cloudera

UNIVERSITY

Developer Training for Apache Spark
and Hadoop: Hands-On Exercises

Table of Contents

GeNeTal NOTESoccviiiiiiiiiiieeit et e st 1
Hands-On Exercise: Starting the Exercise Environmentccccccevveiiieniiceneennne. 4
Hands-On Exercise: Querying Hadoop Data with Apache Impalac..c...c..... 8
Hands-On Exercise: Accessing HDFS with the Command Line and Hue. 11
Hands-On Exercise: Running and Monitoring a YARN Jobcccccoiiiiininnenns 17
Hands-On Exercise: Exploring DataFrames Using the Apache Spark Shell 23
Hands-On Exercise: Working with DataFrames and Schemasccccccoceeneene 28
Hands-On Exercise: Analyzing Data with DataFrame Queriesc.cccoceeeueee. 32
Hands-On Exercise: Working With RDDsccoccoiiiiiiiiiiieeeeceeeeee 39

Hands-On Exercise: Transforming Data Using RDDSc..ccccevvieveriinienennienenne 43

Hands-On Exercise: Joining Data Using Pair RDDSccccccevviiiniiiiniieinieeiienns 50
Hands-On Exercise: Querying Tables and Views with SQLcccocoevviiiiniennns 54
Hands-On Exercise: Using Datasets in Scalacccocceevviieiniiieinieeinicenieesiieee S57

Hands-On Exercise: Writing, Configuring, and Running a Spark

F2N 0] 0 8 U6r: Un (0) o HUU PSSP PRSP PP 59
Hands-On Exercise: Exploring Query EXecutionccccocveeviieiniiieeniieeenieesnineenn 66
Hands-On Exercise: Persisting Dataccccocveiviiiiiniieiniieniccccseecee e 71
Hands-On Exercise: Implement an Iterative Algorithm with Apache Spark 75
Hands-On Exercise: Writing a Streaming Applicationcccocceevvveernieennieennnn. 78
Hands-On Exercise: Processing Multiple Batches of Streaming Data.................. 83
Hands-On Exercise: Processing Streaming Apache Kafka Messages 87

Appendix Hands-On Exercise: Producing and Consuming Apache Kafka

IMESSAGES ...eeeeiuriiieeiiiiiee it te e ettt e e ettt e s ettt e e et e e e s bt e e s ettt e e s e bt e e e e s nbreeesennreeesenns 91
Appendix Hands-On Exercise: Collecting Web Server Logs with Apache

FIUINE oot 94
Appendix Hands-On Exercise: Sending Messages from Flume to Kafka 97
Appendix Hands-On Exercise: Import Data from MySQL Using Apache

SGOOD ettt s st e e s e e s s b bt e e e e eeeeanrees 99
Appendix: Enabling Jupyter Notebook for PySparkccccceeeviniineniinienennnn. 102
Appendix: Troubleshooting TiPsc.cccoeviiiieiiiiiieeee e 105
Appendix: Continuing Exercises After Classc..cccevverviereeneniieneenenienieeenen 110

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

General Notes

Exercise Environment Overview

This course provides an exercise environment running the Cloudera and Hadoop
services necessary to complete the exercises.

The exercise environment runs on a single host machine running CentOS Linux. Your
user name is training. You will be logged in automatically, but if for any reason you
need to log out and back in, the password is training.

Real-world production clusters almost always contain many machines, but for this
course, the exercise environment uses a single host machine with a cluster running in
“pseudo-distributed” mode to keep instructions simple.

Although all the cluster services are running on the same remote machine, different
services are configured with different host names. In order for the exercises be

as realistic as possible, instructions will refer to services using the host names
corresponding to the types of nodes that are part of in a typical cluster. For example,
services that would usually run on a master node are configured with the host name
master.

The table below shows the various host names in the pseudo-distributed cluster and
the corresponding role that type of host would play in a full cluster.

Host Names Role

gateway A gateway node (sometimes referred to as an edge node) is a
node outside the cluster that provides you with access to the
services running on the cluster. Users and developers typically
do their work on gateway nodes rather than cluster nodes.

cmhost This node runs Cloudera Manager, which installs, configures, and
monitors the services on the Hadoop cluster.

master-1 Master nodes run the services that manage the Hadoop cluster.

master-2

worker-1 Worker nodes execute the distributed tasks for applications that

worker-2 run on the Hadoop cluster.

worker-3

Course Exercise Directories

The main directoryis ~/training_materials/devsh/exercises. Within that
directory you will find the following subdirectories:

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

e exercises—contains subdirectories corresponding to each exercise, which are
referred to in the instructions as the “exercise directory.” The exercises directories
contain starter code (stubs), solutions, Maven project directories for Scala and Java
applications, and other files needed to complete the exercise.

e data—contains the data files used in all the exercises. Usually you will upload the
files to Hadoop’s distributed file system (HDFS) before working with them.

e examples—contains example code and data presented in the chapter slides in the
course.

e scripts—contains the course setup scripts and other scripts required to complete
the exercises.

Working with the Linux Command Line

e In some steps in the exercises, you will see instructions to enter commands like this:

$ hdfs dfs -put mydata.csv \
/user/training/example

The dollar sign ($) at the beginning of each line indicates the Linux shell

prompt. The actual prompt will include additional information (for example,
training@localhost:~/training_materials$) but this is omitted from
these instructions for brevity.

The backslash (\) at the end of a line signifies that the command is not complete
and continues on the next line. You can enter the code exactly as shown (on multiple
lines), or you can enter it on a single line. If you do the latter, you should not type in
the backslash.

e The command-line environment defines a few environment variables that are often
used in place of longer paths in the instructions. Since each variable is automatically
replaced with its corresponding values when you run commands in the terminal, this
makes it easier and faster for you to enter a command:

o SDEVSH refers to the main course directory under ~/training_materials.

o SDEVDATA refers to the directory containing the data files used in the exercises.

Use the echo to see the value of an environment variable:

S echo SDEVSH

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

Viewing and Editing Exercise Files

e Command-line editors
Some students are comfortable using UNIX text editors like vi or nano. These can be
run on the Linux command line to view and edit files as instructed in the exercises.
e Graphical editors

If you prefer a graphical text editor, you can use gedit. You can start gedit using an
icon from the remote desktop tool bar. (You can also use emacs if you prefer.)

Points to Note during the Exercises

Step-by-Step Instructions

As the exercises progress and you gain more familiarity with the tools and
environment, we provide fewer step-by-step instructions; as in the real world, we
merely give you a requirement and it is up to you to solve the problem!

If you need help, refer to the solutions provided, ask your instructor for assistance, or
consult with your fellow students.

Bonus Exercises

There are additional challenges for some of the hands-on exercises. If you finish the
main exercise, please attempt the additional steps.

Catch-Up Script

If you are unable to complete an exercise, there is a script to catch you up automatically.
Each exercise has instructions for running the catch-up script if the exercise depends on
completion of prior exercises.

$ $DEVSH/scripts/catchup.sh

The script will prompt you for the exercise that you are starting; it will then set up all
the required data as if you had completed all of the previous exercises.

Note: If you run the catch-up script, you may lose your work. For example, all exercise
data will be deleted from HDFS before uploading the required files.

Troubleshooting
If you have trouble or unexpected behavior in the exercise environment, refer to the
tips in Appendix: Troubleshooting Tips.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

Hands-On Exercise: Starting the Exercise Environment

In this exercise, you will start your exercise environment and the cluster on
which you will do the course exercises.

This course provides a single-host exercise environment running a pseudo-distributed
Cloudera cluster (that is, a cluster running on a single host that emulates a multi-host
environment) to complete the exercises. This section will walk you through starting the
host in your environment, then starting the cluster within the environment.

Exercise Instructions

Start Your Exercise Environment

1. Inyourlocal browser, open the URL provided by your instructor to view the
exercise environment portal.

2. The environment portal page displays a thumbnail image for your exercise
environment remote host. The host will initially be powered off, indicated by a
gray background. The icon background will change to green when the machine is
running. (The machine name version may be different in your environment than the

one below.)
Powered off | ROP
TM513-version-03 s
1 {host-1 - 10.0.0.1)

SWMS RAM CPUS STORAGE

24 24 GB 8 34.23 GB

o Tlo 4o {3 X

Click the hosticon to open a new window showing the remote host machine. Start
the machine by clicking the play button (triangle icon). It will take a few minutes to
start.

3. When it is fully started, the remote host’s desktop will display. These exercises
refer to this as the “remote desktop” to distinguish it from your own local machine’s
desktop.

The remainder of the exercises in the course will be performed on the remote
desktop.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

Start Your Cloudera Cluster

4. From the remote desktop’s Applications menu, choose Training > Start Cloudera
Cluster. A terminal window will open and the script to start the cluster services will
run automatically.

5. Wait for about five minutes after the script finishes before continuing.

Verify Your Cluster Services

Confirm that your exercise environment is set up and the cluster services are running
correctly by reviewing the cluster status using Cloudera Manager.

6. Start the Firefox browser using the icon on the remote desktop, then click the
Cloudera Manager bookmark.

7. Login as user admin with password admin.

8. Verify that all the services in your cluster are healthy (indicated by a green dot), as
shown below. You may disregard yellow configuration warning icons.

Note: Some health warnings may appear as the cluster is starting. They will typically
resolve themselves within five minutes after the Start Cluster script finishes. Please be
patient. If health issues remain, refer to the tip entitled “Cloudera Manager displays
unhealthy status of services" in Appendix: Troubleshooting Tips.

Status All Health Issues Configuration PZ&E] v All Recent C

Your Cluster Name

@ cluster -

© =Hosts [:]Disregard

© © Flume configuration | _
warnings

©® | HBase -

® [HDFS -

@ ‘"¢ Hive v

Your cluster may not be running exactly the services shown. This is okay and will
not interfere with completing the exercises.
Your exercise environment is now ready.

See Managing Your Exercise Environment for instructions on stopping and restarting
your environment.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

Optional: Download and View the Exercise Manual on Your Remote Desktop

In order to be able to copy and paste from the Exercise Manual (the document you are
currently viewing) to your remote desktop, you need to view the document on your
remote machine rather than on your local machine.

9. Download the Exercise Manual

a. Onyour remote desktop, start the Firefox browser using the shortcut icon in
the menu bar. The default page will display the Cloudera University home page.
(You can return to this page at any time by clicking the home icon in Firefox or
by visiting https://university.cloudera.com/user/learning/
enrollments.)

b. Login to your Cloudera University account by clicking Returning Student
Login. Then from the Dashboard, find this course under Current.

c. Select the course title, then click to download the Exercise Manual under
Materials. This will save the Exercise Manual PDF file in the Downloads folder
in the training user’s home directory.

10. View the Exercise Manual on Your Remote Host

a. Open a terminal window using the shortcut on the remote desktop, and then
start the Evince PDF viewer:

S evince &

b. In Evince, select menu item File > Open and open the Exercise Manual PDF file
in the Downloads directory.

Managing Your Exercise Environment

Stopping Your Exercise Environment

During class, your remote host will stop automatically 90 minutes after the end of each
day of class, and will automatically restart at the beginning of the next day.

After the class is over, you may continue using your environment for 10 hours of use
or 30 days, whichever comes first. In order to minimize your usage of the limited
time available, you should stop your environment whenever you are not using it, as
described below.

In the toolbar at the top of the remote desktop display, click the stop button (a square).

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

https://university.cloudera.com/user/learning/enrollments
https://university.cloudera.com/user/learning/enrollments

ﬁ. i i)
« » Applications Places System a @ I Q)

=]

Computer

Restarting Your Exercise Environment and Cluster
1. Restart your remote host.

a. Inyourlocal browser, return to the exercise environment portal using the URL
provided by your instructor.
Click the remote host thumbnail to open the remote desktop, then click the play
button to start the host.

2. Restart the cluster services.
Whenever your exercise environment is stopped or suspended, you need to restart
your cluster services after restarting the host.

a. Close all terminal or browser windows on the remote desktop.

b. From the desktop, select Applications > Training > Start Cloudera Cluster to
restart your cluster services.

c. Wait about five minutes after the script has completed, then verify that the
services in your cluster services are running correctly by following the steps in
Verify Your Cluster Services.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

Hands-On Exercise: Querying Hadoop Data with
Apache Impala

Files and Data Used in This Exercise:

Impala/Hive table accounts

In this exercise, you will use the Hue Impala Query Editor to explore data in a
Hadoop cluster.

This exercise is intended to let you begin to familiarize yourself with the course
exercise environment as well as Hue. You will also briefly explore the Impala Query
Editor.

Before starting this exercise, confirm that your cluster is running correctly by following
the steps in Verify Your Cluster Services.

Login to Hue

1. Start Firefox on the remote desktop using the shortcut provided on the main menu
bar at the top of the screen.

2. View the Hue Ul using the browser bookmark or visit http://master-1:8889/.

3. Because this is the first time anyone has logged in to Hue on this server, you will be
prompted to create a new user account. Enter username training and password
training, and then click Create account. When prompted, click Remember.

Note: Make sure to use this exact username and password. Your exercise environment
is configured with a system user called training and your Hue username must
match. If you accidentally use the wrong username, refer to the instructions in the
Appendix: Troubleshooting Tips section at the end of the exercises.

4. The first time you log in to Hue, you may see a welcome message with that offers a
tour of new features in the latest version of Hue. The tour is optional. However, it
is very short and you might find it valuable. To start the tour, click Next. To skip it,
close the welcome popup using the X in the upper right corner.

View Table Columns and Details

5. The Hue default page should display the Impala query editor, with the default
database and accounts displayed in the data source navigation panel on the left,
as shown below.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

(©

{ £ default
Tables (1)

accounts

acct_num (int)

acct_create_dt (timestamp)

If a different data source is shown, click the SQL data source symbol.

ehue

@ 1l

Then use the back arrow symbol in the navigation panel (€) and navigate to the
Impala > default data source.

6. In the left panel under the default database, select the accounts table. This will
display the table‘s column definitions.

7. Hover your pointer over the accounts table to reveal the associated Show details
icon (labeled i), as shown below, then click the icon to bring up the details popup.

£ £ default

Tables (1)

accounts O

acct_num (int)

acct_create_dt (timestamp)

8. Select the Sample tab. The tab will display the first several rows of data in the table.
When you are done viewing the data, click the X in the upper right corner of the
popup to close it.

Query a Table Using Hue

9. Make sure the Impala query editor is displayed in the main panel by clicking the
Query button.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

10

due (D

10. In the query editor text box, enter a SQL query like the one below:

SELECT x FROM accounts WHERE first_name LIKE 'An%';

11. Click the Execute button (labeled as a blue “play” symbol:) to execute the
command.

1 SELECT * FRO

O,

12. View the returned data in the Results tab below the query area.

13. Optional: If you have extra time, continue exploring the Impala Query Editor on
your own. For instance, try selecting other tabs after viewing the results.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 10

11

Hands-On Exercise: Accessing HDFS with the
Command Line and Hue

Files and Data Used in This Exercise:

Data files (local) SDEVDATA/kb/
SDEVDATA/base_stations.parquet
Data files (HDFS) /user/hive/warehouse/accounts

In this exercise, you will practice working with HDFS, the Hadoop Distributed File
System.

You will use the HDFS command line tool and the Hue File Browser web-based interface
to manipulate files in HDFS.

Explore HDFS Using the Command Line Interface

The simplest way to interact with HDFS is by using the hdfs command. To execute
HDEFS filesystem commands, use hdfs dfs.

1. Open a terminal window using the shortcut on the remote desktop menu bar.

2. Inthe new terminal session, use the HDFS command line to list the content of the
HDEFS root directory using the following command:

$ hdfs dfs -1s /

There will be multiple entries, one of which is /user. Each user has a “home”
directory under this directory, named after their username; your username in this
course is training, therefore your home directory is /user /training.

3. Tryviewing the contents of the /user directory by running:

$ hdfs dfs -1s /user

You will see your home directory in the directory listing.

Relative Paths

In HDFS, relative (non-absolute) paths are considered relative
to your home directory. There is no concept of a “current” or
“working” directory as there is in Linux and similar filesystems.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 11

4. List the contents of your home directory by running:

S hdfs dfs -1s /user/training

Note that the directory structure in HDFS is unrelated to the directory structure of
the local filesystem on the remote host; they are completely separate namespaces.

Upload Files to HDFS

Besides browsing the existing filesystem, another important thing you can do with the
HDEFS command line interface is to upload new data into HDFS.

5. Start by creating a new top-level directory for exercises. You will use this directory
throughout the rest of the course.

$ hdfs dfs -mkdir /loudacre

6. Change directories to the Linux local filesystem directory containing the sample
data we will be using in the course.

$ cd $DEVDATA

If you perform a regular Linux 1s command in this directory, you will see several
files and directories that will be used in this course. One of the data directories

is kb. This directory holds Knowledge Base articles that are part of Loudacre’s
customer service website.

