
Commodore Amiga*

A500/A2000

Technical Reference

Manual

Converted by H.YILDIZ

A2000/A500 Technical Reference Manual
Table of Contents

Section 1 Summary of Differences 1
Section 2 System Block Diagrams 13
Section 3 Amiga Expansion

3.1 Designing hardware for the Amiga Expansion Architecture 17

3.2 Driver Documentation 51

3.3 Software for Amiga Expansion 55
3.4 Amiga Expansion Connectors

100 Pin 75
86 Pin 87

Video Slot 101

Section 4 PC Bridgeboard
4.1 Description of the PC/XT emulator for the Amiga 2000 109
4.2 BIOS entry points 121
4.3 Janus library 131

Section 5 Amiga Hard Disk/SCSI Controller 159

Section 6 Custom Chips

Fat Agnus Chip 187

8520 Chip 213
Section 7 Miscellaneous Hardware Information

7.1 Clock/calendar registers 223
7.2 Power budgets 225
7.3 A2000 PAL equations 229

7.4 B2000 Jumpers 235

Appendix A. Diagrams
A-l Backplane Example A-l
A-2 PIC Example A-2
A-3 A500 Exterior (86-pin expansion connector) A-3
A-4 Amiga 2000 Expansion Board Layout A-4
A-5 Amiga 2000 Form Factor A-5

A-6 Amiga 2000 Video Card A-6

A-7 86-Pin Slot Expansion Board A-7

A-8 A2000/B2000 Keyboard Connector Pinout A-8
A-9 Amiga 500/2000 Mouse Diagram and Pinout A-9

Appendix B. Schematics
A2000 Schematics A2000-1
B2000 Schematics B2000-1

A500 Schematics A500-1

COPYRIGHT

This manual is copyright © 1986,1987 by Commodore-Amiga, Inc. All Rights Reserved. This document

may not, in whole or part, be copied, photocopied, reproduced, translated or transferred to any

electronic medium or machine readable form without prior consent, in writing, from Commodore-

Amiga. Inc.

Amiga is a registered trademark of Commodore-Amiga, Inc.
Commodore and CBM are registered trademarks of Commodore Electronics Limited.

Hayes is a registered trademark of Hayes Microcomputer Products, Inc.

IBM is a registered trademark of international Business Machines Corporation.

Macintosh is a trademark of Apple Computer. Inc.

DISCLAIMER

THE INFORMATION IS PROVIDED “AS IS” WITHOUT WARRAHTY OF ANY KIND. EITHER EXPRESSED OR
IMPLIED. THE ENTIRE RISK AS TO THE ACCURACY OF THE INFORMATION HEREIN IS-llSSUMED BY

YOU. COMMODORE-AMIGA DOES NOT WARRANT. GUARANTEE. OR MAKE ANY REPRESENTATIONS

REGARDING THE USE OF. OR THE RESULTS OF THE USE OF, THE INFORMATION IN TERMS OF

CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS. OR OTHERWISE. IN NO EVENT WILL

COMMODORE-AMIGA. INC. BE LIABLE FOR DIRECT, INDIRECT. INCIDENTAL OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT IN THE INFORMATION EVEN IF IT HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF

IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES. SO THE

ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Schematics represent current machine which is subject to change without notice.

Credits

The material for this manual was produced by Engineering. Documentation,
and Technical Support staff at Commodore West Chester, Commodore
Braunschweig, and Commodore-Amiga. Individuals contributing major por¬
tions of information and input are Dave Haynie, Jeff Porter, Phil Lindsay.
Carolyn Scheppner. Lisa Siracusa, George Robbins. Andy Finkel. Eric Cotton,
Jeff Boyer. Steve Ahlbom. Steve Beats. Dieter Preiss. Bernd Assmann, and

Torsten Burgdorf.

This manual was compiled and edited by Steve Finkel.

Manual design by Jo-Ellen Temple and Wilson Harp.

Section 1

Summary of Differences

This manual presents technical documentation for three different
Amiga models, comparing them to the original Amiga, referred to as
model A1000. Technical information included in this manual is rel¬
evant for the following Commodore Amiga models:

• the Amiga 500 (A500). a low-cost version of the origi¬
nal Amiga computer, software-compatible with the
A1000. Unlike the A1000, the A500 has an integrated
keyboard, provision for internal memory expansion up
to 1 megabyte, new-style hardware connectors, and
Kickstart code in ROM.

Two versions of the Amiga 2000:

• the A2000 is software-compatible with the A1000 and
has internal slots, real time clock/calendar and new-
style hardware connectors.

• the B2000, the cost-reduced version of the Amiga
2000, features some different custom chips, but is
otherwise similar to the A2000.

The B2000 is still under development, and the information present¬
ed in this document is subject to change. The information included on
the B2000 is intended to aid developers in designing software and
peripherals that are applicable for both the current and upcoming
version of the Amiga 2000.

Unless differences are specifically noted, information presented for
the A2000 also holds true for the B2000. The differences between
the two Amiga 2000 models are mainly hardware differences which

will affect peripheral design, but not the way the computers function
with software. Section 2 contains system block diagrams for all
three new Amiga models.

KICKSTART IN ROM Both the Amiga 2000 and the Amiga 500 feature version 1.2 of
Kickstart built into ROM. Kickstart 1.2 (currently version 33.180)

boots automatically when the Amiga is turned on.

1

EXTRA KEYS ON THE
KEYBOARD

Both the Amiga 2000 and 500 feature 94-key keyboards, as com¬
pared to the AlOOO's 89-key keyboard. (The European versions of

the keyboards have 96 keys.) The new keys are all located on the nu¬

meric keypad, and include:

KEY SCAN CODE
Left parentheses ($5A
Right parentheses) $5B
Slash / $5C

Asterisk * $5D
Plus + $5E

In PC mode on the Amiga 2000 (using a Bridgeboard), these keys
assume typical PC functions, including Number lock (left parenthe¬
sis), Print screen (asterisk) and Scroll lock (right parenthesis).

On some keyboards, the left Amiga key has been replaced by the
Commodore key. This key performs identically in either case.

RAW KEY CODES ON Keyboard Layout Showing Raw Key Codes
THE KEYBOARD

4C

4F 4D 4E

5A 5B 5C 5D

3D 3E 3F 4A

2D 2E 2F 5E

ID IE IF

43

OF 3C

Figure 1.1 Key Codes

Note: On the U.S. keyboard, the keys with codes 44 and 60 are
extended to include the European keys with codes 2B and 30,
respectively. Also note that England uses the U.S. rather than
the European keyboard, but not the U.S. keymap.

See Table 1 -1 at the end of this section for a table of the raw key

codes.

2

EXTERNAL SYSTEM 1/0 This section describes each I/O interface in detail, and some of the
tradeoffs made with respect to A1000 compatibility.

The Amiga 2000 and Amiga 500 have differences in the serial and
parallel ports from the Amiga 1000, the main difference being
changes in the sex of each port (changing the serial to female and the
parallel to male), which allows the new Amigas to use standard inter¬

face cables.

RSZ32 and MIDI Port

/////////////

>✓✓>>>»> >

The RS232 connector on the A500 and A2000 is form fit and func¬
tion identical to a Commodore PC-10/20 with a few exceptions. This
is the OPPOSITE sex connector from the A1000. The connector
is a shielded male DB25P connector. The A1000 supplies various
non-standard RS232 signals on the DB25 connector. These non¬
standard signals were removed wherever possible. The RS232 con¬
nector is NOT physically compatible with some MIDI interfaces but is
compatible with the Amiga Modem/1200 RS (mode! 1680). Below is
a comparison chart between the RS232 standard, a Hayes Smart-
modem standard, the A1000 RS232. and the new Amiga 500/2000

RS232 connector.

A500/
PIN RS232 A1000 A2000 PC10 HAYES® DESCRIPTION

1 GND GND
2 TxD TxD

3 RxD RxD

4 RTS RTS

5 CTS CTS
6 DSR DSR
7 GND GND
8
Q

DCD DCD

10

11
12

— —

S.SD __

13 S.CTS —

14 S.TxD -5Vdc

15 T x C AUDO
16 S.RxD AUDI
17 RxC EB

18 — INT2*

19 S.RTS —

20 DTR DTR
21 SQD + 5Vdc

22 RI —

23 SS + 12Vdc

24 Tx Cl C2*

25 — RESB*

GND GND GND

TxD TxD TxD

RxD RxD RxD

RTS RTS —

CTS CTS CTS

DSR DSR DSR

GND GND GND

DCD DCD DCD
+ 12v + 12v —

-12v - 12v —

AUDO — —

E _

SI

AUDI

— —

DTR DTR DTR

Rl RI RI

Frame ground
Transmit Data
Receive Data
Request to send
Clear to send
Data set ready
Signal ground
Carrier detect
+ 12 volt power
- 12 volt power

Audio output
Speed Indicate

- 5 volt power
Audio output
Audio input
Port clock 716KHz

Interrupt line/Audio input

Data terminal ready
+ 5 volt power
Ring indicator
+12 volt power
3.58MHz clock
Buffered system reset

3

As you will notice, the A500 and 2000 deletes clocks and interrupt
lines from the A1000. The +/-5Vdc and reset lines are also de¬

leted. The +/ - 12Vdc lines are identical to a PCI0/20.

The following signals (formerly on the RS232 connector) can be found
on other connectors:

ResB = parallel connector
C2 = video connector

Centronics Port The Centronics port also has some non-standard signals. Below is a
table comparing the A1000 Centronics port with the A500/A2000
Centronics port. Again, this is the opposite sex from the A1000

and the same sex connector as an IBM®-PC (i.e., a female DB25

connector).

/
_)

\ *

PIN A1000

1 DRDY*

2 Data 0

3 Data 1
4 Data 2

5 Data 3
6 Data 4
7 Data 5

8 Data 6

9 Data 7
10 ACK*

11 BUSY(data)
12 POUT(clk)
13 SEL
14 GND

15 GND

16 GND

17 GND
18-22 GND

23 + 5v

24 NC
25 Reset*

A500/A2000 PC10

STROBE* STROBE*

Data 0 Data 0
Data 1 Data 1
Data 2 Data 2
Data 3 Data 3
Data 4 Data 4
Data 5 Data 5

Data 6 Data 6

Data 7 Data 7
ACK* ACK*
BUSY BUSY
POUT POUT
SEL SEL
+ 5v pullup AUTOFDXT*

NC ERROR*
RESET* IN IT*

GND SLCT IN*
GND GND
GND GND
GND GND

GND GND

Video Output The A500 and A2000, like the A1000, use a DB23 video connector.

This 23 pin connector contains all the signals necessary to work with
a Genlock, but the current Genlock will need to be redesigned in or¬
der to meet the physical requirements of the A500 and A2000, in-

4

Mouse and Joystick
Ports

A500 Expansion Port

A500 RAM Expansion

ASOO Power Supply
Connector

stead of the A1000. An A500 genlock will also have to supply its
own power. Power will not be provided for the Genlock. All signals

on the 23 pin connector are the same except for the power.

In addition to the 23 pin video connector, the A500/B2000 provides
a monochrome composite video output, unlike the A1000. This pro¬
vides the capability of using a low-cost, high persistence mono¬
chrome monitor with the A500 for viewing 640 x 400 interlaced

video without as much flickering.

Power is provided for the A520 modulator and composite video

adapter.

The mouse and joystick ports of the A500 and A2000 are identical

to the A1000. except that the current limiting protection circuitry
has been eliminated. The A500 and A2000 use a different mouse
than the one the A1000 uses. A diagram and information on this
mouse is included in Appendix A of this manual.

The expansion port is electrically compatible with the A1000, but be¬
cause of its physical location, it cannot accept any A1000 expansion
peripherals without some further adapter. Power is supplied to this
connector, but only enough for a ROM cartridge. The exact pinout of
this 86 pin edge connector appears later in this document, in the sec¬
tion of Amiga expansion. The A500 diagram in Appendix A shows the
new positioning of this port (relative to A1000) and the pin num¬

bers.

Associated with the built-in 512KB of RAM is a header socket to al¬
low an additional 512KB of RAM and a battery backed-up real time
clock board to be added. This small PCB (the A501 RAM Expansion
Cartridge) can easily be installed by the user. The clock in this unit
functions the same as that built into the A2000, which is reviewed in

Section 7-1.

The A500 power supply connector is similar to that of the C128. The

pinout of the square 5 pin DIN connector is as follows:

PIN SIGNAL

1 + 5Vdc<®4.3A
2 Shield Ground ,;
3 +12Vdc@1.0A

4 Signal Ground
5 — 12Vdc @ .1A

5

The 23 pin D-type connector with sockets (DB23S) at the rear of the

Amiga is nominally used to interface to MFM devices.

The second disk drive port is similar to the A1000, and is therefore
compatible with the 1010 or the 1020 disk drive. The CPU will pow¬

er one external 1010 disk drive.

External Disk Connector Pin Assignment

Pin Name Dir Notes

1 RDY* I/O If motor on, indicates disk
installed and up to speed.
If motor not on, Identification
mode. See below.

2 DKRD* l MFM input data to Amiga.

3 GND

4 GND
5 GND
6 GND
7 GND

8 MTRXD* OC Motor on data, clocked into

drive’s motor on flip flops by

the active transistion of
SELxB*.
Guaranteed setup time is 1.4
|jisec.
Guaranteed hold time is 1.4
jisec.

9 SEL2B*/SEL3B* OC A500:Select drive 2/A2000:

Select drive 3.

10 DRESB* OC Amiga system reset. Drives
should reset their motor on
flip flops and set their write
protect flip flops.

11. CHNG* I/O Note: Nominally used as an
open collector input. Drive’s
change flop is set at power-up
or when no disk is installed.
Flop is reset when drive is
selected and the head stepped,
but only if a disk is installed.

12 + 5V 270 ma maximum; 410 ma
surge.
When below 3.75V, drives are
required to reset their motor
on flops, and set their write
protect on flops.

13 SIDEB* 0 Side 1 if active, side 0 if
inactive.

14 WPRO* I/O Asserted by selected, write
protected disk.

External Disk Interface
Connector

6

15 TKO* I/O Asserted by selected drive
when read/write head is
positioned over track 0.

16 DKWEB* OC Write gate (enable) to drive.

17 DKWDB* OC MFM output data from
Amiga.

18 STEPB* OC Selected drive steps one
cylinder in the direction

indicated by DIRB.

19 D1RB OC Direction to step the head.
Inactive to step towards
center of disk (higher
numbered tracks).

20 SEL3B*/
Not Used

OC A500: Select drive 3/A2000:
Not used.

21 SEL1B/SEL2B OC A500: Select drive 1/A2000:

Select drive 2.

22 INDEX* I/O Index is pulse generated once
per disk revolution, between
the end and beginning of
cylinders. The 8520 can be

programmed to conditionally
generate a level 6 interrupt to
the 68000 whenever the
INDEX* input goes active.

23 +12V 160 ma maximum; 540 ma
surge.

Note; * in signal name denotes active low signal.

External Disk Connector Identification Mode

An identification mode is provided for reading a 32 bit serial identifi¬
cation data stream from an external device. To initialize this mode,
the motor must be turned on then off. See pin 8. MTRXD* for a
discussion of how to turn the motor on and off. The transition from

motor on to motor off reinitializes the serial shift register.

After initialization, the SELxB* signal should be left in the inactive

state.

Now enter a loop where SELxB* is driven active, read serial input
data on RDY* (pin 1), and drive SELxB* inactive. Repeat this loop a

total of 32 times to read in 32 bits of data. The most significant bit is

received first

7

External Disk Connector Defined Identifications

Full Bus Termination

Internal RAM Expansion
on the A500

E1A Ring Indicate
Support

$0000 0000 - no drive present
$FFFF FFFF - Amiga standard 3.25 diskette
$5555 5555 - 48 TPI double density double sided

As with other peripheral ID's, users should con¬
tact Commodore Technical Support for ID Assign¬
ment.

The serial input data is active low and must there¬
fore be inverted to be consistent with the above
table.

External Disk Connector Limitations

1. The total cable length including daisy chaining
must not exceed 1 meter.

2. A maximum of 3 external devices may reside
on this interface (2 for the A2000).

3. Each device must provide a 1000 Ohm pullup
resistor on every open collector input.

Unlike the A1000 and the A500, both versions of the Amiga 2000
have an internal expansion bus, as a function of having an internal
card cage.

On the A500, memory at $C00000 is “slow" RAM (the processor is
locked out by the custom chips) rather than fast RAM as suggested
by A1000 external expansion. Thus, when ExecBase is transferred to
$C00000 to free up chip RAM, there is no speed advantage. Howev¬
er. you would still be making real chip RAM available for other pur¬
poses. The B2000 functions as the A500 does in this regard.

The A500, A2000 and B2000 support the RS232 Rl lead to allow
operation with modem standards. When the Rl signal is asserted, the
parallel port SEL line will be driven low. If this function is not de¬
sired, the Rl lead should be disconnected in the modem cable.

Time of Day Clock

Light Pen

Monochrome
Composite Video

Audio Filter Cut-out

ASOO Reset

A2000 Expansion Bus
IPL Lines

In the A500. the Time of Day clock is tied to the VSYNC signal rather
than the power line. This results in the theoretical error of several
minutes a day. For more precise timing, use the optional real-time
clock.

In genlock mode, the genlock peripheral provides a 30 Hz V/Z signal,
which results in the clock running half speed.

The light pen input on the A500 and B2000 has been moved to the
second mouse port to allow use without a pass-thru mouse adapter.
On a B2000. the light pen can be jumpered to port 0.

The A500 and B2000 provide a full-bandwidth 16-level grey-scale
composite video output. Color composite is available with an optional
A520 composite color/rf video adapter.

The A500 and B2000 can cut out the anti-aliasing filter by program¬
matically turning off the “power on” LED. External bandwidth limit¬
ing to below 15 KHz will be required for most applications. This per¬
mits wider frequency response by using faster sampling rates.

The A500 implements a “hard-wired” Control/Commodore/Amiga
key reset rather than the “soft" A1000/A2000 keyboard reset.
"Shut down” keyboard messages are not transmitted.

The A2000 does not run the processor IPL lines beyond the 86 pin
MMU connector. Instead, additional interrupt request lines are allo¬
cated for future expansion devices. These lines are not supported by
the current software.

9

Table 1 -1 RAW KEY CODES

Raw Unshifted Shifted
Key Keycap Default Default
Number Legend Value Value

00 * ~ * (Accent grave) ~ (tilde)
01 1 ! 1 !

02 2 @ 2 @
03 3# 3 #
04 4$ 4 $
05 5% 5 %
06 6 * 6 *

07 7 & 7 &
08 8 * 8 *

09 9(9 (
OA 0) 0)
OB - (Hyphen) _ (Underscore)
OC = + = +
OD \ 1 \ |
OE
OF 0

(undefined)
0 0 (Numeric pad)

10 Q q Q
11 w w W
12 E e E
13 R r R
14 T t T
15 Y y Y
16 U u U
17 1 i 1
18 0 0 0
19 P P P
1A [{ [{
IB]}] }
1C
ID 1

(undefined)
1 1 (Numeric pad)

IE 2 2 2 (Numeric pad)
IF 3 3 3 (Numeric pad)

20 A a A
21 S s S
22 D d D
23 F f F
24 G g G
25 H h H
26 J j J
27 K k K
28 L 1 L
29 J * l

2A 9 99 ’ (single quote) ”

10

Raw Unshifted Shifted

Key Keycap Default Default

Number legend Value Value

2B (RESERVED) (RESERVED)

2 C
2D 4

(undefined)
4 4 (Numeric pad)

2E 5 5 5 (Numeric pad)

2F 6 6 6 (Numeric pad)

30 (RESERVED) (RESERVED)

31 Z z Z

32 X X X

33 C c C

34 V V V

35 B b B

36 N n N

37 M m M

38 , < , (comma) <

39 . > . (period) >

3A /? / ?

3B
3C

(undefined)
. (Numeric pad)

3D 7 7 7 (Numeric pad)

3E 8 8 8 (Numeric pad)

3F 9 9 9 (Numeric pad)

40 (Space bar) 20 20

41 BACK SPACE 08 08

42 TAB 09 09

43 ENTER OD OD (Numeric pad)

44 RETURN OD OD

45 ESC IB IB

46 DEL 7F 7F

47
48
49
4A

(undefined)
(undefined)
(undefined)

- (Numeric Pad)

4B
4C Up Arrow

(undefined)
<CS1>A <CS1>T

4D Down Arrow <CSI>B <CSI>S

4E Forward Arrow <CSI>C <CSI> A'

4F Backward Arrow <CS1>D <CSi> @

’ In shifted Forward Arrow and Backward Arrow, note blank space after <CSI>.
<CSI> stands for Command Sequence Initiator.

11

Raw
Key Keycap

Unshifted
Default

Shifted
Default

Number Legend Value Value

50 FI <CSI>0~ <CS1>10
51 F2 <CSI>1~ <CSI>11-
52 F3 <CS1>2~ <CSI> 12
53 F4 <CSI>3~ <CS1>13'
54 F5 <CS1>4— <CSI >14'
55 F6 <CSI>5~ <CSI>15'
56 F7 <CSI>6~ <CSI>16-
57 F8 <C5I>7~ <CS1 >17'
58 F9 <CSI>8— <CS1>18-
59 F10 <CS1>9— <CSI>19'
5A (((
5B)))
5C / / /
5D * * *

5E + + +
5F HELP <CSI>?~ <CSI>?~

12

Section 2

System Block Diagrams

INTRODUCTION This section features system block diagrams for each new Amiga, the
A2000. B2000 and A500, in that order.

13

14

A
M

IG
A

2
0

0
0

A
R

B
IT

R
A

T
IO

N

P
R

IN
T

hR

F
L

O
P

P
Y
 C

O
N

T
R

O
L

16

A
50

0
B

L
O

C
K

 D
IA

G
R

A
M

Section 3.1

Designing Hardware for the Amiga Expansion
Architecture

INTRODUCTION This section gives guidelines for designing hardware to reside on the
Amiga expansion bus. The Amiga expansion bus is a relatively
straightforward extension of the 68000 bus.

Hardware for the bus can be viewed as two categories: backplanes
and PICs. Backplanes interface to the 86 pin connector of either
another backplane or the Amiga itself. Backplanes buffer the bus and

provide 100 pin connectors for PICs to plug into.

PIC is an acronym for plug-in card. A PIC is usually a card that plugs

into the standard 100 pin Amiga connectors.

A sub-type of PIC is a combination of backplane and PIC integrated

into one package. These combination products should follow all of
the applicable backplane and PIC rules, especially auto-configuration.

Software never sees backplanes; all expansion hardware appears to

the software as PICs.

WARNING

These specifications represent “worst case" design targets.
Products that do not comply with these specifications can be ex¬

pected to fail on worst case production units.

Following conservative design practices and allowing the widest
safety margins is your best assurance against problems in the

field.

17

EXPANSION
ARCHITECTURE
OVERVIEW

As shown in Figure 3.1. “Expansion Architecture Overview,” the ex¬

pansion bus is implemented as backplane (an expansion box) which

accept PICs (boards). The recommended number of PICs to a back¬
plane is five.

Due to timing considerations, it is not possible to daisy-chain more
than two buffered backplanes without inserting wait states.

Figure 3.1. Expansion Architecture Overview

18

GLOSSARY Active Active high signals are considered active when they are in
the “one state” or “high state”. Active low signals are considered ac¬

tive when they are “low” or in the “zero state". Active high signals
do not have barred signal names. Active low signals do have barred
signal names. Active means that the signal is

1. is true (non-barred) and is currently in the one state, or

2. is a barred signal name and is currently in the zero state.

An example is AS* (the * = bar). AS* is active when it is equal to zero.
A counter example is the signal AS (the inverse of AS*), which is
active when it is in the one state.

Auto Configuration The protocol (specified in this section) that

Amiga uses to configure expansion cards into the system.

Downstream Downstream means closer to the Amiga. For in¬
stance. if two backplanes are daisy chained on the bus, the closer-in
backplane is downstream from the further-out backplane. The con¬
cepts of upstream and downstream are important in determining

which direction the address and data drivers should drive.

Master A PIC which is capable of initiating DMA cycles on the bus.

PIC A PIC is a plug-in card or a product which behaves in the sys¬
tem as a plug-in card. That is. it provides a resource that resides on
the expansion bus, and follows the rules for auto-config, master pro¬

tocol. slave protocol, etc.

Slave A slave is a PIC that can only respond to bus cycles. A slave
cannot initiate bus cycles: in other words, it does not drive the ad¬
dress lines on the backplane, nor AS*. UDS*. LDS*.

Upstream Upstream means further away from the processor. For
instance, all PICs are upstream from the buffers on the backplane
that they are plugged into because the buffers are between the PIC

and the Amiga.

19

DESIGN GUIDELINES
FOR BACKPLANES

Collision Detection
Circuit

Bus Arbitration Logic

In this context, collisions are defined as any instance of two slaves at¬
tempting to respond to the same bus cycle.

All backplanes must have a collision detect circuit. The reason is that
the PICs are auto-configurable and can be accidently instructed by
software to respond to overlapping address spaces. Without collision
detection, erroneous software can damage the hardware by causing
bus contention.

Collision detect works in the following way: As soon as a PIC knows
that it has been selected as the slave for this bus cycle, it asserts
SLAVE* low and holds SLAVE* low until the end of the bus cycle
(AS* going high).

The collision detect circuit (usually part of a PAL) detects whether
more than one slave is responding and. if so. asserts BERR*. All data

drivers on the expansion bus must be designed to enter high imped¬
ance mode whenever BERR* is active. Because data drivers are not
turned on until S4 (ASDELAYED* active), BERR* will have disabled
the drivers before the contention can begin.

Note that in order to detect all cases of multiple slave response, the
circuit must watch A23-A19 for Amiga address spaces and also
watch SLAVEIN* from the next box out. See discussion of the ex¬
ample schematic for specific PAL equations that implement collision
detect.

Because BERR* is listened to by all PICs, it will in some systems be
heavily loaded, so it should be driven with a hefty open collector or
tri-state driver. Each backplane should provide a 1000-ohm pull-up
resistor on BERR*.

The bus arbitration logic is based on the 68000 BR*. BG*. BGACK*
protocol as described in the 68000 manual. In order to avoid meta¬
stable states in the backplane latches, all changes in state of the BR*
lines from the PICs must be clocked by the rising edge of 7M.

The example design gives our current recommended bus arbitration
logic. Refer to the ARBITRATE PAL equation in Table 3-3.

Buffer Control Logic

Data Driver Timing

Clock Buffers, 7M, and
ASDELAYED*

THE PROTOCOLS

Read or Write Cycle
With Amiga as Master

The buffer control logic controls output enable and direction of the

bidirectional tri-state bus drivers. See the STEERING PAL equation.

Table 3-2.

It should be noted that the backplane drivers must not turn on until
the rise of S4 during a read. This is okay because data from the
Amiga internal RAMs is not valid during S4 anyway, so nothing is to

be gained by turning the data buffers on earlier.

There are three clocks coming from the Amiga. These are CDAC.
Cl *, and C3*. The backplane must generate 7M (equivalent to the
Processor dock) by the following equation: 7M = Cl * XNOR C3*.

The bus protocols are basically the same as standard 68000 proto¬
cols; however, the timing margins are tighter due to the potentially

long paths of Amiga and PICs talking to each other across two buf¬

fered backplanes.

One unusual feature is that when you are doing a DMA transfer into
or out of the Amiga display RAM (the half megabyte starting at
address 000000). the DTACK* circuit will synch the master up with
Cl. Because Cl is twice as slow as 7M. there are two possible phase
relationships between Cl and the beginning of the DMA bus cycle. If
AS* is asserted during the last quartile of Cl (Cl low and C3 low. see
Fig. 3.2. System clock timing diagram), we call this an "in sync” bus
cycle, and DTACK* is given in time to do a normal 4-clock (7M) bus
cycle. (Note: Occasionally. DTACK* is delayed due to contention with
the graphics chips, but that does not matter in this discussion.)

However. DTACK works differently if the DMA controller asserts
AS* in the other phase. In the second quartile (Cl high and C3 high),
the DTACK* circuit holds off DTACK* long enough to insert one wait
state, thus synching up the "out of sync” bus cycle.

Since the Amiga bus master is a 68000, the bus cycle is a 68000
cycle. However, the responding slave does not pull DTACK*. Our in¬
ternal circuitry pulls DTACK* unless the slave pulls XRDY low.

Also, the slave (PIC) must pull its SLAVE* output low as soon as it is
selected, and at the end of the cycle, disassert SLAVE* when AS*

goes away.

zi

Read or Write Cycle
with a PIC as Master

Bus Arbitration

SYSTEM LEVEL
ORGANIZATION (AND
IDIOSYNCRASIES)

Address Override (OVR*)

INTERRUPTS

A PIC as master must drive the bus using the same protocol as the

68000. Some of the timing margins must be better than those from
the 68000, because the PIC is driving through several levels of buff¬
ers, and the Amiga logic is designed to the 68000 (8 megahertz
part) specs. Specific timing requirements can be found in the tables
later in this section.

The bus arbitration scheme is based on the 68000 BR*,BG*,BGACK*
protocol. PICs are required to assert BR* clocked by the rising edge
of 7M. This makes it less expensive to design bus arbitration logic
that will be reliable. Specifically, synchronous arbitration logic can be
clocked on 7M without danger of going metastable.

Pin 17 OVR* can only be used in between address $200000 and
A0000. and implies you have to supply your own DTACK*. OVR* is
not supported for the purpose of disabling system decoding in the
COOOOO to DFFFFF range. Worst case 68000 timing requires modi¬
fications to the system decode gate array to accomplish this reliably.

Other uses of OVR* are not supported.

USE INT2* OR 1NT6* (DON’T
PULL IPL0*-IPL2*)

There are two interrupt input lines on the

Amiga: INT2* and INT6*. 1NT2* = pin
19, INT6* = pin 22. these lines assert

levels 2 and 6 to the processor.

Do not assert the IPLO* thru IPL2* lines,

because they are already driven by

internal logic.

22

INTERRUPT LATENCY-
BUTTER, MASKED INTS

Interrupt latency on the Amiga is highly

application software dependent, this is

because the Blitter can be operated in

"nasty mode" at the software's option.

If the blitter is "nasty" and is given a lot
of work to do, the processor receives

very few memory cycles, so the

interrupt latency will suffer.

The software can also mask out

interrupts using on-board interrupt

control logic.

VPA Is Not
Recommended

We recommend that you design your peripherals to run asynchro¬
nously on the 68000 bus. that is. a slow peripheral should be mem¬
ory mapped and use pulling XRDY low as a means of making the
68000 run a slower cycle. The use of XRDY to delay DTACK is dis¬

cussed elsewhere in this document

We do not recommend using VPA. If you decide to use VPA. you
must pull OVR* low 30ns before asserting VPA* low. Pulling OVR*
low will tri-state VPA* in the current design PAL. thus allowing your

logic to drive VPA*. Pulling OVR* will also prevent DTACK* from
being asserted by the PAL. However, this will not disable the on¬

board 8520 CIA chips.

If your slave uses the VPA VMA protocol to be synchronous with the
68000’s E clock, you must only use addresses in which A12 and A13
are high. This is because we have synchronous ports on board which
are activated by (A 12* AND VMA). also (A 13* AND VMA).

Do Not Use Pins Marked Do not drive or load pins marked EXP or RESERVE.

EXP

TIMING GENERAL
DISCUSSION

Timing specifications are listed in Table 3-1.

There are two main problems to be dealt with in the expansion archi¬
tecture timing: propagation delays and skews in the clock, address,
data, and control paths. The timing is tight; thus, we recommend us¬
ing FAST and AS parts to buffer these lines. To guarantee meeting
the timing requirements, you must be careful to not exceed the rec¬
ommended operating conditions of the parts you chose, for example
the capacitive loading. In calculating your loading, note that all PICs
are specified to present no more than two "F” loads plus minimal
trace capacitance to each connector pin. Backplanes are specified to
present no more than one “F” load plus trace capacitance to the
Amiga. Do not use ‘'typical” numbers; reliable systems can be built by

using "worst case” numbers.

23

>

Expansion Notes 1) The loading, buffering and layout requirements specified for the
A1000/A500 expansion connector must be strictly followed for

reliable operation. Unbuffered devices and bus line extension are
known problem areas.

2) Unbuffered daisy-chaining of multiple external expansion devices
is not supported.

3) The A500 provides only nominal amounts of power for expan¬

sion devices. All devices having significant power requirements
are expected to be self-powered and should not make connec¬
tions to the power pins on the expansion connector.

24

DESIGN GUIDELINES
FOR PICs

Auto Configuration

General Description of
Auto Configuration

All PICs implement the auto-configuration protocol. The auto config
protocol is designed so that system auto-config software can inter¬
rogate the PICs ID locations, build a system table of the installed

PICs, and place the PICs in the 68000 memory space.

If it is difficult to imagine how to implement this protocol while it’s
being described, don't worry. The design requires one PAL. one latch,
and one address match circuit. Complete details are given in the

example design.

Upon reset, all PICs come up in the unconfigured state. In the uncon¬
figured state, the PIC responds to the 64 Kilobyte address space
starting at location E80000. if CONFIGIN* is active to the PIC. If
CONFJGIN* is not active, the PIC does not respond to any bus cycles.

The processor comes out and reads nibbles of ID data on D15-D12
from the PIC. The table of ID data and the locations of control
latches is detailed later in this section. This data includes such things
as size of address space required, manufacturer's product number,
and whether to add the PIC to the free memory pool (if it is a
memory PIC.)

Under normal conditions, the processor determines how much ad¬
dress space the PIC requires and then loads the PIC’s address latch
with an appropriate base address. This permanently relocates the
PIC at its new address (until Reset), and passes CONF1GOUT* out to
the next PIC’s CONFIGIN*. whereupon the process is enacted again

until all PICs are configured.

The smallest unit of memory that a PIC can ask for is 64 kilobytes.
The largest is eight megabytes. All PICs should be designed to be
based on boundaries that match their space requirements; for exam¬
ple. one megabyte PICs should be designed to reside on one mega¬
byte boundaries (match circuit matches A23-A20). There are two ex¬
ceptions to this rule, however. Four megabyte PICs must be capable
of being placed on four megabyte boundaries, as well as at hex
200000 and at hex 600000. Eight megabyte PICs should be capable

of being placed on eight meg boundaries and at hex 200000. This

25

requirement is because the eight megabyte space reserved for ex¬
pansion in the current machine begins at hex 200000 (See auto-con-

fig notes below).

Auto-Config Notes

1) There is currently no provision for 6MB PICs. Designers of 8 MB
memory boards should consider auto-configs as two PICs to al¬
low partial loading flexibility.

2) PIC size/alignment rules are subject to change. If so, bit(s) will be
defined to allow a PIC to specify that it is more flexible than the

old rules require.

3) The address map is subject to change. A PIC should assume that
it may be placed anywhere in the address space.

4) All expansion devices are strongly encouraged to use the auto-

config protocols. Assignment of fixed I/O addresses is subject to
negotiation.

Address Specification Table

All nibbles except 00,02, 40 and 42 should be inverted.

Descriptions:

(00/02) 7 6 5 4

u i i
3 2 10 Board type and size

Memory size
000 = 8 megabytes
001 = 64 kilobytes
010 = 128 kilobytes
011 = 256 kilobytes
100 = 512 kilobytes
101 — 1 megabyte
110 = 2 megabytes

111=4 megabytes

Chained config request, indicates that the next
auto-config device in the daisy chain is physically
tied to this device.

Optional ROM vector valid

Link into memory free list

Board type
00 = Reserved
01 = Reserved
10 = Reserved
11 = Current style board

26

(04/06)

(08/0A)

(0C/0E)

(10/12)

(14/16)

(18/1 A)
(1 C/1 E)
(20/22)
(24/26)

(28/2A)
(2C/2E)

(30/32)

(34/36)
(38/3A)
(3C/3E)

7 6 5 4 3 2 1 0 Product number, this number is defined by the
manufacturer of the board and is used by auto-
config software to initialize drivers for the

board.

7 6 5 4 3 2 1 0 Reserved, must be as specified

1 Bits are currently zero
_____0 means this board can be shut up

' ” 1 means this board cannot be shut up
0 means any space okay
1 means preference to be put in the 8 Meg

space

7 6 5 4 3 2 1 0 Reserved, must be 0

7 6
7 6

7 6
7 6
7 6
7 6

7 6
7 6

7 6

7 6
7 6

7 6

5 4
5 4

5 4
5 4
5 4
5 4

5 4
5 4

5 4

5 4
5 4
5 4

3 2
3 2

3 2
3 2
3 2
3 2

3 2
3 2

3 2

3 2
3 2
3 2

1 0
1 0

1 0
1 0
1 0
1 0

1 0
1 0

1 0

1 0
1 0
1 0

Mfg # high byte
Mfg # low byte; These 2 bytes are assigned by
CBM. They are used by the auto-config software
to initialize drivers for boards.

Optional serial number, byte 0 (msb)
Optional serial number, byte 1
Optional serial number, byte 2
Optional serial number, byte 3 (lsb)

Optional ROM vector high byte
Optional ROM vector low byte. If the 'ROM addr
valid' bit (4 of nibble 0) is set. then these 2
bytes are the offset from the board’s base ad¬
dress at which the start of the ROM code infor¬
mation is located (e.g.. the hard disk driver). If
the bit it not set. then these 2 bytes have no
meaning.

Reserved, read must be 0; write resets base

address register
Reserved, must be 0
Reserved, must be 0
Reserved, must be 0

27

(40/42)

(44/46)

(48/4A)

(4C/4E)

(50/52)
(54/56)
(58/5A)
(5C/5E)
(60/62)
(64/66)
(68/6A)
(6C/6E)
(70/72)

(74/76)
(78/7A)
(7C/7E)

7 6 5 4 3 2

7 6 5 4 3 2 1

7 6 5 4 3 2 1

xxxxxxxx

7 6 5 4 3 2 1
7 6 5 4 3 2 1
7 6 5 4 3 2 1
7 6 5 4 3 2 1
7 6 5 4 3 2 1
7 6 5 4 3 2 1
7 6 5 4 3 2 1
7 6 5 4 3 2 1
7 6 5 4 3 2 1

7 6 5 4 3 2 1
7 6 5 4 3 2 1
7 6 5 4 3 2 1

0

0

0

0
0
0
0
0
0
0
0
0
0
0
0

Optional control status register

Write Read

Interrupt enable
User definable
Local reset
User definable

User definable
User definable
User definable
User definable

Interrupt enable
don't care
must be 0
don't care
INT2 pending
INT6 pending
INT7 pending
I am pulling 1NT

Reserved

Write Read

Not defined must be 00

Base address register, write only

These bits are compared with A23 through A16
(or fewer) to determine the base address of this
board.

Optional "shut up" address, a write to this ad¬
dress will cause the board to pass its config out
and then never again respond to any address.
RESET will re-enable the board. The actual ad¬
dress that has this effect is 4C. A write to 4E is
ignored. This is write only.

Reserved, must be 00
Reserved, must be 00

Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00

Reserved, must be 00
Reserved, must be 00
Reserved, must be 00

Note: The actual reserved values will be FF rather than 00, because the system will invert them. See
the section on reading I/O locations for more information.

28

EXAMPLE BACKPLANE
DESIGN

Backplane Schematic
Overview

The Bus Buffers and
Their Control Logic

The Address and
Control Buffers

Generating DMAOUT

We have designed a backplane as an example implementation of our

expansion architecture. This section is a detailed description of the
schematic of that backplane. The schematic appears as Figure A-l in
Appendix A.

While reading this section, refer to the backplane schematics for the

A2000 and PALS to see what is being described. The B2000 uses a
gate array to handle steering; however, this example backplane de¬
sign is functionally equivalent, and should be useful in that sense.

The bus comes in on the left from the processor via J10. Note that
both the data bus and address bus are buffered through bi-direction¬
al buffers. The buffers are bi-directional in order to allow external

DMA controllers.

This subsection describes the bus buffers, their timing and control
logic. In this discussion, "upstream" means away from the processor,

and "downstream” means toward the processor. For instance, if you
daisy chain two devices on the bus. the further away of the two is
"upstream" from the closer (downstream) device.

Throughout this document, there are references to signals going ac¬
tive. Active is defined in the glossary for this section.

The address lines, function codes. UDS*. LDS*. R/W, and AS* are all
buffered in the same manner by 74F245s. Their buffer direction is
determined by DMAOUT. They are enabled by ADDR—OE* (address
output enable bar).

This section explains the PAL equation for DMAOUT found in the
STEERING PAL equations. (Table 3-2, later in this section).

DMAOUT active means that the current bus master is upstream of
the buffers. Since the buffers are at the extreme downstream end of
this backplane, the master is either on this backplane or upstream
from this backplane. Thus when DMAOUT is high, the drivers drive

the address and control lines downstream (toward the Amiga).

The PAL equation for DMAOUT is very straightforward:

DMAOUT = DMAIN + OWN

29

Generating ADDR.OE*

The Data Buffers

Generating DBOE*

DM AIN is active when the bus master is upstream from this back¬

plane. So when DMA1N is active. DMAOUT must go active.

OWN* is the wire OR’ed signal which means that this backplane has
the current bus master. Thus, because all PICs on this backplane are
upstream from the address (and data) buffers. DMAOUT must be
active when OWN (or OWN*) is active.

This section explains the PAL equation for ADDFLOE*. Refer to the
STEERING PAL equation to see the equation (AOE).

ADDR_OE* is active (enabling the address drivers) most of the time.
It only disables the drivers when ownership of the bus is changing
(for example, a new master takes control). At these transition times.
ADDRJDE* is inactive so that the tri-state drivers will not fight the
drivers on the next backplane while they are changing direction.

Refer to the equation for AOE in the STEERING PAL equation (Table
3-2). AOE = ADDR.OE* inverted. The inverter is in the output stage

of the PAL.

BGACK is asserted (BGACK* pulled low) by all bus masters (except
the 68000) when they are the current master, so ADDR_OE* is
active when BGACK is active.

The term (BG* * DMAOUT*) is true most of the time that the 68000
owns the bus. However, when the 68000 is about to give up the bus.
BG* will go active and thus (BG* * DMAOUT*) will go inactive. It is
important that the address drivers remain on until the end of the fi¬
nal 68000 bus cycle when the 68000 is giving up the bus. so the
term AS holds AOE active when BG goes active during the bus cycle.

AS does not last quite long enough, so ASQ90 (which is a slightly de¬

layed AS) holds AOE active long enough to finish the cycle.

This section describes when and why the data drivers are turned on
and off. It also describes control of data direction.

Refer to the STEERING PAL equation for DBOE.

Note that all the bus drivers are enabled for every bus cycle unless
BERR* is asserted. This allows for easier use of bus-monitoring tools

such as state analyzers.

30

Generating D_TO_PROC*

Collision Detection

It is fairly difficult to avoid tri-state fights on the data buffers. In or¬
der to get data out to dynamic RAM PICs at an early enough time, we

do not use the data strobes to enable the data drivers, because these
strobes can go active very late in a write cycle.

On a read cycle we use the data strobes, so that in case the cycle
turns out to be a Read-Modify-Write cycle, the drivers will be turned
off (to avoid tri-state fight) while the R/W line is changing state.

Refer to the PAL equation for DBOE in the STEERING PAL appendix.
The term (AS * RD*) turns on the drivers for all write cycles, includ¬
ing the write portion of Read-Modify-Write cycles. Note that since
AS turns off the data drivers, the data hold time is not guaranteed
beyond AS going inactive, so it is poor design practice to try to use
the rising edge of AS*, UDS*, or LDS* to latch data.

The terms (UDS * RD * ASQ) and (LDS * RD * ASQ) turn on the driv¬
ers for all read cycles. The UDS and LDS turn off the drivers in the
middle of a Read-Modify-Write cycle.

The ASQ (ASDELAYED equivalent) keeps the data buffers from turn¬

ing on until after there has been enough time for the collision detect
circuit to assert BERR* low and thus disable the data drivers before
they fight (see collision detection).

The inverse of the D_TO_PROO signal is called D2P in the PAL equa¬
tion.

Each backplane or device that passes the bus or allows more than
one slave device must have a collision detect circuit. This circuit will
usually be implemented in a PAL. This circuit must detect any in¬

stance of two slaves responding to the same bus cycle and assert
BERR* immediately upon detecting such an error.

The collision circuit has an input (see schematic) SLAVEIN* which
is passed from the upstream backplane or device (if any is present).
If no upstream device is present, the pull-up resistor will hold
SLAVEIN* inactive (high). SLAVEIN* tells the circuit whether or not
an upstream PIC is responding to the current bus cycle as a slave.

The circuit also has one input for each slot on this backplane. If any
PIC on this backplane is responding as a slave, the corresponding
SLAVEn* will be active.

31

Generating the PROC
Term

Generating NOTCOLIS

The collision circuit also monitors A23 through A19 and OVR* on the
bus. so that the internal reserved address spaces of the Amiga can be

checked. An access to any of the internal address spaces will make
the Amiga respond as the slave unless OVR* (override) is asserted.

Any two slave responses on the same cycle constitute a collision.

Refer to the COLLISION PAL equation in Table 3-5 for this discus¬

sion.

Before generating the collision detection equation, we must make
the equation that detects whether the Amiga processor board is re¬
sponding to this cycle as a slave. This signal is called PROC internally
to the PAL. While it comes out on pin 18. it is not used external to

the PAL.

The term BAS * /A23 * /A22 * /A21 * /RESET * /OVR will be true
when the processor board memory is responding to the 2 megabyte

space starting at hex 000000.

Similarly, the next term will be true when the processor board is re¬
sponding to the 2 megabyte space that starts at hex A00000.

The next term detects the processor board responding to the 2

megabyte space starting at C00000.

The next term detects the processor board responding to the 1/2

megabyte space starting at E00000.

And the last term detects the proc board responding to the 1/2
megabyte space starting at F80000. This takes care of all the spaces

used by the processor board.

Why the inverted name? We would have preferred to call this signal /
COLLISION but our PAL assembler does not allow a NOT sign in the
name on the left side of the equal sign. NOTCOLIS goes out through
the output inverter and becomes/NOTCOLIS which is logically equiv¬
alent to NOTNOTCOLIS = COLLISION, so NOTCOLIS being true
inside the PAL will make COLLISION false outside the PAL.

Now that PROC will tell us when the responding slave is inside the
Amiga, we are ready to do collision detection.

In our example, we have seven possible slaves to keep track of. They

are the Amiga board (PROC). five PICs on this backplane, and
SLAVEIN* from the upstream backplane or device. If six of the seven

are inactive at all times, we know that no two are active at the same

time.

Because the slave lines go inactive between bus cycles, there should
not be a case of one slave going active before the previous one went

inactive.

32

Bus Arbitration Circuit

RES* and RESB*

CONFIGJN*
CONFICLOUT* Daisy
Chain

By the way, don’t worry about two slaves colliding on the upstream
of the backplane; that backplane has a collision detect circuit of its

own.

Thus, each of the seven product terms indicates that a collision is not
happening at this time. Only one of them needs to be true to know
that a collision is not happening at this time.

The bus arbitration circuit’s main job is to determine which PIC will
receive BG* active (Bus Grant) when the 68000 asserts BG*. The cir¬
cuit we recommend does this based on priority, where the closest
PIC to the 68000 is the highest priority. You could implement some¬
thing fancier as long as only one PIC owns the bus at a time.

PICs are only allowed to assert BR* off the rising edge of 7M. This
allows the bus arbitration circuit to operate synchronously, clocked

by the rising edge of 7M.

The output of the bus arbitration circuit only changes when the
68000 changes the state of BG*. If the 68000 is asserting BG*, the
arbitration circuit passes BG* active to the highest priority active re¬

quester. When the 68000 disasserts BG*. the arbitration disasserts
BG* also. Therefore no PIC has a grant.

Note that there are two reset lines going to every PIC. RES* on pin
53 and RESB* on pin 94. The RESB* line is intended to be the nor¬
mal reset input to the PIC. All normal PICs will use this line as an in¬

put, so it is buffered.

RES* is intended only to be used by those PICs which are designed to
have the capability of resetting the system. Normal PICs will not
drive nor load this line. Note that because RES* is not buffered, it can
reset the Amiga, as well as resetting all PICs (via RESB*).

The CONFIGJN* signal will be passed to CONFIG.OUT* at the appro¬
priate time if there is a PIC plugged in the slot. On this backplane, we
have used 74LS32s to pass C0NFIGJ9UT* to the next slot if there is
no PIC. The pull down resistor allows the CONFIGJN* signal to pass
directly through the gate to CONFIGJN* of the next slot if there is

no PIC installed, thus bypassing the empty slot If a PIC is installed,
the PIC's CONFIG_OUT* driver overrides the pull down resistor.

Another method that would work is to use special pins on the con¬
nector at pins 11 and 12. such that 11 and 12 short to each other
when there is no PIC inserted in the connector. This would eliminate

the need for the 74LS32 gates.

33

Clock Buffers BACKPLANE TIMING
GENERATION

The clock buffers for Cl * C3*. and CDAC were chosen for minimum
propagation delay and minimum skew. Notice that buffered clocks
are passed to the 100 pin edge connectors, but that the unbuffered
clocks are passed to the 86 pin connector that goes on to the next
box in order to minimize propagation delay to the next backplane.

Generating 7M We generate 7M (equivalent to the processor clock) by:

7M = Cl* XNOR C3*

This yields a 7.16Mhz clock which is used to generate ASDELAYED*,
DOE, and ASQ90*. 7M is also passed to the PICs on pin 92 of the

, ;. edge connectors, so they will have a cheap clock for accessing the

bus.

DOE, ASDELAYED*.
ASQ90*

DOE (Data output enable) and ASDELAYED* are the compliment
of each other. ASDELAYED* is used in the steering PAL (ASQ =
ASDELAYED in the PAL equations) to time turning on of the data
drivers during a read cycle. DOE is passed to the PICs on pin 93 of
the edge connectors, to tell the PICs when to turn on data drivers

during a read cycle. , ,. w.

Amiga 7M

Backplane 7M

CDAC

AS.

ASM1D*

ASDELAYED.

DOE

ASQ90*

139ns -^ |

l ~1

r

_n
i- r

Backplane Timing Signals

34

EXAMPLE PIC DESIGN

The PIC at System
Startup

Reading the ID
Locations

This section is a description of the schematic for a small 16 kilobyte
RAM board that we designed as our first test PIC for the expansion
architecture. The schematic for this board is Figure A.2. in Appendix A.
It is valuable as an example because it implements all of the basic fea¬
tures of a slave PIC.

The heart of auto-config is in U1 (address register), U2 (address
comparator), and U3 (ID PAL and control PAL).

When the board comes out of Reset, CON FIG-OUT* is inactive, and
does not pass the config token on to the next PIC. CONFIGJN* may
or may not be active at first. If it is not active, the board will not re¬
spond to any bus cycles. For instance, we can see at U11 that SLAVE*
is disabled when CONFIGJN* is inactive (high), because this does not
allow BOARD-SEL* to go active.

In turn. BOARD-SEL* is an input to U3, the control PAL. Without
BOARD-SEL*. all ten of the PAL outputs are held inactive (see PAL
equations for test ram).

Eventually, during execution of the auto config code, CONFIGJN*
will be asserted to this PIC between bus cycles (AS* inactive). Notice
that the address latch is tri-stated off so that the pull-up and pull¬
down resistors are inputing a pattern of E8 to the address compara¬
tor. When the backplane addresses E8xxxx, this board will now re¬
spond because CONFIGJN* is active but CONFICLOUT* is not yet
active. In other words, CONFIGJN* is enabling board select, and
CON FIG-OUT* has not yet allowed the address latch to move the
board to a different address space.

Notice that whenever BOARD_5EL* goes active, SLAVE* will go ac¬
tive unless SHUT_UP_FOREVER is latched active. SHUT-UP-FOR¬
EVER* is a feedback latch in the PAL. It is only set by the software if
the board cannot be configured into the system (for instance, if the
user has plugged in too many large address space PICs and there is
no room left for this one).

If you analyze the PAL equations for BD15 through BD12, you will
see that their data drivers turn on for all reads ANDed with BOARD-
_SEL active, until CONFIG-OUT* is set active (or some exception hap¬
pens such as reset, bus error, or shutup).

By the way, if you're not used to PALs, it’s normal old Boolean: *
means AND, / is negation. + is OR, IF(term) means "If the term eval¬
uates to TRUE then turn on the tri-state driver".

35

Further analysis of the BD15-BD12 equations will show that almost
all addresses put out ones; however, remember that most of the nib¬

bles are inverted because the spec says they have to be. The inversion
makes it possible to implement the codes in active low PALs; it is just

a cost reduction.

Analysis of the equations shows that the only nibbles (we don't care
about above HEX 80) outputting any zeros are;

00/02 1100 0001
04/06 1111 1001 1
10/12 1111 1110
40/42 0000 0000

To interpret this code, we need to remember that the spec says that
all nibbles get inverted except 00, 02,40, and 42. So our new table

looks like this:

00/02 1100 0001
04/06 0000 0110
10/12 00000001
40/42 0000 0000

And all the other nibbles that were ones are now inverted to zeros.

