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Abstract

The reduced-rank regression is an effective method to predict multiple response variables from the

same set of predictor variables, because it can reduce the number of model parameters as well as

take advantage of interrelations between the response variables and therefore improve predictive

accuracy. We propose to add a new feature to the reduced-rank regression that allows selection

of relevant variables using sparsity inducing penalties. By treating each row of the matrix of the

regression coefficients as a group, we propose a group-lasso type penalty and show that this penalty

satisfies certain desirable invariance property. We develop two numerical algorithms to solve the

penalized regression problem and establish the asymptotic consistency of the proposed method. In

particular, the manifold structure of the reduced-rank regression coefficient matrix is respected and

carefully studied in our theoretical analysis. In a simulation study and real data analysis, the new

method is compared with several existing variable selection methods for multivariate regression and

exhibits competitive performance in prediction and variable selection.

Keywords: group lasso, reduced-rank regression, Stiefel manifold, variable selection

2



1. INTRODUCTION

We have seen increasing applications where several response variables are predicted or explained by

a common set of predictors. For example, researchers in autism study are interested in predicting

multiple clinical characterization variables using patients’ attentional pattern summarized in mul-

tidimensional eye-tracking data. In genetic study, it is interesting to model gene expression level

at multiple time points using multiple transcription factors. One might also model the returns of

multiple stocks together using a set of econometric variables.

For such multiple-response problems, one can naively perform separate linear regression on each

response by ignoring the possible interrelations between response variables. However, we expect

that this naive solution can be much improved. In this paper we ask the question of how to improve

the interpretability and predictability of the linear model by selecting important predictors and

taking the advantage of the correlations between response variables. Our question has two aspects:

One is dimension reduction, that is, to combine the predictor variables into fewer features which

can be explained as latent factors that drive the variation in the multiple response variables. The

other is variable selection, that is, to identify the relevant predictor variables and discard irrelevant

variables when deriving those latent factors.

We develop a sparse reduced-rank regression (SRRR) method for multivariate regression by

addressing the two aspects of the question. The dimension reduction aspect of multivariate re-

gression is taken care of by the so-called reduced-rank regression (RRR) (Izenman 1975; Reinsel

& Velu 1998). RRR makes a restriction on the rank of the regression coefficient matrix. The

rank constraint implies that the effective number of parameters to be estimated is reduced and

the efficiency of estimation is thus improved. It also implies that the coefficient matrix can be

expressed as the product of two lower rank matrices. The predictors multiplied by one of the lower

rank matrices produces the lower dimensional factors that drive the variation in the multiple re-

sponses. The variable selection aspect is addressed by adding a penalty to the least squares fitting

criterion to enforce the sparsity of the reduced-rank coefficient matrix. We focus in this paper on

sparsity inducing penalty for the purpose of variable selection. Note that the Ky-Fan norm penalty

has been used for factor selection and shrinkage in multivariate regression (Yuan, Ekici, Lu &

Monteiro 2007) but it is not applicable for variable selection.
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Different from the single response regression that is extensively studied in the literature (Tibshirani

1996; Yuan & Lin 2006; Wang & Leng 2008), the variable selection for multivariate regression

considered here is not only supervised jointly by all predictors but also is integrated with the di-

mension reduction procedure. We use some invariance consideration to decide on a reasonable

sparsity-inducing penalty in a penalized regression formulation (Section 2). The resulting penalty

is a group-lasso type penalty that treats each row of the regression coefficient matrix as a group.

Two numerical algorithms are developed for computation and tunining parameter selection meth-

ods are proposed (Section 3). One important difference between our setting and the well-studied

single response setting is that the range of the regression coefficient matrix is not a linear space and

has certain manifold structure. We address this issue by making good use of the Stiefel manifold

representation in our theoretical analysis (Section 4). In an asymptotic analysis, we obtain the

consistency result in terms of parameter estimation and variable selection (Section 5). It is well

known that RRR contains many classical multivariate regression models as special cases, including

principal component and factor analysis, canonical correlation analysis, linear discriminant anal-

ysis, and correspondence analysis; see Chapter 6 of Izenman (2008). Therefore, our sparse RRR

method provides a unified treatment of variable selection for these methods.

Variable selection for multivariate regression has started to attract attention recently. Several

methods have been proposed in the literature, including the L2SVS (Simila & Tikka 2007), L∞SVS

(Turlach, Venables & Wright 2005), RemMap (Peng, Zhu, Bergamaschi, Han, Noh, Pollack &

Wang 2010), and SPLS (Chun & Keles 2010). The first three of these methods also use sparsity

inducing penalty but none of them considers the reduced rank structure. Our SRRR method is

compared with these methods and the separate penalized regression method in a simulation study

and show competitive performance (Section 6). The SRRR method is illustrated using a yeast cell

cycle dataset in Section 7.

2. SPARSE REDUCED-RANK REGRESSION

2.1 Multivariate linear regression and the reduced-rank model

Suppose we have multiple response variables Y1, Y2, . . . , Yq and multiple predictor variables X1, X2,

. . . , Xp. The linear model assumes a linear relationship between each response variable and the
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predictors, that is,

Yj =

p∑
k=1

Xkckj + εj , j = 1, 2, . . . , q.

In the model above we have omitted the intercept term without loss of generality, since the intercept

can be removed by assuming the response variables and predictor variables have mean zero. We

also assume that the q error terms εj ’s are random variables with mean zero. With n observations

we can write the model in the matrix notation as

Y = XC + E, (1)

where Y is the n × q response matrix, X is the n × p predictor matrix, C is the p × q matrix of

regression coefficients and E is the n × q error matrix. Each row of X and Y corresponds to an

observation. The generalization of the least squares criterion to the multiple response case is

RSS(C) =

q∑
j=1

n∑
i=1

(
yij −

p∑
k=1

xikckj

)2

= tr[(Y −XC)T (Y −XC)]

= ‖Y −XC‖2

(2)

where ‖ · ‖ denotes the Frobenius norm for a matrix or the Euclidean norm for a vector. The

ordinary least squares (OLS) estimate of C is

ĈOLS = (XTX)−1XTY. (3)

Note that the OLS estimate (3) for multiple responses is equivalent to performing separate

OLS estimation for each response variable, and it does not make use of the fact that the multiple

responses are likely correlated. In practice, however, it is often the case that the multiple regressions

which are considered together have correlated response variables. One way of taking advantage of

possible interrelationships between response variables is to impose a constraint on the rank of C,

that is,

rank(C) = r, r ≤ min(p, q), (4)

resulting in the reduced-rank regression (RRR) model (Reinsel & Velu 1998). An immediate impli-

cation of the reduced-rank restriction is that there is a number of linear constraints on regression
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coefficients, and hence the number of effective number of parameters is reduced and the estimation

efficiency is improved. It also follows from the rank constraint that C can be expressed as a product

of two rank r matrices as follows

C = BAT

where B is of dimension p×r and A is of dimension q×r. The model (1) therefore can be rewritten

as

Y = (XB) AT + E (5)

where XB is of reduced dimension with only r components. These r linear combinations of the

predictor variables can be interpreted as unobservable latent factors that drive the variation in

the responses. We expect that the correlations between the q responses are taken into account

in the model as they are modeled by r (r ≤ q) common latent factors. We therefore achieve the

dimensionality reduction of the predictor variables.

