ChipScope Pro 10.1 Software and Cores User Guide

UG029 (v10.1) March 24, 2008

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2002–2008 Xilinx, Inc. All rights reserved.

XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM Corp. and is used under license. All other trademarks are the property of their respective owners.

Revision History

Date	Version	Revision
04/09/02	1.0	Initial Xilinx release.
10/29/02	5.1	Added new Chapter 3, "Using the ChipScope Pro Core Inserter"; Old Chapter 3 is new Chapter 4, "Using the ChipScope Pro Analyzer"; Updated all chapters to be compatible with 5.1i tools; Revised version number to be in sync with version of tools.
03/06/03	5.2	Updated all chapters to be compatible with 5.2i tools; Updated version number to reflect version number of tools.
05/15/03	5.2.2	Chapter 1: Added the "Choice of Match Unit Counter" section to Table 1-3; Chapter 2: Added the "Selecting Match Unit Counter Width" section; updated several "trigger" screen shots; Chapter 3: Added "Selecting Match Unit Counter Width" section; Chapter 4: Updated screen shots in the "Configuring the Target Device(s)" section; Added "Displaying Configuration Status Information" section; Updated "Counter" section; Added notes to the "Depth" and "Samples Per Trigger" sections; Updated "VIO Console Window" section and most of its screen shots.
8/29/03	6.1	Updated all chapters to be compatible with 6.1i tools; Updated version number to reflect version number of tools; Added Chapter 5, "ChipScope Engine JTAG Tcl Interface"
02/13/04	6.2	Updated all chapters to be compatible with 6.2i tools; Updated version number to reflect version number of tools; Chapter 2: Added the "Generating the ATC2 Core" section; Updated all chapters to reflect ATC2 compatibility; Miscellaneous edits for clarity or continuity.

The following table shows the revision history for this document.

Date	Version	Revision
06/30/04	6.3	Updated all chapters to be compatible with 6.3i tools; Updated version number to reflect version number of tools; Miscellaneous edits for clarity or continuity; Added MultiPRO cable information.
10/04/04	6.3.1	Minor text corrections.
02/16/05	7.1	Updated all chapters to be compatible with 7.1i tools; Updated version number to reflect version number of tools; Updated ATC2 core description to include the new auto-setup and "always on" features; Added information regarding Analyzer support on Linux and Solaris; Added information on the client/server remote debug feature; Added Platform Cable USB cable information; Miscellaneous edits for clarity or continuity.
10/18/05	8.1	Updated all chapters to be compatible with 8.1i tools; Updated version number to reflect version number of tools; Removed support for the MultiLINX and Agilent E5904B cables; Removed support for the ILA/ATC core.
09/18/06	8.2	Updated all chapters to be compatible with 8.2i tools; Updated version number to reflect version number of tools.
12/01/06	9.1	Updated all chapters to be compatible with 9.1i tools; Updated version number to reflect version number of tools.
01/10/07	9.1.01	Updated all chapters to be compatible with 9.1.01i tools; Updated version number to reflect version number of tools; Added "Using the Core Inserter with Command Line Implementation" in Chapter 3; Added "System Monitor" in Chapter 4 Expanded Chapter 5, "ChipScope Engine JTAG Tcl Interface."
05/30/07	9.2	Updated all chapters to be compatible with 9.2i tools; Updated version numbers to reflect version number of tools; Edits throughout to increase clarity and eliminate redundancy; Removed Windows 2000 support; Converted Arguments sections to tables in Chapter 5, "ChipScope Engine JTAG Tcl Interface."
03/24/08	10.1	 Updated all chapters to be compatible with 10.1 tools. Updated version numbers to reflect version number of tools. Replaced the ChipScope Core Generator tool with the Xilinx CORE Generator tool. Chapter 1, "Introduction": Added Xilinx CORE Generator tool to Table 1-1, page 19; Updated PC and Linux system requirements in Table 1-9, page 43 and Table 1-10, page 43, respectively, removed "Host System Requirements for Solaris." Chapter 4, "Using the ChipScope Pro Analyzer": Added "Using Multiple Platform Cable USB Connections," page 116 and "External Input," page 144 section. Chapter 5, "ChipScope Engine JTAG Tcl Interface": Updated "Requirements," page 149 and "CseJtag Tcl Example," page 194.

Table of Contents

Schedule of Tables 9
Schedule of Figures 11
Preface: About This User Guide
User Guide Contents 15
Additional Support Resources 16
Typographical Conventions 16
Chapter 1: Introduction
ChipScope Pro Tools Overview19
ChipScope Pro Tools Description
Design Flow 22 Using ChipScope Pro Cores in Embedded Processor and DSP Tool Flows 22
ChipScope Pro Cores Description
ICON Core
ILA Core 23 IBA/OPB Core 30
IBA/PLB Core
VIO Core
ATC2 Core
IBERT Core
Synthesis Requirements 41
System Requirements 41
Software Tools Requirements 41
Communications Requirements
Board Requirements 43 Host System Requirements for Microsoft Windows 43
Host System Requirements for Linux
Software Installation and Licensing

Chapter 2: Using the CORE Generator Tool

CORE Generator Tool Overview 45
Locating the ChipScope Pro Cores in CORE Generator 46
Generating an ICON Core
General ICON Core Parameters 48
Generating the Core
Using the ICON Core
Generating an ILA Core
ILA Core Trigger and Storage Parameters 52
ILA Core Trigger Port Parameters 55
Generating the Core
Using the ILA Core

Generating the VIO Core
General VIO Core Options
Generating the Core
Using the VIO Core
Generating the ATC2 Core
ATC2 Core Acquisition and State Parameters
ATC2 Core Pin and Signal Parameters
ATC2 Core ATCK and ATD Pin Parameters
Generating the Core
Using the ATC2 Core

Chapter 3: Using the ChipScope Pro Core Inserter

Core Inserter Overview	. 69
Using the Core Inserter with ISE Project Navigator	. 69
ChipScope Definition and Connection Source File	
Useful Project Navigator Settings	. 71
Using the Core Inserter with Command Line Implementation	. 72
Command Line Flow Overview	. 72
Create CDC Project Step	. 73
Edit CDC Project Step	
Insert Cores Step	
ChipScope Pro Core Inserter Features	. 75
Working with Projects	. 75
Specifying Input and Output Files	
Project Level Parameters	. 78
Core Utilization	. 79
Choosing ICON Options	. 79
Choosing ILA Trigger Options and Parameters	. 80
Choosing ILA Core Capture Parameters	. 84
Choosing ATC2 Data Capture Settings	
Choosing Net Connections for ILA Signals	
Adding Units	. 95
Inserting Cores into Netlist	. 95
Managing Project Preferences	

Chapter 4: Using the ChipScope Pro Analyzer

99
00
01
01
01
04
04
04
04
05
11
12
12
12

Setting up a Server Host Connection 11	13
Opening a Parallel Cable Connection 11	14
Opening a Platform Cable USB Connection 11	15
Using Multiple Platform Cable USB Connections	16
Polling the Auto Core Status 11	17
Configuring the Target Device(s) 11	17
Trigger Setup Window 12	21
Waveform Window 13	
Listing Window 13	33
Bus Plot Window 13	34
VIO Console Window 13	
System Monitor 14	41
Help	45
ChipScope Pro ILA Waveform Toolbar Features 14	46
ChipScope Pro Analyzer Command Line Options	47

Chapter 5: ChipScope Engine JTAG Tcl Interface

Overview
Requirements
Limitations
CseJtag Tcl Command Summary
Command Details
::chipscope::csejtag_session create
::chipscope::csejtag_session destroy 154
::chipscope::csejtag_session get_api_version 155
::chipscope::csejtag_session send_message 156
::chipscope::csejtag_target open 157
::chipscope::csejtag_target close 159
::chipscope::csejtag_target lock 160
::chipscope::csejtag_target unlock 162
::chipscope::csejtag_target get_lock_status 162
::chipscope::csejtag_target clean_locks 165
::chipscope::csejtag_target flush 164
::chipscope::csejtag_target set_pin 165
::chipscope::csejtag_target get_pin 166
::chipscope::csejtag_target pulse_pin 162
::chipscope::csejtag_target wait_time 168
::chipscope::csejtag_target get_info 169
::chipscope::csejtag_tap autodetect_chain 172
::chipscope::csejtag_tap interrogate_chain 172
::chipscope::csejtag_tap get_device_count 173
::chipscope::csejtag_tap_set_device_count 174
::chipscope::csejtag_tap_get_irlength
::chipscope::csejtag_tap set_irlength 176
::chipscope::csejtag_tap get_device_idcode 172
::chipscope::csejtag_tap_set_device_idcode 178
::chipscope::csejtag_tap navigate
::chipscope::csejtag_tap shift_chain_ir
::chipscope::csejtag_tap shift_device_ir
::chipscope::csejtag_tap shift_chain_dr 184
::chipscope::csejtag_tap shift_device_dr 186
::chipscope::csejtag_db add_device_data 188

CseJtag Tcl Example	194
::chipscope::csejtag_db parse_bsdl_file	193
::chipscope::csejtag_db parse_bsdl	
::chipscope::csejtag_db get_irlength_for_idcode	191
::chipscope::csejtag_db get_device_name_for_idcode	190
::chipscope::csejtag_db lookup_device	189

Schedule of Tables

Chapter 1: Introduction

Table 1-1: ChipScope Pro Tools Description. 19
Table 1-2: ChipScope Pro Features and Benefits 21
Table 1-3: Trigger Features of the ILA Core 24
Table 1-4: CoreConnect OPB Protocol Violation Error Description (1)
Table 1-5: OPB Signal Groups 33
Table 1-6: PLB Signal Groups 36
Table 1-7: Design Parameter Changes Requiring Resynthesis 41
Table 1-8: ChipScope Pro Download Cable Support 42
Table 1-9: PC System Requirements for ChipScope Pro 10.1 Tools 43
Table 1-10: Linux Requirements for ChipScope Pro 9.2i Tools 43

Chapter 2: Using the CORE Generator Tool

Table 2-1: ILA Trigger Match Unit Types	
---	--

Chapter 3: Using the ChipScope Pro Core Inserter

Table 3-1: ILA Trigger Match Unit Types	
---	--

Chapter 4: Using the ChipScope Pro Analyzer

Table 4-1:	Cores Supported by the Analyzer Tool	. 99
Table 4-2:	Operating System Support for the ChipScope Pro Analyzer	100
Table 4-3:	ChipScope Pro Analyzer Server Command Line Options	100
Table 4-4:	Configuration of Multiple Client Instances	116

Chapter 5: ChipScope Engine JTAG Tcl Interface

Table 5-1:	CseJtag Tcl ::chipscope:: Commands 15
Table 5-2:	Summary of ::chipscope::csejtag_session Subcommands 15
Table 5-3:	Summary of ::chipscope::csejtag_db Subcommands 15
Table 5-4:	Summary of ::chipscope::csejtag_target Subcommands 15
Table 5-5:	Summary of ::chipscope::csejtag_tap Subcommands 15
Table 5-6:	Arguments for Subcommand ::chipscope::csejtag_session create 15
Table 5-7:	Arguments for Subcommand ::chipscope::csejtag_session create 15
Table 5-8:	Arguments for Subcommand ::chipscope::csejtag_session send_message. 15
Table 5-9:	Arguments for Subcommand ::chipscope::csejtag_target open 15
Table 5-10): Argument targetName and [optional args] combinations
Table 5-11	: Arguments for Subcommand ::chipscope::csejtag_target close 15
Table 5-12	2: Arguments for Subcommand ::chipscope::csejtag_target lock 16
Table 5-13	3: Arguments for Subcommand ::chipscope::csejtag_target unlock 16

Table 5-14: Arguments for Subcommand ::chipscope::csejtag_target get_lock_status . 162 Table 5-15: Arguments for Subcommand ::chipscope::csejtag target clean locks 163 Table 5-16: Arguments for Subcommand ::chipscope::csejtag target flush 164 Table 5-17: Arguments for Subcommand ::chipscope::csejtag_target set_pin 165 Table 5-18: Arguments for Subcommand ::chipscope::csejtag_target get_pin 166 Table 5-19: Arguments for Subcommand ::chipscope::csejtag target pulse pin 167 Table 5-20: Arguments for Subcommand ::chipscope::csejtag_target wait_time 168 Table 5-21: Arguments for Subcommand ::chipscope::csejtag_target get_info 169 Table 5-22: Arguments for Subcommand ::chipscope::csejtag tap autodetect chain. 171 Table 5-23: Arguments for Subcommand ::chipscope::csejtag tap interrogate chain . 172 Table 5-24: Arguments for Subcommand ::chipscope::csejtag_tap get_device_count. 173 Table 5-25: Arguments for Subcommand ::chipscope::csejtag_tap set_device_count. 174 Table 5-26: Arguments for Subcommand ::chipscope::csejtag tap get irlength 175 Table 5-27: Arguments for Subcommand ::chipscope::csejtag tap set irlength 176 Table 5-28: Arguments for Subcommand ::chipscope::csejtag_tap get_device_idcode. 177 Table 5-29: Arguments for Subcommand ::chipscope::csejtag tap set device idcode. 178 Table 5-31: Arguments for Subcommand ::chipscope::csejtag_tap shift_chain_ir.... 180 Table 5-32: Arguments for Subcommand ::chipscope::csejtag tap shift device ir.... 182 Table 5-33: Arguments for Subcommand ::chipscope::csejtag tap shift chain dr 184 Table 5-34: Arguments for Subcommand ::chipscope::csejtag tap shift device dr ... 186 Table 5-35: Arguments for Subcommand ::chipscope::csejtag_db add_device_data... 188 Table 5-36: Arguments for Subcommand ::chipscope::csejtag_db lookup_device 189 Table 5-37: Arguments for Subcommand ::chipscope::csejtag_db get_device_name_for_idcode 190 Table 5-38: Arguments for Subcommand ::chipscope::csejtag db get irlength for idcode 191 Table 5-39: Arguments for Subcommand ::chipscope::csejtag_db parse_bsdl 192

 Table 5-40:
 Arguments for Subcommand ::chipscope::csejtag_db parse_bsdl_file....
 193

Schedule of Figures

Chapter 1: Introduction

Figure 1-1:	ChipScope Pro System Block Diagram	20
Figure 1-2:	ChipScope Pro Tools Design Flow	22
Figure 1-3:	ILA Core Connection Example	27
Figure 1-4:	ATC2 Core and System Block Diagram	40

Chapter 2: Using the CORE Generator Tool

<i>Figure 2-1:</i> Locating the ChipScope Pro Cores in CORE Generator
Figure 2-2: Selecting the ICON Core 47
Figure 2-3: ICON Core Parameters 48
Figure 2-4: List of Generated ICON Core Files 50
<i>Figure 2-5:</i> Selecting the ILA Core
Figure 2-6: ILA Core Trigger and Storage Parameters 52
<i>Figure 2-7:</i> Trigger Sequencer Block Diagram (with 16 levels and 16 match units) 53
Figure 2-8: ILA Core Trigger Port Options 55
Figure 2-9: List of Generated ILA Core Files 57
<i>Figure 2-10:</i> Selecting the VIO Core
Figure 2-11:VIO Core General Options60
Figure 2-12: List of Generated VIO Core Files 61
Figure 2-13:Selecting the ATC2 Core.63
Figure 2-14: ATC2 Core Acquisition and State Parameters 64
Figure 2-15: ATC2 Core Pin and Signal Parameters 65
<i>Figure 2-16:</i> ATC2 Core ATCK and ATD Pin Parameters
Figure 2-17: List of Generated ATC2 Core Files. 68

Chapter 3: Using the ChipScope Pro Core Inserter

Figure 3-1:	Creating a New .cdc Source File
Figure 3-2:	The .cdc Source File
Figure 3-3:	Command Line Core Inserter Flow
Figure 3-4:	Create CDC Project Step
Figure 3-5:	Edit CDC Project Step
Figure 3-6:	Insert Cores Step
Figure 3-7:	Blank Core Inserter Project75
Figure 3-8:	Core Inserter Project with Files Specified
Figure 3-9:	Core Inserter as Launched from Project Navigator
Figure 3-10	: ICON Options
Figure 3-11	: ILA Core Trigger Parameters
Figure 3-12	: Trigger Sequencer Block Diagram with 16 Levels and 16 Match Units $\dots 83$

Sigure 3-13: ILA Core Capture Parameters 84	Figure 3-13:
<i>Tigure 3-14:</i> ILA Core Data Same As Trigger Parameters	Figure 3-14:
<i>Tigure 3-15:</i> ATC2 Core STATE Mode Data Capture Settings	Figure 3-15:
<i>ligure 3-16:</i> ATC2 Core TIMING Mode Data Capture Settings	Figure 3-16:
<i>Tigure 3-17:</i> ILA Net Connections	Figure 3-17:
<i>Tigure 3-18:</i> ATC2 Net Connections	Figure 3-18:
<i>Tigure 3-19:</i> Select Net Dialog Box	Figure 3-19:
<i>igure 3-20:</i> Specifying Data Connections	Figure 3-20:
<i>Sigure 3-21:</i> Core Inserter Tools Preference Settings	Figure 3-21:
<i>igure 3-22:</i> Core Inserter ISE Integration Preference Settings	Figure 3-22:
<i>igure 3-23:</i> Core Inserter Miscellaneous Preference Settings	Figure 3-23:

Chapter 4: Using the ChipScope Pro Analyzer

<i>Figure 4-1:</i> Example Token File
<i>Figure 4-2:</i> Example Waveform with Tokens
Figure 4-3: Saving a Project 104
<i>Figure</i> 4-4: Example Waveform 105
<i>Figure 4-5:</i> Selecting the File Print Option 105
<i>Figure</i> 4-6: Print Wizard (1 of 3) 106
Figure 4-7: Waveform Printout Footer Example 107
<i>Figure 4-8:</i> Print Wizard (2 of 3) 108
Figure 4-9: Expanding Buses in Print Wizard (2 of 3)109
Figure 4-10: Print Wizard (3 of 3) for Sending to a PDF File
Figure 4-11: Print Wizard (3 of 3) for Sending to a Printer
Figure 4-12: Page Setup Window. 110
Figure 4-13: Blank Signal Import Dialog Box 111
Figure 4-14: Export Signals Dialog Box 112
Figure 4-15: Server Settings for Local Mode 113
Figure 4-16: Server Settings for Remote Mode 113
Figure 4-17: Opening a Parallel Cable Connection 114
Figure 4-18: Opening a Platform Cable USB Connection 115
Figure 4-19: Boundary Scan (JTAG) Setup Window 117
Figure 4-20: Advanced JTAG Chain Parameters Setup Window
Figure 4-21: Device Menu Options118
Figure 4-22: Selecting a Bitstream 118
Figure 4-23: Opening a Configuration File 119
Figure 4-24: Device USERCODE and IDCODE 120
Figure 4-25: Displaying Device Configuration Status 120
Figure 4-26: Displaying Device Instruction Register Status 121
Figure 4-27: Opening New Unit Windows 121
<i>Figure 4-28:</i> Trigger Setup Window with Only Match Functions Expanded 122
Figure 4-29: Trigger Setup Window with All Sections Expanded 122
Figure 4-30: Capture Settings 122

Figure 4-31:	Storage Qualification Condition Set to Capture All Data 124
Figure 4-32:	Storage Qualification Condition Using Boolean Equation 124
Figure 4-33:	Setting the Match Functions 125
Figure 4-34:	Setting up the Match Counter 126
Figure 4-35:	Viewing the Trigger Condition 127
Figure 4-36:	Setting the Trigger Condition Boolean Equation 127
Figure 4-37:	Setting the Trigger Condition Sequencer 128
Figure 4-38:	Reordering Buses or Signals in the Waveform
Figure 4-39:	Zoom Area Using the Automatic Popup Menu 131
Figure 4-40:	Zoom to Sample Range 131
Figure 4-41:	Centering the Waveform on a Marker 132
Figure 4-42:	The Listing View
Figure 4-43:	The Bus Plot Window: Data vs. Time
Figure 4-44:	The Bus Plot Window: Data vs. Data 135
Figure 4-45:	The VIO Console Window
Figure 4-46:	The Type Selection Menu
Figure 4-47:	The Pulse Train Dialog139
Figure 4-48:	VIO Toolbar and Menu Options
Figure 4-49:	System Monitor Project Tree Node and Signal Browser 141
Figure 4-50:	System Monitor Console Showing Valid Sensor Data 142
Figure 4-51:	System Monitor Console Showing Invalid Sensor Data 143
Figure 4-52:	System Monitor Setup Logging Window 144
Figure 4-53:	Main ChipScope Pro Analyzer Toolbar Display 146

Chapter 5: ChipScope Engine JTAG Tcl Interface

Preface

About This User Guide

This user guide provides users with information for using the ChipScopeTM Pro IP cores and tools:

- Integrated Controller core (ICON)
- Integrated Logic Analyzer core (ILA)
- Virtual Input/Output core (VIO)
- Integrated Bit Error Ratio core (IBERT)
- Agilent Trace Core 2 (ATC2)
- Xilinx CORE Generator[™] tool (replaces the ChipScope Core Generator tool)
- Core Inserter tool
- Analyzer tool

The tools integrate the IP core and key hardware components with the target design inside VirtexTM, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, SpartanTM-II, Spartan-IIE, Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP devices (including the QProTM variants of these families). In this document, these devices are referred to collectively as the *supported devices*.

For detailed information on how to generate the Integrated Bit Error Ratio Tester (IBERT), see UG213, *ChipScope Pro 10.1 Serial I/O Toolkit User Guide* at http://www.xilinx.com/literature/literature-chipscope.htm.

User Guide Contents

This user guide contains the following chapters:

- Chapter 1, "Introduction," describes the ChipScope Pro tools. These tools integrate key logic analyzer hardware components with the target design inside the supported devices. The tools communicate with these components and provide the designer with a complete logic analyzer.
- Chapter 2, "Using the CORE Generator Tool," explains how to use this tool to generate the following ChipScope Pro cores:
 - Integrated Controller core (ICON)
 - Integrated Logic Analyzer core (ILA)
 - Virtual Input/Output core (VIO)
 - Integrated Bit Error Ratio core (IBERT)
 - Agilent Trace Core 2 (ATC2)

After generating the cores, you can use the instantiation templates (that are provided) to quickly and easily insert the cores into VHDL or Verilog designs. After completing

the instantiation and running synthesis, you can implement the design using the ISETM 10.1 implementation tools.

- Chapter 3, "Using the ChipScope Pro Core Inserter," explains how to use this postsynthesis tool to generate a netlist that includes the user design as well as ICON, ILA, and ATC2 cores as needed, parameterized accordingly. The Core Inserter gives you the flexibility to quickly and easily use the debug functionality to analyze an already synthesized design, and without any HDL instantiation.
- Chapter 4, "Using the ChipScope Pro Analyzer," explains how to use this tool which interfaces directly to the ICON, ILA, IBA/OPB, IBA/PLB, VIO, IBERT, and ATC2 cores (collectively called the ChipScope Pro cores). You can configure your device, choose triggers, setup the console, and view the results of the capture on the fly. The data views and triggers can be manipulated in many ways, providing an easy and intuitive interface to determine the functionality of the design.
- Chapter 5, "ChipScope Engine JTAG Tcl Interface," explains how to use this JTAG scripting interface which provides Tcl scripting access to the ChipScope Parallel cable JTAG communication library. The purpose of Tcl/JTAG is to provide a simple scripting system to access basic JTAG functions. In a few lines of Tcl script, you should be able to scan and manipulate the JTAG chain through standard Xilinx cables.

Additional Support Resources

To search the database of silicon and software questions and answers, or to create a technical support case in WebCase, see the Xilinx website at: http://www.xilinx.com/support.

Typographical Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical

The following typographical conventions are used in this document:

Convention	Meaning or Use	Example
Italic font	References to other documents	See the <i>Virtex-5 Configuration Guide</i> for more information.
	Emphasis in text	The address (F) is asserted <i>after</i> clock event 2.
Underlined Text	Indicates a link to a web page	http://www.xilinx.com/virtex5

Online Document

The following conventions are used in this document:

Convention	Meaning or Use	Example
Blue text	Cross-reference link to a location in the current document	See the section "User Guide Contents" for details. Refer to "Title Formats" in Chapter 1 for details.

Convention	Meaning or Use	Example
Red text	Cross-reference link to a location in another document	See Figure 2-5 in the Virtex-5 FPGA User Guide.
Blue, underlined text	Hyperlink to a website (URL)	Go to http://www.xilinx.com for the latest documentation.

Chapter 1

Introduction

ChipScope Pro Tools Overview

As the density of FPGA devices increases, so does the impracticality of attaching test equipment probes to these devices under test. The ChipScopeTM Pro tools integrate key logic analyzer and other test and measurement hardware components with the target design inside the following (hereinafter called *supported devices*): VirtexTM, Virtex-E Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, SpartanTM-II, Spartan-IIE, Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP devices (including the QProTM variants of these families). The tools communicate with these components and provide the designer with a robust logic analyzer solution.

ChipScope Pro Tools Description

Table 1-1 gives a brief description of the various ChipScope Pro software tools and cores.

ΤοοΙ	Description
Xilinx CORE Generator TM $Tool^{(1)}$	Provides core generation capability for the ICON, ILA, VIO, and ATC2 cores. The Xilinx CORE Generator is part of the ISE software tool installation.
IBERT Core Generator	Provides full design generation capability for the IBERT core. The user chooses the RocketIO transceivers and parameters governing the design, and the Core Generator uses the ISE TM toolset to produce a configuration file. ⁽²⁾
Core Inserter	Automatically inserts the ICON, ILA, and ATC2 cores into the user's synthesized design.
Analyzer	Provides device configuration, trigger setup, and trace display for the ILA, IBA/OPB, IBA/PLB, VIO, and IBERT cores. The various cores provide the trigger, control, and trace capture capability. The ICON core communicates to the dedicated Boundary Scan pins.
Engine JTAG (CseJtag) Tcl Scripting Interface	The CseJtag scriptable Tcl command interface makes it possible to interact with devices in a JTAG chain from a Tcl shell ⁽²⁾ .

Table 1-1: ChipScope Pro Tools Description

Notes:

- 1. The ICON, ILA, VIO, and ATC2 cores are now available through the Xilinx CORE Generator tool. The ChipScope Pro Core Generator is now only used to generate the IBERT core.
- 2. For detailed information on how to generate the IBERT core, see UG213, *ChipScope Pro Serial I/O Toolkit User Guide* a http://www.xilinx.com/literature/literature-chipscope.htm.
- 3. *Tcl* stands for *Tool Command Language*. The CseJtag Tcl interface requires the Tcl shell program that is included in the ISE 10.1 tool installation (\$XILINX/bin/nt/xtclsh.exe) or in the ActiveTcl 8.4 shell available from ActiveState (<u>www.activestate.com</u>).

Figure 1-1 shows a block diagram of a ChipScope Pro system. Users can place the ICON, ILA, VIO, and ATC2 cores (collectively called the ChipScope Pro cores) into their design by generating the cores with the Core Generator and instantiating them into the HDL source code. You can also insert the ICON, ILA, and ATC2 cores directly into the synthesized design netlist using the Core Inserter tool. The design is then placed and routed using the ISE 10.1 implementation tools. Next, the user downloads the bitstream into the device under test and analyzes the design with the Analyzer software.

XILINX

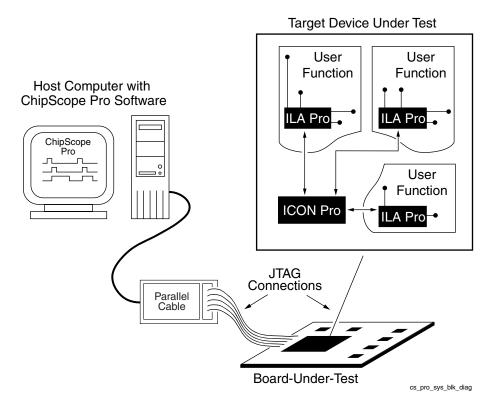


Figure 1-1: ChipScope Pro System Block Diagram

The Analyzer tool supports the following download cables for communication between the PC and the devices in the JTAG Boundary Scan chain:

- Platform Cable USB
- Parallel Cable IV
- Parallel Cable III
- MultiPRO (JTAG mode only)

The Analyzer and cores contain many features that FPGA designers need for thoroughly verifying their logic (Table 1-2). User-selectable data channels range from 1 to 1024 and the sample buffer sizes range from 256 to 131,072 samples. Users can change the triggers in real time without affecting their logic. The Analyzer leads designers through the process of modifying triggers and analyzing the captured data.

Feature	Benefit	
1 to 1024 user-selectable data channels	Accurately captures wide data bus functionality.	
User-selectable sample buffers ranging in size from 256 to 131,072 samples	Large sample size increases accuracy and probability of capturing infrequent events.	
Up to 16 separate trigger ports, each with a user-selectable width of 1 to 256 channels (for a total of up to 4096 trigger channels)	Multiple separate trigger ports increase the flexibility of event detection and reduce the need for sample storage.	
Up to 16 separate match units per trigger port (up to 16 total match units) for a total of 16 different comparisons per trigger condition	Multiple match units per trigger ports increase the flexibility of event detection while conserving valuable resources.	
All data and trigger operations are synchronous to the user clock at rates over 500 MHz	Capable of high-speed trigger event detection and data capture.	
Trigger conditions implement either a boolean equation or a trigger sequence of up to 16 match functions	Can combine up to 16 trigger port match functions using a boolean equation or a 16-level trigger sequencer.	
Data storage qualification condition implements a boolean equation of up to 16 match functions	Can combine up to 16 trigger port match functions using a boolean equation to determine which data samples will be captured and stored in on-chip memory.	
Trigger and storage qualification conditions are in-system changeable without affecting the user logic	No need to single step or stop a design for logic analysis.	
Easy-to-use graphical interface	Guides users through selecting the correct options.	
Up to 15 independent ILA, IBA/OPB, IBA/PLB, VIO or ATC2 cores per device	Can segment logic and test smaller sections of a large design for greater accuracy.	
Multiple trigger settings	Records duration and number of events along with matches and ranges for greater accuracy and flexibility.	
Downloadable from the Xilinx Web site	Tools are easily accessible from the ChipScope Suite.	

Design Flow

The tools design flow (Figure 1-2) merges easily with any standard FPGA design flow that uses a standard HDL synthesis tool and the ISE 10.1 implementation tools.

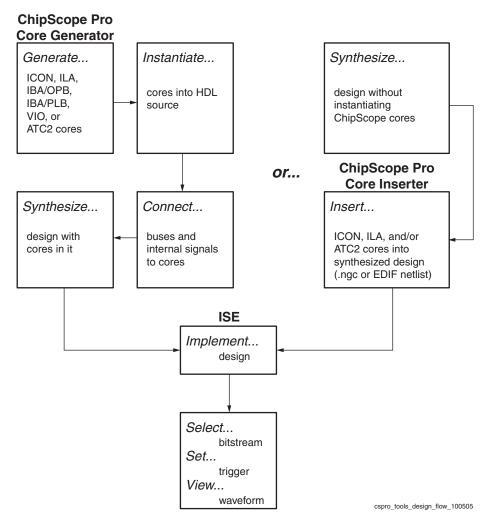


Figure 1-2: ChipScope Pro Tools Design Flow

Using ChipScope Pro Cores in Embedded Processor and DSP Tool Flows

The cores (ICON, ILA, IBA/OPB, IBA/PLB, VIO, and ATC2) can also be used in the EDK and System Generator for DSP tool flows for embedded processor and DSP designs, respectively. For information on how to use the ChipScope Pro cores, see:

- EDK tool flow at:
 - <u>Platform Studio online help</u> and refer to *Debugging Hardware Using ChipScope Pro*
- System Generator for DSP tool flow at:
 - <u>System Generator User Guide</u> and refer to *Using ChipScope Pro Analyzer for Realtime Hardware Debugging.*

ChipScope Pro Cores Description

ICON Core

All of the cores use the JTAG Boundary Scan port to communicate to the host computer via a JTAG download cable. The ICON core provides a communications path between the JTAG Boundary Scan port of the target FPGA and up to 15 ILA, IBA/OPB, IBA/PLB, VIO, and/or ATC2 cores (as shown in Figure 1-1, page 20). For devices not of the Virtex-4 or Virtex-5 families, the ICON core uses either the USER1 or USER2 JTAG Boundary Scan instructions for communication via the BSCAN_VIRTEX primitive. The unused USER1 or USER2 scan chain of the BSCAN_VIRTEX primitive can also be exported for use in your application, if needed.

For Virtex-4 and Virtex-5 devices, the ICON core uses any one of the USER1, USER2, USER3 or USER4 scan chains available via the BSCAN_VIRTEX primitives. In Virtex-4 and Virtex-5 devices, it is not necessary to export unused USER scan chains because each BSCAN_VIRTEX primitive implements a single scan chain.

ILA Core

The ILA core is a customizable logic analyzer core that can be used to monitor any internal signal of your design. Since the ILA core is synchronous to the design being monitored, all design clock constraints that are applied to your design are also applied to the components inside the ILA core. The ILA core consists of three major components:

- Trigger input and output logic:
 - Trigger input logic detects elaborate trigger events
 - Trigger *output* logic triggers external test equipment and other logic
- Data capture logic:
 - ILA cores capture and store trace data information using on-chip block RAM resources
- Control and status logic:
 - Manages the operation of the ILA core

ILA Trigger Input Logic

The triggering capabilities of the ILA core include many features that are necessary for detecting elaborate trigger events. These features are described in Table 1-3 (which spans multiple pages).

Table 1-3: Trigger Features of the ILA Core

Feature	Description	
Wide Trigger Ports	Each trigger port can be 1 to 256 bits wide.	
Multiple Trigger Ports	Each ILA core can have up to 16 trigger ports. The ability to support multiple trigger ports is necessary in complex systems where different types of signals or buses need to be monitored using separate match units.	
Multiple Match Units per Trigger Port	Each trigger port can be connected to up to 16 match units. This feature enables multiple comparisons to be performed on the trigger port signals.	
Boolean Equation Trigger Condition	The trigger condition can consist of a Boolean AND or OR equation of up to 16 match unit functions.	
Multi-Level Trigger Sequencer	The trigger condition can consist of a multi-level trigger sequencer of up to 16 match unit functions.	
Boolean Equation Storage Qualification Condition	The storage qualification condition can consist of a Boolean AND or OR equation of up to 16 match unit functions.	

Feature	Description
	The match unit connected to each trigger port can be one of th following types:
	following types:
	Basic comparator:
	Performs '=' and '<>' comparisons.
	Compares up to 19 bits per slice in Virtex-5 devices.
	• Compares up to 8 bits per slice in all other supported devices.
	Basic comparator w/edges:
	 Performs '=' and '<>' comparisons.
	 Detects high-to-low and low-to-high bit-wise transition
	 Compares up to 8 bits per slice in Virtex-5 devices.
	• Compares up to 4 bits per slice in all other supported devices.
Choice of Match Unit Types	Extended comparator:
	 Performs '=', '<>', '>', '>=', '<', and '<=' comparisons.
	• Compares up to 8 bits per slice in Virtex-5 devices.
	 Compares up to 2 bits per slice in all other supported devices.
	• Extended comparator w/edges:
	- 0
	 Detects high-to-low and low-to-high bit-wise transition
	• Compares up to 8 bits per slice in Virtex-5 devices.
	 Compares up to 2 bits per slice in all other supported devices.
	Range comparator:
	 Performs '=', '<>', '>', '>=', '<', '<=', 'in range', and 'no in range' comparisons.
	• Compares up to 4 bits per slice in Virtex-5 devices.
	 Compares up to 1 bit per slice in all other supported devices.
	Range comparator w/edges:
	 Performs '=', '<>', '>', '>=', '<', '<=', 'in range', and 'no
	in range' comparisons.
	Detects high-to-low and low-to-high bit-wise transition
	• Compares up to 4 bits per slice in Virtex-5 devices.
	 Compares up to 1bit per slice in all other supported devices.
	All match units connected to a given trigger port are the sam
	type.

Table 1-3: Trigger Features of the ILA Core

Feature	Description		
	All the match units of a trigger port can be configured with an event counter, with a selectable size of 1 to 32 bits. This counter can be configured at run time to count events in the following ways:		
Choice of Match Function Event Counter	• Exactly <i>n</i> occurrences		
	 Matches only when exactly n consecutive or non- consecutive events occur 		
	• At least <i>n</i> occurrences		
	 Matches and stays asserted once <i>n</i> consecutive or non-consecutive events occur 		
	• At least <i>n</i> consecutive occurrences		
	 Matches once <i>n</i> consecutive events occur, and stays asserted until the match function is not satisfied. 		
	The internal trigger condition of the ILA core can be accessed using the optional trigger output port. This signal can be used as a trigger for external test equipment by attaching the signa to an output pin.		
	However, it can also be used by internal logic as an interrupt a trigger, or to cascade multiple ILA cores together.		
	The trigger output port will have a determined amount of latency depending on the core type:		
	• ILA core = 10 clock cycles		
	• IBA/OPB core = 15 clock cycles		
	• IBA/PLB core = 10 clock cycles		
	The shape (level or pulse) and sense (active-High or active-Low) of the trigger output can be controlled at run- time.		

Table 1-3: Trigger Features of the ILA Core

Using Multiple Trigger Ports

The ability to monitor different kinds of signals and buses in the design requires the use of multiple trigger ports. For example, if you are instrumenting an internal system bus in your design that is made up of control, address, and data signals, then you could assign a separate trigger port to monitor each signal group (as shown in Figure 1-3).

If you connected all of these different signals and buses to a single trigger port, you would not be able to monitor for individual bit transitions on the CE, WE, and OE signals while looking for the Address bus to be in a specified range. The flexibility of being able to choose from different types of match units allows you to customize the ILA cores to your triggering needs while keeping resource usage to a minimum.

