
Commit Analysis Infrastructure
(ComAnI)

Guide

November 17, 2018

Christian Kröher
kroeher@sse.uni-hildesheim.de

Implemented in: Java, Version 1.8.0_181
Used on: Windows, Ubuntu

Licensed under: Apache License, Version 2.0
Usage of external libraries (infrastructure): none

Usage of external libraries (non-third-party plug-ins): none

Software Systems Engineering • Institute of Computer Science
University of Hildesheim • Universitätsplatz 1 • 31134 Hildesheim • Germany

Acknowledgment

This work is partially supported by the ITEA3 project REVaMP2, funded by the BMBF
(German Ministry of Research and Education, https://www.bmbf.de/) under grant
01IS16042H. Any opinions expressed herein are solely by the author(s) and not by the
BMBF.

A special thanks goes to the developers of KernelHaven [9, 3, 4]: Adam Krafczyk,
Sascha El-Sharkawy, Moritz Flöter, Alice Schwarz, Kevin Stahr, Johannes Ude, Manuel
Nedde, Malek Boukhari, and Marvin Forstreuter. Their architecture and core concepts
signi�cantly inspired the development of ComAnI. In particular, the mechanisms for �le-
based con�guration of the infrastructure and the plug-ins as well as loading and executing
individual plug-ins are adopted in this work.

2

https://www.bmbf.de/

Contents

1 Introduction 5

2 Overview 6

3 User Guide 8

3.1 Installation . 8
3.2 Execution . 8

4 Developer Guide 11

4.1 Data Model . 11
4.2 Commit Extractor Plug-ins . 11
4.3 Commit Analyzer Plug-ins . 13

References 17

3

List of Figures

1 ComAnI overview . 6
2 ComAnI data model . 11
3 ComAnI AbstractCommitExtractor class 11
4 ComAnI AbstractCommitAnalyzer class . 15

Listings

1 ComAnI core con�guration parameters . 8
2 ComAnI extraction con�guration parameters 9
3 ComAnI analysis con�guration parameters 10
4 Blueprint of a ComAnI commit extractor main class 14
5 Blueprint of a ComAnI commit analyzer main class 16

List of Tables

4

1 Introduction

The Commit Analysis Infrastructure (ComAnI) is an open and con�gurable infrastructure
for the extraction and analysis of commits from software repositories. For both tasks,
individual plug-ins realize di�erent extraction and analysis capabilities, which rely on the
same data model provided by the infrastructure. Hence, any combination of extraction
and analysis plug-ins is possible. For example, we could �rst conduct an analysis for a
software hosted in a Git repository [2] and later conduct the same analysis for a di�erent
software hosted by SVN [1]1. Another example is to use the same commit extractor,
e.g., supporting the commit extraction from Git repositories, for di�erent analyses. The
de�nition of a particular ComAnI instance consists of a set of con�guration parameters
saved in a con�guration �le, which the infrastructure reads at start-up. Hence, there is
no implementation e�ort needed. The infrastructure automatically performs its internal
setup, loads and starts the desired plug-ins.

ComAnI represents a large increment of the ComAn toolset [10]. This toolset uses a
single commit extraction script and a Java-based implementation of a particular commit
analysis [6, 7, 5]. Further, the toolset is designed to be applied to the Linux kernel [8] and
its Git repository [11]. This design of ComAn restricts its applicability to other software
and repository types. While it is not completely impossible to adapt it to other inputs, this
adaptation requires mayor implementation e�ort. Hence, we decided to create a complete
infrastructure, which realizes a �exible and highly con�gurable ecosystem for conducting
a variety of analyses by means of plug-ins for commit extraction and their analysis.

This guide consists of three parts. The �rst part in Section 2 introduces ComAnI in
more detail and describes the concepts realizing the core features of the infrastructure.
Section 3 represents the second part, which focuses on the end user of ComAnI. We de-
scribe how to download, install and execute the core infrastructure as well as the available
plug-ins. As part of the execution, we also discuss the con�guration parameters and the
de�nition of particular ComAnI instances. The third part of this guide focuses on the de-
velopers. In Section 4, we discuss the development of new extraction and analysis plug-ins
by examples.

1Assuming that the analysis is able to cope with the artifacts and their technologies of the new software

under analysis.