For fixed r, we estimate the rank-constrained C by solving the optimization problem

min
C: rank(C)=r

‖Y −XC‖2, (6)

or equivalently,

min
A,B: rank(A)=r,rank(B)=r

‖Y −XBAT ‖2. (7)

Denote Sxx = (1/n)XTX, Sxy = (1/n)XTY, and Syx = (1/n)YTX. The matrices A and B that

solve (7) are determined only up to nonsingular transformations. A set of solution is provided by

Â(r) = V, B̂(r) = S−1xxSxyV,

where V = [v1, . . . ,vr] and vj is the eigenvector of SyxS
−1
xxSxy corresponding to the jth largest

eigenvalue λj . This solution satisfies the identifiability conditions that ATA = Ir and BTSxxB

being diagonal.

2.2 Sparse reduced-rank regression through penalized least squares

We now develop our method of variable selection for RRR using penalized regression. RRR allows

the responses to borrow strength from each other through a set of common latent factors to improve

prediction accuracy. However, each latent factor is a linear combination of all predictors. When a
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large number of predictor variables are available, some of them might not be useful for prediction.

Thus we would like to perform variable selection, or exclude the redundant predictors when forming

the latent factors. Note that excluding a predictor corresponds to setting as zero an entire row of

the matrix B. Inspired by the penalized regression with a grouped lasso penalty (Yuan & Lin 2006),

we consider the following optimization problem

min
A,B
‖Y −XBAT ‖2 +

p∑
i=1

λi‖Bi‖ s.t. ATA = I, (8)

where the superscript denotes a row of the matrix so that Bi is a row vector, the constraint

ATA = I is introduced for identifiability purpose, and λi > 0 are penalty parameters whose choice

will be discussed in Section 3.5. In (8), each row of B is treated as a group and ‖Bi‖ = 0 is

equivalent to setting the i-th row of B as zeros. Thus the group lasso penalty encourages row-wise

sparsity on the B matrix. An alternative way of introducing sparsity is to directly use the lasso

penalty (Tibshirani 1996) on the entire matrix B that encourages element-wise sparsity. We shall

show below that the group lasso penalty has certain invariance property that the lasso penalty

does not have. Note that the collection of BAT does not form a linear space, and its manifold

structure needs to be respected in optimization and in the theoretical analysis of the property of

the corresponding estimator (see Sections 4 and 5 for more details). This is the key difference of

(8) to the original group lasso problem (Yuan & Lin 2006).

The solution to the optimization problem (8) is not unique. Suppose (Â, B̂) is a solution. For

a r × r orthogonal matrix Q, let Ã = ÂQ and B̃ = B̂Q. It follows from the fact QQT = I that

B̃ÃT = B̂ÂT and ‖B̃i‖ = ‖B̂i‖. Thus (Ã, B̃) is also a solution of (8). On the other hand, suppose

(Â, B̂) and (Ã, B̃) are two solutions of (8). Since both Â and Ã are of full column rank r, there

is non-singular r × r matrix Q such that Ã = ÂQ. The orthogonality constraint implies that

Ir = ÃT Ã = QT ÂT ÂQ = QTQ,

which in turn implies that Q is an orthogonal matrix. Using QTQ = I and ‖B̃i‖ = ‖B̃iQT ‖, we

obtain that (Ã, B̃) also minimizes ‖Y −XBQT (AQT )T ‖2 +
∑p

i=1 λi‖BiQT ‖. Since Â = ÃQT , it

follows that (Â, B̃) minimize ‖Y −XBQTAT ‖2 +
∑p

i=1 λi‖BiQT ‖. Thus, fixing A at Â, both B̂

and B̃QT minimize the convex function ‖Y −XBAT ‖2 +
∑p

i=1 λi‖Bi‖, and therefore B̂ = B̃QT ,
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or B̃ = B̂Q. We have obtained the following result regarding the property of the optimization

problem.

Lemma 1 The solution to the optimization problem (8) is unique up to a r×r orthogonal matrix.

More precisely, suppose (Â, B̂) is a solution of (8). (Ã, B̃) is also a solution of (8) if and only if

there is an orthogonal matrix Q such that Ã = ÂQ and B̃ = B̂Q.

According to this lemma, B is determined only up to an orthogonal transformation, and thus

setting to zero a single element of B does not have a clear meaning. We now show that our

formulation ensures meaningful variable selection in that different solutions of the optimization

problem correspond to selection of the same set of predictors. To formalize the idea, we need the

following definition. Note that each row of B corresponds to a column of X.

Definition 1 If the entire row j of B is zero, then the predictor variable Xj is called a nonactive

variable, otherwise it is called an active variable.

Suppose (Â, B̂) and (Ã, B̃) are two solutions of (8). By switching the order of variables we can

write B̂ = (B̂T
1 ,0)T such that B̂1 does not include rows with all zeros. According to Lemma 1,

there exists an orthogonal matrix Q such that B̃ = (B̂T
1 ,0)TQ = ((B̂1Q)T ,0)T . Note that none of

the rows of B̂1Q is entirely zero; for any row B̂i
1 in the matrix B̂1, B̂i

1Q = 0 if and only if B̂i = 0.

Therefore, the active variables determined by B̃ are the same as those by B̂. We summarize the

result below as a lemma.

Lemma 2 The set of active variables obtained by solving the optimization problem (8) is uniquely

determined.

This lemma provides some support to our use of group lasso penalty since it guarantees the

identifiability of variable selection. It is easy to see that element-wise sparsity of B does change

when B is multiplied by a rotation matrix.

3. NUMERICAL SOLUTION AND TUNING

This section presents two algorithms for solving the optimization problem (8), both iteratively

optimizing with respect to A and B. This section also discusses methods for specifying the tuning

parameters.
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3.1 Overview of the iterative optimization

For fixed B, the optimization problem reduces to

min
A
‖Y −XBAT ‖ s.t. ATA = I, (9)

which is an orthogonal Procrustes problem (Gower & Dijksterhuis 2004). The solution of A is

Â = UVT , where U and V are obtained from the singular value decomposition YTXB = UDVT ,

where U is q × r , and V is r × r.

Now we consider optimization over B for fixed A. Since A has orthonormal columns, there is

a matrix A⊥ with orthonormal columns such that (A,A⊥) is an orthogonal matrix. Then we have

‖Y −XBAT ‖2 = ‖(Y −XBAT )(A,A⊥)‖2 = ‖YA−XB‖2 + ‖YA⊥‖2. (10)

The second term does not involve B. Therefore for fixed A, the optimization problem (8) reduces

to

min
B
‖YA−XB‖2 +

p∑
i=1

λi‖Bi‖. (11)

Below, we present two methods for solving this problem.