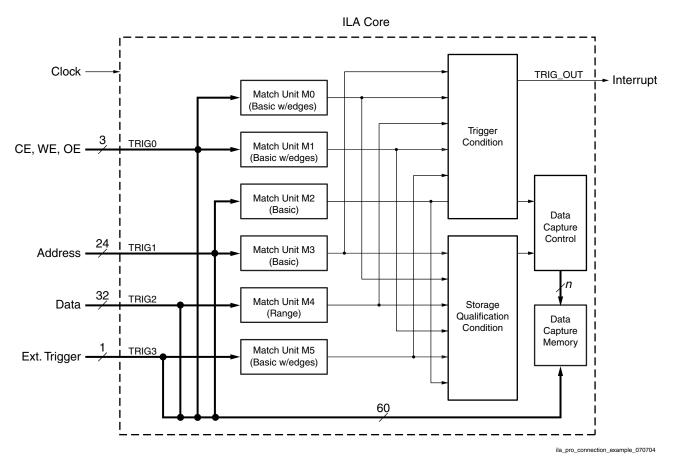


Figure 1-3: ILA Core Connection Example

Using Trigger and Storage Qualification Conditions

The ILA, IBA/OPB, and IBA/PLB cores implement both trigger and storage qualification condition logic. The trigger condition is a Boolean or sequential combination of events that is detected by match unit comparators that are attached to the trigger ports of the core. The trigger condition is used to mark a distinct point of origin in the data capture window and can be located at the beginning, the end, or anywhere within the data capture window.

Similarly, the storage qualification condition is also a Boolean combination of events that is detected by match unit comparators that are subsequently attached to the trigger ports of the core. However, the storage qualification condition differs from the trigger condition in that it evaluates trigger port match unit events to decide whether or not to capture and store each individual data sample. The trigger and storage qualification conditions can be used together to define when to start the capture process and what data is captured.

In the ILA core example shown in Figure 1-3, page 27, suppose you want to do the following:

- Trigger on the first memory write cycle (CE = rising edge, WE = 1, OE = 0) to Address = 0xFF0000;
- Capture only memory read cycles (CE = rising edge, WE = 0, OE = 1) from Address = 0x23AACC where the Data values are between 0x00000000 and 0x1000FFFF;

To implement these conditions successfully, you would need to make sure that both the TRIG0 and TRIG1 trigger ports each have two match units attached to them: one for the trigger condition and one for the storage qualification condition. Here is how you would set up the trigger and storage qualification equations and each individual match unit to satisfy the conditions above:

- Trigger Condition = M0 && M2, where:
 - ◆ M0[2:0] = CE, WE, OE = "R10" (where 'R' means "rising edge")
 - M2[23:0] = Address = "FF0000"
- Storage Qualification Condition = M1 && M3 && M4, where:
 - M1[2:0] = CE, WE, OE = "R10" (where 'R' means "rising edge")
 - M3[23:0] = Address = "23AACC"
 - M4[31:0] = Data = in the range of 0x00000000 through 0x1000FFFF

The triggering and storage qualification capabilities of the ILA, IBA/OPB and IBA/PLB cores allow you to locate and capture exactly the information that you want without wasting valuable on-chip memory resources.

ILA Trigger Output Logic

The ILA core implements a trigger output port called TRIG_OUT. The TRIG_OUT port is the output of the trigger condition that is set up at run-time using the Analyzer. The shape (level or pulse) and sense (active-High or active-Low) of the trigger output can also be controlled at run-time. The latency of the TRIG_OUT port relative to the input trigger ports is 10 clock cycles.

The TRIG_OUT port is very flexible and has many uses. You can connect the TRIG_OUT port to a device pin in order to trigger external test equipment such as oscilloscopes and logic analyzers. Connecting the TRIG_OUT port to an interrupt line of an embedded PowerPC[™] or MicroBlaze[™] processor can be used to cause a software event to occur. You can also connect the TRIG_OUT port of one core to a trigger input port of another core in order to expand the trigger and data capture capabilities of your on-chip debug solution.

ILA Data Capture Logic

Each ILA core can capture data using on-chip block RAM resources independently from all other cores in the design. Each ILA core can also capture data using one of two capture modes: *Window* and *N samples*.

Window Capture Mode

In Window capture mode, the sample buffer can be divided into one or more equal-sized sample windows. The window capture mode uses a single trigger condition event (i.e., a Boolean combination of the individual trigger match unit events) to collect enough data to fill a sample window.

In the case where the depth of the sample windows is a power of 2 up to 131,072 samples, the trigger position can be set to the beginning of the sample window (trigger first, then collect), the end of the sample window (collect until the trigger event), or anywhere in between.

In the other case where the window depth is *not* a power of 2, the trigger position can only be set to the beginning of the sample window.

Once a sample window has been filled, the trigger condition of the ILA core is automatically re-armed and continues to monitor for trigger condition events. This process is repeated until all sample windows of the sample buffer are filled or the user halts the ILA core.

N Samples Capture Mode

The N Samples capture mode is similar to the Window capture mode except for two major differences:

- The number of samples per window can be any integer N from 1 to the sample buffer size minus 1
- The trigger position must always be at position 0 in the window

The N sample capture mode is useful for capturing the exact number of samples needed per trigger without wasting valuable capture storage resources.

Trigger Marks

The data sample in the sample window that coincides with a trigger event is tagged with a trigger mark. This trigger mark tells the Analyzer the position of the trigger within the window. This trigger mark consumes one extra bit per sample in the sample buffer.

Data Port

The ILA core provides the capability to capture data on a port that is separate from the trigger ports that are used to perform trigger functions. This feature is useful for limiting the amount of data to be captured to a relatively small amount since it is not always useful to capture and view the same information that is used to trigger the core.

However, in many cases it is useful to capture and view the same data that is used to trigger the core. In this case, you can choose for the data to consist of one or more of the trigger ports. This feature allows you to conserve resources while providing the flexibility to choose what trigger information is interesting enough to capture.

ILA Control and Status Logic

The ILA contains a modest amount of control and status logic that is used to maintain the normal operation of the core. All logic necessary to properly identify and communicate with the ILA core is implemented by this control and status logic.

IBA/OPB Core

The IBA/OPB core is a specialized logic analyzer core specifically designed to debug embedded systems that contain the IBM CoreConnect On-Chip Peripheral Bus (OPB). The IBA/OPB core consists of four major components:

- A protocol violation monitor:
 - Detects and reports up to 32 violations of the IBM CoreConnect OPB bus protocol
- Trigger input and output logic:
 - Trigger input logic detects OPB bus and other user-defined events
 - Trigger *output* logic triggers external test equipment and other logic
- Data capture logic:
 - Captures and stores trace data information using on-chip block RAM resources
- Control and status logic:
 - Manages the operation of the IBA/OPB core

Note: A description on how to generate and use the IBA/OPB core in an embedded processor design can be found in <u>DS282</u>, *ChipScope OPB IBA*, and the <u>EDK Platform Studio online help</u>.

IBA/OPB Protocol Violation Monitor Logic

The IBA/OPB core includes a protocol violation monitor that can detect up to 32 different IBM CoreConnect OPB protocol violation errors. The protocol violations that can be detected by the IBA/OPB core are shown in Table 1-4 (which spans multiple pages).

Priority	Bit Encoding	Error	Description
1	011010	1.19.2	OPB_DBus changed state during a write operation before receipt of OPB_xferAck.
2	011001	1.19.1	OPB_ABus changed state during an operation before receipt of OPB_xferAck.
3	001100	1.6.1	OPB_ABus: No Mx_Select signal active and non zero OPB_ABus.
4	001101	1.7.1	OPB_DBus: No Mx_Select signal active and non zero OPB_DBus.
5	010101	1.13.1	OPB_xferAck: OPB_xferAck active with no Mx_select.
6	010110	1.13.2	OPB_xferAck: OPB_xferAck did not activate within 16 cycles of OPB_select.
7	010111	1.15.1	OPB_errAck: OPB_errAck active with no Mx_select.

Table 1-4: CoreConnect OPB Protocol Violation Error Description⁽¹⁾

Priority	Bit Encoding	Error	Description	
8	000100	1.4.0	OPB_retry: OPB_retry and OPB_xferAck active in the same cycle.	
9	000111	1.4.3	OPB_retry: OPB_retry active for more than a single cycle.	
10	000000	1.2.1	OPB_MxGrant: More than 1 OPB_MxGrant signals active in same cycle.	
11	000001	1.2.2	OPB_MxGrant: An OPB_MxGrant signal is active for a non-owning master.	
12	000010	1.3.1	OPB_BusLock: OPB_BusLock asserted without a grant in the previous cycle and without OPB_select.	
13	000011	1.3.2	OPB_BusLock: Bus is locked and a master other than bus owner has been granted the bus.	
14	001000	1.4.4	OPB_retry: OPB_select remained active after a retry cycle.	
15	001001	1.4.5	OPB_retry: OPB_retry active with no Mx_select.	
16	001110	1.8.1	OPB_Select: Mx_Select signal active without having control of the bus via OPB_MxGrant or OPB_busLock.	
17	001111	1.8.2	OPB_Select: More than one Mx_Select signals active in the same cycle.	
18	010000	1.9.1	OPB_RNW: OPB_RNW high with no Mx_select.	
19	011011	1.19.3	OPB_RNW changed state during an operation before receipt of OPB_xferAck.	
20	011100	1.19.4	OPB_select changed state during an operation before receipt of OPB_xferAck.	
21	011101	1.19.5	OPB_BEBus changed state during a write or read operation before receipt of OPB_xferAck.	
22	011110	1.20.3	Byte enable transfer not aligned with address offset.	
23	011111	1.20.4	Byte enable transfer initiated with non contiguous byte enables.	
24	000110	1.4.2	OPB_retry: Mx_Request from retried master remained active after a retry cycle.	
25	000101	1.4.1	OPB_retry: OPB_BusLock remained active after a retry cycle.	
26	010001	1.11.1	OPB_seqAddr: OPB_seqAddr active with no OPB_BusLock.	
27	010010	1.11.2	OPB_seqAddr: OPB_seqAddr active with no Mx_select.	
	L	1		

Table 1-4: CoreConnect OPB Protocol Violation Error Description⁽¹⁾

Priority	Bit Encoding	Error	Description	
28	010011	1.11.3	OPB_seqAddr: OPB_ABUS did not increment properly during OPB_seqAddr.	
29	010100	1.11.4	OPB_seqAddr: OPB_seqAddr was asserted without a transaction boundary.	
30	011000	1.16.1	OPB_ToutSup: OPB_ToutSup active with no Mx_select.	
31	001010	1.5.1	OPB_Timeout: Arbiter failed to signal OPB_Timeout after 16 non-responding cycles.	
32	001011	1.5.2	OPB_Timeout: OPB_Timeout active with no Mx_select.	
33	111111	-	No errors.	

Table 1-4. COLECCITIECT OF D FICTOCOL VIOLATION LITUT DESCRIPTION	Table 1-4:	CoreConnect OPB Protocol Violation Error Description ⁽¹⁾
---	------------	---

Notes:

1. Refer to the *OPB Bus Functional Model Toolkit User's Manual* document from IBM for more information on these CoreConnect OPB errors.

The protocol violation monitor detects and reports any errors that occur on the OPB bus. The error is reported as a 6-bit priority-encoded value that can be used as both trigger and data to the IBA/OPB core. Priority 1 is the highest priority error and masks any other lower priority errors, etc.

IBA/OPB Trigger Input Logic

The IBA core for the IBM CoreConnect On-Chip Peripheral Bus (IBA/OPB) is used to monitor the CoreConnect OPB bus of embedded MicroBlaze soft processor, or Virtex-II Pro, Virtex-4 FX, and Virtex-5 FXT PowerPC hard processor systems. Up to 16 different trigger groups can be monitored by the IBA/OPB core at any given time. The OPB signal groups that can be monitored are described in Table 1-5, page 33 (which spans multiple pages).

The IBA/OPB core can also implement the same trigger and storage qualification condition equations as the ILA core. These features are described in the section called "ILA Trigger Input Logic," page 24.

IBA/OPB Trigger Output Logic

The IBA/OPB core implements a trigger output port called TRIG_OUT. The TRIG_OUT port is the output of the trigger condition that is set up at run-time using the Analyzer. The latency of the TRIG_OUT port relative to the input trigger ports is 15 clock cycles.

The TRIG_OUT port is very flexible and has many uses. For example, you can:

- Connect the TRIG_OUT port to a device pin in order to trigger external test equipment such as oscilloscopes and logic analyzers
- Connect the TRIG_OUT port to an interrupt line of an embedded PowerPC or MicroBlaze processor to cause a software event to occur
- Connect the TRIG_OUT port of one core to a trigger input port of another core in order to expand the trigger and data capture capabilities of your on-chip debug solution

Trigger Group Name	Width	Description
OPB_CTRL	17	OPB combined control signals, including:SYS_RstDebug_SYS_RstWDT_RstOPB_RstOPB_BE[3]OPB_BE[2]OPB_BE[1]OPB_BE[0]OPB_selectOPB_RNWOPB_errAckOPB_timeoutOPB_retryOPB_seqAddrOPB_busLock
OPB_ABUS	32	OPB address bus
OPB_DBUS	32	OPB combined data bus (logical OR of read and write data buses)
OPB_RDDBUS	32	OPB read data bus (from slaves)
OPB_WRDBUS	32	OPB write data bus (to slaves)
OPB_Mn_CTRL	11	 OPB control signals for master <i>n</i>, including: Mn_request OPB_MnGrant OPB_pendReq<i>n</i> Mn_busLock Mn_BE[3] Mn_BE[2] Mn_BE[1] Mn_BE[0] Mn_select Mn_RNW Mn_seqAddr where <i>n</i> is the master number (0 to 15)

Table 1-5:	OPB Signal	Groups
------------	------------	--------

Table 1-5:	OPB Signa	I Groups
------------	-----------	----------

Trigger Group Name	Width	Description
OPB_SLm_CTRL	4	 OPB control signals slave <i>m</i>, including: Sl<i>m</i>_xferAck Sl<i>m</i>_errAck Sl<i>m</i>_toutSup Sl<i>m</i>_retry where <i>m</i> is the slave number (0 to 63)
OPB_PV	6	OPB protocol violation signals
TRIG_IN	User-defined	Generic trigger input

The IBA/OPB core can monitor not only CoreConnect OPB bus signals, but can also monitor generic design signals (using the TRIG_IN trigger group). This capability allows the user to correlate events that are occurring on the CoreConnect OPB bus with events elsewhere in the design. The IBA/OPB core can also be connected to other capture cores using the TRIG_IN and TRIG_OUT port signals to perform cross-triggering operations while monitoring different parts of the design.

IBA/OPB Data Capture Logic

The data capture logic capabilities of the IBA/OPB core are identical to those of the ILA core. These features are described in "ILA Data Capture Logic," page 29.

IBA/OPB Control and Status Logic

The IBA/OPB contains a modest amount of control and status logic that is used to maintain the normal operation of the core. All logic necessary to properly identify and communicate with the IBA/OPB core is implemented by this control and status logic.

IBA/PLB Core

The IBA/PLB core is a specialized logic analyzer core specifically designed to debug embedded systems that contain the IBM CoreConnect Processor Local Bus (PLB).

Note: The IBA/PLB core is used only for PLB versions prior to PLB v46. For PLB v46 buses, a customized ILA core (chipscope_plbv46_iba) is attached to the PLB v46 bus using the Xilinx Platform Studio tool.

The IBA/PLB core consists of three major parts components:

- Trigger input and output logic:
 - Trigger *input* logic detects PLB bus and other user-defined events
 - Trigger *output* logic triggers external test equipment and other logic
- Data capture logic:
 - Captures and stores trace data information using on-chip block RAM resources
- Control and status logic:
 - Manages the operation of the IBA/PLB core

Note: A description on how to generate and use the IBA/PLB core in an embedded processor design can be found in <u>DS283</u>, *ChipScope PLB IBA*, and the <u>EDK Platform Studio online help</u>.

IBA/PLB Trigger Input Logic

The IBA core for the IBM CoreConnect Processor Local Bus (IBA/PLB) is used to monitor the PLB bus of embedded MicroBlaze soft processor or Virtex-II Pro, and Virtex-4 FX, and Virtex-5 FXT PowerPC hard processor systems. Up to 16 different trigger groups can be monitored by the IBA/PLB core at any given time. The types of PLB signal groups that can be monitored are described in Table 1-6, page 36 (which spans multiple pages).

The IBA/PLB core can also monitor other generic design signals (using the TRIG_IN trigger group) in addition to the PLB bus signals. This capability allows the user to correlate events that are occurring on the PLB bus with events elsewhere in the design. The IBA/PLB core can also be connected to other capture cores using the TRIG_IN and TRIG_OUT port signals to perform cross-triggering operations while monitoring different parts of the design.

The IBA/PLB core is also able to implement the same trigger and storage qualification condition equations as the ILA core. These features are described in the section called "ILA Trigger Input Logic," page 24.

Trigger Group Name	Width	Description
PLB_CTRL	26	PLB bus control signals, including: • SYS_plbReset • PLB_abort • PLB_BE(0) • PLB_BE(1) • PLB_BE(2) • PLB_BE(3) • PLB_BE(4) • PLB_BE(5) • PLB_BE(6) • PLB_BE(7) • PLB_busLock • PLB_masterID(0) • PLB_masterID(1) • PLB_masterID(2) • PLB_masterID(3) • PLB_Msize(1) • PLB_Msize(1) • PLB_PAValid • PLB_SAValid • PLB_RNW • PLB_size(0) • PLB_size(1) • PLB_size(2) • PLB_size(3) • PLB_wrPrim
PLB_ABUS	32	PLB address bus
PLB_RDDBUS	64	PLB read data bus (from slaves)
PLB_WRDBUS	64	PLB write data bus (to slaves)

Table 1-6: PLB Signal Groups

Trigger Group Name	Width	Description
PLB_Mn_CTRL	32	PLB control signals for master n , including:• PLB_MnAddrAck• PLB_Mn_Busy• PLB_Mn_Err• PLB_MnRdDAck• PLB_MnRdWdAddr(0)• PLB_MnRdWdAddr(2)• PLB_MnRdWdAddr(3)• PLB_MnRdWdAddr(3)• PLB_MnRearbitrate• PLB_MnSSize(0)• PLB_MnSSize(1)• PLB_Mn_WrDAck• Mn_BE(0)• Mn_BE(1)• Mn_BE(2)• Mn_BE(3)• Mn_BE(5)• Mn_BE(6)• Mn_BE(7)• Mn_Size(1)• Mn_Size(1)• Mn_Size(1)• Mn_Size(1)• Mn_Size(1)• Mn_BE(6)• Mn_BE(7)• Mn_MSize(1)• Mn_Size(1)• Mn_size(1)• Mn_size(1)• Mn_size(2)• Mn_size(2)• Mn_size(1)• Mn_size(1)• Mn_size(2)• Mn_size(2)• Mn_size(2)• Mn_size(3)• where n is the master number (0 to 15)

Table 1-6: PLB Signal Groups

Trigger Group Name	Width	Description
PLB_SLm_CTRL	12	PLB control signals slave <i>m</i> , including: • Sl <i>m</i> _addrAck • Sl <i>m</i> _rdDAck • Sl <i>m</i> _rdWdAddr(0) • Sl <i>m</i> _rdWdAddr(1) • Sl <i>m</i> _rdWdAddr(2) • Sl <i>m</i> _rdWdAddr(3) • Sl <i>m</i> _rearbitrate • Sl <i>m</i> _SSize(0) • Sl <i>m</i> _SSize(1) • Sl <i>m</i> _wait • Sl <i>m</i> _wrComp • Sl <i>m</i> _wrDAck where <i>m</i> is the slave number (0 to 15)
TRIG_IN	User-defined	Generic trigger input

IBA/PLB Trigger Output Logic

The IBA/PLB core implements a trigger output port called TRIG_OUT. The TRIG_OUT port is the output of the trigger condition that is set up at run-time using the Analyzer. The latency of the TRIG_OUT port relative to the input trigger ports is 10 clock cycles.

The TRIG_OUT port is very flexible and has many uses. You can connect the TRIG_OUT port to a device pin in order to trigger external test equipment such as oscilloscopes and logic analyzers. Connecting the TRIG_OUT to an interrupt line of an embedded PowerPC 405 or MicroBlaze processor can be used to cause a software event to occur. You can also connect the TRIG_OUT port of one core to a trigger input port of another core in order to expand the trigger and data capture capabilities of your on-chip debug solution.

IBA/PLB Data Capture Logic

The data capture capabilities of the IBA/PLB core are identical to those of the ILA core. These features are described in "ILA Data Capture Logic," page 29.

IBA/PLB Control and Status Logic

The IBA/PLB core contains a modest amount of control and status logic that is used to maintain the normal operation of the core. All logic necessary to properly identify and communicate with the IBA/PLB core is implemented by this control and status logic.

VIO Core

The Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal FPGA signals in real time. Unlike the ILA and IBA cores, no on- or off-chip RAM is required. Four kinds of signals are available in a the VIO core:

- Asynchronous inputs:
 - These are sampled using the JTAG clock signal that is driven from the JTAG cable.
 - The input values are read back periodically and displayed in the Analyzer.
- Synchronous inputs:
 - These are sampled using the design clock.
 - The input values are read back periodically and displayed in the Analyzer.
- Asynchronous outputs:
 - These are defined by the user in the Analyzer and driven out of the core to the surrounding design.
 - A logical 1 or 0 value can be defined for individual asynchronous outputs.
- Synchronous outputs:
 - These are *defined* by the user in the Analyzer, *synchronized* to the design clock and *driven out* of the core to the surrounding design.
 - A logical 1 or 0 can be defined for individual synchronous outputs. Pulse trains of 16 clock cycles worth of 1's and/or 0's can also be defined for synchronous outputs.

Activity Detectors

Every VIO core input has additional cells to capture the presence of transitions on the input. Since the design clock will most likely be much faster than the sample period of the Analyzer, it's possible for the signal being monitored to transition many times between successive samples. The activity detectors capture this behavior and the results are displayed along with the value in the Analyzer.

In the case of a synchronous input, activity cells capable of monitoring for asynchronous and synchronous events are used. This feature can be used to detect glitches as well as synchronous transitions on the synchronous input signal.

Pulse Trains

Every VIO synchronous output has the ability to output a static 1, a static 0, or a pulse train of successive values. A pulse train is a 16-clock cycle sequence of 1's and 0's that drive out of the core on successive design clock cycles. The pulse train sequence is defined in the Analyzer and is executed only one time after it is loaded into the core.

ATC2 Core

The Agilent Trace Core 2 (ATC2) is a customizable debug capture core that is specially designed to work with the latest generation Agilent logic analyzers. The ATC2 core provides external Agilent logic analyzers access to internal FPGA design nets (as shown in Figure 1-4).

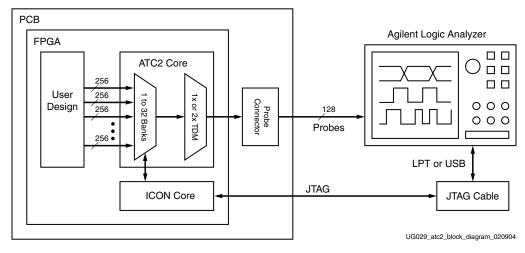


Figure 1-4: ATC2 Core and System Block Diagram

ATC2 Data Path Description

The data path of the ATC2 core consists of:

- Up to 64 run-time selectable input signal banks that connect to the user's FPGA design
- Up to 128 output data pins that connect to an Agilent logic analyzer's probe connectors
- Optional 2x time-division multiplexing (TDM) available on each output data pin that can be used to double the width of each individual signal bank from 128 to 256 bits
- Supports both asynchronous timing and synchronous state capture modes
- Supports any valid I/O standard, drive strength, and output slew rate on each output data pin on an individual pin-by-pin basis
- Supports any Agilent probe connection technology (for more information, see http://www.agilent.com/find/logic)

The maximum number of data probe points available at run time is calculated as: (64 data ports) * (128 bits per data port) * (2x TDM) = 16,384 probe points.

ATC2 Core Data Capture and Run-Time Control

The external Agilent logic analyzer is used to trigger on and capture the data that passes through the ATC2 core. This allows you to take full advantage of the complex triggering, deep trace memory, and system-level data correlation features of the Agilent logic analyzer as well as the increased visibility of internal design nodes provided by the ATC2 core. The Agilent logic analyzer is also used to control the run-time selection of the active data port by communicating with the ATC2 core via a JTAG port connection (as shown in Figure 1-4).

IBERT Core

The Integrated Bit Error Ratio Tester (IBERT) core and related software to provide access to the RocketIO multi-gigabit transceivers (MGTs) and perform bit error ratio analysis on channels composed of these MGTs. The IBERT core is part of the ChipScope Pro Serial I/O Toolkit and is used to debug, verify, and optimize MGT communication channels. See UG213, *ChipScope Pro 10.1 Serial I/O Toolkit User Guide* at

<u>http://www.xilinx.com/literature/literature-chipscope.htm</u> for detailed documentation on the features and capabilities of the tools that are specific to the exploration and debug of designs that use the high-speed serial I/O capability of Xilinx FPGAs.

Synthesis Requirements

Users can modify many options in the ILA, IBA/OPB, IBA/PLB, VIO, and ATC2 cores without resynthesizing. However, after changing selectable parameters (such as width of the data port or the depth of the sample buffer), the design must be resynthesized with new cores. Table 1-7 shows which design changes require resynthesizing.

Table 1-7: Design Parameter Changes Requiring Resynthesis

Design Parameter Change	Resynthesis Required
Change trigger pattern	No
Running and stopping the trigger	No
Enabling the external triggers	No
Changing the trigger signal source	No ⁽¹⁾
Changing the data signal source	No ⁽¹⁾
Changing the ILA clock signal	Yes
Changing the sample buffer depth	Yes

Notes:

1. The ability to change existing trigger and/or data signal source is supported by the ISE 10.1 FPGA Editor.

System Requirements

Software Tools Requirements

The Xilinx CORE Generator, Core Inserter, IBERT Core Generator, and CseJTAG/Tcl tools require that ISE 10.1 implementation tools be installed on your system. (Tcl stands for Tool Command Language and a Tcl shell is a shell program that is used to run Tcl scripts.) CseJTAG/Tcl requires the Tcl shell that is included in the ISE 10.1 tool installation (\$XILINX/bin/nt/xtclsh.exe).

Communications Requirements

The Analyzer supports the following download cables (see Table 1-8, page 42) for communication between the PC and the devices in the JTAG Boundary Scan chain:

- Platform Cable USB
- Parallel Cable IV
- Parallel Cable III
- MultiPRO

Download Cable	Features
Platform Cable USB ⁽¹⁾	 Uses the USB port (USB 2.0 or USB 1.1) to communicate with the Boundary Scan chain of the board-under-test Downloads at speeds up to 24 Mb/s throughput Contains an adjustable voltage interface that enables it to communicate with systems and device I/Os operating at 5V down to 1.5V Windows and Linux OS support
Parallel Cable IV ⁽¹⁾	 Uses the parallel port (i.e., printer port) to communicate with the Boundary Scan chain of the board-under-test Downloads at speeds up to 5 Mb/s throughput Contains an adjustable voltage interface that enables it to communicate with systems and device I/Os operating at 5V down to 1.5V Windows and Linux OS support
Parallel Cable III	 Uses the parallel port (i.e., printer port) to communicate with the Boundary Scan chain of the board-under-test Downloads at speeds up to 500 kb/s throughput Contains an adjustable voltage interface that enables it to communicate with systems and device I/Os operating at 5V down to 2.5V Windows and Linux OS support
MultiPRO Cable	 Uses the parallel port (i.e., printer port) to communicate with the Boundary Scan chain of the board-under-test Downloads at speeds up to 5 Mb/s throughput Contains an adjustable voltage interface that enables it to communicate with systems and device I/Os operating at 5V down to 1.5V Windows OS support only

Table 1-8: ChipScope Pro Download Cable Support

Notes:

1. The Parallel Cable IV, Platform Cable USB, and MultiPRO cables are available for purchase from the Xilinx Online Store (from www.xilinx.com choose **Online Store** → **Programming Cables**).

Board Requirements

For the Analyzer and download cable to work properly with the board-under-test, the following board-level requirements must be met:

- One or more supported devices must be connected to a JTAG header that contains the TDI, TMS, TCK, and TDO pins
- If another device would normally drive the TDI, TMS, or TDI pins of the JTAG chain containing the target device(s), then jumpers on these signals are required to disable these sources, preventing contention with the download cable
- If using the Parallel Cable III download cable, then V_{CC} (2.5V-5.0V) and GND headers must be available for powering the Parallel Cable III cable
- If using the Parallel Cable IV, MultiPRO, or Platform Cable USB download cable, then VREF (1.5-5.0V) and GND headers must be available for connecting to the Parallel Cable IV cable

Host System Requirements for Microsoft Windows

The Xilinx CORE Generator, IBERT Core Generator, Core Inserter, and Analyzer (client and server modes) tools run on PC systems running the Microsoft Windows operating system and meet the requirements outlined in Table 1-9.

OS Version		Memory	Java Environment
Windows XP Professional	32-bit	1024 MB	Java Run-time Environment version 1.5.0 (automatically included in ChipScope Pro
Windows Vista Business	64-bit	1024 MID	10.1 software installation)

 Table 1-9:
 PC System Requirements for ChipScope Pro 10.1 Tools

Host System Requirements for Linux

The Xilinx CORE Generator, IBERT Core Generator, Core Inserter, and Analyzer tools run on workstation systems running the Linux operating system and meet the requirements outlined in Table 1-10.

Note: The Linux version of the 10.1 IBERT Core Generator, Core Inserter, Analyzer, and CseJTAG/Tcl tools require that the ISE 10.1 tools are installed on the target system and that the \$XILINX environment variable is set up correctly.

Table 1-10: Linux Requirements for ChipScope Pro 9.2i Tools

OS Ve	rsion			
Red Hat Enterprise Linux		Memory	Java Environment	
4 WS	32-bit			
5 WS	52-011	1024 MB	Java Run-time Environment version 1.5.0 (automatically included in ChipScope Pro 10.1	
4 WS	64-bit	1024 MID	software installation)	
5 WS	04-DIt	04-DI		

Software Installation and Licensing

For ChipScope Pro software installation and licensing instructions, refer to the ISE 10.1 Design Suite Release Notes and Installation Guide available in the ISE Documentation at http://www.xilinx.com/support.

Chapter 2

Using the CORE Generator Tool

CORE Generator Tool Overview

The Xilinx CORE Generator tool is used to generate the following cores:

- Integrated Controller (ICON)
- Integrated Logic Analyzer (ILA)
- Virtual Input/Output (VIO)
- Agilent Trace Core 2 (ATC2)

As a group, these cores are called the ChipScope Pro cores. After generating the cores, you can use the instantiation templates (that are provided) to quickly and easily insert the cores into their VHDL or Verilog design. After completing the instantiation and running synthesis, you can implement the design using the ISE 10.1 implementation tools.

For more information on generating and using the:

- IBERT core, see <u>UG213</u>, *ChipScope Pro Serial I/O Toolkit User Guide* at www.xilinx.com/literature/literature-chipscope.htm.
- IBA/OPB core in an imbedded processor design, see <u>DS282</u>, *ChipScope OPB IBA*, and the <u>EDK Platform Studio online help</u>.
- IBA/PLB core in an embedded processor design, see <u>DS283</u>, *ChipScope PLB IBA*, and the <u>EDK Platform Studio online help</u>.

Locating the ChipScope Pro Cores in CORE Generator

Before you can select the ChipScope Pro cores for generation, you first need to set up a CORE Generator project. After setting up your CORE Generator project with the appropriate settings, you can find the ChipScope Pro cores in the CORE Generator by first clicking on the **View by Function** tab in the upper left panel, then by expanding the **Debug & Verification** and **ChipScope Pro** sections of the browser (see Figure 2-1). You can also find the ChipScope Pro cores by using the **View by Name** tab.

Xilinx CORE Generator - C:\Data\Xilinx\projects	\tmp\coregen\coregen.cgp
File Project Tools Help	
🗄 🛅 🛃 Show Latest Versions 💽 🕅 📓 🌮 餐	
Function Version License B: Catutomotive & Industrial B: Catutomotive & Industrial Catutomotive & Industrial	Logic Xilinx CORE Generator
Generation & Networking Generation & Vetworking	
Image: Image	Please select IP from the panel on the left.
CON (ChipScope Pro - Integrated Controller) 1.02.a LA (ChipScope Pro - Integrated Logic Analyzer) 1.02.a VID (ChipScope Pro - Vistual Input/Output) VID (ChipScope Pro	Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.
View by Function View by Name Generated IP	Information
Welcome to Xilinx CDRE Generator. coregen cgp already exists. Wrote project file C-\Data\Xilinx\projects\tmp\coregen\coregen.cgp.	
🔲 Console 🙁 Errors 🔬 Warnings	
What's This?	Part: xc5vlx50t-1ff1136 Design Entry: VHDL

Figure 2-1: Locating the ChipScope Pro Cores in CORE Generator

Generating an ICON Core

The CORE Generator tool provides the ability to define and generate a customized ICON core to use with one or more ILA, IBA/OPB, IBA/PLB, VIO, or ATC2 capture cores in HDL designs. You can customize control ports (that is, the number of cores to be connected to the ICON core) and customize the use of the Boundary Scan primitive component (for example, BSCAN_VIRTEX2) that is used for JTAG communication.

After the CORE Generator tool validates the user-defined parameters, it generates a XST netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated with the CORE Generator project. You can easily generate the netlist and code examples for use in normal FPGA design flows.

The CORE Generator tool offers the choice to generate either an ICON, ILA, VIO, or ATC2 core. Select **ICON (ChipScope Pro - Integrated Controller)** core (Figure 2-2), and click the **Customize** link in the right side of the window.

Kilinx CORE Generator - C:\Data\Xilinx\projects\	.tmp\coregen\coregen.cgp
File Project IP Tools Help	
🗄 🛅 📷 🕞 Show Latest Versions 🛛 💌 🎮 🔛 🍻 🥓 🎌	
Function Version License IB - Automotive & Industrial Image: Communication & Networking Image: Communication & Networking	ICON (ChipScope Pro - Integrated Controller)
Conversion C	The ChipScope Pro Series Integrated Controller. <u>Customize</u> <u>View Anware Records</u> Families supported: Vitex, Vitexé, OPho Vitex Rad-Hard, OPho Vitex Hi-Rel, OPho Vitexé Military, Spartan2, Spartan2E, Vitex2, OPho Vitex2 Rad Tolerant, OPho Vitex Military, Vitex2P, Spartan3, Spartan3A and Spartan3AN, Spartan-3A DSP, Automotive Spartan3, Spartan3E, Automotive Spartan3E, Vitex4, OPho Vitex4 Rad Tolerant, OPho Vitex4 Hi-Rel, Vitex5 Coponiaht (c) 1935-2008 Xilinx, Inc. All rights reserved.
Bit Test Cores View by Function View by Function Welcome to Xilinx CDRE Generator. coregen: cop already exists.	Information
Wrote project file C\DataVilins\projects\tmp\coregen\coregen\coregen.cgp.	Part: xc5vb/s0t-1ff1136 Design Entry: VHDL 🕥 .

Figure 2-2: Selecting the ICON Core

General ICON Core Parameters

The CORE Generator tool is used to set up the ICON core parameters (Figure 2-3).

logi <mark>CŽ</mark> RE	ICON (ChipScope Pro - Integrated Controller)		
TDU,IN RESET,IN SENET,IN PDATE,IN SEL,IN SEL,IN ORCK,IN DRCK,IN IP Symbol		Component Name icon_generator_v1_0 ICON Parameters Number of Control Ports Disable Boundary Scan Component Instance Boundary Scan Chain USER1 Disable JTAG Clock BUFG Insertion Enable Unused Boundary Scan Ports (only if necessary)	

Figure 2-3: ICON Core Parameters

Entering the Component Name

The **Component Name** field is can consist of any combination of alpha-numeric characters in addition to the underscore symbol. However, the underscore symbol cannot be the first character in the component name.

Entering the Number of Control Ports

The ICON core can communicate with up to 15 ILA, IBA/OPB, IBA/PLB, VIO, and ATC2 capture core units at any given time. However, individual capture core units cannot share their control ports with any other unit. Therefore, the ICON core needs up to 15 distinct control ports to handle this requirement. You can select the number of control ports from the Number of Control Ports pull-down list.

Disabling the Boundary Scan Component Instance

The Boundary Scan primitive component (for example, BSCAN_VIRTEX2) is used to communicate with the JTAG Boundary Scan logic of the target FPGA device. The Boundary Scan component extends the JTAG test access port (TAP) interface of the FPGA device so that up to four internal scan chains can be created. The Analyzer communicates with the cores by using one of the internal scan chains (USER1, USER2, USER3, or USER4, depending on the device family) provided by the Boundary Scan component.

Since cores do not use both internal scan chains of the Boundary Scan component, it is possible to share the Boundary Scan component with other elements in the user's design. The Boundary Scan component can be shared with other parts of the design by using one of two methods:

• Instantiate the Boundary Scan component inside the ICON core and include the unused Boundary Scan scan chain signals as port signals on the ICON core interface.

• Instantiate the Boundary Scan component somewhere else in the design and attach either the USER1 or USER2 scan chain signals to corresponding port signals the ICON core interface.

Note: This feature is not available for Virtex-4 and Virtex-5 devices since the BSCAN_VIRTEX primitive in these devices only has a single USER scan port per instance.

The Boundary Scan component is instantiated inside the ICON core by default. Use the **Disable Boundary Scan Component Instance** checkbox to disable the instantiation of the Boundary Scan component.

Selecting the Boundary Scan Chain

The Analyzer can communicate with the cores using either the USER1, USER2, USER3, or USER4 boundary scan chains. If the Boundary Scan component is instantiated inside the ICON core, then you can select the desired scan chain from the Boundary Scan Chain pull-down list.

Disabling JTAG Clock BUFG Insertion

If the Boundary Scan component is instantiated inside the ICON core, then it is possible to disable the insertion of a BUFG component on the JTAG clock signal. Disabling the JTAG clock BUFG insertion causes the implementation tools to route the JTAG clock using normal routing resources instead of global clock routing resources. By default, this clock is placed on a global clock resource (BUFG). To disable this BUFG insertion, check select the **Disable JTAG Clock BUFG Insertion** checkbox. This should only be done if global resources are very scarce; placing the JTAG clock on regular routing, even high-speed backbone routing, introduces skew. Make sure the design is adequately constrained to minimize this skew.