7. Insert this directory into HDFS:

$ hdfs dfs -put kb /loudacre/

This copies the local kb directory and its contents into a remote HDFS directory
named /loudacre/kb.

8. List the contents of the new HDFS directory now:

$ hdfs dfs -1s /loudacre/kb

You should see the KB articles that were in the local directory.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

12

12

13

9. Practice uploading a directory, confirm the upload, and then remove it, as it is not
actually needed for the exercises.

$ hdfs dfs -put activations /loudacre/
$ hdfs dfs -1s /loudacre/activations
$ hdfs dfs -rm -r /loudacre/activations

View an HDFS File

10. Now view some of the data you just copied into HDFS.

$ hdfs dfs -cat /loudacre/kb/KBDOC-00289.html | head \
-n 20

This prints the first 20 lines of the article to your terminal. This command is handy
for viewing text data in HDFS. An individual file is often very large, making it
inconvenient to view the entire file in the terminal. For this reason, it is often a good
idea to pipe the output of the dfs —cat command into head, more, or less. You
can also use hdfs dfs -tailto more efficiently view the end of the file, rather
than piping the whole content.

Download an HDFS File

In an earlier exercise, you used Impala to explore data in HDFS in the accounts table.
You can view and work with that data directly by downloading it from HDFS to the
Linux local filesystem.

11. To download a file to work with on the local filesystem use the
hdfs dfs -get command. This command takes two arguments: an HDFS path
and a local Linux path. It copies the HDFS contents into the local filesystem:

S hdfs dfs -get \
/user/hive/warehouse/accounts /tmp/accounts
S less /tmp/accounts/part-m-00000

Enter the letter q to quit the less command after reviewing the downloaded file.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 13

View HDFS Command Line Help

12. There are several other operations available with the hdfs dfs command to
perform most common filesystem manipulations such as mv, cp, and mkdir. In the
terminal window, enter:

S hdfs dfs

You see a help message describing all the filesystem commands provided by HDFS.

Try experimenting with a few of these commands if you like.

Use the Hue File Browser to Browse, View, and Manage Files

13. In the browser running on your remote desktop, visit Hue by clicking the Hue
bookmark, or going to URL http://master-1:8889/.
If your prior session has expired, log in again using the login credentials you created
earlier: username training and password training.

14. To access HDFS, open the triple bar menu in the upper left, then select Browsers >
Files.

2 eue

15. By default, the contents of your HDFS home directory (/user/training) are
displayed. In the directory path name, click the leading slash (/) to view the HDFS
root directory.

Ouser training

16. The contents of the root directory are displayed, including the Loudacre directory
you created earlier. Click that directory to see the contents.

17. Click the name of the kb directory to see the Knowledge Base articles you uploaded.

18. Click the checkbox next to any of the files, and then click the Actions button to see a
list of actions that can be performed on the selected file(s).

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

14

14

£ Actions v

A Rename
G Move

€8 Copy

19. View the contents of one of the files by clicking on the name of the file.

¢ Note: In the file viewer, the contents of the file are displayed on the right. In
this case, the file is fairly small, but typical files in HDFS are very large, so rather
than displaying the entire contents on one screen, Hue provides buttons to move
between pages.

20. Return to the directory view by clicking View file location in the Actions panel on
the left of the file contents.

21. Click the up arrow to return to the / Lloudacre base directory.

= @

22. Upload the /home/training/training_materials/devsh/data/
base_stations.parquet file to the /loudacre HDFS directory.

a. Click the Upload button on the right. You can choose to upload a plain file, or to
upload a zipped file (which will automatically be unzipped after upload). In this
case, select Files.

® Upload ~ © New ~

ik Zip/Tgz/Bz2 file

b. Click Select Files to open a Linux file browser.

Upload to /loudacre

| Select files

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

15

15

16

c. Browseto /home/training/training_materials/devsh/data,
choose base_stations.parquet, and click the Open button.

d. Confirm that the file was correctly uploaded into the current directory.

23. Optional: Explore the various file actions available. When you have finished, select
any additional files you have uploaded and click the Move to trash button to
delete. (Do not delete base_stations. parquet; that file will be used in later
exercises.)

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 16

17

Hands-On Exercise: Running and Monitoring a YARN
Job

Files and Data Used in This Exercise

Exercise directory SDEVSH/exercises/yarn
Data files (HDFS) /loudacre/kb

In this exercise, you will submit an application to the YARN cluster, and monitor
the application using both the Hue Job Browser and the YARN Web Ul

The application you will run is provided for you. It is a simple Spark application
written in Python that counts the occurrence of words in Loudacre’s customer service
Knowledge Base (which you uploaded in a previous exercise). The focus of this exercise
is not on what the application does, but on how YARN distributes tasks in a job across a
cluster, and how to monitor an application and view its log files.

Important: This exercise depends on a previous exercise: “Access HDFS with the
Command Line and Hue.” If you did not complete that exercise, run the course catch-up
script and advance to the current exercise:

$ $DEVSH/scripts/catchup.sh

Explore the YARN Cluster

1. InFirefox, visit the YARN Resource Manager (RM) UI using the provided bookmark
(labeled RM), or by going to URL http://master-1:8088/.

No jobs are currently running so the current view shows the cluster “at rest.”

Who Is Dr. Who?

You may notice that YARN says you are logged in as dr .who. This
is what is displayed when user authentication is disabled for the
cluster, as it is in the exercise environment. If user authentication
was enabled, you would have to log in as a valid user to view the
YARN U], and your actual username would be displayed, together
with user metrics such as how many applications you had run,
how much of system resources your applications used and so on.

2. Take note of the values in the Cluster Metrics section, which displays information
such as the number of applications running currently, previously run, or waiting to

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 17

18

run; the amount of memory used and available; and how many worker nodes are in
the cluster.

(Cluster Metrics

Apps Apps Apps Apps Containers Memory Memory Memory VCores VCores VCores
Submitted Pending Running Completed Running Used Total Reserved Used Total Reserved
0 0 0 0 0 0B 4 GB 0B 0 3 0
Cluster Nodes Metrics
Active Nodes Decommissioning Nodes Decommissioned Nodes Lost Nodes Unhealthy Nodes Rebooted Nodes
1 0 0 0 0 ol
mncs Tor drwho
Apps Apps Apps Apps Containers Containers Containers Memory Memory Memory VCores VCores VCores
Submitted Pending Running Completed Running Pending Reserved Used Pending Reserved Used Pending Reserved
0 0 0 0 0 0 0 0B 0B 0B 0 0 0

Show 20 ~|entries Search:
. R . Running Allocated Allocated Reserved Reserved
ID UseAr Name Application Queuf StalTTIIWAE FIHIShTIIT\Ae StatAe FlnalstatuAs e CPU Memory CPU Memory

- ¢ ¢ Type © o 2 M v ¢ VCores ¢ MB ¢ VCores % MB

Progress Tracking
o < u <

No data available in table

Showing 0 to 0 of 0 entries

3. Click the Nodes link in the Cluster menu on the left. The bottom section will display
a list of worker nodes in the cluster.

- Cluster
About
Nodesl
Applications
NEW
NEW SAVING

SUBMITTED
ACCEPTED

| =1 NTNTT N

4. Click the localhost.localdomain:8042 link under Node HTTP Address to
open the Node Manager Ul on that node. This displays statistics about the selected
node, including the amount of available memory, currently running applications
(there are none), and so on.

5. Toreturn to the Resource Manager, click ResourceManager > RM Home on the
left.

~ ResourceManager

RM Home 4™

» NodeManager
v Tools

Submit an Application to the YARN Cluster

6. Ifyoudo not have an open terminal window, start one now.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.
18

Not to be reproduced or shared without prior written consent from Cloudera.

7.

In your terminal, run the example wordcount. py program on the YARN cluster to
count the frequency of words in the Knowledge Base file set:

$ spark2-submit \
$DEVSH/exercises/yarn/wordcount.py /loudacre/kb/*

The spark2-submit command is used to submit a Spark program for execution
on the cluster. Since Spark is managed by YARN on the course cluster, this gives us
the opportunity to see how the YARN UI displays information about a running job.
For now, focus on learning about the YARN UL

While the application is running, continue with the next steps. If it completes before
you finish the exercise, go to the terminal, press the up arrow until you get to the
spark2-submit command again, and rerun the application.

View the Application in the Hue Job Browser

8. Go to Hue in the browser on your remote desktop and click the Jobs icon the Hue

menu bar.

(Jobs)= 'O &training

The Job Browser displays a list of currently running and recently completed
applications. (If you do not see the application you just started, wait a few seconds
for the page to automatically reload; it can take some time for the application to be
accepted and start running.) Review the entry for the current job.

user:training]]_ Succeeded Running D Failed in the last 7 . days j <
Id Name User Type Status Progress Group Started Duration
application_1525873940836_0001 PythonWordCount training SPARK RUNNING 10% root.users.training May 9, 7.49s
2018

This page allows you to click the application ID to see details of the running
application, or to kill a running job. (Do not do kill the job now though!)

View the Application in the YARN Ul

To get a more detailed view of the cluster, use the YARN UL

10. Reload the YARN RM page in Firefox. Notice that the application you just started is

displayed in the list of applications in the bottom section of the RM home page.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

19

19

. . . Application StartTime
ID User ¢ Name < Type ¢ Queue N
application 1498225406752 0001 training PythonWordCount SPARK root.users.training Fri Jun 23
07:45:50
falwiaYa)

11. As you did in the first exercise section, select Nodes.

12. Select the node HTTP address link for localhost.localdomain to open the Node
Manager UI.

13. Now that an application is running, you can click List of Applications to see the
application you submitted.

+~ NodeManager

14. If your application is still running, try clicking on List of Containers.

~ NodeManager

Node Information
List of

List of Containers

This will display the containers the Resource Manager has allocated on the selected
node for the current application. (No containers will show if no applications are
running; if you missed it because the application completed, you can run the
application again. In the terminal window, use the up arrow key to recall previous
commands.)

Show 20 -+ entries Search:

Containerld -~ ContainerState ¢ IogsA
container 1498225406752 0006 01 000001 RUNNING logs
Showing 1 to 1 of 1 entries

View the Application Using the yarn Command

15. Open a second terminal window on your remote desktop.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

21

Tip: Resize the terminal window to be as wide as possible to make it easier to read
the command output.

16. View the list of currently running applications.

$ yarn application -Tlist

If your application is still running, you should see it listed, including the application
ID (such as application_1469799128160_0001), the application name
(PythonWordCount), the type (SPARK), and so on.

If there are no applications on the list, your application has probably finished
running. By default, only current applications are included. Use the —appStates
ALL option to include all applications in the list:

S yarn application -list -appStates ALL

17. Take note of your application’s ID (such as
application_1469799128160_0001), and use it in place of app-1d in the
command below to get a detailed status report on the application.

$ yarn application -status app-id

Bonus Exercise: View the Application in Cloudera Manager

If you have more time, attempt this extra bonus exercise.
1. In Firefox, go to the Cloudera Manager Ul using the provided bookmark.
2. Loginto Cloudera Manager with the username admin and password admin.

3. On the Cloudera Manager home page, open the Clusters menu and select YARN
Applications.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 21

22

Hosts ¥ Diagnostics ¥ Audits Charts ¥ Administration ~

Cluster1 (cDpH5.13.1)

@ HDFS Hosts
3 Hive
) Hue Impala Queries

Y Impala (YARN Applications)

4. On the next page, you should be viewing the Applications tab.

@ YARN (MR2 Included) (Cluster1) = Actions~

Status Instances Configuration Commands Applications Resource Pools Charts Library

Applications that are currently running or have recently run are shown. Confirm
that the application you ran above is displayed in the list. (If your application has
completed, you can restart it to explore the CM Applications manager working with
a running application.)

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 22

Hands-On Exercise: Exploring DataFrames Using the
Apache Spark Shell

Files and Data Used in This Exercise

Exercise directory SDEVSH/exercises/spark-shell
Data files (local) SDEVDATA/devices.json

In this exercise, you will use the Spark shell to work with DataFrames.

You will start by viewing and bookmarking the Spark documentation in your browser.
Then you will start the Spark shell and read a simple JSON file into a DataFrame.

Important: This exercise depends on a previous exercise: “Access HDFS with Command
Line and Hue.” If you did not complete that exercise, run the course catch-up script and
advance to the current exercise:

$ $DEVSH/scripts/catchup.sh

View the Spark Documentation

1.

View the Spark documentation in your web browser by visiting the URI http: //
spark.apache.org/docs/2.2.0/.

From the Programming Guides menu, select the DataFrames, Datasets and SQL.
Briefly review the guide and bookmark the page for later review.

From the API Docs menu, select either Scala or Python, depending on your
language preference. Bookmark the API page for use during class. Later exercises
will refer to this documentation.

If you are viewing the Scala API, notice that the package names are displayed on
the left. Use the search box or scroll down to find the org.apache.spark.sql
package. This package contains most of the classes and objects you will be working
with in this course. In particular, note the Dataset class. Although this exercise
focuses on DataFrames, remember that DataFrames are simply an alias for Datasets
of Row objects. So all the DataFrame operations you will practice using in this
exercise are documented on the Dataset class.

If you are viewing the Python API, locate the pyspark.sql module. This module
contains most of the classes you will be working with in this course. At the top are
some of the key classes in the module. View the API for the DataFrame class; these
are the operations you will practice using in this exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

23

23

http://spark.apache.org/docs/2.2.0/
http://spark.apache.org/docs/2.2.0/

24

Start the Spark Shell

You may choose to do the remaining steps in this exercise using either Scala or Python.

Note on Spark Shell Prompt

To help you keep track of whether a Spark command is Python

or Scala, the prompt will be shown here as either pyspark>

or scala>. Some commands are the same for both Scala and
Python. These will be shown with a > undesignated prompt. The
actual prompt displayed in the shell will vary depending on which
version of Python or Scala you are using and which command
number you are on.

6. Ifyoudo not have an open terminal window, start one now.

7. Inthe terminal window, start the Spark 2 shell. Start either the Python shell or the
Scala shell, not both.

To start the Python shell, use the pyspark2 command.

S pyspark2

To start the Scala shell, use the spark2-shell command.

$ spark2-shell

You may get several WARN messages, which you can disregard.

8. Spark creates a SparkSession object for you called spark. Make sure the object
exists. Use the first command below if you are using Python, and the second one if
you are using Scala. (You only need to complete the exercises in Python or Scala.)

pyspark> spark

scala> spark

Python will display information about the spark object such as:
<pyspark.sqgl.session.SparkSession at address>

Scala will display similar information in a different format:

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 24

org.apache.spark.sql.SparkSession =
org.apache.spark.sql.SparkSession@address

Note: In subsequent instructions, both Python and Scala commands will be shown
but not noted explicitly; Python shell commands are in blue and preceded with
pyspark>, and Scala shell commands are in red and preceded with scala>.

9. Using command completion, you can see all the available Spark session methods:
type spark. (spark followed by a dot) and then the TAB key.

Note: You can exit the Scala shell by typing sys . exit. To exit the Python shell,
press Ctr1+D or type exit. However, stay in the shell for now to complete the
remainder of this exercise.

Read and Display a JSON File

10. Open a new terminal window (in addition to the terminal running the Spark shell).

11. Review the simple text file you will be using: $SDEVDATA/dev-ices.json. You
can view the file either in gedit, or by starting a new terminal window then using
the less command. (Do not modify the file.) This file contains records for each of
Loudacre’s supported devices. For example:

{"devnum":1,"release_dt":"2008-10-21T00:00:00.000-07:00",
"make":"Sorrento","model":"FOOL","dev_type":"phone'"}

Notice the field names and types of values in the first few records.

12. Upload the data file to the /loudacre directory in HDFS:

$ hdfs dfs -put $DEVDATA/devices.json /loudacre/

13. In the Spark shell, create a new DataFrame based on the devices. json file in
HDFS.

pyspark> devDF = spark.read. \
json("/loudacre/devices.json")

scala> val devDF = spark.read.
json("/loudacre/devices.json")

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

25

25

26

14. Spark has not yet read the data in the file, but it has scanned the file to infer the
schema. View the schema, and note that the column names match the record field
names in the JSON file.

pyspark> devDF.printSchema()

scala> devDF.printSchema

15. Display the data in the DataFrame using the show function. If you don’t pass an
argument to show, Spark will display the first 20 rows in the DataFrame. For this
step, display the first five rows. Note that the data is displayed in tabular form,
using the column names defined in the schema.

> devDF.show(5)

Note: Like many Spark queries, this command is the same whether you are using
Scala or Python.