To illustrate, let’s look at what these codes mean:

Nibble
00/02

Data
1100 0001

001 64 kilobytes, the smallest size that
can be requested.

0 = There are no more PICs on this physical
board. It is possible to put more than
one PIC on a physical board, but in
most cases (including this one), we don’t.

0 = This board does not have any I nit or
diagnostic code.

0 = Don't link into memory free list, since
the processor might try to use it
and it is only 16 kilobytes masquerading to

the system as 64 kilobytes.

11 = Required by the spec.

04/06 0000 0110

10/12 0000 0001

Product number = 6

High byte of manufacturer’s number

36

14/16 0000 0000_= Low byte of manufacturer's number

40/42 0000 0000_= Because this PIC does not generate INTs

When you want to program your own ID PAL, just work back to the
equations. First determine what ID pattern you need by reading
about the nibbles in the spec. Write down a table of ones and zeros.
Invert all of these except nibbles 00. 02,40, and 42. Then, doing one
data line at time, write a product term for each binary zero that you

want to output from the ID PAL.

Passing CONFIG-OUT*

The second latch outputs CONFIG-OUT*. This latch goes active after

AS* goes inactive at the end of the bus cycle in which the new ad¬
dress was written. Notice that CONFIG-OUT* enables the address
latch U1. so it now provides the new address range to the compara¬

tor.

CONFIG-OUT* enables the next PIC in the chain, and remains active
until a system reset or power down occurs.

The equations for CONFIG.OUT* in this implementation make two
feedback latches in the PAL. The first latch PRELCONFIG-OUT* is set
during the bus cycle in which the processor does a write to the ad¬

dress register. In fact, in this design the rising edge of PRELCONFl-
G_0UT latches the final Address value into the address latch.

TABLE 3-1—TIMING SPECIFICATIONS

Timing Requirements for Backplane

TIMING REQUIREMENTS FOR BACKPLANE

Num Characteristic Min Max Unit

1 AS* UDS* LDS* Delay 2 8 ns

■31 Address 23-1 delay. 2 8 ns

7M(S4 RISE) to Data Enable during Read 0
35

ns

7M (S4 RISE) to Data Valid ns

mf Data 15-0 Delay to Output 8 ns

wm SLAVEIN or SLAVE to SLAVEOUT Delay 0 25 ns

37

Timing Requirements for PIC

TIMING REQUIREMENTS TOR PIC AS SLAVE (RD & WR CYCLES)

Num Characteristic Min Max Unit

n AS* low to SLAVE* Low 0 35 ns

BSi AS* high to SLAVE* high 0 50 ns

AS* low to XRDY low (to insert wait) 0 60 ns

Read Data Vaiid to local 7M low (S7) 60 ns

Ef- AS* low to OVR* low 0 50 ns

m AS* high to OVR* high 0 50 ns

TIMING REQUIREMENTS FOR PIC AS MASTER (RD & WR CYCLES)

Num Characteristic Min Max Unit

1 7M high(S2) to AS* low 0 67 ns

2 Address 23-1 Valid to AS* low 30 ns

3 7M high (S4) to Data Valid Wr Cycle 0 ns

Timing to Backplane

TIMING TO BACKPLANE

Num Characteristic Min Max Unit

1 AS* Low to CD AC Low (Setup) 20 1m
2 AS* High to CDAC High (Setup) 20 M

Timing to PIC

TIMING TO PIC (PIC IN SLAVE MODE)

Num Characteristic Min Max Unit

1 Valid Address to AS* Low 10

2 Valid Data from 7M High(S4) on Wr to PIC 35 wM
TIMING TO PIC (PIC IN MASTER MODE] 1

Num Characteristic Min Max Unit

1 Valid Data setup to Local 7M low(S7) 15 ns

38

2000 SYSTEM BUS
LOADING

The following numbers and notations are used for standard load and

drive values:

From A2000 To A2000
Type (1C input load) (IC output drive)

F-Driver TTL FD 20jxA @ 2.7V fd 2.0V (a) -15mA

— 1.6mA @ 0.5V 0.5V @ 64mA

F-Series TTL F 20|xA @ 2.7V f 2.7V @ -1mA

- 0.6mA @ 0.5V 0.5V @ 20mA

LS-Driver TTL LSD 20 p. A @ 2.7V lsd 2.0V @ -15mA
- 0.4mA (5) 0.4V 0.5V @ 24mA

LS-Series TTL LS 20p.A @ 2.7V Is 2.7V (S> -400p.A

- 0.4mA @ 0.4V 0.5V @ 8mA

MOS MOS 10p.A @ 2.4V mos 2.4V @ - 200p,A

— 10p.A @ 0.4V 0.4V @ 3.2mA

Open Collector oc FROM RESISTOR
0.5V @ 8mA

Any lesser input load can be used on a signal in place of a greater
load or equivalent load. Varying the number of load elements while
still meeting the DC loading criteria can be done if necessary, but it is

not a good idea, as it can still exceed the expected capacitive loading

on the signal.

A final type of drive is the open collector (oc). Some PIC outputs
must be open collector, as they are in a wired-or configuration with
the same output from other PICs or motherboard signals.

Most of the system bus signals provide a standard drive to their re¬
spective connectors. If your drivers can meet the input specification,
don't worry about what is actually required. However, even if your
loading doesn't exceed the specified drive capacity of slot signal men¬
tioned above, consult the following chart for specific signals that may
provide less drive than a standard signal of that type. Signals that
match the STANDARD loading are not separately listed.

Named Expansion Coprocessor Video
Signals DIR Slots (each) Slot Slot

STANDARD I 2F IF IF
STANDARD 0 lOf lOf lOf
/DTACK I IF IF

0 lOf lOf

/OVR 0 oc oc
XRDY 0 oc oc
/INT2 0 oc oc
/INT6 0 oc oc
/E1NT1 0 oc
/EINT4 0 oc
/E1NT5 0 oc

39

Named Expansion Coprocessor
Signals DIR Slots (each) Slot

/EINT7 0 oc
/SLAVED 0 2f
/CFGOUTn 0 2f
/COPCFG 0 2f
E Clock 1 IF IF
7MHz Clock 1 IF IF
/BERR 1 IF IF

0 oc oc
/VPA I IF IF

0 oc oc
/VMA 1 IF IF

0 lOf lOf
/RST [IF IF

0 OC OC
/HLT 1 IF IF

0 oc oc
/OWN 0 oc
/BRn 0 2f
/CBR 1 2F

0 2f
/CBG 1 2F

0 2f
/BGACK I IF IF

0 oc oc
/BOSS 0 2f
XCLK 0
/XCLKEN 0

Video
Slot

2f
2f

TABLE 3-2

PAL16L8
STEERING150R17 REV3
11-17-85
AMIGA

/SLVOUT RD /ASQ /ASQ90 COLLI5 /BG /AS /BGACK /DMAIN GND

/OWN /AOE /UDS /BERR /DMAOUT /LDS /DBOE /RES /D2P VCC

DBOE = AS * /RD * /BERR +
UDS * RD * ASQ * /BERR +
LDS* RD* ASQ*/BERR

D2P = /DMAOUT * SLVOUT * RD +
DMAOUT * /SLVOUT * /RD +

DMAOUT* SLVOUT

AOE = BGACK +
/BG * /DMAOUT +

AS + -

ASQ90

DMAOUT = DMAIN + OWN

IF (/RES * COLLIS) BERR = VCC

DATA DRIVERS DURING WRITE CYCLE
TURN ON DRIVERS LATE FOR RD
UDS AND LDS PROTECT RD MOD WR
TO AVOID TRI_STATE FIGHT
DOWNSTREAM READS UPSTREAM SLAVE
UPSTREAM WRITES DOWNSTREAM SLAVE

MASTER AND SLAVE ARE UPSTREAM

;AS KEEPS ADDR WHEN /BG DROPS

;ASQ90 MAINTAINS VALID ADDR ON

; LAST PROC CYCLE

DESCRIPTION

SLVOUT = SLAVEOUT.ASQ = AS DELAYED.ASQ90 = AS CLKD ON LOW EDGE OF 7M.

BG = BUS GRANT,OWN = LOCAL OWN
COLLIS = BUS COLLISION,AOE = ADDR OUTPUT EN.DOE = DATA OE

RES - RESET,D2P = DATA TO PROCESSOR
UDS LDS PROTECT AGAINST RDMODIFYWRITE 3STF1GHT & BERR= /DOE

41

TABLE 3-3

PAL16R6
ARBITRATE REVt
1-6-86
AMIGA

7M /BRIN /RES /BG1N /BR5 /BR4 /BR3 /BR2 /BR1 GND
GROUND /BGOUT /BGOLD /BG5 /BG4 /BG3 /BG2 /BG1 /BR VCC

BG1 - BG1N * /BGOLD * BR1 *
BGIN * BG1

/RES + .-GENERATE BG1
/RES ;HOLD UNTIL/BG

BG2 = BGIN * /BGOLD * BR2 * /BR1 *
BGIN * BG2 *

/RES +
/RES

BG3 = BGIN * /BGOLD * BR3 * /BR1 * /BR£*
BGIN * BG3 *

/RES +
/RES

BG4 = BGIN * /BGOLD * BR4 * /BR1 * /BR2 * /BR3 *

BGIN * BG4 *

/RES +

/RES

BG5 = BGIN * /BGOLD * BR5 * /BR1 * /BR2 ♦ /BR3 * /BR4 * /RES ■+■
BGIN * BG5 ♦ /RES

BGOLD = BGIN

BR = BRIN * /RES +
BR1 */RES +

BR2 * /RES +
BR3 * /RES +
BR4 * /RES +
BR5 * /RES

STORE OLD STATE OF BG

;BR IS RQST TO 68K

BGOUT = BGIN* BGOLD */BG1 * /BG2 * /BG3 * /BG4 * /BG5

DESCRIPTION

BG1 IS HIGHEST PRIORITY

42

TABLE 3-4

PAL20L10
TESTRAM
9-11-85
COMMODORE-AM IGA

/ASQ /ASQQ RD /BDSEL /BERR A6 A5 A4 A3 A2
A1 GND /RES BD12 BD13 BD14 BD15 /PRECON /CONOUT /SHUTUP

/RAMOE /WP /DBOE VCC

DBOE = /RES*BDSEL*/BERR*/SHUTUP*/RD +

/RES*BDSEL*/BERR*SHUTUP* RD+ASQ

WP = /RES*ASQ*ASQQ*BDSEL*CONOUT*/SHUTUP*/RD*/BERR

RAMOE = /RES*ASQ*RD*CONOUT */BERR*BDSEL

SHUTUP = /RES*BDSEL*/RD*ASQ*/C0N0UT*A6*/A5*/A4*A3*A2 +

/RES*SHUTUP

PRECON = /RES*SHUTUP +
/RES*/RD*BDSEL*ASQQ*A6*/A5*/AD*A3*/A2*/A1 +

/RES*PRECON

CONOUT = /RES*ASQ*PRECON +
/RES*CONOUT

IF (/RES*BDSEL*/CONOUT*RD*/BERR*/SHUTUP) /BD15 =

/A6 */A5 */A4 */A3 */A2 * A1 +
A6*/A5*/A4*/A3*/A2

IF (/RES*BDSEL*/CONOUT*RD*/BERR*/SHUTUP) /BD14 =

/A6 */A5 */A4 */A3 * A1 +
A6*/A5*/A4*/A3*/A2

IF (/RES*BDSEL*/CONOUT*RD*/BERR*/SHUTUP) /BD13 =

/A6 */A5 */A4 */A3 */A2 +
/A6*/A5*/A4*/A3*A2*A 1 +
A6*/A5*/A4*/A3*/A2

IF (/RES*BDSEL*/CONOUT*RD*/BERR#/SHUTUP) /BD12 =

/A6 */A5 */.A4 */A3 */A2 */A 1 +
/A6*/A5*A4*/A3*/A2*A1 +

A6*/A5*/A4 */A3*/A2

DESCRIPTION

;WRITES TURN ON
EARLY
ASQ DELAYS THE READ

43

TABLE 3-5

PAL16L8
COLLISION
11-17-85
AMIGA

/BAS /SLV1 /SLV2 /SLV3 /SLV4 /SLV5 /SLVIN A23 A22 GND
A21 /SLVOUT A20 A19 /OVR /RESET PI 7 /PROC /NOTCOUS VCC

SLVOUT = SLV1 + SLV2 + SLV3 + SLV4 + SLV5 + SLVIN

NOTCOUS = /SLV1 * /SLV2 * /SLV3 * /SLV4 * /SLV5 * /SLVIN +
/PROC * /SLV2 * /SLV3 * /SLV4 * /SLV5 * /SLVIN +

/PROC * /SLV1 * /SLV3 * /SLV4 * /SLV5 * /SLVIN +
/PROC * /SLV1 * /SLV2 * /SLV4 * /SLV5 * /SLVIN +

/PROC * /SLV1 * /SLV2 * /SLV3 * /SLV5 * /SLVIN +
/PROC * /SLV1 * /SLV2 * /SLV3 * /SLV4 * /SLVIN +
/PROC * /SLV1 * /SLV2 * /SLV3 * /SLV4 * /SLV5

PROC = BAS * /A23 * /A22 * /A21 * /RESET * /OVR +
BAS * A23 * /A22 * A21 * /RESET * /OVR +

BAS * A23 * A22 * /A21 * /RESET * /OVR +
BAS * A23 * A22 * A21 * /A20 * /A19 * /RESET * /OVR +
BAS * A23 * A22 * A21 * A20 * A19 * /RESET * /OVR

DESCRIPTION

EMPTY

44

INTERFACING TO THE
68K BUS CONNECTOR
ON THE AMIGA 500

This section gives the necessary information for interfacing to the

68000 bus connector on the left side of the Amiga A500 (or the

right side of the A1000).

THE CONNECTOR ON THE AMIGA

The connector is a standard dual row 86 finger (43 on a side) edge
connector, spaced on .1" centers. Here are some part numbers of

connectors that are compatible:

solder tail AM P 2-530841 -1
wire wrap AMP 4-530396-7
card extender AMP 1 -530826-2

See accompanying drawing for physical dimensions of this connec¬

tor on the A500, Figure A-3 in Appendix A.

TIMING

Clocks

For this discussion, see Figure 3.2.

The entire computer board is run synchronously to the 3.57954Mhz
color clock (Cl). This is accomplished by generating a number of
sub-multiple frequencies from our master 28.63636Mhz crystal os¬

cillator. The following are the primary clocks on the board:

Name Description

Cl The 3.579545Mhz Color Clock

C2 Cl shifted 45 degrees later

C3 Cl shifted 90 degrees later

C4 Cl shifted 135 degrees later

7M Cl XORed with C3* (7.15909Mhz)

DAC 7M shifted 90 degrees later

7M is the processor clock for the 68000 microprocessor. Cl -C4 and
DAC are used to clock the custom chips and for determining the tim¬

ing of signals to the memory arrays.

The above frequencies are true for NTSC Amigas. A PAL Amiga will
operate slightly slower, with a main clock of 28.37516Mhz. This is
divided down to get 7M = 7.09379Mhz and Cl =3.546895Mhz. A
special circuit is required to take five fourths of Cl to derive the PAL
colorburst frequency of 4.43361875Mhz.

The following clocks are available at the edge connector:

Name Pin Description

C3* 14 C3 inverted
CDAC 15 DAC equivalent
Cl* 16 Cl inverted

Note that 7M (the processor clock) is not available at the connector;

it can be easily generated by:

C3*XN0RC1* = 7M equivalent

45

If you need a 14.31818Mhz synchronous clock, you can generate it
by:

(7Mequiv) XOR (CDAC) = 14M equivalent

I4M J I_i i_i I_1
“1 S v n c d S 2*1 1

139ns ^

CDAC J_| L_I l

Fig. 3.2 Amiga System Clocks

Bus Timing The 68000 is connected directly to the 86 pin connector, there are
no buffers between the 68000 and the connector. Two control in¬
puts, VPA* and DTACK* are driven by logic on the Amiga and should
not be driven by your circuitry, unless OVR* is used to disable this
logic.

Many boxes are being designed which pass the bus (buffered) out in
daisy chain fashion.

In order to allow your device to be the second in the chain, take into

account an extra level of signal buffers on:

AS*, LIDS*, LDS*. Address, Data. Clocks

Furthermore, if you are designing a DMA device, the Amiga provides
data in response to a Read very late (50ns prior to the fall of S6). If
your DMA device is looking at this data through two or three
74F245’s (7ns each), this data will not be valid at your DMA control¬
ler until approximately 25ns prior to the fall of S6.

46

Slave Bus Timing

CPU bus timing is based on an 8Mhz 68000. with only one excep¬
tion: under normal operation, the bus control PAL asserts DTACK*

for you. DO NOT ASSERT DTACK*; do not attach any outputs to the

DTACK* line.

Details of 68000 timing are available in the Motorola 68000 hard¬
ware manual. If you are designing a bus slave, most bus timing is per

the 68000 spec, except that the CPU will pull DTACK* for you. If you
need to delay our assertion of DTACK*. you must pull XRDY (Pin 18)
no later than 60ns after the assertion of AS*. You should release
XRDY when you are ready to complete the bus cycle.

Also remember that in the expansion architecture, data drivers

should not turn on during a Read cycle until S4.

For those of you who have not designed anything on the 68K bus be¬
fore. this description is intended to make looking at the Motorola
timing diagrams easier. For more details and timing specs see
Motorola hardware manual (fold out timing diagrams in the back

of the book.)

See Figure 3.2 in this section. Motorola labels the states of the pro¬
cessor clock S0-S7. The processor starts driving the address lines
during SI. and asserts AS* (Address Strobe) during 52. If the cycle is
a read, the data strobes (UDS*.LDS*) are asserted during S2 also

(they are delayed until S4 on a write).

The board responds to AS* by asserting DTACK* (unless you delay
DTACK by pulling XRDY low). In order to run a normal 4 clock bus
cycle. DTACK* meets the setup time prior to S5. DTACK* is the ac¬
knowledge to the bus cycle. If DTACK* is not asserted, the 68000
stays in the middle of the bus cycle until DTACK* (or BERR* or
VPA*) is asserted. Once DTACK* is asserted, the processor completes
the read (or write) and ends the cycle by disasserting the strobes

(AS*,UDS*,LDS*) and tri-stating its bus drivers.

If the slave you are designing cannot respond fast enough to success¬
fully complete a 4 dock bus cycle, it must pull XRDY low within 60ns
after the assertion of AS* (and of course the correct address). Our
board then will not assert DTACK* until you release XRDY. You
should drive XRDY with an open collector output; we provide a 1K

pullup resistor on our board.

47

7M = CLK

A23-A1

AS*

XRDY

DTACK*

D15-D0
xxxx XXX

Fig. 3.S Using XRDY to Delay DTACK*

Master Bus Timinq All bus masters must run synchronously to 7M (equivalent), as does
the 68000 in the Amiga.

The necessary information for designing a bus master is in the
68000 hardware manual. A master must meet all of the bus timing
specs of an 8Mhz 68000; for example, valid address must precede

AS* by at least 30ns.

If you are designing a bus master card that wilt plug into a box. re¬
member that the address will have to propagate through the address
drivers built into the box; you should probably allow for the prop de¬
lay of three 74F245's in addition to the required 30ns.

The strobes, such as AS*.UDS*.LDS*. must all function as they would
basically on the 68000 spec. A master must also respond to DTACK*,

HALT*, and BERR* correctly.

BGACK* and OWN*
Timing to Avoid Bus
Contention

The basic timing for bus arbitration conforms very closely to the
68000 and the 68440. When the new master has received BG* and
ail other signals necessar/ to take mastership, it must assert OWN*
before it asserts BGACK*. This gives the address drivers on the bus
time to change direction, if necessary, before BGACK* turns them

on.

At the end of the DMA cycle. BGACK* must be disasserted before

OWN* is disasserted.

BR* should always be asserted off the rising edge of 7M, and should
be valid no later than 60ns after that edge.

49

Section 3.2

Driver documentation

This section discusses how the “binddrivers" program finds your
driver and links it into the system. It also hints on how to write your

code to take advantage of this.

First off. the expansion library goes out and configures the expan¬
sion boards in the system. It puts each board in its own address
space, and links memory boards into the memory free pool. This is
done by the expansion.library's ConfigChain entry point This code is
intended to be run early on in system startup, before any other code

is around.

Later on. after the DOS is running, the binddrivers program should
be run. This program searches the directory “SYS:Expansion” for
workbench icon files, if it finds one with a tooltypes variable “PROD¬

UCT" then it parses the rest of the line (see below) and looks for an

unconfigured board that matches the description.

This method makes user installation of a new driver trivial: the user
only has to copy a workbench icon into the expansion directory on
his sys disk. Everything else is automatic the next time he boots.

In addition, the bootdrivers program may be run repeatedly without
ill effect. Devices will not be configured twice, so binddrivers may be
run after a new driver is installed (so the user does not have to re¬
boot after installing a driver).

OVERVIEW Here is an overview of the process:

search:
for each file that ends in .info, do test ().

test:
1. Call GetDiskObject() on this file. If not a workbench object, re¬

turn.
2. Call FindToolType () to see if there is a PRODUCT definition. If

not. return.
• 3. If the description does not match an unconfigured board, return.

If there are boards, link them all together and record them in a
static area.

4. LoadSeg () the code file. If LoadSeg fails, return.
5. Search the first hunk for a Resident structure. If no structure.

UnLoadSeg () the segment and return.

51

6. InitResident () the loaded code. If an error (NULL) is returned,
UnLoadSeg () the segment

your driver code:
Find the list of boards. Mark them a configured, and record your
driver in them (for system debugging). Return non-zero value if
everything went ok. If something went wrong (or you just want
to be unloaded) then return NULL.

Now for some more detail.

1. GetDiskObject () is a routine in icon.library. It will read in the disk
object, and return a pointer to it. Part of a disk object structure
is a '‘tooltypes" field.

2. The FindToolType () routine (also in the icon.library) searches
the tooltypes database associated with the disk object. If there is
an entry for PRODUCT then it is assumed that this is an info file
for a driver. The PRODUCT field is of the format:

PRODUCT =<idlist>

<idlist> <id> | <idlist>BAR<id>
<id> ::= <manufacturer> | <manufacturer>SLASH<product>
<manufacturer = <a decimal number
<product> ::= <a decimal number
BAR ::= <a vertical bar— j'>
SLASH <a forwards slant char — V’>

Spaces are not legal. Some examples:

PRODUCT = 1000/30 ; matches man 1000, product 30
PRODUCT = 1000 ; matches any man 1000 board
PRODUCT = 1000/20| 1000/21 ; matches man 1000, product 20

or 21

3. Each unconfigured board in the system is searched. An unconfi¬
gured board has the CDELCONFIGME bit set in the ccLFIags byte.
Search all these unconfigured boards to find the ones that match
any of the product codes. Link all these boards together using the
ccLNextCD field of the ConFigDev structure. Record the head of
this list, along with the product field and the name of the file that
was loaded in a CurrentBinding structure. This structure may be
retrieved via the GetCurrentBinding () call.

4. Attempt to load in the driver. The driver may be a devices, library,
task, process, or anything else that you may want. The only re¬
quirement is that it have a Resident structure in its first hunk. (By
the way, this means that you can not directly use startup.obj).

52

This is why we refer to loading a “driver” rather than a "device”
— you can write any sort of code you want to handle your device.

5. Binddriver will search the first hunk for a Resident structure. If it
cannot find one. it will assume some awful mistake has been

made, and will unload the segment

6. Finally we get to running some of YOUR code. InitResident () is
used to start you off and running. The return value from InitResi¬
dent (and therefore the return value from your init entry point)
will be checked on exit. If it is zero then the segment will be un¬
loaded. This can be useful if you only need to do a bit of initializa¬
tion and then can go away, such as allocate additional expansion
memory for a non-expansion architecture board.

HINTS FOR WRITING
YOUR DRIVER CODE:

Your driver will be launched via InitResident () as discussed
above. If you use the underdocumented, but very useful RTF_AU-
TOINIT option you will have a library node constructed for you.

and then have the code you specified enter. If you don't use

RTF_AUTOINIT. then your code will be entered directly.

You should (among everything else you might be doing) open the
expansion.library and ask for the current buildings (GetCurrent-
BindingQ). In this structure will be the head of a singly linked list
of ConfigDev structures. The structures are linked via the cd
NextCD field. You should deal with each member of the list —

they are for you!

There are two actions you must take. One is to unset the CDB
CONFIGME bit in the cd_Flags. If you do not do this then the
board is still available for other drivers (of course, you may actu¬
ally want this ...). If you do unset the CONFIGME bit, please also
record your “node” in the ccLDriver structure. It is assumed that

this is in an exec node, whose LN_NAME field points your name,
and LN.TYPE field is your type of “thing” — library, resource, de¬
vice, task. etc. I know that this will not always apply to you. but
try it anyway. It will help the rest of us debug the system when

something goes wrong.

You have now done everything you wanted to. Your init routine is
about to return. If you return a zero, then your code will be un¬

loaded. If you return non-zero, then you will stay around.

53

Section 3.3

Software for Amiga Expansion

This section contains listings and information on the following

expansion software commands:

expansion.library/AddDosNode
expansion.library/MakeDosNode
System/Libraries/Expansion/AddConfigDev
System/Libraries/Expansion/AllocBoardMem
System/Libraries/Expansion/AllocConfigDev

Syste m/Li braries/ Expa nsi o n/AI 1 oc Expa ns i o n M em
System/Libraries/Expansion/ConfigBoard
System/Libraries/Expansion/ConfigChain
System/Libraries/Expansion/FindConfigDev
System/Libraries/Expansion/FreeBoardMem
Syste m/Libraries/Expansion/FreeConfigDev
System/Libraries/Expansion/FreeExpansionMem

System/Libraries/Expansion/GetCurrentBinding
System/Libraries/Expansion/ObtainConfigBinding
System/Libraries/Expansion/ReadExpansionByte
System/Libraries/Expansion/ReadExpansionRom
Syste m/Libraries/Expansion/ReleaseConfigBinding
System/Libraries/Expansion/RemConfigDev
System/Libraries/Expansion/SetCurrentBinding
System/Libraries/ExpansionA/VriteExpansionByte

EXPANSION.LIBRARY/ NAME

ADDDOSNODE
AddDosNode — mount a disk to the system

— SYNOPSIS

ok = AddDosNode(bootPri. flags. deviceNode)

.—
DO DO D1 AO

FUNCTION

— This routine makes sure that your disk device (or a device that wants
to be treated as if it was a disk...) will be entered into the system. If
the dos is already up and running, then it will be entered immediate¬

— ly. If the dos has not yet been run then the data will be recorded, and

the dos will get it later.

55

We hope to eventually try and boot off a disk device. We will try and
boot off of each device in turn, based on priority, if there is no boot

floppy in the floppy disk drive. As of this writing that facility does not

yet exist.

There is only one additional piece of magic done by AddDosNode. If
there is no executable code specified in the deviceNode structure
(e.g. dn_SegList, dn_Handler, and dn_Task are all null) then the stan¬
dard dos file handler is used for your device.

Documentation note: a '’task” as used here is a dos-task, not an exec-
task. A dos-task, in the strictest sense, is the "address of an exec-
style message port. In general, it is a pointer to a process's
pr.MsgPort field (e.g. a constant number of bytes after an exec

port).

INPUTS

bootPri — a BYTE quantity with the boot priority for this disk.
This priority is only for which disks should be looked at: the actual
disk booted from will be the first disk with a valid boot block. If
no disk is found then the "bootme" hand will come up and the
bootstrap code will wait for a floppy to be inserted. Recommend
priority assignments are:

+ 5 — unit zero for the floppy disk. The floppy should always
be highest priority to allow the user to abort out of a hard disk
boot.
0 — the run of the mill hard disk
-5 — a "network” disk (local disks should take priority).
-128 — don’t even bother to boot from this device.

flags — additional flag bits for the call:
ADN.TARTPROC (bit 0) — start a handler process imme¬
diately.

Normally the process is started only when the device node is
first referenced. This bit is meaningless if you have already
specified a handler process (non-null dn_Task).

deviceNode — a legal DOS device node, properly initialized.
Typically this will be the result of a MakeDosNode() call, but feel
free to manufacture your own if you need to. If deviceNode is null
then AddDosNode does nothing.

RESULTS

ok - non-zero everything went ok, zero if we ran out of memory or
some other weirdness happened.

EXAMPLES

/* enter a bootable disk into the system. Start a file handler

** process immediately.
*/
AddDosNode(0, ADNF_STARTPROC, MakeDosNode(paramPacket}

):

BUGS

The flexible boot strategy is only that — strategy. It still needs to be

reflected in code somewhere.

SEE ALSO

MakeDosNode

EXPANS10N.LIBRARY/
MAKEDOSNODE

NAME

MakeDosNode — construct dos data structures that a disk needs

SYNOPSIS

deviceNode = MakeDosNode(parameterPkt)
DO AO

FUNCTION

This routine manufactures the data structures needed to enter a dos
disk device into the system. This consists of a DeviceNode. a
FileSysStartupMsg, a disk environment vector, and up to two bcpl
strings. See the libraries/dosextens and iibraries/filehandler include

files for more information.

MakeDosNode will allocate all the memory it needs, and then link the

various structure together. It will make sure all the structures are
long-word aligned (as required by the DOS). It then returns the in¬
formation to the user so he can change anything else that needs
changing. Typically he will then call AddDosNode() to enter the new

device into the dos tables.

INPUTS

parameterPkt - a longword array containing all the information
needed to initialize the data structures. Normally I would have pro¬
vided a structure for this, but the variable length of the packet
caused problems. The two strings are null terminated strings, like all

other exec strings.

57

longword description

string with dos handler name

string with exec device name
unit number (for OpenDevice)
flags (for OpenDevice)
of longwords in rest of environment
file handler environment (see libraries/file-
handler.h)

0
1
2
3
4
5-n

RESULTS

deviceNode — pointer to initialize device node structure, or null if
there was not enough memory.

EXAMPLES

/* set up a 3.5" amiga format floppy drive for unit 1 */

char execName[] = “ trackdisk.device”;
char dosName[] = "dfl”; —

ULONG parmPkt[] = t
(ULONG) dosName,
(ULONG) execName,
1, /* unit number */

0, /* OpenDevice flags */
/* here is the environment block */

11, r table upper bound */

512»2, /* # longwords in a block */

0, /* sector origin — unused */
2. /* number of surfaces */
1. /* secs per logical block— unused */

11, /* secs per track */

2. /* reserved blocks — 2 boot blocks */ '

0. /* ?? — unused */

0. /* interleave */

0. /* lower cylinder */ —
79, /* upper cylinder */
5. /* number of buffers */

j’

struct Device Node *node, *MakeDosNode();
node = MakeDosNode(parmPkt);

BUGS

SEE ALSO

AddDosNode

58

SYSTEM/LIBRARIES/
EXPANSION/
ADDCONFIGDEV

NAME

AddConfigDev — add a new ConfigDev structure to the system

SYNOPSIS

AddConfigDev(configDev)
AO

FUNCTION

This routine adds the specified ConfigDev structure to the list of

Configuration Devices in the system.

INPUTS

configDev — a valid ConfigDev structure.

RESULTS

EXCEPTIONS

SEE ALSO

RemConfigDev

SYSTEM/LIBRARIES/
EXPANSION/
ALLOCBOARDMEM

NAME

AllocBoardMem — allocate standard device expansion memory

SYNOPSIS

startSlot = AllocBoardMem(slotSpec)
DO DO

FUNCTION

This function allocates numslots of expansion space (each slot is
EL.SLOTS1ZE bytes). It returns the slot number of the start of the ex¬
pansion memory. The EC-MEMADDR macro may be used to convert

this to a memory address.

AllocBoardMem() knows about the intracacies of expansion board

hardware and will allocate the proper expansion memory for each

board type.

59

INPUTS

SYSTEM/LIBRARIES/
EXPANSION/
ALLOCCONFIGDEV

slotSpec — the memory size field of the Type byte of an expansion
board

RESULTS

startSlot — the slot number that was allocated, or -1 for error.

EXAMPLES

struct ExpansionRom *er:

slot = AllocBoardMem(er->er_Type & ERT_MEMMASK)

EXCEPTIONS

SEE ALSO

AllocExpansionMem. FreeExpansionMem. FreeBoardMem

BUGS

NAME

AllocConfigDev — allocate a ConfigDev structure

SYNOPSIS

configDev = AllocConfigDev()

DO

FUNCTION

This routine returns the address of a ConfigDev structure. It is pro¬

vided so new fields can be added to the structure without breaking

old. existing code. The structure is cleared when it is returned to the
user.

INPUTS

RESULTS

configDev — either a valid ConfigDev structure or NULL.

EXCEPTIONS

60

SEE ALSO

SYSTEM/LIBRARIES/
EXPANSION/
ALLOCEXPANSIONMEM

FreeConfigDev

BUGS

NAME

AllocExpansionMem — allocate expansion memory

SYNOPSIS

startSlot = AllocExpansionMem(numSIots. slotOffset)
DO DO D1

FUNCTION

This function allocates nurnslots of expansion space (each slot is
fLSLOTSIZE bytes). It returns the slot number of the start of the
expansion memory. The EC_EMADDR macro may be used to convert
this to a memory address.

Boards that fit the expansion architecture have alignment rules.
Normally a board must be on a binary boundary of its size. Four
and Eight megabyte boards have special rules. User defined boards
might have other special rules.

The routine AllocBoardMem() knows about all the allocation rules
for standard boards. Most users will want to use that routine if they
want memory for a standard expansion device.

If AI!ocExpansionMem() succeeds, the startSlot will satisfy the
following equation:

(startSlot — slotOffset) MOD slotAlign = 0

INPUTS

numSIots — the number of slots required.
slotOffset — an offset from that boundary for startSlot.

RESULTS

startSlot — the slot number that was allocated, or -1 for error.

61

EXAMPLES

AllocExpansionMem(2,0)

Tries to allocate 2 slots on a two slot boundary.
AllocExpansionMem(64. 32)

This is the allocation rule for 4 meg boards. It allocates 4 megabytes

(64 slots) on an odd 2 meg boundary.

EXCEPTIONS

SEE ALSO

FreeExpansionMem. AllocBoardMem. FreeBoardMem

BUGS

NAME

SYSTEM/LIBRARIES/
EXPANSION/
CONF1GBOARD

ConfigBoard — configure a board

SYNOPSIS

error = ConfigBoard(board. configDev)

DOAO A1

FUNCTION

This routine configures an expansion board. The board will generally
live at E_EXPANS10NBASE, but the base is passed as a parameter to
allow future compatibility. The configDev parameter must be a valid
configDev that has already had ReadExpansionRom() called on it

ConfigBoard will allocate expansion memory and place the board at
its new address. It will update configDev accordingly. If there is not
enough expansion memory for this board then an error will be re¬

turned.

INPUTS

board — the current address that the expansion board is respond¬

ing.
configDev — an initialized ConfigDev structure.

RESULTS

error — non-zero if there was a problem configuring this board

62

EXCEPTIONS

SEE ALSO

FreeConfigDev

BUGS

SYSTEM/LIBRARIES/
EXPANSION/
CONFIGCHAIN

NAME

ConfigChain — configure the whole damn system

SYNOPSIS

error = ConfigChain(baseAddr)
DO AO

FUNCTION

This is the big one! This routine will take a base address (generally
ELEXPANSIONBASE) and configure all the devices that live there.
This routine will call all the other routines that might need to be
called. All boards that are found will be linked into the configuration
list.

INPUTS

baseAddr — the base address to start looking for boards.

RESULTS

error — non-zero if something went wrong.

EXCEPTIONS

SEE ALSO

FreeConfigDev

BUGS

63

SYSTEM/LIBRARIES/
EXPANSION/
FINDCONFIGDEV

NAME

FindConfigDev — find a matching ConfigDev entry

SYNOPSIS

configDev = FindConfigDev(oldConfigDev. manufacturer, product)

DO AO DO D1

FUNCTION

This routine searches the list of existing ConfigDev structures in the

system and looks for one that has the specified manufacturer and
product codes.

If the oldConfigDev is NULL the the search is from the start of the list

of configuration devices. If it is not null then it searches from the

first configuration device entry AFTER oldConfigDev.

A code of -1 is treated as a wildcard — e.g. it matches any manufac¬
turer (or product)

INPUTS

oldConfigDev — a valid ConfigDev structure, or NULL to start from
the start of the list.

manufacturer — the manufacturer code being searched for. or -1 to

ignore manufacturer numbers.

product — the product code being searched for. or -1 to ignore
product numbers.

RESULTS

configDev — the next ConfigDev entry that matches the manufac¬

turer and product codes, or NULL if there are no more matches.

EXCEPTIONS

EXAMPLES

/* to find all configdevs of the proper type */

struct ConfigDev *cd = NULL;

while(cd = FindConfigDev(cd. MANUFACTURER. PRODUCT)) [

/* do something with the returned ConfigDev */

]

SEE ALSO

BUGS

64

SYSTEM/LiBRARIES/
EXPANSION/
FREEBOARDMEM

NAME

FreeBoardMem — allocate standard device expansion memory

SYNOPSIS

FreeBoardMem(startSlot. slotSpec)

DO D1

FUNCTION

This function frees numslots of expansion space (each slot is

EESLOTS1ZE bytes). It is the inverse function of AllocBoardMem(),

INPUTS

startSlot — a slot number in expansion space.

slotSpec — the memory size field of the Type byte of an expansion
board

RESULTS

EXAMPLES

struct ExpansionRom *er;

int startSlot:

int slotSpec;

slotSpec = er->er_Type& ERT.MEMMASK;

startSlot = Alloc Boa rdMem(er->er_Type & ERT.MEMMAK);

if(startSlot != -1) [

FreeBoardMem(startSlot. slotSpec):

]

EXCEPTIONS

If the caller tries to free a slot that is already in the free list.

FreeBoardMem will Alert() (e.g. crash the system).

SEE ALSO

AllocExpansionMem. FreeExpansionMem. AllocBoardMem

BUGS

NAME SYSTEM/LIBRARIES/
EXPANSION/
FREECONFIGDEV FreeConfigDev — allocate a ConfigDev structure

SYNOPSIS

FreeConfigDev(configDev)
AO

FUNCTION

This routine frees a ConfigDev structure as returned by

AllocConfigDev.

INPUTS

configDev — a valid ConfigDev structure.

RESULTS

EXCEPTIONS

SEE ALSO

AllocConfigDev

BUGS

SYSTEM/LIBRARIES/
EXPANSION/
FREEEXPANSIONMEM

NAME

FreeExpansionMem — allocate standard device expansion memory

SYNOPSIS

FreeExpansionMem(startSlot, numSlots)
DO D1

FUNCTION

This function allocates numslots of expansion space (each slot is
E_SLOTSIZE bytes). It is the inverse function of A)locExpansionMem().

INPUTS

startSlot — the slot number that was allocated, or -1 for error.
numSlots — the number of slots to be freed.

RESULTS

66

EXAMPLES

EXCEPTIONS

If the caller tries to free a slot that is already in the free list,
FreeExpansionMem will Alert() (e.g. crash the system).

SEE ALSO

AllocExpansionMem, AllocBoardMem, FreeBoardMem

BUGS

SYSTEM/LIBRARIES/
EXPANSION/
GETCURRENTBINDING

NAME

GetCurrentBinding — sets static board configuration area

SYNOPSIS

actual = GetCurrentBinding (currentBinding. size)
AO DO: 16

FUNCTION

This function writes the contents of the •’currentBinding” structure
out of a private place. It may be set via SetCurrentBinding(). This is
really a kludge, but it is the only way to pass extra arguments to a

newly configured device.

A CurrentBinding structure has the name of the currently loaded file,
the product string that was associated with this driver, and a pointer
to the head of a singly linked list of ConfigDev structures (linked

through the cd-NextCD field).

Many devices may not need this information; they have hard coded
into themselves their manufacture number. It is recommended that
you at least check that you can deal with the product code in the

linked ConfigDev structures.

INPUTS

currentBinding — a pointer to a CurrentBinding structure

size — the size of the user’s binddriver structure. No more than this
much data will be copied. If size is larger than the libraries idea a
CurrentBinding size, then the structure will be null padded.

67

RESULTS

actual — the true size of a CurrentBinding structure is returned

EXAMPLES

EXCEPTIONS

SEE ALSO

GetCurrentBinding

BUGS

SYSTEM/LIBRARIES/ NAME

EXPANSION/
OBTAINCONFIGBINDING ObtainConfigBinding — try to get permission to bind drivers

SYNOPSIS

ObtainConfigBinding()

FUNCTION

ObtainConfigBinding gives permission to bind drivers to ConfigDev

structures. It exists so two drivers at once do not try and own the

same ConfigDev structure. This call will block until it is safe to pro¬
ceed.

Individual drivers do not need to call this routine. It is intended for

BindDriver program, and others like it. If your drivers won't be load¬

ed via the standard method, you may need to lock out others.

It is crucially important that people lock out others before loading

new drivers. Much of the data that is used to configure things is

statically kept, and others need to be kept from using it.

This call is build directly on Exec SignalSemaphore code

(e.g. ObtainSemaphore).

INPUTS

RESULTS

EXCEPTIONS

SEE ALSO

ReleaseConfigBinding

68

BUGS

SYSTEM/LIBRARIES/
EXPANSION/
READEXPANSIONBYTE

NAME

Read Expansion Byte — read a byte nybbie by nybble.

SYNOPSIS

byte = ReadExpansionByte(board, offset)

DO AO DO

FUNCTION

Read Expansion Byte reads a byte from a new-style expansion board.

These boards have their readable data organized as a series of

nybbles in memory. This routine reads two nybbles and returns the

byte value.

In general, this routine will only be called by ReadExpansionRom.

The offset is a byte offset into a ExpansionRom structure. The actual

memory address read will be four times larger. The macros

EROFFSET and ECOFFSET are provided to help get these offsets

from C.

INPUTS

board — a pointer to the base of a new style expansion board, offset

— a logical offset from the board base

RESULTS

byte — a byte of data from the expansion board, or • 1 if there was

an error reading from the board.

EXAMPLES

byte = ReadExpansionByte(cd->BoardAddr. EROFFSET(er_Type)

): ints = ReadExpansionByte(cd->BoardAddr. ECOFFSET

(ecJnterrupt));

EXCEPTIONS

SEE ALSO

WriteExpansionByte. ReadExpansionRom

BUGS

69

SYSTEM/LIBRARIES/
EXPANSION/
READEXPANSIONROM

NAME

ReadExpansionRom — read a board's configuration ROM space

SYNOPSIS

error = ReadExpansionRom(board, configDev)
DO AO A1

FUNCTION

ReadExpansionRom reads a the ROM portion of an expansion device
in to cd_Rom portion of a ConfigDev structure. This routine knows
how to detect whether or not there is actually a board there,

In addition, the Rom portion of a new style expansion board is en¬
coded in ones-complement format (except for the first two nybbles
— the er_Type field). ReadExpansionRom knows about this and un¬
complements the appropriate fields.

INPUTS

board — a pointer to the base of a new style expansion board.
configDev — the ConfigDev structure that will be read in.
offset — a logical offset from the configdev base

RESULTS

error — If the board address does not contain a valid new style ex¬
pansion board, then error will be non-zero.

EXAMPLES

configDev = AllocConfigDev();
if(! configDev) panic();

error = ReadExpansionBoard(board. configDev);
if(! error) [

configDev->cd_BoardAddr = board;
ConfigBoard(configDev);

]

EXCEPTIONS

SEE ALSO

ReadExpansionByte, WriteExpansionByte

BUGS

70

SYSTEM/LIBRARIES/
EXPANSION/RELEASE
CONFIGBINDING

NAME

ReleaseConfigBinding — allow others to bind to drivers

SYNOPSIS

ReleaseConfigBinding()

FUNCTION

This call should be used when you are done binding drivers to
ConfigDev entries. It releases the SignalSemaphore; this allows
others to bind their drivers to ConfigDev structures.

INPUTS

RESULTS

EXAMPLES

EXCEPTIONS

SEE ALSO

ObtainConfigBinding

BUGS

SYSTEM/LIBRARIES/
EXPANSION/
REMCONFIGDEV

NAME

RemConfigDev — remove a ConfigDev structure from the system

SYNOPSIS

RemConfigDev(ConfigDev)
AO

FUNCTION

This routine removes the specified ConfigDev structure from the list
of Configuration Devices in the system.

INPUTS

ConfigDev — a valid ConfigDev structure.

RESULTS

71

EXCEPTIONS

SEE ALSO

AddConfigDev

BUGS

SYSTEM/LIBRARIES/ name

EXPANSION/
SETCURRENTBINDING SetCurrentBinding — sets static board configuration area

SYNOPSIS

SetCurrentBinding(currentBmding. size)

AO DO: 16

FUNCTION

This function records the contents of the "currentBinding'' structure
in a private place. It may be read via GetCurrentBinding(). This is
really a kludge, but it is the only way to pass extra arguments to a
newly configured device.

A CurrentBinding structure has the name of the currently loaded file,
the product string that was associated with this driver, and a pointer
to the head of a singly linked list of ConfigDev structures (linked
through the ccLNextCD field).

Many devices may not need this information; they have hard coded
into themselves their manufacture number. It is recommended that
you at least check that you can deal with the product code in the
linked ConfigDev structures.

INPUTS

currentBinding — a pointer to a CurrentBinding structure

size — the size of the user's binddnver structure. No more than this
much data will be copied. If size is larger than the library's ideal
CurrentBinding size, then the structure will be null padded.

RESULTS

EXAMPLES

EXCEPTIONS

72

SYSTEM/LIBRARIES/
EXPANSION/
WRITEEXPANSIONBYTE

SEE ALSO

GetCurrentBinding

BUGS

NAME

Write Expansion Byte — write a byte nybble by nybble.

SYNOPSIS

error = WriteExpansionByte(board, offset, byte)
DO AO DO D1

FUNCTION

WriteExpansionByte write a byte to a new-style expansion board.
These boards have their writeable data organized as a series of nyb¬
bles in memory. This routine writes two nybbles in a very carefull
manner to work with all types of new expansion boards.

To make certain types of board less expensive, an expansion board's
write registers may be organized as either a byte-wide or nybble-
wide register. If it is nybble-wide then it must latch the less signifi¬
cant nybble until the more significant nybble is written. This allows
the following algorithm to work with either type of board:

write the low order nybble to bits D15-D12 of byte (offset*4) + 2

write the entire byte to bits D15-D8 of byte (offset*4)

The offset is a byte offset into a ExpansionRom structure. The actual
memory address read will be four times larger. The macros EROFF-
SET and ECOFFSET are provided to help get these offsets from C.

INPUTS

board — a pointer to the base of a new style expansion board.
offset — a logical offset from the configdev base
byte — the byte of data to be written to the expansion board.

RESULTS

error — the routine will return a zero on success, non-zero if there
was a problem.

73

EXAMPLES

err = WriteExpansionByte(cd->BoardAddr, ECOFFSET
(ec_Shutup), 0);
err = Write Expansion Byte (cd->BoardAddr, ECOFFSET
(ecJnterrupt). 1);

EXCEPTIONS

SEE ALSO

ReadExpansionByte, ReadExpansionRom

BUGS

Section 3.4

100 Pin Expansion Signals on Amiga Computers

INTRODUCTION This section details the signals found on the 100 pin standard Amiga
expansion connector. The main point of this document is to discuss
the signals found on the B2000 computer and how these differ from

the similar signals found on A2000 computers and those of the
original Zorro specification and A1000 computers. Anytime some¬
thing is specified for the A2000. it is also true for the B2000 unless

otherwise stated.

Changes from Previous
Documents

We've attempted to keep the Expansion Bus pin specification as
much the same as possible from machine to machine. However, es¬
pecially concerning the changes from the original specification to the
A2000 specifications, there were indeed some major changes made.
Although these changes will affect relatively few boards, they're non¬
trivial for the boards that they do affect. In this case, we basically
chose to sacrifice a small fraction of our compatibility for a reason¬

ably large increase in the power of the Expansion Bus. If possible,
add-on boards should be designed for the Expansion Bus. While the
86 pin slot is similar to the A1000 86 pin edge connector, it is in¬
tended for add-on processors, such as 68020 boards. Hard disk,
memory, peripheral boards, etc. should workjust fine in 100 pin ex¬
pansion slots; the differences should only affect some coprocessor/
turbo boards. Also note that the autoconfiguration should be done in

the 100 pin slots.

Most of the Expansion Bus signals are buffered (the ZORRO detail
will of course depend on the design; the characteristics assumed here
will be present if the Commodore-Amiga design specifications are
followed). This is an important point to keep in mind, for buffered
signals should be specifically considered in any timing analysis, while
unbuffered signals should be considered specifically in any loading
analysis. Buffered signals are typically either inputs or some synchro¬
nous bidirectionals; outputs and asynchronous bidirectionals can't

easily be buffered.

Definition Of Terms Several terms are used in the following text, and an understanding of
them is required to speak proper Amiga-ese. A PIC, or Plug In Card,
is a device that plugs into an expansion slot and follows the auto-con¬
figuration protocol. Nothing should plug into a 100 pin slot that
doesn't follow this protocol. The term slot refers to a physical plug¬
in location, either the Coprocessor Slot or one of the five available
Expansion Slots. The terms 100 Pin Slot and Expansion Slot are con¬

sidered synonyms, and describe one of the five 100 pin Expansion
Slots. The Expansion Bus is the processor bus that is in common be-

75

POWER CONNECTIONS

Digital Ground (Ground)

Main Supply (+ 5V)

Negative Supply (-SV)

tween all Expansion Slots. The terms 86 Pin Slot Coprocessor Slot,
and Local Slot are considered synonyms, and pertain to the 86 pin '
Coprocessor Slot in the A2000 and B2000. The terms 86 Pin Edge
and Expansion Edge are considered synonyms, and pertain to the 86
pin Expansion Edge in the A1000 and A500. The Local Bus is the
processor bus directly connected to the 68000 processor and the
Coprocessor Slot or Expansion Edge; both the Coprocessor Slot and
Expansion Edge are considered Local Bus Ports. Each different im¬
plementation of a hardware design is termed an Instance of that de¬
sign; thus, the A2000's Expansion Bus. the B2000's Expansion Bus.
and all third party ZORRO backplanes for the A1000 or A500 are in¬
stances of the Expansion Bus.

Along with an understanding of Amiga bus terms, a familiarity with
Motorola s 68000 processor and its characteristic names and related
terms will also be very useful in understanding this section.

The Expansion Bus provides several different voltages designed to
supply expansion devices. The A2000 power supply is a "switching”
power supply, currently rated at 200 watts, which supplies the main
board and all other expansion ports, as well as the Expansion Bus.

Digital supply ground used by all expansion cards as the return path
for all expansion supplies. This is found on all instances of the Expan¬
sion Bus. See the Table at the end of this section for pin assignments.

Main power supply for all expansion cards, and is capable of sourcing
large currents; each Expansion Slot can draw up to 2.0 Amps of + 5.
and a single Slot can draw as much as 4 Amps if necessary, for de-
vices such as 8 megabyte RAM cards. The maximum supply current
for the entire A2000 system is 20 Amps on the + 5 supply. All ports
open to the outside of the box have their own. separate + 5V supply
that’s short protected, thus no loads external to the A2000 box need
be considered. This supply is found on all instances of the Expansion
Bus. though the available currents may vary. Pins: 5. 6.

Negative version of the main supply, for small current loads only;
there's a total of 0.3 Amp for the entire A2000 system. Found on all
instances of the Expansion Bus. though the available currents may
vary. Pin: 8.

76

High Voltage Supply
(+ 12V)

Negative High Supply
(- 12V)

CLOCK SIGNALS

/Cl Clock

/C3 Clock

CDAC Clock

E Clock

Higher voltage supply, useful for communications cards and other
devices requiring greater than digital voltage levels. This is intended
for small loading only; there's a total of 8 Amps for the entire A2000
system, much of which is normally devoted to floppy and hard disk
drive motors. Found on all instances of the Expansion Bus. though
the available currents may vary. Pin; 10.

Negative version of the high voltage supply, also commonly used in
communications applications, and similarly intended for small loads
only; there is a total of 03 Amp for the entire A2000 system. This
pin is an extension of the original Zorro specification, and is found in

all A2000 machines. Pin; 20.

The Expansion Bus provides clock signals for expansion boards. They
are generally used to allow clocked logic to be used in designs instead
of delay lines. See p. 39 for bus loading specs.

This is a 3.58 MHz clock synched to the falling edge of the 7.16 MHz
system clock. Also known as /CCK in some places. Pin 16.

This is a 3.58 MHz clock synched to the rising edge of the 7.16 MHz
system clock. Also known as /CCKQ in some places. Pin 14.

This is a 7.16 MHz clock that leads the 7.16 MHz system clock by

70ns (90 degrees). Pin 15.

This is the 68000 generated “E” clock, used for 6800 family peri¬
pherals driven by "E” and 6502 peripherals driven by PH 12. This
clock is six 7.16 MHz clocks high, four clocks low. as per the 68000

spec. Pin 50.