Enabling Unused Boundary Scan Ports

The Boundary Scan primitive for Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Spartan-II, Spartan-IIE, Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP devices (including the QPro variants of these families) always has two sets of ports: USER1 and USER2.

The Boundary Scan primitive for Virtex-4 and Virtex-5 devices can have only one of four sets of ports enabled at any given time: USER1, USER2, USER3, and USER4. These ports provide an interface to the Boundary Scan TAP controller of the FPGA device.

The ICON core uses only one of the USER* scan chain ports for communication purposes, therefore, the unused USER* port signals are available for use by other design elements, respectively. If the Boundary Scan component is instantiated inside the ICON core, then selecting the **Enable Unused Boundary Scan Ports** checkbox provides access to the unused USER* scan chain interfaces of the Boundary Scan component.

Note: The Boundary Scan ports should be included only if the design needs them. If they are included and not used, some synthesis tools do not connect the ICON core properly, causing errors during the synthesis and implementation stages of development.

Note: This feature is not available for Virtex-4 and Virtex-5 devices because the BSCAN_VIRTEX primitive in these devices only has a single USER scan port per instance.

Generating the Core

After entering the ICON core parameters, click **Finish** to create the ICON core files. While the ICON core is being generated, a progress indicator will appear. Depending on the host computer system, it may take several minutes for the ICON core generation to complete. After the ICON core has been generated, a list of files that are generated will appear in a separate window (see Figure 2-4).

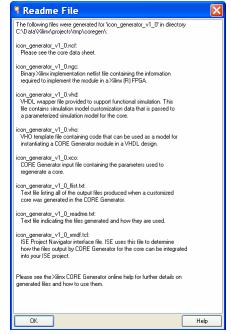


Figure 2-4: List of Generated ICON Core Files

Using the ICON Core

To instantiate the example ICON core HDL files into your design, use the following guidelines to connect the ICON core port signals to various signals in your design:

- Connect one of the ICON core's unused CONTROL* port signals to a control port of only one ILA, IBA/OPB, IBA/PLB, VIO, or ATC2 core instance in the design
- Do not leave any unused CONTROL* ports of the ICON core unconnected as this will cause the implementation tools to report an error. Instead, use an ICON core with the same number of CONTROL* ports as you have ILA, IBA/OPB, IBA/PLB, VIO or ATC2 cores

Generating an ILA Core

The CORE Generator tool provides the ability to define and generate a customized ILA capture core to use with HDL designs. You can customize the number, width, and capabilities of the trigger ports. You can also customize the maximum number of data samples stored by the ILA core, and the width of the data samples (if different from the trigger ports).

After the CORE Generator tool validates the user-defined parameters, it generates a XST netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated with the CORE Generator project. You can easily generate the netlist and code examples for use in normal FPGA design flows.

The CORE Generator offers the choice to generate either an ICON, ILA, VIO, or ATC2 core. Select **ILA (ChipScope Pro - Integrated Logic Analyzer)**, and click the **Customize** link on the right side of the window (Figure 2-5).

Xilinx CORE Generator - C:\Data\Xilinx\projects\tr	np\coregen\coregen.cgp
File Project IP Tools Help	
🗄 🐻 🛃 Show Latest Versions 🔤 🕅 📓 🌮 🧏	
Function Version License ⊕ : Automotive & Industrial	<i>logiČ≹RE</i> ILA (ChipScope Pro - Integrated Logic Analyzer)
Chips & Verification ChipScope Pro (ChipScope Pro ChipScope Pro ChipScope Pro Contegrated Controller 1.02.a CDN (ChipScope Pro Integrated Controller) 1.02.a	The ChipScope Pro Series Integrated Logic Analyzer.
Image: Standard Bus Interfaces Image: Test Cores	View Answer Records Families supported: Vitex (Intex), QPro Vitex Rad Hard, QPro Vitex Hi-Rel, QPro VitexE Military, Spatan2, Spatan2E, Vitex, QPro Vitex Pad Tolerant, QPro Vitex2 Hilitary, Vitex2P, Spatan3, Spatan3A and Spatan3AN, Spatan3A DSP, Automotive Spatan3, Spatan3E, Automotive Spatan3E, Vitex4, QPro Vitex4 Rad Tolerant, QPro Vitex4 Hi-Rel, Vitex5 Copyright (c) 1995-2008 Xilrxx, Inc. All rights reserved.
View by Function View by Name Generated IP	nformation
Stopping Verlog instantiation template for icon_generator_v1_U Finished Generating, Successfully generated icon_generator_v1_0. Customizing IP Cancelled Customization. Customizing IP Cancelled Customization.	
📱 Console 🛛 Errors 🔬 Warnings Ready	Part: xc5vlx50t-1ff1136 Design Entry: VHDL 🔿 🤙

Figure 2-5: Selecting the ILA Core

The CORE Generator tool is used to set up the ILA core parameters, including the general trigger and storage parameters (Figure 2-6) and the trigger port parameters (Figure 2-8, page 55).

XILINX

ILA (ChipScope	Pro - Integrated Logic Analyzer)	X
logi ^{CČRE}	ILA (ChipScope Pro - Integrated Logic Analyzer)	v1.02.a
CONTROLDS 0] → CK → DATA[10] → TRIG0[70] → TRIG1[70] → TRIG2[70]	→ TRIG_OUT Component_Name Chipscope_ila_v1_02_a Tigger Ports 1 Max Sequence Levels 16 Use RPMs Enable_Trigger Output Port Storage Settings Sample On Rising ♥ Sample Data Depth 1024 ♥ Enable Storage Qualification Data Same As Trigger Data Port Width 0 Range: 00	
View Data Sheet	Page 1 of 2 < Back Next > Finish	Cancel

Figure 2-6: ILA Core Trigger and Storage Parameters

Entering the Component Name

The **Component Name** field is can consist of any combination of alpha-numeric characters in addition to the underscore symbol. However, the underscore symbol cannot be the first character in the component name.

Selecting the Number of Trigger Ports

Each ILA core can have up to 16 separate trigger ports that can be set up independently. After you choose a number from the **Number of Trigger Ports** pull-down list, a group of options appears for each trigger port. The group of options associated with each trigger port is labeled with TRIG*n*, where *n* is the trigger port number 0 to 15. The trigger port options include trigger width, number of match units connected to the trigger port, and the type of these match units.

Enabling the Trigger Condition Sequencer

The *trigger condition sequencer* can be either a Boolean equation, or an optional trigger sequencer that is controlled by the **Max Sequence Levels** pull-down list. A block diagram of the trigger sequencer is shown in Figure 2-7.

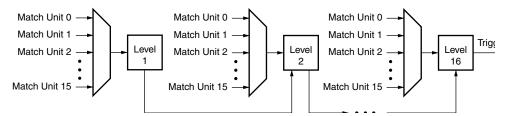


Figure 2-7: Trigger Sequencer Block Diagram (with 16 levels and 16 match units)

The trigger sequencer is implemented as a simple cyclical state machine and can transition through up to 16 states or levels before the trigger condition is satisfied. The transition from one level to the next is caused by an event on one of the match units that is connected to the trigger sequencer. Any match unit can be selected at run time on a per level basis to transition from one level to the next. The trigger sequencer can be configured at run time to transition from one level to the next on either contiguous or non-contiguous sequences of match function events.

Using RPMs

The ILA core normally uses relationally placed macros (RPMs) to increase the performance of the core. If the device family is Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, Spartan-3, Spartan-3E, Spartan-3A, or Spartan-3A DSP (including the QPro variants of these families), the usage of RPMs by the ILA core can be disabled by deselecting the **Use RPMs** checkbox. It is recommended that the **Use RPMs** checkbox remain *enabled* for these device families.

Note: RPMs cannot be used with the Virtex, Virtex-E, Spartan-II, or Spartan-IIE device families (including the QPro variants of these families).

Enabling the Trigger Output Port

The output of the ILA trigger condition module can be brought out to a port signal by checking the **Enable Trigger Output Port** checkbox. The trigger output port is used to trigger external test equipment by attaching the port signal to a device pin in the HDL design. The trigger output port can also be attached to other logic or cores in the design to be used as a trigger, an interrupt, or another control signal. The shape (level or pulse) and sense (active-High or active-Low) of the trigger output can also be controlled at run-time using the Analyzer tool. The clock latency of the ILA trigger output port is 10 clock (CLK) cycles with respect to the trigger input ports. The Trigger Output port is reset upon successful uploading of ILA data and/or the re-arming of the ILA core trigger logic.

Selecting the Clock Edge

The ILA unit can use either the rising or falling edges of the CLK signal to trigger and capture data. The **Sample On** pull-down list is used to select either the rising or falling edge of the CLK signal as the clock source for the ILA core.

Selecting the Sample Data Depth

The maximum number of data sample words that the ILA core can store in the sample buffer is controlled by the **Sample Data Depth** pull-down list. The sample data depth determines the number of data width bits contributed by each block RAM unit used by the ILA unit.

Enabling the Storage Qualification Condition

In addition to the trigger condition, the ILA core can also implement a *storage qualification condition*. The storage qualification condition is a Boolean combination of match function events. These match function events are detected by the match unit comparators that are subsequently attached to the trigger ports of the core. The storage qualification condition differs from the trigger condition in that it evaluates trigger port match unit events to decide whether or not to capture and store each individual data sample. The trigger and storage qualification conditions can be used together to define when to start the capture process and what data to capture. The storage qualification condition can be enabled by checking the **Enable Storage Qualification** checkbox.

Selecting the Data Type

The data captured by the ILA trigger port can come from two different source types and is controlled by the **Data Same as Trigger** checkbox:

- Data Same as Trigger (checked ON)
 - The data and trigger ports are identical. This mode is very common in most logic analyzers, since you can capture and collect any data used to trigger the core.
 - Individual trigger ports can be selected to be excluded from the data port (see Figure 2-8, page 55). If this selection is made, then the DATA input port will not be included in the port map of the ILA core.
 - This mode conserves CLB and routing resources in the ILA core, but is limited to a maximum aggregate data sample word width of 256 bits (or 1,024 bits for Virtex-5 devices).
- Data Not Same as Trigger (checked OFF)
 - The data port is completely independent of the trigger ports.
 - This mode is useful when you want to limit the amount of data being captured.
 - In the case of data not same as trigger, the Data Port Width parameter needs to be specified.

Entering the Data Port Width

The width of each data sample word stored by the ILA core is called the *data width*. If the data and trigger words are independent from each other, then the maximum allowable data width depends on the target device type and data depth. However, regardless of these factors, the maximum allowable data width is 256 bits (or 1,024 bits for Virtex-5 devices).

ILA Core Trigger Port Parameters

After you have set up the trigger and storage ILA core options, click **Next**. This takes you to the screen in the ILA core CORE Generator tool that is used to set up the trigger port options (Figure 2-8). A separate panel is used to specify the parameters for trigger port enabled using the **Number of Trigger Ports** pull-down list shown in Figure 2-6, page 52.

💐 ILA (ChipScope P	Pro - Integrated Logic Analyzer)	×
Logi CRE	ILA (ChipScope Pro - Integrated Logic Analyzer)	v1.02.a
CONTROL(360)	→ TRIG_OUT	
TRIG(7,0) TRIG(7,0) TRIG(7,0) TRIG(7,0) TRIG(7,0) TRIG(1,7,0) TRIG(1,7,0) TRIG(1,7,0) TRIG(1,7,0)		
TRIG13[7:0] → TRIG14[7:0] → IP Symbol Core Details		
View Data Sheet	Page 2 of 2 < Back Next > Finish	Cancel

Figure 2-8: ILA Core Trigger Port Options

Entering the Width of the Trigger Ports

The individual trigger ports are buses that are made up of individual signals or bits. The number of bits used to compose a trigger port is called the *trigger width*. The width of each trigger port can be set independently using the **Trigger Port Width** field. The range of values that can be used for trigger port widths is 1 to 256.

Selecting the Number of Trigger Match Units

A *match unit* is a comparator that is connected to a trigger port and is used to detect events on that trigger port. The results of one or more match units are combined together to form what is called the overall trigger condition event that is used to control the capturing of data. Each trigger port TRIGn can be connected to 1 to 16 match units by using the **Match Units** pull-down list.

Selecting one match unit conserves resources while still allowing some flexibility in detecting trigger events. Selecting two or more trigger match units allows a more flexible trigger condition equation to be a combination of multiple match units. However, increasing the number of match units per trigger port also increases the usage of logic resources accordingly.

Note: The aggregate number of match units used in a single ILA core cannot exceed 16, regardless of the number of trigger ports used.

Selecting Match Unit Counter Width

The *match unit counter* is a configurable counter on the output of the each match unit in a trigger port. This counter can be configured at run time to count a specific number of match unit events. To include a match counter on each match unit in the trigger port, select a counter width from 1 to 32. The match counter will not be included on each match unit if the **Counter Width** pull-down list is set to Disabled. The default counter width setting is Disabled.

Selecting the Match Unit Type

The different comparisons or match functions that can be performed by the trigger port match units depend on the type of the match unit. Six types of match units are supported by the ILA cores (Table 2-1, which spans multiple pages).

Туре	Bit Values ⁽¹⁾	Match Function	Bits Per Slice ⁽²⁾	Description
Basic	0, 1, X	'=', '<>'	Virtex-5: 19 All others: 8	Can be used for comparing data signals where transition detection is not important. This is the most bit-wise economical type of match unit.
Basic w/edges	0, 1, X, R, F, B	'=', '<>'	Virtex-5: 8 All others: 4	Can be used for comparing control signals where transition detection (e.g., low-to-high, high-to-low, etc.) is important.
Extended	0, 1, X	'=', '<>', '>', '>=', '<', '<='	Virtex-5: 16 All others: 2	Can be used for comparing address or data signals where magnitude is important.
Extended w/edges	0, 1, X, R, F, B	'=', '<>', '>', '>=', '<', '<='	Virtex-5: 8 All others: 2	Can be used for comparing address or data signals where a magnitude and transition detection are important.
Range	0, 1, X	'=', '<>', '>', '>=', '<', '<=', 'in range', 'not in range'	Virtex-5: 8 All others: 1	Can be used for comparing address or data signals where a range of values is important.
Range w/edges	0, 1, X, R, F, B	'=', '<>', '>', '>=', '<', '<=', 'in range', 'not in range'	Virtex-5: 4 All others: 1	Can be used for comparing address or data signals where a range of values and transition detection are important.

Table 2-1: ILA Trigger Match Unit Types

Notes:

1. Bit values: '0' means "logical 0", '1' means "logical 1", 'X' means "don't care", 'R' means "0-to-1 transition", 'F' means "1-to-0 transition", and 'B' means "any transition"

2. The Bits Per Slice value is only an approximation that is used to illustrate the relative resource utilization of the different match unit types. It should not be used as a hard estimate of resource utilization

Use the **Match Type** pull-down list to select the type of match unit that applies to all match units connected to the trigger port. However, as the functionality of the match unit

increases, so does the amount of resources necessary to implement that functionality. This flexibility allows you to customize the functionality of the trigger module while keeping resource usage in check.

Selecting the Data-Same-As-Trigger Ports

If the **Data Same As Trigger** checkbox is selected (Figure 2-6, page 52), then a checkbox called **Exclude Trigger Port from Data Storage** appears in the trigger port options screen. Putting a checkmark in this checkbox will cause the trigger port to be excluded from the aggregate data port. By default, this checkbox is unchecked and the trigger port is included in the aggregate data port. A maximum data width of 256 bits (or 1,024 bits for Virtex-5 devices) applies to the aggregate selection of trigger ports.

Generating the Core

After entering the ILA core parameters, click **Finish** to create the ILA core files. While the ILA core is being generated, a progress indicator will appear. Depending on the host computer system, it may take several minutes for the ILA core generation to complete. After the ILA core has been generated, a list of files that are generated will appear in a separate window (see Figure 2-9).

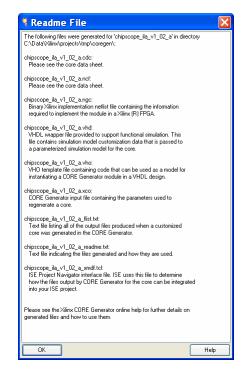


Figure 2-9: List of Generated ILA Core Files

Using the ILA Core

To instantiate the example ILA core HDL files into your design, use the following guidelines to connect the ILA core port signals to various signals in your design:

- Connect the ILA core's CONTROL port signal to an *unused* control port of the ICON core instance in the design
- Connect all unused bits of the ILA core's data and trigger port signals to "0". This prevents the mapper from removing the unused trigger and/or data signals and also avoids any DRC errors during the implementation process
- Make sure the data and trigger source signals are synchronous to the ILA clock signal (CLK)

Generating the VIO Core

The CORE Generator tool provides the ability to define and generate a customized VIO core for adding virtual inputs and outputs to your HDL designs. You can customize the virtual inputs and outputs to be synchronous to a particular clock in your design or to be completely asynchronous with respect to any clock domain in your design. You can also customize the number of input and output signals used by the VIO core.

After the CORE Generator tool validates the user-defined parameters, it generates an XST netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated with the CORE Generator project. You can easily generate the netlist and code examples for use in normal FPGA design flows.

The CORE Generator tool offers the choice to generate either an ICON, ILA, VIO, or ATC2 core. Select **VIO (ChipScope Pro - Virtual Input/Output)** and click the **Customize** link on the right side of the window (Figure 2-10).

Xilinx CORE Generator - C:\Data\Xilinx\projects	\tmp\coregen\coregen_s3e.cgp
File Project IP Tools Help	
🗄 📅 🛃 Show Latest Versions 🔤 🕅 📓 🌮 🛠	
Function Version Automotive & Industrial Basic Elements Communication & Networking ChipScope Pro ChipScope Pro COLON (ChipScope Pro - Agilent Trace Core 2) 1.01.a CON (ChipScope Pro - Integrated Logic Analyzer) I.02.a ChipScope Pro - Virtual Input/Output) I.02.a Example Cores Standard Bus Interfaces Storage, INAS and SAN Test Cores Test Cores Test Cores Storage And SAN Test Cores Cores Storage And SAN Test Cores Storage And SAN Cores Test Cores <l< td=""><td>Image: Constraint of the second state of th</td></l<>	Image: Constraint of the second state of th
View by Function View by Name Generated IP	Information
Welcome to Xilinx CORE Generator. Opened project file C./Data/Xilinx/projects/tmp/coregen/coregen_s3e.cgp.	
Ready	Part: xc3s500e-4fg320 Design Entry: VHDL 🌔 ,

Figure 2-10: Selecting the VIO Core

General VIO Core Options

The second screen is used to set up the general VIO core options (Figure 2-11).

LogiCXRE	VIO	- ChipScope Pro) Input/Output)	Virtual		v1.02.a
CONTROL[56:0] ↔ ASYNC_IN[7:0] → SYNC_IN[7:0] → CUK →	ASYNC_OUT[7:0] ← SYNC_OUT[7:0] ← SYNC_OUT[7:0] F E F E F E F E F E	nent Name [chipscope_vio_v1_02_a arameters inable Asynchronous Input Port inable Asynchronous Output Port inable Synchronous Input Port inable Synchronous Output Port nvert Clock Input	Width 8 Width 8 Width 8 Width 8	Range: 1256 Range: 1256 Range: 1256 Range: 1256	
IP Symbol	>	Page 1 of 1 < Back	Next>	Finish	ancel

Figure 2-11: VIO Core General Options

Entering the Component Name

The **Component Name** field is can consist of any combination of alpha-numeric characters in addition to the underscore symbol. However, the underscore symbol cannot be the first character in the component name.

Asynchronous Input Signals

The VIO core will include asynchronous inputs when the **Enable Asynchronous Input Signals** checkbox is enabled. When enabled, you can specify that up to 256 asynchronous input signals should be used by entering a value in the **Width** text field. Asynchronous input signals are inputs to the VIO core and can be used as outputs from your design, regardless of the clock domain.

Asynchronous Output Signals

The VIO core will include asynchronous outputs when the **Enable Asynchronous Output Signals** checkbox is enabled. When enabled, you can specify that up to 256 asynchronous output signals should be used by entering a value in the **Width** text field. Asynchronous output signals are outputs from the VIO core and can be used as inputs to your design, regardless of the clock domain.

Synchronous Input Signals

The VIO core will include synchronous inputs when the **Enable Synchronous Input Signals** checkbox is enabled. When enabled, you can specify that up to 256 synchronous input signals should be used by entering a value in the **Width** text field. Synchronous input signals are inputs to the VIO core and can be used as outputs from your design, as long as those design signals are synchronous to the CLK signal of the VIO core.

Synchronous Output Signals

The VIO core will include synchronous outputs when the **Enable Synchronous Output Signals** checkbox is enabled. When enabled, you can specify that up to 256 synchronous output signals should be used by entering a value in the **Width** text field. Synchronous output signals are outputs from the VIO core and can be used as inputs to your design, as long as those design signals are synchronous to the CLK signal of the VIO core.

Inverting the Clock Edge

The VIO core can use either a non-inverted or inverted CLK signal to capture and generate data on the synchronous input and output signals, respectively. The **Invert Clock Edge** checkbox is used to invert the CLK signal that is coming into the VIO core.

Note: The clock can only be inverted if synchronous inputs and/or outputs are used.

Generating the Core

After entering the VIO core parameters, click **Finish** to create the VIO core files. While the VIO core is being generated, a progress indicator will appear. Depending on the host computer system, it may take several minutes for the VIO core generation to complete. After the VIO core has been generated, a list of files that are generated will appear in a separate window (see Figure 2-12).

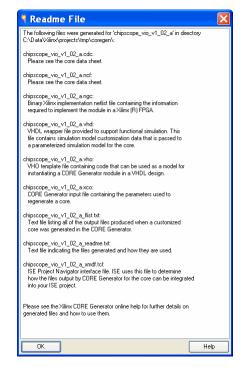


Figure 2-12: List of Generated VIO Core Files

Using the VIO Core

To instantiate the example VIO core HDL files into your design, use the following guidelines to connect the VIO core port signals to various signals in your design:

- Connect the VIO core's CONTROL port signal to an *unused* control port of the ICON core instance in the design
- Connect all unused bits of the VIO core's asynchronous and synchronous input signals to a "0". This prevents the mapper from removing the unused trigger and/or data signals and also avoids any DRC errors during the implementation process
- For best results, make sure the synchronous input source signals are synchronous to the VIO clock signal (CLK); also make sure the synchronous output sink signals are synchronous to the VIO clock signal (CLK)

Generating the ATC2 Core

The CORE Generator tool provides the ability to define and generate a customized ATC2 core for adding external Agilent logic analyzer capture capabilities to your HDL designs. You can customize the number of pins (and their characteristics) to be used for external capture as well as how many input data ports you need. You can also customize the type of capture mode (*state* or *timing*) to be used as well as the TDM compression mode (1x or 2x).

After the CORE Generator tool validates the user-defined parameters, it generates an XST netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated with the CORE Generator project. You can easily generate the netlist and code examples for use in normal FPGA design flows.

The CORE Generator tool offers the choice to generate either an ICON, ILA, VIO, or ATC2 core. Select **ATC2 (ChipScope Pro - Agilent Trace Core 2)** and click the **Customize** link in the right side of the window (Figure 2-13).

	tmp\coregen\coregen_s3e.cgp 🛛 📮 🗖 🗙
File Project IP Tools Help	
🗄 🛅 🛃 Show Latest Versions 🛛 💌 🎮 🔛 🌮 🎌	
Function Version Image: Comparison of the strength of the strengt of the strengh of the strength of the strength of the strengt of	LogiCXRF ATC2 (ChipScope Pro - Agilent Trace Core 2)
Constraint of the second	The ChipScope Pro Series Agilent Trace Core 2. <u>Customize</u> <u>View Data Sheet</u> <u>View Answer Records</u> Families supported: Vites2, DPro Vites2 Rat Tolerant, DPro Vites2 Military, Vites2P, Spartan3, Spartan3A and Spartan3AN, Spartan3A DSP, Automotive Spartan3S, Spartan3E, Automotive Spartan3E, Vites4, DPro Vites4 Rad Tolerant, DPro Vites4 HirRel, Vites5 Copyright (c) 1995-2008 Xilmx, Inc. All rights reserved.
Generated IP	Information
Humming XST for icon_generator_v1_U Generating VHDL simulation model Not generating a Verilog simulation model Creating ISE instantiation template for icon_generator_v1_0 Skipping Verilog instantiation template for icon_generator_v1_0 Finished Regenerating Successfully generated icon_generator_v1_0.	
Console Crrors 🔬 Warnings	Part: xc3s500e-4fo320 Design Entry: VHDL

Figure 2-13: Selecting the ATC2 Core

ATC2 Core Acquisition and State Parameters

The CORE Generator tool is used to set up the ATC2 core acquisition and state parameters (Figure 2-14).

ATC2 (ChipSco	e Pro - Agilent Trace Core 2)	×
logi ^{CČRE}	ATC2 (ChipScope Pro - Agilent Trace Core 2)	v1.01.a
CONTROLISED] → CLK → DATA(P:0) →	Component Name chipscope_atc2_v1_01_a Acquisition Timing - Asynchronous Sampling State Options Max Frequency Range 0-100 MHz TDM Rate 1x	
View Data Sheet	Page 1 of 3 < Back Next > Finish Cano	el

Figure 2-14: ATC2 Core Acquisition and State Parameters

Entering the Component Name

The **Component Name** field is can consist of any combination of alpha-numeric characters in addition to the underscore symbol. However, the underscore symbol cannot be the first character in the component name.

Selecting the Acquisition Mode

The acquisition mode of the ATC2 core can be set to either to *Timing - Asynchronous Sampling* mode for asynchronous data capture or *State - Synchronous Sampling* mode for synchronous data capture to the CLK input signal. In *State* mode, the data path through the ATC2 core uses pipeline flip-flops that are clocked on the CLK input port signal. In *Timing* mode, the data path through the ATC2 core is composed purely of combinational logic all the way to the output pins. Also, in *Timing* mode, the ATCK pin is used as an extra data pin.

Max Frequency Range

The Max Frequency Range parameter is used to specify the maximum frequency range in which you expect to operate the ATC2 core. The implementation of the ATC2 core will be optimized for the maximum frequency range selection. The valid maximum frequency ranges are 0-100 MHz, 101-200 MHz, 201-300 MHz, and 301-500 MHz. The maximum frequency range selection only has an affect on core implementation when the acquisition mode is set to *State - Synchronous Sampling*.

TDM Rate

The ATC2 core does not use on-chip memory resources to store the captured trace data. Instead, it transmits the data to be captured by an Agilent logic analyzer that is attached to the FPGA pins using a special probe connector. The data can be transmitted out the device pins at the same rate as the incoming DATA port (**TDM Rate** = 1x) or twice the rate as the DATA port (**TDM Rate** = 2x). The TDM rate can be set to "2x" only when the acquisition mode is set to *State - Synchronous Sampling*.

ATC2 Core Pin and Signal Parameters

After you have set up the ATC2 core acquisition and state parameters, click **Next**. This takes you to the screen in the CORE Generator tool that is used to set up the ATC2 pin and signal parameters (Figure 2-15).

💐 ATC2 (ChipScope Pro - Ag	ilent Trace Core 2)
logi ^{CQRE}	TC2 (ChipScope Pro - Agilent Trace Core 2) v1.01.a
CONTROL(35.0) → CLK → DATA(7.0) → DATA(7	Pin Settings Enable Auto Setup Enable Auto Setup Enable Always On Mode ATD Pin Count 8 Range: 4.64 Driver Endpoint Type Single-Ended Image: All the set of the s
View Data Sheet	Page 2 of 3 < Back Next > Finish Cancel

Figure 2-15: ATC2 Core Pin and Signal Parameters

Enable Auto Setup

The Enable Auto Setup option is used to enable a feature that allows the Agilent Logic Analyzer to automatically set up the appropriate ATC2 pin to Logic Analyzer pod connections. This feature also allows the Agilent Logic Analyzer to automatically determine the optimal phase and voltage sampling offsets for each ATC2 pin. This feature is enabled by default.

Enable Always On Mode

The **Enable Always On Mode** parameter is used to force an ATC2 core to always enable its internal logic and output buffers. The "Always On" mode will also force the selection of signal bank 0 upon FPGA device configuration. This mode makes it possible to capture events that immediately follow device configuration without having to first set up the ATC2 core manually. This feature is disabled by default and is only available when the acquisition mode is set to *Timing* mode.

ATD Pin Count

The ATC2 core can implement any number of ATD output pins in the range of 4 through 128.

Driver Endpoint Type

The **Driver Endpoint Type** setting is used to control whether single-ended or differential output drivers are used on the ATCK and ATD output pins. All ATCK and ATD pins must use the same driver endpoint type.

Pin Edit Mode

The pin edit mode is a time saving feature that allows you to change the IO Standard, Drive and Slew Rate pin parameters on individual pins or together as a group of pins. Selecting **ATD drivers same as ATCK** allows you to change the ATCK pin parameters and forces all ATD pins to the same settings. Selecting **ATD drivers different than ATCK** allows you to edit the parameters of each pin independently from one another. You need to set unique pin locations for each individual pin regardless of the Pin Edit Mode parameter setting.

Signal Bank Count

The ATC2 core contains an internal, run-time selectable data signal bank multiplexer. The Signal Bank Count setting is used to denote the number of data input ports or signal banks the multiplexer will implement. The valid Signal Bank Count values are 1, 2, 4, 8, 16, 32, and 64.

Signal Bank Width

The width of each input signal bank data port of the ATC2 core depends on the capture mode and the TDM rate. In *State* mode, the width of each signal bank data port is equal to (*ATD pin count*) * (*TDM rate*). In *Timing* mode, the width of each signal bank data port is equal to (*ATD pin count*) * (*TDM rate*). In *Timing* mode, the ATCK pin is used as an extra data pin.

ATC2 Core ATCK and ATD Pin Parameters

After you have set up the ATC2 core pin and signal parameters, click **Next**. This takes you to the screen in the CORE Generator tool that is used to set up the ATCK and ATD pin parameters (Figure 2-16).

giCŽRE	ATC	2 (Chips	Cope Pr Core	o - Agilen 2)	t I	race			
	^	Pins							
		Pin Name	Pin Loc	IO Standard		Drive		Slew Rate	
TROL[35:0]		ATCK	AG18	LVCM0S25	~	24 mA		FAST	~
CLK		ATD0	AB13	LVCM0S25	~	24 mA	~	FAST	~
DATA0[7:0]	_	ATD1	AB14	LVCM0S25	~	24 mA	~	FAST	~
DATA1[7:0]		ATD2	AA12	LVCM0S25	~	24 mA	~	FAST	~
DATA2I7:01		ATD3	AA13	LVCM0S25	~	24 mA	~	FAST	~
DATA3[7:0]		ATD4	AB15	LVCM0S25	~	24 mA	~	FAST	~
		ATD5	AA14	LVCM0S25	~	24 mA	~	FAST	~
		ATD6	AA15	LVCM0S25	~	24 mA	~	FAST	~
DATA5[7:0] →		ATD7	AB12	LVCM0S25	4	24 mA	~	FAST	~
DATA6[7:0]	c								
DATA7[7:0]									
DATA8[7:0]									
DATA9[7:0]									
DATA10[7:0]									
DATA11[7:0]	~								
	>								

The output clock (ATCK) and data (ATD) pins are instantiated inside the ATC2 core for your convenience. This means that although you do not have to manually bring the ATCK and ATD pins through every level of hierarchy to the top-level of your design, you do need to specify the location and other characteristics of these pins in the Core Generator. These pin attributes are then added to the *.ncf file of the ATC2 core. Using the settings in the Pin Parameters table, you can control the location, I/O standard, output drive and slew rate of each individual ATCK and ATD pin.

Pin Name

The ATC2 core has two types of output pins: ATCK and ATD. The ATCK pin is used as a clock pin when the capture mode is set to *State* and is used as a data pin when the capture mode is set to *Timing*. The ATD pins are always used as data pins. The names of the pins cannot be changed.

Pin Loc

The Pin Loc column is used to set the location of the ATCK or ATD pin.

IO Standard

The IO Standard column is used to set the I/O standard of each individual ATCK or ATD pin. The I/O standards that are available for selection depend on the device family and driver endpoint type. The names of the I/O standards are the same as those in the IOSTANDARD section of the *Constraints Guide* in the *Xilinx Software Manual* at http://www.xilinx.com/support.

Drive

The Drive column setting denotes the maximum output drive current of the pin driver and ranges from 2 to 24 mA, depending on the IO Standard selection.

Slew Rate

The Slew Rate column can be set to either FAST or SLOW for each individual ATCK or ATD pin.

Generating the Core

After entering the VIO core parameters, click **Finish** to create the VIO core files. While the VIO core is being generated, a progress indicator will appear. Depending on the host computer system, it may take several minutes for the VIO core generation to complete. After the VIO core has been generated, a list of files that are generated will appear in a separate window (see Figure 2-17).

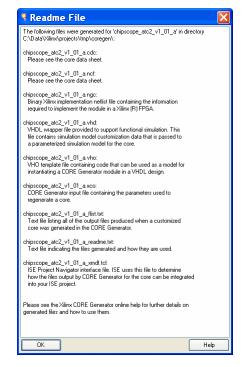


Figure 2-17: List of Generated ATC2 Core Files

Using the ATC2 Core

To instantiate the example ATC2 core HDL files into your design, use the following guidelines to connect the ATC2 core port signals to various signals in your design:

- Connect the ATC2 core's CONTROL port signal to an *unused* control port of the ICON core instance in the design
- Connect all unused bits of the ATC2 core's asynchronous and synchronous input signals to a "0". This prevents the mapper from removing the unused trigger and/or data signals and also avoids any DRC errors during the implementation process
- For best results, make sure the State mode input data port signals are synchronous to the ATC2 clock signal (CLK); this is not important for Timing mode input data port signals

Chapter 3

Using the ChipScope Pro Core Inserter

Core Inserter Overview

The ChipScope Pro Core Inserter is a post-synthesis tool used to generate a netlist that includes the user design as well as parameterized ICON, ILA, and ATC2 cores as needed. The Core Inserter gives you the flexibility to quickly and easily use the debug functionality to analyze an already synthesized design, and without any HDL instantiation.

Note: The IBA/OPB, IBA/PLB, VIO, and IBERT cores are currently not supported in the Core Inserter tool.

Using the Core Inserter with ISE Project Navigator

This section is provided for users of the Windows or Linux versions of ChipScope Pro 10.1 and ISE 10.1.

The Core Inserter .cdc file can be added as a new source file to the Project Navigator source file list. In addition to this, the Project Navigator tool will also recognize and invoke the Core Inserter tool during the appropriate steps in the implementation flow. For more information on how the Project Navigator and the Core Inserter are integrated, refer to the Project Navigator section of the *ISE Software Manuals* (http://www.xilinx.com/support).

ChipScope Definition and Connection Source File

To use the Core Inserter tool to insert cores into a design processed by the ISE 10.1 Project Navigator tool, follow these steps:

- 1. Add the definition and connection file (.cdc) to the project and associate it with the appropriate design module.
 - a. To create a new . cdc file, select **Project** \rightarrow **New Source**, then select **ChipScope Definition and Connection File** and give the file a name (Figure 3-1, page 70). Click through the remaining dialog boxes using the default settings, as needed.

Note: The ChipScope Definition and Connection File source type is only listed if Project Navigator 10.1 detects a ChipScope Pro 10.1 installation (the respective versions must match).

BMM File Christope Definition and Connection File P(Coregen & Architecture Wizard) P(Coregen & Architecture Wizard) Implementation Constraints File Schematic Schematic	File name: my_design.odc Location: C:\projects\my_design\ise_xst
WHDL Test Bench	Add to project

Figure 3-1: Creating a New .cdc Source File

b. To add an existing .cdc file, select $Project \rightarrow Add$ Source or $Project \rightarrow Add$ Copy of Source, then browse for the existing .cdc file.

When prompted, associate the .cdc file with the appropriate top-level design module. The .cdc file should now be displayed in the Sources in Project window underneath the associated design module (Figure 3-2).

Sources for:	Synthesis/Implemental	tion	~
- 😇 my_c	esign		
😑 🛄 xc4v	x25-10ff668		
- "H	my_design - virtex (C:	:/projects/my_d	esign/src/
	2 U_SINCOS - sine_c	osine	
	Manu design odo (mu	design odo)	
	my_design.cdc (my_		
	my_design.cdc (my_ ny_design.ucf (C:/p		gn/src/my
			gn/src/my

Figure 3-2: The .cdc Source File

- 2. To create the cores and complete the signal connections, double-click the .cdc file in the Sources in Project window. This runs the Synthesis (if applicable) and Translate processes, as necessary, and then opens the .cdc file in the Core Inserter tool.
- 3. Modify the cores and connections in the Core Inserter tool as necessary (as shown in the section called "ChipScope Pro Core Inserter Features," page 75), then close the Core Inserter tool.
- 4. When the associated top-level design is implemented in Project Navigator, the cores are automatically inserted into the design netlist as part of the Translate phase of the flow. There is no need to set any properties to enable this to happen. The .cdc is in the project and associated with the design module being implemented and causes the cores to be inserted automatically.

Useful Project Navigator Settings

The following are useful Project Navigator settings to help you implement a design with cores:

- 1. If you use the XST synthesis tool, set the **Keep Hierarchy** option to **Yes** or **Soft** to preserve the design hierarchy and prevent the XST tool from optimizing across all levels of hierarchy in your design. Using the **Keep Hierarchy** option preserves the names of nets and other recognizable components during the core insertion stage of the flow. If you do not use the **Keep Hierarchy** option, some of your nets and/or components can be combined with other logic into new components or otherwise optimized away. To keep the design hierarchy:
 - a. Select **Edit** \rightarrow **Preferences** to bring up the Preferences dialog box.
 - b. Select the **Processes** tab.
 - c. Set the Property Display Level combo box dropdown to Advanced and click OK.
 - d. Right-click on the Synthesize process and select the Properties... option.
 - e. Make sure the **Keep Hierarchy** option is set to **Yes** or **Soft** and click **OK**.
- 2. Prior to using the Analyzer to download your bitstream into your device, make sure the bitstream generation options are set properly:
 - a. In the Project Navigator, right-click on the **Generate Programming File** process and select the **Properties...** option.
 - b. Select the **Startup options** tab.
 - c. Set the FPGA Start-Up Clock dropdown to JTAG Clock.