16. The show and printSchema operations are actions—that is, they return a value
from the distributed DataFrame to the Spark driver. Both functions display the data
in a nicely formatted table. These functions are intended for interactive use in the
shell, but do not allow you actually work with the data that is returned. Try using
the take action instead, which returns an array (Scala) or list (Python) of Row
objects. You can display the data by iterating through the collection.

pyspark> rows = devDF.take(5)
pyspark> for row in rows: print row

scala> val rows = devDF.take(5)
scala> rows.foreach(println)

Query a DataFrame

17. Use the count action to return the number of items in the DataFrame.

> devDF.count()

18. DataFrame transformations typically return another DataFrame. Try using a
select transformation to return a DataFrame with only the make and mode'l

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 26

columns, then display its schema. Note that only the selected columns are in the
schema.

pyspark> makeModelDF = devDF.select("make","model")
pyspark> makeModelDF.printSchema()

scala> val makeModelDF = devDF.select("make","model")
scala> makeModelDF.printSchema

19.

A query is a series of one or more transformations followed by an action. Spark
does not execute the query until you call the action operation. Display the first 20
lines of the final DataFrame in the series using the show action.

pyspark> makeModelDF.show()

scala> makeModelDF.show

20.

Transformations in a query can be chained together. Execute a single command to
show the results of a query using select and where. The resulting DataFrame will
contain only the columns devnum, make, and model, and only the rows where the
make is Ronin.

pyspark> devDF.select("devnum","make","model"). \
where("make = 'Ronin'"). \
show ()

scala> devDF.select("devnum","make","model").
where("make = 'Ronin'").
show

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

27

27

Hands-On Exercise: Working with DataFrames and
Schemas

Files and Data Used in This Exercise:

Exercise directory SDEVSH/exercises/dataframes
Data files (HDFS) /loudacre/devices.json
Hive Tables accounts

In this exercise, you will work with structured account and mobile device data
using DataFrames.

You will practice creating and saving DataFrames using different types of data sources,
and inferring and defining schemas.

Important: This exercise depends on a previous exercise: “Exploring DataFrames Using
the Spark Shell.” If you did not complete that exercise, run the course catch-up script
and advance to the current exercise:

$ $DEVSH/scripts/catchup.sh

Create a DataFrame Based on a Hive Table

1. This exercise uses a DataFrame based on the accounts Hive table. Before you
start working in Spark, visit Hue in the web browser on your remote desktop and
use the Impala Query Editor to review the schema and data of the accounts table
in the default database.

2. Ifyoudo not have one already, open a terminal , and start the Spark 2 shell (either
Scala or Python, as you prefer).

3. Create a new DataFrame using the Hive accounts table.

pyspark> accountsDF = spark.read.table("accounts")

scala> val accountsDF = spark.read.table("accounts")

4. Print the schema and the first few rows of the DataFrame, and note that the schema
and data are the same as the Hive table.

5. Create a new DataFrame with rows from the accounts data where the zip code is
94913, and save the result to CSV files in the /loudacre/accounts_zi1p94913

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

29

HDFS directory. You can do this in a single command, as shown below, or with
multiple commands.

pyspark> accountsDF.where("zipcode = 94913"). \
write.option("header","true"). \
csv("/loudacre/accounts_zip94913")

scala> accountsDF.where("zipcode = '94913'").
write.option("header","true").
csv("/loudacre/accounts_zip94913")

6. Use Hue or the command line (in a separate terminal window) to view the
/loudacre/accounts_zip94913 directory in HDFS and the data in one of the
saved files. Confirm that the CSV file includes a header line, and that only records
for the selected zip code are included.

7. Optional: Try creating a new DataFrame based on the CSV files you created above.
Compare the schema of the original accountsDF and the new DataFrame. What’s
different? Try again, this time setting the inferSchema option to true and
compare again.

Define a Schema for a DataFrame

8. Ifyou have not done so yet, review the data in the HDFS file
/loudacre/devices.json.

9. Create a new DataFrame based on the devices. json file. (This command could
take several seconds while it infers the schema.)

pyspark> devDF = spark.read. \
json("/loudacre/devices.json")

scala> val devDF = spark.read.
json("/loudacre/devices.json")

10. View the schema of the devDF DataFrame. Note the column names and types that
Spark inferred from the JSON file. In particular, note that the release_dt column
is of type string, whereas the data in the column actually represents a timestamp.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 29

11.

12.

Define a schema that correctly specifies the column types for this DataFrame. Start
by importing the package with the definitions of necessary classes and types.

pyspark> from pyspark.sql.types import *

scala> import org.apache.spark.sql.types._

Next, create a collection of StructField objects, which represent column
definitions. The release_dt column should be a timestamp.

pyspark> devColumns = [
StructField("devnum",LongType()),
StructField("make",StringType()),
StructField("model",StringType()),
StructField("release_dt",TimestampType()),
StructField("dev_type",StringType())]

scala> val devColumns = List(
StructField("devnum",LongType),
StructField("make",StringType),
StructField("model",StringType),
StructField("release_dt",TimestampType),
StructField("dev_type",StringType))

13.

Create a schema (a StructType object) using the column definition list.

pyspark> devSchema = StructType(devColumns)

scala> val devSchema = StructType(devColumns)

14.

Recreate the devDF DataFrame, this time using the new schema.

pyspark> devDF = spark.read. \
schema(devSchema) .json("/loudacre/devices.json")

scala> val devDF = spark.read.
schema(devSchema) .json("/loudacre/devices.json")

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

30

30

31

15. View the schema and data of the new DataFrame, and confirm that the
release_dt column type is now timestamp.

16. Now that the device data uses the correct schema, write the data in Parquet format,
which automatically embeds the schema. Save the Parquet data files into an HDFS
directory called /loudacre/devices_parquet.

17. Optional: In a separate terminal window, use parquet-tools to view the schema
of the saved files.

S parquet-tools schema \
hdfs://master-1/loudacre/devices_parquet/

Note that the type of the release_dt column is noted as int96; this is how Spark
denotes a timestamp type in Parquet.

For more information about parquet-tools, run parquet-tools --help.
18. Create a new DataFrame using the Parquet files you saved in devices_parquet

and view its schema. Note that Spark is able to correctly infer the timestamp type
of the release_dt column from Parquet’s embedded schema.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 31

32

Hands-On Exercise: Analyzing Data with DataFrame
Queries

Files and Data Used in This Exercise:

Exercise directory SDEVSH/exercises/analyze
Data files (local) SDEVDATA/accountdevice
Data files (HDFS) /loudacre/devices.json

/loudacre/base_stations.parquet

Hive Tables accounts

In this exercise, you will analyze account and mobile device data using DataFrame
queries.

First, you will practice using column expressions in queries. You will analyze data in
DataFrames by grouping and aggregating data, and by joining two DataFrames. Then
you will query multiple sets of data to find out how many of each mobile device model
is used in active accounts.

Important: This exercise depends on a previous exercise: “Working with DataFrames
and Schemas.” If you did not complete that exercise, run the course catch-up script and
advance to the current exercise:

$ $DEVSH/scripts/catchup.sh

Query DataFrames Using Column Expressions

1. Optional: Review the API docs for the Column class (which is in the Python module
pyspark.sql, and the Scala package org.apache.spark.sql). Take note of
the various options available.

2. Start the Spark 2 shell in a terminal if you do not already have it running.

3. Create a new DataFrame called accountsDF based on the Hive accounts table.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 32

33

Try a simple query with se'lect, using both column reference syntaxes.

pyspark> accountsDF. \
select(accountsDF["first_name"]) .show()
pyspark> accountsDF.select(accountsDF.first_name).show()

scala> accountsDF.
select(accountsDF ("first_name")).show
scala> accountsDF.select($"first_name").show

To explore column expressions, create a column object to work with, based on the
first_name column in the accountsDF DataFrame.

pyspark> fnCol = accountsDF.first_name

scala> val fnCol = accountsDF("first_name")

Note that the object type is Column. To see available methods and attributes, use
tab completion—that is, enter fnCo'l. followed by TAB.

New Column objects are created when you perform operations on existing
columns. Create a new Column object based on a column expression that identifies
users whose first name is Lucy using the equality operator on the fnCol object you
created above.

pyspark> lucyCol = (fnCol == "Lucy")

scala> val lucyCol = (fnCol === "Lucy")

Use the LucyCo'l column expression in a select statement. Because lucyCo'l
is based on a boolean expression, the column values will be true or false

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 33

depending on the value of the first_name column. Confirm that users named
Lucy are identified with the value true.

pyspark> accountsDF. \
select(accountsDF.first_name, \
accountsDF.last_name, lucyCol). \
show ()

scala> accountsDF.
select($"first_name",$"last_name",lucyCol).show

9. The where operation requires a boolean-based column expression. Use the
lucyCol column expression in a where transformation and view the data in the
resulting DataFrame. Confirm that only users named Lucy are in the data.

> accountsDF.where(lucyCol) .show(5)

10. Column expressions do not need to be assigned to a variable. Try the same query
without using the LucyCol variable.

pyspark> accountsDF.where(fnCol == "Lucy").show(5)

scala> accountsDF.where(fnCol === "Lucy").show(5)

11. Column expressions are not limited to where operations like those above. They can
be used in any transformation for which a simple column could be used, such as a
select. Try selecting the city and state columns, and the first three characters
of the phone_number column (in the U.S,, the first three digits of a phone number

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

34

34

12.

are known as the area code). Use the substr operator on the phone_number
column to extract the area code.

pyspark> accountsDF. \
select("city", "state", \
accountsDF.phone_number.substr(1,3)). \
show(5)

scala> accountsDF.
select($"city", $"state",
$"phone_number".substr(1,3)).
show(5)

Notice that in the last step, the values returned by the query were correct, but the
column name was substring(phone_number, 1, 3),whichislongand
hard to work with. Repeat the same query, using the alias operator to rename that
column as area_code.

pyspark> accountsDF. \
select("city", "state", \
accountsDF.phone_number. \
substr(1,3).alias("area_code")). \
show(5)

scala> accountsDF.
select($"city", $"state",
$"phone_number".substr(1,3).alias("area_code")).
show(5)

13.

Perform a query that results in a DataFrame with just first_name and
last_name columns, and only includes users whose first and last names both
begin with the same two letters. (For example, the user Robert Roget would be
included, because both his first and last names begin with “Ro”.)

Group and Count Data by Name

14.

Query the accountsDF DataFrame using groupBy with count to find out the
total number people sharing each last name. (Note that the count aggregation

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

35

35

transformation returns a DataFrame, unlike the count DataFrame action, which
returns a single value to the driver.)

pyspark> accountsDF.groupBy("last_name").count().show(5)

scala> accountsDF.groupBy("last_name").count.show(5)

15. You can also group by multiple columns. Query accountsDF again, this time
counting the number of people who share the same last and first name.

pyspark> accountsDF. \
groupBy ("last_name","first_name").count().show(5)

scala> accountsDF.
groupBy ("last_name","first_name").count.show(5)

Join Account Data with Cellular Towers by Zip Code

16. In this section, you will join the accounts data that you have been using with data
about cell tower base station locations, which is in the base_stations.parquet
file in the HDFS /loudacre directory. Start by reviewing the schema and a few
records of the data. Use the parquet-tools command in a separate terminal
window (not the one running the Spark shell).

$ parquet-tools schema \
hdfs://master-1/loudacre/base_stations.parquet

$ parquet-tools head \
hdfs://master-1/loudacre/base_stations.parquet

17. In your Spark shell, create a new DataFrame called baseDF using the base stations
data. Review the baseDF schema and data to ensure it matches the data in the
Parquet file.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

36

36

37

18. Some account holders live in zip codes that have a base station. Join baseDF and
accountsDF to find those users, and for each, include their account ID, first name,
last name, and the ID and location data for the base station in their zip code.

pyspark> accountsDF. \
select("acct_num","first_name","last_name","zipcode"). \
join(baseDF, baseDF.zip == accountsDF.zipcode). \
show ()

scala> accountsDF.
select("acct_num","first_name","last_name","zipcode").
join(baseDF,$"zip" === $"zipcode").show()

Count Active Devices

19. The accountdevice CSV data files contain data lists all the devices used by all the
accounts. Each row in the data set includes a row ID, an account ID, a device ID for
the type of device, the date the device was activated for the account, and the specific
device’s ID for that account.

The CSV data files are in the SDEVDATA/accountdevice directory . Review
the data in the data set, then upload the directory and its contents to the HDFS
directory /loudacre/accountdevice.

20. Create a DataFrame based on the accountdevice data files.

21. Use the account device data and the DataFrames you created previously in this
exercise to find the total number of each device model across all active accounts
(that is, accounts that have not been closed). The new DataFrame should be sorted
from most to least common model. Save the data as Parquet files in a directory
called /loudacre/top_deviices with the following columns:

Column Description Example Value
Name

device_id TheID number of each known device 18
(including those that might not be in
use by any account)

make The manufacturer name for the device Ronin

mode'l The model name for the device Novelty Note 2

active_num The total number of the model used 2092
by active accounts

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 37

38

Hints:

e Active accounts are those with a null value for acct_close_dt (account close
date) in the accounts table.

e The account_id column in the device accounts data corresponds to the
acct_numcolumn in accounts table.

e The device_id column in the device accounts data corresponds to the devnum
column in the list of known devices in the /loudacre/devices. json file.

e When you count devices, use withColumnRenamed to rename the count
column to active_num. (The count column name is ambiguous because it is
both a function and a column.)

e The query to complete this exercise is somewhat complicated and includes a
sequence of many transformations. You may wish to assign variables to the
intermediate DataFrames resulting from the transformations that make up the
query to make the code easier to work with and debug.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 38

39

Hands-On Exercise: Working With RDDs

Files and Data Used in This Exercise

Exercise directory SDEVSH/exercises/rdds

Data files (local) SDEVDATA/frostroad.txt
SDEVDATA/makesl. txt
SDEVDATA/makes2.txt

In this exercise, you will use the Spark shell to work with RDDs.

You will start reading a simple text file into a Resilient Distributed Dataset (RDD) and
displaying the contents. You will then create two new RDDs and use transformations to
union them and remove duplicates.

Important: This exercise depends on a previous exercise: “Accessing HDFS with
Command Line and Hue.” If you did not complete that exercise, run the course catch-up
script and advance to the current exercise:

$ $DEVSH/scripts/catchup.sh

Review the APl Documentation for RDD Operations

1. Review the API docs for the RDD class (which is in the Python module pyspark,
and the Scala package org.apache. spark.rdd). Take note of the various
available operations.

Read and Display Data from a Text File

2. Review the simple text file you will be using by viewing (without editing) the
file in a separate window (not the Spark shell). The file is located at $SDEVDATA/
frostroad. txt.

3. Inaterminal window on your remote desktop, upload the text file to HDFS
directory / loudacre.

$ hdfs dfs -put $DEVDATA/frostroad.txt /loudacre/

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 39

In the Spark shell, define an RDD based on the frostroad. txt text file.

pyspark> myRDD = sc. \
textFile("/loudacre/frostroad.txt")

scala> val myRDD = sc.
textFile("/loudacre/frostroad.txt")

Using command completion, you can see all the available transformations and
actions you can perform on an RDD. Type myRDD. and then the TAB key.

Spark has not yet read the file. It will not do so until you perform an action on the
RDD. Try counting the number of elements in the RDD using the count action:

pyspark> myRDD.count()

scala> myRDD.count

The count operation causes the RDD to be materialized (created and populated).
The number of lines (23) should be displayed, for example:

Out[2]: 23 (Python) or
resl: Long = 23 (Scala)

Call the collect operation to return all data in the RDD to the Spark driver. Take
note of the type of the return value; in Python will be a list of strings, and in Scala it
will be an array of strings.

Note: collect returns the entire set of data. This is convenient for very small

RDDs like this one, but be careful using collect for more typical large sets of data.

pyspark> 1lines = myRDD.collect()

scala> val lines = myRDD.collect

Display the contents of the collected data by looping through the collection.

pyspark> for line in lines: print line

scala> for (line <- lines) println(line)

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

40

40

Transform Data in an RDD

9.

10.

In this exercise, you will load two text files containing the names of various cell
phone makes, and append one to the other. Review the two text files you will be
using by viewing (without editing) the file in a separate window. The files are
makesl.txt and makes2.txt in the $SDEVDATA directory

Upload the two text file to HDFS directory / loudacre.

$ hdfs dfs -put $DEVDATA/makesx.txt /loudacre/

11.

In Spark, create an RDD called makes1RDD based on the /loudacre/
makesl. txt file.

pyspark> makeslRDD = sc.textFile("/loudacre/makesl.txt")

scala> val makeslRDD = sc.textFile("/loudacre/makesl.txt")

12.

Display the contents of the makes1RDD data using collect and then looping
through returned collection.

pyspark> for make in makeslRDD.collect(): print make

scala> for (make <- makeslRDD.collect()) println(make)

13.

14.

Repeat the previous steps to create and display an RDD called makes2RDD based
on the second file, / loudacre/makes2. txt.

Create a new RDD by appending the second RDD to the first using the union
transformation.

pyspark> allMakesRDD = makeslRDD.union(makes2RDD)

scala> val allMakesRDD = makeslRDD.union(makes2RDD)

15.

16.

Collect and display the contents of the new allMakesRDD RDD.

Use the distinct transformation to remove duplicates from al lMakesRDD.