5

2 Overview

ComAnI is designed to support the extraction of commits from di�erent version control
systems and various analyses of those extracted commits in any combination. For this pur-
pose, it o�ers an open plug-in infrastructure implemented in Java. The core components of
this infrastructure are the commit extractor, the internal data model, the commit analyzer,
and the con�guration �le as illustrated in Figure 1. In this section, we will describe these
components in detail.

Software

Repository

Commit

Extractor

Data

Model

Commit

Analyzer

Analysis

Results

Configuration

File

Figure 1: ComAnI overview

A commit extractor is a ComAnI plug-in, which is responsible for the extraction
of commits and their provision for the commit analysis as elements of the internal data.
A commit extractor typically supports three extraction variants2 depending on the given
sources from which the commits shall be extracted:

• Full repository extraction: this variant forces the extraction of all commits of a software
repository. This requires the de�nition of the location of the target repository as part
of the con�guration �le.

• Partial repository extraction: instead of extracting all commits of a software repository,
this variant allows the extraction of a prede�ned set of commits. Besides the location of
the target repository, this requires the speci�cation of an additional �le, which contains
a list of unique commit numbers (or hashes). Each line of this commit list �le must
contain exactly one commit number. Further, the author of the commit list �le must
ensure that the commit numbers specify commits of the target repository.

• Single commit extraction: the third variant o�ers an interactive mode, in which the
content of a single commit can be passed on the command line as an input.

The available extractors are introduced in Section 3.1. Section 3.2 describes their de�-
nition for a particular ComAnI instance and the usage of the di�erent extraction variants
above. Further, Section 4.2 explains the development of new extractor plug-ins for custom
commit extraction capabilities.

The internal data model represents the conceptual interface between commit extrac-
tors and commit analyzers. It o�ers two main elements for representing commits: the
Commit itself, which provides information, like its id (the commit number) or date, and
the ChangedArtifact for storing the information about the artifacts changed by a spe-
ci�c commit. Hence, each commit typically contains a list of changed artifacts, which in

2While the respective methods need to be implemented by each commit extractor, developers are free

to realize the required algorithms. Hence, we cannot guaranteed that all extractors support all extraction

variants. We recommend reading the description of the desired commit extractor for more information.

6

turn contain information about their name and location as well as their content including
the changed lines. A commit extractor creates instances of these elements based on the
extracted commits from a target repository or the content of a commit passed as com-
mand line input. Section 4.1 provides further details about the internal data model and
its elements.

The elements of the internal data model are input to a commit analyzer, which is
a ComAnI plug-in similar to a commit extractor. Depending on the core algorithm of
the respective analysis, a commit analyzer may either wait until all commits are available
or directly start processing at the time a commit is available. The infrastructure neither
imposes any restriction on the way of processing nor on the analysis results. Hence, each
commit analyzer has full control over its result creation. The only input it receives is
an output directory in which the results can be stored. While the available analyzers are
introduced in Section 3.1, their de�nition for and usage in a ComAnI instance are described
in Section 3.2. Section 4.3 explains the development of this type of plug-ins in detail.

The con�guration �le in the lower part of Figure 1 de�nes a particular setup of
the commit extraction and analysis and, hence, a speci�c instance of ComAnI. It consists
of a set of con�guration parameters for preparing the infrastructure (input and output
locations, etc.) as well as de�ning the desired commit extractor and analyzer plug-ins. The
infrastructure reads these parameters to con�gure ComAnI prior to its actual execution.
Section 3.2 introduces the available con�guration parameters and their de�nition for a
particular ComAnI instance.

7

3 User Guide

Some introduction...

3.1 Installation

3.2 Execution

1 # The path to the d i r e c to ry , which conta in s the ComAnI plug−ins ,
2 # l i k e the a v a i l a b l e e x t r a c t o r s and ana lyz e r s .
3 #
4 # Type : mandatory
5 # Defau l t va lue : none
6 # Related parameters : none
7 core . p lug ins_dir = <Path>
8

9 # The i d e n t i f y e r o f the ve r s i on con t r o l system (VCS) , which the
10 # repo s i t o r y as the input f o r commit ex t r a c t i on r e l i e s on .
11 # Commit e x t r a c t o r s and ana ly z e r s need to support the VCS. See
12 # the r e s p e c t i v e documentations o f the de s i r ed plug−i n s .
13 #
14 # Type : mandatory
15 # Defau l t va lue : none
16 # Related parameters : none
17 core . vers ion_control_system = <VCS_Id>
18

