
R

ChipScope Pro 10.1
Software and Cores
User Guide

UG029 (v10.1) March 24, 2008

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com UG029 (v10.1) March 24, 2008

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2002–2008 Xilinx, Inc. All rights reserved.

XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a
trademark of IBM Corp. and is used under license. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision

04/09/02 1.0 Initial Xilinx release.

10/29/02 5.1

Added new Chapter 3, “Using the ChipScope Pro Core Inserter”;
Old Chapter 3 is new Chapter 4, “Using the ChipScope Pro Analyzer”;
Updated all chapters to be compatible with 5.1i tools;
Revised version number to be in sync with version of tools.

03/06/03 5.2
Updated all chapters to be compatible with 5.2i tools;
Updated version number to reflect version number of tools.

05/15/03 5.2.2

Chapter 1: Added the “Choice of Match Unit Counter” section to Table 1-3;
Chapter 2: Added the “Selecting Match Unit Counter Width” section; updated several
“trigger” screen shots;
Chapter 3: Added “Selecting Match Unit Counter Width” section;
Chapter 4: Updated screen shots in the “Configuring the Target Device(s)” section;
Added “Displaying Configuration Status Information” section;
Updated “Counter” section;
Added notes to the “Depth” and “Samples Per Trigger” sections;
Updated “VIO Console Window” section and most of its screen shots.

8/29/03 6.1
Updated all chapters to be compatible with 6.1i tools;
Updated version number to reflect version number of tools;
Added Chapter 5, “ChipScope Engine JTAG Tcl Interface”

02/13/04 6.2

Updated all chapters to be compatible with 6.2i tools;
Updated version number to reflect version number of tools;
Chapter 2: Added the “Generating the ATC2 Core” section;
Updated all chapters to reflect ATC2 compatibility;
Miscellaneous edits for clarity or continuity.

R

http://www.xilinx.com

UG029 (v10.1) March 24, 2008 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide

06/30/04 6.3

Updated all chapters to be compatible with 6.3i tools;
Updated version number to reflect version number of tools;
Miscellaneous edits for clarity or continuity;
Added MultiPRO cable information.

10/04/04 6.3.1 Minor text corrections.

02/16/05 7.1

Updated all chapters to be compatible with 7.1i tools;
Updated version number to reflect version number of tools;
Updated ATC2 core description to include the new auto-setup and “always on” features;
Added information regarding Analyzer support on Linux and Solaris;
Added information on the client/server remote debug feature;
Added Platform Cable USB cable information;
Miscellaneous edits for clarity or continuity.

10/18/05 8.1

Updated all chapters to be compatible with 8.1i tools;
Updated version number to reflect version number of tools;
Removed support for the MultiLINX and Agilent E5904B cables;
Removed support for the ILA/ATC core.

09/18/06 8.2
Updated all chapters to be compatible with 8.2i tools;
Updated version number to reflect version number of tools.

12/01/06 9.1 Updated all chapters to be compatible with 9.1i tools;
Updated version number to reflect version number of tools.

01/10/07 9.1.01

Updated all chapters to be compatible with 9.1.01i tools;
Updated version number to reflect version number of tools;
Added “Using the Core Inserter with Command Line Implementation” in Chapter 3;
Added “System Monitor” in Chapter 4
Expanded Chapter 5, “ChipScope Engine JTAG Tcl Interface.”

05/30/07 9.2

Updated all chapters to be compatible with 9.2i tools;
Updated version numbers to reflect version number of tools;
Edits throughout to increase clarity and eliminate redundancy;
Removed Windows 2000 support;
Converted Arguments sections to tables in Chapter 5, “ChipScope Engine JTAG Tcl
Interface.”

03/24/08 10.1

Updated all chapters to be compatible with 10.1 tools.
Updated version numbers to reflect version number of tools.
Replaced the ChipScope Core Generator tool with the Xilinx CORE Generator tool.
Chapter 1, “Introduction”: Added Xilinx CORE Generator tool to Table 1-1, page 19;
Updated PC and Linux system requirements in Table 1-9, page 43 and Table 1-10,
page 43, respectively, removed “Host System Requirements for Solaris.” Chapter 4,
“Using the ChipScope Pro Analyzer”: Added “Using Multiple Platform Cable USB
Connections,” page 116 and “External Input,” page 144 section. Chapter 5, “ChipScope
Engine JTAG Tcl Interface”: Updated “Requirements,” page 149 and “CseJtag Tcl
Example,” page 194.

Date Version Revision

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com UG029 (v10.1) March 24, 2008

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 5
UG029 (v10.1) March 24, 2008

Schedule of Tables . 9

Schedule of Figures . 11

Preface: About This User Guide
User Guide Contents . 15
Additional Support Resources . 16
Typographical Conventions . 16

Chapter 1: Introduction
ChipScope Pro Tools Overview. 19
ChipScope Pro Tools Description. 19

Design Flow . 22
Using ChipScope Pro Cores in Embedded Processor and DSP Tool Flows 22

ChipScope Pro Cores Description . 23
ICON Core . 23
ILA Core . 23
IBA/OPB Core . 30
IBA/PLB Core . 35
VIO Core . 39
ATC2 Core . 40
IBERT Core . 41

Synthesis Requirements. 41
System Requirements . 41

Software Tools Requirements . 41
Communications Requirements . 42
Board Requirements . 43
Host System Requirements for Microsoft Windows . 43
Host System Requirements for Linux . 43

Software Installation and Licensing . 44

Chapter 2: Using the CORE Generator Tool
CORE Generator Tool Overview . 45
Locating the ChipScope Pro Cores in CORE Generator . 46
Generating an ICON Core . 47

General ICON Core Parameters . 48
Generating the Core . 50
Using the ICON Core . 50

Generating an ILA Core . 51
ILA Core Trigger and Storage Parameters . 52
ILA Core Trigger Port Parameters. 55
Generating the Core . 57
Using the ILA Core . 58

Table of Contents

http://www.xilinx.com

6 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

R

Generating the VIO Core . 59
General VIO Core Options . 60
Generating the Core . 61
Using the VIO Core . 62

Generating the ATC2 Core . 63
ATC2 Core Acquisition and State Parameters . 64
ATC2 Core Pin and Signal Parameters . 65
ATC2 Core ATCK and ATD Pin Parameters . 66
Generating the Core . 68
Using the ATC2 Core. 68

Chapter 3: Using the ChipScope Pro Core Inserter
Core Inserter Overview. 69
Using the Core Inserter with ISE Project Navigator . 69

ChipScope Definition and Connection Source File . 69
Useful Project Navigator Settings . 71

Using the Core Inserter with Command Line Implementation. 72
Command Line Flow Overview . 72
Create CDC Project Step . 73
Edit CDC Project Step . 73
Insert Cores Step . 74

ChipScope Pro Core Inserter Features . 75
Working with Projects . 75
Specifying Input and Output Files . 77
Project Level Parameters . 78
Core Utilization . 79
Choosing ICON Options . 79
Choosing ILA Trigger Options and Parameters . 80
Choosing ILA Core Capture Parameters . 84
Choosing ATC2 Data Capture Settings . 86
Choosing Net Connections for ILA Signals . 90
Adding Units . 95
Inserting Cores into Netlist . 95
Managing Project Preferences . 95

Chapter 4: Using the ChipScope Pro Analyzer
Analyzer Overview . 99
Analyzer Server Interface . 100
Analyzer Client Interface . 101

Project Tree . 101
Signal Browser . 101
Message Pane . 104
Main Window Area . 104

Analyzer Features . 104
Working with Projects . 104
Printing Waveforms. 105
Importing Signal Names . 111
Exporting Data . 112
Closing and Exiting the Analyzer . 112
Viewing Options . 112

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 7
UG029 (v10.1) March 24, 2008

R

Setting up a Server Host Connection . 113
Opening a Parallel Cable Connection . 114
Opening a Platform Cable USB Connection . 115
Using Multiple Platform Cable USB Connections . 116
Polling the Auto Core Status . 117
Configuring the Target Device(s) . 117
Trigger Setup Window . 121
Waveform Window . 130
Listing Window . 133
Bus Plot Window . 134
VIO Console Window . 136
System Monitor . 141
Help . 145

ChipScope Pro ILA Waveform Toolbar Features . 146
ChipScope Pro Analyzer Command Line Options. 147

Chapter 5: ChipScope Engine JTAG Tcl Interface
Overview . 149

Requirements . 149
Limitations . 149

CseJtag Tcl Command Summary . 150
Command Details . 153

::chipscope::csejtag_session create . 153
::chipscope::csejtag_session destroy . 154
::chipscope::csejtag_session get_api_version . 155
::chipscope::csejtag_session send_message . 156
::chipscope::csejtag_target open . 157
::chipscope::csejtag_target close . 159
::chipscope::csejtag_target lock . 160
::chipscope::csejtag_target unlock . 161
::chipscope::csejtag_target get_lock_status. 162
::chipscope::csejtag_target clean_locks . 163
::chipscope::csejtag_target flush . 164
::chipscope::csejtag_target set_pin . 165
::chipscope::csejtag_target get_pin . 166
::chipscope::csejtag_target pulse_pin . 167
::chipscope::csejtag_target wait_time . 168
::chipscope::csejtag_target get_info . 169
::chipscope::csejtag_tap autodetect_chain . 171
::chipscope::csejtag_tap interrogate_chain . 172
::chipscope::csejtag_tap get_device_count . 173
::chipscope::csejtag_tap set_device_count . 174
::chipscope::csejtag_tap get_irlength . 175
::chipscope::csejtag_tap set_irlength . 176
::chipscope::csejtag_tap get_device_idcode . 177
::chipscope::csejtag_tap set_device_idcode . 178
::chipscope::csejtag_tap navigate . 179
::chipscope::csejtag_tap shift_chain_ir . 180
::chipscope::csejtag_tap shift_device_ir . 182
::chipscope::csejtag_tap shift_chain_dr . 184
::chipscope::csejtag_tap shift_device_dr . 186
::chipscope::csejtag_db add_device_data . 188

http://www.xilinx.com

8 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

R

::chipscope::csejtag_db lookup_device . 189
::chipscope::csejtag_db get_device_name_for_idcode . 190
::chipscope::csejtag_db get_irlength_for_idcode . 191
::chipscope::csejtag_db parse_bsdl . 192
::chipscope::csejtag_db parse_bsdl_file . 193

CseJtag Tcl Example. 194

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 9
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
Table 1-1: ChipScope Pro Tools Description. 19
Table 1-2: ChipScope Pro Features and Benefits . 21
Table 1-3: Trigger Features of the ILA Core . 24
Table 1-4: CoreConnect OPB Protocol Violation Error Description(1) 30
Table 1-5: OPB Signal Groups . 33
Table 1-6: PLB Signal Groups . 36
Table 1-7: Design Parameter Changes Requiring Resynthesis . 41
Table 1-8: ChipScope Pro Download Cable Support . 42
Table 1-9: PC System Requirements for ChipScope Pro 10.1 Tools 43
Table 1-10: Linux Requirements for ChipScope Pro 9.2i Tools . 43

Chapter 2: Using the CORE Generator Tool
Table 2-1: ILA Trigger Match Unit Types . 56

Chapter 3: Using the ChipScope Pro Core Inserter
Table 3-1: ILA Trigger Match Unit Types . 82

Chapter 4: Using the ChipScope Pro Analyzer
Table 4-1: Cores Supported by the Analyzer Tool . 99
Table 4-2: Operating System Support for the ChipScope Pro Analyzer 100
Table 4-3: ChipScope Pro Analyzer Server Command Line Options. 100
Table 4-4: Configuration of Multiple Client Instances . 116

Chapter 5: ChipScope Engine JTAG Tcl Interface
Table 5-1: CseJtag Tcl ::chipscope:: Commands . 150
Table 5-2: Summary of ::chipscope::csejtag_session Subcommands 150
Table 5-3: Summary of ::chipscope::csejtag_db Subcommands . 151
Table 5-4: Summary of ::chipscope::csejtag_target Subcommands 151
Table 5-5: Summary of ::chipscope::csejtag_tap Subcommands . 152
Table 5-6: Arguments for Subcommand ::chipscope::csejtag_session create 153
Table 5-7: Arguments for Subcommand ::chipscope::csejtag_session create 154
Table 5-8: Arguments for Subcommand ::chipscope::csejtag_session send_message. . 156
Table 5-9: Arguments for Subcommand ::chipscope::csejtag_target open 157
Table 5-10: Argument targetName and [optional args...] combinations 157
Table 5-11: Arguments for Subcommand ::chipscope::csejtag_target close 159
Table 5-12: Arguments for Subcommand ::chipscope::csejtag_target lock 160
Table 5-13: Arguments for Subcommand ::chipscope::csejtag_target unlock. 161

Schedule of Tables

http://www.xilinx.com

10 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

R

Table 5-14: Arguments for Subcommand ::chipscope::csejtag_target get_lock_status . 162
Table 5-15: Arguments for Subcommand ::chipscope::csejtag_target clean_locks 163
Table 5-16: Arguments for Subcommand ::chipscope::csejtag_target flush 164
Table 5-17: Arguments for Subcommand ::chipscope::csejtag_target set_pin 165
Table 5-18: Arguments for Subcommand ::chipscope::csejtag_target get_pin 166
Table 5-19: Arguments for Subcommand ::chipscope::csejtag_target pulse_pin 167
Table 5-20: Arguments for Subcommand ::chipscope::csejtag_target wait_time 168
Table 5-21: Arguments for Subcommand ::chipscope::csejtag_target get_info 169
Table 5-22: Arguments for Subcommand ::chipscope::csejtag_tap autodetect_chain . . 171
Table 5-23: Arguments for Subcommand ::chipscope::csejtag_tap interrogate_chain . 172
Table 5-24: Arguments for Subcommand ::chipscope::csejtag_tap get_device_count. . 173
Table 5-25: Arguments for Subcommand ::chipscope::csejtag_tap set_device_count . . 174
Table 5-26: Arguments for Subcommand ::chipscope::csejtag_tap get_irlength 175
Table 5-27: Arguments for Subcommand ::chipscope::csejtag_tap set_irlength 176
Table 5-28: Arguments for Subcommand ::chipscope::csejtag_tap get_device_idcode. 177
Table 5-29: Arguments for Subcommand ::chipscope::csejtag_tap set_device_idcode . 178
Table 5-30: Arguments for Subcommand ::chipscope::csejtag_tap navigate. 179
Table 5-31: Arguments for Subcommand ::chipscope::csejtag_tap shift_chain_ir. 180
Table 5-32: Arguments for Subcommand ::chipscope::csejtag_tap shift_device_ir 182
Table 5-33: Arguments for Subcommand ::chipscope::csejtag_tap shift_chain_dr 184
Table 5-34: Arguments for Subcommand ::chipscope::csejtag_tap shift_device_dr . . . 186
Table 5-35: Arguments for Subcommand ::chipscope::csejtag_db add_device_data. . . 188
Table 5-36: Arguments for Subcommand ::chipscope::csejtag_db lookup_device 189
Table 5-37: Arguments for Subcommand ::chipscope::csejtag_db get_device_name_for_idcode

190
Table 5-38: Arguments for Subcommand ::chipscope::csejtag_db get_irlength_for_idcode 191
Table 5-39: Arguments for Subcommand ::chipscope::csejtag_db parse_bsdl 192
Table 5-40: Arguments for Subcommand ::chipscope::csejtag_db parse_bsdl_file 193

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 11
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
Figure 1-1: ChipScope Pro System Block Diagram . 20
Figure 1-2: ChipScope Pro Tools Design Flow . 22
Figure 1-3: ILA Core Connection Example . 27
Figure 1-4: ATC2 Core and System Block Diagram. 40

Chapter 2: Using the CORE Generator Tool
Figure 2-1: Locating the ChipScope Pro Cores in CORE Generator. 46
Figure 2-2: Selecting the ICON Core . 47
Figure 2-3: ICON Core Parameters . 48
Figure 2-4: List of Generated ICON Core Files . 50
Figure 2-5: Selecting the ILA Core . 51
Figure 2-6: ILA Core Trigger and Storage Parameters . 52
Figure 2-7: Trigger Sequencer Block Diagram (with 16 levels and 16 match units) 53
Figure 2-8: ILA Core Trigger Port Options . 55
Figure 2-9: List of Generated ILA Core Files . 57
Figure 2-10: Selecting the VIO Core . 59
Figure 2-11: VIO Core General Options . 60
Figure 2-12: List of Generated VIO Core Files . 61
Figure 2-13: Selecting the ATC2 Core. 63
Figure 2-14: ATC2 Core Acquisition and State Parameters . 64
Figure 2-15: ATC2 Core Pin and Signal Parameters . 65
Figure 2-16: ATC2 Core ATCK and ATD Pin Parameters . 66
Figure 2-17: List of Generated ATC2 Core Files . 68

Chapter 3: Using the ChipScope Pro Core Inserter
Figure 3-1: Creating a New .cdc Source File . 70
Figure 3-2: The .cdc Source File . 70
Figure 3-3: Command Line Core Inserter Flow . 72
Figure 3-4: Create CDC Project Step . 73
Figure 3-5: Edit CDC Project Step . 73
Figure 3-6: Insert Cores Step . 74
Figure 3-7: Blank Core Inserter Project . 75
Figure 3-8: Core Inserter Project with Files Specified. 77
Figure 3-9: Core Inserter as Launched from Project Navigator . 78
Figure 3-10: ICON Options. 79
Figure 3-11: ILA Core Trigger Parameters . 80
Figure 3-12: Trigger Sequencer Block Diagram with 16 Levels and 16 Match Units . . . 83

Schedule of Figures

http://www.xilinx.com

12 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

R

Figure 3-13: ILA Core Capture Parameters . 84
Figure 3-14: ILA Core Data Same As Trigger Parameters. 85
Figure 3-15: ATC2 Core STATE Mode Data Capture Settings . 86
Figure 3-16: ATC2 Core TIMING Mode Data Capture Settings . 86
Figure 3-17: ILA Net Connections . 90
Figure 3-18: ATC2 Net Connections . 91
Figure 3-19: Select Net Dialog Box . 92
Figure 3-20: Specifying Data Connections . 94
Figure 3-21: Core Inserter Tools Preference Settings . 95
Figure 3-22: Core Inserter ISE Integration Preference Settings. 96
Figure 3-23: Core Inserter Miscellaneous Preference Settings . 96

Chapter 4: Using the ChipScope Pro Analyzer
Figure 4-1: Example Token File . 103
Figure 4-2: Example Waveform with Tokens . 103
Figure 4-3: Saving a Project . 104
Figure 4-4: Example Waveform . 105
Figure 4-5: Selecting the File Print Option . 105
Figure 4-6: Print Wizard (1 of 3). 106
Figure 4-7: Waveform Printout Footer Example . 107
Figure 4-8: Print Wizard (2 of 3). 108
Figure 4-9: Expanding Buses in Print Wizard (2 of 3) . 109
Figure 4-10: Print Wizard (3 of 3) for Sending to a PDF File . 110
Figure 4-11: Print Wizard (3 of 3) for Sending to a Printer . 110
Figure 4-12: Page Setup Window. 110
Figure 4-13: Blank Signal Import Dialog Box . 111
Figure 4-14: Export Signals Dialog Box . 112
Figure 4-15: Server Settings for Local Mode . 113
Figure 4-16: Server Settings for Remote Mode . 113
Figure 4-17: Opening a Parallel Cable Connection . 114
Figure 4-18: Opening a Platform Cable USB Connection . 115
Figure 4-19: Boundary Scan (JTAG) Setup Window . 117
Figure 4-20: Advanced JTAG Chain Parameters Setup Window 118
Figure 4-21: Device Menu Options . 118
Figure 4-22: Selecting a Bitstream . 118
Figure 4-23: Opening a Configuration File . 119
Figure 4-24: Device USERCODE and IDCODE . 120
Figure 4-25: Displaying Device Configuration Status . 120
Figure 4-26: Displaying Device Instruction Register Status . 121
Figure 4-27: Opening New Unit Windows . 121
Figure 4-28: Trigger Setup Window with Only Match Functions Expanded 122
Figure 4-29: Trigger Setup Window with All Sections Expanded 122
Figure 4-30: Capture Settings . 122

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 13
UG029 (v10.1) March 24, 2008

R

Figure 4-31: Storage Qualification Condition Set to Capture All Data 124
Figure 4-32: Storage Qualification Condition Using Boolean Equation 124
Figure 4-33: Setting the Match Functions . 125
Figure 4-34: Setting up the Match Counter . 126
Figure 4-35: Viewing the Trigger Condition . 127
Figure 4-36: Setting the Trigger Condition Boolean Equation . 127
Figure 4-37: Setting the Trigger Condition Sequencer . 128
Figure 4-38: Reordering Buses or Signals in the Waveform . 130
Figure 4-39: Zoom Area Using the Automatic Popup Menu . 131
Figure 4-40: Zoom to Sample Range . 131
Figure 4-41: Centering the Waveform on a Marker . 132
Figure 4-42: The Listing View . 133
Figure 4-43: The Bus Plot Window: Data vs. Time . 134
Figure 4-44: The Bus Plot Window: Data vs. Data . 135
Figure 4-45: The VIO Console Window . 136
Figure 4-46: The Type Selection Menu . 138
Figure 4-47: The Pulse Train Dialog . 139
Figure 4-48: VIO Toolbar and Menu Options. 140
Figure 4-49: System Monitor Project Tree Node and Signal Browser 141
Figure 4-50: System Monitor Console Showing Valid Sensor Data. 142
Figure 4-51: System Monitor Console Showing Invalid Sensor Data 143
Figure 4-52: System Monitor Setup Logging Window . 144
Figure 4-53: Main ChipScope Pro Analyzer Toolbar Display . 146

Chapter 5: ChipScope Engine JTAG Tcl Interface

http://www.xilinx.com

14 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

R

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 15
UG029 (v10.1) March 24, 2008

R

Preface

About This User Guide

This user guide provides users with information for using the ChipScope™ Pro IP cores
and tools:

• Integrated Controller core (ICON)

• Integrated Logic Analyzer core (ILA)

• Virtual Input/Output core (VIO)

• Integrated Bit Error Ratio core (IBERT)

• Agilent Trace Core 2 (ATC2)

• Xilinx CORE Generator™ tool (replaces the ChipScope Core Generator tool)

• Core Inserter tool

• Analyzer tool

The tools integrate the IP core and key hardware components with the target design inside
Virtex™, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, Spartan™-II, Spartan-IIE,
Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP devices (including the QPro™
variants of these families). In this document, these devices are referred to collectively as the
supported devices.

For detailed information on how to generate the Integrated Bit Error Ratio Tester (IBERT),
see UG213, ChipScope Pro 10.1 Serial I/O Toolkit User Guide at
http://www.xilinx.com/literature/literature-chipscope.htm.

User Guide Contents
This user guide contains the following chapters:

• Chapter 1, “Introduction,” describes the ChipScope Pro tools. These tools integrate
key logic analyzer hardware components with the target design inside the supported
devices. The tools communicate with these components and provide the designer
with a complete logic analyzer.

• Chapter 2, “Using the CORE Generator Tool,” explains how to use this tool to
generate the following ChipScope Pro cores:

♦ Integrated Controller core (ICON)

♦ Integrated Logic Analyzer core (ILA)

♦ Virtual Input/Output core (VIO)

♦ Integrated Bit Error Ratio core (IBERT)

♦ Agilent Trace Core 2 (ATC2)

After generating the cores, you can use the instantiation templates (that are provided)
to quickly and easily insert the cores into VHDL or Verilog designs. After completing

http://www.xilinx.com
http://www.xilinx.com/literature/literature-chipscope.htm

16 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Preface: About This User Guide
R

the instantiation and running synthesis, you can implement the design using the
ISE™ 10.1 implementation tools.

• Chapter 3, “Using the ChipScope Pro Core Inserter,” explains how to use this post-
synthesis tool to generate a netlist that includes the user design as well as ICON, ILA,
and ATC2 cores as needed, parameterized accordingly. The Core Inserter gives you
the flexibility to quickly and easily use the debug functionality to analyze an already
synthesized design, and without any HDL instantiation.

• Chapter 4, “Using the ChipScope Pro Analyzer,” explains how to use this tool which
interfaces directly to the ICON, ILA, IBA/OPB, IBA/PLB, VIO, IBERT, and ATC2
cores (collectively called the ChipScope Pro cores). You can configure your device,
choose triggers, setup the console, and view the results of the capture on the fly. The
data views and triggers can be manipulated in many ways, providing an easy and
intuitive interface to determine the functionality of the design.

• Chapter 5, “ChipScope Engine JTAG Tcl Interface,” explains how to use this JTAG
scripting interface which provides Tcl scripting access to the ChipScope Parallel cable
JTAG communication library. The purpose of Tcl/JTAG is to provide a simple
scripting system to access basic JTAG functions. In a few lines of Tcl script, you should
be able to scan and manipulate the JTAG chain through standard Xilinx cables.

Additional Support Resources
To search the database of silicon and software questions and answers, or to create a
technical support case in WebCase, see the Xilinx website at:
http://www.xilinx.com/support.

Typographical Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Italic font

References to other documents See the Virtex-5 Configuration
Guide for more information.

Emphasis in text The address (F) is asserted after
clock event 2.

Underlined Text Indicates a link to a web page http://www.xilinx.com/virtex5

Convention Meaning or Use Example

Blue text
Cross-reference link to a location
in the current document

See the section “User Guide
Contents” for details.

Refer to “Title Formats” in
Chapter 1 for details.

http://www.xilinx.com
http://www.xilinx.com/virtex5
http://www.xilinx.com/support

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 17
UG029 (v10.1) March 24, 2008

Typographical Conventions
R

Red text
Cross-reference link to a location
in another document

See Figure 2-5 in the Virtex-5
FPGA User Guide.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com
for the latest documentation.

Convention Meaning or Use Example

http://www.xilinx.com

18 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Preface: About This User Guide
R

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 19
UG029 (v10.1) March 24, 2008

R

Chapter 1

Introduction

ChipScope Pro Tools Overview
As the density of FPGA devices increases, so does the impracticality of attaching test
equipment probes to these devices under test. The ChipScope™ Pro tools integrate key
logic analyzer and other test and measurement hardware components with the target
design inside the following (hereinafter called supported devices): Virtex™, Virtex-E
Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, Spartan™-II, Spartan-IIE, Spartan-3, Spartan-3E,
Spartan-3A, and Spartan-3A DSP devices (including the QPro™ variants of these families).
The tools communicate with these components and provide the designer with a robust
logic analyzer solution.

ChipScope Pro Tools Description
Table 1-1gives a brief description of the various ChipScope Pro software tools and cores.

Table 1-1: ChipScope Pro Tools Description

Tool Description

Xilinx CORE Generator™ Tool(1) Provides core generation capability for the ICON, ILA, VIO, and ATC2 cores. The
Xilinx CORE Generator is part of the ISE software tool installation.

IBERT Core Generator
Provides full design generation capability for the IBERT core. The user chooses the
RocketIO transceivers and parameters governing the design, and the Core
Generator uses the ISE™ toolset to produce a configuration file.(2)

Core Inserter
Automatically inserts the ICON, ILA, and ATC2 cores into the user’s synthesized
design.

Analyzer

Provides device configuration, trigger setup, and trace display for the ILA,
IBA/OPB, IBA/PLB, VIO, and IBERT cores. The various cores provide the trigger,
control, and trace capture capability. The ICON core communicates to the dedicated
Boundary Scan pins.

Engine JTAG (CseJtag) Tcl
Scripting Interface

The CseJtag scriptable Tcl command interface makes it possible to interact with
devices in a JTAG chain from a Tcl shell(2).

Notes:
1. The ICON, ILA, VIO, and ATC2 cores are now available through the Xilinx CORE Generator tool. The ChipScope Pro Core

Generator is now only used to generate the IBERT core.
2. For detailed information on how to generate the IBERT core, see UG213, ChipScope Pro Serial I/O Toolkit User Guide a

http://www.xilinx.com/literature/literature-chipscope.htm.
3. Tcl stands for Tool Command Language. The CseJtag Tcl interface requires the Tcl shell program that is included in the ISE 10.1 tool

installation ($XILINX/bin/nt/xtclsh.exe) or in the ActiveTcl 8.4 shell available from ActiveState (www.activestate.com).

http://www.xilinx.com
http://www.xilinx.com/literature/literature-chipscope.htm
http://www.activestate.com

20 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

Figure 1-1 shows a block diagram of a ChipScope Pro system. Users can place the ICON,
ILA, VIO, and ATC2 cores (collectively called the ChipScope Pro cores) into their design by
generating the cores with the Core Generator and instantiating them into the HDL source
code. You can also insert the ICON, ILA, and ATC2 cores directly into the synthesized
design netlist using the Core Inserter tool. The design is then placed and routed using the
ISE 10.1 implementation tools. Next, the user downloads the bitstream into the device
under test and analyzes the design with the Analyzer software.

The Analyzer tool supports the following download cables for communication between
the PC and the devices in the JTAG Boundary Scan chain:

• Platform Cable USB

• Parallel Cable IV

• Parallel Cable III

• MultiPRO (JTAG mode only)

X-Ref Target - Figure 1-1

Figure 1-1: ChipScope Pro System Block Diagram

Board-Under-Test

Host Computer with
ChipScope Pro Software

JTAG
Connections

cs_pro_sys_blk_diag

ChipScope
Pro

Target Device Under Test

User
Function

User
Function

User
Function

ILA Pro

ICON Pro

ILA Pro

ILA Pro

Parallel
Cable

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 21
UG029 (v10.1) March 24, 2008

ChipScope Pro Tools Description
R

The Analyzer and cores contain many features that FPGA designers need for thoroughly
verifying their logic (Table 1-2). User-selectable data channels range from 1 to 1024 and the
sample buffer sizes range from 256 to 131,072 samples. Users can change the triggers in real
time without affecting their logic. The Analyzer leads designers through the process of
modifying triggers and analyzing the captured data.

Table 1-2: ChipScope Pro Features and Benefits

Feature Benefit

1 to 1024 user-selectable data channels
Accurately captures wide data bus
functionality.

User-selectable sample buffers ranging in
size from 256 to 131,072 samples

Large sample size increases accuracy and
probability of capturing infrequent events.

Up to 16 separate trigger ports, each with a
user-selectable width of 1 to 256 channels (for
a total of up to 4096 trigger channels)

Multiple separate trigger ports increase the
flexibility of event detection and reduce the
need for sample storage.

Up to 16 separate match units per trigger
port (up to 16 total match units) for a total of
16 different comparisons per trigger
condition

Multiple match units per trigger ports
increase the flexibility of event detection
while conserving valuable resources.

All data and trigger operations are
synchronous to the user clock at rates over
500 MHz

Capable of high-speed trigger event
detection and data capture.

Trigger conditions implement either a
boolean equation or a trigger sequence of up
to 16 match functions

Can combine up to 16 trigger port match
functions using a boolean equation or a
16-level trigger sequencer.

Data storage qualification condition
implements a boolean equation of up to 16
match functions

Can combine up to 16 trigger port match
functions using a boolean equation to
determine which data samples will be
captured and stored in on-chip memory.

Trigger and storage qualification conditions
are in-system changeable without affecting
the user logic

No need to single step or stop a design for
logic analysis.

Easy-to-use graphical interface
Guides users through selecting the correct
options.

Up to 15 independent ILA, IBA/OPB,
IBA/PLB, VIO or ATC2 cores per device

Can segment logic and test smaller sections
of a large design for greater accuracy.

Multiple trigger settings
Records duration and number of events
along with matches and ranges for greater
accuracy and flexibility.

Downloadable from the Xilinx Web site
Tools are easily accessible from the
ChipScope Suite.

http://www.xilinx.com

22 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

Design Flow
The tools design flow (Figure 1-2) merges easily with any standard FPGA design flow that
uses a standard HDL synthesis tool and the ISE 10.1 implementation tools.