3.2 Subgradient method

We use the subgradient method to solve (11) (Friedman, Hastie, Hofling, & Tibshirani 2007). The

subgradient equations w.r.t. Bl, the lth row of B, are

2XT
l (XB−YA) + λlsl = 0, l = 1, 2, . . . , p,

where sl = Bl/‖Bl‖ if ‖Bl‖ 6= 0, and sl is a r-vector satisfying ‖sl‖ < 1 if ‖Bl‖ = 0. If ‖Bl‖ = 0,

the subgradient equations for Bl become

2XT
l

( p∑
k 6=l

XkB
k −YA

)
+ λlsl = 0.

Solving for sl, one gets

sl = − 2

λl
XT
l

( p∑
k 6=l

XkB
k −YA

)
= − 2

λl
XT
l Rl,
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where Rl = YA−
∑p

k 6=l XkB
k, which in turn is used to check whether ‖sl‖ < 1. If ‖sl‖ < 1 holds,

set ‖Bl‖ = 0. Otherwise, Bl can be solved from the first order conditions. We can transform the

first order condition w.r.t. Bl (Bl 6= 0) to

−2XT
l (Rl −XlB

l) + λl
Bl

‖Bl‖
= 0,

which has the solution

Bl =

(
XT
l Xl +

λl
2 ‖Bl‖

)−1
XT
l Rl. (12)

Note that the right hand side involves ‖Bl‖ and therefore we need to obtain ‖Bl‖ in order to get

Bl. Denote c = ‖Bl‖ and we can obtain an equation of c using (12). It is easy to see this equation

has the solution c = (‖XT
l Rl‖−λl/2)/‖Xl‖2. Plug this solution into the right-hand side of (12) to

get

Bl =
1

‖Xl‖2

(
1− λl

2‖XT
l Rl‖

)
XT
l Rl.

Combining this result with that for Bl = 0, we obtain that the optimal solution of (11) is

Bl =
1

XT
l Xl

(
1− λl

2‖XT
l Rl‖

)
+

XT
l Rl. (13)

This is a vector version of the soft-thresholding rule.

The discussion above leads to the following algorithm:

Algorithm 1: numerical algorithm using subgradient method

Input: X,Y,λ

Output: A,B

while value of objective function (8) not converged do

For fixed B, solve A by SVD as in Procrustes problem indicated by (9).

while B not converged do

for each l do

solve Bl by (13)

check whether B has converged

check whether objective function has converged
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3.3 Variational method

An alternative method to optimize (11) over B for fixed A is the variational method that makes

use of the following result

min
c

1

2

(
cx2 +

1

c

)
= |x|.

According to this result, optimizing the objective function in (11) over B is equivalent to optimizing

the following objective function jointly over B and µi, i = 1, ..., p,

f = ‖YA−XB‖2 +

p∑
i=1

λi
2

(
µi‖Bi‖2 +

1

µi

)
, (14)

which can be done iteratively. For fixed B, the optimal µi is

µi = 1/‖Bi‖, i = 1, . . . , p. (15)

For fixed µi, the first order condition for Bi is

∂f

∂Bi
= −2XT

i (YA−XB) + λiµiB
i = 0, i = 1, 2, . . . , p.

Collecting all these conditions and express them in the matrix form to obtain

−XT (YA−XB) +
1

2
diag(λ1µ1, ..., λpµp) B = 0.

Solving for B yields

B = {XTX +
1

2
diag(λ1µ1, ..., λpµp)}−1XTYA. (16)

One iterates between (15) and (16) until convergence. The variational method seldom produces

‖Bi‖ that is exactly zero, and so one needs to set a threshold for ‖Bi‖ to obtain the sparsity.

3.4 Comparison of the two algorithms

We compare the computational complexity of the two algorithms. Updating A is done in the

same fashion in both methods and so we consider only the steps for updating B. In the following

calculation, we ignore the one-time computation such as for XTX and XTY and focus on the

terms which appear in the iterative steps. Moreover, we assume that the rank number r is a

fixed small constant. For the variational method, (15) requires 2pr operations and (16) requires

O(p3)(for inversion) + pqr(for (XTY)A) + p2r operations. Since r is small, the computational
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complexity for each iteration of the variational method is O(pq+ p3). For the subgradient method,

calculation of Rl requires O(npr+nqr) operations, subsequent calculation of XT
l Rl requires O(nr)

operations, and thus calculation of Bl using (13) requires O(npr+nqr) operations. Since there are p

of Bl’s, the computational complexity for one iteration of the subgradient method is O(nrpq+nrp2),

or O(npq+np2) when r is a small number. It is clear that the variational method is computationally

less expensive when n � p. If q is smaller or not much bigger than p, the subgradient method is

computationally less costly when p� n.

3.5 Tuning

The cross-validation (CV) or K-fold CV can be used to select the rank number (or the number of

factors) r and the penalty parameters. The parameters that give a smaller CV error are preferred.

From the simulation study to be reported in Section 6, we observed that the 5-fold CV works

very well in selecting the correct rank number when the data is generated from a reduced rank

model; see Table 3. In practice, the reduced rank model is usually an approximation, and the

CV error may continue to decline as a function of the rank number. Borrowing an idea from the

principal components analysis, we can use the scree plot of the CV error to select an appropriate

rank number; see Section 7 for an illustration using a real-world data set.

Since selection of p penalty parameters requires computationally intensive optimization, we

propose two strategies to reduce the number of tuning parameters: One uses a single penalty

parameter by setting λi’s all equal; the other uses the idea of adaptive lasso (Zou 2006). The

adaptive lasso penalty requires a pilot estimator C̃ and sets λi = λ‖C̃i‖−γ , where ‖C̃i‖−γ ’s are

referred to as the adaptive weights and λ, γ > 0 are two tuning parameters that can be selected

using CV. Our experience suggests that it is sufficient to choose γ from a small set of candidates

such as {0.5, 1, 2, 4, 8}. When n > p, the solution of the unpenalized version of (8) provides a

pilot estimator. When n ≤ p, the solutions of unpenalized reduced-rank regression or ordinary

multivariate regression are not well defined. For this case, a reasonable pilot estimator can be the

solution of (8) with a single penalty parameter, which in turn is chosen by the CV.

4. GEOMETRY OF THE REDUCED-RANK MODEL
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This section discusses some geometry of the reduced-rank model, which will play an important

role in obtaining the asymptotic results in the next section. Let C∗ be the rank-r coefficient matrix

used to generate the data according to model (1) and C∗ = U∗D∗V∗
T be its reduced singular value

decomposition, where U∗ and V∗ are respectively p×r and q×r rank-r matrices with orthonormal

columns and D∗ is a r × r nonnegative diagonal matrix. Although this reparameterization is not

globally identifiable (considering, for example, Ũ∗ = −U∗ and Ṽ∗ = −V∗), it is identifiable up to

the sign switch of each column of U∗ and V∗. Let C be a p× q matrix in the neighborhood of C∗

on the manifold of rank-r matrices. We now derive a local reparametrization of C.