77

7MHZ Clock

ADDRESSING AND
CONTROL SIGNALS

Read Enable (READ)

Address Bus (A1-A23)

Address Strobe (/AS)

Data Bus (D0-D15)

This is the 7.16 MHz system clock. On A2000/B2000 design has
true 7MHz which is actually in common with the 68000's 7MHz in¬
put. On the original ZORRO bus specification this was the EQU7MHZ
signal, a 7M equivalent made using the relationship EQU7MHz =
/Cl XNOR /C3. Because of this, there may be some timing differ¬
ences in this signal among different vendors of ZORRO expansion
boards and between these ZORRO boards and the A2000/B2000
system. It is possible to create an EQU7MHz clock on a ZORRO
board that is nearly identical to the internal version, as on an A2000
the signal is created using exactly this aforementioned relationship.
Pin 92.

These signals are various items used for the addressing of devices on
the bus by the 68000 and any DMA devices. Most of these signals
are buffered versions of similar 68000 signals, and are bidirectional¬
ly buffered to allow any DMA device on the bus to drive the 68000
local bus when such a device is a bus master.

Read enable for the bus. which is a buffered version of the 68000’s
R/W output. Read asserted indicates a read or internal cycle, read ne¬
gated indicates a write cycle. Pin 68.

This is a buffered version of the 68000's address bus. providing 16
megabytes of address space, though only 8 megabytes of this ad¬
dress space is available to expansion bus devices. Expansion boards
should only respond to address ranges assigned them during con¬
figuration; otherwise, addressing conflicts between multiple boards
will arise. See Appendix for pin list.

The falling edge of this strobe indicates that addresses are valid, the
rising edge signals the end of an Expansion Bus memory cycle. This is
a buffered version of the 68000 /AS signal. Found on pin 74.

This is a buffered version of the 68000’s data bus. providing 16 bits
of data accessible by word or either byte. Note that the data bus is
enabled by /AS asserted, so the data bus is not expected to have any
significant hold time beyond /AS negated, so during write cycles in
most design applications /AS should not be used to latch data. During
read cycles, the enabling of the data bus is delayed to give the colli¬
sion detection circuitry time to detect any collisions before data is en¬
abled, thus avoiding any fights among the data drivers of multiple
PICs. See Appendix for pin list.

78

Data Strobes (/LDS,
AJDS)

These are buffered versions of the 68000's upper and lower data
strobes. The strobes fall on data valid during transfer; the lower
strobe being used for the lower byte (even byte address), the upper
strobe being used for the upper byte (odd byte address). These are
considered by the data bus buffers during read cycles, in case the cy¬
cle actually turns out to be a read-modify-write cycle. They're ig¬
nored during write cycles, since they can become valid quite late in
the cycle, and a late enable would require unnecessarily fast data
handling in certain PIC applications. Pins: 70,72.

Valid Memory Address
(/VMA)

Unbuffered output from the 68000 indicating a valid address for
6800 style peripheral devices, in response to a A/PA input. Pin 51.

Valid Peripheral Address
(/VPA)

Unbuffered input to the 68000 indicating the address has selected a
6800 or 6502 style peripheral, so the 6800 style peripheral access
should take place. Pin 48.

Data Transfer This signal is logically associated with the 68000's Data Transfer Ac-
Arknnwlorinp f/nTAfKl knowledge input. Normally in the Amiga system, Amiga system logic
auuiuwieuye yiu creates /DTACK for a simple, no-wait state cycle (this may be varied

by the custom chips). Therefore, this signal is treated as an output to
the Expansion and Coprocessor Slots, for most situations. Any slow
device on the bus that needs to control /DTACK may do so by negat¬
ing XRDY to hold off/DTACK or asserting /OVR very quickly to tri¬
state /DTACK. Note that depending upon when /AS is asserted by a
bus master when accessing the CHIP memory, one of two possible
cycles may result. If /AS is asserted during Cl low, C3 low, the bus
cycle is considered "in-sync,” and will proceed, with /DTACK driven
as for a normal, 4 tick clock cycle. If, instead, /AS is asserted during
Cl high. C3 high, the bus cycle is considered "out of sync” and the
internally generated /DTACK will be held off, causing a wait state
that's designed to "sync-up” the DMA cycle with the custom chip's
memory cycle. This signal is on pin 66.

Processor Status
(FC0-FC2)

These signals are the buffered versions of the 68000 Processor Sta¬
tus outputs, which can be used by bus devices to determine the inter¬
nal state of the 68000 any time /AS is asserted. Pins 31,33,35.

79

Bus Error (/BERR)

System Reset (/RST,
/BUSRST)

System Halt (/HLT)

System Interrupts

This is an input that goes directly to the 68000. It is used to indicate
the occurrence of some kind of bus error. Any expansion card capa¬
ble of detecting a bus error relating directly to that card can assert
/BERR when that bus error condition is detected. At other times, the
card must monitor /BERR and be prepared to tri-state all of its on-
bus output buffers whenever this signal is asserted. Since any num¬
ber of devices may assert /BERR. and all bus cards must monitor it.
any device that drives /BERR must drive with an open collector or
similar device capable of sinking at least 12ma, and any device that
monitors /BERR should place as little load on it as possible (1 T”
type load or less, per board, is suggested). This signal is connected to
a low valued on-board pullup resistor, and shouldn't need any more
pulling up. Pin 46.

Pin 53 of the bus contains the /RST signal, pin 94 contains the
/BUSRST signal. Both of these reflect system reset, however, the
/RST signal is bidirectional, unbuffered, and in common with the
original 68000 reset signal. It should only be used on boards that are
capable of resetting the system. The /BUSRST signal is a buffered
output-only version of the reset signal that should be used as the
normal reset input to boards not concerned with resetting the sys¬
tem on their own. The /RST signal is connected to a medium valued
on-board pullup resistor and shouldn't need any more pulling up.

This is the 68000s processor halt signal, bed directly to the 68000.
It is connected to a medium valued on-board pullup resistor and
shouldn't need any more pulling up. This signal, when driven by a
PIC. will halt and tri-state the 68000 at the end of the current bus
cycle. If driven by the 68000, it indicates detection of a double bus
fault. Pin 55.

Six of the 68000 interrupts are available on the Expansion Bus. and
these are labelled as /INT2, /INT6. /E1NT1. /EINT4, /EINT5, /EINT7.
The interrupt structure of the original ZORRO specification has been
slightly changed for the A2000/B2000. This change affects the avail¬
ability of decoded interrupt inputs and multiplexed interrupt inputs.
Specifically, the 68000 accepts 7 levels of interrupt that are present¬
ed to it as 8 possible values priority encoded into 3 mulbplexed in¬
puts. The original ZORRO specificabon called for decoded interrupt
inputs on pin 19 for interrupt level 2 (/INT2). and on pin 22 for in¬
terrupt level 6 (/INT6). These are the same interrupts used by the
Amiga internal system chips and encoded by the Paula chip. The in¬
terrupts could be used by external devices by wired ORing interrupt
requests into one of these available interrupts. The original ZORRO

Override (/OVR)

External Ready (XRDY)

bus also provides the encoded interrupt lines /IPLO. /IPL1, and /IPL2
on bus pins 40. 42. and 44 respectively. These are useless as inputs,
but as outputs are required by any Coprocessor or alternate proces¬
sor that needs to monitor system interrupts. In the A2000/B2000
scheme, coprocessors sit in the Coprocessor Slot which allows them
full control of the system. The encoded interrupt lines have been re¬
placed with decoded interrupt lines that may be freely used as inputs;
interrupt levels 7 (/EINT7), 5 (/EINT5), and 4 (/EINT4) are available
now on bus pins 40.42. and 44 respectively, and the level 1 inter¬
rupt (/EINT1) is available on bus pin 96 (which is left open in the
ZORRO specification). See Appendix for pin list.

The /OVR. or Override, signal is a special Amiga expansion signal that
can serve two purposes. The signal can basically turn off the on¬
board decoding of system memory ranges, including those used by
the Amiga custom chips. As a result of this, it can also turn off inter¬
nally generated things, like /DTACK.

The timing in the A500 and B2000. based on the Gan/ chip (not the
PALs of the older machines) effectively prohibits the use of OVR* for
the area outside of $200000 to $9FFFFF. Due to the buffering de¬
lays of the Expansion Bus. this signal should never be used for over¬

lay on a PIC.

The other use of this signal is better supported. Asserting /OVR will
tri-state the internally generated /DTACK signal, allowing a Co¬
processor or Expansion device to create its own /DTACK. The same
effect can be achieved for most applications by using XRDY to delay
the motherboard's generation of /DTACK. Pin 17.

This input provides a way for an external device to delay the mother¬
board generated /DTACK. for things like slow memory and I/O
boards that need to add wait states. This signal should be negated
very quickly, no later than 60ns from address valid (/AS asserted), in
order for the motherboard circuitry to have enough time to prevent
the normal assertion of /DTACK. XDRY should stay negated for as
many wait states are required. Once XRDY is asserted. /DTACK com¬
pletes the rest of the normal cycle. XRDY is a wired-OR input; it is
pulled up by a resistor on the motherboard, and should be driven
with an open collector or equivalent output. Pin 18.

81

SLOT CONTROL
SIGNALS

Slave (/SLAVEn)

Configuration Chain
(/CFGINn, /CFGOUTn)

Data Output Enable
(DOE)

DMA CONTROL SIGNALS

This group of signals is responsible for the control of things that
happen between Expansion Slots.

Pin 9 is the SLAVEn signal, where "n” refers to the Expansion Slot
number. Each Slot has its own SLAVE output, all of which go into the
collision detect circuitry. Whenever a PIC is responding to a decoded
address range, it must assert its SLAVE output within 35 ns. The
SLAVE output must be negated at the end of a cycle within 50 ns. if a
more than one SLAVE output occurs for the same address, or if a PIC
asserts its SLAVE output for an address reserved by the local bus, a
collision is registered and results in /BERR being asserted.

Pins 11 and 12 are, respectively, the /CFGOUTn and /CFGINn signals,
where “n" refers to the Expansion Slot number. Each Slot has its
own version of each signal, which make up the configuration chain
between Slots. Each subsequent /CFGIN is a result of all previous
/CFGOUTs, going from slot 1 to slot 5 on the Expansion Bus. On the
B2000. the 86 pin coprocessor has CONFIG priority 0, which chains
directly into Expansion Slot 1. This enforces the order of autoconfi¬
guration between slots. During the autoconfiguration process, an un¬
configured PIC responds to the 64K address space starting at
$E80000 if its CFG1N signal is asserted. All unconfigured PICs come
up with CFGOUT negated. When configured, or told to ‘‘shut up”, a
PIC will assert is CFGOUT, which results in the CFG1N of the next slot
to be asserted. On-board logic automatically passes on the state of
the previous CFGOUT to the next CFGIN for any slot not occupied by
a PIC, so there’s no need to sequentially populate the Expansion Bus
Slots.

This signal is used by an expansion card to enable the buffers on the
data bus. The signal's timing changes from read cycle to write cycle.
Pin 93.

There are various signals on the Expansion Bus that coordinate the
arbitration of DMAs that may be requested by devices on the Expan¬
sion Bus.

PIC is DMA Owner
(/OWN)

Asserted by Expansion Bus DMA device when it becomes bus master.
This output is to be treated as a wired-OR output between all Expan¬
sion Slots, any of which may have a PIC signalling bus mastership.
Thus, this should be driven with an open-collector or similar output
by any PIC using it Found on pin 7.

Slot Specific Bus
Arbitration (/BRn, /BGn)

Pins 60 and 64 are. respectively, the /BRn and /BGn signals, where
"n” refers to the Expansion Slot number. Each Slot has its own ver¬
sion of each signal. The Bus Request and Bus Grant from each board
go to some prioritization circuitry, and then to the 68000. Slot 1 has
the highest priority. Slot 5 the lowest out of the Expansion Slots. On
a B2000, the Coprocessor Slot is included in this priority chain when
its not acting as a coprocessor, and it acts as priority level 0. right be¬
fore that of slot 1. Note that along with the request prioritization
logic, the bus requests are clocked by the rising edge of the 7M clock,
and its a very good idea for any PIC requesting the bus to similarly
clock its Bus Request output. This design prohibits any astabte or
race conditions that can occur when two PICs desire to own the bus
asynchronously. Found on pins 60.64, respectively.

Bus Grant Acknowledge
(/BGACK)

This is the unbuffered 68000 /BGACK signal. Any PIC that receives a
bus grant from the 68000 should assert this signal as long as the
DMA continues, releasing it once the DMA request is finished. This
signal should never be asserted until the Bus Grant has been re¬
ceived, AS is negated. DTACK is negated, and BGACK itself is negat¬
ed. indicating that all other potential bus masters have relinquished
the bus. This output is driven as a wired-OR output, so all devices
driving it must drive it with an open collector or equivalent device.
Pin 62.

Processor Bus Grant
(/BG, /GBG)

The A1000 and A2000 systems receive the the /BG (bus grant) sig¬
nal from the 68000 directly, unchanged, in addition to the slot spe¬
cific /BGn signals. This was actually a late change to the original
ZORRO specification, so it may not be on every A1000 ZORRO ex¬
pansion box. This has changed slightly on the B2000 system as part
of the coprocessor interface. The B2000’s bus pin 95 is /GBG, Ge¬
neric Bus Grant. When the 68000 is in charge, /GBG is essentially a
buffered /BG. When the coprocessor is in charge, /GBG is a buffered
/CBG. This allows all cards in the expansion bus to function without
concern as to which processor is actually controlling the bus.

RESERVED PINS Pins 96,97, and 98 have been left open for future expansion.

83

100 FIN CONNECTOR
PINOUTS

There are three instances of the Expansion Bus (so far), the original
AlOOO/ZORRO specification, and the A2000 enhancement to this
original spec, and the B2000 (A2000-CR) specification. The ZORRO
specification is treated as a single instance for the purposes of this
chart, even though there are several different ZORRO bus implemen¬
tations from several different hardware manufacturers.

PIN
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

ZORRO
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

A2000 B2000 Buffered? Function
X X N/A Ground
X X N/A Ground
X X N/A Ground
X X N/A Ground
X X N/A + 5VDC
X X N/A + 5VDC
X X N/A /OWN
X X N/A -5VDC
X X N/A /SLAVEn
X X N/A +12VDC
X X N/A /CFGOUTn
X X N/A /CFGINn
X X N/A Ground
X X Yes /C3 Clock
X X Yes CDAC Clock
X X Yes /Cl Clock
X X No /OVR
X X No XRDY
X X No /INT2

N/A No Connect
X X N/A -12VDC
X X Yes A5
X X No /INT6
X X Yes A6
X X Yes A4
X X N/A Ground
X X Yes A3
X X Yes A2
X X Yes A7
X X Yes A1
X X Yes A8
X X Yes FCO
X X Yes A9
X X Yes FC1
X X Yes A10
X X Yes FC2
X X Yes All
X X N/A Ground
X X Yes A12
X X Yes A13

No /IPLO
X X No /EINT7

84

_ PIN ZORRO A2000 B2000 Buffered? Function

41 X X X Yes A14

42 X X Yes /IPL1

X X Yes /E1NT5

43 X X X Yes A15

44 X X No /IPL2

X X No /E1NT4

45 X X X Yes A16

46 X X X No /BEER

47 X X X Yes A17
—n 48 X X X No /VPA

49 X X X N/A Ground

50 X X X No E Clock

51 X X X N/A A/MA

52 X X X Yes A18

53 X X X No /RST

54 X X X Yes A19

55 X X X No /HLT

i 56 X X X Yes A20

57 X X X Yes A22

58 X X X Yes A21

n 59 X X X Yes A23

60 X X X N/A /BRn

61 X X X N/A Ground

r 62 X X X No /BGACK

63 X X X Yes D15

64 X X X N/A /BGn

rr 65 X X X Yes D14

L* 66 X X X No /DTACK

67 X X X Yes D13

68 X X X Yes READ
■F 69 X X X Yes D12

70 X X X Yes /LDS

n 71 X X X Yes Dll

Lb 72 X X X Yes /UDS

73 X X X N/A Ground

r 74 X X X Yes /AS

75 X X X Yes DO

76 X X X Yes DIO

c 77 X X X Yes D1

78 X X X Yes D9

79 X X X Yes D2

80 X X X Yes D8

V 81 X X X Yes D3

82 X X X Yes D7

p 83 X X X Yes D4

84 X X X Yes D6

85 X X X N/A Ground

r 86 X X X Yes D5

87 X X X N/A Ground

88 X X X N/A Ground

p
85

PIN ZORRO A2000 B2000 Buffered? Function
89 X X X N/A Ground

90 X X X N/A Ground

91 X X X N/A Ground

92 X N/A EQU7MHZ
X X No 7MHz

93 X X X N/A DOE
94 X X X Yes /BUSRST

95 X X No /BG
X Yes /GBG

96 N/A No Connect
X X No /E1NT1

97 X X X N/A No Connect

98 X X X N/A No Connect

99 X X X N/A Ground

100 X X X N/A Ground

Coprocessor Expansion and 86 Pin Signals

INTRODUCTION

Changes from Previous
Documents

This section details the signals found on the various types of 86 pin
expansion connectors on different Amiga computers, especially the
signals found on the B2000 computer's 86 pin Coprocessor Slot, and
how these differ from the similar signals found on A2000 computers
and those of the original A1000 computers. This paper also explains
the Coprocessor Slot's autoconfiguration and DMA protocols and
how they fix the problems introduced in the A2000 Coprocessor
Slot

We’ve kept the 86 pin specification on the B2000 as similar to those
available on the A2000, A1000 and A500, wherever possible. How¬
ever, some major changes were absolutely required. With the design
of the A2000, the function of the 86 pin slot had shifted from a gen¬
eral expansion connector to expansion specifically intended for co¬
processors and similar devices. Thus, while the A500’s and A1000 s
86 pin connectors have to support both some kind of coprocessor
expansion and the normal ZORRO expansion, the A2000 machines
can optimize each slot for its purpose if required (or if necessary,
which is more the case).

The 86 pin connector on the A500 and A1000 becomes something
of an advantage, because of the fact that all expansion must be done
externally. When a coprocessor device, something that needs to com¬
pletely replace the 68000 in all forms of bus access and operation
(like a 68020 accelerator card) is added, it can physically sit between
the computer motherboard and the 100 pin expansion box. thus al¬
lowing the device to completely replace the action of the mother¬
board’s processor from the point of view of the expansion box. A
machine with both slots on the motherboard must provide some fa¬
cility to logically insert the 86 pin slot in front of the 100 pin slot for
certain applications.

In the A2000, the Coprocessor Slot signals that control DMA can be
used to insert the coprocessor in the place of the normal 68000 via
the standard 68000 DMA request protocol. This, however, isn't a to¬
tally transparent replacement; the action of the coprocessor taking
control over the local bus from the 68000, in the A2000, can block
other DMA events coming over from the 100 Expansion Bus. For to¬
tal control of the Expansion Bus on the A2000. the 68000 could be
physically removed from the motherboard, but that would result in
the “coprocessor” being a complete “replacement" processor, with
no swapping between the two permissible. The B2000 solves these
problems with a higher-level DMA protocol between the main and
coprocessor devices.

87

COPROCESSOR SLOT
SIGNALS

POWER CONNECTIONS

Digital Ground (Ground)

Main Supply (+ 5V)

Negative Supply (- 5V)

High Voltage Supply
(+ 1ZV)

The Coprocessor Slot signals discussed below apply for most of the
machines, though in some cases the item mentioned exists on only
some of the machines; these are specified. Most of these signals are
directly in common with the 68000. or directly a part of the 68000
local bus. instead of being buffered as on the Expansion Bus. No sig¬
nal on a Coprocessor card should load the Local Bus with more than
one “F" series standard load.

The Coprocessor Slot provides several different voltages designed to
supply Coprocessor devices. The A2000 power supply is currently
rated at 200 Watts, which supplies the main board and all other ex¬
pansion ports, as well as the Coprocessor Slot.

Digital supply ground used by all expansion cards as the return path
for all expansion supplies. This is found on all instances of the Local
Bus ports. See p. 98 for pin assignments.

Main power supply the Coprocessor slot, and can supply up to 2.0
Amps of -f 5VDC on the A2000. The maximum supply current for
the entire A2000 system is 20 Amps for all devices inside the A2000
that use + 5V. including the motherboard. The corresponding pins
on the Expansion Edge of the A1000 can source only 1 Amp and
even less on the A500. Pins; 5. 6.

Negative version of the main supply, for small current loads only;
there's a total of 03 Amp for the entire A2000 system.
This pin is similar to what’s available on the A1000 and A500.
though these other instances will have different currents available
Pin: 8.

Higher voltage supply, useful for communications cards and other
devices requiring greater than digital voltage levels. This is intended
for small loading only; there's a total of 8 Amps for the entire A2000
system, much of which is normally devoted to floppy and hard disk
drive motors. Found on all instances of Local Bus Ports, though the
available currents may vary. Pin: 10..

88

CLOCK SIGNALS

/Cl Clock

/C3 Clock

CDAC Clock

E Clock

7MHz Clock

28MHz Clock

There are various system clocks available at all Local Bus Ports, use¬
ful in designing synchronous Coprocessor systems. Loading on these
clocks should be watched very carefully on all types of Amiga com¬

puters.

This is a 3.58 MHz clock synched to the falling edge of the 7.16 MHz
system clock. Also known as /CCK in some places. Pin 16.

This is a 3.58 MHz clock synched to the rising edge of the 7.16 MHz
system clock. Also known as /CCKQ in some places. Pin 14.

This is a 7.16 MHz clock that leads the 7.16 MHz system clock by
about 70ns (90 degrees). Pin 15.

This is the 68000 generated “E" clock, used for 6800 family peri¬
pherals driven by “E” and 6502 peripherals driven by PH 12. This
clock is six 7.16 MHz clocks high, four clocks low. as per the 68000
spec. This clock is always generated by the 68000. regardless of the
state of the bus and the Coprocessor; this fact should be considered
by the Coprocessor implementor when designing any Coprocessor

/VMA logic. Pin 50.

This is the 7.16 MHz system clock. This is available only on the
B2000 at this pin, and is in common with the 68000’s clock input.
This pin. pin 7, is unused on all other Local Bus Port instances. Many
applications that run on systems without the 7MHz clock create a
7MHz equivalent clock, using the relationship 7MHzEQU = /Cl
XNOR /C3; care must be taken in considering any additional delays
that this equivalent clock causes on systems other that the B2000.

This is the 28.64 MHz fundamental clock used to derive all other
system clocks under normal operation. There's no guaranteed phase
relationship between this clock and the system clocks. When the sys¬
tem is being driven by an external clock source via XCLK and
/XCLKEN. this clock will essentially be completely asynchronous to
the system clocks. It is provided mainly to provide a fast clock for
fast coprocessors. This is pin 9 on the Coprocessor Slot, and is an un¬
used pin on the Expansion Edge of the A500 and A1000.

89

ADDRESSING AND
CONTROL SIGNALS

Read-Write (R/W)

Address Bus (A1-A23)

Address Strobe (/AS)

Data Bus (D0-D15)

These signals are various items used for the addressing of resources
on a coprocessor card by the 68000 and any DMA devices, and for
24 by 16 bit addressing of other system resources by a coprocessor
device (which may easily have more potential). Most of these signals
are directly in common with 68000 signals.

The 68000’s R/W output. When driven high it indicates a read or in¬
ternal cycle, when driven low it indicates a write cycle. When the co¬
processor takes over it drives this line; the 68000's output will tri¬
state. Pin 68.

This directly connects to the 68000’s address bus, providing 16 me¬
gabytes of address space with 23 bits of address for a 16 bit data
bus. The 68000 is capable of driving only this much address space.
Thus, any resources on a coprocessor board must map somewhere
into the 68000 memory space. The best thing to do with any such
memory is allow it to be autoconfigured by the 1.2 OS; this will place
it somewhere in the 8 megabyte space starting at $200000 (the
A2000 doesn't support autoconfiguration from the Coprocessor
Slot, the B2000 does). Any resources intended specifically for the co¬
processor only can be located above the 68000’s 16 megabyte space
if the coprocessor hardware permits that extended addressing. All
board and Expansion bus resources will normally map into the first
16 megabytes of the address space of a coprocessor board. See
p. 98 for pin list

The falling edge of this strobe indicates that addresses are valid, the
rising edge signals the end of the memory cycle. This is in common
with the 68000 /AS signal. The coprocessor drives this signal when it
takes over; the 68000’s will tri-state. Found on pin 74.

This is directly connected to the 68000’s data bus. providing 16 bits
of data accessible by word or either byte. Any coprocessor handling
words larger than 16 bits must either step down to 16 bits on its
own or provide circuitry to convert the 16 bit word size of the main
board and Expansion Bus to the natural size of such a coprocessor,
when accessing main board resources. See p. 98 for pin list.

Data Strobes (/LDS,
/UDS)

Valid Memory Address
(/VMA)

Valid Peripheral Address
(A/PA)

Data Transfer
Acknowledge (/DTACK)

These are the 68000's upper and lower data strobes. The strobes
fall on data valid during transfer; the lower strobe being used for the
lower byte (even byte address), the upper strobe being used for the
upper byte (odd byte address). Like /AS. these must be driven by the
Coprocessor as it assumes control, as the 68000 pins will tri-state.
Pins: 70. 72.

Output from the 68000 indicating a valid address for 6800 style pe¬
ripheral devices, in response to a /VPA input. This output goes tri-
state when the Coprocessor takes over from the 68000, and as such
must be re-created by the coprocessor in response to a VPA signal
from somewhere on the motherboard. Pin 51.

Input to the 68000 indicating the address has selected a 6800 or
6502 style peripheral, so the 6800 style peripheral access should
take place. When the 68000 has given up the bus to the Coproces¬
sor. this input is ignored and must be handled by the Coprocessor
board. Pin 48.

This signal is the 68000’s Data Transfer Acknowledge input, though
it's being driven on the motherboard under most conditions. Nor¬
mally in the Amiga system. Amiga system logic creates /DTACK for a
simple, no-wait state cycle (this may be varied by the custom chips).
Therefore, this signal is treated as an output to the Expansion and
Coprocessor Slots, for most situations. Any slow device on the bus
that needs to control /DTACK may do so by negating XRDY to hold
off /DTACK or asserting /OVR very quickly to tri-state /DTACK. Any
coprocessor must be able to support this action by Expansion boards
as well. Note that depending upon when /AS is asserted by a bus
master when accessing the CHIP memory, one of two possible cycles
may result. If/AS is asserted during Cl low, C3 low. the bus cycle is
considered ‘'in-sync." and will proceed, with /DTACK driven as for a
normal 4 tick clock cycle. If instead. /AS is asserted during Cl high,
C3 high, the bus cycle is considered “out of sync” and the internally
generated /DTACK will be held off. causing a wait state that's de¬
signed to “sync-up" the DMA cycle with the custom chip's memory
cycle. Of course, when a coprocessor is accessing any of its on-board
resources, the designer can implement any reasonable data transfer
scheme that comes to mind. This signal is on pin 66.

91

r

Processor Status
(FC0-FC2)

Bus Error (/BERR)

System Reset (/RST)

System Halt (/HLT)

These signals are the 68000 Processor Status outputs, which can be
used by bus devices to determine the internal state of the 68000 any
time /AS is asserted. When a coprocessor is in charge, it must drive
these pins in a way compatible with how the 68000 does it. The dif¬
ferent 68000 status codes can be found in any 68000 spec sheet
Pins 31.33. 35.

This is an input that goes directly to the 68000. Its used to indicate
the occurrence of some kind of bus error. Any Expansion Card capa¬
ble of detecting a bus error relating directly to that card can assert
/BERR when that bus error condition is detected. At other times, the
card must monitor /BERR and be prepared to tri-state all of its on-
bus output buffers whenever this signal is asserted. The Coprocessor
card won't have to tri-state on /BERR, but it must note it and pro¬
vide some way of handling the occurrence {the 68000 under normal
Amiga OS control merely signals a Guru Error based on the Bus Er¬
ror Exception). Since any number of devices may assert /BERR. and
nearly everything in the system must monitor it. any device that
drives /BERR must drive with an open collector or similar device ca¬
pable of sinking at least 12ma. and any device that monitors /BERR
should place as little load on it as possible (1 "F” type load or less,
per board, is suggested). This signal is connected to a low valued on¬
board pullup resistor, and shouldn’t need any more pulling up. Pin
46.

Pin 53 of the bus contains the /RST signal which is in common with
the original 68000 reset signal. The /RST signal is bidirectional, and
the 68000 tri-states it when the coprocessor takes over. It is only
necessary for the processor to output this signal if it needs to reset
the system under program control. The /RST signal is connected to a
medium valued on-board pullup resistor and shouldn't need any
more pulling up. The coprocessor must monitor this signal and re¬
spond to it appropriately; this may mean a complete reset, but it
doesn't have to. The Coprocessor can also assert this line if a system
reset is desired.

This is the 68000's processor halt signal, tied directly to the 68000.
It is connected to a medium valued on-board pullup resistor and
shouldn't need any more pulling up. This signal, when asserted, will
halt and tri-state the 68000 at the end of the current bus cycle. If
driven by the 68000. it indicates detection of a double bus fault. For
a complete system reset, the 68000 looks for both the /RST and
/FIIT lines to be asserted. The Coprocessor should handle this signal
in a similar fashion. Pin 55.

92

Decoded Interrupts

Encoded Interrupts
(/IPL0-/IPL2)

Override (/QVR)

Two of the 68000 non-encoded interrupt inputs are available at the
Coprocessor slot on pin 19 for interrupt level 2 (/INT2) and on pin
22 for interrupt level 6 (/INT6). These are the same interrupts used
by the Amiga internal system chips and encoded by the Paula chip.
They can be used by a Coprocessor board by driving them to gener¬
ate 68000 interrupts when the 68000 is in charge, though generally
they don't do much when the Coprocessor is in charge.

The Coprocessor Slot provides the encoded interrupt lines /IPLO,
/IPL1, and /IPL2 on bus pins 40, 42, and 44 respectively, which are
the normal encoded interrupt inputs to the 68000. Nothing on the
Coprocessor slot can drive these lines, but they must be monitored
by any Coprocessor or alternate processor that needs to be able to
respond to any system interrupts when acting as the bus master.

The /OVR, or Override, signal is a special Amiga expansion signal that
can serve two purposes. The signal can basically turn off the on¬
board decoding of system memory ranges. As a result of this, it can
also turn off internally generated things, like /DTACK.

The timing in the A500 and B2000, based on the Gary chip (not the
PALs of the older machines) effectively prohibits the use of OVR* for
the area outside of $200000 to $9FFFFF.

The other use of this signal is better supported. Asserting /OVR will
tri-state the internally generated /DTACK signal, allowing a Co¬
processor or Expansion device to create its own /DTACK. The same
effect can be achieved for most applications by using XRDY to delay
the motherboard's generation of/DTACK. Pin 17.

93

External Ready (XRDY)
This input provides a way for an external device to delay the mother¬
board generated /DTACK. for things like slow memory and I/O
boards that need to add wait states. This signal should be negated
verv quickly, no later than 60ns from address valid (/AS asserted), in
order for the motherboard circuitry to have enough time to prevent
the normal assertion of/DTACK. XDRY should stay negated for as
many wait states as required. Once XRDY is asserted /DTACK com
njetes the rest of the normal cycle. XRDY is a wired-OR input; it is
pulled up by a resistor on the motherboard, and should be driven
with an open collector or equivalent output. Pin 18.

Configuration Chain
(/COPCFG)

Pins 11 and 12 are basically the configuration IN and configuration
3UT siqnals Pin 12. the configuration IN input, is grounded on all
versions of the Local Bus Ports, indicating that this Slot is the first in
any configuration chain and may proceed with configuration. On the
A500 A1000 and A2000. the configuration OUT signal, pin 12. is a
no-connect. Because of this, its impossible to normally autoconfigure
any device in the Coprocessor slot of an A2000. On the B2000, pin
11 is a true configuration OUT signal, which becomes the configura¬
tion IN input to the first Expansion Slot. This, the coprocessor slot is
configured first on the B2000. A note of caution here, though. All
normal Expansion Bus devices assert their /SLAVE output ■whenever
they respond to an address. This /SLAVE output allows the collision
detect circuitry to determine if multiple devices are responding to
the same address. When a collision is detected this way, the /BERK
siqnal is asserted, causing all PICs to tri-state, and saving both these
PICs and the Expansion Bus drivers from any potentially destructive
buffer fiqhts. While the Coprocessor slot on the B2000 can be auto¬
matically configured, it cant assert a SLAVE signal for collision de¬
tect Thus, designers must be very careful with any autoconfiguring
resources on a Coprocessor card.

During the autoconfiguration process, first the CoP™essor cart
then all an unconfigured PICs in turn, respond to the 64K address
space starting at $E80000 as their respective CFGIN signals are as¬
serted. All unconfigured PICs come up with CFGOUT negated. When
configured, or told to “shut up”, the Coprocessor Card or any PIC
should assert CFGOUT. which results in the CFGIN of the next slot to
be asserted. On-board logic automatically passes on the state of the
previous CFGOUT to the next CFGIN for any slot not occupied by a
PIC, so there's no need to sequentially populate the Expansion Bus
Slots and no need to have the Coprocessor Card do any autocon i-
guring if real autoconfiguration isn't necessary.

DMA AND
COPROCESSOR SIGNALS

This will be covered in more detail in the next section, but this sec¬
tion covers the basic signals involved in DMAs and the Coprocessor

interface.

94

Bus Request (/BR, /CBR)

Bus Grant (/BG, /CBG)

Bus Grant Acknowledge
(/BGACK)

Coprocessor Grant
Acknowledge (/BOSS)

Ail instances of Local Expansion Ports have a Bus Request to 68000
of some kind. In the A2000, as in the A500 and At 000. this is direct¬
ly connected to the 68000’s /BR input which is considered a wired-
OR input; all devices driving this input must technically drive it with
an open collector or equivalent driver. In actuality, the A500 and
A1000 don't use this at all internally, so a standard driver may be
used if necessary. The A2000's /BR input is shared by the /BR output
of the DMA arbitration logic, so this will be necessary on an A2000
Coprocessor Slot device. The B2000 has in place of the 68000's /BR
line a special bus request all its own, /CBR. In both cases, the signal is
an input to the 68000 used to request mastership of the Local Bus.
The signal is found on pin 60.

All instances of Local Expansion Ports have a Bus Grant of some kind
from the 68000. In the A2000. as in the A500 and A1000, this is di¬
rectly connected to the 68000's /BG output. In the B2000, a Co¬
processor specific Bus Grant signal, /CBG, is in its place. In either
case, the signal is asserted by the 68000 in response to a Bus Re¬
quest. This indicates to the device in the Coprocessor slot that the
68000 will fully relinquish the bus at the end of this cycle. A /BG re¬
ceived on the Coprocessor Slot in an A2000 could be a Grant given in
response to an Expansion Bus DMA request as well as one in re¬
sponse to the Coprocessor Slot DMA request. On the B2000, /CBG
will only be asserted if the Coprocessor Slot is granted the bus. This
signal is found on pin 64.

This is the 68000’s /BGACK, or Bus Grant Acknowledge, signal. Any
device that receives a bus grant from the 68000 should assert this
signal as long as the DMA continues, releasing it once the DMA re¬
quest is finished. This signal should never be asserted until the spe¬
cific Bus Grant has been received, /AS is negated, /DTACK is negated,
and /BGACK itself is negated, indicating that all other potential bus
masters have relinquished the bus. This output is driven as a wired-
OR output, so all devices driving it must drive it with an open collec¬
tor or equivalent device. Pin 62.

This signal exists only on the B2000, on pin 20. That pin is unused
on both the A2000 and the A500. Originally, this pin was called /PA-
LOPE on the A1000, and was part of the planned ROM expansion
method. This is currently obsolete; the method of ROM expansion
was changed to work without the need for such a signal. On the
B2000, the /BOSS signal is driven by a Coprocessor instead of
/BGACK when the Coprocessor wishes the DMA access granted it to
be a true Coprocessor access, not a simple DMA. This is all explained
in the following section on the B2000 coprocessor interface.

95

THE B2000
COPROCESSOR
INTERFACE

The B2000 computer implements an extended version of the
A2000's Coprocessor Slot designed to make the swapping of main
processors under program control much more powerful and trans¬
parent to the rest of the B2000 system. There are things that can be
done from the B2000 Coprocessor slot that can't be done from the
A2000's Coprocessor Slot so this is an important consideration to
anyone designing a Coprocessor device of some kind.

Normal 68000 DMA
Architecture

The 68000 supports hardware signals designed to permit a simple
DMA protocol. This protocol allows multiple devices to take control
of the 68000's data, address, and control buses. When a device of
some kind desires direct access to the 68000's bus. it asserts the /BR
(Bus Request) input of the 68000. Once /BR is asserted, the 68000
will complete whatever operation it’s doing to the point it can cleanly
relinquish its bus. At this point, it will assert its /BG (Bus Grant) out¬
put, telling the device requesting DMA that it's just about ready to
shut down. The requesting device then issues /BGACK (Bus Grant Ac¬
knowledge) as soon as the 68000 is completely off the bus (DTACK
and /AS are negated). When the DMAing device is done with the bus.
it releases /DTACK and /BR. and the 68000 will then release /BG.

Where the 68000 DMA
Protocol Fails

The above protocol, as implemented in the 68000, is sufficient for
many types of DMA operation, especially for simple things in which
there are single DMA devices on the bus. What this doesn't easily ac¬
count for are multiple DMA devices. While the /BR and /BGACK in¬
puts to the 68000 can be wire-ORed to support several devices,
there are still problems with this scheme. Should multiple devices re¬
quest DMA at the same time, the 68000 will see nothing different
than if only one device is requesting DMA. While careful monitoring
of the /BGACK by responding potential bus masters can solve some
of the problems, there are much cleaner approaches to this problem.

One such solution is implemented in the ZORRO and A2000/B2000
Expansion Buses. Each slot on the Expansion Bus has its own private
Bus Request and Bus Grant. Each Bus Request signal is considered by
a priority encoding and latching circuit. The result is that if simulta¬
neous Bus Requests come in from Expansion Slots, only the Slot giv¬
en higher priority will actually get a Bus Grant. Any Bus Requests
that come in while another DMA is in effect are held off until the
68000's/BG line has been negated for at least one tick, this circuitry,
part of the original ZORRO specification, eliminates the problems
that can occur with various DMA devices all competing for the Ex¬
pansion and Local Buses.

96

The B2000 Coprocessor
Solution

The B2000 hardware has implemented a more sophisticated Co¬
processor system that removes these problems. The B2000 Co¬
processor Slot has a signal called /CBR (Coprocessor Bus Request) as
a replacement for /BR. a signal called /CBG (Coprocessor Bus Grant)
as a replacement for /BG. and one additional signal, /BOSS, which is
also known as Coprocessor Grant Acknowledge.

Under the B2000 system, there are essentially two ways a Coproces¬
sor device can receive a Local Bus mastership. Both start in the same
way. To request the bus, the Coprocessor asserts /CBR. Instead of
going directly to the 68000, this signal is prioritized and latched
along with any Expansion Slot /BR signals. The /CBR signal has the
highest DMA priority. Assuming no other DMAs are currently active,
the 68000 issues a Bus Grant via /BG, which will go to the priori-
tizer’ and result in /CBG being asserted. At this point, all other DMA
requests will be locked out; no other /BGs of any kind will be issued.
Following the normal 68000 protocol, at this point, the Coprocessor
will assert /BGACK when the 68000 is off the bus, and will have bus
access as before. And as before, it is holding off any further DMAs
from the Expansion Bus (which may be what was wanted). This type
of DMA access is very similar to what a normal DMA device from the
Expansion Bus would achieve.

There is another way to take over the Bus. This starts in the same
manner as before, with a /CBR resulting in a /CBG. Once the Co¬
processor has received its Bus Grant, however, it does something dif¬
ferent. It asserts the /BOSS signal instead of/BGACK. This has sever¬
al immediate effects. First of all, the 68000 sees /BOSS as the same
thing as /BGACK, so it stays off the bus just as if /BGACK had been
asserted. Next, the data direction of /CBR and /CBG change on the
Coprocessor Bus. The /CBR signal is now an output from the bus
control logic, the prioritized and latched combination of all the /BR
signals from the Expansion Bus. The /CBG signal is now an input go¬
ing into the bus control logic that will be passed on to the Expansion
Bus in response to an Expansion Bus /BR. The bus control logic also
holds /BR to the 68000 in a low state. The data direction of /CBR
and /CBG changes with a change in /BOSS, so the lines that alternate¬
ly drive /CBR and /CBG on a Coprocessor card should be enabled and
disabled with the assertion of /BOSS.

Anyway, what all this means is that, in asserting /BOSS instead of
/BGACK, the Coprocessor has the bus. the 68000 is in tri-state, and
any of the Expansion Slots may initiate a DMA of the Coprocessor at
any time, directly, according to the normal /BR —> /BG —> /BGACK
protocol of the 68000. The Coprocessor can allow the 68000 back
on the bus by negating the /BOSS line. Thus, the Coprocessor can be
a real Coprocessor, functioning as the equivalent of the 68000 for all
things as far as the whole Amiga system is concerned.

'The B2000 system does all of its DMA prioritization via the
“Buster” custom bus controller chip.

97

86 PIN CONNECTOR
PINOUTS

Here are the four instances of the 86 pin Local Bus, the A500 and
A1000 Edge connectors, used for all kinds of expansion on those
machines, and the A2000 and B2000 Coprocessor slots.

PIN A500 A1000 A2000 B2000 Function
1 X X X X Ground

2 X X X X Ground

3 X X X X Ground

4 X X X X Ground

5 X X X X + 5VDC

6 X X X X + 5VDC

7 X X X X No Connect

8 X X X X -5VDC

9 X X No Connect
X X 28MHz Clock

10 X X X X + 12VDC

11 X X X No Connect
X /COPCFG (Configuration Out)

12 X X X X CONFIG IN, Grounded

13 X X X X Ground

14 X X X X /C3 Clock
15 X X X X CDAC Clock

16 X X X X /Cl Clock

17 X X X X /OVR

18 X X X X RDY

19 X X X X /INT2

20 X /PALOPE

X X No Connect
X /BOSS

21 X X X X A5

22 X X X X /1NT6

23 X X X X A6

24 X X X X A4

25 X X X X Ground

26 X X X X A3
27 X X X X A2

28 X X X X A7

29 X X X X A1

30 X X X X A8

31 X X X X FCO
32 X X X X A9

33 X X X X FC1
34 X X X X A10

35 X X X X FC2

36 X X X X All

37 X X X X Ground
38 X X X X A12

98

PIN ASOO AIOOO A2000 B2000 Function
39 X X X X A13
40 X X X X /IPLO

41 X X X X A14
42 X X X X /IPL1
43 X X X X A15
44 X X X X /IPL2
45 X X X X A16
46 X X X X /BEER
47 X X X X A17
48 X X X X /VPA
49 X X X X Ground
50 X X X X E Clock
51 X X X X /VMA
52 X X X X A18
53 X X X X /RST
54 X X X X A19
55 X X X X /HLT
56 X X X X A20
57 X X X X A22

58 X X X X A21
59 X X X X A23
60 X X X

X
/BR
/CBR

61 X X X X Ground
62 X X X X /BGACK
63 X X X X D15
64 X X X

X
/BG
/CBG

65 X X X X D14
66 X X X X /DTACK
67 X X X X D13
68 X X X X R/W
69 X X X X D12
70 X X X X /LDS
71 X X X X Dll
72 X X X X /UDS
73 X X X X Ground
74 X X X X /AS
75 X X X X DO
76 X X X X DIO
77 X X X X D1
78 X X X X D9
79 X X X X D2
80 X X X X D8
81 X X X X D3
82 X X X X D7

99

PIN A500
83 X
84 X

85 X
86 X

A1000 A2000 B2000 Function
X X X D4
XX X D6
XXX Ground
X X X D5

100

The Amiga 2000 Video Slot

INTRODUCTION

ORIGINAL A2000 SLOT

POWER CONNECTIONS

Video Ground

Main Supply (+ 5V)

Negative Supply (- 5V)

This document details the signals found on the internal video slot of
the Amiga 2000 (A2000). and the additional component of this slot
as implemented on the B2000 model. The A2000 video connector is
a 36 pin edge connector, mechanically similar to the slot extension
connector of an IBM PC-AT. The B2000 adds a second 36 pin con¬
nector, directly in front of the first one, that supplies additional au¬
dio/video information. Where possible, a device should use only the
first slot, thus maintaining compatibility with both A2000 and
B2000. Of course, there are quite a few things that can't be accom¬
plished with the A2000 connector alone.

The original A2000 video slot was designed to provide the function¬
ality of the 23 pin external video connector in a form that could in¬

ternally house video boards such as modulators, genlocks, etc.

The Video Slot provides several different voltages designed to supply
Video devices. The A2000 power supply is currently rated at 200
Watts, which supplies the main board and all other expansion ports

as well as the Video Slot

Video supply ground used by all video devices and the internal video
circuitry. Currently on the B2000, the Video and Digital grounds are
common signals, while on the A2000 these are distinct. This is avail¬
able on pins 9. 12, 13, 17, 20, 21,24, 32.

Main digital level power supply for the Video Slot. This can supply
large currents, on the order of 2 Amps or so for the Video Slot. The
maximum supply current for the entire A2000 system is 20 Amps
for all devices inside the A2000 that use + 5V, including the mother¬

board. Pins: 6. 8.

Negative version of the main supply, for small current loads only;
there's a total of 0.3 Amp for the entire A2000 system. Pin: 31.

101

High Voltage Supply
(+ 12V)

CLOCK SIGNALS

/Cl Clock

/C4 Clock

External Clock (XCLK, /
XCLKEN)

VIDEO SIGNALS

Analog Video

Digital Video

Higher voltage supply, intended for small loading only; there’s a total
of 8 Amps for the entire A2000 system, much of which is normally

devoted to floppy and hard disk drive motors. Pin; 10.

These are various clock signals useful for synchronous timing of vid¬
eo peripherals.

For NTSC, this is a 3.58 MHz clock that’s synched to the falling edge
of the 7.16 MHz system clock. Also known as /CCK in some places.
Pin 34. For PAL. these frequencies are 3.55 MHz and 7.09 MHz re¬
spectively.

For NTSC, this is a 3.58 MHz clock that’s synched to the rising edge
of the 7.16 MHz CDAC clock. Pin 19. Again, for PAL, these frequen¬
cies are 3.55 MHz and 7.09 MHz respectively.

The video slot provides for an external system clock, generally used
to cause the entire A2000 system to become synchronized to some¬
thing external. This should be something very close to the 28.64
MHz clock normally used to drive the system; the value used for
XCLK can be a somewhat higher frequency, although anything too
high will cause memory and other system timings to break down.
XCLK will only be engaged as the system clock when /XCLKEN is as¬
serted. XCLK is found on pin 33. /XCLKEN is on pin 16. There is no
fixed phase relationship between XCLK and internal clocks and video
outputs. Video interfaces must synchronize to the output clocks/
video.

The main point of this slot is access to the video signals generated by
the Amiga's custom video chips. Most of these are also found on the
23 pin external video connector.

This is the analog RGB output, which consists of Red. Green, and
Blue signals, each of which generates a 0.7V p-p, 47 Ohm terminated
analog output. Found, respectively, on pins 7.11, and 15.

These signals serve as digital output, suitable for use with an IBM or
Commodore 128 style 4 bit digital color or monochrome monitor
or similar output device. On the B2000. these (in conjunction with

102

Separate Sync (/HSYNC,
N SYNC)

Composite Sync
(/CSYNC, COMP SYNC)

Burst

Pixel Switch (/PIXELSW)

AUDIO SIGNALS

RESERVED FOR
EXPANSION

B2000 EXTENDED
VIDEO SLOT

other signals found on the second video connector) provide access to
the full 12 bits of digital video output produced on the motherboard
by the Denise chip (4 bits each of R, G, and B). Each of these outputs
is 47 Ohm terminated. The pin assignments are Digital Red (R3) on
pin 29, Digital Green (G3) on pin 27, Digital Blue (B3) on pin 25, and
Digital Intensity (BO) on pin 23.

These are the separate, bidirectional, 47 Ohm terminated video
frame synchronization clocks. The horizontal sync, /HSYNC, is on pin
22; the vertical sync. /VSYNC, is on pin 26. As the names imply, these
sync signals are active low.

Two versions of a composite synchronization signal are available. Pin
14, /CSYNC, is an unterminated digital level composite sync; pin 28,
COMP SYNC, is a buffered TTL version of the combined synchroniza¬
tion clocks.

NTSC/PAL colorburst. Pin 18. To obtain the correct PAL colorburst
signal, the video plug-in card must multiply this signal by 1.25 (i.e.,
3.55*1.25 = 4.433 MHz).

Background color indicator (color 0), on a pixel by pixel basis. 47
Ohm terminated, /PIXELSW, pin 30.

Along with access to video signals, audio signals are available at the
Video Slot. The audio signals are the Left and Right audio channels,
on pins 3 and 4 respectively.

The original Video Slot has pins 1,2, 5, 35, and 36 reserved for fu¬
ture expansion.

The B2000 Extended Video Slot was designed to provide nearly ev¬
ery internal video signal available, plus additional audio signals and
some control lines too. This slot allows much more complex and
powerful devices to be placed in the video slot.

103

POWER CONNECTIONS

Digital/Video Ground
(GROUND)

Audio Ground

CLOCK SIGNALS

CDAC Clock

/C3 Clock

Timer Time Base
(TBASE)

VIDEO SIGNALS

Composite Video

The Extended Video Slot provides several different voltages designed

to supply Video devices. The A2000 power supply is currently rated

at 200 Watts, which supplies the mam board and all other expansion

ports as well as the Video Slot.

These pins provide additional grounding for digital or video based

devices. Pins 1.5.9. 12. 22. and 32.

These pins provide grounding in common with the separate on¬

board audio ground. Pins 34, 36.

These are various clock signals useful for synchronous timing of vid¬

eo peripherals.

For NTSC, this is a 7.16 MHz clock that leads the 7.16 MHz system

clock by about 70ns (90 degrees). Pm 15. For a PAL system, this is

7.09 MHz.

For NTSC, this is a 3.58 MHz clock that's synched to the rising edge

of the 7.16 MHz system clock. Also known as /CCKQ in some places.

Pin 17. For a PAL system, this is 3.55 MHz.

This is the real time clock time-base input, either 50Hz or 60Hz. de¬

pending on the country involved and the setting of the Time Base

Jumper. The jumper can select either line frequency or vertical syn¬

chronization as the clock's time base. Pm 14.

The main point of this slot is access to more of the video signals gen¬

erated by the Amiga's custom video chips. Most of the signals avail¬

able here aren't available on any external port.

This is the analog level monochrome Composite Video signal also

available on the Composite Video jack of the B2000. Pin 13.

104

Digital Video

LIGHT PEN (/LPEN)

PORT CONNECTIONS

8 Bit Parallel Port
(PD0-PD7)

Parallel Port Handshake
(/ACK)

Other Port Lines (BUSY,
POUT, SEL)

The remaining 8 bits of digital video are available on this connector.
The signals are Red 0-2 (pins 2, 3, 4), Green 0-2 (pins 6, 7, 8), and

Blue 1-2 (pins 10 and 11). The timing of the digital video is not
tightly specified. Developers wishing to use this should contact Com¬
modore for further details.

This is an input to the Agnus light pen input. This signal should go
low in response to the lighting of a pixel on a video display monitor.

The Agnus chip latches the raster position that was in effect when
the /LPEN signal goes low. so an application can follow the position

of a light pen on the screen. Pin 19.

Most of the signals from the bidirectional parallel port (printer port)
are available on this connector as well, along with a few others.

The 8 bit bidirectional parallel port most commonly used to drive a

Centronics interface printer externally is accessable here. It can be
used to control various aspects of a complex video interface device.
The port lines PD0-PD7 are on pins 23 to 30 of this connector.

This is the acknowledge (/ACK) input, the same as the acknowledge

input to the parallel port. Driving this with an output from a Video
Card can cause a level 2 interrupt to occur through the 8520 CIA de¬
vice this is connected to. based on the programming of an 8520 reg¬

ister. On pin 20.

Connector pins 18 (BUSY) and 16 (POUT) are general purpose I/O
signals that together can also function as a synchronous serial data
port driven by an 8520 CIA device. In normal printer use. the BUSY
signal is used to indicate printer buffer full to the Amiga, while POUT
is used to indicate the printer paper is out. For serial port usage,
BUSY is the serial clock, POUT is the serial data line. These should be
driven with open collector devices if the Video Card uses them as in¬
puts to the 8520. The SEL signal, on pin 21, is a general purpose I/O
port, usually used as a device select signal on the parallel port.

105

AUDIO SIGNALS The B2000 Extended Video Slot offers a few additional audio sig¬

nals.

