
ChatScript Analytics Manual

© Bruce Wilcox, gowilcox@gmail.com Revision 1/17/2015 cs6.1 Your bot has
been written and debugged and released. You are getting log files from users.
What can you learn from them? That’s the job of the analytics tools.

Components of a log file

A typical log file will have one or more “Start” lines and some number of
“Respond” lines.

Start: user:test bot:rose ip: rand:3089 (~introductions) 0 ==> Hello, I'm Rose. When:Jan15'16-17:03:44 Version:6.02 Build0:Jan15'16-15:39:48
Build1:Jan15'16-16:23:39 0:Jan15'16-17:03:44 F:0 P:0 Why:~introductions.1.0.~control.7.0
Respond: user:test bot:rose ip: (~introductions) 1 where do you live ==> I'm not from around here. When:Jan15'16-17:03:46
Why:~no_task.0.0.~control.21.0=MAIN

A start line shows conversation initiation. After Start, the line contains the
user name, the bot name, the IP address (using a default configuration). Then
the current value of the random seed and what topic it ended in in parens and
the volley count. That completes the input side.

The ==> indicates the upcoming outputs side. You see the startup message it
issued (eg Hello, I’m Rose.). Then a datestamp of when this was issued, followed
by the CS engine version, the date stamps when build0, build1, and build2 were
created.

F: and P: are specially volley markers for reconstructing conversations. And
Why tells you the rule tags of the rule and possibly the reuse prior rule that
immediately generated the output. The respond log entry shows you similar
information, the only difference being that immediately before the ==> is the
actual input from the user.

The Abstract

Looking at your entire source script is tedious. It’s extensive and hard to read. If
you want to see what you’ve got in a reasonable overview, you need :abstract.
It can do a variety of tasks.

:abstract

This prints out a view of the entire topic system showing its structure (gambits,
rejoinders, responders) as well as conditions on gambits and normal text content
of everything, but omits actual code complexity. It is useful for seeing what will
be said in response to sample input (if you use the #! and #! x commands on
rules. E.g

1

Topic: ~introductions[]

t: ($old %input=0 %hour<12 $name) Good morning, .
t: ($old %input=0 %hour>11 %hour<18 $name) Good afternoon, .
t: ($old %input=0 %hour>18 $name) Good evening, .

t: Where do you live?
a: "Fukushima" => I've heard of _0. Were you born there?
a: "I live in Japan" => I've visited Japan.
a: "I live in California" => That's where I live!
a: "Libya" => I would have thought you lived in Japan, not _0 .
a: "Earth" => Yes, we all live on Earth.
a: "Mars" => I don't believe you.

t: What do you do for a living?

u: "Am I welcome here?" => Of course you are welcome.

s: "I'm back" =>
[Where did you go?]
[Where have you been?]
[I'm glad.]

s: "Knock" => Who's there?

While :abstract primary does topics, you can get it to do fact data as well. It
will attempt to call a function ˆabstract_facts(), so if you define that, you
can do whatever you want for abstracting facts.

:abstract ~topicname

Calling :abstract with a topic will limit it to doing just that topic.

:abstract 100 ~topicname

If you want to adjust output of yours that would be too long for something like a
phone screen, you can ask :abstract to show you all rules whose output would
likely exceed some limit (here 100). Again with a topic name restricts it to that
topic and without the name it does the entire system.

:abstract censor ~mywords

will note all output which contains any words in mywords. Of course regular
uses may also appear. The censor command looks for any words referred to by
the concept given.

:abstract pretty

will prettyprint topics.

:abstract canon

2

will prettyprint and rewrite patterns using the canonical form of words.

:abstract nocode

will not display rules that only have code output You can do all topics in a file
by naming the file name instead of the topicname. Don’t use the full path, just
the actual name of the file.

Views over User Logs - :trim

If you get a lot of user logs (say thousands), reading through them becomes
a chore. The logs have a bunch of excess information and are in a bunch of
different files. This is where :trim comes in, making it easier to see things.
:trim assumes all files in the LOGS directory are user logs and will process
them in some manner. It will normally put its output in TMP/tmp.txt.

Your first argument to trim can also be just the name of a user (whose log file
will be in USERS/log-xxx.txt) or if that doesn’t exist then it is the directory
to use, or you can use the name of a log file within the USERs directory (the
name should begin log- and not include the directory and need not include the
.txt suffix). E.g.,

:trim c:\FULLLOGS 6

a directory to read all files within

:trim log-bob 6

named log file with .txt defaulted

:trim bob 6

user with logfile log-bob.txt in USERS

:trim n

Trim will read every file and generate output depending on the integer code
given it. The codes are:

3

n description
0 puts the

what the
user said,
followed by
what the
chatbot said,
on single
lines,
removing all
the excess
junk.

1 similar to 0,
but puts
what the
chatbot said
first, and
what the
user said
after. This
is useful for
seeing all
the
responses
users have
made and
can be
aggregated
to figure out
what clever
rejoinders
you might
want.

4

n description
2 similar to 0

(user first),
but puts the
name of the
topic the
chatbot
ended in
before either.
You can see
the flow of
topics better
with this
view.

3 similar to 2
(topic
shown), but
puts what
the chatbot
said before
the user.

4 puts the
user and
chatbot on
separate
lines,
indenting
the chatbots
line. Easier
to read.

5 similar to 3,
but indents
the user
instead of
the chatbot.

5

n description
6 only lists the

users inputs.
This is good
for creating
a file that
can recreate
a user’s
experience,
if you want
to recreate it
for
debugging or
regression.

6

n description
7 display rule

responsible
for output.
Analogous
to :why, it
shows the
rule tag, the
sample input
comment if
there is one,
the rule type
and pattern,
the input
from the
user and the
output from
the chatbot.
If the rule
doing the
output was
the target of
a local
ˆreuse
(same
topic),
then the
data about
the rule
comes from
the calling
rule, not the
output rule.

7

n description
8 puts the

user and
chatbot on
separate
lines,
indenting
the chatbots
line and
prefixes it
with the
topic
generating
the response.
Easier to
read and
debug.

11 puts the
timestamp
and user on
first line and
and chatbot
on second
line,indenting
the chatbots
line.

12 output per
line, 2nd
rule label
generating
output,
input, =>
output.

13 output per
line, 1st rule
label
generating
output,
input, =>
output.

‘12’ and ‘13’ are useful for generating where input went (what rule output came
from) and then you can sort the tmp.txt file to cluster all inputs that went to
the same place. ‘12’ assumes you always output OOB data from postprocessing,

8

so it skips that rule label and uses the second label (the actual user output). 13
assumes the only data written is data to the user.

Normally trim displays everything. But with an optional 3rd argument nooob,
you can omit out-of-bands data from output. E.g.,

:trim bob 6 nooob

You can separately choose to trim input and output oob using a numeric bits,
where 1 is input and 2 is output (the same as noob) and 3 is both

:trim 11 looks like this:

Jan25'17-13:49:21 when is the help desk open?
The Helpdesk is available Monday through Friday from 7:00AM to 7:00PM Pacific.

9

	ChatScript Analytics Manual
	Components of a log file
	The Abstract
	Views over User Logs - :trim