Let C = UDVT be the reduced singular value decomposition, where U and V are respectively

p×r and q×r rank-r orthonormal matrices and D is a r×r nonnegative diagonal matrix. According

to the Stiefel manifold representation of orthonormal matrices (Edelman, Arias & Smith 1998), the

manifold of p× r orthonormal matrices can be represented as

{U = exp(1,U∗Gu + Hu) : Gu is r × r,Gu = −GT
u ,Hu is p× r,UT

∗Hu = 0},

where exp(t,Ju) is the exponential map that defines a geodesic emanating from U∗ in the tangent

direction Ju. The exponential map can be expressed as exp(t,Ju) = U∗M(t,Ju) + QN(t,Ju),

where QR = (I−U∗U
T
∗ )Ju is the compact QR decomposition (Q is p×r, R is r×r), and M(t,Ju)

and N(t,Ju) are r × r matrices given by the matrix exponential

[
M(t,Ju)

N(t,Ju)

]
= exp

{
t

[
UT
∗ Ju −RT

R 0

]}[
Ir

0

]
.

Similarly, the manifold of q × r orthonormal matrices can be represented as

{V = exp(1,V∗Gv + Hv) : Gv is r × r,Gv = −GT
v ,Hv is q × r,VT

∗Hv = 0},

where exp(t,Jv) is the exponential map that defines a geodesic emanating from V∗ in the tangent

direction Jv. The non-negative diagonal matrix D can be parametrized as D = D∗ exp(K), where

K is a r × r diagonal matrix whose diagonal elements are not constrained.

Using the the definition of the matrix exponential and the Taylor series expansion, we obtain

11



the following first order approximations for perturbations along the manifolds:

U−U∗ = exp(1,U∗Gu + Hu)−U∗ = U∗Gu + Hu +O(‖Gu‖2 + ‖Hu‖2), (17)

V −V∗ = exp(1,V∗Gv + Hv)−V∗ = V∗Gv + Hv +O(‖Gv‖2 + ‖Hv‖2), (18)

D−D∗ = D∗ exp(K)−D∗ = D∗K +O(‖K‖2). (19)

We say that two matrix norms are equivalent if their ratio is bounded away from zero and infinity.

Note that ‖U∗Gu+Hu‖2 = ‖Gu‖2 +‖Hu‖2 and ‖V∗Gv+Hv‖2 = ‖Gv‖2 +‖Hv‖2. Thus (17)–(19)

imply the following result.

Lemma 3 ‖U−U∗‖ and ‖V −V∗‖ are locally equivalent to {‖Gu‖2 + ‖Hu‖2}1/2 and {‖Gv‖2 +

‖Hv‖2}1/2, respectively. If the diagonal elements of D∗ are bounded away from zero and infinity,

‖D−D∗‖ is locally equivalent to ‖K‖.

The next result gives the first order approximation of C = UDVT in a neighborhood of C∗ =

U∗D∗V
T
∗ . The proof relies on (17)–(19) and is given in the Appendix.

Lemma 4 The following holds:

UDVT −U∗D∗V
T
∗

= U∗(GuD∗ −D∗Gv)V
T
∗ + U∗D∗H

T
v + HuD∗V

T
∗ + U∗D∗KVT

∗

+O(‖Gu‖2 + ‖Hu‖2 + ‖Gv‖2 + ‖Hv‖2 + ‖K‖2).

(20)

Note that the four leading terms in (20) are orthogonal to each other. The orthogonality of the

terms involving Hu and Hv follows from UT
∗Hu = 0 and VT

∗Hv = 0. To show the orthogonality of

the two terms not involving Hu and Hv, note that

〈U∗(GuD∗ −D∗Gv)V
T
∗ ,U∗D∗KVT

∗ 〉 = 〈GuD∗ −D∗Gv,D∗K〉.

Because of the anti-symmetry, the diagonal elements of Gu and Gv are all zero. Since D∗ and K

are diagonal matrices, the above inner product is zero. The orthogonality also implies that

‖U∗(GuD∗ −D∗Gv)V
T
∗ + U∗D∗H

T
v + HuD∗V

T
∗ + U∗D∗KVT

∗ ‖2

= tr{(GuD∗ −D∗Gv)
T (GuD∗ −D∗Gv)}

+ tr(D∗H
T
uHuD∗) + tr(D∗H

T
v HvD∗) + tr(D∗K

2D∗).

(21)

Let di denote the i-th diagonal element of D∗. The next result is proved in the Appendix.
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Lemma 5 We have that

1

2
{min
i<j

(di − dj)2}(‖Gu‖2 + ‖Gv‖2) ≤ ‖GuD∗ −D∗Gv‖2

≤ 2 (max
i
d2i )(‖Gu‖2 + ‖Gv‖2).

To summarize the development so far, the manifold of rank-r matrices is locally reparametrized

as Θ = (Gu,Hu,Gv,Hv,K), where Gu, Gv, Hu, Hv, and K are specified as above, and Θ∗ = 0

is the parameter value corresponding to the true coefficient matrix C∗. Define ‖Θ‖2 = ‖Gu‖2 +

‖Hu‖2 +‖Gv‖2 +‖Hv‖2 +‖K‖2. Lemma 4, (21), and Lemma 5 together imply the following result:

Lemma 6 If the diagonal elements of D∗ are all distinct, positive and bounded, then the distance

‖C−C∗‖ is locally equivalent to the norm {‖Gu‖2 + ‖Hu‖2 + ‖Gv‖2 + ‖Hv‖2 + ‖K‖2}1/2.

5. ASYMPTOTIC ANALYSIS

In this section, we study the asymptotic behavior of the estimator obtained as the solution of

the problem (8) when the sample size n goes to infinity and p and q are fixed constants. Asymptotic

analysis that allows p and/or q to grow with n is left for future research; see, however, Zou & Zhang

(2009) for some relevant results for the univariate regression case. The following assumptions are

made for the asymptotic results.

C1. There is a positive definite matrix Σ such that XXT /n→ Σ as n→∞.

C2. The first p0 variable are important and the rest are irrelevant; that is, ‖Ci
∗‖ > 0 if i ≤ p0

and ‖Ci
∗‖ = 0 if i > p0, where Ci

∗ is the ith row of C∗.

Theorem 1 (Consistency of parameter estimation). Suppose that λi/
√
n = λn,i/

√
n → 0 for all

i ≤ p0. Then, (i) there is a local minimizer Ĉ of (22) that is
√
n-consistent in estimating C∗;

(ii) letting Ĉ = ÛD̂V̂T be the singular value decomposition, Û, D̂, and V̂ are
√
n-consistent in

estimating U∗, D∗, and V∗, respectively.

The proof of this theorem makes use of the geometric results in the previous section. Let

C = BAT . If ATA = I, then ‖Ci‖ = ‖Bi‖, where Ci is the i-th row of C. Thus, the optimization
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problem (8) is equivalent to the minimization of the criterion function

Q(C) = ‖Y −XC‖2 +

p∑
i=1

λn,i‖Ci‖ (22)

subject to the constraint rank(C) = r. With a slight abuse of notation, we use Q(Θ) to denote

the optimizing objective function (22) in terms of the new parameterization given in the previous

section. If we can show that for any positive number ε, there is a sufficiently large α such that

lim inf
n

Pr

{
inf

‖Θ‖=n−1/2α
Q(Θ) > Q(Θ∗)

}
> 1− ε, (23)

then with probability tending to one, there exists a local minimizer Θ̂ of Q(Θ) located in the

interior of the ball {Θ : ‖Θ‖ ≤ n−1/2α}, and thus the corresponding Ĉ is
√
n-consistent, in light

of Lemma 6. Details of the proof of Theorem 1 is given in the Appendix.