19 # The number d e f i n i n g a p a r t i c u l a r log−l e v e l and , hence , the
20 # amount o f in fo rmat ion the i n f r a s t r u c t u r e as we l l as the plug−i n s
21 # provide at runtime .
22 # Valid va lue s are :
23 # 0 − SILENT : No in fo rmat ion i s provided and , hence , the re w i l l
24 # be no message at a l l except f o r i n i t i a l setup
25 # e r r o r s
26 # 1 − STANDARD: Bas ic in format ion , warnings , and e r r o r s are
27 # provided
28 # 2 − DEBUG: S im i l a r to STANDARD, but add i t i ona l debug
29 # informat ion i s provided
30 #
31 # Type : op t i ona l
32 # Defau l t va lue : 1
33 # Related parameters : none
34 core . l o g_ l eve l = <0 | 1 | 2>

Listing 1: ComAnI core con�guration parameters

8

1 # The f u l l y q u a l i f i e d main c l a s s name o f the commit ex t r a c t o r
2 # to use in the p a r t i c u l a r ComAnI in s t ance . Although being
3 # mandatory , the i n f r a s t r u c t u r e w i l l i gno r e t h i s parameter , i f
4 # reuse i s enabled .
5 #
6 # Type : mandatory
7 # Defau l t va lue : none
8 # Related parameters : none
9 ex t r a c t i on . e x t r a c t o r = <Extractor>

10

11 # The path to the d i r e c t o r y denot ing the root o f a so f tware
12 # repo s i t o r y from which the commit ex t r a c t o r w i l l e x t r a c t the
13 # commits . Although being mandatory , e x t r a c t o r s w i l l i gno r e
14 # th i s parameter in i n t e r a c t i v e mode .
15 #
16 # Type : mandatory
17 # Defau l t va lue : none
18 # Related parameters : none
19 ex t r a c t i on . input = <Path>
20

21 # The path to and name o f the f i l e conta in ing a l i s t o f commit
22 # numbers . Extractor s w i l l t ry to ex t r a c t the cor respond ing
23 # commits from the s p e c i f i e d r epo s i t o r y e x c l u s i v e l y .
24 #
25 # Type : op t i ona l
26 # Defau l t va lue : none
27 # Related parameters : none
28 ex t r a c t i on . commit_list = <Path>
29

30 # The path to the d i r e c t o r y f o r sav ing ext rac t ed commits .
31 # Def in ing t h i s parameter enab l e s the caching f e a tu r e f o r the
32 # ext rac t i on , which a l l ows sav ing ext rac t ed commits as i nd i v i dua l
33 # f i l e s and reuse them in fu tu r e ana lyses , whi l e the cur rent
34 # ana l y s i s p r o c e s s e s the ex t rac t ed commits as usua l . This avo ids
35 # repea t ing the ex t r a c t i on o f the same commits f o r fu tu r e ana ly s e s .
36 #
37 # IMPORTANT: the i n f r a s t r u c t u r e d e l e t e s the content o f t h i s
38 # di r e c to ry , i f i t i s not emtpy .
39 #
40 # Type : op t i ona l
41 # Defau l t va lue : none
42 # Related parameters : e x t r a c t i on . r euse
43 ex t r a c t i on . cache = <Path>
44

45 # The path to the d i r e c t o r y conta in ing cached commits . De f in ing
46 # th i s parameter enab l e s the caching f e a tu r e f o r the ex t rac t i on ,
47 # which l e ad s to a reuse o f p r ev i ou s l y ex t rac t ed commits in s t ead o f
48 # execut ing the de f ined ex t r a c t o r . This avo ids r epea t ing the
49 # ext r a c t i on o f the same commits f o r fu tu r e ana ly s e s .
50 #
51 # IMPORTANT: i f caching and reu s ing i s de f ined at the same time ,
52 # caching i s performed and the ana l y s i s uses ex t rac t ed commits .
53 #
54 # Type : op t i ona l
55 # Defau l t va lue : none
56 # Related parameters : none
57 ex t r a c t i on . r euse = <Path>

Listing 2: ComAnI extraction con�guration parameters

9

1 # The f u l l y q u a l i f i e d main c l a s s name o f the commit ana lyze r
2 # to use in the p a r t i c u l a r ComAnI in s t ance .
3 #
4 # Type : mandatory
5 # Defau l t va lue : none
6 # Related parameters : none
7 ana l y s i s . ana lyze r = <Analyzer>
8

9 # The path to the d i r e c t o r y f o r sav ing the ana l y i s r e s u l t s .
10 # Each ana l y s i s w i l l c r e a t e i t s own sub−d i r e c t o r y in t h i s
11 # d i r e c t o r y named by the name o f the ana lyze r and a timestamp
12 # to avoid unintended ove r r i d i ng o f prev ious r e s u l t s .
13 #
14 # Type : mandatory
15 # Defau l t va lue : none
16 # Related parameters : none
17 ana l y s i s . output = <Path>

Listing 3: ComAnI analysis con�guration parameters

10

4 Developer Guide

Some introduction...