Collect and display the contents to confirm that duplicate elements were removed.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

41

41

17. Optional: Try performing different transformations on the RDDs you created above,
such as intersection, subtract, or zip. See the RDD API documentation for
details.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

43

Hands-On Exercise: Transforming Data Using RDDs

Files and Data Used in This Exercise

Exercise directory SDEVSH/exercises/transform-rdds

Data files (local) SDEVDATA/weblogs/
SDEVDATA/devicestatus. txt

In this exercise, you will transform data in RDDs.

You will start reading a simple text file into a Resilient Distributed Dataset (RDD). Then
you create an RDD based on Loudacre’s website log data and practice transforming the
data.

Important: This exercise depends on a previous exercise: “Accessing HDFS with
Command Line and Hue.” If you did not complete that exercise, run the course catch-up
script and advance to the current exercise:

$ $DEVSH/scripts/catchup.sh

Explore the Loudacre Web Log Files

1. In this section you will be using data in $DEVDATA /weblogs. Review one of the
. Log files in the directory. Note the format of the lines:

* | IP Address 1‘ { User ID ~ Request
I
. s
|116.180.70.237|- 128 [15!521:!;"201}523:55:53 +0100]
|"GET /KBDOC-00031 . html HTTP,-"l.EJ"|EﬂI:I 1388

"http://www. loudacre.com” "Loudacre CS5R Browser"

2. Copy the weblogs directory from the local filesystem to the /loudacre HDFS
directory.

$ hdfs dfs -put $DEVDATA/weblogs /loudacre/

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 43

In spark, create an RDD from the uploaded web logs data files in the /loudacre/
weblogs/ directory in HDFS.

pyspark> logsRDD = sc.textFile("/loudacre/weblogs/")

scala> val logsRDD = sc.textFile("/loudacre/weblogs/")

Create an RDD containing only those lines that are requests for JPG files. Use the
filter operation with a transformation function that takes a string RDD element
and returns a boolean value.

pyspark> jpglogsRDD = \
logsRDD. filter (lambda line: ".jpg" in line)

scala> val jpglogsRDD =
logsRDD. filter(line => line.contains(".jpg"))

Use take to return the first five lines of the data in jpglogsRDD. The return value
is a list of strings (in Python) or array of strings (in Scala).

pyspark> jpgLines = jpglogsRDD.take(5)

scala> val jpgLines = jpglogsRDD.take(5)

Loop through and display the strings returned by take.

pyspark> for line 1in jpgLines: print line

scala> jpgLines.foreach(println)

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

a4

44

7.

Now try using the map transformation to define a new RDD. Start with a simple map
function that returns the length of each line in the log file. This results in an RDD of
integers.

pyspark> lineLengthsRDD = \
logsRDD.map (lambda line: len(line))

scala> val linelLengthsRDD =
logsRDD.map(line => line.length)

Loop through and display the first five elements (integers) in the RDD.

Calculating line lengths is not very useful. Instead, try mapping each string in
logsRDD by splitting the strings based on spaces. The result will be an RDD in
which each element is a list of strings (in Python) or an array of strings (in Scala).
Each string represents a “field” in the web log line.

pyspark> lineFieldsRDD = \
logsRDD.map(lambda line: line.split(' '))

scala> val lineFieldsRDD =
logsRDD.map(line => line.split(' "))

10.

Return the first five elements of LineFieldsRDD. The result will be a list of lists of
strings (in Python) or an array of arrays of strings (in Scala).

pyspark> lineFields = lineFieldsRDD.take(5)

scala> val lineFields = lineFieldsRDD.take(5)

11.

Display the contents of the return from take. Unlike in examples above, which
returned collections of simple values (strings and ints), this time you have a set of
compound values (arrays or lists containing strings). Therefore, to display them
properly, you will need to loop through the arrays/lists in lineFields, and then
loop through each string in the array/list. To make it easier to read the output, use
——————— to separate each set of field values.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

45

45

46

If you choose to copy and paste the Pyspark code below into the shell, it may not
automatically indent properly; be sure the indentation is correct before executing
the command.

pyspark> for fields in lineFields:

for field in fields: print field

scala> for (fields <- lineFields) {
println("------- ")
fields.foreach(println)

}

12. Now that you know how map works, create a new RDD containing just the IP
addresses from each line in the log file. (The IP address is the first space-delimited
field in each line.)

pyspark> ipsRDD = \
logsRDD.map (lambda line: line.split(' ')[0])
pyspark> for ip 1in 1ipsRDD.take(5): print ip

scala> val 1ipsRDD =
logsRDD.map(line => line.split(' ") (0))
scala> ipsRDD.take(5).foreach(println)

13. Finally, save the list of IP addresses as a text file:

pyspark> ipsRDD.saveAsTextFile("/loudacre/iplist")

scala> ipsRDD.saveAsTextFile("/loudacre/iplist")

¢ Note: If you re-run this command, you will not be able to save to the same
directory because it already exists. Be sure to first delete the directory using
either the hdfs command (in a separate terminal window) or the Hue file
browser.

14. In a separate terminal window or the Hue file browser, list the contents of the
/loudacre/iplist folder. Review the contents of one of the files to confirm that
they were created correctly.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 46

47

Map weblog entries to IP address/user ID pairs

15. Use RDD transformations to create a dataset consisting of the IP address and
corresponding user ID for each request for an HTML file. (Filter for files with the
. html extension; disregard requests for other file types.) The user ID is the third
field in each log file line. Save the data into a comma-separated text file in the
directory /loudacre/userips_csv. Make sure the data is saved in the form of
comma-separated strings:

165.32.101.206,8
100.219.90.44,102
182.4.148.56,173
246.241.6.175,45395
175.223.172.207,4115

16. Now that the data is in CSV format, it can easily be used by Spark SQL. Load the new
CSV files in /loudacre/userips_csv created above into a DataFrame, then
view the data and schema.

Bonus Exercise 1: Clean device status data

If you have more time, attempt this extra bonus exercise.

One common use of core Spark RDDs is data scrubbing—converting the data into a
format that can be used in Spark SQL. In this bonus exercise, you will process data in
order to get it into a standardized format for later processing.

Review the contents of the file SDEVDATA/devicestatus. txt. This file contains
data collected from mobile devices on Loudacre’s network, including device ID,
current status, location, and so on. Because Loudacre previously acquired other mobile
providers’ networks, the data from different subnetworks has a different format. Note
that the records in this file have different field delimiters: some use commas, some use
pipes (|), and so on. Your task is the following:

17. Upload the devicestatus. txt file to HDFS.

18. Determine which delimiter to use (the 20th character—position 19—is the first use
of the delimiter).

19. Filter out any records which do not parse correctly (hint: each record should have
exactly 14 values).

20. Extract the date (first field), model (second field), device ID (third field), and
latitude and longitude (13" and 14™ fields respectively).

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 47

21. The second field contains the device manufacturer and model name (such as Ronin
S2). Split this field by spaces to separate the manufacturer from the model (for
example, manufacturer Ronin, model S2). Keep just the manufacturer name.

22. Save the extracted data to comma-delimited text files in the
/loudacre/devicestatus_etl directory on HDFS.

23. Confirm that the data in the file(s) was saved correctly. The lines in the file should
all look similar to this, with all fields delimited by commas.

2014-03-15:10:10:20,Sorrento,8cc3b47e-bd01-4482-
b500-28f2342679af,33.6894754264,-117.543308253

The solutions to the bonus exercise are in SDEVSH/exercises/transform-rdds/
bonus-dataclean/solution.

Bonus Exercise 2: Convert Multi-line XML files to CSV files

One of the common uses for RDDs in core Spark is to transform data from unstructured
or semi-structured sources or formats that aren’t supported by Spark SQL to structured
formats you can use with Spark SQL. In this bonus exercise, you will convert a whole-
file XML record to a CSV file that can be read into a DataFrame.

24. Review the data on the local Linux filesystem in the directory $SDEVDATA/
activations. Each XML file contains data for all the devices activated by
customers during a specific month.

Sample input data:

<activations>

<activation timestamp="1225499258" type="phone">
<account-number>316</account-number>
<device-id>

d61b6971-33e1-42f0-bb1l5-aa2ae3cd8680

</device-id>
<phone-number>5108307062</phone-number>
<model>iFruit 1</model>

</activation>

</activations>

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

48

48

49

25. Copy the entire activations directory to / loudacre in HDFS.

$ hdfs dfs -put SDEVDATA/activations /loudacre/

Follow the steps below to write code to go through a set of activation XML files and
extract the account number and device model for each activation, and save the list to a
file as account_number :mode'.

The output will look something like:

1234:4Fruit 1
987 :Sorrento FOOL
4566:7Fruit 1

26. Start with the ActivationModels stub script in the bonus exercise directory:
$DEVSH/exercises/transform-rdds/bonus-xml. (Stubs are provided for
Scala and Python; use whichever language you prefer.) Note that for convenience
you have been provided with functions to parse the XML, as that is not the focus of
this exercise. Copy the stub code into the Spark shell of your choice.

27. Use wholeTextFiles to create an RDD from the activations dataset. The
resulting RDD will consist of tuples, in which the first value is the name of the file,
and the second value is the contents of the file (XML) as a string.

28. Each XML file can contain many activation records; use flatMap to map the
contents of each file to a collection of XML records by calling the provided
getActivations function. getActivations takes an XML string, parses it, and
returns a collection of XML records; flatMap maps each record to a separate RDD
element.

29. Map each activation record to a string in the format account—-number :model.
Use the provided getAccount and getModel functions to find the values from
the activation record.

30. Save the formatted strings to a text file in the directory /loudacre/account-
models.

The solutions to the bonus exercise are in SDEVSH/exercises/transform-rdds/
bonus-xml/solution.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 49

50

Hands-On Exercise: Joining Data Using Pair RDDs

Files and Data Used in This Exercise:

Exercise directory $SDEVSH/exercises/pair-rdds

Data files (HDFS) /loudacre/weblogs
/user/hive/warehouse/accounts

In this exercise, you will explore the Loudacre web server log files, as well as the
Loudacre user account data, using key-value pair RDDs.

Important: This exercise depends on a previous exercise: “Transforming Data Using
RDDs.” If you did not complete that exercise, run the course catch-up script and advance
to the current exercise:

$ $DEVSH/scripts/catchup.sh

Explore Web Log Files

Create a pair RDD based on data in the weblogs data files, and use the pair RDD to
explore the data.

Tip: In this exercise, you will be reducing and joining large datasets, which can take
a lot of time and may result in memory errors resulting from the limited resources
available in the course exercise environment. Perform these exercises with a subset
of the the web log files by using a wildcard: textFile("/loudacre/weblogs/
*x2.log") includes only filenames ending with 2. log.

1. Using map-reduce logic, count the number of requests from each user.
a. Use map to create a pair RDD with the user ID as the key and the integer 1

as the value. (The user ID is the third field in each line.) Your data will look
something like this:

(userid,1)

(userid,1)

(userid,l)

b. Use reduceByKey to sum the values for each user ID. Your RDD data will be
similar to this:

(userid,5)

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 50

(userid,7)

(userid,?2)

2. Use countByKey to determine how many users visited the site for each frequency.
That is, how many users visited once, twice, three times, and so on.

a. Usemap to reverse the key and value, like this:

(5,userid)

(7,userid)

(2,userid)

b. Use the countByKey action to return a map of frequency: user-count pairs.
3. Create an RDD where the user ID is the key, and the value is the list of all the IP
addresses that user has connected from. (IP address is the first field in each request

line.)

e Hint: Map to (userid,ipaddress) and then use groupByKey.

(userid,20.1.34.55)
(userid,245.33.1.1)
(userid,65.50.196.141)

SN

51

(userid,[20.1.34.55, 74.125.239.98])

(userid,[75.175.32.10, 245.33.1.1, 66.79.233.99])

(userid,[65.50.196.141])

Join Web Log Data with Account Data

Review the accounts data located in /user /hive/warehouse/accounts, which
contains the data in the Hive accounts table. The first field in each line is the user

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

51

52

ID, which corresponds to the user ID in the web server logs. The other fields include
account details such as creation date, first and last name, and so on.

4. Join the accounts data with the weblog data to produce a dataset keyed by user ID
which contains the user account information and the number of website hits for

that user.

a. Create an RDD, based on the accounts data, consisting of key/value-array pairs:
(userid, [values..])

(9012,[9012,2008-11-24 10:04:08,\N,Cheryl,West, 4905 Olive
Street,..])

(2312,[2312,2008-11-23 14:05:07,\N,Elizabeth,Kerns, 4703
Eva Pearl Street,Richmond,CA,..])

(1195,[1195,2008-11-02 17:12:12,2013-07-18
16:42:36,Melissa, Roman,3539 James Martin
Circle,0akland,CA,..])

b. Join the pair RDD with the set of user-id /hit-count pairs calculated in the first
step.

(9012, ([9012,2008-11-24 10:04:08,\N,Cheryl,West, 4905 Olive
Street,San Francisco,CA,..],4))

(2312, ([2312,2008-11-23 14:05:07,\N,Elizabeth,Kerns, 4703
Eva Pearl Street,Richmond,CA,..],8))
(1195, ([1195,2008-11-02 17:12:12,2013-07-18

16:42:36,Melissa, Roman,3539 James Martin
Circle,0akland,CA,..]1,1))

c. Display the user ID, hit count, and first name (4th value) and last name (5th
value) for the first five elements. The output should look similar to this:

9012 6 Rick Hopper
1123 8 Lucio Arnold
1093 2 Brittany Parrott

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.
52

Not to be reproduced or shared without prior written consent from Cloudera.

Bonus Exercises

If you have more time, attempt the following extra bonus exercises:

1. Use keyBy to create an RDD of account data with the postal code (9™ field in the
CSV file) as the key.

Tip: Assign this new RDD to a variable for use in the next bonus exercise.

2. Create a pair RDD with postal code as the key and a list of names (Last Name,First
Name) in that postal code as the value.

e Hint: First name and last name are the 4™ and 5% fields respectively.
e Optional: Try using the mapVa'lues operation.

3. Sort the data by postal code, then for the first five postal codes, display the code and
list the names in that postal zone. For example:

--- 85003

Jenkins,Thad
Rick,Edward
Lindsay,Ivy

-—— 85004
Morris,Eric
Reiser,Hazel
Gregg,Alicia
Preston,Elizabeth

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

53

53

54

Hands-On Exercise: Querying Tables and Views with

SQL

Files and Data Used in This Exercise:

Exercise directory SDEVSH/exercises/spark-sql
Data files (local) SDEVDATA/accountdevice
Hive Tables accounts

In this exercise, you will use the Catalog API to explore Hive tables, and create
DataFrames by executing SQL queries.

Use the Catalog API to list the tables in the default Hive database, and view the schema
of the accounts table. Perform queries on the accounts table, and review the resulting
DataFrames. Create a temporary view based on the accountdeviice CSV files, and use
SQL to join that table with the accounts table.

Important: This exercise depends on a previous exercise: “Analyzing Data with
DataFrame Queries.” If you did not complete that exercise, run the course catch-up
script and advance to the current exercise:

$ $DEVSH/scripts/catchup.sh

Show tables and columns using the Catalog API

1. View the list of current Hive tables and temporary views in the default database.

pyspark> for table in spark.catalog.listTables():
print table

scala> spark.catalog.listTables.show

The list should include the accounts table.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 54

55

2. List the schema (column definitions) of the accounts table.

pyspark> for column in \
spark.catalog.listColumns("accounts"):
print column

scala> spark.catalog.listColumns("accounts").show

3. Create anew DataFrame based on the accounts table, and confirm that its schema
matches that of the column list above.

Perform a SQL query on a table

4. Create a new DataFrame by performing a simple SQL query on the accounts table.
Confirm that the schema and data is correct.

pyspark> firstLastDF = spark. \
sqL("SELECT first_name,last_name FROM accounts")

scala> val firstLastDF = spark.
sqL("SELECT first_name,last_name FROM accounts")

5. Optional: Perform the equivalent query using the DataFrame API, and compare the
schema and data in the results to those of the query above.

Create and query a view

6. Create a DataFrame called accountDeviceDF based on the CSV files in /
loudacre/accountdevice. (Be sure to use the headers and inferred schema to
determine the column names and types.)

7. Create a temporary view on the accountDeviceDF DataFrame called
account_dev.

8. Confirm the view was created correctly by listing the tables and views in the
default database as you did earlier. Notice that the account_dev table type is
TEMPORARY.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 55

56

9. Using a SQL query, create a new DataFrame based on the first five rows of the
account_dev table, and display the results.