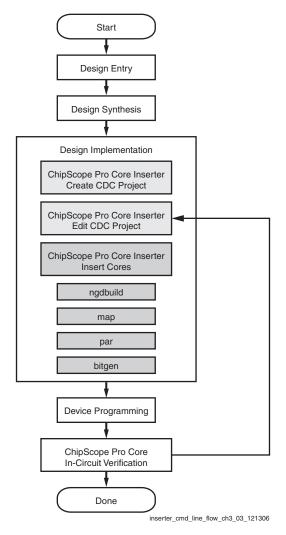
Using the Core Inserter with Command Line Implementation

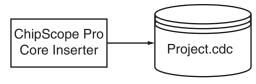
Command Line Flow Overview

The 10.1 Core Inserter supports a basic command line for batch core insertion. As shown in Figure 3-3, the Core Inserter command line flow consists of three steps:

- 1. Create CDC Project
- 2. Edit CDC Project
- 3. Insert Cores

The Core Inserter is invoked prior to calling ngdbuild to instantiate debug cores in the design. Nets are selected for debug using the Edit CDC Project mode to display the GUI and save net selections to the project. After successfully implementing the design and configuring the Xilinx device with the resulting bitstream, the Analyzer is used for incircuit design debug and verification. To change debug net selections or core settings after configuration, iterate back to the Edit CDC Project step and proceed through the flow to create a new bitstream for further debug and verification.




Figure 3-3: Command Line Core Inserter Flow

Create CDC Project Step

The Create CDC Project step of the command line Core Inserter flow is used to create an empty skeleton CDC project file, as shown in Figure 3-4. The command line signature for this step is:

```
inserter -create <project.cdc>
```

Note: This step does not bring up the Core Inserter graphical user interface (GUI).

inserter_create_mode_ch3_04_121306

Figure 3-4: Create CDC Project Step

Edit CDC Project Step

The Edit CDC Project step of the command line Core Inserter flow is used to bring up the Core Inserter GUI to edit an existing CDC project (see Figure 3-5) The ngcbuild tool is called during this step with the specified arguments following the -ngcbuild argument. The ngcbuild tool combines all netlists associated with the design into a single complete NGC netlist file. This allows the Core Inserter tool to provide full debug access to all levels and nodes in the design.

The command line signature for this step is:

```
inserter -edit <project.cdc> -ngcbuild [-p <partname>] [{-sd
<source_dir>}] [-dd <output_dir>] [-i] <inputdesign.{edn|ngc}>
<outputdesign.ngc>
```

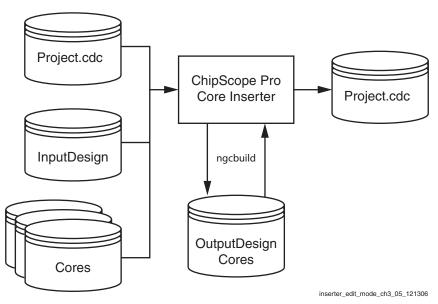


Figure 3-5: Edit CDC Project Step

Insert Cores Step

The Insert Cores step of the command line Core Inserter flow is used to insert cores into a design based on an existing CDC project (see Figure 3-6). The ngcbuild tool is called during this step with the specified arguments following the -ngcbuild argument. The ngcbuild tool combines all netlists associated with the design into a single complete NGC netlist file. The cores are inserted into this single complete netlist.

The command line signature for this step is:

```
inserter -insert <project.cdc> -ngcbuild [-p <partname>] [{-sd
<source_dir>}] [-dd <output_dir>] [-i] <inputdesign.{edn|ngc}>
<outputdesign.ngc>
```

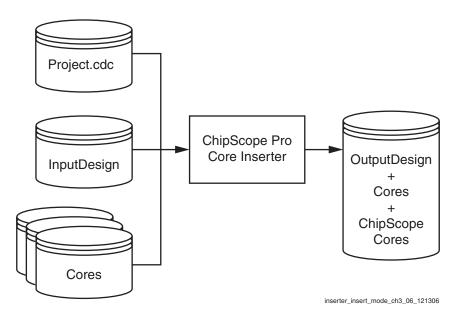


Figure 3-6: Insert Cores Step

ChipScope Pro Core Inserter Features

Working with Projects

Projects saved in the Core Inserter hold all relevant information about source files, destination files, core parameters, and core settings. This allows you to store and retrieve information about core insertion between sessions. The project file (.cdc extension) can also be used as an input to the Analyzer to import signal names.

When the ChipScope Core Inserter is first opened, all the relevant fields are completely blank. Using the command **File** \rightarrow **New** also results in this condition (Figure 3-7).

ChipScope Pro Co	ore Inserter		
<u>F</u> ile <u>E</u> dit <u>I</u> nsert <u>H</u> elp			
	4		, ?
DEVICE	DEVICE		Select Device Options
	Design Files		
	Input Design Netlist:	Browse	
	Output Design Netlist:	Browse	
Core Utilization	Output Directory:	Browse	
	Device Settings		
	Device Family: Virtex4		
	☑ Use SRL16s		
LUT Count: 97	✓ Use RPMs		
FF Count: 28	USE RPMS		
BRAM Count: 0			
	< Previous Next >		
Messages			
			-
4			•

Figure 3-7: Blank Core Inserter Project

Opening an Existing Project

To open an existing project, select it from the list of recently opened projects, or select **File** \rightarrow **Open Project**, and **Browse** to the project location. After you locate the project, you can either double-click on it or click **Open**.

Saving Projects

If a project has changed during the course of a session, you will be prompted to save the project upon exiting the Core Inserter. You can also save a project by selecting **File** \rightarrow **Save**. To rename the current project or save it to another filename, select **File** \rightarrow **Save As**, type in the new name, and click **Save**.

Refreshing the Netlist

The Core Inserter automatically reloads the design netlist if it detects that the netlist has changed since the last time it was loaded. However, you can force the Core Inserter to refresh the netlist by selecting **File** \rightarrow **Refresh Netlist**.

Inserting and Removing Units

You can insert new units into the project by selecting **Edit** \rightarrow **New ILA Unit** or **Edit** \rightarrow **New ATC2 Unit**. You can remove a unit by selecting **Edit** \rightarrow **Remove Unit** after choosing which unit to delete.

Setting Preferences

You can set the ChipScope Core Inserter project preferences by selecting **Edit** \rightarrow **Preferences**. They are organized into three categories: *Tools, ISE Integration, and Miscellaneous*. Refer to "Managing Project Preferences," page 95 for more information about setting these preferences.

Inserting the Cores

ICON, ILA, and ATC2 cores are inserted when the flow is completed, or by selecting **Insert** \rightarrow **Insert Core**. If all channels of all the capture cores are not connected to valid signals, an error message results.

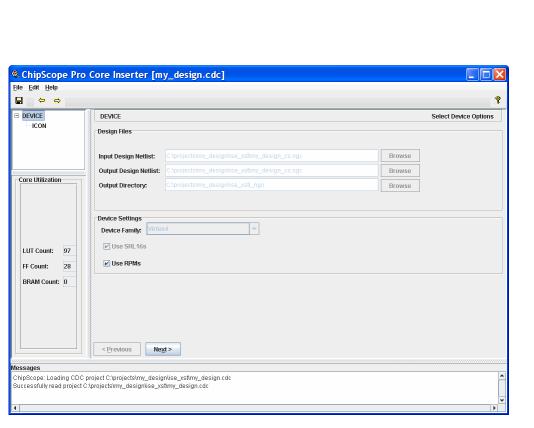
Exiting the Core Inserter

To exit the ChipScope Core Inserter, select **File** \rightarrow **Exit**.

Specifying Input and Output Files

The ChipScope Core Inserter works in a step-by-step process.

- 1. Specify the Input Design Netlist (Figure 3-7, page 75).
- 2. Click **Browse** to navigate to the directory where the netlist resides.
- 3. Modify the Output Design Netlist and Output Directory fields as needed. (These fields are automatically filled in initially.)


Figure 3-8 shows a project with input and output files specified.

ChipScope Pro	Core Inserter			
File Edit Insert Help	⇒ 🛔			?
DEVICE ICON	DEVICE Design Files			Select Device Options
Core Utilization	Output Design Netlist:	Clprojectslmy_designlsa_synlmy_design_merged.ngc Clprojectslmy_designlsa_synlmy_design_merged.ngo Clprojectslmy_designlsa_syn	Browse Browse Browse	
LUT Count: 97 FF Count: 28 BRAM Count: 0	Device Settings Device Family: Virtex4			
	< Previous Next	>		
Messages				-
•				

Figure 3-8: Core Inserter Project with Files Specified

Note: When the Core Inserter is invoked from the Project Navigator tool, the Input Design Netlist, Output Design Netlist, Output Directory and Device Family fields are automatically filled in (Figure 3-9, page 78). In this case, these fields can only be changed by the Project Navigator tool and cannot be modified directly in the Core Inserter.

XILINX

Figure 3-9: Core Inserter as Launched from Project Navigator

Project Level Parameters

Three project level parameters (device family, SRL16 usage, and RPM usage) must be specified for each project.

Selecting the Target Device Family

The target FPGA device family is displayed in the Device Family field. The structure of the ICON and capture cores are optimized for the selected device family. Use the pull-down selection to change the device family to the desired architecture.

The default target device family is Virtex-4.

Using SRL16s

The **Use SRL16s** checkbox is used to select whether or not the cores will be generated using SRL16 and SRL16E components. This option is only available for the Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP device families (including the QPro variants of these families). If the checkbox is *not* selected, the SRL16 components are replaced with flip-flops and multiplexers, which affects the size and performance of the generated cores.

The **Use SRL16s** checkbox is checked by default to generate cores that use the optimized SRL16 technology.

Using RPMs

The **Use RPMs** checkbox is used to select whether the individual cores should be *relationally placed macros* (RPMs). This option places restraints on the place-and-route tool to optimize placement of all the logic for the core in one area. If your design uses most of the resources in the device, these placement constraints might not be met. The **Use RPMs** checkbox is checked by default in order to generate cores that are optimized for placement. When this step is completed, click **Next**.

Core Utilization

The Core Utilization panel on the left side of the Core Inserter tool main window (Figure 3-9, page 78) displays an estimated count of the look-up table (LUT), flip-flop (FF), and block RAM (BRAM) resources that are consumed by the ChipScope cores that are being inserted into the design netlist. The core resource utilization counts are updated based on the selection of various core parameters that affect the makeup of the cores being inserted into the design netlist.

Note: Note: The core utilization feature is not available for the Virtex-5 device family.

Choosing ICON Options

The first options that need to be specified are for the ICON core. The ICON core is the controller core that connects all ILA and ATC2 cores to the JTAG boundary scan chain. The ICON core has the parameters shown in Figure 3-10.

ChipScope Pro	Core Inserter		
<u>F</u> ile <u>E</u> dit <u>I</u> nsert <u>H</u> elp			
D 📽 🖬 🗢	⇒ 🎍		8
	ICON	Select Integrated Co	ntroller Options
CON	Parameters		
	Disable JTAG Clock BUFG Insertion Boundary Scan Chain USER1		
Core Utilization	-		
LUT Count:			
FF Count:			
BRAM Count:			
	< Previous Next >	New ILA Unit	New ATC2 Unit
Messages		 	
moodagoo			
4			•

Figure 3-10: ICON Options

Disabling JTAG Clock BUFG Insertion

Disabling the JTAG clock BUFG insertion causes the implementation tools to route the JTAG clock using normal routing resources instead of global clock routing resources. By default, this clock is placed on a global clock resource (BUFG). To disable this BUFG insertion, check the **Disable JTAG Clock BUFG Insertion** checkbox.

Note: This should only be done if global resources are very scarce; placing the JTAG clock on regular routing, even high-speed backbone routing, introduces skew. Make sure the design is adequately constrained to minimize this skew.

After selecting the desired ICON parameters (Figure 3-10, page 79) click **Next** or **New ILA Unit** to automatically create an ILA core and display the Select Logic Analyzer Options window. To add a new ATC2 core instead of an ILA core, click either **New ATC2 Unit**.

Selecting the Boundary Scan Chain

The Analyzer can communicate with the cores using either the USER1, USER2, USER3, or USER4 boundary scan chains. You can select the desired scan chain from the Boundary Scan Chain pull-down list. This option is only available when targeting the Virtex-4 or Virtex-5 device families.

Choosing ILA Trigger Options and Parameters

Notice in Figure 3-11 that a new ILA unit has been created in the device hierarchy on the left. The next step is to set up the ILA unit. Figure 3-11 shows a sample of the first tab in the ILA options and parameters sequence. The first tab sets up the trigger options for the ILA core.

ChipScope Pro File Edit Help	Core Inserter [my_design.cdc]	
		.9
DEVICE ICON U0: ILA	ILA Trigger Parameters Capture Parameters Net Connections Trigger Input and Match Unit Settings Number of Input Trigger Ports: Image Ports:	Select Integrated Logic Analyzer Options Number of Match Units Used: 4
Core Utilization	TRIG0: Trigger Width: 8 # Match Units: 1 • Counter Width: 16 • TRIG1: Trigger Width: 16 # Match Units: 1 •	Match Type: Extended w/edges Bit Values: 0, 1, X, R, F, B Functions: = Match Type: Basic Bit Values: 0, 1, X
FF Count: 387 BRAM Count: 2	Trigger Condition Settings Enable Trigger Sequencer Storage Qualification Condition Settings E Enable Storage Qualification	Max Number of Sequencer Levels: 16
	<pre>cerevious Next> Aprojectstrmy_designUse_xstrmy_design.cdc</pre>	Remove Unit
copy C:\projects\my_design SetDesign [my_design]	lise_xsflmy_design_cs.ngc => C:\projects\my_design\ise_xsfl_ngo\my_design_	¢s_signalbrowser.ngo

Figure 3-11: ILA Core Trigger Parameters

Selecting the Number of Trigger Ports

Each ILA core can have up to 16 separate trigger ports that can be set up independently. After you select the number of trigger ports from the Number of Trigger Ports pull-down list, a group of options appears for each of these ports. The group of options associated with each trigger port is labeled with TRIG*n*, where *n* is the trigger port number 0 to 15. The trigger port options include trigger width, number of match units connected to the trigger port, and the type of these match units.

Entering the Width of the Trigger Ports

The individual trigger ports are buses that are made up of individual signals or bits. The number of bits used to compose a trigger port is called the *trigger width*. The width of each trigger port can be set independently using the TRIG*n* Trigger Width field. The range of values that can be used for trigger port widths is 1 to 256.

Selecting the Number of Trigger Match Units

A *match unit* is a comparator that is connected to a trigger port and is used to detect events on that trigger port. The results of one or more match units are combined together to form the overall trigger condition event that is used to control data capture. Each trigger port TRIG*n* can be connected to 1 to 16 match units by using the # Match Units pull-down list.

Selecting one match unit conserves resources while still allowing some flexibility in detecting trigger events. Selecting two or more trigger match units allows a more flexible trigger condition equation to be a combination of multiple match units. However, increasing the number of match units per trigger port also increases the usage of logic resources accordingly.

Note: The aggregate number of match units used in a single ILA core cannot exceed 16, regardless of the number of trigger ports used.

Selecting the Match Unit Type

The different comparisons or match functions that can be performed by the trigger port match units depend on the type of the match unit. Six types of match units are supported by the ILA core (Table 3-1).

Table 3-1:	ILA Trigger	Match	Unit T	ypes
------------	-------------	-------	--------	------

Туре	Bit Values ¹	Match Function	Bits Per Slice ²	Description
Basic	0, 1, X	'=', '<>'	Virtex-5: 19 All others: 8	Can be used for comparing data signals where transition detection is not important. This is the most bit- wise economical type of match unit.
Basic w/edges	0, 1, X, R, F, B	'=', '<>'	Virtex-5: 8 All others: 4	Can be used for comparing control signals where transition detection (e.g., low-to-high, high-to-low, etc.) is important.
Extended	0, 1, X	'=', '<>', '>', '>=', '<', '<='	Virtex-5: 16 All others: 2	Can be used for comparing address or data signals where magnitude is important.
Extended w/edges	0, 1, X, R, F, B	'=', '<>', '>', '>=', '<', '<='	Virtex-5: 8 All others: 2	Can be used for comparing address or data signals where a magnitude and transition detection are important.
Range	0, 1, X	'=', '<>', '>', '>=', '<', '<=', 'in range', 'not in range'	Virtex-5: 8 All others: 1	Can be used for comparing address or data signals where a range of values is important.
Range w/edges	0, 1, X, R, F, B	'=', '<>', '>', '>=', '<', '<=', 'in range', 'not in range'	Virtex-5: 4 All others: 1	Can be used for comparing address or data signals where a range of values and transition detection are important.

Notes:

1. Bit values: '0' means "logical 0", '1' means "logical 1", 'X' means "don't care", 'R' means "0-to-1 transition", 'F' means "1-to-0 transition", and 'B' means "any transition".

2. The Bits Per Slice value is only an approximation that is used to illustrate the relative resource utilization of the different match unit types. It should not be used as a hard estimate of resource utilization.

Use the TRIG*n* Match Type pull-down list to select the type of match unit that will apply to all match units connected to the trigger port. However, as the functionality of the match unit increases, so does the amount of resources necessary to implement that functionality. This flexibility allows you to customize the functionality of the trigger module while keeping resource usage in check.

Selecting Match Unit Counter Width

The *match unit counter* is a configurable counter on the output of the each match unit in a trigger port. This counter can be configured at run time to count a specific number of match unit events. To include a match counter on each match unit in the trigger port, select a counter width from 1 to 32. The match counter will not be included on each match unit if the Counter Width combo box is set to Disabled. The default Counter Width setting is Disabled.

Enabling the Trigger Condition Sequencer

The *trigger condition sequencer* is a standard Boolean equation trigger condition that can be augmented with an optional trigger sequencer by checking the **Enable Trigger Sequencer** checkbox. A block diagram of the trigger sequencer is shown in Figure 3-12.

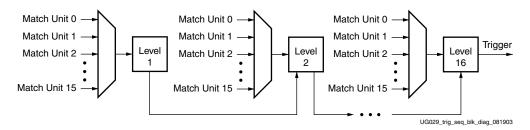


Figure 3-12: Trigger Sequencer Block Diagram with 16 Levels and 16 Match Units

The trigger sequencer is implemented as a simple cyclical state machine and can transition through up to 16 states or levels before the trigger condition is satisfied. The transition from one level to the next is caused by an event on one of the match units that is connected to the trigger sequencer. Any match unit can be selected at run time on a per level basis to transition from one level to the next. The trigger sequencer can be configured at run time to transition from one level to the next on either contiguous or non-contiguous sequences of match function events.

Enabling the Storage Qualification Condition

In addition to the trigger condition, the ILA core can also implement a *storage qualification condition*. The storage qualification condition is a Boolean combination of match function events. These match function events are detected by the match unit comparators that are subsequently attached to the trigger ports of the core. The storage qualification condition differs from the trigger condition in that it evaluates trigger port match unit events to decide whether or not to capture and store each individual data sample. The trigger and storage qualification conditions can be used together to define when to start the capture process and what data to capture. The storage qualification condition can be enabled by checking the **Enable Storage Qualification** checkbox.

Enabling the Trigger Output Port

The trigger output port of the ILA core trigger condition module cannot be enabled in the Core Inserter tool. It can only be enabled by using the Core Generator tool (see "Generating an ILA Core," page 51).

Choosing ILA Core Capture Parameters

The second tab in the Core Inserter is used to set up the capture parameters of the ILA core (Figure 3-13).

DEVICE	ILA	Select Integrated Logic Analyzer Options
	Trigger Parameters Capture Parameters	let Connections
UO: ILA	Capture Settings	
	Data Width: 32 👻	Sample On Rising 🔽 Clock Edge
Core Utilization	Data Depth: 1024 Samples	Data Same As Trigger
Jore Dunzation	Trigger Ports Used As Data	
	✓ Include TRIG0 Port (width=8)	
	✓ Include TRIG1 Port (width=16)	
	✓ Include TRIG2 Port (width=16)	
	✓ Include TRIG3 Port (width=1)	
LUT Count: 433		
FF Count: 417		
BRAM Count: 3		
	< Previous Next >	Remove Un
sages		
	C:\projects\my_design\ise_xst\my_design.cdc	

Figure 3-13: ILA Core Capture Parameters

Selecting the Data Depth

The maximum number of data sample words that the ILA core can store in the sample buffer is called the *data depth*. The data depth determines the number of data width bits contributed by each block RAM unit used by the ILA unit. The Core Generator and Core Inserter have a resource utilization estimator feature that indicates exactly how many block RAM resources are used for a given combination of data width and data depth parameters.

Entering the Data Width

The width of each data sample word stored by the ILA core is called the *data width*. If the data and trigger words are independent from each other, then the maximum allowable data width depends on the target device type and data depth. However, regardless of these factors, the maximum allowable data width is 256 bits (or 1,024 bits for Virtex-5 devices).

Selecting the Data Type

The data captured by the ILA trigger port can come from two source types:

- Data Separate from Trigger (Figure 3-13, page 84)
 - The data port is completely independent of the trigger ports
 - This mode is useful when you want to limit the amount of data being captured
- Data Same as Trigger (Figure 3-14)
 - The data and trigger ports are identical. This mode is very common in most logic analyzers, since you can capture and collect any data that is used to trigger the core.
 - Individual trigger ports can be selected to be included in the data port. If this selection is made, then the DATA input port will not be included in the port map of the ILA core.
 - This mode conserves CLB and routing resources in the ILA core, but is limited to a maximum aggregate data sample word width of 256 bits (or 1,024 bits for Virtex-5 devices).

File Edit Help DEVICE CON UC: LA Capture Parameters Net Connections Capture Settings Sample On Rising Clock Edge Data Depth: 1024 Samples Pata Same As Trigger Trigger Ports Used As Data (Pinclude TRIGO Port (width=6) (Pinclude TRIG2 Port (width=16) (Pinclude TRIG3 Port (width=16) (P	ChipScope Pro	Ocore Inserter [my_design.cdc]	
DEVICE ILA Select Integrated Logic Analyzer Options ICON UO: ILA ILA Select Integrated Logic Analyzer Options Trigger Parameters Capture Parameters Net Connections Capture Settings Sample On Rising Clock Edge Data Depth: 1024 Samples Pote Utilization Trigger Ports Used As Data Trigger Ports Used As Data Vinclude TRIGO Port (width=16) Vinclude TRIG3 Port (width=16) Vinclude TRIG3 Port (width=1) LUT Count: 442 FF Count: 334	<u>F</u> ile <u>E</u> dit <u>H</u> elp		
□ ICON Trigger Parameters Capture Parameters Net Connections Capture Settings Sample On Rising ▼ Clock Edge Data Depth: 1024 ▼ Samples ✓ Data Same As Trigger Core Utilization ✓ Include TRIG Port (width=8) ✓ Include TRIG Port (width=16) ✓ Include TRIG3 Port (width=16) ✓ Include TRIG3 Port (width=1) LUT Count: 442 FF Count: 394			°,
Core Utilization Tigger Ports Used As Data Venclude TRIG0 Port (width=8) Include TRIG0 Port (width=16) LUT Count: 442 FF Count: 394		Trigger Parameters Capture Parameters Net Connections	Select Integrated Logic Analyzer Options
FF Count: 394	Core Utilization	Data Depth: 1024 Samples Data Same Trigger Ports Used As Data I Include TRIG0 Port (width=8) I Include TRIG1 Port (width=16) I Include TRIG2 Port (width=16)	
	FF Count: 394		
Sector Negt > Remove Unit Messages Successfully read project C'tprojects/my_design/lse_xstmy_design.cdc copy C'tprojects/my_design/lse_xstmy_design/lse_xst_ngo/my_design_cs_signalbrowser.ngo SetDesign [my_design] Successfully C'tprojects/my_design_lse_xstmy_design/lse_xst_ngo/my_design_lse_xst_ngo/my_design_lse_sign_lse_xst_ngo/my_design_lse_xst_ngo/m	Successfully read project C copy C:\projects\my_design	Ciprojectsivny_designi.cdc	

Figure 3-14: ILA Core Data Same As Trigger Parameters

Selecting the Data-Same-As-Trigger Ports

If the **Data Same As Trigger** checkbox is selected, then a checkbox for each TRIG*n* port appears in the data options screen. These checkboxes should be used to select the individual trigger ports that will be included in the aggregate data port. Note that selecting the individual trigger ports automatically updates the Aggregate Data Width field accordingly. A maximum data width of 256 bits (or 1,024 bits for Virtex-5 devices) applies to the aggregate selection of trigger ports.

Choosing ATC2 Data Capture Settings

If you are inserting an ATC2 core, the Pin Selection Parameters look like those in Figure 3-15 and Figure 3-16 (for STATE mode and TIMING mode, respectively).

Global I	ction Parameter	s Net Connection								Options
		s Net Connection	ıs							
	Parameters									
	re Mode	Pin Edit Mode	_		TDM				Defa	ults
			•							
						Width				
_Individu	al Pin Settings									
		Pin Loc	10	O Standard		VCCO	Drive		Slew Rate	
ATCK		AB21	Ī	VCMOS25	-	2.5	24	-	FAST	•
ATD[0]		A21	I	VCMOS25	-	2.5	24	-	FAST	•
ATD[1]		V22	I	VCMOS25	-	2.5	24	-	FAST	•
ATD[2]		Y22	i	_VCMOS25	-	2.5	24	-	FAST	
'0 ATD[3]		V21	i	_VCMOS25	-	2.5	24	-	FAST	
ATD[4]		Y21	i	_VCMOS25	_		24	-	FAST	
ATD[5]		V20	i	_VCMOS25	-	2.5	24	-	FAST	
ATD[6]		AA22	1	_VCMOS25	-	2.5	24	-	FAST	
				VCMOS25	-		24		FAST	
	Max Fi 301-5 ☑ En Individu Pin Nai ATCK ATD[0] 35 ATD[1] ATD[2] 70 ATD[4] ATD[4] ATD[4]	301-500MHz ▼ Image: Construct of the sector of the	Max Frequency Range ATD Pin Count 301-500MHz ▼ 8 ▼ Imdividual Pin Settings Pin Loc ATCK AB21 ATD[0] A21 ATD[1] V22 ATD[2] Y22 ATD[3] V21 ATD[4] Y21 ATD[5] V20	Max Frequency Range ATD Pin Count 301-500MHz ▼ Image: Constraint of the settings Image: Constraint of the settings Individual Pin Settings Pin Name ATCK AB21 ATD[0] A21 ATD[1] V22 ATD[2] Y22 ATD[3] V21 ATD[5] V20 ATD[6] AA22	Max Frequency Range ATD Pin Count Signal Bank Count 301-500MHz ▼ 8 ▼ 4 ▼ Imdividual Pin Settings Imdividual Pin Settings Pin Name Pin Name Pin Name ATD (0) A21 LVCM0825 ATD (1) V22 LVCM0825 ATD (2) Y22 LVCM0825 ATD (2) Y22 LVCM0825 ATD (2) Y21 LVCM0825 ATD (2) Y21 LVCM0825 ATD (3) Y21 LVCM0825 ATD (5) Y20 LVCM0825 ATD (5) Y20 LVCM0825 ATD (5) Y20 LVCM0825 ATD (6) AA22 LVCM0825 AT	Max Frequency Range ATD Pin Count Signal Bank Count Data 301-500MHz ▼ 8 ▼ 4 16 Imdividual Pin Settings Individual Pin Settings Individual Pin Settings Individual Pin Settings Individual Pin Settings Individual Pin Sattings Pin Name Pin Loc IO Standard ATCK ATD[0] A21 LVCM0S25 ▼ ATD[1] V22 LVCM0S25 ▼ ATD[2] Y22 LVCM0S25 ▼ ATD[3] V21 LVCM0S25 ▼ ATD[5] V20 LVCM0S25 ▼ ATD[6] AA22 LVCM0S25 ▼	Max Frequency Range ATD Pin Count Stgnal Bank Count Data Width 301-500MHz ▼ 8 ▼ 4 16 Imdividual Pin Settings Individual Pin Settings Individual Pin Settings VCCO Individual Pin Settings Pin Name Pin Name VCCO 2.5 ATD[0] A21 LVCM0S25 ₹ 2.5 ATD[1] V22 LVCM0S25 ₹ 2.5 ATD[2] Y22 LVCM0S25 ₹ 2.5 ATD[3] V21 LVCM0S25 ₹ 2.5 ATD[4] Y21 LVCM0S25 ₹ 2.5 ATD[5] Y20 LVCM0S25 ₹ 2.5 ATD[6] A22 LVCM0S25 ₹ 2.5	Max Frequency Range ATD Pin Count Signal Bank Count Data Width 301-500MHz ▼ 8 ▼ 4 16 301-500MHz ▼ 8 ▼ 4 16 Imbidual Pin Settings Pin Loc 0 Standard VCCO Drive ATCK AB21 LVCM0S25 ₹ 2.5 24 ATD[0] A21 LVCM0S25 ₹ 2.5 24 ATD[1] V22 LVCM0S25 ₹ 2.5 24 ATD[2] Y22 LVCM0S25 ₹ 2.5 24 ATD[3] V21 LVCM0S25 ₹ 2.5 24 ATD[4] Y21 LVCM0S25 ₹ 2.5 24 ATD[4] Y21 LVCM0S25 ₹ 2.5 24 ATD[4] Y21 LVCM0S25 ₹ 2.5 24 ATD[4] Y20 LVCM0S25 ₹ 2.5 24 ATD[4] AA22 LVCM0S25 ₹ 2.5 24	Max Frequency Range ATD Pin Count Signal Bank Count Data Width 301-500MHz ▼ 8 ▼ 4 16 Image: Construct Stress Image: Construct Stress 16 16 Image: Construct Stress Image: Construct Stress 12 Image: Construct Stress Image: Construct Stress 12 Image: Construct Stress Image: Construct Stress 12 Image: Construct Stress Image: Construct Stress 12 12	Individual Pin Settings Since as ATCK Signal Bank Count Data Width 301-500MHz 8 4 16 Immediate Pin Loc 0 Standard VCCO Drive Pin Name Pin Loc 0 Standard VCCO Drive ATCK AB21 LVCM0S25 2.5 24 FAST ATD[0] A21 LVCM0S25 2.5 24 FAST ATD[1] V22 LVCM0S25 2.5 24 FAST ATD[1] V22 LVCM0S25 2.5 24 FAST ATD[2] Y22 LVCM0S25 2.5 24 FAST ATD[2] Y22 LVCM0S25 2.5 24 FAST ATD[3] V21 LVCM0S25 2.5 24 FAST ATD[4] Y20 LVCM0S25 2.5 24 FAST ATD[5] Y20 LVCM0S25 2.5 24 FAST ATD[6] AA22 LVCM0S25 2.5 24 FAST<

Figure 3-15: ATC2 Core STATE Mode Data Capture Settings

DEVICE	ATC2						Select ATC2 0	mtic
	MIGZ						JEIELL ATCZ O	har
U0: ILA	Pin Selection Parameters	s Net Connection	IS					
U1: ATC2	Global Parameters							
	Capture Mode	Pin Edit Mode	Endpoint Type	TDM Rate			Defa	ulte
	TIMING	Same as ATCK	SINGLE-ENDED	1X	•		Deid	unce
	Max Frequency Range	ATD Pin Count	Signal Bank Count	Data Width	L			
ore Utilization	301-500MHz 💌	8	▼ 4 ▼	9				
	Pin Name	Pin Loc	IO Standard	VCCO	Drive		Slew Rate	_
	ATCK	AB21	LVCMOS25	▼ 2.5	24		FAST	-
	ATD[0]	A21	LVCMOS25	▼ 2.5	24		FAST	
	ATD[1]	V22	LVCMOS25	▼ 2.5	24		FAST	-
LUT Count: 585	ATD[2]	Y22	LVCMOS25	▼ 2.5	24		FAST	_
FF Count: 467	ATD[3]	V21	LVCMOS25	▼ 2.5	24	-	FAST	
	ATD[4]	Y21	LVCMOS25	▼ 2.5	24	-	FAST	
BRAM Count: 3	ATD[5]	V20	LVCMOS25	▼ 2.5	24	-	FAST	
	ATD[6]	AA22	LVCMOS25	▼ 2.5	24	-	FAST	
		AB20	LVCMOS25	▼ 2.5	24		FAST	

Figure 3-16: ATC2 Core TIMING Mode Data Capture Settings

Capture Mode

The Capture Mode setting of the ATC2 core can be set to either *STATE* mode (Figure 3-15, page 86) for synchronous data capture to the CLK input signal or to *TIMING* mode (Figure 3-16, page 86) for asynchronous data capture. In STATE mode, the data path through the ATC2 core uses pipeline flip-flops that are clocked on the CLK input port signal. In TIMING mode, the data path through the ATC2 core is composed purely of combinational logic all the way to the output pins. Also, in TIMING mode, the ATCK pin is used as an extra data pin.

Max Frequency Range

The Max Frequency Range parameter is used to specify the maximum frequency range in which you expect to operate the ATC2 core. The implementation of the ATC2 core will be optimized for the maximum frequency range selection. The valid maximum frequency ranges are 0-100 MHz, 101-250 MHz, 251-300 MHz, and 301-500 MHz. The maximum frequency range selection only has an affect on core implementation when the Capture Mode is set to STATE mode.

Enable Auto Setup

The Enable Auto Setup option is used to enable a feature that allows the Agilent Logic Analyzer to automatically set up the appropriate ATC2 pin to Logic Analyzer pod connections. This feature also allows the Agilent Logic Analyzer to automatically determine the optimal phase and voltage sampling offsets for each ATC2 pin. This feature is enabled by default.

Enable "Always On" Mode

The Enable "Always On" Mode option is used to force an ATC2 core to always enable its internal logic and output buffers. The "Always On" mode will also force the selection of signal bank 0 upon FPGA device configuration. This mode makes it possible to capture events that immediately follow device configuration without having to first set up the ATC2 core manually. This feature is disabled by default and is only available when the capture mode is set to TIMING mode.

Pin Edit Mode

The Pin Edit Mode parameter is a time saving feature that allows you to change the IO Standard, Drive, and Slew Rate pin parameters on individual pins or together as a group of pins. Setting the Pin Edit Mode to *Individual* allows you to edit the parameters of each pin independently from one another. Setting the mode to *Same as ATCK* will allow you to change the ATCK pin parameters and will force all ATD pins to the same settings. You need to set unique pin locations for each individual pin regardless of the Pin Edit Mode.

ATD Pin Count

The ATC2 core can implement any number of ATD output pins in the range of 4 through 128.

Endpoint Type

The Endpoint Type setting is used to control whether single-ended or differential output drivers are used on the ATCK and ATD output pins. All ATCK and ATD pins must use the same driver endpoint type.

Signal Bank Count

The ATC2 core contains an internal, run-time selectable data signal bank multiplexer. The Signal Bank Count setting is used to denote the number of data input ports or signal banks the multiplexer will implement. The valid Signal Bank Count values are 1, 2, 4, 8, 16, 32, or 64.

TDM Rate

The *time division multiplexing* (TDM) rate is used to increase the amount of data transmitted over each data pin by as much as 200 percent. The ATC2 core does not use on-chip memory resources to store the captured trace data. Instead, it transmits the data to be captured by an Agilent logic analyzer that is attached to the FPGA pins using a special probe connector. The data can be transmitted out the device pins at the same rate as the incoming DATA port (TDM rate = 1x) or twice the rate as the DATA port (TDM rate = 2x). The TDM rate can be set to "2x" only when the capture mode is set to STATE.

Data Width

The width of each input data port of the ATC2 core depends on the capture mode and the TDM rate. In STATE mode, the width of each data port is equal to (ATD pin count) * (TDM rate). In TIMING mode, the width of each data port is equal to (ATD pin count + 1) * (TDM rate) since the ATCK pin is used as an extra data pin.

Pin Parameters

The settings in the Individual Pin Settings table control the location, I/O standard, output drive and slew rate of each individual ATCK and ATD pin. The output clock (ATCK) and data (ATD) pins are instantiated inside the ATC2 core for your convenience. This means that although you do not have to manually bring the ATCK and ATD pins through every level of hierarchy to the top-level of your design, you do need to specify the location and other characteristics of these pins in the Core Generator. These pin attributes are then added to the *.ncf file of the ATC2 core.

Pin Name

The ATC2 core has two types of output pins: ATCK and ATD. The ATCK pin is used as a clock pin when the capture mode is set to STATE and is used as a data pin when the capture mode is set to TIMING. The ATD pins are always used as data pins. The names of the pins cannot be changed.

Pin Loc

The Pin Loc column is used to set the location of the ATCK or ATD pin.

IO Standard

The IO Standard column is used to set the I/O standard of each individual ATCK or ATD pin. The I/O standards that are available for selection depend on the device family and driver endpoint type. The names of the I/O standards are the same as those in the IOSTANDARD section of the *Constraints Guide* in the *Xilinx Software Manual* (http://www.xilinx.com/support).

VCCO

The VCCO column setting denotes the output voltage of the pin driver and depends on the IO Standard selection.

Drive

The Drive column setting denotes the maximum output current drive of the pin driver and ranges from 2 to 24 mA, depending on the IO Standard selection.

Slew Rate

The Slew Rate column can be set to either FAST or SLOW for each individual ATCK or ATD pin.

Core Utilization

The ATC2 core generator has a core resource utilization monitor that estimates the number of look-up tables (LUTs) and flip-flops (FF) used by the ATC2 core, depending on the parameters used. The ATC2 core never uses block RAM or additional clock resources (for example, BUFG or DCM components).