Theorem 2 (Consistency of variable selection) If λn,i/
√
n → 0 for i ≤ p0 and λn,i/

√
n → ∞ for

i > p0, then

P (Ĉi = 0) = Pr(Ûi = 0)→ 1, i > p0.

The proof of this theorem is given in the Appendix. Theorem 2 in particular implies that

an adaptive lasso penalty similar to that in Zou (2006) will yield consistency of variable selection.

Specifically, letting λn,i = λ‖C̃i‖−γ , λ, γ > 0, if C̃ is a consistent estimate of C∗, then the conditions

on λn,i are satisfied and so the consistency of variable selection holds. The unpenalized least

squares reduced-rank estimator can be used as the pilot estimator C̃, since it is consistent and

asymptotically normally distributed (Anderson 1999).

6. SIMULATION STUDY

In this section we use simulated data to illustrate the proposed SRRR method and compare it

with five related methods that were proposed in the literature for variable selection in multivariate

regression.

6.1 Related methods

The first three methods all solve certain penalized least squares problem but with different penalty

functions. The L2SVS (Simila & Tikka 2007) method solves the following optimization problem:

min
C
‖Y −XC‖2 + λ

p∑
i=1

‖Ci‖,
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where Ci is the ith row of C. The L2SVS is most closely related to our method SRRR but it has no

low rank constraint on C. The L∞SVS (Turlach et al. 2005) method solves a similar optimization

problem as L2SVS but uses a different penalty. The optimization problem is

min
C
‖Y −XC‖2 + λ

p∑
i=1

‖Ci‖∞

where ‖Ci‖∞ = max(|Ci1|, ..., |Cip|) is the L∞-norm of the ith row of C. Because of the L∞-penalty,

a predictor variable would be selected if it is useful for one response. In contrast to L2SVS, ‖Ci‖∞

rather than ‖Ci‖ is used to measure the effect of the ith variable on the responses. As a result, the

selection of the ith variable depends on its strongest effect on each one of the responses but not

its overall effect. Therefore we expect this method will select more variables than L2SVS which

is confirmed by our simulation study. The RemMap (Peng et al. 2010) method imposes both

row-wise and element-wise sparsity of C by solving the following optimization problem:

min
C
‖Y −XC‖2 + λ1

p∑
i=1

‖Ci‖1 + λ2

p∑
i=1

‖Ci‖.

All these three methods encourage row-wise sparsity of C. But none of them imposes the reduced-

rank structure as we do in SRRR.

Another method is the SPLS method (Chun & Keles 2010) that is based on the partial least

squares (PLS). A PLS method tries to find the multidimensional direction in the predictor space that

explains the maximum multidimensional variance direction in the response space. The SPLS (sparse

PLS) encourages sparsity in the direction vector by imposing the L1 constraint on the optimization

criterion for PLS. Because it identifies significant latent components, the SPLS essentially employs

a reduced-rank structure though in a different way from the SRRR. Unlike the SRRR, SPLS does

not directly target on prediction of the responses and thus we expect SPLS has disadvantage in

term of prediction, as we will observe in both simulation and real data examples.

The last method is to apply separate regressions with variable selection using lasso (referred to

as SepLasso). Unlike the other methods we mentioned above, this method ignores the possible

interrelation between the responses and fits each of them separately. Although this method is not

expected to be competitive, it serves as a good benchmark for all multivariate methods.
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6.2 Adaptive weighting

For a fair comparison, a single penalty parameter is used for SRRR when comparing it with the

five methods listed in the previous subsection. The adaptive weighting for SRRR as discussed in

Section 3.5 is also evaluated, along with the same adaptive weighting scheme for L2SVS. They are

referred to as adaptive SRRR and adaptive L2SVS in this paper. The adaptive weighting for other

methods is not considered either because there is no existing implementation or because it is not

straightforward how to incorporate it in the existing method.

6.3 Simulation setups and evaluation methods

In the simulation study, the data were generated using model (5), Y = XBAT + E. To be

specific, the n × p matrix X was generated from multivariate normal distribution N (0,Σx) and

Σx has diagonal elements 1 and off-diagonal elements ρx. For the p × r component matrix B,

the elements of its first p0 rows were generated from N (0, 1) and the rest p − p0 rows were set

to be zero. The elements of q × r matrix A were generated from N (0, 1). The elements of the

n × q random noise matrix E is generated from N (0, σ2Σe) and Σe has diagonal elements 1 and

off diagonal elements ρe. The magnitude of the noise σ2 is chosen so that the signal to noise ratio

(SNR), trace(CTΣxC)/trace(E), equals 1. After the matrix Y was obtained, we centered and

standardized it and then applied the proposed SRRR method and the five related methods as well

as adaptive SRRR and adaptive L2SVS. We compared predictive accuracy of these methods in

terms of the mean squared error (MSE), defined as

MSE = ‖X(B̂ÂT −BAT )‖2/nq, (24)

We also compared all the methods in terms of sensitivity and specificity, which are commonly

used measures to evaluate the accuracy of variable selection. The sensitivity refers to the ratio

between the number of correct selection and the total number of relevant variables (p0), which

measures the ability of detecting the relevant variables. The specificity refers to the ratio between

number of correct “deletion” and the total number of irrelevant variables (p− p0), which measures

the ability of detecting the irrelevant variables. If a method selects the relevant variables accurately,

it will have both high sensitivity and high specificity. If a method tends to over-select, it will produce

high sensitivity but low specificity. If a method tends to under-select, it will have low sensitivity
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but high specificity. Lastly, we compared how accurate the low rank structure is estimated in terms

of the number of selected factors for SRRR (and adaptive SRRR) and SPLS.

In the first set of simulations (Case 1), n > p. More specifically n = 100, p = 30, p0 = 10, q =

10, and varying r, ρx and ρe. The precise setups are described as follows.

Case 1a: We set r = 3, ρx = 0 and ρe = 0 in this baseline model which has a strong factor

structure and this setup favors our method.

Case 1b: We set r = 10, and ρx = ρe = 0. In this setup C is of full rank and we intend to use

this case to see if SRRR has robust performance when the low rank structure is violated.

Case 1c: Same as Case 1a but with ρx = 0.5. In this case, moderate amount of correlations

among predictors are introduced.

Case 1d: Same as Case 1a but with ρe = 0.5. In this case, moderate amount of correlations

among error terms are introduced and ideally the weighted least square criterion should be con-

sidered. We used this case for robustness check for the ordinary least square criterion used by all

methods considered in our comparative study. Rothman, Levina & Zhu (2010) proposed the MRCE

method that directly models the error correlation for sparse multivariate regression. Extension of

SRRR that models covariance structure may lead to more efficient estimation and is left for future

research.