> spark.sql("SELECT * FROM account_dev LIMIT 5").show()

Use SQL to join two tables

10. Join the accounts and account_dev tables using the account ID, and display
the results. (Note that the SQL string in the command below must be entered on a
single line in the Spark shell.)

pyspark> nameDevDF = spark.sql("SELECT acct_num,
first_name, last_name, account_device_-id
FROM accounts JOIN account_dev ON acct_num =
account_id")
pyspark> nameDevDF.show()

scala> val nameDevDF = spark.sql("SELECT acct_num,
first_name, last_name, account_device_id
FROM accounts JOIN account_dev ON acct_num =
account_id")
scala> nameDevDF.show

11. Save nameDevDF as a table called name_dev (with the file path as / loudacre/
name_dev).

12. Use the Catalog API to confirm that the table was created correctly with the right
schema.

13. Optional: If you are familiar with using Hive or Impala, verify that the name_dev
table now exists in the Hive metastore. If you use Impala, be sure to invalidate
Impala’s local store of the metastore using the INVALIDATE METADATA command
or the refresh icon in the Hue Impala Query Editor.

14. Optional: Exit and restart the shell and confirm that the temporary view is no longer
available.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 56

57

Hands-On Exercise: Using Datasets in Scala

Files and Data Used in This Exercise:

Exercise directory SDEVSH/exercises/datasets
Data files (HDFS) /loudacre/weblogs

In this exercise, you will explore Datasets using web log data.

Create an RDD of account ID/IP address pairs, and then create a new Dataset of
products (case class objects) based on that RDD. Compare the results of typed and
untyped transformations to better understand the relationship between DataFrames
and Datasets.

Note: These exercises are in Scala only, because Datasets are not defined in Python.

Important: This exercise depends on a previous exercise: “Transforming Data Using
RDDs.” If you did not complete that exercise, run the course catch-up script and advance
to the current exercise:

$ $DEVSH/scripts/catchup.sh

Explore Datasets using web log data

Find all the account IDs and the IP addresses from which those accounts logged in to the
web site from Loudacre’s web log data.

1. Create a case class for account ID/IP address pairs.

scala> case class AccountIP (id: Int, ip: String)

2. Create an RDD of AccountIP objects by using the web log data in / loudacre/
weblogs. Split the data by spaces and use the first field as IP address and the third
as account ID.

scala> val accountIPRDD = sc.
textFile("/loudacre/weblogs").
map(line => line.split(' ")).
map(fields =>
new AccountIP(fields(2).toInt,fields(0)))

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 57

58

3. Create a Dataset of AccountIP objects using the new RDD.

scala> val accountIPDS = spark.createDataset(accountIPRDD)

4. View the schema and data in the new Dataset.

5. Compare the result types of a typed transformation—distinct—and an untyped
transformation—groupBy/count.

scala> val distinctIPDS = accountIPDS.distinct
scala> val accountIPCountDS = distinctIPDS.
groupBy ("id","ip") .count

6. Save the accountIPDS Dataset as a Parquet file, then read the file back into
a DataFrame. Note that the type of the original Dataset (AccountIP) is not
preserved, but the types of the columns are.

Bonus Exercises

1. Try creating a new Dataset of AccountIP objects based on the DataFrame you
created above.

2. Create a view on the AccountIPDS Dataset, and perform a SQL query on the view.
What is the return type of the SQL query? Were column types preserved?

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 58

59

Hands-On Exercise: Writing, Configuring, and Running
a Spark Application

Files and Data Used in This Exercise:

Exercise directory SDEVSH/exercises/spark-application
Hive Tables accounts
Scala project SDEVSH/exercises/spark-application/

accounts-by-state_project

Scala classes stubs.AccountsByState
solution.AccountsByState

Python stub accounts-by-state.py

In this exercise, you will write your own Spark application instead of using the
interactive Spark shell application.

Write a simple Spark application that takes a single argument, a state code (such as CA).
The program should read the data from the accounts Hive table and save the rows
whose state column value matches the specified state code. Write the results to /
loudacre/accounts_by_state/state-code (such as accounts_by_state/
CA).

Depending on which programming language you are using, follow the appropriate set of
instructions below to write a Spark program.

Important: This exercise depends on a previous exercise: “Accessing HDFS with the
Command Line and Hue.” If you did not complete that exercise, run the course catch-up
script and advance to the current exercise:

$ SDEVSH/scripts/catchup.sh

Editing Scala and Python Files

You may use any text editor you wish to work on your application
code. If you do not have an editor preference, you may wish to use
gedit, which includes language-specific support for Scala.

You can start gedit on your remote desktop using the desktop
shortcut.

Write and Run a Spark Application in Python

1. Ifyou are using Python, follow these instructions; otherwise, skip this section and
continue to Write and Run a Spark Application in Scala below.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 59

60

2. Asimple stub file to get you started has been provided in the exercise directory:
SDEVSH/exercises/spark-application/python-stubs/accounts-
by-state.py. This stub imports the required Spark classes and sets up your main
code block. Open the stub file in an editor.

3. Create a SparkSess-ion object using the following code:

spark = SparkSession.builder.getOrCreate()

4. Inthe body of the program, load the accounts Hive table into a DataFrame. Select
accounts where the state column value matches the string provided as the first
argument to the application. Save the results to a directory called / loudacre/
accounts_by_state/state-code (where state-code is a string such
as CA.) Use overwrite mode when saving the file so that you can re-run the
application without needing to delete the directory.

5. Atthe end of the application, be sure to stop the Spark session:

spark.stop()

6. Ifyou have a Spark shell running in any terminal, exit the shell before running your
application.

7. Runyour application. In a terminal window, change to the exercise working
directory, then run the program, passing the state code to select. For example, to
select accounts in California, use the following command:

$ cd $DEVSH/exercises/spark-application/
$ spark2-submit python-stubs/accounts-by-state.py CA

Note: To run the solution application, use python-solution/accounts-by-
state.py.

8. After the program completes, use parquet-too'ls to verify that the file contents
are correct. For example, if you used the state code CA, you would use the command
below:

$ parquet-tools head \
hdfs://master-1/loudacre/accounts_by_state/CA

For more information about parquet-tools, run parquet-tools --help.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 60

9. Skip the section below on writing and running a Spark application in Scala and
continue with View the Spark Application UL

Write and Run a Spark Application in Scala

A Maven project to get you started has been provided in the exercise directory:
$DEVSH/exercises/spark-application/accounts-by-state_project.

The first time you build a Scala Spark application in your environment, Maven must first
download the Spark libraries from the Maven central repository. This can take several
minutes, so before starting work on the exercise steps, compile the exercise project
following the steps below. (Maven only needs to download the libraries the first time. It
caches the libraries locally, and uses the cache for subsequent builds.)

10. In a terminal window, change to the project directory. Be sure to enter the
command line shown below as a single line.

$ cd \

$DEVSH/exercises/spark-application/accounts-by-state_project

11. Build the exercise project using Maven.

$ mvn package

Maven will begin to download the required Spark libraries. Next time you build the
project, Maven will used the libraries in its local cache. While Maven downloads the
libraries, continue with the exercise steps below.

12. Edit the Scala class defined in stubs package in src/main/scala/stubs/
AccountsByState.scala.

13. Create a SparkSession object using the following code:

val spark = SparkSession.builder.getOrCreate()

14. In the body of the program, load the accounts Hive table into a DataFrame. Select
accounts where the state column value matches the string provided as the first
argument to the application. Save the results to a Parquet file called / loudacre/
accounts_by_state/state-code (where state-code is a string such
as CA). Use overwrite mode when saving the file so that you can re-run the
application without needing to delete the save directory.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

61

61

62

15. At the end of the application, be sure to stop the Spark session:

spark.stop

16. Return to the terminal in which you ran Maven earlier in order to cache Spark
libraries locally. If the Maven command is still running, wait for it to finish. When
it finishes, rebuild the project, this time including the code you added above. This
time, the Maven command should take much less time.

$ mvn package

If the build is successful, Maven will generate a JAR file called accounts—-by-
state-1.0.jar inthe target directory.

17. If you have a Spark shell running in any terminal, exit the shell before running your
application.

18. Run the program in the compiled JAR file, passing the state code to select. For
example, to select accounts in California, use the following command:

S spark2-submit \
-—-class stubs.AccountsByState \
target/accounts-by-state-1.0.jar CA

Note: To run the solution application, use —-class
solution.AccountsByState.

19. After the program completes, use parquet—-tools to verify that the file contents
are correct. For example, if you used the state code CA, you would use the command
below:

$ parquet-tools head \
hdfs://master-1/loudacre/accounts_by_state/CA/

View the Spark Application Ul

In the previous section, you ran a Python or Scala Spark application using spark2-
submit. Now view that application’s Spark UI (or history server Ul if the application is
complete).

20. Open Firefox on your remote desktop and visit the YARN Resource Manager Ul
using the provided RM bookmark (or goto URI http://master-1:8088/).

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 62

63

While the application is running, it appears in the list of applications something like

this:
Search:
. . i Running Allocated Allocated
StartTlmAe FlnlsthmAe State ¢ Flnalstatui Containers CPU Memory Progress ¢ Tracking Ul <
¢ ¢] -
Fri May N/A GUNNING UNDEFINED 1 1 1024 AgglicationMastea
19
12:41:15
-0700
2017

After the application has completed, it will appear in the list like this:

Running Allocated Allocated

StartTimAe FinishTimAe State ¢ FinaIStatui Containers CPU Memory Progress ¢ Triclking
Fri May Fri May 19 { FINISHED SUCCEEDED N/A N/A N/A History
19 12:41:23

12:41:15 -0700

-0700 2017

2017

To view the Spark Application Ul if your application is still running, select the
ApplicationMaster link. To view the History Service Ul if your application has
completed, select the History link.

Set Configuration Options Using Submit Script Flags

21. Change to the correct directory (if necessary) and re-run the Python or Scala
program you wrote in the previous section, this time specifying an application
name. For example:

$ spark2-submit --name "Accounts by State 1" \
python-stubs/accounts-by-state.py CA

$ spark2-submit --name "Accounts by State 1" \
--class stubs.AccountsByState \
target/accounts-by-state-1.0.jar CA

22. Go back to the YARN RM Ul in your browser, and confirm that the application name
was set correctly in the list of applications.

~

ID ¥ User % Name s e s Queue <
Type ¢

application_1495207970196_0015 trainingl§ Accounts by State 1 SPARK root.users.training

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 63

64

23. Follow the ApplicationMaster or History link. View the Environment tab. Take
note of the spark. * properties such as master and app.name

24. You can set most of the common application properties using submit script
flags such as name, but for others you need to use conf. Use conf to set the
spark.default.parallelismproperty, which controls how many partitions
result after a "wide" RDD operation like reduceByKey.

S spark2-submit --name "Accounts by State 2" \
-—-conf spark.default.parallelism=4 \
python-stubs/accounts-by-state.py CA

$ spark2-submit --name "Accounts by State 2" \
--conf spark.default.parallelism=4 \
-—class stubs.AccountsByState \
target/accounts-by-state-1.0.jar CA

25. View the application history for this application to confirm that the
spark.default.parallelismproperty was set correctly. (You will need to
view the YARN RM UI again to view the correct application’s history.)

Optional Review Property Setting Overrides

26. Rerun the previous submit command with the verbose option. This will display
your application property default and override values.

$ spark2-submit --verbose --name "Accounts by State 3" \
-—-conf spark.default.parallelism=4 \
python-stubs/accounts-by-state.py CA

S spark2-submit --verbose --name "Accounts by State 3" \
--conf spark.default.parallelism=4 \
-—class stubs.AccountsByState \
target/accounts-by-state-1.0.jar CA

27. Examine the extra output displayed when the application starts up.

a. The first section starts with Using properties file, and shows the
file name and the default property settings the application loaded from that
properties file.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 64

65

e What is the system properties file?
e What properties are being set in the file?

b. The second section starts with Parsed arguments. This lists the arguments
—that is, the flags and settings—you set when running the submit script
(except for conf). Submit script flags that you didn’t pass use their default
values, if defined by the script, or are shown as nul1l.

e Does the list correctly include the value you set with ——name?
e Which arguments (flags) have defaults set in the script and which do not?

c. Scroll down to the section that starts with System properties. This list
shows all the properties set—those loaded from the system properties file,
those you set using submit script arguments, and those you set using the conf

flag.

e Isspark.default.parallelismincluded and set correctly?

Bonus Exercise: Set Configuration Properties Programmatically

If you have more time, attempt the following extra bonus steps:

1. Edit the Python or Scala application you wrote above, and use the builder function
appName to set the application name.

2. Re-run the application without using script options to set properties.
3. View the YARN UI to confirm that the application name was correctly set.

You can find the Python bonus solution in $DEVSH/exercises/spark-
application/python-bonus. The Scala solution is in the bonus package in the

exercise project.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.
65

Not to be reproduced or shared without prior written consent from Cloudera.

66

Hands-On Exercise: Exploring Query Execution

Files and Data Used in This Exercise:

Exercise directory SDEVSH/exercises/query-execution
Data files (HDFS) /user/hive/warehouse/accounts
/loudacre/weblogs

/loudacre/devices.json
/loudacre/accountdevice

Hive tables accounts

In this exercise, you will explore how Spark executes RDD and DataFrame/
Dataset queries.

First, you will explore RDD partitioning and lineage-based execution plans using the
Spark shell and the Spark Application UL Then you will explore how Catalyst executes
DataFrame and Dataset queries.

Important: This exercise depends on a previous exercise: “Transforming Data Using
RDDs”. If you did not complete those exercises, run the course catch-up script and
advance to the current exercise:

$ $DEVSH/scripts/catchup.sh

Explore Partitioning of File-Based RDDs

1. Review the accounts data files (/user /hive/warehouse/accounts/) using
Hue or the command line. Take note of the number of files.

2. Inthe Spark shell, create an RDD called accountsRDD by reading the accounts

data, splitting it by commas, and keying it by account ID, which is the first field of
each line.

pyspark> accountsRDD = sc. \
textFile("/user/hive/warehouse/accounts"). \
map (lambda line: line.split(',')). \
map (lambda account: (account[0],account))

scala> val accountsRDD = sc.
textFile("/user/hive/warehouse/accounts").
map(line => line.split(',")).
map (account => (account(0),account))

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 66

67

Find the number of partitions in the new RDD.

pyspark> accountsRDD.getNumPartitions()

scala> accountsRDD.getNumPartitions

Use toDebugString to view the lineage and execution plan of accountsRDD.
How many partitions are in the resulting RDD? How may stages does the query
have?

pyspark> print accountsRDD.toDebugString()

scala> accountsRDD.toDebugString

Explore Execution of RDD Queries

5.

10.

Call count on accountsRDD to count the number of accounts. This will trigger
execution of a job.

In the browser, view the application in the YARN RM UI using the provided
bookmark (or http://master-1:8088) and click through to view the Spark
Application UL

Make sure the Jobs tab is selected, and review the list of completed jobs. The most
recent job, which you triggered by calling count, should be at the top of the list.
(Note that the job description is usually based on the action that triggered the job
execution.) Confirm that the number of stages is correct, and the number of tasks
completed for the job matches the number of RDD partitions you noted when you
used toDebugString.

Click on the job description to view details of the job. This will list all the stages in
the job, which in this case is one.

Click on DAG Visualization to see a diagram of the execution plan based on the
RDD’s lineage. The main diagram displays only the stages, but if you click on a stage,
it will show you the tasks within that stage.

Optional: Explore the partitioning and DAG of a more complex query like the one
below. Before you view the execution plan or job details, try to figure out how many
stages the job will have.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 67

This query loads Loudacre’s web log data, and calculates how many times each user
visited. Then it joins that user count data with account data for each user.

pyspark> logsRDD = sc.textFile("/loudacre/weblogs")
pyspark> userReqsRDD = logsRDD. \

map (lambda line: line.split(' '")). \

map (lambda words: (words[2],1)). \

reduceByKey (lambda v1,v2: vl + v2)
pyspark> accountHitsRDD = accountsRDD.join(userReqsRDD)

scala> val logs = sc.textFile("/loudacre/weblogs")

scala> val userReqsRDD = logs.map(line => line.split(' ')).
map (words => (words(2),1)).
reduceByKey ((vl,v2) => vl + v2)

scala> val accountHitsRDD = accountsRDD.join(userReqsRDD)

Note: If you execute the query multiple times, you may note that some tasks within
a stage are marked as “skipped.” This is because whenever a shuffle operation

is executed, Spark temporarily caches the data that was shuffled. Subsequent
executions of the same query re-use that data if it’s available to save some steps and
increase performance.

Explore Execution of DataFrame Queries

11. Create a DataFrame of active accounts from the accounts table.

pyspark> accountsDF = spark.read.table("accounts")
pyspark> activeAccountsDF = accountsDF. \
select("acct_num"). \
where (accountsDF.acct_close_dt.isNull())

scala> val accountsDF = spark.read.table("accounts")
scala> val activeAccountsDF = accountsDF.
select("acct_num").
where($"acct_close_dt".isNull)

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

69

12. View the full execution plan for the new DataFrame.

pyspark> activeAccountsDF.explain(True)

scala> activeAccountsDF.explain(true)

Can you locate the line in the physical plan corresponding to the command to load
the accounts table into a DataFrame?

How many stages do you think this query has?
13. Call the DataFrame’s show function to execute the query.