Using ChipScope Pro Cores in Embedded Processor and DSP Tool Flows
The cores (ICON, ILA, IBA/OPB, IBA/PLB, VIO, and ATC2) can also be used in the EDK
and System Generator for DSP tool flows for embedded processor and DSP designs,
respectively. For information on how to use the ChipScope Pro cores, see:

• EDK tool flow at:

♦ Platform Studio online help and refer to Debugging Hardware Using ChipScope Pro

• System Generator for DSP tool flow at:

♦ System Generator User Guide and refer to Using ChipScope Pro Analyzer for Real-
time Hardware Debugging.

X-Ref Target - Figure 1-2

Figure 1-2: ChipScope Pro Tools Design Flow

ICON, ILA,
IBA/OPB,
IBA/PLB,
VIO, or
ATC2 cores

Generate...

ICON, ILA, and/or
ATC2 cores into
synthesized design
(.ngc or EDIF netlist)

Insert...

cores into HDL
source

Instantiate...

buses and
internal signals
to cores

Connect...

design with
cores in it

Synthesize...

design
Implement...

ChipScope Pro
Core Generator

ISE

ChipScope Pro
Core Inserter

waveform

trigger

bitstream

View...

Set...

Select...

or...

design without
instantiating
ChipScope cores

Synthesize...

cspro_tools_design_flow_100505

http://www.xilinx.com
http://www.xilinx.com/edk
http://www.xilinx.com/support/sw_manuals/sysgen_ug.pdf

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 23
UG029 (v10.1) March 24, 2008

ChipScope Pro Cores Description
R

ChipScope Pro Cores Description

ICON Core
All of the cores use the JTAG Boundary Scan port to communicate to the host computer via
a JTAG download cable. The ICON core provides a communications path between the
JTAG Boundary Scan port of the target FPGA and up to 15 ILA, IBA/OPB, IBA/PLB, VIO,
and/or ATC2 cores (as shown in Figure 1-1, page 20). For devices not of the Virtex-4 or
Virtex-5 families, the ICON core uses either the USER1 or USER2 JTAG Boundary Scan
instructions for communication via the BSCAN_VIRTEX primitive. The unused USER1 or
USER2 scan chain of the BSCAN_VIRTEX primitive can also be exported for use in your
application, if needed.

For Virtex-4 and Virtex-5 devices, the ICON core uses any one of the USER1, USER2,
USER3 or USER4 scan chains available via the BSCAN_VIRTEX primitives. In Virtex-4 and
Virtex-5 devices, it is not necessary to export unused USER scan chains because each
BSCAN_VIRTEX primitive implements a single scan chain.

ILA Core
The ILA core is a customizable logic analyzer core that can be used to monitor any internal
signal of your design. Since the ILA core is synchronous to the design being monitored, all
design clock constraints that are applied to your design are also applied to the components
inside the ILA core. The ILA core consists of three major components:

• Trigger input and output logic:

♦ Trigger input logic detects elaborate trigger events

♦ Trigger output logic triggers external test equipment and other logic

• Data capture logic:

♦ ILA cores capture and store trace data information using on-chip block RAM
resources

• Control and status logic:

♦ Manages the operation of the ILA core

http://www.xilinx.com

24 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

ILA Trigger Input Logic

The triggering capabilities of the ILA core include many features that are necessary for
detecting elaborate trigger events. These features are described in Table 1-3 (which spans
multiple pages).

Table 1-3: Trigger Features of the ILA Core

Feature Description

Wide Trigger Ports Each trigger port can be 1 to 256 bits wide.

Multiple Trigger Ports

Each ILA core can have up to 16 trigger ports. The ability to
support multiple trigger ports is necessary in complex systems
where different types of signals or buses need to be monitored
using separate match units.

Multiple Match Units per
Trigger Port

Each trigger port can be connected to up to 16 match units.
This feature enables multiple comparisons to be performed on
the trigger port signals.

Boolean Equation Trigger
Condition

The trigger condition can consist of a Boolean AND or OR
equation of up to 16 match unit functions.

Multi-Level Trigger
Sequencer

The trigger condition can consist of a multi-level trigger
sequencer of up to 16 match unit functions.

Boolean Equation Storage
Qualification Condition

The storage qualification condition can consist of a Boolean
AND or OR equation of up to 16 match unit functions.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 25
UG029 (v10.1) March 24, 2008

ChipScope Pro Cores Description
R

Choice of Match Unit Types

The match unit connected to each trigger port can be one of the
following types:

• Basic comparator:
♦ Performs ‘=’ and ‘<>’ comparisons.
♦ Compares up to 19 bits per slice in Virtex-5 devices.
♦ Compares up to 8 bits per slice in all other supported

devices.
• Basic comparator w/edges:

♦ Performs ‘=’ and ‘<>’ comparisons.
♦ Detects high-to-low and low-to-high bit-wise transitions.
♦ Compares up to 8 bits per slice in Virtex-5 devices.
♦ Compares up to 4 bits per slice in all other supported

devices.
• Extended comparator:

♦ Performs ‘=’, ‘<>’, ‘>’, ‘>=’, ‘<‘, and ‘<=’ comparisons.
♦ Compares up to 8 bits per slice in Virtex-5 devices.
♦ Compares up to 2 bits per slice in all other supported

devices.
• Extended comparator w/edges:

♦ Performs ‘=’, ‘<>’, ‘>’, ‘>=’, ‘<‘, and ‘<=’ comparisons.
♦ Detects high-to-low and low-to-high bit-wise transitions.
♦ Compares up to 8 bits per slice in Virtex-5 devices.
♦ Compares up to 2 bits per slice in all other supported

devices.
• Range comparator:

♦ Performs ‘=’, ‘<>’, ‘>’, ‘>=’, ‘<‘, ‘<=’, ‘in range’, and ‘not
in range’ comparisons.

♦ Compares up to 4 bits per slice in Virtex-5 devices.
♦ Compares up to 1 bit per slice in all other supported

devices.
• Range comparator w/edges:

♦ Performs ‘=’, ‘<>’, ‘>’, ‘>=’, ‘<‘, ‘<=’, ‘in range’, and ‘not
in range’ comparisons.

♦ Detects high-to-low and low-to-high bit-wise transitions.
♦ Compares up to 4 bits per slice in Virtex-5 devices.
♦ Compares up to 1bit per slice in all other supported

devices.

All match units connected to a given trigger port are the same
type.

Table 1-3: Trigger Features of the ILA Core

Feature Description

http://www.xilinx.com

26 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

Choice of Match Function
Event Counter

All the match units of a trigger port can be configured with an
event counter, with a selectable size of 1 to 32 bits. This counter
can be configured at run time to count events in the following
ways:

• Exactly n occurrences

♦ Matches only when exactly n consecutive or non-
consecutive events occur

• At least n occurrences

♦ Matches and stays asserted once n consecutive or
non-consecutive events occur

• At least n consecutive occurrences

♦ Matches once n consecutive events occur, and
stays asserted until the match function is not
satisfied.

Trigger Output Port

The internal trigger condition of the ILA core can be accessed
using the optional trigger output port. This signal can be used
as a trigger for external test equipment by attaching the signal
to an output pin.

However, it can also be used by internal logic as an interrupt,
a trigger, or to cascade multiple ILA cores together.

The trigger output port will have a determined amount of
latency depending on the core type:

• ILA core = 10 clock cycles
• IBA/OPB core = 15 clock cycles
• IBA/PLB core = 10 clock cycles

The shape (level or pulse) and sense (active-High or
active-Low) of the trigger output can be controlled at run-
time.

Table 1-3: Trigger Features of the ILA Core

Feature Description

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 27
UG029 (v10.1) March 24, 2008

ChipScope Pro Cores Description
R

Using Multiple Trigger Ports

The ability to monitor different kinds of signals and buses in the design requires the use of
multiple trigger ports. For example, if you are instrumenting an internal system bus in
your design that is made up of control, address, and data signals, then you could assign a
separate trigger port to monitor each signal group (as shown in Figure 1-3).

If you connected all of these different signals and buses to a single trigger port, you would
not be able to monitor for individual bit transitions on the CE, WE, and OE signals while
looking for the Address bus to be in a specified range. The flexibility of being able to
choose from different types of match units allows you to customize the ILA cores to your
triggering needs while keeping resource usage to a minimum.

X-Ref Target - Figure 1-3

Figure 1-3: ILA Core Connection Example

Match Unit M0
(Basic w/edges)

Match Unit M1
(Basic w/edges)

Match Unit M2
(Basic)

Match Unit M3
(Basic)

Match Unit M4
(Range)

Match Unit M5
(Basic w/edges)

Trigger
Condition

Storage
Qualification

Condition

Data
Capture
Control

Data
Capture
Memory

TRIG0

TRIG_OUT

TRIG1

TRIG2

TRIG3

ILA Core

Interrupt
Clock

CE, WE, OE

Address

Data

Ext. Trigger

3

24

32

1

60

ila_pro_connection_example_070704

n

http://www.xilinx.com

28 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

Using Trigger and Storage Qualification Conditions

The ILA, IBA/OPB, and IBA/PLB cores implement both trigger and storage qualification
condition logic. The trigger condition is a Boolean or sequential combination of events that
is detected by match unit comparators that are attached to the trigger ports of the core. The
trigger condition is used to mark a distinct point of origin in the data capture window and
can be located at the beginning, the end, or anywhere within the data capture window.

Similarly, the storage qualification condition is also a Boolean combination of events that is
detected by match unit comparators that are subsequently attached to the trigger ports of
the core. However, the storage qualification condition differs from the trigger condition in
that it evaluates trigger port match unit events to decide whether or not to capture and
store each individual data sample. The trigger and storage qualification conditions can be
used together to define when to start the capture process and what data is captured.

In the ILA core example shown in Figure 1-3, page 27, suppose you want to do the
following:

• Trigger on the first memory write cycle (CE = rising edge, WE = 1, OE = 0) to Address
= 0xFF0000;

• Capture only memory read cycles (CE = rising edge, WE = 0, OE = 1) from Address =
0x23AACC where the Data values are between 0x00000000 and 0x1000FFFF;

To implement these conditions successfully, you would need to make sure that both the
TRIG0 and TRIG1 trigger ports each have two match units attached to them: one for the
trigger condition and one for the storage qualification condition. Here is how you would
set up the trigger and storage qualification equations and each individual match unit to
satisfy the conditions above:

• Trigger Condition = M0 && M2, where:

♦ M0[2:0] = CE, WE, OE = “R10” (where ‘R’ means “rising edge”)

♦ M2[23:0] = Address = “FF0000”

• Storage Qualification Condition = M1 && M3 && M4, where:

♦ M1[2:0] = CE, WE, OE = “R10” (where ‘R’ means “rising edge”)

♦ M3[23:0] = Address = “23AACC”

♦ M4[31:0] = Data = in the range of 0x00000000 through 0x1000FFFF

The triggering and storage qualification capabilities of the ILA, IBA/OPB and IBA/PLB
cores allow you to locate and capture exactly the information that you want without
wasting valuable on-chip memory resources.

ILA Trigger Output Logic

The ILA core implements a trigger output port called TRIG_OUT. The TRIG_OUT port is
the output of the trigger condition that is set up at run-time using the Analyzer. The shape
(level or pulse) and sense (active-High or active-Low) of the trigger output can also be
controlled at run-time. The latency of the TRIG_OUT port relative to the input trigger ports
is 10 clock cycles.

The TRIG_OUT port is very flexible and has many uses. You can connect the TRIG_OUT
port to a device pin in order to trigger external test equipment such as oscilloscopes and
logic analyzers. Connecting the TRIG_OUT port to an interrupt line of an embedded
PowerPC™ or MicroBlaze™ processor can be used to cause a software event to occur. You
can also connect the TRIG_OUT port of one core to a trigger input port of another core in
order to expand the trigger and data capture capabilities of your on-chip debug solution.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 29
UG029 (v10.1) March 24, 2008

ChipScope Pro Cores Description
R

ILA Data Capture Logic

Each ILA core can capture data using on-chip block RAM resources independently from all
other cores in the design. Each ILA core can also capture data using one of two capture
modes: Window and N samples.

Window Capture Mode

In Window capture mode, the sample buffer can be divided into one or more equal-sized
sample windows. The window capture mode uses a single trigger condition event (i.e., a
Boolean combination of the individual trigger match unit events) to collect enough data to
fill a sample window.

In the case where the depth of the sample windows is a power of 2 up to 131,072 samples,
the trigger position can be set to the beginning of the sample window (trigger first, then
collect), the end of the sample window (collect until the trigger event), or anywhere in
between.

In the other case where the window depth is not a power of 2, the trigger position can only
be set to the beginning of the sample window.

Once a sample window has been filled, the trigger condition of the ILA core is
automatically re-armed and continues to monitor for trigger condition events. This process
is repeated until all sample windows of the sample buffer are filled or the user halts the
ILA core.

N Samples Capture Mode

The N Samples capture mode is similar to the Window capture mode except for two major
differences:

• The number of samples per window can be any integer N from 1 to the sample buffer
size minus 1

• The trigger position must always be at position 0 in the window

The N sample capture mode is useful for capturing the exact number of samples needed
per trigger without wasting valuable capture storage resources.

Trigger Marks

The data sample in the sample window that coincides with a trigger event is tagged with
a trigger mark. This trigger mark tells the Analyzer the position of the trigger within the
window. This trigger mark consumes one extra bit per sample in the sample buffer.

Data Port

The ILA core provides the capability to capture data on a port that is separate from the
trigger ports that are used to perform trigger functions. This feature is useful for limiting
the amount of data to be captured to a relatively small amount since it is not always useful
to capture and view the same information that is used to trigger the core.

However, in many cases it is useful to capture and view the same data that is used to
trigger the core. In this case, you can choose for the data to consist of one or more of the
trigger ports. This feature allows you to conserve resources while providing the flexibility
to choose what trigger information is interesting enough to capture.

http://www.xilinx.com

30 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

ILA Control and Status Logic

The ILA contains a modest amount of control and status logic that is used to maintain the
normal operation of the core. All logic necessary to properly identify and communicate
with the ILA core is implemented by this control and status logic.

IBA/OPB Core
The IBA/OPB core is a specialized logic analyzer core specifically designed to debug
embedded systems that contain the IBM CoreConnect On-Chip Peripheral Bus (OPB). The
IBA/OPB core consists of four major components:

• A protocol violation monitor:

♦ Detects and reports up to 32 violations of the IBM CoreConnect OPB bus protocol

• Trigger input and output logic:

♦ Trigger input logic detects OPB bus and other user-defined events

♦ Trigger output logic triggers external test equipment and other logic

• Data capture logic:

♦ Captures and stores trace data information using on-chip block RAM resources

• Control and status logic:

♦ Manages the operation of the IBA/OPB core

Note: A description on how to generate and use the IBA/OPB core in an embedded processor
design can be found in DS282, ChipScope OPB IBA, and the EDK Platform Studio online help.

IBA/OPB Protocol Violation Monitor Logic

The IBA/OPB core includes a protocol violation monitor that can detect up to 32 different
IBM CoreConnect OPB protocol violation errors. The protocol violations that can be
detected by the IBA/OPB core are shown in Table 1-4 (which spans multiple pages).

Table 1-4: CoreConnect OPB Protocol Violation Error Description(1)

Priority Bit Encoding Error Description

1 011010 1.19.2
OPB_DBus changed state during a write
operation before receipt of OPB_xferAck.

2 011001 1.19.1
OPB_ABus changed state during an operation
before receipt of OPB_xferAck.

3 001100 1.6.1
OPB_ABus: No Mx_Select signal active and non
zero OPB_ABus.

4 001101 1.7.1
OPB_DBus: No Mx_Select signal active and non
zero OPB_DBus.

5 010101 1.13.1
OPB_xferAck: OPB_xferAck active with no
Mx_select.

6 010110 1.13.2
OPB_xferAck: OPB_xferAck did not activate
within 16 cycles of OPB_select.

7 010111 1.15.1
OPB_errAck: OPB_errAck active with no
Mx_select.

http://www.xilinx.com
http://www.xilinx.com/edk
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/chipscope_opb_iba.pdf

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 31
UG029 (v10.1) March 24, 2008

ChipScope Pro Cores Description
R

8 000100 1.4.0
OPB_retry: OPB_retry and OPB_xferAck active in
the same cycle.

9 000111 1.4.3
OPB_retry: OPB_retry active for more than a
single cycle.

10 000000 1.2.1
OPB_MxGrant: More than 1 OPB_MxGrant
signals active in same cycle.

11 000001 1.2.2
OPB_MxGrant: An OPB_MxGrant signal is active
for a non-owning master.

12 000010 1.3.1
OPB_BusLock: OPB_BusLock asserted without a
grant in the previous cycle and without
OPB_select.

13 000011 1.3.2
OPB_BusLock: Bus is locked and a master other
than bus owner has been granted the bus.

14 001000 1.4.4
OPB_retry: OPB_select remained active after a
retry cycle.

15 001001 1.4.5 OPB_retry: OPB_retry active with no Mx_select.

16 001110 1.8.1
OPB_Select: Mx_Select signal active without
having control of the bus via OPB_MxGrant or
OPB_busLock.

17 001111 1.8.2 OPB_Select: More than one Mx_Select signals
active in the same cycle.

18 010000 1.9.1 OPB_RNW: OPB_RNW high with no Mx_select.

19 011011 1.19.3
OPB_RNW changed state during an operation
before receipt of OPB_xferAck.

20 011100 1.19.4
OPB_select changed state during an operation
before receipt of OPB_xferAck.

21 011101 1.19.5
OPB_BEBus changed state during a write or read
operation before receipt of OPB_xferAck.

22 011110 1.20.3
Byte enable transfer not aligned with address
offset.

23 011111 1.20.4
Byte enable transfer initiated with non
contiguous byte enables.

24 000110 1.4.2
OPB_retry: Mx_Request from retried master
remained active after a retry cycle.

25 000101 1.4.1
OPB_retry: OPB_BusLock remained active after a
retry cycle.

26 010001 1.11.1
OPB_seqAddr: OPB_seqAddr active with no
OPB_BusLock.

27 010010 1.11.2
OPB_seqAddr: OPB_seqAddr active with no
Mx_select.

Table 1-4: CoreConnect OPB Protocol Violation Error Description(1)

Priority Bit Encoding Error Description

http://www.xilinx.com

32 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

The protocol violation monitor detects and reports any errors that occur on the OPB bus.
The error is reported as a 6-bit priority-encoded value that can be used as both trigger and
data to the IBA/OPB core. Priority 1 is the highest priority error and masks any other
lower priority errors, etc.

IBA/OPB Trigger Input Logic

The IBA core for the IBM CoreConnect On-Chip Peripheral Bus (IBA/OPB) is used to
monitor the CoreConnect OPB bus of embedded MicroBlaze soft processor, or
Virtex-II Pro, Virtex-4 FX, and Virtex-5 FXT PowerPC hard processor systems. Up to 16
different trigger groups can be monitored by the IBA/OPB core at any given time. The OPB
signal groups that can be monitored are described in Table 1-5, page 33 (which spans
multiple pages).

The IBA/OPB core can also implement the same trigger and storage qualification
condition equations as the ILA core. These features are described in the section called “ILA
Trigger Input Logic,” page 24.

IBA/OPB Trigger Output Logic

The IBA/OPB core implements a trigger output port called TRIG_OUT. The TRIG_OUT
port is the output of the trigger condition that is set up at run-time using the Analyzer. The
latency of the TRIG_OUT port relative to the input trigger ports is 15 clock cycles.

The TRIG_OUT port is very flexible and has many uses. For example, you can:

• Connect the TRIG_OUT port to a device pin in order to trigger external test
equipment such as oscilloscopes and logic analyzers

• Connect the TRIG_OUT port to an interrupt line of an embedded PowerPC or
MicroBlaze processor to cause a software event to occur

• Connect the TRIG_OUT port of one core to a trigger input port of another core in
order to expand the trigger and data capture capabilities of your on-chip debug
solution

28 010011 1.11.3
OPB_seqAddr: OPB_ABUS did not increment
properly during OPB_seqAddr.

29 010100 1.11.4
OPB_seqAddr: OPB_seqAddr was asserted
without a transaction boundary.

30 011000 1.16.1
OPB_ToutSup: OPB_ToutSup active with no
Mx_select.

31 001010 1.5.1
OPB_Timeout: Arbiter failed to signal
OPB_Timeout after 16 non-responding cycles.

32 001011 1.5.2
OPB_Timeout: OPB_Timeout active with no
Mx_select.

33 111111 – No errors.

Notes:
1. Refer to the OPB Bus Functional Model Toolkit User’s Manual document from IBM for more information

on these CoreConnect OPB errors.

Table 1-4: CoreConnect OPB Protocol Violation Error Description(1)

Priority Bit Encoding Error Description

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 33
UG029 (v10.1) March 24, 2008

ChipScope Pro Cores Description
R

Table 1-5: OPB Signal Groups

Trigger Group Name Width Description

OPB_CTRL 17

OPB combined control signals, including:

• SYS_Rst
• Debug_SYS_Rst
• WDT_Rst
• OPB_Rst
• OPB_BE[3]
• OPB_BE[2]
• OPB_BE[1]
• OPB_BE[0]
• OPB_select
• OPB_xferAck
• OPB_RNW
• OPB_errAck
• OPB_timeout
• OPB_toutSup
• OPB_retry
• OPB_seqAddr
• OPB_busLock

OPB_ABUS 32 OPB address bus

OPB_DBUS 32
OPB combined data bus (logical OR of read and
write data buses)

OPB_RDDBUS 32 OPB read data bus (from slaves)

OPB_WRDBUS 32 OPB write data bus (to slaves)

OPB_Mn_CTRL 11

OPB control signals for master n, including:

• Mn_request
• OPB_MnGrant
• OPB_pendReqn
• Mn_busLock
• Mn_BE[3]
• Mn_BE[2]
• Mn_BE[1]
• Mn_BE[0]
• Mn_select
• Mn_RNW
• Mn_seqAddr

where n is the master number (0 to 15)

http://www.xilinx.com

34 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

The IBA/OPB core can monitor not only CoreConnect OPB bus signals, but can also
monitor generic design signals (using the TRIG_IN trigger group). This capability allows
the user to correlate events that are occurring on the CoreConnect OPB bus with events
elsewhere in the design. The IBA/OPB core can also be connected to other capture cores
using the TRIG_IN and TRIG_OUT port signals to perform cross-triggering operations
while monitoring different parts of the design.

IBA/OPB Data Capture Logic

The data capture logic capabilities of the IBA/OPB core are identical to those of the ILA
core. These features are described in “ILA Data Capture Logic,” page 29.

IBA/OPB Control and Status Logic

The IBA/OPB contains a modest amount of control and status logic that is used to
maintain the normal operation of the core. All logic necessary to properly identify and
communicate with the IBA/OPB core is implemented by this control and status logic.

OPB_SLm_CTRL 4

OPB control signals slave m, including:

• Slm_xferAck
• Slm_errAck
• Slm_toutSup
• Slm_retry

where m is the slave number (0 to 63)

OPB_PV 6 OPB protocol violation signals

TRIG_IN User-defined Generic trigger input

Table 1-5: OPB Signal Groups

Trigger Group Name Width Description

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 35
UG029 (v10.1) March 24, 2008

ChipScope Pro Cores Description
R

IBA/PLB Core
The IBA/PLB core is a specialized logic analyzer core specifically designed to debug
embedded systems that contain the IBM CoreConnect Processor Local Bus (PLB).

Note: The IBA/PLB core is used only for PLB versions prior to PLB v46. For PLB v46 buses, a
customized ILA core (chipscope_plbv46_iba) is attached to the PLB v46 bus using the Xilinx Platform
Studio tool.

The IBA/PLB core consists of three major parts components:

• Trigger input and output logic:

♦ Trigger input logic detects PLB bus and other user-defined events

♦ Trigger output logic triggers external test equipment and other logic

• Data capture logic:

♦ Captures and stores trace data information using on-chip block RAM resources

• Control and status logic:

♦ Manages the operation of the IBA/PLB core

Note: A description on how to generate and use the IBA/PLB core in an embedded processor
design can be found in DS283, ChipScope PLB IBA, and the EDK Platform Studio online help.

IBA/PLB Trigger Input Logic

The IBA core for the IBM CoreConnect Processor Local Bus (IBA/PLB) is used to monitor
the PLB bus of embedded MicroBlaze soft processor or Virtex-II Pro, and Virtex-4 FX, and
Virtex-5 FXT PowerPC hard processor systems. Up to 16 different trigger groups can be
monitored by the IBA/PLB core at any given time. The types of PLB signal groups that can
be monitored are described in Table 1-6, page 36 (which spans multiple pages).

The IBA/PLB core can also monitor other generic design signals (using the TRIG_IN
trigger group) in addition to the PLB bus signals. This capability allows the user to
correlate events that are occurring on the PLB bus with events elsewhere in the design. The
IBA/PLB core can also be connected to other capture cores using the TRIG_IN and
TRIG_OUT port signals to perform cross-triggering operations while monitoring different
parts of the design.

The IBA/PLB core is also able to implement the same trigger and storage qualification
condition equations as the ILA core. These features are described in the section called “ILA
Trigger Input Logic,” page 24.

http://www.xilinx.com/edk
http://www.xilinx.com
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/chipscope_plb_iba.pdf

36 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

Table 1-6: PLB Signal Groups

Trigger Group Name Width Description

PLB_CTRL 26

PLB bus control signals, including:

• SYS_plbReset
• PLB_abort
• PLB_BE(0)
• PLB_BE(1)
• PLB_BE(2)
• PLB_BE(3)
• PLB_BE(4)
• PLB_BE(5)
• PLB_BE(6)
• PLB_BE(7)
• PLB_busLock
• PLB_masterID(0)
• PLB_masterID(1)
• PLB_masterID(2)
• PLB_masterID(3)
• PLB_Msize(0)
• PLB_Msize(1)
• PLB_PAValid
• PLB_SAValid
• PLB_rdPrim
• PLB_RNW
• PLB_size(0)
• PLB_size(1)
• PLB_size(2)
• PLB_size(3)
• PLB_wrPrim

PLB_ABUS 32 PLB address bus

PLB_RDDBUS 64 PLB read data bus (from slaves)

PLB_WRDBUS 64 PLB write data bus (to slaves)

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 37
UG029 (v10.1) March 24, 2008

ChipScope Pro Cores Description
R

PLB_Mn_CTRL 32

PLB control signals for master n, including:

• PLB_MnAddrAck
• PLB_Mn_Busy
• PLB_Mn_Err
• PLB_MnRdDAck
• PLB_MnRdWdAddr(0)
• PLB_MnRdWdAddr(1)
• PLB_MnRdWdAddr(2)
• PLB_MnRdWdAddr(3)
• PLB_MnRearbitrate
• PLB_MnSSize(0)
• PLB_MnSSize(1)
• PLB_Mn_WrDAck
• Mn_abort
• Mn_BE(0)
• Mn_BE(1)
• Mn_BE(2)
• Mn_BE(3)
• Mn_BE(4)
• Mn_BE(5)
• Mn_BE(6)
• Mn_BE(7)
• Mn_busLock
• Mn_MSize(0)
• Mn_MSize(1)
• Mn_priority(0)
• Mn_priority(1)
• Mn_request
• Mn_RNW
• Mn_size(0)
• Mn_size(1)
• Mn_size(2)
• Mn_size(3)

where n is the master number (0 to 15)

Table 1-6: PLB Signal Groups

Trigger Group Name Width Description

http://www.xilinx.com

38 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

IBA/PLB Trigger Output Logic

The IBA/PLB core implements a trigger output port called TRIG_OUT. The TRIG_OUT
port is the output of the trigger condition that is set up at run-time using the Analyzer. The
latency of the TRIG_OUT port relative to the input trigger ports is 10 clock cycles.

The TRIG_OUT port is very flexible and has many uses. You can connect the TRIG_OUT
port to a device pin in order to trigger external test equipment such as oscilloscopes and
logic analyzers. Connecting the TRIG_OUT to an interrupt line of an embedded
PowerPC 405 or MicroBlaze processor can be used to cause a software event to occur. You
can also connect the TRIG_OUT port of one core to a trigger input port of another core in
order to expand the trigger and data capture capabilities of your on-chip debug solution.

IBA/PLB Data Capture Logic

The data capture capabilities of the IBA/PLB core are identical to those of the ILA core.
These features are described in “ILA Data Capture Logic,” page 29.

IBA/PLB Control and Status Logic

The IBA/PLB core contains a modest amount of control and status logic that is used to
maintain the normal operation of the core. All logic necessary to properly identify and
communicate with the IBA/PLB core is implemented by this control and status logic.

PLB_SLm_CTRL 12

PLB control signals slave m, including:

• Slm_addrAck
• Slm_rdDAck
• Slm_rdWdAddr(0)
• Slm_rdWdAddr(1)
• Slm_rdWdAddr(2)
• Slm_rdWdAddr(3)
• Slm_rearbitrate
• Slm_SSize(0)
• Slm_SSize(1)
• Slm_wait
• Slm_wrComp
• Slm_wrDAck

where m is the slave number (0 to 15)

TRIG_IN User-defined Generic trigger input

Table 1-6: PLB Signal Groups

Trigger Group Name Width Description

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 39
UG029 (v10.1) March 24, 2008

ChipScope Pro Cores Description
R

VIO Core
The Virtual Input/Output (VIO) core is a customizable core that can both monitor and
drive internal FPGA signals in real time. Unlike the ILA and IBA cores, no on- or off-chip
RAM is required. Four kinds of signals are available in a the VIO core:

• Asynchronous inputs:

♦ These are sampled using the JTAG clock signal that is driven from the JTAG cable.

♦ The input values are read back periodically and displayed in the Analyzer.

• Synchronous inputs:

♦ These are sampled using the design clock.

♦ The input values are read back periodically and displayed in the Analyzer.

• Asynchronous outputs:

♦ These are defined by the user in the Analyzer and driven out of the core to the
surrounding design.

♦ A logical 1 or 0 value can be defined for individual asynchronous outputs.

• Synchronous outputs:

♦ These are defined by the user in the Analyzer, synchronized to the design clock and
driven out of the core to the surrounding design.

♦ A logical 1 or 0 can be defined for individual synchronous outputs. Pulse trains of
16 clock cycles worth of 1’s and/or 0’s can also be defined for synchronous
outputs.

Activity Detectors

Every VIO core input has additional cells to capture the presence of transitions on the
input. Since the design clock will most likely be much faster than the sample period of the
Analyzer, it's possible for the signal being monitored to transition many times between
successive samples. The activity detectors capture this behavior and the results are
displayed along with the value in the Analyzer.

In the case of a synchronous input, activity cells capable of monitoring for asynchronous
and synchronous events are used. This feature can be used to detect glitches as well as
synchronous transitions on the synchronous input signal.

Pulse Trains

Every VIO synchronous output has the ability to output a static 1, a static 0, or a pulse train
of successive values. A pulse train is a 16-clock cycle sequence of 1's and 0's that drive out
of the core on successive design clock cycles. The pulse train sequence is defined in the
Analyzer and is executed only one time after it is loaded into the core.

http://www.xilinx.com

40 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

ATC2 Core
The Agilent Trace Core 2 (ATC2) is a customizable debug capture core that is specially
designed to work with the latest generation Agilent logic analyzers. The ATC2 core
provides external Agilent logic analyzers access to internal FPGA design nets (as shown in
Figure 1-4).

ATC2 Data Path Description

The data path of the ATC2 core consists of:

• Up to 64 run-time selectable input signal banks that connect to the user’s FPGA
design

• Up to 128 output data pins that connect to an Agilent logic analyzer’s probe
connectors

• Optional 2x time-division multiplexing (TDM) available on each output data pin that
can be used to double the width of each individual signal bank from 128 to 256 bits

• Supports both asynchronous timing and synchronous state capture modes

• Supports any valid I/O standard, drive strength, and output slew rate on each output
data pin on an individual pin-by-pin basis

• Supports any Agilent probe connection technology (for more information, see
http://www.agilent.com/find/logic)

The maximum number of data probe points available at run time is calculated as:
(64 data ports) * (128 bits per data port) * (2x TDM) = 16,384 probe points.