Choosing Net Connections for ILA Signals

The **Net Connections** tab (Figure 3-17) allows you to choose the signals to connect to the ILA core. If trigger is *separate* from data, then the clock, trigger, and data ports must be specified. When trigger *equals* data, only the clock and trigger/data ports must be specified. Double-click on the CLOCK PORT label or click on the plus sign (+) next to it to expand as shown in Figure 3-17. No connection has been made, so the connection appears in red.

e <u>E</u> dit <u>H</u> elp		
DEVICE	LA	Select Integrated Logic Analyzer Options
E ICON	Trigger Parameters Capture Parameters Net Connections	
00. ILA	Net Connections	
	P-UNIT	
	CLOCK PORT CH0:	
Core Utilization		
ore oulization	P TRIGO	
	- CH0: - CH1:	
	CH1. CH2:	
	- CH3:	
	- CH4: - CH5;	
	- CH5: - CH6:	
LUT Count: 442	CH7:	
	• TRIG1	
FF Count: 394	• TRIG2 • TRIG3	
BRAM Count: 3		
	Modify Connections	
	Mouny connections	
	< Previous Return to Project Navigator	Remove Un
ssages		
):\projects\my_design\ise_xst\my_design.cdc n\ise_xst\my_design_cs.ngc => C:\projects\my_design\ise_xst_ngo\my_design_cs_signalb	1011001 000
tDesign [my_design]	unse_vorm/_resign_rsuit_< cohrolerism/_resignuse_vor_idonn/_resign_rs_sign	rowser.rigo

Figure 3-17: ILA Net Connections

The ATC2 **Net Connections** tab (Figure 3-18) allows you to choose the signals to connect to the ATC2 core. The clock and data ports must be specified. Double-click on the **Clock Net** label or click on the plus sign (+) next to it to expand as shown in Figure 3-18. No connection has been made, so the connection appears in red.

	Core Inserter [my_design.cdc]	
Eile Edit Help		· · · · · · · · · · · · · · · · · · ·
DEVICE ICON U0: ILA U1: ATC2	ATC2 Pin Selection Parameters Net Connections Net Connections	Select ATC2 Options
LUT Count: 585 FF Count: 467 BRAM Count: 3	• DATA PORTS • DATA0 • CH0: • CH1: • CH2: • CH2: • CH3: • CH4: • CH6: • CH6: • CH6: • CH6: • CH6: • CH6: • CH7: • CH8: • DATA2 • DATA2 • DATA3 • CH5: • CH6: • CH6: • CH7: • CH8: • DATA1 • DATA3 • DATA • DATA3 • DATA3 • DATA3 • DATA3 • DATA • DATA • DATA • DATA • DATA3 • DATA • DAT	
	Modify Connections	
	< Previous Return to Project Navigator	Remove Unit
Messages RetDesign [my_design]		
SetDesign (my_design) show SignalBrowserDialog show SignalBrowserDialog		-

Figure 3-18: ATC2 Net Connections

To change any core connection, select **Modify Connections**. The Select Net dialog box now appears (Figure 3-19).

Select Ne	t						X
Structure / Nets					•	Net Selections	
৭ - / [my_design]				_	ľ	Clock Signals	Trigger/Data Signals
► U_SINCOS	[sine_cosine]					Channel	
						CH:0	
4				T			
Net Name	▼ Pattern:		-	Filter			
Net Name	Source Instance	Source Component	Base Type				
CLK_BUFGP	CLK_BUFGP	BUFGP	BUFGP	A			
PB_IBUF	PB_IBUF	IBUF	IBUF				
TRIG_OUT_OBUF	TRIG_OUT	FD	FD				
_cmp_eq0000	_cmp_eq000023	LUT3	LUT3				
tmp0	tmp0	FD	FD				
tmp1	tmp1	FD	FD				
tmp2	tmp2	FD	FD				
tmp3	tmp3	FD	FD				
pbSync	pbSync	FDRE	FDRE				
_and0000	_and00001	LUT3	LUT3				
_and0001	_and00011	LUT3	LUT3				
_and0002	_and00021	LUT3	LUT3		ľ	000	
_and0003	_and00031	LUT3	LUT3			CPO	
_and0004	_and00041	LUT3	LUT3		1		
_and0010	_and00101	LUT3	LUT3			Make Connections	Move Nets Up
	_and00051	LUT3	LUT3			make cominections	I MOVE NELS OF
and0011	and00111	LUT3	LUT3			Remove Connection	ns 📕 Move Nets Down
y		C	K Cance	2	,		

Figure 3-19: Select Net Dialog Box

This dialog box provides an easy interface to choose nets to connect to the ILA or ATC2 cores. The hierarchical structure of the design can be traversed using the Structure/Nets pane on the upper left of the Select Net dialog box. All the design's nets of the selected structure hierarchy level appear in the table on the lower left pane of the Select Net dialog box. The following net information is displayed in this table:

- Net Name: The name of the net as it appears in the EDIF netlist. The net name might be different than the corresponding signal name in the HDL source due to renaming and other optimizations during synthesis.
- Source Instance: The instance name of the lower-level hierarchical component from which the net at the current level of hierarchy is driven. The source instance does not necessarily describe the originating driver of the net.
- Source Component: The type of the component described by the Source Instance.
- Base Type: The type of the lowest level driving component of the net. The base type is either a *primitive* or *black box* component.

All of the net identifiers described above can be filtered for key phrases using the **Pattern** text box and **Filter** button. Also, nets can be sorted in ascending and descending order based on the various net identifiers by selecting the appropriate net identifier button in the column headers of the net selection table.

Note: The net names are sorted in alpha-numeric or "bus element" order whenever possible. Common delimiters such as "[", "(", etc., are used to identify possible bus element nets.

The tabs for clock, data, and trigger inputs of the ILA core appear in the pane at the upper right of the Select Net dialog box. If you are selecting nets for an ATC2 core, then only the Clock and Data input port categories will appear at the upper right of the Select Net dialog box. If multiple trigger or data ports exist, there will be multiple sub-tabs on the bottom of the Net Selections pane, respectively. Nets that are selected at a given level of hierarchy can be connected to inputs of the ILA or ATC2 capture cores by following these steps:

1. In the lower-left table of the Select Net dialog box, select the net(s) that you want to connect to the capture core.

Note: You can select multiple nets to connect to an equivalent number of capture core input connections. Hold down the **Shift** key and use the left mouse button to select contiguous nets. Use a combination of the **Ctrl** key and left mouse button to select non-contiguous nets. You can also connect a single net to multiple capture core input signals by selecting a single net and multiple capture core port signals.

- 2. In the upper-right tabbed panel of the Select Net dialog box, select the desired capture core input category: *Clock Signals, Trigger Signals* (trigger port tab if applicable), *Data Signals* (or *Trigger/Data Signals*, if trigger is same as data).
- 3. In the right-hand table of capture core inputs, select the channel(s) that you want to connect to the selected net(s).

Note: You can select multiple capture core inputs to connect to an equivalent number of nets. Hold down the **Shift** key and use the left mouse button to select contiguous ILA core inputs. Use a combination of the **Ctrl** key and left mouse button to select non-contiguous ILA core inputs. You can also connect a single net to multiple capture core input signals by selecting a single net and multiple capture core port signals.

4. In the lower-right part of the Select Net dialog box, click the **Make Connections** button to make a connection between the selected nets and capture core inputs.

Use the **Remove Connections** button to remove any existing connections. Use the **Move Nets Up** and **Move Nets Down** buttons to reorder the position of any selected connection. Once the desired net connections have been made, click **OK** to return to the main Core Inserter window. All the trigger and data nets must be chosen in this fashion. After you have chosen all the nets for a given bus, the ILA or ATC2 bus name changes from red to black (see Figure 3-20).

ChipScope Pro	Core Inserter [my_design.cdc]	
<u>F</u> ile <u>E</u> dit <u>H</u> elp		
		?
⊡-DEVICE	ILA Select Integrated Lo	igic Analyzer Options
⊡ ICON	Trigger Parameters Capture Parameters Net Connections	
UO: ILA		
LUT Count: 442 FF Count: 394 BRAM Count: 3	♥ UNIT ● CLOCK PORT ● CH0:/CLK_BUFGP ● TRIGGER PORTS ● TRIGGER PORTS ● CH0:/count<0> ● CH0:/count<2> ● CH1:/count<2> ● CH3:/count<2> ● CH3:/count<2> ● CH3:/count<2> ● CH4:/count<4> ● CH4:/count<6> ● CH6:/count<6> ● CH6:/count<6> ● CH6:/count<6> ● TRIG1 ● TRIG2	
	Modify Connections	
	< <u>Previous</u> Return to Project Navigator	Remove Unit
Messages		
SetDesign [my_design]		
show SignalBrowserDialog show SignalBrowserDialog		=
		•
4		•

Figure 3-20: Specifying Data Connections

After specifying the clock, trigger, and data nets, click **Next**.

If you are using the Core Inserter in stand-along mode, a dialog box appears asking if you want to proceed with Core Insertion. If **Yes**, the cores are generated, inserted into the netlist, and an NGO file is created with the EDIF2NGD tool. Details of this process can be viewed in the Messages pane at the bottom of the window. A Core Generation Complete message in the Messages pane indicates successful insertion of ChipScope cores.

If you are using the Core Inserter as part of the Project Navigator mode, a dialog box appears asking if you want to return to Project Navigator. If **Yes**, the Core Inserter settings are saved and you are returned to the Project Navigator tool. The actual core generation and insertion processes take place in the proper sequence as deemed necessary by the Project Navigator tool.

Adding Units

Each device can support up to 15 ILA or ATC2 units, depending on block RAM availability and unit parameters.

- To add another ILA unit to the project, select Edit → New ILA Unit, or go to the ICON Options window by clicking on ICON in the tree on the left pane (Figure 3-10, page 79) and clicking the New ILA Unit button.
- To add another ATC2 unit to the project, select Edit → New ATC2 Unit, or go to the ICON Options window by clicking on ICON in the tree on the left pane (Figure 3-10, page 79) and clicking the New ATC2 Unit button.

You can set up the parameters for the additional units by using the same procedure as described above.

Inserting Cores into Netlist

The core insertion step can be invoked by selecting the **Insert** \rightarrow **Insert Core** menu option or by clicking **Insert Core** on the toolbar.

Note: If you are using the Core Inserter flow in the ISE 10.1 Project Navigator tool, click **Return to Project Navigator** instead of selecting the **Insert** \rightarrow **Insert Core** option. The insertion of the cores will happen automatically as part of the **Translate** process in the Project Navigator tool. Refer to "Using the Core Inserter with ISE Project Navigator," page 69 for details.

Managing Project Preferences

The preference settings are organized into three categories: *Tools, ISE Integration, and Miscellaneous*. These preference settings are shown in Figure 3-21, Figure 3-22, page 96, and Figure 3-23, page 96, respectively.

The Tools section (Figure 3-21) contains settings for the command line arguments used by the Core Inserter to launch the EDIF2NGD tool.

Edit Preference	s	X
Edit Preference Tools ISE Integration Miscellaneous	S External Tool Configuration Edif2Ngd Command:edif2ngd Arguments:	Browse
	OK Cancel	

Figure 3-21: Core Inserter Tools Preference Settings

The ISE Integration section (Figure 3-22, page 96) contains settings that affect how the Core Inserter integrates with the ISE Project Navigator tool. When ISE integration is enabled (the default), the Core Inserter automatically searches the current working directory for ISE temporary netlist directory called _ngo. If a valid ISE _ngo directory is found, the Core Inserter project will be set up automatically to overwrite the intermediate NGD files of the ISE project with those produced by the Core Inserter. The ISE Integration preferences can be set by the user to prompt the user before overwriting any intermediate NGD files.

Edit Preference	es 🔀
Tools ISE Integration Miscellaneous	Xilinx Foundation ISE Integration Options
	✓ Enable Foundation ISE Project Navigator Integration
	-When Replacing ISE NGD File Prompt then Backup
	Backup but Do Not Prompt
	OK Cancel

Figure 3-22: Core Inserter ISE Integration Preference Settings

The Miscellaneous preferences section (Figure 3-23) contains other settings that affect how the Core Inserter operates. For example, the Core Inserter can be set up by the user to display the ports in the Select Net dialog box. This might be desired if the cores are being inserted into a lower-level EDIF netlist, instead of the top level. These port nets are shown in gray in the Select Net dialog box. The Core Inserter can also be set up to display nets that are illegal for connection in the Select Net dialog box. When this preference option is enabled, any illegal nets are shown in red in the Select Net dialog box.

Edit Preference	s 🔀
Tools ISE Integration Miscellaneous	Miscellaneous Options Net Browser Show Nets attached to Ports Show Nets with Unroutable Components Show Source Component Instance Names Show Source Component Types Show Base Net Driver Types Preference Options Reset all values to installation defaults: Reset

Figure 3-23: Core Inserter Miscellaneous Preference Settings

Also, the Core Inserter can be set up by the user to disable the display of source component instance names, source component types, and base net driver types in the Select Net dialog box. You can reset the Core Inserter project preferences to the installation defaults by clicking on the **Reset** button.

Chapter 4

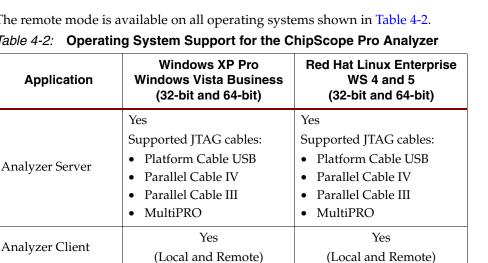
Using the ChipScope Pro Analyzer

Analyzer Overview

The ChipScope Pro Analyzer tool interfaces directly to the cores (collectively called the ChipScope Pro cores) listed in Table 4-1. You can configure your device, choose triggers, setup the console, and view the results of the capture on the fly. The data views and triggers can be manipulated in many ways, providing an easy and intuitive interface to determine the functionality of the design.

Core	Analyzer
ICON	Yes
ILA	Yes
IBA/OPB	Yes
IBA/PLB	Yes
VIO	Yes
ATC2	Yes
IBERT	Yes

Table 4-1: Cores Supported by the Analyzer Tool


Note: Even though the Analyzer tool will detect the presence of an ATC2 core, an Agilent Logic Analyzer attached to a JTAG cable is required to control and communicate with the ATC2 core.

Note: For more information about using the Analyzer to communicate with the IBERT core, see UG213, *ChipScope Pro Serial I/O Toolkit User Guide* at http://www.xilinx.com/literature/literature-chipscope.htm

The Analyzer tool is made up of two distinct applications: the *server* and the *client*. The Analyzer server is a command line application that connects to the JTAG chain of the target system using any of the supported JTAG download cables shown in Table 4-2. The Analyzer client is a graphical user interface (GUI) application that allows you to interact with the devices in the JTAG chain and the cores that are found in those devices.

The Analyzer server and client can be running on the same machine (local host mode) or on different machines (remote mode). Remote mode is useful when you need to:

- Debug a system that is in a different location
- Share a single system resource with other team members
- Demonstrate a problem or feature to someone who is not at your location

The remote mode is available on all operating systems shown in Table 4-2.

		-	0.		
Table 4-2:	Operating System	Support fo	or the	ChipScope P	ro Analvzer

Analyzer Server Interface

The Analyzer server command line application is available on Windows and Linux operating systems, as shown in Table 4-2, page 100. If you desire to debug a target system that is connected directly to your local machine via a JTAG download cable, then you do not need to start the server manually. You only need to start the server application manually when you desire to interact with the server from a remote client.

Note: The Analyzer server application can handle only one client connection at a time.

The server can be started as follows:

- The Analyzer server is started on Windows machines by executing \$CHIPSCOPE/cs server.bat <command line options>
- The Analyzer server is started on Linux machines by executing \$CHIPSCOPE/bin/lin/cs server.sh <command line options>

where the \$CHIPSCOPE environment variable points to the ChipScope Pro 10.1 installation directory. The Analyzer server application has several <command line options> that are described in Table 4-3. You can customize the server scripts as needed.

Command Line Option	Description
-port <portnumber></portnumber>	Used to specify the TCP/IP port number that is used by the client and server to establish a connection. The default port number is 50001.
-password <password></password>	Used to protect the server from unauthorized access. No password is set by default.
	Used to specify the location of the log file. The default log file location is:
-l <logfile></logfile>	<pre>\$HOME/.chipscope/cs_analyzer_<portnumber>.log</portnumber></pre>
	where \$HOME is the users home directory and <i><portnumber></portnumber></i> is the TCP/IP port number used by the server.

Table 4-3: ChipScope Pro Analyzer Server Command Line Options

See "Setting up a Server Host Connection," page 113 for more information on how to connect to the server application from the Analyzer client application.

Analyzer Client Interface

The Analyzer client interface consists of four parts:

- Project tree in the upper part of the split pane on the left side of the window
- Signal browser in the lower part of the split pane on the left side of the window
- *Message pane* at the bottom of the window
- Main window area

Both the project tree/signal browser split pane and the Message pane can be hidden by deselecting those options in the View menu. Additionally, the size of each pane can be adjusted by dragging the bar located between the panes to a new location. Each pane can be maximized or minimized by clicking on the arrow buttons on the pane separator bars.

Project Tree

The project tree is a graphical representation of the JTAG chain and the cores in the devices in the chain. Although all devices in the chain are displayed in the tree, only valid target devices cores and be operated upon. Leaf nodes in the tree appear when further operations are available.

For instance, a leaf node for each unit appears when that device is configured with a coreenabled bitstream. Context-sensitive menus are available for each level of hierarchy in the tree. To access the context-sensitive menu, right-click on the node in the tree. Device and unit renaming, child window opening, device configuration, and project operations can all be done through these menus.

To rename a device or core unit node in the project tree, right-click on the node and select **Rename**. To end the editing, press **Enter** or the up or down arrow key, or click on another node in the tree.

Signal Browser

The signal browser displays all the signals for the core selected in the project tree. Signals can be renamed, grouped into buses, and added to the various data views using context-sensitive menus in the signal browser.

Renaming Signals, Buses, and Triggers Ports

To rename a signal, bus, or trigger port name in the signal browser, double-click on it, or right-click and select **Rename**. To end the editing, press **Enter** or the up or down arrow key, or click on another node in the tree.

Adding/Removing Signals from Views

To remove all the signals from either the waveform or listing view, right-click on any data signal or bus in the signal browser and select **Clear All** \rightarrow **Waveform** or **Clear All** \rightarrow **Listing**. In the case of a VIO core, to remove all the signals from the VIO console, right-click on any signal or bus, and select **Clear All** \rightarrow **Console.** Similarly, all signals and buses can be added to the views through the **Add All to View** menu options. Selected signals and buses can be added through the **Add to View** menu options.

To select a contiguous group of signals and buses, click on the first signal, hold down the **Shift** key, and click on the last signal in the group. To select a non-contiguous group of signals and buses, click on each of the signals/buses in turn while holding down the **Ctrl**

key. When you use this method, the order of the signals in the bus are in the order in which you select them.

Combining and Adding Signals Into Buses

For ILA and IBA cores, only data signals can be combined into buses. For VIO cores, signals of a particular type can be grouped together to form buses. To combine signals into buses, select the signals using the **Shift** or **Ctrl** keys as described above. When the **Shift** key is used, the uppermost signal in the tree will be the LSB once the bus is created. If the **Ctrl** key is used, the signals will be in ordered in the bus the same order that they are clicked, the first signal being the LSB.

After you have selected the signals, right click on any selected signal and select **Add to Bus** \rightarrow **New Bus**. A new bus will be created at the top of the **Data Signals and Buses** subtree (in the case of ILA and IBA cores), or at the top of that particular sub-tree (in the case of VIO). To add a signal or signals into an existing bus, select the signals and select **Add to Bus**, and then the bus name in the following submenu. Added signals always go on the MSB-end of the bus.

Reverse Bus Ordering

To reverse the order of the bits in a bus (i.e. make the LSB the MSB), right click on the bus and select **Reverse Bus Order**. The signal browser and all data views that contain that bus will be immediately updated, and the bus values recalculated.

Bus Radices

Each bus can be displayed in the data views in any one of the following radices:

- ASCII
- Binary
- Hexadecimal
- Octal
- Signed decimal
- Token
- Unsigned decimal

ASCII is only available if the number of bits in the bus is evenly divisible by 8. Changing the radix will change the bus radix in every data view it is resident.

Signed and Unsigned

When either *signed* or *unsigned* is chosen as a bus radix, a small dialog box appears for you to enter three additional parameters: *scale factor, offset* and *precision*.

- *Scale factor* is a multiplier value to use when calculating bus values. For instance, if the LSB of a 4-bit bus is 0010, and the scale factor is set to 2.0, the actual displayed bus value will be 4 (given a precision of 0). If the scale factor is set to 0.1, then the actual displayed bus value will be 0.2 (given a precision of 1). The default scale factor is 1.0.
- *Offset* is a constant value that will be added to the scaled bus value. The default offset is 0.
- *Precision* is the number of decimal places to display after the decimal point. The default precision is 0.

Token

Tokens are string labels that are defined in a separate ASCII file and can be assigned to a particular bus value. These labels can be useful in applications such as address decoding and state machines. The token file (.tok extension) has a very simple format, and can be created or edited in any text editor. An example token file is provided in the token directory in the install path (Figure 4-1).

🖡 token_sample.tok - Notepad
<u>File E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp
Chipscope Example Token File
Tokens are in the form NAME=VALUE where NAME is the token name and VALUE is the token value (hex, binary, or decimal).
<pre># values are hex by default. To specify a radix for the value, # append \b (binary), \u (unsigned decimal), \h (hex) to the value. # so valid token definitions would be # MEM_WRITE=CS\h # MEM_READ=1101\b ####################################</pre>
@FILE_VERSION=1.0.0
If you want the default token (when no matches are found) # to be something other than HEX, uncomment the following # line and set the @DEFAULT_TOKEN to something useful. #@DEFAULT_TOKEN=
Begin token definitions
ZERO=00 ONE=01 TW0=02 THREE=11\b FOUR=4\h FIVE=101\b SEVEM=111\b SEVEM=11\b EIGHT=100\b NINE=9\h NINE=9\h
<u>₹</u>

Figure 4-1: Example Token File

Tokens are chosen by selecting a bus, then choosing **Bus Radix** \rightarrow **Token** from the right-click menu. A dialog box opens and you can choose the token file. If the bus is wider than the tokens specify (such as choosing 4-bit tokens for an 8-bit bus) the upper bits are assumed 0 for the tokens to apply. Figure 4-2 shows such a waveform, with the example token file in Figure 4-1, page 103 applied to an 8-bit bus.

Waveform - DEV:2	MyD	evice2	2 (XC2V	P7) U	NIT:0 My	/LAO	(ILA)						
Bus/Signal	х	0	203		204		205 		206	207		208 	
⊶ BUS_0	0B	35	ZERO	Х	ONE		TWO	Х	THREE X	FOUR	X	FIVE	\Box
- DataPort[8]	1	1											
- DataPort[9]	0	0											
- DataPort[10]	0	1											
- DataPort[11]	1	0											
- DataPort[12]	1	0						L					
- DataPort[13]	1	0											
- DataPort[14]	1	0											
DataPort[15]	1	1											

Figure 4-2: Example Waveform with Tokens

Deleting Buses

To delete a bus, right click on it and select **Delete Bus**. The bus is immediately deleted in every data view it is resident.

Type and Persistence (VIO only)

VIO signals have two additional properties: *Type* and *Persistence*. See "VIO Bus/Signal Activity Persistence," page 137 for explanations of these properties.

Message Pane

The Message pane displays a scroll list of status messages. Error messages appear in red. The Message pane can be resized by dragging the split bar above it to a new location. This also changes the height of the project tree/signal browser split pane.

Main Window Area

The main window area can display multiple child windows (such as Trigger, Waveform, Listing, Plot windows) at the same time. Each window can be resized, minimized, maximized, and moved as needed.

Analyzer Features

Working with Projects

Projects hold important information about the Analyzer program state, such as signal naming, signal ordering, bus configurations, and trigger conditions. They allow you to conveniently store and retrieve this information between Analyzer sessions

When you first run the Analyzer tool, a new project is automatically created and is titled **new project**. To open an existing project, select **File** \rightarrow **Open Project**, or select one of the recently used projects in the **File** menu. The title bar of the Analyzer and the project tree displays the project name. If the new project is not saved during the course of the session, a dialog box appears when the Analyzer is about to exit, asking you if you wish to save the project.

Creating and Saving A New Project

To create a new project, select **File** \rightarrow **New Project**. A new project called **new project** is created and made active in the Analyzer. To save the new project under a different name, select **File** \rightarrow **Save Project**. The project file will have a .cpj extension.

Saving Projects

To rename the current project, or to save a copy to another filename, select **File** \rightarrow **Save Project As** (Figure 4-3), type the new name in the File name dialog box, and click **Save**.

ChipScope Pro	Analyzer - Save	Project As			? 🛛
Save jn:	ise_xst		•	- 🗈 💣 💷 -	
My Recent Documents Oesktop	Drojnav ngo xmsgs xst				
My Documents					
My Computer					
My Network Places	File <u>n</u> ame: Save as <u>t</u> ype:	All Files (*.*)		•	<u>S</u> ave Cancel

Figure 4-3: Saving a Project

Printing Waveforms

One of the features of ChipScope Pro is the ability to print a captured data waveform (Figure 4-4) by using the **File** \rightarrow **Print** menu option (Figure 4-5). Selecting the **File** \rightarrow **Print** menu option starts the Print Wizard.

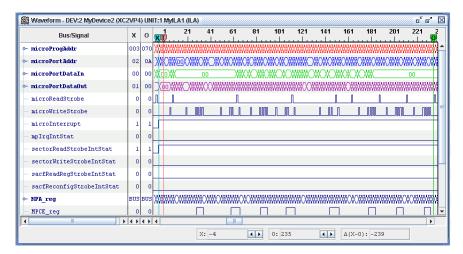


Figure 4-4: Example Waveform

File View JTAG	Analyzer [new			/indow Help
	Chain <u>D</u> evice			ũunnom ⊟eib
<u>N</u> ew Project	6 8 5	ç	P P P	
Open Project				
Save Project	oyotom_mail		Trigger Setup - DEV:2 I	flyDevice2 (XC2VP4)
Save Project As	XC18V00)	ž	Match Unit	Function
	XC2VP4)	Match	👇 M0:TriggerPort0	==
Pa <u>q</u> e Setup) (VIO)			
<u>P</u> rint		EV:2	MyDevice2 (XC2VP4) UN	
Import	qu	Tig	Auu	Triager Condi TriagerCor
Export			Del	Inggeroor
			-	
Exit Signals: DEV: 2 UN	1	Capture	Type: Window 💌	Windows:
Data Port		Ĕ		
		0	Storage Qualification:	

Figure 4-5: Selecting the File Print Option

The Print Wizard consists of three consecutive windows:

- 1. (1 of 3) is the Print options and settings window (Figure 4-6, page 106)
- 2. (2 of 3) is the Print waveform printout preview navigator window (Figure 4-8, page 108)
- 3. (3 of 3) is the Print confirmation window (Figure 4-11, page 110)

Print Wizard (1 of 3) Window

The first Print Wizard window (Figure 4-6) is used to set up various waveform printing options. The following sections describe these waveform printing options in more detail.

Horizontal Scaling	Time/Sample Range	Print Signal Names
 Fit To 2 Page(s) Wide Fixed 	 ○ Current View ○ Eull Range ● Between X/O Cursors 	First Page Only On Each Page
100 Samples/Page	Custom View	Show X/O Cursor Values
Signal/Bus Selection	Start Sample 0 End Window 0 End Sample 0	Footer Show Footer
Selected	Page	Setup Next > Cancel

Figure 4-6: Print Wizard (1 of 3)

Horizontal Scaling

You can control the amount of waveform data that prints to each column of pages using one of two methods:

- *Fit To*: Fit the waveform to one or more columns of pages
- Fixed: Fit a specific number of waveform samples on each column of pages

The default fits the entire waveform printout to a single column of pages wide.

Signal/Bus Selection

You can control which signals and buses will be present in the waveform printout using one of three methods:

- *Current View*: Print waveform data for all of the signals and buses in the current view of the waveform window
- *All*: Print waveform data for all of the signals and buses available in the entire core unit
- *Selected*: Print waveform data for only those signals and buses that are currently selected in the waveform window

The default prints waveform data using the Current View method.

Time/Sample Range

You can control the range of time units or number of samples printed using one of four methods:

- *Current View*: Print waveform data using the same range of samples that is present in the current waveform view
- *Full Range*: Print waveform data using a range of samples consisting of all samples in the entire sample buffer
- *Between X/O Cursors*: Print waveform data using a range of samples starting with the X cursor and ending with the O cursor (or vice versa)
- *Custom View*: Print waveform data using a range of samples defined by a starting window and sample number and an ending window and sample number

The default prints waveform data using the Current View method.

Print Signal Names

You can choose to print the signal names (and X/O cursor values) on each page or only on the first page. Printing the X/O cursor values on the first page only is useful when you assemble multiple printed pages together to form a larger multi-dimensional plot.

X/O Cursor Values

You can also choose whether or not to include the X/O cursor values in the waveform printout. If you choose to display the X/O cursor values in the waveform printout, then they will either appear on each page or only on the first page, depending on the Print Signal Names setting (see "Print Signal Names").

Footer

You can enable or disable the inclusion of a footer at the bottom of each page by selecting the Show Footer checkbox. An example of the information that appears in the footer is shown in Figure 4-7.

2004-02-10 19:27:00 ChipScope Pro Project: sacfdemo Device:1 Unit:1 ILA Page Index: (row=0, col=0) (window=0 sample=0, window=0 sample=220)

Figure 4-7: Waveform Printout Footer Example

Navigation Buttons

The buttons at the bottom of the Print Wizard (1 of 3) window (Figure 4-6, page 106) are defined as follows:

- Page Setup: Opens the page setup window (refer to Figure 4-12, page 110)
- Next: Opens the Print Wizard (2 of 3) window
- Cancel: Closes the Print Wizard window without printing

Clicking on the **Next** button takes you to the Print Wizard (2 of 3) window, described in "Print Wizard (2 of 3) Window," page 108.

Print Wizard (2 of 3) Window

The second Print Wizard window (Figure 4-8) shows a preview of the waveform printout.

					Page:	<<	<	1 of 2	>	>>				
Bus/Signal	x	0	4			16	26	36	46	56	66	76	86	26
micraPrag0ddr	JUMP	LOAD	XX	ot	000000	$\infty \infty \infty$	0000	0000000	000000	20000	00000	00000	000000	00000
m loraParWiddr	01	QA.	X	xd	<u>@0000</u>	00 00				xxXx		X		XXX
m karaPart Datain	01	00	X	0		1			1	1			ාගාරා	0000
m loroPortDataOut	01	00	Ľ.	01		xxá	DOÓ	XXXX	200000	xodoox	200000	$\infty \dot{\infty}$	000000)00000
m loraReadStrate	0	1	1											
m kraliV rkeStrate	0	0	,		Ņ		<u> </u>	nnn			Ń	,		
microinterrupt	1	1	Ľ											
MPA_reg	BUSH	BUS	-XQ	q	200000	XXXX	xxx	$\infty \rightarrow \infty \rightarrow \infty$	$\infty \longrightarrow \infty$	20000	$\infty \square c$	$\Box 00$	200000	00000
MPCE_reg	0	0	1					<u> </u>					<u>_</u>	
MPOE_reg	0	0	1							ſ				
		0	1.1											
MPWE_reg	0	0		-										
MPWE_reg MPIRQ_reg	0	0	1						1					
		0 0	•	>>>							000000000		000000000000000000000000000000000000000	
MPIRQ_reg MPBRDY_reg	0	0 0	•	000										0000000000
MPIRG_reg MPBRDY_reg	0	0 0	•XXX	000										
MPIRG_reg MPBRDY_reg	0	0 0	*XX	000				L						
MPIRG_reg MPBRDY_reg	0	0 0	*XX	000										, , , , , , , , , , , , , , , , , , ,
MPIRG_reg MPBRDY_reg	0	0 0	y Y	000										0000000000
MPIRQ_reg MPBRDY_reg	0	0 0	, , ,	000										
MPIRG_reg MPBRDY_reg	0	0 0	r r	000		- - 		· · · · · · · · · · · · · · · · · · ·						
MPIRG_reg MPBRDY_reg	0	0 0	, , w W	000		- - 		······································						
MPIRG_reg MPBRDY_reg	0	0 0	4 2 2 2	000		- - 		· · · · · · · · · · · · · · · · · · ·		*				
MPIRG_reg MPBRDY_reg	0	0 0	- - - -	000				·						
MPIRG_reg MPBRDY_reg	0	0 0	- - -	000		- - 		·		- 				
MPIRG_reg MPBRDY_reg	0	0 0	- - -	000			, , , , , , , , , , , , , , , , , , ,	·		-		- 		

Figure 4-8: Print Wizard (2 of 3)

Page Preview Buttons

The buttons at the top of the page control which page of the waveform printout is being previewed as follow:

- The << and >> buttons go to the first and last preview pages, respectively
- The < and > buttons go to the previous and next preview pages, respectively
- The text box in the middle can be used to go to a specific preview page

Navigation Buttons

The buttons at the bottom of the Print Wizard (2 of 3) window (Figure 4-8) are defined as follows:

- Back: Returns to the Print Wizard (1 of 3) window
- Send to PDF: Opens the Print Wizard (3 of 3) window for writing directly to a PDF File
- Send to Printer: Opens the Print Wizard (3 of 3) window for sending to a printer
- *Close*: Closes the Print Wizard window without printing

Bus Expansion and Contraction

You can manipulate the waveform by expanding and contracting the buses in the print preview window. For example, if you expand a bus in Figure 4-8, page 108 such that it pushes other signals/buses to another page, the total print preview page count at the top will change accordingly, as shown in Figure 4-9.

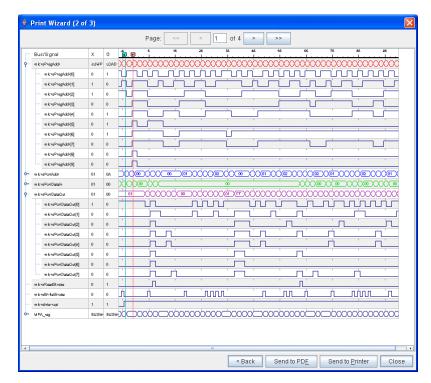


Figure 4-9: Expanding Buses in Print Wizard (2 of 3)

Print Wizard (3 of 3) Window

In the Print Wizard (2 of 3) window, clicking on the **Send to PDF** button goes to the Print Wizard (3 of 3) PDF confirmation window (Figure 4-10). Clicking on the **Yes** button causes the waveform printout to be written to the specified PDF file while clicking on the **No** button returns you to the Print Wizard (2 of 3) window. Clicking on **Change File** opens a file browser window that allows you to select or create a new PDF file.

Print V	Print Wizard (3 of 3): PDF			
?	Are you sure you want to print the waveform for DEV:2 MyDevice2 (XC2VP4) UNIT:1 MyILA1 (ILA) to c:XVIIInvAChipScope_Pro_7_1Rdefault_waveform.pdf?			
	Yes No Change File			

Figure 4-10: Print Wizard (3 of 3) for Sending to a PDF File

In the Print Wizard (2 of 3) window, clicking on the Send to Printer button goes to the Print Wizard (3 of 3) Printer confirmation window (Figure 4-11). Clicking on the **Yes** button causes the waveform printout to be sent to the printer while clicking on the **No** button returns you to the Print Wizard (2 of 3) window.

Print W	/izard (3 of 3): Printer 🛛 🗙
?	Are you sure you want to print the waveform for DEV:2 MyDevice2 (XC2VP4) UNIT:1 MyILA1 (ILA)?
	Yes No

Figure 4-11: Print Wizard (3 of 3) for Sending to a Printer

Page Setup

The Page Setup window (Figure 4-12) can be invoked either from the Print Wizard (1 of 3) window (Figure 4-6, page 106) or by using the **File** \rightarrow **Page Setup** menu option.

Note: In the ChipScope Pro Analyzer program, you can print only to the default system printer. Changing the target printer in the print setup window does not have any effect. To change printers, you must close the Analyzer program, change your default system printer, and restart the Analyzer program.

	A shared drift of the second drift of the seco
Paper	
Size:	Letter
Source:	Automatically Select
Orientation	Margins (inches)
C Portrait	Left: 0.18 <u>Bight</u> 0.181
	Top: 0.18 Bottom: 0.18

Figure 4-12: Page Setup Window

Importing Signal Names

At the start of a project, all of the signals in every core have generic names. You can rename the signals individually as described in "Renaming Signals, Buses, and Triggers Ports," page 101 or import a file that contains all the names of all the signals in one or more cores. The Core Generator, Core Inserter, Synplicity Certify, and the FPGA Editor tools can create such files. To import signal names from a file, select **File** \rightarrow **Import**. A Signal Import dialog box appear (Figure 4-13).

Figure 4-13: Blank Signal Import Dialog Box

To select the signal import file, select **Select New File**. A file dialog box will appear for you to navigate and specify the signal import file. After you choose the file, the Unit/Device combo box will be populated, according to the core types specified in the signal import file. If the signal import file contains signal names for more than one core, the combo box will contain device numbers for all devices that contain only ChipScope Pro capture cores.

If the signal import file contains signal names for only one core, the combo box will be populated with names of the individual cores that match the type specified in the signal import file. If the import file is a file from Synplicity Certify, you will also have the option of choosing a device name from the Certify file as well as the device in the JTAG chain.

To import the signal names, click **OK**. If the parameters in the file do not match the parameters of the target core or cores, a warning message will be displayed. If you choose to proceed, the signal names will be applied to the cores as applicable.

Exporting Data

Captured data from an ILA or IBA core can be exported to a file, for future viewing or processing. To export data, select **File** \rightarrow **Export**. The Export Signals dialog box appears (Figure 4-14).

Export Signals	
Format • VCD • ASCII • FBDF	Core DEV:2 MyDevice2 (XC2VP Signals to Export All Signals/Buses
	Export Cancel

Figure 4-14: Export Signals Dialog Box

Three formats are available: *value change dump* (VCD) format, *tab-delimited* ASCII format, or the Agilent Technologies Fast Binary Data Format (FBDF). To select a format, click its radio button. To select the target core to export, select it from the Core combo box.