14. View the Spark Application UI and choose the SQL tab. This displays a list of
DataFrame and Dataset queries you have executed, with the most recent query at
the top.

15. Click the description for the top query to see the visualization of the query’s
execution. You can also see the query’s full execution plan by opening the Details
panel below the visualization graph.

16. The first step in the execution is a HiveTableScan, which loaded the account data
into the DataFrame. Hover your mouse over the step to show the step’s execution
plan. Compare that to the physical plan for the query. Note that it is the same as the
last line in the physical execution plan, because it is the first step to execute. Did
you correctly identify this line in the execution plan as the one corresponding to the
DataFrame.read.table operation?

17. The Succeeded Jobs label provides links to the jobs that executed as part of this
query execution. In this case, there is just a single job. Click the job’s ID (in the Jobs
column) to view the job details. This will display a list of stages that were completed
for the query.

How many stages executed? Is that the number of stages you predicted it would be?

18. Optional: Click the description of the stage to view metrics on the execution of the
stage and its tasks.

19. The previous query was very simple, involving just a single data source with a
where to return only active accounts. Try executing a more complex query that
joins data from two different data sources.

This query reads in the accountdevice data file, which maps that maps account
IDs to associated device IDs. Then it joins that data with the DataFrame of active

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 69

accounts you created above. The result is DataFrame consisting of all device IDs in
use by currently active accounts.

pyspark> accountDeviceDF = spark.read. \
option("header","true"). \
option("inferSchema","true"). \
csv("/loudacre/accountdevice")

pyspark> activeAcctDevsDF = activeAccountsDF. \
join(accountDeviceDF,

accountsDF.acct_num == accountDeviceDF.account_id). \

select("device_id")

scala> val accountDeviceDF = spark.read.
option("header","true").
option("inferSchema","true").
csv("/loudacre/accountdevice")

scala> val activeAcctDevsDF = activeAccountsDF.
join(accountDeviceDF,$"acct_num" === $"account_id").
select($"device_1id")

20.

21.

22.

Review the full execution plan using explain, as you did with the previous
DataFrame.

Can you identify which lines in the execution plan load the two different data
sources?

How many stages do you think this query will execute?

Execute the query and review the execution visualization in the Spark UL

What differences do you see between the execution of the earlier query and this
one?

How many stages executed? Is this what you expected?

Optional: Explore an even more complex query that involves multiple joins with
three data sources. You can use the last query in the solutions file for this exercise
(in the $DEVSH/exercises/query-execution/solution/ directory). That
query creates a list of device IDs, makes, and models, and the number of active

accounts that use that type of device, sorted in order from most popular device type

to least.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

70

70

Hands-On Exercise: Persisting Data

Files and Data Used in This Exercise:

Exercise directory SDEVSH/exercises/persist
Data files (HDFS) /loudacre/accountdevice
Hive tables accounts

In this exercise, you will explore DataFrame persistence.

Important: This exercise depends a on previous exercise: “Analyzing Data with
DataFrame Queries.” If you did not complete that exercise, run the course catch-up
script and advance to the current exercise:

$ $DEVSH/scripts/catchup.sh

Compare the Execution Plans of Persisted and Unpersisted Queries

1.

Create a DataFrame that joins account data for active accounts with their associated
devices. To save time and effort, copy the query code from the persist.pyspark
or .scalaspark file from the SDEVSH/exercises/persist/stubs directory
into the Spark shell.

The query code you pasted above defines a new DataFrame called
accountsDevsDF, which joins account data and device data for all active
accounts. Try executing a query starting with the accountsDevsDF DataFrame
that displays the account number, first name, last name and device ID for each row.

pyspark> accountsDevsDF. \
select("acct_num","first_name","last_name","device_id"). \
show(5)

scala> accountsDevsDF.
select("acct_num","first_name","last_name","device_id").
show(5)

In your browser, go to the SQL tab of your application’s Spark UI, and view the
execution visualization of the query you just executed. Take note of the complexity
so that you can compare it to later executions when using persistence.

Remember that queries are listed in the SQL tab in the order they were executed,
starting with the most recent. The descriptions of multiple executions of the same

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

71

71

72

action will not distinguish one query from another, so make sure you choose the
correct one for the query you are looking at.

4. Inyour Spark shell, persist the accountsDevsDF DataFrame using the default
storage level.

pyspark> accountsDevsDF.persist()

scala> accountsDevsDF.persist

5. Repeat the final steps of the query you executed above.

pyspark> accountsDevsDF. \
select("acct_num","first_name","last_name","device_id"). \
show(5)

scala> accountsDevsDF.
select("acct_num","first_name","last_name","device_id").
show(5)

6. Inthe browser, reload the Spark Ul SQL tab, and view the execution diagram for
the query just just executed. Notice that it has far fewer steps. Instead of reading,
filtering, and joining the data from the two sources, it reads the persisted data from
memory. If you hover your mouse over the memory scan step, you will see that the
only operation it performs on the data in memory is the last step of the query: the
unpersisted select transformation. Compare the diagram for this query with the
first one you executed above, before persisting.

7. The first time you execute a query on a persisted DataFrame, Dataset, or RDD, Spark
has to execute the full query in order to materialize the data that gets saved in
memory or on disk. Compare the difference between the first and second queries
after executing persist by re-executing the query one final time. Then use the
Spark UI to compare both queries executed after the persist operation, and
consider these questions.

¢ Do the execution diagrams differ? Why or why not?

e Did one query take longer than the other? If so, which one, and why?

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 72

73

View Storage for Persisted DataFrames

8. View the Storage tab in the Spark Ul to see currently persisted data. The list shows
the RDD identified by the execution plan for the query that generated the data.
Consider these questions.

e What is the storage level of the RDD?

e How many partitions of the RDD were persisted and how much space do those
partitions take up in memory and on disk?

e Note that only a small percentage of the data is cached. Why is that? How could
you cache more of the data?

e Click the RDD name to view the storage details. Which executors are storing data
for this RDD?

9. Execute the same query as above using the write action instead of show.

pyspark> accountsDevsDF.write.mode("overwrite"). \
save("/loudacre/accounts_devices")

scala> accountsDevsDF.write.mode("overwrite").
save("/loudacre/accounts_devices")

10. Reload the Spark UI Storage tab.

e What percentage of the data is cached? Why? How does this compare to the last
time you persisted the data?

e How much memory is the data taking up? How much disk space?

Change the Storage Level for the Persisted DataFrame

11. Unpersist the accountsDevsDF DataFrame.

> accountsDevsDF.unpersist()

12. View the Spark UI Storage to verify that the cache for accountsDevsDF has been
removed.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 73

74

13. Repersist the same DataFrame, setting the storage level to save the data to files on
disk, replicated twice.

pyspark> from pyspark import StoragelLevel
pyspark> accountsDevsDF.persist(StoragelLevel .DISK_ONLY_2)

scala> import org.apache.spark.storage.StoragelLevel
scala> accountsDevsDF.persist(StorageLevel.DISK_ONLY_2)

14. Reexecute the previous query.

15. Reload the Storage tab to confirm that the storage level for the RDD is set correctly.
Also consider these questions:

e How much memory is the data taking up? How much disk space?
e Which executors are storing the RDD’s data files?

e How many partitions are stored? Are they replicated? Where?

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 74

75

Hands-On Exercise: Implement an Iterative Algorithm
with Apache Spark

Files and Data Used in This Exercise:

Exercise directory SDEVSH/exercises/iterative
Data files (HDFS) /loudacre/devicestatus_etl/*
Stubs KMeansCoords.pyspark

KMeansCoords.scalaspark

In this exercise, you will practice implementing iterative algorithms in Spark by
calculating k-means for a set of points.

Reviewing the Data

1. Ifyou completed the bonus section of the “Process Data Files with Apache Spark”
exercise, you used Spark to extract the date, maker, device ID, latitude and
longitude from the devicestatus. txt data file, and store the results in the
HDFS directory /loudacre/devicestatus_etl.

Ifyou did not complete that bonus exercise, upload the solution file to HDFS now. (If
you have run the course catch-up script, this has already done for you.)

$ hdfs dfs -put $DEVDATA/static_data/devicestatus_etl \
/loudacre/

2. Examine the data in the dataset. Note that the latitude and longitude are the 4™ and
5th fields, respectively, as shown in the sample data below:

2014-03-15:10:10:20,Sorrento,8cc3b47e-bd01-4482-b500-
28f2342679af,33.6894754264,-117.543308253

2014-03-15:10:10:20,MeeToo,ef8c7564-0ala-4650-a655-
c8bbd5f8f943,37.4321088904,-121.485029632

Calculating k-means for Device Location

3. Start by copying the code provided in the KMeansCoords stub file into your Spark
shell. The starter code defines convenience functions used in calculating k-means:

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 75

76

e closestPoint: given a (latitude/longitude) point and an array of current
center points, returns the index in the array of the center closest to the given
point

e addPoints: given two points, return a point which is the sum of the two points
—thatis, (x1+x2, yl+y2)

e distanceSquared: given two points, returns the squared distance of the two
—this is a common calculation required in graph analysis

Note that the stub code sets the variable K equal to 5—this is the number of
means to calculate.

4. The stub code also sets the variable convergeDist. This will be used to decide
when the k-means calculation is done—when the amount the locations of the
means changes between iterations is less than convergeDist. A “perfect”
solution would be O; this number represents a “good enough” solution. For this
exercise, use a value of 0. 1.

5. Parse the input file—which is delimited by commas—into
(latitude,longitude) pairs (the 4™ and 5" fields in each line). Only include
known locations—that is, filter out (0,0) locations. Be sure to persist the resulting
RDD because you will access it each time through the iteration.

6. Create a K-length array called kPoints by taking a random sample of K location
points from the RDD as starting means (center points).

For example, in Python:

kPoints = data.takeSample(False, K, 42)

Or in Scala:

val kPoints = data.takeSample(false, K, 42)

7. Iteratively calculate a new set of K means until the total distance between the
means calculated for this iteration and the last is smaller than convergeDist. For
each iteration:

a. For each coordinate point, use the provided closestPoint function to map
that point to the index in the kPoints array of the location closest to that
point. The resulting RDD should be keyed by the index, and the value should be
the pair: (point, 1).(The value 1 will later be used to count the number of
points closest to a given mean.) For example:

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 76

77

(1, ((37.43210, -121.48502), 1))
(4, ((33.11310, -111.33201), 1))
(0, ((39.36351, -119.40003), 1))
(1, ((40.00019, -116.44829), 1))

b. Reduce the result: for each center in the kPoints array, sum the latitudes and
longitudes, respectively, of all the points closest to that center, and also find the
number of closest points. For example:

(0, ((2638919.87653,-8895032.182481), 74693)))
(1, ((3654635.24961,-12197518.55688), 101268)))
(2, ((1863384.99784,-5839621.052003), 48620)))
(3, ((4887181.82600,-14674125.94873), 126114)))
(4, ((2866039.85637,-9608816.13682), 81162)))

c¢. The reduced RDD should have (at most) K members. Map each to a new center
point by calculating the average latitude and longitude for each set of closest
points: that is, map (index, (totalX,totalY),n) to (index, (totalX/
n, totalY/n)).

d. Collect these new points into a local map or array keyed by index.

e. Use the provided distanceSquared method to calculate how much the
centers “moved” between the current iteration and the last. That is, for
each center in kPoints, calculate the distance between that point and the
corresponding new point, and sum those distances. That is the delta between
iterations; when the delta is less than convergeDist, stop iterating.

f. Copy the new center points to the KPoints array in preparation for the next
iteration.

8. When all iterations are complete, display the final K center points.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 77

78

Hands-On Exercise: Writing a Streaming Application

Files and Directories Used in This Exercise:

Exercise directory SDEVSH/exercises/streaming-dstreams
Python stub stubs-python/StreaminglLogs.py

Python solution solution-python/StreaminglLogs.py
Scala project streaminglogs_project

directory

Scala stub class stubs.StreaminglLogs

Scala solution class solution.StreaminglLogs

Test data (local) SDEVDATA/weblogs/

Test script streamtest.py

In this exercise, you will write a Spark Streaming application to count Knowledge
Base article requests.

This exercise has two parts. First, you will review the Spark Streaming documentation.
Then you will write and test a Spark Streaming application to read streaming web
server log data and count the number of requests for Knowledge Base articles.

Review the Spark Streaming Documentation

1. View the Spark Streaming API in the Spark API documentation for either Scala or
Python and then:

For Scala:

e Scroll down and select the org.apache.spark.streaming package in the
package pane on the left.

e Follow the links at the top of the package page to view the DStream and
PairDStreamFunctions classes— these will show you the methods available
on a DStream of regular RDDs and pair RDDs respectively.

For Python:

e Go to the pyspark.streaming module.

e Scroll down to the pyspark.streaming.DStream class and review the
available methods.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 78

79

2. You may also wish to view the Spark Streaming Programming Guide (select
Programming Guides > Spark Streaming on the Spark documentation main

page).

Simulate Streaming Web Logs

To simulate a streaming data source, you will use the provided streamtest.py
Python script, which waits for a connection on the host and port specified and, once it
receives a connection, sends the contents of the file(s) specified to the client (which will
be your Spark Streaming application). You can specify the speed (in lines per second) at
which the data should be sent.

3. Stream the Loudacre web log files at a rate of 20 lines per second using the
provided test script.

$ python $DEVSH/scripts/streamtest.py gateway 1234 20 \
$DEVDATA/weblogs/*

This script will exit after the client disconnects, so you will need to restart the script
when you restart your Spark application.

Tip: This exercise involves using multiple terminal windows on your remote
desktop. To avoid confusion, set a different title for each one by selecting Set Title...
on the Terminal menu:

=

File Edit View Search | |Help

raining@gateway:~$ [

Set Title...

Set the title for this window to “Test Streaming.”

Write a Spark Streaming Application

4. To help you get started writing a Spark Streaming application, stub files have been
provided for you.

For Python, start with the stub file StreaminglLogs. py in the $DEVSH/
exercises/streaming-dstreams/stubs-python directory, which imports
the necessary classes for the application.

For Scala, a Maven project directory called streaminglogs_project has
been provided in the exercise directory ($DEVSH/exercises/streaming-

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 79

80

dstreams). To complete the exercise, start with the stub code in src/main/
scala/stubs/StreaminglLogs.scala, which imports the necessary classes
for the application.

5. Define a Streaming context with a one-second batch duration.

6. Create a DStream by reading the data from the host and port provided as input
parameters.

7. Filter the DStream to only include lines containing the string KBDOC.

8. To confirm that your application is correctly receiving the streaming web log data,
display the first five records in the filtered DStream for each one-second batch. (In
Scala, use the DStream print function; in Python, use pprint.)

9. For each RDD in the filtered DStream, display the number of items—that is, the
number of requests for KB articles.

Tip: Python does not allow calling print within a lambda function, so create a
named defined function to print.

10. Save the filtered logs to text files in HDFS. Use the base directory name
/loudacre/streamlog/kblogs.

11. Finally, start the Streaming context, and then call awaitTermination().

Test the Application

After a few batches of data have been processed and displayed, you can end the test.

12. Open a new terminal window, and change to the correct directory for the language
you are using for your application.

For Python, change to the exercise directory:

$ cd S$DEVSH/exercises/streaming-dstreams

For Scala, change to the project directory for the exercise:

$ cd \

$DEVSH/exercises/streaming-dstreams/streaminglogs_project

13. If you are using Scala, build your application JAR file using Maven.

$ mvn package

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 80

14

Note: If this is your first time compiling a Spark Scala application, it may take
several minutes for Maven to download the required libraries to package the
application.

. Use spark2-submit to run your application. The StreaminglLogs application

takes two parameters: the host name and the port number to which to connect the
DStream. Specify the same host and port at which the test script you started earlier
is listening.

Spark Streaming applications running on a cluster must have two worker nodes
available. However, only a single node is available in the exercise environment. To
work around this, you will need to run the application locally, rather than on the
cluster. You must specify at least two threads, as shown below.

For Python:

$ spark2-submit --master local[2] \
stubs-python/StreaminglLogs.py gateway 1234

Note: Use solution-python/StreaminglLogs.py to run the solution
application instead.

For Scala:

$ spark2-submit --master local[2] \
--class stubs.StreaminglLogs \
target/streamlog-1.0.jar gateway 1234

15.

16.

17.

Note: Use -—class solution.StreaminglLogs to run the solution class
instead.

After a few moments, the application will connect to the test script’s simulated
stream of web server log output. Confirm that for every batch of data received
(every second), the application displays the first few Knowledge Base requests and
the count of requests in the batch. Review the HDFS files the application saved in /
loudacre/streamlog.

Return to the terminal window in which you started the streamtest. py test
script earlier. Stop the test script by typing Ctr 1+C.

Return to the terminal window in which your application is running. Stop your
application by typing Ctr 1+C. (You may see several error messages resulting from
the interruption of the job in Spark; you may disregard these.)