The second set of simulations is concerned about higher dimensional cases with p ≥ n. In

particular, we consider the following two settings for n, p, p0, q. The other parameters are equal

to baseline values in Case 1a, that is, r = 3, ρx = 0 and ρe = 0.

Case 2a: n = p = 100, p0 = 30, q = 10.

Case 2b: n = 100, p = 300, p0 = 30, q = 30.

In the last case of simulation, the row-wise sparsity assumption in the coefficient matrix C is

violated. We use this setup to test the SRRR method in an unfavorable case.

Case 3: C has element-wise sparsity with 70% randomly assigned zero elements. The other

parameters are set as follows n = p = 100, p0 = 100, r = q = 10.

6.4 Simulation results

We applied all eight methods to each of the seven setups. We used five-fold cross-validation to choose

tuning parameter(s) for all methods. In particular for SRRR and SPLS, the tuning parameters
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include λ and the number of factors r. For the adaptive methods, tuning parameters also include γ.

The performance of all methods was measured using the criteria detailed in the previous subsection.

The performance of the fitted model was measured using the MSE defined in (24) where X

is based on 1000 test samples. Summary of the MSE for each method is given in Table 1. The

first six columns provide fair comparison of our SRRR with five other methods as all of them use

the same tuning strategy without adaptive weights. In all cases except case 1b (violation of low

rank assumption) and the last one (violation of row-wise sparsity), SRRR produces considerable

smaller average MSE among all methods, and the reduction of MSE is usually substantial. For case

1b, there is no factor structure so it is understandable that using SRRR has no clear advantage

over using L2SVS. For the last case where element-wise sparsity is imposed, RemMap performs the

best without surprise because its form of penalty accommodates both row-wise and element-wise

sparsity structure; our SRRR does a reasonably good job in this case. The separate lasso regression

is not competitive with any multivariate methods considered; it gives the largest MSE except in

the last case.

Table 2 reports the sensitivity and specificity, for each method. All methods except SPLS

tend to over-select indicated by high sensitivity but low specificity, and our SRRR has the highest

specificity compared to other methods. It is noted in earlier work (Peng et al. 2010) that using cross

validation as tuning criterion to achieve best prediction performance often leads to over-selection,

indicated by low specificity. SPLS does a supreme job in variable selection when n > p, but it

sensitivity becomes the worst among all methods when p ≥ n. The separate lasso regression and

L∞SVS give the lowest specificity. The SRRR performs towards the top based on the overall

evaluation of sensitivity and specificity.

Table 3 shows that the 5-fold CV can select the number of factors r quite accurately for the

SRRR and adaptive SRRR method.

The effect of adaptive weighting can be seen by comparing the first and the last two columns of

Table 1 and Table 2. Adaptive weighting improves the accuracy of prediction and variable selection

for both SRRR and L2SVS in all the setups where n > p. For the cases where p ≥ n the adaptive

weighting produces similar prediction accuracy as the unweighted version and tends to have lower

sensitivity but higher specificity. That the adaptive weighting has the tendency of under-selecting
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relevant variables can be explained by the fact that the variables filtered out in the first stage will

get infinitely large weights in the penalty term and therefore can not be included in the final model.

It is an interesting research topic to explore if use of a different pilot estimator can improve the

performance of adaptive weighting in p ≥ n cases.

7. REAL DATA EXAMPLE: YEAST CELL CYCLE DATASET

This data analysis is concerned about identifying transcription factors (TF) that regulate the RNA

transcript levels of Yeast genes within the eukaryotic cell cycle. Spellman et al. (1998) identified

800 cell cycle-regulated genes by three independent synchronization methods. We use the data

generated by the α factor arrest method which are RNA levels measured every 7 minutes for 119

minutes with a total of 18 time points covering two cell cycles (Y). The genes whose RNA levels

varied periodically were identified as cell cycle-regulated genes. The chromatin immunoprecipitation

(ChIP) data (Lee et al. 2002) contains binding information of these 800 genes for a total of 106

TFs (X). We use a smaller data set analyzed by Chun & Keles (2010) which includes 524 of the

800 genes, after excluding the genes with missing RNA levels or binding information. The data is

public available in the R package “spls”.

We applied SRRR and adaptive SRRR to this data. We also considered L2SVS, RemMap, and

SPLS — the three other methods that showed competitive performance in our simulation study.

The 5-fold CV was used for selecting tuning parameters, including the number of factors r for

SRRR, adaptive SRRR, and SPLS. For each 5-fold random partition of the data, we obtained by a

trace plot of the minimum CV error for r = 1, 2, ..., 10, where the minimum CV error corresponds

to the best penalty parameters selected by CV. Figure 1 shows 20 such traces for 20 random

partitions. For SRRR and adaptive SRRR, the trace plots flatten out from r = 4 and thus we set

r = 4 for further analysis. For SPLS, the “elbow” shape is less pronounced and we feel that r = 6

is the most natural choice.

For comparison of prediction accuracy, we randomly split the data into two halves, one as the

training set and one as the test set. We used the training set to identify the best penalty parameters

and then used the corresponding model to predict on the test data. The top row of Table 4 reports

the means and standard deviations of squared prediction errors from 50 random splits. All methods
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Figure 1: The 5-fold CV error at optimal values of tuning parameters when fixing the number of

factors.

except SPLS perform very similarly in terms of prediction errors. The larger prediction error of

SPLS is due to the fact that SPLS tends to under-select.

For comparison of variable selection, we fit the entire data using the optimal penalty parameters

selected by the 5-fold CV and kept track on whether each of 106 TF’s is chosen in the fitted model.

To account for the variability introduced by random partitions of CV, this experiment was done

100 times and we identified the TFs which were consistently included or excluded in each model.

The “stability” results in Table 4 show how many TF’s are selected at least 90 times, between

10 and 90 times, and under 10 times in the 100 runs. The results show that adaptive SRRR

selects fewer TFs (60) than regular SRRR (69), and L2SVS selects similar number of TFs (59) as

adaptive SRRR. RemMap selects 94 out of the 106 TFs and SPLS selects the least number 12. The

table also reports in parentheses how many of these consistently selected TFs are among the 21

experimentally confirmed TFs that are related to the cell cycle regulation (Wang, Chen & Li 2007).

We can see that SRRR, adaptive SRRR and L2SVS identify similar number of confirmed TFs,

RemMap identifies slightly more, while SPLS identifies much less.

We remark on the stability of variable selection for each method. Ideally a TF should be either

selected or excluded all the time, not affected by random partition in the cross-validation. The

more such TF’s fall in [90, 100] or [0, 10] categories, the more stable the model is. The higher

number in the middle category (10, 90) indicates less stable selection. We see that L2SVS and
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SPLS are less stable in variable selection. Adaptive SRRR and RemMap have 0 TFs in the middle

category and thus are more stable. However, a lower number in the middle category may also be

a consequence of over-selection or under-selection indicated by extremely unequal numbers in the

other two categories. After taking this into account, we conclude that the adaptive SRRR performs

the best in terms of stability of variable selection. Since L2SVS can be thought as a special case

of SRRR without rank restriction, the fact that SRRR and adaptive SRRR outperform L2SVS

indicates that efficiency and stability of the variable selection is improved by enforcing a low rank

structure on the coefficient matrix.