ATC2 Core Data Capture and Run-Time Control

The external Agilent logic analyzer is used to trigger on and capture the data that passes
through the ATC2 core. This allows you to take full advantage of the complex triggering,
deep trace memory, and system-level data correlation features of the Agilent logic analyzer
as well as the increased visibility of internal design nodes provided by the ATC2 core. The
Agilent logic analyzer is also used to control the run-time selection of the active data port
by communicating with the ATC2 core via a JTAG port connection (as shown in
Figure 1-4).

X-Ref Target - Figure 1-4

Figure 1-4: ATC2 Core and System Block Diagram
1 to 32 B

anks

1x or 2x T
D

M

P
robe

C
onnector

ICON Core

ATC2 Core

FPGA

PCB

User
Design

256

256

256 128

256

JTAG Cable
JTAG

Agilent Logic Analyzer

LPT or USB

Probes

UG029_atc2_block_diagram_020904

http://www.xilinx.com
http://www.agilent.com/find/logic

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 41
UG029 (v10.1) March 24, 2008

Synthesis Requirements
R

IBERT Core
The Integrated Bit Error Ratio Tester (IBERT) core and related software to provide access to
the RocketIO multi-gigabit transceivers (MGTs) and perform bit error ratio analysis on
channels composed of these MGTs. The IBERT core is part of the ChipScope Pro Serial I/O
Toolkit and is used to debug, verify, and optimize MGT communication channels. See
UG213, ChipScope Pro 10.1 Serial I/O Toolkit User Guide at
http://www.xilinx.com/literature/literature-chipscope.htm for detailed documentation
on the features and capabilities of the tools that are specific to the exploration and debug of
designs that use the high-speed serial I/O capability of Xilinx FPGAs.

Synthesis Requirements
Users can modify many options in the ILA, IBA/OPB, IBA/PLB, VIO, and ATC2 cores
without resynthesizing. However, after changing selectable parameters (such as width of
the data port or the depth of the sample buffer), the design must be resynthesized with
new cores. Table 1-7 shows which design changes require resynthesizing.

System Requirements

Software Tools Requirements
The Xilinx CORE Generator, Core Inserter, IBERT Core Generator, and CseJTAG/Tcl tools
require that ISE 10.1 implementation tools be installed on your system. (Tcl stands for Tool
Command Language and a Tcl shell is a shell program that is used to run Tcl scripts.)
CseJTAG/Tcl requires the Tcl shell that is included in the ISE 10.1 tool installation
($XILINX/bin/nt/xtclsh.exe).

Table 1-7: Design Parameter Changes Requiring Resynthesis

Design Parameter Change Resynthesis Required

Change trigger pattern No

Running and stopping the trigger No

Enabling the external triggers No

Changing the trigger signal source No(1)

Changing the data signal source No(1)

Changing the ILA clock signal Yes

Changing the sample buffer depth Yes

Notes:
1. The ability to change existing trigger and/or data signal source is supported by the ISE 10.1 FPGA

Editor.

http://www.xilinx.com
http://www.xilinx.com/literature/literature-chipscope.htm

42 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

Communications Requirements
The Analyzer supports the following download cables (see Table 1-8, page 42) for
communication between the PC and the devices in the JTAG Boundary Scan chain:

• Platform Cable USB

• Parallel Cable IV

• Parallel Cable III

• MultiPRO

Table 1-8: ChipScope Pro Download Cable Support

Download Cable Features

Platform Cable USB(1)

• Uses the USB port (USB 2.0 or USB 1.1) to communicate
with the Boundary Scan chain of the board-under-test

• Downloads at speeds up to 24 Mb/s throughput
• Contains an adjustable voltage interface that enables it to

communicate with systems and device I/Os operating at 5V
down to 1.5V

• Windows and Linux OS support

Parallel Cable IV(1)

• Uses the parallel port (i.e., printer port) to communicate
with the Boundary Scan chain of the board-under-test

• Downloads at speeds up to 5 Mb/s throughput
• Contains an adjustable voltage interface that enables it to

communicate with systems and device I/Os operating at 5V
down to 1.5V

• Windows and Linux OS support

Parallel Cable III

• Uses the parallel port (i.e., printer port) to communicate
with the Boundary Scan chain of the board-under-test

• Downloads at speeds up to 500 kb/s throughput
• Contains an adjustable voltage interface that enables it to

communicate with systems and device I/Os operating at 5V
down to 2.5V

• Windows and Linux OS support

MultiPRO Cable

• Uses the parallel port (i.e., printer port) to communicate
with the Boundary Scan chain of the board-under-test

• Downloads at speeds up to 5 Mb/s throughput
• Contains an adjustable voltage interface that enables it to

communicate with systems and device I/Os operating at 5V
down to 1.5V

• Windows OS support only

Notes:
1. The Parallel Cable IV, Platform Cable USB, and MultiPRO cables are available for purchase from the

Xilinx Online Store (from www.xilinx.com choose Online Store → Programming Cables).

http://www.xilinx.com
http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 43
UG029 (v10.1) March 24, 2008

System Requirements
R

Board Requirements
For the Analyzer and download cable to work properly with the board-under-test, the
following board-level requirements must be met:

• One or more supported devices must be connected to a JTAG header that contains the
TDI, TMS, TCK, and TDO pins

• If another device would normally drive the TDI, TMS, or TDI pins of the JTAG chain
containing the target device(s), then jumpers on these signals are required to disable
these sources, preventing contention with the download cable

• If using the Parallel Cable III download cable, then VCC (2.5V-5.0V) and GND headers
must be available for powering the Parallel Cable III cable

• If using the Parallel Cable IV, MultiPRO, or Platform Cable USB download cable, then
VREF (1.5-5.0V) and GND headers must be available for connecting to the Parallel
Cable IV cable

Host System Requirements for Microsoft Windows
The Xilinx CORE Generator, IBERT Core Generator, Core Inserter, and Analyzer (client and
server modes) tools run on PC systems running the Microsoft Windows operating system
and meet the requirements outlined in Table 1-9.

Host System Requirements for Linux
The Xilinx CORE Generator, IBERT Core Generator, Core Inserter, and Analyzer tools run
on workstation systems running the Linux operating system and meet the requirements
outlined in Table 1-10.

Note: The Linux version of the 10.1 IBERT Core Generator, Core Inserter, Analyzer, and
CseJTAG/Tcl tools require that the ISE 10.1 tools are installed on the target system and that the
$XILINX environment variable is set up correctly.

Table 1-9: PC System Requirements for ChipScope Pro 10.1 Tools

OS Version Memory Java Environment

Windows XP
Professional 32-bit

64-bit
1024 MB

Java Run-time Environment version 1.5.0
(automatically included in ChipScope Pro
10.1 software installation)Windows Vista

Business

Table 1-10: Linux Requirements for ChipScope Pro 9.2i Tools

OS Version

Memory Java EnvironmentRed Hat Enterprise
Linux

4 WS
 32-bit

1024 MB
Java Run-time Environment version 1.5.0
(automatically included in ChipScope Pro 10.1
software installation)

 5 WS

4 WS
64-bit

5 WS

http://www.xilinx.com

44 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 1: Introduction
R

Software Installation and Licensing
For ChipScope Pro software installation and licensing instructions, refer to the ISE 10.1
Design Suite Release Notes and Installation Guide available in the ISE Documentation at
http://www.xilinx.com/support.

http://www.xilinx.com
http://www.xilinx.com/support

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 45
UG029 (v10.1) March 24, 2008

R

Chapter 2

Using the CORE Generator Tool

CORE Generator Tool Overview
The Xilinx CORE Generator tool is used to generate the following cores:

• Integrated Controller (ICON)

• Integrated Logic Analyzer (ILA)

• Virtual Input/Output (VIO)

• Agilent Trace Core 2 (ATC2)

As a group, these cores are called the ChipScope Pro cores. After generating the cores, you
can use the instantiation templates (that are provided) to quickly and easily insert the cores
into their VHDL or Verilog design. After completing the instantiation and running
synthesis, you can implement the design using the ISE 10.1 implementation tools.

For more information on generating and using the:

• IBERT core, see UG213, ChipScope Pro Serial I/O Toolkit User Guide at
www.xilinx.com/literature/literature-chipscope.htm.

• IBA/OPB core in an imbedded processor design, see DS282, ChipScope OPB IBA, and
the EDK Platform Studio online help.

• IBA/PLB core in an embedded processor design, see DS283, ChipScope PLB IBA, and
the EDK Platform Studio online help.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/chipscope_opb_iba.pdf
http://www.xilinx.com/edk
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/chipscope_plb_iba.pdf
http://www.xilinx.com/edk
http://www.xilinx.com/ise/verification/chipscope_pro_siotk_9_1i_ug213.pdf
www.xilinx.com/literature/literature-chipscope.htm

46 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

Locating the ChipScope Pro Cores in CORE Generator
Before you can select the ChipScope Pro cores for generation, you first need to set up a
CORE Generator project. After setting up your CORE Generator project with the
appropriate settings, you can find the ChipScope Pro cores in the CORE Generator by first
clicking on the View by Function tab in the upper left panel, then by expanding the Debug
& Verification and ChipScope Pro sections of the browser (see Figure 2-1). You can also
find the ChipScope Pro cores by using the View by Name tab.
X-Ref Target - Figure 2-1

Figure 2-1: Locating the ChipScope Pro Cores in CORE Generator

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 47
UG029 (v10.1) March 24, 2008

Generating an ICON Core
R

Generating an ICON Core
The CORE Generator tool provides the ability to define and generate a customized ICON
core to use with one or more ILA, IBA/OPB, IBA/PLB, VIO, or ATC2 capture cores in HDL
designs. You can customize control ports (that is, the number of cores to be connected to
the ICON core) and customize the use of the Boundary Scan primitive component (for
example, BSCAN_VIRTEX2) that is used for JTAG communication.

After the CORE Generator tool validates the user-defined parameters, it generates a XST
netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated
with the CORE Generator project. You can easily generate the netlist and code examples
for use in normal FPGA design flows.

The CORE Generator tool offers the choice to generate either an ICON, ILA, VIO, or ATC2
core. Select ICON (ChipScope Pro - Integrated Controller) core (Figure 2-2), and click the
Customize link in the right side of the window.

X-Ref Target - Figure 2-2

Figure 2-2: Selecting the ICON Core

http://www.xilinx.com

48 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

General ICON Core Parameters
The CORE Generator tool is used to set up the ICON core parameters (Figure 2-3).

Entering the Component Name

The Component Name field is can consist of any combination of alpha-numeric characters
in addition to the underscore symbol. However, the underscore symbol cannot be the first
character in the component name.

Entering the Number of Control Ports

The ICON core can communicate with up to 15 ILA, IBA/OPB, IBA/PLB, VIO, and ATC2
capture core units at any given time. However, individual capture core units cannot share
their control ports with any other unit. Therefore, the ICON core needs up to 15 distinct
control ports to handle this requirement. You can select the number of control ports from
the Number of Control Ports pull-down list.

Disabling the Boundary Scan Component Instance

The Boundary Scan primitive component (for example, BSCAN_VIRTEX2) is used to
communicate with the JTAG Boundary Scan logic of the target FPGA device. The
Boundary Scan component extends the JTAG test access port (TAP) interface of the FPGA
device so that up to four internal scan chains can be created. The Analyzer communicates
with the cores by using one of the internal scan chains (USER1, USER2, USER3, or USER4,
depending on the device family) provided by the Boundary Scan component.

Since cores do not use both internal scan chains of the Boundary Scan component, it is
possible to share the Boundary Scan component with other elements in the user’s design.
The Boundary Scan component can be shared with other parts of the design by using one
of two methods:

• Instantiate the Boundary Scan component inside the ICON core and include the
unused Boundary Scan scan chain signals as port signals on the ICON core interface.

X-Ref Target - Figure 2-3

Figure 2-3: ICON Core Parameters

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 49
UG029 (v10.1) March 24, 2008

Generating an ICON Core
R

• Instantiate the Boundary Scan component somewhere else in the design and attach
either the USER1 or USER2 scan chain signals to corresponding port signals the ICON
core interface.

Note: This feature is not available for Virtex-4 and Virtex-5 devices since the BSCAN_VIRTEX
primitive in these devices only has a single USER scan port per instance.

The Boundary Scan component is instantiated inside the ICON core by default. Use the
Disable Boundary Scan Component Instance checkbox to disable the instantiation of the
Boundary Scan component.

Selecting the Boundary Scan Chain

The Analyzer can communicate with the cores using either the USER1, USER2, USER3, or
USER4 boundary scan chains. If the Boundary Scan component is instantiated inside the
ICON core, then you can select the desired scan chain from the Boundary Scan Chain pull-
down list.

Disabling JTAG Clock BUFG Insertion

If the Boundary Scan component is instantiated inside the ICON core, then it is possible to
disable the insertion of a BUFG component on the JTAG clock signal. Disabling the JTAG
clock BUFG insertion causes the implementation tools to route the JTAG clock using
normal routing resources instead of global clock routing resources. By default, this clock is
placed on a global clock resource (BUFG). To disable this BUFG insertion, check select the
Disable JTAG Clock BUFG Insertion checkbox. This should only be done if global
resources are very scarce; placing the JTAG clock on regular routing, even high-speed
backbone routing, introduces skew. Make sure the design is adequately constrained to
minimize this skew.

Enabling Unused Boundary Scan Ports

The Boundary Scan primitive for Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Spartan-II,
Spartan-IIE, Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP devices (including
the QPro variants of these families) always has two sets of ports: USER1 and USER2.

The Boundary Scan primitive for Virtex-4 and Virtex-5 devices can have only one of four
sets of ports enabled at any given time: USER1, USER2, USER3, and USER4. These ports
provide an interface to the Boundary Scan TAP controller of the FPGA device.

The ICON core uses only one of the USER* scan chain ports for communication purposes,
therefore, the unused USER* port signals are available for use by other design elements,
respectively. If the Boundary Scan component is instantiated inside the ICON core, then
selecting the Enable Unused Boundary Scan Ports checkbox provides access to the
unused USER* scan chain interfaces of the Boundary Scan component.

Note: The Boundary Scan ports should be included only if the design needs them. If they are
included and not used, some synthesis tools do not connect the ICON core properly, causing errors
during the synthesis and implementation stages of development.

Note: This feature is not available for Virtex-4 and Virtex-5 devices because the BSCAN_VIRTEX
primitive in these devices only has a single USER scan port per instance.

http://www.xilinx.com

50 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

Generating the Core
After entering the ICON core parameters, click Finish to create the ICON core files. While
the ICON core is being generated, a progress indicator will appear. Depending on the host
computer system, it may take several minutes for the ICON core generation to complete.
After the ICON core has been generated, a list of files that are generated will appear in a
separate window (see Figure 2-4).

Using the ICON Core
To instantiate the example ICON core HDL files into your design, use the following
guidelines to connect the ICON core port signals to various signals in your design:

• Connect one of the ICON core’s unused CONTROL* port signals to a control port of
only one ILA, IBA/OPB, IBA/PLB, VIO, or ATC2 core instance in the design

• Do not leave any unused CONTROL* ports of the ICON core unconnected as this will
cause the implementation tools to report an error. Instead, use an ICON core with the
same number of CONTROL* ports as you have ILA, IBA/OPB, IBA/PLB, VIO or
ATC2 cores

X-Ref Target - Figure 2-4

Figure 2-4: List of Generated ICON Core Files

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 51
UG029 (v10.1) March 24, 2008

Generating an ILA Core
R

Generating an ILA Core
The CORE Generator tool provides the ability to define and generate a customized ILA
capture core to use with HDL designs. You can customize the number, width, and
capabilities of the trigger ports. You can also customize the maximum number of data
samples stored by the ILA core, and the width of the data samples (if different from the
trigger ports).

After the CORE Generator tool validates the user-defined parameters, it generates a XST
netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated
with the CORE Generator project. You can easily generate the netlist and code examples
for use in normal FPGA design flows.

The CORE Generator offers the choice to generate either an ICON, ILA, VIO, or ATC2 core.
Select ILA (ChipScope Pro - Integrated Logic Analyzer), and click the Customize link on
the right side of the window (Figure 2-5).

X-Ref Target - Figure 2-5

Figure 2-5: Selecting the ILA Core

http://www.xilinx.com

52 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

ILA Core Trigger and Storage Parameters
The CORE Generator tool is used to set up the ILA core parameters, including the general
trigger and storage parameters (Figure 2-6) and the trigger port parameters (Figure 2-8,
page 55).

Entering the Component Name

The Component Name field is can consist of any combination of alpha-numeric characters
in addition to the underscore symbol. However, the underscore symbol cannot be the first
character in the component name.

Selecting the Number of Trigger Ports

Each ILA core can have up to 16 separate trigger ports that can be set up independently.
After you choose a number from the Number of Trigger Ports pull-down list, a group of
options appears for each trigger port. The group of options associated with each trigger
port is labeled with TRIGn, where n is the trigger port number 0 to 15. The trigger port
options include trigger width, number of match units connected to the trigger port, and the
type of these match units.

X-Ref Target - Figure 2-6

Figure 2-6: ILA Core Trigger and Storage Parameters

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 53
UG029 (v10.1) March 24, 2008

Generating an ILA Core
R

Enabling the Trigger Condition Sequencer

The trigger condition sequencer can be either a Boolean equation, or an optional trigger
sequencer that is controlled by the Max Sequence Levels pull-down list. A block diagram
of the trigger sequencer is shown in Figure 2-7.

The trigger sequencer is implemented as a simple cyclical state machine and can transition
through up to 16 states or levels before the trigger condition is satisfied. The transition
from one level to the next is caused by an event on one of the match units that is connected
to the trigger sequencer. Any match unit can be selected at run time on a per level basis to
transition from one level to the next. The trigger sequencer can be configured at run time to
transition from one level to the next on either contiguous or non-contiguous sequences of
match function events.

Using RPMs

The ILA core normally uses relationally placed macros (RPMs) to increase the performance
of the core. If the device family is Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, Spartan-3,
Spartan-3E, Spartan-3A, or Spartan-3A DSP (including the QPro variants of these families),
the usage of RPMs by the ILA core can be disabled by deselecting the Use RPMs checkbox.
It is recommended that the Use RPMs checkbox remain enabled for these device families.

Note: RPMs cannot be used with the Virtex, Virtex-E, Spartan-II, or Spartan-IIE device families
(including the QPro variants of these families).

Enabling the Trigger Output Port

The output of the ILA trigger condition module can be brought out to a port signal by
checking the Enable Trigger Output Port checkbox. The trigger output port is used to
trigger external test equipment by attaching the port signal to a device pin in the HDL
design. The trigger output port can also be attached to other logic or cores in the design to
be used as a trigger, an interrupt, or another control signal. The shape (level or pulse) and
sense (active-High or active-Low) of the trigger output can also be controlled at run-time
using the Analyzer tool. The clock latency of the ILA trigger output port is 10 clock (CLK)
cycles with respect to the trigger input ports. The Trigger Output port is reset upon
successful uploading of ILA data and/or the re-arming of the ILA core trigger logic.

Selecting the Clock Edge

The ILA unit can use either the rising or falling edges of the CLK signal to trigger and
capture data. The Sample On pull-down list is used to select either the rising or falling
edge of the CLK signal as the clock source for the ILA core.

X-Ref Target - Figure 2-7

Figure 2-7: Trigger Sequencer Block Diagram (with 16 levels and 16 match units)

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level
1

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level
2

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level
16

Trigg

http://www.xilinx.com

54 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

Selecting the Sample Data Depth

The maximum number of data sample words that the ILA core can store in the sample
buffer is controlled by the Sample Data Depth pull-down list. The sample data depth
determines the number of data width bits contributed by each block RAM unit used by the
ILA unit.

Enabling the Storage Qualification Condition

In addition to the trigger condition, the ILA core can also implement a storage qualification
condition. The storage qualification condition is a Boolean combination of match function
events. These match function events are detected by the match unit comparators that are
subsequently attached to the trigger ports of the core. The storage qualification condition
differs from the trigger condition in that it evaluates trigger port match unit events to
decide whether or not to capture and store each individual data sample. The trigger and
storage qualification conditions can be used together to define when to start the capture
process and what data to capture. The storage qualification condition can be enabled by
checking the Enable Storage Qualification checkbox.

Selecting the Data Type

The data captured by the ILA trigger port can come from two different source types and is
controlled by the Data Same as Trigger checkbox:

• Data Same as Trigger (checked ON)

♦ The data and trigger ports are identical. This mode is very common in most logic
analyzers, since you can capture and collect any data used to trigger the core.

♦ Individual trigger ports can be selected to be excluded from the data port (see
Figure 2-8, page 55). If this selection is made, then the DATA input port will not be
included in the port map of the ILA core.

♦ This mode conserves CLB and routing resources in the ILA core, but is limited to
a maximum aggregate data sample word width of 256 bits (or 1,024 bits for
Virtex-5 devices).

• Data Not Same as Trigger (checked OFF)

♦ The data port is completely independent of the trigger ports.

♦ This mode is useful when you want to limit the amount of data being captured.

♦ In the case of data not same as trigger, the Data Port Width parameter needs to be
specified.

Entering the Data Port Width

The width of each data sample word stored by the ILA core is called the data width. If the
data and trigger words are independent from each other, then the maximum allowable
data width depends on the target device type and data depth. However, regardless of these
factors, the maximum allowable data width is 256 bits (or 1,024 bits for Virtex-5 devices).

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 55
UG029 (v10.1) March 24, 2008

Generating an ILA Core
R

ILA Core Trigger Port Parameters
After you have set up the trigger and storage ILA core options, click Next. This takes you
to the screen in the ILA core CORE Generator tool that is used to set up the trigger port
options (Figure 2-8). A separate panel is used to specify the parameters for trigger port
enabled using the Number of Trigger Ports pull-down list shown in Figure 2-6, page 52.

Entering the Width of the Trigger Ports

The individual trigger ports are buses that are made up of individual signals or bits. The
number of bits used to compose a trigger port is called the trigger width. The width of each
trigger port can be set independently using the Trigger Port Width field. The range of
values that can be used for trigger port widths is 1 to 256.

Selecting the Number of Trigger Match Units

A match unit is a comparator that is connected to a trigger port and is used to detect events
on that trigger port. The results of one or more match units are combined together to form
what is called the overall trigger condition event that is used to control the capturing of
data. Each trigger port TRIGn can be connected to 1 to 16 match units by using the Match
Units pull-down list.

Selecting one match unit conserves resources while still allowing some flexibility in
detecting trigger events. Selecting two or more trigger match units allows a more flexible
trigger condition equation to be a combination of multiple match units. However,
increasing the number of match units per trigger port also increases the usage of logic
resources accordingly.

Note: The aggregate number of match units used in a single ILA core cannot exceed 16, regardless
of the number of trigger ports used.

X-Ref Target - Figure 2-8

Figure 2-8: ILA Core Trigger Port Options

http://www.xilinx.com

56 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

Selecting Match Unit Counter Width

The match unit counter is a configurable counter on the output of the each match unit in a
trigger port. This counter can be configured at run time to count a specific number of
match unit events. To include a match counter on each match unit in the trigger port, select
a counter width from 1 to 32. The match counter will not be included on each match unit if
the Counter Width pull-down list is set to Disabled. The default counter width setting is
Disabled.

Selecting the Match Unit Type

The different comparisons or match functions that can be performed by the trigger port
match units depend on the type of the match unit. Six types of match units are supported
by the ILA cores (Table 2-1, which spans multiple pages).

Use the Match Type pull-down list to select the type of match unit that applies to all match
units connected to the trigger port. However, as the functionality of the match unit

Table 2-1: ILA Trigger Match Unit Types

Type
Bit

Values(1) Match Function
Bits Per
Slice(2) Description

Basic 0, 1, X ‘=’, ‘<>’
Virtex-5: 19

All others: 8

Can be used for comparing data
signals where transition
detection is not important. This is
the most bit-wise economical
type of match unit.

Basic
w/edges

0, 1, X, R,
F, B

‘=’, ‘<>’
Virtex-5: 8

All others: 4

Can be used for comparing
control signals where transition
detection (e.g., low-to-high,
high-to-low, etc.) is important.

Extended 0, 1, X
‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’

Virtex-5: 16

All others: 2

Can be used for comparing
address or data signals where
magnitude is important.

Extended
w/edges

0, 1, X, R,
F, B

‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’

Virtex-5: 8

All others: 2

Can be used for comparing
address or data signals where a
magnitude and transition
detection are important.

Range 0, 1, X

‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’,

‘in range’,
‘not in range’

Virtex-5: 8

All others: 1

Can be used for comparing
address or data signals where a
range of values is important.

Range
w/edges

0, 1, X, R,
F, B

‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’,

‘in range’,
‘not in range’

Virtex-5: 4

All others: 1

Can be used for comparing
address or data signals where a
range of values and transition
detection are important.

Notes:
1. Bit values: ’0’ means “logical 0”, ‘1’ means “logical 1”, ‘X’ means “don’t care”, ‘R’ means “0-to-1

transition”, ‘F’ means “1-to-0 transition”, and ‘B’ means “any transition”
2. The Bits Per Slice value is only an approximation that is used to illustrate the relative resource

utilization of the different match unit types. It should not be used as a hard estimate of resource
utilization

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 57
UG029 (v10.1) March 24, 2008

Generating an ILA Core
R

increases, so does the amount of resources necessary to implement that functionality. This
flexibility allows you to customize the functionality of the trigger module while keeping
resource usage in check.

Selecting the Data-Same-As-Trigger Ports

If the Data Same As Trigger checkbox is selected (Figure 2-6, page 52), then a checkbox
called Exclude Trigger Port from Data Storage appears in the trigger port options screen.
Putting a checkmark in this checkbox will cause the trigger port to be excluded from the
aggregate data port. By default, this checkbox is unchecked and the trigger port is included
in the aggregate data port. A maximum data width of 256 bits (or 1,024 bits for Virtex-5
devices) applies to the aggregate selection of trigger ports.

Generating the Core
After entering the ILA core parameters, click Finish to create the ILA core files. While the
ILA core is being generated, a progress indicator will appear. Depending on the host
computer system, it may take several minutes for the ILA core generation to complete.
After the ILA core has been generated, a list of files that are generated will appear in a
separate window (see Figure 2-9).

X-Ref Target - Figure 2-9

Figure 2-9: List of Generated ILA Core Files

http://www.xilinx.com

58 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

Using the ILA Core
To instantiate the example ILA core HDL files into your design, use the following
guidelines to connect the ILA core port signals to various signals in your design:

• Connect the ILA core’s CONTROL port signal to an unused control port of the ICON
core instance in the design

• Connect all unused bits of the ILA core’s data and trigger port signals to “0”. This
prevents the mapper from removing the unused trigger and/or data signals and also
avoids any DRC errors during the implementation process

• Make sure the data and trigger source signals are synchronous to the ILA clock signal
(CLK)

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 59
UG029 (v10.1) March 24, 2008

Generating the VIO Core
R

Generating the VIO Core
The CORE Generator tool provides the ability to define and generate a customized VIO
core for adding virtual inputs and outputs to your HDL designs. You can customize the
virtual inputs and outputs to be synchronous to a particular clock in your design or to be
completely asynchronous with respect to any clock domain in your design. You can also
customize the number of input and output signals used by the VIO core.

After the CORE Generator tool validates the user-defined parameters, it generates an XST
netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated
with the CORE Generator project. You can easily generate the netlist and code examples
for use in normal FPGA design flows.

The CORE Generator tool offers the choice to generate either an ICON, ILA, VIO, or ATC2
core. Select VIO (ChipScope Pro - Virtual Input/Output) and click the Customize link on
the right side of the window (Figure 2-10).
X-Ref Target - Figure 2-10

Figure 2-10: Selecting the VIO Core

http://www.xilinx.com

60 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

General VIO Core Options
The second screen is used to set up the general VIO core options (Figure 2-11).

Entering the Component Name

The Component Name field is can consist of any combination of alpha-numeric characters
in addition to the underscore symbol. However, the underscore symbol cannot be the first
character in the component name.

Asynchronous Input Signals

The VIO core will include asynchronous inputs when the Enable Asynchronous Input
Signals checkbox is enabled. When enabled, you can specify that up to 256 asynchronous
input signals should be used by entering a value in the Width text field. Asynchronous
input signals are inputs to the VIO core and can be used as outputs from your design,
regardless of the clock domain.

Asynchronous Output Signals

The VIO core will include asynchronous outputs when the Enable Asynchronous Output
Signals checkbox is enabled. When enabled, you can specify that up to 256 asynchronous
output signals should be used by entering a value in the Width text field. Asynchronous
output signals are outputs from the VIO core and can be used as inputs to your design,
regardless of the clock domain.

Synchronous Input Signals

The VIO core will include synchronous inputs when the Enable Synchronous Input
Signals checkbox is enabled. When enabled, you can specify that up to 256 synchronous
input signals should be used by entering a value in the Width text field. Synchronous input
signals are inputs to the VIO core and can be used as outputs from your design, as long as
those design signals are synchronous to the CLK signal of the VIO core.

X-Ref Target - Figure 2-11

Figure 2-11: VIO Core General Options

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 61
UG029 (v10.1) March 24, 2008

Generating the VIO Core
R

Synchronous Output Signals

The VIO core will include synchronous outputs when the Enable Synchronous Output
Signals checkbox is enabled. When enabled, you can specify that up to 256 synchronous
output signals should be used by entering a value in the Width text field. Synchronous
output signals are outputs from the VIO core and can be used as inputs to your design, as
long as those design signals are synchronous to the CLK signal of the VIO core.

Inverting the Clock Edge

The VIO core can use either a non-inverted or inverted CLK signal to capture and generate
data on the synchronous input and output signals, respectively. The Invert Clock Edge
checkbox is used to invert the CLK signal that is coming into the VIO core.

Note: The clock can only be inverted if synchronous inputs and/or outputs are used.

Generating the Core
After entering the VIO core parameters, click Finish to create the VIO core files. While the
VIO core is being generated, a progress indicator will appear. Depending on the host
computer system, it may take several minutes for the VIO core generation to complete.
After the VIO core has been generated, a list of files that are generated will appear in a
separate window (see Figure 2-12).

X-Ref Target - Figure 2-12

Figure 2-12: List of Generated VIO Core Files

http://www.xilinx.com

62 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

Using the VIO Core
To instantiate the example VIO core HDL files into your design, use the following
guidelines to connect the VIO core port signals to various signals in your design:

• Connect the VIO core’s CONTROL port signal to an unused control port of the ICON
core instance in the design

• Connect all unused bits of the VIO core’s asynchronous and synchronous input
signals to a “0”. This prevents the mapper from removing the unused trigger and/or
data signals and also avoids any DRC errors during the implementation process

• For best results, make sure the synchronous input source signals are synchronous to
the VIO clock signal (CLK); also make sure the synchronous output sink signals are
synchronous to the VIO clock signal (CLK)

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 63
UG029 (v10.1) March 24, 2008

Generating the ATC2 Core
R

Generating the ATC2 Core
The CORE Generator tool provides the ability to define and generate a customized ATC2
core for adding external Agilent logic analyzer capture capabilities to your HDL designs.
You can customize the number of pins (and their characteristics) to be used for external
capture as well as how many input data ports you need. You can also customize the type of
capture mode (state or timing) to be used as well as the TDM compression mode (1x or 2x).

After the CORE Generator tool validates the user-defined parameters, it generates an XST
netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated
with the CORE Generator project. You can easily generate the netlist and code examples
for use in normal FPGA design flows.

