Common MIPS instructions.
Notes:op, funct, rd, rs, rt, imm, address, shamt refer to fields in the instruction format. The program counter PC is assumed to
point to the next instruction (usually 4 + the address of the current instruction). M is the byte-addressed main memory.

Assembly instruction fg;iira;t op/]ocfjnct Meaning Comments

add rd, srs, Srt R 0/32 $rd = $rs + $rt Add contents of two registers

sub $rd, $rs, Srt R 0/34 $rd = $rs - S$rt Subtract contents of two registers

addi rt, Srs, imm I 8 $rt = $rs + imm Add signed constant

addu $rd, $rs, $rt | R 0/33 $rd = Srs + Srt Unsigned, no overflow

subu $rd, rs, Srt R 0/35 $rd = $rs - S$rt Unsigned, no overflow

addiu srt, Srs, imm | | 9 $rt = $rs + imm Unsigned, no overflow

mfcO $rt, $rd R 16 $rt = $rd rd = coprocessor register (e.g. epc, cause, status)
mult $rs, $rt R 0/24 Hi, Lo = $rs * $rt | 64 bit signed product in Hi and Lo

multu $rs, Srt R 0/25 Hi, Lo = $rs * $rt | 64 bit unsigned product in Hi and Lo

div rs, Srt R 0/26 Lo = $rs / $rt, Hi = $rs mod $rt

divu rs, Srt R 0/27 Lo = $rs / $rt, Hi = $rs mod $rt (unsigned)

mfhi $rd R 0/16 $rd = Hi Get value of Hi

mflo $rd R 0/18 $rd = Lo Get value of Lo

and $rd, Srs, Srt R 0/36 $rd = $rs & S$rt Logical AND

or $rd, $rs, Srt R 0/37 $rd = $rs | $rt Logical OR

andi $rt, $rs, imm |1 12 $rt = $rs & imm Logical AND, unsigned constant

ori rt, Srs, imm I 13 $rt = $rs | imm Logical OR, unsigned constant

sll $rd, $rs, shamt | R 0/0 $rd = $rs << shamt | Shift left logical (shift in zeros)

srl rd, Srs, shamt | R 0/2 $rd = $rs >> shamt | Shift right logical (shift in zeros)

1w $rt, imm(S$rs) | 35 $rt = M[$rs + imm] | Load word from memory

sw $rt, imm($rs) I 43 M[$rs + imm] = $rt | Store word in memory

lbu $rt, imm($rs) I 37 $rt = M[$rs + imm] | Load a single byte, set bits 8-31 of $r7 to zero
sb $rt, imm($rs) 1 41 M[$rs + imm] = $rt | Store byte (bits 0-7 of $r¢) in memory

lui $rt, imm I 15 $rt = imm * 216 Load constant in bits 16-31 of register $r¢
beq $rs, $rt, imm 1 4 if($rs==$rt) PC = PC + imm (PC always points to next instruction)
bne $rs, $rt, imm I 5 if($rs!=$rt) PC = PC + imm (PC always points to next instruction)
slt $rd, $Srs, Srt R 0/42 if(Srs<$rt) $rd = 1; else $rd = 0

slti Srt, $Srs, imm 1 10 if(Srs<imm) $rt = 1; else Srt = 0

sltu $rd, rs, Srt R 0/43 if($rs<$rt) $rd = 1; else $rd = 0 (unsigned numbers)

sltiu rt, Srs, imm | I 11 if(Srs<imm) $rt = 1; else $rt = 0 (unsigned numbers)

j destination J 2 PC = address*4 Jump to destination, address = destination/4
jal destination J 3 $ra = PC; PC = address*4 (Jump and link, address = destination/4)
jr $rs R 0/8 PC = $rs Jump to address stored in register $rs

MIPS registers

Name Number Usage
$zero 0 constant 0
Sat 1 reserved for assembler
$v0 - $vl | 2-3 expression evaluation and function results
$a0 - $a3 | 4-7 arguments
$t0 - $t7 | 8-15 temporary, saved by caller
$s0 - $s7 | 16-23 temporary, saved by called function
$t8 - $t9 | 24-25 temporary, saved by caller
Sk0 - $k1 | 26-27 reserved for kernel (OS)
$gp 28 points to middle of a 64K block in the data segment
$sp 29 stack pointer (top of stack)
$fp 30 frame pointer (beginning of current frame)
Sra 31 return address
Hi, Lo - store partial result of mult and div operations
PC - contains the address of the next instruction to be fetched (this is not a real
MIPS register, and is only used to define instructions)
status - register 12 in coprocessor 0, stores interrupt mask and enable bits
cause - register 13 in coprocessor 0, stores exception type and pending interrupt bits
epc - register 14 in coprocessor 0, stores address of instruction causing exception
MIPS Instruction formats
Format Bits 31-26 Bits 25-21 Bits 20-16 Bits 15-11 Bits 10-6 Bits 5-0
R op IS rt rd shamt funct
I op s rt imm
J op address
MIPS Assembler syntax
This is a comment
.data # Store following data in the data
segment
items: # This is a label connected to the
next address in the current segment
.word 1, # Stores values 1 and 2 in next two
words
hello: .asciiz “Hello” # Stores null-terminated string in
memory
.text # Store following instructions in
the text segment
main: lw $t0, items($zero) # Instruction that uses a label to
address data