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

81

81

This is the end of the exercise.

cloudera

© Copyright 2010-2018 Cloudera. All Rights Reserved.
Not to be reproduced or shared without prior written consent from Cloudera.

82

82

83

Hands-On Exercise: Processing Multiple Batches of
Streaming Data

Files and Data Used in This Exercise

Exercise directory SDEVSH/exercises/streaming-multi
Python stub stubs-python/StreaminglLogsMB. py
Python solution solution-python/StreaminglLogsMB.py
Scala project streaminglogsMB_project

directory

Scala stub class stubs.StreaminglLogsMB

Scala solution class solution.StreaminglLogsMB

Data (local) SDEVDATA/weblogs

In this exercise, you will write a Spark Streaming application to count web page
requests over time.

Simulate Streaming Web Logs

To simulate a streaming data source, you will use the provided streamtest. py
Python script, which waits for a connection on the host and port specified and, once it
receives a connection, sends the contents of the file(s) specified to the client (which will
be your Spark Streaming application). You can specify the speed (in lines per second) at
which the data should be sent.

1. Open a new terminal window. This exercise uses multiple terminal windows. To
avoid confusion, set a different title for the new window, such as “Test Stream.”

2. Stream the Loudacre Web log files at a rate of 20 lines per second using the
provided test script.

$ python $DEVSH/scripts/streamtest.py gateway 1234 20 \
SDEVDATA/weblogs/*

This script exits after the client disconnects, so you will need to restart the script
when you restart your Spark application.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 83

84

Display the Total Request Count

3. A stub file for this exercise has been provided for you in the exercise directory. The
stub code creates a Streaming context for you, and creates a DStream called logs
based on web log request messages received on a network socket.

For Python, start with the stub file StreaminglLogsMB. py in the stubs-python
directory.

For Scala, a Maven project directory called streaminglogsMB_project has
been provided in the exercise directory. To complete the exercise, start with the
stub code in src/main/scala/stubs/StreaminglLogsMB.scala.

4. Enable checkpointing to a directory called Logcheckpt.

5. Count the number of page requests over a window of five seconds. Print out the
updated five-second total every two seconds.

¢ Hint: Use the countByWindow function.

Build and Run Your Application

After a few batches of data have been processed and displayed, you can end the test.

6. In a different terminal window than the one in which you started the
streamtest. py script, change to the correct directory for the language you are
using for your application. To avoid confusion, you might wish to set a different title
for the new window such as “Application”.

For Python, change to the exercise directory:

S cd SDEVSH/exercises/streaming-multi

For Scala, change to the project directory for the exercise:

$ cd \

$DEVSH/exercises/streaming-multi/streaminglogsMB_project

7. Ifyou are using Scala, build your application JAR file using the mvn package
command.

8. Use spark2-submit to run your application. Your application takes two
parameters: the host name and the port number to connect the DStream to. Specify
the same host and port at which the test script you started earlier is listening.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 84

For Python:

S spark2-submit --master local[2] \
stubs-python/StreaminglLogsMB.py gateway 1234

Note: Use solution-python/StreaminglLogsMB. py to run the solution
application instead.

For Scala:

$ spark2-submit --master local[2] \
--class stubs.StreaminglLogsMB \
target/streamlogmb-1.0.jar gateway 1234

Note: Use —-class solution.StreaminglLogsMB to run the solution class
instead.

9. After afew moments, the application should connect to the test script’s simulated
stream of web server log output. Confirm that for every batch of data received
(every second), the application displays the count of requests in the batch. Review
the files.

10. Return to the terminal window in which you started the streamtest.py test
script earlier. Stop the test script by typing Ctr 1+C.

11. Return to the terminal window in which your application is running. Stop your
application by typing Ctr 1+C. (You may see several error messages resulting from
the interruption of the job in Spark; you may disregard these.)

Bonus Exercise

Extend the application you wrote above to also count the total number of page requests
by user from the start of the application, and then display the top ten users with the
highest number of requests.

Follow the steps below to implement a solution for this bonus exercise:

1. Use map-reduce to count the number of times each user made a page request in
each batch (a hit-count).

e Hint: Remember that the User ID is the 3™ field in each line.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

2. Define a function called updateCount that takes an array (in Python) or sequence
(in Scala) of hit-counts and an existing hit-count for a user. The function should
return the sum of the new hit-counts plus the existing count.

e Hint: An example of an updateCount function is in the course material and the
code can be found in $DEVSH/examples/spark/spark-streaming.

3. UseupdateStateByKey with your updateCount function to create a new
DStream of users and their hit-counts over time.

4. Use transformto call the sortByKey transformation to sort by hit-count.

e Hint: You will have to swap the key (user ID) with the value (hit-count) to sort.

Note: The solution files for this bonus exercise are in the bonus package in the exercise
Maven project directory (Scala) and in solution-python/bonus in the exercise
directory (Python).

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

86

86

87

Hands-On Exercise: Processing Streaming Apache
Kafka Messages

Files and Data Used in This Exercise

Exercise directory SDEVSH/exercises/streaming-kafka
Python stub stubs-python/StreaminglLogsKafka.py
Python solution stubs-solution/StreaminglLogsKafka.py
Scala project streaminglogskafka_project

directory

Scala stub class stubs.StreaminglLogsKafka

Scala solution class solution.StreaminglLogsKafka

Data (local) SDEVDATA/weblogs/ *

In this exercise, you will write an Apache Spark Streaming application to handle
web logs received as messages on a Kafka topic.

Write a Spark Streaming Application Using a Direct Kafka DStream

Write an application to consume Kafka messages in the weblogs topic using direct
Kafka DStream.

In this exercise you will work in the exercise directory: $DEVSH/exercises/
streaming-kafka. Within that directory are separate language-specific directories
containing stub files that import the necessary libraries for your application.

e For Python, start with the stub file StreaminglLogsKafka. py in the stubs-
python directory.

e For Scala, a Maven project directory called streaminglogskafka_project has
been provided. To complete the exercise, start with the stub code in src/main/
scala/stubs/StreaminglLogsKafka.scala.

1. Your application should accept two input arguments that the user will set when
starting the application:

e First argument: the Kafka topic from which to retrieve messages

e Second argument: a comma-separated list of Kafka brokers and ports, such as
brokerl:port,broker2:port,broker3:port. (This could be any number
of brokers, depending on the environment.)

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 87

88

2. Create a DStream using KafkaUtils.createDirectStream. The topic list
and broker list should use the arguments passed by the user when submitting the
application.

Refer to the course materials for the details of creating a Kafka stream.
3. Kafka messages are in (key, value) form, but for this application, the key is null

and only the value is needed. (The value is the web log line.) Map the DStream to
remove the key and use only the value.

4. To verify that the DStream is correctly receiving messages, display the first 10
elements in each batch.

5. Foreach RDD in the DStream, display the number of items—that is, the number of
requests.
Tip: Python does not allow calling print within a lambda function, so define a
named function to print.

6. Save the filtered logs to text files in HDFS. Use the base directory name
/loudacre/streamlog/kafkalogs.

Build Your Scala Application

If you are using Scala, you need to build your application before running it. If you are
using Python, you can skip these steps.

7. Change to the project directory for the exercise.

$ cd \
$DEVSH/exercises/streaming-kafka/streaminglogskafka_project

8. Build your application JAR file using the mvn package command.

Create a Kafka Topic

9. Open a new terminal window. This exercise uses multiple terminal windows. To
avoid confusion, set a different title for the new window, such as “Kafka”.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 88

89

10. Use the kafka-topics script to create a Kafka topic called weblogs from which
your application will consume messages.

$ kafka-topics --create --zookeeper master-1:2181 \
--replication-factor 1 —--partitions 2 \
-—topic weblogs

11. Confirm your topic was created correctly by listing topics. Make sure weblogs is
displayed.

S kafka-topics --list --zookeeper master-1:2181

Produce Kafka Messages to Test Your Application

12. Run the test script to generate Kafka messages to the weblogs topic using the data
files in SDEVDATA /weblogs at a rate of 20 messages per second.

S $DEVSH/scripts/streamtest-kafka.sh \
weblogs worker-1:9092 20 S$SDEVDATA/weblogs/x*

The script will begin displaying the messages it is sending to the weblogs Kafka
topic. (You may disregard any SLF4J messages.)

Run Your Application

13. Open a new terminal window. This exercise uses multiple terminal windows. To
avoid confusion, set a different title for the new window, such as “Application”.

14. Change to the correct directory for the language you are using for your application.

e For Python, change to the main exercise directory:

$ cd SDEVSH/exercises/streaming-kafka

e For Scala, change to the project directory for the exercise:

$ cd \
$DEVSH/exercises/streaming-kafka/streaminglogskafka_project

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 89

90

15. Use spark2-submit to run your application. Your application takes two
parameters: the name of the Kafka topic from which the DStream will read
messages, weblogs, and a comma-separated list of broker hosts and ports.

e For Python:

S spark2-submit --master local[2] \
stubs-python/StreaminglLogsKafka.py weblogs \
worker—-1:9092

Note: Use solution-python/StreaminglLogsKafka.py to run the solution
application instead.

e For Scala:

$ spark2-submit --master local[2] \
--class stubs.StreaminglLogsKafka \
target/streamlogkafka-1.0.jar weblogs \
worker-1:9092

Note: Use --class solution.StreaminglLogsKafka to run the solution
class instead.

16. Confirm that your application is correctly displaying the Kafka messages it receives,
as well as displaying the number of received messages, every second.

Note: It may take a few moments for your application to start receiving messages.
Occasionally you might find that after 30 seconds or so, it is still not receiving any
messages. If that happens, press Ctr1+C to stop the application, then restart it.

Clean Up

17. Stop the Spark application in the first terminal window by pressing Ctr 1L+C. (You
might see several error messages resulting from the interruption of the job in
Spark; you may disregard these.)

18. Stop the streamtest-kafka. sh script in the second terminal window by
pressing Ctr1+C.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 90

91

Appendix Hands-On Exercise: Producing and
Consuming Apache Kafka Messages

Files and Data Used in This Exercise

Exercise directory SDEVSH/exercises/kafka

In this exercise, you will use Kafka’s command line tool to create a Kafka topic.
You will also use the command line producer and consumer clients to publish and
read messages.

Creating a Kafka Topic

1. Open anew terminal and create a Kafka topic named weblogs that will contain
messages representing lines in Loudacre’s web server logs.

$ kafka-topics --create \
-—zookeeper master-1:2181 \
--replication-factor 1 \
-—partitions 2 \
-—-topic weblogs

You will see the message: Created topic "weblogs".

Note: If you previously worked on an exercise that used Kafka, you may get an
error here indicating that this topic already exists. You may disregard the error.

2. Display all Kafka topics to confirm that the new topic you just created is listed:

S kafka-topics --list \
—-—zookeeper master-1:2181

3. Review the details of the weblogs topic.

$ kafka-topics --describe weblogs \
—-—zookeeper master-1:2181

Producing and Consuming Messages

You will now use Kafka command line utilities to start producers and consumers for the
topic created earlier.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 91

4. Start a Kafka producer for the weblogs topic:

$ kafka-console-producer \
-—-broker-1list worker-1:9092 \
-—topic weblogs

You will see a few SLF4J messages, at which point the producer is ready to accept
messages on the command line.

Tip: This exercise involves using multiple terminal windows. To avoid confusion,
set a different title for each one by selecting Set Title... on the Terminal menu:

El

File Edit View Search | Help

raining@gateway:~$ ||
Set Title...

Set the title for this window to “Kafka Producer.”

Publish a test message to the weblogs topic by typing the message text and then
pressing Enter. For example:

test weblog entry 1

Open a new terminal window and adjust it to fit on the window beneath the
producer window. Set the title for this window to “Kafka Consumer.”

In the new terminal window, start a Kafka consumer that will read from the
beginning of the weblogs topic:

$ kafka-console-consumer \
--zookeeper master-1:2181 \
--topic weblogs \
--from-beginning

After a few SLF4J messages, you should see the status message you sent using the
producer displayed on the consumer’s console, such as:

test weblog entry 1
Press Ctr1+C to stop the weblogs consumer, and restart it, but this time omit the

—--from-beginning option to this command. You should see that no messages
are displayed.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

92

92

9. Switch back to the producer window and type another test message into the
terminal, followed by the Enter key:

test weblog entry 2

10. Return to the consumer window and verify that it now displays the alert message
you published from the producer in the previous step.

Cleaning Up
11. Press Ctr1+C in the consumer terminal window to end its process.

12. Press Ctr1+C in the producer terminal window to end its process.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

93

93

94

Appendix Hands-On Exercise: Collecting Web Server
Logs with Apache Flume

Files and Data Used in This Exercise

Exercise directory SDEVSH/exercises/flume
Data files (local) SDEVDATA/weblogs

In this exercise, you will run a Flume agent to ingest web log data from a local
directory to HDFS.

Apache web server logs are generally stored in files on the local machines running the
server. In this exercise, you will simulate an Apache server by placing provided web log
files into a local spool directory, and then use Flume to collect the data.

Both the local and HDFS directories must exist before using the spooling directory
source.

Create an HDFS Directory for Flume-Ingested Data

1. Inaterminal window create a directory in HDFS called
/loudacre/weblogs_flume to hold the data files that Flume ingests:

$ hdfs dfs -mkdir -p /loudacre/weblogs_flume

Create a Local Directory for Web Server Log Output

2. Create the spool directory into which the web log simulator will store data files
for Flume to ingest. On the local Linux filesystem on the remote host, create the
directory /flume/weblogs_spooldir:

S sudo mkdir -p /flume/weblogs_spooldir

3. Give all users permission to write to the /flume/weblogs_spooldir directory:

$ sudo chmod a+w -R /flume

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 94

Configure Flume

A Flume agent configuration file has been provided for you:
SDEVSH/exercises/flume/spooldir.conf.

Review the configuration file. You do not need to edit this file. Take note in particular of
the following:

e The source is a spooling directory source that pulls from the local
/flume/weblogs_spooldir directory.

e The sink is an HDFS sink that writes files to the HDFS
/loudacre/weblogs_flume directory.

e The channel is a memory channel.

Run the Flume Agent

Next, start the Flume agent and copy the files to the spooling directory.

4. Start the Flume agent using the configuration you just reviewed:

$ flume-ng agent \
-—-conf /etc/flume-ng/conf \
--conf-file $DEVSH/exercises/flume/spooldir.conf \
--name agentl -Dflume.root.logger=INFO,console

5. Wait a few moments for the Flume agent to start up. You will see a message like:
Component type: SOURCE, name: webserver-log-source started

Simulate Apache Web Server Output

6. Open a separate terminal window. Run the script to place the web log files in the /
flume/weblogs_spooldir directory:

S $SDEVSH/scripts/copy-move-weblogs.sh \
/flume/weblogs_spooldir

This script will create a temporary copy of the web log files and move them to the
spoo'ldir directory.

7. Return to the terminal that is running the Flume agent and watch the logging

output. The output will give information about the files Flume is putting into HDFS.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

95

95

96

8. Once the Flume agent has finished, enter Ctr 1+C to terminate the process.

9. Using the command line or Hue File Browser, list the files that were added by the
Flume agent in the HDFS directory / loudacre/weblogs_flume.

Note that the files that were imported are tagged with a Unix
timestamp corresponding to the time the file was imported, such as
FlumeData.1427214989392.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.
96

Not to be reproduced or shared without prior written consent from Cloudera.

Appendix Hands-On Exercise: Sending Messages from
Flume to Kafka

Files and Data Used in This Exercise

Exercise directory SDEVSH/exercises/flafka
Data files (local) SDEVDATA/weblogs

In this exercise, you will run a Flume agent that ingests web logs from a local
spool directory and sends each line as a message to a Kafka topic.

The Flume agent is configured to send messages to the weblogs topic you created
earlier.

Important: This exercise depends on two prior exercises: “Collect Web Server Logs
with Flume” and “Produce and Consume Kafka Messages.” If you did not complete both
of these exercises, run the catch-up script and advance to the current exercise:

S $DEVSH/scripts/catchup.sh

Configure a Flume Agent with a Kafka Sink

A Flume agent configuration file has been provided for you :
$DEVSH/exercises/flafka/spooldir_kafka.conf

1. Review the configuration file. You do not need to edit this file. Take note in particular
of the following points:

e The source and channel configurations are identical to the ones in the “Collect
Web Server Logs with Flume” exercise: a spooling directory source that pulls
from the local /flume/weblogs_spooldir directory, and a memory channel.

e Instead of an HDFS sink, this configuration uses a Kafka sink that publishes
messages to the weblogs topic.

Run the Flume Agent

2. Start the Flume agent using the configuration you just reviewed:

$ flume-ng agent --conf /etc/flume-ng/conf \
--conf-file $DEVSH/exercises/flafka/spooldir_kafka.conf \
-—-name agentl -Dflume.root.logger=INFO,console

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

97

97

3.

Wait a few moments for the Flume agent to start up. You will see a message like:
Component type: SINK, name: kafka-sink started

Tip: This exercise involves using multiple terminal windows. To avoid confusion,
set a different title for each window. Set the title of the current window to “Flume
Agent.”