The CORE Generator tool offers the choice to generate either an ICON, ILA, VIO, or ATC2
core. Select ATC2 (ChipScope Pro - Agilent Trace Core 2) and click the Customize link
in the right side of the window (Figure 2-13).
X-Ref Target - Figure 2-13

Figure 2-13: Selecting the ATC2 Core

http://www.xilinx.com

64 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

ATC2 Core Acquisition and State Parameters
The CORE Generator tool is used to set up the ATC2 core acquisition and state parameters
(Figure 2-14).

Entering the Component Name

The Component Name field is can consist of any combination of alpha-numeric characters
in addition to the underscore symbol. However, the underscore symbol cannot be the first
character in the component name.

Selecting the Acquisition Mode

The acquisition mode of the ATC2 core can be set to either to Timing - Asynchronous
Sampling mode for asynchronous data capture or State - Synchronous Sampling mode for
synchronous data capture to the CLK input signal. In State mode, the data path through the
ATC2 core uses pipeline flip-flops that are clocked on the CLK input port signal. In Timing
mode, the data path through the ATC2 core is composed purely of combinational logic all
the way to the output pins. Also, in Timing mode, the ATCK pin is used as an extra data
pin.

Max Frequency Range

The Max Frequency Range parameter is used to specify the maximum frequency range in
which you expect to operate the ATC2 core. The implementation of the ATC2 core will be
optimized for the maximum frequency range selection. The valid maximum frequency
ranges are 0-100 MHz, 101-200 MHz, 201-300 MHz, and 301-500 MHz. The maximum
frequency range selection only has an affect on core implementation when the acquisition
mode is set to State - Synchronous Sampling.

TDM Rate

The ATC2 core does not use on-chip memory resources to store the captured trace data.
Instead, it transmits the data to be captured by an Agilent logic analyzer that is attached to
the FPGA pins using a special probe connector. The data can be transmitted out the device

X-Ref Target - Figure 2-14

Figure 2-14: ATC2 Core Acquisition and State Parameters

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 65
UG029 (v10.1) March 24, 2008

Generating the ATC2 Core
R

pins at the same rate as the incoming DATA port (TDM Rate = 1x) or twice the rate as the
DATA port (TDM Rate = 2x). The TDM rate can be set to “2x” only when the acquisition
mode is set to State - Synchronous Sampling.

ATC2 Core Pin and Signal Parameters
After you have set up the ATC2 core acquisition and state parameters, click Next. This
takes you to the screen in the CORE Generator tool that is used to set up the ATC2 pin and
signal parameters (Figure 2-15).

Enable Auto Setup

The Enable Auto Setup option is used to enable a feature that allows the Agilent Logic
Analyzer to automatically set up the appropriate ATC2 pin to Logic Analyzer pod
connections. This feature also allows the Agilent Logic Analyzer to automatically
determine the optimal phase and voltage sampling offsets for each ATC2 pin. This feature
is enabled by default.

Enable Always On Mode

The Enable Always On Mode parameter is used to force an ATC2 core to always enable its
internal logic and output buffers. The "Always On" mode will also force the selection of
signal bank 0 upon FPGA device configuration. This mode makes it possible to capture
events that immediately follow device configuration without having to first set up the
ATC2 core manually. This feature is disabled by default and is only available when the
acquisition mode is set to Timing mode.

ATD Pin Count

The ATC2 core can implement any number of ATD output pins in the range of 4 through
128.

X-Ref Target - Figure 2-15

Figure 2-15: ATC2 Core Pin and Signal Parameters

http://www.xilinx.com

66 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

Driver Endpoint Type

The Driver Endpoint Type setting is used to control whether single-ended or differential
output drivers are used on the ATCK and ATD output pins. All ATCK and ATD pins must
use the same driver endpoint type.

Pin Edit Mode

The pin edit mode is a time saving feature that allows you to change the IO Standard, Drive
and Slew Rate pin parameters on individual pins or together as a group of pins. Selecting
ATD drivers same as ATCK allows you to change the ATCK pin parameters and forces all
ATD pins to the same settings. Selecting ATD drivers different than ATCK allows you to
edit the parameters of each pin independently from one another. You need to set unique
pin locations for each individual pin regardless of the Pin Edit Mode parameter setting.

Signal Bank Count

The ATC2 core contains an internal, run-time selectable data signal bank multiplexer. The
Signal Bank Count setting is used to denote the number of data input ports or signal banks
the multiplexer will implement. The valid Signal Bank Count values are 1, 2, 4, 8, 16, 32,
and 64.

Signal Bank Width

The width of each input signal bank data port of the ATC2 core depends on the capture
mode and the TDM rate. In State mode, the width of each signal bank data port is equal to
(ATD pin count) * (TDM rate). In Timing mode, the width of each signal bank data port is
equal to (ATD pin count + 1) * (TDM rate) since the ATCK pin is used as an extra data pin.

ATC2 Core ATCK and ATD Pin Parameters
After you have set up the ATC2 core pin and signal parameters, click Next. This takes you
to the screen in the CORE Generator tool that is used to set up the ATCK and ATD pin
parameters (Figure 2-16).

X-Ref Target - Figure 2-16

Figure 2-16: ATC2 Core ATCK and ATD Pin Parameters

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 67
UG029 (v10.1) March 24, 2008

Generating the ATC2 Core
R

The output clock (ATCK) and data (ATD) pins are instantiated inside the ATC2 core for
your convenience. This means that although you do not have to manually bring the ATCK
and ATD pins through every level of hierarchy to the top-level of your design, you do need
to specify the location and other characteristics of these pins in the Core Generator. These
pin attributes are then added to the *.ncf file of the ATC2 core. Using the settings in the
Pin Parameters table, you can control the location, I/O standard, output drive and slew
rate of each individual ATCK and ATD pin.

Pin Name

The ATC2 core has two types of output pins: ATCK and ATD. The ATCK pin is used as a
clock pin when the capture mode is set to State and is used as a data pin when the capture
mode is set to Timing. The ATD pins are always used as data pins. The names of the pins
cannot be changed.

Pin Loc

The Pin Loc column is used to set the location of the ATCK or ATD pin.

IO Standard

The IO Standard column is used to set the I/O standard of each individual ATCK or ATD
pin. The I/O standards that are available for selection depend on the device family and
driver endpoint type. The names of the I/O standards are the same as those in the
IOSTANDARD section of the Constraints Guide in the Xilinx Software Manual at
http://www.xilinx.com/support.

Drive

The Drive column setting denotes the maximum output drive current of the pin driver and
ranges from 2 to 24 mA, depending on the IO Standard selection.

Slew Rate

The Slew Rate column can be set to either FAST or SLOW for each individual ATCK or
ATD pin.

http://www.xilinx.com
http://www.xilinx.com/support

68 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 2: Using the CORE Generator Tool
R

Generating the Core
After entering the VIO core parameters, click Finish to create the VIO core files. While the
VIO core is being generated, a progress indicator will appear. Depending on the host
computer system, it may take several minutes for the VIO core generation to complete.
After the VIO core has been generated, a list of files that are generated will appear in a
separate window (see Figure 2-17).

Using the ATC2 Core
To instantiate the example ATC2 core HDL files into your design, use the following
guidelines to connect the ATC2 core port signals to various signals in your design:

• Connect the ATC2 core’s CONTROL port signal to an unused control port of the ICON
core instance in the design

• Connect all unused bits of the ATC2 core’s asynchronous and synchronous input
signals to a “0”. This prevents the mapper from removing the unused trigger and/or
data signals and also avoids any DRC errors during the implementation process

• For best results, make sure the State mode input data port signals are synchronous to
the ATC2 clock signal (CLK); this is not important for Timing mode input data port
signals

X-Ref Target - Figure 2-17

Figure 2-17: List of Generated ATC2 Core Files

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 69
UG029 (v10.1) March 24, 2008

R

Chapter 3

Using the ChipScope Pro Core Inserter

Core Inserter Overview
The ChipScope Pro Core Inserter is a post-synthesis tool used to generate a netlist that
includes the user design as well as parameterized ICON, ILA, and ATC2 cores as needed.
The Core Inserter gives you the flexibility to quickly and easily use the debug functionality
to analyze an already synthesized design, and without any HDL instantiation.

Note: The IBA/OPB, IBA/PLB, VIO, and IBERT cores are currently not supported in the Core
Inserter tool.

Using the Core Inserter with ISE Project Navigator
This section is provided for users of the Windows or Linux versions of ChipScope Pro 10.1
and ISE 10.1.

The Core Inserter .cdc file can be added as a new source file to the Project Navigator
source file list. In addition to this, the Project Navigator tool will also recognize and invoke
the Core Inserter tool during the appropriate steps in the implementation flow. For more
information on how the Project Navigator and the Core Inserter are integrated, refer to the
Project Navigator section of the ISE Software Manuals (http://www.xilinx.com/support).

ChipScope Definition and Connection Source File
To use the Core Inserter tool to insert cores into a design processed by the ISE 10.1 Project
Navigator tool, follow these steps:

1. Add the definition and connection file (.cdc) to the project and associate it with the
appropriate design module.

a. To create a new .cdc file, select Project → New Source, then select ChipScope
Definition and Connection File and give the file a name (Figure 3-1, page 70).
Click through the remaining dialog boxes using the default settings, as needed.

Note: The ChipScope Definition and Connection File source type is only listed if Project
Navigator 10.1 detects a ChipScope Pro 10.1 installation (the respective versions must match).

http://www.xilinx.com/support
http://www.xilinx.com

70 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

b. To add an existing .cdc file, select Project → Add Source or Project → Add
Copy of Source, then browse for the existing .cdc file.

When prompted, associate the .cdc file with the appropriate top-level design
module. The .cdc file should now be displayed in the Sources in Project window
underneath the associated design module (Figure 3-2).

2. To create the cores and complete the signal connections, double-click the .cdc file in
the Sources in Project window. This runs the Synthesis (if applicable) and Translate
processes, as necessary, and then opens the .cdc file in the Core Inserter tool.

3. Modify the cores and connections in the Core Inserter tool as necessary (as shown in
the section called “ChipScope Pro Core Inserter Features,” page 75), then close the
Core Inserter tool.

4. When the associated top-level design is implemented in Project Navigator, the cores
are automatically inserted into the design netlist as part of the Translate phase of the
flow. There is no need to set any properties to enable this to happen. The .cdc is in the
project and associated with the design module being implemented and causes the
cores to be inserted automatically.

X-Ref Target - Figure 3-1

Figure 3-1: Creating a New .cdc Source File

X-Ref Target - Figure 3-2

Figure 3-2: The .cdc Source File

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 71
UG029 (v10.1) March 24, 2008

Using the Core Inserter with ISE Project Navigator
R

Useful Project Navigator Settings
The following are useful Project Navigator settings to help you implement a design with
cores:

1. If you use the XST synthesis tool, set the Keep Hierarchy option to Yes or Soft to
preserve the design hierarchy and prevent the XST tool from optimizing across all
levels of hierarchy in your design. Using the Keep Hierarchy option preserves the
names of nets and other recognizable components during the core insertion stage of
the flow. If you do not use the Keep Hierarchy option, some of your nets and/or
components can be combined with other logic into new components or otherwise
optimized away. To keep the design hierarchy:

a. Select Edit → Preferences to bring up the Preferences dialog box.

b. Select the Processes tab.

c. Set the Property Display Level combo box dropdown to Advanced and click OK.

d. Right-click on the Synthesize process and select the Properties... option.

e. Make sure the Keep Hierarchy option is set to Yes or Soft and click OK.

2. Prior to using the Analyzer to download your bitstream into your device, make sure
the bitstream generation options are set properly:

a. In the Project Navigator, right-click on the Generate Programming File process
and select the Properties... option.

b. Select the Startup options tab.

c. Set the FPGA Start-Up Clock dropdown to JTAG Clock.

http://www.xilinx.com

72 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

Using the Core Inserter with Command Line Implementation

Command Line Flow Overview
The 10.1 Core Inserter supports a basic command line for batch core insertion. As shown in
Figure 3-3, the Core Inserter command line flow consists of three steps:

1. Create CDC Project

2. Edit CDC Project

3. Insert Cores

The Core Inserter is invoked prior to calling ngdbuild to instantiate debug cores in the
design. Nets are selected for debug using the Edit CDC Project mode to display the GUI
and save net selections to the project. After successfully implementing the design and
configuring the Xilinx device with the resulting bitstream, the Analyzer is used for in-
circuit design debug and verification. To change debug net selections or core settings after
configuration, iterate back to the Edit CDC Project step and proceed through the flow to
create a new bitstream for further debug and verification.
X-Ref Target - Figure 3-3

Figure 3-3: Command Line Core Inserter Flow

Start

Done

Design Entry

Design Synthesis

Device Programming

ChipScope Pro Core Inserter
Create CDC Project

ChipScope Pro Core
In-Circuit Verification

ChipScope Pro Core Inserter
Edit CDC Project

ChipScope Pro Core Inserter
Insert Cores

ngdbuild

map

par

bitgen

Design Implementation

inserter_cmd_line_flow_ch3_03_121306

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 73
UG029 (v10.1) March 24, 2008

Using the Core Inserter with Command Line Implementation
R

Create CDC Project Step
The Create CDC Project step of the command line Core Inserter flow is used to create an
empty skeleton CDC project file, as shown in Figure 3-4. The command line signature for
this step is:

inserter -create <project.cdc>

Note: This step does not bring up the Core Inserter graphical user interface (GUI).

Edit CDC Project Step
The Edit CDC Project step of the command line Core Inserter flow is used to bring up the
Core Inserter GUI to edit an existing CDC project (see Figure 3-5) The ngcbuild tool is
called during this step with the specified arguments following the -ngcbuild argument.
The ngcbuild tool combines all netlists associated with the design into a single complete
NGC netlist file. This allows the Core Inserter tool to provide full debug access to all levels
and nodes in the design.

The command line signature for this step is:

inserter -edit <project.cdc> -ngcbuild [-p <partname>] [{-sd
<source_dir>}] [-dd <output_dir>] [-i] <inputdesign.{edn|ngc}>
<outputdesign.ngc>

X-Ref Target - Figure 3-4

Figure 3-4: Create CDC Project Step

inserter_create_mode_ch3_04_121306

ChipScope Pro
Core Inserter Project.cdc

X-Ref Target - Figure 3-5

Figure 3-5: Edit CDC Project Step
inserter_edit_mode_ch3_05_121306

ChipScope Pro
Core Inserter Project.cdc

Project.cdc

InputDesign

Project.cdc

Project.cdcCores

OutputDesign
Cores

ngcbuild

http://www.xilinx.com

74 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

Insert Cores Step
The Insert Cores step of the command line Core Inserter flow is used to insert cores into a
design based on an existing CDC project (see Figure 3-6). The ngcbuild tool is called during
this step with the specified arguments following the -ngcbuild argument. The ngcbuild
tool combines all netlists associated with the design into a single complete NGC netlist file.
The cores are inserted into this single complete netlist.

The command line signature for this step is:

inserter -insert <project.cdc> -ngcbuild [-p <partname>] [{-sd
<source_dir>}] [-dd <output_dir>] [-i] <inputdesign.{edn|ngc}>
<outputdesign.ngc>

X-Ref Target - Figure 3-6

Figure 3-6: Insert Cores Step

inserter_insert_mode_ch3_06_121306

ChipScope Pro
Core Inserter

Project.cdc

InputDesign

Project.cdc

Project.cdcCores

OutputDesign
+

Cores
+

ChipScope
Cores

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 75
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

ChipScope Pro Core Inserter Features

Working with Projects
Projects saved in the Core Inserter hold all relevant information about source files,
destination files, core parameters, and core settings. This allows you to store and retrieve
information about core insertion between sessions. The project file (.cdc extension) can
also be used as an input to the Analyzer to import signal names.

When the ChipScope Core Inserter is first opened, all the relevant fields are completely
blank. Using the command File → New also results in this condition (Figure 3-7).

Opening an Existing Project

To open an existing project, select it from the list of recently opened projects, or select
File → Open Project, and Browse to the project location. After you locate the project, you
can either double-click on it or click Open.

Saving Projects

If a project has changed during the course of a session, you will be prompted to save the
project upon exiting the Core Inserter. You can also save a project by selecting File → Save.
To rename the current project or save it to another filename, select File → Save As, type in
the new name, and click Save.

X-Ref Target - Figure 3-7

Figure 3-7: Blank Core Inserter Project

http://www.xilinx.com

76 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

Refreshing the Netlist

The Core Inserter automatically reloads the design netlist if it detects that the netlist has
changed since the last time it was loaded. However, you can force the Core Inserter to
refresh the netlist by selecting File → Refresh Netlist.

Inserting and Removing Units

You can insert new units into the project by selecting Edit → New ILA Unit or Edit → New
ATC2 Unit. You can remove a unit by selecting Edit → Remove Unit after choosing which
unit to delete.

Setting Preferences

You can set the ChipScope Core Inserter project preferences by selecting Edit →
Preferences. They are organized into three categories: Tools, ISE Integration, and
Miscellaneous. Refer to “Managing Project Preferences,” page 95 for more information
about setting these preferences.

Inserting the Cores

ICON, ILA, and ATC2 cores are inserted when the flow is completed, or by selecting
Insert →Insert Core. If all channels of all the capture cores are not connected to valid
signals, an error message results.

Exiting the Core Inserter

To exit the ChipScope Core Inserter, select File → Exit.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 77
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

Specifying Input and Output Files
The ChipScope Core Inserter works in a step-by-step process.

1. Specify the Input Design Netlist (Figure 3-7, page 75).

2. Click Browse to navigate to the directory where the netlist resides.

3. Modify the Output Design Netlist and Output Directory fields as needed. (These fields
are automatically filled in initially.)

Figure 3-8 shows a project with input and output files specified.

Note: When the Core Inserter is invoked from the Project Navigator tool, the Input Design Netlist,
Output Design Netlist, Output Directory and Device Family fields are automatically filled in
(Figure 3-9, page 78). In this case, these fields can only be changed by the Project Navigator tool and
cannot be modified directly in the Core Inserter.

X-Ref Target - Figure 3-8

Figure 3-8: Core Inserter Project with Files Specified

http://www.xilinx.com

78 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

Project Level Parameters
Three project level parameters (device family, SRL16 usage, and RPM usage) must be
specified for each project.

Selecting the Target Device Family

The target FPGA device family is displayed in the Device Family field. The structure of the
ICON and capture cores are optimized for the selected device family. Use the pull-down
selection to change the device family to the desired architecture.

The default target device family is Virtex-4.

Using SRL16s

The Use SRL16s checkbox is used to select whether or not the cores will be generated
using SRL16 and SRL16E components. This option is only available for the Virtex-II,
Virtex-II Pro, Virtex-4, Virtex-5, Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP
device families (including the QPro variants of these families). If the checkbox is not
selected, the SRL16 components are replaced with flip-flops and multiplexers, which
affects the size and performance of the generated cores.

The Use SRL16s checkbox is checked by default to generate cores that use the optimized
SRL16 technology.

X-Ref Target - Figure 3-9

Figure 3-9: Core Inserter as Launched from Project Navigator

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 79
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

Using RPMs

The Use RPMs checkbox is used to select whether the individual cores should be
relationally placed macros (RPMs). This option places restraints on the place-and-route tool
to optimize placement of all the logic for the core in one area. If your design uses most of
the resources in the device, these placement constraints might not be met. The Use RPMs
checkbox is checked by default in order to generate cores that are optimized for placement.
When this step is completed, click Next.

Core Utilization
The Core Utilization panel on the left side of the Core Inserter tool main window
(Figure 3-9, page 78) displays an estimated count of the look-up table (LUT), flip-flop (FF),
and block RAM (BRAM) resources that are consumed by the ChipScope cores that are
being inserted into the design netlist. The core resource utilization counts are updated
based on the selection of various core parameters that affect the makeup of the cores being
inserted into the design netlist.

Note: Note: The core utilization feature is not available for the Virtex-5 device family.

Choosing ICON Options
The first options that need to be specified are for the ICON core. The ICON core is the
controller core that connects all ILA and ATC2 cores to the JTAG boundary scan chain. The
ICON core has the parameters shown in Figure 3-10.

X-Ref Target - Figure 3-10

Figure 3-10: ICON Options

http://www.xilinx.com

80 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

Disabling JTAG Clock BUFG Insertion

Disabling the JTAG clock BUFG insertion causes the implementation tools to route the
JTAG clock using normal routing resources instead of global clock routing resources. By
default, this clock is placed on a global clock resource (BUFG). To disable this BUFG
insertion, check the Disable JTAG Clock BUFG Insertion checkbox.

Note: This should only be done if global resources are very scarce; placing the JTAG clock on
regular routing, even high-speed backbone routing, introduces skew. Make sure the design is
adequately constrained to minimize this skew.

After selecting the desired ICON parameters (Figure 3-10, page 79) click Next or New ILA
Unit to automatically create an ILA core and display the Select Logic Analyzer Options
window. To add a new ATC2 core instead of an ILA core, click either New ATC2 Unit.

Selecting the Boundary Scan Chain

The Analyzer can communicate with the cores using either the USER1, USER2, USER3, or
USER4 boundary scan chains. You can select the desired scan chain from the Boundary
Scan Chain pull-down list. This option is only available when targeting the Virtex-4 or
Virtex-5 device families.

Choosing ILA Trigger Options and Parameters
Notice in Figure 3-11 that a new ILA unit has been created in the device hierarchy on the
left. The next step is to set up the ILA unit. Figure 3-11 shows a sample of the first tab in the
ILA options and parameters sequence. The first tab sets up the trigger options for the ILA
core.

X-Ref Target - Figure 3-11

Figure 3-11: ILA Core Trigger Parameters

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 81
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

Selecting the Number of Trigger Ports

Each ILA core can have up to 16 separate trigger ports that can be set up independently.
After you select the number of trigger ports from the Number of Trigger Ports pull-down
list, a group of options appears for each of these ports. The group of options associated
with each trigger port is labeled with TRIGn, where n is the trigger port number 0 to 15.
The trigger port options include trigger width, number of match units connected to the
trigger port, and the type of these match units.

Entering the Width of the Trigger Ports

The individual trigger ports are buses that are made up of individual signals or bits. The
number of bits used to compose a trigger port is called the trigger width. The width of each
trigger port can be set independently using the TRIGn Trigger Width field. The range of
values that can be used for trigger port widths is 1 to 256.

Selecting the Number of Trigger Match Units

A match unit is a comparator that is connected to a trigger port and is used to detect events
on that trigger port. The results of one or more match units are combined together to form
the overall trigger condition event that is used to control data capture. Each trigger port
TRIGn can be connected to 1 to 16 match units by using the # Match Units pull-down list.

Selecting one match unit conserves resources while still allowing some flexibility in
detecting trigger events. Selecting two or more trigger match units allows a more flexible
trigger condition equation to be a combination of multiple match units. However,
increasing the number of match units per trigger port also increases the usage of logic
resources accordingly.

Note: The aggregate number of match units used in a single ILA core cannot exceed 16, regardless
of the number of trigger ports used.

http://www.xilinx.com

82 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

Selecting the Match Unit Type

The different comparisons or match functions that can be performed by the trigger port
match units depend on the type of the match unit. Six types of match units are supported
by the ILA core (Table 3-1).

Use the TRIGn Match Type pull-down list to select the type of match unit that will apply to
all match units connected to the trigger port. However, as the functionality of the match
unit increases, so does the amount of resources necessary to implement that functionality.
This flexibility allows you to customize the functionality of the trigger module while
keeping resource usage in check.

Table 3-1: ILA Trigger Match Unit Types

Type
Bit

Values1
Match

Function
Bits Per
Slice2 Description

Basic 0, 1, X ‘=’, ‘<>’
Virtex-5: 19

All others: 8

Can be used for comparing data
signals where transition detection is
not important. This is the most bit-
wise economical type of match unit.

Basic
w/edges

0, 1, X,
R, F, B

‘=’, ‘<>’
Virtex-5: 8

All others: 4

Can be used for comparing control
signals where transition detection
(e.g., low-to-high, high-to-low, etc.) is
important.

Extended 0, 1, X ‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’

Virtex-5: 16

All others: 2

Can be used for comparing address or
data signals where magnitude is
important.

Extended
w/edges

0, 1, X,
R, F, B

‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’

Virtex-5: 8

All others: 2

Can be used for comparing address or
data signals where a magnitude and
transition detection are important.

Range 0, 1, X

‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’,

‘in range’,
‘not in range’

Virtex-5: 8

All others: 1

Can be used for comparing address or
data signals where a range of values is
important.

Range
w/edges

0, 1, X,
R, F, B

‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’,

‘in range’,
‘not in range’

Virtex-5: 4

All others: 1

Can be used for comparing address or
data signals where a range of values
and transition detection are
important.

Notes:
1. Bit values: ’0’ means “logical 0”, ‘1’ means “logical 1”, ‘X’ means “don’t care”, ‘R’ means “0-to-1

transition”, ‘F’ means “1-to-0 transition”, and ‘B’ means “any transition”.
2. The Bits Per Slice value is only an approximation that is used to illustrate the relative resource

utilization of the different match unit types. It should not be used as a hard estimate of resource
utilization.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 83
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

Selecting Match Unit Counter Width

The match unit counter is a configurable counter on the output of the each match unit in a
trigger port. This counter can be configured at run time to count a specific number of
match unit events. To include a match counter on each match unit in the trigger port, select
a counter width from 1 to 32. The match counter will not be included on each match unit if
the Counter Width combo box is set to Disabled. The default Counter Width setting is
Disabled.

Enabling the Trigger Condition Sequencer

The trigger condition sequencer is a standard Boolean equation trigger condition that can be
augmented with an optional trigger sequencer by checking the Enable Trigger
Sequencer checkbox. A block diagram of the trigger sequencer is shown in Figure 3-12.

The trigger sequencer is implemented as a simple cyclical state machine and can transition
through up to 16 states or levels before the trigger condition is satisfied. The transition
from one level to the next is caused by an event on one of the match units that is connected
to the trigger sequencer. Any match unit can be selected at run time on a per level basis to
transition from one level to the next. The trigger sequencer can be configured at run time to
transition from one level to the next on either contiguous or non-contiguous sequences of
match function events.

Enabling the Storage Qualification Condition

In addition to the trigger condition, the ILA core can also implement a storage qualification
condition. The storage qualification condition is a Boolean combination of match function
events. These match function events are detected by the match unit comparators that are
subsequently attached to the trigger ports of the core. The storage qualification condition
differs from the trigger condition in that it evaluates trigger port match unit events to
decide whether or not to capture and store each individual data sample. The trigger and
storage qualification conditions can be used together to define when to start the capture
process and what data to capture. The storage qualification condition can be enabled by
checking the Enable Storage Qualification checkbox.

Enabling the Trigger Output Port

The trigger output port of the ILA core trigger condition module cannot be enabled in the
Core Inserter tool. It can only be enabled by using the Core Generator tool (see “Generating
an ILA Core,” page 51).

X-Ref Target - Figure 3-12

Figure 3-12: Trigger Sequencer Block Diagram with 16 Levels and 16 Match Units

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level
1

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level
2

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level
16

Trigger

UG029_trig_seq_blk_diag_081903

http://www.xilinx.com

84 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

Choosing ILA Core Capture Parameters
The second tab in the Core Inserter is used to set up the capture parameters of the ILA core
(Figure 3-13).

Selecting the Data Depth

The maximum number of data sample words that the ILA core can store in the sample
buffer is called the data depth. The data depth determines the number of data width bits
contributed by each block RAM unit used by the ILA unit. The Core Generator and Core
Inserter have a resource utilization estimator feature that indicates exactly how many
block RAM resources are used for a given combination of data width and data depth
parameters.

Entering the Data Width

The width of each data sample word stored by the ILA core is called the data width. If the
data and trigger words are independent from each other, then the maximum allowable
data width depends on the target device type and data depth. However, regardless of these
factors, the maximum allowable data width is 256 bits (or 1,024 bits for Virtex-5 devices).

X-Ref Target - Figure 3-13

Figure 3-13: ILA Core Capture Parameters

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 85
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

Selecting the Data Type

The data captured by the ILA trigger port can come from two source types:

• Data Separate from Trigger (Figure 3-13, page 84)

♦ The data port is completely independent of the trigger ports

♦ This mode is useful when you want to limit the amount of data being captured

• Data Same as Trigger (Figure 3-14)

♦ The data and trigger ports are identical. This mode is very common in most logic
analyzers, since you can capture and collect any data that is used to trigger the
core.

♦ Individual trigger ports can be selected to be included in the data port. If this
selection is made, then the DATA input port will not be included in the port map
of the ILA core.

♦ This mode conserves CLB and routing resources in the ILA core, but is limited to
a maximum aggregate data sample word width of 256 bits (or 1,024 bits for
Virtex-5 devices).

Selecting the Data-Same-As-Trigger Ports

If the Data Same As Trigger checkbox is selected, then a checkbox for each TRIGn port
appears in the data options screen. These checkboxes should be used to select the
individual trigger ports that will be included in the aggregate data port. Note that selecting
the individual trigger ports automatically updates the Aggregate Data Width field
accordingly. A maximum data width of 256 bits (or 1,024 bits for Virtex-5 devices) applies
to the aggregate selection of trigger ports.

X-Ref Target - Figure 3-14

Figure 3-14: ILA Core Data Same As Trigger Parameters

http://www.xilinx.com

86 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

Choosing ATC2 Data Capture Settings
If you are inserting an ATC2 core, the Pin Selection Parameters look like those in
Figure 3-15 and Figure 3-16 (for STATE mode and TIMING mode, respectively).
X-Ref Target - Figure 3-15

Figure 3-15: ATC2 Core STATE Mode Data Capture Settings

X-Ref Target - Figure 3-16

Figure 3-16: ATC2 Core TIMING Mode Data Capture Settings

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 87
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

Capture Mode

The Capture Mode setting of the ATC2 core can be set to either STATE mode (Figure 3-15,
page 86) for synchronous data capture to the CLK input signal or to TIMING mode
(Figure 3-16, page 86) for asynchronous data capture. In STATE mode, the data path
through the ATC2 core uses pipeline flip-flops that are clocked on the CLK input port
signal. In TIMING mode, the data path through the ATC2 core is composed purely of
combinational logic all the way to the output pins. Also, in TIMING mode, the ATCK pin
is used as an extra data pin.

Max Frequency Range

The Max Frequency Range parameter is used to specify the maximum frequency range in
which you expect to operate the ATC2 core. The implementation of the ATC2 core will be
optimized for the maximum frequency range selection. The valid maximum frequency
ranges are 0-100 MHz, 101-250 MHz, 251-300 MHz, and 301-500 MHz. The maximum
frequency range selection only has an affect on core implementation when the Capture
Mode is set to STATE mode.

Enable Auto Setup

The Enable Auto Setup option is used to enable a feature that allows the Agilent Logic
Analyzer to automatically set up the appropriate ATC2 pin to Logic Analyzer pod
connections. This feature also allows the Agilent Logic Analyzer to automatically
determine the optimal phase and voltage sampling offsets for each ATC2 pin. This feature
is enabled by default.

Enable "Always On" Mode

The Enable "Always On" Mode option is used to force an ATC2 core to always enable its
internal logic and output buffers. The "Always On" mode will also force the selection of
signal bank 0 upon FPGA device configuration. This mode makes it possible to capture
events that immediately follow device configuration without having to first set up the
ATC2 core manually. This feature is disabled by default and is only available when the
capture mode is set to TIMING mode.

Pin Edit Mode

The Pin Edit Mode parameter is a time saving feature that allows you to change the IO
Standard, Drive, and Slew Rate pin parameters on individual pins or together as a group of
pins. Setting the Pin Edit Mode to Individual allows you to edit the parameters of each pin
independently from one another. Setting the mode to Same as ATCK will allow you to
change the ATCK pin parameters and will force all ATD pins to the same settings. You
need to set unique pin locations for each individual pin regardless of the Pin Edit Mode.