Raw Audio These are the left and right audio channels before they're passed
through the low pass filter on output. For many applications, the
audio sampling rate is low. and as such requires a low pass filter to
be in place at fc = 6 kHz or so. to prevent audio aliasing. However,
higher sampling rates are possible, and in such cases, a much higher
filtering frequency is required for best possible sound. This raw
audio, left on pin 33 and right on pin 35. is buffered but unfiltered.

Filter Cutoff (/LED) This is the /LED port line. In the B2000. as per the A500 convention.
this signal is used to cut out the two pole low pass filter on the stan¬
dard audio channels. When asserted, the filter is in place; when ne¬
gated the filter is bypassed. This is an input to this Video connector,
useful to allow any Audio/Video card to monitor the audio filtering

state. Pin 31.

VIDEO SLOT PINOUTS The original A2000 video slot is a 36 pin edge connector, the same
type as used on the A2Q00's 16 bit IBM style bus extension.

PIN Signal PIN Signal

1 Reserved for Expansion 2 Reserved for Expansion

3 Left Audio Out 4 Right Audio Out

5 Reserved for Expansion 6 + 5 VDC

7 Analog Red 8 + 5 VDC

9 Video Ground 10 + 12 VDC

11 Analog Green 12 Video Ground

13 Video Ground 14 /CSYNC

15 Analog Blue 16 /XCLKEN

17 Video Ground 18 BURST

19 /C4 Clock 20 Video Ground

21 Video Ground 22 /HSYNC (47 Ohm)

23 BO = Dl (47 Ohm) 24 Video Ground

25 B3 = DB (47 Ohm) 26 /VSYNC (47 Ohm)

27 G3 = DG (47 Ohm) 28 COMP SYNC (Analog)

29 R3 = DR (47 Ohm) 30 /P1XELSW (47 Ohm)

31 -5 VDC 32 Video Ground

33 XCLK 34 /Cl Clock

35 Reserved for Expansion 36 Reserved for Expansion

106

The expanded B2000 video slot is a 36 pin edge connector, the same
type as used on the 16 bit IBM style bus extension.

PIN Signal PIN Signal

1 Ground 2 RO

3 R1 4 R2

5 Ground 6 GO

7 G1 8 G2

9 Ground 10 B1

11 B2 12 Ground

13 Composite Video 14 TBASE

15 CDAC Clock 16 POUT

17 /C3 Clock 18 BUSY

19 /LPEN 20 /ACK

21 SEL 22 Ground

23 PDO 24 PD1

25 PD2 26 PD3

27 PD4 28 PD5

28 PD6 30 PD7

31 /LED 32 Ground

33 Raw Audio Left 34 Audio Ground

35 Raw Audio Right 36 Audio Ground

Section 4.1

Description of PC/XT Emulator for AMIGA 2000

AMIGA ACCESS: Amiga Interface Offset Address = Base Addr.

Base Addr. + (00000 - 1FFFF) : Byte Access
Base Addr. + (20000 - 3FFFF) : Word Access
Base Addr. + (40000 - 5FFFF) : Graphic Access
Base Addr. + (60000 - 7FFFF) : I/O Register Access

INTERFACE MEMORY Interface
Offset Address Size Usage

00000 .. OFFFF 64K DISK BUFFER RAM

10000 .. 17FFF 32 K COLOR VIDEO RAM

18000 .. 1BFFF 16K PARAMETER RAM

1C000 .. 1DFFF 8K MONO VIDEO RAM

1E000 .. 1 FFFF 8K 10-PAGE

Kinds of memory access on the following pages:

B = Byte access
G = Graphic access
W = Word access

(*) selectable by BIT 5 and 6 of the MODE REGISTER

BIT 5 = SEL1
BIT 6 = SEL2

109

PC MEMORY AND
I/O MAP:

PC Address Range Size Usage

kind of
access

Amiga Interface
Offset Address

0000 ... 03FF IK 10-PAGE B 1E000 .. 1FFFF

W 3E000 .. 3FFFF

G 5E000 .. 5FFFF

7E000 .. 7FFFF

AOOOO ... AFFFF 64 K DISK BUFFER RAM (*) B 00000 .. OFFFF

n W 20000 . . 2FFFF

n G 40000 .. 4FFFF

BOOOO ... B1FFF 8K MONO VIDEO RAM B 1C000 .. 1DFFF

W 3C000 .. 3DFFF

G 5C000 .. 5DFFF

B8000 ... BFFFF 32 K COLOR VIDEO RAM B 10000 .. 17FFF

W 30000 .. 37FFF
G 50000 .. 57FFF

EOOOO ... EFFFF 64K DISK BUFFER RAM (*) B 00000 .. OFFFF

C) W 20000 .. 2FFFF

(*) G 40000 .. 4FFFF

DOOOO ... DFFFF 64 K DISK BUFFER RAM (*) B 00000 .. OFFFF

o W 20000 .. 2FFFF

(*) G 40000 .. 4FFFF

FOOOQ ... F3FFF 16K PARAMETER RAM B 18000 .. 1BFFF
W 38000 .. 3BFFF
G 58000 .. 5BFFF

AMIGA MEMORY MAP:

Amiga Interface
Offset Address PC Address Range Size Usage

kind of
access

00000 .. OFFFF AOOOO . . AFFFF 64 K DISK BUFFER RAM (*) B

00000 .. OFFFF DOOOO . . DFFFF 64K DISK BUFFER RAM (*) B

00000 .. OFFFF EOOOO . . EFFFF 64K DISK BUFFER RAM (*) B

10000 .. 17FFF B8000 . . BFFFF 32 K COLOR VIDEO RAM B

18000 .. 1BFFF FOOOO . . F3FFF 16K PARAMETER RAM B

1C000 .. 1 DFFF BOOOO . . B1FFF 8K MONO VIDEO RAM B

1E000 .. 1FFFF 0000 . . 03FF IK 10-PAGE B

20000 .. 2FFFF AOOOO . . AFFFF 64K DISK BUFFER RAM (*) W

20000 .. 2FFFF DOOOO . . DFFFF 64K DISK BUFFER RAM (*) W

20000 .. 2FFFF EOOOO . . EFFFF 64K DISK BUFFER RAM (*) w

30000 .. 37FFF B8000 . . BFFFF 32 K COLOR VIDEO RAM w

38000 .. 3BFFF FOOOO . . F3FFF 16K PARAMETER RAM w

3C000 .. 3DFFF BOOOO . . B1FFF 8K MONO VIDEO RAM w

3E000 .. 3FFFF 0000 . . 03FF IK 10-PAGE w

40000 .. 4FFFF AOOOO . . AFFFF 64K DISK BUFFER RAM (*) G

no

40000 .. 4FFFF D0000 . . DFFFF 64K DISK BUFFER RAM (*) G

40000 .. 4FFFF E0000 . . EFFFF 64K DISK BUFFER RAM (*) G

50000 .. 57FFF B8000 . . BFFFF 32 K COLOR VIDEO RAM G

58000 .. 5BFFF F0000 . . F3FFF 16K PARAMETER RAM G

5C000 .. 5DFFF B0000 . . B1FFF 8K MONO VIDEO RAM G

5E000 .. 5FFFF 0000 . . 03 FF IK 10 PAGE G

7E000 .. 7FFFF 0000 . . 03FF IK 10-PAGE

AT MEMORY and I/O MAP:

PC Address Range Size Usage
kind of
access

Amiga Interface
Offset Address

0000 ... 03FF ... IK 10-PAGE B 1E000 .. 1FFFF

W 3E000 .. 3FFFF

G 5E000 .. 5FFFF

7E000 .. 7FFFF

AOOOO ... AFFFF 64K DISK BUFFER RAM (*) B 00000 .. OFFFF

n W 20000 .. 2FFFF

n G 40000 .. 4FFFF

BOOOO B1FFF 8K MONO VIDEO RAM B 1C000 .. 1DFFF

W 3COOO .. 3DFFF

G 5C000 .. 5DFFF

B8000 ... BFFFF 32 K COLOR VIDEO RAM B 10000 .. 17FFF
W 30000 .. 37FFF

G 50000 .. 57FFF

DOOOO ... D3FFF 16K PARAMETER RAM B 18000 .. 1BFFF

W 38000 .. 3BFFF

G 58000 .. 5BFFF

D4000 ... DFFFF 64 K DISK BUFFER RAM (*) B 04000 .. OFFFF

n W 24000 .. 2FFFF

(*) G 44000 .. 4FFFF

AMIGA MEMORY MAP:

Amiga Interface
Offset Address AT Address Range Size Usage

kind of
access

00000 .. OFFFF AOOOO . . AFFFF 64 K DISK BUFFER RAM (*) B

00000 .. 03FFF CAN NOT BE ACCESSED BY THE AT

04000 .. OFFFF D4000 .. DFFFF 48K DISK BUFFER RAM (*) B

10000 .. 17FFF B8000 .. BFFFF 32K COLOR VIDEO RAM B

18000 .. 1BFFF DOOOO .. D3FFF 16K PARAMETER RAM B

1C000 .. 1DFFF BOOOO .. B1FFF 8K MONO VIDEO RAM B

1E000 .. 1FFFF 0000 .. 03FF IK 10-PAGE B

20000 .. 2FFFF AOOOO .. AFFFF 64 K DISK BUFFER RAM (*) W

20000 .. 23FFF CAN NOT BE ACCESSED BY THE AT

111

AMIGA MEMORY MAP:

Amiga Interface
Offset Address AT Address Range Size

kind of
Usage access

24000 .. 2FFFF D4000 . . DFFFF 48K DISK BUFFER RAM {*) W

30000 .. 37FFF B8000 . . BFFFF 32K COLOR VIDEO RAM W

38000 .. 3BFFF D0000 . . D3FFF 16K PARAMETER RAM W

3C000 .. 3DFFF B0000 . . B1FFF 8K MONO VIDEO RAM W

3E000 .. 3FFFF 0000 . . 03FF IK 10-PAGE W

40000 .. 4FFFF AOOOO . . AFFFF 64K DISK BUFFER RAM (*) G

40000 .. 43FFF CAN NOT BE ACCESSED BY THE AT

44000 .. 4FFFF D4000 . . DFFFF 48K DISK BUFFER (*) G

50000 .. 57FFF B8000 . . BFFFF 32 K COLOR VIDEO RAM G

58000 .. 5BFFF DOOOO . . D3FFF 16K PARAMETER RAM G

5C000 .. 5DFFF BOOOO . . B1FFF 8K MONO VIDEO RAM G

5E000 .. 5FFFF 0000 . . 03FF IK 10-PAGE G

7E000 .. 7FFFF 0000 . . 03FF IK IO-PAGE

PC/AT I/O REGISTER MAP
■' •

PC/AT I/O Offset Address

Address Usage INTERFACE / AMIGA

60 KEYBOARD DATA (W) 1E41F 7E41F

61 SYSTEM REGISTER (W) 1E05F 7E05F

62 SYSTEM STATUS (W) 1E03F 7E03F

2F8 COM2 TRANSMIT DATA (DLAB = 0) (W) 1E07D 7E07D

2F8 tt RECEIVE DATA (DLAB = 0) (R) 1E09D 7E09D

2F8
tt RESET IRQ3_b (DLAB = 0) (R) 1E09D 7E09D

2F9
tt INTERRUPT CONTROL (DLAB = 0) (W) 1E0BD 7E0BD

2F9
tt INTERRUPT CONTROL (DLAB = 0) (R) 1E0DD 7E0DD

2F8
tr DIVISOR LATCH (LSB) (DLAB= 1) (R/W) 1E07F 7E07F

2F8
tr RESET 1RQ3J) (DLAB= 1) (R) 1E07F 7E07F

2F9
tr DIVISOR LATCH (MSB) (DLAB =1) (R/W) 1E09F 7E09F

2 FA COM2 INTERRUPT ACKN (R) 1E0FF 7E0FF

2 FA DUMMY (W) 1E01F 7E01F

2FB " LINE CONTROL (DLAB = BIT 7) (W) 1E1IF 7E11F

2FB DUMMY (R) 1E01F 7E01F

2FC
tr MODEM CONTROL (W) 1E13F 7E13F

2FC DUMMY (R) 1E01F 7E01F

2FD
tt LINE STATUS (R) 1E15F 7E15F

2FD DUMMY (W) 1E01F 7E01F

2FE ft MODEM STATUS (R) 1E17F 7E17F

2FE DUMMY (W) 1E01F 7E01F

2FF DUMMY (R/W) 1E01F 7E01F

378 LPT1 PRINTER DATA (R/W) 1E19F 7E19F

379
tt STATUS (R) 1E1BF 7E1BF

112

PC/AT I/O
Address Usage

Offset Address
INTERFACE/Amiga

379 tt RESET IRQ7 (R) 1E1BF 7E1BF
379 rt

INTERRUPT CONTROL (W) 1E19F 7E19F
BIT 6 = 0 : ON
BIT 6 = 0:OFF

37A ft
CONTROL (W) 1E1DF 7E1DF

37A CONTROL (R) 1E19F 7E19F

3B0 MONO CRT ADDRESS INDEX REGISTER (W) 1E1FF 7E1FF
3 BO ft RESET IRQ3_a (R) 1E01F 7E01F
3B2 tt CRT ADDRESS INDEX REGISTER (W) 1 El FF 7E1FF
3B2 DUMMY (R) 1E01F 7E01F
3B4 ft

CRT ADDRESS INDEX REGISTER (W) 1 El FF 7E1FF
3B4 DUMMY (R) 1E01F 7E01F
3B6 ff CRT ADDRESS INDEX REGISTER (W) 1 El FF 7E1FF
3B6 DUMMY (R) 1E01F 7E01F
3B1 tt CRT DATA REGISTER (R/W) s.b.
3B3 it CRT DATA REGISTER (R/W) s.b.
3B5 ft CRT DATA REGISTER (R/W) s.b.
3B7 ft CRT DATA REGISTER (R/W) s.b

LAST WRITE ON INDEX = 00 1E2A1 7E2A1
LAST WRITE ON INDEX = 01 1E2A3 7E2A3
LAST WRITE ON INDEX = 02 1E2A5 7E2A5
UST WRITE ON INDEX = 03 1E2A7 7E2A7
LAST WRITE ON INDEX = 04 1E2A9 7E2A9
LAST WRITE ON INDEX = 05 1E2AB 7E2AB
LAST WRITE ON INDEX = 06 1E2AD 7E2AD
LAST WRITE ON INDEX = 07 1E2AF 7E2AF
LAST WRITE ON INDEX - 08 1E2B1 7E2B1
LAST WRITE ON INDEX = 09 1E2B3 7E2B3
LAST WRITE ON INDEX = OA 1E2B5 7E2B5
LAST WRITE ON INDEX = OB 1E2B7 7E2B7
LAST WRITE ON INDEX = OC 1E2B9 7E2B9
LAST WRITE ON INDEX = OD IE2BB 7E2BB
LAST WRITE ON INDEX - OE 1E2BD 7E2BD
LAST WRITE ON INDEX = OF 1E2BF 7E2BF

3B8 MONO CONTROL REGISTER (W) 1E2FF 7E2FF
3BA MONO STATUS REGISTER (R) _

BITO : H-SYNC (18KHz)
BIT 3 : V-SYNC (50 Hz)

3 BA DUMMY (W) 1E01F 7E01F
3BB DUMMY (R/W) 1E01F 7E01F
3BC DUMMY (R/W) 1E01F 7E01F
3BD DUMMY (R/W) 1E01F 7E01F
3BE DUMMY (R/W) 1E01F 7E01F
3BF DUMMY (R/W) 1E01F 7E01F

PC/AT 1/0
Address Usage

Offset Address
INTERFACE/ Amiga

3D0 COLOR CRT ADDRESS INDEX REGISTER (W) 1E21F 7E21F

3D0 DUMMY <R) 1E01F 7E01F

3D2
tt CRT ADDRESS INDEX REGISTER (W) 1E21F 7E21F

3D2 DUMMY (R) 1E01F 7E01F

3D4
n CRT ADDRESS INDEX REGISTER (W) 1E21F 7E21F

3D4 DUMMY (R) 1E01F 7E01F

3D6
ft CRT ADDRESS INDEX REGISTER (W) 1E21F 7E21F

3D6 DUMMY (R) 1E01F 7E01F

3D1 » CRT DATA REGISTER (R/W) 5.b.

3D3
*t CRT DATA REGISTER (R/W) s.b.

3D5 » CRT DATA REGISTER (R/W) s.b.

3D7
t/ CRT DATA REGISTER (R/W) s.b

LAST WRITE ON INDEX = 00 1E2C1 7E2C1

LAST WRITE ON INDEX = 01 1E2C3 7E2C3

LAST WRITE ON INDEX = 02 1E2C5 7E2C5

LAST WRITE ON INDEX = 03 1E2C7 7E2C7

LAST WRITE ON INDEX = 04 1E2C9 7E2C9

LAST WRITE ON INDEX = 05 1E2CB 7E2CB

LAST WRITE ON INDEX = 06 1E2CD 7E2CD

LAST WRITE ON INDEX = 07 1E2CF 7E2CF

LAST WRITE ON INDEX = 08 1E2D1 7E2D1

LAST WRITE ON INDEX = 09 1E2D3 7E2D3

LAST WRITE ON INDEX = OA 1E2D5 7E2D5

LAST WRITE ON INDEX = OB 1E2D7 7E2D7

LAST WRITE ON INDEX = OC 1E2D9 7E2D9

LAST WRITE ON INDEX = OD 1E2DB 7E2DB

LAST WRITE ON INDEX = OE 1E2DD 7E2DD

LAST WRITE ON INDEX = OF 1E2DF 7E2DF

3D8 COLOR CONTROL REGISTER (W) 1E23F 7E23F

3D8 DUMMY (R) 1E01F 7E01F

3D9 COLOR SELECT REGISTER (W) 1E25F 7E25F

3D9 DUMMY (R) 1E01F 7E01F

3 DA COLOR STATUS REGISTER (R) — —

BITO : H-SYNC (18KHz)

BIT 3 : V-SYNC (50 Hz)
3 DA DUMMY (W) 1E01F 7E01F

3DD DISPLAY SYSTEM REGISTER (W) 1E29F 7E29F

3DD DUMMY (R) 1E01F 7E01F

3DE DUMMY -i. : (R/W) 1E01F 7E01F

3DF DUMMY (R/W) 1E01F 7E01F

114

AMIGA I/O MEMORY MAP
(REGISTER DESCRIPTION)

AMIGA Register

AMIGA INTERRUPT STATUS
PC INTERRUPT STATUS

NEGATE PC RESET
MODE REGISTER
INTERRUPT MASK
PC INTERRUPT CONTROL
CONTROL REGISTER
KEYBOARD REGISTER

PC SIDE

interface / Memory

read register

read register

read register

read register / write register

read memory / write register

read memory / write register

read memory / write register

read memory / write register

Offset Address
INTERFACE /AMIGA

1FF1 7FF1
1FFF3 7FFF3

1FFF5 7FFF5

1FFF7 7FFF7

1FFF9 7FFF9
1FFFB 7FFFB

1FFFD 7FFFD

1FFFF 7FFFF

System Status Register:

How to Enable/Disable Interrupts from Amiga to PC

A write access to this register (i/o location 62 hex) forces a /SYSINT

interrupt on the AMIGA side

A write access to bit 6 of i/o location 379 hex enables/disables the
AMIGA forced interrupts IRQ1 (keyboard), 1RQ3 (serial interface
COM2) and IRQ7 (parallel interface LPT1) as follows:

D6 Function

0 interrupts enabled
1 interrupts disabled

Note:

The access to i/o location 379 hex is enabled if PARON is high. That
is, the AMIGA has to write a ‘T‘ to MODE REGISTER bit 1. (See

'Amiga Mode Register.')

The following initialization routine must be used to allow an external
printer card on the pc side:

AMIGA: set MODE REGISTER bit 1 to “1”

PC : set i/o location 379 hex bit 6 to “0”

AMIGA: set MODE REGISTER bit 1 to "0”

switch parallel
interface on
keyboard and

; serial interr. off
switch parallel

; interface off

Now the keyboard and the serial interface emulation is enabled, the
parallel interface emulation is disabled.

115

Negation How to Clear an
Asserted Interrupt
Signal

INT

|RQ3_a Read to i/o location 3b0 hex
IRQ3_b Read com2 register 2F8 hex
1RQ7 Read line printer status register 379 hex

AMIGA SIDE All registers on the memory locations 1FFFO TO 1FFFF are only

accessable from the AMIGA side.

Amiga Interrupt Status
Register (R)
(1FFF1 / 17FFF1)

Reading this register returns the interrupt events caused on PC ac¬

cesses as follows:

Bit no. Function

0 Mono Video Ram (/MINT)
1 Color Video Ram (/GINT)
2 Mono CRT (/CRT1INT)
3 Color CRT (/CRT2INT)

4 Keyboard Register (/ENBKB)
5 LPT1 Control Reg (/LPT1INT)
6 COM2 Data Reg (/COM21NT)
7 see PC System Status Res (/SYS1NT)

The event was valid if the bit is set to “1”. After reading the register
all bits turns to "0” automatically and the interrupt flag will be

negated. . . .

PC Interrupt Status
Register (R)
(1FFF3 / 7FFF3)

Reading this register returns the pending PC interrupts on the lower
nibble. The PC interrupt is asserted as shown by the corresponding

bit in the table.

Bit no. Function Asserted if

0 1RQ1 (Keyboard interrupt) 1
1 lRQ3_a 0
2 IRQ3_b 0
3 IRQ7 0
4-7 • NOT USED, always HIGH

Bit 1 and bit 2 (IRQ3_a and lRQ3_b) are externally “ORed" to 1RQ3

116

Negate PC Reset (R)
(1FFF5 / 7FFF5)

A read access to this register negates the PC reset line and allows the
PC to start the boot procedure. On power-on the PC reset line is as¬

serted (default).

Mode Register (R/W)
(1FFF7 / 7FFF7)

Reading this register returns system configuration information

Bit no. Name Function

0 SERON serial interface enabled
1 PARON parallel interface enabled
2 KEYON keyboard interface enabled
3 MON monochrome display emulation enabled

4 COLOR color display emulation enabled

5 SEL1 select the PC/AT memory bank, s.b.

6 SEL2 select the PC/AT memory bank, s.b.

7 PC/AT LOW = AT mode
HIGH = PC mode

Writing to this register sets system configuration information

Bit no. Name Function

0 SERON switch serial interface on

1 PARON switch parallel interface on
2 KEYON switch keyboard interface on
3 MON enable monochrome display emulation
4 COLOR enable color display emulation

5 SEL1 PC/AT memory bank select s.b.
6 SEL2 PC/AT memory bank select, s.b.
7 /STOPCLK LOW = disable the clock for video

retrace and keyboard
HIGH = enable the clock for video

retrace and keyboard

SEL2 SEL1 PC memory AT memory

0 0 not used not used
0 1 AOOOO - AFFFF HEX AOOOO - AFFFF HEX

1 0 DOOOO - DFFFF HEX D4000- DFFFF HEX

1 1 EOOOO - EFFFF HEX not used

117

Interrupt Mask
Register (R/W)
(1FFF9 / 7FFF9)

You can mask each PC interrupt event separately by writing a "1” to

the corresponding bit as shown below.

Bit no. Maskable Event (cmp. to Amiga interrupt status reg.)

0 /MINT
1 /CINT
2 /CRT II NT
3 /CRT2INT

4 ENKBKB
5 /LPT11NT
6 /CO M21 NT
7 /SYSINT

PC Interrupt Control
Register (R/W)
(1FFFB / 7FFFB)

A PC interrupt can be forced by writing a “0” to the corresponding
bit of the lower nibble except the keyboard interrupt, which can be
asserted by writing a *T\ as shown below:

Bit no. Asserted PC interrupt level

0 KB5TART (start keyboard shift-register)
1 IRQ3_a (forces interrupt 1RQ3)
2 IRQ3_b (forces interrupt 1RQ3)
3 IRQ7

Bit 1 and bit 2 (lRQ3_a and IRQ_b) are externally “ORed” to 1RQ3

Control Register (R/W)
(1FFFD / 7FFFD)

All control function will be done by writing a “0” to the correspond¬
ing bit. Only bits 0 to 4 are used.

Bit no. usage _

0 general interrupt enable to the AMIGA
1 general interrupt disable to the AMIGA

(default)
2 assert the PC reset line
3 negate ail PC interrupt levels except the

keyboard interrupt
4 reset line printer BUSY (port 379 hex bit 7)

The line printer BUSY bit will be set by writing

a ”1" to bit 0 of port 37A hex from PC side.

Keyboard
Register (R/W)
(1FFFF / 7FFFF)

Keyboard emulation is done by writing a character to this register
and then asserting a “t" to bit 0 of the PC INTERRUPT CONTROL

REGISTER.

118

P
C

/X
T

E
m

u
la

to
r

-

i
n
t
e
r
f
a
c
e

120

Section 4.2

BIOS Entry Points

SET VIDEO MODE (AH - OOH)

INPUT: AL = VIDEO MODE (0-7)
0: 40 x 25 alpha b/w
1: 40 x 25 alpha 16 colors
2: 80 x 25 alpha b/w
3: 80 x 25 alpha 16 colors
4: 320 x 200 graphics 4 colors

5: 320 x 200 graphics b/w
6: 640 x 200 graphics monochrome
7: 80 x 25 alpha monochrome

SET CURSOR TYPE (AH = 01H)

INPUT: CH = START LINE OF CURSOR (BITS 0-4)
CURSOR CONTROL OPERATION (BITS 5-6)

00 = NON-BLINK
01 = DON’T DISPLAY CURSOR
10 = BLINK @ 1/16 FIELD RATE
11 = BLINK (a) 1/32 FIELD RATE

CL = END LINE OF CURSOR (BITS 0-4)

SET CURSOR POSITION (AH = 02H)

INPUT: BH = Page # if CRT mode is 0 -> 3
(0 if graphics or monochrome)

DH = Row # of cursor
DL = Column # of cursor

OUTPUT: None

READ CURSOR POSITION

:, w INPUT: BH = ACTIVE DISPLAY PAGE
(ignored and set to 0 if graphics or

monochrome mode)

RETURNED: DH = ROW LOCATION OF CURSOR
DL = COLUMN LOCATION OF CURSOR
CX = CURSOR TYPE

OUTPUT: AX = Undefined (however, we return it
unchanged)

VIDEO ENTRY POINT
VIA S/W INT 10H

121

READ LIGHT PEN (AH = 04H)

INPUT: None

OUTPUT: AH = 0 if light pen not triggered. 1 if it is
DH = Character row of light pen
DL - Character coiumn of light pen
CH - Pixel row

BX = Pixel column, best estimate

SELECT ACTIVE DISPLAY PAGE (AH = 05H)

INPUT: AL - NEW ACTIVE DISPLAY PAGE

OUTPUT: AX = (?)

SCROLL ACTIVE PAGE UP (AH = 06H)

INPUT: AL = LINES TO SCROLL (CLEAR WINDOW IF 0)
BH = ATTRIBUTE FOR BLANK LINE(S)
CH. CL = ROW/COLUMN OF UPPER LEFT

CORNER OF WINDOW
DH. DL = ROW/COLUMN OF LOWER RIGHT

CORNER OF WINDOW

OUTPUT: None

SCROLL ACTIVE PAGE DOWN (AH = 07H)

INPUT: AL = LINES TO SCROLL (CLEAR WINDOW IF 0)
BH = ATTRIBUTE FOR BLANK L1NE(S)
CH. CL = ROW/COLUMN OF UPPER LEFT

CORNER OF WINDOW
DH. DL = ROW/COLUMN OF LOWER RIGHT

CORNER OF WINDOW

OUTPUT: None

READ CHAR & ATTRIBUTE AT CURSOR POSITION (AH = 08H)

INPUT: BH = ACTIVE DISPLAY PAGE

OUTPUT: AL =CHARACTER
AH = ATTRIBUTE
(not defined for graphics, however we return
an ORing of any and all color bits set as the
attribute, a reasonable compromise)

GRAPHICS MODE READ:

122

OUTPUT: AL = CHAR READ (if recognized, else 0)
AH - ATTRIBUTE (COLOR) (If recognized, else 0)

All characters above 80h are recognized if the RAM font

vector is other than 0. else not

WRITE CHAR & ATTRIBUTE AT CURSOR POSITION (AH - 09H)

INPUT: BH = ACTIVE DISPLAY PAGE
CX = NUMBER OF TIMES TO WRITE

CHARACTER
AL = CHAR TO WRITE
BL = CHARACTER ATTRIBUTE

OUTPUT: None

WRITE CHAR AT CURSOR POSITION (AH = OAH)

INPUT: BH = ACTIVE DISPLAY PAGE
CX = NUMBER OF TIMES TO WRITE

CHARACTER
AL = CHAR TO WRITE
BL = Character Attribute if in a graphics mode

otherwise ignored

OUTPUT: None

SET COLOR PALETTE (AH = OBH)

INPUT: BH = 0 FOR BACKGROUND COLOR IN BL
1 FOR COLOR SET NUMBER IN BL

BL = BITS 0-4 IF BH = 0
0 FOR COLOR SET GREEN/RED/YELLOW

F BH= 1
1 FOR COLOR SET CYAN/MAGENTA/WHITE

IF BH = 1

WRITE DOT (AH = OCH)

INPUT: DX = ROW NUMBER (MODE DEPENDENT)
CX = COLUMN NUMBER (MODE DEPENDENT)

AL = COLOR VALUE

OUTPUT: AH = ?

READ DOT (AH = ODH)

INPUT: DX = ROW NUMBER (MODE DEPENDENT)
CX = COLUMN NUMBER (MODE DEPENDENT)

OUTPUT: AH = ?
AL = COLOR VALUE

123

WRITE TELETYPE (AH = OEH)

INPUT AL = CHARACTER TO BE WRITTEN
BL = FOREGROUND COLOR OF CHAR (USED ONLY

IN GRAPHICS MODE)
BH = REQUESTED DISPLAY PAGE (REALLY IS

IGNORED)

OUTPUT: None

READ CURRENT VIDEO STATE (AH = OFH)

INPUT: DS = ROM data segment

OUTPUT: AH = NUMBER OF SCREEN COLUMNS
AL = CURRENT VIDEO MODE

BH = ACTIVE DISPLAY PAGE

EQUIPMENT CHECK OUTPUT: AX = Equipment Flags

VIA S/W INT 11H
Bits of AL:

bit I 7 I 6 I 5 I 4 I 3 I 2 I I I 0 I

Bits of AH:

bit I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I

MEMORY SIZE CHECK VIA S/W INT 12H

OUTPUT: AX = Total Memory size in Kilobytes

124

DISKDSR ENTRY POINT
VIA S/WINT 13H

RESET DISK SUBSYSTEM (AH = 00H)

OUTPUT: AH = DISK STATUS

READ DISK STATUS (AH = 01H)

OUTPUT: AH & AL = DISK STATUS

READ SECTOR(S) (AH = 02H)
WRITE SECTOR(S) (AH = 03H)
VERIFY SECTOR(S) (AH = 04H)

INPUT: DL = DRIVE NUMBER (0-3)
DH = HEAD NUMBER (0-1)
CH = TRACK NUMBER (0-39)
CL = SECTOR NUMBER (1-8)
AL = NUMBER OF SECTORS TO READ, WRITE OR

VERIFY (1-8)
ES:BX = BUFFER ADDRESS

OUTPUT: AH = DISK STATUS
AL =0

FORMAT TRACK (AH = 05H)

INPUT: DL = DRIVE NUMBER (0-3)
DH = HEAD NUMBER (0-1)

CH = TRACK NUMBER (0-39)
AL = # of sectors to format to see if we have a DMA

boundary error
ES:BX = BUFFER ADDRESS 4-BYTE TRACK INFO

FIELDS (C.H.R.N):
C = TRACK NUMBER
H = HEAD NUMBER
R = SECTOR NUMBER
N - BYTES/SECTOR (00 = 128, 01 = 256,

10 = 512, 11 = 1024)

OUTPUT: AH = DISK STATUS

DISK STATUS RETURNED IN AH (IF CF = 1)

01H - Illegal Command
02H - Address Mark not Found
03H - Write Protect Error
04H - Sector not found
06H - No Diskette

• * ’ 08H - DMA Overrun
09H - DMA Boundary Violation

10H - CRC Error
20H - FDC Error
40H - Seek Error
80H - Timeout

125

EIA DSR ENTRY POINT
VIA S/WINT 14H

INITIALIZE COMM PORT (AH = OOH)

INPUT: DX = Modem Control Register port
AL = Baud Rate and UART control parameters
BH = 0, upper bits of baud rate index

OUTPUT: AH = Line Status
AL = Modem Status
Serial Port Control bits in AL Register

Bits of AL on Entry:

bit 716151413(21 1 101

> Data Word Length
> # of stop bits
> Parity Enabled
> Even Parity
> Baud Rale Bits:
000 - 110 Baud
001- 150 Baud
010- 300 Baud
Oil - 600 Baud
100- 1200 Baud
101 - 2400 Baud
110 - 4800 Baud
111 - 9600 Baud

TRANSMIT A CHAR (AH = 01H)

INPUT: DX = Index into device table
AL = Character to transmit
CX = Timeout value
BX = 0, used as timeout counter

OUTPUT: AH = Line Status

RECEIVE A CHAR (AH = 02H)

INPUT: DX = Index into device table
CX = Timeout value
BX = 0. used as timeout counter

OUTPUT: AH = Line Status (error bits only, = 0 if OK)

AL = Received Character

126

RETURN SERIAL PORT STATUS (AH = 03H)

INPUT: DX = Modem Control Register port

OUTPUT: AH = Line Status
AL = Modem Status

Serial Port Status bits returned in AX Register:

AH Register:

bit I 7 I 6 5 I 4 I 3 I 2 l 1 I 0 I

'-> Data Ready
-> Overrun Error
-> Parity Error
-> Framing Error
-> Break Error
-> Transmit hold register empty
-> Transmit shift register empty
-> Timeout Error

AH Register:

bit I 7 I 6 I 5 I 4 1 3 I 2 I ! I 0 I

1-> Delta Clear To Send
-> Delta Data Set Ready
-> Trailing edge Ring Detect
-- > Delta Receive Line Signal detect
-> Clear To Send
-■ > Data Set Ready
-> Ring Indicator
-> Receive Line Signal Detect

KYBDSR ENTRY POINT
VIA S/WINT16H

READ KEYBOARD INPUT (AH^OOH)

INPUT: DS = ROM data segment (0040h)

OUTPUT: AL = ASCII CHARACTER
AH = SCAN CODE

READ KEYBOARD STATUS (AH = 01H)

INPUT: DS = ROM data segment (0040h)

OUTPUT: AL = ASCII CHARACTER
AH = SCAN CODE
Z FLAG =1 if no character available
Z FLAG = 0 if character available

127

READ SHIFT STATUS (AH = 02H)

INPUT: DS = ROM data segment (0040h)

OUTPUT: AL = SHIFT STATUS BYTE

CASSETTE INT 15H DSR

OUTPUT: AH - 86h, Error code. Carry set
Interrupts off

KYBDSR ENTRY POINT READ KEYBOARD INPUT (AH = 00H)

VIA S/WINT16H
INPUT: DS = ROM data segment (0040h)

OUTPUT: AL = ASCII CHARACTER
AH = SCAN CODE

READ KEYBOARD STATUS (AH = 01H)

INPUT: DS = ROM data segment (0040h)

OUTPUT: AL = ASCII CHARACTER
AH = SCAN CODE
Z FLAG = 1 if no character available

Z FLAG = 0 if character available

READ SHIFT STATUS (AH = 02H)

INPUT: DS = ROM data segment (0040h)

OUTPUT: AL = SHIFT STATUS BYTE

PRINTER ENTRY POINT print character (ah - OOH)

VIA S/W INT 17H
INPUT: AL - Character to output

DX = Index to Printer table port + 1
(the Status port)

CX = Timeout value

OUTPUT: AH = Printer Status

128

INITIALIZE PRINTER (AH = 01H)

INPUT: DX = Printer Status Port address =
(Printer Table contents + 1)

OUTPUT: AH = Printer Status

RETURN PRINTER STATUS (AH - 02H)

INPUT: DX = Index to Printer table port +1
(the Status port)

CH must have correct value of timeout flag

OUTPUT: AH = Printer Status:

bit I 7 I 6 l 5 I 4 I 3 I 2 I 110 1

L> Printer timeout

-> not used

-> not used

---> I/O Error

-> Selected

-> Out of Paper

l___-——> Acknowledge

-— > Not Busy

Notes: Pins #s are those on a 25 pin D connector

(Pin 15 Inverted)

(Pin 13)

(Pin 12)

(Pin 10 Inverted)

(Pin II Inverted)

ROM BASIC ENTRY VIA SI W INT 18H

Not able to boot diskette, go to Monitor, error message or a ROM

BASIC

BOOT FROM DISKETTE VIA S/W INT 19H

*** BOOT DISKETTE ***

If boot attempt fails:

Fall through to user routine INT 18h, which might be a monitor or a

ROM BASIC, an error message etc.
Should INT 18h return, which is unlikely, we'll return to caller of INT

19h.

129

TIMER DEVICE
SERVICE ROUTINE —
INTlAh

READ CLOCK (AH = OOh)

INPUT: DS = ROM data segment (0040h)

OUTPUT: AL = 24-Hour Rollover flag

CX = High word of Clock Count
DX = Low word of Clock Count

SET CLOCK (AH = 01h)

INPUT: DS = ROM data segment (0040h)
CX = High word of Clock Count
DX = Low word of Clock Count

OUTPUT: AH = 0

USER SUPPLIED KEYBOARD BREAK ROUTINE — INT IBh

When a CTRL+ScrLock is detected, this INT is issued. A USER Break
Routine may be invoked here. Note that this function is used by
MSDOS.

USER SUPPLIED TIMER INTERVAL TICK — INT 1 Ch

This interrupt is called internally after each timer interrupt (18.2
Hz). It is initialized to point to a dummy 1 RET instruction.

CRT CONTROLLER PARAMETERS — DWORD POINTER AT INT
IDH VECTOR

Default Video CRT Parameter Block

DEFAULT DISK PARAMETER BLOCK — DWORD POINTER AT
INTI EH VECTOR

Default Diskette Parameter Block

EXTENDED GRAPHIC CHARACTER SET — DWORD POINTER AT
INT1FH VECTOR

Character Generator ROM used in Graphic mode for characters 80H
to OFFh.

130

Section 4.3

Janus.Library

PREFACE

THE PUBLIC ROUTINES

Contents

Descriptions

This is a brief description of the janus code. This code supports low
level access to the ‘Janus' system — the link between a PC and an

Amiga.

• AllocJanusMem
• CheckJanusInt
• CleanupJanusSig
• FreeJanusMem
• GetJanusStart
• GetParamOffset
• JBCopy
• JanusLock
• JanusMemBase

• JanusMemToOffset
• JanusMemType
• JanusUnLock
• SendJanusInt
• SetJanusEnable
• SeUanusHandler
• SetJanusRequest
• SetParamOffset
• SetupJanusSig

The code is packaged as a library (specifically' janus.library”). which

is loaded during Autoconfig procedure.

All routines that return a value return it in DO. There is a link library

for C routines, ‘ jlib.lib”.

oldHandler = SetJanusHandler(jintnum, intserver)
DO A1

This routine sets up an interrupt handler for a particular janus inter¬
rupt. The old interrupt is returned. A null means that there is no in¬
terrupt handler. If there is no interrupt handler then interrupts not
will be processed for that jintnum.

oldEnable = SetJanusEnab1e(jintnum, newvalue)
DO D1

131

Each jintnum may be individually enabled or disabled (this is in addi¬
tion to the control of setting the interrupt handler to NULL). If the
interrupt is disabled then requests that are received will not generate
interrupts. These requests may be detected via SetJanusRequest

If newvalue is 0 then the interrupt is disabled. If it is 1 then the inter¬
rupt is enabled. All other values are reserved.

This routine will generate an interrupt if it an interrupt is enabled
that has a pending request. This does not currently happen until the
next hardware interrupt occurs.

old Request = SetJanus Request(jintnum, newvalue)
DO D1

This routine sets or clears an interrupt request for jintnum. If new¬
value is zero then the request is cleared. If newvalue is one then the
request is set In either case the old value of the request is returned.

Setting a request will generate an interrupt (if it is enabled). This
does not currently happen.

SendJanuslnt(jintnum)
DO

This call is useful for "system” requests — e.g. those requests not di¬
rectly defined by the hardware. The call marks the request in the sys¬
tem interrupt area and then posts a hardware interrupt to the pc.

CheckJanuslnt(jintnum)
DO

This call returns the status byte from the interrupt area. It can be
used to tell if the pc has noticed the interrupt yet. A value of JNOINT
($ff) means no interrupt is pending (which probably means that the
pc has already processed it). JSENDINT ($7f) means that the inter¬
rupt is pending. Anything else should be treated with suspicion.

ptr = AllocJanusMem(size, type)
DO D1

This routine allocates memory from the parameter or buffer mem¬
ory free pools, and returns a 68000 addressable pointer to the
memory. It allocates "size” bytes, or returns NULL if there was not
enough memory.

The type field is used to determine which pool of memory is desired.
It should be either MEMF_PARAMETER or MEMF_BUFFER. In addi¬
tion, you may specify what sort of memory access the pointer should
refer to. The four choices are MEfvLBYTEACCESS, MEM_W0RD-

132

ACCESS, MEM.CRAPHICACCESS, or MEM_IOACCESS. See the
hardware description for the meaning of these access methods if
you do not already know.

FreeJanusMem(ptr, size)
A1 DO

The specified memory is returned to the free pool. Some modest er¬
ror checking is done, and the system will Alert if there is a problem,

ptr = JanusMemBase(type)
DO

The base of the memory referred to by the type specifier is returned.
See AIlocJanusMem for a (very) brief description of type.

type = JanusMemType(ptr)
DO

The type of the pointer is returned. “Unpredictable results” will oc¬
cur if ptr points to neither buffer memory nor parameter memory.

offset = JanusMemToOffset(ptr)
DO

if ptr points to buffer or parameter memory, the offset from the
start of that memory to ptr will be returned. This is the value that
should be fed to SetParamOffset() if this is a parameter block.

offset = GetParamOffset(jintnum)
DO

The parameter offset for interrupt jintnum is returned. The system
does not interpret this number, but by convention a $ffff means that
no parameter block has been set up.

oldOffset - SetParamOffset(jintnum, offset)
DO D1

The parameter offset for jintnum is set to the bottom sixteen bits of
offset. The previous offset is returned. The system does not inter¬
pret this number, but by convention a $ffff means that no parameter
block had previously been set up.

ptr = GetianusStart()

The base of thejanus board is returned.

setupSig = SetupJanusSig
(jintnum, signum, paramsize, paramtype)

DO D1 D2 D3

133

This routine does the “standard" things that most users of thejanus
system would want. It is conceivable that most people who use the

janus board will use only this routine and CleanupJanusSig().

The main purpose is to set up an interrupt handler for your inter¬
rupt, and translate this into an exec signal that will be sent to your
task. This allows you to ignore all the complexities of writing inter¬
rupt code.

You specify the jintnum to use as the interrupt number and the sig¬
nal number (signum) to be sent to you. Jintnum should (for now) be
gotten via the include file services.[hi], Signum will most often be
gotten via AllocSignal(-l). which allocates an unused signal.

In addition to setting up a way to get interrupts, the call can set up a
parameter area. It will allocate paramsize bytes of type paramtype,

and set up the parameter area to point to them.

There is some error checking done while all this is going on. If sig¬
num is -1 the call fails (-1 is the error return from AllocSignal...). If
there is already an interrupt handler then the call fails. If paramsize

is non-zero and there is already a parameter area the call fails. If it

cannot allocate enough memory the call fails.

The call returns a NULL if it fails. If it succeeds then a pointer to a
SetupSig structure is returned. This structure is defined in setup-
sig.[hi].

CleanupJanusSig(setsupSig)
AO

This routine undoes everything that SetupJanusSig does.

JanusLock{ ptr)
AO. .

Gain a janus lock (e.g. a lock on a memory list). You must not keep
this lock for a long time — keep it just long enough to manipulate
the data structure associated with the lock, and don’t go to sleep.

JanusUnLock(ptr)
AO

Release a janus lock.

JBCopy{ source, designation, length)
AO A1 DO

Copy arbitratily aligned memory as efficiently as possible with the
processor.

134

INCLUDE FILES janus.[hi]:
gives interface to janus.iibrary. All definitions in this file are

amiga specific. The most useful thing in this file are the
definitions forjanus memory allocation types

janusreg.[hi]:
hardware constants. Most people should not need this. If you
do. we need to hide more information.

janusvar.[hi]:
the shared data structure between the amiga and the pc. Once
again, you should not need direct access to these routines. We
have tried to provide interface routines to do ail the norma!

things.

i86block.i:
command blocks for calling pc's interrupt’s directly and for the

hard disk.

services.[hi]:
hard coded constants for interrupt numbers. Eventually these

numbers will be gotten at run time, but for now they are

constants. These numbers correspond to the ‘Jintnum"

parameters below.

setupsig.[hi]:
data structure for SetupJanusSig() call.

LISTINGS i86block.i — interface definitions between amiga and
commodore-pc

Copyright © 1986. Commodore-Amiga Inc.. All rights reserved

IFND JANUSJ86BLOCKJ

JANUSJ86BLOCKJ SET 1

All registers in this section are arranged to be read and written
from the WordAccessOffset area of the shared memory. If you really
need to use the ByteAccessArea, all the words will need to be byte

swapped.

135

; SyscaU86—how the 8086/8068 wants its parameter block arranged:

STRUCTURE Syscall86,0
UWORD s86_AX
UWORD s86_BX
UWORD s86_CX
UWORD s86_DX
UWORD s86_SI
UWORD s86_DS

UWORD s86_DI
UWORD s86.ES
UWORD s86_BP
UWORD s86_PSW
UWORD S86JNT ; 8086 int # that will be

called
LABEL Syscall86_SlZE0F

; Syscall68 — the way the 68000 wants its parameters arranged:

STRUCTURE

o

1

ULONG S68-D0

ULONG s68_D1
ULONG s68_D2
ULONG S68.D3
ULONG s68_D4
ULONG s68_D5
ULONG s68_D6
ULONG S68.D7
ULONG s68_A0

ULONG s68_Al
ULONG s68J\2
ULONG s68J\3
ULONG s68J\4
ULONG S68.A5
ULONG s68J\6
ULONG s68_PC ; pc to start execution from

ULONG s68J\rgStack ; array to be pushed onto
stack

ULONG s68_ArgLength ; number of bytes to be
pushed (must be even)

ULONG s68_M inStack ; minimum necessary stack
(0 = use default)

ULONG S68.CCR ; condition code register

ULONG s68_Process ; ptr to process for this
block.

UWORD s68_Command ; special commands: see
below

UWORD s68_Status
UWORD s68_SigNum ; internal use: signal to

wake up process

136

LABEL Syscal!68_SlZE0F

S68COIVLDOCALI EQUO ; normal case _ jsr to speci¬
fied Program cntr

S68C0M_REMPR0C EQU 1 ; kill process

S68C0M_CRPR0C EQU 2 ; create the process, but do

not call anything

Disk request structure for raw amiga access to 8086's disk
: goes directly to PC BIOS (via PC int 13 scheduler):

STRUCTURE DskAbsReq.O

UWORD dar_FktCode ; bios function code
(see ibm tech ref)

UWORD dar.Count ; sector count

UWORD dar.Track ; cylinder #

UWORD dar_Sector ; sector #

UWORD dar.Drive ; drive

UWORD dar.Head ; head

UWORD dar_Offset ; offset of buffer in
MEMF-BUFFER memory

UWORD dar_Status ; return status

LABEL DskAbsReq_SlZEOF

; Definition of an AMIGA disk partition, returned by info function:

STRUCTURE DskPardtion,0
UWORD dp.Next ; 8088 ptr to next part

0 -> end of list

UWORD dp.BaseCyl ; cyl # where partition
starts

UWORD dp.EndCyl ; last cyclinder # of this
partition

UWORD dp_DrvNum ; DOS drive number (80H,
81H,...)

UWORD dp.Num Heads ; number of heads for this

drive

UWORD dp_Nu mSecs ; number of sectors per
track for this drive

LABEL DskPartition-SIZEOF

; Disk request structure for higher level Amiga disk request to 8086:

STRUCTURE Amiga DskReq.O

UWORD adr_Fnctn : function code (see below)

UWORD adr.Part ; partition number (0 is
first partition)

ULONG adr_Offset ; byte offset into partition

ULONG adr_Count ; number of bytes to
transfer

137

UWORD adr_BufferAddr ; offset into MEMF-
_BUFFER memory for
buffer

UWORD adr_Err ; return code, 0 if all OK
LABEL AmigaDskReq_SlZEOF

; Function codes for AmigaDskReq adf-Fnctn word:

ADR_FNCTN_INIT EQU 0 ; given nothings, sets adr_
Part to # partitions

ADR_FNCTN_READ EQU 1 : given partition, offset,
count, buffer

ADR_FNCTN_WR1TE EQU 2 ; given partition, offset,
count, buffer

ADR_FNCTN_SEEK EQU 3 ; given partition, offset

ADR_FNCTN_1NF0 EQU 4 ; given part, buff adr, cnt,

copys in a DskPartition
structure, cnt set to actual
number of bytes copied.

; Error codes for adr.Err, returned in low byte:

ADR.ERFLOK EQU 0 ; no error
ADR_ERR_OFFSET EQU 1 ; offset not on sector

boundary
ADR_ERR_COUNT EQU 2 ; dsk_count not a multiple

of sector size
ADR_ERR_PART EQU 3 ; partition does not exist
ADR_ERR_FNCT EQU 4 ; illegal function code

ADR_ERR_EOF EQU 5 ; offset past end of
partition

ADR_ERR_MULPL EQU 6 ; multiple calls while
pending service

; Error condition from IBM-PC BIOS, returned in high byte:

ADFLERFLSENSELFA1L EQU $ff
ADR_ERR_UNDEF_ERR EQU $bb
ADR_ERR_TIMELOUT EQU $80
ADR_ERR_BAD_SEEK EQU $40
ADR_ERR_BAD_CNTRLR EQU $20
ADR_ERR_DATA_CORRECTED EQU $11 ; data corrected
ADR_ERR_BAD_ECC EQU $10
ADR_ERR_BAD_TRACK EQU $0b
ADR_ERR_DM^BOUNDARY EQU $09
ADR_ERR_INIT_FAIL EQU $07
ADR_ERR_BAD_RESET EQU $05
ADR_ERR_RECRD_NOT_FOUND EQU $04
ADFLERR_BAD_ADDR_MARK EQU $02
ADR_ERR_BADXMD EQU $01

ENDC !JANUS_l86BLOCKJ

138

janus.i — software conventions forjanus.i
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

IFND EXEC.TYPESJ
INCLUDE “exec/types.i”
ENDC EXEC.TYPESJ

IFND EXEC.LIBRAR1ES-I
INCLUDE "exec/librariesj”

ENDC EXEC-LIBRARIES. I

IFND EX EC. INTERRUPTS.!
INCLUDE "exec/interrupts.i"
ENDC EXEC.INTERRUPTS.I

; JanusResource — an entity which keeps track of the reset state of
the 8088. If this resource does not exist, it is assumed the 8088 can
be reset.

STRUCTURE JanusResource,LN_SIZE

APTR jr.BoardAddress
UBYTE jr.Reset

LABEL JanusResource-SIZEOF

: As a coding convenience, we assume a maximum of 32 handlers.
; People should avoid using this in their code, because we want to
; be able to relax this constraint in the future. All the standard
; commands' syntactically support any number of interrupts, but
: the internals are limited to 32.

MAXHANDLER EQU 32

; JanusAmiga — amiga specific data structures for janus project:

STRUCTURE JanusAmiga.LIB.SIZE

ULONG JaJntReq ; software copy of out¬
standing requests

ULONG jaJntEna ; software copy of enabled
interrupts

APTR ja_ParamMem ; ptr to (word arranged)
param mem

APTR ja Jo Base ; ptr to base of io register
region

APTR ja_ExpanBase ; ptr to start of shared
memory

APTR ja_ExecBase ; ptr to exec library
APTR ja.DOSBase ; ptr to DOS library

APTR ja_SegList ; holds a pointer to our

code segment

; address of JANUS board
; non_zero indicates 8088

is held reset

139

APTR

STRUCT
STRUCT

LABEL

jaJntHandlers

jaJntServer,IS_SIZE
ja_ReadHandler,lS_SlZE

JanusAmiga_SiZEOF

; base of array of int server
ptrs

; 1NTB_P0RTS server
; JSERV_READAM1GA
handler

; Hide a byte quantity in the lib-pad field
jaSpuriousMask EQU LIB.pad

; Magic constants for memory allocation:

MEM.TYPEMASK EQU $00ff
B1TDEF MEM.PARAMETER.O
B1TDEF MEM.BUFFER.1
MEM_ACCESSMASK EQU $3000

MEM_BYTEACCESS EQU $0000

MEM_WORDACCESS EQU $1000

MEM.GRAPH1CACCESS EQU $2000

MEMJOACCESS EQU $3000

TYPEACCESSTOADDR EQU 5

; 8 memory areas
; parameter memory
; buffer memory
; bits that participate in

access types
; return base suitable for byte
access

; return base suitable for
word access

; return base suitable for
graphic access

; return base suitable for
io access

; # of bits to change access
mask into addr

; Macro to lock access to janus data structures from PC side:
LOCK
begin@

MACRO ; (1 — effective address of lock byte)

tas 1
beq.s
nop
nop

exit@

exit(&;

bra.s

endm

begin@

UNLOCK MACRO ; (1 — effective address of lock byte)
move.b
ENDM

#0,1

JANUSNAME MACRO
dc.b
ENDM

janus.iibrary’,0

janusreg.i —janus hardware registers (from amiga point of view)
Copyright © 1986, Commodore-Amiga Inc., All rights reserved.