Different sets of signals and buses are available for export. Use the Signals to Export combo box to select:

- All the signals and buses for that particular core, or
- All the signals and buses present in the core's waveform viewer, or
- All the signals and buses in the core's listing viewer, or
- All the signals and buses in the core's bus plot viewer

To export the signals, click **Export**. A file dialog box will appear from which you can specify the target directory and filename.

Closing and Exiting the Analyzer

To exit the Analyzer, select **File** \rightarrow **Exit**. The current active project is automatically saved upon exit.

Viewing Options

The split pane on the left of the Analyzer window and the Message pane at the bottom of the window can both be hidden or displayed per the user's choice. Both are displayed the first time the Analyzer is launched. To hide the project tree/signal browser split pane, uncheck it under **View** \rightarrow **Project Tree**. To hide the Message pane, uncheck it under **View** \rightarrow **Messages**.

Setting up a Server Host Connection

The Analyzer client GUI application requires a connection to the Analyzer server application that is running on either the local or a remote system. Select the JTAG Chain **JTAG Chain** \rightarrow **Server Host Setting**. This pops up the server settings dialog (Figure 4-15).

ChipScope Pr	o Analyzer 🛛 🔀
Server Setting	ls
Host:	localhost
Port:	50001
Password:	
	Restore Default
	OK Cancel

Figure 4-15: Server Settings for Local Mode

For local mode operation, the server **Host** setting should always be set to **localhost** (Figure 4-15). The **Port** setting can be set to any unused TCP/IP port number. The default **Port** number is 50001. In local mode, the **Password** setting is not necessary in local mode.

Note: In local mode, the server is started automatically.

ChipScope Pr	o Analyzer 🛛 🔀				
Server Settings					
Host:	lab_machine				
Port:	50001				
Password:	*****				
	Restore Default				
	OK Cancel				

Figure 4-16: Server Settings for Remote Mode

For remote mode operation, the server **Host** setting should be set to an IP address or appropriate system name (Figure 4-16). The **Port** and **Password** settings should be set to the same port that was used when the server was started on the remote system. In remote mode, the connection is not actually established until you open a connection to a JTAG download cable, as described in the subsequent sections of this document.

Note: In remote mode, the server needs to be started manually, as described in "Analyzer Server Interface," page 100.

Opening a Parallel Cable Connection

To open a connection to the Parallel Cable (including the MultiPRO cable), make sure the cable is connected to one of the computer's parallel ports. Select **JTAG Chain** \rightarrow **Xilinx Parallel Cable** (Figure 4-17). This pops up the Parallel Cable Selection configuration dialog box. You can choose the Parallel Cable III, Parallel Cable IV, or have the Analyzer autodetect the cable type.

Note: In order to open a connection to the MultiPRO cable, select either Parallel Cable IV or Auto Detect Cable Type.

If the Parallel Cable IV or Auto Detect Cable Type option is selected, you can choose the speed of the cable; the choices are 10 MHz, 5 MHz, 2.5 MHz (default), 1.25 MHz, or 625 kHz. Choose the speed that makes the most sense for the board under test. Type the printer port name in the Port selection box (usually the default LPT1 is correct) and click **OK**. If successful, the Analyzer queries the Boundary Scan chain to determine its composition (see "Setting Up the Boundary Scan (JTAG) Chain," page 117).

If the Analyzer returns the error message Failed to Open Communication Port, verify that the cable is connected to the correct LPT port. If you have not installed the Parallel Cable driver, follow the instructions in the ChipScope Pro software installation program to install the required device driver software.

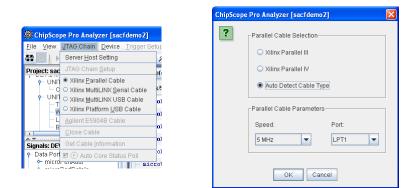


Figure 4-17: Opening a Parallel Cable Connection

Opening a Platform Cable USB Connection

To open a connection to the Parallel Cable (including the MultiPRO cable), make sure the cable is connected to one of the computer's parallel ports. Selecting the **JTAG Chain** \rightarrow **Xilinx Platform USB Cable** menu option pops up a dialog window (Figure 4-18).

🚇 ChipScope Pro Analyzer [sacfdemo2]	
File View JTAG Chain Device Trigger Setu	
📑 💿 🛛 🕨 Server <u>H</u> ost Setting	ChipScope Pro Analyzer [ne 🔀
Project: sac JTAG Chain Setup	
♦ UNIT ● Xilinx Parallel Cable	Platform USB Cable Parameters
└─ C ○ Xilinx MultiLINX <u>S</u> erial Cable	Speed: Port:
♥ UNIT ○ Xilinx MultiLINX USB Cable	
₩ O Xilinx Platform USB Cable	6 MHz 🔽 USB21 👻
L Agilent E5904B Cable	
Close Cable	OK Cancel
Signals: DE Get Cable Information	
P Data Porl ፼ () Auto Core Status Poll	

Figure 4-18: Opening a Platform Cable USB Connection

Platform Cable USB Clock Speeds

You can choose the speed of the cable from any of the settings: 24 MHz, 12 MHz, 6 MHz, 3 MHz (default), 1.5 MHz, or 750 kHz. Choose the speed that makes the most sense for the board under test.

Platform Cable USB Port Number

You can also choose the USB port from a selection of port enumerations in the range of USB2<n>, where <n> is an integer value is 1 through 127. The default port setting is USB21. The USB port enumeration number is based on the order in which the Platform Cable USB download cables are plugged into USB ports of the system. For instance, the first Platform Cable USB download cable plugged into the system is assigned the port enumeration of USB21, the second cable is assigned USB22, and so on.

Note: The enumerations are not necessarily preserved when the system is power cycled. Also, there is currently no way to identify a particular Platform Cable USB other than by physically plugging the cables into the system in a particular order.

Using Multiple Platform Cable USB Connections

To use the ChipScope Pro Analyzer with multiple cables, you need three things:

- 1. Multiple Xilinx JTAG cables connected to one machine
- 2. Multiple instances of the cs_server application running on one machine, each one listening to a different port
- 3. Multiple instances of ChipScope Pro Analyzer running on that same machine, or a different machine (via the remote server feature)

1. Multiple Xilinx JTAG Cables Connected to One Machine

To interact with multiple JTAG cables connected to the same machine, you first need to be able to connect multiple Platform Cable USB, Parallel Cable III, or Parallel Cable IV cables to the machine. For Platform Cable USB cables, you might need to use one or more USB hubs depending on how many cables you need. For PC3/PC4, you may need one or more parallel port extender cards.

Note: Currently, enumerations are not associated with a particular physical Platform Cable USB cable. This means that rebooting your machine might result in different associations between enumerations and physical cables. One work-around is to unplug all cables and re-plug them in the order you wish for them to be enumerated.

2. Multiple Instances of cs_server

Set up the ChipScope Pro Analyzer to use multiple cables first by starting multiple instances of the cs_server.exe Windows application or cs_server.sh Linux application on the same machine using different ports. For example, to start up two servers on different ports on Linux, use:

cs_server.sh -port 50001
cs_server.sh -port 50002

3. Multiple Instances of the ChipScope Pro Analyzer

Start and configure multiple ChipScope Pro Analyzer client instances (see Table 4-4). Each instance of the Analyzer connects to a different cs_server and cable enumeration.

Table 4-4: Configuration of Multiple Client Instances

Analyzer Instance #	Server Host Setting	Platform Cable USB Port #
1	<ip address="">:50001</ip>	USB21
2	<ip address="">:50002</ip>	USB22

Polling the Auto Core Status

When the cores are armed, the interface cable queries the cores on a regular basis to determine the status of the capture. If other programs are using the cable at the same time as the Analyzer, it can often be beneficial to turn this polling off. This can be done in the **JTAG Chain** menu by un-checking **JTAG Chain** \rightarrow **Auto Core Status Poll**. If this option is unchecked, when the Run or Trigger Immediate operation is performed, the Analyzer will not query the cores automatically to determine the status.

Note that this does not completely disable communication with the cable; it will only disable the periodic polling when cores are armed. If one or more cores trigger after the polling has been turned off, the capture buffer will not be downloaded from the device and displayed in any of the data viewer(s) until the **Auto Core Status Poll** option is turned on again.

Configuring the Target Device(s)

You can use the Analyzer software with one or more valid target devices. The first step is to set up all of the devices in the Boundary Scan chain.

Setting Up the Boundary Scan (JTAG) Chain

After the Analyzer has successfully communicated with a download cable, it automatically queries the Boundary Scan (JTAG) chain to find its composition. All Xilinx FPGA, CPLD, PROM, and System ACE devices are automatically detected. The entire IDCODE can be verified for valid target devices. To view the chain composition, select **JTAG Chain** \rightarrow **JTAG Chain Setup**. A dialog box appears with all detected devices in order.

For devices that are not automatically detected, you must specify the IR (Instruction Register) length to insure proper communication to the cores. This information can be found in the device's BSDL file. The following example has one System ACE CF controller device (System_ACE_CF), one Platform Flash PROM device (XCF32PTM), one Virtex-4 FPGA device (XC4VLX25TM), and one CPLD device (XC9500XLTM) in the JTAG chain (Figure 4-19). USERCODEs can be read out of the ChipScope Pro target devices (only the XC4VLX25 device in this example) by selecting **Read USERCODEs**.

ChipS	cope Pro Ar	alyzer			×		
JTAG C	hain Device Order						
Index	Name	Device Name	IR Length	Device IDCODE	USERCODE		
0	MyDevice0	System_ACE_CF	8	0a001093			
1	MyDevice1	XCF32P	16	f5059093			
2	MyDevice2	XC4VLX25	10	8167c093	mmm		
3	MyDevice3	XC9500XL	8	49608093			
	Advanced >> OK Cancel Read USERCODEs						

Figure 4-19: Boundary Scan (JTAG) Setup Window

The Analyzer tool automatically keeps track of the test access port (TAP) state of the devices in the JTAG chain, by default. If the Analyzer is used in conjunction with other JTAG controllers (such as the System ACE CF controller or processor debug tools), then the actual TAP state of the target devices can differ from the tracking copy of the Analyzer. In this case, the Analyzer should always put the TAP controllers into a known state (for example, the Run-Test/Idle state) before starting any JTAG transaction sequences. Clicking on the **Advanced** button on the JTAG Chain Device Order dialog box reveals the

parameters that control the start and end states of JTAG transactions (Figure 4-20). Use the second parameter if the JTAG chain is shared with other JTAG controllers.

TAG C	hain Device Orc	ler			
Index	Name	Device Name	IR Length	Device IDCODE	USERCODE
0	MyDevice0	System_ACE_CF	8	0a001093	
1	MyDevice1	XCF32P	16	f5059093	
2	MyDevice2	XC4VLX25	10	8167c093	mmm
	M.D. Miles O	20050004	0	1000000	
TAG C	MyDevice3		8	49608093	
TAG C	Chain Transactio Start transactior Start transactior		nd in Run-Te It. End in Rur	st/idle. (Default) I-Test/idle.	

Figure 4-20: Advanced JTAG Chain Parameters Setup Window

Device Configuration

The Analyzer can configure target FPGA devices using the following download cables in JTAG mode only: Platform Cable USB, Parallel Cable III, Parallel Cable IV, or MultiPRO.

If the target device is to be programmed using a download cable by way of the JTAG port, select the **Device** menu, select the device you wish to configure, and select the **Configure** menu option. Only valid target devices can be configured and are, therefore, the only devices that have the **Configure** option available (Figure 4-21). Alternatively, you can right-click on the device in the project tree to get the same menu as **Device**.

ChipScope Pro	Analyzer [sacfdemo_v4]		
<u>F</u> ile ⊻iew <u>J</u> TAG Chain	Device Window Help		
22 P	DEV:0 MyDevice0 (System_ACE_CF)	۲	
Proiect: sacfdemo v4	DEV:1 MyDevice1 (XCF32P)	×	
JTAG Chain	DEV:2 MyDevice2 (XC4VLX25)	₽	<u>R</u> ename
- DEV:0 MyDevice0 (Syst		×	Configure
DEV:1 MyDevice1 (XCF DEV:2 MyDevice2 (XC4 OF UNIT:0 MyVIO0 (VIO VIO Console OVIO1:1 MyILA1 (LLA DVID:1:1 MyILA1 (LLA	VLX25)))		Show IDCODE Show USERCODE Show Configuration Status Show JTAG Inst <u>r</u> uction Register

Figure 4-21: Device Menu Options

After selecting the configuration mode, the JTAG Configuration dialog box opens (Figure 4-22). This dialog box reflects the configuration choice, and defaults to a blank entry for the configuration file.

ChipSco	ppe Pro Analyzer [sacfdemo 🗙
JTAG Conf	iguration
File:	sacfdemo_v4.bit
Directory:	C:\Data\Xilinx\projects\cs\examples\sacfdemo_v4\ise\
	Select New File
	OK Cancel

Figure 4-22: Selecting a Bitstream

To select the BIT file to download, click on **Select New File**. The Open Configuration File dialog box (Figure 4-23) opens. Using the browser, select the device file you want to use to configure the target device. It is important to select a BIT file generated with the proper BitGen settings. Specifically, the **-g StartupClk:JtagClk** option must be used in BitGen in order for configuration to be successful.

Once you locate and select the proper device file, click **Open** to return to the JTAG Configuration dialog box (Figure 4-22, page 118).

Open Configur	ation File				? 🛛
Look jn:	ChipScope_	Pro_7_1i	•	🗈 💣 📰 •	
My Recent Documents Desktop	icons icons ire1.5.0 templates token				
My Documents My Computer					
My Network Places	File <u>n</u> ame: Files of <u>type</u> :	All Files (*.**)		• [•	<u>O</u> pen Cancel

Figure 4-23: Opening a Configuration File

Once the BIT file has been chosen, click **OK** to configure the device.

Observing Configuration Progress

While the device is being configured, the status of the configuration is displayed at the bottom of the Analyzer window. If the DONE status is not displayed, a dialog box opens, explaining the problem encountered during configuration. If the download is successful, the target device is automatically queried for ChipScope Pro cores, and the project tree is updated with the number of cores present. A folder is created for each core unit found and **Trigger Setup**, **Waveform**, and **Listing** leaf nodes appear under each ChipScope Pro unit. A **Bus Plot** leaf node will appear only if the core unit is determined to be an ILA core.

Displaying JTAG User and ID Codes

One method of verifying that the target device was configured correctly is to upload the device and user-defined ID codes from the target device. The user-defined ID code is the 8-digit hexadecimal code that can be set using the BitGen option **-g UserID**.

To upload and display the user-defined ID code for a particular device, select the **Show USERCODE** option from the **Device** menu for a particular device (Figure 4-21, page 118). Select the **Show IDCODE** option from the **Device** menu to display the fixed device ID code for a particular device. The results of these queries are displayed in the messages window (Figure 4-24). The IDCODE and USERCODE can also be displayed in the JTAG Chain Setup dialog box, **JTAG Chain** \rightarrow **JTAG Chain Setup** (Figure 4-19, page 117).

COMMAND:	: show_usercode 2
NFO: USEF	RCODE for device 2 - ffffff
OMMAND:	show idcode 2
	DE for device 2 - 8167c093

Figure 4-24: Device USERCODE and IDCODE

Displaying Configuration Status Information

The 32-bit configuration status register contains information such as status of the configuration pins and other internal signals. If configuration problems occur, select **Show Configuration Status** from the **Device** menu for a particular target device to display this information in the messages window (Figure 4-25).

Note: All target devices contain two internal registers that contain status information: 1) the Configuration Status register (32 bits) and 2) the JTAG Instruction register (variable length, depending on the device). Only valid target devices have a Configuration Status register. Although all devices have a JTAG Instruction register that can be read, the implementation of that particular device determines whether any status information is present. Refer to the documentation for the particular FPGA device for information on the definition of each specific configuration status bit.

A 7		
COMMAND	: sha	ow_config_status 2
INFO:		
Bits [170]	: 00	0111 1000 1111 1100
Bit 17:	0	MON_OT_ALARM
Bit 16:	0	DEC_ERROR
		ID_ERROR
Bit 14:		
		RELEASE_DONE
Bit 12:		
		INIT_COMPLETE
Bit 10:	-	
Bit 9:	-	
		MODE MO
		GHIGH_B
Bit 6:		GWE
		GTS_CFG_B
		EOS
		DCI_MATCH
		DCM_LOCK
		PART_SECURED
Bit 0:	0	CRC_ERROR

For some devices, the JTAG Instruction register also contains status information. Use **Device** \rightarrow **Show Instruction Register** to display this information in the messages window for any device in the JTAG chain (Figure 4-26).

INFO: Bits I9 II	1·11 1	111 0101
Bit 9:	1	Cpu bit 3
Bit 8:	1	Cpu bit 2
Bit 7:	1	Cpu bit 1
Bit 6:	1	Cpu bit 0
Bit 5:	1	DONE
Bit 4:	1	Init Complete
Bit 3:	0	ISC_Enabled
Bit 2:	1	ISC_Done
Bit 1:	0	Always Zero
Bit 0:	1	Always One

Figure 4-26: Displaying Device Instruction Register Status

Trigger Setup Window

To set up the trigger for an ILA or IBA core, select **Window** \rightarrow **New Unit Windows** and the core desired(Figure 4-27). A dialog box will be displayed for that core, and you can select the **Trigger Setup**, **Waveform**, **Listing**, **Bus Plot** and/or **Console** window(s) in any combination (Figure 4-27). Windows cannot be closed from this dialog box.

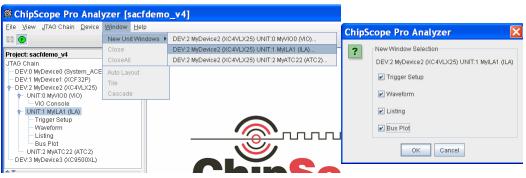


Figure 4-27: Opening New Unit Windows

The same operation can by achieved by double-clicking on the **Trigger Setup** leaf node in the project tree, or by right-clicking on the **Trigger Setup** leaf node and selecting **Open Trigger Setup**.

Each ILA and IBA core has its own Trigger Setup window which provides a graphical interface for the user to set up triggers. The trigger mechanism inside each core can be modified at run-time without having to re-compile the design. The following sections describe how to modify the trigger mechanism's three components:

- Match Functions: Defines the match or comparison value for each match unit
- *Trigger Conditions:* Defines the overall trigger condition based on a binary equation or sequence of one or more match functions
- *Capture Settings:* Defines how many samples to capture, how many capture windows, and the position of the trigger in those windows

Each component is expandable and collapsible in the Trigger Setup window. To expand, click on the desired button at the bottom of the window (Figure 4-28).

Match Unit	Function	Value	Radix	Counter
🗠 M0:microProgAddr	==	00A	Hex	disabled
⊷ M1:microProgAddr	==	OFO	Hex	disabled
⊷ M2:microPortAddr	==	0_0000	Bin	disabled
🕶 M3:microPortDataIn	==	X000_X000(Bin	disabled
🕶 M4:microPortDataOut	==	X000_X00X	Bin	disabled
🕶 M5:microStrobes	==	X1	Bin	disabled
► M6:MPA_reg	==	100_000X	Bin	disabled
► M7:MP_control_regs	==	X_XX1X	Bin	exactly one clock cycle
► M8:MP_control_regs	==	X_X1X1	Bin	exactly one clock cycle
🕶 M9:microInterrupts	==	XX_XRXX	Bin	exactly one clock cycle
← M10:microInterrupts	==	XX_XXXX	Bin	exactly one clock cycle
∽ M11:sine	==	2000_0000_0000_0000	Bin	disabled

Figure 4-28: Trigger Setup Window with Only Match Functions Expanded

To collapse, click on the button to the left of the expanded section you wish to collapse (Figure 4-29).

0	Trigger Setup - DEV:2 MyL	Device2 (XC4VLX25) UNIT:	1 Myila1 (Ila)				с ^к о	r [2
ž	Match Unit	Function		Value		Radix	Counter	
 Match 	🕶 M0:microProgAddr	==			00A	Hex	disabled	
]	🕶 M1:microProgAddr	==			OFO	Hex	disabled	
	🕶 M2:microPortAddr	==			0_000	Bin	disabled	
	🕶 M3:microPortDataIn	==			X000(_X000(Bin	disabled	
	🕶 M4:microPortDataOut	==			X000(_X000(Bin	disabled	
	🕶 M5:microStrobes	==			X1	Bin	disabled	
	► M6:MPA_reg	==			100_000X	Bin	disabled	
	M7:MP_control_regs	==			X_XX1X	Bin	exactly one clock cycle	
	← M8:MP_control_regs	==			X_X1X1	Bin	exactly one clock cycle	
	🗢 M9:microInterrupts	==			XX_XRXX	Bin	exactly one clock cycle	
	🗢 M10:microInterrupts	==			XX_X000X	Bin	exactly one clock cycle	
	🕶 M11:sine	==		>000_000_000	000000000	Bin	disabled	
Triq	Add Active	Trigger Conditi	on Name	Trigger Co	ndition Equatio	n	Output Enable	
ă	Del	TriggerCon	dition0		MO		Pulse (High)	
 Capture 	Type: Window	Windows:	1	Depth: 4096	•	Position:	0	
ure	Storage Qualification:		Al	II Data				

Figure 4-29: Trigger Setup Window with All Sections Expanded

Capture Settings

The capture settings section of the Trigger Setup window (Figure 4-30) defines the number of windows, and where the trigger event occur in each of those windows. A window is a contiguous sequence of samples containing one (and only one) trigger event. If an invalid number is entered for any parameter, the text field turns red, and an error is displayed in the Message pane.

 Capture 	Type: Window 💌	Windows: 1 Depth: 4096 Position: 0
Jre	Storage Qualification:	All Data
► Capture	Type: N Samples 🔻	Samples Per Trigger: 512 Timestamp
ıre	Storage Qualification:	All Data

Figure 4-30: Capture Settings

Туре

The Type combo box in the capture settings defines the type of windows to use. If **Window** is selected, the number of samples in each window must be a power of two. However, the trigger can be in any position in the window. If **N Samples** is selected, the buffer will have as many windows as possible with the defined samples per trigger. The trigger will always be the first sample in the window if **N Samples** is selected.

Windows

The Windows text field is only available when **Window** is selected in the Type combo box. The number of windows is specified in this field and can be any positive integer from 1 to the depth of the capture buffer.

Depth

The Depth combo box is only available when **Window** is selected in the Type combo box. The Depth combo box defines the depth of each capture window. It is automatically populated with valid selections when values are typed into the Windows text field. Only powers of two are available.

Note: When the overall trigger condition consists of at least one match unit function that has a counter that is set to either **Occurring in at least** *n* **cycles** or **Lasting for at least** *n* **consecutive cycles**, the Window Depth or Samples Per Trigger setting cannot be less than eight samples. This is due to the pipelined nature of the trigger logic inside the ILA, IBA/OPB and IBA/PLB cores.

Position

The Position text field is only available when **Window** is selected in the Type combo box. The Position field defines the position of the trigger in each window. Valid values are integers from 0 to the depth of the capture buffer minus 1.

Samples Per Trigger

The Sample Per Trigger text field is only available when **N Samples** is selected in the Type combo box. Samples per trigger defines how many samples to capture once the trigger condition occurs. Valid values are any positive integer from 1 to the depth of the capture buffer. The trigger mark will always appear as sample 0 in the window. There will be as many sample windows as possible captured, given the overall sample depth.

Note: When occurring in at least *n* cycles or occurring for at least *n* consecutive cycles is selected for a match unit, and that match unit is a part of the overall trigger condition, the Window Depth or Samples Per Trigger cannot be less than 8. This is due to pipeline effects inside the ILA or IBA core.

Storage Qualification Condition

The *storage qualification condition* is a Boolean combination of events that are detected by the match unit comparators that are subsequently attached to the trigger ports of the core. The storage qualification condition evaluates trigger port match unit events to decide whether or not to capture and store each individual data sample. The trigger and storage qualification conditions can be used together to define when to start (or finish) the capture process and what data is captured, respectively.

The Storage Condition dialog box has a table of all the match units. Each match unit occupies a row in the table. The Enable column indicates if that match unit is part of the trigger condition. The Negate column indicates if that match unit should be individually negated (Boolean NOT) in the trigger condition.

The storage qualification condition can be configured to capture all data (see Figure 4-31, page 124), or it can be set up to capture data that satisfies a Boolean AND or OR

combination of all the enabled match units (see Figure 4-32, page 124). The overall Boolean equation can also be negated, selectable using the **Negate Whole Equation** checkbox above the table. The resulting equation appears in the Storage Condition Equation pane at the bottom of the window.

torage Condition		
All Data	OR Equation	Negate Whole Equatio
Match Unit	Enable	Negate
Storage Condition Equation		
	All Data	
	OK Cancel	

Figure 4-31: Storage Qualification Condition Set to Capture All Data

All Data AND Equation (All Data)		Negate Whole E	qualic
Match Unit	Enable	Negate	_
MO	¥		-
M1			_
M2			_
M3			_
M4	V		_
M5			_
M6	V	×	_
M7	¥		-
M8			
M9			
torage Condition Equation) && M4 && ! M6 &	&& M7)	

Figure 4-32: Storage Qualification Condition Using Boolean Equation

Match Functions

A *match function* is a definition of a trigger value for a single match unit. All the match functions are defined in the Match Functions section of the Trigger Setup window (Figure 4-33). One or more match functions can be defined in an equation or sequence in the Trigger Conditions section to specify the overall trigger condition of the core.

Match Unit	Function	Value	Radix	Counter
🗠 M0:microProgAddr	In Range	>=000, <=03F	Hex	at least 20 clock cycles
M1:microProgAddr	>=	0F0	Hex	for at least 2 consecutive clock cycles
M2:microPortAddr	==	0_0000	Bin	disabled
M3:microPortDataIn	==	0110_1001	Bin	disabled
M4:microPortDataOut	==	00	Hex	disabled
M5:microStrobes	==	RX	Bin	exactly 130 clock cycles
M6:MPA_reg	==	100_000X	Bin	disabled
M7:MP_control_regs	==	X_XX1X	Bin	exactly one clock cycle
M8:MP_control_regs	==	X_X1X1	Bin	exactly 230 clock cycles
M9:microInterrupts	==	XX_XRXX	Bin	exactly one clock cycle
M10:microInterrupts	==	X0C700X	Bin	exactly one clock cycle
∽ M11:sine	==	-13870	Signed	disabled

Figure 4-33: Setting the Match Functions

Match Unit

The Match Unit field indicates which match unit the function applies to. Clicking on the + symbol next to the match unit number (or double clicking on the field) will expand that match unit so it is displayed as individual trigger port bits in at tree structure. Individual values for each bit can then be viewed and set.

Function

The Function combo box selects which type of comparison is done. Only those comparators that are allowed for that match unit are listed.

Value

The Value field selects exactly which trigger value to apply to that match unit. It is displayed according to the Radix field. Double-clicking on the field will make it editable. Place the cursor before the value you want to change, and typing a valid trigger character will overwrite that character. Or, select the field by single-clicking, then proceed by typing the trigger characters. Valid characters for the different radices are:

- *Hex:* X, 0-9, and A-F. X indicates that all four bits of that nibble are don't cares. The "?" character indicates that the nibble consists of a mixture of 1s, 0s, Xs, Rs, Fs, and Bs (where appropriate)
- Octal: X, ?, 0-7
- Binary: X (don't care), 0, 1, R (rising), F (falling), and B (either transition). R, F, and B are only available if the match unit can detect transitions (Basic w/edges, Extended w/edges, Range w/edges)
- Unsigned: 0-9 (0 to 2^{n} -1 for an *n*-bit bus)
- Signed: 0-9 (-2^{n-1} to $2^{n-1} 1$ for an *n*-bit bus)

Also, when **Bin** is chosen as the radix, positioning the mouse pointer over a specific character will display a tool-tip, indicating the name and position of that bit.

Radix

The Radix combo box selects which radix to display in the Value field. Values are **Hex**, **Octal**, **Bin**, **Signed** (not allowed for **In Range** and **Out of Range** comparisons), and **Unsigned**.

Counter

The Counter field selects how many match function events must occur for the function to be satisfied. If the match counter is present for a particular match unit, the text in the Counter column will be in black text. If the counter is not present in the core, the text in that column will be grayed out. To change the value of the match counter, click on the counter cell, which will bring up the match unit counter dialog box (Figure 4-34).

Match Function: M7	×
Match Events	
Occurring in exactly	
1 (1 - 65536) clock cycles	
OK Cancel Reset	

Figure 4-34: Setting up the Match Counter

The Counter field selects how many match function events must occur for the function to be satisfied.

- If occurring in exactly *n* clock cycles is selected, then *n* contiguous or *n* noncontiguous events will satisfy the match function counter condition.
- If occurring in at least *n* clock cycles is selected, then *n* contiguous or *n* noncontiguous events will satisfy the match function counter condition and will remain satisfied until the overall trigger condition is met.
- If occurring for at least *n* consecutive cycles is selected, then *n* contiguous events will satisfy the match function counter condition and will remain satisfied until the overall trigger condition is met or the match function value is no longer satisfied.

Note: When the overall trigger condition consists of at least one match unit function that has a counter set to either **Occurring in at least** *n* cycles or Lasting for at least *n* consecutive cycles, the Window Depth or Samples Per Trigger setting cannot be less than eight samples. This is due to the pipelined nature of the trigger logic inside the ILA, IBA/OPB or IBA/PLB cores.

Trigger Conditions

A *trigger condition* is a Boolean equation or sequence of one or more match functions. The core will capture data based on the trigger condition. More than one trigger condition can be defined. To add a new trigger condition, click the **Add** button. To delete a trigger condition, highlight any cell in the row and click **Del**. Although many trigger conditions can be defined for a single core, only one trigger condition can be chosen (active) at any one time.

Active

The Active field is a radio button that indicates which trigger condition is the currently active one.

Trigger Condition Name Field

The Trigger Condition Name field provides a mnemonic for a particular trigger condition. Trigger Condition n is used by default (Figure 4-35).

► Trig	Add Del	Active	Trigger Condition Name TriggerCondition0	Trigger Condition Equation M0	Output Enable Pulse (High)	•
	Dot 1					

Figure 4-35: Viewing the Trigger Condition

Trigger Condition Equation

The Condition Equation field displays the current Boolean equation or state sequence of match functions that make up the overall trigger condition. By default, a logical AND of all the match functions present (one match function for each match unit) is the trigger condition. To change the trigger condition, click on the **Condition Equation** field, which brings up the Trigger Condition dialog box.

Trigger Condition Editor Dialog Box

If a trigger sequencer is present in the core, the Trigger Condition dialog will have two tabs: *Boolean* and *Sequencer*. When the Boolean tab is active, the trigger condition of a Boolean equation of the available match units. When the sequencer tab is active, the trigger condition is a state machine, where each state transition is triggered by a match function being satisfied.

The Boolean tab of the Trigger Condition dialog box has a table of all the match units. Each match unit occupies a row in the table. The Enable column indicates if that match unit is part of the trigger condition. The Negate column indicates if that match unit should be individually negated (Boolean NOT) in the trigger condition.

All the enabled match units can be combined in a Boolean AND or OR operation, selectable using the radio buttons below the match unit table. The overall equation can also be negated, selectable using the **Negate** checkbox below the table. The resulting equation appears in the Trigger Condition Equation pane at the bottom of the window (Figure 4-36).

AND Equation OR Equal	tion	🖌 Negate Whole E	quati
Match Unit	Enable	Negate	
MO	v		
M1			
M2			
M3	~	V	
M4			
M5			
M6			
M7	~		
M8			
M9			
rigger Condition Equation	(M0 && ! M3 && 1	M7)	

Figure 4-36: Setting the Trigger Condition Boolean Equation

The Sequencer tab of the Trigger Condition dialog box has a combo box from which you can select the number of levels in the trigger sequence and a table listing all the levels. The sequencer begins at Level 1 and proceeds to Level 2 when the match unit specified in Level 1 has been satisfied. The number of levels available is a parameter of the core, up to a maximum of 16 levels. Each level can look for a match unit being *satisfied* or *not satisfied*. To negate a level (for instance, to look for the absence of a particular match function) check the Negate cell for that level. A representation of the sequence appears in the Trigger Condition Equation pane at the bottom of the window (Figure 4-37).

XILINX

Trigger Condition: T	riggerCondition0	×			
Boolean Sequencer					
Number of Levels: 3 💌	_ L	se Contiguous Match Events Only			
Level	Match Unit	Negate			
1	M1	A			
2	M2				
3	M3				
Trigger Condition Equation M1 -> M2 -> M3					
OK Cancel					

Figure 4-37: Setting the Trigger Condition Sequencer

The trigger sequence in Figure 4-37 can be satisfied by the eventual occurrence of match unit events M0 followed by M1 followed by M3 (with any occurrence or non-occurrence of events in between). Enable the **Use Contiguous Match Events Only** checkbox if you desire the trigger sequence to be satisfied only upon contiguous transitions from M0 to M1 to M3 (and not, for instance, the transitions of M0 followed by M1 followed by !M1 followed by M3).

Output Enable

If the trigger output is present in the core, a column named Output Enable becomes available. This cell is a combo box that allows the user to select which type of signal will be driven by the **trig_out** port of the ILA or IBA core.

- *Disabled:* The output is a constant 0.
- *Pulse* (*High*): The output is a single clock cycle pulse of logic 1, 10 cycles after the actual trigger event.
- *Pulse (Low):* The output is a single clock cycle pulse of logic 0, 10 cycles after the actual trigger event.
- *Level (High):* The output transitions from a 0 to a 1, 10 cycles after the actual trigger event.
- *Level (Low):* The output transitions from a 1 to a 0, 10 cycles after the actual trigger event.

Saving and Recalling Trigger Setups

All the information in the Trigger Setup window can be saved to a file for recall later with the current project or other projects. To save the current trigger settings, select **Trigger Setup** \rightarrow **Save Trigger Setup**. A Save Trigger Setup As File dialog box will open, and the trigger settings can be saved in any location, with a .ctj extension. To load a trigger settings file into the current project, select **Trigger Setup** \rightarrow **Read Trigger Setup**. A Read Trigger Setup file dialog box will open, and you can navigate to the folder where the trigger settings file (with a .ctj extension) exists. Once the trigger setting file is chosen, select **Open**, and those settings will be loaded into the Trigger Setups window.

Running/Arming the Trigger

After setting up the trigger, select **Trigger Setup** \rightarrow **Run** to arm it. The trigger stays armed until the trigger condition is satisfied or you disarm the trigger. Once the trigger condition is satisfied, the core captures data according to the capture settings. When the sample buffer is full, the core stops capturing data. The data is then uploaded from the core and is displayed in the Waveform and/or Listing windows.

To force the trigger, select **Trigger Setup** \rightarrow **Trigger Immediate**. This causes the unit to ignore the trigger and storage qualification conditions and trigger immediately using a single sample window with the trigger position set to sample 0. After the sample buffer fills with data, the trigger disarms and the captured data appears in the Waveform and/or Listing window(s).

Stopping/Disarming the Trigger

To disarm the trigger, select **Trigger Setup** \rightarrow **Stop Acquisition**. If the trigger condition has been satisfied at least once before the acquisition is stopped, the Analyzer disarms the trigger and downloads/displays the captured data. Subsequent selections of **Trigger Setup** \rightarrow **Run** cause the trigger to re-arm.

Waveform Window

To view the waveform for a particular ILA or IBA core, select **Window** \rightarrow **New Unit Windows**, and the core desired. A dialog box appears for that ChipScope Pro Unit, and the user can select the **Trigger Setup**, **Waveform**, **Listing**, and/or **Bus Plot** window, or any combination. Windows cannot be closed from this dialog box. The same operation can be achieved by double-clicking on the **Waveform** leaf node in the project tree, or right-clicking on the **Waveform** leaf node and selecting **Open Waveform**.

The Waveform window displays the sample buffer as a waveform display, similar to many modern simulators and logic analyzers. All signal browser operations can also be performed in the waveform window, such as bus creation, radix selection, and renaming. To perform a signal operation, right-click on a signal or bus in the Bus/Signal column.

Bus and Signal Reordering

Buses and signals can be reordered in the Waveform window (Figure 4-38). Select one or more signals and buses, and drag it to its new location. A ghost image of the signal or signals appears with the cursor, and a red line shows the potential drop location.

Trigger Condition: T	riggerCondition0		×		
Boolean Sequencer					
Number of Levels: 3 -	U	se Contiguous Match Events On	ily		
Level	Match Unit	Negate	٦		
1	M1				
2	M2				
3	M3				
Trigger Condition Equation					
M1 -> M2 -> M3					
	OK Cancel				

Figure 4-38: Reordering Buses or Signals in the Waveform

Cut/Copy/Paste/Delete Signals and Buses

Signals and buses can be cut, copied, pasted, or deleted using right-click menus. Select one or more signals and/or buses, right click on a selected signal or bus, and select the operation desired. Alternatively, the standard Windows key combinations are available (**Ctrl+X** for cut, **Ctrl+C** for copy, **Ctrl+V** for paste, **Del** for delete).

Zooming In and Out

Select **Waveform** \rightarrow **Zoom** \rightarrow **Zoom In** to zoom in to the center of the waveform display, or right-click in the waveform section and select **Zoom** \rightarrow **Zoom In**. To zoom out from a waveform, use **Waveform** \rightarrow **Zoom** \rightarrow **Zoom Out**, or right-click in the waveform and select **Zoom** \rightarrow **Zoom Out**.

To view the entire waveform display select **Waveform** \rightarrow **Zoom** \rightarrow **Zoom Fit**, or right click in the waveform and select **Zoom** \rightarrow **Zoom Fit**.

To zoom into a specific area, just use the left mouse button to drag a rectangle in the waveform display. Once the drag is complete, a popup appears. Select **Zoom Area** to perform the zoom (Figure 4-39).