ATD Pin Count

The ATC2 core can implement any number of ATD output pins in the range of 4 through
128.

Endpoint Type

The Endpoint Type setting is used to control whether single-ended or differential output
drivers are used on the ATCK and ATD output pins. All ATCK and ATD pins must use the
same driver endpoint type.

http://www.xilinx.com

88 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

Signal Bank Count

The ATC2 core contains an internal, run-time selectable data signal bank multiplexer. The
Signal Bank Count setting is used to denote the number of data input ports or signal banks
the multiplexer will implement. The valid Signal Bank Count values are 1, 2, 4, 8, 16, 32,
or 64.

TDM Rate

The time division multiplexing (TDM) rate is used to increase the amount of data transmitted
over each data pin by as much as 200 percent. The ATC2 core does not use on-chip memory
resources to store the captured trace data. Instead, it transmits the data to be captured by
an Agilent logic analyzer that is attached to the FPGA pins using a special probe connector.
The data can be transmitted out the device pins at the same rate as the incoming DATA
port (TDM rate = 1x) or twice the rate as the DATA port (TDM rate = 2x). The TDM rate can
be set to “2x” only when the capture mode is set to STATE.

Data Width

The width of each input data port of the ATC2 core depends on the capture mode and the
TDM rate. In STATE mode, the width of each data port is equal to (ATD pin count) * (TDM
rate). In TIMING mode, the width of each data port is equal to (ATD pin count + 1) * (TDM
rate) since the ATCK pin is used as an extra data pin.

Pin Parameters

The settings in the Individual Pin Settings table control the location, I/O standard, output
drive and slew rate of each individual ATCK and ATD pin. The output clock (ATCK) and
data (ATD) pins are instantiated inside the ATC2 core for your convenience. This means
that although you do not have to manually bring the ATCK and ATD pins through every
level of hierarchy to the top-level of your design, you do need to specify the location and
other characteristics of these pins in the Core Generator. These pin attributes are then
added to the *.ncf file of the ATC2 core.

Pin Name

The ATC2 core has two types of output pins: ATCK and ATD. The ATCK pin is used as a
clock pin when the capture mode is set to STATE and is used as a data pin when the
capture mode is set to TIMING. The ATD pins are always used as data pins. The names of
the pins cannot be changed.

Pin Loc

The Pin Loc column is used to set the location of the ATCK or ATD pin.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 89
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

IO Standard

The IO Standard column is used to set the I/O standard of each individual ATCK or ATD
pin. The I/O standards that are available for selection depend on the device family and
driver endpoint type. The names of the I/O standards are the same as those in the
IOSTANDARD section of the Constraints Guide in the Xilinx Software Manual
(http://www.xilinx.com/support).

VCCO

The VCCO column setting denotes the output voltage of the pin driver and depends on the
IO Standard selection.

Drive

The Drive column setting denotes the maximum output current drive of the pin driver and
ranges from 2 to 24 mA, depending on the IO Standard selection.

Slew Rate

The Slew Rate column can be set to either FAST or SLOW for each individual ATCK or
ATD pin.

Core Utilization

The ATC2 core generator has a core resource utilization monitor that estimates the number
of look-up tables (LUTs) and flip-flops (FF) used by the ATC2 core, depending on the
parameters used. The ATC2 core never uses block RAM or additional clock resources (for
example, BUFG or DCM components).

http://www.xilinx.com/support
http://www.xilinx.com

90 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

Choosing Net Connections for ILA Signals
The Net Connections tab (Figure 3-17) allows you to choose the signals to connect to the
ILA core. If trigger is separate from data, then the clock, trigger, and data ports must be
specified. When trigger equals data, only the clock and trigger/data ports must be
specified. Double-click on the CLOCK PORT label or click on the plus sign (+) next to it to
expand as shown in Figure 3-17. No connection has been made, so the connection appears
in red.

X-Ref Target - Figure 3-17

Figure 3-17: ILA Net Connections

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 91
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

The ATC2 Net Connections tab (Figure 3-18) allows you to choose the signals to connect
to the ATC2 core. The clock and data ports must be specified. Double-click on the Clock
Net label or click on the plus sign (+) next to it to expand as shown in Figure 3-18. No
connection has been made, so the connection appears in red.

X-Ref Target - Figure 3-18

Figure 3-18: ATC2 Net Connections

http://www.xilinx.com

92 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

To change any core connection, select Modify Connections. The Select Net dialog box now
appears (Figure 3-19).

This dialog box provides an easy interface to choose nets to connect to the ILA or ATC2
cores. The hierarchical structure of the design can be traversed using the Structure/Nets
pane on the upper left of the Select Net dialog box. All the design’s nets of the selected
structure hierarchy level appear in the table on the lower left pane of the Select Net dialog
box. The following net information is displayed in this table:

• Net Name: The name of the net as it appears in the EDIF netlist. The net name might
be different than the corresponding signal name in the HDL source due to renaming
and other optimizations during synthesis.

• Source Instance: The instance name of the lower-level hierarchical component from
which the net at the current level of hierarchy is driven. The source instance does not
necessarily describe the originating driver of the net.

• Source Component: The type of the component described by the Source Instance.

• Base Type: The type of the lowest level driving component of the net. The base type is
either a primitive or black box component.

All of the net identifiers described above can be filtered for key phrases using the Pattern
text box and Filter button. Also, nets can be sorted in ascending and descending order
based on the various net identifiers by selecting the appropriate net identifier button in the
column headers of the net selection table.

Note: The net names are sorted in alpha-numeric or “bus element” order whenever possible.
Common delimiters such as “[“, “(“, etc., are used to identify possible bus element nets.

X-Ref Target - Figure 3-19

Figure 3-19: Select Net Dialog Box

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 93
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

The tabs for clock, data, and trigger inputs of the ILA core appear in the pane at the upper
right of the Select Net dialog box. If you are selecting nets for an ATC2 core, then only the
Clock and Data input port categories will appear at the upper right of the Select Net dialog
box. If multiple trigger or data ports exist, there will be multiple sub-tabs on the bottom of
the Net Selections pane, respectively. Nets that are selected at a given level of hierarchy can
be connected to inputs of the ILA or ATC2 capture cores by following these steps:

1. In the lower-left table of the Select Net dialog box, select the net(s) that you want to
connect to the capture core.

Note: You can select multiple nets to connect to an equivalent number of capture core input
connections. Hold down the Shift key and use the left mouse button to select contiguous nets.
Use a combination of the Ctrl key and left mouse button to select non-contiguous nets. You can
also connect a single net to multiple capture core input signals by selecting a single net and
multiple capture core port signals.

2. In the upper-right tabbed panel of the Select Net dialog box, select the desired capture
core input category: Clock Signals, Trigger Signals (trigger port tab if applicable), Data
Signals (or Trigger/Data Signals, if trigger is same as data).

3. In the right-hand table of capture core inputs, select the channel(s) that you want to
connect to the selected net(s).

Note: You can select multiple capture core inputs to connect to an equivalent number of nets.
Hold down the Shift key and use the left mouse button to select contiguous ILA core inputs. Use
a combination of the Ctrl key and left mouse button to select non-contiguous ILA core inputs. You
can also connect a single net to multiple capture core input signals by selecting a single net and
multiple capture core port signals.

4. In the lower-right part of the Select Net dialog box, click the Make Connections
button to make a connection between the selected nets and capture core inputs.

Use the Remove Connections button to remove any existing connections. Use the Move
Nets Up and Move Nets Down buttons to reorder the position of any selected connection.
Once the desired net connections have been made, click OK to return to the main Core
Inserter window.

http://www.xilinx.com

94 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

All the trigger and data nets must be chosen in this fashion. After you have chosen all the
nets for a given bus, the ILA or ATC2 bus name changes from red to black (see Figure 3-20).

After specifying the clock, trigger, and data nets, click Next.

If you are using the Core Inserter in stand-along mode, a dialog box appears asking if you
want to proceed with Core Insertion. If Yes, the cores are generated, inserted into the
netlist, and an NGO file is created with the EDIF2NGD tool. Details of this process can be
viewed in the Messages pane at the bottom of the window. A Core Generation
Complete message in the Messages pane indicates successful insertion of ChipScope
cores.

If you are using the Core Inserter as part of the Project Navigator mode, a dialog box
appears asking if you want to return to Project Navigator. If Yes, the Core Inserter settings
are saved and you are returned to the Project Navigator tool. The actual core generation
and insertion processes take place in the proper sequence as deemed necessary by the
Project Navigator tool.

X-Ref Target - Figure 3-20

Figure 3-20: Specifying Data Connections

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 95
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

Adding Units
Each device can support up to 15 ILA or ATC2 units, depending on block RAM availability
and unit parameters.

• To add another ILA unit to the project, select Edit → New ILA Unit, or go to the ICON
Options window by clicking on ICON in the tree on the left pane (Figure 3-10,
page 79) and clicking the New ILA Unit button.

• To add another ATC2 unit to the project, select Edit → New ATC2 Unit, or go to the
ICON Options window by clicking on ICON in the tree on the left pane (Figure 3-10,
page 79) and clicking the New ATC2 Unit button.

You can set up the parameters for the additional units by using the same procedure as
described above.

Inserting Cores into Netlist
The core insertion step can be invoked by selecting the Insert → Insert Core menu option
or by clicking Insert Core on the toolbar.

Note: If you are using the Core Inserter flow in the ISE 10.1 Project Navigator tool, click Return to
Project Navigator instead of selecting the Insert → Insert Core option. The insertion of the
cores will happen automatically as part of the Translate process in the Project Navigator tool. Refer
to “Using the Core Inserter with ISE Project Navigator,” page 69 for details.

Managing Project Preferences
The preference settings are organized into three categories: Tools, ISE Integration, and
Miscellaneous. These preference settings are shown in Figure 3-21, Figure 3-22, page 96, and
Figure 3-23, page 96, respectively.

The Tools section (Figure 3-21) contains settings for the command line arguments used by
the Core Inserter to launch the EDIF2NGD tool.

X-Ref Target - Figure 3-21

Figure 3-21: Core Inserter Tools Preference Settings

http://www.xilinx.com

96 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

The ISE Integration section (Figure 3-22, page 96) contains settings that affect how the Core
Inserter integrates with the ISE Project Navigator tool. When ISE integration is enabled
(the default), the Core Inserter automatically searches the current working directory for
ISE temporary netlist directory called _ngo. If a valid ISE _ngo directory is found, the
Core Inserter project will be set up automatically to overwrite the intermediate NGD files
of the ISE project with those produced by the Core Inserter. The ISE Integration preferences
can be set by the user to prompt the user before overwriting any intermediate NGD files.

The Miscellaneous preferences section (Figure 3-23) contains other settings that affect how
the Core Inserter operates. For example, the Core Inserter can be set up by the user to
display the ports in the Select Net dialog box. This might be desired if the cores are being
inserted into a lower-level EDIF netlist, instead of the top level. These port nets are shown
in gray in the Select Net dialog box. The Core Inserter can also be set up to display nets that
are illegal for connection in the Select Net dialog box. When this preference option is
enabled, any illegal nets are shown in red in the Select Net dialog box.

X-Ref Target - Figure 3-22

Figure 3-22: Core Inserter ISE Integration Preference Settings

X-Ref Target - Figure 3-23

Figure 3-23: Core Inserter Miscellaneous Preference Settings

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 97
UG029 (v10.1) March 24, 2008

ChipScope Pro Core Inserter Features
R

Also, the Core Inserter can be set up by the user to disable the display of source component
instance names, source component types, and base net driver types in the Select Net dialog
box. You can reset the Core Inserter project preferences to the installation defaults by
clicking on the Reset button.

http://www.xilinx.com

98 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 3: Using the ChipScope Pro Core Inserter
R

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 99
UG029 (v10.1) March 24, 2008

R

Chapter 4

Using the ChipScope Pro Analyzer

Analyzer Overview
The ChipScope Pro Analyzer tool interfaces directly to the cores (collectively called the
ChipScope Pro cores) listed in Table 4-1. You can configure your device, choose triggers,
setup the console, and view the results of the capture on the fly. The data views and
triggers can be manipulated in many ways, providing an easy and intuitive interface to
determine the functionality of the design.

Note: Even though the Analyzer tool will detect the presence of an ATC2 core, an Agilent Logic
Analyzer attached to a JTAG cable is required to control and communicate with the ATC2 core.

Note: For more information about using the Analyzer to communicate with the IBERT core, see
UG213, ChipScope Pro Serial I/O Toolkit User Guide at http://www.xilinx.com/literature/literature-
chipscope.htm

The Analyzer tool is made up of two distinct applications: the server and the client. The
Analyzer server is a command line application that connects to the JTAG chain of the target
system using any of the supported JTAG download cables shown in Table 4-2. The
Analyzer client is a graphical user interface (GUI) application that allows you to interact
with the devices in the JTAG chain and the cores that are found in those devices.

The Analyzer server and client can be running on the same machine (local host mode) or
on different machines (remote mode). Remote mode is useful when you need to:

• Debug a system that is in a different location

• Share a single system resource with other team members

• Demonstrate a problem or feature to someone who is not at your location

Table 4-1: Cores Supported by the Analyzer Tool

Core Analyzer

ICON Yes

ILA Yes

IBA/OPB Yes

IBA/PLB Yes

VIO Yes

ATC2 Yes

IBERT Yes

http://www.xilinx.com
http://www.xilinx.com/literature/literature-chipscope.htm
http://www.xilinx.com/literature/literature-chipscope.htm

100 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

The remote mode is available on all operating systems shown in Table 4-2.

Analyzer Server Interface
The Analyzer server command line application is available on Windows and Linux
operating systems, as shown in Table 4-2, page 100. If you desire to debug a target system
that is connected directly to your local machine via a JTAG download cable, then you do
not need to start the server manually. You only need to start the server application
manually when you desire to interact with the server from a remote client.

Note: The Analyzer server application can handle only one client connection at a time.

The server can be started as follows:

• The Analyzer server is started on Windows machines by executing
$CHIPSCOPE/cs_server.bat <command line options>

• The Analyzer server is started on Linux machines by executing
$CHIPSCOPE/bin/lin/cs_server.sh <command line options>

where the $CHIPSCOPE environment variable points to the ChipScope Pro 10.1
installation directory. The Analyzer server application has several <command line
options> that are described in Table 4-3. You can customize the server scripts as needed.

See “Setting up a Server Host Connection,” page 113 for more information on how to
connect to the server application from the Analyzer client application.

Table 4-2: Operating System Support for the ChipScope Pro Analyzer

Application
Windows XP Pro

Windows Vista Business
(32-bit and 64-bit)

Red Hat Linux Enterprise
WS 4 and 5

(32-bit and 64-bit)

Analyzer Server

Yes

Supported JTAG cables:

• Platform Cable USB
• Parallel Cable IV
• Parallel Cable III
• MultiPRO

Yes

Supported JTAG cables:

• Platform Cable USB
• Parallel Cable IV
• Parallel Cable III
• MultiPRO

Analyzer Client
Yes

(Local and Remote)

Yes

(Local and Remote)

Table 4-3: ChipScope Pro Analyzer Server Command Line Options

Command Line Option Description

-port <portnumber>
Used to specify the TCP/IP port number that is used by the client
and server to establish a connection. The default port number is
50001.

-password <password>
Used to protect the server from unauthorized access. No
password is set by default.

-l <logfile>

Used to specify the location of the log file. The default log file
location is:

$HOME/.chipscope/cs_analyzer_<portnumber>.log

where $HOME is the users home directory and <portnumber> is
the TCP/IP port number used by the server.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 101
UG029 (v10.1) March 24, 2008

Analyzer Client Interface
R

Analyzer Client Interface
The Analyzer client interface consists of four parts:

• Project tree in the upper part of the split pane on the left side of the window

• Signal browser in the lower part of the split pane on the left side of the window

• Message pane at the bottom of the window

• Main window area

Both the project tree/signal browser split pane and the Message pane can be hidden by
deselecting those options in the View menu. Additionally, the size of each pane can be
adjusted by dragging the bar located between the panes to a new location. Each pane can
be maximized or minimized by clicking on the arrow buttons on the pane separator bars.

Project Tree
The project tree is a graphical representation of the JTAG chain and the cores in the devices
in the chain. Although all devices in the chain are displayed in the tree, only valid target
devices cores and be operated upon. Leaf nodes in the tree appear when further operations
are available.

For instance, a leaf node for each unit appears when that device is configured with a core-
enabled bitstream. Context-sensitive menus are available for each level of hierarchy in the
tree. To access the context-sensitive menu, right-click on the node in the tree. Device and
unit renaming, child window opening, device configuration, and project operations can all
be done through these menus.

To rename a device or core unit node in the project tree, right-click on the node and select
Rename. To end the editing, press Enter or the up or down arrow key, or click on another
node in the tree.

Signal Browser
The signal browser displays all the signals for the core selected in the project tree. Signals
can be renamed, grouped into buses, and added to the various data views using context-
sensitive menus in the signal browser.

Renaming Signals, Buses, and Triggers Ports

To rename a signal, bus, or trigger port name in the signal browser, double-click on it, or
right-click and select Rename. To end the editing, press Enter or the up or down arrow
key, or click on another node in the tree.

Adding/Removing Signals from Views

To remove all the signals from either the waveform or listing view, right-click on any data
signal or bus in the signal browser and select Clear All → Waveform or Clear All →
Listing. In the case of a VIO core, to remove all the signals from the VIO console, right-click
on any signal or bus, and select Clear All → Console. Similarly, all signals and buses can
be added to the views through the Add All to View menu options. Selected signals and
buses can be added through the Add to View menu options.

To select a contiguous group of signals and buses, click on the first signal, hold down the
Shift key, and click on the last signal in the group. To select a non-contiguous group of
signals and buses, click on each of the signals/buses in turn while holding down the Ctrl

http://www.xilinx.com

102 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

key. When you use this method, the order of the signals in the bus are in the order in which
you select them.

Combining and Adding Signals Into Buses

For ILA and IBA cores, only data signals can be combined into buses. For VIO cores,
signals of a particular type can be grouped together to form buses. To combine signals into
buses, select the signals using the Shift or Ctrl keys as described above. When the Shift key
is used, the uppermost signal in the tree will be the LSB once the bus is created. If the Ctrl
key is used, the signals will be in ordered in the bus the same order that they are clicked,
the first signal being the LSB.

After you have selected the signals, right click on any selected signal and select Add to
Bus → New Bus. A new bus will be created at the top of the Data Signals and Buses sub-
tree (in the case of ILA and IBA cores), or at the top of that particular sub-tree (in the case
of VIO). To add a signal or signals into an existing bus, select the signals and select Add to
Bus, and then the bus name in the following submenu. Added signals always go on the
MSB-end of the bus.

Reverse Bus Ordering

To reverse the order of the bits in a bus (i.e. make the LSB the MSB), right click on the bus
and select Reverse Bus Order. The signal browser and all data views that contain that bus
will be immediately updated, and the bus values recalculated.

Bus Radices

Each bus can be displayed in the data views in any one of the following radices:

• ASCII

• Binary

• Hexadecimal

• Octal

• Signed decimal

• Token

• Unsigned decimal

ASCII is only available if the number of bits in the bus is evenly divisible by 8. Changing
the radix will change the bus radix in every data view it is resident.

Signed and Unsigned

When either signed or unsigned is chosen as a bus radix, a small dialog box appears for you
to enter three additional parameters: scale factor, offset and precision.

• Scale factor is a multiplier value to use when calculating bus values. For instance, if the
LSB of a 4-bit bus is 0010, and the scale factor is set to 2.0, the actual displayed bus
value will be 4 (given a precision of 0). If the scale factor is set to 0.1, then the actual
displayed bus value will be 0.2 (given a precision of 1). The default scale factor is 1.0.

• Offset is a constant value that will be added to the scaled bus value. The default offset
is 0.

• Precision is the number of decimal places to display after the decimal point. The
default precision is 0.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 103
UG029 (v10.1) March 24, 2008

Analyzer Client Interface
R

Token

Tokens are string labels that are defined in a separate ASCII file and can be assigned to a
particular bus value. These labels can be useful in applications such as address decoding
and state machines. The token file (.tok extension) has a very simple format, and can be
created or edited in any text editor. An example token file is provided in the token
directory in the install path (Figure 4-1).

Tokens are chosen by selecting a bus, then choosing Bus Radix → Token from the
right-click menu. A dialog box opens and you can choose the token file. If the bus is wider
than the tokens specify (such as choosing 4-bit tokens for an 8-bit bus) the upper bits are
assumed 0 for the tokens to apply. Figure 4-2 shows such a waveform, with the example
token file in Figure 4-1, page 103 applied to an 8-bit bus.

Deleting Buses

To delete a bus, right click on it and select Delete Bus. The bus is immediately deleted in
every data view it is resident.

Type and Persistence (VIO only)

VIO signals have two additional properties: Type and Persistence. See “VIO Bus/Signal
Activity Persistence,” page 137 for explanations of these properties.

X-Ref Target - Figure 4-1

Figure 4-1: Example Token File

X-Ref Target - Figure 4-2

Figure 4-2: Example Waveform with Tokens

http://www.xilinx.com

104 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Message Pane
The Message pane displays a scroll list of status messages. Error messages appear in red.
The Message pane can be resized by dragging the split bar above it to a new location. This
also changes the height of the project tree/signal browser split pane.

Main Window Area
The main window area can display multiple child windows (such as Trigger, Waveform,
Listing, Plot windows) at the same time. Each window can be resized, minimized,
maximized, and moved as needed.

Analyzer Features

Working with Projects
Projects hold important information about the Analyzer program state, such as signal
naming, signal ordering, bus configurations, and trigger conditions. They allow you to
conveniently store and retrieve this information between Analyzer sessions

When you first run the Analyzer tool, a new project is automatically created and is titled
new project. To open an existing project, select File → Open Project, or select one of the
recently used projects in the File menu. The title bar of the Analyzer and the project tree
displays the project name. If the new project is not saved during the course of the session,
a dialog box appears when the Analyzer is about to exit, asking you if you wish to save the
project.

Creating and Saving A New Project

To create a new project, select File → New Project. A new project called new project is
created and made active in the Analyzer. To save the new project under a different name,
select File → Save Project. The project file will have a .cpj extension.

Saving Projects

To rename the current project, or to save a copy to another filename, select File → Save
Project As (Figure 4-3), type the new name in the File name dialog box, and click Save.

X-Ref Target - Figure 4-3

Figure 4-3: Saving a Project

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 105
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Printing Waveforms
One of the features of ChipScope Pro is the ability to print a captured data waveform
(Figure 4-4) by using the File → Print menu option (Figure 4-5). Selecting the File → Print
menu option starts the Print Wizard.

The Print Wizard consists of three consecutive windows:

1. (1 of 3) is the Print options and settings window (Figure 4-6, page 106)

2. (2 of 3) is the Print waveform printout preview navigator window (Figure 4-8,
page 108)

3. (3 of 3) is the Print confirmation window (Figure 4-11, page 110)

X-Ref Target - Figure 4-4

Figure 4-4: Example Waveform

X-Ref Target - Figure 4-5

Figure 4-5: Selecting the File Print Option

http://www.xilinx.com

106 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Print Wizard (1 of 3) Window

The first Print Wizard window (Figure 4-6) is used to set up various waveform printing
options. The following sections describe these waveform printing options in more detail.

Horizontal Scaling

You can control the amount of waveform data that prints to each column of pages using
one of two methods:

• Fit To: Fit the waveform to one or more columns of pages

• Fixed: Fit a specific number of waveform samples on each column of pages

The default fits the entire waveform printout to a single column of pages wide.

Signal/Bus Selection

You can control which signals and buses will be present in the waveform printout using
one of three methods:

• Current View: Print waveform data for all of the signals and buses in the current view
of the waveform window

• All: Print waveform data for all of the signals and buses available in the entire core
unit

• Selected: Print waveform data for only those signals and buses that are currently
selected in the waveform window

The default prints waveform data using the Current View method.

Time/Sample Range

You can control the range of time units or number of samples printed using one of four
methods:

• Current View: Print waveform data using the same range of samples that is present in
the current waveform view

• Full Range: Print waveform data using a range of samples consisting of all samples in
the entire sample buffer

• Between X/O Cursors: Print waveform data using a range of samples starting with the
X cursor and ending with the O cursor (or vice versa)

• Custom View: Print waveform data using a range of samples defined by a starting
window and sample number and an ending window and sample number

The default prints waveform data using the Current View method.

X-Ref Target - Figure 4-6

Figure 4-6: Print Wizard (1 of 3)

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 107
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Print Signal Names

You can choose to print the signal names (and X/O cursor values) on each page or only on
the first page. Printing the X/O cursor values on the first page only is useful when you
assemble multiple printed pages together to form a larger multi-dimensional plot.

X/O Cursor Values

You can also choose whether or not to include the X/O cursor values in the waveform
printout. If you choose to display the X/O cursor values in the waveform printout, then
they will either appear on each page or only on the first page, depending on the Print
Signal Names setting (see “Print Signal Names”).

Footer

You can enable or disable the inclusion of a footer at the bottom of each page by selecting
the Show Footer checkbox. An example of the information that appears in the footer is
shown in Figure 4-7.

Navigation Buttons

The buttons at the bottom of the Print Wizard (1 of 3) window (Figure 4-6, page 106) are
defined as follows:

• Page Setup: Opens the page setup window (refer to Figure 4-12, page 110)

• Next: Opens the Print Wizard (2 of 3) window

• Cancel: Closes the Print Wizard window without printing

Clicking on the Next button takes you to the Print Wizard (2 of 3) window, described in
“Print Wizard (2 of 3) Window,” page 108.

X-Ref Target - Figure 4-7

Figure 4-7: Waveform Printout Footer Example

http://www.xilinx.com

108 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Print Wizard (2 of 3) Window

The second Print Wizard window (Figure 4-8) shows a preview of the waveform printout.

Page Preview Buttons

The buttons at the top of the page control which page of the waveform printout is being
previewed as follow:

• The << and >> buttons go to the first and last preview pages, respectively

• The < and > buttons go to the previous and next preview pages, respectively

• The text box in the middle can be used to go to a specific preview page

Navigation Buttons

The buttons at the bottom of the Print Wizard (2 of 3) window (Figure 4-8) are defined as
follows:

• Back: Returns to the Print Wizard (1 of 3) window

• Send to PDF: Opens the Print Wizard (3 of 3) window for writing directly to a PDF File

• Send to Printer: Opens the Print Wizard (3 of 3) window for sending to a printer

• Close: Closes the Print Wizard window without printing

X-Ref Target - Figure 4-8

Figure 4-8: Print Wizard (2 of 3)

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 109
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Bus Expansion and Contraction

You can manipulate the waveform by expanding and contracting the buses in the print
preview window. For example, if you expand a bus in Figure 4-8, page 108 such that it
pushes other signals/buses to another page, the total print preview page count at the top
will change accordingly, as shown in Figure 4-9.
X-Ref Target - Figure 4-9

Figure 4-9: Expanding Buses in Print Wizard (2 of 3)

http://www.xilinx.com

110 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Print Wizard (3 of 3) Window

In the Print Wizard (2 of 3) window, clicking on the Send to PDF button goes to the Print
Wizard (3 of 3) PDF confirmation window (Figure 4-10). Clicking on the Yes button causes
the waveform printout to be written to the specified PDF file while clicking on the No
button returns you to the Print Wizard (2 of 3) window. Clicking on Change File opens a
file browser window that allows you to select or create a new PDF file.

In the Print Wizard (2 of 3) window, clicking on the Send to Printer button goes to the Print
Wizard (3 of 3) Printer confirmation window (Figure 4-11). Clicking on the Yes button
causes the waveform printout to be sent to the printer while clicking on the No button
returns you to the Print Wizard (2 of 3) window.

Page Setup

The Page Setup window (Figure 4-12) can be invoked either from the Print Wizard (1 of 3)
window (Figure 4-6, page 106) or by using the File → Page Setup menu option.

Note: In the ChipScope Pro Analyzer program, you can print only to the default system printer.
Changing the target printer in the print setup window does not have any effect. To change printers,
you must close the Analyzer program, change your default system printer, and restart the Analyzer
program.

X-Ref Target - Figure 4-10

Figure 4-10: Print Wizard (3 of 3) for Sending to a PDF File

X-Ref Target - Figure 4-11

Figure 4-11: Print Wizard (3 of 3) for Sending to a Printer

X-Ref Target - Figure 4-12

Figure 4-12: Page Setup Window

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 111
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Importing Signal Names
At the start of a project, all of the signals in every core have generic names. You can rename
the signals individually as described in “Renaming Signals, Buses, and Triggers Ports,”
page 101 or import a file that contains all the names of all the signals in one or more cores.
The Core Generator, Core Inserter, Synplicity Certify, and the FPGA Editor tools can create
such files. To import signal names from a file, select File → Import. A Signal Import dialog
box appear (Figure 4-13).

To select the signal import file, select Select New File. A file dialog box will appear for you
to navigate and specify the signal import file. After you choose the file, the Unit/Device
combo box will be populated, according to the core types specified in the signal import file.
If the signal import file contains signal names for more than one core, the combo box will
contain device numbers for all devices that contain only ChipScope Pro capture cores.

If the signal import file contains signal names for only one core, the combo box will be
populated with names of the individual cores that match the type specified in the signal
import file. If the import file is a file from Synplicity Certify, you will also have the option
of choosing a device name from the Certify file as well as the device in the JTAG chain.

To import the signal names, click OK. If the parameters in the file do not match the
parameters of the target core or cores, a warning message will be displayed. If you choose
to proceed, the signal names will be applied to the cores as applicable.

X-Ref Target - Figure 4-13

Figure 4-13: Blank Signal Import Dialog Box

http://www.xilinx.com

112 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Exporting Data
Captured data from an ILA or IBA core can be exported to a file, for future viewing or
processing. To export data, select File → Export. The Export Signals dialog box appears
(Figure 4-14).

Three formats are available: value change dump (VCD) format, tab-delimited ASCII format, or
the Agilent Technologies Fast Binary Data Format (FBDF). To select a format, click its radio
button. To select the target core to export, select it from the Core combo box.

Different sets of signals and buses are available for export. Use the Signals to Export combo
box to select:

• All the signals and buses for that particular core, or

• All the signals and buses present in the core’s waveform viewer, or

• All the signals and buses in the core’s listing viewer, or

• All the signals and buses in the core’s bus plot viewer

To export the signals, click Export. A file dialog box will appear from which you can
specify the target directory and filename.

Closing and Exiting the Analyzer
To exit the Analyzer, select File → Exit. The current active project is automatically saved
upon exit.

Viewing Options
The split pane on the left of the Analyzer window and the Message pane at the bottom of
the window can both be hidden or displayed per the user’s choice. Both are displayed the
first time the Analyzer is launched. To hide the project tree/signal browser split pane,
uncheck it under View → Project Tree. To hide the Message pane, uncheck it under
View → Messages.

X-Ref Target - Figure 4-14

Figure 4-14: Export Signals Dialog Box

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 113
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Setting up a Server Host Connection
The Analyzer client GUI application requires a connection to the Analyzer server
application that is running on either the local or a remote system. Select the JTAG Chain
JTAG Chain → Server Host Setting. This pops up the server settings dialog (Figure 4-15).

For local mode operation, the server Host setting should always be set to localhost
(Figure 4-15). The Port setting can be set to any unused TCP/IP port number. The default
Port number is 50001. In local mode, the Password setting is not necessary in local mode.

Note: In local mode, the server is started automatically.

For remote mode operation, the server Host setting should be set to an IP address or
appropriate system name (Figure 4-16). The Port and Password settings should be set to
the same port that was used when the server was started on the remote system. In remote
mode, the connection is not actually established until you open a connection to a JTAG
download cable, as described in the subsequent sections of this document.

Note: In remote mode, the server needs to be started manually, as described in “Analyzer Server
Interface,” page 100.