Test the Flume Agent Kafka Sink

4.

In a new terminal window, start a Katka consumer that will read from the weblogs
topic:

$ kafka-console-consumer \
—-—zookeeper master-1:2181 \
-—-topic weblogs

Tip: Set the title of this window to “Kafka Consumer.”

In a separate new terminal window, run the script to place the web log files in the /
flume/weblogs_spooldir directory:

S $SDEVSH/scripts/copy-move-weblogs.sh \
/flume/weblogs_spooldir

Note: If you completed an earlier Flume exercise or ran catchup. sh, the script
will prompt you whether you want to clear out the spoold-ir directory. Be sure to
enter y when prompted.

In the terminal that is running the Flume agent, watch the logging output. The
output will give information about the files Flume is ingesting from the source
directory.

In the terminal that is running the Kafka consumer, confirm that the consumer tool
is displaying each message (that is, each line of the web log file Flume is ingesting).

Once the Flume agent has finished, enter Ctr1+C in both the Flume agent terminal
and the Kafka consumer terminal to end their respective processes.

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

98

98

99

Appendix Hands-On Exercise: Import Data from
MySQL Using Apache Sqoop

Files and Data Used in This Exercise

Exercise directory SDEVSH/exercises/sqoop

MySQL database loudacre

MySQL table basestations

HDFS paths /loudacre/basestations_import

/loudacre/basestations_import_parquet

In this exercise, you will import tables from MySQL into HDFS using Sqoop.

Important: This exercise depends on a previous exercise: “Accessing HDFS with
Command Line and Hue.” If you did not complete that exercise, run the course catch-up
script and advance to the current exercise:

$ $DEVSH/scripts/catchup.sh

Import a Table from MySQL to HDFS

You can use Sqoop to look at the table layout in MySQL. With Sqoop, you can also
import the table from MySQL to HDFS.

1.

2.

If you do not already have one started, open a terminal window.

Run the sqoop he'lp command to familiarize yourself with the options in Sqoop:

$ sqoop help

List the tables in the Lloudacre database:

S sqoop list-tables \
—--connect jdbc:mysql://gateway/loudacre \
--username training --password training

Run the sqoop help import command to see its options:

$ sqgoop help 1import

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 99

5. Use Sqoop to import the basestations table in the Lloudacre database and save
itin HDFS under / loudacre:

100

S sqoop import \
--connect jdbc:mysql://gateway/loudacre \
--username training --password training \
-—-table basestations \
--target-dir /loudacre/basestations_import \
-—-null-non-string '\\N'

The ——null-non-string option tells Sqoop to represent null values as \N,
which makes the imported data compatible with Hive and Impala. Single quotes
must be used around the \ \N character. Using double quotes will result in an
“illegal escape character” error from Sqoop.

6. Optional: While the Sqoop job is running, try viewing it in the Hue Job Browser or
YARN Web UL

View the Imported Data

Sqoop imports the contents of the speci fied tables to HDFS. You can use the Linux
command line or the Hue File Browser to view the files and their contents.

7. List the contents of the basestations_import directory

$ hdfs dfs -1s /loudacre/basestations_import

¢ Note: Output of Hadoop jobs is saved as one or more “partition” files.

8. Use either the Hue File Browser or the —tail option to the hdfs command to view
the last part of the file for each of the MapReduce partition files, for example:

$ hdfs dfs -tail /loudacre/basestations_import/part-m-00000
$ hdfs dfs -tail /loudacre/basestations_import/part-m-00001
$ hdfs dfs -tail /loudacre/basestations_import/part-m-00002
$ hdfs dfs -tail /loudacre/basestations_import/part-m-00003

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

100

Import a Table Using an Alternate File Format

9. Importthe basestations table to a Parquet data format rather than the default
file form (text file).

$ sqoop import \
--connect jdbc:mysql://gateway/loudacre \
--username training --password training \
--table basestations \
--target-dir /loudacre/basestations_import_parquet \
-—as-parquetfile

10. View the results of the import command by listing the contents of the
basestations_1import_parquet directory in HDFS, using either Hue or the
hdfs command. Note that the Parquet files are each given unique names, such as
e8f3424e-230d-4101-abba-66b521bae8ef.parquet.

11. You can’t directly view the contents of the Parquet files because they are binary
files rather than text. Use the parquet-tools head command to view the first
few records in the set of data files imported by Sqoop.

$ parquet-tools head \
hdfs://master-1/loudacre/basestations_import_parquet/

This is the end of the exercise.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera.

101

101

102

Appendix: Enabling Jupyter Notebook for PySpark

The Jupyter Notebook is an application that allows you to run Python Spark code
interactively in your browser. (For more information on Jupyter, see http://
jupyter.org.) Jupyter is a third-party project and is not supported by Cloudera nor

included with CDH.

However, if you are used to working in a browser-based notebook environment, you
may use Jupyter Notebook in this course. Although your instructor cannot provide
any addition assisstance with Jupyter, the notebook is installed In the course exercise
environment. To use it instead of the command-line version of PySpark, follow these

steps:

1. Open the following file : /home/training/.bashrc

2. Uncomment out the following line (remove the leading #).
export PYSPARK_DRIVER_PYTHON_OPTS='notebook --ip gateway

--no-browser'

3. Save the file.

4. Open a new terminal window. (It must be a new terminal so it reloads your edited
.bashrc file.)

5. Confirm the changes with the following Linux command:
$ env | grep PYSPARK
The output should include the setting below. If not, the . bashrc file was not edited
or saved properly.
PYSPARK_DRIVER_PYTHON_OPTS='notebook --ip gateway --no-
browser'

6. Enter pyspark2 in the terminal. This will start a notebook server.

7. Inabrowser on your remote desktop, goto http://gateway:8888/. This will

cause a browser window to open, and you should see the following web page:

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 102

http://jupyter.org
http://jupyter.org

103

) Home - Mozilla Firefox -0 =%

~ Home x|\ &
@127.0.0.1:1234/tree v & B Google M T BEaE 3+ A& =
[Most visitedv [ACloudera #lyHue [YARN RM [}Spark Ul (local) {Spark Doc {iSolr Admin Ul

Z Jupyter

Flles Aunning Clusters
Select items 1o perform actions on them Up\oa
O - #
O 3 pesktop

O bocuments

O 0 pownicags

O & Musiec

O ™ pictures

8. On the right hand side of the page select Python 2 from the New menu.

Upload |New~w O

Text File

Folder

Terminal

Notebook

Python 2

9. Enter some Spark code such as the following and use the play button to execute
your Spark code.

- J u pyter Untitled1 Last Checkpoint: a minute ago (unsaved changes)
File Edit View Insert Cell Kemel Help

+ ¥ OB 4+ ¥ EII C Code j Cell Toolbar: None j
“‘*Play button

In [1: mydata = ["Alice","Carlos","Frank","Barbara"]
myrdd = sc.parallelize(mydata)
myrdd.collect()]

10. Notice the output displayed.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 103

B +

= J u pyte ' Untitled1 Last checkpoint: a minute ago (unsaved cranges)

a4

In [1):

Outf[1]:

In[]:

" 4+ % » B C Code | Cell Toolvar: None B |

mydata = ["Alice","Carlos","Frank","Barbara"]
myrdd = sc.parallelize(mydata)
myrdd.collect

['Alice’, 'Carlos’', °Frank', ‘Barbara‘]

11. To stop the Spark notebook server, enter Ctr1+C in the terminal running Spark.

This is the end of the exercise.

cloudera

© Copyright 2010-2018 Cloudera. All Rights Reserved.
Not to be reproduced or shared without prior written consent from Cloudera.

104

104

105

Appendix: Troubleshooting Tips

This appendix offers some tips to handle problems you may encounter while
completing exercises.

Services on the cluster are unavailable

You may get errors in Hue or on the command line about being unable to connect to
services such as Hue, YARN, HDFS, ZooKeeper, Kafka, Hive, or other required services.
In this case, the services may need to be restarted using Cloudera Manager.

1. Use the Cloudera Manager bookmark on your remote desktop browser to view the
Cloudera Manager web UI, and log in using username admin with password admin.

2. Ifany of the cluster services you need for the exercises are shown with anything
other than a green dot (such as a gray or red dot), restart the service by clicking on
the dropdown menu next to the service name and selecting Restart.

This screenshot shows an example in which the HDFS-1 service is stopped, and
how you would restart it.

® | HBASE-T -
@ [HDFST -
@ "« HIVET HDFS-1 Actions
@ e)HUE1
Start
® '/ IMPALA-1
@ 3 KAFKA
@ % KS_INDEXE..
@® L KUDU-T
® K 00ZIE- Add Role Instances
@® :%SOLRT
@ <ISPARK2.0.. Rename
SPARK_ON...
® - Delete
@ SQOOP_CLI..

3. After restarting the service, you may find that other services that depend on the
restarted service also need restarting, which is indicated by an icon next to the
service name. For example, Hue depends on HDFS, so after restarting HDFS, you
would need to restart Hue following the same steps. The screenshot below shows
the icon indicating that a service restart is required.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 105

106

o e ONE

® ‘s IMPALA -

@ ¥ KAFKA- -

Cloudera Manager displays unhealthy status of services

If you just restarted the cluster from a stopped state, it can take a few minutes for bad
health status indicators to resolve themselves. However, if health issues persist, here

are some ways to determine what might be causing the health issues to appear, and
how to resolve them.

Click on All Health Issues, then click on Organize by Health Test.

e If you have Process Status issues where the Cloudera Manager agent is not
responding (as indicated by Hosts with unhealthy status), try restarting the cluster
services. From the desktop, select Applications > Training > Start Cluster to restart

your cluster services. Give the script time to complete.

e If you have any type of Canary issues, these typically clear up on their own, given
time.

e If any other issues still exist after solving any process status issues:

o In Cloudera Manager, note the name of one of the services reporting the issue
(such as HDFS).

o From the Clusters menu, choose that service (such as HDFS).

o From the Actions menu, choose Restart.

You Forgot Hue Username or Password for training user

If you are unable to log in to Hue, it may be due to a misremembered username or
password.

To determine if the username is correctly set to training:
1. Open anew terminal window.

2. Display the name of the administrative user, which should be training.

$ mysql -uroot -ptraining -e 'SELECT username from
hue.auth_user'

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 106

107

If the username is incorrect, reset the password as below if you do not remember it,
then go the following section to create a new user called training.

3. Reset the password for all users to training. The entire command must be
entered on a single line. Be sure to type the value of the password as shown. That is
the secret key to use for the training password.

S mysql -uroot -e 'UPDATE hue.auth_user SET
password="pbkdf2_sha256$12000$P5tN0qCcUksb
$H1Q3tWzlrPHRU940UgwOVbyVXxCTwvxyfR1DDGSZAjUw=""

You created the wrong user name in Hue

The exercise environment setup script created system user called training for use

in the exercises. Your Hue username must also be called training. If you created a
different user when you first logged into Hue, you will need to create another user with
the correct name to complete the exercises.

1. Login to Hue using your existing username and password.

2. Select the Manage Users item on the user menu in the upper-right hand corner of
the screen.

Impala Add a name - o« . Assistar & My Profile

You don't have any saved query.

3. Click the Manage Users button.
4. Next, click the Add User button on the right-hand side of the screen.

5. Inthe Step 1 tab, enter the correct credentials: Username: trainingand
Password: training. Uncheck the box labeled Create home directory.

6. Skip step 2 by clicking on the Step 3 tab. Check the box labeled Superuser status.
7. Click the Add User button at the bottom of the page.

8. Log out of Hue, and log back in as user training.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 107

108

Hue hangs while loading a page

When you connect to Hue, you may occasionally find that the home page displays, but
a spinner indicates that Hue is having trouble confirming that all services are correctly
configured and running, or you may get a Check config failed error message.

Workaround 1: Try waiting for a few moments. Sometimes the configuration check
takes a while but eventually completes, either with a confirmation that all services are
working, or that one or more services might be misconfigured. If the misconfigured
services are not ones that are required for the exercises (such as HBase or Oozie), you
can continue with the exercise steps.

Workaround 2: Usually when the configuration check has not completed or warns of
a misconfigured service, the rest of Hue will still work correctly. Try completing the

exercise by going to the Hue page you want to use, such as the Query Editor or File

Browser. If those functions work, you can continue with the exercise steps.

Solution: If the workarounds above are not helpful, you may need to restart the Hue
service using Cloudera Manager. Refer to the section above called "Services on the
cluster are unavailable". Follow those steps to restart the HUE-1 service, even if the
service is displayed with a healthy (green dot) indicator in Cloudera Manager. When the
service is restarted, reload the Hue page in your browser.

HDFS error running catchup script

WARN hdfs.DFSClient: Caught exception
java.lang.InterruptedException

You may get this warning from the catchup script. This is just a warning, and you can
disregard it.

BindException When Starting the Spark Shell

You may see a Spark warning like this when starting either the Python or Scala Spark
shell:

FAILED org.spark-project.jetty.server.Server@69419d59:
java.net.BindException: Address already in use

This is usually because you are attempting to run two instances of the Spark shell at the
same time.

To fix this issue, exit one of your two running Spark shells.

If you do not have a terminal window running a second Spark shell, you may have one
running in the background. View the applications running on the YARN cluster using
the Hue Job Browser. Check the start times to determine which application is the one
you want to keep running. Select the other one and click Kill.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 108

109

Spark job is accepted but never runs

When you execute a Spark application on YARN, you may see several messages showing
that the job is ACCEPTED:

INFO yarn.Client: Application report for application_xxxx
(state: ACCEPTED)

After a few seconds, you should be notified that the job status is now RUNNING. If the
ACCEPTED message keeps displaying and the application or query never executes, this
means that YARN has scheduled the job to run when cluster resources are availble, but
none (or too few) resources are available.

Cause: This usually happens if you are running multiple Spark applications (such as
two Spark shells, or a shell and an application) at the same time. It can also mean that a
Spark application has crashed or exited without releasing its cluster resources.

Fix: Stop running one of the Spark applications. If you cannot finding a running
application, use the Hue job browser to see what applications are running on the YARN
cluster, and kill the one you do not need.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 109

110

Appendix: Continuing Exercises After Class

In this guide, you will learn how to continue working on exercises after class.

After this class has finished, you may wish to continue working on the exercises, or
practice the skills you have learned.

The cloud-based exercise environment you were provided as part of the class will
continue to be available for a limited period of time after the class is over. Feel free to
continue using it as long as it is available.

If you would like to continue practicing beyond the environment availability window,
you can download and use a VMWare virtual machine provided by Cloudera.

Install and Run the Course Virtual Machine

1. Make sure you have a VMware player installed on your computer.

2. Download the virtual machine file using the link in the Materials area for this
course in your Cloudera University account.

3. Unzip the VM file into a directory of your choice. On most systems, you do this by
simply double-clicking the file.

4. Run the VM. On most systems, you can do this by double-clicking on the . vmx
file (such as Cloudera-Training-DevSH-Single-Machine-5.13.0-
vmware.vmx) in the unzipped VM directory. You can also launch the VMware
player and load the same file in using the File menu.

5. When the VM has started, you will automatically be logged in as the user
training, and you will see the VM’s desktop.

6. We recommend you copy this exercise manual onto your VM desktop and use

the VM’s PDF viewer (Evince) to view it; some PDF viewers do not allow you to
properly cut and paste multi-line commands.

Start Your Cloudera Cluster Services

7. From the VM desktop’s Applications menu, choose Training > Start Cloudera
Cluster. A terminal window will open and the script to start the cluster services will
run automatically.

8. Wait for about five minutes after the script finishes before continuing.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 110

111

Verify Your Cluster Services

Confirm that your exercise environment is set up and the cluster services are running
correctly by reviewing the cluster status using Cloudera Manager.

9. Start the Firefox browser using the icon on the VM desktop, then click the Cloudera
Manager bookmark.

10. Log in as user admin with password admin.

11. Verify that all the services in your cluster are healthy (indicated by a green dot), as
shown below. You may disregard yellow configuration warning icons.

Note: Some health warnings may appear as the cluster is starting. They will typically
resolve themselves within five minutes after the Start Cluster script finishes. Please be
patient. If health issues remain, refer to the tip entitled “Cloudera Manager displays
unhealthy status of services* in Appendix: Troubleshooting Tips.

Status All Health Issues Configuration 2K v All Recent C

Your Cluster Name

& cluster -

© =Hosts Disregard

© © Flume configuration
warnings

© | HBase -

® [@ HDFS -

@ ‘"¢ Hive v

Your cluster may not be running exactly the services shown. This is okay and will
not interfere with completing the exercises.
Your exercise environment is now ready.

Note: Whenever you restart the VM after suspending it or shutting it down, you will
need to restart the cluster services and verify them again using these steps above.

CIOUdera © Copyright 2010-2018 Cloudera. All Rights Reserved.

Not to be reproduced or shared without prior written consent from Cloudera. 111