4.1 Data Model

<<Java Class>>

Commit
net.ssehub.comani.data

-id: String

-date: String

-commitHeader: String[]

<<Java Class>>

ChangedArtifact
net.ssehub.comani.data

-artifactPath: String

-artifactName: String

-diffHeader: List<String>

-content: List<String>

-changedArtifacts

0..*

Figure 2: ComAnI data model

4.2 Commit Extractor Plug-ins

A commit extractor plug-in is responsible for extracting commit information from a soft-
ware repository and providing this information for an analysis. Therefore it has to create
instances of the Commit and ChangedArtifact classes described in Section 4.1 and add
these instances to the internal CommitQueue. This queue represents the actual connection
between commit extractors and analyzers. It is accessible through an attribute of the
AbstractCommitExtractor class, which each commit extractor has to extend. Figure 3
presents this abstract class as well as the extractor-speci�c commit queue interface.

<<Java Class>>

AbstractCommitExtractor

net.ssehub.comani.extraction

#logger: Logger

#extractionProperties: Properties

+AbstractCommitExtractor(Properties,IExtractionQueue)

+extract(File):boolean

+extract(File,List<String>):boolean

+extract(String):boolean

+operatingSystemSupported(String):boolean

+versionControlSystemSupported(String):boolean

<<Java Interface>>

IExtractionQueue

net.ssehub.comani.data

+addCommit(Commit):boolean

#commitQueue

0..1

Figure 3: ComAnI AbstractCommitExtractor class

Each commit extractor inherits three attributes: the infrastructure-wide logger, the
extraction properties, and the commit queue as shown in Figure 3. The logger provides
multiple methods for logging general information about the extraction process, warning,
error, and debug messages. The amount of information actually shown, e.g., on the com-
mand line, depends on the de�ned log-level in the con�guration �le (cf. Section 3.2).
The extractionProperties include all con�guration parameters, which start with the
pre�x �extraction.�, a property providing the name of the operating system on which
the extractor currently runs, and a property for the version control system as speci�ed
by the respective con�guration parameter in the con�guration �le (cf. Section 3.2). The
commitQueue enables the transfer of extracted commits to an analysis. It only provides a

11

single method, which accepts a single Commit instance as a parameter. Hence, the extrac-
tion algorithms have to call this method for each extracted commit individually.

Figure 3 also shows that a commit extractor has to implement a constructor, which
accepts a properties and a particular extraction queue instance as parameters, as well as a
set of methods for extracting commits and checking whether it is executable in the current
environment. Listing 4 introduces a blueprint of a commit extractor, which implements
all these required elements.

This blueprint represents a starting point for each new extractor by implementing the
necessary algorithms as follows:

1. Constructor : creates a new instance of the commit extractor and, hence, has to call its
parent class' constructor by passing the constructor parameters of the new extractor.
Further actions for setting up the particular commit extractor can be performed here as
well, which may also throw ExtractionSetupExceptions, if the setup fails. Listing 4
shows the constructor in Lines 16 to 22 including the usage of the logger, which informs
the user about its creation (Line 20).

2. Extraction methods: realize the three extraction variants as introduced in Section 2.
Each method in the Lines 25 to 41 returns a Boolean value indicating whether the
particular extraction variant was successful (true) or not (false). In the latter case,
the user is automatically informed about an extraction error indicating that either
there are no analysis results or the results may potentially be incorrect. The individual
methods have the following purpose:

(a) extract (File repository): extracts all commits of the given software repos-
itory. The repository parameter identi�es the directory speci�ed as input
(extraction.input) in the con�guration �le (cf. Section 3.2), which is typically
the root directory of a software repository. The particular way of interacting with
the supported type of repository depends on the commands and capabilities provides
by the version control system.