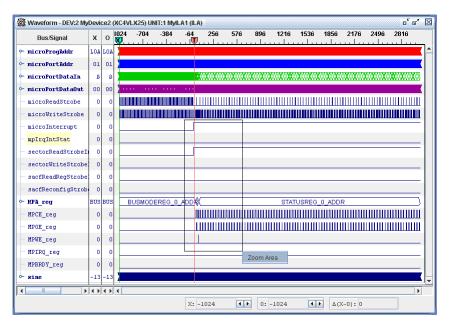


Figure 4-39: Zoom Area Using the Automatic Popup Menu

To zoom in to the space marked by the X and O cursors, select **Waveform** \rightarrow **Zoom** \rightarrow **Zoom X, O**, or right-click in the waveform and select **Zoom** \rightarrow **Zoom X, O**. Other zoom features include zooming to the previous zoom factor by selecting **Zoom** \rightarrow **Zoom Previous**, zooming to the next zoom factor by selecting **Zoom** \rightarrow **Zoom Forward**, and zoom to a specific range of samples by selecting **Zoom** \rightarrow **Zoom Sample** (Figure 4-40).

Zoom	to Sample	×
Start Window	0 Vin	dow 0 💌
Sample	823 🔽 San	nple 1815 💌
	OK Canc	el

Figure 4-40: Zoom to Sample Range

Centering the Waveform

Center the waveform display around a specific point in the waveform by selecting **Waveform** \rightarrow **Go To**, then centering the waveform display around the *X* and *O* markers, as well as the previous or next trigger position, or right-click in the waveform and select **Go To** (Figure 4-41).

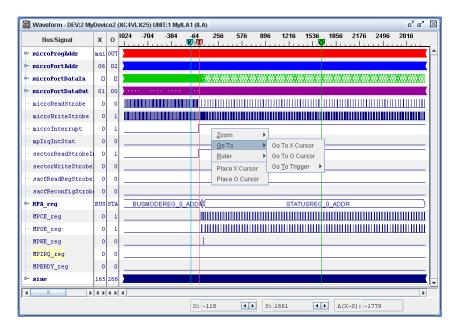


Figure 4-41: Centering the Waveform on a Marker

Cursors

Two cursors are available in the Waveform window: X and O. To place a cursor, right-click anywhere in the waveform section, and select **Place X Cursor** or **Place O Cursor**. A colored vertical line will appear indicating the cursor's position. Additionally, the status of all the signals and buses at that point will be displayed in the X or O column. The position of both cursors, and the difference in position of the cursors appears at the bottom of the Waveform window. Both cursors are initially placed at sample 0.

To move a cursor, either right-click in a new location in the waveform, or drag the cursor using the handles (X or O labels) in the waveform header, or drag the cursor-line itself in the waveform. Special drag icons will appear when the mouse pointer is over the cursor.

Sample Display Numbering

The horizontal axis of the waveform can be displayed as the sample number relative to the sample window (default) or by the overall sample number in the buffer. To display the sample number starting over at 0 for each window, select **Ruler** \rightarrow **Sample # in Window** in the right-click menu. To display the sample number as an overall sample count in the buffer, select **Ruler** \rightarrow **Sample # in Buffer** in the right-click menu. You can also select toggle the way that the samples that occur before the trigger marker are shown in the ruler (either negative or positive) by selecting **Ruler** \rightarrow **Negative Time/Samples** in the right-click menu.

Displaying Markers

A static red vertical bar is displayed at each trigger position. A static black bar is displayed between two windows to indicate a period of time where no samples were captured. To not display either of these markers, un-check them on the right-click menu under **Markers** \rightarrow **Window Markers** or **Markers** \rightarrow **Trigger Markers**.

Listing Window

To view the Listing window for a particular ILA or IBA core, select **Window** \rightarrow **New Unit Windows**, and the core desired. A dialog box will be displayed for that ChipScope Pro Unit, and the user can select the **Trigger Setup**, **Waveform**, **Listing**, and/or **Bus Plot** window, or any combination. Windows cannot be closed from this dialog box. The same operation can be achieved by double-clicking on the **Listing** leaf node in the project tree, or right-clicking on the **Listing** leaf node and selecting **Open Listing**.

The Listing window displays the sample buffer as a list of values in a table. Individual signals and buses are columns in the table (Figure 4-42). All signal browser operations can also be performed in the listing window, such as bus creation, radix selection, and renaming. To perform a signal operation, right-click on a signal or bus in the column heading.

>	Sample	microProgAddr	sine	microReadStrobe	microWriteStro
	0	LOAD SO, READY STATUS[01] ; else set the	-133288	0	0
	1	LOAD s0, READY_STATUS[01] ; else set the	-136647	0	0
	2	OUTPUT s0, VIOSTATUSREG_ADDR[06] ; ready condition	-139837	0	0
	3	OUTPUT s0, VIOSTATUSREG_ADDR[06] ; ready condition	-142852	0	1
	4	JUMP mainLoop[004] ; and keep looping	-145683	0	0
	5	JUMP mainLoop[004] ; and keep looping	-148325	0	0
	6	mainLoop: INPUT s0, VIOSTATUSREG_ADDR[06] ; Read status register		0	0
	7	<pre>mainLoop: INPUT s0, VIOSTATUSREG_ADDR[06] ; Read status register</pre>	-153027	1	0
	8	AND s0, ERROR_STATUS[02] ; Check for error condition AND s0, ERROR_STATUS[02] ; Check for error condition JUMP NZ, mainLoop[004] ; and keep looping if set JUMP NZ, mainLoop[004] ; and keep looping if set LOAD s0, READY_STATUS[01] ; else set the	-155084	0	0
	9	AND s0, ERROR_STATUS[02] ; Check for error condition	-156943	0	0
	10	JUMP NZ, mainLoop[004] ; and keep looping if set	-158608	0	0
	11	JUMP NZ, mainLoop[004] ; and keep looping if set	-160081	0	0
	12	LOAD SO, READY_STATUS[01] ; else set the	-161367	0	0
	13	LOAD SO, READY_STATUS[01] ; else set the	-162473	0	0
	14	OUTPUT s0, VIOSTATUSREG_ADDR[06] ; ready condition	-163407	0	0
	15	OUTPUT s0, VIOSTATUSREG_ADDR[06] ; ready condition JUMP mainLoop[004] ; and keep looping	-164176	0	1
	16	JUMP mainLoop[004] ; and keep looping	-164791	0	0
	17	JUMP mainLoop[004] ; and keep looping	-165265	0	0
	18	<pre>mainLoop: INPUT s0, VIOSTATUSREG_ADDR[06] ; Read status register</pre>	-165608	0	0
	19	mainLoop: INPUT s0, VIOSTATUSREG_ADDR[06] ; Read status register	-165834	1	0
	20	AND s0, ERROR_STATUS[02] ; Check for error condition	-165957	0	0
	21	AND s0, ERROR_STATUS[02] ; Check for error condition JUMP NZ, mainLoop[004] ; and keep looping if set	-165992	0	0
	22	JUMP NZ, mainLoop[004] ; and keep looping if set	-165952	0	0
	23	JUMP NZ, mainLoop[004] ; and keep looping if set LOAD s0, READY_STATUS[01] ; else set the	-165854	0	0
	24	LOAD SO, READY_STATUS[01] ; else set the	-165712	0	0
	25	LOAD s0, READY_STATUS[01] ; else set the	-165544	0	0
	26	OUTPUT s0, VIOSTATUSREG_ADDR[06] ; ready condition	-165361	0	0
	27	OUTPUT s0, VIOSTATUSREG_ADDR[06] ; ready condition	-165182	0	1
	28	OUTPUT s0, VIOSTATUSREG_ADDR[06] ; ready condition JUMP mainLoop[004] ; and keep looping	-165020	0	0
	29	JUMP mainLoop[004] ; and keep looping	-164890	0	0
	30	<pre>mainLoop: INPUT s0, VIOSTATUSREG_ADDR[06] ; Read status register</pre>	-164802	0	0

Figure 4-42: The Listing View

Bus and Signal Reordering

Buses and signals can be reordered in the Listing window. Simply click on a signal or bus heading in the table, and drag it to a new location.

Removing Signals/Buses

Individual signals and buses can be removed from the Listing window by right-clicking anywhere in the signal's column and selecting **Remove**. If **Remove All** is selected, all signals and buses will be removed.

Cursors

Cursors are available in the Listing window the same way as in the Waveform window. To place a cursor, right-click in the data section of the Listing window, and select either **Place X Cursor** or **Place O Cursor**. That line in the table will be colored the same as the cursor color. To move the cursor to a different position in the table, either right-click in the new location and do the same operation as before, or right-click on the cursor handle in the first column, and drag it to the new location.

Goto Cursors

To automatically scroll the listing view to a cursor, right-click and select **Go To** \rightarrow **Go To X Cursor** or **Go To** \rightarrow **Go To O Cursor**.

Bus Plot Window

To view the Bus Plot window for a particular set of ILA or IBA buses, select **Window** \rightarrow **New Unit Windows** and the core desired. A dialog box will be displayed for that ChipScope Pro Unit, and the user can select the Trigger Setup, Waveform, Listing, and /or Bus Plot window, or any combination. Windows cannot be closed from this dialog box. The same operation can be achieved by double-clicking on the **Bus Plot** in the project tree, or right-clicking on **Bus Plot** and selecting **Open Bus Plot**.

Any buses for a particular core can be displayed in the Bus Plot window (Figure 4-43). The Bus Plot window displays buses as a graph of a bus's values over time, or one bus's values vs. another's.

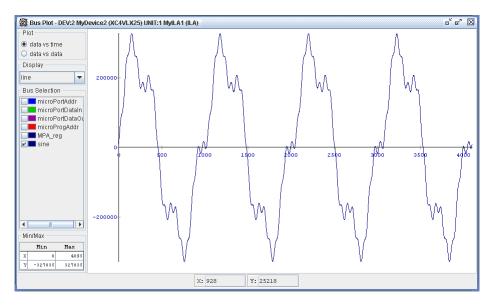


Figure 4-43: The Bus Plot Window: Data vs. Time

Plot Type

Plot types are chosen in the upper left group of radio buttons. There are two plot types: *data vs. time* and *data vs. data*. When data vs. time is chosen (Figure 4-43, page 134), any number of buses can be displayed at one. When data vs. data is chosen (Figure 4-44), two buses need to be selected, and each point in the plot's *x* coordinate will be the value of one of the buses at a particular time, and the *y* coordinate will the value of the other bus at the same time.

Each bus will have its own color, and will be displayed according to its radix (hexadecimal, binary, octal, token and ASCII radices are displayed as unsigned decimal values with scale factor = 1.0, precision = 0).

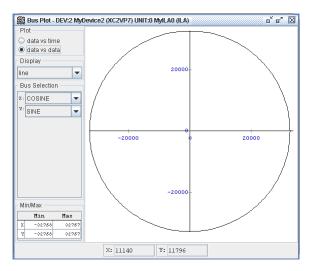


Figure 4-44: The Bus Plot Window: Data vs. Data

Display Type

The bus plot can be displayed using lines, points, or lines and points. The display type affects all bus values being displayed.

Bus Selection

The bus selection control allows you to select the individual buses to plot (in data vs. time mode) or the buses to plot against one another (in data vs. data mode). The color of each bus can be changed by clicking on the colored button next to the bus name (Figure 4-43, page 134).

Min/Max

The Min/Max display is used to show the maximum and minimum values of the axis in the current view of the bus plot.

Cursor Tracking

The X: and Y: displays at the bottom of the bus plot indicate the current X and Y coordinates of the mouse cursor when it is present in the bus plot view.

VIO Console Window

To open the Console window for a VIO core, select **Window** \rightarrow **New Unit Windows**, and the core desired. A dialog box will be displayed for that ChipScope Pro Unit, and the user can select the **Console** window. (Windows cannot be closed from this dialog box.)

The Console window is for VIO cores only. The Console allows users to see the status and activity of the VIO core input signals and modify the status of the VIO core output signals. To open the Console for a particular VIO core, double-click on the **Console** leaf node in the project tree.

All signal browser operations can also be performed in the Console window, such as bus creation, radix selection, and renaming. To perform a signal operation, right-click on a signal or bus in the column heading.

The Console window has a table with two columns: Bus/Signal and Value (Figure 4-45).

Figure 4-45: **The VIO Console Window**

Bus/Signal Column

The Bus/Signal column contains the name of the bus or signal in the VIO core. If it is a bus, it can be expanded or contracted to view or hide the constituent signals in the bus. In addition to all the operations available in the signal manager, two additional parameters can be set through the right-click menus: type and activity persistence.

VIO Bus/Signal Type

The signal's type determines how that signal is displayed in the Value column of the VIO Console. Different types are available depending on the type of VIO signal:

- VIO input signals have the following display types:
 - Text: ASCII characters
 - ♦ LEDs
 - Choose between red, blue, and green LEDs
 - Either active-High or active-Low
- VIO input buses have only one valid display type:
 - ♦ Text
- VIO output signals have the following control types:
 - Text: ASCII text field
 - Push button (either active-High or active-Low)
 - Toggle button
 - Pulse train (synchronous outputs only)
 - Single pulse (synchronous outputs only)
- VIO output buses have two valid control types:
 - ♦ Text
 - Pulse train (synchronous output buses only)

VIO Bus/Signal Activity Persistence

The persistence of a signal indicates how long the activity is displayed in the Value column (see "Value Column," page 138 or a description of signal activity).

If the persistence is:

- *Infinite:* The activity is displayed in the column forever.
- Long: The activity is displayed in the column for 80 times the sample period
- Short: The activity is displayed in the column for 8 times the sample period

When the time limit on the persistence expires, a new activity is displayed. If no activity occurred in the last sample cycle, no activity is displayed in the Value column.

Bus and Signal Reordering

Buses and signals can be reordered in the Waveform window. Click on a signal or bus, and drag it to its new location. A red line then appears in the Bus/Signal column indicating the potential drop location.

Cut/Copy/Paste/Delete Signals and Buses

Individual signals and buses can be cut, copied, pasted, or deleted using right-click menus. Either right-click on a signal or bus and select the operation desired, or use the standard

Windows key combinations (**Ctrl+X** for cut, **Ctrl+C** for copy, **Ctrl+V** for paste, **Del** for delete).

Value Column

The Value column displays the current value of each of the signals in the console (see Figure 4-45, page 136). In the case of VIO core inputs, those cells are non-editable. Buses are displayed according to their selected radix. The VIO core inputs are updated periodically by default, according to a drop down combo box at the bottom of the console. Each of the VIO core inputs captures, along with the current value of the signal, activity information about the signal since the last time the input was queried. At high design speeds, it is possible for a signal to be sampled as a 0, then have the signal transition from a 0 to a 1, then back to a 0 again before the signal is sampled again.

In the case of synchronous inputs, the activity is also detected with respect to the design clock. This can be useful in detecting glitches. If a 0 to 1 transition is detected, an up arrow appears alongside the value. If a 1 to 0 transition is detected, a down arrow appears. If both are detected, a two-headed arrow is displayed. The length of time the activity is displayed in the table is called the *persistence*. The persistence is also individually selectable via the right-click menu.

Note: The activity arrow is displayed in *black* if the activity is synchronous and *red* if it is asynchronous.

You can choose the VIO signal/bus value type by right-clicking on the signal or bus and selecting the Type menu choice (Figure 4-46).

Bus/Signal			Value		
System Reset		0			
γ−System Statu	Rename	00004		_	
	Туре	Þ	🗆 Text Field		
Ready	Activity Persistence	١	Push Button	•	🗆 High
Error	Add to Bus	Þ	🗹 Toggle Buttor	n	🗆 Low
-Get Lock	Reverse Bus Order		🗆 Pulse Train		
- Cmd Ready	Bus Radix	Þ	Single Pulse		
Buffer Re	Сору				
- SACF Sector	Cut		0000000		
SACF Sector Paste - Sector Buff Sector Buff Sector Buffer All		л		-	
		00			
			Edit	_	Run
					Run
⊶ Sine Wave Se	elect [1:0]	3			
• SACF Sector	Count [15:0]	008F			
-Sector Test	Strobe	л			
- Sector Buffe	r Read Data [7:0]	00			
- SACE MPU Add	iress [7:0]	05			
- SACF MPU Read Strobe			л		
- SACE MPU Dat	a [7:0]		00		
- SACF CFGADDF	t [2:0]		0		
Reconfigure Strobe					

Figure 4-46: The Type Selection Menu

Text Field

When the **Text Field** type is selected, a text field is available for input using only the following valid characters:

- 0 and 1 for individual signals and binary buses
- 0-9, A-F for hex buses
- 0-7 for octal buses
- Valid signed and unsigned integers

Push Button

The **Push Button** type simulates an actual push button on a PCB. The inactive value is set when the button is not pressed in (0 for active-High, 1 for active-Low). As long as the button is pressed in, the active value will be output from the VIO core.

Toggle Button

The **Toggle Button** type switches between a 1 and a 0 with a single click.

Pulse Train (Synchronous outputs only)

The **Pulse Train** output type provides a control for synchronous outputs. A pulse train is a 16-cycle train of 1's and 0's, defined by the user. To edit the pulse train, click **Edit**. This brings up the Pulse Train dialog box (see Figure 4-47). One text field is available for each cycle in the pulse train. The text fields are populated by default according to the last value of the bus or signal. For buses, the fields are always displayed in binary to allow explicit control over each of the individual signals.

When **Run** is clicked, the pulse train is executed one time. This allows fine control over the output with respect to the design clock.

Pulse ⁻	Train for Dire	ectory En	try Read 🗙
Cycle 0:	0000_0000_0000	Cycle 8:	0100_0000_0110
Cycle 1:	0000_0000_0000	Cycle 9:	1000_0000_0111
Cycle 2:	0000_0001_0000	Cycle 10:	000_0000_1000
Cycle 3:	0000_0010_0001	Cycle 11:	0000_0000_1001
Cycle 4:)000_0100_0010	Cycle 12:	000_0000_1010
Cycle 5:	000_1000_0011	Cycle 13:	0000_0000_0000
Cycle 6:	0001_0000_0100	Cycle 14:	0000_0000_0000
Cycle 7:	010_0000_0101	Cycle 15:	0000_0000_0000
	ОК	Cancel]

Figure 4-47: The Pulse Train Dialog

Single Pulse (Synchronous Outputs Only)

The **Signal Pulse** control is a special kind of push button. When the button is pressed, instead of the core driving a constant active value for the duration of the button being pressed, a pulse train with a single high cycle is executed exactly once.

VIO Core Menu and Toolbar Controls

When the VIO console is in focus, the VIO core-specific menu and toolbar controls can be used to change the behavior of the VIO core inputs or outputs, as applicable (see Figure 4-48). The toolbar controls are described from left-to-right in the following sections.

ChipScope Pro Analyzer [sacfdemo_v4]	ChipScope Pro Analyzer [sacfdemo_v
jle View JTAG Chain Device Vio Window Help ■ 💽 Sampling Period: Manual Scan 🔻 S! U! 🔊 🕸	Eile View JTAG Chain Device VIO Window Help
oject: sacfdemo_v4 260 ms AG Chain 1s - DEV:0 MvDevice0 (Svstas	Project: sacfdemo_v4 Update Static Outputs
DEV:1 MyDevice1 QVCF5 ≤ DEV:2 MyDevice2 QVC4Manual Scan	DEV:0 MyDevice0 (System_ACE DEV:1 MyDevice1 (XCF32P)
- UNITED MYVIOD (VIO)	🕈 – DEV:2 MyDevice2 (XC4VLX25) JTAG Scan Rate 🕨 –
	VIII:0 MyVI00 (VI0) Qiose VI0 Console VI0 Console

Figure 4-48: VIO Toolbar and Menu Options

JTAG Scan Rate

The **JTAG Scan Rate** at which the VIO core inputs are read is selectable via a combo box. The default scan rate is 250 ms. You can also set the sample period to 500 ms, 1s, 2s, or Manual Scan. When Manual Scan is chosen, the **Sample Once (S!)** button becomes enabled. At that point, the VIO core inputs are only read by pressing the **Sample Once** toolbar button or by selecting the **VIO** \rightarrow **Sample Once** menu option.

Update Static Outputs

By default, when one VIO core output is changed, information is immediately sent to the VIO core to set up that particular output. To update all non-pulse train outputs at once, click **Update Static Outputs (U!)** toolbar button or select the **VIO** \rightarrow **Update Static Outputs** menu option.

Reset All Outputs

To reset all outputs to their default state (0 for text fields and toggle buttons, all 0 pulse train for pulse trains) click the **Reset All Outputs** toolbar button or select the **VIO** \rightarrow **Reset All Outputs** menu option.

Clear All Activity

At some point, it might be desirable to reset the activity display for all VIO core inputs. To do so, press the **Clear All Activity** toolbar button or select the **VIO** \rightarrow **Clear All Activity** menu option. All input activity will be reset, regardless of the selected persistence.

System Monitor

The Virtex-5 devices include a new feature called a System Monitor. The System Monitor function is built around a 10-bit, 200-kSPS (kilo samples per second) analog-to-digital converter (ADC). When combined with a number of on-chip sensors, the ADC can measure FPGA physical operating parameters including on-chip power supply voltages and die temperature. For additional information, see <u>UG192</u>, *Virtex-5 System Monitor User Guide*.

The Analyzer provides real-time JTAG access to the on-chip voltage and temperature sensors of the System Monitor primitive. All of the on-chip sensors are available before and after the Virtex-5 device has been configured with a valid bitstream. The System Monitor functionality does not require that you instantiate a System Monitor primitive block into your design. The only requirement is that the System Monitor-specific pins of the Virtex-5 device are properly connected on the system board.

In the Analyzer project tree, each Virtex-5 device in the JTAG chain will have a System Monitor Console node (as shown in Figure 4-49). Right-clicking on the System Monitor node in the project tree will show an option for opening the System Monitor viewer. Left-clicking on the System Monitor node in the project tree will show the various sensors in the signal browser. In the signal (or sensor) browser, you can rename or change the display units of the various sensors.

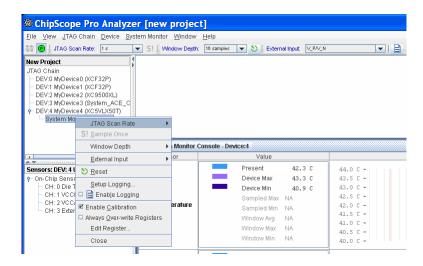


Figure 4-49: System Monitor Project Tree Node and Signal Browser

System Monitor Console

The System Monitor Console sensor value viewer is shown in Figure 4-50. Each sensor value can be displayed in a history window or written to a log file. The following display values can be enabled for each sensor:

- Current value that is read directly from the System Monitor sensor
- Device maximum and minimum values that are read directly from the System Monitor sensor peak detectors
- Sampled maximum and minimum values that are derived from all sensor values that have been collected by the Analyzer since opening a JTAG cable connection (or the last System Monitor reset)
- Windowed average, maximum, and minimum values that are calculated over a sliding window of sensor values that have been collected by the Analyzer since opening a JTAG cable connection (or the last System Monitor reset)

The *sampled* and *windowed* values that are calculated by the System Monitor viewer can be reset by clicking on the **Reset** button on the toolbar.

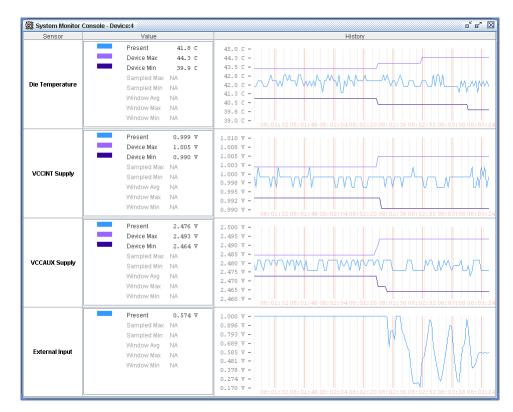


Figure 4-50: System Monitor Console Showing Valid Sensor Data

🗐 System Monitor (Console - Device:4	o ^r s ² 🗵
Sensor	Value	History
Die Temperature	Current -273.2 C Device Max -273.2 C Device Min -273.2 C Sampled Max NA Sampled Min NA Window Avg -273.2 C Window Max -273.2 C Window Min -273.2 C	-273.0 C - -273.1 C - -273.3 C - -273.3 C - -273.5 C - -273.6 C - -273.6 C - -273.6 C - -273.9 C - -273.0 C - 09:50100 09:5012
VCCINT Supply	Current 0.000 V Device Max 0.000 V Device Min 0.000 V Sampled Max NA Sampled Min Vindow Avg 0.000 V Window Max 0.000 V Window Max 0.000 V	1.000 V - 0.875 V - 0.750 V - 0.625 V - 0.500 V - 0.275 V - 0.250 V - 0.250 V - 0.250 V - 0.000 V - 0.90 501 0 09:5012
VCCAUX Supply	Current 0.000 ♥ Device Max 0.000 ♥ Device Min 0.000 ♥ Sampled Max NA Sampled Min NA Window Avg 0.000 ♥ Window Max 0.000 ♥ Window Min 0.000 ♥	1.000 W 0.875 V 0.750 V 0.625 V 0.500 V 0.500 V 0.375 V 0.250 V 0.125 V 0.000 V 0.915 0:00 09: 50:2

Figure 4-51: System Monitor Console Showing Invalid Sensor Data

Note: If the System Monitor is not reporting valid sensor data, the System Monitor Console displays an Invalid Data banner message across the window (see Figure 4-51).

System Monitor Console Toolbar

The System Monitor Console toolbar and right-click menu options shown in Figure 4-49, page 141 provide a means to customize and interact with the System Monitor Console.

JTAG Scan Rate

The **JTAG Scan Rate** at which the System Monitor sensor data is read is selectable via a combo box. The default scan rate is 1s. You can also set the sample period to 1s, 2s, 5s, 10s, 30s, 1min, or Manual Scan. When Manual Scan is chosen, the **Sample Once (S!)** button becomes enabled. At that point, the System Monitor data is only read by pressing the **Sample Once** toolbar button or by selecting the **System Monitor** \rightarrow **Sample Once** menu option.

Window Depth

The depth of the window used in the sliding window calculations in the System Monitor viewer can be set using the **Window Depth** combobox on the toolbar or in the **System Monitor** \rightarrow **Window Depth** menu. The depth of the sampling window can be set to 2, 4, 8, 16, 32, 64, or 128 samples.

External Input

The System Monitor component monitors voltage levels on external sensors. You can view any external sensor input one at a time by using the **External Input** option. Valid External Input selections include:

- Any of the 16 user-defined VAUXP/VAUXN external sensors
- The V_P/V_N dedicated external sensors
- The V_REFP reference voltage input
- The V_REFN reference voltage input

Select No Input to disable the viewing of the external input (default).

Reset

The **Reset** button resets the System Monitor Console display.

Enable Logging

The **Enable Logging** toolbar button and **System Monitor** \rightarrow **Enable Logging** menu option enables the file logging feature that saves the System Monitor sensor data in a text file for use in offline analysis.

System Monitor Data Logging

The **System Monitor** \rightarrow **Setup Logging** menu option opens the dialog window that is shown in Figure 4-52. The settings in this window are used to customize the logging *feature*.

ChipS	cope Pro Analyzer - System Monitor Logging	×
?	Log File	
	c:Villinx/ChipScope_Pro_9_1ibinInftsystem_monitor.log Brows	3e
	Log File Format	
	CSV File Formatted File	
	Log File Limit	
	10000 🖲 Samples 🔾 kB	
	OK Cancel	

Figure 4-52: System Monitor Setup Logging Window

Log File

The **Browse** button is used to select the location of the System Monitor log file. The default location is <*CHIPSCOPE_INSTALL*>/bin/<*PLATFORM*>/system_monitor.log, where <*CHIPSCOPE_INSTALL*> is the installation directory and <*PLATFORM*> is the operating system platform (nt, nt64, lin, lin64, or sol).

Log File Format

The System Monitor log file is a text file that can be formatted in two different ways: comma-separated value (CSV) file for machine processing or as a human-readable formatted file.

Log File Limit

The System Monitor logging system can generate a lot of data that consumes a large amount of disk space. To alleviate the problem, the log data can be split across multiple separate files based on a log file limit. The log file limit can be based on a specific number of samples or by file size (in kilobytes).

Help

Viewing the Help Pages

The Analyzer help pages contain information for only the currently opened versions of the software and each of the core units. Selecting Help \rightarrow About: ChipScope Software displays the version of the software. Selecting Help \rightarrow About: Cores displays detailed core parameters for every detected core. Individual core parameters can be displayed by right-clicking on the unit in the project tree and selecting Show Core Info.

Also, you do not need to reinstall the ChipScope Pro tools to convert your evaluation version to a full version. You can also register an evaluation version of the Analyzer by selecting the **Help** \rightarrow **Register ChipScope Pro** menu option and typing in the appropriate full-version registration ID. More information on how to obtain a full version of ChipScope Pro is available at <u>http://www.xilinx.com/chipscopepro</u>.

ChipScope Pro ILA Waveform Toolbar Features

In addition to the menu options, other Analyzer ILA waveform commands are available on a toolbar residing directly below the Analyzer menu (Figure 4-53). The second set of toolbar buttons is available only when the Trigger Setup window is open. The third and fourth sets of toolbar buttons are only available when the Waveform window is active.



Figure 4-53: Main ChipScope Pro Analyzer Toolbar Display

The toolbar buttons (from left to right) correspond to the following equivalent menu options:

- **Open Cable/Search JTAG Chain:** Automatically detects the cable, and queries the JTAG chain to find its composition
- Turn On/Off Auto Core Status Polling: Green icon means polling is on, red icon means polling is off. Same as JTAG Chain → Auto Core Status Poll
- Run: Same as Trigger Setup \rightarrow Run (F5)
- Stop: Same as Trigger Setup \rightarrow Stop Acquisition (F9)
- Trigger Immediate: Same as Trigger Setup → Trigger Immediate (Ctrl+F5)
- Go To X Marker: Same as Waveform \rightarrow Go To \rightarrow Go To X Marker
- Go To O Marker: Same as Waveform \rightarrow Go To \rightarrow Go To O Marker
- Go To Previous Trigger: Same as Waveform \rightarrow Go To \rightarrow Trigger \rightarrow Previous
- Go To Next Trigger: Same as Waveform \rightarrow Go To \rightarrow Trigger \rightarrow Next
- Zoom In: Same as Waveform \rightarrow Zoom \rightarrow Zoom In
- Zoom Out: Same as Waveform \rightarrow Zoom \rightarrow Zoom Out
- Fit Window: Same as Waveform \rightarrow Zoom \rightarrow Zoom Fit

ChipScope Pro Analyzer Command Line Options

On Windows systems, the Analyzer can be started either from the command line or from the **Start** menu.

- On Windows systems, you can invoke the analyzer from the command line by running:
 - \$CHIPSCOPE\analzyer.exe
- On Linux systems, you can invoke the analyzer from the command line by running:
 - \$CHIPSCOPE/bin/lin/analzyer.sh
- On Solaris systems, you can invoke the analyzer from the command line by running:
 - \$CHIPSCOPE/bin/sol/analzyer.sh

where \$CHIPSCOPE is the installation location.

Optional Arguments

The following command line options are available, if run from the command line:

```
-geometry <width>x<height>+<left edge x coord>+<top edge y coord>
```

Set location, width and height of the Analyzer program window.

-project cpath and filename>

Reads in specified project file at start. Default is not to read a project file at start up.

-init <path and filename>

Read specified init file at start up and write to the same file when the Analyzer exits. The default is: %userprofile%\.chipscope\cs_analyzer.ini

- -log <path and filename>
- -log stdout

Write log messages to the specified file. Specifying stdout will write to standard output. The default is: \$HOME/.chipscope/cs_analyzer.log

Windows Command Line Example

```
C:\Xilinx\10.1\ChipScope\analyzer.exe -log c:\proj\t\t.log -init
C:\proj\t\t.ini -project c:\proj\t\t.cpj -geometry 1000x300+30+600
```


Chapter 5

ChipScope Engine JTAG Tcl Interface

Overview

This interface provides Tcl scripting access to JTAG download cables via the ChipScope Engine JTAG (CseJtag) communication library. The purpose of the CseJtag Tcl interface is to provide a simple scripting system to access basic JTAG functions. In a few lines of Tcl script, you can scan and manipulate the JTAG chain through standard Xilinx cables.

For further information on JTAG, see XAPP139, *Configuration and Readback of Virtex FPGAs Using (JTAG) Boundary Scan*. For information about Tcl, see Tcl Developer Xchange at http://www.tcl.tk.

Requirements

- Windows XP Professional (32- or 64-bit), Windows Vista Business (32- or 64-bit), or RedHat Enterprise Linux 4 or 5 (32- or 64-bit)
- Supported JTAG cable such as Platform Cable USB, Parallel Cable IV, Parallel Cable III, or MultiPRO
- A Tcl shell (xtclsh.exe is provided in the ISE 10.1 tool installation) or the ActiveTcl shell (available from http://www.activestate.com)
- The required environment variables are set up by using the cs_xtclsh.bat script (on Windows) or cs_xtclsh.sh script (on Linux). These scripts also open the xtclsh shell with any arguments provided after the script name

Limitations

The ChipScope Engine JTAG Tcl interface package favors simplicity over performance. Some commands such as ::chipscope::csejtag_tap_shift_chain_ir and ::chipscope::csejtag_tap_shift_chain_dr transfer bits as strings (for example, "0001000") instead of as packed binary data structures. The extra overhead in converting particularly large data strings does result in some loss of performance; however, the simple design of the application programming interface (API) and the use of the Tcl scripting language makes Tcl/JTAG an easy-to-use means to interact with devices in the JTAG chain.

Note: The CseJtag Tcl interface is only compatible with software that uses the CseJtag interface to the JTAG cable communication device (such as the Analyzer software tool and the Embedded Development Kit (EDK) XMD software debugger tool). Tools such as iMPACT do not use the CseJtag interface and therefore are *not* compatible for use with CseJtag Tcl scripts or programs.

CseJtag Tcl Command Summary

The CseJtag Tcl interface commands belong to a namespace called **::chipscope::**. The CseJtag Tcl interface is comprised of four commands (see Table 5-1), each having one or more subcommands.

Command	Description
::chipscope::csejtag_session	Manages CseJtag sessions. A session is used to maintain all data and messaging associated with a JTAG target. See Table 5-2 for a summary of all subcommands for this command.
::chipscope::csejtag_db	Interacts with the CseJtag JTAG database. The CseJtag JTAG database contains all data associated with known JTAG devices. See Table 5-3 for a summary of all subcommands for this command.
::chipscope::csejtag_target	Manages connections to CseJtag targets, such as JTAG download cables, JTAG emulators, and other JTAG devices. See Table 5-4, page 151 for a summary of all subcommands for this command.
::chipscope::csejtag_tap	Interacts with the JTAG Test Access Port (TAP) of CseJtag targets. Operations include navigating the TAP state machine and shifting data into and out of the TAP. See Table 5-5, page 152 for a summary of all subcommands for this command.

Table 5-1: CseJtag Tcl ::chipscope:: Commands

A summary of the CseJtag Tcl subcommands is shown in Table 5-2. See "Command Details," page 153 for additional information about these commands.

Table 5-2:	Summary of	f ::chipscope::csejtag_	_session Subcommands
------------	------------	-------------------------	----------------------

Subcommand	Description
create	Creates and initializes a session.
destroy	Destroys and frees up memory resources used by an existing session.
get_api_version	Gets the CseJtag API library version information.
send_message	Sends a message using the session message router function.

Subcommand	Description
add_device_data	Adds device records to the JTAG database.
lookup_device	Looks up device information in the JTAG database.
get_device_name_for_idcode	Gets the name of a device from the JTAG database by using an IDCODE.
parse_bsdl	Extracts device data for a JTAG device by parsing a Boundary Scan Description Language (BSDL) buffer.
parse_bsdl_file	Extracts device data for a JTAG device by parsing a Boundary Scan Description Language (BSDL) file.

Table 5-3:	Summary of :	:chipscope::csejtag	_db Subcommands
------------	--------------	---------------------	-----------------

Table 5-4: Summary of ::chipscope::csejtag_target Subcommands

Subcommand	Description
open	Opens a connection to a JTAG target and associate it with a session.
close	Closes the connection to an open JTAG target and remove it from the session.
lock	Attempts to obtain an exclusive lock on a JTAG target.
unlock	Releases an exclusive lock on a JTAG target.
get_lock_status	Gets the lock status of a JTAG target.
clean_locks	Releases all cable locks and cleans up lock-related resources.
flush	Flushes the data buffer of a JTAG target.
set_pin	Sets the value of a JTAG target TAP pin.
get_pin	Gets the value of a JTAG target TAP pin.
pulse_pin	Pulses a JTAG target TAP pin.
wait_time	Waits for a specified amount of time.
get_info	Gets information associated with a JTAG target.

Subcommand	Description	
autodetect_chain	Attempts to automatically detect all information pertaining to the JTAG chain currently connected to the target.	
interrogate_chain	Scans the JTAG chain to determine the length of the chain and the IDCODE information of each device in the chain.	
get_device_count	Gets the number of devices in the JTAG chain.	
set_device_count	Sets the number of devices in the JTAG chain.	
get_irlength	Gets the instruction register (IR) length of a device.	
set_irlength	Sets the instruction register (IR) length of a device.	
get_device_idcode	Gets the IDCODE of a device.	
<pre>set_device_idcode</pre>	Sets the IDCODE of a device.	
navigate	Navigates to a JTAG TAP state.	
shift_chain_ir	Shifts a stream of bits into and out of the instruction register of the JTAG chain.	
shift_chain_dr	Shifts a stream of bits into and out of the data register of the JTAG chain.	
shift_device_ir	Shifts a stream of bits into and out of the instruction register of a particular device in the JTAG chain.	
shift_device_dr	Shifts a stream of bits into and out of the data register of a particular device in the JTAG chain.	

Table 5-5: Summary of ::chipscope::csejtag_tap Subcommands

Command Details

::chipscope::csejtag_session create

This is typically the first subcommand call made to the ChipScope Engine. The session handle that is returned by this command allows you to open and control JTAG targets. This command also initializes the session with data obtained from various data files located in the default directory called <*LIBCSEJTAG_DLL_PATH*>/data, where <*LIBCSEJTAG_DLL_PATH*> denotes the absolute path location of the libCseJtag.dll file.