140

; Hardware interrupt bits (all bits are active low)
BITDEF
BlTDEF
BITDEF
BITDEF
BITDEF
BITDEF
BITDEF
BITDEF

JINT.M1NT.0
JINT.GINT.1
J1NT.CRT11NT.2
J1NT.CRT2INT.3
JINT.ENBKB.4

JINT.LPT1 INT.5
JlNT,COM2INT,6
JINT.SYSINT.7

mono video ram written to
color video ram written to
mono video control registers changed
color video control registers changed
keyboard ready for next character
parallel control register
serial control register
software int request

The Amiga side of the Bridgeboard has four sections of its address
space. Three of these parts are different arrangements of the same
memory. The fourth part has the specific amiga accessible I/O
registers (jio—??). The other three parts all contain the same
data, but the data is arranged in different ways: Byte Access
lets the 68k read byte streams written by the 8088, Word Access

lets the 68k read word streams written by the 8088, and Graphic
Access lets the 68k read medium res graphics memory in a more
efficient manner {the pc uses packed two bit pixels: graphic
access rearranges these data bits into two bytes, one for each bit

: plane).

ByteAccessOffset EQU $00000

WordAccessOffset EQU $20000

GraphicAccessOffset EQU $40000

loAccessOffset EQU $60000

: Within each bank of memory are several sub regions. These are the

; definitions for the sub regions:

BufferOffset EQU $00000

ColorOffset EQU $10000

ParameterOffset EQU $18000

MonoVideoOffset EQU $lc000

loRegOffset EQU $1e000

BufferSize EQU $10000

ParameterSize EQU $04000

These are the definitions for the io registers. All the registers are
byte wide and the address are for Byte Access addresses:

jio-KeyboardData EQU $061 f ; data that keyboard will read
jio_SystemStatus EQU $003f; pc only register

jio.NmiEnable EQU $005f : pc only register

jio_Com2XmitData EQU $007d
jio_Com2 Receive Data EQU $009d
jio_Com2lntEnableW EQU $00bd

141

jio_Com2lntEnableR EQU $00dd
jio_Com2DivisorLSB EQU $007f

jio_Com2DivisorMSB EQU $009f
jio_Com2lntlD EQU $00ff
jio_Com2LineCntrl EQU $01 If
j io_Com2 ModemCntrl EQU $013f
jio_Com2LineStatus EQU $015f —

jio_Com2ModemStatus EQU $017f

jio_Lptl Data EQU $019f ; data byte

jio.Lptl Status EQU $01 bf ; see equates below
jio_Lptl Control EQU $01 df ; see equates below

jio_MonoAddresslnd EQU $01 ff ; current index into crt data regs
<—

jio.MonoData EQU $02a 1 ; every other byte for 16 registers
jio.MonoControlReg EQU $02ff

jio_ColorAddresslnd EQU $02If ; current index into crt data regs
jio_ColorData EQU $02c 1 ; every other byte for 16 registers
jio.ColorControlReg EQU $023f
jio.ColorSelectReg EQU $025f

jio.ColorStatusReg EQU $027f —

jio_DisplaySystemReg EQU $029f -

jioJntReq EQU $1 ffl ; read clears, pc -> amiga ints
jio_PclntReq EQU $1 ff3 ; r/o, amiga -> pc ints —

jiO-ReleasePcReset EQU $1 ff5 : r/o, strobe release pc's reset
jio.RamSize EQU $1 ff7 : r/o, give ram addresses

jioJntEna EQU $ 1 ff9 ; r/w, enables pc int lines
jio_PclntGen EQU $1 ffb ; w/o. bit = = 0 -> cause pc int
jio_Control EQU $ 1 ffd ; w/o. random control lines
jio.RamBaseAddr EQU $ 1 fff ; r/w, sets expansion ram base

address —

; Now the magic bits in each register (and boy. are there a lot of
them!)

; Bits for Lptl Status register
BITDEF JPCLS.STROBE.O
BITDEF JPCLS.AUTOFEED.l
BITDEF JPCLS.INIT.2
BITDEF JPCLS.SELECTIN.3
BITDEF JPCLS.IRQENABLE.4 ; active 1

; Bits for Lptl Control register
BITDEF
JPCLC.ERR0R.3
BITDEF

JPCLC.SELECT.4

142

BITDEF JPCLC.N0PAPER.5
BITDEF JPCLC.ACK.6
BITDEF JPCLC.BUSY.7

; Bits for PcIntReq. PcIntGen registers
BITDEF JPCINT.IRQ1.0 ; active high
BITDEF JPCINT.1RQ3.1 ; active low
BITDEF JPCINT.1RQ4.2 ; active low

BITDEF JPC1NT.1RQ7.3 ; active low

; PC side interrupts
J PC KEY! NT EQU $ff
JPCSENDINT EQU $fc
JPCLPT11 NT EQU $f6

; keycode available
; system request
; printer acknowledge

; Bits for RamSize
BITDEF JRAM.EXISTS.O
BITDEF JRAM.2MEG.1

; Bits for control register
BITDEF JCNTRL.ENABLEINT.O
BITDEF JCNTRL.DISABLEINT. 1
BITDEF JCNTRL.RESETPC.2

BITDEF JCNTRL.CLRPCINT.3

■ unset if there is any ram at all
; set if 2 meg. clear if 1/2 meg

enable amiga interrupts
disable amiga interrupts
reset the pc. remember to strobe

ReleasePcReset afterwards
turn off all amiga->pc ints (except

keyboard

; Constants for sizes of various janus regions
JANUSTOTALS1ZE
JANUSBANKSIZE
JANUSNUMBANKS
JANUSBANKMASK

EQU 512*1024
EQU 128*1024
EQU 4
EQU $60000

1/2 megabyte
128K per memory bank
four memory banks
mask bits for bank region

janusvar.i—the software data structure for the janus board
Copyright © 1986. Commodore-Amiga Inc.. All rights reserved

All bytes described here are described in the byte order of the
8088. Note that words and longwords in these structures will be
accessed from the word access space to preserve the byte order in
a word — the 8088 will access longwords by reversing the words :
like a 68000 access to the word access memory

JanusMemHead — a data structure roughly analogous to an exec
mem chunk. It is used to keep track of memory used between the
8088 and the 68000.

143

STRUCTURE JanusMemHead.O
UBYTE jmh_Lock ; lock byte between processors

UBYTE jmh_padO
APTR jmh_68000Base ; rptr’s are relative to this
UWORD jmh_8088Segment ; segment base for 8088
RPTR jmh_First ; offset to first free chunk
RPTR jmh_Max ; max allowable index
UWORD jmh_Free ; total number of free bytes -1
LABEL JanusMemHeacLSIZEOF

STRUCTURE JanusMemChunk.O
RPTR jmc_Next ; rptr to next free chunk
UWORD jmc_Size ; size of chunk -1
LABEL JanusMemChunk_SlZEOF

STRUCTURE JanusBase.O
UBYTE jb_Lock ; also used to handshake at 8088 reset
UBYTE jb_8088Go ; unlocked to signal 8088 to initialize
STRUCT jb_ParamMem,JanusMemHead_SlZEOF
STRUCT jb.BufferMem JanusMemHeacLSIZEOF
RPTR jbJnterrupts

RPTR jb.Parameters
UWORD jb.Numlnterrupts
LABEL JanusBase-SIZEOF

i-constant to set to indicate a pending software interrupt
JSETINT EQU $7f

FUNCDEF SeUanusHandler
FUNCDEF SeUanusEnable
FUNCDEF SetJanusRequest
FUNCDEF SendJanuslnt
FUNCDEF CheckJanusInt
FUNCDEF AllocJanusMem
FUNCDEF FreeJanusMem

FUNCDEF JanusMemBase
FUNCDEF JanusMemType
FUNCDEF JanusMemToOffset
FUNCDEF CetParamOffset
FUNCDEF SetParamOffset
FUNCDEF GetJanusStart
FUNCDEF SetupJanusSig
FUNCDEF CleanupJanusSig
FUNCDEF JanusLock
FUNCDEF JanusUnLock
FUNCDEF JBCopy

144

memrw.i—parameter area definition for access to other
processors mem

Copyright © 1986, Commodore-Amiga Inc., All rights reserved :

1FND JANUS.MEMRWJ
JANUS.MEMRW.I SET 1

; this is the parameter block for the JSERV_READPC and JSERV_
; READAMIGA; services — read and/or write the other processors
; memory.

STRUCTURE MemReadWrite.O
UWORD mrw.Command ; see below for list of commands
UWORD mrw.Count ; number of bytes to transfer

ULONG mrw_Address ; local address to access. This is
; a machine pointer for the 68000, and
; a segment/offset pair for the 808x.
; The address is arranged so the native
; processor may read it directly.

UWORD mrw.Buffer ; The offset in buffer memory for the
; other buffer.

UWORD mrw_Status ; See below for status.
LABEL MemReadWrite_SIZEOF

; Command definitions:
MRWC_NOP EQU 0 ; do nothing — return OK status

code
MRWC-READ EQU 1 ; xfer from address to buffer
MRWC.WRITE EQU 2 ; xfer from buffer to address
MRWC.READIO EQU 3 ; only on 808x — read from 10

space
MRWC.WRITEIO EQU 4 ; only on 808x — write to 10 space
MRWC.WRITEREAD EQU 5 ; write from buffer, then read back

; Status definitions:
MRW5JNPR0GRESS EQU $ffff ; we've noticed command and

are working on it
MRWS_0K EQU $0000 ; completed OK
MRWSuACCESSERR EQU $0001 ; some sort of protection

violation
MRWSlBADCMD EQU $0002 ; command that the server

doesn't understand

ENDC

1FND JAN USJ5ERV1CESJ
JANUS-SERV1CES-I EQU 1

145

memrw.i—parameter area definition for access to other

processors mem
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

: this is the table of hard coded sen/ices. Other services may exist
; that are dynamically allocated via AllocJanusService.

; Service numbers constrained by hardware:
JSERV.M1NT
JSERV.GINT
JSERV.CRT1 INT

EQU 0 ; monochrome display written to
EQU 1 ; color display written to
EQU 2 ; mono display’s control registers

changed

JSERV_CRT21NT

JSERV.ENBKB
JSERV.LPT1 INT
JSERV.COM 21 NT

EQU 3 ; color display’s control registers
changed

EQU 4 ; keyboard ready for next character

EQU 5 ; parallel control register
EQU 6 ; serial control register

; hard coded service numbers
JSERV.PCBOOTED EQU 7 ; PC is ready to service soft

interrupts

JSERV.SCROLL EQU 8

JSERV.HARDDISK EQU 9
JSERV.READAMIGA EQU 10
JSERV.READPC EQU 11
JSERV J\M IGACALL EQU 12
JSERV.PCCALL EQU 13

JSERV.NEWASERV EQU 14

JSERV.NEWPCSERV EQU 15

; PC is scrolling its screen
: Amiga reading PC hard disk
; PC reading Amiga mem
; Amiga reading PC mem
: PC executing Amiga subroutine
; Amiga causing PC interrupt
; PC initiating Amiga side of a new
service

; Amiga initiating PC side of a new
service

ENDC JANUS.SERVICESJ

IFND JANUS-SETUPSIGJ

JANUS_SETUPSIG_I EQU 1

setupsig.i—data structure for SetupJanusSigO routine
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

IFND EXEC.TYPES.l

INCLUDE ‘exec/types, i’

ENDC

IFND EXECJNTER RUPTS.l

INCLUDE ‘exec/interrupts.i’

ENDC

146

STRUCTURE SetupSig,IS_SlZE
APTR ss_TaskPtr

ULONG ss-SigMask
APTR ss_ParamPtr

ULONG ss_ParamSize
UWORD ssJanuslntNum
LABEL SetupSig_SiZEOF

. ENDC

janus.h—software conventions forjanus subsystem
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

#ifndef EXEG.TYPESJ
#include ‘‘exec/types.h'’
#endif EXEC.TYPESJ *

#ifndef EXEC_LIBRARIES_I
#include "exec/libraries-h"
#endif EXEC.LIBRARIESJ

#ifndef EXEC_I NTERRUPTS J
^include “exec/interrupts.h”
#endif EXECJNTERRUPTSJ

/*

** As a coding convenience, we assume a maximum of 32 handlers.
** People should avoid using this in their code, because we want
** to be able to relax this constraint in the future. All the
** standard commands’ syntactically support any number of

interrupts,
** but the internals are limited to 32.
*/

#define MAXHANDLER 32

typedef UWORD RPTR;

I* JanusAmiga — amiga specific data structures forjanus project */

struct JanusAmiga [
struct Library ja_LibNode;
ULONG jaJntReq; /* software copy of outstanding

requests */
ULONG jaJntEna; t* software copy of enabled

interrupts */
UBYTE *ja_ParamMem; /* ptr to (byte arranged) param

mem */

147

UBYTE *ja_loBase; /* ptr to base of io register region */
UBYTE *jaJixpanBase; f* ptr to start of shared memory */
APTR ja_ExecBase; /* ptr to exec library */
APTR ja_SegList; /* ptr to loaded code */
struct Interrupt **ja_lntHandlers;/* base of array of int
handler ptrs */
struct Interrupt ja_lntServer; /* INTB_PORTS server */
struct Interruptja_ReadHandler;/* JSERV_READAMIGA

handler *7

]:
/* hide a byte field in the lib_pad field V
#define ja_SpurriousMask lib-pad

/* magic constants for memory
#define MEM-TYPEMASK
#define MEMB.PARAMETER
#define MEMB.BUFFER

#define MEMF.PARAMETER
#define MEMF.BUFFER

allocation */
OxOOff /* 8 memory areas */
(0) /* parameter memory */

(1) /* buffer memory */

(1 <<0) /* parameter memory */
(1<<1)/* buffer memory */

#define MEM-ACCESSMASK 0x3000 /* bits that participate in
access types */

#defme MEM.BYTEACCESS 0x0000 /* return base suitable for
byte access */

#define MEM.WORDACCESS Oxl 000 /* return base suitable for
word access */

#define MEM-GRAPHICACCESS0x2000 /* return base suitable for
graphic access */

#define MEMJOACCESS 0x3000 t* return base suitable for
io access */

#define TYPEACCESSTOADDR 5 /* # of bits to turn access
■ • mask to addr */

#define JANUSNAME ‘janus.library”

janusreg.h —janus hardware registers (from amiga point
of view)

Copyright © 1986, Commodore Amiga Inc., All rights reserved

/* hardware interrupt bits all bits are active low */
#define JINTB.MINT (0) /* mono video ram written to */
#define JINTB.GINT (1) /* color video ram written to */
#define JINTB.CRT1 INT (2) /* mono video control registers

changed */

#define JINTBXRT2INT (3) /* color video control registers
changed */

#define JINTB.ENBKB (4) /* keyboard ready for next
character */

148

#define JINTB-LPT1 iNT (5) /* parallel control register 7
#define JINTB_COM2INT (6) /* serial control register 7

#define JINTB_SYS!NT (7) /* software int request 7

#define JINTF.M1NT (1«0)
#define JINTF_GINT (1«1)

#define JINTF_CRT1 INT (1«2)
#define JINTF.CRT2INT (1 «3)

#define J1NTF.ENBKB (1 «4)
#define JINTF_LPT1 INT (1 «5)
#define J1NTF.COM21NT (1«6)
#define JINTF_SY51NT (1 «7)

/*

** The amiga side of the janus board has four sections of its address

space.
** Three of these parts are different arrangements of the same
memory. The
** fourth part has the specific amiga accessible 10 registers (jio—
??).
** The other three parts all contain the same data, but the data is

arranged
** in different ways: Byte Access lets the 68k read byte streams

written
** by the 8088. Word Access lets the 68k read word streams
written by the
** 8088. and Graphic Access lets the 68k read medium res graphics
memory
** in a more efficient manner (the pc uses packed two bit pixels:

graphic
* access rearranges these data bits into two bytes, one for each bit

plane).
7

#define ByteAccessOffset 0x00000

define WordAccessOffset 0x20000
#define GraphicAccessOffset 0x40000
#define loAccessOffset 0x60000

#definejio_lntReq Oxl ffl /* read clears, pc -> amiga
ints 7

#definejio_PcintReq 0x1ff3 /* r/o. amiga -> pc ints 7
#definejio_ReleasePcReset Oxlff5 /* r/o. strobe release pc’s

reset 7
#definejio_RamSize 0x1 ff7 /* r/o, give ram addresses */
#definejio_lntEna Oxl ff9 f* r/w. enables pc int lines */
#definejio_PclntGen Oxlffb /* w/o, bit = = 0 -> cause

pc int */

#defmejio_Control Oxlffd /* w/o, random control lines
7

149

#definejio_RamBaseAddr Oxlfff I* r/w, sets extra ram base
address */

/* now the maqic bits in each register (and boy, are there a lot of
them!) */

/* bits for PclntReq. PcIntGen registers */
#define JPCINTBJRQ1 (0) /* active high */

#define JPCINTBJRQ3 (1) /* active low */

#define JPCINTBJRQ4 (2) /* active low */

#define JPCINTBJRQ7 (3) /* active low */

#define JPCINTFJRQ1 (1«0)
#define JPCINTFJRQ3 (1«1)
#define JPCINTFJRQ4 d«2)
#define JPC1NTFJRQ7 (1«3)

/* pc side interrupts */
#define JPCKEYINT (Oxff) /* keycode available */ —

#define JPCSENDINT (Oxfc) /* system request */
#define JPCLPTUNT (0xf6) /* parallel port acknowledge */

/* bits for RamSize */
#define JRAMB_EXISTS (0) /* set if there is any ram at

all */

#•“

#define JRAMB-2MEG (1) /* set if 2 meg, clear if 1/2
meg */

#define JRAMF_EXISTS (1«0) —■

#define JRAMF_2MEG (1«1)

/* bits for control register */
#define JCNTRLB_ENABLEINT (0) /* enable amiga interrupts */
#define JCNTRLB_DI5ABLEINT (1) /* disable amiga interrupts */
#define JCNTRLB_RESETPC (2) /* reset the pc. remember to

strobe */
/* ReleasePcReset afterwards */

#define JCNTRLBlCLRPCINT (3) /* turn off all amiga->pc ints */

/* constants for sizes of various janus regions */
#define JANUSTOTALSIZE (512*1024) /* 1/2 megabyte */
#define JANUSBANKSIZE (128*1024) /* 128K per memory

bank */

#define JANUSNUMBANKS (4) /* four memory
banks */

#define JANUSBANKMASK (0x60000) /* mask bits for bank
region */

150

janus.h—the software data structures for the janus board
Copyright © 1986, Commodore Amiga Inc., All rights reserved

/* all bytes described here are described in the byte order of the
* 8088. Note that words and longwords in these structures will be
* accessed from the word access space to preserve the byte order in

* a word — the 8088 will access longwords by reversing the words:
* like a 68000 access to the word access memory.

7
/* JanusMemHead — a data structure roughly analogous to an exec

mem chunk.
* It is used to keep track of memory used between the 8088 and the

68000.

7

struct JanusMemHead [
UBYTE jmh_Lock: /* lock byte between

processors 7

UBYTE jmh_pad0:
APTR jmh_68000Base; /* rptr’s are relative to this 7

UWORD jmh_8088Segment;/* segment base for 8088 7

RPTR jmh_First; /* offset to first free chunk 7

RPTR jmh_Max: /* max allowable index 7

UWORD jmh_Free: /* total number of free
bytes -1 7

r JanusMemChunk — keep track of individual freed chunks of

memory.
* Memory Chunks are longword aligned in this memory.

7

struct JanusMemChunk [
RPTR jmc-Next; /* rptr to next free chunk 7
UWORD jmC-Size; /* size of chunk -1 7

#ifdef undef
this stuff is saved for future use. but is not yet thought out
/* JanusList — an RPTR/Exec style list header.

7
struct JanusList [

RPTR jl—Head:
RPTR jl—Tail;

. RPTR jl—TailPred;
UBYTE jl—Lock: /* lock byte between

processors

151

*/UBYTE jl—padO;

/* JanusNode — an RPTR/Exec style node.
7

struct JanusReqList
[RPTR jn—Succ;
RPTR jn—Pred:
RPTR jn—Name;

UWORD jn—Reqlndex;

]:

/* this' index into jb—
Comm Regs 7

#endif undef

/* Janus Base — the master data table for the janus project It is

located
* at the bottom of parameter memory.*/

struct JanusBase [
UBYTE jb—Lock;

UBYTE jb—8O88G0;
struct JanusMemHead

jb—ParamMem;
struct JanusMemHead

jb—Buffer Mem;
RPTR jb—Interrupts;

., RPTR jb—Parameters;

I* lock byte between

processors 7

/* free mem pool for param
memory

/* free mem pool for buffer
memory 7

/* (UBYTE *) of request

byte-pairs 7
/* array of ptrs to parameter

areas 7
I* number of interrupts &

parameters 7];
UWORD jb—Numlnterrupts;

/* constant to set to indicate a pending software interrupt
*/#define JSET1NT 0x7f

memrw.i—parameter area definition for access to other

processors mem
Copyright © 1986, Commodore-Amiga Inc., AM rights reserved

#ifndef JANUS_MEMRW_H
#define JANUS_MEMRW_H

!*
** this is the parameter block for the JSERV_READPC and JSERV_
** READAMIGA services — read and/or write the other processors

memory.

7

152

struct MemReadWrite [
UWORD mrwXommand

UWORD mrwXount;
ULONG mrw_Address;

UWORD mrw-Buffer;

UWORD mrw_Status;

;/* see below for list of commands */
/* number of bytes to transfer */
/* local address to access. This is */
/* a machine pointer for the */
/* 68000. and a segment/offset */
/* pair for the 808X. The ad- */
I* dressed is arranged so the */

/* native processor may read it */

/* directly. */
f* The offset in buffer memory for */
/* the other buffer. */
/* See below for status. */

]:

/* command definitions */

#define MRWC_N0P 0

#define MRWC.READ 1
#define MRWCLWRITE 2
#define MRWC.READ10 3

#define MRWC-WR1TEIO 4

#define MRWC.WR1TEREAD 5

/* do nothing — return OK
status code */

/* xfer from address to buffer */
/* xfer from buffer to address */
/* only on 808x — read from

10 space */
/* only on 808x — write to

10 space */
/* write from buffer, then read

back */

/* status definitions */
#define MRWS_INPROGRESS$ffff /*

#define MRWS.OK $0000/*
#define MRWSXCCESSERR $0001/*

#define MRWS.BADCMD $0002/*

we've noticed cmd and are

working on it */
command completed OK */
some sort of protection
violation */
command that the server
doesn’t understand */

services.h—define common service numbers between ibm-pc

and amiga
Copyright © 1986. Commodore-Amiga Inc., All rights reserved

#ifndef JANUS_SERV1CES_H
#define JANUS_SERVICES_H

1**1
/* this is the table of hard coded services. Other services may exist

/* that are dynamically allocated.

1**1

153

/* service numbers constrained
#define JSERV.M1NT 0
#define JSERV_GiNT 1
#define JSERV.CRTl 1NT 2

#define JSERV_CRT21NT 3

#define JSERV.ENBKB 4

#define JSERV.LPTI INT 5
#define JSERV.COM2INT 6

by hardware 7
/* monochrome display written to
/* color display written to 7
/* mono display's control registers

changed 7
/* color display's control registers

changed 7
/* keyboard ready for next

character 7
/* parallel control register 7
/* serial control register 7

7

/* hard coded service numbers 7
#define JSERV.PCBOOTED 7

#define JSERV.SCROLL 8
#define JSERV_HARDD1SK 9
#define JSERV.READAMIGA 10
#define JSERV_READPC 11
#define JSERV.AMIGACALL 12
#define JSERV.PCCALL 13

#define JSERV_NEWASERV 14

#define JSERV_NEWPCSERV 15

/* PC is ready to service soft
interrupts */

/* PC is scrolling its screen 7

/* Amiga reading PC hard disk 7
/* PC reading Amiga mem 7
/* Amiga reading PC mem 7
/* PC causing Amiga function call 7
/* Amiga causing PC interrupt 7

/* PC initiating Amiga side of a

new service 7
/* Amiga initiating PC side of a

new service 7

#endif !JANUS_SERVICES_H
#ifndef JANUS_SETUPSIG_H#define

setupsig.i—data structure for SetupJanusSig() routine
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

#ifndef EXEC_TYPES_H
#include "exec/types.h”

#endif

#ifndef EXECJNTERRUPTS.H
#include "exec/interrupts.h''
#endif

struct SetupSig [
struct Interrupt ssJnterrupt;
APTR ss-TaskPtr:
ULONG ss_SigMask;
APTR ss.ParamPtr;
ULONG ss_ParamSize;
UWORD ssJanuslntNum;

]:
#endif

154

PC JANUS SERVICE This service is called via 1NT JANUS.
AH contains a function code

J.GET.SERVICE
Gets a new Service Number
Expects:

nothing
Returns:

AL : New Service Number to use
- 1 if no service available (J_NO_SERVICE)

J_GET_BASE
Gets Segments & offset of Janus Memory

Expects:
AL : Janus Service Number

Returns:
ES : Janus Parameter Segment
D1 : Janus Parameter Offset (if defined),

else -1
DX : Janus Buffer Segment
AL : Status (J_OK, J_N0_SERV1CE)

J_ALLOC_MEM
Allocates Janus Memory

Expects:
AL : Type of memory to allocate
BX : Number of Bytes to allocate

Returns:
BX : Offset of registered memory if success,
AL : Status (J_OK, J-NO.MEMORY)

J_FREE_MEM
Releases Janus Memory

Expects:
AL : Type of memory to free
BX : Offset of Memory to free

Returns:
Crash if offset/type was wrong (J_GOODBYE, later)

J.SET.PARAM
Set the default parameter memory pointer

Expects:
AL : Janus Service Number to support
BX : Default Offset of Param Memory to install

Returns:
AL : Status (J_OK, J_NO_SERVlCE)

JXETJSERV1CE
Set an address for a far call for that service

Expects:
AL : Janus Service Number to support
ES:DX: Entry address for FAR call

Returns:
AL : Status (J_OK, J-NO.SERVICE)

JSTOP-SERVICE
Prevents AMIGA from using the far call (see above) for this function
and releases this Service Number.
No memory is freed up.
No calls are accepted from either side anymore.
Expects:

AL : Number of Service to stop
Returns:

AL: Status (J-OK. J.NOXERVICE)

J CALL AMIGA
Calls the requested function on AMIGA side.
Does not wait for the call to complete.

If J_SET_SERVICE defined, it is internally called on completion.

Expects:
AL : AMIGA Service to call
BX : New Parameter Memory offset to use. - 1 : Use

default offset
Returns:

AL: Status (J.PENDING, J_FINISHED, J_NO_SERVICE)

J WAIT_AM1GA
Waits for a previous issued JXALLAMIGA to complete.
This function is used if no J_SET_SERVICE is defined.
Expects:

AL : Service Number to wait for
Returns:

AL : Status (J_FINISHED, J_NO_SERVICE)

JXHECKJVMIGA
Checks completion status of a pending JXALLAMIGA
Expects:

AL : Service Number to check
Returns:

AL : Status (J.PENDING, J.FINISHED, J.NO-SERVICE)

This is the Interrupt we are using:
JANUS equ Obh
These are the function codes we know:

J_GET_SERV1CE equ 0
J_GETJBASE equ 1
J_ALLOC_MEM equ 2

156

J.FREELMEM equ 3
J_SET_PARAM equ 4
J.SET.SERV1CE equ 5
J.STOP.SERVICE equ 6
J.CALLAMIGA equ 7
J_WAIT_AM1GA equ 8
JXHECK_AM1GA equ 9
Status Returns:
J.NO.SERVICE equ Offh ; no service available
J.PEND1NG equ 0 ; after JXALLAMIGA and

JXHECH-AMIGA

J FINISHED equ 1 ; after J.CALLAMIGA and
J_CHECK_AM1GA

j_OK equ 0 : general good return
J.NO.M EMORY equ 3 ; requested memory not available
JJLLFNCTN equ 4 ; Illegal function code used in AH

Disk request structure for higher level Amiga file request from 8086:

AmigaDskReq STRUC
adr.Fnctn DW ? function code (see below)

adr-File DW ? file number
adr_OffseLh DW ? byte offset into file high

adr_Offset_l DW ? byte offset into file low
adrXount_h DW ? number of bytes to transfer high
adrXountJ DW ? number of bytes to transfer low

adr.BufferAddr DW ? offset into MEMF.BUFFER memory
for buffer

adr.Err DW ? return code, 0 if all OK

AmigaDskReq ENDS

Function codes for AmigaDskReq adr_Fnctn word
ADR-FNCTNJN1T EQU 0 currently not used
ADR_FNCTN_READ EQU 1 given file, offset, count, buffer
ADR_FNCTN_WRITE EQU 2 given file, offset, count, buffer
ADR_FNCTN_SEEK EQU 3 given file, offset

ADFLFNCTNJNFO EQU 4 currently not used
ADR-FNCTN-OPEN-OLD EQU 5 given ASCI IZ pathname in buffer
ADR_FNCTN_OPEN_NEW EQU 6 given ASC11Z pathname in buffer
ADFLFNCTNXLOSE EQU 7 given file
ADFLFNCTN_DELETE EQU 8 given ASCI IZ pathname in buffer

Error codes for adr.Err, returned in low byte
ADR.ERR.OK EQU 0 no error

ADFLERR.OFFSET EQU 1 not used

ADR-ERR.COUNT EQU 2 not used

ADR.ERR.FILE EQU 3 file does not exist

ADFLERFLFNCT EQU 4 illegal function code

ADR.ERFLEOF EQU 5 offset past end of file

ADR.ERR.MULPL EQU 6 not used

ADR_ERR_FILE_COUNT EQU 7 too many open files

157

ADFLERFLSEEK EQU 8
ADR.ERFLREAD EQU 9

ADR_ERR_WR1TE EQU 10
ADR_ERR_L0CKED EQU 11

seek error

read went wrong
write error
file is locked

158

Section 5

Amiga Hard Disk/SCSI Controller

DESCRIPTION The Amiga Hard Disk/SCSI Controller is an intelligent high perfor¬
mance controller designed to interface both ST506 hard disk drives
and SCSI devices to the Amiga expansion bus architecture. A back¬

ground command processor provides high level command interpre¬
tation minimizing Host intervention. Data is transferred to and from
the Host via DMA (direct memory access) with FIFO allowing high
data throughput while maintaining reasonable bus bandwidth for

other bus controllers.

FEATURES

• Support for up to two ST506 hard disk drives
• Full SCSI with Macintosh Plus compatibility
• High level command interpretation and exceptional handling per¬

formed by Z80 processor
• Support for up to 8 heads, 2048 cylinder with 512 bytes/sector

• Individually Programmable Drive Characteristics

• 1:1 sector interleave
• 32 bit ECC for data correction
• Multiple block transfers
• Full auto-config compatibility
• Real time data transfer rates of up to 800ns/byte via DMA

SPECIFICATIONS Performance
Hard Disk (ST506)

Encoding method:
Cylinder per head:

Sectors per track:
Sector length:
Heads:
Drive Selects:

Step Rate:
Data Transfer Rate:
Write Precomp Time:
Sector Interleave:
Sector Interleave Across Heads:

Ecc Polynomial:
Burst Error Correction:

MFM
Up to 2048
Up to 17
512

8
2
3.2 us to 6.5 ms
5.0 Mbit/sec.
12 nanosec.

1:1
1:2
32 bits
11 bits

CONNECTOR PIN
ASSIGNMENTS

SCSI
ANSI X3T9.2 compatible

Macintosh Plus compatible connector

Host Interface
Amiga expansion bus compatible
Full auto-config compatibility

Power Requirements
+ 5 Volts ± 5%, 3 Amps. Max.

Environmental
Ambient Temperature: 0 - 55 Deg. C.
Relative Humidity: 20% - 80%

The following tables list the pin assignments for the controller
board.

Table 5-1 — Connectors J1 and J2
Disk Serial Data Pin Assignments

Ground Signal
Return Pin

2 1
4 3
6 • 5

8 7

10 9
12 11

13
14

16 15
17
18

20 19

Signal Name
Drive Selected
Reserved
Write Protected (J1 Only)
Reserved
Cartridge Changed (J1 Only)
Ground (GND)
MFM Write Data +
MFM Write Data-
Ground (GND)
MFM Read Data +
MFM Read Data-
Ground (GND)

160

Table 5-2 Connector JO
Disk Control Signal Pin Assignments

Ground Signal
Return Pin Signal Name

1 2 Head Select 3

3 4 Head Select 2

5 6 Write Gate

7 8 Seek Complete

9 10 Track 00

11 12 Write Fault

13 14 Head Select 2

15 16 Reserved

17 18 Head Select 1

19 20 Index

21 22 Ready

23 24 Step

25 26 Drive Select 1

27 28 Drive Select 2

29 30 Reserved

31 32 Reserved

33 34 Direction In

Table 5-3
Connector CN1, SCSI

SCSI Connector (DB-25) Female

Pin Name
1 REQ

2 MSG

3 I/O

4 RST

5 ACK

6 BSY

7 GROUND

8 DBO

9 GROUND

10 DB3

11 DB5
12 DB6

13 DB7

14 GROUND

15 C/D

16 GROUND

17 ATN

18 GROUND

19 SEL

20 DBP

21 DB1

22 DB2

23 DB4

24 GROUND

25 N.C.

161

Reference

FUNCTIONAL
DESCRIPTION

Host Interface

ST506 Hard Disk
Controller (HDC)

• 8727 DMA Specification
• Amiga Expansion Architecture Manual
• Motorola 68000 Technical Manual
• Western Digital WD33C93 SCSI Chip Manual
• American National Standard Committee X3T9.2 SCSI Specifica¬

tion

The Amiga Hard Disk Controller basically consists of three main sub¬

sections:

• Host Interface
• ST506 Hard Disk Controller (HDC)
• SCSI Controller

The host interface is 68000 compatible with direct memory access
and full auto-config capability. Data transfers to and from the host
are usually made via DMA thereby allowing real time date transfer
rates of 1.6us/byte for the ST506 interface and up to 800ns/byte
for SCSI. Addressing for DMA operations is provided by three exter¬
nal address counters. Before any DMA operation can be performed
each counter must be pre-set and thereafter will be incremented
automatically. Information on initializing the DMA appears later in
this section.

The DMA is a Commodore custom LSI chip (8727) with byte to word
tunneling and a built in 64 byte FIFO. The internal 64 byte FIFO per¬
mits real time data transfer to and from the host without holding the
bus for an entire sector transfer. This provides very effective utiliza¬
tion of the bus. The average bus requirement for the transfer of an
entire sector is 8.9|xs once every 512\is. This amounts to only 17%
over for CPU and other bus masters.

The interface logic also provides full auto-config and all I/O decode.

For electrical specification and detailed timings refer to Amiga ex¬

pansion architecture manual.

The ST506 Hard Disk controller is an intelligent background control¬
ler capable of high level command interpretation and support of up
two ST506 hard disk units. This controller will be refered to in this
document as the HDC or the Hard Disk Controller. The processor for
the HDC is a Z80A CPU. with up to 8K of PROM for firmware and
1K of RAM for variable data. Collectively, the above components
constitute the "intelligence" of the controller.

162

The DJC Custom Chip

The design that has gone into this aspect of the controller has been

to enhance performance and increase flexibility while reducing cost

As a result, the majority of operations have been placed in firmware.
The only functions performed by “hardware” are those that are too

fast for the processor.

The Z80A CPU and its associated PROM and RAM collectively per¬

form the following functions:

1. Power up initialization
2. Diagnostics
3. Error recovery
4. Error reporting
5. Error correction
6. Command processor

7. Disk select
8. Seek
9. Write precomp select, reduced write current

10. Head select
11. Mapping
12. Logical to physical address translation

Physical to logical address translation

The DJC is a custom LSI chip. It has been designed to handle all serial
data, state machine and DMA functions as described below:

ERROR CORRECTION CODE

The error correction polynomial is a 32-bit code capable of correct¬

ing up to 11 -bit burst errors.

In keeping with the overall design philosophy, the ECC circuitry gen¬
erates the write syndrome and validates the read without requiring
the processor to handle the data. Calculating this polynomial with the
processor would seriously degrade the performance of the ST506
controller. Calculating the reverse polynomial to correct bad data is
done by the processor. It is accomplished without any measurable ef¬
fect on performance because the operation is only done after multi¬

ple retries and as such is seldom necessary.

HEADER VERIFICATION

Once a disk has been formatted, the DJC converts the desired record
address on the disk. The conversion is done in terms of head, track
and sector address, with a CRC code tested to further insure posi¬
tional integrity. A comparison is then made of the header before a
read or write function is performed.

163

TWO INDEX TIMEOUT

Selectable Precomp

MFM Decode

This function insures accurate control over the number of attempts
to find a header (i.e.. it is not ‘‘mislead’' by counting false address
marks).

MFM ENCODE

The DJC converts all parallel data to serial and then to MFM. This
function is followed by Precomp, if selected.

In Precomp, a “string” of pulses is analyzed to determine if they are
arranged in the unique manner that could cause them to crowd once
written on the disk. It also determines which way the crowding
would distort the pulses when read. The write pulse stream is then
shifted, early or late, to compensate for the crowding conditions,
which normally occur on the innermost tracks of the drive.

Under the processor’s control, the DJC precomps the disk MFM data

by using external inductive delays. Precomp is selectable and is de¬
signed to shift the MFM data early or late by 12 nanoseconds to im¬
prove read margins.

The use of this feature should be performed in conjunction with the
particular drive manufacturer’s specification.

Data received from a disk drive is MFM, a self-clocking serial data
stream which contains a phase locked loop, lock detect, missing clock
detect and the data seperator.

When the DJC asserts Read Gate, the 8465 data seperator will at¬
tempt to lock its phase locked loop on the read data. If this does not
occur within 4.8 usee, the DJC will turn off Read Gate, causing the
8465 to be placed into the low track rate for increased stability.

The MFM data is now decoded into NRZ data and clock for the DJC.
The 8465 decodes a missing clock bit and a hexidecimal A1, FD or an
A1, F8 in the sync field. This data indicates the start of a valid header
or data field. Receiving any other data causes the DJC to abort the
read. Another read would be tried after resyncing the 8465 to 10
MHz.

164

Sector Format Figure 5.1 describes the format of a typical sector.

Figure 5.1
Typical Sector Format

SYNC 1 A1 FD HEADER WRITE SPLICE SYNC 2 At F8 DATA 4 BYTE ECC

■512 BYTES

-ADDRESS MARK

I-4 BYTE HEADER

BYTE 1 = HEAD #
BYTE 2 = TRACK ADDRESS

BYTE 3 = SECTOR #

BYTE 4 = CRC

Note: 1. Address Mark is a Hex 1 with a missing clock pulse.

2. SYNC field 1 is comprised of 16 bytes of zeros.
3. SYNC field 2 is comprised of 15 bytes of zeros.

Error Recovery
Philosophy

Extensive measures have been taken in the design of the controller
to insure reliable data. Selectable precompensation circuitry and a
sophisticated data seperator with two tracking rates are a few exam¬
ples. Additional effort has been made to reduce the probability of
miscorrection (of having bad data flagged as corrected) through de¬
sign and options made available to the systems integrator.

In a write operation the controller only precomps the unique combi¬
nations of data that might cause crowding conditions on the disk.
Shifting data early or late by 12 nsec is done to retain as much of the
50 nsec data window as is possible. This reduces the probability or

errors occurring.

In a read operation the data seperator phase lock loop (PLL) provides
two tracking rates, a high and a low, which allows for quick synchro¬
nization with the header address in the first case and stable data
transfer in the second. The controller only contributes a maximum of
6 nsec (typically 3 nsec) of window error out of the allowable error
window of 50 nsec. This allows the disk drive to have up to 44 nsec
of jitter before error recovery/correction is needed.

The controller uses a 32-bit error correction code that enables an er¬
ror correction span of up to 11 bits. This computer-generated code
is considered superior to fire codes because it substantially reduces
the chances of mis- correction while providing the full 11 -bit correc¬

tion span.

165

SCSI Controller

I/O DEFINITIONS

In data recovery and error correction the ECC syndrome must be
stable in order to perform a correction. This insures that multiple at¬

tempts are made to recover marginal data before correction data is
applied and further reduces the probability of miscorrection on long
(greater than 12-bit) error bursts.

The significance of not correcting data unless the ECC syndrome is
stable is that 1) noise induced errors are not corrected and 2) real
errors are corrected quickly without wasting time on useless retries.

The user can improve data reliability by mapping tracks with flaws
and by reducing the error correction span. The latter reduces the
odds of mis-correction on large errors (greater than 12 bits) and
provides for early detection of a degrading media. The controller can
be programmed to report or not report "soft" errors, on reads that
took multiple tries but did not need correction.

Monitoring soft errors is probably the best method of early detec¬
tion. A correction span of seven (7) bits is thereby suggested as an
optimum in data integrity. An alternate eleven (11) bit correction

span could be used as a means to retrieve the data before the track is

mapped.

The SCSI controller uses the Western Digital WD33C93-SBIC which
provides the actual interface to the SCSI connector and supports the
full SCSI protocol minimizing host responsibilities. The WD33C93 is
supported with a flexible architecture allowing either the 68000
(host) or the Z80A (board processor) to control the WD33C93 oper¬
ations. Data transfer can be done via DMA or host I/O. For detailed
information refer to Western Digital WD33C93 manual.

The following I/O addresses refer only to offset location since the ac¬
tual board location in physical memory is configurable as described
elsewhere in this manual. Refer to this manual for details on auto-
config I/O descriptions. I/O locations 0 hex through 42 hex are writ¬
ten out as nybbles or 4 data bits (ADI 2-AD 15). I/O addresses 50H -
68H are unique to this board and are described later in this docu¬
ment.

Hex Location Definitions
00/02 Boardtype and size

04/06 Product number

10/12 Mfg# high and
14/16 low byte

166

40/42

15/14/13/12 15/14/13/12

WRITE READ

Interrupt enable
DON'T CARE
MUST BE ZERO
*CCBP bit
INT2 PENDING
ZERO
ZERO
INT FOLLOW

* Signals unique to Amiga Hard Disk/SCSI Controller.

SSEL Used to select SCSI controller or to ST605
controller. High = SCSI, low = ST506.

HCBP.CCBP Host command block pointer and Controller
command block pointer. Used to handshake
address of Command block pointer to ST506

48H Base address register

Interrupt enable
*SSEL
MRESET

*HCBP bit
not defined
not defined

not defined
not defined

I/O addresses unique to soh
board

52H

PROCC-Interrupt ST506 controller to process
command. Write only. Data value written from
host is XXXI hex.

WRCBP/INTACK - Multiplexed signal. WRCBP
strobes the command block pointer register. IN-
TACK clear INTP at end of command.

SCSI Controller 60H CS - Chip select for the WD33C93 SCSI chip.

Used to write to the internal address register and
read from the internal status register.

62H CS - Chip select for the WD33C93 SCSI chip.
Used to write and read remaining Control regis¬
ters in the WD33C93.

64H SCSI PCSS - Used to initialize the 8727(DMA) in
SCSI mode. Refer to section 5.0 for 8727 com¬
mands

68H SCSI PCSD - Used to pas data to and from the
8727 in SCSI mode. Refer to section 5.0 for
transfer procedures.

167

HOST INTERFACE
PROTOCOL

Interface Protocol

DMA Commands

The host interface is via a DMA controller. This DMA device is con¬
trolled by the Z80A on the disk controller board or 68000 (host). On
the host side there are counters for the address bus that are preset
before the beginning of each transfer. Three bytes must be written

for the 23 address lines (A23-A1). The MSB (corresponding to A24)
of the upper address latch is used to control the host R/W- line for
DMA transfers. This line is set high to read from the host memory
and low if a write is intended. The DMA logic, contained in one chip,
can be configured to transfer a single word (2 bytes) or 256 words
(512 bytes). Transfer are always on even byte boundaries.

The method of communicating to the DMA circuit is by two control
lines PCSS- and PCSD-. controlled by the Z80 or 68000. PCSS- is al¬
ways strobed first to strobe in the “state” on the data bus. The state
will determine the function to be performed on the succeeding
PCSD- strobes. Not all valid states need to be followed by a PSCD-

strobe and for each state loaded. PCSD- can be strobed any number
of times. When reading the host status for instance, the expected
number of PCSD- strobes need not be given, but when writing to the
DMA controller the correct number of PCSD- strobes must always be

given.

The valid commands, for DMA operations, are summarized in the ta¬
ble below. All data values are listed in hex.

Multiple states can be strobed into he DMA controller as long as no
bus contention occurs. Notice that the state bits 4-0 are low in one
position only for all the valid states. This implies that any state that
does not require transfer of data by the following PCSD- can be

combined and set simultaneously. Hence a single word transfer and
start DMA cycle can be combined as DE. Some states are mutually ex¬
clusive such as F7 (transfer data to or from the FIFO) and EF (read¬
ing the DMA status). Similarly state D6 is illegal since word transfer
and the FIFO path open will result in BUS contention. State FC is per¬
mitted as long as the same data is to be written in the DMA mid ad¬
dress latch and DMA low address counter. Other such valid states can

be similarly derived.

168

Table 5-4. DMA States

Data Strobed Brief Functional Data Valid

by PCSS- DESCRIPTION PCSD- (R/F)

FB 1111 1011 Load upper DMA address latch F

FD 1111 1101 Load mid DMA address latch F

FE 1111 1110 Load low DMA address latch; start DMA

on rising edge of LDO; block mode XFER

F

F7 1111 1111 Open path to int. DMA FIFO (64 bytes) R

EF 11101111 Read internal DMA status
DB7= 1 if no DMA or DMA cycle complete
DB6 = 1 if byte avail, from or to FIFO

DB5= 1 if no FIFO overflow or underflow

R.

9F 1001 1111 Force IREQ- to high impedance X

BF 1011 1111 Command complete signal to host X

DF 1101 1111 Set DMA into a single word transfer X

7F0111 1111 Reset DMA and dear FIFO followed by FF X

FF 1111 1111 to ensure proper DMA reset. X

Load Upper DMA
Address Counter (FB)

The LD2 output of the DMA chip is set low on the rising edge of
PCSS- and then set high on the falling edge of PCSD-. This loads the
R/W- and the upper 7 address lines A23-A17 from the data bus into
a counter on the rising edge of LD2. This 8 bit counter need not be
reloaded if its contents are to remain unaltered in the succeeding op¬

erations.

Load Mid DMA Address
Counter (FD)

Address lines A16-A9 are loaded into another counter in the same
manner as above by the rising edge of LD1. This 8 bit counter also
need not be reloaded if its contents are to remain unaltered in the

succeeding operations.

Load Low DMA Address
Counter (FE)

On the falling edge of PCSD-, LDO is set high to load the address lines
A8-A1. The rising edge of LDO will start the DMA circuit. This also
implies a block mode transfer operation, since bits 7-4 are all high.
On power-up the DMA controller defaults to the block transfer
mode. It should be noted that all three address counters mentioned
above are cascaded allowing for the continues transfer of up to 64

Kbytes.

169

FIFO Access (F7)

Read DMA Status (EF)

Reset IREQ- (9F)

This state opens a path to an internal FIFO that is 64 bytes in length.
The falling edge of PC5D- will start to shift data out of the FIFO for a

read or shift data into the FIFO on the rising edge of PCSD- if the
R/W- was set low with LD2. The DMA will initiate host memory ac¬
cess, done a word at a time, whenever the FIFO is half full. A typical
memory access without any wait states takes 4 cycles, each cycle be¬

ing about 140 nS.

The host DMA status must be read before initiating any data trans¬
fer, since its FIFO can be shared by another device. At the end of ev¬
ery word or block transfer initiated by the hard disk controller, the
status must be read to ensure successful data transfer completion.
Status is not read after every word in a block transfer. After the last
byte, in a block transfer, has been strobed into the DMA controller
approximately 12 uS are needed to ensure that the DMA status lines
are all high. To read the status, any number of PCSD- strobes may be
used before initiating another DMA cycle. The DMA internal status
available after the falling edge of PCSD- is interpreted as follows:

DATA BIT 7: This line will be high if no DMA was requested or

a DMA cycle was completed. After completion of
a word or a block transfer, this bit will be set
high. A low indicates DMA busy status.

DATA BIT 6: This bit is high if a byte of data is available to be
read from the FIFO, or if there is a byte to be
written and the FIFO is not full. At the end of a
block write operation to the disk, since there are
no more bytes available, this bit is set low.

DATA BIT 5: This line is low if the FIFO overflowed or
underflowed. This may occur during a disk
transfer if the DMA circuit does not receive a bus
acknowledge signal from another device on the

68000 motherboard, before the FIFO becomes
full or empty. Under this condition the FIFO is
cleared by the Z80, before any other data
transfer can be initiated.

DATA BITS 4-0: These data lines will be logic zero.

This state will force IREQ- line to high impedance. It is set low by the
host

170

Command Complete
Acknowledge (BF)

Word Transfer (DF)

Reset DMA (7F)

HOST/HDC COMMAND
PROTOCOL

Step 1: Setting Up The
DMA Address

Step 2: Reading Data

This will cause the assertion of the host vectored interrupt line to its
active low state to indicate the completion of a command by the

HDC.

This will set the internal DMA circuit into a single word tranfer. On
completion of the word transfer, the DMA resets to a block transfer

mode. Hence this state must be strobed for every word transfer de¬

sired.

This state, followed by state FF. resets the DMA circuits and clears
the FIFO. This state should be strobed on power-up and to clear any

FIFO underflow or overflow conditions.

Commands are passed to the HDC through the DMA circuit When
the host requires a disk transfer a command block will be setup in

the 68000 memory followed by the host asserting the IREQ- line

low. The Z80 will then go through a sequence for each IREQ as dis¬

cussed below:

State FB is loaded into the DMA circuit with PCSS- followed by
PCSD- with the hex value of desired high ordered address. Bit 7 of
the data bus determines the direction of the transfer, a low will
cause a write operation to host and a high will cause a read from

host.

Then state FD is loaded into the DMA circuit with PCSS followed by
PCSD- with the value of desired address on the data bus. This sets up

address lines A16-A9.

State DE is loaded with PCSS- for a word transfer. A value of 06 is
loaded with PCSD- to point to the 12th and 13th bytes of the com¬
mand block. On the falling edge of PCSD- the DMA word cycle will
begin. Byte 12 must be FF before the command is executed.

The state EF is loaded with PCSS- so that on the falling edge of
PCSD- internal DMA status will be outputed. The data lines DATA7,
DATA6, and DATA5 are examined until they are high indicating com¬
pletion of the DMA cycle and that data has shifted through the FIFO.
For a block write operation to the disk, DATA6 is examined until low.
The HDC will sample the status for about 20 mS. until the data bus

171

Step 3: Reading The
Command Block

Step 4: Data Block
Transfer

Step 5: Command
Completion

COMMANDS

Command Block

contains EO or AO, before attempting to clear the FIFO and retrans¬
mit the block of data, if necesssary. If the FIFO cannot be cleared

after within 20 mS, the command will be terminated in the normal
manner, if possible.

If byte 12 is an FF. the rest of the command block is retrieved by the
CMD. This requires the execution of Step 1 (LDO only) followed by
Step 2 four times. The data value for state DE of Step 1 is incre¬
mented from 00 to 03, by the HDC for each word transfer to get all
eight command bytes.

Block transfers are initiated as in Step 1 except that the third state
loaded is FE. The state DE was a single word transfer. The direction
of transfer is determined by data line DATA7 when initializing the
high order address lines. Status is read by the HDC at the end of
every block or word transfer, and at the start of every new com¬
mand.

To complete a command status must be returned to the host The
status information returned is that defined by the ‘Request Sense’
command. To do this. 2 status words must be transferred to the
command block. The host DMA is setup for a word transfer, by set¬
ting the LD2, LD1, and the LDO counters similar to the read of the
command block byte 12 (see Step 1). The four status bytes: ERROR
CODE, LUN:LADD2, LADD1. and LADDO are loaded into the FIFO on
the rising edge of PCSD-, a word at a time. As usual, the DMA status
is examined, between word transfers. If the command, just executed
by the HDC required a disk access, then the ADV (address valid) bit is
•set. Otherwise ADV = 0 to indicate that the LSA, reported in the 4
byte status block, is meaningless. This completes the instruction. The
host is acknowledged by writing state BF to set the host vectored in¬
terrupt line low. Also IREQ- is deasserted by the HDC.