(b) extract (File repository, List<String> commitList): extracts only those
commits of the given software repository, which are part of the given commit list.
While the repository parameter provides the same information as for the method
above, the commitList parameter contains a set of commit numbers (or hashes),
which enable to extraction of the respective commits. However, this method is only
called if a commit list is de�ned via the corresponding con�guration parameter in
the con�guration �le.

(c) extract (String commit): transforms the given information representing the con-
tent of a particular commit into a commit of the internal data model. This method
is only called in the interactive mode of ComAnI, in which the given string is passed
directly as a command line argument.

3. Support check methods: realize the opportunity to restrict the application of a commit
extractor to a particular operating system and version control system. In particular,
this is important, if, for example, an extractor relies on a third-party library, which is
only available for Windows, or if the extractor cannot process other commits than those
of a Git repository. A missing support yields a ExtractionSetupException during the
creation of an instance of the extractor by the infrastructure, which terminates the
entire tool. Each method in Lines 44 to 54 returns a Boolean value indicating whether
the extractor supports the respective system (true) or not (false):

12

(a) operatingSystemSupported(String os): checks whether the extractor supports
the given operating system. The os parameter provides the operating system in the
format of System.getProperty(�os.name�)3.

(b) versionControlSystemSupported(String vcs): checks whether the extractor sup-
ports the given version control system. The vcs parameter provides the version
control system as de�ned by the core.version_control_system con�guration pa-
rameter in the con�guration �le.

4.3 Commit Analyzer Plug-ins

3https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

13

https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

1 package core ;
2

3 import java . i o . F i l e ;
4 import java . u t i l . L i s t ;
5 import java . u t i l . P rope r t i e s ;
6

7 import net . ssehub . comani . core . Logger ;
8 import net . ssehub . comani . data . IExtract ionQueue ;
9 import net . ssehub . comani . e x t r a c t i on . AbstractCommitExtractor ;

10 import net . ssehub . comani . e x t r a c t i on . Extract ionSetupExcept ion ;
11

12 public class CommitExtractor extends AbstractCommitExtractor {
13

14 private stat ic f ina l St r ing ID = "MyCommitExtractor" ;
15

16 public CommitExtractor (Prope r t i e s ex t r a c t i onPrope r t i e s ,
17 IExtract ionQueue commitQueue)
18 throws Extract ionSetupExcept ion {
19 super (ex t r a c t i onPrope r t i e s , commitQueue) ;
20 this . l o gg e r . l og (ID , "Created" , null , Logger . MessageType . INFO) ;
21 // TODO Further setup ac t i on s go here
22 }
23

24 @Override
25 public boolean ex t r a c t (F i l e r e po s i t o r y) {
26 // TODO Extract ion o f a l l commits from given r epo s i t o r y
27 return fa l se ;
28 }
29

30 @Override
31 public boolean ex t r a c t (F i l e r epo s i t o ry , L i s t<Str ing> commitList) {
32 /∗ TODO Extract ion o f a l l commits o f g iven commit l i s t from
33 ∗ given r epo s i t o r y ∗/
34 return fa l se ;
35 }
36

37 @Override
38 public boolean ex t r a c t (S t r ing commit) {
39 // TODO Extract ion o f g iven commit (convert to data model)
40 return fa l se ;
41 }
42

43 @Override
44 public boolean operatingSystemSupported (St r ing os) {
45 // TODO Check i f e x t r a c t o r supports g iven operat ing system
46 return fa l se ;
47 }
48

49 @Override
50 public boolean vers ionControlSystemSupported (St r ing vcs) {
51 /∗ TODO Check i f e x t r a c t o r supports g iven ve r s i on con t r o l
52 ∗ system ∗/
53 return fa l se ;
54 }
55

56 }

Listing 4: Blueprint of a ComAnI commit extractor main class

14

<<Java Class>>

AbstractCommitAnalyzer
net.ssehub.comani.analysis

#logger: Logger

#analysisProperties: Properties

+AbstractCommitAnalyzer(Properties,IAnalysisQueue)

+analyze():boolean

+operatingSystemSupported(String):boolean

+versionControlSystemSupported(String):boolean

<<Java Interface>>

IAnalysisQueue
net.ssehub.comani.data

+isOpen():boolean

+getCommit():Commit

#commitQueue

0..1

Figure 4: ComAnI AbstractCommitAnalyzer class

15

1 package core ;
2

3 import java . u t i l . P rope r t i e s ;
4

5 import net . ssehub . comani . a n a l y s i s . AbstractCommitAnalyzer ;
6 import net . ssehub . comani . a n a l y s i s . Analys i sSetupExcept ion ;
7 import net . ssehub . comani . core . Logger ;
8 import net . ssehub . comani . data . Commit ;
9 import net . ssehub . comani . data . IAnalysisQueue ;