X-Ref Target - Figure 4-15

Figure 4-15: Server Settings for Local Mode

X-Ref Target - Figure 4-16

Figure 4-16: Server Settings for Remote Mode

http://www.xilinx.com

114 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Opening a Parallel Cable Connection
To open a connection to the Parallel Cable (including the MultiPRO cable), make sure the
cable is connected to one of the computer’s parallel ports. Select JTAG Chain → Xilinx
Parallel Cable (Figure 4-17). This pops up the Parallel Cable Selection configuration
dialog box. You can choose the Parallel Cable III, Parallel Cable IV, or have the Analyzer
autodetect the cable type.

Note: In order to open a connection to the MultiPRO cable, select either Parallel Cable IV or Auto
Detect Cable Type.

If the Parallel Cable IV or Auto Detect Cable Type option is selected, you can choose the
speed of the cable; the choices are 10 MHz, 5 MHz, 2.5 MHz (default), 1.25 MHz, or
625 kHz. Choose the speed that makes the most sense for the board under test. Type the
printer port name in the Port selection box (usually the default LPT1 is correct) and click
OK. If successful, the Analyzer queries the Boundary Scan chain to determine its
composition (see “Setting Up the Boundary Scan (JTAG) Chain,” page 117).

If the Analyzer returns the error message Failed to Open Communication Port,
verify that the cable is connected to the correct LPT port. If you have not installed the
Parallel Cable driver, follow the instructions in the ChipScope Pro software installation
program to install the required device driver software.

X-Ref Target - Figure 4-17

Figure 4-17: Opening a Parallel Cable Connection

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 115
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Opening a Platform Cable USB Connection
To open a connection to the Parallel Cable (including the MultiPRO cable), make sure the
cable is connected to one of the computer’s parallel ports. Selecting the JTAG Chain →
Xilinx Platform USB Cable menu option pops up a dialog window (Figure 4-18).

Platform Cable USB Clock Speeds

You can choose the speed of the cable from any of the settings: 24 MHz, 12 MHz, 6 MHz,
3 MHz (default), 1.5 MHz, or 750 kHz. Choose the speed that makes the most sense for the
board under test.

Platform Cable USB Port Number

You can also choose the USB port from a selection of port enumerations in the range of
USB2<n>, where <n> is an integer value is 1 through 127. The default port setting is
USB21. The USB port enumeration number is based on the order in which the Platform
Cable USB download cables are plugged into USB ports of the system. For instance, the
first Platform Cable USB download cable plugged into the system is assigned the port
enumeration of USB21, the second cable is assigned USB22, and so on.

Note: The enumerations are not necessarily preserved when the system is power cycled. Also,
there is currently no way to identify a particular Platform Cable USB other than by physically plugging
the cables into the system in a particular order.

X-Ref Target - Figure 4-18

Figure 4-18: Opening a Platform Cable USB Connection

http://www.xilinx.com

116 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Using Multiple Platform Cable USB Connections
To use the ChipScope Pro Analyzer with multiple cables, you need three things:

1. Multiple Xilinx JTAG cables connected to one machine

2. Multiple instances of the cs_server application running on one machine, each one
listening to a different port

3. Multiple instances of ChipScope Pro Analyzer running on that same machine, or a
different machine (via the remote server feature)

1. Multiple Xilinx JTAG Cables Connected to One Machine

To interact with multiple JTAG cables connected to the same machine, you first need to be
able to connect multiple Platform Cable USB, Parallel Cable III, or Parallel Cable IV cables
to the machine. For Platform Cable USB cables, you might need to use one or more USB
hubs depending on how many cables you need. For PC3/PC4, you may need one or more
parallel port extender cards.

Note: Currently, enumerations are not associated with a particular physical Platform Cable USB
cable. This means that rebooting your machine might result in different associations between
enumerations and physical cables. One work-around is to unplug all cables and re-plug them in the
order you wish for them to be enumerated.

2. Multiple Instances of cs_server

Set up the ChipScope Pro Analyzer to use multiple cables first by starting multiple
instances of the cs_server.exe Windows application or cs_server.sh Linux
application on the same machine using different ports. For example, to start up two servers
on different ports on Linux, use:

cs_server.sh -port 50001
cs_server.sh -port 50002

3. Multiple Instances of the ChipScope Pro Analyzer

Start and configure multiple ChipScope Pro Analyzer client instances (see Table 4-4). Each
instance of the Analyzer connects to a different cs_server and cable enumeration.

Table 4-4: Configuration of Multiple Client Instances

Analyzer
Instance #

Server Host Setting
Platform Cable

USB Port #

1 <IP Address>:50001 USB21

2 <IP Address>:50002 USB22

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 117
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Polling the Auto Core Status
When the cores are armed, the interface cable queries the cores on a regular basis to
determine the status of the capture. If other programs are using the cable at the same time
as the Analyzer, it can often be beneficial to turn this polling off. This can be done in the
JTAG Chain menu by un-checking JTAG Chain → Auto Core Status Poll. If this option
is unchecked, when the Run or Trigger Immediate operation is performed, the Analyzer
will not query the cores automatically to determine the status.

Note that this does not completely disable communication with the cable; it will only
disable the periodic polling when cores are armed. If one or more cores trigger after the
polling has been turned off, the capture buffer will not be downloaded from the device and
displayed in any of the data viewer(s) until the Auto Core Status Poll option is turned on
again.

Configuring the Target Device(s)
You can use the Analyzer software with one or more valid target devices. The first step is
to set up all of the devices in the Boundary Scan chain.

Setting Up the Boundary Scan (JTAG) Chain

After the Analyzer has successfully communicated with a download cable, it
automatically queries the Boundary Scan (JTAG) chain to find its composition. All Xilinx
FPGA, CPLD, PROM, and System ACE devices are automatically detected. The entire
IDCODE can be verified for valid target devices. To view the chain composition, select
JTAG Chain → JTAG Chain Setup. A dialog box appears with all detected devices in
order.

For devices that are not automatically detected, you must specify the IR (Instruction
Register) length to insure proper communication to the cores. This information can be
found in the device’s BSDL file. The following example has one System ACE CF controller
device (System_ACE_CF), one Platform Flash PROM device (XCF32P™), one Virtex-4
FPGA device (XC4VLX25™), and one CPLD device (XC9500XL™) in the JTAG chain
(Figure 4-19). USERCODEs can be read out of the ChipScope Pro target devices (only the
XC4VLX25 device in this example) by selecting Read USERCODEs.

The Analyzer tool automatically keeps track of the test access port (TAP) state of the
devices in the JTAG chain, by default. If the Analyzer is used in conjunction with other
JTAG controllers (such as the System ACE CF controller or processor debug tools), then the
actual TAP state of the target devices can differ from the tracking copy of the Analyzer. In
this case, the Analyzer should always put the TAP controllers into a known state (for
example, the Run-Test/Idle state) before starting any JTAG transaction sequences. Clicking
on the Advanced button on the JTAG Chain Device Order dialog box reveals the

X-Ref Target - Figure 4-19

Figure 4-19: Boundary Scan (JTAG) Setup Window

http://www.xilinx.com

118 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

parameters that control the start and end states of JTAG transactions (Figure 4-20). Use the
second parameter if the JTAG chain is shared with other JTAG controllers.

Device Configuration

The Analyzer can configure target FPGA devices using the following download cables in
JTAG mode only: Platform Cable USB, Parallel Cable III, Parallel Cable IV, or MultiPRO.

If the target device is to be programmed using a download cable by way of the JTAG port,
select the Device menu, select the device you wish to configure, and select the Configure
menu option. Only valid target devices can be configured and are, therefore, the only
devices that have the Configure option available (Figure 4-21). Alternatively, you can
right-click on the device in the project tree to get the same menu as Device.

After selecting the configuration mode, the JTAG Configuration dialog box opens
(Figure 4-22). This dialog box reflects the configuration choice, and defaults to a blank
entry for the configuration file.

X-Ref Target - Figure 4-20

Figure 4-20: Advanced JTAG Chain Parameters Setup Window

X-Ref Target - Figure 4-21

Figure 4-21: Device Menu Options

X-Ref Target - Figure 4-22

Figure 4-22: Selecting a Bitstream

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 119
UG029 (v10.1) March 24, 2008

Analyzer Features
R

To select the BIT file to download, click on Select New File. The Open Configuration File
dialog box (Figure 4-23) opens. Using the browser, select the device file you want to use to
configure the target device. It is important to select a BIT file generated with the proper
BitGen settings. Specifically, the -g StartupClk:JtagClk option must be used in BitGen in
order for configuration to be successful.

Once you locate and select the proper device file, click Open to return to the JTAG
Configuration dialog box (Figure 4-22, page 118).

Once the BIT file has been chosen, click OK to configure the device.

Observing Configuration Progress

While the device is being configured, the status of the configuration is displayed at the
bottom of the Analyzer window. If the DONE status is not displayed, a dialog box opens,
explaining the problem encountered during configuration. If the download is successful,
the target device is automatically queried for ChipScope Pro cores, and the project tree is
updated with the number of cores present. A folder is created for each core unit found and
Trigger Setup, Waveform, and Listing leaf nodes appear under each ChipScope Pro unit.
A Bus Plot leaf node will appear only if the core unit is determined to be an ILA core.

X-Ref Target - Figure 4-23

Figure 4-23: Opening a Configuration File

http://www.xilinx.com

120 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Displaying JTAG User and ID Codes

One method of verifying that the target device was configured correctly is to upload the
device and user-defined ID codes from the target device. The user-defined ID code is the
8-digit hexadecimal code that can be set using the BitGen option -g UserID.

To upload and display the user-defined ID code for a particular device, select the Show
USERCODE option from the Device menu for a particular device (Figure 4-21, page 118).
Select the Show IDCODE option from the Device menu to display the fixed device ID code
for a particular device. The results of these queries are displayed in the messages window
(Figure 4-24). The IDCODE and USERCODE can also be displayed in the JTAG Chain
Setup dialog box, JTAG Chain → JTAG Chain Setup (Figure 4-19, page 117).

Displaying Configuration Status Information

The 32-bit configuration status register contains information such as status of the
configuration pins and other internal signals. If configuration problems occur, select Show
Configuration Status from the Device menu for a particular target device to display this
information in the messages window (Figure 4-25).

Note: All target devices contain two internal registers that contain status information: 1) the
Configuration Status register (32 bits) and 2) the JTAG Instruction register (variable length,
depending on the device). Only valid target devices have a Configuration Status register. Although all
devices have a JTAG Instruction register that can be read, the implementation of that particular
device determines whether any status information is present. Refer to the documentation for the
particular FPGA device for information on the definition of each specific configuration status bit.

X-Ref Target - Figure 4-24

Figure 4-24: Device USERCODE and IDCODE

X-Ref Target - Figure 4-25

Figure 4-25: Displaying Device Configuration Status

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 121
UG029 (v10.1) March 24, 2008

Analyzer Features
R

For some devices, the JTAG Instruction register also contains status information. Use
Device → Show Instruction Register to display this information in the messages
window for any device in the JTAG chain (Figure 4-26).

Trigger Setup Window
To set up the trigger for an ILA or IBA core, select Window → New Unit Windows and the
core desired(Figure 4-27). A dialog box will be displayed for that core, and you can select
the Trigger Setup, Waveform, Listing, Bus Plot and/or Console window(s) in any
combination (Figure 4-27). Windows cannot be closed from this dialog box.

The same operation can by achieved by double-clicking on the Trigger Setup leaf node in
the project tree, or by right-clicking on the Trigger Setup leaf node and selecting Open
Trigger Setup.

Each ILA and IBA core has its own Trigger Setup window which provides a graphical
interface for the user to set up triggers. The trigger mechanism inside each core can be
modified at run-time without having to re-compile the design. The following sections
describe how to modify the trigger mechanism’s three components:

• Match Functions: Defines the match or comparison value for each match unit

• Trigger Conditions: Defines the overall trigger condition based on a binary equation or
sequence of one or more match functions

• Capture Settings: Defines how many samples to capture, how many capture windows,
and the position of the trigger in those windows

X-Ref Target - Figure 4-26

Figure 4-26: Displaying Device Instruction Register Status

X-Ref Target - Figure 4-27

Figure 4-27: Opening New Unit Windows

http://www.xilinx.com

122 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Each component is expandable and collapsible in the Trigger Setup window. To expand,
click on the desired button at the bottom of the window (Figure 4-28).

To collapse, click on the button to the left of the expanded section you wish to collapse
(Figure 4-29).

Capture Settings

The capture settings section of the Trigger Setup window (Figure 4-30) defines the number
of windows, and where the trigger event occur in each of those windows. A window is a
contiguous sequence of samples containing one (and only one) trigger event. If an invalid
number is entered for any parameter, the text field turns red, and an error is displayed in
the Message pane.

X-Ref Target - Figure 4-28

Figure 4-28: Trigger Setup Window with Only Match Functions Expanded

X-Ref Target - Figure 4-29

Figure 4-29: Trigger Setup Window with All Sections Expanded

X-Ref Target - Figure 4-30

Figure 4-30: Capture Settings

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 123
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Type

The Type combo box in the capture settings defines the type of windows to use. If Window
is selected, the number of samples in each window must be a power of two. However, the
trigger can be in any position in the window. If N Samples is selected, the buffer will have
as many windows as possible with the defined samples per trigger. The trigger will always
be the first sample in the window if N Samples is selected.

Windows

The Windows text field is only available when Window is selected in the Type combo box.
The number of windows is specified in this field and can be any positive integer from 1 to
the depth of the capture buffer.

Depth

The Depth combo box is only available when Window is selected in the Type combo box.
The Depth combo box defines the depth of each capture window. It is automatically
populated with valid selections when values are typed into the Windows text field. Only
powers of two are available.

Note: When the overall trigger condition consists of at least one match unit function that has a
counter that is set to either Occurring in at least n cycles or Lasting for at least n consecutive
cycles, the Window Depth or Samples Per Trigger setting cannot be less than eight samples. This is
due to the pipelined nature of the trigger logic inside the ILA, IBA/OPB and IBA/PLB cores.

Position

The Position text field is only available when Window is selected in the Type combo box.
The Position field defines the position of the trigger in each window. Valid values are
integers from 0 to the depth of the capture buffer minus 1.

Samples Per Trigger

The Sample Per Trigger text field is only available when N Samples is selected in the Type
combo box. Samples per trigger defines how many samples to capture once the trigger
condition occurs. Valid values are any positive integer from 1 to the depth of the capture
buffer. The trigger mark will always appear as sample 0 in the window. There will be as
many sample windows as possible captured, given the overall sample depth.

Note: When occurring in at least n cycles or occurring for at least n consecutive cycles is selected
for a match unit, and that match unit is a part of the overall trigger condition, the Window Depth or
Samples Per Trigger cannot be less than 8. This is due to pipeline effects inside the ILA or IBA core.

Storage Qualification Condition

The storage qualification condition is a Boolean combination of events that are detected by the
match unit comparators that are subsequently attached to the trigger ports of the core. The
storage qualification condition evaluates trigger port match unit events to decide whether
or not to capture and store each individual data sample. The trigger and storage
qualification conditions can be used together to define when to start (or finish) the capture
process and what data is captured, respectively.

The Storage Condition dialog box has a table of all the match units. Each match unit
occupies a row in the table. The Enable column indicates if that match unit is part of the
trigger condition. The Negate column indicates if that match unit should be individually
negated (Boolean NOT) in the trigger condition.

The storage qualification condition can be configured to capture all data (see Figure 4-31,
page 124), or it can be set up to capture data that satisfies a Boolean AND or OR

http://www.xilinx.com

124 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

combination of all the enabled match units (see Figure 4-32, page 124). The overall Boolean
equation can also be negated, selectable using the Negate Whole Equation checkbox
above the table. The resulting equation appears in the Storage Condition Equation pane at
the bottom of the window.

X-Ref Target - Figure 4-31

Figure 4-31: Storage Qualification Condition Set to Capture All Data

X-Ref Target - Figure 4-32

Figure 4-32: Storage Qualification Condition Using Boolean Equation

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 125
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Match Functions

A match function is a definition of a trigger value for a single match unit. All the match
functions are defined in the Match Functions section of the Trigger Setup window
(Figure 4-33). One or more match functions can be defined in an equation or sequence in
the Trigger Conditions section to specify the overall trigger condition of the core.

Match Unit

The Match Unit field indicates which match unit the function applies to. Clicking on the
+ symbol next to the match unit number (or double clicking on the field) will expand that
match unit so it is displayed as individual trigger port bits in at tree structure. Individual
values for each bit can then be viewed and set.

Function

The Function combo box selects which type of comparison is done. Only those
comparators that are allowed for that match unit are listed.

Value

The Value field selects exactly which trigger value to apply to that match unit. It is
displayed according to the Radix field. Double-clicking on the field will make it editable.
Place the cursor before the value you want to change, and typing a valid trigger character
will overwrite that character. Or, select the field by single-clicking, then proceed by typing
the trigger characters. Valid characters for the different radices are:

• Hex: X, 0-9, and A-F. X indicates that all four bits of that nibble are don’t cares. The “?”
character indicates that the nibble consists of a mixture of 1s, 0s, Xs, Rs, Fs, and Bs
(where appropriate)

• Octal: X, ?, 0-7

• Binary: X (don’t care), 0, 1, R (rising), F (falling), and B (either transition). R, F, and B
are only available if the match unit can detect transitions (Basic w/edges, Extended
w/edges, Range w/edges)

• Unsigned: 0-9 (0 to 2n-1 for an n-bit bus)

• Signed: 0-9 (-2n-1 to 2n-1 - 1 for an n-bit bus)

Also, when Bin is chosen as the radix, positioning the mouse pointer over a specific
character will display a tool-tip, indicating the name and position of that bit.

X-Ref Target - Figure 4-33

Figure 4-33: Setting the Match Functions

http://www.xilinx.com

126 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Radix

The Radix combo box selects which radix to display in the Value field. Values are Hex,
Octal, Bin, Signed (not allowed for In Range and Out of Range comparisons), and
Unsigned.

Counter

The Counter field selects how many match function events must occur for the function to
be satisfied. If the match counter is present for a particular match unit, the text in the
Counter column will be in black text. If the counter is not present in the core, the text in that
column will be grayed out. To change the value of the match counter, click on the counter
cell, which will bring up the match unit counter dialog box (Figure 4-34).

The Counter field selects how many match function events must occur for the function to
be satisfied.

• If occurring in exactly n clock cycles is selected, then n contiguous or n noncontiguous
events will satisfy the match function counter condition.

• If occurring in at least n clock cycles is selected, then n contiguous or n noncontiguous
events will satisfy the match function counter condition and will remain satisfied
until the overall trigger condition is met.

• If occurring for at least n consecutive cycles is selected, then n contiguous events will
satisfy the match function counter condition and will remain satisfied until the overall
trigger condition is met or the match function value is no longer satisfied.

Note: When the overall trigger condition consists of at least one match unit function that has a
counter set to either Occurring in at least n cycles or Lasting for at least n consecutive cycles,
the Window Depth or Samples Per Trigger setting cannot be less than eight samples. This is due to
the pipelined nature of the trigger logic inside the ILA, IBA/OPB or IBA/PLB cores.

Trigger Conditions

A trigger condition is a Boolean equation or sequence of one or more match functions. The
core will capture data based on the trigger condition. More than one trigger condition can
be defined. To add a new trigger condition, click the Add button. To delete a trigger
condition, highlight any cell in the row and click Del. Although many trigger conditions
can be defined for a single core, only one trigger condition can be chosen (active) at any one
time.

Active

The Active field is a radio button that indicates which trigger condition is the currently
active one.

X-Ref Target - Figure 4-34

Figure 4-34: Setting up the Match Counter

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 127
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Trigger Condition Name Field

The Trigger Condition Name field provides a mnemonic for a particular trigger condition.
Trigger Condition n is used by default (Figure 4-35).

Trigger Condition Equation

The Condition Equation field displays the current Boolean equation or state sequence of
match functions that make up the overall trigger condition. By default, a logical AND of all
the match functions present (one match function for each match unit) is the trigger
condition. To change the trigger condition, click on the Condition Equation field, which
brings up the Trigger Condition dialog box.

Trigger Condition Editor Dialog Box

If a trigger sequencer is present in the core, the Trigger Condition dialog will have two tabs:
Boolean and Sequencer. When the Boolean tab is active, the trigger condition of a Boolean
equation of the available match units. When the sequencer tab is active, the trigger
condition is a state machine, where each state transition is triggered by a match function
being satisfied.

The Boolean tab of the Trigger Condition dialog box has a table of all the match units. Each
match unit occupies a row in the table. The Enable column indicates if that match unit is
part of the trigger condition. The Negate column indicates if that match unit should be
individually negated (Boolean NOT) in the trigger condition.

All the enabled match units can be combined in a Boolean AND or OR operation,
selectable using the radio buttons below the match unit table. The overall equation can also
be negated, selectable using the Negate checkbox below the table. The resulting equation
appears in the Trigger Condition Equation pane at the bottom of the window (Figure 4-36).

X-Ref Target - Figure 4-35

Figure 4-35: Viewing the Trigger Condition

X-Ref Target - Figure 4-36

Figure 4-36: Setting the Trigger Condition Boolean Equation

http://www.xilinx.com

128 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

The Sequencer tab of the Trigger Condition dialog box has a combo box from which you
can select the number of levels in the trigger sequence and a table listing all the levels. The
sequencer begins at Level 1 and proceeds to Level 2 when the match unit specified in
Level 1 has been satisfied. The number of levels available is a parameter of the core, up to
a maximum of 16 levels. Each level can look for a match unit being satisfied or not satisfied.
To negate a level (for instance, to look for the absence of a particular match function) check
the Negate cell for that level. A representation of the sequence appears in the Trigger
Condition Equation pane at the bottom of the window (Figure 4-37).

The trigger sequence in Figure 4-37 can be satisfied by the eventual occurrence of match
unit events M0 followed by M1 followed by M3 (with any occurrence or non-occurrence of
events in between). Enable the Use Contiguous Match Events Only checkbox if you
desire the trigger sequence to be satisfied only upon contiguous transitions from M0 to M1
to M3 (and not, for instance, the transitions of M0 followed by M1 followed by !M1
followed by M3).

Output Enable

If the trigger output is present in the core, a column named Output Enable becomes
available. This cell is a combo box that allows the user to select which type of signal will be
driven by the trig_out port of the ILA or IBA core.

• Disabled: The output is a constant 0.

• Pulse (High): The output is a single clock cycle pulse of logic 1, 10 cycles after the
actual trigger event.

• Pulse (Low): The output is a single clock cycle pulse of logic 0, 10 cycles after the actual
trigger event.

• Level (High): The output transitions from a 0 to a 1, 10 cycles after the actual trigger
event.

• Level (Low): The output transitions from a 1 to a 0, 10 cycles after the actual trigger
event.

X-Ref Target - Figure 4-37

Figure 4-37: Setting the Trigger Condition Sequencer

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 129
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Saving and Recalling Trigger Setups

All the information in the Trigger Setup window can be saved to a file for recall later with
the current project or other projects. To save the current trigger settings, select Trigger
Setup → Save Trigger Setup. A Save Trigger Setup As File dialog box will open, and the
trigger settings can be saved in any location, with a .ctj extension. To load a trigger
settings file into the current project, select Trigger Setup → Read Trigger Setup. A Read
Trigger Setup file dialog box will open, and you can navigate to the folder where the
trigger settings file (with a.ctj extension) exists. Once the trigger setting file is chosen,
select Open, and those settings will be loaded into the Trigger Settings window.

Running/Arming the Trigger

After setting up the trigger, select Trigger Setup → Run to arm it. The trigger stays armed
until the trigger condition is satisfied or you disarm the trigger. Once the trigger condition
is satisfied, the core captures data according to the capture settings. When the sample
buffer is full, the core stops capturing data. The data is then uploaded from the core and is
displayed in the Waveform and/or Listing windows.

To force the trigger, select Trigger Setup → Trigger Immediate. This causes the unit to
ignore the trigger and storage qualification conditions and trigger immediately using a
single sample window with the trigger position set to sample 0. After the sample buffer
fills with data, the trigger disarms and the captured data appears in the Waveform and/or
Listing window(s).

Stopping/Disarming the Trigger

To disarm the trigger, select Trigger Setup → Stop Acquisition. If the trigger condition
has been satisfied at least once before the acquisition is stopped, the Analyzer disarms the
trigger and downloads/displays the captured data. Subsequent selections of Trigger
Setup → Run cause the trigger to re-arm.

http://www.xilinx.com

130 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Waveform Window
To view the waveform for a particular ILA or IBA core, select Window → New Unit
Windows, and the core desired. A dialog box appears for that ChipScope Pro Unit, and the
user can select the Trigger Setup, Waveform, Listing, and/or Bus Plot window, or any
combination. Windows cannot be closed from this dialog box. The same operation can be
achieved by double-clicking on the Waveform leaf node in the project tree, or right-
clicking on the Waveform leaf node and selecting Open Waveform.

The Waveform window displays the sample buffer as a waveform display, similar to many
modern simulators and logic analyzers. All signal browser operations can also be
performed in the waveform window, such as bus creation, radix selection, and renaming.
To perform a signal operation, right-click on a signal or bus in the Bus/Signal column.

Bus and Signal Reordering

Buses and signals can be reordered in the Waveform window (Figure 4-38). Select one or
more signals and buses, and drag it to its new location. A ghost image of the signal or
signals appears with the cursor, and a red line shows the potential drop location.

Cut/Copy/Paste/Delete Signals and Buses

Signals and buses can be cut, copied, pasted, or deleted using right-click menus. Select one
or more signals and/or buses, right click on a selected signal or bus, and select the
operation desired. Alternatively, the standard Windows key combinations are available
(Ctrl+X for cut, Ctrl+C for copy, Ctrl+V for paste, Del for delete).

X-Ref Target - Figure 4-38

Figure 4-38: Reordering Buses or Signals in the Waveform

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 131
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Zooming In and Out

Select Waveform → Zoom → Zoom In to zoom in to the center of the waveform display, or
right-click in the waveform section and select Zoom → Zoom In. To zoom out from a
waveform, use Waveform → Zoom → Zoom Out, or right-click in the waveform and
select Zoom → Zoom Out.

To view the entire waveform display select Waveform → Zoom → Zoom Fit, or right click
in the waveform and select Zoom → Zoom Fit.

To zoom into a specific area, just use the left mouse button to drag a rectangle in the
waveform display. Once the drag is complete, a popup appears. Select Zoom Area to
perform the zoom (Figure 4-39).

To zoom in to the space marked by the X and O cursors, select Waveform → Zoom →
Zoom X, O, or right-click in the waveform and select Zoom → Zoom X, O. Other zoom
features include zooming to the previous zoom factor by selecting Zoom → Zoom
Previous, zooming to the next zoom factor by selecting Zoom → Zoom Forward, and
zoom to a specific range of samples by selecting Zoom → Zoom Sample (Figure 4-40).

X-Ref Target - Figure 4-39

Figure 4-39: Zoom Area Using the Automatic Popup Menu

X-Ref Target - Figure 4-40

Figure 4-40: Zoom to Sample Range

http://www.xilinx.com

132 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Centering the Waveform

Center the waveform display around a specific point in the waveform by selecting
Waveform → Go To, then centering the waveform display around the X and O markers, as
well as the previous or next trigger position, or right-click in the waveform and select
Go To (Figure 4-41).

Cursors

Two cursors are available in the Waveform window: X and O. To place a cursor, right-click
anywhere in the waveform section, and select Place X Cursor or Place O Cursor. A
colored vertical line will appear indicating the cursor’s position. Additionally, the status of
all the signals and buses at that point will be displayed in the X or O column. The position
of both cursors, and the difference in position of the cursors appears at the bottom of the
Waveform window. Both cursors are initially placed at sample 0.

To move a cursor, either right-click in a new location in the waveform, or drag the cursor
using the handles (X or O labels) in the waveform header, or drag the cursor-line itself in
the waveform. Special drag icons will appear when the mouse pointer is over the cursor.

Sample Display Numbering

The horizontal axis of the waveform can be displayed as the sample number relative to the
sample window (default) or by the overall sample number in the buffer. To display the
sample number starting over at 0 for each window, select Ruler → Sample # in Window
in the right-click menu. To display the sample number as an overall sample count in the
buffer, select Ruler → Sample # in Buffer in the right-click menu. You can also select
toggle the way that the samples that occur before the trigger marker are shown in the ruler
(either negative or positive) by selecting Ruler → Negative Time/Samples in the
right-click menu.

X-Ref Target - Figure 4-41

Figure 4-41: Centering the Waveform on a Marker

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 133
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Displaying Markers

A static red vertical bar is displayed at each trigger position. A static black bar is displayed
between two windows to indicate a period of time where no samples were captured. To not
display either of these markers, un-check them on the right-click menu under Markers →
Window Markers or Markers → Trigger Markers.

Listing Window
To view the Listing window for a particular ILA or IBA core, select Window → New Unit
Windows, and the core desired. A dialog box will be displayed for that ChipScope Pro
Unit, and the user can select the Trigger Setup, Waveform, Listing, and/or Bus Plot
window, or any combination. Windows cannot be closed from this dialog box. The same
operation can be achieved by double-clicking on the Listing leaf node in the project tree, or
right-clicking on the Listing leaf node and selecting Open Listing.

The Listing window displays the sample buffer as a list of values in a table. Individual
signals and buses are columns in the table (Figure 4-42). All signal browser operations can
also be performed in the listing window, such as bus creation, radix selection, and
renaming. To perform a signal operation, right-click on a signal or bus in the column
heading.

Bus and Signal Reordering

Buses and signals can be reordered in the Listing window. Simply click on a signal or bus
heading in the table, and drag it to a new location.

Removing Signals/Buses

Individual signals and buses can be removed from the Listing window by right-clicking
anywhere in the signal’s column and selecting Remove. If Remove All is selected, all
signals and buses will be removed.

X-Ref Target - Figure 4-42

Figure 4-42: The Listing View

http://www.xilinx.com

134 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Cursors

Cursors are available in the Listing window the same way as in the Waveform window. To
place a cursor, right-click in the data section of the Listing window, and select either Place
X Cursor or Place O Cursor. That line in the table will be colored the same as the cursor
color. To move the cursor to a different position in the table, either right-click in the new
location and do the same operation as before, or right-click on the cursor handle in the first
column, and drag it to the new location.

Goto Cursors

To automatically scroll the listing view to a cursor, right-click and select Go To → Go To X
Cursor or Go To → Go To O Cursor.

Bus Plot Window
To view the Bus Plot window for a particular set of ILA or IBA buses, select Window →
New Unit Windows and the core desired. A dialog box will be displayed for that
ChipScope Pro Unit, and the user can select the Trigger Setup, Waveform, Listing, and /or
Bus Plot window, or any combination. Windows cannot be closed from this dialog box. The
same operation can be achieved by double-clicking on the Bus Plot in the project tree, or
right-clicking on Bus Plot and selecting Open Bus Plot.

Any buses for a particular core can be displayed in the Bus Plot window (Figure 4-43). The
Bus Plot window displays buses as a graph of a bus’s values over time, or one bus’s values
vs. another’s.

X-Ref Target - Figure 4-43

Figure 4-43: The Bus Plot Window: Data vs. Time

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 135
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Plot Type

Plot types are chosen in the upper left group of radio buttons. There are two plot types:
data vs. time and data vs. data. When data vs. time is chosen (Figure 4-43, page 134), any
number of buses can be displayed at one. When data vs. data is chosen (Figure 4-44), two
buses need to be selected, and each point in the plot’s x coordinate will be the value of one
of the buses at a particular time, and the y coordinate will the value of the other bus at the
same time.

Each bus will have its own color, and will be displayed according to its radix (hexadecimal,
binary, octal, token and ASCII radices are displayed as unsigned decimal values with scale
factor = 1.0, precision = 0).

Display Type

The bus plot can be displayed using lines, points, or lines and points. The display type
affects all bus values being displayed.