In the 68000 memory located at an address determined by Amiga
DOS is a 16 byte command block. The first byte received through the
FIFO is the MSB even byte, followed by the LSB odd byte. During the

command block transfer phase. 8 bytes specifying the command are
read by the HDC. The command block is organized as follows:

172

Table 5.5. Host Command Block

Command Class

Operation Code

Logical Unit Number

BYTE WORD

0 0
1 0

2 1
3 1

4 2

5 2

6 3

7 3

8 4

9 4

10 5

11 5

12 6

13 6

14 7

15 7

Byte 0 must be specified for all commands. Depending on the value of
Byte 0. each parameter in Bytes 1 through 5 may require specification.
Table 6.2 specifies the supported commands and their parameters. It
also includes information in data transfers required during execution.

All other commands are reserved.

6 5 4 3 2 1

Command Class OP Code

Logical Unit Number Logical Sector Address (High)

Logical Sector Address (Middle)

Logical Sector Address (Low)

Block (sector) Count

Control Byte (reserved in DMA spec)

High Order DMA DB Address (A23-A17)

Mid Order DMA DB Address (A15-A9)

Low Order DMA DB Address (A1-A8)

Reserved

Reserved

Reserved

ADV Error Type Error Code

LUN LADD 2

LADD1

LADDO

There are eight command classes. Command class 0 contains the
commands used in normal operation. Command class 7 contains the
diagnostic commands. Command classes 1.2. 4. 5. and 6 are re¬

served for future use.

There are 32 operation codes in each command class. For a descrip¬
tion of all the available op codes see the Command Description Sec¬

tion.

This is contained in the upper three bits of Byte 1 specifyfing one of
eight logical unit numbers. Logical units 0 and 1 are hard disk drives
0 and 1 respectively. Logical units 2 and 7 are reserved for future
use. The HDC reports an invalid command if the logical unit number
is out of range. However, for error reporting, all even LUN’s are
treated as drive 0 and all odd LUN’s are treated as drive 1.

173

Logical Sector Address

Block Count

Control Field

DMA Memory Address

A logical sector address is a 21 bit unsigned integer that specifies a
unique physical sector. The one-to-one correspondence between the

set of logical sector addresses and the set of physical sectors is com¬
puted by the HDC from the Cylinder (C), Head (H), and Sector (S)
address, as well as the drive parameters, heads per drive (HD) and
Sectors per track (ST):

L = (((C * HD) * H) * ST) + S

C. H and S can be derived from L. HD. and ST as follows:

S = L Modulo ST
H = ((L-S)/ST) Modulo HD
C = (((L-S)/ST)-H)/HD

This field specifies a sector or the first sector for the Read and Write
Drive commands. When only a track specification is required, the sec¬
tor number implied by the Logical Sector Address is ignored. Hence
each format type command begins operation at the beginning of the
track containing the specified sector. The HDC will report an invalid
command, if the logical address specified is out of range.

The sector count is a parameter for each data transfer command. It
specifies the number of logical sectors to be transferred during any
disk READ or WRITE operations. The sector count is an unsigned,
non-zero integer. All zeros in the sector count field specify a count of
256.

For a format command, the number of sectors to be formatted per
track is specified by this byte. The interleave factor need not be ex¬
plicitly furnished by the host, since it is implicitly contained in the in¬
terleave table furnished by the host.

The control field is reserved for future use.

The next three bytes, bytes 6, 7, and 8. make up the 23 bit address
which points to the block of 512 byte to be transfer via DMA. This
block of memory contains data bytes or specifies an address value as
required by the command to be executed. Since the R/W- bit is part
of the LD2 memory address counter, address bits A1-A23 are shifted
right 1 bit by the HDC before being stored for command execution.

174

Status and Error Bytes

Error Bytes

At the completion of each command the HDC will return status in the
last four bytes (12-15) of the command block. The status format is

similar to that returned by the 'Request Sense' SCSI command. This
four byte block contains error and status information pertaining to
the last block of data transferred or a non-disk operation executed
by the HDC. The ADV bit will be set. to indicate a valid address, if the
last operation required a disk access, otherwise ADV = 0.

The logical unit number returned is simply the contents of the logical
unit field, where the error occurred, as defined in the drive control
block. For those commands that do not take a logical unit number as
an input parameter, the logical unit number returned in the com¬
mand status byte is not meaningful.

A list of possible error codes, along with their descriptions, follows:

The logical sector address bytes are to be in the same format as that
defined in the command block. Bits 3-0 of the error byte is used for
the error codes. Bits 4.5 indicate the error type and 7 is the ADV bit.

Bit 6 is not used presently.

Disk Drive Error Codes (Type 0)

0 No error
1 No Index
2 Seek not complete
3 Write fault
4 Drive not ready
6 Track 0 not found

Controller Error Codes (Type 1)

11 Uncorrectable data error
12 Address mark not found
13 Sector not Found. Read
14 Sector not Found. Write
15 IDNF error

Command Error Codes (Type 2)

20 Invalid command
21 Invalid sector address
22 invalid LUN

Hardware Error Codes (Type 3)

30 RAM failure (HDC)
31 ROM Checksum Error
32 Host DMA status error

175

Error Code Description No Error

A code of 00 or 80 is returned if no errors were detected during the

execution of the last operation.

No Index (1)

The HDC does not detect index signal from drive.

Seek in Progress (2)

This error code is only returned by the test drive ready command
when the target drive is a hard disk that supports buffered seeks. It
indicates that drive is busy doing a buffered seek. No other command
will be executed on the selected drive, until the seek is completed.

Write Fault (3)

This error code is returned by the hard disk drives. It indicates that
there was write current to the head when the write gate was off.
This is a very serious problem and should be fixed immediately. No

command will be executed, when this condition is detected.

Drive Not Ready (4)

No disk operations are executed unless the drive is ready.

Track 0 Not Found (6)

This error code is only returned by the recalibrate command. It indi¬
cates that the track 0 status from the drive did not become active
after the maximum necessary steps towards cylinder 0. Besides drive
malfunction, this type of error usually occurs if more than 1 disk
drive is selected at the same time, either by the HDC or by the option
switches on the supported drives.

Uncorrected Data Error (11)

For a Winchester drive this error code indicates one or more error
bursts in the data field were beyond the error correction codes abili¬
ty to correct. It could also mean that the HDC was unable to obtain a
match of two consecutive syndromes within eight read attempts.
The sector data for the sector in error is sent to the host, prior to

any retries and correction algorithms used.

Address Mark Not Found (12)

It indicates that the header for the target sector was found, but its
address mark was not detected. This is treated like a data field error,
except that no data transfer to the host takes place. If the error per-

176

sists after 8 attempts, an auto-restore is performed, followed by a
reseek, and another 8 attempts to read the desired LSA.

Sector Not Found. Read (13)

The HDC found the correct cylinder and head but not the target sec¬
tor.

Sector Not Found. Write (14)

The HDC found the correct cylinder and head but not the target sec¬
tor.

l.D. Not Found (15)

If the ID field cannot be read correctly after all the retries have been
exhausted, this error code is set and the operation terminated. The
WDC searches for the ID field twice, followed by another 8 attempts
by the HDC.

Format Error (1A)

During a check track command the HDC detects one of the following
errors:
1) Track not found.
2) Bad ID

Illegal Parameters (20.21.22)

These error codes, invalid command (20). illegal LSA (21). and illegal
LUN (22) are self explanatory.

HDC RAM Error (30)

During internal diagnostic the HDC detects a RAM error.

HDC ROM Checksum Error (31)

During internal diagnostic the HDC detects a ROM checksum error.

Host DMA Failure

This error code is set whenever invalid status is read from the DMA
during any data or command access. For most operations the status
checked is EO (hex), except for a block write. In this case the valid
status checked for is AO. The status is read continuously for about
20 mS.

COMMAND
DESCRIPTION

Read Drive Status (Class
0, Opcode 0)

Restore (Class 0,
Opcode 1)

All commands executed by the HDC are summarized in the table be¬
low. Fields of the command block not specified are don't cares. Fol¬

lowing this summary is a generalized description of the commands.

Table 5-6. Command Summary

Command Class LUN LADD Int/ Control Possible

Description OpcodNum (21) BCNT Options Error Codes

Read Drive Status 00 0-1 RDS

Restore to TKO 01 0-1 06, RDS

Request Status 03 0-1 Last Oper.

Check Trk Fmt 05 0-1 L R RDE. RDS. IDA

Format Track 06 0-1 L B S IDA

Read Drive 08 0-1 L B R.S RDE. RDS. IDA

Write Drive OA 0-1 L B R.S 15,19, RDS. IDA

Seek OB 0-1 L RDS. IDA

Set Drive Param. OC 0-1 20.32

Change Command OF 20,32

Block Address/
Read Drive Long E5 0-1 L B R.S RDE. RDS. IDA

Write Drive Long E6 0-1 L B R.S 15,19, RDS, IDA

Init Unit 1 CC 1 20,32

R = 0 Retries/ECC enable S = 0 Set correction span to 5 bits
= 1 Retries/ECC disabled - 1 Set correction span to 11 bits

L = Logical Sector Address B = Block or sector count required

Read Drive Status (RDS) = 02,03, 04.20.32
Illegal Disk Access (IDA) = 20,21.22,32
Read Sector Error (RDE) = 11.12,13,14,15

Action

Read the drive’s status and determine if drive is ready. For Hard disk
drives supporting buffered seeks this command is useful for deter¬
mining the first drive to reach its target track. The command will be

aborted, if the drive status read is incorrect

Possible Error Codes

No error, invalid command, seek in progress, drive not ready, write

fault, DMA error.

Action

178

The Restore command positions the heads to cylinder 0. It is usually
issued by the host when the drive has been turned on, or before a

format drive operation is initiated by the host.

Possible Error Codes

No error, invalid command. Track 0 not found, drive not ready, write

fault, DMA error.

Request Status (Class 0,
Opcode 3)

Action

Send the host four bytes of error information for the specified drive.
The status of the last command executed may have already set the
error register but the execution of this command will not set any
new bits. If however, the command requesting the status is invalid,
then the previous command status will be lost.

Possible Error Codes

No error, invalid command, last operation status. DMA error.

Check Track Format
(Class 0, Opcode 5)

Action

Verify that the specified track is formatted with the correct number
of logical sectors. A multiple read command is issued by the HDC to
verify all the ID fields on that track and the data read back from the
disk is discarded. Retries maybe enabled if desired.

Possible Error Code

No error, invalid command, invalid sector address. IDNF error, drive
not ready, write fault, invalid LUN, seek not complete. DAM found,
uncorrectable data error. DMA error.

Format Track (Class 0,
Opcode 6)

Action

The format track command is used for initializing the ID and data
fields on a specified track. The current contents of the specified track
are overwritten. This command is useful for marking any bad sectors
or tracks after the entire disk surface has been formatted. Assign¬
ment of alternate tracks or simply not specifying bad logical address¬
es is best handled by the host driver routines in the interest of flexi¬
bility and reducing onboard firmware requirements.

Possible Error Codes

179

No error, invalid command, invalid sector address, drive not ready,

seek not complete, write fault, invalid LUN, DMA error.

Interleave
Considerations

During this command the sector is set up by the host to contain addi¬
tional parameter information instead of data. Each sector requires a
two byte sequence. The first byte designates if a bad block (80) or a
good block (00) is to be recorded in the ID field. The second byte in¬
dicates the logical sector number to be recorded on the disk, as

shown below:

Table 5-7. Interleave Factor Table

Addr. Data for an Interleave factor of:
in (Hex)

Hex 1 2 3 4

00 00 00 00 00

01 00 00 00 00

02 80 00 00 00

03 01 09 06 OD

04 00 80 00 00

05 02 01 OC 09

06 00 00 80 00

07 03 OA 01 05

08 80 00 00 80

09 04 02 07 01

OA 00 00 00 00

OB 05 OB OD OE

OC 00 00 00 00

OD 06 03 02 OA

OE 00 00 00 00

OF 07 OC 08 06

10 00 80 00 00

11 08 04 OE 02

12 00 00 00 00

13 09 OD 03 OF

14 00 00 00 00

15 OA 05 09 OB

16 00 00 00 00

17 OB - OE OF 07

18 00 00 80 00

19 OC 06 04 03

1A 00 00 00 00

IB OD OF OA 10

1C 00 00 00 00

ID OE 07 20 OC

IE 00 00 00 00

IF OF 10 05 08

20 00 00 00 80

21 10 08 OB 04

All XX XX XX XX

Rest XX XX XX XX

180

Physical Track Format

These numbers can be from 00 to 10 (hex), or 17 sectors per track
or any number that the host wishes to specify that meets the drive

track capacity. Bad block marks are shown for sector numbers 1 and
4 in all four interleave factors illustrated. The other requirement of
the host is to provide the logical sector number. Using this scheme,
sectors can be recorded in any interleave factor desired. Byte four of
the command block then specifies the number of sectors to be for¬
matted per track. Also the host is free to choose marking individual

sectors or entire tracks bad. At the end of a track format the host
can re-issue the command, for formatting the track across head
boundaries as shown below:

Table 5-8: Interleaving Across Head Boundaries

00 01 02 03 04 OE OF 10
10 00 01 02 03 OD OE OF
OF 10 00 01 02 OC OD OE
OE OF 10 00 01 OB OC OD

Using the above spiral format approach, the HDC has approximately
1 mS for any processing overhead required. This 1 mS loss in the 1:1

performance across head boundaries, assuming a disk rotational
speed of 3600 r.p.m. is reasonable. Across cylinder boundaries, the
1:1 interleave factor cannot be maintained because of the step rates
involved. To format the entire disk using the Format Track com¬
mand the host must update the buffer, if desired, and re-issue the
command every track formatted. This is not really a major advantage
since the host driver routines can easily re-issue the command in a
loop until the entire disk is formatted. This gives the host total flexi¬
bility to format the drive using any clever algorithms for formats
across head and cylinder boundaries instead of a canned approach.

The data fields are filled with FF hex, and the ECC is generated as
specified by the related coding options. The Gap 3 value is deter¬
mined by the drive motor speed variation, data sector length, and the
interleave factor. The interleave factor is only important when 1:1
interleave is used. The formula for determining the minimum Gap 3

is:

Gap 3 = 2xMxS+K + E + V

M — motor speed variation (e.g. .01 for +/- 1%)
S = sector length in bytes
K = 18 for an interleave factor of 1
E = 2 if ECC is enabled
V = number of overhead bytes required for the HDC

between sectors
= 9 (for an interleave factor of 1)

181

Read Drive (Class 0,
Opcode 8)

Write Drive (Class 0,
Opcode A)

Seek (Class 0, Opcode B)

To maximize data read back efficiency and maintain the interleave
factor of one, as closely as possible, it is required that the physical
sector numbers be offset by a sector from track to track, (see table)
so that the HDC has a sector length available for overhead to switch
heads while on the same cylinder.

Action

Read the specified number of consecutive sectors beginning with the
specified sector in the command block to the host computer. If ECC
is enabled, ECC bytes are recomputed by the HDC. After the data is
transferred to the host, the recorded ECC bytes are compared to the
generated bytes to generate the syndrome bytes. If the syndrome is
non-zero, errors have occurred. Error correction is invoked by the
HDC if two consecutive syndromes match, otherwise a maximum of
8 retries are attempted by the HDC.

Possible Error Codes

No error, invalid command, invalid sector address, invalid LUN, IDNF
error, bad block mark, address mark not found, uncorrectable data
error, write fault, drive not ready, seek in progress, DMA error.

Action

The Write Sector command is used to write the specified number of
sectors of data from the host computer to the disk, beginning with
the specified logical address in the command block. The write oper¬
ation is identical to the read, except for error handling and reading
the host status.

Possible Error Codes

No error, invalid command, invalid sector address, invalid LUN, drive
not ready, IDNF error, bad block mark, write fault, seek in progress,
DMA error.

Action

The Seek command positions the R/W head to the cylinder contained
in the logical address. No ID field is read to verify start or end posi¬
tion. Seek It is primarily used to move the RA/V head to the Shipping
zone for transportation of the hard disk.

Possible Error Codes

182

No error, invalid command, invalid sector address, invalid LUN, drive
not ready, write fault. DMA error.

Set Drive Parameters
(Class 0, Opcode C)

Action

This command points to a 6 byte block of memory, specified by bytes
6 and 7 of the command block, that sets the following parameters
for both of the hard disk drives (logical units 0 and 1):

Table 5-9. Set Drive Parameters

D4 D1 DO

User Options Step Rate

Num. of Heads CYL. Nums. MSN

Number of Cylinders LSB

Precompensation Cylinder /16

Reduce Write Current Cylinder /16

Number of Sector per Track

If the above command is not executed after power up or every reset,
the HDC will assume the following default parameters:

306. = Number of cylinders (131 hex)
4 = Number of heads

128. = Starting write precompensation cylinder
128. = Reduce write current cylinder

3 mS = Step rate
5 = Maximum length of an error bust to be corrected

17. = Number of sectors per track
8. = Retries & ECC enable

The acceptable range of values for these parameters are as follows:

0 - 2047.
0-7
0-255
0- 1023.
5/11.
0/8

Number of cylinders
Number of heads
Sector Numbers
Starting write precompensation cylinder
Maximum length of error burst to be corrected
Retries

If one of the parameters is out of range, then an "invalid command"
error code is generated by the HDC. Bytes 2 and 5 of table are self
explanatory and will not be discussed any further.

User Options

183

This four bit field can be used to specify options as indicated below:

Bit 7 = 0
= 1

5 bit correction span (default value)
11 bit correction span

Bit 6 = 0
= 1

Retries & ECC enabled (default value)
Retries & ECC disabled

Bit 5 = 0 Not Used

Bit 4 = 0 Not Used

Step Rate

Step Rate 14
Step Rate 15
All Others

= 11.1 usee
= 30 usee
= 3 msec

Possible Error Codes

No error, invalid command, DMA error.

Initialize Unit 1
(Opcode CC)

Action

This command with initialize or set drive parameters of unit 1 only.
This allows for the HDC to support two different drive types at the
same time. The action of this command is identical to the action of
the 'Set Drive Parameter’ command noted above except that it will
effect only unit 1. For command details see section 62.9.

Change Command
Block
(Class 0, Opcode F)

Action

The Change Command Block is used to move the location of the
command block from the default on power up to a new location.
Bytes 6 and 7 of the command block are used as indirect address
pointers for the beginning of a 7 byte block of memory organized as
follows:

Table 5-10. Change Command Block Address

D7 D6 D5 D4 D3 D2 D1 DO
0 0
A23 High Order DMA Byte A16
A15 Mid Order DMA Byte A08
A07 Low Order DMA Byte 0

184

Since the host R/W bit. and address bits A23-A17. form the data
byte for the host LD2- counter, the DMA high and middle order ad¬
dress bytes are shifted right 1 bit position before being used. Since a
copy of the previous address is not maintained, the command status
is returned to the new address location specified and not the old one.

Possible Error Codes

No error, invalid command. DMA error.

Read Long
(Class 7, Opcode 5)

Action

Similar to Read Sector except the ECC operation producing the
syndrome is inhibited in the HDC. Instead the HDC copies the
recorded CHECK bytes from the disk and passes them unaltered to

the host. This command is useful in debugging and verifying the ECC
hardware and software. To do this first write normally, and then
READLONG. The data or the check bits may now be altered by the
host and written to the disk using the WRITELONG command. If a

READ command were issued, then the HDC should invoke error cor¬
rection on the data field and correct it as long as the error
induced is within the correction capability of the ECC polynomial.

Because there is no storage register on board, this command is im¬
plemented only for diagnostic purposes. Also note that the 4 extra
checkbytes are to be accessed directly to the host. Hence the diag¬
nostic tester used is required to support a 516 byte block transfer
instead of the standard 512 byte block transfer supported by the
Amiga system.

Possible Error Codes

No error, invalid command, invalid sector address, invalid LUN, IDNF
error, bad block mark, address mark not found, write fault, drive not

ready, seek not complete, DMA error.

Write Long
(Class 7, Opcode 6)

Action

The Write Long command functions similarly to the Write Sector
command except the ECC operation of computing the ECC word is
inhibited in the HDC. Instead, the HDC accepts a 32 bit appendage
from the host and passes it unaltered to the DJC to be written on the
disk after the data. This command is useful for diagnostic purposes
only. It allows the generation of a sector containing a correctable
ECC error. See the Read Long command description for operation
details and system requirements.

185

Possible Error Codes

No error, invalid commands, invalid sector address, invalid LUN. IDNF
error, bad block mark, write fault, seek not complete, drive not

ready, DMA error.

186

Section 6

Fat Agnus Chip

DESCRIPTION This specification describes the Fat Agnus chip, an N-channel HMOS
DMA Controller. This 1C device is able to produce, in a 68000 micro¬
processor environment. DMA addresses by using a RAM Address
Generator and a Register Address Encoder. This device contains 25

DMA channel controllers, including the Blitter. Bitplanes. Copper.
Audio. Sprites. Disk and Memory refresh.

The 1C accepts a 28.63636 MHz crystal clock for the purpose of
generating 7.16 MHz and 3.58 MHz system clocks, dynamic RAM in¬
terface for addressing up to 1 megabyte of memory and NTSC video

synchronization pulses.

Refer to Figure 6.1 for pin configuration. Figure 6.2 for 1C block dia¬
gram and Table 6-1 for pin description.

This 1C device is equivalent to an 8370.

Warning

Improved versions of the Amiga custom chips are under devel¬
opment. These chips are intended to be software compatible
with the existing chips. Writing incorrect values to reserved
bits, accessing undefined register addresses, reading write-only
registers or excessive cleverness may lead to compatibility

problems.

187

CONFIGURATION This 1C device is configured in a standard 84 pin plastic chip carrier

package.

RD2

RD1

RD0

UCC

RST *

INT3

DMAL

BLS*

DBR#

RRU

PRU

RGEN*

AS*

RAMEN*

RGA8

RGA7

RGA6

RGA5

RGA4

RGA3

RGA2

Custom Animation Chip
Fat Agnus

0 H (N (T) 3- in XXX
CD=rincor'-cocr?—(--<co>->->-xcors“CO
QOOQQnDDQOQOOWUUnWl^HH

i i i i i i i i i i i i i

rl r\t
<t x
O 2!
* CO

(N

X X
_J x
CJ LU
X ^

—I
CJ
X

M o^HCO©«HCNCOd,m(ONCO**
x ^ucoco<r<r<r<r<r<r<r<i<rtoc/)
TL UOUJDEEEEEEEEEDQ
h- (J H- “* 13

- A15

- A14
- A13

- A12
- All

- A10

- A9
- A8
- A 7
- A6
- A5
- A4

- A3

- A2
- A1
- A19
- USS
- RAS0*

- RAS1#

- CASU#
- CASL#

Figure 6.1 Configuration

188

F
at A

gnus B
lock D

iagram

Figure 6.2 Block Diagram

189

Table 6-1 Pin Description

PIN PIN SIGNAL
NAME NUMBER DIRECTION DESCRIPTION

Address bus—A1 to A8 are used by the processor to
select the internal registers and put an address code
on the RGA lines to select registers outside the device.

The processor uses A1 to A18 to generate multi¬
plexed DRAM addresses on the MA outputs. The At 9
line is used to indicate which RAS line is activated. If
A19 is high, RAS1 * is asserted; if low. RASO* is as¬

serted.

This data bus is buffered and is used by the processor
to access the device registers. The data bus is also ac¬
cessed during DMA operations.

Active low. This input is the processor address strobe
signal. When asserted, it indicates that the address
lines (A1 to A19) are valid.

Active low. When this signal is asserted along with
AS*, the processor uses A1 to A8 to access one of the
device registers or put a value on the RGA outputs to
select registers outside the device.

Active low. When this signal is asserted together with
AS*, the processor is doing a DRAM access. The pro¬
cessor supplies an address on the A1 to A18 inputs
and the device multiplexes this address onto the MA
outputs; during the same cycle, the processor con¬
trols the A19 line to select one of the RAS lines.

PRW 22 IN This signal defines the data bus transfer as a read or
write cycle to memory. The signal is only enabled
when the processor is undergoing a DRAM access. A
low on this signal signifies a processor write cycle to
memory: a high indicates a processor read cycle from

memory.

RRW 21 OUT The device controls this signal to indicate either a
DMA or processor DRAM read/write access. In both
cases, a low on this line indicates a write operation
and a high indicates a read operation.

A19-A1 59 thru 77 IN

RD15-RD0 1 thru 14 I/O
and 83 & 84

AS* 24 IN

RGEN* 23 IN

RAMEN* 25 IN

190

PIN
NAME

PIN
NUMBER

SIGNAL
DIRECTION DESCRIPTION

MAQ-MA8 43 thru 51 OUT

LDS* 52 IN

UDS* 53 IN

CASL* 54 OUT

CASU* * 55 OUT

RASO* 57 OUT

RAS1* 56 OUT

DBR* 20 OUT

Output bus. This 9 bit output bus provides multi¬
plexed addresses to DRAMs. This bus operates in two
cycles. The first cycle provides the DRAMs with the
row address, the second cycle with the column ad¬
dress. It includes full 512K addressing for use with
256KX1 DRAMS. The IC only activates this bus when

the processor is doing a DRAM access (RAMEN* is
low) or when the device itself is performing a DMA

data transfer (DBR* is low).

Active low. This input is the processor lower data
strobe. It is enabled only during a processor DRAM

access and forces the IC to assert CASL*.

Active low. This input is the processor upper data
strobe. It is enabled only during a processor DRAM
access and forces the IC to assert CASU*.

Active low. This output strobes the column address

into the DRAMS and corresponds to the low byte of

the data word.

Active low. This output strobes the column address
into the DRAMS and corresponds to the high byte of

the data word.

Active low. This output is used to strobe the row ad¬
dress into the DRAMs. This signal is asserted only if
the processor is doing a DRAM access and A19 is low
or if the IC is performing a DMA cycle (DBR* is low).
RASO* corresponds to the lower 512K bytes of

memory.

Active low. This output is used to strobe the row ad¬
dress into the DRAMs. This signal is asserted only if
the processor is doing a DRAM access and A19 is
high. The signal is not asserted when the device is do¬
ing a DMA cycle. RAS1 * corresponds to the upper

512K bytes of memory.

Active low. The device asserts this signal to indicate
that a DMA cycle is underway. The device performs
only DMAs on the lower 512K bytes of memory
when DBR* is low and RASO* is asserted. The only
exception is when the device is performing a DRAM
refresh, in which case RASO*. RAS1 * and DBR* are all
asserted. The device also asserts both CASL* and
CASU* during DMAS except on a DRAM refresh cycle.

191

PIN
NAME

PIN
NUMBER

SIGNAL
DIRECTION DESCRIPTION

RGA8-RGA1 26 thru 33 OUT Output bus. The 8 bit output bus allows the device
and the processor to access registers located outside
the device.

HSY* 81 This line is bidirectional and buffered. This signal is
the horizontal synchronization pulse and is NTSC

compatible. When set as an input an external video
source drives this signal to synchronize the horizontal
beam counter.

VSY* 79 This line is bidirectional and buffered. This signal is
the vertical synchronization pulse and is NTSC com¬
patible. When set as an input, an external video

source drives this signal to synchronize the vertical
beam counter.

CSY* 80.OUT This signal is the composite video synchronization
pulse and is NTSC compatible.

LP* 78 OUT Active low. This input is used to indicate when the
light pen is coincident with the monitor beam.

RST* 18 IN Active low. This input initializes the device to a known
state.

INT3* 17 OUT Active low. The device asserts this line to indicate that

the blitter has completed the requested data transfer
and that the blitter is then ready to accept another
task.

DMAL 18 IN Active high. When this signal is enabled, it indicates
that an external device is requesting audio and/or disk
DMA cycles to be executed by the device.

BLS* 19 IN Active low. When this line is asserted, the device sus¬
pends its blitter operation and allows the processer to
have control of the cycle.

28MHZ 34 IN This is a 28.63636MHz input clock that provides the
master time base for the device. This clock is enabled
only when XCLKEN* is high.

XCLK 35 IN This input is an alternate master clock to the device. It
is enabled when XCLKEN* is low. This input is used to
synchronize the device with an external video source.

192

PIN
NAME

PIN
NUMBER

SIGNAL
DIRECTION DESCRIPTION

XCLKEN* 36 IN This input is used to select the master clock to the
device. If it is high, the 28MHz input is enabled; if
low. the XCLK is enabled.

CCK 40 OUT This signal is a clock, which is obtained after dividing
the 28.63 MHZ clock by eight. It is also known as the

color clock frequency for NTSC applications.

CCKQ 39 OUT This clock is the CCK clock shifted by 90 degrees.

7MHZ 38 OUT This clock is obtained after dividing the 28MHZ clock

by four.

CDAC* 37 OUT This clock is obtained after inverting the 7MHZ clock

and shifting it by 90 degrees.

TEST 41 IN Active high. When this signal is asserted, it disables
the processor cycle and the 8370 internal registers

can be accessed on every CCK clock cycle.

MODES OF OPERATION

General Information This device is an address generator type 1C. Its main function is as a
RAM address generator and register address encoder that produces
all DMA addresses from 25 channels.

■ • • The block diagram (Figure 6.3) for this device shows the DMA con¬
trol and address bus logic. The output of each controller indicates the

number of DMA channels driving the Register Address Encoder and

RAM Address Generator.

i The Register Address Encoder is a simple PLA type of structure that
produces a predetermined address on the RGA bus whenever one of

the DMA channels is active.

The RAM Address Generator contains an 18-bit pointer register for
each of the 25 DMA channels. It also contains pointer restart
(backup) registers and jump registers for six (6) of the channels. A
full 18-bit adder carries out the pointer increments and adds for

jumps.

193

The priority control logic looks at the pipe-lined DMA requests from
each controller and stages the DMA cycles based upon their pro¬

grammed priority and sync counter time slot. Then it signals the pro¬
cessor to get off the bus by asserting the DBR line.

The following is a brief description of the device’s major operational
modes.

Blitter The procedure for moving and combining bit-mapped images in
memory received the name Bit Blit from a computer instruction that
did block transfers of data on bit boundaries. These routines became
known as Bit Blitters or Blitters. The Blitter DMA Controller is pre-
loaded with the address and size of three source images (A. B, and C)
and one destination (D) in the dynamic RAM (refer to Figure 6.3).
These images can be as small as a single character or as large as
twice the screen size. They can be full images or smaller windows of
a larger image. After one work of each source image is sequentially
loaded into the source buffer (A. B, C) they are shifted and then com¬

bined together in the logical unit to perform image movement over¬

lay. masking, and replacements. The result is captured in the destina¬
tion buffer (D) and sent back to the RAM memory destination
address.

This operation is repeated until the complete image has been pro¬
cessed. The unit has extensive pipelining to allow for shifter and logic
unit propagation time, while the next set of source words is being
fetched.

A control register determines which of 256 possible logic operations
is to be performed as the source images are combined and how far
they are to be moved (barrel shifted). In addition to the image com¬
bining and movement powers, the Blitter can be programmed to do
line drawing or area fill between lines.

DYN SOURCE BARREL LOGIC DEST
RAM BUFFER SHIFTER UNIT BUFFER

FIGURE 6.3. Blitter Block Diagram

194

Bitplane Addressing

DMA Channel Functions

Some computer bitmap displays are organized so that the bitplanes
for each pixel are all located within the same address. This is called

pixel addressing. If the entire data word of one address is used for a
single pixel with 8 bit planes, the data word will look like this, (num¬

bers are bitplanes):

12345678-

The data compression can be improved by packing more than one

pixel into a single address like this:

1234567812345678

or like this, if there are only 4 bitplanes:

1234123412341234

The 1C device uses a bitmap technique called Bitplane Addressing.
This separates the bitplanes in memory. To create a 4 plan (16 color)
image, the bitplane display DMA channels fetch from 4 separate

areas of memory like this:

1111111111111111
2222222222222222
3333333333333333
4444444444444444

These are held in buffer registers and are used together as pixels,

one bit at a time, by the display (left to right).

This technique allows reduced odd numbers of bitplanes (such as 3
or 5) while maintaining packing efficiency and speed. It also allows
grouping bitplanes into two separate images, each with independent
hardware high speed image manipulation, line draw, and area fill.

Each channel has an 18 bit RAM address pointer that is placed on the
MA memory address bus and is used to select the location of the
DMA data transfer from anywhere in 256K words (512K bytes) of

RAM.

An eight bit destination address is simultaneously placed on the reg¬
ister address bus (RGA), sending the data to the corresponding reg¬

ister.

195

Figure 6.4 shows a typical DMA channel; almost all channels have

RAM as source and chip registers as destination.

RAM

,—
8370/EXTERNAL
REGISTER

16 BIT
DATA BUS 1 l_c i_i

SOURCE DEST

RGA

BUS

18 BIT 8 BIT |

REQ ADDRESS
ENCODER

RAM ADDRESS
POINTER

DMA CHANNEL CONTROLLER

, t ■ -

FIGURE 6.4. DMA CHANNEL (TYPICAL)

The pointer must be preloaded and is automatically incremented
each time a data transfer occurs.

Each controller utilizes one or more of these DMA channels for its
own purposes. The following is a brief summary of these controllers
and the DMA channels they use.

A-BLITTER (4 CHANNELS) The Blitter uses four DMA channels.
three sources and one destination as

previously described.

Once the Blitter has been started, the
four DMA channels are synchronized

and pipelined to automatically handle

the data transfers without further
processor intervention. The images are
manipulated in memory, independent of

the display (bitpiane DMA).

196

B-BITPLANE (SIX (6)
CHANNELS)

The bitplane controller continuously

(during display) transfers display data

from memory to display buffer

registers. There are six DMA channels to

handle the data from six independent bit
planes. The buffers convert this bitplane

data into pixel data for the display.

Each bitplane can be a full image or a

window into an image that is up to four

times the screen size. They can be

grouped into two separate images, each

with its own color registers.

C-COPPER (ONE (1)
CHANNEL)

The Copper is a coprocessor that uses

one of the DMA channels to fetch its

instructions. The DMA pointer is the

instruction counter and must be

preloaded with the starting address of

Copper's instructions.

The Copper can move (write) data into

chip registers. It can skip, jump, and

wait (halt). These simple instructions

give great power and flexibility because

of the following features.

When the Copper is halted, it is off the

data bus. using no bus cycles until the
wait is over. The programmed wait

value is compared to a counter that

keeps track of the TV beam position

(Beam Counter) and when they are

equal, the Copper will resume fetching

instructions.

It can cause interrupts, reload the color
registers, start the Blitter or service the

audio. It can modify almost any register

inside or outside the 1C device, based on

the TV screen coordinates given by the

Beam Counter and the actual address

encoded on the RGA bus.

D-AUDIO (FOUR (4)
CHANNELS)

There are four audio channels, all of

which are located outside of the DMA

Controller 1C. Each controller is
independent and uses one DMA channel

from the DMA Controller 1C and fetches

its data during a dedicated timing slot

within horizontal blanking. This is
accomplished by a controller asserting

the DMAL input on the DMA Controller.

197

E-SPRITES (EIGHT (8)
CHANNELS)

There are eight independent Sprite

controllers, each with its own DMA

channel and its own dedicated time slot

for DMA data transfer. Sprites are line

buffered objects that can move very fast
because of their position are controlled

by hardware registers and compactors.

Each Sprite has two 16 bit data

registers that define a 16 pixel wide

Sprite with four colors. Each has a

horizontal position register, a vertical
start position register and a vertical stop

position register. This allows variable
vertical size sprites.

The Sprite DMA controller fetches

image and position data automatically

from anywhere in 512K of memory.

Sprites can be run automatically in DMA
mode or they can be loaded and
controlled by the microprocessor.

Each Sprite can be reused vertically as

often as desired. Horizontal reusing is

also possible with microprocessor
control.

F-DISK (ONE (1) CHANNEL) The disk controller, which is located
outside of the DMA controller, uses a

single DMA channel from the device. The

controller uses this DMA time slot for
data transfer and can read or write a

block of data up to 128K anywhere in

512Kof memory.

G-MEMORY REFRESH (ONE
(1) CHANNEL)

The refresh controller uses a single DMA

channel with its own time slots. It places

RAS addresses on the memory address

bus (MAS) during these slots, in order to
refresh the dynamic RAM. Memory is
refreshed on every roster line.

During the DMA no data transfer

actually takes place. The register

address bus (RGA) is used to supply

video synchronizing codes. At this time.

RASO* and RAS1 * are low and CASU*

and CASL* are inactive.

198

RAM and Register
Addressing

The device generates RAM addresses from two sources, the proces¬
sor or from the device performing DMA cycles selected by a multi¬

plexer. This multiplexer allows the processor to access RAM when
AS* and RAMEN* are both low. At this time, the device also multi¬
plexes the processor address (A1 - A18) onto the MA bus. The device
places A1 to A8 & At7 on the MAO to MA9 outputs, respectively,
during the row address time and places A9 to A16 & A18 on the
MAO to MA9, respectively, during the column address time. The A19
line is used by the 1C to determine which RAS line is to be asserted. If
A19 is low. RASO* is enabled, and if high. RAS1 * is enabled. The de¬
vice also senses the LDS* and UDS* inputs to determine which CAS
to drop. If LDS* is low. the 1C will drop CASL*; if UDS* is low, CASU*

is dropped.

When the device needs to do a DMA cycle, the multiplexer disables
the processor from accessing RAM by asserting the Data Bus Re¬

quest line (DBR*). At this time, the device multiplexes its generated
RAM address onto the MA lines and will only make RASO* 90 low,
unless it is a refresh cycle where RAS1 * will also go low. During a
DMA cycle, the IC device also asserts both CASU* and CASL*. unless

it is a refresh cycle where they both remain inactive.

The device also generates RGA addresses from either the processor
or device DMAs, each of which is selected by another internal multi¬
plexer. This multiplexer allows the processor to perform a register
read/write access when AS* and RGEN* are both low. The device
then takes the low order byte of the processor address A1 to A8 and
reflects its value on the RGA output bus RGA1 to RGA8. The device
will reflect the status of PRW input on the RRW output line, to indi¬

cate a memory read or write operation.

During a device DMA cycle, the multiplexer prevents the processor
from doing a register access by asserting the DBR* line. The device
then places the contents of its register address encoder onto the

RGA bus.

REGISTER
DESCRIPTION

This DMA controller device contains 97 registers that can be ac¬
cessed after the following conditions have been met: the state of AS*
and RGEN* must be an active low level and the least 8 significant ad¬
dress bits (A1 thru A8) must contain the valid address of the register

to be accessed.

The following is a detailed description of the register set

REGISTER FUNCTION
AUD x LCH Audio channel x location (high 3 bits)
AUD x LCL Audio channel x location (low 15 bits)

199

This pair of registers contains the 18 bit starting address (location)

of Audio channel x (x = 0,1,2.3) DMA data. This is not a pointer reg¬
ister and therefore only needs to be reloaded if a different memory

location is to be outputted.

BLT x PTH Blitter pointer to x (high 3 bits)
BLT x PTL Blitter pointer to x (low 15 bits)

This pair of registers contains the 18 bit address of Blitter source
(x = A.B.C) or dest. (x = D) DMA data. This pointer must be preload¬
ed with the starting address of the data to be processed by the blit¬
ter. After the Blitter is finished it will contain the last data address
(plus increment and modulo).

LINE DRAW: BLTAPTL is used as an accumulator register and must
be preloaded with the starting value of (2Y-X) where

Y/X is the line slope. BLTCPT and BLTDPT (both H and
L) must be preloaded with the starting address of the
line.

BLT x MOD Blitter Modulox

This register contains the Modulo for Blitter source (x = A,B,C) or
Dest (x = D). A Modulo is a number that is automatically added to the
address then points to the start of the next line. Each source or desti¬
nation has its own Modulo, allowing each to be a different size, while
an identical area of each is used in the Blitter operation.

LINE DRAW: BLTAMOD and BLTBMOD are used as slope storage
registers and must be preloaded with the values (4Y-
4X) and (4Y) respectively. Y/X = line slope BLTCMOD
and BLTDMOD must both be preloaded with the width
(in bytes) of the image into which the line is being
drawn (normally 2 times the screen width in words).

BLTAFWM Blitter first word mask for Source A
BLTALWM Blitter last word mask for Source A

The patterns in these two registers are "anded” with the first and
last words of each line of data from Source A into the Blitter. A zero
in any bit overrides data from Source A. These registers should be
set to all “ones” for fill mode or for line drawing mode.

BLT x DAT Blitter source x data register

This register holds Source x (x = A.B.C) data for use by the Blitter. It
is normally loaded by the Blitter DMA channel, however, it may also

be preloaded by the microprocessor.

200

LINE DRAW: BLTADAT is used as an index register and must be pre-
loaded with 8000. BLTBDAT is used for texture. It

must be preloaded with FF if no texture (solid line) is

desired.

BLTDDAT Blitter destination data register

This register holds the data resulting from each word of Blitter oper¬

ation until it is sent to a RAM destination. This is a dummy address
and cannot be read by the micro. The transfer is automatic during
Blitter operation.

BLTCONO Blitter control register 0
BLTCON t Blitter control register 1

These two control registers are used together to control Blitter op¬
erations. There are 2 basic modes, area and line, which are selected
by bit 0 of BLTCON 1 r as shown below.

AREA MODE ("normaD

BIT# BLTCONO BLTCON 1

15 ASH3 BSH3

14 ASH2 BSH2

13 ASH1 BSH1

12 ASAO BSHO

11 USEA X

10 USEB X

09 USEC X

08 USED X

07 LF7 X

06 LF6 X

05 LF5 X

04 LF4 EFE

03 LF3 IFE

02 - LF2 FCI

01 LF1 DESC

00 LFO LINE(= 0)

ASH3-0 Shift value of A source

BSH3-0 Shift value of B source
USEA Mode control bit to use Surce A

USEB Mode control bit to use Source B

USEC Mode control bit to use Source C

USED Mode control bit to use Destination D

LF7-0 Logic function minterm select lines
EFE Exclusive fill enable
IFE Inclusive fill enable

FCI Fill carry input

DESC Descending (decreasing address)

control bit

LINE Line mode control bit (set to 0)

201

LINE DRAW: LINE MODE (line draw)

BIT# BLTCONO BLTCON1

15 START3 0

14 START2 0

13 START1 0
12 STARTO 0
11 1 0

10 0 0

09 1 0
08 1 0

07 LF7 0

06 LF6 SIGN

05 LF5 OVF
04 LF4 SUD

03 LF3 SUL

02 LF2 AUL

01 LF1 SING
00 LFO LINE(= 1)
START3-0 Starting point of line (0 thru 15 hex)
LF7-0 Logic function minterm select lines

should be preloaded with 4A in order
to select the equation D = (AC + ABC).
Since A contains a single bit true
(8000). most bits will pass the C field
unchanged (not A and C). but one bit
will invert the C Field and combine it
with texture (A and B and not C). The
A bit is automatically moved across
the word by the hardware.

LINE Line mode control bit (set to 1)
SIGN Sign flag
OVF Word overflow flag
SING Single bit per horiz. line

for use with subsequent Area Fill
SUD Sometimes Lip or Down (= AUD*)
SUL Sometimes Up or Left
AUL Always Up or Left

The 3 bits above select the Octant for line draw:
OCT SUD SUL AUL

0 1 1
1 0 0
2 0 1
3 1 1
4 1 0
5 0 1
6 0 0
7 0 0

0
1
1
1
1
0
0
0

Blitter start and size (Window, width height)

202

This register contains the width and height of the blitter operation
(in line mode width must = 2. height = line length). Writing to this

register starts the Blitter, and should be done last after all pointers
and control registers have been initialized.

BIT# 15,14, 13, 12. 11. 10, 09,08, 07. 06,05, 04. 03.02. 01, 00
h9 h8 h7 h6 h5 h4 h3 h2 hi hO, w5 w4 w3 w2 wl wO

h = Height = Vertical lines (10 bits = 1024 lines max)
w = Width = Horiz. pixels (6 bits = 64 words = 1024 pixels max)

LINE DRAW: BLT51ZE controls the line length and starts the line
draw when written to. The h field controls the line
length (10 bits gives lines up to 1024 dots long). The
w field must be set to 02 for all line drawing.

BPL x PTH Bit plane x pointer (high 3 bits)
BPL x PTL Bit plane x pointer (low 15 bits)

This pair of registers contains the 18 bit pointer to the address of Bit
plane x (x= 1,2,3,4.5.6) DMA data. This pointer must be reinitialized
by the processor or Copper to point to the beginning of Bit Plane

data every vertical blank time.

BPL 1 MOD Bit plane modulo (odd planes)
BPL2M0D Bit plane modulo (even planes)

These registers contain the Modulos for the odd and even bit planes.
A Modulo is a number that is automatically added to the address at
the end of each line, in order that the address then points to the start
of the next line. Since they have separate modulos, the odd and even
bit planes may have sizes that are different from each other, as well
as different from the Display Window size.

BPLCONO Bit plan control register
(miscellaneous control bits)

This register controls the operation of the Bit Planes and various as¬

pects of the display.

203

BIT# BPLCONO

15 HIRES

14 BPU2
13 BPU1
12 BPUO
11 HOMOD
10 DBLPF
09 COLOR

08 GAUD

07 X
06 X
05 X
04 X
03 LPEN
02 LACE

01 ERSY
00 X

HIRES = High resolution (640) mode
BPU = Bit plane use code 000-110 (NONE

through 6 inclusive)

HOMOD Hold and Modify mode

DBLPF = Double playfield (PF1 =odd.
PF2 = even bit planes)

COLOR = Composite video COLOR enable

GAUD = Genlock audio enable (mixed on
BKGND pin during
vertical blanking)

LPEN = Light pen enable (reset on power up)

LACE = Interlace enable (reset on power up)
ERSY = External Resync (HSYNC, VSYNC

pads become inputs;
reset on power up)

COPCON Copper control register
This is a 1 -bit register that when set true, allows the Copper to ac¬
cess the Blitter hardware. This bit is cleared by power on reset so
that the Copper cannot access the Blitter hardware.

BIT# NAME FUNCTION

01 CDANG Copper danger mode. Allows Copper
access to Blitter if true.

C0PJMP1 Copper restart at first location
C0PJMP2 Copper restart at second location

These addresses are strobe addresses; when written to. they cause
the Copper tojump indirect using the address contained in the First
or Second Location registers described below. The Copper itself can
write to these addresses, causing its own jump indirect.

204

C0P1LCH - Copper first location register (high 3 bits)
COP1LCL Copper first location register (low 15 bits)
COP2LCH Copper second location register (high 3

bits)
COP2LCL Copper second location register (low 15

bits)

COP1 NS Copper instruction fetch identify

This is a dummy address that is generated by the Copper whenever it
is loading instructions into its own instruction register. This actually
occurs every Copper cycle except for the second (IR2) cycle of the
MOVE instruction. The three types of instructions are shown below:

MOVE Move immediate to dest
WAIT Wait until beam counter is equal to. or greater than

(keeps Copper off of bus until beam position has been

reached).
SKIP Skip if beam counter is equal to. or greater than

(skips following MOVE inst. unless beam position has
been reached).

MOVE WAIT UNTIL SKIP IF

BIT# IR1 IR2 IR1 IR2 IR1 IR2

15 X RD15 VP7 BFD * VP7 BFD

14 X RD14 VP6 VE6 VP6 VE6

13 X RD13 VP5 VE5 VP5 VE5

12 X RD12 VP4 VE4 VP4 VE4

11 X RD11 VP3 VE3 VP3 VE3

10 X RD10 VP2 VE2 VP2 VE2

09 X RD09 VP1 VE1 VP1 VE1

08 DA8 RD08 VPO VEO VPO VEO

07 DA7 RD07 " HP8 HE6 HP8 HE6

06 DA6 RD06 HP7 HE7 HP7 HE7

05 DA5 RD05 HP6 HE6 HP6 HE6

04 DA4 RD04 HP5 HE5 HP5 HE5

03 DA3 RD03 HP4 HE4 HP4 HE4

02 DA2 RD02 HP3 HE3 HP3 HE3

01 DAI RD01 HP2 HE2 HP2 HE2

00 0 RDOO 1 1 1 1

IR1 = First instruction register
IR2 = Second instruction register
DA = Destination Address for MOVE instruction. Fetched during

1R1 time, used during IR2 time on RGA bus.
RD = RAM data moved by MOVE instruction at IR2 time directly

from RAM to the address given by the DA field.
VP = Vertical Beam Position comparison bit
HP = Horizontal Beam Position comparison bit
VE = Enable comparison (mask bit)
HE = Enable comparison (mask bit)

205

♦NOTE BFD = Blitter finished disable. When this bit is true, the
Blitter Finished flag will have no effect on the Cop¬
per. When this bit is zero, the Blitter Finished flag
must be true (in addition to the rest of the bit com¬
parisons) before the Copper can exit from its wait
state, or skip over an instruction. Note that the V7
comparison cannot be masked.

The Copper is basically a 2-cycle machine that requests the bus only

during odd memory cycles (4 memory cycles per in). This prevents
collisions with Display. Audio. Disk. Refresh, and Sprites, all of which
use only even cycles. It therefore needs (and has) priority over only
the Blitter and Micro.

There are only three types of instructions: MOVE immediate, WAIT
until, and SKIP if. All instructions (except for WAIT) require 2 bus cy¬

cles (and two instruction words). Since only the odd bus cycles are
requested. 4 memory cycle times are required per instruction (mem¬

ory cycles are 280 ns).

There are two indirect jump registers, COP1LC and C0P2LC. These
are 18-bit pointer registers whose contents are used to modify the

program counter for initialization or jumps. They are transferred to
the program counter whenever strobe addresses COPJMP1 or
COPJMP2 are written. In addition. C0P1 LC is automatically used at
the beginning of each vertical blank time.

It is important that one of the jump registers be initialized and its
jump strobe address hit. after power up but before Copper DMA is

initialized. This insures a determined startup address and state.

DIWSTRT Display window start (upper left vertical-hori¬
zontal position)

DIWSTOP Display window stop (lower right vertical-
horizontal position)

These registers control the Display Window size and position, by lo¬
cating the upper left and lower right corners.

BIT# 15,14.13.12,11,10.09,08.07.06.05.04.03.02.01.00
USE v7 v6 v5 v4 v3 v2 vl vO h7 h6 h5 h4 h3 h2 hi hO

DIWSTRT is vertically restricted to the upper 2A of the display
(v8 = 0). and horizontally restricted to the left 3A of the display

(h8 = 0).
DIWSTOP is vertically restricted to the lower Vfe of the display
(v8=/ = v7). and horizontally restricted to the right 'A of the display

(h8= 1).

DDFSTRT Display data fetch start (horiz.position)
DDFSTOP Display data fetch stop (horiz.position)

206

These registers control the horizontal timing of the beginning and

end of the Bit Plane DMA display data fetch. The vertical Bit Plane
DMA timing is identical to the Display windows described above. The
Bit Plane Modulos are dependent on the Bit Plane horizontal size,
and on this data fetch window size.

Register bit assignment

BIT# 15,14.13.12.11.10.09,08.07.06,05.04.03.02.01,00
USE XXXXXXXXHBH7H6H5H4H3XX

(X bits should always be driven with 0 to maintain upward com¬

patibility)

The tables below show the start and stop timing for different regis¬

ter contents.

DDFSTRT (Left edge of display data fetch)

PURPOSE H8, H7, H6, H5. H4

Extra wide (max) * 0 0 1 0 1

wide 0 0 1 1 0
normal 0 0 1 1 1

narrow 0 1 0 0 0

DDFSTOP (Right edge of display data fetch)

PURPOSE H8. H7. H6, H5, H4,

narrow 1 1 0 0 1

normal 1 1 0 1 0

wide (max) 1 1 0 1 1

DMACON DMA control write (clear or set)
DMACONR DMA control (and Blitter status) read

This register controls all of the DMA channels, and contains Blitter

DMA status bits.

BIT# FUNCTION DESCRIPTION

15 SET/CLR Set/Clear control bit. Determines if bits
written with a 1 get set or cleared.

14 BBUSY Blitter busy status bit (read only)

13 BZERO Blitter logic zero status bit (read only)

12 X

11 X
10 BLTPRI Blitter DMA priority (over CPU micro)

—also called "Blitter Nasty”
—disables /BLS pin, preventing micro
from stealing any bus cycles while blitter
DMA is running.

207

BIT# FUNCTION DESCRIPTION

09 DMAEN Enable all DMA below.

08 DPLEN Bit Plane DMA enable.

07 COPEN Copper DMA enable.

06 BLTEN Blitter DMA enable.

05 SPREN Sprite DMA enable.

04 DSKEN Disk DMA enable.

03 AUD3EN Audio channel 3 DMA enable.

02 AUD2EN Audio channel 2 DMA enable.

01 AUDIEN Audio channel 1 DMA enable.

00 AUDOEN Audio channel 0 DMA enable.

DSKPTH Disk pointer (high 3 bits)
DSKPTL Disk pointer (low 15 bits)

This pair of registers contains the 18-bit address of Disk DMA data.
These address registers must be initialized by the processor or Cop¬

per before disk DMA is enabled.