Syntax

::chipscope::csejtag_session create messageRouterFn [opt_args...]

Arguments

Argument	Туре	Description
messageRouterFn	Required	Message router function name. Use a value of 0 to route all messages to stdout.
datadir= <path></path>	Optional	Directs the command to look for data files in <i><path></path></i> instead of in the default <i><libcsejtag_dll_path>/</libcsejtag_dll_path></i> data location. Note: All subsequent calls to the ::chipscope::csejtag_session create subcommand use <i><path></path></i> unless a new one is specified.
-server <host></host>	Optional	Creates a session associated with the ChipScope server host name denoted by <i><cs_server_host_name></cs_server_host_name></i> .
-port <portnum></portnum>	Optional	Creates a session associated with the ChipScope server port number denoted by <i><cs_server_port_number></cs_server_port_number></i> .

Table 5-6: Arguments for Subcommand ::chipscope::csejtag_session create

Returns

A session handle.

An exception is thrown if the command fails.

Example

1. Create a new session with no optional arguments.

%set handle [::chipscope::csejtag_session create messageRouterFn]

2. Create a new session using the client/server libraries to a server called "lab_machine" at port "50001".

```
%set handle [::chipscope::csejtag_session create messageRouterFn
-server "lab_machine" -port "50001"]
```


::chipscope::csejtag_session destroy

This command destroys an existing session and free all resources previously used by that session.

Syntax

::chipscope::csejtag_session destroy handle

Arguments

Table 5-7:	Arguments for	Subcommand	::chipscope::csejtag	_session create
------------	---------------	------------	----------------------	-----------------

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .

Returns

An exception is thrown if the command fails.

Example

1. Destroy the specified session

%::chipscope::csejtag_session destroy \$handle

::chipscope::csejtag_session get_api_version

This command retrieves the version of the CseJtag API library.

Syntax

::chipscope::csejtag_session get_api_version

Arguments

There are no arguments for this command.

Returns

A Tcl list containing API version information. List elements are in the format:

{apiVersion versionString}

The apiVersion is the API version number and versionString is the build version number. An exception is thrown if command fails.

Example

 Obtain a list containing the API version number and the build number version string %set api_info [::chipscope::csejtag_session get_api_version]

::chipscope::csejtag_session send_message

This subcommand sends a message to the message router function of the CseJtag library.

Syntax

::chipscope::csejtag_session send_message handle msgType msg

Arguments

Argument	Туре	Description	
handle		Handle to the session that is returned by ::chipscope::csejtag_session create.	
msgType	Required	The type of message that must be set to one of the following: • \$CSE_MSG_ERROR • \$CSE_MSG_WARNING • \$CSE_MSG_STATUS • \$CSE_MSG_INFO • \$CSE_MSG_NOISE • \$CSE_MSG_DEBUG	
msg		The message string.	

Table 5-8: Arguments for Subcommand ::chipscope::csejtag_session send_message

Returns

An exception is thrown if the command fails.

Example

1. Send the message "Hello World!" to the message router function

%::chipscope::csejtag_session send_message \$handle \$CSE_MSG_INFO
"Hello World!"

::chipscope::csejtag_target open

This subcommand opens a JTAG target device and associates it with a session.

Note: Currently, only one JTAG target can be opened per session.

Syntax

```
::chipscope::csejtag_target open handle targetName
progressCallbackFunc [optional args...]
```

Arguments

Argument	Туре	Description
handle		Handle to the session that is returned by ::chipscope::csejtag_session create.
targetName		Name of the JTAG target to open. See Table 5-10 for available targetName and [optional args] combinations. If targetName is set to \$CSEJTAG_TARGET_AUTO, then the first available JTAG cable target will be opened.
	Required	Progress callback function that can be used to monitor progress of JTAG target operations. The format of the progress callback function is:
progressCallba ckFunc		<pre>proc progressCallbackFunc (handle totalCount CurrentCount progressStatus) {}</pre>
		The progress callback function must return either \$CSE_STOP or \$CSE_CONTINUE . If no progress callback function is necessary, a 0 should be passed into this argument position.

Table 5-9: Arguments for Subcommand ::chipscope::csejtag_target open

Table 5-10 shows valid combinations of targetName argument values and their optional arguments.

Table 5-10:	Argument targetName	and [optional args]	combinations
-------------	---------------------	---------------------	--------------

targetName	[optional args]
\$CSEJTAG_TARGET_AUTO	N/A
\$CSEJTAG_TARGET_PARALLEL	"port={LPT1 LPT2 LPT3}" "frequency={5000000 2500000 200000}"
\$CSEJTAG_TARGET_PLATFORMUSB	"port=USB2" "frequency={24000000 12000000 6000000 3000000 1500000 750000}"
\$CSEJTAG_TARGET_SVFFILE	"fname=< <i>svf filename with full path></i> "

Returns

A list in the format:

```
{target_name plugin_name fw_ver driver_ver plugin_ver vendor frequency
port cable_name rawinfo cable_flags}
```

Where:

Same as the targetName string

plugin_name

target name

The plugin library name string

fw_ver

The firmware version string

```
driver_ver
```

The driver version string

```
plugin_ver
```

The plugin version string

vendor

The vendor string

```
frequency
```

The frequency string

```
port
```

The port string

```
cable_name
```

The full cable name string

```
rawinfo
```

The raw target info string

```
cable_flags
```

The integer containing target-specific flags

An exception is thrown if the subcommand fails.

Example

1. Try to autodetect and open the target cable. Returns information on the opened target.

%set targetInfo [::chipscope::csejtag_target open \$handle \$CSEJTAG_TARGET_AUTO progressFunc]

2. Try to open a Parallel cable in the port LPT1 with a frequency of 200000. Returns information on the opened target.

```
%set targetInfo [::chipscope::csejtag_target open $handle
$CSEJTAG_TARGET_PARALLEL progressFunc "port=LPT1" "frequency=200000"]
```

::chipscope::csejtag_target close

This subcommand closes a previously opened JTAG target device.

Syntax

```
::chipscope::csejtag_target close handle
```

Arguments

Table 5-11	Arguments for Subcommand ::chipscope::csejtag_target close
	Arguments for Subcommand hempscopencocjug_target close

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .

Returns

An exception is thrown if the subcommand fails.

Example

- 1. Close the current target in the specified session.
 - %::chipscope::csejtag_target close \$handle

::chipscope::csejtag_target lock

This subcommand attempts to obtain an exclusive lock on a previously opened JTAG target device.

Syntax

::chipscope::csejtag_target lock handle msWait

Arguments

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create.
msWait		Wait time in milliseconds before giving up (-1 means wait until lock is gained)

Table 5-12: Arguments for Subcommand ::chipscope::csejtag_target lock

Returns

The lock status in the form of one of the following:

- \$CSEJTAG LOCKED ME
- \$CSEJTAG LOCKED OTHER
- \$CSEJTAG_UNKNOWN

An exception is thrown if the subcommand fails.

Example

1. Attempt to obtain an exclusive target lock and wait at least 1000 milliseconds. Obtains the status of the lock.

%set lockStatus [::chipscope::csejtag_target lock \$handle 1000]

::chipscope::csejtag_target unlock

This subcommand releases an exclusive lock on a previously opened and locked JTAG target device.

Syntax

::chipscope::csejtag_target unlock handle

Arguments

Table 5-13:	Arguments for	Subcommand	::chipscope::csejtag	_target unlock
-------------	---------------	------------	----------------------	----------------

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .

Returns

An exception is thrown if the subcommand fails.

Example

1. Unlock the target in the specified session.

%::chipscope::csejtag_target unlock \$handle

::chipscope::csejtag_target get_lock_status

This subcommand retrieves the lock status for the target device.

Syntax

::chipscope::csejtag_target_get_lock_status_handle

Arguments

Table 5-14:	Arguments for Subcommand ::chipscope::csejtag_target
get_lock_st	atus

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .

Returns

Status of the lock in the form of one of the following:

- \$CSEJTAG_LOCKED_ME
- \$CSEJTAG_LOCKED_OTHER
- \$CSEJTAG_UNKNOWN

An exception is thrown if the subcommand fails.

Example

1. Obtain the current lock status
%set lockStatus [::chipscope::csejtag_target get_lock_status \$handle]

::chipscope::csejtag_target clean_locks

This subcommand cleans up all JTAG target locks.

Note: This subcommand should only be used as a last resort. The subcommand kills all sharing semaphores, including those used by other processes and applications. It currently only cleans up locks for JTAG cable targets.

Syntax

::chipscope::csejtag_target clean_locks handle

Arguments

Table 5-15: Arguments for Subcommand ::chipscope::csejtag_target clean_locks

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .

Returns

An exception is thrown if the subcommand fails.

Example

 Clean locks as a last resort because the application closed unexpectedly and ::chipscope::csejtag_target open will not open the target successfully. %::chipscope::csejtag_target clean_locks \$handle

::chipscope::csejtag_target flush

This subcommand flushes the buffer associated with a previously opened and locked JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_target flush handle

Arguments

Table 5-16:	Arguments for Subcommand ::chipscope::csejtag_target	t flush

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .

Returns

An exception is thrown if the subcommand fails.

Example

1. Attempt to flush an opened and locked JTAG target's buffer to make data writes occur immediately

%::chipscope::csejtag_target flush \$handle

::chipscope::csejtag_target set_pin

This subcommand sets the value of a JTAG TAP pin for a previously opened and locked JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

If using this function to change the JTAG TAP state, please be aware that the CseJtag Tcl library will not keep track of the JTAG TAP state. Before using any of the ::chipscope::csejtag_tap subcommands, use the ::chipscope::csejtag_tap navigate subcommand to set the JTAG TAP state machine to the \$CSEJTAG_TEST_LOGIC_RESET state.

Syntax

::chipscope::csejtag_target set_pin handle pin value

Arguments

Argument	Туре	Description
handle		Handle to the session that is returned by ::chipscope::csejtag_session create.
pin	Required	JTAG TAP pin identifier {\$CSEJTAG_TMS \$CSEJTAG_TCK \$CSEJTAG_TDI}.
value		JTAG TAP pin value {1=set, 0=clear}

Table 5-17: Arguments for Subcommand ::chipscope::csejtag_target set_pin

Returns

An exception is thrown if the subcommand fails.

Example

1. Set the TMS pin to 1

%::chipscope::csejtag_target set_pin \$handle \$CSEJTAG_TMS 1

::chipscope::csejtag_target get_pin

This subcommand retrieves the value of a JTAG TAP pin for a previously opened and locked JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_target get_pin handle pin

Arguments

	•	
Argument	Туре	Description
handle	р · 1	Handle to the session that is returned by ::chipscope::csejtag_session create .
pin	Required	JTAG TAP pin identifier {\$CSEJTAG_TMS \$CSEJTAG_TCK \$CSEJTAG_TDI \$CSEJTAG_TDO}.

Table 5-18: Arguments for Subcommand ::chipscope::csejtag_target get_pin

Returns

JTAG TAP pin value {1=set, 0=clear}

An exception is thrown if the subcommand fails.

Example

1. Get the current value of the TDO pin

%set value [::chipscope::csejtag_target set_pin \$handle \$CSEJTAG_TDO]

::chipscope::csejtag_target pulse_pin

This subcommand pulses the value of a JTAG TAP pin for a previously opened and locked JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

If using this function to change the JTAG TAP state, please be aware that the CseJtag Tcl library will not keep track of the JTAG TAP state. Before using any of the ::chipscope::csejtag_tap subcommands, use the ::chipscope::csejtag_tap navigate subcommand to set the JTAG TAP state machine to the \$CSEJTAG_TEST_LOGIC_RESET state.

Syntax

::chipscope::csejtag_target pulse_pin handle pin count

Arguments

Table 5-19:	Arguments for	Subcommand	::chipscope	e::csejtag	target p	oulse pin

Argument	Туре	Description
handle		Handle to the session that is returned by ::chipscope::csejtag_session create .
pin	Required	JTAG TAP pin identifier {\$CSEJTAG_TMS \$CSEJTAG_TCK \$CSEJTAG_TDI}.
count		Number of times to pulse the JTAG TAP pin (pulse means driving a 0, then a 1, then a 0 on the pin).

Returns

An exception is thrown if the subcommand fails.

Example

1. Pulse the TCK pin five times

%::chipscope::csejtag_target pulse_pin \$handle \$CSEJTAG_TCK 5

::chipscope::csejtag_target wait_time

This subcommand waits for a specified amount of time (in microseconds).

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_target wait_time handle usecs

Arguments

Table 5-20: Arguments for Subcommand ::chipscope::csejtag_target wait_time

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .
usecs		Number of microseconds to wait.

Returns

An exception is thrown if the subcommand fails.

Example

1. Instruct the JTAG target to wait 1000 microseconds before performing another operation

%::chipscope::csejtag_target wait_time \$handle 1000

::chipscope::csejtag_target get_info

This subcommand retrieves information from a previously opened JTAG target.

Note: A JTAG target lock does not need to be obtained prior to calling this function.

Syntax

::chipscope::csejtag_target get_info handle

Arguments

Table 5-21:	Arguments for	Subcommand	::chipscope::cs	ejtag_	target get_i	info
-------------	---------------	------------	-----------------	--------	--------------	------

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create.

Returns

A list in the format:

{target_name plugin_name fw_ver driver_ver plugin_ver vendor frequency
port cable_name rawinfo cable_flags}

Where:

```
target_name
```

Name of the JTAG target

```
plugin_name
```

The plugin library name string

fw_ver

The firmware version string

```
driver_ver
```

The driver version string

```
plugin_ver
```

The plugin version string

vendor

The vendor string

frequency

The frequency string

port

The port string

```
cable_name
```

The full cable name string

rawinfo

The raw target info string

cable_flags

The integer containing target-specific flags

An exception is thrown if the subcommand fails.

Example

1. Obtain information about the current JTAG target

%set targetInfo [::chipscope::csejtag_target get_info \$handle]

::chipscope::csejtag_tap autodetect_chain

This subcommand attempts to automatically detect the composition of the JTAG chain. The subcommand first obtains the number of devices and IDCODE values for devices in the JTAG chain. The IR lengths are then determined for the devices in the JTAG chain that have an IDCODE. The IR lengths for devices that do not have corresponding IDCODEs must be assigned manually. Upon success, all pertinent device information is determined and set in the session. Some IEEE 1149.1 non-compliant devices might not be compatible with this subcommand and might cause the entire chain to be detected incorrectly or not at all.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap autodetect_chain handle algorithm

Arguments

Argument	Туре	Description
handle		Handle to the session that is returned by ::chipscope::csejtag_session create .
		Algorithm used to determine the composition of the JTAG chain. Can be set to one of {\$CSEJTAG_SCAN_DEFAULT \$CSEJTAG_SCAN_TLRSHIFT \$CSEJTAG_SCAN_WALKING_ONES} The CSEJTAG_SCAN_WALKING_ONES algorithm is:
algorithm	Required	 Set each device into BYPASS by shifting long stream of 1's into IR Shift DR pattern into TDI and wait for pattern on TDO. The number of shifts determines the number of devices in the JTAG chain. Perform the CSEJTAG_SCAN_TLRSHIFT algorithm to get IDCODEs for each device. The CSEJTAG_SCAN_TLRSHIFT algorithm is:
		• Navigate to TLR Shift out bits until all IDCODEs (or BYPASS bits) are read.

Table 5-22: Arguments for Subcommand ::chipscope::csejtag_tap autodetect_chain

Returns

An exception is thrown if the subcommand fails to detect the chain completely. In the case of such an error, the devices in the JTAG chain must be detected and assigned manually.

Example

1. Attempt to automatically detect the chain using the default algorithm

```
%::chipscope::csejtag_tap autodetect_chain $handle
$CSEJTAG_SCAN_DEFAULT
```


::chipscope::csejtag_tap interrogate_chain

This subcommand scans the JTAG chain to obtain the IDCODE and number of devices in the chain. Some IEEE 1149.1 non-compliant devices might not be compatible with this subcommand and can cause the entire chain to be detected incorrectly or not at all.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap interrogate_chain handle algorithm

Arguments

Argument	Туре	Description
handle		Handle to the session that is returned by ::chipscope::csejtag_session create.
		Algorithm used to determine the composition of the JTAG chain. Can be set to one of {\$CSEJTAG_SCAN_DEFAULT \$CSEJTAG_SCAN_TLRSHIFT \$CSEJTAG_SCAN_WALKING_ONES} The CSEJTAG_SCAN_WALKING_ONES algorithm is:
algorithm	Required	 Set each device into BYPASS by shifting long stream of 1's into IR Shift DR pattern into TDI and wait for pattern on TDO. The number of shifts determines the number of devices in the JTAG chain. Perform the CSEJTAG_SCAN_TLRSHIFT algorithm to get IDCODEs for each device. The CSEJTAG_SCAN_TLRSHIFT algorithm is: Navigate to TLR Shift out bits until all IDCODEs (or BYPASS bits) are read

Table 5-23: Arguments for Subcommand ::chipscope::csejtag_tap interrogate_chain

Returns

An exception is thrown if the subcommand fails.

Example

1. Attempt to interrogate the chain using the default algorithm

%::chipscope::csejtag_tap interrogate_chain \$handle \$CSEJTAG_SCAN_DEFAULT

::chipscope::csejtag_tap get_device_count

This subcommand is used to get the number of devices in the current JTAG chain.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap_get_device_count_handle

Arguments

Table 5-24: Arguments for Subcommand ::chipscope::csejtag_tap get_device_count

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .

Returns

The number of devices in the chain.

An exception is thrown if the subcommand fails.

Example

1. Obtain the number of devices in the JTAG chain.

%set deviceCount [::chipscope::csejtag_tap get_device_count \$handle]

::chipscope::csejtag_tap set_device_count

This subcommand is used to set the number of devices in the current JTAG chain.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap set_device_count handle count

Arguments

Table 5-25: Arguments for Subcommand ::chipscope::csejtag_tap set_device_count

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .
count		Number of devices in the JTAG chain.

Returns

An exception is thrown if the subcommand fails.

Example

1. Set the number of devices in the JTAG chain to four.

%::chipscope::csejtag_tap_set_device_count \$handle 4

::chipscope::csejtag_tap get_irlength

This subcommand retrieves the instruction register (IR) length of a device in the current JTAG chain. The IR length is used to determine the amount of padding required to shift an instruction into a device register. TAP shift and navigate operations will not work until all devices have the IR lengths set up correctly. The ::chipscope::csejtag_tap autodetect_chain subcommand automatically sets up IR lengths for all devices in the chain that support the IDCODE command.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand. Also, the device count must be set prior to calling this subcommand using the ::chipscope::csejtag_tap_set_device_count.

Syntax

::chipscope::csejtag_tap get_irlength handle deviceIndex

Arguments

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .
deviceIndex		Device index (0 to <i>n</i> -1) in the <i>n</i> -length JTAG chain.

Table 5-26:	Arguments for Subcommane	d ::chipscope::csejtag	_tap get_irlength
-------------	--------------------------	------------------------	-------------------

Returns

The length of the IR for the device.

An exception is thrown if the subcommand fails.

Example

1. Get the IR length of the device at index 0.

%set irLength [::chipscope::csejtag_tap get_irlength \$handle 0]

::chipscope::csejtag_tap set_irlength

This subcommand sets the instruction register (IR) length of a single device in the current JTAG chain. The IR length is used to determine the amount of padding required to shift an instruction into a device register. TAP shift and navigate operations will not work until all devices have the IR lengths set up correctly. The ::chipscope::csejtag_tap autodetect_chain subcommand automatically sets up IR lengths for all devices in the chain that support the IDCODE command.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand. Also, the device count must be set prior to calling this subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap set_irlength handle deviceIndex irLength

Arguments

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .
deviceIndex		Device index (0 to <i>n</i> -1) in the <i>n</i> -length JTAG chain.
irLength		Length of the IR (in bits)

Table 5-27: Arguments for Subcommand ::chipscope::csejtag_tap set_irlength

Returns

An exception is thrown if the subcommand fails.

Example

1. Set the IR length of the device at index 0 to 11 bits.

%::chipscope::csejtag_tap set_irlength \$handle 0 11

::chipscope::csejtag_tap get_device_idcode

This subcommand returns the 32-bit IDCODE for a given device in the current JTAG chain. If the device does not support the IDCODE instruction, a null string is returned.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand. Also, the device count must be set prior to calling this subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap get_device_idcode handle deviceIndex

Arguments

Table 5-28: Arguments for Subcommand ::chipscope::csejtag_tap get_device_idcode

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .
deviceIndex		Device index (0 to <i>n</i> -1) in the <i>n</i> -length JTAG chain.

Returns

A 32-character string of ones and zeros representing the 32-bit IDCODE of the device. An exception is thrown if the subcommand fails.

Example

1. Get the IDCODE of the device at index 0

%set idcode [::chipscope::csejtag_tap get_device_idcode \$handle 0]

::chipscope::csejtag_tap set_device_idcode

This subcommand sets the IDCODE for a given device in the current JTAG chain. Passing a null string indicates the device does not support the IDCODE instruction.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand. Also, the device count must be set prior to calling this subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap set_device_idcode handle deviceIndex idcode

Arguments

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .
deviceIndex		Device index (0 to <i>n</i> -1) in the <i>n</i> -length JTAG chain.
idcode		A 32-character string of ones and zeros representing the 32-bit IDCODE of the device.

Table 5-29: Arguments for Subcommand ::chipscope::csejtag_tap set_device_idcode

Returns

An exception is thrown if the subcommand fails.

Example

::chipscope::csejtag_tap navigate

This subcommand is used to change the state of the TAP of a device in the JTAG chain.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap navigate handle newState clockRepeat microseconds

Arguments

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create.
newState		New state to navigate into.
clockRepeat		Number of additional times to pulse the TCK pin after entering the new state.
microseconds		Number of microseconds to sleep after navigating to the new state.

Table 5-30: Arguments for Subcommand ::chipscope::csejtag_tap navigate

Returns

An exception is thrown if the subcommand fails.

Example

1. Navigate the TAP state to Test Logic Reset and keep it in this state for five additional clock cycles.

%::chipscope::csejtag_tap navigate \$handle \$CSEJTAG_TEST_LOGIC_RESET 5
0

::chipscope::csejtag_tap shift_chain_ir

This subcommand is used to shift a stream of bits into and out of the instruction register of the JTAG chain. No device padding is performed by this subcommand. For device-indexed IR shifting, see ::chipscope::csejtag tap shift device ir.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap shift_chain_ir handle shiftMode exitState progressCallbackFunc bitCount hextdibuf [-hextdimask hextdimaskval] [hextdomask hextdomaskval]

Arguments

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create.
shiftMode		{CSJTAG_SHIFT_READ CSJTAG_SHIFT_WRITE CSJTAG_SHIFT_READWRITE)
exitState		State to end in after shift is complete (CSEJTAG_SHIFT_IR if no state change is desired).
		Progress callback function that can be used to monitor progress of JTAG target operations. The format of the progress callback function is:
progressCallback Func		proc progressCallbackFunc (handle totalCount CurrentCount progressStatus) {}
Func		The progress callback function must return either \$CSE_STOP or \$CSE_CONTINUE . If no progress callback function is necessary, a 0 should be passed into this argument position.
bitCount		Number of bits to shift.
hextdibuf		Data buffer that holds the data bits to be written into TDI. The least-significant bit is shifted into TDI first.
-hextdimask hextdimaskval	Optional	Specifies that a mask word hextdimaskval should be applied to the data buffer bits before the data is shifted into the TDI pin of the JTAG TAP.
-hextdomask hextdomaskval	Optional	Specifies that a mask word hextdomaskval should be applied to the data buffer bits after the data is shifted out of the TDO pin of the JTAG TAP.

Table 5-31: Arguments for Subcommand ::chipscope::csejtag_tap shift_chain_ir

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP. An exception is thrown if the subcommand fails.

Example

1. This function shifts in 64 ones into the instruction register, captures the 64 bits of received data, and navigates to the Run Test Idle state when finished.

%set hextdobuf [::chipscope::csejtag_tap shift_chain_ir \$handle \$CSEJTAG_SHIFT_READWRITE \$CSEJTAG_RUN_TEST_IDLE progressFunc 64 "FFFFFFFFFFFFFFF"]

::chipscope::csejtag_tap shift_device_ir

This subcommand is used to shift a stream of bits into and out of the instruction register of a particular device the JTAG chain. Device padding is performed by this subcommand by putting all other devices into BYPASS mode. This subcommand should be called before **::chipscope::csejtag_tap shift_device_dr** to ensure all non-target devices as in BYPASS mode, otherwise unexpected and unintended results can occur. For raw data shifting into the chain IR, see **::chipscope::csejtag_tap shift_chain_ir**.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand. Also, the number of bits shifted into the device IR must be exactly equal to the IR length of the device otherwise the subcommand will fail.

Syntax

::chipscope::csejtag_tap_shift_device_ir handle deviceIndex_shiftMode exitState_progressCallbackFunc_bitCount_hextdibuf [-hextdimask hextdimaskval] [-hextdomask hextdomaskval]

Arguments

Argument	Туре	Description
handle		Handle to the session that is returned by ::chipscope::csejtag_session create.
deviceIndex	-	Device index (0 to <i>n</i> -1) in the <i>n</i> -length JTAG chain.
shiftMode	Required	{CSJTAG_SHIFT_READ CSJTAG_SHIFT_WRITE CSJTAG_SHIFT_READWRITE)
exitState		State to end in after shift is complete (CSEJTAG_SHIFT_IR if no state change is desired).
progressCallback Func		Progress callback function that can be used to monitor progress of JTAG target operations. The format of the progress callback function is:
		proc progressCallbackFunc (handle totalCount CurrentCount progressStatus) {}
		The progress callback function must return either \$CSE_STOP or \$CSE_CONTINUE . If no progress callback function is necessary, a 0 should be passed into this argument position.
bitCount		Number of bits to shift.
hextdibuf	-	Data buffer that holds the data bits to be written into TDI. The least-significant bit is shifted into TDI first.
-hextdimask hextdimaskva l	Optional	Specifies that a mask word hextdimaskval should be applied to the data buffer bits before the data is shifted into the TDI pin of the JTAG TAP.
-hextdomask hextdomaskval		Specifies that a mask word hextdomaskval should be applied to the data buffer bits after the data is shifted out of the TDO pin of the JTAG TAP.

Table 5-32: Arguments for Subcommand ::chipscope::csejtag_tap shift_device_ir

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP.

An exception is thrown if the subcommand fails.

Example

1. This function shifts in 11 ones into the instruction register of the device at index 1, captures the 11 bits of received data, and navigates to the Run Test Idle state when finished.

```
%set hextdobuf [::chipscope::csejtag_tap shift_device_ir $handle 1
$CSEJTAG_SHIFT_READWRITE $CSEJTAG_RUN_TEST_IDLE progressFunc 11 "7FF"]
```


::chipscope::csejtag_tap shift_chain_dr

This subcommand is used to shift a stream of bits into and out of the data register (DR) of the JTAG chain. No device padding is performed by this subcommand. For device-indexed DR shifting, see ::chipscope::csejtag tap shift device dr.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap shift_chain_dr handle shiftMode exitState progressCallbackFunc bitCount hextdibuf [-hextdimask hextdimaskval] [hextdomask hextdomaskval]

Arguments

Argument	Туре	Description
handle	_	Handle to the session that is returned by ::chipscope::csejtag_session create.
shiftMode		{CSJTAG_SHIFT_READ CSJTAG_SHIFT_WRITE CSJTAG_SHIFT_READWRITE)
exitState	Required	State to end in after shift is complete (CSEJTAG_SHIFT_DR if no state change is desired).
progressCallbac kFunc		Progress callback function that can be used to monitor progress of JTAG target operations. The format of the progress callback function is: proc progressCallbackFunc (handle totalCount CurrentCount progressStatus) {} The progress callback function must return either \$CSE_STOP or \$CSE_CONTINUE . If no progress callback function is necessary, a 0 should be passed into this argument position.
bitCount		Number of bits to shift.
hextdibuf		Data buffer that holds the data bits to be written into TDI. The least-significant bit is shifted into TDI first.
-hextdimask hextdimaskva l	Optional	Specifies that a mask word hextdimaskval should be applied to the data buffer bits before the data is shifted into the TDI pin of the JTAG TAP.
-hextdomask hextdomaskval	Optional	Specifies that a mask word hextdomaskval should be applied to the data buffer bits after the data is shifted out of the TDO pin of the JTAG TAP.

Table 5-33: Arguments for Subcommand ::chipscope::csejtag_tap shift_chain_dr

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP. An exception is thrown if the subcommand fails.

Example

1. This function shifts in 64 ones into the instruction register, captures the 64 bits of received data, and navigates to the Run Test Idle state when finished.

%set hextdobuf [::chipscope::csejtag_tap shift_chain_dr \$handle \$CSEJTAG_SHIFT_READWRITE \$CSEJTAG_RUN_TEST_IDLE progressFunc 64 "FFFFFFFFFFFFFFF"]

::chipscope::csejtag_tap shift_device_dr

This subcommand is used to shift a stream of bits into and out of the data register of a particular device the JTAG chain. Device padding is performed by this subcommand by assuming all non-target devices are in BYPASS mode, then adding the necessary heading and trailing bits to accommodate for the position of the target device in the chain. For raw data shifting into the chain DR, see ::chipscope::csejtag_tap shift_chain_dr.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock subcommand before calling this subcommand. This subcommand should be called before ::chipscope::csejtag_tap_shift_device_dr to ensure all non-target devices as in BYPASS mode, otherwise unexpected and unintended results can occur.

Syntax

::chipscope::csejtag_tap shift_device_dr handle deviceIndex shiftMode exitState progressCallbackFunc bitCount hextdibuf [-hextdimask hextdimaskval] [-hextdomask hextdomaskval]

Arguments

Argument	Туре	Description
handle		Handle to the session that is returned by ::chipscope::csejtag_session create .
deviceIndex		Device index (0 to <i>n</i> -1) in the <i>n</i> -length JTAG chain.
shiftMode		{CSJTAG_SHIFT_READ CSJTAG_SHIFT_WRITE CSJTAG_SHIFT_READWRITE)
exitState	Required	State to end in after shift is complete (CSEJTAG_SHIFT_DR if no state change is desired).
progressCallback Func		Progress callback function that can be used to monitor progress of JTAG target operations. The format of the progress callback function is:
		proc progressCallbackFunc (handle totalCount CurrentCount progressStatus) {}
		The progress callback function must return either \$CSE_STOP or \$CSE_CONTINUE . If no progress callback function is necessary, a 0 should be passed into this argument position.
bitCount		Number of bits to shift.
hextdibuf		Data buffer that holds the data bits to be written into TDI. The least-significant bit is shifted into TDI first.
-hextdimask hextdimaskval	Optional	Specifies that a mask word hextdimaskval should be applied to the data buffer bits before the data is shifted into the TDI pin of the JTAG TAP.
-hextdomask hextdomaskval	-	Specifies that a mask word hextdomaskval should be applied to the data buffer bits after the data is shifted out of the TDO pin of the JTAG TAP.

Table 5-34: Arguments for Subcommand ::chipscope::csejtag_tap shift_device_dr

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP.

An exception is thrown if the subcommand fails.

Example

1. This function shifts in 11 ones into the data register of the device at index 1, captures the 11 bits of received data, and navigates to the Run Test Idle state when finished.

%set hextdobuf [::chipscope::csejtag_tap shift_device_dr \$handle 1
\$CSEJTAG_SHIFT_READWRITE \$CSEJTAG_RUN_TEST_IDLE progressFunc 11 "7FF"]

::chipscope::csejtag_db add_device_data

This subcommand is used to read device records from a file and add it to the memorybased lookup table inside the CseJtag library.

Note: The file format and device record structure is the same as the idcode.lst file.

Syntax

::chipscope::csejtag_db add_device_data handle filename buf bufLen

Arguments

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create.
filename		String containing filename from which device records should be read
buf		String containing device records in the same format and structure as the idcode.lst file.
bufLen		Size of the buffer (in bytes or characters)

Table 5-35: Arguments for Subcommand ::chipscope::csejtag_db add_device_data

Returns

An exception is thrown if the subcommand fails.

Example

1. Adding data from the file my_idcode.lst to the internal device database. Also, store the data record buffer and buffer size in local variables.

```
%::chipscope::csejtag_db add_device_data $handle "my_idcode.lst"
$my_idcode_buf $my_idcode_bufLen
```

::chipscope::csejtag_db lookup_device

This subcommand is used to look up a device in the database using the device IDCODE.

Syntax

::chipscope::csejtag_db lookup_device handle idcode

Arguments

Table 5-36: Arguments for Subcommand ::chipscope::csejtag_db lookup_devic	able 5-36:	36: Arguments for S	Subcommand ::chi	ipscope::csejtag	db lookup devic
---	------------	---------------------	------------------	------------------	-----------------

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .
idcode		IDCODE for the desired device.

Returns

A list in the format:

{deviceName irlen cmd_bypass}

where

deviceName

String containing the name of the device

irlen

Number of bits in the IR of the device

cmd_bypass

String containing the BYPASS instruction for the device (usually all ones)

An exception is thrown if the subcommand fails.

Example

%set deviceInfo [::chipscope::csejtag_db lookup_device \$handle "0101010101010101010101010101010101"]

::chipscope::csejtag_db get_device_name_for_idcode

This subcommand is used to get the name of a device in the database using the device IDCODE.

Syntax

::chipscope::csejtag_db get_device_name_for_idcode handle idcode

Arguments

Table 5-37:	Arguments for Subcommand ::chipscope::csejtag_db
get_device_	_name_for_idcode

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .
idcode		IDCODE for the desired device.

Returns

A string containing the device name.

An exception is thrown if the subcommand fails.

Example

::chipscope::csejtag_db get_irlength_for_idcode

This subcommand is used to get the IR length of a device in the database using the device IDCODE.

Syntax

::chipscope::csejtag_db get_irlength_for_idcode handle idcode

Arguments

Table 5-38:	Arguments for Subcommand ::chipscope::csejtag_db
get_irlength	_for_idcode

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .
idcode	Required	IDCODE for the desired device.

Returns

A string containing the size of the IR (in bits).

An exception is thrown if the subcommand fails.

Example

```
%set irlen [::chipscope::csejtag_db get_irlength_for_idcode $handle
"01010101010101010101010101010101
```


::chipscope::csejtag_db parse_bsdl

This subcommand is used to extract device information from a Boundary Scan Description Language (BSDL) buffer.

Syntax

::chipscope::csejtag_db parse_bsdl handle filename buf bufLen

Arguments

Table 5-53. Algu		minanaempscopecsejtag_ub paise_bsui
Argument	Туре	Description
handle		Handle to the session that is returned by ::chipscope::csejtag_session create.

Filename of local BSDL file (for debugging only)

Size of the buffer **buf** (in bytes or characters)

Buffer containing the contents of the entire BSDL file

Table 5-39: Arguments for Subcommand ::chipscope::csejtag_db parse_bsdl

|--|

{deviceName irlen idcode cmd_bypass}

Required

Where:

Returns

deviceName

filename

buf

bufLen

String containing the name of the device

irlen

Number of bits in the IR of the device

idcode

IDCODE of the device

cmd_bypass

String containing the BYPASS instruction for the device (usually all ones)

An exception is thrown if the subcommand fails.

Example

1. Extract device information from the file "device.bsd" that was placed in the buffer **bsdl_buf** of size **bsdl_bufLen**.

%::chipscope::csejtag_db parse_bsdl \$handle "device.bsd" \$bsdl_buf \$bsdl_bufLen

::chipscope::csejtag_db parse_bsdl_file

This subcommand is used to extract device information from a Boundary Scan Description Language (BSDL) file.

Syntax

::chipscope::csejtag_db parse_bsdl_file handle filename

Arguments

Argument	Туре	Description
handle	Required	Handle to the session that is returned by ::chipscope::csejtag_session create .
filename		Filename of local BSDL file.

Returns

A list in the format:

{deviceName irlen idcode cmd_bypass}

Where:

deviceName

String containing the name of the device

irlen

Number of bits in the IR of the device

idcode

IDCODE of the device

cmd_bypass

String containing the BYPASS instruction for the device (usually all ones)

An exception is thrown if the subcommand fails.

Example

1. Extract device information from the file device.bsd.

%::chipscope::csejtag_db parse_bsdl_file \$handle "device.bsd"

CseJtag Tcl Example

The ChipScope Pro 10.1 installation includes an example Tcl script that uses the CseJtag Tcl interface. This example opens a Xilinx Parallel cable or Xilinx Platform USB cable and scans the JTAG chain and returns information about the devices found in the chain. The example script is located in the following location:

- On 32-bit Windows operating systems
 - < <CHIPSCOPE_INSTALL>\bin\nt\csejtag_example1.tcl
- On 64-bit Windows operating systems
 - < <CHIPSCOPE_INSTALL>\bin\nt64\csejtag_example1.tcl
- On 32-bit Linux operating systems
 - < <CHIPSCOPE_INSTALL>/bin/lin/csejtag_example1.tcl
- On 64-bit Linux operating systems
 - < <CHIPSCOPE_INSTALL>/bin/lin64/csejtag_example1.tcl

The script can be run in the Tcl shell (xtclsh) that is included with ISE software or in the ActiveTcl 8.4 Tcl shell from ActiveState Software Inc. (<u>http://www.activestate.com</u>). To run the tcl example in a command line shell, change to the directory where csejtag_example1.tcl is located (see above). Next, follow these instructions for the particular operating system:

- On 32-bit and 64-bit Windows operating systems:
 - To use a Xilinx Parallel Cable, type:
 cs xtclsh.bat csejtag example1.tcl
 - To use a Xilinx Platform Cable USB, type:
 - cs xtclsh.bat csejtag_example1.tcl -usb
- On 32-bit and 64-bit Linux operating systems:
 - To use a Xilinx Parallel Cable, type:
 - cs_xtclsh.sh csejtag_example1.tcl
 - To use a Xilinx Platform Cable USB, type:
 cs_xtclsh.sh csejtag_example1.tcl -usb