Bus Selection

The bus selection control allows you to select the individual buses to plot (in data vs. time
mode) or the buses to plot against one another (in data vs. data mode). The color of each
bus can be changed by clicking on the colored button next to the bus name (Figure 4-43,
page 134).

Min/Max

The Min/Max display is used to show the maximum and minimum values of the axis in
the current view of the bus plot.

Cursor Tracking

The X: and Y: displays at the bottom of the bus plot indicate the current X and Y
coordinates of the mouse cursor when it is present in the bus plot view.

X-Ref Target - Figure 4-44

Figure 4-44: The Bus Plot Window: Data vs. Data

http://www.xilinx.com

136 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

VIO Console Window
To open the Console window for a VIO core, select Window → New Unit Windows, and
the core desired. A dialog box will be displayed for that ChipScope Pro Unit, and the user
can select the Console window. (Windows cannot be closed from this dialog box.)

The Console window is for VIO cores only. The Console allows users to see the status and
activity of the VIO core input signals and modify the status of the VIO core output signals.
To open the Console for a particular VIO core, double-click on the Console leaf node in the
project tree.

All signal browser operations can also be performed in the Console window, such as bus
creation, radix selection, and renaming. To perform a signal operation, right-click on a
signal or bus in the column heading.

The Console window has a table with two columns: Bus/Signal and Value (Figure 4-45).
X-Ref Target - Figure 4-45

Figure 4-45: The VIO Console Window

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 137
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Bus/Signal Column

The Bus/Signal column contains the name of the bus or signal in the VIO core. If it is a bus,
it can be expanded or contracted to view or hide the constituent signals in the bus. In
addition to all the operations available in the signal manager, two additional parameters
can be set through the right-click menus: type and activity persistence.

VIO Bus/Signal Type

The signal’s type determines how that signal is displayed in the Value column of the VIO
Console. Different types are available depending on the type of VIO signal:

• VIO input signals have the following display types:

♦ Text: ASCII characters

♦ LEDs

- Choose between red, blue, and green LEDs

- Either active-High or active-Low

• VIO input buses have only one valid display type:

♦ Text

• VIO output signals have the following control types:

♦ Text: ASCII text field
♦ Push button (either active-High or active-Low)
♦ Toggle button
♦ Pulse train (synchronous outputs only)
♦ Single pulse (synchronous outputs only)

• VIO output buses have two valid control types:

♦ Text

♦ Pulse train (synchronous output buses only)

VIO Bus/Signal Activity Persistence

The persistence of a signal indicates how long the activity is displayed in the Value column
(see “Value Column,” page 138 or a description of signal activity).

If the persistence is:

• Infinite: The activity is displayed in the column forever.

• Long: The activity is displayed in the column for 80 times the sample period

• Short: The activity is displayed in the column for 8 times the sample period

When the time limit on the persistence expires, a new activity is displayed. If no activity
occurred in the last sample cycle, no activity is displayed in the Value column.

Bus and Signal Reordering

Buses and signals can be reordered in the Waveform window. Click on a signal or bus, and
drag it to its new location. A red line then appears in the Bus/Signal column indicating the
potential drop location.

Cut/Copy/Paste/Delete Signals and Buses

Individual signals and buses can be cut, copied, pasted, or deleted using right-click menus.
Either right-click on a signal or bus and select the operation desired, or use the standard

http://www.xilinx.com

138 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

Windows key combinations (Ctrl+X for cut, Ctrl+C for copy, Ctrl+V for paste, Del for
delete).

Value Column

The Value column displays the current value of each of the signals in the console (see
Figure 4-45, page 136). In the case of VIO core inputs, those cells are non-editable. Buses
are displayed according to their selected radix. The VIO core inputs are updated
periodically by default, according to a drop down combo box at the bottom of the console.
Each of the VIO core inputs captures, along with the current value of the signal, activity
information about the signal since the last time the input was queried. At high design
speeds, it is possible for a signal to be sampled as a 0, then have the signal transition from
a 0 to a 1, then back to a 0 again before the signal is sampled again.

In the case of synchronous inputs, the activity is also detected with respect to the design
clock. This can be useful in detecting glitches. If a 0 to 1 transition is detected, an up arrow
appears alongside the value. If a 1 to 0 transition is detected, a down arrow appears. If both
are detected, a two-headed arrow is displayed. The length of time the activity is displayed
in the table is called the persistence. The persistence is also individually selectable via the
right-click menu.

Note: The activity arrow is displayed in black if the activity is synchronous and red if it is
asynchronous.

You can choose the VIO signal/bus value type by right-clicking on the signal or bus and
selecting the Type menu choice (Figure 4-46).
X-Ref Target - Figure 4-46

Figure 4-46: The Type Selection Menu

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 139
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Text Field

When the Text Field type is selected, a text field is available for input using only the
following valid characters:

• 0 and 1 for individual signals and binary buses

• 0-9, A-F for hex buses

• 0-7 for octal buses

• Valid signed and unsigned integers

Push Button

The Push Button type simulates an actual push button on a PCB. The inactive value is set
when the button is not pressed in (0 for active-High, 1 for active-Low). As long as the
button is pressed in, the active value will be output from the VIO core.

Toggle Button

The Toggle Button type switches between a 1 and a 0 with a single click.

Pulse Train (Synchronous outputs only)

The Pulse Train output type provides a control for synchronous outputs. A pulse train is
a 16-cycle train of 1’s and 0’s, defined by the user. To edit the pulse train, click Edit. This
brings up the Pulse Train dialog box (see Figure 4-47). One text field is available for each
cycle in the pulse train. The text fields are populated by default according to the last value
of the bus or signal. For buses, the fields are always displayed in binary to allow explicit
control over each of the individual signals.

When Run is clicked, the pulse train is executed one time. This allows fine control over the
output with respect to the design clock.

Single Pulse (Synchronous Outputs Only)

The Signal Pulse control is a special kind of push button. When the button is pressed,
instead of the core driving a constant active value for the duration of the button being
pressed, a pulse train with a single high cycle is executed exactly once.

X-Ref Target - Figure 4-47

Figure 4-47: The Pulse Train Dialog

http://www.xilinx.com

140 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

VIO Core Menu and Toolbar Controls

When the VIO console is in focus, the VIO core-specific menu and toolbar controls can be
used to change the behavior of the VIO core inputs or outputs, as applicable (see
Figure 4-48). The toolbar controls are described from left-to-right in the following sections.

JTAG Scan Rate

The JTAG Scan Rate at which the VIO core inputs are read is selectable via a combo box.
The default scan rate is 250 ms. You can also set the sample period to 500 ms, 1s, 2s, or
Manual Scan. When Manual Scan is chosen, the Sample Once (S!) button becomes
enabled. At that point, the VIO core inputs are only read by pressing the Sample Once
toolbar button or by selecting the VIO → Sample Once menu option.

Update Static Outputs

By default, when one VIO core output is changed, information is immediately sent to the
VIO core to set up that particular output. To update all non-pulse train outputs at once,
click Update Static Outputs (U!) toolbar button or select the VIO → Update Static
Outputs menu option.

Reset All Outputs

To reset all outputs to their default state (0 for text fields and toggle buttons, all 0 pulse
train for pulse trains) click the Reset All Outputs toolbar button or select the VIO → Reset
All Outputs menu option.

Clear All Activity

At some point, it might be desirable to reset the activity display for all VIO core inputs. To
do so, press the Clear All Activity toolbar button or select the VIO → Clear All Activity
menu option. All input activity will be reset, regardless of the selected persistence.

X-Ref Target - Figure 4-48

Figure 4-48: VIO Toolbar and Menu Options

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 141
UG029 (v10.1) March 24, 2008

Analyzer Features
R

System Monitor
The Virtex-5 devices include a new feature called a System Monitor. The System Monitor
function is built around a 10-bit, 200-kSPS (kilo samples per second) analog-to-digital
converter (ADC). When combined with a number of on-chip sensors, the ADC can
measure FPGA physical operating parameters including on-chip power supply voltages
and die temperature. For additional information, see UG192, Virtex-5 System Monitor User
Guide.

The Analyzer provides real-time JTAG access to the on-chip voltage and temperature
sensors of the System Monitor primitive. All of the on-chip sensors are available before and
after the Virtex-5 device has been configured with a valid bitstream. The System Monitor
functionality does not require that you instantiate a System Monitor primitive block into
your design. The only requirement is that the System Monitor-specific pins of the Virtex-5
device are properly connected on the system board.

In the Analyzer project tree, each Virtex-5 device in the JTAG chain will have a System
Monitor Console node (as shown in Figure 4-49). Right-clicking on the System Monitor
node in the project tree will show an option for opening the System Monitor viewer. Left-
clicking on the System Monitor node in the project tree will show the various sensors in the
signal browser. In the signal (or sensor) browser, you can rename or change the display
units of the various sensors.

X-Ref Target - Figure 4-49

Figure 4-49: System Monitor Project Tree Node and Signal Browser

http://www.xilinx.com
http://www.xilinx.com/bvdocs/userguides/ug192.pdf
http://www.xilinx.com/bvdocs/userguides/ug192.pdf

142 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

System Monitor Console

The System Monitor Console sensor value viewer is shown in Figure 4-50. Each sensor
value can be displayed in a history window or written to a log file. The following display
values can be enabled for each sensor:

• Current value that is read directly from the System Monitor sensor

• Device maximum and minimum values that are read directly from the System
Monitor sensor peak detectors

• Sampled maximum and minimum values that are derived from all sensor values that
have been collected by the Analyzer since opening a JTAG cable connection (or the
last System Monitor reset)

• Windowed average, maximum, and minimum values that are calculated over a
sliding window of sensor values that have been collected by the Analyzer since
opening a JTAG cable connection (or the last System Monitor reset)

The sampled and windowed values that are calculated by the System Monitor viewer can be
reset by clicking on the Reset button on the toolbar.

X-Ref Target - Figure 4-50

Figure 4-50: System Monitor Console Showing Valid Sensor Data

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 143
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Note: If the System Monitor is not reporting valid sensor data, the System Monitor Console displays
an Invalid Data banner message across the window (see Figure 4-51).

System Monitor Console Toolbar

The System Monitor Console toolbar and right-click menu options shown in Figure 4-49,
page 141 provide a means to customize and interact with the System Monitor Console.

JTAG Scan Rate

The JTAG Scan Rate at which the System Monitor sensor data is read is selectable via a
combo box. The default scan rate is 1s. You can also set the sample period to 1s, 2s, 5s, 10s,
30s, 1min, or Manual Scan. When Manual Scan is chosen, the Sample Once (S!) button
becomes enabled. At that point, the System Monitor data is only read by pressing the
Sample Once toolbar button or by selecting the System Monitor → Sample Once menu
option.

Window Depth

The depth of the window used in the sliding window calculations in the System Monitor
viewer can be set using the Window Depth combobox on the toolbar or in the System
Monitor → Window Depth menu. The depth of the sampling window can be set to 2, 4, 8,
16, 32, 64, or 128 samples.

X-Ref Target - Figure 4-51

Figure 4-51: System Monitor Console Showing Invalid Sensor Data

http://www.xilinx.com

144 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

External Input

The System Monitor component monitors voltage levels on external sensors. You can view
any external sensor input one at a time by using the External Input option. Valid External
Input selections include:

• Any of the 16 user-defined VAUXP/VAUXN external sensors

• The V_P/V_N dedicated external sensors

• The V_REFP reference voltage input

• The V_REFN reference voltage input

Select No Input to disable the viewing of the external input (default).

Reset

The Reset button resets the System Monitor Console display.

Enable Logging

The Enable Logging toolbar button and System Monitor → Enable Logging menu
option enables the file logging feature that saves the System Monitor sensor data in a text
file for use in offline analysis.

System Monitor Data Logging

The System Monitor → Setup Logging menu option opens the dialog window that is
shown in Figure 4-52. The settings in this window are used to customize the logging
feature.

Log File

The Browse button is used to select the location of the System Monitor log file. The default
location is <CHIPSCOPE_INSTALL>/bin/<PLATFORM>/system_monitor.log,
where <CHIPSCOPE_INSTALL> is the installation directory and <PLATFORM> is the
operating system platform (nt, nt64, lin, lin64, or sol).

Log File Format

The System Monitor log file is a text file that can be formatted in two different ways:
comma-separated value (CSV) file for machine processing or as a human-readable
formatted file.

X-Ref Target - Figure 4-52

Figure 4-52: System Monitor Setup Logging Window

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 145
UG029 (v10.1) March 24, 2008

Analyzer Features
R

Log File Limit

The System Monitor logging system can generate a lot of data that consumes a large
amount of disk space. To alleviate the problem, the log data can be split across multiple
separate files based on a log file limit. The log file limit can be based on a specific number
of samples or by file size (in kilobytes).

Help

Viewing the Help Pages

The Analyzer help pages contain information for only the currently opened versions of
the software and each of the core units. Selecting Help → About: ChipScope Software
displays the version of the software. Selecting Help → About: Cores displays detailed
core parameters for every detected core. Individual core parameters can be displayed by
right-clicking on the unit in the project tree and selecting Show Core Info.

Also, you do not need to reinstall the ChipScope Pro tools to convert your evaluation
version to a full version. You can also register an evaluation version of the Analyzer by
selecting the Help → Register ChipScope Pro menu option and typing in the appropriate
full-version registration ID. More information on how to obtain a full version of ChipScope
Pro is available at http://www.xilinx.com/chipscopepro.

http://www.xilinx.com/chipscopepro
http://www.xilinx.com

146 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

ChipScope Pro ILA Waveform Toolbar Features
In addition to the menu options, other Analyzer ILA waveform commands are available
on a toolbar residing directly below the Analyzer menu (Figure 4-53). The second set of
toolbar buttons is available only when the Trigger Setup window is open. The third and
fourth sets of toolbar buttons are only available when the Waveform window is active.

The toolbar buttons (from left to right) correspond to the following equivalent menu
options:

• Open Cable/Search JTAG Chain: Automatically detects the cable, and queries the
JTAG chain to find its composition

• Turn On/Off Auto Core Status Polling: Green icon means polling is on, red icon
means polling is off. Same as JTAG Chain → Auto Core Status Poll

• Run: Same as Trigger Setup → Run (F5)

• Stop: Same as Trigger Setup → Stop Acquisition (F9)

• Trigger Immediate: Same as Trigger Setup → Trigger Immediate (Ctrl+F5)

• Go To X Marker: Same as Waveform → Go To → Go To X Marker

• Go To O Marker: Same as Waveform → Go To → Go To O Marker

• Go To Previous Trigger: Same as Waveform → Go To → Trigger → Previous

• Go To Next Trigger: Same as Waveform → Go To → Trigger → Next

• Zoom In: Same as Waveform → Zoom → Zoom In

• Zoom Out: Same as Waveform → Zoom → Zoom Out

• Fit Window: Same as Waveform → Zoom → Zoom Fit

X-Ref Target - Figure 4-53

Figure 4-53: Main ChipScope Pro Analyzer Toolbar Display

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 147
UG029 (v10.1) March 24, 2008

ChipScope Pro Analyzer Command Line Options
R

ChipScope Pro Analyzer Command Line Options
On Windows systems, the Analyzer can be started either from the command line or from
the Start menu.

• On Windows systems, you can invoke the analyzer from the command line by
running:

♦ $CHIPSCOPE\analzyer.exe

• On Linux systems, you can invoke the analyzer from the command line by running:

♦ $CHIPSCOPE/bin/lin/analzyer.sh

• On Solaris systems, you can invoke the analyzer from the command line by running:

♦ $CHIPSCOPE/bin/sol/analzyer.sh

where $CHIPSCOPE is the installation location.

Optional Arguments

The following command line options are available, if run from the command line:

-geometry <width>x<height>+<left edge x coord>+<top edge y coord>

Set location, width and height of the Analyzer program window.

-project <path and filename>

Reads in specified project file at start. Default is not to read a project file at start up.

-init <path and filename>

Read specified init file at start up and write to the same file when the Analyzer exits.
The default is: %userprofile%\.chipscope\cs_analyzer.ini

-log <path and filename>

-log stdout

Write log messages to the specified file. Specifying stdout will write to standard
output. The default is: $HOME/.chipscope/cs_analyzer.log

Windows Command Line Example

C:\Xilinx\10.1\ChipScope\analyzer.exe -log c:\proj\t\t.log -init
C:\proj\t\t.ini -project c:\proj\t\t.cpj -geometry 1000x300+30+600

http://www.xilinx.com

148 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 4: Using the ChipScope Pro Analyzer
R

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 149
UG029 (v10.1) March 24, 2008

R

Chapter 5

ChipScope Engine JTAG Tcl Interface

Overview
This interface provides Tcl scripting access to JTAG download cables via the ChipScope
Engine JTAG (CseJtag) communication library. The purpose of the CseJtag Tcl interface is
to provide a simple scripting system to access basic JTAG functions. In a few lines of Tcl
script, you can scan and manipulate the JTAG chain through standard Xilinx cables.

For further information on JTAG, see XAPP139, Configuration and Readback of Virtex FPGAs
Using (JTAG) Boundary Scan. For information about Tcl, see Tcl Developer Xchange at
http://www.tcl.tk.

Requirements
• Windows XP Professional (32- or 64-bit), Windows Vista Business (32- or 64-bit), or

RedHat Enterprise Linux 4 or 5 (32- or 64-bit)

• Supported JTAG cable such as Platform Cable USB, Parallel Cable IV, Parallel Cable
III, or MultiPRO

• A Tcl shell (xtclsh.exe is provided in the ISE 10.1 tool installation) or the ActiveTcl
shell (available from http://www.activestate.com)

• The required environment variables are set up by using the cs_xtclsh.bat script
(on Windows) or cs_xtclsh.sh script (on Linux). These scripts also open the xtclsh
shell with any arguments provided after the script name

Limitations
The ChipScope Engine JTAG Tcl interface package favors simplicity over performance.
Some commands such as ::chipscope::csejtag_tap_shift_chain_ir and
::chipscope::csejtag_tap_shift_chain_dr transfer bits as strings (for example,
"0001000") instead of as packed binary data structures. The extra overhead in converting
particularly large data strings does result in some loss of performance; however, the simple
design of the application programming interface (API) and the use of the Tcl scripting
language makes Tcl/JTAG an easy-to-use means to interact with devices in the JTAG chain.

Note: The CseJtag Tcl interface is only compatible with software that uses the CseJtag interface to
the JTAG cable communication device (such as the Analyzer software tool and the Embedded
Development Kit (EDK) XMD software debugger tool). Tools such as iMPACT do not use the CseJtag
interface and therefore are not compatible for use with CseJtag Tcl scripts or programs.

http://www.activestate.com
http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp139.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp139.pdf
http://www.tcl.tk

150 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

CseJtag Tcl Command Summary
The CseJtag Tcl interface commands belong to a namespace called ::chipscope::. The
CseJtag Tcl interface is comprised of four commands (see Table 5-1), each having one or
more subcommands.

A summary of the CseJtag Tcl subcommands is shown in Table 5-2. See “Command
Details,” page 153 for additional information about these commands.

Table 5-1: CseJtag Tcl ::chipscope:: Commands

Command Description

::chipscope::csejtag_session Manages CseJtag sessions. A session is used to
maintain all data and messaging associated with a
JTAG target. See Table 5-2 for a summary of all
subcommands for this command.

::chipscope::csejtag_db Interacts with the CseJtag JTAG database. The
CseJtag JTAG database contains all data associated
with known JTAG devices. See Table 5-3 for a
summary of all subcommands for this command.

::chipscope::csejtag_target Manages connections to CseJtag targets, such as
JTAG download cables, JTAG emulators, and other
JTAG devices. See Table 5-4, page 151 for a
summary of all subcommands for this command.

::chipscope::csejtag_tap Interacts with the JTAG Test Access Port (TAP) of
CseJtag targets. Operations include navigating the
TAP state machine and shifting data into and out of
the TAP. See Table 5-5, page 152 for a summary of all
subcommands for this command.

Table 5-2: Summary of ::chipscope::csejtag_session Subcommands

Subcommand Description

create Creates and initializes a session.

destroy Destroys and frees up memory resources used by an existing
session.

get_api_version Gets the CseJtag API library version information.

send_message Sends a message using the session message router function.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 151
UG029 (v10.1) March 24, 2008

CseJtag Tcl Command Summary
R

Table 5-3: Summary of ::chipscope::csejtag_db Subcommands

Subcommand Description

add_device_data Adds device records to the JTAG database.

lookup_device Looks up device information in the JTAG database.

get_device_name_for_idcode Gets the name of a device from the JTAG database by
using an IDCODE.

parse_bsdl Extracts device data for a JTAG device by parsing a
Boundary Scan Description Language (BSDL) buffer.

parse_bsdl_file Extracts device data for a JTAG device by parsing a
Boundary Scan Description Language (BSDL) file.

Table 5-4: Summary of ::chipscope::csejtag_target Subcommands

Subcommand Description

open Opens a connection to a JTAG target and associate it with a
session.

close Closes the connection to an open JTAG target and remove it
from the session.

lock Attempts to obtain an exclusive lock on a JTAG target.

unlock Releases an exclusive lock on a JTAG target.

get_lock_status Gets the lock status of a JTAG target.

clean_locks Releases all cable locks and cleans up lock-related resources.

flush Flushes the data buffer of a JTAG target.

set_pin Sets the value of a JTAG target TAP pin.

get_pin Gets the value of a JTAG target TAP pin.

pulse_pin Pulses a JTAG target TAP pin.

wait_time Waits for a specified amount of time.

get_info Gets information associated with a JTAG target.

http://www.xilinx.com

152 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

Table 5-5: Summary of ::chipscope::csejtag_tap Subcommands

Subcommand Description

autodetect_chain Attempts to automatically detect all information pertaining
to the JTAG chain currently connected to the target.

interrogate_chain Scans the JTAG chain to determine the length of the chain and
the IDCODE information of each device in the chain.

get_device_count Gets the number of devices in the JTAG chain.

set_device_count Sets the number of devices in the JTAG chain.

get_irlength Gets the instruction register (IR) length of a device.

set_irlength Sets the instruction register (IR) length of a device.

get_device_idcode Gets the IDCODE of a device.

set_device_idcode Sets the IDCODE of a device.

navigate Navigates to a JTAG TAP state.

shift_chain_ir Shifts a stream of bits into and out of the instruction register
of the JTAG chain.

shift_chain_dr Shifts a stream of bits into and out of the data register of the
JTAG chain.

shift_device_ir Shifts a stream of bits into and out of the instruction register
of a particular device in the JTAG chain.

shift_device_dr Shifts a stream of bits into and out of the data register of a
particular device in the JTAG chain.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 153
UG029 (v10.1) March 24, 2008

Command Details
R

Command Details

::chipscope::csejtag_session create
This is typically the first subcommand call made to the ChipScope Engine. The session
handle that is returned by this command allows you to open and control JTAG targets. This
command also initializes the session with data obtained from various data files located in
the default directory called <LIBCSEJTAG_DLL_PATH>/data, where
<LIBCSEJTAG_DLL_PATH> denotes the absolute path location of the libCseJtag.dll
file.

Syntax

::chipscope::csejtag_session create messageRouterFn [opt_args...]

Arguments

Returns

A session handle.

An exception is thrown if the command fails.

Example

1. Create a new session with no optional arguments.

%set handle [::chipscope::csejtag_session create messageRouterFn]

2. Create a new session using the client/server libraries to a server called “lab_machine”
at port “50001”.

%set handle [::chipscope::csejtag_session create messageRouterFn

-server “lab_machine” -port “50001”]

Table 5-6: Arguments for Subcommand ::chipscope::csejtag_session create

Argument Type Description

messageRouterFn Required
Message router function name. Use a value of 0 to route
all messages to stdout.

datadir=<path> Optional

Directs the command to look for data files in <path>
instead of in the default
<LIBCSEJTAG_DLL_PATH>/data location. Note: All
subsequent calls to the
::chipscope::csejtag_session create
subcommand use <path> unless a new one is specified.

-server <host> Optional Creates a session associated with the ChipScope server
host name denoted by <cs_server_host_name>.

-port <portnum> Optional Creates a session associated with the ChipScope server
port number denoted by <cs_server_port_number>.

http://www.xilinx.com

154 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_session destroy
This command destroys an existing session and free all resources previously used by that
session.

Syntax

::chipscope::csejtag_session destroy handle

Arguments

Returns

An exception is thrown if the command fails.

Example

1. Destroy the specified session

%::chipscope::csejtag_session destroy $handle

Table 5-7: Arguments for Subcommand ::chipscope::csejtag_session create

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 155
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_session get_api_version
This command retrieves the version of the CseJtag API library.

Syntax

::chipscope::csejtag_session get_api_version

Arguments

There are no arguments for this command.

Returns

A Tcl list containing API version information. List elements are in the format:

{apiVersion versionString}

The apiVersion is the API version number and versionString is the build version
number. An exception is thrown if command fails.

Example

1. Obtain a list containing the API version number and the build number version string

%set api_info [::chipscope::csejtag_session get_api_version]

http://www.xilinx.com

156 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_session send_message
This subcommand sends a message to the message router function of the CseJtag library.

Syntax

::chipscope::csejtag_session send_message handle msgType msg

Arguments

Returns

An exception is thrown if the command fails.

Example

1. Send the message "Hello World!" to the message router function

%::chipscope::csejtag_session send_message $handle $CSE_MSG_INFO
"Hello World!"

Table 5-8: Arguments for Subcommand ::chipscope::csejtag_session
send_message

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

msgType

The type of message that must be set to one of the following:

• $CSE_MSG_ERROR
• $CSE_MSG_WARNING
• $CSE_MSG_STATUS
• $CSE_MSG_INFO
• $CSE_MSG_NOISE
• $CSE_MSG_DEBUG

msg The message string.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 157
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_target open
This subcommand opens a JTAG target device and associates it with a session.

Note: Currently, only one JTAG target can be opened per session.

Syntax

::chipscope::csejtag_target open handle targetName
progressCallbackFunc [optional args...]

Arguments

Table 5-10 shows valid combinations of targetName argument values and their optional
arguments.

Table 5-9: Arguments for Subcommand ::chipscope::csejtag_target open

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

targetName

Name of the JTAG target to open. See Table 5-10 for
available targetName and [optional args...]
combinations. If targetName is set to
$CSEJTAG_TARGET_AUTO, then the first available JTAG
cable target will be opened.

progressCallba
ckFunc

Progress callback function that can be used to monitor
progress of JTAG target operations. The format of the
progress callback function is:

proc progressCallbackFunc (handle
totalCount CurrentCount progressStatus)
{...}

The progress callback function must return either
$CSE_STOP or $CSE_CONTINUE. If no progress
callback function is necessary, a 0 should be passed into
this argument position.

Table 5-10: Argument targetName and [optional args...] combinations

targetName [optional args...]

$CSEJTAG_TARGET_AUTO N/A

$CSEJTAG_TARGET_PARALLEL "port={LPT1 | LPT2 | LPT3}"

"frequency={5000000 | 2500000 | 200000}"

$CSEJTAG_TARGET_PLATFORMUSB "port=USB2"

"frequency={24000000 | 12000000 | 6000000 |
3000000 | 1500000 | 750000}"

$CSEJTAG_TARGET_SVFFILE "fname=<svf filename with full path>"

http://www.xilinx.com

158 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

Returns

A list in the format:

{target_name plugin_name fw_ver driver_ver plugin_ver vendor frequency
port cable_name rawinfo cable_flags}

Where:

target_name

Same as the targetName string

plugin_name

The plugin library name string

fw_ver

The firmware version string

driver_ver

The driver version string

plugin_ver

The plugin version string

vendor

The vendor string

frequency

The frequency string

port

The port string

cable_name

The full cable name string

rawinfo

The raw target info string

cable_flags

The integer containing target-specific flags

An exception is thrown if the subcommand fails.

Example

1. Try to autodetect and open the target cable. Returns information on the opened target.

%set targetInfo [::chipscope::csejtag_target open $handle
$CSEJTAG_TARGET_AUTO progressFunc]

2. Try to open a Parallel cable in the port LPT1 with a frequency of 200000. Returns
information on the opened target.

%set targetInfo [::chipscope::csejtag_target open $handle
$CSEJTAG_TARGET_PARALLEL progressFunc “port=LPT1” “frequency=200000”]

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 159
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_target close
This subcommand closes a previously opened JTAG target device.

Syntax

::chipscope::csejtag_target close handle

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Close the current target in the specified session.

%::chipscope::csejtag_target close $handle

Table 5-11: Arguments for Subcommand ::chipscope::csejtag_target close

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

160 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_target lock
This subcommand attempts to obtain an exclusive lock on a previously opened JTAG
target device.

Syntax

::chipscope::csejtag_target lock handle msWait

Arguments

Returns

The lock status in the form of one of the following:

- $CSEJTAG_LOCKED_ME

- $CSEJTAG_LOCKED_OTHER

- $CSEJTAG_UNKNOWN

An exception is thrown if the subcommand fails.

Example

1. Attempt to obtain an exclusive target lock and wait at least 1000 milliseconds. Obtains
the status of the lock.

%set lockStatus [::chipscope::csejtag_target lock $handle 1000]

Table 5-12: Arguments for Subcommand ::chipscope::csejtag_target lock

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

msWait
Wait time in milliseconds before giving up (-1 means
wait until lock is gained)

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 161
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_target unlock
This subcommand releases an exclusive lock on a previously opened and locked JTAG
target device.

Syntax

::chipscope::csejtag_target unlock handle

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Unlock the target in the specified session.

%::chipscope::csejtag_target unlock $handle

Table 5-13: Arguments for Subcommand ::chipscope::csejtag_target unlock

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

162 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_target get_lock_status
This subcommand retrieves the lock status for the target device.

Syntax

::chipscope::csejtag_target get_lock_status handle

Arguments

Returns

Status of the lock in the form of one of the following:

- $CSEJTAG_LOCKED_ME

- $CSEJTAG_LOCKED_OTHER

- $CSEJTAG_UNKNOWN

An exception is thrown if the subcommand fails.

Example

1. Obtain the current lock status

%set lockStatus [::chipscope::csejtag_target get_lock_status $handle]

Table 5-14: Arguments for Subcommand ::chipscope::csejtag_target
get_lock_status

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 163
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_target clean_locks
This subcommand cleans up all JTAG target locks.

Note: This subcommand should only be used as a last resort. The subcommand kills all sharing
semaphores, including those used by other processes and applications. It currently only cleans up
locks for JTAG cable targets.

Syntax

::chipscope::csejtag_target clean_locks handle

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Clean locks as a last resort because the application closed unexpectedly and
::chipscope::csejtag_target open will not open the target successfully.

%::chipscope::csejtag_target clean_locks $handle

Table 5-15: Arguments for Subcommand ::chipscope::csejtag_target clean_locks

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

164 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_target flush
This subcommand flushes the buffer associated with a previously opened and locked
JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_target flush handle

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Attempt to flush an opened and locked JTAG target’s buffer to make data writes occur
immediately

%::chipscope::csejtag_target flush $handle

Table 5-16: Arguments for Subcommand ::chipscope::csejtag_target flush

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 165
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_target set_pin
This subcommand sets the value of a JTAG TAP pin for a previously opened and locked
JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

If using this function to change the JTAG TAP state, please be aware that the CseJtag Tcl
library will not keep track of the JTAG TAP state. Before using any of the
::chipscope::csejtag_tap subcommands, use the ::chipscope::csejtag_tap
navigate subcommand to set the JTAG TAP state machine to the
$CSEJTAG_TEST_LOGIC_RESET state.