10

11 public class CommitAnalyzer extends AbstractCommitAnalyzer {
12

13 private stat ic f ina l St r ing ID = "MyCommitAnalyzer" ;
14

15 public CommitAnalyzer (Prope r t i e s ana l y s i sP r op e r t i e s ,
16 IAnalysisQueue commitQueue)
17 throws Analys i sSetupExcept ion {
18 super (ana l y s i sP r op e r t i e s , commitQueue) ;
19 this . l o gg e r . l og (ID , "Created" , null , Logger . MessageType . INFO) ;
20 // TODO Further setup ac t i on s go here
21 }
22

23 @Override
24 public boolean ana lyze () {
25 while (this . commitQueue . isOpen ()) {
26 Commit commit = this . commitQueue . getCommit () ;
27 i f (commit != null) {
28 // TODO Analyze commit
29 }
30 }
31 return fa l se ;
32 }
33

34 @Override
35 public boolean operatingSystemSupported (St r ing os) {
36 // TODO Check i f ana lyze r supports g iven operat ing system
37 return fa l se ;
38 }
39

40 @Override
41 public boolean vers ionControlSystemSupported (St r ing vcs) {
42 /∗ TODO Check i f ana lyze r supports g iven ve r s i on con t r o l
43 ∗ system ∗/
44 return fa l se ;
45 }
46

47 }

Listing 5: Blueprint of a ComAnI commit analyzer main class

16

References

[1] Apache Software Foundation. Apache subversion. https://subversion.apache.

org/, 2018. Accessed 2018/10/11.

[2] Git. Git version control system. https://git-scm.com/, 2018. Accessed 2018/10/11.

[3] C. Kröher, S. El-Sharkawy, and K. Schmid. KernelHaven - an experimentation work-
bench for analyzing software product lines. In 40th International Conference on Soft-

ware Engineering: Companion Proceedings, pages 73�76, New York, NY, USA, 2018.
ACM.

[4] C. Kröher, S. El-Sharkawy, and K. Schmid. KernelHaven - an open infrastructure
for product line analysis. In 22nd International Systems and Software Product Line

Conference, volume 2, pages 5�10, New York, NY, USA, 2018. ACM.

[5] C. Kröher, L. Gerling, and K. Schmid. Identifying the intensity of variability changes
in software product line evolution. In 22nd International Systems and Software Product

Line Conference, volume 1, pages 54�64, New York, NY, USA, 2018. ACM.

[6] C. Kröher and K. Schmid. A commit-based analysis of software product line evolution:
Two case studies. Technical Report SSE 2/17/E, University of Hildesheim, 2017.

[7] C. Kröher and K. Schmid. Towards a better understanding of software product line
evolution. In Softwaretechnik-Trends, volume 37:2, pages 40�41, Berlin, Germany,
2017. Gesellschaft für Informatik e.V., Fachgruppe PARS.

[8] Linux Kernel Organization, Inc. The Linux kernel archives. https://www.kernel.

org/, 2018. Accessed 2018/10/15.

[9] Stiftung Unviversity of Hildesheim - Software Systems Engineering. KernelHaven.
https://github.com/KernelHaven, 2018. Accessed 2018/10/12.

[10] Stiftung Unviversity of Hildesheim - Software Systems Engineering. Variability-centric
commit extraction and analysis. https://github.com/SSE-LinuxAnalysis/ComAn,
2018. Accessed 2018/10/15.

[11] L. Torvalds. Linux kernel source tree. https://github.com/torvalds/linux, 2018.
Accessed 2018/10/15.

17

https://subversion.apache.org/
https://subversion.apache.org/
https://git-scm.com/
https://www.kernel.org/
https://www.kernel.org/
https://github.com/KernelHaven
https://github.com/SSE-LinuxAnalysis/ComAn
https://github.com/torvalds/linux

	Introduction
	Overview
	User Guide
	Installation
	Execution

	Developer Guide
	Data Model
	Commit Extractor Plug-ins
	Commit Analyzer Plug-ins

	References