To further evaluate the variable selection result, we examined the chance of selecting irrelevant

variables for each method when we randomly permuted the order of genes for the transcript level

data to break the dependence between the transcript level and the TFs. We used 5-fold CV for

selecting tuning parameters and then fit the entire data. We recorded the false positive rate, the

ratio of the number of selected TFs to the total number of TFs. The permutation was done 100

times. Table 4 shows the average false positive rates. We see that SRRR methods have the smallest

false positive rates.

The effect of the 16 confirmed TFs at 18 time points identified by adaptive SRRR are drawn

in Figure 2. We see that except for MET31 and STE12, all TFs show some periodic effect and

some of them such as SWI4 and SWI6 show two clear cycles. Lee et al. (2002) identified another

10 TFs which coordinate transcriptional regulation of the cell cycle with other cellular processes

(metabolism, environmental responses and development). The adaptive SRRR can identify 8 of

these 10 TFs and their effect is shown in the first two rows of Figure 3. Among the 36 additional

TFs identified by adaptive SRRR, we rank them by their overall effect throughout the cell cycle

and the last two rows in Figure 3 show the effect of the top 8 TFs. Again most of these TFs show

some periodic effect and a lot of them show two clear cycles.
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Figure 2: The effect of the 16 confirmed TFs identified by adaptive SRRR. These TFs are confirmed

to be related to the cell cycle regulation.
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Figure 3: The effect of 16 of the additional 44 TFs identified adaptive SRRR. The first 8 TFs are

confirmed TFs with the function of coordinating transcriptional regulation of the cell cycle with

other cellular processes. The last 8 TFs have larger overall effect throughout the cell cycle among

the rest TFs.
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APPENDIX

Proof of Lemma 4. Writing U = U∗ + ∆u and similarly for D and V, we obtain the following

expansion

UDVT −U∗D∗V
T
∗ = (U∗ + ∆u)(D∗ + ∆d)(V∗ + ∆v)

T −U∗D∗V
T
∗

= U∗D∗∆
T
v + U∗∆dV

T
∗ + ∆uD∗V

T
∗

+ ∆u∆dV
T
∗ + ∆uD∗∆

T
v + U∗∆d∆

T
v + ∆u∆d∆

T
v .

(25)

It follows from (17) that ‖∆u‖ = ‖U∗Gu + Hu‖+O(‖Gu‖2 + ‖Hu‖2) = O((‖Gu‖2 + ‖Hu‖2)1/2).

Similarly, ‖∆v‖ = O((‖Gv‖2 + ‖Hv‖2)1/2), and ‖∆d‖ = O(‖K‖). Note that ‖U∗‖, ‖D∗‖, and

‖V∗‖ are all bounded. Thus,

‖∆u∆dV
T
∗ + ∆uD∗∆

T
v + U∗∆d∆

T
v + ∆u∆d∆

T
v ‖ = O(‖Gu‖2 + ‖Hu‖2 + ‖Gv‖2 + ‖Hv‖2 + ‖K‖2).

Plugging (17)–(19) into (25) and using the anti-symmetry property GT
v = −Gv, we obtain the

desired result.

Proof of Lemma 5. Since Gu and Gv are antisymmetric, we can write Gu = ∆ −∆T and

Gv = Γ − ΓT , where ∆ and Γ are lower triangular square matrices whose diagonal elements are

0’s. Therefore,

GuD∗ −D∗Gv = (∆D∗ −D∗Γ)− (∆TD∗ −D∗Γ
T ).

Since the two terms on the above right-hand side are respectively lower triangular and upper

triangular, taking the Frobenius norm yields

f ≡ ‖GuD∗ −D∗Gv‖2 = ‖∆D∗ −D∗Γ‖2 + ‖∆TD∗ −D∗Γ
T ‖2.

Let δij and γij be the (i, j) entry of ∆ and Γ respectively. By the definition of the Frobenius norm

and using the lower/upper triangular property of relevant matrices, we obtain that

f =
∑
i>j

(δijdj − diγij)2 +
∑
i>j

(diδij − γijdj)2

=
∑
i>j

(d2jδ
2
ij + d2i γ

2
ij + d2i δ

2
ij + d2jγ

2
ij − 2didjδijγij − 2didjδijγij).

For a lower bound of f , we use the inequality 2δijγij ≤ δ2ij +γ2ij and complete the squares d2i +d2j −

2didj = (di − dj)2 to get

f ≥
∑
i>j

{(di − dj)2(δ2ij + γ2ij)} ≥ min
i>j

(di − dj)2
∑
i>j

(δ2ij + γ2ij) =
1

2
min
i>j

(di − dj)2 (‖Gu‖2 + ‖Gv‖2).
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For an upper bound, we use the inequality (a− b)2 ≤ 2(a2 + b2) to obtain

f ≤ 2
∑
i>j

(d2i + d2j )(δ
2
ij + γ2ij) ≤ 2 max

i<j
(d2i + d2j )

∑
i>j

(δ2ij + γ2ij) = 2 max
i
d2i (‖Gu‖2 + ‖Gv‖2).

The proof of the lemma is complete.

Proof of Theorem 1. We first prove part (i). We only need show that (23) holds. Without loss

of generality, we assume that XXT /n→ I, because if XXT /n→ Σ, then the argument below goes

through when X is replaced by Σ−1/2X. Set αn = α/
√
n. We need find a uniform lower bound of

Q(Θ)−Q(Θ∗) for all Θ with ‖Θ‖ = αn. Denote E = Y −XU∗D∗V
T
∗ . We have that

Q(Θ)−Q(Θ∗) = ‖Y −XUDVT ‖2 − ‖E‖2 +

p∑
i=1

λn,i‖UiD‖ −
p∑
i=1

λn,i‖Ui
∗D∗‖. (26)

We first consider the terms that involve penalty functions. Using ‖Ui
iD∗‖ = 0 for i > p0 and

the inequality ‖a‖ − ‖b‖ ≥ −‖a− b‖, we obtain that

p∑
i=1

λn,i‖UiD‖ −
p∑
i=1

λn,i‖Ui
∗D∗‖ ≥

p0∑
i=1

λn,i‖UiD‖ −
p0∑
i=1

λn,i‖Ui
∗D∗‖

≥ −
p0∑
i=1

λn,i‖UiD−Ui
∗D∗‖.

(27)

It follows from the Cauchy–Schwarz inequality and a simpler version of Lemma 4 that

p0∑
i=1

λn,i‖UiD−Ui
∗D∗‖ ≤ ( max

1≤i≤p0
λn,i)
√
p0‖UD−U∗D∗‖

≤
(

max
1≤i≤p0

λn,i√
n

)√
nO(‖Gu‖+ ‖Hu‖+ ‖K‖) ≤ O(

√
nαn).