Syntax

::chipscope::csejtag_target set_pin handle pin value

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Set the TMS pin to 1

%::chipscope::csejtag_target set_pin $handle $CSEJTAG_TMS 1

Table 5-17: Arguments for Subcommand ::chipscope::csejtag_target set_pin

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

pin
JTAG TAP pin identifier {$CSEJTAG_TMS | $CSEJTAG_TCK |
$CSEJTAG_TDI}.

value JTAG TAP pin value {1=set, 0=clear}

http://www.xilinx.com

166 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_target get_pin
This subcommand retrieves the value of a JTAG TAP pin for a previously opened and
locked JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_target get_pin handle pin

Arguments

Returns

JTAG TAP pin value {1=set, 0=clear}

An exception is thrown if the subcommand fails.

Example

1. Get the current value of the TDO pin

%set value [::chipscope::csejtag_target set_pin $handle $CSEJTAG_TDO]

Table 5-18: Arguments for Subcommand ::chipscope::csejtag_target get_pin

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

pin
JTAG TAP pin identifier {$CSEJTAG_TMS | $CSEJTAG_TCK |
$CSEJTAG_TDI | $CSEJTAG_TDO}.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 167
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_target pulse_pin
This subcommand pulses the value of a JTAG TAP pin for a previously opened and locked
JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

If using this function to change the JTAG TAP state, please be aware that the CseJtag Tcl
library will not keep track of the JTAG TAP state. Before using any of the
::chipscope::csejtag_tap subcommands, use the ::chipscope::csejtag_tap
navigate subcommand to set the JTAG TAP state machine to the
$CSEJTAG_TEST_LOGIC_RESET state.

Syntax

::chipscope::csejtag_target pulse_pin handle pin count

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Pulse the TCK pin five times

%::chipscope::csejtag_target pulse_pin $handle $CSEJTAG_TCK 5

Table 5-19: Arguments for Subcommand ::chipscope::csejtag_target pulse_pin

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

pin
JTAG TAP pin identifier {$CSEJTAG_TMS |
$CSEJTAG_TCK | $CSEJTAG_TDI}.

count
Number of times to pulse the JTAG TAP pin (pulse means
driving a 0, then a 1, then a 0 on the pin).

http://www.xilinx.com

168 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_target wait_time
This subcommand waits for a specified amount of time (in microseconds).

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_target wait_time handle usecs

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Instruct the JTAG target to wait 1000 microseconds before performing another
operation

%::chipscope::csejtag_target wait_time $handle 1000

Table 5-20: Arguments for Subcommand ::chipscope::csejtag_target wait_time

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

usecs Number of microseconds to wait.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 169
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_target get_info
This subcommand retrieves information from a previously opened JTAG target.

Note: A JTAG target lock does not need to be obtained prior to calling this function.

Syntax

::chipscope::csejtag_target get_info handle

Arguments

Returns

A list in the format:

{target_name plugin_name fw_ver driver_ver plugin_ver vendor frequency
port cable_name rawinfo cable_flags}

Where:

target_name

Name of the JTAG target

plugin_name

The plugin library name string

fw_ver

The firmware version string

driver_ver

The driver version string

plugin_ver

The plugin version string

vendor

The vendor string

frequency

The frequency string

port

The port string

cable_name

The full cable name string

rawinfo

The raw target info string

Table 5-21: Arguments for Subcommand ::chipscope::csejtag_target get_info

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

170 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

cable_flags

The integer containing target-specific flags

An exception is thrown if the subcommand fails.

Example

1. Obtain information about the current JTAG target

%set targetInfo [::chipscope::csejtag_target get_info $handle]

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 171
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_tap autodetect_chain
This subcommand attempts to automatically detect the composition of the JTAG chain.
The subcommand first obtains the number of devices and IDCODE values for devices in
the JTAG chain. The IR lengths are then determined for the devices in the JTAG chain that
have an IDCODE. The IR lengths for devices that do not have corresponding IDCODEs
must be assigned manually. Upon success, all pertinent device information is determined
and set in the session. Some IEEE 1149.1 non-compliant devices might not be compatible
with this subcommand and might cause the entire chain to be detected incorrectly or not at
all.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap autodetect_chain handle algorithm

Arguments

Returns

An exception is thrown if the subcommand fails to detect the chain completely. In the case
of such an error, the devices in the JTAG chain must be detected and assigned manually.

Example

1. Attempt to automatically detect the chain using the default algorithm

%::chipscope::csejtag_tap autodetect_chain $handle
$CSEJTAG_SCAN_DEFAULT

Table 5-22: Arguments for Subcommand ::chipscope::csejtag_tap
autodetect_chain

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

algorithm

Algorithm used to determine the composition of the JTAG
chain. Can be set to one of {$CSEJTAG_SCAN_DEFAULT |
$CSEJTAG_SCAN_TLRSHIFT |
$CSEJTAG_SCAN_WALKING_ONES}

The CSEJTAG_SCAN_WALKING_ONES algorithm is:

• Set each device into BYPASS by shifting long stream of 1's
into IR

• Shift DR pattern into TDI and wait for pattern on TDO. The
number of shifts determines the number of devices in the
JTAG chain.

• Perform the CSEJTAG_SCAN_TLRSHIFT algorithm to get
IDCODEs for each device.

The CSEJTAG_SCAN_TLRSHIFT algorithm is:

• Navigate to TLR

Shift out bits until all IDCODEs (or BYPASS bits) are read.

http://www.xilinx.com

172 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_tap interrogate_chain
This subcommand scans the JTAG chain to obtain the IDCODE and number of devices in
the chain. Some IEEE 1149.1 non-compliant devices might not be compatible with this
subcommand and can cause the entire chain to be detected incorrectly or not at all.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap interrogate_chain handle algorithm

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Attempt to interrogate the chain using the default algorithm

%::chipscope::csejtag_tap interrogate_chain $handle
$CSEJTAG_SCAN_DEFAULT

Table 5-23: Arguments for Subcommand ::chipscope::csejtag_tap
interrogate_chain

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

algorithm

Algorithm used to determine the composition of the JTAG
chain. Can be set to one of {$CSEJTAG_SCAN_DEFAULT |
$CSEJTAG_SCAN_TLRSHIFT |
$CSEJTAG_SCAN_WALKING_ONES}

The CSEJTAG_SCAN_WALKING_ONES algorithm is:

• Set each device into BYPASS by shifting long stream of 1's
into IR

• Shift DR pattern into TDI and wait for pattern on TDO. The
number of shifts determines the number of devices in the
JTAG chain.

• Perform the CSEJTAG_SCAN_TLRSHIFT algorithm to get
IDCODEs for each device.

The CSEJTAG_SCAN_TLRSHIFT algorithm is:

• Navigate to TLR
• Shift out bits until all IDCODEs (or BYPASS bits) are read

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 173
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_tap get_device_count
This subcommand is used to get the number of devices in the current JTAG chain.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap get_device_count handle

Arguments

Returns

The number of devices in the chain.

An exception is thrown if the subcommand fails.

Example

1. Obtain the number of devices in the JTAG chain.

%set deviceCount [::chipscope::csejtag_tap get_device_count $handle]

Table 5-24: Arguments for Subcommand ::chipscope::csejtag_tap
get_device_count

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

174 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_tap set_device_count
This subcommand is used to set the number of devices in the current JTAG chain.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap set_device_count handle count

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Set the number of devices in the JTAG chain to four.

%::chipscope::csejtag_tap set_device_count $handle 4

Table 5-25: Arguments for Subcommand ::chipscope::csejtag_tap
set_device_count

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

count Number of devices in the JTAG chain.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 175
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_tap get_irlength
This subcommand retrieves the instruction register (IR) length of a device in the current
JTAG chain. The IR length is used to determine the amount of padding required to shift an
instruction into a device register. TAP shift and navigate operations will not work until all
devices have the IR lengths set up correctly. The ::chipscope::csejtag_tap
autodetect_chain subcommand automatically sets up IR lengths for all devices in the
chain that support the IDCODE command.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand. Also, the device count must be set prior to calling this
subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap get_irlength handle deviceIndex

Arguments

Returns

The length of the IR for the device.

An exception is thrown if the subcommand fails.

Example

1. Get the IR length of the device at index 0.

%set irLength [::chipscope::csejtag_tap get_irlength $handle 0]

Table 5-26: Arguments for Subcommand ::chipscope::csejtag_tap get_irlength

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

http://www.xilinx.com

176 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_tap set_irlength
This subcommand sets the instruction register (IR) length of a single device in the current
JTAG chain. The IR length is used to determine the amount of padding required to shift an
instruction into a device register. TAP shift and navigate operations will not work until all
devices have the IR lengths set up correctly. The ::chipscope::csejtag_tap
autodetect_chain subcommand automatically sets up IR lengths for all devices in the
chain that support the IDCODE command.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand. Also, the device count must be set prior to calling this
subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap set_irlength handle deviceIndex irLength

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Set the IR length of the device at index 0 to 11 bits.

%::chipscope::csejtag_tap set_irlength $handle 0 11

Table 5-27: Arguments for Subcommand ::chipscope::csejtag_tap set_irlength

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

irLength Length of the IR (in bits)

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 177
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_tap get_device_idcode
This subcommand returns the 32-bit IDCODE for a given device in the current JTAG chain.
If the device does not support the IDCODE instruction, a null string is returned.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand. Also, the device count must be set prior to calling this
subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap get_device_idcode handle deviceIndex

Arguments

Returns

A 32-character string of ones and zeros representing the 32-bit IDCODE of the device.

An exception is thrown if the subcommand fails.

Example

1. Get the IDCODE of the device at index 0

%set idcode [::chipscope::csejtag_tap get_device_idcode $handle 0]

Table 5-28: Arguments for Subcommand ::chipscope::csejtag_tap
get_device_idcode

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

http://www.xilinx.com

178 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_tap set_device_idcode
This subcommand sets the IDCODE for a given device in the current JTAG chain. Passing
a null string indicates the device does not support the IDCODE instruction.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand. Also, the device count must be set prior to calling this
subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap set_device_idcode handle deviceIndex idcode

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Set the IDCODE of the device at index 0 to
01010101010101010101010101010101.

%::chipscope::csejtag_tap set_device_idcode $handle 0
“01010101010101010101010101010101”

Table 5-29: Arguments for Subcommand ::chipscope::csejtag_tap
set_device_idcode

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

idcode A 32-character string of ones and zeros
representing the 32-bit IDCODE of the device.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 179
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_tap navigate
This subcommand is used to change the state of the TAP of a device in the JTAG chain.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap navigate handle newState clockRepeat
microseconds

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Navigate the TAP state to Test Logic Reset and keep it in this state for five additional
clock cycles.

%::chipscope::csejtag_tap navigate $handle $CSEJTAG_TEST_LOGIC_RESET 5
0

Table 5-30: Arguments for Subcommand ::chipscope::csejtag_tap navigate

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

newState New state to navigate into.

clockRepeat Number of additional times to pulse the TCK pin
after entering the new state.

microseconds Number of microseconds to sleep after
navigating to the new state.

http://www.xilinx.com

180 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_tap shift_chain_ir
This subcommand is used to shift a stream of bits into and out of the instruction register of
the JTAG chain. No device padding is performed by this subcommand. For device-indexed
IR shifting, see ::chipscope::csejtag_tap shift_device_ir.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap shift_chain_ir handle shiftMode exitState
progressCallbackFunc bitCount hextdibuf [-hextdimask hextdimaskval] [-
hextdomask hextdomaskval]

Arguments

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP.

An exception is thrown if the subcommand fails.

Table 5-31: Arguments for Subcommand ::chipscope::csejtag_tap shift_chain_ir

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

shiftMode {CSJTAG_SHIFT_READ | CSJTAG_SHIFT_WRITE |
CSJTAG_SHIFT_READWRITE)

exitState State to end in after shift is complete (CSEJTAG_SHIFT_IR
if no state change is desired).

progressCallback
Func

Progress callback function that can be used to monitor
progress of JTAG target operations. The format of the
progress callback function is:

proc progressCallbackFunc (handle totalCount
CurrentCount progressStatus) {...}

The progress callback function must return either
$CSE_STOP or $CSE_CONTINUE. If no progress callback
function is necessary, a 0 should be passed into this
argument position.

bitCount Number of bits to shift.

hextdibuf Data buffer that holds the data bits to be written into TDI.
The least-significant bit is shifted into TDI first.

-hextdimask

hextdimaskval

Optional

Specifies that a mask word hextdimaskval should be
applied to the data buffer bits before the data is shifted into
the TDI pin of the JTAG TAP.

-hextdomask

hextdomaskval

Specifies that a mask word hextdomaskval should be
applied to the data buffer bits after the data is shifted out of
the TDO pin of the JTAG TAP.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 181
UG029 (v10.1) March 24, 2008

Command Details
R

Example

1. This function shifts in 64 ones into the instruction register, captures the 64 bits of
received data, and navigates to the Run Test Idle state when finished.

%set hextdobuf [::chipscope::csejtag_tap shift_chain_ir $handle
$CSEJTAG_SHIFT_READWRITE $CSEJTAG_RUN_TEST_IDLE progressFunc 64
“FFFFFFFFFFFFFFFF”]

http://www.xilinx.com

182 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_tap shift_device_ir
This subcommand is used to shift a stream of bits into and out of the instruction register of
a particular device the JTAG chain. Device padding is performed by this subcommand by
putting all other devices into BYPASS mode. This subcommand should be called before
::chipscope::csejtag_tap shift_device_dr to ensure all non-target devices as
in BYPASS mode, otherwise unexpected and unintended results can occur. For raw data
shifting into the chain IR, see ::chipscope::csejtag_tap shift_chain_ir.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand. Also, the number of bits shifted into the device IR
must be exactly equal to the IR length of the device otherwise the subcommand will fail.

Syntax

::chipscope::csejtag_tap shift_device_ir handle deviceIndex shiftMode
exitState progressCallbackFunc bitCount hextdibuf [-hextdimask
hextdimaskval] [-hextdomask hextdomaskval]

Arguments

Table 5-32: Arguments for Subcommand ::chipscope::csejtag_tap shift_device_ir

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

shiftMode
{CSJTAG_SHIFT_READ | CSJTAG_SHIFT_WRITE |
CSJTAG_SHIFT_READWRITE)

exitState
State to end in after shift is complete
(CSEJTAG_SHIFT_IR if no state change is desired).

progressCallback
Func

Progress callback function that can be used to monitor
progress of JTAG target operations. The format of the
progress callback function is:

proc progressCallbackFunc (handle totalCount
CurrentCount progressStatus) {...}

The progress callback function must return either
$CSE_STOP or $CSE_CONTINUE. If no progress callback
function is necessary, a 0 should be passed into this
argument position.

bitCount Number of bits to shift.

hextdibuf
Data buffer that holds the data bits to be written into TDI.
The least-significant bit is shifted into TDI first.

-hextdimask

hextdimaskva
l

Optional

Specifies that a mask word hextdimaskval should be applied
to the data buffer bits before the data is shifted into the TDI
pin of the JTAG TAP.

-hextdomask

hextdomaskval

Specifies that a mask word hextdomaskval should be
applied to the data buffer bits after the data is shifted out of
the TDO pin of the JTAG TAP.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 183
UG029 (v10.1) March 24, 2008

Command Details
R

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP.

An exception is thrown if the subcommand fails.

Example

1. This function shifts in 11 ones into the instruction register of the device at index 1,
captures the 11 bits of received data, and navigates to the Run Test Idle state when
finished.

%set hextdobuf [::chipscope::csejtag_tap shift_device_ir $handle 1
$CSEJTAG_SHIFT_READWRITE $CSEJTAG_RUN_TEST_IDLE progressFunc 11 “7FF”]

http://www.xilinx.com

184 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_tap shift_chain_dr
This subcommand is used to shift a stream of bits into and out of the data register (DR) of
the JTAG chain. No device padding is performed by this subcommand. For device-indexed
DR shifting, see ::chipscope::csejtag_tap shift_device_dr.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap shift_chain_dr handle shiftMode exitState
progressCallbackFunc bitCount hextdibuf [-hextdimask hextdimaskval] [-
hextdomask hextdomaskval]

Arguments

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP.

An exception is thrown if the subcommand fails.

Table 5-33: Arguments for Subcommand ::chipscope::csejtag_tap shift_chain_dr

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

shiftMode {CSJTAG_SHIFT_READ | CSJTAG_SHIFT_WRITE |
CSJTAG_SHIFT_READWRITE)

exitState State to end in after shift is complete
(CSEJTAG_SHIFT_DR if no state change is desired).

progressCallbac
kFunc

Progress callback function that can be used to monitor
progress of JTAG target operations. The format of the
progress callback function is:

proc progressCallbackFunc (handle totalCount
CurrentCount progressStatus) {...}

The progress callback function must return either
$CSE_STOP or $CSE_CONTINUE. If no progress callback
function is necessary, a 0 should be passed into this
argument position.

bitCount Number of bits to shift.

hextdibuf Data buffer that holds the data bits to be written into TDI.
The least-significant bit is shifted into TDI first.

-hextdimask

hextdimaskva
l

Optional

Specifies that a mask word hextdimaskval should be
applied to the data buffer bits before the data is shifted into
the TDI pin of the JTAG TAP.

-hextdomask

hextdomaskval

Specifies that a mask word hextdomaskval should be
applied to the data buffer bits after the data is shifted out of
the TDO pin of the JTAG TAP.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 185
UG029 (v10.1) March 24, 2008

Command Details
R

Example

1. This function shifts in 64 ones into the instruction register, captures the 64 bits of
received data, and navigates to the Run Test Idle state when finished.

%set hextdobuf [::chipscope::csejtag_tap shift_chain_dr $handle
$CSEJTAG_SHIFT_READWRITE $CSEJTAG_RUN_TEST_IDLE progressFunc 64
“FFFFFFFFFFFFFFFF”]

http://www.xilinx.com

186 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_tap shift_device_dr
This subcommand is used to shift a stream of bits into and out of the data register of a
particular device the JTAG chain. Device padding is performed by this subcommand by
assuming all non-target devices are in BYPASS mode, then adding the necessary heading
and trailing bits to accommodate for the position of the target device in the chain. For raw
data shifting into the chain DR, see ::chipscope::csejtag_tap shift_chain_dr.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock
subcommand before calling this subcommand. This subcommand should be called before
::chipscope::csejtag_tap shift_device_dr to ensure all non-target devices as in
BYPASS mode, otherwise unexpected and unintended results can occur.

Syntax

::chipscope::csejtag_tap shift_device_dr handle deviceIndex shiftMode
exitState progressCallbackFunc bitCount hextdibuf [-hextdimask
hextdimaskval] [-hextdomask hextdomaskval]

Arguments

Table 5-34: Arguments for Subcommand ::chipscope::csejtag_tap shift_device_dr

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

shiftMode {CSJTAG_SHIFT_READ | CSJTAG_SHIFT_WRITE |
CSJTAG_SHIFT_READWRITE)

exitState State to end in after shift is complete
(CSEJTAG_SHIFT_DR if no state change is desired).

progressCallback
Func

Progress callback function that can be used to monitor
progress of JTAG target operations. The format of the
progress callback function is:

proc progressCallbackFunc (handle totalCount
CurrentCount progressStatus) {...}

The progress callback function must return either
$CSE_STOP or $CSE_CONTINUE. If no progress callback
function is necessary, a 0 should be passed into this
argument position.

bitCount Number of bits to shift.

hextdibuf
Data buffer that holds the data bits to be written into TDI.
The least-significant bit is shifted into TDI first.

-hextdimask

hextdimaskval
Optional

Specifies that a mask word hextdimaskval should be
applied to the data buffer bits before the data is shifted into
the TDI pin of the JTAG TAP.

-hextdomask

hextdomaskval

Specifies that a mask word hextdomaskval should be
applied to the data buffer bits after the data is shifted out
of the TDO pin of the JTAG TAP.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 187
UG029 (v10.1) March 24, 2008

Command Details
R

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP.

An exception is thrown if the subcommand fails.

Example

1. This function shifts in 11 ones into the data register of the device at index 1, captures
the 11 bits of received data, and navigates to the Run Test Idle state when finished.

%set hextdobuf [::chipscope::csejtag_tap shift_device_dr $handle 1
$CSEJTAG_SHIFT_READWRITE $CSEJTAG_RUN_TEST_IDLE progressFunc 11 “7FF”]

http://www.xilinx.com

188 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_db add_device_data
This subcommand is used to read device records from a file and add it to the memory-
based lookup table inside the CseJtag library.

Note: The file format and device record structure is the same as the idcode.lst file.

Syntax

::chipscope::csejtag_db add_device_data handle filename buf bufLen

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

1. Adding data from the file my_idcode.lst to the internal device database. Also, store
the data record buffer and buffer size in local variables.

%::chipscope::csejtag_db add_device_data $handle “my_idcode.lst”
$my_idcode_buf $my_idcode_bufLen

Table 5-35: Arguments for Subcommand ::chipscope::csejtag_db add_device_data

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

filename
String containing filename from which device records
should be read

buf String containing device records in the same format and
structure as the idcode.lst file.

bufLen Size of the buffer (in bytes or characters)

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 189
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_db lookup_device
This subcommand is used to look up a device in the database using the device IDCODE.

Syntax

::chipscope::csejtag_db lookup_device handle idcode

Arguments

Returns

A list in the format:

{deviceName irlen cmd_bypass}

where

deviceName

String containing the name of the device

irlen

Number of bits in the IR of the device

cmd_bypass

String containing the BYPASS instruction for the device (usually all ones)

An exception is thrown if the subcommand fails.

Example

1. Look in the database for the device information belonging to IDCODE
01010101010101010101010101010101.

%set deviceInfo [::chipscope::csejtag_db lookup_device $handle
“01010101010101010101010101010101”]

Table 5-36: Arguments for Subcommand ::chipscope::csejtag_db lookup_device

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

idcode IDCODE for the desired device.

http://www.xilinx.com

190 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_db get_device_name_for_idcode
This subcommand is used to get the name of a device in the database using the device
IDCODE.

Syntax

::chipscope::csejtag_db get_device_name_for_idcode handle idcode

Arguments

Returns

A string containing the device name.

An exception is thrown if the subcommand fails.

Example

1. Look in the database for the name of the device belonging to IDCODE
01010101010101010101010101010101.

%set deviceName [::chipscope::csejtag_db get_device_name_for_idcode
$handle “01010101010101010101010101010101”]

Table 5-37: Arguments for Subcommand ::chipscope::csejtag_db
get_device_name_for_idcode

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

idcode IDCODE for the desired device.

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 191
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_db get_irlength_for_idcode
This subcommand is used to get the IR length of a device in the database using the device
IDCODE.

Syntax

::chipscope::csejtag_db get_irlength_for_idcode handle idcode

Arguments

Returns

A string containing the size of the IR (in bits).

An exception is thrown if the subcommand fails.

Example

1. Look in the database for the IR length of the device belonging to IDCODE
01010101010101010101010101010101.

%set irlen [::chipscope::csejtag_db get_irlength_for_idcode $handle
“01010101010101010101010101010101”]

Table 5-38: Arguments for Subcommand ::chipscope::csejtag_db
get_irlength_for_idcode

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

idcode IDCODE for the desired device.

http://www.xilinx.com

192 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

::chipscope::csejtag_db parse_bsdl
This subcommand is used to extract device information from a Boundary Scan Description
Language (BSDL) buffer.

Syntax

::chipscope::csejtag_db parse_bsdl handle filename buf bufLen

Arguments

Returns

A list in the format:

{deviceName irlen idcode cmd_bypass}

Where:

deviceName

String containing the name of the device

irlen

Number of bits in the IR of the device

idcode

IDCODE of the device

cmd_bypass

String containing the BYPASS instruction for the device (usually all ones)

An exception is thrown if the subcommand fails.

Example

1. Extract device information from the file “device.bsd” that was placed in the buffer
bsdl_buf of size bsdl_bufLen.

%::chipscope::csejtag_db parse_bsdl $handle “device.bsd” $bsdl_buf
$bsdl_bufLen

Table 5-39: Arguments for Subcommand ::chipscope::csejtag_db parse_bsdl

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

filename Filename of local BSDL file (for debugging only)

buf Buffer containing the contents of the entire BSDL file

bufLen Size of the buffer buf (in bytes or characters)

http://www.xilinx.com

ChipScope Pro 10.1 Software and Cores User Guidewww.xilinx.com 193
UG029 (v10.1) March 24, 2008

Command Details
R

::chipscope::csejtag_db parse_bsdl_file
This subcommand is used to extract device information from a Boundary Scan Description
Language (BSDL) file.

Syntax

::chipscope::csejtag_db parse_bsdl_file handle filename

Arguments

Returns

A list in the format:

{deviceName irlen idcode cmd_bypass}

Where:

deviceName

String containing the name of the device

irlen

Number of bits in the IR of the device

idcode

IDCODE of the device

cmd_bypass

String containing the BYPASS instruction for the device (usually all ones)

An exception is thrown if the subcommand fails.

Example

1. Extract device information from the file device.bsd.

%::chipscope::csejtag_db parse_bsdl_file $handle “device.bsd”

Table 5-40: Arguments for Subcommand ::chipscope::csejtag_db parse_bsdl_file

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

filename Filename of local BSDL file.

http://www.xilinx.com

194 www.xilinx.comChipScope Pro 10.1 Software and Cores User Guide
UG029 (v10.1) March 24, 2008

Chapter 5: ChipScope Engine JTAG Tcl Interface
R

CseJtag Tcl Example
The ChipScope Pro 10.1 installation includes an example Tcl script that uses the CseJtag Tcl
interface. This example opens a Xilinx Parallel cable or Xilinx Platform USB cable and
scans the JTAG chain and returns information about the devices found in the chain. The
example script is located in the following location:

• On 32-bit Windows operating systems

♦ <CHIPSCOPE_INSTALL>\bin\nt\csejtag_example1.tcl

• On 64-bit Windows operating systems

♦ <CHIPSCOPE_INSTALL>\bin\nt64\csejtag_example1.tcl

• On 32-bit Linux operating systems

♦ <CHIPSCOPE_INSTALL>/bin/lin/csejtag_example1.tcl

• On 64-bit Linux operating systems

♦ <CHIPSCOPE_INSTALL>/bin/lin64/csejtag_example1.tcl

The script can be run in the Tcl shell (xtclsh) that is included with ISE software or in the
ActiveTcl 8.4 Tcl shell from ActiveState Software Inc. (http://www.activestate.com). To
run the tcl example in a command line shell, change to the directory where
csejtag_example1.tcl is located (see above). Next, follow these instructions for the
particular operating system:

• On 32-bit and 64-bit Windows operating systems:

♦ To use a Xilinx Parallel Cable, type:

cs_xtclsh.bat csejtag_example1.tcl

♦ To use a Xilinx Platform Cable USB, type:

cs_xtclsh.bat csejtag_example1.tcl -usb

• On 32-bit and 64-bit Linux operating systems:

♦ To use a Xilinx Parallel Cable, type:

cs_xtclsh.sh csejtag_example1.tcl

♦ To use a Xilinx Platform Cable USB, type:

cs_xtclsh.sh csejtag_example1.tcl -usb

http://www.xilinx.com

http://www.activestate.com

	ChipScope Pro 10.1 Software and Cores User Guide
	Table of Contents
	Schedule of Tables
	Schedule of Figures
	About This User Guide
	User Guide Contents
	Additional Support Resources
	Typographical Conventions

	Introduction
	ChipScope Pro Tools Overview
	ChipScope Pro Tools Description
	Design Flow
	Using ChipScope Pro Cores in Embedded Processor and DSP Tool Flows

	ChipScope Pro Cores Description
	ICON Core
	ILA Core
	IBA/OPB Core
	IBA/PLB Core
	VIO Core
	ATC2 Core
	IBERT Core

	Synthesis Requirements
	System Requirements
	Software Tools Requirements
	Communications Requirements
	Board Requirements
	Host System Requirements for Microsoft Windows
	Host System Requirements for Linux

	Software Installation and Licensing

	Using the CORE Generator Tool
	CORE Generator Tool Overview
	Locating the ChipScope Pro Cores in CORE Generator
	Generating an ICON Core
	General ICON Core Parameters
	Generating the Core
	Using the ICON Core

	Generating an ILA Core
	ILA Core Trigger and Storage Parameters
	ILA Core Trigger Port Parameters
	Generating the Core
	Using the ILA Core

	Generating the VIO Core
	General VIO Core Options
	Generating the Core
	Using the VIO Core

	Generating the ATC2 Core
	ATC2 Core Acquisition and State Parameters
	ATC2 Core Pin and Signal Parameters
	ATC2 Core ATCK and ATD Pin Parameters
	Generating the Core
	Using the ATC2 Core

	Using the ChipScope Pro Core Inserter
	Core Inserter Overview
	Using the Core Inserter with ISE Project Navigator
	ChipScope Definition and Connection Source File
	Useful Project Navigator Settings

	Using the Core Inserter with Command Line Implementation
	Command Line Flow Overview
	Create CDC Project Step
	Edit CDC Project Step
	Insert Cores Step

	ChipScope Pro Core Inserter Features
	Working with Projects
	Specifying Input and Output Files
	Project Level Parameters
	Core Utilization
	Choosing ICON Options
	Choosing ILA Trigger Options and Parameters
	Choosing ILA Core Capture Parameters
	Choosing ATC2 Data Capture Settings
	Choosing Net Connections for ILA Signals
	Adding Units
	Inserting Cores into Netlist
	Managing Project Preferences

	Using the ChipScope Pro Analyzer
	Analyzer Overview
	Analyzer Server Interface
	Analyzer Client Interface
	Project Tree
	Signal Browser
	Message Pane
	Main Window Area

	Analyzer Features
	Working with Projects
	Printing Waveforms
	Importing Signal Names
	Exporting Data
	Closing and Exiting the Analyzer
	Viewing Options
	Setting up a Server Host Connection
	Opening a Parallel Cable Connection
	Opening a Platform Cable USB Connection
	Using Multiple Platform Cable USB Connections
	Polling the Auto Core Status
	Configuring the Target Device(s)
	Trigger Setup Window
	Waveform Window
	Listing Window
	Bus Plot Window
	VIO Console Window
	System Monitor
	Help

	ChipScope Pro ILA Waveform Toolbar Features
	ChipScope Pro Analyzer Command Line Options

	ChipScope Engine JTAG Tcl Interface
	Overview
	Requirements
	Limitations

	CseJtag Tcl Command Summary
	Command Details
	::chipscope::csejtag_session create
	::chipscope::csejtag_session destroy
	::chipscope::csejtag_session get_api_version
	::chipscope::csejtag_session send_message
	::chipscope::csejtag_target open
	::chipscope::csejtag_target close
	::chipscope::csejtag_target lock
	::chipscope::csejtag_target unlock
	::chipscope::csejtag_target get_lock_status
	::chipscope::csejtag_target clean_locks
	::chipscope::csejtag_target flush
	::chipscope::csejtag_target set_pin
	::chipscope::csejtag_target get_pin
	::chipscope::csejtag_target pulse_pin
	::chipscope::csejtag_target wait_time
	::chipscope::csejtag_target get_info
	::chipscope::csejtag_tap autodetect_chain
	::chipscope::csejtag_tap interrogate_chain
	::chipscope::csejtag_tap get_device_count
	::chipscope::csejtag_tap set_device_count
	::chipscope::csejtag_tap get_irlength
	::chipscope::csejtag_tap set_irlength
	::chipscope::csejtag_tap get_device_idcode
	::chipscope::csejtag_tap set_device_idcode
	::chipscope::csejtag_tap navigate
	::chipscope::csejtag_tap shift_chain_ir
	::chipscope::csejtag_tap shift_device_ir
	::chipscope::csejtag_tap shift_chain_dr
	::chipscope::csejtag_tap shift_device_dr
	::chipscope::csejtag_db add_device_data
	::chipscope::csejtag_db lookup_device
	::chipscope::csejtag_db get_device_name_for_idcode
	::chipscope::csejtag_db get_irlength_for_idcode
	::chipscope::csejtag_db parse_bsdl
	::chipscope::csejtag_db parse_bsdl_file

	CseJtag Tcl Example

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