REFPTR Refresh pointer

This register is used as a Dynamic RAM refresh address generator. It
is writeable for test purposes only, and should never be written by

the microprocessor.

SPRxPTH Sprite x pointer (high 3 bits)
SPRxPTL Sprite x pointer (low 15 bits)

This pair of registers contains the 18-bit address of Sprite x
(x = 0.1.2.3.4.5.67) DMA data. These address registers must be ini¬
tialized by the processor or Copper every vertical blank time.

SPRxPOS Sprite x vertical-horizontal position data
SPRxCTL Sprite x vertical-horizontal

These 2 registers work together as position, size and feature Sprite
control registers. They are usually loaded by the Sprite DMA channel,
during horizontal blank; however, they may be loaded by either pro¬

cessor any time.

SPRxPOS register:

BIT# SYM FUNCTION__

15-08 SV7-SV0 Start vertical value. High bit (SV8) is in
SPRxCTL reg. below.

07-00 SH8-SH1 Start horizontal value. Low bit (SHO) is in
SPRxCTL reg. below.

SPRxCTL register {writing this address disables sprite horizontal
comparator circuit):

208

AGNUS NOTES

BIT# SYM FUNCTION

15-08 EV7-EV0 End (stop) vert.value.low 8 bits

07 ATT Sprite attach control bit (odd sprites)
06-04 X Not used
02 SV8 Start vert, value high bit
01 EV8 End (stop) vert, value high bit
00 SHO Start horiz. value low bit

VPOSR

t

Read vertical most significant bit (and frame
flop)

VPOSW Write vertical most significant bit (and frame
flop)

BIT# 15.14.13.12.11.10.09.08.07.06.05.04.03.02.01.00
USE LGF V8

LOF = Long frame (auto toggle control bit in BPLCONO)

VHPOSR Read vertical and horizontal position of beam
or lightpen

VHPOSW Write vertical and horizontal position of beam
or lightpen

BIT# 15.14.13.12,11.10.09.08.07.06.05.04,03.02.01.00
USE V7V6V5V4V3V1 V0.H8H7H6H5H4H3H1
RESOLUTION = 1/160 OF SCREEN WIDTH (280 NS)

1) The Agnus pointer registers are updated via a pipelining scheme
that requires that a register not be accessed on two contiguous
cycles.

This precludes the use of "single operand” blitter functions that
might seem possible based on the register descriptions.

Caution is also required to prevent processor access to registers
that may be subject to concurrent DMA access.

209

DMA Time Slot Allocation/Horizontal Line

NOTES
1) These operations only take slots if the associated operation is be¬

ing performed

Note: Copper Data Move instructions require 4 slots.
Copper Wait instructions require 6 slots.

2) This cycle 0 appears to exclude one of the memory refresh cycles.

This is not the case.

Actual system hardware demands certain specific values for data
fetch start and display start. Therefore this timing chart has been

“adjusted" to'match those requirements.

210

DMA Time Slot
Allocation / Horizontal
Line (Cont’d)

Hardware stop installed here. Data fetch cannot begin any

sooner than cycle 18. This allows the user to wipe out most of
the sprites if desired (by defining an extra-wide display) but
leaves the audio and disk DMA untouched.

r
20

11 1 H li 1 1 SB 1 1
Sprite DMAt tThese operations only take slots if the

(2 words/channel) associated operation is being performed

28 30 . 3B

m rr ffriff n nri rFffl Ff ttrr:::

1 1 1
L LL Li

s
It.

i IB
L?

Some sprites are unusable if the display starts early due to an
extra word(s) associated with a wide display and/or horizontal
scrolling. In this case, the bit-plane DMA steals the cycles nor¬
mally allocated to the sprites, as illustrated above.

DMA Time Slot
Allocation / Horizontal
Line (Cont’d)

Data fetch start can only be specified at even multiples of 8
clocks. This is the clock position which should be specified for
the normal width display. (20 word fetch for 320 pixel, 40
word fetch for 640 pixel width).

Five clocks must occur before the data which was fetched for a
particular position can appear onscreen. For example, if data
fetch start is specified as 38, it will not be available for display
until clock number 45.

A hardware data-fetch stop has been installed at count D8 so as
to prevent the bit-plane data-fetch from overrunning the time
allotted for the memory refresh or disk DMA.

212

The 8520 Chip

USS 1 40

PAO 2 39

PA1 3 36

PA2 4 37

PA3
—

5 36

PA4 6 35

PA5 7 34

PA6 8 33

PA7 9 8520 32

PBO 10 31

PB1 11 30

PB2 12 29

PB3 13 28

PB4 14 27

PB5 15 26

PB6 16
4—

25

PB7 17 24

PC 18 23

TOD 19 22

VCC 20 21

CNT

SP

RSO

RSI

RS2

RS3

RES

DBO

DB1

DB2

DB3

DB4

DB5

DB6

DB7

02

FLAG

CS

R/W

IRQ

Figure 6.5. 8520 Pin Configuration

SP

CNT

TOD

FLAG

IRQ

CHIP ACCESS CONTROL

riTTTTTI
R/W 02 CS RS3 RS2 RSI RSO RES

Figure 6.6. 8520 Block Diagram

214

WRITE TIMING DIAGRAM

READ TIMING DIAGRAM

--

\ ji
02 INPU I --j

r -TPS
PORT IN XT

I-

cs -J /_/

► - - - - TADS TADH

X

[

RS3-RS0 X

I Jr
—

r-
TRWS zi

/

TRWH i

t--

_TACC _

/

. .TDR..

Figure 6.7. 8520 Timing Diagrams

INTERFACE SIGNALS

02-Clock Input

CS-Chip Select Input

R/W-Read/Write Input

RS3-RS0 — Address
Inputs

DB7-DB0 — Data Bus
Inputs/Outputs

IRQ-Interrupt Request
Output

RES-Reset Input

The 02 clock is a TTL compatible input used for internal device oper¬
ation and as a timing reference for communicating with the system
data bus.

The CS input controls the activity of the 8520. A low level on CS
while 02 is high causes the device to respond to signals on the R/W
and address (RS) lines. A high on CS prevents these lines from con¬
trolling the 8520. The CS line is normally activated (low) at 02 by
the appropriate address combination.

The R/W signal is normally supplied by the microprocessor and con¬
trols the direction of data transfers of the 8520. A high on R/W indi¬
cates a read (data transfer out of the 8520), while a low indicates a
write (data transfer into the 8520).

The address inputs select the internal registers as described by the
Register Map.

The eight bit data bus transfers information between the 8520 and
the system data bus. These pins are high impedance inputs unless CS
is low and R/W and 02 are high, to read the device. During this read,
the data bus output buffers are enabled, driving the data from the
selected register onto the system data bus.

IRQ is an open drain output normally connected to the processor in¬
terrupt input. An external pullup resistor holds the signal high, allow¬
ing multiple IRQ-outputs to be connected together. The IRQ output
is normally off (high impedance) and is activated low as indicated in
the functional description.

A low on the RES pin resets all internal registers. The port pins are
set as inputs and port registers to zero (although a read of the ports
will return all highs because of passive pullups). The timer control
registers are set to zero and the timer latches to all ones. All other
registers are reset to zero.

216

REGISTER MAP

RS3 RS2 RSI
0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
0 1 1
1 0 0
1 0 0
1 0 1
1 0 1
1 1 0
1 ... 1 0
1 1 1
1 1 1

FUNCTIONAL
DESCRIPTION

I/O Ports (PRA, PRB,
DDRA, DDRB)

RSO REG
0 0 PRA

1 1 PRB

0 2 DDRA

1 3 DDRB

0 4 TA LO

1 5 TA HI

0 6 TB LO
1 7 TB HI

0 8
1 9

0 A

1 B

0 C SDR

1 D ICR

0 E CRA

1 F CRB

Peripheral Data Reg. A

Peripheral Data Reg. B

Data Direction Reg. A

Data Direction Reg. B

Timer A Low Register

Timer A High Register

Timer B Low Register
Timer B High Register

Event LSB

Event 8-15

Event MSB

No Connect

Serial Data Register

Interrupt Control Register

Control Register A

Control Register B

Ports A and B each consist of an 8-bit Peripheral Data Register (PR)
and an 8-bit Data Direction Register (DDR). If a bit in the DDR is set
to the corresponding bit in the PR is an output if a DDR bit is set to
zero, the corresponding PR bit is defined as an input. On a READ, the
PR reflects the information present on the actual port pins (PAO-
PA7, PB0-PB7) for both input and output bits. Port A has both pas¬
sive and active pullup devices, providing both CMOS and TTL com¬
patibility. It can drive 2 TTL loads. Port B has only passive pullup
devices and has a much higher current-sinking capability.

Handshaking on data transfers can be accomplished using the PC
output pin and the FLAG input pin. PC will go low on the 3rd cycle
after a PORT B access. This signal can be used to indicate “data
ready” at PORT B or "data accepted” from PORT B. Handshaking on
a 16-bit data transfers (using both PORT A and PORT B) is possible
by always reading or writing PORT A first. FLAG is a negative edge
sensitive input which can be used for receiving the PC output from
another 8520 or as a general purpose interrupt input. Any negative

transition on FLAG will set the FLAG interrupt bit.

Handshaking

217

Reg Name D7 D6 D5

0 PRA PA7 PA6 PA5

1 PPB PB7 PB6 PBS

2 DDRA DPA7 DPA6 DPA5

3 DDRB DPB7 DPB6 DPB5

D4 D3 D2 D1 DO

PA4 PA3 PA2 PA1 PAO

PB4 PB3 PB2 PB1 PBO

DPA4 DPA3 DPA2 DPA1 DPAO

DPB4 DPB3 DPB2 DPB1 DPBO

Interval Timers (Timer
A, Timer B)

Each interval timer consists of a 16 bit read-only Timer Counter and
a 16-bit write-only Timer Latch. Data written to the timer are
latched in the Timer Latch, while data read from the timer are the
present contents of the Timer Counter. The timers can be used inde¬
pendently or linked for extended operations. The various timer
modes allow generation of long time delays, variable width pulses,

pulse trains and variable frequency waveforms. Utilizing the CNT in¬
put. the timers can count external pulses or measure frequency,
pulse width and delay times of external signals. Each timer has an as¬
sociated control register, providing independent control of the fol¬
lowing functions:

Start/Stop A control bit allows the timer to be started or stopped by the micro¬
processor at any time.

PB On/Off A control bit allows the timer output to appear on a PORT B output
line (PB6 for TIMER A and PB7 for TIMER B). This function over¬
rides the DDRB control bit and forces the appropriate PB line to an
output

Toggle/Plllse A control bit selects the output applied to PORT B. On every timer
underflow the output can either toggle or generate a single positive
pulse of one cycle duration. The toggle output is set high whenever
the timer is started and is set low by RES.

One-Shot/ContinilOUS A control bit selects either timer mode. In one-shot mode, the timer
will count down from the latched value to zero, generate an inter¬
rupt, reload the latched value, then stop. In continuous mode, the
timer will count from the latched value to zero, generate an inter¬
rupt reload the latched value and repeat the procedure continuously.
In one-shot mode; a write to Timer High (registers 5 for TIMER A, 7

for TIMER B) will transfer the timer latch to the counter and initiate
counting regardless of the start bit.

218

Force Load A strobe bit allows the timer latch to be loaded into the timer

counter at any time, whether the timer is running or not

IflOUt Mode Control bits allow selection of the clock used to decrement the timer.
F TIMER A can count 02 pulses or external pulses applied to the CNT

pin. TIMER B can count 02 pulses, external CNT pulses, TIMER A un¬
derflow pulses or TIMER A underflow pulses while the CNT pin is

held high.

The timer latch is loaded into the timer on any timer underflow, on a
force load or following a write to the high byte of the prescaler while
the timer is stopped. If the timer is running, a write to the high byte

will load the timer latch, but not reload the counter.

READ (TIMER)

REG Name

4 TALO TAL7 TAL6 TAL5

5 TA HI TAH7 TAH6 TAH5

6 TB LO TBL7 TBL6 TBL5

7 TB HI TBH7 TBH6 TBH5

WRITE (PRESCALER)

REG Name

4 TA LO PAL7 PAL6 PAL5

5 TA HI PAH7 PAH6 PAH5

6 TB LO PBL7 PBL6 PBL5

7 TB HI PBH7 PBH6 PBH5

TAL4 TAL3 TAL2 TALI TALO

TAH4 TAH3 TAH2 TAH1 TAHO

TBL4 TBL3 TBL2 TBL1 TBLO

TBH4 TBH3 TBH2 TBH1 TBHO

PAL4 PAL3 PAL2 PALI PALO

PAH4 PAH3 PAH2 PAH1 PAHO

PBL4 PBL3 PBL2 PBL1 PBLO

PBH4 PBH3 PBH2 PBH1 PBHO

TOD consists of a 24 bit binary counter. Positive edge transitions on
this pin cause the binary to increment. The TOD pin has a passive
pull-up on it. A programmable ALARM is provided for generating an
interrupt at a desired time. The ALARM registers are located at the
same addresses as the corresponding TOD register. Access to the
ALARM is governed by a Control Register bit. The ALARM is write-
only; any read of a TOD address will read time regardless of the state

of the ALARM access bit.

A specific sequence of events must be followed for proper setting
and reading of TOD. TOD is automatically stopped whenever a write
to the register occurs. The clock will not start again until after a
write to the L5B Event Register. This assures TOD will always start
at the desired time. Since a carry from one stage to the next can oc¬
cur at any time with respect to a read operation, a latching function
is included to keep all Time of Day information constant during a

219

read sequence. All TOD registers latch on a read of MSB event and
remain latched until after a read of LSB Event The TOD clock contin¬

ues to count when the output registers are latched. If only one regis¬
ter is to be read, there is no carry problem and the register can be
read "on the fly", provided that any read of MSB Event is followed
by a read of LSB Event to disable the latching.

READ

REG NAME

8 LSB EVENT E7 E6 E5 E4 E3 E2 El EO

9 EVENT 8-15 El 5 E14 E13 E12 Ell El 0 E9 E8

A MSB EVENT E23 E22 E21 E20 E19 E18 E17 E16

WRITE

CRB7 = 0
CRB7 = 1 ALARM
(SAME FORMAT AS READ)

Serial Port (SDR) The serial port is a buffered, 8-bit synchronous shift register system.
A control bit selects input or output mode. In input mode, data on
the SP pin is shifted into the shift register on the rising edge of the
signal applied to the CNT pin. After 8 CNT pulses, the data in the
shift register is dumped into the Serial Data Register and an inter¬
rupt is generated. In the output mode. TIMER A is used for the baud
rate generator. Data is shifted out on the SP pin at x/z the underflow
rate of TIMER A. The maximum baud rate possible is 02 divided by
6. but the maximum useable baud rate will be determined by line
loading and the speed at which the receiver responds to input data.
Transmission will start following a write to the Serial Data Register
(provided TIMER A is running and in continuous mode). The clock
signal derived from TIMER A appears as an output on the CNT pin.
The data in the Serial Data Register will be loaded into the shift reg¬
ister then shift out to the SP pin when a CNT pulse occurs. Data
shifted out becomes valid on the falling edge of CNT and remains val¬
id until the next falling edge. After 8 CNT pulses, an interrupt is gen¬
erated to indicate more data can be sent. If the Serial Data Register
was loaded with new information prior to this interrupt, the new
data will automatically be loaded into the shift register and transmis¬
sion will be continuous. If no further data is to be transmitted, after
the 8th CNT pulse. CNT will return high and SP will remain at the
level of the last data bit transmitted. SDR data is shifted out MSB
first and serial input data should also appear in this format.

The bidirectional capability of the Serial Port and CNT clock allows
several devices to be connected to a common serial communication
bus on which one acts as a master, sourcing data and shift clock,
while all other chips act as slaves. Both CNT and SP outputs are open

230

drain, with passive pullups, to allow such a common bus. Protocol for
slave/master selection can be transmitted over the serial bus, or via

dedicated handshaking lines.

REG NAME
C SDR S7 S6 S5 S4 S3 S2 SI SO

There are five sources of interrupts on the 8520: underflow from
TIMER A, underflow from TIMER B. TOD ALARM. Serial Port full/
empty and FLAG. A single register provides masking and interrupt
information. The Interrupt Control Register consists of a write-only
MASK register and a read-only DATA register. Any interrupt which is

enabled by the MASK register will set the IR bit (MSB) of the DATA
register and bring the IRQ pin low. In a multi-chip system, the IR bit
can be polled to detect which chip has generated an interrupt re¬

quest.

The interrupt DATA register is cleared and the IRQ line returns high
following a read of the DATA register. Since each interrupt sets an

interrupt bit regardless of the MASK, and each interrupt bit can be
selectively masked to prevent the generation of a processor inter¬
rupt. it is possible to intermix polled interrupts with true interrupts.
However, polling the IR bit will cause the DATA register to clear,
therefore, it is up to the user to preserve the information contained
in the DATA register if any polled interrupts were present.

The MASK register provides convenient control of individual mask
bits. When writing to the MASK register, if bit 7 (SET/CLEAR) of the
data written is a ZERO, any mask bit written with a one will be
cleared, while those mask bits written with a zero will be unaffected.
If bit 7 of the data written is a ONE. any mask bit written with a one
will be set. while those mask bits written with a zero will be unaf¬
fected. In order for an interrupt flag to set IR and generate an Inter¬

rupt Request, corresponding MASK bit must be set.

READ (1NT DATA)

REG NAME

D IRA IR 0 0 FLG SP ALRM TB TA

WRITE (INT MASK)

REG NAME

D IRC S/C X X FLG SP ALRM TB TA

Interrupt Control (ICR)

221

Control Registers There are two control registers in the 8520: CRA and CRB. CRA is
associated with TIMER A and CRB is associated with TIMER B.

The register format is as follows:

CRA:

BIT NAME FUNCTION
0 START 1 = START TIMER A. 0 = STOP TIMER A. This bit is automatically reset

when underflow occurs during one-shot mode.

1 PBON 1 = TIMER A output appears on PB6, 0 = PB6 normal operation

2 OUTMODE 1 = TOGGLE, 0 = PULSE

3 RUNMODE 1 = ONE-SHOT, 0 = CONTINUOUS

4

5

6

7

LOAD 1 = FORCE LOAD (this is a STROBE input, there is no data storage, bit 4 will
always read back a zero and writing a zero has no effect.

INMODE 1 = TIMER A counts positive CNT transitions, 0 = TIMER A counts 02

pulses.

SPMODE 1 = SERIAL PORT output (CNT sources shift clock). 0 = SERIAL PORT input
(external shift clock required).

TODIN 1 = 50 Hz clock required on TOD pin for accurate time.
0 » 60 Hz clock required on TOD pin for accurate time.

CRB:

BIT NAME

5,6 INMODE

7 ALARM

FUNCTION
(Bits CRB0-CRB4 are identical to CRA0-CRA4 for TIMER B with the excep¬
tion that bit 1 controls the output of TIMER B on PB7).

Bits CRB5 and CRB6 select one of four input modes for TIMER B as:

CRB6 CRB5 .
0 0 TIMER B counts 02 pulses
0 1 TIMER B counts positive CNT transitions
1 0 TIMER B counts TIMER A underflow pulses

1 1 TIMER B counts TIMER A underflow pulses
while CNT is high

1 = writing to TOD registers set ALARM. 0 = writing to TOD registers sets

TOD clock.

222

Section 7.1

Clock/Calendar Information

The clock/calendar is based on the OKI MSM6242RS Direct Bus

Connected-Type Real Time Clock Chip.

The A2000 features a real time clock with a perpetual calendar
which is capable of reading and writing “YEAR”, “MONTH”, “DAY”,
“WEEK”, "HOUR”, “MINUTE” and “SECOND”. This time clock is a
peripheral 1C. connected directly by means of a bus. It is standard on
the A2000. and can be added as an option to the A500 (included in

the A501 Memory Expander).

An interface between the time clock and a microcomputer uses 4 of
data bus lines, 4 address bus lines, 3 control bus lines and 2 chip se¬
lect pins, and performs time setting, reading and other operations.

The clock function covers second, minute, hour, day, month, year and
day of week. In addition, other functions such as selection of a 24-
hour time and a 12-hour time system, automatic adjustment of leap

year in the Christian Era and 30-second correction by means of soft,
periodical interruption (or periodical wave-form output) and stop/

start of time counting.

The clock-calendar is a CMOS device, so there is low power con¬

sumption.

A crystal used is capable of 32.768 KHz for a consideration over

time counting during battery backup.

.... When installed, the clock is located in memory at $DC0000.

Clock Warning
The addresses used by the real time clock chip access the custom chip
registers without the memory expansion/real time clock module.
When probing to test for the existence of the clock, care must be
taken to avoid unintentional changes to the custom chip register. The
test used by the setclock utility references an address that maps to
either the seconds register or a static read-only chip register, then

checks to see if the clock "ticks.”

Note: C912 can be used as a slow/fast control to tune the clock to

best effect.

REGISTER TABLE
A

d
d

re
ss

a3 1 Ao N
u
m

b
er

 o
f

R
eg

is
te

r Data

Description Di H fl
0 0 0 0 0 El El EB s2 El 0-9 1-second digit register

1 0 0 0 1 S40 0-5

2 0 0 1 0 MI, mi8 mi4 mi2 mi. 0 — 9

3 0 0 1 1 MII0 * mUo mi20 mi 10 0-5 10-minute digit register

D 0 1 0 0 H, ■a ■a ■a ■a ED
5 0 1 0

1
H10 ■ PM/

AM B 0-2
or 0
to 1

PM/AM, 10-hour digit
register

6 0 1 1 0 D, SB: <tj 0-9 1-day digit register

7 0 1 1 D * * ESC EB 0-3 10-day digit register

8 1 0 0 mo8 mo4 mo2 mo. 0-9 1-month digit register

9 1 0 0 1 MO.o * * * mo 10 0- 1 10-month digit register

A 1 0 1 0 El y4 y2 yi 0-9 1-year digit register

B 1 0 D D wm yso >’40 y2o yio 0-9 10-year digit register

C 1 1 0 0 w * W w w 0-6 Week register

D ■ ■ 0 ■ CD P| IRQ
FLAG

BUSY HOLD ' Control Register D

E 1 1 0 CE H to — Control Register E

F 1 m ■ 1 24/
12

STOP REST —- Control Register F

• O-low level 1 -high level
• REST-RESET

• 1TRPT/STND-INTERRUPT/STANDARD

Note 1: You have the option to write data into the bit*. However,
this data is treated as 0 internally. In addition, the bit* is al¬
ways read as 0.

Note 2: You can write 1 into the IRQ FLAG bit and 0 or 1 into the
BUSY bit They are not executed, but can be read.

Note 3: It is possible to read and write all bits other than bit* and
BUSY bit. However, only 0 can be written into IRQ FLAG.

More information on the clock/calendar may be found in the OKI
MSM6242RS Direct Bus Connected-Type Real Time Clock app.
notes.

224

Section 7.2

Power Budgets

B2000 POWER BUDGET A2000/B2000 power supply:

All of the specifications herein are suggested. When it comes right
down to it the machine is being powered by a well-defined supply,
the specifications of which will follow. If you’re careful not to exceed
the suggested load for any port, you'll be able to fully load every
port. However, some of the internal ports can draw more than the
suggested amount for example, an 8 megabyte expansion memory
card for the 100 pin bus may draw more than the suggested 2.5
Amps at + 5VDC. The connector is capable of supplying more with¬
out damage, but the extra current must be carefully worked into the
system power budget. Any hardware add-on device that draws more
than the suggested amount must state this clearly. External ports

typically have a true maximum available, not a suggested; budgeting

should apply to interna) items only.

SYSTEMWIDE
VOLTAGE LIMIT DESCRIPTION
-l- 5 VDC 20.0 Amps Main + 5 Voltage supply
+ 5 USER 0.5 Amps Protected + 5 for externals
- 5 VDC 0.3 Amps Negative 5 Volt supply
+ 12 VDC 8.0 Amps Main + 12 Voltage supply
+ 12 USER — Protected + 12 for externals.

derived from main -I-12

-12 VDC 0.3 Amps Main - 12 Voltage supply
- 12 USER - Protected - 12 for externals,

derived from main - 12

CONSUMPTION:

Everybody wants power. Here’s what can be taken, based on your particular setup; you

get what's left over:

MAIN SYSTEM: + 5VDC -5VDC +5USER + 12VDC -12VDC

Motherboard 2.5A 50mA 50mA

Internal 3Vz' Floppy [1] 250mA 350mA

Internal 5V* Floppy [2] 500mA 500mA

Internal 3W Hard Disk [2] 750mA 1 .OA

Internal 5Va Hard Disk [2] 1.0A "■ 1,5A

225

EXTERNAL PORTS:

Video Port
... 10mA 100mA 100mA

__

Floppy Port [1] 250mA ... — 350mA —

Parallel Port [3] — — 10mA — —

Serial Port — — ... 25mA 25mA

Keyboard Port [4] 250mA — — — —

Mouse Port ... 50mA

INTERNAL SLOTS:

Coprocessor Slot [6] 2.0A 40mA 40mA 35mA
Expansion Slot [6] 2.0A 40mA — 40mA 35mA

Extra PC Bus Slots [7] 0.5A 10mA — 40mA 15mA

Video Slot [8] 1.0A 40mA — 40mA ...

NOTES:

[1] Expected typical consumption. This is very device dependent;
consult the manufacturer’s specification for particular floppy
disks. The starting current is expected to be around 400mA for

+ 12V.
[2] Expected typical consumption. This is very device dependent;

consult the manufacturer's specification for particular disks.
Starting current on the +12V supply for most disk drives can
be as much as twice the operating current.

[3] 47 Ohm Series Resistor limits current.
[4] Expected typical consumption. Current from this port is limited.
[5] Each port.
[6] Each slot. The physical connection can handle 4 Amps; if a 4 Amp

device is used in one slot, other slots cannot supply 2.5 Amps
each, of course; this requires a total system power budget to be
constructed.

[7] Shared PC expansion slots should be considered part of the 100
pin connector that they share. If the 100 pin connector is un¬
used. the power suggested for that connector can be used in¬
stead of the PC bus. The connectors, like all expansion connec¬
tors, are capable of delivering 4 Amps if proper whole-system
budgeting is done. The specification here is for both of the non-
overlapping PC slots taken together.

[8] Like expansion slots the video slot is capable of supplying 4. If a
4 Amp device is used, it must be worked into the total system
power budget.

A500 Power Budget PARALLEL PORT:

10mA from pin 14 (+ 5V)
(4711 series resistor to prevent damage if printer grounds this line)

SERIAL PORT:

20mA from pin 9 (+ 12V)

20mA from pin 10 (-12V)
(4711 series resistor to limit current)

VIDEO PORT:

100mA from pin 23 (+ 5V) No
100mA from pin 22 (+12V) current

1 OmA from pin 21 (— 12V) limiting

JOYSTICK PORTS (TOTAL)

50mA from pins 7 (+ 5V)

(4.71! current limit)

EXPANSION PORT:

300mA from pins 5 and 6 (+ 5V) No
50mA from pin 10 (+ 12V) current
1 OmA from pin 8 (- 12V) limiting

Section 7.3

A2000 PAL Equations

PAL20L8 PAL DESIGN SPECIFICATION

PART NO.: 380 XXX-01 DESCRPT.:PALEN REV.2 FRANK ULIMANN 03-09-86

MEM- AND DTACKDECOOER FOR A2500 MAINBOARD (U26) ASSY 380...

COMMODORE BSU !! PREl1MENARY H

A23 A22 A21 A20 A19 A18 PRW AS DBR OVL OVR GMD

Cl C3 VPA MYRAME CLKE RGAE RE DTACK 8LS ROME XRDY VCC

IF (OVR) /VPA = /AS*A23*/A22*A21 ; PERIPHERAL ACCESS

; SAOOOOO-BFFFFF

/MYRAME = /A$*DTACK*A23*A22*A21*OVR*/C1*C3 ; SE00000-FFFFFf

♦ /AS*DTACK*/A23*/A22*/A21*OVR*OVLVC)*C3 ; $000000-1FFFFF IF

; OVl=H, OVR=H !

♦ /AS*DTACK*A23*A22VA2t*A20*Al9*/Alfi*OVR*/C1*C3 ; SD80000-DBFFFF

♦ /MYRAMEVC1

♦ /MYRAME*/C3

/RE = 0BR*/AS*DTACK*/A23*/A22*/A21*OVRVOVl* ; $000000-1 FFFFF IF

/C1*C3 ; OVL=L, OVR=H !

♦ /RE*/C1

♦ /REVC3

IF (OVR) /DTACK *

/AS*/A23*/A22*A21*XRDY

+ /AS*/A23*A22*XRDY

♦ /AS*A23*/A22*/A2I*XR0Y

♦ /MYRAME*XRDY*/C3

+ /RE*/C3

+ /RGAE*/C3

+ /DTACK*/AS*XRDY

S200000-3FFFFF EXP RAH

$400000-7FFFFF " "

$800000-9FFFFF « "

$000000-1FFFFF OVL=H

ANO $E00000-FFFFFF

$000000-1FFFFF OVl=L

$COOOOO-D7FFFF

AND SDCOOOO-DFOOOO

/RGAE = DBR*/AS*DTACK*A23*A22*/A21*A20*/A19* OVR*/Cl*C3;$D00000-$O7FFFF

+ DBR*/AS*DTACK*A23*A22VA21*A20*Al9*A18*OVR*/C1*C3;$DC0000-$OFFFFF

+ DBRVAS*DTACK*A23*A22*/A21*/A20* OVR*/C1*C3;$C00000-$CFFFFF

♦ /RGAE*/C1

♦ /RGAEVC3

/BLS = /AS*DTACK*/A23*/A22*/A21*0VR*/0VL*/C1*C3 ; $000000-1FFFFF OVL=t

+ /AS*DTACK*A23*A22*/A21*OVR*/Cl*C3 ; SCOOOOO-DFFFFF

♦ /BLS*/C1

♦ /BLS*/C3

229

/ROHE = /AS*A23*A22*A21*A20*A19*OVR*PRW

+ /AS*A23*A22*A21*/A20*/A19*OVR*PRW

♦ /AS*/A23*/A22*/A21*/A20*/A19*OVR*OVL*PRW

+ /AS*/A23*/A22*/A21*A20*A19*OVL*OVR*PRU

SFBOOOO-FFFFFF

SEOOOOO E7FFFF

$000000-07FFFF

$180000-1FFFFF

/CL KE = /AS*A23*A22*/A21*A20*A19*/A18*OVR ; $O80000-DBFFFF

DESCRIPTION

THE CLOCK IS NOW TILED THROUGHOUT THE SPACE $D80000 DBFFFF. IF

MORE PRECISE SELECTION TO SD8000C $D8FFFF IS REALLY NEEDED, THEN

THIS MUST BE DONE EXTERNALLY USING THE /CS INPUT ON THE CLOCK CHIP,

DTACK FOR THE CLOCK IS HANDLED IN THE MYRAME EQUATION BECAUSE THE DTACK

EQUATION ALREADY HAS 7 OR TERMS! THIS MEANS THAT CLOCK ACESSES UILL BE

SYNCHRONIZED TO VIDEO CYCLES, BUT-THIS SHOULD CREATE NO MAJOR PROBLEMS.

THE IMPLEMENTATION OF ROME/MYRAME MATCHES THE A1000 * IT MIGHT BE

Desirable to have the address range in myrame match the rom select

ADDRESS RANGE...

MYRAME OUTPUT IS NOT USED EXTERNALLY • ONLY INTERNAL USAGE!!!

PA116L8 PAL DESIGN SPECIFICATION

PART NO.: 380 XXX-01 DESCRPT.:PALCA$ REV.1 FRANK ULLHANN 08-29-86

RAM/ROMDECCOER FOR A2S00 HAINBOARD REV.2 (U27) ASSY 380...

COMMOOORE BSW II PRELIMENARY II

ARU Cl C3 PRU UOS IDS RE RGAE CLKE GND

DBR CLKR RRU LCEN UCEN CDR COW DAE CLKU VCC

/CDR = /RE*PRV*C1

♦ /RGAE*PRW*Cl

-» /CDRVLDS

♦ /CDR*/UDS

; ENABLE RAM READ

; BUFFER

/CDU = /RE*/PRW

♦ /RGAE*/PRW

♦ /CDW*C1

; ENABLE RAM WRITE

.-BUFFER

/UCEN = /0AE*RE*C1

DAE*/RE*/UOS*C1

♦ /UCEN*C1

; GENERATE CAS

; SIGNALS

/LCEN = /DAE*RE*C1

♦ DAEVRE*/LDS*C1

+ /LCEN*C1

; GENERATE CAS

; SIGNALS

/RRW = /RE*/PRU

+ /DAE*/ARW*/C1

♦ /RRW*/DAE

; /WE FOR DRAMS CPU

; OR AGNUS ACCESS

/DAE = /DBR*/Cl*C3

+ /DAEVC1

♦ /DAE*/C3

; CHIP RAM ADDR ENABLE

/CLKR * /CLKE*/LDS*PRW ; CLOCK READ

/CLKU = /CLKE*/LDS*/PRU ; CLOCK WRITE

DESCRIPTION

231

PAL20L8 PAL DESIGN SPECIFICATION

PART NO.: 380715-2 DESCRPT.: PAL BUFFER CONTROL REV.2 HEINZ ULLRICH 06-18-87

PAL BUFFER CONTROL FOR A2500 (U5) FOR PRODUCTION-PCB

COMMODORE BSW

SLV1 SLV2 SLV3 SLV4 SLV5 OVR RD BAS RESET A23 A22 GND

A21 A20 D2P A19 BERR OWN DS NCOLUS PROC DBOE ASQ VCC

/MCOLIIS * SLV1*SLV2*SLV3*SLV4*SLV5

♦ PROC* SLV2*SLV3*SLV4*SLV5

♦ PR0C*$LV1* SLV3*SLV4*SLV5

♦ PROC*SLV1*SLV2* SLV4*SLV5?

♦ PR0C*SLV1*SLV2*$LV3* SLV5

♦ PR0C*SLV1*SLV2*SLV3*SLV4

/PROC * /BAS*/A23*/A22*/A21* RESET*0VR

♦ /BAS* A23*/A22* A21* RESET*OVR

♦ /BAS* A23* A22*/A21* RESET*OVR

♦ /BAS* A23* A22* A21*/A20*/A19*RESET*OVR

♦ /BAS* A23* A22* A21* A20* Al9*RESET*OVR

/D2P * OUN*/SLVl*RD

♦ OUN*/SLV2*RD

♦ OWN*/SLV3*RD

♦ OWN*/SLV4*RD

♦ OUN*/SLV5*RD

♦ /OUN*SLV1*SLV2*$lV3*SlV4*SLV5*/RD

DOWNSTREAM READS UPSTREAM SLAVE

.m.

. ii.

. ii.

UPSTREAM WRITES DOWNSTREAM SL

/DBOE » /BAS*/RD *BERR*OWN ; CPU READS FROM SLAVE
+ /D5*RD*/ASQ*BERR*OWN ; CPU WRITES TO SLAVE
+ /BAS*/RD *BERR*/0WN*SLV1*SLV2*SLV3*SLV4*SLV5; DMA READS CPU RAM
+ /DS*RD*/ASQ*BERR*/0WN*SLV1*SLV2*SLV3*SLV4*SLV5? DMA WRITES TO CPU RAM

IF <R£SET*NCOLl!$) /BERR = RESET

DESCRIPTION

232

PA11&H& PAL DES!GN SPECIFICATION

PART NO.: DESCRPT.:PAL ARBITRATE A2500 REV.t FRANK UlLHANN OS-22-86

PAL ARBITRATE FOR A2500 (U > FOR PROOUCTION-PCB

COMMOOORE BSU

7M BAS RES BGIN BR5 BR4 BR3 BR2 BR1 GNO

NC 8AS0 BGOLD BG5 BG4 BG3 BG2 BGl BR VCC

/BG1 « RES*/BGIN*BGOLD*/BRt ; GENERATE BGl

♦ RES*/BGIN*/BGT ; «0ID UNTIL /BG

/8G2 = RES*/BGIN*8GOLD*/BR2*BR1

+ RES*/BGIN*/BG2

/BG3 = RES*/8GIN*BG0LDVBR3*BRl*BR2

♦ RES*/BCIN*/BG3

/BG4 ■ RES*/BGIN*BGOLO*/8R4*BR1*BR2*BR3

♦ RES*/BGIN*/BG4

/BGS " RES*/BG1N*BG0LD*/BR5*BR1*BR2*8R3*BR4

♦ RES*/BGIN*/BG5

; STORE OLD STATE Of B6

; BR IS REQUEST TO 68K

/BGOLD = /BGIN

/BR = RESVBR5

♦ RES*/BR1

♦ RESVBR2

♦ RESVBR3

♦ RES*/BR4

/BASO = BAS

DESCRIPTION

BGl IS HIGHEST PRIORITY

233

Section 7.4

List of B2000 Motherboard Jumpers

J101
3 2 1

J200

1 •

J300
1 2 3

a

J301

XX

Thisjumper determines the high-order address bit for Fat
Agnus. In its normal position shown the high-order bit is
A23; in its other position, this bit is A19. The current Fat
Agnus chip requires the A23 signal for proper manage¬
ment of the memory at $C00000. Future Fat Agnus chips
may map things differently.

This jumper is used to set the light-pen port number. In
the normal position shown, the light pen input will be the
FIRE input of mouse/joystick port 1. as with the A500.
With the jumper in the other position, the light pen input
will be the FIRE input of mouse/joystick port 0. which is
the scheme used on the A1000 machine.

This jumper determines the time base used for the 50/
60Hz CIA timer chip. In the normal position, the 50/60HZ
TICK clock, based on AC line frequency, is used as a time
base. In the alternate position, the vertical sync pulse
from the video section is used. The system will not oper¬
ate properly without one of these clocks.

This jumper is closed to add a second internal floppy
drive, open to leave the second floppy out of the main unit
box.

J500 This jumper is used to enable the 512K of RAM at
$COOOOO. It is normally closed; opening it will disable this

X-X extra RAM.

235

Note: R103- 104, 1Q6- 1G8 are fron EMI control
end may not be loaded in all cases

JP2 controls where expansion ran naps to

R23 -> CO00Q0 (default), R19 -> 080000

vcc vcc
4.7Kx9- 470x7

RP102

_BROz

BGO1

BGACKO1

BEERO1

I PL (2:0) O1-2 /i

FC (2:0) <DL

V*

RP104

E<ZP .7

7MHzO^

.J/PflO1-

_DTflCKC>1

RSO1

R NOi

UDSO1

L05O1

RSioUL-L

HLTO1

13

tl

12

22

23

24

25
Cr
Cr

26
27

28

20

M

15

120-

8103

19

21

10

-Cr

Or*

18

17

JR

JG

0CRCK

J0EER

68000

_IP L 2
IPL1

iPta

FC2
FC1
FC0

CLK

-Cr

_VMR

VP A

DTRCK

AS

R/_H

UOS

DS

_RST

LT dA

/ \

_/

A23
fl 22

A2i

fl20
A19
P18

P t 7

P16
P15

fl 14

fl l 3

fl 12

Rl l

R-10

A9
P8

P7

P6

P5

P4

fl3
A2
Rl

51 22,

50 21

48 2a

47 19,

46 18.

45 17

44 16.

43 is.

42 m.

41 13.

40 12,

39 11

38 Id

37 9.

36 8,

35 7

34 6y

33 5y

32 n

31 3.

30 2,

23 l

015
Dm

013

012
Dll

DIG

09

08

07

06

05

04

Dl

LI
A

*A

54 15

55 u

56 13

57 12

58 11

59 t0

60 9

61 8

62 7

63 6

64 5

1 U

2 3

3 2

KZ l

5 8

N
N

N

Li /'"Ti
/TT

yj

v

U12-

IS
—

1*4 n
SB
m
m ill

16 JJ
n

8 JLI

UJLU
2fl4oo 2TM

1 '2T3

1R4
1R3
1R2
lfll

2T2
2T1
i r yj

1TB
ira
in

74LS244

U 1 0-

12
14

16

18

74LS373

ifbe
ILq 7
i|Q6

&

•iA
m /

77V
12 /
HV
10 /
TV
lA

=U13

UJ

o

1^05
§04
§03

D8
D7
D6
05
D4

§02
2ni

D3
02
Dl

n R

a 19

a m:

a 1 1

2 8

1 6

19 4

jQ

LULU
2fl4o,o. 2T4J

1 '2T3
2R2
201
104
103
102
lfll

2T3
2 r i
1 T4|
IT
ira4i
in

12

16

18

74L5244 74L5373

18 is

17 1U
14 13

12

11

m
D
n

A

2

1908

V

i§]7
1536

VI
ii5s

VJ
V

&

jy
lA
a A
iA

-Ul 1

LU

CD

f34
4-23
5.32

08
07
D6
D5
D4

2.31
02
Dl

18 7
17 6
14 S
13 4
8 3
7 2
4 l

0

A

4

vcc

4.7Kx9

RP101
s 9) ru

VCC

C7Q 1
tKT

14

22uF

Vcc

XI

outP

28.63636MHz
OSCILLATOR

C nd

_/

(Pfll:

_XCLKEN01

XCLKO1
74F04

13

A500-1

C
jl

)

\
s
s
N
V
s
s
s
>
V
>
s
N
>

V

'f.

f 10
/^9~

/T~

U 1 2

15
14 JJ m lg

m
ti 11
10 8
9 6
6 4

LUUJ
294 o o 2 T 4)
293 1 12 T 3
292 2T3
291 2T1
194 ITU
193 1 T 3
iR2 ira
i9i in

74LS244

IS

u
13

11

U 1 G-

7

12
14
16

18

74LS373

38
||37
15 36

£

L/
4 /

'2

8~/

-U 1 3

mi
o

1^35
-9^4
-&33
-5.32
-231

D8
07
06
D5
04
03
D2
01

cn

V

a ■E
a ■E
o ■E
m IT
a 8

i 6

a 4

jQ &
UJLU

2R4oo 2 T 4}
293 1 12 T 3
292 2T2I
291 2 T 1
194 1 T 41
193 1T3
192 ira
191 iri

12
14
16

18

74LS244 74LS373

18 15

17 lit

14 13

12

11

EH
n

A

$

£

i^ba

15
12

4

±s,

%
B /

-U1 1

li]7
36

n35
f 34
|33
132
2.31

T
UJ

I o
D8
D7
06
D5
D4
03
02
D 1

18 7

1? 6

14 5

13 4

8 3

7 2

l

8

A

>

A

VCC

RP101
Q • Ai

7 (23: 1)

FU 02
1 \ 2

22

Tmn

22 Tv

(15:0)

^^^ODRD (15:0

VCC XI
1/ \

C70 1
far

m

22uF

\

Vcc OUT

28.63636MHz
OSCILLRTOR

Grid

8 FB

F B1G 1

(PflL: 28.37516 MHz)

XCLKENO1

XCLKO1
74FQ4

13

RP1Q3

i? 22ty^-

120 -

R104

(FLOPPY FUNCTIONS) 470x7 vcc. 4.7Kx9 vcc

25

-C—OE0

__0EL

-LATCH

23 39

22 38

21 37

36

^9 35

34

33

10
1 1

C
c

9i
13

43

14
3

42

41
C
C

(CONTROL FUNCTIONS)

A23

A22

A21
A20

A19

RIB

fl 1 7

JDVR

OVL

xrot

GRRT

VPA

_L0S

JJOS

R/W

Lfl S
OTRCK

_J3GRCK

—HLT
_RST

_R0MEN

.JEXRflM

-CLKRO

_CLKWR

z z <r>
UJ UJ CO ►—
2 0 — —
CL UJ J J

(_)
<r o
O L L
U, U U

I o o

CD oo o in
rp

RP1Q4Sl!

29
u>

30

31

RP101 7'
d>

21

32

-z<D_0VR

^OOVL

^<axRor

22

23

t>_R0MEN

^OLEXRRM
t>_CLKRD

t>_CLKNR

74F04

in
cm

JL 7 76

J6 75

.15 74

.U 73

.13 72

.12 - 71

il 70

J0 69

5 68

fi 67
.7 66

.6 65

.5 64

vu 63

3 62

^ 61
a 60

as 83

a u 84

43 l

42 2
ai 3
as 4

4) 5
Ji 6

7 7
sB 8

$ _9
vM 10

7 n

7 12
a 13

sB 14

52

53

22
24

16

34

36

35

CM

t^fr RP10 3?0—CCKQ

74F04i\ __

HPlj33 ft^rRP103^-'
fs4t> CCK

74F04^
ii 22-*:-

U3~3 Tr^A^1(Pip l 03^^^d^^

R5

R4

R3

R2
R1

8370

7837 1

FRT AGNUS

-Casl

JCASU

JAS0

_RAS1

-WE

D

DRD15

OR014

DRDt 3

DR012

OROLl

0R010

0RD9

DR08

DRD7

DR06

0R05

0RD4

DR03

DR02

DRDi

ORD0

DRR8

0RR7

DRR6

0RR5

DRR4

0RR3

0RR2

ORfll

DRR0

RGR8

RGR7

RGR6

RGR5

RGR4

RGR3

RGR2

RGAl

CU

_1DS

.uos
R/W

s CLB 7M Hz

cLreset _J-PEN

JiSTNC

—VSTNC

_CSTNC

28MHz

OMRL

_J NTR

cLxclkem

XCLK TEST

107

4^5

Jt>CCKQ

OCCK

12CM 120- 120-

t> CDRC
108 ~1R 106

54

55

57

56

21

■3E>.

t>

t>

t>

t>

CflSL

CRSU

RRS0

RRS1

WE

53

50
-s

7

49
- 1 \ 6

48
11 “N
5

47
■ " >

4

46 3

45 2
44 1

43
— 6

26 8
27 7

28 6
29 5

3G 4

31 3

32 2
33 l

N

t> DRR (8:0)

*

M>RGR (8: 1)

38 PP- —

RP 1 03
■^*^07MHz

78 JL-£0 FIRE1
81 HSYNC
79

80

^^<C>_VSYNC
-t> CSYNC

18

17

1ODMRL
Jt>_INT3

PROCESSOR RND OTHER USEFUL COMPONENTS

41

DRAWN BYs
G. Bobbin*

umr
t5/#1/®7

CHKO:
ENGRi GRR
APPflj

USED OH

C/R508

NEXT RSST

312518

Connodore

C/A500 Main Board

’’Rock Lobster"
SIZE

c
SCALE

312511
[SHEET 2 OF IQ

REV

5

DRO (15:0)

DRfl (8:0)0

_EXRRMOi

CCKO2^*1

CLKRDOa

CLKWRO

ROMENO^

R (23: 1) O^

D (15:0)

k_0

k

ki

k_ji

h_li
k

74F244

k_U

1R2 1T2

1R4 1 Y4

1R3 1T3

2R4 2TM

2R3 2T3

2R2 2T2

1 fl 1 1 T 1
—• C\J

2R1^J JtJ 2T1

°l
O

1
u

u_A
12_A
14 A

A
7_VI

18_A

A

1 1!

8

.2 1:

^2 15

^2 2

2 11

4

6

CO

74F244

2R1

1R1

2R2

2T1

1T1

2T3

2T3

1 R4

2R4

1R2

1T4P

U34

K

v

\

9

k
k
k
k
k

I I I—

U Jb
12

2 T Ljl

1R3S

Od

lra^-6

14
-IT2

z±z- ®

3
k

k

k

2

k
k
k
k
k
k
k
k
k
k
k
k

18

k
11

k
12

k
13

m

15

k
k
k

+12 V

.21

.31

.33

.41

-O
43

.45

.47

.49

.51

-©
22

.24

.26

.28

,30

.32

.34

.36

.38

.40

.42

.44

.46

.48

.50

.52

&-o54

*55 0^6

vcc

A
e

a
A
/I

A
A
A
A
A
A
A

18

/I
LI

A
12

y^
13

y4 14

15

JP3

RP2Q2n[-; a~|368

R P 2 0 2 6 pb. r| 568

RP201
JvsA

68

R P 2 0 1 s 768

RPgJlzj^agS

RR2J-3 54^16 0 8

R P 3 Q 3 3 p^AyA~i n 5 8

RP.3,g.3j.[4A/42S,8

A
RP202 8r^ a~|768_1/

A
RP2Q Ugvai68_3/

RP2Q 16^1568 ^

A
A
A

RP2Q lio[~;ava~|968 A

Note: JP3 swaps internal v

31

k
k
k

-12V

k
k

k
k

'18 32
'17 33
'16 34
Vs... 35
'14 36
'13 37
'12 38
'11 39
'10 40

fl 2
a 3
7 4
fl 5
* 6

* 7
A 8

* 9

12

A17«

A16

A15

fl 1 4

fl 13

fl 12

All

fl 13

A9

88

R7

A6

A5

A4

A3

A2

A1

A8

cLoc

A500-2

C£

-a2
_1

e

1

2

3

1

5

6

_
1^

8

9

10

11

l!.
13

l*

A
A
/

/

A
A
A

/I

/I

A

A
A

is

RP2G3?
RP203

Jvv/5 80 8

RP2G28
RP2Q2e

1 RP20U mmm
RP2G16
RP2012

RP2G22

I RP2Q18
v V 7

r,7\ioQ

1 R P 2 G li 0
v V *
OvOiiS-5

A

A

A

sA

vi

■A

A

658

RP2G3 Q\A 68

JP3 RP2G3 268

15
4

k

XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15

__1

m m
an
m 11
m MB
m
m 7
m 5

A8 U i 61
R7
R6

R5
R4
R3
R2
R1

RG

-HE
_£AS
_RAS
PI DO

£ fu

A

R8 U 1 4
R7
R6
R5
R4
R3
R2
fll
RG

-HE
_CflS
_RRS
01 DO [2—nra

A

ne U 181
R7
R6
R5
fl4
R3
R2
fit
R0

-HE
_CAS
_RAS
01 00

14

A

08 U 1 9_L miisio os U21 08 1)22 ns U23
R7 ■El R7 R7 R7 R7
RG 13 R6 R6 R6 R6
R5 mb R5 ' R5 R5 R5
R14 MB R4 R4 n«4 R4
R3 MB R3 R3 R3 R3
R2 WE R2 R2 R2 R2
R1 MB fll Rl Rl Rl
R0 s RG R0 R0 R8

HE ■ WE 1 NE 1 _HE l HE
CAS WE CRS CRS CRS CRS
RRS MB RRS RRS RRS RRS

Lot do 01 DO 01 00 01 00 0 I 00
HU, j ■11 2 [U ■It ami

J i f

XX256-15
._1

m a m 5e
m
9 m
9 m
m 51

15

R7
R6
R5
R4
R3
R2

fll
R0

-HE
_CRS
_AAS
UI DO
\r

A

n 2—rru

A A

n

A

XX256-1S XX2S6-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15
R0 U25 Re U26 RB U 2 7 l rs U28 R0 U 2 9 R8 U30 R0 U31
R7 R7 R7 9 R7 R7 R7 R7
R6 R6 R6 13 R6 R6 R6 R6
R5 R5 R5 MB R5 R5 R5 R5
R4 A4 A4 n A4 R4 R4 R4
R3 R3 R3 ME R3 R3 R3 R3
R2 R2 R2 6 R2 R2 R2 R2
Rl Rl Rl MB Rl Rl Rl Rl
RG R0 R0 ME RO R0 R0 RO

-HE 1 -HE 1 -HE m _WE 1 -HE 1 _WE 1 -HE
CRS ■ CRS CRS 15 CRS CRS JCRS _CAS

-RRS _RRS -RRS ■D _RRS -RRS _RRS -RRS
01 00 D1 DO 01 DO 01 00 01 00 01 DO 01 00

3™
2—pm 2—pn 2—m

1 1<L £_1 £_/

2 jm

ROM, RRM, RUM -- MORE ROM. RRM, RUMi
IW:1«

Connodore

d

CHKu:

C/A500 Main Board

"Rock Lobster"

ENGRi CRR •S/M/47

RPPflj
4

USED OH

C/R580

NEXT RSST

312518
SIZE a ^ r- 1 1 ^EV

c 312511.5

SCALE (SHEET 3 OF 9

LO 3 i

Not©

_I PL 12: 0) O1

DRD 115:0) O2*^

RGfl (8: 1) O2**

DMflLO2

CCKO2*5-
CCKQO2-

RSTO 2*1

1

V.

VI
n
n

n
n
n:

15

14

13

1PL2

I PL l

_JPL0

42
'15 ,j3

U 44

'13 .*5

'12 46
Tl 47

'1« 48

* 1

* 2

"> 3

* 4

* 5

6

3 7

* 9
'l 10

19

2G

21
22
23

24

25

26

12

28

29

DR015

DR014

0RD13

DR012

0RD1 l

DRO10

0R09

DR08

0RD7

0R06

0RD5

0RD4

0R03

0R02

DROl

DRD0

RGR8

RGR7

RGfl6

RGR5

RGA4

RGR3

RGR2

RGfl l

ORAL

CCK

CCKG

_IN T 6

U 3 -int3
_IN T2

prulr

8364

i^CLRESET

_Rx0

_TXD

JJKRO

JKHO

OK HE

P0X

P0T

P1X

PH

RIGHT

LEFT

A—.Gftd

18

17

41

40

37

38

39

32

33

35

36.

