- 1 mol of sand grains corresponds

> Twenty-two copper pennies contain approximately 1 mol of copper atoms.

- This number is Avogadro's number.

Chemical Packages - The Mole

Mole $=$ number of particles equal to the number of atoms in 12 g of $\mathrm{C}-12$
$\checkmark 1$ atom of $\mathrm{C}-12$ weighs exactly 12 amu
$\checkmark 1$ mole of C -12 weighs exactly 12 g

- The number of particles in 1 mole is called Avogadro's Number $=6.0221421 \times 10^{23}$
$\checkmark 1$ mole of C atoms weighs 12.01 g and has 6.022×10^{23} atoms
ح the average mass of a C atom is 12.01 amu

Mole Conversions:

Atoms to Moles or Moles to Atoms

- Converting between number of moles and number of atoms is similar to converting between dozens of eggs and number of eggs.
- For atoms, you use the conversion factor 1 mol atoms $=6.022 \times 10^{23}$ atoms.
- The conversion factors take the following forms:

Practice - A silver ring contains 1.1×10^{22} silver atoms. How many moles of silver are in the ring?

Converting between Mass and Amount (Number of Moles)

- To count atoms by weighing them, we need one other conversion factor-the mass of 1 mol of atoms.
- The mass of 1 mol of atoms of an element is the molar mass.
- An element's molar mass in grams per mole is numerically equal to the element's atomic mass in atomic mass units (amu).
- The lighter the atom, the less a mole weighs
- The lighter the atom, the more atoms there are in 1 g

Mole and Mass Relationships

Substance
hydrogen
carbon
oxygen
sulfur
calcium
chlorine
copper
1 mole
sulfur
32.06 g

Weight of 1 atom

Pieces in
1 mole

Weight
of 1 mole
hydrogen $\quad 1.008 \mathrm{amu} \quad 6.022 \times 10^{23}$ atoms $\quad 1.008 \mathrm{~g}$

carbon	12.01 amu	6.022×10^{23} atoms	12.01 g
oxygen	16.00 amu	6.022×10^{23} atoms	16.00 g
sulfur	32.06 amu	6.022×10^{23} atoms	32.06 g
calcium	40.08 amu	6.022×10^{23} atoms	40.08 g
chlorine	35.45 amu	6.022×10^{23} atoms	35.45 g
copper	63.55 amu	6.022×10^{23} atoms	63.55 g

1 mole carbon
12.01 g

Converting between Mass and Moles

- The molar mass of any element is the conversion factor between the mass (in grams) of that element and the amount (in moles) of that element.
- Example:
12.01 g C atoms $=1 \mathrm{~mol} \mathrm{C}$ atoms or
12.01 g C atoms $/ 1 \mathrm{~mol}$ C atoms or

1 mol C atoms $/ 12.01 \mathrm{~g} \mathrm{C}$ atoms

FLOWCHART FOR MOLE CONVERSIONS

Mass to Moles to Number of Particles: The Conceptual Plan

For an element,

For a molecule (compound),

Number of Particles to Moles to Mass: The Conceptual Plan

For an element,

For a molecule (compound),

Practice - Calculate the moles of sulfur in 57.8 g of sulfur

Practice - How many aluminum atoms are in a can weighing 16.2 g ?