(28)

Next, consider the first two terms on the right side of (26). Since Y − XUDVT = Y −

XU∗D∗V
T
∗ −X(UDVT −U∗D∗V

T
∗ ) = E−X(UDVT −U∗D∗V

T
∗ ), we have that

‖Y −XUDVT ‖2 = ‖E‖2 − 2〈E,X(UDVT −U∗D∗V
T
∗ )〉+ ‖X(UDVT −U∗D∗V

T
∗ )‖2. (29)

According to Lemma 4, we can write UDVT −U∗D∗V
T
∗ = F + T, where

F = U∗(GuD∗ −D∗Gv)V
T
∗ + U∗D∗H

T
v + HuD∗V

T
∗ + U∗D∗KVT

∗ ,

and ‖T‖ = O(α2
n). Lemma 5 and (21) imply that ‖F‖ = O(αn). By expanding the norm squared

and using the Cauchy-Schwarz inequality, we obtain that

‖UDVT −U∗D∗V
T
∗ ‖2 = ‖F + T‖2 = ‖F‖2 +O(α3

n).
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Since XXT /n→ I, it follows that

1

n
‖X(UDVT −U∗D∗V

T
∗ )‖2 = ‖F‖2 +O(α3

n). (30)

Note that

〈E,X(UDVT −U∗D∗V
T
∗ )〉 = 〈E,XF〉+ 〈E,XT〉. (31)

Since ‖X‖2/n = tr(XTX)/n → p, we have that ‖X‖ = O(
√
n). Simple calculation yields that,

for any matrix S with compatible dimensions, var(〈E,XS〉) = O(‖X‖2‖S‖2), and thus |〈E,XS〉| =

OP (‖X‖‖S‖) = OP (
√
n)‖S‖. Using this result, we obtain that

〈E,XT〉 = OP (
√
n)‖T‖ = OP (

√
nα2

n). (32)

Combining (29)–(32) yields

‖Y −XUDVT ‖2 = ‖E‖2 − 2〈E,XF〉+ n‖F‖2 +O(nα3
n) +OP (

√
nα2

n). (33)

Applying the same argument for (32) gives

|〈E,XF〉| = OP (
√
n)‖F‖. (34)

Consequently,

‖Y −XUDVT ‖2 − ‖E‖2 ≥ −OP (
√
n)‖F‖+ n‖F‖2 +O(nα3

n) +OP (
√
nα2

n). (35)

Combining (26)–(28) and (35), we obtain that

Q(Θ)−Q(Θ∗) ≥ −OP (
√
n)‖F‖+ n‖F‖2 −O(

√
nαn) +O(nα3

n) +OP (
√
nα2

n).

Lemma 5 and (21) together imply that, M1‖Θ‖ ≤ ‖F‖ ≤ M2‖Θ‖ for some positive constants M1

and M2. Thus, if ‖Θ‖ = αn = α/
√
n,

Q(Θ)−Q(Θ∗) ≥ −OP (α) +M1α
2 +O(α3/

√
n) +OP (α2/

√
n).

Therefore, for any ε > 0, we can choose a large α such that, infΘ:‖Θ‖=αn
Q(Θ)−Q(Θ∗) > 0 with

probability larger than 1− ε. The proof of part (i) is complete.

To prove part (ii), note that part (i) implies that ‖Θ̂‖ = OP (n−1/2). Since ‖Θ̂‖2 = ‖Ĝu‖2 +

‖Ĥu‖2 + ‖Ĝv‖2 + ‖Ĥv‖2 + ‖K̂‖2, we obtain that (‖Ĝu‖2 + ‖Ĥu‖2)1/2 = OP (n−1/2), (‖Ĝv‖2 +

‖Ĥv‖2)1/2 = OP (n−1/2), and ‖K̂‖ = Op(n
−1/2). The desired result then follows from Lemma 3.
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Proof of Theorem 2.. Denote the diagonal elements of D∗ as D∗kk, 1 ≤ k ≤ r, and similarly

for D̂. Because D∗kk > 0 and D̂ is consistent in estimating D∗, we have that D̂kk > 0 for all k.

The optimizing objective function can be written as

‖Y−XUDVT ‖2+

p∑
i=1

λn,i‖UiD‖ = tr(YTY)+tr(DUTXTXUD−2VTYTXUD)+

p∑
i=1

λn,i‖UiD‖.

Suppose ‖Ûi‖ > 0. The first order condition for Ûi is

2XT
i XÛD̂2 − 2XT

i YV̂D̂ + λn,i
ÛiD̂2

‖ÛiD̂‖
= 0,

or equivalently,

2√
n

XT
i (XÛD̂V̂T −Y)V̂ +

λn,i√
n

ÛiD̂

‖ÛiD̂‖
= 0. (36)

Note that (1/
√
n)XT

i (XU∗D∗V
T
∗ −Y) = −(1/

√
n)XT

i E = Op(1), ÛD̂V̂T−U∗D∗V
T
∗ = Op(1/

√
n),

and XTX/n = OP (1). Therefore

1√
n

XT
i (XÛD̂V̂T −Y)

=
1√
n

XT
i (XU∗D∗V

T
∗ −Y) +

1√
n

XT
i X(ÛD̂V̂T −U∗D∗V

T
∗ )

= Op(1) +
1√
n

XT
i XOp(

1√
n

) = Op(1).

This implies that

1√
n

XT
i (ÛD̂V̂T −Y)V = Op(1). (37)

If ‖Ûi‖ > 0 for some i > p0, then letting

k∗ = arg max
1≤k≤r

|Ûi
kD̂kk|,

we have that

|Ûi
k∗D̂k∗k∗ |
‖ÛiD̂‖

>
1√
r
. (38)

Considering (37), (38), and the assumption that λn,i/
√
n→∞, for i > p0, we obtain that the first

order condition (36) won’t hold for i > p0. This is a contradiction. Consequently, ‖Ûi‖ = 0 for all

i > p0 with probability tending to one.
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Table 3: Simulation Examples (Section 6.3). Average number of factors selected for the SRRR,

adaptive SRR and SPLS, based on 30 simulation runs.

n = 100 Parameters Number of Factors

p p0 q r ρx ρe SRRR SPLS aSRRR

30 10 10 3 0 0 3 5 3.1

10 0 0 7.1 8.6 7.4

3 .5 0 3.1 3.2 3.4

3 0 .5 3 5.1 3

100 30 10 3 0 0 3.1 4.2 3

300 30 30 3 0 0 3 7.2 3.1

100 100 10 10 0 0 9.3 5.2 9

Table 4: Yeast Cell Cycle Data. Mean squared prediction error (MSPE) is based on half-splitting

the data into training and test sets. Mean and SE of test errors are reported. Stability results

report the times of each TF being selected over 100 runs of 5-fold CV. False positive rate is the

average percent of false selection over 100 random permutations.

SRRR aSRRR L2SVS RemMap SPLS

MSPE mean .189 .188 .190 .189 .197

(SE) (.001) (.001) (.001) (.001) (.001)

Stability [90, 100] 69 60 59 94 12

(16) (16) (17) (21) (7)

(10, 90) 10 0 36 0 24

[0, 10] 27 46 11 12 70

False Positive 2.10 1.74 2.91 4.39 7.36
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