30

31

34

VCC

IM

R305
3Si K

1NT6

*<□ INT3

*<□ INT2

VCC

*<□ RxD

t> TxD
4.7K-

RP501

KBRESETO2

HTRO®

SEL0O

J<D_DKRD

fSJ

C 31 1 C3l2 C3 1 §

.6 7 ,

vG 16 ,

-^

cLmtr

8

U5
MTRX

_ksreset

_5EL

_OKWO

DKWE

C314

BRIGHT
047uF .047uF .047uF

^LEFT

. 047uF

*0010

FB802

CO
u_ flUOIO

MTRON

GARY

DKW08

0KWE8
(FLOPPY

FUNCTIONS)

46

45

44

5<UP0TBX

^OPOTQT

VnPOTlX
^OPOTIT

VCC

Note: Gound connection ot Audio jocks

47

l

2

«j

U36

t

U3 3

i

is
U36

t
12

13
U3c

i

A500-3

2

Connodore

C/A500 Main Boc ird

"R ock Lobs ter"
SIZE

C 312511
REV

5
SCALE SHEET U OF 9

CCKO ■2.3.7

RGR (8: 1) O2^-

CCKO ZJL

7 MHzO^

CDflCO

CSTNCO

v\
k1

H

VI

Vi
VI

V*

DRD (15:0)

V.
V
VI

40
15 41

U 42

'13 >13
12 44

45
'10 46

5 47

* 48

’ 1
* 2

$ 3

4 ' 4

'3 5

* 6
1 7

0RO15
0RD14

0RD13

ORD 1 2
OROll

ORD 10

0RD9

0RD8

0RD7

0RD6

DR05

0RD4

0RD3

DRD2

0RD1

DROQ

IQ

1 1

12
13

14

15

16

17

36

35

34

32

U4

DENISE

8362
RGR8

RGR7

RGR6

RGR5

RGR4

RGR3

RGR2

RGftl

CCK

7M

LCDflC

M0V

H0H

Ml V

M1H

38

39

R3

R2

R1

RG

G3

G2

G1

GO

83

82

B1

BG

BLRNK BURST

PUELSU

23

22
21

20

31

30

29

20

27

26

25

24

>
10

33

Rr

74LS157

mm
M

120 RP404 _ _
— • i-fwr?

5 } T v 16

rrVV 8

12

RP405

74HCT245

00

R1

R2
R3

B0

B 1
B2
B3

40
R4

R5
RS £
R7 a

B4
B5

o 66
I B7

cn D

18

17

16

15

II

13

12

11

74HCT245

R0
fll

R2
R3

B0
B1

B2
B3

U41
R4

R5
RS S
R7 o

a.

B4
B5
B6
B7

art

18

17

16

15

14

13 ^^O CCKB
12

11

+ V ID

68
15

lfl-

1B- U 1 5 ,
IT 2R(-

2BU 2T

3T

4Y 35

lifif

4:

HT1

R3

1

P~-

R2

R1 VIDEO ACf

R0 HYBRID
R8K

8

10

11

13

14

16

18

G3

G2

G 1

G0

03

02

B1

00

CSTNC 5TNC

COHf r

vcc

A500-4

note: EMI401 is looded with C.7 Ohn Resistor

t

vcc
5 ~T~
A_

2

4.7
uF

»■

DENISE IS PRETTY MUCH INTO VIDEO...
DRAWN BT: w

G. Robbing •s/a«/t7

CHKO*
ENGfti Gflfl

flPPR:

USED ON NEX1 flssr

c/nsoe 3]2510

Commodore

C/A500 Moln Board

"Rock Lobster"
size

C
SCALE

312511
|SHEET 5 OF 9

REV

5

RP5Q1

27 c
\6 28
\s 29 j

V*_ 30 r

Vs*

\ 2 32 r

V1 33 ‘
8

35 f

A500-5

J~ in
-12V

/l13 1 f

A*

1

1 I

Lie

1

-U

312SL3

Ror<?*2

JKRDCF

_MTRXO

_SEL20!

4. 7

IORESETO6'2

CHNG<ZM

1 FJfJI 2EMI6I 1

jl^p sEM! 8 12

1 irrri 2EMI614

?EM1613

1 IemT1 zEMI615

1 IemT zEMI616

M

JUfll

JCL2

Min

CHNG

14

15,

16,

17.

16,

3 IOC

JJPROT

TPIKi

MSL

_$EL3

.SCL1

.INDEX

CN5

EXTERNAL FLOPPY

EM1617a

EMI618a

EM 1619,

EMI 620a

EMI621a

EM1622

Jru r I i _ - 6.7, it n i

Jp M T L 6. 7r It n 1

Ip U T t

L

6. 7r It n 1

fMf

JtMT

L

L

_ 4.7.

i >4.7,
T- ^ 1

Jp u t l 6. 7, Tt n 1

EMI624a pjp 1

EMI625apjrri 1

EMI626a ir^p 1

♦12V

EMI602 j

EMI601

£J<a_SIDE
WPROT

Ml>_TRK0

DKHEB

^-kZLDKWDB
*L2<3 STEP

jha EMI6232 pun l 6.7.
tiiiJ

*<□ SEL3

^^<a_SELl

MI>_INDEX

INTERNAL FLOPPY

ON 1 1

_CHNG<CfL2

INDEX<>2

_seloo£J-

SELIO6*2

_MTR0O“—

DIRE>£‘2

_STEPE>^

DKNDBO^

.DKWEBO1-2

_T R K 0 •O6'-1

_WPR0T<CIb

_DKRD<U1-

JL

_S IDE 0s*-2

_RDTOI

CHNG

MTRON

_I NUSE

_I NDE X

SELO

SEL 1

_SEL2

MTRON

DIR

_STEP

_WD

WE

TRKO

WPROT

_RD

SIDE

RDT

02

-04

06

-08

-O10

4112

014

-016

-018

-020

022

024

026

028

030

032

034

10-

30

50

70-

90-

ltO

130-

150

170

190

210

230

250

270

290

310

330

vcc

A500-6

MTRQN

.1 NU5E

.INDEX

_SELO

_S ELI

SE

TR

_STEP

__WD
__WE

_TRKO

WPROT

_RD
_S IDE

RDT

13

LINE FILTER

M

C821 +

rCTCHi

5-PIn SQ
LF1

C811 ~|+ C812J + C813 ~[+ C814 ~|-f C815

TlQQuF ^p47uF ^p47uF 1p47uF

TE: HEAVY LINES INDICATE A

SINGLE POINT CONNECTION

EMI 101
EMN07

m\

cp

722uF
U33|

cii r

CO

£13
u

7luF
00

j

32
£32

. 1 uF

CD CD =r zr
CU OJ

•
£ C34 i C35

•
I C36 i

U 34 L U35 U 36 L, F U37
7

lSf- -
. 1 uF i

L J— “
. 1 uF

r=T—
-

. 1 uF *

1

£37

. 1 uF

A500-7

vcc

CD

c 13 r~
u . luF

CO

312518

XX256-15 XX256-15 XX256-15 XX2S6-1S XX256-15 XX256-1S XX25S-15 XX2S6-15

\J
MEMORY EXPRN51 ON FIND RERL TIME CLOCK

OROWNBI1!
G. Robblna

■»IdM Connodore

_y//
LHlsu:

ENGR» GRR •S/M/87

C/A500 Main Board

"Rock Lobs ter"

RPffl*

USED ON

C/RS80

NEX1 assy

F*
3)2518

SIZE O f— 1 1 REV

c 312511 5
SCALE |SHEET 9 OF 9

mi
Ox/OK

UN 20
dx/OK

Rf/25

dx/OK

IMP
KFt

C3~>
CEO

zrs rr~>

ftm
Qx/OK

rn/s

dx/OK

-1 V
-1 V
-1 \-
-1 V
-4 V
-4 1-
-4 V

s

Zz
5

-i h
-4 \-
-1 1-

-4 ~T
4 K
4 \-
-4 V

p
&

6

PD/S PD/5_
pd/v \ /pd/o
Pan \ / PD/3
pd/2 \ /pm
PDH \ / Tpj±

PD!0\/ PDIO
PD9 \/ PD9
PD8 \/rPDS

V

PD 7

ERL PD6
PD5 \]/ PD5
~m\/pD4
~PD3\/~PD5
WZ
PD/
pdo\I

I-*

PP7

PDZ
PD/

1 / ppd

/5
17
/6

CLK
HUT

RES

SR
55
56
57
53
59
60
6/

V/S
D/9
V/3

I D/2
DU

V/0
DP
D8

61
63

64
/

Z
3

V7
\D6
V5
m
\pi^
DZ
V/

U 1

AS
m
LDS_
P/A/

ffAft
T5

BUCK
BK

VMA
E

m
BEM
1K1

/PL!
/PL0

PCZ

PC/

FCf>

o
o
00
CD

YCC

VCC

6HP

SND

IS

T

+5V

r

mySm. In
ll

i
t IPS /Kws \6 i-,

PN3
5x6K7

9 rw A\p*i*/\3
mc*/K vma \8{

CZ3

-tr.-Z-i <5*

lSAu\R r
Tk

e y j*y i ?A
VM | [

L a'/V
-’

ipuA
/pl a/

2i Fez / \mcK
27 pa A r-r

R/73

♦5 V

j
28 PC 6 /\fRfV

*5Y

m
69

-— ■ J
l_

_

tb
53 Ll

“c/SA

PD! 5
/ PD/4

29

PD/D
[/IB

VJdE

V

Pt/fi

21
II

23
20

IQ

16

/4

KC

[/

14 LS0+

13

5V
K

C.275

0.22 ja

21

PD7 ZQ

/Wt 26

'PD5 u

' PD D u

’m 19

f PDZ n
' PD/ IS

/PdA 13

■Hr

ti 3o
VCC

uz

CN
O

CN
O
-4-
CN
CD

cs 1s

UtP

n

3/

32 r ! 7 j
33 A lb,
34 A 15,
35 A Kb,

36 A/3,
37 A/Z,
38 A/I,
36 A10
40 ■A9,

1 AP
3 PI,
4 Ab,
5 AS,
6 A4,
7 B3,
0 AZ
9 AL

-'JFJT0

OVL

\

V5R 3

KA5 6

V PRJW 7

M2 6

Ai9 5

A 70 4

A 2/ 3

A 22 2

A 23 /

ll
ROUE

/

V1£el
/Jdll
[/ FDIZ

l/'Ton
/PDIO
/ PC?
/73a
v

PC 15

A

V

(

A

PD 7 2
r PD6
f PDS A

' PD 9 *
' PO3 iff

'PDZ
*

'PO/ -

' PD0

A2000-1

33
3¥
35

/ lb/
A 15/
A t*/

Aid/
vs

AH/
AZO/

■A9 /

7/
A6/
5/

3/
AZ/
At/

Rome

clkrd

cOW

V
v rrsjrv-

M7 6
h* 5

V A ?0 he
V A 21 3
V A 21 2

V. A 23 /

POtS
/ PViH
/PDi 3
/ PPIl
/ PPH
/ P9Z0
/7FL
/ pdq

La
n .

/3
d_ .

"U

»LS
?0(f-l5

3 Ip U 7

/p
m \1/ viz
virz/vii
v/o\]/v/o
V9 W/ V9
73 \l/ 93

n_.
ZL1) y

_c

a i-
. 5__

. 6_
. 9_
. IZ_
. IL
. I6_

Q £-

PDtS
?vm
m3
TDH
ivn
?V10
P99,
PD6

ft

/ PDb n
/tds
/wT J5
/ poi (O
a a mu
/POZ e>\

>
7 I 77

!5\|/2)5

V3WV3
dZ/A/Dl
Vt W/DZ
M\l/70

V l 3\v U9 a L
„ 5

& pr\

13 m /£
«/)
—j ts

17 Zb

VP7,

ILL
?D5
?9H
7D3

m,
PPL,
Pd/

Cif

Tfxmyi
Clock

dfi-15

DRAWN BY A W n D T

titlin'
CHKD

CNCR

DAT!

OS-ti-lo commodore

USCO ON

Alooo

ncxt assy

SCHEMATIC

AMIGA 2000

3607/0
u-E HONE

3-49

W
K

'-
'

ra .

PDS 33
' 6 32
r 10 31
r n 30
' 12 29
r 13 21
r l<f 27
' PD 15 26

A2000-2

Mdy

3

BUSY
POUT

REVISIONS
... - - - -

LTR ZONE DESCRIPTION csa APPROVED

S££ &HE5T /
IWUS£_1

set

06 U.1 Uf\ c>5 01 OZ CiJI v.5«| CJD Lit, \C}}

+ SV

RKH
\St IK

Lrm,
s

10
(I

IACK
Busy

12 1 pmn
19 seL

DOMD

Li
CHN6

sem
hTROO

am

wm

w
22

INDEX

TK&

WPRO

13 * Wf,

t5V

u U
Viol

i3

RN2?

RDY

dkwdb nr>

DKtVffl r~7~>

DKRD
+SV.JSE* 47

o-CZZ
R;fV /VC

DIRB /9
5TFF5 /8
dkvm 17
bKWBB /t
Tty /5

wWU Ik

OKRD 2
' 57Z5?ff IS

w l
kfkiS 8

£elbbh^
20

3
£el 25 21

' 68f58 10

-tit

iLiRESOUT
♦12 VO- fl*

II

12
23

cm
O.OOlpt

&?»/?

'/v 7VJ*

(//£

/ytkyo ^

.3

21

..31

,/i hLS?9

iSV
r / 1

JRESQ RDY

lk Vi 1901

‘_l^£- 2 y Vt P 5 /Z. 6 y<r 4 tfTROD

CHNGr
awn
DIRB
STEPB
OkWDB
(JKW1EB
Tk9

fJPRO
DKRD
SiUEB

(tl Ui — ^4 _
RDY ^ a. ““
MTlfcxD 5:
Jem UJ

u.
fFTTT

iELlB cO
<N

+5v OO
-f 12 V O

DOND

i
D6ND

D1SK0
05

to
'£Jm7roD

/a
20

22

IfJUSEA
CHN&

/nDFx
DIRB

STFPB
DkW&fe

ivjDTOEB
tic?

W^RS

26

28

20DKRD
32 51DEB
34IRDY

»<;

/

if LIB
KEY
D6ND

\ SEL IB

IHUSC-P r~3~>

U/J {EM
r—\Al93

6CJ3P -/2V- '22* O
O.oo/h

Tn

/3
12 D

II &
3_>

WusT7$

1 J~> /WJ£. 7

C/>£2

l/4 74LS3Z

QE>
J36

43 --x
-3155)2,

:pu <C3Z}
/A/rz

tfje* o-

mv.USER o-
~5V o-

nr>
AuDOUT [7 >
AUDW

rxo

RXD

16

to

<d

zr>
<d

)?ES B I 4 >

*5V<>

Ik 83
DSR
m
CD
IT
M

AfC

U17

IMS

U<7

1489

l/</

/48S

ui6

CZ67

7 001 r

lk*8

4. C2lLcti_c^l Clc CH

IMTBRNAL. |cW
serial Ij^ ‘

22

,/K
-1*7 H

cm

U* 0.00 tfj

Cf CIO

10

21

15

MmzyL

\C266

Kty 13

n 7
NC

LED d

i/16

li
it

2x470

POND

SERIAL J6

♦ 1£V
-11V

Z*tlM
fiJAUDOur

UWN
TXD
RXD UJ

i] SMIttD

>N0
NC

22
/?!

TOLERANCES on

DECIMAL* .

.XX .XXX

t t

DRAWN BY

CHKO

EE: unz

• A Tt

05-2? 46

A PPM

MATtRIAL USCO ON

A1000

NEXT ASSY

FINISH

commodore

SCHEMATIC

1

gi 3Q01I0

SCALE NONE sheet 3 or 2G

«0 r-
cc _A

12
.13

* 1

•LLM230I

/ C

/l
/

ZONE DATE APPROVED

OCCiMALS ,

.XX XXX

t X

MATCftiAL

FINISH

USCO ON

A 2000

NEXT ASSY

size
c 380 7/0

nohe I

MEV

€
SHEET ^ Or

DRAO 5 Aft
VDRA1 7

nr
A1

,DRAi 6 A2
DRAJ 12 A3

VDRA4 ii A4
^DRAf A1?
VDRA6 13 A6
.DRA7 f a7 U42 U43
vDRA6 i Ad

4 RAS
15 CAS
o

WE

DO Dl DO Dl
14 Z 14 Z

D8
_

D9 .
A

A2000-4

REVISIONS
DESCRIPTION DATE APPROVED

SEE SHEET / I

DRAG
DRA'l
DRA1
0RA3
DRA4
DRA'T
0RA6

0RA6

5lAg|

M
A2

li A3
11 A4
12 A5

A7
Afi

a

9
h

U34

3

. ras
^ICA5

WE

2

DO

U35

Vi 2

D1

U36

D2

U37

DRAM U38

2%K

D3 04

U39

i_,__i_i__

i h il mi m

09 D4

Vcc
6*022fj

U 40 U 41 v55 */cz35-ciHi

D7

DO Dl

46 U 47

14 2

Dii

DO Dl
vil W

013

U48

DO Dl

14l 4'

D14

vcc

U49 vss 14
C243

B*0.22p

DO Dl

14] IT

019

D0-D15

commodore

USCO ON NOT AUT

>(2000

FINISH

_

SCHEMATIC

AM 16A 2000

380 710

3-52

a
scale NONE | sheet 5 or //

A2000-5

REVISIONS
LTR trm DESCRIPTION DATE APPROVED

SEE SHEET /

CPU I 3,9
CCKC£I

cmrvz

6/ <rl

DATE APPROVED

Cl

XCLk

XCLKEH
H
Cr
3 J9

31
n
Vk
UK UJ

QlCsy <

H5Y 2
VSY i
IV CD

O
cr

*5iMt
HivMi
-fr -j
KM <

z
• rO
• CM
•

CO

Mt O

SCALE NONE

SLAVES

Slave i

23

r.r rr _33
55

XRP^ k

ZJJTZ IS

iKfTB n
/

(00
/w~ 79

71
yiw 70

/W 68

WWPA31

yfCZ 35

V7M k&
mmam

/3646c <2

/^r ^

J19

cr
o
o
LU

o
o

sm l/
2b A 3/
27 A

mm 5/
23 At/
%WSEk
sm b/
m 9/

X

Ml
\ A3

^/tv* X A5
\ Ah

U 58

A __ ^ 6
5E M

\A9 8
36 AH A/A10 7
3d 4/2/r\>W *

^ U59 s

IMW
QEE3B \ >t/3 41

fS/\\/l/7 3
UMUzt
MMl'm
52 A1S/
5>7 *19/

A 4E *K

wmmak

jaaswaaEEM

b 9\a U60 s
\ArT8].

2L-,
? jVw

*<

ISjyt
rTTp/
79 FPL

m
63 mN

QV ppi\
61 put

19_A_.
A2C 5 .
>42/ f .
^zTT
>423 2. 4

£3
66
6V
62

?Di
POZ
PD3
P07
P05
PPL
PP7

30 rod PDd
73 PD9\ / PD9
6 PDfO\/PD10

11 P01l\/ PP11
69 PIH2S[/PM2

/PV!3
ls roi7\

/PD/S Efflgij

r jtfi

U61

H BA1 /
13 3A2 /
17 BA3 /
IE 3A7 /
16 bAS /
n 3A6 /

1
.NC

n BAS/
12 T)A9 /
13 BA/0/
17 bah/
!5 SA/Z/
16 BA IJ/
11 BA Ik/
16 SA/S/

1/

■

BA/6 /
12 BA/7 /
13 BA/d /
17 3A/9 /
IS 8A20/
16 BAZ//
/r 2>A21 /
(8 RA23

A OB
19

J*z

3j)d

3P2\
IS i 893 \
!5\ 307\

8 PS \
396 \
30? X

U63 IP6
30?\
3o/o/

!7 i 30// \
/5 8P/2\
16 | 30/3 \

!7
/a so/s\

3A1 29
AZ 27

9
3 A 5
2A 6
dA7
3Ad

29
11
23
23
3o

5
A/7 91

axvM®
2A/7
2 A Id
3A/9
3A20

3A12 57
BA23 5S

1[>Z

302
303
307

son
0/2

30/3
D/9

30/S

79
di
63

307 82
303 30
309 78

7/
69
67
6S
63

p-' > v*4 (y K>

JlZJ ^
52 J20
11
5L

&!

u. N N
^ V '(J
^ ^

k |k
il3

> lOQ IVQ

£

21 J22

;g'$
'b'lsb

Ifc $
'V. Vj

/ /PL/ 92

a pmc ns
OHA OUT LIQ

A2000-8

REVISIONS

’ tN

4^

ZONE DESCRIPTION DATE APPROVED

!
'

N|
u! N N
^ <vc

«d > Icq I*q

w

»A$
h/os
SftS
mo
mo

sk.i
ml
ONP

J 21 J22 J23
1M £

I O ,',^W

m^T
m—
Ttn 1,9
QVX
LOt tL-

HLT ^

m s_

mm to 97_

^98

7

X«iiy U6

m 4.
cm&—
cig (L-
css /f

/Hi.

/VC

£wr 'f. ^
j'l«

IN
!r\j

^ >

• i
I'b v»)

V* N*.
k .Q

ill

■I 5
j .
'Sl'b

v!u

IQ $

Vj

i! .
-S f.O

*
Vj Vj

it t

1
ik -'*

111 «®
olv>

5/
66

62
50
5>5
2

■gas *c.
%Vt HCT32

3 U 62 A
0

Vrs 0

•

+

vn 0

0

< % A

3 A
0? P/e

AS
UDS^

C2?3
= 0.0C\u
i

i e

Res 3

a
cs

CLOCK

EINU- 7

DRAWN *V '•• *£

'[jL M/tvttA*. J".

CHKO.

commodore
tSBMBlMHUESHTi

MAT(*IAl UflO ON

X2X»0

NOT UK

SCHEMATIC

AMIGA 2000

380710

3-56

SCALE NONE; | SHEET 9 OF t|(

Appendix A

Diagrams

CONTENTS

Schematics

CONTENTS

This appendix contains the following figures:

The example backplane (discussed in Section 3.1) A-l
The example PIC (discussed in Section 3.1) A-2
A500 exterior, featuring the 86-pin expansion connector A-3
Amiga 2000 expansion board layout A-4
Amiga 2000 form factor (including 100-pin connector) A-5
Amiga 2000 video card A-6
86-Pin slot expansion board A-7
A2000/B2000 keyboard connector pinout A-8
Amiga 500/2000 mouse diagram and pinout A-9

Appendix B

This appendix contains schematics for each new model Amiga. Note
that these schematics are representative of the engineering design,
but may not reflect the current production board design in all details.

if JiiflHxV
ife.

Ifv

»f?
bT

IW
HI

•THHKvtf

c m rw.»—

i

V
»

»

iv »

Jt
i

> BOflMLJ

16_JXJT

*6C

i
4.4

3HUT_JJP_FORE VEW

CAPO £D<»£ COtJN&CToZ

TOP Of OP£tJ

tO.ZS
/8.Z*

20
.3

2

F
orm

 F
acto

r

COMPONENT SIDE

Amiga 2000 Video Card

t

COMPONENT SIDE

MAX
356.0

337.19
MAX

44 x 2.54 = 111.76

49.57

t
\

PIN 86 PIN 2 /

42 x 2.54 = 106.68

111.48 ±0.1

86-Pin Slot Expansion Board

A-7

Keyboard Connector

n Name Description

1 KCLK Keyboard clock

2 KDAT Keyboard data

3 NC Not connected

4 GND Ground

5 + 5V + 5 Volts power (100 mA)

6 SHIELD Shield

H
E

IG
H

T
 11.5

♦5V RP1Q0

♦5V

o

— a*
*r-

U1QQ

-?*r
LD

©
CM ■ ©

OJ
©
(\J

£100

TO 4 7 u F

£103

.04 7uF
j| £104

7047uF

• » »
U105

•*
e

12

© o ©

£1 05

. 047uF

2
0

©

£106

7*0 4 7 u F

B2000-1

17 •/
in 5/
13

8 3/
7

n ‘/
3 o/

FB201 - i
FORWARD /TS

6^\ FIRE

FB202 BACK 2
19 ♦5V

FR20V __ LEFT 2

\ OGNO

F 82 Q 4
RIGHT 14

9 POTT

C245 C246 C 2*4 7 C248 ^ P POTX

B2000-2

LEFT RUDIO N

R240
v. C24§ C241

■360 -
TiuF U204

R241 -

_lA jlJ

680QpF

10K iA/ ,R242

10K

MPF102

t

R204

u- Q200

rv

_Cj C242

3900pFj7 ^

ffUOlO

22uF

16u

C2<43

D4>
<C47QK

U204

R243

,w-

CN205
r«Cfi JBClU

C244

. 1 uF

390<

R244 >
At

o FLTLEFT
o RUDOUT
-^> RRWLEFT

R292

W 1QK

R230

J
L C230 C23_1J

"360 -

1_:

rriuF U20H R231~-j

R233

h-iKV-

i<3 RUDIN
O RRWRIGHT
t> fltright

RIGHT RUDIO

CN204
ACA JACK

C234
390

. luF

U204

Q<
R234 >

At FB401 -fFiy

C204
R206

1
MJOIO

+flV

0

Q202
2N3906

NJ

At

R213
<; 2.7K

mm

V J
3 10K

R21U
\ J. iO_CUTOFF

. 01uF

AUDIO

D6> <1QK

-ftv

FB203

FB21C

FB211

FB213

F8213-

FB214

12 V + 5V
0

At

C202

. 047uF

-12V

+ RU0

I'm pickin' up good uibrotions...

UNLESS OTHERWISE 0RSWN8Y:
0«v« Haynlc

w Connodore "" SPtLIMtU-

Z'S
.X .XX .XXX

± l± l± t

«/M/t7
irmut
ENCRt OBH l/M/IT

B20OO

Rudl o
APPA,

MATERIALt USED ON

WIN CW

NEXT ASST

3I272S sbe 312726 T FINISH,
SCALE [SHEET 2 OF 1 2

B2000-3

*5»

luF

♦5V

CN3Q6

►
Q302
2N3906

I—CD

<1.7K>

a3071~
ME -±

POWER LED
CN304

-5v_USER
O

C314~

>304
,14

TTT

lGQQpF

C 315

C 3161

D>
L>

y

1000pF

L080pF

C320

UJ

47QpF

CJ

I-*<=]E

—1G>_INT2

* 1 2V_USER
0

INTERNAL SERIAL

♦5V_USER
0

3-
3

*9

□
X

CO

7

- - rr

t> CUTOFF

1
-12V

I *»99

' l

<1
1.4-

^7
Ml

1305
C310

rw
C 31 1 C312

<*

1000pF_ 1000pF_

_ C3l3

ToeepF^

ru
ul

in
oc
CD rv

I<G_C2
ME_BRST

C321

& So

mO —O

in
H cd

in

LJ

cc
a

1O0OpF

2N39Q4

Q300

o >1

,78K S
1N4148

R305>
ru (V D300

CQ

O
CL.
a

try.

CO
»—
Ol

II), -9 -o

a

2o Zo So So

~Ip~7QpF
R^02

A 1K <OflUDOUT

EMI 325

CN305
DB25P

EMI 328

EM 1329

EXTERNAL SERIAL

♦12V_USER
O

JOAUD I N

EMI332

-12V_USER
O

EM 1333

EMI334

+ 5V
0

o
<Nl

<nl

U301

L

C_3Q 1

7G47uF

?!
U304

U305
CKO

_ _

«*
C305

.04 7uF
U805

—i—

IM

£805

7047uF

Con ' t you heor ny coll

(though you're nony yeors owoy)

UNLESS 0THEAHI5C DRAWN BV: OhtC
-SVtL lh rtu— 0«v« H«gnl*

CMKOi

.X .XX .XXX
ENGR: 08M 9/V/97

APPR:

± l± It +
HRTERIftL: USED ON NEXT nssr

JWM-CR 3U725

E1NI5K*

Connodore

' B20QQ
Serial ond Reset

SIZE

B 3 12726
REV
2

SCALE ISMEET 3 OF V?

CN400
POWER CONN

♦5V

♦5V

♦5V

♦5V

B2000-4

8

74F244
A3 T3

U54Q
A2 Y2

A1 5

oiD

rt

mil

WN BY:
Oov« Hoynl«|t4/27/87

Memories (oil alone in the moonlight

Commodore

B2O00
Memory

USEO ON | NEXT RSST __,_______
SIZE o 1 O —? O REV

312725 b 3 1 d / d b 2

ENGRj O0H H/27/a?

flPPRi

FINISH:
R20OO-C

SCRLE SHEET 5 OF 12

t...

.copcfgO1

.LOCRL.OWN
_IN T 2
_IN T 6

BFC0
BFC1
BFC2

_£ IN T 7
JEINT5
_E INT4

BEER
__VPR

E
VMA
R5T

_HLT

C3
CUflC

Cl
_(TvR
XRDT

BA (1:23)

_I PL (0:2)

_BGACK<IP-

BO (0: 15) O1

_0TACK
READ

_BLDS
_BUDS

_BAS

7MHz
DOE

_BUSRST
_GBG

_ETNTT^F

_EBG (1:5) <CF

K

k
k
k
N
k

k

ki.
CN606 k

k
ki
Nil

k

€1

k

ki

k

ki

k»
ki

IS

V
V
v

14

13

12

11

[/IQ
Ki
Vi
Vi
Vi
VI
V
Vi

y

74LS32 74LS32

— (Px5)

•5V

0

CN6QI

4

4

4

4

4
4

¥
tf.

¥ 14

¥
¥

¥
31

¥
¥

31
31

31

¥

31

¥
32-

¥
¥

¥

♦12V

o
-sv
0

_SLAVE 1

.CFGOUT j

CFG INl

-12V
0

¥

¥
32-

32-

5H

¥

31
32-

¥
¥

¥
¥

¥
¥

¥
¥

74

77

¥

¥
¥

¥
¥

¥
¥

¥
¥

¥
¥

¥

¥

_BR1

_BG1

94

¥
¥

¥

¥
¥
go

z

CN6Q2

4

4

¥

¥
1

4

4

¥

17

¥

¥

¥

¥
¥
¥

34

¥
¥

¥
¥

¥
32-

¥
¥

¥

¥
¥

.SLRVE2

_CFG0UT2

_CFGIN2

¥
¥

¥

¥

¥

¥
¥

¥
¥

¥
¥

¥

¥

JF12

_BG2

¥

7J4

77

¥

¥
¥

¥
¥

¥

64

¥
¥

¥
¥

¥
¥

¥
¥

¥
¥

¥
¥

¥

Z

74LS32

CN603

4

4

4

4

4

4

4

4 ISLRVE3

¥

14

LOVR

¥

¥

!4.

¥
¥

¥

¥

¥
¥

¥
¥

GNO

GNO

GNO

GNO

+ 5V

5 V

LOCALOHN

-5V

♦ 12V

LCFG0UT3

_CFG IN3

GNO

_C3
CDflC

_C1

XRDT

! INT2

-12V

BPS

INT6

BR6
BP4

GNO

0P3

BP2

Bfl7

BP 1

BP8

BFCQ

BP9

BFC1

BRIO

BFC2

Bfl 11

GNO

BR12

BP 13

JE INT7

¥

V -E1NT5

¥

¥

¥
¥4

¥

I RST

¥

¥
¥

¥
¥

¥

¥
—¥

¥
¥

¥

¥
¥

BP 14

BP 15

_EINT4

8916

BEER

BP 17

VPR

GNO

VHP

Bfl 1 8

Bfl 1 9

_HIT

8A20
8P22

Bfl21

BP23

BR3

GNO

BGflCK

BO 15

BG3

BO 14

_DTRCK

9013

REAO

BO 12

4

74

77
¥

¥
¥

¥
8j)

¥
¥

¥
¥

¥
¥

¥
¥

¥

¥
¥

¥
¥
¥

¥
¥
1Q0

9L0S

B011
.BU05

GNO

BAS

BOO

Boie
601

B09

B02

BOB

BD3

BD7

604

606

GNO

B05
GNO

GNO

GNO

GNO

GNO

7MHz

OOE

BUSRST

GBC

_E I N T1

GNO

GNO

Z

CN601-

4

a-

c
¥-

li¬

st.

^ :«

3i-

32—
3

32-

31

32—

¥—T

*
¥
¥

C£

*

32-

; x

¥
¥
32-

4

-r--#

77

¥
¥

w
*

¥

¥
¥_

¥—r-

¥—^

—*

O
z: z

_EBR (1:5)

SLAVE (1:51 O
4m

B2000-6

74LS32

CN602

4

4
4

4
4

4

4
4

17

4-

-4

-4

4
4

_SLRVE2

_CFG0UT2

LCFGIN2

4
4

4
3J4

4

4
4

4
4

4
4

4
4

4

4
4

4
4

4

4

4
4

4

4

M Jfl2

4
J3G2

7Ji

77

4

4
4

4
4

4
84

4

4
4

4
4

4

4
97

38-

i_go

4!

4

4
4

74LS32 74LS32

CNS03

-i
GNO

4
4 CND

GNO

GNO

4

4
A

4 -5V

_S L B V E 3

4

in
♦5V

_LOCRL_OHN

12V

.CFGOUT3
_CFGIN3

GNO

£1_
ICOfiif

■Cl

L£VR
xrot

_INT2

-12V

BBS

_1 NTS

006

. |BO*T

GNO

603

802

4
8R7

iBflT
lPR8
8FCG

&

&

BR9

BFC1

BRIO

4*
BFC2

6R1 l

IGNO

41- 8R12
IbriT

$1

E1NT7

BR14

^ j-ElNT5

iBR15

y ;_E iNT4
* in a t r

3.4

4*

38-

31

31
38-

38-

BR16
JBEER

8R17

VPR

UNO

VMR

1BR18
CrsT
iBR 19

[hit

¥

42-

rR2Q
,BA22
BR21

0A23

¥t!
toNO

*
62 _8GACK

on i c 10015

4 8014

4fc J3TRCK

[BO 13

; L3L0S

77

42-
4£

4J-

4k
4t

BR3

JBG3

IREAO

8012

8011

BUOS

GNO

1$ -BBS

600

8010

801

809

802

808

803

807

604

806
GNO

805

GNO

4
i3 IGNO

|CN0

4
4

[GNO

4

4
4

4
4

4

GNO

7MHz

4

4
4

4
4

4
4

4
4

4

4
4

4
4

4
4

4
4

JR4

4
4

4
4

4
4
70

OOE

LBU5RST

_G8G

E1NT1

IGNO

GNO

z

73

77
4

4
4

8.

8!
4

4
4

4
8^

4
4

4
4

4

BG4

97
4

4

4

z z
!3

CNS04

4

4
4

4
4

4

l
4

4
4

4 -

17

£

-£

_5LAVE4

_CFG0UT4

CFG INU

C6Q6

. Q47uF

CN6Q5

_SlAVE5

„CFGIN5

*c822j iioeepf

4*
^ C623tiiaeep
9~ n 1*71?
4
_C62H

C625j|lQQQp 3
1QOflpF

C826||1099pF

31

^ C627i|tQ96p

' C628

4
^4 C829i|lQQQp 3

leeopF

* C63Q||lQOOpf

4
4- C63ij|ieeop a

4
4 0632)iioeepF

C633j|lQQQp

38
3H*

C63S|jlQQSpF

4
4

4
4

4
4

4
4

_BBS

_8G5

4
4

4
4

4
4

4
4

4
4

4
4

4

4
4

4

74

77
4

4
4

4
4

C637j|10Q9pF

0639)|lQQQpF

m

C641) HQQOpF

C6US.|looepF

C6M7 LZ| p®®*pL
C649j|lQOQpF

* C650)|laegpF
C6S11|IQQBp

*C652| neeepF

C85*4j MQQBpF

0655)ilQQOpF

oesTj | ieoePF

CB58

C6S9)|laoopH
loeopF

C660

ccsij {loeopH

1999pF

* C66Z||16<8pf

C663]|1990pF

_*C66«4

C665|\leeepH
loeopF

* C666

0667)|lQQQp a
lBBSpF

_'case
C569|IisaapH

lQQOpF

4
4

4
4

4

4
—4

4

4
4

4
4

LS0

_' C673

CS71| | iBQOjP

IBBBpf

_* CB7Z

cb73[[taaep?
IBBOpF

R601)r603
IK IK

iQF T '

7
7t^ WH

Wi
ttWV- |
^ A A ^

[RP601
IK

(Px9)

W\r
1

10 r T *"

■? Tt^A
flPSQS

IK

I (Px9)

-wyfi
i

LQr 7 -

“5

Tryy ■jWV-
wyf

,RP603

3 ’a'-J IK
i (Px9)

i

tor 7 - -g-^/Vn
"5 7T-W-

+V\a|
tor 7 '

KaH
fwv-
n ^ A /V

u wH
WH

+VVl

RP60H
IK

(Px9)

1

RP605
IK

(Px9)

1

C67M)|lQQOpF

iR604
> 1K

0677|jlQQOpF

1R605

♦5V

0

IK

X

ft

10K (Px5)
- 1

4 ^A/v
5T Goes like thunder; Its o Bus-flge wonderi

_ _ j
RP600

UNLESS OTHERWISE
—sssnrg—

. X .XX .XXX

Z’S

MATERIAL:

FINISH;

DPflWNBT;
Oau* H«yni#

UffTT
H/27/S7

CMKQ.

ENGR; 08H \HH%1

RPPR:

USEO ON

a2880>CR

NEXT ASST

312725

Connodore

B2Q00
An I go Expansion

SIZE

B 312726
REV

2

SCALE SHEET 6 OF 12

IBM 8 BIT EXPANSION BUS
+5V

O

C7Q1

22uF

16V

C700

. 22uF

+

CM

CN70Q

81
o-

82
O-

B3

B4
o-

B7
o~

91
o-

17

93

94
85 °"

° 9?

86 °~
O-

96
o-

wr
B8

B9
o—

B1 0

98
o-

99
o-

B1 1

B l 2
O—

910
O—

HT
o-

B1 3
Q—

in?
a .

B14
UT

a

0 914

B1 5

° 9T5
B1 6 °~

it?
B17 °“
0- 7TT

B^8 °”
in

\B£ -

919

B20 °“

0 920

B21
Q—

B22
0—

99

77?
324

I RQ5

98

924
Q—

IR Q 4

97

925
0-

I RQ3

96

926
DRCK2

95

77T
o-

TC
94

'928'
Q—

RLE
93

RT29"
o-

+ 5 V

R2

30
O-

osc
91

GND

90

823
R22
—@-

824

R23
—e-

17?
R24

° 925

B2"6 °

0 R26
B27

—P2y
—@—

B28

829
R28
—e-

8|G
R29
-0-

B31

R30

fl 31

C702 C703

HI
B23
o-

GNO

_I OCHK

RESORV

07

+5V
06
IRQ2
05
-5V

04

0RQ2

03

-12V

02
CD SEL

01
M2V

00
GNO
I0RERDY

MEMW

REN

_MEMR

919

_I0W
918

_I OR

917

DRCK3

916

DR03
915

D9CK1

914

DRQ1

913

SHITHER0

912
CLK

911

I RQ7
910

IRQ6

5V

o
-12V

o

CN701

81

82

fll

R2
B3

84
93

R4
85

R5

86

B 7

88
R7

89

98

FT?
R9

BH
RHP

8^2
fll 1

fl!2

fl 1 3

814

R 1 4

6i$' 'e

0-

B 1 6
—e—

R^5

817
116

8^8
ITT
—e-

8^9
fl 1 8
—0-

120
-e-

9^9

fl

B2T

822

921

♦ 12V

Q

C 704

CN702

RP7G5
4.7K

(P x 9)

B 1

B2
91

77
B3

B4
A3
-e-

I?
R4

B6
R5

B7

fl6

B8
97

B9

R8

BTO
R9

910

Bll

B12

ATT

172
8^3

B14
173

B 1 5
-e-

Rn

R15
B 1 6
—e—

B17
916

ATT

B 1 9
-0-

178
—e-

919

177

ITT
-e-

920

R21
B22
-e-

fl22
B23
-0- 121
B24

B25

A24

126
—e—

925

B27
—e-

926

828

127

B29
171

Bll
-0-

fl29
—0-

B 3 1

930

R 31

. 22uF . 22uF . 22uF

CN703

B1
-o

B2
-O

fll
-0

92

B 3
-o

B4
-O

R3

fl4
BS
-o fl5
B6
-O

96

B7
-o

R7

B8
-O

B9
-o

R8

R9
171

Bll
n 10
-~o

812

ITT
-0

B 1 3
-o

177
—©-

fl 1 3

B 1 4
-0

914

IT?
-o

B 1 6
-0

915

27

916
—0-

917

B 1 8
-o

B 19
-0

9^8

170
-o

9^9

ITT
—G

920

B22
-o

921

922

B23
-0

B24
-o

923
—0-

17?
-0

924

B26
-o

925

926
B27
-0

B28
-©

927

B29 .
—O

928

B3Q
—O

929

B31
-0

930

931

C7 1 1| | lQggpF

C7 1 3j | lOOQpF

C7 1 U) | lQQBpF

C7l6j | IQGQpF

C717| | lQQBpF

C7 I 9j | lOOQpF

C72Qj | lQQDpF

C722j | IQGQpF

C730j | lQQQpF

C732 lQQGpF

C734i | lQQGpF

C73& |lGOOpF

C738| I IQGQpF

C74 % lOOQpF

C742 IQGQpF

C744i | IQGQpF

C746j | lOOQpF

CT^ IGOOpF

C75Qj | iQGGpF

C752j | lOOQpF

C754| | lQQGpF

C75& |lQQGpF 5& ilGG
i •

C75& | lOOQpF 58i [_1GG
i c

C79Q | lOOQpF

C79 li | IQGQpF

C793) | lGQGpF

10
rrvV-i
rW-

8
yrVXA-

■vV*
W-
■W
w-
W-
W

|RP70C<

I IK
I (P x 91

, l

RP705
4. 7K

(Px9)

IGQGpF
•

iOOGpF io"
t

9

8
V V

fW-
-vV-

A ||vv-
V V

RP701
IK

(Px9)
l

10

8

7'

6 I
51

rW-
aAa-
W-
-W-
W-

RP702
IK

(P x 9)
l

B2000-7

JEBR (1:5) O2

_BEER
_BUDS
_BLDS

READ
_BG

_B0SS
_0VR

_B AS
_BRST
_CDAC

Cl

C3

+SV

o
<\l

R80Q>
<1 0K

2

mvm
?

R
P

8
0

1

tn
—•

•F .
•
* C10I + C415 -!

u 101 — ™ “ ■ L_ U1
«
« gJ - 7047uF fM “4.7UF ML ru OD =r

W
_

16V

ijNORMflL

J10U?

SPECIAL

4 B2000-9

r
N C T_10 NS)_

FnCT I ONS)
; jovb

2

T

OVL

XRQT

.ROMEN

.EXRPM

.CLKRD

ClKWfl

30

31

21

32

22

23

J 107

—I—

<v

Nil

1 NORMAL

j i g i d>

9s

k 19

PECIfiL

V?
\l6

\ IS
\ 14

\ 13

_12

\n
\ It

\ 9

\ 8

\ 6

\ 5

\ 4

\ 3

C107

. 047uF

04

C 108

7 4 F G^4 j

. 047uF RP1Q3
(Px5)

in cn
<\1 (M o>

N

k

K

K

15 83

.14 84
l

12 2
UL 3

ie _ 4

.9 5

.8 6

.7 7

6 8

.s 9

4 10

3. 11

.2 12

1 13

1_ 14

59
77
76
75

H
73
72
71
70
69
68
67
66

_65
84

63
62
61
60

52
53
22
24

16.

18

17

34

36

35

$90 gr*

22- -

A/v 3l_v v_[„

U1Q7 RP102

22-

£rc^Vir
U 1 07 RP1Q2

22-
^ViT

U1Q7 RP1Q2

Id Ui 1/1 —
t L3 “ J
CL UJ -J 03

I

TS
(Z u ^
O (_> u
U| «

DR09

DR06

0RQ5

DRD4

0R03

DR02

DRD1

uioi

FANG

o . k . o.

P19
P18

P17
P16
P15
P14
P13

P12

HU
P10
P9
P8
P7
H6
H5
H4
P3
P2
HI

Fst Agnus

.CflSL

_CRSU

JWS0

-HE

0RP8
DRH7
DRH6
0RR5
DRR4
0RA3
tRR2
DRR1
ORR0

51 8

50 7

49 6

40 5
47 <4

46 3

45 2

44 1

43 9

RGR8
RGR7
RGR6
RGR5
RCR4
RGR3
RGR2
RGR1

JlOS
uos

R/H
;_RS

.RESET

ORAL

.1NTR

28HH*

.XCLKEH

XCLK

7NHi 38

J.PEN &

.HSYNC

_VSTNC

j:stnc ^80

TEST 41

.54

.55

.S7

.56

.21

N

M

26 8

27 7

28 6

29 S

30 4

31 3

32 2

33 1

\I

\

Rl§8

♦5V

J1 02

-CH>

29

5V •5

330 <^330
R115 > R114

**\

^ODRD (0: 15)

^kZLOVR

KD0VL

ji<DXRDT

JC>_R OMEN

JAC_EXRPM

■aO_C L K R D

t> CLKWR

O _C3

o_ci

■MOCDAC

^OCl

^>03

Jt>_C D A C

■20_C A S L

t>_CASU

•2O_RAS0

-20_R AS 1

■Owe

■5*0 DRA (0:8)

ORGA (1:8)

t>7MHz

■2<C]__L PEN

0_HSTNC

0_VSTNC

0_CSTNC

Oaep down Inside, I’ve got o Rock-n-Roll heort

470
UNLESS OTHERWISE
-STCUUCT-

.X .XX .XXX

+ + ♦

z*$

HATERIALi

FINISH:

DRAWN BY':
Oav* Hoynl•

w

CHKO:
ENCHi O0H
RPPH:

USED ON

N2®8§-CN

NEXT ASST

91272$

Connodore

B2000

Agnus end Gory

SIZE

B 312726

REV
2

SCALE SHEET 9 Of 12

_S10 E O1

♦5»

B2000-10

Down at the edge, 'round by the corner
unless otherwise ORAUnSYT”

D*»ua Haunt*
“tnrrr

Connodore —sniimu— 4/37/91

Z'S
.X .XX .XXX

± t It t

CHKQ:

B2G0G
Floppy 4 Porollol Ports

ENGR. OBH 4/31/91

APPRi

HfiTEflIRLi USEO ON

02sm-Cft

NEXT R5ST

J1J725 T 312726 T FINISHi
SCAIF ISHFFT 10 OF 1? 1

LEDO
PPD (0: 7) O1

PRCKO1

PBUSYO-1

PPOUT O1

B (G:3) O l

G (0: 3) O

R (0: 3) O

TBflSEO1

CDflCO
C301

LPENO1

PSELO

_CSYNCO

CDflCO1

DRD (0: 15) O1

7MHzO

.BHS<DL

_HSYNCO
_VSYNCO

WWWW *

CN207

<M

*6 ^6

<^6 ^ cn$

®6 So

a
§

24 2b Si Si 36 Rio

S

cn

U2Q5

12

74HCT244

LO.

<n

01_ — on

So

in
—Q —o -X) pjO c\j6 ojb cjb rvj6 mO <r© rriO

So So

cn

So

i

So
m

o

So
in.

INTERNAL VIDEO SLOT

&

C

Si

CN203
AUOIO

UJ i
<n a.

± -_

-

_3*0 -^

15 40

y i4 41

/ I3 42

/ 12 43

/ 11 44

/jL 45

/£ 46

/ 8 47

48

/ 6 1
A 2

sv 3
4

/V. 5

/£. 6

/ e 7

y

8 10

/1 n
/e 12

/5 13
/ t 14

/ J 15
/? 16

/l 17

/

1 36

35

/C5TNC

/CDRC

0RD15
ORom

OROt 3
DR012
0R011
DRO10

M1V

M1H

MOV

MOM

8

—

- If

38 li

9 _ li

_f

«• « N

1

DRD9 DENISE
0R08

°™l U 2 Q 1
0R06

0R05

0R04

0RD3

DRD2

DRDi

DROQ

BURST

PIXELSW

RGR8

RGR7

RG06

RGR5

RGR4

RGR3

RGA2

RGR1

R3

R2

R1

RQ

G3

G2

G1

GO

CCK

7M

B3

82

81

BG

39
JOM 1 V

-4Z>M 1 H

t>M0V

^MQH

12Q
(Px5)

18

33

XT77

23

22
21

20

17
A4 74-

1 c 74HCT24 4c
l j

R3 T3-

13
R2 U205T2'

11 n \ * T1 ' n 1 IM ll"

/777

31

30

29

28

8

A4 Y4
18

74HCT244
R3 T3

fl2 1)206Y2
z fll Ti

TD-

16

m

12

/777

27

26

2S

24

17

15

R4 T4

74HCT24
A3 T3

OR (0:3)
OG (0:3)
OB (0:3)

8

10

11

13

14

15
16

18

+ 5V

R203
CM

♦V10

R3

R2

R1

RQ

flfl

RG

R8

G3

G2

G1

GO

HT20O
VIDIOT

COMP

SYNC

83
82
81

60

CSTNC

Vcc1 Vcc2

7M1

Gndl Gnd2

U205
74HCT244

470uF
1

C226

TsS]-=
ru

12

17

19

20

10K

"

cy CM

_

470uF
16u

C214

B2000-11

<MO

+ 5 V

0

310 “O

-© "o UTQ i->q

>

U205
16

74HCT244

U205
m 47 -

74HCT244 R Pt

B (G : 3) O-o.

G (0:3) O1

R(G:3)

+ 5V

5
EMI229

cn

m

►

\

INTERNAL VIDEO SLOT »

CN203

AUDIO

i_
-L

- If
l

-u

t>R (0:3)

OG (Q: 3)

t>B (0:3)

8

10
11

13
14

15

16

18

>*10

R3 RR
R2
n i nu

"8 H Y 2 0 Q »e
VIDI0T

G3 COMP
G2
G1
r.n SYNC

03
82
81
BQ

CSTNC
Vccl Vcc2 Gndl Gnd2

|70uF
: 5u

C226 „

ru ru

12

17

19

20

<v

470uF
16u

C214

CVQ

+ 5 V

0

zrfa <£$ oo^

+12V_USER

Si To

“’o ^ '”6 3

So

>

U205

16

74HCT244

Ui

o
(ft

U205

14
47.--

A/V

74HCT244
5 L_ _ 16
RP2Q3

ui
—o

co_

To

IRRWLEF T

■KDRRWRIGHT

^OFLTLEFT

^<GFLTRIGHT

■*<□ _C4

5 V
Q + 5V + 5V

So So Si So Sp So

^6 rvA

B (G: 3 i O1 v\

G (0:3) O1

R(G:3)

cn uo_ cuQ rJO

47 (0x4)
iw\/U3-
iV-r-

-h-AA-1-
RP201

So
oi_
(W

R216

10K

Si So So

ioO So

u.

cn_
cnO

2 EH 1202

2 EM 1203

a EM 1204

74F08

11303 ^ 3
22

R212
iOXCLK

DB23P

XCLK

XCLKEN
PIXELSW

RED

GREEN

BLUE

D1 CBO)

DB (B3)

DG CC3)

DR (R31

2 EMI2Q5 cowrsTNC

A/V
2 EMI206 HSTNC

3LvjTh
47 7^_^ui:E")?s7 -»?™c
TLvJT2
RP2Q3

“* 13\0GND

14.

15.

16.

17.

18.

19.

.8
20.

21.

.10
22.

.1 1

23.

12

-Cl

GND

GN0

GND

GND

CNO

-5

♦12

♦5

CN202

♦sv

EMI229 EMI200

C7>

♦5V

1
X
LlJ

R215
fM
& ♦ VID

CD
ru

m

o
ru

?
— •
•

“ C201
• ! C205 n

U201
_ U2Q5 U206

u -
722uF

CD -

.047uF
-si M

C206

. 047uF

CM

CD
c\i

iu _

<LC1

JC>_X C L K E N

COMPOSITE
CN206

ncn jack

EMI
2 EM 1208 l1,

I

VIDEO OUT

-5 V
O

2 EM 1209

C217

T 22uF

+12V_USER
O

2 EM 1210

C 21 6

. 22uF

+5V_USER
O

CM

C2I5

. 22uF

She cones in colors, everywhere
unless otherwise
-5FFCTFTOD-

. X

+

.XX .XXX

♦ 1+

Z'S

+
MATER I fit:

FINISH!

mmwrr~
Dov» Hoynio

OAtE
«/27/07

CHKD:
ENCRi DBM «/*7/«7

APPAi

USED ON

A2008-CR

NEXT ASST

312725

Connodore
B2O00

V i dao

SIZE

B 312726
REV
2

SCALE SHEET no F 12

